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Abstract
This paper deals with the existence, uniqueness and Ulam-stability outcomes for Ξ-Hilfer fractional fuzzy
differential equations with impulse. Further, by using the techniques of nonlinear functional analysis, we study
the Ulam-Hyers-Rassias stability.
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1. Introduction
The dynamics of processes that are subject to sudden state changes are often studied using differential equations with

impulses as models. There are two commonly used types of impulses: instantaneous and non-instantaneous. The investigation
of impulsive differential equation involving classical derivatives one can refer to [1]-[9]

Due to its importance in numerous related domains, including physics, mechanics, chemistry, engineering, etc., fractional
calculus has received more and more attention in recent years, one can see [10]-[13] and references therein. In [12], Hilfer
investigated applications for an extended fractional operator that has the Riemann-Liouville (RL) and Caputo derivatives
as special cases. In this study, we deal with the existence, uniqueness, and stability of ψ-Hilfer fractional derivative based
fractional differential equations, which Sousa and Oliveira initiated in [14].

Mathematicians have explored fuzzy fractional integrals and differential equations. One can see that RL, Hadamard, and
Katugampola fuzzy fractional integrals are the basis for a lot of research on this area. We recommand the reader to the works
[15, 16] and references listed therein for details about the basic concepts of fuzzy analysis and fuzzy differential equations. By
employing the Caputo-Katugampola fuzzy fractional derivative, Sajedi et al. evaluated the existence, uniqueness, and several
types of Ulam-Hyers stability of solutions of an impulsive coupled system of fractional differentia equations [17]. For more
facts on fuzzy fractional differential equations and its stability concepts, see, for example, [18]-[25].

In this paper, motivated by the research going on in this direction, we study the Ξ-Hilfer fractional fuzzy differential
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equations with impulse of the form:
HD

α,β ,Ξ
0+ z(t) = p(t,z(t)), t ∈ (si, ti+1], i ∈M0 := M∪{0},

z(t) = gi(t,z(t+i )), t ∈ (ti,si], i ∈M,

I
1−γ,Ξ
0+ z(0) = z0, γ = α +β −αβ ,

(1.1)

where M = {1,2, · · · ,m}, z ∈ R, α ∈ (0,1), β ∈ [0,1], p : [0,T ]×Ed → Ed is continuous, and Ed is the space of fuzzy sets
and ti satisfy 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < · · ·< tm ≤ sm < tm+1 = T , gi : [ti,si]×Ed → Ed is continuous for all i = 1,2, · · · ,m,
which is non-instantaneous impulses. Moreover HD

α,β ,Ξ
0+ and I

1−γ,Ξ
0+ are the Ξ-Hilfer fractional derivative and Ξ-RL fractional

integral.

2. Preliminaries
If we take J = [0,T ]. Let Ed be a family of fuzzy numbers, that is., z : R→ [0,1] satisfies normal, convex, upper

semicontinuous and compactly supported.
The s-level set of z ∈ Ed are defined by

[z]s =

{
{t ∈ R|z(t)≥ s}, if s ∈ (0,1],
cl{t ∈ R|z(t)> s}, if s = 0.

So, the s-level set of z ∈ Ed are compact intervals of the form [z]s = [z(s),z(s)]⊂ R.

Definition 2.1. [15] Two fuzzy sets z1 and z2 are defined on Ed and λ ∈ R. According to Zadeh’s extension principle, z1 + z2
and λ z1 are in Ed and defined as

[z1 + z2]
s =[z1]

s +[z2]
s,

[λ z1]
s =λ [z1]

s, for all s ∈ [0,1],

where [z1]
s +[z2]

s represents the usual addition of two intervals of R and λ [z1]
s represents the usual scalar product between λ

and an real interval.

Definition 2.2. [16] The distance D0[z1,z2] between two fuzzy numbers is defined by

D0[z1,z2] = sup
0≤s≤1

H([z1]
s, [z2]

s) for all z1,z2 ∈ Ed , (2.1)

where H([z1]
s, [z2]

s) = max{|z1(s)− z2(s)|, |z1(s)− z2(s)|} is the Hausdroff distance between [z1]
s and [z2]

s.

Definition 2.3. [16] Let z1,z2 ∈ Ed . There exists z3 ∈ Ed such that z1 = z2 + z3, that is., z3 = z1	 z2, where z3 is Hukuhara
difference of z1 and z2.
The generalized Hukuhara difference of two fuzzy numbers z1,z2 ∈ Ed [gH-difference] is defined as

z1	gH z2 = z3⇔ z1 = z2 + z3, or z2 = z1 +(−1)z3, (2.2)

where z1	gH z2 is called as gH-difference of z1 and z2 in Ed .

Definition 2.4. [15] Let z : [a,b]→ Ed be a fuzzy function, then for each s ∈ [0,1], the function t 7→ d([z(t)]s) is nondecreasing
(nonincreasing) on [a,b]. In addition, z is called d-monotone on [a,b], if z is d-increasing or d-decreasing on [a,b].

Definition 2.5. [15] Let z : (a,b]→ Ed and t ∈ [a,b]. If z is a fuzzy function of gH-differentiable with respect to t then there
exists an element z

′
gH(t) ∈ Ed such that

z
′
gH(t) = lim

h→0

z(t +h)	gH z(t)
h

. (2.3)

Definition 2.6. Let z : J → Ed be a continuous fuzzy mapping. The fuzzy Ξ-type RL fractional integral of z is defined by(
RLIα,Ξ

0+ z
)
(t) =

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1z(τ)dτ, for all t ∈J . (2.4)
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Definition 2.7. Let z : J →Ed be a continuous fuzzy mapping. The fuzzy Ξ-type RL fractional derivative of order n−1<α < n
for fuzzy-valued function z is defined by

(RLDα,Ξ
0+ z

)
(t) =

1
Γ(n−α)

(
1

Ξ
′
(t)

d
dt

)n ∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))n−α−1z(τ)dτ, for all t ∈J . (2.5)

Definition 2.8. The fuzzy Ξ-Hilfer fractional derivative of order α ∈ (0,1) and type β ∈ [0,1] is defined by

HD
α,β ,Ξ
0+ z(t) = I

α(1−β ),Ξ
0+

(
1

Ξ
′
(t)

d
dt

)
I
(1−α)(1−β ),Ξ
0+ z(t). (2.6)

for a fuzzy function z : J → Ed so that the expression on the right side exists.

Lemma 2.9. Let α ∈ (0,1), β ∈ [0,1] and z ∈A C (J ,Ed) be a d-monotone fuzzy function, then

(
Iα,Ξ

0+
HD

α,β ,Ξ
0+ z

)
(t) =z(t)	gH

(
I

1−γ,Ξ
0+ z

)
(0)

Γ(γ)
(Ξ(t)−Ξ(0))γ−1, t ∈J . (2.7)(HD

α,β ,Ξ
0+ Iα,Ξ

0+ z
)
(t) =z(t), t ∈J . (2.8)

Theorem 2.10. [3] Let (S,D) be a generalized complete metric space. Suppose that the operator T : S→ S is strictly
contractive with Lipschitz constant L < 1. If there exists a non-negative integer k such that D[T k+1,T k]< ∞ for some z ∈ S,
then the following are true:

(i) The sequence {T kz}k≥1 converges to a fixed point z∗ of T ;

(ii) z∗ is the unique fixed point of T ∈ S∗; where S∗ = {v ∈ S|D[T kz,v]< ∞}.

(iii) If v ∈ S∗, then D[v,z∗]≤ 1
1−L

D[T v,v].

3. Existence Theory

In this section, we consider PC (J ,Ed) the family of piecewise continuous fuzzy function, we say that v(t) is continuous
on Ji, i = 0,1, · · · ,m, where Ji = (ti, ti+1] and t0 = 0, tm+1 = T .

We introduce the following hypotheses:
(H1) There exists function m∗,n∗ ∈C(J ,R+) such that

D0[p(t,u(t)), 0̂]≤ m∗(t)D0[u(t), 0̂]+n∗(t),

where M∗ = supt∈J m∗(t) and N∗ = supt∈J n∗(t).
(H2) p ∈C([si, ti+1],Ed) and there exists a positive constants Lp such that

D0[p(t,u1), p(t,u2)]≤ LpD0[u1,u2], t ∈J .

(H3) gi ∈C([ti,si],Ed) and there exists a positive constants Lgi

D0[gi(t,u1),gi(t,u2)]≤ LgiD0[u1,u2].

(H4) There exists function q ∈C(J ,R+) such that

D0[gi(t,u(t+i )), 0̂]≤ q(t)D0[u(t), 0̂].

(H5) Let ϕ ∈C(J ,R+) be a non-decreasing function, then there exists Cϕ > 0 such that

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1

ϕ(τ)dτ <Cϕ ϕ(t) for each t ∈J .
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Lemma 3.1. Let p ∈ C(J ,Ed) be a continuous fuzzy function. Then, a d-monotone fuzzy function z ∈PC (J ,Ed) is a
solution of the following problem{

HD
α,β ,Ξ
0+ z(t) = p(t,z(t)), t ∈J ,

I
1−γ,Ξ
0+ z(0) = z0.

if and only if z ∈PC (J ,Ed) satisfies the integral equation provided as follows:

z(t)	gH
(Ξ(t)−Ξ(0))γ−1

Γ(γ)
z0 =

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ, t ∈J .

Lemma 3.2. Let α ∈ (0,1), β ∈ [0,1] and γ = α +β (1−α). Suppose that p : J ×Ed → Ed be a continuous fuzzy function
and gi : [ti,si]×Ed→ Ed is a continuous for every i∈M. Then a d-monotone continuous function z is a solution of the following
integral equation:

z(t)	gH
(Ξ(t)−Ξ(0))γ−1

Γ(γ) z0 =
1

Γ(α)

∫ t
0 Ξ

′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ, t ∈ (si, ti+1],

z(t) = gi(t,z(t+i )), t ∈ (ti,si], k ∈M,

z(t)	gH z(si) =
1

Γ(α)

∫ t
si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ, t ∈ (si, ti+1],

where z(si) = gi(si,z(t+i ))

(3.1)

if and only if z is a d-monotone solution of the fuzzy impulsive of Ξ-Hilfer fractional problem is
HD

α,β ,Ξ
0+ z(t) = p(t,z(t)), t ∈ (si, ti+1], i ∈M0 := M∪{0},

z(t) = gi(t,z(t+i )), t ∈ (ti,si], i ∈M,

I
1−γ,Ξ
0+ z(0) = z0.

(3.2)

Proof. Suppose that z satisfies the problem (1.1), that is, z is a solution of Eqn.(1.1).
Let t ∈ (0, t1], then{

HD
α,β ,Ξ
0+ z(t) = p(t,z(t)), t ∈ (si, ti+1],

I
1−γ,Ξ
0+ z(0) = z0,

is equivalent to the equation

z(t)	gH
(Ξ(t)−Ξ(0))γ−1

Γ(γ)
z0 =

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ. (3.3)

Now, it follows from Eqn.(3.2) of second equation that when t ∈ (t1,s1], z(t) = gi(t,z(t+i )). If t ∈ (s1, t2] then

HD
α,β ,Ξ
0+ z(t) =p(t,z(t)), t ∈ (s1, t2]

z(s1) =g1(s1,z(t+1 )). (3.4)

Applying an operator I1−γ,Ξ
0+ over (0, t2] on both sides of Eqn.(3.4) , we get

z(t)	gH
(Ξ(t)−Ξ(0))γ−1

Γ(γ)
I

1−γ,Ξ
0+ z(0) =

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ, (3.5)

which yields

z(s1)	gH
(Ξ(s1)−Ξ(0))γ−1

Γ(γ)
I

1−γ,Ξ
0+ z(0) =

1
Γ(α)

∫ s1

0
Ξ
′
(τ)(Ξ(s1)−Ξ(τ))α−1 p(τ,z(τ))dτ.

From the second equation of problem (3.4), we get
g1(s1,z(t+1 ))	gH

(Ξ(t)−Ξ(0))γ−1

Γ(γ) I
1−γ,Ξ
0+ z(0) = 1

Γ(α)

∫ s1
0 Ξ

′
(τ)(Ξ(s1)−Ξ(τ))α−1 p(τ,z(τ))dτ

I
1−γ,Ξ
0+ z(0)

=
(
g1(s1,z(t+1 )	gH

1
Γ(α)

∫ s1
0 Ξ

′
(τ)(Ξ(s1)−Ξ(τ))α−1 p(τ,z(τ))dτ

)
Γ(γ)(Ξ(t)−Ξ(0))1−γ .

(3.6)
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Substituting Eqn.(3.6) in Eqn.(3.5), we obtainz(t)	gH

(
Ξ(t)−Ξ(0)

Ξ(s1)−Ξ(0)

)γ−1(
g1(s1,u(t+1 ))	gH

1
Γ(α)

∫ s1
0 Ξ

′
(τ)(Ξ(s1)−Ξ(τ))α−1 p(τ,z(τ))dτ

)
= 1

Γ(α)

∫ t
0 Ξ

′
(τ)(Ξ(s1)−Ξ(τ))α−1 p(τ,z(τ))dτ, t ∈ (s1, t2].

Now, it follows from Eqn.(3.2) of second equation that when t ∈ (t2,s2] with z(s2) = g2(s2,u(t+2 )).
Repeating the same process for t ∈ (si, ti+1], we obtain

z(t)	gH z(si) =
1

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ, t ∈ (si, ti+1],

where, z(si) = gi(si,z(t+i )).
Conversely, suppose that z satisfies the integral Eqn.(3.1). If t ∈ (0, t1], then I

1−γ,Ξ
0+ z(0) = z0 and applying HD

α,β ,Ξ
0+ fact that,

we obtain

HD
α,β ,Ξ
0+

(
z(t)	gH I

1−γ,Ξ
0+ z(0)

)
=HD

α,β ,Ξ
0+

(
1

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ

)
,

=HD
α,β ,Ξ
0+

(
Iα,Ξ

0+ p(t,z(t))
)
.

HD
α,β ,Ξ
0+

(
Iα,Ξ

0+
HD

α,β ,Ξ
0+ z(t)

)
=HIα,Ξ

0+
HD

α,β ,Ξ
0+ p(t,z(t))

HD
α,β ,Ξ
0+ z(t) =p(t,z(t)).

And, next we can easily prove that z(t) = gi(t,z(t+i )), t ∈ (ti,si].

Theorem 3.3. Assume that (H1)− (H3) hold. Then, the problem (1.1) has at least one solution.

Proof. Define a operator T : PC (J ,Ed)→PC (J ,Ed) is given by

(Tw)(t) =


(

(Ξ(t)−Ξ(0))γ−1

Γ(γ)

)
w0 +

1
Γ(α)

∫ t
0 Ξ

′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ, t ∈ (0, t1],

gi(t,w(t+i )), t ∈ (ti,si],

gi(si,w(t+i ))+ 1
Γ(α)

∫ t
si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ.

Clearly the operator T is well-defined and for any w ∈PC (J ,Ed), we have
Case 1: For t ∈ (0, t1].
D0[Tw(t)(Ξ(t)−Ξ(0))1−γ , 0̂]

≤ D0

[
w0

Γ(γ)
+

(Ξ(t)−Ξ(0))1−γ

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ, 0̂

]
≤ w0

Γ(γ)
+

(Ξ(t)−Ξ(0))1−γ

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[p(τ,w(τ)), 0̂]dτ

≤ w0

Γ(γ)
+

(Ξ(t)−Ξ(0))1−γ

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1m∗(τ)D0[w(τ), 0̂]dτ

+
(Ξ(t)−Ξ(0))1−γ

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1n∗(τ)dτ

≤ w0

Γ(γ)
+

(Ξ(t)−Ξ(0))1−γ

Γ(α)
B(γ,α)(Ξ(t)−Ξ(0))α+γ−1M∗D0[w(τ), 0̂]

+
(Ξ(t)−Ξ(0))1−γ

Γ(α +1)
(Ξ(t)−Ξ(0))α N∗

≤ w0

Γ(γ)
+

M∗B(γ,α)

Γ(α)
(Ξ(t)−Ξ(0))α D0[w(τ), 0̂]+

N∗

Γ(α +1)
(Ξ(t)−Ξ(0))α+1−γ .
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Case 2: For t ∈ (ti,si].
D0[Tw(t)(Ξ(t)−Ξ(0))1−γ , 0̂]≤ (Ξ(t)−Ξ(0))1−γ D0[gi(t,w(t+i )), 0̂]

≤ (Ξ(t)−Ξ(ti))1−γ q(t)D0[w(t), 0̂]

≤ QD0[w(t), 0̂],

where Q = (Ξ(t)−Ξ(ti))1−γ q(t).
Case 3: For t ∈ (si, ti+1].
D0[Tw(t)(Ξ(t)−Ξ(si))

1−γ , 0̂]

≤ (Ξ(t)−Ξ(si))
1−γ D0[gi(si,w(s+i )), 0̂]+

(Ξ(t)−Ξ(si))
1−γ

Γ(α)

×
∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[p(τ,w(τ)), 0̂]dτ

≤ QD0[w(t), 0̂]+
M∗B(γ,α)

Γ(α)
(Ξ(ti)−Ξ(si))

α D0[w(t), 0̂]

+
N∗

Γ(α +1)
(Ξ(ti+1)−Ξ(si))

α+1−γ ,

which gives T transforms the Ball Bη = {w ∈PC (J ,Ed)|D0[w, 0̂]≤ η}, into itself. Next, we have to prove the operator
T : Bη →Bη satisfies all the conditions of Schauder fixed point theorem. The following steps are done by the proof.
Step 1: T is continuous.
Let wn be a sequence such that wn→ w in C(J ,Ed). Then
Case i: For t ∈ (0, t1],
D0[Twn(t)(Ξ(t)−Ξ(0))1−γ ,Tw(t)(Ξ(t)−Ξ(0))1−γ ]

≤ (Ξ(t)−Ξ(0))1−γ

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[p(τ,wn(τ)), p(τ,w(τ))]dτ

≤ B(γ,α)

Γ(α)
(Ξ(t1)−Ξ(0))α D0[p(t,wn(t)), p(t,w(t))]

≤ B(γ,α)

Γ(α)
(Ξ(t1)−Ξ(0))α LpD0[wn,w].

Case ii: For t ∈ (ti,si].
D0[Twn(t)(Ξ(t)−Ξ(ti))1−γ ,Tw(t)(Ξ(t)−Ξ(ti))1−γ ]

≤ (Ξ(t)−Ξ(ti))1−γ D0[gi(t,wn(t+i )),gi(t,w(t+i ))]

≤ D0[gi(t,wn(t+i )),gi(t,w(t+i ))]

≤ LgiD0[wn(t+i ),w(t+i )].

Case iii: For t ∈ (si, ti+1].
D0[Twn(t)(Ξ(t)−Ξ(ti))1−γ ,Tw(t)(Ξ(t)−Ξ(ti))1−γ ]

≤ (Ξ(t)−Ξ(si))
1−γ D0[gi(si,wn(t+i )),gi(si,w(t+i ))]

+
(Ξ(t)−Ξ(si))

1−γ

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[p(τ,wn(τ)), p(τ,w(τ))]dτ

≤ D0[gi(t,wn(t+i )),gi(t,w(t+i ))]+
B(γ,α)

Γ(α)
(Ξ(ti+1)−Ξ(si))

α D0[p(t,wn(t)), p(t,w(t))]

≤ LgiD0[wn,w]+
B(γ,α)

Γ(α)
(Ξ(ti+1)−Ξ(si))

α LpD0[wn,w].

Step 2: T (Bη) is uniformly bounded.
It is clear that, T (Bη)⊂Bη is bounded.
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Step 3: We have to prove that T (Bη) is equicontinuous.
If t1, t2 ∈J , t1 > t2 are bounded set of C(J ,Ed) as in step 2. Then
Case i: For t ∈ (0, t1].
D0[(Ξ(t1)−Ξ(0))1−γ Tw(t1),(Ξ(t2)−Ξ(0))1−γ Tw(t2)]

≤ D0[
(Ξ(t1)−Ξ(0))1−γ

Γ(α)

∫ t1

0
Ξ
′
(τ)(Ξ(t1)−Ξ(τ))α−1 p(τ,w(τ))dτ,

(Ξ(t2)−Ξ(0))1−γ

Γ(α)

∫ t2

0
Ξ
′
(τ)(Ξ(t2)−Ξ(τ))α−1 p(τ,w(τ))dτ]

≤ D0[p(t,w(t)), 0̂]
Γ(α)

B(γ,α)[(Ξ(t1)−Ξ(0))α +(Ξ(t2)−Ξ(0))α ].

Case ii: For t ∈ (ti,si].
D0[(Ξ(t1)−Ξ(0))1−γ Tw(t1),(Ξ(t2)−Ξ(0))1−γ Tw(t2)]

≤ D0[(Ξ(t1)−Ξ(0))1−γ gi(t1,w(t+i )),(Ξ(t2)−Ξ(0))1−γ Tw(t2)gi(t2,w(t+i ))],

≤ D0[gi(t1,w(t+i )),gi(t2,w(t+i ))].

Case iii: For t ∈ (si, ti+1].
D0[(Ξ(t1)−Ξ(0))1−γ Tw(t1),(Ξ(t2)−Ξ(0))1−γ Tw(t2)]

≤ D0[
(Ξ(t1)−Ξ(si))

1−γ

Γ(α)

∫ t1

si

Ξ
′
(τ)(Ξ(t1)−Ξ(τ))α−1 p(τ,w(τ))dτ,

(Ξ(t2)−Ξ(si))
1−γ

Γ(α)

∫ t2

si

Ξ
′
(τ)(Ξ(t2)−Ξ(τ))α−1 p(τ,w(τ))dτ],

→ 0 as t2→ t1.

As a sequence of step 1-2 together with the Arzela-Ascoli theorem states that T is continuous and compact on Bη . Schauder’s
theorem states that T has a fixed point of w, which gives w is a solution of (1.1). This completes the proof.

Theorem 3.4. Assume that (H1)-(H2) hold. If

Λ = max
{

LpB(γ,α)

Γ(α)
(Ξ(t1)−Ξ(0))α ,

(
Lgi +

LpB(γ,α)

Γ(α)
(Ξ(ti+1)−Ξ(si))

α

)}
< 1.

Then, the problem (1.1) has unique solution.

Proof. Define a operator T : PC (J ,Ed)→PC (J ,Ed) is given by

(Tw)(t) =


(

(Ξ(t)−Ξ(0))γ−1

Γ(γ)

)
w0 +

1
Γ(α)

∫ t
0 Ξ

′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ, t ∈ (0, t1]

gi(t,w(t+i )), t ∈ (ti,si]

gi(si,w(t+i ))+ 1
Γ(α)

∫ t
si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ.

It is enough to prove T is a contraction mapping, we consider the following cases are done by the proof.
Case i: For t ∈ (0, t1].
D0[Tw(t)(Ξ(t)−Ξ(0))1−γ ,T w(t)(Ξ(t)−Ξ(0))1−γ ]

≤ (Ξ(t)−Ξ(0))1−γ

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[p(τ,w(τ)), p(τ,w(τ)]dτ

≤ (Ξ(t)−Ξ(0))1−γ

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1LpD0[w,w]dτ

≤
LpB(γ,α)

Γ(α)
(Ξ(t1)−Ξ(0))α D0[w,w].
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Case ii: For t ∈ (ti,si].
D0[Tw(t)(Ξ(t)−Ξ(ti))1−γ ,T w(t)(Ξ(t)−Ξ(ti))1−γ ]

≤ (Ξ(t)−Ξ(0))1−γ D0[gi(t,w(t+i )),gi(t,w(t+i ))]

≤ LgiD0[w,w].

Case iii: For t ∈ (si, ti+1].
D0[Tw(t)(Ξ(t)−Ξ(si))

1−γ ,T w(t)(Ξ(t)−Ξ(si))
1−γ ]

≤ (Ξ(t)−Ξ(si))
1−γ D0[gi(si,w(t+i )),gi(si,w(t+i ))]

+
(Ξ(t)−Ξ(si))

1−γ

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[p(τ,w(τ)), p(τ,w(τ)]dτ

≤
(

Lgi +
LpB(γ,α)

Γ(α)
(Ξ(ti+1)−Ξ(si))

α

)
D0[w,w],

which gives D0[Tw,T w]≤ΛD0[w,w]. Hence T is a contraction and there exists a unique solution. This completes the proof.

4. Stability Results

In this section, we discuss a generalized Ulam-Hyers-Rassias stability (G-U-H-R) concept of Eqn.(1.1).
Let ζ ≥ 0 and ϕ ∈PC (J ,R+) is nondecreasing. Then, we consider the following inequality{

D0[
HD

α,β ,Ξ
0+ u(t), p(t,u(t))]≤ ϕ(t), t ∈ (si, ti+1],

D0[u(t),gi(t,u(t+i ))]≤ ζ , t ∈ (ti,si].
(4.1)

Definition 4.1. The problem (1.1) is G-U-H-R stable with respect to (ϕ,ζ ), if there exists Cp,gi,ϕ > 0 such that
for each solution u ∈PC (J ,Ed) of Eqn.(4.1), there exists a solution z ∈PC (J ,Ed) of Eqn.(1.1) with

D0[u(t),z(t)]≤Cp,gi,ϕ(ϕ(t)+ζ ), t ∈J .

Remark 4.2. A fuzzy function u ∈PC (J ,Ed) is a solution of Eqn.(4.1) if and only if there exists G ∈PC (J ,Ed)
and a sequence Gi, i = 1,2, ...,m (which depends on u) such that

(i) D0[G(t), 0̂]≤ ϕ(t) and D0[Gi, 0̂]< ζ , i = 1,2, ...,m.

(ii) HD
α,β ,Ξ
0+ u(t) = p(t,u(t))+G(t), t ∈ (si, ti+1].

(iii) u(t) = gi(t,u(t+i ))+Gi, t ∈ (ti,si].

Remark 4.3. Let u ∈PC (J ,Ed) be a solution of Eqn.(4.1). Then, u is a solution of the following integral inequality

D0[u(t),gi(t,u(t+i ))]≤ ζ , t ∈ (ti,si], i = 1,2 · · · ,m,

D0

[
u(t),

(
(Ξ(t)−Ξ(0))γ−1

Γ(γ)

)
u0 +

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ

]
≤ 1

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1

ϕ(τ)dτ,

D0

[
u(t),gi(si,u(t+i ))+

1
Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,z(τ))dτ

]
≤ ζ +

1
Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1

ϕ(τ)dτ, t ∈ (si, ti+1].

(4.2)

Theorem 4.4. Suppose that p ∈C([si, ti+1],Ed) and gi ∈C([ti,si],Ed) satisfied (H2)− (H5) and a fuzzy function
w ∈PC (J ,Ed) satisfies Eqn.(3.6), there exists a unique solution u : J → Ed of (3.1) with the initial condition
u(0) = w(0) such that

D0[u(t),w(t)]≤
(1+Cϕ))(ϕ(t)+ζ )

1−Λ
, t ∈J , (4.3)

where Λ = max{Lgi +LpCϕ}.
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Proof. Consider the space of piecewise continuous function

S = {w : J → Ed |w ∈PC (J ,Ed)},

with a generalized metric on S. Now, let us consider

DS[w,w] = inf{C′ +C
′′ ∈ [0,∞)|D0[w(t),w(t)]≤C

′
+C

′′
(ϕ(t)+ζ ), t ∈J },

obviously, (S,DS) is a complete generalized metric space, where

C
′ ∈ {C ∈ [0,+∞)|D0[w(t),w(t)]≤Cϕ(t), for all t ∈ (si, ti+1]},

C
′′ ∈ {C ∈ [0,+∞)|D0[w(t),w(t)]≤Cζ (t), for all t ∈ (ti,si]}.

Define an operator T : S→ S by

(Tw)(t) =


(Ξ(t)−Ξ(0))γ−1

Γ(γ)
w0 +

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ, t ∈ (0, t1],

gi(t,w(t+i )), t ∈ (ti,si],

gi(si,w(t+i ))+
1

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ.

(4.4)

Clearly, the operator T is a well-defined operator. Next, we show that T is strictly contractive on S. From the
definition of the space (S,DS), for any w,w ∈ S, it is possible to find C

′
,C
′′ ∈ [0,∞) such that

D0[w(t),w(t)]≤

{
C
′
ϕ(t), t ∈ (si, ti+1] k = 0,1, ...,m,

C
′′
ζ (t), t ∈ (ti,si], k = 1,2, ...,m,

and from the definition of operator T . By using (H2), (H3), and (H5), we get
Case 1: For t ∈ (0, t1].

D0[Tw(t),T w(t)] = D0

[
1

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ

,
1

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ

]
≤ 1

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[p(τ,w(τ)), p(τ,w(τ))]dτ

≤
Lp

Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[w,w]dτ

≤ LpC
′
Cϕ ϕ(t).

Case 2: For t ∈ (ti,si].
By (H3), we get

D0[Tw(t),T w(t)] = D0[gi(t,w(t+i ))gi(t,w(t+i ))]

≤ LgiD0[w,w]

≤ LgiC
′′
ζ (t).

Case 3: For t ∈ (si, ti+1].
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By (H2)− (H5), we have

D0[Tw(t),T w(t)] = D0

[
gi(si,w(t+i ))+

1
Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ,

gi(si,w(t+i ))+
1

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ

]
≤ D0[gi(si,w(t+i )),gi(si,w(t+i ))]

+D0

[
1

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1(p(τ,w(τ)), p(τ,w(τ)))dτ

]
≤ LgiD0[w,w]+

1
Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1

ϕ(τ)dτ

×D0[p(τ,w(τ)), p(τ,w(τ))]

≤ (Lgi +LpCϕ)(C
′
+C

′′
)(ϕ(t)+ζ ))

≤ max
i∈{1,2,··· ,m}

(Lgi +LpCϕ)(C
′
+C

′′
)(ϕ(t)+ζ )

= Λ(C
′
+C

′′
)(ϕ(t)+ζ ), t ∈J ,

where Λ = maxi∈{1,2,··· ,m}(Lgi +LpCϕ). This implies that

DS[Tw,T w]≤ ΛDS[w,w], for any w,w ∈ S.

Hence T is strictly contractive. Now, we take w0 ∈ S and by using the piecewise continuous property of w0 and Tw0, it is
possible to find 0 < Gi < ∞ so that

D0[Tw0(t),w0(t)] =D0

[
(Ξ(t)−Ξ(0))γ−1

Γ(γ)
w0 +

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1

× p(τ,w0(τ))dτ,w0(t)
]

≤ G1ϕ(t)≤ G1(ϕ(t)+ζ ), t ∈ [0, t1].

Also,

D0[Tw0(t),w0(t)] = D0[gi(si,w(t+i )),w0(t)]

≤ G2ζ ≤ G2(ϕ(t)+ζ ), t ∈ (ti,si],

and

D0[Tw0(t),w0(t)] = D0[gi(t,w(t+i ))+
1

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w0(τ))dτ,w0(t)]

≤ G3(ϕ(t)+ζ ), t ∈ (si, ti+1].

Since p, gi and w0 are bounded on J and ϕ(t)+ζ > 0, it follows that DS[Tw0,w0]≤maxi=1,2,..,m{G1,G2,G3}< ∞.
According to Banach fixed point theorem, there exists a fixed point of fuzzy continuous function S : J → Ed
such that T nw0→ w0 ∈ (S,DS) as n→ ∞ and Tw0 = w0, that is., w0 satisfies Eqn.(3.1) for all t ∈J . For finally,
we check that Cw ∈ (0,∞) so that D0[w0(t),w(t)]≤Cw(ϕ(t)+ζ ), for any t ∈J . Since w,w0 are bounded on J ,
which gives, mint∈J (ϕ(t)+ζ )> 0. Thus DS[w0,w]< ∞, w ∈ S, which gives S = {w ∈ S|DS(w0,w)< ∞}, we get
u is the unique solution continuous function.
In this same process, we prove Eqn.(4.3) holds. A function w ∈PC (J ,Ed) is a solution of Eqn. (4.1) on J , then there
exists a function G ∈PC (J ,Ed) and a sequence Gi (which depends on w) such that

D0[G(t), 0̂]≤ ϕ(t), and
D0[Gi, 0̂]≤ ζ , i = 1,2, ..m
HD

α,β ,Ξ
0+ w(t) = p(t,w(t))+G(t), t ∈ (si, ti+1]

w(t) = gi(t,w(t+i ))+Gi, t ∈ (ti,si].

(4.5)
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It follows from Lemma 3.2, one has

w(t) = (Ξ(t)−Ξ(0))γ−1

Γ(γ) w0 +
1

Γ(α)

∫ t
0 Ξ

′
(τ)(Ξ(t)−Ξ(τ))α−1

×[p(τ,w(τ))+G(t)]dτ, t ∈ (0, t1]
w(t) = gi(t,w(t+i ))+Gi, t ∈ (ti,si],

w(t) = [gi(si,w(t+i ))+Gi]+
1

Γ(α)

∫ t
si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1

×[p(τ,w(τ))+G(t)]dτ, t ∈ (si, ti+1].

(4.6)

Thus, by (H5) and from the first inequalities of Eqn. (4.5), we get
D0[w(t),

(Ξ(t)−Ξ(0))γ−1

Γ(γ) w0 +
1

Γ(α)

∫ t
0 Ξ

′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ]≤Cϕ ϕ(t),

D0[w(t),gi(t,w(t+i ))]≤ ζ , t ∈ (ti,si]

D0[w(t),gi(t,w(t+i ))+ 1
Γ(α)

∫ t
si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ]≤ ζ +Cϕ ϕ(t),

t ∈ (si, ti+1].

(4.7)

By (H5), Remark 4.2 and Eqn. (4.7), one derives
Case 1: For t ∈ (0, t1].

D0[w(t),
(Ξ(t)−Ξ(0))γ−1

Γ(γ)
w0 +

1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ]

≤ 1
Γ(α)

∫ t

0
Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1D0[G(t), 0̂]dτ

≤ εCϕ ϕ(t).

Case 2: For t ∈ (ti,si].
D0[w(t),gi(t,w(t+i ))] = D0[gi(t,w(t+i ))+Gi,gi(t,w(t+i ))]

≤ D0[Gi, 0̂]
≤ ζ .

Case 3: For t ∈ (si, ti+1].

D0

[
w(t),gi(si,w(t+i ))+

1
Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1 p(τ,w(τ))dτ

]

≤ D0[Gi, 0̂]+D0

[
1

Γ(α)

∫ t

si

Ξ
′
(τ)(Ξ(t)−Ξ(τ))α−1G(τ)dτ

]
≤ D0[Gi, 0̂]+D0[G(t), 0̂]
≤ εζ +Cϕ ϕ(t))

≤ (1+Cϕ)(ϕ(t)+ζ ).

Thus, DS[w,Tw]≤ (1+Cϕ), it follows that DS[w,u]≤
DS[Tw,w]

1−Λ
≤

(1+Cϕ)

1−Λ
.

Because, Eqn.(4.3) is true for all t ∈J . Hence Eqn.(1.1) is G-U-H-R stable.
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We construct a Cesàro-type operator acting on Dirichlet space of the upper half plane using the approach of
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1. Introduction
Let C be the complex plane. We define the (open) unit disk of the complex plane as the set D= {z ∈ C : |z|< 1}, while the set
U= {ω ∈ C : ℑ(ω)> 0} denotes the upper half plane of the complex plane, where ℑ(ω) denotes the imaginary part of the
complex number ω . Also dA(ω) shall denotes the (normalized) area Lebesgue measure on U. The Cayley transform ψ is the
function ψ(z) = i(1+z)

1−z and maps the unit disc D conformally onto the upper half plane U with inverse given by ψ−1(ω) = ω−i
ω+i .

For more details see [1].
Let H (Ω) denotes the Fréchet space of analytic functions f : Ω→ C endowed with the topology of uniform convergence
on compact subsets of Ω for an open subset Ω of C. For 1≤ p < ∞, the Bergman spaces of the upper half plane, Lp

a(U), are
defined by

Lp
a(U) :=

{
f ∈H (U) : ‖ f‖Lp

a (U) :=
(∫

U
| f (ω)|pdA(ω)

) 1
p

< ∞

}
,

while the Hardy space of the upper half plane H p(U) are defined by

H p(U) =

{
f ∈H (U) : ‖ f‖H p(U) = sup

y>0

(∫
∞

−∞

| f (x+ iy)|pdx
) 1

p

< ∞

}
.
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The Dirichlet space of the upper half plane, D(U), is defined by

D(U) :=
{

f ∈H (U) : ‖ f‖2
D1(U) =

∫
U
| f ′(ω)|2dA(ω)< ∞

}
, (1.1)

and the norm is given by ‖ f‖2
D(U) = | f (i)|

2 + ‖ f‖2
D1(U)

where ‖.‖D1(U) is a seminorm on D(U). We refer to [1, 2, 3] for
comprehensive details on spaces of analytic functions. The theory of analytic spaces of the unit disc D is well established in
literature as opposed to their counterparts of the upper half plane U. For instance, the reproducing kernel for D(U) has recently
been computed in [4] and is given by

Kw(z) = 1+ log
(

i(z+ i)(ω̄− i)
2(z− ω̄)

)
, (1.2)

where z,ω ∈ U. Consequently, every f ∈D(U) satisfies the growth condition

| f (ω)| ≤ ‖ f‖D(U)

√
1+ log

(
|ω + i|2
4ℑ(ω)

)
. (1.3)

Let X be an arbitrary Banach space over C and T be closed operator on X . The resolvent set of T , ρ(T ) is given by
ρ(T ) = {λ ∈ C : λ I - T is invertible}. The spectrum of T , σ(T ) = C\ρ(T ). Moreover, r(T ) = sup{|λ | : λ ∈ σ(T )} defines
the spectral radius of T and the point spectrum σp(T ) of T is given by σp(T ) = {λ ∈ C : T x = λx for some 0 6= x ∈ dom(T )}.
A semigroup, (Tt)t≥0, of bounded linear operators on X is said to be strongly continuous if limt→0+‖Ttx− x‖= 0 for all x ∈ X .
The infinitesimal generator Γ of (Tt)t≥0 is defined by

Γx = lim
t→0+

Ttx− x
t

=
∂

∂ t
(Ttx)

∣∣∣∣
t=0

(1.4)

for each x ∈ dom(Γ), where the domain of Γ is given by

dom(Γ) =

{
x ∈ X : lim

t→0+

Ttx− x
t

exists
}
.

For details, see [5, 6, 7].
The composition operator Cϕ induced by ϕ and is acting on H (Ω) is defined by

Cϕ f = f ◦ϕ , for all f ∈H (Ω).

On the other hand, the composition semigroup Cϕt induced by the semigroup (ϕt)t≥0 on H (Ω) is defined by

Cϕt ( f ) = f ◦ϕt for all f ∈H (Ω).

We refer to [7, 8, 9] for a comprehensive account of the theory of composition semigroups on analytic spaces of D.
For the case of the upper half plane, the study of composition semigroups yielding Cesáro-type operators was initiated by [10]
on the Hardy space, and later extended by [11] on the Hardy and weighted Bergman spaces. For the Dirichlet space of the upper
half plane, even though the composition semigroups have been partially considered by [12], the Cesáro-type operators have not
been studied. In this work we construct such an operator on a subspace of the Dirichlet space of U and determine its properties.

2. Composition Semigroup on the Dirichlet space of U
We note that the automorphisms of the upper half plane were classified into three groups [11], that is the scaling, the translation
and the rotation groups depending on the location of their fixed points. In this paper, we consider the group of composition
operators on D(U) associated with the scaling group of the form ϕt(ω) = e−tω for ω ∈ U where ϕt is a self analytic map. We
determine if the group of composition operator is an isometry on D(U). We then investigate both the semigroup and spectral
properties of the composition semigroup. For ϕt(ω) = e−tω , ω ∈ U the composition semigroup induced by the scaling group
and acting on D(U) is defined as

Cϕt f (ω) = f ◦ϕt(ω)

= f (e−t
ω), (2.1)

for all f ∈D(U). It can be easily shown that the functions (Cϕt )t∈R form a group on D(U) under composition.
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Theorem 2.1. The operator Cϕt fails to be an isometry on D(U).

Proof. By norm definition,

‖Cϕt f‖2
D(U) = ‖ f ◦ϕt‖2

D(U) = | f ◦ϕt(i)|2 +
∫
U
|( f ◦ϕt)

′(ω)|2dA(ω). (2.2)

But ( f ◦ϕt)(ω) = f (e−tω). Thus ( f ◦ϕt)
′(ω) = e−t f ′(e−tω) implying that |( f ◦ϕt)

′(ω)|2 = e−2t | f ′(e−tω)|2 and | f ◦ϕt(i)|2 =
| f (e−t i)|2.
By change of variables, we let z = e−tω , then ω = etz and dA(z) = e−2tdA(ω) implying that dA(ω) = e2tdA(z).
Substituting in (2.2), we get

‖Cϕt f‖2
D(U) = | f (e−t i)|2 +

∫
U
|( f ◦ϕt)

′(ω)|2dA(ω).

= | f (e−t i)|2 +
∫
U

e−2t | f ′(e−t
ω)|2dA(ω).

= | f (e−t i)|2 +
∫
U
| f ′(z)|2dA(z).

But | f (e−t i)|2 +
∫
U | f ′(z)|2dA(z) 6= ‖ f‖2

D(U). Thus Cϕt fails to be an isometry on D(U).

Remark 2.2. Because of Theorem 2.1, the spectral analysis of the group (Cϕt )t∈R gets complicated since the spectrum of (Cϕt )t∈R
cannot be exactly identified rendering the spectral mapping theorems for semigroups inapplicable. We therefore consider
D◦(U), the subspace of D(U) consisting of functions vanishing at i, f (i) = 0, defined as D◦(U) = { f ∈D(U) : f (i) = 0} with
the norm given as ‖ f‖2

D◦(U) =
∫
U | f ′(ω)|2dA(ω).

However, Cϕt f (i) = f (e−t i) 6= 0, and so Cϕt does not map D◦(U) into D◦(U) as expected for our semigroups. Therefore, we
apply a correction factor and redefine Cϕt as

Ĉϕt f (z) = f (e−tz)− f (e−t i). (2.3)

Now Ĉϕt f (i) = f (e−t i)− f (e−t i) = 0 as desired so that indeed Ĉϕt : D◦(U)→D◦(U).

Clearly, the functions (Ĉϕt )t∈R form a group on D◦(U).

Proposition 2.3. The operator Ĉϕt is an isometry on D◦(U).

Proof. By norm definition,

‖Ĉϕt f‖2
D◦(U) =

∫
U
|(Ĉϕt f )′(ω)|2dA(ω)

=
∫
U

∣∣∣( f (e−t
ω)− f (e−t i)

)′∣∣∣2 dA(ω)

=
∫
U

∣∣e−t f ′(e−t
ω)
∣∣2 dA(ω). (2.4)

By change of variables, we let z = e−tω , then, ω = etz and applying the Jacobian, dA(z) = e−2tdA(ω), implying that
dA(ω) = e2tdA(z).
Substituting in (2.4),

‖Ĉϕt f‖2
D◦(U) =

∫
U

e−2t | f ′(e−t
ω)|2dA(ω)

=
∫
U

e−2t | f ′(z)|2e2tdA(z)

=
∫
U
| f ′(z)|2dA(z)

= ‖ f‖2
D◦(U).

This completes our proof.

Next, we prove that the operator Ĉϕt is strongly continuous on the Dirichlet space of the upper half plane D◦(U).
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Proposition 2.4. The operator Ĉϕt is strongly continuous on D◦(U).

Proof. It is known that ‖Ĉϕt f‖2
D◦(U) =

∫
U | f ′(ω)|2dA(ω). To prove strong continuity of (Ĉϕt )t∈R, it suffices to show that

limt→0+ ‖Ĉϕt f − f‖D◦(U) = 0 for all f ∈D◦(U). That is to say that,∫
U |(Ĉϕt f − f )′(ω)|2 dA(ω)→ 0 as t→ 0+ which is equivalent to showing that limt→0+

∫
U |(Ĉϕt f − f )′(ω)|2dA(ω) = 0.

Let f ∈D◦(U) and suppose that tn→ 0 in R. Let fn = Ĉϕt n f , then fn(z)→ f (z) on compact subsets of U and f ′n→ f ′ for each
n.
Let gn(z) := 2(| f ′|2 + | f ′n|2)−| f ′− f ′n|2, then gn ≥ 0 and gn(z)→ 22| f ′(z)|2 on D◦(U) as n→ ∞.
By Fatou’s lemma, we have∫

U
22 | f ′(ω) |2 dA(ω) =

∫
U

liminfgndA(ω)

≤ liminf
∫
U

gndA(ω)

= liminf
∫
U

2(| f ′|2 + | f ′n|2)−| f ′− f ′n|2)dA(ω)

= 2
∫
U
| f ′|2dA(ω)+2

∫
U
| f ′|2dA(ω)− limsup

n

∫
U
| f ′− f ′n|dA(ω)

= 22
∫
U
| f ′|2dA(ω)− limsup

n

∫
U
| f ′− f ′n|dA(ω)

Thus 0 ≤ − limsupn
∫
U | f ′− f ′n|2dA ≤ 0, implying that limsupn

∫
U | f ′− f ′n|2dA(ω) = 0. Hence limn

∫
U | f ′− f ′n|2dA(ω) = 0,

that is limn
∫
U ‖Ĉϕtn f − f‖2dA(ω) = 0.

Therefore, ‖Ĉϕt f − f‖D◦(U)→ 0 as t→ 0, implying that Ĉϕt for t ∈ R is strongly continuous as desired.

We now obtain the infinitesimal generator Γ of (Ĉϕt )t∈R and investigate some of its properties.

Proposition 2.5. The infinitesimal generator Γ of (Ĉϕt )t≥0 is given by

Γ f (ω) =−ω f ′(ω)+ i f ′(i),

with its domain dom(Γ) = { f ∈D◦(U) : ω f ′(ω) ∈D◦(U)}.

Proof. If f ∈ dom(Γ) in D◦(U), then growth condition in (1.3) implies that for all ω ∈ U and f ∈D◦(U),

Γ f (ω) = lim
t→0+

( f (e−tω)− f (e−t i))− f (ω)

t

=
∂

∂ t
( f (e−t

ω)− f (e−t i))
∣∣∣∣
t=0

= −e−t
ω f ′(e−t

ω)+ ie−t f ′(e−t i)
∣∣
t=0

= −ω f ′(ω)+ i f ′(i).

This shows that dom(Γ)⊆ { f ∈D◦(U) : ω f ′(ω) ∈D◦(U)}. Conversely, let f ∈D◦(U) such that ω f ′(ω) ∈D◦(U). Then for
ω ∈ U, and by fundamental theorem of calculus, we have,

Ĉϕt f (ω)− f (ω) =
∫ t

0

∂

∂ s
( f (e−s

ω)− f (e−si))ds

=
∫ t

0
−e−s

ω f ′(e−s
ω)+ e−si f ′(e−si))ds

=
∫ t

0
e−s(−ω f ′(ω)+ i f ′(i))ds

=
∫ t

0
ĈϕsF(ω)ds,

where F(ω) =−ω f ′(ω)+ i f ′(i) is a function in D◦(U). Thus limt→0
Ĉϕt f− f

t = limt→0
1
t
∫ t

0 Cϕs(F)ds and strong continuity of
(Ĉϕt )t∈R implies that 1

t
∫ t

0 ‖Ĉϕt F−F‖ds→ 0 as t→ 0. Thus
dom(Γ) ⊇ { f ∈D◦(U) : ω f ′(ω) ∈D◦(U)} completing the proof.
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Lemma 2.6. A function f ∈D◦(U) if and only if f ′ ∈ L2
a(U).

Proof. By definition of D◦(U), f ∈D◦(U) if and only if

‖ f‖2
D1(U) =

∫
U
| f ′(ω)|2dA(ω)< ∞,

Also, by definition of L2
a(U), (see equation (??)) f ′ ∈ L2

a(U) if and only if

‖ f ′‖2
L2

a(U)
=

∫
U
| f ′(ω)|2dA(ω)< ∞.

This implies that f ∈D◦(U) if and only if f ′ ∈ L2
a(U), as desired.

Lemma 2.7 ([11]). Let X denote the space Lp
a(U),1≤ p < ∞. If c ∈R and λ ,v ∈C, then f (ω) = (ω−c)λ (w+ i)v ∈ X if and

only if ℜ(λ + v)<−1 < ℜ(λ ). In particular, (ω− c)λ /∈ X for any λ ∈ C, and (ω + i)v ∈ X if and only if ℜ(v)<−1.

Proposition 2.8. Let Γ be the infinitesimal generator of the group (Ĉϕt )t∈R, then σp(Γ) = /0 and σ(Γ)⊆ iR.

Proof. Let λ be an eigenvalue of Γ and let f be a corresponding eigenvector. The eigenvalue equation Γ( f ) = λ f is equivalent
to a first order differential equation

−z f ′(z)+ i f ′(i) = λ f (z).

Solving this differential equation using the integrating factor technique yields

f (z) =
B
λ
+Cz−λ ,

where B = i f ′(i) and C is an arbitrary constant.
It remains to find for which λ ′s is f ∈D◦(U) given that f (z) = B

λ
+Cz−λ .

But f ∈D◦(U) if and only if f ′ ∈ L2
a(U). By differentiation, f ′(z) =−λCz−(λ+1). It follows clearly from Lemma 2.7, that

f ′ ∈ L2
a(U) if and only if ℜ(λ ) < −1 < ℜ(λ ). No such λ exists and so σp(Γ) = /0. Since (Ĉϕt ) is an invertible isometry,

σ(Ĉϕt )⊆ ∂D and by spectral mapping theorem for semigroups, etσ(Γ) ⊆ σ(Ĉϕt). Thus

etσ(Γ) ⊆ σ(Ĉϕt)⊆ ∂D.

Let λ ∈ σ(Γ), then

|eλ t |= 1.

This shows that

etℜ(λ ) = 1 ⇒ tℜ(λ ) = 0
⇒ ℜ(λ ) = 0.

So λ ∈ iR implying that σ(Γ)⊆ iR.

3. Cesáro-Type Operator on the Dirichlet Space of U
We determine the resolvent of the infinitesimal generator as an integral operator of the Cesáro-type and then determine the point
spectrum, spectrum and spectral radius as well as the norm of the operator on the Dirichlet space. Since σ(Γ)⊆ iR, we can
consider the point λ = 1 in the resolvent set, ρ(Γ), and then obtain the corresponding resolvent operator given by the Laplace
transform.

Theorem 3.1. Let Γ be the infinitesimal generator of (Ĉϕt )t∈R, then the following hold:

(a) The resolvent operator C = R(1,Γ) on D◦(U) is given by

C h(z) = R(1,Γ)h(z) =
1
z

∫ z

0

(
h(ω)−h(

ω

z
i)
)

dω. (3.1)

The operator C is a Cesàro-type operator.
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(b) σ(C )⊆ {ω : |ω− 1
2 |=

1
2}.

(c) ‖C ‖ ≤ 1.

(d) r(C )≤ 1.

Proof. To prove (a), we consider a point λ /∈ iR. Then λ ∈ ρ(Γ) since σ(Γ)⊆ iR. The resolvent operator, R(λ ,Γ), is therefore
given by the Laplace transform,
R(λ ,Γ)h =

∫
∞

0 e−λ tĈϕt hdt with convergence in norm.
Now

R(λ ,Γ)h(z) =
∫

∞

0
e−λ t(h(e−tz)−h(e−t i))dt.

By change of variables, we let ω = e−tz. Then e−t = ω

z ,dw =−e−tzdt, t = 0⇒ ω = z; t = ∞⇒ ω = 0.
Therefore

R(λ ,Γ)h(z) =
∫ 0

z
(

ω

z
)λ (h(ω)−h(

ω

z
i))
−1
ω

dω

=
∫ z

0
(

ω

z
)λ

(
h(ω)−h(

ω

z
i)
)

1
ω

dω.

Taking λ = 1, we obtain

R(1,Γ)h(z) =
1
z

∫ z

0

(
h(ω)−h(

ω

z
i)
)

dω,

which is a Cesàro-type operator of difference of two Cesàro operators.
To prove (b), we apply the spectral mapping theorem for the resolvents which asserts that

σ(R(λ ,Γ))\{0} = (λ −σ(Γ))−1 =

{
1

λ −µ
: µ ∈ σ(Γ)

}
. (3.2)

Thus,

σ(R(1,Γ))\{0} ⊆
{

1
1− ir

: r ∈ R
}
. (3.3)

Rationalizing the denominator and simplifying we get,

1
1− ir

=
1+ ir
1+ r2 .

Letting ω = 1+ir
1+r2 and subtracting 1

2 , we get

w− 1
2
=
−r+ i
2(r+ i)

.

Getting the magnitude on both sides of the equation and simplifying, we get
∣∣ω− 1

2

∣∣= 1
2 and therefore

σ(C )⊆
{

ω :
∣∣∣∣ω− 1

2

∣∣∣∣= 1
2

}
.

For (c), we apply the Hille Yosida theorem,

‖R(1,Γ)‖ ≤ 1,

implying that

‖C ‖ ≤ 1. (3.4)

For (d), we use (3.4) and the fact that r(C )≤ ‖C ‖ ≤ 1. Clearly,

r(C )≤ 1.

This completes our proof.
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1. Introduction
Over the past forty years, the idea of fractional calculus has grown significantly in popularity and significance. This is

because it has distinguished uses in so many different branches of engineering and research. Mathematicians also use the
operators of the fractional calculus to break down the classical special functions into some more fundamental, well-known
special or elementary functions. This approach was followed by Samko et al. [1], and Kiryakova [2]. Following the ideas of
Lavoie, Osler and Tremblay [3], Kiryakova [4, 5] further demonstrated that almost all the special functions of mathematical
physics, can be represented as (generalized) fractional integrals or derivatives of the three elementary functions. Relations of
this kind also provide some alternative definitions for the special functions by means of Poisson type and Euler type integral
representations and Rodrigues type differential formulas. Mariusz Ciesielski [6] studied the fractional eigenvalue problem
by a numerical method when the fractional Sturm-Liouville equation is subjected to the mixed boundary conditions. The
non-integer order differential equation is discretized to the scheme with the symmetric matrix representing the action of the
numerically expressed composition of the left and the right Caputo derivatives. Kiryakova [7] pointed out few basic classical
results, combined with author’s ideas and developments, that show how one can do the task at once, in the rather general
case: for both operators of generalized fractional calculus and generalized hypergeometric functions. Thus, great part of the
results are well predicted and fall just as special cases of the discussed general scheme. Saigo et al. [8] demonstrated fractional
calculus operator associated with the H-function. Jahanshahi S. [9] introduced an algorithm for computing fractional integrals
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and derivatives and applied it for solving problems of the calculus of variations of fractional order.
Fractional integral inequalities (FIIs) and its applications have received considerable attention from researchers and mathe-

maticians during the past few decades. Recent research uses a variety of fractional integral operators and focuses on different
forms of Fractional integral inequalities (FIIs). (see, e.g., [10]-[16], [21]). Here the authors have established various types of
inequalities and some other results by utilizing the Saigo–Maedafractional integral operator.
Recently, Purohit and Raina [16] used Saigo fractional integral operators to investigate several integral inequalities of the
Chebyshev type and established the q-extensions of the major discoveries. In this paper, a few generalised integral inequalities
for synchronous functions connected to the Chebyshev functional are shown using the fractional hypergeometric operator
developed by Curiel and Galue [17]. The results attributed to Purohit and Raina [16] and Belarbi and Dahmani [18] are shown
below as particular cases of our findings.

2. Preliminaries
Definition: On [a,b], the two functions f and g are synchronous. if

(
f (x)− f (y)

)(
g(x)−g(y)

)
≥ 0, f or any x,y ∈ [a,b] (2.1)

Riemann-Liouville fractional integral operator:
Joseph Liouville (1832) introduced the Riemann Liouville integral operator which included the definition given by Bernhard
Riemann [15]. It is first significant definition which fulfilled almost all the requirements of a fractional calculus operator.
Named in honour of Riemann and Liouville, this operator is defined as

aIα
x f (x) =a D−α

x f (x) =
1

Γ(α)

∫ x

a
(x− t)α−1 f (t)dt (2.2)

where a is arbitrary but fixed point.
The Riemann-Liouville operator [15] has its importance in physical science where it exists in the theory of linear ordinary
differential equations.

Weyl Fractional Integral Operator:
The Weyl fractional integral operator [1] is defined as:

xW α
∞ f (x) =

1
Γ(α)

∫
∞

x
(t− x)α−1 f (t)dt; −∞ < x < ∞. (2.3)

and

−∞W α
x f (x) =

1
Γ(α)

∫ x

−∞

(x− t)α−1 f (t)dt; −∞ < x < ∞. (2.4)

Generalizing both the Riemann-Liouville operator [15] and the Weyl-operator [1], Oldham and Spanier [19] defined the familiar
differ-integral operator aDα

x as follows:

aDα
x =

1
Γ(−α)

∫ x

a
(x− t)−α−1 f (t)dt; Re(α)< 0

=
dm

dxm aDα−m
x f (x); 0 < Re(α)< a (2.5)

here ‘m’ is positive integer, α is complex and Re(α)> 0.
Erdelyi-Kober Operators:
Erdelyi and Hermann (1940) [20] introduced the fractional integral operators namely Erdelyi-Kober operators. These operators
are defined as follows:

Eα,η
0,x f (x) = Iα,0,η

0,x f (x) =
x−α−η

Γ(α)

∫ x

0
(x− t)α−1tη f (t)dt, Re(α)> 0. (2.6)
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and

Kα,η
x,∞ f (x) = Jα,0,η

x,∞ f (x) =
xη

Γ(α)

∫
∞

x
(t− x)α−1t−α−η f (t)dt, Re(α)> 0. (2.7)

when η = 0, [21] reduces to Riemann-Liouville operator, that is

I0,α
x f (x) = x−α

0 Iα
x f (x). (2.8)

and for η = 0, [16] reduces to Weyl operator, that is

K0,α
x f (x) = x−α

0 W α
x f (x). (2.9)

The Saigo’s Operator:
Saigo [22] introduced this operator after studying the Euler-Darboux equation [23], which is a partial differential equation with
boundary conditions.
For real numbers α > 0,β and η the Saigo operator, involving hypergeometric function is defined as [22]:

Iα,β ,η
0,x f (x) =

x−α−β

Γ(α)

∫ x

0
(x− t)α−1

2 F1(α +β ,η ;α;1− t
x
) f (t)dt

(
Iα,β ,η
0+ f

)
(x) =

(
d
dx

)k(
Iα+k,β−k,η−k
0+ f

)
(x)

For Re(α)≤ 0,k = [−Re(α)+1], it takes the form

Jα,β ,η
x,∞ f (x) =

1
Γ(α)

∫
∞

x
(t− x)α−1t−α−β

2 F1(α +β ,−η ;α;1− x
t
) f (t)dt, Re(α)> 0. (2.10)

(
Iα,β ,η
0− f

)
(x) =

(
−d
dx

)k(
Iα+k,β−k,η
0− f

)
(x), Re(α)≤ 0,k = [−Re(α)+1] (2.11)

(
Dα,β ,η

0+ f
)
(x) =

(
I−α,−β ,α+η

0+ f
)
(x) =

(
d
dx

)k(
I−α+k,−β−k,α+η−k
0+ f

)
(x) (2.12)

Re(α)> 0,k = [Re(α)+1](
Dα,β ,η

0− f
)
(x) =

(
I−α,−β ,α+η

0− f
)
(x) =

(
−d
dx

)k(
I−α+k,−β−k,α+η

0− f
)
(x) (2.13)

Re(α)> 0,k = [Re(α)+1]
The Saigo-Maeda Operator:
In 1996 Saigo-Maeda [23] extended the fractional integral operators defined by Saigo [22]. The generalized fractional integral
operators are defined as:

Iµ,µ ′,ν ,ν ′,η
0,x f (x) =

x−µ

Γ(η)

∫ x

0
(x− t)η−1t−µ ′F3(µ,µ

′,ν ,ν ′;η ;1− t
x

;1− x
t
) f (t)dt (2.14)

where µ,µ ′ > 0,Re(η)> 0,ν ,ν ′ are real number.(
Iµ,µ ′,ν ,ν ′,η
0+ f

)
(x) =

(
d
dx

)k(
Iµ,µ ′,ν+k,ν ′,η+k
0+ f

)
(x) (2.15)

Re(η)> 0,k = [−(Re(η)+1]

Iµ,µ ′,ν ,ν ′,η
x,∞ f (x) =

x−µ

Γ(η)

∫
∞

x
(t− x)η−1t−µ F3(µ,µ

′,ν ,ν ′;η ;1− x
t

;1− t
x
) f (t)dt, (2.16)
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where µ,µ ′ > 0,Re(η)> 0,ν ,ν ′ are real number.(
Iµ,µ ′,ν ,ν ′,η
0− f

)
(x) =

(
−d
dx

)k(
Iµ,µ ′,ν ,ν ′+k,η+k
0− f

)
(x) (2.17)

where Re(η)≤ 0,k = [−(Re(η)+1](
Dµ,µ ′,ν ,ν ′,η

0+ f
)
(x) =

(
I−µ ′,−µ,−ν ′,−ν ,η
0+ f

)
(x) =

(
I−µ ′,−µ,−ν ′+k,−ν ,η+k
0+ f

)
(x) (2.18)

where R(η)> 0,k = [Re(η)+1](
Dµ,µ ′,ν ,ν ′,η

0− f
)
(x) =

(
I−µ ′,−µ,−ν ′,−ν ,η
0− f

)
(x) =

(
−d
dx

)k(
I−µ ′,−µ,−ν ′,−ν+k,−η+k
0+ f

)
(x) (2.19)

where µ,µ ′,ν ,ν ′,η ∈C,(R(η)> 0) and x > 0, Re(η)> 0,k = [Re(η)+1] and F3(.) is Appell′s f unction.

3. Main Results
Theorem 3.1. Assume u and v are two positive integrable and synchronous mappings on [0,∞]. Suppose there exists four

positive integrable mappings m1,m2,n1 and n2 such that:

0 < m1(t)≤ u(t)≤ m2(t), and 0 < n1(t)≤ v(t)≤ n2(t) (t ∈ [0,x],x > 0) (3.1)

then the following inequality holds true:

Ka,b
0,y {n1n2u2}x×Ka,b

0,y {m1m2v2}x≤ 1
4

(
Ka,b

0,y {(m1n1 +m2n2)uv}

)2

. (3.2)

Proof: By using the relations that are given in (3.1), for t ∈ [0,x], for all x > 0, we can easily have:(
m2(t)
n1(t)

− u(t)
v(t)

)
≥ 0. (3.3)

(
u(t)
v(t)
− m1(t)

n2(t)

)
≥ 0. (3.4)

On multiplying equations (3.3) and (3.4) we get,(
m1(t)n1(t)+m2(t)n2(t)

)
u(t)v(t)≥ n1(t)n2(t)u2(t)+m1(t)m2(t)v2(t). (3.5)

Consider the following function F(x, t) defined by:

F(x, t) =
y−a−b

Γ(a)
tb(y− t)a−1 (3.6)

Then multiplying both sides of (3.5) by F(y, t) and integrate w.r.t to t from 0 to x and using definition (2.6)

Ea,b
0,x {(m1n1 +m2n2)uv}x≥ Ea,b

0,x {n1n2u2}x+Ea,b
0,x {m1m2v2}x.

Using A.M-G.M inequality , we get

Ea,b
0,x {(m1n1 +m2n2)uv}x≥ 2

√
Ea,b

0,x {n1n2u2}x×Ea,b
0,x {m1m2v2}x.
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Further on simplifying above equation, we get

Ea,b
0,y {n1n2u2}x×Ea,b

0,y {m1m2v2}x≤ 1
4

(
Ea,b

0,y {(m1n1 +m2n2)uv}

)2

.

This complete proof of the theorem.
Theorem 3.2. Assume u and v are two positive integrable and synchronous mappings on [0,∞]. Suppose there exists four

positive integrable mappings m1,m2,n1 and n2 such that:

0 < m1(t)≤ u(t)≤ m2(t), and 0 < n1(t)≤ v(t)≤ n2(t) (t ∈ [0,x],x > 0) (3.7)

then the following inequality holds true:

Iα,α ′,β ,β ′,γ
0+ {n1n2u2}x× Iα,α ′,β ,β ′,γ

0+ {m1m2v2}x≤ 1
4

(
Iα,α ′,β ,β ′,γ
0+ {(m1n1 +m2n2)uv}

)2

. (3.8)

Proof: By using the relations that are given in (3.7), for t ∈ [0,x],∀x > 0,we can easily have:(
m2(t)
n1(t)

− u(t)
v(t)

)
≥ 0. (3.9)

(
u(t)
v(t)
− m1(t)

n2(t)

)
≥ 0. (3.10)

On multiplying equations (3.9) and (3.10) we get,(
m1(t)n1(t)+m2(t)n2(t)

)
u(t)v(t)≥ n1(t)n2(t)u2(t)+m1(t)m2(t)v2(t). (3.11)

Consider the following function F(x, t) defined by:

F(x, t) =
x−α

Γ(γ)
(x− t)γ−1F3

(
α,α ′,β ,β ′;γ;1− x

t
,1− t

x

)
. (3.12)

Then multiplying both sides of (3.11) by F(x, t) and integrate w.r.t to t from 0 to x and using definition (2.14)

Iα,α ′,β ,β ′,γ
0+ {(m1n1 +m2n2)uv}x≥ Iα,α ′,β ,β ′,γ

0+ {n1n2u2}x+ Iα,α ′,β ,β ′,γ
0+ {m1m2v2}x. (3.13)

Using A.M-G.M inequality, that is

(a+b)
2

≥
√

ab, a,b ∈ R

we get

Iα,α ′,β ,β ′,γ
0+ {(m1n1 +m2n2)uv}x≥ 2

√
Iα,α ′,β ,β ′,γ
0+ {n1n2u2}x× Iα,α ′,β ,β ′,γ

0+ {m1m2v2}x.

Further on simplifying above equation, we get

Iα,α ′,β ,β ′,γ
0+ {n1n2u2}x× Iα,α ′,β ,β ′,γ

0+ {m1m2v2}x≤ 1
4

(
Iα,α ′,β ,β ′,γ
0+ {(m1n1 +m2n2)uv}

)2

.

This completes the proof.
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4. Special Cases
In this section, we discuss some of the important special cases of the main results established above.

Corollary (1): If we take β ′ = γ = 0 in the theorems (3.2) we get well known results based on Saigo type fractional operator
reported in [24], which is as follows:

Iα,α ′,β
0+ {n1n2u2}x× Iα,α ′,β

0+ {m1m2v2}x≤ 1
4

(
Iα,α ′,β
0+ {(m1n1 +m2n2)uv}

)2

(4.1)

Corollary (2): If we take, α ′ = 0 in the Corollary (1), we get well known results based on Erdelyi-Kober type fractional
operator reported in [11].

Kα,β
0+ {n1n2u2}x×Kα,β

0+ {m1m2v2}x≤ 1
4

(
Kα,β

0+ {(m1n1 +m2n2)uv}

)2

(4.2)

Corollary (3): If we take, β = 0 in the Corollary (2), we get well known results based on Riemann-Liouville type fractional
operator reported in [24].

Rα

0+{n1n2u2}x×Rα

0+{m1m2v2}x≤ 1
4

(
Rα

0+{(m1n1 +m2n2)uv}

)2

(4.3)

5. Results and Discussions
We conclude our investigation by stating that the findings presented in this paper are all original and significant. First, using

a Saigo-Maeda type fractional integral operator, we have created a number of inequalities and generated a number of special
cases for the operators namely Saigo type fractional operator, Erdelyi - Kober type fractional operator and Riemann-Liouville
type fractional operator.
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1. Introduction
Inverse problems of spectral analysis consist of recovering the coefficients of an operator from their spectral characteristics.

Such problems often appear in mathematics, mathematical physics, mechanics, and other branches of natural sciences.
The first result in inverse spectral problems for the Sturm-Liouville operator has been obtained by Ambarzumyan in 1929

(see [1]). He considered the boundary value problem{
−y′′+q(x)y = λy, 0 < x < π

y′(0) = y′(π) = 0
(1.1)

and proved that if the eigenvalues of (1.1) are λn = n2, n≥ 0, then q(x)≡ 0 a.e. on (0,π).
Until now, some Ambarzumyan-type theorems for the Sturm-Liouville, Dirac and diffusion operators including classical

derivatives have been studied by many authors (see [2]-[17]). Particularly, in [15], by considering a quadratic Sturm-Liouville
operator called the diffusion operator, it is shown that q(x) and p(x) functions are zero if the spectrum is the same as the
spectrum of zero potential.

In 2014, Khalil et al. gave a new fractional derivative definition called conformable derivative that extends the well-known
limit definition of the classical derivative (see [18]). The conformable fractional derivative has some advantages over fractional
derivatives. For instance, while some properties such as the derivative of the product of two functions, the derivative of the
quotient of two functions, and the chain rule are not satisfied in all fractional derivatives, these properties are satisfied in the
conformable fractional derivative. The basic properties and main results of this derivative were developed in the works in
[19]-[24].

In recent years, the direct and inverse problems for the various operators which include conformable fractional derivative
have been studied (see [25]-[33]). These problems appear in various branches of applied sciences (see [34]-[38]). In the current
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literature, there are no results related to the Ambarzumyan-type theorem for a diffusion operator with the conformable fractional
derivative.

We consider a conformable fractional diffusion operator (CFDO) with Neumann boundary conditions. The operator
Lα = Lα(p(x),q(x)) is the form{

−T α
x T α

x y+[2λ p(x)+q(x)]y = λ 2y, 0 < x < π

T α
x y(0) = T α

x y(π) = 0
(1.2)

where λ is the spectral parameter, α ∈ (0,1], q(x) ∈W 1
2,α [0,π], p(x) ∈W 2

2,α [0,π] are real-valued functions and T α
x y is a

conformable fractional derivative of order α of y at x.
The goal of this paper is to prove an Ambarzumyan-type theorem for the operator Lα . The result obtained can be considered

as a partial α−generalization of the result given in [15].

2. Preliminaries
Definition 2.1. Let f : [0,∞)→R be a given function. Then, the conformable fractional derivative of f of order α with respect
to x is defined by

T α
x f (x) = lim

h→0

f (x+hx1−α)− f (x)
h

, T α
x f (0) = lim

x→0+
T α

x f (x),

for all x > 0, α ∈ (0,1]. If f is differentiable that is f ′(x) = lim
h→0

f (x+h)− f (x)
h , then, T α

x f (x) = x1−α f ′(x).

We note that more detailed knowledge about conformable fractional calculus can be seen in [18]-[24].
Let ϕ (x,λ ;α) be the solution of equation (1.2) satisfying the initial conditions

ϕ (0,λ ;α) = 1, T α
x ϕ (0,λ ;α) = 0.

From [32], this solution can be shown with the α−integral representation for h = H = 0 as

ϕ (x,λ ;α) = cos
(

λ
xα

α
−θ(x)

)
+

x∫
0

A
(

x, tα

α

)
cosλ

tα

α
dα t +

x∫
0

B
(

x, tα

α

)
sinλ

tα

α
dα t, (2.1)

where the functions A
(

x, tα

α

)
and B

(
x, tα

α

)
satisfy the following system

T α
x T α

x A
(

x, tα

α

)
−q(x)A

(
x, tα

α

)
−2p(x)T α

t B
(

x, tα

α

)
= T α

t T α
t A
(

x, tα

α

)
T α

x T α
x B
(

x, tα

α

)
−q(x)B

(
x, tα

α

)
+2p(x)T α

t A
(

x, tα

α

)
= T α

t T α
t B
(

x, tα

α

)
.

Besides, the following relations are provided:

B(x,0) = 0, T α
t A
(

x, tα

α

)∣∣∣
t=0

= 0,

θ (x) =
x∫

0

p(t)dα t,

A(0,0) = 0,

A
(

x,
xα

α

)
cosθ (x)+B

(
x,

xα

α

)
sinθ (x) =

1
2

x∫
0

(
q(t)+ p2 (t)

)
dα t,

θ (x) = p(0)
xα

α
+2

x∫
0

[
A
(

s,
sα

α

)
sinθ (s)−B

(
s,

sα

α

)
cosθ (s)

]
dα s.

The function

∆α (λ ) = T α
x ϕ (π,λ ;α) (2.2)
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is entire function in λ and is called as the characteristic function of operator Lα . It is well-known that the roots of ∆α (λ ) = 0
are coincide with the eigenvalues of operator Lα .

From (2.1) and (2.2), we have easily that

∆α (λ ) = −(λ − p(π))sin
(

λ
πα

α
−θ(π)

)
+A

(
π, πα

α

)
cosλ

πα

α
+B

(
π, πα

α

)
sinλ

πα

α

+

π∫
0

(
T α

x A
(

π, tα

α

))
cosλ

tα

α
dα t +

π∫
0

(
T α

x B
(

π, tα

α

))
sinλ

tα

α
dα t.

(2.3)

With the help of (2.3), the following theorem for the eigenvalues λn of operator Lα can be proved as in [32]:

Theorem 2.2. The operator Lα has a countable set of eigenvalues {λn} and the following asymptotic formula holds:

λn =
nα

πα−1 + cα,0 +
cα,1

n
+o
(

1
n

)
, |n| → ∞, (2.4)

where

cα,0 =
α

πα

π∫
0

p(x)dα x, cα,1 =
1

2π

π∫
0

(
q(x)+ p2 (x)

)
dα x.

3. Main Result
In this section, we prove an Ambarzumyan-type theorem for the operator Lα , i.e. we show that q(x) and p(x) functions are

zero if the eigenvalues are the same as the eigenvalues of zero potentials.

Theorem 3.1. If the eigenvalues of the operator Lα are λn =
nα

πα−1 , n ∈ Z, then for each fixed α , q(x) = 0, p(x) = 0 a.e. on

(0,π) and θ (π) = 0.

Proof. It follows from (2.4) that for each fixed α, cα,0 = 0, cα,1 = 0, i.e.

π∫
0

p(x)dα x = 0 = θ (π)

and
π∫

0

q(x)dα x =−
π∫

0

p2 (x)dα x. (3.1)

Let y0 (x;α) = y(x,0;α) be an eigenfunction corresponding to the eigenvalue λ0 = 0 of the operator Lα . Then we can write{
−T α

x T α
x y0 (x;α)+q(x)y0 (x;α) = 0, 0 < x < π

T α
x y0 (0;α) = 0, T α

x y0 (π;α) = 0
. (3.2)

It is clear that y0 (0;α) 6= 0 and y0 (π;α) 6= 0. Otherwise, y0 (0;α) = T α
x y0 (0;α) = 0 or y0 (π;α) = T α

x y0 (π;α) = 0. In both
cases, we get y0 (x;α) = 0 through the uniqueness of the solution of an initial value problem, which contradicts the fact that
y0 (x;α) is an eigenfunction.

Taking into account the relation

T α
x T α

x y0 (x;α)

y0 (x;α)
= T α

x

(
T α

x y0 (x;α)

y0 (x;α)

)
+

(
T α

x y0 (x;α)

y0 (x;α)

)2

,

we obtain from (3.2) that

T α
x

(
T α

x y0 (x;α)

y0 (x;α)

)
+

(
T α

x y0 (x;α)

y0 (x;α)

)2

= q(x).
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By α−integrating of both sides of the above equation from 0 to π

π∫
0

T α
x

(
T α

x y0 (x;α)

y0 (x;α)

)
dα x+

π∫
0

(
T α

x y0 (x;α)

y0 (x;α)

)2

dα x =
π∫

0

q(x)dα x

is obtained. From (3.1) and (3.2), we get

T α
x y0 (x;α)

y0 (x;α)

∣∣∣∣π
0
+

π∫
0

(
T α

x y0 (x;α)

y0 (x;α)

)2

dα x =−
π∫

0

p2 (x)dα x

or

π∫
0

[(
T α

x y0 (x;α)

y0 (x;α)

)2

+ p2 (x)

]
dα x = 0.

Thus, for each fixed α, (T α
x y0 (x;α))2 + p2 (x)y2

0 (x;α)≡ 0, i.e. p(x) = 0 a.e. on (0,π) and y0 (x;α)≡ k, where 0 6= k−const.
Hence, it is concluded from (3.2) that

−T α
x T α

x k+q(x)k = 0

then q(x) = 0 a.e. on (0,π). Therefore, the theorem is completed.

4. Conclusion
As known, the inverse problems of spectral analysis consist in recovering operators from their spectral characteristics, and

the first result in this direction belongs to Ambarzumyan for the Sturm-Liouville operator. Until today, many studies have been
done on the Ambarzumyan theorem for various operators including classical derivatives. In this paper, the Ambarzumyan
theorem is proved for the diffusion operator with Neumann boundary value conditions including fractional derivatives. This
study will make an important contribution to the inverse problems of spectral analysis. This theorem can be proved in the future
for various operators with different derivatives.
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1. Introduction and Main Results
1.1 Definition of the “F.O.P. ” algorithm

For the convenience of the reader, we give, at once, an outline of this process which has an interest especially under the use
of PARI programs [1].

Definition 1.1. We call “First Occurrence Process” (F.O.P. ) the following algorithm, defined on a large interval [1,B] of
integers. As t grows from t = 1 up to t = B, we compute some arithmetic invariant F(t); for instance, a pair of invariants
described as a PARI list, as the following illustration with square-free integers M(t) and units η(t) of Q(

√
M(t)):

F(t) 7→ L(t) = List
([

M(t), η(t)
]
,

provided with a natural order on the pairs L(t), then put it in a PARI list LM:

Listput(LM,vector(2,c,L[c])) 7→List([L(1),L(2), . . . ,L(t), . . . ,L(B)])
=List([ [M(1),η(1)], . . . , [M(t),η(t)], . . . , [M(B),η(B)] ]);

after that, we apply the PARI instruction VM = vecsort(LM,1,8) which builds the list:

VM = List([L1,L2, . . . ,Lj, . . . ,LN]), N≤ B,
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such that Lj = L(tj) = [ [M(tj),η(tj)] ] is the first occurrence (regarding the selected order, for instance that on the M’s) of the
invariant found by the algorithm and which removes the subsequent duplicate entries.

Removing the duplicate entries is the key of the principle since in general they are unbounded in number as B→ ∞ and do
not give the suitable information

Since the length N of the list VM is unknown by nature, one must write LM as a vector and put instead:

VM = vecsort(vector(B,c,LM[c]),1,8);

thus, N = #VM makes sense and one can (for possible testing) select elements and components as X = VM[k][2], etc.
If N is not needed, then VM = vecsort(LM,1,8) works well.
For instance, the list LM of objects F(t) = (M(t),ε(t)), 1≤ t ≤ B = 10:

LM = List([ [5,ε5], [2,ε2], [5,ε
′
5], [7,ε7], [5,ε

′′
5 ], [3,ε3], [2,ε

′
2], [5,ε

′′′
5 ], [6,ε6], [7,ε

′
7] ]),

with the natural order on the first components M, leads to the list:

VM = List([[2,ε2], [3,ε3], [5,ε5], [6,ε6], [7,ε7]]).

1.2 Quadratic integers
Let K := Q(

√
M), M ∈ Z≥2 square-free, be a real quadratic field and let ZK be its ring of integers. Recall that M ≥ 2,

square-free, is called the “Kummer radical” of K, contrary to any “radical” m = Mr2 giving the same field K.

There are two ways of writing for an element α ∈ ZK . The first one is to use the integral basis {1,
√

M} (resp.
{

1, 1+
√

M
2

}
)

when M 6≡ 1 (mod 4) (resp. M ≡ 1 (mod 4)). The second one is to write α = 1
2 (u+ v

√
M), in which case u,v ∈ Z are

necessarily of same parity; but u,v may be odd only when M ≡ 1 (mod 4).
We denote by TK/Q and NK/Q, or simply T and N, the trace and norm maps in K/Q, so that T(α) = u and N(α) =

1
4 (u

2−Mv2) in the second writing for α .
Then the norm equation in u,v ∈ Z (not necessarily with co-prime numbers u, v):

u2−Mv2 = 4sν , s ∈ {−1,1}, ν ∈ Z≥1,

for M square-free, has the property that u,v are necessarily of same parity and may be odd only when M ≡ 1 (mod 4); then:

z := 1
2

(
u+ v
√

M
)
∈ ZK , T(z) = u & N(z) = sν .

Finally, we will write quadratic integers α , with positive coefficients on the basis {1,
√

M}; this defines a unique representa-
tive modulo the sign and the conjugation. Put:

Z+
K :=

{
α =

1
2

(
u+ v
√

M
)
, u,v ∈ Z≥1, u≡ v (mod 2)

}
.

Note that these α’s are not in Z, nor in Z·
√

M; indeed, we have the trivial solutions N(q) = q2 (α = q ∈ Z≥1, s = 1, ν = q2,
Mv2 = 0, u = q) or N(v

√
M) =−Mv2 (v ∈ Z≥1, s =−1, ν =−Mv2, u = 0), which are not given by the F.O.P. algorithm for

simplicity. These viewpoints will be more convenient for our purpose and these conventions will be implicit in all the sequel.
Since norm equations may have several solutions, we will use the following definition:

Definition 1.2. Let M ∈ Z≥2 be a square-free integer and let s ∈ {−1,1}, ν ∈ Z≥1. We call fundamental solution (if there are
any) of the norm equation u2−Mv2 = 4sν , with u,v ∈ Z≥1, the corresponding integer α := 1

2 (u+ v
√

M) ∈ Z+
K of minimal

trace u.

1.3 Quadratic polynomial units
It is classical that the continued fraction expansion of

√
m, for a positive square-free integer m, gives, under some

limitations, the fundamental solution, in integers u,v ∈ Z≥1, of the norm equation u2−mv2 = 4s, whence the fundamental unit
εm := 1

2 (u+v
√

m) of Q(
√

m). A similar context of “polynomial continued fraction expansion” does exist and gives polynomial
solutions (u(t),v(t)), of u(t)2−m(t)v(t)2 = 4s, for suitable m(t) ∈ Z[t] (see, e.g., [2]-[6]). This gives the quadratic polynomial
units E(t) := 1

2

(
u(t)+ v(t)

√
m(t)

)
.

We will base our study on the following polynomials m(t) that have interesting universal properties (a first use of this is due
to Yokoi [7, Theorem 1]).
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Definition 1.3. Consider the square-free polynomials msν(t) = t2−4sν ∈ Z[t], where s ∈ {−1,1}, ν ∈ Z≥1. The continued
fraction expansion of

√
t2−4sν leads to the integers Asν(t) := 1

2

(
t +
√

t2−4sν
)
, of norm sν and trace t, in a quadratic

extension of Q(t). When ν = 1, one obtains the units Es(t) := 1
2

(
t +
√

t2−4s
)
, of norm s and trace t.

The continued fraction expansion, with polynomials, gives the fundamental solution of the norm equation (cf. details in
[2]), but must not be confused with that using evaluations of the polynomials; for instance, for t0 = 7, m1(t0) = 72−4 = 45
is not square-free and E1(7) = 1

2 (7+
√

45) = 1
2 (7+ 3

√
5) is indeed the fundamental solution of u2− 45v2 = 4, but not the

fundamental unit ε5 of Q(
√

45) =Q(
√

5), since one gets E1(7) = ε6
5 .

1.4 Main algorithmic results
We will prove that the families of polynomials msν(t) = t2−4sν , s ∈ {−1,1}, ν ∈ Z≥1, are universal to find all square-free

integers M for which there exists a privileged solution α ∈Z+
K to N(α) = sν ; moreover, the solution obtained is the fundamental

one, in the meaning of Definition 1.2 saying that α is of minimal trace t ≥ 1. This is obtained by means of an extremely simple
algorithmic process (described § 1.1) and allows to get unbounded lists of quadratic fields, given by means of their Kummer
radical, and having specific properties.

The typical results, admitting several variations, are given by the following excerpt of statements using quadratic polynomial
expressions m(t) deduced from some msν(t):

Theorem 1.4. Let B be an arbitrary large upper bound. As the integer t grows from 1 up to B, for each first occurrence of a
square-free integer M ≥ 2, in the factorizations m(t) =: Mr2, we have the following properties for K :=Q(

√
M):

a) Consider the polynomials m(t) = t2−4sν , s ∈ {−1,1}, ν ∈ Z≥2:

(i) m(t) = t2−4s.

The unit 1
2 (t + r

√
M) is the fundamental unit of norm s of K (Theorem 4.2).

(ii) m(t) = t2−4sν .

The integer Asν(t) = 1
2 (t + r

√
M) is the fundamental integer in Z+

K of norm sν in the meaning of Definition 1.2 (Theorem 4.6).

b) Let p be an odd prime number and consider the following polynomials, deduced from the canonical m(T ) = T 2−4sν ,
with particular p-adic expressions of T and of integers ν:

(i) m(t) ∈
{

p4t2±1, p4t2±2, p4t2±4, 4p4t2±2, 9p4t2±6, 9p4t2±12, . . .
}

.

The field K is non p-rational apart from few explicit cases (Theorem 6.3).

(ii) m(t) = 34t2−4s.

The field F3,M :=Q(
√
−3M) has its class number divisible by 3, except possibly when the unit 1

2

(
9t + r

√
M
)

is a third power
of a unit (Theorem 7.1). Up to B = 105, all the 3-class groups are non-trivial, apart from few explicit cases.

(iii) m(t) = p4t2−4s, p≥ 5.

The imaginary cyclic extension Fp,M :=Q
(
(ζp−ζ−1

p )
√

M
)
, of degree p−1, has its class number divisible by p, except possibly

when the unit 1
2

(
p2t + r

√
M)
)

is a p-th power of unit (Theorem 7.2).

For p = 5, the quartic cyclic field F5,M is defined by the polynomial P = x4 +5Mx2 +5M2 and up to B = 500, all the 5-class
groups are non-trivial, except for M = 29.

Moreover, this principle gives lists of solutions by means of Kummer radicals (or discriminants) of a regularly increasing
order of magnitude, these lists being unbounded as B→ ∞. See, for instance Proposition 3.1 for lists of Kummer radicals M,
then Section 2 for lists of arithmetic invariants (class groups, p-ramified torsion groups, logarithmic class groups of K), and
Theorems 6.4, 6.5, giving unlimited lists of units, local (but non global) pth powers, whence lists of non-p-rational quadratic
fields.

All the lists have, at least, O(B) distinct elements, but most often B−o(B), and even B distinct elements in some situations.

So, we intend to analyze these results in a computational point of view by means of a new strategy to obtain arbitrary large
list of fundamental units, or of other quadratic integers, even when radicals msν(t) =: M(t)r(t)2, t ∈ Z≥1, are not square-free
(i.e., r(t)> 1). By comparison, it is well known that many polynomials, in the literature, give subfamilies of integers (especially
fundamental units) found by means of the msν ’s with assuming that the radical msν(t) are square-free.
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Remark 1.5. It is accepted and often proven that the integers t2−4sν are square-free with a non-zero density and an uniform
repartition (see, e.g., [8, 9]); so an easy heuristic is that the last M = MB of the list VM is equivalent to B2. This generalizes to
the F.O.P. algorithm applied to polynomials of the form antn +an−1tn−1 + · · ·+a0, n≥ 1, an ∈ Z≥1, and gives the equivalent
MB ∼ anBn as B→ ∞.

The main fact is that the F.O.P. algorithm will give fundamental solutions of norm equations u2−Mv2 = 4sν (see Section
4), whatever the order of magnitude of r; for small values of M, r may be large, even if r(t) tends to 1 as M(t) tends to its
maximal value, equivalent to B2, as t→ ∞. Otherwise, without the F.O.P. principle, one must assume msν(t) square-free in the
applications, as it is often done in the literature.

2. First Examples of Application of the F.O.P. Algorithm

Note
In the programs in verbatim text, one must replace, after copy and past, the symbol of power (in aˆb) by the corresponding

PARI/GP symbol (which is nothing else than that of the computer keyboard); otherwise the program does not work (this is due
to the character font used by the Journal; e.g., in the forthcoming program using mt = t2−1).

2.1 Kummer radicals and discriminants given by ms(t)
Recall that, for t ∈ Z≥1, we put ms(t) = M(t)r(t)2, M(t) square-free.

2.1.1 Kummer radicals
The following program gives, as t grows from 1 up to B, the Kummer radical M and the integer r obtained from the

factorizations of m′1(t) = t2−1, under the form Mr2; then we put them in a list LM and the F.O.P. algorithm gives the pairs
C = core(mt,1) = [M, r], in the increasing order of the radicals M and removes the duplicate entries:

MAIN PROGRAM GIVING KUMMER RADICALS
{B=1000000;LM=List;for(t=1,B,mt=tˆ2-1;C=core(mt,1);L=List(C);
listput(LM,vector(2,c,L[c])));M=vecsort(vector(B,c,LM[c]),1,8);
print(M);print("#M = ",#M)}
[M,r]=
[0,1],
[2,2],[3,1],[5,4],[6,2],[7,3],[10,6],[11,3],[13,180],[14,4],[15,1],[17,8],[19,39],[21,12],
[22,42],[23,5],[26,10],[29,1820],[30,2],[31,273],[33,4],[34,6],[35,1],[37,12],[38,6],
[39,4],[41,320],[42,2],[43,531],[46,3588],[47,7],[51,7],[53,9100],[55,12],[57,20],
[58,2574],[59,69],[62,8],[65,16],[66,8],[67,5967],[69,936],[70,30],[71,413],[74,430],
(...)
[999980000099,1],[999984000063,1],[999988000035,1],[999992000015,1]
#M = 999225

Remark 2.1. Some radicals are not found. Of course they will appear for B larger according to Proposition 3.1. For instance,
the Kummer radical M = 94 depends on the fundamental unit ε94 = 2143295+221064

√
94 of norm 1; so, using m′1(t), the

minimal solution is t = 2143295. For the Kummer radical M = 193, ε193 = 1764132+ 126985
√

193 is of norm −1 and
m′−1(1764132) = 193×1269852. So t2−1 = 193r2 has the minimal solution t = 6224323426849 corresponding to ε2

193.

2.1.2 Discriminants
If one needs the discriminants of the quadratic fields in the ascending order, it suffices to replace the Kummer radical

M = core(mt) by quaddisc(core(mt)) giving the discriminant D of Q(
√

M). We use m′1(t) and m′−1(t) together to get various
M modulo 4 (thus the size of the list [D] is 2∗B); this yields the following program and results with outputs [D]:

MAIN PROGRAM GIVING DISCRIMINANTS
{B=1000000;LD=List;for(t=1,B,L=List([quaddisc(core(tˆ2-1))]);
listput(LD,vector(1,c,L[c]));L=List([quaddisc(core(tˆ2+1))]);
listput(LD,vector(1,c,L[c])));D=vecsort(vector(2*B,c,LD[c]),1,8);
print(D);print("#D = ",#D)}
[D]=
[[0],
[5],[8],[12],[13],[17],[21],[24],[28],[29],[33],[37],[40],[41],[44],[53],[56],[57],[60],
[61],[65],[69],[73],[76],[77],[85],[88],[89],[92],[93],[97],[101],[104],[105],[113],[120],
[124],[129],[136],[137],[140],[141],[145],[149],[152],[156],[161],[165],[168],[172],
[173],[177],[184],[185],[188],[197],[201],[204],[205],[209],[213],[220],[221],[229],
(...)
[3999960000104],[3999968000060],[3999976000040],[3999992000008]
#D = 1998451
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This possibility is valid for all programs of the paper; we will classify the Kummer radicals, instead of discriminants,
because radicals are more related to norm equations, but any kind of output can be done easily.

2.2 Application to minimal class numbers
One may use this classification of Kummer radicals and compute orders h of some invariants, then apply the F.O.P. principle,

with the instruction VM = vecsort(vector(B,c,LM[c]),2,8) to the outputs [M,h], to get successive possible class numbers h in
ascending order (we use here m1(t) = t2−4):

MAIN PROGRAM GIVING SUCCESSIVE CLASS NUMBERS
{B=100000;LM=List;for(t=3,B,M=core(tˆ2-4);
h=quadclassunit(quaddisc(M))[1];L=List([M,h]);
listput(LM,vector(2,c,L[c])));VM=vecsort(vector(B-2,c,LM[c]),2,8);
print(VM);print("#VM = ",#VM)}
[M,h]=
[5,1],[15,2],[2021,3],[195,4],[4757,5],[3021,6],[11021,7],[399,8],[27221,9],[7221,10],
[95477,11],[1599,12],[145157,13],[15621,14],[50621,15],[4899,16],[267101,17],[11663,18],
(...)
[2427532899,7296],[2448270399,7356],[2340624399,7384],[1592808099,7424],[1745568399,7456],
[2443324899,7600],[2479044099,7680],[2251502499,7840],[1718102499,7968],[2381439999,8040],
[2077536399,8328],[1981140099,8384]
#VM = 2712

One may compare using polynomials ms(t) to obtain radicals, then for instance class numbers h, with the classical PARI
computation:

{B=1000000;LM=List;N=0;for(M=2,B,if(core(M)!=M,next);
N=N+1;h=quadclassunit(quaddisc(M))[1];L=List([M,h]);listput(LM,vector(2,c,L[c])));
VM=vecsort(vector(N,c,LM[c]),2,8);print(VM);print("#VM = ",#VM)}
[M,h]=
[[2,1],[10,2],[79,3],[82,4],[401,5],[235,6],[577,7],[226,8],[1129,9],[1111,10],[1297,11],
[730,12],[4759,13],[1534,14],[9871,15],[2305,16],[7054,17],[4954,18],[15409,19],
(...)
[78745,60],[68179,62],[57601,63],[71290,64],[87271,66],[53362,68],[56011,70],[45511,72],
[38026,74],[93619,76],[94546,80],[77779,84],[90001,87],[56170,88],[99226,94],[50626,96]]
#VM = 73

The lists are not comparable but are equal for “B = ∞.”

2.3 Application to minimal orders of p-ramified torsion groups
Let TK be the torsion group of the Galois group of the maximal abelian p-ramified (i.e., unramified outside p and ∞) pro-p-

extension of Q(
√

M). The following program, for any p≥ 3, gives the results by ascending order (outputs [M,h = pa,T = pb],
where h is the order of the p-class group and T that of TK):

MAIN PROGRAM GIVING SUCCESSIVE ORDERS OF p-TORSION GROUPS
{B=100000;p=3;e=18;LM=List;for(t=2,B,M=core(tˆ2-1);
K=bnfinit(xˆ2-M,1);wh=valuation(K.no,p);Kt=bnrinit(K,pˆe);
CKt=Kt.cyc;wt=valuation(Kt.no/CKt[1],p);L=List([M,pˆwh,pˆwt]);
listput(LM,vector(3,c,L[c])));VM=vecsort(vector(B-1,c,LM[c]),3,8);
print(VM);print("#VM = ",#VM)}
[M,#h_p,#T_p]=
[[3,1,1],[15,1,3],[42,1,9],[105,1,27],[1599,3,81],[1095,1,243],[23066,9,729],
[1196835,3,2187],[298662,9,6561],[12629139,27,19683],[6052830,9,59049],
[747366243,243,177147]]
#VM = 12

2.4 Application to minimal orders of logarithmic class groups
For the definition of the logarithmic class group T̃p governing Greenberg’s conjecture [10], see [11, 12], and for its

computation, see [13] which gives the structure as abelian group. The following program, for p = 3, gives the results by
ascending orders (all the structures are cyclic in this interval):

MAIN PROGRAM GIVING SUCCESSIVE CLASSLOG NUMBERS
{B=10ˆ5;LM=List;for(t=3,B,M1=core(tˆ2-4);M2=core(tˆ2+4);
K1=bnfinit(xˆ2-M1);Clog= bnflog(K1,3)[1];C=1;for(j=1,#Clog,
C=C*Clog[j]);L=List([M1,Clog,C]);listput(LM,vector(3,c,L[c]));
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K2=bnfinit(xˆ2-M2);Clog= bnflog(K2,3)[1];C=1;for(j=1,#Clog,
C=C*Clog[j]);L=List([M2,Clog,C]);listput(LM,vector(3,c,L[c])));
VM=vecsort(vector(2*(B-2),c,LM[c]),3,8);
print(VM);print("#VM = ",#VM)}
[M,Clog,#Clog]=
[[5,[],1],[257,[3],3],[2917,[9],9],[26245,[27],27],[577601,[81],81],[236197,[243],243],
[19131877,[729],729],[172186885,[2187],2187],[1549681957,[6561],6561]]
#VM = 9

3. Units Es(t) vs Fundamental Units εM(t)

3.1 Polynomials ms(t) = t2−4s and units Es(t)
This subsection deals with the case ν = 1 about the search of quadratic units (see also [7, Theorem 1]). The polynomials

ms(t) ∈ Z[t] define, for t ∈ Z≥1, the parametrized units Es(t) = 1
2 (t +

√
t2−4s) of norm s in K := Q(

√
M), where M is the

maximal square-free divisor of t2−4s. But M is unpredictable and gives rise to the following discussion depending on the
norm S := N(εM) of the fundamental unit εM =: 1

2 (a+b
√

M) of K and of the integral basis of ZK :

(i) If s = 1, E1(t) = 1
2 (t +

√
t2−4) is of norm 1; so, if S = 1, then E1(t) ∈ 〈εM〉, but if S =−1, necessarily E1(t) ∈ 〈ε2

M〉.
If s =−1, E−1(t) = 1

2 (t +
√

t2 +4) is of norm −1; so, necessarily the Kummer radical M is such that S =−1.

(ii) If t is odd, Es(t) is written with half-integer coefficients, t2− 4s ≡ 1 (mod 4), giving M ≡ 1 (mod 4) and ZK =

Z
[ 1+

√
M

2

]
; so εM can not be with integer coefficients (a and b are necessarily odd).

If t is even, M may be arbitrary as well as εM .
We can summarize these constraints by means of the following Table:

t2−4s S = N(εM) Es(t) ∈ εM = 1
2 (a+b

√
M)

t2−4, t even 1 (resp. −1) 〈εM〉 (resp. 〈ε2
M〉) a,b odd or even

t2−4, t odd 1 (resp. −1) 〈εM〉 (resp. 〈ε2
M〉) a,b odd

t2 +4, t even −1 〈εM〉 a,b odd or even

t2 +4, t odd −1 〈εM〉 a,b odd

(3.1)

Recall that the F.O.P. algorithm consists, after choosing the upper bound B, in establishing the list of first occurrences, as
t increases from 1 up to B, of any square-free integer M ≥ 2, in the factorization ms(t) = M(t)r(t)2 (whence M = M(t0) for
some t0 and M 6= M(t) for all t < t0), and to consider the unit:

Es(t) := 1
2

(
t +
√

t2−4s
)
= 1

2

(
t + r(t)

√
M(t)

)
, of norm s.

The F.O.P. is necessary since, if t1 > t0 gives the same Kummer radical M, Es(t0) = ε
n0
M and Es(t1) = ε

n1
M with n1 > n0.

We shall prove (Theorem 4.2) that, under the F.O.P. algorithm, one always obtains the minimal possible power n ∈ {1,2} in
the writing Es(t) = εn

M , whence n = 2 if and only if s = 1 and S =−1, which means that Es(t) is always the fundamental unit
of norm s.

The following result shows that any square-free integer M ≥ 2 may be obtained for B large enough.

Proposition 3.1. Consider the polynomial m1(t) = t2− 4. For any square-free integer M ≥ 2, there exists t ≥ 1 such that
m1(t) = Mr2.

Proof. The corresponding equation t2− 4 = Mr2 becomes of the form t2−Mr2 = 4. Depending on the writing in Z[
√

M]

(M ≡ 2,3 (mod 4)) or Z
[ 1+

√
M

2

]
(M ≡ 1 (mod 4)), of the powers εn

M = 1
2 (t + r

√
M), n≥ 1, of the fundamental unit εM , this

selects infinitely many t ∈ Z≥1.

Remark 3.2. One may use, instead, the polynomial m′1(t)= t2−1 since for any fundamental unit of the form εM = 1
2 (a+b

√
M),

a,b odd, then ε3
M ∈ Z[

√
M], but some radicals are then obtained with larger values of t; for instance, m1(5) = 21 and

m′1(55) = 21 ·122 corresponding to 55+12
√

21 =
( 1

2 (5+
√

21)
)2.

Since for t = 2t ′, t2−4s = 4(t ′2− s) gives the same Kummer radical as t ′2− s, in some cases we shall use m′s(t) := t2− s
and especially m′1(t) := t2−1 which is “universal” for giving all Kummer radicals.

With the polynomials m−1(t) = t2 +4 or m′−1(t) = t2 +1 a solution does exist if and only if N(εM) =−1 and one obtains
odd powers of εM .
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3.2 Checking of the exponent n in Es(t) = εn
M(t)

The following program determines the expression of Es(t) as power of the fundamental unit of K; it will find that there is
no counterexample to the relation Es(t) ∈ {εM(t),ε

2
M(t)}, depending on S, from Table (3.1); this will be proved later (Theorem

4.2). So these programs are only for verification, once for all, because they unnecessarily need much more execution time.
Since Es(t) is written in 1

2Z[
√

M] and εM on the usual Z-basis of ZK denoted {1,w} by PARI (from the instruction
quadunit), we write Es(t) on the PARI basis {1,quadgen(D)}, where D = quaddisc(M) is the discriminant.

One must specify B and s, the program takes into account the first value 2+ s of t since t = 1,2 are not suitable when s = 1;
then the test n > (3+ s)/2 allows the cases n = 1 or 2 when s = 1. The output of counterexamples is given by the (empty) list
Vn:

3.2.1 Case s = 1, m(t) = t2−4 (expected exponents n ∈ {1,2})

{B=1000000;s=1;LM=List;LN=List;for(t=2+s,B,
mt=tˆ2-4*s;C=core(mt,1);M=C[1];r=C[2];res=Mod(M,4);D=quaddisc(M);
w=quadgen(D);Y=quadunit(D);if(res!=1,Z=1/2*(t+r*w));if(res==1,Z=(t-r)/2+r*w);
z=1;n=0;while(Z!=z,z=z*Y;n=n+1);L=List([M,n]);listput(LM,vector(2,c,L[c])));
VM=vecsort(vector(B-(1+s),c,LM[c]),1,8);print(VM);print("#VM = ",#VM);
for(k=1,#VM,n=VM[k][2];if(n>(3+s)/2,Ln=VM[k];
listput(LN,vector(2,c,Ln[c]))));Vn=vecsort(LN,1,8);
print("exceptional powers : ",Vn)}
[M,n]=
[2,2],[3,1],[5,2],[6,1],[7,1],[10,2],[11,1],[13,2],[14,1],[15,1],[17,2],[19,1],[21,1],
[22,1],[23,1],[26,2],[29,2],[30,1],[31,1],[33,1],[34,1],[35,1],[37,2],[38,1],[39,1],
[41,2],[42,1],[43,1],[46,1],[47,1],[51,1],[53,2],[55,1],[57,1],[58,2],[59,1],[61,2],
[62,1],[65,2],[66,1],[67,1],[69,1],[70,1],[71,1],[74,2],[77,1],[78,1],[79,1],[82,2],
(...)
[999982000077,1],[999986000045,1],[999990000021,1],[999997999997,1]
#VM = 998893
exceptional powers:List([])

3.2.2 Case s =−1, m(t) = t2 +4 (expected exponents n = 1 )

[M,n]=
[2,1],[5,1],[10,1],[13,1],[17,1],[26,1],[29,1],[37,1],[41,1],[53,1],[58,1],[61,1],
[65,1],[73,1],[74,1],[82,1],[85,1],[89,1],[97,1],[101,1],[106,1],[109,1],[113,1],
[122,1],[130,1],[137,1],[145,1],[149,1],[157,1],[170,1],[173,1],[181,1],[185,1],
[197,1],[202,1],[218,1],[226,1],[229,1],[233,1],[257,1],[265,1],[269,1],[274,1],
(...)
[999986000053,1],[999990000029,1],[999994000013,1],[999998000005,1]
#VM = 999874
exceptional powers:List([])

3.3 Remarks on the use of the F.O.P. algorithm
(i) For a matter of space, the programs do not print the units Es(t) in the outputs, but it may be deduced easily. To obtain a

more complete data, it suffices to replace the instructions:

L = List([M,n]), listput(LM,vector(2,c,L[c])), listput(LN,vector(2,c,Ln[c]))

by the following ones (but any information can be put in L; the sole condition being to put M as first component):

L = List([M,n, t]), listput(LM,vector(3,c,L[c])), listput(LN,vector(3,c,Ln[c]))

or simply:

L = List([M, t]), listput(LM,vector(2,c,L[c])), listput(LN,vector(2,c,Ln[c]))

giving the parameter t whence the trace, then the whole integer of Q(
√

M); for instance for m−1(t) = t2 +4 and the general
program with outputs [M,n, t]:

[M,n,t]=
[2,1,2],[5,1,1],[10,1,6],[13,1,3],[17,1,8],[26,1,10],[29,1,5],[37,1,12],[41,1,64],
[53,1,7],[58,1,198],[61,1,39],[65,1,16],[73,1,2136],[74,1,86],[82,1,18],[85,1,9],
[89,1,1000],[97,1,11208],[101,1,20],[106,1,8010],[109,1,261],[113,1,1552],
[122,1,22],[130,1,114],[137,1,3488],...
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For instance for the data [41,1,64], one has t = 64 giving t2 +4 = 4100, whence the fundamental unit E−1(64) = ε41 =
1
2 (64+10

√
41). Another interesting fact is the case of [137,1,3488] giving a large fundamental unit at the beginning of the list.

(ii) The programs of § 3.2, computing n, may be used with changing ms(t) into other polynomials as those given Section 5,
or by any T := f (t) with the data mt = T2±4 and Z = (T+ r ∗w)/2 as the following about units Es(T ) = 1

2 (T + r
√

M).

(a) T = t2 (traces are squares); all are fundamental units (B = 104, outputs [M,n]):

{B=10ˆ4;s=1;LN=List;LM=List;for(t=2+s,B,T=tˆ2;mt=Tˆ2-4*s;C=core(mt,1);
M=C[1];r=C[2];res=Mod(M,4);D=quaddisc(M);w=quadgen(D);Y=quadunit(D);
if(res!=1,Z=1/2*(T+r*w));if(res==1,Z=(T-r)/2+r*w);
z=1;n=0;while(Z!=z,z=z*Y;n=n+1);L=List([M,n]);listput(LM,vector(2,c,L[c])));
VM=vecsort(vector(B-(1+s),c,LM[c]),1,8);print(VM);print("#VM = ",#VM);
for(k=1,#VM,n=VM[k][2];if(n!=1,Ln=VM[k];listput(LN,vector(2,c,Ln[c]))));
Vn=vecsort(LN,1,8);print("exceptional powers : ",Vn)}
[M,n]=
[7,1],[51,1],[69,1],[77,1],[187,1],[287,1],[323,1],[723,1],[1023,1],[1067,1],[1077,1],
[2397,1],[3053,1],[3173,1],[5183,1],[6347,1],[6557,1],[9799,1],[14189,1],[14637,1],
[15117,1],[16383,1],[26243,1],[29127,1],[31093,1],[39999,1],[43637,1],[47103,1],
[47213,1],[50621,1],[71111,1],[71283,1],[83517,1],[99763,1],[102613,1],[114243,1],
(...)
[9956072546774637,1],[9964048570846557,1],[9988005398920077,1],[9996000599959997,1]
#VM = 9998
exceptional powers : List([])

(b) T = prime(t) (traces are prime), s =−1 (B = 104, outputs [M,T = prime(t),n]); there is only the exception [5,11,5]
obtained as ε5

5 = 1
2 (5+11

√
5):

[M,T=prime(t),n]
[5,11,5],[29,5,1],[53,7,1],[149,61,1],[173,13,1],[293,17,1],[317,89,1],[365,19,1],
[533,23,1],[773,139,1],[797,367,1],[821,16189,1],[965,31,1],[1373,37,1],[1493,2357,1],
[1685,41,1],[1781,211,1],[1853,43,1],[1997,9161,1],[2213,47,1],[2285,239,1],[2309,17539,1],
[2477,647,1],[2813,53,1],[3485,59,1],[3533,2437,1],[3653,1511,1],
(..)
[10965650093,104717,1],[10966906733,104723,1],[10968163445,104729,1]
#VM = 9995
exceptional powers:List([[5,11,5]])

(iii) When several polynomials mi(t), 1≤ i≤ N, are considered together (to get more Kummer radicals solutions of the
problem), there is in general commutativity of the two sequences in:

for(t = 1,B, for(i = 1,N,mt = · · ·)) and for(i = 1,N, for(t = 1,B,mt = · · ·)).

But we will always use the first one.

4. Application of the F.O.P. algorithm to Norm Equations

We will speak of solving a norm equation in K = Q(
√

M), for the search of integers α ∈ Z+
K such that N(α) = sν , for

s ∈ {−1,1} and ν ∈ Z≥1 given (i.e., α = 1
2

(
u+ v

√
M
)
, u,v ∈ Z≥1). If the set of solutions is non-empty we will define the

notion of fundamental solution; we will see that this definition is common to units (ν = 1) and non-units.
We explain, in Theorem 4.6, under what conditions such a fundamental solution for ν > 1 does exist, in which case it is

necessarily unique and found by means of the F.O.P. , algorithm using m−1(t) or m1(t) (depending in particular on S).
Note that the resulting PARI programs only use very elementary instructions and never the arithmetic ones defining K (as

bnfinit,K.fu,bnfisintnorm, ...); whence the rapidity even for large upper bounds B.

4.1 Main property of the trace map for units
In the case ν = 1, let S = N(εM); we will see that α defines the generator of the group of units of norm s of Q(

√
M) when

it exists (whence εM if s = S or ε2
M if S =−1 and s = 1).

Theorem 4.1. Let M ≥ 2 be a square-free integer. Let ε = 1
2 (a+ b

√
M) > 1 be a unit of K := Q(

√
M) (non-necessarily

fundamental). Then T(εn) defines a strictly increasing sequence of integers for n≥ 1. 1

1The property holds from n = 0 (T(1) = 2), except for M = 5 (T(εM) = 1, T(ε2
M) = 3) and M = 2 (T(εM) = 2, T(ε2

M) = 6)).
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Proof. Set ε = 1
2 (a−b

√
M) for the conjugate of ε and let s = εε =±1 be the norm of ε ; then the trace of εn is Tn := εn+ε

n =

εn +
sn

εn . Thus, we have:

Tn+1

Tn
=

εn+1 +
sn+1

εn+1

εn +
sn

εn

=
ε2(n+1)+ sn+1

εn+1 × εn

ε2n + sn =
ε2(n+1)+ sn+1

ε2n+1 + snε
.

To prove the increasing, consider ε2n+1 + snε and ε2(n+1)+ sn+1, which are positive for all n since ε > 1; then:

∆n(ε) := ε
2(n+1)+ sn+1− (ε2n+1 + sn

ε) = ε
2(n+1)− ε

2n+1 + sn+1− sn
ε

= ε
2n+1(ε−1)− sn(ε− s).

(4.1)

(i) Case s = 1. Then ∆n(ε) = (ε−1)(ε2n+1−1) is positive.
(ii) Case s =−1. Then ∆n(ε) = ε2(n+1)− ε2n+1− (−1)n(ε +1). If n is odd, the result is obvious; so, it remains to look at

the expression for n = 2k, k ≥ 1:

∆2k(ε) = ε
4k+2− ε

4k+1− ε−1. (4.2)

Let f (x) := x4k+2− x4k+1− x−1; then:

f ′(x) = (4k+2)x4k+1− (4k+1)x4k−1 and f ′′(x) = (4k+1)x4k−1[(4k+2)x−4k]≥ 0, for all x≥ 1.

Thus f ′(x) is increasing for all x≥ 1 and since f ′(1) = 0, f (x) is an increasing map for all x≥ 1; so, for k ≥ 1 fixed, ∆2k(ε) is
increasing regarding ε .

Since the smallest unit ε > 1 with positive coefficients is ε0 := 1+
√

5
2 ≈ 1.6180... we have to look, from (4.2), at the map

F(z) := ε
4z+2
0 − ε

4z+1
0 − ε0−1, for z≥ 1, to check if there exists an unfavorable value of k; so:

F ′(z) := 4log(ε0)ε
4z+2
0 −4log(ε0)ε

4z+1
0 = 4log(ε0)ε

4z+1
0 (ε0−1)> 0.

Since F(1)≈ 4.2360 > 0, one gets ∆n(ε)> 0 in the case s =−1, n even.

4.2 Unlimited lists of fundamental units of norm s, s ∈ {−1,1}
We have the main following result.

Theorem 4.2. Let B� 0 be given. Let ms(t) = t2− 4s, s ∈ {−1,1} fixed. Then, as t grows from 1 up to B, for each first
occurrence of a square-free integer M ≥ 2 in the factorization ms(t) = Mr2, the unit Es(t) = 1

2 (t + r
√

M) is the fundamental
unit of norm s of Q(

√
M) (according to the Table (3.1) in § 3.1, we have Es(t) = εM if s =−1 or if s = S = 1, then Es(t) = ε2

M
if s = 1 and S =−1).

Proof. Let M0 ≥ 2 be a given square-free integer. Consider the first occurrence t = t0 giving ms(t0) = M0r(t0)2 if it exists
(existence always fulfilled for s = 1 by Proposition 3.1); whence M0 = M(t0). Suppose that Es(t0) = 1

2

(
t0 + r(t0)

√
M(t0)

)
is

not the fundamental unit of norm s, ε
n0
M(t0)

(n0 ∈ {1,2}) but a non-trivial power (εn0
M(t0)

)n, n > 1.

Put ε
n0
M(t0)

=: 1
2 (a+ b

√
M(t0)); from Table (3.1), n0 ∈ {1,2} is such that N(ε

n0
M(t0)

) = s (recall that if s = 1 and S = −1,
then n0 = 2, if S = s = 1, then n0 = 1; if s =−1, necessarily S =−1 and n0 = 1, otherwise there were no occurrence of M0 for
s =−1 and S = 1).

Then, Theorem 4.1 on the traces implies 0 < a < t0. We have:

a2−M(t0)b2 = 4s and ms(a) = a2−4s =: M(a)r(a)2;

but these relations imply M(t0)b2 = M(a)r(a)2, whence M(a) = M(t0) = M0. That is to say, the pair
(
t0, M0

)
compared to(

a, M(a) = M0
)
, was not the first occurrence of M0 (absurd).

Corollary 4.3. Let t ∈ Z≥1 and let E1(t) = 1
2

(
t +
√

t2−4
)

of norm 1. Then E1(t) is a square of a unit of norm −1, if and

only if there exists t ′ ∈ Z≥1 such that t = t ′2 +2; thus E1(t) =
( 1

2 (t
′+
√

t ′2 +4)
)2

= (E−1(t ′))2. So, the F.O.P. algorithm, with
m1(t) =: M(t)r(t)2, gives the list of [M(t), t] for which 1

2

(
t +
√

t2−4
)
= ε2

M (resp. εM) if t−2 = t ′2 (resp. if not).
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Corollary 4.4. Let M ≥ 2 be a given square-free integer and consider the two lists given by the F.O.P. algorithm, for m−1 and
m1, respectively. Then, assuming B large enough, M appears in the two lists if and only if S =−1. Then t ′2 +4 = Mr′2 for
t ′ minimal gives the fundamental unit εM = 1

2 (t
′+ r′
√

M) and t2−4 = Mr2, for t minimal, gives ε2
M; whence t = t ′2 +2 and

r = r′t ′.

For s = −1, hence m−1(t) = t2 + 4, t ∈ [1,B], we know, from Theorem 4.2, that the F.O.P. algorithm gives always the
fundamental unit εM of Q(

√
M) whatever its writing in Z[

√
M] or in Z

[ 1+
√

M
2

]
.

For s = 1 one obtains ε2
M if and only if S =−1. So we can skip checking and use the following simpler program with larger

upper bound B = 107; the outputs are the Kummer radicals [M] in the ascending order (specify B and s):

MAIN PROGRAM FOR FUNDAMENTAL UNITS OF NORM s
{B=10ˆ7;s=-1;LM=List;for(t=2+s,B,mt=tˆ2-4*s;M=core(mt);L=List([M]);
listput(LM,vector(1,c,L[c])));VM=vecsort(vector(B-(1+s),c,LM[c]),1,8);
print(VM);print("#VM = ",#VM)}
s=-1
[M]=
[2],[5],[10],[13],[17],[26],[29],[37],[41],[53],[58],[61],[65],[73],[74],[82],[85],
[89],[97],[101],[106],[109],[113],[122],[130],[137],[145],[149],[157],[170],[173],
[181],[185],[193],[197],[202],[218],[226],[229],[233],[257],[265],[269],[274],[277],
[281],[290],[293],[298],[314],[317],[346],[349],[353],[362],[365],[370],[373],[389],
(...)
[99999860000053],[99999900000029],[99999940000013],[99999980000005]]
#VM = 9999742
s=1
[M]=
[2],[3],[5],[6],[7],[10],[11],[13],[14],[15],[17],[19],[21],[22],[23],[26],[29],[30],
[31],[33],[34],[35],[37],[38],[39],[41],[42],[43],[46],[47],[51],[53],[55],[57],[58],
[59],[61],[62],[65],[66],[67],[69],[70],[71],[73],[74],[77],[78],[79],[82],[83],[85],
[86],[87],[89],[91],[93],[94],[95],[101],[102],[103],[105],[107],[109],[110],[111],
(...)
[99999820000077],[99999860000045],[99999900000021],[99999979999997]
#VM = 9996610

The same program with outputs of the form [M, r, t] for s = 1 gives many examples of squares of fundamental units.
For instance, the data [29,5,27] defines the unit E1(27) = 1

2 (27+ 5
√

29) and since 27− 2 = 52, then t ′ = 5, r′ = 1 and
E1(27) =

( 1
2 (5+

√
29)
)2

= ε2
29.

Some Kummer radicals giving units εM of norm −1 do not appear up to B = 107, e.g., M ∈ {241, 313, 337, 394, . . .}; but
all the Kummer radicals M, such that S =−1, ultimately appear as B increases. So, as B→ ∞, any unit is obtained, which
suggests the existence of natural densities in the framework of the F.O.P. algorithm. More precisely, in the list LM (i.e., before
using VM = vecsort(vector(B,c,LM[c]),1,8)), any Kummer radical M does appear in the list as many times as the trace, of
any power εn

M (n odd), is less than B, which gives for instance the case of M = 5 which appears four times for n = 1,3,5,7
(B = 103):

[M]=
[5],[2],[13],[5],[29],[10],[53],[17],[85],[26],[5],[37],[173],[2],[229],[65],[293],[82],[365],[101],
[445],[122],[533],[145],[629],[170],[733],[197],[5],[226],[965],[257],[1093],[290],[1229],[13],

This fact with Corollaries 4.3, 4.4 may suggest some analytic computations of densities (see a forthcoming paper [14] for
more details). For this purpose, we give an estimation of the gap #LM− #VM = B− #VM.

Theorem 4.5. Consider the F.O.P. algorithm for units, in the interval [1,B] and s ∈ {−1,1}. Let ∆ be the gap between B and
the number of results. Then, as B→ ∞:

(i) For the polynomial m−1(t) = t2 +4, ∆∼ B
1
3 ,

(ii) For the polynomial m1(t) = t2−4, ∆∼ B
1
2 ,

Proof. (i) In the list LM of Kummer radicals giving units of norm −1, we know, from Theorem 4.2, that one obtain first the
fundamental unit ε0 := εM0

from the relation t2
0 +4 = M0r2

0, then its odd powers ε
2n+1
M0

for n ∈ [1,nmax] corresponding to some
tn such that t2

n +4 = M0r2
n and tn ≤ tmax defined by the equivalence:

1
2

(
tmax + rmax

√
M0
)
∼
(

1
2

(
t0 + r0

√
M0
))2nmax+1
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in an obvious meaning. Thus, the “maximal unit” is equivalent to B giving

nmax ∼
1
2

[
logB
log t0
−1
]
.

So, we have to estimate the sums ∑t∈[1,b]
1
2

[
logB
log t
−1
]
, where log(b)∼ 1

3
log(B).

Of course there will be repetitions in the sum, but a more precise estimation is not necessary and we obtain an upper bound:

∆∼ ∑
t∈[1,b]

1
2

[ logB
log t

−1
]
∼ logb ∑

t∈[1,b]

1
log t

∼ logb · b
logb

∼ b = B
1
3 .

(ii) In the case of norm 1, the list LM is relative to the fundamental units of norm 1 with all its powers (some are the squares
of the fundamental units of norm −1); the reasoning is the same, replacing 1

3 by 1
2 .

4.3 Unlimited lists of fundamental integers of norm sν , ν ≥ 2
The F.O.P. algorithm always give lists of results, but contrary to units, some norms sν do not exist in a given field K; in

other words, the F.O.P. only give suitable Kummer radicals since sν is given.

Theorem 4.6. Let s ∈ {−1,1} and ν ∈ Z≥2 be given.
(i) A fundamental solution of the norm equation u2−Mv2 = 4sν (Definition 1.2) does exist if and only if there exists an

integer principal ideal a of absolute norm ν with a generator α ∈ Z+
K whose norm is of sign s.

Under the existence of a = (α), with N(α) = s′ν , s′ ∈ {±1}, another representative, modulo 〈εM〉, does exist in Z+
K

whatever s, as soon as S =−1; otherwise, if S = 1, a fundamental solution α ∈ Z+
K does exist if and only if s′ = s.

(ii) When the above conditions are fulfilled, the fundamental solution corresponding to the ideal a is unique (in the meaning
that two generators of a in Z+

K , having same trace, are equal) and found by the F.O.P. algorithm.

Proof. (i) If a= (α), of absolute norm ν , with α = 1
2 (u+ v

√
M) ∈ Z+

K , one obtains u2−Mv2 = 4sν for a suitable s ∈ {−1,1}
giving a solution with t = u; then msν(t) = t2−4sν = M(t)r2, whence M = M(u) and r = v, giving a (non-necessarily minimal)
solution; so that the algorithm can give the minimal one.

Reciprocally, assume that the corresponding equation (in unknowns t ≥ 1, s =±1) t2−4sν = Mr2, M ≥ 2 square-free, has
a solution, whence t2−Mr2 = 4sν . Set α := 1

2 (t + r
√

M) ∈ Z+
K ; then one obtains the principal ideal a= (α)ZK of absolute

norm ν .
(ii) Assume that α , β are two generators of a in Z+

K with common trace t ≥ 1. Put β = α · εn
M , n ∈ Z, n 6= 0. Then:

T(β ) = α · εn
M +α

σ · εnσ
M =

α2 · ε2n
M + sSn ν

α · εn
M

, T(α) =
α2 + sν

α
;

thus T(β ) = T(α) is equivalent to α2 · ε2n
M + sSn ν = α2 · εn

M + sνεn
M , whence to:

α
2 · εn

M(εn
M−1) = (εn

M−Sn)sν .

The case Sn =−1 is not possible since N(β ) = N(α) ·N(εn
M); so, Sn = 1, in which case, one gets α2 · εn

M = sν = α1+σ ,
thus ασ = α · εn

M and β = ασ , but in that case, β /∈ Z+
K (absurd). Whence the unicity.

Remark 4.7. Consider the above case where α and β are two generators of a in Z+
K with common trace t ≥ 1 and norm

sν . Thus, we have seen that β = ασ = α · εn
M . The ideal a = (α) is then invariant by G := Gal(K/Q), so it is of the form

a= (q)×∏p|D pep , where q ∈ Z, D is the discriminant of K, p2 = pZK and ep ∈ {0,1}. In other words, we have to determine
the principal ideals, products of distinct ramified prime ideals. This is done in details in [14, §§ 2.1, 2.2]
For instance, let M = 15 and sν =−6. One has the fundamental solution α = 3+

√
15 of norm −6, with the trace t = 6; then

ασ = 3−
√

15 = α · (−4+
√

15) = α · (−ε
−1
M ); similarly, for sν = 10, one has the fundamental solution α = 5+

√
15 of norm

10, with trace t = 10 and the relation ασ = 5−
√

15 = α · (4−
√

15) = α · (εσ
M). These fundamental solutions are indeed given

by the F.O.P. algorithm (see 4.3.1) by means of the data [M, t] and the following instruction (s and ν to be given):

{B=1000;s=-1;nu=6;LM=List;for(t=1,B,mt=tˆ2-4*s*nu;M=core(mt);L=List([M,t]);
listput(LM,vector(2,c,L[c])));VM=vecsort(vector(B,c,LM[c]),1,8);print(VM);print("#VM = ",#VM)}
s.Nu=-6
[M,t]=
[1,1],[6,24],[7,2],[10,4],[15,6],...
s.Nu=10
[M,t]=
[-39,1],[-31,3],[-15,5],[-6,4],[-1,2],[1,7],[6,8],[10,20],[15,10],...
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Depending on the choice of the polynomials m−1(t) or m1(t), consider for instance, the F.O.P. algorithm applied to M = 13
(for which S =−1), ν = 3, gives with m−1(t) the solution [M = 13, t = 1] whence α = 1

2 (1+
√

13) of norm −3; with m1(t)
it gives [M = 13, t = 5], α = 1

2 (5+
√

13) of norm 3; the traces 1 and 5 are minimal for each case. We then compute that
1
2 (5+

√
13) = 1

2 (1−
√

13)(−ε13).

But with M = 7 (for which S = 1), the F.O.P. algorithm with m−1(t) and ν = 3 gives [M = 7, t = 4] but nothing with m1(t).

Remark 4.8. A possible case is when there exist several principal integer ideals a of absolute norm νZ (for instance when
ν = q1q2 is the product of two distinct primes and if there exist two prime ideals q1, q2, of degree 1, over q1,q2, respectively,
such that a := q1q2 and a′ := q1q

σ
2 are principal). Let a=: (α) and a′ =: (α ′) of absolute norm ν . We can assume that, in each

set of generators, α and α ′ have minimal trace u and u′, and necessarily we have, for instance, u′ > u; since the ideals a are
finite in number, there exists an “absolute” minimal trace u defining the unique fundamental solution which is that found by the
suitable F.O.P. algorithm.

For instance, let s = −1, ν = 15; the F.O.P. algorithm gives the solution [19,4], whence α = 2+
√

19 of norm −15. In
K =Q(

√
19) we have prime ideals q3 = (4+

√
19) | 3, q5 = (9+2

√
19) | 5. Then we obtain the fundamental solution with

a= qσ
3 q5, while q3 q5 = (74+17

√
19). The fundamental unit is εM = 170+39

√
19 of norm S = 1 and one computes some

products ±αεn
M giving a minimal trace with n =−1 and the non-fundamental solution 17+4

√
19.

If ν = ∏q|ν qnq , where q denotes distinct prime numbers, there exist integer ideals a of absolute norm νZ if and only
if, for each inert q | ν then nq is even. In the F.O.P. algorithm this will select particular Kummer radicals M for which each
q | ν , such that nq is odd, ramifies or splits in K =Q(

√
M); this is equivalent to q | D (the discriminant of K =Q(

√
M)) or to

ρq :=
(M

q

)
= 1 in terms of quadratic residue symbols; if so, we then have ideal solutions N(a) = νZ.

Let’s write, with obvious notations a= ∏
q,ρq=0

qnq ∏
q,ρq=−1

q2n′q ∏
q,ρq=1

qn′qqn′′qσ . Then the equation becomes N(a′) = ν ′Z for

another integral ideal a′ and another ν ′ | ν , where a′ is an integer ideal “without any rational integer factor”. Thus, N(α ′) = sν ′

is equivalent to a′ = α ′ZK . This depends on relations in the class group of K and gives obstructions for some Kummer radicals
M. Once a solution a′ principal exists (non unique) we can apply Theorem 4.6.

4.3.1 Program for lists of quadratic integers of norm ν ≥ 2
The program for units can be modified by choosing an integer ν ≥ 2, a sign s∈{−1,1} and the polynomial msν(t)= t2−4sν

(outputs [M(t), t]):

MAIN PROGRAM FOR FUNDAMENTAL INTEGERS OF NORM s.nu
{B=1000000;s=1;nu=2;LM=List;for(t=1,B,mt=tˆ2-4*s*nu;M=core(mt);L=List([M,t]);
listput(LM,vector(2,c,L[c])));VM=vecsort(vector(B,c,LM[c]),1,8);print(VM);print("#VM = ",#VM)}

(i) s = 1, ν = 2.

[M,t]=
[-7,1],[-1,2],[1,3],
[2,4],[7,6],[14,8],[17,5],[23,10],[31,78],[34,12],[41,7],[46,312],[47,14],[62,16],[71,118],
[73,9],[79,18],[89,217],[94,2928],[97,69],[103,954],[113,11],[119,22],[127,4350],[137,199],
[142,24],[151,83142],[158,176],[161,13],[167,26],[191,5998],[193,56445],[194,28],
[199,255078],[206,488],[217,15],[223,30],[233,6121],[238,216],
(...)
[999986000041,999993],[999990000017,999995],[999994000001,999997],[999997999993,999999]
#VM = 999909

(ii) s =−1, ν = 3.

[M,t]=
[1, 2],
[3,6],[7,4],[13,1],[19,8],[21,3],[31,22],[37,5],[39,12],[43,26],[57,30],[61,7],[67,16],
[73,34],[91,38],[93,9],[97,1694],[103,20],[109,73],[111,42],[127,586],[129,318],
[133,11],[139,448],[151,172],[157,50],[163,1864],[181,13],[183,54],[193,379486],
[199,28],[201,1758],[211,58],[217,766],[237,15],[241,62],[247,220],[259,32],[271,428],
(...)
[999986000061,999993],[999990000037,999995],[999994000021,999997],[999998000013,999999]
#VM = 999866

Consider the output [93,9] (M = 3 ·31, t = 9, r = 1); then α = A−3(9) = 1
2 (9+

√
3 ·31) of norm −3 with ramified prime 3;

it is indeed the minimal solution since the equation reduces to 3x′2 +4 = 31y2 with minimal x′ = 3, then minimal trace x = 9.
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For the output [193,379486], α = A−3(379486) = 1
2 (379486+ 27316

√
193) of norm −3; this is the minimal solution

despite of a large trace, but ε193 =
1
2 (1764132+126985

√
193) is very large and cannot intervene to decrease the size.

(iii) s = 1, ν = 15.

[M,t]=
[-59,1],[-51,3],[-35,5],[-14,2],[-11,4],[-6,6],[1,8],
[10,10],[21,9],[34,14],[61,11],[66,18],[85,20],[106,22],[109,13],[129,24],[154,26],
[165,15],[181,28],[201,312],[210,30],[229,17],[241,32],[265,1400],[274,34],[301,19],
[309,36],[346,38],[349,131],[354,414],[381,21],[385,40],[394,278],[409,41216],[421,3919],
(...)
[999982000021,999991],[999985999989,999993],[999993999949,999997],[999997999941,999999]
#VM = 999815
s=-1 nu=15
[M,t]=
[1,2],
[6,6],[10,10],[15,30],[19,4],[31,8],[34,22],[46,26],[51,12],[61,1],[69,3],[79,16],[85,5],
[94,38],[106,82],[109,7],[114,42],[115,20],[139,94],[141,9],[151,98],[159,24],[166,206],
[181,11],[186,54],[190,110],[199,536],[211,28],[214,58],[229,13],[241,52658],[249,126],
[265,130],[271,32],[274,1258],[285,15],[310,70],[331,7714],[334,146],[339,36],
(...)
[999986000109,999993],[999990000085,999995],[999994000069,999997],[999998000061,999999]
#VM = 999782

For instance, [85,5] illustrates Theorem 4.6 with the solution α = 1
2 (5+

√
85) of norm −15, with (α)ZK = q3q5, where 3

splits in K and 5 is ramified; one verifies that the ideals q3 and q5 are non-principal, but their product is of course principal. For
this, one obtains the following PARI/GP verifications:

k=bnfinit(xˆ2-85)
k.clgp=[2,[2],[[3,1;0,1]]]
idealfactor(k,3)=[[3,[0,2]˜,1,1,[-1,-1]˜]1],[[3,[2,2]˜,1,1,[0,-1]˜]1]
idealfactor(k,5)=[[5,[1,2]˜,2,1,[1,2]˜]2]
bnfisprincipal(k,[3,[2,2]˜,1,1,[0,-1]˜])=[[1]˜,[1,0]˜]
bnfisprincipal(k,[5,[1,2]˜,2,1,[1,2]˜])=[[1]˜,[1,1/3]˜]
A=idealmul(k,[3,[2,2]˜,1,1,[0,-1]˜],[5,[1,2]˜,2,1,[1,2]˜])
bnfisprincipal(k,A)=[[0]˜,[2,-1]˜]
nfbasis(xˆ2-85)=[1,1/2*x-1/2]

The data [[0], [2,−1]] gives the principality with generator [2,−1] denoting (because of the integral basis {1, 1
2 x− 1

2} used
by PARI), 2−

[ 1
2

√
85− 1

2

]
= 1

2 (5−
√

85) = ασ .
(iv) s =−1, ν = 9×25.

[M,t]=
[1,16],
[2,30],[5,15],[10,10],[13,20],[17,120],[26,6],[29,12],[34,18],[37,5],[41,24],[53,105],
[58,70],[61,25],[65,240],[73,80],[74,42],[82,270],[85,35],[89,48],[97,1280],[101,3],
[106,54],[109,9],[113,23280],[122,330],[130,110],[137,52320],[145,360],[146,66],
[149,21],[157,55],[170,390],[173,195],[178,130],[181,27],[185,2040],
(...)
[999966001189,999983],[999978001021,999989],[999982000981,999991],[999994000909,999997]
#VM = 999448

The case [37,5] may be interpreted as follows: m−1(5) = 52 + 4 · 9 · 25 = 52 · 37, whence A−1(5) = 1
2 (5+ 5

√
37) =

5 · 1
2 (1+

√
37) =: 5B, where B := 1

2 (1+
√

37) is of norm −9 and 5 is indeed inert in K. Thus 1
2 (1+

√
37)ZK is the square of a

prime ideal q3 over 3. The field K is principal and we compute that q3 =
1
2 (5±

√
37)ZK , q2

3 =
1
2 (31±5

√
37)ZK . So, BZK =

1
2 (1+

√
37)ZK = 1

2 (31+5
√

37)ZK or 1
2 (31−5

√
37)ZK . We have ε37 = 6+

√
37 and we obtain that B = 1

2 (31−5
√

37) · ε37,
showing that α = 5 · 1

2 (1+
√

37) is the fundamental solution of the equation N(α) = 32 ·52 with minimal trace 5.
For larger integers ν , fundamental solutions are obtained easily, as shown by the following example with the prime

ν = 1009:
(v) s =−1, ν = 1009.

[M,t]=
[2,14],[5,13],[10,102],[29,100],[37,21],[41,8],[58,42],[74,58],[101,305],[109,1617],
[113,656],[137,2504],[157,108],[173,17],[185,1168],[197,259],[202,35958],[205,33],
[209,4192],[218,854],[241,380808],[253,681],[269,620],[290,158],[313,384],[314,2090],
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[317,1316],[337,6792],[341,67],[353,16496],[370,1422],[394,86742],
(...)
[999986004085,999993],[999990004061,999995],[999994004045,999997],[999998004037,999999]
#VM = 999664

We finish with a highly composed number ν , not obvious for a calculation by hand:
(vi) s = 1, ν = 2×3×5×7.

[M,t]=
[-839,1],[-831,3],[-815,5],[-791,7],[-759,9],[-719,11],[-671,13],[-615,15],[-551,17],
[-479,19],[-399,21],[-311,23],[-215,25],[-209,2],[-206,4],[-201,6],[-194,8],[-185,10],
[-174,12],[-161,14],[-146,16],[-129,18],[-111,27],[-110,20],[-89,22],[-66,24],[-41,26],
[-14,28],[1,29],[15,30],[46,32],[79,34],[114,36],[151,38],[190,40],[226,332],[231,42],
[249,33],[274,44],[319,46],[366,48],[385,35],[415,50],[466,52],[511,2758],[519,54],
[526,872],[574,56],[609,273],[610,4100],[631,58],[679,574],[681,39],[690,60],[721,511],
[751,62],[814,64],[834,636],[865,1265],[879,66],[919,2486],[946,68],[991,30158],[1009,43],
(...)
[999985999209,999993],[999989999185,999995],[999993999169,999997],[999997999161,999999]
#VM = 999715

We have not dropped the negative radicals meaning, for instance with M =−839, that a solution of the norm equation does
exist in Q(

√
−839) with α = 1

2 (1+
√
−839), or with M =−14 giving α = 14+

√
−14.

5. Universality of the Polynomials msν

Let’s begin with the following obvious result making a link with polynomials msν .

Lemma 5.1. Let M ≥ 2 be a square-free integer and K =Q(
√

M); then, any α ∈ Z+
K is characterized by its trace a ∈ Z and

its norm sν , s ∈ {−1,1}, ν ∈ Z≥1; from these data, α = 1
2 (a+b

√
M) where b is given by msν(a) =: Mb2.

Proof. From the equation α2−aα + sν = 0, we get α = 1
2 (a+

√
a2−4sν), where necessarily a2−4sν =: Mb2 (unicity of

the Kummer radical) giving b > 0 from the knowledge of a and sν .

5.1 Mc Laughlin’s polynomials
Consider some polynomials that one finds in the literature; for instance that of Mc Laughlin [2] obtained from “polynomial

continued fraction expansion”, giving formal units, and defined as follows.

Let m ≥ 2 be a given square-free integer and let Em = u+ v
√

m, u,v ∈ Z≥1, be the fundamental solution of the norm
equation (or Pell–Fermat equation) u2−mv2 = 1 (thus, Em = ε

n0
m , n0 ∈ {1,2,3,6}). For such m,u,v, each of the data below

leads to the fundamental polynomial solution of the norm equation U(t)2−m(t)V (t)2 = 1 (see [2, Theorems 1–5]), giving the
parametrized units EM(t) =U(t)+V (t)r

√
M(t), of norm 1 of Q(

√
M(t)), where m(t) =: M(t)r(t)2, M(t) square-free.

The five polynomials m(t) are:

mcl1(t) = v2t2 +2ut +m,

U(t) = v2t +u, V (t) = v;

mcl2(t) = (u−1)2(v2t2 +2t
)
+m,

U(t) = (u−1)
(
v4t2 +2v2t

)
+u, V (t) = v3t + v;

mcl3(t) = (u+1)2(v2t2 +2t
)
+m,

U(t) = (u+1)
(
v4t2 +2v2t

)
+u, V (t) = v3t + v;

mcl4(t) = (u+1)2v2t2 +2(u2−1)t +m,

U(t) = (u+1)2

u−1
v4t2 +2(u+1)v2t +u, V (t) = u+1

u−1
v3t + v;

mcl5(t) = (u−1)2(v6t4 +4v4t3 +6v2t2)+2(u−1)(2u−1)t +m,

U(t) = (u−1)
(
v6t3 +3v4t2 +3v2t

)
+u, V (t) = v3t + v.

Note that for mcl1(t) one may also use a unit Em = u+ v
√

m of norm −1 since U(t)2−mcl1(t)V (t)2 = u2−mv2, which is
not possible for the other polynomials.
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We may enlarge the previous list with cases where the coefficients of Em may be half-integers defining more general units
(as ε5, ε13 of norm −1 in the case of mcl1(t), then as ε21 of norm 1 for the other mcl(t)). This will give Em = εm or ε2

m.

So we have the following transformation of the mcl(t), U(t), V (t), that we explain with mcl1(t). The polynomial mcl1(t)
fulfills the condition U(t)2−mcl1(t)V (t)2 = u2−mv2, which is the norm of Em = u+ v

√
m; so we can use any square-

free integer m ≡ 1 (mod 4) such that Em = 1
2

(
u+ v

√
m
)
, u,v ∈ Z≥1 odd, and we obtain the formal unit EM(t) =

1
2

(
U(t)+

V (t)
√

mcl1(t)
)

under the condition t even to get U(t),V (t) ∈ Z≥1. This gives the polynomials mcl6(t) = v2t2 +2ut +m and
the coefficients U(t) = 1

2 (v
2t +u), V (t) = 1

2 v of a new unit, with mcl6(t) = M(t)r(t)2, for all t ≥ 0,.

For the other mcl(t) one applies the maps t 7→ 2t, t 7→ 4t, depending on the degrees; so we obtain the following list, where
the resulting unit is EM(t) =U(t)+V (t)r(t)

√
M(t), of norm ±1, under the conditions m≡ 1 (mod 4) and εm = 1

2 (u+ v
√

m),
u,v odd:



mcl6(t) = v2t2 +2ut +m,

U(t) = 1
2
(v2t +u), V (t) = 1

2
v;

mcl7(t) = (u−2)2(v2t2 +2t
)
+m,

U(t) = 1
2

(
(u−2)(v4t2 +2v2t)+u

)
, V (t) = 1

2

(
v3t + v

)
;

mcl8(t) = (u+2)2(v2t2 +2t
)
+m,

U(t) = 1
2

(
(u+2)(v4t2 +2v2t)+u

)
, V (t) = 1

2

(
v3t + v

)
;

mcl9(t) = (u+2)2v2t2 +2(u2−4)t +m,

U(t) = 1
2

(
(u+2)2

u−2
v4t2 +2(u+2)v2t +u

)
, V (t) = 1

2

(
u+2
u−2

v3t + v
)

;

mcl10(t) = (u−2)2(v6t4 +4v4t3 +6v2t2)+4(u−2)(u−1)t +m,

U(t) = 1
2

(
(u−2)(v6t3 +3v4t2 +3v2t)+u

)
, V (t) = 1

2

(
v3t + v

)
.

5.2 Application to finding units
In fact, these numerous families of parametrized units are nothing but the units Es(T ) = 1

2 (T +
√

T 2−4s) when the
parameter T =U(t) is a given polynomial expression. This explain that the properties of the units Es(T ) are similar to that of
the two universal units Es(t), for t ∈ Z≥1, but, a priori, the F.O.P. algorithm does not give fundamental units when T (t) is not a
degree 1 monic polynomial; nevertheless it seems that the algorithm gives most often fundamental units, at least for all t� 0.

We give the following example, using for instance the Mc Laughlin polynomial mcl10(t) with m= 301, u= 22745, v= 1311,
corresponding to, εm = 1

2 (22745+1311
√

301) of norm 1 (program of Section 3); this will give enormous units EM(t) =: εn
M(t).

The output is of the form [M(t), r(t),n]. Then there is no exception to EM(t) = εM(t) (i.e., n = 1); moreover, one sees many
cases of non-square-free integers mcl10(t):

Mc LAUGHLIN UNITS
{B=1000;LN=List;LM=List;u=22745;v=1311;for(t=1,B,
mt=(u-2)ˆ2*(vˆ6*tˆ4+4*vˆ4*tˆ3+6*vˆ2*tˆ2)+4*(u-2)*(u-1)*t+301;
ut=1/2*((u-2)*(vˆ6*tˆ3+3*vˆ4*tˆ2+3*vˆ2*t)+u);vt=1/2*(vˆ3*t+v);
C=core(mt,1);M=C[1];r=C[2];D=quaddisc(M);w=quadgen(D);
Y=quadunit(D);res=Mod(M,4);if(res!=1,Z=ut+r*vt*w);if(res==1,Z=ut-r*vt+2*r*vt*w);
z=1;n=0;while(Z!=z,z=z*Y;n=n+1);L=List([M,r,n]);
listput(LM,vector(3,c,L[c])));VM=vecsort(vector(B,c,LM[c]),1,8);
print(VM);print("#VM = ",#VM);for(k=1,#VM,n=VM[k][3];if(n>1,Ln=VM[k];
listput(LN,vector(3,c,Ln[c]))));Vn=vecsort(LN,1,8);
print("exceptional powers:",Vn)}
[M,r,n]=
[656527122296918386395032242,2,1],[1594671238615711306590405613,63245,1],
[6538031892707128354912512481,1400,1],[8374054846220987469202089646,14,1],
[13294653599300065679245260247,4,1],[17461037237177260272395675419,140,1],
[28515629817043220531451663970,7672,1],[42017686932862256394245096245,1,1],
(...)
[2626102383534535069268098426753041168301,1,1]
#VM = 1000
exceptional powers : List([])
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Using the Remark 1.5, with B = 103 and m(t) of degree 4, with leading coefficient:

a4B4 = (22745−2)2 ·13116 ·1012 = 2626102377422775499879732689000000000000,

one gets log(2626102383534535069268098426753041168301)/ log(a4B4)≈ 1.000000000025...

6. Non p-rationality of Quadratic Fields

6.1 Recalls about p-rationality
Let p≥ 2 be a prime number. The definition of p-rationality of a number field lies in the framework of abelian p-ramification

theory. The references we give in this article are limited to cover the subject and concern essentially recent papers; so the reader
may look at the historical of the abelian p-ramification theory that we have given in [15, Appendix], for accurate attributions,
from Šafarevič’s pioneering results, about the numerous approaches (class field theory, Galois cohomology, pro-p-group theory,
infinitesimal theory); then use its references concerning developments of this theory (from our Crelle’s papers 1982–1983,
Jaulent’s infinitesimals [16] (1984), Jaulent’s thesis [17] (1986), Nguyen Quang Do’s article [18] (1986), Movahhedi’s thesis
[19] (1988), Movahhedi–Nguyen Quang Do [20] (1990), and subsequent papers); all prerequisites and developments are
available in our book [21] (2005).

Definition 6.1. A number field K is said to be p-rational if K fulfills the Leopoldt conjecture at p and if the torsion group TK
of the Galois group of the maximal abelian p-ramified (i.e., unramified outside p and ∞) pro-p-extension of K is trivial.

We will use the fact that, for totally real fields K, we have the formula:

#TK = #C ′K · #RK · #WK , (6.1)

where C ′K is a subgroup of the p-class group CK and where WK depends on local and global p-roots of unity; for K =Q(
√

M)
and p > 2, C ′K = CK and WK = 1 except if p = 3 and M ≡ −3 (mod 9), in which case WK ' Z/3Z. For p = 2, C ′K = CK
except if K(

√
2)/K is unramified (i.e., if M = 2M1, M1 ≡ 1 (mod 4)). Then RK is the “normalized p-adic regulator” of K

(general definition for any number field in [22, Proposition 5.2]). For K =Q(
√

M) and p 6= 2, #RK ∼ 1
p logp(εM); for p = 2,

#RK ∼ 1
2d log2(εM), where d ∈ {1,2} is the number of prime ideals above 2.

So #TK is divisible by the order of RK , which gives a sufficient condition for the non-p-rationality of K. Since CK =WK = 1
for p� 0, the p-rationality only depends on RK in almost all cases.

Proposition 6.2. ([23, Proposition 5.1]) Let K = Q(
√

m) be a real quadratic field of fundamental unit εm. Let p > 2 be a
prime number with residue degree f ∈ {1,2}.

(i) For p≥ 3 unramified in K, vp(#RK) = vp(ε
p f−1
m −1)−1.

(ii) For p > 3 ramified in K, vp(#RK) =
1
2 (vp(ε

p−1−1)−1), where p2 = (p).

(iii) For p = 3 ramified in K, v3(#RK) =
1
2 (vp(ε

6−1)−2−δ ), where p2 = (3) and δ = 1 (resp. δ = 3) if m 6≡ −3 (mod 9)
(resp. m≡−3 (mod 9)).

A sufficient condition for the non-triviality of RK that encompasses all cases (since the decomposition of p in Q(
√

M(t))
is unpredictable in the F.O.P. algorithm) is logp(εm)≡ 0 (mod p2); this implies that εm is a local pth power at p. It suffices to
force the parameter t to be such that a suitable prime-to-p power of Es(t) = 1

2

(
t + r(t)

√
M(t)

)
is congruent to 1 modulo p2.

So, exceptions may arrive only when Es(t) is a global pth power.

6.2 Remarks about p-rationality and non-p-rationality
In some sense, the p-rationality of K comes down to saying that the p-arithmetic of K is as simple as possible and that, on

the contrary, the non p-rationality is the standard context, at least for some p for K fixed and very common when K varies in
some families, for p fixed.

a) In general, most papers intend to find p-rational fields, a main purpose being to prove the existence of families of
p-rational quadratic fields (see, e.g., [24, 25, 26, 27, 28, 29, 30, 31, 23, 32, 33, 34, 35]); for this there are three frameworks that
may exist in general, but, to simplify, we restrict ourselves to real quadratic fields:

(i) The quadratic field K is fixed and it is conjectured that there exist only finitely many primes p > 2 for which K is non
p-rational, which is equivalent to the existence of finitely many p for which 1

p logp(εK)≡ 0 (mod p).
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(ii) The prime p > 2 is fixed and it is proved/conjectured that there exist infinitely many p-rational quadratic field K,
which is equivalent to the existence of infinitely many K’s for which the p-class group is trivial and such that 1

p logp(εK) is a
p-adic unit; this aspect is more difficult because of the p-class group.

(iii) One constructs some families of fields K(p) indexed by p prime. These examples of quadratic fields often make use
of Lemma 5.1 to get interesting radicals and units.

For instance we have considered in [23, § 5.3] (as many authors), the polynomials t2 p2ρ + s for p-adic properties of the unit
E = t2 p2ρ + s+ t pρ

√
t2 p2ρ +2s of norm 1.

Taking “ρ = 1
2 , t = 1”, one gets the unit E = p+ s+

√
p(p+2s) considered in [25] where it is proved that for p > 3, the

fields Q(
√

p(p+2)) are p-rational since the p-class group is trivial (for analytic reasons) and the unit p+1+
√

p(p+2) is
not a local p-power. Note that 4p(p+2s) = m1(2p+2s), since N(E) = 1 for all s.

Similarly, in [27], is considered the bi-quadratic fields Q(
√

p(p+2),
√

p(p−2)) containing Q(
√

p2−4) giving the unit
1
2 (p+

√
p2−4) still associated to m1(p); the p-rationality comes from the control of the p-class group since the p-adic

regulators are obviously p-adic units.
Finally, in [32], is considered the tri-quadratic fields Q(

√
p(p+2),

√
p(p−2),

√
−1) which are proven to be p-rational

for infinitely many primes p; but these fields are imaginary, so that one has to control the p-class group by means of non-trivial
analytic arguments.

The p-rational fields allow many existence theorems and conjectures (as the Greenberg’s conjecture [36] on Galois
representations with open images, yielding to many subsequent papers as [25, 27, 28, 29, 37, 17, 32]); they give results in the
pro-p-group Galois theory [33]. Algorithmic aspects of p-rationality may be found in [38, 15, 39] and in [13] for the logarithmic
class group having strong connexions with TK in connection with another Greenberg conjecture [10] (Iwasawa’s invariants
λ = µ = 0 for totally real fields); for explicit characterizations in terms of p-ramification theory, see [12, 40], Greenberg’s
conjecture being obvious when TK = 1.

b) We observe with the following program that the polynomials:

ms(p+1) = (p+1)2−4s and ms(2p+2) = 4(p+1)2−4s

always give p-rational quadratic fields, apart from very rare exceptions (only four ones up to 106) due to the fact that the units
Es(p+1) = 1

2

(
p+1+

√
(p+1)2−4s

)
and Es(2p+2) = p+1+

√
(p+1)2− s may be a local p-power as studied in [31] in

a probabilistic point of view (except in the case of E1(2p+2) = 1+ p+
√

p2 +2p≡ 1 (mod p), with p2 = (p), thus never
local pth power):

{nu=8;L=List([-4,-1,1,4]);for(j=1,4,d=L[j];print("m(p)=(p+1)ˆ2-(",d,")");
forprime(p=3,1000000,M=core((p+1)ˆ2-d);K=bnfinit(xˆ2-M);
wh=valuation(K.no,p);Kmod=bnrinit(K,pˆnu);CKmod=Kmod.cyc;
val=0;d=#CKmod;for(k=1,d-1,Cl=CKmod[d-k+1];
w=valuation(Cl,p);if(w>0,val=val+w));if(val>0,
print("p=",p," M=",M," v_p(#(p-class group))=",wh," v_p(#(p-torsion group))=",val))))}

m(p)=(p+1)ˆ2+4, p=13 M=2 v_p(#(p-class group))=0
v_p(#(p-torsion group))=1

m(p)=(p+1)ˆ2+1, p=11 M=145 v_p(#(p-class group))=0
v_p(#(p-torsion group))=2

p=16651 M=277289105 v_p(#(p-class group))=0
v_p(#(p-torsion group))=1

m(p)=(p+1)ˆ2-1, p=3 M=15 v_p(#(p-class group))=0
v_p(#(p-torsion group))=1

m(p)=(p+1)ˆ2-4

The case of p = 3, M = 15 does not come from the regulator, nor from the class group, but from the factor #WK = 3 since
15≡−3 (mod 9); but this case must be considered as a trivial case of non-p-rationality.

c) For real quadratic fields, the 2-rational fields are characterized via a specific genus theory and are exactly the subfields of
the form Q(

√
m) for m = 2, m = `, m = 2`, where ` is a prime number congruent to ±3 (mod 8) (see proof and history in [38,

Examples IV.3.5.1]). So we shall not consider the case p = 2 since the non-2-rational quadratic fields may be easily deduced,
as well as fields with non-trivial 2-class group.

d) Nevertheless, these torsion groups TK are “essentially” the Tate–Šafarevič groups (see their cohomological interpretations
in [18]):

III2
K := Ker

[
H2(GK,Sp ,Fp)→

⊕
p∈Sp

H2(GKp ,Fp)
]
,
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where Sp is the set of p-places of K, GK,Sp the Galois group of the maximal Sp-ramified pro-p-extension of K and GKp the local
analogue over Kp; so their non-triviality has an important arithmetic meaning about the arithmetic complexity of the number
fields (see for instance computational approach of this context in [41] for the pro-cyclic extension of Q and the analysis of the
Greenberg’s conjecture [10] in [40]). When the set of places S does not contain Sp, few things are known about GK,S; see for
instance Maire’s survey [42] and its bibliography, then [15, Section 3] for numerical computations.

In other words, the non-p-rationality (equivalent, for p > 2, to III2
K 6= 0) is an obstruction to a local-global principle and is

probably more mysterious than p-rationality. Indeed, in an unsophisticated context, it is the question of the number of primes

p such that the Fermat quotient 2p−1−1
p

is divisible by p, for which only two solutions are known; then non-p-rationality is
the same problem applied to algebraic numbers, as units εM; this aspect is extensively developed in [31] for arbitrary Galois
number fields).

6.3 Families of local p-th power units – Computation of TK
We shall force the non triviality of RK to obtain the non-p-rationality of K.

6.3.1 Definitions of local p-th power units
Taking polynomials stemming from suitable polynomials ms we can state:

Theorem 6.3. Let p > 2 be a prime number and let s ∈ {−1,1}.
(a) Let a ∈ Z≥1 and δ ∈ {1,2}. We consider T := 2δ−1(ap4t2−δ s) and m1(T ) giving rise to the unit:

E1(T ) =
1
2
(
T +

√
T 2−4

)
=

1
δ

(
ap4t2−δ s+ p2t

√
a2 p4t2−2δas

)
,

of norm 1, which is local pth power at p.
For instance, the cases (a,δ ) ∈ {(1,1),(1,2),(2,1),(3,1),(3,2),(4,1),(5,1),(5,2)} give distinct units.

(b) Consider T := t0 + p2t and ms(T ) = T 2−4s and the units of norm s, Es(T ) =
1
2

(
T +
√

T 2−4s
)
; they are, for all t,

local pth power at p for suitable t0 depending on p and s, as follows:
(i) For t0 = 0, the units Es(T ) = Es(p2t) are local pth powers at p.
(ii) For p 6≡ 5 (mod 8), there exist s ∈ {−1,1} and t0 ∈ Z≥1 solution of the congruence t2

0 ≡ 2s (mod p2) such that the
units Es(T ) are local pth powers at p. As examples, we get the data:

(p = 3, s =−1, t0 ∈ {4,5}), (p = 7, s = 1, t0 ∈ {10,39}), (p = 11, s =−1, t0 ∈ {19,102}),
(p = 17, s =−1, t0 ∈ {24,265}; s = 1, t0 ∈ {45,244}).

(c) As t grows from 1 up to B, for each first occurrence of a square-free integer M ≥ 2 in the factorization m(t) =
a2 p4t2−2δas = M(t)r(t)2 (case (a)), or the factorization m(t) = (t0 + p2t)2−4s = M(t)r(t)2 (case (b)), the quadratic fields
Q(
√

M(t)), are non p-rational, apart possibly when 1
δ

(
ap4t2− δ s+ p2t r(t)

√
M(t)

)
∈ 〈ε p

M(t)〉 (case (a)), or 1
2

(
t0 + p2t +√

(t0 + p2t)2−4s
)
∈ 〈ε p

M(t)〉 (case (b)).

Proof. The case (a) is obvious since one computes that the unit is congruent to −s modulo p2 because of T 2−4≡ 0 (mod p4).
Since the case (b) (i) is also obvious, assume t0 6≡ 0 (mod p2). We have:(

Es(T )
)2 ≡ 1

2

(
T 2−2s+T

√
T 2−4s

)
(mod p2),

whence
(
Es(T )

)2 ≡ t0
2

√
T 2−4s (mod p2) under the condition t2

0 ≡ 2s (mod p2). So, Es(T )4 ≡ 1
4 t2

0 (t
2
0 −4s)≡−1 (mod p2),

whence the result. One computes that t2
0 ≡ 2s (mod p2) has solutions for (p− 1)(p+ 1) ≡ 0 (mod 16) when s = 1 and

(p−1)(p+5)≡ 0 (mod 16) when s =−1.

For instance, in case (a), from various examples of pairs (a,δ ), we shall use:

m(t) = p4t2− s,m(t) = p4t2−2s,m(t) = p4t2−4s,m(t) = 9p4t2−6s,

m(t) = 9p4t2−12s,m(t) = 4p4t2−2s,m(t) = 25p4t2−10s,m(t) = 25p4t2−20s.

The case (b) has the advantage that the traces of the units are in O(t) instead of O(t2) for case (a).
Since in many computations we are testing if some unit Es(T ) is a global pth power, we state the following result which will

be extremely useful in practice because it means that the exceptional cases are present only at the beginning of the F.O.P. list:
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Theorem 6.4. Let T be of the form T = cth + c0, c≥ 1, h≥ 1, c0 ∈ Z fixed and set T 2−4s = M(t)r(t)2 when t runs through
Z≥1. For B� 0, the maximal bound Mpow

B of the square-free integers M(t), obtained by the F.O.P. algorithm, for which
Es(T ) := 1

2

(
T +
√

T 2−4s
)

may be a pth power in 〈εM(t)〉 (whence the field Q(
√

M(t)) being p-rational by exception), is of

the order of (c2B2h)
1
p as B→ ∞.

Proof. Put εM = 1
2 (a+b

√
M) as usual; then we can write εM ∼ b

√
M and Es(T )∼ T so that T and (b

√
M)p are equivalent as

M and B tend to infinity; taking the most unfavorable case b = 1, we conclude that Mpow
B � (c2B2h)2/p in general.

For instance T = t0 + p2t, of the case (b) of Theorem 6.3, gives a bound Mpow
B , of possible exceptional Kummer radicals, of

the order of (p4B2)1/p. This implies that when B→ ∞, the density of Kummer radicals M such that Es(T ) is not a global pth
power is equal to 1. With B = 106, often used in the programs, the bound Mpow

B tends to 1 quickly as p increases. In practice,
for almost all primes p, the F.O.P. lists are without any exception (only the case p = 3 gives larger bounds, as Mpow

106 ≈ 43267
for the above example; but it remains around 106−43267 = 956733 certified solutions M).

6.3.2 Program of computation of TK

In case a) of Theorem 6.3, we give the program using together the 16 parametrized radicals and we print short excerpts.
The parameter e must be large enough such that pe annihilates TK . From [38, Theorem 2.1], TK is obtained as soon as the
program gives the same result by increasing e by one unit; for instance, e = 2 (for p 6= 2) and e = 3 (for p = 2), only gives the
p-rank of TK , whence a test for the p-rationality. Any prime number p > 2 may be illustrated (here we take p = 3,5,7). A part
of the program is given in [38] for any number field.

For convenience, we replace a data of the form [7784110,List([9])], in the outputs, by [7784110, [9]] giving a 3-group TK
of Q(

√
7784110) isomorphic to Z/9Z.

{B=10000;p=3;Lm=List([List([1,-4]),List([1,-2]),List([1,-1]),List([1,1]),List([1,2]),List([1,4]),
List([4,-2]),List([4,2]),List([9,-6]),List([9,6]),List([9,-12]),List([9,12]),List([25,-10]),
List([25,10]),List([25,-20]),List([25,20])]);e=8;p4=pˆ4;Ln=List;LM=List;
for(t=1,B,for(ell=1,16,a=Lm[ell][1];b=Lm[ell][2];mt=a*tˆ2*p4+b;M=core(mt);
K=bnfinit(xˆ2-M,1);Kmod=bnrinit(K,pˆe);CKmod=Kmod.cyc;
Tn=List;d=#CKmod;for(k=1,d-1,Cl=CKmod[d-k+1];w=valuation(Cl,p);
if(w>0,listinsert(Tn,pˆw,1)));L=List([M,Tn]);listput(LM,vector(2,c,L[c]))));
VM=vecsort(vector(16*B,c,LM[c]),1,8);print(VM);print("#VM = ",#VM);
for(k=1,#VM,T=VM[k];if(T[2]==List([]),listput(Ln,vector(1,c,T[c]))));
Vn=vecsort(Ln,1,8);print("exceptions:",Vn)}
p=3
[M,Tn]=
[[2,[]],[3,[]],[5,[]],[6,[3]],[7,[]],[10,[]],[11,[]],[13,[]],[14,[]],[15,[3]],[21,[]],
[23,[]],[29,[9]],[33,[3]],[34,[]],[35,[]],[37,[]],[38,[]],[42,[9]],[53,[]],[55,[]],
[58,[3]],[61,[]],[62,[3]],[69,[3]],[74,[9]],[77,[3]],[78,[3]],[79,[9]],[82,[3]],
[83,[3]],[85,[3]],[87,[3]],[93,[3]],[103,[3]],[106,[3]],[109,[3]],[110,[]],[115,[]],
[122,[81]],[141,[9]],[142,[3]],[143,[]],[145,[]],[146,[]],[151,[3]],[159,[3]],[173,[3]],
(...)
[202378518245,[3]],[202419008110,[27,3]],[202459502005,[27,9]],[202459502015,[81]],
[202459502035,[81]],[202459502045,[81,3]],[202499999990,[3]],[202500000010,[3]]]
#VM = 139954
exceptions:List([[2],[3],[5],[7],[10],[11],[13],[14],[21],[23],[34],[35],[37],[38],[53],
[55],[61],[110],[115],[143],[145],[146],[205],[215],[221],[226],[227],[230],[437],[439],
[442],[445],[577],[890],[902],[905],[910],[1085],[1087],[1093],[1517],[1762],[1766],
[2605],[3595],[3605],[5605],[5615],[5645],[11005]])

p=5
[M,Tn]=
[[2,[]],[3,[]],[5,[]],[6,[]],[21,[]],[23,[]],[26,[]],[29,[]],[38,[5]],[39,[5]],[51,[5]],
[62,[25]],[69,[5]],[89,[25]],[102,[]],[107,[5]],[114,[5]],[127,[5]],[134,[5]],[161,[5]],
[183,[5]],[186,[5]],[213,[]],[219,[]],[231,[]],[237,[]],[278,[5]],[287,[5]],[295,[25]],
[326,[5]],[382,[5]],[422,[5]],[434,[25]],[453,[5]],[467,[5]],[501,[5]],[509,[5]],
[514,[25]],[519,[5]],[574,[5]],[581,[5]],[606,[125]],[623,[5]],[626,[5]],[627,[5]],
[629,[5]],[645,[5]],[662,[5]],[674,[5]],[761,[5]],
(...)
[1561562640635,[125]],[1561562640645,[25]],[1561875062510,[25]],[1562187515605,[625]],
[1562187515615,[125]],[1562187515635,[25]],[1562187515645,[625]],[1562500000010,[15625]]]
#VM = 139982
exceptions:List([[2],[3],[5],[6],[21],[23],[26],[29],[102],[213],[219],[231],[237]])

p=7
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[M,Tn]=
[[6,[7]],[37,[7]],[74,[7]],[101,[7]],[123,[7]],[145,[49]],[149,[7]],[206,[7]],[214,[7]],
[215,[7]],[219,[7]],[267,[7]],[505,[7]],[554,[7]],[570,[7]],[629,[7]],[663,[7]],[741,[7]],
[817,[49]],[834,[49]],[887,[49]],[894,[7]],[1067,[7]],[1373,[49]],[1446,[7]],[1517,[7]],
[1590,[7]],[1893,[7]],[2085,[7]],[2162,[7]],[2302,[49]],[2355,[7]],[2397,[7]],[2399,[7]],
[2402,[7]],[2405,[7]],[2498,[7]],[2567,[7]],[2615,[7]],[2679,[7]],[2742,[7]],[2778,[7]],
(...)
[5998899040235,[49]],[6000099240090,[7]],[6000099240110,[7]],[6001299560005,[7]],
[6001299560015,[7]],[6001299560035,[7]],[6001299560045,[7]],[6002499999990,[7]]]
#VM = 139991
exceptions:List([])

For p = 11 and 13 no exception is found for B = 104.

The case b) of Theorem 6.3 gives an analogous program and will be also illustrated in the Section 7 about p-class groups,
especially for the case p = 3. The results are similar and give, in almost cases, non-trivial p-adic regulators RK , hence
non-p-rational fields K:

p-RATIONALITY
{B=10000;p=3;e=8;p4=pˆ4;Ln=List;LM=List;
for(t=1,B,forstep(s=-1,1,2,mt=p4*tˆ2-4*s;M=core(mt);
K=bnfinit(xˆ2-M,1);Kmod=bnrinit(K,pˆe);CKmod=Kmod.cyc;
Tn=List;d=#CKmod;for(k=1,d-1,Cl=CKmod[d-k+1];w=valuation(Cl,p);
if(w>0,listinsert(Tn,pˆw,1)));L=List([M,Tn]);listput(LM,vector(2,c,L[c]))));
VM=vecsort(vector(2*B,c,LM[c]),1,8);print(VM);print("#VM = ",#VM);
for(k=1,#VM,T=VM[k];if(T[2]==List([]),listput(Ln,vector(1,c,T[c]))));
Vn=vecsort(Ln,1,8);print("exceptions:",Vn)}
p=3
[M,Tn]=
[[2,[]],[5,[]],[10,[]],[13,[]],[14,[]],[29,[9]],[35,[]],[37,[]],[58,[3]],[61,[]],[62,[3]],
[74,[9]],[77,[3]],[82,[3]],[85,[3]],[106,[3]],[109,[3]],[110,[]],[122,[81]],[143,[]],
[145,[]],[173,[3]],[181,[3]],[182,[9]],[202,[3]],[221,[]],[226,[]],[229,[3]],[257,[27]],
[287,[3]],[323,[3]],[359,[9]],[397,[3]],[401,[3]],[410,[27]],[437,[]],[442,[]],[445,[]],
[506,[9]],[515,[3]],[518,[3]],[533,[3]],[626,[3]],[635,[3]],[674,[9]],[730,[27]],
(...)
[8078953685,[81]],[8078953693,[9]],[8082189805,[3,3]],[8085426557,[9]],
[8085426565,[9]],[8088663965,[9]],[8091902021,[3]],[8095140733,[3]],
[8098380077,[27,3]],[8098380085,[27]]
#VM = 19990
exceptions:List([[2],[5],[10],[13],[14],[35],[37],[61],[110],[143],[145],[221],[226],
[437],[442],[445],[1085],[1093],[1517]])

p=5
[M,Tn]=
[[6,[]],[21,[]],[26,[]],[29,[]],[39,[5]],[51,[5]],[69,[5]],[89,[25]],[114,[5]],[161,[5]],
[326,[5]],[434,[25]],[501,[5]],[509,[5]],[514,[25]],[574,[5]],[581,[5]],[626,[5]],
[629,[5]],[674,[5]],[761,[5]],[789,[5]],[791,[5]],[874,[5]],[1086,[5]],[1111,[5,5]],
[1191,[5]],[1351,[5]],[1406,[5]],[1641,[625]],[1761,[5]],[1851,[5]],[1914,[5]],
(...)
[62412530621,[5]],[62412530629,[5]],[62437515621,[25]],[62437515629,[125]],
[62462505621,[5]],[62462505629,[5]],[62487500621,[5]],[62487500629,[5]]]
#VM = 19996
exceptions:List([[6], [21], [26], [29]])

p=7
[M,Tn]=
[[6,[7]],[37,[7]],[101,[7]],[145,[49]],[149,[7]],[206,[7]],[215,[7]],[554,[7]],[570,[7]],
[629,[7]],[663,[7]],[741,[7]],[817,[49]],[894,[7]],[1067,[7]],[1373,[49]],[1517,[7]],
[1893,[7]],[2085,[7]],[2162,[7]],[2302,[49]],[2355,[7]],[2397,[7]],[2402,[7]],[2405,[7]],
[2498,[7]],[2567,[7]],[2679,[7]],[2742,[7]],[2845,[7]],[2915,[49]],[3162,[7]],[3477,[7]],
(...)
[239668014477,[7]], [239668014485,[7]],[239763977645,[343]],[239763977653,[7]],
[239859960029,[7]],[239955961613,[7]],[240051982397,[7]],[240051982405,[7]]]
#VM = 19998
exceptions:List([])

6.4 Infiniteness of non p-rational real quadratic fields
All these experiments raise the question of the infiniteness, for any given prime p≥ 22, of non p-rational real quadratic

fields when the non p-rationality is due to RK ≡ 0 (mod p) (i.e., log(εM)≡ 0 (mod p2)). The case p = 2 being trivial because
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of genus theory for 2-class groups, we suppose p > 2. However, it is easy to prove this fact for p = 2 by means of the regulators.

6.4.1 Explicit families of units
We will build parametrized Kummer radicals and units, in the corresponding fields, which are not pth power of a unit;

the method relies on the choice of suitable values of the parameter trace t. This will imply the infiniteness of degree p−1
imaginary cyclic fields of the Section 7 having non trivial p-class group.

Theorem 6.5. (i) Let q≡ 1 (mod p) be prime, let c /∈ F×p
q and tq ∈ Z≥1 such that tq ≡

c2 + s
2cp2 (mod q). Then, whatever the

bound B, the F.O.P. algorithm applied to the polynomial m(tq +qx) = p4(tq +qx)2− s, x ∈ Z≥0, gives lists of distinct Kummer
radicals M, in the ascending order, such that Q(

√
M) is non-p-rational.

(ii) For any given prime p > 2 there exist infinitely many real quadratic fields K such that RK ≡ 0 (mod p), whence
infinitely many non p-rational real quadratic fields.

Proof. (i) Criterion of non pth power. Consider m(t) = p4t2− s and the unit Es(2p2t) = p2t +
√

p4t2− s of norm s and local
pth power at p (this may be seen, computing the square of the unit). Choose a prime q≡ 1 (mod p) and let c ∈ Z>1 be non

pth power modulo q (whence (q−1)
(
1− 1

p

)
possibilities). Let t ≡ c2 + s

2cp2 (mod q); then:

N(Es(2p2t)− c) = N(p2t− c+
√

p4t2− s) = (p2t− c)2− p4t2 + s = c2 + s−2cp2t ≡ 0 (mod q).

Such value of t defines the field Q(
√

M(t)), via p4t2− s = M(t)r(t)2, and whatever its residue field at q (Fq or Fq2), we
get Es(2p2t)≡ c (mod q), for some q | qZ; since in the inert case, #F×q2 = (q−1)(q+1), with q+1 6≡ 0 (mod p), c is still

non pth power, and Es(2p2t) is not a local pth power modulo q, hence not a global pth power.
(ii) Infiniteness. Now, for simplicity to prove the infiniteness, we restrict ourselves to the case m(t) = p4t2−1 (the case

m(t) = p4t2 +1 may be considered with a similar reasoning in Z[
√
−1] instead of Z). Let ` be a prime number arbitrary large

and consider the congruence:

p2(tq +qx)≡ 1 (mod `);

it is equivalent to x= x0+y`, y∈Z≥0, where x0 is a residue modulo ` of the constant 1− tq p2

qp2 ; so, we have p2(tq+qx0)−1= λ`n,

n≥ 1, ` - λ . Computing these m(t)’s, with t = tq +(x0 + y`)q, gives:

p4(tq +q(x0 + y`))2−1 = [p2(tq +q(x0 + y`))−1] · [p2(tq +q(x0 + y`))+1]≡ 0 (mod `);

the right factor is prime to `; the left one is of the form λ`n + qyp2`, and whatever n, it is possible to choose y such that
the `-valuation of λ`n−1 + qyp2 is zero. So, for such integers t, we have the factorization m(t) = `M′r2, where M′ ≥ 1 is
square-free and M′r2 prime to `, which defines M := `M′ arbitrary large.

This proves that in the F.O.P. algorithm, when B→ ∞, one can find arbitrary large Kummer radicals M(tq +(x0 + y`)q)
such that the corresponding unit E1(tq +(x0 + y`)q) is a local pth power modulo p, but not a global p-th power.

The main property of the F.O.P. algorithm is that the Kummer radicals obtained are distinct and listed in the ascending
order; without the F.O.P. process, all the integers t = tq +(x0 + y`)q giving the same M give E1(tq +(x0 + y`)q) = εn

M with
n 6≡ 0 (mod p).

6.4.2 Unlimited lists of non-p-rational real quadratic fields
Take p = 3, q = 7, c ∈ {2,3,4,5}. With m(t) = 81t2− 1, then tq ∈ {2,5}; with m(t) = 81t2 + 1, then tq ∈ {3,4} and

t = tq + 7x, x ≥ 0. The F.O.P. list is without any exception, giving non 3-rational quadratic fields Q(
√

M) (in the first case,
p = 3 is inert and in the second one, p = 3 splits. We give the corresponding list using together the four possibilities:

NON p-RATIONAL REAL QUADRATIC FIELDS I
{B=1000000;p=3;Lm=List([List([-1,3]),List([-1,4]),List([1,2]),List([1,5])]);Ln=List;LM=List;
for(t=1,B,for(ell=1,4,s=Lm[ell][1];tq=Lm[ell][2];M=core(81*(tq+7*t)ˆ2-s);L=List([M]);
listput(LM,vector(1,c,L[c]))));VM=vecsort(vector(4*B,c,LM[c]),1,8);
print(VM);print("#VM = ",#VM)}
[M]=
[58],[74],[106],[113],[137],[359],[386],[401],[410],[494],[515],[610],[674],[743],[806],
[842],[877],[1009],[1010],[1157],[1367],[1430],[1901],[1934],[2006],[2153],[2255],
[2522],[2678],[2822],[2986],[3014],[5266],[5513],[6626],[6707],[6722],[6890],[7310],
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[7610],[7858],[7919],[8101],[8465],[8555],[8738],[8761],[9410],[9634],[9998],[11183],
[11195],[11237],[11447],[11509],[11537],[11663],[11890],[11965],[13427],[13645],
[14795],[16895],[16913],[17266],[18530],[19223],[19826],[20066],[20735],[21023],
[21317],[21389],[22730],[23066],[23102],[23410],[23626],[23783],[23963],
(...)
[248061933000323],[248063067000323],[248063350500730],[248063634001297]
#VM = 4000000

In case of doubt about the results, one may use the same program with the computation of #TK ; but the execution time
is much larger and it is not possible to take a large B since the computations need the instructions K = bnfinit(x2−M) and
Kmod = bnrinit(K,pe) of class field theory package (the list below contains 42 outputs up to M = 23963, while the first one
contains 80 Kummer radicals):

NON p-RATIONAL REAL QUADRATIC FIELDS II
{B=1000;p=3;Lm=List([List([-1,3]),List([-1,4]),List([1,2]),List([1,5])]);e=8;p4=pˆ4;Ln=List;LM=List;
for(t=1,B,for(ell=1,4,s=Lm[ell][1];t0=Lm[ell][2];M=core(81*(t0+7*t)ˆ2-s);K=bnfinit(xˆ2-M);
Kmod=bnrinit(K,pˆe);CKmod=Kmod.cyc;Tn=List;d=#CKmod;for(k=1,d-1,
Cl=CKmod[d-k+1];w=valuation(Cl,p);if(w>0,listinsert(Tn,pˆw,1)));L=List([M,Tn]);
listput(LM,vector(2,c,L[c]))));VM=vecsort(vector(4*B,c,LM[c]),1,8);
print(VM);print("#VM = ",#VM);for(k=1,#VM,T=VM[k];if(T[2]==List([]),
listput(Ln,vector(1,c,T[c]))));Vn=vecsort(Ln,1,8);print("exceptions:",Vn)}
[M,Tn]=
[[58,[3]],[74,[9]],[106,[3]],[359,[9]],[401,[3]],[410,[27]],[515,[3]],[674,[9]],[842,[9]],
[1009,[9]],[1157,[3]],[1367,[9]],[1430,[9]],[1934,[3]],[2255,[3]],[2678,[9]],[2822,[9]],
[3014,[3]],[5513,[9]],[6722,[27]],[6890,[3]],[7310,[3,3]],[7858,[9]],[7919,[3]],[8101,[3]],
[8465,[27]],[8555,[27]],[8738,[3]],[8761,[81]],[9410,[9]],[9634,[27,3]],[9998,[9,3]],
(...)
[3955403663,[27]],[3956535802,[3]],[3957668101,[27,3]],[3965598730,[3]],
[3966732323,[9,3]],[3971268323,[81]],[3972402730,[3]],[3973537297,[27]]]
#VM = 4000
exceptions : List([])

7. Application to p-Class Groups of Some Imaginary Cyclic Fields

Considering, now, the case b) of Theorem 6.3 for p > 2, we use the polynomial ms(T ) = T 2−4s, with T = t0 + p2t (cases
(i) with t0 = 0, then case (ii) with t0 ≡ 2s (mod p2)), and the unit of norm s:

Es(T ) =
1
2

(
T +

√
T 2−4s

)
,

for suitable s and t0 such that Es(T ) be a local pth power at p, which is in particular the case for all p > 2 and all s when
t0 = 0. For t0 6= 0, we get the particular data when the equation t2

0 ≡ 2s (mod p2) has solutions (which is equivalent to p 6≡ 5
(mod 8)):

(p = 3, s ∈ {−1,1}, t0 = 0), (p = 3, s =−1, t0 ∈ {4,5}), (p = 7, s = 1, t0 ∈ {10,39}),
(p = 11, s =−1, t0 ∈ {19,102}), (p = 17, s =−1, t0 ∈ {24,265}; s = 1, t0 ∈ {45,244}).

For p = 2, a “mirror field” may be taken in Q(
√
−1,
√

M) (see, e.g., [43] for some results linking 2-class groups and norms
of units).

The programs are testing that Es(T ) is not the pth power in 〈εM〉.

7.1 Imaginary quadratic fields with non-trivial 3-class group
From the above, we obtain, as consequence, the following selection of illustrations (see Theorem 6.5 claiming that the

F.O.P. lists are unbounded as B→ ∞):

Theorem 7.1. Let t0 ∈ {0,4,5} and m(t) := (t0 +9t)2 +4 if t0 6= 0, or m(t) := (t0 +9t)2±4 if t0 = 0. As t grows from 1 up to
B, each first occurrence of a square-free integer M ≥ 2 in the factorization m(t) =: Mr2, the quadratic field F3,M :=Q(

√
−3M)

has its class number divisible by 3, except possibly when the unit Es(t0 +9t) := 1
2 (t0 +9t + r

√
M) is a third power in 〈εM〉.

The F.O.P. algorithm applied to the subset of parameters t = 2+7x or t = 5+7x, x ∈ Z≥0 with m(t) = 81t2−1, always gives
non-trivial 3-class groups. Same results with t =±3+7x with m(t) = 81t2 +1.
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Proof. If Es(t0 + 9t) is not a third power in 〈εM〉 but a local 3rd power at 3, it is 3-primary in the meaning that if ζ3 is a
primitive 3rd root of unity, then K(ζ3,

3
√

Es((t0 +9t))/K(ζ3) is unramified (in fact 3 splits in this extension). From reflection
theorem (Scholz’s Theorem in the present case), 3 divides the class number of Q(

√
−3M), even when r > 1 in the factorization

m(t) =: Mr2. The case of t0 = 0 and s = ±1 is obvious. The second claim comes from Theorem 6.5 (see numerical part
below).

7.1.1 Program for lists of 3-class groups of imaginary quadratic fields
Note that the case where Es(t0 +9t) is a third power is very rare because it happens only for very large t0 +9t giving a small

Kummer radical M. One may verify the claim by means of the following program, in the case s =−1 valid for all t0, where
[M,Vh] gives in Vh the 3-structure of the class group of Q(

√
−3M); at the end of each output, one sees the list of exceptions

(case of third powers), where the output [M,n] means that for the Kummer radical M = M(t), then E−1(t0 +9t) = εn
M . We may

see that any excerpt for t large enough give no exceptions:

LISTS OF 3-CLASS GROUPS OF IMAGINARY QUADRATIC FIELDS
{p=3;B=100000;L3=List;Lh=List;Lt0=List([0,4,5]);for(t=1,B,
for(ell=1,3,t0=Lt0[ell];mt=(t0+9*t)ˆ2+4;ut=(t0+9*t)/2;vt=1/2;
C=core(mt,1);M=C[1];r=C[2];res=Mod(M,4);D=quaddisc(M);w=quadgen(D);
Y=quadunit(D);if(res!=1,Z=ut+r*vt*w);if(res==1,Z=ut-r*vt+2*r*vt*w);
z=1;n=0;while(Z!=z,z=z*Y;n=n+1);C3=List;K=bnfinit(xˆ2+3*M,1);
CK=K.cyc;d=#CK;for(j=1,d,Cl=CK[d-j+1];val=valuation(Cl,3);
if(val>0,listinsert(C3,3ˆval,1)));L=List([M,C3,n]);
listput(Lh,vector(3,c,L[c]))));Vh=vecsort(vector(3*B,c,Lh[c]),1,8);
print(Vh);print("#Vh = ",#Vh);
for(k=1,#Vh,LC=Vh[k][2];if(LC==List([]),Ln=List([Vh[k][1],Vh[k][3]]);
listput(L3,vector(2,c,Ln[c]))));V3=vecsort(L3,1,8);
print("exceptional powers : ",V3)}
[M,C3,n]=
[[2,[],15],[5,[],9],[10,[],3],[13,[],3],[17,[],3],[26,[],3],[29,[3],5],[37,[],3],
[41,[],3],[53,[],3],[58,[3],1],[61,[],3],[65,[],3],[74,[3],1],[82,[3],1],[85,[3],1],
[101,[],3],[106,[3],1],[109,[3],1],[113,[3],1],[122,[3],1],[137,[3],1],[145,[],3],
[149,[],3],[170,[],3],[173,[9],1],[181,[3],1],[197,[],3],[202,[3],1],[226,[],3],
[229,[3],3],[257,[3],1],[290,[],3],[293,[],3],[314,[3],1],[317,[],3],[353,[3],1],
[362,[],3],[365,[],3],[397,[3],1],[401,[3],1],[442,[],3],[445,[],3],[461,[9],1],
[485,[],3],[530,[],3],[533,[9],1],[577,[],3],[610,[3],1],[626,[3],1],[629,[],3],
[653,[3],1],[677,[],3],[730,[3],1],[733,[9],1],[754,[3],1],[773,[3],1],[785,[3],3],
[842,[3],1],[877,[3],1],[901,[],3],[962,[],3],[965,[9],1],[997,[3],1],[1009,[3],1],
(...)
[809976600173,[27],1],[809983800085,[81],1],[809991000029,[27],1],[810009000029,[9],1]]
#Vh = 299963
exceptional powers:List([[2,15],[5,9],[10,3],[13,3],[17,3],[26,3],[37,3],[41,3],[53,3],
[61,3],[65,3],[101,3],[145,3],[149,3],[170,3],[197,3],[226,3],[290,3],[293,3],[317,3],
[362,3],[365,3],[442,3],[445,3],[485,3],[530,3],[577,3],[629,3],[677,3],[901,3],[962,3],
[1093,3],[1226,3],[1370,3],[1601,3],[1853,3],[2117,3],[2305,3],[2605,3],[2813,3],
[3029,3],[3253,3],[4229,3],[5045,3],[6245,3],[6893,3],[8653,3]])

Then MB = 810016200085 and log(810016200085)/ log(81 · 1010) ≈ 1.0000007293; then M
1
3
B ≈ 9321.76 give a good

verification of the Heuristic 6.4. This also means that all the integers M larger than 9029 leads to non-trivial 3-class groups,
and they are very numerous !

We note that some M’s (as 29, 74, 82, 85, . . .) are in the list of exceptions despite a non-trivial 3-class group; this is
equivalent to the fact that, even if E−1(t0 + 9t) ∈ 〈ε3

M〉, either the 3-regulator RK of K is non-trivial or its 3-class group is
non-trivial.

7.1.2 Unlimited lists of non-trivial 3-class groups
To finish, let’s give the case where the F.O.P. algorithm always gives a non-trivial 3-class group in Q(

√
−3M); we use

together the 4 parametrizations given by Theorem 7.1 (outputs [M, [3class group]]):

NON TRIVIAL 3-CLASS GROUPS OF IMAGINARY QUADRATIC FIELDS
{p=3;B=10000;Lh=List;Lm=List([List([-1,3]),List([-1,4]),List([1,2]),List([1,5])]);
for(t=1,B,for(ell=1,4,s=Lm[ell][1];t0=Lm[ell][2];M=core(81*(t0+7*t)ˆ2-s);C3=List;
K=bnfinit(xˆ2+3*M);CK=K.cyc;d=#CK;for(j=1,d,Cl=CK[d-j+1];
val=valuation(Cl,3);if(val>0,listinsert(C3,3ˆval,1)));L=List([M,C3]);
listput(Lh,vector(2,c,L[c]))));Vh=vecsort(vector(4*B,c,Lh[c]),1,8);
print(Vh);print("#Vh = ",#Vh)}
[M,C3]=
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[[58,[3]],[74,[3]],[106,[3]],[359,[3]],[386,[3]],[401,[3]],[410,[3]],[494,[3]],[515,[3]],
[610,[3]],[674,[3]],[842,[3]],[877,[3]],[1009,[3]],[1157,[3]],[1367,[3]],[1430,[3]],
[1901,[9,3]],[1934,[9]],[2153,[3]],[2255,[3]],[2678,[9]],[2822,[3]],[2986,[3]],[3014,[3]],
[5266,[3]],[5513,[3]],[6626,[9]],[6707,[3]],[6722,[3]],[6890,[3]],[7310,[3,3]],[7858,[27]],
[7919,[3]],[8101,[3]],[8465,[9]],[8555,[9]],[8738,[3]],[8761,[9]],[9410,[3]],[9634,[9,3]],
[9998,[3,3]],[11183,[3]],[11237,[3]],[11447,[3]],[11509,[27]],[11537,[3]],[11663,[3,3]],
[11965,[3]],[13427,[3]],[16895,[3]],[16913,[3,3]],[17266,[9]],[18530,[3]],[20066,[3]],
(...)
[396877320323,[3]],[396922680323,[9]],[396934020730,[3]],[396945361297,[3]]]
#Vh = 40000

7.2 Imaginary cyclic fields with non-trivial p-class group, p > 3
Let χ be the even character of order 2 defining K := Q(

√
M), let p ≥ 3 and let L := K(ζp) be the field obtained by

adjunction of a primitive pth root of unity; we may assume that K∩Q(ζp) =Q, otherwise M = p in the case p≡ 1 (mod 4),
case for which there is no known examples of p-primary fundamental unit. Let ω be the p-adic Teichmüller character (so that
for all τ ∈ Gal(L/Q), ζ τ

p = ζ
ω(τ)
p ).

Then, for any list of quadratic fields Q(
√

M) obtained by the previous F.O.P. algorithm giving p-primary units E, the
ωχ−1-component of the p-class group of L is non-trivial as soon as E /∈ 〈ε p

M〉 and gives an odd component of the whole p-class
group of L.

Theorem 7.2. As t grows from 1 up to B, each first occurrence of a square-free integer M ≥ 2 in the factorization m(t) :=
p4t2−4s =: Mr2, the degree p−1 cyclic imaginary subfield of Q(

√
M,ζp), distinct from Q(ζp), has its class number divisible

by p, except possibly when the unit Es(p2t) := 1
2 [p

2t + r
√

M)] is a p-th power in 〈εM〉.

7.2.1 Lists of 5-class groups of cyclic imaginary quartic fields
The following program for p = 5 verifies the claim with the above parametrized family testing if Es(p2t) is a p-power in

〈εM〉. For p = 5, the mirror field F5,M is defined by the polynomial:

P = x4+5∗M∗ x2+5∗M2,

still giving a particular faster program than the forthcoming one, valuable for any p≥ 3:

LISTS OF 5-CLASS GROUPS OF QUARTIC FIELDS
{p=5;B=100;s=-1;Lp=List;Lh=List;p2=pˆ2;p4=pˆ4;for(t=1,B,
mt=p4*tˆ2-4*s;ut=p2*t/2;vt=1/2;C=core(mt,1);M=C[1];r=C[2];
res=Mod(M,4);D=quaddisc(M);w=quadgen(D);Y=quadunit(D);
if(res!=1,Z=ut+r*vt*w);if(res==1,Z=ut-r*vt+2*r*vt*w);z=1;n=0;
while(Z!=z,z=z*Y;n=n+1);P=xˆ4+5*M*xˆ2+5*Mˆ2;K=bnfinit(P,1);
CK=K.cyc;C5=List;d=#CK;for(i=1,d,Cl=CK[d-i+1];
val=valuation(Cl,p);if(val>0,listinsert(C5,pˆval,1)));L=List([M,C5]);
listput(Lh,vector(2,c,L[c])));Vh=vecsort(vector(B,c,Lh[c]),1,8);
print(Vh);print("#Vh = ",#Vh);
for(k=1,#Vh,if(Vh[k][2]==List([]),listput(Lp,Vh[k])));Vp=vecsort(Lp,1,8);
print("exceptions:",Vp)}
s=-1
[M,C5]=
[[89,[5]],[509,[5,5]],[626,[25,5]],[629,[5,5]],[761,[5]],[2501,[5]],[3554,[25]],
[5626,[5,5]],[5629,[5]],[10001,[5]],[15626,[5,5]],[15629,[25]],[22501,[5]],
[30626,[5,5]],[30629,[5]],[40001,[5]],[50626,[25,5]],[50629,[5]],[62501,[25,25]],
[75626,[5]],[75629,[5]],[90001,[5,5]],[105626,[125,25]],[105629,[5,5]],
(...)
[5175629,[125]],[5405629,[5]],[5640629,[5]],[5880629,[5]],[6125629,[5]]
#Vh = 100
exceptions:List([])

s=1
[M,C5]=
[[39,[5]],[51,[5]],[69,[5]],[114,[5]],[326,[5]],[434,[25]],[574,[5,5]],[674,[5]],[791,[5]],
[1086,[5]],[1111,[5,5]],[1406,[5]],[1761,[5]],[1914,[5,5]],[3981,[5]],[4171,[5,5]],
[5621,[5]],[8789,[5,5]],[10421,[5]],[11289,[5,5]],[13611,[5]],[14189,[5]],[15621,[25]],
[18906,[5]],[20069,[5,5]],[20501,[5,5]],[22499,[25,25]],
(...)
[4730621,[25,5]],[5405621,[5]],[5640621,[25]],[5880621,[5,5,5]],[6125621,[5]]]
#Vh = 100
exceptions:List([])

Taking B = 200 with s =−1 leads to the exceptional case [29, [ ]]. For s = 1 one gets the exceptional case [21, [ ]].
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7.2.2 General program giving the p-class group of degree p−1 imaginary fields
The following general program computes the defining polynomial P of the algebraic number field Fp,M := Q

(
(ζp−

ζ−1
p )
√

M
)
; it tests if the unit Es(p2t) is the pth power in 〈εM〉, giving the list of exceptions. One has to choose p,B,s:

LISTS OF p-CLASS GROUPS OF DEGREE p-1 IMAGINARY FIELDS I
{p=5;B=500;s=-1;Lp=List;Lh=List;Zeta=exp(2*I*Pi/p);p2=pˆ2;p4=pˆ4;
for(t=1,B,mt=p4*tˆ2-4*s;ut=p2*t/2;vt=1/2;C=core(mt,1);M=C[1];r=C[2];
res=Mod(M,4);D=quaddisc(M);w=quadgen(D);Y=quadunit(D);
if(res!=1,Z=ut+r*vt*w);if(res==1,Z=ut-r*vt+2*r*vt*w);z=1;n=0;
while(Z!=z,z=z*Y;n=n+1);P=1;for(i=1,(p-1)/2,A=(Zetaˆi+ Zetaˆ-i-2)*M;
P=(xˆ2-A)*P);P=round(P);k=bnfinit(P,1);Ck=k.cyc;Cp=List;d=#Ck;
for(i=1,d,Cl=Ck[d-i+1];val=valuation(Cl,p);if(val>0,listinsert(Cp,pˆval,1)));
L=List([M,Cp]);listput(Lh,vector(2,c,L[c])));Vh=vecsort(vector(B,c,Lh[c]),1,8);
print(Vh);print("#Vh = ",#Vh);
for(k=1,#Vh,if(Vh[k][2]==List([]),listput(Lp,Vh[k])));Vp=vecsort(Lp,1,8);
print("exceptions:",Vp)}
s=-1
[M,Cp]=
[[29,[]],[89,[5]],[509,[5,5]],[626,[25,5]],[629,[5,5]],[761,[5]],[2501,[5]],[3554,[25]],
[5626,[5,5]],[5629,[5]],[10001,[5]],[15626,[5,5]],[15629,[25]],[19109,[5]],[22061,[5,5]],
[22501,[5]],[30626,[5,5]],[30629,[5]],[40001,[5]],[42341,[5]],[50626,[25,5]],
[50629,[5]],[62501,[25,25]],[70429,[25]],[75626,[5]],[75629,[5]],[82234,[5]],
[90001,[5,5]],[105626,[125,25]],[105629,[5,5]],[122501,[5]],[140626,[5]],[140629,[5,5]],
(...)
[147015629,[5]],[148230629,[5]],[149450629,[5]],[150675629,[5,5,5]],
[151905629,[5]],[153140629,[5]],[154380629,[5]],[155625629,[5,5]]]
#Vh = 500
exceptions:List([[29,[])]])
s=1
[M,Cp]=
[21,[]],[39,[5]],[51,[5]],[69,[5]],[114,[5]],[326,[5]],[434,[25]],[514,[5]],[574,[5,5]],
[581,[5,5]],[674,[5]],[791,[5]],[874,[5]],[1086,[5]],[1111,[5,5]],[1191,[5]],[1351,[25]],
[1406,[5]],[1641,[5]],[1761,[5]],[1851,[5]],[1914,[5,5]],[2399,[5]],[2599,[25]],
[3251,[25]],[3981,[5]],[4171,[5,5]],[5474,[5]],[5621,[5]],[5774,[5]],[8294,[25,5]],
[8789,[5,5]],[10421,[5]],[11289,[5,5]],[13611,[5]],[14189,[5]],[15621,[25]],
(...)
[141015621,[5,5]],[142205621,[5,5]],[143400621,[25,5]],[144600621,[25,5]],
[145805621,[25]],[149450621,[5]],[150675621,[5,5]],[151905621,[5]],
[153140621,[5]],[155625621,[625,5]]
#Vh = 500
exceptions:List([[21,List([])]])

In this interval, all the 5-class groups obtained are non-trivial, except for s =−1 and M = 29, then for s = 1 and M = 21.
From Remark 1.5, we compute:

log(155625629)/ log(54 ·25 ·104)≈ 0.99978777.

Theorem 6.4 gives possible exceptions up to M
1
5
B = 155625629

1
5 ≈ 43.49268545.

One observes the spectacular decrease of counterexamples and the unique exception with s =−1, obtained for t = 151,
p2t = 25 ·151 = 3775, m−1(3775) = 7012×29; whence the PARI data:

Y = Mod(1/2∗ x+5/2,x2−29), Z = Mod(2646275/2∗ x+14250627/2,x2−29)

(for ε29 and E−1(3775), respectively). One obtains easily the relation E−1(3775) = ε10
29 . The case s = 1, M = 21 is analogous.

Consider the case p = 7, s ∈ {−1,1}; exceptionally, we give the complete lists:

p=7 B=100 s=-1
[M,Cp]=
[[37,[7]],[2402,[7]],[2405,[7]],[4706,[7]],[9605,[7]],[10357,[7]],[11621,[49,7]],[21610,[7,7]],
[21613,[7,7]],[38417,[7]],[60026,[7,7]],[60029,[7]],[86437,[7,7]],[98345,[7]],[117653,[7]],
[146077,[7]],[153665,[7,7]],[177578,[7,7]],[194482,[7,7]],[194485,[49,7]],[240101,[7]],
[290522,[49]],[345745,[49]],[357365,[7]],[405770,[7,7]],[405773,[49,7]],[470597,[7,7]],
[540226,[7]],[540229,[7,7]],[614657,[7,7]],[693890,[7,7]],[693893,[7]],[760733,[7,7,7]],
[866762,[7,7]],[866765,[7,7]],[960401,[7,7]],[1058842,[7]],[1058845,[7,7]],[1162085,[49,7]],
[1270130,[49,7,7]],[1270133,[7]],[1382977,[7,7]],[1500626,[49]],[1500629,[7]],[1623077,[7]],
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[1750330,[7]],[1882385,[7]],[2019242,[49]],[2019245,[7,7]],[2160901,[7]],[2307362,[343]],
[2307365,[7,7]],[2614690,[7,7]],[2614693,[7]],[2775557,[7]],[2941226,[7]],[2941229,[49]],
[3111697,[7]],[3286970,[7]],[3286973,[7,7]],[3467045,[7]],[3651922,[7]],[3841601,[7]],
[4036082,[7]],[4036085,[49]],[4235365,[7]],[4439453,[49]],[4648337,[49,7]],[4862026,[7,7]],
[4862029,[7]],[5080517,[7,7]],[5303810,[7]],[5303813,[7]],[5531905,[7]],[5764802,[7,7]],
[5764805,[7]],[6002501,[7]],[6245005,[7,7]],[6744413,[49,7]],[7263029,[7]],[7800853,[7]],
[8357885,[7]],[9529573,[49,7,7]],[10144229,[7]],[10778093,[7,7]],[11431165,[49]],
[12103445,[49,7]],[12794933,[7]],[13505629,[7]],[14235533,[7]],[14984645,[7]],
[15752965,[7]],[16540493,[7]],[17347229,[7]],[18173173,[7,7,7]],[19882685,[7]],
[20766253,[7]],[21669029,[7,7]],[22591013,[7]],[23532205,[7,7]]]
#Vh = 100
exceptions:List([])

p=7 B=100 s=1
[M,Cp]=
[[6,[7]],[741,[7,7]],[817,[7,7]],[1067,[7,7]],[1517,[49]],[2302,[49]],[2397,[49]],[3477,[7]],
[3603,[49,7]],[5402,[2401,7]],[5645,[7,7]],[8070,[49]],[8441,[7,7]],[10421,[7]],[10842,[7,7]],
[12155,[7]],[13702,[7]],[15006,[49]],[21605,[7,7]],[27165,[7]],[35003,[7]],[38415,[7]],
[42803,[7]],[43637,[7]],[45085,[49]],[55319,[7]],[56090,[7,7]],[63269,[7]],[64923,[7]],
[68295,[7]],[70013,[7]],[79383,[7]],[86435,[7]],[101442,[7]],[106711,[7]],[117645,[49,7]],
[144210,[49]],[153663,[7,7]],[163418,[7]],[194477,[7]],[216690,[7,7]],[228245,[7]],
[240099,[49,7]],[252255,[7,7]],[264710,[7]],[290517,[49,7]],[308395,[7]],[345743,[7]],
[437582,[7,7]],[448453,[49,7]],[470595,[7]],[511797,[7]],[540221,[7]],[640533,[7,7]],
[693885,[7]],[735306,[49,7]],[777923,[7]],[821742,[7]],[866757,[7]],[928653,[49]],
[1058837,[49,7]],[1162083,[7]],[1197565,[343]],[1215506,[7,7]],[1500621,[7,7]],
[1882383,[49,7]],[1927469,[7]],[2019237,[7]],[2160899,[7]],[2407669,[7]],[2458623,[49]],
[2614685,[7,7]],[2941221,[7,7]],[3111695,[7]],[3651917,[7]],[3841599,[7,7]],[4439445,[7]],
[4648335,[7]],[4862021,[49,49,7]],[5080515,[7]],[5303805,[7]],[5531903,[7]],[6002499,[7]],
[6244997,[7]],[6744405,[7,7]],[7263021,[7,7]],[7800845,[7]],[8934117,[7]],[9529565,[7]],
[10144221,[7]],[11431157,[7]],[13505621,[7]],[14984637,[7]],[16540485,[7]],[18173165,[7]],
[19018317,[7]],[19882677,[7]],[20766245,[7]],[22591005,[7]],[23532197,[7]]]
#Vh = 100
exceptions:List([])

Of course, B = 100 is insufficient to give smaller Kummer radicals, but it is only a question of execution time and memory
due to the instruction bnfinit(P,1) for P of degree p−1. It is clear that the same program for the F.O.P. algorithm, without
computation of the p-class group, gives unlimited lists of degree p−1 imaginary cyclic fields with non-trivial p-class group, as
soon as M > Mpow

B (cf. Theorem 6.4):

LISTS OF p-CLASS GROUPS OF DEGREE p-1 IMAGINARY FIELDS II
{p=7;B=100000;s=1;LM=List;p4=pˆ4;for(t=1,B,mt=p4*tˆ2-4*s;M=core(mt);L=List([M]);
listput(LM,vector(1,c,L[c])));VM=vecsort(vector(B-(1+s),c,LM[c]),1,8);print(s);print(VM)}
s=-1
[M]=
[37],[53],[74],[149],[554],[1373],[2237],[2402],[2405],[3026],[3242],[4706],[5882],
[7373],[9605],[10357],[11621],[18229],
(...)
[24006638717653],[24007599060029],[24008559421613],[24009519802405]]
s=1
[M]=
[5],[6],[101],[145],[206],[215],[570],[629],[663],[731],[741],[817],[887],[894],[1067],
[1207],[1389],[1517],[1893],[2085],[2162],
(...)
[24004718090517],[24005678394477],[24006638717645],[24008559421605]
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[41] G. Gras, Tate–Shafarevich groups in the cyclotomic Ẑ-extension and Weber’s class number problem, J. Number Theory,

228 (2021), 219–252. https://doi.org/10.1016/j.jnt.2021.04.019 165
[42] C. Maire, Sur la dimension cohomologique des pro-p-extensions des corps de nombres, J. Théor. Nombres Bordeaux, 17(2)
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