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Düzce University, Düzce, Turkey
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Abstract. This paper deals with the behaviors of solutions for linear nonho-

mogeneous delay differential equations. In this study, a periodic solution, an
asymptotic result and a useful exponential estimate of the solutions are estab-

lished. Our results are obtained by the use of real roots of the corresponding
characteristic equation.

1. Introduction and Preliminaries

The delay differential equation is considered as:

x′(t) = a(t)x(t) +
∑
i∈I

bi(t)x(t− τi) + f(t), t ≥ 0, (1.1)

x(t) = ϕ(t) , −τ ≤ t ≤ 0. (1.2)

where I is the initial segment of natural numbers, a and bi for i ∈ I the continuous
real-valued functions on the interval [0,∞), f is a continuous real-valued function
on the interval [0,∞), and τi for i ∈ I positive real numbers with τi1 ̸= τi2 for
i1, i2 ∈ I such that i1 ̸= i2. Suppose that the functions bi for i ∈ I are not
identically zero on [0,∞) and also the coefficients a and bi for i ∈ I are the periodic
functions with a common period T > 0 where τi = miT for positive integers mi for
i ∈ I. τ is positive number such that

τ = max
i∈I

τi.

ϕ is continuous real-valued given the initial function on the interval [−τ, 0].
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Key words and phrases. Delay differential equation; Characteristic equation; Periodic solution;

Asymptotic behavior.
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In the case where the function f is identically zero on the interval [0,∞), the
delay differential equation (1.1) reduces to

x′(t) = a(t)x(t) +
∑
i∈I

bi(t)x(t− τi), t ≥ 0. (1.3)

As far as the applications’ point of view is concerned, our literature review
comprehensively offers the behaviors based on the solutions of delay differential
equations [1-6]. As it concers the applications point view, first order linear delay
differential equations appear as models in various problems in science and tecnology.
For example, in [7], first order linear delay differential equations have been used for
description of different economic processes. For the basic theory of delay differential
equations with periodic coefficients, the reader is referred to the books by Farkas
[8].

Our aim in this article is to obtain periodic solutions of the given equation, and
to present some new results on asymptotic behavior for linear delay differential
equations with periodic coefficients. Our results are motivated by those in two
excellent papers by Philos [9] and Farkas [11]. The very recent results given by
Philos [9] (and also [10]) for periodic first order linear (homogeneous) delay differ-
ential equations can be obtained from the results of the present paper. Also, the
results given here contain essentially ones obtained by Farkas [11] for the particular
case of first order linear nonhomogeneous one constant delay differential equations.
Our results are derived by the use of a real root (with an appropriate property)
of the corresponding (in a sense) characteristic equation. A combination of several
methods [6, 9-11] are referred for the used techniques.

The function x(t) is described as a solution of the initial value problem (1.1)-(1.3)
on [−τ,∞). This paper uses the notation

A =
1

T

∫ T

0

a(t)dt, and Bi =
1

T

∫ T

0

bi(t)dt for i ∈ I.

Furthermore, we associate the following equation with the differential equation (1.3)

λ = A+
∑
i∈I

Bie
−λτi , (1.4)

specified as the characteristic equation of (1.3). There were given sufficient condi-
tions to obtain a unique real root of characteristic equation (1.4) in Philos [9].

In what follows, the T -periodic extensions are denoted by ã and b̃i for i ∈ I for
the coefficients a and bi for i ∈ I respectively on the interval [−τ,∞). In order
to construct a suitable mapping for the asymptotic criterion of the solutions, we
should reach a finding as follows. Suppose that λ0 is a real root of (1.4). We can
now write

hλ0(t) = ã(t) +
∑
i∈I

b̃i(t)e
−λ0τi for t ≥ −τ. (1.5)

Next, we will establish some equalities needed below. For each index i ∈ I, we
can use the assumption that the functions b̃i are T -periodic and that τi = miT to
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obtain for t ≥ 0∫ t

t−τi

b̃i(u)du =

∫ τi

0

bi(u)du =

[
1

τi

∫ τi

0

bi(u)du

]
τi =

[
1

T

∫ T

0

bi(u)du

]
τi = Biτi.

(1.6)
In a similar manner, one can verify that∫ t

t−τi

|b̃i(u)|du = |Bi|τi for every t ≥ 0 and all i ∈ I. (1.7)

Our aim in this paper is to study the periodic solutions of equation (1.1) when f
is also T -periodic. We will show that, under certain conditions, equation (1.1) has
periodic solutions. In the following discussion, without specific mention, we always
assume that f is also T -periodic.

2. Periodic Solutions

In this section, we establish conditions under which equation (1.1) has a periodic
solution. Consider, first, the homogeneous equation (1.3) and the equation without
delay

x′(t) = a(t)x(t). (2.1)

The general solution of (2.1) is

x(t) = c exp

{∫ t

0

a(s)ds

}
where c is a constant. To find a solution of (1.3), we apply the variation of constants
formula. Assume that

x(t) = C(t) exp

{∫ t

0

ã(s)ds

}
(2.2)

where

ã(t) =

{
a(t) , t ≥ 0,

a(t+ τ) , −τ ≤ t ≤ 0,

is a solution of (1.3). Substituting this into (1.3) yields the condition

C ′(t) =
∑
i∈I

bi(t)C(t− τi)exp

{
−
∫ 0

−τi

ã(s)ds

}
(2.3)

for all t ≥ 0 on C(t). We define

g(t) =
∑
i∈I

b̃i(t),

where

b̃i(t) =

{
bi(t) , t ≥ 0,

bi(t+ τ) , −τ ≤ t ≤ 0.

Assume that (2.3) has a solution of the form

C(t) = exp

{
µ

∫ t

0

g(s)ds

}
. (2.4)

Then, by using (2.4) in (2.3) for t ≥ 0 we obtain

µ
∑
i∈I

bi(t) =
∑
i∈I

bi(t)exp

{
−µ

∫ t

t−τi

g(s)ds

}
exp

{
−
∫ 0

−τi

ã(s)ds

}
.
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Since the functions bi(t) are T -periodic, from the last equation

µ
∑
i∈I

bi(t) =
∑
i∈I

bi(t)exp

{
−µ

∫ 0

−τi

g(s)ds

}
exp

{
−
∫ 0

−τi

ã(s)ds

}
or

µ
∑
i∈I

bi(t) =
∑
i∈I

bi(t)exp

{
−
∫ τi

0

(a(s) + µg(s)) ds

}
. (2.5)

Next, for each index i ∈ I, we can use the assumption that the functions a and bi
are T -periodic and that τi = miT to obtain for t ≥ 0∫ τi

0

(a(s) + µg(s)) ds =

[
1

τi

∫ τi

0

(a(s) + µg(s)) ds

]
τi =

[
1

T

∫ T

0

(a(s) + µg(s)) ds

]
τi

=

{[
1

T

∫ T

0

a(s)ds

]
+ µ

∑
i∈I

[
1

T

∫ T

0

bi(s)

]}
τi

=

(
A+ µ

∑
i∈I

Bi

)
τi.

Thus, from (2.5) we get

µ
∑
i∈I

bi(t) =
∑
i∈I

bi(t)exp

{
−

(
A+ µ

∑
i∈I

Bi

)
τi

}
. (2.6)

If we assume that
∑

i∈I bi(t) ̸= 0 for t ≥ −τ and A+µ
∑

i∈I Bi = 0 hold with
µ = 1, (2.6) establishes

C(t) = exp

{∫ t

0

∑
i∈I

b̃i(s)ds

}
is a solution of (2.3). Hence, from (2.2)

x(t) = k exp

{∫ t

0

(
ã(s) +

∑
i∈I

b̃i(s)

)
ds

}
, (2.7)

where k is a constant, is a solution of equation (1.3). Also, since A+
∑

i∈I Bi = 0,
it is easy to see that ∫ σ

0

(
a(s) +

∑
i∈I

bi(s)

)
ds = 0,

where σ = mini∈I τi. Then, (2.7) is a σ-periodic solution of equation (1.3).
Now, consider the original nonhomogeneous equation (1.1). The variation of

constants formula is applied again. Assume that (1.1) has a solution of the form

xp(t) = K(t) exp

{∫ t

0

(
ã(s) +

∑
i∈I

b̃i(s)

)
ds

}
. (2.8)

Using A+
∑

i∈I Bi = 0, substituting this into (1.1) yields the condition

K ′(t) +
∑
i∈I

bi(t) (K(t)−K(t− τi)) = f(t)exp

{∫ t

0

−

(
a(s) +

∑
i∈I

bi(s)

)
ds

}
.
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The equation (2.8) is a periodic solution of (1.1) if and only if K(t) is periodic.
But, this means that K(t)−K(t− τi) = 0, and so the differential equation for K is

K ′(t) = f(t)exp

{∫ t

0

−

(
a(s) +

∑
i∈I

bi(s)

)
ds

}
.

It follows that

K(t) =

∫ t

0

f(u)exp

{∫ u

0

−

(
a(s) +

∑
i∈I

bi(s)

)
ds

}
du.

By noting that this function is the integral of a σ-periodic function, we see that it
is a σ-periodic function if and only if∫ σ

0

f(u)exp

{∫ u

0

−

(
a(s) +

∑
i∈I

bi(s)

)
ds

}
du = 0.

Substituting this into (2.8), we have the following result.

Theorem 2.1. Assume that∑
i∈I

bi(t) ̸= 0 for t ≥ −τ,

A+
∑
i∈I

Bi = 0

where A = 1
T

∫ T

0
a(t)dt, Bi =

1
T

∫ T

0
bi(t)dt, and suppose that∫ σ

0

f(u)exp

{∫ u

0

−

(
a(s) +

∑
i∈I

bi(s)

)
ds

}
du = 0,

where σ = mini∈I τi. Then, for each c ∈ R,

x(t) = c exp

{∫ t

0

[
a(s+ τ) +

∑
i∈I

bi(s+ τ)

]
ds

}
+ xp(t) for t ≥ −τ,

where

xp(t) =exp

{∫ t

0

[
a(s+ τ) +

∑
i∈I

bi(s+ τ)

]
ds

}

×

{∫ t

0

f(u)exp

[∫ u

0

−

(
a(s+ τ) +

∑
i∈I

bi(s+ τ)

)
ds

]
du

}
is a σ-periodic solution of equation (1.1).

Example 2.2. Consider

x′(t) = −2x(t)+(1−sint)x(t−2π)+(1+cost)x(t−4π)+sint−cost, t ≥ 0. (2.9)

Since A = 1
2π

∫ 2π

0
(−2)dt = −2, B1 = 1

2π

∫ 2π

0
(1 − sint)dt = 1 and B2 =

1
2π

∫ 2π

0
(1 + cost)dt = 1, we have A+B1 +B2 = 0. Also∫ 2π

0

(sinu− cosu)exp

{∫ u

0

(sins− coss) ds

}
du = 0.
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Therefore, the conditions of Theorem 2.1 are satisfied. Then, for each c ∈ R,

x(t) = c exp

{∫ t

0

[coss− sins] ds

}
+ xp(t) for t ≥ −4π,

where

xp(t) = exp

{∫ t

0

[coss− sins] ds

}{∫ t

0

(sinu− cosu)exp

[∫ u

0

− (coss− sins) ds

]
du

}
or

x(t) = (c− 1) exp {sint+ cost− 1}+ 1 for t ≥ −4π

is 2π-periodic solution of equation (2.9).

3. An asymptotic result and estimation of solutions

We give a fundamental asymptotic criterion as a theorem to solve the problem
(1.1)-(1.2).

Theorem 3.1. Assume that λ0 be a real root of the characteristic equation (1.4)
and that the root λ0 satisfies

µ(λ0) =
∑
i∈I

|Bi|τie−λ0τi +

∫ ∞

0

|f(u)| exp
[
−
∫ u

0

hλ0(s)ds

]
du < 1, (3.1)

where hλ0
is defined as in (1.5). Then, for any ϕ ∈ C([−τ, 0],R), the solution x of

(1.1)-(1.2) satisfies

lim
t→∞

{
x(t) exp

[
−
∫ t

0

hλ0
(u)du

]}
=

L(λ0;ϕ)

1 + β(λ0)
(3.2)

where

L(λ0;ϕ) =ϕ(0) +
∑
i∈I

e−λ0τi

∫ 0

−τi

b̃i(s)ϕ(s) exp

[
−
∫ s

0

hλ0(u)du

]
ds

+

∫ ∞

0

f(u) exp

[
−
∫ u

0

hλ0
(s)ds

]
du

(3.3)

and

β(λ0) =
∑
i∈I

Biτie
−λ0τi . (3.4)

Note: It is guaranteed by the property (2.1) that 0 < 1 + β(λ0) < 2 and∫∞
0

f(u) exp

[
−
∫ u

0
hλ0(s)ds

]
is finite.

Proof. By (3.1), we have |β(λ0)| ≤ µ(λ0) < 1. So, this yields that 0 < 1+β(λ0) < 2
and

−1 <
∫∞
0

f(u) exp

[
−
∫ u

0
hλ0

(s)ds

]
du < 1.

Let us define

y(t) = x(t) exp

[
−
∫ t

0

hλ0
(u)du

]
for t ≥ −τ. (3.5)
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Then, we obtain for every t ≥ 0

y′(t) =
(
a(t)− hλ0(t)

)
y(t) +

∑
i∈I

bi(t)e
−λ0τiy(t− τi) + f(t) exp

[
−
∫ t

0

hλ0(u)du

]
.

Thus, using (1.5), the fact that x satisfies (1.1) for all t ≥ 0 is equivalent to

y′(t) = −
∑
i∈I

bi(t)e
−λ0τi

[
y(t)− y(t− τi)

]
+ f(t) exp

[
−
∫ t

0

hλ0
(u)du

]
. (3.6)

Furthermore, the initial condition (1.2) is equivalent to

y(t) = ϕ(t) exp

[
−
∫ t

0

hλ0(u)du

]
, t ∈ [−τ, 0]. (3.7)

When equation (3.6) is integrated from 0 to t, by taking into account the fact that

the functions b̃i for each index i ∈ I are T -periodic and that the delays τi, i ∈ I
are multiples of T , we can verify that (3.6) is equivalent to

y(t) = L(λ0;ϕ)−
∑
i∈I

e−λ0τi

∫ t

t−τi

b̃i(s)y(s)ds−
∫ ∞

t

f(u) exp

[
−
∫ u

0

hλ0
(s)ds

]
du.

(3.8)

Now, for t ≥ −τ we define

z(t) = y(t)− L(λ0;ϕ)

1 + β(λ0)
.

Hence, from the equation (3.8) it is reduced to the equation as below

z(t) = −
∑
i∈I

e−λ0τi

∫ t

t−τi

b̃i(s)z(s)ds−
∫ ∞

t

f(u) exp

[
−
∫ u

0

hλ0
(s)ds

]
du for t ≥ 0.

(3.9)

Moreover, the initial condition (3.7) can be equivalently

z(t) = ϕ(t) exp

[
−
∫ t

0

hλ0(u)du

]
− L(λ0;ϕ)

1 + β(λ0)
. (3.10)

Using y and z, we should prove the equality (3.2), i.e.

lim
t→∞

z(t) = 0. (3.11)

Put

W (λ0;ϕ) = max

{
1 , max

t∈[−τ,0]

∣∣∣∣ϕ(t) exp [− ∫ t

0

hλ0
(u)du

]
− L(λ0;ϕ)

1 + β(λ0)

∣∣∣∣} .

Thus, by (3.10) we obtain

|z(t)| ≤ W (λ0;ϕ) for − τ ≤ t ≤ 0. (3.12)

Now, the following inequality will be proved

|z(t)| ≤ W (λ0;ϕ) for t ≥ −τ. (3.13)

To this end, let us consider an arbitrary number ϵ > 0. We claim that

|z(t)| < W (λ0;ϕ) + ϵ for t ≥ −τ. (3.14)
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Otherwise, because of (3.13), there exists a point t∗ > 0 such that

|z(t)| < W (λ0;ϕ) + ϵ for t ∈ [−τ, t∗) and |z(t∗)| = W (λ0;ϕ) + ϵ.

Then, by using (3.1) and (1.7), from (3.9) we obtain

W (λ0;ϕ) + ϵ = |z(t∗)|

=

∣∣∣∣∣−∑
i∈I

e−λ0τi

∫ t∗

t∗−τi

b̃i(s)z(s)ds−
∫ ∞

t

f(u) exp

[
−
∫ u

0

hλ0(s)ds

]
du

∣∣∣∣∣
≤
∑
i∈I

e−λ0τi

∫ t∗

t∗−τi

|b̃i(s)||z(s)|ds+
∫ ∞

t

|f(u)| exp
[
−
∫ u

0

hλ0
(s)ds

]
du

≤

{∑
i∈I

e−λ0τi

∫ t∗

t∗−τi

|b̃i(s)|ds+
∫ ∞

0

|f(u)| exp
[
−
∫ u

0

hλ0
(s)ds

]
du

}
×W (λ0;ϕ) + ϵ

≤ µ(λ0)(W (λ0;ϕ) + ϵ) < W (λ0;ϕ) + ϵ.

This is a contradiction and so (3.14) holds true. Since (3.14) is satisfied for all
ϵ > 0, (3.13) is always fulfilled. Next, in view of (1.7), (3.1) and (3.13), from (3.9)
we get for every t ≥ 0

|z(t)| =

∣∣∣∣∣−∑
i∈I

e−λ0τi

∫ t

t−τi

b̃i(s)z(s)ds−
∫ ∞

t

f(u) exp

[
−
∫ u

0

hλ0
(s)ds

]
du

∣∣∣∣∣
≤
∑
i∈I

e−λ0τi

∫ t

t−τi

|b̃i(s)||z(s)|ds+
∫ ∞

t

|f(u)| exp
[
−
∫ u

0

hλ0(s)ds

]
du

≤

{∑
i∈I

e−λ0τi |Bi|τi +
∫ ∞

0

|f(u)| exp
[
−
∫ u

0

hλ0(s)ds

]
du

}
W (λ0;ϕ)

≤ µ(λ0)W (λ0;ϕ).

In other words, we have

|z(t)| ≤ µ(λ0)W (λ0;ϕ) for t ≥ 0. (3.15)

By (3.1), (3.13) and (3.15), using an easy induction, that z satisfies

|z(t)| ≤ [µ(λ0)]
n
W (λ0;ϕ) for t ≥ nτ − τ (n = 0, 1, · · · ). (3.16)

Due to (2.1) , we get limn→∞ [µ(λ0)]
n
= 0. Thus, from (3.16) we get

lim
t→∞

z(t) = lim
t→∞

{
x(t) exp

[
−
∫ t

0

hλ0(u)du

]
− L(λ0;ϕ)

1 + β(λ0)

}
= 0

i.e. (3.2) satisfies. Theorem 3.1 has been already proven. □

Corollary 3.2. Assume that

a(t) +
∑
i∈I

bi(t) = 0 for t ∈ [0,∞) (3.17)

and ∑
i∈I

|Bi|τi +
∫ ∞

0

|f(u)|du < 1. (3.18)
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Thus, the solution x of (1.1)-(1.2) satisfies for any ϕ ∈ ([−τ, 0],R),

lim
t→∞

x(t) =
ϕ(0) +

∑
i∈I

∫ 0

−τi
b̃i(s)ϕ(s)ds+

∫∞
0

f(u)du

1 +
∑

i∈I Biτi
.

Note: It is guaranteed by (3.18) that 2 > 1 +
∑

i∈I Biτi > 0.

Proof. It immediately follows from (3.17) that A+
∑

i∈I Bi = 0 and hence λ0 = 0 is
a real root of (1.4). By using again (3.18), we see that, for λ0 = 0, we have hλ0 = 0
on the interval [−τ,∞). Moreover, (3.18) facilitates the verification of which the
root λ0 = 0 of (1.4) has the property (2.1). Therefore this can be applied Theorem
3.1. □

Theorem 3.3. Let λ0 be a real root of the characteristic equation (1.4) with the
property (3.1), and let hλ0

(t) and β(λ0) are specified by (1.5) and (3.4), respectively.
Set

N(λ0) =
(1 + µ(λ0))

2

1 + β(λ0)
+ µ(λ0). (3.19)

Then, for any ϕ ∈ C([−τ, 0],R), the solution x of (1.1)-(1.2) satisfies

|x(t)| ≤ N(λ0)R(λ0;ϕ) exp

[ ∫ t

0

hλ0(u)du

]
, for all t ≥ 0, (3.20)

where

R(λ0;ϕ) = max

{
1 , max

−τ≤t≤0
|ϕ(t)| , max

−τ≤t≤0

[
|ϕ(t)| exp

[
−
∫ t

0

hλ0
(u)du

]}
.

(3.21)

Note: It is guaranteed by the property (2.1) that 0 < 1 + β(λ0) < 2.

Proof. Suppose that x is the solution of (1.1)-(1.2) and y, z are defined as above,
i.e. for t ≥ −τ

y(t) = x(t) exp

[
−
∫ t

0

hλ0
(u)du

]
and z(t) = y(t)− L(λ0;ϕ)

1 + β(λ0)
,

where L(λ0;ϕ) is defined as in (3.3). Therefore, we specify W (λ0;ϕ) as in the proof
of Theorem 3.1. Hence, as in Theorem 3.1, it can be also proved that z satisfies
inequality (3.15), and thus for t ≥ 0 we get

|y(t)| ≤ µ(λ0)W (λ0;ϕ) +
|L(λ0;ϕ)|
1 + β(λ0)

. (3.22)
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Using (3.1) and (3.21), from (3.3) we obtain

|L(λ0;ϕ)| ≤ |ϕ(0)|+
∑
i∈I

e−λ0τi

∫ 0

−τi

|b̃i(s)||ϕ(s)| exp
[
−
∫ s

0

hλ0(u)du

]
ds

+

∫ ∞

0

|f(u)| exp
[
−
∫ u

0

hλ0
(s)ds

]
du

≤

(
1 +

∑
i∈I

e−λ0τi

∫ 0

−τi

|b̃i(s)|ds+
∫ ∞

0

|f(u)| exp
[
−
∫ u

0

hλ0
(s)ds

]
du

)
×R(λ0;ϕ)

=

(
1 +

∑
i∈I

|B(i)|τie−λ0τi +

∫ ∞

0

|f(u)| exp
[
−
∫ u

0

hλ0
(s)ds

]
du

)
×R(λ0;ϕ)

” = (1 + µ(λ0))R(λ0;ϕ).

Furthermore, using the definition of W (λ0;ϕ) we have

W (λ0;ϕ) ≤ max

{
1 , R(λ0;ϕ) +

|L(λ0;ϕ)|
1 + β(λ0)

}
= R(λ0;ϕ) +

|L(λ0;ϕ)|
1 + β(λ0)

≤ R(λ0;ϕ) +
(1 + µ(λ0))R(λ0;ϕ)

1 + β(λ0)
=

(
1 +

(1 + µ(λ0))

1 + β(λ0)

)
R(λ0;ϕ).

So, using (3.19) and (3.21), by (3.22) we reach for t ≥ 0

|y(t)| ≤ µ(λ0)

(
1 +

(1 + µ(λ0))

1 + β(λ0)

)
R(λ0;ϕ) +

(1 + µ(λ0))R(λ0;ϕ)

1 + β(λ0)

=

{
µ(λ0)

(
1 +

(1 + µ(λ0))

1 + β(λ0)

)
+

(1 + µ(λ0))

1 + β(λ0)

}
R(λ0;ϕ)

= N(λ0)R(λ0;ϕ).

Last of all, using the definition of y we get

|x(t)| ≤ N(λ0)R(λ0;ϕ) exp

[ ∫ t

0

hλ0
(u)du

]
, for all t ≥ 0.

Therefore, this completes the proof of the theorem.
□

Example 3.4. In the following example, we will apply Theorem 3.1 and Theo-
rem 3.3. For simplicity of example we consider the problem as follows:

x′(t) =

(
1

3
+ sin 2πt

)
x(t)−

(
1

3
+ sin 2πt

)
x(t− 1)− e−t

3
, t ≥ 0, (3.23)

x(t) = 1 , −1 ≤ t ≤ 0 (3.24)

where 1
3 + sin 2πt and − 1

3 − sin 2πt with period T = 1. The characteristic
equation of the homogeneous equation of (3.23) is from (1.4)

λ =
1

3
− 1

3
e−λ. (3.25)

We have λ1 ≈ −1.9 and λ2 = 0 are real roots of characteristic equation (3.25). Let

λ0 ≈ −1.9. Then, the first term in (3.1) e1.9

3 ≈ 2.23. Therefore, Theorem 3.1 and
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Theorem 3.3 cannot be applied to equation (3.23). But, let λ0 = 0. We check the
condition for Theorem 3.1 as follows: Since hλ0(t) = 0, from (3.1) we obtained
easily

µ(λ0) = µ(0) =
1

3
+

∫ ∞

0

e−u

3
du =

1

3
+

1

3
=

2

3
< 1.

Therefore, (3.1) is satisfied. Then, from (3.2) and (3.20), the solution x of (3.23)
and (3.24) satisfies

lim
t→∞

x(t) =
1−

∫ 0

−1

(
1
3 + sin 2πs

)
ds−

∫∞
0

e−t

3 du

1− 1
3

=
3

2

and

|x(t)| ≤

(
(1 + 2/3)

2

1− 1
3

+
2

3

)
=

29

6
, for all t ≥ 0.

4. The Special Case of Linear Nonhomogeneous Delay Differential
Equations with Constant Coefficients

In this section, we will consider the special case of first order linear nonhomo-
geneous delay differential equations with constant coefficients and constant delays.
The linear autonomous delay differential equation is a special version of the delay
differential equation (1.1)

x′(t) =ax(t) +
∑
i∈I

bix(t− τi) + f(t), t ≥ 0, (4.1)

where a, bi for i ∈ I are the real constants, and τi for i ∈ I the positive real numbers
with τi1 ̸= τi2 for i1, i2 with i1 ̸= i2 and f is a continuous real-valued function on
the interval [0,∞). Let τ be defined by τ = maxi∈I τi. and the initial function be
given as in (1.2). The characteristic equation of the homogeneous equation of (4.1)
is

λ = a+
∑
i∈I

bie
−λτi . (4.2)

There were given sufficient conditions to obtain a unique real root of characteristic
equation (4.2) in Philos [2, Chapter 5]. The constant coefficients a and bi of (4.1)
can be considered as T -periodic functions, for each real number T > 0. Moreover,
as it concerns the autonomous delay differential equation (4.1), the hypothesis that
there exists positive integers mi for i ∈ I such that τi = miT holds by itself. After
these observations, it is not difficult to apply the main results of this paper, i.e.,
Theorem 3.1, Corollary 3.2 and Theorem 3.3, to the special case of the autonomous
linear nonhomogeneous delay differential equation (4.1). Because of equation (4.1)
is a constant coefficient equation, we needn’t to prove below Theorem 4.1 and
Theorem 4.3.

Theorem 4.1. Suppose that λ0 be a real root of (4.2) with

µ(λ0) =
∑
i∈I

|bi|τie−λ0τi +

∫ ∞

0

|f(u)| e−λ0udu < 1. (4.3)
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Thus the solution x of the system (4.1) and (1.2) satisfies

lim
t→∞

[
e−λ0tx(t)

]
=

L(λ0;ϕ)

1 +
∑

i∈I biτie
−λ0τi

,

where

L(λ0;ϕ) = ϕ(0) +
∑
i∈I

bie
−λ0τi

∫ 0

−τi

ϕ(s)e−λ0sds+

∫ ∞

0

f(u)e−λ0udu.

Note: It is guaranteed by the property (4.3) that 0 < 1 +
∑

i∈I biτie
−λ0τi < 2.

Application of the Theorem 4.1 with λ0 = 0 leads to the following corollary.

Corollary 4.2. Assume that

a+
∑
i∈I

bi = 0 and
∑
i∈I

|bi|τi +
∫ ∞

0

f(u)du < 1. (4.4)

The solution x of the system (4.1) and (1.3) satisfies

lim
t→∞

x(t) =
ϕ(0) +

∑
i∈I bi

∫ 0

−τi
ϕ(s)ds+

∫∞
0

f(u)du

1 +
∑

i∈I biτi
.

Theorem 4.3. Assume that Theorem 4.1 is satisfied and Let λ0 be a real root of
(4.2) satisfying (4.3) and set

R(λ0;ϕ) = max

{
1 , max

−τ≤t≤0
|ϕ(t)| , max

−τ≤t≤0

[
e−λ0t|ϕ(t)|

]}
.

Thus the solution x of the system (4.1) and (1.3) satisfies

|x(t)| ≤ N(λ0)R(λ0;ϕ)e
λ0t for t ≥ 0,

where

N(λ0) =
(1 + µ(λ0))

2

1 +
∑

i∈I biτie
−λ0τi

+ µ(λ0).

5. Conclusions

In this study, firstly, we have obtained sufficient conditions for (1.1) to have peri-
odic solutions. Later, we have proved that there is a basic asymptotic criterion for
the solutions of the initial value problem (1.1)-(1.2). Finally, using this asymptotic
criterion, we obtained a useful exponential boundary for solutions of (1.1)-(1.2).
These results were obtained using a suitable real root for the characteristic equa-
tion. Namely that, this real root played an important role in establishing the results
of the article. We have also presented the application in the special case of constant
coefficients of the results obtained. We also gave two examples.

Acknowledgments. The author thanks the authors which listed in References for
many useful support.
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Abstract. A discrete version of the continuous half-logistic distribution is

introduced, which is based on the minimization of the Cramér distance between

the corresponding continuous and step-wise cumulative distribution functions.
The expression of the probability mass function is derived in analytic form and

some properties of the distribution are discussed, as well as sample estimation.

A comparison is also made with a discrete version already proposed in the
literature, which is based on a different rationale. An application to real data

is finally presented.

1. Introduction

The half-logistic distribution is a random distribution supported on R+ obtained
by folding the logistic distribution about the origin [1]. Thus, if Y is a random vari-
able (rv) following the logistic distribution with parameter θ > 0, with cumulative
distribution function (cdf) FY (y) =

1
1+e−θy and probability density function (pdf)

fY (y) = θe−θy

(1+e−θy)2
, the rv X = |Y | follows the the half-logistic distribution with

the same parameter θ; its pdf is

f(x) =
2θe−θx

(1 + e−θx)2
, x ∈ R+, θ ∈ R+; (1.1)

its cdf is

F (x) =
2

1 + e−θx
− 1 =

2eθx

eθx + 1
− 1 =

eθx − 1

eθx + 1
= 1− 2

1 + eθx
, x ∈ R+. (1.2)

The expectation is µ = log 4/θ. [2] introduced a discrete analogue of the half-
logistic distribution, defined through (1.1) or (1.2), by imposing the matching of
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the survival function (sf) P (X ≥ x) at each integer value of the support, i.e.,
defining the probability mass function (pmf) as p(x) = F (x + 1) − F (x). The
pmf of the discrete analogue of the half-logistic distribution has thus the following
expression:

pi = p(i) = 2
[
1 + e−θ(i+1)

]−1

− 2
[
1 + e−θi

]−1
, i = 0, 1, 2, . . . (1.3)

In this paper, we introduce and discuss an alternative discrete version of the
continuous half-logistic distribution by following a different approach, based on the
minimization of a discrepancy measure between the continuous cdf of the parent
distribution and the step-wise cdf of the discrete counterpart [3]. The distance
chosen is the Cramér distance, defined as

d(F,G) =

∫
R
|F (x)−G(x)|2dx, (1.4)

where F and G are the continuous and step-wise cdf of the continuous random
distribution and of its discrete version, respectively. The paper is structured as
follows: In the next section, we provide the general solution to the problem stated
above and then derive the “optimal” discrete counterpart of the half-logistic distri-
bution, by providing the analytic expression of its pmf and some properties. The
third section is devoted to sample estimation and discusses the maximum likeli-
hood method, the method of moment and the method of proportion. The fourth
and final section presents an application to a real dataset, on which the proposed
discrete distribution is fitted.

2. Definition of an alternative discrete version of the half-logistic
distribution

If G is a stepwise cdf, supported on the non-negative integers i ∈ {0, 1, 2, . . . },
which can be seen as a discrete version of a continuous cdf F , supported on the
positive half-line, letting Qi = G(i), the Cramér distance (1.4) can be rewritten as

d(F,G) =

∞∑
i=0

|F (x)−Qi|2.

By minimizing the function above with respect to the Qi’s, we obtain the “optimal”

values as Qi =
∫ i+1

i
F (x)dx [3]. The optimal discrete analogue of the half-logistic

distribution has then cumulative probabilities given by

Qi =

∫ i+1

i

(
1− 2

1 + eθx

)
dx = 1− 2 +

[
2 log(1 + eθx)

θ

]i+1

i

=
2

θ
log

1 + eθ(i+1)

1 + eθi
− 1,

for i = 0, 1, 2, . . . , so that the probabilities are
p0 = Q0 =

2

θ
log

1 + eθ

2
− 1

pi = Qi −Qi−1 =
2

θ
log

(1 + eθ(i+1))(1 + eθ(i−1))

(1 + eθi)2
, i = 1, 2, . . . .

(2.1)

It can be proved that p0 < p1 if θ is smaller than θ∗ = 2.12255. Conversely,
for any θ > θ∗, p0 > p1, whereas if θ = θ∗, it follows that p0 = p1. It can be
also proved that pi > pi+1 for any i ≥ 1. As a direct consequence of the two
results above, we have that the proposed alternative discrete counterpart of the
half-logistic distribution is unimodal with mode equal to 1 if θ < θ∗, with mode
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Figure 1. Pmf of the proposed discrete counterpart, based on
Eq. (2.1), and of the discrete counterpart proposed by [2], Eq. (1.3),
based on the preservation of the sf; θ = 1/2.

equal to 0 if θ > θ∗; it is bimodal with modes at 0 and 1 if θ = θ∗. This is a very
relevant difference with respect to the model of Eq. (1.3), which is unimodal with
mode at 0. Figure 1 displays, for the integers 0 to 10, the probabilities for the two
models when θ = 1/2. It can be easily shown that the expectation of the alternative
discrete half-logistic coincides with that of the parent continuous distribution. This
is a general property holding for the discrete counterparts of positive rvs obtained
by minimizing the Cramér distance (1.4). In fact, denoting the continuous rv and

its optimal counterpart by X and X̃, respectively, and recalling an alternative
formulation of the expected value for non-negative rvs, one shows that

E(X̃) =

∞∑
i=0

(1−Qi) =

∞∑
i=0

(
1−

∫ i+1

i

F (x)dx

)
=

∫ ∞

0

(1− F (x))dx = E(X).

Determining if and when the proposed discretization is “better”, according to some
appropriate criterion, than the usual one, based on the matching of the sf, can the
the object of further study.

3. Parameter estimation

Given an iid sample (x1, x2, . . . , xn) which we assume to come from the alter-
native discrete half-logistic distribution (2.1), the unknown parameter θ can be
estimated by resorting to one of the following methods.

3.1. Maximum likelihood method. The maximum likelihood estimate θ̂ML of θ
is the value maximizing the log-likelihood function ℓ(θ;x1, . . . , xn) =

∑n
i=1 log pxi

(θ).
Due to the complicated expression of the pmf, it is not possible to derive a closed-

form expression of θ̂ML, but any standard optimization routine can be used in order
to obtain it numerically.

3.2. Method of moment. By equating this expectation of the proposed model to

the sample mean x̄ =
∑n

i=1 xi/n, one derives the moment estimate as θ̂M = log 4/x̄.

3.3. Method of proportion. This method, suitable for discrete distributions,
consists in considering an assigned support value and determining the value of
the parameter for which the probability of that value equals the corresponding
relative sample frequency. One can consider matching the probability of 0, available
from (2.1), and the corresponding relative sample frequency of zeros, p̂0. After
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Table 1. Distribution of number of outbreaks of strikes, from [4]

count observed frequency theoretical frequency
0 46 51.39
1 76 69.69
2 24 25.61
3 9 7.01

(≥)4 1 2.30
total 156 156

simple algebraic steps, one obtains the following equation in ω = eθ, 2ω(1+p̂0)/2−ω−
1 = 0, which yields a unique root ω̂P and the corresponding estimate θ̂P = log ω̂P .

4. A real data example

We consider the dataset presented in [4] and reported in Table 1. Fitting the
data through the alternative half-logistic might be plausible, since the mode is 1.
The MLE of θ is 1.4238 and using this estimate we reconstruct the theoretical
frequencies, which are displayed in the last column of Table 1. Pooling the last
two counts (3 and 4), we calculate the usual chi-square statistic, X2 =

∑3
i=0(ni −

n∗
i )

2/n̂i, where ni and n∗
i are the observed and theoretical frequencies of the count

i; its value is 1.2896 and the approximate p-value of the chi-square test is 0.5247,
thus indicating a more than satisfactory fit of the model. The maximum value of
the log-likelihood function is −188.104; the AIC value is 378.208. All these results,
if compared to those of the statistical models analyzed in [5], highlight that the
alternative discrete half-logistic distribution has a superior goodness-of-fit.
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Abstract. In the first countable spaces many topological concepts such as

open and closed subsets; and continuous functions are defined for convergent
sequences. The concept of limit defines a function from the set of all conver-

gence sequences in X to X itself if X is a Hausdorff space. This is extended

not only to topological spaces but also to sets. More specifically a G-method
is defined to be a function defined on a subset of all sequences We say that a

sequence x = (xn) G-convergences to a if G(x) = a. Then many topological
objects such as open and closed subsets and many others including these sets

have been extended in terms of G-convergence. G-continuity, G-compactness

and G-connectedness have been studied by several authors ([1], [2], [3], [4]).
On the other hand we know that in a topological space X, a sequence (xn)

converges to a point a ∈ X if any open neighbourhood of a includes all terms

except finite number. Similarly we define a sequence (xn) to be G-sequentially
converging to a if any G-open neighbourhood of a includes almost all terms.

In this work provided some examples we indicate that G-convergence and

G-sequentially convergence are different. We will prove that G-closed and
G-sequentially closed subsets and therefore many others are different.ed.

1. Introduction

Useful tools for defining topological concepts in sequential terms are the conver-
gences of the sequences.

Some authors explored A-continuity for methods of almost convergence and for
related approaches, including Savaş and Das [5], Borsik and Salat [6].

The effects of substituting G-methods defined on a subspace of the real sequences
for sequential convergence were examined by Connor and Grosse-Erdmann [7]. In
order to apply this idea to topological groups, Çakallı extending this concept to
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topological groups, defined G- continuity in [1] (see also [8] for various additional
forms of continuities). In [9] Mucuk and Şahan introduced the concepts of G-open
sets and G-neighbourhoods in topological groups and looked into additional G-
continuity features. Recently, Lin and Liu in [10] proposed the ideas of G-methods,
G-submethods and G-topologies for arbitrary sets as well as topological spaces, and
they also looked into the operations involving G-hulls, G-closures, G-kernels and
G-interiors.

Yongxing and Fucai [11] expanded on several findings and discussed some G-
connectedness, G-hull, and G-kernel properties. In [12] Brown and Mucuk studied
the covering of disconnected topological groups. In their article [13] L. Liu and Z.
Ping proposed the idea of the product G-method on sets, which results in a G-
generalized topology. They also talked about the G-connectedness of the Cartesian
product. We studied G-connectedness and G-sequential methods for product spaces
in the works [14] and [15]. Authors explore the concepts of countably G- compact
and sequentially GO-compact spaces in article [16]. The first countable spaces are
sequential topological spaces and can be completely characterized by convergent
sequences. A subset A of sequential space X is said to be closed, whenever any
convergence sequence x = (xn) in A has sequential limit in the same subset A.
Open subsets in sequential spaces can be also defined in terms of sequences. Subset
A is open if and only if any sequence converging to a point a ∈ A is almost in A.

In [17] some counter examples of convergent G-methods are given; and G-open,
G-closed subsets for these G-convergent methods are characterised. The main ob-
ject of this paper is to define G-methods as G-sequential convergence and then to
characterize a variety of G-open, G-closed subsets associated with these G-methods.

2. G-sequential convergence

Throughout the text, the letterX designates a topological space unless otherwise
stated. The boldface letters x, y, z,... stand for the sequences of terms x = (xn),
y = (yn), z = (zn),, whereas s(X) and c(X) stand for the sequences of all terms
and the sequence of all convergent sequences of points in X, respectively. We define
a G-method of sequential convergence for X as a map defined on a subset cG(X)
of s(X) into X. When for x ∈ cG(X) and G(x) = ℓ, a sequence x = (xn) is said to
be G-convergent to ℓ. In particular, the G-method with G = lim is the lim function
defined on c(X). When a sequence x is G-convergent to ℓ, then any subsequence of
x is likewise G-convergent to the same point ℓ, is referred to as the preservation of
the G-convergence of subsequences. A sequence x is described as regular whenever
any convergent sequence x = (xn) is G-convergent with G(x) = limx. We remind
that in a topological space X, a sequence x = (xn) has limit a if and only if every
open neighbourhood of a includes almost all terms of x = (xn). Parallel to this, we
can define a variety of G-convergence as follows:

For a set X, we say that a sequence x = (xn) in X is G-sequentially convergent
to a point a ∈ X, if every G-open neighbourhood U of a includes almost all terms
of the sequence. Note that we here use additionally the word “sequentially” to
distinguish from G-convergence. The notion of G-sequentially convergence defined
in this manner enables us to obtain a variety of G-open, G-closed subsets and some
others. We keep to use the word “sequentially” additionally for these varieties of
the notions.
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G-hull and G-closed subsets : The point ℓ ∈ X is said to be in the G-hull of
A if the subset A has a sequence x = (xn) with G(x) = ℓ. A is said to be G-closed
if [A]G ⊆ A, which denotes the G-hull of A. A is G-closed if and only if [A]G = A
since for a regular method G, one has A ⊆ [A]G. Here it should be noted that ∅ is
G-closed since [∅]G = ∅ and X is G-closed since [X]G ⊆ X; and [X]G = X if G is
regular. As seen in Example 2.1, even for a regular G-method, G-closure [A]G is
not necessarily a G-closed subset. A subset A with [A]G = ∅ is G-closed. The union
of G-closed subsets of X is not always G-closed, but the intersection of G-closed
subsets is also G-closed. The G-closure of A is defined to be the intersection of all
G-closed subsets containing A, and denoted by A

G
which is a G-closed subset. By

the fact that [A]G ⊆ [K]G ⊆ K whenever A ⊆ K and K is a G-closed subset, we

can deduce that [A]G ⊆ A
G
.

A subset A ⊆ X is called G-open if X \A is G-closed.
X and ∅ are G-open since they are both G-closed. Eventually the union of G-

open subsets ofX isG-open and the intersection ofG-open subsets is not necessarily
G-open. A subset A ⊆ X is a G-neighborhood of a if there exists a G-open subset U
of X such that a ∈ U ⊆ A. The union of G-open subsets of A is called G-interior
of A and denoted by A0G which is the largest G-open subset of A [9]. A is G-open
if only if A = A0G.

G-sequentially hull and G-sequentially closed subsets : We say a point
l ∈ X is in the G-sequentially hull of a subset A if there exists a sequence x = (xn)
of the terms in A which G-sequentially converges to l and write [A]G for the set
of G-sequentially hull points of A. Since for a ∈ A, the constant sequence (xn) =
(a, a, . . . ) is G-sequentially convergent to a we conclude that A ⊆ [A]G. A is G-
sequentially closed if [A]G ⊆ A. Note that [X]G = X and [∅]G = ∅; and therefore ∅
and X are G-sequentially closed.

The G-sequentially closure of A, denoted by AG, is the intersection of all G-
sequentially closed subsets containing A, which is also a G-sequentially closed sub-
set. If A ⊆ K and K is a G-sequentially closed subset, then [A]G ⊆ [K]G ⊆ K and
therefore [A]G ⊆ AG.

We remark that a point a in a first countable space X is an interior point of
the subset A if any sequence x = (xn) converging to a is almost in A. Hence we
can extend this notion to a G-method as follows: A point a is said to be a G-
sequentially interior point of A and write a ∈ A0

G whenever any sequence x = (xn)
with G-sequentially convergence to a is almost in A or equivalently there is no any
sequence x = (xn) in X \A with G-sequentially convergence to a. By the fact that
the constant sequence (xn) = (a, a, . . . ) is G-sequentially convergent to a, one can
see that A0

G ⊆ A and therefore A is G-sequentially open when A ⊆ A0
G.

We can state following theorems to support the idea of G-sequential convergence.

Theorem 2.1. [3] Let X be a set with a G-method. A subset A is G-sequentially
open if and only if X \A is G-sequentially closed.

Equivalently we can state the following theorem.

Theorem 2.2. A is G-sequentially closed if and only if X \ A is G-sequentially
open.

In the following examples, we shall define two G-methods and the compare G-
convergence and G-sequential convergence together with associated features of G-
sequentially closed subsets.
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Example 2.1. Let G be a convergent method on R defined by G(x) = lim xn+xn+1

2
for some sequences x = (xn). We can check the following properties for G-
convergence.

(i) G-closed and G-open subsets. Since A is regular we have A ⊆ A
G
. Hence

a subset A is G-closed if and only if A = A
G
. For the subset A = {0, 1} one

has A
G
= {0, 1

2 , 1}. Here note that since the sequence (xn) = (0, 1, 0, 1....) is

G-converging to 1/2 one has 1/2 ∈ A
G
. Hence A is not G-closed.

If A = {x} and y ∈ A
G
, then there exists a sequence x = (xn) in A with

G(x) = y. But x = (xn) = (x, x, . . . ) and since G is regular G(x) = lim(x) =
x and therefore y = x. Hence A = {x} is G-closed and therefore G-open
subsets are the complements R \ {x} for x ∈ R.

(ii) G-convergence and G-sequential convergence This method is G converg-
ing for some sequences but it is not G-sequentially converging to any point. In
below we give different types of examples for the G-sequentially convergence
of sequences.

(a) For example the sequence x = (xn) = (1, 3, 1, 3, . . . ) is G-convergent
to 2 but not G-sequentially converging to any point, because for any point
x ∈ R, we can choose a G-open neighbourhood R \ {a} of x, which does not
include almost all terms of x = (xn).

(b) For a constant a ∈ X consider the sequence x = (xn) defined by

xn =

{
n, if n is odd
a, if n is even

Then x = (xn) is not G-convergent to any point but G-sequentially conver-
gent to the point a because any G-open neighbourhood R \ {x} of a includes
almost all terms of the sequence. For any point x, which is different from a,
the subset R \ {a} is a G-open neighbourhood of x but it does not include
almost all terms and therefore x = (xn) does not G-sequentially convergent
to x.

(c) The sequence x = (xn) = ( 1n ) is G-convergent to 0 G-sequentially
convergent to all points x’s, because any G-open neighbourhood R \ {a} of x
includes almost all terms of x.

(iii) G-sequentially closed and G-sequentially open subsets
We can now characterize G-sequentially closure and hence G-sequentially

closed subsets. Consider the following cases.
(a) If A is an infinite set, then we have a sequence x = (xn) = (x1, x2, . . . )

in A with different terms and x = (xn) is G-sequentially convergent to every
point x ∈ R, since each G-open neighbourhood R \ {a} of x includes almost
all terms of x. Hence all points of R are in the G-sequentially hull of A and
therefore [A]G = R.

(b) Let A be a finite set and x /∈ A. If x = (xn) is a sequence of the
terms of A, then (xn) is in the form (xn) = (.., xn0 , . . . , xn0 , ...) and G-open
neighbourhood R \ {xn0} of x does not include almost all the terms. Hence
x /∈ [A]G for all x /∈ A and therefore [A]G = A. We can write the generalization

[A]G =

{
R, A is infinite
A, A is finite
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Hence we can conclude that finite subsets are G-sequentially closed, cofinite
subsets are G-sequentially open and

A0
G =

{
A, if A is cofinite
∅, otherwise

Example 2.2. Let c ∈ X be a constant element and G a method on the set X
defined by G(x) = c for any sequence x = (xn) . Then we check the following.

(i) G-closed and G-open subsets. One can check that [A]G ⊆ A if and only if
c ∈ A. Hence A is G-closed if and only if c ∈ A If (an) ⊆ A and G(an) = c ∈ A,
then [A]G ⊆ A. Thus [A]G = {c}. and therefore we can state G-closed and
G-open subsets as follows{

A is G-closed, if c ∈ A or A = ∅
A is G-open, if c /∈ A or A = X

(ii) G- convergence and G-sequential convergence. For an a ∈ X with
a ̸= c, the sequence x = (xn) is G-sequentially convergent to a if and only if
the terms of x = (xn) is almost a since by (i) {a} is a G-open neighbourhood
of a ∈ X. Moreover by (i) the only G-open neighbourhood of c is R and
therefore any sequence is also G-sequentially converging to c.

(iii) G-sequentially closed and G-sequentially open subsets.
Let a ̸= c. Then by (i) {a} is a G-open neighbourhood of a. Hence a

sequence x = (xn) in A is G-sequentially convergent to a if and only if the
terms are almost a, i.e., (xn) = (a1, a2, ..., an0

, a, a, . . . ). Hence [A]G ⊆ A and
therefore all subsets are G- sequentially closed and also G-sequentially open.
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Abstract. The goal of this paper is to characterize each of compact, totally
disconnected, Stone relation spaces, and Stone reflexive spaces as well as ex-

amine the relationships between them. Finally, we investigate some properties
of them and compare our results.

1. Introduction

If a topological space X is Hausdorff, totally disconnected, and compact, then X
is called a Stone space [14]. Stone spaces are used in algebra, topology, functional
analysis, the representation theory of rings, algebraic geometry, and mathematical
logic [13, 14, 16, 17].
Categorical setting of compact Hausdorff spaces are studied by several authors[5,
9, 12, 15].

The notion of closedness which is being used in defining the Hausdorffness, open-
ness, compactness, total disconnectedness was introduced in [3].

The category Rel of relation spaces where objects are sets with a binary relation
and where morphisms f : (A1, R) → (B1, S) are functions with f(a)Sf(b) if aRb
for all a, b ∈ A1 [10].
The category RRel of reflexive relation spaces is the full subcategory of Rel and
they are topological categories [10].

Let B ̸= ∅ and let B2
∨

∆ B2 be taking two distinct copies of B2 identified along
∆.
The map S : B2 ∨∆ B2 → B2 is given by S(a, b)1 = (a, b, b) and S(a, b)2 = (a, a, b)
and the map A : B2 ∨∆ B2 → B3 is given by A(a, b)1 = (a, b, a) and A(a, b)2 =
(a, a, b).
The map ∇ : B2

∨
∆ B2 → B2 is given by ▽((a, b)j) = (a, b) for j = 1, 2 [3].
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Let X ∈ Ob(E) with U(X) = B, where E is a set based topological category.
Let SW (resp. AW ) be the initial lift of the U -source S (resp. A) : B2

∨
∆ B2 →

U(X3) = B3.

Definition 1.1. (cf. [3, 4]).
(1) If the initial lift of the U -source ∇ : B2∨∆B2 → U(D(B2)) and A : B2∨∆B2 →
U(X3) is discrete, then X is said to be a T0 object, where D is the discrete functor.
(2) If the initial lift of the U -source ∇ : B2∨∆B2 → U(D(B2)) and id : B2∨∆B2 →
U(B2 ∨∆ B2)

′
is discrete, then X is said to be a T ′

0 object.
(3) If SW = AW , then X is said to be a PreT 2 object.
(4) If X is PreT 2 and T ′

0 (resp. T 0), then X is said to be a KT2 (resp. T 2) object.

Let
∨∞

x B be taking countably many disjoint copies of B and identifying them
at the point x ∈ B. The map A∞

x :
∨∞

x B → B∞ (resp. ▽∞
x :

∨∞
x B −→ B) is

given by A∞
x (ai) = (x, ..., x, a, x, x, ...) (resp. ▽∞

x (ai) = a for all i ∈ I), where ai is
in the i-th component of

∨∞
x B and B∞ is the countable product of B [3].

Definition 1.2. ( cf. [3, 5]).
(1) If the initial lift of the U -source ▽∞

x : ∨∞
x B → UD(B) and A∞

x : ∨∞
x B →

U(X∞) is discrete, then {x} is said to be closed.
(2) If {∗}, the image of N , is closed in X/N or N = ∅, then N is said to be closed,
where X/N is the final lift of the epi U -sink Q : U(X) → B/N = (B\N) ∪ {∗},
identifying N with a point *.
(3) If NC , the complement of N , is closed, then N is said to be open.
(4) If the projection map π2 : X × Z −→ Z is closed for each object Z in E, then
X is said to be a compact object.

In Top (the category of topological spaces and continuous functions), T 0 and T ′
0

(resp. T 2 and KT2) reduce to T0 (resp. T2 ) axiom [3]. Also, compactness (resp.
openness and closedness) coincides with the usual compactness (resp. openness and
closedness) [5].

Theorem 1.1. (1) Every subset of a relation space is closed.
(2) Every relation space is compact.

Proof. (1) Let (B,R)be a relation space and N ⊂ B. If N = ∅, then by Definition
1.2, N is closed. If N = {x} for some x ∈ B, then let R1 be the initial structure
on ∨∞

x B induced by ▽∞
x : ∨∞

x B → (B, ∅) and A∞
x : ∨∞

x B → (B∞, R∞), where
∅ is the discrete relation on B and R∞ is the product relation on B∞. Since
▽∞

x : ∨∞
x B → (B, ∅) is a relation preserving map and (B, ∅) is discrete, we have

R1 = ∅ and so, {x} is closed in (B,R).
If N has cardinality at least 2, then {∗} is closed in B/N and by Definition 1.2, N
is closed.
(2) follows from Part (1) and Definition 1.2. □

Theorem 1.2. A reflexive space (B,R) is compact iff for every x ∈ A there exist
a, b ∈ B with xRa and bRx.

Proof. It is proved in [8]. □

2. Stone Spaces

We introduce two new Stone objects in a topological category and find relation-
ships between them. Moreover, we characterize each of Stone relation spaces and
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Stone reflexive spaces and compare our results.
Let X ∈ Ob(E) and N ⊂ X. Recall, in [7], that the quasi-component closure
QX(N) of N is the intersection of all open and closed subsets of X containing N .

Definition 2.1. (1) If every quasi-component of X contains only one point, then
X is said to be totally disconnected.
(2) If X is KT2 (resp. T 2), compact, and totally disconnected, then X is called a
TKT2 (resp. TT 2) object.
An object satisfying the condition (2) will be called a Stone object.

In Top, the notion of total disconnectedness coincide with the usual total dis-
connectedness [2, 7, 11]. Moreover, TKT2 and TT 2 Stone spaces reduce to the
usual Stone spaces [14].

Theorem 2.1. Every TT 2 Stone object is TKT2.

Proof. Let X ∈ Ob(E), where U : E → Set is topological.
If X is a TT 2 Stone object, then, X is T 2 and by Definition 1.1, X is PreT2 and
T 0. Since X is T 0, by Theorem 2.7 of [4], X is T ′

0 and so, X is KT2. Hence, X is
TKT2. □

Theorem 2.2. (1) Every relation space is totally disconnected.
(2) For a relation space (B,R), the following are equivalent:
(i) (B,R) is TT 2.
(ii) (B,R) is TKT2.
(iii) For each x, y ∈ B there exists z ∈ B with xRz and yRz, then for any w ∈ B,
xRw iff yRw.

Proof. (1) Since by Theorem 1.3, Q(s) = {s} for all s ∈ B, then (B,R) is totally
disconnected.
(2) By Theorem 1.3 and Part (1), a relation space (B,R) is compact and totally
disconnected. By Theorem 3.5 of [8], we get the result. □

Theorem 2.3. A reflexive space(B,R) is TKT2 iff it is TT 2.

Proof. By Theorems 3.2 and 5.2 of [7], a reflexive space (B,R) is T 2 iff it is KT2

and totally disconnected, and by Definition 2.1, one has the result. □

Let TKT2Rel and TT2Rel be the full subcategory of Rel whose objects are
the TKT2 or TT 2 Stone relation spaces.

Theorem 2.4. The categories TKT2Rel and TT2Rel are isomorphic topological
categories.

Proof. By Theorem 2.2 and Theorem 3.4 of [6], one has the result. □

Recall, in [8], that ifX isKT2 (resp. T 2), compact, and extremally disconnected,
then X is called a EKT2 (resp. ET 2) Stone object.

We can infer the foolowing results:
(1) In Rel, by Theorem 2.2 and Theorem 4.5 of [8], all TKT2, EKT2, ET 2, and
TT 2 Stone relation spaces are equivalent and by Theorem 2.4, the subcategories
TKT2Rel, TT2Rel, EKT2Rel, and ET2Rel have all limits and colimits. By
Theorem 4.5 of [8] and Theorems 1.3 and 2.2, a relation space is totally disconnected
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iff it is extremally disconnected.
(2) In RRel, by Theorems 3.2 and 5.2 of [7] and Theorem 4.6 of [8], T 2 implies each
of KT2, extremally disconnected, and totally disconnected. The indiscrete reflexive
space ({m,n}, {m,n}2) is KT2 and extremally disconnected but it is neither T 2

nor totally disconnected. ({m,n}, {(m,m), (n, n), (n,m)}) is totally disconnected
but it is neither KT2 nor T 2. By Theorem 4.6 of [8] and Theorem 2.3, TKT2 =
TT 2 = ET 2 ⇒ EKT2 but ({m,n}, {m,n}2) is EKT2 but it is neither TKT2 nor
TT 2 nor a ET 2 Stone reflexive space.
(3) In arbitrary topological category, by Theorem 2.1, every TT 2 Stone object is
TKT2.
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Abstract. The Intensive Care Unit (ICU) represents a constrained health-
care resource, involving invasive procedures and high costs, with significant

psychological effects on patients and their families. The traditional approach

to ICU admissions relies on observable behavioral indicators like breathing
patterns and consciousness levels, which may lead to delayed critical care due

to deteriorating conditions. Therefore, in the ever-evolving healthcare land-
scape, predicting whether patients will require admission to the ICU plays a

pivotal role in optimizing resource allocation, improving patient outcomes, and

reducing healthcare costs. Essentially, in the context of the post-COVID-19
pandemic, aside from many other diseases, this prediction not only forecasts

the likelihood of ICU admission but also identifies patients at an earlier stage,

allowing for timely interventions that can potentially mitigate the need for
ICU care, thereby improving overall patient outcomes and healthcare resource

utilization. However, this task usually requires a lot of diverse data from dif-

ferent healthcare institutions for a good predictive model, leading to concerns
regarding sensitive data privacy. This paper aims to build a decentralized

model using deep learning techniques while maintaining data privacy among

different institutions to address these challenges.

1. Introduction

The COVID-19 pandemic confronted health systems worldwide with an unprece-
dented challenge. According to the World Health Organization (WHO), approxi-
mately 14.9 million deaths were associated with this novel coronavirus during 2020
and 2021 [1]. Surging cases overwhelmed hospitals and depleted essential resources
globally, especially in intensive care units (ICUs) where shortages of beds, equip-
ment, and staff severely constrained life-saving care [2].
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The ICU is a crucial but limited healthcare resource [3]. Especially under the
context of the COVID-19 era, a large number of cases have particularly stressed
ICU settings with an increased need for ICU beds [4]. As cases skyrocketed in
pandemic hotspots from Wuhan, Italy, to New York, ICUs were immediately over-
loaded with exceeding capacity [5] [6]. This emergency of ICU and other medical
resources scarcity extremely affected patient outcomes and mortality throughout
the pandemic [7]. Additionally, medical treatment in the ICU has the disadvan-
tages of possible invasive procedures [8], high cost, and significant psychological
effects on both patients, their families and the medical institution [9], compared to
the equivalent but earlier treatment outside the ICU. Moreover, the traditional ap-
proach to determining if someone should be admitted to the ICU primarily depends
on observable indicators such as the patient’s breathing pattern, consciousness, and
medical instability, which means decisions for sending some patients without no-
table into ICU are made at relatively later points waiting until the patient’s health
condition has already deteriorated [10]. This decision-making strategy could po-
tentially result in delayed medical treatment, thus leading to a poor survival rate
and long-term effects on the patient’s physical condition[10].

To summarize, the challenges and disadvantage of critical care is: limited re-
sources, possible late admission decisions, and significant burden on different as-
pects of different groups. To solve the root cause, Machine Learning (ML) methods
have been proven as a robust tool to reduce the necessity for patients to be sent
to ICU by facilitating earlier clinical decision-making and critical care intervention
which in turn helps with better ICU resource allocation [11] [12] [13]. A more ro-
bust model can help with making more accurate and reliable decisions for an earlier
intervention, which will lead to a positive change in survival rate, long-term effects,
and readmission rates among patients carrying a wide range of diseases [10] [14]
[15]. However, creating a robust model that can produce reliable information also
necessitates access to a wide range of diverse data from different institutions [16],
which challenges data privacy and integrity significantly [17]. We recognize the
importance of data privacy and the distributed nature of healthcare data, which
provides significant challenges to this traditional centralized approach. On the one
hand, healthcare data contains highly sensitive and private information, requiring
high privacy protection measures. However, healthcare data also distributed across
various countries and institutions, prevents data accessibility and holds back the
development of accurate predictive models. To alleviate the need for data transfer
between institutions, which is a primary concern of data privacy, this paper aims to
deploy a predictive model using decentralized deep learning architecture that en-
ables model transfer among different institutions to maintain data privacy, which
is commonly known as Federated Learning (FL) [18].

FL has emerged as a promising approach for training machine learning models
in the biomedical field, specifically in healthcare, to address the challenges of data
privacy and data accessibility. By enabling collaborative model training without
the need for centralizing patient data, FL allows healthcare institutions to collec-
tively leverage their datasets while preserving data privacy [16]. For instance, in
the pioneering publication on FL in the medical domain, Sheller et al. [19] have
successfully applied FL on studying brain tumor. The results showed that the deep
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learning model trained using FL could reach 99% of the performance of the same
model trained with the traditional data-sharing method, highlighting the potential
of this technique in maintaining data privacy while effectively utilizing distributed
healthcare data. Overall, this study aims to explore the potential of FL techniques
on deep learning models in improving the accuracy of ICU admission prediction
models and addressing the challenges posed by healthcare data privacy.

2. Methods

2.1. Data Overview. The original data is provided by the Mexican Government
[20]. We translated the attributes and chose 21 medical-related features from the
data set for this research (Table 1). Irrelevant features, like registration ID, mi-
gration status, and whether the patient speak an indigenous language or not, were
dropped. The data set is being updated regularly. As of the day the research began,
1,048,575 records were collected.

Table 1. Table includes the features included in the dataset, 20
features and 1 target column.

Name Type Description

USMR Categorical medical units of the first, second or third level
Medical Unit Categorical type of institution that provided the care

Sex Categorical biological gender 1 for female and 2 for male
Patient Type Categorical type of care. (1 = returned; 2 = hospitalization)
Date Died Date the date of death
Intubed Categorical whether the patient was connected to the ventilator

Pneumonia Categorical air sacs inflammation in the past
Age Discrete years of age

Pregnant Categorical whether the patient is pregnant or not.
Diabetes Categorical whether the patient has diabetes or not
COPD Categorical Chronic obstructive pulmonary disease
Asthma Categorical whether the patient has asthma or not

INMSUPR Categorical whether the patient is immunosuppressed or not.
Hypertension Categorical whether the patient has hypertension or not
Other Disease Categorical whether the patient has other disease or not
Cardiovascular Categorical heart or blood vessels related disease

Obesity Categorical whether the patient is obese or not
Renal Chronic Categorical chronic renal disease

Tobacco Categorical whether the patient is a tobacco user
Classification Final Discrete covid test findings. 1∼3=COVID; ≥4=negative

ICU Categorical admitted to an Intensive Care Unit

2.2. Data Preprocessing. For this research, the categorical feature ICU was used
as the target attribute for prediction. Besides AGE and DATE DIED, all other cate-
gorical features implied if a record has the diseases or not. Among them, CLASSIFI-
CATION FINAL indicated whether a patient tested positive for COVID-19 or not.
The original data used 1 ∼ 3 for positive, ≥ 4 for negative, and we converted this
attribute into binary. DATE DIED indicates when the patient deceased. A empty
value in this column indicated that the person survived. The DATE DIED column
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was transformed into a binary attribute. Eventually, this column was dropped and
converted into records in ICU column. So, the final dataset, after dropping all
records with a null value (about 1% of the dataset), includes 189112 records that
are hospitalized. Within those records, Column ICU has 75011 (about 39.7% of
the entire dataset) entries indicating this patient will need critical medical care
and should consider early intervention. And, within all those 75011 records, 16397
records were originally included in the ICU column before the data processing.
The rest 58641 records came from the hospitalized records that died without being
sent into the ICU. Those records was originally from DATE DIED column (Figure
1). Because a patient died under hospitalized status but not in ICU indicates that
they were supposed to received early intervention medical care for a potential better
outcome, we combined the ICU and DATE DIED columns.

Figure 1. A Venn Diagram indicates the composition of the tar-
get column. The grey area is the records hospitalized. The orange
area is the final target group, which consists of ICU records and
records that died in the hospital but not in the ICU.

2.3. Baseline Training. To create a baseline understanding of our dataset and
test data cleaning, a series of traditional machine learning techniques were per-
formed on all of our datasets. Models like Decision Trees (DT) [21], Random
Forests (RF) [22], Bayesian Classifiers (BC) [23], SVM [24], deep learning models
like Convolutional Neural Networks (CNN) [25], and Recurrent Neural Networks
(RNN) [26] were used. They mainly served as the comparison group that trained
on the global dataset without considering data privacy.

2.4. Federated Learning. Federated learning (FL) is a decentralized machine
learning approach that allows multiple devices or nodes to collaboratively update
a shared model and hold local data samples [18] . In this research, the goal is to
develop a federated learning architecture that can retain moderate accuracy, recall,
and precision while not sharing the information between edges.

A global model was distributed physically to different medical institutions (Fig-
ure 2). After the local model was trained on each dataset. The updates from
different medical institutions were sent back to make the update. The following
Algorithm 1 explains the federated learning pipeline in more detail.
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Figure 2. a round of Federated Learning pipeline with 4 datasets.
On the top is the Global Model, the first level (top down) is the
weight transfer back and forth between the global model and the
models on different edges. The second level (Model to Datashard)
indicates the training processes between locals models with local
data. The third level (Datashard to Model updated) indicates that
the updated weights of each local model are collected and ready to
compile into one global model update.

Algorithm 1 Basic Federated Learning Architecture

W0,0 ∼ Fw

α1, α2, α3, α4

N = 100
while n < N do

//initialize models on edges base on the global model
Wn,1,Wn,2,Wn,3,Wn,4 = Wn,0

//Training each model on their dataset for one epoch

W
′

n,1,W
′

n,2,W
′

n,3,W
′

n,4 ∼ Wn,1,Wn,2,Wn,3,Wn,4

//update the global model weight based on the weighted average

Wn+1,0 = α1W
′

n,1 + α2W
′

n,2 + α3W
′

n,3 + α4W
′

n,4

end while

The training ran 100 rounds in total. The local model trained on each edge for
1 epoch, which refers to local training. The updates of the global model were cal-
culated based on the weighted average of the models from different shards. During
the training, global accuracy and loss were monitored.
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3. Results

3.1. Baseline Training’s performance. Accuracy, recall, and precision are mon-
itored for baseline training. Accuracy is the overall accuracy. Due to the nature of
binary classification, the recall and the precision are measured on the class indicat-
ing the need for critical care and early intervention. Overall accuracy ranges from
70% (DT) to 76% (DNN). Precision ranges from 65 % (DT) to 78% (RNN). Recall
ranges from 38% (SVM), to 59% (DNN) (Table 2).

Table 2. Baseline Training models’ prediction performance, need
add precision also

Decision Tree Random Forest SVM Bayesian Classifier DNN CNN RNN

Acc 70.82% 72.68% 73.49% 76.30% 76.39% 76.25% 76.26%
Precision 65.74% 67.95% 88.22% 81.16% 76.14% 77.56% 78.25%
Recall 55.34% 59.0% 38.35% 52.50% 59.02% 56.53% 55.68%

3.2. Federated Learning’s performance.

3.2.1. Accuracy. Accuracy serves as a general measurement of the architectures
predicting power.

Accuracy =
TP + TN

TP + TN + FP + FN

Deep learning models like CNN, RNN, and DNN are used separately as the base
models for FL. The accuracy ranges from 76.18% to 76.28% on the global dataset
and performs equivalently well on each data shard (Table. 3).

Table 3. Federated Learning model Accuracy

Base Models Global Shard1 Shard2 Shard3 Shard4

DNN 76.22% 76.14% 76.61% 76.59% 75.97%
CNN 76.18% 76.14% 76.40% 76.28% 75.90%
RNN 76.28% 76.17% 76.57% 76.40% 76.00%

3.2.2. Precision. Precision is measured by True Positive rate over True Positive rate
and False Positive rate. A way to interpret this is how many correct predictions
the model made about a class are correct among all predictions made for this class.

Precision =
TP

TP + FP

The precision of three FL architectures ranges from 74.75% by the CNN-based
model to 75.20% by the RNN-based model (Table. 3).
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Table 4. Federated Learning architecture precision

Base Models Global Shard1 Shard2 Shard3 Shard4

DNN 74.83% 74.59% 74.54% 75.43% 74.76%
CNN 74.75% 74.82% 74.20% 75.13% 74.83%
RNN 75.20% 75.05% 74.70% 75.70% 75.34%

3.2.3. Recall. Recall is measured by the True Positive record number divided by
the sum of the True Positive record number and the False Negative record number.
Recall can be interpreted as among all records that need early intervention, how
many of them are successfully detected.

Recall =
TP

TP + FN

The recall rate for FL with DL models ranges from 60.07% by the RNN-based
model, to 60.84% by the DNN-based model (Table. 5).

Table 5. Federated Learning architecture recall

Base Models Global Shard1 Shard2 Shard3 Shard4

DNN 60.84% 60.81% 60.9% 61.05% 60.61%
CNN 60.40% 60.44% 60.61% 60.34% 60.20%
RNN 60.07% 60.17% 60.43% 59.90% 59.78%

4. Discussion

Our FL architecture with Deep Learning models reached 99.8% accuracy of the
baseline modeling, where data privacy is not well preserved (Figure 3). FL with
DNN models achieved 76.3% accuracy, which surpass all machine learning models
and some deep learning models that are trained on congregated dataset.

In the research, the focus is on the prediction of records that actually need
early medical care to prevent ICU entrance. So, the higher the measurement of
the precision, the more records that are predicted as needing ICU-level treatment
are correct. The precision of our FL architecture reached 85% (75.2% by FL with
RNN models compared to 88.22% by Bayesian Classifier) of maximum precision
from baseline training (Figure 4). However, the recall of Bayesian Classifier is
considered extremely low, only 38.35%. Therefore, Bayesian Classifier should be
considered as an outlier and not considered for the comparison. Then, the precision
of the highest FL architecture reached 92.7% of the highest precision by the SVM
from baseline training.

Recall plays a vital role in real-world applications, too. Based on the focus of
this research, the measuring for recall indicates how many actual records that need
ICU entrance have been successfully detected. The recall of our FL architecture
outperforms all the other models. The lowest recall by the CNN-based model in
FL architecture obtained a recall of 60.4%, compared to the highest recall by DNN
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Figure 3. Global Accuracy for the FL. X-axis indicating with
model is trained and tested, the y-axis indicating the accuracy.
Dark blue indicating the federated learning design, and light blue
indicating the baseline traditional machine learning models’ re-
sults.

Figure 4. Global Recall and Precision Analysis. Each pair of
columns consists of Recall (left, blue) and Precision (right, or-
gance). The darker pairs indicating the federated learning models
and its corresponding precision and recall. X-axis is the models
used, y-axis is the percentage for recall and precision.

alone with a recall of 59.02% in baseline training. This indicates our FL architec-
ture can successfully predict more records that need earlier ICU-level treatment.
The result also implies FL architecture can improve the recall of target attributes
in general.

Considering all three valuation factors, the FL architecture has proven to be a
robust tool for better overall accuracy and recall, and tantamount precision than
traditional machine learning. Most importantly, FL reaches the predicting power
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under the circumstance of keeping the privacy of data under no risk of leaking or
retrieving. The scalability of the architecture from a data perspective, the main
concern about ML in the medical field [17], can be improved.

5. Limitations & Future Work

Developing robust, trustworthy AI tools that preserve fairness is critically im-
portant, especially in high-stakes applications like healthcare. Achieving trustwor-
thiness encompasses attributes like explainability, fairness, privacy preservation,
and robustness. However, the overall prediction performance of health AI models
is often prioritized over potential biases they may have [27]. In FL, there are po-
tential risks of under-representing minority groups, if the contribution to the global
model from different edges is guided by the training size, which is statistical het-
erogeneity [28]. In the future, we would like to explore the potential of leveraging
fairness through multiple methods, like local debiasing [29] and fairer aggregation
strategies[28].

Although the FL system aims to address privacy concerns by keeping patients’
private data in local storage during training, potential security issues persist, par-
ticularly in the transmission of gradients and partial parameters, leading to indirect
privacy leakage [30]. Three main attack categories in FL are identified: Data poison-
ing attacks, involving the embedding of tainted data to compromise data integrity
[31]; Model poisoning, which manipulate machine learning models to produce in-
correct results [31]; and Inferring attacks, focused on detecting privacy records or
restoring training data [32]. Existing defense methodologies have some potential
in more research, and the need for stronger protection measures, such as anomaly
detection and data encryption, is emphasized to mitigate these attacks in the feder-
ated setting [31][32]. Future work on this should explore and develop more robust
protection methods.

There is rich literature discussing whether FL overfits or underfits under different
data quality, parameters’ sizes, and extents of the local updates [33] [34] [35]. Eval-
uation of overfitting and underfitting usually requires a validation dataset during
the training phase. However, traditionally collecting a validation dataset violates
the main data privacy protection schema provided by FL. A representative and ef-
fective validation set needs to combine a certain amount of data from each dataset
on the edge, but a congregated dataset is what FL trying to avoid due to privacy
concerns. Moreover, validation and testing datasets are usually not directly acces-
sible to the FL server [36], and the global model is tested on selected clients or data
shards separately. In the future, our team will investigate more about the necessity
of evaluating the global model of FL and its corresponding metrics.

An ICU decision will potentially put pressure on both medical institutions as well
as the patients themselves [9], both mentally and physically. Traditional Machine
Learning, even Federated Learning, produces a one-number confident prediction
that might worsen this situation. Ethically, using probability estimation instead
of one-point prediction could be a challenging but effective improvement to this
situation. Plus, due to the nature of most probability predictions that produce
a distribution of predictions as the output, incorporating differential privacy can
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add an extra layer of data protection as well as help balance the trade-off between
privacy and accuracy [37]. Inspired by this idea, we would like to further investigate
the feasibility of incorporating probability estimation and differential privacy in FL
architectures.

6. Conclusion

In conclusion, Federated Learning demonstrated to be an effective tool to help
clinical decision-making without losing data privacy. Particularly, our design of FL
outperformed other traditional machine learning and deep learning techniques on
the ICU admission data set. This design and architecture imply that, with the help
of FL, medical institutions can potentially make more effective decisions regarding
early interventions on patients to improve the treatment outcome, critical medical
resource allocation, and alleviation of avoidable burdens on both sides. Besides
that, this paper also tried to raise public’s awareness of data privacy and ethics
to encourage us to rethink our machine learning pipeline when building models for
supporting clinical decision-making.
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