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Technical Editor
Bahar Doğan Yazıcı
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i



Contents

1 A Modelling on the Exponential Curves as Cubic, 5th and 7th Bézier Curve in Plane
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Abstract
In this study, it has been researched the exponential curve as a 3rd , 5th and 7th order Bézier curve in E2. Also,
the numerical matrix representations of these curves have been calculated using the Maclaurin series in the
plane via the control points.

Keywords: Bézier curves, Exponential curve, Maclaurin series, 5th and 7th order Bézier curve.
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1. Introduction and Preliminaries
Bezier curves have special mathematical representations and are obtained with the help of polynomial functions. Since these
curves are used in computer aided geometric design and modelling [1], they have an important place in applied fields. The
Bezier curve has a control polygon that contains it, and only the start and end points are on the curve, so it provides an advantage
in terms of use in modelling. Thus, it provides the opportunity to make the desired changes over the control polygon. Users
outline the wanted path in Bézier curves, and the application creates the needed frames for the object to move along the path.
For three dimension animation Bézier curves are often used to define 3D paths as well as two dimension curves for keyframe
interpolation. Apart from the Bézier-curves’ frequent use in applied sciences, the theory has been studied by many researchers
in mathematical points of view. The matrix form was first coined in [2]. The derivatives of the Bezier curves in matrix notation
was studied in [3]. Particularly, the 5th order Bezier curve and its derivatives were studied by matrices in [4]. Besides, it has
been investigated approximation methods in matrix form for Helix, sin waves and cosin curves by different order Bézier curves
in [5–7]. The curve is also subjected to the differential geometry. For example: In [8], A dual unit spherical Bézier-like curve
corresponds to a ruled surface by using Study’s transference principle and closed ruled surfaces are determined via control
points and also, integral invariants of these surfaces are investigated. In [9], Bezier-curves with curvature and torsion continuity
has been examined. In [10–12], Bezier curves and surfaces has been given and Bezier curves are designed for Computer-Aided
Geometric [13]. Recently equivalence conditions of control points and application to planar Bézier curves have been examined.
In [14], Frenet apparatus of the cubic Bezier curves has been examined in E3. In here, first 5th order Bezier curve and its first,
second and third derivatives have been examined based on the control points of 5thorder Bezier Curve in E3. Subsequently,
in [15, 16] involutes of cubic Bezier curves, in [17] and [18] the Bertrand and the Mannheim mate of a cubic Bézier curve by
using matrix representation have been researched in E3. In [19], it has been researched the answer of the question “How to find
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a nth order Bezier curve if we know the first, second and third derivatives?”.
Generally Bézier curves can be defined by n+1 control points P0,P1, . . . ,Pn with the parametrization

B(t) =
n

∑
i=0

(
n
i

)
t i (1− t)n−i (t) [Pi] . (1.1)

In this study, it will be researched the exponential curve as a 3rd , 5th and 7th order Bézier curve in E2. Also, the numerical
matrix representations of these curves will be calculated via the control points. For more detail, see respectively [20, 21].

It is well known that Taylor series of a function f (x) =
∞

∑
n=0

f (n) (a) (x−a)n

n! is an infinite sum of the functions derivatives at a

single point a, also a Maclaurin series f (x) =
∞

∑
n=0

f (n) (0) xn

n! is a taylor series where a = 0.

2. The Curve ex as a Cubic Bézier Curve
We will examine the curve ex as a cubic or 3rd order Bézier curve.

Theorem 2.1. The numerical matrix representation of the curve f (x) = ex as a cubic Bézier curve is

(
t,et)=


t3

t2

t
1


T 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




0 1
1
3

4
3

2
3

11
6

1 8
3


where the control points P0, P1, P2, and P3 are

P0
P1
P2
P3

=


0 1
1
3

4
3

2
3

11
6

1 8
3

 .
Proof. For ex function cubic Maclaurin series expansion is

ex = 1+ x+
x2

2!
+

x3

3!
.

It can be written as in parametric form and a 5th degree polynomial function(
t,et)= (t,1+ t +

t2

2!
+

t3

3!

)
=
(
t,a3t3 +a2t2 +a1t +a0

)
.

Also this can be written as a cubic Bézier curve in matrix representation with the coefficients

a3 =
1
3! ,

a2 =
1
2! ,

a1 = 1,
a0 = 1.

Hence we get the following equation(
t,et)= (t,1+ t +

t2

2!
+

t3

3!

)

=


t3

t2

t
1


T 

0 1
3!

0 1
2!

1 1
0 1

=


t3

t2

t
1


T 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




P0
P1
P2
P3

 ,


P0
P1
P2
P3

=


0 0 0 1
0 0 1

3 1
0 1

3
2
3 1

1 1 1 1




0 1
3!

0 1
2!

1 1
0 1

 ,
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where the coefficients matrix of any cubic Bézier curve and inverse matrix are respectively

[
B3]=


−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

 , [
B3]−1

=


0 0 0 1
0 0 1

3 1
0 1

3
2
3 1

1 1 1 1

 .
For more detail see in [18].

3. The Curve eax+b as a Cubic Bézier Curve

Theorem 3.1. The numerical matrix representation of the curve f (x) = eax+b as a cubic Bézier curve is

(
t,eat+b

)
=


t3

t2

t
1


T [

B3]


P0
P1
P2
P3


where the control points P0, P1, P2, and P3 are

P0
P1
P2
P3

=


0 eb

1
3

1
3 eb (a+3)

2
3

1
6 eb
(
a2 +4a+6

)
1 1

6 eb
(
a3 +3a2 +6a+6

)
 .

Proof. Taylor series of a function is an infinite sum of terms of the functions derivatives at a single point a , also a Maclaurin
series is a taylor series where a = 0. 5th degree Maclaurin series expansion for the function eax+b is

f (x) = eax+b =
3

∑
n=0

f (n) (0)
xn

n!

= eb +aebx+a2eb x2

2!
+a3eb x3

3!
.

It can be written as in parametric form and a cubic polynomial function

(
t,eat+b

)
=

(
t,

a3eb

3!
t3 +

a2eb

2!
t2 +aebt + eb

)
=
(
t,a3t3 +a2t2 +a1t +a0

)
.

Also this can be written as a cubic Bézier curve in matrix representation with the coefficients

a3 =
a3eb

3! ,

a2 =
a2eb

2! ,
a1 = aeb,
a0 = eb.

Hence we get the following equation
t3

t2

t
1


T


0 a3eb

3!
0 a2eb

2!
1 aeb

0 eb

=


t3

t2

t
1


T 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




P0
P1
P2
P3

 ,
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P0
P1
P2
P3

=


0 0 0 1
0 0 1

3 1
0 1

3
2
3 1

1 1 1 1




0 a3eb

3!
0 a2eb

2!
1 aeb

0 eb



=


0 eb

1
3

1
3 eb (a+3)

2
3

1
6 eb
(
a2 +4a+6

)
1 1

6 eb
(
a3 +3a2 +6a+6

)
 .

4. The Curve ex as a 5th Order Bézier Curve
Now, we will examine the curve ex as a 5th order Bézier curve. We have already known that the matrix representation of
α(t) = (t,a5t5 +a4t4 +a3t3 +a2t2 +at1 +a0) is

α(t) =


t5

t4

t3

t2

t
1



T

[
B5
]


P0
P1
P2
P3
P4
P5


where the coefficient matrix and inverse matrix of 5th order Bézier curve are

[
B5
]
=


−1 5 −10 10 −5 1
5 −20 30 −20 5 0
−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0

 ,
[
B5
]−1

=



0 0 0 0 0 1
0 0 0 0 1

5 1
0 0 0 1

10
2
5 1

0 0 1
10

3
10

3
5 1

0 1
5

2
5

3
5

4
5 1

1 1 1 1 1 1

 .

Theorem 4.1. The numerical matrix representation of the curve f (x) = ex as a 5th order Bézier curve is

(
t,et)=


t5

t4

t3

t2

t
1



T 
−1 5 −10 10 −5 1
5 −20 30 −20 5 0
−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0





0 0
1
5

1
5

2
5

2
5

3
5

7
12

4
5

11
15

1 101
120


where the control points P0, P1, P2, P3, P4, and P5 are

P0
P1
P2
P3
P4
P5

=



0 0
1
5

1
5

2
5

2
5

3
5

7
12

4
5

11
15

1 101
120

 .

Proof. 5th degree Maclaurin series expansion for the function ex is

ex = 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
.



A Modelling on the Exponential Curves as Cubic, 5th and 7th Bézier Curve in Plane — 71/77

It can be written as in parametric form and a 5th degree polynomial function

(
t,et)= (t,1+ t +

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!

)
=
(

t,a5t5 +a4t4 +a3t3 +a2t2 +a1t +a0

)
.

Also this can be written as a 5th order Bézier curve in matrix representation with the coefficients[
a5 a4 a3 a2 a1 a0

]
=
[ 1

5!
1
4!

1
3!

1
2! 1 1

]
.

Hence we get the following equation

(
t,et)= (t,1+ t +

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!

)

=


t5

t4

t3

t2

t
1



T 
0 1

5!
0 1

4!
0 1

3!
0 1

2!
1 1
0 1

=


t5

t4

t3

t2

t
1



T 
−1 5 −10 10 −5 1
5 −20 30 −20 5 0
−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0




P0
P1
P2
P3
P4
P5

 ,


P0
P1
P2
P3
P4
P5

=



0 0 0 0 0 1
0 0 0 0 1

5 1
0 0 0 1

10
2
5 1

0 0 1
10

3
10

3
5 1

0 1
5

2
5

3
5

4
5 1

1 1 1 1 1 1




0 1

5!
0 1

4!
0 1

3!
0 1

2!
1 1
0 1

 ,

solving these equation we obtained the control numbers
P0
P1
P2
P3
P4
P5

=



0 1
1
5

6
5

2
5

29
20

3
5

53
30

4
5

87
40

1 163
60

 .

5. The Curve eax+b as a 5th Order Bézier Curve
In this section we have investigated the curve eax+b as a 5th order Bézier curve.

f (x) =
∞

∑
n=0

f (n) (0)
xn

n!
,

f (x) = eax+b,

f ′ (x) = aeax+b,

f ′′ (x) = a2eax+b,

f ′′′ (x) = a3eax+b,

f (4) (x) = a4eax+b,

f (5) (x) = a5eax+b,

f (6) (x) = a6eax+b,

f (7) (x) = a7eax+b.
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Theorem 5.1. The numerical matrix representation of the curve f (x) = eax+b as a 5th order Bézier curve is

(
t,eat+b

)
=


t5

t4

t3

t2

t
1



T 
−1 5 −10 10 −5 1
5 −20 30 −20 5 0
−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0




P0
P1
P2
P3
P4
P5


where the control points P0, P1, P2, P3, P4 and P5 are

P0
P1
P2
P3
P4
P5

=



0 eb

1
5

1
5 eb (a+5)

2
5

1
20 eb

(
a2 +8a+20

)
3
5

1
60 eb

(
a3 +9a2 +36a+60

)
4
5

1
120 eb

(
a4 +8a3 +36a2 +96a+120

)
1 1

120 eb
(
a5 +5a4 +20a3 +60a2 +120a+120

)

 .

Proof. Taylor series of a function is an infinite sum of terms of the functions derivatives at a single point a , also a Maclaurin
series is a taylor series where a = 0. 5th degree Maclaurin series expansion for the function eax+b is

f (x) = eax+b =
5

∑
n=0

f (n) (0)
xn

n!

= eb +aebx+a2eb x2

2!
+a3eb x3

3!
+a4eb x4

4!
+a5eb x5

5!

and it can be written as in parametric form and a 5th degree polynomial function(
t,eat+b

)
=

(
t,

a5eb

5!
t5 +

a4eb

4!
t4 +

a3eb

3!
t3 +

a2eb

2!
t2 +aebt + eb

)
=
(

t,a5t5 +a4t4 +a3t3 +a2t2 +a1t +a0

)
.

Also this can be written as a 5th order Bézier curve in matrix representation with the coefficients[
a5 a4 a3 a2 a1 a0

]
=
[

a5eb

5!
a4eb

4!
a3eb

3!
a2eb

2! aeb eb
]
.

Hence we get the following equation(
t,eat+b

)
=

(
t,

a5eb

5!
t5 +

a4eb

4!
t4 +

a3eb

3!
t3 +

a2eb

2!
t2 +aebt + eb

)

=


t5

t4

t3

t2

t
1



T


0 a5eb

5!
0 a4eb

4!
0 a3eb

3!
0 a2eb

2!
1 aeb

0 eb


=


t5

t4

t3

t2

t
1



T 
−1 5 −10 10 −5 1
5 −20 30 −20 5 0
−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0




P0
P1
P2
P3
P4
P5

 ,


P0
P1
P2
P3
P4
P5

=



0 0 0 0 0 1
0 0 0 0 1

5 1
0 0 0 1

10
2
5 1

0 0 1
10

3
10

3
5 1

0 1
5

2
5

3
5

4
5 1

1 1 1 1 1 1





0 a5eb

5!
0 a4eb

4!
0 a3eb

3!
0 a2eb

2!
1 aeb

0 eb


,
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P0
P1
P2
P3
P4
P5

=



0 eb

1
5 eb + 1

5 aeb

2
5

1
20 eba2 + 2

5 eba+ eb

3
5

1
60 eba3 + 3

20 eba2 + 3
5 eba+ eb

4
5

1
120 eba4 + 1

15 eba3 + 3
10 eba2 + 4

5 eba+ eb

1 1
120 eba5 + 1

24 eba4 + 1
6 eba3 + 1

2 eba2 + eba+ eb

 ,

f (x) =
∞

∑
n=0

f (n) (0)
xn

n!
,

f (x) = eax+b xn

0!
+aeax+b xn

1!
+a2eax+b xn

2!
+a3eax+b xn

3!
+a4eax+b xn

4!
+a5eax+b xn

5!
+a6eax+b xn

6!
+a7eax+b xn

7!
.

6. The Curve ex as a 7th Order Bézier Curve

Theorem 6.1. The matrix of any 7th order Bézier curve is

[
B7]=



−
(7

0

)(7
7

) (7
1

)(7−1
7−1

)
−
(7

2

)(7−2
7−2

) (7
3

)(7−3
7−3

)
−
(7

4

)(7−4
7−4

) (7
5

)(7−5
7−5

)
−
(7

6

)(7−6
7−6

) (7
7

)(0
0

)(7
0

)( 7
7−1

)
−
(7

1

)(7−1
7−2

) (7
2

)(7−2
7−3

)
−
(7

3

)(7−3
7−4

) (7
4

)(7−4
7−5

)
−
(7

5

)(7−5
7−6

) (7
6

)(7−6
7−7

)
0

−
(7

0

)( 7
7−2

) (7
1

)(7−1
7−3

)
−
(7

2

)(7−2
7−4

) (7
3

)(7−3
7−5

)
−
(7

4

)(7−4
7−6

) (7
5

)(7−5
7−7

)
0 0(7

0

)( 7
7−3

)
−
(7

1

)(7−1
7−4

) (7
2

)(7−2
7−5

)
−
(7

3

)(7−3
7−6

) (7
4

)(7−4
7−7

)
0 0 0

−
(7

0

)( 7
7−4

) (7
1

)(7−1
7−5

)
−
(7

2

)(7−2
7−6

) (7
3

)(7−3
7−7

)
0 0 0 0(7

0

)( 7
7−5

)
−
(7

1

)(7−1
7−6

) (7
2

)(7−2
7−7

)
0 0 0 0 0

−
(7

0

)( 7
7−6

) (7
1

)(7−1
7−7

)
0 0 0 0 0 0(7

0

)( 7
7−7

)
0 0 0 0 0 0 0



=



−1 7 −21 35 −35 21 −7 1
7 −42 105 −140 105 −42 7 0
−21 105 −210 210 −105 21 0 0
35 −140 210 −140 35 0 0 0
−35 105 −105 35 0 0 0 0
21 −42 21 0 0 0 0 0
−7 7 0 0 0 0 0 0
1 0 0 0 0 0 0 0


.

Also the inverse matrix of 7th order Bézier curves in E2 is

[
B7]−1

=



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1

7 1
0 0 0 0 0 1

21
2
7 1

0 0 0 0 1
35

1
7

3
7 1

0 0 0 1
35

4
35

2
7

4
7 1

0 0 1
21

1
7

2
7

10
21

5
7 1

0 1
7

2
7

3
7

4
7

5
7

6
7 1

1 1 1 1 1 1 1 1


.

Now, we will examine the ex curve as a 7th order Bézier curve.
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Theorem 6.2. The numerical matrix representation of the curve f (x) = ex as a 7th order Bézier curve is

(
t,et)=



t7

t6

t5

t4

t3

t2

t
1



T


0 a7eb

7!
0 a6eb

6!
0 a5eb

5!
0 a4eb

4!
0 a3eb

3!
0 a2eb

2!
1 aeb

0 eb



T

=



t7

t6

t5

t4

t3

t2

t
1



T

[
B7]


P0
P1
P2
P3
P4
P5
P7
P7


where the control points P0, P1, P2, . . . ,P7 are

P0
P1
P2
P3
P4
P5
P7
P7


=



0 1
1
7

8
7

2
7

55
42

3
7

158
105

4
7

1457
840

5
7

632
315

6
7

11743
5040

1 685
252


.

Proof. 7th degree Maclaurin series expansion for the function ex is

ex = 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!

and it can be written as in parametric form and a 7th degree polynomial function

(
t,et)= (t,1+ t +

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+

t6

6!
+

t7

7!

)
=
(

t,a7t7 +a6t6 +a5t5 +a4t4 +a3t3 +a2t2 +a1t +a0

)
.

Also this can be written as a 7th order Bézier curve in matrix representation with the coefficients. Hence we get the following
equation

(
t,et)= (t,1+ t +

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+

t6

6!
+

t7

7!

)

=



t7

t6

t5

t4

t3

t2

t
1



T 

0 1
7!

0 1
6!

0 1
5!

0 1
4!

0 1
3!

0 1
2!

1 1
0 1



T

=



t7

t6

t5

t4

t3

t2

t
1



T

[
B7]


P0
P1
P2
P3
P4
P5
P7
P7


,



P0
P1
P2
P3
P4
P5
P7
P7


=



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1

7 1
0 0 0 0 0 1

21
2
7 1

0 0 0 0 1
35

1
7

3
7 1

0 0 0 1
35

4
35

2
7

4
7 1

0 0 1
21

1
7

2
7

10
21

5
7 1

0 1
7

2
7

3
7

4
7

5
7

6
7 1

1 1 1 1 1 1 1 1





0 1
7!

0 1
6!

0 1
5!

0 1
4!

0 1
3!

0 1
2!

1 1
0 1


.
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7. The Curve eax+b as a 7th Order Bézier Curve

In this section, we will research the curve eax+b as a 7th order Bézier curve.

f (x) = eax+b =
7

∑
n=0

f (n) (0)
xn

n!

= eax+b +aeax+bx+a2eax+b x2

2!
+a3eax+b x3

3!
+a4eax+b x4

4!
+a5eax+b x5

5!
+a6eb x6

6!
+a7eb x7

7!
.

Theorem 7.1. The numerical matrix representation of the curve f (x) = eax+b as a 7th order Bézier curve is

(
t,eat+b

)
= α(t) =



t7

t6

t5

t4

t3

t2

t
1



T 

−1 7 −21 35 −35 21 −7 1
7 −42 105 −140 105 −42 7 0
−21 105 −210 210 −105 21 0 0
35 −140 210 −140 35 0 0 0
−35 105 −105 35 0 0 0 0
21 −42 21 0 0 0 0 0
−7 7 0 0 0 0 0 0
1 0 0 0 0 0 0 0





P0
P1
P2
P3
P4
P5
P7
P7


where the control points P0, P1, P2, . . . ,P7 are



P0
P1
P2
P3
P4
P5
P7
P7


=



0 eb

1
7 eb + 1

7 aeb

2
7

1
42 eba2 + 2

7 eba+ eb

3
7

1
210 eba3 + 1

14 eba2 + 3
7 eba+ eb

4
7

1
840 eba4 + 2

105 eba3 + 1
7 eba2 + 4

7 eba+ eb

5
7

1
2520 eba5 + 1

168 eba4 + 1
21 eba3 + 5

21 eba2 + 5
7 eba+ eb

6
7

1
5040 eba6 + 1

420 eba5 + 1
56 eba4 + 2

21 eba3 + 5
14 eba2 + 6

7 eba+ eb

1 1
5040 eba7 + 1

720 eba6 + 1
120 eba5 + 1

24 eba4 + 1
6 eba3 + 1

2 eba2 + eba+ eb


.

Proof. 7th degree Maclaurin series expansion for the function eax+b is

f (x) = eax+b =
7

∑
n=0

f (n) (0)
xn

n!
,

f (x) = eax+b +aeax+bx+a2eax+b x2

2!
+a3eax+b x3

3!
+a4eax+b x4

4!
+a5eax+b x5

5!
+a6eb x6

6!
+a7eb x7

7!
,

and it can be written as in parametric form and a 5th degree polynomial function

(
t,eat+b

)
=

(
t,eat+b +aeat+bt +

a2eax+b

2!
t2 +

a3eax+b

3!
t3 +

a4eax+b

4!
t4 +

a5eax+b

5!
t5
)

=

(
t,a7eb t7

7!
+a6eb t6

6!
+

a5eax+b

5!
t5 +

a4eax+b

4!
t4 +

a3eax+b

3!
t3 +

a2eax+b

2!
t2 +aeax+bt + eax+b

)
=
(

t,a7t7 +a6t6 +a4t4 +a3t3 +a2t2 +a1t +a0

)
.

Also, this can be written as a 7th order Bézier curve in matrix representation with the coefficients. Hence we get the following
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equation

(
t,eat+b

)
=

(
t,

a5eax+b

5!
t5 +

a4eax+b

4!
t4 +

a3eax+b

3!
t3 +

a2eax+b

2!
t2 +aeax+bt + eax+b

)
,

(
t,eat+b

)
=



t7

t6

t5

t4

t3

t2

t
1



T


0 a7eb

7!
0 a6eb

6!
0 a5eb

5!
0 a4eb

4!
0 a3eb

3!
0 a2eb

2!
1 aeb

0 eb



T

=



t7

t6

t5

t4

t3

t2

t
1



T

[
B7]


P0
P1
P2
P3
P4
P5
P7
P7


,



P0
P1
P2
P3
P4
P5
P6
P7


=



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1

7 1
0 0 0 0 0 1

21
2
7 1

0 0 0 0 1
35

1
7

3
7 1

0 0 0 1
35

4
35

2
7

4
7 1

0 0 1
21

1
7

2
7

10
21

5
7 1

0 1
7

2
7

3
7

4
7

5
7

6
7 1

1 1 1 1 1 1 1 1





0 a7eb

7!
0 a6eb

6!
0 a5eb

5!
0 a4eb

4!
0 a3eb

3!
0 a2eb

2!
1 aeb

0 eb



T

,



P0
P1
P2
P3
P4
P5
P6
P7


=



0 eb

1
7

1
7 eb (a+7)

2
7

1
42 eb

(
a2 +12a+42

)
3
7

1
210 eb

(
a3 +15a2 +90a+210

)
4
7

1
840 eb

(
a4 +16a3 +120a2 +480a+840

)
5
7

1
2520 eb

(
a5 +15a4 +120a3 +600a2 +1800a+2520

)
6
7

1
5040 eb

(
a6 +12a5 +90a4 +480a3 +1800a2 +4320a+5040

)
1 1

5040 eb
(
a7 +7a6 +42a5 +210a4 +840a3 +2520a2 +5040a+5040

)


,

and so, the result give us the proof.
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Abstract
We explore the dynamics of adhering to rational difference formula
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1. Introduction
Because of its employment in discrete-time systems with microprocessors, difference equations are becoming increasingly
important in engineering. The study of rational difference equations and their qualitative features has recently sparked a surge
of interest. We refer the reader to [1–3] for some literature in this field.

Important rational difference equations were investigated by several authors. As examples:
Aloqeili, [4] has actually gotten the solutions to the difference equation

Ψm+1 =
Ψm−1

a−ΨmΨm−1
.

Çınar [5], researched adhering to problems with positive first values:

Ψm+1 =
Qm−1

−1+aΨmΨm−1
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for m = 0,1,2, . . .
Gelişken [6] investigated behaviors of

Ψm+1 =
A1Mm−(3k−1)

B1 +C1Mm−(3k−1)Ψm−(2k−1)Mm−(k−1)
,

Mm+1 =
A2Ψm−(3k−1)

B2 +C2Ψm−(3k−1)Mm−(2k−1)Ψm−(k−1)
.

Karataş et al. [7] deal with

Ψm+1 =
Ψm−5

1+Ψm−2Ψm−5
.

Oğul et al. [8] deal with

Ψm+1 =
Ψm−17

±1±Ψm−2Ψm−5Ψm−8Ψm−11Ψm−14Ψm−17
.

Şimşek et al. [9] examine the equation

Ψm+1 =
Ψm−13

1+Ψm−1Ψm−3Ψm−5Ψm−7Ψm−9Ψm−11
.

Yalçınkaya et al. [10] have studied

Ψm+1 =
aΨm−k

b+ cp
m
.

For more related works we refer to [11–18].
Our objective in this study is to check out actions of the solution of adhering to nonlinear difference formula

Ψm+1 =
Ψm−3Ψm−5

Ψm−1 (±1±Ψm−3Ψm−5)
, m ∈ N0

where the initials are arbitrary real numbers. Additionally, we obtain these types of solutions.

2. Solution of Ψm+1 =
Ψm−3Ψm−5

Ψm−1(1+Ψm−3Ψm−5)

In this part we give the solutions of

Ψm+1 =
Ψm−3Ψm−5

Ψm−1 (1+Ψm−3Ψm−5)
, m ∈ N0 (2.1)

where the initials are real numbers.

Theorem 2.1. Let {Ψm}∞
m=−5 be a solution of (2.1). Then for m ∈ N0

Ψ4m+1 =
DFm+1

Bm+1

m

∏
i=0

(
1+(i)BD

1+(i+1)DF

)
, Ψ4m+2 =

CEm+1

Am+1

m

∏
i=0

(
1+(i)CA

1+(i+1)CE

)
,

Ψ4m+3 =
Bm+2

Fm+1

m

∏
i=0

(
1+(i+1)DF
1+(i+1)BD

)
, Ψ4m+4 =

Am+2

Em+1

m

∏
i=0

(
1+(i+1)CE
1+(i+1)CA

)
,

where, Ψ−5 = F, Ψ−4 = E, Ψ−3 = D, Ψ−2 =C, Ψ−1 = B, Ψ0 = A.

Proof. Assume m > 0 and this our supposition remains true for m−1.
That is,

Ψ4m−3 =
DFm

Bm

m−1

∏
i=0

(
1+(i)BD

1+(i+1)DF

)
, Ψ4m−2 =

CEm

Am

m−1

∏
i=0

(
1+(i)CA

1+(i+1)CE

)
,

Ψ4m−1 =
Bm+1

Fm

m−1

∏
i=0

(
1+(i+1)DF
1+(i+1)BD

)
, Ψ4m =

Am+1

Em

m−1

∏
i=0

(
1+(i+1)CE
1+(i+1)CA

)
, Ψ4m−5 =

Bm

Fm−1

m−2

∏
i=0

(
1+(i+1)DF
1+(i+1)BD

)
.
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At the present time, using the main (2.1), one has

Ψ4m+1 =
Ψ4m−3Ψ4m−5

Ψ4m−1 (1+Ψ4m−3Ψ4m−5)

=

DFm

Bm ∏
m−1
i=0

(
1+(i)BD

1+(i+1)DF

)
Bm

Fm−1 ∏
m−2
i=0

(
1+(i+1)DF
1+(i+1)BD

)
Bm+1

Fm ∏
m−1
i=0

(
1+(i+1)DF
1+(i+1)BD

)
+ Bm+1

Fm ∏
m−1
i=0

(
1+(i+1)DF
1+(i+1)BD

)
DFm

Bm ∏
m−1
i=0

(
1+(i)BD

1+(i+1)DF

)
Bm

Fm−1 ∏
m−2
i=0

(
1+(i+1)DF
1+(i+1)BD

) .
Hence, we have

Ψ4m+1 =
DFm+1

Bm+1

m

∏
i=0

(
1+(i)BD

1+(i+1)DF

)
.

Similarly, it is easily obtained in other relationships.

Theorem 2.2. (2.1) has one equilibrium Ψ = 0 and this equilibrium isn’t locally asymptotically stable.

Proof. We may express the equilibrium points of (2.1) as

Ψ =
Ψ

2

Ψ(1+Ψ
2
)
,

Ψ
2
(

1+Ψ
2
)
= Ψ

2
.

After that

Ψ
4
= 0.

As a result, the equilibrium of (2.1) is Ψ = 0.
Assume that f : (0,∞)4→ (0,∞) is the function defined by

f (τ,κ,ρ) =
τρ

κ(1+ τρ)
.

As a result, it follows that

fτ(τ,κ,ρ) =
ρ

κ(1+ τρ)2 , fκ(τ,κ,ρ) =−
τρ

κ2(1+ τρ)
, fρ(τ,κ,ρ) =

τ

κ(1+ τρ)2 .

We see that

fτ(Ψ,Ψ,Ψ) = 1, fκ(Ψ,Ψ,Ψ) = 1, fρ(Ψ,Ψ,Ψ) = 1.

We confirm our results with the following numerical examples.

Example 2.3. Assume that

Ψ−5 = 0.3, Ψ−4 = 0.32, Ψ−3 = 0.34, Ψ−2 = 0.36, Ψ−1 = 0.38, Ψ0 = 0.4.

See Figure 2.1.

Example 2.4. Assume that

Ψ−5 = 0.35, Ψ−4 = 0.32, Ψ−3 = 0.34, Ψ−2 = 0.38, Ψ−1 = 0.42, Ψ0 = 0.43.

See Figure 2.2.
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3. Solution of Ψm+1 =
Ψm−3Ψm−5

Ψm−1(1−Ψm−3Ψm−5)

We deal with the difference equation

Ψm+1 =
Ψm−3Ψm−5

Ψm−1 (1−Ψm−3Ψm−5)
, m ∈ N0. (3.1)

Theorem 3.1. Let {Ψm}∞
m=−7 represent a solution of (3.1). In that case for m ∈ N0

Ψ4m+1 =
DFm+1

Bm+1

m

∏
i=0

(
−1+(i)BD
−1+(i+1)DF

)
, Ψ4m+2 =

CEm+1

Am+1

m

∏
i=0

(
−1+(i)CA
−1+(i+1)CE

)
,

Ψ4m+3 =
Bm+2

Fm+1

m

∏
i=0

(
−1+(i+1)DF
−1+(i+1)BD

)
, Ψ4m+4 =

Am+2

Em+1

m

∏
i=0

(
−1+(i+1)CE
−1+(i+1)CA

)
,

where, Ψ−5 = F, Ψ−4 = E, Ψ−3 = D, Ψ−2 =C, Ψ−1 = B, Ψ0 = A.

Proof. The proof is similar to the proof of Theorem 2.1 and therefore it will be omitted.

Theorem 3.2. The unique equilibrium Ψ = 0 in (3.1) isn’t locally asymptotically stable.

Proof. For confirming outcomes of this section, we take into consideration mathematical instances which stand for various
kind of solutions to (3.1).

Example 3.3. Figure 3.1 depicts the actions taken when

Ψ−5 = 3, Ψ−4 = 3.9, Ψ−3 = 3.1, Ψ−2 = 2.8, Ψ−1 = 2.5, Ψ0 = 3.5.

Example 3.4. Figure 3.2 depicts the actions taken when

Ψ−5 = 5.1, Ψ−4 = 4.9, Ψ−3 = 4.3, Ψ−2 = 5.3, Ψ−1 = 4.5, Ψ0 = 4.6.
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4. Solution of Ψm+1 =
Ψm−3Ψm−5

Ψm−1(−1+Ψm−3Ψm−5)

In this part, we study

Ψm+1 =
Ψm−3Ψm−5

Ψm−1 (−1+Ψm−3Ψm−5)
, m ∈ N0. (4.1)

Theorem 4.1. Let {Ψm}∞
m=−5 represent a solution of (4.1). In that case for, m = 0,1,2, . . .

Ψ8m+1 =
−DF2m+1(1+BD)m

B2m+1(1+DF)m+1 , Ψ8m+2 =
−CE2m+1(1+AC)m

A2m+1(1+CE)m+1 , Ψ8m+3 =
B2m+2(1+DF)m+1

F2m+1(1+BD)m+1 ,

Ψ8m+4 =
A2m+2(1+CE)m+1

E2m+1(1+AC)m+1 , Ψ8m+5 =
DF2m+2(1+BD)m+1

B2m+2(1+DF)m+1 , Ψ8m+6 =
CE2m+2(1+AC)m+1

A2m+2(1+CE)m+1 ,

Ψ8m+7 =
B2m+3(1+DF)m+1

F2m+2(1+BD)m+1 , Ψ8m+8 =
A2m+3(1+CE)m+1

E2m+2(1+AC)m+1 .

Proof. Assume that m > 0 and our supposition hold for m−1.

Ψ8m−7 =
−DF2m(1+BD)m−1

B2m(1+DF)m , Ψ8m−6 =
−CE2m(1+AC)m−1

A2m(1+CE)m , Ψ8m−5 =
B2m+1(1+DF)m

F2m(1+BD)m ,

Ψ8m−4 =
A2m+1(1+CE)m

E2m(1+AC)m , Ψ8m−3 =
DF2m+1(1+BD)m

B2m+1(1+DF)m , Ψ8m−2 =
CE2m+1(1+AC)m

A2m+1(1+CE)m ,

Ψ8m−1 =
B2m+2(1+DF)m

F2m+1(1+BD)m , Ψ8m =
A2m+2(1+CE)m

E2m+1(1+AC)m .

Now, it follows from (4.1) that

Ψ8m+1 =
Ψ8m−3Ψ8m−5

Ψ8m−1(−1+Ψ8m−3Ψ8m−5)

=

DF2m+1(1+BD)m

B2m+1(1+DF)m
B2m+1(1+DF)m

F2m(1+BD)m

−B2m+2(1+DF)m

F2m+1(1+BD)m + B2m+2(1+DF)m

F2m+1(1+BD)m
DF2m+1(1+BD)m

B2m+1(1+DF)m
B2m+1(1+DF)m

F2m(1+BD)m

.

Then, we have

Ψ8m+1 =
−DF2m+1(1+BD)m

B2m+1(1+DF)m+1 .

The other relations can be provided in the same way.

Theorem 4.2. (4.1) contains three equilibriums, 0, ±
√

2 and they aren’t locally asymptotically stable.
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Proof. The proof is similar to the proof of Theorem 2.2 and therefore it will be omitted.

Example 4.3. Figure 4.1 depicts the actions taken when

Ψ−5 = 4.3, Ψ−4 = 4.7, Ψ−3 = 4.9, Ψ−2 = 3.8, Ψ−1 = 3.6, Ψ0 = 3.3.

Example 4.4. Figure 4.2 depicts the actions taken when

Ψ−5 = 4, Ψ−4 = 4.5, Ψ−3 = 5.3, Ψ−2 = 4.7, Ψ−1 = 5.1, Ψ0 = 5.5.
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Figure 4.2

5. Solution of Ψm+1 =
Ψm−3Ψm−5

Ψm−1(−1−Ψm−3Ψm−5)

In this section, we find the solutions of

Ψm+1 =
Ψm−3Ψm−5

Ψm−1 (−1−Ψm−3Ψm−5)
, m ∈ N0. (5.1)

Theorem 5.1. Assume that, {Ψm}∞
m=−5 represent a solution of (5.1).

Ψ8m+1 =
DF2m+1(−1+BD)m

B2m+1(−1+DF)m+1 , Ψ8m+2 =
CE2m+1(−1+AC)m

A2m+1(−1+CE)m+1 , Ψ8m+3 =
B2m+2(−1+DF)m+1

F2m+1(−1+BD)m+1 ,

Ψ8m+4 =
A2m+2(−1+CE)m+1

E2m+1(−1+AC)m+1 , Ψ8m+5 =
DF2m+2(−1+BD)m+1

B2m+2(−1+DF)m+1 , Ψ8m+6 =
CE2m+2(−1+AC)m+1

A2m+2(−1+CE)m+1 ,

Ψ8m+7 =
B2m+3(−1+DF)m+1

F2m+2(−1+BD)m+1 , Ψ8m+8 =
A2m+3(−1+CE)m+1

E2m+2(−1+AC)m+1 .

Proof. The proof is similar to the proof of Theorem 4.1 and therefore it will be omitted.

Theorem 5.2. (5.1) contains three equilibriums, 0, ±
√
−2 and these aren’t locally asymptotically stable.

Proof. The proof is similar to the proof of Theorem 2.2 and therefore it will be omitted.

Example 5.3. See Figure 5.1 for the initials

Ψ−5 = 2.85, Ψ−4 = 2.8, Ψ−3 = 2.75, Ψ−2 = 2.7, Ψ−1 = 2.6, Ψ0 = 2.55.

Example 5.4. We consider

Ψ−5 = 2, Ψ−4 = 2.8, Ψ−3 = 2.4, Ψ−2 = 2.7, Ψ−1 = 2.3, Ψ0 = 2.5.

See Figure 5.2.
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6. Conclusion
We explore the behavior of the following difference equation

Ψm+1 =
Ψm−3Ψm−5

Ψm−1 (±1±Ψm−3Ψm−5)
, m ∈ N0

with positive real integers as initials. Local stability is discussed. Furthermore, we obtain the solution to several exceptional
circumstances. Finally, a few numerical examples are shown.
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1. Introduction
In differential geometry the theory of Riemannian submersions was firstly defined and studied by O’Neill [1] and Gray [2], in
1966 and 1967, respectively. In 1976, Watson [3] studied almost complex type of Riemannian submersions and introduced
almost Hermitian submersions between almost Hermitian manifolds. Latar on, Chinea [4] extended the idea of almost
Hermitian submersion to different sub-classes of almost contact manifolds. There are so many important and interesting
results about Riemannian and almost Hermitian submersion which are studied in ( [5]- [7]). As a natural generalization of
holomorphic submersions and totally real submersions, B. Sahin introduced the notion of slant submersions [8], semi-invariant
submersions [9] and hemi-slant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds in 2011,
2013 and 2015 respectively. There are many research articles on Riemannian submersions between Riemannian manifolds
equipped with different structures have been published by several geometers ( [10]- [27]).

Magid and Falcitelli et. al. stablished the theory of Lorentzian submersions in [28] and [29], respectively. In 1989,
Matsumoto [30] introduced the notion of Lorentzian para Sasakian manifolds. Later, Mihai and Rosca studied the same notion
independently in [31]. Recently, Gunduzalp and Sahin studied paracontact and Lorentzian almost paracontact structures in [32]
and [33]. Kumar et. al. in [34] defined and studied conformal semi-slant submersions from Lorentzian para Sasakian manifolds
onto Riemannian manifolds. As a natural generalization of hemi-slant submersions, semi-slant submersions and bi-slant
submersions, Prasad, Shukla and Kumar in [35] introduced the notion of quasi bi-slant submersions from Kaehler manifold
onto a Riemannian manifold.

Beside the introduction this paper contains three sections. In the second section, we present some basic informations related
to quasi hemi-slant Riemannian submersion needed throughout this paper. In the third section, we obtain some results on quasi
hemi-slant Riemannian submersions from Lorentzian para Sasakian manifold onto Riemannian manifold. We also study the
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geometry of leaves of distribution involved in above submersion. Finally, we obtain certain conditions for such submersions to
be totally geodesic. In the last section, we provide some examples for such submersions.

2. Preliminaries
In this section, we recall main definitions and properties of Lorentzian para Sasakian manifolds.

An (2n+1)-dimensional differentiable manifold M1 which admits a (1,1) tensor field φ , a contravariant vector field ξ , a
1-form η is called Lorentzian para Sasakian manifold with Lorentzian metric gM1 ( [31], [36]) which satisfy:

φ
2 = I +η⊗ξ , φ ◦ξ = 0, η ◦φ = 0, (2.1)

η(ξ ) = −1, gM1(Z1,ξ ) = η(Z1), (2.2)
gM1(φZ1,φZ2) = gM1(Z1,Z2)+η(Z1)η(Z2), gM1(φZ1,Z2) = gM1(Z1,φZ2), (2.3)

∇Z1ξ = φZ1, (2.4)
(∇Z1φ)Z2 = gM1(Z1,Z2)ξ +η(Z2)X +2η(Z1)η(Z2)ξ , (2.5)

where ∇ represents the operator of covariant differentiation with respect to the Lorentzian metric gM1 and Z1,Z2 vector fields
on M1.

In a Lorentzian para Sasakian manifold, it is clear that

rank(φ) = 2n. (2.6)

Now, if we put

Φ(Z1,Z2) = Φ(Z2,Z1) = gM1(Z1,φZ2) = gM1(φZ1,Z2) (2.7)

then the tensor field Φ is symmetric (0,2) tensor field, for any vector fields Z1 and Z2 on M1.

Example 2.1 ( [36]). Let R2k+1 = {
(
x1,x2, . . . ,xk,y1,y2, . . . ,yk,z

)
: xi,yi,z ∈ R, i = 1,2, . . . ,k}. Consider R2k+1 with the

following structure:

φ

(
k

∑
i=1

(
Xi

∂

∂xi
+Yi

∂

∂yi

)
+Z

∂

∂ z

)
=−

k

∑
i=1

Yi
∂

∂xi
−

k

∑
i=1

Xi
∂

∂yi
+

k

∑
i=1

Yiyi ∂

∂ z
,

gR2k+1 =−(η⊗η)+
1
4

k

∑
i=1

(
dxi⊗dxi +dyi⊗dyi) , η =−1

2

(
dz−

k

∑
i=1

yidxi

)
, ξ = 2

∂

∂ z
.

Then, (R2k+1,φ ,ξ ,η ,gR2k+1) is a Lorentzian para-Sasakian manifold. The vector fields Ei = 2 ∂

∂yi ,Ek+i = 2
(

∂

∂xi + yi ∂

∂ z

)
and ξ

form a φ -basis for the contact metric structure.

Let Π : (M1,gM1)→ (M2,gM2) be Riemannian submersions between Riemannian manifolds [7]. Define O’Neill’s tensors
T and A [1] by

AEL = H ∇H EV L+V ∇H EH L, (2.8)
TEL = H ∇V EV L+V ∇V EH L, (2.9)

for any vector fields E,L on M1, where ∇ is the Levi-Civita connection of gM1 . It is easy to see that TE and AE are skew-
symmetric operators on the tangent bundle of M1 reversing the vertical and the horizontal distributions.

From equations (2.8) and (2.9), we have

∇Y1Y2 = TY1Y2 +V ∇Y1Y2, (2.10)
∇Y1Z1 = TY1Z1 +H ∇Y1Z1, (2.11)
∇Z1Y1 = AZ1Y1 +V ∇Z1Y1, (2.12)
∇Z1Z2 = H ∇Z1 Z2 +AZ1Z2 (2.13)

for Y1,Y2 ∈ Γ(kerΠ∗) and Z1,Z2 ∈ Γ(kerΠ∗)
⊥, where H ∇Y1Z1 = AZ1Y1, if Z1 is basic. It is not difficult to observe that T

acts on the fibers as the second fundamental form, while A acts on the horizontal distribution and measures the obstruction to
the integrability of this distribution.
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Since TZ1 is skew-symmetric, we observe that Π has totally geodesic fibres if and only if T ≡ 0.
Let (M1,φ ,ξ ,η ,gM1) be a Lorentzian para Sasakian manifold and (M2,gM2) be a Riemannian manifold and Π : M1→M2

is smooth map. Then the second fundamental form of Π is given by

(∇Π∗)(U1,U2) = ∇
Π
U1

Π∗U2−Π∗(∇U1U2) for U1,U2 ∈ Γ(TpM1), (2.14)

where we denote conveniently by ∇ the Levi-Civita connections of the matrices gM1 and gM2 and ∇Π is the pullback connection.
We recall that a differentiable map Π between two Riemannian manifolds is totally geodesic if

(∇Π∗)(U1,U2) = 0 for all U1,U2 ∈ Γ(T M1). (2.15)

A totally geodesic map is that it maps every geodesic in the total space into a geodesic in the base space in proportion to arc
lengths.

Now, we can easily prove the following lemma as in [12].

Lemma 2.2. Let Π be a Riemannian submersion from a Lorentzian para Sasakian manifold (M1,φ ,ξ ,η ,gM1) onto Riemannian
manifold (M2,gM2), then we have

(i) (∇Π∗)(W1,W2) = 0,

(ii) (∇Π∗)(Z1,Z2) =−Π∗(TZ1Z2) =−Π∗(∇Z1Z2),

(iii) (∇Π∗)(W1,Z1) =−Π∗(∇W1Z1) =−Π∗(AW1Z1),

where W1,W2 are horizontal vector fields and Z1,Z2 are vertical vector fields.

3. Quasi Hemi-Slant Submersions
In this section, quasi hemi-slant submersions Π from a Lorentzian para Sasakian manifold (M1,φ ,ξ ,η ,gM1) onto a Riemannian
manifold (M2,gM2) is defined and studied.

Definition 3.1 ( [37]). Let (M1,φ ,ξ ,η ,gM1) be a Lorentzian para Sasakian manifold and (M2,gM2) a Riemannian manifold. A
Riemannian submersion Π : (M1,φ ,ξ ,η ,gM1)→ (M2,gM2) is called a quasi hemi-slant submersion if there exist four mutually
orthogonal distribution D,Dθ ,D⊥ and < ξ > such that

(i) kerΠ∗ = D⊕orth Dθ ⊕orth D⊥⊕orth < ξ >,

(ii) φ(D) = D i.e., D is invariant,

(iii) for any non-zero vector field Z1 ∈ (Dθ )p, p ∈M1, the angle θ between φZ1 and (Dθ )p is constant and independent of
the choice of point p and Z1 in (Dθ )p.

The angle θ is called slant angle of the submersion, where D,Dθ and D⊥ are space like subspaces.
Let Π be quasi hemi-slant submersion from an almost contact metric manifold (M1,φ ,ξ ,η ,gM1) onto a Riemannian

manifold (M2,gM2). Then, we have

T M1 = kerΠ∗⊕ (kerΠ∗)
⊥. (3.1)

Now, for any vector field V1 ∈ Γ(kerΠ∗), we put

V1 = PV1 +QV1 +RV1−η(V1)ξ , (3.2)

where P,Q and R are projection morphisms of kerΠ∗ onto D,Dθ and D⊥, respectively.
For Y1 ∈ Γ(kerΠ∗), we set

φY1 = ψY1 +ωY1, (3.3)

where ψY1 ∈ Γ(kerΠ∗) and ωY1 ∈ Γ(ωDθ ⊕ωD⊥).
Using equations (3.2) and (3.3), we have

φV1 = φ(PV1)+φ(QV1)+φ(RV1),

= ψ(PV1)+ω(PV1)+ψ(QV1)+ω(QV1)+ψ(RV1)+ω(RV1).
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Since φ(D) = D and φ(D⊥)⊂ (kerΠ∗)
⊥, we get ω(PV1) = 0 and ψ(RV1) = 0.

Hence above equation reduces to

φV1 = ψ(PV1)+ψQV1 +ωQV1 +ωRV1. (3.4)

Thus we have the following decomposition

φ(kerΠ∗) = D⊕ψDθ ⊕ (ωDθ ⊕ωD⊥), (3.5)

where ⊕ denotes orthogonal direct sum. Since ωDθ ⊆ (kerΠ∗)
⊥, ωD⊥ ⊆ (kerΠ∗)

⊥. So, we can write

(kerΠ∗)
⊥ = ωDθ ⊕ωD⊥⊕µ,

where µ is orthogonal complement of (ωDθ ⊕ωD⊥) in (kerΠ∗)
⊥.

Also for any non-zero vector field W1 ∈ Γ(kerΠ∗)
⊥, we have

φW1 = BW1 +CW1, (3.6)

where BW1 ∈ Γ(kerΠ∗) and CW1 ∈ Γ(µ).
Span{ξ}= 〈ξ 〉 defines time like vector field distribution. If Z1 is a space-like vector field and is orthogonal to ξ , then

gM1 (φZ1,φZ2) = gM1 (Z1,Z2)> 0,

so φZ1 is also space like. Also ψZ1 is space-like.
For space-like vector fields the Cauchy-Schwartz inequality, gM1 (Z1,Z2)≤| Z1 || Z2 | is verified.
Therefore the Wirtinger angle θ is given by

cosθ =
gM1 (φZ1,ψZ2)

| φZ1 || ψZ2 |
.

gM1

∣∣
kerF∗

is non degenerate metric of index 1 at any point of M1. So (kerΠ∗)q is time like subspace of TqM1 at any point of M1,

so (kerΠ∗)
⊥
q is space like subspace of TqM1 at any point q ∈M1.

We will denote a quasi hemi-slant submersion from a Lorentzian para Sasakian manifold (M1,φ ,ξ ,η ,gM1) onto a Rieman-
nian manifold (M2,gM2) by Π.

Lemma 3.2. If Π be a quasi hemi-slant submersion then we have

ψ
2U1 +BωU1 =U1 +η(U1)ξ , ωψU1 +CωU1 = 0, ωBX1 +C2X1 = X1, ψBX1 +BCX1 = 0,

for all U1 ∈ Γ(kerΠ∗) and X1 ∈ Γ(kerΠ∗)
⊥.

Proof. Using equations (2.1),(3.3) and (3.5), we have Lemma 3.2.

Lemma 3.3. If Π be a quasi hemi-slant submersion then we have

(i) ψ2U1 = (cos2 θ)U1,

(ii) gM1(ψU1,ψU2) = cos2 θgM1(U1,U2),

(iii) gM1(ωU1,ωU2) = sin2
θgM1(U1,U2),

for all U1,U2 ∈ Γ(Dθ ).

Proof. (i) Let Π be a quasi hemi-slant submersion from a Lorentzian para Sasakian manifold (M1,φ ,ξ ,η ,gM1) onto a
Riemannian manifold (M2,gM2) with the quasi hemi-slant angle θ .

Then for a non-vanishing vector field U1 ∈ Γ(Dθ ), we have

cosθ =
| ψU1 |
| φU1 |

, (3.7)
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and

cosθ =
gM1(U1,ψU1)

|U1 || ψU1 |
. (3.8)

By using equations (2.1),(3.3) and (3.8) we have

cosθ =
gM1(ψU1,ψU1)

| φU1 || ψU1 |
,

cosθ =
gM1(U1,ψ

2U1)

|φU1||ψU1|
. (3.9)

From equations (3.8) and (3.9), we get ψ2U1 = (cos2 θ)U1, for U1 ∈ Γ(Dθ ).

(ii) For all U1,U2 ∈ Γ(Dθ ), using equations (2.3),(3.3) and Lemma 3.3 (i), we have

gM1(ψU1,ψU2) = gM1(φU1−ωU1,ψU2)

= gM1(U1,ψ
2U2)

= cos2
θgM1(U1,U2).

(iii) Using equation (2.3), (3.3) and Lemma 3.3 (i), (ii) we have Lemma 3.3 (iii).

Lemma 3.4. If Π be a quasi hemi-slant submersion then we have

V ∇Y1ψY2 +TY1 ωY2−gM1(Y1,Y2)ξ −2η(Y1)η(Y2)ξ −η(Y2)Y1 = ψV ∇Y1Y2 +BTY1Y2, (3.10)
TY1ψY2 +H ∇Y1ωY2 = ωV ∇Y1Y2 +CTY1Y2, (3.11)
V ∇U1 BU2 +AU1CU2−gM1(CU1,U2)ξ = ψAU1U2 +BH ∇U1U2, (3.12)
AU1BU2 +H ∇U1CU2 = ωAU1U2 +CH ∇U1U2, (3.13)
V ∇Y1 BU1 +TY1CU1 = ψTY1U1 +BH ∇Y1U1, (3.14)
TY1BU1 +H ∇Y1CU1 = ωTY1U1 +CH ∇Y1U1, (3.15)
V ∇U1ψY1 +AU1ωY1 = BAU1Y1 +ψV ∇U1Y1, (3.16)
AU1ψY1 +H ∇U1ωY1−η(Y1)U1 =CAU1Y1 +ωV ∇U1Y1, (3.17)

for any Y1,Y2 ∈ Γ(kerΠ∗) and U1,U2 ∈ Γ(kerΠ∗)
⊥.

Proof. Using equations (2.5), (2.10)-(2.13), (3.3) and (3.5), we get equations (3.10)-(3.17).

Now, we define

(∇Y1ψ)Y2 = V ∇Y1ψY2−ψV ∇Y1Y2, (3.18)
(∇Y1ω)Y2 = H ∇Y1ωY2−ωV ∇Y1Y2, (3.19)
(∇X1C)X2 = H ∇X1CX2−CH ∇X1X2, (3.20)
(∇X1B)X2 = V ∇X1BX2−BH ∇X1X2 (3.21)

for any Y1,Y2 ∈ Γ(kerΠ∗) and X1,X2 ∈ Γ(kerΠ∗)
⊥.

Lemma 3.5. If Π be a quasi hemi-slant submersion then we have

(∇Y1φ)Y2 = BTY1Y2−TY1ωY2 +gM1(Y1,Y2)ξ +2η(Y1)η(Y2)ξ +η(Y2)Y1,

(∇Y1ω)Y2 =CTY1Y2−TY1ψY2,

(∇U1C)U2 = ωAU1U2−AU1BU2,

(∇U1B)U2 = ψAU1U2−AU1CU2 +gM1(U1,U2)ξ ,

for any vectors Y1,Y2 ∈ Γ(kerΠ∗) and U1,U2 ∈ Γ(kerΠ∗)
⊥.
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Proof. Using equations (3.10), (3.11), (3.12), (3.13) and (3.18)-(3.21), we get all equations of Lemma 3.5.

If the tensors φ and ω are parallel with respect to the linear connection ∇ on M1 respectively, then

BTY1Y2 = TY1ωY2−gM1(Y1,Y2)ξ −2η(Y1)η(Y2)ξ −η(Y2)Y1,CTY1Y2 = TY1ψY2

for any Y1,Y2 ∈ Γ(T M1).

Theorem 3.6. Let Π be a quasi hemi-slant submersion. Then, the invariant distribution D is integrable if and only if

gM1(TX1φX2−TX2φX1,ωQY1 +ωRY1) = gM1(V ∇X2φX1−V ∇X1φX2,ψQY1),

for X1,X2 ∈ Γ(D) and Y1 ∈ Γ(Dθ ⊕D⊥).

Proof. For X1,X2 ∈ Γ(D), and Y1 ∈ Γ(Dθ ⊕D⊥), using equations (2.3), (2.5), (2.10), (3.2) and (3.3), we have

gM1([X1,X2],Y1) = gM1(∇X1φX2,φY1)−gM1(∇X2φX1,φY1),

= gM1(TX1φX2−TX2 φX1,ωQY1 +ωRY1)+gM1(V ∇X1φX2−V ∇X2 φX1,ψQY1),

which completes the proof.

Theorem 3.7. Let Π be a quasi hemi-slant submersion. Then, the slant distribution Dθ is integrable if and only if

gM1(H ∇Z2ωZ1−H ∇Z1ωZ2,φRX1) = gM1(TZ1ωZ2−TZ2ωZ1,φPX1)+gM1(TZ1ωψZ2−TZ2ωψZ1,X1)

for all Z1,Z2 ∈ Γ(Dθ ) and X1 ∈ Γ(D⊕D⊥).

Proof. For all Z1,Z2 ∈ Γ(Dθ ) and X1 ∈ Γ(D⊕D⊥), we have

gM1([Z1,Z2],X1) = gM1(∇Z1Z2,X1)−gM1(∇Z2Z1,X1).

Using equations (2.3), (2.5), (3.2), (3.3) and Lemma 3.3, we have

gM1([Z1,Z2],X1) =gM1(φ∇Z1Z2,φX1)−gM1(φ∇Z2Z1,φX1)

=gM1(∇Z1φZ2,φX1)−gM1(∇Z2φZ1,φX1)

=gM1(∇Z1ψZ2,φX1)+gM1(∇Z1ωZ2,φX1)−gM1(∇Z2ψZ1,φX1)−gM1(∇Z1ωZ2,φX1)

=cos2
θgM1(∇Z1Z2,X1)− cos2

θgM1(∇Z2Z1,X1)+gM1(TZ1ωψZ2−TZ2ωψZ1,X1)

+gM1(H ∇Z1ωZ2 +TZ1ωZ2,φPX1 +φRX1)−gM1(H ∇Z2ωZ1 +TZ2ωZ1,φPX1 +φRX1).

Now, we have

sin2
θgM1([Z1,Z2],X1) =gM1(TZ1ωZ2−TZ2ωZ1,φPX1)+gM1(H ∇Z1ωZ2−H ∇Z2ωZ1,φRX1)

+gM1(TZ1ωψZ2−TZ2ωψZ1,X1),

which completes the proof.

Theorem 3.8. Let Π be a quasi hemi-slant submersion. Then the anti-invariant distribution D⊥ is always integrable.

Proof. The proof of the above theorem is exactly the same as that one for hemi-slant submersions, see Theorems 3.13 of [38].
So we omit it.

Proposition 3.9. Let Π be a quasi hemi-slant submersion. Then the vertical distribution (kerΠ∗) does not defines a totally
geodesic foliation on M1.

Proof. Let Z1 ∈ Γ(kerΠ∗) and Z2 ∈ Γ(kerΠ∗)
⊥, using equation (2.4), we have

gM1(∇Z1ξ ,Z2) = gM1(φZ1,Z2),

since gM1(φZ1,Z2) 6= 0, so gM1(∇Z1ξ ,Z2) 6= 0. Hence, (kerΠ∗) does not defines a totally geodesic foliation on M1.
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Theorem 3.10. Let Π be a proper quasi hemi-slant submersion. Then the distribution (kerΠ∗)− < ξ > defines a totally
geodesic foliation on M1 if and only if

gM1(TZ1PZ2 + cos2
θTZ1 QZ2,V1) =−gM1(H ∇Z1ωψQZ2,V1)−gM1(TZ1ωZ2,BV1)−gM1(H ∇Z1ωZ2,CV1)

for all Z1,Z2 ∈ Γ(kerΠ∗)−< ξ > and V1 ∈ Γ(kerΠ∗)
⊥.

Proof. For all Z1,Z2 ∈ Γ(kerΠ∗)−< ξ > and V1 ∈ Γ(kerΠ∗)
⊥, using equations (2.3), (2.5) and (3.2), we have

gM1(∇Z1Z2,V1) = gM1(∇Z1φPZ2,φV1)+gM1(∇Z1φQZ2,φV1)+gM1(∇Z1φRZ2,φV1).

Now, using equations (2.10), (2.11), (3.3), (3.5) and Lemma 3.3, we have

gM1(∇Z1Z2,V1) =gM1(TZ1PZ2,V1)+ cos2
θgM1(TZ1QZ2,V1)+gM1(H ∇Z1 ωψQZ2,V1)

+gM1(∇Z1(ωPZ2 +ωQZ2 +ωRZ2),φV1).

Now, since ωPZ2 +ωQZ2 +ωRZ2 = ωZ2 and ωPZ2 = 0, we have

gM1(∇Z1Z2,V1) =gM1(TZ1PZ2 + cos2
θTZ1QZ2,V1)+gM1(H ∇Z1ωψQZ2,V1)+gM1(TZ1ωZ2,BV1)

+gM1(H ∇Z1ωZ2,CV1),

which completes the proof.

Theorem 3.11. Let Π be a quasi hemi-slant submersion. Then, the horizontal distribution (kerΠ∗)
⊥ does not defines a totally

geodesic foliation on M1.

Proof. Let X1,X2 ∈ Γ(kerΠ∗)
⊥, using equation ( 2.4), we have

gM1(∇X1X2,ξ ) =−gM1(X2,∇X1ξ ) =−gM1(X2,φX1),

since gM1(X2,φX1) 6= 0, so gM1(∇X1X2,ξ ) 6= 0. Hence, (kerΠ∗)
⊥ does not defines a totally geodesic foliation on M1.

Proposition 3.12. Let Π be a quasi hemi-slant submersion. Then the distribution D does not defines a totally geodesic foliation
on M1.

Proof. For all Y1,Y2 ∈ Γ(D), using equation (2.4), we have

gM1(∇Y1Y2,ξ ) =−gM1(Y2,φY1),

since gM1(Y2,φY1) 6= 0, so gM1(∇Y1Y2,ξ ) 6= 0. Hence D does not defines a totally geodesic foliation on M1.

Theorem 3.13. Let Π be a quasi hemi-slant submersion. Then the distribution D⊕< ξ > defines a totally geodesic foliation if
and only if

gM1(TX1φPX2,ωQY1 +φRY1) =−gM1(V ∇X1φPX2,ψQY1),

gM1(V ∇X1φPX2,BY2) =−gM1(TX1φPX2,CY2),

for all X1,X2 ∈ Γ(D⊕< ξ >),Y1 = QY1 +RY1 ∈ Γ(Dθ ⊕D⊥) and Y2 ∈ Γ(kerΠ∗)
⊥.

Proof. For all X1,X2 ∈ Γ(D⊕< ξ >),Y1 = QY1 +RY1 ∈ Γ(Dθ ⊕D⊥) and Y2 ∈ Γ(kerΠ∗)
⊥, using equations (2.3), (2.5), (2.10),

(3.2) and (3.3), we have

gM1(∇X1X2,Y1) =gM1(∇X1φX2,φY1)

=gM1(∇X1φPX2,φQY1 +φRY1)

=gM1(TX1φPX2,ωQY1 +φRY1)+gM1(V ∇X1φPX2,ψQY1).

Now, again using equations (2.3), (2.5), (2.10), (3.2) and (3.5), we have

gM1(∇X1X2,Y2) =gM1(∇X1φX2,φY2)

=gM1(∇X1φPX2,BY2 +CY2)

=gM1(V ∇X1φPX2,BY2)+gM1(TX1φPX2,CY2),

which completes the proof.
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Proposition 3.14. Let Π be a quasi hemi-slant submersion. Then the distribution Dθ does not defines a totally geodesic
foliation on M1.

Proof. For all Z1,Z2 ∈ Γ(Dθ ), using equation (2.4), we have

gM1(∇Z1Z2,ξ ) =−gM1(Z2,φZ1),

since gM1(Z2,φZ1) 6= 0, so gM1(∇Z1Z2,ξ ) 6= 0. Hence Dθ does not defines a totally geodesic foliation on M1.

Theorem 3.15. Let Π be a quasi hemi-slant submersion. Then the distribution Dθ⊕< ξ > defines a totally geodesic foliation
on M1 if and only if

gM1(TZ1ωψZ2,X1)+gM1(TZ1ωZ2,φPX1)+gM1(H ∇Z1ωZ2,φRX1) =η(Z2)gM1(Z1,φPX1),

gM1(H ∇Z1ωψZ2,X2)+gM1(H ∇Z1ωZ2,CX2)+gM1(TZ1ωZ2,BX2) =η(Z2)gM1(Z1,BX2),

for all Z1,Z2 ∈ Γ(Dθ⊕< ξ >),X1 ∈ Γ(D⊕D⊥) and X2 ∈ Γ(kerΠ∗)
⊥.

Proof. For all Z1,Z2 ∈ Γ(Dθ⊕< ξ >), X1 ∈ Γ(D⊕D⊥) and X2 ∈ Γ(kerΠ∗)
⊥, using equations (2.3), (2.5), (2.11), (3.2), (3.3)

and Lemma 3.3, we have

gM1(∇Z1Z2,X1) =gM1(∇Z1φZ2,φX1)−η(Z2)gM1(Z1,φX1)

=gM1(∇Z1ψZ2,φX1)+gM1(∇Z1ωZ2,φX1)−η(Z2)gM1(Z1,φPX1)

=cos2
θ1gM1(∇Z1Z2,X1)+gM1(TZ1ωψZ2,X1)+gM1(TZωZ2,φPX1)+gM1(H ∇Z1ωZ2,φRX1)

−η(Z2)gM1(Z1,φPX1).

Now, we have

sin2
θ1gM1(∇Z1Z2,X1) =gM1(TZ1ωψZ2,X1)+gM1(TZ1ωZ2,φPX1)+gM1(H ∇Z1ωZ2,φRX1)−η(Z2)gM1(Z1,φPX1)

Next, from equations (2.3), (2.5), (2.11), (3.2), (3.3), (3.5) and Lemma 3.3, we have

gM1(∇Z1Z2,X2) =gM1(∇Z1φZ2,φX2)−η(Z2)gM1(Z1,φX2),

=gM1(∇Z1ψZ2,φX2)+gM1(∇Z1ωZ2,φX2)−η(Z2)gM1(Z1,φX2),

=cos2
θ1gM1(∇Z1Z2,X2)+gM1(H ∇Z1ωψZ2,X2)+gM1(H ∇Z1ωZ2,CX2)+gM1(TZ1ωZ2,BX2)

−η(Z2)gM1(Z1,BX2).

Now, we have

sin2
θ1gM1(∇Z1Z2,X2) =gM1(H ∇Z1ωψZ2,X2)+gM1(H ∇Z1 ωZ2,CX2)+gM1(TZ1ωZ2,BX2)−η(Z2)gM1(Z1,BX2),

which completes the proof.

Theorem 3.16. Let Π be a quasi hemi-slant submersion. Then the distribution D⊥ defines a totally geodesic foliation on M1 if
and only if

gM1(TX1X2,ωψQY1) =−gM1(H ∇X1ωRX2,ωY1),

gM1(TX1ωRX2,BY2) = gM1(∇ωRX2φCY2,ωRX1),

for all X1,X2 ∈ Γ(D⊥),Y1 ∈ Γ(D⊕Dθ ), and Y2 ∈ Γ(kerπ∗)
⊥.

Proof. For all X1,X2 ∈ Γ(D⊥),Y1 ∈ Γ(D⊕Dθ ), and Y2 ∈ Γ(kerπ∗)
⊥. Using equation (2.4), we have

gM1(∇X1X2,ξ ) = 0.

Next, using equations (2.3), (2.5), (3.2), (3.3) and Lemma 3.3, we have

gM1(∇X1X2,Y1) =gM1(φ∇X1X2,φPY1 +ψQY1)+gM1(∇X1φX2,ωQY1),

gM1(∇X1X2,PY1 +QY1) =gM1(∇X1X2,PY1)+ cos2
θgM1(∇X1X2,QY1)+gM1(∇X1X2,ωψQY1)+gM1(∇X1φX2,ωQY1).
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Now, using equations (2.10) and (2.11), we have

sin2
θgM1(∇X1X2,QY1) = gM1(TX1X2,ωψQY1)+gM1(H ∇X1ωRX2,ωY1).

Next, using equations (2.3), (2.5), (2.11), (2.13), (3.3) and (3.5), we have

gM1(∇X1 X2,Y2) =gM1(∇X1ωRX2,BY2)+gM1(∇X1ωRX2,CY2),

=gM1(TX1ωRX2,BY2)−gM1(H ∇ωRX2φCY2,ωRX1),

which is complete proof.

Using Proposition 3.9 and Theorem 3.11, one can give the following theorem:

Theorem 3.17. Let Π be a quasi hemi-slant submersion. Then the map Π is not a totally geodesic map.

4. Examples

Example 4.1. Consider the Euclidean space R11 with coordinates (x1, ...,x5, ,y1.....,y5,z) and base field {Ei, E5+i,ξ} where

Ei = 2 ∂

∂yi , E5+i = 2
(

∂

∂xi + yi ∂

∂ z

)
, i = 1, . . . ,5 and contravariant vector field ξ = 2 ∂

∂ z . Define Lorentzian almost para contact

structure on R11 as follows:

φ

(
5

∑
i=1

(
Xi

∂

∂xi +Yi
∂

∂yi

)
+Z

∂

∂ z

)
=−

5

∑
i=1

Yi
∂

∂xi −
5

∑
i=1

Xi
∂

∂yi +
5

∑
i=1

Yiyi ∂

∂ z
,

ξ = 2
∂

∂ z
, η =−1

2

(
dz−

5

∑
i=1

yidxi

)
, gR11 =−(η⊗η)+

1
4

(
5

∑
i=1

dxi⊗dxi +
5

∑
i=1

dyi⊗dyi

)
.

Then (R11,φ ,ξ ,η ,gR11) is Lorentzian para Sasakian manifold. Let the Riemannian metric tensor field gR4 is defined by

gR4 =
1
4

4

∑
i=1

(dvi⊗dvi).

on R4, where {v1,v2,v3,v4} is local coordinate system on R4.
Let Π : R11→ R4 be a map defined by

Π(x1, ...,x5,y1....,y5,z) = (x2,sinαx3− cosαx4,y1,y4).

which is quasi hemi-slant submersion map such that

X1 = 2
(

∂

∂x1
+ y1

∂

∂ z

)
, X2 = 2cosα

(
∂

∂x3
+ y3

∂

∂ z

)
+2sinα

(
∂

∂x4
+ y4

∂

∂ z

)
, X3 = 2

(
∂

∂x5
+ y5

∂

∂ z

)
,

X4 = 2
∂

∂y2
, X5 = 2

∂

∂y3
, X6 = 2

∂

∂y5
, X7 = ξ = 2

∂

∂ z
,

(kerΠ∗) = (D⊕Dθ ⊕D⊥⊕< ξ >),

D =

〈
X3 = 2

(
∂

∂x5
+ y5

∂

∂ z

)
,X6 = 2

∂

∂y5

〉
,

Dθ =

〈
X2 = 2cosα

(
∂

∂x3
+ y3

∂

∂ z

)
+2sinα

(
∂

∂x4
+ y1

∂

∂ z

)
,X5 = 2

∂

∂y3

〉
,

D⊥ =

〈
X1 = 2

(
∂

∂x1
+ y1

∂

∂ z

)
,X4 = 2

∂

∂y2

〉
, 〈ξ 〉=

〈
X7 = 2

∂

∂ z

〉
,

(kerΠ∗)
⊥ =

〈
V1 = 2

(
∂

∂x2
+ y2

∂

∂ z

)
,V2 = 2sinα

(
∂

∂x3
+ y2

∂

∂ z

)
−2cosα

(
∂

∂x4
+ y1

∂

∂ z

)
,V3 = 2

∂

∂y1
,V4 = 2

∂

∂y4

〉
,

with quasi hemi-slant angle α . Also by direct computations, we obtain

Π∗V1 = 2
∂

∂v1
, Π∗V2 = 2

∂

∂v2
, Π∗V3 = 2

∂

∂v3
, Π∗V4 = 2

∂

∂v4
.
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Example 4.2. Consider R11 and R4 has same structure as in Example 4.1. Let Π : R11→ R4 be a map defined by

Π(x1, . . . ,x5,y1, . . . ,y5,z) =

(√
3x1 + x2

2
,x4,y1,y3

)
.

which is quasi hemi-slant submersion map such that

X1 =2
(

∂

∂x1
+ y1

∂

∂ z

)
−2
√

3
(

∂

∂x2
+ y2

∂

∂ z

)
, X2 = 2

(
∂

∂x3
+ y3

∂

∂ z

)
, X3 = 2

(
∂

∂x5
+ y5

∂

∂ z

)
,

X4 =2
∂

∂y2
, X5 = 2

∂

∂y4
, X6 = 2

∂

∂y5
, X7 = 2

∂

∂ z
,

(kerΠ∗) = (D⊕Dθ ⊕D⊥⊕< ξ >),

D =

〈
X3 = 2

(
∂

∂x5
+ y5

∂

∂ z

)
,X6 = 2

∂

∂y5

〉
,

Dθ =

〈
X1 = 2

(
∂

∂x1
+ y1

∂

∂ z

)
−2
√

3
(

∂

∂x2
+ y1

∂

∂ z

)
,X4 = 2

∂

∂y2

〉
,

D⊥ =

〈
X5 = 2

(
∂

∂x3
+ y3

∂

∂ z

)
,X2 = 2

∂

∂y4

〉
,〈ξ 〉=< X7 = 2

∂

∂ z
>,

(kerΠ∗)
⊥ =

〈
V1 = 2

√
3
(

∂

∂x1
+ y1

∂

∂ z

)
+2
(

∂

∂x2
+ y2

∂

∂ z

)
,V2 = 2

(
∂

∂x4
+ y4

∂

∂ z

)
,V3 = 2

∂

∂y1
,V4 = 2

∂

∂y3

〉
,

with quasi hemi-slant angle θ = π

6 . Also by direct computations, we obtain

Π∗V1 = 2
∂

∂v1
, Π∗V2 = 2

∂

∂v2
, Π∗V3 = 2

∂

∂v3
, Π∗V4 = 2

∂

∂v4
.

5. Conclusion
In this paper, integrability conditions and conditions for defining a totally geodesic foliation by certain distributions were found.
Then, by applying the notion of quasi hemi-slant submersions from Lorentzian para Sasakian manifolds onto Riemannian
manifolds.
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[33] Y. Gündüzalp, B. Şahin, Paracontact semi-Riemannian submersions, Turkish J. Math. 37(1) (2013), 114-128.
[34] S. Kumar, R. Prasad, P.K. Singh, Conformal semi-slant submersions from Lorentzian para Sasakian manifolds onto

Riemannian manifolds, Commun. Korean Math. Soc. 34(2) (2019), 637-655.
[35] R. Prasad, S.S. Shukla, S. Kumar, On quasi bi-slant submersions, Mediterr. J. Math., 16(6) (2019), 1-18.
[36] D.E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., 509, Springer-Verlag, New York, (1976).
[37] S. Longwap, F. Massamba, N.E. Homti, On quasi-hemi-slant Riemannian submersion, J. Math. Comput. Sci., 34(1) (2019),

1-14.
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In this paper we report on a two parameter four-dimensional dynamical system with cyclic symmetry, namely
a circulant dynamical system. This system is a twelve-term polynomial system with four cubic nonlinearities.
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1. Introduction
In this paper we report numerical results referring to a four-dimensional dynamical system with cyclic symmetry, the so-called
circulant dynamical system [1], which is modeled by an autonomous nonlinear set of four first-order ordinary differential
equations. Such a system was recently proposed by Rajagopal and co-workers [2], being given by

ẋ = ax+by− y3,

ẏ = ay+bz− z3,

ż = az+bw−w3,

ẇ = aw+bx− x3, (1.1)

where x, y, z, w are the dynamical variables, and a, b are the parameters responsible for the type of behavior presented by the
system. We draw attention to the fact that the only nonlinearity present in system (1.1) is of the cubic type, and that reports on
nonlinear models dominated by such terms are not abundant in the literature. Also, it is important to note that the parameter a
must always be negative to guarantee the existence of attractors in the respective phase-space. It is easy to see that negative
values of parameter a make system (1.1) dissipative, since is straightforward to show that the flow divergence is equal to 4a.

System (1.1) was investigated numerically in Ref. [2], both the integer and the fractional order versions. Also, system (1.1)
was investigated in Ref. [2] through a circuit design. Bifurcation diagrams with parameter a kept fixed, and parameter b being
considered as the bifurcation parameter, were used to detect the presence of the multistability phenomenon. Our contribution
to advancing knowledge of this system considers the simultaneous variation of both parameters a and b in the investigation
of multistability. In Sect. 2 we report (a,b) parameter-space diagrams which consider the same ranges for the parameters,
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but generated from different initial conditions. Such procedure will allow, as we will see in detail in the next section, the
detection of multistability areas, instead of the multistability lines obtained in the procedure that uses bifurcation diagrams for
this purpose. Finally, concluding remarks are given in Sect. 3.

2. The Dynamics in Parameter-Space
Here we report on a numerical experiment related to the investigation of the long-term dynamical behavior of system (1.1).
More specifically, five (a,b) parameter-space diagrams are presented, for −3.5 ≤ a ≤−3.0 and 8.0 ≤ b ≤ 10.0. Each of these
diagrams was generated in a different way which we will detail in the following, but they all use the largest Lyapunov exponent
(LLE), computed by using the algorithm in Wolf and collaborators [3], to characterize the dynamical behavior for each choice
of a and b in the respective parameter-space diagram. For each of them the parameter interval was discretized in a grid of
800×800 points, being system (1.1) numerically integrated by using the fourth-order Runge-Kutta algorithm with a time step
equal to 10−3. The average that must be considered in the computation of each of the 6.4×105 LLEs takes into account 4×106

integration steps, after discarding an appropriate transient. As is well known, system (1.1) has four Lyapunov exponents for
each choice of parameters a and b, and its dynamical behavior is characterized by the LLE: (i) equilibrium point if LLE< 0,
(ii) periodic or quasi-periodic motion if LLE= 0, and (iii) chaotic or hyperchaotic motion if LLE> 0. The main purpose of
presenting these five diagrams is to detect differences between the parameter-spaces which, if any, will be a numerical proof of
the occurrence of multistability in system (1.1).

Figure 2.1 shows five versions of a same global view of the (a,b) parameter-space of system (1.1), for −3.5 ≤ a ≤−3.0
and 8.0 ≤ b ≤ 10.0. Color in each diagram is related to the magnitude of the LLE. Parameter regions with a positive LLE,
painted in a color that ranges from yellow to red, relate to chaotic behavior, while parameter regions in black color stand for
periodic solutions and have LLE= 0. The small gray region at the bottom left in each diagram, for which the LLE< 0, concerns
to parameters that lead the system to equilibrium points.

The diagram in Fig. 2.1(a) was generated always from a same arbitrary initial condition, regardless of the values of the
parameters a and b. Once the set of parameters is defined, system (1.1) is numerically integrated, the respective time series
obtained, and the related Lyapunov exponents spectrum is computed. In order to generate the diagram in Fig. 2.1(b) we fix
(a,b) = (−3.5,8.0), and initialize system (1.1) with an arbitrary initial condition. Then system (1.1) is numerically integrated,
the respective time series obtained, and the related Lyapunov exponents spectrum is computed. Parameter a is increased, and
system (1.1) is initialized with the variables related to the final point obtained for the prior value of a. The numerical integration
is performed, and a new Lyapunov exponents spectrum is computed from the new time series obtained. Such procedure is
repeated until the highest value of a, namely a =−3.0, is reached. Then parameter b is increased, and the entire procedure is
repeated until the parameter set (a,b) = (−3.0,10.0) is considered in computing. The diagram in Fig. 2.1(c) is constructed in a
manner analogous to that in Fig. 2.1(b), but starting from (a,b) = (−3.0,8.0). Parameter a is decreased until a =−3.5. For
each increased b until (a,b) = (−3.5,10.0), this last procedure is repeated. In short, the diagram in Fig. 2.1(b) [Fig. 2.1(c)] was
generated by using the method following the attractor along lines of constant b, increasing (decreasing) a from −3.5 (−3.0).

Diagrams in Figs. 2.1(d) and 2.1(e) also were generated by using the method following the attractor, but in a different way
from the one used in the generation of Figs. 2.1(b) and 2.1(c), where each time parameter b is changed the system (1.1) is
initialized from a same arbitrary initial condition. This time, however, this initialization happens only once for each of the
diagrams. In the case of Fig. 2.1(d), the parameters are fixed at the lowest values (a,b) = (−3.5,8.0), system (1.1) is initialized
from an arbitrary initial condition, and the attractor is followed until the highest values (a,b) = (−3.0,10.0) are reached. A
similar procedure allows generating Fig. 2.1(e), only now going from the highest values (a,b) = (−3.0,10.0) to the lowest
values (a,b) = (−3.5,8.0).

A cursory glance at the diagrams in Fig. 2.1 misleadingly concludes that they are all identical. However, a closer look
reveals that significant differences exist between them. One of these differences appears, for example, in the chaotic stripe
in yellow crossed by the small line segment in magenta, which is in the same geographical position in each of the diagrams.
In two of them, namely in Figs. 2.1(c) and 2.1(e), there is only one periodic stripe in black embedded in this chaotic stripe,
while in the other three diagrams there are two periodic stripes in black embedded. Thus, we have just identified a region in
the parameter-space of system (1.1), near the magenta line, whose long-term dynamical behavior can be different depending
on the initial condition adopted for the numerical integration of system (1.1). In other words, we can say that system (1.1)
presents at least more than one coexisting attractors in the phase-space, for a kept fixed set of parameters (a,b) in this region,
and this is a signature of the multistability phenomenon [4]. What makes multistable systems worth studying is the fact that this
phenomenon has been observed, for a long time, in mathematical models of nonlinear dynamical systems, in the most varied
fields of knowledge [5–9].
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Figure 2.1. Regions of different dynamical behaviors in the (a,b) parameter-space of system (1.1). Color in each diagram is
related to the magnitude of the largest Lyapunov exponent. (a) Same initial condition, regardless of the values of a and b. (b)
Following the attractor along lines of constant parameter b, from (a,b) = (−3.5,8.0) to (a,b) = (−3.0,10.0). (c) Following
the attractor along lines of constant parameter b, from (a,b) = (−3.0,8.0) to (a,b) = (−3.5,10.0). (d) Following the attractor
from (a,b) = (−3.5,8.0) to (a,b) = (−3.0,10.0). (e) Following the attractor from (a,b) = (−3.0,10.0) to
(a,b) = (−3.5,8.0).

Figure 2.2 shows two bifurcation diagrams for system (1.1), both generated by following the attractor, for points along
the line segment b = 4a+22 in magenta connecting the points (a,b) = (−3.34,8.64) and (a,b) = (−3.31,8.76) in any of the
diagrams in Fig. 2.1. In each of them are shown the local maxima (the peaks) of the variable x, commonly called period and
denoted by xm, for one thousand values of the parameter a. The diagram in blue was generated considering the increase of
the parameter a from −3.34 to −3.31, while that in red considers the decrease of a from −3.31 to −3.34. There are clear
differences between the two bifurcation diagrams in Fig. 2.2 and, as a consequence, a clear evidence of the occurrence of
multistability. For example, in the right region, inside the green box for −3.318 < a <−3.316, we can observe the coexistence
of a chaotic attractor, in red, and a period-5 attractor, in blue.
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Figure 2.2. Two bifurcation diagrams for points along the line segment b = 4a+22 in any of the diagrams in Fig. 2.1.
Diagram in blue (red) considers the increase (decrease) of the parameter a.

The basins of attraction related to the chaotic and the period-5 attractors, in their respective colors, are shown in Fig. 2.3.
In fact, Fig. 2.3 shows a (x0,y0) initial condition cross-section of a four-dimensional (x0,y0,z0,w0) basin of attraction for
system (1.1), namely the one for which z0 = w0 = 3.0, and (a,b) = (−3.317,8.732), a point belonging to the line segment
b = 4a+22 drawn in diagrams of Fig. 2.1. We can see that the basins of the chaotic (in red) and the period-5 (in blue) attractors
are not intermingled, that is, the points belonging to one basin are perfectly distinguishable from the points belonging to the
other basin. Therefore, the basins of attraction in Fig. 2.3 clearly indicate initial conditions leading to either of the two attractors.
Accordingly, since the parameters are kept fixed at (a,b) = (−3.317,8.732), and for z0 = w0 = 3.0, any initial condition point
(x0,y0) chosen in the red region takes the system to a chaotic attractor in the phase-space, whereas any initial condition point
(x0,y0) chosen in the blue region takes the system to a period-5 attractor.

Figure 2.3. Projection of basins of attraction for system (1.1) on the (x0,y0) initial condition plane, for z0 = w0 = 3.0. Blue
(Red) is related to the period-5 (chaotic) attractor basin.

Figure 2.4 shows two-dimensional projections of the two coexisting attractors, a period-5 and a chaotic, all of them
considering the variable x in the horizontal axis, and generated for (a,b) = (−3.317,8.732). For the period-5 attractor shown
in Figs. 2.4(a), 2.4(b), and 2.4(c), the initial condition is (x0,y0,z0,w0) = (1.5,1.0,3.0,3.0), corresponding to the point marked
with a plus sign in the blue region of Fig. 2.3, while for the chaotic attractor shown in Figs. 2.4(e), 2.4(f), and 2.4(g), the initial
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condition is (x0,y0,z0,w0) = (1.0,−1.0,3.0,3.0), corresponding to the point also marked with a plus sign, but this time in the
red region of the same Fig. 2.3. Figures 2.4(d) and 2.4(h) show the evolution over time of the variable x, respectively for the
periodic and the chaotic attractors.

Figure 2.4. Two coexisting attractors for system (1.1). In (a) and (b) and (c) are shown projections of the period-5 attractor. In
(e) (f) and (g) are shown projections of a chaotic attractor. Diagrams in (d) and (h) show the time series for the variable x,
respectively for the period-5 and the chaotic attractors.

3. Summary and Outlook
We have investigated a two parameter four-dimensional dynamical system, namely a circulant dynamical system modeled
by an autonomous set of four first-order ordinary differential equations which presents cubic nonlinearities in all variables,
but no crossed nonlinearities. We have reported some versions of a same parameter-space plot of this system, obtained from
different initial conditions. Such diagrams present sensitive differences that allow us concluding that multistability is a possible
phenomenon in this system for some parameter values. Bifurcation diagrams confirm this finding. As a consequence of the
multistability phenomenon, we also have reported on basins of attraction for coexisting periodic and chaotic attractors.

Therefore, we locate and investigate a region in the parameter-space of the circulant dynamical system, in which the
model displays coexisting periodic and chaotic attractors, for a same set of parameters. It means the presence of an area in
the parameter-space where at least two attractors coexist, depending on the choice of the initial conditions in the numerical
integration of the system. As far as I know, such a result has never been reported in the literature of this field of study, for this
system. Therefore, this work represents an interesting contribution to advancing knowledge of the system under study, deserving
to be read. A possible future work consists of continuing to explore the parameter-space of the circulant dynamical system, in
search of other regions that present multistability, including other sets of coexisting attractors, namely periodic-periodic and
chaotic-chaotic. We understand, therefore, that the circulant dynamical system deserves further investigation.

With regard to the relevance of the occurrence of multistability in nonlinear dynamical systems, it is important to mention
that the phenomenon has been recently reported in several other systems, among them neuron models [10, 11], electronic
circuits [12,13], memristor oscillators [14,15], biological systems [16,17], couplings of Duffing and van der Pol Oscillators [18],
and snap and jerk systems [19, 20], just to name a few among many examples.
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1. Introduction
The approximation of functions by using linear positive operators introduced via q-Calculus and (p,q)-Calculus is currently
under intensive research. Firstly, generalizations of Bernstein polynomials based on the q-integers has been investigated by
Lupas [1] and Phillips [2]. Later, generalized q-Bernstein operators and the q-generalization of other operators were studied in
[3]-[8]. Also, in recent years, a nonlinear modification of the classical Bernstein polynomial has been introduced by Bede and
Gal [9]. All the max-product operators are nonlinear and piecewise rational, and they present, for many subclasses of functions,
essentially better approximation properties than the classical linear operators. In [10]-[13], Favard-Szász-Mirakjan operator of
max-product kind and Bernstein operator of max-product kind were studied. Duman constructed a nonlinear approximation
operator by modifying the q-Bernstein polynomial in [14].

In this study, we define nonlinear q-Favard-Szász-Mirakjan operators of max-product kind. But, before that the classical
Favard-Szász-Mirakjan operators (see [15]) and its q-generalization (see [16]) are given respectively by

Sn( f ,x) = e−nx
∞

∑
k=0

(nx)k

k!
f
(

k
n

)
(1.1)

and

Sn,q( f ,x) = Eq (−[n]qx)
∞

∑
k=0

([n]qx)k

[k]q!
f
(
[k]q
[n]q

)
, (1.2)
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where n ∈ N, f is bounded, f ∈C[0,+∞), x ∈ [0,+∞), q ∈ (0,1) and Eq(x) = ∑
∞
n=0 q

n(n−1)
2 xn

[n]q! .
The aim of this paper is to study the nonlinear approximation properties of q-Favard-Szász-Mirakjan operators of max-

product kind.
We first recall some basic definitions in q-calculus. Let parameter q be a positive real number and n a non-negative integer.

[n]q denotes a q integer, defined by

[n]q =

{
1−qn

1−q , q 6= 1
n, q = 1.

Let q > 0 be given. We define a q-factorial, [n]q! of k ∈ N, as

[n]q! =
{

[1]q[2]q...[n]q, n = 1,2, ...
1, n = 0.

The q-binomial coefficient
[

n
r

]
q

by

[
n
r

]
q
=

[n]q!
[n− r]q![r]q!

.

2. Construction of the Operators
The approximation properties of the classical Favard-Szasz-Mirakjan operators of max-product kind were investigated in [9]. In
this section, we construct nonlinear q-Favard-Szász-Mirakjan operators of max-product kind. We consider the operations ”∨ ”
(maximum) and ”.” (product) over the interval [0,+∞). Then ([0,+∞),∨, .) has a semiring structure and is called ”max-product
algebra” (see, for instance [13]).

Let C+[0,+∞) := { f : [0,+∞)→ [0,+∞) : f is continuous on [0,+∞)}. We define nonlinear q-Favard-Szász-
Mirakjan operators of max-product kind as follows:

F(M)
n,q ( f )(x) =

∨
∞
k=0 sn,k(x,q) f

(
[k]q
[n]q

)
∨

∞
k=0 sn,k(x,q)

, (2.1)

where n ∈ N, f ∈C+[0,+∞) , x ∈ [0,+∞), q ∈ (0,1) and sn,k(x,q) is given by

sn,k(x,q) =
([n]qx)k

[k]q!
. (2.2)

Since it easy to check that F(M)
n,q ( f )(0)− f (0) = 0 for all n, notice that in the notations, proofs and statements of all

approximation results in fact we always may suppose that x > 0.
Since f ∈C+[0,+∞) and sn,k(x,q) is positive for all x ∈ [0,+∞), F(M)

n,q ( f )(x) is a positive operator. Now, we show that
F(M)

n,q ( f )(x) is not linear operator on C+[0,+∞) .
Let f ,g ∈C+[0,+∞). Then, by definition we see that

f ≤ g =⇒ F(M)
n,q ( f )(x)≤ F(M)

n,q (g)(x). (2.3)

Thus, F(M)
n,q ( f )(x) is increasing with respect to f ∈C+[0,+∞). Besides, for any f ,g ∈C+[0,+∞) we have

F(M)
n,q ( f +g)(x)≤ F(M)

n,q ( f )(x)+F(M)
n,q (g)(x). (2.4)

In general, ω1( f ,δ ), δ > 0 denote the modulus of continuity of f ∈C+[0,+∞) defined by

ω1( f ,δ ) = sup{| f (x)− f (y)| : x,y ∈ [0,+∞), |x− y| ≤ δ}.

Now, using (2.3), (2.4) and also applying Corollary 2.3 in [11] or Corollary 3 in [13], we have the following inequality:

|F(M)
n,q ( f )(x)− f (x)| ≤

(
1+

1
δn

F(M)
n,q (ϕx)(x)

)
ω1( f ,δn), (2.5)

where n ∈ N, f ∈C+[0,+∞) , x ∈ [0,+∞), q ∈ (0,1) and ϕx(t) = |x− t|.
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3. Auxiliary Results

For each k, j ∈ {0,1,2, ...} and x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
, let us denote

Mk,n, j(x,q) =
sn,k(x,q)

∣∣∣ [k]q[n]q
− x
∣∣∣

sn, j(x,q)
, (3.1)

mk,n, j(x,q) =
sn,k(x,q)
sn, j(x,q)

. (3.2)

It can easily see that if k ≥ j+1 then

Mk,n, j(x,q) =
sn,k(x,q)

(
[k]q
[n]q
− x
)

sn, j(x,q)
,

and if k ≤ j−1 then

Mk,n, j(x,q) =
sn,k(x,q)

(
x− [k]q

[n]q

)
sn, j(x,q)

.

Lemma 3.1. Let q ∈ (0,1). For all k, j ∈ {0,1,2, ...} and x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
, we get

mk,n, j(x,)≤ 1. (3.3)

Proof. We consider two cases: (i) k ≥ j and (ii) k < j.
Case (i). From (3.2), we have

mk,n, j(x,q)
mk+1,n, j(x,q)

=
[k+1]q
[n]q

1
x
.

Since the function h(x) = 1
x is non-increasing on

[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
, from here we get

mk,n, j(x,q)
mk+1,n, j(x,q)

=
[k+1]q
[n]q

[n]q
[ j+1]q

=
[k+1]q
[ j+1]q

≥ 1

which immediately implies

m j,n, j(x,q)≥ m j+1,n, j(x,q)≥ m j+2,n, j(x,q)≥ ... .

Case (ii) We get

mk,n, j(x,q)
mk−1,n, j(x,q)

=
[n]q
[k]q

x≥
[n]q
[k]q

[ j]q
[n]q

=
[ j]q
[k]q
≥ 1,

which immediately implies

m j,n, j(x,q)≥ m j−1,n, j(x,q)≥ m j−2,n, j(x,q)≥ ...≥ m0,n, j(x,q).

Since m j,n, j(x,q) = 1 the proof of the lemma is finished.

Lemma 3.2. Let q ∈ (0,1), j ∈ {1,2, ...} and x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
.

(i) If k ∈ { j+1, j+2, ...} is such that [k+1]q−
√

qk[k+1]q ≥ [ j+1]q, then Mk,n, j(x,q)≥Mk+1,n, j(x,q).
(ii) If k ∈ {1,2, ..., j−1} is such that [k]q−

√
qk−1[k]q ≤ [ j]q, then

Mk−1,n, j(x,q)≤Mk,n, j(x,q).



Nonlinear Approximation by q-Favard-Szász-Mirakjan Operators of Max-Product Kind — 107/114

Proof. (i) Let k ∈ { j+1, j+2, ...} and [k+1]q−
√

qk[k+1]q ≥ [ j+1]q. Then, we can write that

Mk,n, j(x,q)
Mk+1,n, j(x,q)

=
[k+1]q
[n]q

1
x

[k]q
[n]q
− x

[k+1]q
[n]q
− x

.

Since the g(x) = 1
x

[k]q
[n]q
−x

[k+1]q
[n]q
−x

clearly is decreasing on the interval
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
, we have

g(x)≥ g
(
[ j+1]q
[n]q

)
=

[n]q
[ j+1]q

[k]q
[n]q
− [ j+1]q

[n]q
[k+1]q
[n]q
− [ j+1]q

[n]q

=
[n]q

[ j+1]q

[k]q− [ j+1]q
[k+1]q− [ j+1]q

.

Since the condition [k+1]q−
√

qk[k+1]q ≥ [ j+1]q is equivalent to [k+1]q−
√

[k+1]2q− [k]q[k+1]q ≥ [ j+1]q which implies

that [k+1]q ([k]q− [ j+1]q)≥ [ j+1]q ([k+1]q− [ j+1]q).
So, we achieve that

Mk,n, j(x,q)
Mk+1,n, j(x,q)

≥ 1,

which proves Lemma 3.2 (i).
(ii) Let k ∈ {1,2, ..., j−1} and [k]q−

√
qk−1[k]q ≤ [ j]q. Then, we can write that

Mk,n, j(x,q)
Mk−1,n, j(x,q)

=
[n]q
[k]q

x
x− [k]q

[n]q

x− [k+1]q
[n]q

.

Since the h(x) = x
x− [k]q

[n]q

x− [k+1]q
[n]q

clearly is increasing on the interval
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
, we have

h(x)≥ h
(
[ j]q
[n]q

)
=

[ j]q
[n]q

[ j]q
[n]q
− [k]q

[n]q
[ j]q
[n]q
− [k−1]q

[n]q

=
[ j]q
[n]q

[ j]q− [k]q
[ j]q− [k−1]q

.

Since the condition [k]q+
√

qk−1[k+1]q≤ [ j]q is equivalent to [k]q−
√
[k]2q− [k]q[k1]q≤ [ j]q which implies that [ j]q ([ j]q− [k]q)≥

[k]q ([ j]q− [k−1]q).
So, we achieve that

Mk,n, j(x,q)
Mk−1,n, j(x,q)

≥ 1

which proves Lemma 3.2 (ii).

Lemma 3.3. Let q ∈ (0,1), j ∈ {0,1,2, ...} and x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
. We get

∞∨
k=0

sn,k(x,q) = sn, j(x,q).

Proof. Firstly, we show that for fixed n ∈ N and 0≤ k we get

0≤ sn,k+1(x,q)≤ sn,k(x,q) ⇐⇒ x ∈
[

0,
[k+1]q
[n]q

]
.
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Indeed, from sn,k(x,q) =
([n]qx)k

[k]q! we have

0≤ sn,k+1(x,q)≤ sn,k(x,q)

0≤
([n]qx)k+1

[k+1]q!
≤

([n]qx)k

[k]q!
,

which after simplifications is obviously equivalent to

0≤ x≤
[k+1]q
[n]q

.

So, if we take k = 0,1,2, ..., then we achieve that

sn,1(x,q)≤ sn,0(x,q) ⇐⇒ x ∈
[

0,
[1]q
[n]q

]
,

sn,2(x,q)≤ sn,1(x,q) ⇐⇒ x ∈
[

0,
[2]q
[n]q

]
,

sn,3(x,q)≤ sn,2(x,q) ⇐⇒ x ∈
[

0,
[3]q
[n]q

]
,

so on,

sn,k+1(x,q)≤ sn,k(x,q) ⇐⇒ x ∈
[

0,
[k+1]q
[n]q

]
,

and so on.
From above inequalities, we can easily write:

i f x ∈
[

0,
[1]q
[n]q

]
then sn,k(x,q)≤ sn,0(x,q), f or all k = 0,1,2, ...,

i f x ∈
[
[1]q
[n]q

,
[2]q
[n]q

]
then sn,k(x,q)≤ sn,1(x,q), f or all k = 0,1,2, ...,

i f x ∈
[
[2]q
[n]q

,
[3]q
[n]q

]
then sn,k(x,q)≤ sn,2(x,q), f or all k = 0,1,2, ...,

and so on, as a result, we obtain

i f x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
then sn,k(x,q)≤ sn, j(x,q), f or all k = 0,1,2, ...,

which completes the proof of Lemma 3.3.

4. Approximation Results

Theorem 4.1. Let f : [0,+∞)→ [0,+∞) be bounded and continuous on [0,+∞) and q ∈ (0,1). Then we get the following
estimation∣∣∣F(M)

n,q ( f )(x)− f (x)
∣∣∣≤ 8ω1

(
f ;
√

x√
[n]q

)
, (4.1)

where n ∈ N, x ∈ [0,+∞) and

ω1( f ,δ ) = sup{| f (x)− f (y)| : x,y ∈ [0,+∞), |x− y| ≤ δ}.
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Proof. Taking q = qn ∈ (0,1) such that limn qn = 1, we deduce limn[n]qn = ∞. From (2.5), we have

|F(M)
n,q ( f )(x)− f (x)| ≤

(
1+

1
δn

F(M)
n,q (ϕx)(x)

)
ω1( f ,δn), (4.2)

where ϕx(t) = |x− t|. Thus, it is enough to estimate

An,q(x) := F(M)
n,q (ϕx)(x) =

∨
∞
k=0 sn,k(x,q)

∣∣∣ [k]q[n]q
− x
∣∣∣∨

∞
k=0 sn,k(x,q)

,

where x ∈ [0,+∞). Let x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
, where j ∈ {0,1,2, ...} is fixed,

arbitrary. By Lemma 3.3 we can easily achieve

An,q(x) = max{Mk,n, j(x,q) : x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
,k = 0,1, ...}.

Firstly, we show that for j = 0 and k = 0,1,2, ... we obtain An,q(x)≤
√

x√
[n]q

for all x ∈
[
0, 1

[n]q

]
.

Indeed, for j = 0 we get Mk,n,0(x,q) =
([n]qx)k

[k]q!

∣∣∣ [k]q[n]q
− x
∣∣∣ which for k = 0 gives Mk,n,0(x,q) = x =

√
x
√

x ≤
√

x 1√
[n]q

. Fur-

thermore, for any k = 1,2, ... we have 1
[n]q
≤ [k]q

[n]q
and we obtain

Mk,n,0(x,q)≤
([n]qx)k

[k]q!
[k]q
[n]q

=
√

x
[n]k−1

q xk− 1
2

[k−1]q
≤
√

x
[n]k−1

q

[k−1]q[n]
k− 1

2 q
≤
√

x√
[n]q

.

Now we claim that for each Mk,n, j(x,q) when j = 1,2, ... and k = 0,1,2, ... the following inequality

Mk,n, j(x,q)≤
4
√

x√
[n]q

, ∀x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
, (4.3)

which immediately will imply that

An,q(x)≤
4
√

x√
[n]q

, ∀x ∈ [0,∞),n ∈ N,

and taking δn =
4
√

x√
[n]q

in (4.2) we complete the proof of Theorem 4.1.

In order to prove (4.3) we consider the following three cases: 1) k = j, 2) k ≥ j+1, 3) k ≤ j−1.
Case 1) If k = j then from (3.1) M j,n, j(x,q) =

∣∣∣ [ j]q[n]q
− x
∣∣∣. Since x ∈

[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
we can easily see that M j,n, j(x,q)≤ 1

[n]q
.

Since j ≥ 1 we have x≥ 1
[n]q

which implies

M j,n, j(x,q)≤
1
[n]q

=
1√
[n]q

1√
[n]q
≤
√

x
1√
[n]q

.

Case 2) Subcase a) We suppose that k ≥ j+1 and [k+1]q−
√

qk[k+1]q < [ j+1]q. We have from Lemma 3.1 that

Mk,n, j(x,q) = mk,n, j(x,q)
(
[k]q
[n]q
− x
)
≤

[k]q
[n]q
−

[ j]q
[n]q

.

By hypothesis, since

q[k]q−
√

qk[k+1]q < q[ j]q,

we have

Mk,n, j(x,q)≤
[k]q
[n]q
−

[k]q−
√

qk−2[k+1]q
[n]q

=

√
qk−2[k+1]q

[n]q
.
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Since k ≥ 2 and q ∈ (0,1), we obtain

Mk,n, j(x,q)≤
√
[k+1]q
[n]q

.

But we necessarily have k ≤ 3 j. Indeed, if we suppose that k > 3 j, then because g(k) = [k+1]q−
√

qk[k+1]q is increasing
with respect to k. Indeed, we can write that

g(k+1)−g(k) = [k+2]q− [k+1]q +
√

qk[k+1]q−
√

qk+1[k+2]q

≥ [k+2]q− [k+1]q +
√

qk[k+1]q−
√

qk[k+2]q

= qk+1−q
k
2

(√
[k+1]q−

√
[k+2]q

)
= qk+1− qk+1q

k
2√

[k+1]q−
√
[k+2]q

= qk+1

(
1− q

k
2√

[k+1]q−
√
[k+2]q

)

≥ qk+1

(
1− 1√

[k+1]q−
√
[k+2]q

)
> 0.

Hence, we get that [ j + 1]q > [k+ 1]q−
√

qk[k+1]q > [3 j + 1]q−
√

q3 j[3 j+1]q which implies the obvious contradiction
[3 j+1]q− [ j+1]q <

√
q3 j[3 j+1]q is to equivalent q j+1[2 j]q <

√
q3 j[3 j+1]q.

As a result, we achieve

Mk,n, j(x,q)≤
√
[k+1]q
[n]q

≤
√

[3 j+1]q
[n]q

≤
√
[4 j]q
[n]q

=
√

(1+q j)(1+q2 j)

√
[ j]q

[n]q

≤
√
(1+q j)(1+q2 j)

√
x√
[n]q
≤ 2

√
x√
[n]q

,

taking into account that
√

x≥
√

[ j]q
[n]q

.

Subcase b) We suppose that k ≥ j+1 and [k+1]q−
√

qk[k+1]q ≥ [ j+1]q. Since, the function
g(k) = [k+ 1]q−

√
qk[k+1]q is increasing with respect to k, it follows that there exits k ∈ {0,1,2, ...}, of maximum value,

such that

[k+1]q−
√

qk[k+1]q < [ j+1]q.

Let k̃ = k+1. Then for all k ≥ k̃ we have

[k+1]q−
√

qk[k+1]q ≥ [ j+1]q

and

Mk̃,n, j(x,q) = mk̃,n, j(x,q)
(
[k̃]q
[n]q
− x
)
≤

[k+1]q
[n]q

−
[ j]q
[n]q

.

Since

[ j]q ≥ [k+1]q−q j−
√

qk[k+1]q,
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we can see that

Mk̃,n, j(x,q)≤
[k+1]q
[n]q

−
[k+1]q−q j−

√
qk[k+1]q

[n]q

=
q j +

√
qk[k+1]q
[n]q

≤
1+
√
[k+1]q

[n]q
≤

2
√

[k+1]q
[n]q

≤ 4
√

x√
[n]q

.

The last above inequality follows from the fact that

[k+1]q−
√

qk[k+1]q < [ j+1]q,

necessarily implies k ≤ 3 j (see the similar reasoning in the above Subcase a)). Also, we get k̃ ≥ j + 1. Indeed, this is a
consequence of the fact that g is increasing function and because it is easy to see that g( j)≤ [ j+1]q.

By Lemma 3.2, (i) it follows that

Mk+1,n, j(x,q)≥Mk+2,n, j(x,q)≥ ...

So, we achieve Mk,n, j(x,q)≤ 4
√

x√
[n]q

for any k ∈ {k+1,k+2, ...}.

Case 3) Subcase a) We suppose that k ≤ j−1 and [k]q +
√

qk−1[k]q ≥ [ j]q. We have from Lemma 3.1 that

Mk,n, j(x,q) = mk,n, j(x,q)
(

x−
[k]q
[n]q

)
≤

[ j+1]q
[n]q

−
[k]q
[n]q

=
[ j]q +q j

[n]q
−

[k]q
[n]q

By hypothesis, we get

Mk,n, j(x,q)≤
[k]q +

√
qk−1[k]q +q j

[n]q
−

[k]q
[n]q

=

√
qk−1[k]q +q j

[n]q
≤
√

[k]q +1
[n]q

≤
√
[ j−1]q +1

[n]q
=

1√
[n]q

√
[ j−1]q +1√

[n]q

≤ 1√
[n]q

2
√

[ j]q√
[n]q

≤ 2
√

x√
[n]q

.

Subcase b) We suppose that k ≤ j− 1 and [k]q +
√

qk−1[k]q < [ j]q. Let k ∈ {0,1,2, ...} be the minimum value such that

[k]q +
√

qk−1[k]q ≥ [ j]q. Then k̃ = k−1 satisfies [k−1]q +
√

qk−2[k−1]q < [ j]q. Also we have

Mk−1,n, j(x,q) = mk−1,n, j(x,q)

(
x−

[k−1]q
[n]q

)
≤

[ j+1]q
[n]q

−
[k−1]q
[n]q

=
[ j]q +q j

[n]q
−

[k−1]q
[n]q

.
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Since [k]q +
√

qk−1[k]q ≥ [ j]q, we obtain

Mk−1,n, j(x,q)≤
[k]q +

√
qk−1[k]q +q j

[n]q
−

[k−1]q
[n]q

=
qk−1 +

√
qk−1[k]q +q j

[n]q
≤

2+
√

[k]q
[n]q

≤ 3

√
[ j]q

[n]q
≤ 3

√
x√
[n]q

.

By Lemma 3.2, (ii) it follows that

Mk−1,n, j(x,q)≥Mk−2,n, j(x,q)≥ ...≥M0,n, j(x,q).

So, we achieve Mk,n, j(x,q)≤
√

x√
[n]q

for any k ≤ j−1 and x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
.

Collecting all the above estimates we have (4.3), which completes the proof of Theorem 4.1.

5. A-Statistical Approximation
In this section, we will give an A-statistical approximation theorem for the (2.1) operators. Firstly, we have to replace a fixed
q ∈ (0,1) consider in the previous sections with an appropriate sequence (qn) whose terms are in the interval (0,1). This idea
was first used by Philips [2] for the q-Bernstein polynomials.

Let (qn)is a real sequence satisfying the following conditions,

0 < qn < 1 f or every n ∈ N, (5.1)

stA− lim
n

qn = 1 (5.2)

and

stA− lim
n

qn
n = 1. (5.3)

Note that the notations in (5.2) and (5.3) denote the A-statistical limit of (qn) where A = [a jn], ( j,n ∈ N) is an infinite non-
negative regular summability matrix, i.e., a jn ≥ 0 for every j,n ∈N and lim j ∑

∞
n=1 a jnxn = L provided that, for a given sequence

(xn), we say that (xn) is A-statistically convergent to a number L if, for every ε > 0, lim j ∑
∞

n:|xn−L|≥ε
a jnxn = 0 (see [17]).

We should remark that this method of convergence generalizes both the classical convergence and the concept of statistical
convergence which first introduced by Fast [18]. We give the following A-statistical approximation theorem.

Theorem 5.1. Let A = [an j] be a non-negative regular summability matrix and (qn) be a sequence satisfying (5.1)-(5.3). Then
for every f ∈C+[0,∞) we have

stA− lim
n

(
sup

x∈[0,∞)

∣∣∣F(M)
n,q ( f )(x)− f (x)

∣∣∣)= 0. (5.4)

Proof. Let f ∈C+[0,∞). Replacing q with (qn), taking supremum over x ∈ [0,∞) and using the monotonicity of the modulus
of continuity, we achieve from Theorem 4.1 that

En := sup
x∈[0,∞)

∣∣∣F(M)
n,q ( f )(x)− f (x)

∣∣∣≤ 8ω1

(
f ;
√

x√
[n]q

)
, (5.5)

holds for every n ∈ N. Then, let we prove

stA− lim
n

En = 0.
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From (5.1)-(5.3), we get

stA− lim
n

1√
[n]qn

= 0.

So we can write

stA− lim
n

ω1

(
f ;
√

x√
[n]q

)
= 0. (5.6)

So, the proof of Theorem 5.1 follows from (5.1)-(5.6) immediately.

We should note that the A-statistical approximation result in Theorem 5.1 includes the classical approximation by choosing
A = I the identity matrix.
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