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In this study, the effect of adding a support sleeve for a pipe connection connected with 6 bolts of equivalent 
spacing was investigated. The research was carried out with a package program that is widely used in finite 
element analysis. The mouth geometry used for bolts and connection has been simplified for ease of 
analysis. As a material, steel with standard features was used in the models and static analyses were made. 
Factors that the connection may encounter most in operating conditions; The axial tension between the 
pipes, the internal pressure within the pipe and the bending effect with an applied moment were investigated. 
In addition, pre-loading was applied as displacement to all 6 bolts for axial loading and 3 bolts for bending 
condition. In the results, the connection region was determined as the region where the stresses were 
concentrated under all different loading conditions, and it was seen that the applied support sleeve did not 
show any benefit in reducing the stresses. It was determined that the preload applied to the bolts increased 
the stresses. Preloading only had a limited positive effect on the bending behavior. 
Keywords: Pipe connection, Bolt, Stress, Internal pressure. 
 
 

 
 
 Various methods are used to connect pipes to each other. These methods are mostly carried out by 
means of mechanical and chemical elements. It is necessary to ensure a continuous contact between the 
connections and to cut off any external contact. This condition, which occurs after the connection is 
completed, must also be fulfilled if the fluid is transported. It is the most important condition that the fluid 
does not leak out in the pipe connection. In cases where mechanical and chemical resistance occurs in pipes 
connected mechanically or chemically and may occur during flow transport, this resistance must be between 
certain limits. The different methods used for connections in the literature have been researched and the 
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mechanical problems and efficiency on them are summarized. Most of the failures (Jun et al., 2020) in 
pipelines with metal parts are corrosion based and the alkalinity of the passing water and the age of the pipe 
are important factors. Slippage (Tasbihgoo et al., 2004) in mating pipe threads is thought to be the source 
of noise and fluid leakage. It (Wittenberghe et al., 2011) is recommended that local effects be considered 
with the entire system for fatigue life investigations in threaded pipe connections. The contact stresses 
(Shahani and Sharif, 2009) occurring at the connection point of the drill pipe were examined and the highest 
stresses occurred in the most anterior thread that entered the pipe and in the tooth bed it came into contact 
with. When the preload effect is applied, the average stress increase is achieved and the stress amplitude is 
reduced, thereby reducing the effects caused by fatigue. Various mechanical connections (Zaghi and Saiid, 
2011) formed in two-way pipe-pin hinges were investigated under earthquake occurrence and it has been 
observed that the bearing strength of concrete is up to two times higher than the compressive strength of 
concrete due to boundary effects. Loading capacity (Barsoum and Khalaf, 2015) has been increased by 
making 3 different pipe-flange designs. A damaged aluminum refrigerant pipe (Stevenson et al., 2017) was 
examined and found to be broken at the pipe weld. The discontinuous structure (Ren et al., 2018) in the 
welded joint and the fragile nature of the weld cause a large stress concentration. The effects of seismic 
effects (Zhao et al., 2022) on the buried gas pipeline under dynamic conditions were investigated and the 
failures in gaskets and flanges were investigated. In the results of the examination, the use of bolted flange 
connection is recommended. The pipe failure model (Winkler et al., 2018) that occurs in urban water 
distribution planning has been investigated and the magnitude of the problems that may occur in distribution 
has been shown. Leakage investigation (Zhang et al., 2021) was performed on steel wire reinforced 
polyethylene pipes and it was determined that the over-welded coupling sleeve caused leakage damage. A 
corroded pipe (Zhang et al., 2020) was repaired using composite material and the axial tensile and internal 
pressure behavior of the repaired pipe was investigated. Bolted joints were widely used, and preloading is 
a basic application of bolt connection to prevent the leakage. Bolt preloading (Sawa et al., 2003) was 
investigated on sealing of pipes at flange connections and the applied axial force was important to ensure 
the suitable clamping bolt force that was recommended by Pressure Vessel Research Council in USA. The 
provided connection (Sawa et al., 2006) between preloaded bolt-flange was analyzed for heat and internal 
pressure effects and connection performance decreased with increasing the temperature. As a result of heat 
increase on connection, the contact stresses increased. Bolted joints on pipe connections having flanges 
(Fukuoka and Takaki, 2001) were analyzed for different bolt numbers and stress values were given. Also 
spiral wound gaskets in bolted-flange connection of pipes (Fukuoka and Takaki, 2003) were analyzed and 
a uniform preloading values were determined with considering high non-linear stress-strain behavior. If the 
parameters; pipe diameter and flange thickness (Azim, 2013) were increased, bolt tension increased in the 
tension of bolts on connection of pipes. Flange thickness-width and diameter of bolt (Tafheem, 2012) have 
a dominant effect on bolt tension under bending loadings. The preloading was applied with a torque wrench 
and tightening values of torque wrench (Kondo et al., 2011) was analyzed which included tightening 
coefficient was given. 
As a result of this study, the effect of the support sleeve that can be used was investigated and its effect on 
the mechanical properties was examined. 

 

 
 

Bolt connection is widely preferred in terms of ease of assembly and disassembly. One of the most common 
problems in these connections is the bending that occurs during the axisymmetric loading on the bolt. 
Another load that may come from outside to the connection area is the bending condition that commonly 
occurs in the bolts. In order to reduce bending and external influences, a collar attachment was included 
and mounted in the connection area using longer bolts. Figure 1 shows two pieces of pipe connected by 
bolts and their geometrical features. The cuff used is in the form of a flat and simple bracelet, and its 

2. MATERIAL AND METHOD 
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dimensions are shown. Boundary conditions are like each other in case of different loading conditions such 
as axial tension, internal pressure effect and bending condition. In the case of axial tension, one of the free 
ends of the pipe is fixed and an axial tensile load of 1000 Pa is applied from the other end. In order to 
examine the internal pressure effect, the free ends of both necks were fixed, and a pressure of 1000 Pa was 
applied to the inner surface of the two pipes. To examine the bending condition, the free end of a pipe was 
fixed, and a pure moment of 120 Nm was applied from the other end. The parts are in full contact, and the 
contact surface is susceptible to friction. Friction was modelled in accordance with Columb's law of friction 
and a friction coefficient of 0.3 was determined for the interaction between surfaces. The results are 
expressed as the Von-Mises stress given in Eq. 1. The modulus of elasticity of the steel material used in the 
standard specification was determined as 200 GPa and the Poison ratio was 0.3. All solution results are 
performed in accordance with elastic boundary conditions. 
 

𝜎௏ெ = ට
(ఙభିఙమ)

మା(ఙమିఙయ)
మା(ఙయିఙభ)

మ

ଶ
        (1) 

 

 

Figure 1. The geometry of the pipe joint and the joint support collar. 
 

 
 

 In all results, a line contacting the inner surface of the pipes was created and results were obtained 
by using this line. Fig. 2 shows the stress results for the internally pressurized model. It is seen in the results 
that the stress is concentrated in the connection region. The applied support sleeve caused the stresses to 
increase more. Tensile value is approximately 3 times higher. 
 

3. RESULTS AND DISCUSSION 
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Figure 2. Stress distribution on the wall along the pipe direction in the application of in-pipe pressure. 

 
Figure 3. Normal stresses occurring in the middle of the pipe in the application of in-pipe pressure. 

 
In Fig. 3, the stress contours formed as a result of the internal pressure are shown for the upper half of the 
pipes over a plane taken in the middle section. The stresses are given as axial stresses and the values are in 
the order of MPa. The stresses occurring in the bolt cross section in the normal connection are formed in 
the form of bending behavior. It is seen that the highest positive stress occurs at the contact corners of the 
bolt closest to the pipe body. In the support added structure, while stresses of similar values occurred in the 
bolt structure, the highest normal stress occurred along the entire slot hole length in the socket bed of the 
support used in contact with the bolt. In the bending state where the bolt size increases, there is more shape 
change, and this is seen in the added support piece. 

 
Figure 4. Stress distribution in the pipe wall in the axial tension of the pipe end 
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Figure 5. Stress distribution in the pipe wall for bending. 

 
Fig. 4 shows the stress distribution for the axial tension condition. For the case of supported and straight 
bolt connection, the bolts are also preloaded with displacement condition. The displacements used in 
preloads I, II and III are 0.01 mm, 0.02 mm, and 0.03 mm. The bolt preload used generally caused the 
stresses to increase rather than decrease in axial tension. The stresses that occur in the normal bolt 
connection are lower than the part with the support used. On the other hand, stresses in the reinforced bolt 
connection for the preload I condition were lower than the normal bolt connection results. There is no region 
of stress concentration outside the connection region. Stress contours were similarly formed as normal 
stresses formed as a result of pressure.  
Fig. 5 shows the resulting stresses for the bending condition. The preload condition used had an effect for 
the bending condition and reduced the results to a limited extent. In the results with support pieces, the 
stress value was less than the results with normal bolt connection. The rightmost side of the graph shows 
the moment effect applied at the free end and the leftmost side shows the stresses resulting from the support 
effect. The support stress from M×c/I is 90 MPa in the analytical solution and the finite element result in 
the graph is correct. 
 

   
 

Figure 6. Normal stresses in the middle of the pipe in bending application (MPa). 
 
Stress contours are shown in Fig. 6. The bending condition exhibited simply supported beam behavior for 
the pipe section and bolt piece. 
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Figure 7. Deformation distribution on the wall along the pipe direction in the application of in-pipe 

pressure. 
 
The deformation plot is shown in Fig. 7 for pressure. The support used provided a positive deformation of 
the inside of the pipe in the outer direction. For the normal connection situation, it is seen that the pipe 
corners are bent locally towards the inside of the pipe at the junction. The deformation is higher in the 
supported connection. 
 

 
Figure 8. Deformation distribution in the wall along the pipe direction in axial drawing application 

 
The deformation results for the axial tensile condition are shown in Fig. 8. It is seen that the deformation is 
more in the supported part. It was observed that the applied preload did not reduce the deformation. 
However, the axial deformation in the supported joint occurred positively. It is a negative effect for fluid 
leakage. This situation occurred in the negative direction for the normal bolt connection. 
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Figure 9. Deformation distribution on the wall along the pipe direction in bending application. 

 
In Fig. 9, the deformation in the vertical direction is shown for the bending condition. Although the 
deformation results in the pipe section where the support is located after 0.9 m are similar, the bending 
situation seems to be dominant at the point where the 0-0.09-meter moment is applied. The highest 
deformation occurred in the normal connection condition. The applied preload reduced the deformation. 
The preload on the bolts was applied only for the 3 bolts in the upper part. 
 

 
 

 In this study, normal bolts and bolt connection with support ring were applied in connecting the 
pipes and their structural behavior was investigated under 3 different mechanical conditions. In general, the 
following findings were obtained in the results of the pre-loading of the bolts; 
• In all different loading conditions, the joint zone is determined as the zone of concentration of stresses. 
• The applied support sleeve caused the stresses to increase up to 3 times. 
• Larger shape changes occurred in the bolts in the support sleeve used. 
• The preloads applied to the bolts caused the stresses to increase in the axial tension condition. 
• Preloads applied in case of axial tension caused mostly positive deformation of the joint and are negative 
for fluid leakage. 
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In this article, the heat inverse two-dimensional quasilinear parabolic problem is examined. The stability 
and numerical solution for the problem are discussed. Since the problem is not linear, Picard's successive 
approximations theorem is used. In the numerical part, the solution is made with the finite difference and 
linearization method. 
Keywords: Inverse problem, Fourier method, Periodic boundary conditions, Picard Method, Two-
dimension parabolic problem, Fourier coefficient. 
 

 
 
 Inverse problems are used to find an unknown character of a matter or a place. Especially inverse 
problems are important for many calculations used in aircraft, missiles and submarines. In geophysics, the 
inverse problem is finding subsurface inhomogeneities. When measuring the frequencies of a material, the 
inverse problem is finding whether there is a defect (a hole in a metal) in that material. There may be a 
tumor or some abnormalities in the human body in medicine. The inverse problem is examined [4], [5],[6]. 
It is used in many fields such as population, electrochemistry, engineering, chemistry. The problems with 
nonlocal boundary conditions discussed in this article are not easy to study. Various boundary conditions 
have been studied in this area [1],[2],[3]. 
 

 
 

 For the solution of this problem, the Fourier Method and Picard successive approximations method 
were used, while the linearization method was used for the numeric solution. It was used implicit finite-
difference method for numeric problem. 
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    










 










 






dddn2sinm2sin)v,,,(he
4

e(0)v=)(v

dr2)n(22)m)(2r(b

t

00

t

0
2

dr2)n(22)m)(2r(b

t

0
smnsmn

 

    Then we obtain the solution: 
     

 

 










  d)v,(h

4

4

1
=),,(v 0

t

0
20  

 

   



























 




 



n2cosm2cos

d)v,(he
4

cmn

dr2)n(22)m)(2r(b

t

t

0
2cmn

1=n,m  

 

   



























 




 



n2sinm2cos

d)v,(he
4

csmn

dr2)n(22)m)(2r(b

t

t

0
2csmn

1=n,m   

 

   



























 




 



n2cosm2sin

d)v,(he
4

scmn

dr2)n(22)m)(2r(b

t

t

0
2scmn

1=n,m

 

   



























 




 



n2sinm2sin

d)v,(he
4

smn

dr2)n(22)m)(2r(b

t

t

0
2smn

1=n,m  

  
Here, 
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,e(0)v=

,e(0)v=

(0),v=

dr2)n(22)m)(2r(b

t

0
csmncsmn

dr2)n(22)m)(2r(b

t

0
cmncmn

00





 





 











 

.e(0)v=

,e(0)v=

dr2)n(22)m)(2r(b

t

0
smnsmn

dr2)n(22)m)(2r(b

t

0
scmnscmn





 





 








 

 
Let's assume the following rules for the functions used in the problem: 

(A1)  TCtk 0,)( 1  

(A2) 

    

,),(=,0)(),,(=,0)(

),,(=)(0,),,(=)(0,

,0,0,C),(

yy

xx

1,1





 (0),k=dd),(

00




 

(A3) Let )v,,,(h    have the following properties: 

,vv),,(l
)v,,,(h)v,,,(h









 

,vv),,(l
)v,,,(h)v,,,(h









 

,vv),,(l
)v,,,(h)v,,,(h









 where 0,),,(l),D(L),,(l 2   

(2) ],[0,C)v,,,(h 2,2,0   ],T0,  

(3) ,)v,,,(h=)v,,,(h
=0= 

  

  ,)v,,,(h=v,,,h
=0=    

  ,)v,,,(h=v,,,h
=0=    

,)v,,,(h=)v,,,(h
=0=    

 
 

=0=
)v,,,(h=)v,,,(h . 

.Tt),0(k=dd),,(v
'

t

00




  

.

)t,(v
2

),(v
2

dd)v,,,(xyh)(k

=)(b
3

3

0 0

'














 

 
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Definition 1.  
Show the set   )(v),(v),(v),(v),(v=)(v smnscmncsmncmn0  of continuous functions on 

[0, T] which satisfy the condition. 
 






























 <
)(vmax)(vmax

)(vmax)(vmax

4

)(v
max

smn
Tt0

scmn
Tt0

csmn
Tt0

cmn
Tt0

1=n,m

0

Tt0

 . 

 































)(vmax)(vmax

)(vmax)(vmax

4

)(v
max=)(v

smn
Tt0

scmn
Tt0

csmn
Tt0

cmn
Tt0

1=n,m

0

Tt0

  

is called Banach norm. 
 
Theorem 1: According to (A1)-(A3), the solution of (1)-(4) is constantly dependent on the data. 
 
Proof: 

Let   h,k,=  ,  h,k,=   and M , ,L i  1,2=i  positive constant. 

 

   
,L,L

,Mh,Mh

1
0,3C

10,3C

][1,1,0C][1,1,0C








 

,Lk,Lk 2
]T[0,1C

2]T[0,1C
  

 

    ).hk(=
][1,1,0C0,1,1CT0,1C 

   

 

 

   








 




 
 n2cosm2cose

4
=vv

dr2)n(22)m)(2r(b

t

cmn
1=n,m

00

 

    




 




 
 n2cosm2cose

dr2)n(22)m)(2r(b

t

cmn
1=n,m

 

   




 




 
 n2sinm2cose

dr2)n(22)m)(2r(b

t

csmn
1=n,m
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    




 




 
 n2sinm2cose

dr2)n(22)m)(2r(b

t

csmn
1=n,m

 

    




 




 
 n2cosm2sine

dr2)n(22)m)(2r(b

t

scmn
1=n,m

 

    




 




 
 n2cosm2sine

dr2)n(22)m)(2r(b

t

scmn
1=n,m

 

    




 




 
 n2sinm2sine

dr2)n(22)m)(2r(b

t

smn
1=n,m

 

    




 




 
 n2sinm2sine

dr2)n(22)m)(2r(b

t

smn
1=n,m

 

 

 































 











ddde

)v,,,(h)v,,,(h
4

4

1

dr2)n(22)m)(2r(b

t

00

t

0
2

 

 































































 







 











ddd

ee

)v,,,(h
4

4

1
dr2)n(22)m)(2r(b

t

dr2)n(22)m)(2r(b

t

00

t

0
2

 

 

    










 











dddn2cosm2cose

)v,,,(h)v,,,(h
4

dr2)n(22)m)(2r(b

t

00

t

0
2

1=n,m
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    






























 







 











dddn2cosm2cos

ee

)v,,,(h
4

dr2)n(22)m)(2r(b

t

dr2)n(22)m)(2r(b

t

00

t

0
2

1=k

 

 

 

    










 











dddn2sinm2cose

)v,,,(h)v,,,(h
4

dr2)n(22)m)(2r(b

t

00

t

0
2

1=n,m

 

 

    






























 







 











dddn2sinm2cos

ee

)v,,,(h
4

dr2)n(22)m)(2r(b

t

dr2)n(22)m)(2r(b

t

00

t

0
2

1=n,m

 

 

 

    










 











dddn2cosm2sin

e

)v,,,(h)v,,,(h[
4

dr2)n(22)m)(2r(b

t

00

t

0
2

1=n,m

 

    






























 







 











dddn2cosm2sin

ee

)v,,,(h
4

dr2)n(22)m)(2r(b

t

dr2)n(22)m)(2r(b

t

00

t

0
2

1=n,m
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 

    










 











dddn2sinm2sine

)v,,,(h)v,,,(h
4

dr2)n(22)m)(2r(b

t

00

t

0
2

1=n,m

 

 

    






























 







 











dddn2sinm2sin

ee

)v,,,(h
4

dr2)n(22)m)(2r(b

t

dr2)n(22)m)(2r(b

t

00

t

0
2

1=n,m

 

 

4

00  


B
vv

 

 

smnsmnscmnscmn

csmncsmncmncmn
1=n,m



 


 

B)(2L
)(v)(v),,(l)

3

163
(T 














(b)(bM),,(l)
3

163
(T

)(2L
where 

 

.

4
=

smnsmnscmnscmn

csmncsmncmncmn
1=n,m

00











 

 

B]T[0,C
)(v)(vC)(b)(b   

 

where .
)(u2

),,(l

)(u)(u2

M
=C

B

)(2L

BB 






















 
 

 0xD2vv
2

2
2

B
  
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.

),,()
3

163
(1

1
=

)(2














MCtyxlT

D

L


 
For    then .vv   Hence .bb   
 

 

Let's linearize it for the nonlinear data in the problem: 
 

  ),,(),u,,,(huu)(b=u 1)n()n(
yy

)n(
xx

)n(
t  

 
   ,0,,0,),,(=,0),(u )n(   

 
   ,T0,,0,),,,(u=),(0,u )n()n(   

   ,T0,,0,),,,(u=),0,(u )n()n(   
 

   ,T0,,0,),t,y,(u=),(0,u )n()n(    

   ,T0,,0,),,,(u=),0,(u )n()n(    

 

Let us ),,(v=),,(u )n(   ve ).,,(h=)u,,,(h 1)n(    
 

 ),,(),,,(fvv)(b=v yyxxt  

 
 

    0,,0,),,(=,0),(v  
 

 
   T0,,0,),,,(v=),(0,v   

   T0,,0,),,,(v=),0,(v   
 

   T0,,0,),,,(v=),(0,v    

   T0,,0,),,,(v=),0,(v    

 

   T0,0, 2   is divided to an NM 2  mesh with the step sizes ,/= Mh   NT/= .  

Let’s take ,,
k

jiv  k
j,if , i and kb  that instead of ),,,(v kji   ),,(h kji  , ),( ji   and )(b k , 

respectively. 
Then we examine implicit finite-difference method for the last problem : 

 

4. NUMERIC METHOD FOR THE PROBLEM 
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If we take integral to x  and y  from 0  to   , we get, 
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where ),(= k
k tkk  .0,1,...,= Nk  

Here, Simpson's central difference scheme is applied. ,)(skb  )(
,

sk
jiv  of ,kb  k

jiv ,  at the s -th iteration step.  
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The inverse problem of defining thermal dissipation and the heat in the semi-linear two-dimensional 
parabolic equation with periodic boundary and integral conditions is investigated. The problem has been 
studied both theoretically and numerically. In this article, periodic boundary conditions are studied. 
Nonlocal Periodic boundary conditions for heat inverse coefficient problems are more difficult than local 
boundary conditions. In this study, the results were obtained by using the Fourier method and the finite 
difference method. 
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In this study, a structurally different drop wing geometry was modelled and its mechanical behavior was 
investigated with computer aided analysis software within the finite element method. The tip of the drop 
wing geometry consists of one large and the other small circles. There were linear line profiles between 
them. In order to prevent collapse in the wing geometry modelled with the plate structure, a profile in the 
rigid body structure was created and its effect was investigated. The effect of the wing length and the plate 
thickness covering the wing was examined and shown in the results. It was defined as the profile material 
for the wing made of steel and for the standard features. In the static examinations carried out under the 
pressure loading applied on the wing, it was determined that the vertical deformation caused by the wing 
length was not linear, and the stresses that occur with the increasing wing plate thickness form a decreasing 
function. The stresses that occur in the inside of the wing support were intense in the support area, but also 
in the bending areas. 
Keywords: Wing, Plate, Surface pressure, Stress. 
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 The wing is the fundamental component that humans have studied and refined since the dawn of 
time in order to give them the ability to fly. Wings are generally utilized in glider-style constructions, which 
resemble rudimentary airplane structures that allow gliding and are inspired by birds. As a result of the 
development phase, it was merged with the engine part and acquired its current aircraft form once it was 
realized that flying with human power was challenging. The aerodynamic performance that improves the 
flight condition is the most crucial wing design parameter. Under operational circumstances, it must also 
offer a few mechanical qualities. Numerous studies have generally been built around figuring out the ideal 
weight and strength ratios. 
 

The effect of wing thickness and geometry to reduce weight on the wing [1] was investigated by 
considering aerodynamic/structural features in combination. In the hybrid structure [2], wing design 
methods capable of multiple optimization were investigated and a multi-purpose genetic algorithm was 
developed. Different structures suitable for the 2D and 3D wing profile [3] structure have been designed 
with the appropriate optimization method and a great deal of savings has been achieved. An airplane [4] in 
the wing body structure for transonic airplanes is designed with computer aided flow analysis and 
constrained inverse design method. Wing body design [5] for subsonic transport has also been examined 
and a reduction in weight has been achieved with an increase in performance. The aerodynamic shape 
structure of a wing was investigated, and its control was studied for two cases with and without load 
reduction [6].  

 
In the research that demonstrated improvement, ideal outcomes were established. Using a 

parametric examination method, Jiapeng et al. [7] created a quick modeling process for the structural design 
of a wing. The varied fiber orientations and layer thicknesses of an aircraft composite sheet in bending state 
were studied by Rajappan and Pugazhenthi in 2013 [8]. A wing with a variable camber structure has been 
created [9], and attributes that can reduce noise and save fuel have been attained. A method that can adhere 
to the design requirements on the model has been established for the optimization method [10], and an 
improvement in performance has been made in the design.  
 

A new wing design was created by evaluating the literature information and the interaction between 
the plate and the wing profile was investigated. 
 

 
 

 In order to carry out the study, a general wing profile was created with a computer aided drawing 
program. This aerofoil is modelled symmetrically in a linear section structure, not used in standard airplanes 
and not in a way to form a higher protrusion on one surface. A solid body profile is placed inside the wing 
model. With this model, which is not in the standards, it is investigated how the plate-solid body interaction 
affects the wing. In Figure 1, basic geometric information for the wing is shown. Its wingspan is 100 mm 
and its length is basically 200 mm. The front and rear ends are modelled as circular with radiuses of 20 mm 
and 10 mm, respectively. The wing is modelled as a plate and its thickness is 1 mm. The thickness of the 
structure used for support in the inner section is 1 mm. For the wing in the figure, a pressure of 1000 Pa 
was applied only from its upper surface. One end of the wing and profile structure is fixed to form a support. 
The interaction between the plate forming the wing and the inner section structure is in the frictional surface 
structure. There is a relative interaction between the two structures, depending on Columb's law of friction. 
The friction coefficient was used as 0.3.  

1. INTRODUCTION 

2. MATERIAL AND METHOD 



 Natural & Applied Sciences Journal Vol. 6 (1) 2023 23 

 

 
Figure 1. Wing geometry and dimensions 

 
For the results, a path was created on the free section edge of the wing and the deformation and stresses 
related to the wing were taken over this path and graphed. For the profile structure in the inner section, a 
line called “path II” was created and the profile deformation was shown. Stress results are given in Von-
Mises stress type. 
 

𝜎௏ெ = ට
(ఙభିఙమ)మା(ఙమିఙయ)మା(ఙయିఙభ)మ

ଶ
  (1) 

 
 

 
 

 The analysis's findings have no dimensions in order to highlight the impact of unit length. Path I in 
Fig. 2 illustrates the vertical deformation. Cross-section lines are used to indicate the areas where the plate 
makes contact with the support platform. Below the vertical axis, a negative deformation distribution is 
shown as a result of the downward pressure imparted across the wing. It has been found that the distortion 
increases as wing length increases. Deformation in the contact region behind the section began to slow 
down, but it suddenly accelerated in the front of the section.  
 
The incoming deformation distribution is similar in all results. However, the place where the highest 
deformation occurs moves towards the back corner of the section as a result of the increasing l/b ratio. 
Increasing the l/b ratio from 2 to 3 nearly doubled the maximum deformation value. However, increasing 
the 1/b ratio from 2 to 4 caused a deformation increase more than 3 times compared to the first case. 
Therefore, although the distribution was similar, the rate of increase did not occur linearly. 

 
 

 

3. RESULTS AND DISCUSSIONS 
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Figure 2. “Deformations in the vertical direction according to the wing length/width ratio on the path I line 

 

 
Figure 3. Stresses on the path I line according to the wing length/width ratio 

 
Figure 3 shows the stress distribution on path I. The stress distribution was formed as 3 high value regions 
in all results, with the largest value in the middle part. These regions where the stresses intensified and 
increased/decreased abruptly occurred in the areas where the in-wing platform was in contact. The 
difference ratio between the highest values was less than the deformation difference ratio in the vertical 
direction. The region with the highest value moved towards the back of the wing as a result of the increasing 
l/b ratio. 
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Figure 4. Deformation in the vertical direction according to the wing length/width ratio on the path II line 

 
In Fig. 4, the deformation results in the vertical direction over the platform from the path II line are taken. 
In the results showing the dimensionless length fixed support behavior, the difference between the results 
for the l/b ratio 2 and 3 was small. However, the deformation is very high for the l/b ratio of 4. The reason 
for this is the fact that more shear-related deformation occurs at the free end of the blade as a result of the 
increased length. 

 

 
Figure 5. Deformation in the vertical direction according to the wing length/width ratio on the path I line 

For l/b=2 ratio, deformation values are shown in Fig. 5 for plate results with different thickness than path 
I position. Each part of the homogeneously formed plate is of equal thickness. Although the deformation 
distribution did not change as a result of increasing thickness, the values were formed as a decreasing 
equation. 
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Figure 6. Stresses on the path I line according to the wing length/width ratio 

 
Fig. 6 shows the stresses occurring at the path I location. The tensile value decreased from 1.8 MPa to 0.4 
MPa as a result of increasing thickness. The general distribution is similar. The values on the right side of 
the stress intensities are greater than the values on the left side, except for the center region where the 
highest stress occurs. The reason for this can be shown as the larger circular tip and in-wing profile area at 
the front end of the wing.  
 

 
Figure 7. Deformation in the vertical direction according to the wing length/width ratio on the path II line 

 
In Fig. 7, the deformation structure formed on path II is shown for different plate thicknesses. The 
geometric toughness resulting from the increased thickness reduced the deformation. A non-linear ratio 
occurred between the reduction rate and the thickness. 
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Figure 8. Stresses in the wing support profile 
Von-Mises stress distributions caused by different thicknesses are shown in figure 8 for the aerofoil. With 
increasing thickness, the stress values decreased, and the stress regions formed at high values became 
smaller. The places where the highest stresses occur are in the support region. In addition, the places where 
the geometry direction changes in the bending places of the profile seem to be regions where high stresses 
occur.  
 

 
 

In this project, a 3D model of a wing section was created. An in-wing platform was made for support 
because the shape of the model is a plate in a thin shell structure. These constructions represent the wing 
part in the overall structure, despite the lack of a specific standard. To sum up some data regarding the wing 
design that is being studied in terms of static bending state; 

 It was observed that the wing deformation increased as a result of increasing wing length and it was 
determined that this increase was not linear. 

 High stress values were observed at the edges of the contact area of the support platform and in the 
middle of the wing. 

 While increasing wing length causes a dominant increase in the deformation value, this increase in 
the stress value is at a lesser level. 

 While similar results were obtained for the wing length-width ratios 2 and 3 in the deformation of 
the wing support profile, a 4-fold ratio causes high deformation. 

 Increasing thickness value changed the deformation and stress values as a decreasing function. 
 The stresses have generally occurred in the support area and bending places of the profile. 

 
 
 
 
 
 
 
 
 
  
 

5. CONCLUSIONS 

t=1 mm t=1.5 mm t=2 mm 

t=2.5 mm t=3 mm 
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Metals both have good mechanical and electrical qualities, besides, they are also created as light as possible 
by using recent manufacturing techniques. In that scope, this study aims to use an ultra-high frequency 
sintering technique to sinter aluminum powders of 15 µm in size. A mold and 30 bar pressure were used to 
compress the powders before sintering. For the sintering temperature optimization, 3 experiments were 
conducted in the induction system at 600°C, 650°C, and 700°C temperatures. Sintering conditions were 
determined at different time intervals of 3 minutes, 5 minutes, and 10 minutes to find an optimum value for 
sintering time. Finally, furnace sintering was used for 1 hour at these temperatures. With 2 different 
sintering, 3 different temperatures, and 3 different time parameters, size, density, porosity, and hardness 
values were obtained. Obtained results were compared among themselves. 
 
Keywords: Induction, Aluminum, Sintering, Hardness 
 

 
 
      Aluminum (Al) and aluminum alloy materials are among the most important metals in today’s industry. 
It is necessary to conduct a further investigation of the aluminum materials. Besides the low density, its 
electrical conductivity [1] requires comprehensive research to improve its mechanical properties through 
alloying or various manufacturing methods. Since it is a recyclable metal, there is a rapid increase in the 
use of aluminum in various industries [2,3] 
 
 
      Powder metallurgy (PM) covers the production and assembly of powder metal parts that can be refined 
or homogeneous [4,5]. However, the difficulties that may arise during the sintering of light metals such as 
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aluminum pave the way for creating a new field of study in traditional powder metallurgy technologies. 
Besides investigating alloying elements in pressing and sintering processes, applying and discovering the 
advantages of fast production techniques such as induction is also important. Regarding the further studies, 
the obtained strength and density values can be improved [6-8]. 
      Induction is a much faster heat treatment method than the furnace [8-10]. Performing the sintering 
process by induction in a material with electrical conductivity is based on the principle of a vortex flow 
[10]. Vortex flow allows the determination of the depth, called the 'depth of penetration,’ on the material’s 
exterior surface. In this process, one of the most important parameters is the frequency of the induction 
device [10-12]. Even though the devices are easy to maintain, the induction sintering process is used for 
smaller samples than it is used for conventional furnaces. The induction sintering process provides rapid 
heating, reducing sintering times and providing energy efficiency [10]. Induction hardening or heat 
treatment is used to improve the mechanical properties of metals such as aluminum. In the hardening 
process, various parameters are taken into consideration [11-16]. Induction hardening is an important 
manufacturing process to control the mechanical properties of metal parts. It controls an increase in surface 
hardness while maintaining the core original structure and toughness properties. Appropriate phase 
transformation in the exterior surface of the material is possible by inducing [17-22]. 
      This study investigated the effects of induction and furnace sintering applied to pure aluminum powders 
at different times and temperatures after cold pressing. It is found that the values of the density, size, 
hardness and porosity of the samples and the results were compared among themselves. 
 

 
 
2.1. Material 
      In this experiment, the environment is at room temperature. After the literature review, material and 
molds were provided, and conditions were determined for the experiment. The aluminum powders used are 
spherical micron powders with a purity of 98.85%. It is produced by the gas atomization method. The 
average particle size of the powders is approximately 15 µm, the molecular weight is 26.98 g/mol, and the 
density is 2.7 g/m2. The chemical content of aluminum powder is given in Table 1. 
 

Table 1. Chemical Composition of Pure Aluminum Powder 

Component 
(Max) 

Al Fe Si Cu Zn Ti 

Weight % 98.85 0.50 0.35 0.15 0.08 0.07 
 
 
      A single-axis single-effect mold was used for the compaction of powder mixtures. 30 bar pressure was 
used to press to compact the powdered material. The mold is made of an alloy-hardened steel cylinder. The 
outer diameter of the mold is 56mm, the height is 60mm, and the outer diameter of the penetrating punch 
is 16mm. Figure 1 shows a photograph of a single-axis single-effect mold. On the other hand, the induction 
device is an Ultra High-Frequency Induction Device that works with 20% power with 2.8 kW, 900 kHz. 
The induction coil is a single wounded. Its outer diameter is 26mm, and its wall thickness is 0.5mm.  
 

2. MATERIALS & METHODS 
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Figure 1. A Single-Axis Single-Effect Mold and Applied Force 

 
2.2. Method 
      Al powders were pressed as 2.50 grams’ packages. A press device was used to supply the powder 
as a compacted sample. Pressing was done in a single-axis single-acting press under 30 bar pressure. 
The raw sample dimensions were formed in a coin-like shape approximately 16mm in diameter and 
2mm in height (E.R. [Error Range] ±0.3%). After providing the raw material, 9 samples were subjected 
to the induction sintering process. To optimize the sintering temperature, the induction system was run 
at 3 different temperatures at 600°C, 650°C, and 700°C. For the sintering time optimization, appropriate 
values for sintering conditions were determined at time intervals of 3 minutes, 5 minutes, and 10 
minutes. The sintering process was run in the furnace for 60 minutes. After the sintering process, all 
samples were cooled naturally. Figure 2 shows the samples that are prepared for sintering. Besides, the 
parameters applied to pure aluminum are shown in Table 2 and the process steps in Table 3. 
 

 
Figure 2. Samples Prepared for Sintering 
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Table 2. Parameters of Pure Aluminum Sintering Process 
 

No. Al Sintering 
Process 

Heat-
treated 
Time 
(min) 

Pressure 
Applied in 
Cold Press 

(Bar) 

Heat 
(°C) 

1 Pure Al Induction 3 30 600 
2 Pure Al Induction 5 30 600 
3 Pure Al Induction 10 30 600 
4 Pure Al Induction 3 30 650 
5 Pure Al Induction 5 30 650 
6 Pure Al Induction 10 30 650 
7 Pure Al Induction 3 30 700 
8 Pure Al Induction 5 30 700 
9 Pure Al Induction 10 30 700 
10 Pure Al Furnace 60 30 600 
11 Pure Al Furnace 60 30 650 
12 Pure Al Furnace 60 30 700 

 
 

Table 3. Process Steps Applied to Pure Aluminum  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pure Aluminum Powders Supply

Cold Pressing with Single Axis 
and Single Acting Die

At Determined Times and 
Temperatures

-Sintering with High Frequency 
Induction

- Furnace Sintering

Natural Cooling

Analysis

(Density, Hardness, Sample Size, 
Porosity of the PM compacts)
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Figure 4. Temperature time graph of the induction process in 3min (a) , 5 min (b) , and 10 min (c) 

 

 
 
3.1. Density Values 
      Raw density and sintered density values of pure aluminum, sintered with an induction device operating 
at 20 percent power at 600°C, 650°C, and 700°C at different induction times, are given in Table 4. The raw 
density refers to the density of the raw material after it is printed in the mold, and the sintered density refers 
to the density measured after induction. 
 

Table 4. Density Change According to Temperature and Time Parameters as a Result of Sintering of Pure Aluminum in 
Induction Device 

SAMPLE 
NO 

HEAT (°C) 
TIME 
(min) 

RAW 
DENSITY 

(g/cm3) 

SINTERED 
DENSITY 

(g/cm3) 

CHANGE 
(%) 

1 600°C 3 min 2.550 2.603 2.054 
2 600°C 5 min 2.563 2.621 2.254 
3 600°C 10 min 2.543 2.596 2.103 
4 650°C 3 min 2.536 2.578 1.644 
5 650°C 5 min 2.556 2.593 1.463 
6 650°C 10 min 2.521 2.552 1.257 
7 700°C 3 min 2.546 2.574 1.103 
8 700°C 5 min 2.536 2.562 1.028 
9 700°C 10 min 2.583 2.610 1.045 

 
       

3. FINDINGS 
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      The findings in Table 4 show that the induction sintered sample has a higher density than the raw 
sample. For example, while the raw density was 2.55 g/cm3, the final density of the sintered sample in the 
induction system at 600°C for 3 minutes was 2.60 g/cm3. Besides, the density of the raw material before 
the sintering process was 2.53 g/cm3. After being sintered in the induction system at 700°C for 5 minutes, 
the final density was measured as 2,56 g/cm3. This increase was observed in all samples. The error range 
of the density values in the samples are approximately ±1.5%. Table 5 shows the raw densities and post-
sintering density values kept separately at 600°C, 650°C, and 700°C for 1 hour. 
 

Table 5. Density Change Caused by Sintering of Pure Aluminum at Different Temperatures in the Furnace 

SAMPLE 
NO 

HEAT (°C) 
TIME 
(min) 

RAW 
DENSITY 

(g/cm3) 

SINTERED 
DENSITY (g/cm3) 

CHANGE (%) 

10 600°C  60 min 2.581 2.639 2.234 
11 650°C  60 min 2.570 2.498 -2.812 
12 700°C  60 min 2.556 2.466 -3.501 

 
      In Table 5, it is seen that the density of the sample sintered for 1 hour in the furnace at 600°C increased 
compared to its raw density, while the densities of the samples sintered for 1 hour in the furnaces at 650°C 
and 700°C decreased after sintering. Melting of the material and loss of mass causes a decrease in density, 
as shown in Figure 4. While the density increases by 2.23% at 600°C, it decreases by 2.81% at 650°C and 
3.50% at 700°C. 

 
Figure 3. Furnace Sintered at 650°C (Left), Sintered at 700°C (Right) Relatively Molten Pure Aluminum 

 
 
 
 
 
 
 
 



 Natural & Applied Sciences Journal Vol. 6 (1) 2023 35 

3.2. Size Change 
 
      In Table 6, the raw and post-sintering sizes of the aluminum sintered at different time intervals as 3 
minutes, 5 minutes, and 10 minutes operating at 600°C, 650°C, and 700°C, are given. 
 

Table 6. Size Change as a Result of Induction Sintering of Pure Aluminum 

SAMPLE 
NO 

HEAT (°C) 
TIME 
(min) 

RAW SIZE 
(mm) 

SINTERED SIZE 
(mm) 

CHANGE 
(%) 

1 600°C  3 min 16.15 16.10 -0.309 
2 600°C  5 min 16.15 16.10 -0.309 
3 600°C  10 min 16.25 16.20 -0.307 
4 650°C  3 min 16.25 16.20 -0.307 
5 650°C  5 min 16.25 16.20 -0.307 
6 650°C  10 min 16.25 16.20 -0.307 
7 700°C  3 min 16.20 16.15 -0.308 
8 700°C  5 min 16.20 16.15 -0.308 
9 700°C  10 min 16.20 16.15 -0.308 

 
      Table 6 shows that the diameter dimensions of the samples have decreased. For instance, while the raw 
size of the sample sintered at 650°C in 10 minutes is 16.25 mm, the size decreases to 16.20 mm after 
sintering. The error range was measured as max ±3.25%. Table 7 gives the size change values of the material 
sintered for 1 hour in the furnace at 600°C, 650°C, and 700°C. 
 

Table 7. Size Change Due to Sintering of Pure Aluminum in the Furnace 

SAMPLE 
NO 

HEAT (°C) 
TIME 
(min) 

RAW SIZE 
(mm) 

SINTERED SIZE 
(mm) 

CHANGE 
(%) 

10 600°C  60 min 16.20 16.20 0.000 

11 650°C  60 min 16.15 15.95 -1.238 

12 700°C  60 min 16.25 15.95 -1.846 

 
      Table 7 shows that while no change is observed at 600°C, a decrease is observed at values close to and 
above the melting temperature. The reason for the difference in decrease rates depends on the approaching 
and exceeding the melting temperature in the sintering material, as shown in Figure 4. According to that 
percentage of change increases which is also seen in the change in porosity values.   
 
3.3. Hardness Results 
      Hardness values of pure aluminum sintered by ultra-high frequency induction at 600°C, 650°C, and 
700°C for 3 minutes, 5 minutes, and 10 minutes are given in Table 8. Hardness was measured by taking the 
average of the 5 determined points. The determined points were set as the outermost of the circular part 
(200 µm inside the border), the center (8000 µm inside the border), and the middle of these two points 
(4000 µm inside the border). 
 
 
 
 
 

Table 8. Hardness Change of Induction Sintered Pure Aluminum in Time and Temperature Parameters 
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SAMPLE 
NO 

HEAT 
(°C) 

TIME 
(min) 

HARDNESS OF 
THE SINTERED 

EXTERIOR 
SURFACE (HV) 

 
Distance: 200µm 

HARDNESS OF 
THE SINTERED 

MIDDLE 
SURFACE (HV)  

 
Distance: 4000µm 

HARDNESS OF THE 
SINTERED INSIDE 

(HV)  
 
 

Distance:8000 µm 
1 600°C 3 min 42.5 41.4 40.9 
2 600°C 5 min 43.2 42.1 41.5 
3 600°C 10 min 41.9 41.2 40.5 
4 650°C 3 min 38.1 37.5 36.9 
5 650°C 5 min 39.7 39.2 38.7 
6 650°C 10 min 38.3 37.8 37.5 
7 700°C 3 min 38.0 37.4 36.8 
8 700°C 5 min 39.0 38.5 37.8 
9 700°C 10 min 38.3 37.6 37.1 

 

 
Figure 5. Density Change Caused by Sintering of Pure Aluminum at Different Temperatures in the Furnace 

       The values that are shown in Table 8 formed the curve as a parabolic curve. The hardness decreases if 
the time is kept constant and the temperature increases. Besides that, a comparison between 5 and 10 
minutes shows that the hardness decreases as the temperature increases. The error range was found as 
±2.25%. In Table 9, hardness values of pure aluminum sintered for 1 hour (60 minutes) in the furnace at 
600°C, 650°C, and 700°C are given. 
 

Table 9. Hardness Change of Pure Aluminum Sintered in the Furnace for 1 Hour 

SAMPLE 
NO 

HEAT (°C) 
TIME 
(min) 

HARDNESS OF 
THE SINTERED 

EXTERIOR 
SURFACE (HV) 
Distance: 200µm 

HARDNESS OF 
THE SINTERED 

MIDDLE 
SURFACE (HV) 

 Distance: 4000µm 

HARDNESS OF 
THE SINTERED 

INSIDE (HV) 
Distance: 8000 

µm 
10 600°C 60 min 37.0 35.2 34.0 
11 650°C 60 min 35.7 34.1 33.5 
12 700°C 60 min 35.2 33.5 33.0 

 

36
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      Table 9 shows that if the time is kept constant, the hardness decreases as the temperature increase. While 
the change in hardness between the sample sintered at 600°C and at 650°C is approximately ±1.3 (distance: 
200µm), the change in hardness between the sample sintered at 650°C and at 700°C is ±0.5 (distance: 
200µm). 
 
3.4. Porosity Values 
      Raw porosity and post-sintering porosity values of pure aluminum sintered at 600°C, 650°C, and 
700°C are given in Table 10. 
 

Table 10. Raw and Sintered Porosity Values by Sintering Method and Time Parameters 

SAMPLE 
NO  

SINTERING 
METHOD 

HEAT 
(°C) 

TIME 
(min) 

RAW 
POROSITY 

(g/cm3) 

SINTERED 
POROSITY 

(g/cm3) 

CHANGE 
(%) 

1 Inductıon  600°C 3 min 0.056 0.036 -35.714 
2 Inductıon 600°C 5 min 0.051 0.030 -41.176 
3 Inductıon 600°C 10 min 0.059 0.039 -33.898 
4 Inductıon 650°C 3 min 0.061 0.046 -24.590 
5 Inductıon 650°C 5 min 0.054 0.040 -25.925 
6 Inductıon 650°C 10 min 0.067 0.055 -17.910 
7 Inductıon 700°C 3 min 0.058 0.047 -18.965 
8 Inductıon 700°C 5 min 0.061 0.051 -16.393 
9 Inductıon 700°C 10 min 0.044 0.034 -22.727 

10 Furnace 600°C 60 min 0.044 0.023 -47.727 
11 Furnace 650°C 60 min 0.048 0.075 56.249 
12 Furnace 700°C 60 min 0.054 0.087 61.111 

 
      In Table 10, it is seen that the porosity decreases in the samples sintered by induction. Besides, the 
porosity of samples sintered with the furnace at 600°C decreases, and the final porosity value increases at 
650°C and 700°C. While the change between the raw and post-sintering porosity values was approximately 
±0.03, the porosity value change was approximately ±0.01 in the sample sintered at 700°C for 5 minutes. 
The average error range is found as ±1.3%. 
      In the literature, it is clear that there is a need for further investigation on the sintering of Pure Al 
powders by ultra-high frequency induction. In this study, it is shown that properties such as hardness can 
be increased by using faster manufacturing methods of aluminum. In future studies, experiments can be 
conducted by optimizing the size of Pure Al powders, different powder material additive and applied 
pressure parameters. Besides, further studies can be conducted to find other optimum conditions by 
changing other parameters, such as induction coil design, the frequency and the applied power of the 
induction system [11,17,21,22]. The induction technique can provide better information about the change 
in the material surface's internal structure and possible hardness increase. The hardness change is proof of 
surface hardening by heat treatment which is carried out during induction sintering. 
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      In this study, 30 Bar pressure was applied to 15 µm Pure Al powders under cold press, and sintering 
was provided by furnace and induction. Obtained results are presented below. 
 

 In all induction sintered samples, the density after sintering increased compared to the raw density. 
As a result, the porosity decreased. In addition, as the temperature increases in these samples, the 
percentage change in density decreases. 
 

 It is found out that using the induction sintering method is more advantageous to obtain a better 
hardness when different sintering methods are compared. 

 
 Hardness decreased as the sintering temperature increased in all samples. On the other hand, the 

best hardness value was obtained after 5 minutes of induction and sintering at the specified 
temperatures. 
 

 An increase in density was detected in sample 10, sintered with a furnace at 600°C. On the other 
hand, a decrease in density was observed in samples 11 and 12 sintered with a furnace close to and 
above the melting temperature of aluminum (650°C and 700°C). The melting of the material above 
the sintering temperature causes a decrease in density. 

 
 Porosity decreased in induction-sintered samples. The decrease in the material’s porous structure 

caused its size to decrease and its density to increase. Accordingly, the hardness values of the 
material increased. 

 
 Induction-sintered samples are sintered faster than furnace-sintered samples. In this context, it is 

possible to save time with the induction sintering method. 

 

 
 

      The authors declare no conflict of interest. 
 

 
 
 

1. Gökçe, A., Fındık, F., & Kurt, A. O. (2017). 
Alüminyum ve alaşımlarının toz metalurjisi 
işlemleri. Mühendis ve Makina, 58(686), 21-47. 
 
2. Halil, A. R. I. K., Kırmızı, G., & Semerci, P. 
(2017). Sıcak presleme ile alüminyum matrisli ve 
al2o3 takviyeli toz metal kompozit malzeme 
üretimi ve abrasif aşınma davranışının araştırılması. 

Gazi University Journal of Science Part C: Design 
and Technology, 5(4), 87-97. 
 
3. Kumar, N., Bharti, A., & Saxena, K. K. (2021). 
A re-investigation: Effect of powder metallurgy 
parameters on the physical and mechanical 
properties of aluminium matrix 
composites. Materials Today: Proceedings, 44, 
2188-2193. 

4. RESULTS VE DISCUSSION 

6. CONFLICTS OF INTEREST 

7. REFERENCES 



 Natural & Applied Sciences Journal Vol. 6 (1) 2023 39 

4. Pickens, J. R. (1981). Aluminium powder 
metallurgy technology for high-strength 
applications. Journal of Materials Science, 16, 
1437-1457. 
5. Nassar, A. E., & Nassar, E. E. (2017). Properties 
of aluminum matrix Nano composites prepared by 
powder metallurgy processing. Journal of King 
Saud University-Engineering Sciences, 29(3), 295-
299. 
 
6. Anderson, I. E., & Foley, J. C. (2001). 
Determining the role of surfaces and interfaces in 
the powder metallurgy processing of aluminum 
alloy powders. Surface and Interface Analysis, 
31(7), 599-608. 
 
7. Awotunde, M. A., Adegbenjo, A. O., Shongwe, 
M. B., & Olubambi, P. A. (2019). Spark Plasma 
Sintering of Aluminium-Based Materials. In Spark 
Plasma Sintering of Materials, Spring eBooks, 
191–218. https://doi.org/10.1007/978-3-030-
05327-7_7 
 
8. Hsieh, C. T., Ho, Y. C., Wang, H., Sugiyama, S., 
& Yanagimoto, J. (2020). Mechanical and 
tribological characterization of nanostructured 
graphene sheets/A6061 composites fabricated by 
induction sintering and hot extrusion. Materials 
Science and Engineering: A, 786, 138998. 
 
9. Seikh, A. H., Baig, M., Singh, J. K., Mohammed, 
J. A., Luqman, M., Abdo, H. S., ... & Alharthi, N. 
H. (2019). Microstructural and corrosion 
characteristics of Al-Fe alloys produced by high-
frequency induction-sintering 
process. Coatings, 9(10), 686. 
 
10. Mendoza, J. M., Estrada-Guel, I., Garay, C., 
Romero, M. I., Perez-Bustamante, R., Carreño-
Gallardo, C., & Martínez-Sánchez, R. Impact of 
process conditions on the mechanical properties, 
structure and microstructure of milled aluminum 
sintered through rapid induction heating. SSRN, 
https://papers.ssrn.com/sol3/papers.cfm?abstract_i
d=4273156 
 
11. Ujah, C. O., & Kallon, D. V. V. (2022). Trends 
in aluminium matrix composite development. 
Crystals, 12(10), 1357. 

 
12. Dudina, D. V., Georgarakis, K., & Olevsky, E. 
A. (2023). Progress in aluminium and magnesium 
matrix composites obtained by spark plasma, 
microwave and induction sintering. International 
Materials Reviews, 68(2), 225-246. 
 
13. Oliver, U. C., Sunday, A. V., Christain, E. I. E. 
I., & Elizabeth, M. M. (2021). Spark plasma 
sintering of aluminium composites—a review. The 
International Journal of Advanced Manufacturing 
Technology, 112, 1819-1839. 
 
14. Çavdar, U., & Sarı Çavdar, P. (2019). Demir 
esaslı toz metal malzemelerin ultra-yüksek frekanslı 
indüksiyon sistemi ile sinterleme sıcaklığı 
optimizasyonu, Niğde Ömer Halisdemir 
Üniversitesi Mühendislik Bilimleri Dergisi, 
8(2009), 378-383.  
 
15. Choudhury, A., Nanda, J., & Das, S. N. (2021, 
November). Sintering sensitivity of aluminium 
metal matrix composites developed through powder 
metallurgy proposed technique-a review. Journal of 
Physics: Conference Series, 2070(1), 012193. IOP 
Publishing. 
 
16. Akkurt, O., Altıntaş, A., Çavdar, P., & Çavdar, 
U. Effect on the mechanical properties of sintering 
process of aluminium alloys. International 
Scientific and Vocational Studies Journal, 3(2), 85-
91. 
 
17. Taştan, M., Gökozan, H., Çavdar, P. S., Soy, G., 
& Çavdar, U. (2020). Cost analysis of T6 induction 
heat treatment for the aluminum-copper powder 
metal compacts. Science of Sintering, 52(1), 77-85. 
 
18. Kohli, A., & Singh, H. (2011). Optimization of 
processing parameters in induction hardening using 
response surface methodology. Sadhana, 36(2), 
141-152. 
 
 
19. Palaniradja, K., Alagumurthi, N., & 
Soundararajan, V. (2010). Modeling of phase 
transformation in induction hardening. The Open 
Materials Science Journal, 4(1), 64-73 
 



 Natural & Applied Sciences Journal Vol. 6 (1) 2023 40 
 

40 
 

 
20. Çavdar, U., Taştan, M., Gökozan, H., Soy, G., 
& Çavdar, P. S. (2021). Heat treatment of 2024 and 
5083 aluminum materials by induction, a 
competitive method, and cost analysis. Journal of 
Inorganic and Organometallic Polymers and 
Materials, 31, 1754-1763. 
 
21. Çubuk, H. S., & Çavdar, U. Investigation of 
mechanical properties of nano boron nitride added 
aluminum material produced by different 
production method. International Scientific and 
Vocational Studies Journal, 6(2), 51-59. 
 
22. Karaca, B., & Çavdar, U. (2014). Saf ve bor 
karbür takviyeli alüminyum tozlarının ultra yüksek 
frekanslı indüksiyon jeneratörü ile sinterlenmesi. 
Mühendis ve Makina, 55(657), 59-64. 
 

 



DOI: 10.38061/idunas.1260138   
 

 
 

 

Relations of Multiplicative Generalized (𝛼, 𝛽) − Reverse Derivation and  
𝛼 − Commuting Maps 

 

Research Article 
 

Barış ALBAYRAK 1*  

 
1Department of Finance and Banking, Çanakkale Onsekiz Mart University, Turkey. 

Author E-mails 
balbayrak@comu.edu.tr 
 

                *Correspondence to: Barış ALBAYRAK, Department of Finance and Banking, Çanakkale Onsekiz Mart University, Turkey. 

 
DOI: 10.38061/idunas.1260138 

 
Received: 04.03.2023; Accepted: 03.07.2023 

 
 
  

In this paper, properties of the ideal 𝐼 of semiprime ring 𝑅 with multiplicative generalized (𝛼, 𝛽) − reverse 
derivation with determined not necessarily additive map 𝑑 is studied. We generalized previous studies for 
different derivations to multiplicative generalized (𝛼, 𝛽) − reverse derivation 𝐹. We show that 
[𝛽(𝑝), 𝑑(𝑝)]𝐼 = 0 for all 𝑝 ∈ 𝐼 or [𝑑(𝑝)], 𝛼(𝑝)]𝐼 = 0 for all 𝑝 ∈ 𝐼 under the given different conditions. 
Also, we give the relationship between map 𝑑 and anti-automorphism 𝛼 of semiprime ring 𝑅 and 
automorphism 𝛽 of semiprime ring 𝑅. Under the given different conditions, we examine whether 𝑑 is 𝛼 − 
commuting on ideal 𝐼 or 𝛽 − commuting on ideal 𝐼 and obtain new results. 

Keywords: Reverse derivation, semiprime ring, commuting map 

2010 Mathematics Subject Classification. Primary 16N60; Secondary 16U80, 16W25. 

 
 

 
 

The aim of our study is to investigate properties of the ideal 𝐼 of semiprime ring 𝑅 with multiplicative 
generalized (𝛼, 𝛽) −reverse derivation. How to generalize the work on semiprime rings involving 
derivation and how to obtain new results has been a long-studied topic in ring theory. The definition of 
derivation is given as additive map 𝑑 that provides 𝑑(𝑟𝑝) = 𝑑(𝑟)𝑝 + 𝑟𝑑(𝑝) for 𝑟, 𝑝 ∈ 𝑅. This definition 
has been generalized over time and studies have been generalized for different derivations. In order to 
contribute to these studies, we study multiplicative generalized (𝛼, 𝛽) −reverse derivation and we obtain 
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new results. Before moving on to the main conclusions, let's give some previous studies and terms that we 
will use throughout this article. 

Let 𝑍(𝑅) denote the center of ring 𝑅. Assume that 𝑝𝑅𝑝 = (0) for any 𝑝 ∈ 𝑅. 𝑅 is said to be a semiprime 
ring, if 𝑝 = 0. [𝑝, 𝑟] expression is used for commutator 𝑝𝑟 − 𝑟𝑝 and (por) expression is used for 
anticommutator 𝑝𝑟 + 𝑟𝑝. A subgroup 𝐼 which is additive is said to be an ideal of 𝑅 if 𝐼𝑅 and 𝑅𝐼 are included 
𝐼. 

The generalized derivation definition was first given by Bresar in [1]. 𝐹 from 𝑅 to 𝑅 is said to be generalized 
derivation with determined derivation 𝑑 if 𝐹(𝑟𝑝) = 𝐹(𝑟)𝑝 + 𝑟𝑑(𝑝) for 𝑟, 𝑝 ∈ 𝑅. According to [2], 
generalized derivation 𝐹 is called generalized 𝛼 −derivation with determined derivation 𝑑 if 𝐹(𝑟𝑝) =
𝐹(𝑟)𝛼(𝑝) + 𝛼(𝑟)𝑑(𝑝) for 𝑟, 𝑝 ∈ 𝑅. On the other hand, Herstein introduced reverse derivation in [3]. If an 
additive map 𝑑 provides 𝑑(𝑟𝑝) = 𝑑(𝑝)𝑟 + 𝑝𝑑(𝑟) for any 𝑟, 𝑝 ∈ 𝑅, then d is a reverse derivation. 

Later on, derivations with non-additive maps began to be studied. In [4,5,6], authors gave different 
definitions of the derivation when d is a non-additive map (not necessarily additive). A non-additive map d 
is said to be multiplicative derivation if it provides 𝑑(𝑟𝑝) = 𝑑(𝑟)𝑝 + 𝑟𝑑(𝑝) for 𝑟, 𝑝 ∈ 𝑅. 𝐹 from 𝑅 in 𝑅 is 
said to be multiplicative generalized derivation with determined non-additive map (not necessarily additive) 
𝑑 if 𝐹(𝑟𝑝) = 𝐹(𝑟)𝑝 + 𝑟𝑑(𝑝) for 𝑟, 𝑝 ∈ 𝑅.  

Next, in [7], authors gave the definitions of multiplicative generalized reverse derivation and multiplicative 
generalized (𝛼, 𝛽) −reverse derivation. F is said to be multiplicative generalized reverse derivation with 
determined a non-additive map (not necessarily additive) 𝑑 if  𝐹(𝑟𝑝) = 𝐹(𝑝)𝑟 + 𝑝𝑑(𝑟). 𝐹 is said to be 
multiplicative generalized (𝛼, 𝛽) −reverse derivation with determined a non-additive map (not necessarily 
additive) 𝑑 if  𝐹(𝑟𝑝) = 𝐹(𝑝)𝛼(𝑟) + 𝛽(𝑝)𝑑(𝑟) for an automorphism 𝛽 of 𝑅 and anti-automorphism 𝛼 of 𝑅. 

On the other hand, different types of maps used in derivation studies were also defined. A map 𝑑 from 𝑅 to 
𝑅 that provides [𝑑(𝑝), 𝑝] = 0 for all 𝑝 ∈ 𝑅, is said to be commuting on 𝑅. Also, for 𝛼 automorphism of 𝑅, 
a map 𝑑 from 𝑅 to 𝑅 that provides [𝑑(𝑝), 𝛼(𝑝)] = 0 for all 𝑝 ∈ 𝑅, is said to be 𝛼 − commuting on 𝑅. 
Similar definitions can be made for anti-automorphism. Authors introduced multiplicative left reverse 
𝛼 −centralizer in [8]. A map d from 𝑅 to 𝑅 is called a multiplicative left reverse 𝛼 −centralizer satisfy 
𝑑(𝑝𝑟) = 𝑑(𝑟)𝛼(𝑝) holds for all 𝑝, 𝑟 ∈ 𝑅. 𝛼 is a mapping of 𝑅 and 𝑑 is a map such that not necessarily 
additive. 

Let's take a brief look at the work we have done in this study. In [9] authors studied identities 𝐹(𝑝𝑜𝑟) +
𝐻(𝑝𝑜𝑟) = 0,  𝐹(𝑝𝑜𝑟) + 𝐻[𝑝, 𝑟] = 0,  𝐹[𝑝, 𝑟] + [𝛼(𝑝), 𝐻(𝑟)] = 0, 𝐹(𝑝𝑜𝑟) + [𝛼(𝑝), 𝐻(𝑟)] = 0, 𝐹(𝑟𝑝) +
[𝛼(𝑝), 𝐻(𝑟)] ∈ 𝑍(𝑅), 𝐹(𝑟𝑝) + [𝐻(𝑝), 𝐻(𝑟)] ∈ 𝑍(𝑅) for all 𝑟, 𝑝 ∈ 𝐼 such that 𝐹 is a multiplicative 
generalized derivation,  𝐼 is an ideal semiprime ring R. We generalize their results to multiplicative 
generalized (𝛼, 𝛽) − reverse derivation 𝐹 for anti-automorphism 𝛼 and automorphism 𝛽 of semiprime ring 
𝑅. Also, we examine the relationship between multiplicative generalized (𝛼, 𝛽) − reverse derivations and 
𝛼 − commuting maps. 

 
 

 Let's first give the properties provided for the anticommutator and commutator for all 𝑠, 𝑟, 𝑝 ∈ 𝑅. 
Next, we will give a lemma that we will use in our theorems. 

• [𝑝𝑟, 𝑠] = 𝑝[𝑟, 𝑠] + [𝑝, 𝑠]𝑟 

• [𝑝, 𝑟𝑠] = [𝑝, 𝑟]𝑠 + 𝑟[𝑝, 𝑠] 

• (𝑝𝑟)𝑜𝑠 = 𝑝(𝑟𝑜𝑠) − [𝑝, 𝑠]𝑟 = (𝑝𝑜𝑠)𝑟 + 𝑝[𝑟, 𝑠] 

• 𝑝 ∘ (𝑟𝑠) = (𝑝𝑜𝑟)𝑠 − 𝑟[𝑝, 𝑠]  = 𝑟(𝑝𝑜𝑠) + [𝑝, 𝑟]𝑠  

2. PRELIMINARIES 
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Lemma 2.1 [10] Let 𝑅 be a 2 −torsion free semiprime ring and 𝑈 a noncentral Lie ideal of 𝑅. If 𝑝𝑈 = 0 
for 𝑝 ∈ 𝑈, then p= 0. 

 
 

Let 𝑅 be a semiprime ring, 0 ≠ 𝐼 be an ideal of 𝑅, 𝛼 be an anti-automorphism of 𝑅, 𝛽 be an automorphism 
of 𝑅, 0 ≠ 𝐺: 𝑅 → 𝑅  be a multiplicative left reverse 𝛼 − centralizer and 0 ≠ 𝐹: 𝑅 → 𝑅 be a multiplicative 
generalized (𝛼, 𝛽) − reverse derivation determined with a map 0 ≠ 𝑑: 𝑅 → 𝑅 such that it doesn’t need to 
be an additive map. In the following theorems, we examine the conditions under which [𝛽(𝑝), 𝑑(𝑝)]𝐼 = 0 
is provided for all 𝑝 ∈ 𝐼. 

Theorem 3.1: If 𝐹(𝑝𝑜𝑟) + 𝐺(𝑝𝑜𝑟) = 0 for all 𝑟, 𝑝 ∈ 𝐼, then [𝛽(𝑝), 𝑑(𝑝)]𝐼 = 0 for all 𝑝 ∈ 𝐼. 

Proof: Let  𝐹(𝑝𝑜𝑟) + 𝐺(𝑝𝑜𝑟) = 0 for all 𝑟, 𝑝 ∈ 𝐼. Replacing 𝑟 by 𝑝𝑟 and using commutator properties, we 
have 

0 = 𝐹൫𝑝𝑜(𝑝𝑟)൯ + 𝐺൫𝑝𝑜(𝑝𝑟)൯ 

    = 𝐹൫𝑝(𝑝𝑜𝑟)൯ + 𝐺൫𝑝(𝑝𝑜𝑟)൯ 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼. Using commutator properties and definitions of 𝐹 and 𝐺, we get 

𝐹(𝑝𝑜𝑟)𝛼(𝑝) + 𝛽(𝑝𝑜𝑟)𝑑(𝑝) + 𝐺(𝑝𝑜𝑟)𝛼(𝑝) = 0  

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼. Using hypothesis, we have 

 𝛽(𝑝𝑜𝑟)𝑑(𝑝) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼.                                                      (1)  

Replacing 𝑟 by 𝛽ିଵ(𝑟)𝑠, 𝑠 ∈ 𝐼 and using commutator properties, we have 

𝑟𝛽(𝑝𝑜𝑠)𝑑(𝑝) + 𝛽[𝑝, 𝛽ିଵ(𝑟)]𝛽(𝑠)𝑑(𝑝) = 0  

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠, 𝑟, 𝑝 ∈ 𝐼. Using equation (1) in the above equation, we obtain 

𝛽 ቂ𝑝, 𝛽
−1

(𝑟)ቃ 𝛽(𝑠)𝑑(𝑝) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠, 𝑟, 𝑝 ∈ 𝐼. 

 

Since 𝛽 is an automorphism of 𝑅, we write this relation as below relation. 

[𝛽(𝑝), 𝑟]𝑉𝑑(𝑝) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼.    

where 𝛽(𝐼) = 𝑉 is a nonzero ideal of 𝑅. Replacing 𝑟 by 𝑑(𝑝)𝑟, we have 

[𝛽(𝑝), 𝑑(𝑝)]𝑟𝑤𝑑(𝑝) = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼, 𝑤 ∈ 𝑉.                                           (2) 

Replacing 𝑤 by 𝑤𝛽(𝑝), we have 

[𝛽(𝑝), 𝑑(𝑝)]𝑟𝑤𝛽(𝑝)𝑑(𝑝) = 0                                                             (3) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼, 𝑤 ∈ 𝑉. Also, right multiplication of equation (2) by 𝛽(𝑝), we get 

[𝛽(𝑝), 𝑑(𝑝)]𝑟𝑤𝑑(𝑝)𝛽(𝑝) = 0                                                             (4) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼, 𝑤 ∈ 𝑉. Comparing (3) and (4), we get 

[𝛽(𝑝), 𝑑(𝑝)]𝐼𝑉[𝛽(𝑝), 𝑑(𝑝)] = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝 ∈ 𝐼. 

Since 𝑉 is an ideal of 𝑅, we write 

3. RESULTS  
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[𝛽(𝑝), 𝑑(𝑝)]𝐼𝑉𝑅[𝛽(𝑝), 𝑑(𝑝)]𝐼𝑉 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝 ∈ 𝐼. 

Since 𝑅 is a semiprime ring, we obtain 

[𝛽(𝑝), 𝑑(𝑝)]𝐼𝑉 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝 ∈ 𝐼. 

Specially, we write 

[𝛽(𝑝), 𝑑(𝑝)]𝐼𝛽(𝑠) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠, 𝑝 ∈ 𝐼.                                                 (5) 

Replacing 𝑠 by 𝑠𝛽ିଵ(𝑑(𝑝)), we have 

[𝛽(𝑝), 𝑑(𝑝)]𝐼𝛽(𝑠)𝑑(𝑝) = 0                                                            (6) 

for all 𝑠, 𝑝 ∈ 𝐼. Also, since 𝐼 is an ideal of 𝑅, from equation (5) we write 

[𝛽(𝑝), 𝑑(𝑝)]𝐼𝑑(𝑝)𝛽(𝑠) = 0                                                            (7) 

Theorem 3.2: If 𝐹(𝑝𝑜𝑟) + 𝐺[𝑝, 𝑟] = 0 for all 𝑟, 𝑝 ∈ 𝐼, then [𝛽(𝑝), 𝑑(𝑝)]𝐼 = 0 for all 𝑝 ∈ 𝐼. 

Proof: Let  𝐹(𝑝𝑜𝑟) + 𝐺[𝑝, 𝑟] = 0 for all 𝑟, 𝑝 ∈ 𝐼. Replacing 𝑟 by 𝑝𝑟 and using commutator properties, we 
have 

0 = 𝐹൫𝑝𝑜(𝑝𝑟)൯ + 𝐺[𝑝, 𝑝𝑟] = 𝐹(𝑝(𝑝𝑜𝑟)) + 𝐺(𝑝[𝑝, 𝑟]) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼. Using commutator properties and definitions of 𝐹 and 𝐺, we get 

𝐹(𝑝𝑜𝑟)𝛼(𝑝) + 𝛽(𝑝𝑜𝑟)𝑑(𝑝) + 𝐺(𝑝𝑜𝑟)𝛼(𝑝) = 0  

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼. Using hypothesis, we have 

𝛽(𝑝𝑜𝑟)𝑑(𝑝) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼. 

This equation is the equation (1) in Theorem 3.1. If the proof is continued in a similar way, 

[𝛽(𝑝), 𝑑(𝑝)]𝐼 = 0 

 is obtained. 

 

Theorem 3.3: If 𝐹[𝑝, 𝑟] + [𝛼(𝑝), 𝐺(𝑟)] = 0 for all 𝑟, 𝑝 ∈ 𝐼, then [𝛽(𝑝), 𝑑(𝑝)]𝐼 = 0 for all 𝑝 ∈ 𝐼. 

Proof: Let  𝐹[𝑝, 𝑟] + [𝛼(𝑝), 𝐺(𝑟)] = 0 for all 𝑟, 𝑝 ∈ 𝐼. Replacing 𝑟 by 𝑝𝑟 and using commutator properties, 
we have 

𝐹[𝑝, 𝑝𝑟] + [𝛼(𝑝), 𝐺(𝑝𝑟)] = 𝐹ൣ𝑝[𝑝, 𝑟]൧ + [𝛼(𝑝), 𝐺(𝑝𝑟)] = 0 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼. Using commutator properties and definitions of 𝐹 and 𝐺, we get 

𝐹[𝑝, 𝑟]𝛼(𝑝) + 𝛽[𝑝, 𝑟]𝑑(𝑝) + [𝛼(𝑝), 𝐺(𝑟)]𝛼(𝑝) + 𝐺(𝑟)[𝛼(𝑝), 𝛼(𝑝)] = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼 

Using hypothesis, we have 

 𝛽[𝑝, 𝑟]𝑑(𝑝) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼.                                                                (8) 

Replacing 𝑟 by 𝛽ିଵ(𝑟)𝑠, 𝑠 ∈ 𝐼 and using commutator properties, we have 

𝛽 ቂ𝑝, 𝛽−1
(𝑟)ቃ 𝛽(𝑠)𝑑(𝑝) + 𝑟𝛽[𝑝, 𝑠]𝑑(𝑝) = 0 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠, 𝑟, 𝑝 ∈ 𝐼. Using equation (8) in the above equation, we obtain  
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𝛽 ቂ𝑝, 𝛽
−1

(𝑟)ቃ 𝛽(𝑠)𝑑(𝑝) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠, 𝑟, 𝑝 ∈ 𝐼. 

Since 𝛽 is an automorphism of 𝑅, we write this relation as below relation. 

[𝛽(𝑝), 𝑟]𝑉𝑑(𝑝) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼.    

where 𝛽(𝐼) = 𝑉 is a nonzero ideal of 𝑅. Replacing 𝑟 by 𝑑(𝑝)𝑟, we have 

[𝛽(𝑝), 𝑑(𝑝)]𝑟𝑤𝑑(𝑝) = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼, 𝑤 ∈ 𝑉.  

This equation is the equation (2) in Theorem 3.1. If the proof is continued in a similar way, 

[𝛽(𝑝), 𝑑(𝑝)]𝐼 = 0 

 is obtained. 

Theorem 3.4: If 𝐹(𝑝𝑜𝑟) + [𝛼(𝑝), 𝐺(𝑟)] = 0 for all 𝑟, 𝑝 ∈ 𝐼, then [𝛽(𝑝), 𝑑(𝑝)]𝐼 = 0 for all 𝑝 ∈ 𝐼. 

Proof: Let  𝐹(𝑝𝑜𝑟) + [𝛼(𝑝), 𝐺(𝑟)] = 0 for all 𝑟, 𝑝 ∈ 𝐼. Replacing 𝑟 by 𝑝𝑟 and using commutator properties, 
we have 

𝐹൫𝑝𝑜(𝑝𝑟)൯ + [𝛼(𝑝), 𝐺(𝑝𝑟)] = 𝐹(𝑝(𝑝𝑜𝑟)) + [𝛼(𝑝), 𝐺(𝑝𝑟)] = 0   

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼. Using commutator properties and definitions of 𝐹 and 𝐺, we get 

𝐹(𝑝𝑜𝑟)𝛼(𝑝) + 𝛽(𝑝𝑜𝑟)𝑑(𝑝) + [𝛼(𝑝), 𝐺(𝑟)]𝛼(𝑝) + 𝐺(𝑟)[𝛼(𝑝), 𝛼(𝑝)] = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼. 

Using hypothesis, we have 

𝛽(𝑝𝑜𝑟)𝑑(𝑝) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼. 

This equation is the equation (1) in Theorem 3.1. If the proof is continued in a similar way, 

[𝛽(𝑝), 𝑑(𝑝)]𝐼 = 0 

is obtained. 

Now, using the Lemma 2.1, we can obtain the following result. 

Corollary 3.5: Let 𝑅 be a 2-torsion free semiprime ring, 𝐼 ⊄ 𝑍(𝑅) be an ideal of 𝑅, 𝛼 be an anti-
automorphism of 𝑅, 𝛽 be an automorphism of 𝑅, 0 ≠ 𝐺: 𝑅 → 𝑅  be a multiplicative left reverse 𝛼 − 
centralizer and 0 ≠ 𝐹: 𝑅 → 𝑅 be a multiplicative generalized (𝛼, 𝛽) − reverse derivation determined with 
a map 0 ≠ 𝑑: 𝑅 → 𝑅 such that it doesn’t need to be an additive map. If one of the following properties are 
provided 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼, then 𝑑 is 𝛽 − commuting on 𝐼. 

1) 𝐹(𝑝𝑜𝑟) + 𝐺(𝑝𝑜𝑟) = 0 

2) 𝐹(𝑝𝑜𝑟) + 𝐺[𝑝, 𝑟] = 0 

3) 𝐹[𝑝, 𝑟] + [𝛼(𝑝), 𝐺(𝑟)] = 0 

4) 𝐹(𝑝𝑜𝑟) + [𝛼(𝑝), 𝐺(𝑟)] = 0 

Now, let’s give the relationship between map 𝑑 and anti-automorphism 𝛼. 

Theorem 3.6: If 𝛽(𝑝𝑟) = 𝛼(𝑟𝑝) and 𝐹(𝑟𝑝) + [𝛼(𝑝), 𝐺(𝑟)] ∈ 𝑍(𝑅) for all 𝑟, 𝑝 ∈ 𝐼, then [𝑑(𝑝), 𝛼(𝑝)]𝐼 = 0 
for all 𝑝 ∈ 𝐼. 
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Proof: Let 𝐹(𝑟𝑝) + [𝛼(𝑝), 𝐺(𝑟)] ∈ 𝑍(𝑅)for all 𝑟, 𝑝 ∈ 𝐼. Replacing 𝑟 by 𝑣𝑟, 𝑣 ∈ 𝐼 and using commutator 
properties, we have 

 𝐹(𝑣(𝑟𝑝)) + [𝛼(𝑝), 𝐺(𝑣𝑟)] ∈ 𝑍(𝑅)                                                               (9) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑟, 𝑝 ∈ 𝐼. Using commutator properties and definitions of 𝐹 and 𝐺, we get 

(𝐹(𝑟𝑝) + [𝛼(𝑝), 𝐺(𝑟)])𝛼(𝑣) + 𝛽(𝑟𝑝)𝑑(𝑣) + 𝐺(𝑟)[𝛼(𝑝), 𝛼(𝑣)] ∈ 𝑍(𝑅) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑟, 𝑝 ∈ 𝐼. Since the element in the above equation is in the 𝑍(𝑅), we write following equation for 
𝛼(𝑣).  

[(𝐹(𝑟𝑝) + [𝛼(𝑝), 𝐺(𝑟)])𝛼(𝑣) + 𝛽(𝑟𝑝)𝑑(𝑣) + 𝐺(𝑟)[𝛼(𝑝), 𝛼(𝑣)], 𝛼(𝑣)] = 0  

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑟, 𝑝 ∈ 𝐼. Using hypothesis, we have 

[𝛽(𝑟𝑝)𝑑(𝑣), 𝛼(𝑣)] + [𝐺(𝑟)[𝛼(𝑝), 𝛼(𝑣)], 𝛼(𝑣)] = 0  

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑟, 𝑝 ∈ 𝐼. Using the fact that 𝛽(𝑝𝑟) = 𝛼(𝑟𝑝)  for all 𝑟, 𝑝 ∈ 𝐼, we obtain 

 [𝛼(𝑝𝑟)𝑑(𝑣), 𝛼(𝑣)] + [𝐺(𝑟)[𝛼(𝑝), 𝛼(𝑣)], 𝛼(𝑣)] = 0                                     (10) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑟, 𝑝 ∈ 𝐼. Replacing 𝑝 by 𝑣𝑝 and using commutator properties, we have 

[𝛼(𝑣𝑝𝑟)𝑑(𝑣), 𝛼(𝑣)] + [𝐺(𝑟)[𝛼(𝑝), 𝛼(𝑣)]𝛼(𝑣), 𝛼(𝑣)] = 0                               (11) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑟, 𝑝 ∈ 𝐼. Also, right multiplication of equation (10) by 𝛼(𝑣), we get 

[𝛼(𝑝𝑟)𝑑(𝑣) 𝛼(𝑣), 𝛼(𝑣)] + [𝐺(𝑟)[𝛼(𝑝), 𝛼(𝑣)] 𝛼(𝑣), 𝛼(𝑣)] = 0                             (12) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑟, 𝑝 ∈ 𝐼. Comparing (11) and (12) and using properties of anti- automorphism for 𝛼, we get 

[𝛼(𝑟)𝛼(𝑝)𝑑(𝑣) 𝛼(𝑣), 𝛼(𝑣)] − [𝛼(𝑟)𝛼(𝑝)𝛼(𝑣)𝑑(𝑣), 𝛼(𝑣)] = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑟, 𝑝 ∈ 𝐼. 

Arranging above equation, we have 

[𝛼(𝑟)𝛼(𝑝)[𝑑(𝑣), 𝛼(𝑣)], 𝛼(𝑣)] = 0                                                    (13) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑟, 𝑝 ∈ 𝐼. Replacing 𝑟 by 𝑟𝑤, 𝑤 ∈ 𝐼, we have 

[𝛼(𝑤)𝛼(𝑟)𝛼(𝑝)[𝑑(𝑣), 𝛼(𝑣)], 𝛼(𝑣)] = 0  

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑤, 𝑣, 𝑟, 𝑝 ∈ 𝐼. Using commutator properties, we get 

𝛼(𝑤)[𝛼(𝑟)𝛼(𝑝)[𝑑(𝑣), 𝛼(𝑣)], 𝛼(𝑣)] + [𝛼(𝑤), 𝛼(𝑣)]𝛼(𝑟)𝛼(𝑝)[𝑑(𝑣), 𝛼(𝑣)] = 0 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑤, 𝑣, 𝑟, 𝑝 ∈ 𝐼. Using equation (13) in the above equation, we obtain  

[𝛼(𝑤), 𝛼(𝑣)]𝛼(𝑟)𝛼(𝑝)[𝑑(𝑣), 𝛼(𝑣)] = 0   

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑤, 𝑣, 𝑟, 𝑝 ∈ 𝐼. Since 𝛼 is an anti-automorphism of 𝑅, we write this relation as below relation. 

[𝛼(𝑤), 𝛼(𝑣)]𝑉𝑉[𝑑(𝑣), 𝛼(𝑣)] = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑤, 𝑣 ∈ 𝐼. 

where 𝛼(𝐼) = 𝑉 is a nonzero ideal of 𝑅. Replacing 𝑤 by 𝑣, we have 

[𝛼(𝑣), 𝛼(𝑣)]𝑉𝑉 [𝑑(𝑣), 𝛼(𝑣)] = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝐼. 

Since 𝑉 is an ideal of 𝑅, left and right multiplication of above equation by 𝑉 , we get 

𝑉[𝛼(𝑣), 𝛼(𝑣)]𝑉𝑅𝑉 [𝑑(𝑣), 𝛼(𝑣)]𝑉 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝐼. 

Since 𝑅 is a semiprime ring, we get 
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𝑉[𝑑(𝑣), 𝛼(𝑣)]𝑉 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝐼. 

Using properties of ideal 𝑉, we have 

[𝑑(𝑣), 𝛼(𝑣)]𝑉𝑅[𝑑(𝑣), 𝛼(𝑣)]𝑉 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝐼. 

Using the fact that 𝑅 is a semiprime ring, we obtain  

[𝑑(𝑣), 𝛼(𝑣)]𝑉 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝐼. 

Since 𝑉 is an ideal of 𝑅, we get 

[𝑑(𝑣), 𝛼(𝑣)]𝐼𝑉 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝐼. 

Specially, we write 

[𝑑(𝑣), 𝛼(𝑣)]𝐼𝛼(𝑠) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠, 𝑣 ∈ 𝐼                                                (14) 

Replacing 𝑠 by 𝑠𝛼ିଵ(𝑑(𝑣)), we have 

[𝑑(𝑣), 𝛼(𝑣)]𝐼𝛼(𝑠)𝑑(𝑣) = 0                                                         (15) 

for all 𝑠, 𝑣 ∈ 𝐼. Also, since 𝐼 is an ideal of 𝑅, from equation (14), we write 

[𝑑(𝑣), 𝛼(𝑣)]𝐼𝑑(𝑣)𝛼(𝑠) = 0                                                         (16) 

for all 𝑠, 𝑣 ∈ 𝐼. Comparing (15) and (16), we get 

[𝑑(𝑣), 𝛼(𝑣)]𝐼[𝑑(𝑣), 𝛼(𝑠)] = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠, 𝑣 ∈ 𝐼. 

Replacing 𝑠 by 𝑣 we have 

[𝑑(𝑣), 𝛼(𝑣)]𝐼[𝑑(𝑣), 𝛼(𝑣)] = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝐼. 

Since 𝐼 is an ideal of 𝑅, we write 

[𝑑(𝑣), 𝛼(𝑣))]𝐼𝑅[𝑑(𝑣), 𝛼(𝑣)]𝐼 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝐼 

Since 𝑅 is a semiprime ring, we obtain 

[𝑑(𝑣), 𝛼(𝑣)]𝐼 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝐼. 

Theorem 3.7: If 𝛽(𝑝𝑟) = 𝛼(𝑟𝑝) and 𝐹(𝑟𝑝) + [𝐺(𝑝), 𝐺(𝑟)] ∈ 𝑍(𝑅) for all 𝑟, 𝑝 ∈ 𝐼, then [𝑑(𝑝)], 𝛼(𝑝)]𝐼 =
0 for all 𝑝 ∈ 𝐼. 

Proof: Let 𝐹(𝑟𝑝) + [𝐺(𝑝), 𝐺(𝑟)] ∈ 𝑍(𝑅) for all 𝑟, 𝑝 ∈ 𝐼. Replacing 𝑟 by 𝑣𝑟, 𝑣 ∈ 𝐼 and using commutator 
properties, we have 

𝐹(𝑣𝑟𝑝) + [𝐺(𝑝), 𝐺(𝑣𝑟)] ∈ 𝑍(𝑅)  

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑟, 𝑝 ∈ 𝐼. Using commutator properties and definitions of 𝐹 and 𝐺, we get 

(𝐹(𝑟𝑝) + [𝐺(𝑝), 𝐺(𝑟)])𝛼(𝑣) + 𝛽(𝑟𝑝)𝑑(𝑣) + 𝐺(𝑟)[𝛼(𝑝), 𝛼(𝑣)] ∈ 𝑍(𝑅) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑟, 𝑝 ∈ 𝐼. Since the element in the above equation is in the 𝑍(𝑅), we write following equation for 
𝛼(𝑣).  

[(𝐹(𝑟𝑝) + [𝐺(𝑝), 𝐺(𝑟)])𝛼(𝑣) + 𝛽(𝑟𝑝)𝑑(𝑣) + 𝐺(𝑟)[𝛼(𝑝), 𝛼(𝑣)], 𝛼(𝑣)] = 0  

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑟, 𝑝 ∈ 𝐼. Using hypothesis in this relation, we have 

[𝛽(𝑟𝑝)𝑑(𝑣), 𝛼(𝑣)] + [𝐺(𝑟)[𝛼(𝑝), 𝛼(𝑣)], 𝛼(𝑣)] = 0  
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𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑟, 𝑝 ∈ 𝐼. Using the fact that 𝛽(𝑝𝑟) = 𝛼(𝑟𝑝)  for all 𝑟, 𝑝 ∈ 𝐼, we obtain  

[𝛼(𝑝𝑟)𝑑(𝑣), 𝛼(𝑣)] + [𝐺(𝑟)[𝛼(𝑝), 𝛼(𝑣)], 𝛼(𝑣)] = 0   

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑟, 𝑝 ∈ 𝐼. This equation is the equation (10) in Theorem 3.6. If the proof is continued in a similar 
way,  

[𝑑(𝑝)], 𝛼(𝑝)]𝐼 = 0 

 is obtained. 

Now, using the Lemma 2.1, we can obtain the following result. 

Corollary 3.8: Let 𝑅 be a 2-torsion free semiprime ring, 𝐼 ⊄ 𝑍(𝑅)be an ideal of 𝑅, 𝛼 be an anti-
automorphism of 𝑅, 𝛽 be an automorphism of 𝑅 such that 𝛽(𝑝𝑟) = 𝛼(𝑟𝑝) for all 𝑟, 𝑝 ∈ 𝐼, 0 ≠ 𝐺: 𝑅 → 𝑅  
be a multiplicative left reverse 𝛼 − centralizer and 0 ≠ 𝐹: 𝑅 → 𝑅 be a multiplicative generalized (𝛼, 𝛽) − 
reverse derivation determined with a map 0 ≠ 𝑑: 𝑅 → 𝑅 such that it doesn’t need to be an additive map. If 
one of the following properties are provided 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑝 ∈ 𝐼, then 𝑑 is 𝛼 − commuting on 𝐼. 

1) 𝐹(𝑟𝑝) + [𝛼(𝑝), 𝐺(𝑟)] ∈ 𝑍(𝑅) 

2) 𝐹(𝑟𝑝) + [𝐺(𝑝), 𝐺(𝑟)] ∈ 𝑍(𝑅)  

 

 
 

In this paper, properties of the ideal 𝐼 of semiprime ring 𝑅 with multiplicative generalized (𝛼, 𝛽) − reverse 
derivation with determined not necessarily additive map 𝑑 is studied. Many studies have been done on the 
derivation and commutativity in the prime ring and the results have been reached. These studies and reached 
results is adapted for multiplicative generalized (𝛼, 𝛽) − reverse derivation 𝐹 in our study. Also, new results 
are given about the relationship between map 𝑑 and anti-automorphism 𝛼. The studies and the results found 
can be used for different derivations and semiprime rings in the future and contribute to the ring theory. 
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