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Düzce University, Türkiye

Editorial Secretariat

Muhammet Civelek
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Serkan İlter 188-193

2 A New Generalization of Szász-Mirakjan Kantorovich Operators for Better

Error Estimation
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Abstract

In this paper, we present an existence theorem for the problem of discontinuous dynamical system

related to ordinary differential inclusion, based on the use of the concepts related to weighted spaces

introduced by Górka and Rybka, without using any fixed point theorem. The solution concept in

this theorem is considered to belong to the weighted space. For comparison with the classical case

and as an application of the theorem, we give an example problem that has such a solution but no

continuously differentiable solution.

1. Introduction

In the mathematical modeling of systems with dynamic behavior in various fields of the real-world and in the qualitative and

numerical analysis of these systems, differential equations with initial or boundary conditions and the existence and uniqueness

of solutions and numerical approach techniques to solutions for these equations appear as important mathematical tools (see,

e.g. [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]). (Ordinary) differential inclusions, which are generalized forms of

ordinary differential equations and started to be studied after the advances in right-side discontinuous differential equations

and solution methods for the problems related to these equations in the 1960s, have a similarly important role in applied

mathematics since using directly in modeling and especially in the necessary and sufficient results of optimal control problems

of discontinuous systems (see, e.g. [12], [13], [2], [14], [15], [16]). In the literature, differential inclusions specific to various

fields such as engineering, biology, economics, and special types of differential inclusions that arise from the use of different

notions are also encountered (see, e.g. [17], [7], [14], [16]). Fuzzy differential inclusions, measure differential inclusions,

Volterra differential inclusions, and impulsive differential inclusions are a few of them.

Górka and Rybka in [18] obtained some results about the existence of a solution for ordinary differential equation with an

initial condition based on the use of the weighted space equipped with the weighted norm. Here, they used Banach fixed point

theorem under the boundedness assumption and the assumption of a special type of Lipschitz continuity (with l(t)/t depending

upon t).

In this paper, we present some results about the existence of a global solution for the discontinuous differential inclusion with

an initial condition, based on the use of the weighted space, without boundedness assumption in nonconvex case. For this

purpose, we construct a sequence, based on the uses of the weighted norm and approximations mentioned in [13], without

using any fixed point theorem to derive the solution.

Since our results are true for the discontinuous ordinary differential equations as well, these results can be applied to the system

described by the differential equation in [18] without boundedness assumption. In addition, an illustrative example satisfying

the assumptions mentioned in the results is also given in this paper.

2. Preliminaries

For unexplained terminology and the basic results on the weighted spaces and differential inclusion theory we refer to [17],

[19], [18], [15], [16]. For a fixed b > 0, C ([0,b] ,Rn) denotes Banach space of all continuous functions g : [0,b]→R
n with the
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supremum norm ‖g‖∞ = sup
t∈[0,b]

|g(t)|, where |·| denotes the Euclidean norm on R
n. Let us fixed α ∈ ]0,1] and r ∈ R

n. Now, let

g ∈C ([0,b] ,Rn) and we put

|g|r,α := sup
t∈]0,b]

|g(t)− r|
tα

.

The collection of all functions g ∈ C ([0,b] ,Rn) satisfying |g|r,α < ∞ is denoted by Wr,α = Wr,α ([0,b] ,Rn). It is clear that

g(0) = r whenever g ∈Wr,α , and that |·|0,α is a norm when r = 0. Note that the function ρ defined as

ρ (g,h) = |g−h|0,α for g,h ∈Wr,α .

is a metric on Wr,α . Moreover, (Wr,α ,ρ) is a complete metric space (for details, see [18]).

Let S be a subset of Rn and Φ : S → R
n a set-valued map. For a ∈ R

n, we denote the projection of a onto S by π (a,S), that

is, π (a,S) = {s ∈ S : |a− s|= d (x,S)} where d (a,S) = inf{|a− s| : s ∈ S}. If π (a,S) is nonempty, then each element of it is

called the closest point in S to a. It is known that π (a,S) is nonempty and compact if S is closed (for details, see [20], [15]).

A single-valued function φ : S → R
n is said to be a measurable selection from Φ if φ is measurable in the usual sense and

φ (s) ∈ Φ(s) for all s in S. Let E and Z be nonempty bounded subsets of Rn. The ball of radius δ around E is defined as

Oδ (E) =

{

r ∈ R
n : d(E,r) = inf

x∈E
|x− r|< δ

}

.

The Hausdorff distance between E and Z is defined as

dH(E,Z) = inf{δ > 0 : Oδ (E)⊇ Z,Oδ (Z)⊇ E}.

Note that the existence of corresponding finite δ > 0 follows from the boundedness of sets E,Z.

Let m ≥ 1. let L and Bm be the collection of Lebesgue measurable subsets of [0,b] and Borel subsets of Rm, respectively. The

smallest σ−algebra of subsets of [0,b]×R
m generated by Cartesian products of sets in L and Bm is denoted by L ×Bm.

By L1
m and ‖·‖1, we denote the space of all Lebesgue integrable functions from [0,b] into R

m and the norm on L1
m as usual,

respectively. Let Ψ : [0,b]×R
m → R

n a set-valued map. Ψ is said to be L ×Bm-measurable if the set Ψ−1 (V ) lies in

L ×Bm for all open subset V of Rn. We say that Ψ is w-integrably bounded (with η) if there exists a non-negative function

η ∈ L1
1 with av(η ,b) < ∞ satisfying Ψ(s,y)⊆ η(s)B for all (s,y) ∈ [0,b]×R

m, where av(η ,b) := sup
t∈]0,b]

1
t

∫ t
0 η (s)ds and B is

the closed unit ball of Rn. We say that Ψ satisfies the w-Kamke-type Lipschitz condition (with ℓ) if there exists a non-negative

function ℓ ∈ L1
1 satisfying av(ℓ,b) < 1 and

dH (Ψ(t,y),Ψ(t,x))≤ ℓ(t)

t
|y− x|

for any (t,x) and (t,y) in ]0,b]×R
n.

We now consider the following Cauchy problem related to a discontinuous differential inclusion,

ẋ(t) ∈ F (t,x(t)) , x(0) = r (2.1)

where F : [0,b]×R
n → R

n is a given set-valued map.

We say that the absolutely continuous function x ∈Wr,α ([0,b] ,Rn) satisfying the initial condition r and the differential inclusion

in (2.1) a.e. on [0,b] is a (global) solution of the problem.

Throughout this paper, “a.e. on [0,b]” is denoted by “a.e” briefly. AC denotes the space of absolutely continuous functions

from [0,b] to R
n. For any g(·) ∈ AC, the function ϑg define by ϑg(t) = d (ġ(t),F(t,g(t))) a.e.

Proposition 2.1. (see, [15]) Suppose that a sequence {φn}in L1([0,b] ,Rn) converges to a function φ ∈ L1([0,b] ,Rn) in ‖·‖1.

Then there exists a subsequence of {φn} that converges pointwise to φ a.e.

3. Main results

Theorem 3.1. Let F be the L ×Bm-measurable set-valued map with nonempty closed values satisfying w-Kamke-type

Lipschitz condition (with ℓ). Then for any g ∈Wr,1 ∩AC satisfying ϑg ∈ L1
1 and av(ϑg,b) < ∞, there exists a solution of the

problem (2.1) in Bδ (g). Here, δ is a positive number satisfying δ <
av(ϑg,b)
1−av(ℓ,b) and Bδ (g) is the open ball of (Wr,1,ρ) with

radius δ .

Proof. The main idea in the proof of this theorem would be to construct a Cauchy sequence {gn} (approximations) in the

complete (Wr,1,ρ). Here, it will be determined on the basis of choosing ġn(t) as the closest point in F(t,gn−1(t)) to ġn−1(t), and

the desired solution will be obtained with the limit of the sequence. With this goal, let g0 = g ∈Wr,1. By using Proposition 2.3.2
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in [16] and Corollary 8.2.13 in [17] together, it can be easily observed that there exists a measurable selection φ0 = φ0 (g0 (·))
from π (ġ0 (·) ,F(·,g0 (·))). Since the inequality |φ0(t)| ≤ |ġ0(t)|+ϑg0

(t) holds a.e. and ϑg0
∈ L1

1, we get φ0 ∈ L1
n. Thus we

can define an operator I0 for t ∈ [0,b] as

I0(t) = g0 (0)+
∫ t

0
φ0(s)ds.

Now put g1 = I0. It is clear that g1 ∈ AC. Then ġ1 = φ0 and |ġ1 − ġ0|= ϑg0
a.e. It follows from the relation

|g1(t)−g0(t)| ≤
∫ t

0
|ġ1(s)− ġ0(s)|ds =

∫ t

0
ϑg0

(s)ds (3.1)

that (|g1(t)−g0(0)|/t)≤ av
(

ϑg0
,b
)

+ |g0|r,1 a.e. As av
(

ϑg0
,b
)

< ∞ then g1 ∈Wr,1. Moreover, by using the above inequalities,

the basic properties of the Hausdorff distance notion and the Lipschitz condition, we have

ϑg1
(t) ≤ |ġ1(t)− ġ0(t)|+ϑg0

(t)+dH (F(t,g0 (t)),F(t,g0 (t)))

≤ 2ϑg0
(t)+(ℓ(t)/t) |g1(t)−g0(t)|

≤ 2ϑg0
(t)+(ℓ(t)/t)

∫ t

0
ϑg0

(s)ds

≤ 2ϑg0
(t)+ ℓ(t)av

(

ϑg0
,b
)

a.e.

So it can easily be concluded that ϑg1
∈ L1

1 and av(ϑg1
,b)< ∞.

In this way, by defining gn := In−1 and φn and using induction on n = 1,2, ..., we get a sequence {gn} in Wr,1. Let us prove that

the sequence {gn} is Cauchy in Wr,1. By definition of {gn} and {φn}, for n = 0,2, ... we get

ġn+1 = φn, |ġn+1 − ġn|= ϑgn a.e.

From the equality d (ġn(t),F(t,gn−1(t))) = 0 a.e. for n = 1,2, ...,

ϑgn ≤ d (ġn(t),F(t,gn−1(t)))+dH (F(t,gn−1 (t)),F(t,gn (t)))

≤ (ℓ(t)/t) |gn(t)−gn−1(t)| a.e. (3.2)

Taking integral from both sides, we have

|gn+1(t)−gn(t)| ≤
(

sup
s∈]0,b]

|gn(s)−gn−1(s)|
s

)

∫ t

0
ℓ(s)ds. (3.3)

Therefore, it can be easily verified that

ρ (gn+1,gn)≤ av(ℓ,b)ρ (un,un−1) . (3.4)

Note that the last inequality implies

ρ (gn+1,gn)≤ (av(ℓ,b))n ρ (g1,g0) . (3.5)

From here, we derive that

|gn|x0,1
≤ ρ (gn,g0)+ |g0|x0,1

≤ ρ (gn,gn−1)+ ...+ρ (g1,g0)+ |g0|x0,1
< ∞.

Thus gn ∈Wr,1. In addition, the relations ρ (g1,g0)≤ ϑg0
(as a result of (3.1)) and (3.5) implies that,

ρ (gn,g0) ≤ ρ (gn,gn−1)+ ...+ρ (g1,g0)

≤ ϑg0

n−1

∑
i=0

(av(ℓ,b))i
. (3.6)

As av(ℓ,b)< 1, the relation (3.5) implies that the sequence {gn} is Cauchy, Wr,1 being complete, it converges uniformly to

some function y ∈Wr,1. Taking into account (3.2) and (3.3), we get

‖φn −φn−1‖1 ≤ ρ (gn,gn−1)
∫ b

0
ℓ(s)ds,

so that {φn} is a Cauchy sequence in L1
n. Let φ be the limit of {φn}. One can easily have y(t) = r+

∫ t
0 φ (s)ds. Moreover,

ϑgn+1
≤ |ġn+1(t)− ẏ(t)|+d (ẏ(t),F(t,y(t)))+dH (F(t,gn+1 (t)),F(t,y(t)))

≤ |φn(t)− ẏ(t)|+ϑy(t)+(ℓ(t)/t) |gn+1(t)− y(t)| a.e.
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Thus,
∣

∣ϑgn+1
(t)−ϑy(t)

∣

∣≤ φ (t)ρ (gn+1,y)+ |φn(t)− ẏ(t)| a.e. (3.7)

From Proposition 2.1, there exists a subsequence
{

φnk
(t)
}

converging to φ (t) a.e. Replacing φn with the φnk
in (3.7), we

derive that ϑy(t) = lim
k→∞

ϑgnk+1
(t) a.e. By the inequality (3.2) one can get,

ϑy(t)≤ ℓ(t) lim
k→∞

ρ
(

gnk+1,gnk

)

a.e.

which implies ϑy(t) = 0 a.e. From here, we conclude that y ∈Wr,1 is a solution. Moreover, by using (3.6), one can easily have

ρ (y,g)< δ .

Remark that the following Corollary is a consequence of Theorem 3.1 for g ≡ r.

Corollary 3.2. Let F be the L ×Bm-measurable set-valued map with nonempty closed values satisfying w-Kamke-type

Lipschitz condition (with ℓ). If ϑr ∈ L1
1 and av(ϑr,b) < ∞, then the problem (2.1) has at least one solution (in Wr,1).

Corollary 3.3. Let F be the L ×Bm-measurable set-valued map with nonempty closed values satisfying w-Kamke-type

Lipschitz condition (with ℓ). Suppose further that F is w-integrably bounded (with η). Then the problem (2.1) has at least one

solution (in Wr,1).

Proof. Let the function h∗ ≡ (h1,h2, ...hn) : [0,T ]→ R
n defined by hi (t) = ri +

∫ t
0 η(s)ds. We choose g ≡ h∗. By hypotheses

we get ġ = (η ,η , ...η), ϑg (t) ≤ (1+
√

n) η (t) a.e. and g ∈Wr,1 ∩AC. Thus, ϑg ∈ L1 and av(ϑg,b) < ∞. By Theorem 3.1,

we have desired conclusion.

Remark 3.4. Let h : [0,b]×R
n → R

n be single-valued function. Consider F as set-valued map with value F(s,z) = {h(s,z)}.

Then the problem (2.1) turns into the following Cauchy problem related to a discontinuous differential equation:

ż(s) = h(s,z(s)) , z(0) = r. (3.8)

It is known that the uniqueness and existence results for the problem (2.1) can be obtained from hypotheses of Theorem 2.6

and Theorem 3.1 in [18]. Note that hypotheses of Corollary 3.2 are similar to these hypotheses except for the boundedness

hypothesis (that is, for every c > 0 there exists a non-negative function mc ∈ L1
1 such that |z| < c implies |h(s,z)| ≤ mc (s)

for a.e.). It follows from Corollary 3.2 that the following existence result still holds without boundedness assumption. The

uniqueness result can be obtained easily with the same proof in [18].

Corollary 3.5. Let h : [0,b]×R
n → R

n be the function satisfying the following:

(a) h is L ×Bm-measurable,

(b) there exists a non-negative function ℓ ∈ L1
1 with av(ℓ,b)< 1 satisfying

|h(s,y)−h(t,z)| ≤ (ℓ(s)/s) |y− z|
for any (s,y) and (s,z) in ]0,b]×R

n,

(c) |h(·,r)| ∈ L1
1 and av(|h(·,r)| ,b)< ∞.

Then the problem (3.8) has a unique solution (in Wr,1).

Example 3.6. Let r > 0, b ∈
]

r
2
,2r
[

and consider the following problem:

h(s,z) =

{

2
2s+r

z s > r
2

0 0 ≤ s ≤ r
2

, s ∈ [0,b]

ż(s) = h(s,z), z(0) = r.

The problem has no a continuously differentiable solution. It can be easily verified that h is L ×Bm-measurable, and that h

satisfies the Lipschitz condition with l (defined by l (s) = s
r
) given in Corollary 3.5. Moreover, |h(·,r)| is Riemann integrable

on [0,b] and av(|h(·,r)| ,b)< ∞. As the hypotheses of Corollary 3.2 are satisfied, the problem has a unique solution (in Wr,1).

Note that the solution is the function z : [0,b]→ R defined by z(s) = s+ r
2

if r
2
< s ≤ b and z(s) = r if 0 ≤ s ≤ r

2
.

4. Conclusion

In this paper, an existence result for the discontinuous differential inclusion with an initial condition, where the solution lies in

the weighted space, is given in Theorem 3.1. Here, unlike the classical existence results, the concepts related to the weighted

space and the topology of this space are used in the nonconvex and unbounded case. As a consequence of the theorem, the

existence result of the differential equations in [18] is generalized to differential inclusions without boundedness assumption.

In addition, in the proof of the theorem, the approximations mentioned in [13] is used to be members of the weighted space.

Considering recent studies using similar approximations in various fields related to differential inclusion theory (see, e.g. [21],

[22], [23]), this paper will contribute to the theory by providing the generalized results based on the use of the concepts and the

approximations related to the weighted space.
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Abstract

In this article, we construct a new sequence of Szász-Mirakjan-Kantorovich operators denoted as

Kn,γ ( f ;x), which depending on a parameter γ . We prove direct and local approximation properties

of Kn,γ ( f ;x). We obtain that, if γ > 1, then the operators Kn,γ ( f ;x) provide better approximation

results than classical case for all x ∈ [0,∞). Furthermore, we investigate the approximation results

of Kn,γ ( f ;x), graphically and numerically. Moreover, we introduce new operators from Kn,γ ( f ;x)
that preserve affine functions and bivariate case of Kn,γ ( f ;x). Then, we study their approximation

properties and also illustrate the convergence of these operators comparing with their classical

cases.

1. Introduction

The Weierstrass approximation theorem is a fundamental result in mathematical analysis which states that any continuous

function on a closed interval can be uniformly approximated by a polynomial function (see [1]). Bernstein provides a simple

and constructive proof to the Weierstrass Approximation Theorem for C[0,1], where C[0,1] is the set of all continuous functions

(see [2], [3]). Because of the importance of the Bernstein Operators, many researchers lead to the discovery of their numerous

generalizations such as [4], [5], [6], [7], [8], [9], [10]. For a function f belonging to the space C[0,∞), the Szász-Mirakjan

operators are introduced by

Sn( f ;x) =
∞

∑
k=0

sn,k(x) f

(

k

n

)

, (1.1)

where,

sn,k(x) = e−nx (nx)k

k!
, (1.2)

for any x ∈ [0,∞), in [11] and [12]. However, this kind of operators do not suitable for discontinuous functions. P. L. Butzer

introduced the Kantorovich type Szász-Mirakjan operators for Lebesque-integrable function space, in [13] as:

Sn( f ;x) = n
∞

∑
k=0

sn,k(x)
∫ k+1

n

k
n

f (t)dt, (1.3)

where sn,k(x) is defined in (1.2). Szász-Mirakjan operators, Kantorovich type Szász-Mirakjan operators and some of their

generalizations have been the subject of extensive research by various scholars as documented [14], [15], [16], [17], [18], [19],

[20]. For further developments in this area, interested readers are encouraged to explore the insights provided in [21], [22],
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[23], [24], [25], [26].

In this article, we introduce a new family of Kantorovich type Szász-Mirakjan operators Kn,γ as:

Kn,γ( f ;x) :=
∞

∑
k=0

sn,k(x)
∫ 1

0
f

(

k+ tγ

n

)

dt, (1.4)

where sn,k(x) is given in (1.2) and γ ∈ R
+. Note that, Kn,γ are positive and linear. One can easily obtain that, in (1.4) the

classical Százs-Mirakjan Kantorovich operators can be produced, by choosing γ = 1. We observe that, the error estimation of

Kn,γ decreases by increasing the value γ . Therefore, in cases where we choose the γ value greater than 1, it can be seen that the

error estimation is less than the classical case. Therefore, this modification gives better approximation results than classical

one, when γ > 1. It should be stressed out that this kind of Kantorovich type operators for the Bernstein polynomials was

defined and studied in [27] by Özarslan, and Duman.

After giving geometric properties and significant results of Kn,γ in Section 2, direct and local approximation properties,

theoretical proofs, and numerical examples for better error estimations are given for these operators in Section 3. Then,

applying slight modification to the operators Kn,γ , a new family of these operators is introduced, that preserves affine functions.

In Section 5, bivariate cases of these operators are introduced and studied.

2. Some basic results

In this part, we provide some geometric properties of Kn,γ and significant results of Kn,γ which will be used in the next sections.

Theorem 2.1. Let 0 ≤ γ < ∞ and n ∈ N, then,

1. If the function f is increasing (or decreasing) on [0,∞), then Kn,γ( f ;x) is also increasing (or decreasing) on [0,∞).
2. If the function f is convex (or concave) function on [0,∞), then Kn,γ( f ;x) is also convex (or concave) on [0,∞).

Proof. 1. Taking the first derivative of Kn,γ( f ;x) we get,

(

Kn,γ

)′
( f ;x) =

∞

∑
k=0

s
′
n,k(x)

∫ 1

0
f

(

k+ tγ

n

)

dt

=
∞

∑
k=0

[

−ne−nx (nx)k

k!
+ e−nx nk(nx)k−1

k!

]

∫ 1

0
f

(

k+ tγ

n

)

dt

=
∞

∑
k=1

[

ne−nx k(nx)k−1

k!

]

∫ 1

0
f

(

k+ tγ

n

)

dt −n
∞

∑
k=0

e−nx (nx)k

k!

∫ 1

0
f

(

k+ tγ

n

)

dt

= n
∞

∑
k=0

e−nx (nx)k

k!

∫ 1

0
f

(

k+1+ tγ

n

)

dt −n
∞

∑
k=0

e−nx (nx)k

k!

∫ 1

0
f

(

k+ tγ

n

)

dt

= n
∞

∑
k=0

e−nx (nx)k

k!

[

∫ 1

0
f

(

k+1+ tγ

n

)

dt −
∫ 1

0
f

(

k+ tγ

n

)

dt

]

= n
∞

∑
k=0

sn,k(x)
∫ 1

0
∆1

h f

(

k+ tγ

n

)

dt, (2.1)

where h = 1
n

and n = 1,2, ....

For an increasing function f on [0,∞), we have

∆1
h f

(

k+ tγ

n

)

= f

(

k+1+ tγ

n

)

− f

(

k+ tγ

n

)

≥ 0, (2.2)

where k = 0,1, ... and t ∈ [0,1]. Therefore, combining (2.1) and (2.2), we obtain

(

Kn,γ

)′
( f ;x)≥ 0 for each x ∈ [0,∞).

In other words, Kn,γ( f ;x) is increasing on [0,∞).

2. Similarly, the second derivative of Kn,γ( f ;x) is

(

Kn,γ

)′′
( f ;x) = n2

∞

∑
k=0

sn,k(x)
∫ 1

0
∆2

h f

(

k+ tγ

n

)

dt (2.3)

where h = 1
n

for n = 1,2,3, .... Let f is convex on [0,∞), then for any k = 0,1, ... we have

0 ≤ k+ tγ

n
≤ k+ tγ +1

n
≤ k+ tγ +2

n
≤ 1.
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Theorem 3.2.2 in [[28], p.59] implies that

∆2
h f

(

k+ tγ

n

)

≥ 0. (2.4)

Therefore, combining (2.3) and (2.4) we get,

(

Kn,γ

)′′
( f ;x)≥ 0,

∀x ∈ [0,∞). As a conclusion, Kn,γ( f ;x) is convex on [0,∞).

Lemma 2.2. Recall the first 3 moments of (1.1)

1. Sn(1;x) = 1

2. Sn(t;x) = x

3. Sn(t
2;x) = x2 +

x

n
.

Lemma 2.3. Let γ ∈ (0,∞) and x ∈ [0,∞), then

1. Kn,γ(1;x) = 1

2. Kn,γ(t;x) = x+ 1
(γ+1)n

3. Kn,γ(t
2;x) = x2 +

(γ +3)x

(γ +1)n
+

1

(2γ +1)n2
.

Proof. For each γ ∈ (0,∞) and x ∈ [0,∞), using Lemma 2.2, we get

1.

Kn,γ(1;x) =
∞

∑
k=0

sn,k(x)
∫ 1

0
dt = 1.

2.

Kn,γ(t;x) =
∞

∑
k=0

sn,k(x)
∫ 1

0

k+ tγ

n
dt

=
∞

∑
k=0

k

n
sn,k(x)

∫ 1

0
dt +

1

n

∞

∑
k=0

sn,k(x)
∫ 1

0
tγ dt

=
∞

∑
k=0

sn,k(x)
k

n
+

1

γ +1

1

n

∞

∑
k=0

sn,k(x)

= x+
1

(γ +1)n
.

3.

Kn,γ(t
2;x) =

∞

∑
k=0

sn,k(x)
∫ 1

0

(

k+ tγ

n

)2

dt

=
∞

∑
k=0

sn,k(x)
∫ 1

0

(

k2 +2ktγ + t2γ

n2

)

dt

=
∞

∑
k=0

sn,k(x)
k2

n2

∫ 1

0
dt +

2

n

∞

∑
k=0

sn,k(x)
k

n

∫ 1

0
tγ dt +

1

n2

∞

∑
k=0

sn,k(x)
∫ 1

0
t2γ dt

=
∞

∑
k=0

sn,k(x)
k2

n2
+

2

(γ +1)n

∞

∑
k=0

k

n
sn,k(x)+

1

(2γ +1)n2

∞

∑
k=0

sn,k(x)

= x2 +
(γ +3)

(γ +1)n
x+

1

(2γ +1)n2
.
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In the following lemma, we establish the connection between the moments of the operators Kn,γ and Sn. Consequently, we can

compute higher-order moments of Kn,γ by utilizing classical Százs-Mirakjan operators Sn.

Lemma 2.4. Consider n ∈ N, x ∈ [0,∞), and γ ∈ (0,∞), we get

Kn,γ(t
m;x) =

1

nm

m

∑
i=0

(

m

i

)

ni

γ(m− i)+1
Sn(t

i;x) (2.5)

where Sn is defined in (1.1).

Proof. From (1.4), we get

Kn,γ(t
m;x) =

∞

∑
k=0

sn,k(x)
∫ 1

0

(

k+ tγ

n

)m

dt

=
1

nm

∞

∑
k=0

sn,k(x)
∫ 1

0
(k+ tγ)m

dt

=
1

nm

∞

∑
k=0

sn,k(x)
∫ 1

0

m

∑
i=0

(

m

i

)

kitγ(m−i)dt

=
1

nm

∞

∑
k=0

sn,k(x)
m

∑
i=0

(

m

i

)

ki

∫ 1

0
tγ(m−i)dt

=
1

nm

∞

∑
k=0

sn,k(x)
m

∑
i=0

(

m

i

)

ki 1

γ(m− i)+1

=
1

nm

m

∑
i=0

(

m

i

)

ni

γ(m− i)+1

∞

∑
k=0

sn,k(x)
ki

ni

=
1

nm

m

∑
i=0

(

m

i

)

ni

γ(m− i)+1
Sn(t

i;x).

Corollary 2.5. We obtain,

1. Kn,γ(t − x;x) =
1

(γ +1)n

2. Kn,γ((t − x)2;x) = x
n
+

1

(2γ +1)n2
.

3. Direct and local approximation properties of Kn,γ

We now turn our focus to direct and local approximation properties of Kn,γ . To begin, let’s remember that CB[0,∞) signifies the

set of all real-valued functions f on [0,∞) that are both uniformly bounded and continuous. We measure the norm of such

functions using ‖.‖ defined as:

‖ f‖= sup
x∈[0,∞)

| f (x)| .

Theorem 3.1. For any A ∈ R
+, let f ∈CB[0,A], and γ ∈ (0,∞), then Kn,γ( f ;x) is uniformly convergent to f (x) on [0,A].

Proof. According to the Bohman-Korovkin Theorem (see [30]), it suffices to establish that

lim
n→∞

sup
x∈[0,A]

∣

∣Kn,γ(t
i;x)− t i

∣

∣= 0, (3.1)

for i = 0,1,2. As a result of Lemma 2.3, one can easily see that (3.1) is hold for i = 0,1,2. So, the proof is done.

For each A ∈ R
+, the operators Kn,γ on CB[0,A] satisfies Kn,γ(1;x) = 1. Therefore, for all ε > 0 we get

Kn,γ( f ;x)≤ ε +
2‖ f‖

δ 2
Kn,γ((t − x)2;x)
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where x ∈ [0,A]. Here δ comes from the uniform continuity of f . Therefore, the order of approximation of Kn,γ( f ;x) to f is

much better controlled by the term Kn,γ((t − x)2;x).
Let A ∈ (0,∞) and f ∈CB[0,A]. If we consider γ > 0 and x ∈ [0,A] such that

Kn,γ((t − x)2;x)≤ Kn((t − x)2;x). (3.2)

We can compare how well the operators Kn,γ( f ;x) and Kn( f ;x) approximate the function f . From Lemma 2.3 and equation

(3.2),

Kn,γ((t − x)2;x) ≤ Kn((t − x)2;x)

x

n
+

1

(2γ +1)n2
≤ x

n
+

1

3n2

1

(2γ +1)n2
≤ 1

3n2

1 ≤ γ.

Hence, for every γ > 1, the accuracy of the approximation Kn,γ( f ;x) to f (x) outperforms that of the classical Szász-Mirakjan

Kantorovich operators for any f ∈CB[0,A] and x ∈ [0,A]. Additionally, the approximation error of Kn,γ( f ;x) to f (x) diminishes

with increasing γ .

Now, we give some graphical and numerical results to illustrate that we have better error estimation by increasing the value γ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

γ=1
γ=5
γ=10
γ=20

Figure 1: Error of approximation Kn,γ ((t − x)2;x) for, γ = 1, γ = 5, γ = 10, γ = 20, when n = 5 and x ∈ [0,1].

x K5,1((t − x)2;x) K5,5((t − x)2;x) K5,10((t − x)2;x) K5,20((t − x)2;x)
0.00 0.0133 0.0036 0.0019 0.0010

0.10 0.0333 0.0236 0.0219 0.0210

0.20 0.0533 0.0436 0.0419 0.0410

0.30 0.0733 0.0636 0.0619 0.0610

0.40 0.0733 0.0836 0.0819 0.0810

0.50 0.1133 0.1036 0.1019 0.1010

0.60 0.1333 0.1236 0.1219 0.1210

0.70 0.1533 0.1436 0.1419 0.1410

0.80 0.1733 0.1636 0.1619 0.1610

0.90 0.1933 0.1836 0.1819 0.1810

1.00 0.2133 0.2036 0.2019 0.2010

Table 1: Table captions the different values of x.

Now, let’s delve into the local approximation properties of Kn,γ . Recall that, in the case of f ∈ CB[0,∞), the modulus of

continuity (see [29]) is

w( f ;δ ) = sup0<h≤δ supx∈[0,∞)| f (x+h)− f (x)|.
Theorem 3.2. Let f ∈CB[0,∞), and γ ∈ (0,∞), we obtain,

∣

∣Kn,γ( f ;x)− f (x)
∣

∣≤ 2ω

(

f ;

√

x

n
+

1

(2γ +1)n2

)
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2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0.25

0.3

0.35

0.4

γ=1
γ=2
γ=3
γ=4

Figure 2: Error of approximation Kn,γ ((t − x)2;x) for, γ = 1, γ = 2, γ = 3, γ = 4, when n = 8 and x ∈ [2,3].

x K8,1((t − x)2;x) K8,2((t − x)2;x) K8,3((t − x)2;x) K8,4((t − x)2;x)
2.00 0.2552 0.2531 0.2522 0.2517

2.10 0.2677 0.2656 0.2647 0.2642

2.20 0.2802 0.2781 0.2772 0.2767

2.30 0.2927 0.2906 0.2897 0.2892

2.40 0.3052 0.3031 0.3022 0.3017

2.50 0.3177 0.3156 0.3147 0.3142

2.60 0.3302 0.3281 0.3272 0.3267

2.70 0.3427 0.3406 0.3397 0.3392

2.80 0.3552 0.3531 0.3522 0.3517

2.90 0.3677 0.3656 0.3647 0.3642

3.00 0.3802 0.3781 0.3772 0.3767

Table 2: Table captions the different values of x.

for all x ∈ [0,∞).

Proof. According to the positivity of Kn,γ and the equality Kn,γ(1;x) = 1, we have,

∣

∣Kn,γ( f ;x)− f (x)
∣

∣≤
∞

∑
k=0

sn,k(x)
∫ 1

0

∣

∣

∣

∣

f

(

k+ tγ

n

)

− f (x)

∣

∣

∣

∣

dt. (3.3)

Applying the property of the modulus of continuity, which is

| f (ζ )− f (λ )| ≤
(

1+
|ζ −λ |

δ

)

ω ( f ;δ )

to (3.3). We obtain,

∣

∣Kn,γ( f ;x)− f (x)
∣

∣≤ ω( f ;δ )

(

1+
1

δ

∞

∑
k=0

sn,k(x)
∫ 1

0

∣

∣

∣

∣

k+ tγ

n
− x

∣

∣

∣

∣

dt

)

.

Applying Cauchy-Schwarz inequality,

∣

∣Kn,γ( f ;x)− f (x)
∣

∣ ≤ ω( f ;δ )



1+
1

δ

√

√

√

√

∞

∑
k=0

sn,k(x)
∫ 1

0

(

k+ tγ

n
− x

)2

dt





= ω( f ;δ )

(

1+
1

δ

√

x

n
+

1

(2γ +1)n2

)

.

Choosing δ =
√

x
n
+ 1

(2γ+1)n2 , we have the desired result.
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Lemma 3.3. Let γ ∈ (0,∞), then for each f ∈CB[0,∞), we get

‖Kn,γ( f ; ·)‖ ≤ ‖ f‖ (3.4)

where ‖.‖ denotes the uniform norm of CB[0,∞).

The Peetre-K functional is

K2( f ;δ ) := in fτ∈ϖ2[0,∞)

{

‖ f − τ‖+δ‖τ ′′‖
}

,(δ > 0)

where ϖ2[0,∞) = {τ ∈CB[0,∞) : τ ′,τ ′′ ∈CB[0,∞)}.Furthermore, ∃ C > 0 (See [31]) such that

K2( f ;δ )≤Cω2( f ;
√

δ )

where ω2( f ;
√

δ ) is the modulus of smoothness for f ∈CB[0,∞) defined as

ω2( f ;
√

δ ) = sup0<h≤δ supx∈[0,∞) | f (x+2h)−2 f (x+h)+ f (x)| .

Theorem 3.4. Assume that n ∈ N, γ ∈ (0,∞) and f ∈CB[0,∞). Then, ∃C ∈ R
+ such that

|Kn,γ( f ;x)− f (x)| ≤Cω2



 f ;
1

2

√

x

n
+

1

(2γ +1)n2
+

(

1

(γ +1)n

)2



+ω

(

f ;
1

(γ +1)n

)

∀x ∈ [0,∞).

Proof. Let

K∗
n,γ( f ;x) := Kn,γ( f ;x)+ f (x)− f

(

x+
1

(γ +1)n

)

. (3.5)

From Lemma 2.3, we obtain

K∗
n,γ(1;x) = 1,

and

K∗
n,γ(t − x;x) = 0.

Now, assume that τ ∈ ϖ2[0,∞). By the Taylor’s expansion,

τ(t) = τ(x)+(t − x)τ ′(x)+
∫ t

x
(t −u)τ ′′(u)du. (3.6)

Applying the operators K∗
n,γ for both sides, we get

K∗
n,γ(τ;x) = τ(x)+K∗

n,γ

(

∫ t

x
(t −u)τ ′′(u)du;x

)

= τ(x)+Kn,γ

(

∫ t

x
(t −u)τ ′′(u)du;x

)

−
∫ x+ 1

(γ+1)n

x

(

x+
1

(γ +1)n
−u

)

τ ′′(u)du.

Hence;

K∗
n,γ(τ;x)− τ(x) = Kn,γ

(

∫ t

x
(t −u)τ ′′(u)du;x

)

−
∫ x+ 1

(γ+1)n

x

(

x+
1

(γ +1)n
−u

)

τ ′′(u)du.

By using above equation, we get

|K∗
n,γ(τ;x)− τ(x)| ≤

∣

∣

∣

∣

Kn,γ

(

∫ t

x
(t −u)τ ′′(u)du;x

)∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ x+ 1
(γ+1)n

x
(x+

1

(γ +1)n
−u)τ ′′(u)du

∣

∣

∣

∣

∣

≤ Kn,γ

(∣

∣

∣

∣

∫ t

x
(t −u)τ ′′(u)du

∣

∣

∣

∣

;x

)

+
∫ x+ 1

(γ+1)n

x

∣

∣

∣

∣

x+
1

(γ +1)n
−u

∣

∣

∣

∣

∣

∣τ ′′(u)
∣

∣du

≤ Kn,γ

(∣

∣

∣

∣

∫ t

x
|(t −u)|du

∣

∣

∣

∣

;x

)

‖τ ′′‖+
∫ x+ 1

(γ+1)n

x

∣

∣

∣

∣

x+
1

(γ +1)n
−u

∣

∣

∣

∣

du‖τ ′′‖

≤ Kn,γ((t − x)2;x)‖τ ′′‖+
(

x+
1

(γ +1)n
− x

)2

‖τ ′′‖

=

[

x

n
+

1

(2γ +1)n2
+

(

1

(γ +1)n

)2
]

‖τ ′′‖.
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So, we have

∣

∣K∗
n,γ(τ;x)− τ(x)

∣

∣≤
[

x

n
+

1

(2γ +1)n2
+

(

1

(γ +1)n

)2
]

‖τ ′′‖. (3.7)

Also, from Lemma 3.3 and the equation (3.5), we get

∣

∣K∗
n,γ( f ; ·)

∣

∣≤ 3‖ f‖ (3.8)

for all f ∈CB[0,∞) and x ∈ [0,∞).

For f ∈CB[0,∞) and τ ∈ ϖ2[0,∞), using (3.7) and (3.8), we observe that

∣

∣Kn,γ( f ;x)− f (x)
∣

∣ =

∣

∣

∣

∣

K∗
n,γ( f ;x)− f (x)+ f

(

x+
1

(γ +1)n

)

− f (x)

∣

∣

∣

∣

=

∣

∣

∣

∣

K∗
n,γ( f ;x)−K∗

n,γ(τ;x)+K∗
n,γ(τ;x)− τ(x)+ τ(x)− f (x)+ f

(

x+
1

(γ +1)n

)

− f (x)

∣

∣

∣

∣

≤
∣

∣K∗
n,γ( f ;x)−K∗

n,γ(τ;x)
∣

∣+
∣

∣K∗
n,γ(τ;x)− τ(x)

∣

∣+ |τ(x)− f (x)|+
∣

∣

∣

∣

f

(

x+
1

(γ +1)n

)

− f (x)

∣

∣

∣

∣

≤ 4‖ f − τ‖+
[

x

n
+

1

(2γ +1)n2
+

(

1

(γ +1)n

)2
]

‖τ ′′‖+ω

(

f ;
1

(γ +1)n

)

.

Hence, by taking the infimum on the right-hand side over all τ ∈ ϖ2[0,∞), we obtain:

∣

∣Kn,γ( f ;x)− f (x)
∣

∣ ≤ 4K2






f ;

x
n
+ 1

(2γ+1)n2 +
(

1
(γ+1)n

)2

4






+ω

(

f ;
1

(γ +1)n

)

= Cω2



 f ;
1

2

√

x

n
+

1

(2γ +1)n2
+

(

1

(γ +1)n

)2



+ω

(

f ;
1

(γ +1)n

)

.

So, the proof is completed.

Recall that the usual Lipschitz class for 0 < a ≤ 1 and M > 0 is

LipM(a) := { f ∈CB[0,∞) : | f (ρ)− f (σ)| ≤ M|ρ −σ |a}

∀ρ,σ ∈ [0,∞).

Theorem 3.5. For every f ∈ LipM(a), we have

∣

∣Kn,γ( f ;x)− f (x)
∣

∣≤ M

[

x

n
+

1

(2γ +1)n2

] a
2

.

Proof. Assume that f ∈ LipM(a), then,

∣

∣Kn,γ( f ;x)− f (x)
∣

∣ ≤
∞

∑
k=0

sn,k(x)
∫ 1

0

∣

∣

∣

∣

f

(

k+ tγ

n

)

− f (x)

∣

∣

∣

∣

dt

≤ M
∞

∑
k=0

sn,k(x)
∫ 1

0

∣

∣

∣

∣

k+ tγ

n
− x

∣

∣

∣

∣

a

dt.

Utilizing Hölder’s inequality, we obtain

∣

∣Kn,γ( f ;x)− f (x)
∣

∣ ≤ M

[

∞

∑
k=0

sn,k(x)
∫ 1

0

(

k+ tγ

n
− x

)2

dt

] a
2
[

∞

∑
k=0

sn,k(x)
∫ 1

0
dt

] 2−a
2

= M

[

x

n
+

1

(2γ +1)n2

] a
2

.

Therefore, the proof is completed.
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Now, we present graphical and numerical results to illustrate the convergence of Kn,γ( f ;x) to certain functions f (x). Addition-

ally, we compare the newly defined operators Kn,γ( f ;x) with the classical Szász-Mirakjan Kantorovich operators Kn( f ;x) for

different values of γ and n. As anticipated, the results of these comparisons consistently demonstrate that, for any γ chosen to

be greater than 1, the approximation of Kn,γ( f ;x) to f (x) surpasses that of Kn( f ;x). Moreover, as the value of γ increases, the

convergence of the operators Kn,γ( f ;x) to the functions f (x) improves.

In the following Figure 3, we compare the approximation of the operators K20,1( f ;x), K20,4( f ;x), K20,16( f ;x) to

f (x) =







1+ x(x−1)(x−2), 0 ≤ x ≤ 2

1, otherwise.

Here, K20,1( f ;x) is the classical Százs-Mirakjan Kantorovich operators. Then, the graphics show that choosing γ > 1 we get

better approximation results to the function. Furthermore Figure 4 gives that the graphics of the error of approximation and

Table 3 shows the numerical results of the error of approximation of these operators.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

f(x)
γ=1
γ=4
γ=16

Figure 3: Approximation of Kn,γ ( f ;x) to f (x) for γ = 1, γ = 4 and γ = 16 when n = 20.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0.05

0.1
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0.2

0.25

0.3

0.35

0.4

γ=1
γ=4
γ=16

Figure 4: Error of approximation εn,γ ( f (x)) =
∣

∣Kn,γ ( f ;x)− f (x)
∣

∣ for γ = 1, γ = 4 and γ = 16 when n = 20.

Now, in Figure 5, we compare the approximation of the operators K50,3( f ;x), K100,3( f ;x), K150,3( f ;x) to the function f (x)
where

f (x) =







(x− 1
2
)(x− 1

4
)(x− 15

4
)(x−1)(x−2)(x−3)(x−4), 0 ≤ x ≤ 4

0, x > 4.

As expected, increasing the value of n we get better approximation results. Moreover, we give error of the approximation for

these operators in Figure 6, graphically. And Table 4 shows the error of approximation, numerically.
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x | K20,1( f ;x)− f (x) | | K20,4( f ;x)− f (x) | | K20,16( f ;x)− f (x) |
0.0 0.0475 0.0192 0.0057

0.2 0.0017 0.0147 0.0209

0.4 0.0330 0.0341 0.0347

0.6 0.0462 0.0391 0.0359

0.8 0.0415 0.0298 0.0243

1.0 0.0187 0.0060 0.0000

1.2 0.0220 0.0322 0.0370

1.4 0.0808 0.0847 0.0867

1.6 0.1575 0.1517 0.1491

1.8 0.2523 0.2331 0.2242

2.0 0.3650 0.3288 0.3120

Table 3: Table captions the different values of x.
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Figure 5: Approximation of Kn,γ ( f ;x) to f (x) for n = 50, n = 100 and n = 150 when γ = 3.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2
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Figure 6: Error of approximation εn,γ ( f (x)) =
∣

∣Kn,γ ( f ;x)− f (x)
∣

∣ for n = 50, n = 100, and n = 150 when γ = 3.

4. A new modification of Kn,γ for preserving affine functions

Classical Szász–Mirakjan–Kantorovich operators do not preserve affine functions. But in 2020, Bustamante modified these

operators by a new technique (see [32]) and this new family of operators preserve affine functions. In this section, we apply

this kind of modification to Kn,γ( f ;x) so that they preserves affine functions. We set,

An,γ( f ;x) =
∞

∑
k=0

sn,k(x)
∫ 1

0
f

(

ak

k+ tγ

n

)

dt, (4.1)

where ak =
(γ +1)k

[(γ +1)k+1]
.
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x | K50,3( f ;x)− f (x) | | K100,3( f ;x)− f (x) | | K150,3( f ;x)− f (x) |
0.00 0.4545 0.2310 0.1549

0.35 0.2641 0.1341 0.0899

0.70 0.1873 0.0984 0.0667

1.05 0.1073 0.0572 0.0390

1.40 0.2967 0.1535 0.1035

1.75 0.3755 0.1984 0.1347

2.10 0.0963 0.0457 0.0298

2.45 0.6568 0.3473 0.2358

2.80 0.4962 0.2794 0.1939

3.15 0.6018 0.3206 0.2163

3.50 0.7171 0.5902 0.4409

Table 4: Table captions the different values of x.

We also set,

µn,k(t) =
t2

[(γ +1)nt +1]2

to use in Lemma 4.2 to investigate the moments of the operator An,γ .

Lemma 4.1. Let k,n ∈ N and γ ∈ (0,∞), then we have:

1.
∫ 1

0

(

ak

k+ tγ

n

)

dt =
k

n

2.
∫ 1

0

(

ak

k+ tγ

n

)2

dt =
k2

n2
+

γ2k2

(2γ +1)n2 [(γ +1)k+1]2

where ak =
(γ +1)k

[(γ +1)k+1]
.

Lemma 4.2. For each n ∈ N, γ ∈ (0,∞) and x ∈ [0,∞) we obtain,

1. An,γ(1;x) = 1

2. An,γ(t;x) = x

3. An,γ(t
2;x) = x2 +

x

n
+

γ2

2γ +1
Sn(µn,k(t);x).

where Sn is defined in (1.1).

Remark 4.3. The operators An,γ( f ;x) in (4.1) reproduce linear polynomials, that is

An,γ(ct +d;x) = cx+d,

where c,d ∈ R.

Remark 4.4. If γ = 1 in (4.1), then An,γ reduce to the operators in [32], which is introduced and studied by Bustamante.

Theorem 4.5. Let A > 0, then for any f ∈CB[0,A], and γ ∈ (0,∞), we obtain that An,γ( f ;x) are uniformly convergent to f (x)
on [0,A].

Proof. From Korovkin Theorem, it sufficies to demonstrate that limn→∞ An,γ(t
i;x) = xi where i = 0,1,2. Evidently, as a

consequence of Lemma 4.2, limn→∞ An,γ(1;x) = 1 and limn→∞ An,γ(t;x) = x. Moreover, we can establish that

An,γ(t
2;x) = x2 +

x

n
+

γ2

2γ +1
Sn(µn,k(t);x).

Taking limit for both sides as n → ∞, we get

lim
n→∞

An,γ(t
2;x) = lim

n→∞
x2 + lim

n→∞

x

n
+ lim

n→∞

γ2

2γ +1
Sn(µn,k(t);x).
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From the convergence of classical Szász–Mirakjan operators limn→∞ Sn(µn,k(t);x) = 0 because of limn→∞ µn,k(x) = 0. As a

result,

lim
n→∞

An,γ(t
2;x) = x2

.

Hence, Korovkin theorem conditions are hold for An,γ . Then, the proof is completed.

Note that, An,1 are the operators which is defined by Bustamante. In the following graph, we compare the error estimation

results of An,1 and An,γ for different values of γ , by using central moments. One can easily observe that, An,γ have better error

estimation when decreasing the value γ . Therefore, for any 0 ≤ γ ≤ 1, the operators An,γ have better error estimation than An,1.

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

γ=1
γ=1/2
γ=1/8

Figure 7: Error of approximation An,γ ((t − x)2;x) for γ = 1, γ = 1
2 and γ = 1

8 when n = 6.

Now, we present graphical and numerical results to compare the convergence of the operators An,γ( f ;x) to f (x), where

f (x) =







1+ x+ x2, 0 ≤ x ≤ 2

7, x > 2,

for different values of γ .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1
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3
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f(x)
γ = 1/2
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γ=2

Figure 8: Approximation of An,γ ( f ;x) to f (x) for γ = 1
2 , γ = 1, and γ = 2 when n = 10.

As anticipated, Figure 8 and Table 5 illustrate that the approximation results of An,γ( f ;x) to a specific function f (x) improve as

the value of γ decreases. Now, in the upcoming figure, we compare the operators An,γ( f ;x) with the function f (x), where

f (x) =







x(x−1)(x− 1
2
), 0 ≤ x ≤ 1

0, otherwise,

with different choices of n.
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x | A
10, 1

2
( f ;x)− f (x) | | A10,1( f ;x)− f (x) | | A10,2( f ;x)− f (x) |

0.0 0.0000 0.0000 0.0000

0.2 0.0203 0.0205 0.0206

0.4 0.0404 0.0406 0.0407

0.6 0.0604 0.0607 0.0608

0.8 0.0805 0.0807 0.0808

1.0 0.1005 0.1007 0.1008

1.2 0.1205 0.1208 0.1208

1.4 0.1405 0.1408 0.1408

1.6 0.1605 0.1608 0.1609

1.8 0.1805 0.1808 0.1809

2.0 0.2005 0.2008 0.2009

Table 5: Table captions the different values of x.
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Figure 9: Approximation of An,γ ( f ;x) to f (x) for n = 5, n = 10, and n = 25 when γ = 1
3 .

5. The bivariate case of Kn,γ

Favard [34] introduced and studied bivariate case of classical Szász–Mirakjan operators. Then, many researchers investigated

these operators and their generalizations such as in [33] [35], [36], [37]. In this part, we define and investigate the bivariate case

of Kn,γ . Consider, CB ([0,∞)× [0,∞)) is the space of uniformly bounded and continuous bivariate functions on [0,∞)× [0,∞).
We define the operators K

γ1,γ2
n1,n2

as

Kγ1,γ2
n1,n2

( f ;x,y) =
∞

∑
k1=0

sn1,k1
(x)

∞

∑
k2=0

sn2,k2
(y)
∫ 1

0

∫ 1

0
f

(

k1 + t
γ
1

n1
,

k2 + t
γ
2

n2

)

dt1dt2, (5.1)

where (x,y) ∈ [0,∞)× [0,∞) and γ1,γ2 ∈ (0,∞) for an integrable functions f : [0,∞)× [0,∞)→ R.

Note that, the operators K
γ1,γ2
n1,n2

are linear and positive. Furthermore, choosing γ1 = γ2 = 1 in (5.1), then we get the classical

Bivariate Szász-Mirakjan Kantorovich operators.

Lemma 5.1. For (x,y) ∈ [0,∞)× [0,∞) and γ1,γ2 ∈ (0,∞), we have

1. K
γ1,γ2
n1,n2

(1;x,y) = 1

2. K
γ1,γ2
n1,n2

(t1;x,y) = x+
1

(γ1 +1)n1

3. K
γ1,γ2
n1,n2

(t2;x,y) = y+
1

(γ2 +1)n2

4. K
γ1,γ2
n1,n2

(t2
1 ;x,y) = x2 +

(γ1 +3)x

(γ1 +1)n1
+

1

(2γ1 +1)n2
1

5. K
γ1,γ2
n1,n2

(t2
2 ;x,y) = y2 +

(γ2 +3)y

(γ2 +1)n2
+

1

(2γ2 +1)n2
2

.

Corollary 5.2. From Lemma 5.1, we have the following central moments:
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1. K
γ1,γ2
n1,n2

(t1 − x;x,y) =
1

(γ1 +1)n1
=: ρn1,γ1

(x)

2. K
γ1,γ2
n1,n2

(t2 − y;x,y) =
1

(γ2 +1)n2
=: ρn2,γ2

(y)

3. K
γ1,γ2
n1,n2

((t1 − x)2;x,y) =
x

n1
+

1

(2γ1 +1)n2
1

=: ϕn1,γ1
(x)

4. K
γ1,γ2
n1,n2

((t2 − y)2;x,y) =
y

n2
+

1

(2γ2 +1)n2
2

=: ϕn2,γ2
(y).

Theorem 5.3. Let A1,A2 > 0, then for each γ1,γ2 ∈ (0,∞) and f ∈CB ([0,A1]× [0,A2]), the operators K
γ1,γ2
n1,n2

( f ;x,y) uniformly

convergent to f as n1,n2 → ∞ on [0,A1]× [0,A2].

Proof. Volkov in [38] gives the conditions for the uniformly convergence of bivariate positive linear operators to continous

functions. Using Lemma 5.1, one can easily see that the conditions for Volkov’s theorem are hold. So, proof is completed.

For any f ∈C ([0,∞)× [0,∞)), the modulus of continuity for the bivariate case is

ω( f ;δ1,δ2) = sup
|t1−ρ |≤δ1,|t2−σ |≤δ2

{| f (t1, t2)− f (ρ,σ)| : (t1, t2),(ρ,σ) ∈ [0,∞)× [0,∞)}

where δ1,δ2 ∈ R
+.

Moreover, the function ω( f ;δ1,δ2) has the following inequality,

| f (t1, t2)− f (ρ,σ)| ≤
(

1+
|t1 −ρ|

δ1

)(

1+
|t2 −σ |

δ2

)

ω( f ;δ1,δ2).

Theorem 5.4. Assume that f ∈C ([0,∞)× [0,∞)) and γ1,γ2 ∈ (0,∞). Then for each (x,y) ∈ [0,∞)× [0,∞) we get,

∣

∣Kγ1,γ2
n1,n2

( f ;x,y)− f (x,y)
∣

∣≤ 4ω
(

f ;

√

ϕn1,γ1
(x),

√

ϕn2,γ2
(y)
)

where ϕn1,γ1
(x) and ϕn2,γ2

(y) are given in Corollary 5.2.

Proof. Due to the linearity and positivity of K
γ1,γ2
n1,n2

( f ;x,y), we are able to write

∣

∣Kγ1,γ2
n1,n2

( f ;x,y)− f (x,y)
∣

∣ ≤ Kγ1,γ2
n1,n2

(| f (t1, t2)− f (x,y)| ;x,y)

≤
(

1+
K

γ1,γ2
n1,n2

(|t1 − x| ;x,y)

δ1

)(

1+
K

γ1,γ2
n1,n2

(|t2 − y| ;x,y)

δ2

)

ω( f ;δ1,δ2).

Using Cauchy-Schwarz inequality,

Kγ1,γ2
n1,n2

(|t1 − x| ;x,y)≤
[

Kγ1,γ2
n1,n2

(

(t1 − x)2
;x,y

)] 1
2

and

Kγ1,γ2
n1,n2

(|t2 − y| ;x,y)≤
[

Kγ1,γ2
n1,n2

(

(t2 − y)2
;x,y

)] 1
2
.

Therefore,

∣

∣Kγ1,γ2
n1,n2

( f ;x,y)− f (x,y)
∣

∣ ≤



1+

√

K
γ1,γ2
n1,n2

((t1 − x)2
;x,y)

δ1







1+

√

K
γ1,γ2
n1,n2

((t2 − y)2
;x,y)

δ2



ω( f ;δ1,δ2)

=

(

1+

√

ϕn1,γ1
(x)

δ1

)(

1+

√

ϕn2,γ2
(y)

δ2

)

ω( f ;δ1,δ2).

Finally, by choosing δ1 =
√

ϕn1,γ1
(x) and δ2 =

√

ϕn2,γ2
(y), we get the desired result.

For 0 < a1,a2 ≤ 1 the Lipschitz class LipM(a1,a2) for bivariate case is defined as

LipM(a1,a2) :=
{

f (x,y) ∈C ([0,∞)× [0,∞)) : | f (t1, t2)− f (x,y)| ≤ M|t1 − x|a1 |t2 − y|a2
}

where M > 0 and (x,y),(t1, t2) ∈ [0,∞)× [0,∞).
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Theorem 5.5. If f ∈ LipM(a1,a2), then we have,

∣

∣Kγ1,γ2
n1,n2

( f ;x,y)− f (x,y)
∣

∣≤ M
[

ϕn1,γ1
(x)
]

a1
2
[

ϕn2,γ2
(y)
]

a2
2

hold for all (x,y) ∈ [0,∞)× [0,∞), where ϕn1,γ1
(x) and ϕn2,γ2

(y) are given in Corollary 5.2.

Proof. Let f ∈ LipM(a1,a2), then we have
∣

∣Kγ1,γ2
n1,n2

( f ;x,y)− f (x,y)
∣

∣ ≤ Kγ1,γ2
n1,n2

(| f (t1, t2)− f (x,y)| ;x,y)

≤ MKγ1,γ2
n1,n2

(|t1 − x|a1 |t2 − y|a2 ;x,y)

= MKγ1,γ2
n1,n2

(|t1 − x|a1 ;x,y)Kγ1,γ2
n1,n2

(|t2 − y|a2 ;x,y).

We apply Hölder’s inequality with p1 =
2

a1
, q1 =

2

2−a1
and p2 =

2

a2
, q2 =

2

2−a2
, to get

∣

∣Kγ1,γ2
n1,n2

( f ;x,y)− f (x,y)
∣

∣ ≤ MKγ1,γ2
n1,n2

((t1 − x)2;x,y)
a1
2 Kγ1,γ2

n1,n2
((t2 − y)2;x,y)

a2
2

= M[ϕn1,γ1
(x)]

a1
2 [ϕn2,γ2

(y)]
a2
2 .

Now, we illustrate the approximation of K
γ1,γ2
n1,n2

( f ;x,y) to f (x,y) for different choices of γ1,γ2 for, where

f (x,y) =







4+(x− 1
2
)(y− 1

2
)(y− 1

4
)(x− 3

4
)(x− 3

2
)(y−2), 0 ≤ x,y ≤ 2

4, x,y > 2.

3.2
2
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Figure 10: Approximation of K
γ1,γ2
n1,n2

( f ;x,y) to f (x,y) for γ1,γ2 = 1, γ1,γ2 = 10, γ1,γ2 = 100 when n1,n2 = 50.

6. Conclusion

We have introduced a novel generalization of the Szász-Mirakjan Kantorovich operators, denoted as Kn,γ( f ;x), defined by

Kn,γ( f ;x) :=
∞

∑
k=0

sn,k(x)
∫ 1

0
f

(

k+ tγ

n

)

dt.

It’s important to note that when γ = 1, these operators reduce to the classical case.

The operators Kn,γ has the following features:

• Uniformly convergent to any function f ∈CB[0,A] on the interval [0,A] for each A,γ ∈ R
+.

• When γ is chosen to be greater than 1, these operators give improved error estimation compared to the classical case.

Moreover, as the value of γ increases, the error estimation becomes smaller.

• Having shape preserving properties.

Furthermore, we introduced a new family of operators An,γ( f ;x). These operators reproduce linear(affine) polynomials. Note

that, choosing γ = 1, the new operators An,γ( f ;x) reduce to classical case which is introduced and studied by Bustamante in

[32]. These operators have better error estimation than classical case if γ is choosen less than 1. Moreover, decreasing the

value γ , the error is getting smaller. Finally, we defined the bivariate case of Kn,γ( f ;x), and investigated their approximation

properties. As expected, increasing the value of γ1 and γ2, we got better error estimation than classical bivariate case.
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Abstract

With this work, we present the asymptotical strongly p-deferred invariant and asymptotical deferred

invariant statistical equivalence of order α (0 < α ≤ 1) for sequences of sets in the Wijsman sense.

Furthermore, we investigate the connections between these concepts and conduct their properties.

1. Introduction and backgrounds

One of the convergence concepts for sequences of sets (Ss) is convergence in the Wijsman sense (Ws) (see, [1, 2]). The

statistical convergence in Ws was first introduced by Nuray and Rhoades [3]. Then, Ulusu and Nuray [4] studied the

lacunary statistical convergence in Ws. Also, Pancaroǧlu and Nuray [5] presented the invariant statistical convergence in Ws.

Furthermore, Ulusu and Nuray [6] and Pancaroǧlu et al. [7] introduced the asymptotical-asymptotical statistical equivalence

and asymptotical invariant-asymptotical invariant statistical equivalence in Ws, respectively.

Agnew [8] first introduced the deferred Cesàro mean for real (complex) sequences. Subsequently, the deferred statistical

convergence was studied by Küçükaslan and Yılmaztürk [9]. Then, Nuray [10] presented the deferred invariant and deferred

invariant statistical convergence.

The deferred statistical convergence in Ws for Ss was introduced by Altınok et al. [11]. Also, Et and Yılmazer [12] studied on

this concept. Then, Gülle [13] presented the deferred invariant statistical convergence of order α in Ws. Furthermore, Altınok

et al. [14] and Et et al. [15] studied the asymptotical deferred statistical and asymptotical deferred statistical equivalence of

order α in Ws, respectively.

In the metric space (U,d), the distance function ρ(u,C) := ρu(C) is defined by

ρu(C) = inf
c∈C

d(u,c)

for each u ∈ U and non-empty C ⊆ U.

For a function f : N→ 2U (power set) is defined by f ( j) =C j ∈ 2U for each j ∈ N (the set of natural numbers), the sequence

{C j}= {C1,C2, . . .} is called sequence of sets.

Throughout the study, unless otherwise specified, (U,d) is regarded as a metric space and C,C j,D j,E j,Fj as non-empty closed

subsets of U.

The Ss {C j} is called convergent in Ws to the set C if for each u ∈ U

lim
j→∞

ρu(C j) = ρu(C)
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https://orcid.org/0000-0001-5575-2937
https://orcid.org/0000-0001-7658-6114
mailto:egulle@aku.edu.tr
mailto:ugurulusu@cumhuriyet.edu.tr


212 Fundamental Journal of Mathematics and Applications

and it is denoted in C j
W
−→C format.

An invariant mean, also known as a σ -mean, is a continuous linear functional ψ in the bounded sequences space that adhere to

the subsequent conditions:

(1) ψ(xt)≥ 0 when the sequence (xt) consists of non-negative elements for all t,

(2) ψ(e) = 1 for e = (1,1,1, . . .),
(3) ψ(xσ(t)) = ψ(xt) for all the bounded sequences (xt),

where σ is a mapping from the set of non-negative integers into itself.

The mappings σ are regarded as one-to-one and σ j(t) 6= t ( jth iterate of σ ) for all positive integers j. Therefore, ψ expands

the limit functional on the convergent sequences space c such that ψ(xt) = limxt for all (xt) ∈ c.

The Ss {C j} is called;

(i) strongly invariant convergent in Ws to the set C if

lim
j→∞

1

n

n

∑
j=1

∣

∣ρu(Cσ j(t))−ρu(C)
∣

∣= 0,

(ii) invariant statistically convergent in Ws to the set C if for every ε > 0

lim
n→∞

1

n

∣

∣

∣

{

j ≤ n : |ρu(Cσ j(t))−ρu(C)| ≥ ε
}

∣

∣

∣
= 0

for each u ∈ U and uniformly in t. These convergences are denoted in C j
W [Vσ ]
−→ C and C j

W (Sσ )
−→ C formats, respectively.

For any non-empty closed subsets C j,D j ∈ U such that ρu(C j)> 0 and ρu(D j)> 0 for each u ∈ U, the Ss {C j} and {D j} are

called asymptotically equivalent to multiple η in Ws if for each u ∈ U

lim
j→∞

ρ(u,C j)

ρ(u,D j)
= η

and it is denoted in C j
W η

∼ D j format. These sequences are referred to as asymptotically equivalent in Ws when η = 1.

For any non-empty closed subsets C j,D j ∈ U such that ρu(C j)> 0 and ρu(D j)> 0 for each u ∈ U, the Ss {C j} and {D j} are

called;

(i) asymptotically strongly deferred Cesàro equivalent to multiple η in Ws if

lim
i→∞

1

s(i)− r(i)

s(i)

∑
j=r(i)+1

∣

∣

∣

∣

ρ(u,C j)

ρ(u,D j)
−η

∣

∣

∣

∣

= 0,

(ii) asymptotically deferred statistical equivalent to multiple η in Ws if for every ε > 0

lim
i→∞

1

s(i)− r(i)

∣

∣

∣

∣

{

r(i)< j ≤ s(i) :

∣

∣

∣

∣

ρ(u,C j)

ρ(u,D j)
−η

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

= 0

for each u ∈ U, where (r(i)) and (s(i)) are sequences of non-negative integers satisfying

r(i)< s(i) and lim
i→∞

s(i) = ∞. (1.1)

These equivalences are denoted in C j

W
η
d∼ D j and C j

W
η
d
(S)
∼ D j formats, respectively.

Throughout the paper, unless otherwise specified, (r(i)) and (s(i)) is regarded as non-negative integer sequences satisfying

(1.1).

An increasing sequence of integers θ = (ki) is called a lacunary sequence when it satisfies two conditions: k0 = 0 and

hi = ki − ki−1 → ∞ as i → ∞.

For more study on the concepts of convergence, invariant summability, deferred mean and asymptotical equivalence for real or

set sequences, we refer to [16, 17, 18, 19, 20, 21, 22].

From now on, for short, we will use the term ρu

(C j

D j

)

instead of the term
ρ(u,C j)

ρ(u,D j)
.
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2. Main results

With this section, we present the asymptotical strongly p-deferred invariant and asymptotical deferred invariant statistical

equivalence of order α (0 < α ≤ 1) in Ws for Ss. Furthermore, we investigate the connections between these concepts and

conduct their properties.

Definition 2.1. For any non-empty closed subsets C j,D j ∈ U such that ρu(C j) > 0 and ρu(D j) > 0 for each u ∈ U, the Ss

{C j} and {D j} are said to be asymptotically strongly p-deferred invariant equivalent to multiple η of order α in Ws if for

each u ∈ U

lim
i→∞

1
(

s(i)− r(i)
)α

s(i)

∑
j=r(i)+1

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

p

= 0

uniformly in t, where 0 < p < ∞ and 0 < α ≤ 1. For this case, the notation C j

W
η
d
[V α

σ ]p

∼ D j is used, and these sequences are

referred to as asymptotically strongly p-deferred invariant equivalent of order α in Ws when η = 1.

Example 2.2. Let us take X = R
2 and the Ss {C j} and {D j} as follows:

C j :=

{ {

(x1,x2) ∈ R
2 : x2

1 +(x2 −1)2 = 1
j

}

; if j is a square integer

{(−1,0)} ; if not

and

D j :=

{ {

(x1,x2) ∈ R
2 : x2

1 +(x2 +1)2 = 1
j

}

; if j is a square integer

{(−1,0)} ; if not.

Then, the Ss {C j} and {D j} are asymptotically strongly p-deferred invariant equivalent of order α (0 < α ≤ 1) in Ws.

Remark 2.3.

(i) For Ss, the asymptotical strongly p-deferred invariant equivalence of order α and asymptotical strongly p-invariant

equivalence given in [7] coincide when r(i) = 0, s(i) = i and α = 1.

(ii) For Ss, the asymptotical strongly p-deferred invariant equivalence of order α and asymptotical strongly p-lacunary

invariant equivalence given in [7] coincide when r(i) = ki−1, s(i) = ki and α = 1.

Theorem 2.4. Let 0 < p < ∞ and 0 < α ≤ β ≤ 1. Then,

C j

W
η
d
[V α

σ ]p

∼ D j ⇒C j

W
η
d
[V

β
σ ]p

∼ D j.

Proof. Assume that 0 < α ≤ β ≤ 1 and C j

W
η
d
[V α

σ ]p

∼ D j. For each u ∈ U, we can write

1
(

s(i)− r(i)
)β

s(i)

∑
j=r(i)+1

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

p

≤
1

(

s(i)− r(i)
)α

s(i)

∑
j=r(i)+1

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

p

for all t. Since the right side converges to 0 for i → ∞ based on our assumption, we have C j

W
η
d
[V

β
σ ]p

∼ D j.

The following corollary is obtained for β = 1 in Theorem 2.4.

Corollary 2.5. Let 0 < p < ∞ and 0 < α ≤ 1. If C j

W
η
d
[V α

σ ]p

∼ D j, then C j

W
η
d
[Vσ ]

p

∼ D j which this concept has not been studied

yet.

Theorem 2.6. Let 0 < p < q < ∞ and 0 < α ≤ 1. Then,

C j

W
η
d
[V α

σ ]q

∼ D j ⇒C j

W
η
d
[V α

σ ]p

∼ D j.

Proof. Assume that 0 < p < q < ∞ and C j

W
η
d
[V α

σ ]q

∼ D j. By the Hölder inequality, for each u ∈ U, we can write

1
(

s(i)− r(i)
)α

s(i)

∑
j=r(i)+1

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

p

<
1

(

s(i)− r(i)
)α

s(i)

∑
j=r(i)+1

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

q

for all t. Since the right side converges to 0 for i → ∞ based on our assumption, we have C j

W
η
d
[V α

σ ]p

∼ D j.
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Definition 2.7. For any non-empty closed subsets C j,D j ∈ U such that ρu(C j) > 0 and ρu(D j) > 0 for each u ∈ U, the Ss

{C j} and {D j} are said to be asymptotically deferred invariant statistical equivalent to multiple η of order α in Ws if for

every ε > 0 and each u ∈ U

lim
i→∞

1
(

s(i)− r(i)
)α

∣

∣

∣

∣

{

r(i)< j ≤ s(i) :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

= 0

uniformly in t, where 0 < α ≤ 1. For this case, the notation C j

W
η
d
(Sα

σ )
∼ D j is used, and these sequences are referred to as

asymptotically deferred invariant statistical equivalent of order α in Ws when η = 1.

The set {W
η
d (Sα

σ )} represents all Ss that asymptotically deferred invariant statistical equivalent of order α .

Example 2.8. Let us take X = R
2 and the Ss {C j} and {D j} as follows:

C j :=

{ {

(x1,x2) ∈ R
2 : (x1 + j)2 + x2

2 = 1
}

; if j is a square integer

{(1,0)} ; if not

and

D j :=

{ {

(x1,x2) ∈ R
2 : (x1 − j)2 + x2

2 = 1
}

; if j is a square integer

{(1,0)} ; if not.

Then, the Ss {C j} and {D j} are asymptotically deferred invariant statistical equivalent order α (0 < α ≤ 1) in Ws.

Remark 2.9.

(i) For Ss, the asymptotical deferred invariant statistical equivalence of order α and asymptotical invariant statistical

equivalence given in [7] coincide when r(i) = 0, s(i) = i and α = 1.

(ii) For Ss, the asymptotical deferred invariant statistical equivalence of order α and asymptotical lacunary invariant

statistical equivalence given in [7] coincide when r(i) = ki−1, s(i) = ki and α = 1.

Theorem 2.10. Let 0 < α ≤ β ≤ 1. Then

C j

W
η
d
(Sα

σ )
∼ D j ⇒C j

W
η
d
(S

β
σ )

∼ D j.

Proof. Assume that 0 < α ≤ β ≤ 1 and C j

W
η
d
(Sα

σ )
∼ D j. For every ε > 0 and each u ∈ U, we can write

1
(

s(i)− r(i)
)β

∣

∣

∣

∣

{

r(i)< j ≤ s(i) :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

≤
1

(

s(i)− r(i)
)α

∣

∣

∣

∣

{

r(i)< j ≤ s(i) :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

for all t. Since the right side converges to 0 for i → ∞ based on our assumption, we have C j

W
η
d
(S

β
σ )

∼ D j.

The following corollary is obtained for β = 1 in Theorem 2.10.

Corollary 2.11. Let 0 < α ≤ 1. If C j

W
η
d
(Sα

σ )
∼ D j, then C j

W
η
d
(Sσ )
∼ D j which this concept has not been studied yet.

Theorem 2.12. If the Ss {C j} and {D j} are asymptotically strongly p-deferred invariant equivalent to multiple η of order α
in Ws, then the sequences are asymptotically deferred invariant statistical equivalent to multiple η of order α in Ws, where

0 < α ≤ 1.

Proof. Assume that 0 < α ≤ 1 and C j

W
η
d
[V α

σ ]p

∼ D j. For every ε > 0 and each u ∈ U, we can write

s(i)

∑
j=r(i)+1

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

p

≥
s(i)

∑
j=r(i)+1

∣

∣

∣
ρu

(

C
σ j(t)

D
σ j(t)

)

−η

∣

∣

∣
≥ε

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

p

≥ ε p

∣

∣

∣

∣

{

r(i)< j ≤ s(i) :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣
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and so,

1

ε p
(

s(i)− r(i)
)α

s(i)

∑
j=r(i)+1

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

p

≥
1

(

s(i)− r(i)
)α

∣

∣

∣

∣

{

r(i)< j ≤ s(i) :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

for all t. Since the left side converges to 0 for i → ∞ based on our assumption, we have C j

W
η
d
(Sα

σ )
∼ D j.

In the case of α = 1, the opposite of Theorem 2.12 is provided.

Theorem 2.13. Let ρu(C j)Oρu(D j). If the Ss {C j} and {D j} are asymptotically deferred invariant statistical equivalent to

multiple η in Ws, then the sequences are asymptotically strongly p-deferred invariant equivalent to multiple η in Ws.

Proof. Suppose that ρu(C j)Oρu(D j) and C j

W
η
d
(Sσ )
∼ D j. Since ρu(C j)Oρu(D j), then there exists an M > 0 such that

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≤ M

for all t and each u ∈ U. For every ε > 0, we can write

1

s(i)− r(i)

s(i)

∑
j=r(i)+1

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

p

=
1

s(i)− r(i)

s(i)

∑
j=r(i)+1

∣

∣

∣
ρu

(

C
σ j(t)

D
σ j(t)

)

−η

∣

∣

∣
≥ε

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

p

+
1

s(i)− r(i)

s(i)

∑
j=r(i)+1

∣

∣

∣
ρu

(

C
σ j(t)

D
σ j(t)

)

−η

∣

∣

∣
<ε

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

p

≤
Mp

s(i)− r(i)

∣

∣

∣

∣

{

r(i)< j ≤ s(i) :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

+ ε p

for all t. Since the left side converges to 0 for i → ∞ based on our assumption, we have C j

W
η
d
[Vσ ]

p

∼ D j.

3. Auxiliary results

With this section, first of all, we define the asymptotical invariant statistical equivalence to multiple η of order α in Ws for

Ss, then we examine the relationship between this concept and the asymptotical deferred invariant statistical equivalence to

multiple η of order α .

Definition 3.1. For any non-empty closed subsets C j,D j ∈ U such that ρu(C j) > 0 and ρu(D j) > 0 for each u ∈ U, the Ss

{C j} and {D j} are said to be asymptotically invariant statistical equivalent to multiple η of order α in Ws if for every ε > 0

and each u ∈ U

lim
n→∞

1

nα

∣

∣

∣

∣

{

j ≤ n :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

= 0

uniformly in t, where 0 < α ≤ 1. For this case, the notation C j
W η (Sα

σ )∼ D j is used, and these sequences are referred to as

asymptotically invariant statistical equivalent of order α in Ws when η = 1.

The set {W η(Sα
σ )} represents all Ss that asymptotically invariant statistical equivalent of order α .
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Theorem 3.2. If

{

r(i)

s(i)− r(i)

}

is bounded, then {W η(Sα
σ )} ⊂ {W

η
d (Sα

σ )}, where 0 < α ≤ 1.

Proof. Suppose that 0 < α ≤ 1 and C j
W η (Sα

σ )∼ D j. Then, for every ε > 0 and each u ∈ U, we have

lim
n→∞

1

nα

∣

∣

∣

∣

{

j ≤ n :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

= 0

uniformly in t. Here using the well-known fact,

lim
i→∞

1

(s(i))α

∣

∣

∣

∣

{

j ≤ s(i) :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

= 0

is hold uniformly in t. Also, since

{

r(i)< j ≤ s(i) :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}

⊂

{

0 < j ≤ s(i) :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}

,

we can write

∣

∣

∣

∣

{

r(i)< j ≤ s(i) :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

≤

∣

∣

∣

∣

{

0 < j ≤ s(i) :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

for all t. Thus, the inequality is handled:

1

(s(i)− r(i))α

∣

∣

∣

∣

{

r(i)< j ≤ s(i) :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

≤
(

1+
r(i)

s(i)− r(i)

)α 1

(s(i))α

∣

∣

∣

∣

{

0 < j ≤ s(i) :

∣

∣

∣

∣

ρu

(Cσ j(t)

Dσ j(t)

)

−η

∣

∣

∣

∣

≥ ε

}∣

∣

∣

∣

.

If

{

r(i)

s(i)− r(i)

}

is bounded in above inequality, then the desired result is obtained for i → ∞.

4. Conclusion

In this study, as a combination of asymptotical equivalence, deferred statistical convergence, invariant summability and order

α , we defined new concepts for sequences of sets and obtained noteworthy results.
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Abstract

This article deals with the qualitative analysis of a general class of difference equations. That is, we

examine the periodicity nature and the stability character of some non-linear second-order difference

equations. Homogeneous functions are used while examining the character of the solutions of

introduced difference equations. Moreover, a new technique available in the literature is used to

examine the periodic solutions of these equations.

1. Introduction

Although it is known that the theory of difference equations emerged with the rabbit problem introduced by the famous Italian

mathematician Fibonacci in 1202 has been a field of study that has been of interest to many scientists, especially in the last 30

years (see [1, 2, 3, 4, 5, 6, 7, 8, 9]). Difference equations are an important field of study in many applied sciences, including

mathematics, physics, chemistry, statistics, sociology, psychology, and engineering. Different mathematical models are needed

to examine situations related to different living conditions, such as the climate crisis, the arms race, plant populations, animal

populations, human populations, birth and death rates, migration rates, the spread of diseases. Here, difference equations

come into play, and ecological, biological, economic, statistical, sociological and psychological mathematical models that

can be used in different fields of science are created (see [10, 11, 12, 13, 14, 15, 16, 17]). In this context, the examination of

difference equations (because it models various systems) is of great importance in that it is applicable not only in mathematics

but also in different branches.

In recent years, many studies have been done on difference equations in mathematics, sub-branches of mathematics and other

sciences (see [18, 19, 20]). Any quantitative and qualitative research, especially in the field of difference equations, is very

important. Detailed qualitative studies in this field are invaluable when considering any result obtained by examining the

global behavior, asymptotic behavior, boundedness nature and the stability character of solutions of difference equations.

However, considering difference equation theory, it should be noted that there are not many general theorems and techniques

that study difference equation classes. The structure of higher-order non-linear difference equation classes is quite complex

and challenging. For this reason, although there are many articles and books on linear difference equations, there are not many

sources on higher-order non-linear difference equations. On account of this, it is very important to examine various difference

equations that will both contribute to the literature and expand and improve the difference equation theory.

In [21], Elsayed introduced a new method for the prime period two solutions and the prime period three solutions of the

rational difference equation

ωn+1 = µ +φ
ωn

ωn−1
+ γ

ωn−1

ωn

, n = 0,1, . . .

where the parameters µ,φ ,γ and initial values ω−1,ω0 are positive real numbers. Besides, the global convergence and the

boundedness nature were investigated.
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In [22], Moaaz et al. examined the asymptotic behavior, that is, the stability, the oscillation and the periodicity character of

solutions of a general class of difference equations

zn+1 = g(zn,zn−1), n = 0,1, . . .

where the initial conditions z−1,z0 are real numbers and g is a continuous homogeneous function with degree zero.

In [23], Moaaz investigated the asymptotic behavior of solutions of the following general class of difference equations

ωn+1 = g(ωn−l ,ωn−k)

where l, k are positive integers, the initial conditions ω−µ ,ω−µ+1, . . . ,ω0 are real numbers for µ = max{l,k} and g is a

continuous homogeneous real function of degree γ . Namely, the periodic solutions, the global attractiveness and the stability

have been examined.

In [24], Stevic has shown that the claim given in Theorem 3.3 in [23] is not true. Essentially, he has improved and expanded

global attractiveness results.

In [25], Abdelrahman et al. investigated the local stability, the periodicity and the boundedness character of solutions of a new

class of the difference equations

ωn+1 = ζ ωn−l +ϕωn−k +g(ωn−l ,ωn−k), n = 0,1, . . . (1.1)

where l,k are non-negative integers, the parameters ζ ,ϕ are non-negative real numbers and the initial values ω−s,ω−s+1, ...,ω0

are positive real numbers for s = max{l,k} and g : (0,∞)2 → (0,∞) is a continuous homogeneous function with degree zero.

In [26], Abdelrahman investigated the dynamical behavior of solutions of a general class of difference equations

xm+1 = g(xm,xm−1, . . . ,xm−k), m = 0,1, . . .

where g : (0,∞)k+1 → (0,∞) is a continuously homogeneous function of degree zero and k is a positive integer. That is, the

stability, the periodicity and the oscillatory have been examined.

In [27], Moaaz et al. examined the existence and non-existence of periodic solutions of some non-linear difference equations.

Especially, they studied the existence of periodic solutions of the difference equation

ωn+1 = γωn−1F(ωn,ωn−1)

where the parameter γ is positive real number, the initial values ω−1,ω0 are positive real numbers and F is a homothetic

function, namely there exists a strictly increasing function F1 : R→ R and F2 : R2→ R are homogenous function with degree

ρ, such that F = F1(F2) and also studied the following second-order difference equation

ωn+1 = µ +η
ω

ρ
n−1

h(ωn,ωn−1)

where ρ is a positive real number, the parameters µ,η are arbitrary real numbers, the initial values ω−1, ω0 arbitrary real

numbers and h is a continuous homogeneous function with degree ρ. Finally, they obtained the periodicity results of the

closed-form difference equations

ωn+1 = ζ (ωn,ωn−1)

and

ωn+1 = ζ (ωn,ωn−2)

where ζ ∈C
(

(0,∞)2,(0,∞)
)

and the initial values ω−2,ω−1,ω0 are positive arbitrary real numbers.

In [28], Gümüş and Eğilmez investigated the global behavior of solutions, that is, the prime period two solutions, the prime

period three solutions and the stability character of a new general class of the second-order difference equation

δm+1 = ω +ζ
f (δm,δm−1)

δ
β
m−1

, m = 0,1, ...

where the parameters ω,ζ ∈ R, the initial conditions δ−1,δ0 ∈ R and f : (0,∞)2 → (0,∞) is a continuous homogeneous

function with degree β .
This paper aims to investigate the global dynamics of solutions for a new general class of the second-order difference equations

ωm+1 = σ +ζ
g(ωm,ωm−1)

ω
γ
m

, m = 0,1, . . . (1.2)
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ωm+1 = σ +ζ
ω

γ
m

g(ωm,ωm−1)
, m = 0,1, . . . (1.3)

where the parameters σ ,ζ are arbitrary real numbers, the initial conditions ω−1,ω0 are arbitrary real numbers and g : (0,∞)2 →
(0,∞) is a continuous homogeneous function with degree γ. In other words, the prime period two solutions, the prime period

three solutions and the stability character are discussed in detail. Also, periodic solutions are studied using a new technique.

In addition, stability analysis of the equilibrium point is performed and new sufficient conditions for stability character are

specified.

In the following, we will give a very useful theorem to examine the stability character of the solutions of difference equations,

which we will benefit from in this paper.

Theorem 1.1. [19] (Clark Theorem) Assume that a0,a1 ∈ R and k ∈ {0,1, . . .}. Then, the difference equation

γm+1 +a0γm +a1γm−k = 0, m = 0,1, . . . .

is the asymptotic stability if

|a0|+ |a1|< 1.

2. The behavior of solutions of the difference equation ωm+1 = σ +ζ
g(ωm,ωm−1)

ω
γ
m

This section is devoted to investigating the dynamical behavior of solutions, that is, the two periodic solutions, the three

periodic solutions and the local stability of second-order rational difference equation (1.2).

Here, we can easily find the positive equilibrium point of Eq.(1.2) as

ω̄ = σ +ζ g(1,1).

Now, let’s define the function f : (0,∞)2 → (0,∞) by

f (u,v) = σ +ζ
g(u,v)

uγ
.

Hence, we get the partial derivatives of the function f

∂ f

∂u
(u,v) = ζ

ugu(u,v)− γg(u,v)

uγ+1

and

∂ f

∂v
(u,v) = ζ

gv(u,v)

uγ
.

In the next theorem, the locally asymptotic stability of Eq.(1.2) will be examined.

Theorem 2.1. The equilibrium point of Eq.(1.2) ω̄ = σ +ζ g(1,1) is locally asymptotically stable if

|gu(1,1)− γg(1,1)|+ |gv(1,1)|<

∣

∣

∣

∣

σ +ζ g(1,1)

ζ

∣

∣

∣

∣

. (2.1)

Proof. By using the Euler’s Homogeneous Function Theorem, we obtain that

fu(ω̄, ω̄) = ζ
ω̄gu(ω̄, ω̄)− γg(ω̄, ω̄)

ω̄γ+1

= ζ
ω̄γ gu(1,1)− γω̄γ g(1,1)

ω̄γ+1

= ζ
gu(1,1)− γg(1,1)

ω̄
,

and

fv(ω̄, ω̄) = ζ
gv(ω̄, ω̄)

ω̄γ

= ζ
ω̄γ−1gv(1,1)

ω̄γ

= ζ
gv(1,1)

ω̄
.
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Now, by applying Clark Theorem, we find

∣

∣

∣

∣

ζ
gu(1,1)− γg(1,1)

ω̄

∣

∣

∣

∣

+

∣

∣

∣

∣

ζ
gv(1,1)

ω̄

∣

∣

∣

∣

< 1.

Since ω̄ = σ +ζ g(1,1), we find

∣

∣

∣

∣

ζ
gu(1,1)− γg(1,1)

(σ +ζ g(1,1))

∣

∣

∣

∣

+

∣

∣

∣

∣

ζ
gv(1,1)

(σ +ζ g(1,1))

∣

∣

∣

∣

< 1,

and so

|gu(1,1)− γg(1,1)|+ |gv(1,1)|<

∣

∣

∣

∣

σ +ζ g(1,1)

ζ

∣

∣

∣

∣

.

The proof is completed.

In the next theorem, the two periodic solutions of Eq.(1.2) will be examined.

Theorem 2.2. Eq.(1.2) has the prime period two solution

. . . ,φ ,ϑ ,φ ,ϑ , . . . .

if and only if

σ = ζ
Ωg
(

1, 1
Ω

)

−Ω
γ g
(

1
Ω
,1
)

(1−Ω)
(2.2)

where Ω = φ
ϑ , Ω ∈ R−{0,±1}.

Proof. Suppose that Eq.(1.2) has a prime period two solution in the following form

. . . ,φ ,ϑ ,φ ,ϑ , . . . .

Let’s define ωn−(2s+1) = φ and ωn−2s = ϑ for s = 0,1,2, .... From Eq.(1.2), we obtain

φ = σ +ζ
g(ϑ ,φ)

ϑ γ
,

and

ϑ = σ +ζ
g(φ ,ϑ)

φ γ
.

Since g is a continuous homogeneous function of degree γ, we obtain

φ = σ +ζ
φ γ g

(

ϑ
φ ,1
)

ϑ γ
⇒ φ = σ +ζ Ω

γ g

(

1

Ω
,1

)

, (2.3)

and

ϑ = σ +ζ
φ γ g

(

1, ϑ
φ

)

φ γ
⇒ ϑ = σ +ζ g

(

1,
1

Ω

)

. (2.4)

By using the fact φ −Ωϑ = 0, we find

0 = φ −Ωϑ = σ +ζ Ω
γ g

(

1

Ω
,1

)

−Ω

(

σ +ζ g

(

1,
1

Ω

))

,

and so

σ(1−Ω) = Ωζ g

(

1,
1

Ω

)

−ζ Ω
γ g

(

1

Ω
,1

)

.

Therefore, we get

σ = ζ
Ωg
(

1, 1
Ω

)

−Ω
γ g
(

1
Ω
,1
)

(1−Ω)
.
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Thus, from (2.3) and (2.4) respectively, we find

φ =
Ωζ g

(

1, 1
Ω

)

−ζ Ω
γ g
(

1
Ω
,1
)

(1−Ω)
+ζ Ω

γ g

(

1

Ω
,1

)

(2.5)

= ζ
Ωg
(

1, 1
Ω

)

−Ω
γ+1g

(

1
Ω
,1
)

(1−Ω)
,

and

ϑ =
Ωζ g

(

1, 1
Ω

)

−ζ Ω
γ g
(

1
Ω
,1
)

(1−Ω)
+ζ g

(

1,
1

Ω

)

(2.6)

= ζ
g
(

1, 1
Ω

)

−Ω
γ g
(

1
Ω
,1
)

(1−Ω)
.

Secondly, assume (2.2) holds. Let’s choose the initial conditions

ω−1 = φ and ω0 = ϑ ,

where φ ,ϑ are defined as (2.3) and (2.4), respectively. Hence, we obtain that

ω1 = σ +ζ
g(ω0,ω−1)

ω
γ
0

= σ +ζ
g(ϑ ,φ)

ϑ γ

=
Ωζ g

(

1, 1
Ω

)

−ζ Ω
γ g
(

1
Ω
,1
)

(1−Ω)
+ζ

φ γ g
(

ϑ
φ ,1
)

ϑ γ

=
Ωζ g

(

1, 1
Ω

)

−ζ Ω
γ g
(

1
Ω
,1
)

(1−Ω)
+ζ Ω

γ g

(

1

Ω
,1

)

= ζ
Ωg
(

1, 1
Ω

)

−Ω
γ+1g

(

1
Ω
,1
)

(1−Ω)
= φ ,

and

ω2 = σ +ζ
g(ω1,ω0)

ω
γ
1

= σ +ζ
g(φ ,ϑ)

φ γ

=
Ωζ g

(

1, 1
Ω

)

−ζ Ω
γ g
(

1
Ω
,1
)

(1−Ω)
+ζ

φ γ g
(

1, ϑ
φ

)

φ γ

=
Ωζ g

(

1, 1
Ω

)

−ζ Ω
γ g
(

1
Ω
,1
)

(1−Ω)
+ζ g

(

1,
1

Ω

)

= ζ
g
(

1, 1
Ω

)

−Ω
γ g
(

1
Ω
,1
)

(1−Ω)
= ϑ .

Then, by induction, we can obtain that for all n ≥ 0

ω2n−1 = φ and ω2n = ϑ .

Hence, Eq.(1.2) has a prime period two solution. The proof is completed.

In the following theorem, the prime period three solution of Eq.(1.2) will be investigated.

Theorem 2.3. Eq.(1.2) has the prime period three solution {ωn}
∞

n=−1 where

ωn =







φ , for n = 3z−1

ϑ , for n = 3z

ν , for n = 3z+1

, z = 0,1, . . .
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if and only if

η

(

σ +
ζ

ψγ
g(ψ,η)

)

= σ +ζ g(1,ψ) (2.7)

ψ

(

σ +
ζ

ψγ
g(ψ,η)

)

= σ +
ζ

ηγ
g(1,ψ)

where η = ϑ
φ and ψ = ν

φ ,η ,ψ ∈ R−{0,∓1}.

Proof. Suppose that Eq.(1.2) has a prime period three solution in the following form

. . . ,φ ,ϑ ,ν ,φ ,ϑ ,ν , . . . .

From Eq.(1.2), we obtain that

φ = σ +ζ
g(ν ,ϑ)

νγ
,

ϑ = σ +ζ
g(φ ,ν)

φ γ
,

and

ν = σ +ζ
g(ϑ ,φ)

ϑ γ
.

By using the homogeneous function definition, we can find the equalities

φ = σ +ζ
φ γ g(ψ,η)

νγ
⇒ φ = σ +ζ

g(ψ ,η)

ψγ

ϑ = σ +ζ
φ γ g(1,ψ)

φ γ
⇒ ϑ = σ +ζ g(1,ψ)

and

ν = σ +ζ
φ γ g(η ,1)

ϑ γ
⇒ ν = σ +ζ

g(η ,1)

ηγ
.

Therefore, we can easily see that

η =
ϑ

φ
=

σ +ζ g(1,ψ)

σ +ζ
g(ψ ,η)

ψγ

and

ψ =
ν

φ
=

σ +ζ
g(η ,1)

ηγ

σ +ζ
g(ψ ,η)

ψγ

.

Thus, we can rewrite the equalities

η

(

σ +ζ
g(ψ,η)

ψγ

)

= σ +ζ g(1,ψ),

ψ

(

σ +ζ
g(ψ,η)

ψγ

)

= σ +ζ
g(η ,1)

ηγ
.

Secondly, assume (2.7) holds. Let’s choose the initial conditions for all η ,ψ ∈ R−{0,∓1}

ω−1 = σ +ζ
g(ψ ,η)

ψγ

and

ω0 = σ +ζ g(1,ψ).
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Thus, we obtain that

ω1 = σ +ζ
g(ω0,ω−1)

ω
γ
0

= σ +ζ
g
(

σ +ζ g(1,ψ),σ +ζ
g(ψ,η)

ψγ

)

(σ +ζ g(1,ψ))γ

= σ +ζ
g
(

η
(

σ +ζ
g(ψ,η)

ψγ

)

,σ +ζ
g(ψ,η)

ψγ

)

(

η
(

σ +ζ
g(ψ,η)

ψγ

))γ

= σ +ζ

(

σ +ζ
g(ψ,η)

ψγ

)γ
g(η ,1)

(

η
(

σ +ζ
g(ψ,η)

ψγ

))γ

= σ +ζ
g(η ,1)

ηγ
= ν ,

ω2 = σ +ζ
g(ω1,ω0)

ω
γ
1

= σ +ζ
g
(

σ +ζ
g(η ,1)

ηγ ,σ +ζ g(1,ψ)
)

(

σ +ζ
g(η ,1)

ηγ

)γ

= σ +ζ
g
(

ψ
(

σ +ζ
g(ψ,η)

ψγ

)

,η
(

σ +ζ
g(ψ,η)

ψγ

))

(

ψ
(

σ +ζ
g(ψ,η)

ψγ

))γ

= σ +ζ

(

σ +ζ
g(ψ,η)

ψγ

)γ
g(ψ ,η)

(

ψ
(

σ +ζ
g(ψ,η)

ψγ

))γ

= σ +ζ
g(ψ,η)

ψγ
= φ ,

and

ω3 = σ +ζ
g(ω2,ω1)

ω
γ
2

= σ +ζ
g
(

σ +ζ
g(ψ,η)

ψγ ,σ +ζ
g(η ,1)

ηγ

)

(

σ +ζ
g(ψ,η)

ψγ

)γ

= σ +ζ
g
(

σ +ζ
g(ψ,η)

ψγ ,ψ
(

σ +ζ
g(ψ ,η)

ψγ

))

(

σ +ζ
g(ψ,η)

ψγ

)γ

= σ +ζ

(

σ +ζ
g(ψ ,η)

ψγ

)γ
g(1,ψ)

(

σ +ζ
g(ψ,η)

ψγ

)γ

= σ +ζ g(1,ψ) = ϑ .

Then, by induction, we can obtain that for all n ≥ 0.

ω3n−1 = φ , ω3n = ϑ and ω3n+1 = ν .

Hence, Eq.(1.2) has a prime period three solution. The proof is completed.

3. The behavior of solutions of the difference equation ωm+1 = σ +ζ ω
γ
m

g(ωm,ωm−1)

This section is devoted to examining the asymptotic behavior of the solutions of non-linear rational difference equation (1.3).

Here, we can easily obtain the positive equilibrium point of Eq.(1.3) as

ω̄ = σ +
ζ

g(1,1)
.
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Now, let’s define the function z : (0,∞)2 → (0,∞) as

z(u,v) = σ +ζ
uγ

g(u,v)
.

Therefore, we find

∂ z

∂u
(u,v) = ζ

γuγ−1g(u,v)−gu(u,v)u
γ

(g(u,v))2

and

∂ z

∂v
(u,v) =−ζ

gv(u,v)u
γ

(g(u,v))2
.

In the next theorem, the locally asymptotic stability for Eq.(1.3) will be examined.

Theorem 3.1. The equilibrium point of Eq.(1.3) ω̄ = σ + ζ
g(1,1) is locally asymptotically stable if

|γg(1,1)−gu(1,1)|+ |gv(1,1)|<

∣

∣

∣

∣

∣

∣

(

σ + ζ
g(1,1)

)

g2(1,1)

ζ

∣

∣

∣

∣

∣

∣

.

Proof. Since g is a homogeneous function with degree γ, the partial derivatives are of degree γ −1. Thus, we obtain that

zu(ω̄, ω̄) = ζ
γω̄γ−1g(ω̄, ω̄)−gu(ω̄, ω̄)ω̄γ

(g(ω̄, ω̄))2

= ζ
γω̄2γ−1g(1,1)−gu(1,1)ω̄

2γ−1

(ω̄γ g(1,1))2

= ζ
γg(1,1)−gu(1,1)

ω̄g2(1,1)
,

and

zv(ω̄, ω̄) = −ζ
gv(ω̄, ω̄)ω̄γ

(g(ω̄, ω̄))2

= −ζ
gv(1,1)ω̄

2γ−1

ω̄2γ g2(1,1)

= −ζ
gv(1,1)

ω̄g2(1,1)
.

Now, by using Clark Theorem, we obtain

∣

∣

∣

∣

ζ
γg(1,1)−gu(1,1)

ω̄g2(1,1)

∣

∣

∣

∣

+

∣

∣

∣

∣

ζ
gv(1,1)

ω̄g2(1,1)

∣

∣

∣

∣

< 1.

Since the equilibrium point ω̄ = σ +ζ 1
g(1,1) , we find

∣

∣

∣

∣

∣

∣

ζ
γg(1,1)−gu(1,1)
(

σ + ζ
g(1,1)

)

g2(1,1)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

ζ
gv(1,1)

(

σ + ζ
g(1,1)

)

g2(1,1)

∣

∣

∣

∣

∣

∣

< 1,

and so,

|γg(1,1)−gu(1,1)|+ |gv(1,1)|<

∣

∣

∣

∣

∣

∣

(

σ +ζ 1
g(1,1)

)

g2(1,1)

ζ

∣

∣

∣

∣

∣

∣

.

This completes the proof.

In the next theorem, the prime period two solutions of Eq.(1.3) will be investigated.
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Theorem 3.2. Eq.(1.3) has the prime period two solution

. . . ,φ ,ϑ ,φ ,ϑ , . . .

if and only if

σ =
ζ

(1−Ω)

(

Ω

g
(

1, 1
Ω

) −
1

Ωγ g
(

1
Ω
,1
)

)

(3.1)

where Ω = φ
ϑ , Ω ∈ R−{0,±1}.

Proof. Suppose that Eq.(1.3) has a prime period two solution in the following form

. . . ,φ ,ϑ ,φ ,ϑ , . . . .

Let’s define ωn−(2s+1) = φ and ωn−2s = ϑ for s = 0,1,2, ... . From Eq.(1.3), we find

φ = σ +ζ
ϑ γ

g(ϑ ,φ)
,

and

ϑ = σ +ζ
φ γ

g(φ ,ϑ)
.

From the definition of the homogeneous function, we can easily obtain that

φ = σ +ζ
ϑ γ

φ γ g
(

ϑ
φ ,1
) ⇒ φ = σ +

ζ

Ωγ g
(

1
Ω
,1
) (3.2)

and

ϑ = σ +ζ
φ γ

φ γ g
(

1, ϑ
φ

) ⇒ ϑ = σ +
ζ

g
(

1, 1
Ω

) . (3.3)

Now, by using the fact φ −Ωϑ = 0, we find

0 = φ −Ωϑ = σ +
ζ

Ωγ g
(

1
Ω
,1
) −Ω

(

σ +
ζ

g
(

1, 1
Ω

)

)

and so,

σ(1−Ω) = ζ

(

Ω

g
(

1, 1
Ω

) −
1

Ωγ g
(

1
Ω
,1
)

)

.

Hence, we find

σ =
ζ

(1−Ω)

(

Ω

g
(

1, 1
Ω

) −
1

Ωγ g
(

1
Ω
,1
)

)

.

Then, from Eq.(3.2) and (3.3), we obtain

φ = σ +
ζ

Ωγ g
(

1
Ω
,1
) (3.4)

=
ζ

(1−Ω)

(

Ω

g
(

1, 1
Ω

) −
1

Ωγ g
(

1
Ω
,1
)

)

+
ζ

Ωγ g
(

1
Ω
,1
)

= ζ

(

Ω

(1−Ω)g
(

1, 1
Ω

) −
1

(1−Ω)Ωγ g
(

1
Ω
,1
) +

(1−Ω)

(1−Ω)Ωγ g
(

1
Ω
,1
)

)

= ζ

(

Ω

(1−Ω)g
(

1, 1
Ω

) −
Ω

(1−Ω)Ωγ g
(

1
Ω
,1
)

)

,
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and

ϑ = σ +ζ
1

g
(

1, 1
Ω

) (3.5)

=
ζ

(1−Ω)

(

Ω

g
(

1, 1
Ω

) −
1

Ωγ g
(

1
Ω
,1
)

)

+ζ
1

g
(

1, 1
Ω

)

= ζ

(

Ω

(1−Ω)g
(

1, 1
Ω

) −
1

(1−Ω)Ωγ g
(

1
Ω
,1
) +

(1−Ω)

(1−Ω)g
(

1, 1
Ω

)

)

= ζ

(

1

(1−Ω)g
(

1, 1
Ω

) −
1

(1−Ω)Ωγ g
(

1
Ω
,1
)

)

.

On the other hand, suppose (3.1) holds. Let’s choose the initial conditions

ω−1 = φ and ω0 = ϑ ,

where φ ,ϑ are defined as (3.2) and (3.3), respectively. Therefore, we find

ω1 = σ +ζ
ω

γ
0

g(ω0,ω−1)

= σ +ζ
ϑ γ

g(ϑ ,φ)

=
ζ

(1−Ω)

(

Ω

g
(

1, 1
Ω

) −
1

Ωγ g
(

1
Ω
,1
)

)

+ζ
1

Ωγ g
(

ϑ
φ ,1
)

= ζ

(

Ω

(1−Ω)g
(

1, 1
Ω

) −
1

(1−Ω)Ωγ g
(

1
Ω
,1
) +

(1−Ω)

(1−Ω)Ωγ g
(

1
Ω
,1
)

)

= ζ

(

Ω

(1−Ω)g
(

1, 1
Ω

) −
Ω

(1−Ω)Ωγ g
(

1
Ω
,1
)

)

= φ

and

ω2 = σ +ζ
ω

γ
1

g(ω1,ω0)

= σ +ζ
φ γ

g(φ ,ϑ)

=
ζ

(1−Ω)

(

Ω

g
(

1, 1
Ω

) −
1

Ωγ g
(

1
Ω
,1
)

)

+ζ
1

g
(

1, 1
Ω

)

= ζ

(

Ω

(1−Ω)g
(

1, 1
Ω

) −
1

(1−Ω)Ωγ g
(

1
Ω
,1
) +

(1−Ω)

(1−Ω)g
(

1, 1
Ω

)

)

= ζ

(

1

(1−Ω)g
(

1, 1
Ω

) −
1

(1−Ω)Ωγ g
(

1
Ω
,1
)

)

= ϑ

Then, by induction, we can obtain that for all n ≥ 0

ω2n−1 = φ and ω2n = ϑ .

Hence, Eq.(1.3) has a prime period two solution. The proof is completed.

In the following theorem, the three periodic solutions of Eq.(1.3) will be studied.

Theorem 3.3. Eq.(1.3) has a prime period three solution {ωn}
∞

n=−1 where

ωn =







φ , for n = 3z−1

ϑ , for n = 3z

ν , for n = 3z+1

, z = 0,1, . . .
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if and only if

η

(

σ +ζ
ψγ

g(ψ,η)

)

= σ +ζ
1

g(1,ψ)
(3.6)

ψ

(

σ +ζ
ψγ

g(ψ,η)

)

= σ +ζ
ηγ

g(η ,1)

where η = ϑ
φ and ψ = ν

φ ,η ,ψ ∈ R−{0,±1}.

Proof. Suppose that Eq.(1.3) has a prime period three solution in the following form

. . . ,φ ,ϑ ,ν ,φ ,ϑ ,ν , . . .

From Eq.(1.3), we obtain that

φ = σ +ζ
νγ

g(ν ,ϑ)
,

ϑ = σ +ζ
φ γ

g(φ ,ν)

and

ν = σ +ζ
ϑ γ

g(ϑ ,φ)
.

Since g is a homogeneous function with degree γ , we obtain the equalities

φ = σ +ζ
ψγ

g(ψ,η)
,

ϑ = σ +ζ
1

g(1,ψ)

and

ν = σ +ζ
ηγ

g(η ,1)
.

Hence, we find

η =
ϑ

φ
=

σ +ζ 1
g(1,ψ)

σ +ζ ψγ

g(ψ ,η)

and

ψ =
ν

φ
=

σ +ζ ηγ

g(η ,1)

σ +ζ ψγ

g(ψ ,η)

.

Thus, we obtain that

η

(

σ +ζ
ψγ

g(ψ,η)

)

= σ +ζ
1

g(1,ψ)
,

ψ

(

σ +ζ
ψγ

g(ψ,η)

)

= σ +ζ
ηγ

g(η ,1)
.

Now, assume (3.6) holds. Let’s choose the initial values for all η ,ψ ∈ R−{0,±1}

ω−1 = σ +ζ
ψγ

g(ψ ,η)
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and

ω0 = σ +
ζ

g(1,ψ)
.

Therefore, we obtain

ω1 = σ +ζ
ω

γ
0

g(ω0,ω−1)

= σ +ζ

(

σ +ζ 1
g(1,ψ)

)γ

g
(

σ +ζ 1
g(1,ψ) ,σ +ζ ψγ

g(ψ,η)

)

= σ +ζ

(

η
(

σ +ζ ψγ

g(ψ,η)

))γ

g
((

η
(

σ +ζ ψγ

g(ψ,η)

))

,σ +ζ ψγ

g(ψ,η)

)

= σ +ζ

(

η
(

σ +ζ ψγ

g(ψ ,η)

))γ

(

σ +ζ ψγ

g(ψ,η)

)γ
g(η ,1)

= σ +ζ
ηγ

g(η ,1)
= ν ,

ω2 = σ +ζ
ω

γ
1

g(ω1,ω0)

= σ +ζ

(

σ +ζ ηγ

g(η ,1)

)γ

g
(

σ +ζ ηγ

g(η ,1) ,σ +ζ 1
g(1,ψ)

)

= σ +ζ

(

ψ
(

σ +ζ ψγ

g(ψ,η)

))γ

g
(

ψ
(

σ +ζ ψγ

g(ψ,η)

)

,η
(

σ +ζ ψγ

g(ψ,η)

))

= σ +ζ

(

ψ
(

σ +ζ ψγ

g(ψ,η)

))γ

(

σ +ζ ψγ

g(ψ,η)

)γ
g(ψ ,η)

= σ +ζ
ψγ

g(ψ,η)
= φ

and

ω3 = σ +ζ
ω

γ
2

g(ω2,ω1)

= σ +ζ

(

σ +ζ ψγ

g(ψ,η)

)γ

g
(

σ +ζ ψγ

g(ψ,η) ,σ +ζ ηγ

g(η ,1)

)

= σ +ζ

(

σ +ζ ψγ

g(ψ,η)

)γ

g
(

σ +ζ ψγ

g(ψ,η) ,ψ
(

σ +ζ ψγ

g(ψ,η)

))

= σ +ζ

(

σ +ζ ψγ

g(ψ,η)

)γ

(

σ +ζ ψγ

g(ψ ,η)

)γ
g(1,ψ)

= σ +ζ
1

g(1,ψ)
= ϑ .

Then, by induction, we obtain for all n ≥ 0

ω3n−1 = φ , ω3n = ϑ and ω3n+1 = ν .

Hence, Eq.(1.3) has a prime period three solution. The proof is completed.
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4. Conclusions and suggestions

In this article, we have considered the detailed qualitative behavior of a general class of difference equations, which can

be seen as an extension of [22, 23, 24, 25, 26, 27]. The qualitative behavior of the solutions of the introduced non-linear

difference equations has been examined. In other words, the two periodic solutions, the three periodic solutions and the

stability character of difference equations have been discussed. Qualitative research of mathematical models created using

difference equations has an important place in mathematics, sub-branches of mathematics and other applied sciences. Here, the

two periodic solutions of Eq.(1.2) and Eq.(1.3) in Theorem 3.2 and Theorem 2.2 and the three periodic solutions in Theorem

3.3 and Theorem 2.3 have been examined in detail. In these theorems, using the new technique, the periodicity character of

Eq.(1.2) and Eq.(1.3) have been determined and necessary and sufficient conditions have been created for the existence of

periodic solutions. In addition, the equilibrium points of Eq.(1.2) and Eq.(1.3) have been investigated and sufficient conditions

have been obtained for the local asymptotic stability of these equilibrium points.

It can be suggested to those who do research in this field that research can be done in the equations established with the help of

homogeneous functions. Difference equations created with these functions are very convenient and useful for researching

general classes of difference equations.

In our future studies, we will aim to investigate some general classes of difference equations formed by homogeneous functions

of different degrees.
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Abstract

In this paper, we represent the admissible solutions of the system of second-order rational difference

equations given below in terms of Lucas and Fibonacci sequences:

xn+1 =
Lm+2 +Lm+1yn−1

Lm+3 +Lm+2yn−1
, yn+1 =

Lm+2 +Lm+1zn−1

Lm+3 +Lm+2zn−1
,

zn+1 =
Lm+2 +Lm+1wn−1

Lm+3 +Lm+2wn−1
, wn+1 =

Lm+2 +Lm+1xn−1

Lm+3 +Lm+2xn−1
.

where n ∈ N0, {Lm}+∞

m=−∞
is Lucas sequence and the initial conditions x−1, x0, y−1, y0, z−1, z0,

w−1, w0 are arbitrary real numbers such that v−i 6=−Lm+3

Lm+2
, where v−i = x−i,y−i,z−i,w−i, i = 0,1

and m ∈ Z.

1. Introduction and preliminaries

Recently, there has been a growing interest in the study of finding closed-form solutions of difference equations and systems of

difference equations. Some of the forms of solutions of these equations are representable via well-known integer sequences

such as Fibonacci numbers [1, 2], Horadam numbers [3], Lucas numbers [4, 5], and Padovan numbers [6]. For more on

Fibonacci and Lucas numbers, one can see [7, 8], for more on difference equations and systems of difference equations solvable

in closed form, one can see [9]-[24].

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the

two previous terms, and defined as follows:

Ln+1 = Ln +Ln−1, n ≥ 1, (1.1)

but with different initial values , L0 = 2, L1 = 1. The solution of Equation (1.1) is given by the formula

Ln = αn +β n
,

where

α =
1+

√
5

2
and β =

1−
√

5

2
.

The formula of terms with negative indices in the Lucas sequence is

L−n = (−1)nLn.
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In [25], the authors represented the general solution of the following difference equation

xn+1 =
1

1+ xn

, n ∈ N0, (1.2)

in terms of the initial value x0 and Fibonacci sequence. It was proved by induction that, every well-defined solution of equation

(1.2) can be written in the following form

xn =
Fn +Fn−1x0

Fn+1 +Fnx0
, n ∈ N0,

where {Fn}∞

n=0 is Fibonacci sequence. They also proved that, every well-defined solution of the equation

xn+1 =
1

−1+ xn

, n ∈ N0, (1.3)

can be written in the following form

xn =
F−n +F−(n−1)x0

F−(n+1)+F−nx0
, n ∈ N0,

where the terms of the Fibonacci sequence with negative indices are calculated by the formula

F−n = F−n+2 −F−n+1 , n ∈ N0,

where F0 = 0 and F1 = 1.

Khelifa et al. [5] give some theoretical explanations related to the representation of the general solution to the system

of three higher-order rational difference equations

xn+1 =
1+2yn−k

3+ yn−k

, yn+1 =
1+2zn−k

3+ zn−k

, zn+1 =
1+2xn−k

3+ xn−k

,

where n,k ∈ N0, giving its solution in terms of Fibonacci and Lucas sequences.

Recently in Khelifa et al. [4], the following higher-order rational difference equations

x
(1)
n+1 =

1+2x
(2)
n−k

3+ x
(2)
n−k

, x
(2)
n+1 =

1+2x
(3)
n−k

3+ x
(3)
n−k

, · · · , x
(2p+1)
n+1 =

1+2x
(1)
n−k

3+ x
(1)
n−k

,

in terms of Fibonacci and Lucas sequences, where the initial values x
(i)
−k, x

(i)
−k+1, · · · ,x

(i)
−1 and x

(i)
0 , i = 1,2, · · · ,2p+ 1 are

real numbers such that, the denominator does not equal zero in each equation. Some theoretical explanations related to the

representation of the general solution are also given.

Consider the difference equation

xn+1 = f (xn,xn−1, · · · ,xn−k), n = 0,1, · · · . (1.4)

The Good set to Equation (1.4) is the set of all initial points (x0,x−1, ...,x−k) for which the corresponding solution {xn}∞

n=−k is

well-defined or admissible solution.

Here, we list a set of identities concerning the Fibonacci and Lucas sequences that may be used in the paper [7, 8].

For s,m,r,θ ∈ N, we have

1. Fm = Fs+1Fm−s +FsFm−(s+1) ,

2. Lm = Fs+1Lm−s +FsLm−(s+1) ,

3. FsLm+3 +Fs−1Lm+2 = Ls+m+2 ,

4. LrL(θ−1)r+1 +Lr−1L(θ−1)r = 5Fθr ,

5. Lr+1L(θ−1)r +LrL(θ−1)r−1 = 5Fθr ,

6. Lr+1L(θ−1)r+1 +LrL(θ−1)r = 5Fθr+1 ,

7. LrL(θ−1)r +Lr−1L(θ−1)r−1 = 5Fθr−1 ,

8. Lθ(m+2)−1 +Lθ(m+2)+1 = 5Fθ(m+2) .

Now, consider the system of second-order rational difference equations

xn+1 =
Lm+2 +Lm+1yn−1

Lm+3 +Lm+2yn−1
, yn+1 =

Lm+2 +Lm+1zn−1

Lm+3 +Lm+2zn−1
,

zn+1 =
Lm+2 +Lm+1wn−1

Lm+3 +Lm+2wn−1
, wn+1 =

Lm+2 +Lm+1xn−1

Lm+3 +Lm+2xn−1
,

(1.5)
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where {Lm}+∞

m=−∞
is Lucas sequence and the initial conditions x−1, x0, y−1, y0, z−1,z0 and w−1,w0 are arbitrary real numbers

such that v−i 6=−Lm+3

Lm+2
, where v−i = x−i,y−i,z−i,w−i, i = 0,1 and m ∈ Z.

In this paper, we shall represent the admissible solutions of the system (1.5) in terms of Fibonacci and Lucas sequences.

2. Solvability of system (1.5)

In this section, we investigate the solvability of the system (1.5).

From (1.5), we can write for t = 0,1

x2(n+1)−t =
Lm+2 +Lm+1y2n−t

Lm+3 +Lm+2y2n−t

, y2(n+1)−t =
Lm+2 +Lm+1z2n−t

Lm+3 +Lm+2z2n−t

,

z2(n+1)−t =
Lm+2 +Lm+1w2n−t

Lm+3 +Lm+2w2n−t

. w2(n+1)−t =
Lm+2 +Lm+1x2n−t

Lm+3 +Lm+2x2n−t

.

Let

x′n = x2n−t , y′n = y2n−t , z′n = z2n−t , w′
n = w2n−t , (2.1)

where t = 0,1.

Then, the system (1.5) becomes

x′n+1 =
Lm+2 +Lm+1y′n
Lm+3 +Lm+2y′n

, y′n+1 =
Lm+2 +Lm+1z′n
Lm+3 +Lm+2z′n

,

z′n+1 =
Lm+2 +Lm+1w′

n

Lm+3 +Lm+2w′
n

, w′
n+1 =

Lm+2 +Lm+1x′n
Lm+3 +Lm+2x′n

.

(2.2)

If we use the second recurrence relation in (2.2) in the first, we obtain

x′n+1 =
F2m+4 +F2m+3z′n−1

F2m+5 +F2m+4z′n−1

, n ≥ 1.

The substitution of z′n−1 into x′n+1, leads to

x′n+1 =
L3m+6 +L3m+5w′

n−2

L3m+7 +L3m+6w′
n−2

, n ≥ 2.

Finally, after substituting with w′
n−2 into x′n+1, we get

x′n+1 =
F4m+8 +F4m+7x′n−3

F4m+9 +F4m+8x′n−3

, n ≥ 3.

Therefore, the system (2.2) can be written in the following form:

x′n+1 =
F4m+8 +F4m+7x′n−3

F4m+9 +F4m+8x′n−3

, n ≥ 3. (2.3)

Let us introduce the notation

x
′( j)
n = x′4n+ j, n ∈ N0, (2.4)

where j ∈ {0,1,2,3}.

Using this notation, Equation (2.3) can be written as

x
′( j)
n+1 =

F4m+8 +F4m+7x
′( j)
n

F4m+9 +F4m+8x
′( j)
n

, j ∈ {0,1,2,3} and n ≥ 3. (2.5)

Now consider the equation

un+1 =
F4m+8 +F4m+7un

F4m+9 +F4m+8un

, n ≥ 3. (2.6)
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The solution of Equation (2.6) is (can be found in [20])

un =
F4n(m+2)+F4n(m+2)−1u0

F4n(m+2)+1 +F4n(m+2)u0
, n ∈ N0,

where (Fm)
+∞

n=−∞
is Fibonacci sequence.

Then the solution of Equation (2.5) is given by

x
′( j)
n =

F4n(m+2)+F4n(m+2)−1x
′( j)
0

F4n(m+2)+1 +F4n(m+2)x
′( j)
0

, j ∈ {0,1,2,3} and n ∈ N0.

Therefore, the solution of Equation (2.5) can be written as

x′4n+ j =
F4n(m+2)+F4n(m+2)−1x′j
F4n(m+2)+1 +F4n(m+2)x

′
j

, j ∈ {0,1,2,3} and n ∈ N0.

Theorem 2.1. Let (x′n,y
′
n,z

′
n,w

′
n)n≥0 be an admissible solution of the system (2.2). Then we get

x′4n =
F4n(m+2)+F4n(m+2)−1x′0
F4n(m+2)+1 +F4n(m+2)x

′
0

,

x′4n+1 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)y

′
0

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)y
′
0

,

x′4n+2 =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)z

′
0

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)z
′
0

,

x′4n+3 =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)w

′
0

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)w
′
0

,

z′4n =
F4n(m+2)+F4n(m+2)−1z′0
F4n(m+2)+1 +F4n(m+2)z

′
0

,

z′4n+1 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)w

′
0

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)w
′
0

,

z′4n+2 =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)x

′
0

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)x
′
0

,

z′4n+3 =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)y

′
0

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)y
′
0

,

y′4n =
F4n(m+2)+F4n(m+2)−1y′0
F4n(m+2)+1 +F4n(m+2)y

′
0

,

y′4n+1 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)z

′
0

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)z
′
0

,

y′4n+2 =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)w

′
0

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)w
′
0

,

y′4n+3 =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)x

′
0

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)x
′
0

,

w′
4n =

F4n(m+2)+F4n(m+2)−1w′
0

F4n(m+2)+1 +F4n(m+2)w
′
0

,

w′
4n+1 =

L4n(m+2)+(m+2)+L4n(m+2)+(m+1)x
′
0

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)x
′
0

,

w′
4n+2 =

F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)y
′
0

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)y
′
0

,

w′
4n+3 =

L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)z
′
0

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)z
′
0

,

(2.7)

where n ∈ N0, (Lm)
+∞

m=−∞
is Lucas sequence and (Fm)

+∞

m=−∞
is Fibonacci sequence.

Proof. Let (x′n,y
′
n,z

′
n,w

′
n)n≥0 be a solution to system (2.2). Then, (x′n)n≥0 is a solution to Equation (2.5) and so

x′4n+ j =
F4n(m+2)+F4n(m+2)−1x′j
F4n(m+2)+1 +F4n(m+2)x

′
j

,

where m ∈ Z, j ∈ {0,1,2,3}. For j = 0, we have

x′4n =
F4n(m+2)+F4n(m+2)−1x′0
F4n(m+2)+1 +F4n(m+2)x

′
0

.

We also have

x′4n+1 =
F4n(m+2)+F4n(m+2)−1x′1
F4n(m+2)+1 +F4n(m+2)x

′
1

,

where x′1 =
Lm+2 +Lm+1y′0
Lm+3 +Lm+2y′0

.

Using identity (2), we get

x′4n+1 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)y

′
0

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)y
′
0

.
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Similarly,

x′4n+2 =
F4n(m+2)+F4n(m+2)−1x′2
F4n(m+2)+1 +F4n(m+2)x

′
2

,

where x′2 =
F2m+4 +F2m+3z′0
F2m+5 +F2m+4z′0

.

Using identity (1), we get

x′4n+2 =
F4n(m+2)+2m+4 +F4n(m+2)+2m+3)z

′
0

F4n(m+2)+2m+5 +F4n(m+2)+2m+4z′0
.

Finally, for j = 3, we have

x′4n+3 =
F4n(m+2)+F4n(m+2)−1x′3
F4n(m+2)+1 +F4n(m+2)x

′
3

,

where x′1 =
L3m+6 +L3m+5w′

0

L3m+7 +L3m+6w′
0

.

Again using identity (2), we get

x′4n+3 =
L4n(m+2)+3m+6 +L4n(m+2)+3m+5w′

0

L4n(m+2)+3m+7 +L4n(m+2)+3m+6w′
0

.

Then

x′4n =
F4n(m+2)+F4n(m+2)−1x′0
F4n(m+2)+1 +F4n(m+2)x

′
0

,

x′4n+1 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)y

′
0

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)y
′
0

,

x′4n+2 =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)z

′
0

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)z
′
0

,

x′4n+3 =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)w

′
0

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)w
′
0

.

In the same way, after some calculations and using the fact that

y′n =
Lm+2 +Lm+1z′n−1

Lm+3 +Lm+2z′n−1

, z′n =
Lm+2 +Lm+1w′

n−1

Lm+3 +Lm+2w′
n−1

,w′
n =

Lm+2 +Lm+1x′n−1

Lm+3 +Lm+2x′n−1

.

we find

y′4n =
F4n(m+2)+F4n(m+2)−1y′0
F4n(m+2)+1 +F4n(m+2)y

′
0

,

y′4n+1 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)z

′
0

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)z
′
0

,

y′4n+2 =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)w

′
0

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)w
′
0

,

y′4n+3 =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)x

′
0

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)x
′
0

,

z′4n =
F4n(m+2)+F4n(m+2)−1z′0
F4n(m+2)+1 +F4n(m+2)z

′
0

,

z′4n+1 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)w

′
0

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)w
′
0

,

z′4n+2 =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)x

′
0

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)x
′
0

,

z′4n+3 =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)y

′
0

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)y
′
0

,

w′
4n =

F4n(m+2)+F4n(m+2)−1w′
0

F4n(m+2)+1 +F4n(m+2)w
′
0

,

w′
4n+1 =

L4n(m+2)+(m+2)+L4n(m+2)+(m+1)x
′
0

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)x
′
0

,

w′
4n+2 =

F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)y
′
0

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)y
′
0

,

w′
4n+3 =

L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)z
′
0

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)z
′
0

.
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The following theorem is our main result that shows the solvability of the system (1.5).

Theorem 2.2. Let {xn,yn,zn,wn}n≥−1 be an admissible solution of system (1.5). Then for n ∈ N, we get

x8n−1 =
F4n(m+2)+F4n(m+2)−1x−1

F4n(m+2)+1 +F4n(m+2)x−1
,

x8n =
F4n(m+2)+F4n(m+2)−1x0

F4n(m+2)+1 +F4n(m+2)x0
,

x8n+1 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)y−1

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)y−1
,

x8n+2 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)y0

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)y0
,

x8n+3 =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)z−1

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)z−1
,

x8n+4 =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)z0

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)z0
,

x8n+5 =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)w−1

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)w−1
,

x8n+6 =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)w0

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)w0
,

y8n−1 =
F4n(m+2)+F4n(m+2)−1y−1

F4n(m+2)+1 +F4n(m+2)y−1
,

y8n =
F4n(m+2)+F4n(m+2)−1y0

F4n(m+2)+1 +F4n(m+2)y0
,

y8n+1 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)z−1

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)z−1
,

y8n+2 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)z0

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)z0
,

y8n+3 =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)w−1

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)w−1
,

y8n+4 =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)w0

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)w0
,

y8n+5 =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)x−1

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)x−1
,

y8n+6 =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)x0

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)x0
,

z8n−1 =
F4n(m+2)+F4n(m+2)−1z−1

F4n(m+2)+1 +F4n(m+2)z−1
,

z8n =
F4n(m+2)+F4n(m+2)−1z0

F4n(m+2)+1 +F4n(m+2)z0
,

z8n+1 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)w−1

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)w−1
,

z8n+2 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)w0

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)w0
,

z8n+3 =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)x−1

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)x−1
,

z8n+4 =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)x0

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)x0
,

z8n+5 =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)y−1

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)y−1
,

z8n+6 =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)y0

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)y0
,

and

w8n−1 =
F4n(m+2)+F4n(m+2)−1w−1

F4n(m+2)+1 +F4n(m+2)w−1
,

w8n =
F4n(m+2)+F4n(m+2)−1w0

F4n(m+2)+1 +F4n(m+2)w0
,

w8n+1 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)x−1

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)x−1
,

w8n+2 =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)x0

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)x0
,

w8n+3 =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)y−1

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)y−1
,

w8n+4 =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)y0

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)y0
,

w8n+5 =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)z−1

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)z−1
,

w8n+6 =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)z0

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)z0
,

where (Lm)
+∞

m=−∞
is the Lucas sequence, (Fm)

+∞

m=−∞
is the Fibonacci sequence.

Proof. We have

x′n = x2n−t , y′n = y2n−t , z′n = z2n−t , w′
n = w2n−t , t = 0,1.

Then for t = 0,1, we have

x′4n = x8n−t , y′4n = y8n−t , z′4n = z8n−t , w′
4n = w8n−t ,

and

x′0 = x−t , y′0 = y−t , z′0 = z−t , w′
0 = w−t .
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Using Theorem (2.1), we can write for t = 0,1

x8n−t =
F4n(m+2)+F4n(m+2)−1x−t

F4n(m+2)+1 +F4n(m+2)x−t

,

y8n−t =
F4n(m+2)+F4n(m+2)−1y−t

F4n(m+2)+1 +F4n(m+2)y−t

,

z8n−t =
F4n(m+2)+F4n(m+2)−1z−t

F4n(m+2)+1 +F4n(m+2)z−t

,

w8n−t =
F4n(m+2)+F4n(m+2)−1w−t

F4n(m+2)+1 +F4n(m+2)w−t

.

Also, for t = 0,1, we have

x′4n+1 = x8n+2−t , y′4n+1 = y8n+2−t , z′4n+1 = z8n+2−t , w′
4n+1 = w8n+2−t .

Using Theorem (2.1), we get for t = 0,1

x8n+2−t =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)y−t

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)y−t

,

y8n+2−t =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)z−t

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)z−t

,

z8n+2−t =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)w−t

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)w−t

,

w8n+2−t =
L4n(m+2)+(m+2)+L4n(m+2)+(m+1)x−t

L4n(m+2)+(m+3)+L4n(m+2)+(m+2)x−t

.

In the same way, we get for t = 0,1

x8n+4−t =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)z−t

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)z−t

,

y8n+4−t =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)w−t

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)w−t

,

z8n+4−t =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)x−t

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)x−t

,

w8n+4−t =
F4n(m+2)+(2m+4)+F4n(m+2)+(2m+3)y−t

F4n(m+2)+(2m+5)+F4n(m+2)+(2m+4)y−t

,

and

x8n+6−t =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)w−t

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)w−t

,

y8n+6−t =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)x−t

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)x−t

,

z8n+6−t =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)y−t

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)y−t

,

w8n+6−t =
L4n(m+2)+(3m+6)+L4n(m+2)+(3m+5)z−t

L4n(m+2)+(3m+7)+L4n(m+2)+(3m+6)z−t

.

This completes the proof.

3. Special cases

We end this paper by illustrating the cases m =−1 and m = 0 in system (1.5).

Case m =−1 When m =−1 in system (1.5), we obtain the system of difference equations

xn+1 =
1+2yn−1

3+ yn−1
, yn+1 =

1+2zn−1

3+ zn−1
,zn+1 =

1+2wn−1

3+wn−1
, wn+1 =

1+2xn−1

3+ xn−1
, n ∈ N0. (3.1)
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For system (3.1), by applying Theorem (2.2) we get

x8n−1 =
F4n +F4n−1x−1

F4n+1 +F4nx−1
,

x8n =
F4n +F4n−1x0

F4n+1 +F4nx0
,

x8n+1 =
L4n+1 +L4ny−1

L4n+2 +L4n+1y−1
,

x8n+2 =
L4n+1 +L4ny0

L4n+2 +L4n+1y0
,

x8n+3 =
F4n+2 +F4n+1z−1

F4n+3 +F4n+2z−1
,

x8n+4 =
F4n+2 +F4n+1z0

F4n+3 +F4n+2z0
,

x8n+5 =
L4n+3 +L4n+2w−1

L4n+4 +L4n+3w−1
,

x8n+6 =
L4n+3 +L4n+2w0

L4n+4 +L4n+3w0
,

y8n−1 =
F4n +F4n−1y−1

F4n+1 +F4ny−1
,

y8n =
F4n +F4n−1y0

F4n+1 +F4ny0
,

y8n+1 =
L4n+1 +L4nz−1

L4n+2 +L4n+1z−1
,

y8n+2 =
L4n+1 +L4nz0

L4n+2 +L4n+1z0
,

y8n+3 =
F4n+2 +F4n+1w−1

F4n+3 +F4n+2w−1
,

y8n+4 =
F4n+2 +F4n+1w0

F4n+3 +F4n+2w0
,

y8n+5 =
L4n+3 +L4n+2x−1

L4n+4 +L4n+3x−1
,

y8n+6 =
L4n+3 +L4n+2x0

L4n+4 +L4n+3x0
,

z8n−1 =
F4n +F4n−1z−1

F4n+1 +F4nz−1
,

z8n =
F4n +F4n−1z0

F4n+1 +F4nz0
,

z8n+1 =
L4n+1 +L4nw−1

L4n+2 +L4n+1w−1
,

z8n+2 =
L4n+1 +L4nw0

L4n+2 +L4n+1w0
,

z8n+3 =
F4n+2 +F4n+1x−1

F4n+3 +F4n+2x−1
,

z8n+4 =
F4n+2 +F4n+1x0

F4n+3 +F4n+2x0
,

z8n+5 =
L4n+3 +L4n+2y−1

L4n+4 +L4n+3y−1
,

z8n+6 =
L4n++3 +L4n+2y0

L4n+4 +L4n+3y0
,

w8n−1 =
F4n +F4n−1w−1

F4n+1 +F4nw−1
,

w8n =
F4n +F4n−1w0

F4n+1 +F4nw0
,

w8n+1 =
L4n+1 +L4nx−1

L4n+2 +L4n+1x−1
,

w8n+2 =
L4n+1 +L4nx0

L4n+2 +L4n+1x0
,

w8n+3 =
F4n+2 +F4n+1y−1

F4n+3 +F4n+2y−1
,

w8n+4 =
F4n+2 +F4n+1y0

F4n+3 +F4n+2y0
,

w8n+5 =
L4n+3 +L4n+2z−1

L4n+4 +L4n+3z−1
,

w8n+6 =
L4n+3 +L4n+2z0

L4n+4 +L4n+3z0
,

Case m = 0 When m = 0 in system (1.5), we obtain the system of difference equations

xn+1 =
3+ yn−1

4+3yn−1
, yn+1 =

3+ zn−1

4+3zn−1
,zn+1 =

3+wn−1

4+3wn−1
, wn+1 =

3+ xn−1

4+3xn−1
, n ∈ N0. (3.2)

For system (3.2), applying Theorem (2.2) we get

x8n−1 =
F8n +F8n−1x−1

F8n+1 +F8nx−1
,

x8n =
F8n +F8n−1x0

F8n+1 +F8nx0
,

x8n+1 =
L8n+2 +L8n+1y−1

L8n+3 +L8n+2y−1
,

x8n+2 =
L8n+2 +L8n+1y0

L8n+3 +L8n+2y0
,

x8n+3 =
F8n+4 +F8n+3z−1

F8n+5 +F8n+4z−1
,

x8n+4 =
F8n+4 +F8n+3z0

F8n+5 +F8n+4z0
,

x8n+5 =
L8n+6 +L8n+5w−1

L8n+7 +L8n+6w−1
,

x8n+6 =
L8n+6 +L8n+5w0

L8n+7 +L8n+6w0
,
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Figure 1: System (3.1) (left) and System (3.2) (right).

y8n−1 =
F8n +F8n−1y−1

F8n+1 +F8ny−1
,

y8n =
F8n +F8n−1y0

F8n+1 +F8ny0
,

y8n+1 =
L8n+2 +L8n+1z−1

L8n+3 +L8n+2z−1
,

y8n+2 =
L8n+2 +L8n+1z0

L8n+3 +L8n+2z0
,

y8n+3 =
F8n+4 +F8n+3w−1

F8n+5 +F8n+4w−1
,

y8n+4 =
F8n+4 +F8n+3w0

F8n+5 +F8n+4w0
,

y8n+5 =
L8n+6 +L8n+5x−1

L8n+7 +L8n+6x−1
,

y8n+6 =
L8n+6 +L8n+5x0

L8n+7 +L8n+6x0
,

z8n−1 =
F8n +F8n−1z−1

F8n+1 +F8nz−1
,

z8n =
F8n +F8n−1z0

F8n+1 +F8nz0
,

z8n+1 =
L8n+2 +L8n+1w−1

L8n+3 +L8n+2w−1
,

z8n+2 =
L8n+2 +L8n+1w0

L8n+3 +L8n+2w0
,

z8n+3 =
F8n+4 +F8n+3x−1

F8n+5 +F8n+4x−1
,

z8n+4 =
F8n+4 +F8n+3x0

F8n+5 +F8n+4x0
,

z8n+5 =
L8n+6 +L8n+5y−1

L8n+7 +L8n+6y−1
,

z8n+6 =
L8n+6 +L8n+5y0

L8n+7 +L8n+6y0
,

w8n−1 =
F8n +F8n−1w−1

F8n+1 +F8nw−1
,

w8n =
F8n +F8n−1w0

F8n+1 +F8nw0
,

w8n+1 =
L8n+2 +L8n+1x−1

L8n+3 +L8n+2x−1
,

w8n+2 =
L8n+2 +L8n+1x0

L8n+3 +L8n+2x0
,

w8n+3 =
F8n+4 +F8n+3y−1

F8n+5 +F8n+4y−1
,

w8n+4 =
F8n+4 +F8n+3y0

F8n+5 +F8n+4y0
,

w8n+5 =
L8n+6 +L8n+5z−1

L8n+7 +L8n+6z−1
,

w8n+6 =
L8n+6 +L8n+5z0

L8n+7 +L8n+6z0
,

Example 3.1. Fig.1. (left) represents system (3.1) with x−1 = 2, x0 =−1.29, y−1 = 7, y0 = 0.7, z−1 = 2, z0 =−1.8, w−1 = 2.4,

w0 =−3.28

Example 3.2. Fig.1. (right) represents system (3.2) with x−1 = 4, x0 =−1.6, y−1 = 1.42, y0 =−1.28, z−1 =−5, z0 = 2.8,

w−1 = 3.1, w0 =−5.28.
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4. Conclusion

In this paper, we showed that the system of difference equations

xn+1 =
Lm+2 +Lm+1yn−1

Lm+3 +Lm+2yn−1
, yn+1 =

Lm+2 +Lm+1zn−1

Lm+3 +Lm+2zn−1
,

zn+1 =
Lm+2 +Lm+1wn−1

Lm+3 +Lm+2wn−1
, wn+1 =

Lm+2 +Lm+1xn−1

Lm+3 +Lm+2xn−1
.

where the coefficients are the well-known Lucas numbers is solvable in closed form.

In fact, its solution is represented in terms of Lucas and Fibonacci numbers.

We also provided two illustrative examples for the case m =−1 and m = 0.

We conjecture that, the results in this paper can be satisfied to a more general case of the aforementioned system.
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