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ABSTRACT Chaos, comprehended characteristically, is the mathematical property of a dynamical system which is a deterministic
mathematical model in which time can be either continuous or discrete as a variable. These respective models are investigated as
mathematical objects or can be employed for describing a target system. As a long-term aperiodic and random-like behavior manifested
by many nonlinear complex dynamic systems, chaos induces that the system itself is inherently unstable and disordered, which requires
the revealing of representative and accessible paths towards affluence of complexity and experimental processes so that novelty, diversity
and robustness can be generated. Hence, complexity theory focuses on non-deterministic systems, whereas chaos theory rests on
deterministic systems. These entailments demonstrate that chaos and complexity theory provide a synthesis of emerging wholes of
individual components rather than the orientation of analyzing systems in isolation. Therefore, mathematical modeling and scientific
computing are among the chief tools to solve the challenges and problems related to complex and chaotic systems through innovative
ways ascribed to data science with a precisely tailored approach which can examine the data applied. The complexity definitions need to
be weighed over different data offering a highly extensive applicability spectrum with more practicality and convenience owing to the fact
that the respective processes lie in the concrete mathematical foundations, which all may as well indicate that the methods are required to
be examined thoroughly regarding their mathematical foundation along with the related methods to be applied. Furthermore, making use
of chaos theory can be considered to be a way to better understand the internal machinations of neural networks, and the amalgamation
of chaos theory as well as Artificial Intelligence (AI) can open up stimulating possibilities acting instrumental to tackle diverse challenges,
with AI algorithms providing improvements in the predictive capabilities via the introduction of adaptability, enabling chaos theory to
respond to even slight changes in the input data, which results in a higher level of predictive accuracy. Therefore, chaos-based algorithms
are employed for the optimization of neural network architectures and training processes. Fractional mathematics, with the application
of fractional calculus techniques geared towards the problems’ solutions, describes the existence characteristics of complex natural,
applied sciences, scientific, engineering related and medical systems more accurately to reflect the actual state properties co-evolving
entities and patterns of the systems concerning nonlinear dynamic systems and modeling complexity evolution with fractional chaotic
and complex systems. Complexity entails holistic understanding of various processes through multi-stage integrative models across
spanning scales for expounding complex systems while following actuality across evolutionary path. Moreover, Fractional Calculus (FC),
related to the dynamics of complicated real-world problems, ensures emerging processes adopting fractional dynamics rather than the
ordinary integer-ordered ones, which means the related differential equations feature non-integer valued derivatives. Given that slight
perturbation leads to a significantly divergent future concatenation of events, pinning down the state of different systems precisely can
enable one to unveil uncertainty to some extent. Predicting the future evolution of chaotic systems can screen the direction towards
distant horizons with extensive applications in order to understand the internal machinations of neural and chaotic complex systems.
Even though many problems are solvable and have been solved, they remain to be open constantly under transient circumstances.
Thus, fields with a broad range of spectrum range from mathematics, physics, biology, fluid mechanics, medicine, engineering, image
analysis, based on differing perspectives in our special issue which presents a compilation of recent research elaborating on the related
advances in foundations, theory, methodology and topic-based implementations regarding fractals, fractal methodology, fractal spline,
non-differentiable fractal functions, fractional calculus, fractional mathematics, fractional differential equations, differential equations
(PDEs, ODEs), chaos, bifurcation, Lie symmetry, stability, sensitivity, deep learning approaches, machine learning, and so forth through
advanced fractional mathematics, fractional calculus, data-intensive schemes, algorithms and machine learning applications surrounding
complex chaotic systems.

KEYWORDS
Fractional mathemat-
ics
Complexity
Fractional calculus
Deep learning
Computational com-
plexity
Fractal methodology
Fractalization
Complex versus
chaotic systems and
chaos
Bifurcation
Control and optimiza-
tion
Strange attractors
Approximation theory
Lie symmetry
Complex chaotic
systems
Complex systems
Data-intensive com-
putational application
processes
Real data interpola-
tion and applications
Differential equations
Machine learning
Deep neural network.

INTRODUCTION, PRELIMINARY REMARKS AND
OVERVIEW

Theory of chaos, as having been referred to the qualitative explo-
ration of unstable aperiodic behaviors in deterministically non-
linear dynamical complex systems, bears a plenus of definitions
where unstability means the system does not settle into a form of
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behavior resisting small disturbances, while aperiodic behavior
signifies the variables’ description of a state of a system that does
not go through an iteration of values, which comes to mean that
the system in question does not repeat itself at all continuing to
manifest the impacts of any slight perturbation. Notwithstand-
ing, these conditions render exact predictions impossible, yielding
a series of measurements that are apparent randomly on small
disturbances, which is a situation more commonly known as the
‘butterfly effect’ referring to the fact that even a very minor and
remote factor can produce disruptions with a large-scale magni-
tude; and thus, sensitive dependence on initial conditions marks
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the chaotic systems’ distinctive features among which being topo-
logically mixing and having dense periodic orbit happen to be
the other ones. The indication of time-chaos, on the other hand,
referring to sensitivity to initial conditions means that when one
has you have two sets of initial conditions or as another option two
points in phase space, extremely in proximity with each other, the
two ensuing trajectories, are close to each other at the beginning,
will show eventual and exponential divergence away from each
other. The other principle chaos theory lies on is uncertainty that
interdicts accuracy while the third principle belongs to strange
attractors showing that complex systems are inclined to settle in
one specific situation. When the situation is dynamic, it is known
as “strange attractor”, whereas it is referred to as attractor when
it is static. Given all these, small perturbations bring about chaos
in a chaotic system, and chaos theory is involved with the way
order irrupts into chaos, whereas complexity theory, suggesting
the conception that there is order within chaos, emphasizes self-
organization related to chaos into order. With a plethora of diverse
independent variables and constituents in nonlinear interaction
with one another, complex systems exhibiting a unique characteris-
tic known as emergence, with interactions among subcomponents
producing novel properties surpassing individual capabilities can
be stated to provide balance in order and chaos (Farsi 2017).

Key Constructs of Complexity Theory, Complex versus Chaotic
Systems, and Chaos

Complex systems are said to be more coherent compared to chaotic
systems, with uncertainty arising differently in both systems. Com-
plexity theory, providing the implications of analysis and explana-
tion of complex systems, addresses the emergence of order in com-
plex systems at the edge of chaos which signifies a point across the
boundary oscillating between randomness and determinism. Thus,
complexity theory focuses on non-deterministic systems, whereas
chaos theory rests on deterministic systems (Karaca 2022b). Fur-
thermore, uncertainty in chaotic systems results from the inability
of knowing the initial condition of the system, whereas uncertainty
arises from the notion of emergence in a complex system (Lartey
et al. 2020). Concerning the uncertainty quantification, which is
the quantitative characterization and estimation of uncertainties
in both computational and real-world applications, attempts to
determine the degree of likelihood regarding certain outcomes
if certain aspects of the system are not know in an exact sense.
Aleatoric uncertainty refers to a sort of uncertainty that is peculiar
to a problem or to an experimental setup in which it is not possible
to do reduction to additional experimental knowledge or physical
lineage (Barbano et al. 2022). As Pierre Simon Laplace put forth,
the theory regarding probabilities lies at the bottom of common
sense that is reduced to calculus, which enables one to appreciate
the exactness an accurate mind can feel based on a kind of instinc-
tive hunch that cannot often be accounted for (Pierre-Simon 1986).
Chaos-based applications in science, engineering and other rele-
vant domains require the understanding that some chaotic systems
display a unique feature by having two or more coexisting attrac-
tors with every attractor being achieved due to the same range
of parameters which depend on the initial condition at stake. In
these respects, multistable chaotic systems are equipped with the
potential applications correspondingly with several parameters
of multistable dynamical systems that have sensitivity to initial
conditions, noise as week as system parameters. The appearance of
hidden attractors, associated with multistability, demonstrates the
existence of self-excited attractors in multistable systems with the
employment of computational processes. Yet, it is not possible to

predict the hidden attractors by typical computational approaches,
and thus, the growing level of complexity in physical problems
requires more complex and advanced mathematical differential
operators. Fractal-fractional operator provides the combination
of fractional differentiation with fractal derivative for performing
a single differentiation. All these physical processes exhibit at-
tributes characterized by a fractal nature (Khan et al. 2023). Both
complexity and chaos, being deeply rooted in physics, display the
endeavor through an attempt to observe similar systematics across
an extensive varying range of phenomena so that a more profound
and precise understanding thereof can be achieved. Comprised
of a set of mathematical concepts, chaos and complexity theory
provides the description of the way systems change over time.
Mathematical modeling, oriented towards describing multiple and
diverse facets of the real world, reciprocal interactions and dy-
namics of them from the lenses of mathematics, needs to tackle
universal concepts efficiently, promptly and accurately. From this
point of view, mathematical models are unique in that they enable
the control, mechanization and automation of intellectual activities
as well as processes. Mathematical models depending on spe-
cialized knowledge are those which with inherent mathematical
nature encompass the process of determining the properties of a
model with rigor elucidating the different multiple components
being identified, revised, designed, organized, formulated and ar-
ranged in harmony. Given all these, chaos and complexity theory
provide a synthesis of emerging wholes of individual components
unlike some of the traditional scientific approaches that analyze
systems in isolation.

Both mathematical modeling and scientific computing are con-
sidered to be amongst the chief tools for the purpose of solving
the challenges and problems related to complex systems by means
of innovative ways attributable to data science with a precisely-
tailored approach so that sense can be derived from chunks of big
data. This kind of tailor-made customized approach can only real-
ize the opportunity of examining data applied, which heavily relies
on the capacity of the computer at work as different capacities of
computers can have impact on the computational outputs, and
thus, the application of the method in question is based on the code
by step to be taken into account. Therefore, the complexity defi-
nitions needs to be weighed over different data offering a highly
extensive applicability spectrum endowed with more practicality,
convenience and availability due to the fact that the respective
processes lie in the concrete mathematical foundations, which all
may as well indicate that the methods are required to be examined
thoroughly regarding their mathematical foundation in conjunc-
tion the methods to be applied. This is the sole manner which can
make foreseeability possible as regards what level of complexity
will emerge concerning any data chosen to be employed.

Key Constructs of Nonlinearity, Complex Dynamics Systems,
Chaos and Order

Nonlinearity, being a required condition for chaos, with almost
all nonlinear systems whose phase space having three or more
dimensions, display chaotic features in at least part of the phase
space. Exhibiting complex dynamics, complex systems which span
across several scales, display order and chaos in a simultaneous
way, operating at the critical “edge of chaos”, which provides
maximization of emergence, spanning from micro-level to macro-
level to illustrate the propagation of critical decisions ranging from
lower to higher levels, adaptability, creativity and evolvability.
While complex systems may have several scales, chaos may reign
upon scale n, with the coarser scale above it (scale n-1) which
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might be self-organizing, which indicates that it is the opposite of
chaos in some sense. When there is the case of the edge of chaos,
the precise value of the control manifests a switching dynamics,
which happens to be a critical point in phase transitions where the
long-range correlations are significant. At this point, adaptability
with memory, the capability of modifying the environment to be
able to operate appropriately at the edge of chaos, becomes evident
and it is this place where self-organization becomes likely to occur.
Consequently, the interplay between chaos that producing new
possibilities and order coupled with them ensures self-organization
and open-ended evolution (Baranger 2000). As a dynamical sys-
tem dependent on diverse parameters, complex systems manifest
themselves in a constant sort of evolution formed by a huge num-
ber of unities and distances along trajectories increase or decrease
in a polynomial way not exponential way. Furthermore, fractal
structures are to be seen in many complex systems (Palis 2002).

Sharing fundamental features with chaos theory, complexity
theory encompasses nonlinearity, dynamism, feedback, loops, and
so forth. Both being sensitive to initial conditions result in un-
predictable outcomes, and self-organization, in this regard, is em-
phasized with global patterns emerging from local reciprocal in-
teractions. As a compelling challenge, chaotic systems are ones
belonging to the unknown unknowns with chaotic motion being
almost impossible or very challenging to forecast. Thus, the chaotic
behaviors of correlations in chaotic systems prove the hardships
concerning prediction of the chaotic systems, while the identified
state transitions of correlations can lend a quantitative rule for the
selection of appropriate methods. Systems that are determinis-
tic, made up of simple differential equations, are not attributed
to reference points to implicit chance mechanisms. Complex sys-
tems ofttimes display self-organization which arises when systems
spontaneously order themselves optimally or in a more stable way
without the external adjustment of any control parameters, which
is a feature not found in chaotic systems. This situation is often
referred to as anti-chaos in chaotic systems that are inclined to be
out of equilibrium, meaning that the system does not settle into
a steady state of behavior, which refers to the notion of openness.
Most of the real-world systems are open, which poses problems in
terms of modeling and experimentation. One other feature related
to complex systems is the notion of feedback where the output of
a process in the system is exposed to being recycled, as a result of
which the output becomes the new input of the system. Feedback
occurrences in complex systems are seen to be across the levels of
organization, which are micro levels and macro levels. Between
the subunits of micro level interactions, some patterns are gener-
ated, reacting back again which is a global o local positive feedback
known as coevolution which is a concept originating from evolu-
tionary biology for the description of how organisms create their
environments and how they are in return molded by the environ-
ment they exist in (Rickles et al. 2007), (Ruhl 1995). Chaotic systems
do not depend on their history unlike the complex systems which
rely on their history. Across this line, chaotic behaviors push a sys-
tem acting in equilibrium into chaotic order out of order. Complex
systems, on the other hand, evolve distantly from the equilibrium
at the edge of chaos.

Chaos theory posits that even the most seemingly random pro-
cesses can be described and predicted through the use of a set of
complex mathematical equations. Concerning nonlinearity and
complex dynamics with chaos, it was noticed by French mathemati-
cian Henri Poincaré that nonlinear deterministic systems could
behave in an apparently chaotic and unpredictable way. Despite
this important contribution, the significance of chaos was accred-

ited with full appreciation after the extensive availability and expo-
nential growth of computational processes through digitalization
employed for numerical simulations as well as for the demonstra-
tion of chaos in various physical systems. Figure 1 depicts the
Poincaré section in z = 0 along with the return maps having three
associated elements and the scaled axis system, demonstrating the
sensitivity to changes in initial conditions, which is an important
characteristic of chaotic systems.

Figure 1 3D perspective segment of a typical chaotic attractor
system having a hyperbolic equilibrium.

Given these notions, facts and considerations, the role of math-
ematical modeling and scientific computation comes to the fore-
ground in processes, including analyses, decision-making, solu-
tion of real-world problems, prediction and simulation. These
processes entail the definition of which level of detail needs to be
introduced in different parts of a mode along with which simplifi-
cations are to be conducted to achieve its integration into different
models emulating highly complex problems while considering
uncertainty as well.

Key Constructs of Bifurcation Theory, Control, Strange Attractors
in Complex Chaotic Systems
Bifurcation theory is concerned with the examination of changes in
topological or qualitative structure of a given family of curves in-
cluding the integral curves of vector fields as well as the solutions
concerning differential equations. Bifurcation theory is generally
applied to the mathematical study of dynamical systems with bi-
furcation introduced by Henri Poincaré in 1885 occurring both in
continuous, characterized by ordinary, delay or partial differential
equations, and in discrete systems, described by maps, when a
slight smooth change made to the parameter values of a given
system brings about an abrupt change in its behavior (Poincaré
1885), (Blanchard et al. 2006). Local bifurcations can be analyzed
by changes in local stability of equilibrium, periodic orbits and
other sets which are invariant as parameters across critical thresh-
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olds, whereas global bifurcations often occur as larger invariant
system sets collide with one another, which cannot be detected by
fixed points. Causing sudden changes in the system’s direction,
outcomes and characteristics, bifurcation points are those in the
system being unstable, leading the system to change structure,
character or direction in a dramatic way (Lartey et al. 2020). If
these unstable points are known, prediction of a bifurcation can be
ensured, however, the outcome of the bifurcation or the next state
of the system remains unpredictable.

Control theory, in these regards, are concerned with the ques-
tions of how the behavior of a system is influenced through the
inputs appropriately chosen in order that the output of the system
adopts a desired final state or trajectory. Feedback process happens
to be the key notion of control theory, with the difference between
actual and desired output is implemented as feedback into the
input of the system so that the output of the system is completed
to converge into the output desired. Correspondingly, bifurcation
is used to describe significant qualitative changes occurring in the
trajectories of a generally nonlinear dynamical system, considering
that the key system parameters are varied. Since a control input
and feedback are involved in a nonlinear control system, its nature
is very complex as a dynamical system (Chen and Moiola 1994).
Even though control input is given and fixed, the controlled system
is a non-autonomous dynamical system. Therefore, control input
is necessary to be determined to achieve a certain performance con-
sidering the combination of the design and dynamics of controllers,
which is challenging. All in all, bifurcation equilibrium, oscillation
and therefore chaos is found in many systems and new kinds of
attractors representing a new sort of behavior entails the under-
standing that nonrandom chaotic behavior enables the handling of
the system. Demonstrating the repetitive abilities, chaotic systems
may enable the identification of strange patterns, and although
dynamic systems are unpredictable, they still keep the boundaries
where they operate their transformations. This creates patterns
which are referred to as strange attractors which have different
shapes and forms characterizing chaotic systems (Murphy 1996).
It is these strange attractors which define the dynamic systems’
boundaries since such systems show progress towards chaos ow-
ing to their constant growth, and they are identifiable as well as
measurable through the use of fractals.

Key Constructs of Fractal Methodology, Real Data Interpolation
and Applications in Complex Chaotic Systems

In mathematics, fractal, signifying any of a class of complex geo-
metric shapes with a common attribute of fractional dimension was
first introduced as a concept by mathematician Felix Hausdorff in
1918. Distinctive from the simple figures pertaining to Euclidean
or classical geometry, fractals are endowed with the capability of
describing diverse irregularly shaped objects or spatially nonuni-
form phenomena in nature from cliffs to seashores, coastlines to
mountain ranges. The term fractal, as derived from fractus meaning
fragmented or broken in Latin was coined by Benoit B. Mandelbrot.
A fractal system, as a complex, nonlinear interactive system, has
the ability of adapting to a changing environment, and it is marked
by the self-organization potential existent within a nonequilibrium
setting. Fractal theory, on the other hand, has sought to compre-
hend seeks to complexity in order to ensure an innovative way for
the identification of irregularity and complex dynamical systems.
The applications that deal with fractal geometry concern various
subject matters from turbulence to errors, word frequencies to
aggregation and fragmentation-related processes. The growth of
the use of fractals in application areas has spawned not only new

directions but also new methodological issues. Furthermore, mul-
tifractals, arising as a more complex form of fractals, have paved
the way of multifractal analysis with the assignment of fractal spec-
trum to an object, while fractal analysis provides the assignment
to a single fractal value. Consequently, multifractal algorithms
have been proposed to be employed for practical applications to
characterize the signals in medicine, clinical research, biology, and
so forth (Karaca 2022a), (Karaca et al. 2022).

These developments challenge the prescriptions of reduction-
ism, which assumes that the resultant component behavior and
dynamics provide the representation of the entire system behavior
by synthesizing approaches and showing that in most complex
systems, there is a high level of interconnectivity, dynamic aspects
and reasons attributed to nonlinear behaviors (Gowrisankar and
Banerjee 2021). While complexity theory explores the way indi-
vidual components generate simple outcomes by nonlinear and
intense interactions, chaos theory explores the possible ways sim-
ple systems generate complex outcomes which cannot be described
through the components per se (Watt and Willey 2005). Fractals,
as very complex, having symmetry of scale and being infinitely
detailed geometric shapes show the direction of a procedure that
describes the way of constructing and defining a small section in
which their small sections resemble the large ones. For a function,
one can consider fractal as follows: f(x) to x, g(x), g(g(x)), g(g(g(x))),
g(g(g(g(x)))), g(g(g(g(g(x))))), etc. Given all these aspects, fractals
are related to chaos as they both are complex systems with similar
properties (Meta 2016). By assessing the fractal characteristics of
data, fractal analysis is made up of different methods for assigning
a fractal dimension to a dataset, whether it be pattern or signal,
which makes it helpful in understanding the functions, structures
as well as spatial and temporal complexity of various systems, and
thus, facilitation is provided quantifying patterns in nature and
identifying deviations from such natural sequences.

As the process of using known data values for the estimation
of the unknown data values or a missing value, data interpolation
is used as a method to predict the future based on the past trends
and data, which improves the way to collect data and work on it
(Karaca and Cattani 2018). Among some of the elements interpo-
lated are dense evenly space points, extreme changes in terrains,
obstacles, and increase or decrease amount of sample points which
influence cell values. The values of non-sampled data from a set
of discrete sensory data are measured by interpolation which is
required in different fields as sensors cannot constantly cover the
region under study. Natural systems include complex dynamics
which extend across multiple spatiotemporal scales, and efforts
to understand and forecast the dynamics of these systems have
brought about advances in large-scale simulations along with the
dimensionality reduction techniques and a multitude of comple-
menting forecasting methods. High dimensionality and chaotic
behavior of the systems reveals a convergence of different ap-
proaches as a result of the advances in innovations in algorithms,
computing power and ample data accessibility.

Key Constructs of Fractional Mathematics, Fractional Calculus
and Data-intensive Computational Application Processes in Com-
plex Chaotic Systems

Fractional mathematics along with the application of fractional
calculus techniques oriented towards the solution of problems can
describe the existence characteristics of complex natural, scien-
tific and engineering-related as well as medical systems in a more
accurate way to reflect the actual state properties, besides the co-
evolving entities observations and patterns of such systems truly
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concerning the nonlinear dynamic systems and modeling complex-
ity evolution in combination with order of fractional chaotic as
well as complex systems (Karaca 2022a). Notwithstanding, Frac-
tional calculus (FC), deeply related to the dynamics of complicated
real-world problems, allows emerging processes in various fields
adopting fractional dynamics rather than the ordinary integer-
ordered ones, which means the respective differential equations
feature non-integer valued derivatives (Jacob et al. 2020), (Karaca
2023).

Fractal patterns, albeit in an array of scales rather than in an
infinite manner, having been modeled extensively due to the time
and space-related limits concerning practice-wise elements (Karaca
and Cattani 2017), (Karaca et al. 2020). It is possible that the mod-
els might simulate theoretical fractals or natural phenomena with
fractal features, and the results derived from modeling processes
can be employed as benchmarks for fractal analysis purposes.
Fractional calculus, which emerged as a formulation extending or-
dinary calculus, procures a constructive and algorithmic approach
towards the smooth differentiable-structured modeling of natural
processes through fractals. Fractal calculus procures a constructive
approach towards the smooth differentiable-structured modeling
of natural processes through fractals which are perplexing to solve,
while differential equations concerning fractals congregate a pro-
found understanding of analysis along with different constructions.
The models constructed accordingly can be applied to processes
that occur in fractal time and spaces, which propounds the di-
mensionality aspects as well as the endless patterns at temporal
and spatial scales. To put differently, the application of calculus
concepts as well as techniques can be beneficial for analyzing and
describing the behavior of not fractal objects only but also systems.

With the inherent feature of fractional derivatives in terms of
spatiotemporal memory as well as the capability of expressing
phenomena occurring in a naturally complex way, machine learn-
ing, as a powerful tool, has also come to the foreground in an
integrated way owing to its learning behavior and patterns based
on historical data lending upper hand in analyzing data, solving
problems, modeling, prediction, and so forth by providing new
genesis and points of view. The potential of the combination of
these approaches facilitates the description process of complex
dynamics based on the schemes relying on fractional derivatives
and machine learning with novel and innovative corresponding
techniques. Furthermore, with its differentiation and integration
of non-integer order, FC provides the representation of the gen-
eralization of classical differential and integral calculus, provid-
ing an amalgam of computational methods concerning various
complex systems in tandem with fractional derivatives, fractional
differential equations, fractional wavelet, fractional entropy, frac-
tional neural networks, fractional fuzzy, and so on to open the
frontiers towards systematic optimized solutions, tackling the sys-
temic properties holistically by seeing through the spontaneous
processes (Karaca and Baleanu 2022b), (Karaca and Baleanu 2022a).

Data, being at the center of many compelling challenges in sys-
tem design, modeling and other related processes, require the need
of figuring out reliability, efficiency, consistence, maintainability,
scalability. The real-life applications of data-intensive systems and
applications make an intensive use of data in all their heteroge-
neous forms, and computational problems can be solved in this sort
of a nested network with concurrent or distributed systems paying
attention to operational processes, memory, communication be-
tween nodes, machine instructions, among many other processes
and elements. Based on the voluminous amounts of data produced
by experiments as well as high-throughput technologies dissemi-

nated by cyberinfrastructures, data-intensive research comprises
a rich variety of scientific methodology that shares the common
feature of relying on the accumulation and sharing of evidences
across an extensive scale and research contexts, ranging from au-
tomated data analysis and automated reasoning to extraction of
significant patterns in exact sciences based on data through compu-
tational means with human intervention as minimized as possible.
With these amenities, applications of data-driven methods have
demonstrated that computational methods are empowered with
transforming research substantially in terms of how it is performed
and the ways by which experiments are set up, conducted and ver-
ified. Considering that slight perturbation leads to a significantly
divergent future concatenation of events, pinning down the state
of different systems in a precise way can to some extent unveil
uncertainty. Predicting the future evolution of chaotic systems can
show the direction to distant horizons with extensive applications
to understand the internal machinations of neural and chaotic
complex systems.

Key Constructs of Machine Learning, Algorithmic and Artificial
Intelligence-related Application Processes in Complex Chaotic
Systems

Chaos theory evolved from a niche mathematical field into a trans-
formative force, demonstrated that quite simple mathematical
equations were able to model systems with each bit as violent as a
waterfall (Gleick 2008) Rooted in the exploration and investigation
of dynamic systems with extreme sensitivity to initial conditions,
the world of chaos theory has projected an exponential impact
on the realm of Artificial Intelligence (AI) by empowering it in
terms of tackling complex problems and providing enhancement
in adaptability and learning capabilities related to the AI algo-
rithms. Besides sensitivity to initial conditions, chaos also arises in
nonlinear systems with relationships across variables may not be
proportional, which is known as nonlinearity that presents intricate
and unpredictable behaviors. Another characteristic is the strange
attractors as chaotic systems are known to exhibit randomly ap-
pearing but deterministic and self-similar complex patterns in a
related system’s behavior, known as strange attractors. Random-
ness abruptly becomes an orderly disorder, both in existential
terms and in the real-world scenarios where there is a hidden or-
der to chaos. The incorporation of chaos theory and AI provides
other improvements in the predictive capabilities of AI algorithms
through the introduction of adaptability, which makes chaos the-
ory respond to even slight changes in the input data bringing about
a higher level of predictive accuracy. Furthermore, chaos-based
algorithms are employed for the optimization of neural network
architectures and training processes. That being said, chaos theory
also provides facilitation in feature selection, namely the identifica-
tion of significant attributes in complex and big datasets, leading
to more efficient AI models and more streamlined in the meantime.
Sensitivity to initial conditions make chaos theory a significant
one in the detection of anomalies, which allows the AI systems to
identify critical deviations from normal behaviors or those which
are unexpected. Besides these, chaos-based data augmentation
techniques host controlled perturbations, which improves the gen-
eralization capabilities concerning the AI models. Last but not
least, reinforcement learning attribute in chaos theory is applied to
enhance the AI agents to discover the related environments in a
more effective way, which also results in coming up with optimal
policies.

Referring to models employed to find patterns within data, a
wide variety of advanced machine learning methods, including su-
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pervised, unsupervised and reinforcement learning, can be utilized
effectively for prediction and classification with a nested hierar-
chy of features. As for deep learning, it is utilized for solving the
same kind of problems as in conventional machine learning means,
yet the difference lies in the models’ architecture to comprehend
the way the decisions are made. Machine learning means are run
through the estimation of parameters bringing about the optimal
outcome possible, with parameters being existent for each input
feature in simple linear cases of models. Deep learning models also
exhibit corresponding parallelism, and yet, they integrate more fea-
tures compared to conventional means oriented towards making
predictions. Generating new features from the input features as
integral to the training process, deep learning does not use the com-
bination of input features for direct prediction. Machine learning,
as the prediction state evolution of chaotic systems, is considered
to be an emerging paradigm along with reservoir computing that
has a core with dynamical network made up of artificial neurons,
which can provide facilitation in predicting unexpected situations
like system collapse and chaotic transients linked with crisis situa-
tions as well as bifurcation points and asymptotic behaviors (Kong
et al. 2021). Managing uncertainties and changes in processes can
happen on machine learning level with pattern recognition in ad-
dition to algorithmic processes which lends applicable processes
to solve mathematical problems in a finite set of steps involving
recurrence broadly. Artificial Neural Networks (ANNs) and AI
systems, in that regard, have their applications with overlapping
fields concerning process modeling, adaptive control issues and
tool condition monitoring with a focus on learning abilities with
the recognition that it is not possible to treat learning separate from
other points like signal processing, fusion abilities, critical decision
making and self-calibration, among others (Monostori 2003). Thus,
different machine learning techniques have significant impacts on
building effective models in various application terrains based on
the learning capabilities, the particular nature of data as well as
the targeted outcome.

The rest of the Editorial for our special issue is organized as
follows: Section 2 presents the Work in Progress providing the
overview information and inputs of the accepted papers compiled
and published. Finally, Section 3 is comprised of Concluding
Remarks, Challenges and Future Directions.

WORK IN PROGRESS

Comprising of a set of mathematical concepts, chaos and com-
plexity theory propounds the description of the way particular
systems evolve over time, and in this context, chaos-based ap-
plications in engineering, science, applied sciences, mathematics,
physics, medicine, biology, and other related realms require the
reflective, holistic and accurate comprehension, which unveils a
rigorous attempt to observe similar systematics spanning across
a broad varying range of phenomena. Mathematical modeling
and scientific computing also serve these purposes while describ-
ing, analyzing and interpreting multiple aspects of the real-world
problems blended with the dynamics, complexities and reciprocal
interactions in addressing universal concepts effectively. Thus, the
integration of mathematical modeling and computational meth-
ods empower solution-oriented approaches related to chaotic and
complex systems based on innovative ways that can be ascribed to
data science from a precisely customized perspective while deal-
ing with large chunks of big data. With reference to the content
of accepted papers, the aim of our special issue has been to pro-
vide novel directions based on advanced mathematical modeling
and computational practicalities in conjunction with chaos-driven

model training as well as optimization methods.

Across these strands of thought and aspects, deep learning
approaches, deep neural networks, fractional calculus, approxima-
tion theory, medical imaging, image denoising, machine learn-
ing methods, learning algorithms, complexity, wave propaga-
tion, Newtonian mechanics on fractals subset, bifurcation, PDEs,
ODEs, wave equations with different models as Nonlinear Cou-
pled Konno-Oono model, Jaulent–Miodek, Korteweg–de Vries
(KdV) equation, peak signal-to-noise ratio, Cantor sets, n-Term
Klein-Gordon equations, local fractional Laplace equation related
to complexity and chaos in electromagnetic fields, fractal method-
ology, fractal spline, non-differentiable fractal functions and linear
fractal function have been addressed, explained and exemplified
through the schemes of different areas including physics, math-
ematics, fluid dynamics, medicine engineering, science, control,
optimization geared towards applicable solutions. The theoreti-
cal and applied dimensions of nonlinear dynamics and complex
systems, merging mathematical analysis, advanced methods and
computational technologies have been presented for exhibiting the
implications of applicable approaches in real systems and other
related domains. Accordingly, the main contributions, novelties
and contents of the seven papers accepted for our special issue are
provided herein.

Deep learning and machine learning have had a pivotal im-
pact in healthcare systems owing to their capability of handling
large complex data with as minimal human intervention as pos-
sible, and thus, the applications of deep learning and machine
learning are geared towards the achievement of a higher level of
service quality besides the quality of health concerning patients,
doctors, researchers, practitioners and healthcare professionals.
Among the critical tasks deep learning and machine learning have
proven to be effective are acute disease detection, disease diagno-
sis, classification, image analysis, signal analysis, drug discovery
and delivery as well as smart health monitoring, among others.
Accordingly, The first manuscript in our special issue entitled “Un-
veiling the Complexity of Medical Imaging through Deep Learning
Approaches” presents a comprehensive review of deep learning
methodologies which are applied to different healthcare aspects
with a focus on various tasks among which disease segmentation,
classification and detection are included (Rasool and Iqbal Bhat
2023). The study provides contributions in terms of the intricate
nature of medical imaging, revealing the hidden patterns by the
application of deep learning-related approaches. Furthermore,
the authors of the manuscript provide the discussion of the key
features and characteristics of deep learning approaches and sig-
nificant contributions made by different deep learning techniques
in the field of medicine, highlighting the classification approaches
and advancements in medical imaging, with a specific emphasis
placed on the Convolutional Neural Network (CNN) as a pop-
ular method in computer vision tasks. The merits and demerits
of various deep learning methods are also depicted through an
evaluation in tabular format. The findings indicated through the
study reveal the immense potential and benefits belonging to deep
learning technology in healthcare, which can empower researchers
and practitioners while navigating through the complexities of
medical imaging with enhanced diagnostics and interpretation.

Wave propagation is one of the cornerstones in the study of
linear and nonlinear Partial Differential Equations (PDEs) where a
wave is referred to as a recognizable signal transferred from one
part of the medium to another part of it at an identifiable speed
of propagation. In this regard, the transfer of energy occurs as the
wave propagates, yet, for the matter, it may not be the case. A trav-
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elling wave, advancing in a particular direction with the addition
of retaining a fixed shape is associated with a constant velocity
throughout its related propagation course. It is possible to observe
these kinds of waves in various scientific areas such as in combus-
tion occurring after a chemical reaction. In addition, PDEs are one
result of the mathematical modeling of dynamical systems, and
phenomena such as conservation, reaction and diffusion, to name
some can be expressed by means of PDEs which owing to their
quintessence are examined profusely in science and engineering.
In this regard, Lie symmetry analysis is known to be a robust tool
to mathematically analyze PDEs, and it can be employed to secure
analytic solutions or to converge PDEs into solvable ordinary dif-
ferential equations (ODEs). Correspondingly, Nonlinear Coupled
Konno-Oono model (NCKOM) represents a current-field string in-
teraction with an external magnetic field, whereas Jaulent–Miodek
(JM) equation is a kind of evolution equation possible to be identi-
fied in physics, remarkably fluid dynamics, matter physics as well
as optics to describe these aspects. The next research paper with
the title “Novel Traveling Wave Solutions of Jaulent-Miodek Equa-
tions and Coupled Konno-Oono Systems and Their Dynamics”
provides the contributions with regard to deriving of some novel
variety of solutions for Jaulent-Miodek equations (JMEs) and cou-
pled Konno-Oono equations (CKOEs) (Kumar et al. 2023a). (1+1)
coupled Jaulent-Miodek system of equations is associated with
the energy-dependent Schrödinger potential, while the coupled
Konno-Oono system related to complexity and chaos in electro-
magnetic fields are solved analytically in the research in question.
Similarity reductions via Lie-symmetry analysis is carried out for
the systems to derive their analytical solutions. The authors sup-
plement the analytical solutions graphically to shed light on the
dynamical behavior of the solutions. The research paper, which
has dealt with the Lie-symmetry analysis as explored, provides the
obtaining of seven analytic solutions for the CKOEs and two ana-
lytic solutions for the JMEs. Similarity reductions are conducted
by the authors via Lie-symmetry analysis so that it can be possible
to derive the related analytical solutions. As another contribution,
traveling wave profiles are obtained and solution for CKOEs are
shown to different from the one obtained by an earlier research.

As a prototypical example of an exactly solvable nonlinear sys-
tem, the Korteweg–de Vries (KdV) equation aims at describing
shallow water waves which are in nonlinear and weak interac-
tions, concerning long internal waves in a density-stratified fluid,
ion acoustic waves in a plasma as well as acoustic waves on a
crystal lattice. As a model for many physical phenomena includ-
ing the propagation of small-amplitude large-wavelength waves
in plasma physics and shallow waters, the Korteweg–de Vries
(KdV) equation is considered to be an extensively-employed model.
On the other hand, bifurcation in dynamical system happens in
the case a slight smooth change exerted to the parameter values,
namely bifurcation parameters, of a system leads to an abrupt topo-
logical or qualitative change in its behavior. Within this regard,
the authors of the subsequent work “Study of Fixed Points and
Chaos in Wave Propagation for the Generalized Damped Forced
KdV (GDFKdV) Equation using Bifurcation Analysis” consider
the Generalized Damped Forced KdV (GDFKdV) equation given
by Ut + PUnUx + QUxxx + SU = γF(U, x, t, vi) with P, Q and
S denoting non-linear, dispersion, damping coefficients, respec-
tively (Chadha and Tomar 2023). The authors also investigate the
behavior of the fixed points evaluated for the corresponding dy-
namical system of their model problem. In addition, the effects
of significant parameters involved in the model, which are the
free parameters v1 and v2, the nonlinear, dispersion and damping

coefficients denoted by P, Q and S respectively, are analyzed using
the bifurcation tools. Another input to note is the obtaining of
the plots for the critical values of the nonlinear and dispersion
coefficients for which the system becomes unstable and exhibit
chaotic behavior. The chaos in the related dynamical system under
various conditions is confirmed with the help of the Lyapunov
exponents.

Approximation theory having a significant role in machine
learning regarding its tasks like classification or regression plays
a key role with its techniques in terms of learning from the data.
Via a learning algorithm, many machine learning methods approx-
imate a function or a mapping between the inputs and outputs,
and a typical example of models approximating functions in classi-
fication tasks is one that belongs to neural networks which are as a
whole assumed to be able to approximate a true function mapping
the inputs to the class labels. Deep neural networks, on the other
hand, own the same order of computational complexity as deep
convolutional neural networks. Across these lines, another pa-
per entitled "Different variants of Bernstein Kantorovich operators
and their applications in Sciences and Engineering field" aims to
highlight the different variants of Bernstein-Kantorovich operators
which are used extensively for the approximation of functions in
Lp spaces (Bhardwaj and Bawa 2023). The authors put forth the
benefit of employing Kantorovich variants over discrete operators
that are not suitable for approximating functions which are not
continuous. Thus, the operators are generalized into operators
of integral type, Kantorovich being one technique which helps
to approximate integral functions. The study provides the other
inputs addressing the discussion of the important applications
of Kantorovich operators that depict the pragmatic and theoret-
ical aspects of approximation theory which concerned with the
approximation of complicated quantities by simpler functions.

Having become more significant over the recent times in dif-
ferent fields including but not limited to medical imaging, defect
detection, machine vision, image processing provides practical ben-
efits like making the digital image available in any wanted format
which improves the images for human interpretation and enables
the processing and extracting of information for machine inter-
pretation. Likewise, the process of denoising aims at enhancing
the quality of the image through noise reduction while preserving
the significant structures and details. Image denoising removes
noise from a noisy image so that the true image can be restored,
yet, due to factors such as edge, texture, noise, sharp structures
and texture pose difficulties in these processes. It is possible that
denoised images cause to lose some details, so when an image
is being denoised, it is of importance to keep the visual details
and components mentioned above. The peak signal-to-noise ratio
(PSNR) is the one of the frequently emplpyed objective measure
to assess perceptual image quality in tasks related to images and
video compression. In the next paper entitled “Weighted and well-
balanced non linear TV based time-dependent model for image
denoising”, the authors address image denoising and deblurring
issues which require the adoption of a time-dependent model as
a fundamental idea (Kumar et al. 2023b). The aim of the research
is to enhance the image formation process, and weighted well-
balanced flow as a total variation-based time-dependent model is
utilized by the authors for the purpose of removing additive noise
while preserving the edges successfully. As another contribution,
the authors apply the new variation of the flow in the TV-based
time-dependent model. The weighted model is said to improve
the quality of the restored images and preserve the edges better.
The numerical results, which are expressed as a static known as
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the peak signal-to-noise ratio (PSNR), demonstrate that the scheme
proposed yields better results compared to the previous model.

As a method used to solve for a broad range of problems that
have mathematical models yielding equations or systems thereof,
the differential transform scheme is effective. The Cantor set, cre-
ated by repeatedly deleting the open middle thirds of a set of line
segment, is a closed set that entirely consists of boundary points,
which is a noteworthy counterexample in the fields of set theory
and general topology. The local fractional calculus is applied for
modeling and processing non-differentiable phenomena in differ-
ent fractal physical phenomena, with some local fractional models
being wave equations on the Cantor sets, local fractional mechan-
ics of elastic materials, Newtonian mechanics on fractals subset
of real-line, local fractional Laplace equation, and so forth. The
subsequent paper named “Analysis of the n-Term Klein-Gordon
Equations in Cantor Sets” aims at demonstrating the effectiveness
of the local fractional reduced differential transformation method
(LFRDTM) in approximating the solution of the extended n-term
local fractional Klein-Gordon equation (Goswami et al. 2023). For
this aim, the authors use the fractional complex transform and the
local fractional derivative, in combination, to analyze the n-term
Klein-Gordon equations and in cantor sets. The method proposed
by the paper is said to provide a powerful mathematical instru-
ment for solving fractional linear differential equations. As the
other contributions, the authors address the existence of the solu-
tion followed by some examples. Ultimately, the study provides an
effective and accurate method for modeling complex physical sys-
tems displaying fractal or self-similar behavior at various length
scales. The authors conclude that the fractional complex transform
with the local fractional differential transform method proves to
be a powerful and flexible approach for obtaining effective approx-
imate solutions of local fractional partial differential equations. By
demonstrating the effectiveness of the LFRDTM in approximating
the solution of the local fractional Klein-Gordon equation of term n,
the authors also expect to encourage its use in an extensive range
of applications in fields like physics and engineering.

Providing a general setting and context to understand real-
world phenomena, fractal methodology provides the generaliza-
tion of real-data interpolation by means of fractal techniques. Nu-
merous mathematical models developed and which can generate
free-form shapes show two varieties which are known to be de-
terministic and stochastic. With deterministic qualities, spline
models have established themselves to be powerful and conve-
nient to model smooth shapes. On the other hand, fractal models
are used to recreate different shapes which are found in nature,
and most fractal models are endowed with stochastic components,
which render them appropriate to generate irregular, nonsmooth
shapes. In this regard, a fractal spline is a function which is made
of spline functions having different sclaes maintaining the self-
similarity attribute. Consequently, the last study in our special
issue “Fractalization of Fractional Integral and Composition of
Fractal Splines” is concerned with the perturbation of fractional
integral of a continuous function f defined on a real compact inter-
val, namely (Iv f ) by means of a family of fractal functions (Iv f )α

reliant upon the scaling parameter α (Apulprakash 2023). The
authors of the study propose a fractal operator within the space of
continuous functions, an analogue to the existing fractal interpola-
tion operator perturbing f, which results with α-fractal function f α

to elicit the phenomenon. The composition of differentiable fractal
function h(k) with a non-differentiable fractal function g yields
a non-differentiable fractal function g(h(k)), which satisfies the
end point conditions that are necessary. Furthermore, the study

provides the discussion regarding the composition of α-fractal
function with the linear fractal function besides the extension of
the composition operation on the fractal interpolation functions to
the case of differentiable fractal functions.

CONCLUDING REMARKS, CHALLENGES AND FUTURE
DIRECTIONS

Chaos theory is capable of offering an alternative that describes
and explains the particular behavior of some nonlinear systems,
fundamentally almost in all naturally occurring physical, biolog-
ical, chemical or social systems or structures. This qualitative
exploration of unstable aperiodic behaviors in deterministically
nonlinear dynamical complex systems also holds a plethora of
definitions in which unstability means the system resists small
disturbances and does not settle into a form of behavior whereas
aperiodic behavior denotes the variables in a state of a system
which does not go through an iteration of values. These particu-
lar conditions can make exact predictions not possible; and thus,
generates a series of measurements appearing randomly on small
disturbances. Butterfly effect, uncertainty and strange attractors
are some of the most notable features chaotic systems, whereas
more coherence is attributed to complex systems where complexity
theory addresses the emergence of order there at the edge of chaos,
signifying a boundary point between randomness and determin-
ism. Chaos-based applications in engineering, science and other
related trajectories entail the profound and precise comprehension
revealing a rigorous attempt to observe similar systematics over
an extensive varying range of phenomena. Made up of a set of
mathematical concepts, chaos and complexity theory grants the
description how particular systems evolve over time. Mathemati-
cal modeling geared towards the description of diverse multiple
aspects of the real world in addition to the dynamics and recipro-
cal interactions tackles universal concepts in a prompt, accurate
and efficient way. As they are unique in enabling the mechaniza-
tion, automation and control of intellectual activities and processes,
mathematical models are acknowledged to be unique. The inte-
gration of mathematical modeling and scientific computing are
the principles that empower means to solve challenges pertaining
to complex systems through innovative ways attributable to data
science with a precisely customized approach plausible sense can
be derived from large chunks of big data.

Fractional mathematics encompassing the application of frac-
tional calculus techniques can be used to solve problems that de-
scribe the existence characteristics of complex natural, scientific,
engineering-related and medical systems accurately. FC is pro-
foundly concerned with the dynamics of real-world problems,
which allows emerging processes in diverse trajectories by adopt-
ing fractional dynamics rather than the ordinary integer-ordered
ones. Fractal patterns, in an array of scales rather than in an infinite
manner, have been modeled extensively owing to the time and
space-related limits concerning practice-wise elements. It is possi-
ble that the models might simulate theoretical fractals or natural
phenomena with fractal features, and the outcomes derived from
modeling processes can be employed as benchmarks for fractal
analysis purposes. As a result, the application of calculus concepts
as well as techniques are highly beneficial to describe and analyze
both behavior of fractal objects and that of systems. Owing to the
inherent feature of fractional derivatives in terms of spatiotem-
poral memory and the capability of expressing phenomena that
occur in a naturally complex way, machine learning is an inte-
grated way through its learning behavior and patterns based on
historical data, which provides benefits in analyzing data, solving
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problems, modeling, forecasting, prediction, and so forth by pro-
viding new genesis and perspectives. The coherent combination
of these approaches facilitates the description process of complex
dynamics based on the schemes relying on fractional derivatives
and machine learning with novel corresponding techniques. Fur-
thermore, with its differentiation and integration of non-integer
order, FC provides the representation of the generalization of clas-
sical differential and integral calculus, providing an amalgam of
computational methods concerning various complex systems in
tandem with fractional derivatives, fractional differential equa-
tions, fractional wavelet, fractional entropy, fractional neural net-
works, fractional fuzzy, and so on to open the frontiers towards
systematic optimized solutions, tackling the systemic properties
holistically by seeing through the spontaneous processes. Data,
while causing compelling challenges in system design, modeling
and other related processes, also require the need of sorting out ef-
ficiency, reliability, consistence, maintainability and scalability. The
real-life applications of data-intensive systems and applications
make an intensive use of data in all their heterogeneous forms,
and computational problems can be solved in this sort of a nested
network with concurrent or distributed systems paying attention
to operational processes, memory, communication between nodes,
machine instructions, among many other processes and elements.

Challenges also become evident considering the asymptomatic,
chaotic, complex, dynamic and nonlinear systems. If one has the
aim of managing chaos and complex systems, it is important to
identify the correct level of the system and consider it within its
particular setting adopting vigilance by interpreting and analyzing
the system. Therefore, the related challenge and wrongdoing is
identifying individual agents as the agents of the system. Another
compelling issue is the dependent components regarding the sys-
tem’s complexity as the result is coupled systems in a tight way if
multiple components depend on each other, while the other one
is managing work in progress with common delays in a certain
workflow concerning feedback and making use of the related infor-
mation. This causes somehow overload leading to problems and
challenges due to highly chaotic and complex issues. To solve this
challenge, tasks need to be managed constantly on track with no
delays if possible. One more challenge worthy of mentioning has
to do with predicting changes that are possible to occur. This chal-
lenge can be sorted out by managing chaos and complex systems
by using advanced technologies and probing the trends as well as
establishing forecasting models so that the evolutions of complex
systems can be predicted with a relatively strong precision.

Based on these aspects, trends and challenges, the following
points can be provided as future directions to unlock new frontiers
in research and application terrains: novel and solution-oriented
avenues can be explored for the ultimate the medical, clinical im-
pacts of machine learning in imaging and signal processing. In
addition to deep learning methods and parallel training implemen-
tation techniques, having become dominant in computer vision-
related tasks, Convolutional Neural Networks (CNNs), made up
of multiple building blocks, can be oriented for automatic and
adaptive learning in spatial hierarchies. Another direction is re-
lated to large medical datasets and enhancing of the potential in
minimizing overfitting and providing generalizability through bet-
ter pre-trained sets of unis so that deep learning research can be
fostered. Moreover, experiments with high dimensional or multi-
modal data to represent and analyze them through the selection
of powerful tools. All these challenges and directions show that
further research may be carried out so that it can be figured out
how it could be possible to control and manage the chaotic be-

havior of different systems for the purpose of expanding validity,
coherence and reliability concerning future plans, schemes and
models. Chaos theory, in this regard, provides an alternative to
explain and describe the behavior of nonlinear systems, and the
rationale behind the use of chaos theory is to better understand
the internal machinations of neural networks. As a matter of fact,
being profoundly rooted in physics, complexity and chaos attempt
to observe comparable similar systematics over a broad range of
phenomena. Taken together, chaos and complexity theory provide
a version synthesis comprising emerging wholes of individual
components unlike some traditional scientific approaches which
handle the analysis of systems in isolation. Unpredictability, be-
ing at the pedestal of some challenges, this approach is one way
which can render foreseeability possible concerning what level of
complexity will emerge related to the data chosen to be employed.
As a last resort, what needs to be endowed with is the ability to
see deep relationships and how they can fit in a whole coherently,
which can be put differently as the simplicity on the other side of
complexity.
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ABSTRACT Recent advancements in deep learning, particularly convolutional networks, have rapidly become
the preferred methodology for analyzing medical images, facilitating tasks like disease segmentation, classi-
fication, and pattern quantification. Central to these advancements is the capacity to leverage hierarchical
feature representations acquired solely from data. This comprehensive review meticulously examines a variety
of deep learning techniques applied across diverse healthcare domains, delving into the intricate realm of
medical imaging to unveil concealed patterns through strategic deep learning methodologies. Encompassing
a range of diseases, including Alzheimer’s, breast cancer, brain tumors, glaucoma, heart murmurs, retinal
microaneurysms, colorectal liver metastases, and more, the analysis emphasizes contributions succinctly
summarized in a tabular form.The table provides an overview of various deep learning approaches applied to
different diseases, incorporating methodologies, datasets, and outcomes for each condition.Notably, perfor-
mance metrics such as accuracy, specificity, sensitivity, and other crucial measures underscore the achieved
results. Specifically, an in-depth discussion is conducted on the Convolutional Neural Network (CNN) owing to
its widespread adoption as a paramount tool in computer vision tasks. Moreover, an exhaustive exploration
encompasses deep learning classification approaches, procedural aspects of medical image processing, as
well as a thorough examination of key features and characteristics. At the end, we delve into a range of
research challenges and put forth potential avenues for future improvements in the field.

KEYWORDS

Deep learning
Complexity
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Medical image
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Pattern recogni-
tion
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INTRODUCTION

Deep learning (DL) stands as an advanced form of machine
learning (ML), centred on the utilization of artificial neural
networks (ANNs) for the analysis and prediction of data.The
inception of deep learning dates back to 1943, when Warren
McCulloch and Walter Pitts formulated a computational frame-
work inspired by the neural networks within the human brain
(Wang and Raj 2017). These DL models draw inspiration from
the intricate communication observed among biological neurons
within the brain, serving as a structural framework to understand
information. Furthermore, similar to their biological counterparts,
DL models comprise multiple layers of artificial neurons,including
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an initial input layer, a conclusive output layer, and a varying
number of intermediate processing layers positioned between
them.These intermediary layers, collectively referred to as hidden
layers,play a pivotal role in extracting crucial features from the
input images and recognizing intricate patterns.In each layer,
artificial neurons activate upon receiving impulses from neighbor-
ing neurons in subsequent layers,leveraging multiple processing
levels within the deep architecture (LeCun et al. 2015).In essence,
each layer within a deep architecture holds a specific algorithm
that employs a designated activation function.The amalgamation
of these algorithms constructs complex and generalized machines,
endowed with remarkable capabilities to address a diverse range
of medical image-related challenges (Saba et al. 2020).

Over the past few decades,DL has risen to prominence as
an incredibly powerful technology.This is primarily due to
its remarkable ability to handle and make sense of enormous
amounts of data (Islam and Zhang 2018).These algorithms have
demonstrated superior capabilities in learning and categorizing
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across various domains.For instance, they excel in transfer
learning, where insights gained from one task are applied to solve
another (Tan et al. 2018). They’ve also been instrumental in speech
recognition,enabling computers to understand and interpret
human speech effectively Chen and Mak (2015).In the domain
of recognizing handwritten digits, these models play a pivotal
role in identifying characters and symbols accurately (Alwzwazy
et al. 2016).Furthermore, DL has made significant strides in disease
detection, contributing to the early and precise identification of
various medical conditions Pereira et al. (2016). It has also been
instrumental in disease segmentation, allowing for the precise
delineation of affected areas within medical images (Trajanovski
et al. 2020). The field of computational medicine (see Figure 1) has
also benefited greatly from DL’s capabilities (Islam and Zhang
2018). Consequently,deep learning has become a revolutionary
technology that has the ability to completely revolutionise a wide
range of industries. Its exceptional ability to process information
and undertake intricate tasks with unparalleled proficiency marks
it as a technology with immense possibilities for reshaping diverse
industries.

In the field of diagnosing medical conditions using historical
radiological screening methods,the process is time-intensive,
subjecting patients to prolonged waiting times spanning from
hours to weeks for test outcomes.Moreover,discrepancies in
outcomes among labs may arise due to reliance on individual
proficiencies. To address these issues, the medical field has turned
to the application of deep learning algorithms. These algorithms
have been leveraged to diagnose diverse conditions, including
cancer(Albarqouni et al. 2016), tongue tumor(Trajanovski et al.
2020), Alzheimer’s disease(Islam and Zhang 2018), glaucoma(Yang
et al. 2021),brain tumor(Pereira et al. 2016; Muhammad et al. 2020;
Dong et al. 2017; Abiwinanda et al. 2019; Rasool and Bhat 2023),
and other life-threatening diseases with increased accuracy and
speed. These models highlight irregularities in medical imagery,
which primarily include X-rays, MRI scans, CT scans, and similar
types of medical images (Arif et al. 2022; Meena and Roy 2022;
Albarqouni et al. 2016). Furthermore, these sophisticated algo-
rithms have proven to be immensely valuable in expediting the
assessment of medical images and mitigating the time-consuming
nature of conventional scans. They excel in precision, as they
adeptly extract intricate features from medical images (Pereira
et al. 2016). This capability enables them to undertake a variety of
tasks, including medical image classification (see Figure 6), object
detection, pattern recognition, and various other tasks within
computer vision. Table 1 highlights the key features, merits and
demerits of different deep learning architectures. Meanwhile, in
Table 2, the proficient effectiveness of deep learning across various
healthcare tasks is highlighted.

This paper examines a broad range of diseases and presents
a comprehensive analysis of the methodologies employed,using
deep learning in the field of healthcare. The primary focus of this
analysis centers on the tasks of disease detection, segmentation,
and classification.Encompassing a wide spectrum of health-related
ailments, this comprehensive review delves deeply into the
substantial advancements achieved, with special attention given
to convolutional neural networks (CNNs) in the context of
medical imaging. The findings of this research underscore the
transformative potential of deep learning within the healthcare
sector. One of the most notable impacts is observed in the
enhancement of diagnostic capabilities and the interpretation
of medical data. The paper effectively demonstrates how deep
learning techniques have the capacity to revolutionize healthcare

practices, particularly by improving the accuracy and efficacy of
disease detection and diagnosis processes.

Figure 1 Deep learning applications in computational medicine
(Yang et al. 2021)

CONVOLUTIONAL NEURAL NETWORK

Deep architectural models encompass various neural networks,
with one prominent example being the feed-forward artifi-
cial neural network known as the Convolutional Neural Net-
work(CNN).The CNN comprises an input layer, an output layer,
and numerous hidden layers, making it a highly acclaimed and
potent algorithm within the domain of computer vision.Among
the diverse range of deep learning algorithms, the CNN stands out.
In the subsequent discussion,the functions and significance of each
layer within the CNN framework will be thoroughly elucidated.

Convolution Layer
The Convolutional Neural Network (CNN) serves as the
central neural network architecture in the field of Deep Learn-
ing,specifically designed for computer vision tasks. This network
stands out for its exclusive use of convolutional layers, each
comprised of multiple filters with arbitrary weights. These layers
extract information and discern patterns from input data via
convolutional operations.The core principle of convolutional
operations involves the meticulous computation of dot products
between the filters and discrete regions of input images,which
are referred to as ”receptive fields”. The filters systematically
traverse the input images,scanning from the rightmost edge to
the left and descending from the topmost to the bottom. This
meticulously orchestrated process yields intricate feature maps
while simultaneously reducing the complexity of the network
through a process of weight diminishment. This weight reduction
proves particularly advantageous during training, as it aids in
effectively training the network even when working with limited
datasets. For better understanding, the visual depiction of the
convolution operation is shown in Figure 2.

Figure 2 Convolution Operation
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Weight Sharing

Within convolutional neural networks (CNNs), weights are not
allocated to individual pairs of neurons in adjacent layers.Instead,
each weight operates across the entirety of the input array, span-
ning every pixel. This obviates the need for procuring supplemen-
tary weights for every neuron, resulting in a substantial reduction
in both training time and associated expenses. The acquisition
of a singular set of weights for all inputs streamlines the training
process, yielding significant efficiency gains.

Sparse Connectivity

The sparse connectivity nature of CNNs leads to each neuron hav-
ing a restricted number of connections to other neurons.As a result,
the abundance of weights and connections required in a fully-
connected layer characterized by dense connectivity (as depicted
in Figure 4) is noticeably reduced as illustrated in Figure 3. Storing
these weights in memory does not consume a substantial amount
of space due to this configuration.This specific characteristic makes
the approach highly memory efficient.

Figure 3 Sparse Connectivity

Figure 4 Dense Connectivity

Pooling Operation

Pooling layers receive convoluted feature maps as input,typically
positioned between convolutional layers within a neural network
architecture. This pivotal layer functions by combining neuron
clusters from the preceding layer with those of the subsequent
layer. This process enables the selective extraction of crucial in-
formation from input images, while concurrently discarding ex-
traneous or irrelevant features. A range of pooling techniques
exists, encompassing global average pooling (GAP), global maxi-
mum pooling, minimum pooling, maximum pooling, and average
pooling (Alzubaidi et al. 2021). Among these varied techniques,
the preeminent and widely adopted techniques include maximum
pooling, minimum pooling, and Global Average pooling. The
illustration of these techniques is visually depicted in Figure 5.

Figure 5 Visual Depiction of Pooling Operations

Fully Connected Layer

After subjecting the input images to a sequence of convolutional
and pooling layers, the features extracted as a result then undergo
a flattening process.Following this,these features are introduced
into the fully connected layer (FCL), which generates probabilities
corresponding to each label and thus predicts the final output.
The subsequent step involves the utilization of a loss function to
compare the outcomes produced by the fully connected layer with
the original data (Liu et al. 2023). The objective here is to reduce
this loss function, thereby enhancing the efficiency of the network.
In cases where the actual outcome deviates from the anticipated
result, the loss function comes into play, adjusting the elements
within the matrix to diminish errors. This iterative process per-
sists until the model’s performance reaches a plateau.As the loss
function’s value decreases, the overall performance of the model
improves,and conversely, an increase in the loss value corresponds
to a decrease in performance.However, given the substantial num-
ber of parameters intrinsic to the fully connected layer, a potential
issue of overfitting arises. To counteract this concern, a strategy
known as the dropout approach (Albarqouni et al. 2016) is usually
employed.This approach involves randomly deactivating specific
neurons during the training process, effectively preventing intri-
cate co-adaptations of data that could potentially lead to overfitting
and thus maintaining the generalization ability of the model.

Figure 6 BRAIN-RENet deep CNN for Brain Tumor (Zahoor et al.
2022)

CHAOS Theory and Applications 269



CLASSIFICATION OF DEEP LEARNING APPROACHES

The three categories of deep learning techniques are super-
vised,unsupervised, and semi-supervised.

Supervised Learning
Supervised learning stands as a robust methodology that relies
on labeled data to establish a relationship between a set of input
variables (denoted as ’x’) and their corresponding output vari-
ables (denoted as ’y’). This method harnesses the power of this
established relationship to predict outcomes for entirely new and
unseen data instances. Throughout the process of learning,models
are trained to produce the intended outcomes by utilizing a de-
pendable training dataset composed of both input instances and
their corresponding outputs (Gulshan et al. 2016; Rajpurkar et al.
2018). This contributes to the algorithm’s long-term development.

To ascertain the efficacy of these trained models, a crutial tool
comes into play –the loss function.This function quantifies the
disparity between the model’s predictions and the actual outputs,
providing a metric for the model’s performance. The algorithm
then undertakes a dynamic self-improvement process, iteratively
adjusting its internal parameters until the discrepancy between
predictions and actual outcomes is effectively minimized.This itera-
tive refinement process captures the essence of supervised learning,
results in models that possess the capability to generate predictions
of remarkably high accuracy.

When working with image data, deep learning employs super-
vised learning techniques such as convolutional neural networks
(CNNs)(Pereira et al. 2016; Vorontsov et al. 2019), artificial neural
networks(ANNs), recurrent neural networks (RNNs) (Lipton et al.
2015), and deep neural networks (DNNs)(Chen and Mak 2015).
In healthcare, supervised learning empowers predictions and di-
agnoses. Notably in medical imaging, like X-rays, CNNs excel,
recognizing patterns and improving diagnostics. This synergy
advances healthcare, enhancing precision, prognostics, and pa-
tient outcomes.One advantage of deep supervised learning is its
ability to produce outputs based on prior knowledge and exper-
tise.However, a drawback of this approach is its heavy reliance
on properly labeled data. If the data is not appropriately labeled,
the algorithms may fail to generate accurate results. Additionally,
training the algorithms with irrelevant input features can lead to
inaccurate outcomes.

Unsupervised Learning
This method standardizes the learning procedure by removing
the necessity for labels, making it applicable even when labeled
data is absent. In this context, the algorithm uncovers essen-
tial features necessary for detecting patterns within the input
data that were previously unnoticed (Miotto et al. 2016). Var-
ious sophisticated deep learning techniques, including autoen-
coders, restricted Boltzmann machines,and Generative Adversar-
ial Networks(GANs),have demonstrated impressive performance
in tasks involving nonlinear dimensionality reduction and classi-
fication(Esteban et al. 2017; Du et al. 2017). Furthermore,the uti-
lization of recurrent neural networks in unsupervised learning
across diverse applications, incorporating methods like Gated Lin-
ear Units and extended shortterm memory networks, has yielded
promising results. In the field of healthcare,this strategy holds
great potential due to the complexities associated with processing
vast medical data.Unsupervised learning, circumventing the need
for manual labeling, extracts patterns directly from the data.This
aids in diagnosis, trend recognition,and adaptation to evolving
medical knowledge, ultimately enhancing patient care. One of the

primary advantages of unsupervised learning lies in its ability to
efficiently reduce data dimensions without heavy reliance on man-
ual labeling—an often time-consuming and expertise demanding
task. Instead, unsupervised learning gleans insights directly from
the data and categorizes it without explicit labels.This learning ap-
proach progressively improves its results as it computes outcomes,
sharing certain resemblances with elements of human intelligence.

Semi-Supervised Learning
Semi-supervised learning occupies a significant position that
bridges the gap between supervised and unsupervised learning
methodologies. It presents a valuable technique for analyzing
datasets that are partially labeled, yet predominantly unlabeled,
which finds relevance in the medical domain as well (Liu et al.
2020). In the domain of deep learning, the utilization of techniques
such as Generative Adversarial Networks (GANs) and Recurrent
Neural Networks has proven effective for semi-supervised learn-
ing in the medical field as well(Saba et al. 2020).Especially within
the context of medical applications like DNA segment analysis,
where human involvement remains crucial due to the complexity
of longer sequences, the development and deployment of semi-
supervised approaches have garnered notable attention. A key
advantage of this approach lies in its capacity to enhance algorith-
mic efficiency and generalizability, a boon particularly valuable
when working with a limited number of labeled examples along-
side a substantial volume of unlabeled data.However, it’s worth
noting that a potential limitation of this method is the risk of mak-
ing erroneous decisions if insignificant input features find their
way into the training data.

MEDICAL IMAGE PROCESSING STEPS

Pre-Processing
The preprocessing of medical images constitutes a foundational
step that plays a crucial role in improving the quality and reli-
ability of diagnostic and analytical procedures.This initial stage
involves a series of essential steps aimed at optimizing raw medi-
cal image data for subsequent analysis. The process begins with
image acquisition, where modalities such as X-rays, MRIs, CT
scans, and ultrasounds capture anatomical or physiological infor-
mation. However, these images often contain noise, artifacts, and
inconsistencies.Various preprocessing techniques including noise
reduction, image intensity normalization, and artifact removal,
are implemented to address challenges related to image quality
and variability (Abiwinanda et al. 2019). Specifically, intensity nor-
malization is applied to standardize pixel values across images,
ensuring uniform measurements and facilitating more reliable
analysis in the medical domain.Subsequently, image registration,
which is an another preprocessing step, aligns multiple images
from different modalities or time points,facilitating accurate com-
parisons and overlays. This systematic process enhances image
quality, ultimately contributing to improved diagnostic accuracy.
Consequently, it aids healthcare professionals, researchers, and
computer algorithms in conducting more effective analyses.

Segmentation
Image segmentation serves as a pivotal technique used to divide
images into distinct regions based on similar characteristics,
including grey level, texture, color, luminosity, and contrast
Sharma and Aggarwal (2010). In healthcare sector,specifically in
medical image segmentation, the goals encompass the analysis
of the skeletal system, identification of the region of interest,
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assessment of tumor growth, and measurement of tissue volume,
among other objectives.The field of artificial intelligence (AI)
has produced methodologies for automated segmentation,
broadly categorized into three primary approaches: supervised,
unsupervised, and semi-supervised methodologies.

Classification
For image classification,particularly in the medical domain,
CNN-based deep neural networks are commonly utilized. CNNs
prove to be effective in extracting features, facilitating the efficient
categorization of medical images without the need for intricate
and costly feature engineering.In the context of classifying
patches depicting lung ailments, a tailored CNN with a shallow
ConvLayer was introduced by (Li et al. 2014). This approach
has demonstrated effectiveness. Additionally, separate studies
emphasize the notable improvements in accuracy and sensitivity
achieved by employing a CNN-based algorithm on extensive
chest X-ray film datasets (Sharma and Aggarwal 2010).

Post-processing
The primary aim of postprocessing in medical imaging is to stan-
dardize and enhance the visual representation of images, thereby
enabling more accurate diagnostic analysis. Post-processing
techniques serve a multitude of purposes, encompassing image
enhancement, restoration, analysis, and compression. One such
method, Connected-Component Labeling, frequently employed
in computer vision, aids in the analysis and segmentation of
images by considering pixel interactions. This approach enables
the identification of interconnected regions within the image,
effectively grouping similar pixels together (Mimboro et al. 2021).
Consequently, pixels belonging to the same component are linked
and display comparable intensity values. This process proves
instrumental in eliminating unwanted pixels or noise that may be
present in the image due to various factors, including the imaging
process itself.

MEDICAL IMAGERY WITH STATE-OF-THE-ART DEEP
LEARNING

Medical imagery has undergone a profound transformation
through the integration of state-of-the-art deep learning techniques.
This convergence has brought about a revolution in diagnostic
accuracy and treatment planning by enabling the automated
detection of subtle patterns and anomalies within medical images.
Utilizing advanced neural networks such as convolutional neural
networks (CNNs) and their variants like U-Net, ResNet, and other
novel architectures, these technologies excel in identifying intricate
details in X-rays, MRIs, CT scans, and more.This fusion of medical
expertise and deep learning capabilities stands as a cornerstone in
modern healthcare, providing clinicians with powerful tools to
make faster and more informed decisions, ultimately leading to
improved patient care.

(Ahuja et al. 2022) introduced Darknet models for brain tumor
classification.The method automates identification,localization,
and segmentation of tumor from the TIW-CE MRI dataset.
To address overfitting, the training dataset was augmented
through geometrical methods and 2-level wavelet decomposition.
Darknet models pretrained for brain tumor classification were
adopted, along with a 2D superpixel segmentation approach for
segmentation. Impressive results were achieved, with training

accuracy reaching 0.99 and validation accuracy at 0.98.Notably,
the proposed approach demonstrated superior performance
compared to state-of-the-art techniques when evaluated on the
T1W-CE MRI dataset.

(Sreng et al. 2020) introduced an automated two-phase system
for glaucoma screening using deep learning.In the initial phase,
the authors employed the DeepLabv3+ architecture to accurately
segment the optic disc region.Subsequently,they leveraged
pretrained deep convolutional neural networks for precise
glaucoma classification.The authors meticulously assessed their
methodologies using five distinct datasets,encompassing a total
of 2787 retinal images.The results of their study showcased that
the most effective approach for optic disc segmentation entailed a
fusion of the DeepLabv3+ and MobileNet architectures. In terms
of glaucoma classification, the combination of techniques outper-
formed conventional methods across various datasets,including
Rim-one, Origa, Drishti-gs1, and Acrima.Impressively, the
achieved Area Under Curve (AUC) scores were as follows: 100
percent for rim-one, 0.99 for acrima, 0.91 for drishti-gs1, and 0.92
for origa.The system’s performance closely paralleled that of
Cuhkmed, the leading team in the refuge challenge, on the refuge
dataset. Specifically,they achieved an accuracy of 0.95 percent.

(Zhu et al. 2021) introduced a dual-attention multi-instance deep
neural network designed for the early detection of Alzheimer’s
disease and its preliminary stages. This network comprises three
key components. Firstly, they employ spatially focused patch-nets
with attention to enhance the features of aberrantly altered
micro-structures within the cerebral cortex. This enhancement
enables the extraction of distinct characteristics within each sMRI
patch. To ensure equitable input from all patches and to generate
a comprehensive weighted representation of the entire brain
structure,they adopt an attention based multi-instance learning
pooling technique. Lastly,the authors employ a global classifier
endowed with attentional awareness.This classifier is tasked with
learning additional pivotal features and categorizing data related
to Alzheimer’s disease. The proposed model’s efficacy is evaluated
using initial sMRI images obtained from 1689 individuals in two
distinct datasets. The experimental outcomes underscore the
superiority of their approach compared to other state-of-the-art
techniques. Their method excels in accurately identifying specific
affected areas and achieving improved classification performance.
This is characterized by better generalizability and overall
accuracy.

(Saba et al. 2020) proposed a new approach for identifying
tumors utilized the grab-cut method to accurately distinguish
the symptoms of real lesions. Deep learning and manually
created features were retrieved from the segmented images and
subsequently optimized using entropy. A serial fusion approach
was employed to combine the optimized features into a unified
feature vector, enabling the identification of gliomas or normal
images.To assess the efficiency of the suggested approach, specific
benchmark datasets from 2015 to 2017 were employed. Ultimately,
various classifiers were applied to ascertain whether the images
were indicative of normalcy or disease. Notably, the proposed
method yielded the most favorable testing outcomes on the
BRATS 2015 dataset, achieving a Dice Similarity Coefficient(DSC)
of 0.9636 and an accuracy of 0.9878.

(Feng et al. 2019) introduced an innovative deep learning
architecture, aimed at detecting Alzheimer’s disease. The
proposed methodology amalgamated a fully layered bidirectional
long short-term memory (FSBi-LSTM) with a three-dimensional
Convolutional Neural Network(3D CNN). Initially, the researchers
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extracted prominent characteristics from MRI and PET scan
images.To augment the model’s performance, they employed the
FSBi-LSTM technique to process latent information extracted from
the deeper feature maps. To substantiate their approach, they
conducted experiments employing data from the Alzheimer’s
Disease Brain Imaging Initiative dataset. The findings exhibited
mean accuracies of 0.86, 0.94, and 0.65 for discerning progressive
mild cognitive impairment from normal control, distinguishing
Alzheimer’s disease from normal control, and identifying stable
mild cognitive impairment from normal control, respectively.

(Albarqouni et al. 2016) introduced AggNet,a sophisticated
deep learning system aimed at the identification of mitosis in
histology images related to breast cancer. Leveraging advanced
deep learning techniques, the researchers devised a strategy for
achieving precise labeling by harnessing the power of crowd-
sourced mass annotation within the domain of biomedicine.Their
innovative approach encompassed the integration of deep learning
principles into the very fabric of data collection, constituting an
integral facet of the learning process. This unique methodology
incorporated an additional layer of crowdsourcing, further
enhancing the efficacy of their multiscale Convolutional Neural
Network (CNN). To facilitate comprehensive training and robust
evaluation, the researchers harnessed the complete AMIDA13
dataset. The outcomes of their investigation yielded invaluable
insights into the potency of deep CNN learning when coupled
with mass annotations.The study’s findings underscored the
pivotal role played by data aggregation in the amalgamation
process, emphasizing its profound significance in the realm of
deep learning for biomedical image analysis.

(Liu et al. 2018) suggested a novel deep learning approach for
analyzing breast cancer tissue microarrays.Their method aims
to predict the H-Score autonomously. To achieve this objective,
they leveraged the H-Score dataset for experimentation, drawing
inspiration from the H-Score asassessment routinely performed
by medical professionals.In the H-Score assessment procedure,
various factors such as the total cell count,the quantity of
tumor-associated cells, and the categorization of cells based on the
intensity of positive marks are evaluated. The authors employed a
single fully convolutional network (FCN) to extract nucleus areas
from both tumor and healthy tissues. Additionally, they utilized
an extra FCN to specifically isolate the nuclei area pertaining to
the tumor cells.To further enhance their approach, the authors
designed a multi-column convolutional neural network(CNN).
This CNN utilizes the outputs from the initial FCNs, as well as the
image containing details about stain intensities,as its input. The
CNN functions as an advanced decision-making system,directly
generating the H-Score for the original tissue microarray image
source.

(Lian et al. 2018) presented a hierarchical fully convolutional
network (H-FCN) aimed at automating the identification of spe-
cific local patches and regions within brain structural MRI (sMRI)
scans.The primary objective was the identification of Alzheimer’s
disease. The H-FCN model effectively facilitated the acquisition
and fusion of multi-scale feature representations, enabling the
construction of hierarchical classification frameworks. To gauge
the efficacy of their proposed methodology, comprehensive testing
was conducted on a diverse cohort sourced from two distinct
datasets: ADNI-1 and ADNI-2. The results underscored the
effectiveness of the H-FCN approach,showcasing its proficiency
in pinpointing localized degenerative patterns and diagnosing
cerebral disorders.

(Wu et al. 2019) introduced a novel approach that utilizes deep

convolutional neural networks for breast cancer scans classifica-
tion. The authors employed a patch-level framework with a large
capacity, enabling the network to learn from pixel-level labels
effectively. Additionally, they incorporated a two-stage design
and training process that allowed the network to learn from large
breast-level labels, specifically optimized for high-resolution
healthcare images in terms of breadth and width. To pretrain
the network, they utilized BI-RADS classification screening, a
similar task with labels that are more susceptible to noise. Among
various options,the authors combined multiple input viewpoints
optimally. The training and evaluation of the proposed model
involved over 200,000 tests. For model validation, a reader study
was conducted, involving fourteen readers who examined 720
diagnostic mammograms. The results demonstrated that, when
provided with the same information,the model’s reliability was
comparable to that of expert radiologists. However, the authors
acknowledged the need for additional clinical validation due to
the relatively limited test set used in their experiments, despite the
encouraging findings.The proposed network achieved successful
prediction of breast cancer presence, with an AUC (Area Under
the Curve) value of 0.895.

(Liu et al. 2021) introduced a novel three-dimensional technique
known as the Context-Aware Network (CANet) for segmenting
gliomas. Their approach involved a combination of deep
supervised learning and graph convolution contexts within a
hybrid feature extractor.To enhance the segmentation process by
capturing pertinent features, the authors employed simple feature
fusion methods, such as element-wise summation, synergizing
with conditional random fields. Furthermore,the authors inte-
grated a context-guided attention-CRF’s mean-field estimate as a
convolutional procedure into the segmentation network, enabling
holistic end-to-end training. The effectiveness of their method
was assessed using the BRATS 2017-2019 datasets, showcasing
CANet’s supremacy in various evaluation measures. In their
future work, the authors intend to merge the proposed network
with new training strategies to further enhance its efficacy.

(Sarraf and Tofighi 2016) introduced a Convolutional Neural
Network(CNN) as a technique to differentiate between brain
scans of people with Alzheimer’s disease and those of healthy
individuals. They employed CNN and LeNet-5 models to
effectively differentiate functional MRI scans of Alzheimer’s
patients from those of normal individuals. The study utilized
the ADNI dataset for both training and testing, achieving an
impressive accuracy of 0.96.This research suggests that the most
effective approach for distinguishing patient information from
healthy data obtained from fMRI scans involves harnessing the
shift and scale invariant characteristics provided by CNNs, in
conjunction with deep learning classification.

(Zeineldin et al. 2020) introduced the DeepSeg framework,
which serves as a completely automated approach designed for
the detection and delineation of brain tumors using FLAIR MRI
data.The DeepSeg architecture proposed by the authors is modular,
emphasizing the connection between encoding and decoding
through two interconnected core components.Spatial data retrieval
is achieved through the utilization of convolutional neural
networks (CNNs) in the encoder part. The decoder component
takes the generated semantic map, aggregates it, and produces the
full-resolution likelihood map.The authors utilize different CNN
architectures, including dense convolutional networks, residual
neural networks, and NAS-Net.These architectures are based
upon a modified U-Net design. The proposed architectures are

272 | Rasool and Bhat CHAOS Theory and Applications



■ Table 1 Key Features and Characteristics of Deep Learning Models

Model Architecture Short Description Key Features

Recurrent Neural Network

• An artificial neural network called a re-
current neural network (RNN) is one type
of such network that utilizes sequential
input or time series input.

• Any length of input may be analyzed by
RNN.

• Extensively employed in natural lan-
guage processing and speech recogni-
tion.

Merit:
An RNN’s internal memory allows it to
retain previous input.

Demerits:
Recurrent neural network’s computation
is slow. It has problems like Vanishing
Gradient or Exploding Gradient.

Deep Auto-Encoder

• The essential use of an autoencoder in-
cludes illness detection, denoising of im-
ages, and compression of images.

• It is a method of unsupervised learning.
• In an autoencoder neural network, the

amount of units in the output layer
matches that of the input layer.

Merit:
The widely used autoencoder achieves
a high success rate in many fields and
reduces the complexity of the network by
lowering the dataset dimensions.

Demerit:
Their rate of learning is very sluggish.

Deep Boltzmann Machine

• The deep Boltzmann machine is a pow-
erful and effective computational tool for
compressing any distribution.

• It is an unsupervised deep learning
model.

• Each node between levels of the network
is connected to every other node.

Merit:
Top-down feedback is integrated for
strong conclusions on indefinite basics.

Demerit:
For big datasets, parameter optimization
is time-consuming.

Deep Belief Network

• Deep Belief Network (DBN) is particu-
larly strong in its classification.

• The same neural network methodology
used in DBN can be applied to various
applications and data formats.

• It supports both unsupervised as well as
supervised learning.

Merits:

• In addition to voice recognition, Deep
Belief Networks can be used for picture
recognition, capturing motion data, and
more.

• They are a computationally effective vari-
ant of feedforward neural networks.

• Directly increasing the probability of re-
sults.

Demerits:

• To outperform alternative methods, DBN
needs a lot of data.

• Due to its complex data models, DBN is
expensive to train, often requiring multi-
ple machines.

• DBN is challenging for people with less
experience.
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Deep Neural Network

• A Deep Neural Network (DNN) is an artificial
neural network that includes additional layers
of neurons between its input and output lay-
ers.

• DNNs are extremely scalable, allowing them
to address problems of any scale.

• DNNs are frequently employed to extract high-
level abstract features because they perform
better than conventional models.

• They have more than two hidden layers.

Merit:
Recognizes appropriate characteristics in-
stantly without human assistance.

Demerits:

• Computation of DNNs is quite resource-
intensive.

• Necessitates a lot of memory and processing
power.

• Enormous amounts of data and training are
needed to achieve desired goals.

Generative Adversarial Networks

• The generation network and the discriminator
are the two artificial neural networks which
make up a Generative Adversarial Network.
In which the generator serves as convolutional
neural network. while as, discriminator serves
as deconvolutional neural network.

Merit
GANs can produce synthetic data that
matches the distribution of real data.

Demerit:
To achieve effective results, GANs frequently
require plenty of training data.

Convolutional Neural Networks

• Convolutional neural networks are created us-
ing the behavior of neurons of the human
brain.

• Convolutional neural networks are con-
structed from several building blocks, includ-
ing layers of convolution, layers of pooling,
and fully connected layers.

Merit:
Using a backpropagation algorithm, convolu-
tional neural networks are designed to acquire
a spatial hierarchy of characteristic patterns
automatically and adaptively.

Demerits:

• The CNN cannot function without a significant
quantity of data related to training.

• Because of MaxPooling operations, CNNs of-
ten run substantially slower.

evaluated using the 2019 BraTS competition dataset for brain
tumor segmentation.The obtained segmentation results show Dice
and Hausdorff distance values ranging from 0.81 to 0.84 percent
and 9.8 to 19.7, respectively.

Costanzo et al. (2023) introduced a prompt and precise machine
learning technique for microwave-based medical imaging in
cancer identification.Authors utilized an innovative architecture
that combines U-Net and ResNet-18, leveraging ResNet-18’s
residual connections and pre-trained weights.This fusion yields
highly accurate segmentations at a reduced computational cost.
The study employed a dataset of 1500 breast images containing
randomly situated tumors. For each proposed network, they
generated training and validation samples. The authors conducted
comprehensive quantitative assessments using diverse breast
models, including instances of abnormal lesions, to validate
their machine learning approach’s efficacy. To demonstrate
the deep neural network-based inversion and segmentation
strategy’s performance in breast imaging,the authors presented
three numerical scenarios. The evaluation metrics encompassed
Percentage Reconstruction Relative Error, Root Mean Square Error,
and the Coefficient of Determination.The study covered sixty
distinct images separate from the training set, considering both
noise free images and those with added Gaussian noise. Moreover,
the study featured a meticulous comparison of computational
costs and image reconstruction precision.The results of numerical
tests conducted in both noisy and noise-free environments demon-
strated the proposed method’s effectiveness in reconstructing the
distribution of dielectric properties for breast imaging.Proposed
method exhibited exceptional capability in detecting abnormal
scatterers, such as tumors.

Tang et al. (2020) introduced a new method that utilizes deep
learning to examine pre-operative multimodal MRI brain data

in individuals with glioblastoma. Their approach focuses on
extracting tumor genotype related features and their seamless
integration into the prediction of Overall Survival.To evaluate
the effectiveness of their approach, the authors utilized a dataset
comprising brain MRI scans from 120 glioblastoma patients, along
with up to four different genotypic/molecular indicators.When
compared to other cutting-edge approaches, suggested method
exhibited the highest accuracy in forecasting overall survival.

Awotunde et al. (2022) introduced an advanced approach to
fuzzy elephant herding optimization (EFEHO). This technique,
referred to as EFEHO-OTSU, was specifically developed to en-
hance OTSU segmentation. Its primary goal was to achieve precise
identification of optimal segmentation. Following this, authors
implemented a dual-attention multi-instance deep neural network
for the purpose of Alzheimer’s disease detection,including its early
stage characterized as moderate cognitive decline. The evaluation
was conducted using the ADNI AIBL datasets, resulting in a
remarkable accuracy score of 0.942, the highest among all achieved
within the ADNI dataset.

Shubham et al. (2023) introduced a deep learning-driven
approach to identify glomeruli within pictures of human kidney
tissue. The segmentation architecture utilized was U-Net, with
EfficientNet B4 serving as the underlying backbone.Training and
evaluation utilized the HuBMAP dataset, which comprises eight
training sets and five public test sets. The optimization algorithm
employed was Adam.The training was conducted over four
K-folds, with each fold undergoing a 100 epoch process.Within
each epoch,300 iterations were performed, and a batch size of
six patches was utilized.The selected loss function was binary
cross-entropy. Importantly, the training dataset included eleven
newly frozen as well as nine Formalin-fixed Paraffin-Embedded
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■ Table 2 Evaluation of Deep Learning Techniques in Healthcare Applications

Author Purpose Approach Dataset Results

(Dominguez-Morales et al.
2017)

Detection and Classifica-
tion of Cardiac murmurs

CNN employing Neuro-
morphic Hearing Sensors

Sonogram Images Accuracy:0.97, Speci-
ficity:0.95, Sensitiv-
ity:0.93, PhysioNet score:
0.9416

(Dai et al. 2018) Detection of retinal mi-
croaneurysms

Multiple-Sieve CNN DIARETDB1 Dataset Precision: 0.99 and Re-
call: 0.87, Accuracy:0.96,
F1 score:0.934

(Fu et al. 2018) Ocular Disc and Cup Seg-
mentation from Fundus
Images

Deep learning-based M-
Net

ORIGA dataset and
Singapore Chinese Eye
Study (SCES) dataset

ORIGA Dataset:CDR:
0.80, RDAR: 0.79 SCES
Dataset:CDR:0.83,
RDAR:0.82

(Ahuja et al. 2022) Brain tumors segmenta-
tion and classification

DarkNet-53 models, 2d-
superpixel segmentation
approachs

TIW-CE MRI Dataset Accuracy:98.54, Area un-
der curve:0.99, Average
Dice Index:0.94±2.6

(Saba et al. 2020) Identify gliomas or normal
images

Grab cut method BRATS 2015,2016,2017
datasets

BRATS2015:0.99(DSC),
BRATS2016:1.00(DSC),
BRATS2017:0.99(DSC)

(Vorontsov et al. 2019) Colorectal Liver Metas-
tases

Convolutional Network Training and Valida-
tion: LiTS challenge
dataset,Testing:26 CT
images.

Total per-lesion DSC:0.14-
0.68

(Shen et al. 2020) Diagnosis of Breast Can-
cer

Deep Learning and fuzzy
learning

INbreast Dataset, Private
Dataset.

Accuracy:0.82. Average
Recall:0.78,Average
Specificity:0.78, Average
Precision:0.84,Average
F1-score:0.79

(Pereira et al. 2016) Brain Tumor Segmenta-
tion

Convolutional Neural Net-
work

BRATS2013,BRATS2015 BRATS2013:WT:0.88,
CT:0.83,ET:0.77,
BRATS2015:WT:0.78,
CT:0.65, ET:0.75.

(Costanzo et al. 2023) Cancer Detection UNet and ResNet Models Breast Imaging Dataset In noise-free settings, U-
Net 1, U-Net 2, and U-
Net 3 achieved mean IoU
scores of 0.995, 0.996,
and 0.994, respectively.

(Chen et al. 2021) Diagnosis of Breast Can-
cer

3D CNN Breast-CEUS Dataset Sensitivity:0.97, Accuracy:
0.86

(Sreng et al. 2020) Identifying glaucoma
through optic disc seg-
mentation in retinal
images

Combination of
DeepLabv3+ and Mo-
bileNet for optic disc
segmentation and deep
CNN for glaucoma classi-
fication

ACRIMA, DRISHTI-GS1,
RIM-ONE, REFUGE and
ORIGA.

Accuracy: 0.99(ACRIMA),
0.86(DRISHTI-
GS1),0.95(RIM-
ONE),0.97(ORIGA).

(Shubham et al. 2023) Detection of glomeruli
within human kidney tis-
sue

UNet for segmentation
with EfficientNetB4 as its
backbone

HuBMAP Dataset Accuracy: 0.99, and Dice
Coefficient:0.90.
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(Bhattacharjee et al.
2023)

Segmentation of Pul-
monary Nodules

ResiU-Net Dataset of lung cancer CT
scans from National Cen-
ter for Cancer Diseases
(IQ-OTH/NCCD)

F score of 97.44, an inter-
section over union score
of 95.02, a dice score
of 94.87, a binary cross-
entropy loss of 0.34, along
with a combined dice co-
efficient and binary focal
loss of 0.7585.

(Zhao et al. 2023) Segmentation and classi-
fication of kidney masses

3D U-Net and ResNet Utilized an institutional CT
image dataset for train-
ing and evaluated on the
kidney tumor segmenta-
tion (KiTS21) Challenge
Dataset

Achieved a 0.99 DSC for
bilateral kidney boundary
segmentation, alongside
0.86 accuracy for <5 mm
masses and 0.91 accu-
racy for 5 mm masses

(Li et al. 2023) Transcranial Brain Hemor-
rhage Detection

Residual attention U-Net Employed a simulation ap-
proach to construct train-
ing datasets, utilized im-
ages generated through
conventional imaging al-
gorithms as network input.

Employed two synthetic
samples: the first show-
cased enhanced visibility
of a 10-mm hemorrhage
spot, while the second ac-
curately reconstructed a
barely visible 5-mm hem-
orrhage spot using the
trained network.

(Zhu et al. 2023) Predicting the survival
time of glioblastoma multi-
forme patients using non-
invasive methods

Modified 3D-UNet BraTS2018,BraTS2019,
BraTS2020

DSC of BraTS2018-
0.83(WT),0.75(CT),0.66(ET),
BraTS2019-0.79(WT),
0.72(CT),0.75(ET),Brats2020-
0.83(WT),0.72(CT),0.69(ET).

(Rajput et al. 2023) Survival prediction for
brain tumor patients using
interpretable ML

3D-UNet BraTS2020 Survival Prediction
accuracy-0.55, MSE-
79826.24, medianSE-
14148.89, SpearmanR-
0.711

(FFPE) PAS kidney images. These images featured histological
stains designed to enhance resolution and precision during model
training. The proposed method attained an impressive accuracy
level of 0.99, along with a Dice coefficient measuring 0.9060.

Rajput et al. (2023) introduced an end-to-end AI approach to
forecast survival days (SD) in glioblastoma multiforme(GBM)
brain tumor patients. Proposed method employs MRI-derived
features and patient data, encompassing shape, location, and
radiomics aspects.Feature selection involves recursive elim-
ination, permutation importance, and correlation analysis,
revealing 29 key features, notably age, location, and radiomics
parameters,influencing SD prognosis. The model’s predictions
are corroborated through post-hoc interpretability techniques,
confirming alignment with established medical knowledge and
showcasing a 33 percent SD prediction enhancement over prior
methods.

Zhao et al. (2023) presented an innovative deep learning
method that enables the complete automation of segmenting
and categorizing renal masses in CT images. Their method
employs a two-step process involving a cascade architecture that
combines a 3D U- Net and ResNet. This combination effectively
achieves precise segmentation and classification of focal renal
lesions. Initially,they employ a 3D U-Net-driven technique to

define kidney boundaries within CT images, creating a region of
interest for identifying renal masses. Subsequently, an ensemble
learning model utilizing the 3D U-Net detects and segments
these masses,followed by classification using a ResNet algorithm.
The algorithm demonstrated impressive performance with a
high Dice similarity coefficient (DSC) for delineating bilateral
kidney boundaries and renal masses. The effectiveness of this
proposed technique was confirmed through assessment with
an independent validation dataset and the Kidney Tumor Seg-
mentation (KiTS21) challenge dataset. The outcomes underscore
the method’s potential to precisely localize and categorize renal
masses.

Bhattacharjee et al. (2023) put forward an innovative seg-
mentation framework that refines dual skip connections.The
novel framework combines a pre-trained Residual Neural Net-
work(ResNet) 152 with the U-Net architecture, resulting in what
they term ResiU-Net. Their research encompassed the comparison
of nine different pretrained and fine-tuned encoder backbones.
These included ResNet18, ResNet 34, ResNet 50, ResNet 101,
ResNet 152, SEResNet18,ResNext 101, SE-ResNet34, and ResNext
50. The findings indicated that the proposed ResiU-Net approach
outperformed the alternatives. For Training and evaluation,
authors utilized the HuBMAP dataset, which comprises eight
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training sets and five public test sets. The optimization algorithm
employed was Adam. The suggested approach attains a Fscore
of 97.44, an intersection over union score of 95.02, a dice score of
94.87 percent, a binary cross-entropy loss of 0.34, and a combined
dice coefficient and binary focal loss of 0.7585. The ResiU-Net
proposed in this study surpasses existing methods, yielding
superior evaluation metrics. The model’s training duration was
43 minutes, underscoring its rapid yet precise segmentation
capability

Li et al. (2023) introduced an innovative deep learning approach
designed to detect transcranial brain hemorrhages and address
other transcranial brain imaging needs. Proposed methodol-
ogy employs an attention-guided mechanism to emphasize
important features as they pass through skip connections. The
researchers conducted two separate ex-vivo experiments using
artificially created samples to generate testing data.In the first
image, they notably improved image contrast and significantly
reduced artifacts, leading to a clear distinction of the hemorrhage
spot.Proposed approach also accurately reconstructed the spot’s
boundaries, size, and shape. In the second sample, a hemorrhage
spot with a diameter of 5 millimeters was hardly discernible
using the delay-and-sum (DAS) approach. Nevertheless, the
proposed method achieved a high level of accuracy in detecting
the aforementioned spot.

Zhu et al. (2023) introduced a novel approach for the non-
invasive prediction of overall survival time in patients with
glioblastoma multiforme. The proposed approach is based on
utilizing multimodal MRI radiomics.The methodology involves
segmenting distinct tumor subregions, namely the Whole
Tumor (WT), Enhancing Tumor (ET), and Core Tumor (CT), for
comprehensive assessment. The model’s performance was truly
remarkable, as evidenced by the evaluation metrics.Notably, the
specificity index of 0.999 underscores its remarkable accuracy
in effectively identifying normal tissue regions.To validate its
effectiveness, the proposed model underwent evaluation on
three significant datasets: BraTS2020, BraTS2019, and BraTS2018.
The validation subsets within these datasets consisted of 125
cases for BraTS2020 and BraTS2019, and 66 cases for BraTS2018,
respectively. Across all three datasets,the model consistently
demonstrated outstanding performance, reinforcing its reliability
and applicability.While the proposed model excelled at accurately
segmenting the subregions of brain tumors,however some fine
details along the edges were slightly blurred due to the absence of
distinct features.
Table 2 compiles the summarized outcomes of diverse deep
learning techniques within the healthcare domain.

CRITICAL OBSERVATIONS

Deep learning technology, as highlighted by authors such as
(Rajkomar et al. 2018) and (Esteva et al. 2017), has made significant
contributions to the healthcare sector and has demonstrated
remarkable effectiveness in medical image analysis. Pioneering
research conducted by (Rajpurkar et al. 2018) and (Gulshan
et al. 2016) showcases the accuracy of deep learning in detecting
diseases, including cancer and brain tumors. Convolutional
Neural Networks (CNNs), studied by researchers including
(Lipton et al. 2015) and (Shin et al. 2016), have played a key
role in improving medical image classification.The benefits
of deep learning in healthcare, such as faster evaluation and
handling large datasets, have been emphasized by authors such as
(Miotto et al. 2016). However, challenges related to data quality,

interpretability, and biases, as discussed by (Cheplygina et al.
2019), necessitate ongoing research and collaboration to fully
leverage deep learning’s potential in healthcare.

CONCLUSION

Recent advancements in deep learning have introduced novel per-
spectives for the analysis of medical images, revolutionizing the
identification of disease patterns within these images. This paper
presents a comprehensive review and synthesis of cutting-edge
deep learning applications in medical image analysis, with a pri-
mary focus on disease detection, segmentation, and classification.
We elucidate the strengths and limitations of these approaches,
the utilized datasets, assessment metrics, methodologies, with a
particular emphasis on convolutional neural networks (CNNs)
as a prominent deep learning application for computer vision
tasks. Additionally,we underscore deep learning-based classifi-
cation techniques, encompassing supervised, unsupervised, and
semi-supervised methods, as well as their integration into medical
image processing procedures. Despite the remarkable efficiency
achieved by deep learning techniques across diverse medical ap-
plications, there remains an evident scope for enhancement due
to inherent challenges linked to healthcare data. These challenges
and outline potential future directions are discussed as under:

Enhanced Accuracy and Early Detection
Deep learning algorithms possess the capacity to enhance the accu-
racy of disease detection and diagnosis (Zheng et al. 2020). Future
developments may focus on refining existing models and creating
new ones that are even more adept at identifying subtle patterns
in medical images,leading to earlier and more accurate diagnoses.

Multi-Modal Fusion
Combining information from various medical imaging modalities
(such as MRI, CT, PET, Ultrasound, etc.) can offer a more holistic
perspective of a patient’s state. This approach enhances diagnos-
tic accuracy by assessing various health facets (Zhang et al. 2021).
Future research might focus on developing optimized deep learn-
ing techniques that effectively integrate and analyze data from
multiple modalities for improved diagnostic accuracy.

Interpretable and Explainable Models
Deep learning models often operate as black boxes, complicating
the comprehension of their predictions (Rajput et al. 2023). In
medical settings, interpretability is paramount for fostering trust
and elucidating decision-making processes to clinicians. The path
ahead involves designing models that offer clear insights into
their decision logic.Incorporating attention mechanisms, feature
visualization, and saliency mapping can provide visibility into
what the model focuses on during analysis.Integrating medical
knowledge into model architectures and utilizing explainable AI
techniques like rule-based systems or gradient-based explanations
can further enhance interpretability. As the field progresses, these
efforts will promote greater trust in AI-driven medical diagnostics
and treatment planning.

Data Augmentation and Synthesis
Since medical datasets are often limited, techniques that effectively
generate synthetic medical images could play a crucial role in
training more robust deep learning models and addressing data
scarcit (Mumuni and Mumuni 2022). Addressing limited medical
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datasets involves refining Generative Adversarial Networks and
transferring pre-trained models for improved synthetic image gen-
eration. Domain adaptation, semi-supervised, and active learning
strategies optimize data use,while collaborative sharing expands
resources. Multi-modal integration and tailored image augmen-
tation further enrich datasets. Embracing these approaches and
interdisciplinary collaboration can effectively tackle data augmen-
tation challenges, revolutionizing healthcare diagnostics through
advanced machine learning solutions.

Knowledge Transfer and Few-shot Learning
Developing deep learning models with the ability to transfer
knowledge across different medical domains or learn from only
a few examples is a significant challenge (Li et al. 2019). This
challenge becomes crucial in scenarios involving rare diseases or
situations where there is limited available data for training. The
future direction in addressing this challenge involves the advance-
ment of cross-domain adaptation techniques and few-shot learning
methods.Domain adaptation techniques can facilitate the effective
generalization of models trained in one medical domain to another.

Class Imbalance
In the field of deep learning for medical image analysis, class imbal-
ance presents a significant challenge (Johnson and Khoshgoftaar
2019). This issue is particularly apparent in datasets like BraTS
for brain tumor segmentation.To overcome this, the future trajec-
tory involves innovative data augmentation, strategic re-sampling
methods, and advanced algorithms. These endeavors hold the
potential to bolster accuracy and clinical utility, ensuring robust
diagnostics and well-informed healthcare decisions.

Lack of Standardization in Medical Imaging
The variability in resolutions, orientations, and acquisition pro-
tocols of medical imaging modalities like MRI and CT poses a
challenge in ensuring consistent preprocessing and analysis of
diverse datasets (Cobo et al. 2023). To address this, the future
direction involves devising standardized protocols for data acqui-
sition and preprocessing, defining uniform imaging practices and
resolution standards, as well as exploring advanced techniques
beyond normalization and registration to enhance the reliability
and accuracy of deep learning-based medical image analysis.

Small Anomalies Detection
Detecting subtle anomalies or abnormalities that could signal a
disease poses a difficulty, particularly when these irregularities
are small and blend with healthy tissues.To overcome the hurdle
of identifying tiny anomalies within medical images (Pang et al.
2021), the future lies in refining algorithms for improved sensitiv-
ity.Embracing multi-modal analysis and leveraging contextual cues
can enhance the ability to spot minute irregularities.Integrating
deep generative models and leveraging self-supervised learning
strategies can empower the system to recognize intricate pat-
terns.By relentlessly pursuing these avenues, the field aims to
bolster the accuracy of medical image analysis and pave the way
for more effective disease detection.

Data Privacy and Security
Medical data,being sensitive and governed by privacy regulations,
presents a substantial challenge in devising methods that balance
patient data protection with effective analysis (Ramzan et al. 2022).
The future entails the development of privacy-preserving tech-
niques that enable meaningful analysis while upholding confiden-
tiality. Differential privacy, federated learning, and homomorphic

encryption are promising avenues. Additionally, exploring decen-
tralized data sharing models and blockchain-based solutions can
enhance security.By integrating these strategies, the field aims to
achieve a harmonious equilibrium between robust data analysis
and stringent privacy considerations, ensuring trust and compli-
ance in healthcare applications.

Longer Training Time

A significant challenge in medical imaging’s deep learning is ex-
tended model training due to complex structures (Ahmad et al.
2020). To optimize training, researchers explore transfer learning,
leveraging pretrained models and hardware advancements like
GPUs. Additionally, model compression techniques and genera-
tive adversarial networks for data augmentation show promise.
This convergence of strategies holds potential for curtailing train-
ing time, expediting model development and real world deploy-
ment.

Limited Annotation and Ground Truth

Obtaining accurate annotations and ground truth labels for medi-
cal images can pose a considerable difficulty due to the need for
expert clinicians and time-consuming manual labeling, especially
for complex structures and rare conditions (Zhang et al. 2020).
Future direction involves exploring semi-supervised learning tech-
niques, which leverage a smaller set of fully labeled data alongside
a larger pool of unlabeled data. Additionally, weakly supervised
learning approaches, where models are trained with less detailed
annotations like image-level labels, hold potential. These meth-
ods aim to alleviate the burden of meticulous manual annotation
while maintaining high accuracy, thus optimizing the use of expert
resources and enhancing the efficiency of medical image analysis.
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ABSTRACT This research article deals with analytical solutions to two problems. The first is the (1+1)-coupled
Jaulent-Miodek system of equations, which is associated with the energy-dependent Schrödinger potential,
whereas the second problem, the system of coupled Konno-Oono equations relates to complexity and chaos
in electromagnetic fields. Similarity reductions via Lie-symmetry analysis is performed for the systems to
derive their analytical solutions. Since Lie symmetry involves arbitrary constants in the infinitesimals, this
opens up more possibilities for getting a rich variety of analytical solutions for both real-life problems. The
analytical solutions are supplemented graphically to understand them in a better way. Traveling wave profiles
are obtained eventually. Solution for CKOEs are different from the earlier research (Kumar and Kumar 2022a;
Kumar et al. 2022) as far as the authors are aware.
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INTRODUCTION

During the last few decades, interest in solving nonlinear sys-
tems of partial differential equations has increased. Nonlinear
partial differential equations (NPDEs) are used in many different
scientific disciplines to describe the motion of specific waveforms.
In physics, for example, NPDEs can be used to study complex-
ity in electromagnetic fields, chaos theory (Karaca and Baleanu
2022; Karaca 2023) shallow-water wave propagation, oceanic re-
search and engineering, material science, optics, and many other
fields. The appearance of NPDEs is cause for serious concern when
research numerical results are physically defined. The energy-
dependent Schrödinger potential and electromagnetic fields have
a connection to this occurrence.

An adequate literature review (Jaulent and Miodek 1976; Zhou
1997; Özer and Salihoğlu 2007; Xu et al. 2014) that includes histori-
cal context, various sorts of solutions, and employed methodolo-
gies is presented for the following form of Jaulent-Miodek equa-
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tions (JMEs).
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where the wave components in space are denoted by the variables
u(x, t) and v(x, t), and both of these variables depend on time t as
well. Another form of JMEs is as follows:
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This form of JMEs was also tried by the authors to be solved
analytically by using Lie symmetry, but its reduction could not be
further solved. It opens the door for further research in this field.

Some more literature review for the JMEs (1) is also presented.
The JMEs (1) were first introduced by (Jaulent and Miodek 1976)
using the inverse scattering transform, which associates with the
energy-dependent Scrödinger potential (Özer and Salihoğlu 2007).
The finite-band solution of the JMEs (1) can be obtained through
nonlinearization of the Lax pair (Zhou 1997). Darboux transforma-
tion (Xu et al. 2014) for the JMEs (1) yields some accurate solutions
like a kink- and bell-type solitons. These results are based on the
Lax pair of the JMEs spectral issue.
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In this research, second problem i.e. coupled Konno-Oono
Equations (CKOEs) is also solved by employing Lie-symmetry
analysis (Konno and Oono 1994). The general form of the CKOEs
is represented by
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where the wave components in space are denoted by the variables
u(x, t), v(x, t) and w(x, t), all of these variables depend on x and
time t, while α, β and γ are parameters. The CKOEs are classified
as Coupled Integrable Dispersionless (CID) equations (Pan and
Yan 2010; Souleymanou et al. 2012). The CKOEs describe how
a string moves in a three-dimensional space when interacting
with a magnetic field surrounding it. Each point on the curve
along the time direction appears to be transiting in parallel in a
magnetic-field (Konno and Oono 1994; Konno and Kakuhata 1995;
Souleymanou et al. 2012).

Another particular forms of the CKOEs (3) are discussed in (Pan
and Yan 2010; Souleymanou et al. 2012; Konno and Kakuhata 1995)
and derived assuming particular values of α and β as zero while
γ = 1 and recasts as:

∂2u
∂x∂t

+ w
∂v
∂x

+ v
∂w
∂x

= 0,
∂2v
∂x∂t

− 2v
∂u
∂x

= 0, and

∂2w
∂x∂t

− 2γw
∂u
∂x

= 0. (4)

Under the conditions u takes value u0 when v tends to 0 and |x|
tends to ∞, this kind of CKOEs can be resolved by the inverse scat-
tering method (ISM) and satisfies the conservation law (Konno and
Oono 1994; Kakuhata and Konno 1996; Konno and Kakuhata 1996).
As these requirements are satisfied with the proper conversion in
(5), the solution of CKOEs gradually resembles as Sine-Gordon’s
solutions and Pohlmeyer-Lund-Regge equations (Pan and Yan
2010; Konno and Kakuhata 1996; Hirota and Tsujimoto 1994).

Furthermore, a form of CKOEs in which only u and v appears
can be discussed as

∂u
∂t

+ 2v
∂v
∂x

= 0, and
∂2v
∂x∂t

− 2uv = 0, (5)

Konno and Oono (1994) derived the system (5) after replacing Rx,
S, T, α, β and γ by −iu, iv, iv, 0, 0, 1 respectively into the following
integrable PDEs

i
∂2R
∂x∂t

+ (2αR + γT)
∂S
∂x

+ (2β + γ)S
∂T
∂x

= 0,

i
∂2S
∂x∂t

+ 2(2βR + γB)
∂R
∂x

− 2(αS − βT)
∂S
∂x

= 0, and

i
∂2T
∂x∂t

+ 2(2βR + γT)
∂R
∂x

− 2(αT − βS)
∂T
∂x

= 0. (6)

Furthermore, the stochastic form of CKOEs (Mohammed et al.
2021) is given by

∂u
∂t

+ 2v
∂v
∂x

= 0, and
∂2v
∂x∂t

− 2uv = σF(ν), (7)

where the noise term, F(ν) is a function of strength (σ) of noise.
CKOEs (5) can be obtained by Eq. (7) if σ vanishes.

Some tools/methods such as ISM (Konno and Oono 1994;
Kakuhata and Konno 1996), classical Lie-symmetry (Khalique
2012), G′/G-expansion and tanh (Abdullah et al. 2023), and some
others (Khan and Akbar 2013; Alam and Belgacem 2016; Yel et al.
2017; Mohammed et al. 2021) are used for solving CKOEs (3) in
their various forms.

Khalique (2012) used similarity reduction to solve the CKOEs
(3), and obtained kink type solutions. Abdullah et al. (2023) de-
rived rational, trigonometric and hyperbolic solutions. Zahran and
Bekir (2023) got W-shaped, singular dark solitons type solutions.
Mohammed et al. (2021) and Wang and Liu (2022) obtained soli-
tary wave type solutions, whereas in our previous contributions
(Kumar and Kumar 2022a; Kumar et al. 2022) optimal sub-algebra
utilizing killing form is exploited and derived some initial travel-
ing wave solutions for the same form of the CKOEs (3). Besides the
work of (Khalique 2012), and authors (Kumar et al. 2022) a group
of researchers (Bashar et al. 2016; Khan and Akbar 2013) has solved
some specific forms of the CKOEs (5) and obtained more traveling
wave solutions.

The research conducted by Torvattanabun et al. (2018) derived
both trigonometric and hyperbolic solutions. The hyperbolic,
trigonometric, and rational types were obtained by Alam and
Belgacem (2016), whereas Khater et al. (2018) derived travelling
and solitary wave type solutions. The hyperbolic and trigonomet-
ric wave types were derived by Mirhosseini-Alizamini et al. (2020).
The results of Manafian et al. (2018) were hyperbolic, elliptic, and
solitons. Solitons were obtained by Yel et al. (2017), whilst solutions
in the form of travelling waves were obtained by Koçak et al. (2016).
In addition, CKOEs (5) are solved by Abdelrahman and Alkhidhr
(2020) that contain solitary type solutions.

Above reviews motivate to derive some novel variety of solu-
tions for JMEs (1), and CKOEs (3).

INFINITESIMALS VIA LIE-SYMMETRY ANALYSIS

In this section, infinitesimals of the JMEs (1) and CKOEs (3) are de-
rived by using one parameter Lie group similarity transformations
method (STM). Such transformations can be treated as:

x∗ → x + ϵ ξ(Ξ) + o(ϵ2), t∗ → t + ϵ τ(Ξ) + o(ϵ2),

u∗ → u + ϵ η(u)(Ξ) + o(ϵ2), v∗ → v + ϵ η(v)(Ξ) + o(ϵ2), and

∂u∗

∂x∗
→ ∂u

∂x
+ ϵ [η

(u)
x ] + o(ϵ2) etc. (8)

where ξ, τ, η(u) and η(v) are the infinitesimals for x, t, u and v
respectively and (Ξ) ≡ (u, v, x, t).

Let u = θ(u)(x, t), and v = θ(v)(x, t) be the solutions for JMEs
(1), then its invariance conditions are

[η
(u)
t ] + 3θ

(u)
x θ(u) + 3 u [η

(u)
x ]− 2[η(v)

x ] = 0, and

2[η(v)
t ] + 4θ

(u)
x θ(v) + 4v [η(u)

x ]− 2θ
(v)
x θ(u) − 2u [η

(v)
x ]− [η

(u)
xxx] = 0.

(9)

One can follow the textbooks (Bluman and Cole 1974; Olver 1993)
and research articles (Kumar and Kumar 2022a,b; Kumar et al. 2023)
for getting the values of the extensions [η(1)

x ], [η(1)
xx ], and [η

(1)
xxx] etc.

Making use of Eq. (1) into Eq. (9) which gives

τu = τv = τx = 0, τtt = 0, ξu = ξv = ξt = 0, 2ξx = τt, ξxx = 0,

2η
(1)
u = −uτt, and η

(2)
v = −vτt. (10)
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The resulting infinitesimal generators for Eq. (1) can be derived by
solving the above determining Eqs. (10).

ξ = a1x + a2, τ = 2a1t + a3, η(u) = −a1u, and η(v) = −2a1v.
(11)

where all a′is are arbitrary constants.
Similarly for CKOEs (3), the infinitesimals are as follows:

ξ = 2c1x + c2, τ = −c1t + c3, η(u) = c1u, η(v) = c1v, and

η(w) = c1w. (12)

where c′is are arbitrary constants.

SIMILARITY REDUCTIONS AND INVARIANT SOLUTIONS

Jaulent-Miodek equations
Case 1: For a1 ̸= 0, the Eq. (11) provides,

dx
x + A1

=
dt

2t + A2
= − du

u
= − dv

2v
, (13)

On solving above, similarity variable is given as X1 = (x +

A1) (2t+ A2)
−

1
2 and similarity functions u = (2t+ A2)

−
1
2 F1(X1),

and v = (2t + A2)
−1G1(X1), where A1 =

a2
a1

, and A2 =
a3
a1

. Treat-

ing G1 = F1, similarity reduction of JMEs (1) yield the following
ODE:

¯̄̄F1 − 6F2
1 F̄1 + 9X1F1 F̄1 + F2

1 − 2X2
1 F̄1 − 2X1F1 − 4C1 F̄1 = 4C1,

(14)

where C1 is an integration constant.
On solving Eq. (14), one can find

F1 = X1 ±
√

X2
1 + 4C1, (15)

So, the first solution of JMEs (1) is

u1 =
1

(2t + A2)

[
(x + A1)±

√
(x + A1)2 + 4C1(2t + A2)

]
, and

v1 =
(x + A1)

2(2t + A2)2

[
(x + A1) +

√
(x + A1)2 + 4C1(2t + A2)

]
+

4C1
(2t + A2)

. (16)

Case 2: For a1 = 0 and a3 ̸= 0, Lagrange’s characteristic equations
for the Eq. (11) recasts as

dx
B

=
dt
1

=
du
0

=
dv
0

, (17)

where B =
a2
a3

. On integrating, one can get similarity forms as

X2 =
1
B
(x − t) and u = F2(X2), and v = G2(X2).

Hence, similarity reduction of JMEs (1) is represented by the
following ODE (for F2 = G2).

¯̄̄F2 − B4 F̄2 + 6B3F2 F̄2 − 6B2F2
2 F̄2 − 2B2C2F2 = 0, (18)

where integration constant is C2.
Eq. (18) is satified by

F2 =
1
2

B ± 1
2

√
B2 − 4C2 tanh

(
± C3 +

1
2

√
B2 − 4C2 BX2

)
. (19)

So, another solution of JMEs (1) is given by

u2 =
1
2

B ± 1
2

√
B2 − 4C2 tanh

(
± C3 +

1
2

√
B2 − 4C2 BX2

)
and

v2 = − 9
16

B2 +
3
16

(B2 − 4C2) tanh2 (
± C3 +

1
2

√
B2 − 4C2 BX2

)
− 3

8
B
√

B2 − 4C2 tanh
(
± C3 +

1
2

√
B2 − 4C2 BX2

)
+ C3.

(20)

where C3 is an integration constant.

Coupled Konno-Oono equations

The Lie algebra L3 can be generated by Lis (1 ≤ i ≤ 3) in which

L1 =
∂

∂x
, L2 =

∂

∂t
, and L3 = 2x

∂

∂x
− t

∂

∂t
+ u

∂

∂u
+ v

∂

∂v
+ w

∂

∂w
.

Thus symmetry reductions of the CKOEs (3) are as follows.
Case 1: The symmetry generator µ1L1 + L2 gives rise to the

group-invariant solution u = U(X), v = V(X), and w = W(X);
in which X = x − µ1t is an invariant of the symmetry µ1L1 + L2,
where µ1 is an arbitrary constant. Substituting these values into (3)
yields the system of ODEs as

µ1U′′ + 2αV′U + 2βW ′U − γV′W − γW ′V = 0,

µ1V′′ + 2αV′V − 4βU′U − 2βV′W + 2γU′V = 0, and

µ1W ′′ − 4αU′U − 2αW ′V + 2βW ′W + 2γU′W = 0. (21)

After solving the above system of reduction, following variety of
solutions can be obtained

u1 = 0, v1 = tanh C1α(x − µ1t), w1 = 0. (22)

u2 =
γ

2α

(
C1(x − µ1t) + C2

)
, v2 =

β

α

(
C1(x − µ1t) + C2

)
,

w2 = C1(x − µ1t) + C2. (23)

u3 =
γ

µ1α2(γ2 + 4αβ)
tanh

(1
2

C3(x − µ1t) + C2

)
C3,

v3 = −1
2

γ2

µ1α2(γ2 + 4αβ)
tanh

(1
2

C3(x − µ1t) + C2

)
C3,

w3 =
2

µ1α(γ2 + 4αβ)
tanh

(1
2

C3(x − µ1t) + C2

)
C3. (24)

Case 2: The symmetry operator µ2L1 + L2 + µ3L3 (where µ2 and
µ3 are arbitrary constants) provides group-invariant solution of the
form u = U(X) + µ3γt, v = V(X) + 2µ3βt, w = W(X) + 2µ3αt
where X = x − µ2t is an invariant of µ2H1 + H2 + µ3H3 and the
functions U, V and W satisfy the same reductions as given in Eq.
(21), but solutions are different due to different similarity forms.

So, solution is given by

u4 = 0, v4 = tanh (x − µ2t)C1α + 2µ2γt, w4 = 0. (25)

u5 =
γC1
2α

+ µtγt, v5 = C1 + 2µ2βt, w5 = C1 + 2µ2αt. (26)

u6 =
γ

2α
{C1(x − µ2t) + C2}+ 2µ2αt,

v6 =
β

α
{C1(x − µ2t) + C2}+ 2µ2βt,

w6 = C1(x − µ2t) + C2 + µ2γt. (27)

u7 =
γ

µ2α2(γ2 + 4αβ)
tanh

(1
2

C3(x − µ2t) + C2

)
C3 + µ2γt,

v7 = − γ2

2µ2α2(γ2 + 4αβ)
tanh

(1
2

C3(x − µ2t) + C2

)
C3 + 2µ2βt,

w7 =
2

µ2α(γ2 + 4αβ)
tanh

(1
2

C3(x − µ2t) + C2

)
C3 + 2µ2αt. (28)
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PHYSICAL ANALYSIS AND DISCUSSION

Two analytic solutions for the JMEs (1) are represented by the
expressions (16) and (20) while seven analytic solutions for the
CKOEs (3) are expressed by Eqs. (22)–(28). The solution profiles are
shown which have different animation behaviour. The stationary-
progressive profile of the JMEs is shown via the Figs. (1) and
progressive, traveling and stationary-progressive profiles for the
CKOEs (3) are given by Figs. (2)-(4). A progressive wave is a
wave that conveys energy and momentum from one region of
space to another. The numerical simulation is performed with
the help of MATLAB. The space and the time ranges are taken as
−25 ≥ x ≤ 25 and 0 < t ≤ 50 respectively for each profile. For all
profiles of the CKOEs (3), the arbitrary constants involved in the
solutions are chosen as C = C1 = C2 = C3 = µ1 = µ2 = 1.25 and
α = 0.95, and β = γ = 1.50. For all the JMEs profiles, the arbitrary
constants are taken as a1 = 0.4387, a2 = 0.3816, a3 = 0.7655, and
A1 = 0.3804, A2 = 0.4217 and A3 = 0.7537.

Figure 1 Stationary-progressive profile for the solution (16)
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Figure 2 Progressive profile for the solution (22)
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Figure 3 Traveling wave profile for the solution (25)
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Figure 4 Stationary-progressive profile for the solution (28)

CONCLUSION

The Lie-symmetry analysis is successfully explored to obtain seven
analytic solutions for the CKOEs (3) and two analytic solutions for
the JMEs (1). Solutions of JMEs are given by Eqs. (16) and (20),
while solutions to CKOEs (3) are represented by Eqs. (22)- (28).
Mathematical expressions are explored physically as stationary-
progressive and progressive profiles for the solutions (16) and (20)
are depicted in Figure 1 and Figure 2 respectively. The progressive,
traveling and stationary-progressive profiles for the CKOEs (3) are
given by Figures (2)-(4). The solutions established here can explore
some more applications in the fields of chaos and the complexities
of the magnetic field since they provide a realistic perspective.
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Study of Fixed Points and Chaos in Wave Propagation
for the Generalized Damped Forced Korteweg-de Vries
Equation using Bifurcation Analysis
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ABSTRACT In this article, we consider the Generalized Damped Forced Korteweg-de Vries (GDFKdV)
equation. The forcing term considered is of the form F(U) = U(U − v1)(U − v2), where v1 and v2 are
free parameters. We investigate the behaviour of fixed points evaluated for the corresponding dynamical
system of our model problem. With respect to these fixed points, we investigate the effects of a few significant
parameters involved in the model, namely, the free parameters v1 and v2, the nonlinear, dispersion and
damping coefficients using the tools from bifurcation analysis. We also obtain the wave plots for the critical
values of the nonlinear and dispersion coefficients for which the system becomes unstable and exhibit chaotic
behaviour. We confirm the chaos in our dynamical system under various conditions with the help of Lyapunov
exponents.

KEYWORDS

GDFKdV equa-
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Nonlinear dynam-
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Chaos
Wave propaga-
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Lyapunov expo-
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INTRODUCTION

In dispersive media, weakly non-linear long wave propagation is de-
scribed by the universal mathematical model KdV. It is also used as a
model to examine several quantum mechanics-related phenomena in the-
oretical physics. In many real-world applications, it is recognized that
higher-order non-linearity should be included in the KdV equation in
order to explain the physical phenomenon, which leads to a more gen-
eralised KdV equation. This equation accounts for the wide range of
applicability; Shallow-water gravity waves, ion-acoustic waves in colli-
sionless plasma, internal waves in the atmosphere and ocean, and waves
in bubbly fluids are only a few examples of the physical uses of the gener-
alized KdV equation (Stuhlmeier 2009; Khater 2022; Vasavi et al. 2021;
Crighton 1995).

In this article, we study the Generalized Korteweg-de Vries (GKdV)
equation with damping and external force of the following form

Ut + PUnUx + QUxxx + SU = γF(U, x, t, vi), (1)

where U denotes the excitation, t, x denote time, and space coordinates,
respectively. P, Q, and S denote coefficients of nonlinearity, dispersion,
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damping, respectively; n is the exponent which controls the non-linearity.
The coefficients P and Q, which can either be constants or functions
of x and t, are determined by the characteristics of the medium. The
Generalized KdV equation describes the combined effect of the basic long
wave dispersion (Uxxx) and, (UnUx, n > 0) which has the same form
as that in the KdV or 1-dimensional Navier-Stokes equations, stabilizes
by transferring energy between large and small scales (Alshenawy et al.
2020; Zhang 2014; El 2007). In equation 1, the function F denotes an
additional forcing term. The parameter γ is the force coefficient. The
range of γ governs the strength of the force field. For instance, for γ > 1,
γ ≈ 1, and γ ≪ 1 the force field can be considered strong, weak or very
weak.

In this study, we consider F(U, x, t, vi) ≡ F(U) = U(U − v1)(U −
v2). The roots of the polynomial F(U) = 0 are U = 0, v1 and v2.
The parameters v1 and v2 are referred to as forcing parameters. Under
certain conditions imposed on these parameters, the forcing term in its
present form may act as an attenuator or amplifier for the solitary waves
(Engelbrecht and Peipman 1992). Such forcing terms have been used to
study the wave propagation in different media within the framework of a
perturbed KdV equation (see for example (Engelbrecht and Khamidullin
1988; Engelbrecht and Peipman 1992; Engelbrecht 1991). See also (Peter-
son and Salupere 1997; Peterson 1997) for the numerical treatment of the
KdV equation with forcing term in cubic polynomial form with periodic
boundary conditions and the harmonic initial condition. It is important to
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note that due to the presence of the forcing term in the model equation 1
does not satisfy the conservation laws.

For n = 1, 2, the well-developed techniques are available to obtain
the analytical solutions of KdV equation and its variants without forcing
term in the right hand side, refer to (Wazwaz 2004; Zuo and Zhang
2011) and references therein. However, for n ≥ 3, the generalized
KdV equation becomes non-integrable. According to (Merle 2001; Bona
et al. 1987; Hereman and Takaoka 1990; Zabusky 1967), the solutions
of GKdV are stable for n ≤ 4, unstable for n ≥ 6 and conditionally
stable for n = 5. Even for the numerical treatment of generalized
KdV equation for n ≥ 5, one has to take a very small mesh width in
space or time step in order to obtain an acceptable computed solution.
The problem becomes more challenging when P >> Q (Alvarado and
Omel’yanov 2012). This poses serious limitations on the conventional
analytical and numerical methods. To analyse such intricate non-linear
systems, it is desirable to employ tools available in the bifurcation analysis
(Guckenheimer and Holmes 2013). Bifurcation analysis is a mathematical
framework to study qualitative changes to investigate the unexpected
appearance, disappearance, or change in the stability of equilibrium points
with respect to certain parameters or perturbations. Bifurcation analysis
has long been used to investigate dynamical systems emerging from
varied real world problems, refer to (Hilborn et al. 2000) and references
therein.

Many authors have studied the KdV equation and its variants using
bifurcation analysis. Zao Li et.el. (Li et al. 2021) studied the fractional
generalized Hirota–Satsuma coupled KdV equations with the help of
bifurcation theory. Yiren Chen and Shaoyong Li (Chen and Li 2021)
investigated the generalized KdV-mKdV-like equation with the help of
bifurcation analysis; see also (Saha and Chatterjee 2014; Tamang and
Saha 2020) for similar studies. To the best of our knowledge in most of
these studies, the authors have considered fixed values of the parameters
involved in the equations. The novelty of this work presented here is that
we have not put any restriction on the range of any of these parameters
and investigated the nature of the dynamical system corresponding to
the generalized damped forced KdV equation given by equation 1 with
respect to all the equilibrium points. In view of the facts mentioned above,
we analyse our model problem for n ≥ 3, P >> Q and various values of
S using bifurcation tools. The authors (Chadha et al. 2023; Tomar et al.
2023; Chen and Li 2021) used bifurcation analysis to study the behaviour
of the dynamical system for the equilibrium points and found chaotic
behaviours in the Damped Forced KdV and Generalized KdV equations
under certain conditions on the parameters involved. The interested reader
may also refer to (Haidong et al. 2023; Sami et al. 2022; Xu et al. 2022)
for some recent work on fractional order dynamical systems and their
applications where the authors have used phase portraits, time series
plots, the Lyapunov spectrum and other related tools from the bifurcation
analysis to study the chaotic behaviour of the systems.

The organization of this study is as follows: First, we evaluate three
different equilibrium points obtained from a three-dimensional dynamical
system corresponding to the generalized DFKdV equation. We study
the behaviour of these equilibrium points and wave propagation in the
dynamical system using the bifurcation analysis. For the first equilibrium
point, we investigate the system with respect to the free parameters v1, v2,
and S. It is important to mention that the other two equilibrium points
have locational dependence on v1, v2, and S, which further complicates
the problem. For these equilibrium points, we investigate the system for
n = 5 and P and Q ratio up to 104. The system exhibits chaotic behaviour.
These theoretical findings are confirmed by the wave propagation plots
and the Lyapunov exponents. We conclude with our major findings in
this study.

BIFURCATION ANALYSIS OF GDFKDV EQUATION

In this section, we investigate the dynamical behaviour of the generalized
damped forced KdV equation 1 with forcing term F(U) = U(U −
v1)(U − v2) and γ = 1 with respect to the different equilibrium points.

The Generalized DFKdV equation is

Ut + PUnUx + QUxxx + SU = F(U). (2)

Consider a wave transformation,

U(x, t) = U(z), z = (x − ct). (3)

Using the wave transformation in equation 2, we get the ordinary differ-
ential equation:

−cUz + PUnUz + QUzzz + SU = F(U). (4)

Equation 4 can be rewritten as follows

U′ = V,

V′ = W,

W ′ =
1
Q
(cV − PUnV − SU + U(U − v1)(U − v2)). (5)

By solving this system of equation, we obtain the equi-
librium points (0, 0, 0), (h, 0, 0) and (k, 0, 0), here h, k =
1
2 (v1 + v2 ∓ ((v1 − v2)

2 + 4S)1/2).

For the dynamical system equation 5, the Jacobian matrix is

J =


0 1 0

0 0 1

−nPUn−1V−S+3U2−2(v1+v2)U+v1v2

Qw2
0

c−PUn

Qw2
0

0


Corresponding characteristic equation is

−1
Q

(QE3 + (PUn − c)E+

(S + 2U(v1 + v2)− 3U2 − v1v2 + PUn−1Vn) = 0. (6)

The eigenvalues for this system are

E1 = T +
Uc − PUUn

3QUT
,

E2,3 = −
(

T
2
+

Uc − PUUn

6QUT

)
±

√
3i

2

(
T − Uc − PUUn

3QUT

)
. (7)

Here,

T =

((
A

4Q2U2 − (Uc − PUUn)3

27Q3U3

)1/2

− A
2Q2U2

)1/3

,

A = (SU + 2U2v1 + 2U2v2 + 3U3 − Uv1v2 + PUnVn)2.

To study the behaviour of the dynamical system equation 5, it is im-
portant to investigate the nature of the eigenvalues for all the equilibrium
points.

For a three dimensional system: (E1, E2, E3) = (−,−,−) corre-
sponds to fixed point, (E1, E2, E3) = (0, 0,−) corresponds to limit
cycle, (E1, E2, E3) = (0, 0,−) corresponds to two dimensional an-
nulus, (E1, E2, E3) = (+,+,−) correspond to unstable limit cycle,
(E1, E2, E3) = (+, 0,−) correspond to strange attractor, (E1, E2, E3) =
(+, 0, 0) corresponds to strange attractor, (Layek et al. 2015).

For study of these equilibrium points, this investigation is divided into
two sections: at first equilibrium point (0, 0, 0) and second equilibrium
point (h, 0, 0) and third equilibrium point (k, 0, 0).
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At equilibrium point (0, 0, 0):

The first equilibrium point (0, 0, 0) is independent of the parameters. In
this case, we are investigating the effect of the damping parameter S and
the forcing parameters v1, and v2. Exactly at the equilibrium point, we
could not find any interesting feature worth reporting. So, we take a point
(1e − 5, 1e − 5, 1e − 5) which is in the close vicinity of the equilibrium
point.

In Figure 1, we have generated the phase portraits which show the
quasi-periodic movement in trajectories for the constant value of the
parameters c = 0.7; P = 2; Q = 0.2; v1 = 0.2; v2 = 0.5; n = 3, and
S = 0.15 in the time interval 0 : π/1000 : 6π. The projections in
U − V, V − W, and U − W planes are shown in Figure 1 (a), (b), (c),
respectively.

(a) (b)

(c)

Figure 1 Phase portraits of the dynamical system equation 5 with
respect to first equilibrium point (1e − 5, 1e − 5, 1e − 5). Parameters are
c = 0.7; P = 2; Q = 0.2; v1 = 0.2; v2 = 0.5; n = 3, and S = 0.15.
Time interval is 0 : π/1000 : 6π.

Figure 2 (a), (b), and (c) exhibit the quasi-periodic behaviour of
two trajectories for the range of parameter v1 ∈ [0.1, 0.97); v1 = 1.1
is the break point for the system. These figures are generated for the
four representing values from this range, v1 = [0.1, 0.8, 0.95, 0.97] to
show the complete behaviour for the defined range. The value of other
parameters are c = 0.7; P = 2; Q = 0.2; v2 = 0.5; n = 3, and S =
0.15; time interval considered is 0 : π/1000 : 6π. This behaviour
of the dynamical system can be justified by the eigenvalues for this
equilibrium point, which are given in Table 1. We observe that we have
two negative and one positive eigenvalues. Since one of the eigenvalue
is always possible for this range of v1, the equilibrium point will be
unstable and system will be weak chaotic. In this forcing term, we have
one more parameter v2 for which we found almost identical behaviour
corresponding to v1. Thus, plots for v2 are not presented here.

For the damping parameter S, we have investigated the nature of
the trajectories for the four representing values from the range of
S ∈ [0.1, 0.48]. From Figure 3 (a), (b), and (c), it is evident that the
movement of trajectories is quasi-periodic and S = 0.48 is the break-
point which can be seen in Figure 3 (d). The corresponding behaviour of

■ Table 1 Eigenvalues of the Jacobian matrix with respect to equi-
librium points (1e − 5, 1e − 5, 1e − 5) for v1 ∈ [0.1, 0.97]. Other
parameters are c = 0.7; P = 2; Q = 0.2; v2 = 0.5; n = 3, and
S = 0.15.

v1 E1 E2 E3

0.1 1.7948 0.1437 −1.9385

0.8 2.0288 −0.3718 −1.6570

0.95 2.0700 −0.5000 −1.5701

0.97 2.0753 −0.5183 −1.5570

(a) (b)

(c) (c)

Figure 2 Three dimensional phase portraits of the dynamical sys-
tem equation 5 with respect to the range value of parameter v1 =
[0.1, 0.8, 0.95, 0.97] are shown for first equilibrium point (1e − 5, 1e −
5, 1e − 5). Parameters are c = 0.7; P = 2; Q = 0.2; v2 = 0.5; n = 3,
and S = 0.15. Time interval is 0 : π/1000 : 6π.
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the dynamical system is strongly chaotic, which can be justified by the
nature of the eigenvalues shown in Table 2.

■ Table 2 Eigenvalues of the Jacobian matrix with respect to equi-
librium points (1e − 5, 1e − 5, 1e − 5) for S ∈ [0.1, 0.48]. Other
parameters are c = 0.7; P = 2; Q = 0.2; v2 = 0.5; n = 3, and
v1 = 0.2.

S E1 E2 E3

0.1 1.7948 0.1437 −1.9385

0.3 1.6009 0.4556 −2.0565

0.45 1.3573 0.7768 −2.1341

0.48 1.2674 0.8813 −2.1487

(a) (b)

(c) (c)

Figure 3 Three dimensional phase portraits of the dynamical sys-
tem equation 5 with respect to the range value of parameter S =
[0.1, 0.3, 0.45, 0.48] are shown for first equilibrium point (1e − 5, 1e −
5, 1e − 5). Parameters are c = 0.7; P = 2; Q = 0.2; v2 = 0.5; n = 3,
and S = 0.15. Time interval is 0 : π/1000 : 6π.

Study of the second equilibrium point (h, 0, 0) and third equi-
librium point (k, 0, 0) here, (h, k) ≡ ( 1

2 (v1 + v2 ∓ ((v1 − v2)
2 +

4S)1/2):
In this case, we investigate the behaviour of the dynamical system equa-
tion 5 with respect to the second (h, 0, 0), and third equilibrium points
(k, 0, 0). These equilibrium points involve other three parameters v1, v2,
and S. The location of these equilibrium points may vary depending on
the range of these parameters.

Figure 4 Behaviour of the second equilibrium point of the dynamical
system equation 5 for the range the parameters v1, and v2. Here
v1 ∈ (0.1, 0.8), v2 ∈ (0.1, 0.8), and S = 0.5.

In Figure 4, the coloured portion depicts the nature of the second
equilibrium point. Here the boundary of the shaded region shows the
conversion of the nature of the equilibrium point from negative to positive.
Below the boundary, the value of the equilibrium point is negative and it
is positive in the shaded region. From this figure, we get three different
ranges for the parameters v1, and v2 for which the nature of the second
equilibrium point changes from negative to positive and tends to zero at
the boundary.

To see the behaviour of the dynamical system for these equilibrium
points, we have generated the phase portraits. The Figure 5(a), (b),
and (c) show the movement of the trajectories in U − V, V − W, and
U − W planes, respectively for the equilibrium point (h, 0, 0). The
values of the parameters involved are as follows: c = 0.7; P = 2; Q =
0.2; v1 = 0.01; v2 = 0.5; n = 3, and S = 2 and taken time interval is
0 : π/1000 : 6π.

For the comparison purpose, while studying the nature of the third
equilibrium point (k, 0, 0), we have considered the same parameter values
as for the second equilibrium point (h, 0, 0) and generated few phase
portraits. For these same value of the parameters, the behaviour of both
the equilibrium points is the same but the location of both the equilibrium
points is different. On this basis, the movement in the trajectories is
totally different. They are depicted by the phase portraits shown in Figure
6(a), (b), and (c).

This generalized DFKdV equation is having two more important pa-
rameters: one is the non-linear parameter P and the other one is the
dispersion parameter Q. The ratio of these two parameters may signifi-
cantly affect the nature of the wave propagation for this dynamical system.
To see the effect of the ratio of these parameters, we present some wave
propagation plots shown in Figure 7 and Figure 8. For the second equilib-
rium point, the nature of the wave is quasi-periodic for P

Q = 102, refer to

Figure 7(a). But when we increase the ratio P
Q = 104, the oscillations are

significantly increased in the waves, and the system becomes chaotic; this
is clearly visible in Figure 7(c). The value of the parameters considered to
generate these plots are as follows: c = 0.7, v1 = 0.2; v2 = 0.5; n = 5,
and S = 0.5. Time interval is 0 : π/100 : 2π.

For the third equilibrium point, for the same value of the parameters
considered for the second equilibrium point, the wave propagation is
quasi-periodic; refer to Figure 8(a). For a higher ratio of P, and Q, the
oscillations become more complex, shown in Figure 8(b), and (c). This
suggests that the system may be a chaotic system. To confirm this, we
use the Lyapunov exponents (Hilborn et al. 2000). From Figure 7(d), (e),
and ( f ) and Figure 8(d), (e), and ( f ), it is clearly visible that one of the
Lyapunov exponent is always positive. This confirms that the system is
chaotic.
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(a) (b) (c)

Figure 5 Phase portraits of the dynamical system equation 5 with respect second equilibrium point (h, 0, 0). Parameters are c = 0.7; P = 2; Q =
0.2; v1 = 0.01; v2 = 0.5; n = 3, and S = 2. Time interval is 0 : π/1000 : 6π.

(a) (b) (c)

Figure 6 Phase portraits of the dynamical system equation 5 with the third equilibrium point (k, 0, 0). Corresponding parameters are same as in
Figure 5.

(a) (b) (c)

(d) (e) (f)

Figure 7 Wave propagation and the Lyapunov exponent plots of the dynamical system equation 5 with respect to second equilibrium point (h, 1e −
5, 1e − 5) for the ratio between non-linear and dispersion parameters. Parameters are c = 0.7; P = 2; Q = 2 ∗ [1e − 2, 1e − 3, 1e − 4]; v1 = 0.2; v2 =
0.5; n = 5, and S = 0.5. Time interval is 0 : π/1000 : 2π.

290 | Tomar and Chadha CHAOS Theory and Applications



(a) (b) (c)

(d) (e) (f)

Figure 8 Wave propagation and the Lyapunov exponent plots of the dynamical system equation 5 with respect to third equilibrium point (k, 1e − 5, 1e −
5) for the ratio between non-linear and dispersion parameters. Parameters are c = 0.7; P = 2; Q = 2 ∗ [1e − 2, 1e − 3, 1e − 4]; v1 = 0.2; v2 = 0.5; n =
5, and S = 0.5. Time interval is 0 : π/1000 : 2π.

CONCLUSION

In this study, we studied a higher-order non-linear generalized damped
forced KdV equation by employing the tools available in the bifurcation
analysis such as phase portraits, time-series plots, Lyapunov exponents
etc. The model equation was converted into a three dimensional dy-
namical system which was investigated for certain parameters involved,
namely, P, Q, S which denote the coefficients of non-linearity, disper-
sion, and damping respectively. Furthermore, the dynamical system was
investigated for two forcing parameters v1, and v2 which appear in the
forcing term appearing in the right hand side of our model problem.

For the first equilibrium point, we can conclude that the dynamical
system exhibits the unstable limit cyclic behaviour with respect to the
damping parameter S and the forcing parameter v1. The location of
the second and third equilibrium points further depend on the parame-
ters. Thus, the dynamical system exhibited different behaviour at these
points. One noteworthy point here is that the behaviour of the system is
significantly affected by the ratio of P, and Q. With the help of phase por-
traits, wave propagation plots and Lyapunov exponents, we showed that
the system changes its behaviour from being quasi-periodic to become
chaotic for an increased ratio. It is well known that for a highly non-linear
Generalized KdV equation with a forcing term in the right hand side such
as our model problem considered here, the conventional analytical and
numerical methods may not produce acceptable results. In particular a
higher ratio of P, and Q may pose a serious challenge for conventional
numerical methods. In view of the results presented here regarding the
range of the parameters and their corresponding effect on the dynamical
system, the investigation may be helpful to devise advance analytical and
numerical methods.
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ABSTRACT In this article, we investigate various Bernstein-Kantorovich variants together with their approx-
imation properties. Nowadays, these variants of Bernstein-Kantorovich operators have been a source of
inspiration for researchers as it helps to approximate integral functions also which is not feasible in the case
of discrete operators. Chaos theory has also been referred to as complexity theory. Using chaos theory
complexity is also reduced as in approximation theory. Thus in order to reduce complexity and to have better
understanding of images in sciences and engineering field, sampling Kantorovich operators of approximation
theory are widely used in this regard for enhancement of images. Thus, we discuss the important applications
of Kantorovich operators depicting pragmatic and theoretical aspects of approximation theory.
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INTRODUCTION

The objective of this paper is to highlight the different variants of
Bernstein-Kantorovich operators which are widely used for ap-
proximation of functions in Lp spaces. The advantage of using
Kantorovich variants over discrete operators is that discrete oper-
ators are not suitable for approximating functions which are not
continuous, therefore these operators were generalized into opera-
tors of integral type and one such technique is Kantorovich which
helps to approximate integral functions and thus Kantorovich
variant of various linear positive operators have been a source of
inspiration for many scholars.

Approximation theory is an area of mathematical analysis
which is mainly concerned with approximation of complicated
quantities by simpler functions. This unique feature of approxi-
mation theory forces us to study this field alongwith the study of
some ideas of functional anaysis. In (Rashid et al. 2022), discrete
proportional fraction operators are used to contribute to the ma-
jor effects of some innovative variants of reverse Minkowski and
related H-older-type inequalities. Approximation theory gained
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popularity with the emergence of Weierstrass theorem (1885). Karl
Weierstrass prsesented the first proof of his fundamental theo-
rem on approximation by algebraic and trignometric polynomials
but the complications in proof provoked many famous mathe-
maticians to work on this fundamental theorem of approximation
theory. Most commonly used proofs of Weierstrass theorem are
of Fejer (1900) and Bernstein (1912) as proofs given by other fa-
mous mathematicians were not very productive and satisfactory
(see e.g. (Bartle 1976; Cheney 1966; Lubinsky 1995; Pinkus 2000).
S.N Bernstein (Bernšteın 1912) gave the most simplest and con-
structive proof of Weierstrass theorem using Bernstein operators
EΘ : c̆ [0, 1] → c̆ [0, 1] defined in (Bernšteın 1912) as follows:

EΘ

(
g′;κ

)
=

Θ

∑
l=0

Θ

l

 eΘ,l (κ) g′
(

l

Θ

)
, (1)

where eΘ,l (κ) =

Θ

l

κl (1 −κ)Θ−l, g′ ∈ c̆ [0, 1] , Θ ≥ 1 and

0 ≤ κ ≤ 1.
Bernstein operators are considered as foundational operators

due to its immense contribution in the field of approximation the-
ory. These operators occupy prominent position among all linear
positive operators because of their efficent and noteable approxi-
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mation properties but its favourable properties gets overshadowed
because of slow rate of convergence. Keeping in view these draw-
backs, various modifications has been made to these operators
using bezier basis (Agrawal et al. 2022). These operators cannot be
used to approximate the function in integral metrics. In order to
overcome this problem, Kantorovich made small modification of
Bernstein operators in 1930 (see (Kantorovich 1930)). In that paper
the author L.V Kantorovich, introduces modified operators known
as nth Bernstein-Kantorovich operators LΘ : L1 ([0, 1]) → c̆ [0, 1]
defined by

LΘ

(
g′;κ

)
=

Θ

∑
l=0

(Θ + 1)

(∫ l+1
Θ+1

l
Θ+1

g′ (t) dt

)Θ

l

κl (1 −κ)Θ−l ,

(2)
where g′ ∈ L1 ([0, 1]) and κ ∈ [0, 1].
Study of Lebesgue integrable functions in L1 space became pos-

sible due to modification of Bernstein operators by Kantorovich.
Moreover, Altomare et al. (Altomare and Campiti 2011), estab-
lished the approximation properties using Korovkin theorem and
investigate the rate of convergence associated with these opera-
tors. The idea of Kantorovich modifications of sequence of linear
positive operators inspires many other mathematicians to inves-
tigate some new operators within approximation theory. Many
authors constructed and studied the Kantorovich type modifica-
tion of some various operators (see e.g. (Agratini 2001; Barbosu
2004; Dogru and Ozalp 2001; Duman et al. 2006; Özarslan et al.
2008; Kac and Cheung 2001; Karaca 2022)

In this article, we try to give some important information about
different variants of Bernstein-Kantorovich operators, hoping that
this will act as a beneficial tool for all those reserachers that work in
approximation theory and intend to apply Kantorovich technique
in order to modify various linear positive operators.

LITERATURE REVIEW

In this section, we review some variants of Bernstein-Kantorovich
operators which are being very popularly used in approxima-
tion theory. We refer readers to some papers such as (Acu 2015;
Agrawal et al. 2015; Altomare et al. 2013; Barbosu 2004; Bardaro et al.
2007; de la Cal and Valle 2000; Deo et al. 2016; Gonska et al. 2011;
Igoz 2012) for generalization of these operators in Kantorovich
form.

Let us recall some notations. Throughout this paper, c̆ [a, b] is
the space of all continuous real valued functions on [a, b] , Lp

[0,1] is
the class of all p power integrable functions on the interval [0, 1].
For basic definitions and results regarding Banach spaces with the
proof as well as applications, one may refer (Karaca 2022).

Kantorovich’s idea has been applied also to Bernstein operators
involving q-calculus. For definition and notations from q-calculus,
we refer readers to (Andrews et al. 1999; Kac and Cheung 2001).
In (Lupas 1987) Lupas introduced modified form of Bernstein
operators using q-calculus and explored its approximation and
shape-preserving properties. Subsequently, philips in (Phillips
2003) has done q-generalization of Bernstein operators known as
Bernstein operators in q-calculus (q-Bernstein operators) defined,
for every positive integer Θ and g′ ∈ [0, 1], by

BΘ

(
g′; q;κ

)
=

Θ

∑
l=0

g′
(

[l]

[Θ]

) [
Θ

l

]
κl

Θ−l−1

∏
s=0

(1 − qsκ) . (3)

and also studied various results including the theorem con-
firming uniform convergence (korovkin theorem), order of

convergence and asymptotic expansion of these operators given
by voronovskaya theorem. See (Ostrovska 2016) for similarities
and distinctions of operators given by Lupas and Philips.

In (Dalmanoğlu 2007) modification of Bernstein operators in q-
calculus using Kantorovich technique is instigated and its approx-
imation properties are satisfied, while in (Radu 2008) Bernstein-
Kantorovich operators in q-calculus are extended and their statisti-
cal convergence propertis are prepensed.

In (Dalmanoğlu 2007; Radu 2008), the another modification of
the Bernstein operators using Kantorovich technique is elucidate
in q-calculus, for every Θ ∈ N,κ ∈ [0, 1] and 0 < q < 1, by

KΘ

(
g′; q;κ

)
= [Θ + 1]

Θ

∑
l=0

Θ

l

(κ
q

)l Θ−l−1

∏
s=0

(1 − qsκ)

×
∫ [l+1]

[Θ+1]

[l]
[Θ+1]

g′ (t) dqt. (4)

Subsequently, the study of operators has been intensified by
Dalmanog et al. in (Dalmanog et al. 2010), where they reconceive
the Kantorovich variant of Bernstein operators in q-calculus using
the definition of q-integral of Riemann type (see (Marinković et al.
2008)) into the operator instead of general q-integral as:

B∗
Θ

(
g′; q;κ

)
= [Θ + 1]

Θ

∑
l=0

q−l

Θ

l

Θ−l−1

∏
s=0

(1 − qsκ)
∫ [l+1]

[Θ+1]

[l]
[Θ+1]

g′ (t) drqt.

(5)
The need of redefining the operators arises because the study

of statistical convergence of operators KΘ (g′; q;κ) to the function
g′ is problematical with the usage of classical q-integral.

Stancu operators are instead object of a modification for various
researchers. In (Gadjiev and Ghorbanalizadeh 2010) Gadjiev et al.
introduced Bernstein-Stancu type polynomials with shifted knots:

SΘ,α,β
(
g′;κ

)
=

(
Θ + β2

Θ

)Θ Θ

∑
r=0

g′
(

r+ α1
Θ + β1

)Θ

r


(
κ − α2

Θ + β2

)r (Θ + α2
Θ + β2

−κ
)Θ−r

, (6)

where α2
Θ+β2

≤ κ ≤ Θ+α2
Θ+β2

and αl, βl (l = 1, 2) are such that 0 ≤
α1 ≤ α2 ≤ β1 ≤ β2.

Motivated by above operators, İ̧cöz in (İçöz 2012) designate a
generalized form of Bernstein-Stancu operators using Kantorovich
technique under same assumptions as:

S∗
Θ,α,β

(
g′;κ

)
= (Θ + β1 + 1)

(
Θ + β2

Θ

)Θ

Θ

∑
r=0

Θ

r

(κ − α2
Θ + β2

)r (Θ + α2
Θ + β2

−κ
)Θ−r ∫ r+α1+1

Θ+β1+1

r+α1
Θ+β1+1

g′ (s) ds.

(7)

To show the extend of research in direction of q-calculus, we
mention the work done by Muraru in (Muraru 2011). She bring
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forward the q analogue of Bernstein-Schurer operators that are
given by

EΘ,p
(
g′; q,κ

)
=

Θ+p

∑
l=0

pΘ,l (q,κ) g′
(

[l]q
[Θ]q

)
, (8)

where pΘ,l (q,κ) =

Θ + p

l

κl (1 −κ)Θ+p−l
q ,κ ∈ [0, 1] and

prepense various results involving necessary and sufficient con-
dition for convergence of operators given by the Korovkin and
Voronovskaja theorem concerning asymptotic convergence of lin-
ear positive operators.

Kantorovich modification of the operators (8) have been intro-
duced by Ozarsland et al. in (Özarslan and Vedi 2013) defined, for
every g′ ∈ C [0, p + 1] , 0 < q < 1 and p ∈ Θ0 = {0, 1, 2, ...}, by

Kp
Θ

(
g′; q;κ

)
=

Θ+p

∑
r=0

Θ + p

r

κr
Θ+p−r−1

∏
s=0

(1 − qsκ)×

∫ 1

0
g′
(

[r]

[Θ + 1]
+

1 + (q − 1) [r]
[Θ + 1]

t
)

dqt. (9)

Ren et al. modified the operators (8) in (Ren and Zeng 2013). A
new variant of Bernstein-Schurer operators in q-calculus are given
by

ẽΘ,p
(
g′; q;κ

)
=

Θ+p

∑
l=0

p̃∗Θ,l (q,κ) g′
(

[l]q
[Θ]q

)
, (10)

where p̃∗Θ,l (q,κ) =
[Θ]Θ+p

q

[Θ+p]Θ+p
q

Θ + p

l


q

κl

(
[Θ+p]q
[Θ]q

−κ
)Θ+p−l

q

and κ ∈ [0, 1].
Authors investigated compulsory Korovkin type statistical con-

vergence theorem for uniform convergence, Voronovskaja theorem
concerning asymptotic convergence, the rate of statistical conver-
gence using various tools such as modulus of continuity and a
Lipschitz function for the operators in (Ren and Zeng 2013).

Agrawal et al. in (Agrawal et al. 2015) present a stancu
variant of operators (8) using Kantorovich technique defined,
for every g′ ∈ C [0, 1 + p] endowed with the norm ∥g′∥ =
supκ∈[0,1] |g′ (κ)| , α, β ∈ R such that 0 ≤ α ≤ β and 0 < q < 1, by

κ
(α,β)
Θ,p

(
g′; q;κ

)
=

Θ+p

∑
l=0

p̃∗Θ,l (q,κ)
∫ 1

0
g′
(
[l]q + qlt + α

[Θ + 1]q + β

)
dqt. (11)

Kantorovich (Kantorovich 1930) gave the integral modification
of Bernstein operators so as to approximate integrable functions
defined on [0, 1]. In (Ozarslan and Duman 2016) Özarslan et al.
introduced modified Kantorovich operators based on non-negative
parameter ρ as:

KΘ,ρ
(
g′;κ

)
=

Θ

∑
l=0

eΘ,l (κ)
∫ 1

0
g′
(
l+ tρ

Θ + 1

)
dt. (12)

and investigated the order of convergence and various approxi-
mation properties of these operators using various mathematical
tools concerning smoothness of operators. In that paper, authors
also showed that modified Kantorovich operators based on non-
negative parameter ρ depicts faster rate of convergence to a func-
tion than that of Kantorovich operators in classical form.

Another new general approach is considered by Mursaleen et
al. (Mursaleen et al. 2015). In that paper authors prepensed another
modified form of Bernstein operators in ((p,q)-calculus) known as
(p,q)-Bernstein operators defined, for every κ ∈ [0, 1] , 0 < p <
q ≤ 1, by

BΘ,p,q
(
g′;κ

)
=

Θ

∑
l=0

Θ

l


p,q

κl
Θ−l−1

∏
s=0

(ps − qsκ) g′
(

[l]p,q

[Θ]p,q

)
.

(13)
These operators turned into classical Bernstein operators in

q-calculus for p=1.
For notations used in operators (13), we refer reader to (Mur-

saleen et al. 2015). Also details on (p,q)-calculus can be found
in (Hounkonnou et al. 2013; Katriel and Kibler 1992; Sahai and
Yadav 2007).

Afterward, Mursaleen et al. (Mursaleen et al. 2016) constructed
of Bernstein-Kantorovich operators in ((p,q)-calculus) as:

K(p,q)
Θ

(
g′;κ

)
=

[Θ]p,q

p
Θ(Θ−1)

2

Θ

∑
l=0

b(p,q)
Θ,l (κ)
pΘ−lql

∫ [l+1]p,q
pl−Θ [Θ]p,q

[l]p,q
pl−Θ−1 [Θ]p,q

g′ (t) dpt, (14)

where κ ∈ [0, 1] , b(p,q)
Θ,l (κ) =

Θ

l


p,q

(κ)lp,q (1 −κ)Θ−l
p,q and

(κ)lp,q = κ (px)
(

p2κ
)

.......
(

pl−1κ
)
= p

l(l−1)
2 κl.

Moreover, authors study the local approximation property of

K(p,q)
Θ (g′;κ) and obtain faster rate of convergence and better er-

ror estimates of operators as compared to Bernstein-Kantorovich
operators in q-calculus.

Realising the essentials of Bernstein-Stancu, Mursaleen el at.
in (Mursaleen et al. 2017) introduce another variant of Bernstein-
Stancu in q-calculus using Kantorovich technique as follows:

K(α,β)
Θ,q =

(
[Θ] + β2

[Θ]

)Θ Θ

∑
l=0

Θ

l

(κ − α2
[Θ] + β2

)l

q

×
(
[Θ] + α2
[Θ] + β2

−κ
)Θ−l

q

∫ 1

0
g′
(

[l] qlt + α1
[Θ + 1] + β1

)
dqt. (15)

New Kantorovich-type operators based on P̀olya-Eggenberger
distribution (Eggenberger and Pólya 1923) are introduced by Kajla
et al. in (Kajla and Araci 2017) as:

K[α]
Θ,ρ
(
g′;κ

)
=

Θ

∑
l=0

p[α]Θ,l (κ)
∫ 1

0
g′
(
l+ tρ

Θ + 1

)
dt, (16)

where ρ > 0 and p[α]Θ,l (κ) = (Θ
l )

1
1[Θ,−α] χ

l,−α (1 − χ)[Θ−l,−α].

In (Acu et al. 2018) Acu et al. study a new type of Bernstein
operators depending on the parameter λ ∈ [−1, 1] proposed by
Cai et al. (Cai et al. 2018) as follows:

BΘ,λ
(
g′;κ

)
=

Θ

∑
l=0

ẽΘ,l (λ;κ) g′
(

l

Θ

)
, (17)

where ẽΘ,0 (λ;κ) , l = 0, 1, 2, 3....., are defined as:

ẽΘ,0 (λ;κ) = eΘ,0 (κ)−
λ

Θ + 1
eΘ+1,1 (κ) ,
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ẽΘ,l (λ;κ) = eΘ,l (κ)

+ λ

(
Θ − 2k + 1

Θ2 − 1
eΘ+1,l (κ)−

Θ − 2k − 1
Θ2 − 1

eΘ+1,l+1 (κ)
)

ẽΘ,Θ (λ;κ) = eΘ,Θ (κ)− λ

Θ + 1
eΘ+1,Θ (κ) .

Moreover, Ana et al. considered a Kantorovich modification of
λ-Bernstein operators, namely

KΘ,λ
(
g′;κ

)
= (Θ + 1)

Θ

∑
l=0

ẽΘ,l (κ)
∫ l+1

Θ+1

l
Θ+1

g′ (t) dt. (18)

In particular, in (Acu et al. 2018) (see Example 4) authors ob-
tained better error estimate for λ-Bernstein operators as compared
to classical Kantorovich operators.

In (Chen et al. 2017) Chen et al. studied another modification of
Bernstein operators, depending on a non-negative real parameter
α (α-Bernstein operators) defined, for every g′ ∈ C [0, 1] , Θ ≥ 2
and 0 ≤ κ ≤ 1, by

Tα
Θ

(
g′;κ

)
=

Θ

∑
l=0

p(α)Θ,l (κ) g
′
(

l

Θ

)
, (19)

where

p(α)Θ,l (κ) =
[Θ − 2

l

 (1 − α)κ +

Θ − 2

l− 2

 (1 − α) (1 −κ)

+

Θ

l

 ακ (1 −κ)
]
κl−1 (1 −κ)Θ−l−1

The authors also proved the degree of convergence,
Voronovskaja theorem concerning asymptotic formula and shape
preserving properties for operator(19).

In (Mohiuddine et al. 2017) Mohiuddine et al. proposed and
investigated the kantorovich type modification of operators (19)
defined, for for every g′ ∈ C [0, 1] , Θ ≥ 2 and 0 ≤ κ ≤ 1, by

l̂Θ,α
(
g′;κ

)
= (Θ + 1)

Θ

∑
s=0

p(α)Θ,s

∫ s+1
Θ+1

s
Θ+1

g′ (t) dt. (20)

Araci et al. also proved various approximation properties with
the help of Bohman-Korovkin’s principle which is necessary and
sufficient criteria for uniform convergence and used various tools
such as the modulus of smoothness and Lipschitz type function
to study the approximation rate of operators. They also derived
Voronovskaja type asymptotic convergence theorem and Korovkin
type A-statistical approximation theorem of these operators.

A short time ago, the Kantorovich modification of the opera-
tors (19) by Araci et al. is defined in (Araci et al. 2019), for every
g′ ∈ C [0, 1] , α > 0 and ρ > 0, by

κα,a
m,ρ
(
g′;κ

)
=

Θ

∑
l=0

p(α)Θ,l (κ)
∫ 1

0
f
(
l+ atρ

Θ + a

)
dt, (21)

where κ ∈ [0, 1] and p(α)Θ,l is defined above.
Afterward, α, q-Bernstein operators by Cai et al. in (Cai and Xu

2018) are presented as:

TΘ,q,α
(
g′;κ

)
=

Θ

∑
k=0

p(α)Θ,q,k f

(
[k]q
[Θ]q

)
, (22)

where α ∈ [0, 1] , q ∈ (0, 1] ,κ ∈ [0, 1] , g′ ∈ C [0, 1] and

p(α)1,q,0 (κ) = 1 −κ, p(α)1,q,1 (κ) = κ,

p(α)Θ,q,k (κ) =
(Θ − 2

l


q

(1 − α)κ +

Θ − 2

l− 2


q

(1 − α) qΘ−k−2
(

1 − qΘ−k−1κ
)
+

Θ

l


q

×

ακ
(

1 − qΘ−k−1κ
))

κl−1 (1 −κ)Θ−l−1
q , Θ ≥ 2

Subsequently, Cai et al. establish a more general approach
to Kantorovich operators known as bivariate α, q-Bernstein-
Kantorovich operators in (Cai et al. 2019) as:

κ
(α1,α2)
m1,m2,q1,q2

(g′;κ; s) = [Θ1 + 1]q1
[Θ2 + 1]q2

×∑Θ1
k1=0 ∑Θ2

k2=0 p(α1)
Θ1,q1,k1 (κ) p(α2)

Θ2,q2,k2 (s) q−k1
1 q−k2

1

×
∫ [k1+1]q1

[Θ1+1]q1
[k1]q1
[Θ1+1]q1

∫ [k2+1]q2
[Θ2+1]q2
[k2]q2
[Θ2+1]q2

g′ (t; u) dq1tdq2u,

where κ, s ∈ [0, 1] , g′ ∈ C ([0, 1]× [0, 1]) , 0 < q1 < q2 < 1 and
α1, α2 ∈ [0, 1].

APPLICATIONS

Approximation Theory is rigorous branch of study, developed in
different directions by mathematicians. It’s centrality in the devel-
opment of many area of mathematics and its diverse application
in Sciences and Engineering field makes it attractive field of study
and research. Approximation Theory has two aspects:

• Pragmatic: Which is concerned largely with computational
practicalities.

• Theoretical: Which is more concerned with applications to
theoretical issues.

Sampling Kantorovich operators are concerned more with prag-
matic aspects. In (Bardaro et al. 2007) the authors introduced the
sampling Kantorovich operators and studied their convergence in
the general setting of orlicz spaces in the one-dimensional space.
Afterward, the results to multivariate setting have been extended
in (Costarelli and Vinti 2011), to the nonlinear case in (Costarelli
and Vinti 2013; Vinti and Zampogni 2009; Bardaro and Mantellini
2012) in a more general context. Results regarding the order of
approximation of these operators are shown in (Costarelli et al.
2014b). In (Cluni et al. 2013) the authors obtain application to civil
engineering by using multivariate sampling Kantorovich operators
(Sω)ω>0, defined by:

(
Sωg

′) (κ) = ∑
l∈ZΘ

χ
(
ωκ − tl

) [ωΘ

Al

∫
Rω
l

g′ (u) du

]
, (23)

where (κ ∈ RΘ) and g′ : RΘ → R is locally integrable function.
For notations and more details about operators, we refer reader

to (Cluni et al. 2013). In that paper, authors realized the impor-
tance of sampling Kantorovich operators to seismic engineering by
demonstrating that structural analysis using sampling Kantorovich
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operators produce clear understanding of masonry texture, the
geometry of buildings and possible structural damage, which fur-
ther helps to estimate seismic risk of structure. The models for the
reproduction of the behaviour of structures under seismic action
and comparison of behaviour of the building using various models
are obtained in (Costarelli et al. 2014a). In (Cheney 1966) a real
world case study in terms of structural analysis is analyzed. For
better understanding readers can refer Figure in (Cluni et al. 2013)

Figure 1 Image depicting importance of Sampling Kantorovich oper-
ators in structural analysis of building.

Sampling Kantorovich operators are very useful in sampling
and signal theories. Cluni et al. in (Costarelli et al. 2014a) also
recognized that the use of sampling Kantorovich operators in ap-
proximating discontinuous signals is predominant as it reduces
"time-jitter" errors. Angeloni et al. in (Angeloni et al. 2005) de-
veloped that sampling Kantorovich operators represents an ap-
proximate version of classical sampling series, based on Whittaker-
Kotelnikov-Shannon sampling theorem.

In (Costarelli and Vinti 2014), Costarelli et al. presented an
application of sampling Kantorovich operators to digital image
processing (D.I.P) and also studied the various results regarding
the convergence of sampling Kantorovich operators. In that pa-
per, the various usage of the D.I.P technique are discussed from
mathematical and medical point of view. Moreover, some new
applications are obtained by considering biomedical images. A
concrete example is showed in (Costarelli and Vinti 2014) and de-
duce that enhancement of images using sampling Kantorovich
operators are very useful from medical point of view as it allows
doctor to perform a better diagnosis. For better understanding one
can refer images below (Costarelli et al. 2014a)

(a) CT image without
contrast medium. In the
red square is depicted the
aorta artery

(b) Enhanced by the sam-
pling Kantorovich oper-
ators S20 I based upon a
bivariate Jackson type
kernel

(c) ROI of the CT image
without contrast medium
of (a), depicted the aorta
artery

Figure 2 Processing a portion of a CT (computer tomography)
image depicting the aorta artery using Sampling Kantorovich
operators.

In (Karaca et al. 2019) Karaca et al. main contribution was to
provide a unique method for assessing key stroke subtypes’ fea-
tures using a mobile phone connected to a cloud system depicting
huge progress in innovative healthcare technologies that rendered
healthcare data bigger.

Angeloni et al. (Angeloni et al. 2020) examined the convergence
properties of a family of multidimensional sampling Kantorovich
type operators. Besides that, quantitative estimates, order of ap-
proximation and Voronovskaja type asymptotic convergence theo-
rem have been established. Very recently, Bawa et al. (Bawa et al.
2022) elucidate the approximation properties of a Kantorovich-
Lupaş-Stancu operators based on Pòlya distribution.

CONCLUSION

We conclude that approximation theory is an intensive research
area that is widely used in sciences and engineering field. In this pa-
per, we have discussed different variants of Bernstein Kantorovich
operators showing their pragmatic and theoretical applicatons in
different areas of research. The importance of approximation the-
ory in numerous scientific fields makes it one of the most active
research areas. The theory is relevant to both engineering and
mathematical fields, such as constructive approximation of func-
tions, partial and integral equation solutions, machine learning
and image processing.
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ABSTRACT The partial differential equation (PDE)-based models are widely used to remove additive Gaussian
white noise and preserve edges, and one of the most widely used methods is the total variation denoising
algorithm. Total variation (TV) denoising algorithm-based time-dependent models have seen considerable
success in the field of image-denoising and edge detection. TV denoising algorithm is based on that signals
with spurious detail have a high total variation and reduction of unwanted signals to achieve noise-free images.
It is a constrained optimization-type algorithm. The Lagrange multiplier and gradient descent method are used
to solve the TV algorithm to reach the PDE-based time-dependent model. To eliminate additive noise and
preserve edges, we investigate a class of weighted time-dependent model in this study. The proposed method
is investigated in a well-balanced flow form that extends the time-dependent model with an adaptive fidelity
element. Adaptive function is fusing into the regularization term of the classical time-dependent model which
successfully enhances the intensity of the regularizer function. We maintain the ability of the time-dependent
model without any oscillation effects. Furthermore, we want to prove the viscosity solution of our weighted
and well-balanced time-dependent model, demonstrating its existence and uniqueness. The finite difference
method is applied to discretize the nonlinear time-dependent models. The numerical results are expressed
as a statistic known as the peak signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM).
Numerical experiments demonstrate that the proposed model yields good performance compared with the
previous time-dependent model.

KEYWORDS

Partial differential
equation
Total variation
Time dependent
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Weighted and
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Image denoising
Image smoothing
Viscosity solution
Explicit scheme

INTRODUCTION

Noise degraded the visual quality of images, and image lost their
significant features due to these random signals. An image be-
comes noisy during the acquisition, transmission, and processing
steps. However, noise occurs randomly but sometimes it may
be data dependent. Artifacts do not originate from the original
images produced due to the noise. There are two types of noise
additive noise and multiplicative noise. Additive noise are random
signals that depend on the state of the system like Gaussian noise.
Multiplicative noise is random signals that depend on the state of
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the system like speckle noise. Gaussian additive noise is added
to the original signal during the acquisition of the image and this
noise is distributed uniformly all over the image.
The additive noisy image as u0 : Ω → R, Ω is a bounded region of
R2 and it can be defined as

u0(x) = u(x) + n(x). (1)

Here u(x), x ∈ Ω signifies the true image, the noisy image repre-
sented by u0(x), and Gaussian white noise n(x) which contains
zero mean and σ2 represent variance.

Rudin et al. (1992) for the first time, introduced total variation
functional with static constraint to reduce the additive Gaussian
white noise and edge preservation and can be represented by the
ROF model. The total-variation-based model was impressive in
the preservation of geometrical boundaries. The denoising prob-
lem can be seen as a minimization problem from a variational
perspective. The minimization problem consists of two terms first
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one measures the fidelity of the observed image; the second term
is the regularizer parameter which is used to reduce the noise
from the image. The Euler Lagrange multiplier and gradient de-
scent method to steady state to ROF model for image denoising
and edge detection. The fixed-point algorithm to optimize the
energy functional was given by Vogel and Oman (1996) for im-
age denoising. Chan et al. (1999) introduced a two-dimensional
non-linear primal-dual algorithm for image restoration. They used
the Tikhonov regularizer instead of the image gradient term in
the time-dependent model. To overcome the computational dif-
ficulty of the term ∇u

|∇u| they replaced the denominator term by√
| ∇u |2 +β in the time-dependent model, where β is a parame-

ter. These models achieved better results in image denoising, but
computational cost is high in the case of deblurring. Marquina
and Osher (2000) introduced the time-dependent model for im-
age restoration. They multiplied the magnitude of the gradient in
the ROF model for image denoising and deblurring. They have
discussed Roe’s explicit scheme to check the convergence rate of
their model. El-Shorbagy et al. (2023) presented an analysis of
the general fractional derivative function with the Mittag-Leffler
kernel and ABC operator at various fractional orders. Haidong
et al. (2023) presented an analysis of the four-dimensional Chaotic
system in consideration of the Mittag-Leffler kernel. XU et al. (2022)
introduced a study of numerical analysis of a two-dimensional
torus chaotic system with a power-law kernel. Qu et al. (2022)
proposed a novel approach for solving the non-linear fractional
order diffusion equation with the neural network method. A class
of hyperbolic and parabolic models for image denoising and edge
detection are proposed by Kumar and Alam (2021a,b).

Barcelos et al. (2005, 2003) proposed a nonlinear anisotropic
parabolic model for the elimination of the noise and also discussed
the well-balanced flow in the parabolic model. They have used an
adaptive parameter to maintain the balance between the forcing
term and data fidelity term in the anisotropic diffusion model. The
improved image fidelity term for image denoising is proposed
by Smolka (2008). Prasath and Vorotnikov (2014) generalized the
PM model with a weighted and well-balanced flow equation and
obtained better results comparatively. To make the PM model
in terms of weighted and well-balanced, they used the diffusion
function which depends on the magnitude of the image gradient
and spatial variable. A weighted total variation-based model using
mean curvature as a regularizer function was recently introduced
by Phan (2020). They used the split Bergman method to obtain a
fast convergence rate. Li and Li (2021) introduced a weighted total
variation model using the exponential regularizer function. Many
other researchers introduced the well-balanced model inspired by
mean curvature motion and biased, see reference, (El-Fallah and
Ford 1998; Chen et al. 1999).

In this study, we propose a weighted and well-balanced time-
dependent model to minimize the energy functional by evolving
the Euler-Lagrange equation. This model is related to a variational
model with the diffusivity linked to the regularizer. The Charbon-
nier diffusivity is used in the time-dependent model, it is related
to non-convex regularization (Charbonnier et al. 1994; Weickert
1997). An adaptive function ξ is fused in the regularizer term of
the weighted and well-balanced time-dependent model. Experi-
ments on many different gray-scale images are conducted to show
the advantage of the weighted and well-balanced time-dependent
model over the old model. Quantitative analysis shows that the
proposed model is very effective and efficient in both noise re-
duction and edge detection. Furthermore, we want to prove the
viscosity solution of a weighted and well-balanced time-dependent

model.
This paper is organized as follows: The weighted and well-

balanced denoising techniques are given in section 2. The viscosity
solution of the weighted and well-balanced time-dependent model
is given in section 3. The explicit scheme of the weighted and well-
balanced model is given in section 4. In Section 5, the results are
given in Figures 2-6, and Table 1, last, the conclusion is in Section
6.

TV-BASED WEIGHTED AND WELL-BALANCED TIME-
DEPENDENT MODEL FOR DENOISING ALGORITHM

Rudin et al. (1992) introduced a TV-based regularisation functional
for image denoising and edge detection. The restricted regularisa-
tion functional can be expressed as:

minimize
∫
Ω

|∇u| dx =
∫
Ω

√
u2

x + u2
y dx, (2)

subject to ||u − u0||2L2 = |Ω|σ2.

Using the definition of Euler-Lagrange and applying the equa-
tion (2). Then it can be expressed as:

0 = −∇.
(

∇u
|∇u|

)
+ λ(u − u0). (3)

The value of ∇u = 0 then the equation (3) is not well defined.
Then the TV-based functional can be extended in another form:∫

Ω

|∇u|γ dx =
∫
Ω

√
u2

x + u2
y + γ dx. (4)

Here γ > 0 as given in see reference (Chang and Chern 2003).

In the TV model diffusion takes place along the gradient orthog-
onal direction so that edges can be preserved during smoothing of
the image. This model approximates the flat areas by considering
the piece-wise constant surface and emerges the staircase artifacts.
The equation (3) can be written as a time-dependent model given
by (Rudin et al. 1992):

∂u
∂t

= ∇.
(

∇u
|∇u|

)
− λ(u − u0), (5)

with homogeneous Neumann boundary conditions ∂u
∂⃗n = 0 and

u(x, 0) = u0(x) and scale parameter λ > 0. The left-hand side of
the equation (5) is the regularization term that denotes the prior
constraint and (u − u0) data fidelity term and λ is the Lagrange
multiplier used to adjust the regularization term and data fidelity
term. u0 approaches u at a larger value of λ and the image lost its
important details for a much larger value of λ.

The improved TV-based time-dependent model for image
restoration is proposed by Marquina and Osher (2000):

∂u
∂t

= |∇u|∇.
(

∇u
|∇u|

)
− |∇u|λ(u − u0), (6)

with the same boundary conditions above.
Gilboa et al. (2006) introduced the spatially adaptive balance

term parameter λ and it can be made flexible. The well-balanced
flow may also be further generalized. For instance, it is possible
to make the diffusion coefficient depend on the picture u and the
results in various diffusion flows and be constructed to have an
impact on the restoration procedure. To extend the model (6) into
weighted and well-balanced flow model:
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∂u
∂t

= ξ |∇u|∇.
(

∇u
|∇u|

)
− (1 − ξ)|∇u|λ(u − u0). (7)

Here ξ = ξ(|∇Gσ ∗ u|), Gσ is represent as low pass filter or Gaus-
sian kernel and Gσ ∗ u is a convolution and the diffusivity function
ξ such as:

ξ(s) =
1√

1 + (|s|2/K2)
, (8)

where ξ(s) ≥ 0 is a decreasing function and satisfying ξ(0) = 1
and ξ(s) → 0 as s → ∞ and K is the diffusivity parameter. It is
related to the convex regularizer, see references (Charbonnier et al.
1994; Weickert 1997).

Motivated by Álvarez et al. (1992); Prasath and Vorotnikov
(2014), we want to show the theoretical considerations and vis-
cosity solution of the weighted and well-balanced time-dependent
model as given in the next section.

THEORETICAL CONSIDERATIONS

We describe the mathematical formulation as the viscosity solution
of the weighted and well-balanced time-dependent model (7). It
can be written as:

∂u
∂t

= ξ(∇Gσ ∗ u)aij(∇u)uxi xj − λ|∇u|(1 − ξ(∇Gσ ∗ u))

(u − u0), x ∈ R2, t ∈ R+.
(9)

Here
aij(p) = δij −

pi pj

|p|2 ,

Gσ ∈ C1,1(R2, R), Gσ(p) > 0 for all p in R2, (10)

and u0 is continuous on R2.

The equation (9) represents the PDE-based diffusion equation
with possible high degeneracy and a quasilinear term aij(∇u)uxi xj ,
nonlocal term ξ(∇Gσ ∗ u) and data and fidelity term is λ(1 −
ξ(∇Gσ ∗ u))|∇u|(u − u0).

Definition. A function u is a viscosity sub-supersolution of
equation (9) from the space

u ∈ C(R2 × [0, T]) ∩ L∞(0, T; W1,∞(R2)) (11)

if for any ϕ∈C2(R2 × R) and any point (x0, t0) ∈ R2 × (0, T] of
local maxima/minima of the function u − ϕ has

∂ϕ

∂t
(x0, t0)− ξ(∇Gσ ∗ u(x0, t0))aij(∇ϕ(x0, t0))ϕxi xj (x0, t0)+

λ(1 − ξ(∇Gσ ∗ u(x0, t0)))|∇ϕ(x0, t0)|(u − u0)(x0, t0) ≤ 0,

if ∇ϕ(x0, t0) ̸= 0,
(12)

∂ϕ

∂t
(x0, t0)− ξ(∇Gσ ∗ u(x0, t0))limsup

p→0
aij(p)ϕxi xj (x0, t0) ≤ 0,

if ∇ϕ(x0, t0) = 0.
(13)

The viscosity solution of function is a viscosity sub and super
solution.

Theorem. (i) The equation (9) has a viscosity solution in class
(11) for every T > 0 . Moreover,

inf
R2

u0 ≤ u(x, t) ≤ sup
R2

u0.

(ii) For any two viscosity solution u and v of (9),

sup
0≤t≤T

||u(x, t)− v(x, t)||L∞(R2) ≤ C||u0 − v0||L∞(R2). (14)

Here u0 and v0 are Lipschitz continuous functions in R2 for every
positive T and C is positive constant.

Proof. The viscosity solution u which is satisfied the inequality
such that

inf
R2

u0 ≤ u(x, t) ≤ sup
R2

u0, on R2 × R+. (15)

We put ϕ = sup
R2

u0 + δt(δ> 0), then at the point (x0, t0), of the

local maxima of u − ϕ, (12) gives ∂ϕ
∂t (x0, t0) ≤ 0 if ∇ϕ(x0, t0) = 0.

So we get a contradiction ∂ϕ
∂t (x0, t0) ≡ δ > 0 on R2 × [0, ∞).

attains a local maximum at (x0, t0) with t0 > 0, then ∇ϕ(x0, t0) = 0
and from (12), ∂ϕ

∂t (x0, t0) ≤ 0. This contradicts ∂ϕ
∂t (x0, t0) ≡ δ > 0

on R2 × [0, ∞).
At t0 = 0, the function u − ϕ have maximum value. So we can
write
u − ϕ≤sup(u0 − sup u0

R2
), then u ≤ sup

R2
u0 + δt.

Similarly, we can write
u ≥ inf

R2
u0 − δt, as δ→ 0, we can get (15).

In the starting, we demonstrate a uniform estimate for the equa-
tion (9).

||Du(t, .)||L∞(R2) ≤ eCt||Du0||L∞(R2). (16)

Here C is the constant number and it is depends on
u0, sup|p|≤R|∇2gϵ(p)| and supp|aϵ

ij(P)| with R =

||w||L∞(R2)||∇G||L1(R2).
Let uϵ be the smooth solution and it is given by

∂uϵ

∂t
= ξϵ(∇Gσ ∗ uϵ)aϵ

ij(∇uϵ)uϵ
xi xj

−

λ(1 − ξϵ(∇Gσ ∗ uϵ))bϵ(|∇uϵ|)(uϵ − uϵ
0), x ∈ R2, t ∈ R+,

(17)

uϵ(x, 0) = uϵ
0(x), x ∈ R2.

We establish an a priori estimate for ∇u. At that level, this estimate
will become formal, and it will later be supported. In reality, we
take a smooth solution concerning ϵ

∂uϵ

∂t
= ξϵ(∇Gσ ∗ w)aϵ

ij(∇uϵ)uϵ
xi xj

−

λ(1 − ξϵ(∇Gσ ∗ uϵ))bϵ(|∇uϵ|)(uϵ − uϵ
0), x ∈ R2, t ∈ R+,

(18)

uϵ(x, 0) = uϵ
0(x), x ∈ R2,

where,
0 < ϵ < 1,

aϵ
ij(p) = (ϵ+1)δij −

pi pj

|p|2 + ϵ2 , (19)

bϵ(p) =
√
|p|2 + ϵ, ξϵ = ξ + ϵ, w ∈ L∞(R2 × (0, ∞]),

uϵ
0(x) ∈ C∞(R2) (antireflective) such that uϵ

0 → u0 uniformly and
||∇uϵ

0||L∞(R2) ≤ ||∇u0||L∞(R2) and uϵ
0 can be write ||uϵ

0||L∞(R2) ≤
||u0||L∞(R2).

The problems (17)-(19) admit a smooth solution uϵ ∈ C∞(R2 ×
R+) by the definition of of the quasi-linear uniformly. According to
equation (14), we can say that any smooth solution of a function is a
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viscosity solution. For any positive number M and it is dependent
on u0, then it satisfies the condition |uϵ| ≤ M.

The differentiating equation (18) w.r.to xk, after that we multi-
plying 2uϵ

xk
, a summation w.r.to k is given by

∂|∇uϵ|2
∂t

− ξϵ(∇Gσ ∗ w)aϵ
ij(∇uϵ)

∂2|∇uϵ|2
∂xi∂xj

−

ξϵ(∇Gσ ∗ w)
∂aϵ

ij

∂l
(∇uϵ)uϵ

xi xj

∂|∇uϵ|2
∂xl

+

λ
∂bϵ(∇uϵ)

∂m
(1 − ξϵ(∇Gσ ∗ w))(uϵ − uϵ

0)
∂|∇uϵ|2

∂xm

= −2ξϵ(∇Gσ ∗ w)aϵ
ij(∇uϵ)uϵ

xk xi
uϵ

xk xj
+

2
∂ξϵ

∂l
(∇Gσ ∗ w).(Gσxl xk ∗ w)aϵ

ij(∇uϵ)uϵ
kuϵ

xi xj
−

2λbϵ(∇uϵ)(1 − ξ)uϵ
xk

uϵ
xk
+ 2λbϵ(∇uϵ)(1 − ξ)((u0)

ϵ
xk
)uϵ

xk
+

2λbϵ(∇uϵ)∇ξ(∇Gσ ∗ u) ·
(

u ∗ ∂∇Gσ

∂xk

)
(u − u0)uxk .

(20)

From the definitions of aϵ
ij, bϵ, gϵ and h, we have

|aϵ
ij(∇uϵ)uϵ

xi xj
| ≤ C(aϵ

ij(∇uϵ)uϵ
xk xi

uϵ
xk xj

)
1
2 , sup

R2
h ≤ C,

sup
R2

|Dbϵ(s)| ≤ C, |Gσxl xk ∗ w| ≤ C,

| ∂ξϵ

∂l
(∇Gσ ∗ w)| ≤ C(ξϵ(∇Gσ ∗ w))

1
2 .

Here C is a positive constant number and it is depend only sup|w|,
ξϵ and M.

Using Cauchy’s inequality the equation (20) estimates by

∂|∇uϵ|2
∂t

− ξϵ(∇Gσ ∗ w)aϵ
ij(∇uϵ)

∂2|∇uϵ|2
∂xi∂xj

−

ξϵ(∇Gσ ∗ w)
∂aϵ

ij

∂l
(∇uϵ)uϵ

xi xj

∂|∇uϵ|2
∂xl

+ λ
∂bϵ(∇uϵ)

∂m
(1 − ξϵ(∇Gσ ∗ w))(uϵ − uϵ

0)
∂|∇uϵ|2

∂xm

≤ C(|∇uϵ|2 + 1) in R2 × R+.

(21)

Next, use the maximal principle (Brezis 1987) to deduce clearly
(16). We just need to approximate (17), and we may get smooth
solutions to draw this conclusion. Using the a priori estimate
mentioned above, we get the valid approximate solutions.

Applying the maximization rule (Brezis 1987), the equation (21)
yields ||∇uϵ(., t)||L∞(R2) ≤ eCt we can defined ||∇(u0)

ϵ||L∞(R2) ≤
eCt to reached to ||∇(u0)||L∞(R2) ≤ CT . This inequality can be
reached to

|uϵ(x, t)− uϵ(y, t)| ≤ CT |x − y|,

it is satisfy for every x, y ∈ R2, for all t ∈ [0, T] and CT represent
the independent constant parameters it is depend on ϵ, t, x, y.
Now for every x ∈ R2 and s, t ∈ [0, T]. A similar argument has led
us to

|uϵ(x, s)− uϵ(x, t)| ≤ CT |s − t|
1
2 .

Using the Ascoli-Arzela theorem, a subsequence uϵk of uϵ exists,
then

uϵk → u as ϵk → 0, (22)

is locally uniformly. So easily get the inequality (16).
Second, we’ll demonstrate the presence of a viscosity solution.

From equation (22), we can say that u is the viscosity solution of
the weighted and well-balanced model (9) in the sense of equations
(12)-(13). Let ϕ∈C2(R2 × R+) be the result. Initially, we suppose
that for a location (x0, t0) ∈ R2 × R+ has a strict local maximum.
When uϵk → u is consistently close to (x0, t0), There is a local
maximum for u − ϕ at the position (xk, tk) with
.

(xk, tk) → (x0, t0), k → ∞ (23)

and

∇uϵk = ∇ϕ,
∂uϵk

∂t
=

∂ϕ

∂t
, aϵk

ij (∇uϵk )uϵk
xi xj ≤ aϵk

ij (∇ϕ)ϕxi xj .

Therefore, (17) implies that at (xk, tk),

∂ϕ

∂t
− ξϵk (∇Gσ ∗ uϵk )aϵk

ij (∇ϕ)ϕxi xj+

bϵk (∇ϕ)(1 − ξϵk (∇Gσ ∗ uϵk ))(uϵk − (uϵk
0 )) ≤ 0.

(24)

(1) If ∇ϕ(x0, t0) ̸= 0, according to (23), ∇ϕ(xk, tk) ̸= 0 for largest
value of k and applying the limits to (24), we get

∂ϕ

∂t
− ξ(∇Gσ ∗ u)aij(∇ϕ)ϕxi xj+

b(∇ϕ)(1 − ξ(∇Gσ ∗ u))(u − (u0)) ≤ 0, at (x0, t0),
(25)

It is similar to equation (9).
(2) If ∇ϕ(x0, t0) = 0, according to (23), ∇ϕ(xk, tk) → 0, ϵ→ 0 as
k → 0. The equation (24) reached to another form

∂ϕ

∂t
− (ξ(∇Gσ ∗ u) + ϵk)

(
(ϵk + 1)δij −

(∇ϕ)i(∇ϕ)j

|∇ϕ|2 + ϵ2

)
ϕxi xj

+ bϵk (∇ϕ)(1 − ξ(∇Gσ ∗ u))(uϵk − (uϵk
0 )) ≤ 0, at (xk, tk).

(26)
If bϵk (∇ϕ(xk, tk)) → 0 to (26), we get

∂ϕ

∂t
− ξ(∇Gσ ∗ u)

(
δij −

(∇ϕ)i(∇ϕ)j

|∇ϕ|2 + ϵ2

)
ϕxi xj ≤ 0, at (x0, t0).

If u − ϕ has a local maximum at (x0, t0). The method of proof is
consistent i.e., u is a sub-solution of (13). Similarly, it can be proven
that u is a super-solution. Hence, u is a viscosity solution of (9).
.

DISCRETE SCHEME

The explicit scheme of the time dependent models (6) and (7):

ut =
uxx(u2

y + γ)− 2uxyuxuy + uyy(u2
x + γ)

(u2
x + u2

y + γ)
−√

u2
x + u2

y + γ λ(u − u0).

(27)

ut = ξ
uxx(u2

y + γ)− 2uxyuxuy + uyy(u2
x + γ)

(u2
x + u2

y + γ)
−

(1 − ξ)
√

u2
x + u2

y + γ λ(u − u0).

(28)

We define the derivative terms as,

ux
ij =

un
i+1,j − un

i−1,j

2∆x
; uy

ij =
un

i,j+1 − un
i,j−1

2∆x
;
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uxx
ij =

un
i+1,j − 2un

i,j + un
i−1,j

∆x2 ; uyy
ij =

un
i,j+1 − 2un

i,j + un
i,j−1

∆x2 ;

uxy
ij =

un
i+1,j+1 − un

i−1,j+1 − un
i+1,j−1 + un

i−1,j−1

4∆x∆x
; ut

ij =
un+1

i,j − un
i,j

∆t
.

Here un
ij is the approximation value of u(xi, yj, tn), xi = i∆x, yj =

j∆x, i, j = 1, 2, ......., N, ∆x spatial step and tn = n∆t, n ≥ 1, ∆t is
the time step size.

Let

rn
ij = uxx

ij ((u
y
ij)

2 + γ)− 2uxy
ij ux

iju
y
ij + uyy

ij ((u
x
ij)

2 + γ), (29)

and
pn

ij = ((ux
ij)

2 + (uy
ij)

2 + γ). (30)

Then (27) reads as follows:

ut
ij =

rn
ij

pn
ij
−
√
((ux

ij)
2 + (uy

ij)
2 + γ) λ (un

ij − u0
ij). (31)

Then (28) reads as follows:

ut
ij = ξij

rn
ij

pn
ij
− (1 − ξij)

√
((ux

ij)
2 + (uy

ij)
2 + γ) λ (un

ij − u0
ij). (32)

The function ξ(|∇u|2) can be discretised by,

ξn
ij = ψ

′

(un
i+1,j − un

i−1,j

∆x

)2

+

(
un

i,j+1 − un
i,j−1

∆x

)2
 .

For ∆t
∆x2 ≤ 0.5, the explicit technique is stable and convergent

(Lapidus and Pinder 1983).

NUMERICAL EXPERIMENTS

The weighted and well-balanced time-dependent model for remov-
ing additive noise and preserving edges is proposed and applied
to many 2-dimensional noisy grayscale images with different lev-
els of noise parameters, we get the smooth images for denoising
techniques. The original grayscale images of the size 256 × 256
with pixel values of [0, 255] such as Lena images, Boat images,
and Figure 4(a). For numerical experiments, firstly to reduce the
intensities of images lies in [0, 1]. To add the noise, we use the
function imnoise (I, ‘Gaussian’, M, σ2) in Matlab [MATLAB, 2022
version 9.12.0 (R2022a)], σ2, and M are variance and mean zero
respectively. The parameters K = 5 and λ = 0.85 are used in our
numerical experiments (Catté et al. 1992; Chan et al. 1999).

We’ll utilize the PSNR as a criterion for restoration which can
be defined as:

PSNR = 10log10

(
R2

1
mn ∑n

i,j(ui,j − xi,j)2

)
, (33)

where {ui,j − xi,j} are the differences in the pixel values between
the original and denoised images. R is the maximum pixel value
of the images.

The structural similarity index metric (SSIM) is used to compare
the contrast and structure of the denoised image to the original
image. The SSIM is formulated as:

SSIM(x, y) =
(2 × µxµy + D1)× (2 × σxy + D2)
(µ2

x + µ2
y + D1)(σ2

x + σ2
y + D2)

, (34)

where µx and µy are the mean of x and y, respectively, and
x and y represent the local windows of the original image and

denoised image, respectively. σxy denotes the covariance of x and
y. D1=(0.01 × L)2 and D2=(0.03 × L)2 where L is the dynamic
range of pixel values. SSIM value lies between 0 and 1. The higher
value of SSIM gives a good visual quality of the denoised image
and the lower value presents a poor visual quality of denoised
image.

The proposed model is compared to a time-dependent model
based on removing additive noise from the literature. Figure 1
represents the original Lena and Boat images. Figure 2(a-c) rep-
resents the noisy Lena images with (σ2 = 0.006, 0.008, 0.010) re-
spectively. Figure 2(d-f) represents the denoised images by the
model (6) and Figure 2(g-i) represents the denoised images by the
model (7). Figure 3(a-c) represents the noisy Boat images with
(σ2 = 0.006, 0.008, 0.010) respectively. Figure 3(d-f) represents the
denoised images by the model (6) and Figure 3(g-i) represents the
denoised images by the model (7). The numerical results are given
in Figure 2-6 and Table 1 and achieve higher PSNR values by a
weighted and well-balanced time-dependent model corresponding
to the old model. The numerical results confirm that a weighted
and well-balanced time-dependent model is very efficient in ob-
taining the solution.

Figure 1 (a-b) Left side original Lena image and right side origi-
nal Boat image.

(a)   

 

 

 

 
 

                      (a)                                                   (b)                                                        (c)                            

                                                 

(d) (e) (f)  

 

 

 

 

 

 

 
 

 

 

(g) (h) (i) 

Figure 2 (a-c) Noisy images with (σ2 = 0.006, 0.008, 0.010); (d-f)
corresponding denoised image by(6); (g-i) Denoised image by(7)
respectively.
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Figure 3 (a-c) Noisy images with (σ2 = 0.006, 0.008, 0.010); (d-f) corresponding denoised image by (6); (g-i) Denoised image by (7)
respectively.

Figure 4 (a) Represent the original image; (b) Noisy image with σ2 = 0.010 with PSNR and SSIM values are 20.13 and 0.6147 respec-
tively; (c) Corresponding denoised image by model (6) with PSNR and SSIM values are 22.26 and 0.6825 respectively, at 5 iteration
numbers; (d) Corresponding denoised image by model (7) with PSNR and SSIM values are 23.68 and 0.7769 respectively, at 5 iteration
numbers.

■ Table 1 The comparison results.

Image PSNR of noisy image SSIM of noisy image PSNR by (6) SSIM by (6) PSNR by (7) SSIM by (7)

σ2 = 0.006 22.41 0.4731 25.31 0.7645 28.15 0.8136

Lena σ2 = 0.008 21.16 0.4274 25.19 0.7543 27.74 0.7943

σ2 = 0.010 20.27 0.3914 25.08 0.7454 27.22 0.7743

σ2 = 0.006 22.32 0.4566 24.24 0.6839 27.20 0.7725

Boat σ2 = 0.008 21.06 0.4454 24.20 0.6735 26.89 0.7590

σ2 = 0.010 20.17 0.4059 24.07 0.6633 26.56 0.7401

No. of iterations 10 10
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Figure 5 This graph is represented by Lena images, the results
are given in terms of PSNR values in Table 1 for the weighted
and well-balanced time-dependent model and the old model.

Figure 6 This graph is represented by Boat images, the results
are given in terms of PSNR values in Table 1 for the weighted
and well-balanced time-dependent model and the old model

CONCLUSION

In this paper, we proposed a total variation-based weighted and
well-balanced time-dependent model for additive white noise re-
duction and preserved edges. The total-variation algorithm-based
time-dependent model performs a good trade between noise reduc-
tion and edge preservation. A weighted function ξ is incorporated
into the regularizer term of the time-dependent model to make it
more effective and efficient for image denoising. The finite differ-
ence method is used to discretize the proposed model. To check
the performance of the denoised images, we used the peak signal-
to-noise ratio (PSNR) and structural similarity index metric (SSIM).
The larger values of PSNR and SSIM present better results. Our
model contains the larger PSNR and SSIM values corresponding to
the old model. So the weighted and well-balanced time-dependent
model improves the quality of the denoised images as well as bet-
ter edges preserved corresponding to the old model at the same
iteration numbers. The proposed model may be applied to image
problems, such as deblurring, image segmentation, etc.
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Analysis of the n-Term Klein-Gordon Equations in
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ABSTRACT The effectiveness of the local fractional reduced differential transformation method (LFRDTM)
for the approximation of the solution related to the extended n-term local fractional Klein-Gordon equation
is the main aim of this paper in which fractional complex transform and local fractional derivative have been
employed to analyze the n-term Klein-Gordon equations, and Cantor sets. The proposed method, along with
the existence of the solutions demonstrated through some examples, provides a powerful mathematical means
in solving fractional linear differential equations. Considering these points, the paper also provides an accurate
and effective method to solve complex physical systems that display fractal or self-similar behavior across
various scales. In conclusion, the fractional complex transform with the local fractional differential transform
method has been proven to be a robust and flexible approach towards obtaining effective approximate solutions
of local fractional partial differential equations.
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INTRODUCTION

Various fields of study have used the Klein–Gordon equation in
the last few decades, including quantum field theory, nonlinear
optics, thermodynamics, and solid-state physics Kanth and Aruna
(2009). The Klein-Gordon equation is a fundamental quantum
field theory that describes particle behavior with spin 0. It was first
introduced as a relativistic wave equation for a free scalar particle.
There are a variety of approaches to solving problems of this nature.
Recent years have seen significant use of a fractional modification
involving the Caputo fractional derivative. However, fractional
techniques for the Riemann-Liouville and Caputo derivatives are
inadequate when smooth functions cannot represent the study
area. In this situation, the local fractional calculus is a useful tool
to simulate these physical problems.

Since its inception, the Klein-Gordon equation has been exten-
sively studied and applied in various fields of physics, including
particle physics, condensed matter physics, and cosmology. How-
ever, the standard form of the Klein-Gordon equation only con-
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siders integer-order derivatives, which restricts its applicability to
specific physical systems that exhibit non-local behavior or fractal
geometry. To overcome this limitation, local fractional calculus
has been introduced to generalize the Klein-Gordon equation to
accommodate fractional-order derivatives. Local fractional calcu-
lus is a mathematical framework that extends classical calculus to
nondifferentiable and fractal functions by introducing the concept
of fractional derivatives, which capture the behavior of these func-
tions at small scales It is discovered that local fractional calculus,
which Kolwankar and Gangal (1996) first proposed in the 1990s,
is a practical tool in fields ranging from fundamental research to
engineering. There, they describe the behavior of a continuous but
non-differentiable function.

Over the past 20 years, the significance and attractiveness of
local fractional calculus have increased due to its application
to functions in the real world that involve fractals and are not
continuously differentiable. The application of local fractional
calculus to the Klein-Gordon equation has led to the development
of a new class of equations known as local fractional Klein-Gordon
equations. These equations have been used to model various
physical phenomena, such as quantum wave propagation in
fractal media, fractional quantum mechanics, and non-local
interactions in quantum field theory Dubey et al. (2022).
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In recent years, the study of local fractional Klein-Gordon equa-
tions has gained significant attention, with researchers exploring
their theoretical properties and applications in various areas of
physics. This includes the development of numerical methods for
solving these equations and their application to complex physi-
cal systems, such as the behavior of particles in non-local media
and the study of fractal structures in condensed matter physics.
For example, In Sun (2018), the author explored a mathematical
model involving fractional derivatives to describe a porous struc-
ture. This model is called the Harry Dym fractal equations and
incorporates the Burgers fractal nonlinear equation. Furthermore,
reference Wang et al. (2019) introduced the concept of a local frac-
tional KdV-Burgers-Kuramoto (KBK) equation within the context
of fractal space. Here, the concept of a local fractional derivative
and a differential transform method has been used. Keskin and
Oturanc (2009) were the first to propose the Reduced Differential
Transform Method (RDTM). Many scholars use this method to
explore fractional, non-fractional, linear, and nonlinear PDEs. The
method provides a reliable and efficient technique for a wide range
of scientific, industrial, and many other applications in physics,
encompassing linear, nonlinear, homogeneous, and nonhomoge-
neous, fractional, and non-fractional PDEs, and so on. Solutions to
significant mathematical problems are explored using this deriva-
tive. In 2016, Yang and Tenreiro Machado (2019) introduced the
new local fractional differential transform technique (LFDTM) by
combining the local fractional derivative (LFD) and the differential
transform method (DTM). He offered several fundamental theo-
rems and some examples of the use of this strategy. According to
Jafari et al. (2016) theory of local fractional calculus, He combined
LFD and RDTM in 2016 to produce the local fractional reduced
differential transform method (LFRDTM). Moreover, he presented
several fundamental theorems and applications of this method.

The classical KGE can be converted in its local fractional
form in cantor sets using the fractional complex transform and
the local fractional derivative. Yang et al. (2014) developed a
continuous but nondifferentiable solution in cantor sets for the
local fractional linear KGE was developed by Yang et al. (2014)
using the technique of local fractional series technique under the
local fractional differential operator to produce a nondifferentiable
solution. Using the local fractional Sumudu transform approach
and the standard homotopy perturbation technique, Kumar et al.
(2017) researched linear KGE in Cantor sets.
The motivation for using local fractional calculus to examine the
solution of the n-term fractional Klein-Gordon equation came
from the need to develop a more effective approach to modeling
complex physical phenomena. Traditional calculus methods fail to
accurately describe many real-world systems that exhibit fractal
or self-similar behavior at various length scales. Local fractional
calculus provides a framework for analyzing such systems
considering the non-local and non-differentiable properties of
fractals Chu et al. (2023).

The n-term fractional Klein-Gordon equation is a specific
example of a physical system that can benefit from applying
local fractional calculus. This equation describes the behavior
of a scalar field in space-time and has important applications in
quantum mechanics, field theory, and condensed matter physics.
By using local fractional calculus to solve the n-term fractional
Klein-Gordon equation, we can gain a deeper understand-
ing of the behavior of scalar fields in complex systems, leading
to improved models and better predictions of physical phenomena.

The following paper aims to demonstrate the effectiveness of
the local fractional reduced differential transformation method
(LFRDTM) in approximating the solution of the extended n-term
local fractional Klein-Gordon equation. Here, we also discussed
the existence of the solution, followed by a few examples. The
ultimate goal of this study is to provide an effective and accurate
method for modeling complex physical systems that exhibit fractal
or self-similar behavior at various length scales. By demonstrating
the effectiveness of the LFRDTM in approximating the solution of
the local fractional Klein-Gordon equation of term n, we hope to
encourage its use in a wide range of applications in physics and
engineering. The article is organized as follows: (1) Introduction
(2) Definitions and preliminary (3) Existence and uniqueness of
the solution of the local fractional Klein-Gordon equations (4) Ap-
proximate analytical solutions of the local fractal Klein-Gordon
equations of term n (5) Results and Discussion.

DEFINITION AND PRELIMINARIES

The definitions of fractional operators, the transformation method,
and their properties are as follows.

Definition 1. Jafari et al. (2016) Let ψ : [a, b] × R → R be a local
fractional continuous function, then the local fractional partial derivative
operator of ψ(y, t) of order ν where 0 < ν ≤ 1 concerning t at the point
(y, t0) expressed as

Dνψ(y, t0) =
∂

∂t
ψ(y, t0)

= lim
t→t0

∆ν[ψ(y, t)− ψ(y, t0)]

(t − t0)ν
(1)

where ∆ν[ψ(y, t)− ψ(y, t0)] ∼= Γ(1 + ν) [ψ(y, t)− ψ(y, t0)]

with that in view the local fractional partial derivative operator
of ψ(y, t) of order kν, 0 < ν ≤ 1 is given as

Dt
kνψ(y, t) =

∂kν

∂t
ψ(y, t)

=

k times︷ ︸︸ ︷
∂ν

∂tν
...

∂ν

∂tν
ψ(y, t). (2)

Definition 2. A continuous function ψ : [a, b]× Rν → Rν which is
local fractional is Lipschitz continuous if ∃ 0 < η < 1 s.t. ∀ y ∈ [a, b]

|ψ(y, t1)− ψ(y, t2)| ≤ ην|t1 − t2|, 0 < ν < 1.

.

Definition 3. On a Generalised Banach space (X, ||.||ν), a mapping V
from X to X is said to be a contraction mapping if ∃ ην ∈ (0ν, 1ν) s.t.
for y1

ν, y2
ν ∈ X

||V(yν
1)− V(yν

2)||ν ≤ ην||yν
1 − yν

2 ||ν.

.

Also ||ψyν − yν||ν = 0 implies yν is said to be a fixed point of ψ.

Theorem 1. A map ψ : X → X on a complete general Banach space
(X, ||.||ν) has a unique fix point if ∃ k ≥ 1 s.t. ψk is contracting.

Theorem 2. Let ψ : [a, b]× Rν → Rν be LFC map. Then ψ is Lipschitz
continuous.
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Definition 4. Jafari et al. (2016) Let Ψ(k+1)ν(y) ∈ Cν(a, b), for
k = 0, 1, 2, ..., n and 1 < ν ≤ 1, then, we have

ψ(y) =
∞

∑
k=0

ψkν(0)
(y − yo)kν

Γ(1 + kν)
(3)

and ψ(k+1)ν(y) =

(k+1)︷ ︸︸ ︷
Dν

y Dν
y ...Dν

y ψ(y). (4)

Definition 5. The local fractional differential transform of a two-
dimensional transform Ψk(y) or Ψ(y, k) of function ψ(y, t) is

Ψk(y) =
1

Γ(1 + kν)

[
∂kν

∂tkν
ψ(y, t)

]
t=0

(5)

k = 0, 1, 2, ....n and ν ∈ (0, 1]. (6)

Definition 6. Jafari et al. (2016) The inverse transform formula for a
two-dimensional local fractional reduced differential of ψk(y)

ψ(y, t) =
∞

∑
k=0

Ψk(y)t
kν

Some other properties of RTDM are as follows:

1. If g(y, t) = aψ(y, t) then Gk(y) = aΨk(y),
where a is a constant

2. If π(y, t) = ψ(y, t) + ψ(y, t), then, Πk(y) = ψk(y) + Ψk(y).

3. If π(y, t) = ψ(y, t)ψ(y, t), then, Πk(y) =
k

∑
r=0

Ψr(y)Ψk−r(y).

4. If g(y, t) =
∂nν

∂tnν
ψ(y, t), then,Gk(y) =

Γ(1 + (k + n)ν)
Γ(1 + kν)

Ψk+n(y)

where Ψk+n(y) =
1

Γ(1 + (k + n)ν)

[
∂(k+n)ν

∂t(k+n)ν
ψ(y, t)

]
t=0

k = 0, 1, 2, ....n ν ∈ (0, 1] and n ∈ N.

5.If g(y, t) =
∂nν

∂xnν
ψ(y, t), then we have Gk(y) =

∂nν

∂xnν
Ψk(y).

Lemma 1. ( [Yang (2012) Zhang et al. (2015) Zhang and Yang (2016)]
) Let φ1, φ2 be two non differential functions with Local fractional
derivative operator ν ∈ (0, 1], then

1. D(ν)(aφ1 + bφ2) = a(D(ν)φ1) + b(D(ν)φ2) for a, b ∈ R.

2. D(ν)(φ1 φ2) = φ1D(ν)(φ2) + φ2D(ν)(φ1).

3. D(ν)(
φ1
φ2
) =

φ2D(ν)φ1−φ1D(ν)φ2

φ2
2

provided φ2 = 0.

Lemma 2. Acan et al. (2017) Yang (2012) Zhang et al. (2015) Zhang
and Yang (2016) Suppose that φ is a non-differential function and

ν ∈ (0, 1] is the order of local fractional derivative, then,

1. Dν(φ(y)) = 0, for all constant functions φ(y) = k.

2. D(ν)(
ykν

Γ(kν + 1)
) =

y(k−1)ν

Γ((k − 1)ν + 1)

3. D(ν)(Eν(yν)) = Eν(yν)

4. D(ν)(Eν(−yν)) = −Eν(−yν)

5. D(ν)(sinν(yν)) = cosν(yν)

6. D(ν)(cosν(yν)) = −sinν(yν)

where Eν(yν) =
∞

∑
k=0

ykν

Γ(kν + 1)
,

sinν(yν) =
∞

∑
k=0

(−1)k y(2k+1)ν

Γ((2k + 1)ν + 1)

and cosν(yν) =
∞

∑
k=0

(−1)k y2kν

Γ(2kν + 1)
.

Local Fractional Klein- Gordon equation (on Cantor sets)
This section uses the fractional complex transform and the
local fractional derivative to derive the local fractional KGE
(Klein-Gordon equation) fractal model of the term n in cantor sets.
We know that the classical Klein-Gordon Equation is

∂ψ(Ω, T)
∂T

=
∂2ψ(Ω, T)

∂Ω2 + aψ(Ω, T) + bψ2(Ω, T) + cψ3(Ω, T)

then the classical n-term Klein-Gordon equation is considered as

∂ψ(Ω, T)
∂T

=
∂2ψ(Ω, T)

∂Ω2 + a1ψ(Ω, T)+ a2ψ2(Ω, T)+ a3ψ3(Ω, T)+

... + anψn(Ω, T) (7)

subject to initial condition ψ(Ω, 0) = ψo.

Now using the Local Fractional complex transform method
to switch the conventional differential equation into the local
fractional differential equation.
To derive the fractional transform, we put

Ω =
yν

Γ(1 + ν)
, T =

tν

Γ(1 + ν)

Then

∂ν

∂tν
ψ(y, t) =

∂ψ(Ω, T)
∂Ω

∂νΩ
∂tν

+
∂ψ(Ω, T)

∂T
∂νT
∂tν

= 0 +
1

Γ(1 + ν)

∂ψ(Ω, T)
∂T

.

This implies

∂ψ(Ω, T)
∂T

= Γ(1 + ν)
∂νψ(y, t)

∂tν

or DTψ(Ω, T) = Γ(1 + ν)Dν
t ψ(y, t)

Similarly,

D2ν
y ψ(y, t) = D2

Ωψ(Ω, T)
∂νΩ
∂xν

+ D2
Tψ(Ω, T)

∂νT
∂xν

=
1

Γ(1 + ν)
D2

Ωψ(Ω, T)

⇒ D2
Ωψ(Ω, T) = Γ(1 + ν)D2ν

y ψ(y, t)
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and using local fractional derivatives under the constraints and
characteristics of the fractional complex transform technique, we
see that

ψ(y, t) =
1

Γ(1 + ν)
ψ(Ω, T)

ψ2(y, t) =
1

Γ(1 + ν)
ψ2(Ω, T)

... =

ψn(y, t) =
1

Γ(1 + ν)
ψn(Ω, T).

Thus, substituting the terms into 7 we obtain the local fractional
KGE of n terms (Klein - Gordon equation) as

∂ψ(y, t)
∂tν

=
∂2νψ(y, t)

∂x2ν
+ a1ψ(y, t) + a2ψ2(y, t) + a3ψ3(y, t) + ...

+ anψn(y, t), t > 0 (8)

with initial conditions

ψ(y, 0) = ψ0

or we can write it as

Dν
t ψ = D2ν

y ψ + a1ψ + a2ψ2 + a3ψ3 + · · · · · ·+ anψn

with initial conditions

ψ(y, 0) = ψo.

EXISTENCE AND UNIQUENESS OF SOLUTION OF N TERM
LOCAL FRACTAL KLEIN- GORDON EQUATION

In this section, we apply the Banach fixed point theorem and
contraction mapping theorem to ensure that the local fractional
Klien Gordon equation with the initial condition has a unique
solution.
Let us introduce a Banach space of real-valued functions by
C(Ω × [0, T]) with the norm is given by

||ψ|| = sup
(y,t)∈Ω×[0,T]

||ψ(y, t)||

Lemma 3. Let ψ(y, t) and its fractional partial derivatives are continu-
ous on Ω × [0, T] then Dν

t ψ and D2ν
y ψ are bounded.

Proof. Let A1 = sup
0≤τ≤t≤T

|t − τ|−ν . We will show that Dν
t is

bounded. Consider

|Dν
t ψ(y, t)| = | 1

Γ(1 − ν)

∫ t

0
(t − τ)−νψ(y, t)dτ|

= | A1
Γ(1 − ν)

∫ t

0
(t − τ)−νψ(y, t)dτ|

≤ A1
Γ(1 − ν)

||ψ||+ maxy∈Ω|ψ(y, 0)|.

Let (L1) be a positive constant such that maxy∈Ω|ψ(y, 0)| ≤
L1||ψ||,
this gives

|Dν
t ψ(y, t)| ≤ A1

Γ(1 − ν)
||ψ||+ L1||ψ|| = L2||ψ||

where L2 = A1
Γ(1−ν)

+ L1. Similarly, we can have ||D2ν
y ψ|| ≤ K||ψ||

where K is some constant. Hence, the fractional derivatives are
bounded.

Now considering the subsequent fractional differential equation
in the local fractional operator form as

Lν(ψ)− Rν(ψ) = 0 (9)

where ψ = ψ(y, t), Lν(ψ) =
∂νψ
∂tν and Rν(ψ) =

∂2νψ(y,t)
∂x2ν + a1ψ +

a2ψ2 + a3ψ3 + · · · · · ·+ anψn.
We can rewrite this equation subject to initial conditions as

Lνψ(y, t) = Φ(ψ(y, t))

with initial condition

ψ(y, 0) = ψ0(y).

Here

Φ(ψ(y, t)) =
∂2νψ(y, t)

∂y2ν
+ a1ψ+ a2ψ2 + .....+ anψn =

∂2νψ(y, t)
∂y2ν

+ f (ψ)

Theorem 3. Assuming the function Φ(ψ(y, t)) specified as

Φ(ψ(y, t)) =
∂2νψ(y, t)

∂x2ν
+ f (ψ)

is a Locally fractional continuous function which satisfies Lipschitz con-
tinuity condition, that is,

|Φ(ψ1(y, t))− Φ(ψ2(y, t))| ≤ ην|ψ1(y, t)− ψ2(y, t)|, ν ∈ (0, 1]

where 0 < η < 1.
then, the system

Lνψ(y, t) = Φ(ψ(y, t))

with initial condition
ψ(y, 0) = ψ0(y)

comprises a solution in Cν[a, b] which is a unique solution.

Proof. Consider the function V : Cν[a, b] → Cν[a, b] be defined as

V(ψ(y, t)) = ψ0(y) +
1

Γ(1 + ν)

t∫
ν

[Φ(ψ1(y, s))− Φ(ψ2(y, s))](ds)ν

we will use induction to show that

||Vn(ψ1(y, t))−Vn(ψ2(y, t))||ν ≤ ηnν|bν − aν|n
Γn(1 + ν)

||ψ1(y, t)−ψ2(y, t)||ν.

For n=1, we have

|V(ψ1(y, t))− V(ψ2(y, t))| =

∣∣∣∣∣∣ 1
Γ(1 + ν)

t∫
ν

[
ϕ(ψ1(y, s))−
ϕ(ψ2(y, s))

]
(ds)ν

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣ 1
Γ(1 + ν)

t∫
ν

ην

∣∣∣∣∣ψ1(y, s)−
ψ2(y, s)

∣∣∣∣∣(ds)ν

∣∣∣∣∣∣
⩽

ην

Γ(1 + ν)

∣∣∣∣∣∣∣
∂2ν

∂y2ν
(ψ1 − ψ2) + a1(ψ1 − ψ2) + a2(ψ1

2 − ψ2
2)+

.... + an(ψ1
n − ψ2

n)

∣∣∣∣∣∣∣
Now by the lemma 3 note that D2ν

y ψ is bounded and since ψ is
a bounded function therefore ψn is also bounded.
Also as the sum and difference of bounded functions are bounded,
we can have∣∣∣∣∣V(ψ1(y, t))−
V(ψ2(y, t))

∣∣∣∣∣ ⩽ ην

Γ(1 + ν)
|ψ1 − ψ2| [K + a1m1 + a2m2 + ... + anmn]
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where |D2ν
y ψ| ≤ K and m1, m2, ..., mn are the bounds for the other

terms.

≤ ην

Γ(1 + ν)
|bν − aν|||ψ1(y, t)− ψ2(y, t)||ν,

where |K + m1 + m2 + ... + mn| ≤ |bν − aν|.
Hence for n = 1, the inequality holds.
Now let’s assume it for n = k

||Vk(ψ1(y, t))−Vk(ψ2(y, t))||ν ≤ ηkν|bν − aν|k

Γk(1 + ν)
||ψ1(y, t)−ψ2(y, t)||ν

(10)
Now for n = k + 1, we see that

∥∥∥∥∥Vk+1(ψ1(y, t))−

Vk+1(ψ2(y, t))

∥∥∥∥∥
ν

=

∣∣∣∣∣∣ 1
Γ(1 + ν)

t∫
ν

[
ϕ(Vk(ψ1(y, s)))−

ϕ(Vk(ψ2(y, s)))

]
(ds)ν

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣ 1
Γ(1 + ν)

t∫
ν

ην

[
Vk(ψ1(y, s))

−Vk(ψ2(y, s))

]
(ds)ν

∣∣∣∣∣∣
⩽

η(k+1)ν|bν − aν|(k+1)

Γ(k+1)(1 + ν)

∥∥∥∥∥ψ1(y, t)−
ψ2(y, t)

∥∥∥∥∥
ν

(using inequality 10)

Thus for n = k + 1, our assumption is proved, and we can say that

||Vn(ψ1(y, t))−Vn(ψ2(y, t))||ν ≤ ηnν|bν − aν|n
Γn(1 + ν)

||ψ1(y, t)−ψ2(y, t)||ν.

Now note that

ηnν|bν − aν|n
Γn(1 + ν)

||ψ1(y, t)− ψ2(y, t)||ν → 0

as n → ∞.
Therefore we can say that the map Vn is a contraction over Cν[a, b]
which conclusively says that the given system has a unique solu-
tion.

APPROXIMATE ANALYTICAL SOLUTIONS OF N TERM LO-
CAL FRACTAL KLEIN- GORDON EQUATIONS

Theorem 4. If we consider

Dν
t ψ = D2ν

y ψ + a1ψ + a2ψ2 + a3ψ3 + · · · · · ·+ anψn (11)

with initial condition
ψ(y, 0) = ψo (12)

where Dν
t is Local fractional derivative operator with ν ∈ (0, 1]and

a1, a2, · · · , an are real constants. Then the solution of (11) is given as

ψ(y, t) = Ψ0 +
∞

∑
k=1

Ψk(y)t
kν. (13)

Proof. We are going to apply the method of Local Fractional Re-
duced Differential Transform LFRDTMon (11)
For that, we recall that the reduced differential transform(Locally
fractional) of ψ(y, t) is Ψk(y) or Ψ(y, k) and is established as

Ψ(y, k) or Ψk(y) =
1

Γ(1 + kν)

[
∂kνψ(y, t)

∂tkν

]

=
1

Γ(1 + kν)
[Dkν

t ψ(y, t)]

This implies

Ψk+1(y) =
1

Γ(1 + (k + 1)ν)
[D(k+1)ν

t ψ(y, t)] (14)

and since we are using local fractional derivative, therefore

D(k+1)ν
t ψ(y, t) =

∂(k+1)ν

∂t(k+1)ν
ψ(y, t)

=
∂ν

∂tν

∂ν

∂tν
· · · · · · ∂ν

∂tν︸ ︷︷ ︸
(k+1)times

ψ(y, t)

=
∂ν

∂tν

[
∂kν

∂tkν
ψ(y, t)

]
=

∂ν

∂tν
[Dkν

t ψ(y, t)]

=
∂ν

∂tν

[
Γ(1 + kν)Ψk(y)

]
(15)

Substituting (14) into (15), we get

Γ(1 + (k + 1)ν)Ψk+1(y) =
∂ν

∂tν
(Γ(1 + kν)Ψk(y))

Hence we get the recurrence relation as,

Ψk+1(y) =
Γ(1 + kν)

Γ(1 + (k + 1)ν)
∂νΨk(y)

∂tν

=
Γ(1 + kν)

Γ(1 + (k + 1)ν)
Dν

t Ψk(y) (16)

thus using the properties of RTDM, and after applying LFRDTM
to (11) we get

Ψk+1(y) =
Γ(1 + kν)

Γ(1 + (k + 1)ν)

[
D2ν

y a1Ψk(y) + a2Ψ2
k + a3Ψ3

k + · · ·
· · ·+ anΨn

k (y)

]

with (I.C)
Ψ0(y) = Ψ0

where Ψk(y) is a Local fractional differential differential transform
of ψ(y, t)
and similarly for ψ2, ψ3, · · · , ψn the transformed terms are

Ψ2
k(y) =

k

∑
r=0

Ψk(y)Ψk−r(y)

Ψ3
k(y) =

k

∑
r=0

r

∑
s=0

Ψs(y)Ψr−s(y)Ψk−r(y)

Ψ4
k(y) =

k

∑
r=0

r

∑
s=0

s

∑
t=0

Ψt(y)Ψs−t(y)Ψr−s(y)Ψk−r(y)

...

Ψn
k (y) =

k

∑
r1=0

r1

∑
r2=0

r2

∑
r3=0

· · ·
rn−2

∑
rn−1=0︸ ︷︷ ︸

n−1 times

n times︷ ︸︸ ︷
Ψrn−1 (y)Ψrn−2 (y) · · ·Ψk−r1

(y)

Thus, the recurrence relation along with initial condition Ψ0 is
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Ψk+1(y) =
Γ(1 + kν)

Γ(1 + (k + 1)ν)

[
D2ν

y a1Ψk(y)+ a2

k

∑
r=0

Ψk(y)Ψk−r(y)+

a3

k

∑
r=0

r

∑
s=0

Ψs(y)Ψr−s(y)Ψk−r(y)+

· · · · · ·+ an

k

∑
r1=0

r1

∑
r2=0

r2

∑
r3=0

· · ·
rn−2

∑
rn−1=0

Ψrn−1 (y)Ψrn−2 (y) · · ·Ψk−r1
(y)

]
(17)

and using this recurrence relation, we have

Ψ1 =
Γ(1 + 0)
Γ(1 + ν)

[D2ν
y Ψ0 + a1Ψ0 + a2Ψ2

0 + · · ·+ anΨn
0 ]

=
1

Γ(1 + ν)
[D2ν

y Ψ0 + Ψ0[a1 + a2Ψ0 + · · ·+ anΨn−1
0 ]]

Ψ2 =
Γ(1 + ν)

Γ(1 + 2ν)
[D2ν

y Ψ1 + Ψ1[a1 + a2Ψ1 + · · ·+ anΨn−1
1 ]]

.

.

.

Ψk =
Γ(1 + kν)

Γ(1 + (k + 1)ν)
[D2ν

y Ψk−1 + Ψk−1[a1 + a2Ψk−1 + · · ·+ anΨn−1
k−1 ]]

(18)
Now using 6 we get the analytical solution to n term Klein

Gordon equation as

ψ(y, t) =
∞

∑
k=0

Ψk(y)t
kν

= Ψ0(y) + Ψ1(y)tν + Ψ2(y)t2ν + · · ·

where Ψ0, Ψ1, Ψ2, · · · are defined as above18.

Now consider the following cases for particular solutions

Example 1. consider the fractional differential equation

∂ν

∂tν
ψ(y, t) =

∂2ν

∂x2ν
ψ(y, t) (19)

with initial condition ψ(y, 0) = ψ0.
Note that this is a linear local fractional n term Klein-Gordon equation
with a1 = a2 = · · · = an = 0 which is a special case of (11) .
Let say ψ0 = Eν(yν)
Taking local fractional reduced differential transform of (19),
We get the subsequent recurrence relation

Ψk+1(y) =
Γ(1 + kν)

Γ(1 + (k + 1)ν)

[
D2ν

y Ψk(y)
]

(20)

with (I.C) Ψ0(y) = Eν(yν). (21)

On applying the recurrence relation and initial condition20, we attain

Ψ1(y) =
1

Γ(1 + ν)

[
D2ν

y Ψo(y)

]

=
1

Γ(1 + ν)
Eν(yν)

Ψ2(y) =
1

Γ(1 + 2ν)

[
D2ν

y Ψ1(y)

]

=
1

Γ(1 + 2ν)
Eν(yν)

...

Ψn(y) =
1

Γ(1 + nν)
Eν(yν).

Applying the inverse local fractional reduced differential transform, we
attain the solution of 19.

ψ(y, t) =
∞

∑
k=0

Ψk(y)t
kν

= Eν(yν) + Eν(yν)
tν

Γ(1 + ν)
+ Eν(yν)

t2ν

Γ(1 + 2ν)
+ · · ·

=
∞

∑
k=0

Eν(yν)
tkν

Γ(1 + kν)

This implies
ψ(y, t) = Eν(yν)Eν(tν).

The graphical illustration of the solution ψ(y, t) is shown in [1] when
ν =

log(2)
log(3) .

Example 2. When a1 = 1, a2 = a3 = a4 = · · · = an = 0, we get

Dν
t ψ(y, t) = D2ν

y ψ(y, t) + ψ(y, t), t > 0, ν ∈ (0, 1]

with initial condition
ψ(y, 0) = Eν(yν).

we know that Local fractional reduced differential transform of ψ(y, t)
is

Ψk(y) =
1

Γ(1 + kν)

[
∂kνψ(y, t)

∂tkν

]
=

1
Γ(1 + kν)

[Dkν
t ψ(y, t)]

This implies

Ψk+1(y) =
1

Γ(1 + (k + 1)ν)
[D(k+1)ν

t ψ(y, t)]

⇒ Γ(1 + (k + 1)ν)Ψk+1(y) =
∂ν

∂tν
(Γ(1 + kν)Ψk(y)).

After applying local fractional partial derivative property, we get,

Ψk+1(y) =
Γ(1 + kν)

Γ(1 + (k + 1)ν)
∂νΨk(y)

∂tν
=

Γ(1 + kν)

Γ(1 + (k + 1)ν)
Dν

t Ψk(y).

Thus, applying the properties of RTDM and apply LFRDTM, we get

Ψk+1(y) =
Γ(1 + kν)

Γ(1 + (k + 1)ν)

[
D2ν

y Ψk(y) + Ψk(y)
]

(22)

CHAOS Theory and Applications 313



with (I.C)

Ψo(y) = Eν(yν).

now applying Recurrence relation [22], we attain

Ψ1(y) =
1

Γ(1 + ν)

[
D2ν

y Ψo(y) + Ψo(y)

]

=
2

Γ(1 + ν)
Eν(yν)

Ψ2(y) =
1

Γ(1 + 2ν)

[
D2ν

y Ψ1(y) + Ψ1(y)

]

=
22

Γ(1 + 2ν)
Eν(yν)

...

Ψk(y) =
2k

Γ(1 + kν)
Eν(yν)

Now using the inverse local fractional reduced differential transform

ψ(y, t) =
∞

∑
k=0

Ψk(y)t
kν

= Ψ0(y) + Ψ1(y)tν + Ψ2(y)t2ν + · · ·

= Eν(yν)
∞

∑
k=0

(2t)kν

Γ(1 + kν)

= Eν((2t − x)ν).

The graphical illustration of the solution ψ(y, t) is shown in [2] when
ν =

log(2)
log(3) .

Example 3. Now considering the case a2 = −1, a1 = a3 = · · · =
an = 0 along with initial condition ψ(y, 0) = 1 + sinν(yν).Then the
non-linear KGE we have,

Dν
t ψ(y, t) = D2ν

y ψ(y, t)− ψ2(y, t), t > 0, ν ∈ (0, 1]

,
with initial condition

ψ(y, 0) = 1 + sinν(yν).

To get the next recurrence relation, we will use the local fractional reduced
differential transform.

Ψk+1(y) =
Γ(1 + kν)

Γ(1 + (k + 1)ν)

[
D2ν

y)Ψk(y)−
k

∑
r=0

ΨrΨk−r

]

with (I.C)

Ψo(y) = 1 + sinν(yν).

thus we get

Ψ1(y) =
Γ(1)

Γ(1 + ν)
[D2ν

y (Ψ0) + [Ψ0]
2]

=
1

Γ(1 + ν)
[D2ν

y (1 + sinν(yν))− (1 + sinν(yν))2]

=
−1

Γ(1 + ν)
[3sinν(yν) + sin2

ν(y
ν) + 1]

=
1

Γ(1 + 2ν)Γ(1 + ν)


Γ(1 + ν)(3sinν(yν)− 2 + 4sin2

ν(y
ν))− 1

−11sin2
ν(y

ν) + 6sin3
ν(y

ν)+

6sinν(yν) + sin4
ν(y

ν)


.

.

.

.

Now substituting using the inverse Local fractional reduced differen-
tial transform method (LFRDTM), we have

ψ(y, t) =
∞

∑
k=0

Ψktkν

= Ψ0 + Ψ1tν + Ψ2t2ν + · · ·

= 1 + sinν(yν)− tν

Γ(1 + ν)

[
3sinν(yν) + sin2

ν(y
ν) + 1

]

+
t2ν

Γ(1 + ν)Γ(1 + 2ν)

[
(3sinν(yν)− 2 + 4sin2

ν(y
ν))Γ(1 + ν)

− 1 − 11sin2
ν(y

ν) + 6sin3
ν(y

ν) + 6sinν(yν) + sin4
ν(y

ν)

]
+ · · · · · ·

which is the series solution of this particular local fractional KGE. The
graphical illustration of the solution ψ(y, t) is shown in [3] when ν =
log(2)
log(3) .

Example 4. when a1 = a2 = a3 = a4 = a5 = · · · = an = 1,
we get the non linear local fractional Klein Gordon equation

Dν
t ψ(y, t) = D2ν

y ψ(y, t) + ψ + ψ2 + ψ3(y, t), t > 0, ν ∈ (0, 1]

with initial condition

ψ(y, 0) = 1 + sinν(yν)

on applying LFRDTM here, we get

Ψk+1(y) =
Γ(1 + kν)

Γ(1 + ν + kν)

[
D2ν

y Ψk + Ψk + Ψ2
k + Ψ3

k + · · ·
]

where

Ψ2
k =

k

∑
r=0

ΨrΨk−r

Ψ3
k =

k

∑
r=0

r

∑
s=0

ΨsΨr−sΨk−r

and initial condition transforms into Ψ0(y) = 1 + sinν(yν)
Now, using the recurrence relation along with the initial condition, we
obtain
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Ψ1(y) =
1

Γ(1 + ν)
[D2ν

y (Ψ0) + Ψ0 + (Ψ0)
2 + (Ψ0)

3 + · · · ]

Ψ1(y) =
1

Γ(1 + ν)

[
Dν

y(Dν
y(1 + sinν(yν))) + (1 + sinν(yν))+

(1 + sinν(yν))2 + (1 + sinν(yν))3 + · · ·

]

=
1

Γ(1 + ν)

[
−sinν(yν) + 1 + sinν(yν) + 1 + sin2

ν(y
ν) + 2sinν(yν)

+1 + sin3
ν(y

ν) + 3sinν(yν) + 3sin2
ν(y

ν) + · · ·

]

=
1

Γ(1 + ν)
[sin3

ν(y
ν) + 4sin2

ν(y
ν) + 5sinν(yν) + n + · · · ]

Ψ2(y) =
Γ(1 + ν)

Γ(1 + 2ν)
[D2ν

y (Ψ1) + Ψ1 + (Ψ1)
2 + (Ψ1)

3 + · · · ]

Ψ2(y) =
1

Γ(1 + ν)Γ(1 + 2ν)


sin9

ν(y
ν) + 4sin8

ν(y
ν) + 9sin7

ν(y
ν)

+105sin6
ν(y

ν) + 123sin5
ν(y

ν)+

126sin4
ν(y

ν) + 166sin3
ν(y

ν)+

29sin2
ν(y

ν)− 3/4sinν(yν) + · · ·


Ψ3(y) =

1
Γ(1 + ν)Γ(1 + 2ν)Γ(1 + 3ν)

[
sin27

ν (yν) + 10682sin26
ν (yν)

+269874sin25
ν (yν) + · · ·

]
.

.

.

neglecting higher terms since with 0 < ν ≤ 1 and as
|sinν(yν)| ≤ 1 the terms with higher power will eventually tend near
zero.
Now, substituting all using the inverse local fractional reduced differen-
tial transform method (LFRDTM), we have

ψ(y, t) =
∞

∑
k=0

Ψktkν

= Ψ0 + Ψ1tν + Ψ2t2ν + · · ·

= 1 + sinν(yν)− tν

Γ(1 + ν)

[
sin3

ν(y
ν) + 4sin2

ν(y
ν)

+5sinν(yν) + n + · · ·

]

+
t2ν

Γ(1 + ν)Γ(1 + 2ν)


sin9

ν(y
ν) + 4sin8

ν(y
ν) + 9sin7

ν(y
ν)+

105sin6
ν(y

ν) + 123sin5
ν(y

ν) + 126sin4
ν(y

ν)

+166sin3
ν(y

ν) + 29sin2
ν(y

ν)− 3/4sinν(yν) + · · ·


+

t3ν

Γ(1 + ν)Γ(1 + 2ν)Γ(1 + 3ν)

[
sin27

ν (yν) + 10682sin26
ν (yν)

+269874sin25
ν (yν) + · · ·

]
+ · · ·

which is the series solution of the given local fractional Klein-Gordon
equation. The figures 4,5, 6 and 7 shows the physical interpretation of
ψ(y, t) corresponding to ν = 0.25, 0.5, 0.6289 and 1.

Figures here show the physical interpretation of ψ(y, t) vs. t
corresponding to a particular value of ν.

Figure 1 The figure illustrates Solution of Example 1 when ν =
log(2)/log(3) = 0.6309

Figure 2 The figure illustrates Solution of Example 2 when ν =
log(2)/log(3) = 0.6309

Figure 3 The figure illustrates Solution of Example 3 of ψ(y, t) vs.
time t when ν = log(2)/log(3) = 0.6309
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Figure 4 Example 4 when ν = 0.25

Figure 5 Example 4 when ν = 0.5

Figure 6 Example 4 when ν = 1

Figure 7 Example 4 when ν = log(2)/log(3)
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CONCLUSION

In this study, we have combined the fractional complex transform
with the local fractional differential transform method to analyze
the Klein-Gordon equations of n terms in cantor sets within the
local fractional differential operator and have tried to approximate
the solution of the same. Our results show that this method is
an effective mathematical tool for solving local fractional linear
differential equations. Furthermore, the versatility of this method
makes it highly adaptable to solving a wide range of fractional
differential equations. The examples are particular cases of the
proposed n-term Klein-Gordon equation, and their corresponding
corrected approximated solutions are presented along with their
graphs. Hence, we can conclude that the fractional complex trans-
form with the local fractional differential transform method is a
powerful and flexible approach to obtain effective approximate
solutions of local fractional partial differential equations.
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Fractalization of Fractional Integral and Composition of
Fractal Splines
A. Gowrisankar ID ∗,1

∗Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India.

ABSTRACT The present study perturbs the fractional integral of a continuous function f defined on a real
compact interval, say (Iv f ) using a family of fractal functions (Iv f )α based on the scaling parameter α. To
elicit this phenomenon, a fractal operator is proposed in the space of continuous functions, an analogue to
the existing fractal interpolation operator which perturbs f giving rise to α-fractal function f α. In addition, the
composition of α-fractal function with the linear fractal function is discussed and the composition operation on
the fractal interpolation functions is extended to the case of differentiable fractal functions.

KEYWORDS

Fractional inte-
gral
α-fractal function
Error estimation
Composite fractal
functions

INTRODUCTION

The launch of fractal interpolation function has initiated a new
theory of approximation concerning the naturally existing func-
tions with non-differentiable nature. Rooted from the remark of
Barnsley in (Barnsley 1986), Navascués has explored the approxi-
mation of continuous functions defined on a real closed interval by
a class of α-fractal functions, where α is the appropriately chosen
scaling parameter, in (Navascués 2005). Non-smooth analogue of
prescribed continuous function can be achieved with the choice
of non-differentiable base function. Further, Navascués has pio-
neered the fractal operator to associate each prescribed function
to its class of α-fractal functions. The theme of proposing a fractal
operator has fruitfully enabled the fractal theory to connect with
various mathematical fields not limited to operator theory. While
constructing α-fractal function, the base function choice is signifi-
cant since the fractal operator is dependent on the boundedness of
the base function. Literature survey acknowledges various interest-
ing discussions on α-fractal functions, for instance, the derivative
of α-fractal function is explored and its respective fractal operator
is studied in (Navascués and Sebastián 2006).

The Riemann-Liouville fractional integral of α-fractal function
has been discussed for the α-fractal functions with both constant
and variable scalings in (Priyanka and Gowrisankar 2021b). Fur-
ther, a fractional operator is defined to assign the continuous func-
tion to the fractional integral of its fractal version. For more works
on α-fractal functions, the readers are recommended to consult
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Revised: 26 August 2023,
Accepted: 27 August 2023.

1gowrisankargri@gmail.com(Corresponding author)

(Balasubramani et al. 2020; Akhtar et al. 2017; Banerjee et al. 2023).
While analysing fractals and fractal functions, the study of their
fractal dimension is an ever interesting topic. Falconer has dis-
cussed the dimension theory for the fractal interpolation functions
in (Falconer 2004). The dimensional analysis for the graphs of
α-fractal functions is investigated in (Akhtar et al. 2016). Beyond
the theoretical framework, fractal dimension has been estimated
for various physical phenomena. For more fascinating work on
the fractal dimension, the readers may visit (Banerjee et al. 2021;
Fortin et al. 1992; Sanjuán 2021; Çimen et al. 2020).

In recent times, fractional calculus has been receiving remark-
able attention among the fractal community. The Riemann-
Liouville (RL) fractional integral of affine fractal functions has
been investigated in (Pan 2014). The quadratic fractal function’s
fractional integral with constant and function scalings has been
discussed in (Gowrisankar and Prasad 2019). The fractional inte-
gral as well as the fractional derivative of different kinds of fractal
interpolation functions have been discussed by several authors (for
additional information refer, (Pan 2014; Gowrisankar and Prasad
2019; Ruan et al. 2009; Priyanka and Gowrisankar 2021a)). The
aforementioned results on α-fractal function and its fractional or-
der integral, naturally arises a question: Is it possible to generate
a class of fractal functions such that the fractional integral of a
continuous function is interpolated? To answer this question, the
present paper initiates the construction of self-referential functions
for the fractional integral of continuous functions.

The construction procedure follows Navascués’s α-fractal func-
tion in (Navascués and Sebastián 2006) and such a construction is
guaranteed with the continuity of fractional integral. In addition,
a fractal operator is defined to assign the fractional integral of a
continuous function to its fractal version. The boundedness of
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the fractional integral discussed in (Samko et al. 1993) instigates
to discuss the boundedness of the proposed operator. The base
function of the newly constructed fractal function, (i.e) the frac-
tional integral of base function of the α-fractal function, is chosen
appropriately to explicitly estimate the bound of the operator.

The recent works on fractal functions reported in (Navascués
et al. 2022; Massopust 2022b,a; Dai and Liu 2023) show the curiosity
of young researchers to develop more generalized and flexible
fractal interpolation functions. In (Priyanka and Gowrisankar
2021b), authors have demonstrated that the resultant functions
on the evaluation of the fractional integral of α-fractal functions
are again α-fractal functions obeying the end point conditions.
The work by Dai and Liu(Dai and Liu 2023) is also noticeable, in
which the composite fractal function is introduced along with the
discussion of its fractal dimension. In this direction, the present
paper investigates the composition of α-fractal function as well as
the composition of fractal spline. Further, it is observed that the
composition operator also renders new fractal functions like the
case of fractional integral operator, which is discussed in (Priyanka
and Gowrisankar 2021b). With this end, the paper directly enters
the discussion on the fractal perturbation of continuous functions
in the following section.

FRACTALIZATION OF CONTINUOUS FUNCTIONS

Let N ≥ 2 and NN denote the initial set of natural numbers of
length N. Consider the interpolation data set,

{(xj, yj) ∈ [x1, xN+1]× R : j ∈ NN+1}.

Let lj be the set of N homeomorphisms from I = [x1, xN+1] to
Ij = [xj, xj+1], j ∈ NN satisfying

|lj(s)− lj(t)| ≤ λj|s − t|, λj ∈ [0, 1),

lj(x1) = xj, lj(xN+1) = xj+1, j ∈ NN .

Define the maps Fj : X := I × R → R to be continuous in the first
argument and Lipschitz continuous in the second argument with
Lipschitz constant αj < 1 such that

Fj(x1, y1) = yj, Fj(xN+1, yN+1) = yj+1, j ∈ NN .

The space of continuous functions defined on the interval I reserves
the notation C(I). Let G = {h ∈ C(I) : h(x1) = y1, h(xN+1) =
yN+1}. For h1, h2 ∈ C(I), the metric δ, defined by δ(h1, h2) =
max{|h1(x)− h2(x)| : x ∈ I}, completes (G, δ). Further, in (Barns-
ley 1986), the Read-Bajrakteravic operator (RB), T is defined on
(G, δ) by

Th(x) = Fj(l−1
j (x), h(l−1

j (x)), j ∈ NN . (1)

The continuity properties of lj and Fj make easier to verify the
continuity of T as follows

δ(Tg1, Tg2) ≤ |α|∞δ(g1, g2), g1, g2 ∈ C(I)

where |α|∞ = max{|αj| : j ∈ NN} < 1 and α = {α1, α2, . . . , αN}.
The choice of αk makes the operator T contractive on the space
(G, δ). Hence, with the aid of Banach contraction principle, it
is concluded that T has a unique fixed point, say g, satisfying
g(xj) = yj, for all j ∈ NN+1 and from Eqn.(1), it follows that

g(x) = Fj(l−1
j (x), g(l−1

j (x)), j ∈ NN . (2)

Using the maps lj and Fj, define contractive transformations wj
from X to Ij × R as

wj(x, y) = (lj(x), Fj(x, y)), (x, y) ∈ X , j ∈ NN .

Thus, the finite collection of contractive maps wj together with the
complete metric space (X , d) forms a hyperbolic Iterated Function
System (IFS) and it is denoted by

{X ; wj(x, y) = (lj(x), f j(x, y)) : j ∈ NN}. (3)

Let H(X ) := {A ⊂ X : A ̸= ∅ and compact}. The Hausdorff
metric hd is defined on H(X ) by

hd(A, B) = max{d(A, B), d(B, A)},

where d(A, B) = supa∈A infb∈B{d(a, b)}, then the pair (H(X ), hd)
is a complete metric space whenever the metric space (X , d) is
complete. A Hutchinson-Barnsley operator W is defined as a self-
map on H(X ) by

W(C) =
N⋃

j=1
wj(C),

where C ∈ H(X ). By the Banach principle of fixed point, there
exists a unique Gg in H(X ) such that

Gg = lim
n→∞

W◦n(C),

where W◦n is the n-fold self-composition of W. Moreover, this
set Gg is the graph of the function g obeying the self-referential
equation (2). In this construction, the function g is called the
Fractal Interpolation Function (FIF) associated with the IFS (3). The
interested readers may consult (Barnsley 1986; Agathiyan et al.
2022; Gowrisankar and Uthayakumar 2016) for more details on
FIFs.

The following is the review of construction of α-fractal function
explored by Navacués in (Navascués 2005). Slightly deviating
from the theme of fractal interpolation function approximating the
given interpolation data sharing complex behaviour, Navacués has
generated a class of continuous functions with fractal properties to
approximate f ∈ C(I). For f ∈ C(I), let {(xj, f (xj)) : j ∈ NN+1}
be the interpolation points. A partition ∆ := {x1, x2, . . . , xN+1} is
considered such that x1 < x2 < · · · < xN+1 and the continuous
function b : I → R is taken as the base function equal to f only at
the endpoints x1 and xN+1. i.e.,

b(x1) = f (x1), b(xN+1) = f (xN+1), and b ̸= f . (4)

Let αj ∈ (−1, 1), j ∈ NN . Consider the maps

lj(x) = ajx + bj, Fj(x, f (x)) = αj f (x) + qj(x), j ∈ NN , (5)

where
qj(x) = f (lj(x))− αjb(x). (6)

Then, the attractor of the IFS (3) involving the maps in (5) and
(6) is the graph of the fractal interpolation function say, f α

∆,b corre-
sponding to f with respect to scale vector α, partition ∆ and base
function b. In addition, the function f α

∆,b is the fixed point of the
RB operator Tα defined on C f (I), where C f (I) is the space of con-
tinuous functions h obeying h(x1) = f (x1), h(xN+1) = f (xN+1).
The operator Tα is described as

Tαh(x) = f (x) + αj(h − b) ◦ l−1
j (x), x ∈ I, j ∈ NN .

Then, f α
∆,b obeys

f α
∆,b(x) = f (x) + αj( f α − b) ◦ l−1

j (x), x ∈ I, j ∈ NN . (7)

Definition 1. The function f α
∆,b := f α satisfying the self-referential

equation (7) is the fractal perturbation of f and it is known as the α-fractal
function corresponding to α, ∆ and b.
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According to Eqn.(7), f α interpolates f at each xj (i.e.) f α(xj) =
f (xj), for all j ∈ NN+1. Also, f α equals the prescribed function f
when all the scaling factors are taken to be zero. In addition, from
Eqn.(7), the uniform distance between f and f α can be deduced as
follows.

∥ f α − f ∥∞ ≤ |α|∞
1 − |α|∞

∥ f − b∥∞.

Let C[a, b] be equipped with sup norm

∥ f ∥∞ = max{| f (x)| : x ∈ [a, b]}.

Consider the linearly dependent base function b on f , b = L f ,
where L : C[a, b] → C[a, b] is a linear operator and bounded, its
operator norm is given by

∥L∥ := sup{∥L f ∥∞ : ∥ f ∥∞ ≤ 1}

and L f (x1) = x1, L f (xN+1) = xN+1 with L ̸= Identity.

Remark 1. The present study proceeds with L f = f ◦ c, where c
is an increasing as well as continuous function such that c(x1) =
x1, c(xN+1) = xN+1 and c ̸= Identity. For this particular choice
of b = f ◦ c, ∥b∥∞ = ∥L f ∥∞ = ∥ f ∥∞ with operator norm ∥L∥ = 1.

Lemma 1. (Navascués 2010) For any f ∈ C(I) and b = L f , the
following inequality holds

∥ f α − f ∥∞ ≤ |α|∞∥Id − L∥∞

1 − |α|∞
∥ f ∥∞,

where Id is the identity operator.

Note 1. If L f = f ◦ c, the inequality () becomes

∥ f α − f ∥∞ ≤ 2|α|∞
1 − |α|∞

∥ f ∥∞.

In (Navascués 2005), a fractal interpolation operator F α :
C(I) → C(I) is introduced to fractalize each continuous function
as

F α( f ) = f α, f ∈ C(I).

Theorem 1. (Navascués 2010) For any bounded and linear operator L
with sup norm, the following holds

∥F α( f )∥∞ ≤
(

1 +
|α|∞∥Id − L∥∞

1 − |α|∞

)
∥ f ∥∞.

In analogue to the above discussed operator, various fractal
operators have been proposed to the fractalize the given contin-
uous functions, see for instance (Navascués and Sebastián 2006;
Priyanka and Gowrisankar 2021b).

FRACTAL PERTURBATION OF FRACTIONAL INTEGRAL
OF A CONTINUOUS FUNCTION

In order to define a new class of α-fractal functions to approximate
the fractional integral of f ∈ C(I), this section commences with
the definition of RL fractional integral of a continuous function.

Definition 2. (Samko et al. 1993) Let f be the integrable function on
[a, b] ⊂ R and v > 0 be a real number. Then, the Riemann-Liouville
(RL) fractional integral of f is defined by

(Iv f )(t) =
1

Γ(v)

∫ t

a
(t − s)v−1 f (s)ds, (t > a),

here the notation Γ(·) denotes the Gamma function.

In (Samko et al. 1993), it is proved that the fractional integral
operator (Iv f ) is bounded in Lp space with 1 ≤ p ≤ ∞ and it is
precisely provided in the following lemma.

Lemma 2. For v > 0, the RL fractional integral operator is bounded
such that

∥Iv f ∥ ≤ K∥ f ∥∞, where K =
xN+1 − x1

vΓ(v)
.

Using the above lemma, the uniform distance between the germ
function f and its fractional integral Iv f can be estimated as fol-
lows.

Lemma 3. The distance between f and Iv f with respect to the uniform
norm is given by

∥ f − Iv f ∥∞ ≤ (1 +K)∥ f ∥∞,

where K = xN+1−x1
vΓ(v) .

Proof. By the definition of uniform norm,

∥ f − Iv f ∥∞ ≤ ∥ f ∥∞ + ∥Iv f ∥∞.

From Lemma 2, it follows that ∥Iv f ∥∞ ≤ K∥ f ∥∞, where K =
xN+1−x1

vΓ(v) . Then,

∥ f − Iv f ∥∞ ≤ ∥ f ∥∞ +K∥ f ∥∞

≤ (1 +K)∥ f ∥∞.

The following lemma ensures the continuity of the fractional
order integral Iv f which is proved by Pan in reference (Pan 2014).

Lemma 4. Let v > 0 and f ∈ C[a, b]. Then Iv f ∈ C[a, b].

From Lemma 4, it is straight forward to define a family of fractal
functions to approximate Iv f .

Let {xj, Iv f (xj)} be the the interpolation data with partition
∆ and scale vector α. To define a new family of self-referential
functions, consider the base function as the fractional integral of b,
expressed by

(Ivb)(t) =
1

Γ(v)

∫ x

x1

(t − s)v−1b(s)ds,

such that

(Ivb)(x1) = (Iv f )(x1),

(Ivb)(xN+1) = (Iv f )(xN+1)

and Ivb ̸= Iv f . In correspondence with the new continuous
functions (Iv f ) and (Ivb), the maps defined in (5) becomes,

lj(x) = ajx+ bj, Fj(x, y) = αjy+(Iv f )lj(x)− αj(Ivb)(x), j ∈ NN .
(8)

The attractor of the IFS with the maps in (8) is the graph of the
new kind of α-fractal function say, (Iv f )α associated with (Iv f ).
It can be verified that (Iv f )α(xj) = (Iv f )(xj) for all j ∈ NN+1.
Besides, (Iv f )α is a unique fixed point of the RB operator Tα with
the change of arguments such that

(Iv f )α(x) = Iv f (x)+ αj((Iv f )α −Ivb) ◦ l−1
j (x)), x ∈ I, j ∈ NN .

The function (Iv f )α is the α-fractal function of the RL fractional
integral of f ∈ C(I) approximating (Iv f ) with respect to base
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function (Ivb), partition ∆ and scaling parameter α. With an aim
to estimate the error, now consider the mapping

T :R × C(I) → C(I)
(α, Iv f ) → Tα(Iv f )

where R = [0, t]× [0, t]× [0, t]× · · · × [0, t] ⊂ RN , 0 ≤ t < 1, t is
fixed. For x ∈ Ij, define

Tα(Iv f )(x) = F
αj

j (l−1
j (x), (Iv f ) ◦ l−1

j (x))

= αj(Iv f ) ◦ l−1
j (x) + q

αj

j ◦ l−1
j (x)

with
q

αj

j (x) = (Iv f ) ◦ lj(x)− αj(Ivb)(x).

The uniform distance between the functions (Iv f ) and (Iv f )α is
estimated in the following theorem.

Theorem 2. If b is a bounded linear operator, then the below inequality
holds

∥(Iv f )α − (Iv f )∥∞ ≤ 2K|α|∞
1 − |α|∞

∥ f ∥∞,

where K = xN+1−x1
vΓ(v) .

Proof. Let (Iv f ) ∈ C f (I). Then for each x ∈ Ij,

|Tα(Iv f )(x)−Tβ(Iv f )(x)|

= |αj(Iv f ) ◦ l−1
j (x) + q

αj

j ◦ l−1
j (x)− β j(Iv f ) ◦ l−1

j (x)

− q
β j

j ◦ l−1
j (x)|

≤ |αj(Iv f ) ◦ l−1
j (x)− β j(Iv f ) ◦ l−1

j (x)|

+ |qαj

j ◦ l−1
j (x)− q

β j

j ◦ l−1
j (x)|

From Eqn.(), the second term is rewritten as

∥Tα(Iv f )−Tβ(Iv f )∥∞

≤ |αj − β j|∥Iv f ∥∞ + |(Iv f ) ◦ lj(x)− αj(Ivb)(x) (9)

− (Iv f ) ◦ lj(x) + β j(Ivb)(x)|
≤ |α − β|∞∥Iv f ∥∞ + |αj − β j|∥Ivb∥∞

≤ 2|α − β|∞∥Iv f ∥∞. (10)

Meanwhile, (Iv f ) is the fixed point of Tα corresponding to
q

αj

j (x) = (Iv f ) ◦ lj(x)− αj(Ivb)(x). Then,

∥(Iv f )α − (Iv f )β∥∞ = ∥Tα(Iv f )α −Tα(Iv f )β +Tα(Iv f )β

−Tβ(Iv f )β∥∞

Since Tα is contractive with contractivity factor α and applying the
inequality (9),

∥(Iv f )α − (Iv f )β∥∞ ≤ |α|∞∥(Iv f )α − (Iv f )β∥∞ + 2|α
− β|∞∥(Iv f )β∥∞

=
2|α − β|∞∥(Iv f )β∥∞

1 − |α|∞
.

Setting β = 0 ∈ RN and using the property (Iv f )0 = (Iv f ),
observe that

∥(Iv f )α − (Iv f )∥∞ =
2|α|∞∥(Iv f )∥∞

1 − |α|∞

=
2K|α|∞
1 − |α|∞

∥ f ∥∞.

The above theorem is a prelude to discuss the boundedness of
the fractal operator F α,v which is explored in the following section.

FRACTAL OPERATOR ASSOCIATED WITH THE FRAC-
TIONAL INTEGRAL

This section proposes a fractal operator to send each continu-
ous function Iv f to its fractal version (Iv f )α where the function
(Iv f )α is the α-fractal function of the RL fractional integral of a
prescribed continuous function f discussed in the previous section.
To be concise, for a fixed scale vector α and a fixed fractional order
v > 0, there exists an operator

F α,v : C(I) → C(I)
Iv f 7−→ (Iv f )α.

The linearity of b assures the linearity of F α,v. For fixed scalars λ
and µ, it can be verified that

F α,v(λIv f + µIvg) = λF α,v(Iv f ) + µF α,v(Ivg).

Theorem 3. F α,v is bounded on C(I). Moreover,

∥F α,v(Iv f )∥∞ ≤
(

1 + |α|∞
1 − |α|∞

)
K∥ f ∥∞,

where K = xN+1−x1
vΓ(v) .

Proof. From Theorem 2, one has

∥(Iv f )α − (Iv f )∥∞ ≤ 2K|α|∞
1 − |α|∞

∥ f ∥∞,

with K = xN+1−x1
vΓ(v) . Then,

∥(Iv f )α∥∞ − ∥(Iv f )∥∞ ≤ 2K|α|∞
1 − |α|∞

∥ f ∥∞

∥(Iv f )α∥∞ ≤ ∥(Iv f )∥∞ +
2K|α|∞
1 − |α|∞

∥ f ∥∞

≤ K∥ f ∥∞ +
2K|α|∞
1 − |α|∞

∥ f ∥∞,

which provides the required bound of the operator F α,v,

∥F α,v(Iv f )∥∞ ≤
(

1 +
2|α|∞

1 − |α|∞

)
K∥ f ∥∞

=

(
1 + |α|∞
1 − |α|∞

)
K∥ f ∥∞.

Hence, the required inequality.

Next, the bound for the perturbation error between f and
(Iv f )α is explored in the following theorem.

Theorem 4. For any f ∈ C(I), the following inequality

∥ f − (Iv f )α∥∞ ≤
(

1 +K+
2K|α|∞
1 − |α|∞

)
∥ f ∥∞,

holds with K = xN+1−x1
vΓ(v) .
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Proof. One can have

∥ f − (Iv f )α∥∞ = ∥ f − Iv f + Iv f − (Iv f )α∥∞

≤ ∥ f − Iv f ∥∞ + ∥Iv f − (Iv f )α∥∞.

Using Lemma 4 and Theorem 2, the above inequality is reduced to

∥ f − (Iv f )α∥∞ ≤ (1 +K)∥ f ∥∞ +
2K|α|∞
1 − |α|∞

∥ f ∥∞.

Thus, the required result follows immediately.

Remark 2. In (Priyanka and Gowrisankar 2021b), a fractal opera-
tor F v has been proposed to associate the given function f ∈ C(I) to
the Riemann-Liouville fractional integral of its fractal version namely,
Iv( f α) and discussed some of its elementary properties. Whereas, here
the fractal operator F α,v is defined on C(I) to associate the fractional
integral of f ∈ C(I) to its fractal version, namely (Iv f )α.

COMPOSITE FRACTAL FUNCTIONS

This section discusses the composition of fractal functions and
demonstrate that the compositions are again fractal functions.

Composition of α-fractal Function
Let J = [y1, yN+1] ⊂ R and l1,j : I → Ij be the homeomorphic
maps defined by l1,j(x) = a1,jx + b1,j satisfying

d(l1,j(a), l1,j(b)) ≤ r1d(a, b), 0 ≤ r1 < 1, a, b ∈ I,

where d is a Euclidean metric or its equivalent metric and

l1,j(x1) = xj, l1,j(xN+1) = xj+1, j ∈ NN . (11)

Let K1 := I × J. Define the continuous functions F1,j : K1 → R to
be contraction with respect to second variable satisfying

F1,j(x1, y1) = yj, F1,j(xN+1, yN+1) = yj+1, j ∈ NN , (12)

The general form of the maps F1,j is given by

F1,j(x, y) = αjy + qj(x),

where αj = (α1, α2, . . . , αN+1) is the free parameter chosen in the
interval [0, 1), which scales the graph vertically and referred as
vertical scaling factor, qj is a suitable continuous function satisfying

qj(x1) = yj − αjy1, qj(xN+1) = yj+1 − αjyN+1.

The system {K1; (l1,i, F1,j) : j ∈ NN} is a IFS and its attractor G f is
the graph of fractal interpolation function h : I → R interpolating
the data set {(xj, yj) ∈ I × R : j ∈ NN+1} such that h(xj) = yj, for
j ∈ NN+1. In (Dai and Liu 2023), the functional equation of h is
provided by

h(x) = F1,j(l−1
1,j (x), F(l−1

1,j (x))),

(or)
h(l1,j(x)) = αjh(x) + qj(x), x ∈ I, j ∈ NN .

On the other hand, if the data set {(xj, f (xj)) : j ∈ NN+1} is given
to approximate, where f is a continuous function, the following
choice of qj(x) = f ◦ l1,j(x)− αjb(x) generates an α-fractal function
satisfying

f α(l1,j(x)) = αj f α(x) + f ◦ l1,j(x)− αjb(x)

and f α(xj) = f (xj), ∀ j ∈ NN+1, here b is the base function obey-
ing the conditions provided in (4). Let N = [ f α(x1), f α(xN+1)]
and Nj = [ f α(xj), f α(xj+1)], j ∈ NN . Now, to interpolate the

data set {( f α(xj), zj) : j ∈ NN+1}, zj ∈ R for all j ∈ NN+1, a
new fractal interpolation function h : N → R is constructed with
the maps m1,j and G1,j defined below which respectively obey the
conditions of l1,j and F1,j,

m1,j(x) = c1,j(x) + d1,j,

G1,j( f α(x), z) = αjz + pj( f α(x)), j ∈ NN ,

where pj is a linear polynomial of x satisfying pj( f α(x0)) =
zj, pj( f α(xN+1)) = zj+1. Note that the domain of h agrees with
f α(I), thus it is possible to composite g with f α. Similar to the
composite fractal interpolation function discussed in (Dai and Liu
2023), the composite α-fractal function h( f α) can be defined such that
h( f α(xj)) = zj and its associated functional equation is expressed
by

h( f α(x)) = G1,j(m−1
1,j ( f α(x)), h(m−1

1,j ( f α(x)))), f α(x) ∈ Nj, j ∈ NN .

From the above equation, it is seen that the composite func-
tion h( f α) interpolates {(xj, zj) : j ∈ NN+1}. For instance, con-
sider the α-fractal function f α

1 corresponding to the germ func-
tion f1(x) = x2 + 2x and base function b1(x) = 3x with α =
(0.5,−0.5, 0.5). Its graphical illustration is provided in Fig. 1(a).
The linear fractal interpolation function h1 corresponding to the
data set {( f α

1 (xj), zj) = {(0, 0), (0.25, 0.2), (0.56, 0.5), (1, 0.25)}}
is represented in Fig. 1(b). The composite α-fractal function
h1( f α

1 ) is provided in Fig. 1(c). Considering the height func-
tion f2(x) = 2x3 and base function b2(x) = x with the scal-
ings α = (0.7,−0.7, 0.7). The graph of another α-fractal func-
tion f α

2 approximating f2 is provided in Fig. 2(a). The data set
{( f α

2 (xj), zj) = {(0, 0), (0.25, 0.2), (0.84, 0.5), (2, 0.25)}} is approx-
imated using the linear FIF h2 and it is graphically illustrated in
Fig. 2(b). Fig. 2(c) represents the graph of the composite α-fractal
function h2( f α

2 ).

Composition of Fractal Spline
In (Barnsley and Harrington 1989), Barnsely has extended the con-
tinuity of qj to be differentiable in order to achieve differentiable
fractal functions as narrated below. Consider l1,j and F1,j as defined
above satisfying Eqns.(11) and (12). For n > 0, suppose

|αj| < an
j ,

and qj ∈ Cn(I), then

F1,jk(x, y) =
αjy + q(k)j (x)

ak
j

,

y1,k =
qk

1(x1)

ak
1 − α1

, yN+1,k =
qk

n−1(xN+1)

ak
N − αN

, for k = 1, 2, . . . , n.

Moreover, if

F1,(j−1)k(xN+1, yN+1,k) = F1,jk(x1, y1,k), j = 2, 3, . . . , N, k = 1, 2, . . . , n,

then the IFS {K1; (l1,j, F1,j) : j ∈ NN} generates h ∈ Ck(I) and h(k)

is the FIF generated by the IFS

{K1; (l1,j, F1,jk) : j ∈ NN , k = 1, 2, . . . , n}. (13)
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Figure 1 Graphical illustration of (a) α-fractal function f α
1 , (b) linear FIF h1 and (c) its composition h1( f α

1 )
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Figure 2 Graphical illustration of (a) α-fractal function f α
2 , (b) linear FIF h2 and (c) its composition h2( f α
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Remark 3. In addition to the differentiability of qj, for the existence of a
differentiable fractal interpolation function, it is important to make sure
the scaling parameter αj obeys Eqn.(). Then, for each k = 1, 2, . . . , n,
the fractal spline h(k) : I → R interpolates a new data set {(xj, yjk) ∈
I × R : j ∈ NN+1} and its functional equation is given by

h(k)(x) = F1,jk(l
−1
1,jk(x), h(k)(l−1

1,jk(x))),

(or)

h(k)(l1,j(x)) =
1
ak

j
(αjy + q(k)j (x)), x ∈ I, j ∈ NN , k = 1, 2, . . . , n.

(14)

For each k = 1, 2, . . . , n, let {(yjk, zjk) : j ∈ NN+1} be the new
set of interpolation data, where y1,k < y2,k < . . . < yN+1,k is a
partition of J1 = [y1,k, yN+1,k] and zjk ∈ R1 = [z1,k, zN+1,k] ⊂ R.
Let J1j = [yj,k, yj+1,k], R1j = [zj,k, zj+1,k] for j ∈ NN . To interpolate
the data set

{(yjk, zjk) ∈ J1 × R1 : j ∈ NN+1}, for each k = 1, 2, . . . , n,

an another fractal interpolation function g is constructed similar to
the FIF h. Set K2 = J1 × R1. Let l2,jk : J1 → Jj,k and F2,jk : K2 → R,
for each k = 1, 2, . . . , n, obeying

l2,jk = a2,jky + b2,jk,

l2,jk(y1,k) = yj,k, l2,jk(yN+1,k) = yj+1,k,

d(F2,jk(s, t1), F2,jk(s, t2)) ≤ r2,jd(t1, t2), 0 ≤ r2 < 1, s ∈ J1, t1, t2 ∈ R1,

F2,jk(y1,k, z1,k) = zj,k, F2,jk(yN+1,k, zN+1,k) = zj+1,k, j ∈ NN .

The attractor Gg of the hyperbolic IFS

{K2; (l2,jk, F2,jk) : j ∈ NN} (15)

is the graph of g : J1 → R such that g(yjk) = zjk, for j ∈ NN+1
and for each k = 1, 2, . . . , n. Note that

g(y) = F2,jk(l
−1
2,jk(y), g(l−1

2,jk(y))), y ∈ J1, j ∈ NN , k = 1, 2, . . . , n
(16)

is the functional equation of FIF g.
Since J1 ⊆ h(k)(I), assuming h(k)(x) ∈ J1, for x ∈ I, ensures

the continuity of g(h(k)(x)) on I. An IFS is constructed to illustrate
the composition of fractal function and fractal spline g(h(k)) is
again a fractal interpolation function interpolating the data set
{(xj, zjk) ∈ I × R : j ∈ NN+1, k = 1, 2, . . . , n}. Let h(k)(I) = J1.
From Eqn.(16),

g(h(k)(x)) = F2,jk(l
−1
2,jk(h

(k)(x)), g(l−1
2,jk(h

(k)(x)))), h(k)(x) ∈ J1j,

for j ∈ NN , k = 1, 2, . . . , n. Let lj : I → Ij be the function agreeing
with l1,j(x) for all x ∈ I. And Fjk : K → R be the continuous maps
defined by

Fjk(x, z) = Fjk(l
−1
j (x1), g∗(h(k)(l−1

j (x1))))

= F2,jk(l
−1
2,jk(h

(k)(x1)), g∗(l−1
2,jk(h

(k)(x1)))), j ∈ NN , (17)

where x1 ∈ Ij, g∗ ∈ C1 = {g(y) + t, z1,k − zN+1,k ≤ t ≤ zN+1,k −
z1,k, y ∈ J1}, k = 1, 2, . . . , n, the set of continuous translation maps
and h(h(k)(l−1

j (x1))) = z.
For all x ∈ I, z, z∗ ∈ R1, there exists x∗ ∈ Ij, h1, h2 ∈ C such

that

l−1
j (x∗) = x, h1(h(k)(l−1

j (x∗))) = z, h2(h(k)(l−1
j (x∗))) = z∗.

Then

d(Fjk(x, z),Fjk(x, z∗))

=d(Fjk(l
−1
j (x∗)), h1(h(k)(l−1

j (x∗))), Fjk(l
−1
j (x∗)),

h2(h(k)(l−1
j (x∗))))

=d(F2,jk(l
−1
2,jk(h

(k)(x∗)), h1(l−1
2,jk(h

(k)(x∗)))),

F2,jk(l
−1
2,jk(h

(k)(x∗)), h2(l−1
2,jk(h

(k)(x∗))))).

From the contractivity of F2,jk with respect to second argument, it
follows that

d(Fjk(x, z), Fjk(x, z∗)) ≤ r2,jd(h1(l−1
2,jk(h

(k)(x∗))), h2(l−1
2,jk(h

(k)(x∗))))

≤ r2d(z, z∗),

where r2 = max{r2,j : j ∈ NN}. Therefore, the map Fjk satisfies
the contractivity condition with contraction ratio r2. Now, it is
necessary to verify the join-up conditions. From Eqn.(17), for
h(k)(xj) = yjk ∈ Jjk,

Fjk(x1, z1) = Fjk(l
−1
j (xj), g(h(k)(l−1

j (xj))))

= F2,jk(l
−1
2,jk(h

(k)(xj)), g(l−1
2,jk(h

(k)(xj))))

= F2,jk(y1k, z1k)

= zjk.

Meanwhile, for h(k)(xj+1) = y(j+1)k ∈ J(j+1)k,

Fjk(xN+1, zN+1) = Fjk(l
−1
j (xj+1), g(h(k)(l−1

j (xj+1))))

= F2,jk(l
−1
2,jk(h

(k)(xj+1)), g(l−1
2,jk(h

(k)(xj+1))))

= F2,jk(y(N+1)k, z(N+1)k)

= z(j+1)k.

The above contractivity maps and the join-up conditions determine
an IFS

{I × R; (lj, Fjk) : j ∈ NN , k = 1, 2, . . . , n} (18)

which corresponds to the composite fractal interpolation function
g(h(k)).

Theorem 5. Let h(k) be the differentiable fractal function generated
by the IFS (13). Then the IFS defined in (18) determines a FIF g(h(k))
satisfying

g(h(k)(xj)) = zjk, for j ∈ NN , k = 1, 2, . . . , n.

Proof. Let h∗ be the FIF generated by the IFS (18) such that

h∗(x) = Fjk(l
−1
j (x), h∗(l−1

j (x)), x ∈ Ij.

From (),

g(h(k)(lj(x)) = F2,jk(l
−1
2,jk(h

(k)(lj(x))), g(l−1
2,jk(h

(k)(lj(x))))).

Meanwhile, from (17),

g(h(k)(lj(x))) = F2,jk(l2,jk(h
(k)(x1)), g(l−1

2,jk(h
(k)(x)))).

Uniqueness of FIF yields

h∗(x) = g(h(k)(x))

such that g(h(k)(xj)) = zjk, j ∈ NN , k = 1, 2, . . . , n.
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Remark 4. Theorem 5 has illustrated that composite of fractal spline with
a non-differentiable fractal function provided a fractal function of non-
differentiable nature. Similar to this construction, one can generate the
composite α-fractal spline and explore its corresponding fractal operator.

Remark 5. Encompassing the recent trend of fractional calculus, one can
investigate the fractional integral and fractional derivative of composite
fractal functions as well as verify for the resultant functions to be again
attractors of new IFS.

CONCLUSION

As the fractional integral of a continuous function (Iv f ) enjoys the
continuity, a new family of fractal functions (Iv f )α is generated
in the present paper. In this regard, a fractal operator is also pro-

posed and its bound is estimated as
(

1 + 2|α|∞
1−|α|∞

)
K∥ f ∥∞, where

K = xN+1−x1
vΓ(v) , with the proper choice of bounded linear base func-

tion. In addition, the composition of α-fractal function is discussed.
The concept of composition operation is studied to the case of dif-
ferentiable fractal function h(k). The composition of differentiable
fractal function h(k) with a non-differentiable fractal function g
yielded a non-differentiable fractal function g(h(k)) satisfying the
necessary end point conditions. The composite fractal functions
can be employed for approximating complex real data generated
from multiple functions. For instance, in engineering the compos-
ite functions can establish a concrete relationship between different
physical quantities, especially in unit conversions.
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