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On Different Definitions of Hyper Pseudo BCC-algebras

Didem Siirgevil Uzay ©®'; Alev Firat ®*
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alev.firat@ege.edu.tr

Received: 20 July 2022 Accepted: 06 June 2023

Abstract: We study hyper pseudo BCC-algebras which are a common generalization of hyper BCC-
algebras and hyper BCK-algebras. In particular, we introduce different notion of hyper pseudo BCC-
algebras and describe the relationship among them. Then, by choosing one of these definitions, we

investigate for its related properties.

Keywords: Hyper pseudo order, hyper operation, hyper pseudo BCC-algebras.

1. Introduction

Hyper structures and pseudo structures have an important place in the field of algebra. These
notions help to create new structures in algebraic system and to investigate their properties. The

notions of hyper operation and hyper order were first defined by Marty in 1934 [7].

BCK-algebras were first studied by Iseki and Tanaka [4]. BCC-algebras, a generalization of
BCK-algebras, were defined in 1990 by Dudek and their related properties were investigated [3].
The concept of Hyper BCK-algebra was introduced in 2000 by Jun, Zahedi, Xin and Borzooei
[5]. Borzooei, Dudek and Koohestani in 2006 carried similar definitions and applications of hyper

BCK-algebras to hyper BCC-algebras and defined various ideal types [1].

In this study, the notion of hyper pseudo order is defined. Then, different notions of hyper
pseudo BCC-algebras are defined and their existences are proven with examples. In addition, the
relationship between them is examined and some related properties are obtained. As a result, it is

aimed to transfer hyper pseudo structures to BCC-algebras so that new algebraic structures can

be built.

2. Preliminaries

Definition 2.1 [3] Let X be a nonempty set, “x’ be a operation on X and ‘0’ be a constant

*Correspondence: didemsurgevil@hotmail.com
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This Research Article is licensed under a Creative Commons Attribution 4.0 International License.

Also, it has been published considering the Research and Publication Ethics.
56


https://orcid.org/0000-0003-0249-9186
https://orcid.org/0000-0001-6927-4817

Didem Siirgevil Uzay and Alev Firat / FCMS

element. (X, *,0) is called to be a BCC-algebra, if it supplies the following conditions for all
r,y,z € X:

(BCC1) ((xxy)*(zxy))*(xxz)=0,

(BCC2) %0 =z,

(BCC3) xxx=0,

(BCC4) 0xxz =0,

(BCC5) z+y and yxx=0=z=y.

Definition 2.2 [7] Let H be a nonempty set
o:Hx H— P(H)— {0}

be a hyper operation. If “x <K y< 0€xoy forall z,y e H and S KT < for every S, T C H,
Vs e S, dt €T such that s <t 7, then ‘<’ is named to be a hyper order in H .

Definition 2.3 [1] Let H be a nonempty set, ‘o’ be a hyper operation on H, ‘<’ be a hyper
order on H and ‘0’ be a constant element of H. (H,o,<,0) is called to be a hyper BCC-algebra
if it supplies the following conditions, for all x,y,z € H :

(HBCC1) (zoz)o(yoz) <K zoy,

(HBCC2) 0ox =0,

(HBCC3) z00=x,

(HBCC}) <y and y <z = x =y.

Definition 2.4 [1] Let (H,o0,<,0) be a hyper BCC-algebra and I be a subset of H such that

0 € I is named as follows, for all z,y,z € H :

(1) a hyper BCC-ideal of typel, if
(roy)ozx I, yel=>x02C1I,

(2) a hyper BCC-ideal of type2, if
(xoy)ozCIl, yel=>202C1,

(3) a hyper BCC-ideal of type3, if
(zoy)ozk I, yel=zxozk 1,

(4) a hyper BCC-ideal of typed, if

(xoy)ozCI, yel=>zxozk .

o7



Didem Siirgevil Uzay and Alev Firat / FCMS

Definition 2.5 [5] Let H be a nonempty set ‘o’ be a hyper operation on H, ‘<’ be a hyper order
in H and ‘0’ be a constant element of H. (H,o,<,0) is named to be a hyper BCK-algebra if it
supplies the following conditions, for all x,y,z € H :

(HBCK1) (xoz)o(yoz) K xoy,

(HBCK2) (xoy)oz=(voz)oy,

(HBCK3) zoy < x,

(HBCK4) 2 <y and y < x =z = y.

Definition 2.6 [2] Let H be a nonempty set, ‘x’, ‘o’ be hyper operations on H, ‘<’ be a hyper
order in H and ‘0’ be a constant element of H, (H,o,%,<,0) is named to be a hyper pseudo
BCK-algebra, if it supplies the following conditions, for all x,y,z € H :

(HPBCK1) (zoz)o(yoz)Kzoy, (xx2)*(yxz) L xx*y,

(HPBCK2) (zoy)*z=(x*2z)oy,

(HPBCK3) zoy <z, xxy <L x,

(HPBCKj) x <y and y <z =z =1y.

3. Hyper Pseudo BCC-algebras

In this section, different definitions of Hyper Pseudo BCC-algebras, these definitions relationship

between them and some of their related properties are given.

Definition 3.1 Let H be a nonempty set and
o:HxH— P(H)— {0}

be a hyper operation.
If"r <y 0czoys0c€xxy forall z,y € H and S < T < for every S, T C H, Vs € S

Jt € T such that s <<t ", then ‘<’ is called to be a hyper pseudo order in H .

¢ 7

Definition 3.2 Let H be a nonempty set, ‘o’, ‘x’ be hyper operations on H, ‘<’ be a hyper
pseudo order in H, ‘0’ be a constant element of H. (H,o,%,<,0) is named to be hyper pseudo

BCC1 -algebra if it supplies the following conditions, for all x,y,z € H :

(HPBCC1) (xoz)o(yoz)Kxoy, (z*xz2)x(y*xz) L x*y,
(HPBC(C42) 0ox = {0}, 0%z = {0},

(HPBC(C43) zo0={z}, zx0={z},

o8
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(HPBCC14) z <y and y < c = =1y,

(HPBCCY5) z<xys0€zoys0€r*y.

Example 3.3 Let H = {0, m,n} and ‘o’, ‘«’ be hyper operations on H with Cayley table give as
in Table 1.

Table 1: Hyper operations.

o ‘ 0 m n

o[ {0} {0} {0}
m| {m} {0} {0}
n| {n} {n} {On}

* ‘ 0 m n

o {0y {0} {0}
m| {m} {0} {0}
n| {n} {n} {0Omn}

Then, it is easily controlled that (H,o,%,<,0) is a hyper pseudo BCC -algebra and hyper
pseudo BCK-algebra. Also, ‘o’ and ‘x’ hyper operations with (H,o,<,0) and (H,x*,<,0) be

hyper BCC-algebras.

2

Remark 3.4 Let H be a nonempty set, ‘o’, ‘x’ be hyper operations on H, ‘<’ be a hyper pseudo
order in H, ‘0’ be a constant element of H. According to both hyper operations, the (H,o,x,0)

system is always a hyper pseudo BCC -algebra when the system is hyper BCC-algebra.

¢ 2

Definition 3.5 Let H be a nonempty set, ‘o’, ‘x’ be hyper operations on H, ‘<’ be a hyper
pseudo order in H, ‘0’ be a constant element of H. (H,o,%,<,0) is named to be hyper pseudo

BCCs -algebra if it supplies the following conditions, for all x,y,z € H :

HPBCC31) (zoz)x(yoz) <Koy, (xxz)o(yxz)<Lzoy,

(

(HPBC(C32) 0ox ={0}, 0xa = {0},
(HPBC(C33) z00={z}, x+0={z},
(

HPBCCo4) z <y and y<x ==y,

(HPBC(CY) z<xys0c€zoys0€r*y.

Example 3.6 Let H = {0, m,n} and ‘o’, “«’ be hyper operations on H with Cayley table give as
in Table 2.

99
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Table 2: Hyper operations.

o ‘ 0 m n

o[ {0} {0} {0}
m| {m} {0} {n}
n| {n} {n} {On}

* ‘ 0 m n

o] {0} {o} {0}
m| {m} {0}  {m}
n ‘ {n} {n} {0,mn}

Then, it is easily controlled that (H,o,*,<,0) is a hyper pseudo BCCs -algebra but (H, o, <
,0) is not hyper BCC-algebra. Moreover, (H,o,%,<,0) is not hyper pseudo BCK-algebra because
it does not satisfy the (HPBCK1) condition of hyper pseudo BCK-algebra. For example; it has
been (momn)o(0on) K mo0 such that m,n,0 € H. Then, it can be written {n} < {m} so that

the condition (HPBCK1) is satisfied because 0 is not an element of this equation {n} =nom.

Definition 3.7 Let H be a monempty set, ‘o’, ‘x’ be hyper operations on H, ‘<’ be a hyper
pseudo order in H, ‘0’ be a constant element of H. (H,o,*,<,0) is named to be hyper pseudo

BCC5-algebra if it supplies the following conditions, for all x,y,z € H :

(HPBCCsl) (zoz)o(yoz)<Kaxoy, (xx2)x(y*xz) <x*y,
(HPBCC52) 0oz = {0}, Oz = {0},
(HPBCC33) z00={z}, x*0={x},
(HPBCCs34) 0€zoyANysxz=>x =y,
)

(HPBCC35) z<ye0czoyes0ca*y.

Example 3.8 Let H = {0,m,n} and ‘o’, ‘«’ be hyper operations on H with Cayley table give
as in Table 3.

Table 3: Hyper operations.

o ‘ 0 m n

of {0} {o} {o}
m| {m} {0} {0}
n| {n} {0} {Om}
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* ‘ 0 m n

o {0}y {o} {0}
m| {m} {0}  {m}
n ‘ {n} {n} {0,mmn}

Then, it is easily controlled that (H, o, *, <, 0) is a hyper pseudo BCCs -algebra but according
to operation ‘o’ (H,o0,<,0) is not hyper BCC-algebra because it does not satisfy the (HBCC4)
condition of hyper BCC-algebra. Also, this structure isn’t hyper pseudo BCK-algebra because the
system does not satisfy the condition (HPBCK4).

¢

Definition 3.9 Let H be a nonempty set, ‘o’, ‘x’ be hyper operations on H, ‘<’ be a hyper
pseudo order in H, ‘0’ be a constant element of H. (H,o,*,<,0) is named to be hyper pseudo

BCCy-algebra if it supplies the following conditions, for all x,y,z € H :

(roz)x(yoz) <axy, (wxz)o(ysz) <zoy,

0oz ={0}, 0xxz = {0},

( )

( )

(HPBC(C43) z00={z}, xx0={z},

( ) Oczoy, Oeyxz=a=1y,
( )

rLys0czoys0e€xxy.

Example 3.10 Let H = {0,m,n,k} and ‘o’, “«’ be hyper operations on H with Cayley table

give as in Table 4.

Table 4: Hyper operations.

o ‘ 0 m n k

o {0} {o} {op {0}
m| {m} {0} {0}  {n}

n| {n} {0} {On} {n}
kil {k {0y {0} {0k}

* ‘ 0 m n k

o {0} {0} {0} {0}
m| {m} {0} {k} {n}
o {n} {n} {Omn} {m}
ki {kp {kp {0} {0k}

Then, it is easily controlled that (H,o,x,<,0) is a hyper pseudo BCCjy-algebra. Also,
(H,0,<,0) and (H,*,<,0) systems built with H and hyper operations ‘o’, ‘x’ are not hyper
BCC-algebra as they do not satisfy (HBCC4) and (HBCC1), respectively. Finally, it is not
hyper pseudo BCK-algebra because the system does not satisfy the conditions (HPBCK1) and

(HPBCKA).
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¢ K

Definition 3.11 Let H be a nonempty set, ‘o’, ‘«x’ be hyper operations on H, ‘<’ be a hyper
pseudo order in H, ‘0’ be a constant element of H. (H,o,%,<,0) is named to be hyper pseudo

BCCs -algebra if it supplies the following conditions, for all x,y,z € H :

(HPBCC51) (zoz)*(yoz)<<ax*xy, (xx2)o(yxz)Kxoy,
(HPBCC52) z*(0oy)={z}, zo(0xy)={x},
(HPBC(C53) z <y and y <z =>x =y,

(HPBCCs4) z<ye0czoye0ca*y.

Example 3.12 Let H = {0,m,n,k} and ‘o’, “«’ be hyper operations on H with Cayley table

give as in Table 5.

Table 5: Hyper operations.

o ‘ 0 m n k

of f{o} {op {op {0}
m| {m} {0} {k}  {m}

np o {n} {0} {On}  {k}
ki {kp {0} {0} {0k}

* ‘ 0 m n k

of {o} {op {0} {0}
m| {m} {0} {n} {k}
n| {n} {0} {Omn} {n}
ki {kp {0} {k} {0k}

Then, it is easily controlled that (H,o,x,<,0) is a hyper pseudo BCCjy-algebra. Also,
(H,0,<,0) and (H,*,<,0) systems built with H and hyper operations ‘o’, ‘x’ are not hyper
BCC-algebra as they do not satisfy (HBCC1). Finally, it is not hyper pseudo BCK-algebra

because the system does not satisfy the condition (HPBCK1).

Theorem 3.13 Let (H,o,*,<,0) be a hyper pseudo BCC1-algebra or hyper pseudo BCCj-

algebra. If xxy=x oy for all x,y € H, then H is a hyper BCC-algebra.

Proof Let H be a hyper pseudo BCCq-algebra. If x xy = z oy for all x,y € H, then proof
follows from conditions of hyper pseudo BCC -algebra. Let H be a hyper pseudo BCC's-algebra.
If %y = xoy for all x,y € H, then proof follows from conditions of hyper pseudo BC'Cj3-algebra.

O
Proposition 3.14 Let (H,o,*,<,0) be any of the hyper pseudo BCC1 -algebra, hyper pseudo
BCCs-algebra, hyper pseudo BCCs-algebra, hyper pseudo BCCy-algebra. Then, the following

conditions are satisfied for every nonempty subset S, T of H and for all x,y,z € H :
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(1) 000={0}, 0%x0={0},
(i) 0 <z,
(iii) = < x,
(iv) zoy < {z}, vxy < {z},
() So0=8, Sx0=T,
(vi) 005 ={0}, 0% S ={0},
(vii) zxy={0} =>x02Kyoz, zoy={0} > z*x2 < yx*z,
(viii) S < S,
(ix) SCT=S<T,
(x) S < {0} =S ={0},
(i) o0 < {yt =<y, 2x0<{y} = <y.

Proof Let (H,o,*,<,0) be a hyper pseudo BCCy-algebra.

(i) In (HPBCC42), let © =0. Then
000={0}, 0x0={0}.
(ii) Using (HPBCC,2) condition,
0€0ox,0€0xx

and so 0 < x.

(iii) Using (HPBCC41) condition, let y = z = 0. Then, by (¢) and (HPBCC3) condition,

we get that x < x.

(iv) By (HPBCC41) condition, we conclude that
(woy)x(zoy) < (zx2), (oy)*(z0y) < (zx2).
Therefore let z = 0. Then, by (HPBCC42) and (HPBCC43) we can write,
zoy K {z}, vxy < {z}.
(v) Using (HPBC(C43) condition,
So0=S8,5%x0=2S5

is shown.

(vi) Using (HPBCC42) condition,

00S={0}, 005 =10}
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is shown.
(vii) Let zxy = {0}. From the (HPBCC,41) condition, since
(Toz)x(yoz) <(zxy), (wrz)o(yxz) < (zoy),
then for all
a€(roz)x(yoz),
a < 0 and then for all
be (xxz)o(yxz),

b <« 0 and so, by the help of conditions (HPBCC,3) and (HPBCC44), we can find
a=0 and b=0. Hence

(xoz)*x(yoz)={0}, (x*x2z)o(yxz)={0}.

Then, we can write this,

rozKL Yoz, rx 2K Y*2.
(viii) By (i#), S < S can be proved.

(ix) Let S CT and m € S. For n = m we can find n € T . Hence, by (iii), we get m < n.

Therefore we have S < T'.

(x) Let s € S and S <« {0}. Then using s < 0 and (i) we can find s = 0. Hence S = {0}

is satisfied.
(xi) From (HPBCC43) condition,
0€(zo0)o{y} =0e {z}o{y},
we can get © < y. Similarly, using (HPBCC,3), since
0€ (zx0)x{y} =0 e {z}*{y},
then we can find z < y.
O
Theorem 3.15 Let (H,o,%,<,0) be a hyper pseudo BCK-algebra. Then, (H,o,x,<,0) is a

hyper pseudo BCC1 -algebra and hyper pseudo BCC5-algebra.

Proof Using the (HPBCK1), (HPBCK4) conditions hyper pseudo BCC1-algebra and hyper

pseudo BC'Cj3-algebra are obtained. m]

Theorem 3.16 Let (H,o,*,<,0) be a hyper pseudo BCC -algebra. Then, H is a hyper pseudo

BCK-algebra if and only if (xoy)*xz= (x*x2)oy, forall x,y,z € H.
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Proof Every hyper pseudo BCC| -algebra supplies this identity. Conversely, using (HPBCC11),
we have (HPBCK1) and using (HPBCC14), we get (HPBCK4). Next in a hyper pseudo

BC (1 -algebra satisfying this identity, for all z,y € H, we get using Proposition 3.14 (iv);
rzoy < {a} e rxy < {z}.

Then, we have the (HPBCK;3) condition. Hence, H is a hyper pseudo BCK-algebra. a

Example 3.17 Let (H,o0,x,<,0) given in Example 3.3 be a hyper pseudo BCC} -algebra. We
can find

(nom)*n# (nxn)om

for m;n € H. Hence, H is not hyper pseudo BCK-algebra.
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Abstract: In this study, by using the monotonicity properties of functions, several inequalities for convex
functions are obtained with the help of a weighted fractional integral operator which provides a function
f to be integrated in fractional order with respect to another function. It is also seen that the results

obtained were generalizations of the previous results presented.
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1. Introduction

Fractional calculus plays an important role in the field of inequality theory with its rich content
and new fractional operators have been added day by day, especially in recent years. Some of these
operators have certain algebraic properties such as semigroup property while some do not. Also,
some of them have a singularity problem at some points while some of them do not. Therefore, the
application areas of the operators can also differ. Convex analysis has become one of the important
application areas of fractional analysis [1-3].

In addition, severel mathematicians have studied certain inequalities for convex functions
using different type (for example; R-L fractional integral operator, tempered fractional integral
operators, generalized proportional integral operators, generalized proportional Hadamard integral
operators) of integral operators. These studies have helped to develop different aspects of operator
analysis [9-12].

At first, we recall the elementary notation in convex analysis:

Definition 1.1 A set F C R is said to be convex if

va+(1—p)berFr
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for each a,b e F and ¢ € [0,1].

Definition 1.2 The mapping fi1: F — R, is said to be convex if the following inequality holds:

filpa+ (1 —)b) < @fi(a)+(1—p)fi(b)
for all a,b € F and ¢ € [0,1]. We say that f1 is concave if (—f1) is convez.

The properties and definitions of the convex functions have recently ascribed a significant

role to its theory and practice in the field of fractional integral operators.

In [7], Ngo et al. established the following inequalities:

1 1
| o o= [ oo
0

0

and
1 1 1
/ 9 (p)dp > / pgs (p)dp.
0 0

where ¢ > 0 and the positive continuous function g; on [0, 1] such that

1

/: gl(p)de/ pdp, x € [0,1].

x

Then, in [8], Liu et al. established the following inequalities:

b b
/ 6 (p)dp > / (0 — @) (p)dp.

where ¢ > 0, ¢ > 0, and the positive continuous g; on [a,b] is such that

b 1
/ g5 (p)dp > /0 (p—a)°dp, &=min(1,9), p € 0,1].

The following two theorems are obtained by Liu in [1]:

Theorem 1.3 Let hy and hy be continuous and positive functions with hy < ks on [a,b] such

that hy is increasing and ™ (hy #0) is decreasing. If ¢ is a convex function, then the inequality
ho

holds, where ¢(0) =0.
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Theorem 1.4 Let hy, ke and hs be continuous and positive functions with hy < ha on [a,b] such
that hy and hs are increasing and % (he # 0) is decreasing. If ¢ is a convex function, then the

inequality

holds, where ¢(0) =0.

Now some fractional integral operators used to obtain integral inequalities will be given.
First of them is Riemann-Liouville fractional integral operators (see [6]) which is widely used in

fractional calculus.
Definition 1.5 Let h € Li[a,b]. The Riemann-Liouville integrals J& h and J"h of order oo >0
with a > 0 are defined by

o () = FL / (@— )" LA, > a

a)

and

JE () = — /b (t —x)* " h(t)dt, = <b

where T'(a) = [e “u*"du, respectively. Here is JO,h(z) = J_h(z) = h(z). In the case of
0

a =1, the fractional integral reduces to the classical integral.

Definition 1.6 Let (a,b) C R and o(x) be an increasing positive and monotonic function on the
interval (a,b] with a continuous derivative o'(x) on the interval (a,b) with o(0) =0, 0 € [a,b].
Then, the left-side and right-side of the weighted fractional integrals of a function h with respect

to another function o(x) on [a,b] are defined by [3]

(3m) @) = S [ 0ot) - o) neuar )
wil xT b —1
(wSE7R) (z) = F(é()) / o' (1) [o(t) — o(2)] R(tw(t)dt, £>0

where w™(r) = —L<, w(z) #0 (w(z) > 0).

w(x)’

Remark 1.7 In Definition 1.0,
e To obtain Riemann-Liouville fractional integral operator, one can choose w (z) =1 and

o(x) =z in definition of the weighted fractional integral operators (1).
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e To obtain the following version of fractional integral operator which is defined in [4, 5],

one can choose w(x) =1 in (1):

(@SN @) = g [ o0t 0] hiey

b
(347h) (z) = / o' (1) [o(t) — o ()] ht)dt, £ 0.

2. Main Results

In this section, inequalities for convex functions by utilizing weighted fractional operators presented.

Theorem 2.1 Let hy and hy be two positive continuous functions on the interval [a,b] and
hy < hy on [a,b]. If % is decreasing and hy is increasing on [a,b], then for a convex function ¢

with ¢(0) = 0, the weighted fractional operator given by (1) satisfies the following inequality

(a+357M) () _ (a4 SE7¢ 0 M) ()
(a+S57h2) (2) ~ (a4 SE7P 0 ho) (2)

where © >a >0, £ €C, Re({)> 0.

Proof @ is increasing since ¢ is defined as convex function satisfying ¢(0) = 0. Besides the

function ¢%Fil((f))) is also increasing as h; is increasing. Obviously, the function Z;g; is decreasing.

Thus, for all [a,z], a < x < b, it can be written ¢ <t

(amm> whw»><mwx_m@)>a

R (t) R () ha(p)  ha(t)

It follows that

Multiplying (3) by ha(t)hiz2(p), we have

P(ha(2)) o(hi(¥)) o(hi(¥)) o(ha(t))
i (6) hy(p)ha(t) + Whl (t)h2(p) — Whl(@)fb(ﬂ T hi(t)ha(p) =2 0. (4)
Now, multiplying both sides of (4) by w;(le()x) o' (t) [o(z) — o(t)]" " w(t) and then integrating
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with respect to the variable t from a to x, we have

wl(z) [* -1 1
r<z§>) / o' () o (@) — o (1) ‘ﬁg(g”mw)hxt)w(t)dt

e 1 9(hu(p))
()

-1 9(M(p))
hi ()

ha (t)ha(p)w(t)dt

ha(@)ha(t)w(t)dt

et (b(hl(i)))hl(t)hg(cp)w(t)dt > 0.

Then, it follows that

o @0 P(ha () o
i) (095 2 ) () + A (o) (198 m) 2)
- S () (987 1) (0) = () (o387 P ) (0) 2 0 )
Hx) -1

Again, multiplying both sides of (5) by 09 o'(¢) [o(x) —o(p)] " w(p) and then inte-

grating with respect to ¢ from a to x, we obtain

(387m) (@) (095 22 0 ) () + (w98 2500 ) @) (S (0) ()

> (a+%£ Tpo hl) (z) (a-&-\sl 0h2) (z) + (a-&-\sl 052) (z) (a+%£ 7¢o hl) (z).
It follows that

(a+35°M1) (2) _ (a+Su7¢ 0 M) (2)

(o S ha) (1) = (H%a%hg)( ) "
Now, since @ is an increasing function and hy < hy on [a,b], we get
P(ha (1)) < P(ha(1)) (8)
ha(t) ha(t)
for ¢ € [a, z].

Multiplying both sides of (8) by w;(lé()z) o' (t) [o(z) — o(t)] " he(t)w(t) and then integrating

with respect to the variable ¢ from a to x, we have

wfl(x) z ) . ¢(ﬁ1(t))
I'(¢) / o' (t) [o(z) — o (t)] ) Fio () w (t)dt

w (@)

< () /w O'/(t) [o(z) — J(t)]ffl @(ho(t)) ho (£)w(¢)dt,
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which yields
c@oh .
(29872200 () < (38700 1) (o). )

Hence from (7) and (9), we have (2). O

Remark 2.2 In Theorem 2.1, if we choose w(z) =1 and o(x) = x, then we obtain Theorem 3.1

in [9].

Remark 2.3 In Theorem 2.1, if we choose w(z) =1= ¥, o(z) =x and x = b, then we obtain

Theorem 1.5.

Theorem 2.4 Let hy and hy be two positive continuous functions and hy < hy on [a,b]. If % is

decreasing and hy is increasing on |a,b], then for a convex function ¢ with ¢(0) =0, the weighted

fractional operator given by (1) satisfies the following inequality

>1

(a6 h1) (2) (a1 3570 0 ) () + (a1 3576 0 ha) (2) (a1 S75,7 1) (2)
S0 he) () (a+SG P 0 M) () — 7

(a0 ¢ 0 1) (2) (a1 357 Di2) () + (ar

where x> a >0, £,p € C, Re(f) >0 and Re(p) > 0.

Proof @ is increasing since ¢ is defined as convex function satisfying ¢(0) = 0. Besides the

$(ha () hy (x)

function (o) 18 also increasing as h; is increasing. Obviously, the function Fo(z) 1S decreasing

for all [a,z], a < x < b. Multiplying both sides of (5) by wl:(lp()x)a’(cp) [o(z) — ()" w(p) and

then integrating the resulting identity from a to x, we obtain

(w3871 () (w387 S50 ) (@) 4 (098720 ) () (0987 ) (2) - (10)
> (07D ) (@) (s S e) () + (s Sha) (2) (170 M) (2).

Similar to the (9) inequality, multiplying both sides of (8) by

“’Ef,ff Lo/ (1) [o(x) — o (1)) Ba(t)w(t)

and then integrating with respect to the variable ¢ from a to z, we have
oh
(w927 2202 ) (1) < (98760 1a) (o). 1)

Hence, from (9), (11) and (10), we have the needful result. O
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Remark 2.5 If we choose { = p, then Theorem 2./ will lead to Theorem 2.1.

Remark 2.6 In Theorem 2.4, if we choose w(x) =1 and o(x) = x, then we obtain Theorem 8.3

in [9].

Remark 2.7 In Theorem 2.4, if we choose w(z) =1 = £ =p, o(x) =x and x = b, then we

obtain Theorem 1.3.

Theorem 2.8 Let hy, hy and hs be positive continuous functions and hy < hy on [a,b]. If %

is decreasing and Ry and hg are increasing on [a,b], then for a convex function ¢ with ¢(0) =0,

then the following inequality holds for the weighted fractional operator (1)

“’hl) (x) > (a+%ﬁa(¢ ° hl)h?’) ()
SL7 (¢ 0 hp)hs) (x)’

where © >a >0, £ €C, Re({)> 0.

Proof Since hy < hg on [a,b] and (bf) is increasing for ¢, ¢ € [a,z], a <z < b, we get

(12)

Multiplying both sides of (12) by w;(}g@ o' (t) [o(z) — o (t)]" hy(t)hs(t)w(t) and then inte-

grating with respect to the variable ¢ from a to x, we have

w” ()

()

°, e—1 ¢(ha(t))
[ o @lot) - o0~ DDy s yueya

w-'(z) [T _
< S [ oiow - o) S hwmu

which, in view of (1), can be written as

(w9872t ) (0) < (04947 (0 i) (). (13)

Also, since the function ¢ is convex and such that ¢(0) =0, @ is increasing. Since Ay is

o(ha (1))

(D) Clearly, the function Fa(t)

fa(r) is decreasing for ¢,¢ € [a,z], a <z <b.Thus

increasing, so is

o (1)) 6(hn (%))
< h1 (t) hS(t) - Wh;a(@) (hl (@)hg(t) — (t)hQ(Qp)) > 0.

It becomes

¢(Mn (1)) N3 (1)

o) R1 () (t) +
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P(h1 () hs(p)
ha ()

¢ (1))hs(t)

ha(t)ha() = 0. (14)

Multiplying both sides of (14) by w;(lz()z) o' (t) [o(z) — o(t)]" " w(t) and then integrating with
respect to the variable ¢ from a to x, we obtain
w™(z)

o /nL o' (t) [o(x) — a(t)]é—l Whl(@@(t)w(t)dt

w i x) [, 1 6 ()hs(p)
+ NG /aa(t) [o(z) — o (1)) 1#&@)@(@)@1&)&

w_@) 7 L1 6l (@)hae)
T / o' (t) [o(x) = o ()" T@):”ﬁ1(<ﬁ)hz(7§)w(t)dt

wl(z) [* 1 o(ha(t))hs(t)
0 /a o' (t) [o(x) — (1)) Tt)sm (t)ha(@)w(t)dt > 0.

This follows that

() (w807 22 s ) () + LD ) 90 0

P(hi(p))his()

_ Whl(@) (a+%fjﬁh2) (1') - h2(90) (a+%$‘7 (¢ o hl) hg) (;U) > 0. (15)

Again, multiplying both sides of (15) by w;(le()z) o' () [o(z) — o))" w(y) and then inte-

grating with respect to the variable ¢ from a to x, we have

(1387m) () (1987 S5t ) )+ (10987 2l ) (0) o 9) (0

> (49057 h2) (2) (o957 (@0 ) Fis) (2) + (a4 S0 h2) (2) (a4357 (D0 1) is) ().

w

Therefore, we can write

(a+%ff;(I hl) (x)
(a+ %7 N2) (2)

(a+ 357 (¢ 0 h)hs) (2)

> .
(ﬁgff ¢,§?1 hzhg) ()

(16)

Hence, from (13) and (16), we obtain the required result. O

Remark 2.9 In Theorem 2.8, if we choose w(x) =1 and o(x) = x, then we obtain Theorem 8.5

in [9].

Remark 2.10 In Theorem 2.8, if we choose w(x) =1 = £, o(x) =x and x = b, then we obtain

Theorem 1.4.
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Theorem 2.11 Let hy, he and hs be positive continuous functions and hy < ks on [a,b]. If h—l
) =

is decreasing and hy and hs are increasing on [a,b], then for a convexr function ¢ with ¢(0

then the following inequality holds for the weighted fractional operator (1)

Lo(poha)hs) (2) 4 (4S5 (d 0 ho)hz) () (ag- S5 1) (2)

34 (
(e 347 h2) (2) (0 27 (80 P )g) (@) + (s 957 h2) (@) (a S5 (6 0 hig) () =

where x >a >0, ¢,p € C, Re(f) >0 and Re(p) > 0.

Proof By the assumption of Theorem 2.11, multiplying both sides of (15) by

and then integrating with respect to the variable ¢ from a to x, we have

(w97 () (a9 22 ) (0) (14957 S5 ) () (0 987) (@) (17)

> (0 Su7h2) (2) (a4 357 (¢ 0 hn) hs) (@) + (a1 S5 h2) (2) (o307 (G0 Fr) his) ().

Since i1 < hp on [a,b] and @ is increasing for ¢, ¢ € [a,z], a < x < b, we get

(18)

Multiplying both sides of (18) by “— o’ (¢) [o(z) — o(t)]" " ha(t)hs(t)w(t) and then inte-

F(l)

grating with respect to the variable ¢ from a to x, we have

(w987 25 hats ) (0) < (1498 (00 1) ) (o), (19)

Similarly, multiplying both sides of (18) by wl:(lp()z) o' (t) [o(x) — o ()" ha(t)hs(t)w(t) and

then integrating with respect to the variable ¢ from a to z, we can write
LPoh .
(w327 S5t ) () < (298 (00 ) ) 0), (20
So, from (17), (19) and (20) we have

(o hhs) (@) -

7 (¢ 0 Ba)hs) () + (a4 S (¢ © ho)hs) () (ag- S5 1) (2)
‘ S ) () (ot GO
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Remark 2.12 If we choose ¢ = p, then Theorem 2.11 will lead to Theorem 2.8.

Remark 2.13 In Theorem 2.11, if we choose w(x) =1 and o(x) = x, then we obtain Theorem

3.7 n [9].

3. Conclusion

In this paper, first we gave different definitions of fractional integral operators and then we

introduced some inequalities using the monotonicity properties of functions for weighted fractional

operators. The obtained results are an extension of some known results in the literature. Especially,

we would like to emphasize that different types of integral inequalities can be obtained using this

operators.
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Abstract: In this study, we are interested in Tzitzeica curves (Tz-curves) in Euclidean 4-space E*.
Tz-curve condition for Euclidean 4-space are determined as three types for three hyperplanes and some

examples are given.
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1. Introduction

Gheorgha Tzitzeica, Romanian mathematician (1872-1939), introduced a class of surfaces [11],
nowadays called Tzitzeica surfaces in 1907 and a class of curves [12], called Tzitzeica curves in
1911. A Tzitzeica curve in E? is a spatial curve x = x(s) with the Frenet frame {T, Ny, Na}
and curvatures {ki,ko}, for which the ratio of its torsion k2 and the square of the distance dgs.
from the origin to the osculating plane at an arbitrary point x(s) of the curve is constant, i.e., a

Tritzeica curve in E3 is a curve satisfying the condition (Tzitzeica condition)

where dys. = (No,z) and a # 0 is a real constant, Ny is the binormal vector field of x.

A Tzitzeica surface in E? is a spatial surface M given with the parametrization X (u,v), for
which the ratio of its Gaussian curvature K and the distance di,, from the origin to the tangent
plane at any arbitrary point of the surface is constant, i.e., a Tzitzeica surface in E? is a surface

satisfying the condition (Tzitzeica condition)

K

dtan

1 = aj (2)
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for a constant a; # 0. The orthogonal distance from the origin to the tangent plane is defined by
dtan = <X7N>a (3)

where X is the position vector of surface and NN is unit normal vector field of the surface.

In [1] the authors gave the connections between Tzitzeica curve and Tzitzeica surface in
Minkowski 3-space and the original ones from the Euclidean 3-space. Besides, the asymptotic
lines of a Tzitzeica surface with the negative Gaussian curvature are Tzitzeica curves [3]. In [3],
the authors determined the elliptic and hyperbolic cylindrical curves satisfying Tzitzeica condition
in Euclidean space. In [? ? ], hyperbolic and elliptic cylindrical curves verifying Tzitzeica condition

were adapted to Minkowski 3-space, respectively.

Let z : I ¢ R - E* be a unit speed curve in Euclidean 4-space E*. Let us denote
T(s) = x'(s) and call T(s) a unit tangent vector of = at s. We denote the first Serret-Frenet
curvature of z by ki(s) = |2 (s)|. If ki(s) # 0, then the unit principal normal vector Ni(s) of
the curve z at s is given by T'(s) = k1(s)Ni(s). If ka(s) # 0, then the unit second principal
normal vector No(s) of the curve x at s is given by Nll(s) +k1(8)T(s) = ka(s)Na(s), where ko

is the second Serret-Frenet curvature of x. Ngl(s) + ka(s)N1(s) = k3(s)N3(s), where ks is the
third Serret-Frenet curvature of x. Then, we have the Serret-Frenet formulae [5]:
T'(s) = k1 (s)Ni(s),
Ni'(5) = ~k1(5)T(5) + ha(5)Na(s),
N> (5) = ~ha(s)N1(5) + hi(5)Na (s),

N3 (s) = —k3(s)Na(s).

If the Serret-Frenet curvatures ki(s),k2(s) and ks(s) of x are constant functions then x
is called a screw line or a helix [4]. Since these curves are the traces of 1-parameter family of the
groups of Euclidean transformations, Klein and Lie called them W-curves [8]. If the tangent vector
T of the curve = makes a constant angle with a unit vector U of E* then this curve is called a
general helix (or inclined curve) in E* [9].

Let z: I c R > E* be a unit speed curve in Euclidean 4-space E*. Position vector of

x = x(s) satisfies parametric equation
x(s) =mo(s)T(s) + m1(s)N1(s) + ma(s)Na(s) + ms(s)Ns(s), (5)
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where
mo(s) = {(z(s),7(s),) mi(s) = (z(s), N1(s),)

ma(s) = (x(s), N2(s),) my(s) = (z(s), N3(s)-)

(6)

By taking the derivative of (5) with respect to arclength parameter s and using Serret-Frenet

equations (4) , we obtain
T (s) =2 (5) = mo'(8)T(s) + mo(s)T"(s) + m1/ () Na(s) + ma(s)Ny/ () + ma'(5) Na(s)
+ma(s)Ny'(s) + s’ (5)Na(s) + ms(s) Ny’ (5)
= (mo (5) = ma (3) k1 (5)) T(s) + (mo () b (5) + 10" (5) = ma () K (5)) N (s)

+ (ma (8) k2 (s) +m2" (s) =ma () ks (5)) Na(s) + (ma(s)ks(s) +m3(s))Na(s)-

It follows that
mg —kimy =1,
m'1 + kimg — kamso =0,
mb +kamy — ksms =0,

’I’I’Lg + k/’gmg =0.

We consider Tzitzeica curves in Euclidean 4-space E* whose position vector = = 2(s) satisfies the

parametric equation (5). We determine Tz-curve condition for Euclidean 4-space E* as three types
for three hyperplanes and give some examples. Besides, we express Tzitzeica curve conditions in

terms of their curvature functions ki (s), ko (s) and ks (s).

2. A Characterization of Tzitzeica Curves in Euclidean 4-Space

Definition 2.1 Let x: I c R - E* be a unit speed curve in Euclidean 4-space E*. A first type
Tzitzeica curve x = x(s), for which the ratio of its second Frenet curvature ko and the square of
the distance dir n,, Ny from the origin to the hyperplane spanned by {T, N1, N3} at an arbitrary

point x(s) of the curve is constant, i.e.,

ko

St —a, )
{T,N1, N3}

where

d¢r, Ny, Ngy = (7, No) 9)

and a1 £0 is a real constant.
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Definition 2.2 Let z: I c R - E* be a unit speed curve in Euclidean 4-space E*. A second type
Tzitzeica curve x = x(s), for which the ratio of its first Frenet curvature ki and the square of

the distance dir n,, N,y from the origin to the hyperplane spanned by {T, N2, N3} at an arbitrary

point x(s) of the curve is constant, i.e.,

k1
- -, (10)
{T,N2, N3}
where
dir Ny, Ny = (2, N1) (11)

and a9 =0 is a real constant.

Definition 2.3 Let z: I c R — E* be a unit speed curve in Euclidean 4-space E*. A third type
Tzitzeica curve x = x(s), for which the ratio of its second Frenet curvature ks and the square of

the distance dgp n,, N,y from the origin to the hyperplane spanned by {T, N1, Na} at an arbitrary

point x(s) of the curve is constant, i.e.,

ks = as, (12)

d%T,Nl, N3}

where

dgr,N,, Noy = (2, N3) (13)

and a3z 0 is a real constant.

Theorem 2.4 Let x:1cR - E* be a unit speed curve in E* given with the parametrization (5).

x s first type Tzitzeica curve if and only if the equation
kémg + Zkzgml - 2]6'2](13’[77,3 =0 (14)

holds.

Proof Let x be the first type Tzitzeica curve. By taking the derivative of (8) with respect to

arc length parameter s and using (4) and (6), we get (14). The opposite of the proof is clear. O

Proposition 2.5 Let  : [ ¢ R > E* be a unit speed spherical curve in E* given with the
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parametrization (5). Then

mo = 07
-1
mi R
k1
k! (15)
ma = PR
kaok?

R 262 KK, ke
 K2koks  kdkoks  K2k3ks  kiks

ms3

hold.

Proof Let x be a unit speed spherical curve. Then, (x,z) = r?. By taking the derivative of this
expression, we get

(x,T) =0=my. (16)

By taking the derivative of (16) and using (4) and (6), we get
(x,Nl):—:ml. (17)

Again, by taking the derivative of (17) and using (4), (16) and (6), we get

ki’

2, Np) = —2 =
( 2) k2k12

ma. (18)

Similarly, by taking the derivative of (18) and using (4), (17) and (6), we get
B 2k k'R ke

2, N3 = _ _ _ -
(. Na) kiZkoks  kiokoks kilkolks kiks

ms.

Theorem 2.6 Let 2: 1 c R - E* be a unit speed spherical curve in E* given with the parametriza-

tion (5). x is first type Tzitzeica curve if and only if the equations

Bley k) kb — 2k kY ey + 4K kg = 0 (19)

2
3
and ko = c. [(;—i) ] hold, where c is integral constant.

Proof Let x be a first type Tzitzeica curve. Then, substituing (15) into (14) and arranging the

713
expression, we get (19). From the solution of (19), we get ks = c. [(;—1) ] . The opposite of the

proof is clear. O
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Corollary 2.7 Let = be a first type spherical Tzitzeica curve. If ko is constant, then we get

- _C2
ki = ci+s *

Proof If ky is constant, equation kjk{ —216{2 =0 is obtained from (19). If this equation is solved,

then we get ky = Cfis . O

Theorem 2.8 Let 2:1cR - E* be a unit speed curve in E* given with the parametrization (5).

x is second type Tzitzeica curve if and only if the equation

Tmy + 2k3mg — 2k kamsy = 0 (20)
holds.
Proof Let z be the second type Tuzitzeica curve. By taking the derivative of (10) with respect to
arc length parameter s and using (4) and (6), we get (20). The opposite of the proof is clear. O
Proposition 2.9 Let  : [ ¢ R > E* be a unit speed spherical curve in E* given with the

parametrization (5). x is second type Tzitzeica curve if and only if ki = ¢, where ¢ is a constant.

Proof Let z be the second type spherical Tzitzeica curve. Substituing (15) into (20), we get

3:—;1 =0. Which means that, k; = ¢ (constant). |

Theorem 2.10 Let z: I c R > E* be a unit speed curve in E* given with the parametrization

(5). x is third type Tzitzeica curve if and only if the equation

kims + 2k3ms = 0 (21)
holds.
Proof Let x be the third type Tzitzeica curve. By taking the derivative of (12) with respect to

arc length parameter s and using (4) and (6), we get (21). The opposite of the proof is clear. O

Proposition 2.11 Let z : I ¢ R - E* be a unit speed spherical curve in E* given with the

parametrization (5). x is third type Tzitzeica curve if and only if the equation

72 I
-2

- klkg) +2k1Ek3 =0 (22)

holds.

Proof Let z be third type spherical Tzitzeica curve. Then, substituing (15) into (21) and

arranging the expression, we get (22). The opposite of the proof is clear. O
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Corollary 2.12 Let x be third type spherical Tzitzeica curve. If k1 and ko are non-zero constants,

then x is a W -curve.

Example 2.13 Let x = x(s) be regular W -curve in E* given with the parametrization
x(s) = (acos (cs),asin (cs),bcos (ds) ,bsin (ds)) (23)

is a second type and third type Tzitzeica curve, where 0 <s < 2w, a,b,c,d real constants and ¢ >0,
d>0.

Then, = without loss of generality, let x be unit speed curve, i.e., a’c* +b*d*> =1. If ¢ =d, then
T is a circle, otherwise (c#d) x is a curve in E*.

The Frenet curvatures ki,ks and the Frenet vector fields N1, N3 of the curve x can be given by

k1 = Va?ct +b2d4, (24)

cd
i Va2t p2dt (25)
1
Ny = . [—ac2 cos (¢s), —ac® sin (¢s), —bd? cos (ds), —bd* sin (ds)], (26)
1
1
N3 = P [bd2 cos (¢s),bd? sin (cs), —ac? cos (ds), —ac® sin (ds)] (27)
1
[2]. By the use of (23) and (26) at (11), we get
d o1 28
v o) = %)

3
Substituting (24) and (28) into (10), we get ag = ((12c4 + 62034)2 , which means that as is constant
and x is a second type Tziltzeica curve.

Further by the use of (23) and (27) at (13), we obtain

ab (d2 - 02)

) = e )

Substituing (25) and (29) into (12), we get ag = C;zi m , which means that az is constant and
x is a third type Tzitzeica curve.

Then, the projection of W -curve with the parametrization (23) on x4 =0 coordinate hyperplane
in E* is x (s) = (cos (s\/ 10),sin (s\/ 10),cos (38\/ 10)) if we take a=1, b=1, ¢=1v/10,d = 3v/10.

We can plot this W -curve with maple command with (plots):
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Figure 1: Second type and third type Tzitzeica curves, m=0, n=5%pi

Figure 2: Second type and third type Tzitzeica curves, m=0, n=50*pi

(30)

spacecurve([cos(t/sqrt(10)),sin(t/sqrt(10)),cos(3*t/sqrt(10))], t=m.n, grid=[30,30]
Example 2.14 Let x = z(s) be a heliz on the unit 3-sphere S3(1) embedded in E* given with the

x(s) = (cosBcos (as),cosfsin (as),sind cos (bs),sinfsin (bs)),

parametrization
where a®cos?0 + b%sin?0 =1 and 212 + 222 = cos?0, 232 + £4° = sin®0. Then, = is a second type and
(31)

third type Tzitzeica curve.

The Frenet curvatures ki,ks and the Frenet vector fields N1, N3 of the curve x can be given by
k= \/a4cos29 + bsin?6,
(32)

ab

k3 = )
Vatcos20 + btsin0
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N (—a2 cos ) cos (as),—a? cos O sin (as), —b? sin 6 cos (bs), —b? sin § sin (bs)) (33)
1=
Vaicos26 + bisin6

(b? sin @ cos (as), b sin @sin (as), —a? cos O cos (bs), —a* cos O sin (bs))

N3 =
Vatcos20 + bisin?0

(34)

[10]. By the use of (30) and (33) at (11), we get

-1

Vat cos2 0 + bt sin? 0

AT, Ny, Ny} = (35)

3
Substituting (31) and (35) into (10), we get ag = (\/a4 cos? 6 + b4 sin® 9) , which means that ag is

constant and x is a second type Tzitzeica curve.

Further, by the use of (30) and (34) at (13), we obtain

cosfsin 6 (b2 - a2)

Vatcos20 + bisin?0

d¢T, Ny, No} = (36)

1
ab(a4 cos? 0+b? sin? 9) 2
cos2 O sin? 0(b2—a?)?

Substituting (35) and (36) into (12), we get az =

, which means that agz 1is

constant and x is a third type Tzitzeica curve.
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Abstract: The notion of source of semi-primeness is firstly given by Aydin, Demir and Camci in 2018 as
the set of all elements a of R that satisfy aRa = (0) for any associative ring R. They investigated some
basic properties of this set and defined three types of rings which have not appeared in literature before.
The theory of gamma ring has been introduced by Nobusawa in 1964 as a generalization of rings. In this
work, we generalized the notion of source of semi-primeness for gamma rings and investigated its basic
algebraic properties. We also defined |S|-strongly reduced I'-ring, |Sas|-domain, |Sas|-division ring and
examined the relationship between these structures. We determined all possible characteristic values of a

|Sar|-domain and proved every finite |Sas|-domain I'-ring M is a |Sy|-division I'-ring.

Keywords: I'-ring, source of semi-primeness, strong unity.

1. Introduction

The theory of gamma rings has been introduced by Nobusawa as a generalization of rings by
defining triple products on two abelian groups [11]. His model was a pair (I, M), where M is a
subgroup of Hom (A, B) and I" is a subgroup of Hom (B, A) for additive abelian groups A and B
and products M xI'x M and I' x M x I", which are defined as ordinary composition of mappings.
W. Barnes dropped the closedness of multiplications in I" and then defined slightly generalized
gamma rings [2]. After Barnes’ definition a number of authors have done a lot of works and have
obtained various generalizations analogous to the corresponding results in ring theory [3-6, 8, 9].

Prime and semiprime ideals of a I'-ring M are beneficial to obtain the algebraic structure
of M. The notion of a prime ideal was firstly defined by W. Barnes as an ideal P that satisfies
AB c P implies Ac P or B c P for any ideals A and B of M [2]. Barnes also defined prime
ideal and prime radical in this work. He obtained some equivalent conditions that of an ideal to

be a prime ideal and introduced prime radical of a I'-ring M by defining m-system in a manner
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analogous to that of McCoy [10]. Kyuno is also obtained some results on prime ideal, semiprime
ideal and prime radical of a I'-ring M [6].

The source of semi-primeness of a ring R which is denoted by Sr was firstly defined by
Aydin et al. in 2018 as the set of all elements a of R satisfying aRa = (0) [1]. They proved some of
basic properties of the set Sg. Aydn et al. also defined other new notions which are |Sg|-strongly
reduced ring, |Sg|-domain and |Sg|-field and obtained their relations with each other.

Our main interest is to define the source of semi-primeness Sy;(A) for any subset A of a
I-ring M and to introduce some new notions such as |Sys|-strongly reduced ring, |Sjs|-integral

domain and |Sj;|-field to understand the algebraic structure of the I'-ring M.

2. Preliminaries

Let M and T' be two additive Abelian groups. M is said to be a I'-ring (in the sense of Barnes) if
there exists ternary multiplication M xI' x M — M satisfying below conditions for all a,b,c e M,

a,Bel:

(1)  (a+b)ac=aac+bac,
a(a+ B)c = aac + afe,
ac (b+c) = aad + aac,

(2)  (aab) Be = aa (bBe).

Let M be a I'-ring. If there exist § e I" and e € M such that ade = eda = a for any a € M,
then a pair (d,e) is called strong unity of the I'-ring M [9]. A subset N of the I'-ring M is said
to be a subring if N is a subgroup of M and nan’ € N for all n,n’ ¢ N and aeI'. A subgroup
U of M is called left ideal (resp. right ideal) if MTU c U (resp. UT'M c U). If U is both left
and right ideal, then U is called an ideal of M. An ideal P of the I'-ring M is said to be prime
if ATBc P implies A< P or B¢ P for any ideals A and B of M [2]. An ideal @ of M is said
to be semi-prime if AT'A ¢ P implies A ¢ P for any ideal A of M [6]. A T'-ring M is said to be
prime (resp. semi-prime) if the zero ideal is prime (resp. semi-prime) [9].

A nonzero element a in M is called zero divisor if there are nonzero elements b,c € M and
B,~v € I' such that a8b =0 = cya. An element = of a I'-ring M is called strongly nilpotent if
there exists a positive integer n such that (zI')"z = (aT2T"...2T")x = (0) [8]. The smallest such
n is called the index of x. A I'-ring M with no nonzero strongly nilpotent elements is called a
strongly reduced T'-ring. A T'-ring M is said to be a division I'-ring if it has a strong unity (J,e)
and for each nonzero element a of M there exists b of M such that adb = bda = e. The prime
radical of a I'-ring M is the intersection of all prime ideals of M [9]. If there exists a positive

integer n such that nx = 0 for all © € M, then the smallest such positive integer is called the
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characteristic of M and denoted by char M. If there is no such positive integer, then M is said
to be characteristic zero. Let M; be a I'y-ring and My be a I's-ring. An ordered pair (6, )
is called homomorphism if ¢ : My — M is a group homomorphism, 6 : I'y — I's is a group
homomorphism and ¢(aabd) = p(a)f (a) @(b) for all a,b € M and a € T' [9]. A subset A of a
I'-ring M is called semi-group ideal if aam, maa e A for all ae A, a eI’ and me M .

In this study, we introduced the notion of source of semi-primeness Sy;(A) as the set of all
elements m of M that satisfy mI’AT'm = (0) for any subset A of a I'-ring M and prove some of
its set theoretical properties. For instance, we show that Sjp;(A) is a semi-group ideal of M and
a condition is obtained for Sp;(A) to be an ideal of M. Also, the definitions of |Sys|-strongly
reduced I'-ring, |Sys|-domain and |Sjs|-division I'-ring are given and obtained some results about
their relations. We determine all possible characteristic values of a |Sy/|-domain and prove every

finite |Sas|-domain I'-ring M is a |Sp|-division I'-ring.

3. Main Results
Definition 3.1 Let A be a subset of a I'-ring M. We define the source of semi-primeness of A

as the set Sar (A) ={me M | mI'AI'm = (0)}. We write Sy instead of Sar (M), when A= M.

From the definition of source of semi-primeness it is clear that S4 = Sy (A) N A and
Sy (B) € Sy (A) for any A € B. One can easily show that the source of semiprimeness of
a I'-ring M is equal to zero if and only if M is a semi-prime I'-ring. Another observation
about the source of semiprimeness of a I'-ring M is that if Sy; = M, then the Jordan product

(M3 1) qyrg = mamifn +namifm for any elements m,m’,n € M with «,3 €T is equal to zero.

Conversely, if the Jordan product for any elements m,m’,n € M with a, € I" is equal to zero,

then Sj; may not be equal to M. Indeed, if M = {[2& 5]

I 0.
a,be Zlg} and I' = {[33:] |7 € Z1s},

then the equation (m,n) 0 holds for all m,m’,n e M and «,3 €I'. But, it can be shown

am/B =
that Sys is not equal to M. However, if one assume that the I'-ring M being 2-torsion free, then
converse of the proposition is true. It is also clear that every element in S}, is nilpotent of index

at most 3.
We now give the other set-theoretical properties of the source of semi-primeness of a subset

for a I'-ring M .

Proposition 3.2 Let My and Ms be two I'-rings. If A and B are nonempty subsets of My and
My, respectively, then Syrxa, (A x B) = Sa, (A) x Sy, (B) .

Proof If M; and My are two I'-rings, then M; x My is a I'xI"-ring with the ternary multiplication

(a,0) (a, B) (¢, d) = (acc,bpd) .
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Let (a,b) € Sy, (Ax B). Then, (a,b) (e, ) (z,y) (7,0) (a,b) = (0,0) for all (z,y) € Ax B
and (a,B),(v,0) € T xT'. Therefore, we get aazya =0 and bBydb = 0 for all x € A |, y € B,
a,B,7,0 €', ae My and be My. Hence, (a,b) € Sy, (A) xSy, (B). Similarly, one can show that
Snr, (A) x S, (B) € Syvyxa, (A x B). Thus, the equality is obtained. ]

Proposition 3.3 Let M be a I'-ring and A be an ideal of M. Then, the followings hold:

(i) The source of semi-primeness of A is a semi-group ideal of M. In particular, it is a

multiplicatively closed subset of M .
(i) If Sy (A)T'Sn (A) =(0), then Sy (A) is an ideal of M.

Proof (i) Let m € Syy(A), o € T and € M. Then, (zam)TAT (zam) = (0) since
mIlA'm = (0). It follows that xam € Sy (A). Similarly, we have max € Sys (A). Therefore,

S (A) is a semi-group ideal of M. The last part of the proposition is obvious.

(ii) Let Spr (A)T'Sar (A) = (0). It is enough to show that Sy (A) is additively closed. Let
x,y € Spr (A). Then,

(x+y)TAT (z +y) =al'Al'z + aT'AT'y + yI'AT'z + yI’'AT'y c 2T’ AT'y + yI' AT'x.

Since Sps (A) is a semi-group ideal, we have ATz ¢ Sp; (A) and zT'A € Sy (A). Therefore,
2T ATy + yI'AT'z = (0). Thus, = +y € Sy (A), that is, Sy (A) is an ideal of M. O

Proposition 3.4 If Q is a semi-prime ideal of a I'-ring M , then Sy € Q. Moreover, Sy is
contained in the prime radical of M .
Proof Let ae Sy . Since @ is semi-prime and aI'MTa = (0) ¢ @, we have a € Q. Therefore,

Sy € Q. This also shows that Sy is contained in the prime radical of M . O

Theorem 3.5 Let M; be a Ty -ring and My be a T's-ring. If the ordered pair (6,¢) is a gamma

ring homomorphism, then ¢ (Sn,) is contained in S,nr,y. Moreover, if ¢ is injective, then

LP(SMl) = SS@(MI) .

Proof Since (8, ) is a gamma ring homomorphism, we have ¢(M;) is a 0(I'y)-ring with ternary

multiplication
p(a)f(a)p(b) = p(aab).

Therefore, the source of semi-primeness of ¢ (M;) is

{p(a) e o (M) [ £(a)0(T1)p(M1)0(T'1)p(a) = (0)}.
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Now, it is obvious that the set ¢ (Shs,) is contained in S, (s, . Conversely, let ¢ be injective
and ¢(a) € S,(ar,)- Then, we have @(al'yM1T'1a) = ¢(0). Hence, a € Sy, since ¢ is injective.

This shows that Sy (az) € @ (Shr,)- |

Theorem 3.6 Let M be a T'-ring and a € Spy. If MTa # (0) and aI'M # (0), then a is a zero

divisor. Consequently, an element of M which is a not a zero divisor is contained in M — Sy .

Proof By hypothesis, there exist b,c € M and «,v € I' such that aab # 0 # cya. Therefore, we
get a is a zero divisor since aabda =0 = accya, aab # 0 and c¢ya # 0. Now assume that b is not
a zero divisor of M. Hence, b e M — Sy, since bI'M # (0) # MTb. Otherwise, b would be a zero

divisor. m]

4. |Sn|-strongly Reduced T'-ring, |Sj/|-domain I'-ring, |Sy/|-division I'-ring

Definition 4.1 Let M be a I'-ring and M + Sy, .

(1) M is said to be a |Spr|-strongly reduced ring if there are no strongly nilpotent elements of

M—S]\/[.

(2) M is said to be a |Sp|-domain if there are no left or right zero divisors of M — Syr. A

|Snr|-domain M is called |Sp|-integral domain if M is commutative with strong unity.

(3) M is said to be a |Sp|-division ring if M has a strong unity and every element of M — Sy

is unit. A |Sy|-division ring M is called |Spr|-field if M is commutative.

It is necessary to assume M # S, in the above definition. For instance, if M is the set of

all 2 x 3 matrices of the form [8 % 8] with 6,5 € 471¢ and T is the set of all 3 x 2 matrices of
z 0

the form |0 7| with T € 4Z¢, then M is a I'-ring with Sy, = M.
z 0

From the Definition 4.1, it is clear that if M is a strongly reduced I'-ring (I'-domain or I'-
division ring), then M is a |Sys|-strongly reduced ring (|Sp|-domain or |Sjs|-division ring). Also,
one can show that every |Sys|-domain is a |Sys|-strongly reduced ring. Conversely, |Sys|-strongly

a 0 b

0 e 0]|a,b,ceZ} and

reduced rings are not a |Sys|-domain in general. For example, if M = {[

= |z € Z} , then M is a |Sys|-strongly reduced I'-ring but not a |Sps|-domain. Similarly,

8 OO
o8 O

a |Sy|-division ring M may not be a |Sps|-domain. Let M = {[6 6] |aeZy} for any prime p
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and T = {[g] |z € Z} . Then, one can show that M is a |Sy|-division I'-ring, but not a |Sy|-

domain. Another observation on the Definition 4.1 is that if M; is a |Sys,|-domain and My is
a |Sh,|-domain, then the direct product M; x My is |Sns, x S |-strongly reduced ring. It is
easy to show that the prime radical of a |Sj/|-strongly reduced I'-ring M contains every strongly
nilpotent element. By the very nature of the gamma ring, every division gamma ring is not a

gamma domain. Similarly, every |Sps|-division I'-ring is not a |Sys|-domain. For example, the
r= {[;5] |veZ}-ring M = {[a @]laeZ,} is a |Sy|-division I'-ring that is not a |Sy|-domain
for any prime p.

Proposition 4.2 Let M be a I -ring with M # Spr and a € M . Then the followings are equivalent:
(i) M is a |Sr|-strongly reduced ring.
(ii) If ala c Sys, then a € Sy .

(iii) If (al')" a c Sy for any positive integer n, then a € Syr.

Proof (i)=(ii) Let M be a |Su|-strongly reduced ring and al'a € Sps. Therefore, we have

(al')*a = (0) that is @ is a strongly nilpotent element. Hence, a € Sy; since M is a |Sy|-strongly

reduced ring.
(ii) = (iii) Let a € M and n be the smallest positive integer such that (aI')" a € Sps. There
exists a positive integer k such that n <2k <n+1. By Proposition 3.3, we have (aF)%Jrl ac Sy,

that is, (aF)ka cSy. If k=1, then a €Sy by (ii). Assume that k£ > 1. But, this contradicts
with n to be the smallest positive integer since k <n -k +1<n. Hence, n cannot exceed 2.

(iii) = (i) Assume that a € M is a strongly nilpotent element. Then, there exists a positive
integer n such that (al')"a = (0). By hypothesis, we get a € Sy since (al')" a € Sps. Therefore,

there is no strongly nilpotent element in M - Sys. So, M is a |Sy|-strongly reduced ring. O
Corollary 4.3 If M is a |Sn|-strongly reduced T -ring, then Sy = {a € M|(aF)2a = (O)} .

Proof Let T = {a € M|(aI‘)2a = (0)} and a € Spr. Then, clearly a € T'. Conversely, assume

that a € T. Then, we have (al')”a = (0), that is, a is a strongly nilpotent element. It follows that

a € Sy since M is a |Sys|-strongly reduced I'-ring. Consequently, we get Spy =T O

Proposition 4.4 Let M be a T'-ring. If M is a |Sp|-domain, then Sy (A) = Sy for any nonzero
I -subring A of M. Besides, A is a |Sa|-domain.
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Proof From the definition of source of semi-primeness, it is clear that Sy ¢ Sp(A). Assume
that there exists an element m € Sys(A) such that m ¢ Sy;. Then, we get mI'A = (0) = AT'm since
mIAT'm = (0) and M is a |Sps|-domain. This implies A = (0), which is a contradiction. Hence,
Sar(A) = Syr. Now, let a € A be a zero-divisor. Therefore, a € Sy since M is a |Sys|-domain.

This implies a € Spr(A) N A=S4. It follows that A is a |S4|-domain. O

We should note that Sys (A) = S4 may not be provided even if M is a |Sps|-domain I'-ring.

z 0
For the I' = {|0 z||reZ}-ring M = {[8 0 b] la,b,c € Z} , one can show that the M is a
z 0
Suy|-domain and Sy (A) # S4 for the subset A = a 0 b a,beZ} of M.
0 00

Proposition 4.4 is not true for a |Sys|-strongly reduced I'-ring M in general. For example,

OT

|z €Z}. Then, M is |Sps|-strongly reduced

T
let M = {|% 0 ¢ la,b,ceZ} and T' = {]|0
0 b 0 0

xT
OJ

I'-ring since there is no strongly nilpotent element in the set

M_SM:{[O b O]|abceZ az0orb#+0}.

For the I'-subring A = {[O 0 O] la,c e Z} of M, we have Sp(A) = {[0 b 0] |b,ceZ}.

Therefore, it is clear that Sy;(A) # Sy -

Proposition 4.5 If M is a |Sy|-strongly reduced I'-ring and A is a non-zero I'-subring of M,

then A is a |Sa|-strongly reduced T -ring.

Proof Let M be a |Sy|-strongly reduced I'-ring and A be a nonzero I'-subring of M. If
a € A is a strongly nilpotent element, then a € Sy; by hypothesis. This implies that a € S4 since

Sar € Sa(A). Hence, A is a |S4|-strongly reduced I'-ring. |

Lemma 4.6 If M is a |Sy|-domain T -ring, then M — Sy is a multiplicative set.

Proof Let M be a |Sps|-domain I'-ring. Assume that aab is a zero-divisor for a,b e M — Sy,
and « € I'. Then, there exist nonzero elements ¢ € M — Sy; and v € I' such that (aab)ye = 0.
Hence, a or b must be zero-divisors which contradicts with our hypothesis. This implies aab is
not a zero divisor, that is, aab e M — Sy; by Theorem 3.6. Therefore, M — Sy is a multiplicative

set. O

Theorem 4.7 Every finite |Sp|-domain T -ring M is a |Syy|-division ring.
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Proof Assume that M is a |Sy/|-domain T'-ring. Let T'= M - Sy = {a1,...,a,} and a be any
element of T'. Since T is a multiplicative set by Lemma 4.6 and a is not a left (or right) zero
divisor, we define injective maps on T such that f(z) = ayxz and g(z) = zya for all z € T. Then,
finite cardinality requires the maps to be surjective. Therefore, there exist 1<i<n and 1<j<n
such that aya; = a = ajya. Since aya;va = aya = aya;ya, we get a; = a; and so avya; = a = a;ya.
By the same argument, we have an element a} € T such that byal =b=alyb for be T. Accordingly,

one has

(avb) va; = ayb = aiy (ayb)

and since ayb e T, it follows that af = a;. Set e = a; and § = . Then, (d,e) is a strong unity of
the semigroup T and clearly ede =e.

For an arbitrary element x of M , we either have x € Sy; or x € T'. If x € T', then we already
have that xde = edx = x. Let x € Sp;. Assuming e —edx € Sy implies that e = 0. But, it is a

contradiction because e € T'. Thus, e —edx € T and similarly we have e —xde € T'. Then,
(e—edx)de=e—-edx and ed (e —xde) = e — xde

yields us that edx = zde. Therefore, we have xde = x = edx since e is not a zero-divisor.

Consequently, (d,e) is a strong unity of I'-ring M. Moreover, considering the maps f and
g, there exist x,y € T such that adx = e = yda. This shows that a is a unit in M. Hence, M is a

|Sar]-division ring. |

Corollary 4.8 If M is a finite |Sar|-integral domain, then it is |Sn|-field.

Theorem 4.9 Let M be a T'-ring with strong unity (d,e). If M is a |Sy|-domain, then the

characteristic of M is either 0, or p for a prime p, or p* for a prime p.

Proof Assume that charM =n > 1 and p is a prime dividing n. Then, there exists an integer
k such that n = pk. Hence, 0 = ne = (pe) é (ke). This implies that pe is a zero-divisor, that is,
pe € Syr. Therefore, we have (pe)dmd (pe) = 0 for all m e M. It follows that p?m = 0 for all

m e M. Accordingly, we get n=p or n =p? since charM =n. |

Theorem 4.10 Let M be a T'-ring with strong unity (d,e). If M is a |Sp|-strongly reduced

ring, then the characteristic of M is a cube-free integer, that is, there is no prime p such that p3

divides charM .

Proof Assume that charM =n >1 and p is a prime dividing n, say n = p'k for some ¢ > 1 and
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1<k<n with ged(p, k) =1. Since
(pke)' = p'kle = k'™ (ne) = 0 = pke € Sy

= (pke) dmd (pke) = 0,Ym e M =p°k*m =0,Ym e M

and charM = n, there exits s € Z such that p‘ks = p®k?. If t were greater than or equal to 3, then

we get p|k. But, this contradicts with ged (p,k) =1. Hence, n must be a cube-free integer. O
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Abstract: This review reckons with iterative scheme of Thianwan to approximate a common fixed point
for four G—nonexpansive mappings (tersely G -nm). We verify several convergence results for in this way

mappings in Banach space by dint of a digraph.

Keywords: Fixed point, digraph, G—nonexpansive mappings.

1. Introduction and Preliminaries

Let X be a Banach space, K # @, K € X . Directed graph mostly enrolled qua digraph is a double:
G =(V(GQ),E(G)), that here V (G) is the set of vertices of graph and E (G) is the set of its
edges that involves overall the loops, scilicet (z,z) € E(G) for all z € V (G). Given that G enjoys
no parallel edges. If =, y occur vertices of G, here a path in G ranging = from y of length N is a
sequence {xi}fio of N +1 vertices such that = = 29, y = x5 and (z;_1,7;) € E(G) forall i =1,N.
Digraph G is alleged to become transitive if, for all x,y,z € V (G) such that (z,y) and (y,z) are

in F(G), we acquire (z,z) € E(G) [2]. A mapping f: K — K is asserted to become

o G-nonezpansive (tersely G —nm) [3] if it yields (i) (z,y) € E(G) = (fz, fy) € E(G) (f

preserves edges of G), (i) (v,y) ¢ £ (G) = |fz - fyll < |-yl

o semi-compact [9] if for {z,} in K with |z, - fz,]| - 0 as n — oo, there appears a

subsequence {z,,} of {x,} such that z,, > f* ¢ K.

The mappings f; : K — K are supply condition (AN) [1] if there is a nondecreasing function
g:[0,00) > [0,00) with g(0)=0, 0<g(t) forall te (0,00) such that |z - fz| > g(d(x, Fy)) for

all i=1,k, ve K, where d(z,Fy)=inf{|z— f*|: f* € Fy =l F (f.) + @}.

*Correspondence: yolacanesra@gmail.com
2020 AMS Mathematics Subject Classification: 47H09, 47TH10
This Research Article is licensed under a Creative Commons Attribution 4.0 International License.

Also, it has been published considering the Research and Publication Ethics.
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Let 29 € V(G) and T € V (G). We state that [5], (i) T is dominated by xq if (xg,2) € E (G)
for all z €Y, (ii) T dominates z if for each z €Y, (xo,2) € E(G).

Let G be a digraph such that V (G) = K. Then, K is alleged to get property P [8] if for
each sequence {z,} in K ~x € K and (z,,%n+1) € F (G), there is a subsequence {z,,} of {z,}

such that (z,,,z) € E(G) forall e N.

Remark 1.1 [6] If G is transitive, then Property P is equal to the speciality: if {x,} ¢ K with
(Zn, Tn1) € E(G) such that for any subsequence {x,,} of {xn} =~z € X, then (z,,2) € E(G)
for all neN.

Phuengrattana and Suantai [15] gave on the rate of convergence of Mann, Ishikawa, Noor
and SP-iterations for continuous functions on an arbitrary interval. Sahin and Bagarir [16]
presented on the strong and A-convergence of SP-iteration on CAT(0) space.

Motivated by [11-13] and above results, the iterative scheme is defined as follows:

t, = (l_ﬂn)xn"'ﬂn.flzna
Yn = (1_€n)$n+€nf2tn7
Sp = (I_Qn)yn"'gnfSyn»

Tpp1r = (1=60p)Tn +60pnfasn, n>1, (1)

where {&,}, {0n}, {Bn}, {0n} c[0,1], for all i=1,4, f;: K - K are G —nm. We verify several

convergence results for in this way mappings in Banach space by dint of a digraph.

Lemma 1.2 [10] Let X be a uniformly convexr Banach space. Suggesting that 0 < b < v, <
c<1l, n>1. Let {xn},{yn} € X be such that limsup,,_, |zn| < @, imsup, . |yn] < a and

limy oo [[Un@n + (1 = vn) yn| = @, where a >20. Then, lim, e |Tn — yn| =0.

2. Main Results

Fr=n2,F(f.)#@. For xg€ K, let {x,} be the sequence created by (1).

Proposition 2.1 Let ug € Fy be such that (zo,up) and (ug,zo) are in E(G). Then, (z,,uo),

(UO,(En), (.’En,Sn), (snuxn)y (x’ruyn)7 (ynaxn)7 (.’I]n,tn), (tnaxn): (’U,()78n), (SnvuO); (anyn);

(Yn>uo), (wo,tn), (tn,uo), (Tn,ZTns1) are in E(G) for all neN.

Proof We shall demonstrate our deductions by induction. Let (zg,up) € E(G). By virtue of
edge-preserving of f;, we have (fizg,u0) € E(G), and thus (tp,up) € E (G) from the convexity of

E (G). Due to edge-preserving of fo, we get (fato,up) € E(G). By using the convexity of E (G)
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and (zg,ug), (fato,uo) € E(G), we own (yo,up) € E(G). As f3 is edge-preserving, we possess
(f3yo,u0) € E(G) and (sg,up) € E(G) from the convexity of E (G). Owing to edge-preserving of
fa, (faso,ug) € E(G). Again the convexity of E (G) and (zg,u0), (f1S0,u0) € E(G), we acquire
(z1,u0) € E(G). Continuing in this fashion for (x1,ug) instead of (zg,up), we get (t1,up),
(y1,u0), (s1,u0), (22,u0) € E(G).

Suppose that (z,,ug) € F(G) for v > 1. Because of edge-preserving of f;, we attain
(fizy,up) € E(G), and thus (t,,up) € E(G) from the convexity of E (G). On account of edge-
preserving of fy, we achieve (fat,,up) € F(G). Using the convexity of E(G) and (z,,uo),
(faty,ug) € E(G), we obtain (y,,ug) € E (G). Because f3 is edge-preserving, we own (f3y,,ug) €
E(G) and so (sy,up) € E(G) from the convexity of E(G). In view of edge-preserving of fy,
(fa8v,u0) € E(G). Repetition the convexity of E (G) and (z,,up), (f1Sv,u0) € E(G), we belong
(zy+1,u0) € E(G). Repeating the procedure on one occasion for (z,41,u9) € E(G), we get
(to+1,10) 5 (Yos1,u0), (Sus1,u0), (Tur2,u0) € E(G).

Hence, (n,u0), (tn,%0), (Yn,uo0), (Sn,uo) € E(G) for n > 1. Utilizing an analog
argumentum, we infer that (ug, ), (uo,tn), (wo,Yn), (vo,sn) € E(G) from (ug,z0) € E(G). As
the graph G is transitivity, we acquire for n> 1 (zp,5n), (SnsZn)s YnsTn)s (Tn,yn), (En,2n),

(n,tn) and (xn,Tne1) € B (G). ]

Lemma 2.2 If K is a nonempty closed convex subset of a real uniformly convex Banach space
X, {&}, {0}, {Bn}, {on} S [a,b], where 0<a<b<1 and (zg,up), (uo,2z0) € E(G) for zge K
and ug € Fy, then

(i) |xn+1 = vol € |&n —uo| for n21, and hence |xn, —uop| =0 as n— o0;

(i) im0 |Tn = fin| =0 for all i=1,4.

Proof (1) By Proposition 2.1, (InaUO)v (U07xn)7 (Snazn)v (xTL?STL)v(yna'In)? (xmyn)v (xmtn)v
(tn;xn)a (u075n)7 (Snau0)7 (u0>yn)7 (ymuo), (UOatn)a (t'muO)) (xnaxn+1) are in E(G) It
follows from (1) that

[tn —uol| = [-uo+ (=Bn+1)xn+ Bnfiznl
< (=Bn+1) |~uo +zn| + Br | fron — uol
< (=Bn+1)|~ug + zn| + Bn | -uo + znl

I-uo + x| - (2)
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Using (1) & (2), we have

lyn —uol < (1=&n) [@n —uol + & [ f2tn — uol
< (1=&) |n —uoll + &n [tn — uoll
< an —uoll - (3)

Similarly, along with (3), we get

[sn—uol < (1=en)llyn —uoll + on | fayn - uol|
< (I=0n) [yn —uol + on [yn — uol
< yn - uol
< an ol - (4)

By (4), we possess
[—to + Tns1ll < (=0n+1)|—uo + zp| + On [|—uo + fasn|

< (“0n+ 1) |~ug + xn| + O |50 — uol
< wn —uol - (5)

Hence, lim,, oo |2, — ug| exists.

(ii) By assumption (i), {z,} is bounded. Let
lim ||z, — uo| = M. (6)
If M =0, then, by G —nm of {f1, fe, f3, f4}, it is obvious. Next, suppose M > 0. We shall show

that, for all i = 1,4, |z, - fizn] > 0 as n > oo.

Getting limsup on both parts of (2), (3) & (4), we have

lim sup ||t, —uo| < M, (7)
n—oo

lim sup |y, —uo| < M, (8)

lim sup |s, —uo| < M. 9)

n—oo

It implies by (7), (8) & (9) and the G —nm of {f1, fa, f3, f4} that

IN

| frzn = uol| |n = uol

M, (10)

IA

lim sup | fizn —wol

n—oco
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| fotn = uol < [[tn = uo
lim sup “ f2tn - U()” < Mv
n—>00
If3yn —uoll < llyn —uol
lim sup || fayn —uo| < M,
n—oco
and
I fasn —uoll < [sn —uol
lim sup | fas, —uol| < M.

n—o00
Since limy, oo |Tns1 — uol = M, we get

7}1_{2 I(1=0n) (zr — o) + 05 (fa5n —uo)| = M.

By Lemma 1.2, we obtain
|zn = fasn| = 0 as n — oo.

Now, using the G —nm of {f1, fa, f3, fa}, we have

I-uo +zn| < |fasn —uoll + |- fasn + 20|
< wn = fasnl + sn = uo
< an = fasnl + (1= 0n) (Yn —10) + 0n (f3yn —uo)|
< Nwn = fasn| + (1= 0n) |Yn — w0l + 0n | f3yn — o]
< an = fasn| + [yn —uol
< wn = fasnl + (1= &n) (20 —uo) + &n (fotn —uo)|
< an = fasn] + (1= &) |20 — uo| + &n || fotn — uo]
1
< — o — fasal + [[tn —uol
én
1
< =z = fasal + [tn —uo -

a
Taking liminf on both sides of (16), (17), (18) and using (15), we obtain

M

IN

lim inf |s, —uo|,
n—>00

M

IN

lim inf |y, —uol,
n—soo

M < lim inf |t, —uo|,
n—>00
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respectively.

By combining (7) & (21), (8) & (20), (9) & (19), we get
T o — ol = sy — il = lim s — ol = M, 22)

respectively. Namely,

Jim (1= Bn) (@n = u0) + B (rzn —uo)| = M,
7}1_{{.10 [(1=&n) (zn —uo) +&n (fatn —wo)| = M,
Tim (1= n) (Yn = w0) + on (fayn —uo)| = M,

respectively. It follows from (6), (8), (10), (11) & (12) and Lemma 1.2 that

T}l_{relo lzn = fizn] = 0, (23)
lim |x, — fatn]| = O, (24)
n—oo

Jim |y, = fayn| = 0, resp. (25)

It implies by (23) & (24) that

lzn = foxnl < an = fotnl + [ fotn = fown]
< fan = fatn] + Itn - 2n
< on = fotnl + Bl fraen — 2]
< an = fotn| + b frn - an|
- 0asn— oo. (26)
By (1) & (24), we have
lzn =ynll = Nan = [(1= &) 2n + & faln]]
< Snlwn - fatal
< bfwn = fotnl
- 0Oasn - oo. (27)

It follows from (25) & (27), we get

IA

|n = fawnl I=yn + 20l + lyn = f3ynl + | fayn = faznl

IA

||_yn + xn" + ”yn - f3yn||

+|-zn +yn] — 0asn—>oo. (28)
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By (1), (25) & (27), we have

Isn=2nl < l=yn +snl+ lyn — 2l
= (1= 00) Yn + 0nfsyn] = ynl + =20 + yul
< onllyn = faynl + =20 + ynl
< blyn = fsynl + -0 + yal
- 0asn— oo. (29)

Using (15) & (29), we obtain

|2n = fazall < Nzn = fasnl + | fasn = fazn
< lzn = fasal
+sn = @
- 0asn— oo. (30)
From (23), (26), (28) & (30), we get
|z — fizn| = 0 as n — oo for all i = 1, 4. (31)

Theorem 2.3 Let K is a nonempty closed convex subset of a real uniformly conver Banach space
X and {&.}, {0}, {Bn}, {on} € [a,b], where 0 <a <b<1. Let ug e Fr such that (zo,up),

(ug,x0) are in E(G) for xg e K. Supposing that K hold the property P, {f1, fa2, f3, fa} satisfy

the condz’tion(A”), Fy is dominated by xo and Fy dominates xq, then {x,} — ug € Fy.

Proof Let uy € Fy be such that (z,,u0), (u0,Zn),(Sn,%n), (TnsS$n), (@n,¥n)s (Un,Tn),
(Znstn), (tn;2n), (vo,5n), (Snyu0)s (U0,Yn) s (Ynsuo), (Uostn), (tnsto), (Tn,Tne) arein E(G)
for all n ¢ N. Due to Lemma 2.2 (ii) and condition (A"), we attain that lim,_,e g (d (2, F¢))=0.
As g is nondecreasing with ¢ (0) = 0, we hold d(z,,F¢) -0 as n —» oo. Thus, we can receive a
subsequence {x,,} of {z,,} and {u}} c F; such that |z,, —u;| < 27'. Due to the fact that strong
convergence implies weak convergence and by Remark 1.1, we hold (z,,,u;) € E(G). Using the

proof method of [11], we own

1
len —url < lan, —url < 5,

and so

—(1+1
l=tufsr + 0 | < =npy +uf |+ [ =ufyy + 2y, | < 327050
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We deduce that {u;,,} is a Cauchy sequence. Therefore, we have u; - r. By closed of FY,

r € Fy in that case z,, » r. Because of Lemma 2.2 (i), x,, - r € F}. ]

Theorem 2.4 Let K is a nonempty closed convex subset of a real uniformly convex Banach space
X and {&.}, {0}, {Bn}, {on} € [a,b], where 0 <a <b<1. Let uge Fy such that (zo,up),
(uo, ) are in E(G) for xg € K. Supposing that K has the property P and one of {f1, f2, f3, fa}

is semi-compact, Fy is dominated by xo and Fy dominates xo, then {x,} — ug € Fy.

Proof Let ug € Fy be such that (x,,u0), (u0,Zn), (Tn:8n), (Sn,Zn), (@n,Yn)s (Yn,Tn),

(xnatn)a (tnazn)a (UO,Sn), (Sn,uo), (u07yn)a (ynauO), (u07tn); (tn,uo), (3771737714»1) are in

E(G) for all n e N. We have lim, e |2, - fjzn| = 0 from Lemma 2.2 (ii). Assume that f;

is semi-compact for all j = 1,4. Then, there exists a subsequence {z,,} of {x,} such that
lim; o |Zn, —v| = 0 for some v € K. This together with Remark 1.1 implies that (z,,,v) € E(G).
It follows from the G —nm of {f1, fa, f3, fa} and Lemma 2.2 (ii) that

lo=fiol < v=znl+lzn, = fjznl + 1 fi2n, - fivl

- 0asl— oo,

for all j =1,4. Hereat, v € Ff so that lim, e |z, — v| exists. Thus, z, > v as n - co. o

We indicate an instance which is inspired by Example 4.5 in [7].

Example 2.5 K =[0,2]c X =R. Let G be a digraph described by V (G) = K and (z,y) € E(G)
iff 1.20 > y > x > 0.50. Denote {f1,fz,f3.f1} : K -~ K by fiz = 1+ Btan(-1+1), fox =
1+ %tan(—1+m), fax =1+ %arcsin(—1+x), fax =1+ %arcsin(—1+x) for any x € K and

1=1,2,3,4. It is easy to see that f1, fa, f3, fa are G—nm, but f1, fo, f3, f4 are not nonexpansive.

_ 6n+5 _ 3n+l _ 10n+3 _ Tn+ll _ 4 _ - .
Let Bn = gitiz, §n = 55555 On = Trmeys On = 13007 for n>1. Fp=nc F(f.) ={1} asin Figure

1.
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T T

O 14(23/49)*tan(-1+X)
= = 14(29/45)*tan(-1+X)
1+(23/49)*asin(-1+x)

2 ’,‘\ '''''''''''''' = 1+(29/45)*asin(-1+X)
Vd o ........................................... P, CECERRLRELERRLD
Rl s 0
R ) o \
1F 2 ’, \
i ) L \
e \ ’ \
R \ Y g
03"/' \ /7 \
0¥ \0 \
| 4 \
\
A
2 I L L L L
0 1 2 3 4 b

Figure 1: Plot showing Fy =n?_, F (f.) = {1}

Table 1 The value of the sequence {x,} with initial value x¢ = 1.20000, xo = 0.80000 and

n =20, respectively.

Remark 2.6 (i) If £, =0 and f1=fa=fs=fa=f in (1), then Theorem 2.3 generalize the results

of Theorem 3.6 in [14] for self-map.

(i) If &, = 0, =0 and f1 = fo = f3 = fs = f in (1), we attain convergence of the Mann

© 00 1O Ui W~ 3

10
11
12
13
14
15
16
17
18
19
20

Tn

1.20000

= e e e e e e e e e e e e e e e e

.15950
12180
.09010
.06500
.04600
.03210
.02210
.01510
.01020
.00680
.00450
.00300
.00200
.00130
.00090
.00060
.00040
.00030
.00020

Ty
0.80000
0.84047
0.87822
0.90994
0.93499
0.95395
0.96788
0.97787
0.98492
0.98981
0.99317
0.99545
0.99699
0.99802
0.99870
0.99915
0.99945
0.99964
0.99977
0.99985

iteration to some fized points of f on Banach space involving a digraph.

(i) If f1 = fo=f3=fs=f in (1), then Theorem 2.3 extends the results of [12] without

errors for self-map.
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(iv) If f1=fa, f3=fa in (1), then Theorem 2.3 improves the results of [15] without errors
for self-map.
(v) If £, =0 in (1), then Theorem 2./ reduces to the results of [4].

3. Conclusion

In this writting, we reckons with four step iteration scheme to common fixed points of four G —nm
described on Banach space involving a digraph. Our findings evolve the equal results of Shahzad
(2005) [14], Thianwan (2008) [12], Kizltung et al. (2010) [13] and Tripak (2016) [4]. Within
the future scope of the idea, reader can show that (1) compare convergence rate Picard, Mann,

Ishikawa and S P-iteration process for contractions.
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Abstract: In this paper, we introduce a new type of non-lightlike general helix that we name non-lightlike
associated helix which is associated with a non-lightlike special surface curve. By using the Darboux frame
of a surface curve, we generate the position vector of a non-lightlike associated helix in parametric form.
We investigate special cases when the non-lightlike surface curve is a helical curve, a relatively normal-slant
helix or an isophote curve. In every case, we obtain the position vector of the non-lightlike associated helix

by solving differential equations and examples are given for the achieved results.

Keywords: Non-lightlike associated helix, non-lightlike isophote curve, non-lightlike relatively normal-

slant helix.

1. Introduction

Geometrical structures of special type such as special surfaces or curves have always been a focus
of interest for different disciplines. Without a doubt, the helix curve is the most fascinating of
such special geometric structures. A general helix is defined by the property that the tangent
makes a constant angle with a fixed straight line (the axis of the general helix) and a necessary and
sufficient condition that a curve to be a general helix is that the ratio of curvature s to torsion
7 be constant [3]. Helices arise in carbon nano-tubes, nano-springs, DNA double and collagen
triple helix, a-helices, bacterial flagella in salmonella and escherichia coli, lipid bilayers, bacterial
shape in spirochetes, aerial hyphae in actinomycetes, tendrils, horns, screws, springs, vines, helical
staircases and sea shells [4, 14, 17]. Helical structures such as hyper-helices are used in fractal
geometry [22]. In the realm of computer-aided design and computer graphics, helix shapes can be
utilized for describing tool paths, simulating movement, and creating designs for roads, ete. [25].
Instead of tangent, by considering principal normal vector, a new type of special curve

called slant helix has been defined by Izumiya and Takeuchi [10]. Later, further studies have been
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done. For instance, Ali investigated the position vector of spacelike slant helices, Ali and Turgut

investigated the position vector of timelike slant helices in Minkowski 3-space [1, 2].

A surface curve is a curve that lies on a surface. While properties of any arbitrary curve are
examined by Frenet frame, properties of surface curves can also be examined by Darboux frame
{T,g,n} (see Section 2 for details). On a surface, helical curves, relatively normal-slant helices and
isophote curves have been defined considering the vectors of Darboux frame, by the property that
the vector T', g and n makes a constant angle with a fixed straight line, respectively. Puig-Pey,
Gaélvez and Iglesias have studied helical surface curves and for the parametric and the implicit
forms of a surface, they introduced a new method of generating helical tool paths [20]. In 2017,
Macit and Diildiil introduced relatively normal-slant helices and studied their axis in Euclidean
3-space [15]. El Haimi and Chahdi investigated the parametric equations of relatively normal-slant
helices also in Euclidean 3-space [8]. Further studies have been done by Yadav and Pal, Yadav
and Yadav in Minkowski 3-space [23, 24]. On the other hand, isophote curves have been studied
in both Euclidean and Lorentzian spaces [5-7]. An isophote curve on a surface is also a result of
Lambert’s cosine law in optics. Lambert’s cosine law indicates that the intensity of illumination
on a diffuse surface is proportional to the cosine of the angle between the surface normal and the
light vector. According to this law, the intensity is irrespective of the actual viewpoint; hence
the illumination is the same when viewed from any direction [12]. By considering Lambert’s law
Dogan and Yayh introduced the geometric description of isophote curves in [7]. Isophote curves
have many applications in different areas such as car body construction, local shading of a surface
or geometry of surfaces of rotation and canal surfaces [11, 19, 21]. Oztiirk, Negovié¢ and Kog Oztiirk
have presented a method for numerical computing of general helices, relatively normal-slant helices,

and isophote curves lying on a non-degenerate surface in Minkowski space E3 [18].

In [16], Onder defined new types of associated helices that are associated with special surface
curves such as helical curves, relatively normal-slant helices and isophote curves in Euclidean 3-
space. He introduced parametric forms of some special associated helices with respect to Darboux

frame of special surface curves.

In this paper, we define new types of non-lightlike associated helices in Minkowski 3-space.
We name these new helices as non-lightlike (spacelike or timelike) surface curve-connected (SCC)
associated helices and we obtain parametrizations for such helices by considering helical curves,

relatively normal-slant helices and isophote curves on a non-lightlike surface in Minkowski 3-space.
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2. Preliminaries

Minkowski 3-space which is denoted by E? is a real vector space endowed with the metric (,) =
~dx® + dy? + dz?, where (x,y,2) is a rectangular coordinate system. This metric is also called
Lorentzian metric. In E3, a vector u is called spacelike (resp. timelike or lightlike) if (wu,u) > 0
or u=0 (resp. (u,u) <0 or (u,u) =0). Similarly, a curve is called spacelike (resp. timelike or
lightlike) if its velocity vector is spacelike (resp. timelike or lightlike). In the case of surfaces, a
surface is called spacelike (timelike or lightlike) if the induced metric on the surface is Riemannian
(Lorentzian or degenerate), i.e., the normal vector on the surface is timelike (spacelike or lightlike,
respectively) [13]. Throughout this paper, we only consider non-lightlike curves and surfaces.
Therefore, whenever we talk about a surface or a curve, we assume that they are either spacelike
or timelike.

The Lorentzian cross product for any vectors u,v € E} is defined by
ux v = (U3 — UzV2, UIV3 — UV, UV] — UTV2),

where u = (u1,ug2,u3) and v = (v1,v9,v3) [13]. The Frenet formulae {T, N, B} for a unit speed

non-lightlike curve @ with arc-length parameter s is given by
T =kN, N =egrT +7B, B ' =e77N, (1)

where T, N, B are the tangent (velocity) vector, principal normal vector, binormal vector, respec-
tively, er = (T, T), eg = (B, B), ' denotes derivative with respect to s, x is curvature and 7 is
torsion of the curve «. Here, er and ep determines the Lorentzian character of the vectors T
and B, respectively. If ep =ep =1, then « is a spacelike curve with timelike principal normal
vector. If er =1 and eg = -1, then « is a spacelike curve with spacelike principal normal vector.
If ey = -1, then « is a timelike curve [13].

Let ¢ be a regular surface in E? and a: I c R - ¢ be a non-lightlike smooth curve on ¢.
Then, the Darboux frame {T,g,n} along the surface curve « is well defined and its formulae is
given by

T' = Kgg+egknn, ¢ =enkyT +ertyn, n' =k, T + 749, (2)
where T', g = ¢,7 x n, n are tangent vector of «, intrinsic normal, surface normal along «,
respectively, k, is normal curvature, k, is geodesic curvature, 7, is geodesic torsion, er = (T,T),
eg=1{9,9) and €, =(n,n). If ep =, =1, then both ¢ and « are spacelike. If er =1 and ¢, = -1,
then ¢ is timelike and « is spacelike. Finally, if ep = -1 and ¢, = 1, then both ¢ and « are
timelike [5, 6].

Considering Darboux vector fields defined in [9], we define following vector fields for non-

lightlike surface curves on non-lightlike surfaces.
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Definition 2.1 Let « be a unit speed non-lightlike curve on a regular non-lightlike surface ¢ with

Darbouz frame {T,g,n}. Then, the vector fields D,,, D, and D, along a defined by
Dy =-kng+enkgn, Dp=-14T-rgn, D, =crtyT +egkng

are called normal Darboux vector field, rectifying Darboux vector field and osculating Darbouz

vector field, respectively.

Lemma 2.2 [16] Let ¢ be a regular non-lightlike surface and a be a smooth non-lightlike curve on
¢ with Darbouz frame {T,g,n}, normal curvature k, , geodesic curvature kg and geodesic torsion
Tg. We have the followings:

(i) o is a geodesic curve < kg =0.

(i) o is an asymptotic curve < k, =0.

(111) « is a line of curvature < 14=0.

Definition 2.3 [24] Let « be a unit speed non-lightlike curve on a regular non-lightlike surface
¢ with Darbouz frame {T,g,n}. Then, o is called a relatively normal-slant heliz if the vector g

makes a constant angle with a fived unit direction.

Definition 2.4 [5, 6] Let « be a unit speed non-lightlike curve on a regular non-lightlike surface
¢ with Darbouzx frame {T,g,n}. Then, « is called an isophote curve if the vector n makes a

constant angle with a fived unit direction.

Similar to the definition given by Onder in [16], we give the following definition for non-

lightlike surface curves in Minkowski 3-space.

Definition 2.5 Let a be a unit speed non-lightlike curve on a regular non-lightlike surface ¢ with
Darboux vector fields D,,, D, and D,. Then, « is called a D;-Darbouz slant helixz if the Darboux

vector field D; makes a constant angle with a fized unit direction, where i € {n,r,o}.
By using the above definitions, we introduce helices associated with special surface curves

in the following section.

3. Helices Associated with Surface Curves in E?

Let ¢ be a regular non-lightlike surface and a: I ¢ R - ¢ be a smooth, unit speed non-lightlike

curve with arc-length parameter s, Frenet frame {T,N,B} and Darboux frame {T,g,n}. We

consider another non-lightlike curve 3:J c R — E3 which is given by the parametrization

B(s) = a(s) +x(s)T(s) +y(s)g(s) + 2(s)n(s), (3)
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where = = z(s), y = y(s) and z = z(s) are smooth functions of s. The non-lightlike curve § is
called non-lightlike associated curve of surface curve a” or SCC-associated curve”, where SCC
stands for surface curve connected. As well as the associated curve S might be on ¢, it might be
totally apart from . The position that £ is on ¢ or not relies on the values which the functions
x,y, z take. We investigate special cases for the functions z,y, z in the following subsections.
Moreover to the definition of the curve [, considering that £ is a general helix it would be
called SCC-associated helix. Now, let us differentiate the equation (3) with respect to s by using

(1) and (2). As the result of this differentiation, we get
B'(s) = Ri(s)T(s) + Ra(s)g(s) + Rs(s)n(s), (4)
where R = R1(s), Re = Ra(s) and R3 = R3(s) are smooth functions of s which are defined by
Ri=a'+epkgy+knz+1, Ro=rex+y +742, Rs=cghpw+ertyy+2. (5)

In the following subsections, we investigate special cases when [ is a helix and it is associated

with a special surface curve.

3.1. Non-lightlike Helices Associated with Helical Curves on a Surface in E}

In this first subsection, we assume that the tangent vector 8’ of the non-lightlike associated curve
(B of any arbitrary non-lightlike surface curve « is linearly dependent with the tangent vector of
«. For this special case, from (4), we get Ry # 0, R =0, Rz =0 and thus 5'(s) = R1(s)T(s).
Let sg be the arc-length parameter of the associated curve 3. Then, from 3'(s) = R1(s)T'(s), we

obtain dsg = +Rids and the Frenet vectors of 8 are computed as

1
Tg=+T, Npg=+——oo—_(Kgg+egknn),
|sgm§ +enk2|

635

Bg = (Enﬂgn—kng)=53,3m,

|£gm§ + snk%|
where ep, = (Bg,Bg) and Tz, Ng, Bpg are tangent vector, principal normal vector, binormal

vector of (3, respectively. By using Definition 2.1 and (6), we obtain the following Theorem 3.1:

Theorem 3.1 Let 5 be a non-lightlike associated curve of an arbitrary non-lightlike surface curve
a with (kn,kq) # (0,0) which lies on a reqular surface ¢ with the condition that 8’ and o =T

are linearly dependent. Then, followings are equivalent:
(i) B is a heliz.
(ii) « is a helical curve on ¢.

(i) « is a D, -Darboux slant heliz on ¢.
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Remark 3.2 The non-lightlike heliz curve 8 which is associated with a non-lightlike helical surface
curve a can be referred to as: Non-lightlike helical curve-connected associated helixz or non-lightlike

HCC-associated helix.

Let us now, investigate special cases when x,y or z vanishes, respectively. Such special

cases allow us to determine the position vector of 8 in parametric form. From (5), we have the

following system
T tenkgy+knz+1#0, rgr+y +7,2=0, eghpx+ert,y+2 =0. (7)
Case 1: x =0. Then, from (7) we have the system
Enkgy+knz+1%0, y +7,2=0, errgy+2'=0. (8)

If 7, # 0, then the solution of system (8) depends on the sign of er. Let ep = 1. By using a

variable change t = [ 7,(s)ds, for constants c1, ¢ € R the solution of the system (8) is calculated

y=-c1 sinh([ Tg(S)dS)—CQCOSh(/ 7'9(5)d5)7
z=c cosh([ Tg(s)ds)+0281nh(f Tg(s)ds)7

which we substitute in (3) and obtain the parametric form of the position vector of 8 as follows

B(s) = a(s) - [cl sinh(f Tg(S)dS) +C2 cosh(f Tg(S)dS)] g(s)

+ [cl cosh(/ Tg(S)dS)+CQSiDh([ Tg(s)ds)]n(s).

In this case, a, 8 are spacelike curves and ¢ is a non-lightlike, i.e., spacelike or timelike, surface.

Let er = —1. Then, for constants c3,c4 € R the solution of system (8) is given by

Y = €3 COS (/ Tg(s)ds) , Z=cgsin ([ Tg(s)ds) ,

which similarly leads to the parametric form of the position vector of 3 as follows

B(s) = a(s) + 3 cos ([ Tg(S)dS) g(s) + cqsin (f Tg(S)dS) n(s). (10)

In this case, «, B are timelike curves and ¢ is a timelike surface.

If 7, =0, then, from second and third equations of system (8), we get y = ¢5 and z = cg,
respectively, where c5,cs € R are constants. Therefore, position vector of 3 curve is given by
B(s) = a(s) +cs59(s) +cn(s).

We can give the following theorem and corollary as results of the above investigation.
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Theorem 3.3 The spacelike (resp. timelike) associated curve B given in (9) (resp. (10)) is a
general heliz if and only if « is a spacelike (resp. timelike) helical curve on a non-lightlike (resp.

timelike) surface ¢.

Remark 3.4 The spacelike (resp. timelike) associated curve (9) (resp. (10)) can be referred to
as: Spacelike (resp. timelike) helical curve-connected associated helix of type 1 or spacelike (resp.

timelike) HCC-associated heliz of type 1.

Corollary 3.5 The helical curve a is a line of curvature if and only if non-lightlike HCC-associated

helixz has the parametrization B(s) = a(s) + c59(s) + cgn(s), where c5,c6 € R are constants.

Case 2: y=0. From (7), it follows

24 knz+1#0, Kr+752=0, egkpz+2' =0, (11)
with the condition (kg4,7,) # (0,0). If k; # 0, then we get = = ~79, from second equation of
Ry

system (11). We substitute this equality in the third equation of system (11) and get the differential
equation

coknT
P AL A |

Kg

egknty

whose solution is z = c7 exp ( / ds), where c¢7 € R is constant. Hence, the position vector

Kg

of B is given by

B(s) :a+07exp(—[%ds) (—TgT+n). (12)

Kg Kg

If k,=0 and ky # 0, then we obtain = = z =0 and therefore 5(s) = a(s).

By the investigation above, the followings can be given.

Theorem 3.6 The non-lightlike associated curve 8 given by (12) is a general helix if and only if

« is a non-lightlike helical curve on ¢.

Remark 3.7 The associated curve (12) can be referred to as: spacelike (timelike) helical curve-

connected associated heliz of type 2 or spacelike (timelike) HCC-associated helix of type 2.

Corollary 3.8 (i) The non-lightlike helical curve a is an asymptotic curve with kg # 0 if

and only if non-lightlike HCC-associated heliz of type 2 has the parametrization [(s) =

C5T, .
a(s) = —=2T +cyn, where c7 € R is constant.
K
g
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(i) The non-lightlike helical curve « is a line of curvature if and only if non-lightlike HCC-

associated heliz of type 2 has the parametrization 5(s) = cyn, where ¢; € R is constant.
Case 3: z=0. In this case, from (7), we have the following system

' +enkgy#0, Ker+y =0, egkpx+ertyy=0, (13)

ETTy

with (kn,7y) # (0,0). If k, # 0, then from third equation of system (13), we have z = — P
egkn

By substituting z in second equation of system (13), we get the following differential equation

1 ETTgkyg

0,
egkn

ETTgRg

whose solution is y = cgexp ( f ds), where cg € R is constant. Hence, the position vector

Eghn

of B is given by

B(s) =OL(S)+CgeXp(f st) (—gTTgT+g). (14)

Egkn Egkn

If ky, =0, then it follows z =y =0 and S(s) = a(s).

By the investigation above, we can give the followings.

Theorem 3.9 The non-lightlike associated curve B given by (14) is a general helix if and only if

« is a non-lightlike helical curve on ¢.

Remark 3.10 The non-lightlike associated curve (14) can be referred to as: Non-lightlike helical

curve-connected associated helix of type 8 or non-lightlike HCC-associated heliz of type 3.

Corollary 3.11 (i) The non-lightlike helical curve « is a geodesic curve if and only if non-

lightlike HCC-associated heliz of type 3 has the parametrization B(s) = a(s) - CSEZTQ
Egkn

T +cgg,

where cg € R is constant.

(ii) The non-lightlike helical curve « is a line of curvature if and only if non-lightlike HCC-

associated heliz of type 3 has the parametrization B(s) = a(s)+csg, where cg € R is constant.

3.2. Non-lightlike Helices Associated with Relatively Normal-slant Helices in E?

This subsection is to investigate non-lightlike associated helices of relatively normal-slant helices.
In order to do the mentioned investigation, we assume that tangent vector 8’ of the associated

curve [ is linearly dependent with intrinsic normal vector field g of a surface curve .. Then, from
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, 1t tollows s) = R2(s)g(s) and thus the Frenet vectors , , o) are calculated as
4), it foll B R d th he F Ts, Ng, Bg of 8 lculated

1
—| | (enkgT +erTyn),
\|eTKZ +ent?
e, D (15)

Bg = —————(kgn+T7,T) =€,
|lerk2 + en72|

Tﬁ = %4, Ng ==
1D:]”
where ep, = (Bg, Bg). We can give the following theorem by using (15) and Definition 2.1.

Theorem 3.12 Let 8 be a non-lightlike associated curve of an arbitrary non-lightlike surface curve
a with (kg,74) # (0,0) who lies on a regular surface ¢ with the condition that 5’ and intrinsic

normal g are linearly dependent. Then, followings are equivalent:
(i) B is a heliz.
(ii) « is a relatively normal-slant heliz on ¢.

(ii) o is a D, -Darboux slant heliz on ¢.

Remark 3.13 The non-lightlike helix B which is associated with relatively normal-slant heliz
«a can be referred to as: Non-lightlike relatively normal-slant heliz-connected associated heliz or

non-lightlike RNS-HC-assoctiated heliz.

Investigating when x,y, z functions have special values leads us to the following cases. From

(5), we have
T tenkgytknz+1=0, rKer+y +7,2%0, eghpx+ert,y+2' =0. (16)
Case 1: z =0. Then, the system (16) is reduced to
Enkigy+knz+1=0, Y +7,2#0, eprgy+2' =0 (17)

with (ky,kg) #(0,0). If kg # 0, then first and third equations of system (16) yields the following
linear differential equation

ETknT ETT,
o STy _ 179
Enkyg Enkyg

whose solution can be calculated as

z:exp([ ETknngs) [fexp(—[ngnngs) €T7—gds+09],
Enkg Enkg Enkg

where cg € R is constant. Then, position vector of associated curve beta is given by

ky ky
1+knexp(fmds)|:[exp(—fmd)eTT d5+09]
Enk Enk Enk
B(s) = afs) - . . ’ g
Enlig (18)

5 knT, 5 knT, ETT,
+ exp L9 s fexp L9 s £d5+09 n
Enkg Enkg Enkg
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1 4
If kg =0 and 74 # 0, then from the first equation of system (16), we get z = o Since 2’ = k—;,
n n
k,/
from the third equation of system (16), it follows y = — kz . Thus, associated curve beta is
ETRL Ty
given with the position vector
k! 1
B(s) =a(s) - —5—9——n (19)

ET]{?nTg kn

Theorem 3.14 The non-lightlike associated curve [ given in (18) (resp. (19)) is a general heliz

if and only if « is a relatively normal-slant helixz on .

Remark 3.15 The non-lightlike associated curve (18) (resp. (19)) can be referred to as: Non-
lightlike relatively normal-slant heliz-connected associated helix of type 1 or non-lightlike RNS-HC-

associated helix of type 1.

Corollary 3.16 (i) The non-lightlike relatively normal-slant helix o« is an asymptotic curve

on ¢ with (kn,kg) # (0,0) if and only if RNS-HC-associated heliz has the parametrization

1 ETT,
g+ f Yds+cr|n.
Enkg Enkg

(it) The non-lightlike relatively normal-slant heliz o is a geodesic curve on @ with (ky, k) # (0,0)

B(s)=a-

if and only if RNS-HC-associated helix has the parametrization in (19).

(1ii) The non-lightlike relatively normal-slant heliz o is a line of curvature on ¢ with (kn,kg) #

kn+1
(0,0) if and only if RNS-HC-associated helix has the parametrization B(s) = oz(s)—u
nkg
crn.
Case 2: y =0. The system (16) becomes
' +knz=0, Kgr+7y2#0, egkpz+2 =0. (20)
If k, #0, then, from system (20), the following differential equation is derived
k’
2=y e k22 = e gk, (21)

kn
whose homogeneous part can be obtained with the aid of a variable change t = f k,ds as follows

d?z

ﬁ—&?gz=0. (22)

The differential equation (22) has two different types of solutions with respect to the value of ¢g.
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Let £, = 1. In this case, 5 is a spacelike curve. Then, the general solution of (21) is obtained

as follows

z = ¢ cosh (/ knds) + ¢11 sinh (f k:nds)

(23)
—cosh( [ knds) [ sinh( [ knds) ds+sinh( [ k;nds) [ cosh( [ k:nds)ds,
where cyg,c11 € R are constants. This leads us to
T = —clgsinh(f knds)—cll cosh(f knds)
(24)

+sinh(f knds)fsinh(f knds)ds—cosh(/ knds)[cosh(f knds)ds

14

z
since x = o from the third equation of system (20). In this case, § is a spacelike curve and « is
n

a spacelike (resp. timelike) curve on a spacelike (resp. timelike) surface. Thus, by using (23) and

(24), the position vector of spacelike associated curve § is given as follows

-t o ) - )
i ) ) f ) o s
[eweosn{ [ k) - xssion [ 1)
i ) s ) ) f o ]

Let €4 =—1. In this case, T" and n become spacelike vectors. Then, we get ¢ is a timelike

(25)

surface, « is a spacelike curve and f is a timelike curve. Similar to the previous case, the general

solution of (21) is obtained as follows

Z=C12 Cos(f knds)+013 sin(f knds)
+cos(f knds)fsin(f knds) ds—sin([ knds)[cos(f knds)ds,
where c¢q9,c13 € R are constants and thus
T = —Ci sin(/ knd8)+013 cos([ knds)
—Sin(f knds)/sin(f knds)ds—cos([ knds)[cos(f knds)ds.
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Hence, the position vector of timelike associated curve f is stated as

560 = a0+ [erwsin [ huts) < evscos [ ks
([ ) [ o [ ) con [ ) [ cos( [ huts)s] 2
[ecos( [ ) crasin [ e
soon( [ ) fron([f s} tssin [ ) feon( [ ruts) s

If k, =0, then from first and third equations of system (20), we get © = —s + ¢19, 2z = C20,

(26)

respectively, and therefore the position vector of 3 is given by
B(s) =a(s) +(-s+c14)T + c15n, (27)

where cy14,c15 € R are constants. Now, we can give the followings:

Theorem 3.17 The spacelike (resp. timelike and non-lightlike) associated curve B given by (25)

(resp. (26) and (27)) is a general heliz if and only if o is a relatively normal-slant heliz on ¢.

Remark 3.18 The associated curves (25) and (26) can be referred to as: Spacelike and timelike
relatively normal-slant helix-connected associated helix of type 2 or spacelike and timelike RNS-

HC-associated helixz of type 2, respectively.

Corollary 3.19 The non-lightlike relatively normal-slant helix o is an asymptotic curve on ¢ if

and only if non-lightlike RNS-HC-associated helix has the parametrization in (27).

Case 3: z =0. In this case, from system (16), we obtain

T tenkgy+1=0, Kex+y #0, eghpx+ert,y=0. (28)
. . . egkn
with (k,,74) # (0,0). If 75 # 0, then from the third equation of system (28), we have y = — .
ETTy
€gEnknk €4€
Substituting y in first equation of (28), it follows 2’ - """ 2+1 =0, where = = —1. Then,
ETTy ErT
following differential equation is obtained
z’ + Mm =-1,
Tg

whose general solution is

x:exp(—fkn%gds) [—/exp(f knﬁgds)ds+016],
Ty Ty
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where c16 € R is constant. Hence, we obtain y as follows

k., k., kr
Zg exp (— f Fg ds) [— f exp (f Ry ds) ds + 016] ,
ETT, 5 T

and the position vector of associated curve § is given by

B(s)=a(s)+exp(—f k’;jgds) [—fexp(f k:_:gds) ds+cl6] (T—Z]Zg). (29)

If kg #0 and 74 =0, then from the system (28), we get =0 and y = —

. Thus, the position
Enkg

vector of associated curve g is given by

B(s)=a(s) - ——. (30)

Enky
Theorem 3.20 The non-lightlike associated curve 8 given by (29) (resp. (30)) is a general helix

if and only if a is a relatively normal-slant heliz on ¢.

Remark 3.21 The non-lightlike associated curve (29) (resp. (30)) can be referred to as: Non-

lightlike relatively normal-slant heliz-connected associated helix of type 3 or non-lightlike RNS-HC-

associated helix of type 3.

Corollary 3.22 (i) The non-lightlike relatively normal-slant helix o« is an asymptotic curve
on ¢ if and only if non-lightlike RNS-HC-associated heliz has the parametrization B(s) =
a(s) + (-=s+c16)T, where c16 € R is constant.

(ii) The non-lightlike relatively normal-slant heliz « is a geodesic curve on ¢ if and only if

non-lightlike RNS-HC-associated heliz has the parametrization (s) = a(s) + (s + c16)T +

(=s+ci6)egkn

e g, where c16 € R is constant.

(iii) The non-lightlike relatively normal-slant heliz « is a line of curvature on ¢ if and only if

non-lightlike RNS-HC-associated helix has the parametrization in (30).

3.3. Non-lightlike helices associated with isophote curves in E}

In this final subsection of Section 3, we investigate non-lightlike helices associated with isophote
curves. Let the tangent vector 3’ of associated curve § be linearly dependent with the unit surface
normal along an arbitrary non-lightlike curve « on an oriented surface ¢. Then, from (4), we have

Ry =Ry =0 and p'(s) = R3(s)n(s). Arc-length parameter and Frenet vectors Tz, Nz, Bg of 8
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are calculated as dsg = +R3zds and

1
Tg=+n, Ng=+——e=o—— (kT +1y9),
erk? + 472
L, VEreerl b &
B o
BB T ——— (Egkng + 5TTgT) =¢€Bg D77
|€Tk,%+59792| 1D, |

respectively, where ep, = (Bg,Bg.). From (31) and Definition 2.1, we can give the following

theorem.

Theorem 3.23 Let 8 be a non-lightlike associated curve of an arbitrary non-lightlike surface curve
a with (kn,74) # (0,0) who lies on a reqular surface ¢ with the condition that B’ and unit surface

normal n along o are linearly dependent. Then, followings are equivalent:
(i) B is a heliz.
(i) « is an isophote curve on ¢.

(i) « is a D,-Darboux slant heliz on ¢.

Remark 3.24 The non-lightlike helixz B associated with isophote curve « can be referred to as:

Non-lightlike isophote curve-connected associated heliz or non-lightlike ICC-associated helix.

We now investigate special cases when x,y,z functions have special values. From (5), we

get

T tenkgytkhnz+1=0, rer+y +7,2=0, eghpx+ert,y+2' #0. (32)

Case 1: 2 =0. Then, from (32), we have
Enkigy+knz+1=0, y +7,2=0, epryy+z #0, (33)

with (kn,kg) #(0,0). If 7, # 0, then from second equation of system (33), we have z = —f—’ and by

substituting this equality in the third equation of system (33), we obtain the following differential
equation

r_EnkgTg Ty

ko kn’

whose general solution is

Yy = exp (/ 571:7979(133) ([ exp (— leig%ds) ;—gds + 617) , (34)

7
where cq7 is a real constant. Since z = _%7 it follows
g

1 n n n
z= B €k:g exp( Mds) (/ exp (— &:Zijwds) ;—ids + 017) . (35)
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Therefore, for the position vector of associated curve (8, we obtain

B(s) = a(s) + exp( W;ingdS) ([ exp (— leig%ds) ;—gds + 017)9

]- n n n
_ [k—n + Ek:g exp( EnligTy ZjTg ds) (f exp (— EnligTy ZjTg ds) ;—ids + 017)] n.

If k, # 0 and 7, = 0, then from the second equation of system (33), we get y = ci3 for a real

(36)

C18€nkg + 1
constant cjg. Substituting this result in first equation of system (33) yields z = —18%
n
Therefore, the position vector of associated curve [ is obtained as
C18€nkg + 1
B(s) = a(s) +cigg - % (37)
n

We state our findings with the following theorem and corollaries.

Theorem 3.25 The non-lightlike associated curve B given by (36) (resp. (37)) is a general heliz

if and only if o is an isophote curve on .

Remark 3.26 The non-lightlike associated curve (36) (resp. (37)) can be referred to as: Non-
lightlike isophote curve-connected associated heliz of type 1 or non-lightlike ICC-associated helixz of

type 1.

Corollary 3.27 (i) The non-lightlike isophote curve o with (ky,kg) # (0,0) is an asymptotic

curve if and only if non-lightlike ICC-associated helixz has the parametrization B(s) = a(s) -

4
1k
snngg s,,,ng'rg

n.

(i) The non-lightlike isophote curve o with (kn,kq) # (0,0) is a geodesic curve if and only if
non-lightlike ICC-associated heliz has the parametrization 5(s) = a(s) + [ ;—stg - k%n

(7ii) The non-lightlike isophote curve a with (ky,kg) # (0,0) is a line of curvature if and only if

non-lightlike ICC-associated heliz has the parametrization (37).

Case 2: y =0. From system (32), we have

' +kyz+1=0, Kgr+T792=0, eokpz+2 %0, (38)
with (kg,74) # (0,0). If 7, # 0, then, from the second equation of system (38), we get z = Loy
Tg

which we substitute in the first equation of system (38) and obtain the following differential
equation

! knﬁgw =-1

b
Tg
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whose general solution is

x:exp(f kj_:gds) [—[exp(—f kj_:gds)ds+clg], (39)

. . K . . .
where c19 is a real constant. Since z = ——*z, the position vector of the associated curve 3 is
g

obtained as

B(s) = a(s) +exp (f kj_ﬂgds) [— [ exp (— f k:_:gds) ds + 019] (T— :ign) . (40)

g9 g9

If k, # 0 and 7, = 0, then, second and first equations of system (38) yield z = 0 and z = —7-,

respectively. Thus, the position vector of associated curve ( is given by

B(s)=a- kin (41)

n

Now, we give the following theorem and corollaries.

Theorem 3.28 The non-lightlike associated curve B given by (40) (resp. (41)) is a general helix

if and only if o is an isophote curve on .

Remark 3.29 The non-lightlike associated curve (40) (resp. (41)) can be referred to as: Non-
lightlike isophote curve-connected associated heliz of type 2 or non-lightlike 1CC-associated heliz of
type 2.

Corollary 3.30 (i) The non-lightlike isophote curve a with (rkg,74) # (0,0) is an asymptotic
curve if and only if non-lightlike ICC-associated helixz has the parametrization B(s) = a(s) +
(—S + Clg)T + 7@,(5—019) n.

(ii) The non-lightlike isophote curve a with (kg,74) # (0,0) is a geodesic curve if and only if

non-lightlike ICC-associated helix has the parametrization B(s) = a(s) + (=s+c19)T.
(71t) The non-lightlike isophote curve o with (kg,74) # (0,0) is a line of curvature if and only if

non-lightlike ICC-associated heliz has the parametrization in (41).
Case 3: z=0. In this case, from (32) we obtain
T tenkgy+1=0, Kex+y =0, eghpx+ertyy#0. (42)

If kg =0, then, from system (42), we get x = —s+ cog9 and y = c30, where cgg,co1 are real

constants. Then, the position vector of the associated curve § is given by

B(s) =a(s) + (=s +¢20)T + ca19. (43)
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!

If k4 # 0, then from second equation of system (42), we have z = ~ Y We take the

kg
derivative of xz and substitute it in the first equation of system (42) and obtain the following
differential equation

k’
Y= 2y —enkiy = Ky,
kg
whose homogeneous part can be achieved by a parameter change t = [ k,ds as

d2
LA eny =0. (44)

The solution of (44) depends on the value of ¢, which could be either 1 or —1. If ¢, = 1, then we
get

Y = Coo cosh(/ mgds)+cQ3 sinh(/ /cgds)

—cosh(f ﬁgds)[sinh(/ﬁgds)ds+sinh(fKgds)fcosh(f Hgds)ds,
T= o sinh( [ /igds)—cm cosh( [ ngds)

+sinh( f Hgds) [ sinh( f /fgds)ds—cosh( f Iigds) f cosh( f Hgds)ds,

where co9, co3 are real constants.

If &, = -1, then we get

= cavcos( [ rgts) s czsin [ s
eos(f ) fr(f )t in ([ ) [ eos( [ )
e s [ ) s [ s
([ ngs) [ s [ ) s -con( [ ) [ eos( [ ) s

where co4,co5 are real constants. In either cases,
B(s) = a(s) + 2T +yg, (47)

where z,y are as defined in (45) or (46).

Theorem 3.31 The non-lightlike associated curve B given by (47) is a general heliz if and only

if a is an isophote curve on ¢.
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Remark 3.32 The non-lightlike associated curve (47) can be referred to as: Non-lightlike isophote

curve-connected associated helix of type 3 or non-lightlike ICC-associated heliz of type 3.

Corollary 3.33 The non-lightlike isophote curve « is a geodesic curve if and only if non-lightlike

ICC-associated heliz has the parametrization (43).

4. Examples

Example 4.1 Let the spacelike surface ¢ be given by the parametrization ¢(u,v) = (coshu,sinhu, v)

and

a(u) = (cosh (%) ,sinh (%) , %)
be a spacelike helix on . Then, elements of Darbouzx frame of a are calculated as
1 . s 1 s 1
- (g Gg) v (Va) va)
g(s) = (Sinh (%) ,cosh(%) , —%) , n(s)= (cosh(%) ,sinh(%) ,0) ,

1 _ _1 . _ . . .
kn=35, kg=0 and 74y = 5. Since ,=0, a is a geodesic curve on ¢. On the other hand, since g
and n are Lorenztian circles or arc of a Lorenztian circle, then we have that « is also a relatively
normal-slant heliz and an isophote curve on ¢. Figure 1 shows some B curves associated with «

considering the obtained results in Section 3.

Figure 1: Spacelike surface curve a (blue), spacelike HCC-associated helix of type 1 (red), spacelike
RNS-HC-associated helix of type 1 (black) and spacelike ICC-associated helix of type 2 (green),
respectively

Example 4.2 Let the timelike surface ¢ be given by the parametrization o(u,v) = (\/§u, veos(u), ’usin(u)) ,
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Figure 2: Timelike surface curve « (blue), timelike HCC-associated helix of type 3 (red), timelike
RNS-HC-associated helix of type 3 (black), respectively

Ve (—\/3, \/5) and

- (Vo) ()

be a timelike heliz on ¢. The elements of Darboux frame of « are calculated as

\/gsin(%) \/gcos(%) ko = lcosh(z) o = 1Smh(I

B \/is
2\/ _57 \/3_£ ) 3_£ 9 2 2 K 2 2
2 2 2

Tg = —— . Since ¢ is a Lorenztian circle or an arc of a Lorenztian circle, then we have that « is

n(s) =

) and

also a relatively normal-slant helix. Figure 2 shows some [ curves associated with « considering

the obtained results in Section 3.
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