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Valéria Neves DOMINGOS CAVALCANTI
Universidade Estadual de Maringá, Brazil
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Abstract. The amazing idea of soft sets was first claimed by Molodtsov [18],
a new mathematical tool for dealing with uncertainties free from the other

theories’ limitations. After the advent of soft set theory, bipolar soft sets,

as a generalization of soft sets, a new model of uncertain information, were
introduced by Shabir and Naz [21]. The primary purpose of this paper is to

introduce and investigate the structures of bipolar soft continuity, bipolar soft

openness, bipolar soft closedness and bipolar soft homeomorphism.

1. Introduction

Mainly since the problems in many vital areas of our lives, such as economics,
environment, and engineering, cannot be solved due to the inherent difficulties
of conventional methods, many theories have been put forward to combat these
problems. In 1999, Molodtsov [18] introduced a practical theory called soft set
theory which is free from the other theories. The amazing idea of soft sets was
given as a new mathematical tool for dealing with uncertainties free from the other
theories’ limitations. At present, many studies on soft set theory have been carried
out different areas by some researchers [1, 5, 6, 9, 13, 16, 2, 3].

After the advent of soft set theory, bipolar soft sets, a new model of uncertain
information, were introduced by Shabir and Naz [21]. It is known that the structure
of a bipolar soft set consists of two mappings. Since these mappings explain both
positive information and opposite approximation, the idea of the bipolar soft set
has recently gained momentum among many researchers. Aslam et al. [4] combined
the concept of a bipolar fuzzy set and a soft set. In addition, they introduced the
notion of bipolar fuzzy soft set and studied fundamental properties. Naz and Shabir
[22] gave algebraic structures of bipolar fuzzy soft sets. Hayat et al. [14] applied the
concept of bipolar soft sets to hemirings. Karaaslan and Karataş [15] redefined the
idea of bipolar soft set and bipolar soft set operations as more functional than Shabir
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12 C. GUNDUZ ARAS AND C. METIN

and Naz’s definition and operations. In 2017, Shabir and Bakhtawar [23] employed
the notion of bipolar soft sets to give the concept of bipolar soft topological spaces,
which are extensions of soft topological space. They gave some new important
structures in bipolar soft topological spaces, such as bipolar soft connected spaces,
bipolar soft disconnected spaces and bipolar soft compact spaces. Since the concept
of bipolar soft topology has great importance, the topological structures of bipolar
soft sets have been studied by many authors [7, 19, 20]. Gunduz et al. [10] recently
defined a new bipolar soft point. By using the bipolar soft point, Gunduz et al.
[12] examined some important properties of bipolar soft functions.

Since functions are one of the most critical concepts in mathematics, they have
many applications. Many studies have been done on soft functions in soft topolog-
ical spaces in [11, 17]. The concept of bipolar soft functions was defined in [8] as
the generalization of soft functions and given the notion of bipolar soft image and
inverse image.

The primary purpose of this paper is to introduce and investigate the structures
of bipolar soft continuity, bipolar soft openness, bipolar soft closedness and bipolar
soft homeomorphism and show these examples.

2. Preliminaries

Throughout this section, the symbols U, Ẽ = E∪¬E and P (U) denote the initial
universe, a set of parameters, and the power set of U , respectively.

Definition 2.1. [16] Let E = {ei : i = 1, 2, ..., n} be a set of parameters. The not
set of E, denoted by ¬E, is defined by ¬E = {¬ei : i = 1, 2, ..., n} , where ¬ei = not
ei for all i.

Definition 2.2. [21] A bipolar soft set
(
F, Ẽ

)
on U is defined as

FẼ = {(ei, F (ei) , F (¬ei)) : ei ∈ E} ,

where F : Ẽ → P (U) such that F (e) ∩ F (¬e) = ∅, for each e ∈ E.
In this paper, a bipolar soft set denoted by FẼ instead of

(
F, Ẽ

)
. The collection

of all bipolar soft sets on U is denoted by BS
(
U

Ẽ

)
.

Definition 2.3. [21] Let FẼ , GẼ ∈ BS
(
U

Ẽ

)
. Then,

1. FẼ⊆̃GẼ , if F (e) ⊂ G (e) and G (¬e) ⊂ F (¬e) , for each e ∈ E.
2. FẼ = GẼ , if FẼ⊆̃GẼ and GẼ⊆̃FẼ .
3. FẼ∪̃GẼ = HẼ where H (e) = (F ∪G) (e) = F (e) ∪ G (e) and H (¬e) =

(F ∪G) (¬e) = F (¬e) ∩G (¬e) , for each e ∈ E.
4. FẼ∩̃GẼ = ZẼ where Z (e) = (F ∩G) (e) = F (e) ∩ G (e) and Z (¬e) =

(F ∩G) (¬e) = F (¬e) ∪G (¬e) , for each e ∈ E.

Definition 2.4. [21] The bipolar soft complement of FẼ , denoted by F c
Ẽ
, where

F c : Ẽ → P (U) is a mapping defined by F c (e) = F (¬e) and F c (¬e) = F (e) , for
each e ∈ E.

Definition 2.5. [21] If F (e) = ∅ and F (¬e) = U for each e ∈ E ,ΦẼ is called

a null bipolar soft set. Also, if F (e) = U and F (¬e) = ∅ for each e ∈ E, ŨẼ is
called an absolute bipolar soft set.
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Symbolically, ΦẼ = {(ei,∅, U) : ei ∈ E} and ŨẼ = {(ei, U,∅) : ei ∈ E} .

Definition 2.6. [23] Let τ̃ ⊂ BS
(
U

Ẽ

)
. τ̃ is said to be a bipolar soft topology on

U , if τ̃ confirms the following conditions:

(1) ΦẼ , ŨẼ ∈ τ̃ .
(2) The union of any number of bipolar soft sets in τ̃ belongs to τ̃ .
(3) The intersection of any two bipolar soft sets in τ̃ belongs to τ̃ .(
U, τ̃ , Ẽ

)
is called bipolar soft topological space and the family of all bipolar soft

topological space on U denoted as BSTS.

Definition 2.7. [23] Let
(
U, τ̃ , Ẽ

)
be a bipolar soft topological space on U and FẼ

∈ BS
(
U

Ẽ

)
. FẼ is called

(1) a bipolar soft open set, if it belongs to τ̃ .
(2) a bipolar soft closed set, if F c

Ẽ
belongs to τ̃ .

Definition 2.8. [7] Let
(
U, τ̃ , Ẽ

)
be a BSTS and FẼ ∈ BS

(
U

Ẽ

)
. Then, the

bipolar soft interior of FẼ, denoted by F ◦
Ẽ
, is the union of all bipolar soft open

subsets of FẼ .

Definition 2.9. [7] Let
(
U, τ̃ , Ẽ

)
be a BSTS and FẼ ∈ BS

(
U

Ẽ

)
. Then, the

bipolar soft closure of FẼ, denoted by FẼ , is the intersection of all bipolar soft
closed sets containing FẼ .

Theorem 2.1. [7] Let
(
U, τ̃ , Ẽ

)
be a BSTS and FẼ ∈ BS

(
U

Ẽ

)
. Then,

[
FẼ
]c

=(
F c
Ẽ

)◦
.

Theorem 2.2. [7] Let
(
U, τ̃ , Ẽ

)
be a BSTS and FẼ ∈ BS

(
U

Ẽ

)
. Then,

[
F c
Ẽ

]
=[

F ◦
Ẽ

]c
.

3. Continuous functions on bipolar soft topological spaces

We mention, in this section, some important concepts, such as bipolar soft image
and bipolar soft pre-image for the bipolar soft sets on U whose set of parameters
is a subset of E. In addition, we recall the relationship between the image and
the inverse image of bipolar soft sets. This is followed by the definition of bipolar
soft continuous function associated with some of its results. Later, we will give a
detailed investigation of bipolar soft continuous functions.
E and E′, respectively, stand for the sets of parameters of U and V ; ∅ 6=

E1, E2 , E3 ⊂ E and ∅ 6= E′1, E
′
2 ⊂ E′.

Definition 3.1. [8] Let f : U → V be an injective function, ϕ : E → E′ and
ϑ : ¬E → ¬E′ be two functions where ϑ (¬e) = ¬ϕ (e), for all ¬e ∈ ¬E. Then,

ψfϕϑ : BS
(
U

Ẽ

)
→ BS

(
V

Ẽ′

)
is called a bipolar soft function.

Definition 3.2. [8] Let ψfϕϑ : BS
(
U

Ẽ

)
→ BS

(
V

Ẽ′

)
be a bipolar soft function

and FẼ ∈ BS
(
U

Ẽ

)
. Then, the image of FẼ under ψfϕϑ,

ψfϕϑ
(
FẼ
)

= (ψfϕϑ (F (e)) , ψfϕϑ (F (¬e)) , E′)
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is defined as follows: for all e′ ∈ E′,

ψfϕϑ (F ) (e′) =

 f

(
∪

e∈ ϕ−1(e′)∩E1

F (e)

)
, if ϕ−1 (e′) ∩ E1 6= ∅,

∅, otherwise.

and

ψfϕϑ (F ) (¬e′) =

 f

(
∩

¬e∈ ϑ−1(¬e′)∩¬E1

F (¬e)
)
, if ϑ−1 (¬e′) ∩ ¬E1 6= ∅,

V, otherwise.

Remark. The condition that the function f is an injective function is essential.

Proposition 3.1. Let ψfϕϑ : BS
(
U

Ẽ

)
→ BS

(
V

Ẽ′

)
be a bipolar soft function and

FẼ ∈ BS
(
U

Ẽ

)
. Then, ψfϕϑ

(
FẼ
)

is a bipolar soft set in BS
(
V

Ẽ′

)
.

Proof. For all e′ ∈ E′,

ψfϕϑ (F ) (e′) ∩ ψfϕϑ (F ) (¬e′) = f

(
∪

e∈ ϕ−1(e′)∩E
F (e)

)
∩ f

(
∩

¬e∈ ϑ−1(¬e′)∩¬E
F (¬e)

)
= ∅

Then, ψfϕϑ
(
FẼ
)

is a bipolar soft set in BS
(
V

Ẽ′

)
. �

Definition 3.3. [8] Let ψfϕϑ : BS
(
U

Ẽ

)
→ BS

(
V

Ẽ′

)
be a bipolar soft function.

Then,

(1) If f and ϕ are surjective functions, then ψfϕϑ is called a bipolar soft surjective
function.

(2) If f and ϕ are injective functions, then ψfϕϑ is called a bipolar soft injective
function.

(3) If f and ϕ are bijective functions, then ψfϕϑ is called a bipolar soft bijective
function.

Remark. [8] It is clear that ψfϕϑ is a bipolar soft surjective if and only if ψfϕϑ

(
ŨẼ

)
=

Ṽ
Ẽ′
.

Remark. [8] If the bipolar soft sets have the same set of parameters, for each

F
Ẽ1
, G

Ẽ1
∈ BS

(
U

Ẽ

)
, when ψfϕϑ

(
F
Ẽ1

)
= ψfϕϑ

(
G
Ẽ1

)
, we obtain F

Ẽ1
= G

Ẽ1
,

i.e. ψfϕϑ is a bipolar soft injective function.

Theorem 3.2. [8] Let ψfϕϑ : BS
(
U

Ẽ

)
→ BS

(
V

Ẽ′

)
be a bipolar soft function. If

F
Ẽ1
, G

Ẽ2
∈ BS

(
U

Ẽ

)
, then

(1) ψfϕϑ
(
ΦẼ
)
⊇̃
(
Φ
Ẽ′

)
. If f is surjective, then the equality holds.

(2) ψfϕϑ

(
ŨẼ

)
⊆̃
(
Ṽ
Ẽ′

)
.

(3) F
Ẽ1
⊆̃G

Ẽ2
⇒ ψfϕϑ

(
F
Ẽ1

)
⊆ ψfϕϑ

(
G
Ẽ2

)
.

(4) ψfϕϑ

(
F
Ẽ1
∪̃G

Ẽ2

)
= ψfϕϑ

(
F
Ẽ1

)
∪̃ ψfϕϑ

(
G
Ẽ2

)
.

(5) ψfϕϑ

(
F
Ẽ1
∩̃G

Ẽ2

)
⊆ ψfϕϑ

(
F
Ẽ1

)
∩̃ ψfϕϑ

(
G
Ẽ2

)
. If ψfϕϑ is a bipolar soft

injective function, then the equality holds.
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Definition 3.4. [8] Let ψfϕϑ : BS
(
U

Ẽ

)
→ BS

(
V

Ẽ′

)
be a bipolar soft function.

The inverse image of the bipolar soft set H
Ẽ′1
∈ BS

(
V

Ẽ′

)
under ψfϕϑ,

ψ−1fϕϑ

(
H
Ẽ′1

)
=
(
ψ−1fϕϑ (H (e)) , ψ−1fϕϑ (H (¬e)) , E

)
is given as follows: for all e ∈ E,

ψ−1fϕϑ (H (e)) =

{
f−1 (H (ϕ (e))) , if ϕ (e) ∈ E′1,
∅, if ϕ (e) /∈ E′1.

ψ−1fϕϑ (H (¬e)) =

{
f−1 (H (ϑ (¬e))) , if ϑ (¬e) ∈ ¬E′1,
U, if ϑ (¬e) /∈ ¬E′1.

Proposition 3.3. Let ψfϕϑ : BS
(
U

Ẽ

)
→ BS

(
V

Ẽ′

)
be a bipolar soft function and

H
Ẽ′1
∈ BS

(
V

Ẽ′

)
. Then, ψ−1fϕϑ

(
H
Ẽ′1

)
is a bipolar soft set in BS

(
U

Ẽ

)
.

Proof. For all e ∈ E,
ψ−1fϕϑ (H (e)) ∩ ψ−1fϕϑ (H (¬e)) = f−1 (H (ϕ (e))) ∩ f−1 (H (ϑ (¬e)))

= f−1 ((H (ϕ (e)) ∩H (ϑ (¬e))))
= f−1 (∅)
= ∅

Thus, ψ−1fϕϑ

(
H
Ẽ′1

)
is a bipolar soft set in BS

(
U

Ẽ

)
. �

Remark. Although the image of the inverse image of a set for any classical function
is a subset of this set, this is not true in bipolar soft functions. A condition must
be added to enable this property.

Theorem 3.4. [8] Let ψfϕϑ : BS
(
U

Ẽ

)
→ BS

(
V

Ẽ′

)
be a bipolar soft function. If

H
Ẽ′1
, Q

Ẽ′2
∈ BS

(
V

Ẽ′

)
, then

(1) ψ−1fϕϑ

(
Ṽ
Ẽ′

)
= ŨẼ .

(2) ψ−1fϕϑ
(
Φ
Ẽ′

)
= ΦẼ .

(3) H
Ẽ′1
⊆̃Q

Ẽ′2
⇒ ψ−1fϕϑ

(
H
Ẽ′1

)
⊆̃ψ−1fϕϑ

(
Q
Ẽ′2

)
.

(4) ψ−1fϕϑ

(
H
Ẽ′1
∪̃Q

Ẽ′2

)
= ψ−1fϕϑ

(
H
Ẽ′1

)
∪̃ψ−1fϕϑ

(
Q
Ẽ′2

)
.

(5) ψ−1fϕϑ

(
H
Ẽ′1
∩̃Q

Ẽ′2

)
= ψ−1fϕϑ

(
H
Ẽ′1

)
∩̃ψ−1fϕϑ

(
Q
Ẽ′2

)
.

(6) ψ−1fϕϑ

(
Hc

Ẽ′1

)
=
(
ψ−1fϕϑ

(
H
Ẽ′1

))c
.

Now, we consider the relationships between the image and inverse image of
bipolar soft sets.

Theorem 3.5. [8] Let ψfϕϑ : BS
(
U

Ẽ

)
→ BS

(
V

Ẽ′

)
be a bipolar soft function,

F
Ẽ1
∈ BS

(
U

Ẽ

)
and H

Ẽ′
∈ BS

(
V

Ẽ′

)
. Then,

(1) F
Ẽ1
⊆̃ ψ−1fϕϑ

(
ψfϕϑ

(
F
Ẽ1

))
. If E1 = E and ψfϕφ is a bipolar soft injective

function, then the equality holds.
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(2) If f is a surjective function, then ψfϕϑ

(
ψ−1fϕϑHẼ′

)
⊆̃H

Ẽ′
. If ψfϕϑ is a bipolar

soft surjective function, the equality holds.
Now, we consider the concept of bipolar soft point followed by some relations

between them.

Definition 3.5. [10] A bipolar soft subset FẼ of ŨẼ is called a bipolar soft point
if there exist x, y ∈ U,(x 6= y need not be true) e ∈ E satisfying

xye (e1) =

{
∅, if e 6= e1,
{x} , if e = e1.

and

xye (¬e1) =

{
U, if e 6= e1,

U − {x, y} , if e = e1.

The bipolar soft point will be shortly denoted by xye .

Definition 3.6. Let xye and xy11e1 be two bipolar soft points over U. Then, xye and
xy11e1 are called different bipolar soft points, if x 6= x1 or e 6= e1.

Definition 3.7. [20] Let xye be a bipolar soft point and FẼ ∈ BS
(
U

Ẽ

)
. We said

that xye belongs to the bipolar soft set FẼ , denoted by xye ∈̃FẼ , if xye (e) = {x} ⊂ F (e)
and xye (¬e) ⊃ F (¬e) .

Remark. Every bipolar soft set can be written as a union of its bipolar soft points.

Example 3.1. Let U = {x1, x2, x3, x4} , E = {e1, e2} and

FẼ = {(e1, {x1, x2} , {x4}) , (e2, {x2, x3} , {x1, x4})} .

Then, we can write FẼ as a union of some bipolar soft points. Indeed, for e1, e2 ∈ E,

F (e1) =
(
xx2
1e1
∪ xx3

1e1
∪ xx1

2e1
∪ xx3

2e1

)
(e1) ,

F (¬e1) =
(
xx2
1e1
∩ xx3

1e1
∩ xx1

2e1
∩ xx3

2e1

)
(¬e1) ,

F (e2) =
(
xx3
2e2
∪ xx2

3e2

)
(e2) ,

F (¬e2) =
(
xx3
2e2
∩ xx2

3e2

)
(¬e2) ,

where

xx2
1e1

(e1) = {x1} , xx2
1e1

(¬e1) = {x3, x4} ,
xx3
1e1

(e1) = {x1} , xx3
1e1

(¬e1) = {x2, x4} ,
xx1
2e1

(e1) = {x2} , xx1
2e1

(¬e1) = {x3, x4} ,
xx3
2e1

(e1) = {x2} , xx3
2e1

(¬e1) = {x1, x4} ,
xx3
2e2

(e2) = {x2} , xx3
2e2

(¬e2) = {x1, x4} ,
xx2
3e2

(e2) = {x3} , xx2
3e2

(¬e2) = {x1, x4} .

Definition 3.8. [20] Let
(
U, τ̃ , Ẽ

)
be a BSTS, FẼ ∈ BS

(
U

Ẽ

)
and xye be a bipolar

soft point in U. Then, FẼ is said to be a bipolar soft neighbourhood of xye , if there

exists a bipolar soft open set GẼ such that xye ∈̃GẼ⊆̃FẼ .
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Definition 3.9. Let
(
U, τ̃ , Ẽ

)
and

(
V, τ̃ ′, Ẽ′

)
be two bipolar soft topological spaces

over U and V, respectively and ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
be a function. For

each bipolar soft neighbourhood H
Ẽ′

of ψfϕϑ (xye) , if there exists a bipolar soft neigh-

bourhood FẼ of xye such that ψfϕϑ
(
FẼ
)
⊆̃H

Ẽ′
, then ψfϕϑ is called a bipolar soft

continuous function at xye .

Moreover, ψfϕϑ is called bipolar soft continuous function on U if ψfϕϑ is a bipolar
soft continuous function for all xye .

Theorem 3.6. Let
(
U, τ̃ , Ẽ

)
and

(
V, τ̃ ′, Ẽ′

)
be two bipolar soft topological spaces

over U and V, respectively and ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
be a mapping. Then,

the following conditions are equivalent:

(1) ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
is a bipolar soft continuous function,

(2) For each G
Ẽ′
∈ τ̃ ′, ψ−1fϕϑ

(
G
Ẽ′

)
∈ τ̃ ,

(3) For each bipolar soft closed set H
Ẽ′

over V, ψ−1fϕϑ
(
H
Ẽ′

)
is a bipolar soft

closed set over U,

(4) For each FẼ ∈ BS
(
U

Ẽ

)
, ψfϕϑ

(
FẼ
)
⊆̃ψfϕϑ

(
FẼ
)
,

(5) For each D
Ẽ′
∈ BS

(
V

Ẽ′

)
, ψ−1fϕϑ

(
D
Ẽ′

)
⊆̃ ψ−1fϕϑ

(
D
Ẽ′

)
,

(6) For each D
Ẽ′
∈ BS

(
V

Ẽ′

)
, ψ−1fϕϑ

(
D◦
Ẽ′

)
⊆̃
(
ψfϕϑ

(
D
Ẽ′

))◦
.

Proof. (1) ⇒ (2) Let G
Ẽ′
∈ τ̃ ′ and xye ∈̃ψ−1fϕϑ

(
G
Ẽ′

)
. Then, ψfϕϑ (xye) ∈̃G

Ẽ′
. Since

ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
is a bipolar soft continuous mapping, there is

xye ∈̃FẼ∈̃τ̃ such that (ψfϕϑ)
(
FẼ
)
⊆̃G

Ẽ′
. Hence, xye ∈̃FẼ⊆̃ψ

−1
fϕϑ

(
G
Ẽ′

)
. This implies

that ψ−1fϕϑ
(
G
Ẽ′

)
is a bipolar soft open set over U.

(2)⇒ (1) Let xye be any bipolar soft point and (ψfϕϑ) (xye) ∈̃G
Ẽ′

be an arbitrary

bipolar soft neighbourhood of ψfϕϑ (xye). Then, xye ∈̃ψ−1fϕϑ
(
G
Ẽ′

)
is a bipolar soft

neighbourhood and (ψfϕϑ)
(
ψ−1fϕϑ

(
G
Ẽ′

))
⊆̃G

Ẽ′
.

(2)⇒ (3) From the definition of complement of bipolar soft set, it is obtained.
(3)⇒ (4) Let FẼ ∈ BS

(
U

Ẽ

)
. Since

(ψfϕϑ)
(
FẼ
)
⊆̃(ψfϕϑ)

(
FẼ
)
,

FẼ⊆̃ψ
−1
fϕϑ(ψfϕϑ)

(
FẼ
)

is obtained. By part (3), since ψ−1fϕϑ(ψfϕϑ)
(
FẼ
)

is a bipolar

soft closed set over U, FẼ⊆̃ψ
−1
fϕϑ(ψfϕϑ)

(
FẼ
)
. Thus, (ψfϕϑ)

(
FẼ
)
⊆̃(ψfϕϑ)

(
FẼ
)

is
satisfied.

(4)⇒ (5) Let D
Ẽ′
∈ BS

(
V

Ẽ′

)
and (ψfϕφ)

−1 (
D
Ẽ′

)
= FẼ . By part (4),

(ψfϕϑ)
(
FẼ
)

= (ψfϕϑ)
(
ψ−1fϕϑ

(
D
Ẽ′

))
⊆̃(ψfϕϑ)

(
ψ−1fϕϑ

(
D
Ẽ′

))
⊆̃D

Ẽ′
.

Then,
(
ψ−1fϕϑ

(
D
Ẽ′

))
=
(
FẼ
)
⊆̃ψ−1fϕϑ

(
D
Ẽ′

)
is obtained.
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(5) ⇒ (6) Let D
Ẽ′
∈ BS

(
V

Ẽ′

)
. Substituting Dc

Ẽ′
for condition in (5). Then,

ψ−1fϕϑ

(
Dc
Ẽ′

)
⊆̃ψ−1fϕϑ

(
Dc
Ẽ′

)
. Since D◦

Ẽ′
=
(
Dc
Ẽ′

)c
, then

ψ−1fϕϑ

(
D◦
Ẽ′

)
= ψ−1fϕϑ

((
Dc
Ẽ′

)c)
=

((
ψ−1fϕϑ

(
Dc
Ẽ′

)))c
⊆̃

(
ψ−1fϕϑ

(
Dc
Ẽ′

))c
=

((
ψ−1fϕϑ

(
D
Ẽ′

))c)c
=

(
ψ−1fϕϑ

(
D
Ẽ′

))◦
.

(6)⇒ (2) Let D
Ẽ′
∈ τ̃ ′. Since(
ψ−1fϕϑ

(
D
Ẽ′

))◦
⊆̃

(
ψ−1fϕϑ

(
D
Ẽ′

))
= ψ−1fϕϑ

((
D
Ẽ′

)◦)
⊆̃

(
ψ−1fϕϑ

(
D
Ẽ′

))◦
,

then ψ−1fϕϑ
(
D
Ẽ′

)
∈ τ̃ . �

Example 3.2. Let U = {x1, x2, x3, x4} , V = {y1, y2, y3, y4} be two sets and E =
E′ = {e1, e2} be two sets of parameters. Then,

τ̃ =
{

ΦẼ , ŨẼ , F1Ẽ
, F2Ẽ

, F3Ẽ
, F4Ẽ

}
is a bipolar soft topology over U and

τ̃ ′ =
{

ΦẼ , ṼẼ
, G1Ẽ

, G2Ẽ
, G3Ẽ

, G4Ẽ

}
is a bipolar soft topology over V , where

F1Ẽ
= {(e1, {x1, x2} , {x3}) , (e2, {x1, x3} , {x2, x4})} ,

F2Ẽ
= {(e1, {x1, x4} , {x2, x3}) , (e2, {x2, x3} , {x4})} ,

F3Ẽ
= {(e1, {x1, x2, x4} , {x3}) , (e2, {x1, x2, x3} , {x4})} ,

F4Ẽ
= {(e1, {x1} , {x2, x3}) , (e2, {x3} , {x2, x4})}

and

G1Ẽ
= {(e1, {y1, y2} , {y3}) , (e2, {y1, y3} , {y2, y4})} ,

G2Ẽ
= {(e1, {y1, y4} , {y2, y3}) , (e2, {y2, y3} , {y4})} ,

G3Ẽ
= {(e1, {y1, y2, y4} , {y3}) , (e2, {y1, y2, y3} , {y4})} ,

G4Ẽ
= {(e1, {y1} , {y2, y3}) , (e2, {y3} , {y2, y4})} .

Let f : U → V be a function defined as f (xi) = yi, i = 1, 2, 3, 4, the function
ϕ : E → E be defined as ϕ (ei) = ei and the function ϑ : ¬E → ¬E be defined as

ϑ (¬ei) = ¬ϕ (ei) , i = 1, 2. Then, ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
is a bipolar soft

continuous function.
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Theorem 3.7. Let ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
be a bipolar soft continuous

function. Then, the functions fϕ : (U, τ, E) → (V, τ ′, E′) and fϕ : (U, τ,¬E) →
(V, τ ′,¬E′) are soft continuous functions.

Proof. The proof is clear. �

Remark. If ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
is a bipolar soft continuous function,

then fe : (U, τe) →
(
V, τ ′ϕ(e)

)
and fe : (U, τ¬e) →

(
V, τ ′¬ϕ(e)

)
are continuous

function on topological spaces, for each e ∈ E.
Example 3.3. Consider the bipolar soft function defined previous example. Then,
for the parameter ei ∈ E, i = 1, 2,

τe1 = {∅, U, {x1, x2} , {x1, x4} , {x1, x2, x4} , {x1}} , τ¬e1 = {∅, U, {x3} , {x2, x3}} ,
τe2 = {∅, U, {x1, x3} , {x2, x3} , {x1, x2, x3} , {x3}} , τ¬e2 = {∅, U, {x2, x4} , {x4}} ,
τ ′e1 = {∅, V, {y1} , {y1, y2} , {y1, y4} , {y1, y2, y4}} , τ ′¬e1 = {∅, V, {y3} , {y2, y3}} ,
τ ′e2 = {∅, V, {y3} , {y1, y3} , {y2, y3} , {y1, y2, y3}} , τ ′¬e2 = {∅, V, {y4} , {y2, y4}} .

Therefore, fei : (U, τei) →
(
V, τ ′ei

)
and f

ei
: (U, τ¬ei) →

(
V, τ ′¬ei

)
are continuous

functions on topological spaces, for i = 1, 2.

Example 3.4. Let U = {x1, x2, x3} , V = {y1, y2, y3} and E = E′ = {e1, e2} .
Then, τ̃ =

{
ΦẼ , ŨẼ , F1Ẽ

, F2Ẽ
, F3Ẽ

, F4Ẽ

}
is a bipolar soft topology over U and

τ̃ ′ =
{

ΦẼ , ṼẼ
, G

Ẽ

}
is a bipolar soft topology over V, where

F1Ẽ
= {(e1, {x1, x3} , {x2}) , (e2, {x1} , {x2, x3})} ,

F2Ẽ
= {(e1, {x2, x3} , {x1}) , (e2, {x1, x3} , {x2})} ,

F3Ẽ
= {(e1, U,∅) , (e2, {x1, x3} , {x2})} ,

F4Ẽ
= {(e1, {x3} , {x1, x2}) , (e2, {x1} , {x2, x3})} ,

and
G

Ẽ
= {(e1, {y1} , {y2, y3}) , (e2, {y1, y2} , {y3})} .

Let f : U → V be a function defined as f (x1) = y2, f (x2) = y1, f (x3) = y3, the
function ϕ : E → E be defined as ϕ (ei) = ei and the function ϑ : ¬E → ¬E be

defined as ϑ (¬ei) = ¬ϕ (ei) , i = 1, 2. Since ψ−1fϕϑ
(
G

Ẽ

)
/∈ τ̃ , ψfϕϑ :

(
U, τ̃ , Ẽ

)
→(

V, τ̃ ′, Ẽ′
)

is not a bipolar soft continuous function. Here,

ψ−1fϕϑ (G) (e1) = f−1 (G (ϕ (e1))) = {x2} ,

ψ−1fϕϑ (G) (¬e1) = f−1 (G (ϑ (¬e1))) = {x1, x3} ,

ψ−1fϕϑ (G) (e2) = f−1 (G (ϕ (e2))) = {x1, x2} ,

ψ−1fϕϑ (G) (¬e2) = f−1 (G (ϑ (¬e2))) = {x3} .

Theorem 3.8. Let
(
U, τ̃ , Ẽ

)
,
(
V, τ̃ ′, Ẽ′

)
and

(
W, τ̃ ′, Ẽ∗

)
be bipolar soft topo-

logical spaces over U, V and W , respectively. If ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
and ωgϕ

1ϑ1
:
(
V, τ̃ ′, Ẽ′

)
→
(
W, τ̃ ′, Ẽ∗

)
are bipolar soft continuous functions, then(

ωgϕ
1ϑ1
◦ ψfϕϑ

)
:
(
U, τ̃ , Ẽ

)
→
(
W, τ̃ ′, Ẽ∗

)
is a bipolar soft continuous function.
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Proof. Let K
Ẽ∗
∈ τ̃∗. Let us show that

(
ωgϕ

1ϑ1
◦ ψfϕϑ

)−1
K
Ẽ∗
∈ τ̃ . Since

(ωgϕ1ϑ1
◦ ψfϕϑ)

−1
(K) (e) = f−1

(
g−1 (K ((ϕ1 ◦ ϕ) (e)))

)
,(

ωgϕ
1ϑ1
◦ ψfϕϑ

)−1
(K) (¬e) = f−1

(
g−1 (K ((ϑ1 ◦ ϑ) (¬e)))

)
,

and ωgϕ
1ϑ1

is a bipolar soft continuous function, then g−1 (K ((ϕ1 ◦ ϕ) (e))) ∈ τ̃ ′.
Also, since ψfϕϑ is a bipolar soft continuous function, then f−1

(
g−1 (K ((ϕ1 ◦ ϕ) (e)))

)
∈

τ̃ . That is, (
ωgϕ

1ϑ1
◦ ψfϕϑ

)−1
K
Ẽ∗
∈ τ̃

and
(
ωgϕ

1ϑ1
◦ ψfϕϑ

)
is a bipolar soft continuous function. �

Definition 3.10. Let
(
U, τ̃ , Ẽ

)
and

(
V, τ̃ ′, Ẽ′

)
be two bipolar soft topological spaces

and ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
be a bipolar soft function.

(1) If the image ψfϕϑ
(
FẼ
)
∈ τ̃ ′ for any FẼ ∈ τ̃ , then ψfϕϑ is called a bipolar

soft open function,
(2) If the image ψfϕϑ

(
GẼ
)

is a bipolar soft closed set in V for any bipolar soft
closed set GẼ in U, then ψfϕϑ is called a bipolar soft closed function.

Proposition 3.9. Let ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
be a bipolar soft open (closed)

function. Then, the functions fϕ : (U, τ, E) → (V, τ ′, E′) and fϕ : (U, τ,¬E) →
(V, τ ′,¬E′) are soft open (closed) functions.

Proof. The proof is obtained from the definition of bipolar soft open (closed) func-
tion. �

Proposition 3.10. If ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
be a bipolar soft open (closed)

function, for each e ∈ E, then fe : (U, τe)→
(
V, τ ′ϕ(e)

)
is a open (closed) function

on topological spaces, for each e ∈ E.

Proof. The proof of the proposition is straightforward. �

Example 3.5. Let U = {x1, x2} , V = {y1, y2} and E = E′ = {e1, e2} . Then τ̃ ={
ΦẼ , ŨẼ , FẼ

}
is a bipolar soft topology over U and τ̃ ′ =

{
ΦẼ , ṼẼ

, G1Ẽ
, G2Ẽ

, G3Ẽ
, G4Ẽ

}
is a bipolar soft topology over V, where

F
Ẽ

= {(e1, {x1} , {x2}) , (e2, {x2} ,∅)} ,

and

G1Ẽ
= {(e1, {y1} , {y2}) , (e2, {y2} ,∅)} ,

G2Ẽ
= {(e1, {y1} , {y2}) , (e2, {y1} ,∅)} ,

G3Ẽ
= {(e1, {y1} , {y2}) , (e2, {y1, y2} ,∅)} ,

G4Ẽ
= {(e1, {y1} , {y2}) , (e2,∅,∅)} .

Let f : U → V be a function defined as f (x1) = y1, f (x2) = y2, the function
ϕ : E → E be defined as ϕ (ei) = ei and the function ϑ : ¬E → ¬E be defined
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as ϑ (¬ei) = ¬ϕ (ei) , i = 1, 2. Then, since ψ−1fϕϑ
(
G2Ẽ

)
/∈ τ̃ , ψfϕϑ :

(
U, τ̃ , Ẽ

)
→(

V, τ̃ ′, Ẽ′
)

is not a bipolar soft continuous function. Here,

ψ−1fϕϑ (G2) (e1) = f−1
(
G+

2 (ϕ (e1))
)

= {x1} ,

ψ−1fϕϑ (G2) (¬e1) = f−1
(
G−2 (ϑ (¬e1))

)
= {x2} ,

ψ−1fϕϑ (G2) (e2) = f−1
(
G+

2 (ϕ (e2))
)

= {x1} ,

ψ−1fϕϑ (G2) (¬e2) = f−1
(
G−2 (ϑ (¬e2))

)
= ∅.

Since ψfϕϑ
(
F

Ẽ

)
= G1Ẽ

∈ τ̃ ′, ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
is a bipolar soft open

function.

Theorem 3.11. Let
(
U, τ̃ , Ẽ

)
and

(
V, τ̃ ′, Ẽ′

)
be two bipolar soft topological spaces

and ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
be a bipolar soft function.

(1) ψfϕϑ is a bipolar soft open function if and only if for any F
Ẽ
∈ BS

(
U

Ẽ

)
,

ψfϕϑ

(
F ◦

Ẽ

)
⊆̃
(
ψfϕϑ

(
F

Ẽ

))◦
.

(2) ψfϕϑ is a bipolar soft closed function if and only if for any F
Ẽ
∈ BS

(
U

Ẽ

)
,(

ψfϕϑ
(
F

Ẽ

))
⊆̃ψfϕϑ

(
F

Ẽ

)
.

Proof. (1) Let ψfϕϑ be a bipolar soft open function and F
Ẽ
∈ BS

(
U

Ẽ

)
. Then,

F ◦
Ẽ
∈ τ̃ and F ◦

Ẽ
⊆̃F

Ẽ
. Since ψfϕϑ is a bipolar soft open function, ψfϕϑ

(
F ◦

Ẽ

)
∈ τ̃ ′

and ψfϕϑ

(
F ◦

Ẽ

)
⊆̃ψfϕϑ

(
F

Ẽ

)
. Thus,

ψfϕϑ

(
F ◦

Ẽ

)
⊆̃
(
ψfϕϑ

(
F

Ẽ

))◦
is obtained.
Conversely, let F

Ẽ
∈ τ̃ . Then, F

Ẽ
= F ◦

Ẽ
. From the condition of theorem,

ψfϕϑ

(
F ◦

Ẽ

)
⊆̃
(
ψfϕϑ

(
F

Ẽ

))◦
.

Hence,

ψfϕϑ
(
F

Ẽ

)
= ψfϕϑ

(
F ◦

Ẽ

)
⊆̃
(
ψfϕϑ

(
F

Ẽ

))◦ ⊆̃ψfϕϑ (FẼ

)
.

It is clear that ψfϕϑ
(
F

Ẽ

)
=
(
ψfϕϑ

(
F

Ẽ

))◦
, i.e. ψfϕϑ is a bipolar soft open function.

(2) Let ψfϕϑ be a bipolar soft closed function and F
Ẽ
∈ BS

(
U

Ẽ

)
. Since ψfϕϑ

is a bipolar soft closed function, ψfϕϑ
(
F

Ẽ

)
is a bipolar soft closed set in V and

ψfϕϑ
(
F

Ẽ

)
⊆̃ψfϕϑ

(
F

Ẽ

)
. Henceforth ψfϕϑ

(
F

Ẽ

)
⊆̃ψfϕϑ

(
F

Ẽ

)
is obtained.

Conversely, now let F
Ẽ

be any bipolar soft closed set over U. Then, F
Ẽ

= F
Ẽ
.

From the condition of theorem,
(
ψfϕϑ

(
F

Ẽ

))
⊆̃ψfϕϑ

(
F

Ẽ

)
= ψfϕϑ

(
F

Ẽ

)
⊆̃
(
ψfϕϑ

(
F

Ẽ

))
.

It is clear that ψfϕϑ
(
F

Ẽ

)
=
(
ψfϕϑ

(
F

Ẽ

))
, i.e. ψfϕϑ is a bipolar soft closed func-

tion. �
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Definition 3.11. Let
(
U, τ̃ , Ẽ

)
and

(
V, τ̃ ′, Ẽ′

)
be two bipolar soft topological spaces

and ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
be a bipolar soft function. ψfϕφ is called a

bipolar soft homeomorphism from
(
U, τ̃ , Ẽ

)
to
(
V, τ̃ ′, Ẽ′

)
, if ψfϕϑ is both bipolar

soft bijective and bipolar soft continuous, ψ−1fϕϑ is a bipolar soft continuous function.

Theorem 3.12. Let
(
U, τ̃ , Ẽ

)
and

(
V, τ̃ ′, Ẽ′

)
be two bipolar soft topological spaces

and ψfϕϑ :
(
U, τ̃ , Ẽ

)
→
(
V, τ̃ ′, Ẽ′

)
be a bipolar soft function. Then, the following

conditions are equivalent:

(1) ψfϕϑ is a bipolar soft homeomorphism,
(2) ψfϕϑ is both a bipolar soft continuous and bipolar soft closed function,
(3) ψfϕϑ is both a bipolar soft continuous and bipolar soft open function.

Proof. The proof is clear. �

4. Conclusion

Since we have defined the concepts of bipolar soft continuity, bipolar soft open-
ness, bipolar soft closedness and bipolar soft homeomorphism, this paper con-
tributes to the topology field from a bipolar view. Theorems and examples support
the concepts given. In forthcoming works, we aim to give the concept bipolar in-
fra soft topology and examine some structures such as connectedness and different
separation axioms.
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Abstract. In this paper, we construct a characteristic determinant of the

spectral problem of a first-order differential equation on an interval with an
integral perturbation in the boundary value condition, which is an entire ana-

lytic function of the spectral parameter. Based on the formula for the charac-

teristic determinant, conclusions are drawn about the asymptotic behavior of
the spectrum of the perturbed spectral problem depending on the modulus of

continuity of the subinteral function.

1. Introduction

Works [1, 2, 3, 4] are devoted to studies of zeros of entire functions with an in-
tegral representation. Sometimes entire functions coincide with quasi-polynomials,
zeros of which were investigated in papers [5, 6]. Connection between the zeros of
quasi-polynomials and spectral problems is reflected in papers [7, 8, 9, 10, 11, 12].
Eigenvalue problems for some classes of differential operators on an interval are
reduced to a similar problem. In particular, spectral problem for a first-order equa-
tion on an interval with a spectral parameter in a boundary-value condition with
integral perturbation leads to the studied problem [13].

Asymptotic properties of entire functions with a given law of distribution of
roots were deeply investigated in the doctoral dissertation of V.B. Sherstyukov, on
its basis, the paper [14] was published.

The questions on location of the zeros of an entire function: on one ray, on a
straight line, on several rays, in an angle or arbitrarily in the complex plane were
studied in the works [1], [3], [9], [11] and [15].

Meramorphic functions of completely regular growth in the upper half-plane
with respect to the growth function have been studied in one of the last works
of K.G. Malyutin and M.V. Cabanco [16]. In the paper of Rabha W., Ibrahim,
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Ibtisam Aldawish [17], a new symmetric differential operator associated with a
special class of meromorphic - multivalent functions in a punctured unit disc is
presented. This study explories some of its geometric properties. A new class of
holomorphic functions related by a symmetric differential operator is considered.

The paper is devoted to construction of a characteristic determinant of the spec-
tral problem for the differentiation operator on an interval with an integral pertur-
bation in the boundary value condition, which is an entire holomorphic function,
where the integrand function has continuity property. Based on the formula for the
characteristic determinant, conclusions are established about asymptotics of the
spectrum of the perturbed spectral problem depending on the continuity modulus
of the integrand function.The considered problem belongs to the nonlocal type of
spectral problems. Such problems have been studied many times before. Among
the recent publications, we note works [18, 19, 20, 21]. The main fundamental fea-
ture of such problems is their non-self-adjointness. This causes the main difficulties
in their study.

1.1. Problem Statement . In the space W 1
2 (−1, 1) we consider the following

problem on eigenvalues of the operator:

L1y ≡ y′(t) = λy(t), −1 ≤ t ≤ 1 (1.1)

with boundary value condition

y(−1)− y(1) =

1∫
−1

y(t) · Φ(t)dt, (1.2)

where Φ(t) is a continuous function on the interval [−1, 1] and Φ(−1) = Φ(1) = 1,
λ is a complex number, spectral parameter.

It is required to find those complex value of λ, in which the operator equation
(1.1) has a nonzero solution.

2. Main Results

We introduce the general solution of the equation (1.1) by the formula y(t) =
Ceλt, ∀C > 0, and satisfing the boundary value condition (1.2), we obtain the
characteristical determinant of the problem (1.1) – (1.2):

∆1(λ) = e−λ − eλ −
1∫
−1

eλt · Φ(t)dt, (2.1)

which is an entire analytical function of the variable λ = x+ iy, Reλ = x, Imλ = y,
i =
√
−1.

If the function Φ(t) ≡ 0, then we get that ∆0(λ) = e−λ− eλ is a characteristical
determinant of the following spectral problem:

L0y ≡ y′(t) = λy(t), −1 ≤ t ≤ 1, y(−1) = y(1). (2.2)

The numbers λ0n = inπ, n = 0,±1,±2,±3,±4, . . ., are eigenvalues, moreover,
∀C > 0, y0n0 = C · einπt are eigen functions of the operator L0, which forms a
complete orthonormal system in L2(−1, 1), and forms a basis in L2(−1, 1).
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In our case, the function Φ(t) is continuous on the interval [−1, 1]. Due to
well-known Rouche’s theorem [22], we introduce the function in (2.1):

∆1(λ) = ∆0(λ)− f(λ), where ∆0(λ) = e−λ − eλ,

f(λ) =

1∫
−1

eλt · Φ(t)dt,

where all of these functions are entire analytical functions. We estimate the function
∆0(λ) from below:

|∆0(λ)| ≥ e|λ| − e−|λ| ≥ ex − e−x.

Distribution of zeros of the entire function f(λ) is investigated separately. We
split the interval [−1, 1] into 2m equal parts. Then the function f(λ) takes the
following form:

f(λ) =

1∫
−1

eλt · Φ(t)dt =

−2(m−1)
2m∫
−1

eλt · Φ(t)dt+

2(2−m)
2m∫

−2(m−1)
2m

eλt · Φ(t)dt

+

2(3−m)
2m∫

2(2−m)
2m

eλt · Φ(t)dt+ . . .+

1∫
2(m−1)

2m

eλt · Φ(t)dt =

m∑
p=−m+1

p
m∫

p−1
m

eλt · Φ(t)dt.

We transform the function f(λ):

f(λ) =

m∑
p=−m+1

p
m∫

p−1
m

eλt · Φ(t)dt =

m∑
p=−m+1

p
m∫

p−1
m

eλt ·
[
Φ(t)− Φ(

p

m
) + Φ(

p

m
)
]
dt

=

m∑
p=−m+1

p
m∫

p−1
m

eλt · Φ(
p

m
)dt+

m∑
p=−m+1

p
m∫

p−1
m

eλt ·
[
Φ(t)− Φ(

p

m
)
]
dt.

Let us show that f(λ) does not have zeros outside the domain (|x| ≤ nrw( 1
n ), for

some n). Due to the Rouche’s theorem [22], we introduce the designation

h(λ) =

m∑
p=−m+1

p
m∫

p−1
m

eλt · Φ(
p

m
)dt,

and

G(λ) =

m∑
p=−m+1

p
m∫

p−1
m

eλt ·
(

Φ(t)− Φ(
p

m
)
)
dt.
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Let Reλ > 0. We compute the integrals included in the function h(λ).

h(λ) =

m∑
p=−m+1

Φ(
p

m
)
1

λ

(
eλ

p
m − eλ

p−1
m

)
=

1

λ

[
Φ(−1 +

1

m
)
(
eλ(−1+

1
m ) − e−λ

)
+ Φ(−1 +

2

m
)
(
eλ(−1+

2
m ) − eλ(−1+ 1

m )
)

+ . . .+ Φ(1− 2

m
)
(
eλ(1−

2
m ) − eλ(1− 3

m )
)

+Φ(1− 1

m
)
(
eλ(1−

1
m ) − eλ(1− 2

m )
)]

=
1

λ

[
eλ(−1+

1
m )

(
Φ(−1 +

1

m
)− Φ(−1 +

2

m
)

)
+eλ(−1+

2
m )

(
Φ(−1 +

2

m
)− Φ(−1 +

3

m
)

)
+eλ(−1+

3
m )

(
Φ(−1 +

3

m
)− Φ(−1 +

4

m
)

)
− Φ(−1 +

1

m
)e−λ + . . .+ eλ(1−

1
m )

(
Φ(1− 1

m
)− Φ(1)

)
+ Φ(1)eλ

]
.

Grouping the exponents in pairs, we have

h(λ) =
1

λ

[
eλ(−1+

1
m )

(
Φ(−1 +

1

m
)− Φ(−1 +

2

m
)

)
− Φ(−1 +

1

m
)e−λ

+ Φ(−1)e−λ − Φ(−1)e−λ + . . .+ eλ(1−
1
m )

(
Φ(1− 1

m
)− Φ(1)

)
+ Φ(1)eλ

]
=

1

λ

[
eλ(−1+

1
m )

(
Φ(−1 +

1

m
)− Φ(−1 +

2

m
)

)
+ e−λ

(
Φ(−1)− Φ(−1 +

1

m
)

)
− Φ(−1)e−λ + . . .+ eλ(1−

1
m )

(
Φ(1− 1

m
)− Φ(1)

)
+ Φ(1)eλ

]
.

We denote

h1(λ) =
1

λ

[
Φ(1)eλ − Φ(−1)e−λ

]
=

1

λ

[
eλ − e−λ

]
,

and

g(λ) =
1

λ

[
eλ(−1+

1
m )

(
Φ(−1 +

1

m
)− Φ(−1 +

2

m
)

)
+ e−λ

(
Φ(−1)− Φ(−1 +

1

m
)

)
+ . . .+ eλ(1−

1
m )

(
Φ(1− 1

m
)− Φ(1)

)]
=

1

λ

m∑
p=−m+1

eλ(
p−1
m )

(
Φ(
p− 1

m
)− Φ(

p

m
)

)
.

Then

µ(λ) = G(λ) + g(λ) =

=

m∑
p=−m+1


p
m∫

p−1
m

eλt ·
(

Φ(t)− Φ(
p

m
)
)
dt+

eλ(
p−1
m )

λ

(
Φ(
p− 1

m
)− Φ(

p

m
)

) .

We estimate the function h1(λ) from below, at the same time as the remaining
terms, that is, the function µ(λ) is estimated from above

|h1(λ)| =
∣∣∣∣ 1λ (eλ − e−λ)

∣∣∣∣ ≥ 1

|λ|
eλ − 1

|λ|
∣∣o(e−λ)

∣∣ . (2.3)
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We estimate the function µ(λ) from above:

|µ(λ)| ≤
m∑

p=−m+1


p
m∫

p−1
m

|eλt| ·
∣∣∣Φ(t)− Φ(

p

m
)
∣∣∣ dt+

eλ(
p−1
m )

|λ|

∣∣∣∣Φ(
p− 1

m
)− Φ(

p

m
)

∣∣∣∣


≤
m∑

p=−m+1


p
m∫

p−1
m

ext sup
p−1
m ≤t≤

p
m

∣∣∣Φ(t)− Φ(
p

m
)
∣∣∣ dt+

ex(
p−1
m )

|λ|
sup

|t−τ |≤ 1
m

|Φ(t)− Φ(τ)|

 .
We introduce module of continuity of the function Φ(t) by the formula

w(
1

m
) = sup

|t−τ |< 1
m

|Φ(t)− Φ(τ)| .

Then

|µ(λ)| ≤
m∑

p=−m+1


p
m∫

p−1
m

ext · w(
1

m
)dt+

ex(
p−1
m )

x
w(

1

m
)

 ≤ w(
1

m
)
ex − e−x

x
. (2.4)

Therefore, due to (2.3), (2.4), we come to the estimation:

|f(λ)| ≥ 1

|λ|
ex − 1

|λ|

∣∣∣∣o( 1

|λ
|)
∣∣∣∣− w(

1

m
)

(
ex + e−x

x

)
.

Assuming that, |λ| = r, m = [r], we have

|λf(λ)| = |f1(λ)| ≥ ex −
exw( 1

r )r

x
− e−x −

e−xrw( 1
r )

x
. (2.5)

For the final approval, we will choose n so that∣∣∣∣w( 1
r )r

x

∣∣∣∣+ e−2x + e−2x ·
rw( 1

r )

x
<

1

2

as x > nrw( 1
r ). It is possible, since value of the left part of the last inequality is

defined in the main first term.
By the condition of the Rouche’s theorem [22], defining the main part of the

function ∆1(λ), due to lower estimation of the function ∆0(λ) and f1(λ) in (2.5),
i.e. |∆0(λ)| > |f1(λ)|, we come to the following theorem:

Theorem 2.1. If the function Φ(t) is continuous on the interval [−1, 1] and satis-
fies the condition Φ(−1) = Φ(1) = 1, then all eigenvalues of the operator L1 lie in
the |Reλ| < nrw( 1

r ) at some n, where λ = x+iy, Reλ = x, and w(δ) is a continuity
madule of the function Φ(t), r = |λ|.

Remark. If Φ(t) is continuous on [−1, 1] and Φ(−1) = Φ(1) = 1, then all eigenval-
ues of the operator L1 are lie in the |Reλ| < nrw( 1

r ) on the complex plane λ, which
expands depending on properties of the continuity module w(δ) of the function Φ(t).

Theorem 2.2. Let Φ(t) be a continuous function on [−1, 1] and Φ(−1) = Φ(1) = 1.
Then set of zeros of the entire function ∆1(λ) as n → ∞, λn = iπn + o(nw( 1

n )),

where w(h) is a continuity module of Φ(t).
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Proof. To prove Theorem 2.1 we used two functions h1(λ) and µ(λ), such that
f(λ) = h1(λ) + µ(λ). Zeros of the functions ∆0(λ) and h1(λ) have the form λ0n =
iπn, n = ±1,±2, . . .. We consider a square T with sides 2ε and with a center at
the point λ0n on the complex plane λ. Assume that, sides of T are parallel to real
and imaginary axes of the λ variable. Proof of Theorem 2.2 consists in choosing ε
so that conditions of Rouche’s Theorem [22] were satisfied for the functions ∆0(λ),
h1(λ) and µ(λ) on the sides of the square T . First, we consider the right half of
the square T , that is, in the case Reλ ≥ 0. Divide the side of the square T into two
parts 0 ≤ Reλ ≤ C and C ≤ Reλ ≤ ε, where C > 0, which we will choose later.

2.1 Case. Let 0 ≤ Reλ ≤ C. Since zeros of the functions ∆0(λ) and h1(λ)
are the same and these functions are equal to each other, therefore, it is enough
to estimate the function h1(λ). Let’s compare the modules of functions h1(λ)e−λ

and µ(λ)e−λ. Taking into account boundedness of the corresponding derivative, we
obtain the following estimate:

|h1(λ)e−λ| = |h1(λ)e−λ − h1(λ0n)e−λ
0
n | = | d

dλ
h1(λ)e−λ| · |λ− λ0n| ≥

C1

|λ|
· ε.

Due to boundedness of modules of exponents, included in µ(λ), we write the
inequalities

|µ(λ)e−λ| ≤ C2w(
1

n
).

Therefore, to satisfy conditions of Rouche’s Theorem it is enough to take ε from

ε = o(nw(
1

n
)),

since module of λ behaves like λ = n(1 + o(1)).
2.2 Case. Let C ≤ Reλ ≤ ε. When C > 0, the module of h1(λ) is estimated by

the module of one of the exponents included in h1(λ):

|h1(λ)| =
∣∣∣∣eλ − e−λλ

∣∣∣∣ ≥ 1

2

ex

|λ|
.

We note that C must be chosen from the inequality C > lnϕ. Since modules of
the exponents included in the function µ(λ) are bounded from above by the next
exponent ex, it is true that

|µ(λ)| ≤ exw(
1

n
)C3.

Hence, it follows that in order to satisfy the condition of Rouche’s Theorem [22],
it suffices to take ε from bound of the form

ε = o(nw(
1

n
)).

Thus, Theorem 2.2 is completely proved. �

Remark. One of the features of the considered problem is that the conjugate to
(1.1) – (1.2) is the spectral problem for the loaded differential equation:

L∗1v = v′(t) + Φ(t)v(1) = λv(t),

v(1) = v(−1).
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In [23], eigenvalues of a loaded differential operator of the first order with general
boundary value conditions on an interval were found, and in the papers [20], [24]
and [25] questions on stability of basis properties of the root vectors of a loaded
operator of multiple differentiation were studied in the space L2(0, 1).
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Abstract. This study is dedicated to make an attempt to define different

types of separation axioms in neutrosophic topological spaces. The relation-
ships among them are shown with a diagram and counterexamples. We also

introduce some new terms such as introduced neutrosophic topology, neutro-

sophic regular space, neutrosophic normal space, neutrosophic subspace.

1. Introduction

Undoubtedly, the concept of separation axioms has always been an indispensable
character in the world of topology. This concept formed the basis of many valuable
researches in general topology. And, these researches played very important roles
in many parts of real life and the findings of these researches came to life in many
applications. But, as technology advances and the industry evolves, peoples needs
have changed and general topology has become inadequate in real life. So, the
impact of these findings on real life has diminished. Then,scientists went on to find
different types of topological spaces and separation axioms occupied an important
place in these topological spaces. In [17], Smarandache offered the concept of
neutrosophic set. This idea became the leading actor in numerous studies as in
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16]. Also, by using this new concept, Salma
and Alblowi introduced the theory of neutrosophic topological space in [15]. In this
study, we present different types of separation axioms in neutrosophic topological
spaces as a new instrument for real life applications and new terms that we think
benefit in other investigations.Throughout the paper, without any explanation, we
use the symbols and definitions introduced in [13, 15, 17]. For the sake of shortness
we use the notation N instead of neutrosophic.
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2. Some Required Definitions

In this section, we give newest predefined definitions that will be required in the
next section. Also, some new definitions are given.

Definition 2.1. [4] An N-point xr,t,s is said to be N-quasi-coincident (N-q-coincident,
for short) with F , denoted by xr,t,sqF iff xr,t,s ⊆ F c. If xr,t,s is not N-quasi-
coincident with F , we denote by xr,t,sq̃F .

Definition 2.2. [4] An N-set F in an N-topological space (X, τ) is said to be an
N-q-neighborhood of an N-point xr,t,s iff there exists an N-open set G such that
xr,t,sqG ⊂ F .

Definition 2.3. [4] An N-set G is said to be N-quasi-coincident (N-q-coincident,
for short) with F , denoted by GqF iff G * F c. If G is not N-quasi-coincident with
F , we denote by Gq̃F .

Definition 2.4. Consider that (X, τ) is an N-topological space and Y ⊆ X. Let H
be an N-set over Y such that

TH(x) =

{
1, x ∈ Y
0, x /∈ Y

, IH(x) =

{
1, x ∈ Y
0, x /∈ Y

, FH(x) =

{
0, x ∈ Y
1, x /∈ Y

Consider that τY = {H ∩ F : F ∈ τ}, then (Y, τY ) is called N-subspace of (X, τ).
If H ∈ τ (resp. Hc ∈ τ ), then (Y, τY ) is called N-open (resp. closed) subspace of
(X, τ).

Definition 2.5. [4] An N-point xr,t,s is said to be an N-cluster point of an N-set
F iff every N-open q-neighborhood G of xr,t,s is q-coincident with F . The union of

all N-cluster points of F is called the N-closure of F and denoted by F .

Definition 2.6. [4] Consider that f is a function from X to Y . Let A be an
N-set in X with membership funtion TA(x), indeterminacy function IA(x) and
non-membership function FA(x).The image of A under f , written as f(A), is
an N-subset of Y whose membership function, indeterminacy function and non-
membership function are defined as

Tf(A)(y) =

{
supz∈f−1(y){TA(z)} , if f−1(y) is not empty,

0 , if f−1(y) is empty,

If(A)(y) =

{
supz∈f−1(y){IA(z)} , if f−1(y) is not empty,

0 , if f−1(y) is empty,

Ff(A)(y) =

{
infz∈f−1(y){FA(z)} , if f−1(y) is not empty,

1 , if f−1(y) is empty,

for all y in Y , where f−1(y) = {x : f(x) = y}, respectively.
If f is a bijective function from X to Y , then it is an invertible N-function.

Conversely, consider that B is an N-set in Y with membership funtion TB(y),
indeterminacy function IB(y) and non-membership function FB(y). Then, the in-
verse image of B under f , written as f−1(B), is an N-subset of X whose member-
ship function, indeterminacy function and non-membership function are defined as
Tf−1(B)(x) = TB(f(x)), If−1(B)(x) = IB(f(x)) and Ff−1(B)(x) = FB(f(x)) for all
x in X, respectively.
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Definition 2.7. Consider that (X, τ), (Y, δ) are N-topological spaces and f :
(X, τ) → (Y, δ) is an N-function. The function f is said to be N-continuous, if
f−1(G) ∈ τ for any G ∈ δ.

Definition 2.8. Consider that (X, τ), (Y, δ) are N-topological spaces and f :
(X, τ)→ (Y, δ) is an N-function. The function f is said to be N-open, if f(F ) ∈ δ
for any F ∈ τ .

3. N-Ti-Spaces (i=0, 1, 2)

In this section, we present different types of separation axioms and investigate
their properties. Also, the relationships among them are shown with a diagram and
counterexamples. Additionally, we analyze their characteristics in N-topological
subspaces.

Definition 3.1. An N-topological space (X, τ) is said to be an N-T0-space if for
every pair of N-points xα,β,γ , yα′,β′,γ′ , whose supports are different, there exist
N-open sets F , G such that xα,β,γ ∈ F , yα′,β′,γ′ ∈ F c or xα,β,γ ∈ Gc, yα′,β′,γ′ ∈ G.

Theorem 3.1. Consider that (X, τ) is an N-topological space, then (X, τ) is N-
T0-space iff, for any two N-points, xα,β,γ , yα′,β′,γ′ , whose supports are different,
xα,β,γ q̃yα′,β′,γ′ or xα,β,γ q̃yα′,β′,γ′ .

Proof. Consider that (X, τ) is an N-T0-space and xα,β,γ , yα′,β′,γ′ are two N-points
with different supports. Then, there exist N-open sets F , G such that xα,β,γ ∈ F ,
yα′,β′,γ′ ∈ F c or xα,β,γ ∈ Gc, yα′,β′,γ′ ∈ G. This implies that yα′,β′,γ′ q̃F or
xα,β,γ q̃G. So, xα,β,γ q̃yα′,β′,γ′ or xα,β,γ q̃yα′,β′,γ′ . Let (X, τ) be an N-topological
space such that, for any two N-points xα,β,γ , yα′,β′,γ′ with different supports,
xα,β,γ q̃yα′,β′,γ′ or xα,β,γ q̃yα′,β′,γ′ . Then, there exists an N-open set F such that
xα,β,γ ∈ F , yα′,β′,γ′ q̃F or there exists an N-open set G such that yα′,β′,γ′ ∈ G,
xα,β,γ q̃G. This implies that xα,β,γ ∈ F , yα′,β′,γ′ ∈ F c or xα,β,γ ∈ Gc, yα′,β′,γ′ ∈ G.
Therefore, (X, τ) is an N-T0-space. �

Definition 3.2. An N-topological space (X, τ) is said to be an N-T1-space if for
every pair of N-points xα,β,γ , yα′,β′,γ′ , whose supports are different, there exist N-
open sets F , G such that xα,β,γ ∈ F , yα′,β′,γ′ ∈ F c and xα,β,γ ∈ Gc, yα′,β′,γ′ ∈ G.

Theorem 3.2. Consider that (X, τ) is an N-topological space, then (X, τ) is N-
T1- space iff, for any two N-points, xα,β,γ , yα′,β′,γ′ , whose supports are different,
xα,β,γ q̃yα′,β′,γ′ and xα,β,γ q̃yα′,β′,γ′ .

Proof. The proof of this theorem is similar to that of above theorem. So, it is
omitted. �

Theorem 3.3. Consider that (X, τ) is an N-topological space. If every N-point
xα,β,γ is N-closed in (X, τ), then (X, τ) is an N-T1-space.

Proof. Consider any two N-points xα,β,γ , yα′,β′,γ′ in (X, τ) such that xα,β,γ q̃yα′,β′,γ′

. Then, xα,β,γ ⊂ (yα′,β′,γ′)
c and yα′,β′,γ′ ⊂ (xα,β,γ)c where (yα′,β′,γ′)

c and (xα,β,γ)c

are N-open sets in (X, τ). Since, xα,β,γ q̃(xα,β,γ)c and yα′,β′,γ′ q̃(yα′,β′,γ′)
c, (X, τ) is

an N-T1-space. �

The converse statement is not always true as seen in the example below.
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Example 3.1. Consider the set X = {x, y} and the family τ = {{xα,α,1−α, yβ,β,1−β} : α, β ∈ [0, 1]}.
Then, τ is an N-topology over X. It is easily seen that (X, τ) is an N-T1-space.
But, the N-point x0,2,0,2,0,7 is not closed in τ . Because, x0,2,0,2,0,7 6= x0,2,0,2,0,7.

Definition 3.3. An N-topological space τ is said to be an N-T2-space, if, for every
pair of N-points xα,β,γ , yα′,β′,γ′ , whose supports are different, there exists N-open
sets F , G such that xα,β,γ ∈ F , yα′,β′,γ′ ∈ F c, yα′,β′,γ′ ∈ G, xα,β,γ ∈ Gc and F q̃G.

For an N-topological space (X, τ) we have the following diagram:

N-T2-space
↓

N-T1-space
↓

N-T0-space

Converse statements may not be true as shown in the examples below;

Example 3.2. Consider the set X = {x, y} and the family

τ = {{xα,α,1−α, yβ,β,1−β} : α ∈ [0, 1], β ∈ [0, 1)} .

Then, τ is an N-topology over X. It is easily seen that (X, τ) is an N-T0-space.
But, it is not an N-T1-space. Because, x1,1,0 and y1,1,0 are N-points in (X, τ) with
different supports and the only N-open set that contains y1,1,0 is 1X .

Example 3.3. Consider that X = N is the set of naturel numbers. For any
n ∈ N , n1,1,0 is an N-point. Clearly, there is a one-to-one compatibility between N
and {n1,1,0 : n ∈ N}. Then, we can define a cofinite topology on {n1,1,0 : n ∈ N}.
That is, an N-set F is N-open iff it is constituted by discarding a finite number of
elements from {n1,1,0 : n ∈ N}. Hence, this cofinite topological space is an N-T1-
space. But, it is not an N-T2-space.

Theorem 3.4. An N-subspace (Y, τY ) of an N-Ti-space (X, τ) is an N-Ti-space
(i = 0, 1, 2).

Proof. (Case i = 0) Consider that (X, τ) is an N-T0-space and (Y, τY ) is an N-
subspace of (X, τ). Take any two N-points xα,β,γ and yα′,β′,γ′ in (Y, τY ) with
different supports. Then, xα,β,γ and yα′,β′,γ′ are also N-points in (X, τ). Since
(X, τ) is an N-T0-space, there exist N-sets F and G such that xα,β,γ ∈ F , yα′,β′,γ′ ∈
F c or yα′,β′,γ′ ∈ G, xα,β,γ ∈ Gc. Consider an N-set H as given in Definition 2.4.
Then, F ∩ H and G ∩ H are N-open sets in (Y, τY ) such that xα,β,γ ∈ F ∩ H,
yα′,β′,γ′ ∈ (F ∩H)c or or yα′,β′,γ′ ∈ G ∩H, xα,β,γ ∈ (G ∩H)c. This implies that
(Y, τY ) is N-T0. �

In the other cases in which i = 1 and i = 2, we can make the proofs in similar
ways. So, they are omitted.

4. N-Ri-Spaces (i=0, 1)

In this section, we introduce N-R0 and N-R1 spaces. Their connections with N-
T1 and N-T2 spaces are investigated. Also, we define the concept of N-topological
space induced by a topological space and some implications are given in induced
N-topological spaces. Additionally, it is shown that inverse statements of these
implications are not always true with counter examples.
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Definition 4.1. An N-topological space (X, τ) is said to be an N- R0-space iff, for
any two N-points xα,β,γ and yα′,β′,γ′ , if xα,β,γ q̃yα′,β′,γ′ then xα,β,γ q̃yα′,β′,γ′ .

Definition 4.2. An N-topological space (X, τ) is said to be an N-R1 -space iff, for
any two N-points xα,β,γ and yα′,β′,γ′ then xα,β,γ , if xα,β,γ q̃yα′,β′,γ′ then there exists
two N-open sets F and G in (X, τ) such that xα,β,γ ∈ F , yα′,β′,γ′ ∈ G and F q̃G.

Theorem 4.1. Every N-Ti-space (X, τ) is an N-Ri−1-space (i = 1, 2).

Proof. Obvious. �

Theorem 4.2. An N-topological space (X, τ) is an N-Ti-space iff it is N-Ti−1 and
N-Ri−1 (i = 1, 2).

Proof. (Case i = 2) The necessity is obvious from Theorem 4.1 and the diagram
given after Definition 3.3. Consider an N-topological space (X, τ) which is N-T1
and N- R1. Take two N-points xα,β,γ and yα′,β′,γ′ in (X, τ) with different supports.
Then, xα,β,γ q̃yα′,β′,γ′ . Since (X, τ) is N-T1, xα,β,γ q̃yα′,β′,γ′ . Then, there exists two
N-open sets F and G in (X, τ) such that xα,β,γ ∈ F , yα′,β′,γ′ ∈ G and F q̃G for
(X, τ) is N-R1. Hence, (X, τ) is N-T2. In the cases in which i = 1, we can make
the proof in similar way. So, it is omitted. �

Definition 4.3. Consider that (X, τ) is a topological space and A is a subset of
X. Let the N-set XA be whose is with membership function TXA

(x), indeterminacy
function IXA

(x) and non-membership function FXA
(x) defined as follows;

TXA
(x) =

{
1 , if x ∈ A,
0 , if x /∈ A,

IXA
(x) =

{
1 , if x ∈ A,
0 , if x /∈ A,

FXA
(x) =

{
1 , if x ∈ A,
0 , if x /∈ A,

XA is called an N-set induced by A and the family δτ = {XA : A ∈ X} is called an
N-topology over X induced by τ .

Theorem 4.3. Consider that (X, τ) is a topological space and (X, δτ ) is an N-
topological space, where δτ is an N-topology induced by τ . If (X, δτ ) is N-T0-space
then (X, τ) is a T0-space.

Proof. Take any two distinct points x, y ∈ X. Then, x1,1,0 and y1,1,0 are two N-
points in (X, δτ ) with different supports. Since (X, δτ ) is N-T0-space, there exist
N-sets F , G such that x1,1,0 ∈ F , y1,1,0 ∈ F c or y1,1,0 ∈ G and x1,1,0 ∈ Gc. Then
there exists 0F ∈ τ such that x ∈ 0F , y /∈ 0F , where F = X0F ∈ δτ or there
exists 0G ∈ τ such that y ∈ 0G,x /∈ 0G, where G = X0G ∈ δτ . Hence, (X, τ) is a
T0-space. �

Theorem 4.4. Consider that (X, τ) is a topological space and (X, δτ ) is an N-
topological space, where δτ is an N-topology induced by τ . If (X, δτ ) is N-T1-space
then (X, τ) is a T1-space.

Proof. The proof is similar to that of above theorem. �
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The converse statements may not be true as seen in then following examples.

Example 4.1. Consider that X = {x, y, z}. Then, the family τ = {∅, X, {x} , {z} , {x, z}}
is a topology over X and δτ = {0X , 1X , x1,1,0, z1,1,0, {x1,1,0, z1,1,0}} is an N-topology
over X induced by τ . Then, (X, τ) is a T0-space. But, (X, δτ ) is not N-T0-space.

Example 4.2. Consider that X = {x}. Then, the family τ = {∅, X} is a topology
over X and δτ = {0X , 1X} is an N-topology over X induced by τ . Then, (X, τ) is
a T1-space. But, (X, δτ ) is not N-T1-space.

5. N-regular, N-normal and N-Ti-Spaces (i=3, 4)

In this section, we first introduce N-regular spaces and N-normal spaces. Some
of their characteristics are given and the relationships with N-R0 and N-R1 spaces
are investigated. Then, we introduce N-T3 spaces, N-T4 spaces and examine their
relations.

Definition 5.1. An N-topological space (X, τ) is said to be an N-regular (N-R2-
space, for short) space iff, for any N-points xα,β,γ and any N-closed set H in (X, τ)
such that xα,β,γ q̃H, there exists two N-open sets F and G in (X, τ) such that
xα,β,γ ∈ F , H ⊂ G and F q̃G.

Definition 5.2. An N-topological space (X, τ) is said to be an N-normal (N-R3-
space, for short) space iff, for any two N-closed sets H and K in (X, τ) such that
Hq̃K, there exists two N-open sets F and G in (X, τ) such that H ⊂ F , K ⊂ G
and F q̃G.

Theorem 5.1. Consider that (X, τ) and (Y, δ) are N-topological spaces and f :
(X, τ) → (Y, δ) is an N-function which is bijective, N-continuous and N-open. If
(X, τ) is N-normal, then (Y, δ) is also N-normal.

Proof. Consider that F and G is N-closed sets in (Y, δ) such that F q̃G. Since f is N-
continuous, f−1(F ) and f−1(G) are also N-closed sets in (X, τ) and f−1(F )q̃f−1(G).
Then, there exists N-open sets K and L such that f−1(F ) ⊂ K, f−1(G) ⊂ L
and Kq̃L. It follows that F ⊂ f(f−1(F )) ⊂ f(K), G ⊂ f(f−1(G)) ⊂ f(L)
and f(K)q̃f(L). Since, f is N-open, f(K) and f(L) are N-open sets such that
F ⊂ f(K), G ⊂ f(L) and f(K)q̃f(L). Hence, (Y, δ) is N-normal. �

Theorem 5.2. Consider that (X, τ) and (Y, δ) are N-topological spaces and f :
(X, τ) → (Y, δ) is an N-function which is bijective, N-continuous and N-open. If
(X, τ) is N-regular, then (Y, δ) is also N-regular.

Proof. It is similar. �

Theorem 5.3. Consider that (X, τ) is an N-topological space and xα,β,γ is any
N-point in (X, τ). Then, (X, τ) is an N-R2-space iff, for every N-open set F such
that xα,β,γ ∈ F , there exists an N-open set G such that xα,β,γ ∈ G and G ⊂ F .

Proof. Consider that (X, τ) is an N-R2-space and xα,β,γ is any N-point in (X, τ).
Let an N-open set F be in (X, τ) such that xα,β,γ ∈ F . Then, F c is an N-closed set
in (X, τ). It is clear that F q̃F c. Since xα,β,γ ∈ F , xα,β,γ q̃F

c. There exist N-open
sets G and H such that xα,β,γ ∈ G, F c ⊂ H and Gq̃H. This implies that G ⊂ Hc.
Since Hc is an N-closed set in (X, τ), G ⊂ Hc. Conversely, let xα,β,γ be an N-point
in (X, τ) and F be an N-closed set such that xα,β,γ q̃F . Then, xα,β,γ ∈ F c and F c
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is an N-open set in (X, τ). From our hypothesis, there exists an N-open set G such
that xα,β,γ ∈ G and G ⊂ F c. So, F ⊂ (G)c and Gq̃(G)c. Clearly, Gq̃(G)c. This
implies that (X, τ) is an N-R2-space. �

Theorem 5.4. Consider that (X, τ) is an N-topological space. Then, (X, τ) is
an N-R2-space iff, for every N-point xα,β,γ and N-closed set F in (X, τ) such that

xα,β,γ q̃F , there exist N-open sets G and H such that xα,β,γ ∈ G, F ⊂ H and Gq̃H.

Proof. Consider that (X, τ) is an N-R2-space. Take an N-point xα,β,γ and an N-
closed set F in (X, τ) such that xα,β,γ q̃F . Then, there exist N-open sets G and
H such that xα,β,γ ∈ G, F ⊂ H and Gq̃H. So, H ⊂ Gc. Since Gc is N-closed

in (X, τ), H ⊂ Gc. Clearly, Hq̃G. It is easily seen that xα,β,γ q̃H. Since (X, τ)

is an N-R2-space, there exist N-open sets K and L such that xα,β,γ ∈ K, H ⊂ L

and Kq̃L. So, K ⊂ Lc. Since Lc is N-closed in (X, τ), K ⊂ Lc. Clearly, Kq̃L .
Therefore, Kq̃H.
The proof of the converse statement is obvious. So, it is omitted. �

Theorem 5.5. Consider that (X, τ) is an N-topological space and F is any N-
closed set in (X, τ). Then, (X, τ) is an N-R3-space iff, for every N-open set G such
that F ⊂ G, there exists an N-open set H such that F ⊂ H and H ⊂ G.

Proof. The proof is analogous to that of Theorem 5.3. �

Theorem 5.6. Consider that (X, τ) is an N-topological space. Then, (X, τ) is an
N-R3-space iff, for every N-closed sets F , G in (X, τ) such that F q̃G, there exist
N-open sets K and H such that F ⊂ K, G ⊂ H and Kq̃H.

Proof. The proof is analogous to that of Theorem 5.4. �

Theorem 5.7. Consider that (X, τ) is an N-topological space. If (X, τ) is an N-R2

then it is an N-R1-space.

Proof. It is obvious. �

Theorem 5.8. Consider that (X, τ) is an N-topological space. If (X, τ) is an N-R3

and N-R0- space then it is an N-R2-space.

Proof. Consider that (X, τ) is an N-R3 and N-R0-space. Take an N-point xα,β,γ
and an N-closed set F in (X, τ) such that xα,β,γ q̃F . Since (X, τ) is an N-R0-space,
xα,β,γ q̃F . Since (X, τ) is an N-R3-space, there exist N-open sets G and H such
that xα,β,γ ⊂ G, F ⊂ H and Gq̃H. Hence, (X, τ) is an N-R2-space. �

Corollary 5.9. Let (X, τ) be an N-topological space. If (X, τ) is an N-R3 and
N-R0-space then it is an N-R1-space.

Proof. It follows from Theorem 5.7 and Theorem 5.8. �

Definition 5.3. An N-topological space (X, τ) is said to be an N-T3-space iff, it is
both an N-R2 and N-T1-space.

Definition 5.4. An N-topological space (X, τ) is said to be an N-T4-space iff, it is
both an N-R3 and N-T1-space.

Theorem 5.10. Consider that (X, τ) is an N-topological space. If (X, τ) is an
N-T4 - space then it is an N-T3-space.
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Proof. Consider that (X, τ) is an N-T4-space. Then, it is both N-R3 and N-T1.
From Theorem 4.1, it is N-R0. Take an N-point xα,β,γ and an N-closed set F such
that xα,β,γ q̃F . This implies that xα,β,γ q̃F . Then, there exist N-open sets G and H
such that xα,β,γ ⊂ G, F ⊂ H and Gq̃H. Thus, (X, τ) is N-R2. Hence, we obtain
the result. �

Theorem 5.11. Consider that (X, τ) is an N-topological space. If (X, τ) is an
N-T3-space then it is an N-T2-space.

Proof. It follows from Theorem 5.7 and Theorem 4.2. �

Theorem 5.12. An N-subspace (Y, τY ) of an N-T3-space (X, τ) is N-T3.

Proof. Consider that (X, τ) is an N-T3-space, Y ⊆ X and (Y, τY ) is an N-subspace
as described in Definition 2.4. Let xα,β,γ and yα′,β′,γ′ in (Y, τY ) be N-points in
(Y, τY ) such that xα,β,γ q̃yα′,β′,γ′ . It is obvious that xα,β,γ and yα′,β′,γ′ are also
N-points in (X, τ). Since (X, τ) is an N-T1-space, there exists N-open sets F and G
in (X, τ) such that xα,β,γ ∈ F , yα′,β′,γ′ ∈ G and F q̃G. Then, there exists N- open
sets H and K in (Y, τY ) such that H = F ∩Y and K = G∩Y . Clearly, xα,β,γ ∈ H,
yα′,β′,γ′ ∈ K and Hq̃K. This implies that (Y, τY ) is N-T1. Now, we must show
that (Y, τY ) is also an N-regular space. Let G be an N-closed set in (Y, τY ) and
xα,β,γ be an N-point in (Y, τY ) such that xα,β,γ q̃G. It is obvious that xα,β,γ is also
an N-point in (X, τ) and there exists a N-closed set F in (X, τ), G = F ∩ Y . It
is obvious that xα,β,γ q̃F . Since (X, τ) is a N-regular space, there exists N-open
sets H and L in (X, τ) such that xα,β,γ ∈ H, F ⊂ L and Hq̃L. Then, there exists
N-open sets K and M in (Y, τY ) such that K = H ∩ Y and M = L ∩ Y . Clearly,
xα,β,γ ∈ K, G ⊂ M and Kq̃M . This implies that (Y, τY ) is N-regular. Hence,
(Y, τY ) is a N-T3-space. �

Theorem 5.13. An N-subspace (Y, τY ) of a N-T4-space (X, τ) is N-T4.

Proof. The proof is similar to that of Theorem 5.12. �

6. Conclusion

Thus, we have brought a new perspective to the world of topology on separation
axioms in N-topological spaces. In addition, we have given a new definition for
N-subspace that we think will benefit the other mathematical studies especially in
topology. It is our wish that the new terms and concepts we offer will help other
scientists around the world to create new fields of work and make inventions that
will benefit people. Besides, among our expectations, this study will pave the way
for studies in the fields of statistics, medicine, economics, engineering and many
different sciences, and to minimize the problems people face in their daily lives.
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Abstract. We remind two facts for topological spaces. The one is that in a

Hausdorff space X each convergent sequence has a unique limit. This allows

us to have a function from the set of all convergent sequences in X to X.
Another is that in the first countable spaces, some topological objects such

as open subsets, closed subsets, closures and interiors of the sets, continuous

functions and many others can be defined in terms of convergent sequences.
In this paper we compare these notions with their sequential versions in

topological spaces. We will take the product spaces into account and give
some results.

1. Introduction

Convergent sequences are important not only in pure mathematics but also in
some others such as information theory, biological science and dynamical systems.

The convergent sequences enable us to give sequential definitions of open and
closed subsets; and then to do these for some other topological concepts defined in
terms of open and closed subsets. For example continuous maps, connectedness and
compactness are among those notions. Sequential definitions of topological objects
give us a relief in some proofs and solutions of the problems. Hence many authors
have been in afford to find the sequential definitions of some topological objects.

In addition to the convergent sequences, in the literature there exist some vari-
eties of other different types of convergences. The readers are referred for example
to a large number of the works [7], Posner [24], Iwinski [17], Srinivasan [25], Antoni

[2], Antoni and Salat [3], Spigel and Krupnik [26], Öztürk [27], Savaş and Das [28],
Savaş [29], Borsik and Salat [5], [4] [13], Di Maio and Kočinac [19].

Connor and Grosse-Erdmann in [14] replacing the sequential convergence with a
function defined on a subspace of the real sequences introduced G-methods. Then
following this, Çakallı studied G- continuity in [10] (see also [15] and [11] for some
other types of continuities), G-compactness in [12] and the G-connectedness in [9]
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(see also [8]). Mucuk and Şahan in [23] considered the notions of G-open subsets
and G-neighbourhoods together with some extra properties of G-continuities.

Lin and Liu in [18] extended G-methods to arbitrary sets rather than topological
spaces and presented G-hulls, G-closures, G-kernels and G-interiors. Mucuk and
Çakallı recently improved G-connectedness in [21] and G-compactness in [22] for the
topological groups with operations which generalises topological groups [6]. The au-
thors in the paper [1] extend these ideas to the direction of neutrosophic topological
spaces. We refer [20] and [16] for some sequential definitions and discussions.

In this paper we give an exposition of sequential definitions of some topological
notions in product spaces.

We acknowledge that this paper forms some parts of thesis [30].

2. Preliminaries

Let X be a topological space. We use the boldface letters x, y, ... to denote the
sequences x = (xn), y = (yn), ... of the terms in X; and s(X) and c(X) respectively
the sets of all sequences and convergent sequences in X. A sequence x = (xn) is
said to be convergent to ` ∈ X when any open neighbourhood U of a ∈ X includes
almost all terms of x , that means, except for a finite number of terms, all terms
stay in U .

Let A be a subset of X and x ∈ X. The point x ∈ X is said to be in the
sequentially hull of A if there exists a sequence x = (xn) in A with limit x. The
sequentially hull of A is denoted by [A]s and A is said to be sequentially closed
if [A]s ⊆ A. Hence A is not sequentially closed whenever there exists a sequence
x = (xn) in A with a limit ` which is not in A.

We note that for a ∈ A, the constant sequence a = (a, a, . . . ) has limit a and
therefore we have that A ⊆ [A]s. Hence A is sequentially-closed if and only if
[A]s = A. A subset A ⊆ X is called sequentially open if X \A is sequentially closed.
A subset U ⊆ X is a sequentially neighborhood of a if there exists a sequentially
open subset A of X such that a ∈ A ⊆ U .

The sequentially closure of A, denoted by A
s
, is defined to be the intersection

of all sequentially closed subsets containing A, which is also a sequentially closed
subset, because the intersection of squentially closed subsets is also sequentially
closed. If A ⊆ K and K is a sequentially closed subset, then [A]s ⊆ [K]s ⊆ K.
Taking the intersection of all sequentially closed subsets including A, we conclude
that [A]s ⊆ A

s
.

We remind that a point a in first countable space X is an interior point of the
subset A if any sequence x = (xn) converging to a is almost in A. Therefore we
define a point a in any topological space to be sequential interior point of A and
write a ∈ A0s whenever any sequence x = (xn) with limit a is almost in A or
equivalently there is no any sequence x = (xn) in X \A with limit a.

We say that A is sequentially open if A ⊆ A0s. By the fact that the constant
sequence (xn) = (a, a, . . . ) converges to a, one can see that A0s ⊆ A and therefore
A is sequentially open when A ⊆ A0s or equivalently A0s = A.

3. Main Results

Let X ×Y be the product space and A×B a subset of X ×Y . A point (x, y) of
X ×Y is said to be in the hull of A×B if there exists a sequence (an, bn) in A×B
with limit (x, y). The set of all hull points of A × B is denoted by [A×B]s. The
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subset A×B is sequentially closed if [A×B]s ⊆ A×B. We can check that for the
subsets A and B in X × Y , we have [A×B]s = [A]s × [B]s

Theorem 3.1. For a topological space X; and the subsets A,B ⊆ X, we have the
following

(i) [A ∩B]s ⊆ [A]s ∩ [B]s.
(ii) [A ∪B]s = [A]s ∪ [B]s.

Proof. (i) For an x ∈ [A ∩ B]G, there exists a sequence x = (xn) of the terms in
A ∩ B with the limit x. Hence the sequence x is in both A and B; and therefore
x ∈ [A]G and x ∈ ∩[B]G, which means x ∈ [A]s ∪ [B]s.

(ii) If x ∈ [A∪B]s, then there exists a sequence x = (xn) in A∪B with limit x.
Hence we can choose either a subsequence a = (an) in A or a subsequence b = (bn)
in B with limit x. Otherwise the sequence x = (xn) is almost in X \A and X \B;
and therefore x = (xn) is almost in X \A) ∩X \B = X \ (A ∪B). This concludes
that x ∈ [A]s ∪ [B]s.

Let x ∈ [A]s ∪ [B]s. Then either there exists a sequence a = (an) in A or a
sequence b = (bn) in B with limit x. Hence we can choose a sequence x = (xn) in
A ∪B with limit x; and therefore x ∈ [A ∪B]G . �

As a result of this theorem we can say that the finite intersections and unions of
sequentially closed subsets are also sequentially closed.

Theorem 3.2. For a topological space X and subsets A,B ⊆ X, we have the
following:

(a) A×B ⊆ [A×B]s ⊆ A×B
s
;

(b) A×B is sequentially closed if and only if [A×B]s ⊆ A×B;
(c) A×B is sequentially closed if and only if [A×B]s = A×B;
(d) If A and B are closed, then it is A×B is sequentially closed.
(e) A×B is sequentially closed if and only each convergence sequence in A×B

has a limit in A×B.

Proof. (a) For any point (a, b) ∈ A×B, the constant sequence (an, bn) = ((a, b), (a, b), . . . )
convergences to (a, b). Hence (a, b) ∈ [A × B]s. Further if (x, y) ∈ [A × B]s, there

exists a sequence (an, bn) in A×B which converges to (x, y). Hence (x, y) ∈ A×B
s
.

(b) This is just the definition of a sequentially closed subset.
(c) This is a direct result of (a) and (b).

(d) If A and B are closed, then A×B is closed and therefore A×B
s

= A×B.
Hence by (a) [A×B]s = A×B, that means A×B is sequentially closed.

(e) This is obvious by the definition of a sequentially closed subset. �

Example 3.3. If X × Y has co-countable topology, then a sequence (x,y) =
(xn, yn) converges to (a, b) if and only if the terms are almost (a, b). Hence all
subsets of X × Y are sequentially closed but not necessarily closed.

Theorem 3.4. Let X × Y be product topological spaces and let {Ai ×Bi | i ∈ I}
be a class of sets of X × Y . Then we have the following

(a)
⋃

i∈I [Ai ×Bi]
s ⊆ [

⋃
i∈I Ai ×Bi]

s.
(b) [

⋂
i∈I Ai ×Bi]

s ⊆
⋂

i∈I [Ai ×Bi]
s.

Proof. (a) If (x, y) ∈
⋃

i∈I [Ai ×Bi]
s, then (x, y) ∈ [Ai0 × Bi0 ]s for an i0 ∈ I and

therefore there is a sequence (an, bn) in Ai0 ×Bi0 with limit (x, y). That means we
have a sequence (an, bn) in

⋃
i∈I Ai ×Bi and therefore (x, y) ∈ [

⋃
i∈I Ai ×Bi]

s.
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(b) For (x, y) ∈ [
⋂

i∈I Ai ×Bi]
s, there exists a sequence (an, bn) in

⋂
i∈I Ai ×Bi

with limit (x, y). This means (an, bn) is a sequence in each Ai×Bi for i ∈ I. Hence
(x, y) ∈ [Ai ×Bi]

s, and therefore (x, y) ∈
⋂

i∈I [Ai ×Bi]
s.

�

Theorem 3.5. For a topological space X and the subsets A,B ⊆ X, we have the
following

(i) (A ∩B)0s = A0s ∩B0s.
(ii) A0s ∪B0s ⊆ (A ∪B)0s.

Proof. (i) If a ∈ (A ∩ B)0s and x = (xn) is a sequence with limit a, then the
sequence x = (xn) is almost in A ∩B. Hence (xn) is almost in both A and B and
therefore a ∈ A0

G ∩B0
G.

On the other hand if a ∈ A0s ∩ A0s and (xn) is a sequence with limit a, then
(xn) is almost in both A and B which means (xn) is almost in A∩B and therefore
a ∈ (A ∩B)0

s

(ii) Let a ∈ A0s ∪ B0s and let the sequence x = (xn) have the limit a. a ∈ A0s

means that the sequence x = (xn) is almost in A and similarly a ∈ B0s means that
the sequence x = (xn) is almost in B. Hence in both case the sequence is almost
in A ∪ B, which means that te sequence x = (xn) is almost in A then x is almost
either in A or in B; and therefore a ∈ (A ∪B)0

s

�

As a result of Theorem 3.5 we can state that finite intersections and unions of
sequentially open subsets are also sequentially open.

Theorem 3.6. If X is a topological space and A is a subset A ⊆ X, then we have
the following:

(a) (A×B)0 ⊆ (A×B)0
s ⊆ (A×B);

(b) A×B is sequentially open if and only if A×B ⊆ (A×B)0
s
;

(c) A×B is sequentially open if and only if A×B = (A×B)0
s
;

(d) If A and B are respectively open in X and Y , then (A × B) is sequentially
open.

Proof. (a) (A×B)0 is an open subset and therefore if (a, b) ∈ (A×B)0, then any
sequence converging to (a, b) stays almost in (A × B)0 ⊂ A × B. Hence (a, b) ∈
(A × B)0s. Moreover if (a, b) ∈ (A × B)0s, then any sequence converging to (a, b)
becomes almost in A×B. Since the constant sequence (an, bn) = ((a, b), (a, b), . . . )
has limit (a, b) and therefore (a, b) ∈ A×B.

(b) This is just the definition of sequentially open subset.
(c) This is a direct result of (a) and (b).
(d) If A and B are open, then A×B is open in X×Y ; and therefore (A×B)0 =

A × B. Hence by (a), we have that A × B = (A × B)0s which means A × B is
sequentially open. �

Example 3.7. Let us consider X × Y with the co-countable topology. Then any
subset A×B of X × Y is sequentially open but not necessarily open.

Theorem 3.8. For a product topological space X×Y , a subset A×B is sequentially
open if and only if X × Y \ (A×B) is sequentially closed.

Proof. Assuming A×B ⊆ (A×B)0s we need to prove that [X × Y \ (A×B)]s ⊆
X × Y \ (A×B). For (x, y) ∈ [X × Y \ (A×B)]s, there exists a sequence (xn, yn)
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in X × Y \ A × B with limit (x, y). Hence we have that (x, y) ∈ X × Y \ A × B.
Otherwise if (x, y) ∈ A × B, then by the assumption A × B ⊆ (A×B)0s we have
(x, y) ∈ (A×B)0s and therefore the sequence (xn, yn) is almost in A× B. This is
a contradiction since (xn, yn) is a sequence in X × Y \A×B.

On the other hand assume [X × Y \ A × B]s ⊆ X × Y \ A × B and prove that
A × B ⊆ (A×B)0s. If (a, b) ∈ A × B and (xn, yn) is a sequence with limit (a, b),
then the sequence (xn, yn) is almost in A×B. Otherwise there exists a subsequence
(xnk

, ynk
) of (xn, yn) of the terms of X×Y \A×B which has limit (a, b) and therefore

(a, b) ∈ [X × Y \A×B]s ⊆ X × Y \ A × B which means (a, b) ∈ X × Y \ A × B.
This is a contradiction because (a, b) ∈ A×B. �

Theorem 3.9. Assume that {Ai × Bi | i ∈ I} is a class of the subsets in product
space X × Y . Then the following are satisfied.

(a) (
⋂

i∈I Ai ×Bi)
0s ⊆

⋂
i∈I(Ai ×Bi)

0s.

(b)
⋃

i∈I(Ai ×Bi)
0s ⊆ (

⋃
i∈I Ai ×Bi)

0s.

Proof. (a) Assume that (a, b) ∈ (
⋂

i∈I Ai×Bi)
0s. We prove that (a, b) ∈

⋂
i∈I(Ai×

Bi)
0s. Let (an, bn) be a sequence with limit (a, b). By assumption we have that the

sequence (an, bn) is almost in
⋂

i∈I Ai×Bi, and therefore in Ai×Bi for each i ∈ I.

Hence (a, b) ∈ (Ai ×Bi)
0s for each i ∈ I and therefore (a, b) ∈

⋂
i∈I(Ai ×Bi)

0s.

(b) Assume (a, b) ∈
⋃

i∈I(Ai ×Bi)
0s and (an, bn) is a sequence with limit (a, b).

By assumption (a, b) ∈ (Ai0 × Bi0)0s for an i0 ∈ I and therefore the sequence
(an, bn) is almost in Ai0 × Bi0 . That means the sequence (an, bn) is almost in
(
⋃

i∈I Ai ×Bi) and therefore (a, b) ∈ (
⋃

i∈I Ai ×Bi)
0s. �

4. Conclusion

We call a topological space X sequentially connected if it has no any sequentially
open and closed proper subset. If X is not connected it has an open and closed
proper subset A ⊆ X. Hence A is sequentially open and closed; and therefore
X is not sequentially connected. Equivalently sequentially connected spaces are
connected, but the converse is not always true. For example if X is uncountable
set, then with co-countable X is connected but not sequentially connected, because
all subsets of X a both re sequentially open and closed.
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[16] F. Gençoğlu, Sequential continuity, compactness and connectedness, Erciyes University ,

MSc Thesis, June 2013 (in Turkish).

[17] T.B. Iwinski, Some remarks on Toeplitz methods and continuity, Comment.Math. Prace
Mat., 17 (1972) 37-43.

[18] S. Lin, L. Liu, G-methods, G-spaces and G-continuity in topological spaces, Topology Appl.,

212 (2016) 29-48.
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[22] O. Mucuk and H. Çakallı, On G-compactness of topological groups with operations, Filomat,

36:20 (2022) 7113-7121.
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Abstract. By making use of the Taylor polynomials, new proofs are presented
for three binomial identities including Abel’s convolution formula.

§1. Introduction. There are numerous identities in mathematical literature. Among
them, Newton’s binomial theorem is well known

n∑
k=0

(
n

k

)
xkyn−k = (x+ y)n.

Abel [1] (see [7, §3.1], for example) discovered the following deep generalizations of
it with an extra λ-parameter:

n∑
k=0

(
n

k

)
x(x+ kλ)k−1(y − kλ)n−k = (x+ y)n. (1)

This convolution identity is fundamental in enumerative combinatorics and num-
ber theory. The reader can refer to [19] for a historical note. The known proofs can
briefly be described as follows:

• Generating function method; see [9] and Chu [3].
• Series rearrangement and finite differences: Chu [4].
• The classical Lagrange expansion formula; see [17, §4.5].
• Lattice path combinatorics; see [15, §4.5] and [16, Appendix].
• The Cauchy residue method of integral representation; see [8, §2.1].
• Gould–Hsu Inverse series relations: Gould–Hsu [12] and Chu–Hsu [6, 2].
• Riordan arrays (which can trace back to Lagrange expansion); see [18].

The aim of this short article is to offer new and simple proofs for (1) and two
other binomial identities via Taylor polynomials.

2020 Mathematics Subject Classification. Primary 05A10, Secondary 11B65.
Key words and phrases. The binomial theorem; Taylor polynomial; Abel’s convolution

formulae.
c©2023 Maltepe Journal of Mathematics.
Submitted on June 14th, 2023. Published on December 30th, 2023

Communicated by Hacer Sengul Kandemir.



48 WENCHAN CHU

§2. Proof of (1). Denote by P (y) the binomial sum in (1). Its mth derivative at
y = −x is determined by

P (m)(−x) = x

n−m∑
k=0

(n− k)!

(n− k −m)!

(
n

k

)
(x+ kλ)k−1(y − kλ)n−k−m

∣∣
y=−x

=
n! x

(n−m)!

n−m∑
k=0

(−1)n−m−k
(
n−m
k

)
(x+ kλ)n−m−1. (2)

To evaluate the last sum, we recall the difference operator ∆, which is defined
for a function f(y) at the point y by

∆f(y) = f(y + 1)− f(y).

By applying n times of ∆, we have the nth difference

∆nf(y) =

n∑
k=0

(−1)n−k
(
n

k

)
f(y + k).

In particular, when f(y) is a polynomial of degree m ≤ n with the leading coefficient
cm, then by induction, it is not hard to prove the important identity (see [13,
Equation 5.42])

∆nf(y) = n! cm χ(m = n), (3)

where χ is the logical function given by χ(true) = 1 and χ(false) = 0.
Therefore, the sum in (2) results in the (n−m)th difference of a polynomial of

degree n−m−1. Consequently, P (m)(−x) vanishes for 0 ≤ m < n and P (n)(−x) =
n!.

Because P (y) is a polynomial of degree n, we confirm Abel’s identity (1) by
expressing P (y) in terms of the Taylor polynomial at y = −x as follows:

P (y) =

n∑
m=0

(x+ y)m

m!
P (m)(−x) = (x+ y)n. �

§3. A binomial transformation. Gould [11, Equation 1.10] recorded a binomial
transformation which can be reproduced equivalently as

n∑
k=0

(
x+ 1

n− k

)
yk =

n∑
i=0

(
x− i
n− i

)
(1 + y)i. (4)

Observing that both sides of the above equality are polynomials of degree n in
y. Denote by Q(y) the sum on the right–hand side. Its Maclaurin polynomial
expression reads as

Q(y) =

n∑
k=0

yk

k!
Q(k)(0).
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Then we confirm (4) by computing the kth derivative of Q(y) in the following
manner

Q(k)(0) = k!

n∑
i=k

(
x− i
n− i

)(
i

k

)

= k!(−1)n−k
n∑

i=k

(
n− x− 1

n− i

)(
−k − 1

i− k

)
= k!(−1)n−k

(
n− k − x− 2

n− k

)
= k!

(
x+ 1

n− k

)
,

where the last step is justified by the Chu–Vandermonde convolution formula. �

§4. A binomial sum identity. Let m and n be the two nonnegative integers
with m ≤ n. There is an interesting binomial sum (see [20])

n∑
k=0

(−1)k
(
n

k

)
(y + kλ)m

x+ k
=

(y − xλ)m

x
(
x+n
n

) . (5)

Clearly, this is an identity between two polynomials of degree m in y. Let R(y)
stand for the sum on the left. Then its Taylor polynomial at y = xλ is given by

R(y) =

m∑
j=0

(y − xλ)j

j!
R(j)(xλ).

Evaluate the jth derivative by

R(j)(xλ) = j!

(
m

j

)
λm−j

n∑
k=0

(−1)k
(
n

k

)
(x+ k)m−j−1.

When 0 ≤ j < m, the last sum with respect to k is the nth difference of a polynomial
of degree m− j− 1 < n that equals zero in view of (3). Instead, we have for j = m

R(m)(xλ) =

n∑
k=0

(−1)k
(
n

k

)
m!

x+ k
.

Consequently, (5) will be confirmed if we can show that

n∑
k=0

(−1)k
(
n

k

)
1

x+ k
=

n!

(x)n+1
, (6)

where the shifted factorial is defined by

(x)0 = 1 and (x)n = x(x+ 1) · · · (x+ n− 1) for n = 1, 2, · · · .

In fact, it is routine to check that (6) follows from the partial fraction decomposition

n!

(x)n+1
=

n∑
k=0

Ak

x+ k

with the connection coefficients being determined by

Ak = lim
x→−k

n!(x+ k)

(x)n+1
=

(
n

k

)
(−1)k. �
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§5. Two companion formulae. For the formula (1), Abel [1] found also a com-
panion one

n∑
k=0

(
n

k

)
x(x+ kλ)k−1(y − nλ)(y − kλ)n−k−1 = (x+ y − nλ)(x+ y)n−1.

Besides, there exists a third one of Jensen type (cf. [14]) found by Gould [10]

n∑
k=0

(
n

k

)
(x+ kλ)k(y − kλ)n−k =

n∑
m=0

n!

m!
(x+ y)mλn−m.

Both of them reduce to the usual binomial theorem when λ = 0. They can be proved
by carrying out exactly the same procedure. The interested reader is encouraged
to do it as an exercise.

References

[1] N. H. Abel, Beweis eines Ausdrucks, von welchem die Binomial–Formel ein einzelner Fall

ist, J. Reine Angew. Math. 1 (1826), 159–160.

[2] W. Chu, Inversion techniques and combinatorial identities: A quick introduction to hyper-
geometric evaluations, Math. Appl. 283 (1994), 31–57.

[3] W. Chu, Generating functions and combinatorial identities, Glas. Mat. 33 (1998), 1–12.

[4] W. Chu, Elementary Proofs for Convolution Identities of Abel and Hagen–Rothe, Electron.
J. Combin. 17 (2010), #N24.

[5] W. Chu, Finite differences and terminating hypergeometric series, Bull. Irish Math. Soc. 78
(2016), 31–45.

[6] W. Chu and L. C. Hsu, Some new applications of Gould-Hsu inversions, J. Combin. Inf.

Syst. Sci. 14:1 (1990), 1–4.
[7] L. Comtet, Advanced Combinatorics, Dordrecht–Holland, The Netherlands, 1974.

[8] G. P. Egorychev, Integral Representation and the Computation of Combinatorial

Sums, Translated from the Russian by H. H. McFadden: Translations of Mathematical Mono-
graphs 59; American Mathematical Society, Providence, RI, 1984. x+286pp.

[9] H. W. Gould, Some generalizations of Vandermonde’s convolution, Amer. Math.

Monthly 63:1 (1956), 84–91.
[10] H. W. Gould, Generalization of a theorem of Jensen concerning convolutions, Duke Math.

J. 27 (1960), 71–76.

[11] H. W. Gould, Combinatorial Identities: a standardized set of tables listing 500 binomial
coefficient summations, West Virginia University, Morgantown, 1972.

[12] H. W. Gould and L. C. Hsu, Some new inverse series relations, Duke Math. J. 40 (1973),
885–891.

[13] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics (2nd edition), Addison-

Wesley Publ. Company, Reading, Massachusetts, 1994.
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