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• Faruk Türk - Karamanoğlu Mehmetbey University, School of Foreign Languages, Karaman, Türkiye.

Editorial Secretariat
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Abstract

This paper employs a novel ϕ6-model expansion approach to get dark, bright, periodic, dark-bright,
and singular soliton solutions to the complex Ginzburg-Landau equation with dual power-law non-
linearity. The dual-power law found in photovoltaic materials is used to explain nonlinearity in the
refractive index. The results of this paper may assist in comprehending some of the physical effects
of various nonlinear physics models. For example, the hyperbolic sine arises in the calculation of the
Roche limit and the gravitational potential of a cylinder, the hyperbolic tangent arises in the calculation
of the magnetic moment and the rapidity of special relativity, and the hyperbolic cotangent arises in the
Langevin function for magnetic polarization. Frequency values, one of the soliton’s internal dynamics,
are used to examine the behavior of the traveling wave. Finally, some of the obtained solitons’ three-,
two-dimensional, and contour graphs are plotted.

Keywords: ϕ6-model expansion method; complex Ginzburg–Landau equation; soliton solutions; dual
power-law nonlinearity

AMS 2020 Classification: 35C07; 35C08; 35G20; 35C08

1 Introduction

The study of surfaces [1, 2] in geometry [3, 4] and a wide range of mechanical problems were

the first implementations of partial differential equations. In the nineteenth century, eminent

mathematicians from all over the world showed a significant interest in researching a variety

of problems arising from partial differential equations [5]. Optical solitons have emerged as a

key study issue in the physical and natural sciences. Solitons have been discovered to play an

important role in several disciplines of research, including optical fibers [6, 7], plasma physics
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[8], nonlinear optics, and many others [9, 10]. Solitons may spread across trans-continental and

trans-oceanic distances in fiber optics. Solitons are solutions to the nonlinear partial differential

equations that describe a single moving wave. Optical solitons, which are formed as the result

of a perfect balance between dispersion (or diffraction) and nonlinearity in a nonlinear medium,

are frequently used in telecommunications and electromagnetics. Optical fibers are solutions to

the Nonlinear Schrodinger equations. Soliton solutions contain particle-like structures, such as

magnetic monopoles, as well as extended structures, such as domain walls and cosmic strings,

which have implications in the cosmology of the early universe. Periodic solutions, such as

cos(x + t), are periodic traveling wave solutions [11, 12]. Dark soliton refers to a solitary wave

with lower intensity than the background, bright soliton refers to a solitary wave with higher peak

intensity than the background, and singular soliton refers to a solitary wave with discontinuous

derivatives; examples of such solitary waves include compactions, which have finite (compact)

support and peakons, whose peaks have a discontinuous derivative, dark solitons are modeled by

the tan h functions whilst bright solitons are modeled by the sec h. Understanding the dynamics

of solitons can lead to a better understanding of the physics of the phenomena in which they

exist. As a result, a number of sophisticated mathematical techniques have been developed to

generate soliton solutions for a wide range of physical models such as the Kadomtsev–Petviashvili

equation [13], the Benjamin–Ono equation [14], the disturbance effect in intracellular calcium

dynamic on fibroblast cells [15], the Fisher equation [16], the nonlinear Schrödinger equation [17,

18], the Sharma–Tasso–Olver equation [19], the Murnaghan model [20], the Kaup-Kupershmidt

equation [21], Navier–Stokes equation [22], the Zakharov–Kuznetsov equation [23], the B-type

Kadomtsev–Petviashvili–Boussinesq equation [24] and others [25–27]. Recent analytical methods

for solving PDEs, such as the eMETEM method [28], the generalized exponential rational function

method [29], the extended sinh-Gordon equation expansion method [30], the q-homotopy analysis

transform technique [31], the new extended direct algebraic method [32], the direct method

[33], the Kudryashov’s new function method [34], the split-step Fourier transform [35], the new

modified unified auxiliary equation method [36], the
(

1
G′

)

-expansion method [37–39], the Jacobi

elliptic functions [40].

The Ginzburg-Landau equation GLE is one of the most prominent partial differential equations

in mathematics and physics, it was brought into the study of superconducting phenomenology

theory by Ginzburg and Landau in the twentieth century. The GLE is commonly used to describe

the propagation of optical solitons across optical fibers over extended distances. As a result, it

is critical to examine the dynamic behavior of the GLE. Many researchers have recently solved

the Complex Ginzburg-Landau equation CGLE with dual power law nonlinearity, among them;

Arshed [41] solved this equation with the help of The exp(- φ(ξ ))-expansion method and received

different forms of solitons such as hyperbolic, rational and trigonometric functions. Jacobi’s

elliptic function expansion method is used to obtain some dark and periodic soliton solutions by

Abdou et al. [42]. Al-Ghafri and Khalil [43] used The relation between the Weierstrass elliptic

function and hyperbolic functions to derive optical soliton and period waves, in [44, 45], the trial

solutions approach, exp(- φ(ξ ))-expansion method and
(

G
′

G2

)

-expansion method are used, the
(

G
′

G

)

−method is used to secure the soliton solutions by Li Zhao, et al. [46], the other methods

includes GPRE method [47].

The main objective of this study is to develop new solitons for the CGLE with dual power

nonlinearity using the recently developed ϕ6–model expansion method [18, 48], in which, to our

knowledge, ıt has not been studied yet using the proposed technique. These new solitons include

dark, bright, singular, rational, combined periodic, combined singular and periodic solitary wave
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solutions.

The following is the outline for this paper; the mathematical analysis of the model will be given

in Section 2. In Section 3, we will present the description of the ϕ6–model expansion method. In

Section 4, the ϕ6–model expansion method will be applied to the CGLE model with dual power

nonlinearity to get new travelling wave solutions to the model. Additionally, the physical structure

of the traveling wave solution is graphically displayed in the related 2D, 3D and contour graphs.

The physical dynamics of the soliton solutions are explored in Section 5, while the conclusions

will be drawn in Section 6.

2 Mathematical analysis of the model

One of the most well-known partial differential equations in mathematics and physics, the

Ginzburg-Landau equation was developed in the 20th century by Ginzburg and Landau and used

to examine the superconducting phenomenology hypothesis. The propagation of optical solitons

over optical fibers over long distances is frequently described using the GLE. The authors [41, 47]

give the dimensionless shape of CGLE that will be investigated in this article as

iQt + aQxx + bF(|Q|
2)Q =

1

|Q|
2 Q⋆

[

α |Q|
2 (|Q|

2)xx − β
{
(|Q|

2)x

}2
]

+ γQ, (1)

where x is the non-dimensional distance along the fibers and t is time in dimensionless form;

a, b, α, β and γ are valued constants. The coefficients a and b are determined by the group velocity

dispersion (GVD) and nonlinearity respectively. The terms with α, β and γ result from perturbation

effects, specifically detuning.

The F in Eq.(1) is a real-valued algebraic function that must be smooth. F(|Q|
2)Q is continuously

differentiable k times,implying that

F(|Q|
2)Q ∈ ∪∞

m,n=1Ck
(

(−n, n)× (−m, m) ; R2
)

, (2)

by setting

α = 2β. (3)

Eq. (1) turns to

iQt + aQxx + bF(|Q|
2)Q =

β

|Q|
2 Q⋆

[

2 |Q|
2 (|Q|

2)xx −

{
(|Q|

2)x

}2
]

+ γQ. (4)

To solve Eq. (1), the standard decomposition into phase-amplitude components:

Q (x, t) = U(ζ)ei(−kx+ωt+θ), (5)

and the wave variable ζ is given by

ζ = (x − vt) , (6)

the function U represents the pulse shape and v is the soliton’s velocity. In the phase factor, k
denotes the soliton frequency, ω the soliton wave number and the phase constant θ. Substituting

the amplitude-phase decomposition into Eq. (4) results in the following couple of equations after
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breaking into real and imaginary parts:

−

(

ak2 + γ + ω
)

U + bF
(

U2
)

U + (a − 4β)U
′′
= 0, (7)

and

v = −2ka. (8)

In the following part, Eq. (7) will be examined by using dual power law nonlinearity.

3 Description of the proposed technique

According to Zayed et al. [27, 41] the following are the key steps of a recent ϕ6-model expansion

method:

Step-1: Consider the following nonlinear evolution equation for Q = Q(x, t).

G(Q, Qx, Qt, Qxx, Qxt, Qtt, ...) = 0, (9)

here G is a polynomial of Q(x, t) and its highest order partial derivatives, including its nonlinear

terms.

Step-2: Making use of the wave transformation

Q(x, t) = Q(ζ), ζ = x − vt, (10)

where v represents wave velocity and Eq. (9) can be converted into the nonlinear ordinary

differential equation shown below

Ω(Q, Q
′
, QQ

′
, Q

′′
, ...) = 0, (11)

where the derivatives with respect to ζ are represented by the prime. Step-3: Suppose that the

formal solution to Eq. (11) exists:

Q (ζ) =
2N∑

i=0

αiU
i(ζ), (12)

where αi(i = 0, 1, 2, . . . , N) are to be determined constants, N can be obtained using the balancing

rule and U(ζ) satisfies the auxiliary NLODE;

U′2(ζ) = h0 + h2U2(ζ) + h4U4(ζ) + h6U6(ζ), (13)

U
′′
(ζ) = h2U(ζ) + 2h4U3(ζ) + 3h6U5(ζ),

where hi(i = 0, 2, 4, 6) are real constants that will be discovered later.

Step-4: It is well known that the solution to Eq. (13) is as follows;

U(ζ) =
P(ζ)

√

f P2(ζ) + g
, (14)
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provided that 0 < f P2(ζ) + g and P(ζ) is the Jacobi elliptic equation solution

P′2(ζ) = l0 + l2P2(ζ) + l4P4(ζ), (15)

where li(i = 0, 2, 4) are unknown constants to be determined, f and g are given by

f =
h4(l2 − h2)

(l2 − h2)2 + 3l0l4 − 2l2(l2 − h2)
, (16)

g =
3l0h4

(l2 − h2)2 + 3l0l4 − 2l2(l2 − h2)
,

under the restriction condition

h2
4(l2 − h2)[9l0l4 − (l2 − h2)(2l2 + h2)] + 3h6[−l2

2 + h2
2 + 3l0l4]

2 = 0. (17)

Step-5: According to [18, 25–27, 41, 48] it is well known that the Jacobi elliptic solutions of Eq. (15)

can be calculated when 0 < m < 1. We can have the exact solutions of Eq. (9) by substituting Eqs.

(14) and (15) into Eq. (12).

Function m → 1 m → 0 Function m → 1 m → 0

sn(ζ, m) tanh(ζ) sin(ζ) ds(ζ, m) csch(ζ) csc(ζ)
cn(ζ, m) sech(ζ) cos(ζ) sc(ζ, m) sinh(ζ) tan(ζ)
dn(ζ, m) sech(ζ) 1 sd(ζ, m) sinh(ζ) sin(ζ)
ns(ζ, m) coth(ζ) csc(ζ) nc(ζ, m) cosh(ζ) sec(ζ)
cs(ζ, m) csch(ζ) cot(ζ) cd(ζ, m) 1 cos(ζ)

4 Application of the ϕ6-model expansion method

The dual power law is found in photovoltaic materials and is used to explain non-linearity in the

refractive index. The formula for this law is F(U) = Un + rU2n, where r is a constant. When n = 1,

is the non-linearity of the parabolic law which is the subset of the dual-power law [41, 45, 49], when

r = 0 and n = 1, the relationship becomes the Kerr law of non-linearity, which is formed from the

fact that a light wave in an optical fiber undergoes nonlinear responses owing to non-harmonic

electron mobility in the presence of an external electric field [41].

For this non-linearity, Eq. (7) is reduced to

−

(

ak2 + γ + ω
)

U + b
(

U2n+1 + rU4n+1
)

+ (a − 4β)U
′′
= 0, (18)

where N = 1
2n is obtained by balancing the higher order derivative and the nonlinear term in the

above equation. The following transformation is used to achieve closed-form solutions

U = p
1

2n ,

that will reduce Eq. (18) into the ODE

−4n2
(

ak2 + γ + ω
)

p2 + 4bn2 p2
(

p + rp2
)

+ (a − 4β)

(

2npp
′′
+ (1 − 2n)

(

p
′
)2
)

= 0, (19)

by balancing the highest order derivative and the highest nonlinear term in the above equation
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4N = 2N + 2 we get N = 1, we obtain the following by substituting N = 1 in Eq. (12)

p(ζ) = α0 + α1U(ζ) + α2U2(ζ), (20)

where α0, α1 and α2 are constants to be determined.

We obtain the following algebraic equations by substituting Eq. (20) along with Eq. (13) into Eq.

(19) and setting the coefficients of all powers of Ui(ζ), i = 0, 1, . . . , 8 to zero

U0(ζ) ; −4n2
(

ak2 + γ + ω
)

α2
0 + 4bn2α3

0 (1 + rα0)

− (−1 + 2n) (a − 4β) h0α2
1 + 4n (a − 4β) h0α0α2 = 0,

U1(ζ) ; −2α1

(

nα0

(

4n
(

ak2 + γ + ω
)

− (a − 4β) h2 − 2bnα0 (3 + 4rα0)
)

+ 2 (−1 + n) (a − 4β) h0α2

)

= 0,

U2(ζ) ;

(

(a − 4β) h2 − 4n2
(

ak2 + γ + ω − 3bα0 (1 + 2rα0)
))

α2
1

+4α2

(

nα0

(

−2n
(

ak2 + γ + ω
)

+ 2 (a − 4β) h2 + bnα0 (3 + 4rα0)
)

− (−1 + n) (a − 4β) h0α2

)

= 0,

U3(ζ) ; 2α3
1

(

2n (a − 4β) h4α0 + 2bn2 (1 + 4rα0)
)

+2α1α2

(

(2 + n) (a − 4β) h2 − 4n2
(

ak2 + γ + ω − 3bα0 (1 + 2rα0)
))

= 0,

U4(ζ) ; 4bn2rα4
1 + 12bn2 (1 + 4rα0) α2

1α2 + (a − 4β) h4

(

(1 + 2n) α2
1 + 12nα0α2

)

−4
(

− (a − 4β) h2 + n2
(

ak2 + γ + ω − 3bα0 (1 + 2rα0)
))

α2
2 = 0,

U5(ζ) ; 6α1n (a − 4β) h6α0 + 4α1α2

(

(1 + 2n) (a − 4β) h4 + bn2
(

4rα2
1 + 3 (1 + 4rα0) α2

))

= 0,

U6(ζ) ; (a − 4β) h6

(

(1 + 4n) α2
1 + 16nα0α2

)

+ 4α2
2

(

(1 + n) (a − 4β) h4 + bn2
(

6rα2
1 + α2 + 4rα0α2

))

= 0,

U7(ζ) ; 2α1α2

(

(2 + 7n) (a − 4β) h6 + 8bn2rα2
2

)

= 0,

U8(ζ) ; 4
(

(1 + 2n) (a − 4β) h6α2
2 + bn2rα4

2

)

= 0.

We get the following result after solving the resulting system:

α0 =
−1 − 2n

4 (1 + n) r
, α1 =

√

(1 + 2n) h4

√

−a + 4β

2n
√

br
, α2 = 0, (21)

h0 =
b2n4 (1 + 2n)2

16r2h4 (1 + n)4 (a − 4β)2
, h2 =

bn2 (1 + 2n)

2r (1 + n)2 (a − 4β)
,

h6 = 0, ω = −1

(

ak2 + γ +
b (1 + 2n)

4r (1 + n)2

)

.

In view of Eqs. (14), (20) and (21) along with the Jacobi elliptic functions in the table above, we

obtain the following exact solutions of Eq. (18).

1. If l0 = 1, l2 = −(1 + m2), l4 = m2, 0 < m < 1, then P(ζ) = sn(ζ, m) or P(ζ) = cd(ζ, m), we

have

Q
1 (x, t) =

[

−1−2n
4(1+n)r +

√
(1+2n)h4

√
−a+4β

2n
√

br

(

sn(ζ,m)
√

f (sn(ζ,m))2+g

)] 1
2n

ei(−kx+ωt+θ), (22)
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or

Q
1,0 (x, t) =

[

−1−2n
4(1+n)r +

√
(1+2n)h4

√
−a+4β

2n
√

br

(

cd(ζ,m)
√

f (cd(ζ,m))2+g

)] 1
2n

ei(−kx+ωt+θ), (23)

such that 0 < 2n
√

br (4 (1 + n) r) , ζ = x − vt and f and g in Eq. (16) are given by

f =
(1 + m2 + h2)h4

1 − m2 + m4 − h2
2

, g =
−3h4

1 − m2 + m4 − h2
2

,

under the restriction condition

−h2
4

(

−1 − m2
− h2

) (

−1 + 2m2
− h2

) (

−2 + m2 + h2

)

= 0.

If m → 1, then the soliton solution is obtained

Q
1,1 (x, t) =









−1−2n
4(1+n)r +

√
(1+2n)h4

√
−a+4β

2n
√

br









tanh(ζ)
√

−h4(−3+(2+h2) tanh2(ζ))
−1+h2

2

















1
2n

ei(−kx+ωt+θ), (24)

such that

h2
4 (−2 − h2) [−1 + h2]

2 = 0.

If m → 0, then the periodic wave solution is obtained

Q
1,2 (x, t) =









−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br









sin(ζ)
√

−(−3+(1+h2) sin2(ζ))h4

−1+h2
2

















1
2n

ei(−kx+ωt+θ), (25)

such that

h2
4 (−1 − h2) [(−2 + h2) (1 + h2)] = 0.

2. If l0 = 1 − m2, l2 = 2m2
− 1, l4 = −m2, 0 < m < 1, then P(ζ) = cn(ζ, m), therefore

Q
2 (x, t) =

[

−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br

(

cn(ζ,m)
√

f (cn(ζ,m))2+g

)] 1
2n

ei(−kx+ωt+θ), (26)
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Figure 1. The 3Ds (a), (a1), contours (b),(b1) and 2Ds (c),(c1) graphs of Eq. (24)

where f and g are determined by

f = −
(−1 + 2m2

− h2)h4

1 − m2 + m4 − h2
2

, g =
3
(

−1 + m2
)

h4

1 − m2 + m4 − h2
2

,

under the constraint condition

h2
4

(

−1 + 2m2
− h2

) [(

−2 + m2 + h2

) (

1 + m2 + h2

)]

= 0.

If m → 1, then the optical soliton is retrieved

Q2,1 (x, t) =





−1 − 2n
4 (1 + n) r

+

√

(1 + 2n) (−a + 4β) h4

2n
√

br





sech(ζ)
√

−sech2(ζ)h4
1+h2









1
2n

ei(−kx+ωt+θ), (27)

provided that

h2
4 (1 − h2)

[

h2
2 + h2 − 2

]

= 0.
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Figure 2. The 3Ds (a), (a1), contours (b),(b1) and 2Ds (c),(c1) graphs of Eq. (25)

If m → 0, then the periodic wave solution is obtained

Q
2,2 (x, t) =









−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br









sin(ζ)
√

−(−3+(1+h2) sin2(ζ))h4

−1+h2
2

















1
2n

ei(−kx+ωt+θ), (28)

such that

h2
4 (−1 − h2) [(−2 + h2) (1 + h2)] = 0.

3. If l0 = m2
− 1, l2 = 2 − m2, l4 = −1, 0 < m < 1, then P(ζ) = dn(ζ, m) which gives

Q
3 (x, t) =

[

−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br

(

dn(ζ,m)
√

f (dn(ζ,m))2+g

)] 1
2n

ei(−kx+ωt+θ), (29)

where f and g are determined by

f =
(−2 + m2 + h2)h4

1 − m2 + m4 − h2
2

, g =
−3
(

−1 + m2
)

h4

1 − m2 + m4 − h2
2

,
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Figure 3. The 3Ds (a), (a1), contours (b),(b1) and 2Ds (c),(c1) graphs of Eq. (27)

under the restriction condition

h2
4

(

2 − m2
− h2

) [

−

(

−1 + 2m2 + h2

) (

1 + m2 + h2

)]

= 0.

If m → 1, then the soliton solution is obtained

Q3,1 (x, t) =





−1 − 2n
4 (1 + n) r

+

√

(1 + 2n) (−a + 4β) h4

2n
√

br





sech(ζ)
√

−sech2(ζ)h4
1+h2









1
2n

ei(−kx+ωt+θ), (30)

provided that

h2
4 (1 − h2)

[

−2 + h2 + h2
2

]

= 0.

If m → 0, then the rational solution is obtained

Q
3,2 (x, t) =





−1 − 2n
4 (1 + n) r

+

√

(1 + 2n) (−a + 4β) h4

2n
√

br





1
√

−h4
−1+h2









1
2n

ei(−kx+ωt+θ), (31)

such that

h2
4 (2 − h2)

[

(1 + h2)
2
]

= 0.



198 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 3, 188–215

2 4 6 8 10
x

-1.0

-0.5

0.5

1.0

Re[Q2,2(x,t)]
c

2 4 6 8 10
x

-0.5

0.5

1.0

Im[Q2,2(x,t)]
c1

Figure 4. The 3Ds (a), (a1), contours (b),(b1) and 2Ds (c),(c1) graphs of Eq. (28)

4. If l0 = m2, l2 = −

(

1 + m2
)

, l4 = 1, 0 < m < 1, then P(ζ) = ns(ζ, m) or P(ζ) = dc(ζ, m), then

Q
4,1 (x, t) =

[

−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br

(

ns(ζ,m)
√

f (ns(ζ,m))2+g

)] 1
2n

ei(−kx+ωt+θ), (32)

or

Q
4,2 (x, t) =

[

−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br

(

dc(ζ,m)
√

f (dc(ζ,m))2+g

)] 1
2n

ei(−kx+ωt+θ), (33)

where f and g are given by

f =
(1 + m2 + h2)h4

1 − m2 + m4 − h2
2

, g =
−3m2h4

1 − m2 + m4 − h2
2

,

under the constraint condition

h2
4

(

−1 − m2
− h2

) [

−

(

−1 + 2m2
− h2

) (

−2 + m2 + h2

)]

= 0.
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Figure 5. The 3Ds (a), (a1), contours (b),(b1) and 2Ds (c),(c1) graphs of Eq. (31)

If m → 1, then the dark singular soliton solution is obtained

Q4,3 (x, t) =









−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br









coth(ζ)
√

−(−1+h2+(2+h2)csch2(ζ))h4
−1+h2

2

















1
2n

ei(−kx+ωt+θ), (34)

such that

h2
4 (−2 − h2)

[

(−1 + h2)
2
]

= 0.

If m → 0, then the periodic wave solution is obtained

p
4,4 (x, t) =





−1 − 2n
4 (1 + n) r

+

√

(1 + 2n) (−a + 4β) h4

2n
√

br





csc(ζ)
√

− csc2(ζ)h4
−1+h2









1
2n

ei(−kx+ωt+θ), (35)

such that

h2
4 (−1 − h2) [(−2 + h2) (1 + h2)] = 0.
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5. If l0 = −m2, l2 = 2m2
− 1, l4 = 1 − m2, 0 < m < 1, then P(ζ) = nc(ζ, m), we have

Q
5 (x, t) =

[

−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br

(

nc(ζ,m)
√

f (nc(ζ,m))2+g

)] 1
2n

ei(−kx+ωt+θ), (36)

where f and g are given by

f =
−(−1 + 2m2

− h2)h4

1 − m2 + m4 − h2
2

, g =
3m2h4

1 − m2 + m4 − h2
2

,

under the constraint condition

h2
4

(

−1 + 2m2
− h2

) [(

−2 + m2 + h2

) (

1 + m2 + h2

)]

= 0.

If m → 1, then the singular soliton solution is obtained

Q
5,1 (x, t) =









−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br









cosh(ζ)
√

(−3+(1−h2) cosh2(ζ))h4

−1+h2
2

















1
2n

ei(−kx+ωt+θ), (37)

such that

h2
4 (1 − h2)

[

−2 + h2 + h2
2

]

= 0.

If m → 0, then the periodic wave solution is obtained

Q
5,2 (x, t) =





−1 − 2n
4 (1 + n) r

+

√

(1 + 2n) (−a + 4β) h4

2n
√

br





sec(ζ)
√

− sec2(ζ)h4
−1+h2









1
2n

ei(−kx+ωt+θ), (38)

such that

h2
4 (−1 − h2) [(−2 + h2) (1 + h2)] = 0.

6. If l0 = −1, l2 = 2 − m2, l4 = −

(

1 − m2
)

, 0 < m < 1, then P(ζ) = nd(ζ, m) and we have

Q
6 (x, t) =

[

−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br

(

nd(ζ,m)
√

f (nd(ζ,m))2+g

)] 1
2n

ei(−kx+ωt+θ), (39)

where f and g are given by

f =
(−2 + m2 + h2)h4

1 − m2 + m4 − h2
2

, g =
3h4

1 − m2 + m4 − h2
2

,
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under the constraint condition

h2
4

(

2 − m2
− h2

) [

−

(

−1 + 2m2
− h2

) (

1 + m2 + h2

)]

= 0.

If m → 1, then the singular soliton solution is obtained

Q
6,1 (x, t) =









−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br









cosh(ζ)
√

(−3+(1−h2) cosh2(ζ))h4

−1+h2
2

















1
2n

ei(−kx+ωt+θ), (40)

such that

h2
4 (1 − h2) [− (1 − h2) (2 + h2)] = 0.

If m → 0, then the periodic wave solution is obtained

Q
6,2 (x, t) =





−1 − 2n
4 (1 + n) r

+

√

(1 + 2n) (−a + 4β) h4

2n
√

br





1
√

−h4
−1+h2









1
2n

ei(−kx+ωt+θ), (41)

such that

h2
4 (2 − h2)

[

(1 + h2)
2
]

= 0.

7. If l0 = 1, l2 = 2 − m2, l4 = 1 − m2,0 < m < 1, then P(ζ) = sc(ζ, m), we have

Q
7 (x, t) =





−1 − 2n
4 (1 + n) r

+

√

(1 + 2n) (−a + 4β) h4

2n
√

br





sc(ζ, m)
√

f (sc(ζ, m))2 + g









1
2n

ei(−kx+ωt+θ), (42)

where f and g are given by

f =
(−2 + m2 + h2)h4

1 − m2 + m4 − h2
2

, g =
−3h4

1 − m2 + m4 − h2
2

,

under the constraint condition

h2
4

(

2 − m2
− h2

) [

−

(

−1 + 2m2
− h2

) (

1 + m2 + h2

)]

= 0.

If m → 1, then the singular soliton solution is obtained

Q
7,1 (x, t) =









−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br









sinh(ζ)
√

(3+(1−h2) sinh2(ζ))h4

−1+h2
2

















1
2n

ei(−kx+ωt+θ), (43)
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such that

h2
4 (1 − h2)

[

−2 + h2 + h2
2

]

= 0.

If m → 0, then the periodic wave solution is obtained
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Figure 6. The 3Ds (a), (a1), contours (b),(b1) and 2Ds (c),(c1) graphs of Eq. (43)

Q
7,2 (x, t) =









−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br









tan(ζ)
√

(3−(−2+h2) tan2(ζ))h4
−1+h2

2

















1
2n

ei(−kx+ωt+θ), (44)

such that

h2
4 (2 − h2)

[

(1 + h2)
2
]

= 0.

8. If l0 = 1, l2 = 2m2
− 1, l4 = −m2

(

1 − m2
)

, 0 < m < 1, then P(ζ) = sd(ζ, m), we have

Q
8 (x, t) =

[

−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br

(

sd(ζ,m)
√

f (sd(ζ,m))2+g

)] 1
2n

ei(−kx+ωt+θ), (45)
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Figure 7. The 3Ds (a), (a1), contours (b),(b1) and 2Ds (c),(c1) graphs of Eq. (44)

where f and g are given by

f =
(−1 + 2m2

− h2)h4

1 − m2 + m4 − h2
2

, g =
−3h4

1 − m2 + m4 − h2
2

,

under the constraint condition

h2
4

(

−1 + 2m2
− h2

) [(

−2 + m2 + h2

) (

1 + m2 + h2

)]

= 0.

9. If l0 = 1 − m2, l2 = 2 − m2, l4 = 1, 0 < m < 1, then P(ζ) = cs(ζ, m), we have

Q
9 (x, t) =





−1 − 2n
4 (1 + n) r

+

√

(1 + 2n) (−a + 4β) h4

2n
√

br





cs(ζ, m)
√

f (cs(ζ, m))2 + g









1
2n

ei(−kx+ωt+θ), (46)

where f and g are given by

f =
(−2 + m2 + h2)h4

1 − m2 + m4 − h2
2

, g =
3(−1 + m2)h4

1 − m2 + m4 − h2
2

,

under the constraint condition

h2
4

(

2 − m2
− h2

) [

−

(

−1 + 2m2
− h2

) (

1 + m2 + h2

)]

= 0.
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If m → 1, then the singular soliton solution is obtained

Q9,1 (x, t) =





−1 − 2n
4 (1 + n) r

+

√

(1 + 2n) (−a + 4β) h4

2n
√

br





csch(ζ)
√

−csch2(ζ)h4
1+h2









1
2n

ei(−kx+ωt+θ), (47)

such that

h2
4 (1 − h2)

[

−2 + h2 + h2
2

]

= 0.

If m → 0, then the periodic wave solution is obtained

Q
9,2 (x, t) =









−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br









cot(ζ)
√

(3+(2−h2) cot2(ζ))h4
−1+h2

2

















1
2n

ei(−kx+ωt+θ), (48)

such that

h2
4 (2 − h2)

[

(1 + h2)
2
]

= 0.

10. If l0 = −m2
(

1 − m2
)

, l2 = 2m2
− 1, l4 = 1, 0 < m < 1, then P(ζ) = ds(ζ, m), we have

Q
10 (x, t) =

[

−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br

(

ds(ζ,m)
√

f (ds(ζ,m))2+g

)] 1
2n

ei(−kx+ωt+θ), (49)

where f and g are given by

f =
−(−1 + 2m2

− h2)h4

1 − m2 + m4 − h2
2

, g =
−3m2(−1 + m2)h4

1 − m2 + m4 − h2
2

,

under the constraint condition

h2
4

(

−1 + 2m2
− h2

) [(

−2 + m2 + h2

) (

1 + m2 + h2

)]

= 0.

11. If l0 = 1−m2

4 , l2 = 1+m2

2 , l4 = 1−m2

4 , 0 < m < 1, then P(ζ) = nc(ζ, m)± sc(ζ, m) or

P(ζ) = cn(ζ,m)
1±sn(ζ,m)

, we have

Q
11,1 (x, t) =

[

−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br

(

nc(ζ,m)±sc(ζ,m)
√

f (nc(ζ,m)±sc(ζ,m))2+g

)] 1
2n

ei(−kx+ωt+θ), (50)
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or

Q
11,2 (x, t) =





−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br





cn(ζ,m)
1±sn(ζ,m)

√

f
(

cn(ζ,m)
1±sn(ζ,m)

)2
+g









1
2n

ei(−kx+ωt+θ), (51)

where f and g are given by

f =
−8(1 + m2

− 2h2)h4

1 + 14m2 + m4 − 16h2
2

, g =
12(−1 + m2)h4

1 + 14m2 + m4 − 16h2
2

,

under the constraint condition

h2
4

(

1

2

(

1 + m2
− 2h2

)

) [

1

16
(1 + (−6 + m)m + 4h2) (1 + m (6 + m) + 4h2)

]

= 0.

If m → 1, then the combined singular soliton solution

Q
11,3 (x, t) =





−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br





sinh(ζ)+cosh(ζ)
√

−(sinh(ζ)+cosh(ζ))2h4
1+h2









1
2n

ei(−kx+ωt+θ), (52)

or dark-bright optical soliton is obtained

Q11,4 (x, t) =













−1 − 2n
4 (1 + n) r

+

√

(1 + 2n) (−a + 4β) h4

2n
√

br













(

sech(ζ)
1+tanh(ζ)

)

√

−

(

sech(ζ)
1+tanh(ζ)

)2
h4

1+h2

























1
2n

ei(−kx+ωt+θ), (53)

such that

h2
4 (1 − h2)

[

−2 + h2 + h2
2

]

= 0.

If m → 0, then the periodic wave solution is obtained

Q
11,5 (x, t) = 1

2









−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br









sec(ζ)+tan(ζ)
√

(3+2(1−2h2)(sec(ζ)+tan(ζ))2)h4

−1+16h2
2

















1
2n

ei(−kx+ωt+θ), (54)
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Figure 8. The 3Ds (a), (a1), contours (b),(b1) and 2Ds (c),(c1) graphs of Eq. (52)

or

Q
11,6 (x, t) = 1

2















−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br















(

cos(ζ)
1+sin(ζ)

)

√

√

√

√

√

(

3+2(1−2h2)
(

cos(ζ)
1+sin(ζ)

)2
)

h4

−1+16h2
2





























1
2n

ei(−kx+ωt+θ), (55)

such that

h2
4

(

1

2
− h2

) [

1

16
(1 + 4h2)

2
]

= 0.

12. If l0 =
−(1−m2)

2

4 , l2 = 1+m2

2 , l4 = −1
4 , 0 < m < 1, then P(ζ) = mcn(ζ, m)± dn(ζ, m), we have

Q
12 (x, t) =

[

−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br

(

mcn(ζ,m)±dn(ζ,m)
√

f (mcn(ζ,m)±dn(ζ,m))2+g

)] 1
2n

ei(−kx+ωt+θ), (56)

where f and g are given by

f =
−8(1 + m2

− 2h2)h4

1 + 14m2 + m4 − 16h2
2

, g =
12(−1 + m2)2h4

1 + 14m2 + m4 − 16h2
2

,
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Figure 9. The 3D (a), contour (b) and 2D (c), graphs of Eq. (55)

under the constraint condition

h2
4

(

1

2

(

1 + m2
− 2h2

)

) [

1

16
(1 + (−6 + m)m + 4h2) (1 + m (6 + m) + 4h2)

]

= 0.

13. If l0 = 1
4 , l2 = 1−2m2

2 , l4 = 1
4 , 0 < m < 1, then P(ζ) = sn(ζ,m)

1±cn(ζ,m)
, we have

Q
13 (x, t) =





−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br





sn(ζ,m)
1±cn(ζ,m)

√

f
(

sn(ζ,m)
1±cn(ζ,m)

)2
+g









1
2n

ei(−kx+ωt+θ), (57)

where f and g are given by

f =
8(−1 + 2m2 + 2h2)h4

1 − 16m2 + 16m4 − 16h2
2

, g =
−12h4

1 − 16m2 + 16m4 − 16h2
2

,

under the constraint condition

h2
4

(

1

2
− m2

− h2

) [

1

16
+ 2m2

− 2m4 +

(

1

2
− m2

)

h2 + h2
2

]

= 0.

If m → 1, then the dark-bright optical soliton solution is obtained

Q13,1 (x, t) = 1
2















−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br















(

tanh(ζ)
1+sech(ζ)

)

√

√

√

√

√

(

3−2(1+2h2)
(

tanh(ζ)
1+sech(ζ)

)2
)

h4

−1+16h2
2





























1
2n

ei(−kx+ωt+θ), (58)

such that

h2
4

(

−1

2
− h2

) [

1

16
(1 − 4h2)

2
]

= 0.
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If m → 0, then the periodic wave solution is obtained

Q
13,2 (x, t) = 1

2















−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br















(

sin(ζ)
1+cos(ζ)

)

√

√

√

√

√

(

3+2(1−2h2)
(

sin(ζ)
1+cos(ζ)

)2
)

h4

−1+16h2
2





























1
2n

ei(−kx+ωt+θ), (59)

such that

h2
4

(

1

2
− h2

) [

1

16
(1 + 4h2)

2
]

= 0.

14. If l0 = 1
4 , l2 = 1+m2

2 , l4 =
(1−m2)

2

4 , 0 < m < 1, then P(ζ) = sn(ζ,m)
cn(ζ,m)±dn(ζ,m)

, we have

Q
14 (x, t) =





−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br





sn(ζ,m)
cn(ζ,m)±dn(ζ,m)

√

f
(

sn(ζ,m)
cn(ζ,m)±dn(ζ,m)

)2
+g









1
2n

ei(−kx+ωt+θ), (60)

where f and g are given by

f =
−8(1 + m2

− 2h2)h4

1 + 14m2 + m4 − 16h2
2

, g =
−12h4

1 + 14m2 + m4 − 16h2
2

,

under the constraint condition

h2
4

(

1

2

(

1 + m2
− 2h2

)

) [

1

16
(1 + (−6 + m)m + 4h2) (1 + m (6 + m) + 4h2)

]

= 0.

If m → 1, then the singular soliton solution is obtained

Q
14,1 (x, t) =









−b1
3b2

+

√
(1+2n)(−a+4β)h4

2n
√

br









sinh(ζ)
√

(3+(1−h2) sinh2(ζ))h4

−1+h2
2

















1
2n

ei(−kx+ωt+θ), (61)

such that h2
4 (1 − h2)

[

−2 + h2 + h2
2

]

= 0. If m → 0, then the combined periodic wave solution is

obtained

Q
14,2 (x, t) = 1

2















−1−2n
4(1+n)r +

√
(1+2n)(−a+4β)h4

2n
√

br















(

sin(ζ)
1+cos(ζ)

)

√

√

√

√

√

(

3+2(1−2h2)
(

sin(ζ)
1+cos(ζ)

)2
)

h4

−1+16h2
2





























1
2n

ei(−kx+ωt+θ), (62)

such that h2
4

(

1
2 − h2

) [

1
16 (1 + 4h2)

2
]

= 0.
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5 Result and physical interpretations of the findings

The ϕ6-model expansion technique is used as the integration algorithm. The bright, dark, singular,

dark-bright, dark singular, and combined singular soliton solutions to the complex Ginzburg-

Landau equation CGLE with dual power law nonlinearity were found. The dual-power law, found

in photovoltaic materials, is used to explain nonlinearity in the refractive index. The traveling

wave solutions discovered in this work are both physically and mathematically helpful. The

constants in the computed wave propagation solutions must be given physical meaning in order

to comprehend their physical significance.

Figure 10. The 3D graphs of real part of Eq. (28) for

α0 = 0.5, α1 = 2, h1 = 1.2, h2 = 0.9, h3 = 2.6, h4 = 0.5, w = 0.2, θ = 0.5, n = 1, v = 3, λ = 0.5.

In the physics literature, Eq. (5) represents the mathematical model that assumes the envelope of a

forward-moving wave pulse evolves slowly in time and space related to a period or wavelength.

Q (x, t) = U(x − vt)ei(−kx+ωt+θ), the function U represents the pulse shape and v is the soliton’s

velocity. In the phase factor, ω is the soliton wave number, θ is the phase constant and k denotes
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the soliton frequency which is physically noteworthy in this study and whose various values will

be studied for the moving wave’s behavior. The parameter k is proportional to the velocity of the

soliton as well as the length of the pulse. To evaluate the dynamical features and describe the

evolution characteristic, we might pick appropriate values and functions for these parameters in

Eq. (28).

Figure 11. The 3D graphs of imaginary part of Eq. (28) for

α0 = 0.5, α1 = 2, h1 = 1.2, h2 = 0.9, h3 = 2.6, h4 = 0.5, w = 0.2, θ = 0.5, n = 1, v = 3, λ = 0.5.

Figures 10 and 11 depict the behavior of a single wave at any given time, which is crucial in the

transmission of energy from one location to another. In order to provide a new perspective to the

topic let us investigate the physical implications of the parameters in the transformation, known

as the classical wave transformation. The velocity of the propagating wave is proportional to the

variable k. The frequency of the propagating wave is directly proportional to the velocity of the

wave and inversely to its wavelength. The traveling wave shows diagonal wave behavior when k
is increased. The frequency of a traveling wave is proportional to the wave number. The number

of waves grows as the frequency increases.
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6 Conclusion

Based on the research findings, it is important to point out that the selected scheme produces a

wide range of innovative solutions that are both intriguing and valuable for the governing model.

The obtained results in this work are believed to describe some of the CGLE’s physical impacts.

This research will be crucial to the understanding of the superconducting phenomenology theory,

which is frequently used to explain the long-distance propagation of optical solitons via optical

fibers and it will help in studying the photovoltaic materials. The ϕ6-model expansion approach

is helpful and efficient for constructing optical soliton solutions for most nonlinear physical

phenomena. The behavior of a traveling wave solution chosen among fourteen different solutions

generated for various values of frequency is investigated. When we compare our results in this

paper to the results in [41–47], we conclude that our results are unique and have not been found

elsewhere, the model will also be evaluated using fractional temporal evolution to account for

slow-light pulses.
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Abstract

Projection of future meteorological patterns such as median temperature and precipitation is necessary
for governments to facilitate civil aviation, forecast agricultural productions, and advise public energy
policies. Various models are proposed based on historical data, such as the short-term 7-day forecast
or the long-term Global Forecast System, to study climate change. The main contribution of the
paper is that it gives a feasible, cost-effective model for median-term projections with statistically
tested accuracies well within the accepted margins of the scientific community. This model is the
starting point to provide general guidelines to governments to forecast levels of energy consumption
for residential cooling in summer and heating in winter to provide energy subsidies for low-income
populations and for organizations supporting countries needing energy assistance. Additionally, mid-
term models are also useful during global energy disruptions. A theoretical model is derived based on
orbital mechanics, planetary science, and astronomy using Newton’s Law of Universal Gravitation
and Kepler’s Laws of Planetary Motions. The model is then optimized with historical data in a specific
region. The model’s predictions are then statistically compared with the actual observed temperature
outside the training data. In sum, the current harmonic oscillator method can be beneficially utilized
by governments to forecast natural phenomena in order to provide timely assistance to respective
populations such as predicting extreme temperature fluctuations in the planning of agricultural
productions.

Keywords: Harmonic oscillators; Newton’s law of gravitation; Kepler’s laws of planetary motion;
orbital mechanics

AMS 2020 Classification: 35C07; 35A25; 76A05

1 Introduction

The study of atmospheric phenomena to project weather patterns by mathematical modelling has
a long history. The traditional approach has been gathering vast historical and empirical data and
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fitting them to various dynamical system frameworks consisting of covariant and interdependent
explanatory variables. Although new models have been proposed throughout the years, certain
challenges persist. A key obstacle is that the newer models frequently require ultrafast computing
powers incurring increasingly steep and prohibitive costs to national and local governments. This
challenge is particularly acute for developing countries in need of economic aid and disaster relief.
Secondly, these new computation-heavy models may lack the atmospheric flexibilities unique
to a region due to its specific topographies. Additionally, these costly models can be deficient
at times in providing sufficient information that answers to the administrative tasks of energy
consumption needs for its populations. Indeed, the cost-effective allocations of energy supplies
in a region’s smart energy grid are a perennial challenge to governments at all levels, national,
regional, and local. Vast research has been directed to achieve efficiency in a region’s energy
grid given its specific climate patterns. For example, a recent research paper by Yilmaz studied
the feasibility of generative adversarial networks (GANs) to improve energy efficiency by incor-
porating information and communication technologies in Türkiye energy grid [1]. The paper’s
author was able to demonstrate that trained synthetic load data are effective in reducing prediction
errors in load when historical data and risk management calculations are combined. Putting these
considerations together, the current paper examines the feasibility of harmonic oscillators as a
basic principle in mid-term climate projections. The main objective and contribution of the current
paper is that it gives a feasible, cost-effective model for median-term temperature projections with
statistically tested accuracies well within the accepted margins of the scientific community. The
paper is not the end, but the starting point in developing a cost-effective oscillation model with
higher accuracy and provide certain general guidelines for future research in this direction.
The remainder of this section will review some popular regional climate models in detail. Sec-
tion 2 will broaden the discussion to show the extensive applicability of harmonic oscillators in
biology, chemical engineering, physics, and biochemistry. In Section 3, the paper gives the classical
mechanics background and the basic atmospheric model. Section 4 furnishes the mathematical
model with historical meteorological data in a region. Section 5 shows the statistical analyses of
both the consistency and the predictive feasibility of the model, and finally, Section 6 gives an
overview of future research directions.
Regional climate models are increasingly important in that they consider historical data unique
to the locale and approach projections with the understanding that atmospheric behaviors at the
global level cannot be reasonably construed as a summation of mesoscale regional ensembles.
Different regional climate models coexist including Modele Atmospheric Regionale (MAR) de-
veloped by University of Grenoble in France, Advanced Regional Prediction System (ARPS) by
University of Oklahoma, and Aire Limitée Adaptation Dynamique Développement International
(ALADIN) developed and shared by 16 European and African countries. One particular advanced
regional model that has gained notice is the Regional Atmospheric Modelling System (RAMS)
by Colorado State University. With a projection scale of a few hundred square kilometers, RAMS
utilizes the nonlinear finite-difference method fine-tuned by historical data to produce projections.
The troposphere is divided into 3D grid intervals of equal volume Dq where q is a discretized
stochastic variable. Time t is also considered as a discrete variable. Observations are made at
discrete points in time tn = t0 + nDt for n = 0, 1, 2, 3, . . . , and Dt is the sampling time interval.
The probability that the stochastic state variable q is in the volume grid i at time tn is given by
the relation fi(tn)Dq. Probability density function f at the next time interval tn+1 is given by the
discretized sum of current states

fi (tn+1) = fi (tn) +
∑

i
′

D i
′

i f
i
′ (tn). (1)
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In the above relation, Di
′

i is the probability transition matrix from the i-th state to the i
′
-th state.

The coefficients in the transition matrix satisfy D i
′

i = Wi
′

i − δ
ii
′
∑

p W
p

i
′ where Wk ′

j values are the
transition coefficients updated in real-time by historical data in the recent past and normalized to
conserved probability

∑

i
′

Wi
′

i = 1. (2)

One challenge has been striking a balance between the desired resolution in the phase space
on the one hand and the availability of computing resources and historical data on the other.
Another challenge is that while the estimate of the transition improves with growing time series
length, there is a threshold time series length beyond which forecast accuracies do not improve
significantly. The RAMS climate projection system uses the HPE Cray supercomputer at 800
petaFlops to handle the ever-increasing need for vast computations. Other regional climate
models such as MAR face even more challenges as different terrains and topographies across
the Mediterranean require more variabilities to be incorporated into the computations, further
straining government agencies’ tight budgets in times of inflation, natural disasters, and energy
supply disruptions. It is with these considerations, feasible and cost-effective mathematical models
based on historical data become a focus of research.

2 Applicability of harmonic oscillators

A harmonic oscillator exemplifies the simplicity of the smooth transfer between kinetic energy
and potential energy. The equation of the phase space of the harmonic oscillator is a second-order
differential equation with initial values. The long-term asymptotic behaviors can be understood
through the presence and the nature of damping in the system. Applications of harmonic oscilla-
tors abound in nearly all branches of natural, social, and behavioral science ranging from physics,
biology, chemistry, ecology, economics, financial mathematics, and game theory to psychology. In
ecology, Koshkin and Meyers showed recently in 2022 that a stressed predator-prey system can be
modelled by harmonic oscillators where asymptotic limits can collapse into an attractor point in
the Lotka-Volterra differential equation system [2]. Setting x(t) and y(t) to be the populations of
the two species at time t respectively. The Lotka-Volterra system describes the interdependence
between the prey population density x(t) and the predator population density y(t), respectively,
as

dx

dt
= y(α − βx),

dy

dt
= x(−γ + δy), (3)

where α, β, and γ are dynamical system constants and δ is a system parameter describing the
species-specific covariance relation between prey’s population and the growth rate of predator’s
population. Koshkin and Meyers defined the energy of the predator-prey harmonic oscillator
system to be V(x, y) ≡ x2 + by2, where b is also a constant of the system. Each constant C

represents an integral energy level of the predator-prey system

x2 + by2 = C. (4)
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The time derivatives of V along the trajectories of the system are given by

V̇(x, y) ≡ ∇V • (ẋ, ẏ) =
∂V

∂x
ẋ +

∂V

∂y
ẏ. (5)

Denoting the point (x(t), y(t)) as p(t) in the graph of two species, the Ω-limit is defined as the
asymptotic behavior of the system

ωp ≡
{

q ∈ R
2| p(tk) −→ q as t → ∞

}
. (6)

Koshkin and Meyers found that if environmental stress expressed as a damping coefficient a > 0
is present in the system, the derivative of the energy in the long-term limit is negative

d

dt
V(x, y) =

∂V

∂x
ẋ +

∂V

∂y
ẏ = −2ax2

< 0, (7)

and the damped predator-prey oscillator system enters into a closed trajectory of energy ellipses
and eventually collapses to a single-point Ω-limit q [2]. Harmonic oscillation also has numerous
applications in chemical engineering, industrial engineering, and material science. In chemical
engineering, certain cyclic hydrocarbon compounds such as benzene exhibits strong chemical
stability due to the perfect symmetry in its six carbon-to-carbon and carbon-to-hydrogen covalent
bonds. This stability of the benzene molecule causes intermolecular stacking to occur due to
resonance delocalization of its electrons in the outer p atomic orbitals. The stable benzene molecule
forms a double-deck crystalline structure in this type of intermolecular stacking whose noncovalent
binding strength is modelled excellently by harmonic oscillators that utilize the periodic growth
and decay of positive electrostatic potential on one benzene molecule relative to the negative
electrostatic potential on the other benzene molecule in the above-described stacked structure.
The electrostatic potential on a benzene molecule with resonance delocalization is given by the
quantum harmonic potential

U(x) =
1
2

mω2x2. (8)

Here m is the molecular mass of benzene and ω is the angular frequency of the harmonic oscillation
exhibited by the periodic increase and decrease in electrostatic potentials. In particular, the
chemical stability of benzene due to the symmetry of its intra-molecular covalent bonds results in
a slow evaporative property manifested by its distinct sweet aroma which is termed aromaticity in
chemical engineering. The aromaticity of most cyclic hydrocarbon compounds is thus described
excellently by a harmonic oscillation model with benzene as a reliable benchmark in industries. In a
recent study, Arpa et al. [3] refined the harmonic oscillator model of aromaticity by reparametrizing
the oscillation parameters of the classic carbon-to-carbon bond strength in acyclic hydrocarbon
compounds ethane and ethylene. The researchers achieved the reparametrization of the harmonic
oscillator model by approximating the aromaticity parameter α given as

α =
2

(

Rs − Ropt

)2
+

(

Rd − Ropt

)2 . (9)



220 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 3, 216–233

In Equation (9), Rs is the mean length of the pure single carbon-to-carbon bonds and Rd is the mean
length of the pure double carbon-to-carbon bonds in ethane and ethylene and Ropt is the optimal
carbon-to-carbon bond length in fully aromatic inert benzene experimentally measured to be
1.398-angstrom using neutron diffraction at 15 Kelvin. Thus, harmonic oscillator models are also
important in chemical and industrial engineering research because these aromatic hydrocarbons
are the backbone of industrial solvents, adhesives, plastics, and petrochemicals.

In quantum physics, harmonic oscillators are ubiquitous and are used extensively to model
quantum phenomena. For example, Özdemir et al. [4] compared two types of computational bases
in quantum entanglement. Denoting the initial state of an entangled system as ρ and the final
state as ρ ′, the two states are related by a quantum phase operation E : ρ→ E(ρ). One example of
the quantum phase operation is the Kraus formalism given by

E(ρ) =
∑

µ

Eµρ E†
µ. (10)

The operator Eµ acts on the Hilbert space HS of the entangled system and satisfies the completeness
relation

∑
µ E†

µEµ = I. Since a quantum system is never isolated and always interacts with
its environment, the interaction introduces noise in quantum computation and information
processing. This interaction is represented at time t = 0 in the entangled state as

ρ(0) = ρS(0)⊗ ρE(0). (11)

The evolution of the time-dependent entangled system is given by

ρ(t) = U(t)ρS(0)⊗ ρE(0)U
†(t), (12)

where U = e−iHt/ℏ. The Kraus representation of an entangled system is one where energy
dissipation occurs via a damping process as a system interacts with its environment. Özdemir
et al. [4] discovered that the Kraus representation for a single qubit whose computation basis is
defined by the bosonic number states {∥0⟩ , ∥1⟩} are given by the operators

A0(t) = |0⟩ ⟨0| +√
η |1⟩ ⟨1|,

A1(t) =
√

1 − η |0⟩ ⟨1|, (13)

where
√

1 − η is the probability of the entangled system losing one qubit up to time t. The study
compared the fidelities of the qubit states for the no-photon-decay event, the one-photon-decay
event, and the two-photon-decay event. For example, it was discovered that the energy dissipation
between the event of a one-photon-decay and two-photon decay up to time t, given as a damped
harmonic oscillator with the above operator basis {Ai(t)} exhibits a long-term fidelity behavior
proportional to polynomial growths

lim
t→∞

F1(t)− F2(t) ∝ η +O
[

η2
]

. (14)

The harmonic oscillator has also found applications in biochemistry. For example, it is well-known
that insulin and insulin-like growth factors 1 and 2, denoted as IGF1 and IGF2 have similar
chemical structures. Although their precise mechanism of action is still unclear, it is known
that these hormones activate two closely related receptor tyrosine-kinases called the insulin
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receptor and IGF1 receptor respectively. Differences in the chemical kinetics of ligand binding and
activations of receptors by insulin and IGF1 are generally thought to be the determining factors
of their specificity. However, the receptors’ ligand binding mechanisms show complex allosteric
properties such as dependence on receptor disassociation rates. As a result, a more robust theory
of receptor kinetics proved challenging for decades.
Kiselyov et al. [5] used harmonic oscillators to provide a valuable mathematical model for receptor
kinetics. Using the concept that the active configuration of the receptors has higher free energy
compared to that of the inactive configuration, Kiselyov et al. [5] modeled the behavior of the
receptor mechanism near the point of activation as a harmonic oscillator. The idea is that separate
subunits of the receptor are rigid bodies connected by covalent bonds similar to an elastic spring
on a harmonic oscillator. In the model, the energy of the receptor oscillates harmonically when
the receptor is in thermal equilibrium with the buffer. The energy of the receptor, as a result of
random collisions with the buffer molecules, has a probability distribution given by the Maxwell
formula

dP

dE
=

1
KT

e−E/KT, (15)

where P, E, and T are the probability, energy, and temperature of the ensemble, respectively, and k

is the Boltzmann constant. The above distribution implies that the fraction of the insulin receptors
having sufficient activation energy for binding is given by

∫
∞

Eactivation

1
KT

e−E/KTdE. (16)

By tagging select sites alternately with regular and radioactive binding ligands, De Meyts et al. [5]
were able to theorize the binding reaction kinetics. For example, for sites 1 and 2 on the insulin
receptors, the chemical equilibrium of the level of r1×2 is given by

r1×2 =
rtotkcr/ (kcr + d2)

1 +
d1d2

a1 (kcr + d2) /L

, (17)

where L and rtot are the insulin concentration and total receptor levels respectively and the di’s
are the percentages of sites 1 and 2 remaining unbounded after insulin dissociation, kcr is the
critical kinetic constant, and a1 is the dependence rate factor of site 1. Numerous other models of
harmonic oscillators exist in natural science, behavioral science, and social science.
This paper is assembling a harmonic oscillator model of climate cycles with classic variables such
as temperature. A word of caution is in order. In mathematical modelling, the current paper is
fully aware that there exist explanatory models other than harmonic oscillators that can account
for these natural phenomena. For example, in a recent paper, Mishra et al. [6] were able to combine
the finite volume method and the Newton-Raphson method to study the calcium distribution
across the membrane of a cholangiocyte cell and found that the diffusion rate follows a cutoff
inverse sigmoid function. In addition, temperature itself can act with more complexity in natural
phenomena that cannot be accounted for by a simple system of differential operators.
For example, in another recent study, Shah et al. [7] showed that temperature can cause convective
flows across stratified surfaces in autocatalysis reactions in microorganisms. Thus, at times, a
model based on these well-known mathematical frameworks alone is insufficient to provide
explanatory power in studying some natural phenomena such as the movement of chemicals or
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macro-particles across membranes or layers. At both the micro-level and the macro-level, natural
phenomena can indeed exhibit more complexity than any simple but elegant mechanism alone
can aptly capture. For example, the above-mentioned sigmoid saturation model, in contrast to a
model of oscillators that shows periodicity, was successfully utilized as the activation function
in a study of artificial intelligence-assisted detection methods of melanoma performed by Orhan
and Yavşan [8]. In the study, the researchers chose the sigmoid function as the activation function
in testing six classification algorithms’ accuracy in melanoma detection models built on the
convoluted neural network or CNN-based deep learning AI’s. Among the six algorithms thus
trained, the MobileNet algorithm achieved an accuracy rate of 89.4% in cancer detection [8]. In
another study, Joshi et al. [9] considered a mathematical model that is framed to investigate
the role of buffer and calcium concentration on fibroblast cells. Thus, future research should
keep in mind that mathematical modelling of these natural or social phenomena may involve a
multi-dimensional approach.

3 The classical harmonic oscillator

Harmonic oscillators are in essence the idealization of the continuous and reversible process of the
transfer of kinetic energy into potential energy in a mass-spring system. The classical harmonic
oscillator is best reified by the mass-spring system. The system has a natural equilibrium position
where the mass and the restorative force of the spring are at static rest. Displacement of the
mass away from the natural equilibrium position by a distance of x causes a restorative force
F1 proportional to the magnitude of the displacement and opposite in direction given by Hooke’s
law F1 = −kx where k is the spring constant. The force F1 causes a potential energy U(x) to be
stored in the mass-spring system given by

U(x) = −

∫ x

0
F1du =

k

2
x2. (18)

Potential energy is continuously transferred to kinetic energy as the mass is moving from the
stretched or compressed position to the equilibrium position. Denote the velocity of the mass as v,
kinetic energy F2 in the system with mass m at velocity v is given by 1

2 mv2. By Newton’s second

law of motion, one obtains F2 = ma. Since a = d2x
dt2 , one has

F2 = m
d2x

dt2 . (19)

The conservation of energy means the sum of these two forces should be equal in magnitude and
opposite in direction,

m
d2x

dt2 = −kx. (20)

Normalizing both side by the mass m and re-writing k
m = ω2, where ω is the angular frequency,

one has a linear second-order differential equation

d2x

dt2 + ω2x = 0. (21)

The general solution of Eq. (17) giving the position x of the mass as a function of time t is
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x(t) = Aeiωt + Be−iωt. (22)

Using Euler’s identity eiπ = −1, the above solution x(t) can be rewritten in trigonometric terms.
The period of motion is given by T = 2π

ω and the frequency is given by f = 1
T = ω

2π . Should the
system be subjected to damping, a positive damping constant β appears in the linear term dx

dt

d2x

dt2 +
β

m

dx

dt
+ ω2x = 0. (23)

Setting β
m = 2λ, the damped case Eq. (19) further splits into three subcases according to the rates

of deceleration given by the parity of λ2
− ω2. For example, in the underdamped case where

λ2
− ω2

< 0, the solution becomes infinitely periodic and the oscillation flattens as t → ∞

x(t) = e−λt
[

c1 sin
√

λ2
− ω2t + c2 cos

√

λ2
− ω2t

]

. (24)

Overall, the free classical harmonic oscillator is an idealization of a perpetual motion machine in
which energy exchanges forms without incurring any loss. In laboratories, retarding elements
such as friction cause damping and eventually results in a cessation of periodic motion.

4 Basic Newton-Keplerian planetary model

The angular frequency ω in the harmonic oscillation relation Eq. (21) model is closely related to
Kepler’s laws of planetary motion and available astronomical data. Kepler’s third law states that
the ratio between the square of a planet’s orbital period T and its semi-major axis a is constant
within the solar system. Let Ms denote the mass of the Sun, m denote the mass of a planet, r be
its mean distance from the star, and ω be the angular velocity. Since the gravitational force is
balanced by the centrifugal force, Newton’s law of universal gravitation means

mrω2 = G
Ms • m

r2 . (25)

Theorem 1 The square of the period T is proportional to the cube of the mean distance from the star.

Proof The angular frequency is defined as the mean angular speed measured in radians, thus one
has

ω =
2π

T
. (26)

Squaring the above relation gives

[

2π

T

]2

= G
Ms

r3 . (27)

Inverting the above relation, one has

r3

T2 = G
Ms

4π2 . (28)

Since Ms and G are constants, one has the proportionality T2
∝ r3. This completes the proof. ■
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In most solar systems, the orbits of the planets around their stars are elliptical. Let a and b

denote the semi-major and semi-minor axes of the two-body system respectively, then one has the
following theorem:

Theorem 2 The orbital period T is a function of both the semi-major and semi-minor axes a and b,

respectively.

Proof Since Ms ≫ m, one can simplify the dynamics of the system as a two-body system with
specific angular momentum h being the angular momentum L normalized by the mass of the
planet, h = L

m . Let h = ∥h∥. In a gravitationally bounded two-body system where the planet’s
displacement can be measured by angular movement, the infinitesimal operators of angle dθ, time
dt, and area dA are related as follows

dt =
r2

h
dθ,

dA =
r2

2
dθ. (29)

Simplifying the differential operator relations above, one has dt = 2
h dA. Further simplification

leads to

dA

dt
=

h

2
. (30)

Since h as the modulus of the mean normalized angular momentum specific to a planet-star system
in question is a constant, this implies that the rate of change in the area swept out by the planet
rotating around the star dA

dt is also a constant, thus giving the Kepler’s second law: the planet
sweeps out equal areas in equal time. Performing a contour integration of the above identity over
the full elliptical orbit of the planet to obtain the orbital period T, one has the following geometric
identity relating the orbital period to the semi-major and minor axes and angular momentum:

T =

∮

dt =

∮
2
h

dA =
2πab

h
.

■

In subsequent discussions, the mean angular displacement is denoted by ω where ω = T
C where

the normalizing factor C is the cycle number in one complete orbital revolution. Additionally, the
mean angular displacement is denoted by ω. With these notations, Kepler’s second law states that
ω is given by

ω =
2πab

t
√

p
√

Ms + m
, (31)

where p is a parameter specific to the elliptical orbit of the two-body system related to the

semi-major and semi-minor axes a and b by p = b2

a and t is the time for one orbit revolution.
Normalizing the semi-major axis a to unity, the above relation reduces to b√

p = 1. Hence, Eq. (29)

gives ω = 2π
t
√

Ms+m
. Reducing the mass of the Sun to unity, one has ω = 2π

t
√

1+m
. Given the

periodic nature of harmonic oscillators described above and the numerous applications across
disciplines discussed in the last section, it is natural to infer that the cycles of seasonal changes
such as annual cycles of monthly median temperature or lengths of daylight durations can also
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be modelled by harmonic oscillations. Absent any sudden cosmic changes that adversely affect
meteorological conditions such as monthly temperature, seasonal precipitations, or atmospheric
pressure in a region, most data variables follow a periodic pattern within a year whose anomalies
can be corrected by parametric statistics such as goodness of fit tests or analysis of variance tests.
To that end, a rational model for monthly median temperature T in a region can be reasonably
given by the coefficient-free harmonic oscillator

T(m) =
iA

2

[

e−iω(m−c1)
− eiω(m−c1)

]

+
B

2

[

eiω(m−c2) + e−iω(m−c2)
]

+ D. (32)

In the above model, m is time given in months, the amplitude given by
√

A2 + B2 is modeled as an
approximation of the difference between the highest monthly median temperature and the lowest
monthly median temperature, the period of the oscillation is given by 2π

ω , and the undetermined
coefficients ci’s are phase shifts and D is the vertical shift. Certain observations about a time-
dependent atmospheric dynamics model are worthy of mention. First, since meteorology variables
in shorter time intervals exhibit more random behaviors, the longer interval of months is used.
Hence, there arises the consideration of which method of time-keeping should be utilized, be it the
lunar calendar or other types. Second, once a particular method of time-keeping is selected, there
is the additional consideration of the uneven residue of the orbital period of the Earth around the
Sun and how the residue is accounted for in the model. Third, there is also the consideration of
the axial precession of the Earth.

Table 1. Monthly median temperatures of New York City from July 2017 to July 2021

Month Temperature Month Temperature Month Temperature Month Temperature Month Temperature

Jan -1 Jan 0.5 Jan 3.5 Jan 2

Feb 5.5 Feb 2.5 Feb 4.5 Feb 1

Mar 5 Mar 6 Mar 8 Mar 7.5

Apr 10 Apr 13.5 Apr 10 Apr 12.5

May 19.5 May 17 May 16 May 17.5

Jun 22.5 Jun 22 Jun 22.5 Jun 23

Jul 24 Jul 26.5 Jul 26.5 Jul 26.6 Jul 24

Aug 23 Aug 26 Aug 23.5 Aug 25

Sept 20.5 Sept 21.5 Sept 21 Sept 20

Oct 17.5 Oct 14 Oct 15.5 Oct 13.5

Nov 8 Nov 7 Nov 6.5 Nov 11.7

Dec 2 Dec 3.5 Dec 3.5 Dec 3.5

2017 2018 2019 2020 2021

The precession is caused by the westward movements of the equinoxes along the ecliptic relative
to visually fixed stars in the heavens. Although the axial precession has a period of approximately
25,798 years, the choice of longer time variables can introduce anomalies in the model. There
exist other considerations in addition to the ones mentioned above. The harmonic oscillator
model at present is one among a whole set of mathematical models utilized to understand the
complexity of atmospheric dynamics. Hence, the parameters of the model can and should be
improved as more accurate data become available. In the present discussion, the monthly median
temperature in New York City is utilized. These monthly median temperatures were collected
from July 2017 to July 2021 available on public domains [10]. It should be stressed that different
public domains may post slightly different monthly median temperatures for the same region. The
above temperatures are monthly median temperatures. Observe that the median temperatures
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above exhibit sinusoidal wave patterns with maximum between the months of June and August of
each year and minimum between the months of December and February. A connected scatterplot
in Excel was used to visualize these data points. To further visualize the data, the months were
coded with the first month, July of 2017 as 7 and each subsequent month having an increment of 1,
thus converting categorical data into ordinal-numeric data ready for modeling and parametric
statistical analysis. Notice in the scatterplot, a rapid increase in median temperatures between
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Figure 1. Connected scatterplot of monthly median temperatures of New York City

5◦ and 20◦ spanned three months out of a year. These three months are typically March, April,
and May in the spring. Conversely, a rapid decrease in median temperatures between 21◦ and 7◦

also spanned three months out of a year. These three months are typically September, October,
and November in the fall. Also notice that the change in temperature between December of a
year through February of the following year is usually less than 6◦ in general. This latter pattern
was also exhibited in the three-month period between June and August of a year. For example,
in the year 2019, the median temperatures in June, July and August were 21.5◦, 26.5◦, and 23.5◦

respectively. This indicates a temperature increase of only 5◦ in the three-month period in 2019.

This sequential pattern of rapid temperature increases between March, April, and May, followed
by a period of minimal change, and the subsequent rapid decrease in September, October, and
November which is turn followed by a period of minimal change in December, January, and
February coincides well with that of a classical harmonic oscillator. Recall in the harmonic
oscillator, the mass moves rapidly as it crosses the equilibrium position and moves slowly
when the mass is close to the overstretched or over-compressed positions. Relation (26) gives
a workable model of mean angular displacement per unit of time calculated in earth days as
ω = 0.01720209895 radians/day. In the current model, if one were to use months to minimize the
effects of random meteorological anomalies, setting the uneven monthly residue to zero gives
ω = 0.516062969 radians/month. Allowing for 31 days in a month gives a higher monthly angular
displacement of ω = 0.533365067 radians/month. To optimize the monthly median temperatures
specific to New York City from July, 2017 to July 2021, the intermediate value ω = 0.523598776
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was used for the model. In the next section, a visual proximity test was conducted and a parametric
statistical test was also conducted to see how closely optimize the actual data. Thus, based on the
available data, a harmonic oscillator model of the monthly median temperature T as a function of
time measured in month m in New York City from July 2017 to July 2021 can be given as

T(m) =
8.95

2
[(1 + i)e−0.523598776i(m−5.5) + (1 − i)e0.523598776i(m−5.5)] + 13.4. (33)

In this region-specific model, it is assumed that the phase angle φ = tan−1
[

A
B

]

is π
4 radians, thus

setting A = B in the coefficient-free oscillator in Eq. (30). The magnitude of the amplitude is
modelled by trimmed minimum of the data set with the extreme cold month of January 2018
removed. Thus, the difference between the maximum and trimmed minimum is 26.6L’ − 0.5L’ =
26.1L’ with an observed difference of 26.1L’

2
∼= 13.1L’. To fit the data sufficiently, the model utilized

an amplitude of

√

A2 + B2 =
√

8.952 + 8.952 ∼= 12.7L’ (34)

whose difference is comfortably within 97% of the observed amplitude.

5 Numerical simulations and statistical analysis of the model

To test how closely the harmonic oscillator model approximates the actual data. A visual proximity
test by superimposing the predicted temperatures and the actual data on the same graph shows
the feasibility of the harmonic oscillator model trained on actual data when sufficient data were
utilized as training data.
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Figure 2. Comparison of monthly median temperatures of New York City compared to predicted by the
harmonic oscillator model

Notice that in the overstretched and over-compressed regions in the visual proximity graph, the
model’s predicted temperatures T(m) given as orange points approximate the actual temperature
data given as blue dots well. In the equilibrium position, some variations can be observed.
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For example, in October of 2017, the predicted median temperature was 13.399◦ and the actual
recorded temperature was 17.5◦. This pair constitutes the pair with the largest deviation. During
the other months near the equilibrium point, the deviations were visibly smaller.

To complete the statistical analysis, a goodness of fit test was utilized to examine the predictive
power of the harmonic oscillator model. The goodness of fit test is a parametric test that measures
the deviation of the data points E expected by a hypothesized model and the actually observed
field data O using the χ2 distribution. The test statistic is given by

χ2 =
∑ (O − E)2

E
. (35)

For example, for the months between July 2017 and January 2018, the observed monthly median
temperatures and the expected monthly median temperatures are given in the following table of
partial results.

Table 2. Partial observed vs. predicted monthly temperatures of New York City

(O-E)
2

E

2017 7 24 26.0572 -2.0572 0.1624

8 23 24.3615 1.3615 0.0761

9 20.5 19.7286 0.7714 0.0302

10 17.5 13.4 4.1 1.2545

11 8 7.0714 0.9286 0.1219

12 2 2.4385 -0.4385 0.0789

2018 13 -1 0.7428 -1.7428 4.0891

Coded Month Observed Temperature O Expected Temperature E O - EYear

Recall that the χ2 distribution is a right-skewed distribution and that the goodness of fit test based
on the χ2 distribution is premised on the null hypothesis that the observed values are close to the
expected values predicted by the model. Thus, at a preset significance level, one rejects the null
hypothesis if the χ2 the test statistic is high, implying significant deviations between the observed
and the predicted values. Conversely, a low test statistic fails to reject, implying the observed
values and the predicted values are statistically and sufficiently close not to warrant a rejection at
the preset significance level.

With a degree of freedom at k − 1 = 48, at α = 0.10 significance level, the χ2 test fails to
detect significant statistical differences between the actual monthly median temperatures and the
predicted monthly median temperatures by the model at 90% confidence level demonstrating
the consistency of the model. To further test the consistency of the model, the author put the
model to the test with higher statistical rigor at the α = 0.05 significance level. The test statistic
is 34.7312 with a p-value above the null hypothesis rejection level again. Thus, both goodness
of fit statistical tests failed to detect significant statistical differences between the actual monthly
median temperatures and the predicted monthly median temperatures by the model at the 90%
and 95% confidence levels. In addition to consistency, goodness of fit tests were also performed
on historical data entirely outside of the training data used in the construction of the model in
order to test the model’s predictive power. Actual observed monthly median temperatures in New
York City in the 12-month period from August, 2021 to July 2022 from the same public domain
were statistically compared with model’s predicted temperature at both the α = 0.05 significance
level and the α = 0.01 significance level. At both significance levels, the goodness of fit test
gave an F-ratio of 0.0605 and could not detect statistically significant differences between the
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predicted median monthly temperature and the observed median temperature thereby supporting
the predictive power of the cost-effective harmonic oscillation model.

6 Discussion and further research directions

The current research gives a vantage point to investigate the feasibility of using harmonic os-
cillators to model atmospheric dynamics, thus opening the possibilities in forecasting energy
consumption and other areas of public policy related to climate science. Natural questions include
but are not limited to in what ways can the model be improved; should damping be present
in the model; if so, what are the causes of damping; what mechanism should be used in the
model to account for axial precession of Earth, and can the same approach be utilized to analyze
periodic cycles of annual precipitation. Numerous other questions and considerations exist in
this direction. As such, the current paper is a starting point. This section will first discuss certain
climate-specific research directions in the future, then it will broaden the discussion to include
certain philosophical implications in the generalized harmonic oscillator model going forward.
Based on the research presented, a possible area of future research to refine the current harmonic
oscillator model is to fine-tune the mid-term monthly model by incorporating fluid dynamics with
fractional calculus. In many areas of applied mathematics, fractional calculus has increasingly
proved to hold explanatory power. For example, Ahmed et al. [11] have recently discovered a
fractional calculus model using Caputo-Fabrizio fractional-order PDE to study the evolution of
the cholera epidemic. The model thus derived contained a system composed of four fractional
differential equations with input variables such as size of susceptible population and symptomatic
infected population. Moreover, a theorem of the uniqueness and existence of solutions to the
Caputo-Fabrizio fractional-order cholera model was also found. In atmospheric science, it is
well-established that shorter-term atmospheric behaviors such as weekly median temperature
or weekly precipitation in extreme weather conditions such as hurricanes can be modeled more
accurately by hydrodynamic ensembles. For example, a hurricane is a moving frame of low
hydrodynamic depressions with high atmospheric convection and an enclosed equatorial atmo-
spheric circulation spreading to higher latitudes. In the analysis of these lower-than-mid-term
projections, turbulent fluids in the hurricane column such as air or water vapors observe fractional
conservation of mass in hydrodynamic behaviors given by

−

∂αρqi

∂xα
i

=
Γ(α + 1)

´xα+2
∂

∂t

(

´x3nρ
)

. (36)

In the above equation, the standard control volume’s 3D lengths are given as ´xi for i = 1, 2, 3, ρ

is the mean air/water vapor density, qi is the specific hydrodynamic discharge passing through
the i-th face of the standard control volume, Γ(α + 1) is the gamma function, n is the porosity
parameter of the air/water vapor mixture, and ∂α

∂xα
i

is the α-th fractional derivative.

For example, Wheatcraft et al. [12] were able to utilize the above fractional calculus relation to study
non-linear hydrodynamic flux in control volumes. The research showed that the hydrodynamic
divergence term in the fractional mass conservation equation is the fractional convergence and
that the scaling term in the fractional conservation of mass is in fact scale-invariant. Combining
these latter considerations together with the research presented in the current paper, a more
comprehensive mid-term or short-to-mid-term atmospheric model can be reasonably given by
a system of both differential and fractional differential equations in which the master harmonic
oscillator model first gives the overall projections, then the fractional derivative transient model
modifies the above macro projections with more short-term refinement.
Another further research direction is to consider the philosophical nature of physical variables
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present in the model. For example, is the meaning of mass m used in the definition of angular
frequency ω limited to the total mass of the gravitationally bound two-body problem consisting
of Sun and Earth with the negligible mass of the Moon absorbed into the approximation for
computation purposes or are there more generalized epistemological ensembles that can account
for harmonic oscillations in these vastly disparate natural and social phenomenological settings.
This is a particularly important direction of future research based on the presented results. A
review of the literature on the applications of the harmonic oscillator in natural sciences and
social sciences shows that the meaning of the modelled variables can have discipline-specific
interpretations in some cases while eludes satisfactory interpretations in others. For example,
an application of the harmonic oscillator where the authors gave a plausible interpretation of
the meaning of the modelled variables is a quantum spatial-periodic harmonic model of equity
market with price limits by Meng et al. [13]. The authors of the study examined the price action
movement of equities modelled as a fundamental particle moving, vibrating, and undergoing
excitations in a quantum potential well with energy given as

V(x) =
mω2x2

2
. (37)

The authors reasoned that the energy band structures of the quantum harmonic oscillator model
correspond to the non-linear market relations such as inter-band positive correlations and intra-
band negative correlations between volatility and the transaction volume in unit time. The
probability of locating the equity at price x modelled as the statistical location of the fundamental
particle is given as the square modulus of the generalized Schrodinger wave function with a duly
coupled Gaussian

|ϕ(x)|2 =

√

mω

πℏ
e−mωx2/ℏ. (38)

The authors posited that the modelled variables m, ω, ℏ are interpreted as the mean total market
capitalization of the equity, period of the equity fluctuation cycles, and most importantly the
uncertainty of the irrational transaction volume of the equity respectively. To fit the model with
a market circuit where trading is halted in the presence of extreme equity valuation volatilities,
the authors further imposed a periodic boundary condition when the price exceeds $d above the
mean daily moving average or drops $d below the identical mean daily moving average given as

ϕ(x) = e−ikd ϕ(x + d). (39)

where k is the one-dimensional Bloch wave number. With the market circuit thus modelled, the
price of the equity is given as

ϕ(ξ) = e−
ξ2
2 [A•H1(ξ) + B•H2(ξ)] . (40)

where Hi’s are the first and the second Hermite polynomials and the parameters A and B are the
constants specific to the equity in consideration. Thus modelled, the authors were able to obtain
the solution of the equity wave function in Eq. (38) as

[

H1

(

−βd

2

)

− e−ikdH1

(

βd

2

)]

•
[

H
′
2

(

−βd

2

)

− e−ikdH
′
2

(

βd

2

)

+ βde−ikdH2

(

βd

2

)]

, (41)
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where β is a re-parametrization constant coupling the price of the equity to ξ

ξ = βx =
√

mω/ℏ•x. (42)

It is worthy of consideration to note that the authors further inferred from the model that the
reduced Planck constant ℏ is the limit of irrational agency in equity trading, that is, in the perfectly
rational market, ℏ → 0.
One can ask: in the limit, is the efficient market hypothesis or EMH tenable? If financial information
is made transparent, symmetric, and accessible to all market participants such as to all institutional
investors and individual investors, can the rational market be a frictionless harmonic oscillator
where the only uncertainty is the most natural quantum price fluctuations captured by a geometric
Brownian motion Xt?

ϕ(ξ) ∼= Aeiξt + Be−iξt + Xt. (43)

If these conditions are tenable, then the logarithmic price of an equity Pt at time t is a simple linear
sum of the expected value of the equity Et and the stochastic discount factor Mt

log Pt+1 = log Mt + Et • log Pt. (44)

A natural question is: what would a rational trading strategy be in the stated limit? These and
other long-term considerations should be investigated by the mathematical modelling community.

Declarations

List of abbreviations

Not applicable.

Ethical approval

The author states that this research complies with ethical standards. This research does not involve
either human participants or animals.

Consent for publication

Not applicable.

Conflicts of interest

The author confirms that there is no competing interest in this study.

Data availability statement

Data availability is not applicable to this article as no new data were created or analysed in this
study.

Funding

Not applicable.



232 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 3, 216–233

Author’s contributions

The author has made substantial contributions to the conception, and design of the work, the
acquisition, analysis, interpretation of data, and the creation of new software used in the work.

References

[1] Yilmaz, B. Generative adversarial network for load data generation: Tükiye energy market
case. Mathematical Modelling and Numerical Simulation with Applications, 3(2),141-158, (2023).
[CrossRef]

[2] Koshkin, S. and Meyers, I. Harmonic oscillators of mathematical biology: many faces of a
predator-prey model. Mathematics Magazine, 95(3), 172-187, (2022). [CrossRef]

[3] Arpa, E.M. and Durbeej, B. HOMER: a reparameterization of the harmonic oscillator model of
aromaticity (HOMA) for excited states. Physical Chemistry and Chemical Physics, 4(25), 95-127,
(2023). [CrossRef]
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Abstract

Generative Adversarial Networks (GANs) have gained widespread attention since their introduction,
leading to numerous extensions and applications of the original GAN idea. A thorough understanding
of GANs’ mathematical foundations is necessary to use and build upon these techniques. However,
most studies on GANs are presented from a computer science or engineering perspective, which can
be challenging for beginners to understand fully. Therefore, this paper aims to provide an overview
of the mathematical background of GANs, including detailed proofs of optimal solutions for vanilla
GANs and boundaries for f -GANs that minimize a variational approximation of the f -divergence
between two distributions. These contributions will enhance the understanding of GANs for those
with a mathematical background and pave the way for future research.

Keywords: Generative adversarial networks; unsupervised learning; qualitative analysis

AMS 2020 Classification: 91G15; 91G20; 91B02; 62E99

1 Introduction

Generative Adversarial Networks (GANs) introduced by [1] consist of generative and discrimina-

tive neural network models that are usually denoted by letters G and D, respectively. To visualize

GANs environment better in our mind, the generative model may be regarded as a counterfeiter

who is attempting to produce a fraud Van Gogh’s Starry Night painting and sell it without being

noticed, whereas the discriminative model is equivalent to an expert who specializes in Van Gogh,

trying to detect the counterfeit fraud painting. However, the counterfeiter does not care about

producing images that are a variation of the original Starry Night painting. In the applications

of GANs, the aim is not to present a new image identical to the original painting. Instead, it
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aims to create a unique illustration of Starry Night that the Van Gogh expert recognizes as an

unknown Van Gogh painting that is unprecedented anywhere before. As a result, a computation

starts between the generator and discriminator over the fraud painting detection. The competition

continues until the counterfeiter becomes intelligent enough to deceive the expert successfully.

More precisely, the discriminator’s role is to distinguish the real and fraud paintings, while the

generator’s role is to generate fraud paintings in such a way that it can mislead the discriminator,

and the discriminator is unable to cope with rejecting the fraud paintings any longer (see Figure 1).

Figure 1. A visualization of the discriminator and generator networks as a counterfeiter and Van Gogh’s

painting expert

Figure 1 presents a visualization of the training process of Generative Adversarial Networks

(GANs). The GAN training process involves two main components: the Generator and the

Discriminator. The Generator takes random noise from the latent space as input and generates

fake data, attempting to mimic the real data distribution. Initially, the generated data is random

and typically of low quality. A batch of real data is sampled from the training dataset that

serves as the ground truth for the Discriminator during training. The Discriminator is trained

on both real and fake data. It is presented with the real data and the corresponding labels (1

for real) to learn to distinguish real data from fake data. It is then presented with the fake data

generated by the Generator and the corresponding labels (0 for fake) to learn to identify the

fake data. The Discriminator’s performance is evaluated using a loss function, such as binary

cross-entropy, which measures how well the Discriminator is differentiating the real data from

the fake data. The Generator is trained to deceive the Discriminator by generating fake data that

appears as realistic as possible. The Generator takes random noise as input and aims to generate

data that the Discriminator labels as real. The Generator’s performance is evaluated using the

Discriminator’s response to the fake data it generates. The Generator’s loss function encourages

it to generate data that deceives the Discriminator (i.e., the Discriminator’s prediction closer to
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1). The model parameters of both the Generator and Discriminator are updated using gradient

descent or some variant, optimizing considering loss functions. The process continues iteratively,

with the Generator getting better at generating realistic data, and the Discriminator becoming

more skilled at differentiating real from fake data. The ideal state is reached when the Generator

can create data that is indistinguishable from real data, and the Discriminator cannot confidently

classify between the real and generated data. It is important to note that the Generator never uses

the real data as input and trains solely with random noises.

To put this in a positive framework, we can say that the discriminator serves as a kind of quality

control of the generated data. The better the discriminator performs, the better the benchmark for

the generator. Then, the generator can finally beat the benchmark in a form in which the optimal

strategy of the discriminator is essentially only guessing whether the generated data are fraud or

real. Finally, the generator is ready to be used in synthetic data generation.

Some of the key issues that are critical in the applications of GANs are as follows:

• Quantifying "similar objects" is trickier than it sounds, and it carries the core to GANs. In the

field of mathematics research, we have many alternative methods to quantify the similarity

between any two objects, which can also lead us to different objectives in setting up GANs.

• In the application of GANs, we aim to generate original objects, which can be distant in which

distance measure we consider to any objects at hand as a training dataset χ (i.e. we do not want

to copy χ, but we feel the generated objects and χ belong to the same class).

• We do not care about generating a perturbation of the original painting. Instead, we want to

produce a fake painting that the expert is going to consider like a unique painting that belongs

to Van Gogh, which she has seen for the first time in her life.

• In this setting, the appropriate concept of similarity is distributional similarity. We call two

objects similar if both are samplings from the same (or roughly same) probability distribution.

This means that the two objects share similar characteristics and features that are determined by

the underlying probability distribution. Therefore, we maintain a training dataset denoted with

χ ⊂ R
n that consists of samples gathered from µ. In this context, µ is a probability distribution,

and its density is represented by p(x). We want to arrive at a reasonable approximating

probability distribution ν having a density q(x) to µ. Then, we can obtain artificial or synthetic

objects that are identical to objects in the training (real) dataset χ by sampling from ν.

• You may question, why we do not just consider the distributions as ν = µ and obtain samples

from the real data distribution µ.

Unfortunately, such sampling is exactly the main problem of GANs since µ is not known explic-

itly. The only thing that we know is that we have a finite set of samples χ sampled from µ.

Consequently, the actual issue is identifying the properties of µ by only using χ. In this sense,

we must focus on specifying an appropriate probability distribution ν as an approximation

process to µ.

• In addition to considering a distribution similar to µ in the sense of probability distances, one

can also try to characterize µ by the empirical behavior of the data, their so-called stylized facts.

• Generally, the success of GANs depends on the sophistication of µ and the training dataset χ

size.

The basic approach of GANs

The purpose of the study is to clarify the mathematical background of GANs. Therefore, it focuses

on only theoretical aspects of GANs and contains any applications.

To approximate a given probability distribution µ, GANs require an initially defined probability

distribution to start its training. Generally, the initial distribution, which we define as γ, is
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introduced in space R
d. Here, the space dimension d is not necessarily identical to the space

dimension n (of R
n). Now, suppose we have chosen the initial distribution γ to be the standard

normal distribution, and we have denoted it with N(0, Id). However, we are free to choose γ

from other well-known probability distribution families (e.g., uniform). GANs utilize a technique

to discover a mapping G, defined as G : R
d 7−→ R

n. At this stage, consider a random variable

z ∈ R
d sampled from initial distribution γ. Then, we can claim that the mapping G(z) is from the

same distribution family as µ. To emphasize, the probability distribution of G(z) can be defined in

the form of γ ◦ G−1. Here, G−1 denotes the inverse of G, and the inverse maps subsets of space

R
n to subsets in space R

d. Therefore, in the GANs modeling method, we desire to find a mapping

G(z) that satisfies γ ◦ G−1 = µ or at least γ ◦ G−1 is a reasonable approximation of the real data

distribution µ.

The vanilla GAN approach forms an adversarial system from which the generator receives updates

on a continuous basis to increase output accuracy. More rigorously, the vanilla GAN presents a

neural network called a discriminator, which attempts to label the observed samples as real, and

generated samples as fake. From this perspective, the discriminator behaves like a classifier that

attempts to distinguish real samples from fake samples. To this end, the discriminator assigns

a probability D(x) ∈ [0, 1] to each sample x for its probability of being a real sample. If samples

G(zj) are outputs of the generator, the discriminator attempts to restrict them since they are fake

samples.

In the early stage of training a GAN, restricting generated samples as fake should not be challeng-

ing since the generator is not elegant at generating realistic samples. However, after each attempt

G fails to produce realistic samples to trick D, and G learns and adjusts itself with a refinement

update. Thus, the improved G performs more reasonably compared to the one used at the early

stages, and then it is the discriminator D’s progression to revise for refinement. In an ideal case,

through such an adversarial iterative process, we can eventually arrive at an equilibrium point;

therefore, even the most reasonable D cannot perform more satisfactory labeling than a random

guess. At this point, the samples generated by G become extremely identical to training samples χ

in distribution. Consequently, the discriminator decision becomes completely random, and the

probability of being real approximates 50%.

In GANs modelling approach, we have to define both the discriminator and generator by utilizing

neural networks to understand the distributional properties of given data. Each neural network

has its corresponding parameters ω and θ. These parameters are used in the training of the

discriminator and generator and include the weights (also known as synaptic weights) of the

neural network layers, as well as the biases of these layers. They are learned during training to

optimize the performance of the GAN in generating realistic samples. Hence, we should register

Dω(x) for the discriminator and Gθ(z) for the generator, and we should denote νθ := γ ◦ G−1
θ .

Thus, it is clear that our task is to identify the desired generator Gθ(z) by adequately adjusting its

parameter θ.

Building a GAN framework

As we mentioned above, there are two parties in GANs modeling method: generator Gθ(z) and a

discriminator Dω(x) who are in competition, and both parties have their own roles during the

modeling process. More specifically,

The generator:

• The generator operates with a random vector whose length is fixed and, then, produces a fake

sample in the corresponding domain.

• The vector is sampled from the Gaussian distribution (generally) and utilized to seed the
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generator. After the training, points in the multidimensional vector space conform with points

in the real data domain, forming a compact replica of the training data distribution.

• The vector space is called the latent space or equally vector space. It consists of some latent

variables or some hidden variables, which are critical for the domain but cannot be observed

directly.

The discriminator:

• The discriminator uses a sample from the domain as input (it may be either real or fake) and

assigns a real or fake (generated) binary class label.

• The real sample directly comes from the original data, while fake samples are only outputs of

the generator.

• The discriminator is a classifier model. When the training is finished, the discriminatory model

is junked as we are curious about in the generator. Occasionally, the generator can be reset as it

has learned to effectively determine characteristic from examples sampled from the problem

domain. Some or all of the characteristics extraction layers can be utilized in transfer learning

applications by utilizing the same or similar input data.

Both players in the min-max game are expressed by a corresponding function. Each function is

differentiable concerning its inputs and parameters. As it introduced above, the discriminator

is a differentiable function denoted by D that uses x as input and is allowed to use only the

discriminator network weights ω as parameters. On the other hand, the generator is specified by

G and uses the random vector z as the initial input and is only allowed to use the weights of the

generator network θ as parameters [2].

In this setting, both players have their own loss functions. The loss functions are described with

regard to parameters specific to players. The discriminator desires to minimize the problem

L(D)(ω, θ) and it must accomplish the minimization by controlling only its parameters ω. On the

other hand, the generator desires to minimize L(G)(ω, θ) and must accomplish the minimization

by controlling only its parameters θ. Here, the discriminator and generator losses rely on the other

player’s parameters. However, both players are limited to controlling only their own parameters.

Since each player’s loss relies on the opposite player’s parameters, despite each player being

allowed to regulate its parameters and cannot control the opposite player’s parameters, such a

scenario is generally expressed as a game rather than a classical optimization problem [2].

As we mentioned already, generator G is a differentiable function. After we produce its random

vector z from a well-known initial distribution called γ, G generates a fake sample x, which is

implicitly sampled from the model distribution (Pmodel = ν). Commonly, a deep neural network

is utilized to characterize the generator. However, we have some constraints on the configuration

of the corresponding neural network. If we want Pmodel to have complete support on X , the

dimension of the generator should be at least as large as the dimension of X [2].

In a similar fashion, discriminator D is also a differentiable function, whose objective is to catego-

rize samples accurately as real and fake. The discriminator is also naturally characterized by a deep

neural network. Again, it has some restrictions on the configuration of its corresponding network.

It has to use only real and fake samples as entries and assigns a probability score D(x) ∈ [0, 1] for

each x [2]. Here, notice that the generator never sees the real data and only uses random vector z

as input, while the discriminator uses both real, and the generator’s output.

A simple derivation of the loss functions

Before starting the definition of the loss functions, note that in the classical GANs architectures,

the design of the discriminator loss functions L(D) always remains the same. They differ only by

the cost function for the generator, L(G) [2]. The loss function introduced in the original study [1]
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is obtained from the binary cross-entropy formula as follows

L(ŷ, y) =
[

y · log(ŷ) + (1 − y) · log(1 − ŷ)
]

. (1)

Here, y and ŷ correspond to the original and fake data, respectively.

In the training of the discriminator, the label of data assigned by the real data µ(x) is y = 1

(real/observed data) and ŷ = D(x). Then, by substituting this into Eq. (1), we have

L(D(x), 1) = log(D(x)), (2)

and for the data sampled from the generator, the label is y = 0 (fake data) and ŷ = D(G(z)).

Similarly, by substituting these into Eq. (1), we end up with

L(D(G(z)), 0) = log(1 − D(G(z))).

In this setting, the goal of the discriminator is to accurately classify its input as fake or real.

Therefore, the given loss functions for G and D have to be maximized. Then, the final loss function

of D is denoted as

L(D) = max
[

log(D(x)) + log(1 − D(G(z)))

]

. (3)

At this stage, it is important to remember that the generator is competing against the discriminator.

Hence, the generator aims to minimize the optimization problem given in Eq. (3), and consequently,

its loss function evolves to

L(G) = min
[

log(D(x)) + log(1 − D(G(z))
]

. (4)

Now, let us combine the loss functions (3) and (4). By combining these two equations, we obtain a

min-max problem as

L = min
G

max
D

[

log(D(x)) + log(1 − D(G(z)))

]

. (5)

Here, it is worth emphasizing that the loss function in Eq. (5) is valid only for a single data point.

Therefore, to consider the entire dataset, we need to consider the expectation of the combined loss

function as

min
G

max
D

V(D, G) = min
G

max
D

[

Ex∼µ[log(D(x))] +Ez∼γ[log(1 − D(G(z)))]

]

. (6)

The min-max formulation introduced in Eq. (6) is a concise one-liner function that intuitively

captures the adversarial nature of the competition between the players G and D. However, in

practice, individual loss functions are defined for both players since the gradient of y = log(x) is

steeper around x = 0 than y = log(1 − x). This means that trying to maximize log(D(G(z))), or

equivalently minimizing − log(D(G(z))) leads to quicker and more significant improvements in

the generator performance than attempting to minimize log(1 − D(G(z))).
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2 Mathematical description of vanilla GANs

The adversarial game introduced in the previous section can be expressed mathematically by a

min-max task for a target function defined by the discriminator D(x) : R : 7−→ [0, 1] and generator

G : R
d 7−→ R

n. Here, it is clear that G transforms the random vector z ∈ R
d sampled from γ

into generated (fake) samples G(z). Then, D attempts to distinguish the generated samples from

the training samples that are supposed to be sampled from µ while G attempts to generate new

samples that are identical in distribution to the data that we use in the training of GANs [3].

In the original study [1], a target loss function is introduced as

V(D, G) := Ex∼µ[log(D(x))] +Ez∼γ[log(1 − D(G(z)))],

where E represents the expectation concerning the distribution appointed in the subscript. We can

avoid the subscript if there is no confusion.

The vanilla GAN solves the min-max problem given in Eq. (6). Heuristically, for a given G, the

optimization problem maxD V(D, G) reveals the optimal D to reject outputs G(z) by assigning

higher probabilities to samples from µ and low probabilities to outputs G(z). In contrast, for

a given D, minG V(D, G), the optimization problem reveals the optimal G, and therefore, the

outputs G(z) attempt to deceive D by assigning high probabilities for G(z) [3].

Then, let us define y = G(z) ∈ R
n having a distribution defined as ν := γ ◦ G−1, and the random

vector z ∈ R
d is from the γ distribution family. Thus, we may rearrange V(D, G) in terms of D

and ν as follows

Ṽ(D, ν) : = Ex∼µ[log(D(x))] +Ez∼γ[log(1 − D(G(z)))]

= Ex∼µ[log(D(x))] +Ey∼ν[log(1 − D(G(y)))] (7)

=

∫

Rn
log(D(x))dµ(x) +

∫

Rn
log(1 − D(y))dν(y).

Then, the min-max problem defined in Eq. (6) evolves to

min
G

max
D

V(D, G) = min
G

max
D





∫

Rn
log(D(x))dµ(x) +

∫

Rn
log(1 − D(y))dν(y)



. (8)

Now, suppose that the distributions µ and ν have densities given as p(x) and q(x), respectively.

Note that this can only happen under the condition of d ≥ n. This condition is necessary for GANs

to ensure that the discriminator is sufficiently powerful to distinguish real samples from generated

ones. When d ≥ n, the discriminator possesses a greater number of parameters compared to the

sample size in the training dataset. Consequently, this asymmetry facilitates the discriminator’s

ability to effectively differentiate between real and generated samples. If d < n, the discriminator

may not effectively learn to distinguish real from generated samples, resulting in poor-quality

generated samples.

By using the densities, we obtain

V(D, ν) =

∫

Rn

(

log(D(x))p(x) + log(1 − D(x))q(x)

)

dx.
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With the help of the current evolution, the min-max problem given in Eq. (6) evolves to

min
G

max
D

V(D, G) = min
G

max
D

∫

Rn

(

log(D(x))p(x) + log(1 − D(x))q(x)

)

dx.

From the evolved problem, notice that the equation is equal to minν maxD Ṽ(D, ν) under the

condition ν = γ ◦ G−1 for some generator G.

Proposition 1 ([1]). For distributions µ and ν on R
n having densities p(x) and q(x), respectively

max
D

V(D, ν) = max
D

∫

Rn

(

log(D(x))p(x) + log(1 − D(x))q(x)

)

dx

is achieved by Dp,q(x) = p(x)
p(x)+q(x)

for x ∈ supp(µ) ∪ supp(ν).

Proof Let us define the integrand as

f (D(x)) = log(D(x))p(x) + log(1 − D(x))q(x).

To find the optimal solution, we look at the first order condition
d f (D(x))

dD(x)
= 0 and second order

condition
d f 2(D(x))

dD(x)2 = 0. Hence, let us start with

d f (D(x))

dD(x)
=

p(x)

D(x)
−

q(x)

1 − D(x)
= 0.

By solving this equality for D(x) we find the critical point

Dp,q(x) =
p(x)

p(x) + q(x)
.

Now, let us compute the second derivative

d2 f (D(x)

dD(x)2
=

−p(x)

D(x)2
−

q(x)

(1 − D(x))2
.

Then, it is obvious that the second derivative is strictly negative for at least one of p(x) or q(x)

being positive. Therefore, we find the optimal solution Dp,q(x) as

Dp,q(x) =
p(x)

p(x) + q(x)
.

■

As a result of Proposition 1, we can give the following remark immediately.

Remark 1. The discriminator optimal solution of the min-max problem satisfies Dp,q(x) = p(x)
p(x)+q(x)

∈

[0, 1], and this is the requirement for the optimal discriminator.

Note that the optimal solution makes the following sense intuitively:



242 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 3, 234–255

• If some sample x is favorably actual, we may anticipate p(x) to be close to one and q(x) to

converge at zero. Hence, the optimal D assigns one to such samples.

• For a generated sample x = G(z), we anticipate the optimal D to assign zero since p(G(z)) has

to be close to zero. When we train G to its optimal value, density q(x) gets very close to density

p(x), i.e. we obtain Dp,q(G(z)) ≈ 0.5.

As a consequence of Proposition 1, we can introduce the following theorem immediately.

Theorem 1. Suppose p(x) is a probability density function defined on space R
n. Additionally, consider

a probability distribution ν having a density function denoted as q(x) and a discriminator function

D : R
n 7−→ [0, 1] as usual. Then, we have a min-max problem as follows [3],

min
ν

max
D

Ṽ(D, ν) = min
ν

max
D

∫

Rn

(

log(D(x))p(x) + log(1 − D(x))q(x)

)

dx, (9)

and, we reach a solution with a special choice of q(x) = p(x) and D(x) = 1
2 , ∀x ∈ supp(p).

Proof Let us now assume p(x) = q(x) for all x ∈ supp(p). Then, we have D̄(x) = 1/2 and∫
Rn log(1/2)p(x)dx =

∫
Rn log(1/2)q(x)dx = − log(2) as both p and q are probability densities.

For this special choice of p, q, and D, we obtain

Ṽ(D, ν) = − log(4).

Note further that by the definition of the Jensen-Shannon divergence, we have

0 ≤ JS(p||q) = 0.5(KL(p||0.5(p + q)) + KL(q||0.5(p + q))

= 2 log(2) +

∫

Rn

(

p(x) log

(

p(x)

p(x) + q(x)

)

+ q(x) log

(

q(x)

p(x) + q(x)

)

)

dx

= Ṽ(D, ν) + log(4).

Therefore, Ṽ(D, ν) cannot be smaller than − log(4). Thus, we have proved that q(x) = p(x) – and

thus D̄(x) = 1/2 – yields the minimum possible value of Ṽ(D, v) for any ν for the given choice of

D(x) = p(x)/(p(x) + q(x)). Consequently, we end up with the desired result. ■

Theorem 1 reveals that the solution to the min-max problem given by Eq. (9) is the result we

seek under the hypothesis of the distributions having the same densities. Theorem 1 holds for all

distributions in general.

Theorem 2. Suppose that µ again is a probability distribution function given on space R
n as in Theorem 1.

Then, for a probability distribution ν and a discriminator D : R
n 7−→ [0, 1], we can introduce a min-max

problem as follows [3]

min
ν

max
D

Ṽ(D, ν) = min
ν

max
D

∫

Rn

(

log(D(x))dµ(x) + log(1 − D(x))dν(x)

)

, (10)

whose solution is achieved with the special choice ν = µ and D(x) = 1
2 µ−a.e.

Proof We first show that with the special choice of ν = µ and D(x) = 1
2 µ-almost everywhere, the

min-max problem in Equation (10) is solved.
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First, let’s consider the objective function Ṽ(D, ν):

Ṽ(D, ν) =

∫

Rn

(

log(D(x))dµ(x) + log(1 − D(x))dν(x)
)

.

Substituting ν = µ and D(x) = 1
2 , we have:

Ṽ(D, ν) =

∫

Rn

(

log

(

1

2

)

µ(x) + log

(

1 −

1

2

)

µ(x)

)

=

∫

Rn

(

− log(2)µ(x)− log

(

1

2

)

µ(x)

)

= − log(2)

∫

Rn
µ(x)dx + log

(

1

2

) ∫

Rn
µ(x)dx.

Since µ is a probability distribution function, the integral
∫

Rn dµ(x) is equal to 1. Therefore, the

objective function simplifies to:

Ṽ(D, ν) = − log(2) + log

(

1

2

)

= −2 log(2).

Hence, with the choice of ν = µ and D(x) = 1
2 µ-almost everywhere, the objective function

Ṽ(D, ν) is minimized. To complete the proof, we need to show that for any other choice of ν and

D, the objective function Ṽ(D, ν) is not smaller than 0.Let us consider an arbitrary choice of ν ′

and D ′ (where ν ′ ̸= µ or D ′ ̸= 1
2 µ-almost everywhere). Without loss of generality, assume that

there exists a set A ⊂ R
n with positive measure such that D ′(x) ̸= 1

2 for all x ∈ A. Since µ is

a probability distribution function, we have µ(A) > 0. Therefore, we can rewrite the objective

function as:

Ṽ(D ′, ν ′) =

∫

Rn

(

log(D ′(x))dµ(x) + log(1 − D ′(x))dν ′(x)
)

≥

∫

A

(

log
(

D ′(x)
)

dµ(x) + log
(

1 − D ′(x)
)

dν ′(x)

)

.

Now, consider the term log(D ′(x))dµ(x) for x ∈ A. Since D ′(x) ̸= 1
2 for all x ∈ A, we have

log(D ′(x)) < 0 for all x ∈ A. Therefore, log(D ′(x))dµ(x) < 0 for x ∈ A. On the other hand,

consider the term log(1 − D ′(x))dν ′(x) for x ∈ A. Since D ′(x) ̸= 1
2 for all x ∈ A, we have

1 − D ′(x) ̸= 1
2 for all x ∈ A. Therefore, log(1 − D ′(x)) < 0 for all x ∈ A. Since ν ′ is a probability

distribution, dν ′(x) ≥ 0 for all x. Hence, log(1 − D ′(x))dν ′(x) ≤ 0 for x ∈ A. Combining these

results, we have log(D ′(x))dµ(x)+ log(1− D ′(x))dν ′(x) < 0 for x ∈ A. Therefore, Ṽ(D ′, ν ′) < 0.

Since ν ′ and D ′ were chosen arbitrarily, we can conclude that for any other choice of ν and D, the

objective function Ṽ(D, ν) is not smaller than 0. Hence, the solution to the min-max problem in

Equation (10) is achieved with the special choice ν = µ and D(x) = 1
2 µ-almost everywhere. This

completes the proof. ■

Like many min-max problems, we may utilize the alternative optimization algorithm to find an

optimal solution to the problem introduced by Eq. (9) that alternates by updating the discriminator

and density q. Here, the updating process contains first updating the discriminator for density

q, and second, updating density q with recently updated D. Notice that updating density q
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means updating the generator. This process is repeated until we find an equilibrium point for the

optimization.

Proposition 2. If in each step of the training process, D is qualified to achieve an optimum point given

q(x), which is pursued by an update of approximating density q(x) to further develop the criterion of

minimization given as

min
q

∫

Rn

(

log(D(x))p(x) + log(1 − D(x))q(x)

)

dx.

At this stage, the approximating density q converges to the target density p.

Proof First, we show that if the discriminator D is qualified to achieve an optimum point given

q(x) in each step of the training process, then the approximating density q converges to the target

density p. Let us consider the objective function to be minimized:

min
q

∫

Rn

(

log(D(x))p(x) + log(1 − D(x))q(x)
)

dx.

In each step of the training process, the discriminator D is qualified to achieve an optimum point

given q(x). This means that for a fixed q(x), the discriminator D is updated to maximize the

objective function with respect to D. Let’s denote this updated discriminator as D∗
q . Now, let us

consider the objective function with the updated discriminator D∗
q :

min
q∗

∫

Rn

(

log(D∗
q (x))p(x) + log(1 − D∗

q (x))q(x)
)

dx.

Since the discriminator D∗
q is optimized for a fixed q(x), the objective function becomes:

minq

∫

Rn

(

log(D∗
q (x))p(x) + log(1 − D∗

q (x))q(x)
)

dx

= min
q

(∫

Rn

(

log(D∗
q (x))p(x)

)

dx + min

(∫

Rn

(

log(1 − Dq(
∗x))q(x)

)

dx

)

)

.

The first term minq
∫

Rn

(

log(Dq(x))p(x)
)

dx does not depend on q(x) and can be treated as a

constant. Therefore, minimizing this term is equivalent to maximizing
∫

Rn

(

log(Dq(x))p(x)
)

dx.

Similarly, the second term minq
∫

Rn

(

log(1 − Dq(x))q(x)
)

dx does not depend on p(x) and can be

treated as a constant.

Therefore, minimizing this term is equivalent to maximizing
∫

Rn

(

log(1 − Dq((x))q(x)
)

dx. Since

the objective function is the sum of these two terms, minimizing the objective function is equivalent

to maximizing both
∫

Rn

(

log(Dq(x))p(x)
)

dx and
∫

Rn

(

log(1 − Dq(x))q(x)
)

dx.

Now, let us consider the first term
∫

Rn

(

log(Dq(x))p(x)
)

dx. Since Dq(x) is optimized for a fixed

q(x), it can be considered as a constant with respect to p(x). Therefore, maximizing this term is

equivalent to maximizing
∫

Rn p(x)dx.

Similarly, let us consider the second term
∫

Rn

(

log(1 − Dq(x))q(x)
)

dx. Since Dq(x) is optimized

for a fixed q(x), it can be considered as a constant with respect to q(x). Therefore, maximizing
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this term is equivalent to maximizing
∫

Rn q(x)dx. Since the objective function is the sum of these

two terms, maximizing the objective function is equivalent to maximizing both
∫

Rn p(x)dx and∫
Rn q(x)dx.

Now, let us consider the convergence of the approximating density q to the target density p. As we

maximize the objective function, we aim to maximize both
∫

Rn p(x)dx and
∫

Rn q(x)dx. To achieve

this, the approximating density q needs to converge to the target density p. Therefore, if in each

step of the training process, the discriminator D is qualified to achieve an optimum point given

q(x), then the approximating density q converges to the target density p.

This completes the proof. ■

In each step of the process, first, we find the optimal discriminator D∗(x) for the current density

q(x). Later, update density q(x) given the currently updated discriminator D(x) to improve the

accuracy. Repeating such a process finally leads us to the desired solution. In practice, nevertheless,

we infrequently focus on optimizing discriminator D for a provided generator G. Instead, we

generally focus on updating D a little while ago swapping to update generator G.

It is worth emphasizing here that the unconstrained min-max problems given by Eqs. (9) and (10)

are not the same as the original min-max problem introduced in Eq. (6) or the equivalent to

Eq. (7), where the probability distribution ν is constrained to ν = γ ◦ G−1. However, it is useful

in applications to suppose Eqs. (6) and (7) exhibit identical properties introduced in Theorem 2

and Proposition 2. We can suppose the same, even after further restricting the discriminator and

generator functions are neural networks defined as D = Dω and G = Gθ as instead. Then, set

νθ = γ ◦ G−1
θ . Under this setting, the min-max problem becomes minθ maxω V(Dω, Gθ), where

V(Dω, Gθ) = Ex∼µ[log(Dω(x))] +Ez∼γ[log(1 − Dω(Gθ(z))] (11)

=

∫

Rn

(

log(Dω(x))dµ(x) + log(1 − Dω(x))dνθ(x)

)

.

Eq. (11) is the key to executing the fundamental optimization problem. Here, since we do not

know the explicit form of µ (target distribution), we should approximate the expectations through

sample averages. Thus, Eq. (11) helps us to find an approximation to V(Dω, Gθ). More precisely,

suppose a set A that is a subset of samples drawn from the training/original dataset χ (a minibatch)

defined above and suppose a set B that is a minibatch of samples in space R
d sampled from γ.

Under these assumptions, we can approximate as [3]

Ex∼µ[log(Dω(x))] ≈
1

|A|

∑

x∈A

log(Dω(x)),

Ez∼γ[log(1 − Dω(Gθ(z)))] ≈
1

|B|

∑

z∈B

log(1 − Dω(Gθ(z))).

Note that a minibatch in the GANs framework refers to a small subset of training examples fed

to the network in each training iteration. The minibatch size is typically chosen to balance the

computational efficiency of training and the quality of GANs. Smaller minibatches can lead to

faster training; however, they may result in a noisier gradient estimate and slower convergence. On

the other hand, larger minibatches can provide a more accurate gradient estimate; however, they

may require more memory and computational resources to process. During training, generator and

discriminator networks are trained simultaneously by optimizing their respective loss functions

using backpropagation. The minibatches of real data samples and generated samples are used

to compute the discriminator’s loss, while the generator’s loss is computed using the generated



246 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 3, 234–255

samples only. By using minibatches in GANs, the networks can efficiently learn the complex

distribution of the data and generate high-quality synthetic samples.

3 f-divergence and f-GAN concepts

Recall our motivating problem defined for GAN having a probability distribution µ, known simply

for the training samples at hand. We want to find a distribution ν through an iterative process.

By beginning with a probability distribution ν and iteratively updating ν, we approximate the

target distribution µ with ν. To approximate µ, first, we need to measure the distance between

distributions µ and ν. The vanilla GAN uses the discriminator to approximate target distribution

µ. However, we can use other measures to identify the distance between distributions.

f-divergence

We can measure the dissimilarity between any two distributions, in our case target distribution µ

and approximated distribution ν, with the Kullback-Leibler (KL) divergence. Let p(x) and q(x)

be the corresponding probability density functions of µ and ν defined on R
n. Then, the distance

between densities p and q is defined in the following form

DKL(p∥q) :=

∫

Rn
log

(

p(x)

q(x)

)

p(x)dx.

Here, notice that DKL(p∥q) is finite only if q(x) ̸= 0 on supp(p) almost everywhere. At this stage,

we can conclude the following results for KL-divergence [4]:

• If p(x) > q(x), x is a point in the real data with a high probability. This case is the heart of the

‘mode dropping’ phenomenon. It occurs when we have large regions having high values of p,

whereas having small values in q. Here, it is important to remark that if p(x) > 0 and q(x) → 0,

the integrand of DKL rises to infinity very quickly. This means that such a cost function sets an

exceptionally elevated cost to the generator’s distribution that does not cover some data parts.

• If p(x) < q(x), x has a low chance of being a data point, instead of a high chance of being a

generated point. It is faced when we observe the generator producing an unrealistic image.If

we observe p(x) → 0 and q(x) > 0 we find that the value inside the DKL shifts to 0. This means

that such a cost function pays an exceptionally low cost for generating fake samples.

Remark 2. Regarding GANs, DKL(p∥q) has a unique minimum at p(x) = q(x). Furthermore, it does not

require knowing the unknown density p(x) to estimate. However, it is impressive to notice that DKL(p∥q)

is not symmetrical for p(x) and q(x) [3, 4].

Even though KL-divergence is widely used in the applications of GAN, there are other measures to

identify the dissimilarity between distributions. For instance, the Jensen-Shannon (JS) divergence

is given as

D JS(p∥q) :=
1

2
DKL(p∥M) +

1

2
DKL(q∥M),

where M = p(x)+q(x)
2 is a divergence measure derived from KL-divergence.

The most significant benefit of JS-divergence is that it is well-defined for any densities p(x), and

q(x) and symmetric concerning the densities (D JS(p∥q) = D JS(q∥p)) while KL-divergence is not

symmetric.

Following Proposition 1, the minimization part of the min-max problem in the context of the

vanilla GAN is exactly the minimization over density q of D JS(p∥q) for a given p. As things stand,
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DKL and D JS divergences are both particular cases of the f − divergence where a more general

form is introduced in [5] for such divergence measures.

Consider a strictly convex function f (x) with a domain I ⊆ R that satisfies f (1) = 0. Additionaly,

for computation purposes, we interiorize f (x) = +∞, ∀x /∈ I convention. Then, we can introduce

the f-divergence concept as introduced in [3].

Definition 1. Consider two probability density functions p(x) and q(x) defined on space R
n. Then, the

f − divergence between these two densities is

D f (p∥q) = Ex∼q

[

f

(

p(x)

q(x)

)]

=

∫

Rn
f

(

p(x)

q(x)

)

q(x)dx,

where we adopt f ( p(x)
q(x)

)q(x) = 0 if q(x) = 0.

Remark 3. Since the f − divergence is not symmetric (D f (p∥q) ̸= D f (q∥p)) in general, we can confuse

which density divides and which density in the fraction. If we obey the original setting introduced in [5],

then the definition of D f (p∥q) will be our D f (q∥p). In this study, we adopt the definition introduced

in [7], where the f-GAN concept is first introduced.

Proposition 3. Suppose f (·) is a strictly convex function defined on I ⊆ R and f (1) = 0. Further,

suppose either supp(p) ⊆ supp(q) (equivalent to p ≪ q) or f (x) > 0 for x ∈ [0, 1]. Then, for

D f (p∥q) ≥ 0 and D f (p∥q) = 0, the necessary and sufficient condition is p(x) = q(x).

Proof Using the convexity property of function f and Jensen’s inequality, we have

D f (p∥q) = Ex∼q

[

f

(

p(x)

q(x)

)]

≥ f

(

Ex∼q

[

p(x)

q(x)

])

= f

( ∫

supp(q)
p(x)dx

)

= f (r),

where the equality holds if and only if the ratio q(x)/p(x) is a constant or function f is linear on

the range of the ratio p(x)/q(x). The range of p(x)/q(x) depends on the probability distributions

p(x) and q(x) being considered. In general, the ratio p(x)/q(x) can take any positive value, zero,

or infinity, depending on the values of p(x) and q(x) for a given x. However, in the context of

importance sampling, it is common to consider the ratio p(x)/q(x) as a weighting function for

sampling from the target distribution p(x). In this case, the p(x)/q(x) range is typically restricted

to a finite interval to ensure that the importance weights are bounded and can be effectively used

for sampling.

Function f is a strictly convex function, so it may only be previous or for that matter, we should

have p(x) = rq(x) on supp(q) for the equality to hold. Suppose we have the r ≤ 1 condition. If

we have supp(p) ⊆ supp(q), then we obtain r = 1, and hence, we have D f (p∥q) ≥ 0. Such an

equality holds if and only if we have p = q. Suppose f (t) > 0, ∀t ∈ [0, 1), then we also have

D f (p∥q) ≥ f (r) ≥ 0. For r < 1, we have D f (p∥q) ≥ f (r) ≥ 0. Therefore, if D f (p∥q) = 0, the

conditions r = 1 and p = q hold. ■

At this stage, we should note that f − divergence can be specified for arbitrary probability distri-

butions µ and ν on probability space Ω. Let τ be a third probability distribution that satisfies

µ, ν ≪ τ, more specifically both µ and ν are absolutely continuous concerning the third probability

distribution τ. For instance, suppose τ = 1
2 (µ + ν). Let p = dµ

dτ and q = dν
dτ be Radon-Nikodym

derivatives of p and q, respectively. We characterize the f − divergence of probability distributions



248 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 3, 234–255

µ and ν as [3]

D f (µ∥ν) :=

∫

Ω

f

(

p(x)

q(x)

)

q(x)dτ = Ex∼ν



 f

(

p(x)

q(x)

)



. (12)

Here, once more we adopt the convention f

(

p(x)
q(x)

)

q(x) = 0 if q(x) = 0. Here, it is clear that this

definition is free from the choice of the probability measure τ.

In the application of the f − divergence, the greatest difficulty is the unknown explicit expression

of the target distribution denoted by µ. Hence, in the vanilla GAN setting, to calculate the

f − divergence (D f (p∥q)), we should express the divergence in terms of the average of samples.

In [6], this problem is solved with the help of the convex conjugate of the convex function at hand.

Definition 2. Suppose f (·) is a convex function on the interval defined as I ⊆ R. The convex conjugate of f

is simply a generalization of the celebrated Legendre transform. The convex conjugate f ∗ : R 7−→ R∪ {±∞}

is given as [3]

f ∗(y) = sup
t∈I

{

ty − f (t)

}

.

We can introduce the following remark as an immediate result of the definition.

Remark 4. The convex conjugate of convex functions is also called the Fenchel transform or Fenchel-

Legendre transform.

As we mentioned above, we may extend the convex conjugate f ∗ to R by defining f (x) = +∞ for

all x /∈ I. Therefore, a more precise indication of f ∗ is illustrated in the following lemma.

Lemma 1. Let f (x) be a strictly convex and continuously differentiable function on I ⊆ R, where

I◦ = (a, b) with a, b ∈ [−∞,+∞]. Then [3],

f ∗(y) =






y f ′−1(y), y ∈ f ′(I◦)

limt 7→b−(ty − f (t)), y ≥ limt 7→b− f ′(t)

limt 7→a+(ty − f (t)), y ≤ limt 7→a+ f ′(t).

Proof Define g(t) = ty − f (t). Then, g′(t) = y − f ′(t) on I ⊆ R, which is strictly decreasing since

f (t) is convex. Here, g(t) is a function that is strictly concave on the domain defined with I. Note

that, if y = f ′(t∗) for some t∗ ∈ I◦, t∗ is called a critical point of function g. Therefore, t∗ has to

be a global maximum of g. Therefore, g(t) reaches its maximum at point t = t∗ = f ′−1(y). Now,

suppose y is not in the range of f ′, in that case, g′(t) > 0 or g′(t) < 0 on I◦. Suppose the case

g′(t) > 0 ∀t ∈ I◦. Here, it is clear that the supremum of function g(t) is attained while t 7→ b−

because g(t) is a monotonously increasing function. In a similar fashion, the second case g′(t) < 0,

∀t ∈ I◦ may be derived. ■

Based on Lemma 1, we can give the following remark:

Remark 5. Note that +∞ is a potential f ∗ value. Hence, the domain of f ∗ (Dom( f ∗)) is characterized as

sets where f ∗ is finite.

A result of Lemma 1, under the assumption that f is a continuously differentiable function,

supt∈I{ty − f (t)} is achieved for some t ∈ I if and only if, y is in the range of f ′(t). Such a result is
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clear when y ∈ f ′(I◦), however, it is arguable relatively effortlessly for finite boundary points in

domain I. More commonly, without the differentiability assumption, supt∈I{ty − f (t)} is achieved

if and only if y ∈ ∂ f (t) for some t ∈ I (∂ f (t) is set of subderivatives). We summarize some of the

important properties of the convex conjugate in the following proposition [3]:

Proposition 4. Let f (x) be a convex function defined on R having a range R ∪ {±∞}. Then, its convex

conjugate f ∗ is a convex and lower-semi continuous function. Moreover, if f is a lower-semi continuous

function, f satisfies Fenchel duality f = ( f ∗)∗.

Calculation of f-divergence using the convex dual

To calculate the f − divergence from samples, [6] proposes using the convex dual of function f . Let

µ and ν be probability two measures that satisfy µ, ν ≪ τ for some probability measure τ, with

p = dµ/dτ and q = dν/dτ. In the best scenario of µ ≪ ν, by f (x) = ( f ∗)∗(x), we retain

D f (µ∥ν) : =

∫

Ω

f

(

p(x)

q(x)

)

q(x)dτ(x)

=

∫

Ω

sup
t
{t

p(x)

q(x)
− f ∗(t)}q(x)dτ(x) (13)

=

∫

Ω

sup
t
{tp(x)− f ∗(t)q(x)}dτ(x)

≥

∫

Ω

(

T(x)p(x)− f ∗(T(x))q(x)

)

dτ(x)

= Ex∼µ[T(x)]−Ex∼ν[ f ∗(T(x))],

where T(·) denotes any Borel function. Therefore, by considering T overall Borel functions, one

obtains

D f (µ∥ν) ≥ sup
T

(

Ex∼µ[T(x)]−Ex∼ν[ f ∗(T(x))]

)

. (14)

In addition, ∀x, supt{t
p(x)
q(x)

− f ∗(t)} is achieved for some t = T∗(x) if
p(x)
q(x)

is in the f ∗ subderivatives

range [6]. Hence, if it holds for ∀x, we obtain

D f (µ∥ν) = Ex∼ν[T
∗(x)]−Ex∼µ[ f ∗(T∗(x))].

Such equality holds, generally under some light conditions.

Theorem 3. Let f (·) be a strictly convex and continuously differentiable function on the domain I ⊆ R

and let µ and ν be Borel two probability distributions on space R
n that satisfy µ ≪ ν. Then, we have [6]

D f (µ∥ν) = sup
T

(

Ex∼µ[T(x)]−Ex∼ν[ f ∗(T(x))]

)

, (15)

where supT is considered an overall Borel functions defined as T : R
n 7−→ Dom( f ∗). In addition, if the

probability measure p satisfies p(x) ∈ I, ∀x, T∗(x) := f ′(p(x)) is an optimizer of Eq. (15).

Proof We have obtained the upper bound for the problem in Eq. (14) showing the lower bound

part will finish the proof. Let p(x) = dµ(x)/dν(x). Let us analyze Eq. (13) in detail by assuming
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q(x) = 1, and supt

{

tp(x)− f ∗(t)

}

for each x. Let us express gx(t) = tp(x)− f ∗(t), S = Dom( f ∗)

and suppose S◦ = (a, b) where a, b ∈ R ∪ {±∞}. Then, we can introduce a sequence Tk(x) as

follows:

If density function p(x) is in the range of f ∗′, say for instance p(x) = f ∗′(tx), we formed Tk(x) =

tx ∈ S. If p(x)− f ∗′ > 0 for all t, then, gx(t) is a strictly increasing function. Hence, the supremum

of gx(t) is achieved at the upper boundary point b. Therefore, we assign Tk(x) = bk ∈ S, where

bk 7→ b−. Here, if p(x)− f ∗′(t) < 0, ∀t, gx(t) becomes a strictly decreasing function. Therefore,

in this case, the supremum of gx(t) is achieved at the lower boundary point a, and we assign

Tk(x) = ak ∈ S, where ak 7→ a+. By Lemma 1 and its proof, we know that

lim
k 7→∞

(

Tk(x)p(x)− f ∗(Tk(x))

)

= sup
t
{tp(x)− f ∗(t)}.

Thus,

lim
k 7→∞

(

Ex∼ν[Tk(x)]−Ex∼µ[ f ∗(Tk(x))]

)

= D f (µ∥ν).

To show the proof of the last, suppose p(x) ∈ I. Then, again by Lemma 1, define s(t) = f ′−1(t) for

t in the range of f ′, then we can write

f ∗′(t) =

(

ts(t)− f (s(t))

)′

= s(t) + ts′(t)− f ′(s(t))s′(t) = s(t).

Hence, we have g′x(t) = p(x) − f ∗′(t) = p(x) − f ′−1(t). Then, gx(t) has a maximum at t =

f ′(p(x)). This result proves that T∗ = f ′(p(x)) is an optimizer for Eq. (15). ■

Note that Theorem 3 holds for only µ ≪ ν. However, one may give the following theorem for

other cases.

Theorem 4. Let f (t) be a convex function where the domain of f ∗ includes (a,∞) for some a ∈ R. Let µ

and ν be two Borel probability measures on R
n that satisfy µ ≪̸ ν. Then,

sup
T

(

Ex∼µ[T(x)]−Ex∼ν[ f ∗(T(x))]

)

= +∞,

holds. Here, supT is considered an overall Borel function defined as T : R
n 7−→ Dom( f ∗).

Proof Consider a new distribution defined as τ = 1
2 (µ + ν). Then, these two densities satisfy

µ, ν ≪ τ. Moreover, let p = dµ/dτ and q = dν/dτ be the Radon-Nikodym derivatives of the

given densities. Here, we know that µ ≪̸ ν. Therefore, we can find a set S0 with µ(S0) > 0 on

which q(x) = 0. Now, fix a point t0 in the domain of f ∗. Let us define Tk(x) = k for x ∈ S0, and

Tk(x) = t0 otherwise. Then we can introduce,

Ex∼µ[Tk(x)]−Ex∼ν[ f ∗(Tk(x))] ≥ kµ(S0)− f ∗(t0)(1 − ν(S0)) 7−→ +∞

holds. This result leads us to the desired proof. ■

At this stage, notice that the domain of f ∗ has no boundary from above, and Eq. (15) is not satisfied

unless we have µ ≪ ν. In many studies, we face a singular target distribution µ, as the training
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data we are handling might have a lower-dimensional manifold. Hence, we can introduce the

following theorem.

Theorem 5. Consider a function f (·) that is a lower semicontinuous convex function and the domain I∗ of

f ∗ has sup I∗ = b∗ < +∞. Let µ and ν be two Borel probability measures on space R
n, and µ = µs + µab,

where µs ⊥ ν and µab ≪ ν. Then [3],

sup
T

(

Ex∼µ[T(x)]−Ex∼ν[ f ∗(T(x))]

)

= D f (µ∥ν) + b∗µs(R
n),

where supT is carried over all Borel functions given as T : R
n 7−→ Dom( f ∗).

Proof First, let us define τ = 1
2 (µ + ν). Then, it is clear that µ, ν ≪ τ. Here, µ = µab + µs

decomposition is unique and assured by the celebrated Lebesgue decomposition theorem, where

µab ≪ ν and µs ⊥ ν. Furthermore, let pab = dµab/dτ, ps = dµs/dτ, and q = dν/dτ be the

Radon-Nikodym derivatives of the densities. Here, we can divide R
n into R

n = Ω ∪ Ω
c, where

Ω = supp(q). Then, we have q(x) = pab(x) = 0 for x ∈ Ω
c since we have µs ⊥ ν. Hence,

sup
T

(

Ex∼µ[T(x)]−E[ f ∗(Tk(x))]

)

= sup
T

∫

Ω

(

T(x)pab(x)− f ∗(T(x)))q(x)

)

dτ

+ sup
T

∫

Ωc
T(x)pab(x)dτ

= sup
T

∫

Ω

(

T(x)
pab(x)

q(x)
− f ∗(T(x))

)

q(x)dτ + b∗µs(Ω
c)

=

∫

Ω

f

(

pab(x)

q(x)

)

q(x)dτ + b∗µs(R
n)

=

∫

Ω

f

(

p(x)

q(x)

)

q(x)dτ + b∗µs(R
n)

= D f (µ∥ν) + b∗µs(R
n).

■

Variational divergence minimization (VDM) with f-GANs

It is possible to generalize the standard vanilla GAN with the help of f − divergence measures. For

a given probability distribution µ, f -GAN aims to minimize the distance between distributions via

D f (µ∥ν), concerning the probability distribution ν. Fulfilled in the sample space, f -GAN solves

the min-max problem given as

min
ν

sup
T

(

Ex∼ν[T(x)]−Ex∼µ[ f ∗(T(x))]

)

. (16)

The f -GAN framework came on to stage primarily in [7], and the optimization problem given in

Eq. (16) guides us to the (VDM).

Note that the VDM looks identical to the min-max problem given for the vanilla GAN. Here,

the Borel function T is named a critic function, or shortly a critic. With the assumption µ ≪ ν,

by Theorem 3 it is equal to minν D f (µ∥ν). As we mentioned earlier, one possible problem of

the f-GAN is facing µ ≪̸ ν in Theorem 4. Then, Eq. (16) is generally not equal to minν D f (µ∥ν).

Luckily, some particularly selected f , such a case is not a problem anymore.
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Theorem 6. Suppose f (t) is such a function that is lower semicontinuous and strictly convex, and the

domain denoted as I∗ of convex conjugate f ∗ satisfies sup I∗ = b∗ ∈ [0,∞). Additionally, suppose that

f is a continuously differentiable function on its domain and satisfies f (t) > 0, ∀t ∈ (0, 1), and let µ be

Borel probability measures on space R
n. Under these assumptions, we obtain our unique optimizer for [7]

inf
ν

sup
T

(

Ex∼ν[T(x)]−Ex∼µ[ f ∗(T(x))]

)

,

as ν = µ. Here, supT is assessed overall Borel functions T : R
n 7−→ Dom( f ∗) while infν is assessed

overall potential Borel probability measures.

Proof From Theorem 5, for any Borel probability measure ν, we can write the following

sup
T

(

Ex∼µ[T(x)]−Ex∼ν[ f ∗(T(x))]

)

= D f (µ∥ν) + b∗µs(R
n) ≥ D f (µ∥ν).

By Proposition 3, such equality holds if and only if ν = µ. Consequently, ν = µ becomes our

unique optimizer for GANs. ■

Some remarks on special solutions

Remark 6. Suppose that both the density functions p(x) and q(x) satisfy p(x) = q(x). Then, the optimal

value becomes D∗(x) = 1/2. For such a special case, we have a loss function as [1]

L(G∗, D∗) =

∫

Rn

(

p(x) log(D∗(x)) + q(x) log(1 − D∗(x))

)

dx

= log(
1

2
)

∫

x
p(x)dx + log(

1

2
)

∫

Rn
q(x)dx

= −2log(2).

Furthermore, if we calculate JS divergence, we have

D JS(µ∥ν) =
1

2
DKL

(

µ∥
µ + ν

2

)

+
1

2
DKL

(

ν∥
µ + ν

2

)

=
1

2

(

log(2) +

∫

Rn
p(x) log

(

p(x)

p(x) + q(x)

)

dx

)

+
1

2

(

log(2) +

∫

Rn
q(x) log

(

q(x)

p(x) + q(x)

)

dx

)

=
1

2

(

log(4) + L(G, D∗)

)

. (17)

By rearranging Eq. (17), we find

L(G, D∗) = 2D JS(µ∥ν)− 2 log(2).

As an immediate result, we can also give the following remark.

Remark 7. Under the assumptions given in the preceding remark, the followings hold [3]:

• Fundamentally, the objective of a GAN loss function is to quantify the similarity between the generated

data distribution ν and the real sample distribution µ by using D JS under the optimal discriminator D
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condition. The best generator (G∗) imitates the distribution of real data, which leads us to the minimum

given as L(G∗, D∗) = −2 log 2.

• If we train the discriminator D until it convergences, its error approximates 0. This indicates that the

D JS between the distributions has reached its maximum (it is easy to see that 0 ≤ D JS(µ∥ν) ≤ ln(2)).

We can find it only if their distributions are not continuous (meaning: their densities are not absolutely

continuous functions) or the distributions have disjoint supports. One potential reason behind the

noncontinuity of the distribution is if their supports rely on low-dimensional manifolds. For such a case,

there is substantial empirical and theoretical evidence to believe that the generated data distribution ν is

focused on a low-dimensional manifold for many datasets.

• If both µ and ν rest in low-dimensional manifolds, they are almost undoubtedly disjoint. If the distribu-

tions have disjoint supports, we can always find a perfect discriminator that divides real and fake samples

100% accurately.

4 Concluding remarks

In this study, we discovered and explored the mathematical background of GANs to illustrate

a deep understanding of them for further extensions. Hence, in this study, we took a detailed

tour of the mathematics behind GANs. After the celebrated work of Goodfellow et al. [1], new

adversarial training objectives and techniques for generative modeling have been developed,

such as Wasserstein GANs [8, 9]. Furthermore, GANs have been widely applied to new fields

of research, including mathematical finance [10–12], time series generation [13, 14], audio syn-

thesis [15], and fraud detection in financial datasets [16]. The underlying mathematics for these

models are obviously different from what we have discussed above, but the study is a good

starting point nonetheless.
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Abstract

In this paper, we develop a nonlinear deterministic model that incorporates public awareness and
treatment to describe the dynamics of HIV/AIDS in an infected population with detectable and
undetectable viral load. The model undergoes backward bifurcation in which a stable disease-free
equilibrium coexists with a stable endemic equilibrium. Numerical simulations carried out show the
behavior of the state variables and the impact of public awareness in controlling the spread of HIV.
The results show that public awareness will help in curtailing the spread of HIV infection, and when
treatment is applied to infected individuals with detectable viral load can easily suppress their virus to
become undetectable so that they cannot transmit HIV through sexual intercourse.

Keywords: HIV; viral load detectability; parameter calibration; bifurcation analysis; confidence interval

AMS 2020 Classification: 34C23; 62P10; 92B05; 92D25

1 Introduction

Human Immunodeficiency Virus (HIV) is a virus affecting the cells of the immune system (CD4+

T) making the body vulnerable to other infectious diseases [1, 2]. CD4+ T cells are orchestrators,

regulators, and direct effectors of antiviral immunity [1]. If HIV is not treated, it leads to a severe
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stage of HIV infection called Acquired Immunodeficiency Syndrome (AIDS) [3]. The virus is

transmitted via direct contact with different kinds of body fluids such as blood, vaginal fluids,

rectal fluids, semen, and breast milk of the infected individual or through mother to her child

during the pregnancy period (i.e, vertical transmission) [3, 4]. HIV still remains one of the most

severe global public health threats [5, 6]. Since its emergence, more than 79.3 million people

became infected with HIV/AIDS, among which 36.3 million people have died from AIDS-related

illness [5]. About 37.7 million people were living with HIV by 2020 [5]. As of 2020, out of the

total HIV-infected individuals, about 20.6 million people (55%) with HIV were in Eastern and

Southern Africa, 4.7 million people (13%) in Western and Central Africa, 5.7 million people (15%)

in Asia and the Pacific region and 2.2 million people (6%) in Western and Central Europe and

North America [5]. The majority of people infected with HIV are from low and middle-income

countries.

As part of global commitment to decrease the transmission of HIV infection, the number of people

accessing Antiretroviral Therapy (ART) has increased significantly from 7.8 million in 2010 to 27.5

million in 2020. New infection declined by 30% from 2.1 million in 2010 to 1.5 million people,

and 84% of people living with HIV are aware of their status, while the remaining 16% needs

access to be diagnosis and HIV test [5]. Before the introduction of ART, a minority of the people

infected with HIV maintained normal CD4+ cell counted healthy range of (450–1650 cells/ml)

and remained symptoms-free without treatment for several years and did not progress to AIDS

stages [7]. Some of these individuals have low or non-detectable viral load and are referred to as

non-progressors, classified as long-term non-progressors and controllers due to their resistance to

viral replication in the absence of ART. Controllers are sub-divided into elite controllers (EC) with

HIV RNA less than 50 copies/ml and Viremic Controllers (VCs) with 50 − 2000 copies/ml [7, 8].

HIV treatments aim at reducing the viral load until the virus is no longer detectable.

It was reported that taking a full dose of ART could effectively suppress the viral load (i.e., the

amount of HIV in a person’s blood) of infected individuals [4]. If the viral load is lower than

200 copies/ml in blood, it is unlikely to be detected using a blood antibody test. In this scenario,

an infected individual cannot transmit HIV through sexual intercourse [9]. Up till now, there is no

cure for HIV infection. Still, the ART helps to suppress viral replication within the patient’s body

and allows immune system recovery to strengthen and regain the ability to fight new infection [4].

WHO endorsed ART regardless of CD4+ cell count to all people with HIV in 2016. Also, ART

should be offered simultaneously with diagnosis among individuals that are ready for treatment.

In June 2021, 187 countries adopted the first recommendation, and 82 low- and middle-income

countries implemented the second policy [4].

Many models have been formulated to study the dynamics of HIV/AIDS infection with differ-

ent control strategies incorporated in the model. The study by [10] showed that public health

awareness on risk behaviours could help in decreasing the persistence of HIV/AIDS. A mathe-

matical model for assessing the impact of condom usage, ART and voluntary testing in decreasing

the spread of HIV was proposed by [6]. The study revealed that the hope of controlling HIV

transmission using the intervention listed was highly remarkable. Furthermore, a study by [11]

highlighted that the rate of vertical transmission which leads to an increase in the pre-AIDS

and AIDS population is proportional to the infective population. The spread of the diseases can

be reduced significantly by controlling the vertical population. A study by Bhunu et al. [12]

suggested that even in the absence of ART, effective guidance and testing have tremendous effects

on the prevention and control of the epidemic. [13] analyzed HIV/AIDS dynamics for a situation

when only HIV-infected individuals who did not develop AIDS symptoms and are not under

ART transmit the HIV virus. Recently, nonlinear fractional order models are also used to describe

HIV/AIDS transmission dynamics. [14] proposed a dynamical fractional first-order HIV-1 with
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Caputo derivative that studies the infection between cancer cells, healthy CD4+ T lymphocytes

and virus-infected CD4+ T lymphocytes. The result revealed that fractional order derivatives

have a significant effect on the dynamics process. The fractional order model of viral kinetics for

primary infection of HIV-1 with immune control and treatment was analyzed by [15]. A nonlinear

fractional-order HIV epidemic model solved via the L1 scheme was proposed by [16]. The result

showed that the homotopy analysis method applied has effectiveness and strength in solving

a compartmental model. Naik et al. [17] proposed a nonlinear fractional order model for HIV

transmission dynamics with optimal control. The study recommended that to decrease the spread

of HIV infections there is a need for personal precaution and periodic monitoring by researchers

and medical professionals.

For further references to the related studies mentioned above, one can visit [6, 10, 17–21]. In this

research work, we have formulated a new mathematical model of HIV/AIDS dynamics consid-

ering infected individuals with detectable viral load and infected individuals with undetectable

viral load.

The significance of this research is to assess the impact of viral load detectability on HIV/AIDS

transmission when some of the infected individuals with low viral load (undetectable viral load)

can not transmit HIV sexually, and also assess the impact of public education and treatment on

uninfected and infected population, respectively.

The paper is organized as follows: the model is developed and analyzed in Sections 2 and 3,

respectively. Basic reproduction number, equilibria, and their stabilities and bifurcation analysis

are given in 4. Model fitting, parameter estimation, and sensitivity analysis are conducted and

presented in Section 5. Numerical simulation of the model is presented in Section 6. Discussion of

the results and conclusion are provided in Section 7.

2 Model description

A nonlinear mathematical model is developed to study the transmission dynamics of HIV/AIDS to

assess the impact of public awareness and treatment on the overall dynamics. The total population

at time t, denoted by N(t) is divided into the following disjoint compartments: uneducated

susceptible Su(t) (individuals that are unaware on how to prevent HIV infection), educated

susceptible Se(t) (individuals that are aware on how to prevent HIV infection), newly infected

individuals I1(t), infected with detectable viral load I2(t) (infected individuals with higher viral

load (> 200 copies/ml) that can be detected using a blood test and they can transmit HIV through

sexual intercourse), infected with undetectable viral load I3(t) (infected individuals with a low

level of HIV virus in their blood (< 200 copies/ml) that can not be detected using blood test

and they cannot transmit the disease through sexual intercourse), infected individuals receiving

treatment It(t), AIDS patients(infected individuals with higher viral load and developed certain

opportunistic infections). The risk behaviours that can lead to HIV/AIDS infection include

unprotected sex, sharing of drugs and injection needles, lack or absence of blood tests for couples

before getting married, or lack of condom usage during sex. We considered sexual transmission as

the only mode of transmission, as such I3 are considered non-infectious since they can not transmit

HIV through sex, and assumed AIDS patients to be sexually inactive because their immune system

is weak and unable to fight infections which cause several opportunistic diseases to them.

Recruitment of new individuals into the susceptible population occurs at a rate π (which are

assumed to be sexually active and susceptible to HIV infection). p is the fraction of recruited

individuals that are educated. Uneducated susceptible individuals become educated through

public awareness campaigns on HIV infection at a rate τ. Susceptible uneducated and educated

individuals become infected when in contact with the infected individuals at a rate λ and αλ,

respectively. It is assumed that susceptible educated are avoiding risk behaviour which reduces
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their rate of HIV infection by α, with 0 < α < 1. Newly infected individuals become either

infected with detectable viral load at a rate ϵθ or infected controllers which are undetectable at a

rate (1 − ϵ)θ where θ is the progression rate from the newly infected compartment, while ϵ is the

fraction of newly infected with detectable viral load. Infected individuals with detectable viral

load move to treatment at a rate ϕ while some progress to AIDS at the rate ρ. Infected individuals

under treatment when taking a full dose of ART their viral load will be undetectable through

a blood test and assumed to move into the infected undetectable viral load class at the rate γ.

Infected with the undetectable viral load when their viral load becomes detected through blood

test moves to infected detectable class at the rate ω.

AIDS patients move to treatment class at a rate σ. Natural death of individuals occurs at a

rate µ. δ1 and δ2 are the disease mortality rates of infected individuals at AIDS and treatment

compartment, respectively, where δ2 < δ1 (we assume that individuals under treatment die

at a rate less than AIDS patients that refused to go for treatment). Thus, we have N(t) =

Su(t) + Se(t) + I1(t) + I2(t) + I3(t) + It(t) + A(t).

Figure 1. Schematic diagram of model (1). Solid arrows indicate transitions and expressions next to arrows show

the per capita flow rate between compartments.

By considering the explanations of the model parameters and compartments, we obtain the
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following system:

dSu

dt
= π(1 − p)− (µ + τ + λ)Su,

dSe

dt
= πp + τSu − (µ + αλ)Se,

dI1

dt
= λ(Su + αSe)− (µ + θ)I1,

dI2

dt
= ϵθ I1 + ωI3 − (µ + ρ + ϕ)I2,

dI3

dt
= (1 − ϵ)θ I1 + γIt − (µ + ω)I3,

dIt

dt
= ϕI2 + σA − (µ + γ + δ2)It,

dA

dt
= ρI2 − (µ + σ + δ1)A,

(1)

where, the force of infection for the transmission of HIV in this model is given by, λ = β( η1 I1+η2 I2+It
N )

and β is the effective contact rate that may result in HIV/AIDS infection, η1, and η2 (η1 > η2)

denote an increase in infectiousness for newly infected individuals and infected individuals with

higher viral load, respectively.

The description of the variables and parameters of the model are shown in Table 1.

Table 1. Interpretation and definitions of the state variables and parameters used in model (1).

Variable Description

N Total human population

Su Uneducated susceptible individuals

Se Educated susceptible individuals

I1 Newly infected individuals

I2 Infected individuals with detectable viral load

I3 Infected individuals with undetectable viral load

It Infected individuals under treatment

A AIDS patients

λ Force of infection

Parameter

π Recruitment rate of susceptible individuals

µ Natural mortality rate

δ1, δ2 Death rate due to disease

p Proportion of π that are educated

τ Rate at which uneducated susceptible become educated about HIV infection

β Effective contact rate

α Parameter for decrease of infectiousness in Se

θ Rate of movement from infectious class

ϵ Fraction of the rate of movement from infectious compartment

ϕ Movement rate of infected with detectable viral load to treatment

ρ Progression rate to AIDS compartment

γ Rate at which treated individuals become undetectable viral load

ω Rate at which infected individuals with undetectable viral load become detectable

σ rate of movement of AIDS patients to treatment class at a rate

η1, η2 Infectiousness factor for newly infected and individuals with higher viral load
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3 Analysis of the model

Boundedness and positivity of solutions

The model deals with the human population, each of its parameters, and the state variables are

non-negative for all t ≥ 0. We can now prove that each of the state variables of model (1) are

non-negative for all t ≥ 0.

Theorem 1 System (1) defines a dynamical system in the closed set, given by,

Ω =

{
(Su(t), Se(t), I1(t), I2(t), I3(t), It(t), A(t)) ϵ R7

+ : N ≤
π

µ

}
.

Proof We are to show that R7
+ is positively invariant, that is all solution of system (1) initiated in Ω

do not leave Ω see (Theorem 2.1.5) of [22]. Let Su(0) > 0, Se(0) > 0, I1(0) > 0, I2(0) > 0, I3(0) >

0, It(0) > 0, and A(0)) > 0. Suppose Su(0) and Se(0) are not positive, then there exists a time

t̃ > 0, such that Su(t) > 0 and Se(t) > 0 for t ∈ [0, t̃) and Su(t̃) = Se(t̃) = 0.

From the third, fourth, and fifth equation of model (1), we obtain,

dI1(t)

dt
≥ −(θ + µ)I1(t) for t ∈ [0, t̃),

dI2(t)

dt
≥ −(ρ + Φ + µ)I2(t) for t ∈ [0, t̃),

dI3(t)

dt
≥ −(µ + ω)I3(t) for t ∈ [0, t̃),

dIt(t)

dt
≥ −(γ + µ + δ2)It(t) for t ∈ [0, t̃),

dA(t)

dt
≥ −(µ + σ + δ1)A(t) for t ∈ [0, t̃).

(2)

It follows that I1(0) > 0, I2(0) > 0, I3(0) > 0, It(0) > 0 and A(0) > 0 for t ∈ [0, t̃). Thus, from the

first and second equations of the system, we have

dSu(t)

dt
≥ −(τ + µ + λ)Su(t) for t ∈ [0, t̃),

dSe(t)

dt
≥ −(µ + αλ)Se(t) for t ∈ [0, t̃).

One can clearly see that, Su(0) > 0 and Se(0) > 0 which contradict our assumption of Su(t̃) =

Se(t̃) = 0. Hence Su(t) and Se(t) are positive. Similarly, the positivity of the remaining state

variable of the model can be seen from subsystem of (1) excluding the first and second equation

written in matrix form as follows:

dX(t)

dt
= MY(t) + B(t), (3)
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with

Y(t) =
(

I1, I2, I3, It, A
)T

,

M =















η1K − K1 η2K 0 K 0

ϵθ −K2 ω 0 0

K6θ 0 −K3 γ 0

0 Φ 0 −K4 σ

0 ρ 0 0 −K5















,

B(t) =
(

0 0 0 0 0
)T

,

(4)

where, K = β Su+αSe
N , K1 = θ + µ, K2 = ρ + Φ + µ, K3 = ω + µ, K4 = γ + µ + δ2, K5 = σ + µ + δ1

and K6 = (1 − ϵ). Clearly, M is a Metzler matrix for the fact that both Su(t) and Se(t) are non-

negative. Which shows subsystem (3) is a monotone system [23]. Thus, R
5
+ is invariant under the

flow of subsystem (3). Therefore, R
7
+ is positively invariant under the flow of system (1). ■

System (1) has a disease-free equilibrium which is determined by setting its right-hand sides to

zero.

ϵ0 = (S0
u, S0

e , I0
1 , I0

2 , I0
3 , It, A) =

(

π(1 − P)

τ + µ
,

π(τ + µp)

µ(τ + µ)
, 0, 0, 0, 0, 0

)

.

4 Basic reproduction number

The basic reproduction number (denoted by R0 = ρ(FV−1), where ρ is the spectral radius of

the next generation matrix, (FV−1) of model (1) is the number of new infections produced by

HIV infected individuals with a detectable viral load when interacted with the fully susceptible

population in the absence of awareness and treatment. It is determined using the next generation

matrix approach [24] to establish the stability of the equilibrium. The matrix F represents the new

infection terms and V for the remaining transition terms are respectively given by, R0

F =























η1β (S0
u+α S0

e )
N0

η2β (S0
u+α S0

e )
N0 0

β (S0
u+α S0

e )
N0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0























, (5)

V =





















K1 0 0 0 0

−εθ K2 −ω 0 0

−K6θ 0 K3 −γ 0

0 −ϕ 0 K4 −σ

0 −ρ 0 0 K5





















. (6)
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The basic reproduction number R0 is obtained as,

R0 =
β ((K4K6η2θ + ϕ (−γ η1 + K6θ))ω + ((εθ η2 + η1K2)K4 + ϕ εθ)K3)K5 (µ(1 − p) + α(τ + µp))

k1 ((−γ ω ϕ + K2K3K4)K5 − γ ω ρ σ) (τ + µ)

+
βρ σ ((−γ η1 + K6θ)ω + K3εθ) (µ(1 − p) + α(τ + µp))

k1 ((−γ ω ϕ + K2K3K4)K5 − γ ω ρ σ ) (τ + µ)
,

where K1 = θ + µ, K2 = ρ + ϕ + µ, K3 = ω + µ, K4 = γ + µ + δ2, K5 = σ + µ + δ1, K6 = (1 − ϵ)

and are all positives.

Theorem 2 The disease-free equilibrium (DFE) ϵ0, of model (1), is locally-asymptotically stable (LAS) in

Ω if R0 < 1, and unstable if R0 > 1.

Global stability of disease-free equilibrium

Theorem 3 The disease-free equilibrium (DFE) ϵ0, of model (1) is globally-asymptotically stable (GAS) in

Ω if R0 < 1, and unstable if R0 > 1.

Proof To prove the GAS of DFE, the two axioms [G1] and [G2] must be satisfied for R0 < 1 [25].

We re-write system (1) in the form:

dY1

dt
= F(Y1, Y2),

dY2

dt
= G(Y1, Y2) : G(Y1, 0) = 0,

(7)

where Y1 = (S0
u, S0

e ) and Y2 = (I0
1 , I0

2 , I0
3 , I0

t , A0) with the elements of Y1 ∈ R2
+ representing the

uninfected population and the elements of Y2 ∈ R5
+ representing the infected population.

The DFE is now denoted as E0 = (Y∗
1 , 0), where Y∗

1 = (N0, 0). Now for the first condition, that is

GAS of Y∗
1 , gives,

dY1

dt
= F(Y1, 0) =

[

π(1 − P)− (µ + τ)S0
u

πp + τS0
u − µS0

e

]

.

Solving the linear differential equations gives,

S0
u(t) =

π(1 − p)

(µ + τ)
−

π(1 − p)

(µ + τ)
e−(µ+τ)t + S0

u(0)e
−(µ+τ)t,

S0
e (t) =

πp + τS0
u

µ
−

πp + τS0
u

µ
e−µt + S0

e (0)e
−µt.

Now, it is easy to show that S0
u(t) + S0

e (t) → N0(t) as t → ∞ regardless of the value of S0
u(t) and

S0
e (t). Thus, Y∗

1 = (N0, 0) is globally asymptotically stable. Furthermore, for the second condition,
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that is G̃(Y1, Y2) = BY2 − G̃(Y1, Y2) gives:

B =















−(µ + θ) + βη1S0
u

N0 + αβη1S0
e

N0
βη2S0

u

N0 + βη2S0
e

N0 0
βS0

u+αβS0
e

N0 0

ϵθ −(µ + ρ + ϕ) ω 0 0

(1 − ϵ)θ 0 −(µ + ω) γ 0

0 ϕ 0 −(µ + δ2 + γ) σ

0 ρ 0 0 −(µ + δ1 + σ)















.

(8)

This is clearly Metziller matrix

G̃(Y1, Y2) =















λS0
u + αλS0

e − (µ + θ)I0
1

ϵθ I0
1 + ωI0

3 − (µ + ρ + ϕ)I0
2

(1 − ϵ)θ I0
1 + γI0

t − (µ + ω)I0
3

ϕI0
2 + σA0

− (µ + γ + δ2)I0
t

ρI0
2 − (µ + σ + δ1)A0















. (9)

Then,

G̃(Y1, Y2) = BY2 − G̃(Y1, Y2) =















0

0

0

0

0















.

Thus we have

G̃(Y1, Y2) =
[

0 0 0 0 0
]T

,

It is clear that G̃(Y1, Y2) = 0. ■

Endemic equilibrium point

When HIV persists in the population, at least one of the infectious compartments of model (1) is

not empty. As such, model (1) has endemic equilibrium which is obtained by setting the vector

field of the model (1) to zero. Defined the endemic equilibrium state as;

ϵ∗∗ = (S∗∗
u , S∗∗

e , I∗∗1 , I∗∗2 , I∗∗3 , I∗∗t , A∗∗),

where,

S∗∗
u =

π (1 − p)

λ∗∗ + µ + τ
,

S∗∗
e =

π (Pλ∗∗ + Pµ + Pτ + τ)

α λ∗∗2 + α λ∗∗ µ + α λ∗∗ τ + λ∗∗ µ + µ2 + µ τ
,

I∗∗1 =
λ∗∗ π (Pα λ∗∗ + Pα µ + Pα τ + α λ∗∗ + α τ + µ)

K1

(

α λ∗∗2 + α λ∗∗ µ + α λ∗∗ τ + λ∗∗ µ + µ2 + µ τ
) ,

(10)
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I∗∗2 = −

(ϵ K3 + ω K6) λ∗∗ (((λ∗∗ + τ) α + µ)π (1 − p) + Pπ α (λ∗∗ + µ + τ)) θ K5K4

(λ∗∗ + µ + τ) (α λ∗∗ + µ)K1 (γ (ϕ K5 + ρ σ)ω − K2K3K4K5)
,

I∗∗3 = −

λ∗∗ (((λ∗∗ + τ) α + µ)π (1 − p) + Pπ α (λ∗∗ + µ + τ)) θ ((ϵ γ ϕ + K2K4K6)K5 + γ ρ ϵ σ)

(λ∗∗ + µ + τ) (α λ∗∗ + µ)K1 ((γ ω ϕ − K2K3K4)K5 + γ ω ρ σ)
,

I∗∗t = −

(ϵ K3 + ω K6) λ∗∗ (((λ∗∗ + τ) α + µ)π (1 − p) + Pπ α (λ∗∗ + µ + τ)) (ϕ K5 + ρ σ) θ

((γ ω ϕ − K2K3K4)K5 + γ ω ρ σ)K1 (α λ∗∗ + µ) (λ∗∗ + µ + τ)
,

A∗∗ = −

(ϵ K3 + ω K6) λ∗∗ (((λ∗∗ + τ) α + µ)π (1 − p) + Pπ α (λ∗∗ + µ + τ)) θ ρ K4

(λ∗∗ + µ + τ) (α λ∗∗ + µ)K1 (γ (ϕ K5 + ρ σ)ω − K2K3K4K5)
.

Existence of Endemic Equilibrium

Descartes rule of signs is applied in determining the existence of EEP.

Descartes rule of sign

Let P(x) be a polynomial of degree n such that n ≥ 2 with real coefficients. The number of positive

roots or zeros of P is equal to the number of changes of sign of P(x) or less by an even number.

The force of infection at equilibrium of 1 is given by;

λ∗∗ = β(
η1 I∗∗1 + η2 I∗∗2 + I∗∗t

N∗∗
), (11)

where,

N∗∗ = S∗∗
u + S∗∗

1 + I∗∗2 + I∗∗3 + I∗∗t + A∗∗.

Substituting Eq. (10) into Eq. (11) gives λ∗∗ = 0 and the quadratic equation in terms of λ∗∗ stated

as follows;

C1λ∗∗2
+ C2λ∗∗ + C3 = 0, (12)

where,

C1 = α[(ϕ + ρ) (µ + δ2)ωK5 + (µ + δ1) ργω + (K2 + ω) µK4K5

+ θ (ϵK3 + ωK6) (K4K5 + ϕK5 + ρσ + ρK4)] + α [(ϵγϕ + K2K4K6) θK5 + γρσϵθ] ,

C2 =[(ϕ + ρ) (µ + δ2)ωK5 + (µ + δ1) ργω + (K2 + ω) µK4K5][K1(α(1 − p) + p) + α (µ + τp) + µ (1 − p)]

+ (ϵ K3 + ω K6) θ (K4K5 + ϕK5 + ρσ + ρK4) + (ϵγϕ + K2K4K6) θK5 + γρσϵθ

− αβ [η1 ((ϕ + ρ) (µ + δ2)ωK5 + (µ + δ1) ργω + (K2 + ω) µK4K5)]

+ (ϵ K3 + ω K6) θ (η2K4K5 + ϕK5 + ρσ) ,

C3 = K1 (µ + τ) [(ϕ + ρ) (µ + δ2)ωK5 + (µ + δ1) ργω + (K2 + ω) µK4K5] (1 − Ro) .

The following results from the quadratic equation (12) are validated using the theorem below.

Theorem 4 The endemic equilibrium (EE) of model (1) has a unique positive equilibrium whenever R0 > 1.

• (a) If C2 > 0 and

(i) C3 ≥ 0, model (1) has no positive equilibrium

(ii) C3 < 0, model (1) has a unique positive equilibrium

• (b) If C2 < 0 and C3 > 0 and

(i) C2
2 − 4C1C3 > 0 model (1) has two positive equilibria
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(ii) C2
2 − 4C1C3 = 0 model (1) has a unique positive equilibrium

(iii) C2
2 − 4C1C3 < 0 model (1) has no positive equilibrium

• (c) If C2 < 0 and C3 ⩽ 0, model (1) has a unique positive equilibrium.

Clearly, C1 is always a positive real number, since all the parameters of the model are positive.

The following cases are considered.

• case 1:if C2 > 0 and C3 ≥ 0 ⇐⇒ R0 ⩽ 1

The quadratic equation (12) has no positive real root, which implies the model has no positive

equilibrium.

• Vase 2: if C2 > 0 and C3 < 0 ⇐⇒ R0 > 1

The quadratic equation (12) has one positive real root, which implies the model has a unique

positive equilibrium.

• Case 3: if C2 < 0 and C ⩽ 0 ⇐⇒ R0 ⩽ 1

The quadratic equation (12) has one positive real root, which implies the model has a unique

positive equilibrium.

• Case 4: if C2 < 0 and C3 > 0 ⇐⇒ R0 < 1

Quadratic equation (12) has either two, one or no positive real root depending on C2
2 − 4C1C3,

which implies the model has either two positive equilibria, unique positive equilibrium or no

positive equilibrium.

From Case (4) when R0 < 1, we have two equilibria exist. This implies the occurrence of backward

bifurcation in model (1).

Bifurcation analysis

The HIV/AIDS dynamics model (1) exhibits backward (Subcritical) bifurcation near Ro = 1, that

is the coexistence of disease-free equilibrium and endemic equilibrium when R0 < 1. The epi-

demiological consequence of backward bifurcation is that R0 < 1 will not guarantee the condition

for disease control.

Centre manifold theorem stated in [25] is applied to model (1) for bifurcation analysis, to analyze

the stability near disease-free equilibrium at R0 = 1.

Let β = β∗∗ be the bifurcation parameter and R0 = 1,

which implies;

β∗∗ = k1((−γ ω ϕ+K2K3K4)K5−γ ω ρ σ)(τ+µ)
(((K4K6η2θ+ϕ (−γ η1+K6θ))ω+((εθ η2+η1K2)K4+ϕ εθ)K3)K5+ρ σ((−γ η1+K6θ)ω+K3εθ))(µ(1−p)+α(τ+µp))

.

The Theorem is applied by making the change of variables, let,

Su = x1, Se = x2, I1 = x3, I2 = x4, I3 = x5, It = x6 and A = x7 such that, N = x1 + x2 + x3 + x4 +

x5 + x6 + x7.

Therefore; the equation of model (1) can be written in the form:

dX

dt
= ( f1, f2, f3, f4, f5, f6, f7)

T,

such that
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dX1

dt
= f1 = π(1 − p)− (µ + τ)x1 −

β∗∗x1(η1x3 + η2x4 + x6)

N
,

dX2

dt
= f2 = πp + τx1 − µx2 +

αβ∗∗x2(η1x3 + η2x4 + x6)

N
,

dX3

dt
= f3 =

β∗∗x1(η1x3 + η2x4 + x6)

N
+

αβ∗∗x2(η1x3 + η2x4 + x6)

N
− (µ + θ)x3,

dX4

dt
= f4 = ϵθx3 + ωx5 − (µ + ρ + ϕ)x4,

dX5

dt
= f5 = (1 − ϵ)θx3 + γx6 − (µ + ω)x5,

dX6

dt
= f6 = ϕx4 + σx7 − (µ + γ + δ2)x6,

dX7

dt
= f7 = ρx4 − (µ + σ + δ1)x7.

(13)

Now, the Jacobian matrix of system (13) at disease-free equilibrium ϵ0 is given by,

J(ϵ0) =

































−D1 0 −η1D2 −η2D2 0 D2 0

τ −η1 −η1D3 −η2D3 0 −D3 0

0 0 η1(D2 + D3)− K3 η2(D2 + D3) 0 (D2 + D3) 0

0 0 ϵθ −K2 ω 0 0

0 0 K6θ 0 −K3 γ 0

0 0 0 ϕ 0 −K4 σ

0 0 0 ρ 0 0 −K5

































, (14)

where, D1 = (µ + τ), D2 = β∗∗µ(1−p)
µ+τ , D3 = αβ∗∗(τ+µp)

µ+τ , K1 = (θ + µ), K2 = (ρ + ϕ + µ),

K3 = (ω + µ), K4 = (γ + µ + δ2), K5 = (σ + µ + δ1) and K6 = (1 − ϵ).

The linearized system (14) with β = β∗∗ has a zero eigenvalues. Now, let V = [v1, v2, v3, v4, v5, v6, v7]

and W = [w1, w2, w3, w4, w5, w6, w7]
T be the corresponding left and right eigenvectors associated

with the simple zero eigenvalues of the Jacobian Matrix of system (14), respectively.

Solving for the left eigenvectors W we have,

w1 =
ρµK4w2 + η1ρD3K4w3 + D3(η2K4K5 + ρσ + ϕK5)w7

ρK4
> 0,

w2 = w2 > 0, w3 = w3 > 0, w4 =
K5w7

ρ
> 0,

w5 =
ρθK4K6w3 + γ(ρσ + ϕK5)w7

ρK3K4
> 0,

w6 =
(ρσ + ϕK5)w7

ρK4
> 0, w7 = w7 > 0.
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Similarly, solving for the right eigenvectors V we have,

v1 = v2 = 0, v3 =
K4K5v7 − ργv5

ρ(D2 + D3)
> 0,

v4 =
K3v5

ω
< 0, v5 = v5 < 0, v6 =

K5v7

σ
> 0, v7 = v7 > 0.

We used [25] as stated by [10] to find the direction of the bifurcation by computing a and b with,

a =
7∑

k,i,j=1

vkwiwj
∂2 fk

∂xi∂xj
(0, 0), b =

7∑

k,i=1

vkwi
∂2 fk

∂xi∂β∗∗
(0, 0).

Now, computing the partial derivatives of system (13) which are non-zero. Since v1 = v2 = 0, and

the second partial derivative of f4, f5, f6 and f7 are zeros, we only consider for k = 3 that is;

dX3

dt
= f3 =

β∗∗x1(η1x3 + η2x4 + x6)

N
+

αβ∗∗x2(η1x3 + η2x4 + x6)

N
− (µ + θ)x3.

We get;

∂2 f3

∂x1∂x3
=

β∗∗η1

N
,

∂2 f3

∂x1∂x4
=

β∗∗η2

N
,

∂2 f3

∂x1∂x6
=

β∗∗

N
,

∂2 f3

∂x2∂x3
=

αβ∗∗η1

N
,

∂2 f3

∂x2∂x4
=

αβ∗∗η2

N
,

∂2 f3

∂x2∂x6
=

αβ∗∗

N
.

Therefore;

a = v3

7∑

i,j=3

wiwj
∂2 f3

∂xi∂xj
(0, 0) = β∗∗v3(w1 + αw2)(η1w3 + η2w4 + w6) > 0.

Similarly;

b = v3

7∑

i=3

wi
∂2 f3

∂xi∂β∗∗
(0, 0) =

v3(η1w3 + η2w4 + w6)(µ(1 − p) + α(τ + µp))

µ + τ
> 0.

Thus, we have a > 0 and b > 0. The following theorem holds:

Theorem 5 When β∗∗
< 0 the system is locally asymptotically stable and there exists a positive unstable

equilibrium, while if β∗∗
> 0 is unstable and there exists a negative and locally asymptotically stable

equilibrium. Hence the requirement of having R0 < 1 will not suffice the condition for the control of

HIV/AIDS.

Global stability of endemic equilibrium

Theorem 6 The endemic equilibrium (EE), ϵ∗∗ of model (1) is globally asymptotically stable (GAS) if

R0 > 1 and unstable if R0 < 1.
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Proof We construct a Lyapunov function

V =

(

Su − S∗∗
u − S∗∗

u ln

(

Su

S∗∗
u

))

+

(

Se − S∗∗
e − S∗∗

e ln

(

Se

S∗∗
e

))

+

(

I1 − I∗∗1 − I∗∗1 ln

(

I1

I∗∗1

))

+ B1

(

I2 − I∗∗2 − I∗∗2 ln

(

I2

I∗∗2

))

+ B2

(

I3 − I∗∗3 − I∗∗3 ln

(

I3

I∗∗3

))

+ B3

(

It − I∗∗t − I∗∗t ln

(

It

I∗∗t

))

+ B4

(

A − A∗∗
− A∗∗ln

(

A

A∗∗

))

,

(15)

where B1, B2, B3 and B4 are non negative constant. Differentiating V, we get

V ′ =

(

1 −

S∗∗
u

Su

)

Su
′ +

(

1 −

S∗∗
e

Se

)

Se
′ +

(

1 −

I∗∗1

I1

)

I1
′ + B1

(

1 −

I∗∗2

I2

)

I2
′

+ B2

(

1 −

I∗∗3

I3

)

I3
′ + B3

(

1 −

I∗∗t

It

)

It
′ + B4

(

1 −

A∗∗

A

)

A ′.

(16)

Substituting (1) that is Su
′, Se

′, I1
′, I2

′, I3, It
′ and A ′ in to (16) we have,

V ′ = π(1 − p)− λSu − µSu −
S∗∗

u

Su
(π(1 − p)− λSu − µSu) + πp − αλSe − µSe

−

S∗∗
e

Se
(πp − αλSe − µSe) + λSu + αλSe − (µ + θ)I1 −

I∗∗1

I1
(λSu + αλSe − (µ + θ)I1)

+ B1(ωI3 − (µ + ρ)I2)− B1
I∗∗2

I2
(ωI3 − (µ + ρ)I2) + B2(γIt − (µ + ω)I3)

− B2
I∗∗3

I3
(γIt − (µ + ω)I3) + B3(σA − (µ + γ)It)− B3

I∗∗t

It
(σA − (µ + γ)It)

+ B4(ρI2 − (µ + σ)A)− B4
A∗∗

A
(ρI2 − (µ + σ)A).

Setting the coefficient of I2, I3, It, and A to zero, the positive constant is determined as, B1 =

(µ + ω), B2 = ω, B3 = (µ+ω)(µ+ρ)(µ+σ)
ρσ , B4 = (µ+ω)(µ+ρ)

ρ . Now setting δ1 = δ2 = 0 in system (1),

N → π
µ as t → ∞

Let β̃ = µβ
π ,

V ′ = π(1 − p)− λSu − µSu −
S∗∗

u

Su
(π(1 − p)− λSu − µSu) + πp − αλSe − µSe

−

S∗∗
e

Se
(πp − αλSe − µSe) + λSu + αλSe − (µ + θ)I1 −

I∗∗1

I1
(λSu + αλSe − (µ + θ)I1)

+ (µ + ω)(ωI3 − (µ + ρ)I2)− (µ + ω)
I∗∗2

I2
(ωI3 − (µ + ρ)I2)

+ ω(γIt − (µ + ω)I3)− ω
I∗∗3

I3
(γIt − (µ + ω)I3)

+
(µ + ω)(µ + ρ)(µ + σ)

ρσ
(σA − (µ + γ)It)−

(µ + ω)(µ + ρ)(µ + σ)

ρσ

I∗∗t

It
(σA − (µ + γ)It)

+
(µ + ω)(µ + ρ)

ρ
(ρI2 − (µ + σ)A)−

(µ + ω)(µ + ρ)

ρ

A∗∗

A
(ρI2 − (µ + σ)A),
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which can be shown from model (1) that at steady state,

π(1 − p) = λS∗∗
u + µS∗∗

u , πp = αλS∗∗
e + µS∗∗

e , (µ + θ)I∗∗1 = λS∗∗
u + αλS∗∗

e ,

ωI∗∗3 = (µ + ρ)I∗∗2 , γI∗∗t = (µ + ω)I∗∗3 , σA∗∗ = (µ + γ)I∗∗t , ρI∗∗2 = (µ + σ)A∗∗.

Using the above relations, we have,

V ′
⩽

(

2 −

Su

S∗∗
u

−

S∗∗
u

Su

)

+ µS∗∗
e

(

2 −

Se

S∗∗
e

−

S∗∗
e

Se

)

+ λS∗∗
u

(

3 −

S∗∗
u

Su
−

I1

I∗∗1

−

I∗∗1

I1

)

+ αλS∗∗
e

(

3 −

S∗∗
e

Se
−

I1

I∗∗1

−

I∗∗1

I1

)

+ (µ + ω)(µ + ρ)I∗∗2

(

3 −

A∗∗

A
−

I∗∗2 I3

I2 I∗∗3

−

It I∗∗3

I∗∗t I3

)

+
(µ + ω)(µ + ρ)(µ + σ)A∗∗

ρ

(

2 −

It

I∗∗t

−

I∗∗t

It

)

.

From the fact that the arithmetic mean surpasses the geometric mean, the following, inequalities

hold:

(

2 −

Su

S∗∗
u

−

S∗∗
u

Su

)

⩽ 0,

(

2 −

Se

S∗∗
e

−

S∗∗
e

Se

)

⩽ 0,

(

3 −

S∗∗
u

Su
−

I1

I∗∗1

−

I∗∗1

I1

)

⩽ 0,

(

3 −

S∗∗
e

Se
−

I1

I∗∗1

−

I∗∗1

I1

)

⩽ 0,

(

3 −

A∗∗

A
−

I∗∗2 I3

I2 I∗∗3

−

It I∗∗3

I∗∗t I3

)

⩽ 0,

(

2 −

It

I∗∗t

−

I∗∗t

It

)

⩽ 0.

Thus, we have that, V
′
⩽ 0 for R0 > 1. The equality condition V

′
= 0 will strictly hold only when

Se = S∗∗
e , I1 = I∗∗1 , I2 = I∗∗2 , I3 = I∗∗3 , It = I∗∗t and A = A∗∗. Thus the endemic equilibrium ϵ∗ is

the only invariant set of model (1). Therefore, by applying the Lasalle invariance principle [26] the

result follows. Therefore, the endemic equilibrium (EE) of model (1) is globally asymptotically

stable (GAS). ■

5 Model fitting and parameter calibration

After proposing an epidemiological model in terms of a nonlinear system of ordinary differential

equations, it is of utmost importance to calibrate and estimate the suitable values of the biological

parameters for the model to be of some use. It can be made possible only when one reaches

authentic information about the actual data set for the epidemic over a certain period. This

approach also helps one validate the proposed model for the disease under analysis. Several

methods exist for calibrating and estimating such parameters, including the single shooting

method, Gauss-Newton method, Nelder-Mead method, least squares, Monte Carlo sampling,

and the local smoothing approach. Among the existing ones, the practice of least-squares is the

most frequently used statistical approach for parameters’ calibration in a nonlinear system of

ordinary differential equations. The method minimizes discrepancies between actual data and the

values predicted from the model’s simulations for the infected class. The available data mainly

presents the individuals infected with the disease. With the help of the least-squares method, the

suitable estimated values of the parameters accompanying other essential information, including

standard error, t-statistic, p-value, and the confidence interval, are computed in Table 2 wherein all

p-values are < 0.05 with 95% confidence interval for each parameter. It may also be noted that the

approximate value for the basic reproduction number is R0 = 3.85142 while using the calibrated

parameters given above and those estimated with the nonlinear least-squares method as shown in
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Table 2. The most crucial statistical information, including minimum value, first quartile, second

quartile, average, third quartile, maximum value, and standard deviation is collected in Table 3

for both real HIV cases and those predicted from the simulations of model (1). The values are

in perfect agreement with each other for both cases. It is further ascertained in Figure 2 wherein

the curve from the simulation of the newly infected cases (solid line) approaches the real HIV

cases (solid dots) very well and thus in good alignment with the surveillance data. The residual

plots of varying nature in Figure 3 are shown, with the x-axis being the period (1987-2014) and the

y-axis for the residual values. These residuals seem to be equally and randomly spaced around the

horizontal axis, making an ideal residual plot. Finally, a box and whisker plot is created in Figure

4 to obtain the additional detail for the analysis carried out in this section. The five statistics from

the plot seem to have a good agreement, with the predicted one having an outlier.

Table 2. Values of fitted biological parameters including some important statistical measures obtained via

least-squares non-linear curve fitting technique.

Par Estimate Standard error t-statistic p-value Confidence interval

β 6.08348 × 10−1 1.93409 × 10−2 3.14541 × 101 1.26038 × 10−21 (5.68515 × 10−1, 6.48182 × 10−1)
ρ 7.14263 1.77252 × 10−1 4.02965 × 101 2.8928 × 10−24 (6.77758, 7.50769)
τ 5.51178 × 10−2 6.80934 × 10−3 8.09445 1.89584 × 10−8 (4.10937 × 10−2, 6.91419 × 10−2)

Table 3. Summary statistics for the real data, and the predicted data points obtained under simulations of model

(1) for the newly infected individuals with HIV (I1).

Data Min. 1st Qu. Median Mean 3rd Qu. Max. SD

Real cases 6.1e+01 3.4750e+02 8.4600e+02 1.5013e+03 2.4720e+03 4.9460e+03 1.4877e+03

Predicted 6.1e+01 4.4027e+02 9.6770e+02 1.5474e+03 2.3224e+03 5.1929e+03 1.4394e+03

Table 4. Baseline values and ranges for parameters of model (1).

Parameters Baseline (Range) Units Sources

N 12, 976, 600 Persons Estimated

π 969, 907 Year−1 Estimated

µ 1.438 × 10−2 Year−1 [12]

δ1 0.8 Year−1 Estimated by [12]

δ2 0.6 Year−1 Estimated by [10]

p 0.02 Year−1 fitted

τ 5.51178 × 10−2 Year−1 fitted

β 6.08348 × 10−1 Year−1 fitted

α 0.002 Year−1 Estimated by [10]

θ 0.005 Year−1 Estimated by [27]

ϵ 0.04 Year−1 Estimated by [27]

ϕ 0.02 Year−1 fitted

ρ 7.14263 Year−1 fitted

γ 0.8 Year−1 fitted

ω 0.93 Year−1 fitted

η1 0.6 Year−1 fitted

η2 0.5 Year−1 fitted

σ 0.004 Year−1 fitted
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Figure 2. The best curve fitting for the real HIV cases [13] and the compartment of the newly infected cases from

the proposed model given in model (1)

Figure 3. The residuals

Figure 4. The BoxWhisker chart for each real surveillance HIV data value and those predicted from the proposed

model (1)
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Sensitivity analysis

In this section, we use the forward sensitivity index method to analyze the proposed HIV model

in relation to the reproduction number R0 with respect to the biological parameters used in the

model. The method used to describe the sign of each parameter to determine the most sensitive

parameters used in the model, those parameters with the negative sign are regarded as the most

sensitive for decreasing the value of R0 while parameters with positive values are sensitive for the

increase of R0 [28, 29]. The normalized local sensitivity index of R0 with respect to the parameters

is given by,

χ
R0
C =

C

R0
×

∂R0

∂C
. (17)

The indices for R0 with respect to parameters are obtained as shown in Table 5.

Table 5. Forward normalized sensitivity indices

Parameters Elasticity indices Values of the elasticity index

θ χ
R0
θ -0.2532

σ χ
R0
σ -0.01304

ω χ
R0
ω 0.0317

β χ
R0
β 1.0000

δ2 χ
R0
δ2

0.4789

α χ
R0
α 0.0096

τ χ
R0
τ -0.0600

ρ χ
R0
η2

0.070

ϕ χ
R0
ϕ -0.1493
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Figure 5. Bar chart pictorial representation
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The most sensitive epidemiological parameters that effectively determined the control of the

spread of HIV infection are obtained and represented using a bar chart given in the forward

normalized sensitivity indices Table 5.

6 Numerical scenarios and discussion

The transmission dynamics of the governing model may be efficiently investigated by utilizing

numerical simulations using state variables of interest. This section looks at several forms of

time-series graphs using the parameters determined by the nonlinear minimum-squares fitting

approach. The transmission dynamics of the model have been simulated by using state variables

and the parameters in Table 4. The behaviour of the state variables and pattern of movement from

one compartment to another are examined.
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Figure 6. Behavior of the state variables (a) Susceptible Uneducated Su, (b) Susceptible Educated Se

0 1 2 3 4 5 6 7 8 9

t

0

1000

2000

3000

4000

5000

6000

I 1

(a)

0 1 2 3 4 5 6 7 8 9

t

0

20

40

60

80

100

120

I 2

(b)

Figure 7. Behavior of the state variables (a) Newly infected individuals I1, (b) Infected individuals with

detectable viral load I2

Figure 6(a) shows how the number of uneducated susceptible changes with time. The numbers
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rise initially due to the recruitment of individuals and start decreasing due to the movement of

individuals from the compartment to susceptible educated or newly infected compartment after

being infected. Figure 6(b) shows how the number of susceptible educated rises with respect

to time due to the movement of individuals from the uneducated compartment. Figure 7(a)

shows how the newly infected individuals decrease persistently due to their movement into either

infected individuals with undetectable viral load or infected individuals with detectable viral load.

Figure 7(b) shows how the infected with detectable viral load raises due to the movement of newly

infected individuals into the compartment, while decreases due to the movement of individuals

into treatment or AIDS compartment.
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Figure 8. Behavior of the state variables (a) Infected individuals with undetectable viral load I3, (b) Infected

individuals under treatment It
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Figure 10. Patterns of It: (A) with different values of movement rate of infected with detectable viral load to

treatment ϕ, (B) with different values of rate of movement of AIDS patients to treatment class at a rate σ

Figure 8(a) shows how infected individuals with undetectable viral load raises due to the move-

ment of newly infected individuals into the compartment, while decreases after their viral load

becomes detectable and moves into infected individuals with detectable viral load compartment.

Figure 8(b) shows how infected individuals under treatment move out of the compartment to

infected individuals with undetectable viral load after their viral load is suppressed.
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Figure 11. (a) Patterns of Su with different values of rate at which uneducated susceptible become educated

about HIV infection τ, (b) Patterns of Se with different values of rate of movement of AIDS patients to treatment

class at a rate τ

Figure 9 shows how AIDS patients decrease initially, possibly due to death, and later increase due

to movement of infected individuals with detectable viral load, and decreases due to movement

into treatment and death-related illness. Figures 10(a) and 10(b) show the pattern of infected

individuals under treatment with different values of progression rate from undetectable viral load

to treatment ϕ and progression rate from AIDS into treatment σ respectively. Despite the change

in values of ϕ and σ, the graphs follow the exact pattern of It as in Figure 7(b). Change in values

of ϕ and σ will be effective on the number of infected individuals with undetectable viral load and
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AIDS-infected individuals, respectively. Figures 11(a) and 11(b) show the pattern of uneducated

and educated susceptible individuals with different levels of education campaigns. The plots

clearly show the impact of education parameter τ. As τ increases, the number of uneducated

individuals decreases while educated individuals increase.

7 Summary and conclusion

In this paper, we have developed a nonlinear deterministic model that incorporates public aware-

ness and treatment for the transmission dynamics of HIV/AIDS in an infected population with

detectable and undetectable viral load. The analysis of the model reveals that the disease-free equi-

librium is globally asymptotically stable whenever the associated reproduction number R0 < 1

and unstable when R0 > 1. Contrarily, the endemic equilibrium is globally asymptotically stable

when the associated reproduction number is R0 > 1 and unstable when R0 < 1. Furthermore, the

model undergoes the phenomenon of backward bifurcation in which a stable disease-free equilib-

rium coexists with a stable endemic equilibrium. The epidemiological implication of backward

bifurcation is R0 < 1 is a necessary but not sufficient condition for HIV control even when the

classical requirement is satisfied, however the backward bifurcation analysis shows that when

the bifurcation parameter β∗∗
< 0 the system is locally asymptotically stable and there exists a

positive unstable equilibrium, while if β∗∗
> 0 is unstable and there exists a negative and locally

asymptotically stable equilibrium. Hence, the requirement of having R0 < 1 will not suffice the

condition for the control of HIV/AIDS. The biological parameters of the model are fitted using

the least square method with p-values < 0.05 and 95% confidence interval as shown in Table

2. The model was fitted with real HIV data cases on the newly infected compartment as shown

in Figure 2. The most sensitive parameters for the control of the spread of HIV are identified

using the forward sensitivity index method as shown in Figure 5, the most sensitive parameters

that increase R0 are β, ρ and ω, respectively. In addition, the numerical simulations carried out

show the behavior of the state variables as shown in Figures 6,7,8, and 9. Similarly, Figure 11

shows the impact of public awareness. Finally, the results show that public awareness will help

in curtailing the spread of HIV infection, and when treatment is applied to infected individuals

with detectable viral load can easily suppress their virus to become undetectable so that they

cannot transmit HIV through sexual intercourse. Future research should extend public awareness

to infected individuals. In addition to this, a fractional order differential equation system can be

used to describe HIV/AIDS transmission dynamics incorporating viral load detectability as the

order has an effect on the dynamics and an optimal control problem can be applied to determine

the optimal strategies for HIV eradication.
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Abstract

In this paper, Cattaneo-Hristov heat diffusion is discussed in the half plane for the first time, and
solved under two different boundary conditions. For the solution purpose, the Laplace, and the sine-
and exponential- Fourier transforms with respect to time and space variables are applied, respectively.
Since the fractional term in the problem is the Caputo-Fabrizio derivative with the exponential kernel,
the solutions are in terms of time-dependent exponential and spatial-dependent Bessel functions.
Behaviors of the temperature functions due to the change of different parameters of the problem are
interpreted by giving 2D and 3D graphics.
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1 Introduction

Heat conduction, also called diffusion, is the exchange of thermal energy between different
physical systems. The classical theory of heat conduction is based on Fourier’s law, that is, almost
200 years ago. Fourier’s law implies that infinitesimal heat changes propagate at an infinite
speed. This result makes the law a paradox that cannot specifically represent microscopic heat
distribution. The physical validity of this law is for heat transfer models in low dimensions and
also in macroscopic scales.
To remove the inconsistency of Fourier’s law for heat transfer occurring in non-homogeneous
mediums or for microscopic scales, different non-local dependencies between heat flux and
temperature gradient have been proposed. As a result, different types of heat conduction equations
have emerged and this has led to the development of non-classical theories on heat conduction. In
this sense, fractional operators with singular or non-singular kernels have played a significant
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role in various types of real-world problems [1–6]. For instance, in a thin rectangular plate the
non-local relation between the heat flux q (t) and the temperature gradient gradT =

[
∂T
∂x

∂T
∂y

]
can

be given by [7]

q (t) = −k

t∫

0

K (t − τ) gradT (x, y, τ) dτ, (1)

where k is the coefficient of thermal conductivity. When this relation is combined with the laws of
conservation of energy, it leads to the following generalized heat conduction equation [8]:

∂T

∂t
= a

t∫

0

K (t − τ)∆T (x, y, τ) dτ. (2)

in which a is the thermal diffusivity coefficient. The decisive factor here is the type of kernel
function K which physically corresponds to the memory effects in heating systems. Some leading
non-local laws with various types of kernel functions can be summarized as follows:

q (t) = −k

t∫

0

gradT (x, y, τ) dτ (Full memory/without fading memory [9]), (3)

q (t) =






k
Γ(α)

∂
∂t

t∫

0
(t − τ)α−1 gradT (x, y, τ) dτ, 0 < α ≤ 1,

−

k
Γ(α−1)

t∫

0
(t − τ)α−2 gradT (x, y, τ) dτ, 1 < α ≤ 2,

(long-tail memory [10]), (4)

q (t) = −

k

ξ

t∫

0

exp
(
−

t − τ

ξ

)
gradT (x, y, τ) dτ (short-tail memory [11, 12]), (5)

where ξ denotes the finite relaxation time of the heating process. In Eq. (3), the kernel is constant
K = 1 so there is no fading in memory. In Eq. (4), the relations between heat flux and temperature
gradient have long-term memory power kernels K = (t − τ)α−1 and K = (t − τ)α−2. Thus,
constitutive relations given in Eq. (4) led to the emergence of the heat equation with Caputo
fractional derivative. Analytical solutions of these equations with different initial and boundary
conditions and in different coordinate systems have been studied in detail by Povstenko [13–17].
Furthermore, the thermal stresses due to fractional heat conduction were researched [18–22], and
even the optimal control problem of these thermal stresses was investigated later [23, 24].

The integro-differential equation with Jeffrey kernel K = exp
(
−

t−τ
ξ

)
based on the constitutive

law stated in Eq. (5) was proposed for the damped heat diffusion in rigid conductors. A few
years ago, Hristov conceived of relating the Jeffrey kernel in the Cattaneo model to the Caputo-
Fabrizio fractional derivative that has a non-singular kernel [25]. The obtained model is called the
Cattaneo-Hristov heat diffusion equation in the literature. This development shows that different
constitutive equations can be reconstructed with non-singular fractional derivatives [26–28] which
was detailed studied by researchers [29, 30]. In fact, this is a wise answer to understanding the
physical background of fractional derivatives.
There are limited but undoubtedly valuable studies in the literature to find the analytical and
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numerical solutions of the Cattaneo-Hristov heat equation [31–37] in one dimensional space.
Although the Cattaneo-Hristov heat equation was constructed on the half-real line, it should be
enlarged to the other coordinates according to the geometry of the medium heat conduction acting.
In this manner, Avci [38] investigated the solution process of the Cattaneo-Hristov heat diffusion
on an axial symmetrical finite cylinder and also analyzed the thermal stresses due to the heat
sources applied from the boundaries of the cylinder. Motivated by this fact, the current study aims
to represent the elastic heat diffusion in the half-plane. Therefore, this work focuses on solving the
two-dimensional Cattaneo-Hristov equation with the Dirichlet boundary conditions by Laplace,
sine- and exponential- Fourier integral transforms. To our knowledge, this is the first study on the
two-dimensional Cattaneo-Hristov diffusion equation, and therefore it is possible that the work
will contribute to the technological development of thermally elastic film materials.
On the other hand, we aim to investigate the harmonic temperature effect, which is a remarkable
concept in the classical or fractional diffusion processes, for the Cattaneo-Hristov diffusion model.
The behavior of the classical diffusion under a harmonic effect was first investigated by Ångström
[39]. This physical phenomenon is referred to as "‘oscillatory diffusion"’ or "‘diffusion waves"’ in
the literature. The harmonic effect on diffusion can be analyzed in two ways. In the first one, a
harmonic source function is stipulated [40, 41]. On the other hand, it is considered that there is
a harmonic effect at the boundary [42]. In [43], all possible harmonic effects are analyzed for a
one-dimensional diffusion problem. The harmonic effect on the fractional diffusion models has
been studied in the recent few years [44–47]. It should be noted that these fractional diffusion
equations were described by Caputo derivative with the singular kernel. As far as is known, the
current study is the first to examine the Cattaneo-Hristov diffusion process modeled with the
Caputo-Fabrizio derivative under a harmonic boundary effect.
The paper is organized as follows: In Section 2, we give some preliminary definitions required for
the formulation of problems. In Section 3, we obtain the fundamental solutions to the Dirichlet
problem for the Dirac pulse and non-moving harmonic pulse, then evaluate the behavior of tem-
peratures according to the change of order of the fractional derivative by the graphics. Moreover,
we discuss the results from both the mathematical and physical perspectives in this section. Finally,
we provide the concluding remarks in Section 4.

2 Preliminaries

The birth of fractional analysis occurred per se in the solution of Abel’s tautochrone problem. In
fact, Abel was unaware that he had found a new theory today known as the Riemann-Liouville
fractional calculus [48]. This clearly shows us that fractional operators actually arise naturally
when trying to understand physical phenomena. Fractional operators are particularly effective
tools for understanding memory effects, clarifying hereditary properties, and modelling transport
processes in complex environments. What is important is the accurate use and interpretation of
fractional operators that differ depending on their kernel functions. As is known, the leading
Riemann-Liouville and Caputo operators of conventional fractional calculus include singular
kernels denoting long-tail memory. On the other hand, computational difficulties arising from the
nature of these derivatives and their weakness in model processes complying with the exponential
decay law have led to the emergence of the Caputo-Fabrizio and Atangana-Baleanu fractional
derivatives with regular kernels.
Now, we remind the Caputo-Fabrizio fractional derivative, which also models the Cattaneo-
Hristov heat diffusion discussed in the present study.

Definition 1 [49] Let f ∈ H1 (0, t) and 0 < α < 1, then the Caputo-Fabrizio fractional derivative is
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defined by

CFDα
t f (t) =

N (α)

1 − α

t∫

0

d f (s)

ds
exp

(
−

α

1 − α
(t − s)

)
ds, (6)

where N (α) denotes the normalization function satisfying N (0) = N (1) = 1.

The closed-form solution to the problem will be obtained using integral transforms. Since the
Laplace transform is applied for the time variable, we indicate the Laplace transform property of
the Caputo-Fabrizio derivative is as follows:

L
{

CFDα
t f (t)

}

(s) =
s f ∗ (s)− f (0)
s + α (1 − s)

, 0 < α ≤ 1, (7)

in which asterisk denotes the Laplace transform of the function. For the Dirichlet problems
considered in the half plane, we apply the exponential Fourier transform via y variable [50]:

F { f (y)} = f (η) =

∞∫

−∞

f (y) eiyηdy, −∞ < y < ∞, (8)

with its inverse transform:

F−1
{

f (η)
}

= f (y) =
1√
2π

∞∫

−∞

f (η) e−iyηdη. (9)

Also, the exponential-Fourier transform of the second-order derivative is reminded as

F
{

d2 f (y)

dy2

}

= −η2 f (η) . (10)

Then, we use the following sine-Fourier transform for the Dirichlet problem [50]:

F { f (x)} = f̃ (ξ) =

∞∫

0

f (x) sin (xξ) dx, 0 ≤ x < ∞, (11)

with the relevant inverse transform:

F−1
{

f̃ (ξ)
}

= f (x) =
2
π

∞∫

0

f̃ (ξ) sin (xξ) dξ, (12)

Since the sine-Fourier transform is used in the domain 0 ≤ x < ∞ for a prescribed Dirichlet
boundary condition, we apply the following property

F
{

d2 f (x)

dx2

}

= −ξ2 f̃ (ξ) + ξ f (0) . (13)
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3 Statement of the problem

In this section, we aim to obtain the closed-form solutions to the Cattaneo-Hristov heat conduction
problem in the half-plane. For this purpose, let us consider the initial boundary value problem
defined as follows:

∂T(x, y, t)

∂t
= a1∆T (x, y, t) + a2 (1 − α) CFDα

t ∆T (x, y, t) , (14)

0 < x < ∞,−∞ < y < ∞, 0 < t < ∞,

t = 0 : T (x, y, 0) = 0, (15)

x = 0 : T (0, y, t) = f (y, t) , (16)

where ∆T = ∂2T
∂x2 + ∂2T

∂y2 is the Laplacian of temperature function. Firstly, applying the exponential-
Fourier transform with respect to the spatial coordinate y and considering the property Eq. (10)
lead to

∂T (x, η, t)

∂t
= a1

(
∂2T (x, η, t)

∂x2 − η2T (x, η, t)

)

+a2 (1 − α)CF Dα
t

(
∂2T (x, η, t)

∂x2 − η2T (x, η, t)

)
. (17)

with the transformed initial and boundary conditions:

t = 0 : T (x, η, 0) = 0,

x = 0 : T (0, η, t) = f (η, t) .

Then, the sine-Fourier transform is applied according to the spatial coordinate x under the relation
Eq. (13) and the result is obtained as follows:

∂T̃(ξ, η, t)

∂t
= a1

(
−

(
ξ2 + η2

)
T̃(ξ, η, t) + ξ f (η, t)

)

+a2 (1 − α)CF Dα
t

(
−

(
ξ2 + η2

)
T̃(ξ, η, t) + ξ f (η, t)

)
. (18)

Finally, applying the Laplace transform to the time variable t gives the transformed solution:

T̃
∗
(ξ, η, s) = ξ

(aβs + a1α) f
∗
(η, s)− a2β f (η, 0)

βs2 + [aβ (ξ2 + η2) + α] s + a1α (ξ2 + η2)
, (19)

where α is the order of the Caputo-Fabrizio derivative, a1 and a2 are some real constants such that

a1 =
k1

Cpρ
, a2 =

k2

Cpρ
, (20)

for effective thermal conductivity k1 and elastic conductivity k2. Also, Cp is the specific heat and ρ

is the density of particles on the plate.

β = 1 − α, a = a1 + a2. (21)
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Inversion of the transformations gives the closed-form solution

T(x, y, t) =

√
2

π
√

π

∞∫

−∞

∞∫

0

T̃(ξ, η, t)e−iyη sin (xξ) dξdη, (22)

which can be arranged using Euler’s formula as

T(x, y, t) =
2
√

2
π
√

π

∞∫

0

∞∫

0

T̃(ξ, η, t) cos (yη) sin (xξ) dξdη. (23)

To simulate the two-dimensional Cattaneo-Hristov diffusion equation, we consider two particular
cases. In the 1st case, our the aim is to extend the original Cattaneo-Hristov heat diffusion problem
considered for x ∈ (0,∞) to the half-real plane (x, y) ∈ (0,∞) × (−∞,∞). In the 2nd case,
we intend to examine the effect of the harmonic temperature function at the boundary on the
Cattaneo-Hristov model, which has also an important effect on both classical and fractional heat
conduction problems.

Case 1: Fundamental solution to two-dimensional Cattaneo-Hristov heat diffusion

Here, we consider the Dirac delta pulse at the boundary given by Eq. (16) for Cattaneo-Hristov
heat diffusion equation:

T (0, y, t) = f (y, t) = δ (y) . (24)

Substituting the exponential Fourier and Laplace transforms of this condition in Eq. (19) gives

T̃
∗
(ξ, η, s) = ξ

a1 (βs + α)

βs3 + [aβ (ξ2 + η2) + α] s2 + a1α (ξ2 + η2) s
. (25)

Next, inverting the Laplace transform reveals

T̃(ξ, η, t) =
ξ

ξ2 + η2

{
1
2

(
C (ξ, η)

B (ξ, η)
− 1

)
exp

(
B (ξ, η)− A (ξ, η)

2β
t

)
+ 1

−

1
2

(
C (ξ, η)

B (ξ, η)
+ 1

)
exp

(
−B (ξ, η)− A (ξ, η)

2β
t

)}
, (26)

where the notations defined in the following are used only for convenience

A (ξ, η) = aβ
(

ξ2 + η2
)
+ α, (27)

B (ξ, η) =

√
aβ2 (ξ2 + η2)

2
+ 2 (a2 − a1) aβ (ξ2 + η2) + α2, (28)

C (ξ, η) = (a2 − a1) β
(

ξ2 + η2
)
− α. (29)
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To make the solution suitable for numerical calculations, we need to reduce the double integral
in Eq. (23) to a single integral by converting it to polar coordinates. For this purpose, we first
suppose that

ξ = ρ cos θ, η = ρ sin θ, (30)

and so we obtain

T(x, y, t) =
2
√

2
π
√

π

∞∫

0

π
2∫

0

T̃1(ρ, t) cos (yρ sin θ) sin (xρ cos θ) ρ2 cos θdθdρ, (31)

where T̃1 = T̃/ξ and since ρ2 = ξ2 + η2 from Eq. (30), T̃1 can be written as the function of (ρ, t)
according to Eqs. (26)-(29). By using the change of the variable υ = sin θ and considering the
following integral relation [51, 52]:

1∫

0

cos (yρυ) sin
(

xρ
√

1 − υ2
)

dυ =
π

2
x√

x2 + y2
J1

(√
x2 + y2

)
, (32)

in which J1 is the first kind Bessel function of order 1. Thereby, the closed-form solution is arrived
at as

T (x, y, t) =

√
2
π

∞∫

0

T̃1(ρ, t)
x√

x2 + y2
J1

(√
x2 + y2

)
ρ2dρ. (33)

and solved by numerical computation of the improper integral. Then, the results are depicted in
Figure 1.

In Figure 1(a), we aim to illustrate the dependence of heat diffusion on the variation of order
of fractional derivatives. The 2D graphics show the cross-section of the temperature surface for
the arbitrary values of x = y = 0.5. Note that the α parameter plays two critique roles in the
discussed model, one as a coefficient and the other to determine the influence of fading memory.
As α approaches 1, the damping memory effect weakens due to the coefficient role of α, and the
temperature function tends to behave as in the classical heat equation. In the case of α = 1, the
elastic conductivity constant k1 in the coefficient a1 also loses its effect.

In Figure 1(b), the behavior of the temperature surface is shown for the arbitrary values of
α = 0.6 and t = 0.5. In this graph, the instantaneous Dirac heat pulse at the boundary of the
region is clearly visible. For evolution equations such as heat conduction, examining the effects
of instantaneous changes at the beginning or at the boundary is important both in obtaining
fundamental solutions and in the sense of physical behavior. Due to this importance, the Dirac
delta pulse effect is examined in different classical or fractional heat conduction models, as in the
current study.
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Figure 1. Temperature function for Dirac delta pulse at the boundary

Case 2: Non-moving harmonic temperature at the boundary

In this case, the behavior of the Cattaneo-Hristov heat diffusion is investigated under the effect of
a time non-moving harmonic boundary temperature which is described by

T (0, y, t) = f (y, t) = δ (y) exp (iωt) , (34)
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where ω denotes the angular frequency. Substituting integral transforms of the condition Eq. (34)
into the transformed solution Eq. (19) and rearranging the results give

T̃
∗
(ξ, η, s) = ξ

{[
a1βs2 + a1αs − a2βω2

]
+ i [aβωs + a1αω]

}

/
{

βs4 +
[

aβ
(

ξ2 + η2
)
+ α

]
s3 +

[
βω2 + a1α

(
ξ2 + η2

)]
s2

+
[

aβ
(

ξ2 + η2
)
+ α

]
ω2s + a1α

(
ξ2 + η2

)
ω2

}

. (35)

For demonstration purposes, we focus on the real part of the transformed temperature function
for the subsequent calculations. Inverting the Laplace transform of the real part of Eq. (35), one
can obtain

T̃(ξ, η, t) =
ξ

D (ξ, η)

{
E (ξ, η)

2B (ξ, η)

[
exp

(
B (ξ, η)− A (ξ, η)

2β
t

)
− exp

(
−B (ξ, η)− A (ξ, η)

2β
t

)]

+ F (ξ, η) sin ωt +G (ξ, η) cos ωt

−

G (ξ, η)

2

[
exp

(
B (ξ, η)− A (ξ, η)

2β
t

)
− exp

(
−B (ξ, η)− A (ξ, η)

2β
t

)]}
, (36)

where the notations A (ξ, η) and B (ξ, η) are given by Eqs. (27) − (28) and the other abbreviations
are as follows:

D (ξ, η) =
(

a2β2ω2 + a2
1α2

) (
ξ2 + η2

)2
+ 2a2αβω2

(
ξ2 + η2

)
+ β2ω4 + α2ω2,

E (ξ, η) =
[

a2 (a1 − a2) β3ω2
− a2

1a2α2β
] (

ξ2 + η2
)2

+
[

a (a1 − 2a2) αβ2ω2
− 2a1 (a1 − a2) αβ2ω2

− a2
1α3

] (
ξ2 + η2

)
− 2a2β3ω4

− a2α2βω2,

F (ξ, η) = aβ2ω3 + a1α2ω,

G (ξ, η) =
(

a2β2ω2 + a2
1α2

) (
ξ2 + η2

)2
+ a2αβω2.

Substituting the function T̃ (ξ, η, t) into Eq. (23) and using the same calculations in Eqs. (30)-(32)
by indicating T̃2 (ξ, η, t) = T̃ (ξ, η, t) /ξ led to the closed-form solution as

T (x, y, t) =

√
2
π

∞∫

0

T̃2(ρ, t)
x√

x2 + y2
J1

(√
x2 + y2

)
ρ2dρ, (37)

which is also depicted by calculating the improper integral numerically.
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Figure 2. Time dependent temperature functions for non-moving harmonic boundary at x = y = 0.5 via
variations of α and w, respectively.

Similar to Figure 1(a), Figure 2(a) shows also the dependence of temperature on the variation of α

in the case of a non-moving harmonic temperature source at the boundary. Figure 2(b) shows the
temperature response due to the change of angular frequency acting in the harmonic boundary
temperature. As the angular frequency decreases, the wavelength of the temperature increases.
It can be seen in both figures that temperature exhibits wave behavior similar to the boundary
condition. This result clearly indicates Cattaneo’s theory that wave phenomena may also occur in
heat diffusion.
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Figure 3. Temperature surfaces with non-moving harmonic boundary for α = 0.6 at t = 0.5 and t = 1.5,
respectively.

The time cross-section of the elastic heat diffusion at arbitrarily chosen times t = 0.5 and t = 1.5 is
demonstrated in Figure 3. The wavelike temperature behaviour can be clearly seen for α = 0.6 in
both figures. This case can be similarly observed from the other α values depicted in Figure 2(a).

4 Conclusion

From the engineering point of view, it is important to know the mechanical and thermal behaviors
of the materials under a heat force. These properties can be analyzed experimentally or with
mathematical tools. In terms of mathematical analysis, it is crucial to exact modeling of the heat
diffusion of the material. Although the Cattaneo-Hristov equation that models heat diffusion
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with fading memory was constructed on the real line that physically corresponds to a wire, it is
also significant to know the heat diffusion of a plate or a film with a fading memory effect. This
situation can be generalized according to the geometry of materials, such as cylinders, spheres,
cubes etc., which vary via the application area of the engineering problems. Therefore, this
paper concerns the Cattaneo-Hristov diffusion equation in the half-plane. Two types of boundary
conditions have been considered for the Dirichlet problem which are Dirac delta and non-moving
harmonic temperatures, respectively. The closed-form solutions are arrived at by applying Fourier
and Laplace integral transforms. The temperature functions have been illustrated under the
variations of the model parameters using MATLAB software. These analyses performed for the
two boundary temperatures can also be considered for different boundary conditions and different
coordinate systems in future works.
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