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eevrenkara@duzce.edu.tr

Managing Editor

Mahmut Akyiğit
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3 Quantify the Impact of Non-Response and Measurement Error of Sensitive Variable(s) under
Two-Phase Sampling employing ORRT Models
Sunil KUMAR, Sanam Preet KOUR 196 - 210

4 New Banach Sequence Spaces Defined by Jordan Totient Function
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Abstract
Let H be a Hilbert space. In this paper we show among others that, if f , g are synchronous and continuous on I
and A, B are selfadjoint with spectra Sp(A) , Sp(B)⊂ I, then

( f (A)g(A))⊗1+1⊗ ( f (B)g(B))≥ f (A)⊗g(B)+g(A)⊗ f (B)

and the inequality for Hadamard product

( f (A)g(A)+ f (B)g(B))◦1≥ f (A)◦g(B)+ f (B)◦g(A) .

Let either p,q ∈ (0,∞) or p,q ∈ (−∞,0). If A, B > 0, then

Ap+q⊗1+1⊗Bp+q ≥ Ap⊗Bq +Aq⊗Bp,

and (
Ap+q +Bp+q)◦1≥ Ap ◦Bq +Aq ◦Bp.
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1. Introduction
Let I1, . . . , Ik be intervals from R and let f : I1× . . .× Ik→ R be an essentially bounded real function defined on the product

of the intervals. Let A = (A1, . . . ,An) be a k-tuple of bounded selfadjoint operators on Hilbert spaces H1, . . . ,Hk such that the
spectrum of Ai is contained in Ii for i = 1, . . . ,k. We say that such a k-tuple is in the domain of f . If

Ai =
∫

Ii
λidEi (λi)
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is the spectral resolution of Ai for i = 1, . . . ,k; by following [1], we define

f (A1, . . . ,Ak) :=
∫

I1
. . .
∫

Ik
f (λ1, . . . ,λk)dE1 (λ1)⊗ . . .⊗dEk (λk) (1.1)

as a bounded selfadjoint operator on the tensorial product H1⊗ . . .⊗Hk.
If the Hilbert spaces are of finite dimension, then the above integrals become finite sums, and we may consider the functional

calculus for arbitrary real functions. This construction [1] extends the definition of Korányi [2] for functions of two variables
and have the property that

f (A1, . . . ,Ak) = f1(A1)⊗ . . .⊗ fk(Ak),

whenever f can be separated as a product f (t1, . . . , tk) = f1(t1) . . . fk(tk) of k functions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0,∞), namely

f (st)≥ (≤) f (s) f (t) for all s, t ∈ [0,∞)

and if f is continuous on [0,∞) , then [3, p. 173]

f (A⊗B)≥ (≤) f (A)⊗ f (B) for all A, B≥ 0. (1.2)

This follows by observing that, if

A =
∫
[0,∞)

tdE (t) and B =
∫
[0,∞)

sdF (s)

are the spectral resolutions of A and B, then

f (A⊗B) =
∫
[0,∞)

∫
[0,∞)

f (st)dE (t)⊗dF (s) (1.3)

for the continuous function f on [0,∞) .
Recall the geometric operator mean for the positive operators A, B > 0

A#tB := A1/2(A−1/2BA−1/2)tA1/2

where t ∈ [0,1] and

A#B := A1/2(A−1/2BA−1/2)1/2A1/2.

By the definitions of # and ⊗ we have

A#B = B#A and (A#B)⊗ (B#A) = (A⊗B)#(B⊗A) .

In 2007, S. Wada [4] obtained the following Callebaut type inequalities for tensorial product

(A#B)⊗ (A#B)≤ 1
2
[(A#α B)⊗ (A#1−α B)+(A#1−α B)⊗ (A#α B)]≤ 1

2
(A⊗B+B⊗A) (1.4)

for A, B > 0 and α ∈ [0,1] .
Recall that the Hadamard product of A and B in B(H) is defined to be the operator A◦B ∈ B(H) satisfying〈

(A◦B)e j,e j
〉
=
〈
Ae j,e j

〉〈
Be j,e j

〉
for all j ∈ N, where

{
e j
}

j∈N is an orthonormal basis for the separable Hilbert space H. It is known that, see [5], we have the
representation

A◦B = U ∗ (A⊗B)U (1.5)

where U : H→ H⊗H is the isometry defined by U e j = e j⊗ e j for all j ∈ N.

If f is super-multiplicative and operator concave (sub-multiplicative and operator convex) on [0,∞) , then also [3, p. 173]

f (A◦B)≥ (≤) f (A)◦ f (B) for all A, B≥ 0. (1.6)
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We recall the following elementary inequalities for the Hadamard product

A1/2 ◦B1/2 ≤
(

A+B
2

)
◦1 for A, B≥ 0

and Fiedler inequality

A◦A−1 ≥ 1 for A > 0.

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [6] showed that

A◦B≤
(
A2 ◦1

)1/2 (
B2 ◦1

)1/2
for A, B≥ 0

and Aujla and Vasudeva [7] gave an alternative upper bound

A◦B≤
(
A2 ◦B2)1/2

for A, B≥ 0.

It has been shown in [8] that
(
A2 ◦1

)1/2 (B2 ◦1
)1/2 and

(
A2 ◦B2

)1/2 are incomparable for 2-square positive definite matrices
A and B.

For other inequalities concerning tensorial product, see [9] and [10].

Motivated by the above results, in this paper we show among others that if f , g are synchronous and continuous on I
and A, B are selfadjoint with spectra Sp(A) , Sp(B)⊂ I, then

( f (A)g(A))⊗1+1⊗ ( f (B)g(B))≥ f (A)⊗g(B)+g(A)⊗ f (B)

and the inequality for Hadamard product

( f (A)g(A)+ f (B)g(B))◦1≥ f (A)◦g(B)+ f (B)◦g(A) .

Let either p,q ∈ (0,∞) or p,q ∈ (−∞,0). If A, B > 0, then

Ap+q⊗1+1⊗Bp+q ≥ Ap⊗Bq +Aq⊗Bp,

and (
Ap+q +Bp+q)◦1≥ Ap ◦Bq +Aq ◦Bp.

2. Main Results
We start with the following main result:

Theorem 2.1. Assume that f , g are synchronous and continuous on I and h, k nonnegative and continuous on the same interval.
If A, B are selfadjoint with spectra Sp(A) , Sp(B)⊂ I, then

[h(A) f (A)g(A)]⊗ k (B)+h(A)⊗ [k (B) f (B)g(B)]≥ [h(A) f (A)]⊗ [k (B)g(B)]+ [h(A)g(A)]⊗ [k (B) f (B)] (2.1)

or, equivalently

(h(A)⊗ k (B)) [( f (A)g(A))⊗1+1⊗ ( f (B)g(B))]≥ (h(A)⊗ k (B)) [ f (A)⊗g(B)+g(A)⊗ f (B)] . (2.2)

If f , g are asynchronous on I, then the inequality reverses in (2.1) and (2.2).

Proof. Assume that f and g are synchronous on I, then

f (t)g(t)+ f (s)g(s)≥ f (t)g(s)+ f (s)g(t)

for all t,s ∈ I. We multiply this inequality by h(t)k (s)≥ 0 to get

f (t)g(t)h(t)k (s)+h(t) f (s)g(s)k (s)≥ f (t)h(t)g(s)k (s)+ f (s)k (s)g(t)h(t)
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for all t,s ∈ I. If we take the double integral, then we get∫
I

∫
I
[ f (t)g(t)h(t)k (s)+h(t) f (s)g(s)k (s)]dE (t)⊗dF (s)

≥
∫

I

∫
I
[ f (t)h(t)g(s)k (s)+ f (s)k (s)g(t)h(t)]dE (t)⊗dF (s) .

(2.3)

Observe that∫
I

∫
I
[ f (t)g(t)h(t)k (s)+h(t) f (s)g(s)k (s)]dE (t)⊗dF (s) =

∫
I

∫
I

f (t)g(t)h(t)k (s)dE (t)⊗dF (s)

+
∫

I

∫
I
h(t) f (s)g(s)k (s)dE (t)⊗dF (s)

=[h(A) f (A)g(A)]⊗ k (B)+h(A)⊗ [k (B) f (B)g(B)]

and ∫
I

∫
I
[ f (t)h(t)g(s)k (s)+ f (s)k (s)g(t)h(t)]dE (t)⊗dF (s) =

∫
I

∫
I

f (t)h(t)g(s)k (s)dE (t)⊗dF (s)

+
∫

I

∫
I
g(t)h(t) f (s)k (s)dE (t)⊗dF (s)

=[h(A) f (A)]⊗ [k (B)g(B)]+ [h(A)g(A)]⊗ [k (B) f (B)] .

By utilizing (2.3) we derive (2.2). Now, by making use of the tensorial property

(XU)⊗ (YV ) = (X⊗Y )(U⊗V ) ,

for any X , U, Y, V ∈ B(H) , we obtain

[h(A) f (A)g(A)]⊗ k (B)+h(A)⊗ [k (B) f (B)g(B)]

= (h(A)⊗ k (B)) [( f (A)g(A))⊗1]+ (h(A)⊗ k (B)) [1⊗ ( f (B)g(B))]

= (h(A)⊗ k (B)) [( f (A)g(A))⊗1+1⊗ ( f (B)g(B))]

and

[h(A) f (A)]⊗ [k (B)g(B)]+ [h(A)g(A)]⊗ [k (B) f (B)]

= (h(A)⊗ k (B))( f (A)⊗g(B))+(h(A)⊗ k (B))(g(A)⊗ f (B))

= (h(A)⊗ k (B)) [ f (A)⊗g(B)+g(A)⊗ f (B)] ,

which proves (2.2).

Remark 2.2. With the assumptions of Theorem 2.1 and if we take k = h, then we get

[h(A) f (A)g(A)]⊗h(B)+h(A)⊗ [h(B) f (B)g(B)]≥ [h(A) f (A)]⊗ [h(B)g(B)]+ [h(A)g(A)]⊗ [h(B) f (B)] , (2.4)

where f , g are synchronous and continuous on I and h is nonnegative and continuous on the same interval.
Moreover, if we take h≡ 1 in (2.4), then we get

( f (A)g(A))⊗1+1⊗ ( f (B)g(B))≥ f (A)⊗g(B)+g(A)⊗ f (B) , (2.5)

where f , g are synchronous and continuous on I

Corollary 2.3. Assume that f , g are synchronous and continuous on I and h, k nonnegative and continuous on the same
interval. If A, B are selfadjoint with spectra Sp(A) , Sp(B)⊂ I, then

k (B)◦ [h(A) f (A)g(A)]+h(A)◦ [k (B) f (B)g(B)]≥ [h(A) f (A)]◦ [k (B)g(B)]+ [k (B) f (B)]◦ [h(A)g(A)] . (2.6)

If f , g are asynchronous on I, then the inequality reverses in (2.6). In particular, we have

h(B)◦ [h(A) f (A)g(A)]+h(A)◦ [h(B) f (B)g(B)]≥ [h(A) f (A)]◦ [h(B)g(B)]+ [h(B) f (B)]◦ [h(A)g(A)] (2.7)

and

( f (A)g(A)+( f (B)g(B)))◦1≥ f (A)◦g(B)+ f (B)◦g(A) . (2.8)
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Proof. If we take U ∗ to the left and U to the right in the inequality (2.1), we get

U ∗ ([h(A) f (A)g(A)]⊗ k (B))U +U ∗ (h(A)⊗ [k (B) f (B)g(B)])U ≥U ∗ ([h(A) f (A)]⊗ [k (B)g(B)])U

+U ∗ ([h(A)g(A)]⊗ [k (B) f (B)])U

which is equivalent to (2.6).

Corollary 2.4. Assume that f , g are synchronous and continuous on I and h, k nonnegative and continuous on the same
interval. If A j, B j are selfadjoint with spectra Sp(A j) , Sp(B j)⊂ I and p j,q j ≥ 0, j ∈ {1, . . . ,n} , then(

n

∑
j=1

p jh(A j) f (A j)g(A j)

)
⊗

(
n

∑
i=1

qik (Bi)

)
+

(
n

∑
j=1

p jh(A j)

)
⊗

(
n

∑
i=1

qik (Bi) f (Bi)g(Bi)

)

≥

(
n

∑
j=1

p jh(A j) f (A j)

)
⊗

(
n

∑
i=1

qik (Bi)g(Bi)

)
+

(
n

∑
j=1

p jh(A j)g(A j)

)
⊗

(
n

∑
i=1

qik (Bi) f (Bi)

)
.

(2.9)

In particular,(
n

∑
j=1

p jh(A j) f (A j)g(A j)

)
⊗

(
n

∑
i=1

qih(Bi)

)
+

(
n

∑
j=1

p jh(A j)

)
⊗

(
n

∑
i=1

qih(Bi) f (Bi)g(Bi)

)

≥

(
n

∑
j=1

p jh(A j) f (A j)

)
⊗

(
n

∑
i=1

qih(Bi)g(Bi)

)
+

(
n

∑
j=1

p jh(A j)g(A j)

)
⊗

(
n

∑
i=1

qih(Bi) f (Bi)

) (2.10)

and, if ∑
n
j=1 p j = ∑

n
j=1 q j = 1, then(

n

∑
j=1

p j f (A j)g(A j)

)
⊗1+1⊗

(
n

∑
i=1

qi f (Bi)g(Bi)

)
≥

(
n

∑
j=1

p j f (A j)

)
⊗

(
n

∑
i=1

qig(Bi)

)
(2.11)

+

(
n

∑
j=1

p jg(A j)

)
⊗

(
n

∑
i=1

qi f (Bi)

)
.

Proof. We have from (2.1) that

[h(A j) f (A j)g(A j)]⊗ k (Bi)+h(A j)⊗ [k (Bi) f (Bi)g(Bi)]≥ [h(A j) f (A j)]⊗ [k (Bi)g(Bi)]

+ [h(A j)g(A j)]⊗ [k (Bi) f (Bi)]

for all i, j ∈ {1, . . . ,n} . If we multiply by p jqi ≥ 0 and sum over j, i ∈ {1, . . . ,n} , then we get

n

∑
j,i=1

p jqi [h(A j) f (A j)g(A j)]⊗ k (Bi)+
n

∑
j,i=1

p jqi p jqih(A j)⊗ [k (Bi) f (Bi)g(Bi)]

≥
n

∑
j,i=1

p jqi [h(A j) f (A j)]⊗ [k (Bi)g(Bi)]+
n

∑
j,i=1

p jqi [h(A j)g(A j)]⊗ [k (Bi) f (Bi)]

and by using the properties of tensorial product we derive (2.9).

Remark 2.5. If we take Bi = Ai and pi = qi, i ∈ {1, . . . ,n} , then we get(
n

∑
i=1

pi f (Ai)g(Ai)

)
⊗1+1⊗

(
n

∑
i=1

pi f (Ai)g(Ai)

)
≥

(
n

∑
i=1

pi f (Ai)

)
⊗

(
n

∑
i=1

pig(Ai)

)

+

(
n

∑
i=1

pig(Ai)

)
⊗

(
n

∑
i=1

pi f (Ai)

)
,

(2.12)

where f , g are synchronous and continuous on I and Ai are selfadjoint with spectra Sp(Ai)⊂ I, pi ≥ 0 for i ∈ {1, . . . ,n} and
∑

n
i=1 pi = 1. By (2.12) we also have the inequality for the Hadamard product(

n

∑
i=1

pi f (Ai)g(Ai)

)
◦1≥

(
n

∑
i=1

pi f (Ai)

)
◦

(
n

∑
i=1

pig(Ai)

)
, (2.13)
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where f , g are synchronous and continuous on I and Ai are selfadjoint with spectra Sp(Ai)⊂ I, pi ≥ 0 for i ∈ {1, . . . ,n} and
∑

n
i=1 pi = 1.

We also have:

Theorem 2.6. Let f , g : [m,M]⊂ R→ R be continuous on [m,M] and differentiable on (m,M) with g′ (t) 6= 0 for t ∈ (m,M) .
Assume that

−∞ < γ = inf
t∈(m,M)

f ′ (t)
g′ (t)

, sup
t∈(m,M)

f ′ (t)
g′ (t)

= Γ < ∞,

and A, B selfadjoint operators with spectra Sp(A) , Sp(B)⊆ [m,M], then for any continuous and nonnegative function h defined
on [m,M] ,

γ
[(

h(A)g2 (A)
)
⊗h(B)+h(A)⊗

(
h(B)g2 (B)

)
−2(g(A)h(A))⊗ (h(B)g(B))]

≤ [h(A) f (A)g(A)]⊗h(B)+h(A)⊗ [h(B) f (B)g(B)]− [h(A) f (A)]⊗ [h(B)g(B)]− [h(A)g(A)]⊗ [h(B) f (B)]

≤ Γ
[(

h(A)g2 (A)
)
⊗h(B)+h(A)⊗

(
h(B)g2 (B)

)
−2(g(A)h(A))⊗ (h(B)g(B))] .

(2.14)

In particular,

γ
[
g2 (A)⊗1+1⊗g2 (B)−2g(A)⊗g(B)

]
≤ [ f (A)g(A)]⊗1+1⊗ [ f (B)g(B)]− f (A)⊗g(B)−g(A)⊗ f (B)

≤Γ
[
g2 (A)⊗1+1⊗g2 (B)−2g(A)⊗g(B)

]
.

(2.15)

Proof. Using the Cauchy mean value theorem, for all t, s ∈ [m,M] with t 6= s there exists ξ between t and s such that

f (t)− f (s)
g(t)−g(s)

=
f ′ (ξ )
g′ (ξ )

∈ [γ,Γ] .

Therefore

γ [g(t)−g(s)]2 ≤ [ f (t)− f (s)] [g(t)−g(s)]≤ Γ [g(t)−g(s)]2

for all t, s ∈ [m,M] , which is equivalent to

γ
[
g2 (t)−2g(t)g(s)+g2 (s)

]
≤ f (t)g(t)+ f (s)g(s)− f (t)g(s)− f (s)g(t)≤ Γ

[
g2 (t)−2g(t)g(s)+g2 (s)

]
for all t, s ∈ [m,M] . If we multiply by h(t)h(s)≥ 0, then we get

γ
[
h(t)g2 (t)h(s)−2g(t)h(t)h(s)g(s)+h(t)h(s)g2 (s)

]
≤h(t) f (t)g(t)h(s)+h(t)h(s) f (s)g(s)

−h(t) f (t)h(s)g(s)−h(t)g(t)h(s) f (s)

≤Γ
[
h(t)g2 (t)h(s)−2g(t)h(t)h(s)g(s)+h(t)h(s)g2 (s)

]
for all t, s ∈ [m,M] .

This implies that

γ

∫ M

m

∫ M

m

[
h(t)g2 (t)h(s)−2g(t)h(t)h(s)g(s)+h(t)h(s)g2 (s)

]
×dE (t)⊗dF (s)

≤
∫ M

m

∫ M

m
[h(t) f (t)g(t)h(s)+h(t)h(s) f (s)g(s) −h(t) f (t)h(s)g(s)−h(t)g(t)h(s) f (s)]dE (t)⊗dF (s)

≤ Γ

∫ M

m

∫ M

m

[
h(t)g2 (t)h(s)−2g(t)h(t)h(s)g(s)+h(t)h(s)g2 (s)

]
×dE (t)⊗dF (s)

and by performing the calculations as in the proof of Theorem 2.1, we derive (2.14).

Corollary 2.7. With the assumptions of Theorem 2.6 we have

γ
[
h(B)◦

(
h(A)g2 (A)

)
+h(A)◦

(
h(B)g2 (B)

)
−2(g(A)h(A))◦ (h(B)g(B))]

≤ h(B)◦ [h(A) f (A)g(A)]+h(A)◦ [h(B) f (B)g(B)]− [h(A) f (A)]◦ [h(B)g(B)]− [h(A)g(A)]◦ [h(B) f (B)]

≤ Γ
[
h(B)◦

(
h(A)g2 (A)

)
+h(A)◦

(
h(B)g2 (B)

)
−2(g(A)h(A))◦ (h(B)g(B))] .

(2.16)
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In particular,

γ
[[

g2 (A)+g2 (B)
]
◦1−2g(A)◦g(B)

]
≤ [ f (A)g(A)+ [ f (B)g(B)]]◦1− f (A)◦g(B)−g(A)◦ f (B)

≤ Γ
[[

g2 (A)+g2 (B)
]
◦1−2g(A)◦g(B)

]
.

(2.17)

We also have:

Corollary 2.8. With the assumptions of Theorem 2.6 and if A j are selfadjoint with spectra Sp(A j) ⊂ I and p j ≥ 0, j ∈
{1, . . . ,n} , with ∑

n
j=1 p j = 1, then

γ

{(
n

∑
i=1

pig2 (Ai)

)
⊗1+1⊗

(
n

∑
i=1

pig2 (Ai)

)
−2

(
n

∑
i=1

pig(Ai)

)
⊗

(
n

∑
i=1

pig(Ai)

)}

≤

(
n

∑
i=1

pi f (Ai)g(Ai)

)
⊗1+1⊗

(
n

∑
i=1

pi f (Ai)g(Ai)

)
−

(
n

∑
i=1

pi f (Ai)

)
⊗

(
n

∑
i=1

pig(Ai)

)

−

(
n

∑
i=1

pig(Ai)

)
⊗

(
n

∑
i=1

pi f (Ai)

)

≤ Γ

{(
n

∑
i=1

pig2 (Ai)

)
⊗1+1⊗

(
n

∑
i=1

pig2 (Ai)

)
−2

(
n

∑
i=1

pig(Ai)

)
⊗

(
n

∑
i=1

pig(Ai)

)}
.

(2.18)

Also,

γ

[(
n

∑
i=1

pig2 (Ai)

)
◦1−

(
n

∑
i=1

pig(Ai)

)
◦

(
n

∑
i=1

pig(Ai)

)]

≤

(
n

∑
i=1

pi f (Ai)g(Ai)

)
◦1−

(
n

∑
i=1

pi f (Ai)

)
◦

(
n

∑
i=1

pig(Ai)

)

≤ Γ

[(
n

∑
i=1

pig2 (Ai)

)
◦1−

(
n

∑
i=1

pig(Ai)

)
◦

(
n

∑
i=1

pig(Ai)

)]
.

(2.19)

Proof. From (2.15) we get

γ
[
g2 (Ai)⊗1+1⊗g2 (A j)−2g(Ai)⊗g(A j)

]
≤ [ f (Ai)g(Ai)]⊗1+1⊗ [ f (A j)g(A j)]

− f (Ai)⊗g(A j)−g(Ai)⊗ f (A j)

≤Γ
[
g2 (Ai)⊗1+1⊗g2 (A j)−2g(Ai)⊗g(A j)

]
for all i, j ∈ {1, . . . ,n} . If we multiply by pi p j ≥ 0 and sum, then we get

γ

n

∑
i, j=1

pi p j
[
g2 (Ai)⊗1+1⊗g2 (A j)−2g(Ai)⊗g(A j)

]
≤

n

∑
i, j=1

pi p j
{
[ f (Ai)g(Ai)]⊗1+1⊗ [ f (A j)g(A j)]

− f (Ai)⊗g(A j)−g(Ai)⊗ f (A j)
}

≤Γ

n

∑
i, j=1

pi p j
[
g2 (Ai)⊗1+1⊗g2 (A j)−2g(Ai)⊗g(A j)

]
,

which gives (2.18).

3. Some Examples

Let either p,q ∈ (0,∞) or p,q ∈ (−∞,0) and r ∈ R. If A, B > 0, then from (2.4) we get

Ar+p+q⊗Br +Ar⊗Br+p+q ≥ Ar+p⊗Br+q +Ar+q⊗Br+p, (3.1)

while from (2.6) we obtain

Ar+p+q ◦Br +Ar ◦Br+p+q ≥ Ar+p ◦Br+q +Ar+q ◦Br+p. (3.2)
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If one of the parameters p,q is in (−∞,0) while the other in (0,∞) , then the inequality reverses in (3.1) and (3.2).
If we take q = p, then we get

Ar+2p⊗Br +Ar⊗Br+2p ≥ 2Ar+p⊗Br+p, (3.3)

and

Ar+2p ◦Br +Ar ◦Br+2p ≥ 2Ar+p ◦Br+p (3.4)

for p,r ∈ R and A, B > 0.
If we take q =−p, then we get

2Ar⊗Br ≥ Ar+p⊗Br−p +Ar−p⊗Br+p, (3.5)

while from (2.6) we obtain

2Ar ◦Br ≥ Ar+p ◦Br−p +Ar−p ◦Br+p, (3.6)

for p,r ∈ R and A, B > 0.
Assume that A j > 0, p j ≥ 0, j ∈ {1, . . . ,n} with ∑

n
j=1 p j = 1, then by (2.12) we get(

n

∑
i=1

piA
p+q
i

)
⊗1+1⊗

(
n

∑
i=1

piA
p+q
i

)
≥

(
n

∑
i=1

piA
p
i

)
⊗

(
n

∑
i=1

piA
q
i

)
+

(
n

∑
i=1

piA
q
i

)
⊗

(
n

∑
i=1

piA
p
i

)
, (3.7)

if either p,q ∈ (0,∞) or p,q ∈ (−∞,0) . If one of the parameters p,q is in (−∞,0) while the other in (0,∞) , then the inequality
reverses in (3.7). In particular, we derive(

n

∑
i=1

piA
2p
i

)
⊗1+1⊗

(
n

∑
i=1

piA
2p
i

)
≥

(
n

∑
i=1

piA
p
i

)
⊗

(
n

∑
i=1

piA
p
i

)
(3.8)

and

2≥

(
n

∑
i=1

piA
p
i

)
⊗

(
n

∑
i=1

piA
−p
i

)
+

(
n

∑
i=1

piA
−p
i

)
⊗

(
n

∑
i=1

piA
p
i

)
. (3.9)

From (2.13) we obtain(
n

∑
i=1

piA
p+q
i

)
◦1≥

(
n

∑
i=1

piA
p
i

)
◦

(
n

∑
i=1

piA
q
i

)
, (3.10)

if either p,q ∈ (0,∞) or p,q ∈ (−∞,0) . If one of the parameters p,q is in (−∞,0) while the other in (0,∞) , then the inequality
reverses in (3.10). In particular, we have(

n

∑
i=1

piA
2p
i

)
◦1≥

(
n

∑
i=1

piA
p
i

)
◦

(
n

∑
i=1

piA
p
i

)
(3.11)

and

1≥

(
n

∑
i=1

piA
p
i

)
◦

(
n

∑
i=1

piA
−p
i

)
, (3.12)

for p ∈ R, A j > 0, p j ≥ 0, j ∈ {1, . . . ,n} with ∑
n
j=1 p j = 1.

Consider the functions f (t) = t p, g(t) = tq defined on (0,∞) . Then f ′ (t) = pt p−1, g′ (t) = qtq−1 for t > 0 and

f ′ (t)
g′ (t)

=
p
q

t p−q, t > 0.
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Assume that either p,q ∈ (0,∞) or p,q ∈ (−∞,0) . Then p
q > 0 and f ′(t)

g′(t) is increasing for p > q and decreasing for p < q and
constant 1 for p = q.
Assume that 0 < m≤ A, B≤M, then

inf
t∈[m,M]

f ′ (t)
g′ (t)

=
p
q

mp−q and sup
t∈[m,M]

f ′ (t)
g′ (t)

=
p
q

Mp−q for p > q

and

inf
t∈[m,M]

f ′ (t)
g′ (t)

=
p
q

Mp−q and sup
t∈[m,M]

f ′ (t)
g′ (t)

=
p
q

mp−q for p < q.

Assume that either p,q ∈ (0,∞) or p,q ∈ (−∞,0) and 0 < m≤ A, B≤M. From (2.15) we get for p > q that

0≤ p
q

mp−q (A2q⊗1+1⊗B2q−2Aq⊗Bq)
≤ Ap+q⊗1+1⊗Bp+q−Ap⊗Bq−Aq⊗Bp

≤ p
q

Mp−q (A2q⊗1+1⊗B2q−2Aq⊗Bq) (3.13)

and for p < q

0≤ p
q

Mp−q (A2q⊗1+1⊗B2q−2Aq⊗Bq)
≤ Ap+q⊗1+1⊗Bp+q−Ap⊗Bq−Aq⊗Bp

≤ p
q

mp−q (A2q⊗1+1⊗B2q−2Aq⊗Bq) . (3.14)

From (2.17) we also have the inequalities for the Hadamard product for p > q that

0≤ p
q

mp−q ((A2q +B2q)◦1−2Aq ◦Bq)
≤
(
Ap+q +Bp+q)◦1−Ap ◦Bq−Aq ◦Bp

≤ p
q

Mp−q ((A2q +B2q)◦1−2Aq ◦Bq) (3.15)

and for p < q

0≤ p
q

Mp−q ((A2q +B2q)◦1−2Aq ◦Bq)
≤
(
Ap+q +Bp+q)◦1−Ap ◦Bq−Aq ◦Bp

≤ p
q

mp−q ((A2q +B2q)◦1−2Aq ◦Bq) .
(3.16)

Assume that either p,q ∈ (0,∞) or p,q ∈ (−∞,0) and 0 < m≤ A j ≤M, p j ≥ 0, j ∈ {1, . . . ,n} with ∑
n
j=1 p j = 1. By (2.18) we

get for p > q

0≤ p
q

mp−q

{(
n

∑
i=1

piA
2q
i

)
⊗1+1⊗

(
n

∑
i=1

piA
2q
i

)
−2

(
n

∑
i=1

piA
q
i

)
⊗

(
n

∑
i=1

piA
q
i

)}

≤

(
n

∑
i=1

piA
p+q
i

)
⊗1+1⊗

(
n

∑
i=1

piA
p+q
i

)
−

(
n

∑
i=1

piA
p
i

)
⊗

(
n

∑
i=1

piA
q
i

)
−

(
n

∑
i=1

piA
q
i

)
⊗

(
n

∑
i=1

piA
p
i

)

≤ p
q

Mp−q

{(
n

∑
i=1

piA
2q
i

)
⊗1+1⊗

(
n

∑
i=1

piA
2q
i

)
−2

(
n

∑
i=1

piA
q
i

)
⊗

(
n

∑
i=1

piA
q
i

)} (3.17)
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and for p < q

0≤ p
q

Mp−q

{(
n

∑
i=1

piA
2q
i

)
⊗1+1⊗

(
n

∑
i=1

piA
2q
i

)
−2

(
n

∑
i=1

piA
q
i

)
⊗

(
n

∑
i=1

piA
q
i

)}

≤

(
n

∑
i=1

piA
p+q
i

)
⊗1+1⊗

(
n

∑
i=1

piA
p+q
i

)
−

(
n

∑
i=1

piA
p
i

)
⊗

(
n

∑
i=1

piA
q
i

)
−

(
n

∑
i=1

piA
q
i

)
⊗

(
n

∑
i=1

piA
p
i

)

≤ p
q

mp−q

{(
n

∑
i=1

piA
2q
i

)
⊗1+1⊗

(
n

∑
i=1

piA
2q
i

)
−2

(
n

∑
i=1

piA
q
i

)
⊗

(
n

∑
i=1

piA
q
i

)}
.

(3.18)

Also, by (2.19) we get for p > q

0≤ p
q

mp−q

[(
n

∑
i=1

piA
2q
i

)
◦1−

(
n

∑
i=1

piA
q
i

)
◦

(
n

∑
i=1

piA
q
i

)]

≤

(
n

∑
i=1

piA
p+q
i

)
◦1−

(
n

∑
i=1

piA
p
i

)
◦

(
n

∑
i=1

piA
q
i

)

≤ p
q

Mp−q

[(
n

∑
i=1

piA
2q
i

)
◦1−

(
n

∑
i=1

piA
q
i

)
◦

(
n

∑
i=1

piA
q
i

)]
,

(3.19)

while for p < q

0≤ p
q

Mp−q

[(
n

∑
i=1

piA
2q
i

)
◦1−

(
n

∑
i=1

piA
q
i

)
◦

(
n

∑
i=1

piA
q
i

)]

≤

(
n

∑
i=1

piA
p+q
i

)
◦1−

(
n

∑
i=1

piA
p
i

)
◦

(
n

∑
i=1

piA
q
i

)

≤ p
q

mp−q

[(
n

∑
i=1

piA
2q
i

)
◦1−

(
n

∑
i=1

piA
q
i

)
◦

(
n

∑
i=1

piA
q
i

)]
.

(3.20)

Consider the exponential functions f (t) = exp(αt) , g(t) = exp(β t) with α,β ∈ R. If αβ > 0 then the functions have the
same monotonicity. If αβ < 0 they have different monotonicity.
If αβ > 0 and A, B are selfadjoint operators, then by (2.5) we get

exp [(α +β )A]⊗1+1⊗ exp [(α +β )B]≥ exp(αA)⊗ exp(βB)+ exp(βA)⊗ exp(αB) , (3.21)

and

exp [(α +β )A]◦1+1◦ exp [(α +β )B]≥ exp(αA)◦ exp(βB)+ exp(βA)◦ exp(αB) . (3.22)

If αβ < 0, then the reverse inequality holds in (3.21) and (3.22).
If we take f (t) = t p and g(t) = ln t, we also have the logarithmic inequalities

(Ap lnA)⊗1+1⊗ (Bp lnB)≥ Ap⊗ lnB+ lnA⊗Bp, (3.23)

and

(Ap lnA+Bp lnB)◦1≥ Ap ◦ lnB+ lnA◦Bp, (3.24)

for A, B > 0 and p > 0. If p < 0, then the inequality reverses in (3.23) and (3.24).
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Abstract
In the study conducted here, we have given some new concepts in summability. In this sense, firstly, we have
given the concept of lacunary I ∗2 -convergence and we have investigated the relations between lacunary I2-
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1. Introduction and Definitions
During this study, we take N as the set of all positive integers and R as the set of all real numbers. The convergence in

sequences of real numbers is generalized to the concept of statistical convergence by Fast [1] and Schoenberg [2], independently.
The concept of ideal convergence, which is a generalization of statistical convergence that would later inspire many researchers,
was first defined by Kostyrko et al. [3]. Nabiev [4] studied on I -Cauchy sequence and I ∗-Cauchy sequence with some
characteristics. Using the ideal notion, ideal-statistical convergence and ideal lacunary statistical convergence were introduced by
Das et al.[5] as new notions. In the topology induced by random n-normed spaces, the lacunary ideal convergence and lacunary
ideal Cauchy with some important characteristics investigated by Yamanci and Gürdal [6]. The lacunary ideal convergence
was studied by Debnath [7] in intuitionistic fuzzy normed linear spaces. The ideal lacunary convergence was introduced by
Tripathy et al.[8]. In recent times, the concepts of the lacunary I ∗-convergence, strongly lacunary I ∗-convergence, lacunary
I ∗-Cauchy sequence and strongly lacunary I ∗-Cauchy sequence were introduced by Akın and Dündar [9, 10]. Das et al. [11]
studied I and I ∗-convergence for double sequences. Dündar and Altay [12, 13] introduced I2-ideal convergence and ideal
Cauchy double sequences in the linear metric space and they investigated some characteristics and between relations. Dündar et
al. [14] studied strongly I2-lacunary convergence and I2lacunary Cauchy double sequences of sets. Hazarika [15] studied the
lacunary ideal convergence for double sequences.

In recently, the notions of convergence, statistical convergence and ideal convergence in some metric spaces and normed
spaces were studied in summability theory by a lot of mathematicians. In the study conducted here, we defined the lacunary
I ∗2 -convergence. We investigate the connections between lacunary I2-convergence and lacunary I ∗2 -convergence. Also, we
defined the concept of lacunary I ∗2 -Cauchy sequence and investigate the relations between lacunary I2-Cauchy sequence and
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lacunary I ∗2 -Cauchy sequence.

Some basic definitions, concepts and characteristics that will be used throughout the study and are available in the literature
will now be noted (see [3, 4], [6]-[10], [12, 13], [16]-[20])

For I ⊆ 2N, if the following propositions
(i) /0 ∈I , (ii) If G,H ∈I , then G∪H ∈I , (iii) If G ∈I and H ⊆ G, then H ∈I

hold, then I ⊆ 2N is named an ideal.
If N /∈ I , then I is named a non-trivial ideal. Also, if {k} ∈ I for each k ∈ N, then a non-trivial ideal is named an

admissible ideal.
For F ⊆ 2N, if the following propositions
(i) /0 /∈F , (ii) If G,H ∈ F , then G∩H ∈F , (iii) If G ∈F and H ⊇ G, then H ∈F

hold, then F ⊆ 2N is named a filter.
For a non-trivial ideal I ⊆ 2N

F (I ) = {G⊂ N : (∃H ∈I )(G = N\H)}

is named the filter associated with I .
By a lacunary sequence θ = {kr}, we mean an increasing integer sequence such that

k0 = 0 and hr = kr− kr−1→ ∞, as r→ ∞.

During this study, the intervals determined by θ will be denoted by Ir = (kr−1,kr] and ratio kr
kr−1

will be abbreviated by qr.

Then after this, we take θ = {kr} be a lacunary sequence and I ⊆ 2N be an admissible ideal.
A sequence (xk)⊂ R is lacunary convergent to ` ∈ R, if

lim
r→∞

1
hr

∑
k∈Ir

xk = `.

A sequence (xk)⊂ R is lacunary Cauchy sequence if

lim
r→∞

1
hr

∑
k,p∈Ir

(xk− xp) = 0.

If for each ε > 0{
r ∈ N :

∣∣∣∣∣ 1
hr

∑
k∈Ir

xk− `

∣∣∣∣∣≥ ε

}
∈I

holds, then the sequence (xk)⊂ R is lacunary I -convergent to ` ∈ R and we write xk→ `[Iθ ].
A sequence (xk)⊂ R is lacunary I -Cauchy if for every ε > 0 there exists N0 = N0(ε) such that{

r ∈ N :

∣∣∣∣∣ 1
hr

∑
k∈Ir

(xk− xN0)

∣∣∣∣∣≥ ε

}
∈I .

A sequence (xk)⊂ R is lacunary I ∗-convergent to ` ∈ R iff there exists any set G = {g1 < g2 < · · ·< gk < · · ·} ⊂ N such
that for the set G′ = {r ∈ N : gk ∈ Ir} ∈F (I ), we have

lim
r→∞

(r∈G′)

1
hr

∑
k∈Ir

xgk = `

and we write xk→ `(I ∗
θ
).

A sequence (xk)⊂ R is lacunary I ∗-Cauchy sequence iff there exists any set G = {g1 < g2 < · · ·< gk < · · ·} ⊂ N such
that for the set G′ = {r ∈ N : gk ∈ Ir} ∈F (I ), we have

lim
r→∞

(r∈G′)

1
hr

∑
k,p∈Ir

(xgk − xgp) = 0.



On Lacunary I ∗2 -Convergence and Lacunary I ∗2 -Cauchy Sequence — 190/195

For a double sequence θ = {(kr, ju)}, if there exist two increasing sequence of integers such that

k0 = 0, hr = kr− kr−1→ ∞ and j0 = 0, h̄u = ju− ju−1→ ∞ as r,u→ ∞,

then θ = {(kr, ju)} is named a double lacunary sequence. We take the following screenings for double lacunary sequence:

kru = kr ju, hru = hrh̄u, Iru = {(k, j) : kr−1 < k ≤ kr and ju−1 < j ≤ ju}, qr =
kr

kr−1
and qu =

ju
ju−1

.

Then after this, we think I2 ⊂ 2N
2

as a non-trivial admissible ideal.
For each k ∈N and a non-trivial ideal I2 ⊂ 2N

2
, if {k}×N ∈I2 and N×{k} ∈I2, then we say that I2 is named strongly

admissible ideal.
If I2 ⊂ 2N

2
is a strongly admissible ideal, then clearly I2 ⊂ 2N

2
is an admissible ideal.

Let I 0
2 = {A ⊂ N2 :

(
∃m(A) ∈ N

)(
i, j ≥ m(A)⇒ (i, j) 6∈ A

)
}. Then, I 0

2 is a non-trivial strongly admissible ideal and
clearly I2 is a strongly admissible if and only if I 0

2 ⊂I2.
There is a filter F (I2) corresponding with I2 such that

F (I2) =
{

G⊂ N2 : (∃H ∈I2)(G = N2\H)
}
.

An admissible ideal I2 ⊂ 2N×N satisfies the property (AP2) if for every countable family of mutually disjoint sets
{G1,G2, ...} ∈I2, there exists a countable family of sets {H1,H2, ...} such that Gk∆Hk ∈I 0

2 , i.e., Gk∆Hk is included in the
finite union of rows and columns in N×N for each k ∈ N and H =

⋃
∞
k=1 Hk ∈I2 (hence Hk ∈I2 for each k ∈ N).

If for each ε > 0 there exists nε ∈ N such that |xk j− `|< ε whenever k, j > nε , then the double sequence x = (xk j)⊂ R is
convergent to ` ∈ R and denoted with

lim
k, j→∞

xk j = ` or lim
k, j→∞

xk j = `.

Then after this, we take θ = {(kr, ju)} as a double lacunary sequence and I2 ⊂ 2N
2

as a strongly admissible ideal.
For a double sequence (xk j)⊂ R, if

lim
r,u→∞

1
hru

∑
(k, j)∈Iru

xk j = `

hold, then (xk j) is lacunary convergent to ` ∈ R.
For a double sequence (xk j)⊂ R, if

lim
r,u→∞

1
hru

∑
(k, j),(s,t)∈Iru

(xk j− xst) = 0

hold, then (xk j) is lacunary Cauchy double sequence.
For a double sequence (xk j)⊂ R, if for every ε > 0{

(r,u) ∈ N2 :

∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

xk j− `

∣∣∣∣∣≥ ε

}
∈I2

hold, then (xk j) is lacunary I2-convergent to ` ∈ R and denoted with xk j→ `(Iθ2).
If for every ε > 0 there exist N = N(ε) and S = S(ε){

(r,u) ∈ N2 :

∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

(xk j− xNS)

∣∣∣∣∣≥ ε

}
∈I2

hold, then (xk j) is lacunary I2-Cauchy double sequence.

Lemma 1.1. [12] Let {Pk}∞
k=1 be a countable collection of subsets of N2 such that Pk ∈ F(I2) for each k, where F (I2) is a

filter associate with a strongly admissible ideal I2 by (AP2). Therefore, there exists a set P⊂ N2 such that P ∈F (I2) and
the set P\Pk is finite for all k.
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2. Main Results
For double sequences, we first defined lacunary I ∗2 -convergence and gave theorems examining its relationship with lacunary

I2-convergence.

Definition 2.1. A double sequence (xk j)⊂ R is lacunary I ∗2 -convergent to ` ∈ R iff there exists a set G = {(k, j) ∈ N2} such
that for the set G′ = {(r,u) ∈ N2 : (k, j) ∈ Iru} ∈F (I2), we have

lim
r,u→∞

((r,u)∈G′)

1
hru

∑
(k, j)∈Iru

xk j = `

and so we can write xk j→ `(I ∗
θ2
).

Theorem 2.2. If the double sequence (xk j) ⊂ R is lacunary I ∗2 -convergent to ` ∈ R, then it is lacunary I2-convergent to
` ∈ R.

Proof. Let xk j → L(I ∗
θ2
). Then, there exists a set G = {(k, j) ∈ N2} such that for the set G′ = {(r,u) ∈ N2 : (k, j) ∈ Iru} ∈

F (I2) (i.e.,H = N2\G′ ∈I2) and for every ε > 0 there exists r0 = r0(ε) ∈ N such that for all r,u > r0 we have∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

xk j− `

∣∣∣∣∣< ε, ((r,u) ∈ G′).

Then,

A(ε) =

{
(r,u) ∈ N2 :

∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

xk j− `

∣∣∣∣∣≥ ε

}
⊂ H ∪

[
G′∩

(
({1,2, · · · ,r0}×N)∪ (N×{1,2, · · · ,r0})

)]
.

Since I2 is a strongly admissible ideal, we have

H ∪
[
G′∩

(
({1,2, · · · ,r0}×N)∪ (N×{1,2, · · · ,r0})

)]
∈I2

and so A(ε) ∈I2. Hence, xk j→ `(Iθ2).

Theorem 2.3. Let I2 be a strongly admissible ideal by (AP2). If the double sequence (xk j)⊂ R is lacunary I2-convergent to
` ∈ R, then it is lacunary I ∗2 -convergent to ` ∈ R.

Proof. Assume that xk j→ `(Iθ2). Then for each ε > 0,

T (ε) =

{
(r,u) ∈ N2 :

∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

xk j− `

∣∣∣∣∣≥ ε

}
∈I2.

Put

T1 =

{
(r,u) ∈ N2 :

∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

xk j− `

∣∣∣∣∣≥ 1

}

and

Tp =

{
(r,u) ∈ N2 :

1
p
≤

∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

xk j− `

∣∣∣∣∣< 1
p−1

}
,

for p≥ 2 and p ∈ N. It is clear that Ti∩Tj = /0 for i 6= j and Ti ∈I2 for each i ∈ N. By property (AP2), there is a sequence
{Vp}p∈N such that Tj∆Vj is included in finite union of rows and columns in N2 for each j ∈ N and

V =
∞⋃

j=1

Vj ∈I2.
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We prove that,

lim
r,u→∞

((r,u)∈G′)

1
hru

∑
(k, j)∈Iru

xk j = `,

for G′ = N2\V ∈F (I2). Take δ > 0. Select q ∈ N such that
1
q
< δ . Therefore,{

(r,u) ∈ N2 :

∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

xk j− `

∣∣∣∣∣≥ δ

}
⊂

q⋃
j=1

Tj.

Since Tj∆Vj is a finite set for j ∈ {1,2, · · · ,q}, there exists r0 ∈ N such that(
q⋃

j=1

Tj

)
∩
{
(r,u) ∈ N2 : r ≥ r0∧u≥ r0

}
=

(
q⋃

j=1

Vj

)
∩
{
(r,u) ∈ N2 : r ≥ r0∧u≥ r0

}
.

If r,u≥ r0 and (r,u) /∈V, then

(r,u) /∈
q⋃

j=1

Vj and so (r,u) /∈
q⋃

j=1

Tj.

We have∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

xk j− `

∣∣∣∣∣< 1
q
< δ .

This implies that

lim
r,u→∞

((r,u)∈G′)

1
hru

∑
(k, j)∈Iru

xk j = `,

Hence, we have xk j→ `(I ∗
θ2
). This completes the proof.

Now, for double sequences, we have defined lacunary I ∗2 -Cauchy sequence and given theorems examining its relationship
with lacunary I2-Cauchy sequence.

Definition 2.4. The double sequence (xk j)⊂ R is lacunary I ∗2 -Cauchy sequence iff there exists a set G = {(k, j) ∈ N2} such
that for the set G′ = {(r,u) ∈ N2 : (k, j) ∈ Iru} ∈F (I2), we have

lim
r,u→∞

((r,u)∈G′)

1
hru

∑
(k, j),(s,t)∈Iru

(xk j− xst) = 0.

Theorem 2.5. If the double sequence (xk j)⊂R is lacunary I ∗2 -Cauchy sequence, then (xk j) is lacunary I2-Cauchy sequence.

Proof. Let (xk j)⊂ R is a lacunary I ∗2 -Cauchy double sequence. Then, there exists a set G = {(k, j) ∈ N2} such that for the
set G′ = {(r,u) ∈ N2 : (k, j) ∈ Iru} ∈F (I2) and for every ε > 0 there exists r0 = r0(ε) such that∣∣∣∣∣ 1

hru
∑

(k, j),(s,t)∈Iru

(xk j− xst)

∣∣∣∣∣< ε, ((r,u) ∈ G′)

for all r,u > r0. Now, let H = N\G′. It is clear that H ∈I2. Then, for (r,u) ∈ G′

A(ε) =

{
(r,u) ∈ N2 :

∣∣∣∣∣ 1
hru

∑
(k, j),(s,t)∈Iru

(xk j− xst)

∣∣∣∣∣≥ ε

}
⊂ H ∪

[
G′∩

(
({1,2, · · · ,r0}×N)∪ (N×{1,2, · · · ,r0})

)]
.

Since I2 is an admissible ideal, we have

H ∪
[
G′∩

(
({1,2, · · · ,r0}×N)∪ (N×{1,2, · · · ,r0})

)]
∈I2

and so A(ε) ∈I2. Hence, (xk j) is lacunary I2-Cauchy double sequence.
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Theorem 2.6. Let I2 be a strongly admissible ideal by (AP2). If the double sequence (xk j) ⊂ R is lacunary I2-Cauchy
double sequence, then (xk j) is lacunary I ∗2 -Cauchy double sequence.

Proof. Assume that (xk j) is lacunary I2-Cauchy sequence. Then, for each ε > 0 there exist N = N(ε) and S = S(ε) such that

A(ε) =

{
(r,u) ∈ N2 :

∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

(xk j− xNS)

∣∣∣∣∣≥ ε

}
∈I2.

Let

Pi =

{
(r,u) ∈ N2 :

∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

(xk j− xsiti)

∣∣∣∣∣≥ 1
i

}
, i = 1,2, . . . ,

where si = N
(

1
i

)
and ti = S

(
1
i

)
. It is clear that Pi ∈F (I2) for i = 1,2, · · · . Using the Lemma 1.1, since I2 has the (AP2)

so there exists a set P⊂ N2 such that P ∈F (I2) and P\Pi is finite for all i. At the moment, we demonstrate that

lim
r,u→∞

((r,u)∈P)

1
hru

∑
(k, j),(s,t)∈Iru

(xk j− xst) = 0.

For prove this let ε > 0, m ∈ N such that m >
2
ε

. If (r,u) ∈ P then P\Pm is a finite set, so there exists r0 = r0(m) such that

(r,u) ∈ Pm for all r,u > r0(m). Therefore, for all r,u > r0(m)∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

(xk j− xsmtm)

∣∣∣∣∣< 1
m

and ∣∣∣∣∣ 1
hru

∑
(s,t)∈Iru

(xst − xsmtm)

∣∣∣∣∣< 1
m
.

Hence, for all r,u > r0(m) it follows that∣∣∣∣∣ 1
hru

∑
(k, j),(s,t)∈Iru

(xk j− xst)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

(xk j− xsmtm)

∣∣∣∣∣+
∣∣∣∣∣ 1
hru

∑
(s,t)∈Iru

(xst − xsmtm)

∣∣∣∣∣
<

1
m
+

1
m

< ε.

Therefore, for any ε > 0 there exists r0 = r0(ε) such that for r,u > r0(ε) and (r,u) ∈ P ∈F (I2)∣∣∣∣∣ 1
hru

∑
(k, j),(s,t)∈Iru

(xk j− xst)

∣∣∣∣∣< ε.

This demonstrates that (xk j) is lacunary I ∗2 -Cauchy double sequence.

Theorem 2.7. If the double sequence (xk j)⊂ R is lacunary I ∗2 -convergent to ` ∈ R, so (xk j) is lacunary I2-Cauchy double
sequence.

Proof. Let xk j→ `(I ∗
θ2
). So, there exists a set G = {(k, j)∈N2} such that for the set G′ = {(r,u)∈N2 : (k, j)∈ Iru} ∈F (I2),

we have

lim
r,u→∞

((r,u)∈G′)

∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

xk j− `

∣∣∣∣∣= 0.

It shows that there exist r0 = r0(ε) such that∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

xk j− `

∣∣∣∣∣< ε

2
, ((r,u) ∈ G′)
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for every ε > 0 and all r,u > r0. Since∣∣∣∣∣ 1
hru

∑
(k, j),(s,t)∈Iru

(xk j− xst)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
hru

∑
(k, j)∈Iru

xk j− `

∣∣∣∣∣+
∣∣∣∣∣ 1
hru

∑
(s,t)∈Iru

xst − `

∣∣∣∣∣
<

ε

2
+

ε

2
= ε, ((r,u) ∈ G′)

for all r,u > r0. Hence, we have

lim
r,u→∞

((r,u)∈G′)

1
hru

∑
(k, j),(s,t)∈Iru

(xk j− xst) = 0.

That is, (xk j) is a lacunary I ∗2 -Cauchy double sequence. Therefore, by Theorem 2.5, (xk j) is a lacunary I2-Cauchy double
sequence.

3. Conclusion
In summability theory, the notions of classical convergence, statistical and ideal convergence in some metric spaces and

normed spaces were studied by a lot of mathematicians in recently. For double sequences, we investigated the lacunary
I ∗-convergence and lacunary I ∗-Cauchy sequence in R. In the future, for double sequences, the notions of strongly lacunary
I ∗-convergence and strongly lacunary I ∗-Cauchy sequence in R are defined.
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Abstract
Throughout this article, a two-phase sampling (TPS) technique is employed to estimate the population mean of
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1. Introduction
Sympathetic or contentious issues that are raised in a brusque way may cause some respondents to feel anxious or insecure.

As a consequence, they may hide the truth because they donot want their personal intentions to be revealed. Because of the
perversion against negative behaviours, respondents may answer ‘No’ to questions like addiction of drugs, gambling, criminal
conviction, domestic abuse, induced abortions, illegal income, tax evasion, even if they have. Such questionnaires encompassing
sensitive characteristics necessarily entail the use of innovative techniques such as Randomized Response Technique (RRT)
to evoke responses from the sampled units. Warner [1] is the first who posit an inventive RRT for estimating an unknown
population prevalence of a sensitive criterion. Greenberg et al. [2] pioneered the estimation of the mean of quantitative sensitive
variable by utilising RRT models. Afterwards, Pollack and Bek [3] developed the scrambling response technique for estimating
the population mean of a sensitive variable. Gupta et al. [4] models are based on multiplicative scrambling whereas Gupta et al.
[5] models are based on additive scrambling which works better than multiplicative scrambling as demonstrated by Gupta et al.
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[6]. The notable authors include Zhang et al. [7], Kumar and Kour [8, 9], Kumar et al. [10, 11], Zaman et al. [12] and so forth
developed estimation of mean of sensitive variables under non-response and measurement error using ORRT under simple
random sampling and two-phase sampling.

In medical sciences, there are well documented instances where sensitive research must be surveilled over time in order to
truly comprehend the problem. The evolution of these kind of varying variables may be analyzed by using two-phase sampling
(TPS) technique which was first initiated by Neyman [13] and several researchers have since used it in varied incarnations.
For illustration, in a survey to estimate the manufacturing of avocado crop predicated on orchards under the crop, only a
sub-sampled of the orchards chosen for deciding land area is being used to ascertain the yield rate. Individual authors have been
used TPS in varied incarnations including Sanullah et al. [14] who developed a generalized exponential chain ratio estimators
under stratified two-phase random sampling, Zaman and Kadilar [15] introduced a new class of exponential estimators for
estimating finite population mean in two-phase sampling, Khalil et al. [16] proposed an enhanced two-phase sampling ratio
estimator for estimating population mean and among others.

A bulk of studies in a research presume that the data acquisition in a survey is error-free. Unfortunately this is not the reality;
measurement error and non-response are very serious flaws in survey sampling. Measurement error (ME) is the difference
between the observed value and the theoretical value of the target variable. Cognitive impairment, reputation bias, processing
errors and erroneous respondent responses all contribute to measurement errors. Previously, Khalil et al. [17], Onyango et al.
[18] deal with the problem of estimation of sensitive variable under measurement error in simple random sampling and double
sampling. Withal, it is essential to tackle the issue of non-response in a sampling survey. Non-response (NR) happens when the
analyst is unable to gather information from the estimated units of the population. Hansen and Hurwitz [19] is the first one who
fix the problem of non-response by conducting a strategy that entails by collecting a sub-sample of non-respondents following
the initial mail effort and then analyzing information through personal interview. Diana et al. [20], Gupta et al. [21], Zhang et
al. [22], Mukhopadhhyay et al. [23] and so on addressed the problem of estimating the population mean to adjust non-response
in varied sampling schemes.

Although we all aware that queries in a survey may have differing levels of sensitivity, and it may be important to quantify this
sensitivity. Consequently, the accentuation of this article is exclusively on the chain ratio type estimator for the estimation of
sensitive variable(s) in the presence of non-response and measurement error at the same time by making use of ORRT models
when study and both two auxiliary variables are sensitive in nature under TPS technique. In section 2 and section 3 there
are an ORR technique, an enhanced Hansen and Hurwitz [19] technique, some usual notations and some existing estimators.
The Proposed estimator is described in section 4. In section 5, we have studied the efficiency comparisons of all considered
estimator(s). To validate the theoretical findings an empirical study for both hypothetical and real population is performed in
section 6. Finally, an ultimate conclusion is given in section 7.

2. The ORR Technique

Assume that Θ = Θ1,Θ2, ...,ΘN be a finite population of size N in which Y be the sensitive study variable and X and Z be
two sensitive auxiliary variables with means Ȳ , X̄ and Z̄ and variances S2

y , S2
x and S2

z . Take S and S′ be two scrambling variables
with means S̄ and S̄′ and variances S2

s and S2
s′ , respectively. Let ‘π’ signifies the probability that the respondent will find the

question sensitive. If the respondent consider the question is sensitive, then he or she is prompted to provide a scrambled
response for the study Y as well as the auxiliary variables (X , Z), otherwise a legitimate response is recorded. Presuming simple
random sampling without replacement (SRSWOR) at each phase, the TPS strategy works as follows

1. During the first phase, a large sample of fixed size n′ is taken from Θ to examine X and Z in order to find estimates of X̄ and
Z̄.

2. In the second phase sample, a fixed-size n sub-sample is taken from n′ to observe Y only , so that (n < n′).

A conventional additive RRT model with Y +S′ as the scrambled response (as in Gupta et al. [6]) or a more comprehensive
RRT model with SY +S′ as the scrambled response (as in Diana and Perri [24]) could be employed. The simple additive model
is a particular case of the more general model if E(S) = 1 and with varying variances. The basic additive approach is more
efficient, according to Khalil et al. [25], whereas the general model gives greater privacy. Even yet, the generalized randomized
response model performs better when we utilize Gupta et al. [21] combined measure of efficiency and privacy, i.e. υ = Var(–Z1)

ϒ
,

where –Z1 is the scrambled response and ϒ = E(–Z1−Y )2 is the privacy level for the same model as given by Yan et al. [26]. It
is important to note that the model with the lower value is preferable since it indicates either a higher level of privacy or a lower
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value of Var(ŷ), or both. It is worth noting that

υadditiveRRT = 1+
S2

y

S2
s′
> 1+

S2
y

S2
s′ +S2

s (ȳ+S2
y)

= υgeneralRRT

Under such circumstances, we will utilize the general scrambling model –Z1 = SY +S′ as

–Z1 =

{
Y with probability 1-π
SY +S′ with probability π,

where S and S′ follows normal distribution with mean (1,0) and variances (S2
s ,S

2
s′) i.e. S ∼ N(1,S2

s ) and S′ ∼ N(0,S2
s′). The

mean and variance of –Z1 are as

E(–Z1) = E(Y )(1−π)+E(SY +S′)π = E(Y )

and Var(–Z1) = E(–Z2
1)−E2(–Z1) = S2

y +S2
s′π +S2

s (S
2
y + Ȳ 2)π .

We can write the randomized linear model as follows

–Z1 = (SY +S′)J+Y (1−J), where J ∼ Bernoulli(π) with E(J) = π,Var(J) = π(1−π) and E(J2) =Var(J)+E2(J) = π . And
the expectation and variance of randomized mechanism is ER(–Z1) = (S̄π +1−π)Y + S̄′π and VR(–Z1) = (Y 2S2

s +S2
s′)π .

In our research, we assume X and Z to be a sensitive variable(s) then first the general scrambling model for the auxiliary
variable X is stated as follows

–Z2 =

{
X with probability 1-π
SX +S′ with probability π,

Now, The mean and variance of –Z2 are given by

E(–Z2) = E(X)(1−π)+E(SX +S′)π = E(X)

and Var(–Z2) = E(–Z2
2)−E2(–Z2) = S2

x +S2
s′π +S2

s (S
2
x + X̄2)π .

Likewise, we can write randomized linear model as –Z2 = (SX + S′)J + X(1− J), where J ∼ Bernoulli(π) with E(J) =
π,Var(J) = π(1− π) and E(J2) = Var(J)+E2(J) = π . And the expectation and variance of randomized mechanism is
ER(–Z2) = (S̄π +1−π)X + S̄′π and VR(–Z2) = (X2S2

s +S2
s′)π .

Similarly, for auxiliary variable Z, the general scrambling model is given as

–Z3 =

{
Z with probability 1-π
SZ +S′ with probability π,

Now, The mean and variance of –Z3 are given by

E(–Z3) = E(Z)(1−π)+E(SZ +S′)π = E(Z)

and Var(–Z3) = E(–Z2
3)−E2(–Z3) = S2

z +S2
s′π +S2

s (S
2
z + Z̄2)π .

As well, we can write randomized linear model as –Z3 = (SZ +S′)J+Z(1− J), where J ∼ Bernoulli(π). The expectation and
variance of randomized procedure is ER(–Z3) = (S̄π +1−π)Z + S̄′π and VR(–Z3) = (Z2S2

s +S2
s′)π .

The variance of –Z1, –Z2 and –Z3 increases with increase in the probability π which demonstrates that the optional RRT model is
definitely more efficient than the non-optional RRT model.

3. Enhanced Hansen and Hurwitz Technique [19]
From the population Θ, we suppose that only n1 units respond on the first call and the residual n2 = n−n1 units do not

respond. Out from n2 non-responding units, a subsample of size ns =
n2
k ; (k > 0) is selected. Also, (N1,N2) are the sizes of the

respondent and non-respondent group. Let us suppose that Ȳ(2), X̄(2) and Z̄(2); S2
y(2)

, S2
x(2)

and S2
z(2)

are the mean and variances of
non-respondent group of size N2, respectively. Hansen and Hurwitz [19] conducted a mail survey on the first conversation and
then face-to-face interview on the second call.
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The entire population mean of study variable is given by

Ȳ =W1Ȳ(1)+W2Ȳ(2),

where W1 =
N1
N and W2 =

N2
N .

Let ȳ1 =
∑

N1
i=1 yi
n1

be the sample mean for the response group, and ȳ2 =
∑

N2
i=1 yi
n2

be the sample mean for non-response group. It is
worth noting note that ȳ1 and ȳ2 are unbiased estimators of Y1 and Y2, respectively.

Hansen and Hurwitz [19] suggested an unbiased population mean estimator which is given by

ȳ = w1ȳ1 +w2ȳ2s

where w1 =
n1
n and w2 =

n2
n .

The variance of ȳ is given by

Var(ȳ) =
(

N−n
Nn

)
S2

y +
W2(k−1)

n
S2

y(2)

Within the second phase of the Hansen and Hurwitz [19] methodology, wherein face-to-face interviews of subsampled units of
non-respondents are undertaken, we give respondents the opportunity to scramble their response using ORRT to incentivize
them to answer a sensitive question honestly. In this scenario, we adapt Hansen and Hurwitz’s technique by stating that the
respondent group provides direct responses in the first phase, and then the ORRT model is being applied in the second phase to
obtain answers from a sample of non-respondents.

Let ŷi denote a transformation of the randomized response on the ith unit, the expectation of which is the true response yi under
the randomization startegy is given by

ŷi =
--z1i− S̄′

S̄π +1−π

with ER(ŷi) = yi and VR(ŷi) =
VR(--z1i)

(S̄π+1−π)2 =
(y2

i S2
s+S2

s′ )π

(S̄π+1−π)2 = δ1i

Contrastingly, assume that x̂i and ẑi denote a transformation of the randomized response on the ith block, the expectation of
which is the true response xi and zi, respectively under the mechanism and is given by

x̂i =
--z2i− S̄′

S̄π +1−π

with ER(x̂i) = xi and VR(x̂i) =
VR(--z2i)

(S̄π+1−π)2 =
(x2

i S2
s+S2

s′ )π

(S̄π+1−π)2 = δ2i

Analogously

ẑi =
--z3i− S̄′

S̄π +1−π

with ER(ẑi) = zi and VR(ẑi) =
VR(--z3i)

(S̄π+1−π)2 =
(z2

i S2
s+S2

s′ )π

(S̄π+1−π)2 = δ3i

From the previous discussions, we alter the Hansen and Hurwitz [19] estimator in the presence of non-response by utilizing
ORRT.

ˆ̄y = w1ȳ1 +w2 ˆ̄y2

ˆ̄x = w1x̄1 +w2 ˆ̄x2

ˆ̄z = w1z̄1 +w2 ˆ̄z2

where ˆ̄y2 = ∑
ns
i=1(

ŷi
ns
), ˆ̄x2 = ∑

ns
i=1(

x̂i
ns
) and ˆ̄z2 = ∑

ns
i=1(

ẑi
ns
).

It is simple to illustrate that
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E( ˆ̄y) = Ȳ ; E( ˆ̄x) = X̄ ; E( ˆ̄z) = Z̄

and

The variance of ˆ̄y is given by

Var( ˆ̄y) = λS2
y +λ

∗S2
y(2)+

W2k
n

[{(S2
y(2)+ ȳ2

(2))S
2
s +S2

s′}π
(S̄π +1−π)2

]
Similarly, the variance of ˆ̄x is given by

Var( ˆ̄x) = λS2
x +λ

∗S2
x(2)+

W2k
n

[{(S2
x(2)+ x̄2

(2))S
2
s +S2

s′}π
(S̄π +1−π)2

]
and

Var( ˆ̄z) = λS2
z +λ

∗S2
z(2)+

W2k
n

[{(S2
z(2)+ z̄2

(2))S
2
s +S2

s′}π
(S̄π +1−π)2

]
where λ = (N−n)

Nn and λ ∗ = (k−1)W2
n .

Measurement error, additionally to non-response, is a prominent cause of non-sampling errors in a survey. Let Ui = yi−Yi,
Vi = xi−Xi and Wi = zi−Zi be the measurement error for the study variable (Y ) and auxiliary variables (X , Z) in the population.
Let Pi = --z1i− –Z1i, Qi = --z2i− –Z2i and Ri = --z3i− –Z3i indicate the respective measurement error associated with the sensitive
variables (–Z1, –Z2 and –Z3) in the face-to-face interview phase. These measurement errors are recognised to be random and
uncorrelated, with mean zero and variances S2

u, S2
v , S2

w, S2
p, S2

q and S2
r , respectively.

Numerous notations are presented here, supposing that the population mean of the sensitive auxiliary variable(s) are unknown
and that non-response happens on both the study as well as on both the auxiliary variables i.e X , Y and Z.

∆̂
∗
y =

n

∑
i=1

(yi− Ȳ ); ∆̂
∗
x =

n

∑
i=1

(xi− X̄); ∆̂
∗
z =

n

∑
i=1

(zi− Z̄)

∆̂
∗
u =

n1

∑
i=1

Ui +
n2

∑
i=1

Pi; ∆̂
∗
v =

n1

∑
i=1

Vi +
n2

∑
i=1

Qi; ∆̂
∗
w =

n1

∑
i=1

Wi +
n2

∑
i=1

Ri

where Ui, Vi, Wi, Pi, Qi and Ri are measurement errors on Y , X , Z, –Z1, –Z2 and –Z3 respectively.

Furthermore, in the presence of measurement error, the variance of ˆ̄y, ˆ̄x and ˆ̄z is given by

Var( ˆ̄y∗) = λ (S2
y +S2

u)+λ
∗(S2

y(2)+S2
p)+κ1;

Var( ˆ̄x∗) = λ (S2
x +S2

v)+λ
∗(S2

x(2)+S2
q)+κ2

and

Var( ˆ̄z∗) = λ (S2
z +S2

w)+λ
∗(S2

z(2)+S2
r )+κ3

where κ1 =
W2k

n

[
{(S2

y(2)+ȳ2
(2))S

2
s+S2

s′}π
(S̄π+1−π)2

]
; κ2 =

W2k
n

[
{(S2

x(2)+x̄2
(2))S

2
s+S2

s′}π
(S̄π+1−π)2

]
and κ3 =

W2k
n

[
{(S2

z(2)+z̄2
(2))S

2
s+S2

s′}π
(S̄π+1−π)2

]
.

Taking ˆ̄y∗ = Ȳ (1+ ê∗0), ˆ̄x∗ = X̄(1+ ê∗1), ˆ̄z∗ = Z̄(1+ ê∗2), x̄′ = X̄(1+ e′1) and z̄′ = Z̄(1+ e′2) such that E(ê∗0) = E(ê∗1) = E(ê∗2) =
E(e′1) = E(e′2) = 0

To acquire mean squared error, we will used the following notations

E(ê∗20 ) = 1
Ȳ 2

[
λ (S2

y +S2
u)+λ ∗(S2

y(2)+S2
p)+κ1

]
= 1

Ȳ 2 (A+κ1) = A1;

E(ê2
0) =

1
Ȳ 2

[
λS2

y +λ ∗S2
y(2)+κ1

]
= 1

Ȳ 2 (Â+κ1) = A2;

E(e∗20 ) = 1
Ȳ 2

[
λ (S2

y +S2
u)+λ ∗(S2

y(2)+S2
u(2))

]
= 1

Ȳ 2 A∗ = A3;
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E(ê∗21 ) = 1
X̄2

[
λ (S2

x +S2
v)+λ ∗(S2

x(2)+S2
q)+κ2

]
= 1

X̄2 (B+κ2) = B1;

E(ê2
1) =

1
X̄2

[
λS2

x +λ ∗S2
x(2)+κ2

]
= 1

X̄2 (B̂+κ2) = B2;

E(e∗21 ) = 1
X̄2

[
λ (S2

x +S2
v)+λ ∗(S2

x(2)+S2
v(2))

]
= 1

X̄2 B∗ = B3;

E(ê∗22 ) = 1
Z̄2

[
λ (S2

z +S2
w)+λ ∗(S2

z(2)+S2
r )+κ3

]
= 1

Z̄2 (C+κ3) =C1;

E(ê2
2) =

1
Z̄2

[
λS2

z +λ ∗S2
z(2)+κ3

]
= 1

Z̄2 (Ĉ+κ3) =C2;

E(e∗22 ) = 1
Z̄2

[
λ (S2

z +S2
w)+λ ∗(S2

z(2)+S2
w(2))

]
= 1

Z̄2 A∗ =C3;

E(e′1) =
1

X̄2 λS2
x = A11; E(e′2) =

1
Z̄2 λS2

z =C11;

E(ê∗0ê∗1) =
1

Ȳ X̄

[
λρyxSySx +λ ∗ρyx(2)Sy(2)Sx(2)

]
= 1

Ȳ X̄ D = D1;

E(ê0ê1) =
1

Ȳ X̄

(
λρyxSySx

)
= 1

Ȳ X̄ D̂ = D2;

E(ê∗1ê∗2) =
1

X̄ Z̄

[
λρxzSxSz +λ ∗ρxz(2)Sx(2)Sz(2)

]
= 1

X̄ Z̄ E = E1;

E(ê1ê2) =
1

X̄ Z̄

(
λρxzSxSz

)
= 1

X̄ Z̄ Ê = E2;

E(ê∗0ê∗2) =
1

Ȳ Z̄

[
λρyzSySz +λ ∗ρyz(2)Sy(2)Sz(2)

]
= 1

Ȳ Z̄ F = F1;

E(ê0ê2) =
1

Ȳ Z̄

(
λρyzSySz

)
= 1

Ȳ Z̄ F̂ = F2;

E(ê∗0e′1) =
1

Ȳ X̄ λ ′ρyxSySx =
1

Ȳ X̄ G = G1;

E(ê∗0e′2) =
1

Ȳ Z̄ λ ′ρyzSySz =
1

Ȳ Z̄ H = H1;

E(ê∗1e′1) =
1

X̄2 λ ′S2
x =

1
X̄2 I = I1;

E(ê∗1e′2) =
1

X̄ Z̄ λ ′ρxzSySz =
1

X̄ Z̄ J = J1;

E(ê∗2e′1) =
1

Z̄X̄ λ ′ρzxSzSx =
1

Z̄X̄ K = K1;

E(ê∗2e′2) =
1

Z̄2 λ ′S2
z =

1
Z̄2 L = L1;

E(e′1e′2) =
1

X̄ Z̄ λ ′ρxzSxSz =
1

X̄ Z̄ M = M1.

where λ =
( 1

n −
1
N

)
; λ ′ =

( 1
n′ −

1
N

)
and λ ∗ = W2(k−1)

n .

Next we take the modified conventional estimators i.e. ratio and product estimators into six antithetic strategies depending upon
the accessible sensitive auxiliary variables using ORRT models under two-phase sampling (TPS) scheme.
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Strategies Conventional Esti-
mator(s)

Bias Mean Squared Error (MSE)

Strategy 1: When ˆ̄y∗, ˆ̄x∗

and x̄′ are used and NR
and ME occurs on both sen-
sitive study and auxiliary
variable

T̂ ∗r = ˆ̄y∗
( ˆ̄x∗

x̄′
)

Bias(T̂ ∗r ) = κϕB − κϕI −
ϕG+ϕD+κϕκ2

MSE(T̂ ∗r ) = A + κ2B + κ2A11 −
2κ2I + 2ϕG + 2ϕD + (κ1 + κ2κ2)

where κ = Ȳ
X̄ and ϕ = 1

X̄

Strategy 2: When ˆ̄y, ˆ̄x and
x̄′ are in use and there is ab-
sence of NR and ME

T̂r = ˆ̄y
( ˆ̄x

x̄′
)

Bias(T̂r)=κϕB̂−κϕI−ϕG+
ϕD̂+κϕκ2

MSE(T̂r) = Â + κ2B̂ + κ2A11 −
2κ2I +2ϕG+2ϕD̂+(κ1 +κ2κ2)

Strategy 3: When ȳ∗, x̄∗

and x̄′ are utilized and NR
and ME both occurs on
study as well as on auxil-
iary variable

T ∗r = ȳ∗
(

x̄∗
x̄′

)
Bias(T ∗r ) = κϕB∗ − κϕI −
ϕG+ϕD+κϕκ2

MSE(T ∗r ) = A∗ + κ2B∗ + κ2A11 −
2κ2I++2ϕG+2ϕD+(κ1+κ2κ2)

Strategy 4: When ˆ̄y∗, ˆ̄x∗,
ˆ̄z∗, x̄′ and z̄′ are used and
NR and ME happens on
both the sensitive study as
well as auxiliary variables

T̂ ∗p = ˆ̄y∗
( ˆ̄x∗

x̄′
)( ˆ̄z∗

z̄′
)

Bias(T̂ ∗r ) = κϕA11 − ϖρL +
ϖρC11 − κρK + κρE −
κϕI−ρH−ϕG

MSE(T̂ ∗p ) = A + κ2B + ϖ2C +

ρ2C11 + 4κ2A11 + 4κϖM −
2ϖ2L − 2ϖH − 4κ2I − 4κϖK −
4κG+2κϖE +2κD+2ϖF +κ1 +
+κ2κ2 +ϖ2κ3

Strategy 5: When ˆ̄y, ˆ̄x, ˆ̄z, x̄′

and z̄′ are utilized and there
is no NR and ME happens

T̂p = ˆ̄y
( ˆ̄x

x̄′
)( ˆ̄z

z̄′
)

Bias(T̂r) = κϕA11 − ϖρL +
ϖρC11 − κρK + κρÊ −
κϕI−ρH−ϕG

MSE(T̂p) = Â + κ2B̂ + ϖ2Ĉ +
ρ2C11 + 4κ2A11 + 4κϖM −
2ϖ2L − 2ϖH − 4κ2I − 4κϖK −
4κG+2κϖ Ê +2κD̂+2ϖ F̂ +κ1 +
κ2κ2 +ϖ2κ3

Strategy 6: When ȳ∗, x̄∗,
z̄∗, x̄′ and z̄′ are employed
and NR and ME both oc-
curs on study as well as on
the auxiliary variables

T ∗p = ȳ∗
( x̄∗

x̄′
)( z̄∗

z̄′
)

Bias(T ∗r ) = κϕA11 − ϖρL +
ϖρC11 − κρK + κρE −
κϕI−ρH−ϕG

MSE(T ∗p ) = A∗ + κ2B∗ + ϖ2C∗ +
ρ2C11 + 4κ2A11 + 4κϖM −
2ϖ2L − 2ϖH − 4κ2I − 4κϖK −
4κG+2κϖE +2κD+2ϖF +κ1 +
κ2κ2 +ϖ2κ3

Table 1. Conventional estimators with their bias and mean square errors using ORRT

4. Proposed Chain Ratio Type Estimator

Grabbing inspiration from the existing evidences, an efforts have been made to propose an estimator to improve conventional
estimators by multiplying a tuning constant term α whose optimum value is based on the coefficient of variation, which is
relatively a stable variable. In addition, inspired by Kumar and Kour [8] and Zhang et al. [22], an information on more than one
auxiliary variable can be utilized to suggest a more efficient chain ratio type estimator in the presence of non-response and
measurement error simultaneously when the study as well as both the auxiliary variables are sensitive in its essence under three
different strategies in two-phase sampling technique by utilizing ORRT models so that one could get a more precise estimate of
the population mean.

Methodology 1: Assuming ˆ̄y∗, ˆ̄x∗, ˆ̄z∗, x̄′ and z̄′ are deployed and non-response and measurement error occured on both the
sensitive study as well as auxiliary variables i.e. (X ,Z) under TPS scheme then the chain ratio type estimator is given as

T̂ ∗s = α ˆ̄y∗
[

α1

( ˆ̄x∗

x̄′

)( ˆ̄z∗

z̄′

)
+(1−α1)

(
x̄′

ˆ̄x∗

)(
z̄′

ˆ̄z∗

)]

where α = Ȳ 2

Ȳ 2+λS2
y+λ ∗S2

y(2)
.

To evaluate the bias and mean squared error of T̂ ∗s by reducing and eliminating terms to first order of approximation, one could
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verify that

(T̂ ∗s − Ȳ ) = Ȳ (α−1)+αȲ (ê∗22 − ê∗2 + e′2− ê∗2e′2 + ê∗1ê∗2− ê∗2e′2 + e′1− ê∗2e′1 + e′1e′2− ê∗1e′1−2α1e′2 +2α1ê∗2−2α1e′1+

α1e′22 +α1e′21 −α1ê∗22 −α1ê∗21 +2α1ê∗1 + ê∗0− ê∗0ê∗2 + ê∗0e′2− ê∗0ê∗1 + ê∗0e′1−2α1ê∗0e′2 +2α1ê∗0ê∗2−
2α1ê∗0e′1 +2α1ê∗0ê∗1).

The bias and mean squared error of the chain ratio type estimator ˆ̄T ∗s in the inclusion of non-response and measurement error at
the same time, is given by

Bias(T̂ ∗s ) = α
∗{(2α1−1)(F1 +D1−H1−G1)+E1− (α1−1)C1−α1B1−2L1−K1 +M1 + J1 +α1ζ}−β

∗

where β ∗ =

(
Ȳ 2+λS2

y+λ ∗S2
y(2)

Ȳ + Ȳ
)

; α∗ = Ȳ 3

Ȳ 2+λS2
y+λ ∗S2

y(2)
; ζ = λ ′

(
1

Z̄2 S2
z +

1
X̄2 S2

x

)
.

and

MSE(T̂ ∗s ) = γ
2 +α

∗2[A1 +θC1 +θA11 +θC11 +4α
2
1 B1 +2φF1−2φG1−2φH1 +4α1D1−2θK1 +2θL1+

4α1φE1 +2θM1 +4α1φ I1−4α1φJ1
]

(4.1)

where θ = 1+4α2
1 −4α1; φ = 2α1−1 and γ =

(
−(λS2

y+λ ∗S2
y(2))Ȳ

2

Ȳ 2+λS2
y+λ ∗S2

y(2)

)
.

To get the optimum solution of the constant ‘α1’ in ˆ̄T ∗s , we differentiate (4.1) with respect to ‘α1’ and equating it to zero, we
have

α̂
∗
1opt. =

−(γ2 +4η)

8α∗2η∗
(4.2)

where η = F1−G1−H1 +D1;

and η∗ = B1 +C1 +A11 +C11−2K1 +2L1 +2M1 +2E1 +2I1−2J1.

Substituting the optimum value from (4.2), the minimum mean squared error of T̂ ∗s is given as

min.MSE(T̂ ∗s ) = γ
2 +α

∗2(A1 +C1 +A11 +C11−2K1 +2L1 +2M1−2F1 +2G1 +2H1)−ψ(D1−F1 +G1 +H1−B1)+ψ
∗

where ψ = −(γ2+4η)
2 and ψ∗ = ψ2

α∗2η∗
.

Methodology 2: Letting ˆ̄y, ˆ̄x, ˆ̄z, x̄′ and z̄′ are being used and there is absence of non-response and measurement error on
the sensitive study as well as both the sensitive auxiliary variables i.e. (X ,Z) under TPS technique then the chain ratio type
estimator is given as

T̂s = α̂ ˆ̄y
[

α1

( ˆ̄x
x̄′

)( ˆ̄z
z̄′

)
+(1−α1)

(
x̄′

ˆ̄x

)(
z̄′

ˆ̄z

)]
where α̂ = Ȳ 2

Ȳ 2+λS2
y
.

The expressions for the bias as well as mean squared error are expressed as

Bias(T̂s) = α̂
∗{(2α̂1−1)(F2 +D2−H1−G1)+E2− (α̂1−1)C2− α̂1B2−2L1−K1 +M1 + J1 + α̂1ζ}− β̂

∗

where β̂ ∗ =

(
Ȳ 2+λS2

y
Ȳ + Ȳ

)
; α̂∗ = Ȳ 3

Ȳ 2+λS2
y
.

MSE(T̂s) = γ̂
2 +α

∗2[A2 +θC2 +θA11 +θC11 +4α
2
1 B2 +2φF2−2φG1−2φH1 +4α1D2−2θK1 +2θL1+

4α1φE2 +2θM1 +4α1φ I1−4α1φJ1
]

where γ̂ =

(
−(λS2

y )Ȳ
2

Ȳ 2+λS2
y

)
.
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which is optimum when

α̂1opt. =
−(γ̂2 +4η)

8α∗2η∗

where η̂ = F2−G1−H1 +D2;

and η̂∗ = B2 +C2 +A11 +C11−2K1 +2L1 +2M1 +2E2 +2I1−2J1.

The minimum mean squared error for this methodology is given as

min.MSE(T̂s) = γ̂
2 + α̂

∗2(A2 +C2 +A11 +C11−2K1 +2L1 +2M1−2F2 +2G1 +2H1)− ψ̂(D2−F2 +G1+

H1−B2)+ ψ̂
∗

where ψ̂ = −(γ̂2+4η̂)
2 ; ψ̂∗ = ψ̂2

α̂∗2η̂∗
.

Methodology 3: Suppose ȳ∗, x̄∗, z̄∗, x̄′ and z̄′ are employed and there is presence both non-response and measurement error on
the sensitive study and auxiliary variables i.e. (X ,Z) using TPS technique. For this strategy the chain ratio type estimator is
given as

T ∗s = α ȳ∗
[

α1

(
x̄∗

x̄′

)(
z̄∗

z̄′

)
+(1−α1)

(
x̄′

x̄∗

)(
z̄′

z̄∗

)]
where α = Ȳ 2

Ȳ 2+λS2
y+λ ∗S2

y(2)
.

The formulation of bias and MSE when there is a presence of non-response and measurement error are given as

Bias(T ∗s ) = α
∗{(2α1−1)(F1 +D1−H1−G1)+E1− (α1−1)C3−α1B3−2L1−K1 +M1 + J1 +α1ζ}−β

∗

and

MSE(T ∗s ) = γ
2 +α

∗2[A3 +θC3 +θA11 +θC11 +4α
2
1 B3 +2φF1−2φG1−2φH1 +4α1D1−2θK1 +2θL1+

4α1φE1 +2θM1 +4α1φ I1−4α1φJ1
]

which in itself is optimal when

α
∗
1opt. =

−(γ2 +4η)

8α∗2η∗∗

where η∗∗ = B3 +C3 +A11 +C11−2K1 +2L1 +2M1 +2E1 +2I1−2J1.

Then, the min.MSE for this strategy is expressed as

min.MSE(T ∗s ) = γ
2 +α

∗2(A3 +C3 +A11 +C11−2K1 +2L1 +2M1−2F1 +2G1 +2H1)−ψ(D1−F1 +G1+

H1−B3)+ψ
∗∗

where ψ∗∗ = ψ2

α∗2η∗∗
.

5. Efficiency Comparisons of Estimator(s)
To assess the effectiveness of the chain type proposed estimator, we relate it to the ratio and product estimator in different

strategic plans as

(i) min.MSE(T̂ ∗s )−MSE(T̂ ∗r )< 0

if γ
2 +α

∗2â∗+ψ
∗−ψ b̂∗− ĉ∗ < 0
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(ii) min.MSE(T̂s)−MSE(T̂r)< 0

if γ̂
2 + α̂

∗2â+ψ
∗−ψ b̂− ĉ < 0

(iii) min.MSE(T ∗s )−MSE(T ∗r )< 0

if γ
2 +α

∗2a∗+ψ
∗−ψb∗− c∗ < 0

(iv) min.MSE(T̂ ∗s )−MSE(T̂ ∗p )< 0

if γ
2 +α

∗2â∗+ψ
∗−ψ b̂∗− d̂∗ < 0

(v) min.MSE(T̂s)−MSE(T̂p)< 0

if γ̂
2 + α̂

∗2â+ψ
∗−ψ b̂− d̂ < 0

(vi) min.MSE(T ∗s )−MSE(T ∗p )< 0

if γ
2 +α

∗2a∗+ψ
∗−ψb∗−d∗ < 0

where â∗ = A1 +C1 +A11 +C11−2K1 +2L1 +2M1−2F1 +2G1 +2H1;

b̂∗ = D1−F1 +G1 +H1−B1;

ĉ∗ = A+κ2B+κ2A11−2κ2I +2ϕG+2ϕD+(κ1 +κ2κ2);

â = A2 +C2 +A11 +C11−2K1 +2L1 +2M1−2F2 +2G1 +2H1;

b̂ = D2−F2 +G1 +H1−B2;

ĉ = Â+κ2B̂+κ2A11−2κ2I +2ϕG+2ϕD̂+(κ1 +κ2κ2);

a∗ = A3 +C3 +A11 +C11−2K1 +2L1 +2M1−2F1 +2G1 +2H1;

b∗ = D1−F1 +G1 +H1−B3;

c∗ = A+κ2B+κ2A11−2κ2I +2ϕG+2ϕD+(κ1 +κ2κ2);

When the above conditions from (i)− (vi) are met then it is evident that the suggested estimators i.e. T̂ ∗s , T̂s and T ∗s are efficient
than the existing one.

min.MSE(T̂s)< min.MSE(T ∗s )< min.MSE(T̂ ∗s )< MSE(T̂p)< MSE(T ∗p )< MSE(T̂ ∗p )< MSE(T̂r)< MSE(T ∗r )< MSE(T̂ ∗p ).

To verify the performance of the above relations, we execute a simulation study by using both hypothetical and real populations
in R software which is relinquished in the next section.

6. Simulation Study
To gain a better understanding of the efficiency of the recommended estimators, we leverage R software to perform a

simulation study to validate the effectiveness of our proposed estimator as compare to the ratio and the product type estimator(s).
We generated a population of N = 8000 we take sample of size n′ = 6000 and suppose that the response rate is 40% in the
first phase. From n′ we take sample of size n = 2000 using R software for different values of k and π sequentially. A variable
X ∼ N(a,b); Z ∼ N(a,b) and variable Y which is related with X and Z is defined as Y = X +Z +N(0,1) also generated from
normal distribution where a = 0.5 and b = 1.5. The scrambling variables S∼ N(1,a) and S′ ∼ N(0,1), both taken from normal
distribution and results are averaged over 8,000 iterations.



Quantify the Impact of Non-Response and Measurement Error of Sensitive Variable(s) under Two-Phase Sampling
employing ORRT Models — 206/210

The unified measure ω as described by Gupta et al. [21] are represented by

ω̂
∗ =

MSE(T̂ ∗i )
ϒ

; (6.1)

where ϒ = E(–Z1−Y )2 is the privacy level of sensitive models and T ∗i = T̂ ∗r , T̂ ∗p and T̂ ∗s .

ω̂ =
MSE(T̂i)

ϒ
; (6.2)

where T ∗i = T̂r, T̂p and T̂s.

π k
Estimator(s) Unified Measure(ω̂∗)

MSE(T̂ ∗r ) MSE(T̂ ∗p ) MSE(T̂ ∗s ) ω̂∗(T̂ ∗r ) ω̂∗(T̂ ∗p ) ω̂∗(T̂ ∗s )

0.2

2 0.0747 0.0601 0.0255 0.0254 0.0205 0.0087
3 0.0963 0.0767 0.0326 0.0328 0.0261 0.0111
4 0.1189 0.0974 0.0404 0.0406 0.0332 0.0138
5 0.1403 0.1131 0.0475 0.0479 0.0385 0.0162

0.4

2 0.0755 0.0616 0.0262 0.0248 0.0202 0.0086
3 0.0977 0.0790 0.0339 0.0321 0.0260 0.0111
4 0.1210 0.1006 0.0423 0.0398 0.0331 0.0139
5 0.1429 0.1159 0.0494 0.0470 0.0381 0.0162

0.6

2 0.0757 0.0656 0.0286 0.0246 0.0213 0.0092
3 0.0983 0.0843 0.0371 0.0319 0.0274 0.0121
4 0.1220 0.1050 0.0455 0.0396 0.0343 0.0148
5 0.1440 0.1229 0.0537 0.0468 0.0399 0.0174

0.8

2 0.0764 0.0671 0.0294 0.0240 0.0210 0.0092
3 0.0995 0.0867 0.0385 0.0312 0.0272 0.0121
4 0.1230 0.1087 0.0474 0.0388 0.0341 0.0149
5 0.1464 0.1257 0.0557 0.0459 0.0395 0.0174

1

2 0.0837 0.0709 0.0298 0.0256 0.0216 0.0091
3 0.1109 0.0911 0.0386 0.0339 0.0278 0.0118
4 0.1351 0.1106 0.0464 0.0413 0.0338 0.0141
5 0.1613 0.1314 0.0557 0.0493 0.0401 0.0170

Table 2. Comparison of Mean squared error and privacy and efficiency (ω̂∗) of T̂ ∗s , T̂ ∗r and T̂ ∗p at varying values of k and π with
non-response and measurement error.

Table 1 delineates the comparison of mean squared error of the suggested estimator T̂ ∗s with other conventional estimators
i.e. T̂ ∗r and T̂ ∗p and privacy protection measure suggested by Gupta et al. [21] which is represented in (6.1) at distinct values of
k and π in the presence of non-response and measurement error at the same time under TPS technique. For increase in the
value of π from 0.2 to 1 and k from 2 to 5, the mean squared error of each estimator grows and same behaviour is observed for
the unified measure (ω̂∗).

Table 2 depicts the comparison of mean squared error of the suggested estimator T̂s with other existing estimators i.e. T̂r and T̂p
and privacy protection measure which is represented in (6.2) at distinct values of k and π in the absence of non-response and
measurement error. The mean squared error of each estimator increases with increase in the value of π from 0.2 to 1 and k from
2 to 5, and same performance is detected for the privacy protection (ω̂∗).

It is also visualize from Tables 1 and Table 2 that the MSEs of ratio estimators ( T̂ ∗r , T̂r) and product estimators (T̂ ∗p , T̂p) are
the highest for all analyzed values of k, whereas our recommended estimators, (T̂ ∗s , T̂s) is the lowest among the ratio and the
product type estimators. Also, the privacy measure is least for the proposed estimator (T̂ ∗s , T̂s) in the presence and absence
of non-response and measurement error simultaneously. In both the scenario‘s, (MSE(T̂ ∗s ), MSE(T̂s)), i.e. the recommended
estimator, is the most efficient amongst the alternatives. Furthermore, Table 1 and Table 2 indicates that the proposed estimator
outperformed existing estimators also in terms of the unified measure (ω̂∗ and ω̂) of privacy and efficiency.

Table 3 illustrates the comparison of mean squared error of the suggested estimator T ∗s with other existing estimators i.e. T ∗r
and T ∗p at specific values of k in the absence of non-response and measurement error entirely at the same time. When the value
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π k
Estimator(s) Unified Measure(ω̂)

MSE(T̂r) MSE(T̂p) MSE(T̂s) ω̂(T̂r) ω̂(T̂p) ω̂(T̂s)

0.2

2 0.0209 0.0269 0.0080 0.0254 0.0092 0.0027
3 0.0217 0.0274 0.0082 0.0328 0.0093 0.0028
4 0.0226 0.0279 0.0086 0.0406 0.0095 0.0029
5 0.0233 0.0283 0.0088 0.0479 0.0096 0.0030

0.4

2 0.0227 0.0285 0.0087 0.0248 0.0094 0.0028
3 0.0243 0.0294 0.0093 0.0321 0.0097 0.0030
4 0.0261 0.0306 0.0100 0.0398 0.0100 0.0033
5 0.0275 0.0313 0.0105 0.0470 0.0103 0.0034

0.6

2 0.0240 0.0311 0.0099 0.0246 0.0101 0.0032
3 0.0263 0.0325 0.0108 0.0319 0.0105 0.0035
4 0.0289 0.0341 0.0118 0.0390 0.0110 0.0038
5 0.0310 0.0354 0.0126 0.0468 0.0115 0.0040

0.8

2 0.0257 0.0328 0.0107 0.0240 0.0103 0.0033
3 0.0287 0.0347 0.0120 0.0312 0.0109 0.0037
4 0.0321 0.0368 0.0133 0.0388 0.0115 0.0041
5 0.0348 0.0384 0.0143 0.0459 0.0120 0.0044

1

2 0.0294 0.0348 0.0116 0.0256 0.0106 0.0035
3 0.0335 0.0371 0.0129 0.0339 0.0113 0.0039
4 0.0372 0.0392 0.0142 0.0413 0.0119 0.0043
5 0.0410 0.0416 0.0158 0.0493 0.0127 0.0048

Table 3. Comparison of Mean squared error and privacy and efficiency (ω̂) of T̂r, T̂p and T̂s at varying values of k and π

without non-response and measurement error.

k
Estimator(s)

MSE(T ∗r ) MSE(T ∗p ) MSE(T ∗s )
2 0.0556 0.0529 0.0205
3 0.0692 0.0659 0.0254
4 0.0849 0.0815 0.0301
5 0.0960 0.0926 0.0347

Table 4. Comparison of Mean squared error of T ∗r , T ∗p and T ∗s at varying values of k with complete non-response and
measurement error.

of k tends to increase, the mean squared error of each estimator also increases. The MSE of the suggested estimator i.e. T ∗s is
minimal as the MSEs of the conventional one viz T ∗r and T ∗p are highest.

6.1 Natural population data set
The natural population dataset is based on abortion rates form Statistical Abstract of the United States: 2011 to elucidate

the efficacious performance of our proposed estimator. The data is of N = 51 states and union territories of United States then a
random sample is drawn from the population i.e., n′ = 20. From n′ we take sample of size n = 12. Let y, x, z be the number of
abortions reported in the state of US during the years 2000, 2004, and 2005 respectively. The results are shown in Table 5 for
different probability levels of sensitive variables, i.e. π = 0.2,0.4,0.6,0.8,1 when k = 2.
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Estimator(s) π

(Unified Measure) 0.2 0.4 0.6 0.8 1
MSE(T̂ ∗r ) 0.1500161 0.1500946 0.1501633 0.1502234 0.1502760
(ω̂∗(T̂ ∗r )) (0.0002191) (0.0002192) (0.0002193) (0.0002194) (0.0002195)
MSE(T̂ ∗p ) 0.1550136 0.1551421 0.1552544 0.1553527 0.1554388
(ω̂∗(T̂ ∗p )) (0.0002264) (0.0002266) (0.0002267) (0.0002269) (0.0002270)
MSE(T̂ ∗s ) 0.0346015 0.0345727 0.0345476 0.0345256 0.03450639
(ω̂∗(T̂ ∗p )) (0.0000505) (0.0000505) (0.0000504) (0.0000505) (0.0000504)
MSE(T̂r) 0.1492835 0.1493620 0.1494306 0.1494907 0.1495434
(ω̂(T̂r)) (0.0002180) (0.0002181) (0.0002182) (0.0002183) (0.0002184)
MSE(T̂p) 0.1540969 0.1542253 0.1543376 0.1544359 0.1545220
(ω̂(T̂p)) (0.0002251) (0.0002252) (0.0002254) (0.0002256) (0.0002257)
MSE(T̂s) 0.0348155 0.0347863 0.0347609 0.0347386 0.0347191
(ω̂(T̂s)) (0.0005085) (0.0005081) (0.0005077) (0.0005074) (0.0005071)

Table 5. Comparison of Mean squared error and unified measure at varying values of π when k = 2 and
(MSE(T ∗r ) = 0.081953, MSE(T ∗p ) = 0.088362 & MSE(T ∗s ) = 0.057562)

Table 5 represents the comparison of mean squared error and unified measure of the proposed estimator i.e., (T̂ ∗s , T̂s and
T ∗s ) with other existing estimators i.e. (T̂ ∗r , T̂r and T ∗r ) and (T̂ ∗p , T̂p and T ∗p ) at specific values of π in the presence and absence
of non-response and measurement error simultaneously. When the value of π increases, the mean squared error and unified
measure of existing estimators also increases but the mean squared error and unified measure of proposed estimator decreases.
The MSE of proposed estimator is lowest and unified measure is highest which finds that the proposed estimator is better and
each respondent privacy is protected as compared to the other existing estimators.

7. Conclusion
This study demonstrates a new chain ratio type estimator for estimating the population mean of the sensitive study as well

as auxiliary variables in the presence of non-response and measurement error under two-phase sampling technique by utilizing
ORRT models. The bias and mean squared errors of the proposed estimator are assessed up to the first order approximation.
The efficiency of the proposed chain ratio type estimator has been compared with that of the existing one under TPS using two
auxiliary variables. The condition by which the proposed estimator T̂ ∗s proven to be more efficient than other existing estimators,
notably T̂ ∗r and T̂ ∗p are also formed. The theoretical facts have been supported by conducting an empirical study. We executed a
model-based simulation and a real dataset in R software to verify the theoretical results, and from the simulation results i.e.,
both hypothetical and real population shows that the suggested estimator outperform the other conventional estimators. As a
result, if the requirements in Section 5 are satisfied, then the suggested estimators are encouraged for use in practice.

Article Information
Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for

their helpful comments and suggestions.

Author’s contributions: All authors contributed equally to the writing of this paper. All authors read and approved the
final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under
the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for
this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and
ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of data and materials: Not applicable.



Quantify the Impact of Non-Response and Measurement Error of Sensitive Variable(s) under Two-Phase Sampling
employing ORRT Models — 209/210

References
[1] S. L. Warner, Randomized response: a survey technique for eliminating evasive answer bias, J. Am. Stat. Assoc., 60(309)

(1965), 63–69.
[2] B. G. Greenberg, R. R. Jr. Kuebler, J. R. Abernathy, D. G. Hovertiz, Application of the randomized response techniques in

obtaining quantitative data, J. Am. Stat. Assoc., 66(334) (1971), 243-250.
[3] K. Pollock, Y. Bek, A comparison of three randomized response models for quantitative data, J. Am. Stat. Assoc., 71(356)

(1976), 884-886.
[4] S. Gupta, B. Gupta, S. Singh, Estimation of sensitivity level of personal interview survey questions, J. Stat. Plan. Inference,

100(2) (2002), 239-247.
[5] S. Gupta, J. Shabbir, S. J. Sehra, Mean and sensitivity estimation in optional randomized response models, J. Stat. Plan.

Inference, 140(10) (2010), 2870-2874.
[6] S. Gupta, J. Shabbir, R. Sousa, P. Corte-Real, Estimation of the mean of a sensitive variable in the presence of auxiliary

information, Commun. Stat. Theory Methods, 41(13-14) (2012), 13-14.
[7] Q. Zhang, G. Kalucha, S. Gupta, S. Khalil, Ratio estimation of the mean under RRT models, Int. J. Stat. Manag. Syst.,

22(1) (2018), 97-113.
[8] S. Kumar, S. P. Kour, Estimation of Sensitive Variable in Two-Phase Sampling under Measurement Error And Non-Response

Using ORRT Models, Sri Lankan J. Appl. Stat., 22(3) (2021), 95-122.
[9] S. Kumar, S. P. Kour, The joint influence of estimation of sensitive variable under measurement error and non-response

using ORRT models, J. Stat. Comput. Simul., 92(17) (2022), 3583-3604.
[10] S. Kumar, S. P. Kour, Q. Zhang An enhanced ratio-cum-product estimator with non-response and observational error by

utilizing ORRT models: a sensitive estimation approach, J. Stat. Comput. Simul., 93(5) (2023), 818-836.
[11] S. Kumar, S. P. Kour, R. Gupta, J. P. S. Joorel A Class of Logarithmic Type Estimator Under Non-Response and

Measurement Error Using ORRT Models, J. Indian Soc. Probab. Stat., (2023), doi:10.1007/s41096-023-00156-7.
[12] Q. Zaman, M. Ijaz, T. Zaman, A randomization tool for obtaining efficient estimators through focus group discussion in

sensitive surveys, Commun. Stat. - Theory Methods, 52(10) (2023), 3414-3428.
[13] J. Neyman, Contribution to the theory of sampling human populations, J Am Stat Assoc., 33(201) (1938), 101-116.
[14] A. Sanaullah, H. Ali, M. Noor-ul-Amin, M. Hanif, Generalized exponential chain ratio estimators under stratified

two-phase random sampling, Appl. Math. Comput., 226 (2014), 541-547.
[15] T. Zaman, C. Kadilar, New class of exponential estimators for finite population mean in two-phase sampling, Commun.

Stat. Theory Methods, 50(4) (2021), 874-889.
[16] S. Khalil, Q. Zhang, S. Gupta, An enhanced two phase sampling ratio estimator for estimating population mean, J. Sci.

Res. 65(3) (2021), 1-16.
[17] S. Khalil, Q. Zhang, S. Gupta, Mean estimation of sensitive variables under measurement errors using optional RRT

models, Commun. Stat. Simul. Comput., 50(5) (2021), 1417-1426.
[18] R. Onyango, B. Oduor, F. Odundol, Joint influence of measurement errors and randomized response technique on mean

estimation under stratified double sampling, Open J. Math. Sci., 5(1) (2021), 192-199.
[19] M. H. Hansen, W. N. Hurwitz, The problem of non-response in sample surveys, J. Am. Stat. Assoc., 41(236) (1946),

517-529.
[20] G. Diana, S. Riaz, J. Shabbir, Hansen and Hurwitz estimator with scrambled response on the second call, J. Appl. Stat.,

41(3) (2014), 596-611.
[21] S. Gupta, S. Mehta, J. Shabbir, S. Khalil, A unified measure of respondent privacy and model efficiency in quantitative RRT

models, J. Stat. Theory Pract., 12(3) (2018), 506-511.
[22] Q. Zhang, S. Khalil, S. Gupta, Ratio estimation of the mean under RRT models, J. Stat. Theory Pract., 15(3) (2021), 97-113.
[23] P. Mukhopadhyay, G. N. Singh, A. Bandyopadhyay, A general estimation technique of population mean under stratified

successive sampling in presence of random scrambled response and non-response, Commun. Stat. Simul. Comput, 50(5)
(2021), 1417-1426.

[24] G. Diana, P. F. Perri, A class of estimators for quantitative sensitive data, Stat. Pap., 52(3) (2011), 633-650.



Quantify the Impact of Non-Response and Measurement Error of Sensitive Variable(s) under Two-Phase Sampling
employing ORRT Models — 210/210

[25] S. Khalil, M. Amin, M. Hanif, Estimation of population mean for a sensitive variable in the presence of measurement
error, Int. J. Stat. Manag. Syst., 21(1) (2018), 81-91.

[26] Z. Yan, J. Wang, J. Lai, An efficiency and protection degree-based comparison among the quantitative randomized response
strategies, Commun. Stat. - Theory Methods, 38(3) (2008), 400-408.



Communications in Advanced Mathematical Sciences
Vol. 6, No. 4, 211-225, 2023

Research Article
ISSN: 2651-4001

DOI:10.33434/cams.1313696

New Banach Sequence Spaces Defined by Jordan
Totient Function
Uskan Devletli1, Merve İlkhan Kara2*
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1. Introduction and Background
A sequence space is a vector subspace of the space ω of all sequences with real entries. Well known classical sequence

spaces are the space of p-absolutely summable sequences `p, the space of bounded sequences `∞, the space of null sequences
c0, the space of convergent sequences c. Throughout the study, the notion ` is used instead of `1. Also bs, cs0 and cs are the
most frequently encountered spaces consisting of sequences generating bounded, null and convergent series, respectively. A
Banach sequence space having continuous coordinates is called a BK space. Examples of BK spaces are c0 and c endowed with
the supremum norm ‖u‖

∞
= supi |ui|, where N= {1,2,3, ...}.

By virtue of the fact that the matrix mappings between BK-spaces are continuous, the theory of matrix mappings plays an
important role in the study of sequence spaces. Let U and V be two sequence spaces, Λ = (λi j) be an infinite matrix with real
entries and Λi indicate the ith row of Λ. If each term of the sequence Λu = ((Λu)i) = (∑ j λi ju j) is convergent, this sequence is
called Λ-transform of u = (ui). Further, if Λu ∈V for every sequence u ∈U , then the matrix Λ defines a matrix mapping from
U into V. (U,V ) represents the collection of all matrices defined from U into V. Additionally, B(U,V ) is the set of all bounded
(continuous) linear operators from U to V . A matrix Λ = (λi j) is called a triangle if λii 6= 0 and λi j = 0 for j > i.

The matrix domain UΛ of the matrix Λ in the space U is defined by

UΛ = {u ∈ ω : Λu ∈U}.

Since this space is also a sequnce space, the matrix domain has a crucial role to construct new sequence spaces. Moreover given
any triangle Λ and a BK-space U , the sequence space UΛ gives a new BK-space equipped with the norm ‖u‖UΛ

= ‖Λu‖U .
Several authors applied this technique to construct new Banach spaces with the help of special triangles. For relevant literature,
the papers [1–17] can be referred.
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The spaces

Uα =

{
t = (ti) ∈ ω : ∑

i
|tiui|< ∞ for all u = (ui) ∈U

}
,

Uβ =

{
t = (ti) ∈ ω : ∑

i
tiui converges for all u = (ui) ∈U

}
,

U γ =

{
t = (ti) ∈ ω : sup

i

∣∣∣∣∣∑i
tiui

∣∣∣∣∣< ∞ for all u = (ui) ∈U

}
,

are called the α-, β -, γ-duals of a sequence space U , respectively.
Note that 1

p +
1
q = 1 and supi, ∑i, limi mean supi∈N, ∑

∞
i=1, limi→∞, respectively.

The Euler totient matrix Φ = (φi j) is defined as in [18]

φi j =

{
ϕ( j)

i , if j | i
0 , if j - i,

where ϕ is the Euler totient function. In the recent time, by using this matrix, many new sequence and series spaces are defined
and studied in the papers [19–27].

For i ∈ N with i 6= 1, ϕ(i) gives the number of positive integers less than i which are coprime with i and ϕ(1) = 1. Also,
the equality

i = ∑
j|i

ϕ( j)

holds for every i ∈ N. For i ∈ N with i 6= 1, the Möbius function µ is defined as

µ(i) =


(−1)r if i = p1 p2...pr, where p1, p2, ..., pr are

non-equivalent prime numbers
0 if p̃2 | i for some prime number p̃

and µ(1) = 1. The equality

∑
j|i

µ( j) = 0 (1.1)

holds except for i = 1.
The arithmetic function Jr : N→ N with positive integer order r is called the Jordan totient function. This function

generalizes the Euler totient function. If r = 1, it is reduced to the Euler totient function. The value Jr(i) gives the number of
r-tuples of positive integers all less than or equal to i that form a coprime (r+1)-tuples together with i.

The Jordan function Jr is multiplicative, i.e. for n1,n2 ∈ N with the greatest common divisor 1 the relation Jr(n1n2) =
Jr(n1)Jr(n2) holds.

Let pa1
1 pa2

2 ...pak
k be the unique prime decomposition of i ∈ N, then

Jr(i) = ir(1− 1
pr

1
)(1− 1

pr
2
)...(1− 1

pr
k
).

Also, the following equations hold:

∑
j|i

Jr( j) = ir

and

∑
j|i

µ( j)
jr =

Jr(i)
ir

.
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In [28], the authors have defined a new matrix ϒr = (υr
i j) as

υ
r
i j =

{ Jr( j)
ir , if j | i
0 , if j - i

for each r ∈ N. It is observed that this matrix is regular; that is a limit preserving mapping c into c. By using this matrix they
introduce a space consisting of sequences whose ϒr-transforms are in the space `p for 1≤ p < ∞. Also, in [29], new Banach
spaces are obtained by the aid of matrix domain of this matrix in the spaces `∞, c, c0. In [30], the authors have studied the
compact operators on the resulting spaces.

The Riesz matrix E = (ei j) is defined as

ei j =

{ q j
Qi

, if 0≤ j ≤ i
0 , if j > i,

where (q j) is a sequence of positive numbers and Qi = ∑
i
j=1 q j for all i ∈ N.

In a recent paper [31], the authors have constructed a new matrix called Riesz Euler totient matrix and study the domain of
the matrix in the space `p. The Riesz Euler totient matrix RΦ = (ri j) is defined as

ri j =

{
q jϕ( j)

Qi
, if j | i

0 , if j - i.

The main purpose of this study is to construct new Banach spaces `∞(Rϒr), `p(Rϒr), `(Rϒr). The matrix Rϒr is obtained by
combining Jordan totient matrix and Riesz matrix. After studying certain properties of the resulting spaces, α-, β - and γ-duals
are computed. Finally some matrix mappings from the resulting spaces to the classical spaces are characterized.

2. The Sequence Spaces `∞(Rϒr), `p(Rϒr), `(Rϒr)

In the present section, we introduce the sequence spaces `∞(Rϒr), `p(Rϒr), `(Rϒr) by using the matrix Rϒr , where 1 < p < ∞.
Also, we present some theorems which give inclusion relations concerning these spaces.

The matrix Rϒr = (νi j) is defined as

νi j =

{
q jJr( j)

Qr
i

, if j | i
0 , if j - i,

where Qi = q1 +q2 + ...+qi. We call this matrix as Riesz Jordan totient matrix operator.
Observe that in the special cases this matrix is reduced to the some matrices mentioned in the first section. If r = 1 and

q j = 1 for each j, it gives the Euler totient matrix. If r = 1, it gives the Riesz Euler totient matrix. If q j = 1 for each j, it gives
the Jorden totient matrix.

The inverse R−1
ϒr = (ν−1

i j ) of the matrix Rϒr is computed as

ν
−1
i j =

{
µ( i

j )

Jr(i)
Qr

j
qi

, if j | i
0 , if j - i

for all i, j ∈ N.
Now, we introduce the sequence spaces `∞(Rϒr), `p(Rϒr), `(Rϒr) by

`∞(Rϒr) =

{
u = (ui) ∈ ω : sup

i

∣∣∣∣∣ 1
Qr

i
∑
j|i

q jJr( j)u j

∣∣∣∣∣< ∞

}
,

`p(Rϒr) =

{
u = (ui) ∈ ω : ∑

i

∣∣∣∣∣ 1
Qr

i
∑
j|i

q jJr( j)u j

∣∣∣∣∣
p

< ∞

}
(1 < p < ∞),
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`(Rϒr) =

{
u = (ui) ∈ ω : ∑

i

∣∣∣∣∣ 1
Qr

i
∑
j|i

q jJr( j)u j

∣∣∣∣∣< ∞

}
.

Unless otherwise stated, v = (vi) will be the Rϒr -transform of a sequence u = (ui), that is, vi = (Rϒr u)i =
1

Qr
i

∑ j|i q jJr( j)u j

for all i ∈ N.

Theorem 2.1. The spaces `∞(Rϒr), `p(Rϒr), `(Rϒr) are Banach spaces with the norms given by

‖u‖`∞(Rϒr ) = sup
i

∣∣∣∣∣ 1
Qr

i
∑
j|i

q jJr( j)u j

∣∣∣∣∣ ,
‖u‖`p(Rϒr ) =

(
∑

i

∣∣∣∣∣ 1
Qr

i
∑
j|i

q jJr( j)u j

∣∣∣∣∣
p)1/p

(1 < p < ∞),

‖u‖`(Rϒr ) = ∑
i

∣∣∣∣∣ 1
Qr

i
∑
j|i

q jJr( j)u j

∣∣∣∣∣ .
Proof. We omit the proof which is straightforward.

Corollary 2.2. The spaces `∞(Rϒr), `p(Rϒr), `(Rϒr) are BK-spaces, where 1 < p < ∞.

Theorem 2.3. The space U(Rϒr) is linearly isomorphic to U, where U ∈ {`∞, `p, `} and 1 < p < ∞.

Proof. Let f be a mapping defined from U(Rϒr) to U such that f (u) = Rϒr u for all u ∈U(Rϒr). It is clear that f is linear. Also
it is injective since the kernel of f consists of only zero. To prove that f is surjective consider the sequence u = (ui) whose
terms are

ui = ∑
j|i

µ( i
j )

Jr(i)

Qr
j

qi
v j

for all i ∈ N, where v = (v j) is any sequence in U . It follows from (1.1) that

(Rϒr u)i =
1

Qr
i
∑
j|i

q jJr( j)u j =
1

Qr
i
∑
j|i

q jJr( j)∑
k| j

µ( j
k )

Jr( j)
Qr

k
q j

vk

=
1

Qr
i
∑
j|i

∑
k| j

µ(
j
k
)Qr

kvk =
1

Qr
i
∑
j|i

(
∑
k| j

µ(k)

)
Qr

i
j
v i

j
=

1
Qr

i
µ(1)Qr

i vi = vi

and so u = (ui) ∈U(Rϒr). f preserves norms since the equality ‖u‖U(Rϒr ) = ‖ f (u)‖U holds.

Remark 2.4. The space `2(Rϒr) is an inner product space with the inner product defined as 〈u, ũ〉`2(Rϒr ) = 〈Rϒr u,Rϒr ũ〉`2 ,
where 〈., .〉`2 is the inner product on `2 which induces ‖.‖`2 .

Theorem 2.5. The space `p(Rϒr) is not an inner product space for p 6= 2.

Proof. Consider the sequences u = (ui) and ũ = (ũi), where

ui =

 µ(i)
Jr(i)

Qr
1

qi
+

µ( i
2 )

Jr(i)
Qr

2
qi

, if i is even
µ(i)
Jr(i)

Qr
1

qi
, if i is odd

and

ũi =

 µ(i)
Jr(i)

Qr
1

qi
− µ( i

2 )

Jr(i)
Qr

2
qi

, if i is even
µ(i)
Jr(i)

Qr
1

qi
, if i is odd

for all i ∈ N. Then, we have Rϒr u = (1,1,0, ...,0, ...) ∈ `p and Rϒr ũ = (1,−1,0, ...,0, ...) ∈ `p. Hence, one can easily observe
that

‖u+ ũ‖2
`p(Rϒr )+‖u− ũ‖2

`p(Rϒr ) 6= 2
(
‖u‖2

`p(Rϒr )+‖ũ‖
2
`p(Rϒr )

)
.
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Theorem 2.6. The inclusion `p(Rϒr)⊂ `q(Rϒr) strictly holds for 1≤ p < q < ∞.

Proof. It is clear that the inclusion `p(Rϒr) ⊂ `q(Rϒr) holds since `p ⊂ `q for 1 ≤ p < q < ∞. Also, `p ⊂ `q is strict and so
there exists a sequence z = (zi) in `q\`p. By defining a sequence u = (ui) as

ui = ∑
j|i

µ( i
j )

Jr(i)

Qr
j

qi
z j

for all i ∈ N, we conclude that u ∈ `q(Rϒr)\`p(Rϒr). Hence, the desired inclusion is strict.

Theorem 2.7. The inclusion `p(Rϒr)⊂ `∞(Rϒr) strictly holds for 1≤ p < ∞.

Proof. The inclusion is obvious since `p ⊂ `∞ holds for 1≤ p < ∞. Let u = (ui) be a sequence such that ui = ∑ j|i(−1) j µ( i
j )

Jr(i)
Qr

j
qi

for all i∈N. We obtain that Rϒr u=
(

1
Qr

i
∑ j|i q jJr( j)∑k| j(−1)k µ( j

k )

Jr( j)
Qr

k
q j

)
=((−1)i)∈ `∞\`p which implies that u∈ `∞(Rϒr)\`p(Rϒr)

for 1≤ p < ∞.

Lemma 2.8. [32] The necessary and sufficient conditions for Λ = (λi j) ∈ (U,V ) with U,V ∈ {`∞,c,c0, `p, `} and p > 1 can
be read from Table 1. Here and in what follows, N denotes the family of all finite subsets of N.

To `∞ c c0 `p `
From

`∞ 1. 4. 9. 14. 16.

c 1. 5. 10. 14. 16.
c0 1. 6. 11. 14. 16.
`p 2. 7. 12. - 17.
` 3. 8. 13. 15 18.

Table 1. The characterization of the class (U,V ), where U,V ∈ {`∞,c,c0, `p, `}.

1.

sup
i

∑
j

∣∣λi j
∣∣< ∞ (2.1)

2.

sup
i

∑
j

∣∣λi j
∣∣q < ∞ (2.2)

3.

sup
i, j

∣∣λi j
∣∣< ∞ (2.3)

4.

lim
i

λi j exists for each j ∈ N, (2.4)

lim
i ∑

j

∣∣λi j
∣∣= ∑

j

∣∣∣∣limi λi j

∣∣∣∣
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5. (2.1), (2.4) and

lim
i ∑

j
λi j exists.

6. (2.1) and (2.4)

7. (2.2) and (2.4)

8. (2.3) and (2.4)

9.

lim
i ∑

j

∣∣λi j
∣∣= 0

10. (2.1) and

lim
i

λi j = 0 for each j ∈ N, (2.5)

lim
i ∑

j
λi j = 0

11. (2.1) and (2.5)

12. (2.2) and (2.5)

13. (2.3) and (2.5)

14.

sup
K∈N

∑
i

∣∣∣∣∣∑j∈K
λi j

∣∣∣∣∣
p

< ∞

15.

sup
j

∑
i

∣∣λi j
∣∣p < ∞

16.

sup
N,K∈N

∣∣∣∣∣∑i∈N
∑
j∈K

λi j

∣∣∣∣∣< ∞⇔ sup
N∈N

∑
j

∣∣∣∣∣∑i∈N
λi j

∣∣∣∣∣< ∞⇔ sup
K∈N

∑
i

∣∣∣∣∣∑j∈K
λi j

∣∣∣∣∣< ∞

17.

sup
N∈N

∑
j

∣∣∣∣∣∑i∈N
λi j

∣∣∣∣∣
q

< ∞

18.

sup
j

∑
i

∣∣λi j
∣∣< ∞
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3. The α-, β - and γ-duals

In this section, we determine the α-, β - and γ-duals of the sequence spaces `∞(Rϒr), `p(Rϒr), `(Rϒr), where 1 < p < ∞.
In the following theorem, we determine the α-duals.

Theorem 3.1. The α-duals of the spaces `∞(Rϒr), `p(Rϒr), `(Rϒr) are as follows:

(`∞(Rϒr))α =

{
t = (ti) ∈ ω : sup

N∈N
∑

j

∣∣∣∣∣ ∑
i∈N, j|i

µ( i
j )

Jr(i)

Qr
j

qi
ti

∣∣∣∣∣< ∞

}
,

(`p(Rϒr))α =

{
t = (ti) ∈ ω : sup

N∈N
∑

j

∣∣∣∣∣ ∑
i∈N, j|i

µ( i
j )

Jr(i)

Qr
j

qi
ti

∣∣∣∣∣
q

< ∞

}
,

(`(Rϒr))α =

{
t = (ti) ∈ ω : sup

j
∑

i∈N, j|i

∣∣∣∣∣µ(
i
j )

Jr(i)

Qr
j

qi
ti

∣∣∣∣∣< ∞

}
.

Proof. Consider the matrix C = (ci j) defined by

ci j =

{
µ( i

j )

Jr(i)
Qr

j
qi

ti , j | i
0 , j - i

for any sequence t = (ti) ∈ ω . Let U ∈ {`∞, `p, `}. Given any u = (ui) ∈U(Rϒr), we have tiui = (Cv)i for all i ∈ N. This
implies that tu ∈ ` with u ∈U(Rϒr) if and only if Cv ∈ ` with v ∈U . It follows that t ∈ (U(Rϒr))α if and only if C ∈ (U, `)
which completes the proof in view of Lemma 2.8.

Lemma 3.2. [33, Theorem 3.1] Let B = (bi j) be defined via a sequence t = (tk) ∈ ω and the inverse matrix ∆̃ = (δ̃i j) of the
triangle matrix ∆ = (δi j) by

bi j =
i

∑
k= j

tkδ̃k j

for all i, j ∈ N. Then,
Uβ

∆
= {t = (tk) ∈ ω : B ∈ (U,c)}

and
U γ

∆
= {t = (tk) ∈ ω : B ∈ (U, `∞)}.

Consequently, we have the following theorem.

Theorem 3.3. Let define the following sets:

A1 =

{
t = (tk) ∈ ω : lim

i

i

∑
k= j, j|k

µ( k
j )

Jr(k)

Qr
j

qk
tk exists for each j ∈ N

}
,

A2 =

{
t = (tk) ∈ ω : sup

i
∑

j

∣∣∣∣∣ i

∑
k= j, j|k

µ( k
j )

Jr(k)

Qr
j

qk
tk

∣∣∣∣∣
q

< ∞

}
,

A3 =

{
t = (tk) ∈ ω : lim

i ∑
j

∣∣∣∣∣ i

∑
k= j, j|k

µ( k
j )

Jr(k)

Qr
j

qk
tk

∣∣∣∣∣= ∑
j

∣∣∣∣∣ ∞

∑
k= j, j|k

µ( k
j )

Jr(k)

Qr
j

qk
tk

∣∣∣∣∣
}
,

A4 =

{
t = (tk) ∈ ω : sup

i, j

∣∣∣∣∣ i

∑
k= j, j|k

µ( k
j )

Jr(k)

Qr
j

qk
tk

∣∣∣∣∣< ∞

}
.

The β - and γ-duals of the spaces `∞(Rϒr), `p(Rϒr), `(Rϒr) are as follows:
(`∞(Rϒr))β = A1∩A3, (`p(Rϒr))β = A1∩A2, (`(Rϒr))β = A1∩A4.
(`∞(Rϒr))γ = A2 with q = 1, (`p(Rϒr))γ = A2, (`(Rϒr))γ = A4.
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Proof. Let t = (tk) ∈ ω , U ∈ {`∞, `p, `} and B = (bi j) be an infinite matrix with terms

bi j =

{
∑

i
k= j, j|k tk

µ( k
j )

Jr(k)
Qr

j
qk

, if 1≤ j ≤ i
0 , if j > i.

Hence it follows that
i

∑
j=1

t ju j =
j

∑
j=1

t j

(
∑
k| j

µ( j
k )

Jr( j)
Qr

k
q j

vk

)
=

i

∑
j=1

(
i

∑
k= j, j|k

tk
µ( k

j )

Jr(k)

Qr
j

qk

)
v j = (Bv)i

for any u = (ui) ∈ U(Rϒr). This equality yields that tu ∈ cs for u ∈ U(Rϒr) if and only if Bv ∈ c for v ∈ U . That is,
t ∈ (U(Rϒr))β if and only if B∈ (U,c). Hence, by Lemma 2.8, it is concluded that (`∞(Rϒr))β = A1∩A3, (`p(Rϒr))β = A1∩A2,
(`(Rϒr))β = A1∩A4.

This equality also yields that tu ∈ bs for u ∈U(Rϒr) if and only if Bv ∈ `∞ for v ∈U . That is, t ∈ (U(Rϒr))γ if and only if
B ∈ (U, `∞). Hence, by Lemma 2.8, it is concluded that (`∞(Rϒr))γ = A2 with q = 1, (`p(Rϒr))γ = A2, (`(Rϒr))γ = A4.

4. Certain Matrix Transformations
In this section, characterization of certain classes of matrices is given. The following result is obtained from Theorem 4.1

in [34] and this result is required to characterize the classes of matrices from `∞(Rϒr), `p(Rϒr), `(Rϒr) into `∞,c,c0, `.

Theorem 4.1. Let 1 < p < ∞, U ∈ {`∞, `p, `} and V ⊂ ω . Then, Λ = (λi j) ∈ (URϒr ,V ) if and only if Θ(i) =
(

θ
(i)
l j

)
∈

(U,c) f or each f ixed i ∈ N and Θ = (θi j) ∈ (U,V ), where

θ
(i)
l j =

{
∑

l
k= j, j|k λik

µ( k
j )

Jr(k)
Qr

j
qk

, 1≤ j ≤ l
0 , j > l

and

θi j =
∞

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk
.

Proof. Let Λ ∈ (URϒr ,V ) and u ∈URϒr . Then, the equality

l

∑
j=1

λi ju j =
l

∑
j=1

λi j

(
∑
k| j

µ( j
k )

Jr( j)
Qr

k
q j

vk

)
(4.1)

=
l

∑
j=1

(
l

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

)
v j =

l

∑
j=1

θ
(i)
l j v j

holds. Since Λu exists, it follows that Θ(i) ∈ (U,c) for each fixed i ∈ N. It is deduced that Λu = Θv as l→ ∞ in (4.1). Hence,
Λu ∈V implies that Θv ∈V ; that is Θ ∈ (U,V ).

Conversely, suppose that Θ(i) =
(

θ
(i)
l j

)
∈ (U,c) f or each f ixed i ∈ N and Θ = (θi j) ∈ (U,V ). Let u ∈ URϒr . Then,

(θi j) ∈Uβ for each fixed i ∈ N implies that (λi j) ∈Uβ

Rϒr for each fixed i ∈ N. Hence, Λu exists. From equality (4.1), it follows
that Λu = Θv as l→ ∞. This proves that Λ ∈ (URϒr ,V ).

Theorem 4.2. Let Λ = (λi j) be an infinite matrix. Then, the following statements hold:

1. Λ ∈ (`∞(Rϒr), `∞) if and only if

lim
l→∞

l

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk
exists for each fixed i, j ∈ N, (4.2)

lim
l

∑
j

∣∣∣∣∣ l

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣= ∑
j

∣∣∣∣∣liml l

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣ (4.3)
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and

sup
i

∑
j

∣∣∣∣∣ ∞

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣< ∞. (4.4)

2. Λ ∈ (`∞(Rϒr),c) if and only if (4.2), (4.3),

lim
i

∞

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk
exists for each j ∈ N, (4.5)

lim
i ∑

j

∣∣∣∣∣ ∞

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣= ∑
j

∣∣∣∣∣limi ∞

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣ .
3. Λ ∈ (`∞(Rϒr),c0) if and only if (4.2), (4.3),

lim
i ∑

j

∣∣∣∣∣ ∞

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣= 0.

4. Λ ∈ (`∞(Rϒr), `) if and only if (4.2), (4.3) and

sup
N,K∈N

∣∣∣∣∣∑i∈N
∑
j∈K

∞

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣< ∞. (4.6)

Proof. The proof follows from Lemma 2.8 and Theorem 4.1.

Theorem 4.3. Let Λ = (λi j) be an infinite matrix and p > 1. Then, the following statements hold:

1. Λ ∈ (`p(Rϒr), `∞) if and only if (4.2),

sup
l∈N

l

∑
j=1

∣∣∣∣∣ l

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣
q

< ∞ for each fixed i ∈ N, (4.7)

sup
i

∑
j

∣∣∣∣∣ ∞

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣
q

< ∞. (4.8)

2. Λ ∈ (`p(Rϒr),c) if and only if (4.2), (4.7), (4.5), (4.8).

3. Λ ∈ (`p(Rϒr),c0) if and only if (4.2), (4.7), (4.8),

lim
i

∞

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk
= 0 for each j ∈ N. (4.9)

4. Λ ∈ (`p(Rϒr), `) if and only if (4.2), (4.7),

sup
N∈N

∑
j

∣∣∣∣∣∑i∈N

∞

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣
q

< ∞.
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Proof. The proof follows from Lemma 2.8 and Theorem 4.1.

Theorem 4.4. Let Λ = (λi j) be an infinite matrix. Then, the following statements hold:

1. Λ ∈ (`(Rϒr), `∞) if and only if (4.2),

sup
l, j

∣∣∣∣∣ l

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣< ∞ for each fixed i ∈ N, (4.10)

sup
i, j

∣∣∣∣∣ ∞

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣< ∞. (4.11)

2. Λ ∈ (`(Rϒr),c) if and only if (4.2), (4.10), (4.5), (4.11).

3. Λ ∈ (`(Rϒr),c0) if and only if (4.2), (4.10), (4.9), (4.11).

4. Λ ∈ (`(Rϒr), `) if and only if (4.2), (4.10),

sup
j

∑
i

∣∣∣∣∣ ∞

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣< ∞.

Proof. The proof follows from Lemma 2.8 and Theorem 4.1.

Corollary 4.5. Let Λ = (λi j) be an infinite matrix. Then, the following statements hold:

1. Λ ∈ (`∞(Rϒr),bs) if and only if (4.2), (4.3),

sup
i

∑
j

∣∣∣∣∣ i

∑
l=1

∞

∑
k= j, j|k

λlk
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣< ∞. (4.12)

2. Λ ∈ (`∞(Rϒr),cs) if and only if (4.2), (4.3),

lim
i

i

∑
l=1

∞

∑
k= j, j|k

λlk
µ( k

j )

Jr(k)

Qr
j

qk
exists for each j ∈ N, (4.13)

lim
i ∑

j

∣∣∣∣∣ i

∑
l=1

∞

∑
k= j, j|k

λlk
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣= ∑
j

∣∣∣∣∣limi i

∑
l=1

∞

∑
k= j, j|k

λlk
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣ .
3. Λ ∈ (`∞(Rϒr),cs0) if and only if (4.2), (4.3)

lim
i ∑

j

∣∣∣∣∣ i

∑
l=1

∞

∑
k= j, j|k

λlk
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣= 0.

Corollary 4.6. Let Λ = (λi j) be an infinite matrix. Then, the following statements hold:

1. Λ ∈ (`p(Rϒr),bs) if and only if (4.2), (4.7),

sup
i

∑
j

∣∣∣∣∣ i

∑
l=1

∞

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣
q

< ∞. (4.14)
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2. Λ ∈ (`p(Rϒr),cs) if and only if (4.2), (4.7), (4.13), (4.14).

3. Λ ∈ (`p(Rϒr),cs0) if and only if (4.2), (4.7), (4.14),

lim
i

i

∑
l=1

∞

∑
k= j, j|k

λlk
µ( k

j )

Jr(k)

Qr
j

qk
= 0 for each j ∈ N. (4.15)

Corollary 4.7. Let Λ = (λi j) be an infinite matrix. Then, the following statements hold:

1. Λ ∈ (`(Rϒr),bs) if and only if (4.2), (4.10),

sup
i, j

∣∣∣∣∣ i

∑
l=1

∞

∑
k= j, j|k

λik
µ( k

j )

Jr(k)

Qr
j

qk

∣∣∣∣∣< ∞. (4.16)

2. Λ ∈ (`(Rϒr),cs) if and only if (4.2), (4.10), (4.13), (4.16).

3. Λ ∈ (`(Rϒr),cs0) if and only if (4.2), (4.10), (4.15), (4.16).

Theorem 4.8. Let Λ = (λi j) be an infinite matrix and p > 1. Then, the following statements hold:
(a) Λ ∈ (`∞, `p(Rϒr)) = (c, `p(Rϒr)) = (c0, `p(Rϒr)) if and only if

sup
K∈N

∑
i

∣∣∣∣∣∑j∈K
∑
l|i

qlJr(l)
Qr

i
λl j

∣∣∣∣∣
p

< ∞.

(b) Λ ∈ (`,`p(Rϒr)) if and only if

sup
j

∑
i

∣∣∣∣∣∑l|i qlJr(l)
Qr

i
λl j

∣∣∣∣∣
p

< ∞.

Proof. The proof is given only for the matrix in (`∞, `p(Rϒr)) since the other case can be proven similarly. Given any infinite
matrix Λ = (λi j) ∈ (`∞, `p(Rϒr)), define a new matrix Λ̂ = (λ̂i j) by

λ̂i j = ∑
l|i

qlJr(l)
Qr

i
λl j

for all i, j ∈ N. Then, for any u = (u j) ∈ `∞, the equality

∑
j

λ̂i ju j = ∑
l|i

qlJr(l)
Qr

i
∑

j
λl ju j

means that (Λ̂u)i = (Rϒr(Λu))i for all i ∈ N. This implies that Λu ∈ `p(Rϒr) for u = (u j) ∈ `∞ if and only if Λ̂u ∈ `p for
u = (u j) ∈ `∞. Hence, we conclude from Lemma 2.8 that

sup
K∈N

∑
i

∣∣∣∣∣∑j∈K
∑
l|i

qlJr(l)
Qr

i
λl j

∣∣∣∣∣
p

< ∞.

Theorem 4.9. Let Λ = (λi j) be an infinite matrix. Then, the following statements hold:
(a) Λ ∈ (`∞, `∞(Rϒr)) = (c, `∞(Rϒr)) = (c0, `∞(Rϒr)) if and only if

sup
i

∑
j

∣∣∣∣∣∑l|i qlJr(l)
Qr

i
λl j

∣∣∣∣∣< ∞.

(b) Λ ∈ (`,`∞(Rϒr)) if and only if

sup
i, j

∣∣∣∣∣∑l|i qlJr(l)
Qr

i
λl j

∣∣∣∣∣< ∞.
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Proof. The proof follows with the same way in the proof of Theorem 4.8.

Theorem 4.10. Let Λ = (λi j) be an infinite matrix. Then, the following statements hold:
(a) Λ ∈ (`∞, `(Rϒr)) = (c, `(Rϒr)) = (c0, `(Rϒr)) if and only if

sup
K∈N

∑
i

∣∣∣∣∣∑j∈K
∑
l|i

qlJr(l)
Qr

i
λl j

∣∣∣∣∣< ∞.

(b) Λ ∈ (`,`(Rϒr)) if and only if

sup
j

∑
i

∣∣∣∣∣∑l|i qlJr(l)
Qr

i
λl j

∣∣∣∣∣< ∞.

Proof. The proof follows with the same way in the proof of Theorem 4.8.

Now, we investigate the norm of the bounded linear matrix operators from `∞(Rϒr), `p(Rϒr), `(Rϒr) into `∞(Rϒr) and
`(Rϒr). Firstly, we have a lemma which is essential for our investigation.

Lemma 4.11. Given any infinite matrix Λ = (λi j), the norm of bounded linear operators is defined by

‖Λ‖(`∞,`∞) = ‖Λ‖(`p,`∞) = sup
i

∑
j
|λi j|q

‖Λ‖(`,`∞) = sup
i, j
|λi j|

‖Λ‖(`∞,`) = ‖Λ‖(`p,`) = sup
K∈N

∑
j

∣∣∣∣∣∑i∈K
λi j

∣∣∣∣∣
q

‖Λ‖(`,`) = sup
j

∑
i
|λi j|.

Theorem 4.12. Let Λ = (λi j) be an infinite matrix.
(a) If Λ ∈ B(`∞(Rϒr), `∞(Rϒr)) or Λ ∈ B(`p(Rϒr), `∞(Rϒr)), then

sup
i

∑
j

∣∣∣∣∣∑j|l
µ( l

j )

Jr(l)

Qr
j

ql
∑
k|i

qkJr(k)
Qr

i
λkl

∣∣∣∣∣
q

< ∞

and

‖Λ‖(`∞(Rϒr ),`∞(Rϒr )) = ‖Λ‖(`p(Rϒr ),`∞(Rϒr )) = sup
i

∑
j

∣∣∣∣∣∑j|l
µ( l

j )

Jr(l)

Qr
j

ql
∑
k|i

qkJr(k)
Qr

i
λkl

∣∣∣∣∣
q

.

(b) If Λ ∈ B(`(Rϒr), `∞(Rϒr)), then

sup
i, j

∣∣∣∣∣∑j|l
µ( l

j )

Jr(l)

Qr
j

ql
∑
k|i

qkJr(k)
Qr

i
λkl

∣∣∣∣∣< ∞

and

‖Λ‖(`(Rϒr ),`∞(Rϒr )) = sup
i, j

∣∣∣∣∣∑j|l
µ( l

j )

Jr(l)

Qr
j

ql
∑
k|i

qkJr(k)
Qr

i
λkl

∣∣∣∣∣ .
(c) If Λ ∈ B(`∞(Rϒr), `(Rϒr)) or Λ ∈ B(`p(Rϒr), `(Rϒr)), then

sup
K∈N

∑
j

∣∣∣∣∣∑i∈K
∑
j|l

µ( l
j )

Jr(l)

Qr
j

ql
∑
k|i

qkJr(k)
Qr

i
λkl

∣∣∣∣∣
q

< ∞

and

‖Λ‖(`∞(Rϒr ),`(Rϒr )) = ‖Λ‖(`p(Rϒr ),`(Rϒr )) = sup
K∈N

∑
j

∣∣∣∣∣∑i∈K
∑
j|l

µ( l
j )

Jr(l)

Qr
j

ql
∑
k|i

qkJr(k)
Qr

i
λkl

∣∣∣∣∣
q

.
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(d) If Λ ∈ B(`(Rϒr), `(Rϒr)), then

sup
j

∑
i

∣∣∣∣∣∑j|l
µ( l

j )

Jr(l)

Qr
j

ql
∑
k|i

qkJr(k)
Qr

i
λkl

∣∣∣∣∣< ∞

and

‖Λ‖(`(Rϒr ),`(Rϒr )) = sup
j

∑
i

∣∣∣∣∣∑j|l
µ( l

j )

Jr(l)

Qr
j

ql
∑
k|i

qkJr(k)
Qr

i
λkl

∣∣∣∣∣ .
Proof. Let Λ̃ = Rϒr ΛR−1

ϒr . From Theorem 2.3, it is known that the spaces U(Rϒr) and U are linearly isomorphic. Hence, we
deduce from the following diagram

U(Rϒr)
Λ // V (Rϒr)

Rϒr

��
U

R−1
ϒr

OO

Λ̃=Rϒr ΛR−1
ϒr

// V

that ‖Λ‖(U(Rϒr ),V (Rϒr )) = ‖Λ̃‖(U,V ), where U ∈ {`∞, `p, `} and V ∈ {`∞, `}. Thus, the desired results follows from Lemma
4.11.
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1. Introduction
In 1843, Hamilton [1] discovered quaternions. After Hamilton’s discovery of real quaternions Cockle [2] revealed the

tessarine numbers in 1848. The difference between Tessarine numbers and quaternions is that they have the property of change.
The quaternions are not commutative. After Cockle’s work on Tessarines in 1892, Segre [3] obtained bicomplex numbers
by replacing the quaternions found by Hamilton and Clifford with complex numbers with real coefficients and formed an
isomorphic algebra with Tessarine numbers. With the discovery of bicomplex numbers, a new number system has been found
which is called a system of real Tesssarines and defined as follows

{a+ j c | a,c ∈ R, j2 = 1, j /∈ R}

The real Tessarine numbers are called hyperbolic numbers [6]. These new numbers are called generalized commutative
hypercomplex numbers as follows

{q = q0 + iq1 + j q2 + k q3 | q0,q1,q2,q3 ∈ R}

where

i2 = k2 = α, j2 = 1, i j = j i = k.
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These new numbers are called elliptic, parabolic, or hyperbolic commutative quaternion, respectively, according to which alpha
is α < 0,α = 0 or α > 0. In particular, bicomplex numbers are the α =−1 case. The bicomplex numbers are generalized by
Catoni et al.[4].
In [5], Price introduced the set of bicomplex numbers, which can be represented as

BC= {q = (q1 + iq2)+ j (q3 + iq4) | q1,q2,q3,q4 ∈ R}

where

i2 =−1, j2 =−1, i j = j i.

Recently, many authors have considered special number sequences with different number systems.
The bihyperbolic numbers are numbers that can be written as a linear combination of pairs of hyperbolic number. These
numbers allow to establish a connection between bicomplex numbers and Euclidean 4-space. In 2008, Pogorui et al.[6]
bihyperbolic numbers set is defined by as follows

Bh = {q = a0 +a1 j1 +a2 j2 +a3 j3 | a0,a1,a2,a3 ∈ R; j1, j2, j3 /∈ R}

where j1, j2 and j3 satisfy the conditions

j2
1 = j2

2 = j2
3 = 1, j1 j2 = j2 j1 = j3, j1 j3 = j3 j1 = j2, j2 j3 = j3 j2 = j1.

The addition and subtraction of two bihyperbolic numbers can be expressed as follows:

q± r = (a0 +a1 j1 +a2 j2 +a3 j3)± (b0 +b1 j1 +b2 j2 +b3 j3)
= (a0±b0)+ j1(a1±b1)+ j2(a2±b2)+ j3(a3±b3)

The multiplication of two bihyperbolic numbers can be expressed as follows:

q× r = (a0 +a1 j1 +a2 j2 +a3 j3)× (b0 +b1 j1 +b2 j2 +b3 j3)
= (a0b0 +a1b1 +a2b2 +a3b3)+ j1(a0b1 +a1b0 +a2b3 +a3b2)

+ j2(a0b2 +a1b3 +a2b0 +a3b1)+ j3(a0b3 +a1b2 +a2b1 +a3b0)

Bihyperbolic numbers have three different conjugations and represented as follows:

q̄ j1 = a0 + j1 a1− j2 a2− j3 a3,

q̄ j2 = a0− j1 a1 + j2 a2− j3 a3,

q̄ j3 = a0− j1 a1− j2 a2 + j3 a3.

In 2002, Olariu [7] introduced commutative hypercomplex numbers of different dimensions, and in his book he called these
numbers in 4-dimensional circular fourcomplex numbers or hyperbolic fourcomplex numbers if α =−1 or α = 1, respectively.
In 2008, hyperbolic fourcomplex numbers are called bihyperbolic numbers by Pogorui et al.[6] and they studied the roots
of bihyperbolic polynomials. In 2020, the algebraic properties of these numbers were studied by Bilgin and Ersoy [8]. In
2021, Gürses et al. have studied dual-generalized complex and hyperbolic generalized complex numbers. Moreover, for J = j
and p = 1, they have obtained bihyperbolic numbers [9]. In 2021, [10] Brod et al. have introduced identities and summation
formulas of bihyperbolic Fibonacci, Pell and Jacobsthal numbers as follows:

BhFn = Fn +Fn+1 j1 +Fn+2 j2 +Fn+3 j3 ,

BhJn = Jn + Jn+1 j1 + Jn+2 j2 + Jn+3 j3 ,

BhPn = Pn +Pn+1 j1 +Pn+2 j2 +Pn+3 j3 ,

where j1, j2 and j3 satisfy the conditions

j2
1 = j2

2 = j2
3 = 1, j1 j2 = j2 j1 = j3, j1 j3 = j3 j1 = j2, j2 j3 = j3 j2 = j1 .
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and in [11] Brod et al. were studied on a new generalization of bihyperbolic Pell numbers.
In 2021,[12] Azak defined bihyperbolic Lucas and bihyperbolic generalized Fibonacci numbers and given some new identities
of these numbers as follows:

BhLn = Ln +Ln+1 j1 +Ln+2 j2 +Ln+3 j3

where j1, j2 and j3 satisfy the conditions

j2
1 = j2

2 = j2
3 = 1, j1 j2 = j2 j1 = j3, j1 j3 = j3 j1 = j2, j2 j3 = j3 j2 = j1.

In 2022, Szynal-Liana et al.[13] introduced on certain bihypernomials related to Pell and Pell-Lucas numbers. In 2023, Gökbaş
[24] introduced Gaussian-bihyperbolic numbers containing Pell and Pell-Lucas numbers.

In 1996, Horadam [14] introduced the Jacobsthal and Jacobsthal-Lucas sequences recurrence relation {Jn} and { jn} are
defined by the recurrence relations

J0 = 0, J1 = 1, Jn = Jn−1 +2Jn−2, f or n≥ 2, ,

j0 = 2, j1 = 1, jn = jn−1 +2 jn−2, f or n≥ 2 (1.1)

respectively.

In 1996, [14] Horadam studied on the Jacobsthal and Jacobsthal-Lucas sequences and in 1997, [15] he gave Cassini-like
formulas as follows

Jn+1Jn−1− Jn
2 = (−1)n.2n−1, (1.2)

jn+1 jn−1− jn2 = 32.(−1)n+1.2n−1.

The first eleven terms of Jacobsthal sequence {Jn} are {0,1,1,3,5,11,21,43,85,171,341}.
This sequence is given by the formula

Jn =
2n− (−1)n

3
. (1.3)

The first eleven terms of Jacobsthal-Lucas sequence { jn} are {2,1,5,7,17,31,65,127,257,511,1025}.
This sequence is given by the formula

jn = 2n +(−1)n.

Besides the n-th Jacobsthal and Jacobsthal-Lucas number are formulized as Jn =
αn−β n

α−β
and jn = αn +β n, where α = 2,

β =−1.
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Also, for Jacobsthal and Jacobsthal-Lucas numbers the following properties hold:

Jn + jn = 2Jn+1,
3Jn + jn = 2n+1,
jnJn = J2n,
Jm jn + Jn jm = 2Jm+n,
Jm jn− Jn jm = (−1)n 2n+1 Jm−n,
jn+1 + jn = 3(Jn+1 + Jn) = 3.2n,
jnJm+1 +2 jn−1 Jm = jm+n,
jn+1− jn = 3(Jn+1− Jn)+4(−1)n+1 = 2n +2(−1)n+1,
jn+r− jn−r = 3(Jn+r− Jn−r) = 2n−r (22r−1),
jn+r + jn−r = 3(Jn+r + Jn−r)+4(−1)n−r.

and summation formulas


n
∑

i=2
Ji =

Jn+2−3
2 ,

n
∑

i=1
ji =

jn+2−5
2 .

In 2018, [16] Torunbalcı Aydın were studied on the generalizations of the Jacobsthal sequence. In 2018, [17] gave a new
generalization for Jacobsthal and Jacobsthal-Lucas sequences. In 2019, [18] Al-Kateeb gave a generalization of the Jacobsthal
and Jacobsthal-Lucas numbers. In 2022, [19] Brod et al. were studied on generalized Jacobsthal and Jacobsthal-Lucas numbers.

In 1971, [20] Horadam studied on the Pell Pn and Pell-Lucas pn sequences and Pell identities. The n-th Pell and n-th
Pell-Lucas numbers is defined by respectively as follows

Pn = 2Pn−1 +Pn−2 , P0 = 0, P1 = 1,

pn = 2 pn−1 + pn−2 , p0 = 2, p1 = 2.

In 1985, Horadam and Mahon obtained some Pell Pn and Pell-Lucas pn identities and summation formulas respectively as
follows [21]

Pm−1 pn +Pm pn+1 = pm+n ,
pn+1 pn−1− p2

n = 8(−1)n+1 ,
pm pn− pm+r pn−r = 8(−1)n−r+1 Pm+r−n Pr .

n
∑

r=1
pr =

(pn+1+pn−4)
2 ,

n
∑

r=1
p2r =

(p2n+1−2)
2 ,

n
∑

r=1
p2r−1 =

(p2n−2)
2 .

Besides the n-th Pell and Pell-Lucas number are formulized as Pn =
αn−β n

α−β
and pn = αn +β n, where α = 1+

√
2, β = 1−

√
2.

In 2006, some properties of sums involving Pell numbers were studied by Santana Falcon [22]. In 2018, Torunbalcı Aydın
introduced bicomplex Pell and Pell-Lucas numbers [25].

Our subject of study is the combinatorial properties of bihyperbolic numbers of Lucas type, but since the article on
bihyperbolic Lucas numbers was previously reviewed by Azak [6], only bihyperbolic Jacobsthal-Lucas and bihyperbolic
Pell-Lucas numbers were examined in this study.

2. The Bihyperbolic Jacobsthal-Lucas Numbers
In this section, we define the bihyperbolic Jacobsthal-Lucas numbers. Then, we obtain the generating function, Binet’s

formula, d’Ocagne’s identity, Cassini’s identity, Catalan’s identity and Honsberger identity.
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Definition.2.1. For n ≥ 1, the n-th bihyperbolic Jacobsthal-Lucas number Bh jn are defined by using the Jacobsthal-Lucas
numbers as follows

Bh jn = jn + jn+1 j1 + jn+2 j2 + jn+3 j3, (2.1)

where j1, j2 and j3 satisfy the conditions

j2
1 = j2

2 = j2
3 = 1, j1 j2 = j2 j1 = j3, j1 j3 = j3 j1 = j2, j2 j3 = j3 j2 = j1.

Theorem 2.1. Let Bh jn be the n-th bihyperbolic Jacobsthal-Lucas number. For any integer n≥ 0 ,

Bh jn = Bh jn−1 +2Bh jn−2 (2.2)

Proof. (2.2): By using Eq.(1.1) in Eq.(2.1) we obtain that,

Bh jn = jn + jn+1 j1 + jn+2 j2 + jn+3 j3
= ( jn−1 +2 jn−2)+ j1 ( jn +2 jn−1)
+ j2 ( jn+1 +2 jn)+ j3 ( jn+2 +2 jn+1)

= ( jn−1 + j1 jn + j2 jn+1 + j3 jn+2)
+2( jn−2 + j1 jn−1 + j2 jn + j3 jn+1)

= Bh jn−1 +2Bh jn−2

Also, initial values are Bh j0 = 2+ j1 +5 j2 +7 j3, Bh j1 = 1+5 j1 +7 j2 +17 j3.

Let Bh jn and Bh jm be two bihyperbolic Jacobsthal-Lucas numbers such that

Bh jn = jn + j1 jn+1 + j2 jn+2 + j3 jn+3

and

Bh jm = jm + j1 jm+1 + j2 jm+2 + j3 jBh jm+3

Then, the addition and subtraction of two bihyperbolic Jacobsthal-Lucas numbers are defined in the obvious way,

Bh jn±Bh jm = ( jn + j1 jn+1 + j2 jn+2 + j3 jn+3)
±( jm + j1 jm+1 + j2 jm+2 + j3 jm+3)

= ( jn± jm)+ j1 ( jn+1± jm+1)
+ j2 ( jn+2± jm+2)+ j3 ( jn+3± jm+3).

The multiplication of two bihyperbolic Jacobsthal-Lucas numbers is defined by

Bh jn×Bh jm = ( jn + j1 jn+1 + j2 jn+2 + j3 jn+3)
( jm + j1 jm+1 + j2 jm+2 + j3 jm+3)

= ( jn jm + jn+1 jm+1 + jn+2 jm+2 + jn+3 jm+3)
+ j1 ( jn+1 jm + jn jm+1 + jn+3 jm+2 + jn+2 jm+3)
+ j2 ( jn+2 jm + jn jm+2 + jn+3 jm+1 + jn+1 jm+3)
+ j3 ( jn+3 jm + jn jm+3 + jn+1 jm+2 + jn+2 jm+1)

= Bh jm×Bh jn .

(2.3)

Three kinds of conjugation can be defined for bihyperbolic numbers [6]. Therefore, conjugation of the bihyperbolic Jacobsthal-
Lucas number is defined in three different ways as follows

Bh j
j1
n = jn + j1 jn+1− j2 jn+2− j3 jn+3,

Bh j
j2
n = jn− j1 jn+1 + j2 jn+2− j3 jn+3, (2.4)

Bh j
j3
n = jn− j1 jn+1− j2 jn+2 + j3 jn+3. (2.5)

In the following theorem, some properties related to the conjugations of the bihyperbolic Jacobsthal-Lucas numbers are given.
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Theorem 2.2. Let Bh j
j1
n , Bh j

j2
n and Bh j

j3
n , be three kinds of conjugation of the bihyperbolic Jacobsthal-Lucas number

Bh jn. In this case, we can give the following relations:

Bh jn Bh j
j1
n = j2

n + j2
n+1− j2

n+2− j2
n+3

+2 j1 ( jn jn+1− jn+2 jn+3),

Bh jn Bh j
j2
n = j2

n− j2
n+1− j2

n+2 + j2
n+3

+2 j2 ( jn jn+2− jn+1 jn+3),

Bh jn Bh j
j3
n = j2

n− j2
n+1− j2

n+2 + j2
n+3

+2 j3 ( jn jn+3− jn+1 jn+2).

Proof. The proof can be easily done using equations Eq.(2.4-2.5) .

In the following theorems, some properties related to the bihyperbolic Jacobsthal-Lucas numbers are given.

Theorem 2.3. Let Bh jn be the n-th bihyperbolic Jacobsthal-Lucas number. For any integer n ≥ 0 , summation formula as
follows:

n

∑
k=0

Bh jk =
1
2
(Bh jn+2−Bh j2) . (2.6)

Proof. (2.6): Using the summation formula Eq.(1.3), we obtain

n
∑

k=1
Bh jk = (

n
∑

k=1
|k + j1

n
∑

k=1
|k+1 + j2

n
∑

k=1
|k+2 + j3

n
∑

k=1
|k+3)

= (
jn+2−5

2 )+ j1 (
jn+3−7

2 )+ j2 (
jn+4−17

2 )+ j3 (
jn+5−31

2 )

= 1
2 [Bh jn+2− (5+7 j1 +17 j2 +31 j3)]

= 1
2 [Bh jn+2− (Bh j2) ] .

where Bh j2 = (5+7 j1 +17 j2 +31 j3) .

Theorem 2.4. (Generating function)
Let Bh jn be the n-th bihyperbolic Jacobsthal-Lucas number. For the generating function of the bihyperbolic Jacobsthal-Lucas
numbers is as follows:

gBh jn(t) =
∞

∑
n=0

Bh jn tn = Bh j0+(Bh j1−Bh j0) t
1−t−2 t2

= (2+ j1+5 j2+7 j3)+t (−1+4 j1+2 j2+10 j3)
1−t−2 t2

Proof. (2.8): Using the definition of generating function, we obtain

gBh jn(t) = Bh j0 +Bh j1 t + . . . +Bh jn tn + . . . . (2.7)

Multiplying (1− t−2 t2) both sides of Eq.(2.7) and using Eq.(2.2), we have

(1− t−2 t2)gBh jn(t) = Bh j0 +(Bh j1−Bh j0) t
+(Bh j2−Bh j1−2Bh j0) t2

+(Bh j3−Bh j2−2Bh j1) t3 + . . .
+(Bh jk+1−Bh jk−2Bh jk−1) tk+1 + . . .

where Bh j1−Bh j0 =−1+4 j1 +2 j2 +10 j3, Bh j2−Bh j1−2Bh j0 = 0 and Bh j3−Bh j2−2Bh j1 = 0 . . .= 0.
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Theorem 2.5. (Binet’s formula) Let Bh jn be the n-th bihyperbolic Jacobsthal-Lucas number. For any integer n ≥ 0, the
Binet’s formula for these numbers is as follows:

Bh jn = α̂ α
n + β̂ β

n . (2.8)

where

α̂ = 1+ j1 α + j2 α2 + j3 α3, α = 2 ,

β̂ = 1+ j1 β + j2 β 2 + j3 β 3, β =−1 ,

α̂ β̂ = β̂ α̂ .

Proof. Using the Binet’s formula of Jacobsthal-Lucas number [15] and Eq.(2.1) we obtain that,

Bh jn = jn + j1 jn+1 + j2 jn+2 + j3 jn+3

= (αn +β n)+ j1 (αn+1 +β n+1)

+ j2 (αn+2 +β n+2)+ j3 (αn+3 +β n+3)

= αn(1+ j1 α + j2 α2 + j3 α3)

+β n(1+ j1 β + j2 β 2 + i j3 β 3)

= α̂ αn + β̂ β n .

Here, Binet’s formula of the Jacobsthal-Lucas number sequence, jn = αn +β n is used.

Theorem 2.6. (D’Ocagne’s identity) Let Bh jn be the n-th bihyperbolic Jacobsthal-Lucas number. For m ≥ n+ 1, the
following equality holds:

Bh jm Bh jn+1−Bh jm+1 Bh jn = (−2)n (−9)Jm−n [−5+5 j1−5 j2 +5 j3 ]
= −3(α̂ β̂ )(−2)n (α−β )Jm−n .

(2.9)

Proof. (2.9): Considering Eq.(2.3), using the commutative property of bihyperbolic numbers and d’Ocagne’s identity of
Jacobsthal-Lucas numbers [16], we obtain that

Bh jm Bh jn+1−Bh jm+1 Bh jn = [( jm jn+1− jm+1 jn)
+( jm+1 jn+2− jm+2 jn+1)
+( jm+2 jn+3− jm+3 jn+2)
+( jm+3 jn+4− jm+4 jn+3) ]

+ j1 [( jm jn+2− jm+1 jn+1)
+( jm+1 jn+1− jm+2 jn)
+( jm+2 jn+4− jm+3 jn+3)
+( jm+3 jn+3− jm+4 jn+2) ]

+ j2 [( jm jn+3− jm+1 jn+2)
+( jm+2 jn+1− jm+3 jn)
+( jm+1 jn+4− jm+2 jn+3)
+( jm+3 jn+2− jm+4 jn+1)]

+ j3 [( jm jn+4− jm+1 jn+3)
+( jm+3 jn+1− jm+4 jn)
+( jm+1 jn+3− jm+2 jn+2)
+( jm+2 jn+2− jm+3 jn+1)]

= (−2)n (−9)Jm−n −5(1− j1 + j2− j3) .

where α̂ β̂ = β̂ α̂ and the identities jm jn+1− jm+1 jn = (−2)n (−9) jm−n , −4 jn−2− jn+2 =−5 jn −8 jn−3 + jn+3 = 7 jn and
4 jn−1−2 jn+1 =−2 jn are used [16].
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Theorem 2.6.A. Now let’s prove this identity using the Binet’s formula:

Bh jm Bh jn+1−Bh jm+1 Bh jn = (α̂ αm + β̂ β m)(α̂ αn+1 + β̂ β n+1)

−(α̂ αm+1 + β̂ β m+1)(α̂ αn + β̂ β n)

= α̂ β̂ [αm β n (−α +β )+αn β m (α−β ) ]

= α̂ β̂ (α β )n (α−β ) [β m−n−αm−n ]

=−(α̂ β̂ )(−2)n (α−β ) [αm−n−β m−n ]

=−3(α̂ β̂ )(−2)n (α−β )Jm−n .

where α̂ β̂ =−5(1− j1 + j2− j3) and 3Jm−n = αm−n−β m−n.

Theorem 2.7. (Cassini’s identity) Let Bh jn be the n-th bihyperbolic Jacobsthal-Lucas number. For n ≥ 1, the following
equality holds:

Bh jn−1 Bh jn+1−Bh jn Bh jn = 9(−2)n−1 [−5(1− j1 + j2− j3) ]
= 9(−2)n−1 ( α̂ β̂ ) .

(2.10)

Proof. (2.10): By (2.3) and using the commutative property of bihyperbolic numbers and Cassini’s identity of Jacobsthal-Lucas
numbers [16], we obtain that

Bh jn−1 Bh jn+1−Bh jn Bh jn = [( jn−1 jn+1− jn jn)
+( jn jn+2− jn+1 jn+1)
+( jn+1 jn+3− jn+2 jn+2)
+( jn+2 jn+4− jn+3 jn+3) ]

+ j1 [( jn−1 jn+2− jn jn+1)
+( jn jn+1− jn+1 jn)
+( jn+1 jn+4− jn+2 jn+3)
+( jn+2 jn+3− jn+3 jn+2) ]

+ j2 [( jn−1 jn+3− jn jn+2)
+( jn+1 jn+1− jn+2 jn)
+( jn jn+4− jn+1 jn+3)
+( jn+2 jn+2− jn+3 jn+1)]

+ j3 [( jn−1 jn+4− jn jn+3)
+( jn+2 jn+1− jn+3 jn)
+( jn jn+3− jn+1 jn+2)
+( jn+1 jn+2− jn+2 jn+1)]

= 9(−2)n−1 [−5(1− j1 + j2− j3) ] .

where the identity of the Jacobsthal-Lucas numbers jn−1 jn+1− jn jn = 9(−2)n−1 is used [16].

Theorem 2.7.A. Now let’s prove this identity using the Binet’s formula:

Bh jn−1 Bh jn+1−Bh jn Bh jn = (α̂ αn−1 + β̂ β n−1)(α̂ αn+1 + β̂ β n+1)

−(α̂ αn + β̂ β n)(α̂ αn + β̂ β n)

= α̂ β̂ (α β )n [ β

α
+ α

β
−2 ]

= α̂ β̂ (α β )n (α2+β 2−2α β )
α β

= (−2)n−1 (α−β )2 (α̂ β̂ )

= 9(−2)n−1 ( α̂ β̂ ) .



On Some Properties of Bihyperbolic Numbers of The Lucas Type — 234/239

where α̂ β̂ =−5(1− j1 + j2− j3 ) .

Theorem 2.8. (Catalan’s identity) Let Bh jn be the n-th bihyperbolic Jacobsthal-Lucas number. For n ≥ 1, the following
equality holds:

Bh j2
n−Bh jn−r Bh jn+r = (−2)n−r [ j2

r − (−2)r+2 ] [−5(1− j1 + j2− j3) ]
= (−2)n−r (α̂ β̂ ) [4(αβ )2− (αr +β r)2 ] .

(2.11)

Proof. (2.11): By (2.3) and using the commutative property of bihyperbolic numbers Catalan’s identity of Jacobsthal-Lucas
numbers [16], we obtain that

Bh jn Bh jn−Bh jn−r Bh jn+r = [( jn jn− jn−r jn+r)
+( jn+1 jn+1− jn−r+1 jn+r+1)
+( jn+2 jn+3− jn−r+2 jn+r+2)
+( jn+2 jn+3− jn−r+3 jn+r+3) ]

+ j1 [( jn jn+1− jn−r jn+r+1)
+( jn+1 jn− jn−r+1 jn+r)
+( jn+2 jn+3− jn−r+2 jn+r+3)
+( jn+3 jn+2− jn−r+3 jn+r+2) ]

+ j2 [( jn jn+2− jn−r jn+r+2)
+( jn+2 jn− jn−r+2 jn+r)
+( jn+1 jn+3− jn−r+1 jn+r+3)
+( jn+3 jn+1− jn−r+3 jn+r+1)]

+ j3 [( jn jn+3− jn−r jn+r+3)
+( jn+3 jn− jn−r+3 jn+r)
+( jn+1 jn+2− jn−r+1 jn+r+2)
+( jn+2 jn+1− jn−r+2 jn+r+1)]

= (−2)n−r [ j2
r − (−2)r+2 ] [−5(1− j1 + j2− j3) ] .

where the identities of the Jacobsthal-Lucas numbers

jn−r jn+r− jn jn = (−2)n−r [ j2
r − (−2)r+2 ]

is used [16].

Theorem 2.8.A. Now let’s prove this identity using the Binet’s formula:

Bh jn Bh jn−Bh jn−r Bh jn+r = ( α̂ αn + β̂ β n)(α̂ αn + β̂ β n)

−(α̂ αn−r + β̂ β n−r)(α̂ αn+r + β̂ β n+r)

= α̂ β̂ (α β )n [2− ( β

α
)r− (α

β
)r ]

= (−2)n−r (α̂ β̂ ) [4(αβ )2− (αr +β r)2 ] .

where α2r +β 2r−2(α β )r = j2
r − (−2)2r .

3. The Bihyperbolic Pell-Lucas Numbers
In this section, we define the bihyperbolic Pell-Lucas numbers. Then, we obtain the generating function, Binet’s formula,

d’Ocagne’s identity, Cassini’s identity, Catalan’s identity and Honsberger identity.

Definition 3.1. For n≥ 1, the n-th bihyperbolic Pell-Lucas number BH PL n are defined by using the Pell-Lucas numbers
as follows

Bhpn = pn + j1 pn+1 + j2 pn+2 + j3 pn+3. (3.1)
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where j1, j2 and j3 satisfy the conditions

j2
1 = j2

2 = j2
3 = 1, j1 j2 = j2 j1 = j3, j1 j3 = j3 j1 = j2, j2 j3 = j3 j2 = j1.

Theorem 3.1. Let Bhpn be the n-th bihyperbolic Pell-Lucas number. For any integer n≥ 0 ,

Bhpn = 2Bhpn−1 +Bhpn−2 (3.2)

Proof. (3.2): By placing Eq.(1.2) in Eq.(3.1) we obtain that,

Bhpn = pn + j1 pn+1 + j2 pn+2 + j3 pn+3
= (2 pn−1 + pn−2)+ j1 (2 pn + pn−1)
+ j2 (2 pn+1 + pn)+ j3 (2 pn+2 + pn+1)

= 2(pn−1 + j1 qn + j2 pn+1 + j3 pn+2)
+(pn−2 + j1 pn−1 + j2 pn + j3 pn+1)

= 2Bhpn−1 +Bhpn−2

Also, initial values are Bhp0 = 2+2 j1 +6 j2 +14 j3, Bhp1 = 2+6 j1 +14 j2 +34 j3.
Let Bhpn and Bhpm be two bihyperbolic Pell-Lucas numbers such that

Bhpn = pn + j1 pn+1 + j2 pn+2 + j3 pn+3

and

Bhpm = pm + j1 pm+1 + j2 pm+2 + j3 pm+3

Then, the addition and subtraction of two bihyperbolic Pell numbers are defined in the obvious way,

Bhpn±Bhpm = (pn± pm)+ j1 (pn+1± pm+1)
+ j2 (pn+2± pm+2)+ j3 (pn+3± pm+3).

Multiplication of two bihyperbolic Pell-Lucas numbers is defined by

Bhpn×Bhpm = (pn pm + pn+1 pm+1
+pn+2 pm+2 + pn+3 pm+3)

+ j1 (pn+1 pm + pn pm+1
+pn+3 pm+2 + pn+2 pm+3)

+ j2 (pn+2 pm + pn pm+2
+pn+3 pm+1 + pn+1 pm+3)

+ j3 (pn+3 pm + pn pm+3
+pn+1 pm+2 + pn+2 pm+1)

= Bhpm×Bhpn .

Three kinds of conjugation can be defined for bihyperbolic numbers [6]. Therefore, conjugation of the bihyperbolic Pell-Lucas
number is defined in three different ways as follows

Bhp
j1
n = pn + j1 pn+1− j2 pn+2− j3 pn+3,

Bhp
j2
n = pn− j1 pn+1 + j2 pn+2− j3 pn+3,

Bhp
j3
n = pn− j1 pn+1− j2 pn+2 + j3 pn+3.

In the following theorem, some properties related to the conjugations of the bihyperbolic Pell-Lucas numbers are given.

Theorem 3.2. Let Bhp
j1
n , Bhp

j2
n and Bhp

j3
n , be three kinds of conjugation of the bihyperbolic Pell-Lucas number Bhpn. In

this case, we can give the following relations:

Bhpn Bhp
j1
n = p2

n + p2
n+1− p2

n+2− p2
n+3 +2 j1 (pn pn+1− pn+2 pn+3). (3.3)

Bhpn Bhp
j2
n = p2

n− p2
n+1− p2

n+2 + p2
n+3 +2 j2 (pn pn+2− pn+1 pn+3),

Bhpn Bhp
j3
n = p2

n− p2
n+1− p2

n+2 + p2
n+3 +2 j3 (pn pn+3− pn+1 pn+2). (3.4)
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Proof. The proof can be easily done using equations Eq.(3.3-3.4).
In the following theorems, some properties related to the bihyperbolic Pell-Lucas numbers are given.

Theorem 3.3. Let Bhpn be the bihyperbolic Pell-Lucas number. For any integer n≥ 0 , summation formulas as follows:

n

∑
k=0

Bhpk =
1
2
[Bhpn+1 +Bhpn +(Bhp1−Bhp2) ] , (3.5)

n

∑
k=0

Bhp2k =
1
2
[Bhp2n+1−Bhp1 ] , (3.6)

n

∑
k=0

Bhp2k−1 =
1
2
[Bhp2n−Bhp0 ] . (3.7)

Proof. (3.5): Using the summation formula
n
∑

r=1
pr =

(pn+1+pn−4)
2 in Eq.(1.3) , we obtain

n
∑

k=1
Bhpk = (

n
∑

k=1
pk + j1

n
∑

k=1
pk+1 + j2

n
∑

k=1
pk+2 + j3

n
∑

k=1
pk+3)

= (
pn+1+pn−4

2 )+ j1 (
pn+2+pn+1−8

2 )+ j2 (
pn+3+pn+2−20

2 )+ j3 (
pn+4+pn+3−48

2 )

= 1
2 [Bhpn+1 +Bhpn− (4+8 j1 +20 j2 +48 j3)]

= 1
2 [Bhpn+1 +Bhpn +(Bhp1−Bhp2) ] .

where Bhp2 = (6+14 j1 +34 j2 +82 j3) .

(3.6): Using the summation formula
n
∑

r=1
p2r =

(p2n+1−2)
2 in Eq.(1.3) , we obtain

n
∑

k=1
Bhp2k = (

n
∑

k=1
p2k + j1

n
∑

k=1
p2k+1 + j2

n
∑

k=1
p2k+2 + j3

n
∑

k=1
p2k+3)

= (
p2n+1−2

2 )+ j1 (
p2n+2−6

2 )+ j2 (
p2n+3−14

2 )+ j3 (
p2n+4−34

2 )

= 1
2 [Bhp2n+1− (2+6 j1 +14 j2 +34 j3)]

= 1
2 [Bhp2n+1−Bhp1 ] .

(3.7): Using the summation formula
n
∑

r=1
p2r−1 =

(p2n−2)
2 in Eq.(1.3) , we obtain

n
∑

k=1
Bhp2k−1 = (

n
∑

k=1
p2k−1 + j1

n
∑

k=1
p2k + j2

n
∑

k=1
p2k+1 + j3

n
∑

k=1
p2k+2)

= ( p2n−2
2 )+ j1 (

p2n+1−2
2 )+ j2 (

p2n+2−6
2 )+ j3 (

p2n+3−14
2 )

= 1
2 [Bhp2n− (2+2 j1 +6 j2 +14 j3)]

= 1
2 [Bhp2n−Bhp0 ] .

Theorem 3.4. (Generating function)
Let Bhpn be the n-th bihyperbolic Pell-Lucas number. For the generating function for the bihyperbolic Pell-Lucas numbers is
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as follows:

gBhpn(t) =
∞

∑
n=1

Bhpn tn = Bhp0+(Bhp1−2Bhp0) t
1−2 t−t2

= (2+2 j1+6 j2+14 j3)+t (−2+2 j1+2 j2+6 j3)
1−2 t−t2 .

(3.8)

where Bhp0 = 2+2 j1 +6 j2 +14 j3, Bhp1 = 2+6 j1 +14 j2 +34 j3 and Bhp2 = 6+14 j1 +34 j2 +82 j3.

Proof. (3.8): Using the definition of generating function, we obtain

gBhpn(t) = Bhp0 +Bhp1 t + . . . +Bhpn tn + . . . (3.9)

Multiplying (1−2 t− t2) both sides of Eq.(3.9) and using Eq.(3.2), we have

(1−2 t− t2)gBhpn(t) = Bhp0 +(Bhp1−2Bhp0) t
+(Bhp2−2Bhp1−Bhp0) t2

+(Bhp3−2Bhp2−Bhp1) t3 + . . .
+(Bhpk+1−2Bhpk−Bhpk−1) tk+1 + . . .

where Bhp1−2Bhp0 =−2+2 j1 +2 j2 +6 j3 , Bhp2−2Bhp1−Bhp0 = 0 , and Bhp3−2Bhp2−Bhp1 = 0 . . .= 0 .

Theorem 3.5. (Binet’s formula) Let Bhpn be the n-th bihyperbolic Pell-Lucas number. For any integer n ≥ 0, the Binet’s
formula for these numbers is as follows:

Bhpn = α̂ α
n + β̂ β

n . (3.10)

where

α̂ = 1+ j1 α + j2 α2 + j3 α3, α = 1+
√

2 ,

β̂ = 1+ j1 β + j2 β 2 + j3 β 3, β = 1−
√

2 .

Proof. Using the Binet’s formula of Pell-Lucas number [20, 21] and Eq.(3.1) we obtain that,

Bhpn = pn + j1 pn+1 + j2 pn+2 + j3 pn+3
= (αn +β n)+ j1 (αn+1 +β n+1)

+ j2 (αn+2 +β n+2)+ j3 (αn+3 +β n+3)

= αn(1+ j1 α + j2 α2 + j3 α3)

+β n(1+ j1 β + j2 β 2 + i j3 β 3)

= α̂ αn + β̂ β n .

Here, Binet’s formula of the Pell-Lucas number sequence, pn = αn +β n is used.

Theorem 3.6. (D’Ocagne’s identity) Let Bhpn be the n-th bihyperbolic Pell-Lucas number. For m ≥ n+ 1, the following
equality holds:

Bhpm Bhpn+1−Bhpm+1 Bhpn = (−1)n−1 α̂ β̂ (α−β ) [αm−n−β m−n ] . (3.11)

Proof. (3.11): let’s prove this identity using the Binet’s formula Eq.(3.10):

Bhpm Bhpn+1−Bhpm+1 Bhpn = ( α̂ αm + β̂ β m)( α̂ αn+1 + β̂ β n+1)

−( α̂ αm+1 + β̂ β m+1)( α̂ αn + β̂ β n)

= α̂ β̂ (α β )n [αm−n (β −α)+β m−n (α−β )]

= (−1)n−1 α̂ β̂ (α−β ) [αm−n−β m−n ] .
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Theorem 3.7. (Cassini’s identity) Let Bhpn be the n-th bihyperbolic Pell-Lucas number. For n≥ 1, the following equality
holds:

Bhpn−1 Bhpn+1−Bhpn Bhpn = (−1)n−1 α̂ β̂ (α2 +β 2−2α β )

= 8(−1)n−1 α̂ β̂ .
(3.12)

Proof. (3.12): let’s prove this identity using the Binet’s formula Eq.(3.10):

Bhpn−1 Bhpn+1−Bhpn Bhpn = ( α̂ αn−1 + β̂ β n−1)( α̂ αn+1 + β̂ β n+1)

−( α̂ αn + β̂ β n)( α̂ αn + β̂ β n)

= α̂ β̂ (α β )n [ β

α
+ α

β
−2 ]

= (−1)n−1 α̂ β̂ (α2 +β 2−2α β )

= 8(−1)n−1 α̂ β̂ .

Theorem 3.8. (Catalan’s identity) Let Bhpn be the n-th bihyperbolic Pell-Lucas number. For n≥ 1, the following equality
holds:

Bhp2
n−Bhpn−r Bhpn+r = (−1)n α̂ β̂ [ (α−β )2 ]r . (3.13)

Proof. (3.13): Let’s prove this identity using the Binet’s formula Eq.(3.10):

Bhpn Bhpn−Bhpn−r Bhpn+r = ( α̂ αn + β̂ β n)( α̂ αn + β̂ β n)

−( α̂ αn−r + β̂ β n−r)( α̂ αn+r + β̂ β n+r)

= α̂ β̂ (α β )n [2− ( β

α
)r− ( α

β
)r ]

= (−1)n α̂ β̂ [ (α−β )2 ]r .

4. Conclusion
In this paper, we introduced some properties of Lucas-type bihyperbolics. We gave the definition of bihyperbolic Jacobsthal-

Lucas and bihyperbolic Pell-Lucas numbers and examined their algebraic properties. Additionally, by using the relationship of
these numbers with Jacobsthal-Lucas and Pell-Lucas numbers, we obtained the Binet formula, generating function, d’Ocagne,
Cassini and Catalan identities of bihyperbolic Jacobsthal-Lucas and bihyperbolic Pell-Lucas numbers.
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