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1. INTRODUCTION 

Pulmonary arterial hypertension (PAH) is a medical 
condition characterised by the presence of chronic 
and infrequent cardiovascular complications that 
can have severe consequences, including mortality. 
Selexipag (SLP) is a chemical compound with the 
chemical name 2-{4-[(5,6-Diphenylpyrazin-2-yl)
(isopropyl)amino]butoxy}-N-(methylsulfonyl)
acetamide The compound in question is a 
pharmacological agent that can be administered orally 
and exhibits selectivity towards the prostacyclin 
receptor, acting as an agonist. The term “orphan 
prodrug” refers to a pharmaceutical compound 
that is designed to undergo a specific metabolic 

transformation within the body in order to produce 
an active drug. In the context of the given statement, 
it is being used to describe a compound that falls 
under this category. Furthermore, the compound is 
identified as a platelet aggregation inhibitor, which 
refers to its ability to prevent the clumping together 
of platelets in the blood, thereby inhibiting the 
formation of blood clots. Additionally, the In order 
to mitigate the advancement of disease and decrease 
the likelihood of hospitalisation, the Food and Drug 
Administration granted approval for the use of SLP 
in 2015 as a therapeutic intervention for pulmonary 
arterial hypertension (PAH) in patients classified 
as functional class II or III. The active metabolite 
of SLP, known as ACT-333679, is a prodrug that 
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ABSTRACT

Selexipag is a new non-prostanoid prostacyclin receptor agonist used 
to treat pulmonary arterial hypertension. Selexipag is a long-acting IP 
receptor agonist with a shorter half-life than all other licensed drugs 
targeting the prostacyclin pathway, mostly administered intravenously 
or by subcutaneous infusion or inhalation. In this study, a new high 
performance liquid chromatography (HPLC) method was developed 
to analyze Selexipag in bulk and pharmaceutical formulations. The 
method used a column with Supelco Ascentis® Express (Sigma Aldrich, 
USA) model phenyl hexyl functional group (100×4.6 mm, ID, 2.7µm). 
Chromatographic separation was in isocratic elution mode, and the 
mobile phase mixture was acetonitrile containing 0.1% formic acid: 
water containing 0.1% formic acid (60:40, v/v) ratio. The method was 
linear in the concentration range of 15.7-117.6 µg/mL, and the LOD and 
LOQ were obtained as 2.4 and 3.1 µg/mL, respectively. Various method 
parameters have been tested according to the ICH Q2(R1) manual, and it 
is a method with high accuracy and precision. Therefore, the developed 
method is suitable for selexipag’s bulk and pharmaceutical formulation 
analysis.
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exhibits a significantly higher selectivity for the 
IP receptor, as indicated by a 130-fold increase in 
selectivity compared to other receptors [1]. SLP 
is distinguished by its minimal adverse effects in 
comparison to Prostaglandin I2 (PGI2) analogues, 
primarily due to its heightened selectivity. The 
suggested initial dosage is 200 µg administered twice 
daily, with subsequent increments of 200 µg twice 
daily on a weekly basis until the maximum tolerated 
dosage of up to 1600 µg twice daily is achieved. The 
determination of the maintenance dose is based on 
the level of tolerability [2].

SLP with the molecular formula C26H32N4O4S and 
a molecular weight of 496.63 g/mol is a pyrazine 
derivative bearing two additional phenyl substituents 
at the fifth and sixth positions. Its molecular structure 
was given in Figure 1. It is a monocarboxylic acid 
amide, an ether, a member of the pyrazines, an 
aromatic amine, a tertiary amine compound, and 
an N-(methylsulfonyl)acetamide. It is functionally 
related to an ACT-333679. SLP is a light yellow 
crystalline powder, almost insoluble in water. Solid 
SLP is very stable and has no hygroscopic and 
photosensitivity properties [3].

It has more advantages over other analytical 
techniques of high performance liquid 
chromatography (HPLC) analysis in pharmaceutical 
formulation and finished product analysis especially 
quality control laboratories. It is an automated 
system with fast, high accuracy, and precision 
results. Adequate chromatographic separation can 
be eliminated in some problems such as matrix 
interferences, allowing technical and biological 
analysis. In addition, thanks to the developing 

column technology, lower detection limits, faster 
analysis, and better chromatographic separation and 
peak shape can be obtained. However, the biggest 
advantage of drug analysis is its ease of automation 
in analysis and data processing. This advantage 
indicates that the HPLC method will retain its place 
long [4].

There are few studies on SLP analysis in the 
literature. These are HPLC analysis for SPL 
formulation and bulk analysis [5], stability indicating 
analysis with HPLC [6] and LC-MS/MS [7], and 
biological analysis with LC-MS/MS [3, 8-10], 
spectrophotometric method for determination of 
SLP in bulk and tablet formulation [9, 11]. Previous 
HPLC methods have disadvantages such as high 
flow, long column preference and more solvent and 
time consumption due to flour[5, 6]. It would also 
be better for them to make further improvements in 
method optimization and review system suitability 
parameters according to ICH (Q2) R1 [5]. This 
study proposes a fast, high-accuracy, and precision 
HPLC method for the analysis of SLP in bulk and 
pharmaceutical formulations.

2. MATERIALS AND METHODS

2.1 Chemical and reagents

Analytical grade chemicals, formic acid, acetic acid, 
hydrochloric acid, sodium hydroxide, and HPLC 
grade solvents, water, acetonitrile, and methanol 
were purchased from Sigma-Aldrich (USA). SLP 
hydrochloride standard with 99.9% (w/w) purity was 
obtained from TRC Company (Canada).

2.2 Instruments

The HPLC device used in the study is Shimadzu 
(Japan) brand LC-Nexera-i 2040C model and is 
a 3D compact system. Apart from this, RK 100 H 
model ultrasonic bath from Bandelin (Germany), 
XSE 105 Dual Range model analytical balance and 
SevenMulti model pH meter from Mettler Toledo 
(Switzerland), Rotina 380 R centrifuge device 
from Hettich (Germany), 20 in the preparation of 
solutions. They are Research model pipettors from 
Eppendorf (Germany) that can operate in the range 
of -100 μL and 100-1000 μL.Figure 1. Structure of SLP
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2.3 Stationary Phase

The stationary phase used and its properties are 
given in Table 1. The method used a column Supelco 
Ascentis® Express (Sigma-Aldrich, USA) model 
phenyl hexyl functional group (100×4.6 mm, ID, 
2.7µm).

2.4 Experimental Parameters

During the analysis using HPLC, the flow rate of 
the mobile phase introduced into the system was set 
at 0.5 mL/min. Additionally, the temperature of the 
column furnace was maintained at 30.05 °C. The 
temperature of the autosampler thermostat was set 
at 15±0.1 °C in order to ensure the stability of both 
the sample and standard solutions. Additionally, the 
injection volume was determined to be 1 μL.

The wavelength at which the maximum absorbance 
of SLP was observed was determined to be 204 nm. 
Consequently, the photodiode array detector in the 
high-performance liquid chromatography (HPLC) 
system was adjusted to this specific wavelength. 
Furthermore, the spectra were observed in the 
detector within the wavelength range of 190 to 380 
nm. The data sampling frequency was set at 1.5625 
Hz, and a time constant of 0.640 seconds was applied.

2.5 Preparation of Solutions

1 mg of SLP was weighed and added to a 5 mL 
acetonitrile flask. Then the volume was completed 
with acetonitrile, and the stock solution concentration 
was calculated as 200 µg/mL. Working solutions 
were obtained by diluting this stock solution with 
acetonitrile.

In the recovery studies, while the solutions were 
prepared, they were kept in an ultrasonic bath for 30 
min and then filtered with a PTFE (22/25 mm, 0.22 

μm pore size, Isolab, Germany) type syringe.

In the experimental procedure, isocratic elution 
chromatography was employed as a technique for 
the separation of compounds. The mobile phase 
utilised in this study consisted of a mixture of 
acetonitrile and water, with the ratio of 60:40 (v/v). 
To enhance the chromatographic separation, both 
acetonitrile and water were supplemented with 0.1% 
formic acid. In this study, we employed non-sterile 
Sartorius cellulose acetate membrane filters sourced 
from Germany. These filters possessed a diameter 
of 47 mm and a pore size of 0.22 m. Following the 
dissolution of the solutions in an ultrasonic bath for 
a duration of 15 minutes, the aforementioned filters 
were utilised to filter the resultant solutions.

2.6 Method validation

The validity of the developed method has been 
tested as specified in the ICH guideline and has 
been shown to meet the analytical criteria. Linearity 
tests confirmed method validity, the lower limit of 
detection, specificity, precision, limit of detection, 
system suitability, and accuracy.

The prepared SLP stock solution was diluted with 
acetonitrile and kept at -20 °C for freeze-thaw cycles 
and different times and then analyzed for the stability 
of the mobile phase and solution, and the solution 
was stable.

3. RESULTS AND DISCUSSION

This study aimed to develop a method to distinguish 
SLP from other compounds in drugs used in the 
treatment of pulmonary arterial hypertension. 
The HPLC system can separate and detect each 
compound by the difference in the velocity of each 
compound in the column. In this way, it is possible 
to distinguish SLP from other compounds. For this 
reason, the HPLC method was seen as the most 
suitable method for this analysis.

First, studies were carried out for stationary phase 
selection. In the analyzes performed on acetonitrile 
and methanol, it was decided that more relevant 
results were obtained for our analysis of acetonitrile. 
Then, experiments were done with different ratios 

Table 1. The properties of used stationary phase
Properties Value
Particle size 2.7
Surface area (m2/g) 135
Carbon load (%) 7.1
Pore volume/Diameter 90 Å
pH range 2.0-9.0
USP Code L43



Özcan S, et al. Eur J Life Sci 2023; 2(2): 53-58

European Journal of Life Sciences ▪ August 202356

of the organic phase. In order to measure the effect 
of different temperatures, experiments were done 
with different mobile phase ratios at 30 °C, 35 °C, 
and 40 °C and it was determined that 40 °C was the 
most suitable. In addition, it was determined that the 
most relevant results were obtained with acetonitrile/
water (60:40, v/v) as the mobile phase. System 
suitability parameters for the developed method 
are given in the Table 2. Previous HPLC methods 
have disadvantages such as high flow, long column 
preference and more solvent and time consumption 
due to flour. It would also be better for them to 
make further improvements in method optimization 
and review system suitability parameters according 
to ICH Q2 R1. Each parameter appears to comply 
with the ICH (Q2) R1 guideline. In this respect, 
the method outperforms the method of Damireddy 
et al. [5]. In addition, it is a faster, cheaper and 
greener method due to shorter columns and a lower 
flow rate. Calculations were made to determine 
method validity considering the result obtained 
from high-performance liquid chromatography and 
the prepared analyte concentration. A calibration 
chart was created by looking at the peak area 
corresponding to the analyte concentration. For the 
method, analyses were made considering all method 
validity parameters. The results of the precision and 
linearity studies for the method are given in Table 
3. Also linearity of SLP was shown Figure 2. This 
method has the lowest linearity compared to its 
counterparts. In addition, lower LOD and LOQ were 
obtained. Accuracy studies for the HPLC method 
developed and optimized for the analysis of SLP 
were performed after precision and linearity studies. 
One of the samples collected from the market was 
selected for recovery, its solution was prepared, and 

SLP was added. The recovery studies were carried 
out with pharmaceutical formulation of SLP was 
Uptravi®. These analyzes were performed at three 
different concentrations and nine different analyzes. 
The obtained results were given in Table 4. Also 
recovery chromatogram for 25 µg/mL was given in 
Figure 3.

4. CONCLUSION

Table 2. Calculated system suitability parameters
SST parameters Calculated value Accepted value (USP)
Retention time 4.5 -
Number of theoretical plate 12056 N>2000
Tailing factor 1.1 2≤T
Resolution 1.4 Rs>1.5
Peak asymmetry 1.1 0.95≤As≤2
Repeatability of the peak area 0.5 %BSS<1.5 General separation

%BSS<5 Biological sample
%BSS 5-15 Trace element analyzes

Table 3. Precision and linearity data for SLP
Parameter Calculated value
Linearity (µg/mL) 15.7-117.6
Slope (n=7) 2955
Intercept (n=7) 7572
Regression coefficient (n=7) 0.9917
Standard deviation of slope 135
Standard deviation of the slope 10235
LOD (µg/mL) 2.4
LOQ (µg/mL) 3.1
ANOVA F (2.13)=0.90

P=0.35821(P>0.05)

Figure 2. Linearity of SLP
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HPLC system is a chromatographic method that 
provides the opportunity to distinguish very well with 
the developing technology. It is the most widely used 
analytical instrument in analysis laboratories. HPLC 
separates compounds dissolved in a liquid sample 
and allows for qualitative and quantitative analysis of 
which components and how much of each component 
is present in the sample. In this study, a new HPLC 
method with high accuracy and reproducibility was 
developed to analyze SLP in bulk and pharmaceutical 
formulations. The developed method is a faster, less 
solvent-consuming, greener and reliable method 
when compared to similar studies in the literature. 
The current method is especially suitable for routine 
formulation and finished product analysis and will 

provide great convenience to analysts in quality 
control laboratories.
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1. INTRODUCTION 

Epilepsy is characterized by epileptic seizures 
caused by abnormal and excessive electrical 
discharge in cortical neurons, resulting in sudden, 
repetitive, uncontrolled tremors [1,2].  The term 
“epilepsy” encompasses a range of clinical features 
that manifest not only during seizure occurrence but 
also in relation to comparable seizure types, age at 
which seizures commence, electroencephalogram 
(EEG) results, and factors that can provoke 
seizures like heredity, and response to antiepileptic 
drugs (AEDs). There are numerous causes for the 
development of this disorder in people with cerebral 
dysfunction [3]. Epilepsy constitutes around 0.5% of 
the global disease burden, with a significant majority 
of approximately 80% of those affected by epilepsy 
residing in low- and middle-income countries. 

Epilepsy is typically treated with pharmaceuticals. 
The therapeutic efficacy can be improved by 
combining the proper drugs [4].  

An ideal epilepsy treatment should consider the 
type of seizure, the epilepsy syndrome, the patient’s 
probable attitudes and behaviors, living conditions, 
and psychosocial status. The primary objectives in 
the treatment of epilepsy are to entirely eradicate 
seizures without triggering adverse reactions, 
decrease the incidence to as little as possible, reduce 
the adverse reactions related to chronic therapy, and 
assist the patient in keeping or recovering standard 
psychosocial and work balance [5].

The tricyclic compound carbamazepine (C15H12N2O) 
is an antiepileptic drug from the first generation. Not 
only has it been shown to be beneficial in treating 
partial and generalized tonic-clonic seizures, but 
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ABSTRACT

Since the liver metabolizes many drugs, including antiepileptics, this 
organ is the main target of drug-induced damage. There is very little data 
on hepatotoxicity due to carbamazepine and perampanel metabolized in 
the liver. The available data are based solely on published case reports. For 
this reason, this study aims to evaluate the hepatotoxicity of carbamazepine 
and perampanel, which are frequently used in treating epilepsy and 
which do not have a detailed investigation, although they are suspected 
of hepatotoxicity. Hepatotoxicity in the HepG2 cell line, IC50 values 
were calculated by MTT cytotoxicity test, followed by determination 
of apoptosis/necrosis, various biochemical analyzes (ALT, AST, urea), 
which is currently a biomarker for liver injury, and hepatotoxicity by ROS 
and GSH determination. Both drugs increased liver biomarkers, oxidative 
stress, and cytotoxicity in HepG2 cells. The investigation found that the 
drugs triggered liver apoptosis, not necrosis. In conclusion, Perampanel 
may have hepatotoxicity similar to carbamazepine.
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it has also been shown to be effective in treating 
neuropathic pain and bipolar illness [6,7]. Perampanel 
is a new-generation antiepileptic drug, a non-
competitive, selective AMPA-receptor antagonist. 
This medication holds the distinction of being the 
initial orally administered AMPA antagonist, and it 
is prescribed for either monotherapy or adjunctive 
therapy in the management of primary generalized 
tonic–clonic or focal seizures [8,9]. Perampanel 
has gained significant attention and investigation 
in several neurological disorders, including 
epilepsy, Parkinson’s disease, and amyotrophic 
lateral sclerosis, due to its potential broad-spectrum 
features, minimal interaction with other antiepileptic 
drugs, and favorable clinical and economic outcomes 
[4]. On the other hand, Perampanel is a new-
generation antiepileptic utilized in the adjunctive 
treatment of partial onset, primary generalized tonic-
clonic seizures in patients aged 12 and older [10].

Several drugs can induce significant hepatotoxicity 
[11]. Due to clinical and fundamental studies 
conducted by experts on the avoidance and 
control of drug-induced liver damage, it has been 
determined that some commonly used antiepileptic 
drugs cause liver damage of idiosyncratic origin. 
Very little is known about the pathophysiological 
mechanisms underlying the hepatotoxicity of these 
agents [9,11,12]. The clinical manifestations of 
drug-induced liver injury range from asymptomatic 
laboratory abnormalities to acute hepatitis with 
jaundice to fulminant liver failure [9]. Assessment of 
hepatotoxicity in vivo and in vitro studies can inform 
pharmacists and chemists about safe drug design and 
expedite drug development [13].

According to previous studies, carbamazepine, 
phenobarbital, oxcarbazepine, phenytoin, valproate, 
lamotrigine, and clobazam were all associated with 
hepatotoxicity. On the other hand, zonisamide, 
perampanel, pregabalin, felbamate, or primidone did 
not enhance the risk of hepatotoxicity [9]. However, 
given that it is the first AMPA receptor antagonist 
licensed for use in the treatment of epilepsy, its 
safety should be emphasized. Perampanel safety 
research is based primarily on clinical trial data and 
post hoc analysis, pharmacokinetic research, and 
system evaluation. The research mainly concentrated 
on the adverse effects of Perampanel on mental 

reactions, alterations in sleep structure, movement 
function, and cognitive function. Because clinical 
trials have limitations such as (1) small sample 
size; (2) short observation time; (3) exclusion of 
special populations; (4) strict control of the patient’s 
condition or medication regimens; and (5) limitations 
of observed indicators, post-marketing safety 
research is critical. However, only some Perampanel 
safety studies are based on large-scale post-market 
real-world data [4].

This study aimed to determine the in vitro 
hepatotoxicity of carbamazepine and perampanel 
using the HepG2 cell line. The inhibitory 
concentration 50 (IC50) values were calculated 
using the MTT method to determine hepatotoxicity. 
Based on these values, the apoptotic/necrotic cell 
death mechanisms in cell lines were determined, 
and the changes in ALT, AST, urea, and GSH levels 
were measured as biomarkers of hepatic damage. 
Additionally, the levels of reactive oxygen species 
(ROS) in cell lines were determined to clarify 
oxidative stress’s function in hepatotoxicity. 

With the results to be obtained from this study, both 
the hepatotoxicity monitoring of this critical drug 
class and a new monitoring method for drug-induced 
hepatotoxicity, which is difficult to detect in the 
preclinical period but can have devastating effects, 
were implemented. 

2. MATERIALS AND METHODS 

2.1. Cell Culture 

The HepG2 (ATCC® HB-8065TM) human 
hepatocellular carcinoma cell line was used to 
investigate the hepatotoxicity of antiepileptic 
medications to be studied in this thesis. The medium 
was Dulbecco’s Minimum Essential Medium 
(DMEM) supplemented with 10% fetal bovine 
serum (FBS) and 1% penicillin-streptomycin (100 
IU/mL-100 mg/mL) antibiotic solution [14]. The 
HepG2 cells were regularly passaged at intervals 
of 2 to 3 days for growth and preparation purposes. 
The cell culture bottle, from which the incubator 
had been removed, was subjected to gentle agitation 
to facilitate the incorporation of dead cells into the 
medium solution. Subsequently, the medium was 
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extracted. The cells underwent a washing process by 
introducing 5 mL of phosphate buffer into the cell 
culture vial and subsequently eliminating the washing 
solution from the medium. Following the addition of 
a 1X trypsin EDTA solution to the culture vial, the 
vial was subsequently placed in an incubator set at 
5% CO2, 95% humidity, and a temperature of 37 °C 
for an approximate duration of 5 minutes. Following 
the conclusion of the experimental timeframe, the 
cells were suspended by introducing medium into 
the culture bottles from which the incubator had been 
withdrawn. Subsequently, the cells were divided in 
ratios of 1:2 and 1:3, and subsequently transferred 
to newly prepared culture bottles. The culture flasks 
were placed inside the incubator and subjected to 
incubation. 

2.2. Application of MTT Cytotoxicity Test to Cells 

MTT measures cell metabolism. In intact metabolic 
and respiratory chains, mitochondrial succinate 
dehydrogenase converts tetrazolium salts to 
formazan. Mitochondrial succinate dehydrogenase 
transforms yellow tetrazolium salt to soluble orange-
colored formazan in an electron-coupled reagent 
(Altntop et al., 2018; Mosmann, 1983) [15]. The 
incubator was emptied of media. Cultured cells 
received 1X trypsin-EDTA solution (3-5 mL for 75 
cm2 flasks and 1-3 mL for 25 cm2). After five minutes 
in the incubator, the cells’ separation was examined 
under a microscope. After gently tapping the cells off 
the surface, a solution with twice as much trypsin-
EDTA was added. It was pipetted into a centrifuge 
tube, spun at 1200 rpm at +4°C for five minutes, and 
the supernatant removed. The cell pellet was gently 
suspended in media using a pipette. 10 L of cell 
suspension was stained with 10 L of Trypan blue.
and counted automatically. 1 x 104 HepG2 cells per 
100 L were planted in 96-well plates for 24.hours. 
Inverted cell culture dishes were removed after 
incubation. After washing the cells with phosphate 
buffer and removing the washing solution from the 
medium, different concentrations of carbamazepine 
and perampanel, 1 to 0.000316 mM, were applied 
to each well of the cell culture plate eight times and 
incubated for 24 hours. Inverting the cell culture 
plate removed the solutions after 24 hours. The wells 
were incubated for 3 hours with 100 µL of MTT.

solution (0.5 mg/mL) in.PBS. MTT solution was 
withdrawn from wells after 3 hours of incubation. 
The well-formed formazan salts were dissolved in 
ethanol for carbamazepine and 100 L/well of DMSO 
for perampanel. OD was measured at 540 nm. 
Non-linear regression analysis computed the half-
inhibitory concentration (IC50) of carbamazepine and 
perampanel and assessed their cytotoxicity. Three 
seperate MTT cytotoxicity assays were performed 
for Carbamazepine and perampanel. 

2.3. Apoptosis measurement (Flow Cytometric 
Method) 

If the cell receives an apoptosis stimulus, 
phosphatidylserine from the lipid row on the 
cytoplasmic surface of the cell membrane migrates 
to the exterior lipid layer. The phenomenon of 
displacement is observed during the initial phases of 
apoptosis, as indicated by previous studies [16,17]. 
Annexin protein V is a protein capable of binding to 
phosphatidylserine. In order to render the apoptotic 
cell detectable, V is conjugated with a fluorescent 
material, specifically FITC. This binding rate can 
also be measured using a device for flow cytometry. 
Since annexin binding can also be observed in 
necrotic cells, the vital dye propidium iodide (PI) 
is also used. Since living cell membranes are intact, 
they are not stained with PI.dye. Living cells are 
distinguished as.FITC (-) / PI (-), early apoptotic 
cells as.FITC (+) / PI (–), and necrotic cells as.FITC 
(+) / PI (+) [17-18].

After determining the number of cells in the cell 
suspension prepared as described above, HepG2 
cells were seeded into 6-well plates at 1x106/well 
and incubated for 24 hours. 

After the incubation period, the medium was 
discarded, and 3 separate concentrations of 
carbamazepine and perampanel, prepared as 0.3-
0.2-0.1 mM based on the MTT cytotoxicity results, 
were applied to each well of the cell culture plate in 
duplicate and incubated for 24 hours. After the period, 
the medium was collected, the cells were rinsed 
with phosphate buffer (PBS), and 1X trypsin EDTA 
solution was added to the wells and incubated for 5 
minutes. The medium was added to each well of the 
cell culture plate, and a pipette was used to prepare 
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the cell suspension. Each well’s cell suspension was 
transferred to the corresponding centrifuge tube and 
centrifuged for 5 minutes at 1200 rpm. The medium 
was drained of its supernatant, and 100 L of “Binding 
buffer” was added to the cell particle. Then, 5 L of 
Annexin-5, FITC, and 10 L of PI were added to 
the tube, which was incubated for 15 minutes at 
ambient temperature in the dark. At the end of the 
period, 400 L of “Binding buffer” was added to the 
tube to resuspend the cells. After completing the 
experimental procedures, the Anadolu University 
Plant, Medicine, and Scientific Research Center, Cell 
Culture Laboratory, analyzed the samples within 60 
minutes using a Flow Cytometry device. The flow 
cytometry assay for carbamazepine and perampanel 
was repeated three times. 

2.4. Biochemical Analysis 

Following the quantification of cells in the 
produced cell suspension, a total of 5x105 HepG2 
cells were seeded into a 25 cm2 cell culture vial 
and subsequently cultured for a duration of 24 
hours. Following the incubation time, the media 
was removed. Subsequently, utilizing the MTT 
cytotoxicity outcomes, three discrete concentrations 
of carbamazepine and perampanel were administered 
to unique cell culture vessels and subjected to a 72-
hour incubation period. The media in the cell culture 
flask was collected subsequent to the designated 
time interval and subjected to centrifugation at a 
temperature of +4 °C, with a force of 1200 g, for 
a duration of 5 minutes. The amounts of aspartate 
aminotransferase (AST), alanine aminotransferase 
(ALT), urea, and total bilirubin were quantified in the 
supernatant using the enzyme-linked immunosorbent 
assay (ELISA) kit protocol. 

2.5. Determination of Reactive Oxygen Species 

After determining the number of cells in the cell 
suspension prepared, 5 x 104 HepG2 cells were 
inoculated into each well of a 96-well cell culture 
plate and incubated for 24 hours. After the period of 
incubation, the medium was withdrawn. The medium 
was then incubated for 24 hours with three distinct 
concentrations of carbamazepine and perampanel, 
prepared as 0.316-0.1-0.0316 mM. After the period, 

a 20 M DCFH-DA solution was added to each well 
of the cell culture plate and incubated for 30 minutes. 
The medium was removed at the end of the period, 
and the cells were washed with a lukewarm phosphate 
buffer. After the rinsing solution was removed from 
the medium, the fluorescence of the cell culture plate 
was measured at 485 nm excitation and 530 nm 
emission wavelengths. A 0.5 mM t-BOOH solution 
was used as a positive control in the experiments. 

2.6. Statistical analysis 

The findings are presented in the form of the mean and 
standard deviation. The statistical analyses will be 
performed using GraphPad Prism 5 software. A one-
way analysis of variance (ANOVA) was conducted, 
followed by the Tukey multiple comparison test. A 
significance level of P<0.05 is commonly regarded 
as indicating statistical significance. 

3. RESULTS AND DISCUSSION 

Prior research indicates that carbamazepine, 
phenobarbital, oxcarbazepine, phenytoin, valproate, 
lamotrigine, and levetiracetam are associated 
with a relatively high risk of hepatotoxicity 
[9]. A significant proportion of drug-induced 
hepatotoxicity case reports involve AEDs. It is 
known that carbamazepine, a potent anticonvulsant 
used to treat partial and tonic-clonic seizures, can 
induce granuloma formation and cholestatic and 
hepatocellular damage in the liver [11-19]. In 
addition, the FDA approved the AMPA antagonist 
antiepileptic drug perampanel in 2012 [4-20]. Even 
though it undergoes hepatic biotransformation, 
few studies assess its hepatotoxicity [21]. Using 
HepG2 cells, this study aimed to compare the 
potential hepatotoxic effects of perampanel and 
carbamazepine. Although it is known that the specific 
cytochrome (CYP) P450 enzyme levels, which play 
a role in phase I and II reactions of biotransformation 
of HepG2 cells compared to primary hepatocytes, 
are minimal, this cell line continues to be utilized 
in numerous toxicology studies. In addition, it is 
known that HepG2 cells contain a variety of phase II 
enzymes, excluding UDP-glucuronosyl-transferases 
[22,23]. Researchers have demonstrated that ROS 
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formation, glutathione depletion, and membrane 
integrity can be measured using HepG2 cells, which 
can be used for sensitive cytotoxicity screening. ROS 
formation and glutathione depletion are efficacious 
mechanisms of drug-induced hepatotoxicity in 
cellular organelles [22]. In a study conducted by 
Brien et al., hepatotoxicity of HepG2 cells was 
evaluated with 80% sensitivity and 90% specificity 
[24]. It is also anticipated that in vitro transcriptomic 
analysis of HepG2 cells will be able to detect drug-
induced liver toxicity at an early stage [22]. Important 
biomarkers of hepatotoxicity, including cytotoxicity 
determination with MTT, examination of apoptosis/
necrosis and its effects on living cells, determination 
of ROT levels, and determination of ALT, AST, 
urea, and total bilirubin levels, were performed to 
determine the hepatotoxic effect. 

3.1. Cytotoxicity Results of Compounds by MTT 
Method 

HepG2 cells exposed to carbamazepine experienced 
a decrease in cell viability of 4.83 % at 0.000316 
mM, 5.78 % at 0.001 mM, and 40.17% at 0.00316 
mM. HepG2 cells exposed to perampanel exhibited a 
decrease in viability of 5.33 % at 0.00316 mM, 5.56 
% at 0.01 mM, 25.55 % at 0.00316 mM, 25.84 % at 
0.01 mM, 23.70 % at 0.00316 mM, 39.60 % at 0.001 
mM, and 66.34 % at 0.000316 mM. The MTT test, 
a cell viability assay, is frequently used to determine 
cytotoxicity after toxic substance exposure [25]. 
The colorimetric.3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl tetrazolium bromide (MTT) microplate test, 
which is one of the most used methods to measure 
the metabolic activity of live cells, was developed 
by Mosmann in 1983. MTT is a tetrazolium salt 
[15]. Mitochondrial succinate dehydrogenase in the 
mitochondria of living cells converts MTT to violet-

colored formazan [26]. Since only living cells can 
convert MTT to formazan, coloration indicates only 
the presence of viable cells [27].

The calculated IC50 value for perampanel was 0.50± 
0.09 mM, whereas the maximum concentration 
of carbamazepine failed to inhibit cell viability by 
50% at the concentrations tested. A study determined 
that perampanel inhibits glioblastoma cell line 
differentiation and proliferation [28]. Based on 
the results, it can be said that the cytotoxic effect 
of perampanel is higher on HepG2 cells than 
carbamazepine. 

3.2. Apoptotic effect results of compounds by 
annexin V/PI method 

Apoptosis is the cellular death pathway stimulated by 
carbamazepine and perampanel, according to flow 
cytometry studies. Figures 1 and 2 depict the flow 
cytometric analysis diagrams for carbamazepine 
and perampanel. Table 1 displays the percentages 
of viable/apoptotic/necrotic cells for the three 
concentrations analyzed. 

Annexin V method and flow cytometry are 
extensively utilized in determining cell death types, 
apoptosis, and necrosis, one of the indicators of 
drug-induced liver toxicity [16,17]. Annexin V 
binds to the phosphatidylserine released by the 
inner plasma membranes and stains the membranes 
with a fluorescent substance (e.g., FITC), rendering 
apoptotic cells visible. Flow cytometry can then be 
used to ascertain the changes in the cell surface that 
occur during apoptosis [17]. To differentiate between 
apoptotic and necrotic cells, propidium iodide is 
applied as an additional stain [17,18].

It was determined that the agents used in our study 

Table 1. Percentage of viable/necrotic/apoptotic cells at different concentrations for perampanel and carbamazepine
Drugs  µM Q1 Q2 Q3 Q4 

Perampanel 
100 2.3 5.9 85.4 6.4 
200 4.0 6.6 84.4 5.1 
300 6.6 10.0 78.9 4 .5 

Carbamazepine 
31.6 2.6 4.8 87.6 5.0 
100 4.1 4.6 86.6 4.6 
316 3.2 4.3 84.7 7.8 
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Figure 1. Flow cytometric analysis diagram of carbamazepine for HepG2 cell line.
Upper left quadrant necrotic (Q1; Annexin V-negative/PI-positive.); upper right quadrant late apoptotic cells (Q2.; Annexin V-positive/
PI-positive.); lower left quadrant viable cells (Q3; Annexin V-negative/PI-negative) and lower right quadrant apoptotic cells.(Q4.; 
Annexin V-positive/PI-negative.).

Figure 2. Flow cytometric analysis diagram of perampanel for HepG2 cell line.
Upper left quadrant necrotic ((Q1; Annexin V-negative/PI-positive.); upper right quadrant late apoptotic cells (Q2.; Annexin V-positive/
PI-positive.); lower left quadrant viable cells (Q3; Annexin V-negative/PI-negative) and lower right quadrant apoptotic cells.(Q4.; 
Annexin V-positive/PI-negative.). 
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induced apoptosis more than necrosis. It has been 
observed that carbamazepine’s ability to induce 
cell mortality is related to its function as an HDAC 
inhibitor [29]. Inhibition of HDAC enhances cell 
differentiation and demise. Carbamazepine is known 
to induce apoptosis through various mechanisms 
[30]. On the other hand, according to Babu and 
Gupta [31], perampanel contributes to cell viability 
by assuring the expected continuation of calcium 
influx. Perampanel’s ability to induce apoptosis 
rather than necrosis is not genuinely outstanding. 

3.3. Determination of the levels of biochemical 
markers 

Patients with symptomatic and asymptomatic liver 
disease are frequently evaluated using biochemical 
liver assays [32]. Serum ALT and AST levels can 
effectively detect liver injuries [33,34]. Although 
urea and total bilirubin measurements are typically 
used to assess kidney function, they can also be a 
biomarker of hepatotoxicity caused by certain drugs 
[35,36]. The results of the biochemical analysis are 
shown in Table 2. 

Induction of hepatic enzymes is a prevalent side 
effect of carbamazepine treatment, with 5% to 10% 
of patients experiencing asymptomatic liver enzyme 
elevations. There are two types of carbamazepine-
induced hepatotoxicity: hypersensitivity-induced 
granulomatous hepatitis with cholestasis and acute 
hepatitis without cholestasis and hepatocellular 
necrosis [37]. Several studies have demonstrated that 
carbamazepine can increase hepatotoxic potential and 
hepatic enzymes (ALT, GGT) [38,39]. Significant 
increases in ALT and AST levels with the maximum 

dose of carbamazepine are highlighted in this 
study. Except at modest doses, there are significant 
increases in the amount of urea, which is an indicator 
of hepatic synthesis. Numerous investigations have 
demonstrated that carbamazepine currently disrupts 
the urea cycle. In conclusion, biological markers 
demonstrated the anticipated hepatotoxicity of 
carbamazepine in this study. 

On the other hand, Perampanel significantly increased 
ALT, AST, and urea levels, except at modest doses, 
and caused significant increases in total bilirubin 
levels at doses of 0.3 and 0.1 mM. Perampanel can 
induce liver enzymes in some instances, according to 
a study [40]. The evaluation of the pharmacokinetics 
of perampanel in patients with mild to moderate 
hepatic impairment revealed that the dose should not 
exceed 8 mg, and the drug should not be administered 
to patients with severe hepatic impairment (HTTP-
5). A study evaluating the adverse effects of 
perampanel in patients with treatment-resistant 
status epilepticus showed modest cholestatic liver 
injury not requiring specific treatment. (Beretta et 
al., 2017) They defined ALT as 5 upper limits of 
normal (UNS), ALP as 2 UNL or ALT as 3ULN, 
and bilirubin concentration as >2UNS based on an 
examination of alterations in hepatic blood tests 
in these patients. Our findings are consistent with 
previous research. Perampanel generates signals in 
aberrant hepatic function and hyperammonemia. It 
suggests that perampanel is associated with a risk of 
hepatotoxicity, and physicians and patients should 
pay close attention to routine liver function testing 
[4]. Recent data suggested that with the extensive 
use of perampanel, however, some clinical reports 
of hepatotoxicity are associated with an elevation in 

Table 2. Biochemical analysis results
Biochemical 
markers 

Growth 
control 

Solvent  
control 

C316 C100 C31.6 P300 P200 P100 

Urea
3.29± 3.31± 4.137± 3.507± 3.81± 3.807± 3.8± 2.52± 
0.09 0,09 0.05 (*) 0.09(*) 0.09 (*) 0.099 0.09 (*) 0.08(*) 

TB
0.012 ± 0.011± 0.01± 0.01± 0.02± 0.02± 0.01± 0.03± 
0.001 0.007 0.001 0.005 0.010 (*) 0.010 (*) 0.002 0.009 (*) 

AST
9.1± 9.09± 16.3± 11.167± 6,1± 20.3± 17.2± 6.03± 
0.26  0.072 1.47 (*) 1.259  0.854 1.47(*) 1.31(*) 1.00  

ALT
5.9± 6.51± 8.17± 5.17± 3.13± 11.267± 8±1(*)  2.03± 
0.78 0.79  1.04 (*) 0.96  0.96(*) 1.17(*)  0.96(*) 
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-glutamyl transpeptidase (GTP) and AST/ALT. The 
mechanisms behind the documented liver damage 
are unknown.

Perampanel, for which there are limited data, exhibited 
a similar hepatotoxicity risk as carbamazepine, 
with significant increases in biological indicators. 
The biological indicators affecting hepatocellular, 
hepatobiliary, and hepatic synthesis capacity may be 
compromised. 

3.4. Determining the levels of ROS 

Oxidative stress is caused by a decrease in antioxidant 
defense and the development of some biomolecular 
modifications due to intense ROS production [42,43]. 
The DCFDA method with 2,7-dichlorofluorescein 
(H2DCF) dye is the most commonly used technique 
for determining ROS and oxidative stress. 

The liver is a vital organ that is susceptible to ROS 
attack. Reactive oxygen species (ROS) induce 
hepatocellular damage, apoptosis, and liver fibrosis 
by various mechanisms, including alterations in 
mitochondrial function, manipulation of cytokine 
expression, modification of immunological 
response, and activation of signaling cascades. There 
exists a considerable body of research indicating that 

the extent of oxidative protein and lipid alteration 
resulting from heightened levels of reactive oxygen 
species (ROS) is correlated with the severity and 
progression of various liver disorders [44].

In cells treated with carbamazepine, the DCF 
fluorescence intensity was 0.133 for 0.316mM 
t-BOOH, 0.112 for 0.1mM, and 0.106 for 0.316mM; In 
cells treated with perampanel, the DCF fluorescence 
intensity was 0.142 for 0.316mM, 0.134 for 0.1mM, 
and 0.109 for 0.316mM. Compared to the positive 
control t-BOOH, carbamazepine and perampanel 
increased DCF levels and H2O2 formation. Several 
investigations have indicated that the occurrence of 
liver damage generated by carbamazepine is linked 
to the creation of reactive metabolites through 
hepatic drug-metabolizing enzymes, specifically 
P450 enzymes, and their subsequent interaction 
with endogenous proteins [45,46]. The precise 
mechanisms underlying the relationship between 
carbamazepine metabolism and the occurrence 
of liver injury remain incompletely elucidated 
[45], despite the recognition of its potential to 
generate infrequent yet severe hepatotoxicity in 
human populations. The rat model investigation 
demonstrated that the development of liver injury 
was attributed to the presence of 2-hydroxy 
carbamazepine and 3-hydroxy carbamazepine 

Figure 3. Levels of reactive oxygen species in cells treated with carbamazepine and perampanel at different concentrations. 
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metabolites [47]. In a study conducted by Eghbal et 
al., it was observed that carbamazepine administration 
led to the induction of oxidative stress, resulting 
in an elevation in reactive oxygen species (ROS) 
production and lipid peroxidation products. The 
impact of carbamazepine on mitochondria, which are 
crucial organelles responsible for energy production 
in hepatocytes, was assessed. It was observed that 
the toxicity of carbamazepine in rat hepatocytes is 
contingent upon its concentration. Specifically, it 
was reported that exposure to 400 M carbamazepine 
resulted in the death of 50% of hepatocytes within a 
span of 2 hours (LC50 = 400 M) [48]. Our results also 
indicate carbamazepine-induced oxidative stress. 
Notable at this juncture is that perampanel-induced 
oxidative stress is comparable to carbamazepine. 
Perampanel is 90% metabolized by the liver. It is 
extensively metabolized in the liver by oxidation 
and subsequent glucuronidation, forming 13 inactive 
metabolites. CYP3A4 may also play a role in the 
metabolism of perampanel [49,50]. Perampanel is 
also a known inducer of hepatic cytochrome P450 
enzymes. As with carbamazepine and a few other 
AEDs, this causes serum concentrations to decrease 
[51]. Perampanel undergoes oxidative metabolism, 
mediated by CYP3A4 or CYP3A5 isoenzymes, 
according to in vitro investigations utilizing 
recombinant human CYP enzymes and human 
liver microsomes [50,52]. Lim et al. suggested that 
perampanel was converted to epoxide intermediates 
that were reactive to GSH and NAC. In vitro and 
in vivo, CYP1A2 was primarily responsible for 
PRP metabolic activation. The identified reactive 
metabolites may explain the liver damage and 
cytotoxicity generated by perampanel [8]. It is 
feasible to associate oxidative stress induced by 
perampanel with all these conditions.  

4. CONCLUSION 

Perampanel investigated for this study is extensively 
metabolized by the liver; remarkably, fewer 
hepatotoxicity studies have been conducted. On 
the human hepatocellular carcinoma cell line 
HepG2, which is used in the in vitro evaluation of 
liver toxicity, the cytotoxic effects of perampanel, 
biomarkers of hepatic injury, and reactive oxygen 

species were compared, point by point, to the 
hepatotoxic drug carbamazepine. These results 
determined that both agents have a cytotoxic effect 
on the HepG2 cell line, increase hepatic biomarkers, 
and induce oxidative stress. These factors suggest 
that perampanel may pose a risk of hepatotoxicity 
comparable to carbamazepine and the potential for 
significant adverse effects. Based on the results 
obtained, it was determined that the agents studied for 
the study induced apoptosis, which is programmed 
cell death in the liver, rather than necrosis, which 
is the form of cell death. This circumstance is 
more beneficial to the organism than necrosis. In 
this dissertation, hepatotoxicity surveillance was 
conducted on both carbamazepine and perampanel, 
which are commonly used to treat epilepsy, as well 
as perampanel, for which there are insufficient data.

Regarding other drugs, a practical monitoring 
method for drug-induced hepatotoxicity, which is 
challenging to detect in the preclinical phase, was 
also presented. Nonetheless, hepatotoxicity marker 
enrichment studies, data collection from people with 
liver disorders, and more extensive epidemiological 
studies are necessary. Future research should 
investigate the potential hepatotoxicity of perampanel 
using both human-based studies and other models, 
and clinicians should be aware of this and inform 
patients about therapeutic follow-up procedures, 
concomitant drug use, and special conditions.
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1. INTRODUCTION 

Alzheimer’s-type dementia (ATD) is characterized 
by behavioural disturbances and mood changes 
associated with progressive cognitive and memory 
loss. Extracellular deposition of the Aβ peptide in 
senile plaques is the main marker of the disease. Aβ 
can trigger neuronal cell death via oxidative stress 
[1]. Loss of neuron has been linked to a deficiency 
in brain, neuromediator acetylcholine. With less 
acetylcholine, it becomes more diffucult to maintain 
transmission of information and nerve signals 
between neurons. Consequently, AChE inhibitors 
(AChEIs) were developed to increase acetylcholine 
by inhibiting the enzyme AChE [2]. AChEIs including 

tacrin (hepatotoxic in 25% patients), donepezil, 
rivastigmine and galantamin has been approved for 
the treatment of moderate to severe Alzheimer’s 
Disease (AD) [3]. Data obtained from clinical trials 
showed that rivastigmine 6-12 mg per day produces 
improvements in cognition, daily activities, and global 
evaluation rating in patients with mild to moderate 
AD. Effects of rivastigmine are dose dependent  
[4,5]. Rivastigmine is a pseudoirreversible, second-
generation carbamate-based, noncompetitive AChE 
and BuChE inhibitor with equal potency. Both of 
enzymes are responsible for hydrolysis of ACh [6,7]. 
Two different cholinesterases exist in mammals: 
AChE, which can selectively hydrolyze ACh, and 
BuChE, which can hydrolyze both ACh and other 
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choline esters [2,8,9]. The peptidase or protease of 
the butyrylcholinesterase enzyme activity has a role 
in the pathological processes of AD. BuChE causes 
the production of amyloid protein and diffusion of 
the protein into ß-amyloid plaques in Alzheimer’s 
disease [10]. Therefore, researchers working on 
this subject focused on the discovery of new dual 
cholinesterase inhibitor molecules to enhance 
cholinergic functions.

Benzimidazole scaffold is an important 
pharmacophore that has been extensively utilized 
as a drug in medicinal chemistry for years due 
to its high affinity towards various enzymes and 
receptors [11]. Among them, 1-(2-aryl-2-oxoethyl)-
2-substituted benzimidazoles have a particular 
interest as a result of studies which we have been 
reported before with satisfactory anticancer activity 
results [12,13]. Additionally, benzimidazoles have a 
broad range of pharmacological activities. In recent 
years, they have attracted particular interest due to 
their anticolinesterase activity [13-16]. Additionally, 
gefitinib, a recent morpholine carrying anticancer 
drug, is expected to play a significant role in 
designing and synthesizing new drugs [17].

In this present study, novel morpholine 
dithiocarbamate derivatives (2a-i) bearing 1-(2-aryl-
2-oxoethyl)-2-substituted benzimidazole moiety were 
synthesized and their potential anticholinesterase 
effects and cytotoxic properties against NIH/3T3 
cells were investigated.

2. MATERIALS AND METHODS 

2.1. Chemicals and Equipments 

The chemicals and solvents used in the study 
were purchased from commercial suppliers. 
Electrothermal 9300 digital melting point apparatus 
(Essex, UK) Melting points (m.p.) was used for 
melting point detection. Spectroscopic analysis 
was realized with the following instruments: IR, 
Shimadzu 8400S spectrophotometer (Shimadzu, 
Tokyo, Japan), NMR, Bruker 500 spectrometer 
(Billerica, MA, USA) in DMSO-d6; M+1 peaks were 
detected by AB Sciex-3200 Q-TRAP LC/MS/MS 
system (AB Applied Biosystems Co., MA, USA) and 

Elemental analyses were worked on an elemental 
analyser (Perkin Elmer, Norwalk, CT, USA).

2.2. General procedure for the preparation of 
(1H-benzimidazol-2-yl)methyl morpholine-4-
carbodithioate (1) 

2-(Chloromethyl)benzimidazole (0.05 mol) and 
potassium salt of morpholine dithiocarbamate 
(0.052 mol) were stirred in acetone for 5h. The 
reaction mixture was treated with excess water and 
precipitated raw intermediate product was filtered, 
later it was crystallised from ethanol [18].

2.3. General procedure for the synthesis of 
[1-(2-oxo-2-(4-substitutedphenyl)ethyl)-1H-
benzimidazol-2-yl]methyl morpholine-4-
carbodithioate derivatives (2a-i)

The yellow intermediate product (1) was reacted 
with appropriate α-bromoacetophenone derivatives 
with the presence of potassium carbonate in acetone. 
After the reaction mixture was stirred at room 
temperature for 3 hours, it was collapsed with water. 
The products (2a-i) were given by filtration and then 
crytallisation from ethanol.

2.4.1. [1-(2-Oxo-2-phenylethyl)-1H-benzimidazol-
2-yl]methyl morpholine-4-carbodithioate (2a)

Yield : 67%. M.P. 167-169 oC. IR (cm-1) : 1680 (C=O), 
1595-1425 (C=C, C=N), 1269-987 (C-O, C-N). 1H 
NMR (500 MHz, DMSO-d6, ppm) δ 3.57 (brs, 4H, 
NCH2), 3.83 (brs, 2H, OCH2), 4.11 (brs, 2H, OCH2), 
4.89 (s, 2H, SCH2), 6.10 (s, 2H, COCH2), 7.21-7.23 
(m, 3H, Ar-H), 7.50-7.52 (m, 1H, Ar-H), 7.63-7.66 
(m, 3H, Ar-H), 7.77 (t, 1H, J:7.5 Hz, Ar-H), 8.13 (d, 
1H, J:7.0 Hz, Ar-H). C21H21N3O2S2 calculated: (%) C 
61.29, H 5.14, N 10.21; found: (%) C 61.35, H 5.18, 
N 10.35. MS [M+1]+: m/z 412.

2.4.2. [1-(2-Oxo-2-(4-methylphenyl)ethyl]-
1H-benzimidazol-2-yl)methyl morpholine-4-
carbodithioate (2b)

Yield : 62%. M.P. 105-108 oC. IR (cm-1) : 1684 
(C=O), 1604-1423 (C=C, C=N), 1230-991 (C-O, 
C-N). 1H NMR (500 MHz, DMSO-d6, ppm) δ 2.82 
(s, 3H, CH3), 3.59 (brs, 4H, NCH2), 3.84 (brs, 2H, 
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OCH2), 4.13 (brs, 2H, OCH2), 4.88 (s, 2H, SCH2), 
6.11 (s, 2H, COCH2), 7.24-7.25 (m, 2H, Ar-H), 7.62-
7.64 (m, 1H, Ar-H), 7.68-7.71 (m, 3H, Ar-H), 7.95 
(t, 1H, J:7.5 Hz, Ar-H), 8.12 (d, 1H, J:7.0 Hz, Ar-
H). C22H23N3O2S2 calculated: (%) C 62.09, H 5.45, 
N 9.87; found: (%) C 62.15, H 5.34, N 9.95. MS 
[M+1]+: m/z 426.

2.4.3. [1-(2-Oxo-2-(4-methoxyphenyl)ethyl]-
1H-benzimidazol-2-yl)methyl morpholine-4-
carbodithioate (2c)

Yield : 68%. M.P. 179-181 oC. IR (cm-1) : 1674 
(C=O), 1597-1420 (C=C, C=N), 1265-987 (C-O, 
C-N). 1H NMR (500 MHz, DMSO-d6, ppm) δ 3.58 
(brs, 4H, NCH2), 3.85 (brs, 2H, OCH2), 3.90 (s, 3H, 
OCH3), 4.13 (brs, 2H, OCH2), 4.86 (s, 2H, SCH2), 
6.02 (s, 2H, COCH2), 7.16 (d, 2H, J: 9.0 Hz, Ar-H), 
7.20-7.22 (m, 2H, Ar-H), 7.47-7.49 (m, 2H, Ar-H), 
7.61-7.63 (m, 1H, Ar-H), 8.09 (d, 1H, J:9.0 Hz, Ar-
H). C22H23N3O3S2 calculated: (%) C 59.84, H 5.25, 
N 9.52; found: (%) C 59.89, H 5.33, N 9.47. MS 
[M+1]+: m/z 442.

2.4.4. [1-(2-Oxo-2-(4-chlorophenyl)ethyl]-
1H-benzimidazol-2-yl)methyl morpholine-4-
carbodithioate (2d)

Yield : 69%. M.P. 165-170 oC. IR (cm-1) : 1683 (C=O), 
1589-1424 (C=C, C=N), 1269-987 (C-O, C-N). 1H 
NMR (500 MHz, DMSO-d6, ppm) δ 3.58 (brs, 4H, 
NCH2), 3.85 (brs, 2H, OCH2), 4.12 (brs, 2H, OCH2), 
4.88 (s, 2H, SCH2), 6.08 (s, 2H, COCH2), 7.21-7.23 
(m, 2H, Ar-H), 7.50-7.52 (m, 1H, Ar-H), 7.62-7.64 
(m, 1H, Ar-H), 7.73 (d, 2H, J:8.5 Hz, Ar-H), 8.13 (d, 
2H, J:8.5 Hz, Ar-H). C21H20ClN3O2S2 calculated: (%) 
C 56.55, H 4.52, N 9.42; found: (%) C 56.61, H 4.39, 
N 9.46. MS [M+1]+: m/z 446.

2.4.5. [1-(2-Oxo-2-(4-florophenyl)ethyl]-1H-
benzimidazol-2-yl)methyl morpholine-4-
carbodithioate (2e)

Yield : 68%. M.P. 198-201 oC. IR (cm-1) : 1681 
(C=O), 1593-1426 (C=C, C=N), 1254-989 (C-
O, C-N). 1H NMR (500 MHz, DMSO-d6, ppm) δ 
3.59 (brs, 4H, NCH2), 3.85 (brs, 2H, OCH2), 4.13 
(brs, 2H, OCH2), 4.88 (s, 2H, SCH2), 6.08 (s, 2H, 
COCH2), 7.21-7.22 (m, 2H, Ar-H), 7.48-7.52 (m, 

1H, Ar-H), 7.62-7.64 (m, 3H, Ar-H), 8.20-8.22 (m, 
2H, Ar-H). C21H20FN3O2S2 calculated: (%) C 58.72, 
H 4.69, N 9.78; found: (%) C 58.66, H 4.75, N 9.71. 
MS [M+1]+: m/z 430.

2.4.6. [1-(2-Oxo-2-(4-nitrophenyl)ethyl]-1H-
benzimidazol-2-yl)methyl morpholine-4-
carbodithioate (2f)

Yield : 63%. M.P. 135-140 oC. IR (cm-1) : 1679 
(C=O), 1599-1423 (C=C, C=N), 1267-991 (C-
O, C-N). 1H NMR (500 MHz, DMSO-d6, ppm) δ 
3.58 (brs, 4H, NCH2), 3.88 (brs, 2H, OCH2), 4.13 
(brs, 2H, OCH2), 4.88 (s, 2H, SCH2), 6.08 (s, 2H, 
COCH2), 7.22-7.28 (m, 2H, Ar-H), 7.49-7.54 (m, 
3H, Ar-H), 7.63-7.65 (m, 1H, Ar-H), 8.21-8.24 (m, 
2H, Ar-H). C21H20N4O4S2 calculated: (%) C 55.25, H 
4.42, N 12.27; found: (%) C 55.32, H 4.56, N 12.35. 
MS [M+1]+: m/z 457.

2.4.7. [1-(2-Oxo-2-(3-methoxyphenyl)ethyl]-
1H-benzimidazol-2-yl)methyl morpholine-4-
carbodithioate (2g)

Yield : 70%. M.P. 143-148 oC. IR (cm-1) : 1677 
(C=O), 1597-1422 (C=C, C=N), 1259-993 (C-O, 
C-N). 1H NMR (500 MHz, DMSO-d6, ppm) δ 3.59 
(brs, 4H, NCH2), 3.84 (brs, 2H, OCH2), 3.97 (s, 3H, 
OCH3), 4.13 (brs, 2H, OCH2), 4.87 (s, 2H, SCH2), 
6.11 (s, 2H, COCH2), 7.16 (d, 1H, J: 9.0 Hz, Ar-H), 
7.22-7.24 (m, 1H, Ar-H), 7.53-7.55 (m, 1H, Ar-H), 
7.58-7.60 (m, 1H, Ar-H), 7.72 (t, 1H, J:7.5 Hz, Ar-H), 
7.87 (d, 1H, J:7.5 Hz, Ar-H), 8.06 (d, 1H, J:7.5 Hz, 
Ar-H), 8.14 (s, 1H, Ar-H). C22H23N3O3S2 calculated: 
(%) C 59.84, H 5.25, N 9.52; found: (%) C 59.85, H 
5.36, N 9.49. MS [M+1]+: m/z 442.

2.4.8. [1-(2-Oxo-2-(3-chlorophenyl)ethyl]-
1H-benzimidazol-2-yl)methyl morpholine-4-
carbodithioate (2h)

Yield : 75%. M.P. 102 oC (decomp). IR (cm-1) : 
1682 (C=O), 1572-1421 (C=C, C=N), 1255-991 
(C-O, C-N). 1H NMR (500 MHz, DMSO-d6, ppm) 
δ 3.59 (brs, 4H, NCH2), 3.85 (brs, 2H, OCH2), 4.12 
(brs, 2H, OCH2), 4.88 (s, 2H, SCH2), 6.12 (s, 2H, 
COCH2), 7.20-7.22 (m, 2H, Ar-H), 7.52-7.53 (m, 1H, 
Ar-H), 7.61-7.63 (m, 1H, Ar-H), 7.68 (t, 1H, J:7.5 
Hz, Ar-H), 7.84 (d, 1H, J:7.5 Hz, Ar-H), 8.05 (d, 1H, 
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J:7.5 Hz, Ar-H), 8.15 (s, 1H, Ar-H). C21H20ClN3O2S2 

calculated: (%) C 56.55, H 4.52, N 9.42; found: (%) 
C 56.64, H 4.57, N 9.49. MS [M+1]+: m/z 446.

2.4.9. [1-(2-Oxo-2-(3-florophenyl)ethyl]-1H-
benzimidazol-2-yl)methyl morpholine-4-
carbodithioate (2i)

Yield : 78%. M.P. 165-169 oC. IR (cm-1) : 1680 (C=O), 
1593-1423 (C=C, C=N), 1257-989 (C-O, C-N). 1H 
NMR (500 MHz, DMSO-d6, ppm) δ 3.58 (brs, 4H, 
NCH2), 3.87 (brs, 2H, OCH2), 4.15 (brs, 2H, OCH2), 
4.89 (s, 2H, SCH2), 6.14 (s, 2H, COCH2), 7.24-7.27 
(m, 2H, Ar-H), 7.54-7.56 (m, 1H, Ar-H), 7.63-7.68 
(m, 1H, Ar-H), 7.74 (t, 1H, J:7.5 Hz, Ar-H), 7.92 (d, 
1H, J:7.5 Hz, Ar-H), 8.10 (d, 1H, J:7.5 Hz, Ar-H), 
8.22 (s, 1H, Ar-H). C21H20FN3O2S2 calculated: (%) C 
58.72, H 4.69, N 9.78; found: (%) C 58.62, H 4.76, 
N 9.76. MS [M+1]+: m/z 430.

2.5. Biochemistry

2.5.1. Determination of AChE and BuChE 
inhibitory potency
A modified Ellman’s assay was used for evaluation 
of their ChE inhibitory activities [19]. Experiment 
was done in triplicate. 

The inhibition (percent) of AChE or BuChE was 
calculated using the following equation.

I (%) = 100-(ODsample / ODcontrol) x 100

2.5.2. Determination of cytotoxicity
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) method was used to 
determine the cytotoxic effects of compounds 2a-i 
on NIH/3T3 cells [20, 21].

3. RESULTS AND DISCUSSION 

3.1. Chemistry

Target molecules (2a-i) were synthesized in two 
steps. Two starting materials, 2-(chloromethyl)
benzimidazole and potassium salt of morpholine 
N-dithiocarbamic acid, were synthesized according 
to the previously reported literature [13,22]. 

The obtained intermediate product (1) was 
reacted in acetone to give [1-(2-aryl-2-oxoethyl)-
1H-benzimidazol-2-yl]methyl morpholine-4-
carbodithioate (2a-i). IR, 1H-NMR and MS 
spectroscopic analysis and elemental analysis 
were performed to confirm the structures of the 
compounds. In the IR spectra of the compounds, 
bands at 1684-1674, 1604-1420 and 1269-987 cm-1 
were detected for C=O; C=C, C=N and C-O, C-N 
bonds, respectively. In the 1H-NMR spectra of the 
compounds, peaks belong to piperazine ring were 
observed at 3.57-4.15 ppm range. Singlet peaks were 
determined for methylene protons at 4.86-4.89 and 
6.02-6.14 ppm for S-CH2 and COCH2, respectively. 
All other aromatic protons were observed at 
estimated fields of the spectrum. MS spectroscopic 
data and elemental analysis data were confirmed the 
structures of the molecules with satisfactory results.

3.2. Evaluation of ChE inhibitory activity and 
cytotoxicity results

A colorimetric assay was employed to assess the 
inhibition effects of compounds 2a-i on ChEs 
(Table 1). While compounds 2e and 2d displayed 
the highest inhibitory activity on AChE, compounds 
2c and 2d showed the highest inhibition rates on 
BuChE, respectively In addition, compounds 2d and 
2e exhibited the lowest cytotoxicity against normal 
(NIH/3T3) cells. 

In recent years, results showing the anticholinesterase 
effect potential of various dithiocarbamate 
derivatives have been obtained and the importance 
of carbamate derivatives in the development of new 
drugs has been emphasized [23, 24].

When the structure-activity relationships of the 
compounds are examined, it is seen that the two 
derivatives containing 4-methyl (2b) and 4-chloro 
(2d) substituents exhibit high inhibition potential 
on both enzymes. In addition, compound 2e bearing 
4-fluoro substituent and compound 2c including 
4-methoxy substituent showed the highest inhibitory 
potential against AChE and BuChE, respectively. In 
the compounds, higher anticholinesterase activity 
was determined in the para-substituted derivatives 
compared to the meta-substituted derivatives.  
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Table 1. Cholinesterases inhibition (%) and cytotoxicity

Compound
AChE% inhibition

(80 µg/mL)
BuChE %inhibition

(80 µg/mL)
IC50b

2a 33,93±0,11 29,69±1,01 69,0±5,29
2b 64,69±0,47 65,35±3,44 125,0±22,91
2c 15,06±2,30 80,51±1,58 125,67±8,14
2d 78±1,56 70,71±1,53 >200
2e 82,26±1,41 30,68±1,25 188,33±16,07
2f 33,9±4,06 49,95±1,12 128,33±20,21
2g 11,11±0,08 --- >200
2h 47,44±3,10 35,28±0,66 65,67±9,29
2i 57,76±1,08 27,50±2,60 68,33±15,28
Donepezil IC50a 3,76x10-3±0,18x10-3 1,48±0,44 nt
---: not active; nt: non tested
a: The half maximal inhibitory concentration of the compounds to inhibit 50% of the indicated enzymes
b: The half maximal inhibitory concentration of the compounds to inhibit 50% of the mouse fibroblast cells (NIH/3T3)

Figure 1. The synthesis of the compounds (2a-2i). Reagents and conditions : i : acetone, r.t., 5h; ii : K2CO3, acetone, 3h.
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In addition, the lowest cytotoxicity against NIH/3T3 
cell line was observed in the meta-substituted 
derivatives.

4. CONCLUSION

Compound 2d may be a good drug candidate with 
either it’s dual inhibitory effect on cholinesterases 
enzymes or with the lowest cytotoxicity to normal 
cell lines. This work could represent inhibition 
potential of morpholine dithiocarbamate derivatives 
bearing benzimidazole moiety on AChE and BuChE 
enzyme activity.
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Review Article

1. INTRODUCTION 

Depression is a psychiatric disorder that ranks first 
among neurological and mental disorders [1,2]. 
Today, this disease, which can disrupt normal 
functioning in many societies worldwide, causes 
depressive thoughts, deterioration in cognitive and 
social functions, severely impair the patient’s quality 
of life, and significantly increases morbidity and 
mortality [3-5]. Low socio-economic status, being 
divorced, unemployment, substance and alcohol 
addiction, anxiety disorders, history of depression, 

stress factors, childhood traumas, some drugs and 
diseases are the main risk factors for the development 
of depression [6,7].

Since depression is a heterogeneous and complicated 
disorder with multiple etiologies, the mechanisms 
involved in its pathophysiology are not fully 
understood [8]. Currently accepted mechanisms 
aiming to explain the etiopathogenesis of depression 
include the monoamine hypothesis, dysregulation of 
the hypothalamic-pituitary-adrenal (HPA) Axis, and 
involvement of environmental and genetic factors. 
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Other potential mechanisms involve impaired 
neurogenesis, enhanced inflammatory cytokine 
release, second messenger system abnormalities, and 
increased corticotropin-releasing factor (CRF) levels 
[8,9]. 

Animal models are crucial for understanding the 
pathogenesis of depression, as with most human 
diseases, and for developing new agents for its 
treatment. Although none of the models fully meets 
the symptoms of depression in human, numerous 
animal models resemble many of the symptoms 
observed in individuals with depression, and they 
are critical for investigating the disease’s etiology, 
pathogenesis and treatment [10].

In this review, the main mechanisms included in the 
etiopathogenesis of depression and experimental 
depression models used in preclinical studies have 
been mentioned.

1.1. Etiopathogenesis of Depression

1.1.1. Biogenic Amines
The monoamine hypothesis is accepted as the 
most common hypothesis used to clarify the 
pathophysiology of major depressive disorder 
(MDD). The amount of monoamines such as 
noradrenaline, serotonin, and dopamine in the 
synaptic cleft are to be reduced during a depressive 
period  [11]. Based on the monoaminergic deficiency 
theory, many antidepressants, such as tricyclic 
antidepressants, selective serotonin or noradrenaline 

reuptake inhibitors, and monoamine oxidase 
inhibitors, have been developed. Nevertheless, the 
specific mechanism of antidepressant efficacy and 
the molecular foundation of depression remain still 
unknown [12].

Serotonin
Serotonin is an essential neurotransmitter that 
regulates various physiological functions such as 
pain, sleep, appetite, and mood. Any abnormality 
in serotonin synthesis, metabolism or reuptake has 
been reported to be partly responsible for specific 
symptoms of depression, schizophrenia, learning 
problems, and compulsive disorders [13,14]. 

Several investigations have demonstrated that the 
serotonergic system plays an essential role in the 
pathophysiology of depression. Scientific research 
has shown that the function of serotonergic neurons 
decreases in depression. Postmortem and positron 
emission tomography imaging studies demonstrate 
that depressive people who do not use medications 
have lower presynaptic and postsynaptic serotonin 
levels and fewer serotonin transporter binding sites in 
the amygdala and midbrain. Furthermore, low levels 
of 5-hydroxyindole acetic acid,  the major serotonin 
metabolite, were identified in the cerebrospinal fluid 
(CSF) of patients with suicidal depression [15]. 
Various antidepressant medications used in the clinic 
today are known to target serotonin receptors [14].

Noradrenaline
The noradrenergic system appears to be involved 
in a wide variety of brain activities, including 
stress response, arousal, attention, enhancement 
of memory, immunological response, endocrine 
functions, sleep/wake cycle, mood, and regulation of 
pain threshold [16-18].

Noradrenaline’s role in depression and stress 
response is related to the neuroanatomical structure 
of the central noradrenergic system. Noradrenergic 
neurons are found in two main areas of the brain. 
These are the locus coeruleus (the region with the 
highest concentration of noradrenaline-producing 
neurons) in the brainstem and the lateral tegmental 
area. The locus coeruleus sends multiple projections 
to the brain’s fear-related parts, including the 

Figure 1. Pathophysiology of depression [8]
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cortex, amygdala, thalamus, hippocampus, and 
hypothalamus. All of these regions are critical to 
comprehending the anatomical basis of stress-related 
disorders and depression [19]. 

In patients with MDD, a reduction in central 
noradrenaline level leads to depletion of positive 
emotional resources such as decreased enjoyment, 
happiness, alertness, interest, vitality, and loss of 
trust. Postmortem investigations in depressed patients 
have reported enhanced conformation of central α2-
adrenergic autoreceptors. It has been additionally 
found that the mRNA levels of α2-adrenergic 
autoreceptors are elevated in the frontal cortices of 
patients with MDD who committed suicide. These 
findings have been associated with hypersensitive 
presynaptic α2-adrenergic autoreceptors contributing 
to the decline in the release of noradrenaline and 
serotonin [20].

Dopamine
Dopamine is an essential neurotransmitter in the 
central nervous system. The mesolimbic pathway, 
one of the dopaminergic pathways in the brain, plays 
a vital role in emotional behavior. Anhedonia and 
altered reward systems in depressed patients are 
thought to be primarily caused by the hypoactivity of 
this dopaminergic pathway [21,22].

Postmortem studies in patients with severe 
depression have shown decreased levels of 
dopamine metabolites in both CSF and brain areas 
that regulate mood and motivation. The effectiveness 
of drugs that acts directly on dopaminergic neurons 
or receptors, such as pramipexole (D2/D3 receptor 
agonist) and monoamine oxidase inhibitors, suggests 
the existence of subtypes of depression caused by 
dopamine dysfunction [23-21]. 

The prevalence of depression in schizophrenia and 
Parkinson’s disease, which are diseases caused by 
central dopaminergic system dysfunction, is another 
evidence of dopaminergic system alteration seen in 
depression. In addition, an increase in postsynaptic 
D2/D3 receptor density has been found in depressed 
patients in neuroimaging and postmortem studies. 
These data indicate that dopamine neurotransmission 
is reduced in depressed patients [15,24].

Numerous studies in neuroscience suggest that in 
addition to monoamines, other neurotransmitter 
systems involve the neurobiological features of 
mood disorders. The contribution of amino acid 
neurotransmitters like gamma-aminobutyric acid 
(GABA) and glutamate in depression is better-
understood by recent preclinical and clinical 
investigations [25].

1.1.2. GABAergic system
GABA is abundant and widely distributed in the 
healthy human brain. About one-third of all synapses 
are estimated to be GABAergic. GABA, which is 
closely related to other neurotransmitter systems in 
terms of its function, is well known to interact with 
monoaminergic and cholinergic pathways. GABA 
modulates several behavioral and physiological 
mechanisms through its interactions with other 
neurotransmitter systems and its role as the major 
inhibitory neurotransmitter in the brain [25,26]. 
According to the GABAergic deficiency hypothesis 
of depression, decreased GABA concentration in 
the brain, dysfunction of GABAergic interneurons, 
changed expression and function of GABAA 
receptors, and alters in GABAergic transmission 
caused by disrupted chloride homeostasis may all 
contribute to the etiology of depression [25,27-29].

1.1.3. Glutamatergic system
Glutamate, the brain’s principal excitatory 
neurotransmitter, contributes to learning and 
memory processes, brain development, neuronal 
life, neuronal differentiation, neuronal migration, 
and axon formation [30]. Changes in glutamatergic 
neurotransmission have been proposed to have an 
essential role in the pathophysiology of depression. 
Reduction of glutamate release or receptor function 
is a promising mechanism for developing more 
effective antidepressant therapies  [31,32].

The rapid, potent and safe antidepressant effect 
of a single intravenous administration of the 
NMDA receptor antagonist ketamine in patients 
with treatment-resistant depression has led to the 
expansion of research into new glutamate-based 
therapeutic targets [33,34]. Intranasal esketamine 
spray, in addition to standard antidepressant 
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therapy, has recently been approved in the USA and 
Europe for the treatment of antidepressant-resistant 
depression [35,36].

1.1.4. Neuropeptides
Neuropeptides are short-chain proteins with 
neuromodulatory and neurohormonal functions 
as well as local neurotransmitter functions [37]. 
Neuropeptides have potential clinical importance 
in treating psychiatric disorders due to their 
neuromodulatory properties  [38].

It has been reported that neuropeptides are 
changed in some brain regions as well as classical 
neurotransmitters in depression. In MDD, it has 
been shown that neuropeptides such as CRH, 
substance P, and thyrotropin-releasing hormone are 
hyperactive, while neuropeptides such as galanin 
and neuropeptide Y are hypoactive [39].

1.1.5. Neurotrophic factors
Neurotrophic factors, which nourish neurons and 
promote their development, survival, and regeneration 
[40], are known to act in the pathophysiology and 
treatment of depression [41,42]. 

Brain-derived neurotrophic factor (BDNF) levels 
have been reported to be decline in serum and brain 
areas such as the amygdala and hippocampus in 
depressed patients [43,44]. Tyrosine kinase (Trk) 
B mRNA levels have also been shown to be less 
in postmortem samples of depressive people, and 
genetic variations in the TrkB gene NTRK2 have 
been linked to suicide attempts [44]. Reduced 
levels of neurotrophic factors seen in depressed 
people are thought to lead to the atrophy of specific 
limbic tissues, such as the prefrontal cortex and 
hippocampus [45]. Other growth factors, including 
fibroblast growth factor-2, insulin-like growth 
factor-I, neurotrophin-3, glial cell line-derived 
neurotrophic factor, and artemin, may also affect 
neurogenesis, and there is evidence that these growth 
factors are diminished in depressed people  [46,47].

1.1.6. Stress and neuroendocrine regulation
The HPA axis is a complicated system interacting 
with psychosocial, genetic, and developmental 
factors. This system assists humans in responding 

to acute stress and undergoes over time alterations 
in response to chronic stress exposures. These long-
term changes may be significant in the etiology of 
depression [48].

In vulnerable people, stressful life experiences can 
trigger depressive episodes, and childhood trauma in 
the form of neglect or abuse raises the probability of 
depression later in life. In depressed patients, various 
abnormalities in the HPA axis related to stress 
response have been observed. These changes include 
excessive CRF secretion from the hypothalamic 
paraventricular nucleus, defective negative feedback 
mechanism of the HPA axis, hypertrophic adrenal 
glands and hypercortisolemia [49]. Chronic stress 
has been demonstrated to degenerate some prefrontal 
cortical layers, reduce pyramidal neuron dendritic 
density, and enhance the transcriptional function of 
GABA interneurons in the medial prefrontal cortex. 
Additionally, it has been hypothesized that higher 
cortisol levels disrupt the hippocampus’s ability to 
adjust to a changing environment [49-51].

1.1.7. Inflammation and depression
Systematic reviews and meta-analyses demonstrate 
that depressed patients have higher concentrations 
of circulating C-reactive protein and other 
inflammatory indicators than healthy controls  [52]. 
In major depressed patients, inflammatory markers 
in the peripheral blood have been indicated to be 
elevated. Inflammatory cytokines reaching the 
brain have been shown to interact with almost every 
pathophysiological event known to be associated 
with depression, involving neuroendocrine 
functions, neurotransmitter metabolism, and neural 
plasticity. Activation of inflammatory pathways in 
the brain has been shown to cause oxidative stress 
resulting in excitotoxicity and loss of glial elements, 
consistent with neuropathological findings in 
depressive disorders. Inflammation may also result 
in diminished neurotrophic support and alterations in 
glutamate release or reuptake  [53].

It has been reported that there is positive feedback 
between inflammation and depression. While 
psychological stress increases cytokine production, 
such as tumor necrosis factor-alpha (TNF-α), 
interleukin (IL)-1β, and IL-6, and inflammation 
leads to depression and psychological stress. The 



Kandemir Ü. Eur J Life Sci 2023; 2(2): 78-90

European Journal of Life Sciences ▪ August 202382

bidirectional association between inflammation 
and depression parallels the clinical link between 
inflammatory and depression diseases. Depression 
rates are higher in individuals suffering from an 
inflammatory disease. It has also been indicated that 
anti-inflammatory agents can be successfully used in 
addition to treatment with antidepressants [49].

1.1.8. Genetic, environmental and psychosocial 
factors
Family-based research has shown that the contribution 
of genetic factors to the risk of developing depressive 
disorders is significant. According to studies, family 
members of individuals with major depression have 
a 2-3 fold increased risk of developing depression 
[54,55]. Environmental factors are frequently 
stressful events such as bad childhood experiences, 
child sexual abuse, other lifelong traumas, a lack 
of social support, marital issues, and divorce [56]. 
Environmental factors (i.e., trauma, stressful life 
experience) raise the risk of depression by changing 
the brain’s structure, chemistry and function [28].

Various genes and genetic polymorphisms have 
been linked to the development of MDD. Some 
of these genes are tryptophan hydroxylase 1 gene 
(TPH1), noradrenaline transporter gene (SLC6A2), 
dopamine transporter gene (SLC6A3), serotonin 
transporter gene (SLC6A4), serotonin receptor gene 
(HTR1A, HTR2A, HTR1B, HTR2C), dopamine 
receptor gene (DRD4) catechol-o-methyltransferase 
(KOMT), MAO-A and tyrosine hydroxylase (TH) 
gene. Apolipoprotein E (APOE ԑ2 and APOE ԑ4), 
guanine nucleotide binding protein (GND3), and the 
methylenetetrahydrofolate reductase gene (MTHFR 
677T) are some of the other genes that have been 
investigated. Polymorphic variations related to point 
mutations or tandem repeat polymorphisms have 
been reported in depressed patients for each of these 
genes [8,54].

1.2. Experimental Models of Depression

Depression symptoms such as depressed mood, 
anhedonia, somnipathy, appetite/weight alterations, 
and psychomotor changes can be easily evaluated in 
animals [57].

Current depression models are based on manipulating 
the environment or biological functions of rodents 
[57]. Regardless of the used method, it has been 
suggested that a valid animal model must meet at 
least three essential criteria; appearance, structural 
and predictive validity. Etiological validity has been 
added to these criteria later [58-61].

Many experimental depression models are based 
on the implementation of various stressors. Some 
models also target other potential etiologies of 
depression (they directly target biological substrates 
that cause changes in various pathways, stress axis 
and immune system in the brain) [57]. Some of the 
experimental depression models are displayed in 
Table 1.

In this section, some of the most widely used 
experimental depression models are discussed.

Table 1. Experimental models of depression [10,57,62]
1. Adulthood stress models

• Learned helplessness
• Social isolation
• Chronic mild stress/Chronic unpredictable mild stress
• Repeated restraint stress
• Chronic social defeat stress
• Social instability stress 

2. Early-life stress models
• Prenatal stress
• Maternal separation
• Post-weaning social isolation stress

3. Lesion-induced depression model
• Olfactory bulbectomy 

4. Pharmacological models
• Reserpine-induced depression model 
• Corticosterone-induced depression model
• Lipopolysaccharide-induced depression model

5. Genetic models 
• Wistar Kyoto (WKY) model 
• Genetically-selected Flinders Sensitive Line (FSL) rat 
model 
• The Fawn-Hooded (FH/Wjd) rat 
• Holtzman Albino rat model
• Transgenic model
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1.2.1. Learned helplessness model
The “learned helplessness” model is one of the 
oldest models used to explore the consequences 
of uncontrollable stress in animals [63-65]. In the 
learned helplessness model, one of the well-validated 
animal models, uncontrollable and unexpected 
electrical foot shock stress leads to a depression-like 
condition in the experimental animal. Experimental 
animals exposed to unavoidable electric shocks 
develop “helplessness” behavior when exposed to 
the same shocks again. When animals are exposed 
to the same electric shock again in an environment 
where they can easily escape, it is observed that the 
animals delay their escape behavior or stop escaping 
completely this time [66]. The feeling of helplessness 
is among the main symptoms of MDD and is among 
the subject extensively researched in preclinical and 
clinical studies on depression [67].

With the learned helplessness model, in which animals 
are exposed to highly stressful and uncontrollable 
events, an animal model similar to human depression 
is obtained. Decreased body weight, appetite, 
locomotor activity, libido and grooming, as well 
as cognitive impairments and abnormalities, have 
been exhibited by helpless animals in this model 
[62,66,68]. The learned helplessness model has the 
advantages such as replicating the symptoms seen 
in severe depression patients, and most symptoms 
ameliorate with antidepressant medication. The 
learned helplessness model has high face validity 
and predictive validity, making it a reliable model 
for investigating the etiopathogenesis of depression. 
The model’s major disadvantage is that most of the 
depression-like symptoms do not remain long enough 
after the shock stimulus is discontinued [66,69].

1.2.2. Early life stress models
Early life and adolescence are considered sensitive 
periods for depression and affective behaviors [70]. 
Difficult early life experiences are the main risk 
factors for developing psychiatric disorders like 
major depression. The early postnatal period is 
critical in the formation and plasticity of the nervous 
system. Therefore, the early postnatal environment 
is of great importance in terms of affecting adult 
behavior. Preclinical studies have shown that early 

life stress increases susceptibility to stress and causes 
permanent changes in the HPA axis [66]. 

As a type of neonatal stress, the separation stress 
model from the mother is frequently used in 
behavioral research to explore the impacts of early 
life stress and to model the pathology of some 
psychiatric disorders [71]. Rodents are highly 
dependent on maternal care after birth. The most 
common maternal separation protocol consists 
of a 3-hour separation per day from the second 
postnatal day to the 12th day. Biological and 
behavioral outcomes in animals are then evaluated 
in adulthood. This experimental manipulation leads 
to depression-like and anxiety-like behaviors and 
impaired memory and learning. Maternal separation 
is a traumatic occurrence that simulates early life 
neglect/parent loss in humans and can influence 
offspring’s behavioral and biological phenotypes in 
adulthood. This model has been defined as a sensitive 
model for drug addiction, depression, anxiety, 
and stress-related illness [66]. Although maternal 
separation is a popular depression model used in the 
deterioration of the mother-offspring relationship, 
it has disadvantages, such as obtaining inconsistent 
findings about the investigated parameters and the 
different times of separation of the offspring from 
the mother in studies [67].

1.2.3. Social defeat stress model
Social defeat stress is a prolonged and recurrent 
arousal. In real-living conditions, most cases of 
depression are induced by high social pressure rather 
than direct neural circuit damage [72]. The social 
defeat model causes emotional and psychological 
stress by utilizing social disagreement as a source 
of stress. In this paradigm, another male rodent (test 
animal) is placed in the cage of an older, aggressive 
and dominating male rodent for 10 minutes per day. 
The test animal attacked and sometimes injured by 
the resident animal in the cage is defeated. This 
process is repeated every day for ten days with a new 
competitor. Then the animal is tested for different 
behavioral experiments. After ten days, these animals 
usually exhibit social withdrawal and anhedonia 
behavior. In addition, several physiological changes 
have been observed in animals, including decreased 
sexual behavior, increased defensive behavior and 
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anxiety, reduced locomotor or exploratory activity, 
changes in circadian rhythm, nutrition and body 
weight, sleep disturbances, and impaired immune 
functions. Similar to other depression models, the 
HPA axis has been demonstrated to be activated 
in defeated rodents. The social defeat also causes 
some neurobiological changes related to MDD, 
such as the release of proinflammatory cytokines, 
hypercortisolemia, and neurotrophin changes 
[57,62]. 

The advantage of the model is that it can be created 
in an average of 20 days with a simple method. It 
is accepted that female mice and rats have low 
aggression, and male-to-female attack is uncommon 
in both species. Therefore,  the main disadvantages 
of this model based on regional aggression between 
males are that it cannot be studied in female 
subjects, and the subjects are limited to adult animals 
[62,72,73]. 

1.2.4. Chronic unpredictable mild stress model
The Chronic Unpredictable Mild Stress (CUMS) 
model is a widely used, well-validated, and realistic 
depression model [67,74,75]. 

The first chronic stress model based on the 
development of anhedonia has been created by Katz 
and Hersh (1981). The initial protocol, which has 
lasted for three weeks, used more severe stressors 
such as intense electric shock and prolonged food and 
water deprivation. In animals exposed to stress were 
reported to display increase in plasma corticosteroid 
levels, decrease in reward sensitivity, and decrease 
in sucrose preference which is indicative of the 
development of anhedonia [76,77]. Later, Willner 
updated this model by utilizing mild stressors that 
lasted longer and were more realistic, and the model 
was named CUMS [67,78].

The model is based on the unpredictable exposure 
of experimental animals to a range of mild stressors 
over several weeks or even months. Various stressors 
such as social isolation or crowded housing, water 
or food deprivation, changing the light/dark cycle, 
cage tilting, and wet bedding are chronically applied 
to experimental animals throughout the CUMS 
protocol [67]. Since repeated exposure to identical 

stressors may lead to adaptive behavior in animals, 
stressors are administered to experimental animals 
in an unpredictable order [66]. Experimental animals 
constantly exposed to mild stressors develop many 
behavioral changes, and “anhedonia” occurs, one of 
the main clinical symptoms of depression. Periodic 
tests based on the choice between a sweet solution 
and tap water are used in the model to assess reward 
sensitivity. Consumption or preference for the sweet 
reward has been reduced following weeks of stress 
exposure but can be restored to normal levels with 
chronic treatment with antidepressant medication 
[67,78]. 

In experimental animals for which a CUMS model 
has been created have been observed changes in 
various molecular parameters that are important 
in the neurobiology of depression. Some of these 
changes include an increase in HPA axis activity, a 
decrease in hippocampal neurogenesis, an increase 
in microglial activation, a decrease in serotonin 
neurotransmission in the forebrain, a decrease in 
neurotrophin levels, especially BDNF, reduced 
dendritic branching in the hippocampus and some 
frontal areas, increase in corticosterone levels and 
adrenal gland weight, reduction of antioxidant 
enzymes activity,  and increase in proinflammatory 
cytokines [57,66].

Many alterations seen in animals exposed to stress 
procedures, confirming face validity and structural 
validity, are reversible after chronic administration 
of various clinically effective antidepressant class 
drugs. Thus it can be declared that this animal 
model also has predictive validity. The advantage 
of the model is that it causes long-term changes 
in behavioral, neuroimmune, neurochemical, and 
neuroendocrinological parameters similar to the 
abnormalities seen in depressive cases. However, 
the CUMS model has two essential disadvantages. 
Firstly, it is a labor-intensive procedure that requires 
a large experimental space in the laboratory, and 
it is physically and practically difficult to perform 
long-term CUMS experiments. Another problem is 
that it can be difficult to create the model in a new 
laboratory environment, and it can be challenging to 
maintain a consistent standard among laboratories 
[66,67,72].



Etiopathogenesis of depression and experimental depression models used in preclinical 
studies

European Journal of Life Sciences ▪ August 2023 85

Eur J Life Sci 2023; 2(2): 78-90

1.2.5. Reserpine-induced depression model 
According to the monoamine hypothesis, depression 
is induced by a decrease in the levels of noradrenaline, 
serotonin, and dopamine neurotransmitters. VMAT2 
(vesicular monoamine transporter 2) is known to cause 
cytosolic monoamine accumulation in presynaptic 
vesicles. It has been proven that disruption of VMAT2 
expression has been shown to limit active reuptake 
and storage of monoamines. Reserpine is an alkaloid 
that prevents serotonin and catecholamines from 
being stored in vesicles at the presynaptic terminal, 
resulting in monoamine depletion and depression-
like symptoms in animals [79,80]. Pretreatment with 
antidepressants can reverse the depression caused by 
this model. This finding suggests that the reserpine-
induced depression model can be used to assess 
the effectiveness of antidepressants. Despite being 
quickly developed, the model has disadvantages 
such as significant animal loss and an inability to 
fully explain depression pathophysiology [10,72].

1.2.6. Glucocorticoid/corticosterone-induced 
depression model
High levels of glucocorticoid administration 
produce effects similar to chronic stress in animals. 
Corticosterone can be administered to animals 
for weeks to months via subcutaneous injection, 
osmotic pump implantation, drinking water, or 
feeding [10]. Chronic corticosterone administration 
results in many behavioral abnormalities in rodents, 
including anhedonia, reduced grooming, increased 
immobility time in the forced swimming test, 
memory impairment in the Morris Water Maze and 
T maze tests, and anxiety-like behaviors in the open 
field test. Furthermore, long-term corticosteroid 
administration causes structural alterations in rodent 
brains, including a reduction in hippocampus volume 
[10,62]. On the other hand, chronic corticosterone 
administration has been demonstrated to generate 
several biochemical and metabolic abnormalities 
outside the brain, impacting animal behavior 
differently than human depression [10].

1.2.7. LPS-induced depression model
A single injection of the bacterial endotoxin 
lipopolysaccharide  (LPS) at a dose of 0.5 to 0.83 
mg/kg has created a model of inflammation-related 
depression [57]. LPS is a lipophilic compound that 

can pass to the brain via the blood-brain barrier (BBB) 
or circumventricular organs [81]. The secretion of 
proinflammatory cytokines in the blood reaches its 
peak about 2 hours after systemic LPS treatment, and 
illness behavior is noticed after 6 hours, followed 
by depression-like behavior (such as a decrease in 
sucrose preference and an increase in helplessness 
behavior) 24 hours later. LPS stimulates the 
immune system, leading to microglial activation and 
increased expression of proinflammatory cytokines 
such as IL-1 and TNF-α in the brain [57,82]. 

The LPS model has some limitations over the 
traditional animal model of depression in that 
it cannot more accurately mimic the depression 
phenotype [83]

1.2.8. Lesion-induced depression model- olfactory 
bulbectomy model
The olfactory bulbectomy model is a depression 
model that was developed surgically first by Leonard 
in 1984 by removing the bilateral olfactory bulb 
[84]. Removing the olfactory bulb in rats causes 
loss of smell (anosmia) and inhibits the perception 
of pheromones. Pheromones are chemical signals 
that carry information about an animal’s behavioral 
and physiological state. Pheromones are crucial in 
reproductive behavior, sex recognition, aggressive 
behavior, male rodent social dominance, and 
avoidance behavior in rats. However, anosmia 
generated by bulbectomy is not the only mechanism 
contributing to behavioral problems [85].  

Bilateral olfactory bulbectomy causes abnormalities 
in behavioral, immune, endocrine, and 
neurotransmitter systems similar to those in major 
depressed patients. The rat’s olfactory system is 
part of the limbic area. The major mechanism 
underlying the behavioral alterations and other 
symptoms is bulbectomy-induced disruption of 
the cortical-hippocampal-amygdala circuit. These 
neuroanatomical areas have been reported to be 
dysfunctional in depressed persons [85]. Animals 
demonstrated hyperactivity in the open field test, 
poorer memory in the Morris Water Maze and 
8-arm radial maze tests, higher open-arm entries 
in the elevated plus maze test, and alterations in 
food-conditional behavior after bilateral olfactory 
bulbectomy. Olfactory bulbectomy is also associated 
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with changes in the serotonergic, noradrenergic, 
cholinergic, glutamatergic, and GABAergic 
neurotransmitter systems. Following olfactory 
bulbectomy, various immunological alterations such 
as decreased lymphocyte count, increased leukocyte 
aggregation and neutrophil count, and changes in 
acute phase proteins are observed. Additionally, in 
bulbectomized rats has been reported an increase in 
nocturnal corticosterone production [86].

The limitations of this model are its low predictive 
validity and high morbidity rate [72].

1.2.9. Genetic models
Mutant methods provide a possibility to identify 
potential risk factors for depression. For instance, 
α2A adrenergic receptor knock-out mice and mice 
with high cAMP response element binding protein 
expression may become more susceptible to 
developing depressive symptoms when exposed to 
stress [72]. Flinders Sensitive Line (FSL) rats with 
high muscarinic receptor densities in the striatum 
and hippocampus exhibit hypoactivity in the forced 
swim and open field tests. FSL rats exhibit a more 
pronounced decline in their sucrose preference when 
under acute or chronic stress. Holtzman Albino rats 
are especially preferred in investigations of learned 
helplessness. Wistar-Kyoto rats are the genetic 
models used in post-traumatic stress disorder, 
hyperactivity disorders, and anxiety research, in 
addition to being a good model of endogenous 
depression [10,62].

2. CONCLUSION

Depression is one of the primary disorders 
contributing to the global disease burden [87]. In 
this study, the general etiopathology of depression, 
experimental depression models that are widely used 
in research, and the advantages and disadvantages of 
these models are mentioned.

For many years researchers have focused on the 
monoamine hypothesis of depression, and they 
have conducted many studies to treat symptoms 
by increasing the concentration of monoamines. 
However, it is now recognized that depression is 
a considerably more complicated phenomenon. 

Inflammation, stress signaling pathways, growth 
factors, genetic and epigenetic regulation, 
environment, diet, other existing diseases and 
comorbidities have all been linked to depression’s 
symptomatology and etiology [62].

Most of the available information on the pathogenesis 
of mood changes, impaired concentration, and 
neurovegetative symptoms observed in patients 
with major depression has been derived from animal 
models [88]. Animal models are very important 
because they allow researchers to examine brain 
circuits, molecular and cellular pathways in a 
controlled setting. In addition, manipulation and 
gene editing with pharmacological agents have been 
accepted methods to study depression in animal 
models [62].

Depression models can be categorized as genetic 
models, models caused by acute and chronic 
stressful situations, models caused by changes in 
brain neurotransmitters or specific brain injuries, and 
models induced by pharmacological agents [10]. A 
valid animal model must meet the face, structural, 
predictive, and etiological validity criteria [61,89]. 

The value of experimental animal models in studying 
the etiology of depression is well known. Once the 
underlying mechanisms of the depressive disorder 
are better understood, individualized treatment 
options can be planned [62].
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1. INTRODUCTION 

Palliative care aims to improve and sustain patients’ 
and their families’ quality of life [1]. Nutrition is 
essential for patients to recover and considered a 
sign of good health [2]. Enteral nutrition must be 
given through an enteral feeding tube if the patient 
consumes a maximum of fifty percent of their daily 
nutritional needs, there are no contraindications or 

broncho-aspiration hazards and their life expectancy 
is shorter than six weeks [3]. Drug administration 
in enteral feeding patients is a complex and 
substantially critical issue during clinical practices. 
Moreover, the patients with enteral feeding tubes 
are more vulnerable to errors and challenges such as 
tube occlusion, incorrect administration techniques 
and inadequate dosage form selection when they 
have to take oral drugs [4]. This case study highlights 
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several medication errors that happened during drug 
administration via an enteral feeding tube. 

2. CASE REPORT

A 94-year-old man was admitted to the palliative 
care service due to poor general condition, and he 
had chronic diseases such as diabetes, hypertension, 
Alzheimer’s and decubitus ulcer. The patient had 
been fed by using an enteral feeding tube for seven 
months. Seven drugs (Table 1) and a specific product 
with 1kcal/ ml for diabetes treatment were given to 
the patient through the enteral feeding tube. A total 
of two tube occlusions leading to tube replacement 
occurred since the enteral feeding tube was inserted. 

All the drugs were crushed by the patient’s relatives, 
mixed with the enteral nutrition product and given to 
the patient. The tube was rarely flushed with water 
after this application. 

3. FINDINGS

The errors observed in the administration of oral 
drugs are described below. 

3.1. Inappropriate dosage form selection and oral 
medication preparation

Donepezil hydrochloride/ Metoprolol succinate/ 
Olanzapine / Quetiapine fumarate film tablet
The film coating can protect tablets containing active 
pharmaceutical components that are susceptible to 
light, moisture or oxidation, resulting in improved 
medical product stability throughout manufacturing 
and storage. Furthermore, film coating has the ability 

to control tablet drug release patterns in terms of rate, 
site and time. Film coating is also applicable to mask 
the taste and improve patient compliance. However, 
coated dosage forms should be administered with 
a special caution when they are given through an 
enteral feeding tube. Tablets coated only to improve 
the tablet’s appearance and mask the unpleasant taste 
can be crushed when administered through an enteral 
feeding tube. However, when those coated to protect 
from moisture, light and air are crushed, the stability 
of the active drug substance may be impaired. In 
the case of crushing the tablets coated with polymer 
to provide a controlled release and protect the drug 
from gastric irritation, the release properties of the 
drug may change and obstruct the tube [5]. 

Donepezil hydrochloride is a film-coated tablet 
[6]. Micromedex® and Lexicomp® recommend the 
administration of this drug regardless of mealtimes 
[7,8]. Unfortunately, no specific data is available 
in these two databases regarding the enteral tube 
administration for this dosage form [9].  

Metoprolol succinate tablets can be split into two 
parts or more whenever necessary; however, it is 
not recommended to crush or chew them as stated 
in the prospectus [6]. Although Micromedex® and 
Lexicomp® provide recommendations for metoprolol 
succinate capsule and some metoprolol tartrate 
forms, there is no information about metoprolol 
succinate film-coated tablet administration in the 
nasogastric tube [7,8]. Similarly, the handbook 
does not include any information or data regarding 
metoprolol succinate while only a limited amount of 
information is available about metoprolol tartrate in 
this handbook [9]. 

Table 1. Medicines administered through the patient’s enteral feeding tube
Drug / Dose (tablets) Dosage form Time of use (hr)
Allopurinol 300mg Tablet 18
Donepezil hydrochloride 5mg F.C. Tablet 22
Metoprolol succinate 50mg F.C Tablet 10-22
Nebivolol 5mg Tablet 10
Olanzapine 5mg F.C Tablet 10-22
Pantoprazole 40mg E.C. Tablet 06
Quetiapine 25mg F.C. Tablet 22
*F.C.: film-coated, E.C.: enteric coated
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Olanzapine is a film-coated tablet and can also be 
administered regardless of meal times; however, 
there is no specific data on enteral tube administration 
as well [6-9].

Quetiapine fumarate is a film-coated tablet, too. It 
might be administered together with foods or not [6]. 
Despite the presence of some recommendations in 
Micromedex® and Lexicomp® regarding immediate 
and extended-release forms or suspensions, no 
information is provided for film-coated tablet dosage 
forms [7,8] neither in Micromedex® and Lexicomp® 
nor in the handbook [9].

Unfortunately, despite the presence of the above-
mentioned information, all these drugs were used by 
this patient by crushing due to the lack of any other 
available alternative forms in the hospital.

Pantoprazol enteric-coated tablet
It is advised that enteric-coated (gastro-resistant tablet) 
should not be crushed or chewed [6]. Similarly, it is 
recommended that tablets containing pantoprazole 
should be swallowed whole, not chewed or crushed 
[10].  In Micromedex® and Lexicomp®, there are 
some recommendations about delayed release 
suspension forms but no information is provided 
for film-coated tablet dosage forms [7,8]. Based on 
the “Handbook of Drug Administration via Enteral 
Feeding Tubes,” it is mentioned that Pantoprazole 
tablets can be crushed and dissolved in 10 mL of 
8.4% sodium bicarbonate for administration through 
an enteral feeding tube. When kept at 5°C, this 
solution is stable for two weeks. Although the peak 
plasma concentration remains unchanged compared 
to orally administered tablets, the bioavailability 
is reduced to 75% of the oral equivalent [9]. Also, 
pantoprazole is sensitive to gastric acid and can 
deteriorate in acidic pH settings, just as other proton 
pump inhibitors (PPIs). Therefore, there is a danger 
of degradation when split tablets are given through an 
enteral feeding tube, which could lead to diminished 
pharmaceutical effectiveness [4]. In addition, 
crushing the enteric-coated tablets may obstruct 
the tube [11]. The physician was recommended by 
the clinical pharmacist that pantoprazole should 
be dissolved in sodium bicarbonate. However, the 
recommendation was not accepted, considering that 
it would be a problem to prepare an 8.4% sodium 

bicarbonate solution every day in the hospital. 
Therefore, pantoprazole tablets were taken by the 
patient by crushing. 

All tablets were crushed together and mixed with 
an enteral nutrition product
In this case, the patient’s all drugs were crushed 
together and mixed with the enteral nutrition 
formula. The American Society for Parenteral and 
Enteral Nutrition (ASPEN) guidelines recommend 
not combining drugs for administration through 
an enteral feeding tube. Instead, each drug should 
be administered separately due to the potential 
for physical and chemical incompatibility, tube 
blockage, or alternations in pharmacodynamics [12]. 
The person administering the drug to the patient 
was informed about this recommendation by the 
clinical pharmacist. It was ensured that the drug 
was administered from the tube by using the correct 
method.

Inadequate rinse of the tube with water before and 
after drug administration
The patient’s nasogastric tube was rarely flushed with 
water before or after drug administration. Practice 
guidelines recommend flushing feeding tubes with 
30 mL of water every four hours or before and 
after intermittent feeding in adult patients. Before 
giving the medication, it is recommended to stop the 
feeding, flush the tube with at least 15 mL of water, 
and administer the medication and later flush the 
tube again with at least 15 mL of water by taking the 
patient’s fluid volume status into account. According 
to the guidelines it is necessary to repeat with the 
following medication, and flush the tube again with 
at least 15 mL of water. In clinical practice, there can 
be differences in the amount, timing, and frequency 
of water flushes [12]. This recommendation was 
given by the clinical pharmacist and the tube was 
flushed correctly accordingly.

3.2. Drug interaction and incompatibility with 
nutrition formula

Pantoprazole: Food may reduce PPI’s maximum 
plasma concentration although this does not have a 
significant impact on the AUC. However, if possible, 
it is recommended to administer PPI approximately 
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30 minutes before meals to improve absorption and 
maximize clinical effect. Also, it is advised that PPIs 
be issued with an acidic juice such as apple juice or 
orange juice rather than milk because PPIs may not 
absorb when used with non-acidic juices [10]. The 
clinical pharmacist made this recommendation and 
ensured that pantaprazole was given at the right time. 

4. DISCUSSION

Malnutrition increases comorbidities and lowers 
physical performance and quality of life. As a 
result, nutritional support should be integrated into 
palliative care treatments and the implications for 
quality of life and life expectancy should be assessed. 
Enteral nutrition is frequently used as nutritional 
support [13]. When the oral route is insufficient 
or unsafe, the enteral feeding tube is essential to 
provide enteral nutrition [14]. Drug administration 
through enteral feeding tube is complex and critical 
in clinical practice. Concurrent drug administration 
during enteral nutrition may result in problems 
such as tube blockage (15%) [14], diarrhea (45%) 
and loss of therapeutic efficacy (26%) if adequate 
precautions are not implemented [15]. As can be 
seen in this case, mistakes made during the ordering 
and administration of the pharmaceuticals resulted in 
incorrect dosage administration.

There are many potential causes for these errors. 
The physician may lack knowledge of oral dosage 
forms, pharmaceutical knowledge or the proper 
dosage forms for administration through the 
feeding tube. Such errors may also be caused by 
inadequately qualified and inexperienced nurses 
caring for patients. Demirkan et al. suggested 
that around 40% of prescription drugs were not 
administered appropriately via a feeding tube, 
despite 98% of nurses and 86% of doctors stating 
that they paid special attention to drug suitability 
when administered through a feeding tube [16]. In 
addition, the absence of a computerized system that 
can warn health staff when inappropriate dosage 
form selection errors, drug incompatibility and drug 
interaction occur may increase medication errors 
[17]. Another factor contributing to medication errors 

is the lack of a multidisciplinary team comprised of 
various professionals, including a pharmacist. Oral 
medicine delivery mistakes in patients with enteral 
feeding tubes were reduced by 95% after intervention 
by a team of trained pharmacist, a quality manager, 
a pharmacy technician, a dietician and nursesa [18].

Appropriate drug administration via a feeding tube 
can be improved by following the Handbook of 
Drug Administration [9], ASPEN standards [19], 
drug information on Micromedex® IBM [7] and 
Lexicomp® programs [8].

In conclusion, due of changing drugs efficacy and 
safety profiles, as well as the possibility of tube 
occlusion, practitioners should be more cautious 
when selecting drugs to be supplied by feeding 
tube. A pharmacist’s review of drug dose forms in 
patients with feeding tubes might be advantageous 
for appropriately administering and preventing drug 
interactions.
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