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Research Article

On Different Definitions of Hyper Pseudo BCC-algebras

Didem Sürgevil Uzay 1∗, Alev Fırat 1

1 Ege University, Institute of Science, Department of Mathematics, İzmir, Türkiye
alev.firat@ege.edu.tr

Received: 20 July 2022 Accepted: 06 June 2023

Abstract: We study hyper pseudo BCC-algebras which are a common generalization of hyper BCC-

algebras and hyper BCK-algebras. In particular, we introduce different notion of hyper pseudo BCC-

algebras and describe the relationship among them. Then, by choosing one of these definitions, we

investigate for its related properties.

Keywords: Hyper pseudo order, hyper operation, hyper pseudo BCC-algebras.

1. Introduction
Hyper structures and pseudo structures have an important place in the field of algebra. These

notions help to create new structures in algebraic system and to investigate their properties. The

notions of hyper operation and hyper order were first defined by Marty in 1934 [7].

BCK-algebras were first studied by Iseki and Tanaka [4]. BCC-algebras, a generalization of

BCK-algebras, were defined in 1990 by Dudek and their related properties were investigated [3].

The concept of Hyper BCK-algebra was introduced in 2000 by Jun, Zahedi, Xin and Borzooei

[5]. Borzooei, Dudek and Koohestani in 2006 carried similar definitions and applications of hyper

BCK-algebras to hyper BCC-algebras and defined various ideal types [1].

In this study, the notion of hyper pseudo order is defined. Then, different notions of hyper

pseudo BCC-algebras are defined and their existences are proven with examples. In addition, the

relationship between them is examined and some related properties are obtained. As a result, it is

aimed to transfer hyper pseudo structures to BCC-algebras so that new algebraic structures can

be built.

2. Preliminaries

Definition 2.1 [3] Let X be a nonempty set, ‘∗ ’ be a operation on X and ‘0 ’ be a constant

∗Correspondence: didemsurgevil@hotmail.com
2020 AMS Mathematics Subject Classification: 06F35, 03G25
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element. (X, ∗, 0) is called to be a BCC-algebra, if it supplies the following conditions for all

x, y, z ∈ X :

(BCC1) ((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0 ,

(BCC2) x ∗ 0 = x ,

(BCC3) x ∗ x = 0 ,

(BCC4) 0 ∗ x = 0 ,

(BCC5) x ∗ y and y ∗ x = 0 ⇒ x = y .

Definition 2.2 [7] Let H be a nonempty set

◦ : H ×H → P (H)− {∅}

be a hyper operation. If “x ≪ y ⇔ 0 ∈ x ◦ y for all x, y ∈ H and S ≪ T ⇔ for every S, T ⊂ H ,

∀s ∈ S , ∃t ∈ T such that s ≪ t ”, then ‘≪ ’ is named to be a hyper order in H .

Definition 2.3 [1] Let H be a nonempty set, ‘◦ ’ be a hyper operation on H , ‘≪ ’ be a hyper

order on H and ‘0 ’ be a constant element of H . (H, ◦,≪, 0) is called to be a hyper BCC-algebra

if it supplies the following conditions, for all x, y, z ∈ H :

(HBCC1) (x ◦ z) ◦ (y ◦ z) ≪ x ◦ y ,

(HBCC2) 0 ◦ x = 0 ,

(HBCC3) x ◦ 0 = x ,

(HBCC4) x ≪ y and y ≪ x ⇒ x = y.

Definition 2.4 [1] Let (H, ◦,≪, 0) be a hyper BCC-algebra and I be a subset of H such that

0 ∈ I is named as follows, for all x, y, z ∈ H :

(1) a hyper BCC-ideal of type1 , if

(x ◦ y) ◦ z ≪ I, y ∈ I ⇒ x ◦ z ⊆ I ,

(2) a hyper BCC-ideal of type2 , if

(x ◦ y) ◦ z ⊆ I, y ∈ I ⇒ x ◦ z ⊆ I ,

(3) a hyper BCC-ideal of type3 , if

(x ◦ y) ◦ z ≪ I, y ∈ I ⇒ x ◦ z ≪ I ,

(4) a hyper BCC-ideal of type4 , if

(x ◦ y) ◦ z ⊆ I, y ∈ I ⇒ x ◦ z ≪ I .
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Definition 2.5 [5] Let H be a nonempty set ‘◦ ’ be a hyper operation on H , ‘≪ ’ be a hyper order

in H and ‘0 ’ be a constant element of H . (H, ◦,≪, 0) is named to be a hyper BCK-algebra if it

supplies the following conditions, for all x, y, z ∈ H :

(HBCK1) (x ◦ z) ◦ (y ◦ z) ≪ x ◦ y ,

(HBCK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y ,

(HBCK3) x ◦ y ≪ x ,

(HBCK4) x ≪ y and y ≪ x ⇒ x = y.

Definition 2.6 [2] Let H be a nonempty set, ‘∗ ’, ‘◦ ’ be hyper operations on H , ‘≪ ’ be a hyper

order in H and ‘0 ’ be a constant element of H , (H, ◦, ∗,≪, 0) is named to be a hyper pseudo

BCK-algebra, if it supplies the following conditions, for all x, y, z ∈ H :

(HPBCK1) (x ◦ z) ◦ (y ◦ z) ≪ x ◦ y , (x ∗ z) ∗ (y ∗ z) ≪ x ∗ y ,

(HPBCK2) (x ◦ y) ∗ z = (x ∗ z) ◦ y ,

(HPBCK3) x ◦ y ≪ x , x ∗ y ≪ x ,

(HPBCK4) x ≪ y and y ≪ x ⇒ x = y .

3. Hyper Pseudo BCC-algebras

In this section, different definitions of Hyper Pseudo BCC-algebras, these definitions relationship

between them and some of their related properties are given.

Definition 3.1 Let H be a nonempty set and

◦ : H ×H → P (H)− {∅}

be a hyper operation.

If ′′x ≪ y ⇔ 0 ∈ x ◦ y ⇔ 0 ∈ x ∗ y for all x, y ∈ H and S ≪ T ⇔ for every S, T ⊂ H , ∀s ∈ S

∃t ∈ T such that s ≪ t ′′ , then ‘≪ ’ is called to be a hyper pseudo order in H .

Definition 3.2 Let H be a nonempty set, ‘◦ ’, ‘∗ ’ be hyper operations on H , ‘≪ ’ be a hyper

pseudo order in H , ‘0 ’ be a constant element of H . (H, ◦, ∗,≪, 0) is named to be hyper pseudo

BCC1 -algebra if it supplies the following conditions, for all x, y, z ∈ H :

(HPBCC11) (x ◦ z) ◦ (y ◦ z) ≪ x ◦ y , (x ∗ z) ∗ (y ∗ z) ≪ x ∗ y ,

(HPBCC12) 0 ◦ x = {0} , 0 ∗ x = {0} ,

(HPBCC13) x ◦ 0 = {x} , x ∗ 0 = {x} ,
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(HPBCC14) x ≪ y and y ≪ x ⇒ x = y ,

(HPBCC15) x ≪ y ⇔ 0 ∈ x ◦ y ⇔ 0 ∈ x ∗ y.

Example 3.3 Let H = {0,m, n} and ‘◦ ’, ‘∗ ’ be hyper operations on H with Cayley table give as

in Table 1.

Table 1: Hyper operations.

◦ 0 m n
0 {0} {0} {0}
m {m} {0} {0}
n {n} {n} {0,n}

∗ 0 m n
0 {0} {0} {0}
m {m} {0} {0}
n {n} {n} {0,m,n}

Then, it is easily controlled that (H, ◦, ∗,≪, 0) is a hyper pseudo BCC1 -algebra and hyper

pseudo BCK-algebra. Also, ‘◦ ’ and ‘∗ ’ hyper operations with (H, ◦,≪, 0) and (H, ∗,≪, 0) be

hyper BCC-algebras.

Remark 3.4 Let H be a nonempty set, ‘◦ ’, ‘∗ ’ be hyper operations on H , ‘≪ ’ be a hyper pseudo

order in H , ‘0 ’ be a constant element of H . According to both hyper operations, the (H, ◦, ∗, 0)

system is always a hyper pseudo BCC1 -algebra when the system is hyper BCC-algebra.

Definition 3.5 Let H be a nonempty set, ‘◦ ’, ‘∗ ’ be hyper operations on H , ‘≪ ’ be a hyper

pseudo order in H , ‘0 ’ be a constant element of H . (H, ◦, ∗,≪, 0) is named to be hyper pseudo

BCC2 -algebra if it supplies the following conditions, for all x, y, z ∈ H :

(HPBCC21) (x ◦ z) ∗ (y ◦ z) ≪ x ∗ y , (x ∗ z) ◦ (y ∗ z) ≪ x ◦ y ,

(HPBCC22) 0 ◦ x = {0} , 0 ∗ x = {0} ,

(HPBCC23) x ◦ 0 = {x} , x ∗ 0 = {x} ,

(HPBCC24) x ≪ y and y ≪ x ⇒ x = y ,

(HPBCC25) x ≪ y ⇔ 0 ∈ x ◦ y ⇔ 0 ∈ x ∗ y.

Example 3.6 Let H = {0,m, n} and ‘◦ ’, ‘∗ ’ be hyper operations on H with Cayley table give as

in Table 2.

59



Didem Sürgevil Uzay and Alev Fırat / FCMS

Table 2: Hyper operations.

◦ 0 m n
0 {0} {0} {0}
m {m} {0} {n}
n {n} {n} {0,n}

∗ 0 m n
0 {0} {0} {0}
m {m} {0} {m}
n {n} {n} {0,m,n}

Then, it is easily controlled that (H, ◦, ∗,≪, 0) is a hyper pseudo BCC2 -algebra but (H, ◦,≪

, 0) is not hyper BCC-algebra. Moreover, (H, ◦, ∗,≪, 0) is not hyper pseudo BCK-algebra because

it does not satisfy the (HPBCK1) condition of hyper pseudo BCK-algebra. For example; it has

been (m ◦ n) ◦ (0 ◦ n) ≪ m ◦ 0 such that m,n, 0 ∈ H . Then, it can be written {n} ≪ {m} so that

the condition (HPBCK1) is satisfied because 0 is not an element of this equation {n} = n ◦m .

Definition 3.7 Let H be a nonempty set, ‘◦ ’, ‘∗ ’ be hyper operations on H , ‘≪ ’ be a hyper

pseudo order in H , ‘0 ’ be a constant element of H . (H, ◦, ∗,≪, 0) is named to be hyper pseudo

BCC3 -algebra if it supplies the following conditions, for all x, y, z ∈ H :

(HPBCC31) (x ◦ z) ◦ (y ◦ z) ≪ x ◦ y , (x ∗ z) ∗ (y ∗ z) ≪ x ∗ y ,

(HPBCC32) 0 ◦ x = {0} , 0 ∗ x = {0} ,

(HPBCC33) x ◦ 0 = {x} , x ∗ 0 = {x} ,

(HPBCC34) 0 ∈ x ◦ y ∧ y ∗ x ⇒ x = y ,

(HPBCC35) x ≪ y ⇔ 0 ∈ x ◦ y ⇔ 0 ∈ x ∗ y.

Example 3.8 Let H = {0,m, n} and ‘◦ ’, ‘∗ ’ be hyper operations on H with Cayley table give

as in Table 3.

Table 3: Hyper operations.

◦ 0 m n
0 {0} {0} {0}
m {m} {0} {0}
n {n} {0} {0,n}

60



Didem Sürgevil Uzay and Alev Fırat / FCMS

∗ 0 m n
0 {0} {0} {0}
m {m} {0} {m}
n {n} {n} {0,m,n}

Then, it is easily controlled that (H, ◦, ∗,≪, 0) is a hyper pseudo BCC3 -algebra but according

to operation ‘◦ ’, (H, ◦,≪, 0) is not hyper BCC-algebra because it does not satisfy the (HBCC4)

condition of hyper BCC-algebra. Also, this structure isn’t hyper pseudo BCK-algebra because the

system does not satisfy the condition (HPBCK4) .

Definition 3.9 Let H be a nonempty set, ‘◦ ’, ‘∗ ’ be hyper operations on H , ‘≪ ’ be a hyper

pseudo order in H , ‘0 ’ be a constant element of H . (H, ◦, ∗,≪, 0) is named to be hyper pseudo

BCC4 -algebra if it supplies the following conditions, for all x, y, z ∈ H :

(HPBCC41) (x ◦ z) ∗ (y ◦ z) ≪ x ∗ y , (x ∗ z) ◦ (y ∗ z) ≪ x ◦ y ,

(HPBCC42) 0 ◦ x = {0} , 0 ∗ x = {0} ,

(HPBCC43) x ◦ 0 = {x} , x ∗ 0 = {x} ,

(HPBCC44) 0 ∈ x ◦ y , 0 ∈ y ∗ x ⇒ x = y ,

(HPBCC45) x ≪ y ⇔ 0 ∈ x ◦ y ⇔ 0 ∈ x ∗ y.

Example 3.10 Let H = {0,m, n, k} and ‘◦ ’, ‘∗ ’ be hyper operations on H with Cayley table

give as in Table 4.

Table 4: Hyper operations.

◦ 0 m n k
0 {0} {0} {0} {0}
m {m} {0} {0} {n}
n {n} {0} {0,n} {n}
k {k} {0} {0} {0,k}

∗ 0 m n k
0 {0} {0} {0} {0}
m {m} {0} {k} {n}
n {n} {n} {0,m,n} {m}
k {k} {k} {0} {0,k}

Then, it is easily controlled that (H, ◦, ∗,≪, 0) is a hyper pseudo BCC4 -algebra. Also,

(H, ◦,≪, 0) and (H, ∗,≪, 0) systems built with H and hyper operations ‘◦ ’, ‘∗ ’ are not hyper

BCC-algebra as they do not satisfy (HBCC4) and (HBCC1) , respectively. Finally, it is not

hyper pseudo BCK-algebra because the system does not satisfy the conditions (HPBCK1) and

(HPBCK4) .
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Definition 3.11 Let H be a nonempty set, ‘◦ ’, ‘∗ ’ be hyper operations on H , ‘≪ ’ be a hyper

pseudo order in H , ‘0 ’ be a constant element of H . (H, ◦, ∗,≪, 0) is named to be hyper pseudo

BCC5 -algebra if it supplies the following conditions, for all x, y, z ∈ H :

(HPBCC51) (x ◦ z) ∗ (y ◦ z) ≪ x ∗ y , (x ∗ z) ◦ (y ∗ z) ≪ x ◦ y ,

(HPBCC52) x ∗ (0 ◦ y) = {x} , x ◦ (0 ∗ y) = {x} ,

(HPBCC53) x ≪ y and y ≪ x ⇒ x = y ,

(HPBCC54) x ≪ y ⇔ 0 ∈ x ◦ y ⇔ 0 ∈ x ∗ y.

Example 3.12 Let H = {0,m, n, k} and ‘◦ ’, ‘∗ ’ be hyper operations on H with Cayley table

give as in Table 5.

Table 5: Hyper operations.

◦ 0 m n k
0 {0} {0} {0} {0}
m {m} {0} {k} {m}
n {n} {0} {0,n} {k}
k {k} {0} {0} {0,k}

∗ 0 m n k
0 {0} {0} {0} {0}
m {m} {0} {n} {k}
n {n} {0} {0,m,n} {n}
k {k} {0} {k} {0,k}

Then, it is easily controlled that (H, ◦, ∗,≪, 0) is a hyper pseudo BCC4 -algebra. Also,

(H, ◦,≪, 0) and (H, ∗,≪, 0) systems built with H and hyper operations ‘◦ ’, ‘∗ ’ are not hyper

BCC-algebra as they do not satisfy (HBCC1) . Finally, it is not hyper pseudo BCK-algebra

because the system does not satisfy the condition (HPBCK1) .

Theorem 3.13 Let (H, ◦, ∗,≪, 0) be a hyper pseudo BCC1 -algebra or hyper pseudo BCC3 -

algebra. If x ∗ y = x ◦ y for all x, y ∈ H , then H is a hyper BCC-algebra.

Proof Let H be a hyper pseudo BCC1 -algebra. If x ∗ y = x ◦ y for all x, y ∈ H , then proof

follows from conditions of hyper pseudo BCC1 -algebra. Let H be a hyper pseudo BCC3 -algebra.

If x∗y = x◦y for all x, y ∈ H , then proof follows from conditions of hyper pseudo BCC3 -algebra.
2

Proposition 3.14 Let (H, ◦, ∗,≪, 0) be any of the hyper pseudo BCC1 -algebra, hyper pseudo

BCC2 -algebra, hyper pseudo BCC3 -algebra, hyper pseudo BCC4 -algebra. Then, the following

conditions are satisfied for every nonempty subset S , T of H and for all x, y, z ∈ H :

62



Didem Sürgevil Uzay and Alev Fırat / FCMS

(i) 0 ◦ 0 = {0} , 0 ∗ 0 = {0} ,

(ii) 0 ≪ x ,

(iii) x ≪ x ,

(iv) x ◦ y ≪ {x} , x ∗ y ≪ {x} ,

(v) S ◦ 0 = S , S ∗ 0 = T ,

(vi) 0 ◦ S = {0} , 0 ∗ S = {0} ,

(vii) x ∗ y = {0} ⇒ x ◦ z ≪ y ◦ z , x ◦ y = {0} ⇒ x ∗ z ≪ y ∗ z ,

(viii) S ≪ S ,

(ix) S ⊆ T ⇒ S ≪ T ,

(x) S ≪ {0} ⇒ S = {0} ,

(xi) x ◦ 0 ≪ {y} ⇒ x ≪ y , x ∗ 0 ≪ {y} ⇒ x ≪ y .

Proof Let (H, ◦, ∗,≪, 0) be a hyper pseudo BCC4 -algebra.

(i) In (HPBCC42) , let x = 0 . Then

0 ◦ 0 = {0} , 0 ∗ 0 = {0}.

(ii) Using (HPBCC42) condition,

0 ∈ 0 ◦ x , 0 ∈ 0 ∗ x

and so 0 ≪ x .

(iii) Using (HPBCC41) condition, let y = z = 0 . Then, by (i) and (HPBCC3) condition,

we get that x ≪ x .

(iv) By (HPBCC41) condition, we conclude that

(x ◦ y) ∗ (z ◦ y) ≪ (x ∗ z) , (x ◦ y) ∗ (z ◦ y) ≪ (x ∗ z).

Therefore let z = 0 . Then, by (HPBCC42) and (HPBCC43) we can write,

x ◦ y ≪ {x} , x ∗ y ≪ {x}.

(v) Using (HPBCC43) condition,

S ◦ 0 = S , S ∗ 0 = S

is shown.

(vi) Using (HPBCC42) condition,

0 ◦ S = {0} , 0 ◦ S = {0}
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is shown.

(vii) Let x ∗ y = {0} . From the (HPBCC41) condition, since

(x ◦ z) ∗ (y ◦ z) ≪ (x ∗ y) , (x ∗ z) ◦ (y ∗ z) ≪ (x ◦ y),

then for all

a ∈ (x ◦ z) ∗ (y ◦ z),

a ≪ 0 and then for all

b ∈ (x ∗ z) ◦ (y ∗ z),

b ≪ 0 and so, by the help of conditions (HPBCC43) and (HPBCC44) , we can find

a = 0 and b = 0 . Hence

(x ◦ z) ∗ (y ◦ z) = {0} , (x ∗ z) ◦ (y ∗ z) = {0}.

Then, we can write this,

x ◦ z ≪ y ◦ z , x ∗ z ≪ y ∗ z.

(viii) By (iii) , S ≪ S can be proved.

(ix) Let S ⊆ T and m ∈ S . For n = m we can find n ∈ T . Hence, by (iii) , we get m ≪ n .

Therefore we have S ≪ T .

(x) Let s ∈ S and S ≪ {0} . Then using s ≪ 0 and (i) we can find s = 0 . Hence S = {0}

is satisfied.

(xi) From (HPBCC43) condition,

0 ∈ (x ◦ 0) ◦ {y} = 0 ∈ {x} ◦ {y},

we can get x ≪ y . Similarly, using (HPBCC43) , since

0 ∈ (x ∗ 0) ∗ {y} = 0 ∈ {x} ∗ {y},

then we can find x ≪ y .

2

Theorem 3.15 Let (H, ◦, ∗,≪, 0) be a hyper pseudo BCK-algebra. Then, (H, ◦, ∗,≪, 0) is a

hyper pseudo BCC1 -algebra and hyper pseudo BCC3 -algebra.

Proof Using the (HPBCK1) , (HPBCK4) conditions hyper pseudo BCC1 -algebra and hyper

pseudo BCC3 -algebra are obtained. 2

Theorem 3.16 Let (H, ◦, ∗,≪, 0) be a hyper pseudo BCC1 -algebra. Then, H is a hyper pseudo

BCK-algebra if and only if (x ◦ y) ∗ z = (x ∗ z) ◦ y , for all x, y, z ∈ H .
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Proof Every hyper pseudo BCC1 -algebra supplies this identity. Conversely, using (HPBCC11) ,

we have (HPBCK1) and using (HPBCC14) , we get (HPBCK4) . Next in a hyper pseudo

BCC1 -algebra satisfying this identity, for all x, y ∈ H , we get using Proposition 3.14 (iv);

x ◦ y ≪ {x} ⇔ x ∗ y ≪ {x}.

Then, we have the (HPBCK13) condition. Hence, H is a hyper pseudo BCK-algebra. 2

Example 3.17 Let (H, ◦, ∗,≪, 0) given in Example 3.3 be a hyper pseudo BCC1 -algebra. We

can find

(n ◦m) ∗ n ̸= (n ∗ n) ◦m

for m,n ∈ H . Hence, H is not hyper pseudo BCK-algebra.
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1. Introduction
Fractional calculus plays an important role in the field of inequality theory with its rich content

and new fractional operators have been added day by day, especially in recent years. Some of these

operators have certain algebraic properties such as semigroup property while some do not. Also,

some of them have a singularity problem at some points while some of them do not. Therefore, the

application areas of the operators can also differ. Convex analysis has become one of the important

application areas of fractional analysis [1–3].

In addition, severel mathematicians have studied certain inequalities for convex functions

using different type (for example; R-L fractional integral operator, tempered fractional integral

operators, generalized proportional integral operators, generalized proportional Hadamard integral

operators) of integral operators. These studies have helped to develop different aspects of operator

analysis [9–12].

At first, we recall the elementary notation in convex analysis:

Definition 1.1 A set 𝟋 ⊂ R is said to be convex if

φa+ (1− φ)b ∈ 𝟋
∗Correspondence: cetin@atauni.edu.tr
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for each a, b ∈ 𝟋 and φ ∈ [0, 1].

Definition 1.2 The mapping f1 : 𝟋 → R, is said to be convex if the following inequality holds:

f1(φa+ (1− φ)b) ≤ φf1(a) + (1− φ)f1(b)

for all a, b ∈ 𝟋 and φ ∈ [0, 1]. We say that f1 is concave if (−f1) is convex.

The properties and definitions of the convex functions have recently ascribed a significant

role to its theory and practice in the field of fractional integral operators.

In [7], Ngo et al. established the following inequalities:

∫ 1

0

gζ+1
1 (ρ)dρ ≥

∫ 1

0

ρζgζ1(ρ)dρ

and ∫ 1

0

gζ+1
1 (ρ)dρ ≥

∫ 1

0

ρgζ1(ρ)dρ,

where ζ > 0 and the positive continuous function g1 on [0, 1] such that

∫ 1

x

g1(ρ)dρ ≥
∫ 1

x

ρdρ, x ∈ [0, 1].

Then, in [8], Liu et al. established the following inequalities:

∫ b

a

gζ+ϑ
1 (ρ)dρ ≥

∫ b

a

(ρ− a)ζgϑ1 (ρ)dρ,

where ζ > 0, ϑ > 0 , and the positive continuous g1 on [a, b] is such that

∫ b

a

gξ1(ρ)dρ ≥
∫ 1

0

(ρ− a)ξdρ, ξ = min(1, ϑ), ρ ∈ [0, 1].

The following two theorems are obtained by Liu in [1]:

Theorem 1.3 Let ℏ1 and ℏ2 be continuous and positive functions with ℏ1 ≤ ℏ2 on [a, b] such

that ℏ1 is increasing and ℏ1

ℏ2
(ℏ2 ̸= 0) is decreasing. If ϕ is a convex function, then the inequality

∫ b

a
ℏ1(t)dt∫ b

a
ℏ2(t)dt

≥
∫ b

a
ϕ (ℏ1(t)) dt∫ b

a
ϕ (ℏ2(t)) dt

holds, where ϕ(0) = 0 .
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Theorem 1.4 Let ℏ1, ℏ2 and ℏ3 be continuous and positive functions with ℏ1 ≤ ℏ2 on [a, b] such

that ℏ1 and ℏ3 are increasing and ℏ1

ℏ2
(ℏ2 ̸= 0) is decreasing. If ϕ is a convex function, then the

inequality ∫ b

a
ℏ1(t)dt∫ b

a
ℏ2(t)dt

≥
∫ b

a
ϕ (ℏ1(t)) ℏ3(t)dt∫ b

a
ϕ (ℏ2(t)) ℏ3(t)dt

holds, where ϕ(0) = 0 .

Now some fractional integral operators used to obtain integral inequalities will be given.

First of them is Riemann-Liouville fractional integral operators (see [6]) which is widely used in

fractional calculus.

Definition 1.5 Let ℏ ∈ L1[a, b]. The Riemann-Liouville integrals Jα
a+ℏ and Jα

b−ℏ of order α > 0

with a ≥ 0 are defined by

Jα
a+ℏ(x) =

1

Γ(α)

∫ x

a

(x− t)
α−1 ℏ(t)dt, x > a

and

Jα
b−ℏ(x) =

1

Γ(α)

∫ b

x

(t− x)
α−1 ℏ(t)dt, x < b

where Γ(α) =
∞∫
0

e−uuα−1du , respectively. Here is J0
a+ℏ(x) = J0

b−ℏ(x) = ℏ(x). In the case of

α = 1 , the fractional integral reduces to the classical integral.

Definition 1.6 Let (a, b) ⊆ R and σ(x) be an increasing positive and monotonic function on the

interval (a, b] with a continuous derivative σ′(x) on the interval (a, b) with σ(0) = 0, 0 ∈ [a, b].

Then, the left-side and right-side of the weighted fractional integrals of a function ℏ with respect

to another function σ(x) on [a, b] are defined by [3]

(
a+ℑℓ:σ

w ℏ
)
(x) =

w−1(x)

Γ(ℓ)

∫ x

a

σ′(t) [σ(x)− σ(t)]
ℓ−1 ℏ(t)w(t)dt, (1)

(
wℑℓ:σ

b−ℏ
)
(x) =

w−1(x)

Γ(ℓ)

∫ b

x

σ′(t) [σ(t)− σ(x)]
ℓ−1 ℏ(t)w(t)dt, ℓ > 0

where w−1(x) = 1
w(x) , w(x) ̸= 0 (w(x) > 0).

Remark 1.7 In Definition 1.6,

• To obtain Riemann-Liouville fractional integral operator, one can choose w (x) = 1 and

σ(x) = x in definition of the weighted fractional integral operators (1).
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• To obtain the following version of fractional integral operator which is defined in [4, 5],

one can choose w(x) = 1 in (1):

(
a+ℑℓ:σℏ

)
(x) =

1

Γ(ℓ)

∫ x

a

σ′(t) [σ(x)− σ(t)]
ℓ−1 ℏ(t)dt,

(
ℑℓ:σ

b−ℏ
)
(x) =

1

Γ(ℓ)

∫ b

x

σ′(t) [σ(t)− σ(x)]
ℓ−1 ℏ(t)dt, ℓ > 0.

2. Main Results
In this section, inequalities for convex functions by utilizing weighted fractional operators presented.

Theorem 2.1 Let ℏ1 and ℏ2 be two positive continuous functions on the interval [a, b] and

ℏ1 ≤ ℏ2 on [a, b]. If ℏ1

ℏ2
is decreasing and ℏ1 is increasing on [a, b], then for a convex function ϕ

with ϕ(0) = 0, the weighted fractional operator given by (1) satisfies the following inequality

(
a+ℑℓ:σ

w ℏ1
)
(x)

(a+ℑℓ:σ
w ℏ2) (x)

≥
(
a+ℑℓ:σ

w ϕ ◦ ℏ1
)
(x)

(a+ℑℓ:σ
w ϕ ◦ ℏ2) (x)

, (2)

where x > a > 0, ℓ ∈ C, Re(ℓ) > 0.

Proof ϕ(x)
x is increasing since ϕ is defined as convex function satisfying ϕ(0) = 0 . Besides the

function ϕ(ℏ1(x))
ℏ1(x)

is also increasing as ℏ1 is increasing. Obviously, the function ℏ1(x)
ℏ2(x)

is decreasing.

Thus, for all [a, x], a < x ≤ b, it can be written φ ≤ t

(
ϕ(ℏ1(t))
ℏ1(t)

− ϕ(ℏ1(φ))
ℏ1(φ)

)(
ℏ1(φ)
ℏ2(φ)

− ℏ1(t)
ℏ2(t)

)
≥ 0.

It follows that

ϕ(ℏ1(t))
ℏ1(t)

ℏ1(φ)
ℏ2(φ)

+
ϕ(ℏ1(φ))
ℏ1(φ)

ℏ1(t)
ℏ2(t)

− ϕ(ℏ1(φ))
ℏ1(φ)

ℏ1(φ)
ℏ2(φ)

− ϕ(ℏ1(t))
ℏ1(t)

ℏ1(t)
ℏ2(t)

≥ 0. (3)

Multiplying (3) by ℏ2(t)ℏ2(φ), we have

ϕ(ℏ1(t))
ℏ1(t)

ℏ1(φ)ℏ2(t) +
ϕ(ℏ1(φ))
ℏ1(φ)

ℏ1(t)ℏ2(φ)−
ϕ(ℏ1(φ))
ℏ1(φ)

ℏ1(φ)ℏ2(t)−
ϕ(ℏ1(t))
ℏ1(t)

ℏ1(t)ℏ2(φ) ≥ 0. (4)

Now, multiplying both sides of (4) by w−1(x)
Γ(ℓ) σ′(t) [σ(x)− σ(t)]

ℓ−1
w(t) and then integrating
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with respect to the variable t from a to x, we have

w−1(x)

Γ(ℓ)

∫ x

a

σ′(t) [σ(x)− σ(t)]
ℓ−1 ϕ(ℏ1(t))

ℏ1(t)
ℏ1(φ)ℏ2(t)w(t)dt

+
w−1(x)

Γ(ℓ)

∫ x

a

σ′(t) [σ(x)− σ(t)]
ℓ−1 ϕ(ℏ1(φ))

ℏ1(φ)
ℏ1(t)ℏ2(φ)w(t)dt

−w−1(x)

Γ(ℓ)

∫ x

a

σ′(t) [σ(x)− σ(t)]
ℓ−1 ϕ(ℏ1(φ))

ℏ1(φ)
ℏ1(φ)ℏ2(t)w(t)dt

− w−1(x)

Γ(ℓ)

∫ x

a

σ′(t) [σ(x)− σ(t)]
ℓ−1 ϕ(ℏ1(t))

ℏ1(t)
ℏ1(t)ℏ2(φ)w(t)dt ≥ 0.

Then, it follows that

ℏ1(φ)
(

a+ℑℓ:σ
w

ϕ ◦ ℏ1
ℏ1

ℏ2
)
(x) +

ϕ(ℏ1(φ))
ℏ1(φ)

ℏ2(φ)
(
a+ℑℓ:σ

w ℏ1
)
(x)

− ϕ(ℏ1(φ))
ℏ1(φ)

ℏ1(φ)
(
a+ℑℓ:σ

w ℏ2
)
(x)− ℏ2(φ)

(
a+ℑℓ:σ

w

ϕ ◦ ℏ1
ℏ1

ℏ1
)
(x) ≥ 0. (5)

Again, multiplying both sides of (5) by w−1(x)
Γ(ℓ) σ′(φ) [σ(x)− σ(φ)]

ℓ−1
w(φ) and then inte-

grating with respect to φ from a to x, we obtain

(
a+ℑℓ:σ

w ℏ1
)
(x)

(
a+ℑℓ:σ

w

ϕ ◦ ℏ1
ℏ1

ℏ2
)
(x) +

(
a+ℑℓ:σ

w

ϕ ◦ ℏ1
ℏ1

ℏ2
)
(x)

(
a+ℑℓ:σ

w ℏ1
)
(x) (6)

≥
(
a+ℑℓ:σ

w ϕ ◦ ℏ1
)
(x)

(
a+ℑℓ:σ

w ℏ2
)
(x) +

(
a+ℑℓ:σ

w ℏ2
)
(x)

(
a+ℑℓ:σ

w ϕ ◦ ℏ1
)
(x) .

It follows that (
a+ℑℓ:σ

w ℏ1
)
(x)

(a+ℑℓ:σ
w ℏ2) (x)

≥
(
a+ℑℓ:σ

w ϕ ◦ ℏ1
)
(x)(

a+ℑℓ:σ
w

ϕ◦ℏ1

ℏ1
ℏ2
)
(x)

. (7)

Now, since ϕ(x)
x is an increasing function and ℏ1 ≤ ℏ2 on [a, b], we get

ϕ(ℏ1(t))
ℏ1(t)

≤ ϕ(ℏ2(t))
ℏ2(t)

(8)

for t ∈ [a, x].

Multiplying both sides of (8) by w−1(x)
Γ(ℓ) σ′(t) [σ(x)− σ(t)]

ℓ−1 ℏ2(t)w(t) and then integrating

with respect to the variable t from a to x, we have

w−1(x)

Γ(ℓ)

∫ x

a

σ′(t) [σ(x)− σ(t)]
ℓ−1 ϕ(ℏ1(t))

ℏ1(t)
ℏ2(t)w(t)dt

≤ w−1(x)

Γ(ℓ)

∫ x

a

σ′(t) [σ(x)− σ(t)]
ℓ−1 ϕ(ℏ2(t))

ℏ2(t)
ℏ2(t)w(t)dt,

70



Çetin Yıldız and Mustafa Gürbüz / FCMS

which yields (
a+ℑℓ:σ

w

ϕ ◦ ℏ1
ℏ1

ℏ2
)
(x) ≤

(
a+ℑℓ:σ

w ϕ ◦ ℏ2
)
(x) . (9)

Hence from (7) and (9), we have (2). 2

Remark 2.2 In Theorem 2.1, if we choose w(x) = 1 and σ(x) = x, then we obtain Theorem 3.1

in [9].

Remark 2.3 In Theorem 2.1, if we choose w(x) = 1 = ℓ, σ(x) = x and x = b, then we obtain

Theorem 1.3.

Theorem 2.4 Let ℏ1 and ℏ2 be two positive continuous functions and ℏ1 ≤ ℏ2 on [a, b]. If ℏ1

ℏ2
is

decreasing and ℏ1 is increasing on [a, b], then for a convex function ϕ with ϕ(0) = 0, the weighted

fractional operator given by (1) satisfies the following inequality

(a+ℑρ:σ
w ℏ1) (x)

(
a+ℑℓ:σ

w ϕ ◦ ℏ2
)
(x) + (a+ℑρ:σ

w ϕ ◦ ℏ2) (x)
(
a+ℑℓ:σ

w ℏ1
)
(x)

(a+ℑρ:σ
w ϕ ◦ ℏ1) (x) (a+ℑℓ:σ

w ℏ2) (x) + (a+ℑρ:σ
w ℏ2) (x) (a+ℑℓ:σ

w ϕ ◦ ℏ1) (x)
≥ 1,

where x > a > 0, ℓ, ρ ∈ C, Re(ℓ) > 0 and Re(ρ) > 0.

Proof ϕ(x)
x is increasing since ϕ is defined as convex function satisfying ϕ(0) = 0 . Besides the

function ϕ(ℏ1(x))
ℏ1(x)

is also increasing as ℏ1 is increasing. Obviously, the function ℏ1(x)
ℏ2(x)

is decreasing

for all [a, x], a < x ≤ b. Multiplying both sides of (5) by w−1(x)
Γ(ρ) σ′(φ) [σ(x)− σ(φ)]

ρ−1
w(φ) and

then integrating the resulting identity from a to x, we obtain

(a+ℑρ:σ
w ℏ1) (x)

(
a+ℑℓ:σ

w

ϕ ◦ ℏ1
ℏ1

ℏ2
)
(x) +

(
a+ℑρ:σ

w

ϕ ◦ ℏ1
ℏ1

ℏ2
)
(x)

(
a+ℑℓ:σ

w ℏ1
)
(x) (10)

≥ (a+ℑρ:σ
w ϕ ◦ ℏ1) (x)

(
a+ℑℓ:σ

w ℏ2
)
(x) + (a+ℑρ:σ

w ℏ2) (x)
(
a+ℑℓ:σ

w ϕ ◦ ℏ1
)
(x) .

Similar to the (9) inequality, multiplying both sides of (8) by

w−1(x)
Γ(ρ) σ′(t) [σ(x)− σ(t)]

ρ−1 ℏ2(t)w(t)

and then integrating with respect to the variable t from a to x, we have

(
a+ℑρ:σ

w

ϕ ◦ ℏ1
ℏ1

ℏ2
)
(x) ≤ (a+ℑρ:σ

w ϕ ◦ ℏ2) (x) . (11)

Hence, from (9), (11) and (10), we have the needful result. 2
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Remark 2.5 If we choose ℓ = ρ, then Theorem 2.4 will lead to Theorem 2.1.

Remark 2.6 In Theorem 2.4, if we choose w(x) = 1 and σ(x) = x, then we obtain Theorem 3.3

in [9].

Remark 2.7 In Theorem 2.4, if we choose w(x) = 1 = ℓ = ρ , σ(x) = x and x = b, then we

obtain Theorem 1.3.

Theorem 2.8 Let ℏ1 , ℏ2 and ℏ3 be positive continuous functions and ℏ1 ≤ ℏ2 on [a, b]. If ℏ1

ℏ2

is decreasing and ℏ1 and ℏ3 are increasing on [a, b], then for a convex function ϕ with ϕ(0) = 0 ,

then the following inequality holds for the weighted fractional operator (1)

(
a+ℑℓ:σ

w ℏ1
)
(x)

(a+ℑℓ:σ
w ℏ2) (x)

≥
(
a+ℑℓ:σ

w (ϕ ◦ ℏ1)ℏ3
)
(x)

(a+ℑℓ:σ
w (ϕ ◦ ℏ2)ℏ3) (x)

,

where x > a > 0, ℓ ∈ C, Re(ℓ) > 0.

Proof Since ℏ1 ≤ ℏ2 on [a, b] and ϕ(x)
x is increasing for t, φ ∈ [a, x], a < x ≤ b, we get

ϕ(ℏ1(t))
ℏ1(t)

≤ ϕ(ℏ2(t))
ℏ2(t)

. (12)

Multiplying both sides of (12) by w−1(x)
Γ(ℓ) σ′(t) [σ(x)− σ(t)]

ℓ−1 ℏ2(t)ℏ3(t)w(t) and then inte-

grating with respect to the variable t from a to x, we have

w−1(x)

Γ(ℓ)

∫ x

a

σ′(t) [σ(x)− σ(t)]
ℓ−1 ϕ(ℏ1(t))

ℏ1(t)
ℏ2(t)ℏ3(t)w(t)dt

≤ w−1(x)

Γ(ℓ)

∫ x

a

σ′(t) [σ(x)− σ(t)]
ℓ−1 ϕ(ℏ2(t))

ℏ2(t)
ℏ2(t)ℏ3(t)w(t)dt

which, in view of (1), can be written as

(
a+ℑℓ:σ

w

ϕ ◦ ℏ1
ℏ1

ℏ2ℏ3
)
(x) ≤

(
a+ℑℓ:σ

w (ϕ ◦ ℏ2)ℏ3
)
(x) . (13)

Also, since the function ϕ is convex and such that ϕ(0) = 0, ϕ(t)
t is increasing. Since ℏ1 is

increasing, so is ϕ(ℏ1(t))
ℏ1(t)

. Clearly, the function ℏ1(t)
ℏ2(t)

is decreasing for t, φ ∈ [a, x], a < x ≤ b.Thus

(
ϕ(ℏ1(t))
ℏ1(t)

ℏ3(t)−
ϕ(ℏ1(φ))
ℏ1(φ)

ℏ3(φ)
)
(ℏ1(φ)ℏ2(t)− ℏ1(t)ℏ2(φ)) ≥ 0.

It becomes
ϕ(ℏ1(t))ℏ3(t)

ℏ1(t)
ℏ1(φ)ℏ2(t) +

ϕ(ℏ1(φ))ℏ3(φ)
ℏ1(φ)

ℏ1(t)ℏ2(φ)
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− ϕ(ℏ1(φ))ℏ3(φ)
ℏ1(φ)

ℏ1(φ)ℏ2(t)−
ϕ(ℏ1(t))ℏ3(t)

ℏ1(t)
ℏ1(t)ℏ2(φ) ≥ 0. (14)

Multiplying both sides of (14) by w−1(x)
Γ(ℓ) σ′(t) [σ(x)− σ(t)]

ℓ−1
w(t) and then integrating with

respect to the variable t from a to x, we obtain

w−1(x)

Γ(ℓ)

∫ x

a

σ′(t) [σ(x)− σ(t)]
ℓ−1 ϕ(ℏ1(t))ℏ3(t)

ℏ1(t)
ℏ1(φ)ℏ2(t)w(t)dt

+
w−1(x)

Γ(ℓ)

∫ x

a

σ′(t) [σ(x)− σ(t)]
ℓ−1 ϕ(ℏ1(φ))ℏ3(φ)

ℏ1(φ)
ℏ1(t)ℏ2(φ)w(t)dt

−w−1(x)

Γ(ℓ)

∫ x

a

σ′(t) [σ(x)− σ(t)]
ℓ−1 ϕ(ℏ1(φ))ℏ3(φ)

ℏ1(φ)
ℏ1(φ)ℏ2(t)w(t)dt

−w−1(x)

Γ(ℓ)

∫ x

a

σ′(t) [σ(x)− σ(t)]
ℓ−1 ϕ(ℏ1(t))ℏ3(t)

ℏ1(t)
ℏ1(t)ℏ2(φ)w(t)dt ≥ 0.

This follows that

ℏ1(φ)
(

a+ℑℓ:σ
w

ϕ ◦ ℏ1
ℏ1

ℏ2ℏ3
)
(x) +

ϕ(ℏ1(φ))ℏ3(φ)
ℏ1(φ)

ℏ2(φ)
(
a+ℑℓ:σ

w ℏ1
)
(x)

− ϕ(ℏ1(φ))ℏ3(φ)
ℏ1(φ)

ℏ1(φ)
(
a+ℑℓ:σ

w ℏ2
)
(x)− ℏ2(φ)

(
a+ℑℓ:σ

w (ϕ ◦ ℏ1) ℏ3
)
(x) ≥ 0. (15)

Again, multiplying both sides of (15) by w−1(x)
Γ(ℓ) σ′(φ) [σ(x)− σ(φ)]

ℓ−1
w(φ) and then inte-

grating with respect to the variable φ from a to x, we have

(
a+ℑℓ:σ

w ℏ1
)
(x)

(
a+ℑℓ:σ

w

ϕ ◦ ℏ1
ℏ1

ℏ2ℏ3
)
(x) +

(
a+ℑℓ:σ

w

ϕ ◦ ℏ1
ℏ1

ℏ2ℏ3
)
(x)

(
a+ℑℓ:σ

w ℏ1
)
(x)

≥
(
a+ℑℓ:σ

w ℏ2
)
(x)

(
a+ℑℓ:σ

w (ϕ ◦ ℏ1) ℏ3
)
(x) +

(
a+ℑℓ:σ

w ℏ2
)
(x)

(
a+ℑℓ:σ

w (ϕ ◦ ℏ1) ℏ3
)
(x) .

Therefore, we can write

(
a+ℑℓ:σ

w ℏ1
)
(x)

(a+ℑℓ:σ
w ℏ2) (x)

≥
(
a+ℑℓ:σ

w (ϕ ◦ ℏ1)ℏ3
)
(x)(

a+ℑℓ:σ
w

ϕ◦ℏ1

ℏ1
ℏ2ℏ3

)
(x)

. (16)

Hence, from (13) and (16), we obtain the required result. 2

Remark 2.9 In Theorem 2.8, if we choose w(x) = 1 and σ(x) = x, then we obtain Theorem 3.5

in [9].

Remark 2.10 In Theorem 2.8, if we choose w(x) = 1 = ℓ , σ(x) = x and x = b, then we obtain

Theorem 1.4.
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Theorem 2.11 Let ℏ1 , ℏ2 and ℏ3 be positive continuous functions and ℏ1 ≤ ℏ2 on [a, b]. If ℏ1

ℏ2

is decreasing and ℏ1 and ℏ3 are increasing on [a, b], then for a convex function ϕ with ϕ(0) = 0

then the following inequality holds for the weighted fractional operator (1)

(a+ℑρ:σ
w ℏ1) (x)

(
a+ℑℓ:σ

w (ϕ ◦ ℏ2)ℏ3
)
(x) + (a+ℑρ:σ

w (ϕ ◦ ℏ2)ℏ3) (x)
(
a+ℑℓ:σ

w ℏ1
)
(x)

(a+ℑℓ:σ
w ℏ2) (x) (a+ℑρ:σ

w (ϕ ◦ ℏ1)ℏ3) (x) + (a+ℑρ:σ
w ℏ2) (x) (a+ℑℓ:σ

w (ϕ ◦ ℏ1)ℏ3) (x)
≥ 1,

where x > a > 0, ℓ, ρ ∈ C, Re(ℓ) > 0 and Re(ρ) > 0.

Proof By the assumption of Theorem 2.11, multiplying both sides of (15) by

w−1(x)
Γ(ρ) σ′(φ) [σ(x)− σ(φ)]

ρ−1
w(φ)

and then integrating with respect to the variable φ from a to x, we have

(a+ℑρ:σ
w ℏ1) (x)

(
a+ℑℓ:σ

w

ϕ ◦ ℏ1
ℏ1

ℏ2ℏ3
)
(x) +

(
a+ℑρ:σ

w

ϕ ◦ ℏ1
ℏ1

ℏ2ℏ3
)
(x)

(
a+ℑℓ:σ

w ℏ1
)
(x) (17)

≥
(
a+ℑℓ:σ

w ℏ2
)
(x) (a+ℑρ:σ

w (ϕ ◦ ℏ1) ℏ3) (x) + (a+ℑρ:σ
w ℏ2) (x)

(
a+ℑℓ:σ

w (ϕ ◦ ℏ1) ℏ3
)
(x) .

Since ℏ1 ≤ ℏ2 on [a, b] and ϕ(x)
x is increasing for t, φ ∈ [a, x], a < x ≤ b, we get

ϕ(ℏ1(t))
ℏ1(t)

≤ ϕ(ℏ2(t))
ℏ2(t)

. (18)

Multiplying both sides of (18) by w−1(x)
Γ(ℓ) σ′(t) [σ(x)− σ(t)]

ℓ−1 ℏ2(t)ℏ3(t)w(t) and then inte-

grating with respect to the variable t from a to x, we have

(
a+ℑℓ:σ

w

ϕ ◦ ℏ1
ℏ1

ℏ2ℏ3
)
(x) ≤

(
a+ℑℓ:σ

w (ϕ ◦ ℏ2) ℏ3
)
(x) . (19)

Similarly, multiplying both sides of (18) by w−1(x)
Γ(ρ) σ′(t) [σ(x)− σ(t)]

ρ−1 ℏ2(t)ℏ3(t)w(t) and

then integrating with respect to the variable t from a to x, we can write

(
a+ℑρ:σ

w

ϕ ◦ ℏ1
ℏ1

ℏ2ℏ3
)
(x) ≤ (a+ℑρ:σ

w (ϕ ◦ ℏ2) ℏ3) (x) . (20)

So, from (17), (19) and (20) we have

(a+ℑρ:σ
w ℏ1) (x)

(
a+ℑℓ:σ

w (ϕ ◦ ℏ2)ℏ3
)
(x) + (a+ℑρ:σ

w (ϕ ◦ ℏ2)ℏ3) (x)
(
a+ℑℓ:σ

w ℏ1
)
(x)

(a+ℑℓ:σ
w ℏ2) (x) (a+ℑρ:σ

w (ϕ ◦ ℏ1)ℏ3) (x) + (a+ℑρ:σ
w ℏ2) (x) (a+ℑℓ:σ

w (ϕ ◦ ℏ1)ℏ3) (x)
≥ 1.

2
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Remark 2.12 If we choose ℓ = ρ, then Theorem 2.11 will lead to Theorem 2.8.

Remark 2.13 In Theorem 2.11, if we choose w(x) = 1 and σ(x) = x, then we obtain Theorem

3.7 in [9].

3. Conclusion
In this paper, first we gave different definitions of fractional integral operators and then we

introduced some inequalities using the monotonicity properties of functions for weighted fractional

operators. The obtained results are an extension of some known results in the literature. Especially,

we would like to emphasize that different types of integral inequalities can be obtained using this

operators.
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Abstract: In this study, we are interested in Tzitzeica curves (Tz-curves) in Euclidean 4 -space E4 .

Tz-curve condition for Euclidean 4 -space are determined as three types for three hyperplanes and some

examples are given.
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1. Introduction

Gheorgha Tzitzeica, Romanian mathematician (1872-1939), introduced a class of surfaces [11],

nowadays called Tzitzeica surfaces in 1907 and a class of curves [12], called Tzitzeica curves in

1911. A Tzitzeica curve in E3 is a spatial curve x � x�s� with the Frenet frame �T,N1,N2�
and curvatures �k1, k2� , for which the ratio of its torsion k2 and the square of the distance dosc

from the origin to the osculating plane at an arbitrary point x�s� of the curve is constant, i.e., a

Tzitzeica curve in E3 is a curve satisfying the condition (Tzitzeica condition)

k2
dosc2

� a, (1)

where dosc � `N2, xe and a x 0 is a real constant, N2 is the binormal vector field of x .

A Tzitzeica surface in E3 is a spatial surface M given with the parametrization X�u, v� , for
which the ratio of its Gaussian curvature K and the distance dtan from the origin to the tangent

plane at any arbitrary point of the surface is constant, i.e., a Tzitzeica surface in E3 is a surface

satisfying the condition (Tzitzeica condition)

K

dtan
4
� a1 (2)
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for a constant a1 x 0 . The orthogonal distance from the origin to the tangent plane is defined by

dtan � `X,Ne, (3)

where X is the position vector of surface and N is unit normal vector field of the surface.

In [1] the authors gave the connections between Tzitzeica curve and Tzitzeica surface in

Minkowski 3 -space and the original ones from the Euclidean 3 -space. Besides, the asymptotic

lines of a Tzitzeica surface with the negative Gaussian curvature are Tzitzeica curves [3]. In [3],

the authors determined the elliptic and hyperbolic cylindrical curves satisfying Tzitzeica condition

in Euclidean space. In [? ? ], hyperbolic and elliptic cylindrical curves verifying Tzitzeica condition

were adapted to Minkowski 3 -space, respectively.

Let x � I ` R � E4 be a unit speed curve in Euclidean 4 -space E4 . Let us denote

T �s� � x
��s� and call T �s� a unit tangent vector of x at s . We denote the first Serret-Frenet

curvature of x by k1�s� � Yx���s�Y . If k1�s� x 0 , then the unit principal normal vector N1�s� of

the curve x at s is given by T
��s� � k1�s�N1�s� . If k2�s� x 0 , then the unit second principal

normal vector N2�s� of the curve x at s is given by N1

��s� � k1�s�T �s� � k2�s�N2�s� , where k2

is the second Serret-Frenet curvature of x . N2

��s� � k2�s�N1�s� � k3�s�N3�s� , where k3 is the

third Serret-Frenet curvature of x . Then, we have the Serret-Frenet formulae [5]:

T
��s� � k1�s�N1�s�,

N1

��s� � �k1�s�T �s� � k2�s�N2�s�,
N2

��s� � �k2�s�N1�s� � k3�s�N3�s�,
N3

��s� � �k3�s�N2�s�.

(4)

If the Serret-Frenet curvatures k1�s�, k2�s� and k3�s� of x are constant functions then x

is called a screw line or a helix [4]. Since these curves are the traces of 1 -parameter family of the

groups of Euclidean transformations, Klein and Lie called them W-curves [8]. If the tangent vector

T of the curve x makes a constant angle with a unit vector U of E4 then this curve is called a

general helix (or inclined curve) in E4 [9].

Let x � I ` R � E4 be a unit speed curve in Euclidean 4 -space E4 . Position vector of

x � x�s� satisfies parametric equation

x�s� �m0�s�T �s� �m1�s�N1�s� �m2�s�N2�s� �m3�s�N3�s�, (5)
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where

m0�s� � `x�s�, T �s�, e m1�s� � `x�s�,N1�s�, e
m2�s� � `x�s�,N2�s�, e m3�s� � `x�s�,N3�s�.e (6)

By taking the derivative of (5) with respect to arclength parameter s and using Serret-Frenet

equations (4) , we obtain

T �s� � x
� �s� �m0

��s�T �s� �m0�s�T ��s� �m1
��s�N1�s� �m1�s�N1

��s� �m2
��s�N2�s�

�m2�s�N2
��s� �m3

��s�N3�s� �m3�s�N3
��s�

� �m0
� �s� �m1 �s�k1 �s��T �s� � �m0 �s�k1 �s� �m1

� �s� �m2 �s�k2 �s��N1�s�
� �m1 �s�k2 �s� �m2

� �s� �m3 �s�k3 �s��N2�s� � �m2�s�k3�s� �m�

3�s��N3�s�.
It follows that

m�

0 � k1m1 � 1,

m�

1 � k1m0 � k2m2 � 0,

m�

2 � k2m1 � k3m3 � 0,

m�

3 � k3m2 � 0.

(7)

We consider Tzitzeica curves in Euclidean 4 -space E4 whose position vector x � x�s� satisfies the

parametric equation (5). We determine Tz-curve condition for Euclidean 4-space E4 as three types

for three hyperplanes and give some examples. Besides, we express Tzitzeica curve conditions in

terms of their curvature functions k1 �s� , k2 �s� and k3 �s� .

2. A Characterization of Tzitzeica Curves in Euclidean 4-Space

Definition 2.1 Let x � I ` R � E4 be a unit speed curve in Euclidean 4-space E4 . A first type

Tzitzeica curve x � x�s� , for which the ratio of its second Frenet curvature k2 and the square of

the distance d�T,N1, N3� from the origin to the hyperplane spanned by �T,N1, N3� at an arbitrary

point x�s� of the curve is constant, i.e.,

k2
d2�T,N1, N3�

� a1, (8)

where
d�T,N1, N3� � `x,N2e (9)

and a1 x 0 is a real constant.
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Definition 2.2 Let x � I ` R� E4 be a unit speed curve in Euclidean 4-space E4 . A second type

Tzitzeica curve x � x�s� , for which the ratio of its first Frenet curvature k1 and the square of

the distance d�T,N2, N3� from the origin to the hyperplane spanned by �T,N2, N3� at an arbitrary

point x�s� of the curve is constant, i.e.,

k1
d2�T,N2, N3�

� a2, (10)

where

d�T,N2, N3� � `x,N1e (11)

and a2 x 0 is a real constant.

Definition 2.3 Let x � I ` R � E4 be a unit speed curve in Euclidean 4-space E4 . A third type

Tzitzeica curve x � x�s� , for which the ratio of its second Frenet curvature k3 and the square of

the distance d�T,N1, N2� from the origin to the hyperplane spanned by �T,N1, N2� at an arbitrary

point x�s� of the curve is constant, i.e.,

k3
d2�T,N1, N2�

� a3, (12)

where

d�T,N1, N2� � `x,N3e (13)

and a3 x 0 is a real constant.

Theorem 2.4 Let x � I ` R� E4 be a unit speed curve in E4 given with the parametrization (5).

x is first type Tzitzeica curve if and only if the equation

k�2m2 � 2k22m1 � 2k2k3m3 � 0 (14)

holds.

Proof Let x be the first type Tzitzeica curve. By taking the derivative of (8) with respect to

arc length parameter s and using (4) and (6), we get (14). The opposite of the proof is clear. j

Proposition 2.5 Let x � I ` R � E4 be a unit speed spherical curve in E4 given with the
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parametrization (5). Then

m0 � 0,

m1 �
�1

k1
,

m2 �
k�1

k2k21
,

m3 �
k��1

k21k2k3
�

2k�1
2

k31k2k3
�

k�1k
�

2

k21k
2
2k3

�

k2
k1k3

(15)

hold.

Proof Let x be a unit speed spherical curve. Then, `x,xe � r2 . By taking the derivative of this

expression, we get

`x,T e � 0 �m0. (16)

By taking the derivative of (16) and using (4) and (6), we get

`x,N1e � �1

k1
�m1. (17)

Again, by taking the derivative of (17) and using (4), (16) and (6), we get

`x,N2e � k1
�

k2k1
2
�m2. (18)

Similarly, by taking the derivative of (18) and using (4), (17) and (6), we get

`x,N3e � k1
��

k1
2k2k3

�

2k1
�2

k1
3k2k3

�

k1
�k2

�

k1
2k2

2k3
�

k2
k1k3

�m3.

j

Theorem 2.6 Let x � I ` R� E4 be a unit speed spherical curve in E4 given with the parametriza-

tion (5). x is first type Tzitzeica curve if and only if the equations

3k1k
�

1k
�

2 � 2k1k
��

1 k2 � 4k�1
2
k2 � 0 (19)

and k2 � c. ���1
k1
��� 2

3

hold, where c is integral constant.

Proof Let x be a first type Tzitzeica curve. Then, substituing (15) into (14) and arranging the

expression, we get (19). From the solution of (19), we get k2 � c. ���1
k1
��� 2

3

. The opposite of the

proof is clear. j
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Corollary 2.7 Let x be a first type spherical Tzitzeica curve. If k2 is constant, then we get

k1 �
c2

c1�s
.

Proof If k2 is constant, equation k1k
��

1 �2k
�

1
2
� 0 is obtained from (19). If this equation is solved,

then we get k1 �
c2

c1�s
. j

Theorem 2.8 Let x � I ` R� E4 be a unit speed curve in E4 given with the parametrization (5).

x is second type Tzitzeica curve if and only if the equation

k�1m1 � 2k21m0 � 2k1k2m2 � 0 (20)

holds.

Proof Let x be the second type Tzitzeica curve. By taking the derivative of (10) with respect to

arc length parameter s and using (4) and (6), we get (20). The opposite of the proof is clear. j

Proposition 2.9 Let x � I ` R � E4 be a unit speed spherical curve in E4 given with the

parametrization (5). x is second type Tzitzeica curve if and only if k1 � c , where c is a constant.

Proof Let x be the second type spherical Tzitzeica curve. Substituing (15) into (20), we get

3
k�

1

k1
� 0 . Which means that, k1 � c (constant). j

Theorem 2.10 Let x � I ` R � E4 be a unit speed curve in E4 given with the parametrization

(5). x is third type Tzitzeica curve if and only if the equation

k�3m3 � 2k23m2 � 0 (21)

holds.

Proof Let x be the third type Tzitzeica curve. By taking the derivative of (12) with respect to

arc length parameter s and using (4) and (6), we get (21). The opposite of the proof is clear. j

Proposition 2.11 Let x � I ` R � E4 be a unit speed spherical curve in E4 given with the

parametrization (5). x is third type Tzitzeica curve if and only if the equation

k�3 �k��1 � 2
k�1

2

k1
�

k1k
�

2

k2
� k1k

2
2� � 2k�1k

3
3 � 0 (22)

holds.

Proof Let x be third type spherical Tzitzeica curve. Then, substituing (15) into (21) and

arranging the expression, we get (22). The opposite of the proof is clear. j
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Corollary 2.12 Let x be third type spherical Tzitzeica curve. If k1 and k2 are non-zero constants,

then x is a W -curve.

Example 2.13 Let x � x �s� be regular W -curve in E4 given with the parametrization

x �s� � �a cos �cs�, a sin �cs�, b cos �ds� , b sin �ds�� (23)

is a second type and third type Tzitzeica curve, where 0 B s B 2π , a, b, c, d real constants and c A 0 ,

d A 0 .

Then, x without loss of generality, let x be unit speed curve, i.e., a2c2 � b2d2 � 1 . If c � d , then

x is a circle, otherwise �c x d� x is a curve in E4 .

The Frenet curvatures k1, k3 and the Frenet vector fields N1,N3 of the curve x can be given by

k1 �
º
a2c4 � b2d4, (24)

k3 �
cdº

a2c4 � b2d4
, (25)

N1 �
1

k1
��ac2 cos �cs�,�ac2 sin �cs�,�bd2 cos �ds�,�bd2 sin �ds�� , (26)

N3 �
1

k1
�bd2 cos �cs�, bd2 sin �cs�,�ac2 cos �ds�,�ac2 sin �ds�� (27)

[2]. By the use of (23) and (26) at (11), we get

d�T,N2, N3� �
�1º

a2c4 � b2d4
. (28)

Substituting (24) and (28) into (10), we get a2 � �a2c4 � b2d4� 3
2 , which means that a2 is constant

and x is a second type Tzitzeica curve.

Further by the use of (23) and (27) at (13), we obtain

d�T,N1, N2� �
ab �d2 � c2�º
a2c4 � b2d4

. (29)

Substituing (25) and (29) into (12), we get a3 � cd
º
a2c4�b2d4

a2b2�d2
�c2�2 , which means that a3 is constant and

x is a third type Tzitzeica curve.

Then, the projection of W -curve with the parametrization (23) on x4 � 0 coordinate hyperplane

in E4 is x �s� � �cos �sº10�, sin �sº10�, cos �3sº10�� if we take a � 1, b � 1, c � 1
º
10, d � 3

º
10 .

We can plot this W -curve with maple command with (plots):
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Figure 1: Second type and third type Tzitzeica curves, m=0, n=5*pi

Figure 2: Second type and third type Tzitzeica curves, m=0, n=50*pi

spacecurve([cos(t/sqrt(10)),sin(t/sqrt(10)),cos(3*t/sqrt(10))], t=m.n, grid=[30,30]

Example 2.14 Let x � x�s� be a helix on the unit 3-sphere S3�1� embedded in E4 given with the

parametrization

x �s� � �cos θ cos �as�, cos θ sin �as�, sin θ cos �bs�, sin θ sin �bs�� , (30)

where a2cos2θ � b2sin2θ � 1 and x1
2
� x2

2
� cos2θ, x3

2
� x4

2
� sin2θ . Then, x is a second type and

third type Tzitzeica curve.

The Frenet curvatures k1, k3 and the Frenet vector fields N1,N3 of the curve x can be given by

k1 �
»
a4cos2θ � b4sin2θ, (31)

k3 �
abº

a4cos2θ � b4sin2θ
, (32)
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N1 �
��a2 cos θ cos �as�,�a2 cos θ sin �as�,�b2 sin θ cos �bs�,�b2 sin θ sin �bs��º

a4cos2θ � b4sin2θ
(33)

N3 �
�b2 sin θ cos �as�, b2 sin θ sin �as�,�a2 cos θ cos �bs�,�a2 cos θ sin �bs��º

a4cos2θ � b4sin2θ
, (34)

[10]. By the use of (30) and (33) at (11), we get

d�T,N2, N3� �
�1º

a4 cos2 θ � b4 sin2 θ
. (35)

Substituting (31) and (35) into (10), we get a2 � �ºa4 cos2 θ � b4 sin2 θ�3 , which means that a2 is

constant and x is a second type Tzitzeica curve.

Further, by the use of (30) and (34) at (13), we obtain

d�T,N1, N2� �
cos θ sin θ �b2 � a2�º
a4cos2θ � b4sin2θ

. (36)

Substituting (35) and (36) into (12), we get a3 �
ab�a4 cos2 θ�b4 sin2 θ� 1

2

cos2 θ sin2 θ�b2�a2�2 , which means that a3 is

constant and x is a third type Tzitzeica curve.
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Abstract: The notion of source of semi-primeness is firstly given by Aydın, Demir and Camcı in 2018 as

the set of all elements a of R that satisfy aRa � �0� for any associative ring R . They investigated some

basic properties of this set and defined three types of rings which have not appeared in literature before.

The theory of gamma ring has been introduced by Nobusawa in 1964 as a generalization of rings. In this

work, we generalized the notion of source of semi-primeness for gamma rings and investigated its basic

algebraic properties. We also defined SSM S -strongly reduced Γ -ring, SSM S -domain, SSM S -division ring and

examined the relationship between these structures. We determined all possible characteristic values of a

SSM S -domain and proved every finite SSM S -domain Γ -ring M is a SSM S -division Γ -ring.

Keywords: Γ -ring, source of semi-primeness, strong unity.

1. Introduction
The theory of gamma rings has been introduced by Nobusawa as a generalization of rings by

defining triple products on two abelian groups [11]. His model was a pair �Γ,M� , where M is a

subgroup of Hom�A,B� and Γ is a subgroup of Hom�B,A� for additive abelian groups A and B

and products M �Γ �M and Γ �M �Γ , which are defined as ordinary composition of mappings.

W. Barnes dropped the closedness of multiplications in Γ and then defined slightly generalized

gamma rings [2]. After Barnes’ definition a number of authors have done a lot of works and have

obtained various generalizations analogous to the corresponding results in ring theory [3–6, 8, 9].

Prime and semiprime ideals of a Γ -ring M are beneficial to obtain the algebraic structure

of M . The notion of a prime ideal was firstly defined by W. Barnes as an ideal P that satisfies

AB b P implies A b P or B b P for any ideals A and B of M [2]. Barnes also defined prime

ideal and prime radical in this work. He obtained some equivalent conditions that of an ideal to

be a prime ideal and introduced prime radical of a Γ -ring M by defining m -system in a manner
∗Correspondence: oarslan@adu.edu.tr
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analogous to that of McCoy [10]. Kyuno is also obtained some results on prime ideal, semiprime

ideal and prime radical of a Γ -ring M [6].

The source of semi-primeness of a ring R which is denoted by SR was firstly defined by

Aydın et al. in 2018 as the set of all elements a of R satisfying aRa � �0� [1]. They proved some of

basic properties of the set SR . Aydın et al. also defined other new notions which are SSRS -strongly

reduced ring, SSRS -domain and SSRS -field and obtained their relations with each other.

Our main interest is to define the source of semi-primeness SM�A� for any subset A of a

Γ -ring M and to introduce some new notions such as SSM S -strongly reduced ring, SSM S -integral

domain and SSM S -field to understand the algebraic structure of the Γ -ring M .

2. Preliminaries

Let M and Γ be two additive Abelian groups. M is said to be a Γ -ring (in the sense of Barnes) if

there exists ternary multiplication M � Γ �M �M satisfying below conditions for all a, b, c >M ,

α,β > Γ :

(1) �a � b�αc � aαc � bαc,
a�α � β�c � aαc � aβc,
aα �b � c� � aαb � aαc,

(2) �aαb�βc � aα �bβc�.

Let M be a Γ -ring. If there exist δ > Γ and e > M such that aδe � eδa � a for any a > M ,

then a pair �δ, e� is called strong unity of the Γ -ring M [9]. A subset N of the Γ -ring M is said

to be a subring if N is a subgroup of M and nαn� > N for all n,n� > N and α > Γ . A subgroup

U of M is called left ideal (resp. right ideal) if MΓU b U (resp. UΓM b U ). If U is both left

and right ideal, then U is called an ideal of M . An ideal P of the Γ -ring M is said to be prime

if AΓB b P implies A b P or B b P for any ideals A and B of M [2]. An ideal Q of M is said

to be semi-prime if AΓA b P implies A b P for any ideal A of M [6]. A Γ -ring M is said to be

prime (resp. semi-prime) if the zero ideal is prime (resp. semi-prime) [9].

A nonzero element a in M is called zero divisor if there are nonzero elements b, c >M and

β, γ > Γ such that aβb � 0 � cγa . An element x of a Γ -ring M is called strongly nilpotent if

there exists a positive integer n such that �xΓ�nx � �xΓxΓ . . . xΓ�x � �0� [8]. The smallest such

n is called the index of x . A Γ -ring M with no nonzero strongly nilpotent elements is called a

strongly reduced Γ -ring. A Γ -ring M is said to be a division Γ -ring if it has a strong unity �δ, e�
and for each nonzero element a of M there exists b of M such that aδb � bδa � e . The prime

radical of a Γ -ring M is the intersection of all prime ideals of M [9]. If there exists a positive

integer n such that nx � 0 for all x > M , then the smallest such positive integer is called the
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characteristic of M and denoted by charM . If there is no such positive integer, then M is said

to be characteristic zero. Let M1 be a Γ1 -ring and M2 be a Γ2 -ring. An ordered pair �θ,φ�
is called homomorphism if φ � M1 Ð� M2 is a group homomorphism, θ � Γ1 Ð� Γ2 is a group

homomorphism and φ�aαb� � φ�a�θ �α�φ�b� for all a, b > M and α > Γ [9]. A subset A of a

Γ -ring M is called semi-group ideal if aαm,mαa > A for all a > A , α > Γ and m >M .

In this study, we introduced the notion of source of semi-primeness SM�A� as the set of all

elements m of M that satisfy mΓAΓm � �0� for any subset A of a Γ -ring M and prove some of

its set theoretical properties. For instance, we show that SM�A� is a semi-group ideal of M and

a condition is obtained for SM�A� to be an ideal of M . Also, the definitions of SSM S -strongly

reduced Γ -ring, SSM S -domain and SSM S -division Γ -ring are given and obtained some results about

their relations. We determine all possible characteristic values of a SSM S -domain and prove every

finite SSM S -domain Γ -ring M is a SSM S -division Γ -ring.

3. Main Results
Definition 3.1 Let A be a subset of a Γ-ring M . We define the source of semi-primeness of A

as the set SM �A� � �m >M S mΓAΓm � �0�� . We write SM instead of SM �M� , when A �M .

From the definition of source of semi-primeness it is clear that SA � SM �A� 9 A and

SM �B� b SM �A� for any A b B . One can easily show that the source of semiprimeness of

a Γ -ring M is equal to zero if and only if M is a semi-prime Γ -ring. Another observation

about the source of semiprimeness of a Γ -ring M is that if SM � M , then the Jordan product

�m,n�αm�β �� mαm�βn � nαm�βm for any elements m,m�, n > M with α,β > Γ is equal to zero.

Conversely, if the Jordan product for any elements m,m�, n > M with α,β > Γ is equal to zero,

then SM may not be equal to M . Indeed, if M � ��2a b� Ta, b > Z18� and Γ � �� 0
3x

	 Sx > Z18� ,

then the equation �m,n�αm�β � 0 holds for all m,m�, n > M and α,β > Γ . But, it can be shown

that SM is not equal to M . However, if one assume that the Γ -ring M being 2-torsion free, then

converse of the proposition is true. It is also clear that every element in SM is nilpotent of index

at most 3.
We now give the other set-theoretical properties of the source of semi-primeness of a subset

for a Γ -ring M .

Proposition 3.2 Let M1 and M2 be two Γ-rings. If A and B are nonempty subsets of M1 and

M2 , respectively, then SM1�M2 �A �B� � SM1 �A� � SM2 �B� .

Proof If M1 and M2 are two Γ -rings, then M1�M2 is a Γ�Γ -ring with the ternary multiplication

�a, b� �α,β� �c, d� � �aαc, bβd� .
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Let �a, b� > SM1�M2 �A �B� . Then, �a, b� �α,β� �x, y� �γ, θ� �a, b� � �0,0� for all �x, y� > A � B

and �α,β� , �γ, θ� > Γ � Γ . Therefore, we get aαxγa � 0 and bβyθb � 0 for all x > A , y > B ,

α,β, γ, θ > Γ , a >M1 and b >M2 . Hence, �a, b� > SM1 �A��SM2 �B� . Similarly, one can show that

SM1 �A� � SM2 �B� b SM1�M2 �A �B� . Thus, the equality is obtained. j

Proposition 3.3 Let M be a Γ-ring and A be an ideal of M . Then, the followings hold:

(i) The source of semi-primeness of A is a semi-group ideal of M . In particular, it is a

multiplicatively closed subset of M .

(ii) If SM �A�ΓSM �A� � �0� , then SM �A� is an ideal of M .

Proof (i) Let m > SM �A� , α > Γ and x > M . Then, �xαm�ΓAΓ �xαm� � �0� since

mΓAΓm � �0� . It follows that xαm > SM �A� . Similarly, we have mαx > SM �A� . Therefore,

SM �A� is a semi-group ideal of M . The last part of the proposition is obvious.

(ii) Let SM �A�ΓSM �A� � �0� . It is enough to show that SM �A� is additively closed. Let

x, y > SM �A� . Then,

�x � y�ΓAΓ �x � y� � xΓAΓx � xΓAΓy � yΓAΓx � yΓAΓy b xΓAΓy � yΓAΓx.

Since SM �A� is a semi-group ideal, we have AΓx b SM �A� and xΓA b SM �A� . Therefore,

xΓAΓy � yΓAΓx � �0� . Thus, x � y > SM �A� , that is, SM �A� is an ideal of M . j

Proposition 3.4 If Q is a semi-prime ideal of a Γ-ring M , then SM b Q . Moreover, SM is

contained in the prime radical of M .

Proof Let a > SM . Since Q is semi-prime and aΓMΓa � �0� b Q , we have a > Q . Therefore,

SM b Q . This also shows that SM is contained in the prime radical of M . j

Theorem 3.5 Let M1 be a Γ1 -ring and M2 be a Γ2 -ring. If the ordered pair �θ,φ� is a gamma

ring homomorphism, then φ �SM1� is contained in Sφ�M1� . Moreover, if φ is injective, then

φ �SM1� � Sφ�M1� .

Proof Since �θ,φ� is a gamma ring homomorphism, we have φ�M1� is a θ�Γ1�-ring with ternary

multiplication

φ�a�θ�α�φ�b� � φ�aαb�.
Therefore, the source of semi-primeness of φ �M1� is

�φ �a� > φ �M1� S φ�a�θ�Γ1�φ�M1�θ�Γ1�φ�a� � �0�� .
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Now, it is obvious that the set φ �SM1� is contained in Sφ�M1� . Conversely, let φ be injective

and φ�a� > Sφ�M1� . Then, we have φ�aΓ1M1Γ1a� � φ�0� . Hence, a > SM1 since φ is injective.

This shows that Sφ�M1� b φ �SM1� . j

Theorem 3.6 Let M be a Γ-ring and a > SM . If MΓa x �0� and aΓM x �0� , then a is a zero

divisor. Consequently, an element of M which is a not a zero divisor is contained in M � SM .

Proof By hypothesis, there exist b, c > M and α, γ > Γ such that aαb x 0 x cγa . Therefore, we

get a is a zero divisor since aαbδa � 0 � aεcγa , aαb x 0 and cγa x 0 . Now assume that b is not

a zero divisor of M . Hence, b > M � SM since bΓM x �0� x MΓb . Otherwise, b would be a zero

divisor. j

4. SSM S-strongly Reduced Γ-ring, SSM S-domain Γ-ring, SSM S-division Γ-ring

Definition 4.1 Let M be a Γ-ring and M x SM .

(1) M is said to be a SSM S-strongly reduced ring if there are no strongly nilpotent elements of

M � SM .

(2) M is said to be a SSM S-domain if there are no left or right zero divisors of M � SM . A

SSM S-domain M is called SSM S-integral domain if M is commutative with strong unity.

(3) M is said to be a SSM S-division ring if M has a strong unity and every element of M �SM

is unit. A SSM S-division ring M is called SSM S-field if M is commutative.

It is necessary to assume M x SM in the above definition. For instance, if M is the set of

all 2 � 3 matrices of the form �a 0 a

0 b 0
	 with a, b > 4Z16 and Γ is the set of all 3 � 2 matrices of

the form
<@@@@@>
x 0
0 x
x 0

=AAAAA?
with x > 4Z16 , then M is a Γ -ring with SM �M .

From the Definition 4.1, it is clear that if M is a strongly reduced Γ -ring (Γ -domain or Γ -

division ring), then M is a SSM S -strongly reduced ring ( SSM S -domain or SSM S -division ring). Also,

one can show that every SSM S -domain is a SSM S -strongly reduced ring. Conversely, SSM S -strongly

reduced rings are not a SSM S -domain in general. For example, if M � ��a 0 b
0 c 0

	 Sa, b, c > Z� and

Γ �

¢̈̈̈
¦̈̈̈
¤
<@@@@@>
0 0
0 x
x 0

=AAAAA?
Sx > Z� , then M is a SSM S -strongly reduced Γ -ring but not a SSM S -domain. Similarly,

a SSM S -division ring M may not be a SSM S -domain. Let M � ��a a� Sa > Zp� for any prime p
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and Γ � ��x
0
	 Sx > Z� . Then, one can show that M is a SSM S -division Γ -ring, but not a SSM S -

domain. Another observation on the Definition 4.1 is that if M1 is a SSM1 S -domain and M2 is

a SSM2 S -domain, then the direct product M1 � M2 is SSM1 � SM2 S -strongly reduced ring. It is

easy to show that the prime radical of a SSM S -strongly reduced Γ -ring M contains every strongly

nilpotent element. By the very nature of the gamma ring, every division gamma ring is not a

gamma domain. Similarly, every SSM S -division Γ -ring is not a SSM S -domain. For example, the

Γ � ��x
0
	 Sx > Z� -ring M � ��a a� Sa > Zp� is a SSM S -division Γ -ring that is not a SSM S -domain

for any prime p .

Proposition 4.2 Let M be a Γ-ring with M x SM and a >M . Then the followings are equivalent:

(i) M is a SSM S-strongly reduced ring.

(ii) If aΓa b SM , then a > SM .

(iii) If �aΓ�n a b SM for any positive integer n , then a > SM .

Proof (i)�(ii) Let M be a SSM S -strongly reduced ring and aΓa b SM . Therefore, we have

�aΓ�4a � �0� that is a is a strongly nilpotent element. Hence, a > SM since M is a SSM S -strongly

reduced ring.

(ii)�(iii) Let a >M and n be the smallest positive integer such that �aΓ�n a b SM . There

exists a positive integer k such that n B 2k B n� 1 . By Proposition 3.3, we have �aΓ�2k�1 a b SM ,

that is, �aΓ�k a b SM . If k � 1 , then a > SM by (ii). Assume that k A 1 . But, this contradicts

with n to be the smallest positive integer since k B n � k � 1 @ n . Hence, n cannot exceed 2.

(iii)�(i) Assume that a > M is a strongly nilpotent element. Then, there exists a positive

integer n such that �aΓ�na � �0� . By hypothesis, we get a > SM since �aΓ�n a b SM . Therefore,

there is no strongly nilpotent element in M � SM . So, M is a SSM S -strongly reduced ring. j

Corollary 4.3 If M is a SSM S-strongly reduced Γ-ring, then SM � �a >M U�aΓ�2 a � �0�� .

Proof Let T � �a >M U�aΓ�2 a � �0�� and a > SM . Then, clearly a > T . Conversely, assume

that a > T . Then, we have �aΓ�2 a � �0� , that is, a is a strongly nilpotent element. It follows that

a > SM since M is a SSM S -strongly reduced Γ -ring. Consequently, we get SM � T . j

Proposition 4.4 Let M be a Γ-ring. If M is a SSM S-domain, then SM �A� � SM for any nonzero

Γ-subring A of M . Besides, A is a SSAS-domain.
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Proof From the definition of source of semi-primeness, it is clear that SM b SM�A� . Assume

that there exists an element m > SM�A� such that m ¶ SM . Then, we get mΓA � �0� � AΓm since

mΓAΓm � �0� and M is a SSM S -domain. This implies A � �0� , which is a contradiction. Hence,

SM �A� � SM . Now, let a > A be a zero-divisor. Therefore, a > SM since M is a SSM S -domain.

This implies a > SM�A� 9A � SA . It follows that A is a SSAS -domain. j

We should note that SM �A� � SA may not be provided even if M is a SSM S -domain Γ -ring.

For the Γ �

¢̈̈̈
¦̈̈̈
¤
<@@@@@>
x 0
0 x
x 0

=AAAAA?
Sx > Z� -ring M � ��a 0 b

0 c 0
	 Sa, b, c > Z� , one can show that the M is a

SSM S -domain and SM �A� x SA for the subset A � ��a 0 b
0 0 0

	 Sa, b > Z� of M .

Proposition 4.4 is not true for a SSM S -strongly reduced Γ -ring M in general. For example,

let M � ��a 0 c
0 b 0

	 Sa, b, c > Z� and Γ �

¢̈̈̈
¦̈̈̈
¤
<@@@@@>
x 0
0 x
0 0

=AAAAA?
Sx > Z� . Then, M is SSM S -strongly reduced

Γ -ring since there is no strongly nilpotent element in the set

M � SM � ��a 0 c
0 b 0

	 Sa, b, c > Z, a x 0 or b x 0� .

For the Γ -subring A � ��a 0 c
0 0 0

	 Sa, c > Z� of M , we have SM�A� � ��0 0 c
0 b 0

	 Sb, c > Z� .

Therefore, it is clear that SM�A� x SM .

Proposition 4.5 If M is a SSM S-strongly reduced Γ-ring and A is a non-zero Γ-subring of M ,

then A is a SSAS-strongly reduced Γ-ring.

Proof Let M be a SSM S -strongly reduced Γ -ring and A be a nonzero Γ -subring of M . If

a > A is a strongly nilpotent element, then a > SM by hypothesis. This implies that a > SA since

SM b SM�A� . Hence, A is a SSAS -strongly reduced Γ -ring. j

Lemma 4.6 If M is a SSM S-domain Γ-ring, then M � SM is a multiplicative set.

Proof Let M be a SSM S -domain Γ -ring. Assume that aαb is a zero-divisor for a, b > M � SM

and α > Γ . Then, there exist nonzero elements c > M � SM and γ > Γ such that �aαb�γc � 0 .

Hence, a or b must be zero-divisors which contradicts with our hypothesis. This implies aαb is

not a zero divisor, that is, aαb >M � SM by Theorem 3.6. Therefore, M � SM is a multiplicative

set. j

Theorem 4.7 Every finite SSM S-domain Γ-ring M is a SSM S-division ring.
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Proof Assume that M is a SSM S -domain Γ -ring. Let T �M � SM � �a1, . . . , an� and a be any

element of T . Since T is a multiplicative set by Lemma 4.6 and a is not a left (or right) zero

divisor, we define injective maps on T such that f�x� � aγx and g�x� � xγa for all x > T . Then,

finite cardinality requires the maps to be surjective. Therefore, there exist 1 B i B n and 1 B j B n

such that aγai � a � ajγa . Since aγaiγa � aγa � aγajγa , we get ai � aj and so aγai � a � aiγa .

By the same argument, we have an element a�i > T such that bγa�i � b � a�iγb for b > T . Accordingly,

one has

�aγb�γa�i � aγb � aiγ �aγb�
and since aγb > T , it follows that a�i � ai . Set e � ai and δ � γ . Then, �δ, e� is a strong unity of

the semigroup T and clearly eδe � e .

For an arbitrary element x of M , we either have x > SM or x > T . If x > T , then we already

have that xδe � eδx � x . Let x > SM . Assuming e � eδx > SM implies that e � 0 . But, it is a

contradiction because e > T . Thus, e � eδx > T and similarly we have e � xδe > T . Then,

�e � eδx� δe � e � eδx and eδ �e � xδe� � e � xδe

yields us that eδx � xδe . Therefore, we have xδe � x � eδx since e is not a zero-divisor.

Consequently, �δ, e� is a strong unity of Γ -ring M . Moreover, considering the maps f and

g , there exist x, y > T such that aδx � e � yδa . This shows that a is a unit in M . Hence, M is a

SSM S -division ring. j

Corollary 4.8 If M is a finite SSM S-integral domain, then it is SSM S-field.

Theorem 4.9 Let M be a Γ-ring with strong unity �δ, e� . If M is a SSM S-domain, then the

characteristic of M is either 0, or p for a prime p , or p2 for a prime p .

Proof Assume that charM � n A 1 and p is a prime dividing n . Then, there exists an integer

k such that n � pk . Hence, 0 � ne � �pe� δ �ke� . This implies that pe is a zero-divisor, that is,

pe > SM . Therefore, we have �pe� δmδ �pe� � 0 for all m > M . It follows that p2m � 0 for all

m >M . Accordingly, we get n � p or n � p2 since charM � n . j

Theorem 4.10 Let M be a Γ-ring with strong unity �δ, e� . If M is a SSM S-strongly reduced

ring, then the characteristic of M is a cube-free integer, that is, there is no prime p such that p3

divides charM .

Proof Assume that charM � n A 1 and p is a prime dividing n , say n � ptk for some t C 1 and
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1 B k @ n with gcd �p, k� � 1 . Since

�pke�t � ptkte � kt�1 �ne� � 0 �pke > SM

� �pke� δmδ �pke� � 0,¦m >M �p2k2m � 0,¦m >M

and charM � n , there exits s > Z such that ptks � p2k2 . If t were greater than or equal to 3 , then

we get p Sk . But, this contradicts with gcd �p, k� � 1 . Hence, n must be a cube-free integer. j
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Abstract: This review reckons with iterative scheme of Thianwan to approximate a common fixed point

for four G�nonexpansive mappings (tersely G�nm). We verify several convergence results for in this way

mappings in Banach space by dint of a digraph.
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1. Introduction and Preliminaries
Let X be a Banach space, K x g,K bX . Directed graph mostly enrolled qua digraph is a double:

G � �V �G� ,E �G�� , that here V �G� is the set of vertices of graph and E �G� is the set of its

edges that involves overall the loops, scilicet �x,x� > E �G� for all x > V �G� . Given that G enjoys

no parallel edges. If x , y occur vertices of G , here a path in G ranging x from y of length N is a

sequence �xi�
N
i�0 of N �1 vertices such that x � x0 , y � xN and �xi�1, xi� > E �G� for all i � 1,N .

Digraph G is alleged to become transitive if, for all x, y, z > V �G� such that �x, y� and �y, z� are

in E �G� , we acquire �x, z� > E �G� [2]. A mapping f �K �K is asserted to become

• G�nonexpansive (tersely G � nm) [3] if it yields (i) �x, y� > E �G� � �fx, fy� > E �G� (f

preserves edges of G), (ii) �x, y� > E �G�� Yfx � fyY B Yx � yY ;

• semi-compact [9] if for �xn� in K with Yxn � fxnY � 0 as n � ª , there appears a

subsequence �xni� of �xn� such that xni � f� >K .

The mappings fi �K �K are supply condition �A
��

� [1] if there is a nondecreasing function

g � �0,ª�� �0,ª� with g �0� � 0 , 0 @ g �t� for all t > �0,ª� such that Yx � fixY C g �d �x,Ff�� for

all i � 1, k , x >K , where d �x,Ff� � inf �Yx � f�Y � f� > Ff � 9
k
c�1F �fc� x g� .
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Let x0 > V �G� and Υ b V �G� . We state that [5], (i) Υ is dominated by x0 if �x0, x� > E �G�

for all x > Υ , (ii) Υ dominates x0 if for each x > Υ , �x0, x� > E �G� .

Let G be a digraph such that V �G� � K . Then, K is alleged to get property P [8] if for

each sequence �xn� in K @ x > K and �xn, xn�1� > E �G� , there is a subsequence �xnl
� of �xn�

such that �xnl
, x� > E �G� for all l > N .

Remark 1.1 [6] If G is transitive, then Property P is equal to the speciality: if �xn� b K with

�xn, xn�1� > E �G� such that for any subsequence �xnl
� of �xn� @ x b X , then �xn, x� > E �G�

for all n > N .

Phuengrattana and Suantai [15] gave on the rate of convergence of Mann, Ishikawa, Noor

and SP� iterations for continuous functions on an arbitrary interval. Şahin and Başarır [16]

presented on the strong and ∆�convergence of SP� iteration on CAT �0� space.

Motivated by [11–13] and above results, the iterative scheme is defined as follows:

tn � �1 � βn�xn � βnf1xn,

yn � �1 � ξn�xn � ξnf2tn,

sn � �1 � ϱn� yn � ϱnf3yn,

xn�1 � �1 � θn�xn � θnf4sn, n C 1, (1)

where �ξn� , �θn� , �βn� , �ϱn� b �0,1� , for all i � 1,4 , fi �K �K are G � nm . We verify several

convergence results for in this way mappings in Banach space by dint of a digraph.

Lemma 1.2 [10] Let X be a uniformly convex Banach space. Suggesting that 0 @ b B νn B

c @ 1 , n C 1 . Let �xn� ,�yn� b X be such that lim supn�ª YxnY B a , lim supn�ª YynY B a and

limn�ª Yνnxn � �1 � νn� ynY � a , where a C 0 . Then, limn�ª Yxn � ynY � 0.

2. Main Results

Ff � 9
4
c�1F �fc� x g . For x0 >K , let �xn� be the sequence created by (1).

Proposition 2.1 Let u0 > Ff be such that �x0, u0� and �u0, x0� are in E �G� . Then, �xn, u0� ,

�u0, xn� , �xn, sn� , �sn, xn� , �xn, yn� , �yn, xn� , �xn, tn� , �tn, xn� , �u0, sn� , �sn, u0� , �u0, yn� ,

�yn, u0� , �u0, tn� , �tn, u0� , �xn, xn�1� are in E �G� for all n > N .

Proof We shall demonstrate our deductions by induction. Let �x0, u0� > E �G� . By virtue of

edge-preserving of f1 , we have �f1x0, u0� > E �G� , and thus �t0, u0� > E �G� from the convexity of

E �G� . Due to edge-preserving of f2 , we get �f2t0, u0� > E �G� . By using the convexity of E �G�
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and �x0, u0� , �f2t0, u0� > E �G� , we own �y0, u0� > E �G� . As f3 is edge-preserving, we possess

�f3y0, u0� > E �G� and �s0, u0� > E �G� from the convexity of E �G� . Owing to edge-preserving of

f4 , �f4s0, u0� > E �G� . Again the convexity of E �G� and �x0, u0� , �f4s0, u0� > E �G� , we acquire

�x1, u0� > E �G� . Continuing in this fashion for �x1, u0� instead of �x0, u0� , we get �t1, u0� ,

�y1, u0� , �s1, u0� , �x2, u0� > E �G� .

Suppose that �xv, u0� > E �G� for v C 1 . Because of edge-preserving of f1 , we attain

�f1xv, u0� > E �G� , and thus �tv, u0� > E �G� from the convexity of E �G� . On account of edge-

preserving of f2 , we achieve �f2tv, u0� > E �G� . Using the convexity of E �G� and �xv, u0� ,

�f2tv, u0� > E �G� , we obtain �yv, u0� > E �G� . Because f3 is edge-preserving, we own �f3yv, u0� >

E �G� and so �sv, u0� > E �G� from the convexity of E �G� . In view of edge-preserving of f4 ,

�f4sv, u0� > E �G� . Repetition the convexity of E �G� and �xv, u0� , �f4sv, u0� > E �G� , we belong

�xv�1, u0� > E �G� . Repeating the procedure on one occasion for �xv�1, u0� > E �G� , we get

�tv�1, u0� , �yv�1, u0� , �sv�1, u0� , �xv�2, u0� > E �G� .

Hence, �xn, u0� , �tn, u0� , �yn, u0� , �sn, u0� > E �G� for n C 1 . Utilizing an analog

argumentum, we infer that �u0, xn� , �u0, tn� , �u0, yn� , �u0, sn� > E �G� from �u0, x0� > E �G� . As

the graph G is transitivity, we acquire for n C 1 �xn, sn� , �sn, xn� , �yn, xn� , �xn, yn� , �tn, xn� ,

�xn, tn� and �xn, xn�1� > E �G� . j

Lemma 2.2 If K is a nonempty closed convex subset of a real uniformly convex Banach space

X , �ξn� , �θn� , �βn� , �ϱn� b �a, b� , where 0 @ a @ b @ 1 and �x0, u0� , �u0, x0� > E �G� for x0 >K

and u0 > Ff , then

(i) Yxn�1 � u0Y B Yxn � u0Y for n C 1 , and hence Yxn � u0Y � 0 as n�ª ;

(ii) limn�ª Yxn � fixnY � 0 for all i � 1,4.

Proof (i) By Proposition 2.1, �xn, u0� , �u0, xn� , �sn, xn� , �xn, sn� ,�yn, xn� , �xn, yn� , �xn, tn� ,

�tn, xn� , �u0, sn� , �sn, u0� , �u0, yn� , �yn, u0� , �u0, tn� , �tn, u0� , �xn, xn�1� are in E �G� . It

follows from (1) that

Ytn � u0Y � Y�u0 � ��βn � 1�xn � βnf1xnY

B ��βn � 1� Y�u0 � xnY � βn Yf1xn � u0Y

B ��βn � 1� Y�u0 � xnY � βn Y�u0 � xnY

� Y�u0 � xnY . (2)
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Using (1) & (2), we have

Yyn � u0Y B �1 � ξn� Yxn � u0Y � ξn Yf2tn � u0Y

B �1 � ξn� Yxn � u0Y � ξn Ytn � u0Y

B Yxn � u0Y . (3)

Similarly, along with (3), we get

Ysn � u0Y B �1 � ϱn� Yyn � u0Y � ϱn Yf3yn � u0Y

B �1 � ϱn� Yyn � u0Y � ϱn Yyn � u0Y

B Yyn � u0Y

B Yxn � u0Y . (4)

By (4), we possess

Y�u0 � xn�1Y B ��θn � 1� Y�u0 � xnY � θn Y�u0 � f4snY

B ��θn � 1� Y�u0 � xnY � θn Ysn � u0Y

B Yxn � u0Y . (5)

Hence, limn�ª Yxn � u0Y exists.

(ii) By assumption (i), �xn� is bounded. Let

lim
n�ª

Yxn � u0Y �M. (6)

If M � 0 , then, by G � nm of �f1, f2, f3, f4� , it is obvious. Next, suppose M A 0 . We shall show

that, for all i � 1,4 , Yxn � fixnY� 0 as n�ª .

Getting lim sup on both parts of (2), (3) & (4), we have

lim sup
n�ª

Ytn � u0Y B M, (7)

lim sup
n�ª

Yyn � u0Y B M, (8)

lim sup
n�ª

Ysn � u0Y B M. (9)

It implies by (7), (8) & (9) and the G � nm of �f1, f2, f3, f4� that

Yf1xn � u0Y B Yxn � u0Y

lim sup
n�ª

Yf1xn � u0Y B M , (10)
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Yf2tn � u0Y B Ytn � u0Y

lim sup
n�ª

Yf2tn � u0Y B M , (11)

Yf3yn � u0Y B Yyn � u0Y

lim sup
n�ª

Yf3yn � u0Y B M , (12)

and

Yf4sn � u0Y B Ysn � u0Y

lim sup
n�ª

Yf4sn � u0Y B M . (13)

Since limn�ª Yxn�1 � u0Y �M , we get

lim
n�ª

Y�1 � θn� �xn � u0� � θn �f4sn � u0�Y �M. (14)

By Lemma 1.2, we obtain

Yxn � f4snY� 0 as n�ª. (15)

Now, using the G � nm of �f1, f2, f3, f4� , we have

Y�u0 � xnY B Yf4sn � u0Y � Y�f4sn � xnY

B Yxn � f4snY � Ysn � u0Y (16)

B Yxn � f4snY � Y�1 � ϱn� �yn � u0� � ϱn �f3yn � u0�Y

B Yxn � f4snY � �1 � ϱn� Yyn � u0Y � ϱn Yf3yn � u0Y

B Yxn � f4snY � Yyn � u0Y (17)

B Yxn � f4snY � Y�1 � ξn� �xn � u0� � ξn �f2tn � u0�Y

B Yxn � f4snY � �1 � ξn� Yxn � u0Y � ξn Yf2tn � u0Y

B
1

ξn
Yxn � f4snY � Ytn � u0Y

B
1

a
Yxn � f4snY � Ytn � u0Y . (18)

Taking lim inf on both sides of (16), (17), (18) and using (15), we obtain

M B lim inf
n�ª

Ysn � u0Y , (19)

M B lim inf
n�ª

Yyn � u0Y , (20)

M B lim inf
n�ª

Ytn � u0Y , (21)
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respectively.

By combining (7) & (21), (8) & (20), (9) & (19), we get

lim
n�ª

Ytn � u0Y � lim
n�ª

Yyn � u0Y � lim
n�ª

Ysn � u0Y �M , (22)

respectively. Namely,

lim
n�ª

Y�1 � βn� �xn � u0� � βn �f1xn � u0�Y � M,

lim
n�ª

Y�1 � ξn� �xn � u0� � ξn �f2tn � u0�Y � M,

lim
n�ª

Y�1 � ϱn� �yn � u0� � ϱn �f3yn � u0�Y � M ,

respectively. It follows from (6), (8), (10), (11) & (12) and Lemma 1.2 that

lim
n�ª

Yxn � f1xnY � 0, (23)

lim
n�ª

Yxn � f2tnY � 0, (24)

lim
n�ª

Yyn � f3ynY � 0, resp. (25)

It implies by (23) & (24) that

Yxn � f2xnY B Yxn � f2tnY � Yf2tn � f2xnY

B Yxn � f2tnY � Ytn � xnY

B Yxn � f2tnY � βn Yf1xn � xnY

B Yxn � f2tnY � b Yf1xn � xnY

� 0 as n�ª. (26)

By (1) & (24), we have

Yxn � ynY � Yxn � ��1 � ξn�xn � ξnf2tn�Y

B ξn Yxn � f2tnY

B b Yxn � f2tnY

� 0 as n�ª. (27)

It follows from (25) & (27), we get

Yxn � f3xnY B Y�yn � xnY � Yyn � f3ynY � Yf3yn � f3xnY

B Y�yn � xnY � Yyn � f3ynY

� Y�xn � ynY � 0 as n�ª. (28)
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By (1), (25) & (27), we have

Ysn � xnY B Y�yn � snY � Yyn � xnY

� Y��1 � ϱn� yn � ϱnf3yn� � ynY � Y�xn � ynY

B ϱn Yyn � f3ynY � Y�xn � ynY

B b Yyn � f3ynY � Y�xn � ynY

� 0 as n�ª. (29)

Using (15) & (29), we obtain

Yxn � f4xnY B Yxn � f4snY � Yf4sn � f4xnY

B Yxn � f4snY

� Ysn � xnY

� 0 as n�ª. (30)

From (23), (26), (28) & (30), we get

Yxn � fixnY� 0 as n�ª for all i � 1,4. (31)

j

Theorem 2.3 Let K is a nonempty closed convex subset of a real uniformly convex Banach space

X and �ξn� , �θn� , �βn� , �ϱn� b �a, b� , where 0 @ a @ b @ 1 . Let u0 > Ff such that �x0, u0� ,

�u0, x0� are in E �G� for x0 > K . Supposing that K hold the property P , �f1, f2, f3, f4� satisfy

the condition�A
��

� , Ff is dominated by x0 and Ff dominates x0 , then �xn� Ð� u0 > Ff .

Proof Let u0 > Ff be such that �xn, u0� , �u0, xn� ,�sn, xn� , �xn, sn� , �xn, yn� , �yn, xn� ,

�xn, tn� , �tn, xn� , �u0, sn� , �sn, u0� , �u0, yn� , �yn, u0� , �u0, tn� , �tn, u0� , �xn, xn�1� are in E �G�

for all n > N . Due to Lemma 2.2 (ii) and condition �A
��

� , we attain that limn�ª g �d �xn, Ff�� � 0 .

As g is nondecreasing with g �0� � 0 , we hold d �xn, Ff� � 0 as n �ª . Thus, we can receive a

subsequence �xnl
� of �xn� and �u�l � ` Ff such that Yxnl

� u�l Y @ 2�l . Due to the fact that strong

convergence implies weak convergence and by Remark 1.1, we hold �xnl
, u�l � > E �G� . Using the

proof method of [11], we own

Yxnl�1
� u�l Y B Yxnl

� u�l Y @
1

2l
,

and so

Y�u�l�1 � u�l Y B Y�xnl�1
� u�l Y � Y�u�l�1 � xnl�1

Y B 3.2��1�l�.
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We deduce that �u�l�1� is a Cauchy sequence. Therefore, we have u�l � r . By closed of Ff ,

r > Ff in that case xnl
� r . Because of Lemma 2.2 (i), xn � r > Ff . j

Theorem 2.4 Let K is a nonempty closed convex subset of a real uniformly convex Banach space

X and �ξn� , �θn� , �βn� , �ϱn� b �a, b� , where 0 @ a @ b @ 1 . Let u0 > Ff such that �x0, u0� ,

�u0, x0� are in E �G� for x0 >K . Supposing that K has the property P and one of �f1, f2, f3, f4�

is semi-compact, Ff is dominated by x0 and Ff dominates x0 , then �xn�Ð� u0 > Ff .

Proof Let u0 > Ff be such that �xn, u0� , �u0, xn� , �xn, sn� , �sn, xn� , �xn, yn� , �yn, xn� ,

�xn, tn� , �tn, xn� , �u0, sn� , �sn, u0� , �u0, yn� , �yn, u0� , �u0, tn� , �tn, u0� , �xn, xn�1� are in

E �G� for all n > N . We have limn�ª Yxn � fjxnY � 0 from Lemma 2.2 (ii). Assume that fj

is semi-compact for all j � 1,4 . Then, there exists a subsequence �xnl
� of �xn� such that

liml�ª Yxnl
� υY � 0 for some υ >K . This together with Remark 1.1 implies that �xnl

, υ� > E �G� .

It follows from the G � nm of �f1, f2, f3, f4� and Lemma 2.2 (ii) that

Yυ � fjυY B Yυ � xnl
Y � Yxnl

� fjxnl
Y � Yfjxnl

� fjυY

� 0 as l �ª,

for all j � 1,4 . Hereat, υ > Ff so that limn�ª Yxn � υY exists. Thus, xn � υ as n�ª . j

We indicate an instance which is inspired by Example 4.5 in [7].

Example 2.5 K � �0,2� bX � R . Let G be a digraph described by V �G� �K and �x, y� > E �G�

iff 1.20 C y C x C 0.50 . Denote �f1, f2, f3, f4� � K � K by f1x � 1 � 23
49

tan ��1 � x� , f2x �

1 � 29
45

tan ��1 � x� , f3x � 1 � 23
49

arcsin ��1 � x� , f4x � 1 � 29
45

arcsin ��1 � x� for any x > K and

i � 1,2,3,4 . It is easy to see that f1, f2, f3, f4 are G�nm , but f1, f2, f3, f4 are not nonexpansive.

Let βn �
6n�5
8n�15

, ξn �
3n�1
9n�20

, ϱn �
10n�3
11n�4

, θn �
7n�11
13n�47

for n C 1 . Ff � 9
4
c�1F �fc� � �1� as in Figure

1.
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Figure 1: Plot showing Ff � 9
4
c�1F �fc� � �1�

Table 1 The value of the sequence �xn� with initial value x0 � 1.20000 , x0 � 0.80000 and

n � 20 , respectively.

n xn xn

1 1.20000 0.80000
2 1.15950 0.84047
3 1.12180 0.87822
4 1.09010 0.90994
5 1.06500 0.93499
6 1.04600 0.95395
7 1.03210 0.96788
8 1.02210 0.97787
9 1.01510 0.98492
10 1.01020 0.98981
11 1.00680 0.99317
12 1.00450 0.99545
13 1.00300 0.99699
14 1.00200 0.99802
15 1.00130 0.99870
16 1.00090 0.99915
17 1.00060 0.99945
18 1.00040 0.99964
19 1.00030 0.99977
20 1.00020 0.99985

Remark 2.6 (i) If ξn � 0 and f1 � f2 � f3 � f4 � f in (1), then Theorem 2.3 generalize the results

of Theorem 3.6 in [14] for self-map.

(ii) If ξn � ϱn � 0 and f1 � f2 � f3 � f4 � f in (1), we attain convergence of the Mann

iteration to some fixed points of f on Banach space involving a digraph.

(iii) If f1 � f2 � f3 � f4 � f in (1), then Theorem 2.3 extends the results of [12] without

errors for self-map.
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(iv) If f1 � f2 , f3 � f4 in (1), then Theorem 2.3 improves the results of [13] without errors

for self-map.

(v) If ξn � 0 in (1), then Theorem 2.4 reduces to the results of [4].

3. Conclusion
In this writting, we reckons with four step iteration scheme to common fixed points of four G�nm

described on Banach space involving a digraph. Our findings evolve the equal results of Shahzad

(2005) [14], Thianwan (2008) [12], Kızıltunç et al. (2010) [13] and Tripak (2016) [4]. Within

the future scope of the idea, reader can show that (1) compare convergence rate Picard, Mann,

Ishikawa and SP� iteration process for contractions.
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Abstract: In this paper, we introduce a new type of non-lightlike general helix that we name non-lightlike

associated helix which is associated with a non-lightlike special surface curve. By using the Darboux frame

of a surface curve, we generate the position vector of a non-lightlike associated helix in parametric form.

We investigate special cases when the non-lightlike surface curve is a helical curve, a relatively normal-slant

helix or an isophote curve. In every case, we obtain the position vector of the non-lightlike associated helix

by solving differential equations and examples are given for the achieved results.

Keywords: Non-lightlike associated helix, non-lightlike isophote curve, non-lightlike relatively normal-

slant helix.

1. Introduction
Geometrical structures of special type such as special surfaces or curves have always been a focus

of interest for different disciplines. Without a doubt, the helix curve is the most fascinating of

such special geometric structures. A general helix is defined by the property that the tangent

makes a constant angle with a fixed straight line (the axis of the general helix) and a necessary and

sufficient condition that a curve to be a general helix is that the ratio of curvature κ to torsion

τ be constant [3]. Helices arise in carbon nano-tubes, nano-springs, DNA double and collagen

triple helix, α -helices, bacterial flagella in salmonella and escherichia coli, lipid bilayers, bacterial

shape in spirochetes, aerial hyphae in actinomycetes, tendrils, horns, screws, springs, vines, helical

staircases and sea shells [4, 14, 17]. Helical structures such as hyper-helices are used in fractal

geometry [22]. In the realm of computer-aided design and computer graphics, helix shapes can be

utilized for describing tool paths, simulating movement, and creating designs for roads, etc. [25].

Instead of tangent, by considering principal normal vector, a new type of special curve

called slant helix has been defined by Izumiya and Takeuchi [10]. Later, further studies have been
∗Correspondence: onur.kaya@cbu.edu.tr
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done. For instance, Ali investigated the position vector of spacelike slant helices, Ali and Turgut

investigated the position vector of timelike slant helices in Minkowski 3-space [1, 2].

A surface curve is a curve that lies on a surface. While properties of any arbitrary curve are

examined by Frenet frame, properties of surface curves can also be examined by Darboux frame�T, g, n� (see Section 2 for details). On a surface, helical curves, relatively normal-slant helices and

isophote curves have been defined considering the vectors of Darboux frame, by the property that

the vector T , g and n makes a constant angle with a fixed straight line, respectively. Puig-Pey,

Gálvez and Iglesias have studied helical surface curves and for the parametric and the implicit

forms of a surface, they introduced a new method of generating helical tool paths [20]. In 2017,

Macit and Düldül introduced relatively normal-slant helices and studied their axis in Euclidean

3-space [15]. El Haimi and Chahdi investigated the parametric equations of relatively normal-slant

helices also in Euclidean 3-space [8]. Further studies have been done by Yadav and Pal, Yadav

and Yadav in Minkowski 3-space [23, 24]. On the other hand, isophote curves have been studied

in both Euclidean and Lorentzian spaces [5–7]. An isophote curve on a surface is also a result of

Lambert’s cosine law in optics. Lambert’s cosine law indicates that the intensity of illumination

on a diffuse surface is proportional to the cosine of the angle between the surface normal and the

light vector. According to this law, the intensity is irrespective of the actual viewpoint; hence

the illumination is the same when viewed from any direction [12]. By considering Lambert’s law

Doğan and Yaylı introduced the geometric description of isophote curves in [7]. Isophote curves

have many applications in different areas such as car body construction, local shading of a surface

or geometry of surfaces of rotation and canal surfaces [11, 19, 21]. Öztürk, Nes̆ović and Koç Öztürk

have presented a method for numerical computing of general helices, relatively normal-slant helices,

and isophote curves lying on a non-degenerate surface in Minkowski space E3
1 [18].

In [16], Önder defined new types of associated helices that are associated with special surface

curves such as helical curves, relatively normal-slant helices and isophote curves in Euclidean 3-

space. He introduced parametric forms of some special associated helices with respect to Darboux

frame of special surface curves.

In this paper, we define new types of non-lightlike associated helices in Minkowski 3-space.

We name these new helices as non-lightlike (spacelike or timelike) surface curve-connected (SCC)

associated helices and we obtain parametrizations for such helices by considering helical curves,

relatively normal-slant helices and isophote curves on a non-lightlike surface in Minkowski 3-space.
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2. Preliminaries

Minkowski 3-space which is denoted by E3
1 is a real vector space endowed with the metric `, e �

�dx2
� dy2 � dz2 , where �x, y, z� is a rectangular coordinate system. This metric is also called

Lorentzian metric. In E3
1 , a vector u is called spacelike (resp. timelike or lightlike) if `u,ue A 0

or u � 0 (resp. `u,ue @ 0 or `u,ue � 0). Similarly, a curve is called spacelike (resp. timelike or

lightlike) if its velocity vector is spacelike (resp. timelike or lightlike). In the case of surfaces, a

surface is called spacelike (timelike or lightlike) if the induced metric on the surface is Riemannian

(Lorentzian or degenerate), i.e., the normal vector on the surface is timelike (spacelike or lightlike,

respectively) [13]. Throughout this paper, we only consider non-lightlike curves and surfaces.

Therefore, whenever we talk about a surface or a curve, we assume that they are either spacelike

or timelike.

The Lorentzian cross product for any vectors u, v > E3
1 is defined by

u � v � �u2v3 � u3v2, u1v3 � u3v1, u2v1 � u1v2�,
where u � �u1, u2, u3� and v � �v1, v2, v3� [13]. The Frenet formulae �T,N,B� for a unit speed

non-lightlike curve α with arc-length parameter s is given by

T �
� κN, N �

� εBκT � τB, B�
� εT τN, (1)

where T,N,B are the tangent (velocity) vector, principal normal vector, binormal vector, respec-

tively, εT � `T,T e , εB � `B,Be , � denotes derivative with respect to s , κ is curvature and τ is

torsion of the curve α . Here, εT and εB determines the Lorentzian character of the vectors T

and B , respectively. If εT � εB � 1 , then α is a spacelike curve with timelike principal normal

vector. If εT � 1 and εB � �1 , then α is a spacelike curve with spacelike principal normal vector.

If εT � �1 , then α is a timelike curve [13].

Let φ be a regular surface in E3
1 and α � I ` R � φ be a non-lightlike smooth curve on φ .

Then, the Darboux frame �T, g, n� along the surface curve α is well defined and its formulae is

given by

T �
� κgg � εgknn, g� � εnκgT � εT τgn, n� � knT � τgg, (2)

where T , g � εgT � n , n are tangent vector of α , intrinsic normal, surface normal along α ,

respectively, kn is normal curvature, κg is geodesic curvature, τg is geodesic torsion, εT � `T,T e ,
εg � `g, ge and εn � `n,ne . If εT � εg � 1 , then both φ and α are spacelike. If εT � 1 and εg � �1 ,

then φ is timelike and α is spacelike. Finally, if εT � �1 and εn � 1 , then both φ and α are

timelike [5, 6].

Considering Darboux vector fields defined in [9], we define following vector fields for non-

lightlike surface curves on non-lightlike surfaces.
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Definition 2.1 Let α be a unit speed non-lightlike curve on a regular non-lightlike surface φ with

Darboux frame �T, g, n� . Then, the vector fields Dn,Dr and Do along α defined by

Dn � �kng � εnκgn, Dr � �τgT � κgn, Do � εT τgT � εgkng

are called normal Darboux vector field, rectifying Darboux vector field and osculating Darboux

vector field, respectively.

Lemma 2.2 [16] Let φ be a regular non-lightlike surface and α be a smooth non-lightlike curve on

φ with Darboux frame �T, g, n� , normal curvature kn , geodesic curvature κg and geodesic torsion

τg . We have the followings:

(i) α is a geodesic curve � κg � 0 .

(ii) α is an asymptotic curve � kn � 0 .

(iii) α is a line of curvature � τg � 0 .

Definition 2.3 [24] Let α be a unit speed non-lightlike curve on a regular non-lightlike surface

φ with Darboux frame �T, g, n� . Then, α is called a relatively normal-slant helix if the vector g

makes a constant angle with a fixed unit direction.

Definition 2.4 [5, 6] Let α be a unit speed non-lightlike curve on a regular non-lightlike surface

φ with Darboux frame �T, g, n� . Then, α is called an isophote curve if the vector n makes a

constant angle with a fixed unit direction.

Similar to the definition given by Önder in [16], we give the following definition for non-

lightlike surface curves in Minkowski 3-space.

Definition 2.5 Let α be a unit speed non-lightlike curve on a regular non-lightlike surface φ with

Darboux vector fields Dn,Dr and Do . Then, α is called a Di -Darboux slant helix if the Darboux

vector field Di makes a constant angle with a fixed unit direction, where i > �n, r, o� .

By using the above definitions, we introduce helices associated with special surface curves

in the following section.

3. Helices Associated with Surface Curves in E3
1

Let φ be a regular non-lightlike surface and α � I ` R � φ be a smooth, unit speed non-lightlike

curve with arc-length parameter s , Frenet frame �T,N,B� and Darboux frame �T, g, n� . We

consider another non-lightlike curve β � J ` R� E3
1 which is given by the parametrization

β�s� � α�s� � x�s�T �s� � y�s�g�s� � z�s�n�s�, (3)

110



Onur Kaya / FCMS

where x � x�s� , y � y�s� and z � z�s� are smooth functions of s . The non-lightlike curve β is

called non-lightlike associated curve of surface curve α” or SCC-associated curve”, where SCC

stands for surface curve connected. As well as the associated curve β might be on φ , it might be

totally apart from φ . The position that β is on φ or not relies on the values which the functions

x, y, z take. We investigate special cases for the functions x, y, z in the following subsections.

Moreover to the definition of the curve β , considering that β is a general helix it would be

called SCC-associated helix. Now, let us differentiate the equation (3) with respect to s by using

(1) and (2). As the result of this differentiation, we get

β��s� � R1�s�T �s� �R2�s�g�s� �R3�s�n�s�, (4)

where R1 � R1�s� , R2 � R2�s� and R3 � R3�s� are smooth functions of s which are defined by

R1 � x� � εnκgy � knz � 1, R2 � κgx � y� � τgz, R3 � εgknx � εT τgy � z�. (5)

In the following subsections, we investigate special cases when β is a helix and it is associated

with a special surface curve.

3.1. Non-lightlike Helices Associated with Helical Curves on a Surface in E3
1

In this first subsection, we assume that the tangent vector β� of the non-lightlike associated curve

β of any arbitrary non-lightlike surface curve α is linearly dependent with the tangent vector of

α . For this special case, from (4), we get R1 x 0 , R2 � 0 , R3 � 0 and thus β��s� � R1�s�T �s� .

Let sβ be the arc-length parameter of the associated curve β . Then, from β��s� � R1�s�T �s� , we

obtain dsβ � �R1ds and the Frenet vectors of β are computed as

¢̈̈̈̈̈̈̈
¦̈̈̈̈̈̈
¤̈
Tβ � �T, Nβ � �

1¼Tεgκ2
g � εnk2nT �κgg � εgknn� ,

Bβ �

εBβ¼Tεgκ2
g � εnk2nT �εnκgn � kng� � εBβ

DnYDnY , (6)

where εBβ
� `Bβ ,Bβe and Tβ , Nβ , Bβ are tangent vector, principal normal vector, binormal

vector of β , respectively. By using Definition 2.1 and (6), we obtain the following Theorem 3.1:

Theorem 3.1 Let β be a non-lightlike associated curve of an arbitrary non-lightlike surface curve

α with �kn, κg� x �0,0� which lies on a regular surface φ with the condition that β� and α�
� T

are linearly dependent. Then, followings are equivalent:

(i) β is a helix.

(ii) α is a helical curve on φ .

(iii) α is a Dn -Darboux slant helix on φ .

111



Onur Kaya / FCMS

Remark 3.2 The non-lightlike helix curve β which is associated with a non-lightlike helical surface

curve α can be referred to as: Non-lightlike helical curve-connected associated helix or non-lightlike

HCC-associated helix.

Let us now, investigate special cases when x, y or z vanishes, respectively. Such special

cases allow us to determine the position vector of β in parametric form. From (5), we have the

following system

x� � εnκgy � knz � 1 x 0, κgx � y� � τgz � 0, εgknx � εT τgy � z� � 0. (7)

Case 1: x � 0 . Then, from (7) we have the system

εnκgy � knz � 1 x 0, y� � τgz � 0, εT τgy � z� � 0. (8)

If τg x 0 , then the solution of system (8) depends on the sign of εT . Let εT � 1 . By using a

variable change t � R τg�s�ds , for constants c1, c2 > R the solution of the system (8) is calculated
as

y � �c1 sinh�S τg�s�ds� � c2 cosh�S τg�s�ds� ,
z � c1 cosh�S τg�s�ds� � c2 sinh�S τg�s�ds� ,

which we substitute in (3) and obtain the parametric form of the position vector of β as follows

β�s� � α�s� � �c1 sinh�S τg�s�ds� � c2 cosh�S τg�s�ds�� g�s�
� �c1 cosh�S τg�s�ds� � c2 sinh�S τg�s�ds��n�s�. (9)

In this case, α , β are spacelike curves and φ is a non-lightlike, i.e., spacelike or timelike, surface.

Let εT � �1 . Then, for constants c3, c4 > R the solution of system (8) is given by

y � c3 cos�S τg�s�ds� , z � c4 sin�S τg�s�ds� ,
which similarly leads to the parametric form of the position vector of β as follows

β�s� � α�s� � c3 cos�S τg�s�ds� g�s� � c4 sin�S τg�s�ds�n�s�. (10)

In this case, α , β are timelike curves and φ is a timelike surface.

If τg � 0 , then, from second and third equations of system (8), we get y � c5 and z � c6 ,

respectively, where c5, c6 > R are constants. Therefore, position vector of β curve is given by

β�s� � α�s� � c5g�s� � c6n�s� .

We can give the following theorem and corollary as results of the above investigation.
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Theorem 3.3 The spacelike (resp. timelike) associated curve β given in (9) (resp. (10)) is a

general helix if and only if α is a spacelike (resp. timelike) helical curve on a non-lightlike (resp.

timelike) surface φ .

Remark 3.4 The spacelike (resp. timelike) associated curve (9) (resp. (10)) can be referred to

as: Spacelike (resp. timelike) helical curve-connected associated helix of type 1 or spacelike (resp.

timelike) HCC-associated helix of type 1.

Corollary 3.5 The helical curve α is a line of curvature if and only if non-lightlike HCC-associated

helix has the parametrization β�s� � α�s� � c5g�s� � c6n�s� , where c5, c6 > R are constants.

Case 2: y � 0 . From (7), it follows

x� � knz � 1 x 0, κgx � τgz � 0, εgknx � z� � 0, (11)

with the condition �κg, τg� x �0,0� . If kg x 0 , then we get x � �

τg

κg
z from second equation of

system (11). We substitute this equality in the third equation of system (11) and get the differential

equation

z� �
εgknτg

κg
z � 0

whose solution is z � c7 exp�S εgknτg

κg
ds� , where c7 > R is constant. Hence, the position vector

of β is given by

β�s� � α � c7 exp�S εgknτg

κg
ds��� τg

κg
T � n� . (12)

If κg � 0 and kn x 0 , then we obtain x � z � 0 and therefore β�s� � α�s� .

By the investigation above, the followings can be given.

Theorem 3.6 The non-lightlike associated curve β given by (12) is a general helix if and only if

α is a non-lightlike helical curve on φ .

Remark 3.7 The associated curve (12) can be referred to as: spacelike (timelike) helical curve-

connected associated helix of type 2 or spacelike (timelike) HCC-associated helix of type 2.

Corollary 3.8 (i) The non-lightlike helical curve α is an asymptotic curve with κg x 0 if

and only if non-lightlike HCC-associated helix of type 2 has the parametrization β�s� �

α�s� � c5τg

κg
T � c7n , where c7 > R is constant.
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(ii) The non-lightlike helical curve α is a line of curvature if and only if non-lightlike HCC-

associated helix of type 2 has the parametrization β�s� � c7n , where c7 > R is constant.

Case 3: z � 0 . In this case, from (7), we have the following system

x� � εnκgy x 0, κgx � y� � 0, εgknx � εT τgy � 0, (13)

with �kn, τg� x �0,0� . If kn x 0 , then from third equation of system (13), we have x � �

εT τg

εgkn
y .

By substituting x in second equation of system (13), we get the following differential equation

y� �
εT τgκg

εgkn
y � 0,

whose solution is y � c8 exp�S εT τgκg

εgkn
ds� , where c8 > R is constant. Hence, the position vector

of β is given by

β�s� � α�s� � c8 exp�S εT τgκg

εgkn
ds���εT τg

εgkn
T � g� . (14)

If kn � 0 , then it follows x � y � 0 and β�s� � α�s� .

By the investigation above, we can give the followings.

Theorem 3.9 The non-lightlike associated curve β given by (14) is a general helix if and only if

α is a non-lightlike helical curve on φ .

Remark 3.10 The non-lightlike associated curve (14) can be referred to as: Non-lightlike helical

curve-connected associated helix of type 3 or non-lightlike HCC-associated helix of type 3.

Corollary 3.11 (i) The non-lightlike helical curve α is a geodesic curve if and only if non-

lightlike HCC-associated helix of type 3 has the parametrization β�s� � α�s�� c8εT τg

εgkn
T � c6g ,

where c8 > R is constant.

(ii) The non-lightlike helical curve α is a line of curvature if and only if non-lightlike HCC-

associated helix of type 3 has the parametrization β�s� � α�s��c8g , where c8 > R is constant.

3.2. Non-lightlike Helices Associated with Relatively Normal-slant Helices in E3
1

This subsection is to investigate non-lightlike associated helices of relatively normal-slant helices.

In order to do the mentioned investigation, we assume that tangent vector β� of the associated

curve β is linearly dependent with intrinsic normal vector field g of a surface curve α . Then, from
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(4), it follows β��s� � R2�s�g�s� and thus the Frenet vectors Tβ , Nβ , Bβ of β are calculated as

¢̈̈̈̈̈̈̈
¦̈̈̈̈̈̈
¤̈
Tβ � �g, Nβ � �

1¼TεTκ2
g � εnτ2g T �εnκgT � εT τgn� ,

Bβ � �

εBβ¼TεTκ2
g � εnτ2g T �κgn � τgT � � εBβ

DrYDrY , (15)

where εBβ
� `Bβ ,Bβe . We can give the following theorem by using (15) and Definition 2.1.

Theorem 3.12 Let β be a non-lightlike associated curve of an arbitrary non-lightlike surface curve

α with �κg, τg� x �0,0� who lies on a regular surface φ with the condition that β� and intrinsic

normal g are linearly dependent. Then, followings are equivalent:
(i) β is a helix.

(ii) α is a relatively normal-slant helix on φ .
(iii) α is a Dr -Darboux slant helix on φ .

Remark 3.13 The non-lightlike helix β which is associated with relatively normal-slant helix

α can be referred to as: Non-lightlike relatively normal-slant helix-connected associated helix or

non-lightlike RNS-HC-associated helix.

Investigating when x, y, z functions have special values leads us to the following cases. From

(5), we have

x� � εnκgy � knz � 1 � 0, κgx � y� � τgz x 0, εgknx � εT τgy � z� � 0. (16)

Case 1: x � 0 . Then, the system (16) is reduced to

εnκgy � knz � 1 � 0, y� � τgz x 0, εT τgy � z� � 0 (17)

with �kn, κg� x �0,0� . If κg x 0 , then first and third equations of system (16) yields the following

linear differential equation

z� �
εT knτg

εnκg
z �

εT τg

εnκg
,

whose solution can be calculated as

z � exp�S εT knτg

εnκg
ds��S exp��S εT knτg

εnκg
ds� εT τg

εnκg
ds � c9	 ,

where c9 > R is constant. Then, position vector of associated curve beta is given by

β�s� � α�s� � 1 � kn exp�S εT knτg

εnκg
ds��S exp��S εT knτg

εnκg
ds� εT τg

εnκg
ds � c9	

εnκg
g

� exp�S εT knτg

εnκg
ds��S exp��S εT knτg

εnκg
ds� εT τg

εnκg
ds � c9	n.

(18)
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If κg � 0 and τg x 0 , then from the first equation of system (16), we get z � �

1

kn
. Since z� �

k�n
k2n

,

from the third equation of system (16), it follows y � �

k�n
εT k2nτg

. Thus, associated curve beta is

given with the position vector

β�s� � α�s� � k�n
εT k2nτg

g �
1

kn
n. (19)

Theorem 3.14 The non-lightlike associated curve β given in (18) (resp. (19)) is a general helix

if and only if α is a relatively normal-slant helix on φ .

Remark 3.15 The non-lightlike associated curve (18) (resp. (19)) can be referred to as: Non-

lightlike relatively normal-slant helix-connected associated helix of type 1 or non-lightlike RNS-HC-

associated helix of type 1.

Corollary 3.16 (i) The non-lightlike relatively normal-slant helix α is an asymptotic curve

on φ with �kn, κg� x �0,0� if and only if RNS-HC-associated helix has the parametrization

β�s� � α �

1

εnκg
g � �S εT τg

εnκg
ds � c7�n .

(ii) The non-lightlike relatively normal-slant helix α is a geodesic curve on φ with �kn, κg� x �0,0�
if and only if RNS-HC-associated helix has the parametrization in (19).

(iii) The non-lightlike relatively normal-slant helix α is a line of curvature on φ with �kn, κg� x
�0,0� if and only if RNS-HC-associated helix has the parametrization β�s� � α�s�� c7kn � 1

εnκg
g�

c7n .

Case 2: y � 0 . The system (16) becomes

x� � knz � 0, κgx � τgz x 0, εgknx � z� � 0. (20)

If kn x 0 , then, from system (20), the following differential equation is derived

z�� �
k�n
kn

z� � εgk
2
nz � εgkn, (21)

whose homogeneous part can be obtained with the aid of a variable change t � S knds as follows

d2z

dt2
� εgz � 0. (22)

The differential equation (22) has two different types of solutions with respect to the value of εg .
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Let εg � 1 . In this case, β is a spacelike curve. Then, the general solution of (21) is obtained

as follows

z � c10 cosh�S knds� � c11 sinh�S knds�
� cosh�S knds�S sinh�S knds�ds � sinh�S knds�S cosh�S knds�ds, (23)

where c10, c11 > R are constants. This leads us to

x � � c10 sinh�S knds� � c11 cosh�S knds�
� sinh�S knds�S sinh�S knds�ds � cosh�S knds�S cosh�S knds�ds (24)

since x � �

z�

kn
from the third equation of system (20). In this case, β is a spacelike curve and α is

a spacelike (resp. timelike) curve on a spacelike (resp. timelike) surface. Thus, by using (23) and

(24), the position vector of spacelike associated curve β is given as follows

β�s� � α�s� � ��c10 sinh�S knds� � c11 cosh�S knds�
� sinh�S knds�S sinh�S knds�ds � cosh�S knds�S cosh�S knds�ds�T
� �c10 cosh�S knds� � c11 sinh�S knds�
� sinh�S knds�S sinh�S knds�ds � cosh�S knds�S cosh�S knds�ds�n.

(25)

Let εg � �1 . In this case, T and n become spacelike vectors. Then, we get φ is a timelike

surface, α is a spacelike curve and β is a timelike curve. Similar to the previous case, the general

solution of (21) is obtained as follows

z � c12 cos�S knds� � c13 sin�S knds�
� cos�S knds�S sin�S knds�ds � sin�S knds�S cos�S knds�ds,

where c12, c13 > R are constants and thus

x � � c12 sin�S knds� � c13 cos�S knds�
� sin�S knds�S sin�S knds�ds � cos�S knds�S cos�S knds�ds.
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Hence, the position vector of timelike associated curve β is stated as

β�s� � α�s� � ��c12 sin�S knds� � c13 cos�S knds�
� sin�S knds�S sin�S knds�ds � cos�S knds�S cos�S knds�ds�T
� �c12 cos�S knds� � c13 sin�S knds�
� cos�S knds�S sin�S knds�ds � sin�S knds�S cos�S knds�ds�n.

(26)

If kn � 0 , then from first and third equations of system (20), we get x � �s � c19 , z � c20 ,

respectively, and therefore the position vector of β is given by

β�s� � α�s� � ��s � c14�T � c15n, (27)

where c14, c15 > R are constants. Now, we can give the followings:

Theorem 3.17 The spacelike (resp. timelike and non-lightlike) associated curve β given by (25)

(resp. (26) and (27)) is a general helix if and only if α is a relatively normal-slant helix on φ .

Remark 3.18 The associated curves (25) and (26) can be referred to as: Spacelike and timelike

relatively normal-slant helix-connected associated helix of type 2 or spacelike and timelike RNS-

HC-associated helix of type 2, respectively.

Corollary 3.19 The non-lightlike relatively normal-slant helix α is an asymptotic curve on φ if

and only if non-lightlike RNS-HC-associated helix has the parametrization in (27).

Case 3: z � 0 . In this case, from system (16), we obtain

x� � εnκgy � 1 � 0, κgx � y� x 0, εgknx � εT τgy � 0. (28)

with �kn, τg� x �0,0� . If τg x 0 , then from the third equation of system (28), we have y � �

εgkn

εT τg
.

Substituting y in first equation of (28), it follows x� �
εgεnknκg

εT τg
x�1 � 0 , where εgεn

εT
� �1 . Then,

following differential equation is obtained

x� �
knκg

τg
x � �1,

whose general solution is

x � exp��S knκg

τg
ds���S exp�S knκg

τg
ds�ds � c16	 ,
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where c16 > R is constant. Hence, we obtain y as follows

y � �

εgkn

εT τg
exp��S knκg

τg
ds���S exp�S knκg

τg
ds�ds � c16	 ,

and the position vector of associated curve β is given by

β�s� � α�s� � exp��S knκg

τg
ds���S exp�S knκg

τg
ds�ds � c16	�T �

εgkn

εT τg
g� . (29)

If κg x 0 and τg � 0 , then from the system (28), we get x � 0 and y � �

1

εnκg
. Thus, the position

vector of associated curve β is given by

β�s� � α�s� � 1

εnκg
g. (30)

Theorem 3.20 The non-lightlike associated curve β given by (29) (resp. (30)) is a general helix

if and only if α is a relatively normal-slant helix on φ .

Remark 3.21 The non-lightlike associated curve (29) (resp. (30)) can be referred to as: Non-

lightlike relatively normal-slant helix-connected associated helix of type 3 or non-lightlike RNS-HC-

associated helix of type 3.

Corollary 3.22 (i) The non-lightlike relatively normal-slant helix α is an asymptotic curve

on φ if and only if non-lightlike RNS-HC-associated helix has the parametrization β�s� �

α�s� � ��s � c16�T , where c16 > R is constant.

(ii) The non-lightlike relatively normal-slant helix α is a geodesic curve on φ if and only if

non-lightlike RNS-HC-associated helix has the parametrization β�s� � α�s� � ��s � c16�T �

��s�c16�εgkn

εT τg
g , where c16 > R is constant.

(iii) The non-lightlike relatively normal-slant helix α is a line of curvature on φ if and only if

non-lightlike RNS-HC-associated helix has the parametrization in (30).

3.3. Non-lightlike helices associated with isophote curves in E3
1

In this final subsection of Section 3, we investigate non-lightlike helices associated with isophote

curves. Let the tangent vector β� of associated curve β be linearly dependent with the unit surface

normal along an arbitrary non-lightlike curve α on an oriented surface φ . Then, from (4), we have

R1 � R2 � 0 and β��s� � R3�s�n�s� . Arc-length parameter and Frenet vectors Tβ , Nβ , Bβ of β
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are calculated as dsβ � �R3ds and

¢̈̈̈̈̈̈̈
¦̈̈̈̈̈̈
¤̈
Tβ � �n, Nβ � �

1¼TεT k2n � εgτ2g T �knT � τgg� ,
Bβ �

εBβ¼TεT k2n � εgτ2g T �εgkng � εT τgT � � εBβ

DoYDoY , (31)

respectively, where εBβ
� `Bβ ,Bβ .e . From (31) and Definition 2.1, we can give the following

theorem.

Theorem 3.23 Let β be a non-lightlike associated curve of an arbitrary non-lightlike surface curve

α with �kn, τg� x �0,0� who lies on a regular surface φ with the condition that β� and unit surface

normal n along α are linearly dependent. Then, followings are equivalent:

(i) β is a helix.

(ii) α is an isophote curve on φ .

(iii) α is a Do -Darboux slant helix on φ .

Remark 3.24 The non-lightlike helix β associated with isophote curve α can be referred to as:

Non-lightlike isophote curve-connected associated helix or non-lightlike ICC-associated helix.

We now investigate special cases when x, y, z functions have special values. From (5), we

get

x� � εnκgy � knz � 1 � 0, κgx � y� � τgz � 0, εgknx � εT τgy � z� x 0. (32)

Case 1: x � 0 . Then, from (32), we have

εnκgy � knz � 1 � 0, y� � τgz � 0, εT τgy � z� x 0, (33)

with �kn, κg� x �0,0� . If τg x 0 , then from second equation of system (33), we have z � �
y�

τg
and by

substituting this equality in the third equation of system (33), we obtain the following differential

equation

y� �
εnκgτg

kn
y �

τg

kn
,

whose general solution is

y � exp�S εnκgτg

kn
ds��S exp��S εnκgτg

kn
ds� τg

kn
ds � c17� , (34)

where c17 is a real constant. Since z � �
y�

τg
, it follows

z � �

1

kn
�

εnκg

kn
exp�S εnκgτg

kn
ds��S exp��S εnκgτg

kn
ds� τg

kn
ds � c17� . (35)
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Therefore, for the position vector of associated curve β , we obtain

β�s� � α�s� � exp�S εnκgτg

kn
ds��S exp��S εnκgτg

kn
ds� τg

kn
ds � c17� g

� � 1

kn
�

εnκg

kn
exp�S εnκgτg

kn
ds��S exp��S εnκgτg

kn
ds� τg

kn
ds � c17��n. (36)

If kn x 0 and τg � 0 , then from the second equation of system (33), we get y � c18 for a real

constant c18 . Substituting this result in first equation of system (33) yields z � �

c18εnκg � 1

kn
.

Therefore, the position vector of associated curve β is obtained as

β�s� � α�s� � c18g �
c18εnκg � 1

kn
n. (37)

We state our findings with the following theorem and corollaries.

Theorem 3.25 The non-lightlike associated curve β given by (36) (resp. (37)) is a general helix

if and only if α is an isophote curve on φ .

Remark 3.26 The non-lightlike associated curve (36) (resp. (37)) can be referred to as: Non-

lightlike isophote curve-connected associated helix of type 1 or non-lightlike ICC-associated helix of

type 1.

Corollary 3.27 (i) The non-lightlike isophote curve α with �kn, κg� x �0,0� is an asymptotic

curve if and only if non-lightlike ICC-associated helix has the parametrization β�s� � α�s� �
1

εnκg
g �

k�

g

εnκ2
gτg

n .

(ii) The non-lightlike isophote curve α with �kn, κg� x �0,0� is a geodesic curve if and only if

non-lightlike ICC-associated helix has the parametrization β�s� � α�s� � R τg
kn

dsg � 1
kn

n .

(iii) The non-lightlike isophote curve α with �kn, κg� x �0,0� is a line of curvature if and only if

non-lightlike ICC-associated helix has the parametrization (37).

Case 2: y � 0 . From system (32), we have

x� � knz � 1 � 0, κgx � τgz � 0, εgknx � z� x 0, (38)

with �κg, τg� x �0,0� . If τg x 0 , then, from the second equation of system (38), we get z � �

κg

τg
x

which we substitute in the first equation of system (38) and obtain the following differential

equation

x� �
knκg

τg
x � �1,
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whose general solution is

x � exp�S knκg

τg
ds���S exp��S knκg

τg
ds�ds � c19	 , (39)

where c19 is a real constant. Since z � �
κg

τg
x , the position vector of the associated curve β is

obtained as

β�s� � α�s� � exp�S knκg

τg
ds���S exp��S knκg

τg
ds�ds � c19	�T �

κg

τg
n� . (40)

If kn x 0 and τg � 0 , then, second and first equations of system (38) yield x � 0 and z � �
1
kn

,

respectively. Thus, the position vector of associated curve β is given by

β�s� � α �

1

kn
n. (41)

Now, we give the following theorem and corollaries.

Theorem 3.28 The non-lightlike associated curve β given by (40) (resp. (41)) is a general helix

if and only if α is an isophote curve on φ .

Remark 3.29 The non-lightlike associated curve (40) (resp. (41)) can be referred to as: Non-

lightlike isophote curve-connected associated helix of type 2 or non-lightlike ICC-associated helix of

type 2.

Corollary 3.30 (i) The non-lightlike isophote curve α with �κg, τg� x �0,0� is an asymptotic

curve if and only if non-lightlike ICC-associated helix has the parametrization β�s� � α�s� �
��s � c19�T �

κg�s�c19�

τg
n .

(ii) The non-lightlike isophote curve α with �κg, τg� x �0,0� is a geodesic curve if and only if

non-lightlike ICC-associated helix has the parametrization β�s� � α�s� � ��s � c19�T .
(iii) The non-lightlike isophote curve α with �κg, τg� x �0,0� is a line of curvature if and only if

non-lightlike ICC-associated helix has the parametrization in (41).

Case 3: z � 0 . In this case, from (32) we obtain

x� � εnκgy � 1 � 0, κgx � y� � 0, εgknx � εT τgy x 0. (42)

If κg � 0 , then, from system (42), we get x � �s � c29 and y � c30 , where c20, c21 are real

constants. Then, the position vector of the associated curve β is given by

β�s� � α�s� � ��s � c20�T � c21g. (43)
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If κg x 0 , then from second equation of system (42), we have x � �

y�

κg
. We take the

derivative of x and substitute it in the first equation of system (42) and obtain the following

differential equation

y�� �
k�g

κg
y� � εnκ

2
gy � κg,

whose homogeneous part can be achieved by a parameter change t � R κgds as

d2y

dt2
� εny � 0. (44)

The solution of (44) depends on the value of εn which could be either 1 or �1 . If εn � 1 , then we

get

y � c22 cosh�S κgds� � c23 sinh�S κgds�
� cosh�S κgds�S sinh�S κgds�ds � sinh�S κgds�S cosh�S κgds�ds,

x � � c22 sinh�S κgds� � c23 cosh�S κgds�
� sinh�S κgds�S sinh�S κgds�ds � cosh�S κgds�S cosh�S κgds�ds,

(45)

where c22, c23 are real constants.

If εn � �1 , then we get

y � c24 cos�S κgds� � c25 sin�S κgds�
� cos�S κgds�S sin�S κgds�ds � sin�S κgds�S cos�S κgds�ds,

x � c24 sin�S κgds� � c25 cos�S κgds�
� sin�S κgds�S sin�S κgds�ds � cos�S κgds�S cos�S κgds�ds,

(46)

where c24, c25 are real constants. In either cases,

β�s� � α�s� � xT � yg, (47)

where x, y are as defined in (45) or (46).

Theorem 3.31 The non-lightlike associated curve β given by (47) is a general helix if and only

if α is an isophote curve on φ .
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Remark 3.32 The non-lightlike associated curve (47) can be referred to as: Non-lightlike isophote

curve-connected associated helix of type 3 or non-lightlike ICC-associated helix of type 3.

Corollary 3.33 The non-lightlike isophote curve α is a geodesic curve if and only if non-lightlike

ICC-associated helix has the parametrization (43).

4. Examples

Example 4.1 Let the spacelike surface φ be given by the parametrization φ�u, v� � �coshu, sinhu, v�
and

α�u� � �cosh� uº
2
� , sinh� uº

2
� , uº

2
�

be a spacelike helix on φ . Then, elements of Darboux frame of α are calculated as

T �s� � � 1º
2
sinh� sº

2
� , 1º

2
cosh� sº

2
� , 1º

2
� ,

g�s� � �sinh� sº
2
� , cosh� sº

2
� ,� 1º

2
� , n�s� � �cosh� sº

2
� , sinh� sº

2
� ,0� ,

kn �
1
2

, κg � 0 and τg �
1
2

. Since κg � 0 , α is a geodesic curve on φ . On the other hand, since g

and n are Lorenztian circles or arc of a Lorenztian circle, then we have that α is also a relatively

normal-slant helix and an isophote curve on φ . Figure 1 shows some β curves associated with α

considering the obtained results in Section 3.

Figure 1: Spacelike surface curve α (blue), spacelike HCC-associated helix of type 1 (red), spacelike
RNS-HC-associated helix of type 1 (black) and spacelike ICC-associated helix of type 2 (green),
respectively

Example 4.2 Let the timelike surface φ be given by the parametrization φ�u, v� � �º3u, v cos�u�, vsin�u�� ,

124



Onur Kaya / FCMS

Figure 2: Timelike surface curve α (blue), timelike HCC-associated helix of type 3 (red), timelike
RNS-HC-associated helix of type 3 (black), respectively

v > ��º3,
º
3� and

α�s� � ��
¾

3

2
s, cos� sº

2
� , sin� sº

2
���

be a timelike helix on φ . The elements of Darboux frame of α are calculated as

n(s) =

�������
º
2s

2

¾
3 �

s2

2

,

º
3 sin� sº

2
�¾

3 �
s2

2

,

º
3 cos� sº

2
�¾

3 �
s2

2

������ , kn �
1

2
cosh�π

2
� , kn �

1

2
sinh�π

2
� and

τg �

º
3

2
. Since g is a Lorenztian circle or an arc of a Lorenztian circle, then we have that α is

also a relatively normal-slant helix. Figure 2 shows some β curves associated with α considering

the obtained results in Section 3.
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