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ON SUBFLAT DOMAINS OF RD-FLAT MODULES

Mücahit BOZKURT1 and Yılmaz DURĞUN2

1Department of Mathematics, Manisa Celal Bayar University, Manisa, TÜRKİYE
2Department of Mathematics, Çukurova University, Adana, TÜRKİYE

Abstract. The concept of subflat domain is used to measure how close (or far
away) a module is to be flat. A right module is flat if its subflat domain is the

entire class of left modules. In this note, we focus on of RD-flat modules that

have subflat domain which is exactly the collection of all torsion-free modules,
shortly tf-test modules. Properties of subflat domains and of tf-test modules

are studied. New characterizations of left P-coherent rings and torsion-free

rings by subflat domains of cyclically presented left R-modules are obtained.

1. Introduction

The rings R in this note are associative with identity, and every module is, if
not specified otherwise, right R-module. We use Mod − R (R − Mod) to denote
the class of right (left) R-modules.

There are important subclasses of Mod − R that shed light on the whole of
Mod− R. The classes of all projectives, all injective modules and all flat modules
are the prominent ones. Recently, many authors have studied on alternative ways
to test projectivity, injectivity and flatness of modules. In general, they are trying
to find test module whose test projectivity (injectivity or flatness) of modules (
[1, 2, 4, 10, 11, 18]). In this paper, we test the flatness of the RD-flat modules by
torsion-free modules.

Inspired by homological properties of torsion-free modules over an integral do-
main, Hattori in [9] defined and studied torsion-free modules over non-commutative
rings. A right R-module X is called torsion-free if Tor1(X,R/Ra) = 0 for all a ∈ R.
Flat modules are torsion-free, but the converse is not true in general. Torsion-free
modules are intimately related to relatively divisible (RD) exact sequences. A short
exact sequence 0 → K → L → M → 0 is called RD-exact if, for every a ∈ R, the

2020 Mathematics Subject Classification. 16D10, 18G15, 16D40.

Keywords. RD-flat module, subflat domain, torsion-free module.
1 mucahit.bozkurt1@hotmail.com; 0000-0003-3265-1994
2 ydurgun@cu.edu.tr-Corresponding author; 0000-0002-1230-8964.
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induced homomorphism HomR(R/Ra,L) → HomR(R/Ra,M) → 0 is surjective,
or equivalently, the induced map (R/aR)⊗K → (R/aR)⊗L is monic ( [19, Propo-
sition 2]). An R-module T (respectively, D) is torsion-free (respectively, divisible)
if and only if every short exact sequence 0 → D → B → T → 0 is RD-exact
( [13]). Note that torsion-free (respectively, divisible) modules are called P-flat
(rspectively, P-injective) by some authors. By the standard adjoint isomorphism,
a module B is torsion-free if and only if its character module B+ is a divisible left
R-module. Obviously, every pure exact sequence is RD-exact. Moreover, every flat
and fp-injective module is respectively torsion-free and divisible.

An R-module N is called RD-injective (respectively, RD-projective, RD-flat) if it
has the injective (respectively, projective, flat) property with respect to every RD-
exact sequence. The notions of RD-projective, RD-injective and RD-flat module
were used by Stenström in [17]. Commutative rings for which each Artinian module
is RD-injective (RD-flat) were completely characterized in [5]. In [13], the author
studied main properties of RD-projective, RD-injective and RD-flat modules.

Inspired and motivated by Whitehead injective test modules (shortly, i-test mod-
ules) in [7,18], f-test modules is defined and studied in [2], through Tor functor. A
module F is called f-test provided that for every left R-module K, Tor(F,K) = 0
implies that K is flat. In the same vein as f-test module, the main objective of the
present paper is to study test modules for torsion-freeness. A module KR is said
to be RL-subflat if for every short exact sequence 0 → U → D → L → 0 of left
R-modules, the sequence 0 → K ⊗ U → K ⊗ D → K ⊗ L → 0 is exact. For any
K ∈ Mod − R, we denote by F−1(K) the class {L ∈ R − Mod : K is L-subflat}.
Clearly, KR is flat if and only if F−1(K) = R − Mod. As can be seen from the
definitions, all flat left R-modules are contained in F−1(K) for each module K. In
particular, if MR is RD-flat and RN is torsion-free, then MR is RN -subflat. So, the
smallest possible subflat domain for an RD-flat module is the class of torsion-free
modules. We call a left module K test module for torsion-free (shortly, tf-test)
module if F−1(K) is exactly the class of torsion-free modules. We show that every
ring has a tf-test module.

In Section 2, we first obtain elementary properties of subflat domains of modules.
We present new characterizations for P-coherent rings and torsion-free rings by sub-
flat domains. For example, a ring R is torsion-free if and only if the subflat domain
of any cyclically presented left (or right) R-module is closed under submodules. In
Section 3, we discuss tf-test modules.

In what follows, we write T FR(respectively, FR,NR) for the family of torsion-
free (respectively, flat, nonsingular) modules. For a right R-module M , the char-
acter module HomZ(U,Q/Z) is denoted by U+. Given R-modules U and H,
Hom(U,H) (resp. Extn(U,H)) means HomR(U,H) (resp. ExtnR(U,H)), and sim-
ilarly U⊗H (resp. Torn(U,H)) denotes U⊗RH (resp. TorRn (U,H)) for an integer
n ≥ 1 unless otherwise specified.
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2. Subflat Domains

This section is devoted to obtain some elementary properties of subflat domains
of modules that will be needed later in the paper.

Given a left module X, a module T is X-subflat if and only if TorR1 (T,X) = 0
by [2, Proposition 2.3]. Moreover, if T ≤ M and, T and M/T are N -subflat, then
M is N -subflat.

Lemma 1. Let Y ∈ Mod−R and X be a pure submodule of Y . F−1(Y ) ⊆ F−1(X).

Proof. Let A ∈ F−1(Y ). Consider the following commutative diagram

0 // X ⊗ F0

α

��

ϵ // Y ⊗ F0

γ

��

δ // (Y/X)⊗ F0

θ

��

// 0

0 // X ⊗ F1
η // Y ⊗ F1

ϑ // (Y/X)⊗ F1
// 0,

where 0 → F0 → F1 → A → 0 is any short exact sequence. Since A ∈ F−1(Y ), γ
is monic. On the other hand, since X is pure submodule of Y , the rows are exact.
Then, α is a monomorphism, because ηα = γϵ is monomorphism. □

For Y ∈ Mod−R, the flat dimension of Y (fd(Y))≤ 1 if and only ifTorR2 (Y,B) =
0, ∀B ∈ R−Mod ( [15, pp.239]).

Lemma 2. Let Y ∈ Mod−R and W be a submodule of Y . If fd(Y/W ) ≤ 1, then
F−1(Y ) ⊆ F−1(W ).

Proof. Recall that fd(Y/W ) ≤ 1 if and only if thenTorR2 (Y/W,A) = 0 for every left
R-module A. If A ∈ F−1(Y ), then TorR1 (Y,A) = 0 by [2, Proposition 2.3]. So the
sequence 0 → W → Y → Y

W → 0 implies that 0 = TorR2 (
Y
W , A) → TorR1 (W,A) →

TorR1 (Y,A) = 0 is exact. Therefore, W is A-subflat by [2, Proposition 2.3].
□

In general, for any R-module M , F−1(M) is closed under pure submodules.

Theorem 1. Let T ∈ Mod− R. fd(T ) ≤ 1 if and only if F−1(T ) is closed under
submodules.

Proof. Let Z ∈ F−1(T ) and H ⊆ Z be any submodule. From the sequence
0 → H → Z → Z/H → 0, we have that 0 = TorR2 (T,Z/H) → TorR1 (T,H) →
TorR1 (T,Z) = 0. Then, T is H-subflat by [2, Proposition 2.3]. For the converse,
let Z ∈ R − Mod and consider the short exact sequence 0 → H → U → Z → 0
with U projective. Since U ∈ F−1(T ), TorR1 (T,H) = 0 by our hypothesis. By the
exactness of 0 = TorR2 (T,U) → TorR2 (T,Z) → TorR1 (T,H) = 0, TorR2 (T,Z) = 0.
Therefore, fd(T ) ≤ 1. □

wD(R) ≤ 1 if and only if fd(X) ≤ 1 for all right (or left) modules X ( [15, pp.
240]).



566 M. BOZKURT, Y. DURĞUN

Corollary 1. wD(R) ≤ 1 if and only if F−1(X) is closed under submodules for
every (finitely presented) left (or right) R-module X.

We say R is torsion-free if all its (finitely generated) right (or left) ideals of R are
torsion-free. The concept of a torsion-free ring is left and right symmetric ( [6]). It
is easy to see that a cyclic module is torsion-free if and only if it is flat. So, a ring
is torsion-free if and only if it is a pf-ring, i.e. each principal ideal is flat. A cyclic
module M ∼= R/I is called cyclically presented if I = aR for some a ∈ R.

Corollary 2. R is torsion-free ring if and only if the subflat domain of any cycli-
cally presented (or RD-flat) right (or left) R-module is closed under submodules.

Theorem 2. Let U be a finitely presented module and 0 → K → H → U → 0 be a
short exact sequence with finitely generated projective module H. F−1(U) is closed
under direct products if and only if K is finitely presented

Proof. (⇒) TorR1 (U,
∏

R) = 0 by our assumption. Consider the following commu-
tative diagram

K ⊗ (
∏

R)

α

��

β // H ⊗ (
∏

R)

γ

��

δ // U ⊗ (
∏

R)

θ

��

// 0

∏
K

η // ∏H
ϑ // ∏U // 0

γ and θ are isomorphisms by [8, Theorem 3.2.22]. Then α is an isomorphism by
the Five Lemma, therefore K is finitely presented by [8, Theorem 3.2.22].

(⇐) Let A ∈ F−1(U), i.e. TorR1 (U,A) = 0. By the adjoint isomorphism,
Ext1R(U,A

+) = 0. Note that TorR1 (N,B+) = Ext1R(N,B)+ for every B ∈ R−Mod
if a module N has a projective resolution P2 → P1 → P0 → N → 0, where Pi is
finitely generated for i = 0, 1, 2 (see [15, Remark, pp. 257]). Thus this implies that
TorR1 (U,A

++) = 0, that is U is A++-subflat.
Let {Mi}i∈J be a family of left R-modules in F−1(U). Then

⊕
i∈J Mi ∈ F−1(U)

by main properties of Tor. So (
⊕

i∈J Mi)
++ ∼= (

∏
i∈J M+

i )+ is in F−1(U) by

the preceding paragraph. But
⊕

i∈J M+
i is a pure submodule of

∏
i∈J M+

i by

[12, Example 4.84(d)], hence (
∏

i∈J M+
i )+ → (

⊕
i∈J M+

i )+ → 0 is a splitting

epimorphism. Therefore (
⊕

i∈J M+
i )+ ∼=

∏
i∈J M++

i is in F−1(U). Since
∏

i∈J Mi

is a pure submodule of
∏

i∈J M++
i and F−1(U) is closed under pure submodules,∏

i∈J Mi is in F−1(U). □

R is called a right coherent (respectively, P-coherent) ring if every finitely gen-
erated (respectively, principal) right ideal is finitely presented ( [14]).

Corollary 3. R is right coherent(respectively, P-coherent) ring if and only if
F−1(U) is closed under direct products for every finitely presented (respectively,
cyclically presented) module U .
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3. RD-Flat Modules Having a Restricted Subflat Domain

In this section, we study existence of test modules for torsion-freeness. If U
is RD-flat and N is torsion-free left R-module, then U is N -subflat. The next
proposition shows that the subflat domain of any RD-flat module must contain at
least the torsion-free modules. The following fact can be easily verified.

Proposition 1. RT F =
⋂

M∈Ω F−1(M), where Ω is the class of all RD-flat mod-
ules.

Definition 1. An RD-flat module K is called tf-test module if F−1(K) = T F , i.e.
Tor(K,X) ̸= 0 for every non-torsion-free left module X.

Set CP := ⊕Ci∈ΓCi, where Γ is a set of representatives for cyclically presented
right R-modules. Clearly, CP is an RD-flat module.

Proposition 2. CP is a tf-test module.

Proof. Let U ∈ R −Mod. Assume that TorR1 (CP, U) = 0. Since TorR1 (CP, U) ∼=
⊕Ci∈ΓTorR1 (Ci, U), TorR1 (Ci, U) = 0 for each Ci ∈ Γ. This means that U is
torsion-free. □

By Lemma 1 and Proposition 2, we get:

Corollary 4. Any pure extension of the module CP is a tf- test module.

By Proposition 2 and Lemma 2, we get:

Corollary 5. If wD(R) ≤ 1, then E(CP) is a tf- test module.

Remark 1. Let K be a finitely presented module and F0 → F1 → K → 0 be a
minimal free resolution of K. The transpose of K, denoted by Tr(K), is defined as
the cokernel of dual map HomR(F1, R) → HomR(F0, R). The isomorphism classes
of Tr(K) do not depend on our choice of the minimal resolution. Tr(K) is a finitely
presented left R-module. ( [3, 16]).

AmoduleK is said to be U -subprojective if the mapHomR(K,P ) → HomR(K,U)
is an epimorphism for every epimorphism P → U . The family of all modules U
such that K is U -subprojective is called the subprojectivity domain of K, and is de-
noted by Pr−1(K) ( [11]). [16, Theorem 8.3] presents a double-sided path between
subprojectivity domain and subflat domain.

Corollary 6. For a finitely presented module K, Pr−1(K) = F−1(Tr(K)) and

Pr−1(Tr(K)) = F−1(K).

Corollary 7. For a finitely presented module K, the following are hold.

(1) K is RD-flat if and only if Tr(K) is RD-projective module.
(2) Tr(K) is RD-flat if and only if K is RD-projective module.

By Corollary 6 and Corollary 7, we have the following.
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Corollary 8. A finitely presented RD-flat module U is tf-test if and only if T F =
Pr−1(Tr(U)).

Lemma 3. If an RD-flat module U is tf-test, then HomR(C,U) ̸= 0 for each
nonprojective finitely presented RD-flat module C.

Proof. Assume contrarily that HomR(C,U) = 0 for some nonprojective finitely
presented RD-flat module C. Given a short exact sequence 0 → F0 → F1 →
U → 0 where F1 is projective, we have 0 → HomR(C,F0) → HomR(C,F1) →
HomR(C,U) = 0. Then, by [16, Theorem 8.3], 0 → F0 ⊗ Tr(C) → F1 ⊗ Tr(C) →
U ⊗Tr(C) → 0 is exact, and hence Tor(U, Tr(C)) = 0. Since U is tf-test, Tr(C) is
torsion-free. But Tr(C) is RD-flat, and so it is flat by [13, Corollary 2.5]. Again by
[16, Theorem 8.3], C is projective. This contradicts with our hypothesis. Therefore,
HomR(C,U) ̸= 0. □
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Abstract. In this paper, we define an implicit random iterative process with
errors for three finite families of generalized asymptotically nonexpansive ran-

dom operators. We also prove some convergence theorems using this iteration

method in separable Banach spaces.

1. Introduction and Preliminaries

Random analysis is one of the most important areas of mathematics. Particu-
larly, random techniques have a very common use in pure and applied mathematics.
Hans [9] and Spacek [17] proved random fixed point results for random contraction
mappings on separable metric spaces. Later, many authors have worked on it using
different operator classes and different spaces. Some of them are given in these
references [1], [3], [4], [10], [11], [12] and [13].

Let (℧,Σ) be a measurable space and X be a real Banach space. Assume that
E is an operator from ℧ × X to X. Here, the m-th iterate E(ℓ, E(ℓ, . . . , E(ℓ, u0)))
of E is denoted by as Em(ℓ, u0).

Definition 1. Let f be a mapping on ℧. If for any Borel subset X ⊂ R the set
f−1(X) is measurable, the mapping f is called measurable.

Definition 2. Let E be an operator from ℧ × X to X. If E(·, u0) : ℧ → X is
measurable for every u0 ∈ X, then it is called a random operator.
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Definition 3. Let E be an operator from ℧ × X to X. If E(ℓ, ·) : X → X is
continuous for each ℓ ∈ ℧, it is continuous.

Definition 4. Let E be an operator from ℧×X to X. If E(ℓ, p(ℓ)) = p(ℓ),∀ℓ ∈ ℧,
p is called a random fixed point of the random operator E. Here, p : ℧ → X is a
measurable function. We denote by RF (E) the set of random fixed points of E.

Definition 5. ( [2]) Let X be a separable Banach space and Θ be a nonempty
subset of X. Assume that E : ℧×Θ → Θ is a random operator. Then E is called

(i) nonexpansive random operator if

∥E(ℓ, u0)− E(ℓ, υ0)∥ ≤ ∥u0 − υ0∥ for all u0, υ0 ∈ Θ and for each ℓ ∈ ℧,
(ii) asymptotically nonexpansive random operator if there exists a sequence of

measurable functions rm : ℧ → [1,∞) with limm→∞ rm(ℓ) = 1 for each ℓ ∈ ℧ such
that

∥Em(ℓ, u0)− Em(ℓ, υ0)∥ ≤ rm(ℓ)∥u0 − υ0∥,∀u0, υ0 ∈ Θ,m ∈ N,
(iii) asymptotically quasi-nonexpansive random operator if there exists a se-

quence of measurable functions rm : ℧ → [0,∞) with limm→∞ rm(ℓ) = 0,∀ℓ ∈ ℧
such that

∥Em(ℓ, η(ℓ))− p(ℓ)∥ ≤ (1 + rm(ℓ)) ∥η(ℓ)− p(ℓ)∥,
where p : ℧ → Θ is a random fixed point of E and η : ℧ → Θ is a measurable
mapping.

(iv) uniformly L-Lipschitzian random operator if for all u0, υ0 ∈ Θ and for all
ℓ ∈ ℧

∥Em(ℓ, u0)− Em(ℓ, υ0)∥ ≤ L∥u0 − υ0∥,
where, m ≥ 1 and L > 0.

(v) semi-compact random operator if for a sequence of measurable mappings
{ϱm} from ℧ to Θ, with limm→∞ ∥ϱm(ℓ)− E (ℓ, ϱm(ℓ))∥ = 0 for all ℓ ∈ ℧, we have
a subsequence

{
ϱmk

}
of {ϱm} such that ϱmk

(ℓ) → ϱ(ℓ) for each ℓ ∈ ℧, where ϱ is
a measurable mapping from ℧ to Θ.

In 1995, Choudhury gave the random Ishikawa iteration method and he proved
some random fixed point theorems using this method in Hilbert spaces. Thus he
contributed to the development of random iteration schemes. Later, some authors
introduced different iteration methods for random fixed points of different operator
classes ( [2], [5], [6], [7], [8], [14], [15]). In 2005, Beg and Abbas [2] introduced
the following implicit iteration process for weakly contractive and asymptotically
nonexpansive random operators in Banach spaces. They also showed that this
iteration method converges to the common random fixed point of a finite family of
asymptotically quasi-nonexpansive random operators in Banach spaces.

Throughout the rest of this paper, I denote the set of the first ℵ natural numbers,

that is, I = {1, 2, . . . ,ℵ}. Also, F =
⋂ℵ

i=1 [RF (Si) ∩RF (Ei) ∩RF (Ki)] shows
the set of common fixed points of three finite families of mappings {Si : i ∈ I},
{Ei : i ∈ I} and {Ki : i ∈ I}.
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Let Ei : ℧ × Θ → Θ be a finite family of random operators and ϱ0 : ℧ → Θ be
any measurable function. Let us define the sequence of functions {ϱm} as follows:

ϱm(ℓ) = αmϱm−1(ℓ) + (1− αm)E
k(m)
i(m) (ℓ, ϱm(ℓ)) (1)

where m = (k − 1)ℵ+ i.
In 2007, Plubtieng et al. [14] introduced the following implicit iteration method

and they obtained some convergence results for a common random fixed point of
a finite family of asymptotically quasi-nonexpansive random operators under some
conditions in uniformly convex separable Banach spaces.

Let Ei : ℧ × Θ → Θ be a finite family of random operators and ϱ0 : ℧ → Θ
be any measurable function. Also, let’s assume that the sequence {fm} consists of
measurable mappings from ℧ to Θ. For all m ≥ 1 and ∀ℓ ∈ ℧,

ϱm(ℓ) = αmϱm−1(ℓ) + (1− αm)E
k(m)
i(m) (ℓ, ϱm(ℓ)) + fm(ℓ)

where m = (k − 1)ℵ+ i and each {fm(ℓ)} is summable sequence in Θ, that is, the
series

∑∞
m=1 ∥fm(ℓ)∥ is convergent.

Afterwards, Banerjee and Choudhury [1] constructed an implicit random itera-
tive process with errors for a finite family of asymptotically nonexpansive random
operators in real Banach space. They also proved that this process converges to the
common random fixed point of such operators in the setting of uniformly convex
Banach spaces. Their iteration process is as follows:

Let Ei : ℧ × Θ → Θ be a finite family of random operators and ϱ0 : ℧ → Θ be
a measurable function. For all m ≥ 1 and ∀ℓ ∈ ℧,

ϱm(ℓ) = αmϱm−1(ℓ) + βmE
k(m)
i(m) (ℓ, ηm(ℓ)) + γmfm(ℓ)

ηm(ℓ) = amϱm(ℓ) + bmE
k(m)
i(m) (ℓ, ϱm(ℓ)) + cmgm(ℓ),

(2)

where {αm} , {βm} , {γm} , {am} , {bm} , {cm} are sequences in [0, 1] with αm+βm+
γm = am + bm + cm = 1 and {fm} , {gm} are bounded sequences of measurable
functions from ℧ to Θ.

Based on the above studies, we first present the idea of the generalized asymptot-
ically nonexpansive random operators. We also give an implicit iteration method
using three finite families of these operator classes. Then, we obtain some conver-
gence results using this iteration process.

Definition 6. Let X be a separable Banach space and Θ be a nonempty subset of
X. Also, let’s assume that E : ℧ × Θ → Θ is a random operator. Then E is said
to be a generalized asymptotically nonexpansive random operator if there exist two
sequences of measurable functions µm(ℓ) : ℧ → [0,∞), νm(ℓ) : ℧ → [0,∞) with
limm→∞ µm(ℓ) = 0 and limm→∞ νm(ℓ) = 0 for each ℓ ∈ ℧ such that

∥Em(ℓ, u0)− Em(ℓ, υ0)∥ ≤ ∥u0 − υ0∥+ µm(ℓ)∥u0 − υ0∥+ νm(ℓ)

for all u0, υ0 ∈ Θ and for each ℓ ∈ ℧.
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Remark 1. From above definitions, we can see that every asymptotically nonex-
pansive random operator is generalized asymptotically nonexpansive random oper-
ator. But, its converse is not true in general. We know also that every asymp-
totically nonexpansive random operator with RF (T ) ̸= ∅ is asymptotically quasi-
nonexpansive random operator and every asymptotically nonexpansive and asymp-
totically quasi-nonexpansive random operator is uniformly L-Lipschitzian random
operator.

Definition 7. Let X be a separable Banach space and Θ be a nonempty subset of
X and Si, Ei,Ki : ℧ × Θ → Θ be three finite families of random operators. Also,
suppose that ϱ0 : ℧ → Θ is a measurable function.

Then our iteration method with errors is defined as follows:

ϱ1(ℓ) = α1S1(ℓ, ϱ0(ℓ)) + β1E1 (ℓ, a1ϱ1(ℓ) + b1K1 (ℓ, ϱ1(ℓ)) + c1g1(ℓ))
+γ1f1(ℓ)

ϱ2(ℓ) = α2S2(ℓ, ϱ1(ℓ)) + β2E2 (ℓ, a2ϱ2(ℓ) + b2K2 (ℓ, ϱ2(ℓ)) + c2g2(ℓ))
+γ2f2(ℓ)

...
ϱℵ(ℓ) = αℵSℵ(ℓ, ϱℵ−1(ℓ)) + βℵEℵ(ℓ, aℵϱℵ(ℓ) + bℵKℵ (ℓ, ϱℵ(ℓ))

+cℵgℵ(ℓ)) + γℵfℵ(ℓ)
ϱℵ+1(ℓ) = αℵ+1Sℵ+1(ℓ, ϱℵ(ℓ)) + βℵ+1E

2
1(ℓ, aℵ+1ϱℵ+1(ℓ)

+bℵ+1K2
1

(
ℓ, ϱℵ+1(ℓ)

)
+ cℵ+1gℵ+1(ℓ)) + γℵ+1fℵ+1(ℓ)

...
ϱℵ(ℓ) = α2ℵS2ℵ(ℓ, ϱ2ℵ−1(ℓ)) + β2ℵE

2
ℵ(ℓ, a2ℵϱ2ℵ(ℓ)

+b2ℵK2
ℵ (ℓ, ϱℵ(ℓ)) + c2ℵg2ℵ(ℓ)) + γ2ℵfℵ(ℓ)

ϱ2ℵ+1(ℓ) = α2ℵ+1S2ℵ+1(ℓ, ϱ2ℵ(ℓ)) + β2ℵ+1E
3
1(ℓ, a2ℵ+1ϱ2ℵ+1(ℓ)

+b2ℵ+1K3
1

(
ℓ, ϱ2ℵ+1(ℓ)

)
+ c2ℵ+1g2ℵ+1(ℓ)) + γ2ℵ+1f2ℵ+1(ℓ)

...

We can write compact form of above iteration as follows:{
ϱm(ℓ) = αmSk(m)

i(m) (ℓ, ϱm−1(ℓ)) + βmE
k(m)
i(m) (ℓ, ηm(ℓ)) + γmfm(ℓ)

ηm(ℓ) = amϱm(ℓ) + bmKk(m)
i(m) (ℓ, ϱm(ℓ)) + cmgm(ℓ), m ≥ 1, ∀ℓ ∈ ℧

(3)

where {αm} , {βm} , {γm} , {am} , {bm} , {cm} are sequences in [0, 1] with αm+βm+
γm = am + bm + cm = 1 and {fm} , {gm} are bounded sequences of measurable
functions from ℧ to Θ.

Lemma 1. ( [18]) Let {µm} , {vm} and {δm} be sequences of nonnegative real
numbers such that

µm+1 ≤ (1 + δm)µm + vm.

If
∑

δm < ∞ and
∑

vm < ∞, then

(i) limm→∞ µm exists,
(ii) limm→∞ µm = 0 whenever lim infm→∞ µm = 0.
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Lemma 2. ([16]) Let X be a uniformly convex Banach space and {u0m} and {υ0m}
be two sequences in X such that lim supm→∞ ∥u0m∥ ≤ r, lim supm→∞ ∥υ0m∥ ≤ r
and limm→∞ ∥ℓmu0m + (1− ℓm) υ0m∥ = r satisfying for any r ≥ 0. Also, let’s
assume that 0 < p ≤ ℓm ≤ q < 1. Then limm→∞ ∥u0m− υ0m∥ = 0.

2. Main results

Now, we will give some convergence theorems for generalized asymptotically
nonexpansive random operators using our implicit random iteration scheme with
errors.

Theorem 1. Let X be a separable Banach space and Θ be a nonempty closed
convex subset of X. Let Si, Ei,Ki : ℧ × Θ → Θ be generalized asymptotically
nonexpansive random operators with the sequence of measurable mappings {rim}
: ℧ → [1,∞) satisfying

∑∞
m=1 (rim(ℓ)− 1) < ∞ for all ℓ ∈ ℧ and for all i ∈ I.

Suppose that F ̸= ∅. Let the iteration {ϱm} be defined by (3) with the additional
assumption 0 < α ≤ αm, βm ≤ β < 1 and

∑∞
m=1 γm < ∞,

∑∞
m=1 cm < ∞. Then

{ϱm} converges strongly to a common random fixed point of the random operators
Si,Ei and Ki if and only if for all ℓ ∈ ℧, lim infm→∞ d (ϱm(ℓ), F ) = 0, where
d (ϱm(ℓ), F ) = inf {∥ϱm(ℓ)− ϱ(ℓ)∥ : ϱ ∈ F}.

Proof. Let ϱ be a fixed point, that is ϱ ∈ F . Since {fm} and {gm} are bounded
sequences, we can write for each ℓ ∈ ℧,

M(ℓ) = sup
m≥1

∥fm(ℓ)− ϱ(ℓ)∥ ∨ sup
m≥1

∥gm(ℓ)− ϱ(ℓ)∥ .

It is clear that M(ℓ) < ∞ for each ℓ ∈ ℧. Also assume that rm(ℓ) = {max rim(ℓ) :
i = 1, 2, . . . ,ℵ} for each m ≥ 1. From the condition

∑∞
m=1 (rim(ℓ)− 1) < ∞ for

each ℓ ∈ ℧, we have that
∑∞

m=1 (rm(ℓ)− 1) < ∞. Using (3), we obtain that

∥ηm(ℓ)− ϱ(ℓ)∥ =
∥∥∥amϱm(ℓ) + bmKk(m)

i(m) (ℓ, ϱm(ℓ)) + cmgm(ℓ)− ϱ(ℓ)
∥∥∥ (4)

≤ am ∥ϱm(ℓ)− ϱ(ℓ)∥+ bm

∥∥∥Kk(m)
i(m) (ℓ, ϱm(ℓ))− ϱ(ℓ)

∥∥∥
+cm ∥gm(ℓ)− ϱ(ℓ)∥

≤ am ∥ϱm(ℓ)− ϱ(ℓ)∥+ bmrk(m)(ℓ) ∥ϱm(ℓ)− ϱ(ℓ)∥
+bmvm(ℓ) + cmM(ℓ)

= am ∥ϱm(ℓ)− ϱ(ℓ)∥+ bm(1 + µm(ℓ)) ∥ϱm(ℓ)− ϱ(ℓ)∥
+bmvm(ℓ) + cmM(ℓ),

≤ (1 + µm(ℓ)) ∥ϱm(ℓ)− ϱ(ℓ)∥+ bmvm(ℓ) + cmM(ℓ).

where µm(ℓ) = rk(m)(ℓ)− 1.Also,

∥ϱm(ℓ)− ϱ(ℓ)∥ =
∥∥∥αmSk(m)

i(m) (ℓ, ϱm−1(ℓ) + βmE
k(m)
i(m) (ℓ, ηm(ℓ)) + γmfm(ℓ)− ϱ(ℓ)

∥∥∥
≤ αm

∥∥∥Sk(m)
i(m) (ℓ, ϱm−1(ℓ)− ϱ(ℓ)

∥∥∥+ βm

∥∥∥Ek(m)
i(m) (ℓ, ηm(ℓ))− ϱ(ℓ)

∥∥∥
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+γm ∥fm(ℓ)− ϱ(ℓ)∥
≤ αmrk(m)(ℓ)

∥∥ϱm−1(ℓ)− ϱ(ℓ)
∥∥+ αmvm(ℓ)

+βmrk(m)(ℓ) ∥ηm(ℓ)− ϱ(ℓ)∥+ γmM(ℓ) + βmvm(ℓ)

≤ αm (1 + µm(ℓ))
∥∥ϱm−1(ℓ)− ϱ(ℓ)

∥∥
+βm (1 + µm(ℓ)) [(1 + µm(ℓ)) ∥ϱm(ℓ)− ϱ(ℓ)∥+ cmM(ℓ)]

+αmvm(ℓ) + βmvm(ℓ) + γmM(ℓ)

= αm (1 + µm(ℓ))
∥∥ϱm−1(ℓ)− ϱ(ℓ)

∥∥
+βm (1 + µm(ℓ))

2 ∥ϱm(ℓ)− ϱ(ℓ)∥
+βmcm (1 + µm(ℓ))M(ℓ) + βmvm(ℓ) + βm (1 + µm(ℓ)) bmvm(ℓ)

+αmvm(ℓ) + γmM(ℓ)

≤ αm (1 + µm(ℓ))
∥∥ϱm−1(ℓ)− ϱ(ℓ)

∥∥
+(1− αm) (1 + pm(ℓ)) ∥ϱm(ℓ)− ϱ(ℓ)∥
+ [βmcm (1 + µm(ℓ)) + γm]M(ℓ) + βmvm(ℓ)

+βm (1 + µm(ℓ)) bmvm(ℓ) + αmvm(ℓ),

≤ αm

∥∥ϱm−1(ℓ)− ϱ(ℓ)
∥∥+ (1− αm + pm(ℓ)) ∥ϱm(ℓ)− ϱ(ℓ)∥

+ [βmcm (1 + µm(ℓ)) + γm]M(ℓ) + βmvm(ℓ)

+βm (1 + µm(ℓ)) bmvm(ℓ) + αmvm(ℓ).

where pm(ℓ) = 2µm(ℓ) + µm(ℓ)2. This implies that

∥ϱm(ℓ)− ϱ(ℓ)∥ ≤
∥∥ϱm−1(ℓ)− ϱ(ℓ)

∥∥+ pm(ℓ)

αm
∥ϱm(ℓ)− ϱ(ℓ)∥

+
βmcm (1 + µm(ℓ)) + γm

αm
M(ℓ) + vm(ℓ)

+
βmvm(ℓ) + βm (1 + µm(ℓ)) bmvm(ℓ)

αm

≤
∥∥ϱm−1(ℓ)− ϱ(ℓ)

∥∥+ pm(ℓ)

α
∥ϱm(ℓ)− ϱ(ℓ)∥

+
βmcm (1 + µm(ℓ)) + γm

α
M(ℓ) + vm(ℓ)

+
βmvm(ℓ) + βm (1 + µm(ℓ)) bmvm(ℓ)

α

and

∥ϱm(ℓ)− ϱ(ℓ)∥ ≤ α

α− pm(ℓ)
vm(ℓ)

∥∥ϱm−1(ℓ)− ϱ(ℓ)
∥∥ (5)
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+


βmcm (1 + µm(ℓ)) + γm + βmvm(ℓ)
+βm (1 + µm(ℓ)) bmvm(ℓ) + vm(ℓ)

α− pm(ℓ)

M(ℓ)

=

(
1 +

pm(ℓ)

(α− pm(ℓ))vm(ℓ)

)∥∥ϱm−1(ℓ)− ϱ(ℓ)
∥∥

+


βmcm (1 + µm(ℓ)) + γm + βmvm(ℓ)
+βm (1 + µm(ℓ)) bmvm(ℓ) + vm(ℓ)

α− pm(ℓ)

M(ℓ).

From the condition
∑∞

m=1

(
rk(m)(ℓ)− 1

)
< ∞ for each ℓ ∈ ℧, we know that∑∞

m=1 µm(ℓ) < ∞ and hence
∑∞

m=1 pm(ℓ) < ∞. So limm→∞ pm(ℓ) = 0 for each
ℓ ∈ ℧. From the definition of generalized asymptotically nonexpansive random
operator, we also have limm→∞ vm(ℓ) = 0 for each ℓ ∈ ℧. Then for ℓ ∈ ℧, there
exists m1 ∈ ℵ such that pm(ℓ) < α

2 for all m ≥ m1. Thus from (5) we have that,
for all m ≥ m1

∥ϱm(ℓ)− ϱ(ℓ)∥ ≤
(
1 + 2

pm(ℓ)

αvm(ℓ)

)
(1 + µm(ℓ))

∥∥ϱm−1(ℓ)− ϱ(ℓ)
∥∥ (6)

+


βmcm (1 + µm(ℓ)) + γm + βmvm(ℓ)
+βm (1 + µm(ℓ)) bmvm(ℓ) + vm(ℓ)

α

 2M(ℓ)

= (1 + λm(ℓ))
∥∥ϱm−1(ℓ)− ϱ(ℓ)

∥∥+ σm(ℓ),

where

λm(ℓ) = 2
pm(ℓ)

αvm(ℓ)
(1 + µm(ℓ)) + µm(ℓ)

and

σm(ℓ) =
βmcm (1 + µm(ℓ)) + γm + βmvm(ℓ) + βm (1 + µm(ℓ)) bmvm(ℓ) + vm(ℓ)

α
2M(ℓ).

Therefore
∑∞

m=1 λm(ℓ) < ∞ and
∑∞

m=1 σm(ℓ) < ∞. This implies that

d (ϱm(ℓ), F ) ≤ 1 + λm(ℓ)d
(
ϱm−1(ℓ), F

)
+ σm(ℓ).

Using Lemma 2, we obtain that limm→∞ d (ϱm(ℓ), F ) exists for each ℓ ∈ ℧. More-
over, from the condition of the theorem we have for all ℓ ∈ ℧,

lim
m→∞

d (ϱm(ℓ), F ) = 0.

We can see that the sequence {ϱm(ℓ)} is a Cauchy sequence for each ℓ ∈ ℧ using a
similar method as in [2]. Therefore ϱm(ℓ) → p(ℓ) as m → ∞ for each ℓ ∈ ℧, where
p : ℧ → F . Next, we will prove that p ∈ F . Since for each ℓ ∈ ℧, ϱm(ℓ) → p(ℓ)
as m → ∞ there exists m3 ∈ ℵ such that ∥ϱm(ℓ)− p(ℓ)∥ < ϵ

3(1+r1(ℓ))
for all
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m ≥ m3. Since limm→∞ d (ϱm(ℓ), F ) = 0 for each ℓ ∈ ℧, there exists m4 ∈ ℵ
such that d (ϱm(ℓ), F ) < ϵ

3(1+r1(ℓ))
for all m ≥ m4. So there exists ϱ∗ ∈ F such

that ∥ϱm(ℓ)− ϱ∗(ℓ)∥ ≤ ϵ(ℓ))
3(1+r1(ℓ))

for all m ≥ m4. Since limm→∞ νm(ℓ) = 0 for

each ℓ ∈ ℧, there exists m5 ∈ ℵ such that vm(ℓ) < ϵ
3(1+r1(ℓ))

for all m ≥ m5. Let

m6 = max {m3,m4,m5}. Now for all l ∈ I and for all m ≥ m6

∥Sl(ℓ, p(ℓ))− p(ℓ)∥ ≤ ∥Sl(ℓ, p(ℓ))− ϱ∗(ℓ)∥+ ∥ϱ∗(ℓ)− p(ℓ)∥
≤ ∥Sl(ℓ, p(ℓ))− Sl (ℓ, ϱ

∗(ℓ))∥+ ∥ϱ∗(ℓ)− p(ℓ)∥
≤ r1(ℓ) ∥ϱ∗(ℓ)− p(ℓ)∥+ v1(ℓ) + ∥ϱ∗(ℓ)− p(ℓ)∥
= (1 + r1(ℓ)) ∥ϱ∗(ℓ)− p(ℓ)∥ + v1(ℓ)

≤ (1 + r1(ℓ)) ∥ϱ∗(ℓ)− ϱm(ℓ)∥+ (1 + r1(ℓ)) ∥ϱm(ℓ)− p(ℓ)∥
+(1 + r1(ℓ)) v1(ℓ)

< (1 + r1(ℓ))
ϵ

3 (1 + r1(ℓ))
+ (1 + r1(ℓ))

ϵ

3 (1 + r1(ℓ))

+ (1 + r1(ℓ))
ϵ

3 (1 + r1(ℓ))
= ϵ

which implies that Sl(ℓ, p(ℓ)) = p(ℓ) for all l ∈ I and for each ℓ ∈ ℧. Similarly, we
can show that El(ℓ, p(ℓ)) = p(ℓ) and Kl(ℓ, p(ℓ)) = p(ℓ) for all l ∈ I and for each
ℓ ∈ ℧. Therefore, we can say that p ∈ F . That is, {ϱm} converges strongly to a
common random fixed point of Si, Ei and Ki. □

Lemma 3. Let X be a uniformly convex separable Banach space and Θ be a
nonempty closed convex subset of X. Let Si, Ei,Ki : ℧ × Θ → Θ be uniformly L-
Lipschitzian generalized asymptotically nonexpansive random operators with the se-
quence of measurable mappings {rim} : ℧ → [1,∞) satisfying

∑∞
m=1 (rim(ℓ)− 1) <

∞ for each ℓ ∈ ℧ and for all i ∈ I. Suppose that F ̸= ∅. Let the iteration {ϱm}
be defined by (3) with the additional assumption 0 < α ≤ αm, βm ≤ β < 1 and∑∞

m=1 γm < ∞,
∑∞

m=1 cm < ∞. Then

lim
m→∞

∥ϱm(ℓ)− Sl (ℓ, ϱm(ℓ))∥ = 0 , lim
m→∞

∥ϱm(ℓ)− El (ℓ, ϱm(ℓ))∥ = 0

and

lim
m→∞

∥ϱm(ℓ)−Kl (ℓ, ϱm(ℓ))∥ = 0

for each ℓ ∈ ℧ and for all l = 1, 2, . . . ,ℵ.

Proof. Let ϱ ∈ F be arbitrary. Since {fm} , {gm} are bounded sequences of mea-
surable functions from ℧ to Θ, so we can write as follows,

M(ℓ) = sup
m≥1

∥fm(ℓ)− ϱ(ℓ)∥ ∨ sup
m≥1

∥gm(ℓ)− ϱ(ℓ)∥ .

From above the equality, we have M(ℓ) < ∞ for each ℓ ∈ ℧. Assume that rm(ℓ) =
{max rim(ℓ) : i = 1, 2, . . . ,ℵ} for eachm ≥ 1. This implies that

∑∞
m=1 (rm(ℓ)− 1) <
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∞ for each ℓ ∈ ℧. Using (6) we know that

∥ϱm(ℓ)− ϱ(ℓ)∥ ≤ (1 + λm(ℓ))
∥∥ϱm−1(ℓ)− ϱ(ℓ)

∥∥+ σm(ℓ),

where
∑∞

m=1 λm(ℓ) < ∞ and
∑∞

m=1 σm(ℓ) < ∞. From Lemma 1, we obtain that
limm→∞ ∥ϱm(ℓ)− ϱ(ℓ)∥ exists for all ϱ ∈ F and for each ℓ ∈ ℧. We suppose that
limm→∞ ∥ϱm(ℓ)− ϱ(ℓ)∥ = aℓ. From (4), we have that

∥ηm(ℓ)− ϱ(ℓ)∥ ≤ (1 + µm(ℓ)) ∥ϱm(ℓ)− ϱ(ℓ)∥+ bmvm(ℓ) + cmM(ℓ).

From the above inequality, we obtain that

lim sup
m→∞

∥ηm(ℓ)− ϱ(ℓ)∥ ≤ aℓ for each ℓ ∈ ℧. (7)

Also

aℓ = lim
m→∞

∥ϱm(ℓ)− ϱ(ℓ)∥ (8)

= lim
m→∞

∥∥∥αmSk(m)
i(m) (ℓ, ϱm−1(ℓ) + βmE

k(m)
i(m) (ℓ, ηm(ℓ)) + γmfm(ℓ)− ϱ(ℓ)

∥∥∥
= lim

m→∞

∥∥∥∥∥∥ (1− βm)
(
Sk(m)
i(m) (ℓ, ϱm−1(ℓ)− ϱ(ℓ) + γm(fm(ℓ)− Sk(m)

i(m) (ℓ, ϱm−1(ℓ)))
)

+βm

(
E

k(m)
i(m) (ℓ, ηm(ℓ))− ϱ(ℓ) + γm

(
fm(ℓ)− Sk(m)

i(m) (ℓ, ϱm−1(ℓ))
)) ∥∥∥∥∥∥ .

For all ℓ ∈ ℧, we have∥∥∥Sk(m)
i(m) (ℓ, ϱm−1(ℓ)− ϱ(ℓ) + γm

(
fm(ℓ)− Sk(m)

i(m) (ℓ, ϱm−1(ℓ))
)∥∥∥

≤
∥∥∥Sk(m)

i(m) (ℓ, ϱm−1(ℓ))− ϱ(ℓ)
∥∥∥+ γm

∥∥∥fm(ℓ)− Sk(m)
i(m) (ℓ, ϱm−1(ℓ))

∥∥∥ .
Taking limsup on the both sides of above inequality, we obtain that

lim sup
m→∞

∥∥∥∥∥∥ Sk(m)
i(m) (ℓ, ϱm−1(ℓ))− ϱ(ℓ)

+γm

(
fm(ℓ)− Sk(m)

i(m) (ℓ, ϱm−1(ℓ))
) ∥∥∥∥∥∥ (9)

≤ lim sup
m→∞

(∥∥∥Sk(m)
i(m) (ℓ, ϱm−1(ℓ))− ϱ(ℓ)

∥∥∥+ γm

∥∥∥fm(ℓ)− Sk(m)
i(m) (ℓ, ϱm−1(ℓ))

∥∥∥)
≤ lim sup

m→∞

(
(1 + µm(ℓ))

∥∥ϱm−1(ℓ)− ϱ(ℓ)
∥∥+ vm(ℓ)

+γm

∥∥∥fm(ℓ)− Sk(m)
i(m) (ℓ, ϱm−1(ℓ))

∥∥∥
)

= aℓ.

Also, we can write the following inequality∥∥∥Ek(m)
i(m) (ℓ, ηm(ℓ))− ϱ(ℓ) + γm

(
fm(ℓ)− Sk(m)

i(m) (ℓ, ϱm−1(ℓ))
)∥∥∥

≤
∥∥∥Ek(m)

i(m) (ℓ, ηm(ℓ))− ϱ(ℓ)
∥∥∥+ γm

∥∥∥fm(ℓ)− Sk(m)
i(m) (ℓ, ϱm−1(ℓ))

∥∥∥
≤ rk(m)(ℓ) ∥ηm(ℓ)− ϱ(ℓ)∥+ vm(ℓ) + γmrk(m)(ℓ)

∥∥fm(ℓ)− ϱm−1(ℓ)
∥∥+ vm(ℓ).
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Taking again limsup at the above inequality, we get

lim sup
m→∞

∥∥∥∥∥∥ E
k(m)
i(m) (ℓ, ηm(ℓ))− ϱ(ℓ)

+γm

(
fm(ℓ)− Sk(m)

i(m) (ℓ, ϱm−1(ℓ))
) ∥∥∥∥∥∥ (10)

≤ lim sup
m→∞

(
(1 + µm(ℓ)) ∥ηm(ℓ)− ϱ(ℓ)∥

+vm(ℓ) + γm

∥∥∥(fm(ℓ)− Sk(m)
i(m) (ℓ, ϱm−1(ℓ))

)∥∥∥
)

≤ aℓ.

From (8),(9),(10) and Lemma 2, we obtain that

lim
m→∞

∥∥∥Ek(m)
i(m) (ℓ, ηm(ℓ))− Sk(m)

i(m) (ℓ, ϱm−1(ℓ))
∥∥∥ = 0 (11)

for each ℓ ∈ ℧. For each ℓ ∈ ℧, we have∥∥∥ϱm(ℓ)− Sk(m)
i(m) (ℓ, ϱm−1(ℓ))

∥∥∥ (12)

=

∥∥∥∥∥ αmSk(m)
i(m) (ℓ, ϱm−1(ℓ)) + βmE

k(m)
i(m) (ℓ, ηm(ℓ))

+γmfm(ℓ)− Sk(m)
i(m) (ℓ, ϱm−1(ℓ))

∥∥∥∥∥
≤ βm

∥∥∥Ek(m)
i(m) (ℓ, ηm(ℓ))− Sk(m)

i(m) (ℓ, ϱm−1(ℓ))
∥∥∥

+γm

∥∥∥fm(ℓ)− Sk(m)
i(m) (ℓ, ϱm−1(ℓ))

∥∥∥
→ 0 as m → ∞.

Hence for each ℓ ∈ ℧ and for all l ∈ I,

lim
m→∞

∥∥∥ϱm(ℓ)− Sk(m)
i(m) (ℓ, ϱm+l(ℓ))

∥∥∥ = 0.

Since∥∥∥ϱm(ℓ)− E
k(m)
i(m) (ℓ, ηm(ℓ))

∥∥∥ ≤
∥∥∥ϱm(ℓ)− Sk(m)

i(m) (ℓ, ϱm−1(ℓ))
∥∥∥

+
∥∥∥Sk(m)

i(m) (ℓ, ϱm−1(ℓ))− E
k(m)
i(m) (ℓ, ηm(ℓ))

∥∥∥ ,
by using (11),(12), we obtain that

lim
m→∞

∥∥∥ϱm(ℓ)− E
k(m)
i(m) (ℓ, ηm(ℓ))

∥∥∥ = 0 (13)

for each ℓ ∈ ℧. We also have

∥ηm(ℓ)− ϱ(ℓ)∥

=
∥∥∥amϱm(ℓ) + bmKk(m)

i(m) (ℓ, ϱm(ℓ)) + cmgm(ℓ)− ϱm(ℓ)
∥∥∥

≤ bm

∥∥∥Kk(m)
i(m) (ℓ, ϱm(ℓ))− ϱm(ℓ)

∥∥∥+ cm ∥gm(ℓ)− ϱm(ℓ)∥ .

Using (7), we have that lim supm→∞ ∥ηm(ℓ)− ϱ(ℓ)∥ ≤ aℓ for each ℓ ∈ ℧. Also, we
have

lim inf
m→∞

∥ηm(ℓ)− ϱ(ℓ)∥ ≤ lim inf
m→∞

αmrm(ℓ)
∥∥ϱm−1(ℓ)− ϱ(ℓ)

∥∥
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+βmrm(ℓ) ∥ηm(ℓ)− ϱ(ℓ)∥+ γm ∥fm(ℓ)− ϱ(ℓ)∥
which implies that

aℓ ≤ αmaℓ + βm lim inf
m→∞

∥ηm(ℓ)− ϱm(ℓ)∥ .

From above inequality,

(1− αm)aℓ
βm

≤ lim inf
m→∞

∥ηm(ℓ)− ϱm(ℓ)∥

aℓ ≤ lim inf
m→∞

∥ηm(ℓ)− ϱm(ℓ)∥ .

Now

aℓ = lim
m→∞

∥ηm(ℓ)− ϱ(ℓ)∥

= lim
m→∞

∥∥∥amϱm(ℓ) + bmKk(m)
i(m) (ℓ, ϱm(ℓ)) + cmgm(ℓ)− ϱ(ℓ)

∥∥∥
= lim

m→∞

∥∥∥∥∥ (1− bm) [ϱm(ℓ)− ϱ(ℓ) + cmgm(ℓ)− ϱm(ℓ)]

+bm

[
Kk(m)

i(m) (ℓ, ϱm(ℓ))− ϱ(ℓ) + cmgm(ℓ)− ϱm(ℓ)
] ∥∥∥∥∥ .

So

lim sup
m→∞

∥ϱm(ℓ) + ϱ(ℓ) + cm(gm(ℓ)− ϱm(ℓ))∥

≤ lim sup
m→∞

∥ϱm(ℓ) + ϱ(ℓ)∥+ cm ∥(gm(ℓ)− ϱm(ℓ))∥

≤ aℓ

and

lim sup
m→∞

∥∥∥Kk(m)
i(m) (ℓ, ϱm(ℓ))− ϱ(ℓ) + cmgm(ℓ)− ϱm(ℓ)

∥∥∥
≤ lim sup

m→∞

∥∥∥Kk(m)
i(m) (ℓ, ϱm(ℓ))− ϱ(ℓ)

∥∥∥+ cm ∥gm(ℓ)− ϱm(ℓ)∥

≤ lim sup
m→∞

rm(ℓ) ∥ϱm(ℓ)− ϱ(ℓ)∥+ vm(ℓ) + cm ∥gm(ℓ)− ϱm(ℓ)∥

≤ aℓ.

Taking Lemma 2 ∥∥∥Kk(m)
i(m) (ℓ, ϱm(ℓ))− ϱm(ℓ)

∥∥∥→ 0 as m → ∞

Using (13), we obtain that

∥ϱm(ℓ)− ηm(ℓ)∥ → 0 as m → ∞.

We have∥∥∥Sk(m)
i(m) (ℓ, ϱm−1(ℓ))− Em (ℓ, ϱm(ℓ))

∥∥∥ (14)

≤
∥∥∥Sk(m)

i(m) (ℓ, ϱm−1(ℓ))− E
k(m)
i(m) (ℓ, ηm(ℓ))

∥∥∥+ ∥∥∥Ek(m)
i(m) (ℓ, ηm(ℓ))− Em (ℓ, ϱm(ℓ))

∥∥∥
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≤
∥∥∥Sk(m)

i(m) (ℓ, ϱm−1(ℓ))− E
k(m)
i(m) (ℓ, ηm(ℓ))

∥∥∥+ L
∥∥∥Ek(m)−1

i(m) (ℓ, ηm(ℓ))− ϱm(ℓ)
∥∥∥

= σm(ℓ) + L
∥∥∥Ek(m)−1

i(m) (ℓ, ηm(ℓ))− ϱm(ℓ)
∥∥∥

where σm(ℓ) =
∥∥∥Sk(m)

i(m) (ℓ, ϱm−1(ℓ))− E
k(m)
i(m) (ℓ, ηm(ℓ))

∥∥∥ for each ℓ ∈ ℧. From (11),

we get that σm(ℓ) → 0 for each ℓ ∈ ℧ as m → ∞. We also have∥∥∥Ek(m)−1
i(m) (ℓ, ηm(ℓ))− ϱm(ℓ)

∥∥∥ (15)

≤
∥∥∥Ek(m)−1

i(m) (ℓ, ηm(ℓ))− E
k(m)−1
i(m−ℵ)

(
ℓ, ϱm−ℵ(ℓ)

) ∥∥∥
+
∥∥∥Ek(m)−1

i(m−ℵ)
(
ℓ, ϱm−ℵ(ℓ)

)
− E

k(m)−1
i(m−ℵ)

(
ℓ, ηm−ℵ(ℓ)

)∥∥∥
+
∥∥∥Ek(m)−1

i(m−ℵ)
(
ℓ, ηm−ℵ(ℓ)

)
− Sk(m−ℵ)

i(m−ℵ) (ℓ, ϱ(m−ℵ)−1(ℓ))
∥∥∥

+
∥∥∥Sk(m−ℵ)

i(m−ℵ) (ℓ, ϱ(m−ℵ)−1(ℓ))− ϱm(ℓ)
∥∥∥ .

for each m > ℵ,m = (m − ℵ)(modN). Again since m = (k(m) − 1)ℵ + i(m), we
have k(m− ℵ) = k(m)− 1 and i(m− ℵ) = i(m). Using (15), we can write∥∥∥Ek(m)−1

i(m) (ℓ, ηm(ℓ))− ϱm(ℓ)
∥∥∥ (16)

≤
∥∥∥Ek(m−ℵ)

i(m−ℵ) (ℓ, ηm(ℓ))− E
k(m−ℵ)
i(m−ℵ)

(
ℓ, ϱm−ℵ(ℓ)

)∥∥∥
+
∥∥∥Ek(m−ℵ)

i(m−ℵ)
(
ℓ, ϱm−ℵ(ℓ)

)
− E

k(m−ℵ)
i(m−ℵ)

(
ℓ, ηm−ℵ(ℓ)

)∥∥∥
+
∥∥∥Ek(m−ℵ)

i(m−ℵ)
(
ℓ, ηm−ℵ(ℓ)

)
− Sk(m−ℵ)

i(m−ℵ) (ℓ, ϱ(m−ℵ)−1(ℓ))
∥∥∥

+
∥∥∥Sk(m−ℵ)

i(m−ℵ) (ℓ, ϱ(m−ℵ)−1(ℓ))− ϱm(ℓ)
∥∥∥

≤ L
∥∥ηm(ℓ)− ϱm−ℵ(ℓ)

∥∥+ L
∥∥ϱm−ℵ(ℓ)− ηm−ℵ(ℓ)

∥∥+ σm−ℵ(ℓ)

+
∥∥∥Sk(m−ℵ)

i(m−ℵ) (ℓ, ϱ(m−ℵ)−1(ℓ))− ϱm(ℓ)
∥∥∥ .

Also, we have

∥∥ϱm(ℓ)− ϱm−1(ℓ)
∥∥ =

∥∥∥∥∥ αmSk(m)
i(m) (ℓ, ϱm−1(ℓ)) + βmE

k(m)
i(m) (ℓ, ηm(ℓ))

+γmfm(ℓ)− ϱm−1(ℓ)

∥∥∥∥∥
≤ αm

∥∥∥Sk(m)
i(m) (ℓ, ϱm−1(ℓ))− ϱm−1(ℓ)

∥∥∥
+βm

∥∥∥Ek(m)
i(m) (ℓ, ηm(ℓ))− ϱm−1(ℓ)

∥∥∥
≤ αm(

∥∥∥Sk(m)
i(m) (ℓ, ϱm−1(ℓ))− ϱm(ℓ)

∥∥∥+ ∥∥ϱm(ℓ)− ϱm−1(ℓ)
∥∥)

+βm(
∥∥∥Ek(m)

i(m) ℓ, (ηm(ℓ))− ϱm(ℓ)
∥∥∥+ ∥∥ϱm(ℓ)− ϱm−1(ℓ)

∥∥)



582 I. YILDIRIM AND M. E. BATUHAN

and

= αm

∥∥∥Sk(m)
i(m) (ℓ, ϱm−1(ℓ))− ϱm(ℓ)

∥∥∥+ βm

∥∥∥Ek(m)
i(m) (ℓ, ηm(ℓ))− ϱm(ℓ)

∥∥∥
+(αm + βm)

∥∥ϱm(ℓ)− ϱm−1(ℓ)
∥∥

=⇒ (1− αm − βm)
∥∥ϱm(ℓ)− ϱm−1(ℓ)

∥∥ ≤ αm

∥∥∥Sk(m)
i(m) (ℓ, ϱm−1(ℓ))− ϱm(ℓ)

∥∥∥
+βm

∥∥∥Ek(m)
i(m) (ℓ, ηm(ℓ))− ϱm(ℓ)

∥∥∥

=⇒
∥∥ϱm(ℓ)− ϱm−1(ℓ)

∥∥ ≤

αm

∥∥∥Sk(m)
i(m) (ℓ, ϱm−1(ℓ))− ϱm(ℓ)

∥∥∥
+βm

∥∥∥Ek(m)
i(m) (ℓ, ηm(ℓ))− ϱm(ℓ)

∥∥∥
(1− αm − βm)

≤

αm

∥∥∥Sk(m)
i(m) (ℓ, ϱm−1(ℓ))− ϱm(ℓ)

∥∥∥
+βm

∥∥∥Ek(m)
i(m) (ℓ, ηm(ℓ))− ϱm(ℓ)

∥∥∥
1− 2βm

=⇒
∥∥ϱm(ℓ)− ϱm−1(ℓ)

∥∥→ 0 as m → ∞ for each ℓ ∈ ℧.
So from (14) and (16) we have for each ℓ ∈ ℧,∥∥∥Sk(m)

i(m) (ℓ, ϱm−1(ℓ))− Em (ℓ, ϱm(ℓ))
∥∥∥

≤ σm(ℓ) + L2
∥∥ηm(ℓ)− ϱm−ℵ(ℓ)

∥∥+ L2
∥∥ϱm−ℵ(ℓ)− ηm−ℵ(ℓ)

∥∥+ Lσm−ℵ(ℓ)

+L
∥∥∥Sk(m)

i(m) (ℓ, ϱ(m−ℵ)−1(ℓ))− ϱm(ℓ)
∥∥∥

≤ σm(ℓ) + L2
(
∥ηm(ℓ)− ϱm(ℓ)∥+

∥∥ϱm(ℓ)− ϱm−ℵ(ℓ)
∥∥)+ L2

∥∥ϱm−ℵ(ℓ)− ηm−ℵ(ℓ)
∥∥

+Lσm−ℵ(ℓ) + L
∥∥∥Sk(m)

i(m) (ℓ, ϱ(m−ℵ)−1(ℓ))− ϱm(ℓ)
∥∥∥ .

It follows that ∥∥∥Sk(m)
i(m) (ℓ, ϱm−1(ℓ))− Em (ℓ, ϱm(ℓ))

∥∥∥→ 0 as m → ∞ (17)

By (17) and (12) we obtain that

∥ϱm(ℓ)− Em (ℓ, ϱm(ℓ))∥ (18)

≤
∥∥∥ϱm(ℓ)− Sk(m)

i(m) (ℓ, ϱm−1(ℓ))
∥∥∥+ ∥∥∥Sk(m)

i(m) (ℓ, ϱm−1(ℓ))− Em (ℓ, ϱm(ℓ))
∥∥∥

→ 0 as m → ∞
Now for each l ∈ {1, 2, . . . ,ℵ}, by using (18) we get that

∥ϱm(ℓ)− Sm+l (ℓ, ϱm(ℓ))∥ ≤
∥∥ϱm(ℓ)− ϱm+l(ℓ)

∥∥+ ∥∥ϱm+l(ℓ)− Sm+l

(
ℓ, ϱm+l(ℓ)

)∥∥
+
∥∥Sm+l

(
ℓ, ϱm+l(ℓ)

)
− Sm+l (ℓ, ϱm(ℓ))

∥∥
≤

∥∥ϱm(ℓ)− ϱm+l(ℓ)
∥∥+ ∥∥ϱm+l(ℓ)− Sm+l

(
ℓ, ϱm+l(ℓ)

)∥∥
+L

∥∥ϱm+l(ℓ)− ϱm(ℓ)
∥∥
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≤
∥∥ϱm(ℓ)− ϱm+l(ℓ)

∥∥+ ∥∥ϱm+l(ℓ)− ϱm+l−1(ℓ)
∥∥

+
∥∥ϱm+l−1(ℓ)− Sm+l

(
ℓ, ϱm+l(ℓ)

)∥∥
+L

∥∥ϱm+l(ℓ)− ϱm(ℓ)
∥∥

≤
∥∥ϱm(ℓ)− ϱm+l(ℓ)

∥∥+ ∥∥ϱm+l(ℓ)− ϱm+l−1(ℓ)
∥∥

+
∥∥ϱm+l−1(ℓ)− ϱm+l(ℓ)

∥∥
+
∥∥ϱm+l−1(ℓ)− Sm+l

(
ℓ, ϱm+l(ℓ)

)∥∥
+L

∥∥ϱm+l(ℓ)− ϱm(ℓ)
∥∥

→ 0 as m → ∞ for each ℓ ∈ ℧.
Therefore we have

lim
m→∞

∥ϱm(ℓ)− Sl (ℓ, ϱm(ℓ))∥ = 0

for each ℓ ∈ ℧ and for each l ∈ I. Similarly we have

lim
m→∞

∥ϱm(ℓ)− El (ℓ, ϱm(ℓ))∥ = 0 and lim
m→∞

∥ϱm(ℓ)−Kl (ℓ, ϱm(ℓ))∥ = 0

for each ℓ ∈ ℧ and for each l ∈ I. □

Definition 8. Let Si, Ei,Ki : ℧ × Θ → Θ be continuous random operators with
F ̸= ∅. They is said to satisfy Condition (B∗) if there is a nondecreasing function
f on [0,∞) with f(0) = 0 and f(t) > 0 for each t ∈ (0,∞) such that for each ℓ ∈ ℧

f(d(u0(ℓ), F )) ≤ max
1≤i≤ℵ

{∥u0(ℓ)− Si(ℓ, u0(ℓ))∥}

or f(d(u0(ℓ), F )) ≤ max
1≤i≤ℵ

{∥u0(ℓ)− Ei(ℓ, u0(ℓ))∥}

or f(d(u0(ℓ), F )) ≤ max
1≤i≤ℵ

{∥u0(ℓ)−Ki(ℓ, u0(ℓ))∥}

where u0 : ℧ → Θ is a measurable function.

Theorem 2. Let X be a uniformly convex separable Banach space and Θ be a
nonempty closed convex subset of X. Let Si, Ei,Ki : ℧ × Θ → Θ be uniformly L-
Lipschitzian generalized asymptotically nonexpansive random operators with the se-
quence of measurable mappings {rim} : ℧ → [1,∞) satisfying

∑∞
m=1 (rim(ℓ)− 1) <

∞ for each ℓ ∈ ℧ and for all i ∈ I. Suppose that F ̸= ∅. Let the iteration {ϱm}
be defined by (3) with the additional assumption 0 < α ≤ αm, βm ≤ β < 1 and∑∞

m=1 γm < ∞,
∑∞

m=1 cm < ∞. If the families Si, Ei and Ki satisfies Condition
(B∗) for each ℓ ∈ ℧, then {ϱm} converges strongly to a common random fixed point
of Si, Ei and Ki.

Proof. From Theorem 1, we know that limm→∞ d (ϱm(ℓ), F ) exists for each ℓ ∈ ℧.
Using Lemma 3 and Condition (B∗), we have that

lim
m→∞

f (d (ϱm(ℓ), F )) = 0.

From definition of f , we have limm→∞ d (ϱm(ℓ), F ) = 0. Hence the result follows
by Theorem 1. □
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Theorem 3. Let X be a uniformly convex separable Banach space and Θ be a
nonempty closed convex subset of X. Let Si, Ei,Ki : ℧ × Θ → Θ be uniformly L-
Lipschitzian generalized asymptotically nonexpansive random operators with the se-
quence of measurable mappings {rim} : ℧ → [1,∞) satisfying

∑∞
m=1 (rim(ℓ)− 1) <

∞ for each ℓ ∈ ℧ and for all i ∈ I. Suppose that F ̸= ∅ and at least one of member
of the families Si, Ei and Ki is semi-compact random operator. Let the iteration
{ϱm} be defined by (3) with the additional assumption 0 < α ≤ αm, βm ≤ β < 1
and

∑∞
m=1 γm < ∞,

∑∞
m=1 cm < ∞, then {ϱm} converges strongly to a common

random fixed point of Si, Ei and Ki.

Proof. From Lemma 3, we know that limm→∞ ∥ϱm(ℓ)− Sl (ℓ, ϱm(ℓ))∥ = 0 for each
ℓ ∈ ℧ and for each l ∈ I. Assume that S1 is semi-compact random operator. Then
there exists a subsequence

{
ϱmk

(ℓ)
}
of {ϱm(ℓ)} such that ϱmk

(ℓ) → ϱ(ℓ) for each
ℓ ∈ ℧, where ϱ is a measurable mapping from ℧ to Θ. Thus

∥ϱ(ℓ)− Sl(ℓ, ϱ(ℓ))∥ = lim
k→∞

∥∥ϱmk
(ℓ)− Sl

(
ℓ, ϱmk

(ℓ)
)∥∥

= 0 for each ℓ ∈ ℧ and for each l ∈ I.

It follows that ϱ ∈ F . Since {ϱm(ℓ)} has a subsequence
{
ϱmk

(ℓ)
}

such that
ϱmk

(ℓ) → ϱ(ℓ) for each ℓ ∈ ℧, we have that lim infm→∞ d (ϱm(ℓ), F ) = 0. Hence
the result follows by Theorem 1 . □

Remark 2. i) Theorem 1, Lemma 3 and Theorems 2-3 are also valid for asymptot-
ically nonexpansive random operators and uniformly L-Lipschitzian asymptotically
nonexpansive random operators. If we take νm(ℓ) = 0 for each ℓ ∈ ℧ and for all
m ≥ 1, the conclusions of our theorems are immediate.

ii) Taking Sk(m)
i(m) (ℓ, ϱm−1(ℓ)) = ϱm−1(ℓ) for each ℓ ∈ ℧ and K = E at the implicit it-

eration process (3), this reduces to the iteration process (2). So, Theorem 1, Lemma
3 and Theorems 2-3 extend and improve Theorem 3.1, Lemma 3.1 and Theorems
3.2-3.3 of [1] for three finite families of generalized asymptotically nonexpansive
random operators.

iii) Taking Sk(m)
i(m) (ℓ, ϱm−1(ℓ)) = ϱm−1(ℓ), fm(ℓ) = 0 for each ℓ ∈ ℧, am = bm =

cm = 0 for all m ∈ N at the implicit iteration process (3), we get that the iter-
ation process (1). Thus, our results extend Theorem 4.1 and Theorem 4.2 of [2]
respectively. Moreover, our results extend and improve the corresponding results
of [14].
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TESTING EQUALITY OF MEANS IN ONE-WAY ANOVA USING

THREE AND FOUR MOMENT APPROXIMATIONS

Gamze GUVEN
Department of Statistics, Eskisehir Osmangazi University, 26040 Eskisehir, TÜRKIYE

Abstract. In this study, we focus on two test statistics for testing the equal-
ity of treatment means in one-way analysis of variance (ANOVA). The first

one is the well known Cochran (CLS) test statistic based on least squares

(LS) estimators and the second one is robust version of it (RCMML) based
on modified maximum likelihood (MML) estimators. These two test statistics

are asymptotically distributed as chi-square. However, distributions of them

are unknown for small samples. Therefore, three-moment chi-square and four
moment F approximations to the null distributions of CLS and RCMML are

derived inspired by Tiku and Wong [19]. To investigate the small and moder-

ate sample properties of these tests based on the mentioned approximations,
an extensive Monte-Carlo simulation study is performed when the underly-

ing distribution is long-tailed symmetric (LTS). Simulation results show that
four-moment F approximation provides better approximation than the three-

moment chi-square approximation for both CLS and RCMML tests. There-

fore, the simulated Type I error rates and powers of the CLS and RCMML

test statistics are calculated using four-moment F approximation. According

to simulation results, RCMML test is more powerful than the corresponding

CLS test.

1. Introduction

Testing the equality of treatment means in one-way analysis of variance (ANOVA)
is one of the oldest problems in theoretical and applied statistics. The problem of
interest can be stated in the following hypothesis

H0 : µ1 = µ2 = · · · = µa = µ vs.

H1 : µi ̸= µj for some i ̸= j.
(1)
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Classical F test based on least squares (LS) estimators is appropriate for testing
the null hypothesis in (1) when the usual ANOVA assumptions such as independent
and identically distributed normal error terms with constant variance are satisfied.
Although the F test is relatively robust in terms of the size performance, it may lose
power under assumption violations, see Gamage and Weerahandi [4], Hampel [6],
Schrader and Hettmansperger [14] and Şenoğlu and Tiku [15] etc. There is an ex-
tensive literature focusing on one-way ANOVA under normality and heterogeneiy
of variances assumptions. Therefore, a variety of tests have been developed and
compared, see for example Brown and Forsythe [2], Cochran [3], James [8], Krish-
namoorthy et al. [9], Li et al. [10], Mehrotra [11], Weerahandi [22], Welch [23], etc.
for detailed information.

In this study, we are interested in Cochran [3] test statistic based on least squares
(LS) estimators, denoted as CLS . The reason of why we focus on this statistic is
that many tests available in the literature are based on the CLS . For example,
Welch test is a modification of Cochran’s test. In addition, CLS is often used as the
standard test for testing homogeneity in meta-analysis, see Hartung et al. [7]. As it
is well known that this test statistic is proposed under normality and heterogeneity
of variances assumptions. However, nonnormal distributions are encountered more
frequently in practice. Therefore, Guven et al. [5] considered robust version of the
Cochran test statistic based on modified maximum likelihood (MML) estimators,
denoted as RCMML, and fiducial based test using RCMML for testing the equality
of means when the underlying distribution is long-tailed symmetric (LTS). MML
estimators proposed by Tiku [16,17] are asymptotically equivalent to the maximum
likelihood (ML) estimators and more efficient than the LS estimators under non-
normality. Also, MML estimators are robust to the outliers, see Aydogdu et al. [1],
Tiku et al. [20] and references therein.

It should be noted that CLS and RCMML test statistics have asymptotic chi-
square distribution with a − 1 degrees of freedom under H0. Here, a denotes the
number of treatments. However, their null distributions are difficult to obtain for
small samples, even at moderate sample sizes. If one uses asymptotic distribution in
small samples this results in highly liberal tests. To deal with this problem, in this
study, two useful moment approximations for the small sample distributions of the
CLS and RCMML test statistics are derived by inspiring the Tiku and Wong [19].
The former is based on the first three moments of the chi-square distribution and
the latter is based on the first four moments of the F distribution. To the best of our
knowledge, this is the first study using three-moment chi-square and four moment
F approximations to test the equality of treatment means in one-way ANOVA
under heteroscedasticity and nonnormality. These approximations are applied to
the various problems in the literature. For example, Tiku and Wong [19] used
three-moment chi-square and four moment F approximations for testing a unit root
in an AR(1) model. Sürücü and Sazak [13] studied the three-parameter Weibull
distribution to monitor reliability. Also, they provided reasonably accurate results



TESTING EQUALITY OF MEANS IN ONE-WAY ANOVA 589

to the percentage points of the distribution of cumulative time between failures by
using two and three moment approximations. Purutcuoğlu [12] extended Tiku and
Wong’s [19] work to skewed distributions, namely, gamma and generalized logistic.

The outline of this study is organized as follows. In Section 2, CLS and RCMML

test statistics are reviewed. In Section 3, a brief description of the three moment
chi-square and the four moment F approximations are given. In section 4, results
of the simulation study are presented. Concluding remarks are given in Section 5.

2. Test Statistics

In this section, we briefly review the well known CLS test based on LS estimators
and RCMML test based on MML estimators.

2.1. Cochran Test. Let Yi1, Yi2, ..., Yini
be a random sample from N(µi, σ

2
i ),

i = 1, 2, ..., a distribution.
CLS test proposed by Cochran in 1937, which is also referred to as natural test

statistic in the literature is defined as follows

CLS =

a∑
i=1

ni

S2
i

Ȳi −

a∑
i=1

niȲi/S
2
i

a∑
i=1

ni/S2
i


2

. (2)

Here, Ȳi and S2
i are LS estimators of µi and σ2

i , respectively and formulated as
follows

Ȳi =
1

ni

ni∑
j=1

Yij and S2
i =

ni∑
j=1

(Yij − Ȳi)
2/(ni − 1). (3)

2.2. Robust Cochran Test. Let Yi1, Yi2, ..., Yini
be a random sample from

LTS(p, µi, σi), (i = 1, ..., a) distribution.
The probability density function (pdf) of LTS distribution is

f(y) =
1√

kβ(1/2, p− 1/2)σ

(
1 +

(y − µ)2

kσ2

)−p

,−∞ < y < ∞;−∞ < µ < ∞;σ > 0; p ≥ 2

(4)
where µ is location, σ is scale, p is shape parameter and k = 2p − 3, see [18]. It
should be noted LTS distribution is used for modeling outlier(s) in data. It has a
long tail when the shape parameter p is small and reduces to the normal distribution
when p goes to infinity. If a random variable Y is distributed as LTS(p, µ, σ), then

t =
√
(ν/k)((Y − µ)/σ) is distributed as Student’s t with ν = 2p − 1 degrees of

freedom.
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RCMML test proposed by Güven et al. in 2019 is given as follows

RCMML =

a∑
i=1

Mi

σ̂2
i

µ̂i −

a∑
i=1

Miµ̂i/σ̂
2
i

a∑
i=1

Mi/σ̂
2
i


2

. (5)

Here, µ̂i and σ̂2
i are MML estimators of µi and σ2

i , respectively and formulated as
follows

µ̂i =

ni∑
j=1

βijyi(j)

mi
and σ̂i =

Bi +
√
B2

i + 4AiCi

2
√

Ai(Ai − 1)
. (6)

In Eq. (6), Ai = ni, Bi = 2p
k

ni∑
j=1

αij(yi(j) − µ̂i), Ci = 2p
k

ni∑
j=1

βij(yi(j) − µ̂i)
2,

mi =
ni∑
j=1

βij . Mi = 2pmi/k and

αij =
(2/k)t3i(j)(

1 + (1/k)t2i(j)

)2 and βij =
1− (1/k)t2i(j)(
1 + (1/k)t2i(j)

)2 .

It should be noted that yi(j), i = 1, 2, ..., a and j = 1, 2, ..., ni are the ordered obser-
vations of a sample. The approximate values of the expected values of the ordered
statistics, i.e, ti(j)=E(yi(j)) values are computed from the following equality∫ ti(j)

−∞
f(z)dz =

j

ni + 1
.

Remark 1. CLS test statistic given in (2) and RCMML test statistic given in
(5) are asymptotically distributed as chi-square with a − 1 degrees of freedom, see
[5, 9] for details. However, as mentioned earlier, the null distribution of these test
statistics are unknown for small and moderate samples. To deal with this problem
two approximations that can be used to calculate critical values are given.

3. Moment Approximations

In this section, we briefly mentioned three moment chi-square and four-moment
F approximations derived by Tiku and Wong [19].

3.1. Three-moment chi-square approximation. Let X∗ be a random variable
and

W1 =
X∗ + a

b
. (7)
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Here, W1 has the central chi-square distribution with ν degrees of freedom. The
values of a, b and ν are obtained by equating the first three moments on both sides
of (7):

ν =
8

β∗
1

b =

√
µ2

2ν
and a = bν − µ

′

1 (8)

where β∗
1 = µ2

3/µ
3
2 (µ3 > 0), µ

′

1 is the mean of a random variable X∗, µ2 is the
variance of a random variable X∗ and µ3 is the third central moment of a random
variable X∗.

It should be noted that for (7) to be valid β∗
1 and β∗

2 values of X∗ should satisfy
the following condition:

E = |β∗
2 − (3 + 1.5β∗

1)| ≤ 0.5 (9)

where β∗
2 = µ4/µ

2
2 and µ4 is the fourth central moment of a random variable X∗.

Realize that β∗
2 = 3+1.5β∗

1 is called the Type III line for a chi-square distribution,
see Tiku and Yip [21] and references therein.

3.2. Four-moment F approximation. Let X∗ be a random variable and

W2 =
X∗ + g

h
. (10)

Here, W2 has the central F distribution with (ν1, ν2) degrees of freedom. The val-
ues of ν1, ν2, g and h are obtained by equating the four moments on both sides of
(10):

ν2 = 2

[
3 +

β∗
2 + 3

β∗
2 − (3 + 1.5β∗

1)

]
ν1 =

1

2
(ν2 − 2)

[
−1 +

√
1 +

32 (ν2 − 4)/(ν2 − 6)
2

β∗
1 − 32 (ν2 − 4)/(ν2 − 6)

2

]

h =

√√√√{
ν1(ν2 − 2)

2
(ν2 − 4)

2ν22 (ν1 + ν2 − 2)

}
µ2

g =
ν2

ν2 − 2
h− µ

′

1.

(11)

Here, β∗
1 = µ2

3/µ
3
2 (µ3 > 0), β∗

2 = µ4/µ
2
2, µ

′

1 is the mean of a random variable X∗,
µ2 is the variance of a random variable X∗, µ3 is the third central moment of a
random variable X∗ and µ4 is the fourth central moment of a random variable X∗.
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It should be noted that for (10) to be valid (β∗
1, β

∗
2) values of X

∗ should satisfy
the following conditions:

β∗
1 > C1 and β∗

2 > C2. (12)

where C1 = 32(ν2−4)

(ν2−6)2
and C2 = 3 + 1.5β∗

1.

Realize that the inequalities in (12) determine the F region in the (β∗
1, β

∗
2)-plane

bounded by the χ2-line and the reciprocal χ2-line, see [12].

4. Monte Carlo Simulation Study

In this section, the performances of the RCMML and CLS test statistics based
on approximations are compared when the underlying population distributions are
LTS. Throughout the simulation study, the following parameter settings are used:

• Number of treatments: a = 3,
• Shape parameter: p = 2, 2.5, 3.5 and 5,
• Sample sizes: (n1, n2, n3) = (6, 6, 6), (6, 9, 12), (12, 12, 12), (12, 15, 18) and
(20, 20, 20),

• Variances: (σ2
1, σ

2
2, σ

2
3) = (1, 1, 1), (1, 1.5, 2.5) and (1, 3, 5).

Based on the parameter settings, random samples with sample size (n1, n2, n3)
were generated from the LTS(p, µi, σi) distributions. Since it is very difficult to
obtain the distribution of RCMML and CLS test statistics or their moments, we
simulated (from 10,000 runs) their first four moments. The simulated mean, vari-
ance, β∗

1 and β∗
2 values of the test statistics RCMML and CLS are given in Table 1.

In addition, the values for inequalities in (9) and (12) are also included in Table 1,
to see whether the three-moment chi square and four-moment F approximations are
applicable or not. If the condition in (9) is satisfied, then three-moment chi-square
approximation provides accurate values for the percentage points of X∗. Thus,
distributions belonging to the Type III region are approximated by this method.
In other words, the 100(1 − α)% point of X∗ is approximately bχ2

(1−α) (ν) − a

where χ2
(1−α) (ν) is the 100(1 − α)% point of central chi-square distribution with

ν degrees of freedom. Similarly, if the conditions in (12) are satisfied, then four-
moment F approximation provides accurate values for the percentage points of X∗.
Thus, distributions belonging to the F -region are approximated by this method.
In other words, the 100(1− α)% point of X∗ is approximately hF(1−α) (ν1, ν2)− g
where F(1−α) (ν1, ν2) is the 100(1−α)% point of central central F distribution with
(ν1, ν2) degrees of freedom.

According to the results given in Table 1, condition (9) is satisfied when the
sample sizes are (n1, n2, n3) = (12, 12, 12), (12, 15, 18) and (20, 20, 20) for all val-
ues of p except p = 2. However, when p = 2, if sample sizes are (n1, n2, n3) =
(12, 15, 18) and (20, 20, 20), then this condition is satisfied. It should be noted that
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(β∗
1, β

∗
2) values of RCMML and CLS test statistics satisfy the conditions in (12)

for all sample sizes and p values. In other words, four moment F approximation is
applicable for all parameter settings. Therefore, 95% points of the Eq. (10) and sim-
ulated type I error rates and powers of both tests are computed using four-moment
F approximation. To illustrate the accuracy of four moment F approximation, the
simulated values of the probabilities (based on 10,000 Monte Carlo runs) formu-
lated as

P1 = P (RCMML ≥ cMML |H0 ) and P2 = P (CLS ≥ cLS |H0 ) (13)

are given in Table 2. Here, cMML and cLS are the 95% points as determined by
(10). The simulated values of the probabilities (based on 10,000 Monte Carlo runs)

P3 = P (RCMML ≥ c |H0 ) and P4 = P (CLS ≥ c |H0 ) (14)

are also calculated and included in Table 2. Here, c is the 95% point of the chi-
square distribution with a−1 degrees of freedom. The purpose here is to show that
both test statistics are not distributed as chi-quare with a − 1 degrees of freedom
when the sample sizes are small and moderate.

As it is known that simulated values of the probabilities given in (13) and (14)
are Type I error rates of the test statistics. According to Table 2, Type I error rates
of both tests are very close to the nominal level α = 0.05 based on the probabilities
in (13). Therefore, four-moment F approximation performs quite well.

It should be noted that µi’s i = 1, 2, 3 are taken to be 0 for calculating the
Type I error rates. The simulated power values are presented in Table 3. They are
obtained by substracting and adding a constant s to the observations in the first
and third group, respectively.

From Table 3, it can be seen that RCMML test is more powerful than the CLS

test. RCMML test outperforms the CLS test especially when p = 2 and 2.5. Ac-
cording to the results, it is clear that powers of two tests become very close to each
other as expected as the shape parameter p increases, i.e. when the distribution
converges to normal.
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Table 1 Simulated values of the mean, variance, β∗
1 and β∗

2 of
RCMML and CLS test statistics.

p = 2

(σ2
1, σ

2
2, σ

2
3) Mean Variance β∗

1 β∗
2 C1 C2 E

(n1, n2, n3)=(6,6,6)

(1, 1, 1)
RCMML 2.3096 8.0560 13.0149 27.7682 3.1930 22.5223 5.2459
CLS 2.5299 8.0138 11.7138 26.8661 4.0835 20.5707 6.2954

(1, 1.5, 2.5)
RCMML 2.3589 8.3187 11.6877 24.9991 2.9603 20.5315 4.4676
CLS 2.5722 8.1623 9.1842 20.0265 2.5773 16.7763 3.2503

(1, 3, 5)
RCMML 2.3634 8.1424 9.6312 19.8070 1.8271 17.4468 2.3602
CLS 2.5762 8.1160 8.1244 16.9847 1.5691 15.1866 1.7981

(n1, n2, n3)=(6,9,12)

(1, 1, 1)
RCMML 2.1631 6.0217 8.4289 18.8903 2.7253 15.6434 3.2469
CLS 2.3272 6.0408 8.0179 19.9702 4.1843 15.0269 4.9433

(1, 1.5, 2.5)
RCMML 2.1308 5.7908 7.6515 15.9360 1.3274 14.4773 1.4587
CLS 2.3022 5.5273 5.8677 12.9254 1.2088 11.8016 1.1238

(1, 3, 5)
RCMML 2.0855 5.3528 6.3573 13.0810 0.5607 12.5359 0.5451
CLS 2.2886 5.3462 5.0975 11.5050 1.0033 10.6463 0.8587

(n1, n2, n3)=(12,12,12)

(1, 1, 1)
RCMML 2.0800 5.4741 7.9669 17.6418 2.3582 14.9504 2.6914
CLS 2.2032 5.1416 5.9498 14.0425 2.2354 11.9247 2.1179

(1, 1.5, 2.5)
RCMML 2.0619 5.0819 6.7256 14.0429 0.9464 13.0884 0.9546
CLS 2.2280 4.9446 5.2560 12.1676 1.4686 10.8840 1.2836

(1, 3, 5)
RCMML 2.1180 5.6276 7.0758 13.9387 0.3129 13.6137 0.3250
CLS 2.2368 5.2004 5.4540 11.6230 0.4983 11.1810 0.4420

(n1, n2, n3)=(12,15,18)

(1, 1, 1)
RCMML 2.0499 5.0062 6.2150 12.5231 0.2095 12.3224 0.2006
CLS 2.1970 4.8792 5.0956 10.9974 0.4149 10.6434 0.3541

(1, 1.5, 2.5)
RCMML 2.0358 4.7405 5.2598 11.0816 0.2209 10.8897 0.1918
CLS 2.1673 4.5687 4.3740 9.9229 0.4607 9.5610 0.3620

(1, 3, 5)
RCMML 2.0321 4.8645 5.9746 12.2518 0.3099 11.9619 0.2899
CLS 2.1854 4.7859 4.7202 10.5556 0.5806 10.0804 0.4753

(n1, n2, n3)=(20,20,20)

(1, 1, 1)
RCMML 2.0226 4.4795 5.3256 11.3624 0.4275 10.9883 0.3740
CLS 2.1341 4.2243 3.9059 9.0935 0.3165 8.8588 0.2347

(1, 1.5, 2.5)
RCMML 2.0160 4.5365 5.2599 11.3575 0.5381 10.8899 0.4676
CLS 2.1090 4.2262 3.7145 8.7742 0.2798 8.5717 0.2024

(1, 3, 5)
RCMML 2.0648 4.9787 6.0703 12.5036 0.4215 12.1054 0.3982
CLS 2.1520 4.4884 4.0370 9.0617 0.0082 9.0556 0.0061
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Table 1 Continued

p = 2.5

(σ2
1, σ

2
2, σ

2
3) Mean Variance β∗

1 β∗
2 C1 C2 E

(n1, n2, n3)=(6,6,6)

(1, 1, 1)
RCMML 2.4218 8.4302 10.6901 22.3395 2.3585 19.0352 3.3043
CLS 2.5581 8.5239 9.2394 18.9141 1.6411 16.8591 2.0550

(1, 1.5, 2.5)
RCMML 2.4228 8.6027 12.0572 24.8101 2.4296 21.0858 3.7242
CLS 2.5597 8.7233 10.5542 21.6902 2.0672 18.8312 2.8590

(1, 3, 5)
RCMML 2.4826 9.2056 12.0715 24.4862 2.2087 21.1072 3.3789
CLS 2.6070 9.1769 10.8083 22.3328 2.2136 19.2124 3.1204

(n1, n2, n3)=(6,9,12)

(1,1,1) RCMML 2.2667 7.0193 10.1246 22.4666 3.1407 18.1869 4.2798
CLS 2.3759 6.9486 8.7447 19.1618 2.5003 16.1170 3.0448

(1,1.5,2.5) RCMML 2.2354 6.5174 8.4731 17.5403 1.5531 15.7097 1.8306
CLS 2.3585 6.4990 7.2715 15.9467 1.9077 13.9072 2.0395

(1,3,5) RCMML 2.2131 5.9959 7.5144 16.2003 1.7687 14.2716 1.9287
CLS 2.3379 6.0546 6.2077 13.6899 1.4305 12.3115 1.3783

(n1, n2, n3)=(12,12,12)

(1,1,1) RCMML 2.1299 5.4463 6.2480 12.6131 0.2510 12.3720 0.2412
CLS 2.2468 5.4260 5.1322 10.9339 0.2751 10.6982 0.2356

(1,1.5,2.5) RCMML 2.1374 5.5258 6.1414 12.3430 0.1377 12.2121 0.1309
CLS 2.2439 5.5119 5.5494 11.5547 0.2575 11.3241 0.2306

(1,3,5) RCMML 2.1556 5.5529 6.0006 12.4211 0.4479 12.0009 0.4202
CLS 2.2780 5.4755 4.7076 10.1637 0.1253 10.0614 0.1023

(n1, n2, n3)=(12,15,18)

(1,1,1) RCMML 2.0891 4.8593 5.4115 11.5966 0.5427 11.1172 0.4794
CLS 2.2011 4.8299 4.6185 10.3151 0.4790 9.9278 0.3873

(1,1.5,2.5) RCMML 2.0681 4.9123 5.7607 11.7959 0.1693 11.6410 0.1549
CLS 2.1738 4.9129 5.0528 10.9016 0.3797 10.5792 0.3224

(1,3,5) RCMML 2.0624 4.7238 5.0612 11.0668 0.5584 10.5919 0.4749
CLS 2.1714 4.7558 4.2012 9.4379 0.1768 9.3019 0.1360

(n1, n2, n3)=(20,20,20)

(1,1,1) RCMML 2.0612 4.7198 4.9356 10.6220 0.2610 10.4033 0.2187
CLS 2.1347 4.6836 4.5503 10.3010 0.5924 9.8255 0.4755

(1,1.5,2.5) RCMML 2.0534 4.6072 4.7783 10.1984 0.0377 10.1674 0.0310
CLS 2.1400 4.6175 4.3784 9.9652 0.5058 9.5676 0.3977

(1,3,5) RCMML 2.0755 4.8576 5.3440 11.1513 0.1544 11.0161 0.1352
CLS 2.1376 4.8247 5.0309 10.9896 0.5230 10.5464 0.4433
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Table 1 Continued

p = 3.5

(σ2
1, σ

2
2, σ

2
3) Mean Variance β∗

1 β∗
2 C1 C2 E

(n1, n2, n3)=(6,6,6)

(1, 1, 1)
RCMML 2.4878 9.2504 12.7133 25.9098 2.4074 22.0700 3.8398
CLS 2.5587 9.4876 12.5679 25.3752 2.2334 21.8518 3.5234

(1,1.5,2.5) RCMML 2.5112 9.8580 14.3304 28.8503 2.4866 24.4957 4.3546
CLS 2.5792 10.0060 14.0845 28.6982 2.6402 24.1268 4.5714

(1,3,5) RCMML 2.6010 10.9686 13.7113 27.6405 2.4100 23.5669 4.0736
CLS 2.6614 11.0235 12.7401 25.2558 1.9796 22.1101 3.1457

(n1, n2, n3)=(6,9,12)

(1,1,1) RCMML 2.3729 7.3840 9.1295 18.6714 1.5930 16.6942 1.9772
CLS 2.4405 7.4683 8.2328 16.7771 1.2386 15.3492 1.4279

(1,1.5,2.5) RCMML 2.3098 6.7497 7.8150 16.4073 1.5096 14.7225 1.6848
CLS 2.3768 6.8880 7.6406 16.3291 1.6958 14.4609 1.8681

(1,3,5) RCMML 2.3133 6.5897 6.8536 14.1312 0.8341 13.2804 0.8508
CLS 2.3764 6.6548 6.7169 14.1695 1.0846 13.0753 1.0941

(n1, n2, n3)=(12,12,12)

(1,1,1) RCMML 2.1419 5.5832 6.3234 12.7305 0.2535 12.4850 0.2454
CLS 2.2150 5.7049 6.0440 12.4456 0.4029 12.0660 0.3797

(1,1.5,2.5) RCMML 2.2279 5.8083 5.4341 11.2752 0.1403 11.1511 0.1241
CLS 2.2801 5.8356 5.1763 10.9279 0.1901 10.7644 0.1635

(1,3,5) RCMML 2.2066 5.7402 5.9609 12.4132 0.5049 11.9413 0.4719
CLS 2.2648 5.8047 5.5062 11.7500 0.5500 11.2593 0.4907

(n1, n2, n3)=(12,15,18)

(1,1,1) RCMML 2.1052 4.9854 5.6536 11.8726 0.4331 11.4803 0.3923
CLS 2.1725 4.9796 4.9204 10.8199 0.5248 10.3805 0.4393

(1,1.5,2.5) RCMML 2.1222 5.3348 5.9678 11.9782 0.0284 11.9517 0.0265
CLS 2.1881 5.3890 5.6574 11.7592 0.3015 11.4861 0.2730

(1,3,5) RCMML 2.1788 5.2685 5.2153 11.2398 0.4822 10.8229 0.4169
CLS 2.2412 5.3480 4.8351 10.2684 0.0190 10.2527 0.0157

(n1, n2, n3)=(20,20,20)

(1,1,1) RCMML 2.0968 4.8573 5.0836 10.6636 0.0449 10.6254 0.0382
CLS 2.1408 4.8398 4.8967 10.5150 0.2038 10.3450 0.1700

(1,1.5,2.5) RCMML 2.0911 4.8850 5.2287 10.9304 0.1009 10.8431 0.0873
CLS 2.1524 4.9565 4.8703 10.3574 0.0625 10.3055 0.0520

(1,3,5) RCMML 2.0905 4.9111 5.2425 11.2253 0.4169 10.8637 0.3615
CLS 2.1339 4.9440 4.7707 10.2893 0.1621 10.1560 0.1333
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Table 1 Continued

p = 5

(σ2
1, σ

2
2, σ

2
3) Mean Variance β∗

1 β∗
2 C1 C2 E

(n1, n2, n3)=(6,6,6)

(1, 1, 1)
RCMML 2.5931 10.1696 10.4780 19.8989 0.8685 18.7169 1.1819
CLS 2.6224 10.2105 10.1684 19.3852 0.8505 18.2526 1.1326

(1,1.5,2.5) RCMML 2.5824 9.2375 8.2641 16.3544 0.8314 15.3961 0.9583
CLS 2.6117 9.3139 8.2007 16.2315 0.8116 15.3010 0.9305

(1,3,5) RCMML 2.6785 11.3840 12.1254 22.8392 1.0877 21.1881 1.6510
CLS 2.7104 11.4115 11.6371 22.0232 1.0651 20.4556 1.5675

(n1, n2, n3)=(6,9,12)

(1,1,1) RCMML 2.4202 7.8965 8.2753 16.1644 0.6520 15.4129 0.7515
CLS 2.4478 7.8960 8.0382 15.8409 0.6931 15.0573 0.7835

(1,1.5,2.5) RCMML 2.3891 7.3910 7.6100 15.2101 0.7291 14.4150 0.7951
CLS 2.4176 7.4448 7.5063 15.1283 0.8036 14.2594 0.8689

(1,3,5) RCMML 2.3322 6.7876 6.8458 14.3607 1.0698 13.2686 1.0920
CLS 2.3615 6.8576 6.6484 13.8872 0.9135 12.9726 0.9146

(n1, n2, n3)=(12,12,12)

(1,1,1) RCMML 2.2527 6.0280 6.1148 12.5301 0.3773 12.1722 0.3579
CLS 2.2829 6.0599 5.8781 12.1358 0.3440 11.8171 0.3187

(1,1.5,2.5) RCMML 2.2251 5.7954 5.7693 12.0057 0.3840 11.6539 0.3518
CLS 2.2525 5.8256 5.5710 11.8138 0.5092 11.3565 0.4573

(1,3,5) RCMML 2.2721 6.3965 6.7848 13.6628 0.4799 13.1771 0.4857
CLS 2.2959 6.3694 6.6065 13.4051 0.4977 12.9098 0.4953

(n1, n2, n3)=(12,15,18)

(1,1,1) RCMML 2.1660 5.1636 5.0322 10.8800 0.3916 10.5482 0.3318
LS 2.1890 5.2156 4.9121 10.5098 0.1695 10.3682 0.1416

(1,1.5,2.5) RCMML 2.1914 5.2469 4.9893 10.7124 0.2711 10.4839 0.2285
CLS 2.2216 5.3025 4.7285 10.2224 0.1584 10.0927 0.1297

(1,3,5) RCMML 2.1852 5.3835 5.4095 11.5094 0.4477 11.1142 0.3952
CLS 2.2144 5.3921 5.1696 11.0698 0.3667 10.7544 0.3154

(n1, n2, n3)=(20,20,20)

(1,1,1) RCMML 2.1482 4.9962 4.9164 10.3884 0.0164 10.3747 0.0137
CLS 2.1717 5.0489 5.0828 10.9542 0.3872 10.6243 0.3299

(1,1.5,2.5) RCMML 2.0912 4.7621 5.1844 11.1729 0.4599 10.7766 0.3963
CLS 2.1220 4.8095 4.9371 10.6404 0.2800 10.4057 0.2347

(1,3,5) RCMML 2.1392 5.2311 5.4792 11.3733 0.1739 11.2188 0.1545
CLS 2.1688 5.3126 5.2535 10.9122 0.0368 10.8803 0.0320
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Table 2 Simulated critical values and the probabilities
P1 = P (RCMML ≥ cMML |H0 ), P2 = P (CLS ≥ cLS |H0 ),
P3 = P (RCMML ≥ c |H0 ), P4 = P (CLS ≥ c |H0 ) and c = 5.9915.

p = 2 p = 2.5

(n1, n2, n3) (σ2
1, σ

2
2, σ

2
3)

critical
value

P1

P2

P3

P4

critical
value

P1

P2

P3

P4

(6,6,6)

(1,1,1) cMML 7.6647 0.0488 0.0823 7.9867 0.0484 0.0907

cLS 7.8448 0.0478 0.0899 8.2283 0.0474 0.0956

(1,1.5,2.5) cMML 7.8346 0.0489 0.0864 8.0174 0.0471 0.0894

cLS 8.0483 0.0493 0.0948 8.2436 0.0467 0.0963

(1,3,5) cMML 7.8853 0.0495 0.0896 8.2841 0.0442 0.0930

cLS 8.1243 0.0469 0.0994 8.4219 0.0452 0.0993

(6,9,12)

(1,1,1) cMML 6.8603 0.0518 0.0708 7.3034 0.0487 0.0780

cLS 6.9498 0.0494 0.0728 7.4359 0.0467 0.0818

(1,1.5,2.5) cMML 6.8381 0.0506 0.0674 7.2065 0.0485 0.0745

cLS 6.9046 0.0476 0.0707 7.2969 0.0495 0.0814

(1,3,5) cMML 6.6798 0.0504 0.0650 6.9674 0.0492 0.0711

cLS 6.8224 0.0497 0.0721 7.1381 0.0484 0.0765

(12,12,12)

(1,1,1) cMML 6.5818 0.0522 0.0643 6.7971 0.0473 0.0648
cLS 6.5636 0.0513 0.0648 6.8911 0.0490 0.0715

(1,1.5,2.5) cMML 6.5034 0.0481 0.0595 6.8512 0.0463 0.0667
cLS 6.5510 0.0483 0.0635 6.9328 0.0487 0.0701

(1,3,5) cMML 6.8559 0.0453 0.0625 6.8449 0.0486 0.0701
cLS 6.7639 0.0468 0.0643 6.9529 0.0495 0.0758

(12,15,18)

(1,1,1) cMML 6.5290 0.0460 0.0562 6.4603 0.0495 0.0619
cLS 6.5855 0.0479 0.0620 6.5512 0.0493 0.0631

(1,1.5,2.5) cMML 6.3847 0.0508 0.0603 6.5065 0.0461 0.0578

cLS 6.3940 0.0487 0.0594 6.5804 0.0488 0.0619

(1,3,5) cMML 6.4353 0.0483 0.0588 6.3653 0.0525 0.0614

cLS 6.5075 0.0516 0.0655 6.5095 0.0484 0.0634

(20,20,20)

(1,1,1) cMML 6.2296 0.0483 0.0532 6.3909 0.0492 0.0599

cLS 6.1992 0.0516 0.0576 6.4054 0.0520 0.0620

(1,1.5,2.5) cMML 6.2378 0.0485 0.0551 6.3530 0.0500 0.0597
cLS 6.1721 0.0523 0.0568 6.3847 0.0497 0.0599

(1,3,5) cMML 6.5082 0.0477 0.0581 6.4863 0.0496 0.0617

cLS 6.3803 0.0482 0.0573 6.4893 0.0481 0.0607
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Table 2 Continued

p = 3.5 p = 5

(n1, n2, n3) (σ2
1, σ

2
2, σ

2
3)

critical

value

P1

P2

P3

P4

critical

value

P1

P2

P3

P4

(6,6,6)

(1,1,1) cMML 8.2775 0.0462 0.0920 8.8412 0.0479 0.0999
cLS 8.4364 0.0459 0.0950 8.8920 0.0475 0.1011

(1,1.5,2.5) cMML 8.4453 0.0460 0.0924 8.5783 0.0472 0.1070
cLS 8.5552 0.0438 0.0963 8.6353 0.0465 0.1080

(1,3,5) cMML 8.8812 0.0467 0.1031 9.2216 0.0461 0.1086
cLS 9.0109 0.0453 0.1068 9.2778 0.0453 0.1109

(6,9,12)

(1,1,1) cMML 7.6554 0.0452 0.0830 7.9833 0.0464 0.0899

cLS 7.7920 0.0454 0.0874 8.0084 0.0462 0.0907

(1,1.5,2.5) cMML 7.3755 0.0485 0.0781 7.7680 0.0476 0.0851

cLS 7.4786 0.0497 0.0797 7.8084 0.0471 0.0892

(1,3,5) cMML 7.3827 0.0487 0.0802 7.4531 0.0491 0.0837

cLS 7.4452 0.0495 0.0819 7.5242 0.0485 0.0848

(12,12,12)

(1,1,1) cMML 6.8673 0.0465 0.0661 7.1474 0.0486 0.0765

cLS 6.9734 0.0483 0.0688 7.1926 0.0493 0.0776

(1,1.5,2.5) cMML 7.0540 0.0521 0.0742 7.0208 0.0493 0.0732

cLS 7.1076 0.0507 0.0773 7.0444 0.0491 0.0744

(1,3,5) cMML 6.9678 0.0488 0.0703 7.3045 0.0465 0.0766

cLS 7.0428 0.0485 0.0744 7.3154 0.0469 0.0769

(12,15,18)

(1,1,1) cMML 6.5469 0.0466 0.0583 6.6820 0.0500 0.0645
cLS 6.5912 0.0474 0.0645 6.7506 0.0493 0.0678

(1,1.5,2.5) cMML 6.7658 0.0482 0.0669 6.7563 0.0496 0.0682
cLS 6.8207 0.0487 0.0674 6.8186 0.0497 0.0704

(1,3,5) cMML 6.7338 0.0496 0.0674 6.7962 0.0504 0.0694
cLS 6.8771 0.0492 0.0702 6.8344 0.0492 0.0715

(20,20,20)

(1,1,1) cMML 6.5162 0.0484 0.0599 6.6309 0.0479 0.0632
cLS 6.5309 0.0481 0.0602 6.6387 0.0488 0.0637

(1,1.5,2.5) cMML 6.5188 0.0487 0.0607 6.4234 0.0473 0.0583

cLS 6.6109 0.0472 0.0626 6.4906 0.0485 0.0600

(1,3,5) cMML 6.4954 0.0503 0.0620 6.7159 0.0476 0.0642
cLS 6.5732 0.0519 0.0655 6.7944 0.0478 0.0653
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Table 3 Simulated powers of the RCMML and CLS tests based
on four-moment F approximation.

p = 2

(n1, n2, n3) (σ2
1, σ

2
2, σ

2
3) = (1, 1, 1) (σ2

1, σ
2
2, σ

2
3) = (1, 1.5, 2.5) (σ2

1, σ
2
2, σ

2
3) = (1, 3, 5)

s RCMML CLS s RCMML CLS s RCMML CLS

(6,6,6)

0.00 0.0488 0.0478 0.00 0.0489 0.0493 0.00 0.0495 0.0469
0.15 0.08 0.08 0.18 0.08 0.08 0.22 0.08 0.07
0.30 0.19 0.19 0.36 0.18 0.18 0.44 0.16 0.16
0.45 0.37 0.36 0.54 0.35 0.34 0.66 0.32 0.32
0.60 0.58 0.57 0.72 0.55 0.53 0.88 0.52 0.50
0.75 0.75 0.73 0.90 0.71 0.68 1.10 0.69 0.66
0.90 0.87 0.84 1.08 0.84 0.82 1.32 0.82 0.79
1.05 0.93 0.91 1.26 0.92 0.90 1.54 0.90 0.88
1.20 0.97 0.95 1.44 0.96 0.94 1.76 0.95 0.93
1.35 0.98 0.97 1.62 0.98 0.96 1.98 0.97 0.96

s RCMML CLS s RCMML CLS s RCMML CLS

(6,9,12)

0.00 0.0518 0.0494 0.00 0.0506 0.0476 0.00 0.0504 0.0497
0.11 0.08 0.07 0.14 0.08 0.08 0.17 0.08 0.08
0.22 0.17 0.17 0.28 0.17 0.16 0.34 0.18 0.17
0.33 0.32 0.30 0.42 0.33 0.31 0.51 0.34 0.32
0.44 0.50 0.47 0.56 0.53 0.49 0.68 0.53 0.48
0.55 0.68 0.64 0.70 0.71 0.66 0.85 0.72 0.66
0.66 0.81 0.77 0.84 0.84 0.80 1.02 0.84 0.79
0.77 0.91 0.87 0.98 0.92 0.87 1.19 0.93 0.88
0.88 0.95 0.92 1.12 0.96 0.93 1.36 0.96 0.93
0.99 0.98 0.96 1.26 0.98 0.96 1.53 0.98 0.96

s RCMML CLS s RCMML CLS s RCMML CLS

(12,12,12)

0.00 0.0522 0.0513 0.00 0.0481 0.0483 0.00 0.0453 0.0468
0.09 0.08 0.08 0.11 0.08 0.07 0.14 0.07 0.07
0.18 0.16 0.15 0.22 0.15 0.14 0.28 0.15 0.14
0.27 0.31 0.27 0.33 0.29 0.26 0.42 0.29 0.27
0.36 0.52 0.46 0.44 0.49 0.43 0.56 0.48 0.42
0.45 0.70 0.62 0.55 0.66 0.59 0.70 0.66 0.59
0.54 0.85 0.77 0.66 0.82 0.73 0.84 0.82 0.73
0.63 0.92 0.86 0.77 0.91 0.84 0.98 0.91 0.84
0.72 0.96 0.92 0.88 0.96 0.90 1.12 0.96 0.91
0.81 0.99 0.96 0.99 0.98 0.94 1.26 0.98 0.95

s RCMML CLS s RCMML CLS s RCMML CLS

(12,15,18)

0.00 0.0460 0.0479 0.00 0.0508 0.0487 0.00 0.0483 0.0516
0.08 0.07 0.07 0.10 0.07 0.07 0.13 0.07 0.07
0.16 0.15 0.13 0.20 0.16 0.14 0.26 0.17 0.15
0.24 0.30 0.26 0.30 0.31 0.27 0.39 0.34 0.29
0.32 0.51 0.43 0.40 0.50 0.43 0.52 0.54 0.46
0.40 0.69 0.59 0.50 0.70 0.59 0.65 0.74 0.64
0.48 0.83 0.73 0.60 0.83 0.73 0.78 0.87 0.77
0.56 0.92 0.84 0.70 0.92 0.84 0.91 0.94 0.86
0.64 0.97 0.91 0.80 0.97 0.91 1.04 0.98 0.92
0.72 0.99 0.95 0.90 0.98 0.95 1.17 0.99 0.96

s RCMML CLS s RCMML CLS s RCMML CLS

(20,20,20)

0.00 0.0483 0.0516 0.00 0.0485 0.0523 0.00 0.0477 0.0482
0.06 0.07 0.07 0.08 0.07 0.07 0.11 0.07 0.06
0.12 0.14 0.12 0.16 0.14 0.12 0.22 0.16 0.14
0.18 0.26 0.22 0.24 0.28 0.22 0.33 0.31 0.25
0.24 0.43 0.35 0.32 0.45 0.36 0.44 0.51 0.41
0.30 0.60 0.50 0.40 0.64 0.51 0.55 0.70 0.58
0.36 0.75 0.64 0.48 0.79 0.65 0.66 0.86 0.74
0.42 0.87 0.76 0.56 0.89 0.78 0.77 0.94 0.85
0.48 0.94 0.85 0.64 0.95 0.86 0.88 0.98 0.92
0.54 0.98 0.92 0.72 0.98 0.92 0.99 0.99 0.96
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Table 3 Continued

p = 2.5

(n1, n2, n3) (σ2
1, σ

2
2, σ

2
3) = (1, 1, 1) (σ2

1, σ
2
2, σ

2
3) = (1, 1.5, 2.5) (σ2

1, σ
2
2, σ

2
3) = (1, 3, 5)

s RCMML CLS s RCMML CLS s RCMML CLS

(6,6,6)

0.00 0.0484 0.0474 0.00 0.0471 0.0467 0.00 0.0442 0.0452
0.16 0.08 0.08 0.20 0.08 0.07 0.25 0.07 0.07
0.32 0.17 0.17 0.40 0.17 0.16 0.50 0.15 0.15
0.48 0.32 0.32 0.60 0.31 0.30 0.75 0.30 0.30
0.64 0.52 0.50 0.80 0.50 0.49 1.00 0.50 0.49
0.80 0.69 0.68 1.00 0.67 0.66 1.25 0.68 0.67
0.96 0.83 0.81 1.20 0.82 0.81 1.50 0.81 0.80
1.12 0.92 0.90 1.40 0.91 0.90 1.75 0.91 0.90
1.28 0.96 0.95 1.60 0.96 0.95 2.00 0.95 0.94
1.44 0.98 0.98 1.80 0.98 0.98 2.25 0.98 0.97

s RCMML CLS s RCMML CLS s RCMML CLS

(6,9,12)

0.00 0.0487 0.0467 0.00 0.0485 0.0495 0.00 0.0492 0.0484
0.13 0.0799 0.0809 0.16 0.07 0.08 0.19 0.07 0.07
0.26 0.1685 0.1638 0.32 0.16 0.16 0.38 0.16 0.15
0.39 0.3213 0.3076 0.48 0.31 0.30 0.57 0.32 0.30
0.52 0.5239 0.4966 0.64 0.50 0.48 0.76 0.50 0.48
0.65 0.7009 0.6701 0.80 0.69 0.66 0.95 0.69 0.65
0.78 0.8425 0.8117 0.96 0.83 0.80 1.14 0.83 0.80
0.91 0.9268 0.9009 0.12 0.92 0.89 1.33 0.92 0.88
1.04 0.9714 0.9525 1.28 0.96 0.94 1.52 0.96 0.94
1.17 0.9875 0.9760 1.44 0.99 0.97 1.71 0.99 0.97

s RCMML CLS s RCMML CLS s RCMML CLS

(12,12,12)

0.00 0.0473 0.0490 0.00 0.0463 0.0487 0.00 0.0486 0.0495
0.11 0.07 0.07 0.13 0.07 0.07 0.16 0.08 0.07
0.22 0.17 0.16 0.26 0.16 0.15 0.32 0.15 0.14
0.33 0.34 0.31 0.39 0.28 0.26 0.48 0.29 0.27
0.44 0.54 0.50 0.52 0.49 0.45 0.64 0.48 0.44
0.55 0.74 0.68 0.65 0.67 0.62 0.80 0.66 0.61
0.66 0.88 0.83 0.78 0.82 0.77 0.96 0.81 0.76
0.77 0.95 0.91 0.91 0.92 0.87 1.12 0.91 0.86
0.88 0.98 0.96 1.04 0.96 0.93 1.28 0.96 0.93
0.99 0.99 0.98 1.17 0.99 0.97 1.44 0.99 0.97

s RCMML CLS s RCMML CLS s RCMML CLS

(12,15,18)

0.00 0.0495 0.0493 0.00 0.0461 0.0488 0.00 0.0525 0.0484
0.09 0.08 0.08 0.11 0.07 0.07 0.13 0.07 0.07
0.18 0.16 0.15 0.22 0.15 0.14 0.26 0.14 0.13
0.27 0.29 0.27 0.33 0.28 0.25 0.39 0.28 0.25
0.36 0.49 0.44 0.44 0.47 0.42 0.52 0.44 0.39
0.45 0.68 0.62 0.55 0.65 0.58 0.65 0.63 0.55
0.54 0.83 0.76 0.66 0.81 0.74 0.78 0.78 0.71
0.63 0.92 0.87 0.77 0.90 0.85 0.91 0.89 0.83
0.72 0.97 0.93 0.88 0.96 0.92 1.04 0.96 0.91
0.81 0.99 0.97 0.99 0.99 0.96 1.17 0.98 0.95

s RCMML CLS s RCMML CLS s RCMML CLS

(20,20,20)

0.00 0.0492 0.0520 0.00 0.0500 0.0497 0.00 0.0496 0.0481
0.07 0.07 0.07 0.09 0.07 0.07 0.11 0.07 0.07
0.14 0.14 0.13 0.18 0.14 0.13 0.22 0.13 0.12
0.21 0.25 0.22 0.27 0.26 0.23 0.33 0.24 0.22
0.28 0.42 0.37 0.36 0.43 0.37 0.44 0.40 0.35
0.35 0.60 0.53 0.45 0.61 0.54 0.55 0.58 0.52
0.42 0.76 0.69 0.54 0.78 0.69 0.66 0.75 0.67
0.49 0.88 0.81 0.63 0.89 0.81 0.77 0.88 0.80
0.56 0.95 0.89 0.72 0.95 0.90 0.88 0.94 0.88
0.63 0.98 0.95 0.81 0.98 0.95 0.99 0.98 0.94
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Table 3 Continued

p = 3.5

(n1, n2, n3) (σ2
1, σ

2
2, σ

2
3) = (1, 1, 1) (σ2

1, σ
2
2, σ

2
3) = (1, 1.5, 2.5) (σ2

1, σ
2
2, σ

2
3) = (1, 3, 5)

s RCMML CLS s RCMML CLS s RCMML CLS

(6,6,6)

0.00 0.0462 0.0459 0.00 0.0460 0.0438 0.00 0.0467 0.0453
0.17 0.07 0.07 0.21 0.07 0.07 0.27 0.07 0.07
0.34 0.16 0.16 0.42 0.15 0.15 0.54 0.15 0.14
0.51 0.31 0.31 0.63 0.28 0.28 0.81 0.28 0.28
0.68 0.50 0.49 0.84 0.47 0.46 1.08 0.47 0.47
0.85 0.68 0.67 1.05 0.66 0.65 1.35 0.66 0.65
1.02 0.82 0.81 1.26 0.81 0.80 1.62 0.81 0.80
1.19 0.91 0.91 1.47 0.90 0.89 1.89 0.90 0.89
1.36 0.96 0.95 1.68 0.96 0.95 2.16 0.96 0.95
1.53 0.99 0.98 1.89 0.98 0.98 2.43 0.98 0.97

s RCMML CLS s RCMML CLS s RCMML CLS

(6,9,12)

0.00 0.0452 0.0454 0.00 0.0485 0.0497 0.00 0.0487 0.0495
0.13 0.07 0.07 0.16 0.07 0.07 0.20 0.07 0.07
0.26 0.14 0.13 0.32 0.14 0.13 0.40 0.15 0.13
0.39 0.27 0.26 0.48 0.27 0.27 0.60 0.28 0.27
0.52 0.44 0.43 0.64 0.44 0.44 0.80 0.45 0.44
0.65 0.63 0.61 0.80 0.63 0.62 1.00 0.65 0.63
0.78 0.78 0.77 0.96 0.78 0.77 1.20 0.80 0.79
0.91 0.89 0.87 0.12 0.88 0.87 1.40 0.90 0.89
1.04 0.95 0.94 1.28 0.94 0.93 1.60 0.96 0.95
1.17 0.98 0.98 1.44 0.98 0.97 1.80 0.98 0.97

s RCMML CLS s RCMML CLS s RCMML CLS

(12,12,12)

0.00 0.0465 0.0483 0.00 0.0521 0.0507 0.00 0.0488 0.0485
0.11 0.07 0.07 0.13 0.06 0.06 0.16 0.07 0.07
0.22 0.15 0.14 0.26 0.13 0.12 0.32 0.13 0.13
0.33 0.29 0.28 0.39 0.24 0.23 0.48 0.24 0.23
0.44 0.48 0.47 0.52 0.41 0.40 0.64 0.40 0.39
0.55 0.66 0.64 0.65 0.59 0.57 0.80 0.58 0.56
0.66 0.83 0.80 0.78 0.76 0.73 0.96 0.75 0.73
0.77 0.92 0.90 0.91 0.87 0.85 1.12 0.87 0.85
0.88 0.97 0.96 1.04 0.94 0.93 1.28 0.94 0.92
0.99 0.99 0.98 1.17 0.98 0.97 1.44 0.98 0.97

s RCMML CLS s RCMML CLS s RCMML CLS

(12,15,18)

0.00 0.0466 0.0474 0.00 0.0482 0.0487 0.00 0.0496 0.0492
0.09 0.07 0.07 0.12 0.07 0.07 0.15 0.07 0.07
0.18 0.14 0.13 0.24 0.14 0.13 0.30 0.14 0.13
0.27 0.26 0.24 0.36 0.27 0.26 0.45 0.27 0.26
0.36 0.42 0.41 0.48 0.45 0.43 0.60 0.47 0.44
0.45 0.60 0.58 0.60 0.64 0.62 0.75 0.66 0.62
0.54 0.76 0.73 0.72 0.78 0.76 0.90 0.81 0.78
0.63 0.88 0.85 0.84 0.91 0.88 1.05 0.91 0.88
0.72 0.95 0.93 0.96 0.96 0.94 1.20 0.97 0.95
0.81 0.98 0.97 1.08 0.99 0.97 1.35 0.99 0.97

s RCMML CLS s RCMML CLS s RCMML CLS

(20,20,20)

0.00 0.0484 0.0481 0.00 0.0487 0.0472 0.00 0.0503 0.0519
0.08 0.07 0.07 0.10 0.07 0.07 0.13 0.07 0.07
0.16 0.13 0.13 0.20 0.14 0.13 0.26 0.15 0.14
0.24 0.27 0.26 0.30 0.26 0.24 0.39 0.28 0.27
0.32 0.45 0.43 0.40 0.44 0.41 0.52 0.47 0.43
0.40 0.63 0.60 0.50 0.63 0.59 0.65 0.65 0.62
0.48 0.80 0.77 0.60 0.78 0.75 0.78 0.81 0.78
0.56 0.91 0.88 0.70 0.90 0.87 0.91 0.92 0.89
0.64 0.96 0.94 0.80 0.96 0.94 1.04 0.97 0.95
0.72 0.99 0.98 0.90 0.98 0.97 1.17 0.99 0.98
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Table 3 Continued

p = 5

(n1, n2, n3) (σ2
1, σ

2
2, σ

2
3) = (1, 1, 1) (σ2

1, σ
2
2, σ

2
3) = (1, 1.5, 2.5) (σ2

1, σ
2
2, σ

2
3) = (1, 3, 5)

s RCMML CLS s RCMML CLS s RCMML CLS

(6,6,6)

0.00 0.0479 0.0475 0.00 0.0472 0.0465 0.00 0.0461 0.0453
0.17 0.07 0.07 0.22 0.07 0.07 0.27 0.07 0.07
0.34 0.14 0.14 0.44 0.15 0.14 0.54 0.14 0.14
0.51 0.28 0.28 0.66 0.29 0.29 0.81 0.26 0.26
0.68 0.44 0.44 0.88 0.47 0.47 1.08 0.43 0.42
0.85 0.64 0.64 1.10 0.66 0.65 1.35 0.62 0.61
1.02 0.78 0.78 1.32 0.82 0.81 1.62 0.78 0.77
1.19 0.89 0.89 1.54 0.91 0.90 1.89 0.89 0.88
1.36 0.96 0.95 1.76 0.96 0.96 2.16 0.96 0.95
1.53 0.98 0.98 1.98 0.99 0.98 2.43 0.98 0.98

s RCMML CLS s RCMML CLS s RCMML CLS

(6,9,12)

0.00 0.0464 0.0462 0.00 0.0476 0.0471 0.00 0.0491 0.0485
0.13 0.06 0.06 0.17 0.07 0.07 0.21 0.07 0.07
0.26 0.13 0.13 0.34 0.14 0.14 0.42 0.15 0.14
0.39 0.25 0.24 0.51 0.26 0.26 0.63 0.29 0.28
0.52 0.40 0.39 0.68 0.45 0.44 0.84 0.47 0.46
0.65 0.58 0.57 0.85 0.63 0.62 1.05 0.66 0.65
0.78 0.74 0.74 1.02 0.79 0.78 1.26 0.82 0.81
0.91 0.86 0.85 1.19 0.90 0.89 1.47 0.92 0.91
1.04 0.93 0.93 1.36 0.96 0.95 1.68 0.96 0.96
1.17 0.98 0.97 1.53 0.99 0.98 1.89 0.99 0.98

s RCMML CLS s RCMML CLS s RCMML CLS

(12,12,12)

0.00 0.0486 0.0493 0.00 0.0493 0.0491 0.00 0.0465 0.0469
0.11 0.07 0.07 0.14 0.07 0.07 0.17 0.07 0.07
0.22 0.14 0.14 0.28 0.14 0.14 0.34 0.13 0.13
0.33 0.27 0.26 0.42 0.26 0.26 0.51 0.25 0.25
0.44 0.44 0.43 0.56 0.45 0.44 0.68 0.41 0.40
0.55 0.62 0.61 0.70 0.63 0.63 0.85 0.59 0.58
0.66 0.79 0.78 0.84 0.79 0.78 1.02 0.76 0.75
0.77 0.90 0.89 0.98 0.90 0.89 1.19 0.87 0.86
0.88 0.96 0.95 1.12 0.96 0.95 1.36 0.95 0.94
0.99 0.99 0.98 1.26 0.99 0.98 1.53 0.98 0.98

s RCMML CLS s RCMML CLS s RCMML CLS

(12,15,18)

0.00 0.0500 0.0493 0.00 0.0496 0.0497 0.00 0.0504 0.0492
0.10 0.07 0.07 0.13 0.07 0.07 0.15 0.07 0.07
0.20 0.14 0.14 0.26 0.15 0.14 0.30 0.13 0.13
0.30 0.29 0.28 0.39 0.29 0.28 0.45 0.27 0.26
0.40 0.47 0.46 0.52 0.49 0.48 0.60 0.44 0.43
0.50 0.66 0.64 0.65 0.68 0.66 0.75 0.63 0.62
0.60 0.82 0.80 0.78 0.84 0.82 0.90 0.79 0.77
0.70 0.92 0.91 0.91 0.93 0.92 1.05 0.90 0.89
0.80 0.97 0.96 1.04 0.98 0.97 1.20 0.96 0.95
0.90 0.99 0.98 1.17 0.99 0.98 1.35 0.99 0.98

s RCMML CLS s RCMML CLS s RCMML CLS

(20,20,20)

0.00 0.0479 0.0488 0.00 0.0473 0.0485 0.00 0.0476 0.0478
0.08 0.07 0.07 0.11 0.08 0.08 0.13 0.07 0.06
0.16 0.13 0.13 0.22 0.16 0.15 0.26 0.14 0.13
0.24 0.25 0.24 0.33 0.30 0.29 0.39 0.26 0.25
0.32 0.41 0.39 0.44 0.48 0.47 0.52 0.42 0.41
0.40 0.60 0.58 0.55 0.68 0.67 0.65 0.62 0.60
0.48 0.77 0.75 0.66 0.84 0.82 0.78 0.78 0.76
0.56 0.88 0.87 0.77 0.93 0.92 0.91 0.89 0.88
0.64 0.95 0.94 0.88 0.98 0.97 1.04 0.96 0.95
0.72 0.98 0.99 0.99 0.99 0.99 1.17 0.99 0.98
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5. Conclusion

This study examined small and moderate sample properties of the CLS and
RCMML tests proposed in the literature for testing the equality of treatment means
in one-way ANOVA when the underlying distribution is long tailed symmetric us-
ing three moment chi-square and four moment F approximations. Although the
asymptotic distributions of the CLS and RCMML test statistics are known in large
samples, the null distributions of both test statistics are not known for small and
moderate sample sizes. This is the reason why three moment chi-square and four
moment F approximations are needed. An extensive Monte Carlo simulation study
is conducted to see whether two approximations are applicable to the test statistics
or not and to compare the performances of the test statistics in terms of the Type I
error rates and power. According to simulation results four moment F approxima-
tion is applicable to the CLS and RCMML test statistics regardless of the sample
sizes and p values. Three moment chi-square approximation applicable when sam-
ple sizes are moderate. Also, using asymptotic distribution results in inflated type
I error rates when sample sizes are small and moderate while Type I errror rates of
the tests using F approximation are very close to the nominal level. Therefore, this
approximation performs very well for CLS and RCMML test statistics. RCMML

test is more powerful than the CLS especially when the shape parameter p = 2 and
2.5. Note also that, when the values of the shape parameter greater and equal 3.5
and 5 the RCMML test is slightly more powerful than CLS test.

Declaration of Competing Interests The author declares that there is no com-
peting interest regarding the publication of this paper.
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Abstract. Recently, Bakhet et al. [9] presented the Wright hypergeometric

matrix function 2R
(τ)
1 (A,B;C; z) and derived several properties. Abdalla [6]

has since applied fractional operators to this function. In this paper, with the
help of the generalized Pochhammer matrix symbol (A;B)n and the gener-

alized beta matrix function B(P,Q;X), we introduce and study an extended

form of the Wright hypergeometric matrix function, 2R
(τ)
1 ((A;A), B;C; z;X).

We establish several potentially useful results for this extended form, such as

integral representations and fractional derivatives. We also derive some prop-

erties of the corresponding incomplete extended Wright hypergeometric matrix
function.

1. Introduction

Let Cr×r be the vector space of r-square matrices with complex entries. A
square matrix P ∈ Cr×r is said to be positive stable if ℜ(λ) > 0 for all λ ∈ σ(P ),
where ℜ(λ) denotes the real part of a complex number λ and σ(P ) is the set of all
eigenvalues of P .

Let P and Q be positive stable matrices in Cr×r. The gamma matrix function
Γ(P ) and the beta matrix function B(P,Q) were defined by Jódar and Cortés [12]
as follows:

Γ(P ) =

∫ ∞

0

e−ttP−Idt, tP−I = exp((P − I) ln t)

and

B(P,Q) =

∫ 1

0

tP−I(1− t)Q−Idt, (1)
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respectively. The shifted factorial matrix function (P )n for P ∈ Cr×r, given by [13],
is

(P )n =

{
I, n = 0,
P (P + I) . . . (P + (n− 1)I), n ≥ 1.

Let P ∈ Cr×r, and suppose that

P + nI is invertible for all integers n, (2)

then the reciprocal gamma matrix function [12] is given by

Γ−1(P ) = (P )nΓ
−1(P + nI).

Over the past two decades, several generalizations of the well-known special ma-
trix functions have been studied by various authors (for example, [5], [7] and [10]).
In particular, in 2015, Abul-Dahab et al. [7] introduced a generalized Pochhammer
matrix symbol (A;B)n. Let A and B be positive stable matrices in Cr×r that
satisfy the condition (2). Then

(A;B)n =

 Γ−1(A)Γ(A+ nI,B)
(
B ̸= 0)

(A)n (B
.
= 0),

(3)

where 0 ∈ Cr×r is the zero matrix and Γ(A,B) is the generalized gamma matrix
function given by (see [7])

Γ(A,B) =

∫ ∞

0

tA−I e−(It+
B
t )dt,

so that the integral representation for the generalized Pochhammer matrix symbol
is

(A;B)n = Γ−1(A)

∫ ∞

0

tA+(n−1)I e−(It+
B
t )dt, (4)

where B and A + nI are positive stable for all n ≥ 0. Let A and B be positive
stable matrices in Cr×r that satisfy the condition (2). Then Γ(A,B) is invertible;
let its inverse be denoted by Γ−1(A,B).

Subsequently, in 2016, Abdalla and Bakhet [5] introduced the following extension
of the beta matrix function:

B(P,Q;X) =
∫ 1

0

tP−1(1− t)Q−1 exp

(
− X
t(1− t)

)
dt, (5)

where the matrices P , Q and X are positive stable and commutative matrices in
Cr×r satisfying the spectral condition (2).

The special case of (5) when X = 0 gives the beta matrix function B(P,Q)
defined in (1) (see also [13]), that is,

B(P,Q;0) = B(P,Q).
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Furthermore, under the given conditions we have the following identity (see [5]):

B(P,Q;X) = Γ(P,X)Γ(Q,X)Γ−1(P +Q,X).
In recent years, the generalized Pochhammer matrix symbol (A;B)n and the gen-
eralized beta matrix function B(P,Q;X) were used to introduce and investigate
several extensions of hypergeometric matrix functions (see, for example, [4], [14];
see also the recent paper [20]).

On the other hand, Bakhet et al. [9] presented the Wright Kummer hypergeo-

metric matrix function 1R
(τ)
1 and the Wright hypergeometric matrix function 2R

(τ)
1

as follows: let A, B and C be positive stable matrices in Cr×r satisfying the con-
dition (2). Then the Wright Kummer and Wright hypergeometric matrix functions
are defined as

1R
(τ)
1 (A;C; z) = Γ−1(A)Γ(C)

∞∑
n=0

Γ−1(C + τnI)Γ(A+ τnI)
zn

n!
,

and

2R
(τ)
1 (A,B;C; z) = Γ−1(B)Γ(C)

∞∑
n=0

(A)nΓ
−1(C + τnI)Γ(B + τnI)

zn

n!
,

where τ ∈ (0,∞). In [9], the integral representations, differential formulas and frac-
tional calculus of the Wright hypergeometric matrix function were studied. Fur-
thermore, the incomplete Wright hypergeometric matrix function was defined and
some of its properties were established. We remark in passing that the incomplete
extension of the Pochhammer matrix symbol, which was also considered by Bakhet
et al. [9], has also been used rather widely in the current literature on hypergeomet-
ric functions (see, for example, [2], [8], [18] and [19], and references therein). On the
other hand, very recently, the authors (see [1, 3, 11] ) introduced the extensions of
the (k; τ)-Gauss hypergeometric matrix function and obtained their various prop-
erties. Also, they used these functions to find the solutions of the generalization of
fractional kinetic equation.

The goal of this paper is to introduce an extended form of 2R
(τ)
1 (A,B;C; z),

which involves the Pochhammer matrix symbol (A;B)n defined by (3) and the
extended beta matrix function B(P,Q;X) given by (5). The remainder of the
paper is organized as follows. In Section 2, we define an extended form of the
Wright hypergeometric matrix function,

2R
(τ)
1 ((A;A), B;C; z;X),

and obtain some useful results such as integral representations. In Section 3, we
introduce the incomplete extended Wright hypergeometric matrix function with the
help of the incomplete extended beta matrix function By(P,Q;X), and investigate
some of its properties. In Section 4, we evaluate the Riemann–Liouville fractional
derivative of this extended hypergeometric function. In Section 5, we make con-
cluding remarks.
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2. Extended Wright Hypergeometric Matrix Function

In this section, we introduce the extended Wright hypergeometric matrix func-

tion (EWHMF) 2R
(τ)
1 ((A;A), B;C; z;X) in terms of the generalized beta matrix

function B(P,Q;X) defined by (5) and the generalized Pochhammer matrix symbol
(A;B)n defined by (3).

Suppose that A, A, B, C, C − B and X are positive stable matrices in Cr×r

satisfying the condition (2), and suppose that B, C and X commute with each other.
Then we introduce the EWHMF and the extended Wright Kummer hypergeometric
matrix function (EWKHMF) as follows:

2R
(τ)
1 ((A;A), B;C; z;X) = Γ

(
C

B,C −B

) ∞∑
n=0

(A;A)nB(B + τnI, C −B;X)
zn

n!
, (6)

1R
(τ)
1 (B;C; z;X) = Γ

(
C

B,C −B

) ∞∑
n=0

B(B + τnI, C −B;X)
zn

n!
, (7)

|z| < 1, τ ∈ (0,∞),

where Γ
(

C
B,C−B

)
= Γ(C)Γ−1(B)Γ−1(C −B).

Remark 1. In the particular case when A = X = 0, the definition (6) gives

the Wright hypergeometric matrix function 2R
(τ)
1 (A,B;C; z) studied in [9], and

the case with A = 0 and τ = 1 gives the extended Gauss hypergeometric matrix
function F (X)(A,B;C; z) given in [4]. Moreover, if we set A = X = 0 and τ = 1,
the unification given in (6) reduces to the familiar Gauss hypergeometric matrix
function 2F1(A,B;C; z) defined in [13]. On the other hand, if we consider X = 0
in the definition (7), we get the Wright Kummer hypergeometric matrix function
given in [9].

We start with the following theorem.

Theorem 1. Let A, A, B, C, C − B and X be positive stable matrices in Cr×r

satisfying the condition (2), and suppose that B, C and X commute with each other.

Then the EWHMF 2R
(τ)
1 ((A;A), B;C; z;X) can be given in integral form as follows:

2R
(τ)
1 ((A;A), B;C; z;X) = Γ

(
C

B,C −B,A

)∫ ∞

0

∫ 1

0

uA−Ie−(Iu+ A
u )tB−I

×(1− t)C−B−I exp

(
− X
t(1− t)

)
ezut

τ

dtdu.

Proof. Using the integral representations (4) and (5), we get

2R
(τ)
1 ((A;A), B;C; z;X) = Γ

(
C

B,C −B,A

)∫ ∞

0

∫ 1

0

uA−Ie−(Iu+ A
u )tB−I
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×(1− t)C−B−I exp

(
− X
t(1− t)

) ∞∑
n=0

(zutτ )n

n!
dtdu

= Γ

(
C

B,C −B,A

)∫ ∞

0

∫ 1

0

uA−Ie−(Iu+ A
u )tB−I

×(1− t)C−B−I exp

(
− X
t(1− t)

)
ezut

τ

dtdu.

This completes the proof. □

Theorem 2. Under the same conditions as Theorem 1, we have the following
relation:

2R
(τ)
1 ((A;A), B;C; z;X) = Γ−1(A)

∫ ∞

0

tA−Ie−(It+ A
t )1R

(τ)
1 (B;C; zt;X)dt.

Proof. Substituting the integral representation (4) into the definition (6), we have

2R
(τ)
1 ((A;A), B;C; z;X) = Γ

(
C

B,C −B,A

)∫ ∞

0

tA−Ie−(It+ A
t )

×
∞∑

n=0

B(B + τnI, C −B;X)
(zt)n

n!
dt.

Now, using the definition (7) gives the result. □

Theorem 3. Under the same conditions as Theorem 1, we have the following
integral representation for the EWHMF:

2R
(τ)
1 ((A;A), B;C; z;X) = Γ

(
C

B,C −B

)∫ 1

0

tB−I(1− t)C−B−I exp

(
− X
t(1− t)

)
×1F0[(A;A),−, ztτ ]dt.

Proof. Substituting the integral representation (5) into the definition (6), we get

2R
(τ)
1 ((A;A), B;C; z;X)

= Γ

(
C

B,C −B

)∫ 1

0

tB−I(1− t)C−B−I exp

(
− X
t(1− t)

) ∞∑
n=0

(A;A)n
(ztτ )n

n!
dt.

Since

1F0[(A;A),−, ztτ ] =

∞∑
n=0

(A;A)n
(ztτ )n

n!
,

the result follows. □
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3. Incomplete Extended Wright Hypergeometric Matrix Function

In this section, motivated by [21], we introduce the incomplete extended Wright
hypergeometric matrix function (IEWHMF) with the help of the incomplete ex-
tended beta matrix function defined in (8). Let B, C and X be positive stable
matrices in Cr×r satisfying the condition (2), and suppose B, C and X commute
with each other. The incomplete extended beta matrix function By(B,C;X) is
defined as follows:

By(B,C;X) :=
∫ y

0

tB−I(1− t)C−I exp

(
− X
t(1− t)

)
dt, 0 ≤ y < 1. (8)

Let B, C − B and X be positive stable matrices in Cr×r satisfying the condi-
tion (2), and suppose B, C and X commute with each other. Then we introduce

the incomplete extended beta matrix functions [B,C;X; y](τ)n and {B,C;X; y}(τ)n as

[B,C;X; y](τ)n = By(B + nτI, C −B;X),

and

{B,C;X; y}(τ)n = B1−y(C −B,B + nτI;X),
where 0 ≤ y < 1, respectively. It can be shown that

[B,C;X; y](τ)n + {B,C;X; y}(τ)n = B(B + nτI, C −B;X).

Suppose that A, A, B, C, C − B and X are positive stable matrices in Cr×r

satisfying the condition (2), and that B, C and X commute with each other. Then
we define the IEWHMFs as follows:

2R1((A;A); [B,C;X; y](τ)n ; z;X) = Γ

(
C

B,C −B

)
(9)

×
∞∑

n=0

(A;A)nBy(B + nτI, C −B;X)
zn

n!
,

and

2R1((A;A); {B,C;X; y}(τ)n ; z;X) = Γ

(
C

B,C −B

)
×

∞∑
n=0

(A;A)nB1−y(C −B,B + nτI;X)
zn

n!
.

It can be seen that the IEWHMFs satisfy the following relation:

2R
(τ)
1 ((A;A), B;C; z;X) = 2R1((A;A); [B,C;X; y](τ)n ; z;X)

+2R1((A;A); {B,C;X; y}(τ)n ; z;X).

Theorem 4. Let A, A, B, C, C − B and X be positive stable matrices in Cr×r

satisfying the condition (2), and suppose that B, C and X commute with each other.
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Then we have the following integral representation for 2R1((A;A); [B,C;X; y](τ)n ; z;X):

2R1((A;A); [B,C;X; y](τ)n ; z;X) = Γ

(
C

B,C −B,A

)
yB

×
∫ ∞

0

∫ 1

0

uA−Ie−(Iu+ A
u )vB−I(1− yv)C−B−I

× exp

(
− X
yv(1− yv)

)
euz(yv)

τ

dvdu.

Proof. From the definitions (3) and (8), straightforward calculations show that

2R1((A;A); [B,C;X; y](τ)n ; z;X) = Γ

(
C

B,C −B,A

)
yB

×
∫ ∞

0

∫ 1

0

uA−Ie−(Iu+ A
u )vB−I(1− yv)C−B−I

× exp

(
− X
yv(1− yv)

) ∞∑
n=0

(uz(yv)τ )n

n!
dvdu,

which proves the theorem. □

Theorem 5. Under the conditions given in Theorem 4, let |z(uy)τ | < 1. Then we
have the following integral representation:

2R1((A;A); [B,C;X; y](τ)n ; z;X) = Γ

(
C

B,C −B

)
yB

×
∫ 1

0

uB−I(1− uy)C−B−I exp

(
− X
uy(1− uy)

)
×1F0((A;A),−, z(uy)τ )du.

Proof. Using the integral representation (8) and applying similar calculations as in
Theorem 3 proves the theorem. □

Next, we give a derivative formula for the IEWHMF.

Theorem 6. Let 2R1((A;A); [B,C;X; y](τ)n ; z;X) be defined in (9). Then we have
the following derivative formula:

dn

dzn
(2R1((A;A); [B,C;X; y](τ)n ; z;X))

= Γ

(
C

B,C −B

)
Γ

(
C −B,B + τI

C + τI

)
Γ

(
C −B,B + 2τI

C + 2τI

)
. . .Γ

(
C −B,B + τnI

C + τnI

)
×(A)n 2R1((A+ nI;A); [B + τnI, C + τnI;X; y](τ)n ; z;X).

Proof. It is straightforward to obtain that

d

dz
(2R1((A;A); [B,C;X; y](τ)n ; z;X))
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= Γ

(
C

B,C −B

)
Γ

(
C −B,B + τI

C + τI

)
A

× 2R1((A+ I;A); [B + τI, C + τI;X; y](τ)n ; z;X).

Repeating this n times proves the result. □

4. Fractional Derivative

In this section, we study the extended Riemann–Liouville fractional derivative of
the EWHMF defined by (6). Let X be a positive stable matrix in Cr×r and µ ∈ C.
The extended Riemann–Liouville fractional derivative of order µ is given by [20]

Dµ,X
z f(z) =

1

Γ(−µ)

∫ z

0

f(t)(z − t)−µ−1 exp

(
− Xz2

t(z − t)

)
dt, (10)

(
ℜ(µ) < 0

)
.

The particular case X = p, p ∈ C1×1, such that ℜ(p) ≥ 0, gives the extended
Riemann–Liouville fractional derivative given in [16] (see also [17]). Moreover,
X = 0 yields the classical Riemann–Liouville fractional derivative operator Dµ

z (for
details, see [15]).

In [20], the authors presented the extended Riemann-Liouville fractional deriv-
ative of the function f(z) = zA.

Theorem 7. ( [20]) Let A be a positive stable matrix in Cr×r and ℜ(µ) < 0. Then

Dµ,X
z {zA} =

B(A+ I,−µI;X)
Γ(−µ)

zA−µI .

Proof. According the definition (10), it is clear that

Dµ,X
z {zA} =

1

Γ(−µ)

∫ z

0

tA(z − t)−µ−1 exp

(
− Xz2

t(z − t)

)
dt. (11)

Upon setting t = zu and dt = zdu in (11) gives

Dµ,X
z {zA} =

1

Γ(−µ)

∫ 1

0

(uz)A(z − uz)−µ−1 exp

(
− Xz2

uz(z − uz)

)
zdu

=
1

Γ(−µ)
zA−µI

∫ 1

0

uA(1− u)(−µ−1)I exp

(
− X
u(1− u)

)
du

=
B(A+ I,−µI;X)

Γ(−µ)
zA−µI ,

which completes the proof. □

We now prove the following theorem.
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Theorem 8. Let A, A and X be positive stable matrices in Cr×r satisfying the
condition (2) and let ℜ(µ) > ℜ(λ) > 0. Then for |zτ | < 1, the following relation
holds true for the EWHMF:

Dλ−µ,X
z

{
z(λ−1)I

1F0[(A;A); ; zτ ]
}
=

Γ(λ)

Γ(µ)
z(µ−1)I

2R
(τ)
1 ((A;A), λI;µI; zτ ;X).

Proof. According to the extended fractional derivative formula (10), we have

Dλ−µ,X
z

{
z(λ−1)I

1F0[(A;A); ; zτ ]
}

=
1

Γ(µ− λ)

∫ z

0

t(λ−1)I
1F0[(A;A); ; tτ ]

× (z − t)µ−λ−1 exp

(
− Xz2

t(z − t)

)
dt. (12)

Let t = zu in (12), then if we consider Theorem 3 we obtain the result asserted by
Theorem 8. □

Theorem 9. Suppose that A, A, B, C, C − B and X are positive stable matrices
in Cr×r satisfying the condition (2) and that B, C and X commute with each other.
Let ℜ(µ) < 0, then for |xzτ | < 1, we have

Dµ,X
z

{
zC−I

2R
(τ)
1 ((A;A), B;C;xzτ ;X)

}
= Γ

(
C,C −B − µI

C − µI,C −B,−µI

)
Γ

(
C −B,−µI;X
C −B − µI

)
× 2R

(τ)
1 ((A;A), B;C − µI;xzτ ;X)zC−µI−I , (13)

where Γ
(
C−B,−µI;X
C−B−µI

)
= Γ(C −B;X)Γ(−µI;X)Γ−1(C −B − µI;X).

Proof. Consider the definitions (6) and (10) and let the left-hand side of (13) be
denoted by D. Direct calculations yield that

D =
1

Γ(−µ)

∫ z

0

tC−I
2R

(τ)
1 ((A;A), B;C;xtτ ;X)(z − t)−µ−1 exp

(
− Xz2

t(z − t)

)
dt

= Γ

(
C

B,C −B

)
1

Γ(−µ)

∞∑
n=0

(A;A)nB(B + τnI, C −B;X)
xn

n!

×
∫ z

0

tτnI+C−I(z − t)−µ−1 exp

(
− Xz2

t(z − t)

)
dt.

Then we have

D = Γ

(
C

B,C −B

)
1

Γ(−µ)

∞∑
n=0

(A;A)nB(B + τnI, C −B;X)

× B(τnI + C,−µI;X)
(zτx)n

n!
zC−µI−I
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= Γ

(
C

B,C −B

)
1

Γ(−µ)
Γ(C −B;X)Γ(−µI;X)

×
∞∑

n=0

(A;A)nΓ(B + τnI;X)Γ−1(C + τnI − µI;X)
(zτx)n

n!
zC−µI−I

= Γ

(
C

B,C −B

)
Γ

(
C −B,−µI;X
C −B − µI

)
1

Γ(−µ)

×
∞∑

n=0

(A;A)nB(B + τnI, C −B − µI;X)
(zτx)n

n!
zC−µI−I

= Γ

(
C,C −B − µI

C − µI,C −B,−µI

)
Γ

(
C −B,−µI;X
C −B − µI

)
× Γ(C − µI)Γ−1(C −B − µI)Γ−1(B)

×
∞∑

n=0

(A;A)nB(B + τnI, C −B − µI;X)
(zτx)n

n!
zC−µI−I .

Thus the result follows by the definition (6) of the EWHMF. □

Theorem 10. Suppose that A, A, B, C, C − B, X1 and X2 are positive stable
matrices in Cr×r satisfying the condition (2) and that B, C and X1 commute with
each other. Let ℜ(µ) > ℜ(λ) > 0 and

∣∣ x
1−zτ2

∣∣ < 1, then we have

Dλ−µ,X2
z

{
z(λ−1)I(1− zτ2)−A

2R
(τ1)
1

(
(A;A), B;C;

x

1− zτ2
;X1

)}
= Γ−1(µI)Γ(λI)z(µ−1)IF

(τ1,τ2)
2 (A,B, λI;C, µI;x, zτ2 ;X1,X2;A),

where τ1, τ2 ∈ (0,∞) and F
(τ1,τ2)
2 (A,B,C;D,E;x, y;X1,X2;A) is a two-variable

function defined by

F
(τ1,τ2)
2 (A,B,C;D,E;x, y;X1,X2;A) (14)

= Γ

(
D,E

B,D −B,C,E − C

) ∞∑
m,n=0

(A;A)m(A+mI)n

× B(B + τ1mI,D −B;X1)B(C + τ2nI,E − C;X2)
xm

m!

yn

n!
.

Proof. Considering the definition (6) and Theorem 7, we get

Dλ−µ,X2
z

{
z(λ−1)I(1− zτ2)−A

2R
(τ1)
1

(
(A;A), B;C;

x

1− zτ2
;X1

)}
= Dλ−µ,X2

z {Γ
(

C

B,C −B

)
z(λ−1)I(1− zτ2)−A
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×
∞∑

m=0

(A;A)mB(B + τ1mI,C −B;X1)

(
x

1−zτ2

)m
m!

}

= Γ

(
C

B,C −B

) ∞∑
m,n=0

(A;A)m(A+mI)nB(B + τ1mI,C −B;X1)

×Dλ−µ,X2
z {zτ2nI+(λ−1)I} xm

n!m!

= Γ

(
C

B,C −B

)
z(µ−1)I

Γ(µ− λ)

∞∑
m,n=0

(A;A)m(A+mI)nB(B + τ1mI,C −B;X1)

× B(τ2nI + λI, (µ− λ)I;X2)
(zτ2)nxm

n!m!

= Γ−1(µI)Γ(λI)z(µ−1)IF
(τ1,τ2)
2 (A,B, λI;C, µI;x, zτ2 ;X1,X2;A).

□

Remark 2. Note that, when τ1, τ2 = 1, A = 0 and X1 = X2, the definition (14)
gives the extended Appell hypergeometric matrix function F2(A,B,C;D,E;x, y;X)
introduced in [20].

5. Concluding Remarks

In our investigation here, we have introduced and studied the EWHMF

2R
(τ)
1 ((A;A), B;C; z;X).

We have presented various potentially useful properties of this family of extended
hypergeometric matrix functions. Many of the results derived in this paper can be
shown to reduce to known or new results about functions previously defined in
the literature. For instance, in some particular cases, Theorems 8-10 yield new
fractional-derivative formulas for various known families of hypergeometric func-
tions.
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Abstract. In this work, we explicitly characterize local separation axioms as
well as generic separation axioms in the topological category of neutrosophic

crisp sets, and examine their mutual relationship. Moreover, we character-

ize several distinct notions of closedness, compactness and connectedness in
NCSet, and study their relationship with each other.

1. Introduction

As a generalization of crisp sets, Zadeh [30] introduced fuzzy set theory in 1965.
Without a doubt, the fuzzy set theory is effective in dealing with imprecise esti-
mates, yet it was unable to explain the level of dissatisfaction (non-membership).
The intuitionistic fuzzy set (IFS) model was established by Atanassov [1] to ad-
dress these weaknesses of fuzzy sets. This model is more accurate and useful than
fuzzy sets since it can manage both membership and nonmembership degrees. The
IFSs offer more space in terms of applications for decision-making because they can
handle data both in favor (membership value) and against (non-membership value)
of the possibilities given.

The concept of a neutrosophic set taking into account the degrees of member-
ship, non-membership, and indeterminacy was first suggested by Smarandache [29]
in 1998. Additionally, Salama and Smarandache [28] introduced the idea of a neu-
trosophic crisp set in a set in 2015. They also provided definitions of neutrosophic
crisp empty (resp. whole) set as more than two types, inclusion between two neu-
trosophic crisp sets, complement of a neutrosophic crisp set and intersection (union)
of two neutrosophic crisp sets. In 2017, Hur et al [18] defined several categorical
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properties of neutrosophic crisp set and showed that NCSet (the category of neu-
trosophic crisp spaces and neutrosophic crisp maps) is a cartesian closed topological
category.

Categorical topology is that field of mathematics where general topology and
category theory overlap, was introduced by Herrlich [17] in 1971, and the purpose
was to apply categorical concepts and results to topological settings and to explain
not only the original topological phenomena but similar phenomena throughout
topology as well as in other fields.

Due to huge importance of neutrosophic crisp sets in decision-making, it moti-
vates us to characterize several fundamental concepts of topology including Haus-
dorffness, closedness, compactness and connectedness in the topological category of
NCSet.

The following are the paper’s main goals:

(i) to characterize local T0, T1, PreT2 objects in the category of neutrosophic
crisp sets and to examine how they are related,

(ii) to provide the characterization of generic separation axioms and several
distinct version of Hausdorff objects in NCSet,

(iii) to give the explicit characterization of several notions of closedness, com-
pactness and connectness in topological category of NCSet,

(iv) to compare our results with the ones in some other categories.

2. Preliminaries

All preliminary information and more about neutrosophic crisp spaces can be
found in [28].

Definition 1. [18,28] Let A be a non-empty set.

(1) If N has the form N = (N1, N2, N3), where N1, N2, and N3 are subsets of
A, then N is referred to as a neutrosophic crisp set (NCS) on A. The pair
(A,N ) is called a neutrosophic crisp space (NCSp). The set of all NCSs
on A will be represented by NCS(A).

(2) The neutrosophic crisp empty set, ∅nc is an NCS on A defined by ∅nc =
(∅, ∅, A).

(3) The neutrosophic whole set, Anc is an NCS on A defined by Anc = (A,A, ∅).
(4) Let {Ni}i∈I be a family of NCSs on A, where Ni = (Ni1, Ni2, Ni3). Then

(i)
⋂

i∈I Ni, the intersection of {Ni}i∈I , is an NCS on A defined by⋂
Ni = (

⋂
Ni1,

⋂
Ni2,

⋃
Ni3),

(ii)
⋃

i∈I Ni, the union of {Ni}i∈I , is an NCS on A defined by⋃
Ni = (

⋃
Ni1,

⋃
Ni2,

⋂
Ni3).

Definition 2. [18] Let (A,N ), (B,M) be NCSps and f : A → B be a map. Then
f : (A,N ) → (B,M) is called a morphism, if N ⊂ f−1(M), equivalently, N1 ⊂
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f−1(M1), N2 ⊂ f−1(M2) and N3 ⊃ f−1(M3), where N = (N1, N2, N3) and M =
(M1,M2,M3).

Definition 3. The category of neutrosophic crisp spaces, NCSet has the pairs
(A,N ) as objects, where A is any non-empty set and N is a neutrosophic crisp
set on A, and has morphisms. In this case, every morphism in NCSet is called a
NCSet-map.

Lemma 1. (cf. [18])

(1) Let A be a set, {(Aj ,Nj)}j∈J be any families of NCSps and {fj : (A,NA) →
(Aj ,Nj)}j∈J be a source. Then,

NA =
⋂
j∈J

f−1
j (Nj)

is an initial structure on A, where NA = (NA1, NA2, NA3) and Nj = (Nj1,
Nj2, Nj3).

(2) Let B be a set, {(Aj ,Nj)}j∈J be any families of NCSps and {gj : (Aj ,Nj) →
(B,NB)}j∈J be a sink. Then,

NB =
⋃
j∈J

gj(Nj)

is a final structure on B, where NB = (NB1, NB2, NB3) and Nj = (Nj1,
Nj2, Nj3).

(3) Let (A,N ) be a neutrosophic crisp space (NCSp).
(i) A neutrosophic crisp structure on A is discrete whenever N = ∅nc.
(ii) A neutrosophic crisp structure on A is indiscrete whenever N = Anc.

Remark 1. The forgetful functor U : NCSet → Set is topological, i.e., the cat-
egory NCSet is topological over Set [18], but the functor U is not normalized
(i.e., subterminals, have a unique structure) since a singleton set {a} has multiple
neutrosophic crisp structures on it.

3. Local Separation Axioms in Neutrosophic Crisp Sets

Let p be a point in a set B and B ∨p B be the wedge product of B at p ( [2],
p. 334), i.e., two disjoint copies of B identified at p. If a point b in B ∨p B is in
the first component, it is denoted as b1, and if it is in the second component, it is
denoted as b2.

Definition 4. [2] Let B2 denote the cartesian product of B.

(1) The map Ap : B ∨p B → B2 is called principal p-axis map iff

Ap(bi) =

{
(b, p), i = 1

(p, b), i = 2
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(2) The map Sp : B ∨p B → B2 is called skewed p-axis map iff

Sp(bi) =

{
(b, b), i = 1

(p, b), i = 2

(3) The map ∇p : B ∨p B → B is called fold map at p provided that ∇p(bi) = b
for i = 1, 2.

Definition 5. [2] Let U : E → Set be topological, A ∈ Ob(E) with U(A) = B and
p ∈ B.

(i) A is T0 at p iff the initial lift of the U -source {Ap : B ∨p B → U(A2) = B2

and ∇p : B ∨p B → UD(B) = B} is discrete, where D is the discrete
functor.

(ii) A is T ′
0 at p iff the initial lift of the U-source {id : B ∨p B → U(A ∨p A) =

B ∨p B and ∇p : B ∨p B → UD(B) = B} is discrete, where A ∨p A is the
wedge in E, i.e., the final lift of the U-sink {i1, i2 : U(A) = B → B ∨p B}
where i1, i2 denote the canonical injections.

(iii) A is T1 at p iff the initial lift of the U -source {Sp : B ∨p B → U(A2) = B2

and ∇p : B ∨p B → UD(B) = B} is discrete.

(iv) A is PreT 2 at p iff the initial lift of the U-source {Ap : B ∨pB → U(A2) =
B2} and the initial lift of the U-source {Sp : B∨pB → U(A2) = B2} agree.

(v) A is PreT ′
2 at p iff the initial lift of the U-source {Sp : B ∨p B → U(A2) =

B2} and the final lift of the U-sink {i1, i2 : U(A) = B → B ∨p B} agree.

(vi) A is T 2 at p iff A is T 0 at p and PreT 2 at p.
(vii) A is T ′

2 at p iff A is T ′
0 at p and PreT ′

2 at p.

Remark 2. (1) Particularly, we have the following for the category of topolog-
ical spaces, Top:
(a) T 0 at p and T ′

0 at p (resp. T1 at p) reduce to for each x ∈ X with
x ̸= p, there exists a neighborhood of x that doesn’t contain p or (resp.
and) there exists a neighborhood of p that doesn’t contain x [5].

(b) PreT 2 at p and PreT ′
2 at p are equivalent, and they both reduce to

for each point x distinct from p, there exist disjoint neighborhoods of
x and p if the set {x, p} is not indiscrete [5].

(c) T 2 at p and T ′
2 at p are equivalent, and they both reduce to for each

x ∈ X with x ̸= p, there exist disjoint neighborhoods of x and p [5].
(2) Local separation axioms are used to introduce the notions of (strong) closed-

ness in set-based topological categories which are defined in [3]. These no-
tions are used in [2,9,10] to generalize each of the notions of Hausdorffness,
compactness, perfectness and connectedness to arbitrary set-based topologi-
cal categories. Additionally, it is shown in [9] that they constitute suitable
closure operators in the sense of Dikranjan and Giuli [16] in various well-
known topological categories.
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Theorem 1. Let (A,N ), (B,M) be NCSps and f : (A,N ) → (B,M) be a NCSet-
map. If (B,M) is discrete, then so is (A,N ), i.e., f reflects discreteness.

Proof. Let (B,M) be discrete, i.e., M = ∅nc, but (A,N ) be not discrete, i.e.,
N ≠ ∅nc. Since f : (A,N ) → (B,M) is in NCSet, it follows that N ⊂ f−1(M =
∅nc) = ∅nc and consequently N = ∅nc, a contradiction. □

Theorem 2. All objects in NCSet are T0 at p, T ′
0 at p, and T1 at p.

Proof. It is deduced from Definition 5 and Theorem 1. □

Theorem 3. Let (A,N ) be a neutrosophic crisp space and p ∈ A. The following
are equivalent.

(1) (A,N ) is PreT ′
2 at p.

(2) (A,N ) is PreT 2 at p.
(3) (A,N ) is T2 at p.
(4) (A,N ) is T ′

2 at p.
(5) N = ∅nc or p ∈ N .

Proof. (1) =⇒ (2) : By Theorem 3.1 of [8] we get the result.
(2) =⇒ (3) : It follows from Definition 5 and Theorem 2.
(3) =⇒ (4) : Suppose (A,N ) is T2 at p. Then by Definition 5, Lemma 1 and

Theorem 2, (π1Ap)
−1N ∩ (π2Ap)

−1N = (π1Sp)
−1N ∩ (π2Sp)

−1N . It follows that
N = ∅nc or p ∈ N . Otherwise the equality does not hold. Because, if N ̸= ∅nc
and p /∈ N , then (π1Ap)

−1N ∩ (π2Ap)
−1N = ∅nc and (π1Sp)

−1N ∩ (π2Sp)
−1N =

N × p ⊂ A ∨p A by definitions of principal and skewed p−axis maps. This is a
contradiction.

If N = ∅nc, then clearly (π1Sp)
−1N ∩ (π2Sp)

−1N = i1N ∪ i2N = ∅nc.
If p ∈ N , then (π1Sp)

−1N ∩ (π2Sp)
−1N = i1N ∪ i2N = N ∨p N . Hence (A,N )

is T ′
2 at p by Definition 5, Lemma 1 and Theorem 2.
(4) =⇒ (5) : Suppose (A,N ) is T ′

2 at p. Then by Definition 5, Lemma 1
and Theorem 2, (π1Sp)

−1N ∩ (π2Sp)
−1N = i1N ∪ i2N . We must show that

p ∈ N if N ≠ ∅nc. Let N ≠ ∅nc and p /∈ N , then (π1Sp)
−1N ∩ (π2Sp)

−1N =
(N×p)∩(N∨pN ) = N×p and i1N∪i2N = N∨pN by definitions of skewed p−axis
map and canonical injections. It follows that (π1Sp)

−1N ∩(π2Sp)
−1N ̸= i1N ∪i2N

since if x ∈ N , then i2x = (p, x) ∈ N ∨p N but (p, x) /∈ N × p. Consequently, this
is a contradiction. Thus p ∈ N if N ̸= ∅nc.

(5) =⇒ (1) : Assume that N = ∅nc or p ∈ N . If N = ∅nc, then clearly
(π1Sp)

−1N ∩ (π2Sp)
−1N = i1N ∪ i2N = ∅nc. If N ≠ ∅nc, then p ∈ N by assump-

tion. It follows that (π1Sp)
−1N ∩ (π2Sp)

−1N = (N ∨p N ) ∩ (N ∨p N ) = N ∨p N ,
i1N ∪ i2N = N ∨p N , and consequently, (π1Sp)

−1N ∩ (π2Sp)
−1N = i1N ∪ i2N .

Hence, (A,N ) is PreT ′
2 at p by Definition 5. □
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4. Generic Separation Axioms in Neutrosophic Crisp Space

Let B be a non-empty set, B2 be cartesian product of B with itself and B2∨∆B2

be two distinct copies of B2 identified along the diagonal. If a point (a, b) in B2∨∆

B2 is in the first (resp. second) component, it is denoted as (a, b)1 (resp.(a, b)2)
Clearly, (a, b)1 = (a, b)2 iff a = b [2].

Definition 6. [2]

(1) The map A : B2 ∨∆ B2 → B3 is called principal axis map iff

A(a, b)i =

{
(a, b, a), i = 1

(a, a, b), i = 2

(2) The map S : B2 ∨∆ B2 → B3 is called skewed axis map iff

S(a, b)i =

{
(a, b, b), i = 1

(a, a, b), i = 2

(3) The map ∇ : B2 ∨∆ B2 → B2 is called fold map iff ∇(a, b)i = (a, b) for
i = 1, 2.

Definition 7. (cf. [2, 6]) Let U : E → Set be a topological functor, A an object in
E with U(A) = B.

(1) A is T 0 iff the initial lift of the U−source {A : B2 ∨∆ B2 → U(A3) = B3

and ∇ : B2 ∨∆ B2 → UD(B2) = B2} is discrete, where D is the discrete
functor that is a left adjoint to U [2].

(2) A is T ′
0 iff the initial lift of the U−source {id : B2 ∨∆ B2 → U(B2 ∨∆

B2)
′
= B2 ∨∆ B2 and ∇ : B2 ∨∆ B2 → UD(B2) = B2} is discrete, where

(B2∨∆B2)
′
is the final lift of the U−sink {i1, i2 : U(A2) = B2 → B2∨∆B2},

i1 and i2 are the canonical injections, and D(B2) is the discrete structure
on B2 [2].

(3) A is T0 iff A doesn’t contain an indiscrete subspace with at least two points
[23].

(4) A is T1 iff the initial lift of the U−source {S : B2 ∨∆ B2 → U(A3) = B3

and ∇ : B2 ∨∆ B2 → UD(B2) = B2} is discrete [2].
(5) A is PreT 2 iff the initial lift of the U-sources {A : B2 ∨∆ B2 → U(A3) =

B3} and {S : B2 ∨∆ B2 → U(A3) = B3} agree.
(6) A is PreT ′

2 iff the initial lift of the U-source {S : B2∨∆B2 → U(A3) = B3}
and the final lift of the U-sink {i1, i2 : U(A2) = B2 → B2 ∨∆ B2} agree.

(7) A is T 2 iff A is PreT 2 and T 0.
(8) A is T ′

2 iff A is PreT ′
2 and T ′

0.
(9) A is KT2 iff A is PreT 2 and T ′

0.
(10) A is LT2 iff A is PreT ′

2 and T 0.
(11) A is MT2 iff A is PreT ′

2 and T0.
(12) A is NT2 iff A is PreT 2 and T0.
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Remark 3. Note that for Top, all of T0’s or T1 or PreT 2, PreT ′
2 or all of T2’s

reduce to usual T0 or T1 or PreT2 (for each distinct pair x, y, there exist disjoint
neighborhoods of x and y if the set {x, y} is not indiscrete) or Hausdorff separation
axioms, respectively [2, 23].

Theorem 4. Let (A,N ) be an object in NCSet.

(1) (A,N ) is T0.
(2) (A,N ) is T ′

0.
(3) (A,N ) is T1.
(4) (A,N ) is PreT 2.
(5) (A,N ) is PreT ′

2.
(6) (A,N ) is T2.
(7) (A,N ) is T ′

2.
(8) (A,N ) is KT2.
(9) (A,N ) is LT2.

Proof. For (1)− (3), the proofs are deduced from Definition 7 and Theorem 1.
Let (A,N ) be a neutrosophic crisp space and (A2,N 2) be the product neutro-

sophic crisp space. Note that the product neutrosophic crisp structure N 2 is given
by N 2 = π−1

1 N ∩ π−1
2 N .

Let M = (π1A)−1N ∩ (π2A)−1N ∩ (π3A)−1N , M′ = (π1S)−1N ∩ (π2S)−1N ∩
(π3S)−1N , M′′ = i1N 2 ∪ i2N 2 and it follows that M = M′ = M′′ = N 2 ∨∆ N 2.
Then by Definition 7 and Lemma 1, (A,N ) is PreT 2 since M = M′, and by
Definition 7 and Lemma 1, (A,N ) is PreT ′

2 since M′ = M′′, and consequently,
(A,N ) is T2, T

′
2, KT2 and LT2 by Definition 7. □

Theorem 5. (A,N ) in NCSet is T0 if and only if cardA ≤ 1.

Proof. Assume that (A,N ) is a T0 neutrosophic crisp space and cardA > 1, i.e.,
A is not a one-point set. Then there exist distinct points a and b of A. It follows
that ({a, b}, {a, b}nc) is the indiscrete subspace of (A,N ) contradicting to (A,N )
is being T0. Hence, cardA ≤ 1.

If cardA ≤ 1, i.e., A = ∅ or A is a one-point set, then clearly by Definition 7,
(A,N ) is a T0. □

Theorem 6. (A,N ) in NCSet is MT2 (resp. NT2) if and only if cardA ≤ 1.

Proof. It is deduced from Definition 7 and Theorems 4, 5. □

5. Closedness, Compactness and Connectedness in NCSet

Let p be a point in a set B and ∨∞
p B be the infinite wedge product of B at p,

that is formed by taking countably separate copies of B and identifying them at p.
If a point b in ∨∞

p B is in the i-th component, it is denoted as bi.

Definition 8. [3] Let ∨∞
p B be the infinite wedge product at p and B∞ = B×B× ...

be the countable cartesian product of B with itself.
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(i) The map A∞
p : ∨∞

p B → B∞ is called infinite principle axis map at p
provided that A∞

p (bi) = (p, p, ...., p, b, p, ...).
(ii) The map ∇∞

p : ∨∞
p B → B∞ is called infinite fold map at p provided that

∇∞
p (bi) = b for all i ∈ I.

Definition 9. [3] Let U : E → Set be a topological functor, A ∈ Ob(E) with
U(A) = B and p ∈ B. Let C be a subset of B. We denote A/C as the final lift of
the epi U-sink q : U(A) = B → B/C = (B\C)∪ {∗}, where q is the epi map that is
the identity on B\C and identifying C with a point {∗}.

(i) {p} is closed provided that the initial lift of the U-source {A∞
p : ∨∞

p B →
U(A∞) = B∞ and ∇∞

p : ∨∞
p B → UD(B∞) = B∞} is discrete, where D is

the discrete functor.
(ii) C ⊂ A is closed provided that {∗}, the image of C, is closed in A/C or

C = ∅.
(iii) C ⊂ A is strongly closed provided that A/C is T1 at {∗} or C = ∅.
(iv) C ⊂ A is (strongly) open provided that Cc, the complement of C, is (strongly)

closed in A.

Remark 4. In Top, C is strongly closed provided that C is closed and there exists
a neighbourhood of C missing x for each x /∈ C, and the notion of closedness coin-
cides with the usual one. Moreover, the notions of strong closedness and closedness
coincide for T1 topological spaces [3].

Theorem 7. Every point is closed in A for (A,N ) in NCSet.

Proof. It is deduced from Definition 9 and Theorem 1. □

Theorem 8. Let (A,N ) be in NCSet. Each C ⊂ A is both strongly closed and
closed, so it is strongly open and open.

Proof. It is deduced from Definition 9 and Theorem 1. □

Definition 10. [7] Let E be a topological category over Set, A,B ∈ Ob(E), and
f : A → B a morphism.

(1) f is (strongly) closed provided that the image of each (strongly) closed sub-
object of A is a (strongly) closed subobject of B.

(2) A is (strongly) compact provided that for each B ∈ Ob(E), the projection
π2 : A×B → B is (strongly) closed.

Remark 5. (1) In Top, the notions of compactness and closed morphism re-
duce to the usual ones ( [15] p. 97 and 103).

(2) The notions of compactness and strong compactness are different for an
arbitrary topological category, in general, since the notions of strong closed-
ness and closedness are different, in general ( [3] p. 393).

Theorem 9. Every neutrosophic crisp space is (strongly) compact.
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Proof. Let (A,N ) be a neutrosophic crisp space. By Definition 10, we need to show
that π2 : (A,N )× (B,M) → (B,M) is (strongly) closed for all (B,M) in NCSet.
Suppose C ⊂ A × B is (strongly) closed. By Theorem 8, it follows that π2(C) is
(strongly) closed and consequently, (A,N ) is (strongly) compact. □

Corollary 1. Let (A,N ) and (B,M) be in NCSet and f : (A,N ) → (B,M) be
an NCSet-map.

(1) Each NCSet-map f is (strongly) closed.
(2) If (A,N ) is (strongly) compact, then (f(A),M) is (strongly) compact.

Now, we give the characterizations of the various notions of connected objects
in NCSet.

Definition 11. Let E be a topological category over Set and A ∈ Ob(E).
(i) A is strongly connected (connected) provided that the only subsets of A both

open (strongly open) and closed (strongly closed) are A and ∅ [10].
(ii) A is D-connected provided that any morphism from A to any discrete object

is constant [10,26].
(iii) A is (strongly) hereditarily disconnected provided that the only (strongly)

connected subspaces of A are singletons and ∅ [11].
(iv) A is said to be (strongly) irreducible if X,Y are (strongly) closed subobjects

of A and A = X ∪ Y , then X = A or Y = A [13].

Remark 6. In Top,

(1) The notions of D-connectedness and strong connectedness coincide with the
usual notion of connectedness. Moreover, if a topological space X is T1, then
the notions of D-connectedness, connectedness and strong connectedness
coincide [10].

(2) The notion of irreducibility coincides with the usual irreducibility [13]. Note
that if a topological space (X, τ) is irreducible, then (X, τ) is connected,
and if (X, τ) is T1, then the notions of of irreducible spaces and strongly
irreducible spaces coincide. [13].

Theorem 10. Let (A,N ) be a neutrosophic crisp space. Then the following are
equivalent.

(1) (A,N ) is (strongly) connected.
(2) (A,N ) is (strongly) irreducible.
(3) cardA ≤ 1.

Proof. (1) =⇒ (2) : Let (A,N ) is strongly connected (resp. connected). Then
the only subsets of A both open (strongly open) and closed (strongly closed) are A
and ∅. Suppose (A,N ) is not (strongly) irreducible. Let B be a subset of A. By
Theorem 8, B and Bc are closed (strongly closed). Since A = B ∪ Bc and (A,N )
is not (strongly) irreducible, then B ̸= A and Bc ̸= A. It follows that ∅ ̸= B ⊂ A
is a both open (strongly open) and closed (strongly closed). Given that (A,N )
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is strongly connected (resp. connected), this is a contradiction. Hence, (A,N ) is
(strongly) irreducible.

(2) =⇒ (3) : Suppose (A,N ) is (strongly) irreducible and cardA > 1. Then
there exist distinct points a and b of A. By Theorem 8, both {a} and {a}c are
(strongly) closed subsets of A and A = {a} ∪ {a}c contradicting to (A,N ) is being
(strongly) irreducible. Hence, cardA ≤ 1.

(3) =⇒ (1) : Suppose cardA ≤ 1. We show that (A,N ) is strongly connected
(resp. connected). Since cardA ≤ 1, A = ∅ or A = {a} (one-point set). If A = {a},
then A and Ac = ∅ is closed (strongly closed). It follows that A = {a} is both
closed (strongly closed) and open (strongly open). Similarly, we have A = ∅ is
both closed (strongly closed) and open (strongly open). Hence, (A,N ) is strongly
connected (resp. connected). □

Theorem 11. All objects in NCSet is (strongly) hereditarily disconnected.

Proof. It is deduced from Definition 11 and Theorem 10. □

Theorem 12. (A,N ) in NCSet is D-connected provided that cardA ≤ 1 and
N = ∅nc.

Proof. Suppose (A,N ) is D-connected. Let (B, ∅nc) be a discrete neutrosophic
crisp space. By the definition of D-connectedness, every NCSet-map f : (A,N ) →
(B, ∅nc) is constant. Since f is an NCSet-map, N ⊂ f−1(∅nc) = ∅nc and we have
N = ∅nc. We show that cardA ≤ 1. Suppose cardA > 1. Let B = {0, 1}, E be a
non-empty proper subset of A and f : A → B be map given by

f(x) =

{
0, x ∈ E

1, x ∈ Ec

The map f : (A, ∅nc) → (B, ∅nc) is an NCSet-map, but it is not constant. Given
that (A,N ) is D-connected, this is a contradiction. Hence, cardA ≤ 1.

Conversely, suppose that cardA ≤ 1 and N = ∅nc. Let (B, ∅nc) be a discrete
neutrosophic crisp space. A = ∅ or A = {a}. If A = ∅, then f : (∅, ∅nc) → (B, ∅nc)
is an NCSet-map. If A = {a}, then f : ({a}, ∅nc) → (B, ∅nc) is an NCSet-map
and it is constant. It follows that every morphism from A to (B, ∅nc) is constant.
By Definition 11, we have that (A,N ) is D-connected. □

6. Comparative Evaluation

In this section, we compare our results with the ones in some other categories.

(1) In Top,
(a) All T2’s are equivalent, i.e., T2 = T ′

2 = KT2 = LT2 = MT2 = NT2.
Moreover, T2 =⇒ T1 =⇒ T0 = T ′

0 = T0 and T2 =⇒ PreT 2 =
PreT ′

2 [6].
(b) T2 at p = T ′

2 at p =⇒ T1 at p =⇒ T0 at p = T ′
0 at p and T2 at p

=⇒ PreT 2 at p = PreT ′
2 at p [5].
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(c) If a topological space (X, τ) is T0 (resp. T ′
0, T1, PreT 2, PreT ′

2, T 2, or
T ′
2), then (X, τ) is T 0 at p (resp. T ′

0 at p, T1 at p, PreT 2 at p, PreT ′
2

at p, T 2 at p, or T ′
2 at p), since Top is a normalized category [5].

(d) Strong closedness implies closedness. In addition, in the realm of T1

topological spaces, the notions of strong closedness and closedness co-
incide [3]. Based on this, the notions of strong compactness and com-
pactness are different, in general, and in the realm of T1 property, these
notions coincide [7].

(e) D-connectedness and strong connectedness coincides with the usual
connectedness [10], and in the realm of T1 property, then all the no-
tions of connectedness coincide [10]. Moreover, the notion of strong
hereditary disconnectedness coincides with the usual hereditary dis-
connectedness [10], and if a topological space is T1, then hereditary
disconnectedness and strong hereditary disconnectedness coincide [11].

(f) The notion of irreducibility coincides with the usual irreducibility [13].
In addition, in the realm of T1 topological spaces, the notions of irre-
ducibility and strong irreducibility coincide. [13].

(2) In NCSet, we can infer the following results.
(a) By Theorems 2 and 3, if a neutrosophic crisp space (A,N ) is PreT 2

at p, PreT ′
2 at p, T2 at p or T ′

2, then (A,N ) is T0 at p, T ′
0 at p or T1

at p, but the reverse implication is not true, in general.
(b) By Theorems 4, 5, and 6, if a neutrosophic crisp space (A,N ) is T0,

NT2 or MT2, then (A,N ) is T0, T
′
0, T1, PreT 2, PreT ′

2, T2, T
′
2, KT2

or LT2, but the reverse implication is not true, in general.
(c) By Theorems 2 and 4, a neutrosophic crisp space (A,N ) is T0 (resp.

T ′
0, or T1) iff (A,N ) is T0 at p (resp. T ′

0 at p, or T1 at p). But, by
Theorems 3 and 4, if (A,N ) is PreT 2 (resp. PreT ′

2, T2, or T
′
2), then

(A,N ) is not necessary to be PreT 2 at p (resp. PreT ′
2 at p, T2 at p,

or T ′
2 at p).

(d) By Theorems 8, closedness and strong closedness are equivalent, and
all subsets of a neutrosophic crisp space are (strongly) closed.

(e) Let (A,N ) be a neutrosophic crisp space. By Theorems 9 and 11,
(i) (A,N ) is (strongly) compact.
(ii) (A,N ) is (strongly) hereditary disconnected.

(f) Let (A,N ) be a neutrosophic crisp space. By Theorems 5 and 10, the
following are equivalent:

(i) A = ∅ or A is a one-point set.
(ii) (A,N ) is T0.
(iii) (A,N ) is (strongly) connected.
(iv) (A,N ) is (strongly) irreducible.
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(g) By Theorems 10 and 12, D-connectedness implies (strong) connected-
ness or (strong) irreducibility, but in general, the converse of impli-
cation does not hold. For instance, if A = {a} and N = Anc, then
(A,N ) is (strongly) connected and (strongly) irreducible, but not D-
connected.

(h) By Theorems 10 and 11, (strong) connectedness or (strong) irreducibil-
ity implies hereditary disconnectedness, the reverse implication is not
true, in general. For instance, the indiscrete neutrosophic crisp space
(A,N ) with cardA = 2 is hereditary disconnected, but neither (strongly)
connected nor (strongly) irreducible.

(3) In Prox, the category of proximity spaces and proximity maps,
(a) T0 = T1 = PreT ′

2 = T2 = T ′
2 =⇒ T ′

0 = PreT 2 [20].
(b) T0 at p = T1 at p = PreT ′

2 at p = T2 at p = T ′
2 at p =⇒ T ′

0 at p =
PreT 2 at p [19, 22].

(c) Since Prox is a normalized category, if a topological space (X, δ) is T0

(resp. T ′
0, T1, PreT 2, PreT ′

2, T 2, or T
′
2), then (X, δ) is T 0 at p (resp.

T ′
0 at p, T1 at p, PreT 2 at p, PreT ′

2 at p, T 2 at p, or T ′
2 at p).

(d) By Remark 4.11 of [19], the notions of closedness and strong closedness
coincide. Moreover, by Lemma 4.3 of [21], (strong) closedness implies
(strong) compactness since all objects are (strongly) compact.

(e) By Theorem 4.5 of [25], a proximity space (X, δ) is (strongly) con-
nected if and only if (X, δ) is (strongly) irreducible.

(4) In L-GS, the category of quantale-valued gauge spaces and L-gauge mor-
phisms,
(a) T2 = T1 =⇒ T0 =⇒ T0. Moreover, an L-gauge space (X,G) is T2,

then (X,G) is both NT2 and PreT2, and in the realm of Pre-Hausdorff
quantale-valued gauge spaces, T0, T1 and T2 are equivalent [24].

(b) By Theorems 3.6 and 3.9 of [27], T1 at p =⇒ T0 at p, and if an
L-gauge space (X,G) is T0 (or T1), then (X,G) is T0 at p (or T1 at
p) [24,27].

(c) There is no relation betweenD-connectedness and the notion of closed-
ness or T1 at p [27].

(5) In pqsMet, the category of extended pseudo-quasi-semi metric spaces and
contraction maps,
(a) T1 = PreT ′

2 = T ′
2 = T2 =⇒ T0 =⇒ T0 =⇒ T ′

0 and T2 =⇒
NT2 =⇒ PreT 2 = KT2 [14].

(b) T1 at p = PreT ′
2 at p = T ′

2 at p = T2 at p =⇒ T0 at p =⇒ T ′
0 at p

and T2 at p =⇒ PreT 2 at p [12].
(c) Since pqsMet is a normalized category, if an extended pseudo-quasi-

semi metric space (X, d) is T0 (resp. T ′
0, T1, PreT 2, PreT ′

2, T 2, or
T ′
2), then (X, d) is T 0 at p (resp. T ′

0 at p, T1 at p, PreT 2 at p, PreT ′
2

at p, T 2 at p, or T ′
2 at p).
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(d) By Theorem 3.4 of [13], strong closedness implies closedness. By The-
orem 3.20 of [14], an extended pseudo-quasi-semi metric space (X, d)
is KT2 or NT2, then the notions of strong closedness and closedness
coincide. Moreover, in the realm of T2, T

′
2 or T1 property, each subset

of X is (strongly) closed.
(e) By Theorem 4.9 of [13], an extended pseudo-quasi-semi metric space

(X, d) is strongly connected, then (X, d) is connected. In addition, the
notions of connectedness and D-connectedness coincide.

(f) By Theorem 5.4 of [13], irreducibility implies strong irreducibility or
strong connectedness. Also, strong irreducibility implies connectedness
or D-connectedness.

(6) For any arbitrary topological category,
(a) T0 =⇒ T ′

0 and there is no relationship between T0 or T ′
0 and T0 [3].

In addition, it is shown in [6], that T2 =⇒ NT2 and LT2 =⇒ T ′
2,

also the notions of T2 and NT2, or T ′
2 and MT2 are independent of

each other, in general. Moreover, PreT ′
2 =⇒ PreT 2 [8].

(b) Let U : E → Set be a topological functor, A an object in E and
p ∈ U(A) be a retract of A, i.e., the initial lift h : 1 → A of the U-
source p : 1 → U(A) is a retract, where 1 is the terminal object in
Set, or more precisely let U be normalized. Then if A is T 0 (resp. T1,
PreT 2, or T 2), then A is T 0 at p (resp. T1 at p, PreT 2 at p, or T 2 at
p), but the reverse implication is not true, in general ( [4], Theorem
2.6 and Corollary 2.7).

(c) The notions of closedness and strong closedness are independent of
each other, in general [3]. Even if A ∈ E is T1, where E is a topological
category, then these notions are still independent of each other [3].
Based on this, the notions of compactness and strong compactness are
different, in general.

(d) There are no implications between the notions of strong connectedness
and connectedness, or hereditary disconnectedness and strong heredi-
tary disconnectedness [11].
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THE FELL APPROACH STRUCTURE
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Abstract. In the present paper we construct a new approach structure called

Fell approach structure. We define the new structure by means of lower regular
function frames and prove that the Top-coreflection of this new structure is

the ordinary Fell topology. We also give analogue result for the extended Fell
topology and investigate some properties of Fell approach structure.

1. Introduction

Hyperspaces of topological spaces were initiated by Felix Hausdorff (1868) and
Leopold Vietoris (1891). The theory occupy an important place in the applications
of convex analysis, optimization theory and the theory of Banach spaces. Hyper-
spaces of topological spaces are an important way of obtaining information on the
structure of a topological space X. Although the most important and well-studied
hyperspace topologies on CL(X) are the Wijsman topology, the Hausdorff metric
topology and the hit and miss topologies. These topologies are investigated in [6].
Lowen and Wuyts [16] investigated the corresponding approach structures of the
Vietoris topology and the other are investigated by Lowen and Sioen in [11, 14].
In most of cases they obtained the well known hyperspace topologies as the Top-
coreflections of their new constructed approach structures.

The Fell topology is also known as a useful construct in terms of applications,
especially in convex analysis, probability theory and its applications to optimiza-
tion [1, 2]. In this paper we construct a new approach structure in the setting of
hyperspaces and we prove that its Top-coreflection is the well known Fell topology.
We also investigate some properties of this new structure in the setting of approach
theory.
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We refer to R.Lowen [12,17] for extensive literature to study on approach spaces
and we refer to G.Beer [4] for more information on hyperspace topologies.

2. Preliminaries

Throughout this work, given a nonempty set X, 2X denotes the set of all subsets
of X, 2(X) denotes the set of all finite subsets of X. Given a topological space (X, τ)
by CL(X) we denote the set of all closed subsets of X and K(X) represents the
set of all compact subsets of X, in addition W = CL(X) ∪ {∅}. The hit and miss
sets of a subset A in X are defined as

A− := {B ∈ CL(X) |B ∩A ̸= ∅} and A+ := {B ∈ CL(X) |B ⊂ A},
respectively. We also consider P:=[0,∞] with its usual order and complete lattice
structure as an additive semigroup. For any A ⊂ X, the indicator of A is defined
as

θA : X −→ P

x 7−→ θA(x) =

{
0 , x ∈ A
∞ , x /∈ A.

For a Hausdorff space (X, τ), the lower-Vietoris topology τ−V and the upper-Vietoris

topology τ+V on CL(X) are generated by the subbasis {V − | V ∈ τ} and the basis
{W+ |W ∈ τ}, respectively. The Vietoris topology is simply the supremum of its
upper part and lower part, i.e. τV = τ−V

∨
τ+V [6].

The upper-Fell topology τ+Fell on CL(X) is generated by the basis

{W+ |W ∈ τ ,W c ∈ K(X)}
and the Fell topology τFell on CL(X) is generated by the subbasis

{V − | V ∈ τ} ∪ {W+ |W ∈ τ ,W c ∈ K(X)} [6].

Approach spaces can be described in terms of several equivalent mathematical
structures; such as distance, limit operator, gauge, approach system, upper hull
operator and lower regular function frame. Now we recall the definition of lower
regular function frame.

A lower regular function frame [17] is a collection of functions L ⊆ PX with
the following properties:

(LR1) ∀K ⊆ L :
∨
K ∈ L,

(LR2) ∀K ⊆ L such that K is finite :
∧

K ∈ L (that is stable for finite infima),
(LR3) ∀µ ∈ L , ∀α ∈ P : µ+ α ∈ L (that is translation invariant),
(LR4) ∀µ ∈ L , ∀α ∈ [0, inf µ] : µ− α ∈ L.
A basis for a lower regular function frame L is a collection B ⊂ L such that any

function in L can be obtained as a supremum of functions in B. In addition while
Lowen and Wuyts [16] introducing the Vietoris approach structure, they gave a
notion of a basis and a subbasis for a lower regular function frame. If the collection
B ⊂ PX is stable for finite infima then B is a subbasis for a lower regular function
frame defined on X and if the subbasis B is translation invariant then B is a basis
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for a lower regular function frame on X. If B ⊂ PX , the smallest lower regular
function frame containing B (or the lower regular function frame generated by B)
is defined as

[B] = {sup
j∈J

inf
k∈Kj

µj,k | ∀j ∈ J, ∀k ∈ Kj : Kj finite , µj,k ∈ B}, (1)

and in this case we call B a subbasis of [B], if moreover B is closed for finite infima
we call B a basis for [B].

In [12] it is proved that a lower regular function frame, a distance and an ap-
proach system are equivalent mathematical structures. In addition for a given lower
regular function frame L the corresponding distance is defined as

δ(x,A) = sup{ρ(x) | ρ ∈ L, ρ|A=0} (2)

and for a given distance δ the corresponding approach system A is defined as

A(x) = {ψ ∈ PX | ∀A ⊂ X : inf
y∈A

ψ(y) ≤ δ(x,A)} (3)

If (X, τ) is topological space, then

Lτ = {µ ∈ PX | µ lower semicontinuous}

is a lower regular function frame on X. On the other hand; if there exists a
topology τ on X such that L = Lτ , then (X,L) is called a topological approach

space [12]. A function f : (X,L) → (X
′
,L′

) between approach spaces is called a

contraction if for all ν ∈ L′
, ν ◦ f ∈ L . The category whose objects are approach

spaces and morphisms are contractions is denoted by App. App is a topological
category and Top is embedded as a concretely coreflective subcategory of App. For
any approach space (X,L), Top-coreflection τ tcL determined by L is the topology
associated with the following topological closure operator:

clL(A) =
{
x ∈ X| sup

ρ∈L
ρ|A=0

ρ(x) = 0
}
; A ⊂ X. (4)

Note that the equality (4) can be written as

clL(A) =
⋂
ρ∈L

ρ|A
=0

{
ρ = 0} (5)

Before describing the construction process of the Fell approach structure, let us
give the definition of Vietoris approach structure investigated in [16] by means of
regular function frames. If µ ∈ PX , then the functions µ∧ and µ∨ are defined as

µ∧ : CL(X) −→ P
A 7−→ µ∧(A) = inf

x∈A
µ(x)

µ∨ : CL(X) −→ P
A 7−→ µ∨(A) = sup

x∈A
µ(x).
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Lowen andWuyts obtained in [16] that for the function θA of A ∈ CL(X), θ∧A = θA−

and θ∨A = θA+ and for a subcollection A in CL(X),

θ∩A = sup
A∈A

θA and θ∪A = inf
A∈A

θA. (6)

Given an approach space (X,L), L
∧
= {µ∧ |µ ∈ L} is a basis for a lower regular

function frame. The corresponding lower regular function frame is

L
∧
V = {sup

j∈J
µ∧
j | ∀j ∈ J : µj ∈ L}.

This approach structure is calledVietoris
∧
-structure. Moreover, L

∨
= {µ∨ |µ ∈

L} is a subbasis for a lower regular function frame. The corresponding lower regular
function frame is

L
∨
V = {sup

j∈J
inf
k∈Ij

µ∨
j,k | J ̸= ∅,∀j, k : Ij ⊂ J finite, µj,k ∈ L}.

This approach structure is called Vietoris
∨
-structure. Finally, the Vietoris

approach structure is a lower regular function frame with the subbasis L
∧
∪L

∨
.

We denote the expression “ such that ” by “ s.t. ” briefly.

3. The Fell Approach Structure

In this section we construct a new approach structure corresponding to the Fell
topology and investigate its properties. Here, CL(X) and K(X) denote the families
of the closed and the compact subsets, respectively, of the Top-coreflection τ tcL of
the approach structure L. To construct Fell approach structure, we modify the
function µ∧ defined by Lowen and Wuyts [16] using compact sets. Let µ ∈ PX and
B∈ K(X), we define the function

µ∧
B : CL(X) −→ P

A 7−→ µ∧
B(A) = inf

x∈A∩B
µ(x).

In the sequel the considered approach spaces are assumed to be Hausdorff approach
spaces [15] (X,L), that are the approach spaces such that their Top-coreflections
are Hausdorff. In the following result we proved that being a Hausdorff approach
space can be characterized by means of lower regular function frames.

Proposition 1. For an approach space (X,L), the following properties are equiv-
alent.

(i) (X, τ tcL ) is Hausdorff.

(ii) x ̸= y =⇒ (∃ρ, µ ∈ L ∋ ρ(x) > 0, ρ(y) = 0 and µ(x) = 0, µ(y) > 0).

Proof. Let (X, τ tcL ) be a Hausdorff space. Then

∃W,G ∈ τ tcL s.t. x ∈W, y ∈ G and W ∩G = ∅
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Since W ∈ τ tcL , we know that y ∈ X −W = clL(X −W ) and x /∈ X −W . Thus by
(4) it is clear that

∀ρ ∈ L s.t. ρ|X−W=0 : ρ(y) = 0

and

∃ρ
′
∈ L s.t. ρ

′

|X−W=0 : ρ
′
(x) > 0.

Similarly, since G ∈ τ tcL , x ∈ X −G and y /∈ X −G, one can obtain that

∀µ ∈ L s.t. µ|X−G=0 : µ(x) = 0

and

∃µ
′
∈ L s.t. µ

′

|X−G=0 : µ
′
(y) > 0.

On the other hand, when (ii) holds we have three posibilities: If ρ(x) < µ(y), then
by Proposition 2.2.8 in [17], y ∈ µ−1(]ρ(x),+∞[) ∈ τ tcL and x ∈ µ−1([0, ρ(x)[) ∈ τ tcL .
Moreover,

µ−1(]ρ(x),+∞[) ∩ µ−1([0, ρ(x)[) = ∅
Hence (X, τ tcL ) is Hausdorff. Similarly, if µ(y) < ρ(x) one can easily obtain the
same fact. And if µ(y) = ρ(x), by the assumption since we have that both µ(y)
, ρ(x) are positive, there exist a real number r such that 0 < r < µ(y). Then
x ∈ µ−1([0, r[) ∈ τ tcL and y ∈ µ−1(]r,+∞[) ∈ τ tcL . Moreover,

µ−1([0, r[) ∩ µ−1(]r,+∞[) = ∅
which completes the proof. □

Remark 1. In [7] and [8] Baran and Qasim gave different definitions of T0 and
T1 approach spaces. We hope that the characterization given in Proposition 1 will
lead a way to give an analogue definition of T2 spaces (Hausdorff spaces).

The following result gives some basic properties of the modified function given
in the beginning of this chapter.

Proposition 2. If (X,L) is an approach space, then the following statements are
valid.

(i) ∀A,C ∈ CL(X), ∀B ⊂ K(X) s.t. |B| <∞ :

min
B∈B

inf
x∈B∩C

θA(x) = inf
x∈(∪B)∩C

θA(x),

(ii) ∀A ∈ CL(X),∀B ∈ K(X) : (θA)
∧
B = θ(A∩B)− ,

(iii) ∀A ⊂ CL(X) , ∀B ∈ K(X) : (θ∪A)
∧
B = infA∈A(θA)

∧
B ,

(iv) ∀A ∈ CL(X) , B ⊂ K(X) and |B| <∞ : (θA)
∧
∪B = minB∈B(θA)

∧
B .
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Proof. (i) It is straightforward. (ii) Let C ∈ CL(X). Since (θA)
∧
B can only take on

two values, ∞ or 0, we must consider two possible cases. Whenever (θA)
∧
B(C) = ∞

then it means that B∩C = ∅ or A∩B∩C = ∅. In both cases, clearly C /∈ (A∩B)−

and thus θ(A∩B)−(C) = ∞. Also, whenever θ(A∩B)−(C) = ∞, one can easily show
that (θA)

∧
B(C) = ∞. For the second possibility, (θA)

∧
B(C) = 0 iff A ∩ B ∩ C ̸= ∅

which means that C ∈ (A ∩B)−. Hence θ(A∩B)−(C) = 0.
(iii) Let C ∈ CL(X). By (6) we obtain

(θ∪A)
∧
B(C) = inf

x∈B∩C
θ∪A(x) = inf

x∈B∩C
inf
A∈A

θA(x)

and so if B ∩ C = ∅, then
inf
A∈A

(θA)
∧
B(C) = inf

A∈A
inf

x∈B∩C
θA(x) = ∞.

If B ∩ C ̸= ∅, then by (6) we obtain

(θ∪A)
∧
B(C) = inf

x∈B∩C
θ∪A(x)

= inf
x∈B∩C

inf
A∈A

θA(x)

= inf
A∈A

inf
x∈B∩C

θA(x)

= inf
A∈A

(θA)
∧
B(C).

(iv) Let C ∈ CL(X). For the finite subcollection B ⊂ K(X), if (∪B)∩C = ∅, then
(θA)

∧
∪B(C) = inf

x∈(∪B)∩C
θA(x) = ∞

and

min
B∈B

(θA)
∧
B(C) = min

B∈B
inf

x∈B∩C
θA(x) = ∞.

If (∪B) ∩ C ̸= ∅, then by (i) we obtain

min
B∈B

(θA)
∧
B(C) = min

B∈B
inf

x∈B∩C
θA(x)

= inf
x∈(∪B)∩C

θA(x)

= (θA)
∧
∪B(C).

□

Proposition 3. In an approach space (X,L), the collection

L
∧

Fell = {µ∧
B | µ ∈ L, B ∈ K(X)}

is a subbasis for a lower regular function frame on CL(X) and the corresponding
lower regular function frame is

L
∧
Fell =

{
sup
j∈J

inf
µ∈Lj

B∈Kj

µ∧
B | J ̸= ∅,Lj ⊂ L,Kj ⊂ K(X),Lj and Kj are finite

}
.
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Proof. For all µ ∈ L, B ∈ K(X) , α > 0 and A ∈ CL(X), clearly

(µ∧
B + α)(A) = µ∧

B(A) + α = inf
x∈A∩B

µ(x) + α = inf
x∈A∩B

(µ+ α)(x) = (µ+ α)∧B(A).

Since L is translation invariant, we have (µ+α)∧B ∈ L
∧

Fell thus L
∧

Fell is translation

invariant. Therefore, L
∧

Fell is a subbasis for a lower regular function frame. Thus
we obtaine the following family;{

inf
µ∈Lj

B∈Kj

µ∧
B | Lj ⊂ L,Kj ⊂ K(X),Lj and Kj are finite

}
,

which is a basis for a lower regular function frame, and the lower regular function
frame generated by this basis is

L
∧
Fell =

{
sup
j∈J

inf
µ∈Lj

B∈Kj

µ∧
B | J ̸= ∅,Lj ⊂ L,Kj ⊂ K(X),Lj and Kj are finite

}
.

□

We call the approach structure L
∧
Fell as Fell

∧
- approach structure.

Theorem 1. The collection L
∨
∪L

∧
Fell is a subbasis for the lower regular function

frame;

LFell =

{
sup
j∈J

(
inf

µ∈Lj

B∈Kj

µ∧
B

∧
inf

µ∈Ltj

µ∨) | Lj ,Ltj ⊂ L,Kj ⊂ K(X),

Lj ,Ltj and Kj are finite

}
.

Proof. Since L
∨

and L
∧

Fell are both translation invariant, so L
∨
∪L

∧
Fell is. Thus

this union is a subbasis for a lower regular function frame. Hence L
∨

∪ L
∧

Fell

generates a lower regular function frame (see (1)) which coincides with LFell. □

We call the approach structure LFell as Fell approach structure. Now we
should point out that this generalization is meaningful by introducing its relation
with the ordinary Fell topology.

If L is a lower regular function frame, then it was shown in [16] that

∀µ ∈ L : {µ = 0}+ = {µ∨ = 0}. (7)

The following lemma gives analogue equalities for our modified functions µ∧
B when-

ever µ ∈ L, B ∈ K(X).

Lemma 1. In an approach space (X,L), the following holds

(i) ∀µ ∈ L,∀B ∈ K(X) : {µ∧
B = 0} =

(
{µ = 0}

⋂
B
)−
,
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(ii) For all K ∈ K(X),( ⋂
ρ∈J

{ρ = 0}
)−

=
⋂
ρ∈J

{ρ = 0}− =
⋂
ρ∈J

{ρ∧K = 0}

where J = {ρ ∈ L | ρ|K = 0}.

Proof. (i) To prove the equality we shall show that µ : (X, τ tcL ) → P is lower
semicontinuous. For an arbitrary α > 0 if x /∈ {µ ≤ α} since we can consider the
mapping ρ := (µ− α)

∨
0 that lies in L, x /∈ {ρ = 0}. Thus by (5)

x /∈
⋂
ρ∈L

ρ|{µ≤α}
=0

{ρ = 0} = clτ{µ ≤ α}.

Therefore {µ ≤ α} is a closed subset in the Top-coreflection τ tcL of L. Hence µ is
lower semicontinuous. Now let us consider the claimed equality:

A ∈ {µ∧
B = 0} ⇐⇒ inf

x∈A∩B
µ(x) = 0.

By the fact that a lower semicontinuous mapping takes on its infimum value on a
compact set [9], we obtain

inf
x∈A∩B

µ(x) = 0 ⇐⇒ ∃x ∈ A ∩B : µ(x) = 0

⇐⇒ A ∩B ∩ {µ = 0} ≠ ∅
⇐⇒ A ∈ ({µ = 0} ∩B)−.

(ii) Let K ∈ K(X), then

A ∈
( ⋂

ρ∈J
{ρ = 0}

)−

⇐⇒ A
⋂( ⋂

ρ∈J
{ρ = 0}

)
̸= ∅

⇐⇒ ∃a ∈ A and a ∈ {ρ = 0} for all ρ ∈ J
⇐⇒ A ∩ {ρ = 0} ≠ ∅ for all ρ ∈ J
⇐⇒ A ∈

⋂
ρ∈J

{ρ = 0}−.

For the second equality

A ∈
⋂
ρ∈J

{ρ = 0}− =⇒ ∀ρ ∈ J : A ∈ {ρ = 0}−

=⇒ ∀ρ ∈ J : ∃a ∈ A s.t. ρ(a) = 0

=⇒ ∀ρ ∈ J : inf
a∈A

ρ(a) = 0.
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Moreover, since K ∈ CL(X), by (5) we know that

K = clL(K) =
⋂
ρ∈J

{ρ = 0}.

Thus, if A ∈ K−, then the first equality provides that

∀ρ ∈ J : inf
a∈A∩K

ρ(a) = 0

thus

∀ρ ∈ J : A ∈ {ρ∧K = 0}.
Consequently, we obtain that A ∈

⋂
ρ∈J {ρ∧K = 0}. Conversely, if A ∈

⋂
ρ∈J {ρ∧K =

0}, then
∀ρ ∈ J : inf

a∈A∩K
ρ(a) = 0.

By the lower semicontinuity of ρ and compactness of A ∩K,

∃a ∈ A ∩K s.t. ρ(a) = 0 for all ρ ∈ J .
Therefore

∀ρ ∈ J : A ∩ {ρ = 0} ≠ ∅.
Hence, A ∈

⋂
ρ∈J {ρ = 0}− which completes the proof.

□

Remark 2. Lowen and Wuyts [16] proved that if (X,L) is a topological approach

space, then (CL(X),L
∧
V ), (CL(X),L

∨
V ) and (CL(X),LV ) are topological approach

spaces.

With the following theorem we investigate the analogue fact for our new struc-
tures.

Theorem 2. Whenever L is a topological approach structure on X, L∧
Fell and LFell

are topological approach structures on CL(X).

Proof. By Proposition 2.1.2 (5) in [17] (page 93-94), it suffices to prove that θ{µ∧
B=0} ∈

L∧
Fell for all µ ∈ L and B ∈ K(X). With respect to the same theorem (i) we know

that θ{µ≤ε} ∈ L for all ε > 0. Thus (θ{µ≤ε})
∧
B ∈ L∧

Fell for all ε > 0 and B ∈ K(X).
By Proposition 2 (ii) we have (θ{µ≤ε})

∧
B = θ({µ≤ε}∩B)− . Therefore by (LR1); in or-

der to complete the proof it is sufficient to show that θ{µ∧
B=0} = supε>0 θ({µ≤ε}∩B)− .

Since the indicator function takes on only two values, we shall consider both of the
possibilities. Let A ∈ CL(X)

θ{µ∧
B=0}(A) = 0 ⇐⇒ A ∈ {µ∧

B = 0}
⇐⇒ ∀ε > 0 : ∃xε ∈ A ∩B s.t. µ(xε) ≤ ε

⇐⇒ ∀ε > 0 : A ∩B ∩ {µ ≤ ε} ≠ ∅
⇐⇒ ∀ε > 0 : A ∈ (B ∩ {µ ≤ ε})−
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⇐⇒ ∀ε > 0 : θ(B∩{µ≤ε})−(A) = 0

⇐⇒ sup
ε>0

θ(B∩{µ≤ε})−(A) = 0.

In addition

sup
ε>0

θ({µ≤ε}∩B)−(A) = ∞ ⇐⇒ ∃ε > 0 s.t. θ({µ≤ε}∩B)−(A) = ∞

⇐⇒ ∃ε > 0 s.t. A /∈ ({µ ≤ ε} ∩B)−

⇐⇒ ∃ε > 0 s.t. A ∩ ({µ ≤ ε} ∩B) = ∅
⇐⇒ ∃ε > 0 s.t. A ∩B ⊂ {µ > ε}
=⇒ ∃ε > 0 s.t. inf

x∈A∩B
µ(x) ≥ ε

=⇒ θ{µ∧
B=0}(A) = ∞.

On the other hand if θ{µ∧
B=0}(A) = ∞, then

A /∈ {µ∧
B = 0} =⇒ inf

x∈A∩B
µ(x) > 0

=⇒ ∃ε > 0 s.t. inf
x∈A∩B

µ(x) > ε

⇐⇒ ∃ε > 0 s.t. A ∩B ∩ ({µ ≤ ε}) = ∅
⇐⇒ ∃ε > 0 s.t. A /∈ ({µ ≤ ε} ∩B)−

=⇒ ∃ε > 0 s.t. θ({µ≤ε}∩B)−(A) = ∞
=⇒ sup

ε>0
θ({µ≤ε}∩B)−(A) = ∞

Hence L∧
Fell is a topological approach structure. Since L∧

Fell and L∨
V are topological

approach structures [16], one can obtain easily that LFell is a topological approach
structure . □

The facts given in the following lemma are expressed by Lowen and Wuyts in [16]
(see page 288 line 23). There L is expressed as a regular function frame and in [17]
that structure is renamed as lower regular function frame.

Lemma 2. Let L be a lower regular function frame on X then
(i) If B is a basis for L, then C := {{ρ = 0} | ρ ∈ B} is a basis for the collection of
closed subsets of τ tcL .
(ii) If S is a subbasis for L, then T := {{µ = 0} | µ ∈ S} is a subbasis for the
collection of closed subsets of τ tcL [16].

Remark 3. It was proved by Lowen and Wuyts in [16] that Top-coreflections of

L
∧
V ,L

∨
V and LV are τ+V , τ

−
V and τV , respectively. Lowen and Wuyts also showed

that if (X,L) is any approach space, Top-coreflection of L
∨
V coincides with (τ tcL )

−
V ,

whereas there is no relation between Top-coreflections of L
∧
V ,LV and (τ tcL )

+
V , (τ

tc
L )V ,

respectively on the whole of CL(X). Nevertheless, the following equalities hold only
on K(X), that is
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τ tc
L

∧
V

= (τ tcL )
+
V and τ tcLV

= (τ tcL )V .

Now we show that the Top-coreflection τ tcL∧
Fell

of the approach structure L∧
Fell is

the upper Fell topology on CL(X) and Top-coreflection τ tcLFell
of the Fell approach

structure LFell is the Fell topology on CL(X).

The following theorem is the main result of this paper.

Theorem 3. For a lower regular function frame L on X, the following properties
hold.

(i) τ tcL∧
Fell

= (τ tcL )
+
Fell ,

(ii) τ tcLFell
= (τ tcL )Fell .

Proof. (i) Since L∧Fell = {µ∧
B |µ ∈ L, B ∈ K(X)} is a subbasis for L∧

Fell, by Lemma
2 (ii) we obtain that the family

S =

{
{µ∧

B = 0} | µ ∈ L, B ∈ K(X)

}
is a subbasis for the collection FL∧

Fell
of closed subsets of (CL(X), τ tcL∧

Fell
). Moreover,

B = {K− |K ∈ K(X)}

is a basis for the collection F+
LFell

of closed subsets of (CL(X), (τ tcL )
+
Fell). It is

sufficient to prove that S ⊂ B in order to obtain FL∧
Fell

⊂ F+
LFell

. Thus let A ∈ S,
then

∃µ ∈ L,∃B ∈ K(X) s.t. A = {µ∧
B = 0}.

Therefore by Lemma 1 (i), A = {{µ = 0}∩B}− and by the lower semicontinuity of
µ, we obtain {µ = 0} ∩ B ∈ K(X) and then FL∧

Fell
⊂ F+

LFell
. On the other hand,

by the fact that K(X) ⊂ CL(X) and by (5)

A ∈ B =⇒ ∃K ∈ K(X) : A = K−

=⇒ A =

( ⋂
ρ∈J

{ρ = 0}
)−

, where J = {ρ ∈ L | ρ|K=0}.

Moreover, by Lemma 1 (ii) and since {ρ∧K = 0} ∈ S for all ρ ∈ J we obtain that
F+

LFell
⊂ FL∧

Fell
.

(ii) We know that L∧Fell
⋃
L∨ = {µ∧

B | µ ∈ L, B ∈ K(X)}
⋃
{ν∨ | ν ∈ L} is a

subbasis for LFell. By Lemma 2 (ii),

S1 =

{
{η = 0} | η ∈ L∧Fell

⋃
L∨

}
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is a subbasis for the collection FLFell
of the closed sets of (CL(X), τ tcLFell

). In
addition

S2 =

{
F+ | F ∈ CL(X)

}⋃{
K− |K ∈ K(X)

}
,

is a subbasis for the collection (FL)Fell of closed subsets of (CL(X), (τ tcL )Fell). Now
we shall prove that S1 ⊂ S2 in order to obtain that FLFell

⊂ (FL)Fell. Let A ∈ S1,
then

∃η ∈ L∧Fell
⋃
L∨ : A = {η = 0}.

Thus we have two possibilities. If η ∈ L∧Fell , then

∃µ ∈ L,∃B ∈ K(X) : A = {µ∧
B = 0}

Lemma 1 (i) provides that A ∈ S2. If η ∈ L∨, then

∃µ ∈ L ∋ A = {µ∨ = 0}

and by (7) A ∈ (FL)Fell. On the other hand when A ∈ S2 we have two posibilities.
If there exists F ∈ CL(X) s.t. A = F+, by (5) and (7) we obtain

A =

( ⋂
ρ∈L

ρ|F
=0

{ρ = 0}
)+

=
⋂
ρ∈L

ρ|F
=0

{ρ = 0}+ =
⋂
ρ∈L

ρ|F
=0

{ρ∨ = 0} ∈ (τLFell
)c.

If there exists K ∈ K(X) ⊂ CL(X) for which A = K−, then respectively (5) and
Lemma 1 (ii) provides that

A = K− =

( ⋂
ρ∈L

ρ|K
=0

{ρ = 0}
)−

=
⋂
ρ∈L

ρ|K
=0

{ρ∧K = 0} ∈ FLFell
.

Hence it follows that (FL)Fell ⊂ FLFell
. □

The following example gives rise to observe how one shall construct the members
of the subbasis of the Fell approach structure step by step. To make it more clear
we considered the topological case.

Example 1. Let LU be the induced frame on R, where U is the usual topology on
R. In this case, of course, τ tcLU

= U . Now we shall consider CL(R) with its Fell
approach structure. Here L∨ = {µ∨|µ : (R,U) → P lower semi continuous} and
L∧Fell = {µ∧

B |µ : (R,U) → P lower semi continuous and B ∈ K(R)}. If we let the
lower semi continuous mapping µ : R −→ P defined as

µ(x) =

{
x2, x > 1

1− x2, x ≤ 1 ,
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then µ∨ ∈ L∨ and µ∧
B ∈ L∧Fell . For A ∈ CL(R), µ∧

B(A) = ∞ whenever A ∩B = ∅
and if A ∩ B ̸= ∅ there exist x0 ∈ A ∩ B such that µ∧

B(A) = µ(x0). Particularly,
θA ∈ LUFell

for each A ∈ CL(R). Because if we let B = [0, 1], then by Proposition
2.1.2 (3) in [17], (θ{µ=0})

∧
B ∈ LUFell

. And one can easily see that (θ{µ=0})
∧
B = θA.

Now we construct an approach structure corresponding to the extended Fell
topology. Extended Fell topology τeFell is a topology on W = CL(X) ∪ {∅} with
subbasis {

V −|V ∈ τ
}⋃{

W+|W ∈ τ ,W c ∈ K(X)
}

where W+ is considered as the set of subsets of W which belongs to W. While
constructing the extended Fell approach space, the domains of µ∧

B and µ∨ are
assumed to be W instead of CL(X).

Proposition 4. If (X,L) is an approach space, then

L
∧

eFell = {µ∧
B | µ ∈ L, B ∈ K(X)}

is a subbasis for a lower regular function frame and the corresponding frame is

L
∧
eFell =

{
sup
j∈J

inf
µ∈Lj

B∈Kj

µ∧
B | J ̸= ∅,Lj ⊂ L,Kj ⊂ K(X),Lj and Kj are finite

}
.

Proof. The proof goes along the same lines in Proposition 3. □

Theorem 4. The collection L
∨
∪L

∧
eFell is a subbasis for a lower regular function

frame. The corresponding lower regular function frame is

LeFell =

{
sup
j∈J

(
inf

µ∈Lj

B∈Kj

µ∧
B

∧
inf

µ∈Ltj

µ∨) | Lj ,Ltj ⊂ L,Kj ⊂ K(X),

Lj ,Ltj and Kj are finite

}
Proof. The proof goes along the same lines in Theorem 1. □

The approach structures L
∧
eFell and LeFell are called extended Fell

∧
-approach

structure and extended Fell approach structure, respectively. In the following
result we give the fact that the Top-coreflection of extended Fell approach structure
is the extended Fell topology on W.

Theorem 5. For a lower regular function frame L on X, the following properties
hold

(i) τ tcL∧
eFell

= (τ tcL )
+
eFell ,

(ii) τ tcLeFell
= (τ tcL )eFell .

Proof. The proof goes along the same lines in Theorem 3. □
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In [16] the measure of compactness of an approach space (X,L) is given as

χc(X) = sup
F∈F (X)

inf
x∈X

sup
F∈F

sup
ρ∈L
ρ|F =0

ρ(A)

where F (X) is the set of all filters on X. If an approach space has an index of
compactness equal to zero, then in [10] it is said to be 0-compact. Lowen and
Wuyts [16] proved that the index of compactness of X can be reformulated in terms
of FS-sets; that is a subset B of L such that infµ∈C µ = 0 for each finite subcollection
C of B. For a subbasis B of L, if an FS-set is contained in B we say it is an FS-set
in B. The set of all FS-sets in B is denoted by Bs(B) and the following equality
holds.

χc(X) = sup
I∈Bs(B)

inf
x∈X

∨
I(x)

Here, for clarity we shall write χc(XL) instead of χc(X). In the following theorem
we show that extended Fell ∧-approach space is 0-compact and then it gives a result
which mentions that the compactness index of (W,LeFell) is zero.

Theorem 6. χc(CL(XL∧
Fell

)) = 0 for any approach space (X,L).

Proof. Consider the subbasis L
∧

Fell for L
∧
Fell. We shall prove that

∀I ∈ Bs(L
∧

Fell) : inf
A∈CL(X)

∨
I(A) = 0

Let I ∈ Bs(L
∧

Fell), i.e I is an FS-set in L∧
Fell, then for {µ∧

K} ∈ 2(I) where µ ∈
L and K ∈ K(X) we obtain that

inf
A∈CL(X)

µ∧
K(A) = 0

Clearly for all A ∈ CL(X), A ∩K ⊂ X and so µ∧
K(X) ≤ µ∧

K(A). Then

µ∧
K(X) ≤ inf

A∈CL(X)
µ∧
K(A)

Therefore µ∧
K(X) = 0. Since K ∈ K(X) is arbitrary it follows that∨

I(X) = sup
µ∧
B∈I

µ∧
B(X) = 0.

Consequently infA∈CL(X)

∨
I(A) = 0. □

Corollary 1. χc(WLeFell
) = 0 for any approach space (X,L).

Proof. The compactness of (W, τeFell) is given in [4] and we know that an approach
space with a compact topological coreflection is 0-compact [17]. By these two facts,
Theorem 5 provides that the compactness index of the extended Fell approach space
is zero. □
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Proposition 5. For a lower regular function frame L on X, the following proper-
ties hold.

(i) If ρ ∈ LeFell s.t. ρ|D = 0 whenever D ⊂ CL(X), then ρ|CL(X)
∈ LFell and

(ρ|CL(X)
)|D = 0,

(ii) If ν ∈ AeFell(B), then ν|CL(X)
∈ AFell(B) for an arbitrary B ∈ CL(X).

Proof. (i) If ρ ∈ LeFell s.t. ρ|D = 0, then by the definition of LFell and the facts

about restriction of a function, clearly ρ|CL(X)
∈ LFell and (ρ|CL(X)

)|D = 0.

(ii) By (2) and (3) it is clear that

AeFell(B) =

{
ϕ ∈ PW | ∀D ⊂ W : inf

D∈D
ϕ(D) ≤ sup

ρ∈LeFell
ρ|D=0

ρ(B)

}
.

If ν ∈ AeFell(B), then

∀D ⊂ W : inf
D∈D

ν(D) ≤ sup
ρ∈LeFell
ρ|D=0

ρ(B). (8)

Thus (8) is also true for an arbitrary subfamily D of CL(X). In addition, for all
D ∈ D ⊂ CL(X), it is obvious that ν|CL(X)

(D) = ν(D). Therefore

inf
D∈D

ν|CL(X)
(D) = inf

D∈D
ν(D) ≤ sup

ρ∈LeFell
ρ|D=0

ρ(B).

To complete the proof we shall prove that

sup
ρ∈LeFell
ρ|D=0

ρ(B) ≤ sup
µ∈LFell
µ|D

=0

µ(B).

For an arbitrary α > 0 suppose that

∀µ ∈ LFell s.t. µ|D = 0 : µ(B) < α (9)

If ρ ∈ LeFell s.t. ρ|D = 0, then by (i) it is clear that ρ|CL(X)
∈ LFell and

(ρ|CL(X)
)|D = 0. Thus by (9) supρ∈LeFell

ρ|D
=0

ρ(B) ≤ α which completes the proof. □

An approach space (X,L) is said to be LC1 iff its Top-coreflection is locally
compact [13]. By using Corollary 5.1.4 in [4], we obtain the following result as an
analogue of the same Corollary by means of approach theory.

Theorem 7. If (X,L) is a LC1-Hausdorff approach space, then (W,LeFell) is a 0-
compact Hausdorff approach space and (CL(X),LFell) is a LC1 Hausdorff approach
space.
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Proof. It was first observed in [5] that (W, τeFell) is a Hausdorff topological space.
In Theorem 5 we proved that the Top-coreflection of (W,LeFell) is (W, τeFell).
Then by these two facts and Corollary 1 it is clear that (W,LeFell) is a 0-compact
Hausdorff space. Since (X,L) is LC1, we know that (X, τ tcL ) is locally compact.
Then (CL(X), (τ tcL )Fell) is locally compact by Corollary 5.1.4 in [4]. Consequently
(CL(X),LFell) is LC1 by Theorem 3 (ii) and definition of the property LC1, respec-
tively. Then the proof is completed since (X, τ tcL ) is locally compact. Because, in [3],
it is said that being locally compact provides that (W, τeFell) is Hausdorff and so the
subhyperspace (CL(X), τFell) is. Thus by Theorem 3 clearly (CL(X),LFell) is a
Hausdorff approach space. In addition it can be easily seen by Proposition 1, when-
ever (W,LeFell) is assumed to be a Hausdorff approach space. Let A,B ∈ CL(X)
and A ̸= B, then

∃ρ, µ ∈ LeFell ∋ ρ(A) > 0, ρ(B) = 0 and µ(A) = 0, µ(B) > 0.

By Proposition 5 (i), we know that ρ|CL(X)
, µ|CL(X)

∈ LFell. Therefore by the fact

that, ρ|CL(X)
(A) = ρ(A) and µ|CL(X)

(A) = µ(A) for each A ∈ CL(X), we obtain

ρ|CL(X)
(A) > 0, ρ|CL(X)

(B) = 0 and µ|CL(X)
(A) = 0, µ|CL(X)

(B) > 0.

Hence (CL(X),LFell) is a Hausdorff approach space. □
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DEVELOPABLE NORMAL SURFACE PENCIL

Mustafa DEDE

Department of Mathematics, Kilis 7 Aralık University, 79000 Kilis, TÜRKİYE

Abstract. In this paper, we introduce a new class of surfaces, called as normal

surface pencil. We parameterize a normal surface pencil by using the principal
normal vector n and the binormal vector b of the Frenet frame of a space

curve α(s) as follows φ(s, t) = α(s)+y(s, t)n+z(s, t)b. A well known example
of normal surface pencil is a canal surface. Finally, we propose the sufficient

conditions of a normal surface pencil being a developable surface. Then several

new examples of developable normal surface pencil are constructed from these
conditions.

1. Introduction

Let φ = φ(u, v) be a local parametrization of a surface parameterized by

φ(u, v) = (x(u, v), y(u, v), z(u, v)).

A well known Gauss curvature K of a surface is given by

K =
LN −M2

EG− F 2
, (1)

where E,F,G and L,M,N are the coefficients of the first and the second funda-
mental forms of a surface, respectively [11].

An important topic in differential geometry is the study of curvature conditions
of a surface [12, 13]. For instance, the surfaces with constant Gauss curvature
are investigated in many papers [8]. Recently, Lopez and Moruz investigated the
constant Gauss curvature of translation and homothetical surfaces [14]. A special
case of constant Gauss curvature surface is flat ones. A surface with vanishing
Gaussian curvature is called a flat surface (K = 0) [9, 18]. The geometric meaning
of a flat surface is that if we flattened a developable surface (flat ruled surface) into
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a planar figure (with no distortion), any geodesic on it will be mapped to a straight
line in the planar figure [4].

Let α(t) be a regular space curve [10], then the Frenet frame is defined as follows

t =
α′

∥α′∥
,b =

α′ ∧ α′′

∥α′ ∧ α′′∥
,n = b ∧ t.

The well-known Frenet formulas are given by t′

n′

b′

 = ∥α′(t)∥

 0 κ 0
−κ 0 τ
0 −τ 0

 t
n
b

 ,

where the curvature κ and the torsion τ of the curve are given by

κ =
∥α′ ∧ α′′∥
∥α′∥3

, τ =
det(α′, α′′, α′′′)

∥α′ ∧ α′′∥2
.

Let us consider the Frenet frame {t,n,b} along a unit speed space curve α(s). By
using the Frenet frame, we can define lots of special class of surfaces. For instance,
we define the ruled surfaces F (s, u) = α(s) + un(s) or F (s, u) = α(s) + ub(s)
which are called the principal normal surface or principal binormal surface of the
curve α(s), respectively [15]. The other example is that a canal surface is defined
by F (s, u) = α(s) + r(s) cos(u)n + r(s) sin(u)b where r(s) is radii function [3].
Moreover a pipe surface (tube) is a canal surface with a constant radii [2].

Theorem 1. The principal normal or principal binormal surfaces are flat (devel-
opable) if and only if the corresponding curve is a planar [1].

Theorem 2. The regular canal surface is developable if and only if the canal surface
is a cylinder or cone. That is, the curvature κ(s) = 0; the spine curve is a line and
radii function r(s) is a constant or linear function of s [3].

A surface pencil can be parameterized by using the Frenet frame as follows

φ(s, t) = α(s) + u(s, t)t(s) + v(s, t)n(s) + w(s, t)b(s),

where u(s, t),v(s, t) and w(s, t) are functions of s and t [4, 6]. Wang et al. used
the surface pencil to answer the problem ”assume we are given a space curve, how
to characterize those surfaces that possess this curve as a common geodesic”. The
generalized solution of this problem is studied in [5]. The study of surface pen-
cil has been extended Minkowski and Galilean spaces [7, 17]. Recently, Zhao and
Wang derived the necessary and sufficient conditions to construct a developable
surface through a given curve [16]. However they studied this problem with some
constraints such as the curve is isoparametric on surface. In this paper we have
studied this problem without any constraints. Moreover we derived possible pa-
rameterizations of flat normal surface pencil. Surprisingly we obtained new class of
space curve which we call it the helical extension of a space curve. In [20] we give
the characterization of this class of curve.
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Rotation Minimizing Frame(RMF) or sometimes called as Bishop frame which is
well defined even when the curve has vanishing second derivative in 3-dimensional
Euclidean space [21]. Because Bishop frame is formed with the tangent vector and
any convenient arbitrary basis for the remainder of the frame [22,23].

2. Flat Normal Surface Pencils

In this section, we introduce the normal surface pencil to generalize two special
classes of surfaces, namely, the principal normal surfaces and the canal surfaces.
Then we derive the necessary and sufficient conditions for a normal surface pencil
to be flat.

Definition 1. Let α(s) be a unit speed space curve with the Frenet frame {t,n,b},
then a normal surface pencil is parameterized by

φ(s, t) = α(s) + y(s, t)n(s) + z(s, t)b(s), (2)

where y(s, t) and z(s, t) are functions of s and t. For simplicity, we take the
functions y(s, t) and z(s, t) that can be decomposed into two factors that allows us
instead of solving partial differential equations we deal with ordinary differential
equations

y(s, t) = y(s)w(t), z(s, t) = z(s)l(t).

Here y(s), w(t), z(s) and l(t) are all functions of s and t. Then a normal surface
pencil is parameterized by

φ(s, t) = α(s) + y(s)w(t)n+ z(s)l(t)b. (3)

Now, we can give the following theorems for classification of flat normal surface
pencil.

Theorem 3. Let α(s) be a unit speed space curve (τ ̸= 0, κ ̸= 0). A normal surface
pencil is flat, if and only if it is either

(1) a surface parameterized by φ(s, t) = α(s) +
1

κ(s)
n+ z(s)l(t)b,

(2) a surface parameterized by φ(s, t) = α(s) + y(s)w(t)n−
∫ τ

κ
dsb,

(3) a surface parameterized by φ(s, t) = α(s)+z(s)(tan
∫
τ+c11)l(t)n+z(s)l(t)b.

If the curve α(s) is a unit speed plane curve (τ = 0). Then a normal surface
pencil is flat, if and only if it is either

(1) a surface parameterized by φ(s, t) = α(s) + y(s)c2n+ z(s)l(t)b

(2) a surface parameterized by φ(s, t) = α(s) + y(s)w(t)n+ c7c8b

If the curve α(s) is a unit speed line (κ = τ = 0). We use Rotation Minimizing
Frame basis (e1 and e2), then a normal surface pencil is flat, if and only if it is
either
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(1) a surface parameterized by φ(s, t) = α(s) + c3(c4s + c5)w(t)e1 + (c4s +
c5)l(t)e2.

(2) a surface parameterized by φ(s, t) = α(s) + y(s)w(t)e1 + z(s)c6e2.

where ci(i = 1..11) ∈ R.

The rest of the section is devoted to the proof of the above theorem.

Proof. From (1) and (3), it is easy to see that a surface is flat if and only if it
satisfies the following equation:

⟨φs ∧ φt, φss⟩ ⟨φs ∧ φt, φtt⟩ − ⟨φs ∧ φt, φst⟩
2
= 0. (4)

By using the well known Frenet formulas, we obtain the partial derivatives of
the normal surface pencil as follows

φs = (1−κ(s)y(s)w(t))t+(ys(s)w(t)−τ(s)z(s)l(t))n+ (τ(s)y(s)w(t)+zs(s)l(t))b.
(5)

and
φt = y(s)wt(t)n+ z(t)lt(t)b. (6)

where φs and φt denote the partial derivatives of the surface with respect to s and
t.

It follows that the cross product of φs and φt is obtained as

φs ∧φt = ((ysw− τzl)zlt−(τyw+ zsl)ywt)t− (1−κyw)zltn+(1−κyw)ywtb. (7)

Combining the equations (4), (5), (6) and (7) and higher order partial derivatives
of normal surface pencil, we have a non-linear partial differential equation (PDE)
in the following form

τ2z4(−y2w2κ2 + 2wκy − 1)l4t + (...)l3twt + ...+ (...)lt−
y4(z2sc

2κ2 + τ2 + 2zscκτ)w
4
t + (...)w3

t lt + ...+ (...)wt = 0.
(8)

We can rearrange the equation (8) as follows

4∑
i=1

Ai(s, t)l
i
t(t) +Bi(s, t)w

i
t(t) +

3∑
i=1

Ci(s, t)l
i
t(t)w

4−i
t (t) = 0, (9)

where upper ”i” indicates the degree of function and the coefficients Ai(s, t) Bi(s, t)
(i = 1..4) and Ci(s, t) (i = 1..3) are smooth functions on s and t.

We will solve the equation (9) whether the set of functions {l, w} is linearly
independent or linearly dependent.

• If l and w functions are not linearly dependent. Then a normal surface
pencil is flat if the coefficients Ai(s, t), Bi(s, t) and Ci(s, t) vanishes.

From (8) and (9) the coefficient A4(s, t) of l
4
t (t) can be computed as follows

A4 = −τ2z4(ywκ− 1)2. (10)

It follows that the coefficient A4(s, t) vanishes if and only if ywκ− 1 = 0, τ(s) =
0, z(s) = 0 or lt = 0, respectively.
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Now, we discuss these four cases:
Case 1) If ywκ− 1 = 0 then we have

y(s)w(t) =
1

κ(s)
. (11)

Thus, observe that w(t) is a constant function.
Combining (11) with (9) we obtain that all the coefficients Ai, Bi and Ci in

(9) vanishes. Therefore, substituting (11) into (3) allow us to parameterize a flat
normal surface pencil as follows

φ(s, t) = α(s) +
1

κ(s)
n+ z(s)l(t)b. (12)

Conversely, a simply calculation implies that the Gauss curvature of the surface
is zero.

Now, let us construct an example belonging to case 1.

Example 1. Let us consider a space curve parameterized by

α(s) = (cos(s), sin(s), s).

It is easy to see that the curvature κ = 1/2. Hence, from (11) we have y(s)w(t) =
2. Then a flat normal surface pencil is illustrated in Figure 1, in which z(s)l(t) =
t cosh(t), if we set z(s)l(t) = t cos(s), we obtain another member of flat normal
surface pencil shown in Figure 1.

Case 2) If lt(t) = 0(l(t) = c1, c1 ∈ R) in equation (10), then we have the
coefficient B4(s, t) of w

4
t (t) as follows

B4 = −y4(z2sc
2
1κ

2 + τ2 + 2zsc1κτ).

It follows that for y(s) ̸= 0, wt(t) ̸= 0 (in these cases it is not a surface) the
coefficient B4(s, t) vanishes if and only if the following equation is satisfied:

z2sc
2
1κ

2 + 2zsc1κτ + τ2 = 0.

The solution of the above differential equation can be obtained as

z(s) = −
∫

τ(s)

c1κ(s)
ds. (13)

It follows that substituting l(t) = c1 and (13) into (9) gives a flat normal surface
pencil parameterized by

φ(s, t) = α(s) + y(s)w(t)n−
∫

τ

κ
dsb.

Note that if the curve α(s) is an arbitrary speed curve, then one calculates the
function z(s) as follows

z(s) = −
∫

τ

c1κ
∥α′∥ ds. (14)

Now, let us construct an example about case 2.
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(a) A member of flat normal surface pencil,

with zl = tcosh(t).

(b) A member of flat normal sur-

face pencil, with zl = tcos(s).

Figure 1. Flat normal surface pencil.

Example 2. Assume that a space curve is given by

α(s) = (
3s2 − 1

3s2 + 3
,
s(s2 − 3)

3s2 + 3
,
2
√
2
√
s2 + 1

3
).

When c1 = 1, from (14) we have

z(s) = −1

2
s2.

In addition, if we set y(s)w(t) = 5 cos(t) sin(t) or y(s)w(t) = st then the flat
normal surface pencils are illustrated in Figure 2.

Case 3) If the curve α(s) is a plane curve (τ = 0) in equation (10) then the
coefficient B4(s, t) of w

4
t (t) is calculated as

B4 = −y4z2s l
2κ2. (15)

Now, we distinguish the following five cases:
Subcase 3.1) If wt(t) = 0(w(t) = c2, c2 ∈ R) in equation (15) then the Gauss

curvature vanishes (K = 0), which implies that the normal surface pencil is a flat
surface parameterized by

φ(s, t) = α(s) + y(s)c2n+ z(s)l(t)b.
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(a) A member of flat normal surface pencil,

with yw = 5cos(t)sin(t).

(b) A member of flat normal surface pencil,

with yw = st.

Figure 2. Flat normal surface pencil.

Now, lets construct an example about subcase 3.1.

Example 3. Assume that a plane curve is given by

α(s) = (cos(s), sin(s), 0).

A straightforward computation shows that τ = 0, therefore for w(t) = 3, we can
set l(t) = cos(t), y(s) = 2s/3 and z(s) = cosh(s/5) or l(t) = cos(t), y(s) = cos(s)
and z(s) = cos(5s) to construct members of flat normal surface pencil, shown in
Figure 3.

Subcase 3.2) If y(s) = 0 in equation (15) then the Gauss curvature vanishes,
thus a flat normal surface pencil is parameterized by

φ(s, t) = α(s) + z(s)l(t)b.

It is easy to see that if we set z(s) = 1 and l(t) = t in the above equation,
then we have a principal binormal surface, therefore the above result coincides with
Theorem 1.

Subcase 3.3) If l(t) = 0 in equation (15), then we have K = 0, thus a flat
normal surface pencil is parameterized by

φ(s, t) = α(s) + y(s)w(t)n.
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(a) A member of flat normal surface pencil,

with l = cos(t), y = 2s/3 and z = cosh(s/5).

(b) A member of normal flat surface pencil,

with l = cos(t), y = cos(s) and z = cos(5s).

Figure 3. Flat normal surface pencil.

Note that when we set y(s) = 1 and w(t) = t in the above equation, then we
have a principal normal surface, therefore the above result coincides with Theorem
1.

Subcase 3.4) If the curve is a line (κ(s) = 0) then the coefficient C2(s, t) of
l2t (t)w

2
t (t) is calculated as

C2 = 2yszyzs − z2y2s − y2z2s .

The condition wt = 0 is investigated in subcase 3.1. Therefore, two subcases
must be considered.

Subsubcase 3.4.1) If 2yszyzs − z2y2s − y2z2s = 0 then we have

y(s) = c3z(s).

where c3 ∈ R.
With these conditions (9) becomes

c23z
3zss(ltw − wtl)(lttwt − ltwtt) = 0.

It is easy to see that z(s) = 0 and l = kw,k ∈ R contradiction. therefore, there
is just one subcase:

If zss(s) = 0(z(s) = c4s+ c5) c4, c5 ∈ R, then the normal surface pencil is a flat
surface parameterized by

φ(s, t) = α(s) + c3(c4s+ c5)w(t)e1 + (c4s+ c5)l(t)e2. (16)
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Observe that if we set c3 = 1, w(t) = cos(t) and l(t) = sin(t) in the equation
(16), then the surface is a flat canal surface, therefore this result coincides with the
Theorem 2. Now, let us construct an example about this case.

Example 4. Assume that a line is given by

α(s) = (s, 3, 0).

In this case the Frenet frame is undefined, thus we can choose an arbitrary basis
such as n = (0, 1, 0) and b = (0, 0, 1). For c3 = 3, c5 = 0 and c4 = 1 in (16), if we
set w(t) = cos(t/3) sin(t/3) and l(t) = t or w(t) = cosh(t/3)/3 and l(t) = sinh(t/5)
then the flat normal surface pencils are illustrated in Figure 4.

(a) A member of flat normal surface pencil,
with w = sin(t) cos(t) and l = t.

(b) A member of flat normal surface pencil,
with w = t− 5 and l = t3.

Figure 4. Flat normal surface pencil.
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Subsubcase 3.4.2) If lt(t) = 0(l(t) = c6, c6 ∈ R) then the normal surface pencil
is a flat surface parameterized by

φ(s, t) = α(s) + y(s)w(t)e1 + z(s)c6e2.

Subcase 3.5) If zs(s) = 0(z(s) = c7) in equation (15) then the coefficient
C2(s, t) of l

2
t (t)w

2
t (t) is obtained as

C2 = −y2sz
2.

Since the case wt(t) = 0 is investigated in subcase 3.1, there are three cases:
Subsubcase 3.5.1) If z(s) = 0 or lt(t) = 0(l(t) = c8) then the normal surface

pencil is a flat surface parameterized by

φ(s, t) = α(s) + y(s)w(t)n.

and

φ(s, t) = α(s) + y(s)w(t)n+ c7c8b,

respectively.
Subsubcase 3.5.2) If ys(s) = 0(y(s) = c9), then the equation (9) becomes

−ltyκz
2(ywκ− 1)3(lttwt − ltwtt) = 0.

Since we investigated all the cases, we omit all of these cases.
Case 4) If z(s) = 0 in equation (10) then we have the coefficient B4(s, t) of

w4
t (t) as follows

B4 = −y4τ2.

For y(s) ̸= 0 and wt(t) ̸= 0 (in these cases it is not a surface) when τ = 0 this
case is investigated in subsubcase 3.5.1.

• If l and w are linearly dependent. Then we have w = c10l and the equation
(9) becomes

−(c10(−ysz + yzs) + τc210y
2 + τz2)2l4t = 0

where c10 ∈ R. The solution of the above differential equation can be
obtained as

y = z
tan

∫
τ + c11
c10

where c11 is a integration constant. The equation (3) is written as

φ(s, t) = α(s) + z(s)(tan

∫
τ + c11)l(t)n+ z(s)l(t)b.

Note that if the curve α(s) is an arbitrary speed curve, then one calculates the
function y(s) as follows

y = z
tan

∫
τ ∥α′∥+ c11
c10

. (17)
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Example 5. Let us consider a space curve parameterized by

α(s) = (2s, s2,
s3

3
).

It is easy to see that the curvature and torsion are

κ =
2

(s2 + 2)2
= τ

For z(s) = cosh(s), w(t) = 6t and l(t) = t, by using (17) we have

y =
cosh(s) tan(

√
2 arctan( s

√
2

2 ))

6

Moreover if we set z(s) = (s), w(t) = 6t and l(t) = t, then we obtain another
member of flat normal surface pencil shown in Figure 5.

(a) A member of flat normal surface pencil,
with zl = tcosh(s) and w = 6t.

(b) A member of flat normal sur-
face pencil, with zl = tcos(s) and

w = 6t.

Figure 5. Flat normal surface pencil.

□

3. Conclusion

The surface pencil and flat surfaces are both important subjects in computer
aided design (CAD), and in this paper we describe somewhat novel analysis on
special cases of flat normal surface pencils. We recommend this new approach for
the following reasons:
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• We can construct lots of flat normal surface pencil by using this method.
• The designer can select different sets of functions y(s), w(t), z(s) and l(t)
to adjust the shape of the surface.

• We have studied this problem without any constraints such as curves that
have isoparametric properties.

Declaration of Competing Interests The author declare that he has no com-
peting interest.
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Abstract. In the present paper, we introduce a two-order nonlinear fractional

sequential Langevin equation using the derivatives of Atangana-Baleanu and
Caputo-Fabrizio. The existence of solutions is proven using a fixed point theo-

rem under a weak topology, and an illustrative example is then given. Further-
more, we present new fractional versions of the Adams-Bashforth three-step

approach for the Atangana-Baleanu and Caputo derivatives. New nonlinear

chaotic dynamics are performed by numerical simulations.

1. Introduction

Fractional calculus has several applications in biology, mechanics, physics, vis-
coelasticity, electromagnetic waves, fractional Brownian motions, image processing,
and engineering. Numerous books and essays in the literature cover a wide spec-
trum of fractional calculus problems, see [2, 22,33].
Unfortunately, the fundamental prestigious Caputo and Riemann-Liouville features
have such a critical flaw, even though their kernel is non-local, it remains singu-
lar. This issue has an impact on the modeling of real-world problems. To address
the aforementioned obstacles, Caputo and Fabrizio proposed a new differential op-
erator with non-singular kernel, see for instance the papers [12, 13, 21]. On the
other, some researchers have used these derivatives to handle specific challenges,
see [3, 5, 21]. Regrettably, various concerns have been raised in opposition to this
novel approach, leading them to conclude that this operator cannot be a derivative
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of fractional order but can be viewed as a regulatory parameter, see [35]. For these
reasons, based on the Mittag Leffler function, Atangana and Baleanu devised a new
fractional operator, see [4, 26].

Nowadays, the most common differential equations observed in engineering and
applied research are of second order. They take the form of ẍ = f (t, x, ẋ).
Among the important examples of second-order equations is the Newton equation:
mẍ = f(x), the RLC circuit equation in electrical engineering: LCẍ + RC ẋ+ x =
v (t), as well as the forced harmonic oscillator: mẍ + bẋ+ kx = f (t).
The ultimate focus of this paper is to thoroughly explore certain sophisticated
fractional differential equations, which can typically produce chaotic behavior such
as the Langevin equation. The relevance of the nonlinear Langevin problem arises
from its implementation as a model of anomalous systems. Indeed, it is well known
that in many cases, the Langevin equation is the most convenient way to measure
time changes in Brownian motion velocity, see [11,18,19,23,32,34].
In this contribution, we study the existence of solutions for the nonlinear Langevin
equation using a fixed point theorem under a weak topology, see [9, 20, 21]. The
considered problem involves, in particular, two fractional orders with non-local
multi-point boundary conditions. For more information, see [1, 8, 15,17,31].
So let us consider the following problem:

Dα
(
Dβ − λ(t)

)
y(t) = f

(
t, y(t), Dβy(t)

)
, t ∈ [0, T ], 0 < α, β ≤ 1, (1)

with its conditions:

y(0) = 0, Dβy(0) =

r∑
i=0

δiJ
γy(ξi),

0 < β ≤ 1, γ > 0, r ∈ N∗, ξi ∈ [0, T ],

(2)

where Dα and Dβ are fractional differential operators of order 0 < α, β ≤ 1, Jγ is
the Rieman Liouville fractional integral operator of order γ > 0 and λ : [0, T ] → R
is a given continuous function. Two different approaches are used: the first one is
of Caputo-Fabrizio and the second one is of Atangana Baleanu.
Then, inspired by [7, 25, 27, 28], we propose new three-step Adams-Bashforth frac-
tional methods for Caputo and Atangana Baleanu fractional derivatives. Finally,
we apply the three-step Adams-Bashforth fractional methods to obtain new non-
linear chaotic dynamics.

The remaining part of the paper is organized into sections. Section 2 provides
an overview of some of the fundamental concepts of fractional differentiation and
fixed-point theory. In Section 3, we assert the existence of at least one solution
to the problem as an outcome of the study. Section 4 discusses the numerical
approximation method for fractional derivatives. Section 5 investigates numerical
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experiments with chaotic fractional differential equations to illustrate the utility of
the proposed technique. Finally, we conclude with Section 6.

2. Preliminaries

The following section introduces some fractional calculus notions and concepts,
see [4, 9, 13,20,23] .

Definition 1. The Riemann-Liouville fractional integral operator of order α ≥ 0,
for a continuous function f on [a, b] is defined as

Jα
a f(t) =

1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, α > 0, a < t ≤ b,

where Γ(α) :=
∫∞
0
e−ssα−1ds.

Definition 2. The Liouville-Caputo fractional derivative of order α ∈ (0, 1), for a
differentiable function f , is defined by

CDαf(t) =
1

Γ(1− α)

∫ t

0

f ′(s)
1

(t− s)α
ds.

Definition 3. The Laplace transform for the Liouville-Caputo fractional derivative
of order α is:

L [Dαf(t)] (s) = sαL{f(t)}(s)− sα−1{f(0)}.

Definition 4 ( [13]). The Caputo-Fabrizio derivative of order α ∈]0, 1[, for T >
0, f ∈ H1(0, T ), is given by

CFDαf(t) =
1

2

M(α)(2− α)

1− α

∫ t

0

f ′(s) exp
[−α(t− s)

1− α

]
ds,

where M(α) is a normalizing function depending on α such that M(0) =M(1) = 1.

Definition 5 ( [13]). The Laplace transform for Caputo-Fabrizio derivative is de-
fined as

L
{
CFDαf(t)

}
(s) =

1

2

M(α)(2− α)

1− α

s L{f(t)}(s)− f(0)

s+ α
1−α

.

Definition 6 ( [23]). The Caputo Fabrizio integral operator of order α is given in
the following way:

CFJαf(t) =
2(1− α)

M(α)(2− α)
f(t) +

2α

M(α)(2− α)

∫ t

0

f(s)ds.

Definition 7 ( [4]). The Atangana Baleanu fractional derivative in Caputo sense,
for T > 0, f ∈ H1[0, T ], α ∈]0, 1[, is given as:

ABCDαf(t) =
B(α)

1− α

∫ t

0

f ′(s)Eα

[
−α (t− s)α

1− α

]
ds.
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The Atangana Baleanu fractional derivative in Riemann-Liouville sense is given
as:

ABRDα
t f(t) =

B(α)

1− α

d

dt

∫ t

a

f(s)Eα

[
−α (t− s)α

1− α

]
ds,

where Eα is Mittag-Leffler function, given by

Eα(u) =

∞∑
k=0

uk

Γ(αk + 1)
, α > 0, α ∈ R, u ∈ R,

where B(α) has the same properties as M(α) in Caputo-Fabrizio case.

Definition 8 ( [4]). The fractional integral associated to the Atangana-Baleanu
fractional derivative is defined as:

ABJαf(t) =
1− α

B(α)
f(t) +

α

B(α)Γ(α)

∫ t

a

f(y)(t− s)α−1ds.

Definition 9. The Laplace transform of Atangana-Baleanu fractional derivative in
Caputo sense, is defined by:

L
{
ABCDαf(t)

}
(s) =

B(α)

1− α

sαL{f(t)}(s)− sα−1f(0)

sα + α
1−α

.

Definition 10 ( [4]). The Laplace transform of Atangana-Baleanu fractional de-
rivative in Riemann-Liouville sense is given as:

L
{
ABRDαf(t)

}
(s) =

B(α)

1− α

sαL{f(t)}(s)
sα + α

1−α

.

Definition 11. Let E and F be two Banach spaces. The operator f : E → F is
weakly sequentially continuous if, for each sequence (yn)n with yn → y, we have
fyn → fy.

Definition 12. Let E be a Banach space with a norm ∥ · ∥E. A mapping
Ψ : E −→ E is called D-Lipschitz, if there exists a continuous nondecreasing
function W : R+ −→ R+satisfying

∥Ψx−Ψy∥E ≤ W(∥x− y∥∞),

for all x, y ∈ E with W(0) = 0. The function W is called a D-function of Ψ on
E. Particularly, once W(r) = kr for a given k > 0 is a Lipschitz mapping with
a Lipschitzian constant k. In addition, if k < 1 is a contraction on E with a
contraction constant k.

Remark 1. Any Lipitzian correspondence is automatically D-Lipschitz, but the
reverse may not be true. If W is not necessarily increasing and satisfies W(r) < r
for r > 0, then Ψ is called a nonlinear contraction on E.

Remark 2. Note that any weakly sequentially continuous nonlinear contraction is
ω-condensing.
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Corollary 1. Let Ω be a nonempty, convex, and closed set in a Banach space E.
Assume that Ψ : Ω −→ Ω is a weakly sequentially continuous and condensing map
in Ω. If Ψ(Ω) is bounded, then, Ψ has at least a fixed point.

Corollary 2. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach
space E. Assume that Φ : Ω −→ Ω is weakly sequentially continuous. If Φ(Ω) is
relatively weakly compact, then Φ has at least a fixed point in Ω.

Theorem 1 ( [9]). Let Ω be a nonempty, bounded, closed, and convex subset of
a Banach space E. Suppose that Φ : Ω −→ E and Ψ : E −→ E are two weakly
sequentially continuous mappings such that:

(i) Φ is weakly compact,
(ii) Ψ is a nonlinear contraction,
(iii) (y = Ψx+Φy, x ∈ Ω) =⇒ y ∈ Ω.

Then, there exists y ∈ Ω such that y = Ψy +Φy.

Theorem 2 (Eberlein-Smulian). Let B be a weakly closed subset of the Banach
space E. Then the following assertions are equivalent:

* B is weakly compact.
* B is weakly sequentially compact.

Lemma 1. Let T > 0, f ∈ H1(0, T ), α ∈]0, 1[. Then the solution of the problem
(1)-(2), for Atangana Baleanu fractional derivative in Caputo sense, is

y(t) =A1


∫ t

0

(
(t− u)β+α−1

Γ(β + α)
+

(1− α)(t− u)β−1

αΓ(β)
+

(1− β)(t− u)α−1

βΓ(α)

)
f(u)du

+
(1− β)(1− α)f(t)

βα


+ B1

[∫ t

0

(t− u)

Γ(B)

β−1

λ(u)y(u)du+ λ(0)

(
1− β

β
+

tβ

Γ(β + 1)

) r∑
i=0

δiJ
γy(ξi)

]
.

(3)

Lemma 2. Let T > 0, f ∈ H1(0, T ), α ∈]0, 1[. Then the solution of (1)-(2), for
the case of Caputo Fabrizio derivative, is

y(t) =A2


∫ t

0

(
(t− u) +

(1− α)

α
+

(1− β)

β

)
Fy(u)du

+
(1− β)(1− α)Fy(t)

βα


+ B2

[∫ t

0

λ(u)y(u)du+ λ(0)

(
1− β

β
+ t

) r∑
i=0

δiJ
γy(ξi)

]
.

(4)

Proof of Lemmas 1 and 2 : For computational purposes, we include the following
quantity:

g(t) := Dβy(t)− λ(t)y(t),
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A1 :=
βα

B(α)
(
B(β)− λ(t)(1− β)

) ,
B1 :=

β

B(β)− λ(t) + β
,

A2 :=
βα

4M(α)
(
α− 2

)(
M(β)(β − 2)− 2λ(t)(1− β)

) ,
B2 :=

β

−2 M(β)(β − 2)− 2λ(t)(1− β)
.

(Proof of Lemma 1) From the property of Laplace transform, we have

L{Dαg(t)} (s) =
B(α)
1−α s

α

sα + α
1−α

L(g(t))(s) +
B(α)
1−α s

α−1

sα + α
1−α

g(0) = L{f(t)} ,

thus,

L{g(t)} (s) =
sα + α

1−α

B(α)
1−α s

α
L{f(t)} (s) + g(0)

s
.

Then, we have

L
{
Dβy(t)

}
(s) =

sα + α
1−α

B(α)
1−α s

α
L(f(t))(s) + g(0)

s
+ L(λ(t)y(t))(s) + y(0)

s
.

Hence, it yields that

L{y(t)} (s) =

(
sα + α

1−α

)(
sβ + β

1−β

)
B(α)
1−α

B(β)
1−β s

α+β
L(f(t))(s) +

(
sβ + β

1−β

)
g(0)

B(β)
1−β s

β+1

+

(
sβ + β

1−β

)
L(λ(t)y(t))(s)

B(β)
1−β s

β
.

(5)

Substituting the conditions (2) in (5) and thanks to the properties of inverse Laplace
transform, we deduce (3), which ends the proof.
(Proof of Lemma 2) Using the same arguments as before, we can write

L{Dαg(t)} (s) =
M(α)(2−α)

2(1−α) s

s+ α
1−α

L(g(t))(s) +
M(α)(2−α)

2(1−α)

s+ α
1−α

g(0) = L{f(t)} .
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Then, we have

L{y(t)} (s) =

(
s+ α

1−α

)(
s+ β

1−β

)
M(α)(2−α)

2(1−α)
M(β)(2−α)

2(1−α) s
L(f(t))(s) +

(
s + β

1−β

)
g(0)

M(β)(2−β)
2(1−β) s2

+

(
s + β

1−β

)
L(λ(t)y(t))(s)

M(α)(2−α)
2(1−α) s

.

Replacing the conditions (2) in (2), we obtain (4), which completes the proof. □

3. Main Results

The next section addresses the existence of at least one solution to our problem by
utilizing two different approaches. We apply a fixed point theorem of Krasnoselskii
type. It is based on the sum of two sequentially weakly continuous mappings.
We consider the Banach space:

E =
{
y ∈ C([0, T ],R), Dβy ∈ C([0, T ],R)

}
,

equipped with norm

∥y∥E = sup
t∈[0,T ]

|y(t)|+ sup
t∈[0,T ]

∣∣Dβy(t)
∣∣ .

Certainly, (E, ∥.∥E) is a Banach space.
Let Ωj := {y ∈ E, ∥y∥E ≤ ηj}, j = 1, 2.
The assumptions below are required:

(H1): The function f : [0, T ]× R2 → R is a jointly continuous function.
(H2): There exist non negative function h ∈ C([0, T ],R+) and a non negative

non decreasing function W : R+ → R+, for each t ∈ [0, T ], and for all
xi, yi ∈ R, i = 1, 2, such that

|f (t, x1, x2)− f (t, y1, y2)| ≤ h(t) W(∥x− y∥E).

For x ∈ Ωj , j = 1, 2, we have

|f (t, x1, x2)| ≤ h(t) W(ηj).
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To simplify, we consider the following formulas

Fy(t) := f
(
t, y(t), Dβy(t)

)
,

k1 := ∥h∥∞A1

∣∣∣∣ (1− β)(1− α)

βα
+

T β+α

Γ(β + α+ 1)
+

(1− α)T β

αΓ(β + 1)
+

(1− β)Tα

βΓ(α+ 1)

∣∣∣∣ ,
k2 := ∥h∥∞A2

∣∣∣∣ (1− β)(1− α)

βα
+
T 2

2
+

(1− α)T

α
+

(1− β)T

β

∣∣∣∣ ,
k3 := ∥h∥∞

∣∣∣∣1− α

B(α)
+

αTα

B(α)Γ(α+ 1)

∣∣∣∣ ,
k4 := ∥h∥∞

∣∣∣∣ −αT 2

M(α)(α− 2)
+

2(α− 1)

M(α)(α− 2)

∣∣∣∣ ,
p1 := B1| ∥λ∥∞

(
T β

Γ(β + 1)
+

∣∣∣∣ 1− β

β
+

T β

Γ(β + 1)

∣∣∣∣ rδξγ

Γ(γ + 1)

)
,

p2 = B2| ∥λ∥∞
(
T 2

2
+

∣∣∣∣ 1− β

β
+ T

∣∣∣∣ rδξγ

Γ(γ + 1)

)
,

p3 = p4 = ∥λ∥∞
(
1 +

rδξγ

Γ(γ + 1)

)
,

and

1−ρ1 ̸= 0, 1−ρ2 ̸= 0, κ1 := k1+k3, κ2 := k2+k4, ρ1 := p1+p3, ρ2 := p2+p4.

δ := max{δi, i = 1, r}, ξ := max
ξi∈[0,T ]

{ξi, i = 1, r}

Our main results are given by the following theorem:

Theorem 3. Assume that (H1) and (H2) are satisfied and suppose that
κj

(1−ρj)
≤ ηj

W(ηj)
, j = 1, 2.

Then problem (1)-(2) has at least a solution y, ∥y∥E ≤ ηj , j = 1, 2.

Proof. Let’s introduce the applications Hj : E → E, j = 1, 2, by

H1y(t)

= A1


∫ t

0

(
(t− u)β+α−1

Γ(β + α)
+

(1− α)(t− u)β−1

αΓ(β)
+

(1− β)(t− u)α−1

βΓ(α)

)
Fy(u)du

+
(1− β)(1− α)Fy(t)

βα


+ B1

[∫ t

0

(t− u)

Γ(B)

β−1

λ(u)y(u)du+ λ(0)

(
1− β

β
+

tβ

Γ(β + 1)

) r∑
i=0

δiJ
γy(ξi)

]
,

(6)
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and

H2y(t) =A2


∫ t

0

(
(t− u) +

(1− α)

α
+

(1− β)

β

)
Fy(u)du

+
(1− β)(1− α)Fy(t)

βα


+ B2

[∫ t

0

λ(u)y(u)du+ λ(0)

(
1− β

β
+ t

) r∑
i=0

δiJ
γy(ξi)

]
.

(7)

Obviously, the establishment of the existence of solutions for (1)-(2) is equivalent
to studying the existence of solutions of equation (6) (for Atangana Baleanu deriv-
ative), or the existence of solution of equation (7) (for Caputo Fabrizio derivative).
For this aim, let us define the operators:

Ψj := (Ψj,1,Ψj,2) and Φj := (Φj,1,Φj,2), j = 1, 2,

such that

Ψj, i : E → E and Φj, i : Ωj → E, i, j = 1, 2,

by

Ψ1,1y(t) = A1


∫ t

0

(
(t− u)β+α−1

Γ(β + α)
+

(1− α)(t− u)β−1

αΓ(β)
+

(1− β)(t− u)α−1

βΓ(α)

)
Fy(u)du

+
(1− β)(1− α)Fy(t)

βα

 ,

Ψ2,1y(t) = A2

[∫ t

0

(
(t− u) +

(1− α)

α
+

(1− β)

β

)
Fy(u)du+

(1− β)(1− α)Fy(t)

βα

]
,

Φ1,1y(t) = B1

[∫ t

0

(t− u)

Γ(β)

β−1

λ(u)y(u)du+ λ(0)

(
1− β

β
+

tβ

Γ(β + 1)

) r∑
i=0

δiJ
γy(ξi)

]
,

Φ2,1y(t) = B2

[∫ t

0

λ(u)y(u)du+ λ(0)

(
1− β

β
+ t

) r∑
i=0

δiJ
γy(ξi)

]
,

Ψ1,2y(t) =
α

B(α)

∫ t

0

(t− u)α−1

Γ(α)
Fy(u)du+

(1− α) Fy(t)

B(α)
,

Ψ2,2y(t) =
−2α

M(α)(α− 2)

∫ t

0

Fy(u)du+
2(α− 1)Fy(t)

M(α)(α− 2)
,

Φ1,2y(t) = Φ2,2y(t) = λ(t)y(t) + λ(0)

r∑
i=0

δiJ
γy(ξi),

where

Hj = Ψj,1 +Φj,1, DβHj = Ψj,2 +Φj,2, j = 1, 2.
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Firstly, we need to prove that Ψ1, Φ1 are two weakly sequential continuous map-
pings. Let yn ∈ Ωj be a sequence with yn → y, for some y ∈ E.
By (H1) and (H2), for j = 1, 2, we can write

|Ψj,1yn(t)−Ψj,1y(t)| ≤ kj W( ∥yn − y∥E ),

and

|Ψj,2yn(t)−Ψj,2y(t)| ≤ kj+2 W( ∥yn − y∥E ).

Thus, we can write

∥Ψjyn −Ψjy∥E ≤ κjW( ∥yn − y∥E). (8)

With the same arguments as before, we have

|Φj,1yn(t)− Φj,1y(t)| ≤ pj∥yn − y∥∞

and

|Φj,2yn(t)− Φj,2yn(t)| ≤ pj+2∥yn − y∥∞.

Therefore,

∥Φjyn − Φjy∥E ≤ ρj∥yn − y∥E. (9)

Since ∥yn − y∥E → 0, the right hand sides of (8) and (9) tend to zero, then Ψj and
Φj are weakly sequentially continuous mapping.

Secondly, we show that Φj(Ωj) is relatively weakly compact.
Step 1: Let y ∈ Ωj j = 1, 2, t ∈ [0, T ]. We prove that Φj(Ωj) are bounded.
By (H2), we get

|Φj,1y(t)| ≤ ηj pj and |Φj,2y(t)| ≤ ηj pj+2,

so that

∥Φjy∥E ≤ ηj ρj . (10)

It follows that Φj(Ωj) are bounded.
Step 2: Let y ∈ Ωj j = 1, 2 and t1, t2 ∈ [0, T ] with t1 < t2, we will show that Φj

are equicontinuous.
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By application of (H1), for j = 1, we have

|Φ1,1y(t2)− Φ1,1y(t1)|

≤ |B1|
Γ(β)

∫ t1

0

∣∣∣(t2 − u)β−1 − (t1 − u)
β−1

∣∣∣ |λ(u)y(u)| du

+
|B1|
Γ(β)

[ ∫ t2

t1

∣∣(t2 − u)β−1
∣∣ |λ(u)y(u)| du +

|tB2 − tB1 |
Γ(B + 1)

r∑
i=0

δiJ
γy(ξi)

]

≤ η1 |B1| ∥λ∥∞
Γ(β)

[∫ t1

0

∣∣∣(t2 − u)β−1 − (t1 − u)
β−1

∣∣∣+ ∫ t2

t1

∣∣(t2 − u)β−1
∣∣ du]

+
|B1| δ r η1 ξ

γ |tB2 − tB1 |
Γ(B + 1)Γ(γ + 1)

.

Also, we have

|Φ1,2y(t2)− Φ1,2y(t1)| ≤ |λ(t2)− λ(t1)| |y(t2)− y(t1)|.

Consequently,

|Φ1y(t2)− Φ1y(t1)| ≤
η1 |B1| ∥λ∥∞

Γ(β)


∫ t1

0

∣∣∣(t2 − u)β−1 − (t1 − u)
β−1

∣∣∣ du
+

∫ t2

t1

∣∣(t2 − u)β−1
∣∣ du


+
δ r η1 ξ

γ |tB2 − tB1 |
Γ(B + 1)Γ(γ + 1)

+ |λ(t2)− λ(t1)| |y(t2)− y(t1)|.

(11)

In the same way as the previous part, for j = 2, we get

|Φ2,1y(t2)− Φ2,1y(t1)| ≤ |B2|

[ ∫ t2

t1

|λ(u)y(u)| du + |t2 − t1|
r∑

i=0

δiJ
γy(ξi)

]

≤ η2 |B2| |t2 − t1|
[
∥λ∥∞ + δ r

ξγ

Γ(γ + 1)

]
and

|Φ2,2y(t2)− Φ2,2y(t1)| ≤ |λ(t2)− λ(t1)| |y(t2)− y(t1)|.

These imply that

|Φ2y(t2)− Φ2y(t1)| ≤ η2 |B2| |t2 − t1|
[
∥λ∥∞ + δ r

ξγ

Γ(γ + 1)

]
+ |λ(t2)− λ(t1)| |y(t2)− y(t1)|,

(12)

when t1 → t2 , the right hand sides of (11) and (12) tends to zero independently
of y. Therefore, Φj , j = 1, 2, are equicontinuous operators.
Thanks to Arzelà–Ascoli and Eberlein-Smulian theorems, Φj , j = 1, 2, is relatively
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weakly compact.

Next, we show that the operator Ψj , j = 1, 2, are nonlinear contractions.
In view of (H1) and (H2), for each t ∈ [0, T ] , we obtain

∥Ψj,1y2 −Ψj,1y1∥∞ ≤ kj W( ∥y2 − y1∥E ),

and

∥Ψj,2y2 −Ψj,2y1∥∞ ≤ kj+2 W( ∥y2 − y1∥E ),

from which we get

∥Ψjy2 −Ψjy1∥E ≤ κj W( ∥y2 − y1∥E ).

In addition, we have to prove condition (iii) of Theorem 1 in two steps.
Phase 1: We verify that Ψj(E), j = 1, 2 are bounded.
Let Ψj(E) := {Ψj(y), y ∈ Ωj}, j = 1, 2, for all t ∈ [0, T ]. Thanks to (H2), we obtain

|Ψj,1y(t)| ≤ kj W(ηj) and |Ψj,2y(t)| ≤ kj+2 W(ηj),

which simplifies into

∥Ψjy∥E ≤ κj W(ηj). (13)

Therefore, Ψj(E), j = 1, 2 are bounded.
Phase 2: Let z ∈ Ωj , j = 1, 2, such that y = Ψjz +Φjy, so we can write:

|y(t)| ≤ |Ψj,1z(t)| + |Φj,1y(t)| and |Dβy(t)| ≤ |Ψj,2z(t)| + |Φj,2y(t)|,
Thanks to (10) and (13), we obtain

∥y∥E ≤ κj W(ηj) + ηj ρj .

Consequently, we have

∥y∥E ≤ ηj ⇒ y ∈ Ωj .

So through the implementation of theorem1, we can state that Hj has at least one
fixed point. Hence problem (1)-(2) has one solution in Ωj , for j = 1, 2. □

4. An Example

Consider the following example:
Dα

(
Dβ − λ(t)

)
y(t) = f

(
t, y(t), Dβy(t)

)
, t ∈ [0, T ], 0 < α, β ≤ 1,

y(0) = 0, Dβy(0) =

r∑
i=0

δiJ
γy(ξi), 0 < β ≤ 1, γ > 0 r ∈ N∗, ξi ∈ [0, T ].

We choose α = 0.995, β = 0.995, γ = 1.33, δ = 0.75, ξ = 0.75, r = 5, and T = 1.
Define the continuous function by

f(t, x1, x2) =
ecos(πt)

(2− t)4

(√
|x1 + x2|

)
, h(t) =

ecos(πt)

(2− t)4
, W(r) =

√
r, λ(t) = 0.1t.
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From the above data, for η1 = 4.5 and η2 = 1.6, we have

κ1 = 0.5581, κ2 = 0.4138, ρ1 = 0.7293, ρ2 = 0.6708.

Obviously,
κ1

(1− ρ1)
= 2.0622 ≤ η1

W(η1)
=

√
4.5 ∼ 2.1213

κ2
(1− ρ2)

= 1.2575 ≤ η2
W(η2)

=
√
1.6 ∼ 1.2649.

By Theorem 1, our problem has at least one solution on [0, 1].

5. Numerical Method of Approximation

We recall the following result, which is needed in the next section.

Theorem 4 ( [25]). The three-step Adams-Bashforth scheme for the Caputo Fab-
rizio fractional derivative is given by

y(tn+1) =y(tn) +

(
1− α

M(α)
+

23αh

12M(α)

)
f (tn, y(tn))

−
(
1− α

M(α)
+

16αh

12M(α)

)
f (tn−1, y(tn−1)) +

5αh

12M(α)
f (tn−2, yn−2) .

(14)

In what follows, we prove an analogue theorem in the case of Atangana-Baleanu
and then in the case of Caputo.

Theorem 5. The three-step fractional Adams-Bashforth scheme for Atangana-
Baleanu derivative in Caputo sense, for n ∈ N, is given by

y(tn+1) =y(tn) + A (f (tn, yn)− f (tn−1, y(tn−1)))

+ f (tn, y (tn))


hαB(n+ 1)α

2

[
6

α
− 5(n+ 1)

(α+ 1)
+

(n+ 1)2

α+ 2

]
− hαBnα

2

[
2

α
− 3n

α+ 1
+

n2

α+ 2

]


+ f (tn−2, y (tn−2))


hαB(n+ 1)α

2

[
2

α
− 3(n+ 1)

a+ 1
+

(n+ 1)2

α+ 2

]
+
hαBnα

2

[
n

α+ 1
− n2

α+ 2

]


− 2f (tn−1, y (tn−1))


hαB(n+ 1)α

2

[
3

α
− 4(n+ 1)

a+ 1
+

(n+ 1)2

α+ 2

]
+
hαBnα

2

[
2n

α+ 1
− n2

α+ 2

]
 ,

(15)
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where

A :=
1− α

B(α)
, B :=

α

B(α)Γ(α)
.

Proof. To approach the fractional derivative of Atangana-Baleanu we use [27, 28].
First, we take the following differential equation

ABCDα
t y(t) = f(t, y(t)).

With respect to the integral representation, we find that

y(t)− y(0) =
1− α

B(α)
f(t, y(t)) +

α

B(α)Γ(α)

∫ t

0

(t− τ)α−1f(τ , y(τ))dτ.

At tn+1, we get

y (tn+1)− y(0) =
1− α

B(α)
f (tn, y(tn)) +

α

B(α)Γ(α)

∫ tn+1

0

(tn+1 − t)
α−1

f(t, y(t))dt,

thus

y (tn+1)− y (tn) = A (f (tn, yn)− f (tn−1, y(tn−1))) + C1 − C2, (16)

where,

C1 :=
α

B(α)Γ(α)

∫ tn+1

0

(tn+1 − t)
α−1

f(t, y(t))dt,

C2 :=
α

B(α)Γ(α)

∫ tn

0

(tn − t)
α−1

f(t, y(t))dt.

To approximate the integral parts, we must use the polynomial approximation
for f(t, y(t)) that passes through f (tn, y(tn)) , f (tn−1, y(tn−1)), and f (tn−2, yn−2),
which is given by

Π2(t) =

2∑
i=0

f (tn−i, yn−i)Li(t),

where Li(t) is the Lagrange polynomial for the interpolation points on tn, tn−1 and
tn−2, as

Π2(t) =
f (tn−2, y (tn−2))

2h2
(t− tn) (t− tn−1)−

f (tn−1, y (tn−1))

h2
(t− tn)

× (t− tn−2) +
f (tn, y (tn))

2h2
(t− tn−1) (t− tn−2) .
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Now, using u = (tn+1 − t) /h in C1, we get

C1 =
hα(n+ 1)α

2



[
6

α
− 5(n+ 1)

(α+ 1)
+

(n+ 1)2

α+ 2

]
f (tn, y (tn))

− 2

[
3

α
− 4(n+ 1)

α+ 1
+

(n+ 1)2

α+ 2

]
× f (tn−1, y (tn−1))

+

[
2

α
− 3(n+ 1)

a+ 1
+

(n+ 1)2

α+ 2

]
f (tn−2, y (tn−2))


. (17)

Similarly, taking u = (tn − t) /h in C2, we obtain

C2 =
hα(n)α

2

([
n2

α+ 2
− 3n

α− 1
+

2

α

]
f (tn, y (tn)) + 2

[
2n

α+ 1
− n2

α+ 2

]
×f (tn−1, y (tn−1))−

[
n

α+ 1
− n2

α+ 2

]
f (tn−2, y (tn−2))

)
.

(18)

Substituting (17) and (18) into (16), we find (15). □

Theorem 6. The three-step fractional Adams-Bashforth scheme for Caputo deriv-
ative, for n ∈ N, is defined by:

y(tn+1) =y(tn) + f (tn, y (tn))


hα(n+ 1)α

2Γ(α)

[
6

α
− 5(n+ 1)

(α+ 1)
+

(n+ 1)2

α+ 2

]
− hαnα

2Γ(α)

[
2

α
− 3n

α+ 1
+

n2

α+ 2

]


+ f (tn−2, y (tn−2))


hα(n+ 1)α

2Γ(α)

[
2

α
− 3(n+ 1)

a+ 1
+

(n+ 1)2

α+ 2

]
+

hαnα

2Γ(α)

[
n

α+ 1
− n2

α+ 2

]


− 2f (tn−1, y (tn−1))


hα(n+ 1)α

2Γ(α)

[
3

α
− 4(n+ 1)

a+ 1
+

(n+ 1)2

α+ 2

]
+

hαnα

2Γ(α)

[
2n

α+ 1
− n2

α+ 2

]
 ,

(19)

Proof. For Caputo derivative, we examine the following differential equation
cDα

t y(t) = f(t, y(t)).

The integral representation is given by

y(t)− y(0) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ , y(τ))dτ.

In a similar manner as before, we obtain (19) □

We further extend the feasibility of the suggested new scheme to explore issues
modeled in many applications. In order to reproduce some existing chaotic prob-
lems, we adequately replace the classical time derivative by the fractional derivative
of Caputo, Caputo-Fabrizio, and Atangana-Baleanu, then we faithfully perform the
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simulation with the three-step Adams Bashforth fractional method as it was con-
structed above.
We note that (1) can be reduced to the following system:

Dβy(t) = z(t) + λ(t) y(t) = f1(t, y(t))
Dαz(t) = f(t, y(t), Dβy(t)) = f2(t, y(t), D

βy(t)).

We can therefore stipulate the conditions (2) as follows

y(0) = 0, z(0) =

r∑
i=0

δiJ
γy(ξi), γ > 0. (20)

By (14), (15) and (19), the above system is transformed into the following:
Caputo case

y(tn+1) =y(tn) + f1 (tn, y (tn))C1,β + f1 (tn−2, y (tn−2))C2,β

− 2f1 (tn−1, y (tn−1))C3,β

z(tn+1) =z(tn) + f2 (tn, z (tn))C1,α + f2 (tn−2, z (tn−2))C2,α

− 2f2 (tn−1, z (tn−1))C3,α.

Caputo Fabrizio case

y(tn+1) =y(tn) + f1 (tn, y (tn))F1,β + f1 (tn−2, y (tn−2))F2,β

− 2f1 (tn−1, y (tn−1))F3,β

z(tn+1) =z(tn) + f2 (tn, z (tn))F1,α + f2 (tn−2, z (tn−2))F2,α

− 2f2 (tn−1, z (tn−1))F3,α.

Atangana-Baleanu case

y(tn+1) =y(tn) + f1 (tn, y (tn))A1,β + f1 (tn−2, y (tn−2))A2,β

− 2f1 (tn−1, y (tn−1))A3,β

z(tn+1) =z(tn) + f2 (tn, z (tn))A1,α + f2 (tn−2, z (tn−2))A2,α

− 2f2 (tn−1, z (tn−1))A3,α,

where Ai,α, Ai,β , Fi,α, Fi,β , Ci,α, Ci,β , constants obtained from (14), (15), (19)
respectively.

6. Numerical Experiments

We use a variety of real-world examples to assess the performance of the new
method on our problem, see [10,14,16,29,30,36]. The integration is carried out using
the three-step fractional Adams-Bashforth methods for Caputo, Caputo Fabrizio,
and Atangana-Baleanu. The classic case is plotted using the three-step Adams-
Bashforth method for comparison.

For all the examples, we take n = 8000, so T = n × h, α = 0.999999999,
β = 0.99999999.
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Figure 1. 2-D phase portraits for the numerical simulation for
(21)

Example 1 (see [14]). We consider the following general nonlinear Helmholtz–Duffing
oscillator:

Dα
(
Dβ − δ

)
y(t) = γ cos(ωt) + y − (1− σ)y2 − σy3 − 0.000001Dβy(t),

t ∈ [0, T ], 0 < α, β ≤ 1,
(21)

the equation (21) can be reduced to the following system:

Dβy(t) = z(t) + δy(t),

Dαz(t) = γ cos(ωt) + y − (1− σ)y2 − σy3 − 0.000001Dβy(t).

With initial conditions (0, 0.00025), h = 0.01, δ = 0.01, σ = 1, ω = 0.068, γ = 1.

Example 2 (see [16]). We consider the following problem in light of the Joseph-
son Junction pendulum description and the pendulum system for ultra-subharmonic
resonance:

Dα
(
Dβ − δ

)
y(t) =− ay − [1 + f0 cos(Ωt+Ψ)] sin y + f1 cos(ωt) sin(y − γ)

− 5 ∗ 10(−5)Dβy(t), t ∈ [0, T ], 0 < α, β ≤ 1.
(22)
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Figure 2. 2-D phase portraits for the numerical simulation for
(22)

The equation (22) can be reduced to the following system:

Dβy(t) =z(t) + δy(t),

Dαz(t) =− ay − [1 + f0 cos(Ωt+Ψ)] sin y + f1 cos(ωt) sin(y − γ)

− 5 ∗ 10(−5)Dβy(t).

The initial conditions are: (0, 0), h = 0.01, δ = 0.1, a = 0.1, Ω = 0.75, ω = 1.5,
Ψ = 7π/4, f0 = 0.2, f1 = 1.381, γ = 0.01.

Example 3 (see [30]). We examine the resulting chaos of a simple nonlinear
damped and driven pendulum motion:

Dα
(
Dβ − q

)
y(t) = aΩ2 cos(ΩDt)− Ω2 sin(y(t)) + 0.001Dβy(t),

t ∈ [0, T ], 0 < α, β ≤ 1.
(23)

The equation (23) can be reduced to the following system:

Dβy(t) = z(t) + qy(t),

Dαz(t) = aΩ2 cos(ΩDt)− Ω2 sin(y(t)) + 0.001Dβy(t).

The initial conditions: (0, 0.8), h = 0.045. q = −0.4, a = 1.4, Ω = 1, ΩD = 2/3.
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Figure 3. 2-D phase portraits for the numerical simulation for
(23)

Example 4 (see [10]). We employ numerical techniques to display chaotic attrac-
tors on the dynamics of a vertically driven damped planar pendulum:

Dα
(
Dβ − γ

)
y(t) = (χ− ψ cos τ)y(t) + 0.001Dβy(t), t ∈ [0, T ], 0 < α, β ≤ 1. (24)

The equation (24) can be reduced to:

Dβy(t) = z(t) + γy(t),

Dαz(t) = (χ− ψ cos τ)y(t) + 0.001Dβy(t).

As initial conditions: (0, 0.05), and h = 0.05, γ = −0.001, χ = −0.1, ψ = 0.545.

Example 5 (see [24]). We examine the Mixed Rayleigh Lienard Oscillator Driven
by Parametric Periodic Pimping and External Excitation given by:

Dα
(
Dβ −

(
α1 + η cos vt

))
y(t) =ω2

0 (F0 + F1 cosωt)− β0(D
βy(t))2

− β1(D
βy(t))3 + ω2

0y(t)− γy(t)3.
(25)

The equation (25) can be reduced to the following system:

Dβy(t) = z(t) +
(
α1 + η cos vt

)
y(t),

Dαz(t) = ω2
0 (F0 + F1 cosωt)− β0(D

βy(t))2 − β1(D
βy(t))3 + ω2

0y(t)− γy(t)3.
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Figure 4. 2-D phase portraits for the numerical simulation for
(24)

For initial conditions: (0,−0.5), ω0 = F0 = 0.25, α0 = 0.015, α1 = 0.025,γ = 1,

F1 = 0.5, β0 = 0.01, β1 = 0.005, and ω = v = 0.618, v =
√
5−1
2 , η = 4.

Table 1. Error summary table for each approach

Errors \ Examples Example 1 Example 2 Example 3 Example 4 Example 5
∥yAB3 − yABc∥2 1.29947854 0.00055533 0.82869035 0.05410987 0.4834849
∥yAB3 − yABcf∥2 0.00062860 0.00000003 0.00009742 0.000023851 0.0011151
∥yAB3 − yABab∥2 0.97326548 0.00047625 0.82859426 0.13071068 0.49796754

• The appearance of chaos under specific parameters demonstrates the con-
venience and pertinence of the proposed method.

• It is important to underline that some derivatives are more appropriate
than others for particular cases but not for others.

7. Conclusion

In this study, we have examined the existence of solutions to the above frac-
tional differential Langevin equation with Caputo-Fabrizio and Atangana-Baleanu
derivatives. To achieve this, we have used a fixed point theorem based on the sum
of two weakly sequentially continuous mappings.

Following that, we have proposed a novel three-step Adam Bashforth approach
based on Caputo and Atangan Baleanu fractional derivatives. Numerous nonlinear
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Figure 5. 2-D phase portraits for the numerical simulation for
(25)

fractional differential equations have been exposed to a range of quantitative exper-
iments. To assess the accuracy of the innovative numerical approach, the classical
solution was compared towards the numerical solution for various values. Computa-
tional simulation results, for particular instances of α, β, are endowed with chaotic
attractors.
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Abstract. The two-parameter exponential distribution is often used to model
the lifetime of a product. The comparison of the mean lifetimes of several

products is a main concern in reliability applications. In this study, the per-
formance of the methods to compare the mean lifetimes of several products

based on generalized p-value, parametric bootstrap, and fiducial approach are

compared in the presence of outliers. The results of Monte-Carlo simulations
clearly indicate that there is no uniformly powerful test. The parametric boot-

strap test is superior to the others except in the case of the lower number of

groups and the presence of outliers. An illustrative example of testing the
equality lifetimes of a component is given to perform the proposed tests. The

considered tests are implemented in an R package doex.

1. Introduction

Testing equality of means of several normal populations under unequal variances
is a very common Behrens-Fisher-type problem in social sciences, agriculture, bi-
ology, etc. The generalized p-value method is used to solve this problem [1]. The
generalized F-test is proposed using the generalized p-value method, and its mod-
ifications for non-normality caused by outliers are improved by Cavus et al. [2],
caused by skewness by Cavus et al. [3], and performed in a real data application
by Cavus et al. [4]. Moreover, there are few parametric methods for testing the
equality of means of skewed populations. Tian and Wu [5] proposed a generalized
p-value approach for log-normal populations, Tian [6], Ma and Tian [7] improved
procedures for inverse Gaussian and Niu et al. [8] proposed a generalized p-value
procedure for Birbaum-Saunders distributions.
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The two-parameter exponential distribution is used in many real-life problems
such as modeling extreme rainfalls, the lifetime of a component, the service time
of an agent, and so on. Ghosh and Razmpour [9] indicated that two-parameter
exponential distribution is used to model the guaranteed time with unknown and
possibly unequal failure rates in reliability and life testing. There are some proce-
dures improved for the two-parameter exponential distribution. Chen [10] proposed
a range statistic for comparing location parameters of two-parameter exponential
distributions. Singh [11] derived a likelihood ratio test for testing the equality of
location parameters of two-parameter exponential distributions based on Type II
censored samples under unknown scales. Kambo and Awad [12] proposed a test
statistic based on doubly censored samples to test the equality of location parame-
ters of k exponential distributions when the scale parameter is unknown. Hsieh [13]
proposed an exact test for comparing location parameters simultaneously of sev-
eral two-parameter exponential distributions under unequal scale parameters with
unknown scale parameters. Vaughan and Tiku [14] extended the test developed by
Tiku and Vaughan [15] for k > 2 populations for testing equality of location pa-
rameters of two-parameter exponential populations from censored samples. Ananda
and Weerahandi [16] proposed a testing procedure based on generalized p-values
for testing the difference between two exponential means. Wu [17] proposed a one-
stage multiple comparison procedure for comparing k − 1 treatment exponential
mean lifetimes with the control based on doubly censored samples under unequal
scales. Malekzadeh and Jafari [18] proposed some procedures based on generalized
p-values, parametric bootstrap, and fiducial approaches by using Cochran type test
statistics for testing the means of several two-parameter exponential distributions
under progressively Type II censoring. The two-parameter exponential distribution
has scale and location parameters. In the testing equality of means of two-parameter
exponential distributions, the scale parameter is a nuisance parameter when it is
unknown or unequal. Therefore, the considered problem turns into a Behrens-
Fisher-type problem. There is no study on the testing equality of two-parameter
exponentially distributed population means for complete data in the presence of
outliers.

The article discusses the testing equality means of k two-parameter exponentially
distributed populations for complete data in the presence of outliers. In the next
section, the procedures proposed by Malekzadeh and Jafari [18] are introduced. A
Monte-Carlo simulation study is conducted for comparing the performances of these
tests for complete data in the presence of outliers in Sec 3. To show the efficiency
of the tests, illustrative examples are given in Sec 4. The results are discussed in
the last section.
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2. Methodology

In this section, methods proposed by Malekzadeh and Jafari [18] are introduced.
The probability density function of the two-parameter exponential distribution is
given in (1).

f(x; a, b) =
1

a
exp

{
− x− b

a

}
, x > b, a > 0 (1)

where a is the scale and b is the location parameter. We are interested in the
problem of testing the equality of means of k exponentially distributed populations
for complete data in (2).

H0 : µ1 = µ2 = ... = µk

HA : µi ̸= µj for some i and j where i ̸= j
(2)

Rahman and Pearson [19] revisited the parameter estimations of two-parameter
exponential distribution and conducted a simulation study to compare the perfor-
mance of maximum likelihood, product spacing, and quantile estimation methods.
The uniformly minimum variance unbiased estimators of the two-parameter expo-
nential distribution parameters (Malekzadeh and Jafari, [18]):

â = S/(n− 1) (3)

b̂ = X(1) (4)

where X(1) = min(X1, X2, ..., Xn) and S =
∑n

j=1[Xj −X(1)]. Viveros and Balakr-

ishnan [20] gave the distributions of the following random variables.

W =
2(n− 1)S

a
∼ χ2

(2n−2) and Y =
2n(X(1) − b)

a
∼ χ2

(2) (5)

whereWi and Yi are independent random variables. Cochran [21] type test statistics
are used for Behrens-Fisher problems. Here, it is modified for testing the equality
of two-parameter exponential distributed means under unequal scale parameters.

Tt =

k∑
i=1

niµ̂
2
i

S2
i

−

(∑k
i=1

niµ̂
2
i

S2
i

)2

∑k
i=1

ni

S2
i

(6)

where µ̂ is the mean estimate and S is the scale estimate of the ith population. The
uniformly minimum variance unbiased estimator of µ = a+ b and it can be shown
as in (7).
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µ̂i = Xi(1) +
ni − 1

ni
Si =

ai
2ni

(Wi + Yi) + bi ∼ N(µi, a
2
i /ni) (7)

Tt is used for the rejection rule as a critical value of the Generalized p-value, Para-
metric Bootstrap, and Fiducial Approach test in the following subsections.

2.1. Generalized p-value (GP) Based Test. The generalized p-value method
is used to derive the test statistics in the presence of nuisance parameters. Weera-
handi [22] proposed the Generalized F-test for testing the equality of several popu-
lations’ means under unequal variances instead of the Classical F-test. Also, many
researchers used this method to derive test statistics for several distributions. In
this method, firstly sufficient statistics of parameters of the related distribution are
obtained. Using the sufficient statistics of the two-parameter exponential distri-
bution, (i) Ri can be obtained independently from the nuisance parameter, and,
(ii) since the observed λi values are independent of the nuisance parameter θi,
generalized pivot value can be estimated.

Ri = Xi(1) + (ni − 1)Si(2ni − Yi/niWi) (8)

Expected values of (Xi(1), Si) vector for Ri generalized pivot value and the variance
can be obtained as follows:

µRi = Xi(1) +
(ni − 1)2Si

n2
i − 2ni

(9)

σ2
Ri =

(ni − 1)4S2
i

n2
i (ni − 2)2

( 1

ni − 3

)
(10)

Cochran test statistic can be obtained as in (11) using expected value of Ri gener-
alized pivot and the variance of it.

TGP =

k∑
i=1

(Ri − µRi)
2

σ2
Ri

−

(∑k
i=1

Ri−µRi

σ2
Ri

)
∑k

i=1
1

σ2
Ri

(11)

The rejection rule is H0 is in (2) rejected when TGP > Tt. The p-value of the GP
test is computed at least 10.000 Monte-Carlo runs as pGP = P (TGP ≥ Tt).
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2.2. Parametric Bootstrap (PB) Based Test. Krishnamoorthy et al. [23] pro-
pose the parametric bootstrap method for testing the equality of normal population
means under heteroscedasticity. Let Yi ∼ χ2

(2) and Wi ∼ χ2
(2ni−2). The PB test

statistic is in (12) obtained for complete data from Malekzadeh and Jafari [18] using
the Cochran statistic.

TPB =

k∑
i=1

niµ
2
Bi

S2
Bi

−

(∑k
i=1

niµ
2
Bi

S2
Bi

)2

∑k
i=1

ni

S2
Bi

(12)

where µBi = (Si/2ni)(Wi + Yi) and SBi = SiWi/(2ni − 2). The rejection rule is
H0 is in (2) rejected when TPB > Tt. The p-value of the PB test is computed at
least 10.000 Monte-Carlo runs as pPB = P (TPB ≥ Tt).

2.3. Fiducial Approach (FA) Based Test. Li et al. [24] used the fiducial ap-
proach for testing the equality of several populations’ means under unequal vari-
ances. Let Yi ∼ χ2

(2) and Wi ∼ χ2
(2ni−2), and Si functions can be rewritten as

random samples:

Si =
aiWi

2(ni − 1)
, Xi(1) =

aiYi

2ni
+ bi (13)

Parameter estimations are obtained as follows by using the observed values of
(Xi(1), Si)

bi = Xi(1) −
(ni − 1)SiYi

niWi
, ai =

2(ni − 1)Si

Wi
(14)

Using Cochran test statistic, TFA can be written as in (15).

TFA =

k∑
i=1

fini

Sin2
iW

2
i

−

(∑k
i=1

fi
S2
i niWi

)2

∑k
i=1

ni

S2
i

(15)

where fi = (ni−1)(WiYi−2niWi). The rejection rule is H0 is in (2) rejected when
TPB > Tt. The p-value of the FA test is computed at least 10.000 Monte-Carlo
runs as pFA = P (TFA ≥ Tt).

3. Monte-Carlo Simulation Study

In this section, we provide some of our comprehensive simulation study results.
The GP, PB, and FA tests, as introduced in the previous subsections, are compared
in terms of penalized power and Type I error probability when the nominal level
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of the test is taken as α0 = 0.05 under different sample sizes and scale parameters.
The configuration of the outliers is determined similarly to the illustrative examples
in the next section. The first and third groups consist of outlier one each which is
five and three times higher than the group median, respectively in k = 3 groups
design while the second, third, and fourth groups consist of an outlier one each
which is one and a half times higher than the group median, respectively in k = 4
groups design.

It is known that Monte-Carlo simulation studies are used to compare the per-
formance of the tests in terms of power and Type I error probability. However, any
comparison of the powers is invalid when Type I error probabilities are different.
Cavus et al. [25] proposed the penalized power approach in (16) to compare the
power of the tests when Type I error probabilities are different.

γi =
1− βi√

1 + |1− αi

α0
|

(16)

where βi is Type II error rate, αi is Type I error of the test and α0 is the nominal
level. Penalized power adjusts the power function with the square root of the
percentile deviation between Type I error probability and the nominal level. Thus,
penalized power is used to compare the power of the tests in the simulation studies.
The simulations are performed for balanced and unbalanced designs with doex

package implemented by Cavus and Yazici [26] and Cavus and Yazici [27] in R, and
the results are based on 10.000 Monte-Carlo runs. The results of the simulations
are given in the following subsections.

3.1. Type I Error Probability Results. Table 1 shows the Type I error prob-
abilities of the tests under scale parameters 2 and 5 for small, moderate, and large
samples with and without outliers. The GP and FA test can not control Type I
error probability in small samples for α0 = 0.05 while the PB test controls Type
I error probability under unbalanced design ni = (5, 10, 15). The performance of
the PB test to control the Type I error probability is not similar in the presence
of outliers. It does not control the Type I error probability and shows a more
conservative performance than the design without outliers. The FA and GP test
generally has Type I errors close to each other and are more conservative than the
PB test. In the presence of outliers, the performance of the GP and FA tests are
affected negatively also and show more conservative performance. The PB test per-
forms better than the others in moderate and large samples and controls the error.
The performance of the GP and FA test is getting better in large and moderate
samples. The performance of the test on controlling the Type I error probability is
getting better when the number of groups (k) is increased. Even if the presence of
outliers negatively affects the performance of all tests to control the Type I error
probability, the increase in sample size eliminates this negative effect for GP and
PB tests.
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Table 1. Type I error probabilities for α0 = 0.05

without outliers with outliers

k ni ai bi GP PB FA GP PB FA

3 10, 10, 10 2, 2, 2 1, 1, 1 0.0061 0.0087 0.0010 0.0130 0.0100 0.0005
5, 5, 5 0.0065 0.0101 0.0014 0.0090 0.0095 0.0001

8, 10, 12 2, 2, 2 0.0068 0.0128 0.0021 0.0140 0.0030 0.0008
5, 5, 5 0.0083 0.0139 0.0025 0.0130 0.0030 0.0002

5, 10, 15 2, 2, 2 0.0144 0.0436 0.0072 0.0120 0.0003 0.0009
5, 5, 5 0.0129 0.0439 0.0079 0.0070 0.0003 0.0008

30, 30, 30 2, 2, 2 0.0269 0.0407 0.0201 0.0410 0.0580 0.0310
5, 5, 5 0.0298 0.0462 0.0223 0.0330 0.0540 0.0280

24, 30, 36 2, 2, 2 0.0309 0.0453 0.0236 0.0440 0.0530 0.0260
5, 5, 5 0.0298 0.0450 0.0229 0.0350 0.0500 0.0210

15, 30, 45 2, 2, 2 0.0332 0.0487 0.0242 0.0380 0.0390 0.0220
5, 5, 5 0.0325 0.0528 0.0248 0.0350 0.0320 0.0150

50, 50, 50 2, 2, 2 0.0365 0.0473 0.0310 0.0480 0.0650 0.0440
5, 5, 5 0.0348 0.0455 0.0302 0.0432 0.0604 0.0360

40, 50, 60 2, 2, 2 0.0359 0.0493 0.0319 0.0490 0.0570 0.0360
5, 5, 5 0.0368 0.0498 0.0309 0.0470 0.0540 0.0320

25, 50, 75 2, 2, 2 0.0392 0.0494 0.0308 0.0460 0.0465 0.0320
5, 5, 5 0.0407 0.0512 0.0339 0.0430 0.0410 0.0283

4 10, 10, 10, 10 2, 2, 2, 2 1, 1, 1, 1 0.0054 0.0094 0.0007 0.0070 0.0100 0.0010
5, 5, 5, 5 0.0052 0.0090 0.0006 0.0060 0.0100 0.0010

7, 9, 11, 13 2, 2, 2, 2 0.0086 0.0165 0.0029 0.0070 0.0170 0.0030
5, 5, 5, 5 0.0083 0.0162 0.0027 0.0070 0.0170 0.0030

5, 8, 12, 15 2, 2, 2, 2 0.0120 0.0337 0.0059 0.0050 0.0360 0.0080
5, 5, 5, 5 0.0121 0.0332 0.0056 0.0050 0.0360 0.0080

30, 30, 30, 30 2, 2, 2, 2 0.0256 0.0404 0.0183 0.0270 0.0450 0.0220
5, 5, 5, 5 0.0252 0.0399 0.0180 0.0280 0.0460 0.0210

21, 27, 33, 39 2, 2, 2, 2 0.0320 0.0486 0.0218 0.0250 0.0430 0.0220
5, 5, 5, 5 0.0310 0.0481 0.0213 0.0280 0.0440 0.0220

15, 24, 36, 45 2, 2, 2, 2 0.0319 0.0489 0.0245 0.0260 0.0510 0.0300
5, 5, 5, 5 0.0314 0.0482 0.0241 0.0260 0.0520 0.0300

50, 50, 50, 50 2, 2, 2, 2 0.0317 0.0444 0.0273 0.0360 0.0490 0.0300
5, 5, 5, 5 0.0314 0.0442 0.0271 0.0360 0.0500 0.0320

35, 45, 55, 65 2, 2, 2, 2 0.0312 0.0443 0.0264 0.0330 0.0500 0.0320
5, 5, 5, 5 0.0310 0.0442 0.0261 0.0340 0.0520 0.0310

25, 40, 60 ,75 2, 2, 2, 2 0.0360 0.0492 0.0299 0.0290 0.0460 0.0320
5, 5, 5, 5 0.0350 0.0488 0.0295 0.0290 0.0450 0.0320

3.2. Penalized Power Results. Table 2 shows the results of penalized powers of
the tests in the case of k = 3 for several effect sizes and sample sizes. Recall from
Table 1 that the GP and FA tests are very conservative in terms of Type I error
probability, while the PB test successfully controls the Type I error probability.
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The penalized power results show that the PB test is more powerful than the GP
and FA test in most of the scenarios except the case of unbalanced small sample
size designs. In higher effect sizes for large samples, penalized power of the tests
are higher than 0.85. Also, their performances are better in unbalanced designs
than in balanced designs. The performance of the GP and PB tests is affected
negatively when the scale parameter is increased while the performance of the FA
test is positively affected without outliers. It is seen that the power of the tests
decreases in the case of θi = 5. For example, the power of the PB test is 0.99 in the
case of θi = 3 and 0.96 in θi = 5, it is the biggest difference between the tests. It
is concluded that the effect of the higher scale parameter on the PB test is higher
than the others. However, the penalized power of the PB test is the highest in
most of the scenarios followed by the GP test and the FA test. When the power
of the tests is evaluated according to whether there is an outlier or not, it is seen
that the GP and FA tests are higher in the case of outliers than in the case of no
outliers, and the contrary, the power of the PB test is lower. The result is that PB
is the uniformly most powerful test in the non-presence of an outlier, and GP is the
uniformly most powerful test in the case of an outlier.

Table 3 shows the results of penalized powers for k = 4. Unlike the results in
Table 2, the most powerful test is the PB, the second is GP and the last one is the
FA test in the presence and non-presence of outliers. The increase in the number of
groups affects the penalized power of the tests negatively in small samples in most
of the scenarios. Only the performance of the PB test is better than the case of
k = 3 in large samples and it is obtained that the least affected test is the PB test.

When the results given in Tables 2 and 3 are examined, the effect of the design
configurations such as the presence of outliers and the number of groups on the
performance of the tests differs. Therefore, when using tests, the reliability of their
results should be carefully examined.

4. Illustrative Examples

In this section, the GP, PB, and FA tests are applied to two real data examples
to compare their results in hypothesis testing.

Example 1. Data consists of the lifetimes of a component are different brands in
a refrigerator which is collected from a local factory in Turkey and it is available in
doex package in R as component data. It is known that the lifetime data generally
follows the exponential distribution. However, to make sure of this, the Cramer-von
Mises (CvM) goodness-of-fit test is used to test whether the data follows the two-
parameter exponential distribution. As a result of the CvM test, the p-value 0.6786
shows there is not enough evidence to reject the null hypothesis indicating that the
data follows a two-parameter exponential distribution at the 0.05 significance level.
The sample size of the data is n1 = 15, n2 = 49, n3 = 54, n4 = 12. The estimates

of the location parameters are b̂1 = 8.38, b̂2 = 8.40, b̂3 = 8.41, b̂4 = 8.62 and the
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Table 2. Penalized power results for k = 3

without outliers with outliers

ni ai bi GP PB FA GP PB FA

10, 10, 10 2, 2, 3 1, 1, 1 0.0101 0.0143 0.0021 0.0280 0.0193 0.0028
2, 2, 4 0.0254 0.0334 0.0055 0.0515 0.0432 0.0070
2, 2, 5 0.0429 0.0581 0.0097 0.0864 0.0648 0.0155

8, 10, 12 2, 2, 3 0.0245 0.0342 0.0039 0.0434 0.0150 0.0281
2, 2, 4 0.0622 0.0779 0.0096 0.1006 0.0358 0.0091
2, 2, 5 0.1181 0.1386 0.0177 0.1890 0.0746 0.0141

5, 10, 15 2, 2, 3 0.0559 0.1119 0.0147 0.0889 0.0028 0.0001
2, 2, 4 0.1590 0.2180 0.0265 0.2231 0.0042 0.0002
2, 2, 5 0.3010 0.3475 0.0413 0.3572 0.0106 0.0004

30, 30, 30 2, 2, 3 0.1610 0.2420 0.1253 0.2062 0.2748 0.1489
2, 2, 4 0.4997 0.6363 0.4303 0.5790 0.6685 0.4860
2, 2, 5 0.7297 0.8488 0.6697 0.8220 0.8718 0.7320

24, 30, 36 2, 2, 3 0.2444 0.3225 0.1755 0.3061 0.3418 0.1824
2, 2, 4 0.6301 0.7455 0.5232 0.7238 0.7653 0.5392
2, 2, 5 0.8083 0.9180 0.7411 0.8976 0.9285 0.7587

15, 30, 45 2, 2, 3 0.3307 0.4043 0.2160 0.3681 0.3023 0.1905
2, 2, 4 0.7178 0.8277 0.5868 0.7696 0.7360 0.5572
2, 2, 5 0.8447 0.9643 0.7630 0.8791 0.8800 0.7429

50, 50, 50 2, 2, 3 0.3808 0.4686 0.3422 0.4324 0.4323 0.3968
2, 2, 4 0.8119 0.9107 0.7675 0.8835 0.8068 0.8400
2, 2, 5 0.8812 0.9700 0.8447 0.9776 0.8761 0.9420

40, 50, 60 2, 2, 3 0.4722 0.5521 0.4015 0.5069 0.4842 0.3836
2, 2, 4 0.8448 0.9522 0.8029 0.9356 0.8860 0.8158
2, 2, 5 0.8821 0.9921 0.8549 0.9881 0.9347 0.8812

25, 50, 75 2, 2, 3 0.5582 0.6071 0.4440 0.5831 0.5263 0.3910
2, 2, 4 0.8840 0.9662 0.8103 0.9343 0.9276 0.8077
2, 2, 5 0.9063 0.9937 0.8489 0.9593 0.9593 0.8532

10, 10, 10 5, 5, 6 1, 1, 1 0.0215 0.0234 0.0164 0.0133 0.0111 0.0007
5, 5, 8 0.0298 0.0321 0.0266 0.0266 0.0200 0.0042
5, 5, 10 0.0419 0.0436 0.0369 0.0385 0.0422 0.0070

8, 10, 12 5, 5, 6 0.0356 0.0367 0.0349 0.0121 0.0071 0.0003
5, 5, 8 0.0651 0.0642 0.0622 0.0447 0.0172 0.0028
5, 5, 10 0.1046 0.1051 0.1023 0.0932 0.0394 0.0084

5, 10, 15 5, 5, 6 0.0221 0.0631 0.0094 0.0256 0.0002 0.0001
5, 5, 8 0.0726 0.1325 0.0171 0.0997 0.0007 0.0003
5, 5, 10 0.1577 0.2186 0.0266 0.1994 0.0063 0.0005

30, 30, 30 5, 5, 6 0.1509 0.1628 0.1329 0.0587 0.0991 0.0458
5, 5, 8 0.4060 0.4592 0.3732 0.2531 0.3791 0.1975
5, 5, 10 0.5755 0.6553 0.5404 0.5425 0.6908 0.4783

24, 30, 36 5, 5, 6 0.0758 0.0868 0.0742 0.0789 0.1090 0.0477
5, 5, 8 0.2967 0.3371 0.2831 0.3552 0.4340 0.2426
5, 5, 10 0.5172 0.5825 0.4921 0.6718 0.7910 0.5234

15, 30, 45 5, 5, 6 0.0886 0.1306 0.0588 0.1157 0.0866 0.0467
5, 5, 8 0.4225 0.4979 0.2934 0.4481 0.3798 0.2316
5, 5, 10 0.7141 0.8159 0.5891 0.7481 0.7022 0.5307

50, 50, 50 5, 5, 6 0.2984 0.3276 0.2862 0.1058 0.1314 0.0848
5, 5, 8 0.6130 0.6734 0.5938 0.5366 0.5741 0.4347
5, 5, 10 0.6634 0.7277 0.6399 0.8419 0.8389 0.7866

40, 50, 60 5, 5, 6 0.1163 0.1323 0.1123 0.1233 0.1299 0.0771
5, 5, 8 0.4950 0.5549 0.4724 0.6313 0.6350 0.4956
5, 5, 10 0.6630 0.7370 0.6277 0.9188 0.9160 0.7914

25, 50, 75 5, 5, 6 0.1498 0.1752 0.1097 0.1760 0.1445 0.0958
5, 5, 8 0.6815 0.7300 0.5755 0.7024 0.6379 0.5091
5, 5, 10 0.8951 0.9605 0.8291 0.9122 0.8920 0.7883
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Table 3. Penalized power results for k = 4

without outliers with outliers

ni ai bi GP PB FA GP PB FA

10, 10, 10, 10 2, 2, 2, 3 1, 1, 1, 1 0.0086 0.0130 0.0016 0.0102 0.0134 0.0021
2, 2, 2, 4 0.0149 0.0262 0.0028 0.0146 0.0283 0.0049
2, 2, 2, 5 0.0227 0.0406 0.0050 0.0175 0.0402 0.0063

7, 9, 11, 13 2, 2, 2, 3 0.0196 0.0319 0.0037 0.0117 0.3182 0.0050
2, 2, 2, 4 0.0554 0.0687 0.0075 0.0263 0.0651 0.0100
2, 2, 2, 5 0.1074 0.1142 0.0112 0.0703 0.1086 0.0122

5, 8, 12, 15 2, 2, 2, 3 0.0417 0.0651 0.0090 0.0224 0.0707 0.0103
2, 2, 2, 4 0.1214 0.1242 0.0133 0.0783 0.1149 0.0154
2, 2, 2, 5 0.2425 0.1924 0.0177 0.1784 0.1829 0.0243

30, 30, 30, 30 2, 2, 2, 3 0.1254 0.2023 0.0893 0.1191 0.2011 0.0880
2, 2, 2, 4 0.4084 0.5593 0.3302 0.4063 0.5987 0.3226
2, 2, 2, 5 0.6623 0.8024 0.5852 0.6728 0.8552 0.6108

21, 27, 33, 39 2, 2, 2, 3 0.2598 0.3147 0.1527 0.2490 0.3175 0.1457
2, 2, 2, 4 0.6636 0.7661 0.4834 0.6385 0.7258 0.4931
2, 2, 2, 5 0.8200 0.9441 0.7182 0.7928 0.9075 0.7229

15, 24, 36, 45 2, 2, 2, 3 0.3263 0.3573 0.1700 0.3041 0.3584 0.1656
2, 2, 2, 4 0.7321 0.8051 0.5376 0.7052 0.8178 0.5628
2, 2, 2, 5 0.8416 0.9591 0.7532 0.8104 0.9693 0.7885

50, 50, 50, 50 2, 2, 2, 3 0.3099 0.4026 0.2720 0.3394 0.4455 0.2974
2, 2, 2, 4 0.7457 0.8605 0.7083 0.7919 0.9158 0.7428
2, 2, 2, 5 0.8467 0.9413 0.8191 0.8785 0.9861 0.8383

35, 45, 55, 65 2, 2, 2, 3 0.4899 0.5281 0.3750 0.4941 0.5520 0.3918
2, 2, 2, 4 0.8284 0.9155 0.7753 0.8396 0.9650 0.8094
2, 2, 2, 5 0.8508 0.9459 0.8213 0.8630 0.9990 0.8566

25, 40, 60 75 2, 2, 2, 3 0.5669 0.5865 0.4151 0.5412 0.5725 0.4347
2, 2, 2, 4 0.8643 0.9664 0.8084 0.8299 0.9439 0.8309
2, 2, 2, 5 0.8770 0.9878 0.8415 0.8391 0.9622 0.8574

10, 10, 10, 10 5, 5, 5, 6 1, 1, 1, 1 0.0058 0.0077 0.0008 0.0051 0.0111 0.0007
5, 5, 5, 8 0.0102 0.0154 0.0017 0.0123 0.0149 0.0028
5, 5, 5, 10 0.0149 0.0262 0.0028 0.0145 0.0290 0.0049

7, 9, 11, 13 5, 5, 5, 6 0.0099 0.0196 0.0026 0.0080 0.0209 0.0028
5, 5, 5, 8 0.0254 0.0381 0.0045 0.0139 0.0388 0.0057
5, 5, 5, 10 0.0554 0.0686 0.0075 0.0293 0.0667 0.0100

5, 8, 12, 15 5, 5, 5, 6 0.0160 0.0406 0.0060 0.0094 0.0477 0.0081
5, 5, 5, 8 0.0539 0.0758 0.0098 0.0340 0.0786 0.0117
5, 5, 5, 10 0.1207 0.1244 0.0133 0.0834 0.1131 0.0154

30, 30, 30, 30 5, 5, 5, 6 0.0356 0.0649 0.0255 0.0408 0.0692 0.0326
5, 5, 5, 8 0.1697 0.2679 0.1265 0.1608 0.2780 0.1209
5, 5, 5, 10 0.4089 0.5607 0.3302 0.4100 0.6100 0.3222

21, 27, 33, 39 5, 5, 5, 6 0.0703 0.1044 0.0413 0.0691 0.0992 0.0440
5, 5, 5, 8 0.3486 0.4173 0.2074 0.3508 0.4204 0.2113
5, 5, 5, 10 0.6680 0.7676 0.4840 0.6558 0.7370 0.4963

15, 24, 36, 45 5, 5, 5, 6 0.0828 0.1161 0.0473 0.0723 0.1108 0.0532
5, 5, 5, 8 0.4269 0.4626 0.2380 0.4035 0.4696 0.2484
5, 5, 5, 10 0.7331 0.8067 0.5380 0.7069 0.8109 0.5654

50, 50, 50, 50 5, 5, 5, 6 0.0707 0.1042 0.0590 0.0830 0.1240 0.0728
5, 5, 5, 8 0.4171 0.5298 0.3764 0.4498 0.5810 0.3999
5, 5, 5, 10 0.7452 0.8605 0.7103 0.7910 0.9260 0.7554
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estimates of the scale parameters are â1 = 1.47, â2 = 1.60, â3 = 1.82, â4 = 1.80,
respectively. It is clearly seen that the scale parameters are different. The lifetimes
of the brands are given in Figure 1. The boxplots show that the groups referenced
as Brands 2-4 consist of outliers. These outliers are higher than one and a half times
higher than the medians. Testing the mean lifetimes of the components under scale
parameters, GP, PB, and FA tests are performed by using the doex.
The p-value of the GP, PB, and FA tests are 0.6807, 0.7471, and 0.7545, respec-
tively. Thus, there is no evidence to reject the null hypothesis at α0 = 0.05 and
concluded that the mean lifetimes of the components produced by different brands
are not different. It is seen that the PB test can control the Type I error probability
very close to the nominal level, in the unbalanced moderate, low-scale parameter
and outlier design in Table 1. Therefore, it can be said that the results obtained in
this example are reliable.

Example 2. In this example, the equality of mean agricultural income of the
geographical regions in Turkey is considered. Agricultural incomes of the Central
Anatolia (CA), Eastern Anatolia (EA), and Southeastern Anatolia (SA) regions in
2017 are considered and the data is obtained from the Turkish Statistical Insti-
tute Database. The Cramer-von Mises (CvM) goodness-of-fit test is used to test
whether the data follows the two-parameter exponential distribution. As a result
of the CvM test, the p-value 0.4005 shows there is not enough evidence to reject
the null hypothesis indicating that the data follows a two-parameter exponential
distribution at the 0.05 significance level. The number of city in the geographical
regions are nCA = 13, nEA = 14, and nSA = 9. The estimates of the location

parameters are b̂CA = 0.7503, b̂EA = 0.3649, b̂SA = 0.5811, and the estimates of
the scale parameters are âCA = 2.2122, âEA = 1.0558, âSA = 1.7988, respectively.
The agricultural income of the geographical regions in Turkey is given in Figure 2.
The boxplots show that the groups referenced as CA and SA consist of outliers.
The outlier in the geographical region of CA is five times higher than the median
while the outlier in the geographical region of SA is three times higher than its
median. Testing the mean income of the geographical regions under unequal scale
parameters, GP, PB, and FA tests are performed.
The p-value of the GP, PB, and FA tests are 0.0816, 0.0881, and 0.1489, respec-
tively. Thus, there is enough evidence to reject the null hypothesis at α0 = 0.10
and concluded that the mean incomes of the geographical regions are not differ-
ent according to the results of the GP and PB test. In Table 2, the GP and PB
tests are more powerful than the FA test, that’s why it can be said that the re-
sults of these two tests are more reliable than the FA test in the presence of outliers.
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Figure 1. Lifetime of the components in years

Figure 2. Agricultural income of the geographical regions in Turkey
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5. Results and Conclusions

The generalized p-value, parametric bootstrap, and fiducial approach-based test
proposed by Malekzadeh and Jafari [18] can be used for complete data. The perfor-
mance of the tests was compared in terms of Type I error probability and penalized
power for complete data and the most powerful test is determined. The results are
obtained in balanced and unbalanced designs for small, moderate, and large sam-
ples in the presence of outliers. The simulation results clearly show that the PB
test is superior to the others to control the Type I error probability and penalized
power in most of the cases. Only in the presence of outliers, the GP test is more
powerful than the PB test in k = 3 group designs. There are also some interesting
results obtained such as the negative effect of the balanced designs and higher scale
parameters on the performance of the tests. Moreover, illustrative examples are
given to perform the tests on a real data example. It is concluded that the life-
times of the components are not statistically significant. In this study, the PB test
is obtained as a powerful test for testing the equality of exponentially distributed
populations’ means under unequal scale parameters and it can be safely used in
reliability analysis, modeling extreme events, sequential analysis, and income in-
equality.
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Abstract. By using the definition of q-difference operator, we defined the new

q-Al-Oboudi-Al-Amoudi operator, which generalize modified Al-Oboudi-Al-

Amoudi operator. Using the new operator, we defined a new class of uniformly
functions and obtained subordination result for functions in it. Our results not

only generalize previous results but also modified some previous results.

1. Introduction

The class of univalent analytic functions

F (z) = z +

∞∑
k=2

akz
k, (ak ≥ 0), z ∈ D = {z ∈ C :| z |< 1}, (1)

is denoted by S.
The class of convex functions K satisfies

Re

{
1 +

zF
′′
(z)

F ′(z)

}
> 0.

If F, g are analytic in D, then F is subordinate to g, written F ≺ g if there exists
a Schwarz function w(z) analytic in D with w(0) = 0 and |w(z)| < 1 for all z ∈ D,
such that F(z) = g(w(z)). (see [14, 16])
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For F given by (1) and g given by

g(z) = z +

∞∑
k=2

bkz
k, (2)

the Hadamard product (or convolution) is

(F ∗ g) (z) = z +

∞∑
k=2

akbkz
k = (g ∗ F ) (z).

For F ∈ S, 0 < q < 1, the q−derivative operator ∇q is given by (Jackson [15]) and
many authors studied it for example see ([1] , [4− 6] , [9] , [16, 17] and [22, 23]) .

∇qF (z) =

{
F (z)−F (qz)

(1−q)z
,z ̸=0

F ′ (0) ,z=0

that is

∇qF (z) = 1 +

∞∑
k=2

[k]qakz
k−1, (3)

where

[k]q =
1− qk

1− q
, [0]q = 0. (4)

The fractional q−derivative operator of order α for analytic function F defined in
a simply connected domain, contains zero is defined by [5],

Dα
q,zF (z) =

1

Γq (1− α)

z∫
0

F (t)

(z − t)
α dqt , 0 ≤ α < 1,

Ωα
q F (z) = Γq (2− α) zαDα

q,zF (z) , (5)

= z +

∞∑
k=2

Γq(k + 1)Γq(2− α)

Γq(k + 1− α)
akz

k (0 < q < 1, 0 ≤ α < 1) ,

where multiplicity of (z − t)
−α

is removed by requiring log (z − t), to be real when
z − t >0 (for q → 1− see [19] , [20]).

Definition 1. For λ ≥ 0, 0 ≤ α < 1, 0 < q < 1, n ∈ N0 = N ∪ {0} , N = {1, 2, ...}
and F is given by (1) we defined new q−fractional derivative operator as follows,

D0,0
λ,qF (z) = F (z), (6)

D1,α
λ,qF (z) = (1− λ) Ωα

q F (z) + λzDq

(
Ωα

q F (z)
)
= Dα

λ,qF (z) ,

D2,α
λ,qF (z) = Dα

λ,q

(
Dα

λ,qF (z)
)
,
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Dn,α
λ,q F (z) = Dα

λ,q

(
Dn−1,α

λ,q F (z)
)
,

= z +

∞∑
k=2

Ψk,n,q(α, λ)akz
k,

where

Ψk,n,q(α, λ) =
Γq(k + 1)Γq(2− α)

Γq(k + 1− α)

[
1 + λ([k]q − 1)

]n
. (7)

We note that:
(i) Dn,0

1,q F (z) = Dn
q F (z) [8, 18] .

(ii) limq→1− Dn,α
λ,q F (z) = Dn,α

λ F (z), where this operator modified the operator

of [3, 7] ,

(iii) limq→1− D0,α
λ,qF (z) = Dα

z F (z) (see [19, 20]) ,

(iv) limq→1− Dn,0
1,q F (z) = DnF (z) (see [21]) ,

(v) limq→1− Dn,0
λ,qF (z) = Dn

λF (z) (see [2]) ,

Definition 2. For λ, µ ≥ 0, γ ≥ 1, 0 ≤ α, β < 1, 0 ≤ δ ≤ 1, n ∈ N0, a function F
∈ S is in the class Sn,α

λ,q (δ, γ, µ, β), if

Re

{
γz∇qG(z)

G(z)
− (γ − 1)

}
> µ

∣∣∣∣γz∇qG(z)

G(z)
− γ

∣∣∣∣+ β, (8)

where

G(z) = (1− δ)Dn,α
λ,q F (z) + δz

(
∇qD

n,α
λ,q F (z)

)
. (9)

We note that as q → 1− : Sn,α
λ,q (0, 1, µ, β) = SPn

α,λ (µ, β) and Sn,α
λ,q (1, 1, µ, β) =

UCV n
α,λ (µ, β) [3, 7, with Ψk,n,q(α, λ) of the form (1.7)] . For different values of n, α,

λ, δ, γ, µ and β, we get the classes defined by [3] , [8] , [10− 13] , and [17].

2. Main Results

Unless indicated, let 0 ≤ α, β < 1, λ, µ ≥ 0, γ ≥ 1, 0 ≤ δ ≤ 1, n ∈ N0, 0 < q < 1
and Ψk,n,q(α, λ) as (7) . The following definition and lemma are needed.

Definition 3. [24]. A sequence {bk}∞k=1 of complex numbers is called a subordinat-
ing factor sequence if, whenever F (z) ∈ K then,

∞∑
k=1

akbkz
k ≺ F (z) (z ∈ D; a1 = 1) .



704 M. A. MOWAFY, A. O. MOSTAFA, S. M. MADIAN

Lemma 1. [24]. The sequence {bk}∞k=1 is a subordinating factor sequence if and
only if

ℜ

{
1 + 2

∞∑
k=1

bkz
k

}
> 0 (z ∈ D) .

Theorem 1. If F ∈ S, satisfies

∞∑
k=2

[
1− β + γ

(
[k]q − 1

)
(1 + µ)

] [
1 +

(
[k]q − 1

)
δ
]
Ψk,n,q(α, λ) |ak| ≤ 1− β,

(10)
then, F ∈ Sn,α

λ,q (δ, γ, µ, β).

Proof. Assume that (10) holds. Since for real β and complex number w, □

Re(w) ≥ β ⇔ |w + (1− β)| − |w − (1 + β)| ≥ 0, (11)

then by Definition 2 it is sufficient to show that∣∣∣∣γz∇qG(z)

G(z)
− (γ − 1)− µ

∣∣∣∣γz∇qG(z)

G(z)
− γ

∣∣∣∣− (1 + β)

∣∣∣∣ ≤∣∣∣∣γz∇qG(z)

G(z)
− (γ − 1)− µ

∣∣∣∣γz∇qG(z)

G(z)
− γ

∣∣∣∣+ (1− β)

∣∣∣∣ . (12)

For the right-hand side of (12)

R : =

∣∣∣∣γz∇qG(z)

G(z)
− (γ − 1)− µ

∣∣∣∣γz∇qG(z)

G(z)
− γ

∣∣∣∣+ (1− β)

∣∣∣∣
=

1

|G(z)|
∣∣γz∇qG(z) + (2− β − γ)G(z)− µeiθ |γz∇qG(z)− γG(z)|

∣∣
>

|z|
|G(z)|

{2− β −
∞∑
k=2

[
2− β + γ

(
[k]q − 1

)
(1 + µ)

]
×

[
1 +

(
[k]q − 1

)
δ
]
Ψk,n,q(α, λ) |ak|}.

Similarly, the left

L : =

∣∣∣∣γz∇qG(z)

G(z)
− (γ − 1)− µ

∣∣∣∣γz∇qG(z)

G(z)
− γ

∣∣∣∣− (1 + β)

∣∣∣∣
=

1

|G(z)|
∣∣γz∇qG(z)− (γ − 1)G(z)− µeiθ |γz∇qG(z)− γG(z)| − (1 + β)G(z)

∣∣
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<
|z|

|G(z)|
{β +

∞∑
k=2

[
γ
(
[k]q − 1

)
(1 + µ)− β

] [
1 +

(
[k]q − 1

)
δ
]
Ψk,n,q(α, λ) |ak|}.

Since

R− L >
|z|

|G(z)|
{2 (1− β)− 2

∞∑
k=2

[
1− β + γ

(
[k]q − 1

)
(1 + µ)

]
×

[
1 +

(
[k]q − 1

)
δ
]
Ψk,n,q(α, λ) |ak|}

≥ 0,

then (12) is satisfied, so F ∈ Sn,α
λ,q (δ, γ, µ, β).

Let Śn,α
λ,q (δ, γ, µ, β) be the class of functions satisfy (10) so Śn,α

λ,q (δ, γ, µ, β) ⊂

Sn,α
λ,q (δ, γ, µ, β).

Theorem 2. Let F ∈ Śn,α
λ,q (δ, γ, µ, β) and g ∈ K, then

(
[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ)

2 {[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ) + 1− β}

)
(F ∗ g) (z) ≺ g (z) (13)

and

ℜ{F (z)} > −{[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ) + 1− β}
[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ)

. (14)

The constant factor
[1−β+γq(1+µ)](1+δq)Ψ2,n,q(α,λ)

2{[1−β+γq(1+µ)](1+δq)Ψ2,n,q(α,λ)+1−β} in (13) cannot be replaced

by a larger one.

Proof. Let F ∈ Śn,α
λ,q (δ, γ, µ, β) and g (z) = z +

∞∑
k=2

bkz
k ∈ K, then □

(
[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ)

2 {[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ) + 1− β}

)
(F ∗ g) (z)

=

(
[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ)

2 {[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ) + 1− β}

)(
z +

∞∑
k=2

akbkz
k

)
.

(15)
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Thus, by Definition 3, (13) will be true if{
[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ)

2 {[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ) + 1− β}
ak

}∞

k=1

(16)

is a subordinating factor sequence, with a1 = 1. In view of Lemma 1, this is
equivalent to

ℜ

{
1 +

∞∑
k=1

[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ)

{[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ) + 1− β}
akz

k

}
> 0, (17)

where

Θ (k) =
[
1− β + γ

(
[k]q − 1

)
(1 + µ)

] [
1 +

(
[k]q − 1

)
δ
]
Ψk,n,q(α, λ) (k ≥ 2),

is an increasing function of k (k ≥ 2), when |z| = r < 1, we have,

ℜ

{
1 +

∞∑
k=1

Θ(2)

Θ (2) + 1− β
akz

k

}

= ℜ
{
1 +

Θ (2)

Θ (2) + 1− β
z +

∑∞
k=2 Θ(2)

Θ (2) + 1− β
akz

k

}

≥ 1− Θ(2)

Θ (2) + 1− β
r −

∞∑
k=2

Θ(k)|ak|

Θ(2)+1−β rk

> 1− Θ(2)

Θ (2) + 1− β
r − 1−β

Θ(2)+1−β r

= 1− r > 0 (|z| = r < 1) .

By taking the convex function g(z) = z
1−z = z +

∑∞
k=2 z

k. To prove the sharpness

of Θ(2)
2[Θ(2)+1−β] , the function F0(z) ∈ Śn,α

λ,q (δ, γ, µ, β) given by

F0(z) = z − 1− β

[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ)
z2. (18)

Thus from (14), we have

[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ)

2 {[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ) + 1− β}
F0(z) ≺

z

1− z
.

Moreover, it can easily to verify for F0(z) given by (18) that

min
|z|≤r

{
ℜ [1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ)

2 {[1− β + γq (1 + µ)] (1 + δq)Ψ2,n,q (α, λ) + 1− β}
F0(z)

}
= −1

2
(19)

This shows that the
[1−β+γq(1+µ)](1+δq)Ψ2,n,q(α,λ)

2{[1−β+γq(1+µ)](1+δq)Ψ2,n,q(α,λ)+1−β} is the best possible .

Taking limq→1− in Theorem 2, we have
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Corollary 1. Let F ∈ Śn,α
λ (δ, γ, µ, β) whose coefficients satisfy (10) when q → 1−

and g (z) = z +
∞∑
k=2

bkz
k ∈ K, then(

[1− β + γ (1 + µ)] (1 + δ)Ψ2,n (α, λ)

2 {[1− β + γ (1 + µ)] (1 + δ)Ψ2,n (α, λ) + 1− β}

)
(F ∗ g) (z) ≺ g (z) (20)

and

ℜ{F (z)} > −{[1− β + γ (1 + µ)] (1 + δ)Ψ2,n (α, λ) + 1− β}
[1− β + γ (1 + µ)] (1 + δ)Ψ2,n (α, λ)

.

The factor
[1−β+γ(1+µ)](1+δ)Ψ2,n(α,λ)

2{[1−β+γ(1+µ)](1+δ)Ψ2,n(α,λ)+1−β} in (2.11) cannot be replaced by a larger
one.

Remark 1. Note that for γ = 1 and δ = 0, 1 respectively in Corollary 1 modified
Theorems 2.4 and 2.8 of [7] .

Taking γ = 0 in Theorem 2, we have

Corollary 2. Let F ∈ Śn,α
λ,q (δ, 0, µ, β) whose coefficients satisfy (10) when γ = 0

and g ∈ K, then(
(1− β) (1 + δq)Ψ2,n,q (α, λ)

2 [(1− β) (1 + δq)Ψ2,n,q (α, λ) + 1− β]

)
(F ∗ g) (z) ≺ g (z) (21)

and

ℜ{F (z)} > − [(1− β) (1 + δq)Ψ2,n,q (α, λ) + 1− β]

(1− β) (1 + δq)Ψ2,n,q (α, λ)
.

The factor
(1−β)(1+δ)Ψ2,n(α,λ)

2[(1−β)(1+δ)Ψ2,n(α,λ)+1−β] in (2.12) cannot be replaced by a larger one.

Taking µ = 0 in Theorem 2, we have

Corollary 3. Let F ∈ Śn,α
λ,q (δ, γ, 0, β) whose coefficients satisfy (10) with µ = 0

and g ∈ K. Then(
(1− β + γq) (1 + δq)Ψ2,n,q (α, λ)

2 [(1− β + γq) (1 + δq)Ψ2,n,q (α, λ) + 1− β]

)
(F ∗ g) (z) ≺ g (z) (22)

and

ℜ{F (z)} > − [(1− β + γq) (1 + δq)Ψ2,n,q (α, λ) + 1− β]

(1− β + γq) (1 + δq)Ψ2,n,q (α, λ)
.

The factor
(1−β+γq)(1+δq)Ψ2,n,q(α,λ)

2[(1−β+γq)(1+δq)Ψ2,n,q(α,λ)+1−β] in (22) cannot be replaced by a larger
one.
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3. Conclusions

Throughout the paper, first by using the definition of q−difference operator we
defined new q- Al-Oboudi - Al-Amoudi operator and which modified Al-Oboudi -
Al-Amoudi operator. After that, we used the new operator to introduce new class
Sn,α
λ,q (δ, γ, µ, β) which generalized a class of uniformly univalent functions. Finally,

we obtained some subordination factor sequence results for this class and its sub-
classes. Our results modified previous results.
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Abstract. In this paper, we introduce Bertrand and Mannheim curves of
framed curves, which are a special singular curve in 3D Lie groups. We explain

the conditions for framed curves to be Bertrand curves and Mannheim curves

in 3D Lie groups. We give relationships between framed curvatures and Lie
curvatures of Bertrand and Mannheim curves of framed curves. In addition,

we obtain the characterization of Bertrand and Mannheim curves according to
the various frames of framed curves in 3D Lie groups.

1. Introduction

It is known that a moving frame cannot be installed for curves with singular
points [1]. However, thanks to the recent studies for smooth singular curves, there
are important developments and these studies have important contributions to the
singularity theory. Framed curves defined by Honda and Takahashi are one of
them [10]. Framed curves that can have singular points are actually smooth curves.
Since they are the general form of Legendre curves on unit tangent bundles and of
regular curves with linear independent conditions, they have a great contribution
to the studies of singular curves. Some of the pioneering work on framed curves is
given in [6, 8, 10,11,16].

Bertrand and Mannheim curves are special curve types in differential geome-
try [2, 12, 13]. For curves γ1, γ2 : I → R and moving frames {T1,N1,B1} and
{T2,N2,B2} respectively, if N1 = N2 then curves γ1, γ2 are called Bertrand couple,
if N1 = B2 then curves γ1, γ2 are called Mannheim couple [2, 13]. Bertrand and
Mannheim curves of singular curves have been given by Honda and Takahashi in
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recent years, as well as the studies of regular curves on Bertrand and Mannheim
curves [11]. In addition, Honda and Takahashi added nondegenerate condition to
Bertrand and Mannheim curves for regular curves in the literature. Also, they gave
a theory that is not valid in the regular case. For framed curves, a curve can be
both a Bertrand and Mannheim curve.

Lie groups given by bi invariant metric are a structure that has important results
in physics as well as its importance in differential geometry. Lie groups have three
different forms in mathematics such that S3, SO(3) and abelian Lie groups [5].
There are some pioneering studies on 3D Lie groups in differential geometry. As
a generalization of the characterizations in Euclidean space, helices, slant helices,
Bertrand and Mannheim curves have been introduced in 3D Lie groups in various
studies [3, 9, 14, 15]. These studies are based on the condition that the curve is
regular. Framed curves, a singular curve, were introduced in 3D Lie groups by
Yazıcı, Okuyucu and Tosun [7]. They, gave a new perspective to both physical
and geometrical forms of Lie groups. Then, they defined various frames of framed
curves in 3D Lie groups.

In this study, we investigate Bertrand and Mannheim curves in 3D Lie groups
of framed curves, which have an important place in singularity theory. We express
the necessary and sufficient conditions for the framed curves to be Bertrand or
Mannheim curves in 3D Lie groups.

2. Lie Groups

Let G be a Lie group with a bi-invariant metric ⟨, ⟩ and ∇ be the Levi-Civita
connection of Lie group G. g is isomorphic to TeG where e is neutral element of G
and g is Lie algebra of G. Since ⟨, ⟩ is a bi-invariant metric on G, we have

⟨P, [Q,R]⟩ = ⟨[P,Q], R⟩

and

∇PQ =
1

2
[P,Q].

for all P,Q,R ∈ g. On the other hand the Lie bracket of two vector fields W1 and
W2 is given

[W1,W2] =

n∑
i=1

w1iw2i[Yi, Yj ],

whereW1 =
∑n

i=1 w1iYi andW2 =
∑n

i=1 w2iYi with orthonormal basis {Y1, Y2, ..., Yn}
of g.

Suppose that β : I → G be an unit speed regular curve. Then the covariant
derivative of X along the curve β is given as follows

∇β
′X = ∇TX = Ẋ +

1

2
[T,X],
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where T is tangent and Ẋ =
∑n

i=1

dx

dt
Yi. Moreover, ifW is the left-invariant vector

field to the curve, then Ẋ = 0 (see for details [4]).
The representation of the Frenet-Serret formulas in the 3D Lie group G with the

covariant derivative is given as follows:

∇TT = κ1N1,
∇TN1 = −κ1T + κ2N2,
∇TN2 = −κ2N1,

where ∇ is connection of G and κ1 = ∥Ṫ∥.

2.1. Framed curves in 3D Lie groups. In this part, framed curves, general and
adapted frames in 3D Lie groups are discussed [7]. Obviously, framed curves in 3D
Lie groups [7] are a generalization of framed curves in R3 [10].

Definition 1. [7] A curve (γ, ϱ1, ϱ2) : I → G×∆G in 3D Lie group G is a framed

curve if ⟨γ′
(s), ϱi(s)⟩ = 0 for all s ∈ I and i = 1, 2 where

∆G = {ϱ = (ϱ1, ϱ2) ∈ G×G| ⟨ϱ1, ϱ1⟩ = ⟨ϱ2, ϱ2⟩ = 1, ⟨ϱ1, ϱ2⟩ = 0}.

A unit vector ω is defined by ω = ϱ1 × ϱ2. The covariant derivative of X along
the framed curve (γ, ϱ1, ϱ2) with the help of unit vector ω as follows

∇ωX = Ẋ +
1

2
[ω,X]. (1)

A smooth function on I is given as γ
′
(s) = α(s)ω(s) and it is clear that s0 is a

singular point if and only if α(s0) = 0. Then the representation with Levi-Civita
connection of Frenet-Serret type formulas of (γ, ϱ1, ϱ2) satisfies:

∇ωω = −l2(s)ϱ1(s)− l3(s)ϱ2(s),
∇ωϱ1 = l1(s)ϱ2(s) + l2(s)ω(s),
∇ωϱ2 = −l1(s)ϱ1(s) + l3(s)ω(s),

(2)

where ∇ is Levi-Civita connection of G and
√
l22(s) + l23(s) = ∥ω̇∥. If ω is the

left-invariant vector field to the framed curve, then l2(s) = l3(s) = 0 for every
s ∈ I.

Proposition 1. [7] Let (γ, ϱ1, ϱ2) : I → G × ∆G be a framed curve in 3D Lie
groups. Then,

[ω, ϱ1] = ⟨[ω, ϱ1], ϱ2⟩ϱ2 = 2δGϱ2,

[ω, ϱ2] = ⟨[ω, ϱ2], ϱ1⟩ϱ1 = −2δGϱ1.

is provided.



SPECIAL SINGULAR CURVE COUPLES OF FRAMED CURVES IN 3D LIE GROUP 713

Theorem 1. [7] Let (γ, ϱ1, ϱ2) : I → G×∆G be a framed curve. The Frenet-Serret
type formulas of framed curves in 3D Lie groups are given by ω̇

ϱ̇1
ϱ̇2

 =

 0 −l2(s) −l3(s)
l2(s) 0 (l1(s)− δG)
l3(s) −(l1(s)− δG) 0

 ω
ϱ1
ϱ2

 . (3)

where δG =
1

2
⟨[ω, ϱ1], ϱ2⟩.

Corollary 1 ( [7], Bishop-type frame in 3D Lie groups). The under condition

l1(s)− δG − ψ
′
(s) = 0, we have ω̇

˙̃ϱ1
˙̃ϱ2

 =

 0 −l̃2(s) −l̃3(s)
l̃2(s) 0 0

l̃3(s) 0 0

 ω
ϱ̃1
ϱ̃2

 , (4)

where (
l̃2
l̃3

)
=

(
cosψ(s) − sinψ(s)
sinψ(s) cosψ(s)

)(
l2
l3

)
.

Corollary 2 ( [7], Frenet-type frame in 3D Lie groups). The under condition
l2(s) sinψ(s) + l3(s) cosψ(s) = 0, we get ω̇

˙̃ϱ1
˙̃ϱ2

 =

 0 p(s) 0
−p(s) 0 (q(s)− δG)

0 −(q(s)− δG) 0

 ω
ϱ̃1
ϱ̃2

 . (5)

where q(s) = l1(s)− ψ
′
(s) and p(s) ̸= 0.

3. Bertrand Curves of Framed Curves in 3D Lie Groups

Definition 2. The framed curves (γ, ϱ1, ϱ2) : I → G × ∆G and (γ, ϱ1, ϱ2) : I →
G × ∆G are called Bertrand couples if there exists a smooth function λ : I → R
where

γ(s) = γ(s) + λ(s)ϱ1(s) (6)

and

ϱ1(s) = ϱ1(s)

for all s ∈ I.

Proposition 2. If (γ, ϱ1, ϱ2) : I → G × ∆G and (γ, ϱ1, ϱ2) : I → G × ∆G are
Bertrand couples, λ ̸= 0 is a constant.
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Proof. By differentiating equation (6) in 3D Lie groups and by using equation (3),
we have

dγ(s)

ds
=
dγ(s)

ds
+ λ

′
(s)ϱ1(s) + λ(s)ϱ̇1(s)

α(s)ω(s) = (α(s) + λ(s)l2(s))ω(s) + λ
′
(s)ϱ1(s) + λ(s)(l1(s)− δG)ϱ2(s) (7)

Since ϱ1(s) = ϱ1(s), we get λ
′
(s) = 0. That is, λ(s) is a constant function on I. □

Theorem 2. Let (γ, ϱ1, ϱ2) : I → G × ∆G be a framed curve with the curvature
(l1, l2, l3, α) and Lie curvature δG. Then (γ, ϱ1, ϱ2) is a Bertrand curve if and only
if there exist λ ̸= 0=constant and a smooth function Φ : I → R where

λ(l1(s)− δG) cosΦ(s)− (α(s) + λl2(s)) sinΦ(s) = 0 (8)

Proof. Suppose that (γ, ϱ1, ϱ2) : I → G × ∆G are Bertrand curve. Since ϱ1(s) =
ϱ1(s), there exists a function Φ on I with

ϱ2(s) = cosΦ(s)ϱ2(s)− sinΦ(s)ω(s), (9)

ω(s) = sinΦ(s)ϱ2(s) + cosΦ(s)ω(s). (10)

If the equations (9) and (10) are substituted in the equation (7), we get

α(s) sinΦ(s) = λ(l1(s)− δG), (11)

α(s) cosΦ(s) = α(s) + λl2(s). (12)

Therefore, the equation (8) is found. Conversely, suppose that (8) is provided. If
we define a mapping (γ, ϱ1, ϱ2) : I → G×∆G with

γ(s) = γ(s) + λϱ1(s), ϱ1(s) = ϱ1(s)

and ϱ2(s) = cosΦ(s)ϱ2(s)−sinΦ(s)ω(s), then (γ, ϱ1, ϱ2) and (γ, ϱ1, ϱ2) are Bertrand
mates in 3D Lie groups. □

Proposition 3. Let (γ, ϱ1, ϱ2) : I → G × ∆G and (γ, ϱ1, ϱ2) : I → G × ∆G are
Bertrand mates. Then,

δG = δG

where

δG =
1

2
⟨[ω, ϱ1], ϱ2⟩,

δG =
1

2
⟨[ω, ϱ1], ϱ2⟩.

Proof. Suppose that (γ, ϱ1, ϱ2) : I → G × ∆G and (γ, ϱ1, ϱ2) : I → G × ∆G are
Bertrand mates. By according to equations (9) and (10), we can write

δG =
1

2
⟨[ω, ϱ1], ϱ2⟩
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=
1

2
⟨[sinΦ(s)ϱ2(s) + cosΦ(s), ϱ1(s)], cosΦ(s)ϱ2(s)− sinΦ(s)ω(s)⟩

=
1

2
⟨sinΦ(s)[ϱ2(s), ϱ1(s)] + cosΦ(s)[ω(s), ϱ1(s)], cosΦ(s)ϱ2(s)− sinΦ(s)ω(s)⟩

Hence, from Lie bracket properties, we get

δG =
1

2
⟨[ω, ϱ1], ϱ2⟩ =

1

2
⟨[ω, ϱ1], ϱ2⟩ = δG.

□

Proposition 4. Let (γ, ϱ1, ϱ2) : I → G × ∆G and (γ, ϱ1, ϱ2) : I → G × ∆G are
Bertrand mates. Then the curvatures (l1, l2, l3, α) of (γ, ϱ1, ϱ2) are given by

l1(s) = l1(s) cosΦ(s)− l2(s) sinΦ(s) + δG(1− cosΦ(s)),

l2(s) = l2(s) cosΦ(s) + l1(s) sinΦ(s)− δG sinΦ(s),

l3(s) = l3(s)− Φ
′
(s),

α(s) = λ(l1(s)− δG) sinΦ(s) + (α(s) + λl2(s)) cosΦ(s).

Proof. By differentiating equation (9), we have

l3(s)ω(s)− (l1(s)− δG)ϱ1(s) = (l3(s) cosΦ(s)− Φ
′
(s) cosΦ(s))ω(s)

+ (−(l1(s)− δG) cosΦ(s) + l2(s) sinΦ(s))ϱ1(s)

+ (− sinΦ(s)Φ
′
(s) + l3(s) sinΦ(s))ϱ2(s).

Since ϱ1(s) = ϱ1(s) and δG = δG, we get

l1(s) = l1(s) cosΦ(s)− l2(s) sinΦ(s) + δG(1− cosΦ(s)).

By using equation (10), we have l3(s) = l3(s) − Φ
′
(s). Also, by differentiating

equation (10), we get

−l2(s)ϱ1(s)− l3(s)ϱ2(s) = (l3(s) sinΦ(s)− Φ
′
(s) sinΦ(s))ω(s)

+ (−(l1(s)− δG) sinΦ(s)− l2(s) cosΦ(s))ϱ1(s)

+ (cosΦ(s)Φ
′
(s)− l3(s) cosΦ(s))ϱ2(s).

Since ϱ1(s) = ϱ1(s) and δG = δG, we have

l2(s) = l2(s) cosΦ(s) + l1(s) sinΦ(s)− δG sinΦ(s).

On the other hand, If the equation (11) is multiplied by sinΦ(s) on both sides, and
the equation (12) is multiplied by cosΦ(s) on both sides, then we get

α(s) = λ(l1(s)− δG) sinΦ(s) + (α(s) + λl2(s)) cosΦ(s).

□
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Corollary 3. Let (γ, ϱ1, ϱ2) : I → G ×∆G be a framed curve with the curvatures
(l1, l2, l3, α) and Lie curvature δG.
(i). If l1(s)− δG = 0 for every s ∈ I , then (γ, µ1, µ2) : I → G×∆G is a Bertrand
curve.
(ii). If α(s) + λl2(s) = 0 where λ ̸= 0=constant, then (γ, ϱ1, ϱ2) : I → G×∆G is a
Bertrand curve.

Proof. (i). If we assume that Φ(s) = 0, it is clear that equation (7) is realized.

(ii). If we assume that Φ(s) =
π

2
, it is clear that equation (7) is realized. □

Corollary 4. For an adapted frame (Bishop-type frame) in 3D Lie groups, the
framed curve is always a Bertrand curve.

Corollary 5. For an adapted frame (Frenet-type frame) in 3D Lie groups, the
curves are Bertrand couples if and only if there exists λ=constant where Φ(s) is
a constant. Because, the curvature l3(s) = l3(s) = 0 for Frenet-type framed curve

and by using equation l3(s) = l3(s)− Φ
′
(s), we have Φ is a constant.

Corollary 6. In the Propositions and Theorems obtained, if δG = 0, the results
correspond to the study [11]. Therefore, these results are a generalization of both
study [11] and [15].

4. Mannheim Curves of Framed Curves in 3D Lie Groups

Definition 3. The framed curves (γ, ϱ1, ϱ2) : I → G × ∆G and (γ, ϱ1, ϱ2) : I →
G ×∆G are called Mannheim couples if there exists a smooth function λ : I → R
where

γ(s) = γ(s) + λ(s)ϱ1(s) (13)

and

ϱ1(s) = ϱ2(s)

for all s ∈ I.

Proposition 5. If (γ, ϱ1, ϱ2) : I → G × ∆G and (γ, ϱ1, ϱ2) : I → G × ∆G are
Mannheim couples, then λ ̸= 0 is a constant.

Proof. Firstly, by differentiating equation (13) in 3D Lie groups and by using equa-
tion (3), we have

α(s)ω(s) = (α(s) + λ(s)l2(s))ω(s) + λ
′
(s)ϱ1(s) + λ(s)(l1(s)− δG)ϱ2(s) (14)

Since ϱ1(s) = ϱ2(s), we get λ
′
(s) = 0. That is, λ(s) is a constant function on I. □

Theorem 3. Let (γ, ϱ1, ϱ2) : I → G × ∆G be a framed curve with the curvature
(l1, l2, l3, α) and Lie curvature δG. Then (γ, ϱ1, ϱ2) is a Mannheim curve if and
only if there exist λ ̸= 0=constant and a smooth function θ : I → R where

λ(l1(s)− δG) sin θ(s) + (α(s) + λl2(s)) cos θ(s) = 0 (15)
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Proof. Assume that (γ, ϱ1, ϱ2) : I → G×∆G is a Mannheim curve. Since ϱ1(s) =
ϱ2(s), there exists a function θ on I with

ϱ1(s) = sin θ(s)ϱ2(s) + cos θ(s)ω(s), (16)

ω(s) = cos θ(s)ϱ2(s)− sin θ(s)ω(s). (17)

If the equations (16) and (17) are substituted in the equation (14), we get

−α(s) sin θ(s) = α(s) + λl2(s) (18)

α(s) cos θ(s) = λ(l1(s)− δG) (19)

Consequently, we have equation (15). Conversely, suppose that (15) is provided. If
we define a mapping (γ, ϱ1, ϱ2) : I → G×∆G with

γ(s) = γ(s) + λϱ1(s), ϱ1(s) = ϱ2(s)

and ϱ1(s) = sin θ(s)ϱ2(s)+cos θ(s)ω(s), then (γ, ϱ1, ϱ2) and (γ, ϱ1, ϱ2) are Mannheim
mates. □

Remark 1. Similar to Proposition 3, by using equations ϱ1(s) = ϱ2(s), (16) and
(17), it can be seen that the Lie curvature of the framed curve and the Lie curvature
of the Mannheim curve are the same.

Proposition 6. Let (γ, ϱ1, ϱ2) : I → G × ∆G and (γ, ϱ1, ϱ2) : I → G × ∆G are
Mannheim mates. Then the curvatures (l1, l2, l3, α) of (γ, ϱ1, ϱ2) are given by

l1(s) = −l1(s) sin θ(s)− l2(s) cos θ(s) + δG(1 + sin θ(s)),

l2(s) = −l3(s) + θ
′
(s),

l3(s) = l1(s) cos θ(s)− l2(s) sin θ(s)− δG cos θ(s),

α(s) = λ(l1(s)− δG) cos θ(s)− (α(s) + λl2(s)) sin θ(s).

Proof. By differentiating equation (16), we have

l2(s)ω(s) + (l1(s)− δG)ϱ2(s) = (l3(s) sin θ(s)− θ
′
(s) sin θ(s))ω(s)

+ (−(l1(s)− δG) sin θ(s)− l2(s) cos θ(s))ϱ1(s)

+ (cos θ(s)θ
′
(s)− l3(s) cos θ(s))ϱ2(s).

Since ϱ2(s) = ϱ1(s) and δG = δG, we get

l1(s) = −l1(s) sin θ(s)− l2(s) cos θ(s) + δG(1 + sin θ(s)).

By using equation (17), we have l2(s) = −l3(s)+θ
′
(s). Moreover, by differentiating

equation (17), we get

−l2(s)ϱ1(s)− l3(s)ϱ2(s) = (l3(s) cos θ(s)− θ
′
(s) cos θ(s))ω(s)

+ (−(l1(s)− δG) cos θ(s) + l2(s) sin θ(s))ϱ1(s)

+ (− sin θ(s)θ
′
(s) + l3(s) sin θ(s))ϱ2(s).
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Since ϱ2(s) = ϱ1(s) and δG = δG, we have

l3(s) = l1(s) cos θ(s)− l2(s) sin θ(s)− δG cos θ(s).

On the other hand, If the equation (18) is multiplied by − sin θ(s) on both sides,
and the equation (19) is multiplied by cos θ(s) on both sides, then we get

α(s) = λ(l1(s)− δG) cos θ(s)− (α(s) + λl2(s)) sin θ(s).

□

Corollary 7. Let (γ, ϱ1, ϱ2) : I → G × ∆G be a framed curve with the curvature
(l1, l2, l3, α) and Lie curvature δG.
(i). If l1(s) − δG = 0 for all s ∈ I , then (γ, ϱ1, ϱ2) : I → G ×∆G is a Mannheim
curve.
(ii). If α(s) + λl2(s) = 0 where λ ̸= 0=constant, then (γ, ϱ1, ϱ2) : I → G×∆G is a
Mannheim curve.

Proof. (i). If we assume that θ(s) =
π

2
, it is clear that equation (15) is realized.

(ii). If we assume that θ(s) = 0, it is clear that equation (15) is realized. □

Corollary 8. For an adapted frame (Bishop-type frame) in 3D Lie groups, the
framed curve is always a Mannheim curve.

Corollary 9. For an adapted frame (Frenet-type frame) in 3D Lie groups, since
l3(s) = l3(s) = 0, by using Proposition (6), the curves are Mannheim couples if and
only if there exist λ ̸= 0=constant and a smooth function θ where

p(s) = −θ
′
(s),

q(s) = −(q − δG) sin θ(s) + p(s) cos θ(s) + δG,

α(s) = −(α(s)− λp(s)) sin θ(s) + λ(q(s)− δG) cos θ(s),

p(s) sin θ(s) + (q(s)− δG) cos θ(s) = 0.

Let us now give a theorem that is not valid for regular Bertrand and Mannheim
curves in both Euclidean space and 3D Lie groups:

Theorem 4. Let (γ, ϱ1, ϱ2) : I → G × ∆G be a framed curve with the curvature
(l1, l2, l3, α) and Lie curvature δG. Then (γ, ϱ1, ϱ2) : I → G × ∆G is a Bertrand
curve in 3D Lie groups if and only if (γ, ϱ1, ϱ2) : I → G×∆G is a Mannheim curve
in 3D Lie groups.

Proof. Assume that (γ, ϱ1, ϱ2) is a Bertrand curve. Then, there exist λ ̸= 0=constant
and a smooth function Φ such that

λ(l1(s)− δG) cosΦ(s)− (α(s) + λl2(s)) sinΦ(s) = 0.

If Φ(s) = θ(s)− π

2
, we have

λ(l1(s)− δG)) sin θ(s) + (α(s) + λl2(s)) cos θ(s) = 0.
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Then, (γ, ϱ1, ϱ2) is a Mannheim curve. Conversely, suppose that (γ, ϱ1, ϱ2) is a
Mannheim curve. Then, there exist a constant λ ̸= 0 and a smooth function θ such
that

λ(l1(s)− δG)) sin θ(s) + (α(s) + λl2(s)) cos θ(s) = 0.

If θ(s) = Φ(s) +
π

2
, then we have,

λ(l1(s)− δG)) cosΦ(s)− (α(s) + λl2(s)) sinΦ(s) = 0.

Consequently, (γ, ϱ1, ϱ2) is a Bertrand curve. □

Corollary 10. In the Propositions and Theorems obtained, if δG = 0, the results
correspond to the study [11]. Therefore, these results are a generalization of both
study [11] and [9].
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VALUE PROBLEMS ON INFINITE INTERVALS
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Abstract. The paper deals with the existence of solutions for a general class

of second-order nonlinear impulsive boundary value problems defined on an

infinite interval. The main innovative aspects of the study are that the re-
sults are obtained under relatively mild conditions and the use of principal

and nonprincipal solutions that were obtained in a very recent study. Addi-

tional results about the existence of bounded solutions are also provided, and
theoretical results are supported by an illustrative example.

1. Introduction

Differential equations with impulses are very convenient mathematical tools for
perfectly modeling real-world phenomena with sudden changes in their states. Since
it is more realistic to have abrupt changes or jumps in the state than to show con-
stant behavior, they frequently occur in natural sciences. In addition, the efficiency
and richness of the relevant theory have contributed to many researchers paying
attention to impulsive differential equations in recent years. We refer the reader
to the famous books [6,16] that involve extensive knowledge about qualitative the-
ory and some applications of impulsive differential equations. On the other hand,
boundary value problems (BVPs) on unbounded domains naturally appear in fluid
mechanics problems such as the unstable gas flow through a porous medium, in
plasma physics, and to model many other phenomena, see [1]. In particular, some
applications of impulsive BVPs can be found in the papers [9, 17, 18] that have
recently been published. There are many results in the literature regarding the
existence of solutions to impulsive BVPs, e.g. [2,3,10–12]. Below, we mention some
recent results about impulsive BVPs on unbounded domains.
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In [10], for an impulsive BVP with integral boundary conditions of the form

1
a(t) (a(t)x

′(t))′ + f(t, x(t), x′(t)) = 0, t ̸= τk,

∆x|t=τk
= Ik(x(τk)), k = 1, 2, . . . ,

∆x′|t=τk
= Jk(x(τk)), k = 1, 2, . . . ,

a1 limt→−∞ x(t)− b1 limt→−∞ a(t)x′(t) =
∞∫

−∞
g(x(s))φ(s) ds,

a2 limt→∞ x(t) + b2 limt→∞ a(t)x′(t) =
∞∫

−∞
h(x(s))φ(s) ds,

the existence of solutions is shown under the following hypotheses:

(i) a1b2 + a2b1 + a1a2
∫∞
−∞

1
a(s)ds > 0,

(ii) f ∈ C(R × [0,∞) × R, [0,∞)) such that f(t, y, z) ≤ u1(t)u2(y, z) where
u1 ∈ L(R, (0,∞)) and u2 ∈ C([0,∞)× R, [0,∞)),

(iii) g, h ∈ C(R, [0,∞)) are nondecreasing, and g(x), h(x) are bounded provided
that x is defined on a bounded set,

(iv) Ik and Jk are bounded functions, and[
a2 + b2

∫ ∞

τk

1

a(s)
ds

]
Jk(x(τk))−

a2
a(τk)

Ik(x(τk)) > 0,

(v) φ ∈ C(R, [0,∞)) and
∞∫

−∞
φ(s) ds < ∞,

(vi) a ∈ C(R, (0,∞)) and
∞∫

−∞

1
a(s)ds < ∞.

In [12], the second order impulsive BVP
x′′(t) = −f(t, x(t), x′(t)), t ̸= τk,

x(τk+) = akx(τk), k = 1, 2, . . . ,

a0x(0)− b0x
′(0) = α,

a1x(1)− b1x
′(1) = β

(1)

is studied, and the existence of solutions is shown via the upper and lower solutions
method.

In [2], the existence of solutions was shown for the impulsive BVP
(a(t)y′)′ + b(t)y = f(t, y), t ̸= τk,

∆y′ + bky = gk(y), t = τk,

y(t0) = y0,

y(t) = c1v(t) + c2u(t) + o(vµ(t)u(t)), t → ∞, µ ∈ (0, 1),

(2)

where u and v are the principal and nonprincipal solutions of the corresponding
homogeneous equation. Observe in (1) that impulse effects occur only on the so-
lutions while (2) has continuous solutions as the impulse effects occur only on the
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derivatives of the solutions. The method of the paper [2] is different from the other
studies in the literature as it relies on principal and nonprincipal solutions. A sim-
ilar approach was applied in [3] and [7], where a particular case of the impulsive
BVP (2) was considered in [3], while [7] dealt with a BVP without impulse effects.

Motivated by the studies above, we consider the second-order nonlinear differ-
ential equation under impulse effects

(a(t)y′)′ + b(t)y = f(t, y), t ̸= τk,

∆y + aky = fk(y), t = τk,

∆(a(t)y′) + bky + cky
′ = gk(y), t = τk,

(3)

satisfying the boundary conditions

y(a) = 0, y(t) = O(v(t)), t → ∞ (4)

where a ≥ t0, a(t), b(t) ∈ PLC([t0,∞),R) with a(t) > 0, f ∈ PLC([t0,∞) × R,R),
{ak}, {bk} and {ck} are sequences of real numbers, fk, gk ∈ PLC(R,R) for each
k ∈ N, {τk} is the sequence of impulses satisfying τk+1 > τk for all k ∈ N and
limk→∞ |τk| = ∞, and ∆ is the impulse operator defined by ∆y(τk) = y(τ+k )−y(τ−k )

with y(τ±k ) = limt→τ±
k
y(t). Note that PLC[t0,∞) is the set of functions y such

that y(t) is continuous on (τk, τk+1], y(τk−) = y(τk) and y(τk+) exists for each
k = 1, 2, . . .. For brevity, we use the notations n(t) := inf{k : τk ≥ t} and
n(t) := sup{k : τk < t}.

We aim to prove the existence of solutions of the second-order nonlinear impulsive
BVP (3)-(4) with discontinuous solutions under some mild conditions that depend
on the principal and nonprincipal solutions of the homogeneous equation

(a(t)y′)′ + b(t)y = 0, t ̸= τk,

∆y + aky = 0, t = τk,

∆(a(t)y′) + bky + cky
′ = 0, t = τk

(5)

associated with equation (3).
In the present work, the impulses affect both the solutions and their derivatives,

and the impulse conditions occurring in the third line of (3) are the so-called mixed
type conditions because they include both the solution and its derivative. Hence,
the equation under consideration is quite general. On the other hand, the conditions
determined on the functions that are on the right-hand side of the nonhomogeneous
equation (3) are weaker than the conditions in previous studies. Our conditions do
not directly require the functions to be bounded or monotonic. Another novelty is
the use of principal and nonprincipal solutions of the corresponding homogeneous
equation (5).

2. Preliminaries

In this section, we state some auxiliary lemmas that will be utilized in the rest
of the paper.
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The existence and some properties of principal and nonprincipal solutions for
impulsive differential equations with continuous solutions{

(a(t)y′)′ + b(t)y = 0, t ̸= τk,

∆a(t)y′ + bky = 0, t = τk
(6)

was proved in [13], where it was shown that equation (6) has two linearly indepen-
dent solutions u0 and v0 satisfying

lim
t→∞

u0(t)

v0(t)
= 0,

∫ ∞

a

dt

a(t)u2
0(t)

= ∞,

∫ ∞

a

dt

a(t)v20(t)
< ∞,

u′
0(t)

u0(t)
<

v′0(t)

v0(t)
, t ≥ a

provided that (6) has a positive solution, and a is sufficiently large. Such functions
u0 and v0 are said to be principal and nonprincipal solutions of (6), respectively.

The counterpart of the above lemma for differential equations having impulse
effects not only on the derivative of the solution but also on the solution was given
very recently in [4] and improved in [5] for the more general impulsive differential
equations of the form (5). The statement of the related lemma is given below for
completeness.

Lemma 1. ( [5]) Let (1− ak)(1− ck/a(τk)) > 0, k ∈ N and suppose equation (5)
has a positive solution. Then, there exist two linearly independent solutions u and
v of (5) satisfying the following conditions:

lim
t→∞

u(t)

v(t)
= 0, (7)

∫ ∞

a

µ(t, a)

a(t)u2(t)
dt = ∞,

∫ ∞

a

µ(t, a)

a(t)v2(t)
dt < ∞,

u′(t)

u(t)
<

v′(t)

v(t)
, t ≥ a,

where a is arbitrarily large, and

µ(t, a) =

n(t)∏
k=n(a)

(1− ak)(1− ck/a(τk)).

Namely, u is the principal, and v is a nonprincipal solution.

Remark 1. If u > 0 is a principal solution of (5), then, a nonprincipal solution
is of the form

v(t) = u(t)

t∫
t0

µ(s, a)

a(s)u2(s)
ds. (8)
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Conversely, if v > 0 is a nonprincipal solution of (5), then, the principal solution
is of the form

u(t) = v(t)

∞∫
t

1

µ(∞, s)a(s)v2(s)
ds.

In addition, we provide below some definitions and compactness criteria that
will be needed in the future.

Definition 1. ( [15]) Let 1 ≤ p < ∞ and Y be an arbitrary measure space. We
define Lp(Y ) to be the space of functions f such that

||f ||p =

(∫
Y

|f |pdµ
)1/p

< ∞.

Definition 2. ( [15]) Let 1 ≤ p < ∞. We define ℓp(Y ) to be the space of sequences
yk such that

∞∑
k=1

|yk|p < ∞.

Theorem 1. ( [14]) Let Y ∈ Rn. A set S ⊂ Lp(Y ), 1 ≤ p < ∞ is compact if

(i) there exists some a > 0 such that ∥y∥Lp(Y ) ≤ a for all y ∈ S,
(ii) ∥(φhy)−y∥Lp(Y ) → 0 as h → 0, where (φhy)(x) := y(x1+h, x2+h . . . xn+

h), x ∈ Y .

Theorem 2. ( [8]) Let Y ∈ Rn. A set S ⊂ lp(Y ), 1 ≤ p < ∞ is totally bounded if,
and only if

(i) S is pointwise bounded,
(ii) for every ϵ > 0 and y ∈ S, there is some n ∈ N such that

∑
k>n |yk|

p
< ϵp.

3. Main Results

We define the Banach space

X =

{
y ∈ PLC([a,∞),R) :

|y(t)|
v(t)

is bounded

}
endowed with the norm

∥y∥ = sup
t∈[a,∞)

|y(t)|
v(t)

and, introduce the operator
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(T y)(t) =− u(t)

{ t∫
a

1

a(s)u2(s)

( ∞∫
s

u(r)

µ(r, s)
f(r, y(r))dr +

∞∑
k=n(s)

hk

µ(k, s)

)
ds

−
n(t)∑

k=n(a)

fk(y(τk))

(1− ak)u(τk)

}
, (9)

where hk = (1− ak)u(τk)gk(y(τk))−
[
(a(τk)− ck)u

′(τk)− bku(τk)
]
fk(y(τk)) and

y ∈ X.
We aim to show that T y has at least one fixed point by applying Schauder fixed

point theorem.
For this purpose, we define the set E :=

{
y ∈ X : |y(t)| ≤ v(t)

}
which is convex,

closed, and bounded, and assume the following hypotheses hold:

(H1) There exist some functions qj ∈ C(R+,R+), j = 1, 2, 3, pi ∈ C([t0,∞),R+),
i = 1, 2 and real sequences {αk}, {βk} such that

|f(t, y)| ≤ p1(t)q1

(
|y|
v(t)

)
+ p2(t), t ≥ a, (10)

∣∣fk(y)∣∣ ≤ αkq2

(
|y|

v(τk)

)
,

∣∣gk(y)∣∣ ≤ βkq3

(
|y|

v(τk)

)
, τk ≥ a.

(H2)

∫ ∞

a

u(s)

µ(s, a)
(p1(s) + p2(s))ds+

∞∑
k=n(a)

Hk

µ(k, a)
= O(1), t → ∞,

where Hk = (1− ak)u(τk)βk + |(a(τk)− ck)u
′(τk)− bku(τk)|αk

(H3)

n(t)∑
k=n(a)

αk

(1− ak)u(τk)
= O(1), t → ∞.

Lemma 2. The operator T given in (9) maps E onto E.

Proof. First, we prove that T y ∈ PLC[a,∞).
Let y ∈ X and t1 ∈ [a,∞) with t < t1, and t1 ̸= τ l, l = 1, 2, . . . . Then

|(T y)(t)− (T y)(t1)| ≤|u(t)− u(t1)|
{ t∫

a

1

a(s)u2(s)

( ∞∫
s

u(r)

µ(r, s)
|f(r, y(r))|dr

+

∞∑
k=n(s)

|hk|
µ(k, s)

)
ds+

n(t)∑
k=n(a)

|fk(y(τk))|
(1− ak)u(τk)

}

+ u(t1)

{ t1∫
t

1

a(s)u2(s)

( ∞∫
s

u(r)

µ(r, s)
|f(r, y(r))|dr
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+

∞∑
k=n(s)

|hk|
µ(k, s)

)
ds+

n(t1)∑
k=n(t)

|fk(y(τk))|
(1− ak)u(τk)

}
.

Since |y(t)|/v(t) is bounded, ∃M > 0 such that

|y(t)|
v(t)

≤ M.

So, from continuity of qj , there can be found positive constants cj such that
max0≤t≤M qj(t) = cj , j = 1, 2, 3. Hence, in view of (H1), we have the following
estimates:

|f(r, y(r))| ≤ p1(r)q1

(
|y(r)|
v(r)

)
+ p2(r) ≤ c1p1(r) + p2(r) ≤ c

[
p1(r) + p2(r)

]
, (11)

|hk| ≤ (1− ak)u(τk)βkq3
( |y(τk)|
v(τk)

)
+ |(a(τk)− ck)u

′(τk)− bku(τk)|αkq2
( |y(τk)|
v(τk)

)
≤ c3(1− ak)u(τk)βk + c2|(a(τk)− ck)u

′(τk)− bku(τk)|αk ≤ cHk,
(12)

|fk(y(τk))| ≤
αk

(1− ak)u(τk)
q2

(
|y(τk)|
v(τk)

)
≤ c2

αk

(1− ak)u(τk)
≤ c

αk

(1− ak)u(τk)
,

(13)

where c = max{1, c1, c2, c3}.
Using the above estimates and the expansion 1/µ(s, ν) = µ(s, a)/µ(ν, a), we can

proceed as follows:

|(T y)(t)− (T y)(t1)| ≤c|u(t)− u(t1)|
{ t∫

a

(
µ(s, a)

a(s)u2(s)

∞∫
a

u(r)

µ(r, a)
(p1(r) + p2(r)) dr

+

∞∑
k=n(a)

Hk

µ(k, a)

)
ds+

n(t)∑
k=n(a)

αk

(1− ak)u(τk)

}

+ cu(t1)

{ t1∫
t

µ(s, a)

a(s)u2(s)

( ∞∫
a

u(r)

µ(r, a)
(p1(r) + p2(r)) dr

+

∞∑
k=n(a)

Hk

µ(k, a)

)
ds+

n(t1)∑
k=n(t)

αk

(1− ak)u(τk)

}
.

It follows from (H2) that (T y)(t) → (T y)(t1) as t → t1−.
In a similar way, one can show that limt→t1+(T y)(t) = (T y)(t1) for t1 ̸= τ l,

l = 1, 2, . . . , and limt→τ l+(T y)(t) exist for all l = 1, 2, . . . Hence, T y(t) is piecewise
left continuous on [a,∞).
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Now, from (11), (12) and (13) one has

|(T y)(t)| ≤cu(t)

{ t∫
a

µ(s, a)

a(s)u2(s)

( ∞∫
a

u(r)

µ(r, a)

(
p1(r) + p2(r)

)
dr +

∞∑
k=n(a)

Hk

µ(k, a)

)
ds

+

n(t)∑
k=n(a)

αk

(1− ak)u(τk)

}
.

In view of (H2) and (H3) we may write
∞∫
a

u(r)

µ(r, a)

(
p1(r) + p2(r)

)
dr +

∞∑
k=n(a)

Hk

µ(k, a)
≤ 1

2c
(14)

and
n(t)∑

k=n(a)

αk

(1− ak)u(τk)
≤ 1

2c

for some sufficiently large a. Then, from the relation (8) we have

|(T y)(t)| ≤u(t)

2

{ t∫
a

µ(s, a)

a(s)u2(s)
ds+

n(t)∑
k=n(a)

αk

(1− ak)u(τk)

}
=

v(t)

2
+

u(t)

2
.

Using (7) we conclude that |(T y)(t)| ≤ v(t). Hence, T y ∈ E. □

Lemma 3. T is a continuous operator.

Proof. Take a sequence {yn} ∈ E such that lim
n→∞

yn = y ∈ E. Using (11), (12) and

(13) we can write

|(T yn)(t)− (T y)(t)| ≤u(t)

{ t∫
a

µ(s, a)

a(s)u2(s)

( ∞∫
s

u(r)

µ(r, a)
|f(r, yn(r))− f(r, y(r))|dr

+

∞∑
k=n(s)

1

µ(k, a)

[
(1− ak)u(τk)|gk(yn(τk))− gk(y(τk))|

+ |(a(τk)− ck)u
′(τk)− bku(τk)|fk(yn(τk))− fk(y(τk))|

])
ds

+

n(t)∑
k=n(a)

1

(1− ak)u(τk)
|fk(yn(τk))− fk(y(τk))|

}

≤2cu(t)

{ t∫
a

µ(s, a)

a(s)u2(s)

( ∞∫
s

u(r)

µ(r, a)
(p1(r) + p2(r)) dr
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+

∞∑
k=n(s)

Hk

µ(k, a)

)
ds+

n(t)∑
k=n(a)

αk

(1− ak)u(τk)

}
.

From (H2) and (H3), it can be seen that the above expression is finite for all t ∈
[a,∞). Thus, applying Lebesgue dominated convergence theorem and Weierstrass-
M test, we obtain

lim
n→∞

∥T yn − T y∥ → 0.

Hence, T is a continuous operator.
□

Lemma 4. T is a relatively compact operator.

Proof. Pick an arbitrary sequence {yn} ∈ E. We wish to prove that there exists a
subsequence {yni

} ∈ E such that T yni
is convergent in E. If we define

fn(r) :=
u(r)

µ(r, s)
f(r, yn(r)), gn(τk) :=

fk(yn(τk))

(1− ak)u(τk)
,

and

hn(τk) :=
1

µ(k, s)

[
(1−ak)u(τk)gk(yn(τk))+[(a(τk)−ck)u

′(τk)−bku(τk)]fk(yn(τk))
]

then, T can be decomposed as T = T1 + T2 + T3, where

(T1yn)(t) = u(t)

t∫
a

µ(s, a)

a(s)u2(s)

∞∫
s

fn(r)drds,

(T2yn)(t) = u(t)

t∫
a

µ(s, a)

a(s)u2(s)

∞∑
k=n(s)

hn(τk)ds, (T3yn)(t) = u(t)

n(t)∑
k=n(a)

gn(τk).

As in (14), there is a constant m1 > 0 such that

∥fn∥L1([a,∞)) ≤ m1, n ≥ 1.

Thus, the first hypothesis of Lemma 1 holds. Now, for (φhf)(s) = f(s + h) from
(10) and (11) we may write

∞∫
a

|(φhfn)(s)− fn(s)|ds ≤
∞∫

a+h

|fn(s)|ds+
∞∫
a

|fn(s)|ds

≤ 2

∞∫
a

|fn(s)|ds ≤ 2c

∞∫
a

u(s)

µ(s, a)
(p1(s) + p2(s))ds.

In view of (H2), we apply the Lebesgue dominated convergence theorem, and we
obtain the second hypothesis of Lemma 1. Hence, Lemma 1 asserts that there exists
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a convergent subsequence {fni
} ∈ L1([a,∞)). Since fni

is continuous, we conclude
that

∞∫
a

|f̄(r)|dr = lim
i→∞

∞∫
a

|fni
(r)|dr,

where

f̄(r) =
u(r)

µ(r, a)
f(r, y(r)).

Then,

|(T1yni)(t)− (T1y)(t)|
v(t)

≤ u(t)

v(t)

t∫
a

µ(s, a)

a(s)u2(s)

∞∫
s

|fni
(r)− f̄(r)|drds.

In view of (H2), again Lebesgue dominated convergence theorem applies, and so

lim
i→∞

∥T1yni
− T1y∥ = 0.

Next, we need to utilize Lemma 2 to show that T2 is a compact operator. Proceeding
as in (12), we see that

|hn(τk)| ≤ c
Hk

µ(k, a)
.

But (H2) and (H3) imply that each element of the sets {fn}, {hn} is pointwise
bounded. This means that the first hypothesis of Lemma 2 holds.

For an arbitrary ϵ > 0, we may choose a sufficiently large j ∈ N so that
∞∑
k=j

Hk

µ(k, a)
<

ϵ

c
,

then we get
∞∑
k=j

|hn(τk)| < ϵ.

Thus, by virtue of Lemma 2, the set {hn} is compact in ℓ1([a,∞)) which means
that there exists a convergent subsequence {hni

} ∈ ℓ1([a,∞)) such that

lim
i→∞

∞∑
k=n(a)

|hni(τk)− h̄k| = 0,

where

h̄k :=
hk

µ(k, a)
.

Hence,

|(T2yni
)(t)− (T2y)(t)|
v(t)

≤ u(t)

v(t)

t∫
a

µ(s, a)

a(s)u2(s)

∞∑
k=n(s)

|hni
(τk)− h̄k|.
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Applying Weierstrass-M test it is seen that T2 has a convergent subsequence in E,
i.e.,

lim
i→∞

∥T2yni − T2y∥ = 0.

Finally, since T3 is a finite sum, it is uniformly convergent. Hence,

lim
i→∞

|(T3yni)(t)− (T3y)(t)|
v(t)

= 0.

Since each of T1, T2 and T3 is relatively compact in E, then so is T . This completes
the proof. □

Lemma 5. Let y be a fixed point of the operator (9). Then, y is a solution of
equation (3).

Proof. Suppose y is a fixed point of the operator T . Then,

y(t) = u(t)

{
I(t) +

n(t)∑
k=n(a)

fk(y(τk))

(1− ak)u(τk)

}
,

where

I(t) :=−
t∫

a

1

a(s)u2(s)

( ∞∫
s

u(r)

µ(r, s)
f(r, y(r))dr +

∞∑
k=n(s)

hk

µ(k, s)

)
ds.

For t ̸= τ l, l = 1, 2, . . . , we have

y′(t) =u′(t)

{
I(t) +

n(t)∑
k=n(a)

fk(y(τk))

(1− ak)u(τk)

}
− J(t)

a(t)u(t)

where

J(t) =

∞∫
t

u(r)

µ(r, t)
f(r, y(r))dr +

∞∑
k=n(t)

hk

µ(k, t)
.

Thus,

(a(t)y′(t))′ + b(t)y(t) =[(a(t)u′(t))′ + b(t)u(t)]

{
I(t) +

n(t)∑
k=n(a)

fk(y(τk))

(1− ak)u(τk)

}
+ 2a(t)u′(t)I ′(t) + u(t)(a(t)I ′(t))′.

It is easy to see that

2a(t)u′(t)I ′(t) = −2u′(t)

u2(t)
J(t)

and

u(t)(a(t)I ′(t))′ =
2u′(t)

u2(t)
J(t) +

1

µ(t, t)
f(t, y(t)).
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From µ(t, t) = 1, we conclude that

(a(t)y′(t))′ + b(t)y(t) = f(t, y(t)). (15)

Now, we need to show that impulsive conditions hold. Let t = τ l. Clearly I(t)
is a continuous function, namely I(τ l+) = I(τ l). Thus, we have

∆y|t=τ l
=u(τ l+)

{
I(τ l) +

l−1∑
k=n(a)

fk(y(τk))

(1− ak)u(τk)
+

fl(y(τ l))

(1− al)u(τ l)

}
−

u(τ l)

{
I(τ l) +

l−1∑
k=n(a)

fk(y(τk))

(1− ak)u(τk)

}

=∆u|t=τ l

{
I(τ l) +

l−1∑
k=n(a)

fk(y(τk))

(1− ak)u(τk)

}
+

u(τ l+)fl(y(τ l))

(1− al)u(τ l)
.

From u(τ l+) = (1− al)u(τ l) it follows that

∆y|t=τ l
+ aly(τ l) = fl(y(τ l)). (16)

Finally, using

1

µ(k, l + 1)
=

k∏
j=l+1

(1− aj)
−1(1− cj/a(τ j))

−1 = (1− al)(1− cl/a(τ l))
1

µ(k, l)

we can write J(τ l+) = (1− al)(1− cl/a(τ l))J(τ l)− hl, and hence

a(τ l+)u(τ l+)I ′(τ l+) =− 1

u(τ l+)
J(τ l+) = ((a(τ l)− cl))u(τ l)I

′(τ l) +
hl

(1− al)u(τ l)
.

Then, we have

a(τ l+)y′(τ l+) =a(τ l+)u′(τ l+)

{
I(τ l) +

l∑
k=n(a)

fk(y(τk))

(1− ak)u(τk)

}
+ a(τ l+)u(τ l+)I ′(τ l+)

=
[
(a(τ l)− cl)u

′(τ l)− blu(τ l)
]{

I(τ l) +

l−1∑
k=n(a)

fk(y(τk))

(1− ak)u(τk)
+

fl(y(τ l))

(1− al)u(τ l)

}

+ a(τ l)u(τ l)I
′(τ l) +

hl

(1− al)u(τ l)

which implies that

∆(ay′) + bly(τ l) + cly
′(τ l) = gl(y(τ l)). (17)

Hence, from (15), (16), and (17) we conclude that y(t) is a solution of (3). □

Theorem 3. The impulsive differential equation (3) with the boundary conditions
(4) has at least one solution, provided that the hypotheses (H1)-(H3) hold, where u
and v are principal and nonprincipal solutions of the homogeneous equation (5).
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Proof. From Lemma 2, Lemma 3 and Lemma 4 it is seen that the Schauder fixed
point theorem’s all hypotheses hold. Thus, the operator T given in (9) has a fixed
point, say y. In view of Lemma 5, the fixed point y is a solution of the equation
(3).

On the other hand, by using the hypotheses (H1)-(H3) it is not hard to see that
I(a) = 0 which implies

y(a) = u(a)

{
I(a) +

n(a)∑
k=n(a)

fk(y(τk))

(1− ak)u(τk)

}
= 0.

Proceeding as in Lemma 3, we obtain |y(t)| ≤ v(t) from which we can write

lim
t→∞

|y(t)|
v(t)

≤ 1,

which means that y(t) = O(v(t)) as t → ∞. Thus, the boundary conditions in (4)
hold. This completes the proof. □

4. Examples

This section is devoted to illustrative examples that demonstrate the efficiency
of the above result.

Example 1. Consider the impulsive BVP

(t2y′)′ − 2y = ln
(
1 +

y2

t2(y2 + 1)

)
, t ̸= τk,

∆y − y

k
= sin

( y

k4(k + 1)2

)
, t = τk,

∆(t2y′)− ky′ = arctan(y/k3), t = τk,

y(1) = 0, y(t) = O(v(t)), t → ∞.

(18)

Observe that a(t) = t2, b(t) = −2, ak = −1/k, bk = 0, ck = −k, and so (1−ak)(1−
ck/a(τk)) = (1 + 1/k)2. Furthermore,

f(t, y) = ln
(
1 +

y2

t2(y2 + 1)

)
≤ 1

t2
y2

y2 + 1
≤ 1

t2
,

fk(y) = sin
( y

k4(k + 1)2

)
≤ 1

(k2 + k)2
|y|
k2

and

gk(y) = arctan
( y

k3

)
≤ 1

k

|y|
k2

.

By direct computations, it can be shown that u(t) = kt−2 is the principal, and
v(t) = kt, t ∈ (k − 1, k] is a nonprincipal solution of the associated homogeneous
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impulsive equation 
(t2y′)′ − 2y = 0, t ̸= τk,

∆y − y

k
= 0, t = τk,

∆(t2y′)− ky′ = 0, t = τk.

Thus, one may choose p1(t) = 1/t2, p2(t) = 0, q1(y) = 1, q2(y) = q3(y) = y,
αk = 1/(k2 + k)2 and βk = 1/k so that (H1) is satisfied.

Now, we need to check for the validity of the hypotheses (H2) and (H3). Let
a = 2. Observe that n(s) = i if s ∈ (i− 1, i], and

µ(s, a) = µ(i, 2) =

i∏
k=2

(k + 1)2

k2
=

(i+ 1)2

4
, Hk =

k + 1

k3
+

2

k3(k + 1)
.

So, we have∫ ∞

a

u(s)

µ(s, a)
(p1(s) + p2(s))ds+

∞∑
k=n(a)

Hk

µ(k, a)
=

∞∑
i=3

∫ i

i−1

4

(i+ 1)2
i

s4
ds

+

∞∑
k=2

4

(k + 1)2

(k + 1

k3
+

2

k3(k + 1)

)
=

∞∑
i=3

4i(3i2 − 3i+ 1)

3(i− 1)3i3(i+ 1)2

+

∞∑
k=2

( 4

k3(k + 1)
+

8

k3(k + 1)3

)
(19)

and

n(t)∑
k=n(a)

αk

(1− ak)u(τk)
=

n(t)∑
k=2

1

(k + 1)3
(20)

which are both finite.
Thus, all the hypotheses of Theorem 3 hold, and hence there exists a solution

y(t) of the impulsive BVP (18).

Remark 2. If the right-hand sides of the hypotheses (H2) and (H3) are replaced
with O(1/v(t)), where v is a nonprincipal solution of the homogeneous impulsive
equation (5), then the impulsive BVP (3) satisfies the boundary condition

y(t) = O(1), t → ∞,

i.e., the solution turns out to be bounded.
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Indeed, in Example 1, it can be seen from (19) and (20) that there exist some
positive constants C1 and C2 such that∫ t

a

u(s)

µ(s, a)
(p1(s) + p2(s))ds+

n(t)∑
k=n(a)

Hk

µ(k, a)
≤ C1

t3
+ o(t3) = o(v(t)), t → ∞

and
n(t)∑

k=n(a)

αk

(1− ak)u(τk)
≤ C2

k2
= O

( 1

v(t)

)
, t → ∞

since v(t) = kt, t ∈ (k − 1, k]. Hence, the impulsive BVP (18) has at least one
bounded solution.

5. Conclusion

In this paper, the existence of solutions for impulsive BVPs on an infinite interval
was obtained under some weak conditions. As the impulses act on both the solution
and its derivative, i.e., the solutions have discontinuities, and both the differential
equation and the impulses are nonlinear, it turns out that the impulsive BVP (3)
is in a quite general form. The main innovation in the study is to use the principal
and nonprincipal solutions of the associated impulsive homogeneous equation. Also,
slightly modifying the hypotheses of the main theorem, it was shown that the
considered impulsive BVP has a bounded solution.
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CONSTANT PSEUDO-ANGLE LIGHTLIKE SURFACES

Gül TUĞ

Department of Mathematics, Karadeniz Technical University, Trabzon, TÜRKİYE

Abstract. The oriented angles between lightlike vectors cannot be defined

properly compared to the timelike vectors in the Minkowski spacetime. There-
fore, we use the pseudo-angles between any non-lightlike or lightlike vectors to

develop the theory of lightlike surfaces having constant angle with a fixed non-

lightlike direction. We investigate some geometric properties on these surfaces
such as being a tangent developable. Besides, we construct the constant angle

lightlike ruled surfaces by means of the null helices. We give several examples

to illustrate the obtained surfaces.

1. Introduction

In the differential geometry and physics, especially in the theory of general rel-
ativity, lightlike hypersurfaces play an important role because they are considered
as models for different horizon types of black holes. A black hole is a region of
space-time containing a huge mass compacted into an extremely small volume.
The gravity inside the black hole is so strong that even light with its remarkable
speed cannot escape (see [1]). After the Einstein’s theory of gravitation was first
published in 1915, numerous research papers were devoted to the mathematical and
physical theory of black holes. For subsequent information about black holes and
the applications of lightlike hypersurfaces, see [3, 7, 11,12,23,24].
A constant angle surface is a surface which has tangent planes making a constant
angle with a fixed constant vector field at every point in the Euclidean meaning
(for more detail, see [8, 9, 20]). These surfaces are considered as a generalization
of the concept of helix. They represent good models to describe some phenomena
in physics of interfaces in liquids crystals and of layered fluids (see [6]). Lopez
and Munteanu extend the theory of constant angle surfaces to the three dimen-
sional Minkowski spacetime [18]. However, due to the variety of causal characters
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Keywords. Lightlike surface, pseudo-angle, transversal vector field, ruled surface, Cartan

slant helix, null helix, pseudo-null curve.
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of a vector in Minkowski space, there is not a natural concept of angle between
two arbitrary vectors so it is only possible to define the angle between timelike
vectors. Therefore, they state that a constant angle surface in Minkowski space
is actually a spacelike surface whose unit normal vector makes a constant hyper-
bolic angle with a fixed timelike vector at every point. In that case, it is possible
to define the angle since any unit normal vector field of a spacelike immersion is
timelike at each point. However, when we come to the concept of lightlike sur-
faces, following question arises: Is it possible to define the constant angle lightlike
surfaces in Minkowski spacetime? To answer this question we use the concept of
pseudo-angles between lightlike (null) vectors and the others. Helzer introduced
an oriented pseudo-angle between any two null or non-null unit vectors in [13].
Pseudo-angles provide a generalization of the oriented hyperbolic angles between
the unit non-null vectors [4]. That is to say, an oriented hyperbolic angle between
non-null unit vectors in Minkowski plane is equivalent to the oriented pseudo-angle
between those vectors. In [21], the author introduce pseudo-perpendicular vectors
in Minkowski plane. In the mentioned work, it is shown that any unit non-null or
null vector can be associated exactly eight vectors which are pseudo-perpendicular
to it. So it is given geometric interpretations of the oriented pseudo-angles in terms
of the hyperbolic arcs by using the pseudo-perpendicular vectors. Pseudo-angles
have applications in several fields, such as in computing Polyakov extrinsic energy
of Polyakov string solutions [3] or in Backlund transformations [22].
Ruled surfaces are generated by the continuous movement of a straight line in the
space and they are one of the most important topics in differential geometry. Also,
ruled surfaces play an important role in the study of rational design problems in
spatial mechanisms since they represent the trajectories of the oriented lines em-
bedded in a moving rigid body in spatial motion. This kind of a surface can be used
in many scientific fields as well as in Computer Aided Geometric Design (CAGD).
Different from the Euclidean space, there exist several types of the ruled surfaces
according to the Lorentzian casual characters of lines and curves lying on the sur-
face in Minkowski space. In [25], Kim and Yoon give classifications of the ruled
surfaces in Minkowski 3-space. Also, Ali [2] introduces two types of non-lightlike
ruled surfaces in Minkowski 3-space: Those of constant slope parallel to the tangent
of a timelike general helix and those parallel to the normal of a timelike slant helix.
However, there is still a gap in the theory of lightlike ruled surfaces in Minkowski
3-space.
In this paper, first we introduce the concept of lightlike constant-pseudo angle sur-
faces in Section 3. We give Theorem 3 and Theorem 5 to classify these surfaces
in two types. Moreover, we show that any constant pseudo-angle lightlike surface
is actually a ruled surface along a spacelike base curve with lightlike rulings. We
give some related corollaries and examples. In Section 4, we define a constant angle
lightlike ruled surface by means of the Cartan frame of a null helix, a pseudo-null
curve as a slant helix or a Cartan slant helix. We see that, they are ruled surfaces
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along a non-null base curve with null rulings similar to the surfaces introduced in
the previous section. We investigate such ruled surfaces in three cases depending
on the type of chosen helix. We also give some related examples to support the
theory.

2. Preliminaries

2.1. Pseudo-angles in the Minkowski plane. In this section, we give a brief
information on the pseudo-perpendicular vectors in Minkowski plane and introduce
the concept of pseudo-angles between lightlike and non-lightlike vectors in terms of
the hyperbolic arcs of finite hyperbolic lengths (for detailed information see [13,21]).
The Minkowski plane E2

1 is an affine plane endowed with the standard indefinite
scalar product given by

g(x, y) = x1y1 − x2y2

for any two vectors x(x1, x2) and y = (y1, y2). A vector v ̸= 0 has a casual character
spacelike, timelike or lightlike (lightlike) iff g(v, v) > 0, g(v, v) < 0 or g(v, v) = 0,
respectively. The vector v = 0 is spacelike and the norm of a given vector is defined
as ∥v∥ =

√
|g(v, v)|.

e2 = (0, 1) is a unit timelike vector and an arbitrary vector v in E2
1 is called future-

pointing or past-pointing if g(v, e2) < 0 or g(v, e2) > 0, respectively. Moreover,
any two timelike vectors have the same time-orientation when they are both future
pointing or past pointing vectors. On the other hand, if g(x, y) < 0 for any two
lightlike vectors x and y, we say they have the same time-orientation.
Let O = e1, e2 be the standard orthonormal basis of E2

1 . Then we define a function
ϕO(u) by

ϕO(u) =

{
ln |a+ b| if a+ b ̸= 0
− ln |a− b| if a+ b = 0

}
where u = ae1 + be2 is a lightlike or non-lightlike unit vector and a, b ∈ R [21].

Definition 1. If u and v are unit non-lightlike or lightlike vectors, then the oriented
pseudo-angle ϕ(u, v) from u to v is given by,

ϕ(u, v) = ϕO(u, v) = ϕO(v)− ϕO(u)

We note that the function ϕO(u, v) only depends on the orientation of the bases
O. Also, one can show that the oriented hyperbolic angles between the unit non-
lightlike vectors in the Minkowski plane are actually equal to the oriented pseudo-
angles between them [21].

Definition 2. Let u and v be the unit non-lightlike or lightlike vectors in Minkowski
plane. Then we say they are mutually pseudo-perpendicular vectors, if ϕ(u, v) = 0
[21].

Moreover, for any unit non-lightlike or lightlike vector in the Minkowski plane,
it can be associated eight vectors pseudo-perpendicular to it (for more information
see [21]).
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Any oriented pseudo-angle ϕ(a, b) can be associated a unique hyperbolic arc of
finite hyperbolic length. This hyperbolic arc is determined by the central pseudo-
angle enclosed by two unit non-lightlike vectors on the non-lightlike unit circle [13]
. The central pseudo-angle of the unit spacelike circle is pseudo-angle formed by
two unit timelike future-pointing (or past-pointing) vectors. Analogously, central
pseudo-angle of the unit timelike circle is pseudo-angle formed by two unit spacelike
vectors.
On the other hand, a measure of an unoriented pseudo-angle |ϕ(a, b)| is equal to
the hyperbolic length of the hyperbolic arc determined by two unit non-lightlike
vectors pseudo perpendicular to a and b, where a and b are the unit non-lightlike
or lightlike vectors. The oriented and unoriented pseudo-angles between unit non-
lightlike or lightlike vectors are distinguished in six cases depending on the causal
characters of the vectors a and b in [21].

2.2. Lightlike surfaces. In this section, we refer to the fundamental notions about
the theory of lightlike surfaces (for a further information on the lightlike surfaces,
see [10,11]).
Let M̄ be a 3 dimensional semi-Riemannian manifold endowed with the metric ḡ.
If M is a lightlike surface in M̄ , there exists a subspace TpM

⊥ at every point such
that

TpM
⊥ =

{
vp ∈ TpM̄ : ḡp (vp, wp) = 0, ∀wp ∈ TpM

}
.

where TpM is the tangent plane on the surface M . Then the radical distribution
is defined by,

RadTpM = TpM ∩ TpM⊥ ̸= {0}, ∀p ∈M.

The rank of RadTM is 1 for the lightlike surface M .
The complement vector bundle to RadTM in TM is S(TM) which is called a

screen distribution. Clearly, S(TM), is a non-degenerate subspace. Hence, one can
write the following decomposition,

TM = RadTM ⊕ort S(TM)

RadTM = TM ∩ TM⊥

where TM⊥ = ∩
p∈M

TpM
⊥.

Theorem 1. Let (M, g, S(TM)) be a lightlike surface in M̄ . If U is a coordinate
neighborhood of M and RadTM = Span{ξ}. There exist a smooth vector field N
such that

ḡ (ξ,N) = 1 and ḡ (N,W ) = 0.

where W is a non-lightlike vector field in S(TM).

The subspace ltr(TM) = Span{N} is called lightlike transversal vector bundle.
Also, the following decomposition is satisfied;

TM̄ |M= TM ⊕ tr(TM)
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where tr(TM) = ltr(TM)⊕S(TM⊥). In this case, {ξ,W,N} is a quasi-ortonormal
basis of M̄ along M . The Weingarten equations are

∇̄XY = ∇XY + h(X,Y ) (1)

∇̄XV = −AVX +∇t
XV (2)

where X,Y ∈ Γ(TM) and V ∈ Γ(tr(TM)). Also, ∇̄ is the Levi-Civita connection
on M̄ , ∇XY and ∇t

XV are the linear connections on M and tr(TM) respectively.
Note that ∇ is a torsion free induced linear connection. Also, AVX and h(X,Y )
are the shape operator and second fundamental form on M, respectively. Locally
suppose ξ,N is a pair of vector fields on U in Definition 1. Then we define a
symmetric bilinear form B and 1-form τ on M by

B(X,Y ) = ḡ(h(X,Y ), ξ) and τ(X) = ḡ(∇t
XN, ξ) (3)

The equations (1) and (2) become

∇̄XY = ∇XY +B(X,Y )N (4)

∇̄XN = −ANX + τ(X)N. (5)

3. Constant Pseudo-Angle Lightlike Surfaces

Let M be a lightlike surface in E3
1 . The tangent plane of M is spanned by the

pseudo orthogonal vector fields {e1, ξ} where ξ belongs to the radical distribution
and N be the transversal vector field at every point onM . To describe the constant
pseudo-angle lightlike surfaces, we consider a fixed non-lightlike vector field U mak-
ing a constant pseudo-angle with the vector field N . According to the position of
U , we classify such surfaces in two types. In all cases, since U is non-lightlike, there
exists a non-lightlike vector ν which is pseudo-perpendicular to N at every point.
We consider the pseudo-angle ϕ between the vector fields U and N as defined in
the Section 2.
Different from the constant angle surfaces in the Euclidean space, pseudo-angle
between the transversal vector field N and the constant direction U can be zero on
a lightlike surface. Since U and N are pseudo-perpendicular for ϕ = 0, U is one of
the pre-defined eight vectors given in [21]. We assume that ϕ is a non-zero constant
throughout this work.

Type I

Let U lies in the plane of {N, ξ}. We decompose U as,

U = aξ + bN

where a and b are constant functions. By using the logarithmic forms of the inverse
hyperbolic functions, we reach to the following form:

U = sinhϕξ + coshϕN. (6)
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We denote ⟨·, ·⟩ as the Lorentzian metric and ∇̄ as the Levi-Civita connection in
E3

1 when g is the metric and ∇ is the L.C. connection in M . Since U is constant,
from (6) we have

sinhϕ∇̄Xξ + coshϕ∇̄XN = 0

where X ∈ TPM . Also we know that B(X, ξ) = 0 and N is a lightlike vector field,
we have

sinhϕ⟨∇Xξ,N⟩ = 0.

Then we obtain τ(X) = 0 and this implies ∇̄XN = −ANX.
Let {v1, v2} show the local basis in the tangent plane TPM and we denote

bij = B(vi, vj) = −⟨Avi, vj⟩.
We can write the following decompositions by using the Gauss and Weingarten
formulas given in (2.4) and (2.5):

∇̄viVj = ∇viVj + bijN (7)

∇̄viN = bi1v1 + bi2v2 (8)

where Vj is a tangent vector field that extends vj . Now, take the derivative of (6)
with respect to e1 then we have

sinhϕ∇̄e1ξ + coshϕ∇̄e1N = 0. (9)

By combining (8) and (9), we find

∇̄e1ξ = − cothϕb11e1.

On the other hand, by taking the derivative of (6) with respect to ξ and combining
with (8) we find

sinhϕ∇̄ξξ = 0

and this implies ∇̄ξξ = 0.
According to the above calculations, we can give the following theorem without

proof:

Theorem 2. Let M be a constant pseudo-angle lightlike surface of Type I. The
linear connection on M is given by

∇e1e1 = cothϕb11ξ

∇e1ξ = − cothϕb11e1

∇ξξ = ∇ξe1 = 0.

From this point on, we choose coordinates u and v such that

∂

∂u
= βe1 and

∂

∂v
= βξ

where β = β(u, v) is a certain smooth function on the surface. We will construct
the parameterization x(u, v) of a lightlike constant pseudo-angle surface of Type I.
We assume x(u, v) twice continuously-differentiable and from Theorem 2 we obtain,
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xvv = 0

xvu =
βv
β
xu

xuu = −ββvxv +
βu
β
xu + β2b11N

Since xvu = xuv and ∇e1ξ = − cothϕb11e1, we find that βv

β = − cothϕb11.

Also we have,

Nu = ∇̄xu
N = b11xu

Nv = ∇̄xv
N = 0

Nuv = 0

Using the fact that Nuv = Nvu we get

(b11)vxu + b11xuv = 0 (10)

Substituting the expression of xuv in the last equation gives ∂
∂v (b11β) = 0. Hence

there exists a smooth function ψ(u) such that

b11β = ψ(u). (11)

Corollary 1. Let M be a constant pseudo-angle lightlike surface of Type I. If
b11 = 0, then the surface immersion is affinely equivalent to the graph immersion
of a certain function f :M → R.

Assume that b11 ̸= 0, then from the equation (10) we have

(b11)v − cothϕ(b11)
2 = 0.

Hence we obtain

b11 =
1

α(u)− v cothϕ
(12)

and from the (11) we get

β(u, v) = ψ(u)(α(u)− v cothϕ) (13)

We can calculate the second derivatives of x(u, v) by using the last two equations
as,

xuu = (ψ(u))2 cothϕ(α(u)− v cothϕ)xv + (
ψ′(u)

ψ(u)
+

α′(u)

α(u)− v cothϕ
)xu

+ (ψ(u))2(α(u)− v cothϕ)N

xuv =
cothϕ

v cothϕ− α(u)
xu

xvv = 0 (14)
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Using the expression of U given in (6), we calculate

⟨U, xu⟩ = 0 and ⟨U, xv⟩ = − coshϕ.

It implies ⟨x, U⟩v = − coshϕ and so we have

⟨x, U⟩ = −v coshϕ+ µ

where µ ∈ R.
1. Without loss of generality, we can choose the non-lightlike vector U as E1

with an isometry of E3
1 , then the parameterization x(u, v) of the surface M

is (up to translations):

x(u, v) = (v coshϕ, x1(u, v), x2(u, v))

Since ξ is a lightlike vector, ⟨xv, xv⟩ = 0. So there exists a function Φ(u, v)
such that

xv = (coshϕ, coshϕ cosΦ(u, v), coshϕ sinΦ(u, v)) (15)

From the equations in (14) and (15), we have Φv = 0. Hence the function
Φ depends on solely the parameter u. We can rewrite the expression of xv
as,

xv = coshϕ((0, f(u)) + (1, 0, 0)) (16)

where f(u) = (cosΦ(u), sinΦ(u)). If we calculate xuv and integrate with
respect to v, we obtain

xu = coshϕ(0, vf ′(u) + h(u))

where h(u) is a smooth function. When we substitute the last equation in
(14) and equalise it to the derivative of (16), we find that

h(u) = − tanhϕα(u)f ′(u)

We can rewrite the expression of xu by substituting the above function and
take the derivative with respect to u, then we obtain

xuu = coshϕ(v − α(u) tanhϕ)(0, f ′′(u))− α′(u) sinhϕ(0, f ′(u)) (17)

Multiplying the expressions of xuu in (14) and (17) by xv implies that

Φ′(u) =
ψ(u)√

|coshϕ sinhϕ|
One can make a change in the variable u to obtain Φ′(u) = 1 and this
choice does not affect the second derivatives of x(u, v). Then we substitute
Φ(u) in the last expressions of xu and xv and obtain

x(u, v) = v coshϕ(1, cosu, sinu) + η(u)

by integrating xv. We calculate the function η(u) as

η(u) = sinhϕ(

∫
α(u) sinudu,−

∫
α(u) cosudu, 0)
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2. Now take the non-lightlike vector U as the vector E3 in E3
1 . Then the

parameterization of the surface M is

x(u, v) = (x1(u, v), x2(u, v),−v coshϕ)
Following the similar steps in the case i, we obtain

x(u, v) = v coshϕ(coshu, sinhu,−1) + η(u)

where the function η(u) reads

η(u) = − sinhϕ(

∫
α(u) sinhudu,

∫
α(u) coshudu, 0).

Now we can give the following theorem as a consequence of the above calculations:

Theorem 3. Let M be a constant pseudo-angle lightlike surface of Type I which
is not totally geodesic in E3

1 . Up to the isometries of the ambient space, there
exist local coordinates u and v such that M is given by one of the following two
parameterizations:

1.

x(u, v) = η(u) + v coshϕ(1, cosu, sinu)

η(u) = sinhϕ(

∫
α(u) sinudu,−

∫
α(u) cosudu, 0)

2.

x(u, v) = η(u) + v coshϕ(coshu, sinhu,−1)

η(u) = − sinhϕ(

∫
α(u) sinhudu,

∫
α(u) coshudu, 0).

where α(u) is a smooth function on a certain interval I and ϕ is the pseudo-angle
between the transversal vector field on M and the fixed direction U .

TypeII

Let the fixed direction U lies in the plane of {e1, N}. Then we decompose U as,

U = UT + coshϕN

where UT is the projection of U on the tangent plane of M and

e1 =
UT

∥UT ∥
.

We can write U as in the following form,

U = coshϕe1 + sinhϕN. (18)

Since U is constant,
coshϕ∇̄Xe1 + sinhϕ∇̄XN = 0

where X ∈ TPM . Then we obtain τ(e1) = −b11 cothϕ and τ(ξ) = 0. This implies

∇̄viVj = ∇viVj + bijN (19)
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∇̄viN = bi1v1 + bi2v2 − bi1 cothϕN (20)

where Vj is a tangent vector field that extends vj . We can calculate the Levi Civita
connection on M by taking the derivatives of (18) with respect to e1 and ξ.

Theorem 4. Let M be a constant pseudo-angle lightlike surface of Type II. The
Levi Civita connection on M is given by

∇e1e1 = −b11(tanhϕe1 +N)

∇e1ξ = b11e1

∇ξξ = ∇ξe1 = 0

Proof. One can easily reach to the given equations by following straightforward
calculations similar to the Theorem 2 in Type I. □

Now we choose coordinates u and v as in Type I. To construct the parameteri-
zation x(u, v) of a lightlike constant pseudo-angle surface of Type II, we calculate
the second derivatives by using Theorem 3 as follows:

xvv = 0

xvu =
βv
β
xu

xuu = (−βv tanhϕ+
βu
β
)xu (21)

We find that βv

β = b11 and so (b11)v + b211 = 0. Choose b11 ̸= 0, then we have

b11 =
1

v + α(u)

where α(u) is a smooth function. On the other hand using the derivatives given
in (20) we calculate ∂

∂v (b11β) = 0. Hence we have b11β = ψ(u) where ψ(u) is a
smooth function. Then we obtain

β(u, v) = ψ(u)(v + α(u)).

One can easily calculate that

⟨xu, U⟩ = β coshϕ and ⟨xv, U⟩ = sinhϕ

Integrating second one of the above equations with respect to v, we get

⟨x, U⟩ = v sinhϕ+ η(u)

and we obtain η(u) = coshϕ
∫
β(u, v)du + c by taking derivative and integrating

with respect to u.
Now we take the spacelike fixed direction U as the vector E3 in E3

1 . Using (18),
we conclude that the parameterization of M is in the form:

x(u, v) = (x1(u, v), x2(u, v), v sinhϕ+ coshϕ

∫
β(u, v)du)
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up to translations. Since ⟨xu, xu⟩ = β2, there exists a function Φ(u, v) such that

xu = (β sinhϕ coshΦ, β sinhϕ sinhΦ, β coshϕ) (22)

Then we calculate

xuv = (βv sinhϕ coshΦ + βΦv sinhϕ sinhΦ, βv sinhϕ sinhΦ + βΦv sinhϕ coshΦ, βv coshϕ)

We use the equality of the second derivatives of x and integrate the above equation
with respect to u to obtain,

xv = (sinhϕ

∫
ψ(u) coshΦdu, sinhϕ

∫
ψ(u) sinhΦdu, coshϕ

∫
ψ(u)du) (23)

When we equalise the two expressions of xuv given in (21) and the above equation,
we find that Φv = 0, hence the fuction Φ only depends on the variable u.

On the other hand we find that

dΦ

du
= −ψ(u) tanhϕ cothΦ (24)

by following similar steps as in Type I. If we solve the equation (24), we obtain

coshΦ = e− tanhϕ
∫
ψ(u)du

sinhΦ = (e−2 tanhϕ
∫
ψ(u)du − 1)

1
2 (25)

Now we integrate the equation (23) with respect to v and we have

x(u, v) = (v sinhϕ

∫
ψ(u) coshΦdu, v sinhϕ

∫
ψ(u) sinhΦdu, v coshϕ

∫
ψ(u)du) + µ(u) (26)

Then we take derivative of (26) with respect to u and equalise to the expression
of xu given in (22) to find µ(u). We have

µ(u) = (sinhϕ

∫
ψ(u)α(u) coshΦdu, sinhϕ

∫
ψ(u)α(u) sinhΦdu, coshϕ

∫
ψ(u)α(u)du)

By the help of the above calculations, we give following theorem without proof:

Theorem 5. Let M be a constant pseudo-angle lightlike surface of Type II which
is not totally geodesic in E3

1 . Up to the isometries of the ambient space, there exist
local coordinates u and v such that M is given by the following parameterization:

x(u, v) = µ(u) + v(sinhϕ

∫
ψ(u) coshΦdu, sinhϕ

∫
ψ(u) sinhΦdu, coshϕ

∫
ψ(u)du)

µ(u) = (sinhϕ

∫
ψ(u)α(u) coshΦdu, sinhϕ

∫
ψ(u)α(u) sinhΦdu, coshϕ

∫
ψ(u)α(u)du)

where ψ(u) and α(u) are smooth functions on a certain interval I, ϕ is the pseudo-
angle between the transversal vector field on M and the fixed direction U and

coshΦ = e− tanhϕ
∫
ψ(u)du

sinhΦ = (e−2 tanhϕ
∫
ψ(u)du − 1)

1
2 .

Proposition 1. Let the fixed direction U lies in the plane of {e1, ξ}. Then the
surface immersion is affinely equivalent to the graph immersion of a certain function
f :M → R.
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Proof. We express U as
U = coshϕe1 + sinhϕξ (27)

Since U is constant, we calculate

coshϕ(∇e1e1 + b11N) + sinhϕ∇e1ξ = 0

Then we obtain ∇e1e1 = −b11N and this implies b11 = 0. □

Corollary 2. Any constant pseudo-angle lightlike surface is a ruled surface along
a spacelike base curve with lightlike rulings.

Theorem 6. A constant pseudo-angle lightlike surface is totally umbilical.

Proof. Let x(u, v) be a constant pseudo-angle lightlike surface of Type I or Type II.
Since xu = βe1 and xv = ξ we obtain B(xu, xv) = 0 = g(xu, xv) and B(xv, xv) =
0 = g(xv, xv). Also, using the equation

B(xu, xu) = ⟨∇̄xu
N, xu⟩ (28)

we have
B(xu, xu) = β2b11 = b11g(xu, xu).

□

Corollary 3. If M is a constant pseudo-angle lightlike surface, then the lightlike
sectional curvature is negative.

Theorem 7. The constant pseudo-angle lightlike surface of Type I is a lightlike
developable.

Proof. Let M be a lightlike surface of Type I which has one of the two parameteri-
zations given in Theorem 3.3. Then we obtain the following partial differentials of
the parameterization given in (1) as:

Xu = η′(u) + v coshϕ(0,− sinu, cosu)

Xv = coshϕ(1, cosu, sinu)

η′(u) = sinhϕ(0, α(u) sinu,−α(u) cosu)
Since ||Xu ×Xv|| = 0, the surface is a lightlike developable. For the parameteriza-
tion given by (2), the proof is similar. □

Theorem 8. The constant pseudo-angle lightlike surface of Type I cannot be a
tangent surface.

Proof. Assume that M is a tangent surface. If M is one of the surfaces given in
Corollary 1, then we find that coshϕ = 0. However, this is a contradiction. □

Theorem 9. The constant pseudo-angle lightlike surface of Type I is one of the
following surfaces:

i. A part of a lightlike plane
ii. A part of the lightcone
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iii. A mix of the above surfaces

Proof. Proof is clear from the Theorem 5.1 in [14]. □

Theorem 10. The constant pseudo-angle lightlike surface of Type II cannot be a
lightlike developable.

Proof. Let x(u, v) be a lightlike surface of Type II. Assume that it is a lightlike
developable. The expressions of xu and xv are given in (22) and (23), respectively.
By a straightforward calculation we can state that the vector V = xu×xv is lightlike.
This property implies that the function Φ is constant. However, we see that it is
only possible when β = 0 by using the equation (24) and this is a contradiction. □

Theorem 11. Let the constant pseudo-angle lightlike surface of Type II be a tangent
surface. Then the function ψ(u) is in the form:

ψ(u) =
eu

tanhϕ
∫
α(u)eudu

where α(u) is a smooth function and ϕ is the pseudo-angle between the transversal
vector and a fixed direction.

Proof. Let M be a surface given in Theorem 4 If it is a tangent surface, tangent of
the base curve must be equal to the rulings. Hence, we have

ψ(u)α(u) coshΦ =

∫
ψ(u) coshΦdu.

If we take derivative of the above equation with respect to u, we obtain

α(u) = 1 +
tanhϕ

ψ(u)

∫
(ψ(u))2α(u)du

On the other hand, we get ψ(u)α(u) =
∫
ψ(u)du when we equalise the third com-

ponents of the tangent vector of µ(u) and the ruling. Hence it must be

ψ(u)α(u) = ψ(u) + tanhϕ

∫
(ψ(u))2α(u)du. (29)

Taking derivative of (29) gives a Riccati differential equation and the solution is

ψ(u) =
eu

tanhϕ
∫
α(u)eudu

.

□

We give following examples to illustrate the introduced surfaces by taking dif-
ferent choises of the functions ψ(u) and α(u).
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Example 1. Let x(u, v) be the parameterization of a constant pseudo-angle lightlike
surface of Type I as in Theorem 3 (2). Take the pseudo-angle as ϕ = 5 and the
function α(u) = u. Then the surface is obtained as

x(u, v) =

 74.21v cosh(u)− 74.2u cosh(u) + 74.2 sinh(u)
74.21v sinh(u)− 74.2u sinh(u) + 74.2 cosh(u)

−74.21v



and it can be seen in the Figure 1(a).

Example 2. Now take x(u, v) as the parameterization of a constant pseudo-angle
lightlike surface of Type I as in Theorem 3 (1). We choose the pseudo-angle as
ϕ = 5 and the function α(u) = eu. Then the surface parameterization is

x(u, v) =

 74.21v − 37.1 cos(u)eu + 37.1 sin(u)eu

74.21v cos(u)− 37.1 cos(u)eu − 37.1 sin(u)eu

74.21v sin(u)



It can be seen in the Figure 1(b).

Example 3. Let x(u, v) be the parameterization of a constant pseudo-angle lightlike
surface of Type II as in Theorem 3.4. Take the pseudo-angle as ϕ = 0.5, α(u) =
0.001 and ψ(u) = −0.5u3. We obtained the following parameterization:

x(u, v) =


(
−0.00008685u3 − 0.24080v

)
e0.07702u3(

−0.00008685u3 − 0.24080v
)√

e0.1540u3 − 1 + arctan
(√

e0.1540u3 − 1
)

−0.1879u3(v + 0.001)



The surface is illustrated in Figure 1(c).
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(a) Type I (2) for ϕ = 5 and α(u) = u (b) Type I (1) for ϕ = 5 and α(u) = eu

(c) Type II for ϕ = 0.5, α(u) = 0.001 and ψ(u) = −0.5u3

Figure 1. Constant pseudo-angle lightlike surfaces of Type I and
Type II

4. Constant Angle Lightlike Ruled Surfaces

We investigate the parameterization of a constant angle lightlike ruled surface
by means of the Cartan frame on a null helix, a pseudo-null curve as a slant helix
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or a Cartan slant helix (for further information on these helices see [15], [19], [2],
[17], [16], [5]). We classify such ruled surfaces in three cases depending on type of
the corresponding helices.

Case 1

Let γ(s) be a unit speed null helix equipped with the Cartan frame {T,N,B} where
the first and second curvatures are k1 ̸= 0 and k2 = constant. Here we note that if
k2 = 0 then it is a null cubic and the slope axis is a null vector. The slope axis is
a non-null vector lies in the rectifying plane if k2 ̸= 0.
Now, define a ruled surface as

Ψ(s, v) = α(s) + vX(s). (30)

Here α(s) and X(s) are expressed by

α′(s) = aT + bN + cB

X(s) = x1T + x2N + x3B (31)

where a, b, c, x1, x2 and x3 are smooth functions. If the surface in (30) is lightlike,
there exists a lightlike transversal vector field U such that it can be written in the
following form by a straightforward calculation:

U = U1T + U2N + U3B

where

U1 = u11 + vu12 U2 = u21 + vu22 U3 = u31 + vu32. (32)

For (30) to be a constant angle surface, we take the lightlike transversal vector U as
parallel to the tangent of the curve γ(s). Hence (u11, u12) ̸= (0, 0). Since there exist
spacelike and null vectors in the basis of the tangent plane of Ψ(s, v), we investigate
two possibilities:

i. Choose Ψv as a null vector, then we have

⟨U,Ψv⟩ = 1 and ⟨U,Ψu⟩ = 0. (33)

We can calculate ⟨U,Ψv⟩ = x3U1 + x2U2 + x1U3. Since U2 = U3 = 0 we have
U1 = 1

x3
and this implies x3 ̸= 0.

On the other hand, we calculate

X ′(s) = KT + LN +MB

where

K = x′1 − x2k2 L = x1 + x′2 + x3k2 M = x′3 − x2. (34)

Then we have c+ vM = 0 which implies c = 0 and x′3 = x2. Also, we obtain

x22 = −2x1x3 (35)

ax3 + bx2 = 0 (36)
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by using the equations ⟨X,X⟩ = 0 and ⟨Ψs, X⟩ = 0, respectively. From the equa-
tions (35) and (36), we have following ODE;

x′3 = ±a
b
x3. (37)

Solving the equation (37) gives

x3 = e±
∫

a
b ds

x2 = ±a
b
e±

∫
a
b ds

x1 = − a2

2b2
e±

∫
a
b ds

where b ̸= 0.

ii. Now we choose Ψs as a null vector. Since

⟨U,Ψs⟩ = 1 and ⟨U,Ψv⟩ = 0

we obtain x3 = 0 by using the right hand side of above equation. We also have

cu11 + v(cu12 − x2u11 − vx2u12) = 1. (38)

The equation (38) implies u12 = x2 = 0, u11 ̸= 0 and c ̸= 0. Besides, we can
calculate

⟨Ψv,Ψv⟩ = 2x1x3 + x22 = 0 (39)

and this is a contradiction.
Acording to the above notations, we obtain the expression of a lightlike ruled surface
of constant slope as

Ψ(s, v) =

∫
(aT + bN)ds+ ve±

∫
a
b ds(− a2

2b2
T +

a

b
N +B) (40)

where b ̸= 0. Note that the surface in (40) is a ruled surface along a spacelike base
curve with lightlike rulings. Then we can give the following theorem:

Corollary 4. Velocity vector of the base curve of a constant angle lightlike ruled
surface defined by (40), lies in the osculating plane of a null helix at every point.

Case 2

Assume that γ(s) is a unit speed pseudo-null curve (slant helix) equipped with the
Cartan frame {T,N,B}. If k2 = 0 then any constant vector in E3

1 can be the slope
axis. If k2 ̸= 0, the slope axis can be a null or spacelike vector lies in the osculating
plane of the curve.
Let the ruled surface defined in (30) with the expressions in (31) be a lightlike
surface. We take the transversal vector U expressed in (32) as parallel to the
normal vector of γ(s). Then we have

X ′ = KT + LN +MB

where
K = x′1 − x3 L = x1 + x′2 M = (x2 − x3)k2 + x′3.
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i. We choose Ψv as a null vector. Following similar steps as in Case 1, we
obtain x3 ̸= 0, u2 ̸= 0 and c = 0. We also have

x2 = x3 −
x′3
k2

(41)

−x2x3 =
b2

a2
x23 (42)

Substituting (41) in (42), we obtain following ODE:

x′3 − k2(
b2

2a2
+ 1)x3 (43)

We find x1, x2 and x3 as;

x3 = e
∫
k2(

b2

2a2 +1)ds

x2 = − b2

2a2
e
∫
k2(

b2

2a2 +1)ds

x1 = − b

a
e
∫
k2(

b2

2a2 +1)ds (44)

where a ̸= 0.

ii. Let Ψs be a null vector. Using ⟨U,Ψv⟩ = 0 and ⟨U,Ψs⟩ = 1, we obtain

x2 = 0, u22 = 0, c ̸= 0 and u21 ̸= 0. (45)

On the other hand, we find x1 = ±1 by calculating ⟨Ψv,Ψv⟩ = 1. Hence, one can
easily obtain the function c as zero from the equation ⟨Ψs,Ψs⟩ = 0. However, this
is a contradiction.
Acording to the above notations, we can express a lightlike ruledsurface of constant
slope as

Ψ(s, v) =

∫
(aT + bN)ds+ ve

∫
k2(

b2

2a2 +1)ds(− b

a
T − b2

2a2
N +B) (46)

where a ̸= 0. As in Case 1, the surface in (46) is also a ruled surface along a
spacelike base curve with lightlike rulings. So we give the following theorem:

Corollary 5. Velocity vector of the base curve of a constant angle lightlike ruled
surface defined by (46), lies in the osculating plane of a pseudo null curve at every
point.

Case 3

Now, let γ(s) be a Cartan slant helix with the attached Cartan frame {T,N,B}
where k2 ̸= 0.

i. Choose Ψv as a null vector.
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Following similar procedure as in the previous two sections, we find x2 ̸= 0, c ̸= 0,
a ̸= 0 and b = 0. Without loss of generality, we also take ac > 0. Then the following
ODE can be obtained by straightforward calculations:

x′3 = ζx3

where

ζ =
−(a′ + k2

√
2ac)c+ (c′ +

√
2ac)a

2ac
.

Using the above equation, we have

x3 = e
∫
ζds

x2 = ±
√

2a

c
e
∫
ζds

x1 = −a
c
e
∫
ζds (47)

ii. If we take Ψs as a null vector, we find x2 = 0, u22 = 0, b ̸= 0, u21 ̸= 0 and
ac = 0. Using the inner products of the vectors U , Ψs and Ψv, we obtain
x1 = −k2x3. Besides, we also have x1

x3
= −a

c . However, this implies k2 = 0
or indefinite. It is a contradiction.

Acording to the above notations, we can define a constant angle lightlike ruled
surface as:

Ψ(s, v) =

∫
(aT + cB)ds+ ve

∫
ζds(−a

c
T ±

√
2a

c
N +B) (48)

where c ̸= 0 and a ̸= 0. Similar to the previous cases, the surface in (43) is also a
ruled surface along a non-null base curve with lightlike rulings.

Corollary 6. Velocity vector of the base curve of a constant angle lightlike ruled
surface defined by (48), lies in the rectifying plane of a Cartan slant helix at every
point.

Corollary 7. A constant angle lightlike ruled surface is constructed by null rulings
along a non-null base curve.

According to the above information mentioned in the three cases, we give fol-
lowing theorem without proof.

Theorem 12. Let γ(s) be a space curve in E3
1 . A constant angle lightlike ruled

surface can be defined by one of the equations (40), (46) or (48) where γ is a null
helix, pseudo-null curve or Cartan slant helix, respectively.

We give some examples to illustrate the theory.

Example 4. Let γ1 be a null helix given by

γ1(s) = (s, sin s,− cos s).



756 G. TUĞ

Then the Cartan frame on γ1 is

T = (1, cos s, sin s)

N = (0,− sin s, cos s)

B = (−1

2
,
1

2
cos s,

1

2
sin s).

Then we obtain the surface given in Figure 2 (a) by choosing the functions a = 0
and b = 1. Also the base curve α(s) can be seen in the Figure 3 (a).

Example 5. Let γ2 be a pseudo null curve given by

γ2(s) = (
s3

12
,
s3 + 12s

12
√
2
,
s3 − 12s

12
√
2

).

Then the Cartan frame on γ2 is

T = (
s2

4
,
s2 + 4

4
√
2
,
s2 − 4

4
√
2

)

N = (
s

2
,
s

2
√
2
,
s

2
√
2
)

B = (− s3

16
− 1

s
,
s

2
√
2
+

1√
2s

− s3

16
√
2
,− s

2
√
2
+

1√
2s

− s3

16
√
2
)

where k2 = 1
s . We obtain the surface given in Figure 2 (b) by choosing the functions

a = 1 and b = 1 and the base curve α(s) can be seen in the Figure 3 (b).

Example 6. Let γ3 be a pseudo null curve given by

γ3(s) = (−s
2

2
,−s

2
√
2(cos(ln(s)) + 3 sin(ln(s)))

10
,−s

2
√
2(sin(ln(s))− 3 cos(ln(s)))

10
).

Then the Cartan frame on γ3 is

T = (−s,−s
√
2(cos(ln(s)) + sin(ln(s)))

2
,
s
√
2(− sin(ln(s)) + cos(ln(s)))

2
)

N = (−1,−
√
2 cos(ln(s)),−

√
2 sin(ln(s)))

B = (
1

s
,

√
2
(
2 cos(ln(s))3 + 2 cos(ln(s))2 sin(ln(s))− 3 cos(ln(s)) + sin(ln(s))

)
4s sin(ln(s)) cos(ln(s))− 2s

,

√
2
(
2 cos(ln(s))2 − 1

)
2s(− sin(ln(s)) + cos(ln(s)))

)

where k2 = 1
s2 . We obtain the surface given in Figure 2 (c) by choosing the functions

a = s2 and c = s and the base curve α(s) can be seen in the Figure 3 (c).
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(a) Case 1 for a = 0 and b = 1 (b) Case 2 for a = 1 and b = 1

(c) Case 3 for a = s2 and c = s

Figure 2. Constant angle lightlike ruled surfaces

5. Conclusion

In this paper, we investigate new methods to obtain the parameterizations
of lightlike surfaces making constant pseudo-angles with a fixed direction in the
Minkowski space. We classify these surfaces by considering the possible casual
characters of the fixed direction and show that such surfaces are actually ruled
surfaces based on a spacelike curve. Moreover, we give some corrolaries such as;
any constant pseudo-angle lightlike surface is totally umbilical and it has negative
lightlike sectional curvature, Type I is a lightlike developable and Type II is not.
In the given examples one can see the illustrations related to the obtained surfaces
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(a) Case 1 (b) Case 2

(c) Case 3

Figure 3. Base curve α(s) for (a) −π < s < π, (b) and (c)
−π/2 < s < π/2

Type I and Type II.
On the other hand, we obtain corresponding constant angle lightlike ruled surfaces
by using the Cartan frame on a null helix, a pseudo-null curve or a Cartan slant
helix in section 4. We classify such surfaces according to the casual character of
the slope axis. When we assume that the surface itself is lightlike, there exists a
lightlike transversal vector field U which is parallel to the tangent vector of the
initial curve. We state that a constant angle lightlike ruled surface is constructed
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by null rulings along a non-null base curve. The theory is supported by several
examples and illustrations.

Declaration of Competing Interests Author declares that there is no conflict
of interest in the current manuscript.
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AN EXACT PENALTY FUNCTION APPROACH FOR

INEQUALITY CONSTRAINED OPTIMIZATION PROBLEMS

BASED ON A NEW SMOOTHING TECHNIQUE

Nurullah YILMAZ1 and Hatice OGUT2
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Abstract. Exact penalty methods are one of the effective tools to solve non-
linear programming problems with inequality constraints. In this study, a

new class of exact penalty functions is defined and a new family of smooth-
ing techniques to exact penalty functions is introduced. Error estimations are

presented among the original, non-smooth exact penalty and smoothed exact

penalty problems. It is proved that an optimal solution of smoothed penalty
problem is an optimal solution of original problem. A smoothing penalty

algorithm based on the the new smoothing technique is proposed and the con-

vergence of the algorithm is discussed. Finally, the efficiency of the algorithm
on some numerical examples is illustrated.

1. Introduction

We consider the following continuous constrained optimization problem

(P )
min
x∈Rn

f(x)

s.t. cj(x) ≤ 0, j = 1, 2, . . . ,m,

where f : Rn → R and cj(x) : Rn → R, j ∈ J = {1, 2, ...,m} are continu-
ously differentiable functions. The set of feasible solutions is defined by C0 :=
{x ∈ Rn : cj(x) ≤ 0, j = 1, 2, . . . ,m} and we assume that C0 is not empty.

One of the most important methods in solving this problem is the penalty func-
tion approach. The penalty function approach is based on transforming the con-
strained optimization problem into an unconstrained problem. When the penalty
function approach is applied to problem (P ), it turns into the following uncon-
strained optimization problem:
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min
x∈Rn

F (x, ρ), (1)

where F (x, ρ) = f(x) + ρ
∑

j G (cj(x)) and ρ > 0 parameter. The most common G

functions are G(t) = max{0, t}2, G(t) = max{0, t}, G(t) = max{0, t}p (0 < p ≤ 1),
G(t) = log(1 + max{0, t}) etc [4, 24]. Moreover, as the parameter ρ increases, the
solution of the problem (1) gets closer to the solution of the problem (P ). One of
the desirable properties of penalty functions is precision. F (x, ρ) is called as exact
penalty function for problem (P ) if there is appropriate parameter choice such that
the optimal solution to the penalty problem is an optimal solution to the original
problem [17,26,27]. We refer the following studies for more details [25, 28].

One of the well-known penalty function is called as l2-penalty function and it is
defined as

F2(x, ρ) = f(x) + ρ
∑
j

max{cj(x), 0}2.

When f and cj (j = 1, 2, . . . ,m) are continuously differentiable, the l2 penalty
function is smooth, but it is not exact [17]. One of the most popular exact penalty
function is called as l1 penalty function which is defined as

F1(x, ρ) = f(x) + ρ
∑
j

max{cj(x), 0},

by Eremin [1] and Zangwill [2]. l1 penalty function is exact but not differentiable.
This is the main disadvantage of the l1 exact penalty function, because it prevents
some efficient algorithms (Steepest Descent, Newton, Quasi-Newton, etc.) from
being used to solve the penalty problem. On the other hand, in order to increase
the effectiveness of the exact penalty function, lower-order exact penalty functions
have come to the fore in the literature [3, 4]. The lower order lp-exact penalty
function is defined as

Fp(x, ρ) = f(x) + ρ
∑
j

max{cj(x), 0}p,

where 0 < p < 1 in [5, 6]. Similar to l1, lp penalty function is also exact but not
differentiable and lp penalty function is non-Lipschitz when 0 < p < 1. Moreover,
non-smooth penalty function can cause numerical instability in the solution process
when the penalty parameter is large. For this reason the smoothing approaches
for the penalty function have been emerged [7]. The smoothing approach can be
expressed as the representation of the non-differentiable function with a family of
smooth functions. A smoothing function is defined as follows:

Definition 1. [8] A function f̃ : Rn × R+ → R is called a smoothing function

of a non-smooth function f : Rn → Rm if, for any ε > 0, f̃(x, ε) is continuously
differentiable and

lim
z→x,ε↓0

f̃(z, ε) = f(x)
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for any x ∈ Rn.

R+ represents the non-negative real numbers. Smoothing functions are often
used to solve non-smooth optimization problems [9–12]. In addition, there is quite
a lot of work in the literature on smoothed penalty functions l1 and lp [13–20]. A
comprehensive review is presented in [23].

As it is well-known that gradient based methods (e. g. Newtonian methods)
which are powerful tools in nonlinear programming usually needs second-order
continuously differentiability of an objective function. Therefore, it is essential
to develop smoothing techniques which makes l1 and lp exact penalty functions the
second order continuously differentiable. Although there are different smoothing
studies for l1, lp and other penalty functions in the literature, there is no smoothing
approach that includes all of them.

The aim of this study is to re-define the class of exact penalty functions for
problem (P ) and propose a new second-order continuously differentiable smooth-
ing technique for a new exact penalty functions in general form. By applying the
proposed smoothing technique to exact penalty functions, a smoothed penalty func-
tion and a smoothed penalty problem are obtained. The relationships among the
solutions which are obtained for original constrained optimization problem, exact
penalty problem and the smoothed penalty problem is investigated. Based on the
smoothed penalty problem, it is aimed to create an algorithm to solve the prob-
lem (P ). Numerical experiments are presented by applying this algorithm to test
problems.

2. Main Results

2.1. A New Exact Penalty Function. In this part of the study, we first re-define
a class of exact penalty functions as follows:

h(t) =

{
0, t < 0,
g(t), t ≥ 0,

where g : R+ → R+ second-order continuously differentiable function with (a)
g(0) = 0 and (b) g′(t) > 0 and g′′(t) ≤ 0 for t > 0. Based on the above definition,
the exact penalty function for problem (P ) is defined by

Fg(x, ρ) = f(x) + ρ
∑
j

h(cj(x))

and the penalty problem is given by

(Pg) min
x∈Rn

Fg(x, ρ).

Moreover we have the following properties based on the function g(t):

(i) if g(t) = t then Fg(x, ρ) become l1-exact penalty function ( [2]),
(ii) if g(t) = tp for 0 < p < 1 is then Fg(x, ρ) become lp-lower order exact

penalty function ( [4, 5]),
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(iii) if g(t) = log(1 + t) is then Fg(x, ρ) become logarithmic exact penalty func-
tion is obtained ( [24]).

We need the following assumptions to state the exactness of our penalty function.
Assumption 1. f(x) is a coercive function, i.e., lim||x||→∞ f(x) = ∞.

Assumption 1 implies that there exist a compact set Y ⊂ Rn such that all local
minimizer of problem (P ) are included in intY .
Assumption 2. The number of local minimizer of the problem (P ) is finite.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then, there exist a threshold
value ρ̄ such that ρ ∈ [ρ̄,∞), every solution of (Pg) is a solution of (P ).

Proof. The proof is obtained by following the way at the proof of the Corollary 2.3
in [5]. □

2.2. Smoothing Techniques. As it is known that, the differentiability of the
penalty functions established with the functions given by (i), (ii) and (iii) cannot
always be guaranteed. Especially, when g(t) = 0, the function h is non differen-
tiable. Therefore, we offer the following smoothing functions for the function h
inspiring from the studies [21,22].

The smoothing function of h is defined as

h1,γ(t) =


0, t < 0,
γg′(γ)−2g(γ)

γ3 t3 − γg′(γ)−3g(γ)
γ2 t2, 0 ≤ t ≤ γ,

g(t), t > γ,

(2)

where γ > 0 is the smoothing parameter.

Lemma 1. For any t ∈ R, the smoothing function h1,γ(t) satisfies that

i. h1,γ(t) is continuously differentiable,
ii. limγ→0 h1,γ(t) = h(t).

Proof. i. For any γ > 0, we have

h′
1,γ(t) =


0, t < 0,

3γg′(γ)−2g(γ)
γ3 t2 − 2γg′(γ)−3g(γ)

γ2 t, 0 ≤ t ≤ γ,

g′(t), t > γ,

and it is easy to see that the function h′
1,γ(t) is continuous at the transition

points t = 0 and t = γ.
ii. The difference between h(t) and h1,γ(t) is stated by

h(t)− h1,γ(t) =


0, t < 0,

g(t)−
[
γg′(γ)−2g(γ)

γ3 t3 − γg′(γ)−3g(γ)
γ2 t2

]
, 0 ≤ t ≤ γ,

0, t > γ,
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for any γ > 0. Therefore the maximum difference between h(t) and h1,γ(t)
arises when 0 ≤ t ≤ γ. Let us define the following

l1,γ(t) =
γg′(γ)− 2g(γ)

γ3
t3 − γg′(γ)− 3g(γ)

γ2
t2,

then for 0 ≤ t ≤ γ we have

l′1,γ(t) =
1

γ3

[
γg′(γ)

(
3t2 − 2γt

)
+ g(γ)

(
6γt− 6t2

)]
≥ g(γ)

γ3

[
4γt− 3t2

]
≥ 0.

Since l1,γ(t) ≥ 0 and it is non-decreasing we obtain

h(t)− h1,γ(t) = g(t)− l1,γ(t) ≤ g(γ). (3)

By taking the limit as γ → 0, the proof is obtained.
□

For different exact penalty function, the error estimation between h1,γ(t) and
h(t) can be calculated. For example, if we take g(t) = t, then by considering (3)
we obtain

0 ≤ h(t)− h1,γ(t) ≤ γ.

With a similar approach, a second order differentiable smoothing function of h(t)
can be generated as:

h2,γ(t) =

 0, t < 0,
l2,γ(t), 0 ≤ t ≤ γ,
g(t), t > γ,

(4)

form is obtained. Here

l2,γ(t) =
γ2g′′(γ)− 6γg′(γ) + 12g(γ)

2γ5
t5 − γ2g′′(γ)− 7γg′(γ) + 15g(γ)

γ4
t4

+
γ2g′′(γ)− 8γg′(γ) + 20g(γ)

2γ3
t3,

for γ > 0.

Lemma 2. For any t ∈ R, the smoothing function h2,γ(t) satisfies that

i. h2,γ(t) is second-order continuously differentiable,
ii. limγ→0 h2,γ(t) = h(t).

Proof. The proof is obtained similarly to the proof of Lemma 1. □

Example 1. Let us consider the function y = h(t). The graph of h(t), h1,γ and
h2,γ are illustrated in Figs. 1, 2 and 3, when g(t) = t, g(t) = tp with p = 1

2 and
g(t) = log(1+ t), respectively. It is observed that the smoothing functions approach
the original function when γ → 0.
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(a) For γ = 3. (b) For γ = 1.

Figure 1. The blue graph represents h(t) for g(t) = t, the green
graph is h1,γ(t) and the red graph is h2,γ(t).

(a) For γ = 3. (b) For γ = 1.

Figure 2. The blue graph represents h(t) for g(t) = tp, p = 0.5,
the green graph is h1,γ(t) and the red graph is h2,γ(t).

Remark 1. It should be pointed out that the applied smoothing functions are non-
convex.

By using one of the smoothing functions given in (2) and (4), the smoothing
exact penalty function is obtained as

F̃g(x, ρ, γ) = f(x) + ρ
∑
j∈J

hi,γ (cj(x)) ,

i = 1, 2. Therefore the smoothed penalty function problem is stated as

(PSg) min
x∈Rn

F̃g(x, ρ, γ).
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(a) For γ = 3. (b) For γ = 1.

Figure 3. The blue graph represents h(t) for log(1+ t), the green
graph is h1,γ(t) and the red graph is h2,γ(t).

Now let us investigate the relationship between the exact penalty problem and
the smoothed exact penalty problem.

Theorem 2. For any x ∈ Rn, we have

0 ≤ Fg(x, ρ)− F̃g(x, ρ, γ) ≤ ρmg(γ)

and
lim
γ→0

F̃g(x, ρ, γ) = Fg(x, ρ),

for γ > 0.

Proof. For any ρ, γ > 0, we have

Fg(x, ρ)− F̃g(x, ρ, γ) = f(x) + ρ
∑
j∈J

h(cj(x))−

f(x) + ρ
∑
j∈J

hi,γ(cj(x))


= ρ

∑
j∈J

[h(cj(x))− hi,γ(cj(x))] ,

for i = 1, 2. Therefore, we obtain

Fg(x, ρ)− F̃g(x, ρ, γ) ≤ ρ
∑
j∈J

g(γ)

≤ ρmg(γ).

□

It is easy to see that we have the following error estimates:

F1(x, ρ)− F̃1(x, ρ, γ) ≤ ρmγ,

for g(t) = t,



768 N. YILMAZ AND H. OGUT

Fp(x, ρ)− F̃p(x, ρ, γ) ≤ ρmγp,

for g(t) = tp, 0 < p < 1 and

Flog(x, ρ)− F̃log(x, ρ, γ) ≤ ρm log(1 + γ),

for g(t) = log(1 + t).

The following corollary indicates that the distance between Fg(x, ρ) and F̃g(x, ρ, γ)
decreases when the smoothing parameter decreases.

Corollary 1. Let {γk} → 0 and {xk} is an optimal solution of the problem

minx∈Rn F̃g(x, ρk, γk). If x̄ is limit point of {xk}, then x̄ is the optimal solution to
the problem (Pg).

Definition 2. [17] Let f∗ be the optimal objective function value of the problem
(P ) and x be a feasible solution. If the condition

f(x)− f∗ ≤ γ

holds, then x is called γ−approximate solution.

Definition 3. [17] If cj(xγ) ≤ γ for any j ∈ J and for γ > 0, then the xγ is called
as γ−feasible solution of the problem (P ).

Lemma 3. [17, 24] Let x∗ be the optimal solution to the problem (Pg). If x∗ is a
feasible solution to the problem (P ), then x∗ is the optimal solution for (P ).

Thus, we can give the following theorem on the relations of optimal solutions of
the problems (P ), (Pg) and (PSg) .

Theorem 3. Let ρ > 0, x∗ be an optimal solution to the problem (Pg) and xγ be
and optimal solution to the problem (PSg). Then the following holds:

lim
γ→0

F̃g(xγ , ρ, γ) = Fg(x
∗, ρ). (5)

Moreover, if x∗ is the optimal solution to the problem (P ) and xγ is the γ-feasible
solution for the problem (P ) , then xγ is the approximate solution to the problem
(P ).

Proof. Let x∗ be an optimal solution of (Pg) and xγ be an optimal solution of
(PSg). By considering Theorem 2 and following inequalities

Fg(x
∗, ρ) ≤ Fg(xγ , ρ),

F̃g(xγ , ρ, γ) ≤ F̃g(x
∗, ρ, γ), (6)

we obtain

0 ≤ Fg(x
∗, ρ)− F̃g(x

∗, ρ, γ)

≤ Fg(x
∗, ρ)− F̃g(xγ , ρ, γ)

≤ Fg(xγ , ρ)− F̃g(xγ , ρ, γ)
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≤ mρg(γ).

Therefore, (5) is hold. Let x∗ be an optimal solution of (P ) and xγ be γ−feasible
solution (P ). Since we have

0 ≤

f(x∗) + ρ
∑
j

h(cj(x
∗))

−

f(xγ) + ρ
∑
j

hi,γ(cj(xγ))

 ≤ mρg(γ),

cj(x
∗) ≤ 0 and cj(xγ) ≤ γ, then we have

ρ
∑
j

h(cj(x
∗)) = 0, 0 ≤ ρ

∑
j

hi,γ(cj(xγ)) ≤ mργ

and we obtain

|f(xγ)− f(x∗)| < mρ (γ + g(γ)) .

□

2.3. Algorithm. In this section, the following algorithm is proposed to solve the
penalty problem (P ) by considering the surrogate problem (PSg).

Algorithm A

Step 1 Select initial point x0, and parameters γ0 > 0, ρ0 > 0. Determine the
auxiliary parameters ε > 0, N > 1, 0 < δ < 1. Let k = 0 and go to Step 2.

Step 2 By using xk as an initial point, solve the problem minx∈Rn F̃g(x, ρk, γk)
with any local search methods. Let xk+1 be an optimal solution.

Step 3 If xk+1 is the ε-feasible solution to the problem (P ), then stop. Otherwise,
take ρk+1 =Nρk, γk+1 = δγk and k = k + 1, and go back to Step 2 .

Remark 2. In Step 2 of Algorithm A, any gradient based local search method (e.g.
Steepest Descent, Newton, Quasi-Newton and etc.) can be used according to degree
of smoothing approximation.

Remark 3. From the 3rd step of Algorithm A and Theorem 2, an approximate
optimal solution of the problem P can be obtained.

We denote the following index sets

J−
γ (x) = {j|cj(x) < γ, j ∈ J}, J+

γ (x) = {j|cj(x) ≥ γ, j ∈ J}.

With these notations; the following theorem is given related to the convergence of
Algorithm A.

Theorem 4. Let the Assumption 1 is hold. Then the sequence {xk} generated by
Algorithm A is bounded and the limit point x̄ is the optimal solution to the problem
(P ).
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Proof. Let us first prove that {xk} is bounded. Since the sequence {F (xk, ρk, γk)}
is a bounded sequence, then there exist a number L such that

F̃g(x
k, ρk, γk) ≤ L, k = 0, 1, 2, . . . . (7)

Assume to contrary that
{
xk

}
is unbounded. Without loss of generality, let k → ∞,

∥xk∥ → ∞. The equation (7) is re-stated as

L ≥ F̃g(x
k, ρk, γk) ≥ f(xk), k = 0, 1, 2, . . .

and it is a contradiction with the Assumption 1. The boundedness of {xk} is
obtained.

Let us now show that the limit point x̄ of {xk} is the optimal solution to the
problem (P ). Let us first show that the point x̄ is a feasible solution to the problem
(P ). Let limk→∞ xk = x̄. On the contrary, suppose the point x̄ is not a feasible
solution to (P ). Then there exists j ∈ J for cj(x̄) ≥ α > 0 such that

F̃g(x
k, ρk, γk) = f(xk) + ρk

∑
j∈J

hi,γk
(cj(x

k))

= f(xk) + ρk
∑

j∈J+
γk

(xk)

hi,γk
(cj(x

k)) (8)

+ρk
∑

j∈J−
γk

(xk)

hi,γk
(cj(x

k)).

where cj(x̄) ≥ α > 0, the set {j : cj(x̄) ≥ α} is non-empty. There is j0 ∈ J with
cj0(x̄) ≥ α. Since ρk → ∞ as k → ∞, from the equation (8) we obtain

F̃g(x
k, ρk, γk) → ∞.

This contradicts the boundedness of the sequence {F̃g(x
k, ρk, γk)}. Thus x̄ would

be a feasible solution to the (P ) problem.
Let us show that the x̄ is an optimal solution for (P ). Assume x∗ is an optimal so-

lution for (PSg) and xk is an optimal solution for the problem minx∈Rn F̃g(x
k, ρk, γk)

then we have
F̃g(x

k, ρk, γk) ≤ F̃g(x
∗, ρk, γk), k = 1, 2, . . . .

Similarly, we have

f(xk) + ρk
∑
j∈J

hi,γk
(cj(x

k)) ≤ f(x∗) + ρk
∑
j∈J

hi,γk
(cj(x

∗)), k = 1, 2, . . .

and
f(xk) ≤ f(x∗).

So while k → ∞,
f(x̄) ≤ f(x∗). (9)

Since x∗ is the optimal solution for (P ), we have

f(x̄) ≥ f(x∗). (10)
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(a) (b)

Figure 4. (A) The graph of f (B)The graph of feasible region.

From (9) and (10), we obtain f(x̄) = f(x∗). It means that x̄ is the optimal solution
for (P ). □

3. Numerical Results

In order to analyze the numerical performance of Algorithm A, we apply it on
some test problems in the literature. The results are presented in the tables with
details and the evaluations on these results are given. Firstly, the abbreviations
used in the tables are listed below.

k : Number of iterations

xk : the result of k−th iteration

ρk : penalty function parameter in the k−th iteration

γk : smoothing parameter of the k−th iteration

cj(x
k) : constraint function value at xk

F̃g(x
k, ρk, γk) : value of function F̃g at point xk.

f(xk) : The value of the objective function at xk

Problem 1. [14] Consider the following problem

min f(x) = x2
1 + x2

2 − cos(17x1)− cos(17x2) + 3

s.t. g1(x) = (x1 − 2)2 + x2
2 − 1.62 ≤ 0,

g2(x) = x2
1 + (x2 − 3)2 − 2.72 ≤ 0,

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2.

We select x0 = (1, 1) as starting point ρ0 = 10, γ0 = 0.1, η0 = 0.1 and N = 3. The
obtained numerical results are illustrated in Table 1 and 2.
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(a) For g(t) = t. (b) For g(t) = tp, p = 1
2
.

(c) For g(t) = log(1 + t)

Figure 5. The graph of F̃g(x, ρ, γ) with ρ = 10, γ = 0.25.

Table 1. Numerical results for the Problem 1

Penalty Function k xk+1 ρk γk (c1(x
k), c2(x

k)) F̃g(x
k, ρk, γk) f(xk)

g(t) = t 0 (0.7256, 0.3985) 10 0.1 (−0.7770, 0.0044) 1.8338 1.8301
1 (0.7254, 0.3992) 30 0.01 (−0.7759, 0.0001) 1.8374 1.8373
2 (0.7254, 0.3993) 90 0.001 (−0.7759, 0.0000) 1.8376 1.8376

g(t) = tp 0 (0.72540.3991) 10 0.1 (−0.7762, 0.0011) 1.8366 1.8356
1 (0.7254, 0.3993) 30 0.01 (−0.7759, 0.0000) 1.8376 1.8376

g(t) = log(1 + t) 0 (0.72560.3985) 10 0.1 (−0.77700.0045) 1.8337 1.8299
1 (0.7254, 0.3992) 30 0.01 (−0.7759, 0.0001) 1.8374 1.8373
2 (0.7254, 0.3993) 90 0.001 (−0.7759, 0.0000) 1.8376 1.8376

For different penalty types, the global minimizer is found as x∗ = (0.7254, 0.3993)
with corresponding function value 1.8376. In [14,17], the resulting global minimizer
is found as x∗ = (0.72540669, 0.3992805) and the corresponding function value
1.837623, and combining all three approaches our algorithm found the right point
as in [14,17].
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Table 2. Numerical results for the Problem 1

Penalty Function iter feval Time F̃g(x
k, ρk, γk) f(xk)

g(t) = t 3 180 1.1094 1.8376 1.8376
g(t) = tp 2 123 0.8125 1.8376 1.8376

g(t) = log(1 + t) 3 177 1.1875 1.8376 1.8376

Problem 2. [14] Consider the following problem which is called as Rosen-Suzuki
problem:

min f(x) = x2
1 + x2

2 + 2x3 + x2
4 − 5x1 − 21x3 + 7x4

s.t. g1(x) = 2x2
1 + x2

2 + x2
3 + 2x1 + x2 + x4 − 5 ≤ 0,

g2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8 ≤ 0,

g3(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10 ≤ 0.

We select the starting point as x0 = (0, 0, 0, 0), ρ0 = 10, γ0 = 0.1, η0 = 0.1 and
N = 3. The obtained numerical results are illustrated as in Table 3 and 4.

Applying Algorithm A, the minimizer is found as x∗ = (0.1697, 0.8358, 2.0084,−0.9651)
with the corresponding function value −44.2338. In [14], the resulting global min-
imizer is found as x∗ = (0.1684621, 0.8539065, 2.000167,−0.9755604) with the cor-
responding function value −44.23040. In [17], the global minimizer is obtained as
x∗ = (0.170189, 0.835628, 2.008242,−0.95245) with corresponding function value
−44.2338. It can be observed that our algorithms provide numerically better results
than [14] and find approximate solutions with lower iteration numbers compared
to [17].

Table 3. Numerical results for Problem 2.

Penalty Function k xk+1 ρk γk (c1(x
k), c2(x

k), c3(x
k)) F̃g(x

k, ρk, γk) f(xk)
g(t) = t 0 (0.1697, 0.8355, 2.0092,−0.9656) 10 0.1 (0.0019, 0.0052,−1.8773) −44.2396 −44.2455

1 (0.1696, 0.8356, 2.0086,−0.9650) 30 0.01 (0.0001, 0.0002,−1.8826) −44.2340 −44.2342
2 (0.1696, 0.8356, 2.0086,−0.9650) 90 0.001 (−0.0001, 0.0000,−1.8827) −44.2338 −44.2338

g(t) = tp 0 (0.1696, 0.8356, 2.0088,−0.9651) 10 0.1 (0.0005, 0.0013,−1.8815) −44.2353 −44.2367
1 (0.1695, 0.8355, 2.0086,−0.9650) 30 0.01 (−0.0007, 0.0000,−1.8827) −44.2338 −44.2338

g(t) = log(1 + t) 0 (0.1697, 0.8355, 2.0092,−0.9656) 10 0.1 (0.0019, 0.0053,−1.8772) −44.2398 −44.2458
1 (0.1696, 0.8356, 2.0086,−0.9650) 30 0.01 (0.0001, 0.0002,−1.8826) −44.2340 −44.2342
2 (0.1696, 0.8356, 2.0086,−0.9650) 90 0.001 (−0.0001, 0.0000,−1.8827) −44.2338 −44.2338

Problem 3. [17] Consider the following problem

min f(x) = 1000− x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3

s.t. g1(x) = x2
1 + x2

2 + x2
3 − 25 = 0,

g2(x) = (x1 − 5)2 + x2
2 + x2

3 − 25 = 0
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Table 4. Numerical results for Problem 2.

Penalty Function iter feval Time F̃g(x
k, ρk, γk) f(xk)

g(t) = t 3 510 1.1406 −44.2338 −44.2338
g(t) = tp 2 475 0.79688 −44.2338 −44.2338

g(t) = log(1 + t) 3 460 0.98438 −44.2338 −44.2338

g3(x) = (x1 − 5)2 + (x2 − 5)2 + (x3 − 5)2 − 25 ≤ 0.

We select x0 = (2, 2, 1) as a starting point ρ0 = 100, γ0 = 0.1, η0 = 0.1 and N = 3.
The obtained numerical results are illustrated as in Table 5 and 6.

By considering Algorithm A the global minimizer is found as x∗ = (2.5001, 4.1754, 1.1474)
with corresponding function value 944.2157 by using g(t) = t, and x∗ = (2.5000, 4.2213, 0.9647)
and corresponding value as 944.2157 by using g(t) = tp and g(t) = log(1+t). In [17],
the obtained global minimizer is obtained as x∗ = (2.5000, 4.2213, 0.9647) with the
corresponding function value 944.2157. According to these results, we deduce that
by using Algorithm A the correct solutions is obtained with a lower number of
iterations than [17].

Table 5. Numerical results for Problem 3.

Penalty Function k xk+1 ρk γk (c1(x
k), c2(x

k), c3(x
k)) F̃g(x

k, ρk, γk) f(xk)
g(t) = t 0 (2.5001, 4.1754, 1.1474) 100 0.1 (0.0012− 0.0001− 3.2283) 944.3897 944.2571

1 (2.5000, 4.1753, 1.1474) 300 0.01 (0.0000, 0.0000,−3.2274) 944.2652 944.2653
g(t) = tp 0 (2.5012, 4.2220, 0.9649) 100 0.1 (0.0123, 0.0007,−1.8682) 945.4946 944.1889

1 (2.5000, 4.2213, 0.9647) 300 0.01 (0.0000,−0.0000,−1.8599) 944.2156 944.2156
g(t) = log(1 + t) 0 (2.5000, 4.2213, 0.9648) 100 0.1 (0.0004, 0.0000,−1.8607) 944.3356 944.2148

1 (2.5000, 4.2213, 0.9648) 300 0.01 (0.0000, 0.0000,−1.8604) 944.2156 944.2156

Table 6. Numerical results for Problem 3.

Penalty Function iter feval Time F̃g(x
k, ρk, γk) f(xk)

g(t) = t 2 328 0.8125 944.2652 944.2653
g(t) = tp 2 300 0.70313 944.2156 944.2156

g(t) = log(1 + t) 2 300 0.71875 944.2156 944.2156
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4. Conclusion

In this study, a new class of exact penalty function is given and smoothing
penalty function is proposed for this new exact penalty function. A new min-
imization algorithm is developed in order to solve the problem (P) by the help
of surrogate problem (PSg). The algorithm is applied to the test problems and
satisfactory results are obtained.

The proposed smoothing technique for the non-smooth exact penalty functions
has a flexible structure. It is available for both Lipschitz and non-Lipschitz penalty
functions. This is the most important feature of our smoothing technique and that
distinguishes our smoothing technique from other techniques.

Algorithm A is in all cases highly effective for small and medium scale optimiza-
tion problems. By applying this algorithm, the optimum value is found quickly and
the algorithm offers high accuracy in finding the optimal point.
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Abstract. The statistical techniques which are developed for the analysis

of data in the linear number system cannot be applied to directional data

directly. Circular data may be discontinuous in some principal interval. These
discontinuities cause failure results in the circular statistics. Because of that

the proposed wrapping operator must be used for data, which are defined in
the discontinuous range. However, in both continuity and discontinuity, the

wrapping operator works correctly. The most common preferred directions for

circular data are circular mean and variance summarizing and comparing them.
Although circular data has a very important role in statistics, the literature

is weak in terms of statistical analysis of circular data. It creates a gap in

this field. This study examines the preferred direction of circular data to fill
this gap and presents a new measure of preferred direction for circular data

using angular wrapping. Four different artificial and three real datasets are

employed to evaluate the performance of the proposed methods. The results
demonstrate the superiority of the proposed methods in terms of the absolute

error and absolute percentage error. Consequently, it has been seen that the

proposed methods give more consistent and more accurate results than the
vectorial methods.

1. Introduction

The obtained data from observation can be existed in various measurement
spaces. One of the measurement spaces is an angular space in which data are

2020 Mathematics Subject Classification. 62H11, 62P10, 62P12, 62-08.
Keywords. Angular wrapping, circular data, angular circular mean, angular circular variance,

preferred directions.
1 ozge tzl@hotmail.com; 0000-0003-2815-686X;
2 bugrakaantiryaki@gmail.com; 0000-0003-0995-7389;
3 eda.ozkul.gs@gmail.com-Corresponding author; 0000-0002-9840-8818;
4 okesemen@gmail.com; 0000-0002-5160-1178.

©2023 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

778



A NEW MEASURE OF PREFERRED DIRECTION FOR CIRCULAR DATA 779

expressed as the angular. For instance, a biologist may be measuring the orien-
tation of an animal depending on a factor in the nature or a geologist may be
interested in the direction of the earth’s magnetic pole. Such directions may be
univariate as in the first example or bivariate like the second one ( [1]). In general,
data identifying in angular space are referred to as directional data. Data show-
ing univariate angular change are called as circular data; data showing bivariate
angular change are called as spherical data. If data show more than two angular
changes are called as hyper-spherical data.

The statistical techniques which are developed for the analysis of data in the
linear number system cannot be applied to directional data directly. The most
illustrative example of this situation is to consider a sample of size two on the circle
consisting of the angles 350◦ and 10◦, mean direction of these angles is 0◦ when
linear mean formula is applied to them, their linear mean is 180◦. Many problems
arise when the other statistics such as dispersion measurement and correlation are
applied to circular data ( [2]). Therefore, circular statistics have been developed for
circular data as a branch of statistical science. Circular statistics include statistical
techniques to summarize the obtained data in angular space and to interpret that.
In the literature several studies were performed for the analysis of directional data
and circular statistics were applied to different field of study. Mardia ([3]) is the first
reference book for the analysis of circular data. Fisher ([4]), Mardia and Jupp ([5]),
and Jammalamadaka and SenGupta ( [1]) are good alternative reference books in
this field. Statistics of circular data are used in different scientific disciplines such as
earth sciences ( [6]), meteorology, biology, physics, psychology ( [7,8]), mathematics
and statistics ( [9–18]), image analysis ( [19]), medicine ( [20–22]), astronomy and
agriculture ( [23]), geography and marine sciences ( [24–27]), computer sciences
( [28,29]).

In many research, the usage of appropriate descriptive statistics is useful to sum-
marize the data. Representation of two-dimensional data in the form of angle and
vector on the unit circle is not only one. Because the value of circular observation
may be changed according to zero direction and the selection of clockwise or an-
ticlockwise. The obtained results are a function of the given observation, and the
function does not depend on the arbitrary value. Owing to these properties, circu-
lar data analysis is quite different from statistical analysis. The need of arbitrary
zero direction and orientation often make many statistical techniques and measures
incorrect and meaningless. Therefore, various methods for descriptive statistics of
circular data have been developed in the literature. Firstly, these methods were de-
veloped by Fisher ( [4]). Batschelet ( [30]), Fisher ( [4]), Zar ( [31]), Jammalamadaka
and SenGupta ( [1]) are the source books for the descriptive statistics of circular
data.

The vectorial methods proposed by Mardia ([3]) define circular data as vectors on
the unit circle. If the inspected data are vectorial data, vectorial methods are good
approximation. If the inspected data are directional or periodic data, the proposed
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methods by Mardia ( [3]) can give the failure or approximate results. Therefore,
several statistics such as the angular mean and the angular variance are proposed
for circular data by using wrapping operator to eliminate this approximation in
this study. In view of this, the motivation of this paper is to merge the burgeoning
field of circular statistics with different disciplines as environmental, biological and
ecology science to see how the different areas can be of mutual benefit.

The remainder of the paper is organized as follows. Section 2 presents an
overview of circular data. The proposed preferred directions for circular data are
discussed in Section 3. Experimental results are highlighted in Section 4. Section
5 focusses on the applications of circular statistics in real environmental, biological
and ecological problems. Eventually, the conclusions are drawn in Section 6.

2. Overview of Circular Data

Circular variables are defined on a circle curve unlike number line. For this
reason, they show periodic changes. In this way, periodic variables are defined as

θ = mod (θ + 2kπ, 2π) , (k = 0,±1,±2, . . .) .

These variables are periodic with 2π radian period. In the same way, the sta-
bility of periodicity in different phase values can alter circle number line’s starting
point location or definition interval boundaries. The most common mathemati-
cal representation of starting point accepts the positive x-axis as starting point and
counterclockwise as orientation. Two different approaches are used as the definition
interval of radian unit. These are one-sided principal interval [0, 2π) and symmetric
principal interval (−π, π] ( [32]). The symmetric principal interval is preferred in
this study.

Although directional data are continuous at each point on the circle, when di-
rectional data addressed linearly, it creates the illusion of discontinuities at the 0
radian point according to the one-sided principal interval and at the π point accord-
ing to the symmetric principal interval. Therefore, classical statistical techniques
are insufficient and occasionally give failure results in the analysis of directional
data.

Generally, observed circular data are measured in degrees; however, this study
is assumed that circular data are measured in radians. Circular data are converted
from degrees (α) to radians (θ) by using following equation

θ =
α

180
π.

Circular data can be applied to periodic data as well as data which show the
angular change. Periodic data, such as the days of the week and time of the day
can be exemplified for this situation. Periodic data (x) are converted into angular
space by
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θ =
2πx

T
,

where T gives the period of observed data.
Circular data can be cut across interval boundaries because of some arithmetic

operations. In this situation, principal interval can be reduced to symmetric princi-
pal interval by using wrapping process. Wrapping process is given in the following
equation

θ = mod (ϕ+ π, 2π)− π.

In this study, wrapping process is represented by Wrapπ(·) operation and it is
defined as

θ =Wrapπ (ϕ) .

2.1. Addition of Two Circular Values. The sum of two variables which are in
the same unit and show the angular change is the same as in the linear number
system. However, in this operation, principal interval boundaries can be cut across.
In this situation, the obtained values from the result of addition can be reduced to
the symmetric principal interval by

ψ =Wrapπ (ϕ+ θ) .

2.2. Subtraction of Two Circular Values. The subtraction involves some com-
plexity. Some equations such as equation (1) may lead to failure results by the
reason of the characteristics of the circular data.

ψ = ϕ− θ (1)

Therefore, if counterclockwise is assumed as positive and clockwise is assumed as
negative, the subtraction will be easier. The angle θ is accepted as starting point, so
that in the range (θ − π, θ) is assumed as negative region and in the range (θ, θ + π]
is assumed positive region (Figure 1).

Therefore, we assumed that a value (ϕ) in the range of (θ − π, θ) is smaller
than θ and a value (ϕ) in the range of (θ, θ + π] is bigger than θ. Under these
circumstances, the smallest difference between two angles is calculated by

ψ =Wrapπ (ϕ− θ) .

2.3. Distance of Two Circular Values. Every pair of distinct points on a circle
determines two arcs. If two points are not directly opposite each other, one of these
arcs, the minor arc, will subtend an angle at the center of the circle that is less
than π radians. The other arc, the major arc, will subtend an angle greater than π
radians ( [33]).
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Figure 1. Positive and negative region according to θ radian

When the distance between two points on the circle number line is calculated,
the minor arc length is preferred. The minor arc length is calculated by using the
following equation ( [34])

ψ0 = π − |π − |ϕ− θ|| . (2)

This equation gives accurate results in radians. However, ϕ and θ must be in the
principal interval. Another alternative equation is given in the following equation
( [35])

ψv = 1− cos (ϕ− θ). (3)

This equation takes values in [0, 2]. It is not equal to the length of the [0, π] radian.
If this equation multiplies by π/2, it will be in the desired principal interval. In
spite of this improvement, it may not always produce the desired results due to the
curvature of the cosine function. Proposed method which is given in the equation
(4) gives the best results by taking the absolute value of the subtraction.

ψa = |Wrapπ (ϕ− θ)| (4)

2.4. Circular Mean and Variance. The mean of the circular data cannot be
inherently calculated like mean of linear data. The most illustrative example of
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Figure 2. The minor arc and the major arc of two points

this situation is to consider a sample of size two on the circle consisting of the
angles 355◦ and 5◦, mean direction of these angles is 0◦ when linear mean formula
is applied to these angles, their linear mean is 180◦. Angular continuity is exposed
to numerical discontinuity; therefore, mean of the circular data cannot be calculated
properly. When Mardia and Jupp ( [5]) proposed a method to calculate the circular
mean; in this method, each observation regarded as unit vectors and the resultant
length of these vectors is calculated. The average horizontal component of circular
data is calculated by

C̄ =
1

n

n∑
i=1

cos (θi),

and the average vertical component of circular data is calculated by using equation
(5)

S̄ =
1

n

n∑
i=1

sin (θi). (5)

The resultant length of these components is calculated by the following equation

R̄ =
√
C̄2 + S̄2.
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The angle of this resultant length is defined as

θ̄ = atan2
(
S̄, C̄

)
.

In this equation, θ̄ also gives the circular mean where atan2 is an arc tangent func-
tion that ranges between (−π, π]. In statistical analysis, variance is the most widely
used measure of variability. The sample variance is the sum of the squared differ-
ences around the arithmetic mean divided by the sample size minus one. Circular
variance is calculated by using vectorial approach as

Vv = 1− R̄.

In which the circular variance (Vv) takes value in [0, 1]. This method was proposed
by Mardia and Jupp ( [5]) but this approach is unsuitable for the definition of
variance in the linear data.

3. Proposed Preferred Directionsfor Circular Data

The definitions of the mean and the variance are given clearly in the literature.
These definitions were altered for circular data because of the special nature of cir-
cular data, but these are not suit to the standard definition. Thus, in the literature,
several statistics were obtained by using vectorial mean or resultant length. The
most common preferred directions for circular data are the circular mean and the
variance ( [4]). Circular mean and circular variance are the most commonly used
parameters to summarize and compare the circular data. Circular variance shows
the spread of a dataset. If all circular data are concentrated in one direction, the
average resultant vector length will be close to one. If the circular data show a
widespread over the unit circle, that is, if they show a uniform distribution, the
average resultant vector length will be close to or equal to zero.

3.1. Circular Mean Based on Angular Difference. In this study, an iterative
method which based on the angular distance of circular data is suggested. Let,
Θ = {θ1, θ2, . . . , θn} represent the circular data. The first selected value is consid-
ered as initial mean and this situation is represented as follows

θ̄1 = θ1.

Afterwards, each value is treated with the current mean respectively and equation
(6) is obtained.

θ̄i = θ̄i−1 +
1

i
Wrapπ

(
θi − θ̄i−1

)
, (i = 2, . . . , n) (6)

After all values are treated, general mean is calculated by using equation (7).

θ̄ =Wrapπ
(
θ̄n
)

(7)
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3.2. Circular Variance Based on Angular Difference. The sample variance
is the sum of the squared differences around the arithmetic mean divided by the
sample size minus one. Vectorial variance proposed by Mardia and Jupp ( [5]) is
unsuitable for the definition of variance in the linear data. For this reason, vectorial
variance method does not perform properly for circular data. Therefore, this study
proposes a circular variance by using the angular approach as in equation (8).

Va =
1

n− 1

n∑
i=1

Wrap2π
(
θi − θ̄

)
(8)

In which θ̄ represents the circular mean which is given in the previous section.

4. Experimental Results

In circular statistics, classical statistical techniques give approximate results be-
cause of the special nature of circular data. The angular mean and the angular
variance are proposed to eliminate this approximation in this paper. Generally, cir-
cular data may be discontinuous in some principal interval. These discontinuities
cause failure results in the circular statistics. Because of that the proposed wrap-
ping operator must be used for data, which are defined in the discontinuous range.
But discontinuity for variance cannot be mentioned because of the fact that vari-
ance is calculated quantitatively. However, in both continuity and discontinuity, the
wrapping operator works correctly for circular variance calculation. In this regard,
performance criteria are required to show the success of the proposed methods. For
this reason, absolute error and dispersion are used as performance criteria for both
continuity and discontinuity situations. In addition, a new dispersion measure has
been proposed using the wrapping operator as a performance criteria.

4.1. Performance Criteria for Circular Mean. The linear sample mean is
defined as below

x̄ =
1

n

n∑
i=1

xi. (9)

Equation (10) can be obtained by subtracting the right side of this equation from
both sides of equation (9).

nx̄−
n∑

i=1

xi = 0 (10)

If the equation (10) is regulated, the equation (11) is obtained as

n∑
i=1

(xi − x̄) = 0. (11)

According to this equation, the sum of deviations from the mean is zero. If this
equation is applied to circular data, equation (12) is obtained as
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Wrapπ

(
n∑

i=1

Wrapπ
(
θi − θ̄

))
= 0. (12)

The fact that this is not zero shows that an error is to be occurred. The absolute
error for mean is defined as follows

Emean =

∣∣∣∣∣Wrapπ

(
n∑

i=1

Wrapπ
(
θi − θ̄

))∣∣∣∣∣ .
Different approaches have been developed in the literature to calculate the distance
of two circular values and given in Section 2.3. Therefore, different dispersion mea-
sures have been presented for each of the distance approximations. The dispersion
of angles θ1, θ2, . . . , θn about a given angle α is defined as in the equation (13) and
it was developed based on the minor arc length in the equation (2) ( [1, 4]).

d0(α) = π − 1

n

n∑
i=1

|π − |θi − α|| (13)

The other way of the measuring the dispersion of angles about the angle α is
given as the following equation which is based on the equation (3) ( [5]).

dv(α) =
1

n

n∑
i=1

(1− cos (θi − α))

This paper presents a new measure of preferred direction for circular data using
angular wrapping. Therefore, a new measure of dispersion is proposed as a new
performance criteria for the preferred directions which is given equation (14)

da(α) =
1

n

n∑
i=1

|Wrapπ (θi − α)| . (14)

The dispersion of the angles θ1, θ2, . . . , θn about the angle α can be calculated
by taking as α = θ̄vectorial and α = θ̄angular, respectively.

4.2. Performance Criteria for Circular Variance. The linear sample variance
is defined as below

V =
1

n− 1

n∑
i=1

(xi − x̄)
2
. (15)

Equation (16) can be obtained by subtracting the right side of this equation from
both sides of equation (15).

(n− 1)V −
n∑

i=1

(xi − x̄)
2
= 0 (16)



A NEW MEASURE OF PREFERRED DIRECTION FOR CIRCULAR DATA 787

If the equation (16) is regulated, the equation (17) is obtained as

n∑
i=1

[
(xi − x̄)

2 − (n− 1)

n
V

]
= 0. (17)

If this equation is applied to circular data, equation (18) is obtained as

n∑
i=1

[
Wrap2π

(
θi − θ̄

)
− n− 1

n
Va

]
= 0. (18)

The fact that this is not zero shows that an error is to be occurred. The absolute
error for variance is defined as follows

Evar =

∣∣∣∣∣
n∑

i=1

[
Wrap2π

(
θi − θ̄

)
− n− 1

n
Va

]∣∣∣∣∣ .
4.3. Simulation of Performances. In this section, four different examples were
selected to compare the proposed method with the conventional method to measure
performances of angular mean and angular variance.

Example 1. It was discussed that discontinuity of circular data may lead to failure
results in the previous section. Thus, the first example is selected from the range
[0, π] where data are continuous. For comparing performance of these methods, we
consider the simulation data from the uniform distribution by generating a hundred
data points. This process repeated a thousand times and some of the obtained results
are shown in Table 1, Table 2 and Table 3.

The obtained some results are shown in Table 1 and Table 2 which is included
the absolute error and dispersion measure to prove the performance of the proposed
approach. The linear sample mean, and angular mean give the same results in Table
1, because of the data are continuous in the range of [0, π].

According to these results, since the circular data generated in the [0, π] interval
show continuity, the linear mean

(
θ̄l
)
and the proposed angular mean

(
θ̄a
)
give the

same results, while the vectorial mean
(
θ̄v
)
proposed by Mardia gives almost close

results. Although the vectorial absolute error (E
(v)
mean) is quite low for continuous

circular data, the angular absolute error (E
(a)
mean) of the proposed angular mean (θ̄a)

using the wrapping operator is equal zero for all iterations. Because the data are
continuous in the range [0, π], the linear mean and the proposed angular mean are
equal. Therefore, it can be concluded that the proposed angular mean performs more
consistent and proper than the vectorial mean. Thus, the average errors of vectorial
and angular mean are calculated as 1.5225 and 0.000, respectively.

When the results are examined, it is seen that the d0(θ̄v) and d0(θ̄a), which
depend on the minor arc length, give almost the same results. In addition, the
Table 2 reveals that the values of dv(θ̄v) and dv(θ̄a) depending on the vectorial
distance give close results. When the da(θ̄v) and dv(θ̄a) values depending on the
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Table 1. Comparison of circular means according to the absolute
errors.

i θ̄l θ̄v θ̄a E
(v)
mean E

(a)
mean

1 1.528 1.524 1.528 0.377 0.000
100 1.516 1.524 1.516 0.793 0.000
200 1.743 1.770 1.743 2.747 0.000
300 1.606 1.617 1.606 1.051 0.000
400 1.590 1.601 1.590 1.107 0.000
500 1.490 1.489 1.490 0.142 0.000
600 1.568 1.576 1.568 0.805 0.000
700 1.653 1.656 1.653 0.266 0.000
800 1.541 1.533 1.541 0.798 0.000
900 1.491 1.464 1.491 2.729 0.000
1000 1.596 1.616 1.596 2.002 0.000

Table 2. Comparison of circular means according to the disper-
sions.

i d0(θ̄v) d0(θ̄a) dv(θ̄v) dv(θ̄a) da(θ̄v) da(θ̄a)
1 0.816 0.817 0.381 0.381 0.004 0.000

100 0.888 0.888 0.431 0.431 0.008 0.000
200 0.734 0.735 0.335 0.335 0.027 0.000
300 0.764 0.764 0.348 0.348 0.011 0.000
400 0.844 0.844 0.408 0.408 0.011 0.000
500 0.761 0.761 0.346 0.346 0.001 0.000
600 0.803 0.804 0.366 0.366 0.008 0.000
700 0.723 0.723 0.320 0.320 0.003 0.000
800 0.710 0.711 0.311 0.311 0.008 0.000
900 0.767 0.767 0.361 0.362 0.027 0.000
1000 0.786 0.786 0.353 0.354 0.020 0.000

proposed wrapping operator are examined, the dispersion of the θ̄a is equal to zero
for all repetition. Accordingly, it can be said that the proposed method gives more
consistent results than the vectorial method.

The some of the obtained results are shown in Table 3 which is obtained from the
comparison of the angular variance and the linear variance. The linear variance and
angular variance give the same results in Table 3, because of the data are continuous
in the range of [0, π].

According to Table 3, since the circular data generated in the [0, π] interval show
continuity, while the linear variance (Vl) and the proposed angular variance (Va)
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Table 3. Comparison of the linear and angular variance according
to absolute errors.

i Vl Vv Va E
(v)
var E

(v)
var

1 0.872 0.381 0.872 48.585 0.000
100 0.995 0.431 0.995 55.794 0.000
200 0.771 0.335 0.771 43.146 0.000
300 0.790 0.348 0.790 43.792 0.000
400 0.941 0.408 0.941 52.786 0.000
500 0.791 0.346 0.791 44.084 0.000
600 0.829 0.366 0.829 45.862 0.000
700 0.729 0.320 0.729 40.449 0.000
800 0.705 0.311 0.705 39.056 0.000
900 0.835 0.361 0.835 46.838 0.000
1000 0.802 0.353 0.802 44.404 0.000

give the same results, the vectorial variance (Vv) proposed by Mardia gives almost

close results with them. The angular absolute error (E
(a)
var) of the proposed angular

variance (Va) using the wrapping operator is equal zero for all iterations. Because
the data are contiuous in the range [0, π], the linear variance and proposed angu-
lar variance are equal. Therefore, it can be concluded that the proposed angular
variance performs more consistent and proper than vectorial variance. Thus, the
average errors of vectorial and angular variance are calculated as 46.157 and 0.000,
respectively.

Example 2. For comparing performances of these methods, we consider the simu-
lation data from the uniform distribution by generating a hundred data points in the
range [−π, π]. This process repeated a thousand times. The linear mean is not used
due to discontinuity in Example 2. In this case, angular mean and vectorial mean
are compared by using absolute error and measure of dispersion, obtained results
are shown in Table 4 and Table 5.

In this example, the generated circular data shows discontinuity as it is defined
in the range [−π, π]. Therefore, the linear mean value cannot be calculated for
discontinuous circular data and the vectorial mean

(
θ̄v
)
and angular mean

(
θ̄a
)

values are used, and absolute error value (Emean) and dispersion of angles (d(α))
are used as performance criterias in this example. According to these results, the
mean absolute errors of vectorial and angular mean are calculated as 1.5948 and
0.000, respectively. Table 4 shows that the absolute errors for all iterations are equal
zero. It can be inferred that the proposed angular mean provides better results than
the vectorial mean.

When the results are examined, angular and vectorial dispersion measures give
different results due to discontinuity. When the da(θ̄v) and da(θ̄a) values depending
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Table 4. Comparison of circular means according to the absolute
errors.

i θ̄v θ̄a E
(v)
mean E

(a)
mean

1 -3.139 -0.463 2.557 0.000
100 2.837 2.479 1.938 0.000
200 1.009 1.289 2.893 0.000
300 1.040 0.574 2.700 0.000
400 2.971 -2.918 1.759 0.000
500 0.025 -0.783 0.816 0.000
600 2.479 2.312 2.165 0.000
700 0.098 0.355 0.653 0.000
800 -0.238 2.521 0.547 0.000
900 -1.390 2.228 2.688 0.000
1000 1.523 2.438 2.775 0.000

Table 5. Comparison of circular means according to the disper-
sions.

i d0(θ̄v) d0(θ̄a) dv(θ̄v) dv(θ̄a) da(θ̄v) da(θ̄a)
1 1.522 1.598 0.969 1.028 0.026 0.000

100 1.352 1.379 0.842 0.852 0.019 0.000
200 1.430 1.447 0.889 0.893 0.029 0.000
300 1.530 1.507 0.955 0.960 0.027 0.000
400 1.460 1.458 0.905 0.912 0.018 0.000
500 1.523 1.522 0.957 0.971 0.008 0.000
600 1.520 1.514 0.955 0.956 0.022 0.000
700 1.439 1.447 0.900 0.903 0.007 0.000
800 1.419 1.713 0.882 1.110 0.005 0.000
900 1.462 1.669 0.914 1.077 0.027 0.000
1000 1.482 1.511 0.931 0.958 0.028 0.000

on the proposed wrapping operator are examined, the dispersion of the θ̄a is equal to
zero for all repetition. It can be said that the proposed method gives more consistent
results than the vectorial method. Therefore, it is seen that the proposed method
gives more consistent results than the vectorial method.

The angular variance and vectorial variance are compared by using absolute error
and the obtained results are shown in Table 6.

In this example, the generated circular data shows discontinuity as it is defined
in the range [−π, π]. Therefore, the linear variance cannot be calculated for dis-
continuous circular data, the vectorial variance (Vv) and angular variance (Va) are
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Table 6. Comparison of the angular and vectorial variance ac-
cording to absolute errors.

i θ̄v θ̄a E
(v)
var E

(a)
var

1 0.969 3.434 244.038 0.000
100 0.842 2.557 169.831 0.000
200 0.889 2.767 185.994 0.000
300 0.955 3.112 213.511 0.000
400 0.905 2.987 206.140 0.000
500 0.957 3.073 209.457 0.000
600 0.955 3.088 211.124 0.000
700 0.900 2.807 188.807 0.000
800 0.882 3.763 285.193 0.000
900 0.914 3.616 267.541 0.000
1000 0.931 3.122 216.904 0.000

used, and absolute error (Evar) is used as performance criteria in this example. Ac-
cording to these results, the mean absolute errors of vectorial and angular variance
are calculated as 218.639 and 0.000, respectively. Table 6 shows that the absolute
errors for all iterations are equal zero. It can be inferred that the proposed angular
variance provides better results than the vectorial variance.

Example 3. For comparing performance of these methods, we consider the simu-
lation data from the von Mises distribution

(
vM

(
µ = π

2 , κ = 10
))

by generating a
hundred data points. This process repeated a thousand times. The high values of
concentration parameter (κ) reduce to discontinuity of circular data. For this rea-
son, the differences between vectorial mean

(
θ̄v
)
and angular mean

(
θ̄a
)
decrease.

The some of the obtained results are shown in Table 7 which is acquired from the
comparison of the circular means and the linear mean. The linear mean

(
θ̄l
)
and

angular mean
(
θ̄a
)
give the same results in Table 7 due to the high values of κ.

The high values of κ reduce to discontinuity of circular data. For this reason, the
differences between vectorial and angular mean decrease. The linear mean

(
θ̄l
)
and

the proposed angular mean
(
θ̄a
)
give the same results, while the vectorial mean

(
θ̄v
)

proposed by Mardia ( [3]) gives almost close results. Although the vectorial absolute

error (E
(v)
mean) is quite low for continuous circular data, the angular absolute error

(E
(a)
mean) of the proposed angular mean

(
θ̄a
)
using the wrapping operator is equal

zero for all iterations. Because of the high values of κ, the data are contiuous and so
the linear mean and the proposed angular mean are equal. Therefore, it proves that
the proposed angular mean performs more consistent and proper than the vectorial
mean. According to these results, the average errors of vectorial and angular mean
are calculated as 0.114 and 0.000, respectively.
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Table 7. Comparison of circular means according to the absolute
errors.

i θ̄l θ̄v θ̄a E
(v)
mean E

(a)
mean

1 1.593 1.593 1.593 0.027 0.000
100 1.591 1.588 1.591 0.285 0.000
200 1.557 1.558 1.557 0.116 0.000
300 1.554 1.554 1.554 0.052 0.000
400 1.609 1.609 1.609 0.053 0.000
500 1.576 1.573 1.576 0.235 0.000
600 1.563 1.564 1.563 0.148 0.000
700 1.527 1.528 1.527 0.056 0.000
800 1.554 1.553 1.554 0.086 0.000
900 1.592 1.591 1.592 0.159 0.000
1000 1.623 1.621 1.623 0.140 0.000

Table 8. Comparison of circular means according to the disper-
sions.

i d0(θ̄v) d0(θ̄a) dv(θ̄v) dv(θ̄a) da(θ̄v) da(θ̄a)
1 0.251 0.251 0.047 0.047 0.000 0.000

100 0.280 0.281 0.059 0.059 0.003 0.000
200 0.249 0.249 0.048 0.048 0.001 0.000
300 0.243 0.243 0.049 0.049 0.001 0.000
400 0.259 0.259 0.048 0.048 0.001 0.000
500 0.254 0.254 0.052 0.052 0.002 0.000
600 0.259 0.259 0.051 0.051 0.001 0.000
700 0.243 0.243 0.043 0.043 0.001 0.000
800 0.265 0.265 0.053 0.053 0.001 0.000
900 0.267 0.267 0.058 0.058 0.002 0.000
1000 0.285 0.285 0.061 0.061 0.001 0.000

When the results are examined, it is seen that the d0(θ̄v) and d0(θ̄a), which
depend on the minor arc length, give almost the same results. In addition, the
values of dv(θ̄v) and dv(θ̄a) depending on the vectorial distance give close results.
When da(θ̄v) and da(θ̄a) values depending on the proposed wrapping operator are
examined, the dispersion of the θ̄a is equal to zero for all repetition. Accordingly, it
can be said that the proposed method gives more consistent results than the vectorial
method.
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In the same way, the some of the obtained results from the comparison of the
angular and vectorial variance are shown in Table 9. The linear variance and
angular variance give the same results in Table 9.

Table 9. Comparison of the angular and vectorial variance ac-
cording to absolute errors.

i Vl Vv Va E
(v)
var E

(a)
var

1 0.097 0.047 0.097 4.942 0.000
100 0.123 0.059 0.123 6.339 0.000
200 0.100 0.048 0.100 5.123 0.000
300 0.101 0.049 0.101 5.184 0.000
400 0.098 0.048 0.098 4.996 0.000
500 0.108 0.052 0.108 5.529 0.000
600 0.105 0.051 0.105 5.386 0.000
700 0.089 0.043 0.089 4.529 0.000
800 0.111 0.053 0.111 5.654 0.000
900 0.121 0.058 0.121 6.266 0.000
1000 0.127 0.061 0.127 6.522 0.000

The high values of κ reduce to discontinuity of circular data. For this reason,
the differences between vectorial and angular variance decrease. While the linear
variance (Vl) and the proposed angular variance (Va) give the same results, the
vectorial variance (Vv) proposed by Mardia ( [3]) gives almost close results. Al-

though the vectorial absolute error E
(v)
var is quite low for continuous circular data,

the angular absolute error E
(a)
var of the proposed angular variance (Va) using wrap-

ping operator is equal zero for all iterations. Because of the high values of κ, the
data are contiuous and so the linear variance and the proposed angular variance
are equal. Therefore, it proves that the proposed angular variance performs more
consistent and proper than the vectorial variance. According to these results, the
average errors of vectorial and angular variance are calculated as 5.416 and 0.000,
respectively.

Example 4. For comparing performance of these methods, we consider the sim-
ulation data from the von Mises distribution

(
vM

(
µ = π

2 , κ = 2
))

by generating a
hundred data points. This process repeated a thousand times. The low values of
κ increase discontinuity of circular data. For this reason, the difference between
vectorial mean and angular mean increase. The linear mean is not used due to the
discontinuity in Example 4.

The angular mean and vectorial mean are compared by using absolute error and
measure of dispersion, the obtained results are shown in Table 10 and Table 11.

The low values of κ increase discontinuity of circular data. For this reason, the
difference between vectorial mean and angular mean increase. Therefore, the linear
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Table 10. Comparison of circular means according to the abso-
lute errors.

i θ̄v θ̄a E
(v)
mean E

(a)
mean

1 1.573 1.558 1.507 0.000
100 1.688 1.700 1.277 0.000
200 1.458 1.437 2.052 0.000
300 1.576 1.581 0.525 0.000
400 1.652 1.650 0.208 0.000
500 1.699 1.688 1.079 0.000
600 1.581 1.544 2.620 0.000
700 1.424 1.456 3.042 0.000
800 1.607 1.603 0.389 0.000
900 1.524 1.529 0.584 0.000
1000 1.552 1.535 1.679 0.000

mean
(
θ̄l
)
cannot be calculated for discontinuous circular data, the vectorial mean(

θ̄v
)
and angular mean

(
θ̄a
)
are used, and absolute error value (Emean) is used as

performance criterion in this example. According to these results, the mean absolute
errors of vectorial and angular mean are calculated as 1.596 and 0.000, respectively.
Table 10 shows that the absolute errors for all iterations are equal zero. It can be
inferred that the proposed angular mean provides better results than the vectorial
mean.

Table 11. Comparison of circular means according to the disper-
sion.

i d0(θ̄v) d0(θ̄a) dv(θ̄v) dv(θ̄a) da(θ̄v) da(θ̄a)
1 0.594 0.595 0.242 0.242 0.015 0.000

100 0.715 0.715 0.331 0.331 0.013 0.000
200 0.676 0.678 0.307 0.308 0.021 0.000
300 0.622 0.623 0.282 0.282 0.005 0.000
400 0.735 0.735 0.344 0.344 0.002 0.000
500 0.634 0.635 0.270 0.270 0.011 0.000
600 0.569 0.568 0.233 0.234 0.026 0.000
700 0.713 0.710 0.330 0.331 0.030 0.000
800 0.643 0.643 0.273 0.273 0.004 0.000
900 0.705 0.705 0.325 0.325 0.006 0.000
1000 0.576 0.576 0.243 0.243 0.017 0.000
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When the results are examined, it is seen that the d0(θ̄v) and d0(θ̄a), which
depend on the minor arc length, give almost the same results. In addition, the
values of dv(θ̄v) and dv(θ̄a) depending on the vectorial distance give close results.
When da(θ̄v) and da(θ̄a) values depending on the proposed wrapping operator are
examined, the dispersion of the θ̄a is equal to zero for all repetition. Accordingly, it
can be said that the proposed method gives more consistent results than the vectorial
method.

In the same way, the angular variance and vectorial variance are compared by
using absolute error and the obtained results are shown in Table 12.

Table 12. Comparison of the angular and vectorial variance ac-
cording to absolute errors.

i Vv Va E
(v)
var E

(a)
var

1 0.242 0.586 34.060 0.000
100 0.331 0.826 49.001 0.000
200 0.307 0.835 52.245 0.000
300 0.282 0.750 46.319 0.000
400 0.344 0.889 53.981 0.000
500 0.270 0.660 38.643 0.000
600 0.233 0.607 37.024 0.000
700 0.330 0.849 51.323 0.000
800 0.273 0.726 44.830 0.000
900 0.325 0.817 48.687 0.000
1000 0.243 0.616 36.930 0.000

The low values of κ increase discontinuity of circular data. For this reason, the
difference between vectorial mean and angular mean increase. Therefore, the linear
variance (Vl) cannot be calculated for discontinuous circular data, the vectorial
variance (Vv) and angular variance (Va) are used, and absolute error value (Evar)
is used as performance criteria in this example. According to these results, the
mean absolute errors of vectorial and angular variance are calculated as 46.299 and
0.000, respectively. Table 12 shows that the absolute errors for all iterations are
equal zero. It can be inferred that the proposed angular variance provides better
results than the vectorial variance.

5. Real Data Applications

In order to compare the performance of the proposed method with the conven-
tional methods and measure performance of angular mean and angular variance,
it has been applied on three real dataset that using in environmental and ecologi-
cal applications. These are movements of ants’ dataset ( [36]), movements of blue
periwinkles’ dataset ( [37,38]), and dance directions of bees’ dataset ( [39]).
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5.1. Movements of ants’ dataset. Route learning is the key to the survival of
many ants. Ants show remarkable navigational ability, traveling long distances be-
tween profitable foraging areas and their nest. They have low resolution vision.
For this reason, ants who travel along a particular route, produce pheromone trails
secreted from their abdominal glands. Trail pheromone is used for route learning,
and effects on route choice. In this example, we analyze the dataset that presents
the orientation of the ants towards a black target when released in a round arena.
The ants tended to run towards the target. This experiment was originally con-
ducted by Jander ( [36]) and later mentioned in Fisher ( [4]). The data consists of
100 observations ( [40]). For this data set, the vectorial sample mean and resul-
tant direction are calculated 3.20 radians (183◦) and 0.61, respectively ( [4]). The
directions of the ants are shown in Table 13.

Table 13. The directions of the ants.

330 290 60 200 200 180 280 220 190 180 140 40 300 80
180 160 280 180 170 190 180 140 150 150 210 200 170 200
160 200 190 250 180 30 200 180 200 350 210 190 160 170
200 180 120 200 210 130 30 210 200 230 180 140 360 150
180 160 210 190 180 230 50 150 210 180 110 270 180 200
190 210 220 200 60 260 110 180 170 200 220 160 70 190
10 220 180 210 170 90 160 180 170 200 120 150 300 190
160 180

The circular histogram, the scatter and the vectorial and the proposed angular
mean of the movements of the ants’ dataset are given in Figure 3.

According to Figure 3, the vectorial and angular mean are calculated as 183.1385◦

and 184.7◦, respectively. The absolute error for vectorial mean and angular mean
are computed as 2.7253 and 0.0000, respectively. Since the absolute error for an-
gular mean is equal 0.0000, the proposed angular mean method performs more
consistent and proper than the other method. The vectorial variance is 0.3899 and
the absolute error of it is 81.1333. The angular variance is calculated as 1.2095
and the absolute error of it is computed as 0.0000. Since the absolute error for
angular variance is equal 0.0000, the proposed angular variance method performs
more consistent and proper than the other method.

5.2. Movements of blue periwinkles’ dataset. Blue periwinkles (Nodilittorina
unifasciata) are very small blue shells that feed on microscopic algae. They live on
the rocky shore in cluster of thousands and are able to survive a long time out
of water. They travel up to 12 m in search of food. This dataset contains the
directions of small blue periwinkles after they had been relocated down shore from
the height at which they normally live. The original dataset not only contains the
directions of the movement, but also contains the distances of the periwinkles after
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(a) (b)

Figure 3. The circular histogram of the movements of the ants’
dataset (A) scatter of the data; (B) the vectorial and angular mean
of the data

relocation. But in this paper, the distance measurement is omitted. Two different
locations are combined for the purposes of this example. A total of 31 animals were
involved in the study, 15 of which were measured one day after transplantation and
the other 16 of which were measured four days after ( [41]). The directions of the
blue periwinkles are shown in Table 14.

Table 14. The directions of blue periwinkles.

67 66 74 61 58 60 100 89
171 166 98 60 197 98 86 123
165 133 101 105 71 84 75 98
83 71 74 91 38 200 56

The circular histogram, the scatter and the vectorial and the proposed angular
mean of the movements of the blue periwinkles’ dataset are given in Figure 4.

According to Figure 4, the vectorial and angular mean are calculated as 92.7931◦

and 97.3871◦, respectively. The absolute error for vectorial mean and angular
mean are computed as 2.4856 and 0.0000, respectively. These results show that the
proposed angular mean method more consistent and proper than the other method.
The vectorial variance is 0.2251 and the absolute error of it is 9.5705. The angular
variance is calculated as 0.5441 and the absolute error of it is computed as 0.0000.
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(a) (b)

Figure 4. The circular histogram of the movements of the blue
periwinkles’ dataset (A) scatter of the data; (B) the vectorial and
angular mean of the data

These results show that the proposed angular variance method more consistent and
proper than the other method.

5.3. Dance directions of bees’ dataset. How honeybees perceive polarized light
from the sky was a longstanding problem in the literature ( [42]). It has long been
known that bees can use the pattern of polarized light in the sky (e-vector pattern)
as a compass cue even if they can see only a small part of the whole pattern ( [43]).
Honeybees frequently dance with some view of the sky, orienting themselves to the
sun or natural polarized skylight ( [44]).

This dataset shows the dance directions of 279 honeybees viewing a zenith patch
of artificially polarized light. This dataset was measured experimentally to prove
that special receptors at the dorsal margin of the eye are required to detect polarized
light and derive compass information in sky patterns ( [39]). The waggle dances
were recorded by a video and were analyzed later by measuring the directions of
the individual waggle runs. The dance directions of the honeybees are shown in
Table 15.

The circular histogram, the scatter and the vectorial and the proposed angular
mean of the dance directions of the bees’ dataset are given in Figure 5.

According to Figure 5, the vectorial and angular mean are calculated as 138.2749◦

and 164.3369◦, respectively. The absolute error for vectorial mean and angular
mean are computed as 1.2445 and 0.0000, respectively. Since the absolute error for
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Table 15. Dance directions of bees.

Direction 0 10 20 30 40 50 60 70 80 90
Frequency 3 8 9 9 6 6 12 9 9 9
Direction 100 110 120 130 140 150 160 170 180 190
Frequency 9 12 5 6 8 12 8 9 12 5
Direction 200 210 220 230 240 250 260 270 280 290
Frequency 5 9 8 5 12 9 8 7 3 8
Direction 300 310 320 330 340 350
Frequency 12 6 5 5 8 3

(a) (b)

Figure 5. The circular histogram of the dance directions of the
bees’ dataset (A) scatter of the data; (B) the vectorial and angular
mean of the data

angular mean is equal 0.0000, the proposed angular mean method performs more
consistent and proper than the other method. The vectorial variance is 0.9223 and
the absolute error of it is 562.7965. The angular variance is calculated as 2.9467
and the absolute error of it is computed as 0.0000. Since the absolute error for
angular variance is equal 0.0000, the proposed angular variance method performs
more consistent and proper than the other method.

6. Conclusion

In this study, a new approach was proposed for the calculation of the mean and
variance of circular data. Circular data can be cut across interval boundaries as a
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result of some arithmetic operations. In this situation, the principal interval can be
reduced to a symmetric principal interval by using the wrapping process. The pro-
posed methods have been developed based on the wrapping process. These methods
were compared with Mardia’s methods ( [3]) in the literature, using both artificial
data and real datasets. The absolute error and absolute percentage error which is
proposed by using the wrapping process were considered as the performance crite-
ria in the comparisons. In the simulation study, four different artificial data were
generated from the uniform and von Mises distribution according to the continuity
and discontinuity of the data. The comparisons were performed by changing the
interval range for the uniform distribution and altering the κ for the von mises
distribution. The attained results showed that the proposed angular mean and
variance methods outperform vectorial methods in the literature. In this study, the
angular statistics (mean and variance) and the linear statistics (mean and variance)
give the same result in the range of [0, π]. On the other hand, the low values of
the κ increase discontinuity of the circular data which generated from von Mises
distribution. For this reason, the difference between vectorial statistics and angular
statistics increases. These methods give the same results in this situation. In order
to compare the performance of the proposed method with the conventional meth-
ods and measure the performance of angular mean and angular variance, it has
been applied on three real datasets that using in environmental and ecological ap-
plications. These are movements of ants’ dataset, movements of blue periwinkles’
dataset, and dance directions of bees’ dataset. The proposed methods achieved
more consistent results in the calculation of the mean and variance of the circular
data when compared to the vectorial methods. Thus, it has been demonstrated
that the proposed method can be easily applied to environmental and ecological
data as well as artificial data. Consequently, the simulation study and applications
show that the proposed angular methods based on the wrapping process are simple
and consistent. It can be easily applied to different datasets in various fields. Also,
it is useful for practitioners regarding the applicability.
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[25] Yurovskaya, M. V., Dulov, V. A., Chapron, B., Kudryavtsev, V. N., Directional short wind

wave spectra derived from the sea surface photography, J. Geophys. Res. Oceans., 118(9)

(2013), 4380-4394. https://doi.org/10.1002/jgrc.20296
[26] Costa, M., Koivunen, V., Poor, H. V., Estimating directional statistics using wavefield mod-

eling and mixtures of von-mises distributions, IEEE Signal Process. Lett., 21(12) (2014),

1496-1500. https://doi.org/10.1109/LSP.2014.2341651
[27] Mı́nguez, R., Espejo, A., Tomás, A., Méndez, F. J., Losada, I. J., Directional calibration of

wave reanalysis databases using instrumental data, J. Atmos. Ocean. Technol., 28(11) (2011),

1466-1485. https://doi.org/10.1175/JTECH-D-11-00008.1
[28] Schwartz, R. S., Barbosa, R. R. R., Meratnia, N., Heijenk, G., Scholten, H., A directional

data dissemination protocol for vehicular environments, Comput. Commun., 34(17), (2011),
2057-2071. https://doi.org/10.1016/j.comcom.2011.03.007

[29] Guo, C., Wu, X., Feng, C., Zeng, Z., Spectrum sensing for cognitive radios based on direc-

tional statistics of polarization vectors, IEEE J. Sel. Areas Commun., 31(3) (2013), 379-393.
https://doi.org/10.1109/JSAC.2013.130305

[30] Batschelet, E., Circular Statistics in Biology, Academic Press, 1981.

[31] Zar, J. H., Biostatistical Analysis 4th edition, Prentice Hill, 1999.
[32] Easton Jr, R. L., Topics in Circular Statistics, John Wiley & Sons, 2010.

[33] Rhoad, R., Milauskas G., Whipple, R., Geometry for Enjoyment and Challenge, McDougal

Littell & Co., 1991.
[34] Ackermann, H., A note on circular nonparametrical classification, Biom. J., 39(5) (1997),

577-587. https://doi.org/10.1002/bimj.4710390506

[35] Lund, U., Cluster analysis for directional data, Commun. Stat.–Simul. Comput., 28(4) (1999),
1001-1009. https://doi.org/10.1080/03610919908813589

[36] Jander, R., Die optische richtungsorientierung der roten waldameise (formica ruea l.), Z. Vgl.
Physiol., 40(2) (1957), 162-238. https://doi.org/10.1007/BF00297947

[37] Chapman, M., Assessment of some controls in experimental transplants of inter-

tidal gastropods, Journal of J. Exp. Mar. Biol. Ecol., 103(1-3) (1986), 181-201.
https://doi.org/10.1016/0022-0981(86)90140-1

[38] Chapman, M., Underwood, A., Experimental designs for analyses of movements by molluscs,

Proceedings of the third international symposium on littorinid biology, (1992), 169-180.
[39] Wehner R., Strasser, S., The POL area of the honey bee’s eye: behavioural evidence, Physiol.

Entomol., 10(3) (1985), 337-349. https://doi.org/10.1111/j.1365-3032.1985.tb00055.x

[40] Ravindran, P., Ghosh, S. K., Bayesian analysis of circular data using wrapped distributions, J.
Stat. Theory Pract., 5(4) (2011), 547-561. https://doi.org/10.1080/15598608.2011.10483731

[41] Otieno, B. S., Anderson-Cook, C. M., Measures of preferred direction for envi-

ronmental and ecological circular data, Environ. Ecol. Stat., 13(3)(2006), 311-324.
https://doi.org/10.1007/s10651-004-0014-5

[42] Rossel, S., Wehner, R., Polarization vision in bees, Nature, 323(6084) (1986), 128-131.

https://doi.org/10.1038/323128a0
[43] Rossel, S., Wehner, R., The bee’s map of the e-vector pattern in the sky, Proc. Natl. Acad.

Sci. U.S.A., 79(14) (1982), 4451-4455. https://doi.org/10.1073/pnas.79.14.4451
[44] Brines, M. L., Gould, J. L., Bees have rules, Science, 206(4418) (1979), 571-573.

https://doi.org/10.1126/science.206.4418.571



Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 72, Number 3, Pages 803–814 (2023)
DOI:10.31801/cfsuasmas.1194816
ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr

Research Article; Received:October 12, 2022; Accepted: July 2, 2023

DISJOINT SETS IN PROJECTIVE PLANES OF SMALL ORDER

Mustafa GEZEK
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Abstract. In this paper, results of a computer search for disjoint sets as-

sociated with maximal arcs and unitals in projective planes of order 16, and
disjoint sets associated with unitals in projective planes of orders 9 and 25 are

reported. It is shown that the number of pairs of disjoint unitals in planes of
order 9 is exactly four, and new pairs and triples of disjoint degree 4 maximal

arcs are shown to exist in some of the planes of order 16. New bounds on

the number of 104-sets of type (4, 8) and 156-sets of type (8, 12) are achieved.
A combinatorial method for finding new maximal arcs, new unitals, and new

v-sets of type (m,n) is introduced. All disjoint sets found in this study are

explicitly listed.

1. Introduction

We assume familiarity with the basic facts from finite geometries and design
theory [3, 5, 10].

Let q be a prime power and π be a plane of order q2. A v-set of type (m,n) in
π is defined to be a set S of v points of π such that any line of π intersects with S
in either m or n points.

There are four projective planes of order 9 [12]. Through this paper, the follow-
ing abbreviations will be used for the names of these planes: PG(2, 9), HALL(9),
HALL(9)⊥, and HUGHES(9). Up to isomorphism, the number of known projective
planes of orders 16 and 25 is 22 and 193, respectively. The following abbrevi-
ations will be used for the names of the planes of order 16: PG(2,16), JOHN,
MATH, HALL, DEMP, JOWK, SEMI2, SEMI4, DSFP, LMRH, BBH1, BBS4, and
BBH2 [15], and we will follow the notations used in [13] for the known planes of
order 25.

In this study, we will be interested in disjoint sets associated with (n(q+1)− q)-
sets of type (0, n) and (q3 + 1)-sets of type (1, q + 1) in projective planes of orders
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q2 ∈ {9, 16, 25}, where the former set is called a maximal (n(q + 1)− q, n)-arc and
later is called a unital.

The set of lines of π which have no points in common with a maximal (n(q +
1)− q, n)-arc A determines a maximal ( qn (q−n+1), q

n )-arc, denoted by A⊥, in the
dual plane of π. The sets of the intersections of the lines of π with A at n points
form a 2-(n(q + 1)− q, n, 1) design D(A).

In 1997, for odd prime power q, Ball et al. showed that degree n maximal arcs
do not exist in PG(2, q), where 1 < n < q [2]. Non-trivial maximal arcs do exist in
some of the projective planes of even order with n = 2i, i ≥ 1 [6–9,20,21].

Penttila et al. classified all degree 2 maximal arcs in the known planes of order
16 [15], and it was shown that PG(2, 16) contains exactly two inequivalent degree
4 maximal arcs [1]. Maximal (52, 4)-arcs have not been completely classified in the
remaining of the known planes of order 16, yet.

Details of the known degree 4 maximal arcs and unitals in the known planes of
order 16 are given in Table 1, where Column 1 gives the name of the planes, Column
2 shows how many degree 4 maximal arcs are known to exist in each plane, Column
3 lists the name of the maximal arcs, and the last column provides the number of
known unitals in each plane.

Table 1. The known number of maximal (52, 4)-arcs and unitals
in the known planes of order 16.

Known number maximal arcs Known number
Plane of maximal denoted by of unitals

(52, 4)-arcs [7–9] [11,16,17,19]
PG(2, 16)∗ 2 PG(2, 16).1 and PG(2, 16).2 2
BBH1∗ 3 bbh1.1, bbh1.2, etc. 16
BBH2 0 - 26
BBS4 0 - 13
DEMP 5 demp.1, demp.2, etc. 4
DSFP 1 dsfp.1 2
HALL 2 hall.1 and hall.2 6
JOHN 4 john.1, john.2, etc. 29
JOWK 2 jowk.1 and jowk.2 7
LMRH 2 lmrh.1 and lmrh.2 2
MATH 7 math.1, math.2, etc. 16
SEMI2∗ 7 semi2.1, semi2.2, etc. 21
SEMI4∗ 1 semi4.1 12

The specific point sets of the known degree 4 maximal arcs and unitals in the
known planes of order 16 used in this study are from [8] and [17], respectively.
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The set of lines of π meeting with a unital U at a single point determines a
unital, denoted by U⊥, in the dual plane of π. The sets of the intersections of the
lines of π with U at q + 1 points form a 2-(q3 + 1, q + 1, 1) design D(U).

In 1981, Brouwer constructed 138 non-isomorphic unital 2-(28, 4, 1) designs and
showed that twelve of them could be embedded as a unital in planes of order 9 [4],
and in 1995, Penttila and Royle classified all unitals in planes of order 9 and they
showed that there are exactly 18 such sets: two in PG(2, 9), four in HALL(9) (so
four in HALL(9)⊥), and eight in HUGHES(9) [14].

Table 1 shows that the number of known unitals in planes of order 16 is 156,
of which 38 of them were found by Stoichev and Tonchev [19], 3 of them were
found by Krĉadinac and Smoljak [11] and 115 of them were found by Stoichev and
Gezek [17].

The number of known unitals in the known projective planes of order 25 is
477 [18].

In this article, some results of a computer search for disjoint sets in the known
planes of orders nine, sixteen and twenty-five are given. It is shown that disjoint
sets in a projective plane of order q2 may be useful to find a complete partitioning
of the point set of the plane into disjoint sets associated with degree q maximal
arcs and unitals. It is observed that new degree q maximal arcs, new unitals, new
v-sets of type (m,n), and new projective planes can be found through disjoint sets
as well.

The paper is organized in the following way. In Section 2, types of disjoint sets
and some of possible ways of partitioning incidence matrices of projective planes are
discussed. In Section 3, new pairs of disjoint degree 4 maximal arcs are shown to
exist in BBH1, LMRH, and SEMI2 planes. MATH and SEMI2 planes are shown to
contain new triples of disjoint degree 4 maximal arcs. In Section 4, it is shown that
pairs of disjoint unitals exist in planes of order 9, and no such sets exists from the
known unitals in the known planes of orders 16 and 25. In Section 5, we report the
results of computer searches for 156-sets of type (8, 12) associated with maximal
arcs and unitals in the known planes of order 16. In Section 6, a combinatorial
method for finding a complete partitioning of the point set of a projective plane
into disjoint sets associated with maximal arcs and unitals, new maximal arcs, new
unitals, new v-sets of type (m,n), and new projective planes is given. Point sets of
all newly found disjoint sets discussed in this paper are available online at1.

2. Types of Disjoint Sets in Projective Planes

It is well-known that some v-sets of type (m,n) might be coming from the unions
of pairwise disjoint maximal arcs. In this paper, we will be interested in three
different types of disjoint sets as described in Table 2:

Disjoint sets in π can be used to partition an incidence matrix of the plane in
one of the following possible forms: if there exists a degree q maximal arc A1 and

1euniversite.nku.edu.tr/testotomasyon/dosyalar/kullanicilar/3705/files/DisjointSets16.pdf
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Table 2. Types of disjoint sets.

Type I Disjoint pairs of maximal arcs
Type II Disjoint pairs of unitals
Type III A maximal arc disjoint from a unital

a unital U disjoint from A1, then, WLOG, one may rearrange the columns (rows)
of the incidence matrix according to the point sets of A1 and U (A⊥

1 and U⊥) as



(A1 ∪ U)c︷ ︸︸ ︷
− · · · · · · · · · −

A1︷ ︸︸ ︷
− · · ·−

U︷ ︸︸ ︷
− · · ·−

q2 − 2q q q + 1

q2 − q O q + 1

q2 − q q 1


, (1)

where O indicates a (q3 − q2 + q) × (q3 − q2 + q) zero matrix and numbers in the
matrix shows the number of 1’s in each row. In addition, if there exists a degree q
maximal arc A2 disjoint from A1 ∪ U , then we may partition the incidence matrix
of π as



(A1 ∪ A2 ∪ U)c︷ ︸︸ ︷
− · · · · · · −

A2︷ ︸︸ ︷
− · · ·−

A1︷ ︸︸ ︷
− · · ·−

U︷ ︸︸ ︷
− · · ·−

q2 − 3q q q q + 1

q2 − 2q O q q + 1
q2 − 2q q O q + 1

q2 − 2q q q 1


. (2)

Sometimes we may not have a Type III disjoint set. Instead, we could have disjoint
triples of degree q maximal arcs, that is, if there exists a degree q maximal arc A3

disjoint from A1∪A2, but not disjoint from U , then we may partition the incidence
matrix of π as
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

(A1 ∪ A2 ∪ A3)
c︷ ︸︸ ︷

− · · · · · · −
A3︷ ︸︸ ︷

− · · ·−
A2︷ ︸︸ ︷

− · · ·−
A1︷ ︸︸ ︷

− · · ·−

q2 − 3q + 1 q q q

q2 − 2q + 1 O q q
q2 − 2q + 1 q O q

q2 − 2q + 1 q q O


. (3)

Many more forms as similar above can be derived from an incidence matrix of π,
but these three will be enough for our discussion in this study.

3. Type I Disjoint Sets

Type I disjoint sets in a projective plane π are the sets coming from disjoint
pairs of maximal arcs. First examples of these sets are seen in PG(2, 4):

Theorem 1. It is possible to partition the points of PG(2, 4) into two degree 2
maximal arcs and a unital.

Proof. A = {7, 8, 10, 11, 19, 20} is a 6-set of type (0, 2) in PG(2, 4) (the specific
line set of the projective plane of order 4 that we use is available online at2), a
degree 2 maximal arc. It can be shown that U = {2, 3, 4, 6, 9, 15, 16, 17, 18} is a
9-set of type (1, 3) in PG(2, 4), a unital, disjoint from A. Then, the complement of
A ∪ U = {0, 1, 5, 12, 13, 14} is a 6-set of type (0, 2). □

In the known projective planes of order 16, Hamilton et al. found thirty-seven
Type I disjoint sets (21 in PG(2, 16), 4 in SEMI4, 4 in SEMI2, 3 in MATH, 3 in
JOWK, and 2 in BBH1) [9] and Gezek found thirty-seven Type I disjoint sets (33
in MATH and 4 in JOHN) [7].

The specific line sets of the known planes of order 16 used in this study are
from [8].

Previously, only four Type I disjoint sets were known to exist in SEMI2 [9], our
computations show that there are more such sets in this plane:

There are six isomorphic copies of semi2.4 disjoint from semi2.1. The collineation
stabilizer of the unions of these sets with semi2.1 all have order 4, and they are
equivalent. This set is denoted by semi2.(1, 4).1.

There are six isomorphic copies of semi2.5 disjoint from semi2.1. The collineation
stabilizer of the unions of these sets with semi2.1 all have order 4, and they are
equivalent. This set is denoted by semi2.(1, 5).1.

There are thirty-six isomorphic copies of semi2.3 disjoint from itself. The collineation
stabilizer of the unions of twenty-four of these sets with semi2.3 have order 16, and

2ericmoorhouse.org/pub/planes/pg24.txt



808 M. GEZEK

they split into six inequivalent classes. These sets are denoted by semi2.(3, 3).1,
semi2.(3, 3).2, · · · , semi2.(3, 3).6. The collineation stabilizer of the unions of the
remaining twelve sets with semi2.3 have order 32, and they split into six in-
equivalent classes. These sets are denoted by semi2.(3, 3).7, semi2.(3, 3).8, · · · ,
semi2.(3, 3).12.

There are forty-four isomorphic copies of semi2.4 disjoint from itself. The
collineation stabilizer of the unions of twenty-four of these sets with semi2.4 have
order 16, and they split into six inequivalent classes. These sets are denoted by
semi2.(4, 4).1, semi2.(4, 4).2, · · · , semi2.(4, 4).6. The collineation stabilizer of the
unions of twelve of the remaining sets with semi2.4 have order 32, and they split into
six inequivalent classes. These sets are denoted by semi2.(4, 4).7, semi2.(4, 4).8,
· · · , semi2.(4, 4).12. The collineation stabilizer of the unions of the remaining eight
sets with semi2.4 all have order 8, and they are equivalent. This set is denoted by
semi2.(4, 4).13.

There are sixteen isomorphic copies of semi2.5 disjoint from semi2.4. The
collineation stabilizer of the unions of these sets with semi2.4 all have order 8, and
they split into four inequivalent classes. These sets are denoted by semi2.(4, 5).1,
semi2.(4, 5).2, · · · , semi2.(4, 5).4.

There are twenty isomorphic copies of semi2.5 disjoint from itself. The collineation
stabilizer of the unions of eight of these sets with semi2.5 have order 8, and they
split into two inequivalent classes. These sets are denoted by semi2.(5, 5).1 and
semi2.(5, 5).2. The collineation stabilizer of the unions of the eight of the remain-
ing sets with semi2.5 have order 4, and they are equivalent. This set is denoted by
semi2.(4, 5).3. The collineation stabilizer of the unions of the remaining four sets
with semi2.5 have order 16, and they split into two inequivalent classes. These sets
are denoted by semi2.(5, 5).4 and semi2.(5, 5).5.

There are thirty-six isomorphic copies of semi2.6 disjoint from itself. The collinea-
tion stabilizer of the unions of these sets with semi2.6 all have order 16, and
they split into six inequivalent classes. These sets are denoted by semi2.(6, 6).1,
semi2.(6, 6).2, · · · , semi2.(6, 6).6.

There are thirty-six isomorphic copies of semi2.7 disjoint from itself. The collinea-
tion stabilizer of the unions of these sets with semi2.7 all have order 16, and
they split into six inequivalent classes. These sets are denoted by semi2.(7, 7).1,
semi2.(7, 7).2, · · · , semi2.(7, 7).6.

Previously, no Type I disjoint set were known to exist in LMRH. However, our
computations show that this plane also contains such sets:

There are thirty-six isomorphic copies of lmrh.2 disjoint from lmrh.1. The
collineation stabilizer of the unions of these sets with lmrh.1 all have order 8, and
they split into three inequivalent classes. These sets are denoted by lmrh.(1, 2).1,
lmrh.(1, 2).2, and lmrh.(1, 2).3.

There are twenty-four isomorphic copies of lmrh.2 disjoint from itself. The
collineation stabilizer of the unions of sixteen of these sets with lmrh.2 have order 8,
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and they split into two inequivalent classes. These sets are denoted by lmrh.(2, 2).1
and lmrh.(2, 2).2. The collineation stabilizer of the unions of the remaining eight
sets with lmrh.2 have order 16, and they split into two inequivalent classes. These
sets are denoted by lmrh.(2, 2).3 and lmrh.(2, 2).4.

Previously, only two Type I disjoint sets were known to exist in BBH1 [9], our
computations show that there are more such sets in this plane as well:

There are four isomorphic copies of bbh1.3 disjoint from itself. The collineation
stabilizer of the unions of two of these sets with bbh1.3 have order 8, and they
split into two inequivalent classes. These sets are denoted by bbh1.(3, 3).1, and
bbh1.(3, 3).2. The collineation stabilizer of the unions of the remaining two sets with
bbh1.3 have order 4, and they are equivalent. This set is denoted by bbh1.(3, 3).3.

All known Type I disjoint sets in the known projective planes of order 16 can
be summarized as in Table 3, where Column 1 presents the name of the planes,
Column 2 and 3 shows the group orders of the Type I disjoint sets (with their
quantities) found in [9], and [7], respectively. Column 4 provides the group orders
of the Type I newly discovered disjoint sets (with their quantities). The last column
(row) shows the total number of such sets in each plane (study). An entry ab in
Table 3 implies that there are b inequivalent Type I disjoint sets with collineation
stabilizer of order a.

Table 3. The number of known Type I disjoint sets in the known
planes of order 16.

Plane Hamilton et al. [9] Gezek [7] Gezek (2022) Total
PG(2, 16)∗ 216, 43, 82 21
BBH1∗ 81, 161 41, 82 5
JOHN 164 4
JOWK 82, 161 3
LMRH 85, 162 7
MATH 41, 82 45, 814, 168, 326 36
SEMI2∗ 82, 162 43, 87, 1626, 3212 52
SEMI4∗ 162, 322 4
Total 37 37 58 132

Previously, it was reported that PG(2, 16) contains one disjoint triples of degree
4 maximal arc having collineation stabilizer of order 2 [9]. A computer program
was written to find disjoint triples and disjoint quadruples of degree 4 maximal arcs
in the known planes of order 16. In addition to the one found in PG(2, 16), our
results show that SEMI2 and MATH planes also contain disjoint triples of degree
4 maximal arcs: there is an isomorphic copy of semi2.4 disjoint from the union
of semi2.1 and semi2.(1, 4).1, having collineation stabilizer of order 8 (this set is
denoted by semi2.(1, 4, 4).1). There is an isomorphic copy of semi2.5 disjoint from
the union of semi2.1 and semi2.(1, 5).1, having collineation stabilizer of order 8



810 M. GEZEK

(this set is denoted by semi2.(1, 5, 5).1). There is an isomorphic copy of math.4
disjoint from the union of math.1 and math.(1, 4).1, having collineation stabilizer
of order 8 (this set is denoted by math.(1, 4, 4).1). There is an isomorphic copy
of math.5 disjoint from the union of math.1 and math.(1, 5).1, having collineation
stabilizer of order 8 (this set is denoted by math.(1, 5, 5).1). Our program found
no disjoint quadruples of degree 4 maximal arcs in the known planes of order 16.

4. Type II Disjoint Sets

Type II disjoint sets in a projective plane π are the sets coming from disjoint
pairs of unitals.

In HALL(9), there are (up to isomorphism) four unitals. The unital having
group order 24 has six isomorphic copies disjoint from itself. Up to isomorphism,
there are two such pairs of disjoint unitals with collineation stabilizer of order 16.
The unions of these sets with the unital having group order 24 in HALL(9) provide
56-sets of type (5, 8) (or, 35-sets of type (2, 5)).

PG(2, 9) and HUGHES(9) planes do not contain any Type II disjoint sets, and
our computations show that no Type II disjoint sets exists from the known unitals
in the known planes of orders 16 and 25.

5. Type III Disjoint Sets

Type III disjoint sets in a projective plane π are the sets coming from a maximal
arc A and a unital U in π such that A and U are disjoint. The smallest plane where
this type of set exists is PG(2, 4) (see Section 3).

Previously, no Type III disjoint sets were known to exist in the known projective
planes of order 16. Our computations show that such sets exist in these planes.
We provide details of the Type III disjoint sets found by our algorithm in Table
4, where the first column presents the maximal arcs, and the last column gives for
which unital there exists such a set. An entry j(k) in row i in Table 4 implies that
there are k inequivalent Type III disjoint sets coming from maximal arc i and unital
j.

Group orders of the Type III disjoint sets found in this study can be summarized
as in Table 5, where Column 1 presents the name of the planes, Column 2 shows the
group orders of the Type III disjoint sets (with their quantities). The last column
(row) shows the total number of such sets in each plane (all planes).

Table 3 shows that the number of disjoint pairs of maximal (52, 4)-arcs is at least
132. Union of disjoint pairs of maximal (52, 4)-arcs is a 104-set of type (4, 8). Some
of the disjoint pairs of the degree 4 maximal arcs given in Table 3 are disjoint from
some of the isomorphic copies of unitals: two in SEMI2 and two in MATH. The
complement of the union of these disjoint sets is also a 104-set of type (4, 8): the
sets in SEMI2 have collineation stabilizer of orders 4 and 8, and the sets in MATH
have collineation stabilizer of orders 4 and 8. None of these sets are equivalent to
any Type I disjoint sets given in Table 3. We have
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Table 4. Type III disjoint sets in the known planes of order 16.

Maximal (52, 4)-arc Unital No.(Quantity)
bbh1.2 1(2),16(2)
john.1 26(1),29(1)
john.2 2(1),26(1)
john.3 2(1),26(1)
john.4 26(1),29(1)
jowk.1 7(1)
jowk.2 7(5)
lmrh.1 1(1),2(2)
lmrh.2 1(3),2(8)
math.1 4(2),8(2)
math.2 2(1),5(2),6(1),10(1),11(1)
math.3 5(2),7(1),11(1),12(2),15(1),16(1)
math.4 3(1),5(2),10(2),11(1),13(2),14(2)
math.5 3(1),10(1)
semi2.1 4(2)
semi2.2 11(2)
semi2.3 1(1),2(2),9(2),10(2),14(1)− 21(1)
semi2.4 2(2),9(4),10(2),11(2),14(1),15(1),16(2),17(1)− 19(1)
semi2.5 11(1),16(1)
semi2.6 5(1),6(4),12(2)
semi2.7 5(4),6(1),13(2)
semi4.1 8(2),10(2),12(2)

Table 5. The number of known Type III disjoint sets in the known
planes of order 16.

Plane Gezek (2022) Total
BBH1∗ 82, 162 4
JOHN 168 8
JOWK 42, 82, 162 6
LMRH 810, 164 14
MATH 47, 817, 166 30
SEMI2∗ 45, 834, 166 51
SEMI4∗ 83, 162 5
Total 118

Theorem 2. The number of 104-sets of type (4, 8) in planes of order 16 is at least
136, of which all except four are coming from the unions of pairs of disjoint maximal
(52, 4)-arcs.
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The complement of a Type III disjoint set is a 156-set of type (8, 12). Table 5
shows that the number of 156-sets of type (8, 12) in planes of order 16 is at least
118. As previously it was mentioned, there exist five triples of disjoint maximal
(52, 4)-arcs, their unions provide five 156-sets of type (8, 12). None of these sets are
equivalent to any of the complement of Type III disjoint sets given in Table 5. We
have

Theorem 3. The number of 156-sets of type (8, 12) in planes of order 16 is at least
123, of which five of them are coming from the unions of triples of disjoint maximal
(52, 4)-arcs.

6. Conclusion

The main purpose of the study presented in this paper is to answer the following
question: for any prime power q, is it possible to partition the point set of a
projective plane of order q2 into q pairwise disjoint degree q maximal arcs and a
unital? For q = 2, the answer is yes (see Section 3).

The first open case where no such partitioning is known to exist is the case for
q = 4. If a partitioning of the point set of a plane of order 16 (as a union of
four pairwise disjoint degree 4 maximal arcs and one unital) is possible, we get it
from either (i) finding appropriate new maximal arcs of degree 4, or (ii) finding
appropriate new unitals, or (iii) finding appropriate Type III disjoint sets, or (iv)
finding an appropriate partitioning of the complement of the disjoint sets presented
in this paper.

An appropriate degree 4 maximal arc in (i) in the matrix form (1) means a
maximal arc A disjoint from A1 ∪ U such that we have the matrix form (2), which
may lead to a complete partitioning of the incidence matrix of the plane (if there
exists an isomorphic copy of A disjoint from A ∪ A1 ∪ U) and a (possible) new
maximal arc (the complement of A1 ∪ U may be a union of triples of disjoint
maximal arcs such that maximal arcs in the union are isomorphic to A), or a
(possible) new 104-set of type (4, 8). An appropriate degree 4 maximal arc in (i)
in the matrix form (2) means a maximal arc A disjoint from A1 ∪A2 ∪U such that
we have 

A′︷ ︸︸ ︷
− · · ·−

A︷ ︸︸ ︷
− · · ·−

A2︷ ︸︸ ︷
− · · ·−

A1︷ ︸︸ ︷
− · · ·−

U︷ ︸︸ ︷
− · · ·−

O 4 4 4 5

4 O 4 4 5
4 4 O 4 5
4 4 4 O 5
4 4 4 4 1


, (4)

which gives a complete partitioning of the incidence matrix of the plane as well as a
possible new degree 4 maximal arc A′ (A′ may be isomorphic to A). An appropriate
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degree 4 maximal arc in (i) in the matrix form (3) means a maximal arc A disjoint
from A1 ∪A2 ∪A3 such that

U ′︷ ︸︸ ︷
− · · ·−

A︷ ︸︸ ︷
− · · ·−

A3︷ ︸︸ ︷
− · · ·−

A2︷ ︸︸ ︷
− · · ·−

A1︷ ︸︸ ︷
− · · ·−

1 4 4 4 4

5 O 4 4 4
5 4 O 4 4
5 4 4 O 4
5 4 4 4 O


, (5)

which gives a complete partitioning of the incidence matrix of the plane as well as
a new unital U ′ (this is a new set because U ′ is disjoint from A1∪A2∪A3 and none
of the known unitals have isomorphic copies disjoint from A1 ∪ A2 ∪ A3). Similar
arguments can be made for (ii)-(iv) in the matrix forms (1)-(3).

Discussions in this study make us believe that the following is true in general:

Conjecture 1. The points of PG(2, q2) can be partitioned into q degree q maximal
arcs and a unital.

We conclude that disjoint sets in a projective plane π may be useful to find
a complete partitioning of the point set of the plane into disjoint sets associated
with degree q maximal arcs and unitals, new degree q maximal arcs, new unitals,
and new v-sets of type (a, b). New projective planes can be found through disjoint
sets by studying submatrices in the matrix forms (1)-(3) (a possible future research
project). Disjoint sets also dramatically lessen the number of computations for find-
ing new maximal arcs (i.e., from

(
273
52

)
to

(
104
52

)
for the computations in the planes

of order 16) and unitals (i.e., from
(
273
65

)
to

(
117
65

)
for the computations in the planes

of order 16).
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Abstract. Let (M, g) be a Riemannian manifold and TM be its tangent

bundle. The purpose of this paper is to study statistical structures on TM

with respect to the metrics Gf
1 = cg + v(fg) and Gf

2 = sgf + hg, where f

is a smooth function on M, cg is the complete lift of g, v(fg) is the vertical

lift of fg, sgf is a metric obtained by rescaling the Sasaki metric by a smooth

function f and hg is the horizontal lift of g. Moreover, we give some results

about Killing vector fields on TM with respect to these metrics.

1. Introduction

Let (M, g) be a Riemannian manifold and TM be its tangent bundle. In [1],
Abbassi and Sarih defined a general ”g−natural” metric on TM . Some well-known
examples of the g−natural metric are the Sasaki metric ( [6], [14]), the Cheeger-
Gromoll metric ( [13], [15]), Cheeger-Gromoll type metrics ( [4], [7]) and the Kaluza-
Klein metric [2]. However, some other metrics can be defined on the tangent bundle
which are not subclasses of this g−natural metric. As first example, in [9], Gezer

and Ozkan defined a metric Gf
1 = cg + v(fg), where cg is the complete lift of the

metric and v(fg) is the vertical lift of fg and f is a smooth function on M. As

second example, in [8], Gezer et al. introduced a metric Gf
2 = sgf +

hg, where sgf
is a metric which is obtained by rescaling the Sasaki metric with a smooth function
f on M and hg is the horizontal lift of g. These lifts will be explained later and we
will deal with these two metrics in this paper.
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Statistical manifolds were introduced by Amari [3] in view of information geom-
etry, and they were applied by Lauritzen [10]. These manifolds have a crucial role
in statistics as the statistical model often forms a geometrical manifold.

Although curvature related properties of tangent bundles are widely studied,
investigating statistical structures on tangent bundles is a relatively new topic.
These structures were examined with respect to various Riemannian metrics such
as the Sasaki metric [5], the Cheeger-Gromoll metric and a g−natural metric which
consists of three classic lifts of the metric g [12], the twisted Sasaki metric and the
gradient Sasaki metric [11].

In this paper, we study the statistical and Codazzi structures on TM using the
horizontal and complete lifts of a linear connection on M when TM is endowed

with the metrics Gf
1 and Gf

2 , respectively. We also investigate the Killing vector
fields on TM with respect to such metrics.

2. Preliminaries

Let M be an n−dimensional Riemannian manifold and ∇ be a linear connection
on M . The tangent bundle TM of the manifold M is a 2n−dimensional smooth
manifold and it is defined by the disjoint union of the tangent spaces at each point
of M. If {U, xi} is a local coordinate system in M, then {π−1(U), xi, ui, i = 1, ..., n}
is a local coordinate system in TM, where π is the natural projection defined by
π : TM → M and (ui) is the local coordinate system in each tangent space in U
with respect to the basis { ∂

∂xi }. We have a direct sum decomposition

TTM = V TM ⊕HTM

for the tangent bundle of TM, where the vertical subspace V TM is spanned by
{ ∂
∂ui := ( ∂

∂xi )
v} and the horizontal subspace HTM is spanned by { δ

δxi := ( ∂
∂xi )

h =
∂

∂xi −umΓj
mi

∂
∂uj }. Here Γj

mi denote the Christoffel symbols of ∇. The vertical, hori-

zontal and the complete lifts of a vector fieldX = Xi ∂
∂xi are defined by, respectively

Xv = Xi ∂

∂ui
, Xh = Xi ∂

∂xi
− ysΓm

siX
i ∂

∂um
, Xc = Xi ∂

∂xi
+ ys

∂Xi

∂xs

∂

∂ui
,

where we used Einstein the summation.
The Lie brackets of the vertical lift and the horizontal lift of vector fields satisfy

the following relations:

[Xh, Y h] = [X,Y ]h−(R(X,Y )u)v, [Xh, Y v] = (∇XY )v−(T (X,Y ))v, [Xv, Y v] = 0,

where R is the curvature tensor field and T is the torsion tensor field of the linear
connection ∇, [16].

For a Riemannian metric g on a smooth manifold M , the complete lift cg, the
vertical lift vg and the horizontal lift hg of g are given by

cg(Xh, Y h) = cg(Xv, Y v) = 0, cg(Xh, Y v) = cg(Xv, Y h) = g(X,Y ),

vg(Xh, Y h) = g(X,Y ), vg(Xv, Y v) = vg(Xh, Y v) = vg(Xv, Y h) = 0.
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hg(Xh, Y h) = 0, hg(Xv, Y v) = 0, hg(Xh, Y v) = hg(Xv, Y h) = g(X,Y ).

The horizontal lift connection
h

∇ and the complete lift connection
c

∇ are respec-
tively given by, [16]

h

∇XhY h = (∇XY )h,
h

∇XhY v = (∇XY )v,
h

∇XvY h =
h

∇XvY v = 0,
c

∇XhY h = (∇XY )h + (R(u,X)Y )v,
c

∇XvY h =
c

∇XvY v = 0,
c

∇XhY v = (∇XY )v,
c

∇XcY c = (∇XY )c,
c

∇XcY v =
c

∇XvY c = (∇XY )v.

Remark 1. The connection ∇ is a flat and torsionless linear connection if and

only if
h

∇(
c

∇) is a torsionless linear connection, [16].

In the sequel, we shall denote ∂
∂xi ,

δ
δxi and ∂

∂ui as ∂i, δi and ∂ı̄, for shortness.

The metric Gf
1 on TM is defined by

Gf
1 (X

h, Y h) = fg(X,Y ), Gf
1 (X

h, Y v) = Gf
1 (X

v, Y h) = g(X,Y ), Gf
1 (X

v, Y v) = 0,
(1)

where f is a strictly positive function on M , [9].
From Theorem 3.1 in [9], we can easily rewrite the Levi-Civita connection of the

metric Gf
1 in invariant form.

Lemma 1. Let (M, g) be a Riemannian manifold on (TM,Gf
1 ) be its tangent bundle

with the metric Gf
1 defined by (1). The Levi-Civita connection ∇f

1 of the metric Gf
1

satisfies the following relations

∇f
1XhY

h = (∇XY )h + (R(u,X)Y +Af (X,Y ))v,

∇f
1XhY

v = (∇XY )v, ∇f
1XvY

h = ∇f
1XvY

v = 0,

where X,Y are vector fields on M , ∇ is the Levi-Civita connection of g, R is the
Riemannian curvature of ∇ and Af (X,Y ) = 1

2 (X(f)Y +Y (f)X−g(X,Y )◦ (df)∗).

The metric Gf
2 on TM is defined by

Gf
2 (X

h, Y h) = fg(X,Y ), Gf
2 (X

h, Y v) = Gf
2 (X

v, Y h) = g(X,Y ), Gf
2 (X

v, Y v) = g(X,Y ),
(2)

where f is a strictly positive function on M , [8].

From [9], we rewrite the Levi-Civita connection of the metric Gf
2 in invariant

form as follows.

Lemma 2. Let (M, g) be a Riemannian manifold on (TM,Gf
2 ) be its tangent bundle

with the metric Gf
2 defined by (2). The Levi-Civita connection ∇f

2 of the metric Gf
2

satisfies the following relations

∇f
2XhY

h = (∇XY +
1

2(f − 1)
(R(u,X)Y +R(u, Y )X) +

1

f − 1
Af (X,Y ))h
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−(
1

f − 1
Af (X,Y ) +

1

2
R(X,Y )u+

1

2(f − 1)
(R(u,X)Y +R(u, Y )X))v,

∇f
2XhY

v = (
1

2(f − 1)
R(u, Y )X)h + (∇XY − 1

2(f − 1)
R(u,X)Y )v,

∇f
2XvY

h = (
1

2(f − 1)
R(u,X)Y )h − (

1

2(f − 1)
R(u,X)Y )v,

∇f
2XvY

v = 0,

where X,Y are vector fields on M , ∇ is the Levi-Civita connection of g, R is the
Riemannian curvature of ∇ and Af (X,Y ) = 1

2 (X(f)Y +Y (f)X−g(X,Y )◦ (df)∗).

Definition 1. Let (M, g) be a Riemannian manifold and let ∇ be a linear connec-
tion on M. The pair (g,∇) is called a Codazzi couple if the Codazzi equation are
valid:

(∇Xg)(Y,Z) = (∇Zg)(X,Y ),

for all vector fields X,Y, Z on M. The triplet (M, g,∇) is said to be a Codazzi
manifold and ∇ is called a Codazzi connection. Moreover, when ∇ is torsionless,
(M, g,∇) is a statistical manifold.

3. Killing Vector Fields and Statistical Structures on (TM,Gf
1 )

Definition 2. Let (M, g) be a Riemannian manifold and ∇ be a linear connection
on M. A vector field X is called conformal (respectively, Killing) if LXg = 2ρg
(respectively, LXg = 0), where ρ is a smooth function on M.

Using this definition, we have

LXvGf
1 (Y

v, Zv) = 0,

LXvGf
1 (Y

h, Zv) = 0,

LXvGf
1 (Y

h, Zh) = g(∇Y X,Z) + g(Y,∇ZX)− g(T (Y,X), Z)− g(T (Z,X), Y )

and

LXhGf
1 (Y

v, Zv) = 0,

LXhGf
1 (Y

h, Zv) = g(∇Y X,Z) + g(T (X,Y ), Z) + g(Y, T (X,Z)),

LXhGf
1 (Y

h, Zh) = X(f)g(Y,Z) + f(LXg)(Y,Z) + g(R(X,Y )u, Z) + g(R(X,Z)u, Y ).

So, we have the following proposition.

Proposition 1. Let (TM,Gf
1 ) be the tangent bundle of a Riemannian manifold

(M, g). Then the following statements are true:
(i) If ∇ is a torsionless linear connection on M, then the vector field Xv is

Killing if and only if X is a parallel vector field on (M, g).
(ii) If ∇ is a torsionless linear connection on M, then the vector field Xh is

Killing if and only if X is a ∇−parallel vector field, X is a conformal vector field
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such that (LXg)(Y,Z) = −X(f)
f g(Y, Z) and R(X,Y )Z = 0 for all the vector fields

Y,Z on M.
(iii) If ∇ is a torsionless linear connection, f is a constant function and X is

a parallel vector field on M, then the vector field Xh is Killing if and only if the
vector field X is Killing on (M, g) and R(X,Y )Z = 0 for all the vector fields Y, Z
on M.

(iv) If ∇ is a flat connection, X is a ∇−parallel vector field and f is a constant
function on (M, g), then the vector field Xh is Killing if and only if the vector field
X is Killing on (M, g).

Proof. The truthfulness of the assertions are clear from the definition of the Killing
vector fields. □

Now, we obtain the components of
h

∇Gf
1 . We have

(
h

∇δiG
f
1 )(δj , δk) = ∂i(f)gjk + f(∇∂i

g)(∂j , ∂k), (3)

(
h

∇δjG
f
1 )(δk, δi) = ∂j(f)gki + f(∇∂j

g)(∂k, ∂i),

(
h

∇δkG
f
1 )(δi, δj) = ∂k(f)gij + f(∇∂k

g)(∂i, ∂j),

(
h

∇∂ı̄G
f
1 )(∂j̄ , ∂k̄) = 0, (

h

∇∂ı̄G
f
1 )(∂j̄ , δk) = (

h

∇∂j̄
Gf

1 )(δk, ∂ı̄) = (
h

∇δkG
f
1 )(∂ı̄, ∂j̄) = 0,

(
h

∇δiG
f
1 )(δj , ∂k̄) = (∇∂i

g)(∂j , ∂k), (
h

∇δjG
f
1 )(∂k̄, δi) = (∇∂j

g)(∂k, ∂i), (
h

∇∂k̄
Gf

1 )(δi, δj) = 0.
(4)

So, we can express the following theorem.

Theorem 1. Let (TM,Gf
1 ) be the tangent bundle of a Riemannian manifold (M, g)

and ∇ be a linear connection. Then the following statements are true:

(i) If (TM,Gf
1 ,

h

∇) is a Codazzi manifold, then f is a constant function on M
and ∇ is a metric connection.

(ii) If (TM,Gf
1 ,

h

∇) is a statistical manifold, then ∇ is flat, f is a constant func-
tion on M and ∇ is the Levi-Civita connection of g. In this case, the connections
h

∇ and ∇f
1 coincide.

(iii) If ∇ is the Levi-Civita connection of g and f is a constant function on

M, then
h

∇ is compatible with the metric Gf
1 . In particular, if ∇ is flat, then the

connections
h

∇ and ∇f
1 coincide.

Proof. (i) From (3) and (4) we see that if (TM,Gf
1 ,

h

∇) is a Codazzi manifold, then
f is a constant function on M and ∇ is a metric connection.
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(ii) If (TM,Gf
1 ,

h

∇) is a statistical manifold, then
h

∇ is torsionless. From Remark

1, we see that ∇ is flat. It follows from (i) and the definition of the connections
h

∇
and ∇f

1 .
(iii) It is clear from the definition of the Levi-Civita connection and the connec-

tions
h

∇ and ∇f
1 .

□

Now, we repeat this process for (TM,Gf
1 ,

c

∇). By direct calculations we have

(
c

∇δiG
f
1 )(δj , δk) = ∂i(f)gjk + f(∇∂i

g)(∂j , ∂k)− usRt
sijgkt − usRt

sikgjt, (5)

(
c

∇δjG
f
1 )(δk, δi) = ∂j(f)gki + f(∇∂j

g)(∂k, ∂i)− usRt
sjkgit − usRt

sjigtk,

(
c

∇δkG
f
1 )(δi, δj) = ∂k(f)gij + f(∇∂k

g)(∂i, ∂j)− usRt
skigjt − usRt

skjgti,

(
c

∇∂ı̄
Gf

1 )(∂j̄ , ∂k̄) = 0, (
c

∇∂ı̄
Gf

1 )(∂j̄ , δk) = (
c

∇∂j̄
Gf

1 )(δk, ∂ı̄) = (
c

∇δkG
f
1 )(∂ı̄, ∂j̄) = 0,

(
c

∇δiG
f
1 )(δj , ∂k̄) = (∇∂ig)(∂j , ∂k), (

c

∇δjG
f
1 )(∂k̄, δi) = (∇∂jg)(∂k, ∂i), (

c

∇∂k̄
Gf

1 )(δi, δj) = 0.
(6)

Thus, we give the following theorem.

Theorem 2. Let (TM,Gf
1 ) be the tangent bundle of a Riemannian manifold (M, g)

and let ∇ be a torsionless linear connection. Then the following statements are true:

i) If (TM,Gf
1 ,

c

∇) is a Codazzi (respectively statistical) manifold, then ∇ is flat,

f is a constant function on M . Furthermore,
c

∇ is a metric connection (respectively,
c

∇ becomes the Levi-Civita connection of Gf
1 ).

ii) If (TM,Gf
1 ,

c

∇) is a statistical manifold and f is a constant function on M ,

then ∇ is the Levi-Civita connection of g and
c

∇ becomes the Levi-Civita connection

of Gf
1 .

(iii) If ∇ is the Levi-Civita connection of g, f is a constant function on M and

∇ is a flat connection, then the connections
c

∇ and ∇f
1 coincide.

Proof. (i) If (TM,Gf
1 ,

c

∇) is a Codazzi manifold, then from (6) we obtain that ∇
is a metric connection. Differentiating (5)1 with respect to um gives us Rt

mijgkt +

Rt
mikgjt = 0. Similarly, by differentiating (5)2 and (5)3 with respect to um, we

obtain Rt
mjkgit + Rt

mjigtk = 0 and Rt
mkigjt + Rt

mkjgti = 0, respectively. So, ∇

is a flat connection. We also occur that f is a constant function on M. If
c

∇ is

torsionless, it becomes the Levi-Civita connection of Gf
1 .

(ii) We get immediately from Remark 1, the definition of the Levi-Civita con-

nection and the complete lift connection
c

∇.
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(iii) Definitions of the connections
c

∇ and ∇f
1 give the results. □

Now, we assume that (TM,Gs,∇f
1 ) is a statistical manifold. The metric Gs is

called the Sasaki metric and it is defined by

Gs(X
h, Y h) = g(X,Y ), Gs(X

h, Y v) = Gs(X
v, Y h) = 0, Gs(X

v, Y v) = g(X,Y ),

for all vector fields X,Y, Z on M. Using Lemma 1, we get

(∇f
1δi

Gs)(δj , δk) = (∇f
1δj

Gs)(δk, δi) = (∇f
1δk

Gs)(δi, δj) = 0, (7)

(∇f
1∂ı̄

Gs)(∂j̄ , ∂k̄) = 0, (∇f
1∂ı̄

Gs)(∂j̄ , δk) = (∇f
1∂j̄

Gs)(δk, ∂ı̄) = (∇f
1δk

Gs)(∂ı̄, ∂j̄) = 0,

(∇f
1δi

Gs)(δj , ∂k̄) = −usRm
sijgmk +

1

2
gmk(fiδ

m
j + fjδ

m
i − gijf

m
. ),

(∇f
1δj

Gs)(∂k̄, δi) = −usRm
sjigmk +

1

2
gmk(fjδ

m
i + fiδ

m
j − gjif

m
. ),

(∇f
1∂k̄

Gs)(δi, δj) = 0,

where, fi = ∂if and fm
. =gmhfh. So, we have the following theorem.

Theorem 3. Let (TM,Gf
1 ) be the tangent bundle of a Riemannian manifold (M, g)

and let ∇f
1 is the Levi-Civita connection of the metric Gf

1 . If (TM,Gs,∇f
1 ) is a

statistical manifold, then ∇ is flat and f is a constant function on M.

Proof. If (TM,Gs,∇f
1 ) is a statistical manifold, by differentiating (7)3 and (7)4 with

respect to ut, we occurRm
tijgmk = Rm

tjigmk = 0.Moreover, we see that f is a constant
function on M. □

4. Killing Vector Fields and Statistical Structures on (TM,Gf
2 )

In this final section, we follow the same line in the previous section for the metric

Gf
2 . The proofs of the results will be similar.

From Definition 2, we have

LXvGf
2 (Y

v, Zv) = 0,

LXvGf
2 (Y

h, Zv) = g(∇Y X,Z)− g(T (Y,X), Z),

LXvGf
2 (Y

h, Zh) = g(∇Y X,Z)− g(T (Y,X), Z) + g(∇ZX,Y )− g(T (Z,X), Y )

and

LXhGf
2 (Y

v, Zv) = (∇Xg)(Y, Z) + g(T (X,Y ), Z) + g(Y, T (X,Z)),

LXhGf
2 (Y

h, Zv) = g(∇Y X,Z) + g(R(X,Y )u, Z) + g(T (X,Y ), Z) + g(Y, T (X,Z)),

LXhGf
2 (Y

h, Zh) = X(f)g(Y,Z) + f(LXg)(Y,Z) + g(R(X,Y )u, Z) + g(R(X,Z)u, Y ).

It is clear that if ∇ is a torsionless linear connection, then the vector field Xv is
Killing if and only if ∇X = 0. On the other hand, if ∇ is the Levi-Civita connection
of g, then Xh is a Killing vector field if and only if X is ∇−parallel, X is Killing,
the function f is constant and ∇ is flat. More precisely, we have
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Proposition 2. Let (TM,Gf
2 ) be the tangent bundle of a Riemannian manifold

(M, g). Then the following statements are true:
(i) If ∇ is a torsionless linear connection on M, then the vector field Xv is

Killing if and only if X is a parallel vector field.
(ii) If ∇ is a torsionless linear connection, f is a constant function and X is

a ∇−parallel vector field on M, then the vector field Xh is Killing if and only
if X is Killing vector field on M, ∇ is the Levi-Civita connection of (M, g) and
R(X,Y )Z = 0 for all the vector fields Y,Z on M.

(iii) If ∇ is the flat Levi-Civita connection, X is a ∇−parallel vector field and
f is a constant function on (M, g), then the vector field Xh is Killing if and only
if the vector field X is Killing on (M, g).

Here, we compute the components of
h

∇Gf
2 . We obtain

(
h

∇δiG
f
2 )(δj , δk) = ∂i(f)gjk + f(∇∂i

g)(∂j , ∂k),

(
h

∇δjG
f
2 )(δk, δi) = ∂j(f)gki + f(∇∂j

g)(∂k, ∂i),

(
h

∇δkG
f
2 )(δi, δj) = ∂k(f)gij + f(∇∂k

g)(∂i, ∂j),

(
h

∇∂ı̄G
f
2 )(∂j̄ , ∂k̄) = 0, (

h

∇∂ı̄G
f
2 )(∂j̄ , δk) = (

h

∇∂j̄
Gf

2 )(δk, ∂ı̄) = 0,

(
h

∇δkG
f
2 )(∂ı̄, ∂j̄) = (∇∂k

g)(∂i, ∂j),

(
h

∇δiG
f
2 )(δj , ∂k̄) = (∇∂i

g)(∂j , ∂k), (
h

∇δjG
f
2 )(∂k̄, δi) = (∇∂j

g)(∂k, ∂i),

(
h

∇∂k̄
Gf

2 )(δi, δj) = 0.

From the above equations, we deduce that if (TM,Gf
2 ,

h

∇) is a Codazzi manifold,
then f is a constant function on M and ∇ is a metric connection. So, we can write
the following theorem.

Theorem 4. Let (TM,Gf
2 ) be the tangent bundle of a Riemannian manifold (M, g)

and ∇ be a linear connection. Then the following statements are true:

(i) If (TM,Gf
2 ,

h

∇) is a Codazzi manifold, then f is a constant function on M
and ∇ is a metric connection.

(ii) If (TM,Gf
2 ,

h

∇) is a statistical manifold, then ∇ is flat, f is a constant func-
tion on M and ∇ is the Levi-Civita connection of g. In this case, the connections
h

∇ and ∇f
2 coincide.
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(iii) If ∇ is the Levi-Civita connection of g and f is a constant function on

M, then
h

∇ is compatible with the metric Gf
2 . In particular, if ∇ is flat, then the

connections
h

∇ and ∇f
2 coincide.

Now, we follow this process for (TM,Gf
2 ,

c

∇). By direct calculations we have

(
c

∇δiG
f
2 )(δj , δk) = ∂i(f)gjk + f(∇∂ig)(∂j , ∂k)− usRt

sijgkt − usRt
sikgjt, (8)

(
c

∇δjG
f
2 )(δk, δi) = ∂j(f)gki + f(∇∂j

g)(∂k, ∂i)− usRt
sjkgit − usRt

sjigtk,

(
c

∇δkG
f
2 )(δi, δj) = ∂k(f)gij + f(∇∂k

g)(∂i, ∂j)− usRt
skigjt − usRt

skjgti,

(
c

∇∂ı̄G
f
2 )(∂j̄ , ∂k̄) = 0, (

c

∇∂ı̄G
f
2 )(∂j̄ , δk) = (

c

∇∂j̄
Gf

2 )(δk, ∂ı̄) = (
c

∇δkG
f
2 )(∂ı̄, ∂j̄) = 0,

(
c

∇δiG
f
2 )(δj , ∂k̄) = (∇∂ig)(∂j , ∂k) + usRt

sijgkt, (9)

(
c

∇δjG
f
2 )(∂k̄, δi) = (∇∂j

g)(∂k, ∂i) + usRt
sjigkt,

(
c

∇∂k̄
Gf

2 )(δi, δj) = (∇∂k
g)(∂i, ∂j).

If (TM,Gf
2 ,

c

∇) is a Codazzi manifold, then from (9) we obtain that ∇ is a flat
metric connection. We also deduce that from (8)1 f is a constant function on M.
Thus, we have the following theorem.

Theorem 5. Let (TM,Gf
2 ) be the tangent bundle of a Riemannian manifold (M, g)

and let ∇ be a torsionless linear connection. Then the following statements are true:

i) If (TM,Gf
2 ,

c

∇) is a Codazzi (respectively statistical) manifold, then ∇ is flat,

f is a constant function on M . Furthermore,
c

∇ is a metric connection (respectively,
c

∇ becomes the Levi-Civita connection of Gf
2 ).

ii) If (TM,Gf
2 ,

c

∇) is a statistical manifold and f is a constant function on M ,

then ∇ is the Levi-Civita connection of g and
c

∇ becomes the Levi-Civita connection

of Gf
2 .

(iii) If ∇ is the Levi-Civita connection of g, f is a constant function on M and

∇ is a flat connection, then the connections
c

∇ and ∇f
2 coincide.

Now, we assume that (TM,Gs,∇f
2 ) is a statistical manifold. Using Lemma 2

(∇f
2δi

Gs)(δj , δk) = − 1

2(f − 1)
(usRm

sij + usRm
sji + fiδ

m
j + fjδ

m
i − fm

. gij)gmk

− 1

2(f − 1)
(usRm

sik + usRm
ski + fiδ

m
k + fkδ

m
i − fm

. gik)gmj

(∇f
2∂ı̄

Gs)(∂j̄ , ∂k̄) = 0, (10)
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(∇f
2∂ı̄

Gs)(∂j̄ , δk) =
1

2(f − 1)
usRm

sikgmj ,

(∇f
2δk

Gs)(∂ı̄, ∂j̄) =
1

2(f − 1)
(usRm

skigmj + usRm
skjgmi),

(∇f
2δi

Gs)(δj , ∂k̄) = [
1

2(f − 1)
(usRm

sij + usRm
sji + fiδ

m
j + fjδ

m
i − fm

. gij)

+
1

2
usRm

ijs]gkm − 1

2(f − 1)
usRm

skigjm,

(∇f
2∂k̄

Gs)(δi, δj) = − 1

2(f − 1)
(usRm

skigmj + usRm
skjgmi),

where fi = ∂if and fm
. =gmhfh. If (TM,Gs,∇f

2 ) is a statistical manifold, by
differentiating (10)3 with respect to ut we occur Rm

tikgmj = 0 (other equations
which have curvature components of ∇ is similar). Moreover, we see that f is a
constant function on M. So, we have the theorem below.

Theorem 6. Let (TM,Gf
2 ) be the tangent bundle of a Riemannian manifold (M, g)

and let ∇f
2 is the Levi-Civita connection of the metric Gf

2 . If (TM,Gs,∇f
2 ) is a

statistical manifold, then ∇ is flat and f is a constant function on M.
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CHARACTERIZATION OF A PARASASAKIAN MANIFOLD

ADMITTING BACH TENSOR
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Abstract. In the present article, our aim is to characterize Bach flat paraSasakian
manifolds. It is established that a Bach flat paraSasakian manifold of dimen-

sion greater than three is of constant scalar curvature. Next, we prove that

if the metric of a Bach flat paraSasakian manifold is a Yamabe soliton, then
the soliton field becomes a Killing vector field. Finally, it is shown that a

3-dimensional Bach flat paraSasakian manifold is locally isometric to the hy-

perbolic space H2n+1(1).

1. Introduction

Adati and Matsumoto [1] introduced the concept of paraSasakian (briefly, P-
Sasakian) manifolds, which are considered as a specific case of an almost para-
contact manifold initiated by Sato [15]. Matsumoto and Mihai studied P -Sasakian
manifolds that admitW2 or E-Tensor fields and also some curvature conditions [17].
In ( [18], [19]) the authors investigated P -Sasakian manifolds obeying certain cur-
vature conditions. In another way, on a pseudo-Riemannian manifold M2n+1

Kaneyuki and Kozai [21] introduced the almost paracontact structure and set up
the almost paracomplex structure on M2n+1×R. The main difference between the
almost paracontact metric manifold in the sense of Sato [15] and Kaneyuki et al [20]
is the signature of the metric. In [27], Zamkovoy introduced paraSasakian manifolds
as a normal paracontact manifold whose metric is pseudo-Riemannian and acquired
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a necessary and sufficient condition for which a paracontact metric manifold is a
paraSasakian manifold. ParaSasakian manifolds have been investigated by many
geometers such as De and De [5], Erken, Dacko and Murathan ( [9], [10], [11]),
Ghosh et al. [8], Zamkovoy [27] and many others.
On the other hand in [13], Hamilton introduced the idea of Yamabe soliton. In a
complete Riemannian manifold (M2n+1, g), the metric g is named a Yamabe soliton
if it obeys

£Y g = (λ− r)g, (1)

where Y is a smooth vector field and λ, £ and r indicate a real number, the Lie-
derivative operator and the scalar curvature, respectively. For further information
about Yamabe solitons see ( [4], [6], [16], [26]).

To initiate the investigation of the conformal relativity with regards to confor-
mally Einstein spaces, Bach introduced a new tensor named Bach tensor [2]. We
know that the Bach tensor is a trace-free tensor of rank 2 and is also conformally
invariant in 4 dimensions [2]. Bach tensor was the single known conformally invari-
ant tensor before 1968 which was algebraically independent of the Weyl tensor [25].
Therefore, as an alternative of the Hilbert-Einstein functional, one chooses the
functional

W(g) =

∫
M

∥ W ∥2g dµg, (2)

for 4-dimensional manifolds, where W indicates the Weyl tensor defined by

W (X,Y )Z = R(X,Y )Z − 1

2n− 1
[S(Y, Z)X − S(X,Z)Y

+g(Y,Z)QX − g(X,Z)QY ]

+
r

2n(2n− 1)
[g(Y, Z)X − g(X,Z)Y ], (3)

where R and S indicate the Riemannian curvature tensor and the Ricci tensor,
respectively and Q is the Ricci operator defined by g(QX,Y ) = S(X,Y ).

Critical points of the functional (2) are characterized by the vanishing of certain
symmetric 2-tensor B, which is generally named as Bach tensor. Also, if B = 0,
then the metric is called Bach flat. In a Riemannian manifold (M2n+1, g), the Bach
tensor B is defined by

B(X,Y ) =
1

2n− 2

2n+1∑
k,j=1

((∇ek∇ejW )(X, ek)ej , Y )

+
1

2n− 1

2n+1∑
k,j=1

S(ek, ej)W (X, ek, ej , Y ), (4)
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where {ek}2n+1
k=1 is a local orthonormal basis on M . Using the expression of Cotton

tensor

C(X,Y )Z = (∇XS)(Y,Z)− (∇Y S)(X,Z)

− 1

4n
[(Xr)g(Y, Z)− (Y r)g(X,Z)], (5)

and the Weyl tensor (3), the Bach tensor can be written as

B(X,Y ) =
1

2n− 1

2n+1∑
k=1

[(∇ekC)(ek, X)Y ) + S(ek, ek)W (X, ek, ek, Y )]. (6)

In the event that the manifold M is conformally related locally with an Einstein
space, B needs to vanish. However, there exist Riemannian manifolds equipped
with B = 0, that are not conformally related with Einstein spaces [14]. From
the equation (6), it is not difficult to notice that Bach flatness is the inherent
generalization of conformal and Einstein flatness. For additional insights concerning
Bach tensor, we reffer to see ( [3], [12], [23], [24], [25]).

In 2017, Ghosh and Sharma [23] initiated the study of purely transversal Bach
tensor in Sasakian manifold. Specifically, they established that assuming a Sasakian
manifold M2n+1 admitting a purely transversal Bach tensor, g has a constant scalar
curvature ≥ 2n(2n − 1) and S has a constant norm. It is also noticed that the
previously stated equality holds if and only if the metric is Einstein. Likewise, they
studied (k, µ)-contact manifolds with B = 0 and divergence-free Cotton tensor in
[24]. The investigations of Ghosh and Sharma ( [23], [24]) revolve our concentration
to investigate Bach tensor in the context of certain classes of paracontact metric
manifolds, in particular paraSasakian manifolds.

In this paper, we consider the Bach flat (2n+1)-dimensional paraSasakian man-
ifolds and we establish the subsequent results.

Theorem 1. Let M2n+1(n > 1) be a paraSasakian manifold. If the manifold
admits a purely transversal Bach tensor, then the scalar curvature is constant.

Corollary 1. If the metric of a Bach flat paraSasakian manifold is a Yamabe
soliton, then the soliton field becomes a Killing vector field.

Theorem 2. If a 3-dimensional paraSasakian manifold M admits a purely
transversal Bach tensor, thenM is locally isometric to the hyperbolic spaceH2n+1(1).

2. ParaSasakian Manifolds

Let M2n+1 be a differentiable manifold. If there exits a triplet (φ, ξ, η) , where
φ, ξ, η indicate a tensor field, a vector field and a 1-form, respectively on M2n+1

which obey the relation [15]

φ2 = I − η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, (7)

then we name the structure (φ, ξ, η) is an almost paracontact structure. Hence, M
is an almost paracontact manifold.
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Additionally, if M with the structure (φ, ξ, η) admits a pseudo-Riemannian or
semi-Riemannian metric g which obeys the equation [21]

g(X,Y ) = −g(φX,φY ) + η(X)η(Y ), (8)

then M has an almost paracontact metric structure (φ, ξ, η, g). Here, g is named a
compatible metric having signature (n+ 1, n).

In M , the fundamental 2-form is written by

Φ(X,Y ) = g(X,φY ).

An almost paracontact metric structure reduces to a paracontact metric struc-
ture if

dη(X,Y ) = g(X,φY )

for any vector fields X,Y , where

dη(X,Y ) =
1

2
[Xη(Y )− Y η(X)− η([X,Y ])].

An almost paracontact structure is named normal if and only if Nφ−2dη⊗ξ = 0
, where Nijenhuis tensor of φ is defined by: Nφ(X,Y ) = [φ,φ](X,Y ) = φ2[X,Y ] +
[φX,φY ] − φ[φX, Y ] − φ[X,φY ] [27]. A normal paracontact metric manifold is
named as paraSasakian manifold. Let ∇ be the Levi-Civita connection with respect
to the pseudo-Riemannian metric. Then from [27], it is noticed that an almost
paracontact manifold is paraSasakian manifold if and only if

(∇Xφ)Y = −g(X,Y )ξ + η(Y )X, (9)

for any X,Y . From (9), we acquire

∇Xξ = −φX. (10)

Besides, for M2n+1 ParaSasakian manifolds R and S satisfy [27]

R(X,Y )ξ = −(η(Y )X − η(X)Y ), (11)

R(ξ,X)Y = −g(X,Y ) + η(Y )X, (12)

S(X, ξ) = −2nη(X), (13)

Qξ = −2nξ. (14)

Zamkovoy [27] proved the subsequent proposition :
Proposition 2.1. In a paraSasakian manifold M2n+1, we have

S(X,φY ) = −S(φX, Y )− g(X,φY ). (15)
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3. Bach Flat ParaSasakian Manifolds

Before proving the main theorem we first present the subsequent lemma.

Lemma 1. Let M2n+1 be a paraSasakian manifold. Then
(i)

2n+1∑
k=1

g((∇XQ)φek, ek) = 0

and
(ii)

2n+1∑
k=1

g((∇ekQ)Y, φek) = (−4n2 − r)η(Y )− 1

2
(φY )r

.

Proof. From Proposition 2.1. it follows

φQX = QφX − φX. (16)

Now

g((∇XQ)φY,Z) + g((∇XQ)Y, φZ) = g((∇XQφY −Q∇XφY ), Z) (17)

+g((∇XQY −Q∇XY ), φZ).

Using the equation (9) and (16) in (17), we acquire
g((∇XQ)φY,Z)+g((∇XQ)Y, φZ) = g((∇Xφ)QY,Z)−g(Q(∇Xφ)Y, Z)+g(Q(∇Xφ)Y,Z).

Again using (9) and (13) in the above equation, we get

g((∇XQ)φY,Z) + g((∇XQ)Y, φZ) = −g(X,QY )η(Z) + η(QY )g(X,Z)(18)

−(2n+ 1)g(X,Z)η(Y )− g(QX,Z)η(Y ) + g(X,Z)η(Y ).

Putting Y = Z = ek in the foregoing equation and summing over k (1 ≤ k ≤ 2n+1),
we obtain

2n+1∑
k=1

g((∇XQ)φek, ek) +

2n+1∑
k=1

g((∇XQ)ek, φek) = 0.

That is,
2n+1∑
k=1

g((∇XQ)φek, ek) = 0.

This completes the proof of (i).
Again, substituting X = Z = ek in the equation (18) yields

2n+1∑
k=1

g((∇ekQ)Y, φek) = (−4n2 − r)η(Y )− 1

2
(φY )r

.

This completes the proof of (ii). □
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Proof of Theorem 1. Replacing ξ for Z in (5), we get

C(X,Y )ξ = g((∇XQ)Y, ξ)− g((∇Y Q)X, ξ) (19)

− 1

4n
[(Xr)g(Y, ξ)− (Y r)g(X, ξ)].

Now using (10) and (14), we have

(∇XQ)ξ = 2nφX +QφX. (20)

From the above equation it follows that

g((∇XQ)Y, ξ) = 2ng(φX, Y ) + g(QφX,Y ). (21)

Using (21) in (19) implies

C(X,Y )ξ = 2ng(φX, Y ) + g(QφX,φY )− 2ng(φY,X)− g(QφY,X) (22)

+g(QY,φX) + g(Y, φX)− 1

4n
[(Xr)η(Y )− (Y r)η(X)].

Differentiating (22) along Z, provides

(∇ZC)(X,Y )ξ = ∇ZC(X,Y )ξ − C(∇ZX,Y )ξ (23)

−C(X,∇ZY )ξ − C(X,Y )∇Zξ.

Using (10) and (22) in (23) and after some calculations, we obtain

(∇ZC)(X,Y )ξ = 2ng((∇Zφ)X,Y )− g((∇ZQ)X,φY ) (24)

−g(QX, (∇Zφ)Y )− g(X, (∇Zφ)Y )− 2ng((∇Zφ)Y,X)

+g((∇ZQ)Y, φX) + g(QY, (∇Zφ)X) + g(Y, (∇Zφ)X)

− 1

4n
[g(∇ZDr,X)η(Y )− g(∇ZDr, Y )η(X)

−g(φZ, Y )(Xr) + g(φZ,X)(Y r)].

Now we calculate the 2nd term of right hand side of (23), which follows from
(22) as

C(∇ZX,Y )ξ = 2ng(φ∇ZX,Y )− g(Q∇ZX,φY ) (25)

−g(∇ZX,φY )− 2ng(φY,∇ZX) + g(QY,φ∇ZX)

+g(Y, φ∇ZX)− 1

4n
[((∇ZX)r)η(Y )− (Y r)η(∇ZX)].

Similarly from (22), it follows that

C(X,∇ZY )ξ = 2ng(φX,∇ZY )− g(QX,φ∇ZY ) (26)

−g(X,φ∇ZY )− 2ng(φ∇ZY,X) + g(Q∇ZY, φX)

+g(∇ZY, φX)− 1

4n
[(Xr)η(∇ZY )− ((∇ZY )r)η(X)].
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Again from (5), we have

C(X,Y )∇Zξ = (∇XS)(Y, φZ)− (∇Y S)(X,φZ) (27)

− 1

4n
[(Xr)g(Y, φZ)− (Y r)g(X,φZ)].

Using (24), (25), (26) and (27) in (23) we have,

(∇ZC)(X,Y )ξ = 2ng((∇Zφ)X,Y )− g((∇ZQ)X,φY ) (28)

−g(QX, (∇Zφ)Y )− g(X, (∇Zφ)Y )− 2ng((∇Zφ)Y,X)

+g((∇ZQ)Y, φX) + g(QY, (∇Zφ)X) + g(Y, (∇Zφ)X)

− 1

4n
[g(∇ZDr,X)∇(Y )− g(∇ZDr, Y )η(X)− g(φZ, Y )(Xr)

+g(φZ,X)(Y r)]− 2ng(φ∇ZX,Y ) + g(Q∇ZX,φY )

+g(∇ZX,φY ) + 2ng(φY,∇ZX)− g(QY,φ∇ZX)− g(Y, φ∇ZX)

+
1

4n
[((∇ZX)r)η(Y )− (Y r)η(∇ZX)]− 2ng(φX,∇ZY )

+g(QX,φ∇ZY ) + g(X,φ∇ZY ) + 2ng(φ∇ZY,X)

−g(Q∇ZY, φX)− g(∇ZY, φX) +
1

4n
[(Xr)η(∇ZY )

−((∇ZY )r)η(X)]− (∇XS)(Y, φZ) + (∇Y S)(X,φZ)

+
1

4n
[(Xr)g(Y, φZ)− (Y r)g(X,φZ)].

Putting X = Z = ek in (28) and summing over k (1 ≤ k ≤ (2n+ 1)), we have,

2n+1∑
k=1

(∇ekC)(ek, Y )ξ =

2n+1∑
k=1

[2ng(ek, Y )η(ek) (29)

+g((∇ekQ)φek, Y ) + g(Qek, Y )η(ek)

− 1

4n
{g(∇ekDr, ek)η(Y )− g(∇ekDr, Y )η(ek)}.

Applying Lemma 3.1 into the foregoing equation yields

2n+1∑
k=1

(∇ekC)(ek, Y )ξ = (−4n2 − r)η(Y )− 1

2
(φY r) (30)

− 1

4n
[(divDr)η(Y )− g(∇ξDr, Y )].

Replacing Z by ξ in (3) we infer

W (X,Y )ξ = R(X,Y )ξ − 1

2n− 1
[S(Y, ξ)X − S(X, ξ)Y (31)

+η(Y )QX − η(X)QY ] +
r

2n(2n− 1)
[η(Y )X − η(X)Y ].

Using the equation (11) and (13) in (31), we acquire
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QW (X,Y )ξ = [1− 2n

2n− 1
+

r

2n(2n− 1)
](η(Y )QX − η(X)QY ) (32)

− 1

2n− 1
(η(Y )Q2X − η(X)Q2Y ).

Now taking inner product with U in (32) and then putting Y = U = ek and
summing over k(1 ≤ k ≤ 2n+ 1), we obtain

2n+1∑
k=1

g(QW (X, ek)ξ, ek) = − r2 − 4n2

2n(2n− 1)
η(X) (33)

+
1

2n− 1
[
| Q |2 −4n2

2n− 1
].

Now

g(Qek, ej)g(W (X, ek)ej), Y ) (34)

= −g(W (X, ek)Y,Qek) = −g(QW (X, ek)Y, ek).

Using (4) and (34) we have

B(X,Y ) =
1

2n− 1
[

2n+1∑
i=1

(∇ekC)(ek, X, Y )−
2n+1∑
i=1

g(QW (X, ek)Y, ek)]. (35)

By hypothesis, B(Y, ξ) = 0.
Then equation (30) and (33) together reveal

(4n− 4n2 + r)η(Y )− 1

2
(φY r)− 1

4n
[(divDr)η(Y )− g(∇ξDr, Y )] (36)

+
r2 − 4n2

2n(2n− 1)
η(Y )− 1

2n− 1
[
| Q |2 −4n2

2n− 1
]η(Y ).

Replacing Y by φY in the above equation provides

∇ξDr = 2nφDr. (37)

As ξ is a Killing vector field, we get

£ξr = 0 (38)

Taking exterior derivative d on it we can obtain

£ξdr = 0,

which implies

£ξDr = 0. (39)
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Using (10) in (39), we have

£ξDr = −φDr. (40)

Finally, using the equation (37) and (40) yields φDr = 0, that is, Dr = 0. Hence,
r, the scalar curvature is constant.

This finishes the proof. □

Proof of Corollary 1. Since r =constant, the equation (1) becomes

£Y g = 2cg,

where c = λ−r
2 = constant.

Therefore, Y , the soliton vector field becomes a homothetic vector field [7]. For
a homothetic vector field Y , we get

£Y r = −2cr. (41)

Since r =constant, it follows from the above equation c = 0. Thus the soliton fields
turn into a Killing vector field. □

Remarks: Recently Erken [11] proved that if the metric of a 3-dimensional paraSasakian
manifold is a Yamabe soliton then the soliton field is Killing and the scalar curva-
ture is constant.

Therefore, Corollary 1 is an improvement of the result of Erken.

4. 3-Dimensional Bach Flat ParaSasakian manifolds

In a 3-dimensional paraSasakian manifold the Riemannian curvature tensor is
given by

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

−r

2
[g(Y, Z)X − g(X,Z)Y ]. (42)

Substituting X = Z = ξ in (42) and making use of (12), (13) and (14) implies

QY = (−3− r

2
)η(Y )ξ + (1 +

r

2
)Y. (43)

From the forgoing equation it is quite clear that

Qφ = φQ. (44)

Now we establish the subsequent lemma:
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Lemma 2. Let M be a 3-dimensional paraSasakian manifold. Then
(i)

3∑
k=1

g((∇XQ)φek, ek) = 0

and
(ii)

3∑
k=1

g((∇ekQ)Y, φek) = (r − 2)η(Y )− 1

2
(φY )r

.

Proof. Using (44), we get
g((∇XQ)φY,Z) + g((∇XQ)Y, φZ) = g((∇Xφ)QY,Z) + g(Q(∇Xφ)Y,Z).
Again using (9) and (44) in the above equation yields

g((∇XQ)φY,Z) + g((∇XQ)Y, φZ) = −g(X,QY )η(Z) (45)

−2g(X,Z)η(Y ) + 2g(X,Y )η(Z) + g(QX,Z)η(Y ).

Putting Y = Z = ek in the previous equation and taking summation over k(1 ≤
k ≤ 3), we have

3∑
k=1

g((∇XQ)φek, ek) +

3∑
k=1

g((∇XQ)ek, φek) = 0.

That is,
3∑

k=1

g((∇XQ)φek, ek) = 0.

This completes the proof of (i).
On the other hand substituting X = Z = ek in (45) yields

3∑
k=1

g((∇ekQ)Y, φek) = (r − 2)η(Y )− 1

2
(φY )r.

This completes the proof of (ii).
□

Proof of Theorem 2. Using (10) and (43), we infer that

(∇XQ)ξ = QφX. (46)

From (19) and (46) we have

C(X,Y )ξ = −2g(QφX,Y )− 1

4
[(Xr)η(Y )− (Y r)η(X)]. (47)

Using (5), (9), (43) and (47) in (23) yields

(∇XC)(Y,Z)ξ = g((∇Y Q)Z,φX)− g((∇ZQ)Y, φX)

+2g((∇XQ)φY,Z) + 4g(X,Y )η(Z) + 2S(QX,Z)η(Y )
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+
1

4
[g(Z,φX)(Y r)− g(∇XDr, Y )η(Z)

−g(φX,Z)(Y )− g(∇XDr,Z)η(Y )]. (48)

Putting X = Y = ek in the equation (48) and summing over k(1 ≤ k ≤ 3), we get

(∇ekC)(ek, Z)ξ = g((∇ekQ)Z,φek)− g((∇ZQ)ek, φek)

+2g((∇ekQ)φek, Z) + 12η(Z) + 2S(Qek, Z)η(ek)

+
1

4
[g(Z,φek)(ekr)− g(∇ekDr, ek)η(Z)

−g(φek, Z)(ek)− g(∇ekDr,Z)η(ek)]. (49)

Applying Lemma 4.1 and using (43) in (49) implies

(∇ekC)(ek, Z)ξ = 3(r + 6)η(Z)− 3

2
g(φZ,Dr)

+
1

4
[(divDr)η(Z)− g(∇ξDr,Z)]. (50)

Since in a 3-dimensional paraSasakian manifold Weyl curvature tensor vanishes, so
equation (6) reduces to

B(X,Y ) =

3∑
k=1

[(∇ekC)(ek, X)Y )]. (51)

Replacing Y by ξ in (51) and use the the hypothesis, along with equation (50)
provides

3(r + 6)η(X)− 3

2
g(φX,Dr) (52)

+
1

4
[(divDr)η(X)− g(∇ξDr,X)] = 0.

Replacing X by φX in (52) implies

∇ξDr = −6(φDr). (53)

From (40) and (53), we have Dr = 0, that is r is constant. Then from (52), it
follows that r = −6. Putting r = −6 in (43) yields

QY = −2Y. (54)

Hence, the manifold is an Einstein manifold. Therefore, using r = −6 and the
equation (54) in (42), we acquire

R(X,Y )Z = −[g(Y, Z)X − g(X,Z)Y ].

Hence, the manifold is locally isometric to the hyperbolic space H2n+1(1) (p. 228,
[22]). □
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STABILIZED FEM SOLUTION OF MHD FLOW OVER ARRAY

OF CUBIC DOMAINS

Selçuk Han AYDIN

Department of Mathematics, Faculty of Science, Karadeniz Technical University, Trabzon,

TÜRKİYE

Abstract. In this study, 3D magnetohydrodynamic (MHD) equations are

considered in array of cubic domains having insulated external boundaries

separated by conducting thin walls. In order to obtain stable solutions, sta-
bilized version of the Galerkin finite element method is used as a numerical

scheme. Different problem parameters and configurations are tested in order

to visualize the accuracy and efficiency of the proposed algorithm. Obtained
solutions are visualized as contour lines of 2D slices taken from the obtained

3D domain solutions.

1. Introduction

Magnetohydrodynamic (MHD) flow is the popular working area both for the
engineers and scientists because of its popular and up-to-date modern applications
among different areas such as in astronomy, geophysics, industry, biology and in
engineering. The general theory of the MHD is based on the Navier-Stokes equa-
tions, Maxwell equations through Ohm’s law with the Lorentz force which brings a
system of coupled partial differential equations as a mathematical model. One can
find the general theory and corresponding equations in references [1–3]. The ana-
lytical solutions of the MHD flow problem have been already given by Dragos [3],
Shercliff [2] and Davidson [4] for the single duct case having for the circular or
square cross sectional channels. Behind this exact solutions, there are considerable
amount of numerical studies in the literature using different numerical schemes for
several problem domain configurations (see [5–17] and references there in). Due
to the original form of the equations, there are also many important studies about
the 3D cases of the MHD equations. As far as our knowledge, Salah et al. [18]
provided the first basic study using FEM for the solution of 3D incompressible
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MHD flows. Additionally, solutions of the non-linear MHD systems using two-level
iterative finite element algorithms with Newton iteration for the 2D and 3D cases
in [19–21]. One can find some theoretical results about the convergence and optimal
convergence analysis of iterative solution procedures in references [22, 23]. Li and
Zheng [24] studied about 3D MHD equations with mixed finite element method
using Newton-Krylov and Picard-Krylov solvers and compared the methods over
some test problems. Finally, even there are dozens of MHD papers in recent years,
let’s consider just a few of them. Incompressible MHD equations are analyzed
in the sense of second-order temporal accuracy and unconditional energy stabil-
ity aspects in [25]. The numerical simulation of the 3D MHD equations has been
given for the large Reynolds number by Skala et al. [26]. Also 3D MHD duct flow
was studied for the case of insulating flow channel on poloidal ducts in [27]. As
a finite volume application of 3D MHD equations are solved in conservative form
by Huba and Lyon [28] and on unstructured Lagrangian meshes by Barnes and
Rousculp [29]. As an other 3D study of the MHD equations, Wu [30] worked on
about the priori bounds, real analyticity and global regularity conditions. Due to
the it’s importance, many other authors also analyzed the regularity criteria of the
3D MHD equations [31–35]. Finally, there are many other applications of the 3D
MHD equations in different areas such as heat transfer [36], massive-star wind [37],
intermittent initial data [38] and large initial data [39].

In this study we consider the stabilized FEM solution of the magnetohydrody-
namic flow equations in an array of cubic domains connected with the electrically
conducting thin walls. No-slip boundary conditions are imposed over all the walls
for the velocity component. The continuity of the magnetic field between the cu-
bic domains and walls are satisfied with the coupling of the MHD equations and
Laplace, respectively. The influence of the walls for the both co-flow and counter-
flow cases are considered for different problem configurations. As an application,
these types of problem configuration may be encountered in the heat and mass
transfer process of fusion blanket. Analytical solution of this problem has been
already given by Bluck [40] for one, two and three ducts cases in 2D using Fourier
series approach. Previously, we have also obtained the stabilized FEM solution
of MHD flow in an array of electromagnetically coupled rectangular ducts for the
arbitrary wall thickness and different problem configurations again defined on 2D
case [42]. Therefore, this work can be assumed as the 3D extension of that study
with different directions of the externally applied magnetic field of the previous pa-
per and some part of this study has been already presented in the conference [43].
We tried to obtain stable solutions also for the high values of the Hartmann number
which appears as a constant parameter in the equations some how similar to the
convection coefficient. In such a case problem takes convection dominated behavior
in which cases some boundary and/or interior layers may exists depending on the
value of the problem parameter. Noticed that, the finite element method (FEM) is
the most popular, powerful and convenient numerical method for the solutions of
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the such a system of partial differential equations. In recent years, many researchers
performed different extended versions of the FEM in order to obtain the approxi-
mate solutions of the wide variety of engineering problems. But, the Galerkin finite
element version is still the basic one among them. However, using the standard
Galerkin finite element method brings some numerical instabilities in the solutions
of such a convection-dominated problems. In order to eliminate these difficulties,
as a first possibility, one can choose the small mesh size depending on the value
of the problem parameter. Unfortunately, this approach increases the size of the
resulting linear system so the computational cost. Alternatively, it is possible to
use some stabilization technique in the numerical formulation. The most popu-
lar stabilization technique is referred as the Streamline Upwind Petrov-Galerkin
(SUPG) method [44] which achieves stability by adding mesh-dependent terms to
the standard Galerkin FEM formulation. After considering the stabilization in the
FEM, many authors are used this idea in their research. Salah et al. [45] and
Shadid et al. [46] are considered the stabilized finite element formulation for the
solution of the 3D MHD equations and for the 2D case in [47–51] (see also refer-
ences therein). Also, stabilized FEM formulation is applied to the many other flow
problems [52–55]. In this study, we have also used SUPG in the numerical scheme.

The rest of the paper is organized as follows: In the next section, we describe the
mathematical modeling and the FEM formulation with SUPG type stabilization.
Numerical results and discussions are given in Section 3 to show the efficiency of
the proposed approach. Finally, some concluding remarks are proposed in Section
4.

2. Mathematical Modelling

The non-dimensional MHD equations which are obtained from Navier-Stokes
equations of continuum mechanics and Maxwell’s equations of electromagnetic field
through Ohm’s law in an array of cubic ducts Ωi with length a separated by con-
ducting walls Wi with thickness b at the outher and 2b at the interior ( [3, 40])
as

∇2Vi +Mix

∂Bi

∂x
+Miy

∂Bi

∂y
+Miz

∂Bi

∂z
= −Pi

∇2Bi +Mix

∂Vi

∂x
+Miy

∂Vi

∂y
+Miz

∂Vi

∂z
= 0

in Ωi (1)

∇2Bw
i = 0 in Wi (2)

where Vi is the velocity of the fluid and Bi is induced magnetic field on the duct
Ωi with no-slip conditions Vi = 0 on all the duct boundaries ∂Ωi and on all the
walls Wi (See Figure 1). Conditions for the induced magnetic are Bw

i = Bi on the
interior sides of the ducts, and Bw

i = 0 and Bi = 0 on the external boundaries. Pi is

the pressure gradient in Ωi, The Hartmann number Ha is defined as Ha = B0a
√

σ
η

with characteristic length a, electric conductivity σ and viscosity coefficient η. B0
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is the intensity of the applied magnetic field. αi and βi are the angles between
z-axis and x-axis on Ducti. Then the vector Mi is defined as

Mi = (Mix ,Miy ,Miz ) (3)

with the components Mix = cosβi sinαiHa, Miy = sinβi sini αHa, Miz =
cosαiHa .

Figure 1. Problem configuration for two cubes

Standard Galerkin FEM type weak formulation by employing the linear function
space L = (H1

0 (Ω))
2 which is the Sobolev subspace of the space of square integrable

functions over the domain Ω as [56]: Find {Vi, Bi, B
w
i } ∈ {L× L× L} such that

a(∇Vi,∇wi1)− b(M · ∇Bi, wi1) + a(∇Bi,∇wi2) + b(M · ∇Vi, wi2) + a(∇Bw
i ,∇wi3)

= b(Pi, wi1)
(4)

∀{wi1 , wi2 , wi3} ∈ {L× L× L} where

a(∇u,∇v) =

∫∫∫
Ω

(
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y
+

∂u

∂z

∂v

∂z

)
dΩ and b(u, v) =

∫∫
Ω

(uv)dΩ.

It is seen that the equations are in a coupled form. It is well known that using the
standard Galerkin finite element for these coupled equations, bring some numerical
instabilities for the high values of the Hartmann number. Therefore we should
consider the SUPG typed stabilization technique.
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Let’s decouple the Eqns. (1) to the convection-diffusion type form in order to
apply SUPG type stabilization by using the new variables U1(x, y, z) and U2(x, y, z)
which are defined as

Ui1 = Vi +Bi

Ui2 = Vi −Bi
(5)

then equations become

∇2Ui1 +M · ∇Ui1 = −Pi

∇2Ui2 −M · ∇Ui2 = −Pi.
(6)

Galerkin FEM type weak formulation of the equations (2) and (5) is obtained
by employing the linear function space L = (H1

0 (Ω))
2 as: Find {Ui1 , Ui2 , B

w
i } ∈

{L× L× L} such that

B(Ui1 ;Ui2 ;B
w
i , vi1 ; vi2 ;wi3) = b(Pi, vi1) + b(Pi, vi2) (7)

∀{vi1 , vi2 , vi3} ∈ {L× L× L} where

B(Ui1 ;Ui2 ;B
w
i , vi1 ; vi2 ;wi3) = a(∇Ui1 ,∇vi1)− b(M · ∇Ui1 , vi1)

+ a(∇Ui2 ,∇vi2) + b(M · ∇Ui2 , vi2) + a(∇Bw
i ,∇wi3) .

(8)
The variational formulation is written by the choice of finite dimensional subspaces
Lh ⊂ L, defined by regular tetrahedralization of the domain. Find {Uh

i1
, Uh

i2
, Bwh

i }
∈ {Lh × Lh × Lh} such that

B(Uh
i1 ;U

h
i2 ;B

wh
i , vhi1 ; v

h
i2 ;w

h
i3) = b(Ph

i , v
h
i1) + b(Ph

i , v
h
i2) (9)

∀{vhi1 , v
h
i2
, wh

i3
} ∈ {Lh × Lh × Lh} where

B(Uh
i1 ;U

h
i2 ;B

wh
i , vhi1 ; v

h
i2 ;w

h
i3) = a(∇Uh

i1 ,∇vhi1)− b(M · ∇Uh
i1 , v

h
i1)

+ a(∇Uh
i2 ,∇vhi2) + b(M · ∇Uh

i2 , v
h
21) + a(∇Bwh

i , wh
i3)

(10)
Now, we can write the SUPG typed variational formulation of these equations

using linear tetrahedron elements as [44]:
Using linear tetrahedron elements; Find {Uh

i1
, Uh

i2
, Bwh

i } ∈ {Lh × Lh × Lh} such
that

B(Uh
i1 ;U

h
i2 ;B

wh
i , vhi1 ; v

h
i2 ; v

h
i3)

+ τK
{
b(Mi · ∇Uh

i1
− Ph

i ,Mi · ∇vhi1)

+b(Mi · ∇Uh
i2 − Ph

i ,Mi · ∇vhi2)
}
= b(∆Ph

i , v
h
i1) + b(∆Ph

i , v
h
i2)

(11)
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∀{vhi1 , v
h
i2
, wh

i3
} ∈ {Lh × Lh × Lh} with the stabilization parameter

τK =


hK

2Ha
if Pek ≥ 1

h2
K

12
if Pek < 1

(12)

where hK is the diameter of the element K which is calculated as the longest side

of the corresponding tetrahedron element and PeK =
hKHa

6
is the Peclet number.

Back transformations V h
i = (Uh

i1
+ Uh

i2
)/2 and Bh

i = (Uh
i1
− Uh

i2
)/2;

Find {V h
i , Bh

i , B
wh
i } ∈ {Lh × Lh × Lh} such that

a(∇V h
i ,∇wh

i1)− b(Mi · ∇Bh
i1 , w

h
i1) + τKb(Mi · ∇V h

i ,Mi · ∇wh
i1)

+a(∇Bih ,∇wh
i2)− b(Mi · ∇V h

i1 , w
h
i2) + τKb(Mi · ∇Bh

i ,Mi · ∇wh
i2)

+a(∇Bwh
i ,∇wh

3i) = (∆Ph
i , w

h
i1)− τK(∆Pih ,Mi · ∇wh

i2)

(13)

{wh
i1
, wh

i2
, wh

i3
} ∈ {Lh × Lh × Lh}.

The solution of this system of linear equations give the velocity of the fluid
on the cubic domains, and the induced magnetic field everywhere of the problem
domain. Noticed that, It it is clear that, the FEM formulation brings a sparse form
linear system of equations. Therefore the resulting system should be solved using
an efficient sparse solver.

3. Numerical Results and Discussion

In this section, we will perform some tests for the considered numerical scheme
using different cases and different problem parameters. Obtained solutions will be
presented in terms of contour plots.

MHD flow equations (1) and (2) are solved using stabilized FEM formulation
(13) in single, double and triple cubic domains separately by taking the Hartmann
number values Ha = 1, 10, 100 and 500. Additional to the velocity and induced
magnetic field, we also calculated the current density J which is defined as

J =

√(
∂B

∂x

)2

+

(
∂B

∂y

)2

+

(
∂B

∂z

)2

in order to compare the obtained results with the literature ones [40, 42]. In all
test cases, the wall and duct lengths are taken as a = 1.0 and b = 0.1 except
in Figures 8 and 9. It is easily seen that, the size of the linear system obtained
from the discretized equations is very huge especially for the two and three ducts
cases. Therefore, the resulting linear system of equations are stored as a sparse
matrix form and they are solved using open source UMFPACK sparse solver with
the author modified version in order to gain a good accuracy and efficiency.
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The volume integrals over linear tetrahedron elements are calculated numerically
using 5 point Gauss quadrature method over the unit tetrahedron via transforma-
tion which gives the analytical result for the linear shape functions as∫∫∫

Ω

f(x, y, z)dΩ =

5∑
i=1

wiF (ξi, ηi, νi)

where the corresponding values are given in Table 1.

Table 1. Gauss Quadrature Values

i wi ξi ηi νi
1 -4/30 1/4 1/4 1/4
2 9/120 1/2 1/6 1/6
3 9/120 1/6 1/2 1/6
4 9/120 1/6 1/6 1/2
5 9/120 1/6 1/6 1/6

Finally, the mesh information and corresponding data sizes are displayed in Table
2.

Table 2. Mesh and data information.

# of ducts
1 Duct 2 Ducts 3 Ducts

# of nodes 471836 770047 1015748
# of elements 2733606 4495468 5939642
# of unknowns 943672 1540095 2031496
# of boundary nodes 192360 294712 373544
Size of the system 890516843584 2371892609025 4126975998016
# of non-zero entries 20755732 34313073 45814784
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Figure 2. 2D slices of the velocity without stabilization (left) and
with SUPG (right) for Ha = 100 at z = 0 for α = π/2, β = 0.
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Before start to present the obtained results, let’s visualize the effect of the stabi-
lization on the numerical solution. Noticed that, the stabilization is more effective
especially velocity component. Therefore, in Figure 2, we have displayed the solu-
tion contours for both non-stabilized and stabilized formulations over rough mesh
for Ha = 100. It is clearly seen that, there are numerical instabilities and oscil-
lations on the solution obtained from the without stabilized formulation (τK = 0)
which are almost eliminated using stabilization.
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Figure 3. 2D slices of the velocity (above), induced magnetic
field(middle) and current density(below) for Ha = 1 (1st column),Ha =
10 (2nd column), Ha = 100 (3rd column) and Ha = 500 (4th column)
for the one duct case at z = 0 for α = π/2, β = 0.

3.1. Single Cube. In the first case, we considered the MHD flow equation on a
single cubic duct having conducting walls placed horizontally on the y − z planes.
We presented the velocity, induced magnetic field and current density solutions in
terms of 2D slices at z = 0 in Figure 3 and at y = −0.75 and y = 0.25 in Figure 4
for Ha = 1, 10, 100 and 500 for the applied magnetic field angle α = π/2 and β = 0
which means that externally applied magnetic field is parallel to x-axis. Existence
of the boundary layer formation on the side walls (the walls perpendicular to the
applied magnetic field) which is the well known behavior of the MHD flow as the
Hartmann number is getting large can be observed explicitly from the solution
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Figure 4. 2D slices of the velocity (above), induced magnetic
field(middle) and current density(below) for Ha = 1 (1st column),Ha =
10 (2nd column), Ha = 100 (3rd column) and Ha = 500 (4th column)
for the one duct case at y = −0.75 and y = 0.25 for α = π/2, β = 0.

contours. Also the velocity takes its maximum value at the center of the cube and
the flow is flattened as Ha getting large. Induced magnetic field contours create
two loops (peaks) which are symmetric with respect to x = 0 plane and becomes
stagnant through the domain. We also provided the current density solutions in
order to compare the previously obtained 2D case solutions [40]. In Figure 4 we
displayed different y-slices on the same figure in order to display the changes in
the solutions contours as the flow approaches the sides of the duct. Finally, if one
compare these solutions with the literature results for the 2D case of the similar
problems, the good agreement is seen with the ones in ( [3, 40–42,57]).

3.2. Double Cubes. As a second configuration, we consider the pressure driven
MHD flow in two cubic ducts in two different cases named as co-flow (P1 = P2 = 1)
and counter flow (P1 = 1, P2 = −1). Noticed that due to the no-slip boundary
conditions, at all the exterior sides of the ducts and walls both velocity and induced
magnetic field components are vanish. Therefore, the velocity values are all 0 which
is indicated as blue color on the color-legend. Also due to the continuity condition
for the induced magnetic field on the interior walls, the continuation of the contour
lines at the interface of the ducts can be observed from the figures.
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field(center) and current density(right) for Ha = 10 (above) and Ha =
100 (below) for the co-flow case (P1 = P2 = 1) for the two ducts at
y = 0 for αi = π/2, βi = 0.
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Figure 6. 2D slices of the velocity (left), induced magnetic
field(center) and current density(right) for Ha = 10 (above) and Ha =
100 (below) for the counter-flow case (P1 = 1, P2 = −1) for the two
ducts at y = 0 for αi = π/2, βi = 0.

We compared the flow behaviors the co-flow and counter-flow cases in in Figure
5 and in Figure 6, respectively for both Ha = 10 and Ha = 100. Noticed that the
flow behavior is exactly same in all components in both domains for the co-flow
case. However, there are strong interactions and symmetric behavior with respect
to interior wall in the counter-flow case. If the maximum/minimum values are
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Figure 7. 2D slices of the velocity (left), induced magnetic
field(center) and current density(right) for αi = π/2, βi = π/4 (above)
and α1 = π/2, α2 = π/4, βi = π/4 (middle) for the co-flow cases
and αi = π/2, β1 = 0, β2 = π/4 (below) for the counter-flow case for
Ha = 10 the two ducts at z = −0.25 and z = 0.85

compared for the two different flow regime, it is seen that the magnitude in all
components (velocity, induced magnetic field and current density) are absolutely
a bit larger in co-flow case compared to contour-flow case. Also, as Hartmann
number is getting large again the flow becomes almost stagnant away from the
walls. These solutions are also agree with the previous studies [40, 42]. The effect
of the direction of the externally applied magnetic field on the flow behavior is
demonstrated in Figure 7 by taking (αi, βi) combinations for the different flow
regime. The solutions contours are displayed at different z-values. It is seen that
the positions of the boundary layers and the locations of the maximum/minimum
values are changing depending on both the selected slice and angles. One can easily
see that both mirroring and symmetries are broken in different domains. Finally,
we have tested the affect of the wall length b on the flow behavior for the co-flow
case in Figure 8 and for the counter-flow case in Figure 9 for Ha = 10. It is seen
that as the wall length (b) is getting large, the separation between the domains is
more pronounced in both cases.
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Figure 8. 2D slices of the velocity (left), induced magnetic
field(center) and current density(right) for the wall length b = 0.05 (top),
b = 0.1 (center) and b = 0.2 (bottom) for the co-flow case (P1 = P2 = 1)
for the two ducts at y = 0 for Ha = 10, αi = π/2, βi = 0.

3.3. Triple Cubes. As a final test, we considered the three cubes case. It is
clear that, the size of the obtained resulting system 13 is very huge. Therefore,
one of the originality of this work is to obtain accurate and stable solutions from
such a big system. For this purpose, we have modified the open source sparse solver
UMFPACK for the Fortran version on PC. Similar to two cubes cases, we considered
both co-flow (P1 = P2 = P3 = 1) and counter-flow (P1 = P3 = 1, P2 = −1) cases in
Figure 10 for Ha = 10 by considering the 2D contours of the solutions by taking
the slice at y = 0. One can see that the core flow is reversed in the central cube
and there is a strong connection between the cubes for the counter-flow case and
the flow behaviors are all same on each cube for the co-flow case having same α
and β values.

Noticed that the effect of the direction of the externally applied magnetic field on
the flow behavior can be displayed more clearly by selecting different values αi and
βi on each cube which is possible to visualize for the several cubes case. We consider
different (αi, βi) combinations both for the co-flow and counter-flow cases in Figure
11 and Figure 12. Not only the angle values but also depending on the selected
slice, the flow displays different behaviors on each cube still obeying the continuity
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Figure 9. 2D slices of the velocity (left), induced magnetic
field(center) and current density(right) for the wall length b = 0.05
(top), b = 0.1 (center) and b = 0.2 (bottom) for the counter-flow
case (P1 = 1, P2 = −1) for the two ducts at y = 0 for Ha = 10,
αi = π/2, βi = 0.

conditions between the cubes. Noticed that, in general, all the components of flow
(velocity, magnetic field, current density) are still consistent with the double cubes
case.

4. Conclusion

We considered the stabilized FEM solution to MHD flow in an array of cubic
domains having electrically insulated internal walls and conducting external walls
with the no-slip boundary conditions for the velocity. The problem is tested for
the different Hartmann number values. The comparison of flow behaviors for the
different number of ducts, co-flow and counter-flow cases and different values of the
externally applied magnetic field angle are provided. Obtained stable solutions are
displayed in terms of the 2D-slices taken from different axis. One can observe that
the provided formulation is accurate and efficient even for the several cubes cases.
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Figure 10. 2D slices of the velocity (left), induced magnetic
field(center) and current density(right) for Ha = 10, αi = π/2, βi = 0
for the three ducts in co-flow (P1 = P2 = P3 = 1)(above) and counter-
flow (P1 = P3 = 1, P2 = −1)(below) cases at y = 0.
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Figure 11. 2D slices of the velocity (left), induced magnetic
field(center) and current density(right) for Ha = 10, α1 = π/2, β1 =
0, α2 = π/4, β2 = π/4, α3 = π/4, β3 = π/2 for the three ducts in co-flow
(above) and counter-flow (below) cases at z = −0.75 and z = 0.25.

influence the work reported in this paper.
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Figure 12. 2D slices of the velocity (left), induced magnetic
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Abstract. This article formulae for the third-order theoretical moments for
superdiagonal and subdiagonal of the Markov-switching bilinear

Xt = c (st)Xt−ket−l + et, k, l ∈ N,

and an expression for the bispectral density function are obtained.

1. Introduction

The series is nonlinear the spectral will not adequately characterize the series.
For instance, for some types of nonlinear time series (e.g. Markov switching bilinear
models). As well, spectral analysis will not necessarily show up any features of non-
linearity (or nongaussianity) present in the series. It may be necessary, therefore,
to perform higher order spectral analysis on the series in order to detect departures
from linearity and Gaussianity. The simplest type of bispectral analysis notably by
Rosenblatt and Van Ness (1965), Rosenblatt (1966), Van Ness (1966) and Brillinger
and Rosenblatt (1967a, b).

Markov switching time series models (MSM) have recently received a growing
interest because of their ability to adequately describe various observed time se-
ries subjected to change in regime. An (MSM) is a discrete-time random process
((Xt, st), t ∈ Z) such that (i): (st, t ∈ Z) is not observable, finite state, discrete-
time and homogeneous Markov chain and (ii): the conditional distribution of Xk

relative to its entire past, depends on (st) only through sk. Flexibility is one of
the main advantages of (MSM). The changes in regime can be smooth or abrupt,
and they occur frequently or occasionally depending on the transition probability
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of the chain. Markov-switching models were introduced to the econometric main-
stream by Hamilton [c,f., [7]] , [c,f., [8]] and continue to gain popularity especially
in financial time series analysis in order to integrate the mentioned characteristics
in the conditional mean through local linearity representation. In this paper we
alternatively propose a Markov switching bilinear (MS −BL) representation, in
which the process follows locally from a bilinear characterization. This is in order
to give a general, flexible and economic framework for Markov switching modelling
and (MS −BL) has been extensively studied by Bibi and Aknouche (2010). In
this paper we shall consider a Markov-switching bilinear model defined by

Xt = c (st)Xt−ket−l + et, t ∈ Z, (1)

where (et, t ∈ Z) is a strictly stationary and ergodic sequence of random variables
with mean E (et) = 0 and variance E

(
e2t
)
= 1, for all t. The functions ai (st) , bj (st)

and cij (st) depends upon a time homogeneous Markov chain (st, t ∈ Z) with fi-
nite state space S = {1; . . . ; d}, irresuctible, aperiodic and ergodic, initial dis-
tribution π(i) = P (s1 = i), i = 1; . . . ; d, n−step transition probabilities matrix

Pn =
(
p
(n)
ij

)
(i,j)∈S×S

where p
(n)
ij = P (st = j |st−n = i ) with P := (pij)(i,j)∈S×S

where pij := p
(1)
ij = P (st = j |st−1 = i ) for i; j ∈ S. In addition, we assume that et

and {(Xs−1, st), s ≤ t} are independent, we shall note

P (M) =

 p11M (1) . . . p1dM (1)
... . . .

...
pd1M (d) . . . pddM (d)

 , Π(M) =

 π (1)M (1)
...

π (d)M (d)

 ,

and I(n) is the n × n identity matrix. The model (1) is known as a superdiagonal
model if k > l, and subdiagonal model for k < l. Let (Xt, t ∈ Z) be a stationary
time series satisfying the MS − BL model (1), and the necessary condition for
(Xt, t ∈ Z) to be strictly stationary (see Bibi and Aknouche (2010)). A sufficient
condition for stationarity is γL(A) < 0, where γL(A) is the Lyapunov exponent.
The third-order moments of (Xt) are defined by (c,f., [6])

R (r1, r2) = E {(Xt − µ) (Xt−r1 − µ) (Xt−r2 − µ)} (2)

= E (Xt Xt−r1Xt−r2)− µ (γ (r1) + γ (r2) + γ (r1 − r2)) + 2µ3,

where µ = E (Xt) , γ (r) = E (Xt Xt−r) . It is sufficient to calculate R (r1, r2) in
the sector 0 ≤ r1 ≤ r2 and the other values of R (r1, r2) are determined from its
symmetric relations (see Subba Rao and Gabr, (1984)).
Lii and Rosenblatt (1982) have shown how bispectral density function, can be
used for estimating the phase relationships, and this in turn can be applied to
the problem of deconvolution of e.g. seismic traces, quite a number of seismic
records are observed to be nongaussian, and in many geophysical problems it is
often required to estimate the coefficients. Also, the bispectral density function
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could, in principle be used for testing linearity. The bispectrum has been used in
a number of investigations as a data analytic tool; we mention in particular the
work of Hasselman, Munk and MacDonald (1963) on ocean waves, the papers of
Lii and Rosenblatt (1979) on the energy transfer in grid generated turbulence. In
this paper, we shall use the third-order moments to derive the bispectral density
function of MS −BL models.

2. Spectral and Bispectral

We now consider the evaluation of the spectral and bispectral of the process (Xt)
when the process satisfies some linear time series models. Firstly, we consider the
following model

Xt =

q∑
j=0

bj (st) et−j , (3)

we have

E (Xt) = 0, for all t,

γ (r) = E (Xt Xt−r) =


q∑

j=r

1′(d)P
(
bj
)
π
(
bj−r

)
if 0 ≤ r ≤ q

0 if r > q
.

The spectral density function f (.) of the process (Xt) define by

f (ω) =
1

2π

+∞∑
r=−∞

γ (r) exp (−irω) , − π ≤ ω ≤ π,

of (2) the spectral density function of the process (Xt) is given by f (ω) = γ (0) +

2
q∑

r=1
γ (r) cos (ωr), all ω, the bispectral density function f (ω1, ω2) is given by

f (ω1, ω2) = 0, all ω1, ω2 ∈ [−π, π]. Secondly, we consider the following model

Xt =

p∑
i=1

ai (st)Xt−i +

q∑
j=1

bj (st) et−j + et, (4)

Franq and Zaköıan (2001), propose the following representation of (4)

Xt = (Xt, Xt−1, ..., Xt−p+1, et, et−1, ..., et−q+1)
′ ∈ Rp+q

= A (st)Xt−1 + et,
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where et = (et, 0, ..., 0)
′ ∈ Rp+q and

A (st) =



a1 (st) ... ap (st) b1 (st) ... bq (st)
1 0 ... ... ... 0
0 1 0 ... ... 0
...

. . .
. . .

. . .
. . .

...
0 ... ... 0 1 0
0 ... ... ... ... 0
0 1 0 ... ... 0
...

. . .
. . .

. . .
. . .

...
0 ... ... 0 1 0


.

γ (r) = E
(
Xt X

′
t−r

)
is the autocovariance of Xt, then for all r > 0,

π (i)E
(
Xt X

′
t−r

∣∣ st = i
)
=

d∑
j=1

A (i)E
(
Xt−1 X ′

t−r

∣∣ st−1 = j
)
pjiπ (j) ,

we note W (r) =
(
π (1)E

(
Xt X

′
t−r

∣∣ st = 1
)
, ..., π (d)E

(
Xt X

′
t−r

∣∣ st = d
))′

(see
Pataracchia (2011)) from which we have

W (r) = P (A)W (r − 1) = Pr (A)W (0) ,∀r > 0,

where A = (A (1) , ..., A (d))
′
. Hence, we can compute the autocovariance of the

process Xt:

γ (r) =
(
H ′ ⊗ 1′(d)

)
W (r)H.

For r < 0, let us define

W̃ (r) =
(
π (1)E

(
Xt X

′
t−r

∣∣ st−r = 1
)
, ..., π (d)E

(
Xt X

′
t−r

∣∣ st−r = d
))′

.

Then for r < 0,

W̃
(i)

(r) = π (i)E
(
Xt X

′
t−r

∣∣ st−r = i
)
=

(
W (i) (−r)

)′
,

from which we have W̃ (r) = W (−r) = P−r (A)W (0) ,∀r < 0. Hence, for negative

r, we can compute the autocovariance of the processXt: γ (r) =
(
H ′ ⊗ 1′(d)

)
W̃ (r)H,

from which it can be verified that γ (r) = γ (−r) ,∀r < 0.
Spectral representation which defines the spectral as Fourier transform of the

autocovariance function

f (ω) =
1

2π

+∞∑
r=−∞

γ (r) exp (−irω) , − π ≤ ω ≤ π

=
1

2π

(
H ′ ⊗ 1′(d)

) +∞∑
r=−∞

P|r| (A) exp (−irω)W (0)H
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=
1

2π

(
H ′ ⊗ 1′(d)

) (
P (A)− P−1 (A)

) (
2 cosω I(d) −

(
P (A) + P−1 (A)

))
W (0)H,

on conditional ρ (P (A)) < 1 (see Costa and all (2005)), the bispectral density
function f (ω1, ω2) is given by f (ω1, ω2) = 0, for all ω1, ω2 ∈ [−π, π].
Finally, we consider the MS−bilinear model

Xt =

p∑
i=1

ai (st)Xt−i +

q∑
j=1

bj (st) et−j +

P,Q∑
i,j=1

cij (st)Xt−iet−j + et, (5)

Bibi, A., Aknouche, A. (2010), propose the following representation of (5)

Xt = B (st)Xt−1 + et,

same result is obtained

f (ω) =
1

2π

(
H ′ ⊗ 1′(d)

) (
P (B)− P−1 (B)

)
×
(
2 cosω I(d) −

(
P (B) + P−1 (B)

))
W (0)H,

where B = (B (1) , ..., B (d))
′
. We note that sepectral representation does not allow

us to distinguish linear models for nonlinear models and therefore should be talking
about higher order spectral (bispectral).

2.1. Superdiagonal models. The superdiagonal model may be written as

Xt = c (st)Xt−ket−k+m + et, k ≥ 2, 1 ≤ m ≤ k − 1, (6)

we have

µ = E (Xt) = 0, for all t,

γ (r) = E (Xt Xt−r) =

{
1′(d)

(
I(d) − Pk

(
c2
))−1

π if r = 0

0 if r ̸= 0
.

Lemma 1. For the superdiagonal model (6) all the third-order moments R (r1, r2)
are equal to zero except at r1 = k −m, r2 = k, viz., R(k −m, k) = 1′(d)Pk (c)π (V )

where π (V ) =
(
π (1)E

(
X2

t |st = 1
)
, ..., π (d)E

(
X2

t |st = d
))′

.

Proof. Consider the case r1 = r2 = 0. Using (6) it can be shown that

E
(
X3

t |st = i
)
= c3 (i)E

(
X3

t−ke
3
t−k+m |st = i

)
+3c (i)E (Xt−ket−k+m |st = i ) = 0,

using (2) we obtain, R(0, 0) = 0. For r1 = r2 = r, say, where r > 0, we expand Xt

using (3) to give

E
(
XtX

2
t−r |st = i

)
= c (i)E

(
Xt−kX

2
t−ret−k+m |st = i

)
= 0,

using (2) we obtain, R(r, r) = 0. Now, we consider the case r1 = 0 and r2 = r.
Squaring both sides of (3), multiplying by Xt−r and taking expectations, we get

E
(
X2

t Xt−r |st = i
)
= c2 (i)E

(
X2

t−kXt−re
2
t−k+m |st = i

)
= 0,
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then R(0, r) = 0. Lastly, consider the case r1 = r and r2 = r + s. When r ≥ 1 and
s ≥ 1, it can be shown that

E (XtXt−rXt−r−s |st = i ) = c (i)E (Xt−kXt−rXt−r−set−k+m |st = i ) ,

□

E (XtXt−rXt−r−s |st = i ) =

{
c (i)E

(
X2

t−k |st = i
)
if r1 = k −m, r2 = k

0 otherwise
,

using (2) we obtain, R(k −m, k) = 1′(d)Pk (c)π (V ) .

2.2. Subdiagonal models. The subdiagonal model may be written as

Xt = c (st)Xt−1et−2 + et, (7)

in which Xt−1 and et−2 are dependent, and therefore the derivation of the moments
is more complicated and rather long. For this reason, we will present the final
results. We have

µ = E (Xt) = 0, for all t,

var (Xt) = E
(
X2

t

)
= 1′(d)

{
π +

(
I(d) − P

(
c2
))−1 (

I(d) + 2P
(
c2
))

π
(
c2
)}

,

and

γ (r) = E (Xt Xt−r) =

{
1′(d)P (c)π (c) if r = 3

0 otherwise
.

Moreover, the third-order moments are given by

R (r1, r2) = E (Xt Xt−r1Xt−r2) = 1′(d)×
π (c) + 3

(
I(d) + 3

(
I(d) − P

(
c2
))−1 P

(
c2
))

P (c)π
(
c2
)
if r1 = 1, r2 = 2

2P2 (c)π (c) if r1 = 2, r2 = 4
O(d) otherwise

3. Bispectral Structure

The bispectral density function is defined as

f (ω1, ω2) =
1

4π2

+∞∑
r1=−∞

+∞∑
r2=−∞

R (r1, r2) exp (−ir1ω1 − ir2ω2) ,

where R (r1, r2) is the third-order central moment defined by (2). Using the well
known symmetric relations for both R (r1, r2) and f (ω1, ω2) (see, e.g., Subba Rao
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and Gabr, 1984) the bispectral density function f (ω1, ω2) of the MS −BL model
(1) is given as follows. For the superdiagonal model (6)

f (ω1, ω2) =
R(k −m, k)

4π2

{
H(k −m, k) +H(k, k −m) +H(−m,−k)

+H(−k,−m) +H(m,−k +m) +H(−k +m,m)

}
,

(8)
where H (r1, r2) = exp (−ir1ω1 − ir2ω2). For the subdiagonal model (7), f (ω1, ω2)
given by

f (ω1, ω2) =
1

4π2


R (1; 2)

{
H (1; 2) +H (2; 1) +H (1;−1)+

H (−1; 1) +H(−1,−2) +H(−2,−1)

}
R (2; 4)

{
H (2; 4) +H (4; 2) +H (2;−2)+

H (−2; 2) +H(−4,−2) +H(−2,−4)

}
 . (9)

Example 1. The modulus of f (ω1, ω2), given by (3.1), is plotted for d = 2, c (1) =
0.7, c (2) = 0.8 and k = 2, m = 1; k = 3, m = 1; k = 5, m = 1; k = 7,
m = 5 in Figures 1, 2, 3 and 4. Finally, Figures 5 and 6 represent the bispectral
modulus of subdiagonal model with d = 2, c (1) = 0.7, c (2) = 0.8 and d = 5,
c (1) = c (2) = c (4) = 0.7, c (3) = 0.8, c (5) = 0.6 respectively.
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Figure 1. Bispectral modulus of the superdiagonal model
Xt = c (st)Xt−2et−1 + et.

4. Conclusion

For the superdiagonal and subdiagonal bilinear models we have obtained all
the theoretical third-order central moments and also explicit expressions for the
bispectral density function. In practice, given real data {X1, X2, , ..., XN}, both
third-order moments and bispectral density function could be estimated (see, e.g.,
Subba Rao and Gabr, 1984).
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Figure 2. Bispectral modulus of the superdiagonal model
Xt = c (st)Xt−3et−2 + et.
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Figure 3. Bispectral modulus of the superdiagonal model
Xt = c (st)Xt−5et−4 + et.
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Figure 4. Bispectral modulus of the superdiagonal model
Xt = c (st)Xt−7et−2 + et.
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Figure 5. Bispectral modulus of the subdiagonal model
Xt = c (st)Xt−1et−2 + et.
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