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RESEARCH ARTICLE

A new characterization of the Hardy space and of other Hilbert spaces of
analytic functions

N. Alpay1*

1Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, USA

ABSTRACT
The Fock space can be characterized (up to a positive multiplicative factor) as the only Hilbert space of entire functions in which
the adjoint of derivation is multiplication by the complex variable. Similarly (and still up to a positive multiplicative factor) the
Hardy space is the only space of functions analytic in the open unit disk for which the adjoint of the backward shift operator is
the multiplication operator. In the present paper we characterize the Hardy space and some related reproducing kernel Hilbert
spaces in terms of the adjoint of the differentiation operator. We use reproducing kernel methods, which seem to also give a new
characterization of the Fock space.

Mathematics Subject Classification (2020): 46E22, 47B32, 30H20, 30H10

Keywords: Reproducing kernel, Hardy space, Fock space

1. INTRODUCTION

The Fock (or Bargmann-Fock-Segal) space consists of the entire functions 𝑓 such that
1
𝜋

∬
C
| 𝑓 (𝑧) |2𝑒−|𝑧 |2𝑑𝑥𝑑𝑦 < ∞, (1)

and is the reproducing kernel Hilbert space with reproducing kernel

𝑒𝑧𝜔 . (2)

It is (up to a positive multiplicative factor) the unique Hilbert space of entire functions in which

𝜕∗𝑧 = 𝑀𝑧 , (3)

where 𝜕𝑧 denote the derivative with respect to 𝑧, and will be used throughout the work along with the notation (𝜕𝑧 𝑓 ) (𝑧) = 𝑓 ′ (𝑧).
Furthermore, in (3) 𝑀𝑧 stands for multiplication by the variable 𝑧, e.g., (𝑀𝑧 𝑓 ) (𝑧) = 𝑧 𝑓 (𝑧). We refer to the work of Bargmann
Bargmann (1961, 1962) for this result. Formula (3) suggests to find similar characterizations for other important spaces of analytic
functions. In particular, we have in mind the following spaces of functions analytic in the open unit disk D:
(1) The Bergman space, which consists of the functions analytic in D and such that:

1
𝜋

∬
D
| 𝑓 (𝑧) |2𝑑𝑥𝑑𝑦 < ∞,

with the reproducing kernel
1

(1 − 𝑧𝜔)2 =
∞∑︁
𝑛=0

(𝑛 + 1)𝑧𝑛𝜔𝑛.

(2) The Hardy space H2, when the condition is:

lim
𝑟→1

1
2𝜋

∫ 2𝜋

0
| 𝑓 (𝑟𝑒𝑖𝑡 ) |2𝑑𝑡 < ∞,

with the reproducing kernel
1

1 − 𝑧𝜔 =
∞∑︁
𝑛=0

𝑧𝑛𝜔𝑛.
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(3) The Dirichlet space, for which the functions vanish at the origin and satisfy

1
𝜋

∬
D
| 𝑓 ′ (𝑧) |2𝑑𝑥𝑑𝑦 < ∞,

with the reproducing kernel − ln(1 − 𝑧𝜔) =
∞∑︁
𝑛=1

𝑧𝑛𝜔𝑛

𝑛
.

In the present work we approach this problem using reproducing kernel Hilbert spaces methods. We prove te following results.

Theorem 1.1. The Hardy space is, up to a positive multiplicative factor, the only reproducing kernel Hilbert space of functions
analytic in D, in which the equality

𝜕∗𝑧 = 𝑀𝑧𝜕𝑧𝑀𝑧 (4)

holds on the linear span of the kernel functions.

Note that both in this, and in the next theorem, one could assume that the functions are analytic only in a neighborhood of the
origin, and then use analytic continuation. We also note that the unbounded operator 𝑀𝑧𝜕𝑧 is diagonal, and acts on the polynomials
as the number operator of quantum mechanics:

𝑀𝑧𝜕𝑧 (𝑧𝑛) = 𝑛𝑧𝑛, 𝑛 = 0, 1, . . . ,

see e.g. (Fayngold and Fayngold 2013, p. 548) which is the radial derivative for mathematics.
As mentioned above, the Hardy space of the open unit diskD has reproducing kernel 1

1−𝑧𝜔 . More generally, for every 𝛼 ∈ (0,∞),
the function 1

(1−𝑧𝜔)𝛼 is positive definite in D, as can be seen from the power series expansion of the function 1
(1−𝑡 )𝛼 with center

at the origin as

1
(1 − 𝑧𝜔)𝛼 = 1 +

∞∑︁
𝑛=1

𝛼(𝛼 + 1) · · · (𝛼 + 𝑛 − 1)
𝑛!

𝑧𝑛𝜔𝑛, 𝑧, 𝜔 ∈ D. (5)

We will use a similar notation to Bargmann (see (Bargmann 1961, Remark 2g, page 203)), and denote ℌ𝛼 to be the associated
reproducing kernel Hilbert space, characterized by the following result.

Theorem 1.2. Let 𝛼 > 0. Then the spaceℌ𝛼 is, up to a multiplicative factor, the only reproducing kernel Hilbert space of functions
analytic in D, in which the equality

𝜕∗𝑧 = 𝑀𝑧𝜕𝑧𝑀𝑧 − (1 − 𝛼)𝑀𝑧 , 𝛼 > 0, (6)

holds on the linear span of the kernel functions.

The case 𝛼 = 1 corresponds to the Hardy space and Theorem 1.1, and 𝛼 = 2 corresponds to the Bergman space. The case 𝛼 = 0
would “correspond” to the Dirichlet space, in the sense that

lim
𝛼→0

1
𝛼

(
1

(1 − 𝑧𝜔)𝛼 − 1
)
= − ln(1 − 𝑧𝜔).

Note that 𝜕𝑧 is not densely defined in the Dirichlet space (since 𝜕𝑧𝑘𝜔 is not in the Dirichlet space for 𝜔 ≠ 0), and therefore its
adjoint is a relation and not an operator. We were not able to get a counterpart of Theorem 1.2 for 𝛼 = 0, but we have the following
result.

Theorem 1.3. The Dirichlet space is, up to a positive multiplicative factor, the only reproducing kernel Hilbert space of functions
analytic in D, for which the equality

𝜕2
𝑧2 𝑘 = 𝜔̄2𝜕𝑧𝜕𝜔̄𝑘 (7)

holds for its kernel 𝑘 , pointwise for 𝑧, 𝜔 ∈ D.

Note that (7) is not an equality in the Dirichlet space, but rather, an equality between analytic functions. We give a similar
characterization of the Fock space in Proposition 2.5.

More generally, our analysis suggests a new direction in the study of the connections between reproducing kernel Hilbert spaces
and operator models. In particular, the following question is of interest: For which polynomials of two variables 𝑝(𝑥, 𝑦) does the
equation

𝜕∗𝑧 = 𝑝(𝑀𝑧 , 𝜕)
characterize a reproducing kernel Hilbert space?

2
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Remark 1.4. When denoting inner products, we will sometimes mention explicitly the variable inside an inner product by writing
⟨ 𝑓 (𝑧), 𝑔(𝑧)⟩ rather than ⟨ 𝑓 , 𝑔⟩ to make the reading easier. See for instance equation (11).

Remark 1.5. A kernel 𝑘 (𝑧, 𝜔) analytic in 𝑧 and 𝜔 in a neighborhood of (0, 0) (see Proposition 2.2) has a power series expansion
at (0,0) of the form

𝑘 (𝑧, 𝜔) =
∞∑︁

𝑛,𝑚=0
𝑐𝑛,𝑚𝑧

𝑛𝜔̄𝑚. (8)

where

𝑐𝑛,𝑚 = ⟨𝑧𝑛, 𝜔𝑚⟩−1 (9)

To ease the presentation, we associate to (8) the infinite matrix 𝐶 (𝑘) = (𝑐𝑚,𝑛)∞𝑛,𝑚=0. Note that 𝐶 (𝑘) does not necessarily need
to define a bounded operator in ℓ2 (N0). For instance, for the Bergman kernel

1
(1 − 𝑧𝜔̄)2 = 1 + 2𝑧𝜔̄ + 3(𝑧𝜔̄)2 + · · · ,

we have

𝐶 (𝑘) =
©­­­«

1
2 0

3

0 . . .

ª®®®¬
,

which is unbounded on ℓ2 (N0).
The paper consists of four sections besides the introduction. In Section 2 we review a number of definitions and results on

reproducing kernel Hilbert spaces of analytic functions. Sections 3, 4, and 5 contain proofs of Theorems 1.1, 1.2, and 1.3
respectively.

2. REPRODUCING KERNEL HILBERT SPACES

In this section we will briefly review the properties of reproducing kernel Hilbert spaces needed in the following sections. We first
recall a definition.

Definition 2.1. A reproducing kernel Hilbert space is a Hilbert space (H , ⟨·, ·⟩) of functions defined in a non-empty set Ω such
that there exists a complex-valued function 𝑘 (𝑧, 𝜔) defined on Ω ×Ω and with the following properties:

1. ∀𝜔 ∈ Ω, 𝑘𝜔 : 𝑧 ↦→ 𝑘 (𝑧, 𝜔) ∈ H → H ,
2. ∀ 𝑓 ∈ H , <∼ 𝑓 , 𝑘𝜔⟩ = 𝑓 (𝜔).

The function 𝑘 (𝑧, 𝜔) is uniquely defined by the Riesz representation theorem, and is called the reproducing kernel of the
space. The reproducing kernel (kernel, for short) has a very important property: it is positive definite, that is, for all 𝑁 ∈ N,
𝜔1, . . . 𝜔𝑁 ∈ Ω, and 𝑐1, . . . , 𝑐𝑁 ∈ C, we have

𝑁∑︁
𝑖, 𝑗=1

𝑐 𝑗𝑐𝑖𝑘 (𝜔𝑖 , 𝜔 𝑗 ) ≥ 0.

In particular, it can be shown that the equation above implies that 𝑘 (𝑧, 𝜔) is Hermitian, i.e.,

𝑘 (𝑧, 𝜔) = 𝑘 (𝜔, 𝑧). (10)

We refer to the book Saitoh (1988) for more information on reproducing kernel Hilbert spaces, and we recall that there is a
one-to-one correspondence between positive definite functions on a given set and reproducing kernel Hilbert spaces of functions
defined on that set. In the present work we are interested in the case where Ω is an open neighborhood of the origin, and where the
kernels are analytic in 𝑧 and 𝜔. The following result is a direct consequence of Hartog’s theorem, and will be used in the sequel.
For a different proof, see (Donoghue 1974, p. 92).

Proposition 2.2. Let H be a reproducing kernel Hilbert space of functions analytic in Ω ⊂ C, with reproducing kernel 𝑘 (𝑧, 𝜔).
Then the reproducing kernel is jointly analytic in 𝑧 and 𝜔.

Proof. Since the kernels belong to the space, we have that for every 𝜔 ∈ Ω the function 𝑧 ↦→ 𝑘 (𝑧, 𝜔) is analytic in Ω. From (10)
it follows that the kernel is also analytic in 𝜔. Hartog’s theorem (see (Chabat 1990, p. 39)) allows us to conclude that 𝑘 (𝑧, 𝜔) is
jointly analytic in 𝑧 and 𝜔.

3
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When derivatives come into play, one then has (12) below as the counterpart of (10):

Proposition 2.3. Under the hypotheses of the above discussion, the elements of the associated reproducing kernel Hilbert space
are analytic in Ω and the following hold:

(𝜕𝑤 𝑓 ) (𝜔) = ⟨ 𝑓 (𝑧), 𝜕𝜔𝑘𝜔 (𝑧)⟩ (11)

and

𝜕𝑧𝑘 (𝑧, 𝜔0) |𝑧=𝑧0 = 𝜕𝜔̄𝑘 (𝜔0, 𝜔) |𝜔=𝑧0 . (12)

Proof. The proof of (11) can be found in (Saitoh 1997, Theorem 9, p. 41). We give the proof of (12), where as in Definition 2.1
and in the rest of the work, we use the notation: 𝑘𝛽 : 𝑧 ↦→ 𝑘 (𝑧, 𝛽) where 𝛽 ∈ Ω.

Setting 𝑓 (𝑧) = 𝑘 (𝑧, 𝜔0) in (11) gives

𝜕𝑧𝑘 (𝑧, 𝜔0) |𝑧=𝑧0 = <∼ 𝑘 (𝑧, 𝜔0), 𝜕𝜔̄𝑘 (𝑧, 𝜔) |𝜔=𝑧0⟩
and so we have

𝜕𝑧𝑘 (𝑧, 𝜔0) |𝑧=𝑧0 = <∼ 𝜕𝜔̄𝑘 (𝑧, 𝜔) |𝜔=𝑧0 , 𝑘 (𝑧, 𝜔0)⟩ = 𝜕𝜔̄𝑘 (𝑧, 𝜔) |𝑧=𝜔0 ,𝜔=𝑧0 ,

and hence the result.

For some special cases, the reader could also check (12) for 𝑘 (𝑧, 𝜔) = 𝑓 (𝑧𝜔̄) or for 𝑘 (𝑧, 𝑤) = 𝑎(𝑧)𝑎(𝑤), where 𝑎(𝑧) is analytic
in some open subset of the complex plane. In particular, for the latter example we have:

𝜕𝑧𝑘 (𝑧, 𝜔0) |𝑧=𝑧0 = 𝑎
′ (𝑧0)𝑎(𝜔0)

on the one hand, and

𝜕𝜔̄𝑘 (𝜔0, 𝜔) |𝜔=𝑧0 = 𝑎(𝜔0)𝑎′ (𝑧0)
on the other hand, and hence taking conjugates we see that (12) holds. Since every positive definite function can be represented
as an infinite sum of functions of the form 𝑎(𝑧)𝑎(𝑤) (this is Bergman’s reproducing kernel formula, see Aronszajn (1950)), this
would give another way to prove (12), after justifying interchange of sum and derivatives, but we preferred to give a direct proof.

The following is a main technical result that we will need in the proofs of the theorems.

Proposition 2.4. Let 𝑘 (𝑧, 𝜔) be positive definite and jointly analytic in 𝑧 and 𝜔 for 𝑧, 𝜔 in an open subset Ω of the complex plane.
Assume that the operator 𝜕𝑧 is densely defined in the associated reproducing kernel Hilbert space H(𝑘). Then 𝜕𝑧 is closed and in
particular has a densely defined adjoint 𝜕∗𝑧 which satisfies 𝜕∗∗𝑧 = 𝜕𝑧 .

Proof. Let ( 𝑓𝑛) be a sequence of elements in Dom 𝜕 and let 𝑓 , 𝑔 ∈ H be such that

𝑓𝑛 → 𝑓

𝜕 𝑓𝑛 → 𝑔

where the convergence is in the norm. Since weak convergence follows from strong convergence, using (11), we have for every
𝜔 ∈ Ω that

⟨ 𝑓𝑛, 𝜕𝜔̄𝑘𝜔⟩ → ⟨ 𝑓 , 𝜕𝜔̄𝑘𝜔⟩ and ⟨𝜕 𝑓𝑛, 𝑘𝜔⟩ → ⟨𝑔, 𝑘𝜔⟩ ,
where the brackets denote the inner product in H(𝑘). Hence it follows that

lim
𝑛→∞ 𝑓 ′𝑛 (𝜔) = 𝑓 ′ (𝜔) and lim

𝑛→∞ 𝑓 ′𝑛 (𝜔) = 𝑔(𝜔).

Thus 𝑔 = 𝑓 ′, and hence 𝜕 is closed. Hence, 𝜕 has a densely defined adjoint and 𝜕∗∗ = 𝜕; see e.g. (Reed and Simon 1980,
Theorem VIII.1, pp. 252-253).

As an application we prove the following characterization of the Fock space. In the statement, one could assume the functions
analytic only in a neighborhood of the origin, and then use analytic continuation.

Proposition 2.5. The Fock space is the unique (up to a positive multiplicative factor) reproducing kernel Hilbert space of entire
functions where the equation

𝜕∗𝑧 = 𝑀𝑧

holds on the linear span of the kernels (in particular the kernel functions are in the domain of 𝜕∗ and of 𝑀𝑧).
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Proof. Let 𝑘 (𝑧, 𝑤) be the reproducing kernel of the space in the proposition. We want to show that 𝑘 (𝑧, 𝑤) = 𝑐𝑒𝑧𝜔 for some
𝑐 > 0. From Proposition 2.2 the kernel is jointly analytic in D. Since 𝜕∗ = 𝑀𝑧 , it follows that

<∼ 𝜕
∗
𝑧 𝑘 (𝑧, 𝜔), 𝑘 (𝑧, 𝜈)⟩ = <∼𝑀𝑧𝑘 (𝑧, 𝜔), 𝑘 (𝑧, 𝜈)⟩.

Evaluating each side yields the following: For the right hand side we get
<∼𝑀𝑧𝑘 (𝑧, 𝜔), 𝑘 (𝑧, 𝜈)⟩ = 𝜈𝑘 (𝜈, 𝜔)

since 𝑀𝑧𝑘 (𝑧, 𝜔) = 𝑧𝑘 (𝑧, 𝜔). The left hand side yields
<∼ 𝜕

∗
𝑧 𝑘 (𝑧, 𝜔), 𝑘 (𝑧, 𝜈)⟩ = <∼ 𝑘 (𝑧, 𝜔), 𝜕𝑧𝑘 (𝑧, 𝜈)⟩

= <∼ 𝜕𝑧𝑘 (𝑧, 𝜈), 𝑘 (𝑧, 𝜔)⟩
= 𝜕𝑧𝑘 (𝑧, 𝜈) |𝑧=𝜔
= 𝜕𝜔𝑘 (𝜔, 𝜈)
= 𝜕𝜔̄𝑘 (𝜈, 𝜔),

(13)

where we have used (12) to go from the penultimate line to the last one. Thus we obtain that 𝜕𝜔̄𝑘 (𝜈, 𝜔) = 𝜈𝑘 (𝜈, 𝜔), which is a
differential equation with the solution

𝑘 (𝜈, 𝜔) = 𝑐(𝜈)𝑒𝜈𝜔̄ ,
where the function 𝑐(𝜈) is an entire function of 𝜈 (since 𝑘 (𝜈, 𝜔) and 𝑒𝜈𝜔 are entire functions of 𝜈). But 𝑘 (𝜈, 𝜔) = 𝑘 (𝜔, 𝜈). Hence
𝑐(𝜈) = 𝑐(𝜈) so that 𝑐(𝜈) is real valued. Using the Cauchy-Riemann equations, we see that 𝑐(𝜈) is a constant, which is furthermore
positive since the kernel is positive.

Remark 2.6. The Fock space can be described in a geometric way by the Gaussian weight as in (1). The Gaussian weight has
other characterizations. We mention in particular the one from information theory: the Gaussian distribution 1√

2𝜋
𝑒−

𝑥2
2 maximizes

the entropy

−
∫
R
𝑓 (𝑥) ln 𝑓 (𝑥)𝑑𝑥

among all probability distributions with zero mean and second moment equal to 1; see e.g. (Petz 2008, Exercise 4, p. 50) and (Ash
1990, Theorem 8.3.3, p. 240). It can also be characterized (after normalization) as the unique continuous radial weight function
𝜔(𝑧) = 1

𝜋 𝑒
−|𝑧 |2 such that for polynomial 𝑝 and 𝑞 under the inner product

<∼ 𝑝, 𝑞⟩ =
1
𝜋

∬
C
𝑝(𝑧)𝑞(𝑧)𝜔(𝑧)𝑑𝐴(𝑧),

the operator of multiplication and differentiation are adjoint to each other; see Bargmann (1961) (and J. Tung’s thesis Tung (1976)).

3. PROOF OF THEOREM 1.1

We first check that the kernel 𝑘𝜔 (𝑧) = 1
1−𝑧𝜔 is a solution of (4), i.e.

⟨𝜕𝑧𝑔, 𝑘 (𝑧, 𝜔)⟩ =
〈
𝑔, 𝜕∗𝑧 𝑘 (𝑧, 𝜔)

〉
= ⟨𝑔, 𝑀𝑧𝜕𝑧𝑀𝑧𝑘 (𝑧, 𝜔)⟩ ,

with 𝑔(𝑧) = 1
1−𝑧𝜔∗ . To verify the above, we compute the left side of the equation and have

⟨𝜕𝑧𝑘𝜈 (𝑧), 𝑘𝜔 (𝑧)⟩ =
〈
𝜕𝑧

(
1

1 − 𝑧𝜈̄

)
, 𝑘𝜔 (𝑧)

〉
=

〈
𝜈̄

(1 − 𝑧𝜈̄)2 , 𝑘𝜔 (𝑧)
〉
=

𝜈̄

(1 − 𝜔𝜈̄)2 .

Similarly, we independently calculate the right hand side as

⟨𝑘 𝜈̄ (𝑧), 𝑀𝑧𝜕𝑧𝑀𝑧𝑘𝜔⟩ =
〈
𝑘 𝜈̄ (𝑧), 𝑀𝑧𝜕𝑧

(
𝑧

1 − 𝑧𝜔̄

)〉

=

〈
𝑘 𝜈̄ (𝑧), 𝑧

(1 − 𝑧𝜔̄)2

〉

=

〈
𝑧

(1 − 𝑧𝜔̄)2 , 𝑘𝜈 (𝑧)
〉

=
𝜈̄

(1 − 𝜔𝜈̄)2 ,

5
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which comes to be the same as the left hand side.
To prove the converse we apply (4) to kernels, then we use analyticity to find the kernel via its Taylor expansion at the origin.

Let 𝜔, 𝜈 ∈ D. From (4) we get

⟨𝜕𝑧𝑘𝜔 , 𝑘𝜈⟩ = <∼ 𝑘𝜔 , 𝜕
∗
𝑧 𝑘𝜈⟩ = ⟨𝑘𝜔 , 𝑀𝑧𝜕𝑧𝑀𝑧𝑘𝜈⟩. (14)

We rewrite (4) as

𝜕∗𝑧 𝑓 = 𝑧(𝜕𝑧𝑧 𝑓 ) = 𝑧(𝑧 𝑓 ′ + 𝑓 ) = 𝑧2 𝑓 ′ + 𝑧 𝑓 .
By hypothesis the kernel functions belong to the domain of 𝜕∗𝑧 and we have 𝜕∗∗𝑧 = 𝜕𝑧 by Proposition 2.4. Therefore, By by (13)

we obtain
<∼ 𝜕

∗
𝑧 𝑘𝜔 , 𝑘𝜈⟩ = (𝜕𝜔̄𝑘) (𝜈, 𝜔). (15)

Then, using the two end sides of (14), we get
<∼𝑀𝑧𝜕𝑧𝑀𝑧𝑘𝜈 (𝑧), 𝑘𝜔 (𝑧)⟩ = <∼ 𝑘𝜔 (𝑧), 𝑀𝑧𝜕𝑧𝑀𝑧𝑘𝜈 (𝑧)⟩

= <∼ 𝑘 (𝑧, 𝜔), 𝑧2𝜕𝑧𝑘 (𝑧, 𝜈) + 𝑧𝑘 (𝑧, 𝜈)⟩
= <∼ 𝑘 (𝑧, 𝜔), 𝑧2𝜕𝑧𝑘 (𝑧, 𝜈)⟩ + <∼ 𝑘 (𝑧, 𝜔), 𝑧𝑘 (𝑧, 𝜈)⟩
= 𝜔̄2𝜕𝜔̄𝑘 (𝜈, 𝜔) + 𝜔̄𝑘 (𝜈, 𝜔)

where we have used (12) to go from the penultimate line to the last one. Considering 𝑘 = 𝑘 (𝑧, 𝜔) and using (14), we get the partial
differential equation

𝜕𝑧𝑘 = 𝜔̄2𝜕𝜔̄𝑘 + 𝜔̄𝑘. (16)

The kernel is analytic in 𝑧 and 𝜔 near the origin, and hence can be written as (8). So we can rewrite (16) as
∞∑︁
𝑛=1

∞∑︁
𝑚=0

𝑛𝑐𝑛,𝑚𝑧
𝑛−1𝜔̄𝑚 =

∞∑︁
𝑛=0

∞∑︁
𝑚=1

𝑚𝑐𝑛,𝑚𝑧
𝑛𝜔̄𝑚+1 +

∞∑︁
𝑛=0

∞∑︁
𝑚=0

𝑐𝑛,𝑚𝑧
𝑛𝜔̄𝑚+1,

which can also be written as:
∞∑︁
𝑛=0

(𝑛 + 1)𝑐𝑛+1,0𝑧
𝑛 +

∞∑︁
𝑛=0

(𝑛 + 1)𝑐𝑛+1,1𝑧
𝑛𝜔 +

∞∑︁
𝑛=0

∞∑︁
𝑚=2

(𝑛 + 1)𝑐𝑛+1,𝑚𝑧
𝑛𝜔̄𝑚

=
∞∑︁
𝑛=0

𝑐𝑛,0𝑧
𝑛𝜔 +

∞∑︁
𝑛=0

∞∑︁
𝑚=2

𝑚𝑐𝑛,𝑚−1𝑧
𝑛𝜔𝑚.

Now we compare the terms on the two sides. First we look at the part which is constant with respect to 𝜔 and get
∞∑︁
𝑛=0

(𝑛 +

1)𝑐𝑛+1,0𝑧
𝑛 = 0. Hence

𝑐𝑛+1,0 = 0, (17)

for all 𝑛 ∈ N0.

Consider the coefficients of 𝑧𝑛𝜔 on both sides. Then we have
∞∑︁
𝑛=0

(𝑛 + 1)𝑐𝑛+1,1𝑧
𝑛𝜔 =

∞∑︁
𝑛=0

𝑐𝑛,0𝑧
𝑛𝜔. Hence

(𝑛 + 1)𝑐𝑛+1,1 = 𝑐𝑛,0, (18)

for all 𝑛 ∈ N0. Note that for 𝑛 = 0 we get 𝑐0,0 = 𝑐1,1.

Consider the terms 𝑧𝑛𝜔𝑚, 𝑚 ≥ 2. Then
∞∑︁
𝑛=0

∞∑︁
𝑚=2

𝑚𝑐𝑛,𝑚−1𝑧
𝑛𝜔𝑚 =

∞∑︁
𝑛=0

∞∑︁
𝑚=2

(𝑛 + 1)𝑐𝑛+1,𝑚𝑧
𝑛𝜔̄𝑚. Hence

𝑚𝑐𝑛,𝑚−1 = (𝑛 + 1)𝑐𝑛+1,𝑚, (19)

for all 𝑛 ∈ N0 and 𝑚 = 2, 3, .... Note if 𝑚 = 𝑛 + 1, then (𝑛 + 1)𝑐𝑛+1,𝑛+1 = (𝑛 + 1)𝑐𝑛,𝑛. So

𝑐0,0 = 𝑐1,1 = 𝑐2,2 = · · · . (20)

We now check that 𝑐𝑛,𝑚 = 0 when 𝑛 ≠ 𝑚. For 0 < 𝑚 < 𝑛 + 1, using (18) and (19) it follows that

𝑐𝑛+1,𝑚 = 𝛼𝑛,𝑚𝑐𝑛+1−𝑚,0,
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where 𝛼𝑛,𝑚 = 𝑚
𝑛+1

𝑚−1
𝑛 · · · 1

𝑛+2−𝑚 ≠ 0, then 𝑐𝑛+1,𝑚 = 0 by (17) for 𝑛 + 1 > 𝑚. The case 𝑚 > 𝑛 is obtained by symmetry.
Hence, all off-diagonal entries of the matrix 𝐶 (𝑘) (defined in Remark 1.5 will be zero, and it follows from (20) that

𝑘 (𝑧, 𝜔) = 𝑐0,0
1−𝑧𝜔 . This ends the proof of the theorem. □

If we assume that the powers of 𝑧 are in the domain of 𝜕∗ and of 𝑀𝑧 one has a simpler proof for the characterization given in
Theorem 1.1 of the Hardy space, close in spirit to Bargmann’s arguments. We note that conditions (1)-(4) in the statement of the
next result are satisfied by H2.

Proposition 3.1. Let H be a reproducing kernel Hilbert space of functions analytic in a neighborhood of the origin and such that

1. 𝑀𝑧 bounded,
2. {𝑧𝑛}∞𝑛=0 ⊂ Dom 𝜕,
3. Dom 𝜕 ⊂ Dom 𝜕∗,
4. 𝜕∗ = 𝑀𝑧𝜕𝑀𝑧 .

Then H = H2.

Proof. Let the kernel 𝐾 of H have the form in (8). From Proposition 2.2 the kernel is jointly analytic in D. Take 𝑓 (𝑧) = 𝑧𝑛 and
𝑔(𝑧) = 𝑧𝑚, then

<∼ 𝑓 , 𝜕𝑔⟩ = <∼ 𝑧
𝑛, 𝑚𝑧𝑚−1⟩ <∼ 𝜕

∗ 𝑓 , 𝑔⟩ = <∼ 𝑧
2 𝑓 ′ + 𝑧 𝑓 , 𝑔⟩

= 𝑚 <∼ 𝑧
𝑛, 𝑧𝑚−1⟩, = <∼ 𝑛𝑧

𝑛+1 + 𝑧𝑛+1, 𝑧𝑚⟩
= (𝑛 + 1) <∼ 𝑧

𝑛+1, 𝑧𝑚⟩.
Since <∼ 𝑓 , 𝜕𝑔⟩ = <∼ 𝜕∗ 𝑓 , 𝑔⟩, we obtain

(𝑛 + 1) <∼ 𝑧
𝑛+1, 𝑧𝑚⟩ = 𝑚 <∼ 𝑧

𝑛, 𝑧𝑚−1⟩. (21)

For 𝑚 = 𝑛 + 1, we have

(𝑛 + 1) <∼ 𝑧
𝑛, 𝑧𝑛⟩ = (𝑛 + 1) <∼ 𝑧

𝑛+1, 𝑧𝑛+1⟩ =⇒ <∼ 𝑧
𝑛, 𝑧𝑛⟩ = <∼ 𝑧

𝑛+1, 𝑧𝑛+1⟩,
thus the diagonal entries are nonzero. Now we are left to show that if 𝑛 ≠ 𝑚, <∼ 𝑧𝑛, 𝑧𝑚⟩ = 0. From (21) we get

<∼ 𝑧
𝑛+1, 𝑧𝑚⟩ = 𝑚

𝑛 + 1
<∼ 𝑧

𝑛, 𝑧𝑚−1⟩. (22)

Take 𝑓 (𝑧) = 𝑧𝑛, 𝑛 ≠ 0, and 𝑔(𝑧) ≡ 1; then

<∼ 𝑓 , 𝜕𝑔⟩ = <∼ 𝜕
∗ 𝑓 , 𝑔⟩ = <∼ 𝑧

2 𝑓 ′ + 𝑧 𝑓 , 𝑔⟩
= <∼ 𝑛𝑧

𝑛+1 + 𝑧𝑛+1, 1⟩
= (𝑛 + 1) <∼ 𝑧

𝑛+1, 1⟩.

However <∼ 𝑓 , 𝜕𝑔⟩ = 0, hence <∼ 𝑧𝑛+1, 1⟩ = 0, which also gives <∼ 1, 𝑧𝑚+1⟩ = 0. Then from (9) and (22) all the off-diagonal
coefficients 𝑐𝑛,𝑚 are equal to 0.

More generally, with the same hypothesis as in Proposition 3.1, one could replace 𝑀𝑧𝜕𝑧 by a (possibly unbounded) diagonal
operator defined as follows:

𝐷 (𝑧𝑛) = 𝛼𝑛𝑧𝑛, 𝑛 = 0, 1, 2, . . . ,

with 𝛼𝑛 > 0 for 𝑛 ≥ 1 and 𝛼0 arbitrary. Such 𝐷 is called a radial differential operator in the literature. Then we get

⟨𝑧𝑛, 𝑧𝑚⟩ = 𝛿𝑛,𝑚 𝑛!
𝛼𝑛 · · · 𝛼1

⟨1, 1⟩.

Taking 𝛽−1 = <∼ 1, 1⟩, and using (9), the reproducing kernel is given by

𝑘 (𝑧, 𝜔) = 𝛽
∞∑︁
𝑛=0

𝛼𝑛 · · · 𝛼1
𝑛!

𝑧𝑛𝜔𝑛

by (9), provided the radius of convergence of the above series is strictly positive.
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4. PROOF OF THEOREM 1.2

To prove Theorem 1.2, we use the same strategy as in the previous section. The kernel 1
(1−𝑧𝜔)𝛼 is a solution of 𝜕∗ = 𝑀𝑧𝜕𝑧𝑀𝑧 −

(1 − 𝛼)𝑀𝑧 . This operator applied to this kernel gives us

𝜕∗𝑘 (𝑧, 𝜔) = (𝑀𝑧𝜕𝑧𝑀𝑧 − (1 − 𝛼)𝑀𝑧)
(

1
(1 − 𝑧𝜔̄)𝛼

)

=
𝑧

(1 − 𝑧𝜔̄)𝛼 + 𝛼 𝑧2𝜔̄

(1 − 𝑧𝜔̄)𝛼+1 − (1 − 𝛼) 𝑧

(1 − 𝑧𝜔̄)𝛼
=

𝛼𝑧

(1 − 𝑧𝜔̄)𝛼+1

= 𝜕𝜔̄

(
1

(1 − 𝑧𝜔̄)𝛼
)

= 𝜕𝜔̄𝑘 (𝑧, 𝜔).
which implies

<∼ 𝜕
∗𝑘𝜈 (𝑧), 𝑘𝜔 (𝑧)⟩ = <∼ 𝑘𝜈 (𝑧), 𝜕𝜔̄𝑘𝜔 (𝑧)⟩.

Additionally, we get the relation 𝑧(1 − 𝑧𝜔̄) + 𝛼𝑧2𝜔̄ − (1 − 𝛼)𝑧(1 − 𝑧𝜔̄) = 𝛼𝑧.
As we see again, indeed for 𝛼 = 1 we have the Hardy case. To prove the converse we apply (6) to kernels, and find a partial

differential equation satisfied by the reproducing kernel. Then we use analyticity to find the kernel via its Taylor expansion at the
origin. Let 𝜔, 𝜈 ∈ D, then from (6) we get

⟨𝜕𝑘𝜔 , 𝑘𝜈⟩ = <∼ 𝑘𝜔 , 𝜕
∗𝑘𝜈⟩ = ⟨𝑘𝜔 , 𝑀𝑧𝜕𝑀𝑧𝑘𝜈 + (𝛼 − 1)𝑀𝑧𝑘𝜈⟩. (23)

We rewrite (6) as
𝜕∗ 𝑓 = 𝑧(𝜕𝑧 𝑓 ) + (𝛼 − 1)𝑧 𝑓 = 𝑧2 𝑓 ′ + 𝑧 𝑓 + 𝛼𝑧 𝑓 − 𝑧 𝑓

= 𝑧2 𝑓 ′ + 𝛼𝑧 𝑓 .
(24)

From the calculation above similar to (13), it follows that <∼ 𝜕𝑧𝑘 (𝑧, 𝑤), 𝑘 (𝑧, 𝜈)⟩ = 𝜕𝑧𝑘 (𝜈, 𝜔), thus from (24) and the two end
sides of (23). Equation (13) still holds here (it is a general computation valid for kernels analytic in 𝑧 and 𝜔) and we have

𝜕𝑧𝑘 (𝜈, 𝜔) = 𝜕𝑧𝑘 (𝑧, 𝜔) |𝑧=𝜈
= <∼ 𝜕𝑧𝑘𝜔 , 𝑘𝜈⟩
= <∼ 𝑘𝜔 , 𝜕

∗
𝑧 𝑘𝜈⟩

= <∼ 𝑘𝜔 , 𝑀𝑧𝜕𝑀𝑧𝑘𝜈 − (𝛼 − 1)𝑀𝑧𝑘𝜈⟩
= <∼ 𝑘𝜔 , 𝜈

2𝜕𝑧𝑘𝜈 + 𝛼𝜈𝑘𝜈⟩
= <∼ 𝜈2𝜕𝑘𝜈 + 𝛼𝜈𝑘𝜈 , 𝑘𝜔⟩
= 𝜔̄2𝜕𝑘 (𝜈, 𝜔) + 𝛼𝜔̄𝑘 (𝜈, 𝜔).

Thus we get the partial differential equation

𝜕𝑧𝑘 = 𝜔̄2𝜕𝜔̄𝑘 + 𝛼𝜔̄𝑘. (25)

The kernel is analytic in 𝑧 and 𝜔 near the origin, and hence can be written as

𝑘 (𝜈, 𝑤) =
∞∑︁

𝑛,𝑚=0
𝑐𝑛,𝑚𝜈

𝑛𝜔̄𝑚.

So we can rewrite (25) as
∞∑︁
𝑛=1

∞∑︁
𝑚=0

𝑛𝑐𝑛,𝑚𝜈
𝑛−1𝜔̄𝑚 =

∞∑︁
𝑛=0

∞∑︁
𝑚=1

𝑚𝑐𝑛,𝑚𝜈
𝑛𝜔̄𝑚+1 + 𝛼

∞∑︁
𝑛=0

∞∑︁
𝑚=0

𝑐𝑛,𝑚𝜈
𝑛𝜔̄𝑚+1,

which can also be written as
∞∑︁
𝑛=0

(𝑛 + 1)𝑐𝑛+1,0𝜈
𝑛 +

∞∑︁
𝑛=0

(𝑛 + 1)𝑐𝑛+1,1𝜈
𝑛𝜔̄ +

∞∑︁
𝑛=0

∞∑︁
𝑚=2

(𝑛 + 1)𝑐𝑛+1,𝑚𝜈
𝑛𝜔̄𝑚

=
∞∑︁
𝑛=0

𝛼𝑐𝑛,0𝜈
𝑛𝜔̄ +

∞∑︁
𝑛=0

∞∑︁
𝑚=2

(𝛼 + (𝑚 − 1))𝑐𝑛,𝑚−1𝜈
𝑛𝜔̄𝑚.
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Now we can consider the following cases: First we compare the coefficients for the terms with constant 𝜔̄. Then we have
∞∑︁
𝑛=0

(𝑛 + 1)𝑐𝑛+1,0𝜈
𝑛 = 0. Hence

𝑐𝑛+1,0 = 0

for all 𝑛 ∈ N0.

Consider the coefficients of 𝜈𝑛𝜔. Then we have:
∞∑︁
𝑛=0

(𝑛 + 1)𝑐𝑛+1,1𝜈
𝑛𝜔̄ =

∞∑︁
𝑛=0

𝛼𝑐𝑛,0𝜈
𝑛𝜔. Hence

(𝑛 + 1)𝑐𝑛+1,1 = 𝛼𝑐𝑛,0,

for all 𝑛 ∈ N0. Note that for 𝑛 = 0 we get 𝑐0,0 = 𝛼𝑐1,1.
Consider the terms 𝜈𝑛𝜔𝑚, 𝑚 ≥ 2; then we have

∞∑︁
𝑛=0

∞∑︁
𝑚=2

(𝑛 + 1)𝑐𝑛+1,𝑚𝜈
𝑛𝜔̄𝑚 =

∞∑︁
𝑛=0

∞∑︁
𝑚=2

(𝛼 + (𝑚 − 1))𝑐𝑛,𝑚−1𝜈
𝑛𝜔̄𝑚.

Hence

(𝑛 + 1)𝑐𝑛+1,𝑚 = (𝑚 + 𝛼 − 1)𝑐𝑛,𝑚−1, (26)

for all 𝑛 ∈ N0. Note that if 𝑚 = 𝑛 + 1, then (𝑛 + 1)𝑐𝑛+1,𝑛+1 = (𝑛 + 𝛼)𝑐𝑛,𝑛. So

𝑐𝑛,𝑛 =

(
𝑛 + 1
𝑛 + 𝛼

)
𝑐𝑛+1,𝑛+1.

we see that the diagonal entries are equal (up to a constant) to the Taylor coefficients in (5).
We now check that 𝑐𝑛,𝑚 = 0 when 𝑛 ≠ 𝑚. For 0 ≤ 𝑚 ≤ 𝑛 + 1, it follows from (26) that

𝑐𝑛+1,𝑚 = 𝜙𝛼,𝑛,𝑚𝑐𝑛+1−𝑚,0,

for 𝜙𝛼,𝑛,𝑚 = 𝑚+𝛼−1
𝑛+1

𝑚+𝛼−2
𝑛 · · · 𝛼

𝑛+2−𝑚 ≠ 0, and hence the conclusion using (17). The case 𝑚 > 𝑛 follows by symmetry. Hence from
these cases and by symmetry, all off-diagonal entries of 𝐶 (𝑘) will be zero, and this completes the proof. □

5. PROOF OF THEOREM 1.3

While with similar spirit in proof structure, unlike in proofs for Theorems 1.1 and 2, we prove (7) for the kernel pointwise for
𝑧, 𝜔 ∈ D. Let 𝑘 (𝜈, 𝜔) be a solution of (7), with power series expansion

𝑘 (𝜈, 𝜔) =
∞∑︁
𝑛=0

∞∑︁
𝑚=0

𝑐𝑛,𝑚𝜈
𝑛𝜔̄𝑚.

Since 𝑘 (0, 0) = 0 by hypothesis, we have 𝑐0,0 = 0 (without the condition 𝑘 (0, 0) = 0 any constant function is a solution of (7)).
We have

𝜕2
𝜈𝑘 =

∞∑︁
𝑛=2

∞∑︁
𝑚=0

𝑐𝑛,𝑚𝑛(𝑛 − 1)𝜈𝑛−2𝜔̄𝑚

𝜔̄2𝜕𝜈𝜕𝜔̄𝑘 =
∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑐𝑛,𝑚𝑛𝑚𝜈
𝑛−1𝜔̄𝑚+1.

So we can rewrite (7) in terms of the power series expansion of kernel as:
∞∑︁
𝑛=2

∞∑︁
𝑚=0

𝑐𝑛,𝑚𝑛(𝑛 − 1)𝜈𝑛−2𝜔̄𝑚 =
∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑐𝑛,𝑚𝑛𝑚𝜈
𝑛−1𝜔̄𝑚+1, (27)

which is equivalent to
∞∑︁
𝑛=2

∞∑︁
𝑚=0

𝑐𝑛,𝑚𝑛(𝑛 − 1)𝜈𝑛−2𝜔̄𝑚 =
∞∑︁

𝑚=1
𝑐1,𝑚𝑚𝜔̄

𝑚+1 +
∞∑︁
𝑛=2

∞∑︁
𝑚=1

𝑐𝑛,𝑚𝑛𝑚𝜈
𝑛−1𝜔̄𝑚+1. (28)

Comparing on both sides the part independent of 𝜈 we get
∞∑︁

𝑚=1
𝑐1,𝑚𝑚𝜔̄

𝑚+1 = 0, (29)

9
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as we have no corresponding terms on the left side.
Let 𝑛 = 2. Then

∞∑︁
𝑚=0

𝑐2,𝑚2𝜔̄𝑚 =
∞∑︁

𝑚=1
𝑐2,𝑚2𝑚𝜈𝜔̄𝑚+1. (30)

We make the change of index 𝑀 = 𝑚 + 1 in (29), and obtain
∞∑︁

𝑀=2
𝑐1,𝑚−1 (𝑀 − 1)𝜔̄𝑀 = 0. (31)

From equations (31) and (30), it follows now that

𝑐2,0 = 𝑐2,1 = 0 and 2𝑐2,𝑀 = (𝑀 − 1)𝑐1,𝑀−1 for 𝑀 > 2.

Considering equation (27) and making the change of index 𝑁 = 𝑛 − 2, 𝑀 = 𝑚 to the right side, and 𝑁 = 𝑛 − 1, 𝑀 = 𝑚 + 1 to
the left side, we get

∞∑︁
𝑁=0

∞∑︁
𝑀=0

𝑐𝑁+2,𝑀 (𝑁 + 2) (𝑁 + 1)𝜈𝑁 𝜔̄𝑀 =
∞∑︁

𝑁=0

∞∑︁
𝑀=2

𝑐𝑁+1,𝑀−1 (𝑁 + 1) (𝑀 − 1)𝜈𝑁 𝜔̄𝑀 . (32)

From (32) for 𝑁 ∈ N0 and 𝑀 ≥ 2, we have

𝑐𝑁+2,𝑀 (𝑁 + 2) = (𝑀 − 1)𝑐𝑁+1,𝑀−1. (33)

We now check that all off diagonal entries of 𝐶 (𝑘) are indeed zero. Let 𝑀 = 0; then from (27) with the change of variable
𝑁 = 𝑛 − 2 gives us

∞∑︁
𝑁=0

𝑐𝑁+2,0 (𝑁 + 2) (𝑁 + 1)𝜈𝑁 = 0,

so we have

𝑐𝑁+2,0 = 0 for 𝑁 ≥ 0.

Let 𝑀 = 1; then from (32) we get

𝑐𝑁+2,1 = 0 for 𝑁 ≥ 0.

Hence all off diagonal entries of 𝐶 (𝑘) are zero. Since 𝑘 (0, 0) = 0 we get that 𝑐0,0 = 0. Finally we set 𝑀 = 𝑁 + 2 in (32), and get

𝑐𝑁+2,𝑁+2 (𝑁 + 2) = (𝑁 + 1)𝑐𝑁+1,𝑁+1, 𝑁 = 0, 1, . . . (34)

From (34) we get 𝑐𝑁,𝑁 = 1
𝑁 for 𝑁 ≥ 1, and the proof is complete. □

Peer Review: Externally peer-reviewed.
Conflict of Interest: Author declared no conflict of interest.
Financial Disclosure: Author declared no financial support.

ACKNOWLEDGEMENTS

I would like to thank the referee for his/her time and comments that helped improve the paper.

LIST OF AUTHOR ORCIDS
N. Alpay https://orcid.org/0000-0002-1505-7531

10



Alpay, New characterization of the Hardy space and of other Hilbert spaces

REFERENCES
Aronszajn, N., 1950, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68, 337–404.
Ash, R.B., 1990, Information Ttheory, Dover Publications Inc., New York, Corrected reprint of the 1965 original.
Bargmann, V., 1961, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math., 14, 187–214.
Bargmann, V., 1962, Remarks on a Hilbert space of analytic functions, Proceedings of the National Academy of Arts, 48, 199–204.
Chabat,B., 1990, Introduction à l’analyse complexe. Tome 2, Traduit du Russe: Mathématiques. [Translations of Russian Works: Mathematics].

“Mir”, Moscow, Fonctions de plusieurs variables. [Functions of several variables], Translated from the Russian by Djilali Embarek.
Donoghue, W.F., 1974, Monotone Matrix Functions and Analytic Continuation, volume 207 of Die Grundlehren der mathematischen Wis-

senschaften, Springer–Verlag.
Fayngold, M., Fayngold, V., 2013, Quantum mechanics and quantum information: a guide through the quantum world, John Wiley & Sons.
Petz, D., 2008, Quantum Information Theory and Quantum Statistics, Theoretical and Mathematical Physics. Springer-Verlag, Berlin.
Reed, M., Simon, B., 1980, Methods of modern mathematical physics. I, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New

York, second edition, Functional analysis.
Saitoh, S., 1988, Theory of Reproducing Kernels and Its Applications, volume 189, Longman scientific and technical.
Saitoh, S., 1997, Integral Transforms, Reproducing Kernels and Their Applications, volume 369 of Pitman Research Notes in Mathematics

Series, Longman, Harlow.
Tung, Y.C.J., 1976, Fock Spaces, A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

(Mathematics) in The University of Michigan, 2005.

11



Istanbul Journal of Mathematics
ĳmath 2023, 1 (1), 12–19

DOI: 10.26650/ĳmath.2023.00004

RESEARCH ARTICLE

Unitary weighted composition operators on Bergman-Besov and Hardy
Hilbert spaces on the ball
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ABSTRACT
On weighted Bergman and Hardy Hilbert spaces on the unit ball of the complex 𝑁-space, we consider weighted compositon
operators 𝑇𝜓 in which the composition is by an automorphism 𝜓 of the unit ball and the weight is a power of the Jacobian of 𝜓 in
such a way that the operator is unitary. Assuming that the homogeneous expansion of an 𝑓 in one of these spaces contains only
terms with total degree even (odd, respectively) and the homogeneous expansion of 𝑇𝜓 𝑓 contains only terms with total degree
odd (even, respectively), we prove that 𝑓 is the zero function. We also find related operators on the remaining Bergman-Besov
Hilbert spaces including the Drury-Arveson space and the Dirichlet space for which the same result holds. Our results generalize
the results obtained in Montes-Rodríguez (2023) on three function spaces on the unit disc to a wider family of function spaces on
the unit ball.

Mathematics Subject Classification (2020): Primary 47B33; Secondary 47B32, 47B38, 32A36, 32A35, 32A37, 46E20, 46E22

Keywords: Weighted composition operator, unitary operator, Bergman-Besov space, Hardy space, Dirichlet space, Drury-Arveson
space

1. INTRODUCTION

In a recent paper Montes-Rodríguez (2023), the author proves that specific unitary weighted composition operators by the
automorphisms of the unit disc on three (Bergman, Hardy, and Dirichlet) Hilbert spaces of holomorphic functions have the
property that if a function in one of these spaces and its image under the corresponding operator have different parity, then it is the
zero function.

Our objective in this paper is to extend this result to a wider classes of Hilbert spaces of holomorphic functions and to the case
of the unit ball of C𝑁 . Moving up to arbitrary-dimensional balls where mappings of several complex variables are used complicate
matters considerably. The geometry of Möbius transformations in the ball is more complicated and simple derivatives in the disc
need to be replaced by complex Jacobians whose fractional powers are used in the generalizations of the operators of interest to the
weighted spaces. Further, Besov Hilbert spaces such as the Dirichlet space have to be handled differently, because the derivatives
used in the integral norms of such spaces simply are not compatible with the natural unitary weighted composition operators on
them.

To present our result, we now introduce the necessary definitions and notation. Let B be the open unit ball in C𝑁 with respect
to the usual Hermitian inner product ⟨𝑧, 𝑤⟩ = 𝑧1𝑤1 + · · · + 𝑧𝑁𝑤𝑁 , and the associated norm |𝑧 | =

√︁
⟨𝑧, 𝑧⟩. When 𝑁 = 1, the unit

ball is the unit disc D in the complex plane.

Definition 1.1. For 𝑞 ∈ R and 𝑧, 𝑤 ∈ B, the Bergman-Besov kernels are

𝐾𝑞 (𝑧, 𝑤) :=




1
(1−⟨𝑧, 𝑤⟩)1+𝑁+𝑞 =

∞∑︁
𝑘=0

(1+𝑁+𝑞)𝑘
𝑘!

⟨𝑧, 𝑤⟩𝑘 , 𝑞 > −(1+𝑁),

2𝐹1 (1, 1; 1−(𝑁+𝑞); ⟨𝑧, 𝑤⟩) =
∞∑︁
𝑘=0

𝑘! ⟨𝑧, 𝑤⟩𝑘
(1−(𝑁+𝑞))𝑘 , 𝑞 ≤ −(1+𝑁),

where 2𝐹1 ∈ 𝐻 (D) is the Gauss hypergeometric function and (𝑎)𝑏 is the Pochhammer symbol.
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Definition 1.2. For 𝑞 ∈ R, the Bergman-Besov Hilbert space D𝑞 is the reproducing kernel Hilbert space on B generated by the
kernel 𝐾𝑞 endowed with the inner product and norm induced by 𝐾𝑞 .

The kernels 𝐾𝑞 are sesquiholomorphic on B2 and hence the functions in the D𝑞 are holomorphic on B. In particular, D𝑞 is the
standard weighted Bergman space 𝐴2

𝑞 for 𝑞 > −1, the Hardy space 𝐻2 for 𝑞 = −1, the Drury-Arveson space A for 𝑞 = −𝑁 , and
the Dirichlet space D for 𝑞 = −(1 + 𝑁), that is, D−(1+𝑁 ) = D.

Let 𝐻 (B) be the space of all holomorphic functions on B. Every 𝑓 ∈ 𝐻 (B) and thus every 𝑓 ∈ D𝑞 has homogeneous and Taylor
expansions

𝑓 (𝑧) =
∞∑︁
𝑘=0

𝑓𝑘 (𝑧) =
∞∑︁

|𝛼 |=0
𝑓𝛼𝑧

𝛼 (𝑧 ∈ B) (1)

converging absolutely and uniformly on compact subsets of B, where 𝑓𝑘 is a homogeneous polynomial of degree 𝑘 in 𝑧1, . . . , 𝑧𝑁 ,
𝛼 is a multi-index, and 𝑘 = |𝛼 |. We use the expression 𝑓 ∈ 𝐻 (B) has even parity (respectively, odd parity) to mean that the
homogeneous expansion of 𝑓 as in (1) has 𝑓𝑘 with only even 𝑘 (respectively, only odd 𝑘).

Denote by M the group of all one-to-one onto holomorphic maps (automorphisms) of B. Let 𝐽𝜓 be the complex Jacobian of
𝜓 ∈ M. For 𝜓 ∈ M, also 𝜓−1 ∈ M and 𝐽𝜓 ≠ 0 on B.

Definition 1.3. For 𝑞 ≥ −(1 + 𝑁), 𝜓 ∈ M and 𝑓 ∈ D𝑞 , define the operator 𝑇𝑞
𝜓 : D𝑞 → D𝑞 by

𝑇𝑞
𝜓 𝑓 (𝑧) := 𝑓 (𝜓(𝑧)) (𝐽𝜓(𝑧))1+ 𝑞

1+𝑁

using an appropriate, say the principal, branch of the logarithm for the fractional power of 𝐽𝜓(𝑧).
So 𝑇𝑞

𝜓 is the product

𝑇𝑞
𝜓 = 𝑀𝜃

𝑞
𝜓
𝐶𝜓 ,

where 𝐶𝜓 is the composition operator given by 𝐶𝜓 𝑓 = 𝑓 ◦ 𝜓 and 𝑀𝜃
𝑞
𝜓

is the multiplication operator by

𝜃𝑞𝜓 (𝑧) = (𝐽𝜓(𝑧))1+ 𝑞
1+𝑁 . (2)

When 𝑞 = −(1 + 𝑁), 𝑇−(1+𝑁 )
𝜓 reduces simply to 𝐶𝜓 on the Dirichlet space. When 𝑞 = 0, 𝜃0

𝜓 = 𝐽𝜓 for the unweighted Bergman
space. When 𝑞 = −1, 𝜃−1

𝜓 = (𝐽𝜓) 𝑁
1+𝑁 for the Hardy space. When 𝑞 = −𝑁 , 𝜃−𝑁𝜓 = (𝐽𝜓) 1

1+𝑁 for the Drury-Arveson space.
In (Beatrous and Burbea 1989, Theorem 1.10), it is proved that 𝑇𝑞

𝜓 is a unitary operator for 𝑞 > −(1 + 𝑁) with respect to the
standard inner product that the kernel 𝐾𝑞 induces on D𝑞 given in (5) below. By (Zhu 2005, Section 6.4), 𝑇−(1+𝑁 )

𝜓 is unitary on
the space D0 = D/C with respect to the slightly different inner product (6).

Our main result is the following.

Theorem 1.4. Let 𝑞 ≥ −1 and 𝜓 ∈ M. Suppose the homogeneous expansions (1) of an 𝑓 ∈ D𝑞 and of 𝑇𝑞
𝜓 𝑓 are of different parity,

that is, one contains terms only with 𝑘 even and the other only with 𝑘 odd. Then 𝑓 = 0. There are also operators on D𝑞 for 𝑞 < −1
for which the same conclusion is true.

We prove Theorem 1.4 in Section 3. In the next Section 2, we provide further details and properties on notation, the spaces, and
the automorphisms.

2. PRELIMINARIES

In multi-index notation, 𝛼 = (𝛼1, . . . , 𝛼𝑁 ) is an 𝑁-tuple of nonnegative integers, |𝛼 | = 𝛼1 + · · · + 𝛼𝑁 , 𝛼! = 𝛼1! · · · 𝛼𝑁 !, 00 = 1,
and 𝑧𝛼 = 𝑧𝛼1

1 · · · 𝑧𝛼𝑁

𝑁 . An overbar ( ) indicates complex conjugate for numbers and functions and closure for sets. The boundary
of B is the unit sphere S.

The Pochhammer symbol (𝑎)𝑏 is defined by

(𝑎)𝑏 :=
Γ(𝑎 + 𝑏)
Γ(𝑎)

when 𝑎 and 𝑎+𝑏 are off the pole set−N of the gamma function Γ. This is a shifted rising factorial since (𝑎)𝑘 = 𝑎(𝑎+1) · · · (𝑎+𝑘−1)
for positive integer 𝑘 . In particular, (1)𝑘 = 𝑘! and (𝑎)0 = 1. Stirling formula gives

Γ(𝑐 + 𝑎)
Γ(𝑐 + 𝑏) ∼ 𝑐𝑎−𝑏, (𝑎)𝑐

(𝑏)𝑐 ∼ 𝑐𝑎−𝑏, (𝑐)𝑎
(𝑐)𝑏𝑞 ∼ 𝑐𝑎−𝑏 (Re 𝑐 → ∞), (3)
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where 𝐴 ∼ 𝐵 means that |𝐴/𝐵 | is bounded above and below by two strictly positive constants, that is, 𝐴 = O(𝐵) and 𝐵 = O(𝐴)
for all 𝐴, 𝐵 of interest.

The Gauss hypergeometric function 2𝐹1 ∈ 𝐻 (D) is defined by

2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧) :=
∞∑︁
𝑘=0

(𝑎)𝑘 (𝑏)𝑘
(𝑐)𝑘 (1)𝑘 𝑧

𝑘 .

2.1. Spaces

A function 𝐾 (𝑧, 𝑤) is called the reproducing kernel of a Hilbert space 𝐻 of functions defined on B and with inner product ⟨·, ·⟩𝐻
if 𝐾 (·, 𝑤) ∈ 𝐻 for each 𝑤 ∈ B and

𝑢(𝑧) = ⟨𝑢(·), 𝐾 (𝑧, ·)⟩𝐻 (𝑢 ∈ 𝐻, 𝑧 ∈ B).
There is a one-to-one correspondence between reproducing kernel Hilbert spaces and positive definite kernels.

Let 𝑐𝑘 (𝑞) be the coefficient of ⟨𝑧, 𝑤⟩𝑘 in the series for 𝐾𝑞 (𝑧, 𝑤). Then 𝑐0 (𝑞) = 1, 𝑐𝑘 (𝑞) > 0 for al 𝑘 , and by (3),

𝑐𝑘 (𝑞) ∼ 𝑘𝑁+𝑞 (𝑘 → ∞), (4)

for every 𝑞. This explains the choice of the parameters of the hypergeometric function in 𝐾𝑞 for 𝑞 < −(1 + 𝑁). The positive
definiteness of ⟨𝑧, 𝑤⟩ and the positivity of the 𝑐𝑘 (𝑞) yield that the 𝐾𝑞 are positive definite and thus reproducing kernels. The
kernels 𝐾𝑞 for 𝑞 < −(1 + 𝑁) appear in the literature first in (Beatrous and Burbea 1989, p. 13). The kernels 𝐾𝑞 for 𝑞 > −(1 + 𝑁)
can also be written as 2𝐹1 (1, 1 + (𝑁 + 𝑞); 1; ⟨𝑧, 𝑤⟩). For 𝑞 < −(1 + 𝑁), the functions in D𝑞 are bounded on B while the other D𝑞

contain unbounded functions.
All Bergman-Besov kernels can be written of the form

𝐾𝑞 (𝑧, 𝑤) =
∞∑︁
𝑘=0

𝑐𝑘 (𝑞)⟨𝑧, 𝑤⟩𝑘 =
∞∑︁
𝑘=0

𝑐𝑘 (𝑞)
∑︁
|𝛼 |=𝑘

|𝛼 |!
𝛼!

𝑧𝛼𝑤𝛼 .

Then by the theory of reproducing kernel Hilbert spaces and (4), the space D𝑞 consists of all 𝑓 ∈ 𝐻 (B) with Taylor expansions
as in (1) for which

∥ 𝑓 ∥2
D𝑞

:=
∞∑︁

|𝛼 |=0
| 𝑓𝛼 |2∥𝑧𝛼∥2

D𝑞
:=

∞∑︁
|𝛼 |=0

| 𝑓𝛼 |2 1
𝑐 |𝛼 | (𝑞)

𝛼!
|𝛼 |! ∼

∞∑︁
|𝛼 |=1

| 𝑓𝛼 |2 1
|𝛼 |𝑁+𝑞

𝛼!
|𝛼 |! < ∞

equipped with the inner product

⟨ 𝑓 , 𝑔⟩D𝑞 :=
∞∑︁

|𝛼 |=0

1
𝑐 |𝛼 | (𝑞)

𝛼!
|𝛼 |! 𝑓𝛼𝑔𝛼 . (5)

The case of the Drury-Arveson space is especially simple, because then 𝑞 = −𝑁 and 𝑐𝑘 (−𝑁) = 1 for all 𝑘 = 1, 2, . . .. For
𝑞 > −(1 + 𝑁), it is with respect to the inner product in (5) that the operators 𝑇𝑞

𝜓 are unitary.
Notice that the reproducing kernel of the Dirichlet space is

𝐾−(1+𝑁 ) (𝑧, 𝑤) =
1

⟨𝑧, 𝑤⟩ log
1

1 − ⟨𝑧, 𝑤⟩ =
∞∑︁
𝑘=0

1
1 + 𝑘 ⟨𝑧, 𝑤⟩

𝑘

and this gives

⟨ 𝑓 , 𝑔⟩D =
∞∑︁

|𝛼 |=0
(1 + |𝛼 |) 𝛼!

|𝛼 |! 𝑓𝛼𝑔𝛼

with which ∥1∥D = 1. The inner product with respect to which the operator 𝑇−(1+𝑁 )
𝜓 = 𝐶𝜓 is unitary on D0 = D/C is

⟨ 𝑓 , 𝑔⟩D0 =
∞∑︁

|𝛼 |=1
|𝛼 | 𝛼!

|𝛼 |! 𝑓𝛼𝑔𝛼 (6)

with which ∥1∥D0 = 0.
For 𝑠, 𝑡 ∈ R, we define the radial fractional differential operator 𝐷𝑡

𝑠 on 𝐻 (B) by

𝐷𝑡
𝑠 𝑓 :=

∞∑︁
𝑘=0

𝑑𝑘 (𝑠, 𝑡) 𝑓𝑘 :=
∞∑︁
𝑘=0

𝑐𝑘 (𝑠 + 𝑡)
𝑐𝑘 (𝑠) 𝑓𝑘 .
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We have 𝑑0 (𝑠, 𝑡) = 1 so that 𝐷𝑡
𝑠 (1) = 1, 𝑑𝑘 (𝑠, 𝑡) > 0 for any 𝑘 , and by (4),

𝑑𝑘 (𝑠, 𝑡) ∼ 𝑘 𝑡 (𝑘 → ∞),
for any 𝑠, 𝑡. So 𝐷𝑡

𝑠 is a continuous operator on 𝐻 (B) and is of order 𝑡. In particular, 𝐷𝑡
𝑠𝑧

𝛼 = 𝑑 |𝛼 | (𝑠, 𝑡)𝑧𝛼 for any multi-index 𝛼.
More importantly,

𝐷0
𝑠 = 𝐼, 𝐷𝑢

𝑠+𝑡𝐷
𝑡
𝑠 = 𝐷

𝑡+𝑢
𝑠 , and (𝐷𝑡

𝑠)−1 = 𝐷−𝑡
𝑠+𝑡 (7)

for 𝑠, 𝑡, 𝑢 ∈ R, where the inverse is two-sided. Here and in any other context, 𝐼 is the identity operator, Any 𝐷𝑡
𝑠 maps 𝐻 (B) onto

itself continuously.
The 𝑑𝑘 (𝑠, 𝑡) are chosen the way they are in order to have

𝐷𝑡
𝑞𝐾𝑞 (𝑧, 𝑤) = 𝐾𝑞+𝑡 (𝑧, 𝑤) (𝑞, 𝑡 ∈ R),

where differentiation is performed on the holomorphic variable 𝑧. More interestingly, by (Alpay and Kaptanoğlu 2007, Proposition
3.2),

𝐷𝑡
𝑠 (D𝑞) = D𝑞+2𝑡 (8)

is an isomorphism of Hilbert spaces for any 𝑠, 𝑡 and an isometry when the norms are chosen suitably.
The spaces D𝑞 have also equivalent inner products and norms that are integrals of functions or their sufficiently high-order

derivatives. For fixed 𝑞 ∈ R, let 𝑠, 𝑡 ∈ R be such that 𝑞 + 2𝑡 > −1. By (Alpay and Kaptanoğlu 2007, Definition 3.1c), a family of
norms each of which is equivalent to ∥ · ∥D𝑞 is

9 𝑓92
D𝑞

:=
∫
B
|𝐷𝑡

𝑠 𝑓 (𝑧) |2 (1 − |𝑧 |2)𝑞+2𝑡 𝑑𝜈(𝑧), (9)

where 𝜈 is the normalized volume measure on B. Setting 𝑑𝜈𝑞 (𝑧) := (1− |𝑧 |2)𝑞 𝑑𝜈(𝑧), equivalently 𝑓 ∈ D𝑞 if and only if 𝑓 ∈ 𝐻 (B)
and 𝐷𝑡

𝑠 𝑓 ∈ 𝐿2 (𝜈𝑞+2𝑡 ) for some 𝑠, 𝑡 with 𝑞+2𝑡 > −1, where 𝐿 𝑝 denotes the Lebesgue classes. For Bergman Hilbert spaces, 𝑞 > −1,
we take 𝑡 = 0 and obtain the usual integral norms of these spaces as

9 𝑓92
𝐴2
𝑞

:=
∫
B
| 𝑓 (𝑧) |2 𝑑𝜈𝑞 (𝑧) (𝑞 > −1).

The Hardy space also has an equivalent norm which is the well-known

9 𝑓92
𝐻2 :=

∫
S
| 𝑓 (𝑧) |2 𝑑𝜎(𝑧),

where 𝜎 is the normalized surface measure on S. Each integral norm on every D𝑞 also has an accompanying integral inner product.

2.2. Möbius Transformations

Following (Rudin 1980, Chapter 2), the Möbius transformation that exchanges 0 and 0 ≠ 𝑎 ∈ B is the map

𝜑𝑎 (𝑧) :=
𝑎 − 𝑃𝑎 (𝑧) −

√︁
1 − |𝑎 |2 (𝐼 − 𝑃𝑎) (𝑧)

1 − ⟨𝑧, 𝑎⟩ (𝑧 ∈ B),

where 𝑃𝑎 (𝑧) := ⟨𝑧, 𝑎⟩𝑎/|𝑎 |2 is the projection on the complex line passing through 0 and 𝑎. It reduces to 𝜑𝑎 (𝑧) = (𝑎 − 𝑧)/(1− 𝑎𝑧)
for 𝑎, 𝑧 ∈ D when 𝑁 = 1. Each 𝜑𝑎 is an involution, that is, 𝜑−1

𝑎 = 𝜑𝑎. An extremely useful identity for 𝜑𝑎 is

1 − ⟨𝜑𝑎 (𝑧), 𝜑𝑎 (𝑤)⟩ = (1 − |𝑎 |2) (1 − ⟨𝑧, 𝑤⟩)
(1 − ⟨𝑧, 𝑎⟩) (1 − ⟨𝑎, 𝑤⟩) (𝑧, 𝑤 ∈ B). (10)

The complex Jacobian of 𝜑𝑎 (𝑧) is det 𝜑′𝑎 (𝑧) and equals

𝐽𝜑𝑎 (𝑧) = 𝛾(𝑧)
(
1 − |𝜑𝑎 (𝑧) |2

1 − |𝑧 |2
) (1+𝑁 )/2

= 𝛾(𝑧)
(

1 − |𝑎 |2
|1 − ⟨𝑧, 𝑎⟩|2

) (1+𝑁 )/2
(𝑧 ∈ B)

for some 𝛾(𝑧) ∈ C with |𝛾(𝑧) | = 1, where in obtaining the second form, (10) is used. Its real Jacobian is

𝐽R𝜑𝑎 (𝑧) = |𝐽𝜑𝑎 (𝑧) |2 > 0.

We need two changes of variables formulas involving 𝜓 ∈ M. Let 𝐺 ⊂ B and 𝑄 ⊂ S be Borel sets, 𝑓 ∈ 𝐿1 (𝜈𝑞), and 𝐹 ∈ 𝐿1 (𝜎).
The first is the usual ∫

𝐺
𝑓 𝑑𝜈 =

∫
𝜓−1 (𝐺)

𝑓 (𝜓(𝑤))𝐽R𝜓(𝑤) 𝑑𝜈(𝑤). (11)
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The less common second one is obtained by explicitly writing (Rudin 1980, p. 45, (5)) using (10) and is∫
𝑄
𝐹 𝑑𝜎 =

∫
𝜓−1 (𝑄)

𝐹 (𝜓(𝜂)) (𝐽R𝜓(𝜂))
𝑁

1+𝑁 𝑑𝜎(𝜂). (12)

Let also U denote the group of all unitary transformations of C𝑁 . All𝑈 ∈ U are characterized by ⟨𝑈𝑧,𝑈𝑤⟩ = ⟨𝑧, 𝑤⟩. If 𝜓 ∈ M
and 𝑎 = 𝜓−1 (0), then there is a unique𝑈 ∈ U such that

𝜓(𝑧) = 𝑈 (𝜑𝑎 (𝑧)) (𝑧 ∈ B). (13)

Since 𝐽𝑈 ∈ C with |𝐽𝑈 | = 1, we see that 𝐽𝜓 has the same form as 𝐽𝜑𝑎 with a (possibly) different 𝛾̃(𝑧) in place of 𝛾(𝑧).
If𝑈 ∈ U, then

𝜑𝑎 = 𝑈−1𝜑𝑈𝑎𝑈; (14)

this is (Cowen and MacCluer 1991, Lemma 2.71). This is useful, because U acts on S transitively and we can choose 𝑈 in such
way that𝑈𝑎 has only the first component nonzero and real. The automorphism that maps such a𝑈𝑎 to 0 is especially simple. For
example, we use 𝜑𝑟 (𝑧) = −𝜑−𝑏 (𝑧) with 𝑏 = (𝑟, 0, . . . , 0) and 0 < 𝑟 < 1 that has the explicit form

𝜑𝑟 (𝑧) :=
(
𝑟 + 𝑧1
1 + 𝑟𝑧1 ,

√
1 − 𝑟2

1 + 𝑟𝑧1 𝑧
′
)

(𝑧 ∈ B), (15)

where 𝑧 = (𝑧1, 𝑧′) and 𝑧′ denotes the remaining 𝑁 − 1 components; see (Cowen and MacCluer 1991, p. 98). This 𝜑𝑟 has exactly 2
fixed points, 𝑒1 = (1, 0, . . . , 0) and −𝑒1, both on S and none in B.

Möbius transformations map balls onto ellipsoids. We need the ellipsoids described in (Cowen and MacCluer 1991, p. 103)
given by

𝐸 (𝑒1, 𝑢) := { 𝑧 ∈ B : |1 − ⟨𝑧, 𝑒1⟩|2 ≤ 𝑢(1 − |𝑧 |2) }
with 𝑢 > 0. Equivalently, 𝑧 ∈ 𝐸 (𝑒1, 𝑢) if and only if���𝑧1 − 1

1 + 𝑢
���2 + 𝑢

1 + 𝑢 |𝑧′ |2 <
( 𝑢

1 + 𝑢
)2
.

The ellipsoid 𝐸 (𝑒1, 𝑢) lies in B, has center 𝑒1/(1 + 𝑢), and is tangent to S at 𝑒1.

3. PROOF OF MAIN RESULT

We prove Theorem 1.4 and a corollary to it, and make some further comments.

Proof of Theorem 1.4. We follow the proof of (Montes-Rodríguez 2023, Theorem 1) with many detailed modifications to adapt
it to several complex variables. For 𝜓 ∈ M, note that 𝐶𝜓−1 (𝐶𝜓 𝑓 (𝑧)) = 𝐶𝜓−1 𝑓 (𝜓(𝑧)) = 𝑓 (𝜓(𝜓−1 (𝑧))) = 𝑓 (𝑧) and hence
𝐶−1
𝜓 = 𝐶𝜓−1 .
First we look at the case of weighted Bergman spaces. But the initial stages of the proof work for 𝑞 > −(1 + 𝑁) and that is what

we assume for now. Let 𝑓 ∈ D𝑞 . By (13) and (2), 𝑇𝑞
𝜓 = 𝑀𝜃

𝑞
𝜓
𝐶𝜑𝑎𝐶𝑈 for some 𝑎 ∈ B and 𝑈 ∈ U. By the remarks following (13),

also

𝛽𝑇𝑞
𝜓 = 𝑀𝜃

𝑞
𝜑𝑎
𝐶𝜑𝑎𝐶𝑈

for some 𝛽 ∈ C with |𝛽 | = 1. By a simple computation with matrices, each 𝑈 ∈ U carries a monomial 𝑧𝛼 to a homogeneous
polynomial of the same degree |𝛼 |. Consequently 𝐶𝑈 preserves parity. Thus 𝑓 and 𝑓1 = 𝐶𝑈 𝑓 have the same parity, and also
𝑔 = 𝑇𝑞

𝜓 𝑓 and 𝑔1 = 𝛽𝑇𝑞
𝜓 𝑓 have the same parity that is opposite to that of 𝑓1 by hypothesis. So without loss of generality we can

replace 𝑇𝑞
𝜓 by 𝑇𝑞

𝜑𝑎
and it suffices to consider

𝑇𝑞
𝜑𝑎

= 𝑀𝜃
𝑞
𝜑𝑎
𝐶𝜑𝑎 .

The fact that 𝜑−1
𝑎 = 𝜑𝑎 implies 𝐶−1

𝜑𝑎
= 𝐶𝜑𝑎 and 𝐶2

𝜑𝑎
= 𝐼. We have

(𝑇𝑞
𝜑𝑎
)2 𝑓 (𝑧) = 𝑇𝑞

𝜑𝑎

((𝐽𝜑𝑎 (𝑧))1+ 𝑞
1+𝑁 𝑓 (𝜑𝑎 (𝑧))

)
= (𝐽𝜑𝑎 (𝑧))1+ 𝑞

1+𝑁 (𝐽𝜑𝑎 (𝜑𝑎 (𝑧)))1+ 𝑞
1+𝑁 𝑓 (𝜑𝑎 (𝜑𝑎 (𝑧))).

Since 𝜑𝑎 (𝜑𝑎 (𝑧)) = 𝑧, by the chain rule, 𝜑′𝑎 (𝜑𝑎 (𝑧))𝜑′𝑎 (𝑧) = 𝐼. Taking determinants give 𝐽𝜑𝑎 (𝜑𝑎 (𝑧))𝐽𝜑𝑎 (𝑧) = 1. This shows that
(𝑇𝑞

𝜑𝑎
)2 𝑓 (𝑧) = 𝑓 (𝑧) and (𝑇𝑞

𝜑𝑎
)2 = 𝐼. Setting 𝑔 = 𝑇𝑞

𝜑𝑎
𝑓 gives 𝑓 = 𝑇𝑞

𝜑𝑎
𝑔. Thus the case 𝑓 ∈ D𝑞 having even parity and 𝑇𝑞

𝜑𝑎
𝑔 ∈ D𝑞

having odd parity coexists with the case 𝑔 ∈ D𝑞 having even parity and 𝑇𝑞
𝜑𝑎
𝑓 ∈ D𝑞 having odd parity. So it does not matter which

case is investigated; let’s assume the former and keep the notation 𝑔 = 𝑇𝑞
𝜑𝑎
𝑓 ,
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Let 𝑉 (𝑧) = −𝑧, which is unitary. Then 𝐶𝑉 𝑓 = 𝑓 , 𝐶𝑉𝑔 = −𝑔, and 𝐶−1
𝑉 = 𝐶𝑉 . Then also 𝑔 = −𝐶𝑉𝑇

𝑞
𝜑𝑎
𝑓 and 𝑓 = 𝐶𝑉𝑇

𝑞
𝜑𝑎
𝑔.

Therefore

𝑓 = −(𝐶𝑉𝑇
𝑞
𝜑𝑎
)2 𝑓 ; (16)

that is, −1 is an eigenvalue of (𝐶𝑉𝑇
𝑞
𝜑𝑎
)2 with 𝑓 as the eigenvector. By the spectral mapping theorem, +𝑖 or −𝑖 is an eigenvalue of

𝐶𝑉𝑇
𝑞
𝜑𝑎

with 𝑓 as the eigenvector. But

𝐶𝑉𝑇
𝑞
𝜑𝑎
𝑓 (𝑧) = (𝑇𝑞

𝜑𝑎
𝑓 ) (−𝑧) = (𝐽𝜑𝑎 (−𝑧))1+ 𝑞

1+𝑁 𝑓 (𝜑𝑎 (−𝑧)). (17)

Set 𝜇𝑎 (𝑧) := 𝜑𝑎 (−𝑧) = −𝜑−𝑎 (𝑧). Then 𝜇𝑎 ∈ M, 𝜇′𝑎 (𝑧) = 𝜑′𝑎 (−𝑧) (−𝐼), and 𝐽𝜇𝑎 (𝑧) = (−1)𝑁 𝐽𝜑𝑎 (−𝑧). Hence

𝑇𝑞
𝜇𝑎
𝑓 (𝑧) = (𝐽𝜇𝑎 (𝑧))1+ 𝑞

1+𝑁 𝑓 (𝜇𝑎 (𝑧)) = (−1)𝑁
(
1+ 𝑞

1+𝑁
)
(𝐽𝜑𝑎 (−𝑧))1+ 𝑞

1+𝑁 𝑓 (𝜑𝑎 (−𝑧))
= (−1)𝑁

(
1+ 𝑞

1+𝑁
)
𝐶𝑉𝑇

𝑞
𝜑𝑎
𝑓 (𝑧)

using (17), and

(𝑇𝑞
𝜇𝑎
)2 𝑓 (𝑧) = (−1)2𝑁

(
1+ 𝑞

1+𝑁
)
(𝐶𝑉𝑇

𝑞
𝜑𝑎
)2 𝑓 (𝑧) = (−1)1+2𝑁

(
1+ 𝑞

1+𝑁
)
𝑓 (𝑧) = 𝜅 𝑓 (𝑧)

using (16), where

𝜅 = (−1)1+2𝑁
(
1+ 𝑞

1+𝑁
)

and |𝜅 | = 1. Thus 𝜅 is an eigenvalue of (𝑇𝑞
𝜇𝑎
)2, and +√𝜅 or −√𝜅 is an eigenvalue of 𝑇𝑞

𝜇𝑎
, both with eigenvector 𝑓 . Clearly also

| ± √
𝜅 | = 1.

By (14), 𝜇𝑎 = −𝜑−𝑎 = −𝑈−1𝜑𝑈 (−𝑎)𝑈 = 𝑈−1 (−𝜑−𝑈 (𝑎) )𝑈. Choosing 𝑈 ∈ U such that 𝑏 := 𝑈 (𝑎) = (𝑟, 0, . . . , 0) with
0 < 𝑟 < 1, we obtain 𝜇𝑎 = 𝑈−1𝜑𝑟𝑈, where 𝜑𝑟 is as in (15). Let 𝜂 = (det𝑈)1+ 𝑞

1+𝑁 . For 𝑓 ∈ D𝑞 , we have 𝑇𝑞

𝑈−1 𝑓 (𝑧) = 𝜂 𝑓 (𝑈−1𝑧) and
𝑇𝑞
𝑈𝑇

𝑞

𝑈−1 𝑓 (𝑧) = 𝜂𝜂 𝑓 (𝑈𝑈−1𝑧) = 𝑓 (𝑧); hence (𝑇𝑞
𝑈)−1 = 𝑇𝑞

𝑈−1 . Further, we compute that𝑇𝑞
𝜑𝑟
𝑇𝑞

𝑈−1 𝑓 (𝑧) = 𝜂(𝐽𝜑𝑟 (𝑧))1+ 𝑞
1+𝑁 𝑓 (𝑈−1𝜑𝑟 (𝑧))

and

𝑇𝑞
𝑈𝑇

𝑞
𝜑𝑟
𝑇𝑞

𝑈−1 𝑓 (𝑧) = 𝜂𝜂(𝐽𝜑𝑟 (𝑈𝑧))1+ 𝑞
1+𝑁 𝑓 (𝑈−1𝜑𝑟 (𝑈𝑧))

= (𝐽𝜑𝑟 (𝑈𝑧))1+ 𝑞
1+𝑁 𝑓 (𝜇𝑎 (𝑧))

= (𝐽𝜇𝑎 (𝑧))1+ 𝑞
1+𝑁 𝑓 (𝜇𝑎 (𝑧)) = 𝑇𝑞

𝜇𝑎
𝑓 (𝑧),

where the equality before the last one can be seen by evaluating 𝐽𝜇𝑎 (𝑧) using the chain rule. In other words, 𝑇𝑞
𝜑𝑟

= (𝑇𝑞
𝑈)−1𝑇𝑞

𝜇𝑎
𝑇𝑞
𝑈 .

Since a similarity transformation preserves eigenvalues and eigenvectors, we conclude that +√𝜅 or −√𝜅 is an eigenvalue of 𝑇𝑞
𝜑𝑟

with eigenvector 𝑓 ∈ D𝑞 .
We have lim

𝑧→𝑒1
𝜑𝑟 (𝑧) = 𝑒1 and let

𝛿 := lim
𝑧→𝑒1

1 − |𝜑𝑟 (𝑧) |
1 − |𝑧 | = lim

𝑧→𝑒1

1 − |𝜑𝑟 (𝑧) |2
1 − |𝑧 |2 ,

where the limits are unrestricted from withinB. A quick computation shows that 𝛿 = 1/(1+𝑟) < 1. By (Cowen and MacCluer 1991,
Lemma 2.77) due to Julia, 𝜑𝑟 (𝐸 (𝑒1, 𝑢)) ⊂ 𝐸 (𝑒1, 𝛿𝑢), and by (Cowen and MacCluer 1991, Proposition 2.85), 𝐸 (𝑒1, 𝛿𝑢) ⊂ 𝐸 (𝑒1, 𝑢).
Together we have the inclusion 𝜑𝑟 (𝐸 (𝑒1, 𝑢)) ⊂ 𝐸 (𝑒1, 𝑢).

For 𝑛 = 1, 2, . . ., denote the forward iterates of 𝜑𝑟 by 𝜑𝑛𝑟 = 𝜑𝑟 ◦ 𝜑𝑛−1
𝑟 , where 𝜑0

𝑟 is the identity, and its backward iterates by
𝜑−𝑛𝑟 = (𝜑𝑛𝑟 )−1. By the properties on the ellipsoids 𝐸 (𝑒1, 𝑢) and of 𝜑𝑟 and the Denjoy-Wolff theorem, as 𝑛 → ∞, 𝜑𝑛𝑟 converges
uniformly on compact subsets of B to 𝑒1; see (Cowen and MacCluer 1991, Theorem 2.83 and Proposition 2.88). In other words,
𝑒1 is the attracting fixed point of 𝜑𝑟 and its Denjoy-Wolff point. Now fix 𝑢 = 1, call the corresponding 𝐸 (𝑒1, 1) =: 𝐸 , and let
𝐺 = 𝐸 \ 𝜑𝑟 (𝐸), which is nonempty by above. As a consequence of all the discussion about the ellipsoids, for any 0 < 𝑟 < 1 we
have

B =
⋃
𝑛∈Z

𝜑𝑛𝑟 (𝐺) (18)

and the sets 𝜑𝑛𝑟 (𝐺) for different 𝑛’s are disjoint.
In the remaining part of the proof we first restrict to 𝑞 > −1 for which D𝑞 = 𝐴2

𝑞 , weighted Bergman spaces. Now applying the
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change of variables 𝑧 = 𝜑𝑟 (𝑤), using (11) and that 𝑓 is an eigenvector yield∫
𝜑𝑛+1
𝑟 (𝐺)

| 𝑓 (𝑧) |2 𝑑𝜈𝑞 (𝑧) =
∫
𝜑𝑛
𝑟 (𝐺)

| 𝑓 (𝜑𝑟 (𝑤)) |2 (1 − |𝜑𝑟 (𝑤) |2)𝑞𝐽R𝜑𝑟 (𝑤) 𝑑𝜈(𝑤)

=
∫
𝜑𝑛
𝑟 (𝐺)

| 𝑓 (𝜑𝑟 (𝑤)) |2 (1 − |𝜑𝑟 (𝑤) |2)1+𝑁+𝑞

(1 − |𝑤 |2)1+𝑁 𝑑𝜈(𝑤)

=
∫
𝜑𝑛
𝑟 (𝐺)

| 𝑓 (𝜑𝑟 (𝑤)) |2
��(𝐽𝜑𝑟 (𝑤))1+ 𝑞

1+𝑁
��2 (1 − |𝑤 |2)𝑞 𝑑𝜈(𝑤)

=
∫
𝜑𝑛
𝑟 (𝐺)

|𝑇𝑞
𝜑𝑟
𝑓 (𝑤) |2 𝑑𝜈𝑞 (𝑤) =

∫
𝜑𝑛
𝑟 (𝐺)

|± √
𝜅 𝑓 (𝑤) |2 𝑑𝜈𝑞 (𝑤)

=
∫
𝜑𝑛
𝑟 (𝐺)

| 𝑓 (𝑧) |2 𝑑𝜈𝑞 (𝑧).

Thus the above integrals have the same value on all the sets 𝜑𝑛𝑟 (𝐺) for 𝑛 ∈ Z which is equal to the value of the integral on
𝜑0
𝑟 (𝐺) = 𝐺. But 𝑓 is an eigenvector and hence is not the zero function, and since 𝑓 ∈ 𝐻 (B), none of the integrals on the 𝜑𝑛𝑟 (𝐺)

is 0. On the other hand, 𝑓 ∈ D𝑞 and hence 9 𝑓9D𝑞 < ∞. But by (18) we also have
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D𝑞

=
∫
B
| 𝑓 (𝑧) |2 𝑑𝜈𝑞 (𝑧) =

∑︁
𝑛∈Z

∫
𝜑𝑛
𝑟 (𝐺)

| 𝑓 (𝑧) |2 𝑑𝜈𝑞 (𝑧) =
∑︁
𝑛∈Z

∫
𝐺
| 𝑓 (𝑧) |2 𝑑𝜈𝑞 (𝑧) = ∞.

This contradiction shows that a nonzero 𝑓 having the parity properties in the statement of the theorem cannot exist for 𝑞 > −1.
Next we take care of the case 𝑞 = −1, the Hardy space. Let 𝐷 be the intersection of the ellipsoid 𝐸 = 𝐸 (𝑒1, 1) with the complex

line [𝑒1] through 0 and 𝑒1, which is given by |𝑧1 − 1/2| < 1/4. The set 𝐺 = 𝐷 \ 𝜑𝑟 (𝐷) is nonempty just like 𝐺 ≠ ∅. Let also
𝑄 = { (𝑧1, 𝑧′) : 𝑧1 ∈ 𝐺, |𝑧1 |2 + |𝑧′ |2 = 1 }; this is that part of S that lies “above” 𝐺. We have B ∩ [𝑒1] =

⋃
𝑛∈Z 𝜑𝑛𝑟 (𝐺) and

S = { (𝑧1, 𝑧′) : 𝑧1 ∈ D, |𝑧1 |2 + |𝑧′ |2 = 1 }, the second modulo a set of 𝜎-measure 0. Then just like (18), we have S =
⋃

𝑛∈Z 𝜑𝑛𝑟 (𝑄)
modulo a set of 𝜎-measure 0, which is a disjoint union.

Now we apply the change of variables 𝜁 = 𝜑𝑟 (𝜂), use (12) and that 𝑓 is an eigenvector to obtain∫
𝜑𝑛+1
𝑟 (𝑄)

| 𝑓 (𝜁) |2 𝑑𝜎(𝜁) =
∫
𝜑𝑛
𝑟 (𝑄)

| 𝑓 (𝜑𝑟 (𝜂)) |2
��(𝐽𝜑𝑟 (𝜂))1− 1

1+𝑁
��2 𝑑𝜎(𝜂)

=
∫
𝜑𝑛
𝑟 (𝑄)

|𝑇−1
𝜑𝑟
𝑓 (𝜂) |2 𝑑𝜎(𝜂) =

∫
𝜑𝑛
𝑟 (𝑄)

|± √
𝜅 𝑓 (𝜂) |2 𝑑𝜎(𝜂)

=
∫
𝜑𝑛
𝑟 (𝑄)

| 𝑓 (𝜁) |2 𝑑𝜎(𝜁).

As in the case 𝑞 > −1, each integral on 𝜑𝑛𝑟 (𝑄) can be replaced by one on 𝑄. But 𝑓 ∈ 𝐻2 is an eigenvector, so is not the zero
function, and by (Rudin 1980, Theorem 5.6.4 (b)), its boundary values on S are nonzero 𝜎-a.e.. Then none of the integrals on the
𝜑𝑛𝑟 (𝑄) is 0. On the other hand, 𝑓 ∈ 𝐻2 and hence 9 𝑓9𝐻2 < ∞. Similar to the case 𝑞 > −1, we have
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𝐻2 =

∫
S
| 𝑓 (𝜁) |2 𝑑𝜎(𝜁) =

∑︁
𝑛∈Z

∫
𝜑𝑛
𝑟 (𝑄)

| 𝑓 (𝜁) |2 𝑑𝜎(𝜁) =
∑︁
𝑛∈Z

∫
𝑄
| 𝑓 (𝜁) |2 𝑑𝜎(𝜁) = ∞.

By this contradiction, the theorem is proved for the case 𝑞 = −1 too.
Lastly, we consider the case 𝑞 < −1. Pick 𝑠, 𝑡 ∈ R such that 𝑝 = 𝑞 + 2𝑡 > −1. Here we prove the result not for 𝑇𝑞

𝜓 but for
𝑌𝑞
𝜓 = 𝐷−𝑡

𝑠+𝑡𝑇
𝑝
𝜓𝐷

𝑡
𝑠 where 𝑇 𝑝

𝜓 : 𝐴2
𝑝 → 𝐴2

𝑝 . By (8) and (7), we have 𝑌𝑞
𝜓 : D𝑞 → D𝑞 . We have also 𝑇 𝑝

𝜓 = 𝐷𝑡
𝑠𝑌

𝑞
𝜓𝐷

−𝑡
𝑠+𝑡 and that 𝑌𝑞

𝜓 and
𝑇 𝑝
𝜓 are similar operators. Now suppose, without loss of generality, that 𝑓 ∈ D𝑞 has even parity and 𝑌𝑞

𝜓 𝑓 has odd parity. By their
very definitions, the 𝐷𝑡

𝑠 preserve parity and 𝑔 = 𝐷𝑡
𝑠 𝑓 ∈ 𝐴2

𝑝 also has even parity. On the other hand, since 𝑓 = 𝐷−𝑡
𝑠+𝑡𝑔, we see that

𝑇 𝑝
𝜓 𝑔 = 𝐷𝑡

𝑠𝑌
𝑞
𝜓 𝑓 has odd parity. By the already proved case for the Bergman space 𝐴2

𝑝 , we conclude that 𝑔 = 0. Then also 𝑓 = 0. In
fact, 𝑌𝑞

𝜓 𝑓 = 𝜆 𝑓 if and only if 𝐷−𝑡
𝑠+𝑡𝑇

𝑝
𝜓 𝑔 = 𝜆 𝑓 if and only if 𝑇 𝑝

𝜓 𝑔 = 𝜆𝑔 for some 𝜆 ∈ C.
The proof of Theorem 1.4 is now complete.

Remark 3.1. The change of variables that is used in transformung the integrals in the case 𝑞 > −1 can be expressed in the form
that the measures 𝜈𝑞 are invariant under the transformations 𝑍𝑞

𝜓 𝑓 (𝑧) := 𝑓 (𝜓(𝑧)) (𝐽𝜓(𝑧))2
(
1+ 𝑞

1+𝑁
)

in the sense that∫
B
𝑍𝑞
𝜓 𝑓 𝑑𝜈𝑞 =

∫
B
𝑓 𝑑𝜈𝑞 ( 𝑓 ∈ 𝐿1 (𝜈𝑞), 𝑞 ∈ R).

This is already noted in (Kaptanoğlu 2005, (21)).

Remark 3.2. The last part of the proof involving integrals does not work for 𝑞 < −1, because a positive-order derivative on 𝑓 is
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required in the integral norms of D𝑞 on B for all 𝑞 < −1; see (Kaptanoğlu and Üreyen 2018, Corollary 7.2). So, for example, if
we pick 𝑡 so that 𝑞 + 2𝑡 = 0 for simplicity in (9), we end up with an integral of |𝑇0

𝜑𝑟
𝐷𝑡

𝑠 𝑓 |2 on 𝜑𝑛𝑟 (𝐺). For the proof to go through,
we need 𝐷𝑡

𝑠 𝑓 ∈ 𝐴2
0 to be an eigenvector of 𝑇0

𝜑𝑟
. This would be implied by 𝑇0

𝜑𝑟
𝐷𝑡

𝑠 𝑓 having odd parity when 𝑓 and hence 𝐷𝑡
𝑠 𝑓 have

even parity. But what we know is that 𝑇𝑞
𝜑𝑟
𝑓 has odd parity and this need not imply that 𝑇0

𝜑𝑟
𝐷𝑡

𝑠 𝑓 has odd parity because of the
differences between 𝑇𝑞

𝜓 and 𝑇0
𝜓 .

Such differences do not prevent Montes-Rodríguez (2023) from obtaining the theorem for the Dirichlet space, because when
𝑁 = 1, the first-order ordinary derivative and the chain rule are enough to move between that space and the unweighted Bergman
space. Neither of these tools is available for 𝑁 ≥ 2. These are exactly the reasons why we resort to the other operators 𝑌𝑞

𝜓 when
𝑞 < −1.

Remark 3.3. The value 𝜅 depends in general on both 𝑁 and 𝑞. For the unweighted Bergman space, 𝑞 = 0, 𝜅 = (−1)1+2𝑁 = −1, and
the eigenvalues that are shown not to exist in the proof of Theorem 1.4 are +√𝜅 = +𝑖 and −√𝜅 = −𝑖 independently of dimension
𝑁 . For the Hardy space, 𝑞 = −1 and 𝜅 = (−1) 1+𝑁+2𝑁2

1+𝑁 . If also 𝑁 = 1, 𝜅 = (−1)2 = +1 and the eigenvalues that are shown not to
exist in the proof of Theorem 1.4 are +√𝜅 = +1 and −√𝜅 = −1, contrary to what is claimed in the proof of (Montes-Rodríguez
2023, Theorem 1). But as already noted in (Montes-Rodríguez 2023, Remark 1), the proof of (Montes-Rodríguez 2023, Theorem
1) as well as of Theorem 1.4 here depend only on | ± √

𝜅 | = 1 and are unaffected.

Corollary 3.4. Let 𝑞 ≥ −1 and 𝜓 ∈ M. There is a nonzero function 𝑓 ∈ D𝑞 such that 𝑓 and 𝑇𝑞
𝜓 𝑓 have the same parity if and

only if 𝜓 = 𝑈 ∈ U. For 𝑞 < −1, the same result holds for the operators 𝑌𝑞
𝜓 .

Proof. Let 𝑞 ≥ −1 first. If 𝜓 = 𝑈 ∈ U, since compositions with 𝑈 and multiplication with complex numbers that are Jacobians
of such composition operators preserve parity, there are 𝑓 as claimed.

Conversely, let 𝜓 = 𝜑𝑎 in which 𝑎 ≠ 0 and suppose an 𝑓 as claimed exists. If we repeat the proof of Theorem 1.4 carefully
considering the case 𝑓 even and 𝑇𝑞

𝜑𝑎
𝑓 even and the case 𝑓 odd and 𝑇𝑞

𝜑𝑎
𝑓 odd, we obtain 𝑓 = (𝐶𝑉𝑇

𝑞
𝜑𝑎
)2 𝑓 instead of (16). This in

turn yields two complex numbers of modulus 1 one of which is an eigenvalue of 𝑇𝑞
𝜇𝑎

and of 𝑇𝑞
𝜑𝑟

with 𝑓 as an eigenvector. In the
rest of the proof, the only property of the eigenvalues used is that they are of modulus 1. Again we conclude that 𝑓 = 0.

The case 𝑞 ≤ −1 is automatic since it depends on the conclusion of the case 𝑞 > −1.
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ABSTRACT
Let 𝐺 be a locally compact abelian group with Haar measure 𝜇, Φ be a Young function and 𝜔 be a weight function. In this paper,
we consider the weighted Orlicz space 𝐿Φ (𝐺, 𝜔) and we investigate the relationship between the multipliers 𝐿1(𝐺, 𝜔)-module
and the multipliers on a certain Banach algebra. For this purpose, we firstly define temperate function space with respect to the
weighted Orlicz space 𝐿Φ (𝐺, 𝜔) which we denote by 𝐿Φ𝑡 (𝐺, 𝜔) and give its basic properties. Later, we define a subalgebra of
the space of multipliers on 𝐿Φ (𝐺, 𝜔) and study its basic properties. We also show that this subalgebra is isometrically isomorphic
to the space of multipliers of a certain Banach algebra. Moreover, we obtain a characterization for the space of multipliers of
𝐿1(𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔).

Mathematics Subject Classification (2020): 43A15, 43A22, 46E30

Keywords: multiplier, weighted Orlicz space, locally compact group

1. INTRODUCTION

An Orlicz space is a type of function space generalizing the 𝐿 𝑝-space. Besides the 𝐿 𝑝 spaces, a variety of function spaces arises
naturally in analysis in this way such as 𝐿 log+ 𝐿, which is a Banach space related to Hardy-Littlewood maximal functions. Orlicz
spaces could also contain certain Sobolev spaces as subspaces. Linear properties of Orlicz spaces have been studied thoroughly (see
Başar E., Öztop, S., Uysal, B.H., Yaşar, Ş. (2023); Osançlıol, A., Öztop, S. (2015); Öztop, S., Samei, E. (2017); Öztop, S., Samei,
E. (2019); Rao, M. M., Ren, Z. D. (1991) for example). Similar to 𝐿 𝑝 spaces, one could also consider weighted Orlicz spaces
and studied their properties. Very recently the weighted Orlicz space is studied as Banach algebra with respect to convolution for
which the corresponding space becomes an algebra and studied their properties such as existence of an approximate identity in
compactly supported continuous function spaces of norm one (see Osançlıol, A., Öztop, S. (2015)).

On the other hand, there are a lot of results in abstract harmonic analysis on locally compact groups regarding multipliers for
various function spaces. The multipliers of the group algebras of 𝐿 𝑝 were studied by many authors (see Feichtinger, H. (1976);
Fisher, M. J. (1974); Griffin, J., McKennon, K. (1973); McKennon, K. (1972)). In Öztop, S. (2003), Öztop studied the space of
multiplier of 𝐿1 (𝐺, 𝐴) ∩ 𝐿 𝑝 (𝐺, 𝐴) where 𝐴 is a commutative Banach algebra and 𝐺 is a locally compact abelian group. In Üster,
R., Öztop, S. (2020), Üster and Öztop studied compact multiplier problem for 𝐿Φ (𝐺) and in Üster, R. (2021), this concept is
extended to 𝐿Φ (𝐺, 𝜔) spaces by Üster.

Let 𝐴 be a Banach algebra and 𝐸 be an 𝐴-module. Then, 𝐸 is essential if the linear span of the elements 𝑎, 𝑥 for 𝑎 ∈ 𝐴 and
𝑥 ∈ 𝐸 is dense in 𝐸 . A Banach algebra 𝐴 is called without order, if for all 𝑥 ∈ 𝐴, 𝑥𝐴 = 𝐴𝑥 = {0} implies 𝑥 = 0. It is known that if
𝐴 has an approximate identity, then it is without order (see (Larsen, R. 1971, p.13)). A multiplier of 𝐴 is a mapping 𝑇 : 𝐴 → 𝐴
such that

𝑇 ( 𝑓 𝑔) = 𝑓 𝑇 (𝑔) = (𝑇 𝑓 )𝑔, 𝑓 , 𝑔 ∈ 𝐴. (1)

Let us denote the collection of all multipliers of 𝐴 by 𝑀 (𝐴). Then, every multiplier turns out to be a bounded linear operator
on 𝐴. If 𝐴 is commutative Banach algebra without order, then 𝑀 (𝐴) is a commutative operator algebra and 𝑀 (𝐴) is called the
multiplier algebra of 𝐴 (see (Wang, J. K. 1961, Theorem 2.2)).

Our goal in this paper is to study the relationship between the multipliers 𝐿1 (𝐺, 𝜔)-module and the multipliers on a certain Banach
algebra. It is well known that 𝐿Φ (𝐺, 𝜔) is an essential Banach 𝐿1 (𝐺, 𝜔)-module with respect to convolution product (see ( Öztop,
S., Samei, E. 2017, Lemma 3.2)). Moreover, we obtain a characterization for the space of multipliers of 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔).
Corresponding Author: R. Üster E-mail: ruya.uster@istanbul.edu.tr
Submitted: 15.04.2023 •Revision Requested: 27.05.2023 •Last Revision Received: 31.05.2023 •Accepted: 01.06.2023 •Published Online: 06.06.2023
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This paper is organized as follows. First we present necessary definitions and some basic results that will be used in this paper.
In Section 3, we construct the space of Φ-temperate functions for 𝐿Φ (𝐺, 𝑤) and study their basic properties. In Section 4, we
characterize the space of multipliers of 𝐿Φ (𝐺, 𝑤) as a certain Banach algebra and extend the results in Öztop, S. (2003) to weighted
Orlicz space. In Section 5, we study the space of multipliers for 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔).

2. PRELIMINARIES

Let us recall some facts concerning Young functions and Orlicz spaces.
An Orlicz space is determined by a Young function. A convex function Φ : [0,∞) → [0,∞] is called a Young function if

Φ(0) = 0, lim
𝑥→0+

Φ(𝑥) = 0 and lim
𝑥→∞Φ(𝑥) = ∞.

For a Young function Φ, its complementary function Ψ is given by

Ψ(𝑦) = sup{𝑥𝑦 −Φ(𝑥) : 𝑥 ≥ 0}, 𝑦 ≥ 0

and Ψ is also a Young function. Then, (Φ,Ψ) is called a complementary Young pair.
By our definition, a Young function can have the value ∞ at a point, and hence be discontinuous at such a point. However, we

always consider a pair of complementary Young functions (Φ,Ψ) with both Φ and Ψ being continuous and strictly increasing. In
particular, they attain positive values on (0,∞). Note that even though Φ is continuous, it may happen that Ψ is not continuous.

A Young function Φ satisfies the Δ2 condition if there exist a constant 𝐾 > 0 and an 𝑥0 ≥ 0 such that Φ(2𝑥) ≤ 𝐾Φ(𝑥) for all
𝑥 ≥ 𝑥0. In this case, we write Φ ∈ Δ2.

Let 𝐺 be a locally compact abelian group with a Haar measure 𝜇. Given a Young function Φ, the Orlicz space 𝐿Φ (𝐺) on 𝐺 is
defined by

𝐿Φ (𝐺) = {
𝑓 : 𝐺 → C :

∫
𝐺

Φ(𝛼 | 𝑓 (𝑥) |)𝑑𝜇(𝑥) < ∞ for some 𝛼 > 0
}
.

The Orlicz space is a Banach space under the Orlicz norm ∥ · ∥Φ defined for 𝑓 ∈ 𝐿Φ (𝐺) by

∥ 𝑓 ∥Φ = sup
{ ∫
𝐺

| 𝑓 (𝑥)𝜈(𝑥) |𝑑𝜇(𝑥) :
∫
𝐺

Ψ( |𝜈(𝑥) |)𝑑𝜇(𝑥) ≤ 1
}

where Ψ is the complementary Young function of Φ.
Let (Φ,Ψ) be a complementary Young pair. If Φ ∈ Δ2, then the dual space 𝐿Φ (𝐺)∗ is 𝐿Ψ (𝐺) (Rao, M. M., Ren, Z. D. 1991,

Corollary 3.4.5). If in addition Ψ ∈ Δ2, then the Orlicz space 𝐿Φ (𝐺) is a reflexive Banach space. We have already mentioned that
Orlicz spaces are generalizations of Lebesgue spaces. For 1 ≤ 𝑝 < ∞ and Φ(𝑥) = 𝑥𝑝

𝑝 , the space 𝐿Φ (𝐺) becomes the Lebesgue
space 𝐿 𝑝 (𝐺) and the norm ∥ · ∥Φ is equivalent to the classical norm ∥ · ∥ 𝑝 . Particularly, if 𝑝 = 1 and Φ(𝑥) = 𝑥, then Ψ the
complementary Young function of Φ is 0 when 0 ≤ 𝑥 ≤ 1, and ∞ when 1 < 𝑥 < ∞. In this case ∥ 𝑓 ∥Φ = ∥ 𝑓 ∥1 for all 𝑓 ∈ 𝐿1 (𝐺).
If 𝑝 = ∞, then for the defined function Ψ, the space 𝐿Ψ (𝐺) is equal to the space 𝐿∞ (𝐺) and we have ∥ 𝑓 ∥Ψ = ∥ 𝑓 ∥∞ for all
𝑓 ∈ 𝐿∞ (𝐺).

For further information on Orlicz spaces, the reader is referred to Rao, M. M., Ren, Z. D. (1991).
On the other hand, weights and weighted function spaces play an important role in mathematical analysis and their applications.

In addition to this, weights appear naturally in analysis.
Let 𝐺 be a locally compact group. In this paper, we consider a weight function as a function 𝜔 : 𝐺 → R+ with 𝜔(𝑥𝑦) ≤

𝜔(𝑥)𝜔(𝑦), (𝑥, 𝑦 ∈ 𝐺) that 𝜔(𝑒) = 1 and 1
𝜔 ∈ 𝐿∞loc (𝐺), here 𝐿∞loc (𝐺) denotes the space of all locally essentially bounded functions

on 𝐺. There is no loss of generality in assuming that the weight 𝜔 is continuous (see (Reiter H., Stegeman J. D. 2000, Section
3.7)).

In Osançlıol, A., Öztop, S. (2015), Osançlıol and Öztop introduced the weighted Orlicz space 𝐿Φ (𝐺, 𝜔) on a locally compact
group 𝐺 as

𝐿Φ (𝐺, 𝜔) = { 𝑓 : 𝑓 𝜔 ∈ 𝐿Φ (𝐺)}
with the norm

∥ 𝑓 ∥Φ,𝜔 = ∥ 𝑓 𝜔∥Φ
for 𝑓 ∈ 𝐿Φ (𝐺, 𝜔). Also, they studied them as Banach algebras with respect to the convolution product. One can observe that if
𝜔 = 1, then the weighted Orlicz spaces 𝐿Φ𝜔 (𝐺) become the space 𝐿Φ (𝐺).

Now, for each 𝑓 ∈ 𝐿1 (𝐺, 𝜔) define the mapping𝑇 𝑓 by𝑇 𝑓 (𝑔) = 𝑓 ∗𝑔 whenever 𝑔 ∈ 𝐿Φ (𝐺, 𝜔).𝑇 𝑓 is an element of 𝐵(𝐿Φ (𝐺, 𝜔)),
which is Banach algebra of all continuous linear operators from 𝐿Φ (𝐺, 𝜔) to 𝐿Φ (𝐺, 𝜔), and ∥𝑇 𝑓 ∥ ≤ ∥ 𝑓 ∥1,𝜔 . Identifying 𝑓 ↦→ 𝑇 𝑓 ,
we obtain an embedding of 𝐿1 (𝐺, 𝜔) in 𝐵(𝐿Φ (𝐺, 𝜔)). We denote the space of all of 𝐿1 (𝐺, 𝜔)-module homomorphisms of
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𝐿Φ (𝐺, 𝜔) by Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)), that is, an operator 𝑇 ∈ 𝐵(𝐿Φ (𝐺, 𝜔)) satisfies 𝑇 ( 𝑓 ∗ 𝑔) = 𝑓 ∗𝑇 (𝑔) for each 𝑓 ∈ 𝐿1 (𝐺, 𝜔)
and 𝑔 ∈ 𝐿Φ (𝐺, 𝜔).

We define

( 𝑓 ◦ 𝑇) (𝑔) = 𝑓 ∗ 𝑇 (𝑔) = 𝑇 ( 𝑓 ∗ 𝑔) (2)

for all 𝑔 ∈ 𝐿Φ (𝐺, 𝜔) and 𝑓 ∈ 𝐿1 (𝐺, 𝜔). The module homomorphisms space Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)) is an essential 𝐿1 (𝐺, 𝜔)-
module with respect to product defined in (2) and is called the space of multipliers of 𝐿Φ (𝐺, 𝜔).

Throughout this paper, 𝐺 is an abelian locally compact group and we are mainly interested in weighted Orlicz spaces 𝐿Φ (𝐺, 𝜔)
with the weight 𝜔 and the Δ2-condition on a Young function Φ.

The definitions, notations and results of this section are adjusted according to the corresponding content of Section 2 of Öztop,
S. (2003).

3. THE Φ-TEMPERATE SPACE

In this section, we define the Φ-temperate function space 𝐿Φ𝑡 (𝐺, 𝜔) and give a closed linear subspace of 𝐵(𝐿Φ (𝐺, 𝜔)) by using
the Φ-temperate functions. Moreover, we study some basic properities of these spaces.

Definition 3.1. An element 𝑓 ∈ 𝐿Φ (𝐺, 𝜔) is called Φ-temperate function if

∥ 𝑓 ∥𝑡Φ,𝜔 = sup{∥𝑔 ∗ 𝑓 ∥Φ,𝜔 : 𝑔 ∈ 𝐿Φ (𝐺, 𝜔), ∥𝑔∥Φ,𝜔 ≤ 1} < ∞
or equivalently

∥ 𝑓 ∥𝑡Φ,𝜔 = sup{∥𝑔 ∗ 𝑓 ∥Φ,𝜔 : 𝑔 ∈ 𝐶𝑐 (𝐺), ∥𝑔∥Φ,𝜔 ≤ 1} < ∞.
The space of all Φ-temperate functions 𝑓 is denoted by 𝐿Φ𝑡 (𝐺, 𝑤). One can observe that

(𝐿Φ𝑡 (𝐺, 𝑤), ∥ · ∥𝑡Φ,𝜔)
is a normed space. Indeed, let 𝑓 ∈ 𝐿Φ𝑡 (𝐺, 𝑤). By the definition of the norm ∥ · ∥𝑡Φ,𝜔 , we obtain ∥ 𝑓 ∥𝑡Φ,𝜔 ≥ 0. On the other hand, if
𝑓 = 0, then ∥ 𝑓 ∥𝑡Φ,𝜔 = 0 is obvious. Conversely, let ∥ 𝑓 ∥𝑡Φ,𝜔 = 0. Then, we have sup{∥𝑔 ∗ 𝑓 ∥Φ,𝜔 : 𝑔 ∈ 𝐶𝑐 (𝐺), ∥𝑔∥Φ,𝜔 ≤ 1} = 0
and so 𝑔 ∗ 𝑓 (𝑥) = 0 for all 𝑥 ∈ 𝐺. Since 𝑔 ∈ 𝐶𝑐 (𝐺) and 𝐶𝑐 (𝐺) is dense in 𝐿1 (𝐺, 𝜔), we obtain 𝑔 ∗ 𝑓 → 𝑓 and so 𝑓 = 0. For each
𝑓 ∈ 𝐿Φ𝑡 (𝐺, 𝑤) and 𝛼 ∈ K, we have

∥𝛼 𝑓 ∥𝑡Φ,𝜔 = sup{∥𝑔 ∗ (𝛼 𝑓 )∥Φ,𝜔 : 𝑔 ∈ 𝐶𝑐 (𝐺), ∥𝑔∥Φ,𝜔 ≤ 1}
= sup{∥𝛼(𝑔 ∗ 𝑓 )∥Φ,𝜔 : 𝑔 ∈ 𝐶𝑐 (𝐺), ∥𝑔∥Φ,𝜔 ≤ 1}
= |𝛼 | sup{∥𝑔 ∗ 𝑓 ∥Φ,𝜔 : 𝑔 ∈ 𝐶𝑐 (𝐺), ∥𝑔∥Φ,𝜔 ≤ 1}
= |𝛼 |∥ 𝑓 ∥𝑡Φ,𝜔 .

Finally, for any 𝑓1, 𝑓2 ∈ 𝐿Φ𝑡 (𝐺, 𝑤), we have

∥ 𝑓1 + 𝑓2∥𝑡Φ,𝜔 = sup{∥𝑔 ∗ ( 𝑓1 + 𝑓2)∥Φ,𝜔 : 𝑔 ∈ 𝐶𝑐 (𝐺), ∥𝑔∥Φ,𝜔 ≤ 1}
≤ sup{∥(𝑔 ∗ 𝑓1)∥Φ,𝜔 + ∥(𝑔 ∗ 𝑓2)∥Φ,𝜔 : 𝑔 ∈ 𝐶𝑐 (𝐺), ∥𝑔∥Φ,𝜔 ≤ 1}
≤ ∥ 𝑓1∥𝑡Φ,𝜔 + ∥ 𝑓2∥𝑡Φ,𝜔 .

For each 𝑓 ∈ 𝐿Φ𝑡 (𝐺, 𝑤), there exists precisely one bounded linear operator on 𝐿Φ (𝐺, 𝜔), denoted by 𝑊 𝑓 , such that 𝑊 𝑓 :
𝐿Φ (𝐺, 𝜔) → 𝐿Φ (𝐺, 𝜔)

𝑊 𝑓 (𝑔) = 𝑔 ∗ 𝑓 and ∥𝑊 𝑓 ∥ = ∥ 𝑓 ∥𝑡Φ,𝜔 . (3)

The linearity of𝑊 𝑓 is obvious and since we have

∥𝑊 𝑓 ∥ = ∥ 𝑓 ∥𝑡Φ,𝜔 = sup{∥𝑔 ∗ 𝑓 ∥Φ,𝜔 : 𝑔 ∈ 𝐿Φ (𝐺, 𝜔), ∥𝑔∥Φ,𝜔 ≤ 1} ≤ ∥ 𝑓 ∥Φ,𝜔 ,

then𝑊 𝑓 is bounded.
Also, we observe that 𝑊 𝑓 (ℎ ∗ 𝑔) = (ℎ ∗ 𝑔) ∗ 𝑓 = ℎ ∗ (𝑔 ∗ 𝑓 ) = ℎ ∗𝑊 𝑓 (𝑔) for each 𝑓 ∈ 𝐿Φ𝑡 (𝐺, 𝑤), 𝑔 ∈ 𝐿Φ (𝐺, 𝜔). Hence, we

obtain𝑊 𝑓 ∈ Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)).
Proposition 3.2. Let Φ be a Young function. Then 𝐿Φ𝑡 (𝐺, 𝑤) is a dense subspace of 𝐿Φ (𝐺, 𝜔).
Proof. Since each 𝑓 ∈ 𝐶𝑐 (𝐺) belongs to 𝐿Φ𝑡 (𝐺, 𝑤) and 𝐶𝑐 (𝐺) is dense in 𝐿Φ (𝐺, 𝜔), we have the required result. □

Lemma 3.3. The space 𝐿Φ𝑡 (𝐺, 𝑤) is a normed algebra with the convolution product.
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Proof. By (3), we have

∥ 𝑓 ∗ 𝑔∥𝑡Φ,𝜔 = sup{∥ℎ ∗ ( 𝑓 ∗ 𝑔)∥Φ,𝜔 : ℎ ∈ 𝐶𝑐 (𝐺), ∥ℎ∥Φ,𝜔 ≤ 1}

= sup{∥𝑔 ∗ (ℎ ∗ 𝑓 )∥Φ,𝜔 : ℎ ∈ 𝐶𝑐 (𝐺), ∥ℎ∥Φ,𝜔 ≤ 1}
= sup{∥𝑊𝑔 (ℎ ∗ 𝑓 )∥Φ,𝜔 : ℎ ∈ 𝐶𝑐 (𝐺), ∥ℎ∥Φ,𝜔 ≤ 1}
≤ ∥𝑊𝑔∥ sup{∥ℎ ∗ 𝑓 ∥Φ,𝜔 : ℎ ∈ 𝐶𝑐 (𝐺), ∥ℎ∥Φ,𝜔 ≤ 1}
= ∥𝑔∥𝑡Φ,𝜔 ∥ 𝑓 ∥𝑡Φ,𝜔

for all 𝑓 , 𝑔 ∈ 𝐿Φ𝑡 (𝐺, 𝑤). Hence, (𝐿Φ𝑡 (𝐺, 𝑤), ∥ · ∥𝑡Φ,𝜔) is a normed algebra. □

Note that

𝑊 𝑓 ∗𝑔 = 𝑊 𝑓 ◦𝑊𝑔 = 𝑊𝑔 ◦𝑊 𝑓 (4)

for all 𝑓 , 𝑔 ∈ 𝐿Φ𝑡 (𝐺, 𝑤). Moreover, the closed linear subspace of 𝐵(𝐿Φ (𝐺, 𝜔)) spanned by {𝑊 𝑓 ∗𝑔 : 𝑓 ∈ 𝐿Φ𝑡 (𝐺, 𝑤), 𝑔 ∈ 𝐶𝑐 (𝐺)}
is denoted by Λ𝐿Φ (𝐺,𝜔) .

Theorem 3.4. The space Λ𝐿Φ (𝐺,𝜔) is a complete subalgebra of Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)) and it has a minimal approximate
identity, that is, a net {𝑇𝛼}𝛼 such that lim𝛼∥𝑇𝛼∥ ≤ 1 and lim𝛼 ∥𝑇𝛼 ◦ 𝑇 − 𝑇 ∥ = 0 for all 𝑇 ∈ Λ𝐿Φ (𝐺,𝜔) .

Proof. If 𝑓 ∈ 𝐿Φ𝑡 (𝐺, 𝑤), then𝑊 𝑓 ∈ 𝐵(𝐿Φ (𝐺, 𝜔)). Since 𝐿Φ (𝐺, 𝜔) is an 𝐿1 (𝐺, 𝜔)-module, we have

𝑊 𝑓 (𝑔 ∗ ℎ) = 𝑔 ∗ ℎ ∗ 𝑓 = 𝑔 ∗𝑊 𝑓 (ℎ)
for all 𝑔 ∈ 𝐿1 (𝐺, 𝜔) and ℎ ∈ 𝐿Φ (𝐺, 𝜔).

Hence 𝑊 𝑓 belongs to Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)). Since Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)) is a Banach algebra under the usual operator
norm, Λ𝐿Φ (𝐺,𝜔) is a complete subalgebra of Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)).

Now, we show the existence of minimal approximate identity of Λ𝐿Φ (𝐺,𝜔) . Let {𝑒
𝑈𝛼

} be a minimal approximate identity for
𝐿1 (𝐺, 𝜔) Dinculeanu, N. (1974). If {𝑒𝛼} denotes the product net of {𝑒

𝑈𝛼
} with itself, then {𝑒𝛼} is also minimal approximate

identity for 𝐿1 (𝐺, 𝜔). It can be observed that the net𝑊𝑒𝛼 ∈ Λ𝐿Φ (𝐺,𝜔) and lim𝛼∥𝑊𝑒𝛼 ∥ ≤ 1.
Let 𝑓 ∈ 𝐿Φ𝑡 (𝐺, 𝑤) and 𝑔 ∈ 𝐶𝑐 (𝐺). Since {𝑒𝛼} is a minimal approximate identity for 𝐿1 (𝐺, 𝜔), using (4) we obtain

lim𝛼∥𝑊𝑒𝛼 ◦𝑊 𝑓 ∗𝑔 −𝑊 𝑓 ∗𝑔∥ = lim𝛼∥(𝑊𝑒𝛼 ◦𝑊𝑔 −𝑊𝑔) ◦𝑊 𝑓 ∥

≤ lim𝛼∥𝑊𝑔∗𝑒𝛼−𝑔∥∥𝑊 𝑓 ∥

≤ lim𝛼∥𝑔 ∗ 𝑒𝛼 − 𝑔∥1,𝜔 ∥𝑊 𝑓 ∥ = 0.

Thus we have lim𝛼∥𝑊𝑒𝛼 ◦ 𝑇 − 𝑇 ∥ = 0 for all 𝑇 ∈ Λ𝐿Φ (𝐺,𝜔) . □

Let 𝑔 ∈ 𝐿1 (𝐺, 𝜔), 𝑓 ∈ 𝐿Φ𝑡 (𝐺, 𝜔) and 𝑊 𝑓 ∈ Λ𝐿Φ (𝐺,𝜔) . We define the module action 𝑔 ◦𝑊 𝑓 of 𝐿1 (𝐺, 𝜔) from 𝐿Φ (𝐺, 𝜔) to
𝐿Φ (𝐺, 𝜔) by

(𝑔 ◦𝑊 𝑓 ) (ℎ) = 𝑊 𝑓 (ℎ ∗ 𝑔) = 𝑊 𝑓 (𝑔 ∗ ℎ)
for each ℎ ∈ 𝐿Φ (𝐺, 𝜔).
Proposition 3.5. The space Λ𝐿Φ (𝐺,𝜔) is an essential 𝐿1 (𝐺, 𝜔)-module.

Proof. Let 𝑔 ∈ 𝐿1 (𝐺, 𝜔), 𝑓 ∈ 𝐿Φ𝑡 (𝐺, 𝜔) and𝑊 𝑓 ∈ Λ𝐿Φ (𝐺,𝜔) . We have

∥𝑔 ◦𝑊 𝑓 ∥ = sup{∥𝑊 𝑓 (𝑔 ∗ ℎ)∥Φ,𝜔 : ℎ ∈ 𝐶𝑐 (𝐺), ∥ℎ∥Φ,𝜔 ≤ 1} ≤ ∥ 𝑓 ∥𝑡Φ,𝜔 ∥𝑔∥1,𝜔 .

Hence, Λ𝐿Φ (𝐺,𝜔) is an 𝐿1 (𝐺, 𝜔)-module. On the other hand, since 𝐿1 (𝐺, 𝜔) has a minimal approximate identity {𝑒𝛼} with a
compact support, it is also an approximate identity in 𝐿Φ (𝐺, 𝜔).

For any𝑊 𝑓 ∈ Λ𝐿Φ (𝐺,𝜔) , we have

∥𝑒𝛼 ◦𝑊 𝑓 −𝑊 𝑓 ∥ = sup{∥(𝑒𝛼 ◦𝑊 𝑓 −𝑊 𝑓 ) (ℎ)∥Φ,𝜔 : ℎ ∈ 𝐶𝑐 (𝐺), ∥ℎ∥Φ,𝜔 ≤ 1}
= sup{∥𝑊 𝑓 (𝑒𝛼 ∗ ℎ − ℎ)∥Φ,𝜔 : ℎ ∈ 𝐶𝑐 (𝐺), ∥ℎ∥Φ,𝜔 ≤ 1}
≤ ∥ 𝑓 ∥𝑡Φ,𝜔 ∥𝑒𝛼 ∗ ℎ − ℎ∥Φ,𝜔 = 0

for all ℎ ∈ 𝐿Φ (𝐺, 𝜔). Thus, Λ𝐿Φ (𝐺,𝜔) is an essential 𝐿1 (𝐺, 𝜔)-module. Moreover, Λ𝐿Φ (𝐺,𝜔) contains 𝐿1 (𝐺, 𝜔). □
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4. A CHARACTERIZATION FOR THE SPACE OF MULTIPLIERS OF Λ𝐿Φ (𝐺,𝜔)

In this section, we give an identification for the space of 𝐿1 (𝐺, 𝜔)-module multiplier with the space of multipliers of certain
normed algebra.

The definitions, notations and proofs of this section are adjusted according to the corresponding content of Section 3 of Öztop,
S. (2003).

Proposition 4.1. Let 𝑇 ∈ Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)).
(i) If 𝑓 ∈ 𝐿Φ𝑡 (𝐺, 𝜔), then 𝑇 ( 𝑓 ) ∈ 𝐿Φ𝑡 (𝐺, 𝜔).
(ii) If 𝑔 ∈ 𝐿Φ𝑡 (𝐺, 𝜔), then 𝑇 ( 𝑓 ∗ 𝑔) = 𝑓 ∗ 𝑇 (𝑔)
for all 𝑓 , 𝑔 ∈ 𝐿Φ (𝐺, 𝜔).
Proof. (i) Let 𝑓 ∈ 𝐿Φ𝑡 (𝐺, 𝜔). Since 𝑇 ∈ Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)) we have

∥𝑇 ( 𝑓 )∥𝑡Φ,𝜔 = sup{∥ℎ ∗ 𝑇 ( 𝑓 )∥Φ,𝜔 : ℎ ∈ 𝐶𝑐 (𝐺), ∥ℎ∥Φ,𝜔 ≤ 1}
= sup{∥𝑇 (ℎ ∗ 𝑓 )∥Φ,𝜔 : ℎ ∈ 𝐶𝑐 (𝐺), ∥ℎ∥Φ,𝜔 ≤ 1}
≤ ∥𝑇 ∥ sup{∥ℎ ∗ 𝑓 ∥Φ,𝜔 : ℎ ∈ 𝐶𝑐 (𝐺), ∥ℎ∥Φ,𝜔 ≤ 1}
= ∥𝑇 ∥∥ 𝑓 ∥𝑡Φ,𝜔 < ∞.

(ii) Let 𝑔 ∈ 𝐿Φ𝑡 (𝐺, 𝜔). Since𝐶𝑐 (𝐺) = 𝐿Φ (𝐺, 𝜔), for each 𝑓 ∈ 𝐿Φ (𝐺, 𝜔) there exists ( 𝑓𝑛) ⊆ 𝐶𝑐 (𝐺) such that lim
𝑛→∞ ∥ 𝑓𝑛− 𝑓 ∥Φ,𝜔 =

0. Using (3), we obtain lim
𝑛→∞ ∥ 𝑓𝑛 ∗ 𝑔 − 𝑓 ∗ 𝑔∥Φ,𝜔 = 0. By (i), we have

lim
𝑛→∞ ∥ 𝑓𝑛 ∗ 𝑇 (𝑔) − 𝑓 ∗ 𝑇 (𝑔)∥Φ,𝜔 = 0

and 𝑓 ∗ 𝑇 (𝑔) = lim
𝑛→∞ 𝑓𝑛 ∗ 𝑇 (𝑔) = lim

𝑛→∞𝑇 ( 𝑓𝑛 ∗ 𝑔) = 𝑇 ( 𝑓 ∗ 𝑔). □

Definition 4.2. For the space Λ𝐿Φ (𝐺,𝜔) , we define Λ◦
𝐿Φ (𝐺,𝜔) by

Λ◦
𝐿Φ (𝐺,𝜔) = {𝑇 ∈ Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)) : 𝑇 ◦𝑊 ∈ Λ𝐿Φ (𝐺,𝜔) for all𝑊 ∈ Λ𝐿Φ (𝐺,𝜔) }.

Lemma 4.3. The space Λ◦
𝐿Φ (𝐺,𝜔) is equal to Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)).

Proof. It is obvious that

Λ◦
𝐿Φ (𝐺,𝜔) ⊆ Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)). (5)

Conversely, let 𝑇 ∈ Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)). For any 𝑆 ∈ Λ𝐿Φ (𝐺,𝜔) which is 𝑆 = 𝑊 𝑓 ∗𝑔 for some 𝑓 ∈ 𝐿Φ𝑡 (𝐺, 𝜔) and 𝑔 ∈ 𝐶𝑐 (𝐺),
we have

(𝑇 ◦𝑊 𝑓 ∗𝑔) (ℎ) = 𝑇 (ℎ ∗ 𝑓 ∗ 𝑔)
= ℎ ∗ 𝑇 ( 𝑓 ∗ 𝑔)
= 𝑊𝑇 ( 𝑓 ∗𝑔) (ℎ)
= 𝑊 𝑓 ∗𝑇 (𝑔) (ℎ),

for all ℎ ∈ 𝐿Φ (𝐺, 𝜔). So, 𝑇 ◦ 𝑆 ∈ Λ𝐿Φ (𝐺,𝜔) implies that 𝑇 ∈ Λ◦
𝐿Φ (𝐺,𝜔) . Hence, we have Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)) ⊆ Λ◦

𝐿Φ (𝐺,𝜔) by
the continuity of 𝑇 . □

Let us note that we have the inclusion 𝑀 (Λ𝐿Φ (𝐺,𝜔) ) ⊂ Hom𝐿1 (𝐺,𝜔) (Λ𝐿Φ (𝐺,𝜔) ).
Theorem 4.4. The space of multipliers 𝑀 (Λ𝐿Φ (𝐺,𝜔) ) is isometrically isomorphic to the space Λ◦

𝐿Φ (𝐺,𝜔) .

Proof. Define the mapping 𝐹 : Λ◦
𝐿Φ (𝐺,𝜔) → 𝑀 (Λ𝐿Φ (𝐺,𝜔) ) by letting 𝐹 (𝑇) = 𝜌

𝑇
for each 𝑇 ∈ Λ◦

𝐿Φ (𝐺,𝜔) , where 𝜌
𝑇
(𝑆) = 𝑇 ◦ 𝑆

for all 𝑆 ∈ Λ𝐿Φ (𝐺,𝜔) . Thus 𝐹 is well-defined and moreover 𝜌
𝑇
(𝑆 ◦ 𝐾) = 𝑇 ◦ 𝑆 ◦ 𝐾 = 𝜌

𝑇
(𝑆) ◦ 𝐾 for all 𝑆, 𝐾 ∈ Λ𝐿Φ (𝐺,𝜔) , so

𝜌
𝑇
∈ 𝑀 (Λ𝐿Φ (𝐺,𝜔) ), since 𝐺 is an abelian group and so the convolution multiplication is commutative.

It is clear that the mapping 𝑇 ↦→ 𝜌
𝑇

is linear and that ∥𝜌
𝑇
∥ ≤ ∥𝑇 ∥. Since 𝑊𝑒𝛼 is minimal approximate identity for Λ𝐿Φ (𝐺,𝜔)

by Theorem 3.4, we have

∥𝜌
𝑇
∥ = sup

𝑆∈Λ𝐿Φ (𝐺,𝜔)

∥𝜌
𝑇
(𝑆)∥

∥𝑆∥ = sup
𝑆∈Λ𝐿Φ (𝐺,𝜔)

∥𝑇 ◦ 𝑆∥
∥𝑆∥

≥ sup
𝑆∈Λ𝐿Φ (𝐺,𝜔)

∥𝑇 ◦𝑊𝑒𝛼 ∥
∥𝑊𝑒𝛼 ∥

≥ ∥𝑇 ∥.
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Thus ∥𝜌
𝑇
∥ = ∥𝑇 ∥.

Finally, we show that 𝐹 is onto. Let 𝜌 ∈ 𝑀 (Λ𝐿Φ (𝐺,𝜔) ) and {𝑒𝛼} ⊆ 𝐿1 (𝐺, 𝜔) be a minimal approximate identity of 𝐿1 (𝐺, 𝜔).
The limit of 𝜌𝑊𝑒𝛼

exists for strong operator topology. Let 𝑇 = lim𝛼 𝜌𝑊𝑒𝛼
. We prove 𝜌

𝑇
= 𝜌. By (1), we have (𝜌𝑊𝑒𝛼

) ( 𝑓 ∗ 𝑔) =
(𝜌𝑊𝑒𝛼

) (𝑊
𝑓
𝑔) = (𝜌𝑊

𝑒𝛼∗ 𝑓 ) (𝑔) for every 𝑓 ∈ 𝐿1 (𝐺, 𝜔), 𝑔 ∈ 𝐿Φ (𝐺, 𝜔). So we have

𝑇 ( 𝑓 ∗ 𝑔) = lim
𝛼
(𝜌𝑊𝑒𝛼

) ( 𝑓 ∗ 𝑔) = (𝜌𝑊
𝑓
)𝑔. (6)

Since 𝐿Φ (𝐺, 𝜔) is an essential 𝐿1 (𝐺, 𝜔)-module, the limit of (𝜌𝑊𝑒𝛼
) ( 𝑓 ∗ 𝑔) exists in 𝐿Φ (𝐺, 𝜔). Let this limit be denoted by

𝑇𝑔 ∈ Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)). From (6) we obtain for all 𝑓 ∈ 𝐿1 (𝐺, 𝜔),
𝑓 ◦ 𝑇 = 𝜌 𝑓 . (7)

Thus we have

𝑇 ◦𝑊𝑒𝛼
◦𝑊 = (𝜌𝑊𝑒𝛼

) ◦𝑊 = 𝜌(𝑊𝑒𝛼
◦𝑊) (8)

for all 𝑊 ∈ Λ𝐿Φ (𝐺,𝜔) . Since 𝐿Φ (𝐺, 𝜔) is essential 𝐿1 (𝐺, 𝜔)-module, we have 𝑇 ◦𝑊 = 𝜌(𝑊) and so 𝜌
𝑇
(𝑊) = 𝜌(𝑊) for all

𝑊 ∈ Λ𝐿Φ (𝐺,𝜔) , which gives 𝜌
𝑇
= 𝜌. □

Corollary 4.5. 𝑀 (Λ𝐿Φ (𝐺,𝜔) ) � Hom𝐿1 (𝐺,𝜔) (𝐿Φ (𝐺, 𝜔)).
Proof. From Lemma 4.3 and Theorem 4.4, the result is obtained. □

5. THE IDENTIFICATION FOR THE SPACE 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)
In this section, adapted from Chapter of Öztop, S. (2003), we study some basic properties of the space 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) and
we characterize the space of multipliers Hom𝐿1 (𝐺,𝜔) (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)).

Given a Young function Φ, the space 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) is a Banach space with the norm

| | | 𝑓 | | | = ∥ 𝑓 ∥1,𝜔 + ∥ 𝑓 ∥Φ,𝜔 (9)

for 𝑓 ∈ 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔).
Lemma 5.1. For 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) the following is true.

(i) 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) is dense in 𝐿1 (𝐺, 𝜔) with respect to the norm ∥ · ∥1,𝜔 .
(ii) For every 𝑓 ∈ 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) and 𝑥 ∈ 𝐺 the mapping 𝑥 ↦→ 𝐿𝑥 𝑓 is continuous where 𝐿𝑥 𝑓 (𝑦) = 𝑓 (𝑥−1𝑦) for all 𝑦 ∈ 𝐺.

Proof. (i) Since 𝐶𝑐 (𝐺) is dense in 𝐿1 (𝐺, 𝜔) with respect to the norm ∥ · ∥1,𝜔 and 𝐶𝑐 (𝐺) ⊆ 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) ⊆ 𝐿1 (𝐺, 𝜔)
we have the required result.

(ii) Let 𝑓 ∈ 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔). Observe that by (Osançlıol, A., Öztop, S. 2015, Lemma 2.3) | | |𝐿𝑥 𝑓 | | | ≤ 𝑤(𝑥) | | | 𝑓 | | | for all
𝑥 ∈ 𝐺 and the function 𝑥 ↦→ 𝐿𝑥 𝑓 is continuous from 𝐺 into 𝐿Φ (𝐺, 𝜔) and 𝐿1 (𝐺, 𝜔). Thus for any 𝑥0 ∈ 𝐺 and 𝜀 > 0, there exists
𝑈1 ∈ 𝑉(𝑥0 ) and𝑈2 ∈ 𝑉(𝑥0 ) such that for every 𝑥 ∈ 𝑈1

∥𝐿𝑥 𝑓 − 𝐿𝑥0
𝑓 ∥Φ,𝜔 <

𝜀

2
and for every 𝑥 ∈ 𝑈2

∥𝐿𝑥 𝑓 − 𝐿𝑥0
𝑓 ∥1,𝜔 <

𝜀

2
,

where 𝑉(𝑥0 ) denotes the neighborhood of 𝑥0. Set 𝑉 = 𝑈1 ∩𝑈2, then for all 𝑥 ∈ 𝑉 we have | | |𝐿𝑥 𝑓 − 𝐿𝑥0
𝑓 | | | < 𝜀. □

Since 𝐿1 (𝐺, 𝜔) has a minimal approximate identity and 𝐿Φ (𝐺, 𝜔) is an essential 𝐿1 (𝐺, 𝜔)-module, the following proposition and
lemma are hold trivially.

Proposition 5.2. The space 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) has a minimal approximate identity in 𝐿1 (𝐺, 𝜔).
Lemma 5.3. The space 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) is an essential 𝐿1 (𝐺, 𝜔)-module.

Corollary 5.4. 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) is a Banach ideal in 𝐿1 (𝐺, 𝜔).
Proposition 5.5. 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) is a Banach algebra with the norm | | | · | | |.
Proof. For any 𝑓 , 𝑔 ∈ 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) we have

| | | 𝑓 ∗ 𝑔 | | | = ∥ 𝑓 ∗ 𝑔∥1,𝜔 + ∥ 𝑓 ∗ 𝑔∥Φ,𝜔

≤ ∥ 𝑓 ∥1,𝜔 ∥𝑔∥Φ,𝜔 + ∥ 𝑓 ∥1,𝜔 ∥𝑔∥Φ,𝜔 ≤ || | 𝑓 | | | | | |𝑔 | | |.
□
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Note that let 𝐺 be a locally compact abelian group. A subalgebra 𝑆1 (𝐺) of 𝐿1 (𝐺) is called a Segal algebra if it satisfies the
following conditions (see Reiter H., Stegeman J. D. (2000)).

(i) The space 𝑆1 (𝐺) is dense in 𝐿1 (𝐺).
(ii) The subalgebra 𝑆1 (𝐺) is a Banach algebra which is invariant under translations and for each 𝑓 ∈ 𝐿1 (𝐺) there is a

neighborhood𝑈 = 𝑈𝜀 of the identity element 𝑒 such that

∥𝐿𝑦 𝑓 − 𝑓 ∥ < 𝜀, 𝑦 ∈ 𝑈.
Corollary 5.6. The space 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) is a Segal algebra.

Proof. By Lemma 5.1 and Proposition 5.5 we obtain that 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) is a Segal algebra. □

Remark 5.7. Since 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) is an 𝐿1 (𝐺, 𝜔)-module and a Banach algebra, using the similar methods in Section 3
we obtain 𝑀 (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)) � Hom𝐿1 (𝐺,𝜔) (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)).
Proposition 5.8. Hom𝐿1 (𝐺,𝜔) (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)) is an essential Banach module over 𝐿1 (𝐺, 𝜔).
Proof. Let 𝑓 ∈ 𝐿1 (𝐺, 𝜔) and 𝑇 ∈ Hom𝐿1 (𝐺,𝜔) (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)). Define the operator 𝑓 𝑇 on 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) by

( 𝑓 𝑇) (𝑔) = 𝑇 ( 𝑓 ∗ 𝑔) (10)

for all 𝑔 ∈ 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) and 𝑓 ∈ 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔). Since 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔) is a Banach algebra, the mapping
(10) is well defined. On the other hand, we have

∥ 𝑓 𝑇 ∥ = sup
| | |𝑔 | | | ≤1

| | | ( 𝑓 𝑇) (𝑔) | | |

≤ sup
| | |𝑔 | | | ≤1

| | |𝑇 ( 𝑓 ∗ 𝑔) | | |

≤ sup
| | |𝑔 | | | ≤1

∥𝑇 ∥ | | | 𝑓 ∗ 𝑔 | | |

≤ sup
| | |𝑔 | | | ≤1

∥𝑇 ∥ ∥ 𝑓 ∥1,𝜔 | | |𝑔 | | |

≤ ∥𝑇 ∥ ∥ 𝑓 ∥1,𝜔 .

Hence, Hom𝐿1 (𝐺,𝜔) (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)) is an 𝐿1 (𝐺, 𝜔) module.
Let {𝑒𝛼} be a minimal approximate identity for 𝐿1 (𝐺, 𝜔) and 𝑇 be in Hom𝐿1 (𝐺,𝜔) (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)). We have

lim
𝛼

∥𝑒𝛼 ◦ 𝑇 − 𝑇 ∥ = 0.

Then, we obtain that Hom𝐿1 (𝐺,𝜔) (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)) is an essential Banach module over 𝐿1 (𝐺, 𝜔). □

Define P to be the closure of 𝐿1 (𝐺, 𝜔) in Hom𝐿1 (𝐺,𝜔) (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)) for the operator norm. Clearly we have

Hom𝐿1 (𝐺,𝜔) (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)) = (Hom𝐿1 (𝐺,𝜔) (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)))𝑒 = P = (P)𝑒, (11)

where (.)𝑒 denotes the essential part and we have

Hom𝐿1 (𝐺,𝜔) (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)) = (P).
Here (P) is defined as the space of the elements 𝑇 ∈ Hom𝐿1 (𝐺,𝜔) (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)) such that 𝑇 ◦ P ⊂ P.

Using the same method as in Theorem 4.4, we obtain the following lemma.

Lemma 5.9. The space of multipliers of Banach algebra P is isometrically isometric to the space (P).
Corollary 5.10. Hom𝐿1 (𝐺,𝜔) (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)) � 𝑀 (P).
Proof. The proof is obtained by using Lemma 4.3 and Theorem 4.4. □

Remark 5.11. It is evident that every measure 𝜇 ∈ 𝑀 (𝐺) defines multiplier for 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔). This is obvious from the
fact that ∥𝜇 ∗ 𝑓 ∥ ≤ ∥𝜇∥∥ 𝑓 ∥, 𝑓 ∈ 𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔). On the other hand, for 𝜇 ∈ 𝑀 (𝐺), we have 𝜇 ◦ 𝐿1 (𝐺, 𝜔) ⊂ 𝐿1 (𝐺, 𝜔),
the inclusion in the space Hom𝐿1 (𝐺,𝜔) (𝐿1 (𝐺, 𝜔) ∩ 𝐿Φ (𝐺, 𝜔)). Thus, 𝜇 ◦ P ⊂ P and 𝑀 (𝐺) can be embeded into (P).

Moreover, if 𝐺 is noncompact locally compact abelian, we have the more general results than Corollary in (Larsen, R. 1971,
Corollary 3.5.1).
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ABSTRACT
In the present paper, we study Clairaut submersions and Einstein conditions whose total manifolds are locally conformal Kaehler
manifolds. We first give a necessary and sufficient condition for a curve to be geodesic on total manifold of a locally conformal
Kaehler submersion. Then, we investigate conditions for a locally conformal Kaehler submersion to be a Clairaut submersion.We
find the Ricci and scalar curvature formulas between any fiber of the total manifold and the base manifold of a locally conformal
Kaehler submersion and give necessary and sufficient conditions for the total manifold of a locally conformal Kaehler submersion
to be Einstein. Finally, we obtain some formulas for sectional and holomorphic sectional curvatures for a locally conformal Kaehler
submersion.

Mathematics Subject Classification (2020): 53B35, 53C18, 53C25

Keywords: Riemannian submersion, almost Hermitian submersion, locally conformal Kaehler submersion, Clairaut submersion,
Einstein manifold.

1. INTRODUCTION

The notion of Riemannian submersion was introduced by O’Neill (1966) and Gray (1967), independently. Watson (1976) introduced
almost Hermitian submersions by adding the condition to be almost complex mappings for Riemannian submersions, and proved
that the vertical and the horizontal distributions are invariant with respect to the almost complex structure of the total space of
the submersion. Then various kinds of Riemannian and almost Hermitian submersions Falcitelli et al. (2004), Şahin (2017) have
been introduced and studied widely such as anti-invariant submersions, Lagrangian submersions, slant submersions, semi-slant
submersions, hemi-slant submersions, etc. Moreover, these submersions have been studied for different kinds of manifolds like
Kaehler, almost Kaehler, Sasakian and examined under some particular conditions, for example Einstein and Clairaut Lee et al.
(2015). Especially, Clairaut submersions were studied in Lorentizian manifolds Allison (1996), Sasakian and Kenmotsu manifolds
Taştan and Gerdan (2016), cosymplectic manifolds Taştan and Gerdan Aydın (2019), and locally product Riemannian manifolds
Gündüzalp (2020). An important class of these manifolds is locally conformal Kaehler manifold, whose metric is conformal to
a Kaehler metric locally. Vaisman studied locally conformal Kaehler manifolds and obtained some curvature properties of these
manifolds Vaisman (1980). A comprehensive review for locally conformal Kaehler manifolds was made by Dragomir and Ornea
(1998). An almost Hermitian submersion whose total manifold is a locally conformal Kaehler is called a locally conformal Kaehler
submersion. Marrero and Rocha (1994) gave some conditions for the fibers of a locally conformal Kaehler submersion to be
minimal and studied some relations between the Betti numbers of the total space and the base space of this submersion. In a recent
paper Çimen et al. (2023) obtained Gauss and Weingarten equations for a locally conformal Kaehler submersion.
In this paper, we study Clairaut submersions and Einstein conditions whose total manifolds are locally conformal Kaehler manifolds.
In section 2, we give basic informations about Riemannian submersions, almost Hermitian submersions and locally conformal
Kaehler manifolds. In section 3, we derive conditions for a curve to be geodesic, with respect to two connections which are
determined by the Riemannian metric and its conformally related Kaehler metric, on total manifold of a locally conformal Kaehler
submersion. After that, we give a necessary and sufficient condition for a locally conformal Kaehler submersion to be Clairaut.
In section 4, we derive the formulas for Ricci and scalar curvatures between any fiber of the total manifold and the base manifold
of a locally conformal Kaehler submersion. Afterwards, we give necessary and sufficient conditions for the total manifold of a
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locally conformal Kaehler submersion to be Einstein. At the end of this section, we obtain the sectional and holomorphic sectional
curvatures for a locally conformal Kaehler submersion.

2. PRELIMINAIRES

In this section, we will give some informations about locally conformal Kaehler manifolds.

Let (𝑀, 𝑔) and (𝑁, 𝑔′) be Riemannian manifolds. A mapping 𝜋 of (𝑀, 𝑔) onto (𝑁, 𝑔′) is called a Riemannian submersion if it
satisfies the following conditions:

(i) For every 𝑝 ∈ 𝑀 , the derivative map 𝜋∗ of 𝜋 is surjective;
hence for each 𝑞 ∈ 𝑁 , 𝜋−1 (𝑞) is a submanifold of dimension 𝑑𝑖𝑚(𝑀) − 𝑑𝑖𝑚(𝑁). These submanifolds are called fibers of the
submersion and a vector field on 𝑀 which is tangent (resp. orthogonal) to fibers is called vertical (resp. horizontal). Thus, we can
write a vector field 𝐸 on 𝑀 uniquely as 𝐸 = 𝐸𝑣 + 𝐸ℎ, where 𝐸𝑣 and 𝐸ℎ are vertical and horizontal parts of 𝐸 , respectively.

(ii) For every horizontal vector fields 𝑋,𝑌 we have 𝑔(𝑋,𝑌 ) = 𝑔′ (𝜋∗𝑋, 𝜋∗𝑌 );
that is, 𝜋∗ is a linear isometry of horizontal distribution.

To find the Gauss and Weingarten formulas of a Riemannian submersion, O’Neill introduced two new tensors of types (1, 2) as
follows;

T𝐸𝐹 = (∇𝐸𝑣𝐹ℎ)𝑣 + (∇𝐸𝑣𝐹𝑣)ℎ,

A𝐸𝐹 = (∇𝐸ℎ𝐹ℎ)𝑣 + (∇𝐸ℎ𝐹𝑣)ℎ,
where 𝐸 and 𝐹 are vector fields on 𝑀 and ∇ is the Levi-Civita connection of 𝑔 (see for the properties T and A in O’Neill (1966)).
It is easy to see that,

∇𝑈𝑉 =(∇𝑈𝑉)𝑣 + T𝑈𝑉, (1)

∇𝑈𝑋 =T𝑈𝑋 + (∇𝑈𝑋)ℎ, (2)
∇𝑋𝑈 =(∇𝑋𝑈)𝑣 + A𝑋𝑈, (3)

∇𝑋𝑌 =A𝑋𝑌 + (∇𝑋𝑌 )ℎ, (4)

where𝑈 and 𝑉 are vertical, and 𝑋 and 𝑌 are horizontal vector fields on 𝑀 .
Let (𝑀, 𝐽, 𝑔) and (𝑁, 𝐽′, 𝑔′) be almost Hermitian manifolds and 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) be a Riemannian submersion. 𝜋

is called an almost Hermitian submersion if 𝜋∗ ◦ 𝐽 = 𝐽′ ◦ 𝜋∗, i.e., 𝜋 is an almost complex mapping. The vertical and horizontal
distributions are invariant under the almost complex structure 𝐽 (see Proposition 2.1 in Watson (1976)).

Let a Hermitian manifold (𝑀, 𝐽, 𝑔) is called a locally conformal Kaehler manifold (briefly l.c.K.), if 𝑀 has an open cover
{U𝑖}𝑖∈𝐼 and for every 𝑖 ∈ 𝐼 with family of positive differentiable functions 𝜎𝑖 : U𝑖 → R such that

𝑔𝑖 = 𝑒
−𝜎𝑖𝑔 |U𝑖

are Kaehler metrics on U𝑖 .
Let (𝑀, 𝐽, 𝑔) be a Hermitian manifold and let Ω be a 2-form defined by Ω(𝐸, 𝐹) = 𝑔(𝐸, 𝐽𝐹) where 𝐸 and 𝐹 are vector fields

on 𝑀 . Dragomir and Ornea (1998) showed that (𝑀, 𝐽, 𝑔) is a l.c.K. manifold if and only if there exists a globally defined closed
1-form 𝜔 such that

𝑑Ω = 𝜔 ∧Ω.

The 1-form 𝜔 is called the Lee form and the vector field 𝐵 defined by

𝜔(𝐸) = 𝑔(𝐵, 𝐸), (5)

is called Lee vector field of 𝑀 , where 𝐸 is a vector field of 𝑀 .
Let ∇𝑖 be the Levi-Civita connection of the locally conformal Kaehler metrics 𝑔𝑖 , for every 𝑖 ∈ 𝐼. Then the Levi-Civita

connections ∇𝑖 glue up to a globally defined linear connection ∇̃ on 𝑀 (see Theorem 2.1 (Dragomir and Ornea (1998))) is given
by

∇̃𝐸𝐹 = ∇𝐸𝐹 − 1
2

{
𝜔(𝐸)𝐹 + 𝜔(𝐹)𝐸 − 𝑔(𝐸, 𝐹)𝐵

}
, (6)
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for any vector fields 𝐸 and 𝐹 on 𝑀 . One can see that ∇̃ is torsion-free and satisfies

∇̃𝑔 = 𝜔 ⊗ 𝑔, (7)

and

∇̃𝐽 = 0. (8)

∇̃ is called Weyl connection of the l.c.K manifold 𝑀 . From (6) and (8), it can be obtained

(∇𝐸𝐽)𝐹 =
1
2

{
𝜔(𝐽𝐹)𝐸 − 𝜔(𝐹)𝐽𝐸 − 𝑔(𝐸, 𝐽𝐹)𝐵 + 𝑔(𝐸, 𝐹)𝐽𝐵

}
. (9)

Çimen et al. (2023) showed that the following equations hold for a l.c.K. submersion:

T𝑈𝐽𝑉 = 𝐽T𝑈𝑉 + 1
2

{
𝑔(𝑈,𝑉) (𝐽𝐵)ℎ − 𝑔(𝑈, 𝐽𝑉)𝐵ℎ

}
, (10)

T𝑉 𝐽𝑋 = 𝐽T𝑉𝑋 + 1
2

{
𝜔(𝐽𝑋)𝑉 − 𝜔(𝑋)𝐽𝑉

}
, (11)

A𝑋𝐽𝑉 = 𝐽A𝑋𝑉 + 1
2

{
𝜔(𝐽𝑉)𝑋 − 𝜔(𝑉)𝐽𝑋

}
, (12)

A𝑋𝐽𝑌 = 𝐽A𝑋𝑌 + 1
2

{
𝑔(𝑋,𝑌 ) (𝐽𝐵)𝑣 − 𝑔(𝑋, 𝐽𝑌 )𝐵𝑣

}
, (13)

where𝑈 and 𝑉 are vertical, 𝑋 and 𝑌 are horizontal, and 𝐵 is the Lee vector field of the total manifold of the submersion.

3. CLAIRAUT LOCALLY CONFORMAL KAEHLER SUBMERSIONS

In this section we shall give a necessary and sufficient condition for a locally conformal Kaehler submersion to be Clairaut. First,
we recall the definition of a Clairaut submersion.

Let 𝜌(𝑝) be the distance from a point 𝑝 on a surface of revolution in R3 to the rotation axis of this surface and 𝛼 be a geodesic
in this surface. Clairaut’s theorem says that for the angle 𝜃 (𝑠) between the velocity vector ¤𝛼(𝑠) and the meridian through 𝛼(𝑠),
(𝜌 sin 𝜃) (𝑠) is constant. Motivated by this idea, Bishop (1972) introduced the notion of Clairaut submersion in the following way:

Definition 3.1. A Riemannian submersion 𝜋 : (𝑀, 𝑔) → (𝑁, 𝑔′) is called a Clairaut submersion if there exists a positive function
𝜌 on 𝑀 such that for any geodesic 𝛼 on 𝑀 , the function 𝜌𝑠𝑖𝑛𝜃 is constant, where 𝜃 is the angle between ¤𝛼 and the horizontal
distribution at every point of 𝑀 .

Bishop (1972) gave the following characterization for Clairaut submersions.

Theorem 3.2. Let 𝜋 : (𝑀, 𝑔) → (𝑁, 𝑔′) be a Riemannian submersion with connected fibers. Then 𝜋 is a Clairaut submersion
with 𝜌 = 𝑒 𝑓 if and only if each fiber is totally umbilical and has the mean curvature vector field 𝐻 = −grad 𝑓 .

We shall obtain a necessary and sufficient condition for a curve on the total space of a l.c.K submersion to be geodesic.

Lemma 3.3. Let 𝜋 be a l.c.K. submersion from (𝑀, 𝐽, 𝑔) onto (𝑁, 𝐽′, 𝑔′), and let 𝛼 be a curve on 𝑀 whose tangent vector field
has horizontal and vertical components 𝑋 and 𝑉 , respectively. Then 𝛼 is a geodesic with respect to the Weyl connection ∇̃ if and
only if

(∇ ¤𝛼𝐽𝑋)ℎ+T𝑉 𝐽𝑉 + A𝑋𝐽𝑉 − 1
2

{
𝜔( ¤𝛼)𝐽𝑋 + 𝜔(𝐽 ¤𝛼)𝑋

}
= 0, (14)

(∇ ¤𝛼𝐽𝑉)𝑣+T𝑉 𝐽𝑋 + A𝑋𝐽𝑋 − 1
2

{
𝜔( ¤𝛼)𝐽𝑉 + 𝜔(𝐽 ¤𝛼)𝑉

}
= 0. (15)

Proof. From (6) and (8), we have

∇̃ ¤𝛼 ¤𝛼 = −𝐽∇̃ ¤𝛼𝐽 ¤𝛼

= −𝐽
(
∇ ¤𝛼𝐽 ¤𝛼 − 1

2

{
𝜔( ¤𝛼)𝐽 ¤𝛼 + 𝜔(𝐽 ¤𝛼) ¤𝛼 − 𝑔( ¤𝛼, 𝐽 ¤𝛼)𝐵

})
= −𝐽

(
∇𝑉 𝐽𝑉 + ∇𝑉 𝐽𝑋 + ∇𝑋𝐽𝑉 + ∇𝑉 𝐽𝑉

− 1
2

{
𝜔( ¤𝛼)𝐽𝑋 + 𝜔( ¤𝛼)𝐽𝑉 + 𝜔(𝐽 ¤𝛼)𝑋 + 𝜔(𝐽 ¤𝛼)𝑉

})
.
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Then nonsingular 𝐽 implies that 𝛼 is geodesic if and only if

∇𝑉 𝐽𝑉 + ∇𝑉 𝐽𝑋+∇𝑋𝐽𝑉 + ∇𝑉 𝐽𝑉

− 1
2

{
𝜔( ¤𝛼)𝐽𝑋 + 𝜔( ¤𝛼)𝐽𝑉 + 𝜔(𝐽 ¤𝛼)𝑋 + 𝜔(𝐽 ¤𝛼)𝑉

}
= 0.

Taking the horizontal and vertical parts of this equation, we get (14) and (15), respectively. □

Lemma 3.4. Let 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) be a l.c.K. submersion with connected fibers. If 𝛼 is a geodesic on 𝑀 with respect to
both ∇ and ∇̃, then we have

𝜔( ¤𝛼) ¤𝛼 =
1
2
𝐵. (16)

Proof. Suppose that 𝛼 is a geodesic curve with respect to both ∇ and ∇̃, that is ∇ ¤𝛼 ¤𝛼 = 0 and ∇̃ ¤𝛼 ¤𝛼 = 0. Then we get (16)
immediately from (6). □

A geodesic curve whose vertical component of its velocity vector is zero is called a horizontal geodesic by O’Neill (1967). For a
horizontal geodesic of a l.c.K. submersion, we have the following result.

Theorem 3.5. Let 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) be a l.c.K. submersion with connected fibers. If a curve 𝛼 is a horizontal geodesic
on 𝑀 with respect to both ∇ and ∇̃, then the dimension of horizontal distribution is equal to 2 or the submersion 𝜋 is a Kaehler
submersion, i.e., its total manifold is Kaehler.

Proof. Let {𝑋1, ..., 𝑋𝑚} be an orthonormal basis of the horizontal distribution of the submersion 𝜋 at 𝑝 ∈ 𝜋−1 (𝑞), where 𝑞 ∈ 𝑁 .
Then there exist horizontal geodesic curves 𝛼1, ..., 𝛼𝑚 such that ¤𝛼𝑖 = 𝑋𝑖 , 𝑖 = 1, ..., 𝑚. Thus, for every 𝑖 = 1, ..., 𝑚, we have

𝑔(𝐵, 𝑋𝑖)𝑋𝑖 = 1
2
𝐵ℎ (17)

from (5) and (16). Taking summation of the equation (17) over 𝑖, we obtain(
1 − 𝑚

2

)
𝐵ℎ = 0.

Hence, it follows that 𝑚 = 2 or 𝐵ℎ = 0. In the case of 𝐵ℎ = 0, 𝐵 is a zero vector field since 𝐵 cannot be vertical by Theorem 2 of
Çimen et al. (2023). It means that 𝑀 is Kaehler. □

Now, we shall give the condition for a l.c.K. submersion to be Clairaut.

Theorem 3.6. Let 𝜋 be a l.c.K. submersion from (𝑀, 𝐽, 𝑔) onto (𝑁, 𝐽′, 𝑔′). Then 𝜋 is a Clairaut submersion with 𝜌 = 𝑒 𝑓 if and
only if

𝑔( ¤𝛼, grad 𝑓 )𝑔(𝑉,𝑉) + 1
2
𝜔( ¤𝛼)𝑔(𝑉,𝑉) + 1

2
| |𝑉 | |2𝜔(𝑋) − 1

2
| |𝑋 | |2𝜔(𝑉) − 𝑔(T𝑉𝑋,𝑉) = 0, (18)

where 𝑋 and 𝑉 denote the horizontal and vertical components of ¤𝛼 of the geodesic 𝛼 on 𝑀 with respect to ∇̃, respectively.

Proof. Let 𝛼 be a geodesic on 𝑀 . Then we have

𝑔(𝑋, 𝑋) = 𝑐𝑜𝑠2𝜃 and 𝑔(𝑉,𝑉) = 𝑠𝑖𝑛2𝜃.

From (6) and (7) , we have

𝜔( ¤𝛼)𝑔(𝑉,𝑉) = (∇̃ ¤𝛼𝑔) (𝑉,𝑉)
= ∇̃ ¤𝛼𝑔(𝑉,𝑉) − 2𝑔(∇̃ ¤𝛼𝐽𝑉, 𝐽𝑉)
= ∇̃ ¤𝛼𝑔(𝑉,𝑉) − 2𝑔(∇ ¤𝛼𝐽𝑉, 𝐽𝑉) + 𝑔(𝜔( ¤𝛼)𝐽𝑉 + 𝜔(𝐽𝑉) ¤𝛼 − 𝑔(𝐽𝑉, ¤𝛼)𝐵, 𝐽𝑉).

Then we obtain,

∇̃ ¤𝛼𝑔(𝑉,𝑉) = 2𝑔(∇ ¤𝛼𝐽𝑉, 𝐽𝑉). (19)

On the other hand, we have

∇̃ ¤𝛼𝑔(𝑉,𝑉) = ∇ ¤𝛼𝑔(𝑉,𝑉) = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑑𝜃
𝑑𝑡
. (20)

Then, 𝜋 is Clairaut if and only if 𝑑
𝑑𝑠 (𝑒 𝑓 𝑠𝑖𝑛𝜃) = 0. Hence from (20), we get

∇̃ ¤𝛼𝑔(𝑉,𝑉) = −2
𝑑𝑓

𝑑𝑠
𝑠𝑖𝑛2𝜃. (21)
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By using (15) and (21), in (19) we obtain

𝑔( ¤𝛼, grad 𝑓 )𝑔(𝑉,𝑉) + 1
2
𝜔( ¤𝛼) | |𝑉 | |2 − 𝑔(T𝑉 𝐽𝑋, 𝐽𝑉) − 𝑔(A𝑋𝐽𝑋, 𝐽𝑉) = 0. (22)

With the help of (11) and (13), the equation (18) follows from (22). □

Let 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) be a l.c.K. submersion with totally umbilical fibers. Then, for any vertical vector fields 𝑈 and
𝑉 , and horizontal vector field 𝑋 , we have

𝑔(T𝑈𝑉, 𝑋) = −𝑔(𝑈,𝑉)𝑔(𝐻, 𝑋),
from Theorem (3.2). Hence, using (6) and (1), we obtain

𝑔(∇̃𝑈𝑉, 𝑋) = −𝑔(𝑈,𝑉)𝑔(𝐻, 𝑋) + 1
2
𝑔(𝑈,𝑉)𝑔(𝐵ℎ, 𝑋).

Here, we know that 𝐻 = − 1
2𝐵

ℎ from Proposition 3.34 of Falcitelli et al. (2004). Thus, we get

𝑔(∇̃𝑈𝑉, 𝑋) = 0,

and so we have

𝑔(∇̃𝑈𝑋,𝑉) = 0.

Hence, we obtain the following result.

Theorem 3.7. If 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) is a Clairaut l.c.K. submersion, then we have

(∇̃𝑈𝑉)ℎ = 0 and (∇̃𝑈𝑋)𝑣 = 0,

where𝑈 and 𝑉 are vertical, and 𝑋 is horizontal vector fields on 𝑀 .

4. EINSTEIN LOCALLY CONFORMAL KAEHLER SUBMERSIONS

In this section, we shall give the conditions for the fibers and the base manifold of a l.c.K. submersion to be Einstein.

Definition 4.1. A Riemannian manifold (𝑀, 𝑔) with dim(𝑀) = 𝑚 > 2 is said to be an Einstein manifold if its Ricci tensor
𝑆 = 𝑟

𝑚𝑔, where 𝑟 denotes the scalar curvature of M.

Lemma 4.2. Let 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) be a l.c.K. submersion. If the Lee vector field 𝐵 is horizontal, then the Ricci tensor 𝑆
is given by

𝑆(𝑈,𝑉) = 𝑆(𝑈,𝑉) −
𝑘∑︁
𝑖=1

𝑔(T𝑈𝑖𝑈𝑖 ,T𝑈𝑉) +
𝑘∑︁
𝑖=1

𝑔(T𝑈𝑈𝑖 ,T𝑉𝑈𝑖)

+
𝑙∑︁
𝑗=1
𝑔((∇𝐸 𝑗T)(𝑈,𝑉), 𝐸 𝑗 ) −

𝑙∑︁
𝑗=1
𝑔(T𝑈𝐸 𝑗 ,T𝑉𝐸 𝑗 ),

(23)

𝑆(𝑋,𝑌 ) = 𝑆∗ (𝑋,𝑌 ) +
𝑘∑︁
𝑖=1

𝑔((∇𝑋𝑇) (𝑈𝑖 ,𝑈𝑖), 𝑌 ) −
𝑘∑︁
𝑖=1

𝑔(𝑇𝑈𝑖𝑋,𝑇𝑈𝑖𝑌 ), (24)

𝑆(𝑈, 𝑋) =
𝑘∑︁
𝑖=1

𝑔((∇𝑈T)(𝑈𝑖 ,𝑈𝑖), 𝑋) −
𝑘∑︁
𝑖=1

𝑔((∇𝑈𝑖T)(𝑈,𝑈𝑖), 𝑋), (25)

and the scalar curvature 𝑟 is given by

𝑟 = 𝑟 + 𝑟∗ −
𝑘∑︁

𝑖, 𝑗=1
𝑔(T𝑈𝑖𝑈𝑖 ,T𝑈 𝑗𝑈 𝑗 ) − 2

𝑙∑︁
𝑗=1

𝑘∑︁
𝑖=1

𝑔(T𝑈𝑖𝐸 𝑗 ,T𝑈𝑖𝐸 𝑗 )

+
𝑘∑︁

𝑖, 𝑗=1
𝑔(T𝑈𝑖𝑈 𝑗 ,T𝑈𝑖𝑈 𝑗 ) +

𝑙∑︁
𝑗=1

𝑘∑︁
𝑖=1

𝑔((∇𝐸 𝑗T)(𝑈𝑖 ,𝑈𝑖), 𝐸 𝑗 ),
(26)

where {𝑈1, ...,𝑈𝑘} and {𝐸1, ..., 𝐸𝑙} are orthonormal frames of vertical and horizontal distributions, respectively, 𝑆∗ is the
horizontal lift of Ricci tensor of 𝑁 , 𝑆 is Ricci tensor of any fiber, 𝑟∗ is the lift of scalar curvature of 𝑁 and 𝑟 is scalar curvature of
any fiber.
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Proof. From Proposition 2 of Lee et al. (2015) we have,

𝑆(𝑈,𝑉) = 𝑆(𝑈,𝑉) −
𝑘∑︁
𝑖=1

𝑔(T𝑈𝑖𝑈𝑖 ,T𝑈𝑉) +
𝑘∑︁
𝑖=1

𝑔(T𝑈𝑈𝑖 ,T𝑉𝑈𝑖)

+
𝑙∑︁
𝑗=1
𝑔((∇𝐸 𝑗T)(𝑈,𝑉), 𝐸 𝑗 ) −

𝑙∑︁
𝑗=1
𝑔(T𝑈𝐸 𝑗 ,T𝑉𝐸 𝑗 )

+
𝑙∑︁
𝑗=1
𝑔(A𝐸 𝑗𝑈,A𝐸 𝑗𝑉),

𝑆(𝑋,𝑌 ) = 𝑆∗ (𝑋,𝑌 ) +
𝑘∑︁
𝑖=1

𝑔((∇𝑋𝑇) (𝑈𝑖 ,𝑈𝑖), 𝑌 ) −
𝑘∑︁
𝑖=1

𝑔(𝑇𝑈𝑖𝑋,𝑇𝑈𝑖𝑌 )

+
𝑘∑︁
𝑖=1

𝑔((∇𝑈𝑖A)(𝑋,𝑌 ),𝑈𝑖) +
𝑘∑︁
𝑖=1

𝑔(A𝑋𝑈𝑖 ,A𝑌𝑈𝑖)

−3
𝑙∑︁
𝑗=1
𝑔(A𝐸 𝑗 𝑋,A𝐸 𝑗𝑌 ),

𝑆(𝑈, 𝑋) =
𝑘∑︁
𝑖=1

𝑔((∇𝑈T)(𝑈𝑖 ,𝑈𝑖), 𝑋) −
𝑘∑︁
𝑖=1

𝑔((∇𝑈𝑖T)(𝑈,𝑈𝑖), 𝑋)

+
𝑙∑︁
𝑗=1
𝑔((∇𝐸 𝑗A)(𝑋, 𝐸 𝑗 ),𝑈) − 2

𝑙∑︁
𝑗=1
𝑔(A𝑋𝐸 𝑗 ,T𝑈𝐸 𝑗 ),

and

𝑟 = 𝑟 + 𝑟∗ −
𝑘∑︁

𝑖, 𝑗=1
𝑔(T𝑈𝑖𝑈𝑖 ,T𝑈 𝑗𝑈 𝑗 ) − 2

𝑙∑︁
𝑗=1

𝑘∑︁
𝑖=1

𝑔(T𝑈𝑖𝐸 𝑗 ,T𝑈𝑖𝐸 𝑗 )

+
𝑘∑︁

𝑖, 𝑗=1
𝑔(T𝑈𝑖𝑈 𝑗 ,T𝑈𝑖𝑈 𝑗 ) +

𝑙∑︁
𝑗=1

𝑘∑︁
𝑖=1

𝑔((∇𝐸 𝑗T)(𝑈𝑖 ,𝑈𝑖), 𝐸 𝑗 )

+2
𝑙∑︁
𝑗=1

𝑘∑︁
𝑖=1

𝑔(A𝐸 𝑗𝑈𝑖 ,A𝐸 𝑗𝑈𝑖) − 3
𝑙∑︁

𝑖, 𝑗=1
𝑔(A𝐸𝑖𝐸 𝑗 ,A𝐸𝑖𝐸 𝑗 ).

Since the Lee vector field 𝐵 is horizontal, then we have A ≡ 0, see Proposition 4.3 of Marrero and Rocha (1994). Thus, (23) ∼
(26) can be obtained from the above equations, respectively. □

Theorem 4.3. 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) be a l.c.K. submersion with horizontal Lee vector field 𝐵. Then (𝑀, 𝐽, 𝑔) is an Einstein
manifold if and only if the following relations hold:

𝑆(𝑈,𝑉) = 𝑟

𝑚
𝑔(𝑈,𝑉) +

𝑘∑︁
𝑖=1

𝑔(T𝑈𝑖𝑈𝑖 ,T𝑈𝑉) −
𝑘∑︁
𝑖=1

𝑔(T𝑈𝑈𝑖 ,T𝑉𝑈𝑖)

−
𝑙∑︁
𝑗=1
𝑔((∇𝐸 𝑗T)(𝑈,𝑉), 𝐸 𝑗 ) +

𝑙∑︁
𝑗=1
𝑔(T𝑈𝐸 𝑗 ,T𝑉𝐸 𝑗 ),

𝑆∗ (𝑋,𝑌 ) = 𝑟

𝑚
𝑔(𝑋,𝑌 ) −

𝑘∑︁
𝑖=1

𝑔((∇𝑋𝑇) (𝑈𝑖 ,𝑈𝑖), 𝑌 ) +
𝑘∑︁
𝑖=1

𝑔(𝑇𝑈𝑖𝑋,𝑇𝑈𝑖𝑌 ),

and
𝑘∑︁
𝑖=1

𝑔((∇𝑈T)(𝑈𝑖 ,𝑈𝑖), 𝑋) −
𝑘∑︁
𝑖=1

𝑔((∇𝑈𝑖T)(𝑈,𝑈𝑖), 𝑋) = 0.

Proof. If 𝜋 is a l.c.K. submersion with horizontal Lee vector field 𝐵, then A vanishes. So, from (23), (24) and (25), we have the
result. □
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For a l.c.K. manifold (𝑀, 𝐽, 𝑔), the relation between the curvature tensors 𝑅 and 𝑅̃ of ∇ and ∇̃ respectively, is given by Vaisman
(1980)

𝑅̃(𝑋,𝑌 )𝑍 = 𝑅(𝑋,𝑌 )𝑍

−1
2

{
𝐿 (𝑋, 𝑍)𝑌 − 𝐿 (𝑌, 𝑍)𝑋 − 𝑔(𝑌, 𝑍)

[
∇𝑋𝐵 + 1

2
𝜔(𝑋)𝐵

]

+ 𝑔(𝑋, 𝑍)
[
∇𝑌𝐵 + 1

2
𝜔(𝑌 )𝐵

]}

− ||𝜔 | |2
4

{
𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌

}
,

(27)

where

𝐿 (𝑋,𝑌 ) = (∇𝑋𝜔) (𝑌 ) + 1
2
𝜔(𝑋)𝜔(𝑌 ) = 𝑔(∇𝑋𝐵,𝑌 ) + 1

2
𝜔(𝑋)𝜔(𝑌 ), (28)

and 𝑋,𝑌 and 𝑍 are vector fields on 𝑀 .

As 𝜔 is closed and 𝐿 is a symmetric 2-tensor, we have from (27) that

𝑒𝜎𝑖𝑅𝑖 (𝑋,𝑌, 𝑍,𝑊) = 𝑅(𝑋,𝑌, 𝑍,𝑊)
−1

2

{
𝐿 (𝑋, 𝑍)𝑔(𝑌,𝑊) − 𝐿 (𝑌, 𝑍)𝑔(𝑋,𝑊)

+ 𝐿 (𝑌,𝑊)𝑔(𝑋, 𝑍) − 𝐿 (𝑋, 𝑍)𝑔(𝑌,𝑊)
}

− ||𝜔 | |2
4

{
𝑔(𝑌, 𝑍)𝑔(𝑋,𝑊) − 𝐿 (𝑋, 𝑍)𝑔(𝑌,𝑊)

}
,

(29)

where 𝑅𝑖 is the curvature tensor of the locally conformal Kaehler metric 𝑔𝑖 .
If 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) is a l.c.K. submersion, then (28) takes the form

𝐿 (𝑈, 𝑋) = 𝑔(∇𝑈𝐵, 𝑋) + 1
2𝜔(𝑈)𝜔(𝑋)

= 𝑈𝑔(𝐵, 𝑋) − 𝑔(𝐵,∇𝑈𝑋) + 1
2𝜔(𝑈)𝜔(𝑋)

= 𝑈𝜔(𝑋) − 𝑔(𝐵,T𝑈𝑋) − 𝑔(𝐵, (∇𝑈𝑋)ℎ) + 1
2𝜔(𝑈)𝜔(𝑋)

= 𝑈𝜔(𝑋) − 𝜔(T𝑈𝑋) − 𝜔((∇𝑈𝑋)ℎ) + 1
2𝜔(𝑈)𝜔(𝑋),

(30)

where𝑈 is a vertical and 𝑋 is a horizontal vector field of 𝑀 . Similarly, we obtain

𝐿 (𝑋,𝑌 ) =𝑋𝜔(𝑌 ) − 𝜔(A𝑋𝑌 ) − 𝜔((∇𝑋𝑌 )ℎ) + 1
2
𝜔(𝑋)𝜔(𝑌 ), (31)

𝐿 (𝑈,𝑉) =𝑈𝜔(𝑉) − 𝜔(T𝑈𝑉) − 𝜔((∇𝑈𝑉)𝑣) + 1
2
𝜔(𝑈)𝜔(𝑉), (32)

where𝑈 and 𝑉 are vertical, and 𝑋 and 𝑌 are horizontal vector fields on 𝑀 .

Theorem 4.4. Let 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) be a l.c.K. submersion. Then the Riemannian curvature tensor 𝑅𝑖 is given by

𝑒𝜎𝑖𝑅𝑖 (𝑈,𝑉,𝑊,𝑊 ′) = 𝑅̂(𝑈,𝑉,𝑊,𝑊 ′) + 𝑔(T𝑈𝑊,T𝑉𝑊 ′) − 𝑔(T𝑉𝑊,T𝑈𝑊 ′)
−1

2

{(
𝑈𝜔(𝑊) − 𝜔(T𝑈𝑊) − 𝜔((∇𝑈𝑊)𝑣)) + 1

2
𝜔(𝑈)𝜔(𝑊))𝑔(𝑉,𝑊 ′)

−(
𝑉𝜔(𝑊) − 𝜔(T𝑉𝑊) − 𝜔((∇𝑉𝑊)𝑣) + 1

2
𝜔(𝑉)𝜔(𝑊))𝑔(𝑈,𝑊 ′)

− (
𝑈𝜔(𝑊 ′) − 𝜔(T𝑈𝑊 ′) − 𝜔((∇𝑈𝑊

′)𝑣) + 1
2
𝜔(𝑈)𝜔(𝑊 ′))𝑔(𝑉,𝑊)

+(
𝑉𝜔(𝑊 ′) − 𝜔(T𝑉𝑊 ′) − 𝜔((∇𝑉𝑊

′)𝑣) + 1
2
𝜔(𝑉)𝜔(𝑊 ′))𝑔(𝑈,𝑊)

}
− ||𝜔 | |2

4

{
𝑔(𝑉,𝑊)𝑔(𝑈,𝑊 ′) − 𝑔(𝑈,𝑊)𝑔(𝑉,𝑊 ′)

}
,

(33)

𝑒𝜎𝑖𝑅𝑖 (𝑈,𝑉,𝑊, 𝑋) = 𝑔((∇𝑈T)(𝑉,𝑊), 𝑋) − 𝑔((∇𝑉T)(𝑈,𝑊), 𝑋)
−1

2

{(
𝑉𝜔(𝑋) − 𝜔(T𝑉𝑋) − 𝜔((∇𝑉𝑋)ℎ) + 1

2
𝜔(𝑉)𝜔(𝑋))𝑔(𝑈,𝑊)

−(
𝑈𝜔(𝑋) − 𝜔(T𝑈𝑋) − 𝜔((∇𝑈𝑋)ℎ) + 1

2
𝜔(𝑈)𝜔(𝑋))𝑔(𝑉,𝑊)

}
,

(34)
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𝑒𝜎𝑖𝑅𝑖 (𝑋,𝑌, 𝑍,𝑉) = 𝑔(A𝑌 𝑍,T𝑉𝑋) + 𝑔(A𝑍𝑋,T𝑉𝑌 )
−𝑔((∇𝑍A)(𝑋,𝑌 ), 𝑉) − 𝑔(A𝑋𝑌,T𝑉𝑍)
−1

2

{(
𝑌𝜔(𝑉) − 𝜔(A𝑌𝑉) − 𝜔((∇𝑌𝑉)𝑣) + 1

2
𝜔(𝑌 )𝜔(𝑉))𝑔(𝑋, 𝑍)

−(
𝑉𝜔(𝑋) − 𝜔(T𝑉𝑋) − 𝜔((∇𝑉𝑋)ℎ) + 1

2
𝜔(𝑉)𝜔(𝑋))𝑔(𝑌, 𝑍)},

(35)

𝑒𝜎𝑖𝑅𝑖 (𝑋,𝑌, 𝑍, 𝐻) = 𝑅∗ (𝑋,𝑌, 𝑍, 𝐻) + 2𝑔(A𝑋𝑌,A𝑍𝐻)
−𝑔(A𝑌 𝑍,A𝑋𝐻) + 𝑔(A𝑋𝑍,A𝑌𝐻)
−1

2

{(
𝑋𝜔(𝑍) − 𝜔(A𝑋𝑍) − 𝜔((∇𝑋𝑍)ℎ) + 1

2
𝜔(𝑋)𝜔(𝑍))𝑔(𝑌, 𝐻)

−(
𝑌𝜔(𝑍) − 𝜔(A𝑌 𝑍) − 𝜔((∇𝑌 𝑍)ℎ) + 1

2
𝜔(𝑌 )𝜔(𝑍))𝑔(𝑋, 𝐻)

− (
𝑋𝜔(𝐻) − 𝜔(A𝑋𝐻) − 𝜔((∇𝑋𝐻)ℎ) + 1

2
𝜔(𝑋)𝜔(𝐻))𝑔(𝑌, 𝑍)

+(
𝑌𝜔(𝐻) − 𝜔(A𝑌𝐻) − 𝜔((∇𝑌𝐻)ℎ) + 1

2
𝜔(𝑌 )𝜔(𝐻))𝑔(𝑋, 𝑍)}

− ||𝜔 | |2
4

{
𝑔(𝑌, 𝑍)𝑔(𝑋, 𝐻) − 𝑔(𝑋, 𝑍)𝑔(𝑌, 𝐻)

}
,

(36)

𝑒𝜎𝑖𝑅𝑖 (𝑋,𝑌,𝑉,𝑊) = 𝑔((∇𝑊A)(𝑋,𝑌 ), 𝑉) − 𝑔((∇𝑉A)(𝑋,𝑌 ),𝑊) − 𝑔(A𝑋𝑉,A𝑌𝑊)
+𝑔(A𝑋𝑊,A𝑌𝑉) + 𝑔(T𝑉𝑋,T𝑊𝑌 ) − 𝑔(T𝑊𝑋,T𝑉𝑌 ) (37)

𝑒𝜎𝑖𝑅𝑖 (𝑋,𝑉,𝑌,𝑊) = 𝑔(T𝑉𝑋,T𝑊𝑌 ) − 𝑔((∇𝑉A)(𝑋,𝑌 ),𝑊)
−𝑔((∇𝑋T)(𝑉,𝑊), 𝑌 ) − 𝑔(A𝑋𝑉,A𝑌𝑊)
− 1

2

{(
𝑋𝜔(𝑌 ) − 𝜔(A𝑋𝑌 ) − 𝜔((∇𝑋𝑌 )ℎ) + 1

2
𝜔(𝑋)𝜔(𝑌 ))𝑔(𝑉,𝑊)

+ (
𝑉𝜔(𝑊) − 𝜔(T𝑉𝑊) − 𝜔((∇𝑉𝑊)𝑣) + 1

2
𝜔(𝑉)𝜔(𝑊))𝑔(𝑋,𝑌 )}

+ ||𝜔 | |
2

4
𝑔(𝑋,𝑌 )𝑔(𝑉,𝑊),

(38)

where𝑈,𝑉,𝑊 and𝑊 ′ are vertical, and 𝑋,𝑌, 𝑍 and 𝐻 are horizontal vector fields on 𝑀 , 𝑅̂ is Riemannian curvature tensor of any
fiber, and 𝑅∗ is the horizontal lift of Riemannian curvature tensor of 𝑁 .

Proof. (33) ∼ (38) can be obtained from (29) ∼ (32) by direct computation. □

Using (33) ∼ (38), we have the following proposition.

Corollary 4.5. Let 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) be a l.c.K submersion. Then the Ricci tensor 𝑆𝑖 is given by

𝑆𝑖 (𝑈,𝑉) = 𝑒−𝜎𝑖

{
𝑆(𝑈,𝑉) −

𝑘∑︁
𝑖=1

𝑔(T𝑈𝑖𝑈𝑖 ,T𝑈𝑉) +
𝑘∑︁
𝑖=1

𝑔(T𝑈𝑈𝑖 ,T𝑉𝑈𝑖)

+
𝑙∑︁
𝑗=1
𝑔((∇𝐸 𝑗T)(𝑈,𝑉), 𝐸 𝑗 ) −

𝑙∑︁
𝑗=1
𝑔(T𝑈𝐸 𝑗 ,T𝑉𝐸 𝑗 ) +

𝑙∑︁
𝑗=1
𝑔(A𝐸 𝑗𝑈,A𝐸 𝑗𝑉)

+
( 𝑘 + 𝑙 − 2

2

)
(𝑈𝜔(𝑉) − 𝜔(T𝑈𝑉) − 𝜔((∇𝑈𝑉)𝑣) + 1

2
𝜔(𝑈)𝜔(𝑉))

+ 𝑔(𝑈,𝑉)
[
1
2

𝑘+𝑙∑︁
𝑖=1

𝑔(∇𝐸𝑖𝐵, 𝐸𝑖) − ||𝜔 | |2
4

(𝑘 + 𝑙 − 2)
]}
,
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𝑆𝑖 (𝑋,𝑌 ) = 𝑒−𝜎𝑖

{
𝑆∗ (𝑋,𝑌 ) +

𝑘∑︁
𝑖=1

𝑔((∇𝑋𝑇) (𝑈𝑖 ,𝑈𝑖), 𝑌 ) −
𝑘∑︁
𝑖=1

𝑔(𝑇𝑈𝑖𝑋,𝑇𝑈𝑖𝑌 )

+
𝑘∑︁
𝑖=1

𝑔((∇𝑈𝑖A)(𝑋,𝑌 ),𝑈𝑖) +
𝑘∑︁
𝑖=1

𝑔(A𝑋𝑈𝑖 ,A𝑌𝑈𝑖) − 3
𝑙∑︁
𝑗=1
𝑔(A𝐸 𝑗 𝑋,A𝐸 𝑗𝑌 )

+
( 𝑘 + 𝑙 − 2

2

)
(𝑋𝜔(𝑌 ) − 𝜔(A𝑋𝑌 ) − 𝜔((∇𝑋𝑌 )ℎ) + 1

2
𝜔(𝑋)𝜔(𝑌 ))

+ 𝑔(𝑋,𝑌 )
[
1
2

𝑘+𝑙∑︁
𝑖=1

𝑔(∇𝐸𝑖𝐵, 𝐸𝑖) − ||𝜔 | |2
4

(𝑘 + 𝑙 − 2)
]}
,

𝑆𝑖 (𝑈, 𝑋) = 𝑒−𝜎𝑖

{
𝑘∑︁
𝑖=1

𝑔((∇𝑈T)(𝑈𝑖 ,𝑈𝑖), 𝑋) −
𝑘∑︁
𝑖=1

𝑔((∇𝑈𝑖T)(𝑈,𝑈𝑖), 𝑋)

+
𝑙∑︁
𝑗=1
𝑔((∇𝐸 𝑗A)(𝑋, 𝐸 𝑗 ),𝑈) − 2

𝑙∑︁
𝑗=1
𝑔(A𝑋𝐸 𝑗 ,T𝑈𝐸 𝑗 )

+
(
𝑘 + 𝑙 − 2

2

)
(𝑈𝜔(𝑋) − 𝜔(T𝑈𝑋) − 𝜔((∇𝑈𝑋)ℎ) + 1

2
𝜔(𝑈)𝜔(𝑋))

}
,

and the scalar curvature 𝑟 𝑖 is given by

𝑟 𝑖 = 𝑒−𝜎𝑖

{
𝑟 + (𝑘 + 𝑙 − 1)

[ 𝑘+𝑙∑︁
𝑖=1

𝑔(∇𝐸𝑖𝐵, 𝐸𝑖) − ||𝜔 | |2
4

(𝑘 + 𝑙 − 2)
]}
,

where {𝐸1, ..., 𝐸𝑘+𝑙} is an orthonormal frame field of tangent bundle of 𝑀 .

Theorem 4.6. Let 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) be a l.c.K. submersion. Then the curvature tensor 𝑅𝑖 has the relation

𝑅𝑖 (𝑋,𝑌, 𝑍,𝑊) = 𝑅𝑖 (𝐽𝑋, 𝐽𝑌, 𝐽𝑍, 𝐽𝑊)
+ 1

2

{
𝛿(𝑋, 𝑍)𝑔(𝑌,𝑊) − 𝛿(𝑌, 𝑍)𝑔(𝑋,𝑊)

− 𝛿(𝑋,𝑊)𝑔(𝑌, 𝑍) + 𝛿(𝑌,𝑊)𝑔(𝑋, 𝑍)
}
,

(39)

where

𝛿(𝑋,𝑌 ) = 𝐿 (𝑋,𝑌 ) − 𝐿 (𝐽𝑋, 𝐽𝑌 ).

and 𝑋,𝑌, 𝑍 and𝑊 are vector fields on 𝑀 .

Proof. Since 𝑔𝑖 is a Kaehler metric then 𝑅𝑖 (𝑋,𝑌, 𝑍,𝑊) = 𝑅𝑖 (𝐽𝑋, 𝐽𝑌, 𝐽𝑍, 𝐽𝑊). If we write the last equation in (29), we get
(39). □

Using (33), (38) and (36), we get the following equations, respectively.

Theorem 4.7. Let 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) be a l.c.K. submersion. Then the sectional curvature tensor 𝐾 𝑖 is given by

𝐾 𝑖 (𝑈,𝑉) = 𝑒−𝜎𝑖

{
𝐾̂ (𝑈,𝑉) + 𝑔(T𝑈𝑈,T𝑉𝑉) − ||T𝑈𝑉 | |2

| |𝑈 ∧𝑉 | |2

− 1
2| |𝑈 ∧𝑉 | |2

[(
𝑈𝜔(𝑈) − 𝜔(T𝑈𝑈) − 𝜔((∇𝑈𝑈)𝑣) + 1

2
(𝜔(𝑈))2

)
𝑔(𝑉,𝑉)

− 2
(
𝑈𝜔(𝑉) − 𝜔(T𝑈𝑉) − 𝜔((∇𝑈𝑉)𝑣) + 1

2
𝜔(𝑈)𝜔(𝑉)

)
𝑔(𝑈,𝑉)

+
(
𝑉𝜔(𝑉) − 𝜔(T𝑉𝑉) − 𝜔((∇𝑉𝑉)𝑣) + 1

2
(𝜔(𝑉))2

)
𝑔(𝑈,𝑈)

]
+ ||𝜔 | |2

4

}
,
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𝐾 𝑖 (𝑋,𝑈) = 𝑒−𝜎𝑖

{
−𝑔((∇𝑋T)(𝑈,𝑈), 𝑋) − ||A𝑋𝑈 | |2 + ||T𝑈𝑋 | |2

| |𝑋 | |2 | |𝑈 | |2

− 1
2| |𝑋 | |2 | |𝑈 | |2

[(
𝑋𝜔(𝑋) − 𝜔((∇𝑋𝑋)ℎ) + 1

2
(𝜔(𝑋))2

)
𝑔(𝑈,𝑈)

+
(
𝑈𝜔(𝑈) − 𝜔(T𝑈𝑈) − 𝜔((∇𝑈𝑈)𝑣) + 1

2
(𝜔(𝑈))2

)
𝑔(𝑋, 𝑋)

]
+ ||𝜔 | |2

4

}
,

𝐾 𝑖 (𝑋,𝑌 ) = 𝑒−𝜎𝑖

{
𝐾∗ (𝑋,𝑌 ) + 3| |A𝑋𝑌 | |2

| |𝑋 ∧ 𝑌 | |2

− 1
2| |𝑋 ∧ 𝑌 | |2

[(
𝑋𝜔(𝑋) − 𝜔((∇𝑋𝑋)ℎ) + 1

2
(𝜔(𝑋))2

)
𝑔(𝑌,𝑌 )

−2
(
𝑋𝜔(𝑌 ) − 𝜔(A𝑋𝑌 ) − 𝜔((∇𝑋𝑌 )ℎ) + 1

2
𝜔(𝑋)𝜔(𝑌 )

)
𝑔(𝑋,𝑌 )

+
(
𝑌𝜔(𝑌 ) − 𝜔((∇𝑌𝑌 )ℎ) + 1

2
(𝜔(𝑌 ))2

)
𝑔(𝑋, 𝑋)

]
+ ||𝜔 | |2

4

}
,

where𝑈,𝑉 are vertical and 𝑋,𝑌 are horizontal vector fields on 𝑀 .

Definition 4.8. Let 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) be a l.c.K. submersion. The holomorphic bisectional curvature is defined for any
pair of nonzero vector fields 𝐸 and 𝐹 by

B(𝐸, 𝐹) = 𝑅(𝐸, 𝐽𝐸, 𝐹, 𝐽𝐹)
| |𝐸 | |2 | |𝐹 | |2 , (40)

and the holomorphic sectional curvature of the 2-plane spanned by 𝐸 and 𝐽𝐸 is

H(𝐸) = B(𝐸, 𝐸). (41)

Using (40) and (41) we get the following two propositions.

Proposition 4.9. Let 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) be a l.c.K. submersion. Then the holomorphic bisectional curvature B𝑖 is given
by

B𝑖 (𝑈,𝑉) = 𝑒−𝜎𝑖

| |𝑈 | |2 | |𝑉 | |2

{
𝑅̂(𝑈, 𝐽𝑈,𝑉, 𝐽𝑉) + 𝑔(T𝑈𝑉,T𝐽𝑈𝐽𝑉) − 𝑔(T𝐽𝑈𝑉,T𝑈𝐽𝑉)

−1
2

[(
𝑈𝜔(𝑉) − 𝜔(T𝑈𝑉) − 𝜔((∇𝑈𝑉)𝑣) + 1

2
𝜔(𝑈)𝜔(𝑉)

+𝐽𝑈𝜔(𝐽𝑉) − 𝜔(T𝐽𝑈𝐽𝑉) − 𝜔((∇𝐽𝑈𝐽𝑉)𝑣) + 1
2
𝜔(𝐽𝑈)𝜔(𝐽𝑉)

)
𝑔(𝑈,𝑉)

+
(
𝑈𝜔(𝐽𝑉) − 𝜔(T𝑈𝐽𝑉) − 𝜔((∇𝑈𝐽𝑉)𝑣) + 1

2
𝜔(𝑈)𝜔(𝐽𝑉)

−𝐽𝑈𝜔(𝑉) + 𝜔(T𝐽𝑈𝑉) + 𝜔((∇𝐽𝑈𝑉)𝑣) − 1
2
𝜔(𝐽𝑈)𝜔(𝑉)

)
𝑔(𝑈, 𝐽𝑉)

]
+ ||𝜔 | |

2

4

[
(𝑔(𝑈, 𝐽𝑉))2 + (𝑔(𝑈,𝑉))2

]}
,

B𝑖 (𝑋,𝑈) = 𝑒−𝜎𝑖

| |𝑋 | |2 | |𝑈 | |2

{
− 𝑔((∇𝑈A)(𝑋, 𝐽𝑋), 𝐽𝑈) + 𝑔((∇𝐽𝑈A)(𝑋, 𝐽𝑋),𝑈)

− 𝑔(A𝑋𝑈,A𝐽𝑋𝐽𝑈) + 𝑔(A𝑋𝐽𝑈,A𝐽𝑋𝑈)

+ 𝑔(T𝑈𝑋,T𝐽𝑈𝐽𝑋) − 𝑔(T𝐽𝑈𝑋,T𝑈𝐽𝑋)
}
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B𝑖 (𝑋,𝑌 ) = 𝑒−𝜎𝑖

| |𝑋 | |2 | |𝑌 | |2

{
𝑅∗ (𝑋, 𝐽𝑋,𝑌, 𝐽𝑌 ) + 2𝑔(A𝑋𝐽𝑋,A𝑌 𝐽𝑌 )

−𝑔(A𝐽𝑋𝑌,A𝑋𝐽𝑌 ) + 𝑔(A𝑋𝑌,A𝐽𝑋𝐽𝑌 )
−1

2

[(
𝑋𝜔(𝑌 ) − 𝜔(A𝑋𝑌 ) − 𝜔((∇𝑋𝑌 )ℎ) + 1

2
𝜔(𝑋)𝜔(𝑌 )

+𝐽𝑋𝜔(𝐽𝑌 ) − 𝜔(A𝐽𝑋𝐽𝑌 ) − 𝜔((∇𝐽𝑋𝐽𝑌 )ℎ) + 1
2
𝜔(𝐽𝑋)𝜔(𝐽𝑌 )

)
𝑔(𝑋,𝑌 )

+
(
𝑋𝜔(𝐽𝑌 ) − 𝜔(A𝑋𝐽𝑌 ) − 𝜔((∇𝑋𝐽𝑌 )ℎ) + 1

2
𝜔(𝑋)𝜔(𝐽𝑌 )

−𝐽𝑋𝜔(𝑌 ) + 𝜔(A𝐽𝑋𝑌 ) + 𝜔((∇𝐽𝑋𝑌 )ℎ) − 1
2
𝜔(𝐽𝑋)𝜔(𝑌 )

)
𝑔(𝑋, 𝐽𝑌 )

]
+ ||𝜔 | |2

4

[
(𝑔(𝑋, 𝐽𝑌 ))2 + (𝑔(𝑋,𝑌 ))2

]}
,

where𝑈,𝑉 are vertical and 𝑋,𝑌 are horizontal vector fields.

Proposition 4.10. Let 𝜋 : (𝑀, 𝐽, 𝑔) → (𝑁, 𝐽′, 𝑔′) be a l.c.K. submersion. Then the holomorphic sectional curvature H 𝑖 is given
by

H 𝑖 (𝑈) = 𝑒−𝜎𝑖

| |𝑈 | |4

{
𝑅̂(𝑈, 𝐽𝑈,𝑈, 𝐽𝑈) + 𝑔(T𝑈𝑈,T𝐽𝑈𝐽𝑈) − ||T𝑈𝐽𝑈 | |2

−1
2

(
𝑈𝜔(𝑈) − 𝜔(T𝑈𝑈) − 𝜔((∇𝑈𝑈)𝑣) + 1

2
(𝜔(𝑈))2

+𝐽𝑈𝜔(𝐽𝑈) − 𝜔(T𝐽𝑈𝐽𝑈) − 𝜔((∇𝐽𝑈𝐽𝑈)𝑣) + 1
2
(𝜔(𝐽𝑈))2

)
| |𝑈 | |2 + ||𝜔 | |2 | |𝑈 | |4

4

}
,

H 𝑖 (𝑋) = 𝑒−𝜎𝑖

| |𝑋 | |4

{
𝑅∗ (𝑋, 𝐽𝑋, 𝑋, 𝐽𝑋) + 3| |A𝑋𝐽𝑋 | |2

−1
2

(
𝑋𝜔(𝑋) − 𝜔(∇𝑋𝑋) + 1

2
(𝜔(𝑋))2

+𝐽𝑋𝜔(𝐽𝑋) − 𝜔(∇𝐽𝑋𝐽𝑋) + 1
2
(𝜔(𝐽𝑋))2

)
| |𝑋 | |2 + ||𝜔 | |2 | |𝑋 | |4

4

}
,

where𝑈 is vertical and 𝑋 is horizontal vector fields on 𝑀 .
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ABSTRACT
Let Φ be an Orlicz function and 𝐿Φ (𝑋, Σ, 𝜇) be the corresponding Orlicz space on a non-atomic, 𝜎-finite, complete measure
space (𝑋, Σ, 𝜇). It is known that extreme points which are connected with rotundity of the whole spaces are the most essential and
important geometric notion in the geometric theory of Banach spaces. On the other hand, geometric theory of complex Banach
spaces has significant applications that differ from the geometric theory of real Banach spaces. In this paper, we first describe the
complex extreme points of unit ball of Orlicz spaces equipped with the 𝑠-norm where 𝑠 is a strictly increasing outer function. We
also give criteria for complex rotundity. Our study generalizes and unifies the results that have been obtained for the Orlicz norm
and the 𝑝-Amemiya norm (1 < 𝑝 < ∞) separately.

Mathematics Subject Classification (2020): 46E30, 46B20

Keywords: Orlicz space, complex extreme points, complex strictly rotund, s-norm

1. INTRODUCTION

The notion of extreme points plays a crucial role for geometric theory of Banach spaces. Also, rotundity properties are very
important in geometry of Banach spaces and its applications. Since the early 1980’s, the investigations concerning the geometric
theory of complex Banach spaces have been developed because it has significant applications that differ from the geometric theory
of real Banach spaces. For instance, the notion of complex rotundity, which was introduced by Thorp, E., Whitley, R. (1967),
has an important application in the theory of analytic functions. It is known that if 𝑓 is a function from the unit disc of C into a
complex Banach space 𝑋 , 𝑓 is analytic, i.e. 𝑥∗ ◦ 𝑓 is analytic in the classical sense for any 𝑥∗ ∈ 𝑋∗ (the dual space of 𝑋) and the
maximum of the function 𝐹 (𝑧) = ∥ 𝑓 (𝑧)∥ is attained in an interior point of unit disc, then 𝐹 is a constant function. However, in the
case when 𝑋 is complex rotund, more can be deduced, namely that 𝑓 is a constant function.

On the other hand, Orlicz spaces comprise an important class of Banach spaces that are a kind of generalization of Lebesgue
spaces. The theory of Orlicz spaces has been greatly developed because of its important theoretical properties and value in
applications. Some examples for applications of Orlicz spaces can be found in Arıs B., Öztop S., (2023) and Üster R. (2021).
Structure of complex extreme points and complex rotundity in the class of Musielak–Orlicz spaces have been first studied by Wu,
C.X., Sun, H. (1987) and Wu, C.X., Sun, H. (1987). Then Chen, L., Cui, Y. (2010) gave criteria for complex extreme points and
complex rotundity in Orlicz function spaces equipped with the 𝑝-Amemiya norm.

Wisła, M. (2020), using the concept of an outer function, presented a general and universal method of introducing norms in
Orlicz spaces that covered the classical Orlicz and Luxemburg norms, and 𝑝-Amemiya norms (1 ⩽ 𝑝 ⩽ ∞). After then, Başar E.,
Öztop, S., Uysal, B.H., Yaşar, Ş. (2023), classified 𝑠-norms with respect to the constant 𝜎𝑠 and described real extreme points as
well.

Our first aim in this work is to describe the complex extreme points in Orlicz spaces equipped with 𝑠-norms where 𝑠 is strictly
increasing. Then we give criteria for complex rotundity by using description of extreme points.

The structure of this paper as follows. In Section 2, we provide necessary definitions. In Section 3, we recall some technical
results for Orlicz spaces equipped with 𝑠-norms that will be used and we make some observations from these known results. In
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Section 4, we first describe complex extreme points of unit ball in Orlicz spaces equipped with 𝑠-norms for a strictly increasing
outer function 𝑠. Then we obtain a necessary and sufficient condition for complex rotundity.

2. PRELIMINARIES

A map Φ : R → [0,∞] is said to be an Orlicz function if Φ(0) = 0, Φ is not identically equal to zero, Φ is even and convex on
the interval (−𝑏Φ, 𝑏Φ), and Φ is left continuous at 𝑏Φ, where 𝑏Φ = sup{𝑢 > 0 : Φ(𝑢) < ∞}. From these properties it follows that
an Orlicz function Φ is continuous on (−𝑏Φ, 𝑏Φ), increasing on [0, 𝑏Φ), and satisfies lim

𝑢→∞Φ(𝑢) = ∞. If Φ is an Orlicz function,
letting also 𝑎Φ = sup{𝑢 ⩾ 0 : Φ(𝑢) = 0}, then 𝑎Φ = 0 means that Φ vanishes only at 0 while 𝑏Φ = ∞ means that Φ takes only
finite values. In this work, we assume that Orlicz function satisfies lim

𝑢→∞
Φ(𝑢)
𝑢 = ∞.

For an Orlicz function Φ, we define its complementary function Ψ by the formula

Ψ(𝑣) = sup
𝑢≥0

{𝑢 |𝑣 | −Φ(𝑢)}.

It is well-known that the complementary function is an Orlicz function as well. Let 𝑝+ denote the right derivative of an Orlicz
function Φ and 𝑞+ denote the right derivative of its complementary function Ψ with the conventions that lim

𝑢→∞ 𝑝+ (𝑢) = 𝑝+ (∞) and
𝑝+ (𝑢) = ∞ for all 𝑢 ⩾ 𝑏Φ. If there exists a constant 𝐾 > 0 such that Φ(2𝑢) ⩽ 𝐾Φ(𝑢) for all 𝑢 ∈ R, we say that Orlicz function Φ
satisfies the Δ2 condition and we denote this by Φ ∈ Δ2. We know that the pair (Φ,Ψ) satisfies Young’s inequality, that is,

𝑥𝑦 ⩽ Φ(𝑥) + Ψ(𝑦) (𝑥, 𝑦 ∈ R),
where equality holds when 𝑦 = 𝑝+ (𝑥) or 𝑥 = 𝑞+ (𝑦) for 𝑥, 𝑦 ∈ R (Rao, M. M. and Ren, Z. D. (1991)).

Throughout the paper, we will assume that (𝑋, Σ, 𝜇) is a measure space with a 𝜎-finite, non-atomic and complete measure 𝜇 and
denote by 𝐿𝑐 (𝑋, Σ, 𝜇) (for short, 𝐿𝑐 (𝑋)) the space of all 𝜇-equivalence classes of complex-valued and Σ-measurable functions
defined on 𝑋 . In addition, we use the conventions 0 · ∞ = 0, 1

∞ = 0 and 1
0 = ∞.

For a given Orlicz function Φ we define on 𝐿𝑐 (𝑋, Σ, 𝜇) a convex functional 𝐼Φ by

𝐼Φ ( 𝑓 ) =
∫
𝑋

Φ( | 𝑓 (𝑡) |) 𝑑𝜇 for any 𝑓 ∈ 𝐿𝑐 (𝜇).

The Orlicz space 𝐿Φ (𝑋, Σ, 𝜇) generated by an Orlicz function Φ is a linear space of measurable functions defined by Orlicz, W.
(1932)

𝐿Φ (𝑋, Σ, 𝜇) = { 𝑓 ∈ 𝐿𝑐 (𝑋, Σ, 𝜇) : 𝐼Φ (𝜆 𝑓 ) < ∞ for some 𝜆 > 0} .
We denote the Orlicz space 𝐿Φ (𝑋,Σ, 𝜇) shortly by 𝐿Φ.

The Orlicz space 𝐿Φ is usually equipped with the Orlicz norm (Orlicz, W. (1932))

∥ 𝑓 ∥𝑜Φ = sup
{∫

𝑋
| 𝑓 (𝑡)𝑔(𝑡) | 𝑑𝜇 : 𝑔 ∈ 𝐿Ψ, 𝐼Ψ (𝑔) ≤ 1

}
,

where Ψ is the complementary function to Φ, or with the equivalent Luxemburg norm

∥ 𝑓 ∥Φ = inf
{
𝜆 > 0 : 𝐼Φ

(
𝑓

𝜆

)
≤ 1

}
.

Further, for all 1 ≤ 𝑝 ≤ ∞ the 𝑝-Amemiya norm is defined on 𝐿Φ by

∥ 𝑓 ∥Φ, 𝑝 =




inf
𝑘>0

𝑘−1 (1 + 𝐼Φ (𝑘 𝑓 ) 𝑝)1/𝑝 , if 1 ≤ 𝑝 < ∞,
inf
𝑘>0

𝑘−1 max{1, 𝐼Φ (𝑘 𝑓 )}, if 𝑝 = ∞.

The family of 𝑝-Amemiya norms includes the Orlicz and Luxemburg norms (see Cui, Y., Duan, L., Hudzik, H. and Wisła, M.
(2008)).

In 2020, the notion of the 𝑠-norm was introduced by M. Wisła and all of the following definitions can be found in Wisła, M.
(2020).

Definition 2.1. A function 𝑠 : [0,∞] → [1,∞] is called an outer function if it is convex and satisfies the inequality

max{𝑢, 1} ⩽ 𝑠(𝑢) ⩽ 𝑢 + 1

for all 𝑢 ⩾ 0.
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Let us note that an outer function 𝑠 is continuous and increasing on [0,∞). Evidently 𝑠(0) = 1 and set 𝑠(∞) = ∞.
Since it is convex, an outer function 𝑠 has both right and left derivatives. Let 𝑠′+ be the right derivative of 𝑠 so that 𝑠′+ : [0,∞) →

[0, 1] is an increasing function. Let 𝑠′+−1 : [0, 1] → [0,∞] be a general inverse of 𝑠′+ as defined in (Wisła, M. 2020, p. 11). Then
𝑠′+

−1 is an increasing function as well.
Let us give some examples of families of outer functions (see Wisła, M. (2020)).

Example 2.1. (i) For 1 ⩽ 𝑝 ⩽ ∞,

𝑠𝑝 (𝑢) =
{
(1 + 𝑢𝑝)1/𝑝 , if 1 ⩽ 𝑝 < ∞,
max{1, 𝑢}, if 𝑝 = ∞. (1)

(ii) For 0 ⩽ 𝑐 ⩽ 1,

𝑠𝑐 (𝑢) = max{1, 𝑢 + 𝑐}. (2)

(iii) For 1 ⩽ 𝑚 ⩽ 2,

𝑠𝑚 (𝑢) =
{
(𝑚 − 1)𝑢 + 1, if 0 ⩽ 𝑢 ⩽ 1,
𝑢 + 𝑚 − 1, if 𝑢 > 1.

(3)

Definition 2.2. Let 𝑠 be an outer function and Φ be an Orlicz function. Then the 𝑠-norm of 𝑓 ∈ 𝐿Φ is defined by

∥ 𝑓 ∥Φ,𝑠 = inf
𝑘>0

1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 )).

The Orlicz space equipped with the 𝑠-norm will be denoted by 𝐿Φ𝑠 .

Observe that each of the families given in Example 2.1 generates both the Orlicz norm and the Luxemburg norm. In (1), if we
take 𝑠 = 𝑠1 then ∥ 𝑓 ∥Φ,𝑠 = ∥ 𝑓 ∥𝑜Φ; if 𝑠 = 𝑠∞, then ∥ 𝑓 ∥Φ,𝑠 = ∥ 𝑓 ∥Φ; if 𝑠 = 𝑠𝑝 for 1 < 𝑝 < ∞ then ∥ 𝑓 ∥Φ,𝑠 = ∥ 𝑓 ∥Φ, 𝑝 (see Cui,
Y., Duan, L., Hudzik, H. and Wisła, M. (2008)). Similarly, in (2), 𝑐 = 0 gives the Luxemburg norm and 𝑐 = 1 the Orlicz norm.
Further, in (3), 𝑚 = 1 yields the Luxemburg norm and 𝑚 = 2 the Orlicz norm.

It is known that the 𝑠-norm ∥ · ∥Φ,𝑠 is equivalent to the Luxemburg norm ∥ · ∥Φ with ∥ 𝑓 ∥Φ ⩽ ∥ 𝑓 ∥Φ,𝑠 ⩽ 2∥ 𝑓 ∥Φ for any 𝑓 ∈ 𝐿Φ𝑠
(see Wisła, M. (2020)). Note that the Orlicz space 𝐿Φ𝑠 is a Banach space with the 𝑠-norm.

Definition 2.3. Let 𝑠 be an outer function. For all 0 ⩽ 𝑣 ⩽ 1, define

𝑤(𝑣) =
∫ 𝑣

0
𝑠′+

−1 (𝑡) 𝑑𝑡. (4)

It is clear that 𝑤 is a non-negative, increasing and continuous function on [0, 1].
Definition 2.4. Let 𝑠 be an outer function. For all 0 ⩽ 𝑢 < ∞ and 0 ⩽ 𝑣 ⩽ ∞,

𝛽𝑠 (𝑢, 𝑣) = 1 − 𝑤 (
𝑠′+ (𝑢)

) − 𝑣𝑠′+ (𝑢).
Denote also 𝛽𝑠 (𝑘 𝑓 ) = 𝛽𝑠 (𝐼Φ (𝑘 𝑓 ), 𝐼Ψ (𝑝+ (𝑘 | 𝑓 |)) for all 𝑓 ∈ 𝐿Φ𝑠 .

Note that the function 𝑘 ↦→ 𝛽𝑠 (𝑘 𝑓 ) is decreasing on [0,∞).
Definition 2.5. Let 𝑠 be an outer function and Φ be an Orlicz function. For 𝑓 ∈ 𝐿Φ \ {0} and 0 < 𝑘 < ∞, we define the following
functions.

𝐷 : 𝐿Φ𝑠 → P([0,∞)), 𝐷 ( 𝑓 ) = {0 < 𝑘 < ∞ : 𝐼Φ (𝑘 𝑓 ) < ∞}
𝑘∗ : 𝐿Φ𝑠 → (0,∞], 𝑘∗ ( 𝑓 ) = inf{𝑘 ∈ 𝐷 ( 𝑓 ) : 𝛽𝑠 (𝑘 𝑓 ) ⩽ 0}
𝑘∗∗ : 𝐿Φ𝑠 → [0,∞), 𝑘∗∗ ( 𝑓 ) = sup{𝑘 ∈ 𝐷 ( 𝑓 ) : 𝛽𝑠 (𝑘 𝑓 ) ⩾ 0}

It is easy to see that 0 < 𝑘∗ ( 𝑓 ) ⩽ 𝑘∗∗ ( 𝑓 ) ⩽ ∞. Let us also define

𝐾 ( 𝑓 ) := {0 < 𝑘 < ∞ : 𝑘∗ ( 𝑓 ) ⩽ 𝑘 ⩽ 𝑘∗∗ ( 𝑓 )} .
Obviously, 𝐾 ( 𝑓 ) ≠ ∅ ⇔ 𝑘∗ ( 𝑓 ) < ∞. If 𝑘∗ ( 𝑓 ) < ∞ for any 𝑓 ∈ 𝐿Φ𝑠 \ {0}, then the 𝑠-norm is called 𝑘∗-finite; if 𝑘∗∗ ( 𝑓 ) < ∞ for
any 𝑓 ∈ 𝐿Φ𝑠 \ {0}, then the 𝑠-norm is called 𝑘∗∗-finite. Further, if 𝑘∗ ( 𝑓 ) = 𝑘∗∗ ( 𝑓 ) < ∞ for any 𝑓 ∈ 𝐿Φ𝑠 \ {0}, then the 𝑠-norm is
called 𝑘-unique.

Definition 2.6. Let 𝑠 be an outer function. Define the constant 𝜎𝑠 by

𝜎𝑠 = sup{𝑢 ⩾ 0 : 𝑠(𝑢) = 1}.
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Note that 0 ⩽ 𝜎𝑠 ⩽ 1 and it is obvious that 𝑠 is strictly increasing on [𝜎𝑠 ,∞). We focus on the cases of 𝜎𝑠 > 0 and 𝜎𝑠 = 0 in
the rest of this paper. The key point in defining this constant is that the equality 𝜎𝑠 = 0 provides an inverse function for the outer
function 𝑠 since this function is strictly increasing on the entire interval [0,∞) whenever 𝜎𝑠 = 0.

Let S denote the set of outer functions and define the sets

S0 = {𝑠 ∈ S : 𝜎𝑠 = 0} and S+ = {𝑠 ∈ S : 𝜎𝑠 > 0}.
The constants 𝜎𝑠 of the outer functions in Example 2.1 are obtained as follows.

(i) For 𝑠𝑝 of (1),

𝜎𝑠𝑝 =

{
0, 1 ⩽ 𝑝 < ∞,
1, 𝑝 = ∞.

(ii) For 𝑠𝑐 of (2),

𝜎𝑠𝑐 = sup{𝑢 ⩾ 0 : 𝑢 + 𝑐 ⩽ 1} = 1 − 𝑐.
Note that 0 ⩽ 𝑐 ⩽ 1.
(iii) For 𝑠𝑚 of (3),

𝜎𝑠𝑚 = sup{𝑢 ⩾ 0 : (𝑚 − 1)𝑢 + 1 = 1} =
{

1, 𝑚 = 1,
0, 1 < 𝑚 ⩽ 2.

As a consequence, we can classify the given outer functions as follows. The outer functions 𝑠𝑝 , 𝑠𝑐, 𝑠𝑚 ∈ S0 for 1 ⩽ 𝑝 < ∞,
𝑐 = 1, 1 < 𝑚 ⩽ 2 and 𝑠𝑝 , 𝑠𝑐, 𝑠𝑚 ∈ S+ for 𝑝 = ∞, 0 ⩽ 𝑐 < 1, 𝑚 = 1.

3. AUXILIARY RESULTS

We recall some technical results that will be used in the rest of paper.

Lemma 3.1. (Chen, S. (1996), Proposition 5.17) For any 𝜀 > 0, there exists 𝛿 ∈ (0, 1
2 ) such that if 𝑢, 𝑣 ∈ C and

|𝑣 | ⩾ 𝛿
8

max
𝑗

|𝑢 + 𝑗𝑣 |,

then

|𝑢 | ⩽ 1 − 2𝛿
4

∑︁
𝑗

|𝑢 + 𝑗𝑣 |,

where

max
𝑗

|𝑢 + 𝑗𝑣 | = max{|𝑢 + 𝑣 |, |𝑢 − 𝑣 |, |𝑢 + 𝑖𝑣 |, |𝑢 − 𝑖𝑣 |},

∑︁
𝑗

|𝑢 + 𝑗𝑣 | = |𝑢 + 𝑣 | + |𝑢 − 𝑣 | + |𝑢 + 𝑖𝑣 | + |𝑢 − 𝑖𝑣 |.

Lemma 3.2. (Wisła, M. (2020), Lemma 3.2) For every outer function 𝑠 and Orlicz function Φ,

∥ 𝑓 ∥Φ,∞ ≤ ∥ 𝑓 ∥Φ,𝑠 ≤ ∥ 𝑓 ∥Φ,1 ≤ 2∥ 𝑓 ∥Φ,∞

for all 𝑓 ∈ 𝐿Φ𝑠 .

Lemma 3.3. (Cui, Y., Zhan, Y. (2019), Lemma 7) If lim𝑢→∞
Φ(𝑢)
𝑢 = ∞ then 𝐾 ( 𝑓 ) ≠ ∅ for any 𝑓 ∈ 𝐿Φ𝑠 \ {0}.

Theorem 3.4. (Wisła, M. (2020), Theorem 7.3) Let 𝑠 be an outer function and Φ be an Orlicz function.
(i) The 𝑠-norm is 𝑘∗-finite if and only if one of the following conditions is satisfied.

(a) Φ takes infinite values, i.e., 𝑏Φ < ∞,
(b) 𝑤

(
𝑠′+ (𝑢)

)
= 1 for some 0 < 𝑢 < ∞,

(c) 𝑤(1) = 1 and Φ is not linear on [0,∞),
(d) Φ does not admit an oblique asymptote.

(ii) The 𝑠-norm is 𝑘∗∗-finite if and only if one of the conditions (a), (c) or (d) is satisfied.
(iii) If Φ does not admit an oblique asymptote, then the 𝑠-norm is 𝑘∗∗-finite if and only if it is 𝑘∗-finite.
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Theorem 3.5. (Wisła, M. (2020), Theorem 6.1) Let 𝑠 be an outer function and Φ be an Orlicz function. For all 𝑓 ∈ 𝐿Φ𝑠 \ {0},
we have

𝑘∗ ( 𝑓 ) = inf
{
𝑘 > 0 : ∥ 𝑓 ∥Φ,𝑠 =

1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 ))

}
,

𝑘∗∗ ( 𝑓 ) = sup
{
𝑘 > 0 : ∥ 𝑓 ∥Φ,𝑠 =

1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 ))

}
.

Corollary 3.1 (Wisła, M. (2020), Corollary 6.2). Let 𝑠 and Φ be an outer and an Orlicz function, respectively. The followings
hold for any 𝑓 ∈ 𝐿Φ𝑠 \ {0}.
(i) For every 𝑘 ∈ (0,∞) ∩ [𝑘∗ ( 𝑓 ), 𝑘∗∗ ( 𝑓 )], we have ∥ 𝑓 ∥Φ,𝑠 = 1

𝑘 𝑠(𝐼Φ (𝑘 𝑓 )).
(ii) If 𝑘∗∗ ( 𝑓 ) = ∞, then ∥ 𝑓 ∥Φ,𝑠 = lim

𝑘→∞
1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 )).

4. MAIN RESULTS

In this section, we will give some results for 𝑠-norms that generalize the results obtained for the Orlicz and the 𝑝-Amemiya norms
(1 < 𝑝 < ∞). Then, we will give our main results on complex extreme points of unit ball and complex rotundity of Orlicz space
(Theorems 4.3 and Theorem 4.4).

Definition 4.1. (see Chen, S. (1996)) Let 𝐵(𝐿Φ𝑠 ) (resp. 𝑆(𝐿Φ𝑠 )) be the closed unit ball (resp. the unit sphere) of a Orlicz space 𝐿Φ𝑠 .
A function 𝑓 ∈ 𝑆(𝐿Φ𝑠 ) is called an complex extreme point of 𝐵(𝐿Φ𝑠 ) if for any non-zero 𝑔 ∈ 𝐿Φ𝑠 implies max |𝜆 |=1 ∥ 𝑓 +𝜆𝑔∥Φ,𝑠 > 1.
The set of all complex extreme points of 𝐵(𝐿Φ𝑠 ) is denoted by Ext 𝐵(𝐿Φ𝑠 ). Orlicz space is called complex strictly rotund if every
element of 𝑆(𝐿Φ𝑠 ) is a complex extreme point of 𝐵(𝐿Φ𝑠 ).
Lemma 4.2. If 𝑓 ∈ 𝐵(𝐿Φ𝑠 ), then | 𝑓 (𝑡) | ⩽ 𝑏Φ 𝜇-a.e. on 𝑋 .

Proof. Assume that 𝑓 ∈ 𝐵(𝐿Φ𝑠 ). By Lemma 3.2, we have ∥ 𝑓 ∥Φ,∞ ≤ 1. Therefore, we obtain 𝐼Φ ( 𝑓 ) ⩽ 1 (see Chen, S. (1996)).
Hence, Φ( | 𝑓 (𝑡) |) < ∞ for 𝜇-a.e. 𝑡 ∈ 𝑋 . By definition of 𝑏Φ, we have | 𝑓 (𝑡) | ⩽ 𝑏Φ 𝜇- a.e. on 𝑋 .

Theorem 4.3. Let 𝑠 ∈ S0. Then 𝑓 ∈ 𝑆(𝐿Φ𝑠 ) is a complex extreme point of the unit ball 𝐵(𝐿Φ𝑠 ) if and only if 𝜇({𝑡 ∈ 𝑋 : 𝑘 | 𝑓 (𝑡) | <
𝑎Φ}) = 0 for any 𝑘 ∈ 𝐾 ( 𝑓 ).
Proof. Necessity. Suppose that 𝑓 ∈ 𝑆(𝐿Φ𝑠 ) with 𝜎𝑠 = 0 is a complex extreme point of the unit ball 𝐵(𝐿Φ𝑠 ). Let us prove for any
𝑘 ∈ 𝐾 ( 𝑓 ), 𝜇({𝑡 ∈ 𝑋 : 𝑘 | 𝑓 (𝑡) | < 𝑎Φ}) = 0. Assume that there exists 𝑘0 ∈ 𝐾 ( 𝑓 ) such that 𝜇({𝑡 ∈ 𝑋 : 𝑘0 | 𝑓 (𝑡) | < 𝑎Φ}) > 0.
Then we can find 𝑑 > 0 and measurable subset 𝐴 of 𝑋 such that 𝜇(𝐴) > 0 and

𝑘0 | 𝑓 (𝑡) | + 𝑑 ≤ 𝑎Φ
for any 𝑡 ∈ 𝐴. Letting 𝑔 = 𝑑

𝑘0
𝜒𝐴, we obtain 𝑔 ≠ 0 and for any 𝜆 ∈ C with |𝜆 | ≤ 1,

∥ 𝑓 + 𝜆𝑔∥Φ,𝑠 ≤ 1
𝑘0
𝑠(𝐼Φ (𝑘0 ( 𝑓 + 𝜆𝑔))) = 1

𝑘0
𝑠(𝐼Φ (𝑘0 𝑓 𝜒𝑋\𝐴) + 𝐼Φ (𝑘0 𝑓 𝜒𝐴 + 𝜆𝑑𝜒𝐴))

≤ 1
𝑘0
𝑠(𝐼Φ (𝑘0 𝑓 𝜒𝑋\𝐴) + 𝐼Φ ((𝑘0 𝑓 + 𝑑)𝜒𝐴))

≤ 1
𝑘0
𝑠(𝐼Φ (𝑘0 𝑓 𝜒𝑋\𝐴))

≤ 1
𝑘0
𝑠(𝐼Φ (𝑘0 𝑓 )) = ∥ 𝑓 ∥Φ,𝑠 = 1.

This gives that 𝑓 ∉ Ext 𝐵(𝐿Φ𝑠 ).
Sufficiency. Suppose that for any 𝑘 ∈ 𝐾 ( 𝑓 ), 𝜇({𝑡 ∈ 𝑋 : 𝑘 | 𝑓 (𝑡) | < 𝑎Φ}) = 0. Let us prove 𝑓 ∈ 𝑆(𝐿Φ𝑠 ) with 𝜎𝑠 = 0 is a complex

extreme point of the unit ball 𝐵(𝐿Φ𝑠 ). Assume that 𝑓 ∈ 𝑆(𝐿Φ𝑠 ) with 𝜎𝑠 = 0 is not a complex extreme point of the unit ball 𝐵(𝐿Φ𝑠 ).
Therefore, there exist 𝜀0 > 0 and 𝑔0 ∈ 𝐿Φ𝑠 with ∥𝑔0∥Φ,𝑠 > 𝜀0 such that

max
|𝜆 | ≤1

∥ 𝑓 + 𝜆𝑔0∥Φ,𝑠 ≤ 1. (5)

By Lemma 3.1, there exists 𝛿0 ∈ (0, 1
2 ) such that if 𝑢, 𝑣 ∈ C and

|𝑣 | ≥ 𝜀0
8

max
𝑗

|𝑢 + 𝑗𝑣 |,
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then we have

|𝑢 | ≤ 1 − 2𝛿0
4

∑︁
𝑗

|𝑢 + 𝑗𝑣 |.

Define 𝐴 = {𝑡 ∈ 𝑋 : |𝑔0 (𝑡) | ≥ 𝜀0
8 max

𝑗
| 𝑓 (𝑡) + 𝑗𝑔0 (𝑡) |}. We obtain by using (5)

∥𝑔0𝜒𝑋\𝐴∥Φ,𝑠 <
𝜀0
8
∥ max

𝑗
| 𝑓 + 𝑗𝑔0 | ∥Φ,𝑠 ≤ 𝜀0

8

∑︁
𝑗

∥ 𝑓 + 𝑗𝑔0∥Φ,𝑠 ⩽
𝜀0
2
.

Consequently, we have ∥𝑔0𝜒𝐴∥Φ,𝑠 >
𝜀0
2 which shows that 𝜇(𝐴) > 0. For any 𝑡 ∈ 𝐴, we obtain

| 𝑓 (𝑡) | ≤ 1 − 2𝛿0
4

∑︁
𝑗

| 𝑓 (𝑡) + 𝑗𝑔0 (𝑡) |.

By Lemma 3.3, we can take any 𝑘 ∈ 𝐾 ( 1
4
∑

𝑗 | 𝑓 + 𝑗𝑔0 |) and we have by (5)

1 ≥


 1

4
∑

𝑗 | 𝑓 + 𝑗𝑔0 |



Φ,𝑠

= 1
𝑘 𝑠

(
𝐼Φ

(
𝑘
4
∑

𝑗 | 𝑓 + 𝑗𝑔0 |
))

≥ 1
𝑘 𝑠

(
𝐼Φ

(
𝑘 1−2𝛿0

4
∑

𝑗 | 𝑓 + 𝑗𝑔0 |
))

≥ 1
𝑘 𝑠(𝐼Φ (𝑘 𝑓 )) ≥ ∥ 𝑓 ∥Φ,𝑠 = 1

which implies that ∥ 𝑓 ∥Φ,𝑠 = 1
𝑘 𝑠(𝐼Φ (𝑘 𝑓 )) = ∥ 1

4
∑

𝑗 | 𝑓 + 𝑗𝑔0 | ∥Φ,𝑠 = 1 and 𝑘 ≥ 1. Since 𝑘 | 𝑓 (𝑡) | ≥ 𝑎Φ for 𝜇-a.e. 𝑡 ∈ 𝑋 , we obtain
that

1
1 − 2𝛿0

𝑘 | 𝑓 (𝑡) | ≥ 𝑎Φ
1 − 2𝛿0

, 𝜇 − a.e.𝑡 ∈ 𝐴,

we conclude that 𝐼Φ (𝑘 | 𝑓 |
1−2𝛿0

𝜒𝐴) ≥ Φ( 𝑎Φ
1−2𝛿0

)𝜇(𝐴) > 0. Let us define 𝑏 = Φ( 𝑎Φ
1−2𝛿0

)𝜇(𝐴). To complete the proof, we consider the
following two cases.

Case 1. Let assume that 𝐼Φ (𝑘 ( 1
4
∑

𝑗 | 𝑓 + 𝑗𝑔0 |)) ≥ 2𝛿0𝑏. In this case, we obtain the following contradiction

1 = ∥ 𝑓 ∥Φ,𝑠 =
1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 𝜒𝐴) + 𝐼Φ (𝑘 𝑓 𝜒𝑋\𝐴))

≤ 1
𝑘
𝑠

(
𝐼Φ

(
𝑘

(
1 − 2𝛿0

4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝐴

)
+ 𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝑋\𝐴

))

≤ 1
𝑘
𝑠

(
(1 − 2𝛿0)𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝐴

)
+ 𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝑋\𝐴

))

≤ 1
𝑘
𝑠

(
𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
))

− 2𝛿0𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝐴

))

≤ 1
𝑘
𝑠

(
𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
))

− 2𝛿0𝐼Φ

(
𝑘

| 𝑓 |
1 − 2𝛿0

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |𝜒𝐴
))

≤ 1
𝑘
𝑠

(
𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
))

− 2𝛿0𝑏

)

<
1
𝑘
𝑠(𝐼Φ (𝑘 ( 1

4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |))) = ∥ 1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 | ∥Φ,𝑠 = 1.

Therefore, we obtain a contradiction.
Case 2. Let assume that 𝐼Φ (𝑘 ( 1

4
∑

𝑗 | 𝑓 + 𝑗𝑔0 |)) < 2𝛿0𝑏. By using the fact that for all outer functions 𝑠(𝑢) ≤ 1 + 𝑢 for any 𝑢 ∈ R.
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1 = ∥ 𝑓 ∥Φ,𝑠 =
1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 𝜒𝐴) + 𝐼Φ (𝑘 𝑓 𝜒𝑋\𝐴)) ≤

1
𝑘
(1 + 𝐼Φ (𝑘 𝑓 𝜒𝐴) + 𝐼Φ (𝑘 𝑓 𝜒𝑋\𝐴))

≤ 1
𝑘

(
1 + 𝐼Φ

(
𝑘

(
1 − 2𝛿0

4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝐴

)
+ 𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝑋\𝐴

))

≤ 1
𝑘

(
1 + (1 − 2𝛿0)𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝐴

)
+ 𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝑋\𝐴

))

≤ 1
𝑘

(
1 + 𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
))

− 2𝛿0𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
)
𝜒𝐴

))

≤ 1
𝑘

(
1 + 𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
))

− 2𝛿0𝐼Φ

(
𝑘

| 𝑓 |
1 − 2𝛿0

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |𝜒𝐴
))

≤ 1
𝑘

(
1 + 𝐼Φ

(
𝑘

(
1
4

∑︁
𝑗

| 𝑓 + 𝑗𝑔0 |
))

− 2𝛿0𝑏

)
<

1
𝑘
≤ 1

Therefore, we obtain a contradiction.

The following theorem gives us necessary and sufficient condition for being complex rotundity of Orlicz spaces when 𝑠 ∈ S0.

Theorem 4.4. Let 𝑠 ∈ S0. Then 𝐿Φ𝑠 is complex rotund if and only if 𝑎Φ = 0.

Proof. Necessity. Suppose that 𝐿Φ𝑠 with 𝜎𝑠 = 0 is complex strictly rotund. Let us prove 𝑎Φ = 0. Assume that 𝑎Φ > 0. Then take
𝑐 ∈ (0, 𝑎Φ). Choose measurable subset 𝐴 of 𝑋 and 𝑓 ∈ 𝑆(𝐿Φ𝑠 ) such that 𝜇(𝐴) > 0 and supp 𝑓 = 𝑋 \ 𝐴. Take 𝑘 ∈ 𝐾 ( 𝑓 ), and define

𝑔(𝑡) =
{
𝑐
𝑘 , 𝑡 ∈ 𝐴,
𝑓 (𝑡), 𝑡 ∈ 𝑋 \ 𝐴.

Since supp 𝑓 = 𝑋 \ 𝐴, we obtain ∥𝑔∥Φ,𝑠 ≥ ∥ 𝑓 ∥Φ,𝑠 = 1. On the other hand,

∥𝑔∥Φ,𝑠 ≤ 1
𝑘
𝑠(𝐼Φ (𝑘𝑔)) = 1

𝑘
𝑠(𝐼Φ (𝑐𝜒𝐴) + 𝐼Φ (𝑘 𝑓 𝜒𝑋\𝐴))

=
1
𝑘
𝑠(𝐼Φ (𝑘 𝑓 𝜒𝑋\𝐴)) = ∥ 𝑓 ∥Φ,𝑠 = 1.

Thus, ∥𝑔∥Φ,𝑠 = 1. However, for 𝑡 ∈ 𝐴, we have 𝑘 |𝑔(𝑡) | = 𝑐 < 𝑎Φ, which implies that 𝑔 ∉ Ext 𝐵(𝐿Φ𝑠 ) by Theorem 4.3.
Sufficiency. Suppose that 𝑎Φ = 0. Let us prove 𝐿Φ𝑠 with 𝜎𝑠 = 0 is complex strictly rotund. Assume that 𝑓 ∈ 𝑆(𝐿Φ𝑠 ) is not

a complex extreme point of the unit ball 𝐵(𝐿Φ𝑠 ). It follows from Theorem 4.3 that 𝜇({𝑡 ∈ 𝑋 : 𝑘 | 𝑓 (𝑡) | < 𝑎Φ}) > 0 for some
𝑘 ∈ 𝐾 ( 𝑓 ). Then there exists 𝑡0 ∈ 𝑋 such that 𝑎Φ > 𝑘 | 𝑓 (𝑡0) | ≥ 0, which contradicts with 𝑎Φ = 0.

5. CONCLUSION

In this work, we characterize complex extreme points and complex rotundity of Orlicz Spaces equipped with the 𝑠-norms for
𝜎𝑠 = 0.
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of the authors and ensures a fair double-blind peer review of the selected manuscripts.

The selected manuscripts are sent to at least two national/international referees for evaluation, and publication
decision is made by the editor-in-chief upon modification by the authors in accordance with the referees’ claims.

Editor-in-chief does not allow any conflicts of interest between the authors, editors, and reviewers and is responsible
for the final decision for publication of the manuscript in the journal.

The reviewers’ judgments must be objective. Reviewers’ comments on the following aspects are expected during the
review.

• Does the manuscript contain new and significant information?
• Does the abstract clearly and accurately describe the content of the manuscript?
• Is this problem significant and concisely stated?
• Are the methods comprehensively described?
• Are the interpretations and conclusions justified by the results?
• Is adequate reference made to other works in the field?
• Is the language acceptable?

Reviewers must ensure that all information related to submitted manuscripts is kept confidential and must report to the
editor if they are aware of copyright infringement and plagiarism on the author’s side.

A reviewer who feels unqualified to review the topic of a manuscript or knows that its prompt review will be
impossible should notify the editor and excuse him/herself from the review process.

The editor informs the reviewers that the manuscripts are confidential information, and that this is a privileged
interaction. The reviewers and editorial board cannot discuss the manuscripts with other people. The anonymity of the
referees is important.
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(OASPA), and the World Association of Medical Editors (WAME) on https://publicationethics.org/resources/guideli
nes-new/principles-transparency-and-best-practice-scholarly-publishing

All submissions must be original, unpublished (including full text in conference proceedings), and not under the
review of any other publication. The authors must ensure that the submitted work is original in nature. They must certify
that the manuscript has not already been published or submitted elsewhere, in any language. Applicable copyright laws
and conventions must be followed. Copyright materials (e.g., tables, figures or extensive quotations) must be reproduced
only with appropriate permission and acknowledgement. Any work or words by other authors, contributors, or sources
must be appropriately credited and referenced.

Each manuscript is reviewed by at least two referees using a double-blind peer review process. Plagiarism, duplication,
fraudulant authorship/ denied authorship, research/data fabrication, salami slicing/salami publication, breaching of
copyrights, and prevailing conflicts of interest are unethical behaviors. All manuscripts that are not in accordance with
accepted ethical standards will be removed from publication. This also includes any possible malpractice discovered
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Research Ethics
İstanbul Journal of Mathematics adheres to the highest standards in research ethics and follows the principles of
international research ethics as defined below. The authors are responsible for the compliance of the manuscripts with
ethical rules.

• Principles of integrity, quality and transparency should be sustained in designing the research, reviewing the design
and conducting the research.

• The research team and participants should be fully informed about the aims, methods, possible uses, requirements
of the research, and risks of participation in research.

• The confidentiality of the information provided by the research participants and the confidentility of the respondents
should be ensured. The research should be designed to protect the autonomy and dignity of the participants.

• Research participants should voluntarily participate in the research, not under any coercion.
• Any possible harm to the participants must be avoided. Research should be planned in such a way that the

participants are not at risk.
• The independence of research must be clear, and any conflicts of interest must be disclosed.
• In experimental studies with human subjects, written informed consent from the participants who decided to

participate in the research must be obtained. In the case of children and those under wardship or with confirmed
insanity, legal custodian assent must be obtained.

• If the study is to be carried out in any institution or organization, approval must be obtained from that institution
or organization.

• In studies with human subjects, it must be noted in the method section of the manuscript that the informed consent
of the participants and ethics committee approval from the institution where the study was conducted have been
obtained.

Author’s Responsibilities
The authors are responsible for ensuring that the article is in accordance with scientific and ethical standards and rules.
The authors must ensure that the submitted work is original in nature. They must certify that the manuscript has not
already been published or submitted elsewhere, in any language. Applicable copyright laws and conventions must be
followed. Copyright materials (e.g., tables, figures or extensive quotations) must be reproduced only with appropriate
permission and acknowledgement. Any work or words by other authors, contributors, or sources must be appropriately
credited and referenced.

All the authors of the submitted manuscript must have direct scientific and academic contributions to the manuscript.
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The author(s) of the original research articles is defined as a person who is significantly involved in “conceptualization
and design of the study”, “collecting the data”, “analyzing the data”, “writing the manuscript”, “reviewing the manuscript
with a critical perspective” and “planning/conducting the study of the manuscript and/or revising it”. Fund raising, data
collection and supervision of the research group are not sufficient roles to be accepted as authors. The author(s) must
meet all these criteria described above. The order of names in the author list of an article must be a co-decision and
must be indicated in the Copyright Agreement Form.

Individuals who do not meet the authorship criteria but have contributed to the study must take place in the
acknowledgement section. Individuals providing technical support, general support, material, financial support and
assisting in writing are examples to be indicated in the acknowledgement section.

All authors must disclose any issues concerning financial relationships, conflicts of interest, and competing interests
that may potentially influence the results of the research or scientific judgment. When an author discovers a significant
error or inaccuracy in his/her own published paper, it is the author’s obligation to promptly cooperate with the editor-
in-chief to provide retractions or corrections of mistakes.

Responsibility for the Editor and Reviewers
The editor-in-chief evaluates manuscripts for their scientific content without regard to ethnic origin, gender, sexual
orientation, citizenship, religious beliefs or the authors’political philosophy. He/She provides a fair double-blind peer
review of the submitted articles for publication and ensures that all the information related to submitted manuscripts is
kept as confidential before publishing.

The editor-in-chief is responsible for the content and overall quality of publications. He/She must publish errata pages
or make corrections when needed.

The editor-in-chief does not allow any conflicts of interest between the authors, editors and reviewers. Only he has
the full authority to assign a reviewer and is responsible for the final decision to publish the manuscripts in the journal.

The reviewers must have no conflict of interest with respect to the research, authors and/or research funders. Their
judgment must be objective.

Reviewers must ensure that all information related to submitted manuscripts is kept confidential and must report to
the editor if they are aware of copyright infringement and plagiarism on the author’s side.

A reviewer who feels unqualified to review the topic of a manuscript or knows that its prompt review will be
impossible should notify the editor and excuse him/herself from the review process.

The editor informs the reviewers that the manuscripts are confidential information and that this is a privileged
interaction. The reviewers and editorial board cannot discuss the manuscripts with other people. The anonymity of
referees must be ensured. In particular situations,the editor may share a review by one reviewer with other reviewers to
clarify a particular point.

AUTHOR GUIDELINES

Manuscript Organization and Submission
1. The publication language of the journal is English
2. Authors are required to submit Copyright Agreement Form, Author Form and Title Page together with the main

manuscript document
3. Manuscripts should be prepared using the article template in Latex format
4. Due to double-blind peer review, the main manuscript document must not include any author information.
5. Title page should be submitted together with the main manuscript document and should include the information

below:

• Category of the manuscript
• The title of the manuscript.
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• All authors’ names and affiliations (institution, faculty/department, city, country), e-mail addresses, and
ORCIDs.

• Information of the corresponding author (in addition to the author’s information e-mail address, open corre-
spondence address, and mobile phone number).

• Financial support
• Conflict of interest.
• Acknowledgment.

6. Submitted manuscripts should have an abstract of 100-150 words before the introduction, summarizing the scope,
the purpose, the results of the study, and the methodology used. Under the abstract, a minimum of 3 and a maximum
of 6 keywords that inform the reader about the content of the study should be specified.

7. Keywords must be in accordance with the Mathematics Subject Classification standard available at www.ams.org/msc
8. The manuscripts should contain mainly these components: title, abstract and keywords; sections, references, tables

and figures. The main text of research articles should include introduction, methods, results, discussion, conclusion
and references subheadings.

9. Tables and figures should be given with a number and a caption. Every Figure or Table should be referred within
the text of the article in numerical order with no abbreviations (ie: Table 1, Figure 1)

10. References should be prepared in line with Harvard reference system. For information: https://www.easybib.com
/guides/citation-guides/harvard-referencing/

11. Authors are responsible for all statements made in their work submitted to the journal for publication.

References
İstanbul Journal of Mathematics complies with Harvard system for referencing and in-text citations. For information:
https:/ / www.easybib.com/ guides/ citation-guides/ harvard-referencing/ . Accuracy of citations is the
author’s responsibility. All references should be cited in the text. It is strongly recommended that authors use Reference
Management Software such as Zotero, Mendeley, etc.

Submission Checklist
Please ensure the following:

• The title page was prepared according to the journal rules.
• This manuscript has not been submitted to any other journal.
• The manuscript has been checked for English language.
• The manuscript was written in accordance with the full-text writing rules determined by the journal.
• The manuscript has an abstract of 100-150 words and the number of keywords should be 3-6.
• The references are in line with the Harvard reference system.
• The Copyright Agreement Form has been filled in and is ready for submission together with the manuscript.
• The Author Contribution Form has been filled in and is ready for submission together with the manuscript.
• Permission for previously published copyrighted material (text,figure,table) has been obtained if used in the present

manuscript.
• The Ethics Committee Report (if necessary) has been obtained and ready for submission together with the manu-

script, and the ethics committee report date and number have been given in the manuscript text.
• Review of the journal policies.
• All authors have read and approved the final version of the manuscript.
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