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fevirgen@balikesir.edu.tr

Technical Editor

Kerim Sarıgül
Gazi University, Ankara / TÜRKİYE
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Abstract

Many phenomena arising in nature, science, and industry can be modeled by a coupled system
of reaction-convection-diffusion (RCD) equations. Unfortunately, obtaining analytical solutions to
RCD systems is typically not possible and, therefore, usually requires the use of numerical methods.
On the other hand, since solutions to RCD-type equations can exhibit rapid changes and may have
boundary/inner layers, classical computational tools yield approximations polluted with physically
meaningless oscillations when convection dominates the transport process. Towards that end, in order
to eliminate such numerical instabilities without sacrificing accuracy, this work employs a stabilized
finite element formulation, the so-called streamline-upwind/Petrov–Galerkin (SUPG) method. The
SUPG-stabilized formulation is then also supplemented with the YZβ shock-capturing mechanism to
achieve higher-quality approximations around sharp gradients. A comprehensive set of numerical test
experiments, including cross-diffusion systems, the Schnakenberg reaction model, and mussel-algae
interactions, is considered to reveal the robustness of the proposed formulation, which we call the
SUPG-YZβ formulation. Comparisons with reported studies reveal that the proposed formulation
performs quite well without introducing excessive numerical dissipation.

Keywords: Reaction-convection-diffusion; finite elements; stabilization; shock-capturing; SUPG-YZβ
formulation

AMS 2020 Classification: 35G61; 65M60; 76M10

1 Introduction

Reaction-convection-diffusion (RCD) equations are used to model a wide range of natural phe-
nomena in addition to many industrial and engineering applications. Some of these applications
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include financial engineering (e.g., Black–Scholes and Heston option pricing models), chem-
istry (e.g., chemically reactive transport phenomena), semiconductor theory (e.g., drift-diffusion
equations), fluid dynamics (e.g., Burgers’-type and Navier–Stokes equations), heat transfer (e.g.,
natural heat convection phenomena), and mathematical physics and astrophysics (e.g., Fokker–
Planck-type equations). The coupled systems consisting of RCD-type equations are also essential
for modeling many phenomena that involve interactions between more than one species and
frequently arise in biological and chemical sciences, such as tumor growth models, chemotaxis
processes, bacteria pattern formation, predator-prey dynamics, etc. We refer the interested reader
to the extensive work of Painter [1] and Bellomo et al. [2] for chemotaxis and cross-diffusion
models and their applications in biology, physiology and pathology, ecology, and even in the social
sciences (e.g., crime hotspot models). The review papers [3] and [4] can also be referred to for
more on pattern formation phenomena arising in plasma physics and the influence of temperature
on such systems, respectively.

Analytical solutions to RCD-type systems are generally impossible to obtain since they are typ-
ically of a nonlinear nature and/or defined on sophisticated domains. Therefore, numerical
approximations to the solutions of such systems are searched for. Unfortunately, despite the
availability of several classical and mature numerical methods with solid theoretical foundations
and sharp error estimates, such as the finite difference method (FDM), finite volume method
(FVM), and finite element method (FEM), these methods are insufficient to provide accurate
approximations to the solutions of RCD-type equations and coupled systems composed of such
equations in convection dominance, leading to spurious oscillations. In order to overcome such
numerical instability issues, the above-mentioned classical methods have been enhanced with
several techniques over the years. The following paragraph presents a very concise overview of
reported studies dedicated to solving coupled systems of RCD-type equations numerically. For a
more comprehensive overview, the material in these references can also be referred to.

The authors of [5] investigated the effect of advection on coupled systems of reaction-diffusion
(RD) equations, more specifically, the Schnackenberg and glycolysis reaction kinetics models
having toroidal velocity fields, by employing the classical finite element method. Sarra consid-
ered unsteady RCD-type partial differential equations (PDEs) by employing a local radial basis
function (RBF) method in [6]. The author particularly focused on chemotaxis models and Turing
systems defined on complex-shaped domains. In [7], the authors proposed positivity-preserving
nonstandard finite difference schemes for cross-diffusion models arising in biosciences, including
malignant invasion, convective predator-prey pursuit and evasion model, and reaction-diffusion-
chemotaxis model. Yücel et al. [8] studied optimal control problems governed by a system of
convection-dominated RCD-type PDEs by employing a discontinuous GFEM (dGFEM) formula-
tion. They used a symmetric interior penalty Galerkin (SIPG) discretization for the diffusion term
and an upwinding discretization for the convection term, along with an adaptive mesh refinement
algorithm. The author of [9] used a meshless finite difference method equipped with B-splines for
solving time-dependent RD- and RCD-type coupled systems, including tumor invasion models
and cross-diffusion problems. Wang et al. [10] studied the dynamics and pattern formation of a
coupled time-dependent RCD system defined on a one-dimensional (1D) domain for modeling
the interaction of mussels and algae. Most recently, two-dimensional (2D) elliptic-type singularly
perturbed weakly-coupled systems of RCD equations, in which the diffusion and convection terms
are controlled by two different parameters, were studied by Clavero et al. [11]. They proposed a
first-order uniformly convergent finite difference scheme defined on layer-adapted Bakhvalov–
Shishkin meshes. One can also refer to [12–14] and references therein for several applications
of scalar and coupled RCD-type PDEs arising in chemical processes. Finally, in the context of
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fractional differential equations, the studies [15–17] and the material therein can be referred to.

In the finite element framework, among the others, one of the most established, robust, and popular
stabilized methods is the streamline-upwind/Petrov–Galerkin (SUPG) formulation. The method
was first introduced for advection-diffusion equations and incompressible flow simulations by
Hughes and Brooks [18, 19]. Following that, the compressible-flow SUPG method was introduced
by Tezduyar and Hughes [20–22] in the context of conservation variables. The compressible-flow
SUPG method introduced in 1982 is today denoted by “(SUPG)82.” The (SUPG)82 formulation,
in its initial form, was used without making use of any discontinuity-capturing (also commonly
referred to as shock-capturing) mechanism. The test simulations demonstrated that regions
with steep gradients require extra treatment. Then, the (SUPG)82 formulation was subsequently
reformulated in terms of the entropy variables and equipped with a shock-capturing mechanism
in [23], and more satisfactory results were obtained. In [24], the (SUPG)82 formulation was
supplemented with a shock-capturing operator quite similar to the one introduced in [23] by
Hughes et al., and the added term included a shock-capturing parameter, which is today called
“δ91.” The set of stabilization parameters, which is almost universally denoted by “τ,” used
with the (SUPG)82 formulation introduced in [20–22] are called “τ82” today. The SUPG-stabilized
formulation for the reaction-advection-diffusion equation introduced in [25] included a shock-
capturing term and a stabilization parameter that took into account the interaction between the
shock-capturing and SUPG stabilization terms. Thus, the effect of the shock-capturing mechanism
does not increase that of the SUPG stabilization when the advection and shock directions coincide.
In [24], the definition of stabilization parameter τ82 was slightly modified by Le Beau et al. On the
other hand, although the definition of (SUPG)82 parameters underwent some minor modifications
in subsequent years, they were still used with the same shock-capturing parameter, δ91, until
2004. Eventually, in 2004, several new ways of determining the stabilization and shock-capturing
parameters in the (SUPG)82 framework were introduced in [26, 27] by Tezduyar. These new
stabilization parameters are today referred to as “τ04.” As to the shock-capturing parameters,
the new strategies introduced can be divided into two categories: the discontinuity-capturing
directional dissipation (DCDD) [26, 28, 29] and the residual-based YZβ shock-capturing [26, 27].
Throughout this paper, we restrict our attention to the YZβ mechanism. Some of the reasons for
adopting it include that it is easier to calculate the YZβ shock-capturing parameter than δ91, the
parameter β offers options for mild and sharp shocks, and as it was also reported in [30–32], the
YZβ parameter yields more accurate results than δ91. One can find various applications of the
SUPG-YZβ combination, including arterial drug delivery, shallow-water equations, chemically
reactive models, and natural convection heat transfer, in [12, 33–37]. For other stabilized formula-
tion and shock-capturing mechanisms, we refer the interested reader to [38–40] and the material
in these studies. Besides that, in [41–43], the interested reader can find various applications of
Petrov–Galerkin-like methods.

In this paper, we deal with stabilized finite element computations of coupled systems of RCD-type
equations. In doing this, we first consider the test problems as they were reported in the literature
in order to make comparisons. Following that, whenever possible, each problem is considered
for convection dominance, i.e., for much more computationally challenging cases, for which the
classical methods fail to yield oscillation-free approximations and/or are insufficient to capture
steep gradients. Thus, new challenging benchmark problems are introduced to the literature. The
main computational method we use is the SUPG finite element formulation. We also augment
the SUPG-stabilized formulation with the YZβ shock-capturing technique. To the author’s best
knowledge, this is the first report employing the SUPG-YZβ combination for handling such kinds
of problems. The semi-discrete formulations are discretized in time with the backward Euler
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scheme. Then, nonlinear equation systems arising from the space-time-discretized formulations
are solved with the Newton–Raphson (N–R) algorithm, and the resulting linear systems are
handled with a direct method, i.e., the lower-upper (LU) factorization technique.

The rest of the manuscript is organized as follows. In Section 2, a system of coupled 2D RCD-type
PDEs is introduced as a model problem, and a semi-discrete GFEM formulation is described.
In Section 3, a SUPG-stabilized finite element formulation combined with YZβ shock-capturing is
introduced for the model problem. Section 4 first focuses on further computational details, such as
the temporal discretization of the semi-discrete formulation, the quadrature degree associated
with the numerical integration, and the computing environment FEniCS, in which the solvers
are developed and computations are carried out. Later on in this section, four main numerical
experiments with various scenarios are presented. Finally, in Section 5, some concluding remarks
are made, along with a brief discussion on possible extensions of this current work.

2 Model problem and classical GFEM formulation

Let us consider the following coupled system of time-dependent RCD equations:

∂u

∂t
+ a · ∇u −∇ · (D∇u)− f (u) = s, (1)

where the vector of unknowns, u, is defined by u = [u1, u2]
T, a = [a1, a2] is the velocity field

associated with advection, and D represents the diffusivity matrix, which is given as:

D =

[

ϵ1 0
0 ϵ2

]

. (2)

Here, the diffusion parameters ϵ1 and ϵ2 are non-negative and typically small. The vector f

represents the reaction term, which is typically of nonlinear nature, and s is the source vector. For
the moment, the system is assumed to be equipped with an appropriate set of initial and boundary
conditions.

By multiplying both sides of system (1) by a test vector w ∈ Vu ⊂ H
1
0, the classical GFEM

formulation can be obtained as follows:






find u ∈ Su such that ∀w ∈ Vu :
∫

Ω

w ·
(

∂u

∂t
+ a · ∇u −∇ · (D∇u)− f (u)− s

)

dΩ = 0,
(3)

where u ∈ Su ⊂ H
1
g is the solution vector, and the spaces Su and Vu are the trial and test function

spaces, respectively. The Sobolev spaces H1
0 and H

1
g are defined as follows:

H
1
0 =

{

Φ : Φ ∈
[

H1 (Ω)
]2

and Φ|∂Ω = 0

}

, (4)

H
1
g =

{

Φ : Φ ∈
[

H1 (Ω)
]2

and Φ|∂Ω = g

}

, (5)

where

H1 =
{

Φ : ∥Φ∥L2
Ω

+ ∥∇Φ∥L2
Ω

< ∞

}

. (6)
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The vector g = [g1, g2] denotes the vector of prescribed Dirichlet-type boundary conditions. Here,
the space L2

Ω
= L2 (Ω) is the space of square-integrable functions defined on Ω, and is equipped

with the standard L2-norm:

∥Φ∥L2
Ω

=

√∫

Ω

Φ2dx. (7)

Employing integration-by-parts, the variational formulation given by Eq. (3) can be recast as
follows:






find u ∈ Su such that ∀w ∈ Vu :
∫

Ω

w ·
(

∂u

∂t
+ a · ∇u − s

)

dΩ +

∫

Ω

(∇w : (D∇u)) dΩ

−

∫

Ω

w · f (u) dΩ −

∫

ΓN

w · h dΓ = 0,

(8)

where h = D∇u · n is the Neumann-type boundary data, n is outward-oriented unit normal
vector, and Γ denotes the boundary of the computational domain Ω, i.e., Γ = ∂Ω. Note that
Γ = ΓN ∪ ΓD and ΓN ∩ ΓD = ∅, where the subscripts “N” and “D” indicate that whether the
boundary is subject to Neumann- or Dirichlet-type boundary conditions.

If the computational domain Ω is divided into finite number of elements Ωe, e = 1, 2, . . . , nel,
where nel denotes the number of these elements, then the GFEM formulation associated with
system (1) reads:






find uh ∈ S
h
u such that ∀wh ∈ V

h
u :

∫

Ω

wh ·
(

∂uh

∂t
+ a · ∇uh

− s

)

dΩ +

∫

Ω

(

∇wh :
(

D∇uh
))

dΩ

−

∫

Ω

wh · f
(

uh
)

dΩ −

∫

ΓN

wh · hh dΓ = 0,

(9)

where the superscript “h” indicates that the functions that are the components of the associated
vectors/matrices come from a finite-dimensional space. The finite-dimensional function spaces
are defined as follows:

S
h
u = V

h
u =

{

Φ
h ∈

[

C
(

Ω
)]2

: Φ
h|∂Ω = 0, Φ

h|Ωe ∈ [P1 (Ω
e)]2 , ∀Ω

e ∈ T h
}

, (10)

where P1 (Ω
e) is the space of linear polynomials over the triangular element Ωe ∈ T h, C

(

Ω
)

is
the space of continuous functions defined on the closure of the computational domain, and T h is
the triangulation of the domain Ω into triangular elements.

3 Stabilized finite element formulations

This section describes the SUPG and SUPG-YZβ formulations of the model problem given by
Eq. (1), respectively.
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The SUPG formulation associated with system (1) can be given as follows:






find uh ∈ Su such that ∀wh ∈ V
h
u :

∫

Ω

wh ·
(

∂uh

∂t
+ a · ∇uh

− s

)

dΩ +

∫

Ω

(

∇wh :
(

D∇uh
))

dΩ

−

∫

Ω

wh · f
(

uh
)

dΩ −

∫

ΓN

wh · hh dΓ

+

nel∑

e=1

∫

Ωe
τSUPG

(

∂wh

∂xk

)

aT ·
(

∂uh

∂t
+ a · ∇uh

−∇ ·
(

D∇uh
)

− f
(

uh
)

− s

)

dΩ = 0,

(11)

where the finite-dimensional space V
h
u is defined by Eq. (10). In this formulation, e is the element

counter and τSUPG is the diagonal SUPG stabilization matrix. How these stabilization parameters
are determined directly affects the accuracy and quality of the numerical approximations.

Remark 1 In the last line of Eq. (11), by the term
(

∂wh

∂xk

)

, we refer to Einstein summation convention; i.e.,

(

∂wh

∂xk

)

=

nsd∑

k=1

∂wh
k

∂xk
, (12)

where wh
k is the k−th component of the test vector wh.

For solving stationary problems, the stabilization matrix, τSUPG, is composed of stabilization
parameters, τi

SUPG’s, which are defined as follows [44]:

τi
SUPG =

[

(

2∥a∥
he

)2

+

(

4ϵi

(he)2

)2
]

−

1
2

, (13)

where i = 1, 2, the norm ∥ · ∥ represents the standard Euclidean norm, and he is the cell diameter
associated with element Ωe. For unsteady problems, these parameters can be defined as

τi
SUPG =

[

(

2
∆t

)2

+

(

2∥a∥
he

)2

+

(

4ϵi

(he)2

)2
]

−

1
2

. (14)

For systems involving different convection vectors, e.g., ai’s, these parameters can be defined in
the following fashion:

τi
SUPG =

[

(

2
∆t

)2

+

(

2∥ai∥
he

)2

+

(

4ϵi

(he)2

)2
]

−

1
2

. (15)

In these definitions given by Eqs. (13)–(14), the superscript “i” in τi
SUPG indicates that the parameter

is associated with the ith equation in the system. Similarly, the subscripts in convection vectors
(i.e., ai’s) and diffusion parameters (i.e., ϵi’s) indicate that they belong to the ith equation.
For further details and a review of various definitions of the stabilization parameters and element



Süleyman Cengizci | 303

length scales, we refer the interested reader to [38, 39, 45, 46] and references therein.

Remark 2 One should note that, compared to the classical GFEM formulation given by Eq. (3), the SUPG

formulation introduced by Eq. (11) involves additional element-based stabilization terms controlled by

the stabilization parameters. By adding these terms, the original system gains artificial dissipation in the

streamline direction.

Remark 3 One can also find a variation in the definition of stabilization parameters given by Eqs. (13)–(14)
based on the approach followed in [44, 47]:

τi
SUPG =

[

(

2
∆t

)2

+

(

2∥ai∥
he

)2

+ 9
(

4ϵi

(he)2

)2
]

−

1
2

. (16)

For stationary problems, the term associated with time is simply omitted, as done in Eq. (13).

We adopt the stabilization parameter described by Eq. (16), in our computations. Then, the
stabilization matrix, τSUPG, associated with the model problem described by Eq. (1) can be given
as follows:

τSUPG =

[

τ1
SUPG 0

0 τ2
SUPG

]

. (17)

Eventually, the SUPG-YZβ formulation associated with system (1) can be described as follows:






find uh ∈ Sh
u such that ∀wh ∈ Vh

u :

∫

Ω

wh ·
(

∂uh

∂t
+ a · ∇uh

− s

)

dΩ +

∫

Ω

(

∇wh :
(

D∇uh
))

dΩ

−

∫

Ω

wh · f
(

uh
)

dΩ −

∫

ΓN

wh · hh dΓ

+

nel∑

e=1

∫

Ωe
τSUPG

(

∂wh

∂xk

)

aT ·
(

∂uh

∂t
+ a · ∇uh

−∇ ·
(

D∇uh
)

− f
(

uh
)

− s

)

dΩ

+

nel∑

e=1

∫

Ωe
νSHOC

(

∂wh

∂xk

)

·
(

∂uh

∂xk

)

dΩ = 0,

(18)

where the term νSHOC is the stabilization parameter associated with the YZβ shock-capturing
technology. The shock-capturing parameter is defined in light of studies by Tezduyar [30–32]. In
this work, we slightly modify the original definition of the shock-capturing parameter to solve the
model problem as follows [33]:

νi
SHOC = |Y−1Zi|

( nsd∑

i=1

∣

∣

∣

∣

Y−1 ∂uh
i

∂xi

∣

∣

∣

∣

2
)

β
2−1(

hi
SHOC

2

)β

, (19)
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where

Zi =
∂ui

∂t
−∇ ·

(

ϵi∇uh
i

)

+ a · ∇uh
i − fi − si. (20)

Remark 4 Compared to the SUPG-based stabilized formulation given by Eq. (11), the SUPG-YZβ for-

mulation described by Eq. (18) involves additional element-based stabilization terms associated with the

shock-capturing mechanism. These new terms introduce additional artificial diffusion in the direction of

solution gradients, which helps to mitigate undershoots and overshoots around sharp layers.

Remark 5 As also mentioned by Remark 1, by the terms
(

∂wh

∂xk

)

and
(

∂uh

∂xk

)

in Eq. (18), we refer to Einstein

summation convention.

Remark 6 By using Eq. (20) in computations, we adopt the residual form of Zi, which is similar to that

used by Bazilevs et al. in [33] as a variation of the advective form introduced in [26, 27]:

Zi = a · ∇uh
i . (21)

In addition to that used in [33], following this way, we also include the reaction and source terms in the

definition of Zi.

Remark 7 The definition of quantity Zi can be extended to handle the case of different advection vectors

ai’s in the same way followed for describing the SUPG stabilization parameter defined by Eq. (15).

In Eq. (19), the quantity Y can be determined as follows:

Y =
√

u2
1, ref + u2

2, ref. (22)

The reference values ui, ref’s are typically determined according to the initial data given for time-
dependent problems. For steady-state problems, they can also be determined as reference values
or through numerical experiments. The local element length scales, hi

SHOC’s, are defined as

hi
SHOC = 2

(

nen∑

a=1

|ji · ∇Na|

)

−1

, (23)

with the unit vector in the direction of the gradient of uh
i :

ji =
∇uh

i

∥∇uh
i ∥

. (24)

Here, the term Na represents the interpolating function associated with element node a. The
indices nsd and nen stand for the number of space-dimensions and number of element nodes. The
sharpness parameter β is typically set as β = 1 for mild shocks and β = 2 for sharper shocks [30–
32]. Since the main focus of this study is problems highly dominated by convection, we set the
parameter β as β = 2 in our computations.
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Remark 8 The finite element formulations introduced in the previous lines for a two-species model given by

Eq. (1) can be easily extended to models with more species and/or higher dimensions. Similarly, as discussed

in the previous lines, these formulations can also be modified for handling systems of RCD-type equations

with different convection fields instead of ones having the same convection vector .

4 Numerical experiments

After providing some computational details, such as the time-integration, absolute and relative
error tolerances associated with linear and nonlinear solvers, and computing platform, as the first
numerical experiment, we consider a cross-diffusion reaction-diffusion system with component-
wise analytical solutions in order to validate our GFEM solvers. Then, again for verification
purposes, we deal with a steady convection-dominated RCD system with component-wise exact
solutions. Following that, we focus on coupled systems of time-dependent RCD equations.

Further computational details

Throughout this work, for unsteady problems, the time discretization is performed with the
backward Euler scheme, i.e., the semi-discrete (spatially discretized) formulations (see Eqs. (9),
(11), and (18)) introduced in the previous sections are discretized such that as advancing from
time-step n to n + 1:

∂Uh

∂t
=

Uh
n+1 − Uh

n

∆t
= J h

n+1, (25)

where J h
n+1 represents the rest of the terms in the variational formulations computed at time

steps n + 1. The relative and absolute convergence criteria associated with the N–R algorithm
are both set to 1.0 × 10−12. All computations are carried out in serial in the FEniCS [48–50]
scientific computing environment, which is particularly dedicated to the finite element solution of
differential equations and allows the user high-level C++ and Python interfaces, on a computer
equipped with Intel i7-12650H CPU and 40GB RAM running Ubuntu 20.04.5 LTS. For further
details on the FEniCS Project, we refer the interested reader to the references provided above and
the official webpage of the project: https://fenicsproject.org/. Since the test computations,
apart from the first numerical experiment (Application 1), are of highly nonlinear nature, we set
the quadrature degree associated with the numerical integration to eleven. Besides, all the finite
element meshes are triangular and generated by using the built-in mshr component of FEniCS.

Test computations

Application 1 – Reaction-diffusion with cross-diffusion. We take this test example, which was originally
studied in [51], from [9], for comparison purposes. It is described as follows:






∂u

∂t
= D11 ∆u + D12 ∆v + D13 v,

∂v

∂t
= D21 ∆u + D22 ∆v + D23 u,

(26)

where the spatial domain is defined by Ω = (0, 2π)2, and t > 0. The component-wise initial
conditions are defined as

u (x1, x2, 0) = cos (2x1) + cos (2x2) , v (x1, x2, 0) = cos (x1) + cos (x2) . (27)

https://fenicsproject.org/
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At walls, zero-flux, i.e., homogeneous Neumann-type boundary conditions apply. Then, the
component-wise analytical solutions to the system described by Eq. (26) are given as

u (x1, x2, t) = exp (−4tβ) [cos (2x1) + cos (2x2)] , (28)

v (x1, x2, t) = exp (−tβ) [cos (x1) + cos (x2)] , (29)

where D11 = D22 = β = 0.01, D12 = 1.5β, D21 = 0.5β, D13 = D12, and D23 = 4D21. We follow
the same fashion used in [9] by setting the final time as tf = 50 and time-step size as ∆t = 0.005,
which results in 10, 000 iterations. In computations, the mesh constructed with crossed elements,
which is shown in Figure 1a, is used. We directly employ the GFEM to solve this problem since it

(a) (b)

Figure 1. Meshes: (a) constructed with nel = 10, 000 crossed elements and nen = 5, 101 nodes for solving
Application 1, (b) constructed with nel = 10, 368 elements and nen = 5, 329 nodes for solving Application 2.

does not have convective terms. Figure 2 shows the component-wise GFEM solutions of Application

1, which is described by system (26), along with the corresponding absolute errors. It is observed
that the absolute errors take their maximum values around corners of the computational domain.
In Figure 3, the absolute errors in the GFEM approximation along the line x2 = π are displayed.
It is revealed that the maximum absolute error is around 0.001. In comparison to the results
presented in [9], where the author employed B-spline basis functions of order k = 8, our results
show good agreement with them (see Figure 3).

Application 2 – Convection-diffusion with nonlinear reaction. This second example is a stationary
problem and is from [8] by Yücel et al.:

{
−ϵu∆u + βu · ∇u + αuu + γuuv − fu = 0,

−ϵv∆v + βv · ∇v + αvv + γvuv − fv = 0,
(30)
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(a) (b) (c) (d)

Figure 2. GFEM approximations for solving Application 1; tf = 50 and ∆t = 0.005: (a) surface plot for u (x1, x2),
(b) surface plot for v (x1, x2), (c) elevation plot for absolute error in u (x1, x2), and (d) elevation plot for absolute
error in v (x1, x2).

Figure 3. Comparison of absolute errors for solving Application 1 along line x2 = π.

where the unknown functions, i.e., u (x) and v (x), represents the reactant concentrations, the
computational domain is taken as Ω = (0, 1), and the given functions fu (x) and fv (x) are the
source functions. The parameters are set as follows: the diffusion coefficients are ϵu = ϵv = 10−5,
the convection vectors are βu = [2, 3] and βv = [1, 0], the reaction coefficients αu = αv = 1.0, and
γu = γv = 0.1. The source functions fu and fv are determined such that the following analytical
solutions hold [8]:

u (x1, x2) =
2
π

arctan
(

1√
ϵu

[

−

1
2

x1 + x2 − 0.25
])

, (31)

v (x1, x2) = 4 exp
(

−1√
ϵv

(

(x1 − 0.5)2 + 3 (x2 − 0.5)2
)

)

sin (πx1) cos (πx2) . (32)

Figure 1b shows the mesh constructed with 10, 368 triangular elements used in computations
for solving Application 2. Figure 4 presents a comparison of the performances of the proposed
formulations for u (x1, x2). It is clearly seen that the GFEM approximation is completely polluted
with nonphysical oscillations. Although the SUPG formulation manages to eliminate spurious
oscillations significantly, it requires additional treatment to resolve steep gradients. As to the SUPG-
YZβ formulation, there is not any significant oscillatory behavior, and the resulting approximation
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is in good agreement with the exact solution. Since the v (x1, x2) component of the solution vector
u does not exhibit oscillatory behavior, only the exact solution and SUPG-YZβ approximations are
given in Figure 5, along with absolute errors in SUPG-YZβ approximations for solving u (x1, x2)
and v (x1, x2) components. We observe that the absolute errors almost completely vanish far from
the regions where solutions exhibit rapid changes. In other words, the SUPG-YZβ formulation
looks for a compromise between stability and accuracy. While high-quality solution profiles are
obtained similar to those reported in [8], the SUPG-YZβ formulation achieves this on a coarser
mesh without the need for any mesh refinement techniques.

(a) (b) (c) (d)

Figure 4. Comparison of approximations to u (x1, x2) obtained with various formulations for solving Application

2: (a) GFEM, (b) SUPG, (c) SUPG-YZβ, and (d) exact solution.

(a) (b) (c) (d)

Figure 5. Comparison of SUPG-YZβ approximations with exact solutions for solving Application 2: (a) SUPG-YZβ

solution for v (x1, x2), (b) exact solution to v (x1, x2), (c) absolute error in SUPG-YZβ approximation for u (x1, x2),
and (d) absolute error in SUPG-YZβ approximation for v (x1, x2).

Application 3 – Schnakenberg reaction model. Here, we deal with the Schnakenberg reaction model,
which was originally introduced by Schnakenberg in [52]. The model can be described as fol-
lows [5]:






∂u

∂t
+ a · ∇u − ∆u − γ

(

α − u + u2v
)

= 0,

∂v

∂t
+ a · ∇v − d ∆v − γ

(

β − u2v
)

= 0,
(33)

where the diffusion constant d refers to the relationship between the species diffusivities, the
constants α and β denote the production and consumption for species u and v, respectively, and
the nonlinear term u2v is the catalysis term, which represents activation for u and consumption for
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v. We consider this problem for two different sets of parameters and initial/boundary conditions.
Case I aims to compare our results with those reported previously. Then, in Case II, the parameters
and initial/boundary conditions are determined in such a way that the solution to the Schnaken-
berg model involves sharp gradients. For both computations, we suppose that the problems are
defined on the domain Ω = (0, 1), the time-step size is taken as ∆t = 0.005, and the final time is
tf = 2.5. Note that the parameter β given in the model is not related to YZβ shock-capturing.

Case I: The set of parameters are [5]: α = 0.1, β = 0.9, γ = 230.82, and the velocity field is
a = [−ω (x2 − 0.5) , ω (x1 − 0.5)], where ω = 0.6. In computations, a mesh having the same
structure as that given in Figure 1b but constructed with 5, 408 triangular elements and 2, 809
nodes is used. Figure 6a–Figure 6b show the initial conditions for u and v, respectively. For
determining these conditions, we perturb each reactive component around the steady-states by
around 10% [53]. That is, the initial conditions are defined as follows:

u (x1, x2, t = 0) = us + εus, (34)

v (x1, x2, t = 0) = vs + εvs, (35)

where, (us, vs) =

(

α + β, β

(α+β)2

)

. Note that the reaction terms vanish for (u, v) = (us, vs).

Homogeneous Neumann-type boundary conditions apply on walls.

In Figure 6c–6d, we present SUPG-YZβ solutions to Application 3 for Case I. Compared to the results
reported in [5], the present solution profiles are in good agreement when a mesh constructed
with a similar number of elements is used. This fact indicates that the proposed formulation
does not distort the solutions by introducing unnecessary artificial diffusivity. The rotation of the
Turing patterns is due to the velocity field a, and these rotations are in the same direction as a.
On the other hand, numerical experiments reveal that when finer meshes are employed, all the
proposed formulations yield slightly different approximations than those reported in [5]. The
author believes that the slight difference in [5] is due to the coarser mesh used because of the
limited computational resources available on those days when the numerical experiments were
carried out.

(a) (b) (c) (d)

Figure 6. Application 3 – Case I: (a) initial condition for u (x1, x2, t), (b) initial condition for v (x1, x2, t), (c) SUPG-
YZβ approximation to u (x1, x2), and (d) SUPG-YZβ approximation to v (x1, x2).

Case II: In this case, we modify the original system given by Eq. (33) as follows:






∂u

∂t
+ au · ∇u − du ∆u − γ

(

α − u + u2v
)

= 0,

∂v

∂t
+ av · ∇v − dv ∆v − γ

(

β − u2v
)

= 0.
(36)
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We set the parameters as: α = 0.1, β = 0.9, γ = 0.52, the convection vectors are au = [x1, 2x2]
and av = [x1, 2x1], and the diffusion parameters are du = dv = 10−8. We use the same mesh used
for Case I. The initial conditions are set as u (x1, x2, t = 0) = 1.0 and v (x1, x2, t = 0) = 0.9. The
Dirichlet-type boundary conditions are prescribed as follows:

gu (x1, x2, t) =

{
0.7, if (x1 > 0.1 and x2 > 0.4) or x2 < 0.6,

1.0, otherwise,
(37)

gv (x1, x2, t) =

{
0.6, if x1 = 1,

0.9, otherwise.
(38)

In Figure 7, we compare the SUPG and SUPG-YZβ approximations for solving Case II of Application

3. The N–R algorithm fails to converge for the GFEM formulation. It can be observed that the
sharp gradients in solutions, particularly those obtained for u (x1, x2, t), are resolved accurately
without any significant localized oscillations by employing the SUPG-YZβ formulation.

(a) (b) (c) (d)

Figure 7. Application 3 – Case II: (a) SUPG approximation to u (x1, x2, t), (b) SUPG approximation to v (x1, x2, t),
(c) SUPG-YZβ approximation to u (x1, x2), and (d) SUPG-YZβ approximation to v (x1, x2).

Application 4 – A mussel-algae interaction model. This 1D model, which was originally introduced
in [54] by Koppel et al., is taken from [10] in its nondimensionalized form:






∂u

∂t
= D11

∂2u

∂x2
1

− q
∂u

∂x1
+ α(1 − u)− uv,

∂v

∂t
= D21

∂2v

∂x2
1

+ σuv − γv2
−

v

v + 1
,

(39)

where 0 < x1 < L = 10 and t > 0. The unknown functions u (x1, t) and v (x1, t) represent
the algae and mussel density, respectively, α is the exchange rate of mussels, and γ denotes the
competition between the mussels (intraspecific competition). One of the primary food sources
that mussels consume is algae. Following [10], it is assumed that algae constantly convects at
the rate of q, at which algae is supplied to the mussels bed by unidirectional water flow, from
the open sea toward the shore. We consider system (39) for three different sets of parameter and
boundary conditions. In the first two cases, we verify the proposed formulation and solvers by
comparing the results obtained with those reported by Wang et al. [10]. As to the third scenario,
we modify the originally introduced parameter set and conditions such that system (39) becomes
convection-dominated. For all cases, the number of elements is nel = 256 and time step-size is set
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to ∆t = 0.1.

Case I: In the first case, system (39) is subject to homogeneous Neumann boundary condition at
x1 = L and Danckwerts-type inflow boundary condition applies at x1 = 0 (for further details,
see [10, 55]):

D11
∂u (0, t)

∂x1
= qu (0, t) , (40)

∂u (L, t)

∂x1
= 0. (41)

The parameter set is taken from [10]: D11 = 0.1, D21 = 0.3, α = 0.6, σ = 0.5, and γ = 0.2. In
numerical experiments, we study various values of the advection rate q, i.e., q = 10−4, q = 2, and
q = 6. The initial conditions are u (x1, 0) = 0.1 and v (x1, 0) = 1.0. The simulations are run for the
terminal time tf = 100.

Figure 8 shows that, for a range of convection rate constant q, the mussels die out and only the
algae remain. It implies that mussels cannot exist when the rate at which ingested algae are
converted to mussels and their production is less than the rate at which they are consumed.
Nonetheless, the algae’s biomass is affected by the water flow, i.e., the biomass of the algae
decreases as the advection rate q increases.

(a) (b) (c)

Figure 8. Comparison of SUPG-YZβ approximations for solving Application 4 – Case I: (a) q = 10−4, (b) q = 2, and (c)

q = 6.

Case II: In this case, we consider the same boundary conditions used in the first case. The initial
conditions are u (x1, 0) = 0.8 and v (x1, 0) = 0.6. As to the parameters, we only change the
conversion constant σ to σ = 2.0. The terminal time is set to tf = 100.

Figure 9 presents the SUPG-YZβ approximations for various values of the convection constant
q. These figures indicate that algae are carried downstream by the water as the advection rate
increases. Because of this, mussels have more food available downstream, which causes them to
accumulate downstream as well. In both cases (Case I and Case II), we observe that the results are
in pretty good agreement with those reported in [10]. We, in the last case, examine the system
given by Eq. (39) for convection dominance.

Case III: For this case, the initial conditions are u (x1, 0) = 0.1 and v (x1, 0) = 1.0. The parameter
set is: D11 = 10−7, D21 = 3 × 10−7, α = 1.6, γ = 1.2, σ = 2.0, and q = 10. The Dirichlet-type
boundary conditions are prescribed as follows:

gu (x1 = 0, t) = 0, gu (x1 = L, t) = 0, (42)



312 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 4, 297–317

(a) (b) (c)

Figure 9. Comparison of SUPG-YZβ approximations for solving Application 4 – Case II: (a) q = 10−4, (b) q = 2, and (c)

q = 6.

and

gv (x1 = 0, t) = 0, gv (x1 = L, t) = 0. (43)

The terminal time is set as tf = 10.

In Figure 10a, it is observed that the GFEM yields approximations completely polluted with
node-to-node spurious oscillations. During the numerical simulations, it was revealed that when
the number of elements was increased, the situation got even worse. On the other hand, it is seen
in Figure 10b that the SUPG formulation performs quite well, eliminating almost all nonphysical
oscillations but a very tight region near x1 = 10. Finally, we observe the effect of the shock-
capturing mechanism in Figure 10c; it helps capture the steep gradient that occurs near x1 = 10
successfully without introducing excessive dissipation.

(a) (b) (c)

Figure 10. Comparison of approximations for solving Application 4 – Case III obtained with: (a) GFEM, (b) SUPG, and (c)

SUPG-YZβ.

5 Concluding remarks

We have proposed a streamline-upwind/Petrov–Galerkin finite element formulation supple-
mented with YZβ shock-capturing, the so-called SUPG-YZβ formulation, for solving coupled
systems of reaction-convection-diffusion equations. For comparison purposes, we first tested the
accuracy of the proposed formulation and verified the solver codes for numerical experiments
available in the literature. In order to assess the genuine performance of the proposed formula-
tion and demonstrate that the standard Galerkin finite element formulation fails in convection
dominance, we have modified the original problems by making them convection-dominated.
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We have observed that the SUPG-YZβ formulation successfully eliminates spurious oscillations.
The method accomplishes this by making use of only linear interpolation functions and meshes
that are relatively coarser than those used in the majority of reported studies, without the need
for any fitted or adaptive mesh strategies. In addition to these, it is also noted that the proposed
shock-capturing mechanism does not cause the solutions to become distorted by introducing
excessive numerical dissipation. Besides that, although any adaptive mesh strategies are not
adopted, coarser meshes are used compared to the reported studies, and only linear interpolation
functions are employed, the approximations obtained do not exhibit any significant numerical
instabilities for more challenging cases.
Our future research is planned to focus on tumor growth phenomena, which can be represented
by a coupled system of partial differential equations of the reaction-convection-diffusion type.
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Abstract

Diabetes, a persistent pathological condition characterized by disruptions in insulin hormone reg-
ulation, has exhibited a noteworthy escalation in its prevalence over recent decades. The surge in
incidence is notably associated with the proliferation of endocrine-disrupting chemicals (EDCs), which
have emerged as primary contributors to the manifestation of insulin resistance and the consequent
disruption of beta cell function, ultimately culminating in the onset of diabetes. Consequently, this
study endeavors to introduce a model for diabetes that aims to elucidate the ramifications of expo-
sure to EDCs within the diabetic population. In the pursuit of mitigating the deleterious effects of
EDC-induced diabetes, we propose a framework for optimal control strategies. The utilization of
Pontryagin’s maximum principle serves to explicate the principles governing the optimal control
mechanisms within the proposed model. Our findings underscore that heightened concentrations
of EDCs play a pivotal role in exacerbating the prevalence of diabetes. To substantiate our model,
we employ parameter estimation techniques utilizing a diabetes dataset specific to the demographic
context of India. This research contributes valuable insights into the imperative need for proactive
measures to regulate and diminish EDC exposure, thereby mitigating the escalating diabetes epidemic.

Keywords: Diabetes; endocrine-disrupting chemical; mathematical model; optimal control; simulation

AMS 2020 Classification: 37M05; 37N25; 49K10; 92C60

1 Introduction

Disease has always been a part of human life. Malaria, tuberculosis, plague, and other infectious
diseases have decimated human life. The researcher is beginning to predict how the disease will
progress and understand how interventions will affect its spread. The mechanisms and kinds
of interaction terms vary depending on the disease. Diabetes (a chronic disease) has become
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a significant burden for individuals, leading to a variety of health problems in recent years [1].
Diabetes and its consequences have increased globally, likely because of the increasing diabetes
risk factors, particularly population aging and obesity. It is a disorder characterized by insulin
hormone problems, according to the World Health Organisation (WHO) [2]. According to the
American Diabetes Association (ADA) [3], it is a group of metabolic disorders characterized by
hyperglycemia secondary to diabetes. Factors that increase one’s likelihood of developing diabetes
include getting older, leading an unhealthy life, not getting enough exercise, eating a high-calorie
diet, having stress, being overweight, and so on [4].
Despite incredible advances in biomedical sciences, diabetes remains an irreversible lifetime
disease. Over the past 30 years, the number of people with diabetes has risen quickly in all age and
gender groups, as well as in developing and developed countries. According to the International
Diabetes Federation (IDF) [5], the prevalence of diabetes has risen even more by over 40 million
people over the past quarter century. More than 540 million people had diabetes in 2021. If the
current growth rate continues, this number will reach 780 million by 2045. According to the
WHO [2], 1.6 million people died of diabetes in 2016, making it the seventh leading cause of
death. In 2015, the Malaysian National Health Movement Survey (NHMS) found that 17.5% of
adults over the age of 18 had diabetes [6]. Following that, the Malaysian province predicted a
10-year diabetes prevalence project and estimated that the diabetic population will increase by
31.3 percent by 2025 [7]. In 2021, diabetes caused the deaths of 6.7 million people worldwide
[5]. It is associated with a 75 percent increase in adult mortality [8]. Hyperglycemia can lead to
complications. Retinopathy, nephropathy, neuropathy, and an increased incidence of heart disease
and stroke are other complications [9].
During this time of rising diabetes rates, humanity has witnessed large production and release
of Endocrine-disrupting chemicals. Endocrine-disrupting chemicals (EDCs) can be either man-
made or natural. Because their structure is nearly identical to steroid hormones, they could
perhaps interact with hormones, androgen, and progesterone receptors, interfering with any aspect
of endogenous hormone function, including biosynthesis, metabolism, transport, elimination,
or receptor binding of endogenous hormones, increasing the risk of endocrine and metabolic
diseases in humans and animals [10]. An endocrine disruptor is any chemical or chemical
mixture from the outside that can interfere with hormones work [11]. According to the European
Union, 147 of the 564 chemicals proposed by various organizations as potential EDC in scientific
research or reports remain in the ecosystem or are produced in large quantities [12]. Plasticizers
(Phthalates and Bisphenol A (BPA) or its derivative bisphenol S (BPS)) and pesticides such as
dichlorodiphenyltrichloroethane (DDT), etc. are the most dangerous hazards to human health [13].
Prolonged repeated exposure to EDC compounds with concentrations even lower than the human
body’s established tolerance threshold for individual substances will also significantly increase
the risk of hormonal and metabolic diseases such as diabetes both in men and women [14].
In addition, the development of modern civilization and the growing demand for new chemicals
have raised our vulnerability to EDC. The release of these chemicals from everyday objects like
food packaging, plastic water bottles, makeup, cash register receipts, clothing, food, contact
lenses and dental sealants increases exposure [15]. Some EDCs may be more common in babies
and young children than adults due to increased consumption of specific foods and water [16].
Researchers discovered that higher plasma concentrations of perfluorooctanesulfonic acid (PFOS)
and perfluorooctanoic acid (PFOA) were associated with an increased risk of Type 2 diabetes (T2D)
after controlling for common T2D risk factors such as BMI, family history and physical activity [17].
Prolonged repeated exposure to EDC compounds with concentrations even lower than the human
body’s established tolerance threshold for individual substances will also significantly increase
the risk of hormonal and metabolic diseases such as diabetes both in men and women [14].
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Researchers discovered that exposure to any pesticide was associated with a 61% increased risk
of T2D in a meta-analysis of 21 prior studies involving over 66,000 people, with some pesticides
appearing riskier than others [18].
In many models, authors have tried to describe how diabetes increases among people. Boutayeb
et al. [19, 20] introduced a diabetic model, demonstrating the incidence of diabetes and its compli-
cations. Derouich et al. [21] proposed an optimal control approach to model the progression of
diabetes from prediabetes, with or without control. Widyaningsih et al. [22] analyzed a mathemat-
ical model of diabetes with lifestyle and genetic factors. Bassey [23] analyzed the optimal control
model for dual treatment of delayed type-II diabetes. Jajarmi et al. [24] created a new and efficient
numerical method for the fractional modeling of diabetes and tuberculosis co-existence. Akinsola
et al. [25] executed a mathematical analysis with numerical solutions of the diabetes mellitus
model with optimal control. Ndii et al. [26] have tried to control the effect of hard water. Anusha
et al. [27] studied mathematical modelling co-existence of diabetes and COVID-19 in deterministic
and stochastic Approaches. Özköse et al. [28] investigated the interaction between COVID-19 and
diabetes using real data. Agwu et al. [29] also analyzed the diabetes and tuberculosis co-existence
model. Mollah et al. [30] studied the Optimal control for the diabetes model with an awareness
program and treatment. Singh et al. [31] investigated the calcium distribution in the alpha-cell.
Balakrishnan et al. [32] created a fractional-order control model for diabetes. A growing body
of evidence suggests that environmental chemicals are linked to the rising prevalence of T2D.
Therefore, We used the basic diabetes model [19, 21] to develop the model. Our primary goal in
this paper is to reduce EDC exposure to reduce diabetes prevalence. The novelty of the proposed
model is outlined by the following points:

• A new model was developed to determine the impact of EDC exposure on the diabetes popula-
tion.

• A food population which gives a more realistic insist for the prevalence of diabetes.
• An optimal control problem is introduced with Possible control variables to reduce the effect of

EDC and the prevalence of diabetes.
• The results for simulating different compartments of the model for the parameters b and r

describe the effect of EDC Exposure.
• The proposed model provides some new ideas about the dynamic behavior of diabetes.

In Section 2, the model’s formulation is built and briefly discussed. In Section 3, an optimal control
problem is proposed. Furthermore, we established some results for the existence and characteriza-
tion of optimal control. The numerical simulation is performed to validate the theoretical results
discussed in Section 4.

2 Model formulation

We construct a diabetes model predicting the growing diabetic population, which suggests that
higher EDC concentration levels in our daily routine (food, water, etc.) may be linked to the
prevalence of diabetes. The impact of EDC usage is a chief concern since a growing body of
evidence from studies has also shown a link between early EDC exposure and the prevalence
of T2D late in life. Thus, we have developed a class F to describe the level of EDC present in
the usual diet and lifestyle. The concentration of EDC intake increases at rate b and is limited by
carrying capacity K, which equals the maximum solubility of each compound in food, air, soil,
water and so on. When consuming EDC-exposed products at a rate of βH

F
F+K , people become

exposed. βH represents the rate at which healthy individuals consume EDC daily. The probability
of individuals exposed to EDC is determined by the equation F

F+K , where K is the maximum
concentration of EDC in a food product. The maximum chance of developing diabetes is set at 0.5.
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Therefore, the maximum EDC concentration in a food product was equal to its carrying capacity
K. It is also feasible to transition back to a normal lifestyle at a rate of α3, provided that one is
cognizant of EDC and adopts a health-conscious way of living. The variables and parameters of
our model are outlined in Table 1 and Table 2.

Table 1. Model variables and their descriptions

Variables Description
P Healthy popoulation
S Pre-diabetes population
D Diabetes population
C Diabetes population with complication
E Exposed population
F Food exposed with EDC

Table 2. Model parameters, their descriptions and values

Parameters Description Values Source

Λ Recruitment rate
106

365
[33]

βH , β1 Rate of ingesting of EDC 0.2 Assumed

µ Natural death rate
1

365 ∗ 65
[33]

α1 Rate of healthy persons to become pre-diabetic 0.1 [34]
α2 Rate at which a pre-diabetic person becomes healthy 0.02 [34]
α3 Rate at which a exposed person becomes healthy 0.05 Assumed
ϵ Probability of people to have complication 0.3 Assumed
γ1 Probability of a pre-diabetic to become diabetic 0.1 [35]
γ2 Probability of a diabetic developing a complications 0.1 [35]
γ3 Probability of a pre-diabetic developing a complication 0.1 [35]
θ1 Probability of a Exposed to become diabetic 0.05 Assumed
θ2 Probability of a Exposed developing a complication 0.033 Assumed
b Rate at which concentration of EDC increase 0.3 Assumed
r Rate at which concentration of EDC decrease by control 0.1 Assumed

δ Disease induced death rate
1

365 ∗ 40
[33]

By taking into account the model parameters description and flow diagram given in Figure 1, the
system of equations is provided as follows:

dP

dt
= Λ − (α1 + βH

F

F + K
+ µ)P + α2S + α3E,

dS

dt
= α1P − (γ1 + γ3 + α2 + β1

F

F + K
+ µ)S,

dD

dt
=

(

γ1 + (1 − ϵ)β1
F

F + K

)

S − (γ2 + µ)D + θ1E, (1)

dC

dt
=

(

γ3 + ϵβ1
F

F + K

)

S + γ2D + θ2E − (µ + δ)C,

dE

dt
= βH

F

F + K
P − (θ1 + θ2 + α3 + µ)E,

dF

dt
= bF

(

(1 −

F

K

)

− rF,
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Figure 1. A flow diagram for diabetes model with the effects of EDC

with initial conditions

P(0) ≥ 0, S(0) ≥ 0, D(0) ≥ 0, C(0) ≥ 0, E(0) ≥ 0, and F(0) ≥ 0. (2)

For the diabetes model (1), it is needed to show that its state variables are non-negative for all time
t > 0 and that the feasible region is bounded is studied in the following theorems:

Theorem 1 Suppose that the initial condition (2) of system (1) be non-negative, then the solution

P(t) ≥ 0, S(t) ≥ 0, D(t) ≥ 0, C(t) ≥ 0, E(t) ≥ 0 and F(t) ≥ 0 are also non-negative ∀t > 0.

Proof Now, let us take the first equation of system (1) as follows

dP

dt
= Λ − (α1 + βH

F

F + K
+ µ)P + α2S + α3E

≥ −(α1 + βH
F

F + K
+ µ)P,

dP

dt
+ {α1 + βH

F

F + K
+ µ}P ≥ 0.

Then we obtain,
d

dt
P(t) exp(

∫t
0(α1 + βH

F

F + K
+ µ)ds) ≥ 0. Integrating from 0 to t,

∫ t

0

d

dt

(

P(s) exp
(∫ t

0

(

α1 + βH
F

F + K
+ µ

)

ds

))

ds ≥ 0,

then

P(t) ≥ P(0) exp
(∫ t

0

(

α1 + βH
F

F + K
+ µ

)

ds

)

=⇒ P(t) ≥ 0.
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This shows that P(t) ≥ 0 for all t > 0. Similarly, we can show for all other classes. ■

Theorem 2 Let

ωH =

{
(P, S, D, C, E) ∈ R

5
+, 0 ≤ P + S + D + C + E ≤

Λ

µ

}
, (3)

and

ωF =
{

F ∈ R+, 0 ≤ F ≤ K(1 −

r

b
)
}

. (4)

Define ω = ωH × ωF. If N(0) ≤
Λ

µ
and F(0) ≤ K(1 −

r

b
), then the region ω is positively invariant

under system (1) with initial condition (2) in R
6+.

Proof Let us consider system (1), we have human population N = P + S + D + C + E and Food
compartment F exposed with concentration of EDC. From adding first five equation of system (1),
we have

dN

dt
= Λ − µP − µS − µE − µD − µC − δC ≤ Λ − µN,

which yields that

N(t) ≤
Λ

µ
− N(0)e−µt,

where Λ be the recruitment rate and N(0) represents initial values of total population.

lim
t→∞

sup N(t) =
Λ

µ
= N∞.

Assuming 0 ≤ N(0) ≤ N∞, we obtain that 0 ≤ N(t) ≤ N∞, for all t > 0. For this reason, we define
a separate feasible region ωH for the human population as in (3). For the food compartment, it
follows that

dF

dt
= bF

(

1 −

F

K

)

− rF.

Let

F∞ = K(1 −

r

b
).

Note that F∞ is the stable equilibrium point of the above differential equation. Assuming 0 ≤

F(0) ≤ F∞. We obtain that 0 ≤ F(t) ≤ F∞. Our compartment F doesn’t exceed F∞. We get feasible
region ωF for the Food compartment as in (3). Therefore, N(t) and F(t) are bounded for all t > 0,
respectively. Hence every solution of system (1) with initial condition (2) in ω are remains in ω. ■

3 Optimal control problem

In this section, we used an optimal control approach to reduce the consumption of EDC-exposed
food products by individuals at higher risk of T2D. In our model (1), we have included the
following controls to reduce the impact of EDC among Healthy people as well as Diabetes people.
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• u1 be the percentage of healthy people prevented from pre-diabetes.
• u2 be the people prevented from consumption of EDC.
• u3 be a treatment for exposed.
• u4 be the control implemented to decrease the level of EDC.

The optimal control problem for the system (1) is given in the following system of equation.

dP

dt
= Λ − (α1(1 − u1) + βP(1 − u2)

F

F + K
+ µ)H + α2S + (α3 + pu3)E,

dS

dt
= α1(1 − u1)H − (γ1 + γ3 + α2 + β1(1 − u2)

F

F + K
+ µ)S,

dD

dt
= (γ1 + (1 − ϵ)β1(1 − u2)

F

F + K
)S − (γ2 + µ)D + θ1E, (5)

dC

dt
= (γ3 + ϵβ1(1 − u2)

F

F + K
)S + θ2E + γ2D − (µ + δ)C,

dE

dt
= βP(1 − u2)

F

F + K
P − (θ1 + θ2 + α3 + µ + pu3)E,

dF

dt
= bF(1 −

F

K
)− u4F.

The problem is to minimize the objective functional J defined as.

J(u1(t), u2(t), u3(t), u4(t)) =

∫T

0

(

A1S + A2C + A3D + A4E + A5F +
B1u2

1
2

+
B2u2

2
2

+
B3u2

3
2

+
B4u2

4
2

)

dt, (6)

where Ai, Bi, i = 1 to 4 are cost coefficients. They are selected to weigh the relative importance of
ui, i = 1 to 4 at time t, T is the final time. In other words, we seek the optimal controls u∗

i , i = 1 to
4 such that

J(u∗
1, u∗

2, u∗
3, u∗

4) = min
ui∈U

J(u1, u2, u3, u4), (7)

where U is the set of admissible controls defined by

U =
{
(ui)/0 ≤ u1min ≤ u1(t) ≤ u1max ≤ 1, 0 ≤ u2min ≤ u2(t) ≤ u2max ≤ 1,

0 ≤ u3min ≤ u3(t) ≤ u3max ≤ 1, 0 ≤ u4min ≤ u4(t) ≤ u4max ≤ 1, t ∈ [0, T]
}

.

H(t) = (A1S + A2C + A3D + A4E + A5F) +

(

B1u2
1

2
+

B2u2
2

2
+

B3u2
3

2
+

B4u2
4

2

)

+
11∑

1

λi fi(P, S, D, C, E, F), (8)

where fi is the R.H.S of differential equation (5) of ith state variable.



Logaprakash and Monica | 325

Existence of the optimal control

Using the result of Fleming and Rishel [36], we can prove the existence of optimal control. It
follows that the set of controls and corresponding state variables is non-empty. Also, the control
space U is convex and closed by definition. All the R.H.S of equation (5) is continuous, bounded
above by a sum of bounded control and state and can be written as a linear function of ui with a
coefficient depending on the time and state. The integrant in the objective function is convex on U.

L(y, ui, t) ≥ −ð1 + ð2|u1|
ð + ð3|u2|

ð + ð4|u3|
ð + ð5|u4|

ð.

Thus, the results satisfy all the conditions mentioned in Fleming and Rishel’s work [36]. Therefore,
we establish the following theorem:

Theorem 3 Consider the control problem with the system (5). There exists an optimal control ui, i = 1 to

4 ∈ U4 such that

J(u∗
1, u∗

2, u∗
3, u∗

4) = min
ui∈U

J(u1, u2, u3, u4). (9)

Proof The existence of the optimal control obtained using the result of Fleming and Rishel [36],
checking the following steps:

• It follows that the controls and corresponding state variables are non-empty. We will use a
simplified version of an existence result.

• J(u1(t), u2(t), u3(t), u4(t)) is convex in U.
• The control space U = (ui)/ui, i = 1 to 4 is measurable. 0 ≤ u1min ≤ u1(t) ≤ u1max ≤ 1, 0

≤ u2min ≤ u2(t) ≤ u2max ≤ 1,0 ≤ u3min ≤ u3(t) ≤ u3max ≤ 1, 0 ≤ u4min ≤ u4(t) ≤ u4max ≤ 1,
t ∈ [0, T] is convex and closed by definition.

• All the R.H.S of equation (5) is continuous, bounded above by a sum of bounded control and
state and can be written as a linear function of ui with a coefficient depending on the time and
state.

• The integrant in the objective functional

(

B1u2
1

2
+

B2u2
2

2
+

B3u2
3

2
+

B4u2
4

2

)

is clearly convex on

U.
• Since the solution of system (5) is bounded, the system satisfies the Lipshitz property with

respect to the variables P, S, D, C, E and F. Therefore, there exists an optimal control.

Hence, from Fleming and Rishel [36], we conclude that there exists an optimal control. ■

Characterization of the optimal control

To derive the necessary conditions for the optimal control, we apply Pontryagin’s maximum
principle to the Hamiltonian H given by equation (8) at time t.

Theorem 4 Given the optimal control (u1, u2, u3, u4) and the solution P∗,S∗,D∗,C∗,E∗,F∗ of the corre-

sponding state system (5), there exists adjoint variable λi, for i = 1 to 6 satsifying

−

dλp

dt
=

∂H

∂P
,−

dλs

dt
=

∂H

∂S
,−

dλd

dt
=

∂H

∂D
,−

dλc

dt
=

∂H

∂C
,−

dλe

dt
=

∂H

∂E
,−

dλ f

dt
=

∂H

∂F
,

with the transversality conditions at time T, λj(T) = 0, j = p, s, d, c, e, f . Furthermore, for t ∈ [0,T], the
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optimal controls u∗
1, u∗

2, u∗
3, u∗

4 are given by

u∗
1(t) = max

{
0, min

{
1 − ε,

(λ2 − λ1)α1P

B1

}}
,

u∗
2(t) = max

{
0, min

{
1 − ε,

(λ1 − λ5)βPP

B2

F

F + K
+

(λ3 − λ2)β1S

B2

F

F + K
+

(λ4 − λ3)ϵβ1S

B2

F

F + K

}}
,

u∗
3(t) = max

{
0, min

{
1 − ε,

(λ5 − λ1)p1E

B3

}}
,

u∗
4(t) = max

{
0, min

{
1 − ε,

λ6F

B4

}}
.

Proof For t ∈ [0, T], the adjoint equation and transversality conditions obtained by using Pontrya-
gin’s principle such that

λ ′
1 = λ1

(

α1(1 − u1)− βP(1 − u2)
F

F + K
+ µ

)

− λ2α1(1 − u1)− λ5(1 − u2)βP
F

F + K
,

λ ′
2 = −A1 − λ1α2 + λ2(γ1 + γ3 + α2 + β1(1 − u2)

F

F + K
+ µ)− λ3(β1(1 − ϵ)(1 − u2)

F

F + K
+ γ1)

−λ4(ϵβ1(1 − u2)
F

F + K
+ γ3),

λ ′
3 = −A2 + λ3(γ2 + µ)− λ4γ2,

λ ′
4 = −A3 + λ4(µ + δ),

λ ′
5 = −A4 − λ1(α3 + p1u3)− λ3θ1 − λ4θ2 + λ5(θ1 + θ2 + α3 + p1u3 + µ),

λ ′
6 = −A5 + βPP(λ1 − λ5)(1 − u2)

K

(K + F)2 + β1S(λ2 − λ3(1 − ϵ)− λ4ϵ)(1 − u2)
K

(K + F)2

−λ6

(

b(1 −

F

K
)− b

F

K
− u4

)

,

with transversality conditions λi = 0, i = 1 to 11. For t ∈ [0, T], the optimal controls u∗
1, u∗

2, u∗
3, u∗

4

can be solved by the optimality conditions
∂H

∂ui
.

u∗
1(t) =

(λ2 − λ1)α1P

B1
,

u∗
2(t) =

(λ1 − λ5)βPP

B2

F

F + K
+

(λ3 − λ2)β1S

B2

F

F + K
+

(λ4 − λ3)ϵβ1S

B2

F

F + K
,

u∗
3(t) =

(λ5 − λ1)p1E

B3
,

u∗
4(t) =

λ6F

B4
.

By the bounds in U of the controls, it is easy to obtain the optimal controls. ■

4 Numerical simulation and discussion

Simulation is required to understand the reasoning behind theoretical findings. It changes ac-
cording to the values assigned to the parameters. We stimulate the diabetes model using Euler’s
method. The optimal control problem is solved using the Forward-backward sweep method.
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Initial and final conditions exist for state and adjacent systems, respectively. The weight constants
and initial conditions are A1 = A2 = A3 = A4 = A5 = 1, B1 = B2 = B3 = B4 = 2000.
The parameter values described in Table 2 are applied to simulate the diabetes model using the
Matlab program. We have used diabetes data for India from 1980 to 2015. The diabetes dataset
is available on the NCD-RisC website (https://ncdrisc.org/index.html). Then, using manual
calibration, we fitted each parameter to get the best fit to our proposed model (1). Figure 2 shows
that our model fits almost to the dataset. The range of parameter values used in calibration are
from the literature. The parameters b and r are essential for regulating the EDC density of the food.

1980 1985 1990 1995 2000 2005 2010 2015

Years

1

2

3

4

5

6

7

D
ia

b
e
ti
c
 I
n
d
iv

id
u
a
ls

10
7

Model fit

Real data

Figure 2. The diabetes population data from 1980 to 2015 in India and best curve fit of the proposed model

As a basic guideline, r must be higher than b. It means that r is the controlling parameter of EDC
in any product. Parameter b is higher than parameter r. It represents that higher concentrations of
EDC in food may affect humans. Every population with b < c and b > c is depicted in Figure 3.

It noted that whenever the control parameter r fails to control the level of Endocrine, the diabetes
prevalence increases. Figure 4 depicts each compartment with and without control. Diabetes
is largely preventable by taking the proposed control variable. Figure 5 illustrates the control
profile with B4 = 20 and B4 = 2000. The graph indicates that if control costs are low, people can
afford them for a long time. If the control cost is reasonable, then more individuals will be able
to get better. According to the findings in Figure 6, the concentration of EDC in food products is
reduced more effectively over time if the cost of control is affordable and the exposed population
seems minimized. The graph indicates that lowering the concentration of EDC impacts T2D,
although other regulations are applied to reduce diabetes incidence. The prevalence of diabetes
has decreased after implementing the necessary controls. The graph clearly shows that the lower
the control costs, the higher the likelihood of recovery.

https://ncdrisc.org/index.html
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for b > r and b < r
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Figure 3. The dynamic of variables D, C, E, F for b > r and b < r
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Figure 4. The dynamic of variables with and without control
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Figure 5. The control profile with different values of cost of controls
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Figure 6. The profile of E, D, C and F with different values of the cost of controls

5 Conclusion

In this paper, we have developed a mathematical model of the diabetic population with the effect
of EDC. This proposed model offers a different approach to understanding the prevalence of
diabetes, particularly when the daily consumption of food is exposed to some harmful chemicals
that lead to health problems. A suitable control strategy discussed includes intervention for
exposed people, diabetes prevention, control of EDC concentration on daily consumption, and
prevention of consuming EDC. We have found the optimal control strategies that are more effective
in controlling the prevalence of diabetes. The findings demonstrate the efficacy of the proposed
control strategies. The results show that less EDC exposure is better for diabetes control. In the
future, one can try to incorporate other sources of T2D with fractional-order differential equations
and cost-effective analysis to improve the effective way of controlling diabetes. Also, studying the
nature of equilibrium and stability analysis can be considered.
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Abstract

The current study is intended to provide a comprehensive application of Sturm-Liouville (S-L) problem
by benefiting from the proportional derivative which is a crucial mathematical tool in control theory.
This advantageous derivative, which has been presented to the literature with an interesting approach
and a strong theoretical background, is defined by two tuning parameters in control theory and a
proportional-derivative controller. Accordingly, this research is presented mainly to introduce the
beneficial properties of the proportional derivative for analyzing the S-L initial value problem. In
addition, we reach a novel representation of solutions for the S-L problem having an importing place
in physics, supported by various graphs including different values of arbitrary order and eigenvalues
under a specific potential function.

Keywords: Proportional-derivative controller; proportional integral; Sturm-Liouville problem; control
theory; local derivative

AMS 2020 Classification: 00A69; 34B24; 00A05

1 Motivation

The advantage of using non-integer order integral-derivative operators lies in the fact that they
express numerous real-world problems better than classical analysis tools. Fractional calculus
provides a natural and intrinsic characterization of complex dynamical systems [1]. Also, the
concepts in fractional calculus shed some new light on the solutions methods of differential equa-
tions, especially when the traditional tools are limited and insufficient. As a way of describing
events in nature, this field whose history is as old as the classical differential has become quite
interesting. Several fractional integral and derivative operators with various features have recently
been introduced to the literature. While some researchers place a strong emphasis on the value of
local derivatives, others highlight the benefits of non-local and singular kernel operators, while
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others make the case that non-local and non-singular kernel operators are also beneficial. Al-
though this situation might be confusing, the availability of several derivative-integral definitions
has evolved into a fundamental motivational tool for researchers in order to produce superior
findings for the problems at hand. The amount of complex systems that have been studied from
the perspective of fractional dynamics has significantly increased over the past few decades.
Fractional calculus can be used to assess a variety of phenomena, including transmission line
theory, heat transfer, diffusion, electrochemistry, fractal processes, deoxyribonucleic acid decoding
for prototype systems, financial considerations, earthquake events, global warming, and even
musical rhythms. In addition, the existence of numerous complex systems, both natural and
human-made, shows the abundance of phenomena that can be described and studied with the
help of concepts in fractional calculus. The major goal is to establish the analysis framework of the
problems under consideration by enlarging it in the perspective of fractional calculus. Although
fractional calculus helps to expand the traditional definitions of derivative and integral, which
then obviously lead to fractional-type models, neither the restrictions of their application nor the
processes and tools for comprehending them are well-defined at the current stage of scientific
evaluation. With Caputo’s formulation of the fractional derivative, the scope of applications for
non-integer order differential operators has been widened, and exciting results have been obtained
by using them more frequently. The usage of fractional derivatives, which is expanding rapidly
today, is especially useful for characterizing processes and describing physical phenomena. It has
also taken on crucial tasks like eliminating the deficiencies in differential equations created with
classical derivatives.
The usage of local derivative and integral definitions defined in the limit form has also grown
in popularity, in addition to fractional derivatives, which are non-local because they are defined
in the integral form. The "proportional derivative" definition, which was developed with the
proportional derivative controller used in control theory, is one of them and may be the most
advantageous one. This derivative is defined with the help of two tuning parameters in control
theory and a proportional-derivative (PD) controller given by

u(t) = kpE(t) + kdE(t), (1)

for the controller output u at time t [2]. PD is a successful control method that is straightforward
to comprehend. Here, kp stands for the proportional gain, kd for the derivative gain, and E for the
error between the state and process variables. It is well-recognized that the proportional derivative
controller effectively addresses problems with real-world control. Also, the proportional term
offers a general control action that, via the gain coefficient, is proportionate to the error signal. The
derivative term improves the transient response through high-frequency compensation. Intuitively,
for these concepts, it makes sense to say that P depends on the current error and D is an estimate of
future errors. Controlling the considered system by the weighted sum of these two actions results
in the system reaching the desired state. Suppose that for η ∈ [0, 1], K0, K1 : [0, 1]× R → [0,∞)

functions are continuous and satisfy the following conditions:

lim
η→0+

K1(η, t) = 1, lim
η→0+

K0(η, t) = 0, (2)

lim
η→1−

K1(η, t) = 0, lim
χ→1−

K0(η, t) = 1. (3)

Then, for all t ∈ R, K1(η, t) ̸= 0, η ∈ [0, 1) and K0(η, t) ̸= 0, η ∈ (0, 1], the proportional derivative
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is defined as

PDηω(t) = K1(η, t)ω(t) + K0(η, t)ω ′(t). (4)

On the other hand, the proportional exponential function is given by

ep(t, r) = e

∫t
r

p(τ)−K1(η,τ)
K0(η,τ) dτ

, e0(t, r) = e
−

∫t
r

K1(η,τ)
K0(η,τ) dτ

, (5)

where χ ∈ (0, 1], r, t ∈ R, r ≤ t, p : [r, t] → R, and k0, k1 : [0, 1]× R → [0,∞) are continuous
functions. Also, p/k0 and k1/k0 are Riemann integrable on [s, t]. Furthermore, for η ∈ (0, 1],
proportional integral on [a, b] is

PIηω(t) =

∫ t

a
ω(r)e0(t, r)dηr =

∫ t

a

ω(r)e0(t, r)

K0(η, r)
dr, dηr =

1
K0(η, r)

dr. (6)

Figure 1. Block diagram of control system with proportional-derivative controller.

The derivative control method is known to change the controller output proportionally to the rate
of the error signal change. Derivative control, on the other hand, observes how much the error has
altered and tries to identify the current error. In order to minimize potential errors, it also generates
control motion through using the rate of change. The integral technique is occasionally added in
addition to the proportional method since the derivative method only affects the controller output
when the error changes. In this context, it can be stated that the derivative control approaches can
never be employed alone. The derivative value is determined by the rate of change of the error
signal, that is, by the slope of the error signal. An ideal derivative technique is expected to respond
with an infinite variation to the controller output and the derivative effect for quickly changing
signals is constrained. In the derivative receiver circuit, the frequency of the signal applied at
the input must be smaller than the cutoff frequency of the circuit, while the period of the signal
applied at the input is desired to be close to the derivative time for the differentiation process to
take place.
The difference signal between the set value and the measured value is subjected to a derivative
operation in proportional-derivative control. After the error signal first passes through the
proportional controller, the derivative signal, balancing voltage, and proportional signal are
collected in the collector circuit. Figure 1 depicts the control system diagram with a PD controller.
As shown in the diagram, the PD controller continuously determines the error value E(t) [3].
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2 Introduction

The study of Sturm between 1829 and 1836 serves as the basis of the Sturm-Liouville (S-L) theory.
Later, the brief but crucial study of Sturm-Liouville was published in 1837. In this study, they
addressed the boundary value problem (BVP) for the differential equation given as

−y ′′ + q(x)y = λy, 0 ≤ x ≤ 1, (7)

where λ is a complex parameter and q is a real-valued function that can be quadratically integrated
over the integral [0, 1]. Sturm and Liouville examined whether there are nontrivial solutions of
Eq. (7) satisfying the following boundary conditions [4]:

y(0) cos γ1 + y ′(0) sin γ1 = 0,

y(1) cos γ2 + y ′(1) sin γ2 = 0.
(8)

Here, γ1 and γ2 are real numbers between 0 and π. If (7)-(8) BVP is solved, the complex number λ is
called the eigenvalue of q, γ1, and γ2. Also, the nontrivial solutions for λ are called eigenfunctions
of q, γ1, and γ2, The set of all eigenvalues is the spectrum of the BVP given by (7)-(8). Significant
advances in spectral theory have been achieved for the Sturm-Liouville operator as follows

l = −

d2

dx2 + q(x), (9)

sometimes also called the one-dimensional time-dependent Schrödinger operator.

The first investigations on spectral theory for such operators were performed by Bernoulli,
D’alambert, Euler, Sturm, and Liouville for rod vibration problems. In the 20th century, spectral
theory developed rapidly for different classes of differential and integral operators. Famous
mathematicians including Birkhoff, Hilbert, Neumann, Steklov, Stone, and Weyl as well as many
others have made major contributions to this topic through outstanding ideas. On the other hand,
the main conclusions regarding the inverse problems of spectral theory were obtained in the
second half of the 20th century. Particularly in the latter half of the 20th century, the techniques
employed to study the Sturm-Liouvile operator have continuously improved. For instance, in
1967, a group of American physicists and mathematicians Gardner, Greene, Kruskal, and Miura
developed an important method by solving the Korteweg-de Vries (KDV) equation for a proposed
initial condition through using the inverse scattering method. In 1968, Lax evaluated the inverse
scattering method in a more general frame by solving the KDV equation with the help of linear
equations, and this frame later opened the way for generalizing the technique as a method for
solving other partial differential equations. The initial value problems of nonlinear partial dif-
ferential equations can be solved utilizing the inverse scattering method. The approach is based
on converting the initial value problem into a linear integral equation. Both mathematicians and
physicists continue to focus more on the inverse scattering problems of quantum theory for singu-
lar Sturm-Liouville operators, which have numerous applications in this area and geophysics [4].
For more information of fractional calculus in application, S-L problem and to see the S-L problem
in fractional calculus we refer the reader to [5–14].

This manuscript is organized as follows: In Section 1, we give a motivation part on the proportional
derivative by mentioning its importance in control theory before writing the introduction part
in Section 2. Then, the model description and solution method in order to solve the S-L problem
are given in Section 3. Additionally, we obtain the representation of the solution for the S-L
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problem through the proportional derivative operator in Section 4. On the other hand, in Section 5,
various graphs are shown for different values of arbitrary order η and eigenvalues. Finally, we
introduce some crucial concluding remarks of this study in Section 6.

3 Model description and solution method

The Sturm-Liouville operator T can be expressed through the proportional derivative as below:

T ≡ −PDη(PDη) + q(x), (10)

where η ∈ (0, 1] and q(x) is a real-valued continuous function on interval [a, b]. Here, the main
objective is to consider the S-L problem having separated boundary conditions given by

Ty(x) = −PDη [PDηy(x)] + q(x)y(x) = λy(x), (11)

y(a) cos γ1 + PDηy(a) sin γ1 = 0,

y(b) cos γ2 + PDηy(b) sin γ2 = 0.
(12)

If we take cot γ1 = −h and cot γ2 = H for a = 0 and b = π, that is x ∈ [0, π], the boundary
condition (12) takes the following form

PDηy(0)− hy(0) = 0,

PDηy(π) + Hy(π) = 0.
(13)

Furthermore, the BVP (11)-(12) has a nontrivial solution denoted by y(x, λn) for any λn. Also,
λn and y(x, λn) are called as eigenvalue and eigenfunction, respectively. In [15], the variation of
parameters method is defined by means of the proportional derivative. While this generalization
can be used to solve many real-life problems, it also enables the behavior of the problems to be
examined in more detail by obtaining more general solutions.

Let 0 ≤ η ≤ 1 and n ∈ {1, 2, 3, ...}, then PDnηy(x) is given by PDnηy = PDη
PDη . . . PDηy. For

simplicity of notation, one can write y(nη)(x) instead of PDnηy(x). Hence, here, the expression of

y(2η)(x) means that dη

dtη

(

dηy
dxη

)

.

The variation of parameters method, which is often used to find a particular solution of non-
homogeneous linear differential equations with constant or variable coefficients, is defined by the
proportional derivative as follows. It is well-known that the homogeneous part of a differential
equation of form (11) has two linearly independent solutions, y1(x) and y2(x). In this situation, we
have a particular solution of the proposed equation as yp(x) = ν1(x)y1(x) + ν2(x)y2(x). Hence,
with respect to the proportional variation of parameters method, we have the formulas addressed
by

ν ′
1(x) =

q(x)y(x)y2(x)

K2
0(η, x)Wp(y1, y2)(x)

, ν ′
2(x) =

−q(x)y(x)y1(x)

K2
0(η, x)Wp(y1, y2)(x)

, (14)

where Wp(y1, y2)(x) is the proportional Wronskian defined as

Wp(y1, y2)(x) =

∣

∣

∣

∣

y1(x) y2(x)

PDηy1(x) PDηy2(x)

∣

∣

∣

∣

. (15)
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Therefore, if we apply the integral to the functions ν ′
1(x) and ν ′

2(x), we get the functions ν1(x)

and ν2(x). By substituting these functions to the yp(x), we reach the particular solution. As a
result, the general solution is obtained by calculating the sum of the solution of the homogeneous
part of the equation under consideration and particular solution yp(x). For more information on
proportional derivatives and applications of different types of fractional derivatives, we refer the
reader to [16–20].

4 Main results

In the current section, we introduce the representation of the solution for the S-L problem employ-
ing the proportional derivative. Here, we use two suitable initial conditions and so we get two
representations of the solution by utilizing the proportional variation of parameters method. Let
ϕ(x, λ) be the solution of Eq. (11) with the initial condition given as

ϕ(0, λ) = 1, PDη ϕ(0, λ) = h, (16)

and the other solution is Φ(x, λ) under the following initial condition

Φ(0, λ) = 0, PDη
Φ(0, λ) = 1. (17)

In order to obtain the solutions ϕ(x, λ) and Φ(x, λ), we benefit from the proportional variation of
parameters method. For this purpose, we employ the solution of the homogeneous counterpart of
Eq. (11) obtained as

yh(x) = c1e0(x, 0) cos

(∫ x

0

√
λ

K0(η, s)
ds

)

+ c2e0(x, 0) sin

(∫ x

0

√
λ

K0(η, s)
ds

)

. (18)

On the other hand, for the non-homogeneous equation (11), we assume that

yp(x) = ν1(x)e0(x, 0) cos

(∫ x

0

√
λ

K0(η, s)
ds

)

+ ν2(x)e0(x, 0) sin

(∫ x

0

√
λ

K0(η, s)
ds

)

. (19)

Also, the p-Wronskian can be computed as below:

Wp =

∣

∣

∣

∣

∣

∣

∣

∣

e
−

∫x
0

K1(η,τ)
K0(η,τ) dτ

cos
(∫x

0

√
λ

K0(η,s)ds
)

e
−

∫x
0

K1(η,τ)
K0(η,τ) dτ

sin
(∫x

0

√
λ

K0(η,s)ds
)

PDη

[

e
−

∫x
0

K1(η,τ)
K0(η,τ) dτ

cos
(∫x

0

√
λ

K0(η,s)ds
)

]

PDη

[

e
−

∫x
0

K1(η,τ)
K0(η,τ) dτ

sin
(∫x

0

√
λ

K0(η,s)ds
)

]

∣

∣

∣

∣

∣

∣

∣

∣

, (20)

and if we choice K1(η, s) = 1 − η and K0(η, s) = η, we reach

Wp =

∣

∣

∣

∣

∣

∣

∣

e
−

(1−η)
η x cos

(√
λ

η x
)

e
−

(1−η)
η x sin

(√
λ

η x
)

PDη

[

e
−

(1−η)
η x cos

(√
λ

η x
)

]

PDη

[

e
−

(1−η)
η x sin

(√
λ

η x
)

]

∣

∣

∣

∣

∣

∣

∣

, (21)

PDη

[

e
−

(1−η)
η x cos

(√
λ

η
x

)]

= e
−

(1−η)
η x

[

cos

(√
λ

η
x

)

−

√
λ sin

(√
λ

η
x

)]

, (22)
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and

PDη

[

e
−

(1−η)
η x sin

(√
λ

η
x

)]

= e
−

(1−η)
η x

[

sin

(√
λ

η
x

)

−

√
λ cos

(√
λ

η
x

)]

. (23)

Hence we get p-Wronskian as

Wp =
√

λe
2(η−1)

η x. (24)

By taking the integral of following expressions

ν ′
1(x) =

y2(x)q(x)y(x)

η2Wp
, ν ′

2(x) =
−y1(x)q(x)y(x)

η2Wp
, (25)

it can be reached the functions ν1(x) and ν2(x) as follows

ν1(x) =

∫ x

0

e
−

(1−η)
η t sin

(√
λ

η t
)

η2
√

λe
2(η−1)

η

q(t)y(t)dt, ν2(x) = −

∫ x

0

e
−

(1−η)
η t cos

(√
λ

η t
)

η2
√

λe
2(η−1)

η t
q(t)y(t)dt. (26)

If we arrange the above formulas, we get

ν1(x) =
1

η2
√

λ

∫ x

0
e
(1−η)

η t sin

(√
λ

η
t

)

q(t)y(t)dt, (27)

and

ν2(x) =
−1

η2
√

λ

∫ x

0
e
(1−η)

η t cos

(√
λ

η
t

)

q(t)y(t)dt. (28)

Substituting the functions ν1(x) and ν2(x) into Eq. (19), one can readily have

yp(x) = e
−

(1−η)
η x cos

(√
λ

η
x

)

1

η2
√

λ

∫ x

0
e
(1−η)

η t sin

(√
λ

η
t

)

q(t)y(t)dt

− e
−

(1−η)
η x sin

(√
λ

η

)

1

η2
√

λ

∫ x

0
e
(1−η)

η t cos

(√
λ

η
t

)

q(t)y(t)dt.

(29)

Thereby, the general solution is obtained as

y(x) = c1e
−

(1−η)
η x cos

(√
λ

η
x

)

+ c2e
−

(1−η)
η x sin

(√
λ

η
x

)

+
1

η2
√

λ

∫ x

0
q(t)y(t)e

(1−η)
η t sin

[√
λ

η
(x − t)

]

dt.

(30)
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Let λ be s2, then by applying the initial condition (16), we have the solution as follows

ϕ(x, s) = e
−

(1−η)
η x cos

(

s

η
x

)

+
h

s
e
−

(1−η)
η x sin

(

s

η
x

)

+
1

sη2

∫ x

0
q(t)ϕ(t)e

(1−η)
η t sin

[

s

η
(x − t)

]

dt,
(31)

and utilizing the initial condition (17), we can get the solution

Φ(x, s) =
1
s

e
−

(1−η)
η x sin

(

s

η
x

)

+
1

sη2

∫ x

0
q(t)Φ(t)e

(1−η)
η t sin

[

s

η
(x − t)

]

dt. (32)

5 Visual results and discussions

This section includes graphs of the solution functions of S-L problem that are achieved by employ-
ing the benefits of proportional derivative. The behavior of the representation of solution function
ϕ(x, s) for the classical situation is first demonstrated when s = 1, 2, 3, and then it is shown how
the solution curve motions vary for η = 0.9, 0.7, 0.5 in Figure 2 and Figure 3. On the S-L problem,
which has physically crucial meanings, it has been clearly observed how different order values of
the proportional derivative affect the problem and how they change the behavior of the solution
functions.
On the other hand, it should be expressed that the reason for using the same eigenvalues is to see
the effect of different order values. In Figure 4-Figure 5, we demonstrate how the solutions change
as the η parameter takes different values for s=1, s=3 and s=5, respectively. Additionally, Figure 6
shows the behavior of the function ϕ(x, s) for η = 1, 0.8, 0.6, 0.4 when s =

√
0.1. Afterwards,

similarly, we plot the graphs for the solution function ϕ(x, s) by using the same parameter values
for the solution function Φ(x, s) in Figure 7-Figure 10. Here, the representation of solution function
ϕ(x, s) under the condition (16) is

ϕ(x, s) = e
−

(1−η)
η x cos

(

s

η
x

)

+
h

s
e
−

(1−η)
η x sin

(

s

η
x

)

+
1

sη2

∫ x

0
q(t)ϕ(t)e

(1−η)
η t sin

[

s

η
(x − t)

]

dt,
(33)

and the representation of solution function Φ(x, s) under the condition (17) is

Φ(x, s) =
1
s

e
−

(1−η)
η x sin

(

s

η
x

)

+
1

sη2

∫ x

0
q(t)Φ(t)e

(1−η)
η t sin

[

s

η
(x − t)

]

dt. (34)

All graphs are obtained by the various values of arbitrary order and eigenvalues when the
potential function q(t) = 0. Accordingly, the main objective of the graphs is to see the effect of the
eigenvalues, which are important for the problem under investigation, on the solution functions
and to observe the effect of the proportional derivative on the S-L problem. To observe these two
situations separately, which are important for the current study, in some graphs, eigenvalues are
not changed, while arbitrary order of proportional derivative values are changed.
In a similar way, to see the effect of the eigenvalues, the derivative order is not changed and the
eigenvalues are changed.
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Figure 2. The solutions curves of the function ϕ(x, s) when η = 1 (classical case) (a) and η = 0.9 (arbitrary order
case) (b) for the values of s = 1, 3, 5 (this corresponds to the λ = 1, 9, 25 eigenvalues) under the condition (16).
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Figure 3. The solutions curves of the function ϕ(x, s) when η = 0.7 (a) and η = 0.5 (b) for the values of
s = 1, 3, 5 (this corresponds to the λ = 1, 9, 25 eigenvalues) under the condition (16).
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Figure 4. The solutions curves of the function ϕ(x, s) when s = 1 (a) and s = 3 (b) for different values of
arbitrary order η = 1, 0.8, 0.6, 0.4.
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Figure 5. The solutions curves of the function ϕ(x, s) when s = 5 for different values of arbitrary order
η = 1, 0.8, 0.6, 0.4.
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Figure 6. The solution curves of the function ϕ(x, s) when s =
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0.1 for different values of arbitrary order
η = 1, 0.8, 0.6, 0.4.
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Figure 7. The solutions curves of the function Φ(x, s) when η = 1 (classical case) (a) and η = 0.9 (arbitrary order
case) (b) for the values of s = 1, 3, 5 (this corresponds to the λ = 1, 9, 25 eigenvalues) under the condition (17).
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Figure 8. The solutions curves of the function Φ(x, s) when η = 0.7 (a) and η = 0.5 (b) for the values of
s = 1, 3, 5 (this corresponds to the λ = 1, 9, 25 eigenvalues) under the condition (17).
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Figure 9. The solutions curves of the function Φ(x, s) when s = 1 (a), s = 3 (b), and s = 5 (c) for different values
of arbitrary order η = 1, 0.8, 0.6, 0.4.
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Figure 10. The solution curves of the function Φ(x, s) when s =
√

0.1 for different values of arbitrary order
η = 1, 0.8, 0.6, 0.4.

6 Concluding remarks

The proportional derivative, which is considered in the class of local derivatives including arbitrary
order, is considered more advantageous than other local derivatives in terms of its features. Since
it is based on control theory, it has an important place, especially in engineering. In [2], the
authors state that since the unit operator cannot be obtained for the other local derivatives when
D0ω ̸= ω, that is, χ → 0, and on the other hand, there is a t ≥ 0 condition to satisfy the
Dχω(t) = t1−χω ′(t) formula, they have introduced a novel definition of local derivative called
proportional derivative in order to overcome these restrictions. This new and seemingly more
well-founded local derivative definition is created in such a way that D0 corresponds to the unit
operator and D1 corresponds to the integer-order classical derivative, while 0 ≤ χ ≤ 1 and t ∈ R.
In the definition of the proportional derivative, various special cases can be obtained for different
choices of the functions K1(η, t) and K0(η, t). For example, proportional derivatives of special
types can be obtained by choosing for any ω ∈ (0,∞), K1 ≡ (1 − χ)ωχ and K0 ≡ χω1−χ,
K1 = (1 − χ)|t|χ and K0 = χ|t|1−χ on R\{0}, or K1 = cos(χπ/2)|t|χ and K0 = sin(χπ/2)|t|1−χ.
This can be seen as another advantage of the proportional derivative. Because, in application, one
can have the opportunity to obtain better results by making the special choices needed according
to the behavior of the problem under consideration. Therefore, attention should be paid to whether
the special choices made are useful and meaningful in application. Due to all these advantages,
the proportional derivative is preferred in solving the S-L equation in this study. It is thought that
the results obtained as an alternative to the classical derivative will be useful for experts in the
field.
Also, it should be emphasized that addressing and examining the S-L problem, which is of great
physical importance, with the help of proportional derivatives used in control theory, can make a
significant contribution to the literature. It is known that there are many different S-L problems
in the literature. Therefore, this study is important in terms of encouraging the application of
proportional derivative to different problems in this field.
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Abstract

In this study, we introduce an innovative fractional Genocchi collocation method for solving nonlinear
fractional differential equations, which have significant applications in science and engineering. The
fractional derivative is defined in the Caputo sense and by leveraging fractional-order Genocchi
polynomials, we transform the nonlinear problem into a system of nonlinear algebraic equations. A
novel technique is employed to solve this system, enabling the determination of unknown coefficients
and ultimately the solution. We derive the error bound for our proposed method and validate its
efficacy through several test problems. Our results demonstrate superior accuracy compared to
existing techniques in the literature, suggesting the potential for extending this approach to tackle
more complex problems of critical physical significance.

Keywords: Fractional-order modelling; collocation method; nonlinear phenomena; error bound

AMS 2020 Classification: 34A08; 65L60; 65L70

1 Introduction

During the last few years, fractional calculus (FC) has gained significant attention in the scientific
and engineering communities due to its ability to provide more realistic simulations of real-life
complex phenomena. FC is defined as the branch of mathematics that deals with derivatives
and integrals of non-integer orders. Unlike traditional calculus, which focuses on integer-order
derivatives and integrals, FC extends these operations to include fractional orders. The importance
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of the application of FC comes from the fact that it involves the derivative and integral of any order
and is particularly useful in simulating models that exhibit memory effects or cannot be adequately
described by classical approaches. With these important remarks and properties, researchers
have been trying over the years to develop several definitions of FC [1]. One of the common
definitions of FC is the Riemann-Liouville fractional derivative, which is defined as the integral of
a function raised to a fractional power, followed by differentiation. On the other hand, another
well-known important definition is the Caputo fractional derivative, which is defined as the
integral of a function multiplied by a weight function, followed by differentiation [2]. The Caputo
fractional derivative is one of the most important definitions in the field of FC due to many reasons.
First, it can handle initial conditions more efficiently and can handle non-smooth functions and
discontinuities. In addition, unlike other operators that require knowledge of the function’s history
at all times, the Caputo derivative only requires the function’s values at the current time. This
property makes this definition suitable for modeling real-world phenomena where the initial
conditions are unknown or hard to obtain. Also, this definition provides the ability to handle
non-smooth functions and discontinuities more effectively compared to other fractional operators.
This makes it more versatile and applicable in a wider range of applications. Other definitions of
fractional operators include the Grunwald-Letnikov fractional derivative, which is defined as a
finite difference approximation of the fractional derivative, and the Atangana-Baleanu fractional
derivative, which is defined using the Caputo fractional derivative and a non-singular kernel.
Each of these definitions has its advantages and limitations and is suitable for specific applications.
Choosing the appropriate fractional operator for a given problem requires careful consideration of
the problem’s nature and the desired properties of the solution.

In many real-life applications, differential equations are used to model physical processes, and
the development of fractional calculus has led to a growing interest in fractional differential
equations (FDEs). The study of FDEs has significant implications in various fields, including
physics, engineering, and finance. For example, Kilbas et al. [3] were among the first to introduce
the basics of fractional calculus and its application to differential equations. Podlubny [4] further
expanded on the possible applications of fractional calculus to differential equations and was one
of the earliest researchers to study FDEs. Agarwal et al. [5] investigated solutions to a class of
semi-linear FDEs in the form of periodic solutions. In the field of biology, Rahman et al. [6] adapted
the singular-type and nonsingular fractional-order derivatives for simulating the plant-pathogen-
herbivore interactions model. Additionally, Ali et al. [7] employed the new sub-equation method
to attain new traveling wave solutions of conformable time FDEs. Moreover, Uzun et al. [8] studied
the forced oscillatory theory for higher-order fractional differential equations with a damping
term via the ψ-Hilfer fractional derivative. In the field of biology, FDEs have been contributing
to the understanding of the dynamics and spread of many viruses. For example, Atede et al. [9]
investigated the solution of a COVID-19 model incorporating the effect of vaccination through a
fractional model with verification using real data from Nigeria. Also, Anjam et al. [10] simulated
the dynamics of a fractional pollution model in a system of three interconnecting lakes. These are
some examples of the applications of FDEs in simulating real-life phenomena. For more details on
the application of FDEs, the reader may refer to [11–17] and references therein.

In this paper, we introduce the Genocchi collocation method for solving the following form of
fractional differential equation

u(η)(x) =
r∑

m=0

σmu(m)(x) + µ (x, u(x)) , a < x < b, r − 1 < η < r, (1)
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and boundary conditions

u(i)(a) = αi, u(i)(b) = βi. (2)

The study of fractional calculus has led to the development of various methods for solving frac-
tional differential equations (FDEs) of the form Dηu(x) = f (x), where η is the fractional order of
the derivative, u(x) and f (x) are continuous functions, and Dη denotes the fractional derivative
operator. Many of these methods aim to find the most accurate approximation for the solution.
For instance, Jajarmi et al. [18] developed a new iterative method to solve a class of non-linear
fractional boundary value problems (BVPs), while Patnaik et al. [19] provided a fractional order
nonlocal continuum model of an Euler-Bernoulli beam along with its analytic form and finite
element solution. Isah et al. [20] suggested using a novel operational approach based on Genocchi
polynomials to numerically solve nonlinear FDEs, while El-Gamel et al. [21] solved the Bagley-
Torvik equation using Legendre basis functions. Abd-Elhameed et al. [23] created sixth-order
Chebyshev polynomials for numerically solving linear and nonlinear forms of fractional order
differential equations, and Zaky [24] created and examined a singularity-preserving spectral-
collocation approach for the numerical solution of nonlinear tempered fractional differential
equations. Chuanli Wang et al. [25] provided a Legendre spectral collocation method for Caputo
fractional boundary value problems, while Ismail et al. [26] proposed a numerical technique using
the Green function, which combines cosine and sine functions, to solve linear and nonlinear FDEs.
Akguel and Yalcin [27] solved problems involving fourth-order fractional boundary values using
the reproducing kernel Hilbert space approach, and Li et al. [28] provided a new reproducing
kernel collocation technique for solving nonlocal fractional boundary value problems with nons-
mooth solutions. Rehman et al. [29, 30] presented a numerical method based on the operational
matrices of integration of the Haar wavelet to solve linear two-point and multi-point boundary
value problems for FDEs, while Saeed et al. [31] used the Haar wavelet-quasilinearization ap-
proach to solve the nonlinear heat transfer equation. Pedas et al. [32, 33] presented spline and
piecewise polynomial collocation techniques for numerical solutions of a class of boundary value
problems for nonlinear Caputo fractional differential equations, respectively. Finally, Ur Rehman
et al. [34] solved FDEs using Legendre wavelets and developed an operational matrix of fractional
order integration to convert them into a system of algebraic equations. These methods contribute
to the development of effective and efficient techniques for solving FDEs, which have significant
applications in science and engineering.
The paper aims to investigate the solution of FDEs using the collocation technique accompanied
by Genocchi polynomials. This technique offers several advantages and disadvantages that need
to be considered when applying it. Firstly, one advantageous aspect of using the Genocchi collo-
cation method is its simplicity and ease of implementation in selecting collocation points within
the specified domain to approximate the solution of the model. Additionally, the flexibility of
the proposed method in handling different forms of boundary conditions makes it suitable for
simulating physical models with complex behavior. Furthermore, this method often leads to
sparse linear systems, which can be efficiently solved using numerical techniques, thus reducing
computational costs and improving efficiency. However, the choice of collocation points plays a
crucial role in obtaining accurate results. Moreover, the method may encounter difficulties when
dealing with problems involving irregular or complex geometries. To the best of the authors’
knowledge, this is the first time FDEs have been solved using the Genocchi collocation technique.
The novelty of the paper lies in the following points:
• A new design of a novel collocation approach based on Genocchi polynomials for simulating
the model.
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• The proposed algorithm is implemented to solve both linear and nonlinear fractional models of
different complexities.
• An error analysis for the proposed algorithm is conducted to determine the error bound and
estimate the residual error.
• The effectiveness of the method in solving these models suggests its potential application to
other similar models.
• The proposed results obtained from the Genocchi collocation scheme are compared for each
variant to verify the accuracy of the newly designed system.

The organization of the paper is as follows: In Section 2, some basic properties and definitions
of fractional calculus are illustrated. Section 3 provides the properties of Genocchi polynomials,
which are used in the subsequent sections to simulate the general model. Section 4 introduces
a new approach to illustrate the main steps for solving the main model. Section 5 is devoted
to investigating the error bound and residual error function of the proposed method through
theorems. In Section 6, multiple examples are simulated to demonstrate the efficiency of our
technique. The conclusion for the work is given in Section 7.

2 Basic definitions

In this section, we will introduce some important definitions using later in next sections for solving
fractional boundary value problems, starting by the following definitions.

Definition 1 [3] The Riemann-Liouville fractional integral of order η of f (t) is given by

Iη f (t) =
1

Γ(η)

∫ t

0
(t − τ)η−1 f (τ)dτ, t > 0, η ∈ R+, (3)

where Γ(η) is the well known gamma function.

Definition 2 [3] The Riemann Liouville fractional derivative of order η > 0 is defined by

Dη
t (t) =

(

d

dt

)m

Im−η f (t), (η > 0, m − 1 < η < m).

Some properties of Iη are as following:

Iη Iϕ f (t) = Iη+ϕ f (t), η > 0, ϕ > 0, (4)

Iηtϕ =
Γ(ϕ + 1)

Γ(η + ϕ + 1)
tϕ+η . (5)

Definition 3 [3] The Caputo fractional derivative Dη of a function f (t) is defined as

Dη f (t) =
1

Γ(n − η)

∫ t

0

f (n)(τ)

(t − τ)η−n+1 dτ, n − 1 < η < n, n ∈ N. (6)
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Some properties of Caputo fractional derivatives are as follows:

Dηtϕ =






0, ϕ ∈ N ∪ {0} and ϕ < ⌈η⌉
Γ(ϕ+1)

Γ(η+1−ϕ)
tϕ−η , ϕ ∈ N ∪ {0} and ϕ ≥ ⌈η⌉

or ϕ /∈ N and ϕ > ⌊η⌋
, (7)

where, ⌊η⌋ denotes the largest integer less than or equal to η and ⌈η⌉ is the smallest integer greater
than or equal to η.

DηC = 0, C = constant. (8)

The operator Dη is a linear operator, since,

Dη (A f (t) + Bg(t)) = ADη f (t) + BDη g(t), (9)

where A and B are constants. The novelty of the paper lies in the fact that the use of the Genocchi
polynomials has many advantages over other similar polynomials. The Genocchi polynomials
have the advantage of providing accurate results with high accuracy of less basis. In addition, the
computational cost of finding an accurate solution is less than the other methods in the literature.

3 Fundamental relations

In this section, we will illustrate the basic concepts of Genocchi polynomials and Genocchi
operational matrix for integer and fractional derivatives that will be needed in later sections for
solving this type of equation.

Genocchi polynomials and their properties

In this subsection, we will illustrate the basic concepts of Genocchi polynomials. The generating
function of the Genocchi polynomials can take the following form [35–37]:

Q(x, t) =
2text

et + 1
=

∞∑

n=0

Gn(x)
tn

n!
, (|t| < π), (10)

where Gn(x) is the Genocchi polynomials of degree n and are defined on interval [0, 1] as

Gn(x) =
n∑

k=0

(

n

k

)

Gkxn−k, (11)

where Gk is the Genocchi numbers and are defined by the generating function

Q(t) =
2t

et + 1
=

∞∑

n=0

Gn
tn

n!
, (|t| < π). (12)

The first few Genocchi polynomials can be found in the form

G1(x) = 1,
G2(x) = 2x − 1,

G3(x) = 3x2
− 3x,
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G4(x) = 4x3
− 6x2 + 1,

G5(x) = 5x4
− 10x3 + 5x.

These polynomials have many interesting properties and one of these important properties is
the differential property. By differentiating both sides of Eq. (11) with respect to x, we get the
following:

dGn(x)

dx
= nGn−1(x), n ≥ 1. (13)

If we differentiate Eq. (11) k times, then we have

dkGn(x)

dxk
=

{
0, n ≤ k

k!(n
k)Gn−k(x), n > k

k, n ∈ N ∪ {0}, (14)

Gn(1) + Gn(0) = 0, n > 1. (15)

In the next two subsections, we introduce the differentiation matrices for both integer and fractional
derivatives of boundary value problems.

Genocchi operational matrix of integer derivative

First, we express the approximate solution in Eq. (11) in the following form

uN(x) =
N∑

n=1

cnGn(x) = G(x)C, (16)

where C are the unknown Genocchi coefficients and G(x) are the Genocchi polynomials of the
first kind, then they are given by

Ct =
[

c1 c2 ... cN

]

, G(x) =
[

G1(x) G2(x) ... GN(x)
]

.

The kth derivative of uN(x) can be expressed by

u
(k)
N (x) =

N∑

n=1

cnG
(k)
n (x) = G(x)MkC, k = 1, 2, ... (17)

where M is N × N operational matrix of derivative, and is given by

M =















0 2 0 · · · 0
0 0 3 · · · 0
...

...
... · · · ...

0 0 0 · · · N

0 0 0 · · · 0















.
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Genocchi operational matrix of fractional derivative

We can find the fractional derivative of Genocchi polynomials in Eq. (11) from the following
theorem.

Theorem 1 [20] Let G(x) =
[

G1(x) G2(x) ... GN(x)
]

is the Genocchi vector and η > 0. Then the

fractional derivative for any Genocchi polynomial can be found from

DηGi(x) =
i∑

k=1

i!Gi−k

(i − k)!k!
Dηxk =

i∑

k=⌈η⌉

i!Gi−k

(i − k)!Γ(k + 1 − η)
xk−η , (18)

where

DηGi(x) = 0, i ≤ ⌈η⌉,

and the matrix form of the fractional derivative will be in the form

H(x) =
[

0 0 ... H⌈η⌉+1(x) ... HN(x)
]

. (19)

4 Method of solution

In this section, we solve the fractional differential boundary value problems with linear and
nonlinear forms using Genocchi collocation method. First we approximate u(x) as following

uN(x) =
N∑

n=1

cnGn(x) = G(x)C, (20)

and approximate the fractional derivative from Eq. (20) as

u
(η)
N (x) =

N∑

n=1

cnG
(η)
n (x) = H(x)C. (21)

Linear case

First, let µ(x, u(x)) = f (x) in Eq. (1), then

u(η)(x) =
r∑

m=0

σmu(m)(x) + f (x), 0 < x < 1, r − 1 < η < r, (22)

after substituting equations (20), (21), and (17) in Eq. (22), we reach the following theorem.

Theorem 2 If the assumed approximate solution of the fractional problem (22), and (2) are (20), (17), and

(21), then the discrete Genocchi system for calculating the unknown coefficients is given by

N∑

n=1

cnHn(xi) =
r∑

m=0

N∑

n=1

σmcnG
(m)
n (xi) + f (xi). (23)
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Proof By replacing each term in Eq. (22) with its approximation from equations (20), (17), and (21)
and substituting collocation points given by the following equation

xi =
i − 1
N − 1

, i = 1, 2, ..., N. (24)

■

The matrix form of system (23) can be written by

ΨC = F, (25)

where

Ψ = H−

(

r∑

m=0

σmGMm

)

, (26)

and

σm =











σm 0 ... 0
0 σm ... 0
...

...
. . .

...
0 0 ... σm











, F =











f (x1)

f (x2)
...

f (xN)











,

H =













0 0 ... H⌈η⌉+1(x1) ... HN(x1)

0 0 ... H⌈η⌉+1(x2) ... HN(x2)
...

... ...
... ...

...
0 0 ... H⌈η⌉+1(xN) ... HN(xN)













.

The matrix forms of boundary conditions are given by

G(0)MiC = [αi], G(1)MiC = [βi]. (27)

After replacing r rows of the augmented matrix with boundary conditions, then the new aug-
mented matrix takes the form

Ψ̄C = F̄. (28)

Finally, obtaining the unknown coefficients C by solving the resulting N × N system of linear
algebraic equations.
In the next subsection, we will treat with nonlinear case of fractional boundary value problem.

Nonlinear case

By replacing µ(x, u(x)) =
∑r

m=1 ζmum(x) + f (x), we reach the nonlinear form

u(η)(x) =
r∑

m=0

σmu(m)(x) +
r∑

m=1

ζmum(x) + f (x), 0 < x < 1, r − 1 < η < r, (29)
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the nonlinear terms in Eq. (29) can be approximated according to the following theorem:

Theorem 3 [38] The nonlinear term of the function uv(xi), i = 1, 2, ..., N can be expressed as in the

following matrix form











um(x1)

um(x2)
...

um(xN)











=











u(x1) 0 ... 0
0 u(x2) ... 0
...

...
. . .

...

0 0 ... u(xN)











m−1 









u(x1)

u(x2)
...

u(xN)











= (Ū)m−1
U

= (ḠC̄)m−1GC,

(30)

where

Ḡ =











G(x1) 0 ... 0
0 G(x2) ... 0
...

...
. . .

...

0 0 ... G(xN)











, C̄ =











C 0 ... 0
0 C ... 0
...

...
. . .

...

0 0 ... C











.

After substituting equations (20), (21), and (17) in Eq. (29), we reach the following theorem:

Theorem 4 If the assumed approximate solution of the fractional problem (29), and (2) are (20), (17), and

(21), then the discrete Genocchi system for calculating the unknown coefficients is given by

N∑

n=1

cnHn(xi) =
r∑

m=0

N∑

n=1

σmcnG
(m)
n (xi) +

r∑

m=1

N∑

n=1

ζmcnGm
n (xi) + f (xi). (31)

Proof We begin by replacing each term in Eq. (29) with its approximation from equations (20),
(17), and (21). Then, by substituting collocation points given by Eq. (24) into this system, we get
the following matrix form:

ΨC = F, (32)

where

Ψ = H −

(

r∑

m=0

σmGMm
−

r∑

m=1

ζm(ḠC̄)m−1G

)

, (33)

and

ζm =











ζm 0 ... 0
0 ζm ... 0
...

...
. . .

...
0 0 ... ζm











,
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after replacing r rows of augmented matrix with boundary conditions matrices from Eq. (27), then
the new augmented matrix take the form

Ψ̄C = F̄. (34)

Finally, obtaining the unknown coefficients C by solving the resulting N × N system of nonlinear
algebraic equations by using the following algorithm:
Algorithm

• input (integer) N.
• input (double) tol.
• input (array) Cold = C0, (initial approximation, C0 with N dimension, can be chosen so that the
boundary conditions are satisfied.)
• Ψ̄(Cold).Cnew = F̄ is a linear algebraic equation system. This system is solved and Cnew is
found.
• If |Cold −Cnew| < tol then Cnew = C. break (the program is finished).
• Else then Cold ← Cnew.
• Go to the second stage. ■

5 Error bound

Error bound estimate

In this subsection, we will provide the error bound for the obtained solution of model 1. We
provide the error bound for a special case of the model where the value of µ(x, u(x)) = g(x).
Suppose that g(x) ∈ Cn+1[0, 1] and the space Ξ = Span{G1(x), G2(x), ..., GN(x)}. Next, if the best
approximation of g(x) can be in the form CTG(x), then we reach the following theorem:

Theorem 5 Suppose that g(x) ∈ Cn+1[0, 1] and define Ξ = Span{G1(x), G2(x), ..., GN(x)} where

CTG(x) is the best approximation of the function g(x) out of Ξ, then we have

∥g(x)− CTG(x)∥ ≤ ℑ
2m+3

2 ℜ

(m + 1)!
√

2m + 3
, x ∈ [xi, xi+1] ⊆ [0, 1],

where ℜ = max
x∈[xi,xi+1]

|g(m+1)(x)| and ℑ = xi+1 − xi.

Proof To prove this theorem. We first expand the function u(x) in the following Taylor expansion
form

u1(x) = g(xi) + g
′
(xi)(x − xi) + g

′′
(xi)

(x − xi)
2

2!
+ ... + g

(n)(xi)
(x − xi)

n

n!
. (35)

Then, for the previous form of Taylor expansion, if we apply the modulus for both sides of Eq. (35),
we can deduce in the following compact form

|g(x)− u1(x)| ≤ |g(n+1)(ℵx)|
(x − xi)

n+1

(n + 1)!
,

where

ℵx ∈ [xi, xi+1].
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With the assumption that CTG(t) is the best approximation of the function g(x) out of the space Ξ

and that u1(t) ∈ Ξ, then we have

∥g(x)− CTG(x)∥2
2 ≤ ∥g(x)− u1(x)∥2

2 =

∫ xi+1

xi

|g(h)− u1(h)|
2dh

≤
∫ xi+1

xi

∥g(x)(m+1)(ℵx)∥2 (h − xi)
m+1

(m + 1)!
dh ≤ ℑ2m+3ℜ2

((m + 1)!)2(2m + 3)
.

Then, finally taking the square root for both sides, we conclude that

∥g(x)− CTG(x)∥ ≤ ℑ
2m+3

2 ℜ

(m + 1)!
√

2m + 3
.

■

This theorem provides a local error bound for the proposed main equation of O(ℑ
2m+3

2 ).

Residual error function

In this subsection, We can easily check the accuracy of the suggested method in terms of the
residual error function. Since the truncated Genocchi series in Eq. (16) is considered as an
approximate solution of Eq. (1), then by substituting the approximate solution uN(x) and its
derivatives into Eq. (1), the resulting equation must be satisfied, and when substituting the
collocation points defined as

x = xi ∈ [0, 1], i = 1, 2, ..., N,

the residual error function for the approximate solution can be calculated in the form

| ℜN(xi) |=| u(η)(x)−
r∑

m=0

σmu(m)(x)− µ(x, u(x)) | ∼= 0, (36)

or

ℜN(xi) ≤ 10−τi,

where ℜN(xi) are the residual error function defined at the collocation points xi and τi is any
positive integer. If max 10τi = 10τ (τ is any positive integer) can be prescribed which can be
considered as the tolerance for the obtained error, then the value of the number of iterations N is
increased until the residual error ℜN(xi) at each of the points become smaller than the prescribed
tolerance 10τ which shall prove that the method converge to the desired solution as the residual
error approaches zero. Also, we can calculate the error function at each of the collocation points to
prove the efficiency of the proposed technique which can be described as

ℜN(xi) = u(η)(x)−
r∑

m=0

σmu(m)(x)− µ(x, u(x)).

Then, if uN(x)→ 0, as N has sufficiently enough value, then the residual error decreases and this
proves that the proposed method converges correctly.
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6 Numerical simulation

In this section, we present 7 examples [20, 21, 25, 33, 34, 39, 40] for linear and nonlinear forms of
fractional problems using Genocchi collocation method. The error measurements for verifying the
results in the later examples can be used in the following form

eN(x) = |(u(x)− uN(x))|,

and the maximum absolute error is given by

∥eN(x)∥∞ = max∥u(x)− uN(x)∥.

In addition, the L2 norm can be defined in the following form:

∥eN(x)∥2 =

√

√

√

√

1
N

N∑

i=1

(eN(x))2.

Example 1 [21] Consider the following linear fractional BVP

u ′′ + u(3/2) + u = x + 1, 0 < x < 1,

with boundary conditions

u(0) = 1, u(1) = 2,

and exact solution u = x + 1. We provide the details for obtaining the approximate solution for N = 6 as

follows, let the approximate solution in the form

u(x) = c1G1(x) + c2G2(x) + · · ·+ c6G6(x),

then

M2 =



















0 0 6 0 0 0
0 0 0 12 0 0
0 0 0 0 20 0
0 0 0 0 0 30
0 0 0 0 0 0
0 0 0 0 0 0



















.

Using collocation points xi =
i−1

5 , i = 1, 2, · · · , 6, then we have

G =



















1 −1 0 1 0 −3
1 −0.6 −0.48 0.792 0.928 −2.42208
1 −0.2 −0.72 0.296 1.488 −0.92256
1 0.2 −0.72 −0.296 1.488 0.92256
1 0.6 −0.48 −0.792 0.928 2.42208
1 1 0 −1 0 3



















(6×6)

,
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H =



















0 0 0 0 0 0
0 0 3.02776 −4.44071 −3.39109 13.42249
0 0 4.28190 −3.99644 −7.76451 12.95335
0 0 5.24423 −2.09770 −10.90800 6.37099
0 0 6.05552 0.80740 −11.62659 −3.38417
0 0 6.77027 4.51352 −9.02703 −12.57337



















(6×6)

,

and the augmented matrix becomes as

[Ψ, F] =



















1 −1 6 −11 0 27 , 1
1 −0.6 8.54776 −10.84871 −12.06309 34.76041 , 1.2
1 −0.2 9.56190 −6.10044 −20.67651 20.91079 , 1.4
1 0.2 10.52423 0.00631 −23.82000 −1.58645 , 1.6
1 0.6 11.57552 7.21540 −20.29860 −24.72209 , 1.8
1 1 12.77028 15.51352 −9.02703 −39.573377 , 2



















.

Next, the augmented matrix for the boundary conditions according to Eq. (27) can take the forms

[ψ1, α0] =
[

1 −1 0 1 0 −3 , 1
]

,

[ψ2, β0] =
[

1 1 0 −1 0 3 , 2
]

.

Replacing the first and last rows with the previous representation of the boundary conditions, the new

augmented matrix takes the form

[Ψ̄, F̄] =



















1 −1 0 1 0 −3 , 1
1 −0.6 8.54776 −10.84871 −12.06309 34.76041 , 1.2
1 −0.2 9.56190 −6.10044 −20.67651 20.91079 , 1.4
1 0.2 10.52423 0.00631 −23.82000 −1.58645 , 1.6
1 0.6 11.57552 7.21540 −20.29860 −24.72209 , 1.8
1 1 0 −1 0 3 , 2



















.

Then, by solving the above linear system the Genocchi coefficients can be found as

C =



















1.5000
0.5000

−3.1258E − 17
−2.6724E − 16
−1.3235E − 17
−8.2262E − 17



















,

and the approximate solution is

u6(x) = 1 + x + 0.2757E − 15x2
− 0.9366E − 15x3 + 0.1168E − 14x4

− 0.4936E − 15x5.

By using Genocchi collocation method for solving this form of fractional boundary value problem at N = 6
having the exact solution u = x + 1, we reach that the approximate solution is equal to the exact solution

with running time 5.079 seconds. For N = 14 the absolute error and the residual error are represented in
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Table 1. From this table, it can be noted that the method provides accurate results using a few numbers of

Genocchi bases. In addition, a comparison between exact and approximate solutions is presented in Figure 1.

Table 1. Absolute and residual error for Example 1 at N = 14.

x |eN(x)| |ℜN |

0.0 1.5543E-15 9.1807E-15
0.1 1.3323E-15 9.6109E-16
0.2 8.8818E-16 5.0143E-16
0.3 4.4409E-16 3.0309E-16
0.4 0.0000 3.1559E-16
0.5 2.2204E-16 1.4750E-16
0.6 4.4409E-16 1.2567E-16
0.7 8.8818E-16 1.1833E-16
0.8 1.1102E-15 6.3519E-17
0.9 1.5543E-15 1.3599E-16
1.0 1.7764E-15 1.6221E-15

0.0 0.2 0.4 0.6 0.8 1.0
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

u(
x)

x

 Exact
 Approximate

Figure 1. Comparison between exact and Genocchi solution for Example 1.

Example 2 [21, 22] Consider the linear fractional IVP taken the form

u ′′ + u(3/2) + u = 7x +
8√
π

x3/2 + x3 + 1, 0 < x < 1,

with initial conditions

u(0) = 1, u ′(0) = 1,
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and exact solution

u = x3 + x + 1.

Comparing the approximate solution obtained by Genocchi collocation method and shifted Legendre col-

location method [21] at N = 15 with the exact solution in Table 2 and the Genocchi solution and shifted

Legendre solution are represented in Figure 3. The absolute error for Genocchi solution when N = 15 is

appearing in Table 3 and compared to the results reported by using the Lucas Wavelet Scheme in [22]. Based

on these results, it can be seen that the proposed method provides better accuracy. In addition, it can be

noticed from Figure 2, which appears the exact and Genocchi approximate solution that our method is very

accurate.

Table 2. Exact and approximate solution for Example 2.

x Exact Approximate Shifted Legendre [21]
0.10 1.101000 1.101000 1.101000
0.25 1.265625 1.265625 1.265625
0.50 1.625000 1.625000 1.625000
0.75 2.171875 2.171875 2.171875
1.0 3.000000 3.000000 3.000002

Table 3. Absolute error for Example 2.

x |eN(x)| Lucas Wavelet [22]
0.0 2.2204E-16 ×
0.1 4.4409E-16 1.99E-15
0.2 4.4409E-16 ×
0.3 6.6613E-16 ×
0.4 6.6613E-16 ×
0.5 6.6613E-16 4.90E-14
0.6 6.6613E-16 ×
0.7 4.4409E-16 ×
0.8 0.0000 ×
0.9 0.0000 ×
1.0 4.4409E-16 1.96E-13

Example 3 [39] Consider another form of linear fractional IVP

u(η) + u = (x2 + 2x2−η/Γ(3 − η)) + (x3 + 6x3−η/Γ(4 − η)), 0 < x < 1,

with initial condition

u(0) = 0,

the exact solution

u = x3 + x2.
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0.0 0.2 0.4 0.6 0.8 1.0
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u(
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x

 Exact
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Figure 2. Comparison between exact and Genocchi solution for Example 2.

0.0 0.2 0.4 0.6 0.8 1.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

u(
x)

x

 Exact
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Figure 3. Comparison between Genocchi solution and Shifted Legendre for Example 2.

Taking the value of η = 1/2, we reach the absolute error for N = 6 using Genocchi collocation method

tabulated in Table 4. In addition, the running time for simulating the results is found to be 5.651 seconds

with an error norm of ∥e6(x)∥2 = 3.0978E − 15. The value of the acquired norm reveals the ability of the

method to provide accurate solutions. In addition, the behavior of exact and approximate Genocchi solution

is in Figure 4.
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Table 4. Absolute error for Example 3.

x |eN(x)|

0.0 1.8111E-15
0.1 1.9082E-16
0.2 1.5127E-15
0.3 2.9143E-15
0.4 3.8580E-15
0.5 4.3299E-15
0.6 4.4409E-15
0.7 4.2188E-15
0.8 3.7748E-15
0.9 2.8866E-15
1.0 1.7764E-15

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
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1.8
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u(
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x
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Figure 4. Comparison between exact and Genocchi solution for Example 3.

Example 4 [20] Consider the following nonlinear fractional BVP

u ′′ + Γ(
4
5
)x

6
5 u( 6

5 ) +
11
9

Γ(
5
6
)x

1
6 u( 1

6 ) − (u ′)2 = 2 +
1

10
x2, 0 < x < 1,

with boundary conditions

u(0) = 1, u(1) = 2,

and exact solution

u = x2 + 1.

Seeing from Table 5 which represents the absolute error obtained by Genocchi collocation method for N = 6
with a running time 10.912 seconds, our method is very accurate for solving this type of fractional BVPs.
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Besides that comparison between exact and approximate Genocchi solution is shown in Figure 5.

Table 5. Absolute error for Example 4.

x |eN(x)|

0.0 0.0000
0.1 3.1752E-14
0.2 5.6177E-14
0.3 6.6391E-14
0.4 4.5519E-14
0.5 1.9762E-14
0.6 1.3101E-13
0.7 2.6557E-13
0.8 3.6660E-13
0.9 3.3085E-13
1.0 0.0000

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

u(
x)

x

 Exact
 Approximate

Figure 5. Comparison between exact and Genocchi solution for Example 4.

Example 5 [33] Consider the following nonlinear fractional BVP

u( 3
2 ) − u3 =

Γ(2.9)
Γ(1.4)

x0.4
− (x1.9

− 1)3,

with boundary conditions

u(0) = −1, u(1) = 0,
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the exact solution is

u = x1.9
− 1.

Representing the absolute error obtained by Genocchi collocation method with N = 10 in Table 6 and

the comparison between maximum absolute error obtained by Genocchi collocation method and spline

collocation method [33] for different values of N in Table 7. In addition, the exact and approximate Genocchi

solutions are shown in Figure 6.

Table 6. Absolute error for Example 5.

x |eN(x)|

0.0 6.6613E-16
0.1 2.3761E-4
0.2 2.9613E-4
0.3 3.0385E-4
0.4 2.9104E-4
0.5 2.6203E-4
0.6 2.1928E-4
0.7 1.6267E-4
0.8 9.4943E-5
0.9 1.2709E-5
1.0 6.3838E-16

Table 7. Comparison between maximum absolute error for Example 5.

N ∥eN(x)∥ Spline collocation [33]
4 1.8688E-03 1.24E-3
8 4.6148E-04 3.57E-4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

u(
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x

 Exact
 Approximate

Figure 6. Comparison of exact and Genocchi solutions at η = 3/2 for Example 5.
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Example 6 [40] Consider the following nonlinear fractional BVP

u( 3
2 ) + e−2πu2 =

105
√

π

32
x2 + e−2πx7, 0 < x < 1,

with boundary conditions

u(0) = 0, u(1) = 1,

the exact solution

u = x7/2.

Table 8 represents the comparison between the absolute error obtained by Genocchi collocation method

N = 10, and Legendre wavelet method [34]. In addition, it is found that the error measure of the

∥e6(x)∥2 = 8.0268E − 06 and the behavior of exact and approximate solutions is graphed in Figure 7.

Table 8. Comparison of absolute error for Example 6.

x |eN(x)| Legendre wavelet [34]
0.0 5.7246E-17 x
0.1 1.0507E-5 9.6996E-5
0.2 1.3141E-5 9.3927E-4
0.3 1.2742E-5 1.5087E-3
0.4 1.1182E-5 3.3989E-4
0.5 8.7996E-6 2.4163E-3
0.6 5.9264E-6 3.1023E-4
0.7 2.5945E-6 1.4799E-3
0.8 9.2167E-7 6.3407E-4
0.9 5.2079E-6 4.6701E-3
1.0 1.1102E-16 x
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0.0

0.2
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0.8

1.0

u(
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x
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 Approximate

Figure 7. Comparison between exact and Genocchi solution at η = 3/2 for Example 6.
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Example 7 [25] Consider the following nonlinear fractional BVP

u(5/4)
− u2 = −

Γ(128/17)
Γ(128/17 − η)

x111/17−η
− (x − x111/17)2, 0 < x < 1,

with boundary condition

u(0) = 0, u(1) = 0,

the exact solution

u = x − x111/17.

A comparison between exact and approximate Genocchi solution is represented in Figure 8, and the absolute

error for N = 10 obtained by Genocchi collocation method is represented in Table 9.

Table 9. Absolute error for Example 7.

x |eN(x)|

0.0 1.9559E-16
0.1 1.4825E-07
0.2 3.2983E-08
0.3 1.0581E-07
0.4 2.6299E-07
0.5 4.4011E-07
0.6 6.3645E-07
0.7 8.6430E-07
0.8 1.1047E-06
0.9 1.4344E-06
1.0 1.9559E-16

0.0 0.2 0.4 0.6 0.8 1.0
-0.1

0.0
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Figure 8. Comparison between exact and Genocchi solution at η = 5/4 for Example 7.
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7 Conclusion

In this paper, we have examined the application of the Genocchi collocation technique for solving
a general form of linear and nonlinear fractional models. The models of fractional order have great
applications in science and engineering. Some basic definitions for the fractional order derivative
are introduced and utilized for treating the fractional term in the main model. Then, the collocation
technique is adapted for converting the model into a system of nonlinear algebraic equations
which is then solved using a novel technique to find the values of the unknown coefficients, and
hence, the solution is found. The error bound for the proposed technique is provided ensuring that

the proposed technique has a local bound of O(ℑ
2m+3

2 ). The accuracy of the proposed technique
is tested for several examples of different forms and the results are compared to other forms the
literature provides the effectiveness of the technique in providing more accurate results with less
computational cost. Thus, the method proved to be an effective technique for simulating similar
models and has other important applications.
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[11] Işık, E. and Daşbaşı, B. A compartmental fractional-order mobbing model and the determina-
tion of its parameters. Bulletin of Biomathematics, 1(2), 153-176, (2023). [CrossRef]

[12] Yavuz, M., Sulaiman, T.A., Usta, F. and Bulut, H. Analysis and numerical computations of the
fractional regularized long-wave equation with damping term. Mathematical Methods in the

Applied Sciences, 44(9), 7538-7555, (2021). [CrossRef]

[13] Yavuz, M., Özköse, F., Susam, M. and Kalidass, M. A new modeling of fractional-order and
sensitivity analysis for Hepatitis-B disease with real data. Fractal and Fractional, 7(2), 165,
(2023). [CrossRef]

[14] Elsonbaty, A., Alharbi, M., El-Mesady, A. and Adel, W. Dynamical analysis of a novel discrete
fractional lumpy skin disease model. Partial Differential Equations in Applied Mathematics, 9,
100604, (2024). [CrossRef]

[15] El-Mesady, A., Adel, W., Elsadany, A.A. and Elsonbaty, A. Stability analysis and optimal
control strategies of a fractional-order monkeypox virus infection model. Physica Scripta, 98(9),
095256, (2023). [CrossRef]

[16] Evirgen, F., Uçar, E., Uçar, S. and Özdemir, N. Modelling Influenza A disease dynamics under
Caputo-Fabrizio fractional derivative with distinct contact rates. Mathematical Modelling and

https://doi.org/10.1016/j.jcp.2019.03.008
https://doi.org/10.1155/2011/562494
https://doi.org/10.1007/s12190-010-0455-y
https://doi.org/10.59292/bulletinbiomath.2023001
https://doi.org/10.33401/fujma.562819
https://doi.org/10.33401/fujma.888390
https://doi.org/10.59292/bulletinbiomath.2023005
https://doi.org/10.3934/biophy.2023014
https://doi.org/10.59292/bulletinbiomath.2023008
https://doi.org/10.1002/mma.6343
https://doi.org/10.3390/fractalfract7020165
https://doi.org/10.1016/j.padiff.2023.100604
https://doi.org/10.1088/1402-4896/acf16f


374 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 4, 351–375

Numerical Simulation with Applications, 3(1), 58-73, (2023). [CrossRef]

[17] Mpungu, K. and Ma’aruf Nass, A. On complete group classification of time fractional systems
evolution differential equation with a constant delay. Fundamental Journal of Mathematics and

Applications, 6(1), 12-23, (2023). [CrossRef]

[18] Jajarmi, A. and Baleanu, D. A new iterative method for the numerical solution of high-order
non-linear fractional boundary value problems. Frontiers in Physics, 8, 220, (2020). [CrossRef]

[19] Patnaik, S., Sidhardh, S. and Semperlotti, F. A Ritz-based finite element method for a fractional-
order boundary value problem of nonlocal elasticity. International Journal of Solids and Struc-

tures, 202, 398-417, (2020). [CrossRef]

[20] Isah, A. and Phang, C. New operational matrix of derivative for solving non-linear fractional
differential equations via Genocchi polynomials, Journal of King Saud University-Science, 31(1),
1-7, (2019). [CrossRef]

[21] El-Gamel, M. and El-Hady, M.A. Numerical solution of the Bagley-Torvik equation by
Legendre-collocation method. SeMA Journal, 74, 371-383, (2017). [CrossRef]

[22] Koundal, R., Kumar, R., Srivastava, K. and Baleanu, D. Lucas wavelet scheme for fractional
Bagley–Torvik equations: Gauss–Jacobi approach. International Journal of Applied and Computa-

tional Mathematics, 8, 2-16, (2022). [CrossRef]

[23] Abd-Elhameed, W.M. and Youssri, Y.H. Sixth-kind Chebyshev spectral approach for solv-
ing fractional differential equations. International Journal of Nonlinear Sciences and Numerical

Simulation, 20(2), 191-203, (2019). [CrossRef]

[24] Zaky, M.A. Existence, uniqueness and numerical analysis of solutions of tempered fractional
boundary value problems. Applied Numerical Mathematics, 145, 429-457, (2019). [CrossRef]

[25] Wang, C., Wang, Z. and Wang, L. A spectral collocation method for nonlinear fractional
boundary value problems with a Caputo derivative. Journal of Scientific Computing, 76, 166-
188, (2018). [CrossRef]

[26] Ismail, M., Saeed, U., Alzabut, J. and Ur Rehman, M. Approximate solutions for fractional
boundary value problems via Green-CAS wavelet method. Mathematics, 7(12), 1164, (2019).
[CrossRef]

[27] Akgül, A. and Karatas Akgül, E. A novel method for solutions of fourth-order fractional
boundary value problems, Fractal and Fractional, 3(2), 33, (2019). [CrossRef]

[28] Li, X. and Wu, B. A new reproducing kernel collocation method for nonlocal fractional
boundary value problems with non-smooth solutions. Applied Mathematics Letters, 86, 194-199,
(2018). [CrossRef]

[29] Ur Rehman, M. and Khan, R.A. A numerical method for solving boundary value problems
for fractional differential equations. Applied Mathematical Modelling, 36(3), 894-907, (2012).
[CrossRef]

[30] Youssef, I.K. and El Dewaik, M.H. Solving Poisson’s equations with fractional order using
Haar wavelet. Applied Mathematics and Nonlinear Sciences, 2(1), 271-284, (2017). [CrossRef]

[31] Saeed, U. and Ur Rehman, M. Assessment of Haar wavelet-quasilinearization technique in
heat convection-radiation equations. Applied Computational Intelligence and Soft Computing,

2014, 1–5, (2014). [CrossRef]

[32] Pedas, A. and Tamme, E. Piecewise polynomial collocation for linear boundary value prob-
lems of fractional differential equations. Journal of Computational and Applied Mathematics,

https://doi.org/10.53391/mmnsa.1274004
https://doi.org/10.33401/fujma.1147657
https://doi.org/10.3389/fphy.2020.00220
https://doi.org/10.1016/j.ijsolstr.2020.05.034
https://doi.org/10.1016/j.jksus.2017.02.001
https://doi.org/10.1007/s40324-016-0089-6
https://doi.org/10.1007/s40819-021-01206-z
https://doi.org/10.1515/ijnsns-2018-0118
https://doi.org/10.1016/j.apnum.2019.05.008
https://doi.org/10.1007/s10915-017-0616-3
https://doi.org/10.3390/math7121164
https://doi.org/10.3390/fractalfract3020033
https://doi.org/10.1016/j.aml.2018.06.035
https://doi.org/10.1016/j.apm.2011.07.045
https://doi.org/10.21042/AMNS.2017.1.00023
https://doi.org/10.1155/2014/454231


El-Gamel et al. | 375

236(13), 3349-3359, (2012). [CrossRef]

[33] Pedas, A. and Tamme, E. Spline collocation for nonlinear fractional boundary value problems.
Applied Mathematics and Computation, 244, 502-513, (2014). [CrossRef]

[34] Ur Rehman, M. and Khan, R.A. The Legendre wavelet method for solving fractional differen-
tial equations. Communications in Nonlinear Science and Numerical Simulation, 16(11), 4163–4173,
(2011). [CrossRef]

[35] Araci, S. Novel identities for q-Genocchi numbers and polynomials. Journal of Function Spaces

and Applications, 2012, 214961, (2012). [CrossRef]

[36] Ozden, H., Simsek, Y. and Srivastava, H.M. A unified presentation of the generating functions
of the generalized Bernoulli, Euler and Genocchi polynomials. Computers & Mathematics with

Applications, 60(10), 2779–2787, (2010). [CrossRef]

[37] Isah, A. and Phang, C. Operational matrix based on Genocchi polynomials for solution of
delay differential equations. Ain Shams Engineering Journal, 9(4), 2123–2128, (2018). [CrossRef]

[38] El-Gamel, M., Mohamed, N. and Adel, W. Numerical study of a nonlinear high order bound-
ary value problems using Genocchi collocation technique. International Journal of Applied and

Computational Mathematics, 8, 143, (2022). [CrossRef]

[39] Li, Z., Yan, Y. and Ford, N.J. Error estimates of a high order numerical method for solving
linear fractional differential equations. Applied Numerical Mathematics, 114, 201–220, (2017).
[CrossRef]

[40] Al-Mdallal, Q.M. and Hajji, M.A. A convergent algorithm for solving higher-order nonlinear
fractional boundary value problems. Fractional Calculus and Applied Analysis, 18(6), 1423–1440,
(2015). [CrossRef]

Mathematical Modelling and Numerical Simulation with Applications (MMNSA)
(https://dergipark.org.tr/en/pub/mmnsa)

Copyright: © 2023 by the authors. This work is licensed under a Creative Commons Attribution
4.0 (CC BY) International License. The authors retain ownership of the copyright for their article,
but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in
MMNSA, so long as the original authors and source are credited. To see the complete license
contents, please visit (http://creativecommons.org/licenses/by/4.0/).

How to cite this article: El-Gamel, M., Mohamed, N. & Adel, W. (2023). Genocchi col-
location method for accurate solution of nonlinear fractional differential equations with er-
ror analysis. Mathematical Modelling and Numerical Simulation with Applications, 3(4), 351-375.
https://doi.org/10.53391/mmnsa.1373647

https://doi.org/10.1016/j.cam.2012.03.002
https://doi.org/10.1016/j.amc.2014.07.016
https://doi.org/10.1016/j.cnsns.2011.01.014
https://doi.org/10.1155/2012/214961
https://doi.org/10.1016/j.camwa.2010.09.031
https://doi.org/10.1016/j.asej.2016.09.015
https://doi.org/10.1007/s40819-022-01262-z
https://doi.org/10.1016/j.apnum.2016.04.010
https://doi.org/10.1515/fca-2015-0082
https://dergipark.org.tr/en/pub/mmnsa
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/.


Mathematical Modelling and Numerical Simulation
with Applications, 2023, 3(4), 376–390

https://dergipark.org.tr/en/pub/mmnsa

ISSN Online: 2791-8564 / Open Access

https://doi.org/10.53391/mmnsa.1398320

R E S E A R C H PA P E R

The role of calcium dynamics with amyloid beta on
neuron-astrocyte coupling

Hemlata Jethanandani ID 1,‡, Brajesh Kumar Jha ID 2,*,‡ and Manisha Ubale ID 1,‡

1Department of Science & Humanities, Indus Institute of Science Humanities & Liberal Studies

(IISHLS), Indus University Rancharda, Ahmedabad-382115 Gujarat, India, 2Department of

Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar 382426,

Gujarat, India

*Corresponding Author
‡ hemlatajethanandani.rs@indusuni.ac.in (Hemlata Jethanandani); brajesh.jha@sot.pdpu.ac.in (Brajesh Kumar Jha);
manishadalbhide.gen@indusuni.ac.in (Manisha Ubale)

Abstract

Amyloid beta (Aβ) plaques are associated with neurodegenerative diseases such as Alzheimer’s disease.
Due to the involvement of Aβ plaques in the functioning of the brain; cognitive decline disrupts calcium
homeostasis in nerve cells and causes abnormal calcium ions (Ca2+) signaling patterns. In consequence,
there is enhanced neuronal excitability, compromised synaptic transmission, and decreased astrocytic
function. Neuron-astrocyte coupling through calcium dynamics with different neuronal functions has
been studied. Key signaling molecules in this process include Ca2+, which control several cellular
functions, including neurotransmission and astrocytic regulation. The mathematical model for neuron-
astrocyte communication has been developed to study the importance of calcium dynamics in signal
transduction between the cells. To understand the wide role of mitochondria, NCX, and amyloid
beta with various necessary parameters included in the model, Ca2+ signaling patterns have been
analyzed through amplitude modulation and frequency modulation. The results of the current model
are simulated and analyzed using XPPAUT. The findings of the current study are contrasted with
experimental data from an existing mathematical model that illustrates the impact of calcium oscillation
frequency and amplitude modulations in nerve cells.
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1 Introduction

Amyloid beta (Aβ) builds up in the brain and causes progressive cognitive impairment, which

are hallmarks of Alzheimer’s disease (AD), a debilitating neurodegenerative condition [1]. The
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complex interplay between Aβ and calcium dynamics in neurons and astrocytes has been brought

to light by recent studies [2]. Maintaining brain homeostasis depends on the neuron-astrocyte

connection, and disruptions in calcium signaling are linked to the etiology of AD. Neuronal

dysfunction and cell death in AD are believed to be profoundly influenced by the disruption of

Ca2+ homeostasis [3]. Maintaining appropriate Ca2+ levels requires neuron-astrocyte interaction,

and recent studies have shown the importance of mitochondria and NCX in this process [4].

In order to control Ca2+ signaling, these two cell types engage in intricate interactions known as

neuron-astrocyte coupling [5]. Through specialised transporters, astrocytes absorb excess synaptic

Ca2+, thereby buffering Ca2+ levels in neurons and reducing excitotoxicity [6]. By compromising

astrocytic Ca2+ regulation, Aβ has been demonstrated to interfere with this coupling and increase

neuronal susceptibility to Ca2+ overload [5].

An essential function of mitochondria is to preserve the Ca2+ homeostasis of neurons and astrocytic

membranes [7]. Research has indicated that an accumulation of Aβ within mitochondria can

impair their functionality and result in a higher generation of reactive oxygen species (ROS). Due

to decreased mitochondrial Ca2+ buffering, which lowers the effectiveness of Ca2+ clearance

within neurons and astrocytes, this mitochondrial dysfunction can cause problems with Ca2+

handling [8].

Apart from their function of buffering Ca2+, mitochondria also use processes like Ca2+ absorption

and release to modify Ca2+ signalling. These mechanisms can be changed by Aβ-induced mito-

chondrial dysfunction, which can impact the Ca2+ dynamics in neurons and astrocytes [9, 10].

Uncontrolled release of Ca2+ by malfunctioning mitochondria can lead to astrocytic dysfunction

and neuronal excitotoxicity [11, 12]. In neurons and astrocytes, the sodium-calcium exchanger

(NCX) plays a critical role in controlling intracellular Ca2+ levels [13]. It has been demonstrated

that Aβ disrupts NCX function by changing its expression and activity [14]. Further altering

neuron-astrocyte connection, dysregulated NCX can worsen Ca2+ dysregulation by increasing

Ca2+ inflow and impairing Ca2+ extrusion in both cell types [2]. The two main cell types in

the central nervous system are neurons and astrocytes, and the proper functioning of these two

populations is essential for brain maintenance [15]. Key signaling molecules, such as calcium ions

Ca2+, are involved in several cellular activities, such as neurotransmitter release, plasticity, and

synaptic transmission. Calcium signaling is a mechanism used by both neurons and astrocytes to

exchange information and react to modifications in the brain’s microenvironment [16]. Action po-

tentials are produced when neurons release neurotransmitters into the synaptic cleft, which causes

postsynaptic calcium influx [17]. Changes in synaptic activity and calcium levels are actively

sensed by astrocytes, which surround synapses with their tiny processes. Astrocytes can control

neuronal excitability and synaptic transmission through a process called gliotransmission [15].

Amyloid beta and calcium de-regulation Aβ, the pathogenic hallmark protein in AD, has been

shown to disrupt calcium homeostasis in neurons and astrocytes, with important effects for

neuron-astrocyte connection [18]. Aβ peptides have direct interactions with ion channels, in-

cluding those that control calcium levels, and cell membranes. Increased intracellular calcium

levels in neurons as a result of this interaction ultimately cause neuronal death, and synaptic

dysfunction [1, 11]. Astrocytic calcium dynamics are similarly impacted by Aβ exposure. The

removal of extracellular Aβ is mostly dependent on astrocytes, and an elevated Aβ load may cause

abnormal calcium signaling in astrocytes. Dysfunctional astrocytic calcium signaling undermines

their ability to support neurons, compromising synaptic function and neuronal survival [1, 12, 19].

Normally, astrocytes remove excess glutamate from synapses to avoid excitotoxicity. This func-

tion is compromised by Aβ-induced disturbances in astrocytic calcium signaling, which prolong

glutamate exposure at synapses [4].

Neurotransmission is impacted by changes in calcium dynamics in both astrocytes and neurons.
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Reduced synaptic effectiveness and aberrant synaptic plasticity can be caused by Aβ-mediated

dysregulation [13, 16]. In astrocytes, dysregulation of calcium induced by Aβ can exacerbate

neuroinflammation. The neurodegenerative process is accelerated by reactive astrocytes that

emit proinflammatory cytokines. The complex interactions among Aβ, mitochondria, NCX, and

neuron-astrocyte coupling have a major effect on the dynamics of Ca2+ in AD. By upsetting the

delicate balance of Ca2+ homeostasis, Aβ causes malfunction in the mitochondria, interferes with

NCX activity, and affects astrocytic Ca2+ regulation. The pathogenesis of AD is aided by these

consequences, which increase neuronal susceptibility to Ca2+ excess. In order to determine viable

therapeutic strategies targeted at reestablishing appropriate Ca2+ homeostasis in Alzheimer’s

disease, future research should carry out an exploration of these pathways [20].

We offer a theoretical framework in this work to understand the driving forces behind different

Ca2+ oscillation patterns in an AD environment. Examining model solutions additionally provides

valuable insights into how Aβ affects Ca2+ basal levels across a range of timescales. Numerous

studies have been conducted on calcium dynamics to illustrate the impacts of different parameters,

as evidenced by the literature review. Parkinson’s disease starts to progress early when there is

a loss or change in this cellular activity [21–23]. To analyze the spatiotemporal fluctuations of

intracellular Ca2+ concentration in T lymphocyte cells, a two-dimensional mathematical model

has been explored [24]. During oocyte development, eggs develop the capacity to create this

specific calcium transient. It has been demonstrated that oocyte cells exhibit cytosolic calcium

signaling through the use of parameters including buffers, ryanodine receptor (RyR), and Serca

pump [25, 26]. Understanding the cellular mechanism underlying the inclusion and extrusion of

free calcium is essential [27]. It has been demonstrated analytically and quantitatively how the

glycolytic oscillator chemical model behaves through the flip and generalized flip bifurcations [28].

Figure 1. Neuron-astrocyte signaling
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2 Mathematical model of the problem

Neuron model

The leaky integrate and fire model (LIF) has been used to show the neural communication with

required parameters [2]:

τm
dV(t)

dt
= −V(t) + Rm Isyn, (1)

where V is the membrane voltage, Rm is the membrane resistance, Isyn is the input current, and τm

is the membrane time constant. V is clamped at 0V(volt) when the neuron membrane potential

(V) approaches a firing threshold value for the neuron, (Vth).

Astrocyte-neuron interactions

Gliotransmitters that change neurotransmitter reuptake, boost synaptic strength, or control prun-

ing of synaptic cells may be emitted by astrocytes when exposed to an action potential from a

neuron. The neuron-astrocyte coupling process for Ca2+ dynamics is heavily dependent on the

inositol trisphosphate (IP3) signaling pathway. Neurotransmitters released by stimulated neurons

can activate receptors on astrocytes. The activation of these receptors results in the synthesis of IP3,

a secondary messenger molecule that causes the astrocyte’s internal stores of Ca2+ to be released.

Surrounding neurons may be profoundly impacted by this Ca2+ increase in astrocytes, which can

alter their activity and synaptic transmission. The model states that the extent of neurotransmitter

exposure affects the extension of IP3. The neuron-astrocyte coupling describes the two-way

exchange of information and interaction that occurs between astrocytes and neurons [29, 30].

dIP3

dt
=

IP∗

3 − IP3

τip3

+ rip3(AG), (2)

where rip3
is the IP3 assembly rate, IP∗

3 is the baseline of IP3 in the steady-state,τip3
is the IP3

decay rate.

Astrocyte dynamics

The Ca2+ flux inside the astrocyte is measured using the Li-Rinzel model. Many computational

simulations inside the Li-Rinzel model have demonstrated Ca2+ oscillations for a range of param-

eter settings [31]. The intracellular expansion triggers reactions in the cytosolic calcium absorption

process, including the ER leakage flux, the pump-flux from the cytosol into the ER, and the Ca2+

flux from the ER(Endoplasmic Reticulum) over the IP3 carriers. By moving Ca2+ across the

plasma membrane, the Na+/Ca2+ exchanger influences the intracellular Ca2+ concentration. The

differential equation for the dynamics of Ca2+ in mitochondria is governed by a balance of Ca2+

fluxes [2, 32]:

d
[

Ca2+
]

dt
= Jchannel − Jpump + Jleak + Jin − Jout − JMCU + JmNCX − JNCX, (3)

dh

dt
=

h∞ − h

τh
, (4)
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where

h∞ =
Q2

Q2 + Ca2+
, (5)

τh =
1

a2 (Q2 + Ca2+)
, (6)

Q2 = d2
IP3 + d1

IP3 + d3
, (7)

where h is the fraction of activated IP3. The following calculates the calcium flux via the channel,

pump-flux, and leakage flux from the ER:

Jpump = vER

(

(

Ca2+
)2

k2
ER + (Ca2+)

2

)

, (8)

Jchan = rcm3
∞

n3
∞

h3
(

c0 − (1 + c1)Ca2+
)

, (9)

Jleak = rL

(

c0 − (1 + c1)Ca2+
)

, (10)

Jout = k1Ca2+, (11)

JNCX = c0

(

Nai

Na0

)3

exp

(

2FVm

RT

)

, (12)

with

m∞ =
IP3

IP3 + d1
, (13)

n∞ =
Ca2+

Ca2+ + d5
, (14)

where rc represents the maximum CICR (Calcium-induced calcium release) rate, c0 represents

the total of the free Ca2+ cytosolic collection, and c1 represents the ER/cytoplasm capacity ratio.

The IP3 induced calcium release is shown by m∞, the CICR channels are indicated by n∞, the

maximum absorption amount for the SERCA pump is vER, the stimulation constant of the SERCA

pump is kER, and the calcium leakage amount is rL.
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Amyloid beta hypothesis

IP3 concentration is modeled as a linearly increasing function of the membrane leak Jin. To

ensure that the steady-state Ca2+ concentration relies on p, we only include a linearly increasing

contribution in this case, even if this rise could be the result of many causes. The effects of Aβ on

the existence of exchangers, channels, and pumps are still largely unknown. Despite this, we have

used some of the offered papers to view the Aβ influence. To add kβam in Jin in order to account

for the effect of Aβ in the model [6, 30]:

Jin = a1 + a2 p + kβam, (15)

where a1 and a2 are parameters and m denotes a cooperatively coefficients and kβ is a constant of

speed.

Mitochondria model

Studies have demonstrated that the ER and mitochondria cooperate to generate complex functional

membranes associated with the ER that is mitochondria-associated membranes (MAMs). The

Ca2+ concentration between ER-Mitochondria can reach 10 times higher integrity than in the bulk

cytoplasm when cells are activated. When properly activated, the mitochondrial Ca2+ uniporter

(MCU) allows for an increase in Ca2+ levels [33]. Owing to their bidirectional nature, the local

Ca2+ intake by mitochondria and the inositol triphosphate receptor (IP3R) by Ca2+ can both

expand or contract the ER. Ca2+ reveals that by severing the effective feedback from Ca2+ on

IP3R, Ca2+ releases, by reducing the ER or the Ca2+-related IP3Rs deactivation [7, 8, 34]:

d
[

Ca2+
]

Mt

dt
= JMCU − JmNCX, (16)

JMCU = vmNCX

(

Na3

k3
Na + Na3

)(

[

Ca2+
]

Mt

kmNCX + [Ca2+]Mt

)

, (17)

JmNCX = vMCU

(

[

Ca2+
]2

k2
MCU + [Ca2+]

2

)

, (18)

where
[

Ca2+
]

Mt
mitochondrial calcium concentration and JMCU and JmNCX are fluxs of Ca2+ ions

through the mitochondrial Ca2+ uniporter and mNCX channels.

Endocannabinoid dynamics

Several computational models represent the interaction between astrocytes and neurons using

tripartite synapse connections. When the signal-receiving neuron is sufficiently depolarized and

the synaptic cleft releases a glutamate-like neurotransmitter, 2-AG leaves from the dendrite and

attaches itself to CB1Rs on the surface of astrocytes [2]. The model equations are

d (AG)

dt
= −

AG

τAG
+ rAG H (c − cth) , (19)
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d (Glu)

dt
= −

Glu

τGlu
+ rGluH (c − cth) , (20)

where AG denotes the quantity of 2-AG and Glu denotes the amount of glutamate, and τAG and

τglu indicate the relaxation time constants for 2-AG and glutamate, respectively. Glutamate release

and 2-AG production are denoted by the variables rAG and rGlu, respectively. The release of 2-AG

and glutamate is indicated by the Heaviside function H(c − cthreshold), which is accompanied by

the Ca2+ threshold and catalyzed by calcium [27].

Table 1. Values of biophysical parameters

Astrocyte Constraint Constraint Description Value

τAG Decay rate of 2-AG 10 s

τGlu Decay rate of Glutamate 100 ms

rGlu Maximum rate of Glutamate production 10 µMs−1

rAG Maximum rate of AG production 0.018 µMs−1

IP∗

3 Baseline value of IP3 0.16 µM

rIP3
Rate of IP3 production 0.5 µMs−1

rC Maximum rate of CICR 6 s−1

rL Ca2+ leakage rate from ER 0.11 s−1

vER Maximum rate of SERCA uptake 0.8 µMs−1

kER SERCA pump activation constant 0.1 µM

c1 Ratio of ER volume to cytosol volume 0.185

d1 IP3 Disconnection constant Ca2+ 0.13 µM

d2 Ca2+ Dismissal dissociation constant Ca2+ 1.049 µM

d3 IP3 Separation constant Ca2+ 0.9434 µM

d5 Ca2+ Stimulate dissociation constant Ca2+ 0.08234 µM

a2 IP3R Ca2+ Dismissal binding rate 0.2 µMs−1

Ca2+threshold Astrocyte Glutamate release threshold 0.3 µM

c0 Total free Ca2+ cytosol concentration 2 µM

τm Membrane time constant 0.1

Isym Injected current 2

V Firing threshold voltage 9 mv

Rm Membrane resistance 1.2 GΩ

kNa Na+ activation constants for the mNCX 7.4 mM

kmNCX Ca2+ activation constants for mNCX 45 µM

kMCU Ca2+ activation constants for MCU 0.84 µM

Na+ Na+ Concentrations in the Cytosol 12 mM

VmNCX Maximal flux through the mNCX 100 µMs−1

VMCU Maximal flux through the MCU 0.07 µMs−1

Nai Intracellular Na+ concentration 12 µM

Nao Extracellular Na+ concentration 145 µM

F Faraday’s constant 96485 Cmol−1

R Gas constant 8.314 JK−1mol−1

T Absolute temperature 310 (oC)
Vm Membrane potential -70000 V

k1 Rate constant of Ca2+ extrusion 0.5 s−1

a1 Parameter for membrane leak 0.1 µMs−1

a2 Parameter for membrane leak 0.02 s−1

kβ Constant of speed 0.18 s−1

m Cooperatively coefficients 4

p Linear increase of IP3 0.13

a Measurement of Aβ presence 1.15
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Table 1 provides the starting values for the variables and parameters used in this work [2, 33–35].

The system appears to be inactive based on the principal variable rates. By initializing both

variables to zero, experimental measurements have been made for Ca2+ and h. To duplicate the

model, IP3 levels have been limited at 0.16µM (that is equal to IP∗

3 ) until Ca2+ and h have been

balanced [36–38].

3 Results

The mechanism of Ca2+-dependent exosome release is examined, along with the coupling of

neuron and astrocytes on the Ca2+-driven exosomal dynamics, in response to different values of

factors linked to mitochondria, NCX, and amyloid beta. The parameter values listed in Table 1 are

used to generate the numerical results provided in this section [2, 33–35]. We aim to demonstrate

the influence of Aβ on the promotion of a chemical involved in several cellular processes. As of

right now, IP3 serves as the main agonist, which can subsequently cause the release of Ca2+ from

different fluxes. In all figures, c represents Ca2+ concentrations.

i. First, we have used the neglected NCX (Sodium-Calcium exchanger) and Amyloid beta

effects on Ca2+ dynamics to characterize the model’s solutions with mitochondria.

ii. Secondly, we have extended to incorporate the impact of NCX (sodium-calcium exchanger)

on neuron-astrocyte coupling calcium dynamics, likewise in the absence of amyloid beta.

iii. Finally, we have incorporated flux Jin to account for the Aβ impacts of membrane potential

on Ca2+ dynamics.

The neuron-astrocyte model has been analyzed using the XPPAUT software, and the Euler in-

tegration approach was employed in all of the results shown here. The model dynamics in the

following three sections demonstrate that aberrant Ca2+ can arise when Aβ is present. These

aberrant signals can arise in a variety of scenarios, pointing to a complex relationship between

Aβ’s effect and the model’s constituent parts. As a result, we deconstruct the model’s dynamics

by monitoring the outcomes of changing one or two parameters inside a particular signaling

component. Finally, we take membrane potential into account and explore model solutions at

different Aβ levels while IP3 concentration is fixed [39].
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Figure 2. The Ca2+ frequency modulation is displayed in Figure 2(a)-Figure 2(b). Figure 2(a) displays the FM

mode results of Ca2+ oscillations for rL = 0.11, IP3 = 0.29, and kER = 0.09 in the proposed model while Figure 2(b)

displays the FM mode results of Ca2+ oscillations for rL = 0.8, with fixed values of IP3 = 0.78 and kER = 0.07 in

the original model
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(a) (b)

Figure 3. These graphs Figure 3(a)-Figure 3(a) show the results of frequency modulation Ca2+ oscillations for

IP3 =0.5, rL range 0.08 to 0.15 and kER =0.07

(a) (b)

(c) (d)

Figure 4. These graphs Figure 4(a)-Figure 4(d) show the results of frequency modulation Ca2+ oscillations

IP3=0.35, IP3=0.32, IP3=0.28, and IP3=0.27, respectively, for p = 0.13 and a = 1.15



Jethanandani et al. | 385

(a) (b)

Figure 5. The phase plane analysis diagram between Ca2+ and IP3 fraction with distinct values of the parameters

4 Discussion

The cytoplasmic calcium level remains constant while the calcium dynamic is in equilibrium. The

IP3 readings are related to the stability of the calcium level. At low IP3 values, Ca2+ oscillations

are weakly stimulated; at higher IP3 values, the modulation is altered by Ca2+ oscillations.

As IP3 increases in Figure 4, Ca2+ oscillations alter as Ca2+ concentration rises. The system

eventually finds a stable state and loses its oscillation behavior at a certain value of IP3. The

experiment demonstrated that adding Aβ directly increases Ca2+ dependent fluorescence, which

is an indication of intracellular Ca2+ levels [30]. According to the findings, Aβ does not directly

bind with the IP3 receptor; rather, it stimulates the synthesis of IP3 through G-protein-mediated

activation of PLC, which opens IP3 receptors and causes intracellular Ca2+ liberation. As a result,

even though IP3 is digested in tens of seconds, IP3 are actively activated in the presence of Aβ and

last for several minutes or hours. The Ca2+ oscillations appear and attain an equilibrium state for

a specific range of IP3. Figure 3 shows how Ca2+ oscillations alter modulation as rL (Ca2+ leakage

rate from ER) increases and reaches the steady-state at a greater level of Ca2+ concentration. At a

specific value of rL, the oscillation vanishes, and the concentration of Ca2+ achieves the steady-

state. The Ca2+ oscillations appear and achieve an equilibrium state for a specific range 0.08 to 0.15

of rL. Calcium dynamics is in equilibrium when the cytoplasmic calcium level is constant (dc/dt =

0) and the percentage of inactive IP3R remains constant (dh/dt = 0). The calcium oscillations in

Figure 4(a)-Figure 4(d) vary differently as IP∗

3 (Baseline value of IP3) decreases and eventually

disappear when IP∗

3 gets closer to a stable state. The calcium leakage rate from the ER causes the

calcium concentration to stabilize. The calcium oscillation appears and reaches an equilibrium state

for the 0.27 < IP∗

3 < 0.36. For a specific stimulation intensity, both the range and amplitude of

calcium oscillations increase within the specified range. The highest value of the calcium responses

in the amplitude modulation encodes the IP3 level. It is closely related to how strongly the stimulus

acts on the cell. Changes in IP3 cause calcium responses in the frequency modulation and the

information contained in those interspike intervals is encoded. IP∗

3 must fluctuate dynamically

under the influence of Aβ in order to duplicate the reaction in Ca2+. Examine the effect of

membrane potential and consider model solutions for various IP∗

3 concentration levels once Aβ is

fixed. In an experimental situation, IP∗

3 can be photoreleased simultaneously throughout a cell.

IP∗

3 diffusion is constant and minimized under these conditions. The model can demonstrate
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Ca2+ oscillations, indicative of various cell types, by varying the amount of IP∗

3 accessible in the

cytoplasm. These oscillation patterns are necessary for cells to maintain appropriate concentration

gradients and recover homeostasis after a triggering event. In the presence of Aβ, model Ca2+

oscillations emerge and disappear due to transitions through amplitude modulations as IP∗

3 grows.

Dynamic transitions across (Figure 5) can account for both the increases in Ca2+ oscillations and

the observed aberrant Ca2+ signals through phase-plane analysis. While there has been some

accumulation of Aβ in an AD environment, it is assumed that this quantity stays constant over the

course of our simulation. Aβ can accumulate to produce large amplitude oscillations and elevated

steady-state values. A range of behaviors are displayed by the corresponding model solutions:

aberrant Ca2+ signals, steady-state Ca2+ signals, and stable periodic solutions. An essential

second messenger in the neurological system is intracellular Ca2+ regulation. The signaling

pathways in neurons that govern neurotransmitter release, metabolism, gene expression, plasticity,

development, proliferation, and cell death are known to be mediated by Ca2+. Because of this,

Ca2+ might be very important in the pathophysiology of AD. Unfortunately, understanding exactly

how Aβ affects various intracellular regulating mechanisms and components is challenging due

to the complexity of Ca2+ signaling. Through the decoupling of specific components by various

investigations, we can better comprehend intracellular Ca2+ signaling by combining these theories

into a whole-cell computational model.

5 Conclusion

In the current study using the neuron-astrocyte model, the synaptic connection initiates diffusions

of the gliotransmitters 2-AG and glutamates. The solution graphic shows how variable-parameter

Ca2+ frequency and amplitude modulation of leak flow is impacted by mitochondria, NCX, and

Aβ. The proposed model combines cell activation and intracellular signaling. A mathematical

model is developed to accurately quantify the Ca2+-mediated astrocytic exosome exocytosis in AD

that is driven by Amyloid-beta. Our model indicates that increasing the amount of Aβ can lead to

aberrant signals and changes in homeostasis levels. A change in intracellular Ca2+ homeostasis

can have an impact on the cascade of apoptotic signals. A comparison analysis was performed

to quantify the effects of different components related to mitochondria, NCX, and Aβ the leak

fluxes on the calcium signaling process through the amplitude and frequency modulation. They

do, however, transform into exosomes produced by astrocytes in AD, which have the potential to

harm neurons. This computational model tracks the influence of numerous interrelated biological

pathways, which can aid in our understanding of complicated cellular activity in an AD context.
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