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Abstract. In this study, we investigate the matrices over the new extension

of the real numbers in four dimensional space E4
2 called the hybrid numbers.

Since the hybrid multiplication is noncommutative, this leads to finding a
linear transformation on the complex field. Thus we characterize the hybrid

matrices and examine their algebraic properties with respect to their complex

adjoint matrices. Moreover, we define the co-determinant of hybrid matrices
which plays an important role to construct the Lie groups.

1. Introduction

The extension of the real number system raises by investigating the solutions of
the quadratic equations given as follows:

(1.1) x2 + 1 = 0, x2 − 1 = 0 and x2 = 0.

As a result, the new units called the imaginary i2 = −1, the unipotent h2 = 1
(h 6= ∓1) and the nilpotent ε2 = 0 (ε 6= 0) enter in the history of mathematics and
yield the new number systems named by complex numbers, hyperbolic numbers
and dual numbers, respectively [21, 23, 24]. All three number systems are two-
dimensional vector spaces over the real numbers, this implies that the points of R2

can be identified by them with respect to their metric systems. These correspond-
ing metrics yield two-dimensional Euclidean geometry, Lorentzian geometry and
Galilean geometry, respectively. Then the identification of a point A = (x, y) can
be seen in the following planes with respect to the systems:
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(a) Euclidean plane (b) Lorentzian plane (c) Galilean plane

Figure 1. Coordinate planes of metric systems in two-
dimensional space

Moreover, Clifford algebras can be studied on the vector spaces of complex num-
bers, dual numbers and hyperbolic numbers via elliptic, parabolic and hyperbolic
bilinear forms, respectively. It is also known as EPH-classification of these number
systems. The EPH-classification is closely linked with the elliptic, hyperbolic and
parabolic analytic function theories [4, 6, 16].

The historical evolution of the ideas on how to manage the extension of numbers
gives us the quaternions introduced by Hamilton [12] as the most-known general-
ization of complex numbers. The set of quaternions is generally represented in the
form:

(1.2) H = {q = q0 + q1i+ q2j + q3k : qs ∈ R , 0 ≤ s ≤ 3}

where i, j, k are quaternionic units and hold i2 = j2 = k2 = ijk = −1. Since the
set H is a non-commutative associative algebra over the real numbers, the matrices
of quaternions becomes one of the interesting topics in the matrix theory. A brief
survey on the quaternionic matrices given by Zhang [26] presents some methods for
some basic functions for matrices such as determinant, computing the eigenvalue.
The method is based on finding the complex adjoint matrix of any quaternionic
matrix. After that, various studies are born about the matrices of quaternions and
their applications [5, 8, 10,14,25].

Another well-known member of non-commutative algebras is the set of split
quaternions introduced by Cockle [7] as follows:

(1.3) Ĥ= {q̂ = q̂0 + q̂1i+ q̂2j + q̂3k : q̂t ∈ R , 0 ≤ t ≤ 3}

where i2 = −1 and j2 = k2 = ijk = 1. The difference between Ĥ and H is

the existence of zero divisors, nilpotent elements and nontrivial idempotents in Ĥ.
After work of Zhang, the quaternionic matrices and their properties are studied

over Ĥ by the compatible methods [1, 11,15,19,20].
In the system R4, we meet the new phenomenon named as hybrid numbers and

given in the following form:

(1.4) K = {X = x0 + x1i+ x2ε+ x3h : xj ∈ R , 0 ≤ j ≤ 3}

where i, ε and h are the complex, dual and hyperbolic units, respectively [17]. There
are considerable differences between K and the two sets previously describe, out
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of the noncommutativity. Under this view, hybrid numbers firstly give the blood
relativity of two different classes of vectors:

Characters EPH-classification︷ ︸︸ ︷ Timelike
Spacelike
Lightlike

 ←−−−−−−−−−−−→
Hybrid Numbers

︷ ︸︸ ︷ Elliptic
Parabolic
Hyperbolic


Secondly, there is the isomorphism between 2×2 real matrices and hybrid numbers
and thus a classification of 2×2 real matrices and an algebraic method to find their
roots are obtained by the hybrid numbers [18]. The short history of the hybrid
numbers reveals us their advantages on real matrix algebra and the sequences of
special numbers [9, 22].

In this study, we will examine the hybrid matrices by improving the Zhang’s
method over K. In the second section, we give some basic notions and properties
of hybrid numbers, and more importantly, we change the spelling of the hybrid
numbers. They are rewritten in the form named as the C−type which will be used
to built a linear transformation between K and the set of 2× 2 complex matrices.
This correspondence yields the second relationship between eigenvalues and types
of hybrid numbers as follows:

Eigenvalues EPH-classification︷ ︸︸ ︷ λ1,2 ∈ C
λ1 = λ2

λ1,2 ∈ R

 ←−−−−−−−−−−−→
Hybrid Numbers

︷ ︸︸ ︷ Elliptic
Parabolic
Hyperbolic


In the third section, the matrices of hybrid numbers are introduced and their prop-
erties are obtained. After that, in the fourth section, to prevent the disadvantages
of the noncommutativity of hybrid numbers we define the complex adjoint of hybrid
matrices. Hence the determinant of hybrid matrices could be characterized, and so
they are analyzed in the theory of Lie groups.

2. Basic Concepts of Hybrid Numbers

In this section, we initially introduce hybrid numbers with fundamental features.
Then we establish a new form called C−type and give the properties of hybrid
numbers in the new form.

A hybrid number occurs in the combination form of the three types of number
systems, complex, dual and hyperbolic numbers, as the following:

(2.1) X = x0 + x1i+ x2ε+ x3h

where xj ∈ R , 0 ≤ j ≤ 3 and the basis elements {1, i, ε, h} are satisfying the
multiplication rules given in the following table.

(2.2)

· 1 i ε h
1 1 i ε h
i i −1 1− h i+ ε
ε ε 1 + h 0 −ε
h h −i− ε ε 1

By the compotentwise addition and scalar multiplication, the set of hybrid num-
bers denoted by K becomes a 4-dimensional vector space over the real numbers.
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Furthermore, the hybrid number algebra is an associative, noncommutative ring
with respect to the addition and multiplication operations.

The hybrid number X is composed of the scalar part S(X) = x0 and the vector
part V (X) = x1i + x2ε + x3h. The conjugate of X is the hybrid number defined
by X = S(X) − V (X). If x2 = x3 = 0, then the conjugate of hybrid number
means the conjugate of complex number, and vice versa. Moreover, there are two
kinds of vectorial representation of X given by V(X) = (x0, x1 − x2, x2, x3) and
Vh(X) = (x1 − x2, x2, x3) which is specifically called the hybrid vector of X. Thus,
there exist the following functions:

C(X) = x2
0 + (x1 − x2)2 − x2

2 − x2
3(2.3)

Ch(X) = −(x1 − x2)2 + x2
2 + x2

3

where C(X) = −〈V(X),V(X)〉 and Ch(X) = 〈Vh(X),Vh(X)〉 are equipped with
the signature (−,−,+,+) of E4

2 the four dimensional Minkowski space and the
subspace E3

1, respectively. These functions yield the following classifications of the
hybrid number X with respect to the corresponding Minkowski metrics:

A hybrid number X ∈ K is

• Spacelike if C(X) < 0 or X = 0,
• Timelike if C(X) > 0,
• Lightlike (null) if C(X) = 0 and X 6= 0,

which are called the characters of the hybrid number X.
The types of the hybrid number X are given by

• If Ch(X) < 0, X is elliptic,
• If Ch(X) > 0, X is hyperbolic,
• If Ch(X) = 0, X is parabolic.

Consequently, the following table is set to show the relation between the two
characterizations of hybrid numbers.

(2.4)

Classification by Types Classification by Characters
Elliptic Timelike
Hyperbolic Spacelike, Timelike, Lightlike
Parabolic Timelike, Lightlike

Until now, we summarize briefly the basic algebraic properties of the noncom-
mutative ring K for more details the reader is referred to [17].

Our first aim in the present paper is to find a linear transformation between
hybrid numbers and express them via the matrix of the transformation thus we
could explore the properties of hybrid numbers in another convenient way. For this
inherent reason, the multiplication rule of the unit ε in (2.2) allows us to observe
the hybrid numbers in terms of the basis {i, h}. Thus we can explain the hybrid
number X = x0 + x1i+ x2ε+ x3h as follows:

(2.5) X = z1 + z2h, z1, z2 ∈ C

where z1 = x0 + (x1 − x2) i, z2 = x3 + x2i. Since this appears, at first sight, to be
a complex hyperbolic number, we call (2.5) as the C−type of hybrid number X in
order to avoid the confusion. Then we can obviously conclude the following.

Theorem 2.1. Every hybrid number can be uniquely expressed in the form of
C−type.
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Corollary 2.2. The C−type of a hybrid number become equivalent to its open form
if and only if the hybrid number is a complex number.

The fundamental functions on the set of hybrid numbers of the C−type are given
as follows:
i) Addition:

X + Y = (z1 + w1) + (z2 + w2h),

ii) Multiplication:

XY = z1w1 + z2w2 + (z1w2 + z2w1)h,

iii) The hybrid conjugate:

X = z1 − z2h,

iv) Functions of characteristics:

C(X) = |z1|2 − |z2|2 and Ch(X) = −V (z1)2 + |z2|2 ,

v) The inverse of a hybrid number:

X−1 =
z1

C(X)
− z2

C(X)
h

vi) The two kind norms of a hybrid number:

‖ X ‖=
√
|C(X)| and ‖ X ‖h=

√
|Ch(X)|

where X = z1 + z2h, Y = w1 + w2h ∈ K and V (z1) is the imaginary part of z1.
The next theorem summarizes the properties of the hybrid conjugate.

Theorem 2.3. For the hybrid numbers X = z1 + z2h and Y = w1 + w2h, the
properties listed below are true.

i. X =
(
X
)
,

ii. XX = XX = z1z1 − z2z2,
iii. X + Y = X + Y ,
iv. XY = Y X,
v. C(X) = C(X) and Ch(X) = Ch(X),

vi. (X−1) =
(
X
)−1

,

vii. X = X if and only if X is a real number,
viii. hz = zh or hzh = z for any complex number z.

Proof. In general, the properties can be proved easily. Let’s at least have confidence
in the accuracy of (iv) and (vi).
The proof for (iv);

XY = z1w1 + z2w2 − (z1w2 + z2w1)h

= w1 z1 + w2z2 − (w1z2 + w2z1)h

= Y X.
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The proof for (vi); (
X
)−1

=
(z1)

C(X)
− (−z2)

C(X)
h

=
z1

C(X)
+

z2

C(X)
h

= (X−1).

�

Now let us define the following bijective map,

(2.6)
ψX : K → K

Y →ψ(Y ) = Y X

where as a consequence of the ring structure of hybrid numbers we could see that
ψX is a linear map. It is well known that every linear map can be represented by
a matrix, so we get

ψX(1) = z1 + z2h,

ψX(h) = z2 + z1h,

and then the matrix of the transformation ψ with respect to the standard bases is
given as follows:

[ψX ] =

[
z1 z2

z2 z1

]
.

where X = z1 + z2h.
Consequently, the following theorem is stated.

Theorem 2.4. Every hybrid number can be represented by a 2×2 complex matrices.

Notice that the subset of the matrix ring M2(C) given such as

(2.7) K =

{
A =

[
z1 z2

z2 z1

]
: z1, z2 ∈ C

}
actually represents the set of hybrid numbers K. Since the transformation between
K and K is bijective and linear, then the operations are preserved. Moreover, let

the corresponding matrix of X = z1 + z2h be A =

[
z1 z2

z2 z1

]
, we have

(2.8) detA = C(X), trA = 2 funcRe(z1) and λ1,2 =
trA

2
∓
√
Ch(X)

where λ1 and λ2 are the eigenvalues of A.

Corollary 2.5. The inverse of a hybrid number exists if and only if the determinant
of the corresponding complex matrix of the hybrid number is different from zero.

Definition 2.6. The characters of A ∈ K can be defined as
i. A is spacelike, if detA < 0,
ii. A is timelike, if detA > 0,
iii. A is lightlike, if detA = 0.
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Definition 2.7. The types of A ∈ K can be given in terms of its eigenvalues λ1,2

as follows:
i. A is elliptic, if λ1,2 ∈ C,
ii. A is hyperbolic, if λ1,2 ∈ R,
iii. A is parabolic, if λ1 = λ2.

Corollary 2.8. If A ∈ K is a Hermitian matrix, then its corresponding hybrid
number must be hyperbolic or parabolic.

Now, we observe the matrices of hybrid numbers according to the three differ-
ent concepts of complex matrix theory which are unitary, Hermitian and skew-
Hermitian matrices. Let A ∈ K be the corresponding complex matrix of the hybrid
number X = z1 + z2h, we can give the following statements.

• If A is the unitary matrix, then AA
T

= I2 which yields

(2.9) z1z1 + z2z2 = 1 and z1z2 = 0.

For the case z1 = 0, we have z2z2 = 1 means that z2 = cos θ + sin θi. Then
the C−type of X is

(2.10) X = eiθh

where X is a spacelike hyperbolic hybrid number. On the other hand, if
z2 = 0, the C−type forms of X meets the open form of it means that X is
a complex number such that

(2.11) X = eiθ.

• If A is the Hermitian matrix, then we obtain z1 = z1 and Ch(X) = z2z2.
From Corollary 4, we can distinguish two cases:
i. If X is parabolic hybrid number, then z2 = 0 and X ∈ R\{0},
ii. If X is hyperbolic hybrid number, X could have the three kinds of
characters. In addition to, the null case will be appeared as the Pythagorean
condition and therefore the components can be expressed as follows:

(2.12) z1 = w(u2 + v2) and z2 = w
[
2uv +

(
u2 − v2

)
i
]

where w is constant, u and v are relatively prime.
• A is the skew-Hermitian matrix if and only if X is a pure complex number,

namely X = xi, x ∈ R.

3. Introduction to Hybrid Matrices

In this section, our first results concern the matrices of hybrid numbers. After
that we explain them in terms of the complex matrices by using the C−type form of
hybrid numbers. Hence we could analyze the properties of hybrid number matrices
by using the algorithms of the complex matrix theory.

Let us introduce the set of m × n type matrices with the hybrid number com-
ponents, denoted by Mm,n(K). If m = n, then we briefly use the notation Mn(K).
With the ordinary matrix addition and multiplication the set Mn(K) is going to
become a noncommutative ring where the unit is In. If the equation AB = BA = In
exists for B ∈Mn(K), we call A is invertible and denote B = A−1.

Moreover, the propositions of left vector space endowed by [26] can be satisfied
by the following scalar multiplication:

(3.1) XA = [Xaαβ ]
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where X ∈ K and A = [aαβ ] ∈ Mm,n(K). Hence we know that Mm,n(K) is a left
vector space over K. Similarly, the definition of scalar multiplication AX = [aαβX]
yields the right vector space over K.

If we use the C−types of the components of the hybrid matrix A = [aαβ ] ∈
Mm,n(K), then the components are written as aαβ = a1

αβ + a2
αβh ∈ K and we get

(3.2) A = A1 +A2h

where A1 = [a1
αβ ], A2 = [a2

αβ ] ∈ Mm,n(C). The transpose of A is AT = [aβα] =

AT1 +AT2 h and the conjugate of A is A = [aαβ ] = A1 −A2h.

Definition 3.1. The conjugate transpose of a hybrid matrix A, denoted by A∗, is

A∗ = A
T

where the entries of A are the hybrid conjugates of the corresponding entries of A.

Ideally, we shall consider specific square hybrid matrices in terms of the conjugate
transpose as follows:

• A = A∗, A is Hermitian,
• A = −A∗, A is skew-Hermitian,
• A−1 = A∗, A is unitary,
• AA∗ = A∗A, A is normal.

Definition 3.2. Let λ ∈ K and A ∈Mn(K). If λ satisfies the following equation

(3.3) Ax = λx,

then λ is called the left eigenvalue of A for some non-zero x ∈Mn,1(K). The set of
the left eigenvalues of A is called the left spectrum of A.

Note that we can similarly define the right eigenvalue (Ax = xλ, λ ∈ K) and the
right spectrum of A because of the noncommutativity.

Example 3.3. (i) For the hybrid matrix A ∈M2(K),

A =

[
0 ε
ε 0

]
{0, ε,−ε} is the subset of the intersection of the left and the right spectrums of A.

(ii) For the hybrid matrix B ∈M2(K),

B =

[
0 h
−h 0

]
some of the left eigenvalues of B are {∓(i+ ε)} but none of them is the element of
the right spectrum of B. Similarly, some of right eigenvalues of B are {∓i} but not
the left eigenvalues of B.

The theorems below list several properties of hybrid matrices. The first theorem
show the properties which are generally correct, therefore, we construct an example
for an explicit proof. On the other hand, the direct proof method can be used for
the consecutive theorem.

Theorem 3.4. If A ∈Mm,n(K) and B ∈Mn,s(K), then the properties listed below
are true in general.

i.
(
A
)−1 6= (A−1),

ii.
(
AT
)−1 6=

(
A−1

)T
,
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iii. AB 6= BA,
iv. AB 6= B A,

v. (AB)
T 6= BTAT .

Example 3.5. Let the two hybrid matrices be A =

[
i ε
0 h

]
and B =

[
ε 0
0 0

]
.

We obtain the following:

i.
(
A
)−1

=

[
i 1− h
0 −h

]
6=
[
i −1− h
0 −h

]
= (A−1),

ii.
(
AT
)−1

=

[
−i 0

1 + h h

]
6=
[

−i 0
−1 + h h

]
=
(
A−1

)T
,

iii. AB =

[
1− h 0

0 0

]
6=
[

1 + h 0
0 0

]
= BA

iv. AB =

[
1 + h 0

0 0

]
6=
[

1− h 0
0 0

]
= B A,

v. (AB)
T

=

[
1− h 0

0 0

]
6=
[

1 + h 0
0 0

]
= BTAT .

Remark 3.6. The sufficient condition for the existence of the third case of theorem
4 occur with the invertible matrices. Moreover, if AB = I for any A = A1 + A2h,
B = B1 +B2h ∈Mn(K), this provides BA = I. From the hypothesis we get

(3.4) A1B1 +A2B2 +
(
A1B2 +A2B1

)
h = In

and (3.3) is equal to the following matrix product

(3.5)

[
A1 A2

A2 A1

] [
B1 B2

B2 B1

]
=

[
In 0
0 In

]
which yields BA = I since the left hand side of (3.4) is the product of 2n × 2n
complex matrices and the hypothesis is true for the complex matrices.

Theorem 3.7. If A ∈ Mm,n(K), B ∈ Mn,s(K) and X ∈ K, then the properties
listed below are true.
i.
(
A
)T

= (AT ),

ii. (A) =
(
AT
)T

= (A∗)
∗

= A,

iii. (XA)
∗

= A∗X,
iv. (A+B)

∗
= A∗ +B∗,

v. (AB)
∗

= B∗A∗,
vi. (AB)−1 = B−1A−1 if A and B are invertible,

vii. (A∗)
−1

=
(
A−1

)∗
if A invertible.

Proof. The proof of the first four properties and (vi) can be easily shown with using
the properties of complex matrix theory and Theorem 2 in the previous section.
Let us prove (v) with A = A1 +A2h and B = B1 +B2h, where A1, A2, B1 and B2

are process-compatible complex matrices, then we have

(AB)
∗

=
[
A1B1 +A2B2 +

(
A1B2 +A2B1

)
h
]∗

=
[
A1B1 +A2B2

]∗ − [A1B2 +A2B1

]T
h

= (A1B1)
∗

+
(
A2B2

)∗ − (A1B2)
T
h−

(
A2B1

)T
h

= B∗
1A

∗
1 +

(
B2

)∗
A∗

2 −BT2 A1h−
(
B1

)T
AT2 h

= B∗A∗.
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As a consequence of the fifth property, we can obtain the case (vii). �

4. Complex Matrix Equivalence For Hybrid Matrices

The linear map ψX : K→ K defined in the second section gives us the oppor-
tunity to examine the properties of hybrid numbers over 2 × 2 complex matrices.
Since the hybrid multiplication is noncommutative, there are also limitations in
questioning the linear algebra over hybrid matrices. In this section, our aim is to
turn a hybrid matrix into a complex matrix to use the several properties of linear
algebra over the complex field.

In this way, we define a map, Ψn, that is between Mn(K) and M2n(C) , such as

Ψn(A) =

[
A1 A2

A2 A1

]
where A = A1 +A2h ∈ Mn(K) and A1, A2 ∈Mn(C).

Notice that Ψn is a continuous, injective ring homomorphism and described with
respect to the linear map ψX . For n = 1, we can have the corresponding complex
matrix of a hybrid number. We call that Ψn(A) is the adjoint matrix of A ∈Mn(K),

and denote by Ã ∈M2n(C).

Example 4.1. Let A =

[
1 + ε i+ ε+ h
1 + h 1

]
be a hybrid matrix. Then we can

rewrite it by using the C−types of the components as in following form:

(4.1) A =

[
1− i 0

1 1

]
+

[
i 1 + i
1 0

]
h.

Thus the conjugate matrix of A is

(4.2) Ã =


1− i 0 i 1 + i

1 1 1 0
−i 1− i 1 + i 0
1 0 1 1

 .
The following theorem summarizes the properties of adjoint matrices.

Theorem 4.2. Let A = A1 + A2h, B = B1 + B2h ∈ Mn(K) and their adjoint

matrices be Ã, B̃ ∈Mn(C), then the followings are true.

i. If A = In, then Ã = I2n,

ii. Ã+B = Ã+ B̃,

iii.Ã B = Ã B̃,

iv. Ã−1 =
(
Ã
)−1

if A−1 exists,

v.
(
Ã
)T

= (̃AT ) if A2 ∈Mn(R),

vi.
(̃
A
)

=
(
Ã
)

if A2 is a pure complex matrix,

vii. (̃A∗) =
(
Ã
)∗

if A ∈Mn(C).

Proof. Truth of (i) and (ii) are clear. Let us prove (iii). The adjoint matrices of A
and B are

(4.3) Ã =

[
A1 A2

A2 A1

]
and B̃ =

[
B1 B2

B2 B1

]
.
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Multiplying the adjoints, we obtain the complex matrix

(4.4) Ã B̃ =

 A1B1 +A2B2 A1B2 +A2B1

A1 B2 +A2B1 A1 B1 +A2B2

 .
Since the hybrid matrix form of (4.4) is

A1B1 +A2B2 +
(
A1B2 +A2B1

)
h(4.5)

or (A1 +A2h) (B1 +B2h)

then we have Ã B = Ã B̃.
Applying the third property for the matrices A and A−1 then we get (iv), fur-

thermore, the properties given by Theorem 5 yields the rest. �

The fourth property of the previous theorem sets out that the image under Ψn

of an invertible hybrid matrix is an invertible complex matrix. Hence we can talk
about the determinant of a hybrid matrix by the combination of det and Ψn, then
we can conclude the following.

Definition 4.3. Let A ∈Mn(K) and Ã ∈M2n(C) be the adjoint matrix of A. The

co-determinant of A is the complex determinant of Ã, denoted by |A|c.

Theorem 4.4. Let A ∈Mn(K). The following are equivalent:
i. A is invertible,
ii. Ax = 0 has a unique solution, x = 0,
iii. The left (or right) eigenvalues of A do not vanish,

iv. Ã is invertible.

Proof. (i⇒ ii) This is a trivial outcome.
(ii⇐⇒ iii) Assume that A has zero eigenvalue. Then the equation (3.3) satisfies,

such as Ax = 0, for some non-zero values which is a contradiction.
(iii⇒ iv) Consider the second case instead of (iii), if Ax = 0 for x = x1 +x2h ∈

Mn,1(K) then we have

A1x1 +A2x2 + (A1x2 +A2x1)h = 0 or

A1x1 +A2x2 = 0 and A2x1 +A1x2 = 0.

This means that the determinant of

[
A1 A2

A2 A1

]
is different from zero due to the

unique solution.
(iv⇒ i) If Ã is invertible, then there exist a complex matrix such that[

Z1 Z2

Z3 Z4

] [
A1 A2

A2 A1

]
= I2n.

It follows that

Z1A1 + Z2A2 = I and Z1A2 + Z2A1 = 0

which yields
(
Z1A1 + Z2A2

)
+
(
Z1A2 + Z2A1

)
h = I, then the hybrid matrix Z =

Z1 + Z2h is the inverse of A from Remark 2 . �

Note that the last case of the previous equivalence theorem implies that a hybrid
matrix is invertible if and only if its co-determinant must be different from zero.
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Thus we can state the concept of general linear, special linear, and symplectic
groups to the hybrid numbers, respectively, as follows:

GLn(K) = {A ∈Mn(K) | |A|c 6= 0} ,
SLn(K) = {A ∈Mn(K) | |A|c = 1} ,(4.6)

SPn(K) =
{
A ∈ GLn(K) | A−1 = A∗} .

Furthermore, since any closed subgroup of GLn(C) is a Lie group, these groups are
Lie groups. Then we can obtain the Lie algebras along with the bracket operation
over matrices such as [A,B] = AB − BA, A,B ∈ Mn(K). For example, the Lie
algebra of GLn(K) is the set of all n× n matrices with entries in K, that is

(4.7) gln(K) = Mn(K)

and the Lie algebra of SPn(K) is the set

(4.8) spn(K) = {A ∈Mn(K) | A+A∗ = 0}
and finally the Lie algebra of SLn(K) is the set

(4.9) sln(K) =
{
A ∈Mn(K) | tr

(
Ã
)

= 0
}

where it can be easily seen that tr
(
Ã
)

= 0 if and only if scalar part of tr(A) is
zero.

Theorem 4.5. Let A,B ∈Mn(K), the co-determinants satisfy the following prop-
erties,
i. |A B|c = |A|c |B|c ,
ii.
∣∣A−1

∣∣
c

= |A|−1
c , if A ∈ GLn(K),

iii. |P A Q|c = |A|c , for P,Q ∈ SLn(K),
iv. Cayley-Hamilton Theorem for hybrid matrices: Let A be a square hybrid ma-

trix and the characteristic polynomial of A be PA(λ) =
∣∣∣λI2n − Ã∣∣∣ , λ ∈ C, then

PA(A) = 0.

Proof. (i) . From the third property of theorem 6, we get |A B|c =
∣∣∣Ã B

∣∣∣ = |Ã
B̃| = |A|c |B|c ,
(ii). From the fourth property of theorem 6, if A ∈ GLn(K) then we have

∣∣A−1
∣∣
c

=∣∣∣Ã−1
∣∣∣ =

∣∣∣∣(Ã)−1
∣∣∣∣ = |A|−1

c ,

(iii). If the hybrid P,Q ∈ SLn(K) which means they are elementary matrices and
|P |c = |Q|c = 1, this completes the proof.

(iv) . The coefficients of the polynomial PA(λ) are real [26]. Then we have p̃(A) =

PA(Ã) for any real coefficient polynomial p. On the other hand, Cayley-Hamilton

theorem for the complex matrices proves that PA(Ã) = 0 for Ã ∈ M2n(C). This

implies that p̃(A) = 0, namely PA(A) = 0. �

5. Conclusion

In number theory, different studies are available in which the complex, dual and
hyperbolic numbers systems are expressed in the one sentence [3,13]. One of them
has arisen recently and called the hybrid number. When the interdisciplinary ap-
plications of the constituent number systems are observed, we obviously see that
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the most effective results are obtained by their matrices. From a technique point of
view, matrices can be taken into account as functional tools to organize the accumu-
lated knowledge, accelerate the calculations and finally formulate the conclusions
in various developed mathematical frameworks. The result of these motivations,
the satisfactory concept of this study rises as the necessity of hybrid matrices.

The present paper is concerned with the linear algebra over hybrid matrices.
However, we have to face the limitations on algebraic properties of the hybrid
matrices by the fact that the hybrid multiplication is noncommutative. In this
way, we firstly use an alternative form for hybrid numbers called the C−type and
obtain the subset of 2× 2 complex matrices, K which represents the matrices cor-
responding to hybrid numbers by the transformation ψX . After describing and
investigating the basic properties of hybrid matrices, we are aware of the need to
rearrange them. Therefore, we define a continuous, injective ring homomorphism
Ψn between Mn(K) and M2n(C) by taking advantage of the effect of the transfor-
mation ψX on the hybrid numbers. Thus the adjoint matrices of hybrid matrices
are obtained over complex numbers, this gives us the right to implement the prop-
erties of linear algebra over the complex field for hybrid matrices. Since Ψn turns
an invertible hybrid matrix to an invertible complex matrix, we could have the one
of the important result that is the calculation of determinant of hybrid matrices.
This leads to describe general linear, special linear, and symplectic groups of the
hybrid numbers and their corresponding Lie algebras, respectively. Finally, we state
Cayley-Hamilton theorem for hybrid matrices.
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0000-0001-7179-0490

Abstract. In 2013, Das et al. defined the monogenic semi-group graphs [10].

And, various topological indices of the monogenic semi-group graphs have been
calculated so far [3, 21]. The aim of this study is to continue to create formulas

for the topological indices of these special graphs. In this study, we give exact

formulae for various the leap Zagreb indices of this special algebraic graph
obtained from monogenic semigroups.

1. Introduction and Preliminaries

Let F be a simple connected graph with vertex set V (F ) and edge set E(F ),
where V (F ) = {ai : 1 < i < n}. In graph F , the degree of a vertex ai is defined
as the number of vertices that incident to the vertex ai and is denoted by dF (ai).
The distance between any two vertices ai and aj in a graph F , denoted as d(ai, aj),
is the length of the shortest path between these vertices. The eccentricity of the
vertex ai is the maximum distance from ai to any vertex. That is, ecc(ai) =
max{d(ai, aj) : aj ∈ V (F )}.

In a graph F , the k-distance degree of a vertex ai, denoted as dk(ai/F ), is
defined as the number of vertices at a distance of k from ai [25]. Clearly, d1(ai/F ) =
dF (ai).

Topological indices are important tools used in the study of chemical and phys-
ical properties of molecules, especially in QSAR and QSPR researchs [12]. Many
publications have been made about the Zagreb indices (especially the first Zagreb
index (M1(F ))[14] and the second Zagreb index (M2(F ))[15]), which is one of the
oldest topological indices. These indices are defined as follows :

M1(F ) =
∑

ai∈V (F)

d2
F (ai) and M2(F ) =

∑
aiaj∈E(F)

dF (ai)dF (aj).

Inspired by Zagreb indices, the leap Zagreb indices were defined by Naji et al. in
2017 [22]. For more information on the leap Zagreb indices, we prefer references
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Key words and phrases. Topological indices, Leap Zagreb indices, Monogenic semigroup
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[7, 9, 24, 28]. The first leap Zagreb index, the second leap Zagreb index and the
third leap Zagreb index are defined as follows:

LM1(F ) =
∑

ai∈V (F)

d2
2(ai)

LM2(F ) =
∑

aiaj∈E(F)

d2(ai)d2(aj)

LM3(F ) =
∑

aiaj∈E(F)

(d2(ai) + d2(aj)).

The F-leap index of a graph F is defined by Kulli [17] as follows:

LF (F ) =
∑

ai∈V (F)

d3
2(ai).

The leap eccentric connectivity index (LEC) is defined as follows in an unpublished
work by Pawar et al. [23, 16, 18, 26, 27][1]

LEC(F ) =
∑

ai∈V (F)

d2(ai)ecc(ai).

For more information on graph theory, we prefer references [13].
The concept of a zero-divisor graph defined on a commutative ring R was first

introduced by Beck [8] in 1988. In his study, he presented results on the coloring of
this graph. Anderson and Livingston [5] continued this study, and their definition
of zero-divisor graphs has been widely accepted. Anderson and Livingston defined
the zero-divisor graph as follows:

Let R be a commutative ring with identity. Let Z (R) denote its set of zero-
divisors. The vertex set of the zero-divisor graph Γ(R) consists of the elements of
Z (R). Two distinct vertices x and y are adjacent if and only if their product is
zero.

The concept of zero-divisor graphs defined on a commutative ring has been
generalized by Demeyer [11] et al. to define zero-divisor graphs of a commutative
semigroups. Many studies have been conducted and are still ongoing regarding the
concept of zero-divisor graphs constructed on various algebraic structures, such as
Cayley graphs, total graphs, annihilator graphs, power graphs, etc. [4, 6]

In this direction, Das et al. [10] introduced a new graph obtained from multi-
plicative semigroups in 2013. They defined this algebraic graph as follows:

Definition 1.1. [10] Let SA = {a, a2, a3, . . . , an} be a monogenic semigroup (with
zero). The vertex set of this graph consists of the elements of SA , except for zero.
Any two vertices ai and aj are adjacent if and only if i + j ≥ n.

They investigated some graph parameters of this graph in [3]. For more proper-
ties of the monogenic semigroup graphs, we can refer to [1, 2, 19, 20]. In this paper,
we present exact formulas for the leap Zagreb indices, F-leap Zagreb index, and
leap eccentric connectivity index of monogenic semigroup graphs with given order.

2. Leap Zagreb Indices of Monogenic Semigroup Graphs

In this section, we will give our basic results. First of all, let’s give some lemmas
that we will use in the proofs of theorems. Here and later, we will prefer the
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notations d1(ai) and d2(ai) over d1(ai/Γ(SA )) and d2(ai/Γ(SA )) for 1 ≤ i ≤ n,
respectively.

The degree sequence of the monogenic semigroup graph is given in the following
lemma.

Lemma 2.1. [10] Let SA = {a, a2, a3, . . . , an} be a monogenic semigroup (with
zero). Then, the degree sequence of the monogenic semigroup graph is given as

d1(a) = 1, d1(a2) = 2, · · · , d1(ab
n
2 c) =

⌊n
2

⌋
, d1(ab

n
2 c+1) =

⌊n
2

⌋
,

d1(ab
n
2 c+2) =

⌊n
2

⌋
+ 1, · · · , d1(an−1) = n− 2, d1(an) = n− 1.


Lemma 2.2. [10] Let SA = {a, a2, a3, . . . , an} be a monogenic semigroup (with
zero). Then

diam(Γ(SA )) = 2.

Lemma 2.3. [22] Let G be a connected graph with n vertices. Then for any vertex
v ∈ V (G )

d2(v) ≤ n− 1− d1(v).

Equality holds if and only if G has diameter at most two.

With the help of Lemma 2.1, Lemma 2.2 and Lemma 2.3 we give the sequence
of 2-distance degrees of vertices in Γ(SA ) in the following lemma.

Lemma 2.4. Let SA = {a, a2, a3, . . . , an} be a monogenic semigroup (with zero).
Then, the 2-distance degree sequence of the monogenic semigroup graphs is given
as

d2(a) = n− 2, d2(a2) = n− 3, · · · , d2(ab
n
2 c) = n− 1−

⌊n
2

⌋
, d2(ab

n
2 c+1) = n− 1−

⌊n
2

⌋
,

d2(ab
n
2 c+2) = n− 2−

⌊n
2

⌋
, · · · , d2(an−1) = 1, d2(an) = 0.


Let us give the well-known equation that will appear here in the proofs of our

theorems with the following lemma.

Lemma 2.5. For the natural number n, we have⌊n
2

⌋
=

{
n
2 , n even
n−1

2 , n odd.
(2.1)

We are now ready to calculate the first leap zagreb index of monogenic semigroup
graphs.

Theorem 2.6. Let Γ(SA ) be monogenic semigroup graphs. Then, we have

LM1(Γ(SA )) =

{
4n3−15n2+14n

12 , n even
4n3−15n2+20n−9

12 , n odd.
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Proof. From definition of the first leap Zagreb index and by Lemma 2.4, we have

LM1(Γ(SA )) =
∑

ai∈V (Γ(SM ))

d2
2(ai)

=d2
2(a) + d2

2(a2) + · · ·+ d2
2(ab

n
2 c) + d2

2(ab
n
2 c + 1) + d2

2(ab
n
2 c+2)+

+ · · ·+ d2
2(an−1) + d2

2(an)

=(n− 2)2 + (n− 3)2 + ... +
(
n− 1−

⌊n
2

⌋)2

+
(
n− 1−

⌊n
2

⌋)2

+
(
n− 2−

⌊n
2

⌋)2

+ · · ·+ 22 + 12 + 02

=
(n− 2)(n− 1)(2n− 3)

6
+ (n− 1−

⌊n
2

⌋
)2(2.2)

There are two possible situations from here. With (2.1) we get the desired result.
Thus, the proof is completed. �

With the following theorem, we give the exact formula for the second leap Zagreb
index of monogenic semigroup graphs.

Theorem 2.7. Let Γ(SA ) be monogenic semigroup graphs. Then, we have

LM2(Γ(SA )) =

{
n4−4n3+2n2+4n−3

48 , n odd
n4−4n3+2n2+4n

48 , n even.

Proof. There are two possible cases for the values n is odd or even.
Let n be odd. In this case, from definition of the second leap Zagreb index and

by Lemma 2.4, we have

LM2(Γ(SA )) =
∑

aiaj∈E(Γ(SM ))

d2(ai)d2(aj)

=d2(an)d2(a) + d2(an)d2(a2) + · · ·+ d2(an)d2(an−2) + d2(an)d2(an−1)+

+d2(an−1)d2(a2) + · · ·+ d2(an−1)d2(an−3) + d2(an−1)d2(an−2)+

+ · · ·+

+d2(a
n+1
2 +2)d2(a

n+1
2 −2) + d2(a

n+1
2 +2)d2(a

n+1
2 −1) + d2(a

n+1
2 +2)d2(a

n+1
2 )+

+d2(a
n+1
2 +2)d2(a

n+1
2 +1)+

+d2(a
n+1
2 +1)d2(a

n+1
2 −1) + d2(a

n+1
2 +1)d2(a

n+1
2 )

Consequently, the second leap Zagreb index of Γ(SA ) is written as given in the
following

LM2(Γ(SA )) = LM2,n + LM2,n−1 + · · ·+ LM2,n+1
2 +2 + LM2,n+1

2 +1

When calculating these operations, we use
⌊
n
2

⌋
= n−1

2 from (2.2) for n odd. Then,
we have

LM2,n =d2(an)d2(a) + d2(an)d2(a2) + · · ·+ d2(an)d2(an−2) + d2(an)d2(an−1)

=0.(n− 2) + 0(n− 3) + ... + 0.2 + 0.1 + 0(n− 1− n− 1

2
)

=0.
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In the case of applying operations similar to LM2,n−1, LM2,n−2, · · · , LM2,n+1
2 +2

and LM2,n+1
2 +1; we get

LM2,n−1 =d2(an−1)d2(a2) + · · ·+ d2(an−1)d2(an−3) + d2(an−1)d2(an−2)

=1.(n− 3) + 1.(n− 4) + · · ·+ 1(n− 1− n− 1

2
) + · · ·+ 1.3 + 1.2+

+ 1(n− 1− n− 1

2
)

=

n−3∑
q=2

1.q + 1.
n− 1

2
,

LM2,n−2 =d2(an−2)d2(a3) + · · ·+ d2(an−2)d2(an−2) + d2(an−2)d2(an−3)

=2.(n− 4) + 2.(n− 5) + · · ·+ 2.(n− 1− n− 1

2
) + · · ·+ 2.4 + 2.3+

+ 2.(n− 1− n− 1

2
)

=

n−4∑
q=3

2.q + 2.
n− 1

2
,

...

LM2,n+1
2 +2 =d2(a

n+1
2 +2)d2(a

n+1
2 −2) + d2(a

n+1
2 +2)d2(a

n+1
2 −1) + d2(a

n+1
2 +2)d2(a

n+1
2 )+

+d2(a
n+1
2 +2)d2(a

n+1
2 +1)

=
n− 5

2
.
n + 1

2
+

n− 5

2
.
n− 1

2
+

n− 5

2
.
n− 3

2
+

n− 5

2
.(n− 1− n− 1

2
)

=

n+1
2∑

q= n−5
2

n− 5

2
.q +

n− 5

2
.
n− 1

2
,

and finally

LM2,n+1
2 +1 =d2(a

n+1
2 +1)d2(a

n+1
2 −1) + d2(a

n+1
2 +1)d2(a

n+1
2 )

=
n− 3

2
.
n− 1

2
+

n− 3

2
.
n− 1

2

=

n−1
2∑

q= n−1
2

n− 3

2
.q +

n− 3

2
.
n− 1

2
,

Hence

LM2,n + LM2,n−1 + · · ·+ LM2,n+1
2 +2 + LM2,n+1

2 +1 =

n−1
2 −1∑
i=1

n−2−r∑
q=r+1

r.q +

n−1
2 −1∑
s=1

s.(
n− 1

2
).

If similar operations are performed in case n is even, the following sum is obtained

LM2,n + LM2,n−1 + · · ·+ LM2,n2 +2 + LM2,n2 +1 =

n
2−1∑
r=1

n−2−r∑
q=r+1

r.q +

n
2−1∑
s=1

s.(
n

2
− 1)
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So as desired. �

Theorem 2.8. Let Γ(SA ) be monogenic semigroup graphs. Then, we have

LM3(Γ(SA )) =

{
2n3−3n2−2n+3

12 , n odd
2n3−3n2−2n

12 , n even.

Proof. There are two possible cases for the values n is odd or even.
Let n be odd. In this case, from definition of the third leap Zagreb index and

by Lemma 2.4, we have

LM3(Γ(SA )) =
∑

aiaj∈E(Γ(SA ))

[d2(ai) + d2(aj)]

=(d2(an) + d2(a)) + (d2(an) + d2(a2)) + · · ·+ (d2(an) + d2(an−2))

+(d2(an) + d2(an−1)) + (d2(an−1) + d2(a2)) + · · ·+
+(d2(an−1) + d2(an−3)) + (d2(an−1) + d2(an−2))+

+ · · ·+

+(d2(a
n+1
2 +2) + d2(a

n+1
2 −2)) + (d2(a

n+1
2 +2) + d2(a

n+1
2 −1))+

+(d2(a
n+1
2 +2) + d2(a

n+1
2 )) + (d2(a

n+1
2 +2) + d2(a

n+1
2 +1))+

+(d2(a
n+1
2 +1) + d2(a

n+1
2 −1)) + (d2(a

n+1
2 +1) + d2(a

n+1
2 )).

Consequently, the third leap Zagreb index of Γ(SA ) is written as given in the
following

LM3(Γ(SA )) = LM3,n + LM3,n−1 + LM3,n−2 + · · ·+ LM3,n+1
2 +2 + LM3,n+1

2 +1

When calculating these operations, we use
⌊
n
2

⌋
= n−1

2 from (2.2) for n odd. Then,
we have

LM3,n =(d2(an) + d2(a)) + (d2(an) + d2(a2)) + · · ·+ (d2(an) + d2(an−2))

+ (d2(an) + d2(an−1))

=(0 + n− 2) + (0 + n− 3) + · · ·+ (0 + 2) + (0 + 1) + (0 + (n− 1− n− 1

2
))

=

n−2∑
q=1

(0 + q) + (0 +
n− 1

2
).

In the case of applying operations similar to LM3,n−1,LM3,n−2, · · · , LM3,n+1
2 +2

and LM3,n+1
2 +1; we get

LM3,n−1 =(d2(an−1) + d2(a2)) + · · ·+ (d2(an−1) + d2(an−3)) + (d2(an−1) + d2(an−2))

=(1 + n− 3) + (1 + n− 4) + · · ·+ (1 + (n− 1− n− 1

2
)) + · · ·+ (1 + 3)+

+(1 + 2) + (1 + (n− 1− n− 1

2
))

=

n−3∑
q=2

(1 + q) + (1 +
n− 1

2
),
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LM3,n−2 =(d2(an−2) + d2(a3)) + · · ·+ (d2(an−2) + d2(an−2)) + (d2(an−2) + d2(an−3))

=(2 + (n− 4)) + (2 + (n− 5)) + · · ·+ (2 + (n− 1− n− 1

2
)) + · · ·+ (2 + 4)+

+ (2 + 3) + (2 + (n− 1− n− 1

2
))

=

n−4∑
q=3

(2 + q) + (2 +
n− 1

2
),

...

LM3,n+1
2 +2 =(d2(a

n+1
2 +2) + d2(a

n+1
2 −2)) + (d2(a

n+1
2 +2) + d2(a

n+1
2 −1)) + (d2(a

n+1
2 +2) + d2(a

n+1
2 ))+

+(d2(a
n+1
2 +2) + d2(a

n+1
2 +1))

=(
n− 5

2
+

n + 1

2
) + (

n− 5

2
+

n− 1

2
) + (

n− 5

2
+

n− 1

2
) + (

n− 5

2
+

n− 3

2
)

=

n+1
2∑

q= n−5
2

(
n− 5

2
+ q) + (

n− 5

2
+

n− 1

2
),

and finally

LM3,n+1
2 +1 =(d2(a

n+1
2 +1) + d2(a

n+1
2 −1)) + (d2(a

n+1
2 +1)d2(a

n+1
2 ))

=(
n− 3

2
+

n− 1

2
) + (

n− 3

2
+

n− 1

2
)

=

n−1
2∑

q= n−1
2

(
n− 3

2
+ q) + (

n− 3

2
+

n− 1

2
),

Hence

LM3,n + LM3,n−1 + · · ·+ LM3,n+1
2 +2 + LM3,n+1

2 +1 =

n−1
2 −1∑
r=0

n−2−r∑
q=r+1

(r + q) +

n−1
2 −1∑
s=0

(s +
n− 1

2
)

If similar operations are performed in case n is even, the following sum is obtained

LM3,n + LM3,n−1 + · · ·+ LM3,n2 +2 + LM3,n2 +1 =

n
2−2∑
r=0

n−2−r∑
q=r+1

(r + q) +

n
2−1∑
s=0

(s +
n

2
− 1)

So as desired. �

Theorem 2.9. Let Γ(SA ) be monogenic semigroup graphs. Then, we have

LF (Γ(SA )) =

{
2n4−11n3+20n2−12n

8 , n even
2n4−11n3+23n2−21n+7

8 , n odd.
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Proof. From definition of the first leap Zagreb index and by Lemma 2.4, we have

LF (Γ(SA )) =
∑

ai∈V (Γ(SA ))

d3
2(ai)

=d3
2(a) + d3

2(a2) + · · ·+ d3
2(ab

n
2 c) + d3

2(ab
n
2 c + 1) + d3

2(ab
n
2 c+2)+

+ · · ·+ d3
2(an−1) + d3

2(an)

=(n− 2)3 + (n− 3)3 + ... +
(
n− 1−

⌊n
2

⌋)3

+
(
n− 1−

⌊n
2

⌋)3

+
(
n− 2−

⌊n
2

⌋)3

+ · · ·+ 23 + 13 + 03

=

(
(n− 2)(n− 1)

2

)2

+
(
n− 1−

⌊n
2

⌋)3

(2.3)

There are two possible situations from here. With (2.1) we get the desired result.
Thus, the proof is completed. �

Theorem 2.10. Let Γ(SA ) be monogenic semigroup graphs. Then, we have

LEC(Γ(SA )) =

{
n2 − 2n, n odd
n2 − 2n + 1, n even.

Proof. By definition of the monogenic semigroup graph, we see that ecc(an) = 1
and the eccentries of the other vertices are two the except of the vertex an. Thus,
from definition of the leap eccentric connectivity index and Lemma 2.4, we have

LEC(Γ(SA )) =
∑

ai∈V (Γ(SA ))

d2(ai).ecc(ai)

=d2(a)ecc(a) + d2(a2)ecc(a2) + · · ·+ d2(ab
n
2 c)ecc((ab

n
2 c))

+d2(ab
n
2 c+1)ecc(ab

n
2 c+1) + d2(ab

n
2 c+2)ecc(ab

n
2 c+2)+

+ · · ·+ d2(an−1)ecc(an−1) + d2(an)ecc(an)

=(n− 2).2 + (n− 3).2 + ... +
(
n− 1−

⌊n
2

⌋)
.2 +

(
n− 1−

⌊n
2

⌋)
.2

+
(
n− 2−

⌊n
2

⌋)
.2 + · · ·+ 2.2 + 1.2 + 0.1

=(n− 2)(n− 1) + (n− 1−
⌊n

2

⌋
).2(2.4)

There are two possible situations from here. With (2.1) we get the desired result.
Thus, the proof is completed. �
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Figure 1. The graph of Γ(SA )

Example 2.11. Let us consider the monogenic semigroup graphs Γ(SA ) with nine
vertices as Figure 1. Then we get

• LM1(Γ(SA )) = 4.93−15.92+20.9−9
12 = 156 (by Theorem 2.5)

• LM2(Γ(SA )) = 94−4.93+2.92+4.9−3
48 = 80 (by Theorem 2.6)

• LM3(Γ(SA )) = 2.93−3.92−2.9+3
12 = 25 (by Theorem 2.7)

• LF (Γ(SA )) = 2.94−11.93+23.92−21.9+7
8 = 848 (by Theorem 2.8)

• LEC(Γ(SA )) = 92 − 2.9 = 63 (by Theorem 2.9)

a

a2

a3

a4

a5

a6

a7

a8

a9

a10

Figure 2. The graph of Γ(SA )

Example 2.12. Let us consider the monogenic semigroup graphs Γ(SA ) with ten
vertices as Figure 2. Then we get

• LM1(Γ(SA )) = 4.103−15.102+14.10
12 = 220 (by Theorem 2.5)
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• LM2(Γ(SA )) = 104−4.103+2.102+4.10
48 = 130 (by Theorem 2.6)

• LM3(Γ(SA )) = 2.103−3.102−2.10
12 = 140 (by Theorem 2.7)

• LF (Γ(SA )) = 2.104−11.103+20.102−12.10
8 = 1360 (by Theorem 2.8)

• LEC(Γ(SA )) = 102 − 2.10 + 1 = 81 (by Theorem 2.9)

3. Conclusion

Topological indices are important tools that are widely used in revealing the
chemical and physical properties of molecules, especially in QSAR and QSPR re-
search. Leap indices have an important place among topological indices. In this
study, we calculated the leap indices of monogenic semigroup graphs in terms of
number of the vertices.
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[19] Y. Nacaroğlu, On Join Operation of Graphs by Obtained Monogenic Semigroups, Turkish

Journal of Mathematics and Computer Science, Vol.13,N.1, pp.57-62 (2021).
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Abstract. In this paper, we employ group rings and some known results on
group codes to study reversible group DNA codes. We define and study re-

versible cyclic DNA codes from a group ring point of view and we also introduce

the notion for self-reciprocal group ring elements. Moreover, we search for re-
versible group DNA codes with the use of a virus optimisation algorithm. We

obtain many good DNA codes that satisfy the Hamming distance, the reverse,

the reverse-complement and the fixed GC-content constraints.

The interest in studying and designing DNA codes has been started with Adle-
man when he solved a computationally difficult mathematical problem by intro-
ducing an algorithm using DNA strands and molecular biology tools [1] and it is
still an ongoing research area. Some known methods for designing DNA codes that
satisfy certain conditions include the study of reversible codes [15], reversible self-
dual codes over GF (4) [9], the study of cyclic and extended cyclic constructions or
the study of linear constructions [7].

Recently in [4], linear codes derived from group ring elements are considered
to construct reversible DNA codes that satisfy the Hamming distance constraint.
This suggests that the study of group rings is an interesting research direction that
may have some useful applications to DNA coding. In this work, we employ group
rings and a matrix construction given in [4] to study reversible cyclic DNA codes.
We also use group rings to define a self-reciprocal group ring element. Moreover,
we construct reversible group codes of different lengths over the finite commutative
Frobenius ring R, that satisfy the Hamming distance, the reverse, the reverse-
complement and the fixed GC-content constraints.

The paper is organised as follows. In Section 2, we give the basic definitions
and results on linear codes, DNA codes, group rings, group codes and reversible
group codes. In Section 3, we define and study reversible cyclic DNA codes from a
group ring point of view. In this section, we also define a self-reciprocal group ring
element. In Section 4, we present two generator matrices for reversible group codes
which we then use to search for DNA codes that satisfy the Hamming distance,
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the reverse, the reverse-complement and the fixed GC-content constraints. In our
search scheme, we employ a virus optimisation algorithm which allows us to obtain
numerical results in a reasonable quick time. We finish with concluding remarks
and directions for possible future research.

1. Preliminaries

1.1. Linear Codes and DNA Codes. In this section, we recall basic definitions
on linear codes, DNA codes and DNA constraints.

A linear code of length n over F4 is a subspace of Fn4 , and we also call an element
of a linear code a codeword. The Hamming distance d(x,y) between two codewords
is the number of coordinates in which x and y are distinct. The minimum Hamming
distance dH of a linear code C is defined as

min{dH(x,y) | x 6= y, ∀ x,y ∈ C}.

Let SD4
= {A,C,G, T} represents the four nucleotides in DNA, which are ade-

nine (A), cytosine (C), guanine (G) and thymine (T) and let x = (x1, x2, . . . , xn),
where xi ∈ SD4

. A DNA code D of length n is defined as a set of codewords
(x1, x2, . . . , xn) where xi ∈ SD4 = {A, T,C,G}. We use a hat to denote the

Watson-Crick complement of a nucleotide, Â = T, T̂ = A, Ĉ = G and Ĝ = C. Let
x = (x1, x2, . . . , xn) ∈ SD4

, then xr = (xn, xn−1, . . . , x2, x1) xc = (xc1, x
c
2, . . . , x

c
n)

and xrc = (xcn, x
c
n−1, . . . , x

c
2, x

c
1) denote the reverse of a DNA codeword, the com-

plement of a DNA codeword and the reverse complement of a DNA codeword
respectively. In this paper, the fixed GC-content is simply half the length of the
DNA code D.

A good DNA code D of length n is defined as a set of codewords (x1, x2, . . . , xn)
where xi ∈ SD4

= {A, T,C,G}, such that D satisfies some or all of the following
constraints [2]:

(i) The Hamming distance constraint (HD):

min{dH(x,y) : ∀ x,y ∈ D and x 6= y}

(ii) The reverse constraint (RV):

min{dH(xr,y) : ∀ x,y ∈ D and xr 6= y }

(iii) The reverse-complement constraint (RC):

min{dH(xrc,y) : ∀ x,y ∈ D and xrc 6= y}

(iv) The fixed GC-content constraint (GC): The set of codewords with length
n, distance d and GC weight w, where w is the total number of Gs and Cs
present in the DNA strand:

wxDNA
= |{xi : xDNA = (xi), xi ∈ {C,G}}|.

A DNA code can be identified with a code over F4 = {0, 1, ω, ω2} by employing
the standard bijective correspondence between F4 and the DNA alphabet SD4 =
{A, T,C,G} given by

η : F4 → SD4
,

with η(0) = A, η(1) = T, η(ω) = C and η(ω2) = G. The same correspondence
has already been used in the literature, for example, please see [9]. We extend the
bijection η so that η(C) is regarded as a DNA code for some code C over F4.
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We denote the complete weight enumerator of a code C over F4 by

CWEC(a, b, c, d) =
∑
c∈C

an0(c)bn1(c)cnω(c)dnω2 (c),

where ns(c) denotes the number of occurrences of s in a codeword c. We identify
the complete weight enumerator of a DNA code D with that of a code C over F4,
where D = η(C). The GC-weight of a codeword c ∈ C is the sum of nω(c) and
nω2(c). Therefore, if we let

GCWC(a, b) = CWEC(a, a, b, b),

then GCWC(a, b) is the GC-weight enumerator of a code C, where the coefficient of
bi is the same as the number of codewords with GC-weight i.

Let AR4 (n, d) denote the maximum cardinality of a DNA code for a given distance
d and length n that satisfies the Hamming distance and reverse constraints. Let
ARC4 (n, d) be the maximum size of a DNA code of length n satisfying the HD and
RC constraints for a given d, AGC4 (n, d, w) be the maximum size of a DNA code of
length n satisfying the HD constraint for a given d with a constant GC-weight w,

and ARC,GC4 (n, d, w) the maximum size of a DNA code of length n satisfying the
HD and RC constraints for a given d with a constant GC-weight w. In [12], for an
even n, the following equality is given;

(1.1) ARC4 (n, d) = AR4 (n, d).

1.2. Group Rings and Group Codes. We shall now give the standard definition
of group rings. Let G be a finite group of order n and let R be a finite ring. Then
any element in RG is of the form v =

∑n
i=1 αgigi, αgi ∈ R, gi ∈ G. Addition in RG

is done by coordinate addition, namely

n∑
i=1

αgigi +

n∑
i=1

βigi =

n∑
i=1

(αgi + βi)gi.

The product of two elements in RG is given by(
n∑
i=1

αgigi

) n∑
j=1

βjgj

 =
∑
i,j

αgiβjgigj .

This gives that the coefficient of gk in the product is
∑
gigj=gk

αgiβj .

The following matrix construction was used to study group codes over Frobe-
nius rings in [6]. Let R be a finite commutative Frobenius ring and let G =
{g1, g2, . . . , gn} be a group of order n and let v =

∑n
i=1 αgi ∈ RG. Define the

matrix σ(v) ∈Mn(R) to be

(1.2) σ(v) =


αg−1

1 g1
αg−1

1 g2
αg−1

1 g3
. . . αg−1

1 gn

αg−1
2 g1

αg−1
2 g2

αg−1
2 g3

. . . αg−1
2 gn

...
...

...
...

...
αg−1

n g1
αg−1

n g2
αg−1

n g3
. . . αg−1

n gn

 .

We note that the elements g−1
1 , . . . , g−1

n are simply the elements of the group G
given in some order. This particular order is used because it aids in certain proofs
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and computations. In [6], the following code construction is given:

(1.3) C(v) = 〈σ(v)〉.
The code is formed by taking the row space of σ(v) over the ring R. Such codes
are refereed to as group codes or, for simplicity, G-codes. Moreover, in [6], it is
shown that this matrix construction of G-codes corresponds to an ideal in the group
ring RG and thus the resulting group code has the group G as a subgroup of its
automorphism group. Please see [6] for more details on group codes generated
from group rings. From now on, every time we refer to G-codes, we mean codes
constructed as given above.

1.3. Reversible Group Codes. Here, we recall an interesting result from [4] on
group codes. Namely, this result shows that for certain groups and for a specific
ordering of the group elements, one can construct G-codes that are reversible. We
first start with a definition from [4].

Definition 1.1. A code C is said to be reversible of index α if ai is a vector of length
α and cα = (a0,a1, . . . ,as−1) ∈ C implies that (cα)r = (as−1,as−2, . . . ,a1,a0) ∈ C.

Let G be a finite group of order n = 2l and let H = {e, h1, h2, . . . , h`−1} be a
subgroup of index 2 in G. Let β /∈ H be an element in G, with β−1 = β. We list
the elements of G = {g1, g2, . . . , gn} as follows:

(1.4) {e, h1, . . . , h`−1, βh`−1, βh`−2, βh2, βh1, β}.
The following result was proved in [4].

Theorem 1.2. Let R be a finite ring. Let G be a finite group of order n = 2`
and let H = {e, h1, h2, . . . , h`−1} be a subgroup of index 2 in G. Let β /∈ H be an
element in G with β−1 = β. List the elements of G as in (1.4), then any linear
G-code in Rn (a left ideal in RG) is a reversible code of index 1.

In [4], the authors make a connection between reversibleG-codes and DNA codes,
this is because reversibility is a desirable property for DNA codes.

1.4. Virus Optimization Algorithm. A new bio-inspired optimization tech-
nique called as virus optimization algorithm (VOA) is proposed in [5] for difficult
and complex mathematical and engineering problems. The VOA is a meta-heuristic
optimization technique based on population and it mimics the behavior of viruses
assaulting a living cell. In each replication step, the number of the viruses increases
then antivirus applied to virus population to avoid the plosive growing of the virus
population. Thus, the number of the virus in the population is controlled with help
of the antivirus. In the VOA, the viruses in the population are separated into two
groups as common and strong. In the initialization phase of the VOA, there are two
steps; parameter setting and the generation of initial viruses. Parameter setting
is a key for an effective search process in the search space. After the parameters
have been set, the initial virus population is randomly produced and the viruses are
classified. In the replication procedure, new viruses are produced by using strong
and common viruses in the initial population. When the new viruses are gener-
ated by the replication procedure, the corresponding objective function values are
evaluated. Then, the old and new viruses are then combined together. If the per-
formance of the virus population is not improved, the antivirus procedure is applied
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to the population and it is followed by the verification of the termination criterion.
If the termination criteria has not been met, the replication is repeated.For more
details on this approach see [10].

Figure 1. Flowchart of VOA

2. Reversible Group Codes and DNA Codes

In this section, we use the results from Section 1.3 to define and study reversible
cyclic DNA codes. We also define self-reciprocal group ring elements.

2.1. Reversible Cyclic DNA Codes as Ideal in Group Rings. Cyclic codes
have a canonical algebraic description as ideals in the polynomial ring R[x]/〈xn−1〉,
where R is a Frobenius ring and n is the length of the code. An alternate view of
cyclic codes is to see them as ideals in the group ring RCn where Cn is the cyclic
group of order n.

For a cyclic code C, there exists a relationship between reversible codes and
self-reciprocal polynomials. More precisely, in Theorem 1 in [13], the following
is proven. The cyclic code over Fq, generated by the monic polynomial g(x), is
reversible if and only if g(x) is self-reciprocal. Therefore, in this setting the search
for reversible codes coincides with the search for self-reciprocal polynomials that
divide xn − 1 over the field Fq.

Often in the literature, reversible cyclic codes are studied over polynomial rings
due to the fact that polynomial rings have a rich algebraic description. In this
section, we intend to study reversible cyclic codes in a different setting - from a
group ring point of view. We begin with a definition.
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Definition 2.1. Let Cn be the cyclic group of order n and let

{e = c0, c, c2, . . . , cn−1}

be a fixed listing of the elements of Cn. Let v =
∑n−1
i=0 αcic

i ∈ RCn. The reciprocal
of v is defined as

v∗ = cn−1(

n−1∑
i=0

αci(c
i)−1) =

n−1∑
i=0

αcic
n−(i+1).

We call the group ring element v self-reciprocal if and only if v∗ = v.

For the cyclic group Cn, the matrices σ(v) and σ(v∗) can be written as follows:

σ(v) =


αe αc αc2 · · · αcn−1

αcn−1 αe αc · · · αcn−2

...
...

...
...

...
αc αc2 αc3 · · · αe

 ,

σ(v∗) =


αcn−1 αcn−2 · · · αc αe
αe αcn−1 · · · αc2 αc
...

...
...

...
...

αcn−2 αcn−3 · · · αe αcn−1

 .

Theorem 2.2. The cyclic code C(v) = 〈σ(v)〉 where v ∈ RCn, is reversible of
index 1 if and only if v is self-reciprocal.

Proof. The proof follows from the fact that v is self-reciprocal if and only if σ(v) =
σ(v∗). The index 1 follows from the construction of the matrix σ(v). �

We illustrate this theorem with an example.

Example 2.3. Let v1 = 1 + 2c + 2c3 + c4 ∈ Z3C5, where C5 = {e, c, c2, c3, c4}.
Here, αe = 1, αc = 2, αc2 = 0, αc3 = 2 and αc4 = 1. Then

σ(v1) =


1 2 0 2 1
1 1 2 0 2
2 1 1 2 0
0 2 1 1 2
2 0 2 1 1

 .

Now, v∗1 = c4(1 + 2c4 + 2c2 + c) = 1 + 2c+ 2c3 + c4 = v1, and

σ(v∗1) =


1 2 0 2 1
1 1 2 0 2
2 1 1 2 0
0 2 1 1 2
2 0 2 1 1

 .

Thus σ(v1) = σ(v∗1). Also, σ(v) = σ(v∗) can be written as

σ(v1) = σ(v∗1) =


1 1 2 0 2
2 1 1 2 0
0 2 1 1 2
2 0 2 1 1

 .
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Clearly, C(v1) = C(v∗1) = 〈σ(v1)〉 = 〈σ(v∗1)〉 is the [5, 4, 2] cyclic code. We also
see that the code C(v1) is reversible since in the generator matrix the reverse of
each row of C(v1) is also in C(v1).

We now give the group ring analogue of the notion of lifted polynomials which
is defined in [16].

Definition 2.4. Let Cn = {e, c, . . . , cn−1} be a cyclic group of order n and v =∑n−1
i=0 αcic

i ∈ FpCn be a self-reciprocal element. A lifted element of v denoted by
`(v) ∈ FpsCn is defined as follows:

(1) if n is odd then

`(v) =

(n−1)/2∑
i=0

θi; θi =

{
βic

i + βic
n−i, αci 6= 0,

0, αci = 0,

(2) if n is even then

`(v) =

n/2∑
i=0

θi; θi =


βic

i + βic
n−i, αci 6= 0, i 6= n

2 ,
0, αci = 0,
βn/2c

n/2, αci 6= 0, i = n
2 ,

where βi ∈ F∗ps .

Lemma 2.5. If the element v is self-reciprocal then `(v) is self-reciprocal.

Proof. The result follows from the definitions. �

Example 2.6. Let v = 1 + 2c + 2c3 + c4 ∈ Z3C5, where C5 = {e, c, c2, c3, c4}.
Then, for βi ∈ F34 = F81,

`(v) =

2∑
i=0

θi = θ0 + θ1 + θ2 = (β01 + β0c
4) + (β1c+ β1c

3) + 0,

`(v) = β0 + β1c+ β1c
3 + β0c

4.

For β0 = α4, β1 = α6, we have `(v) = α4 + α6c+ α6c3 + α4c4. Now,

`(v∗) = α4 + α6c+ α6c3 + α4c4 = `(v),

which gives that `(v) is self-reciprocal.

Theorem 2.7. Let R be a finite commutative Frobenius ring and let Cn be the
cyclic group of order n. Let `(v) be a lifted element of a self-reciprocal element of
group ring RCn. Then the cyclic code C(`(v)) is reversible.

Proof. Follows from Theorem 2.2. �

The following definition is the group ring analogue of the notion of the co-term
polynomial which is defined in [8].

Definition 2.8. Let Cn be the cyclic group of order n and let

{e, c, c2, . . . , cn−1}

be a fixed listing of Cn. Let v =
∑n−1
i=0 αcic

i ∈ RCn. Then v is called a co-term

element if αci = αcn−i for all 1 ≤ i ≤ bn2 c. Moreover, v =
∑n−1
i=0 αcic

i ∈ RCn is the
co-term element if and only if (αc1 , αc2 . . . , αcn−1) is self-reversible.
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Example 2.9. Consider the element v1 from Example 2.3. We saw there that
v1 = v∗1 and therefore v1 is self-reciprocal. The element v1 is not a co-term element
since for instance, αc1 6= αc4 , i.e., αc1 = 2 and αc4 = 1.

We denote the vector v = (αc0 , αc1 , . . . , αcn−1) ∈ Rn for v =
∑n−1
i=0 αcic

i ∈ RCn.
In [8], the following is proven.

Lemma 2.10. Let S ⊆ Rn be a non empty subset such that vr ∈ S whenever
v ∈ S. Then the code generated by S is a linear reversible code of length n over R.

Theorem 2.11. Let v =
∑n−1
i=0 αcic

i ∈ RCn be a co-term element and let t be a
specified positive integer. Suppose v corresponds to the vector v = (αc0 , αc1 , . . . , αcn−1) ∈
Rn. For any length n and even dimension, define the (2t+ 2)× n matrix as:

κt(v) =



αcn−(t+1) αcn−t · · · αcn−(t+3) αcn−(t+2)

...
...

...
...

...
αc1 αc2 · · · αcn−1 αc0
αc0 αc1 · · · αcn−2 αcn−1

αcn−1 αc0 · · · αcn−3 αcn−2

...
...

...
...

...
αcn−t αcn−(t−1) · · · αcn−(t+2) αcn−(t+1)


,

and for odd length n and odd dimension, define the (2t+ 2)× n matrix as:

κt(v) =



αcn−(t+1) αcn−t · · · αcn−(t+3) αcn−(t+2)

...
...

...
...

...
αc1 αc2 · · · αcn−1 αc0
αc0 αc1 · · · αcn−2 αcn−1

αcn−1 αc0 · · · αcn−3 αcn−2

...
...

...
...

...
αcn−t αcn−(t−1) · · · αcn−(t+2) αcn−(t+1)

αcn−(n−1)/2 αcn−((n−1)/2−1) · · · αcn−((n−1)/2+2) αcn−((n−1)/2+1)


,

where t < bn2 c. Then the code C = 〈κt(v)〉 is reversible.

Proof. Let v = (αc0 , αc1 , . . . , αcn−1). Since v ∈ RCn is a co-term element, it follows
that (αc1 , αc2 , . . . , αcn−1) is self-reversible. Also, since v is a co-term element, for
a positive integer i ∈ {1, 2, . . . , bn2 c − 1} the reverse of the i-th row of the matrix
κt(v) equals to the (n+ 1)− i-th row. We also have

(αcn−(n−1)/2 , αcn−((n−1)/2−1) , · · · , αcn−((n−1)/2+2) , αcn−((n−1)/2+1))r =

(αcn−(n−1)/2 , αcn−((n−1)/2−1) , · · · , αcn−((n−1)/2+2) , αcn−((n−1)/2+1)).

In both cases of the theorem, the spanning sets, that is the rows of κt(v), satisfy
the conditions of Lemma 2.10. Thus the code is reversible. �

Example 2.12. Let v = 1 +ωc+ c2 +ω2c3 +ω2c6 + c7 +ωc8 ∈ F4C9 be a co-term
element and

v = (1, ω, 1, ω2, 0, 0, ω2, 1, ω)
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be the corresponding vector. All the codes 〈κt(v)〉 are reversible. For t = 0,

κ0(v) =

(
αc1 αc2 αc3 αc4 αc5 αc6 αc7 αc8 αc0
αc0 αc1 αc2 αc3 αc4 αc5 αc6 αc7 αc8

)
=

(
ω 1 ω2 0 0 ω2 1 ω 1
1 ω 1 ω2 0 0 ω2 1 ω

)
.

For t = 2,

κ2(v) =


αc3 αc4 αc5 αc6 αc7 αc8 αc0 αc1 αc2
αc2 αc3 αc4 αc5 αc6 αc7 αc8 αc0 αc1
αc1 αc2 αc3 αc4 αc5 αc6 αc7 αc8 αc0
αc0 αc1 αc2 αc3 αc4 αc5 αc6 αc7 αc8
αc8 αc0 αc1 αc2 αc3 αc4 αc5 αc6 αc7
αc7 αc8 αc0 αc1 αc2 αc3 αc4 αc5 αc6



=


ω2 0 0 ω2 1 ω 1 ω 1
1 ω2 0 0 ω2 1 ω 1 ω
ω 1 ω2 0 0 ω2 1 ω 1
1 ω 1 ω2 0 0 ω2 1 ω
ω 1 ω 1 ω2 0 0 ω2 1
1 ω 1 ω 1 ω2 0 0 ω2

 .

It can be easily seen that in each of the above matrices, the reverse of each row
is contained in the same matrix.

2.2. Self-Reciprocal Group Ring Elements. In this section, we define a self-
reciprocal group ring element which is the analogue notion of the notion of a self-
reciprocal polynomial.

Definition 2.13. Let G be a finite group and let {g1, g2, . . . , gn} be a fixed listing
of the elements of G. Also, let v =

∑n
i=1 αgigi ∈ RG. The reciprocal of v is defined

as

v∗ =

n∑
i=1

αgign−(i−1).

We call v self-reciprocal if and only if v∗ = v.

Lemma 2.14. Let v =
∑n
i=1 αgigi ∈ RG. Then (v∗)∗ = v.

Proof. We have that v∗ =
∑n
i=1 αgign−(i−1) by definition. Applying the reciprocal

definition to the element v∗ again:

(v∗)∗ =

n∑
i=1

αgign−[n−(i−1)−1] =

n∑
i=1

αgigi = v.

This gives the result. �

It is well known that a group ring is isomorphic to a well defined ring of matrices
and thus every group ring element has an associated matrix. We now generalise the
matrix representation of a reciprocal cyclic group ring element to a more general
group ring.

The matrix representation of a reciprocal group ring element is as follows:
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σ(v∗) =


αg1gn αg1gn−1

αg1gn−2
· · · αg1g1

αg2gn αg2gn−1 αg2gn−2 · · · αg2g1
...

...
...

...
...

αgngn αgngn−1
αgngn−2

· · · αgng1

 .

We now look at an example in which we give the matrix representations of a
dihedral group ring element and its reciprocal.

Example 2.15. Consider Z3D8 where {e, a, a2, a3, ba3, ba2, ba, b} is the fixed listing
of elements of D8. Let v = 2 + a2 + ba+ 2ba2 + ba3 ∈ Z3D8. Then

σ(v) =



2 0 1 0 1 2 1 0
0 2 0 1 0 1 2 1
1 0 2 0 1 0 1 2
0 1 0 2 2 1 0 1
1 0 1 2 2 0 1 0
2 1 0 1 0 2 0 1
1 2 1 0 1 0 2 0
0 1 2 1 0 1 0 2


,

and σ(v) can be written as following:

σ(v) =


2 0 1 0 1 2 1 0
0 2 0 1 0 1 2 1
1 2 1 0 1 0 2 0
0 1 2 1 0 1 0 2

 .

Clearly C(v) = 〈σ(v)〉 is the [8, 4, 4] code. It is also clear that C(v) is reversible,
that is, the reverse of each codeword of C(v) is also in C(v).

Next,

σ(v∗) =



0 1 2 1 0 1 0 2
1 0 1 2 2 0 1 0
2 1 0 1 0 2 0 1
1 2 1 0 1 0 2 0
0 1 0 2 2 1 0 1
1 0 2 0 1 0 1 2
0 2 0 1 0 1 2 1
2 0 1 0 1 2 1 0


and σ(v∗) can be written as follows

σ(v∗) =


2 0 1 0 1 2 1 0
0 2 0 1 0 1 2 1
1 2 1 0 1 0 2 0
0 1 2 1 0 1 0 2

 .

We note here that although σ(v) 6= σ(v∗), the codes C(v) and C(v∗) are the
same.

An element v is said to be self-reversible if v = v∗.
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Theorem 2.16. Let v =
∑n
i=1 αgigi ∈ RG be a self-reversible element and let t

be a specified positive integer where t < n
2 . Suppose v corresponds to the vector

v = (αg1 , αg2 , αg3 , . . . , αgn) ∈ Rn. For any length n and even dimension, we define
the (2t+ 2)× n matrix as

κt(v) =



αgt+2g1 αgt+2g2 · · · αgt+2gn−1 αt+2gn
...

...
...

...
...

αg3g1 αg3g2 · · · αg3gn−1 αg3gn
αg2g1 αg2g2 · · · αg2gn−1 αg2gn
αg−1

1 g1
αg−1

1 g2
· · · αg−1

1 gn−1
αg−1

1 gn

αg−1
2 g1

αg−1
2 g2

· · · αg−1
2 gn−1

αg−1
2 gn

...
...

...
...

...
αg−1

t+1g1
αg−1

t+1g2
· · · αg−1

t+1gn−1
αg−1

t+1gn


.

Then the code C = 〈κt(v)〉 is reversible.

Proof. Since v is a self-reversible element, for a positive integer i ∈ {1, 2 . . . , bn2 c−1}
the reverse of the i-th row of the matrix κt(v) equals to the (n + 1) − i-th row.
Therefore, the spanning set, that is the rows of the matrix, satisfy Lemma 2.10.
This completes the proof. �

Example 2.17. Let v = 1 + ab ∈ F2V4, be a self-reversible element, where V4 =
{1, b, ab, a} is a Klein-4-group. We have that v = (1, 0, 1, 0). Then for t = 0

κ0(v) =

(
αg2g1 αg2g2 αg2g3 αg2g4
αg−1

1 g1
αg−1

1 g2
αg−1

1 g3
αg−1

1 g4

)
,

κ0(v) =

(
0 1 0 1
1 0 1 0

)
,

so 〈κ0(v)〉 is reversible. Also, for t = 1

κ1(v) =


αg3g1 αg3g2 αg3g3 αg3g4
αg2g1 αg2g2 αg2g3 αg2g4
αg−1

1 g1
αg−1

1 g2
αg−1

1 g3
αg−1

1 g4

αg−1
2 g1

αg−1
2 g2

αg−1
2 g3

αg−1
2 g4

 ,

κ1(v) =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 ,

which is clear that 〈κ1(v)〉 is reversible.

Example 2.18. For the quaternion group Q8, the fixed listing of elements is

{1, i, j, k,−k,−j,−i,−1} = {g1, g2, . . . , g8}.

Let

v = 1 + 2j + k − k − 2j − 1 ∈ F3Q8,

then v = (1, 0, 2, 1, 1, 2, 0, 1) is the corresponding vector.
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For t = 0,

κ0(v) =

(
αg2g1 αg2g2 αg2g3 αg2g4 αg2g5 αg2g6 αg2g7 αg2g8
αg−1

1 g1
αg−1

1 g2
αg−1

1 g3
αg−1

1 g4
αg−1

1 g5
αg−1

1 g6
αg−1

1 g7
αg−1

1 g8

)
,

κ0(v) =

(
i −1 k −j j −k 1 −i
1 i j k −k −j −i −1

)
=

(
0 1 1 2 2 1 1 0
1 0 2 1 1 2 0 1

)
.

For t = 2,

κ2(v) =



αg4g1 αg4g2 αg4g3 αg4g4 αg4g5 αg4g6 αg4g7 αg4g8
αg3g1 αg3g2 αg3g3 αg3g4 αg3g5 αg3g6 αg3g7 αg3g8
αg2g1 αg2g2 αg2g3 αg2g4 αg2g5 αg2g6 αg2g7 αg2g8
αg−1

1 g1
αg−1

1 g2
αg−1

1 g3
αg−1

1 g4
αg−1

1 g5
αg−1

1 g6
αg−1

1 g7
αg−1

1 g8

αg−1
2 g1

αg−1
2 g2

αg−1
2 g3

αg−1
2 g4

αg−1
2 g5

αg−1
2 g6

αg−1
2 g7

αg−1
2 g8

αg−1
3 g1

αg−1
3 g2

αg−1
3 g3

αg−1
3 g4

αg−1
3 g5

αg−1
3 g6

αg−1
3 g7

αg−1
3 g8


,

κ2(v) =


k j −i −1 1 i −j −k
j −k −1 i −i 1 k −j
i −1 k −j j −k 1 −i
1 i j k −k −j −i −1
−i 1 −k j −j k −1 i
−j k 1 −i i −1 −k j

 =


1 2 0 1 1 0 2 1
2 1 1 0 0 1 1 2
0 1 1 2 2 1 1 0
1 0 2 1 1 2 0 1
0 1 1 2 2 1 1 0
2 1 1 0 0 1 1 2

 .

3. Computational Results

In this section, we define two generator matrices using the map given in Equa-
tion (1.2) with a fixed listing of the group elements as given in Equation (1.4). We
employ the cyclic group of even order and the dihedral group of order 2n. We next
use these generator matrices to search for DNA codes over F4. We perform our
search in the software package MAGMA ([3]) using a heuristic search scheme called
the virus optimization algorithm (VOA). This method, as shown in [10], allows
us to obtain the computational results significantly faster then the standard linear
search.

We obtain many DNA codes of up to and including length 32. Our DNA codes
satisfy the Hamming distance, the reverse, the reverse-complement and the fixed

GC-content constraints. We find the lower bounds on ARC,GC4 (n, d, k) by computing
the complete weight enumerators of all DNA codes that we found. The generator
matrices, weight enumerators, GC-weight enumerators for the codes constructed
can be found at [11].

Let w1 ∈ RC2n, where C2n is the cyclic group of order 2n with its elements being
listed as follows:

(3.1) {1, c2, c4, c6, . . . , c2n−2, cnc2n−2, cnc2n−4, . . . , cnc2, cn}.

Then the generator matrix σ(w1) has the following form:

G1 = σ(w1) =

(
A1 B1

B2 A2

)
,

where

A1 = cir(α1, αc2 , . . . , αc2n−2)
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is a n× n circulant matrix,

B1 = rcir(αcnc2n−2 , αcnc2n−4 , . . . , αcn)

is a n × n reverse circulant matrix. We note that B2 is a reverse circulant matrix
in which the first row is obtained by reversing the last row of the matrix B1. The
matrix A2 is a circulant matrix in which the first row is obtained by reversing the
last row of the matrix A1. More precisely, A2 = cir(α1, αc2n−2 , . . . , αc4 , αc2) is an
n×n circulant matrix and B2 = rcir(αcnc2 , . . . , αcnc2n−4 , αcnc2n−2 , αcn) is an n×n
reverse circulant matrix.

Let w2 ∈ RD2n, where D2n is the dihedral group of order 2n with its elements
being listed as follows:

(3.2) {e, a, a2, . . . , an−1, ban−1, ban−2, . . . , ba, b}.
Then the generator matrix σ(w2) has the following form:

G2 = σ(w2) =

(
A B
BT AT

)
,

where
A = cir(αe, αa, . . . , αan−1)

is a n× n circulant matrix and

B = cir(αban−1 , αban−2 , . . . , αb)

is a n× n circulant matrix.
We now present a small example of how we construct the DNA codes using our

group ring approach.

Example 3.1. Let D6 be a dihedral group of order 6 with the ordering of elements
{e, a, a2, ba2, ba, b}, v = w + wa + wa2 ∈ F4D6 then the generator matrix has the
form

(3.3) σ(v) = G2 =


w w w 0 0 0
w w w 0 0 0
w w w 0 0 0
0 0 0 w w w
0 0 0 w w w
0 0 0 w w w

 .

From the above generator matrix, we construct a DNA code C with 16 codewords
satisfying R-constraint with d = 3 as follows;

(3.4)
AR4 (6, 3) = {AAAAAA,AAAGGG,AAATTT,GGGAAA,CCCAAA,AAACCC,

TTTAAA, TTTTTT,GGGCCC,CCCCCC,GGGGGG,TTTCCC,

CCCGGG,GGGTTT, TTTGGG,CCCTTT}.
We know by [12] that for an even n:

(3.5) ARC4 (n, d) = AR4 (n, d).

Therefore ARC4 (6, 3) = AR4 (6, 3). The GC-weight enumerator of C is

GCW (a, b) = 4a6 + 8a3b3 + 4b6.
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Thus we construct a DNA code with 8 codewords satisfying hamming distance
constraint 3, reversible complement constraint and fixed GC-content constraint
with k = 3.

We now employ the generator matrices G1 and G2, to search for DNA codes that
satisfy the Hamming distance, the reverse, the reverse-complement and the fixed
GC-content constraints of lengths up to and including 32. We tabulate our findings
in Table 2 and Table 1. The results that are equal to or better than the currently
known best bounds are written in bold, and new results are also written in bold.
Generator matrices, GC-weight enumerators and parameters of codes in Tables 2
and 1 can be found in [11].
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Table 1. Lower bounds on ARC4 (n, d) and ARC,GC4 (n, d, k) from G2

n d ARC4 (n, d) ARC,GC4 (n, d, k)
4 3 16 12
6 3 64 30
6 2 1024 480
8 4 256 176
8 3 256 152
8 2 4096 2240
12 6 4096 1848
12 4 16384 6144
14 5 65536 13728
14 4 65536 13728
16 6 65536 25880
16 4 1048576 461824
16 2 268435456 105431040
18 4 4194304 1400256
18 3 16777216 3111680
18 2 4294967296 1429733376
20 5 16777216 2956096
20 4 1073741824 376832000
20 3 4294967296 756760576
20 2 68719476736 12108169216
20 6 1048576 369008
20 7 1048576 369512
22 6 16777216 2821728
22 2 1099511627776 339270959104
24 4 68719476736 22409117696
24 3 68719476736 11098587136
24 2 17592186044416 2841238306816
24 6 268435456 86739968

4. Conclusion

In this work, we showed that one can construct good DNA codes from G-codes
that are reversible- this is a crucial property for DNA codes. We defined and studied
reversible cyclic DNA codes and we also defined self-reciprocal group ring elements.
We presented two generator matrices that one can use to search for DNA codes. We
employed these generator matrices with the use of only two groups, the cyclic group
of even order and the dihedral group of order 2n, to search for reversible cyclic and
dihedral DNA codes that satisfy the Hamming distance, the reverse, the reverse
complement and the GC-weight enumerator constraints. Our group ring approach
proved to be successful as we constructed many DNA codes. A possible research
direction is to consider reversible group ring approach and specifically Theorem 3.10
to construct, possibly, more DNA codes with better parameters.
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Table 2. Lower bounds on ARC4 (n, d) and ARC,GC4 (n, d, k) from G1

n d ARC4 (n, d) ARC,GC4 (n, d, k)
24 4 4294967296 1387323392
24 3 68719476736 22160015360
24 2 17592186044416 2835513081856
26 2 281474976710656 81000264630272
28 4 1099511627776 328637349888
28 3 17592186044416 2630898155520
28 2 4503599627370496 1345974567960576
30 4 1125899906842624 304973453721600
30 3 4503599627370496 650610034606080
30 2 1125899906842624 162652508651520
32 2 1152921504606846976 322709486693253120
32 4 17592186044416 4928618364928
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Abstract. We study exact solutions of the Schrödinger equation in a topo-

logically massive space-time. Exact solutions are obtained in terms of the

hypergeometric functions. We also obtained the momentum quantization with
the help of the condition of the wave function to be bounded. The investigation

is performed in the framework of rainbow formalism of the General Relativity
Theory (RGT). The quantized momentum is evaluated for different choices of

the rainbow functions.

1. Introduction

In last decades, it has been a crucial area to study exact solutions of the non-
relativistic and relativistic wave equations that present precious data concerning to
the quantum mechanical systems. In this circumstances, the Schrödinger (for spin-
less and non-relativistic massive particles), the Klein-Gordon (KG) (spin-0 particles,
e.g., pions), the Dirac (for spin-1/2, e.g., electrons) and the Duffin-Kemmer-Petiau
(DKP) (for spin-1, e.g., W±, Z0 bosons and photons) equations are the most exam-
ined equations [1, 2, 3, 4, 5, 6, 7, 8]. Except the Schrödinger equation, the rest are
the fundamental single particle equations of the relativistic quantum mechanics.

The Schrödinger equation defines the non-relativistic quantum mechanical char-
acter of an isolated physical system by evolution of a wave function over the time.
Its solutions given for the presence of external electromagnetical fields have fun-
damental applications used in technology, engineering, electro-mechanics, particle
physics, medical physics, and so on. Compared to the other wave equations the
Schrödinger equation has much less been studied in curved geometry. Examin-
ing the Schrödinger equation in curved space-time is a way of finding the effective
low-energy characterization of a quantum particle in a curved geometry.

Recently, a new approach to the Einstein’s General Relativity (EGG), which
is called ”Doubly General Relativity” (DGR) is introduced [9], thereafter called
as Rainbow Gravity (RG) to study the quantum effects of the gravitation in the
smallest accessible regions, namely the Planck scale. The idea behind the RG

Date: Received: 2023-08-10; Accepted: 2023-10-09.
Key words and phrases. Schrödinger equation, Exact solution, Topologically massive space-

time, Rainbow formalism.
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approach of gravitation is that at ultra-high energy regimes the geometry of classical
space-time alters by the probing particles that have different energies [9, 10, 11].
Thus, the standard metric is deformed and this phenomenon is represented in space-
time metric with rainbow functions. Because of this modified perspective, the

rainbow version of a metric can be written by the replacements dx0 → dx0

f for the

time coordinate and dxi → dxi

g for the spatial coordinates. As the particle moves

in geometry, it will perceive gravity differently for each energy it has, as the way a
prism acts on light.

The structure of the paper will be as follows. In section 2, we give a brief theoret-
ical set-up of the problem and in section 3, we will solve the Schrödinger equation
for the considered rainbow space-time. In section 4, by obtaining approximate solu-
tions, the quantization condition of the momentum will be derived. Finally, section
5 is devoted to the discussion of results.

2. Preliminaries

For the investigation of our problem, we will study in the RG formalism and discuss
the dynamics of particle by the topologically massive space-time given by,

(2.1) ds2 = dθ2 + dφ2 + 2 cos(νθ)dψdφ+ dψ2

which is basically a de Sitter space with the polar angle suffering a conic defect.
This metric has been offered by Aliev et.al. [12] and it has obvious importance
for the gauge field theories. Here, the term ν is the topological mass and it is

related to the cosmological constant as λ = ν2

4 . The metric can be diagonalized by
introducing new variables as ϕ = ψ+φ and χ = ψ−φ. Therefore the above metric
takes the following form,

(2.2) ds2 = dθ2 + cos2
νθ

2
dϕ2 + sin2 νθ

2
dχ2

In the modified perspective, the rainbow counterpart of the above metric can be
written as

(2.3) ds2 =
1

g2(ε)

[
dθ2 + cos2

νθ

2
dϕ2 + sin2 νθ

2
dχ2

]
where g(ε) is the energy-dependent rainbow function, ε = E

EPl.
, E is the energy of

the probing particle and EPl. is the Planck energy.

3. Exact solution of the Schrödinger equation

The covariant form of the Schrödinger equation in curved space is given as follows
[13],

(3.1) i~
∂Ψ

∂t
=
−~2

2m

[
1√

detgµν

∂

∂xµ
(
√
detgµνg

µν ∂Ψ

∂xν
)

]
− ~2

6
RΨ

where m is the mass of particle, ~ is the Planck constant, gµν is the metric given
by Eq.(2.3) and R is the scalar curvature of the space which is calculated by the
contradiction of the Ricci tensor and given as

(3.2) R = gµνRµν = gµν
(
∂αΓαµν − ∂µΓααν + ΓααρΓ

ρ
µν − ΓαµρΓ

ρ
αν

)
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where

(3.3) Γανλ =
1

2
gαβ (∂νgλβ + ∂λgβν − ∂βgνλ)

are the Christoffel symbols [14] and obtained as follows

(3.4) Γ1
ij =

 0 0 0
0 ν

4 sin(νθ) 0
0 0 −ν4 sin(νθ)

 ,

(3.5) Γ2
ij =

 0 −ν2 tan(νθ) 0
−ν2 tan(νθ) 0 0

0 0 0

 ,

and

(3.6) Γ2
ij =

 0 0 ν
2 cot(νθ)

0 0 0
ν
2 cot(νθ) 0 0

 .

By using the line element given by Eq.(2.3) and (3.4, 3.5, 3.6) in Eq.(3.2), the

scalar curvature is obtained as R = 3g2(ε)ν2

2 . With the help of these results and

reminding that
√
detgµν = sin(νθ)

2g3 , the Schrödinger equation (3.1) reduces to the

following form,

(3.7) f
′′
(θ) + 2 cot(2y)f

′
(θ) +

[
c−

(
a

cos2(y)
+

b

sin2(y)

)]
f(θ) = 0

where the definitions Ψ = ei(αϕ+βχ−Et)f(θ), a = 4α2

ν2 , b = 4β2

ν2 , c = 8m
ν2g2

(
E + ν2g2

4

)
and y = νθ

2 were made. If the variable is changed as cos2 y = 1
u , Eq.(3.7) is

transformed to into the below form,

(3.8) 4u2(u− 1)2f
′′
(u) + 4u2(u− 1)f

′
(u)−

[
au2 −Bu+ c

]
f(u) = 0

where B = a− b+ c.
If we define the wave function as f(u) = up−1(u − 1)qΩ(u), Eq.(3.8) can be

written as
(3.9)

u(u− 1)Ω
′′

+ [u(2p+ 2q + 1) + 2(1− p)]Ω
′
+[

2pq +
p2(u− 1)− 2pu+ u3p

u
+
qu(q − 2) + 2q + uK

4 + L
4

u− 1
+

M

4u(u− 1)

]
Ω = 0

where K = 4− a, L = B − 12 and M = 8− c.
For the choices of p2 − 3p + M

4 = 0, 4q2 + K + L + M = 0 and definitions

2(p− 1) = γ, 2(p+ q) + 1 = P +Q+ 1, 2pq+ p2− 2(p+ q)− M+L
4 = PQ, we obtain

(3.10) u(u− 1)Ω
′′
(u) + [(P +Q+ 1)u− γ]Ω

′
(u) + PQΩ(u) = 0

which has the form of hypergeometric differential equation [15]. Solutions of this
equation are given by

(3.11) Ω(u) = 2F1 (P,Q, γ;u)

and

(3.12) Ω(u) = u1−γ2F1 (P + 1− γ,Q+ 1− γ, 2− γ;u)
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where 2F1 are hypergeometric functions. Thence, exact solutions of the Schrödinger
equation is obtained as

(3.13) Ψ = ei(αϕ+βχ−Et)
[
cos(

νθ

2
)

]2(1−p) [
cos(

νθ

2
)

]−2q

2F1

(
P,Q, γ; cos−2(

νθ

2
)

)
For the specific discussions of our general results, one can use various scenar-

ios introduced in literature for the rainbow functions. We give a few well-known
proposals of the rainbow functions in TABLE I.

Table 1. Most studied proposals of the rainbow functions. Here,
c1, c2, c3, c4 and t are arbitrary parameters.

f g Reference

1
√

1− c1χt [16]
(c2χ)−1(exp[c2χ]− 1) 1 [16]

(1− c3χ)−1 (1− c3χ)−1 [16]
(1− c4χ)−1 1 [17]

exp[−χ
2

2 ] 1 [18]
1 1 + χ

2 [19]
1 + χ

2 1 + (2χ)−1 [19]
1 1 + χt [20]

4. Asymptotic solution of the Schrödinger equation

For the small value of the argument, namely y = νθ
2 � 1, Eq. (3.7) transforms

into

(4.1) y2f
′′
(y) + 2yf

′
(y) + [(c− a)y2 − b]f(y) = 0

This is the Bessel differential equation and solution is given by [15]

(4.2) f(y) =
1
√
y
Z√

b+ 1
4

(
√
c− ay)

where Zµ(ζ) are the cylindrical functions and can be written in terms of the Bessel
functions as

(4.3) Zµ = c1Jµ + c2Yµ

where Jµ is first type and Yµ is second type of Bessel functions that are related to
Kummer functions, M(a, b, z), as following [15]

(4.4) Jµ =
(y2 )µ

Γ(µ+ 1)
e−iyM(µ+

1

2
, 2µ+ 1, 2iy)

and

(4.5) Yµ =
Jµ cos(µπ)− J−µ

sin(µπ)

In order Kummer functions to be finite, we require the bound condition of the Kum-
mer functions as µ+ 1

2 = −n [15]. Therefore, we obtain the quantized momentum
of the Schrödinger particle in terms of the topological mass as in the follow,

(4.6) β =
ν

2

√
n(n+ 1)
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which is the momentum in the χ-direction.

5. Conclusion

In this study, we have analyzed the Schrödinger equation in a modified rain-
bow background. In the process of obtaining the solutions we used the separation
of variables method. Both the wave function and momentum of the Schrödinger
particle are obtained depending on the topological mass. The topological massive
(3 + 0)-space is hard to study for the relativistic higher spinning particles. So, this
study may have the potential of providing insights into the relativistic spinning
particles as well. This is going to be a further study in the corresponding space.
One of the interesting finding of this study is that although the dynamics of the
particle depends on the angular variables, topological mass term and energy of the
probing particle, the quantized momentum depends on only the topological mass.
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BASIC BOUNDARY VALUE PROBLEM WITH RETARDED

ARGUMENT CONTAINING AN EIGENPARAMETER IN THE

TRANSMISSION CONDITION
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Abstract. In this paper basic boundary value problem with retarded argu-

ment that has a discontinuity point inside the interval will be studied. At

the discontinuity point transmission conditions contain eigenparameter. Exis-
tence of eigenvalues and eigenfunctions will be studied. Asmyptotic properties

of eigenvalues and eigenfunctions will be obtained.

1. Introduction

Many realistic system depend not only on current state but also the past. These
systems can be modeled by using retarded argument equations. In detail these
type of equations can be considered in two groups. Equations with constant delay
is called equations with time lag and equations with functioanal delay is called
equations with after affect.

After the development of control systems in engineering retarded equations be-
come important. Before that scientists were aware of this type of delays in the
control systems but there was not enough theory about this subject. Because of
that this type of affects were ignored in the models. Delays have an important role
to explain complex models mathematically and it also has important affects. Equa-
tions with retarded argument is used modeling problems in the fields of biology,
chemistry, economics, mechanics, physics, physiology, population change, social
networks, heat dissipation, interaction of species, microbiology and engineering.
Unlike ordinary differantial equations, equations with retarded argument belong to
functional diffrential equation class.

The fundamental study in this subject is made by Norkin in 1956 and 1958 [1, 2].
Şen - Bayramov [3], Yang [4], Akgün-Bayramov-Bayramoğlu [5], Şen - Seo- Arıcı
[6], Bayramoğlu - Bayramov - Şen [7], Çetinkaya - Mamedov [8],F. Hira [9] have
studied the retarded equation with discontinuity point in the interval.
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Freiling - Yurko [10], Mosazadeh [11], Bondarenko - Yurko [12] have studied the
inverse problem.

In this work discontinuous equation on [0, π2 ) ∪ (π2 , π] with parameter in the
transmission condition will be considered.

(1.1) y′′(x) + λ2y(x) + q(x)y(x−∆(x)) = 0

(1.2) y(0) = y(π) = 0

(1.3) y
(π

2
+ 0
)

=
δ

λ
y
(π

2
− 0
)

(1.4) y′
(π

2
+ 0
)

=
δ

λ
y′
(π

2
− 0
)

here q(x) and ∆(x) ≥ 0 are continuous functions on [0, π2 ) ∪ (π2 , π] and have finite
left right limits at π

2 , if x ∈ [0, π2 ) then x−∆(x) ≥ 0, if x ∈ (π2 , π] then x−∆(x) ≥ π
2 ,

λ is a real eigenparameter and δ 6= 0 is arbitrary real number.
Let ω1(x, λ) be a solution of equation (1.1) on [0, π2 ). After defining this solution,

using the transmission conditions (1.3) and (1.4) we can define the solution of
equation (1.1) on (π2 , π] in terms of ω1(x, λ) as follows:

(1.5) ω2

(π
2
, λ
)

=
δ

λ
ω1

(π
2
, λ
)
, ω′2

(π
2
, λ
)

=
δ

λ
ω′1

(π
2
, λ
)

Consequently, we can define ω(x, λ) on [0, π2 ) ∪ (π2 , π] as

ω(x, λ) =

{
ω1(x, λ), x ∈ [0, π2 )
ω2(x, λ), x ∈ (π2 , π]

here ω(x, λ) solves equation (1.1) on [0, π2 )∪ (π2 , π] and satisfies left boundary con-
dition and both transmission conditions (1.3) and (1.4).

Lemma 1.1. Let ω(x, λ) be a solution of (1.1) and λ > 0. Then ω1(x, λ) and
ω2(x, λ) are defined as:

ω1(x, λ) = sinλx− 1

λ

∫ x

0

sinλ(x− τ)q(τ)ω1(τ −∆(τ), λ)dτ(1.6)

ω2(x, λ) =
δ

λ
ω1

(π
2
, λ
)

cosλ
(
x− π

2

)
+

δ

λ2
ω′1

(π
2
, λ
)

sinλ
(
x− π

2

)
− 1

λ

∫ x

π
2

sinλ(x− τ)q(τ)ω2(τ −∆(τ), λ)dτ(1.7)

Theorem 1.2. Eigenvalues of the problem (1.1)-(1.4) are simple.

Proof. Let λ̃ be an eigenvalue of the problem (1.1)-(1.4) and

ũ(x, λ̃) =

{
ũ1(x, λ̃), x ∈ [0, π2 )

ũ2(x, λ̃), x ∈ (π2 , π]

be a corresponding eigenfunction. Then from (1.2), the wronskien becomes zero.

W [ũ1(x, λ̃), ω(x, λ̃)] =

∣∣∣∣ũ1(0, λ̃) 0

ũ′1(0, λ̃) 1

∣∣∣∣ = 0

It means that these two functions corresponding to λ̃ are linearly deppendent. Sim-
ilarly it can be shown that ũ2(x, λ̃) and ω2(x, λ̃) are linearly dependent. Therefore
eigenvalues are simple. �
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Pluging ω(x, λ) into the other boundary condition, characteristic equation is
obtained:

F (λ) =
δ

λ
sinλπ − δ

λ2

∫ π
2

0

sinλ(π − τ)q(τ)ω1(τ −∆(τ), λ)dτ

− 1

λ

∫ π

π
2

sinλ(π − τ)q(τ)ω2(τ −∆(τ), λ)dτ = 0(1.8)

By Theorem 1.2 the the set of eigenvalues of the problem (1.1)-(1.4) and the set of
real roots of equation (1.8) are same.

Lemma 1.3. Let q1 =

π
2∫
0

|q(τ)|dτ and q2 =
π∫
π
2

|q(τ)|dτ

(1) Let λ ≥ 2q1, then the solution of (1.6) satisfies

(1.9) |ω1(x, λ)| ≤ 2

(2) Let λ ≥ max {2q1, 2q2}, then the solution of (1.7) satisfies

(1.10) |ω2(x, λ)| ≤ 8δ

q1

Proof. Let B1,λ = max
x∈[0,π2 )

|ω1(x, λ)|. Then from (1.6),

B1,λ ≤ 1 +
1

λ
q1B1,λ

for λ ≥ 2q1, it is obvious that B1,λ ≤ 2.
Differentiating (1.6) with respect to x, we obtain

(1.11) ω′1(x, λ) = λ cosλx−
x∫

0

q(τ) cosλ(x− τ)ω1(τ −∆(τ), λ)dτ

From this we obtain

(1.12) |ω′1(x, λ)| ≤ λ+ 2q1 ≤ 2λ =⇒ |ω′1(x, λ)|
λ

≤ 2

Let B2,λ = max
x∈(π

2 ,π]
|ω2(x, λ)|. Then from (1.7), (1.9) and (1.12)

B2,λ ≤
4δ

λ
+

1

λ
q2B2,λ

Therefore for λ ≥ max {2q1, 2q2}, (1.10) is obtained. �

Theorem 1.4. The problem (1.1)-(1.4) has an infinite set of positive eigenvalues.

Proof. Writing (1.6) and(1.11) into (1.8), we obtain:

δ

λ
sinλπ − δ

λ2

π
2∫

0

q(τ) sinλ(π − τ)ω1(τ −∆(τ), λ)dτ

− 1

λ

π∫
π
2

q(τ) sinλ(π − τ)ω2(τ −∆(τ), λ)dτ = 0(1.13)

Let λ be sufficiently large, from (1.9) and (1.10), equation (1.13) may be written as
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Let λ be sufficiently large, then by (1.9) and (1.10), (1.8) may be written in the
form:

(1.14) λ sinλπ +O(1) = 0

Clearly, for large λ, equation (1.14) has infinite roots. �

2. Asymptotic Properties of Eigenvalues and Eigenfunctions

In this section we will investigate the asymptotic expressions of eigenvalues and
eigenfunctions. From now on we will assume λ is sufficienly large. On [0, π2 ), from
(1.6) and (1.9)

(2.1) ω1(x, λ) = O(1)

On (π2 , π], from (1.7) and (1.10)

(2.2) ω2(x, λ) = O

(
1

λ

)
Derivatives of ω1(x, λ) and ω2(x, λ) with respect to λ exist and are continuous on
[0, π2 ) and (π2 , π] respectively[Norkin 1972].

Lemma 2.1.

ω′1λ(x, λ) = O(1), for x ∈ [0,
π

2
)(2.3)

ω′2λ(x, λ) = O

(
1

λ

)
, for x ∈ (

π

2
, π](2.4)

Proof. Differentiating (1.6) with respect to λ and by (2.1)

ω′1λ(x, λ) = − 1

λ

x∫
0

q(τ) sinλ(x−τ)ω′1λ(τ−∆(τ), λ)dτ+K1(x, λ), |K1(x, λ)| ≤ K1

Let C1,λ = max
x∈[0,π2 )

|ω′1λ(x, λ)|. Existence of C1,λ follows from continuity of the

derivative of ω1(x, λ). From the equation above we obtain

C1,λ ≤
1

λ
q1C1,λ +K1

Therefore for λ ≥ 2q1, we obtain C1,λ ≤ 2K1. Hence (2.3) is prooved. Similarly
(2.4) can be proved.

�

Theorem 2.2. Let n ∈ N. For each sufficiently large n, there is only one eigenvalue
of the problem (1.1)-(1.4) in the neighborhood of n.

Proof. First multiply (1.13) with λ2, then consider the O(1) term

−δ

π
2∫

0

q(τ) sinλ(π − τ)ω1(τ −∆(τ), λ)dτ − λ
π∫

π
2

q(τ) sinλ(π − τ)ω2(τ −∆(τ), λ)dτ

By (2.1)-(2.4), for large λ this expression has bounded derivative with respect
to λ. Clearly (1.14) has infinitely many solutions. We need to show that these
solutions are around natural numbers n for suffiently large n. Consider the function
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F (λ) = λ sinλπ +O(1). Its derivative F ′(λ) = sinλπ + λπ cosλπ +O(1) 6= 0 for λ
close to n for sufficiently large n. Hence by Rolle’s theorem proof is completed. �

From (1.14)

(2.5) λn = n+O

(
1

n

)
is obtained. Writing (2.5) into (1.6) and (1.7), eigenfunctions of the problem (1.1)-
(1.4) are obtained.

u1n(x) = ω1(x, λn) = sinnx+O

(
1

n

)
u2n(x) = ω2(x, λn) =

δ

n
sinnx+O

(
1

n2

)

(2.6) un(x) =

{
sinnx+O

(
1
n

)
, x ∈ [0, π2 )

δ
n sinnx+O

(
1
n2

)
, x ∈ (π2 , π]

3. Sharper Estimates for Eigenvalues and Eigenfunctions

Under additional hypotheses about the functions q(x) and ∆(x), it is possible to
improve the expressions given by (2.5), (2.6).

Lemma 3.1. Suppose the derivatives q′(x) and ∆′′(x) exist and are bounded on
[0, π2 ) ∪ (π2 , π], and have finite limits q′

(
π
2 ± 0

)
= lim

x→π
2±0

q′(x), ∆′′
(
π
2 ± 0

)
=

lim
x→π

2±0
∆′′(x), ∆′(x) ≤ h < 2 and ∆(0) = 0, lim

x→π
2 +0

∆(x) = 0. Then

(3.1)

∫ x

0

cosλ(2τ −∆(τ))q(τ)dτ = O

(
1

λ

)
and

(3.2)

∫ x

0

sinλ(2τ −∆(τ))q(τ)dτ = O

(
1

λ

)
Proof. See Lemma III.3.3 in [13] �

Theorem 3.2. Under the hypoteses of Lemma 3.1 eigenvalues of (1.1)-(1.4) prob-
lem can be improved as

(3.3) λn = n− B(π, n,∆(τ))

nπ
+O

(
1

n2

)
Proof. From (2.6), we can write

(3.4) ω1(τ −∆(τ), λ) = sinλ(τ −∆(τ)) +O

(
1

λ

)

(3.5) ω2(τ −∆(τ), λ) =
δ

λ
sinλ(τ −∆(τ)) +O

(
1

λ2

)
Writing these into the characterisitc equation (1.8), and multiplying by λ2 equation
(1.8) turns into
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δλ sinλπ − δ

π
2∫

0

q(τ) sinλ(π − τ)

[
sinλ(τ −∆(τ)) +O

(
1

λ

)]
dτ

− λ
π∫

π
2

q(τ) sinλ(π − τ)

[
δ

λ
sinλ(τ −∆(τ)) +O

(
1

λ2

)]
dτ = 0(3.6)

defining

(3.7) A(x, λ,∆(τ)) =
1

2

∫ x

0

q(τ) sinλ∆(τ)dτ

and

(3.8) B(x, λ,∆(τ)) =
1

2

∫ x

0

q(τ) cosλ∆(τ)dτ

equation (3.6) simplifies as

λ sinλπ +B(π, λ,∆(τ)) cosλπ +A(π, λ,∆(τ)) sinλπ +O

(
1

λ

)
= 0

writing λ = λn = n+ δn and for large n

tan δnπ = −B(π, n,∆(τ))

n
+O

(
1

n2

)
=⇒ δn = −B(π, n,∆(τ))

nπ
+O

(
1

n2

)
Therefore the proof is complete. �

Theorem 3.3. Under the hypoteses of Lemma 3.1 eigenfunctions u1n and u2n of
(1.1)-(1.4) can be improved as

u1n(x) =

(
1− A(x, n,∆(τ))

n

)
sinnx+

+
xB(π, n,∆(τ))− πB(x, n,∆(τ))

nπ
cosnx+O

(
1

n2

)
(3.9)

u2n(x) =
δ

n

(
1− A(x, n,∆(τ))

n

)
sinnx+

+
δ(xB(π, n,∆(τ))− πB(x, n,∆(τ)))

n2π
cosnx+O

(
1

n3

)
(3.10)

Proof. First we write (3.4) into (1.6) and obtain

ω1(x, λ) = sinλx+
1

λ

x∫
0

q(τ) sinλ(x− τ)

[
sinλ(τ −∆(τ)) +O

(
1

λ

)]
dτ

Then using (3.7) and (3.8), this expression becomes

ω1(x, λ) = sinλx+
1

λ
A(x, λ,∆(τ)) sinλx− 1

λ
B(x, λ,∆(τ)) cosλx+O

(
1

λ2

)
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Now writing (3.3), we obtain the eigenfunction on [0, π2 ) as

u1n(x) = ω1(x, λn) =

(
1− A(x, n,∆(τ))

n

)
sinnx+

+
xB(π, n,∆(τ))− πB(x, n,∆(τ))

nπ
cosnx+O

(
1

n2

)
Now we will improve the eigenfunction on (π2 , π]. In order to do that first we

will write (1.9) and (1.12) into (1.10) and then we will use (3.4) and (3.5) together
with (3.7) and (3.8) to obtain

ω2(x, λ) =
δ

λ
sinλx+

δ

λ2
A(x, λ,∆(τ)) sinλx− δ

λ2
B(x, λ,∆(τ)) cosλx+O

(
1

λ3

)
Now writing, (3.3) into this expression we obtain the eigenfunction on (π2 , π].

u2n(x) = ω2(x, λn) =
δ

n

(
1− A(x, n,∆(τ))

n

)
sinnx+

+
δ(xB(π, n,∆(τ))− πB(x, n,∆(τ)))

n2π
cosnx+O

(
1

n3

)
This completes the proof. �

4. Conclusion

In this paper discontinuous differential equation with retarded argument is stud-
ied. In the case of transmission condition that contains eigenparameter, eigenvalues
and the corresponding eigenfunctions calculated asymptoticaly as follows:

λn = n− B(π, n,∆(τ))

nπ
+O

(
1

n2

)

(4.1) un(x) =

{
u1n(x), x ∈ [0, π2 )
u2n(x), x ∈ (π2 , π]

where u1n(x) and u2n(x) are defined by (3.9) and (3.10) respectively.
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ABOUT GROUP OF POINTWISE INNER AUTOMORPHISMS

FOR NILPOTENCY CLASS FOUR
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Abstract. Let Lm,c stand for the free metabelian nilpotent Lie algebra of

class c of rank m over a field K of characteristic zero. Automorphisms of

the form ϕ(xi) = eadui (xi) are called pointwise inner, where eadui , is the
inner automorphism induced by the element ui ∈ Lm,c for each i = 1, . . . ,m.

The descriptions of the groups PInn(Lm,2) and PInn(Lm,3) of pointwise inner

automorphisms are well known. In the present study, we investigate the group
structure of PInn(Lm,4) of pointwise inner automorphisms of Lm,4 that can

be considered as the next step in this direction.

1. Introduction

Pointwise inner automorphisms of the free metabelian nilpotent Lie algebra Lm,c

forms a group shown by the author [4]. A generating set for the group PInn(Lm,c)
was provided, as well, in the same study: Each automorphism ϕ in PInn(Lm,c) is
of the form

ϕ(xi) = ead(ui)(xi) = (u1, . . . , um)

for some ui ∈ Lm,c, i = 1, . . . ,m. Let us define the set

Ii = {ϕu = (0, . . . , 0, u, 0, . . . , 0) | u ∈ Lm,c}, i = 1, . . . ,m,

consisting of m-tuples where each coordinate except for i-th position is necessarily
filled by zero.

Theorem 1.1. [4] The set Ii is a group for every i = 1, . . . ,m.

Theorem 1.2. [4] The set PInn(Lm,c) of pointwise inner automorphisms of the free
metabelian nilpotent Lie algebra Lm,c forms a group generated by the set I1∪· · ·∪Im.

In the following theorems, the desription of PInn(Lm,2) and PInn(Lm,3) were
given.

Theorem 1.3. [5] Let the nilpotency class c = 2. Then the group PInn(Lm,2) of
pointwise inner automorphisms of the free metabelian Lie algebra Lm,2 is abelian,
and the composition of two pointwise inner automorphisms is given by φuφv = φu+v.
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Theorem 1.4. [5] Let c = 3. Then the group PInn(Lm,3) of pointwise inner
automorphisms of the free metabelian Lie algebra Lm,3 is abelian by nilpotent of
class 2. That is, [[φu, φv], φw] = 0, where [φu, φv] = φuφvφ

−1
u φ−1

v . Furthermore,
the compositon of two pointwise inner automorphisms is given by

ϕuϕv = ϕu+v+
∑

i di[xi,ui1]+
1
2 [uj1,vj1]

where uj1, vj1 are the linear parts of uj , vj in the expression of ϕu = (u1, . . . , um),
ϕv = (v1, . . . , vm), and

d1x1 + · · ·+ dmxm

is the linear part of v.

In the current study, we investigate an analogue of the Theorems 1.3 and 1.4 for
the nilpotency class c = 4.

Note: One may easily observe that a pointwise inner automorphism

ϕ(xi) = (u1, . . . , um)

is inner if and only if u1 = · · · = um. In this respect, the group Inn(Lm,c) of inner
automorphisms is a normal subgroup of PInn(Lm,c). We refer the reader for the
structure of this group to the paper [3]. Additionally, each inner automorphism
of Lm,c preserves every ideal of the Lie algebra Lm,c, and by the paper [6] we
have that such ideal preservative automorphisms are another generalization of inner
automorphims.

2. Preliminaries

The free metabelian nilpotent Lie algebra Lm,c over a field K of characteristic
zero is the free algebra of rank n in the variety of the Lie algebras satisfying the
identities

[[x, y], [z, t]] = 0, and [y1, y2, . . . , yc+1] = 0

for all x, y, z, t, y1, y2, . . . , yc+1 ∈ Lm,c. For more information on the Lie algebra
Lm,c we refer to the books [1, 2]. In this paper, we use the left normed commutators
as below.

[u1, . . . , un−1, un] = [[u1, . . . , un−1], un], n = 3, 4, . . .

For each v ∈ Lm,c, the linear operator adv : Lm,c → Lm,c defined by

adv(u) = [u, v], u ∈ Lm,c,

is a derivation of Lm,c which is nilpotent and adcv = (adv)c = 0 because Lc+1
m,c = 0,

and thus the linear operator

ead(v) = 1 +
adv

1!
+

ad2v

2!
+ · · ·+ adc−1v

(c− 1)!

is well defined and is an automorphism of Lm,c. The set of all automorphisms are

of the form ead(v), v ∈ Lm,c, is called the inner automorphism group of Lm,c and
is denoted by Inn(Lm,c). The group PInn(Lm,c) of pointwise inner automorphisms
can be considered as a generalization of Inn(Lm,c).

Our goal is to consider the group of pointwise inner automorphisms of Lm,4 and
establish multiplication rule in this group for nilpotency class four.
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3. Main Results

Theorem 3.1. Let the nilpotency class c = 4. Then the group PInn(Lm,4) of the
free metabelian Lie algebra Lm,4 is metabelian. This means that

[[φu, φv], [φw, φt]] = 0,

where [φu, φv] = φuφvφ
−1
u φ−1

v .

Proof. In this case each element in Lm,4 is of the form∑
i

cixi +
∑
i>j

cij [xi, xj ] +
∑

i>j≤k

cijk[xi, xj , xk].

Let’s say

u1 =
∑

cixi, u2 =
∑
i>j

cij [xi, xj ], u3 =
∑

i>j≤k

cijk[xi, xj , xk] and

v1 =
∑
i

dixi, v2 =
∑
i>j

dij [xi, xj ], v3 =
∑

i>j≤k

dijk[xi, xj , xk].

φu(x) = x+ [x, u] +
1

2
[x, u1 + u2, u1] +

1

6
[x, u1, u1, u1],

where u = u1 + u2 + u3 and also let v = v1 + v2 + v3. Hence we have

φuφv(x) = φu(x+ [x, v] +
1

2
[x, v1 + v2, v1] +

1

6
[x, v1, v1, v1]).

Consider the following elements:

w = w1 + w2 + w3, where w1 = u1 + v1,

w2 = u2 + v2 + d1[x, u1] +
1

2
[u1, v1] and

w3 = u3 + v3 +
∑
1<i

[x, di1[x, u1]] +
1

12
[v1, u1, u1] +

1

12
[u1, v1, v1].

Then we have

φw(x) = x+[x,w1]+ [x,w2]+
1

2
[x,w1, w1]+ [x,w3]+

1

2
[x,w2, w1]+

1

6
[x,w1, w1, w1].

By some calculations we have the elements

w3 = u3 + v3 +
∑
i<j

di1[xi, [x1, u1]] +
1

12
[v1, u1, u1] +

1

12
[u1, v1, v1]−

1

2
[u1, v1, v1] + d1[x1, u2]− 1

2
[v2, u1] +

1

2
[u2, v1].

And consequently we obtain φuφv = φw1+w2+w3 . �

4. Conclusion

In this study, group structure of the group PInn(Lm,4) was provided via multi-
plication rule in it. The next step might be extending the nilpotency class c ≥ 5,
and obtain new results.
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Abstract. This study considered certain nonlinear third-order stochastic dif-
ferential equations with delay. The third-order equation is reduced to an equiv-

alent system of first-order differential equations and used to construct the
desired complete Lyapunov-Krasovskǐı functional. Standard conditions guar-

anteeing stability when the forcing term is zero, boundedness of solutions when

the forcing term is non-zero, and lastly the existence and uniqueness of solu-
tions are derived. The obtained results indicated that the adopted technique

is effective in studying the qualitative behaviour of solutions. The obtained

results are not only new but extend the frontier of knowledge of the qualitative
behaviour of solutions of nonlinear stochastic differential with delay. Finally,

two special cases are given to illustrate the derived theoretical results.

1. Introduction

In recent years, the studies of stability, boundedness, existence and uniqueness of
solutions of a nonlinear third-order stochastic differential equations with delay have
been discussed and still under intensive investigations by researchers. Some out-
standing works on deterministic model with and without delay using the technique
of Lyapunov, we refer to the papers in [7–10, 12, 14, 18, 25].

In this paper, we shall consider the third-order nonlinear stochastic differential
equation with delay defined as

(1.1)
...
x (t) + aẍ(t) + g(·) + h(x(t− τ(t))) + σx(t− τ(t))ω̇(t) = p(·),

where g(·) = g(x(t− τ(t)), ẋ(t− τ(t))), p(·) = p(t, x(t), ẋ(t), ẍ(t)), for simplicity we
shall write x(t) = x, y(t) = y, and z(t) = z. Assign y = ẋ and z = ẍ equation (1.1)

Date: Received: 2023-08-19; Accepted: 2023-10-14.
Key words and phrases. Existence of solution, Nonlinear stochastic differential equation,

Third-order, Uniform stability, Uniform ultimate boundedness.
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is equivalent to system of first order equations

ẋ = y, ẏ = z,

ż = p(t, x, y, z)− h(x)− g(x, y)− az − σ
[
x−

∫ t

t−τ(t)
y(s)ds

]
ω̇(t)

+

∫ t

t−τ(t)

[
gx(x(s), y(s))y(s) + gy(x(s), y(s))z(s) + h′(x(s))y(s)

]
ds,

(1.2)

where the functions g, h, and p are continuous in their respective arguments on
R2, R, and R+ × R3, respectively with R+ = [0,∞), R = (−∞,∞), and ω ∈ R (a
standard Wiener process, representing the noise) is defined on R3, τ(t) is a continu-
ously differentiable function with 0 ≤ τ(t) ≤ τ0, τ0, a, and σ are positive constants.
The dots denote to differentiation with respect to the independent variable t ∈ R+,
derivatives h′(x), gx(x, y), and gy(x, y) exist and are continuous. Moreover, the
continuity of the functions g, h, and p is sufficient for the existences of the solutions
and the local Lipschitz condition for system (1.2) to obtain a unique continuous
solution represented by (x(t), y(t), z(t)).

Systematic investigations of differential equations of distinct orders, with and
without delay and/or randomness, have been carried out by researchers. In par-
ticular, there are critical inspection on first order system of differential equations,
we can mention the background books and papers in [15–17, 19–21, 24, 27–29].
In addition, researchers in [11] employed the direct method of Lyapunov to obtain
standard criteria on stability and boundedness of solutions of a certain second-order
non-autonomous stochastic differential equation

ẍ(t) + f(x(t), ẋ(t))ẋ(t) + g(x(t)) + γx(t)ω̇(t) = p(t, x(t), ẋ(t)),

where γ is a positive constant, g ∈ C(R,R) f ∈ C(R×R,R), and p ∈ C(R+ ×R×
R,R) are continuous functions. The function g is differentiable and continuous for
all x.

Furthermore, authors in [2] considered stability of solutions of certain second-
order stochastic delay differential equations

ẍ(t)+bẋ(t)+cx(t−ε)+γx(t)ω̇(t) = 0 and ẍ(t)+bẋ(t)+f(x(t−ε))+γx(t−ψ0)ω̇(t) = 0,

where b, c, γ are positive constants, ε and ψ0 are positive constant delays, the func-
tion f is continuous with respect to x with f(0) = 0. What is more, article in [3]
discussed new results on the stability and boundedness for solutions of second-order
stochastic delay differential equation

ẍ(t) + g(ẋ(t)) + bx(t− h) + σx(t)ω̇(t) = p(t, x(t), ẋ(t), x(t− h)),

where b, σ are positive constants, h is a positive constant delay, g and p are con-
tinuous functions with g(0) = 0. In [5], a suitable Lyapunov functional is used to
establish sufficient conditions guaranteeing the existence of stochastic asymptotic
stability of the zero solution of the non-autonomous second-order stochastic delay
differential equation

ẍ(t) + a(t)ẋ(t) + b(t)f(x(t− r)) + g(t, x)ω̇(t) = 0,

where a(t) and b(t) are two positive continuously differentiable functions on [0,∞), r
is a positive constant delay, f(x) and g(t, x) are continuous functions defined on
R and R+ × R respectively with f(0) = 0. Researchers in [6] studied the stability
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and boundedness of solutions to certain nonlinear non autonomous second-order
stochastic delay differential equations

ẍ(t) + ψ(t)f(x(t), ẋ(t))ẋ(t) + g(x(t− τ)) + σx(t)ω̇(t) = p(t, x(t), ẋ(t), x(t− τ)),

where ψ, f, g, p are continuous functions in their respective arguments on R+,R2,R,
R+ × R3 respectively, σ > 0 is a constant, and τ is a positive constant delay. No
doubt, articles [2, 3, 5, 6, 11] are special cases of equation (1.1).

When τ(t) ≡ 0, g(·) ≡ bẋ(t), h(x(t − τ(t))) ≡ cx(t), and x(t − τ(t)) ≡ x(t),
equation (1.1) reduces to the third-order stochastic differential equation discussed
in [1] namely

...
x (t) + aẍ(t) + bẋ+ cx(t) + σx(t)ω̇(t) = p(t, x(t), ẋ(t), ẍ(t)),

where a > 0, b > 0, c > 0, σ > 0 are constants, and p(t, x, ẋ, ẍ) is a continuous
function. Authors in [4] investigated the asymptotic stability of the zero solution
for the third-order stochastic delay differential equations given by

...
x (t) + a1ẍ(t) + g1(ẋ(t− r1(t))) + f1(x(t)) + σ1x(t)ω̇(t) = 0

and

...
x (t) + a2ẍ(t) + f2(x(t))(ẋ(t) + f3(x(t− r2(t))) + σ2x(t− h(t))ω̇(t) = 0,

where a1, a2, σ1, σ2 are positive constants, γ1, γ2 are two positive constants such
that 0 ≤ r1(t) ≤ γ1, 0 ≤ r2(t) ≤ γ2, 0 ≤ h(t), suph(t) = H; g1, f1, f2, and f3 are
continuous functions with g1(0) = f1(0) = f3(0) = 0. The two equations discussed
in [4] are special cases of (1.1) since g(·) ≡ g1(ẋ(t−τ1(t)), h(x(t−τ(t))) ≡ f1(x(t)),
x(t − τ(t)) ≡ x(t), and p(·) ≡ 0 in the first equation and g(·) ≡ f2(x(t))ẋ(t) and
p(·) ≡ 0 in the second equation. Whenever g(·), x(t− τ(t)), and τ(t) are equivalent
to bẋ(t), x(t), and τ > 0 a constant delay respectively then equation (1.1) is cut
down to the third-order stochastic delay differential equations considered in [13]
i.e.,

...
x (t) + aẍ(t) + bẋ(t) + h(x(t− τ)) + σx(t)ω̇(t) = p(t, x(t), ẋ(t), ẍ(t)),

where the constants a, b, σ are positive, h, p are nonlinear continuous functions in
their respective arguments and h(0) = 0, τ > 0 is a delay constant.

In the case g(·), x(t − τ(t)), and p(·) are equivalent to φ(ẋ(t − r(t))), x(t − h),
and 0 respectively then equation (1.1) is trim down to the third-order stochastic
differential equation

...
x (t) + aẍ(t) + φ(ẋ(t− r(t))) + ψ(x(t− r(t))) + σx(t− h)ω̇(t) = 0,

investigated in [22] where a > 0 and σ > 0 are constants, h > 0 is a constant
delay, r(t) is a continuously differentiable function satisfying 0 ≤ r(t) ≤ β1, β1 > 0
a constant, φ and ψ are nonlinear continuous functions defined on R with φ(0) =
ψ(0) = 0. Motivation for this work comes from the works in [1, 4, 13, 22], where
Lyapunov functionals are exploited to acquire asymptotic stability, boundedness,
existence and uniqueness of solutions of the equations considered. Section 2 presents
definitions of terms and basic results used in this paper, stability of the trivial
solutions are stated and proved in Section 3, boundedness and existence results are
communicated in Section 4, and special cases of the theoretical results discussed in
Sections 3 and 4 are presented as examples in Section 5.
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2. Preliminary Results

Let (Ω,F, {Ft}t>0,P) be a complete probability space with a filtration {Ft}t>0

satisfying the usual conditions (i.e., it is right continuous and {F0} contains all
P−null sets). Let B(t) = (B1(t), · · · , Bm(t))T be an m−dimensional Brownian
motion defined on the probability space. Let ‖ · ‖ denotes the Euclidean norm in
Rn. If A is a vector or matrix, its transpose is denoted by AT . If A is a matrix, its
trace norm is denoted by ‖A‖ =

√
trace (ATA). Details can be seen [15] and [23].

Consider a non autonomous n−dimensional stochastic delay differential equation

(2.1) dx(t) = F (t, x(t), x(t− τ))dt+G(t, x(t), x(t− τ))dB(t)

on t > 0 with initial data {x(θ) : −τ ≤ θ ≤ 0}, x0 ∈ C([−τ, 0],Rn). Here F :
R+ × R2n → Rn and G : R+ × R2n → Rn×m are measurable functions. Suppose
that the functions F,G satisfy the local Lipschitz condition, given any b > 0, p ≥ 2,
F (t, 0, 0) ∈ C1([0, b],Rn), and G(t, 0, 0) ∈ Cp([0, b],Rm×n). Then there must be
a stopping time β = β(ω) > 0 such that equation (2.1) with x0 ∈ CpFt0

[class

of Ft-measurable C([−τ, 0],Rn)-valued random variables ξt and E‖ξt‖p < ∞] has
a unique maximal solution on t ∈ [t0, β) which is denoted by x(t, x0). Assume
further that F (t, 0, 0) = G(t, 0, 0) = 0 for all t ≥ 0. Hence, the stochastic delay
differential equation admits zero solution x(t, 0) ≡ 0 for any given initial value
x0 ∈ C([−τ, 0],Rn).

Definition 2.1. The zero solution of the stochastic differential equation (2.1) is
said to be stochastically stable or stable in probability, if for every pair ε ∈ (0, 1)
and r > 0, there exists a δ0 = δ0(ε, r) > 0 such that Pr{‖x(t;x0)‖ < r for all t ≥
0} ≥ 1− ε whenever ‖x0‖ < δ0. Otherwise, it is said to be stochastically unstable.

Definition 2.2. The zero solution of the stochastic differential equation (2.1) is
said to be stochastically asymptotically stable if it is stochastically stable and in
addition if for every ε ∈ (0, 1) and r > 0, there exists a δ = δ(ε) > 0 such that
Pr{limt→∞ x(t;x0) = 0} ≥ 1− ε whenever ‖x0‖ < δ.

Definition 2.3. A solution x(t, x0) of the stochastic delay differential equation
(2.1) is said to be stochastically bounded or bounded in probability, if it satisfies

(2.2) Ex0‖x(t, x0)‖ ≤ N(t0, ‖x0‖), ∀ t ≥ t0
where Ex0 denotes the expectation operator with respect to the probability law
associated with x0, N : R+×R+ → R+ is a constant function depending on t0 and
x0.

Definition 2.4. The solutions x(t0, x0) of the stochastic delay differential equation
(2.1) is said to be uniformly stochastically bounded if N in (2.2) is independent of
t0.

Let K denote the family of all continuous non-decreasing functions ρ : R+ → R+

such that ρ(0) = 0 and ρ(r) > 0 if r 6= 0. In addition, K∞ denotes the family of all
functions ρ ∈ K with

lim
r→∞

ρ(r) =∞.

Suppose that C1,2(R+ × Rn,R+), denotes the family of all non negative functions
V = V (t, xt) (Lyapunov functional) defined on R+ × Rn which are twice continu-
ously differentiable in x and once in t. By Itô’s formula we have

dV (t, xt) = LV (t, xt)dt+ Vx(t, xt)G(t, xt)dB(t),
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where

LV (t, xt) =
∂V (t, xt)

∂t
+
∂V (t, xt)

∂xi
F (t, x(t)) +

1

2
trace [GT (t, xt)Vxx(t, xt)G(t, xt)]

(2.3)

with

Vxx(t, xt) =

(
∂2V (t, xt)

∂xi∂xj

)
n×n

, i, j = 1, · · · , n

In this study we will use the diffusion operator LV (t, xt) defined in (2.3) to replace
V ′(t, x(t)) = d

dtV (t, x(t)). We now present the basic results that will be used in the
proofs of the main results.

Lemma 2.5. (See [15]) Assume that there exist V ∈ C1,2(R+×Rn,R+), and η ∈ K
such that

(i) V (t, 0) = 0, for all t ≥ 0;
(ii) V (t, xt) ≥ η(‖x(t)‖), η(r)→∞ as r →∞; and

(iii) LV (t, xt) ≤ 0 for all (t, x) ∈ R+ × Rn.
Then the zero solution of stochastic delay differential equation (2.1) is stochastically
stable. If conditions (ii) and (iii) hold then (2.1) with x0 ∈ CpFt0

has a unique global

solution for t > 0 denoted by x(t;x0).

Lemma 2.6. (See [15]) Suppose that there exist V ∈ C1,2(R+ × Rn,R+), and
η0, η1, η2 ∈ K such that

(i) V (t, 0) = 0, for all t ≥ 0;
(ii) η0(‖x(t)‖) ≤ V (t, xt) ≤ η1(‖x(t)‖), η0(r)→∞ as r →∞; and

(iii) LV (t, xt) ≤ −η2(‖x(t)‖) for all (t, xt) ∈ R+ × Rn.
Then the zero solution of stochastic delay differential equation (2.1) is uniformly
stochastically asymptotically stable in the large

Assumption 2.7. (See [21, 26]) Let V ∈ C1,2(R+×Rn,R+), suppose that for any
solutions x(t0, x0) of stochastic delay differential equation (2.1) and for any fixed
0 ≤ t0 ≤ T <∞, we have

(2.4) Ex0

{∫ T

t0

V 2
xi

(t, xt)G
2
ik(t, xt)dt

}
<∞, 1 ≤ i ≤ n, 1 ≤ k ≤ m.

Assumption 2.8. (See [21, 26]) A special case of the general condition (2.4) is
the following condition. Assume that there exits a function ρ(t) such that

(2.5) |Vxi
(t, xt)Gik(t, xt)| < ρ(t), x ∈ Rn, 1 ≤ i ≤ n, 1 ≤ k ≤ m,

for any fixed 0 ≤ t0 ≤ T <∞,

(2.6)

∫ T

t0

ρ2(t)dt <∞.

Lemma 2.9. (See [21, 26]) Assume there exists a Lyapunov function V ∈ C1,2(R+×
Rn,R+), satisfying Assumption 2.7, such that for all (t, xt) ∈ R+ × Rn,

(i) ‖x(t)‖p ≤ V (t, xt) ≤ ‖x(t)‖q,
(ii) LV (t, xt) ≤ −α(t)‖x(t)‖r + ψ(t),
(iii) V (t, xt)− V r/q(t, xt) ≤ µ,
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where α,ψ ∈ C(R+,R+), p, q, r are positive constants, p ≥ 1, and µ is a non
negative constant. Then all solutions of stochastic delay differential equation (2.1)
satisfy

(2.7) Ex0‖x(t, x0)‖ ≤
{
V (t0, x0)e

−
∫ t
t0
α(s)ds

+A

}1/p

,

for all t ≥ t0, where

A :=

∫ t

t0

(
µα(u) + ψ(u)

)
e−

∫ t
u
α(s)dsdu.

Lemma 2.10. (See [21, 26]) Assume there exists a Lyapunov function V ∈ C1,2(R+×
Rn,R+), satisfying Assumption 2.7, such that for all (t, x) ∈ R+ × Rn,

(i) ‖x(t)‖p ≤ V (t, xt),
(ii) LV (t, xt) ≤ −α(t)V q(t, xt) + ψ(t),

(iii) V (t, xt)− V q(t, xt) ≤ µ,

where α,ψ ∈ C(R+,R+), p, q are positive constants, p ≥ 1, and µ is a non negative
constant. Then all solutions of stochastic delay differential equation (2.1) satisfy
(2.7) for all t ≥ t0.

Corollary 2.11. (See [21, 26])

(i) Assume that hypotheses (i) to (iii) of Lemma 2.9 hold. In addition

(2.8)

∫ t

t0

(
µα(u) + ψ(u)

)
e−

∫ t
u
α(s)dsdu ≤M, ∀ t ≥ t0 ≥ 0,

for some positive constant M, then all solution of stochastic delay differen-
tial equation (2.1) are uniformly stochastically bounded.

(ii) Assume the hypotheses (i) to (iii) of Lemma 2.10 hold. If condition (2.8)
is satisfied, then all solutions of stochastic delay differential equation (2.1)
are stochastically bounded.

3. Stability of the Trivial Solution

We now present stability results of the trivial solution as follows. When p(·) ≡ 0,
(1.1) becomes

(3.1)
...
x (t)+aẍ(t)+g(x(t−τ(t)), ẋ(t−τ(t)))+h(x(t−τ(t)))+σx(t−τ(t))ω̇(t) = 0.

As usual, by assigning y = ẋ and z = ẍ equation (3.1) is stepped down to equivalent
system of first order differential equations

ẋ = y, ẏ = z, ż = −h(x)− g(x, y)− az − σ
[
x−

∫ t

t−τ(t)
y(s)ds

]
ω̇(t)

+

∫ t

t−τ(t)

[
gx(x(s), y(s))y(s) + gy(x(s), y(s))z(s) + h′(x(s))y(s)

]
ds,

(3.2)
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where the functions h and g are continuous in their respective arguments. For
the purpose of this investigation, a continuously differential scalar functional con-
structed is defined as

V = V (t,Xt) = α

∫ x

0

h(s)ds+
1

2
βbx2 +

1

2
(αa+ γbc+ c)y2 +

1

2
(a+ γc)z2

+ a2bxy + γcyh(x) + βxz + αyz +

∫ 0

−τ(t)

∫ t

t+s

(λ1y
2(θ) + λ2z

2(θ))dθds,

(3.3)

where a > 0, b > 0, c > 0, α := a2+ac+c2, β := ab−c, γ := 1+b are constants, h, g
are continuous functions, positive constants λi (i = 1, 2) will be verified latter, the
function τ(t) ≤ τ0 for τ0 > 0, and Xt = xt, yt, zt. We have the following stability
results.

Theorem 3.1. In addition to the basic assumption on the functions g and h,
suppose that a, b, c, c0, k1, k2, k3, β1 are positive constants such that

(i) h(0) = 0, c0 ≤
h(x)

x
for all x 6= 0;

(ii) g(0, 0) = 0, b ≤ g(x, y)

y
for all x and y 6= 0;

(iii) h′(x) ≤ c for all x, ab− c > 0, σ2 <
2(ab− c)c0
a+ (b+ 1)c

;

(iv) a2b(a+cγ) > αβ, bβ(aα+c) > a4b2, (aα+c)(a+cγ) > α2, a2bα > β(aα+c),
bβ
[
(aα+ c)(a+ cγ)− α2

]
+ β

[
a2bα− β(aα+ c)

]
> a2b

[
a2b(a+ cγ)− αβ

]
;

and
(v) |h′(x)| ≤ k1, |gx(x, y)| ≤ k2, |gy(x, y)| ≤ k3.

Then the trivial solution of system (3.2) is asymptotically stable, provided that

(3.4) β1 < min

{
2(ab− c)c0 − (a+ cγ)σ2

2B3
,

(ab− c)c
B4

,
(ab− c)c

B5

}
where

B3 := k0(k1 + k2 + k3)− (a+ γc)σ2,

B4 :=
[
3k0(k1 + k2) + (a+ cγ)σ2 + k0(k1 + k2 + k3)(1− β0)

]
/(1− β0),

B5 :=
(
3k0k3 + k0(k1 + k2 + k3)(1− β0)

)
/(1− β0), and

k0 := max{α, β, (a+ cγ)}.

Since asymptotic stability implies stability we have the following result.

Corollary 3.2. If all assumptions of Theorem 3.1 hold true, then the trivial solu-
tion of system (3.2) is stable if estimate (3.4) holds.

In what follows we present uniform asymptotic stability results.

Theorem 3.3. Further to the basic assumption on the functions g and h, suppose
that a, b, b1, c, c0, c1, k0, k1, k2, and k3 are positive constants such that

(i) h(0) = 0, c0 ≤
h(x)

x
≤ c1 for all x 6= 0;

(ii) g(0, 0) = 0, b ≤ g(x, y)

y
≤ b1 for all x and y 6= 0;

(iii) h′(x) ≤ c for all x, ab− c > 0, σ2 <
2(ab− c)c0
a+ (b+ 1)c

;
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(iv) a2b(a+cγ) > αβ, bβ(aα+c) > a4b2, (aα+c)(a+cγ) > α2, a2bα > β(aα+c),
bβ
[
(aα+ c)(a+ cγ)− α2

]
+ β

[
a2bα− β(aα+ c)

]
> a2b

[
a2b(a+ cγ)− αβ

]
;

and
(v) |h′(x)| ≤ k1, |gx(x, y)| ≤ k2, |gy(x, y)| ≤ k3;

Then the trivial solution of system (3.2) is uniformly asymptotically stable provided
that inequality (3.4) holds.

Next, the following corollary is immediate from Theorem 3.3.

Corollary 3.4. If all assumptions of Theorem 3.3 hold, then the trivial solution of
system (3.2) is uniformly stable provided that inequality (3.4) holds.

To show that (3.3) is indeed a Lyapunov functional we need to state and prove
two lemmas.

Lemma 3.5. Under the assumptions of Theorem 3.3 there exist positive constants
E1 and E2 such that

(3.5) E1(x2 + y2 + z2) ≤ V (t,Xt) ≤ E2(x2 + y2 + z2),

for all t ≥ 0, x, y, and z. Moreover,

(3.6) V (t,Xt)→ +∞ as x2 + y2 + z2 →∞.

Proof. To prove this lemma we shall show that V (t,0) = 0 where 0 = (0, 0, 0),
V (t,Xt) is positive semi-definite, decrescent (or have an infinitesimal small upper-
bound), and radially unbounded. To see these, equation (3.3) shows that

(3.7) V (t,0) = 0,

for all t ≥ 0. Following, equation (3.3) can be represented in the form V =
3∑
j=1

Vj

where

V1 := α

∫ x

0

h(s)ds+
1

2
bcγy2 + cγyh(x);

V2 :=
1

2
bβx2 +

1

2

[
aα+ c

]
y2 +

1

2

[
a+ cγ

]
z2 + a2bxy + βxz + αyz; and

V3 :=

∫ 0

−τ(t)

∫ t

t+s

[
λ1y

2(θ) + λ2z
2(θ)

]
dθds.

Now the last two terms of V1 can be represented as

(3.8a)
1

2
bcγy2 + cγyh(x) =

1

2
bcγ
[
y + b−1h(x)

]2 − 1

2
b−1cγh2(x).

Also, since h2(x) = 2
∫ x
0
h′(s)h(s)ds+ h2(0) and h(0) = 0, it follows that

α

∫ x

0

h(s)ds = α

∫ x

0

h(s)ds− 1

2
b−1cγh2(x) +

1

2
b−1cγh2(x)

=
1

b

∫ x

0

[
bα− cγh′(s)

]
h(s)ds+

1

2
b−1cγh2(x).

(3.8b)

Adding equations (3.8a) and (3.8b) we have

V1 =
1

b

∫ x

0

[
bα− cγh′(s)

]
h(s)ds+

1

2
bcγ
[
y + b−1h(x)

]2
.
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Hypotheses (i) and (iii) of Theorem 3.3 result to

V1 ≥
1

2b
c0[bα− c2γ]x2 +

1

2
bcγ[y + b−1c0x]2 ≥ 1

2b
c0[bα− c2γ]x2,

since 1
2bcγ[y + b−1c0x]2 ≥ 0 for all x, y. The basic assumptions imply that

bα− c2γ = b(a2 + ac+ c2)− (b+ 1)c2 = a2b+ cβ > 0.

Thus

V1 ≥
1

2b
c0[a2b+ cβ]x2, for all x.

Next,

V2 =
1

2
bβx2 +

1

2
[aα+ c]y2 +

1

2
[a+ cγ]z2 + a2bxy + βxz + αyz;

can be represented as 2V2 := XAXT where X =
(
x y z

)
, XT is the transpose of

X, and

A :=

 bβ a2b β
a2b aα+ c α
β α a+ cγ

 .

We need to show that the determinant of the principal minors of matrix A (i.e.,
|A1|, |A2|, and |A3|,) are positive. The basic assumptions indicate that

|A1| := bβ > 0.

Hypothesis (iv) gives raise to

|A2| :=
∣∣∣∣ bβ a2b
a2b aα+ c

∣∣∣∣ = bβ(aα+ c)− a4b2 > 0,

and

|A3| = |A| :=

∣∣∣∣∣∣
bβ a2b β
a2b aα+ c α
β α a+ cγ

∣∣∣∣∣∣ = bβ
[
(aα+ c)(a+ cγ)− α2

]
+ β

[
a2bα− β(aα+ c)

]
− a2b

[
a2b(a+ cγ)− αβ

]
> 0.

Since all principal minors of matrix A are positive, then A is positive definite and
a constant θ1 = θ1(a, b, c) > 0 exists such that

V2 ≥ θ1(x2 + y2 + z2) for all x, y, z.

Next, the double integrals in V3 are obviously positive, thus there exist a constant
µ > 0 such that

V3 =

∫ 0

−τ(t)

∫ t

t+s

[λ1y
2(θ) + λ2z

2(θ)]dθds ≥ µ(y2 + z2).

combining the Vi(i = 1, 2, 3) there exists a positive constant θ2 such that

(3.9) V ≥ θ2(x2 + y2 + z2)

for all t ≥ 0, x, y, and z where

θ2 = θ1 ·min

{
1

2b
c0[a2b+ cβ], µ

}
.

Inequality (3.9) establishes the lower inequality in (3.5) with θ2 equivalent to E1,
hence by inequality (3.9), the function V (t,Xt) is positive semi-definite.
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Moreover, from inequality (3.9), we have the following relations

(3.10a) V (t,Xt) = 0 ⇐⇒ x2 + y2 + z2 = 0,

(3.10b) V (t,Xt) > 0 ⇐⇒ x2 + y2 + z2 6= 0,

it validly follows from equation (3.10a) and estimate (3.10b) that

(3.10c) V (t,Xt)→ +∞ as x2 + y2 + z2 →∞,

so that the function V (t,Xt) is radially unbounded. In addition, assumptions (i)

and (ii) of Theorem 3.3, the obvious inequality 2ab ≤ a2+b2, the fact that
h(x)

x
≤ c1

for all x 6= 0, and since τ(t) ≤ τ0, equation (3.3) becomes

V (t,Xt) ≤
1

2
(c1α+ bβ + a2b+ cc1γ + β)‖x‖2 +

1

2
(aα+ bcγ + c+ a2b+ cc1γ + α

+ λ1τ
2
0 )‖y‖2 +

1

2
(a+ cγ + β + α+ λ1τ

2
0 )‖z‖2.

In view of the last inequality, there exist a positive constant θ3 such that

(3.11) V (t,Xt) ≤ θ3(x2 + y2 + z2)

for all t ≥ 0, x, y, and z where

θ3 :=
1

2
max{c1α+ bβ + a2b+ cc1γ + β, aα+ bcγ + c+ a2b+ cc1γ + α

+ λ1τ
2
0 , a+ cγ + β + α+ λ1τ

2
0 }.

Inequality (3.11) fulfils the upper inequality in (3.5) with θ3 equivalent to E2, thus
the functional V (t,Xt) has an infinitesimal small upper bound. This completes the
prove of Lemma 3.5. �

The following lemma establishes the derivative of the functional V (t,Xt) defined
by (3.3), using Itô’s formula defined by equation (2.3).

Lemma 3.6. Under the assumption of Theorem 3.1 there exists a positive constant
E3 such that along the solution path of system (3.2)

(3.12) LV (t,Xt) ≤ −E3(x2 + y2 + z2), ∀ x, y, z.

Proof. The first partial derivative of the functional V (t,Xt) along the solution path
of (3.2) is

LV(3.2)(t,Xt) = −1

2
V4 − V5 + V6 + (λ1y

2 + λ2z
2)τ(t)

− (1− τ ′(t))
∫ t

t−τ(t)
[λ1y

2(θ) + λ2z
2(θ)]dθ,

(3.13)
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where

V4 =

(
β
h(x)

x
− a+ cγ

2
σ2

)
x2 +

(
α
g(x, y)

y
− (a2b+ cγh′(x))

)
y2 +

(
a(a+ cγ)− α

)
z2;

V5 =
1

2

(
β
h(x)

x
− a+ cγ

2
σ2

)
x2 +

1

2

(
α
g(x, y)

y
− (a2b+ cγh′(x))

)
y2 +

1

2

(
a(a+ cγ)− α

)
z2

+ β

(
g(x, y)

y
− b
)
xy +

(
aβ + a− a2b

)
xz +

[
(a+ cγ

g(x, y)

y
− β − bcγ − c)

]
yz; and

V6 =
[
βx+ αy + (a+ cγ)z

] ∫ t

t−τ(t)
[h′(·)y(s) + gx(·)y(s) + gy(·)z(s)]ds

− σ2(a+ cγ)x

∫ t

t−τ(t)
y(s)ds+

1

2
σ2

∫ t

t−τ(t)
y2(s)ds.

Hypotheses (i) to (iii) of Theorem 3.1 the following inequalities hold:

β
h(x)

x
− a+ cγ

2
σ2 ≥ c0β −

a+ cγ

2
σ2;

α
g(x, y)

y
− (a2b+ cγh′(x)) ≥ (a2 + ac+ c2)b− a2b− bc2 − c2 = abc− c2;

a(a+ cγ)− α ≥ a2 + ac(b+ 1)− (a2 + ac+ c2) = abc− c2.

(3.14)

Estimate (3.14) gives rise to

V4 ≥
[(
ab− c

)
c0 −

a+ cγ

2
σ2
]
x2 +

(
abc− c2

)
y2 +

(
abc− c2

)
z2,

for all t ≥ 0, x, y, z. Let V5 =
3∑
i=1

V5i where

V51 :=
1

4

(
β
h(x)

x
− (a+ cγ)

2
σ2

)
x2 + β

(
g(x, y)

y
− b
)
xy +

1

4

(
αg(x, y)

y

− (a2b+ cγh′(x))

)
y2;

V52 :=
1

4

(
β
h(x)

x
− (a+ cγ)

2
σ2

)
x2 + (aβ + a− a2b)xz +

1

4

(
a(a+ cγ)− α

)
z2; and

V53 :=
1

4

(
α
g(x, y)

y
− (a2b+ cγh′(x))

)
y2 +

(
(a+ cγ)

g(x, y)

y
− β − bcγ − c

)
yz

+
1

4

(
a(a+ cγ)− α

)
z2.

Note that V5i (i = 1, 2, 3) is a quadratic function with coefficients of x2, y2, and z2

positive, using Hessian matrix, we obtain(
β
h(x)

x
− (a+ cγ)

2
σ2

)(
α
g(x, y)

y
− (a2b+ cγh′(x))

)
> 4β2

(
g(x, y)

y
− b
)2

;(
β
h(x)

x
− (a+ cγ)

2
σ2

)(
a(a+ cγ)− α

)
> 4

(
aβ + a− a2b

)2

; and(
α
g(x, y)

y
− (a2b+ cγh′(x))

)(
a(a+ cγ)− α

)
> 4

(
(a+ cγ)

g(x, y)

y
− β − bcγ − c

)2

.
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Applying these estimates in V5i to give the following inequalities:

V51 ≥
[√

1

4

(
β
h(x)

x
− (a+ cγ)

2
σ2
)
|x|+

√
1

4

(
α
g(x, y)

y
− (a2b+ cγh′(x))

)
|y|
]2

≥ 0,∀ t ≥ 0, x, y;

V52 ≥
[√

1

4

(
β
h(x)

x
− (a+ cγ)

2
σ2
)
|x|+

√
1

4

(
a(a+ cγ)− α)

)
|z|
]2
≥ 0,∀ t ≥ 0, x, z; and

V53 ≥
[√

1

4

(
α
g(x, y)

y
− (a2b+ cγh′(x))

)
|y|+

√
1

4

(
a(a+ cγ)− α)

)
|z|
]2
≥ 0,∀ t ≥ 0, y, z.

These last three inequalities assure

V5 ≥ 0, ∀ t ≥ 0, x, y, z.

Apply the following inequality 2xy ≤ 2|xy| ≤ x2+y2 and hypothesis (iv) of Theorem
3.1 give.

V6 ≤
k0(k1 + k2 + k3)

2
(x2 + y2 + z2)τ(t) +

1

2

∫ t

t−τ(t)

[
3k0(k1 + k2) + (a+ cγ)σ2

]
y2(s)ds

+
3k0k3

2

∫ t

t−τ(t)
z2(s)ds+

1

2
(a+ cγ)σ2x2τ(t),

where k0 := max{α, β, (a + cγ)}. Utilizing inequalities V4, V5, and V6 in equation
(3.12) we obtain

LV(3.2)(t,Xt) ≤ −
1

2

[
(ab− c)c0 −

a+ cγ

2
σ2 −

(
k0(k1 + k2 + k3)

+ (a+ cγ)σ2

)
τ(t)

]
x2 − 1

2

[
(ab− c)c−

(
2λ1 + k0(k1 + k2 + k3)

)
τ(t)

]
y2

− 1

2

[
(ab− c)c−

(
2λ2 + k0(k1 + k2 + k3)

)
τ(t)

]
z2

−
(
λ1[1− τ ′(t)]− 3

2
k0(k1 + k2)− 1

2
(a+ cγ)σ2

)∫ t

t−τ(t)
y2(s)ds

−
(
λ2[1− τ ′(t)]− 3

2
k0k3

)∫ t

t−τ(t)
z2(s)ds.

(3.15)

Let τ ′(t) ≤ β0, β0 ∈ (0, 1), τ(t) ≤ β1, suppose λ1 :=
[
3k0(k1+k2)+(a+cγ)σ2

][
2(1−

β0)
]−1

> 0, and λ2 := 3k0k3
[
2(1− β0)

]−1
> 0 so estimate (3.15) becomes

LV(3.2)(t,Xt) ≤ −
1

2

[
(ab− c)c0 −

a+ cγ

2
σ2

−
(
k0(k1 + k2 + k3)− (a+ γc)σ2

)
β1

]
x2

− 1

2

[
(ab− c)c−

([
3k0(k1 + k2) + (a+ cγ)σ2

1− β0

]
+ k0(k1 + k2 + k3)

)
β1

]
y2

− 1

2

[
(ab− c)c−

((
3k0k3
1− β0

)
+ k0(k1 + k2 + k3)

)
β1

]
z2.

(3.16)



74 R.O. BANIRE, O.O. FABELURIN, P.O. ARAWOMO, A.T. ADEMOLA, AND M.O. OMEIKE

Inequalities (3.4) and (3.16) invoke the existence of a positive constant k4 such that

(3.17) LV(3.2)(t,Xt) ≤ −k4(x2 + y2 + z2)

for all t ≥ 0, x, y, and z where

k4 :=
1

2
min

{
(ab− c)c0 −

a+ cγ

2
σ2 −

(
k0(k1 + k2 + k3)− (a+ γc)σ2

)
β1,

(ab− c)c−
([

3k0(k1 + k2) + (a+ cγ)σ2

1− β0

]
+ k0(k1 + k2 + k3)

)
β1,

(ab− c)c−
((

3k0k3
1− β0

)
+ k0(k1 + k2 + k3)

)
β1

}
.

Inequality (3.17) satisfies estimate (3.12) with k4 equivalent to E3, hence Lemma
3.6 is proved. �

Proof of Theorems 3.1. Suppose (Xt) is any solution of (3.2), the functional
V (t,Xt) defined in (3.3) satisfies equation (3.7), estimates (3.9), (3.10c), and (3.17),
so that conditions (i), (ii), and (iii) of the Lemma 2.5 are satisfied, hence by Lemma
2.5 the solution of (3.2) is stochastically asymptotically stable. �

Proof of Theorems 3.3. Given that (Xt) is any solution of (3.2) and the func-
tional V (t,Xt) defined in (3.3) satisfies equation (3.7), estimates (3.9), (3.10c),
(3.11), and (3.17), fulfil assumptions (i), (ii), and (iii) of the Lemma 2.6, hence
by Lemma 2.6 the solution of (3.2) is uniformly stochastically asymptotically sta-
ble. �

4. Boundedness and Existence Results

Furthermore, if p(t, x, y, z) 6= 0 in system (1.2), we have the following bounded-
ness and ultimate boundedness results

Theorem 4.1. Suppose conditions (i) to (iv) and inequality (3.4) of Theorem
3.1 hold and in addition, if |p(t, x, y, z)| ≤ P0 where P0 is a finite constant, then
the solutions (Xt) of system (1.2) are not only stochastically bounded but also
stochastically ultimately bounded.

Proof. Let (Xt) be any solution of system (1.2), by applying the Itô’s formula on
the functional defined in (3.3), along the solution path of (1.2), results to

LV(1.2)(t,Xt) = LV(3.2)(t,Xt) +
[
βx+ αy + (a+ cγ)z

]
p(t, x, y, z).

Now from estimate (3.17) we find that

LV(1.2)(t,Xt) ≤ −k4(x2 + y2 + z2) + k5(|x|+ |y|+ |z|)|p(t, x, y, z)|

where k5 = max{β, α, (a+ cγ)}. Since |p(t, x, y, z)| ≤ P0 for all t ≥ 0, x, y, and z, it
follows that

LV(1.2)(t,Xt) ≤ −
1

2
k4(x2 + y2 + z2) + P0k

−1
4 k25 −

1

2
k4P0

[
(|x| − k−14 k5)2

+ (|y| − k−14 k5)2 + (|z| − k−14 k5)2
]
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∀ t ≥ 0, x, y, and z. Since k4 and P0 are positive constants and (|x| − k−14 k5)2 +
(|y| − k−14 k5)2 + (|z| − k−14 k5)2 ≥ 0 for all x, y, and z. Therefore there exist positive
constants k6 and k7 such that

(4.1) LV(1.2)(t,Xt) ≤ −k6(x2 + y2 + z2) + k7

where k6 = 1
2k4 and k7 = P0k

−1
4 k25 for all t ≥ 0, x, y, and z. Estimate (3.11) implies

that θ−13 V (t,Xt) ≤ (x2 + y2 + z2) for all t ≥ 0, x, y, and z. The last estimate and
inequality (4.1) result to

(4.2) LV(1.2)(t,Xt) ≤ −k8V (t,Xt) + k7

for all t ≥ 0, x, y, and z where k8 := k6θ
−1
3 . Inequality (4.2) fulfills condition (ii) of

Lemma 2.10 with α(t) = k8, ψ(t) = k7, q = 1.
Furthermore, the lower inequality (3.5) (or estimate (3.9)) satisfies hypothesis

(i) of Lemma 2.10. Now by estimate (4.2), we have q = 1, this implies that µ = 0,
so that hypothesis (iii) of Lemma 2.10 holds. Substituting the values of α,ψ, and
µ in (2.8), to find that

(4.3)

∫ t

t0

(µα(u) + ψ(u))e−
∫ t
u
α(s)dsdu = k7k

−1
6 [1− e−k6(t−t0)] ≤ k7k−16

for all t ≥ t0 ≥ 0, inequality (4.3) satisfies estimate (2.8) of Corollary 2.11 with
M = k7k

−1
6 > 0.

Also, to verify inequalities (2.5) and (2.6) of Assumption 2.8 (a special case of
Assumption 2.7). System (1.2) and the Lyapunov functional (3.3) result to

|Vxi(t,Xt)Gik(t,Xt)| ≤
1

2
σ

{
[2β + α+ (a+ cγ) + k5β1]‖x‖2 + [α+ k5β1]‖y‖2+

[(a+ cγ) + k5β1]‖z‖2 +
3

4
k5σβ

2
1‖y‖2

}
.

In view of the above inequality there exists a positive constant k9 such that

|Vxi(t,Xt)Gik(t,Xt)| ≤ k9(x2 + y2 + z2),

and for 0 ≤ t0 ≤ T <∞ and ∫ T

t0

ρ2(s)ds <∞

where ρ(t) := k9(x2 + y2 + z2)(t) and k9 := 1
2σmax

{
α + 2β + a+ cγ + k5β1, α +

k5β1 + 3
4k5σβ

2
1 , a+ cγ + k5β1

}
. Thus, Assumption 2.7 is satisfied, i.e.,

(4.4) Ex0

{∫ T

t0

V 2
xi

(t,Xt)G
2
ik(t,Xt)dt

}
<∞.

Hypotheses (i) to (iii) of Lemma 2.10 and estimate (2.8) hold true so that Corollary
2.11 (ii) follows, hence by Corollary 2.11 (ii) all solutions of (1.2) are not only
bounded but also ultimately stochastically bounded. �

Next theorem presents uniform stochastic boundedness and uniform ultimate
stochastic boundedness of solutions of system (1.2).
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Theorem 4.2. Suppose that conditions (i) to (v) of Theorem 3.3 and inequality
(3.4) are satisfied and in addition |p(t, x, y, z)| < P0 where P0 is a finite constant,
then the solutions (Xt) of system (1.2) are not only uniform stochastically bounded
but also uniformly ultimately stochastically bounded.

Proof. Given that (Xt) is any solution of the system (1.2) and the functional (3.3)
satisfy inequalities (3.9), (3.11), (4.1) so that hypotheses (i) and (ii) of Lemma 2.9
hold. Also with p = q = r = 2 we have µ = 0 so that hypothesis (iii) of Lemma 2.9
holds. In addition, the inequalities (4.3) and (4.4) together with Lemma 2.9 satisfy
the hypothesis of Corollary 2.11(i), hence by Corollary 2.11(i) the solutions of sys-
tem (1.2) are not only uniform stochastically bounded, but also uniform ultimately
stochastically bounded. �

Next, we shall state and prove an existence and uniqueness theorem as follows.

Theorem 4.3. If assumptions of Theorem 4.1 are satisfied, then there exists a
unique solution of system (1.2).

Proof. Let (Xt) be any solution of (1.2), the functional defined in (3.3) satisfy the
following estimates (3.9), (3.10c), and (3.17), these inequalities successfully satisfy
all assumptions of Lemma 2.5 thus by Lemma 2.5 solution of system (1.2) exists
and unique. Hence, the proof of Theorem 4.3 is completed. �

Next, we shall consider arbitrary third-order stochastic differential equations
with delay and show that all assumptions of Theorems 3.1, 3.3, 4.1, 4.2, and 4.3
hold true.

5. Examples

Example 5.1. Consider the third-order stochastic differential equation

...
x (t) + aẍ(t) +

[
3xẋ(t− τ(t)) +

(
ẋ(t− τ(t))

2 + x2(t− τ(t)) + ẋ2(t− τ(t))

)]
+

[
x(t− τ(t)) +

(
x(t− τ(t))

1 + x2(t− τ(t))

)]
+ σx(t− τ(t))ω̇(t) = 0.

(5.1)

Assign y = ẋ and z = ẍ equation (5.1) is equivalent to system of first order equations

ẋ = y, ẏ = z,

ż = −
(

2x+ x3

1 + x2

)
−
[

3(2y + x2y + y3) + y

2 + x2 + y2

]
− az − σ

[
x−

∫ t

t−τ(t)
y(s)ds

]
+

∫ t

t−τ(t)

{[
1 +

1

1 + x2(s)
− 2x2(s)

(1 + x2(s))2

]
y(s)− 2x(s)y2(s)

(2 + x2(s) + y2(s))2

+

[
3 +

1

2 + x2(s) + y2(s)
− 2y2(s)

(2 + x2(s) + y2(s))2

]
z(s)

}
ds.

(5.2)

Now, comparing equations (3.2) with (5.2) the following relations hold:

(i) The function h(x) :=
x(2 + x2)

1 + x2
= x+

x

1 + x2
, clearly h(0) = 0 and

h(x)

x
=

1 +
1

1 + x2
. Since 1 + x2 ≥ 1 for all x, it follows 0 <

1

1 + x2
≤ 1 for all x.
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Further simplification of the last inequality gives

1 = c0 ≤
h(x)

x
≤ c1 = 2 ∀ x 6= 0.

(ii) The derivative of h = h(x) with respect to x is defined as h′(x) := 1 +
1

1 + x2
− 2x2

(1 + x2)2
. Since 2x2(1+x2)−2 ≥ 0 for all x and by (i) to find that

(5.3) h′(x) ≤ c = 2, ∀ x.

Moreover,

(5.4) |h′(x)| ≤ k1 = 2, ∀ x.

See Figure 1 for the coincide bounds on h′(x) and |h′(x)|. Inequalities (5.3)
and (5.4) hold true for all x ∈ R.

Figure 1. Upper bound on the functions h′(x) and |h′(x)| for x ∈ [−10, 10]

(iii) The function g = g(x, y) is defined as g(x, y) := 3y+
y

2 + x2 + y2
.Obviously,

g(0, 0) = 0 and that
g(x, y)

y
= 3 +

1

2 + x2 + y2
. It is not difficult to show

that 3 = b ≤ g(x, y)

y
≤ b1 = 3 1

2 ∀ x, y 6= 0.

(iv) The first partial derivatives of g with respect to x and y are given by

gx(x, y) :=
−2xy

(2 + x2 + y2)2
and gy(x, y) := 3+

1

2 + x2 + y2
− 2y2

(2 + x2 + y2)2

respectively, and is easy to see that

(5.5a) |gx(x, y)| ≤ k2 = 0.12

for all x, y, and

(5.5b) |gy(x, y)| ≤ k3 = 3.5

for all x, y. Figures 2 and 3 confirm estimates (5.5a) and (5.5b) respectively
for −2 ≤ x, y ≤ 2.
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Figure 2. Bound on the function |gx(x, y)| for x, y ∈ [−2, 2]

Figure 3. Bound on the function |gy(x, y)| for x, y ∈ [−2, 2]

Since b = 3, c = 2, and c0 = 1 it follows from the inequality ab − c > 0

that a > 2/3 ≈ 0.7, we choose a = 0.8 and σ2 <
2(ab− c)c0
a+ (b+ 1)c

so that

σ < 0.3 we choose σ = 0.29. The following assumptions are verified as

α := a2 + ac+ c2 = 6.24 > 0, β := ab− c = 0.4 > 0, and γ := 1 + b = 4 > 0,

k0 = max{6.24, 0.4, 8.8} = 8.8 > 0, a2b(a+ cγ)− αβ = 14.4 > 0,

bβ(aα+ c)− a4b2 = 4.704 > 0, (aα+ c)(a+ cγ)− α2 = 22.592 > 0,

a2bα− β(aα+ c) = 9.184 > 0, bβ
[
(aα+ c)(a+ cγ)− α2

]
+ β

[
a2bα− β(aα+ c)

]
− a4b2(a+ cγ) + a2bαβ = 3.136 > 0, B3 := k0(k1 + k2 + k3)− (a+ γc)σ2 = 48.7159 > 0.

Next, since 0 < β0 < 1 two cases are to be considered:
Case 1: When β0 = 0.001, we have the following estimates:

B4 :=
[
3k0(k1 + k2) + (a+ cγ)σ2 + k0(k1 + k2 + k3)(1− β0)

]
/(1− β0) = 106.2208 > 0, and

B5 :=
(
3k0k3 + k0(k1 + k2 + k3)(1− β0)

)
/(1− β0)141.9485.

In this case the inequality (3.4) yields
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β1 < min

{
2(ab− c)c0 − (a+ (b+ 1)c)σ2

2B3
,

(ab− c)c
B4

,
(ab− c)c

B5

}
= min{6.1× 10−4, 7.5× 10−3, 5.6× 10−3}
= 6.1× 10−4

(5.6)

Case 2: When β0 = 0.999 we have the following estimates:

B4 :=
[
3k0(k1 + k2) + (a+ cγ)σ2 + k0(k1 + k2 + k3)(1− β0)

]
/(1− β0) = 56757.536 > 0, and

B5 :=
(
3k0k3 + k0(k1 + k2 + k3)(1− β0)

)
/(1− β0) = 92449.456 > 0.

In this case inequality (3.4) yields

β1 < min{6.1× 10−4, 1.4× 10−5, 8.6× 10−6} = 8.6× 10−6(5.7)

Thus in both cases β1 is positive, hence for system (5.2) we have the following
remark

Remark 5.2. If there exist positive constants 0.12, 1, 2, 3, and 3.5 such that

(i) h(0) = 0, 1 = c0 ≤
h(x)

x
≤ c1 = 2 for all x 6= 0;

(ii) g(0, 0) = 0, 3 = b ≤ g(x, y)

y
≤ b1 = 3.5 for all x and y 6= 0;

(iii) h′(x) ≤ c = 2 for all x, ab− c = 0.4 > 0, σ = 0.29 > 0;
(iv) a2b(a+ cγ)− αβ = 14.4 > 0, bβ(aα + c)− a4b2 = 4.704 > 0, (aα + c)(a+

cγ)−α2 = 22.592 > 0, a2bα−β(aα+ c) = 9.184 > 0, bβ
[
(aα+ c)(a+ cγ)−

α2
]

+ β
[
a2bα− β(aα+ c)

]
− a2b

[
a2b(a+ cγ)− αβ

]
= 3.136 > 0; and

(v) |h′(x)| ≤ k1 = 2, |gx(x, y)| ≤ k2 = 0.12, |gy(x, y)| ≤ k3 = 3.5;

Then the trivial solution of system (5.2) is stochastically stable, asymptotically
stochastically stable, uniformly stochastically stable, and uniform asymptotically
stochastically stable provided that 8.6× 10−6 ≤ β1 ≤ 6.1× 10−4.

Finally, we shall consider the case p(·) 6= 0.

Example 5.3. Consider the third-order stochastic differential equation

...
x (t) + aẍ(t) +

[
3xẋ(t− τ(t)) +

(
ẋ(t− τ(t))

2 + x2(t− τ(t)) + ẋ2(t− τ(t))

)]
+

[
x(t− τ(t)) +

(
x(t− τ(t))

1 + x2(t− τ(t))

)]
+ σx(t− τ(t))ω̇(t)

=
1

10 + t2 + x2 + ẋ2 + ẍ2
,

(5.8)
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Assign y = ẋ and z = ẍ equation (5.1) is equivalent to system of first order equations

ẋ = y, ẏ = z,

ż = −
(

2x+ x3

1 + x2

)
−
[

3(2y + x2y + y3) + y

2 + x2 + y2

]
− az − σ

[
x−

∫ t

t−τ(t)
y(s)ds

]
+

∫ t

t−τ(t)

{[
1 +

1

1 + x2(s)
− 2x2(s)

(1 + x2(s))2

]
y(s)− 2x(s)y2(s)

(2 + x2(s) + y2(s))2

+

[
3 +

1

2 + x2(s) + y2(s)
− 2y2(s)

(2 + x2(s) + y2(s))2

]
z(s)

}
ds

+
1

10 + t2 + x2 + y2 + z2
.

(5.9)

Now comparing (1.2) with (5.9) items (i) to (v) of Remark 5.2 hold. In addition

p(t, x, y, z) :=
1

10 + t2 + x2 + y2 + z2
. Since 10 + t2 + x2 + y2 + z2 ≥ 10 for all

t ≥ 0, x, y, and z there exists a finite constant P0 such that |p(t, x, y, z)| < P0 = 1
10

for all t ≥ 0, x, y, and z.

Remark 5.4. If in addition to the hypotheses of Theorem 5.2, there exists a finite
constant 1/10 such that |p(t, x, y, z)| < P0 = 1

10 for all t ≥ 0, x, y, and z, then the
conclusions of Theorems 4.1, 4.2, and 4.3 hold true for all β1 in the close interval
[8.6× 10−6, 6.1× 10−4].

6. Conclusion

This paper presents some qualitative properties of solutions to certain third-
order nonlinear nonautonomous stochastic differential equations with variable delay.
Novel and outstanding results obtained in this paper compliment and extend many
outstanding existing results in literature.
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