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 On Taxicab Circle Inverses of Lines  

Seyit Ali Aydın 1 , Ayşe Bayar2  

Keywords:  

Taxicab circle inversion, 

Taxicab inverses of lines, 

Taxicab plane. 

Abstract − In this study, the inverses of lines with respect to the taxicab circle inversion are 

investigated.  It is shown that the image of a line not passing through the inversion center is a closed 

curve consisting of two parabola arcs or a parabola arc and a line segment in taxicab plane. The 

properties of closed curves, which are taxicab circle inverses of lines are analytically determined 

according to vertical, horizontal, steep, gradual or separator line types. The distinctive properties of the 

taxicab circle inverses of lines are presented. 

Subject Classification (2020): 51B20; 51F99; 51K99. 

1. Introduction 

The circle inversion is one of the most important and interesting geometric transformations. The 

inversion in a circle was introduced by Apollonius of Perga in his work "Plane Loci" and systematically 

studied by Steiner in 1830s. Since inversions have attracted attention of scientists from past to present, 

there are a lot of studies about them.  

The circle inversions preserve angles and transform straight lines and circles into straight lines and/or 

circles. Many challenging problems in geometry become much more manageable when inversion is 

applied. Numerous scientists have studied and continue to study various aspects of this concept. Several 

generalizations of the inversion transformation have been introduced in the literature. In [7,9], the 

inversions with respect to the central conics were defined in Euclidean plane.  

 Non-Euclidean metric geometries have various applications in mathematics, physics, computer science, 

engineering and other fields, depending on the specific properties and distance functions they use. 

Among these geometries equipped with non-Euclidean metrics, taxicab geometry and maximum plane 

geometry have a rich literature [1-3,6,10,17-18,23]. The inversion with respect to taxicab circle has been 

defined and some properties such as cross ratio and harmonic conjugates have been given in [5]. 

Subsequently, the inversion in alpha plane [15], Chinese-Checker plane [21] and maximum plane [24] 

have been presented, and their corresponding features were examined.  The circle inversion has been 

generalized to the spherical inversion in the three-dimensional taxicab space [20], Chinese-Checker 

space [19] and maximum space [8], utilizing a sphere. In [22], p-circle inversion which generalizes the 
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classical inversion with respect to a circle (p = 2) and the taxicab inversion (p = 1), is defined, and new 

fractal patterns were obtained by applying this transformation to well-known fractals. A generalization 

of the alpha circle inversion fractal is also provided in [16]. 

In Euclidean geometry, the inverses of lines differ depending on whether they pass through the 

inversion center or not. In Euclidean circle inversion, inversion transforms the lines not passing through 

the inversion center into circles passing through the inversion center, circles passing through the 

inversion center into lines not passing through the center, and circles not passing through the center 

into circles not passing through the center. In some studies on circle inversion in non-Euclidean planes, 

the inverses of lines with this feature have been examined in the literature. However, it has been 

observed that this feature alone is not sufficient to classify the images of lines under the circle inversion 

in the taxicab plane and the maximum plane [4,11-17]. Therefore, in this study, it is aimed to determine 

the circle inversion of lines and their properties according to their types in the taxicab plane.   

In this paper, the properties of images under the taxicab circle inversion have been analyzed analytically 

according to the types of lines. It is shown that the image of a line which does not pass through the center 

of the taxicab circle inversion is a closed curve different from a taxicab circle. The properties of these 

closed curves, which are taxicab circle inverses of lines, are determined according to vertical, horizontal, 

steep, gradual or separator line types. It is also demonstrated that the parallel line pencil forms a closed 

curve pencil passing through the inversion center under inversion with respect to the taxicab circle. 

2. Preliminaries  

We summarize below some definitions and theorems from the literature that are necessary for this 

study 

The taxicab plane ℝ𝑇
2   is almost the same as the Euclidean plane ℝ𝑇

2 . The points and the lines are the 

same, and the angles are measured in the same way.  However, the distance function is different. In 

general, the taxicab distance between two points is measured as the sum of the change in horizontal and 

vertical directions between the two points, where Euclidean geometry is measured using the 

Pythagorean theorem.   

Definition 2.1. Let 𝑃1 and 𝑃2 be two points whose coordinates are (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in analytical plane, 

respectively. The taxicab distance between these points is 𝑑𝑇(𝑃1, 𝑃2) = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|. 

The isometry group of taxicab plane is the semi direct product of D(4) and T(2) where D(4) is the 

symmetry group of Euclidean square and T(2) is the group of all translations in the plane [23]. 

In [18], Krause classified lines depending on their slope as the following definition: 

Definition 2.2 Let 𝑚 be the slope of the line 𝑙 in taxicab plane. The line 𝑙 is called the steep line, the 

gradual line and the separator line in the cases of | 𝑚 |>1, | 𝑚 |<1 and | 𝑚 |=1, respectively. In the 

special cases that the line 𝑙 is parallel to 𝑥-axis or 𝑦-axis, 𝑙 is named as the horizontal line or the vertical 

line, respectively [18]. 

Definition 2.3. The taxicab circle 𝐶𝑇 with the center M and the radius r consists of the points X which 

satisfies the equation 𝑑𝑇(𝑀, 𝑋) = r. The point M is called center of the taxicab circle, and r is called the 

length of the radius or simply the radius of the taxicab circle.  

Every taxicab circle in the taxicab plane is an Euclidean square having sides with slopes ±1. It is seen by 

definition 2.3 that the taxicab circle centered at the point 𝑀 = (𝑚1, 𝑚2) with the radius r is the set 𝐶𝑇  =

{(𝑥, 𝑦): |𝑥1 − 𝑚1| + |𝑦1 − 𝑚2| = r}. As particular case, the taxicab unit circle is the set {(𝑥, 𝑦): |𝑥| + |𝑦| =

1}.  
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In the taxicab plane, the inversion with respect to the circle 𝐶𝑇 with the center O and the radius rT is 

denoted by 𝐼(𝑂,𝑟)  and is defined as follows: For the collinear points O,the point P, and its image P' on the 

ray OP, 𝑑𝑇(𝑂, 𝑃). 𝑑𝑇(𝑂, 𝑃′) = r2, where 𝑑𝑇(𝑂, 𝑃) represents the taxicab distance between O and P, [5]. 

Clearly, if 𝑃′ is the inverse point of 𝑃, then 𝑃 is the inverse point of the 𝑃′. Note that if 𝑃 is in the interior 

of 𝐶𝑇, 𝑃′ is exterior to 𝐶𝑇; and vice-versa. So, the interior of 𝐶𝑇 except for 𝑂 is mapped to the exterior and 

the exterior to the interior. 𝐶𝑇 itself is left by the inversion pointwise fixed. 𝑂 has no image, and no point 

of the plane is mapped to 𝑂. However, we can add to the taxicab plane  a single point at infinite 𝑂∞, which 

is the inverse of the center O of taxicab inversion circle 𝐶𝑇. So, the taxicab circle inversion 𝐼(𝑂,𝑟) is one-

to-one map of extended taxicab plane. 

Now in the extended taxicab plane ℝ𝑇
2 ∪ {𝑂∞}, the definition of inversion with respect to a taxicab circle 

𝐶𝑇 can be given as follows: 

Definition 2.4. The transformation 

𝐼(𝑂,𝑟): ℝ𝑇
2 ∪ {𝑂∞} → ℝ𝑇

2 ∪ {𝑂∞} 

𝑃 → 𝐼(𝑂,𝑟)(𝑃) = 𝑃′ 

defined by the circle 𝐶𝑇 is called the taxicab circle inversion. The circle 𝐶𝑇 is known as taxicab inversion 

circle, O is called the center of the taxicab inversion, 𝑟 is called the taxicab inversion radius, and 𝑃′ is 

called the taxicab circle inverse of the point P, [5].  

For any point 𝑃 on the taxicab inversion circle, the taxicab circle inversion map has the property 

𝐼(𝑂,𝑟)(𝑃) = 𝑃. 

Theorem 2.5. The taxicab circle inversion maps the point inside of the taxicab inversion circle to the 

point outside of it, and vice versa, [5]. 

Teorem 2.6.  If the points 𝑃 = (𝑥, 𝑦) and 𝑃′ = (𝑥′ , 𝑦′) are a pair of the inverse points in  the taxicab circle 

inversion with the center 𝑂 = (0,0)  and radius r, the following equality exists between the coordinates 

of P and P' 

(𝑥′, 𝑦′) = (
𝑟2𝑥

(|𝑥| + |𝑦|)2
,

𝑟2𝑦

(|𝑥| + |𝑦|)2), 

[5]. 

Corollary 2.7. If the points 𝑃 = (𝑥, 𝑦) and 𝑃′ = (𝑥′ , 𝑦′) are a pair of the inverse points in the taxicab circle 

inversion with the center 𝑂 = (𝑎, 𝑏)  and radius 𝑟, the following equality exists between the coordinates 

of P and P' 

(𝑥′, 𝑦′) = (
𝑟2(𝑥−𝑎)

(|𝑥−𝑎|+|𝑦−𝑏|)2 ,
𝑟2(𝑦−𝑏)

(|𝑥−𝑎|+|𝑦−𝑏|)2), 

[5]. 

Since the translation transformation preserves the taxicab distance in the taxicab plane, the center of 

the taxicab inversion circle can be taken as the origin without loss of generality. Therefore, throughout 

this paper, the taxicab inversion center will be considered as the origin unless otherwise stated. 
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3. Images of the lines under the taxicab circle inversion 

In the Euclidean circle, inversion transforms the lines not passing through the inversion center into 

circles passing through the inversion center, circles passing through the inversion center into lines not 

passing through the center and circles not passing through the center into circles not passing through 

the center. In taxicab plane and maximum plane, lines passing through the inversion center are invariant 

under the inversion transformation, but the images of the lines not passing through the center have 

different shapes [4, 5, 11, 24].   

In this section, the images of lines not passing through the inversion center in the extended taxicab plane 

are analytically considered and their properties are presented depending on their positions in the plane. 

Theorem 3.1. Lines not passing through the center of the taxicab inversion circle do not remain invariant 

under taxicab circle inversion.  

Proof.  Let 𝑂 = (0,0) be the center of the taxicab inversion circle 𝐶𝑇  with radius r, and let l  be a line 

defined by the equation 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0, where at least one of a and b is non-zero, 𝑐 ≠ 0 , 𝑎, 𝑏, 𝑐 ∈ ℝ. 

The image of 𝑙 under the taxicab inversion 𝐼(O,r) is given by the equation 𝑎𝑟2𝑥 + 𝑏𝑟2𝑦 + 𝑐(|𝑥| + |𝑦|)2 =

0. Since the coefficient c is not zero, the equation does not specify a line in the taxicab plane. Therefore, 

in the extented taxicab plane, lines that do not pass through the center of inversion do not remain 

invariant under the taxicab inversion transformation. This concludes the proof.  

Theorem 3.2. The inverses of horizontal lines with respect to the taxicab circle are closed curves formed 

by the union of segments of two orthogonal parabolas passing through the inversion center." 

Proof.  Let 𝑂 = (0,0) be the center of the taxicab inversion circle   with radius r and let l  be a line defined 

by the equation 𝑦 = 𝑘, 𝑘 ≠ 0, 𝑘 ∈ ℝ. The inverse of the line l  in 𝐶𝑇 is the closed curve with equation 𝑦 =

𝑘(|𝑥| + |𝑦|)2. This means that the image is the closed curve consisting the union of two orthogonal 

parabola arcs passing through the origin and having the equations 𝑦 = 𝑘(𝑥 − 𝑦)2 and 𝑦 = 𝑘(−𝑥 + 𝑦)2. 

The axes of symmetry of the parabola segments forming this closed curve are 𝑦 =
1

4𝑘
− |𝑥| and 

directrices are 𝑦 = −
1

4𝑘
+ |𝑥|. So, the axes and directrices are perpendicular to each other since their 

slopes are 1 and -1. Hence, the inverses of the lines paralel to x-axis with respect to the taxicab circle are 

closed curves formed by the union of two parabola segments passing through the center of inversion 

and whose axes and directrices are perpendicular to each other.  

In addition, when the slope of the symmetry axis is -1, the vertex and the focus of the parabola segment 

are obtained as 𝑇1 = (
3

16𝑘
,

1

16𝑘
) and 𝑂1 = (

1

8𝑘
,

1

8𝑘
), respectively. If the slope of the symmetry axis of the 

parabola is +1, the vertex and the focus of the parabola are obtained as 𝑇2 = (−
3

16𝑘
,

1

16𝑘
) and 𝑂2 =

(−
1

8𝑘
,

1

8𝑘
), respectively.  

Also, the following result are immediately obtained from the proof of Theorem 3.2. 

Corollary 3.3. The taxicab inversion of a pencil of horizontal parallel lines not passing through the 

inversion center consists of a pencil of closed curves formed by the union of two parabola segments with 

symmetry axes are parallel to the separator lines. Also, each curve pencil in the taxicab inversion passes 

through the inversion center and is symmetric with respect to the perpendicular line passing through 

the inversion center. 

Example 3.4. In Figure 1 (left), we show the taxicab inverse I(l) with the equation 𝑦 = 𝑘(|𝑥| + |𝑦|)2 in 

the taxicab unit circle centered at origin O of the line l with the equation 𝑦 = 1; in Figure 1 (right), we 
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illustrate the taxicab inversion with respect to the taxicab unit circle centered at the origin O  for a pencil 

of horizontal parallel lines that do not intersect the inversion center. 

 

                                                                    

 

Figure 1. The taxicab circle inverses of parallel lines 

 

Theorem 3.5.  The symmetry axes and directrices of two parabola segments forming the inversion of a 

horizontal line with respect to a taxicab circle define a taxicab circle whose center is the center of 

inversion. 

Proof. Inversion of the horizontal line with the equation 𝑦 = 𝑘, 𝑘 ≠ 𝑛 , 𝑘 ∈ ℝ with respect to a taxicab 

circle with center (𝑚, 𝑛) and radius r is a closed curve with equation (𝑘 − 𝑛)(|𝑥 − 𝑚| + |𝑦 − 𝑛|)2 =

𝑟2(𝑦 − 𝑛). This closed curve consists of the parabola segments with the symmetry axis 𝑦 = −𝑥 + 𝑚 +

𝑛 +
𝑟2

4(𝑘−𝑛)
 and with the directrix  𝑦 = 𝑥 + 𝑛 − 𝑚 −

𝑟2

4(𝑘−𝑛)
  and the parabola segment with symmetry axis 

𝑦 = 𝑥 + 𝑛 − 𝑚 −
𝑟2

4(𝑘−𝑛)
  and with the directrix 𝑦 = −𝑥 + 𝑛 + 𝑚 −

𝑟2

4(𝑘−𝑛)
,  respectively. The axes and 

directrices of these parabolas intersect at the points (𝑚, 𝑛 +
𝑟2

4(𝑘−𝑛)
) , (𝑚, 𝑛 −

𝑟2

4(𝑘−𝑛)
) , (𝑚 +

𝑟2

4(𝑘−𝑛)
, 𝑛) 

and (𝑚 −
𝑟2

4(𝑘−𝑛)
, 𝑛). Thus, the taxicab circle is formed, whose vertices are these points and whose edges 

are on the axes and directrices of the parabolas, with the equation  |𝑥 − 𝑚| + |𝑦 − 𝑛| =
𝑟2

4(𝑘−𝑛)
. This 

completes the proof. 

The reflection transformations with respect to the lines 𝑦 = 𝑥 and 𝑦 = −𝑥 in the taxicab plane are 

isometries. Therefore,  the theorems given for the taxicab inverses of horizontal lines can be given for 

taxicab inverses of vertical lines, too. 

Theorem 3.6.  The inverse of a vertical line with respect to the taxicab circle is closed curve formed by 

the union of two parabola arcs with axes and directrices perpendicular to each other and passing 

through inversion center.  

Proof. Since the reflection transformation in the taxicab plane with respect to the line 𝑦 = 𝑥 is an 

isometry, it can be easily proved by substituting the unknowns x and y in the proof of Theorem 3.2. 

Corollary 3.7. The taxicab inversion of a pencil of vertical parallel lines with respect to the taxicab circle 

consists of a pencil of closed curves such that each closed curve in the pencil passes through the 

inversion center and is symmetric with respect to the horizontal line passing through the inversion 

center. 

Proof. Since the inverse of each line in the vertical parallel line pencil with respect to the taxicab circle 

is closed curve formed by the union of two parabolas with axes and directrices perpendicular to each 

other and passing through the center of inversion, the proof is obvious.  
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Theorem 3.8. The axes and directrices of two parabola segments, which together compose the taxicab 

circle inverse of a vertical line with respect to a taxicab circle, determine a taxicab circle centered at the 

inversion center. 

Proof.  It can be easily proved by substituting the unknowns x and y in the proof of Theorem 3.4. 

Theorem 3.9. The inverse of a separator line not passing through the center of the inversion circle  is a 

closed figure consisting of a parabola arc with the vertex at the inversion center and a line segment. 

Proof. Let 𝑂 = (0,0) be the center of the taxicab inversion circle 𝐶𝑇  with radius r, and let l  be a separator 

line. So, the line l  can be defined by the equations 𝑥 + 𝑦 + 𝑐 = 0 or 𝑥 − 𝑦 + 𝑐 = 0, where 𝑐 ≠ 0 , 𝑐 ∈ ℝ. 

The image of the line  l  with equation 𝑥 + 𝑦 + 𝑐 = 0  under taxicab circular inversion is a closed curve 

with equation the equation 𝑟2𝑥 + 𝑟2𝑦 + 𝑐(|𝑥| + |𝑦|)2 = 0. This equation gives a line segment with the 

equation 𝑥 + 𝑦 +
𝑟2

𝑐
= 0 parallel to the edge of the inversion circle  when x and y coordinate values have 

the same sign, and a parabola segment with the equation 𝑟2𝑥 + 𝑟2𝑦 + 𝑐(𝑥 − 𝑦)2 = 0 with the vertex at 

the origin and the symmetry axis the line 𝑦 = 𝑥 when x and y have opposite signs. Similarly, the taxicab 

circular inverse of the line  l  with the equation x-y+c=0 is a closed curve with  the equation 𝑟2𝑥 − 𝑟2𝑦 +

𝑐(|𝑥| + |𝑦|)2 = 0. This equation represents a separator line segment with the equation 𝑥 − 𝑦 +
r2

c
= 0  

when x and y coordinate values have opposite signs, and a parabola segment with the equation 𝑟2𝑥 −

𝑟2𝑦 + 𝑐(𝑥 − 𝑦)2 = 0 with its vertex at the origin, and its symmetry axis is  𝑦 = 𝑥 when x and y have the 

same sign.  So, the proof is completed. 

Theorem 3.10. The inverse of a gradual line or a step line in the taxicab plane not passing through the 

inversion center in taxicab circle is a closed curve consisting of two parabola arcs with axes 

perpendicular to each other and passing through the inversion center. 

Proof. Suppose l be a gradual line not passing through  origin in the taxicab plane. Then the equation of 

l is y = 𝑚𝑥 + 𝑛, where 𝑚, 𝑛 ∈ ℝ and 𝑚 ≠ 0, ±1, ∞ 𝑎𝑛𝑑 𝑛 ≠ 0. The inverse of l   in the taxicab  circle 

centered at 𝑂 = (0,0) with the radius 𝑟  has the equation  𝑚𝑟2𝑥 − 𝑟2𝑦 + 𝑛(|x| + |y|)2 = 0. This means 

that the image is the closed curve passing through the inversion center,  formed by the union of two 

parabola arcs with equations 𝑚𝑟2𝑥 − 𝑟2𝑦 + 𝑛(𝑥 + 𝑦)2 = 0 for 𝑥 and 𝑦 coordinate values with the same 

sign, and  𝑚𝑟2𝑥 − 𝑟2𝑦 + 𝑛(𝑥 − 𝑦)2 = 0 for  x and y coordinate values with the different signs. The 

symmetry axis of these two parabolas have the equations 𝑥 + 𝑦 +
(𝑚−1)𝑟2

4𝑛
= 0 and 𝑥 − 𝑦 +

(𝑚+1)𝑟2

4𝑛
= 0, 

respectively. Since the slopes of the symmetry axes of these parabolas are 1 and -1, they are 

perpendicular to each other. This completes the proof. 

The vertices of these parabola arcs are (
(1−𝑚)(3+𝑚)

16𝑛(𝑚+1)
𝑟2,

(1−𝑚)(1+3𝑚)

16𝑛(𝑚+1)
𝑟2)  and 

(
(𝑚+1)(3−𝑚)

(𝑚−1)16𝑛
𝑟2,

(𝑚+1)(3𝑚−1)

16𝑛(𝑚−1)
𝑟2), respectively.  

Example 3.11. In Fig. 2 (left) we show the taxicab inversion in the taxicab unit circle of the separator 

line 𝑥 + 𝑦 = 2; In Fig. 2 (right) we show the taxicab inverse with respect to the taxicab unit circle of the 

gradual line l with  𝑦 = 0.5𝑥 − 0.25. 
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Figure 2. The taxicab circle inverses of separator line and gradual line 

4. Conclusion  

In In the present paper, we have explored the inverses of lines with respect to the taxicab circle inversion 

in the taxicab plane. We observed that the inverse of a line, different from the separator line and does 

not pass through the inversion center under the taxicab circle inversion,  is the closed curve consisting 

of two parabola segments passing through the inversion center. On the other hand, the inverse of a 

separator line yields a closed curve comprising a line segment parallel to an edge of the inversion circle 

and a parabola segment. At the same time, it was seen that the axes and directrices of the parabola 

segments that form the inverse of a horizontal or vertical line determine a taxi circle whose center is the 

inversion center. It is also shown that the taxicab inversion of a pencil of parallel lines that do not pass 

through the center of inversion is a pencil of closed curves that are tangent at the center of inversion.  

In conclusion, it is evident that taxicab circle inverses of lines in the analytic plane exhibit significantly 

different properties compared to Euclidean circle inverses. 

Author Contributions 

All authors contributed equally to this work. They all read and approved the final version of the 

manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

[1] Akça, Z., Kaya R. (1997) On the taxicab trigonometry. Journal of Inst. Math. Comput. Sci. Math. 

Ser.,10(3):151–159. 

[2] Akça, Z., Kaya R. (2004) On the distance formulae in three dimensional taxicab space. Hadronic J., 

27(5):521–532. 

[3] Akça, Z., Bayar, A., Ekmekçi, S. (2007) The norm in CC-plane geometry. Pi Mu Epsilon J. 12(6): 321-

324. 

[4] Aydın,  S. A. (2023) On Circular Inversions and Fractals. MSc thesis, Eskişehir Osmangazi University 

Institute of Science and Technology, Eskişehir, Turkey. 

[5] Bayar A., Ekmekçi S. (2014) On circular inversions in taxicab plane. Journal of Advanced Research 

in Pure Mathematics, 6(4):33-39. 



8 

 

S.A. Aydın al. / IKJM/ 6(1) (2024) 1-8 

[6] Bayar A., Ekmekçi S. (2015) On Complex Numbers and Taxicab Plane. Mathematical Sciences & 

Applications E-Notes, 3(1):58–64. 

[7] Blair, D. E. (2000) Inversion Theory and Conformal Mapping. American Math. Society, 9. 

[8] Cırık, Y., Ekmekçi, S. (2022) On The Maximum Spherical Inversions. Erzincan University, Jounal of 

Science and Technology, 15(1):360-371. 

[9] Childress, N. (1965) Inversion with Respect to the Central Conics. Mathematics Magazine, 

38(3):147-149. 

[10] Ekici, C., Kocayusufoğlu, İ., Akça, Z. (1998) The Norm in Taxicab Geometry. Turkish Journal of 

Mathematics, 22(3):295-308. 

[11] Ekmekçi, S. (2023) A Note on the Maximum Circle Inverses of Lines in the Maximum Plane. Ikonion 

Journal of Mathematics, 5(2):1-9. 

[12] Ekmekçi, S, Bilgin, Y. (2023). On the Inverses of Lines under the Inversion in a Generalized Taxicab 

Circle. Hagia Sophia Journal of Geometry, 5(2):41-49.   

[13] Ekmekçi, S, Bilgin, Y. (2023). On The Inversion in the Generalized Taxicab Circle. Hagia Sophia 

Journal of Geometry, 5(2):50-58. 

[14] Ekmekçi S. (2023) On The Maxımum Cırcular Inverses Of Maxımum Cırcles. Eskişehir Technical 

University Journal of Science and Technology A - Applied Sciences and Engineering, 24(4):324-335. 

[15] Gelişgen Ö., Ermiş T. (2019) Some Properties of Inversions in Alpha Plane, Forum Geometricorum, 

19:1-9. 

[16] Gelişgen, Ö., Ermiş, T. (2023) Inversions and Fractal Patterns in Alpha Plane. International 

Electronic Journal of Geometry, 16 (1):398-411. 

[17] Kaya R., Akça Z., Özcan M., Günaltılı, İ. (2000) General equation for taxicab conics and their 

classification. Mitt. Math. Ges. Hamburg, 19(0):135–148. 

[18] Krause, E. F. (1975) Taxicab Geometry. Addison –Wesley Publishing Company, Menlo Park, CA. 

[19] Pekzorlu, A., Bayar, A. (2020) (a) On The Chinese Checkers Spherical Invesions in Three 

Dimensional Chinese Checker Space. Com. Fac. of Sci. Univ. of Ank. Ser. A1 M ath. and Stat., 69(2): 

1498-1507. 

[20] Pekzorlu, A., Bayar, A. (2020) (b) Taxicab Spherical Inversions in Taxicab Space. Journal of Mahani 

Math. Research Center, 9(1-2): 45-54. 

[21] Pekzorlu, A., Bayar, A. (2022) On the Chinese Checkers Circular Inversions in the Chinese Checkers 

Plane. Hagia Sophia Journal of Geometry, 4(2):28–34. 

[22] Ramirez, J.L., Rubiano G.N., Jurcic-Zlobec B. (2015) A Generating fractal patterns by using p-circle 

inversion. Fractals, 23(4):1-13. 

[23] Schattschneider, D. J. (1984) The Taxicab Group. American Mathematical Monthly, (91):423- 428. 

[24] Yüca, G., Can, Z. (2020) On The Circular Inversion in Maximum Plane. Ikonion Journal of 

Mathematics, 2(2):26-34. 



9 

Ikonion Journal of Mathematics 6(1) (2024) 9-20 

 

 Trans-Sasakian Indefinite Finsler Manifolds 
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Abstract − In this paper we introduce some properties and results for trans-Sasakian structures on 

indefinite Finsler manifolds and give the examples of such manifolds.These structures are established 

on the (𝑀0)ℎ and (𝑀0)𝑣 vector subbundles, where 𝑀 is an (2𝑛 + 1) dimensional 𝐶∞ manifold, 𝑀0 =

(𝑀0)ℎ ⊕ (𝑀0)𝑣 is a non-empty open submanifold of 𝑇𝑀. 𝐹∗ is the fundamental Finsler function 

and  𝐹2𝑛+1 = (𝑀, 𝑀0, 𝐹∗) is an indefinite Finsler manifold. We use the Sasaki Finsler metric 𝐺 =

𝐺𝐻 + 𝐺𝑉 = 𝑔𝑖𝑗
𝐹∗

𝑑𝑥𝑖 ⊗ 𝑑𝑥𝑗 + 𝑔𝑖𝑗
𝐹∗

 𝛿𝑦𝑖  ⊗ 𝛿𝑦𝑖 .  Furthermore, we give some formulas for 𝛼 −Sasakian 

and 𝛽 −Kenmotsu Finsler manifolds with pseudo-Finsler metric. Finally, it is shown that the 

conformally flat trans-Sasakian indefinite Finsler manifolds ((𝑀0)ℎ, 𝜙𝐻, 𝜉𝐻, 𝜂𝐻 , 𝐺𝐻) and 

((𝑀0)𝑣 , 𝜙𝑉 , 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉) are the 𝜂 − Einstein manifolds if and only if 𝛼. 𝛽 = 0, where 𝛼, 𝛽 are 

constant functions defined on (𝑀0)ℎ and (𝑀0)𝑣. 

Subject Classification (2020): 53B30, 53B35, 53B40 

1. Introduction 

Oubina introduced the idea of trans-Sasakian manifold of classification (α,β). Indefinite Sasakian 

manifold is a notable category of indefinite trans-Sasakian manifold for α=1, β=0.  Also, indefinite 

cosymplectic manifold is the other category of indefinite trans-Sasakian manifold for α=0, β=0.  

Indefinite Kenmotsu manifold is given with α=0, β=1. M. D. Siddiqi, A. N. Siddiqui and O. Bahadır study 

the trans-Sasakian manifolds with a quarter-symmetric nonmetric connection [12]. R. Prasad, U. K. 

Gautam, J. Prakash and A. K. Rai study (ε)−Lorentzian trans-Sasakian manifolds [16]. 

The papers interested in contact structures with Riemannian metric or pseudo-Riemannian metric but 

in this paper, we are also related to the contact structures with pseudo-Finsler metric.  

After Finsler published his thesis about curves and surfaces, a lot of articles are dedicated to Finsler 

geometry, see references [4, 5, 10, 13, 14, 15] but the theory of indefinite Finsler manifold has been 

investigated by few researchers [1, 2, 7, 8, 9]. We also make reference to the reader to the recent 

monograph for detailed information in this field. 

Hence, our aim is to present trans-Sasakian indefinite Finsler manifolds and to obtain the formulas for 

𝛼 −Sasakian and 𝛽 −Kenmotsu indefinite Finsler manifolds. The paper is organized as follows: after 
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introduction and background, we give some preliminaries about indefinite Finsler manifolds. Then, we 

deal with the trans-Sasakian indefinite Finsler manifolds, 𝛼 −Sasakian and 𝛽 −Kenmotsu indefinite 

Finsler manifolds. Finally, it is shown that the conformally flat trans-Sasakian indefinite Finsler 

manifolds ((𝑀0)ℎ, 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and ((𝑀0)𝑣 , 𝜙𝑉, 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉) are the 𝜂 −

Einstein manifolds if and only if 𝛼. 𝛽 = 0, where 𝛼 and 𝛽 are constant functions defined on 

(𝑀0)ℎ  and (𝑀0)𝑣. 

2. Preliminaries 

2.1. Indefinite Finsler Manifolds 

Let 𝑀 be a real (2𝑛 + 1) − dimensional smooth manifold and 𝑇𝑀 be the tangent bundle of 𝑀. A 

coordinate system in 𝑀 can be stated with {(𝑈, 𝜑): 𝑥1, … , 𝑥2𝑛+1}, where 𝑈 is an open subset of 𝑀; for 

any 𝑥 ∈ 𝑈, 𝜑: 𝑈 → ℝ2𝑛+1 is a diffeomorphism of 𝑈 onto 𝜑(𝑈), and    𝜑(𝑥) = (𝑥1, … , 𝑥2𝑛+1). On 𝑀, denote 

by 𝜋 the canonical projection of 𝑇𝑀 and by 𝑇𝑥𝑀 the fibre, at 𝑥 ∈ 𝑀, i.e., 𝑇𝑥𝑀 = 𝜋−1(𝑥). Through the 

coordinate system {(𝑈, 𝜑): 𝑥𝑖} in 𝑀, we can describe a new coordinate system 

{(𝑈∗, Φ); 𝑥1, … , 𝑥2𝑛+1, 𝑦1, … , 𝑦2𝑛+1} or shortly {(𝑈∗, Φ): 𝑥𝑖, 𝑦𝑖  } in 𝑇𝑀, where 𝑈∗ = 𝜋−1(𝑈) and Φ: 𝑈∗ →

ℝ4𝑛+2 is a diffeomorphism of  𝑈∗ on 𝜑(𝑈) × ℝ2𝑛+1, and Φ(𝑦𝑥) = (𝑥1, … , 𝑥2𝑛+1, 𝑦1, … , 𝑦2𝑛+1) for any 

𝑥 ∈ 𝑈 and 𝑦𝑥 ∈ 𝑇𝑥𝑀. Let 𝑀0 be a non-empty open submanifold of 𝑇𝑀 such that 𝜋(𝑀0) = 𝑀 and 𝜃(𝑀) ∩

𝑀0 = ∅, where 𝜃 is the zero section of 𝑇𝑀. Assume that 𝑀𝑥
0 = 𝑇𝑥𝑀 ∩ 𝑀0 is a positive conic set, for any 

𝑘 > 0 and 𝑦 ∈ 𝑀𝑥
0. we have  𝑘𝑦 ∈ 𝑀𝑥

0 .  Obviously, the largest 𝑀0 holding the above circumstances is 

𝑇𝑀 ∖ 𝜃(𝑀), ordinarily given with the description of a Finsler manifold.  

We now consider a smooth function 𝐹: 𝑀0 → (0, ∞) and take 𝐹∗ = 𝐹2. Then suppose that for any 

coordinate system {(𝑈0, Φ0 );  𝑥𝑖 , 𝑦𝑖 } in 𝑀0, the following conditions are fulfilled: 

(𝑭𝟏) 𝐹 is positively homogenous of degree one regarding (𝑦1, … , 𝑦2𝑛+1), 𝑖. 𝑒.,  we get, for all 𝑘 > 0 and 

(𝑥, 𝑦)  ∈ Φ0(𝑈0), 

𝐹(𝑥1, … , 𝑥2𝑛+1, 𝑘𝑦1, … , 𝑘𝑦2𝑛+1) = 𝑘 𝐹(𝑥1, … , 𝑥2𝑛+1, 𝑦1, … , 𝑦2𝑛+1) 

(𝑭𝟐) At any point (𝑥, 𝑦)  ∈ Φ0(𝑈0),  

𝑔𝑖𝑗(𝑥, 𝑦) =
1

2

𝜕2𝐹∗

𝜕𝑦𝑖𝜕𝑦𝑗

(𝑥, 𝑦),   𝑖, 𝑗 ∈ {1,2, … ,2𝑛 + 1} 

are the components of a positive definite quadratic form on ℝ2𝑛+1.  

We say that the triple  𝐹2𝑛+1 = (𝑀, 𝑀0, 𝐹) is  a Finsler manifold, and 𝐹 is the fundamental function of  

𝐹2𝑛+1.  

Certainly, condition (𝐹2) is not appropriate for some applications of Finsler geometry. To remove this 

inconvenience we consider a positive integer 0 < 𝑞 < 2𝑛 + 1, and a smooth function 𝐹∗: 𝑀0 → 𝑅, 

where 𝑀0is as above. Moreover, suppose that for any coordinate system {(𝑈0, Φ0 ); 𝑥𝑖, 𝑦𝑖 } in 𝑀0, the 

following conditions are fulfilled: 

(𝑭𝟏∗) 𝐹∗ is positively homogenous of degree two regarding (𝑦1, … , 𝑦2𝑛+1), we get, for all 𝑘 > 0 and 

(𝑥, 𝑦)  ∈ Φ0(𝑈0), 

𝐹∗(𝑥1, … , 𝑥2𝑛+1, 𝑘𝑦1, … , 𝑘𝑦2𝑛+1) = 𝑘2𝐹∗(𝑥1, … , 𝑥2𝑛+1, 𝑦1, … , 𝑦2𝑛+1) 

(𝑭𝟐∗) At all point (𝑥, 𝑦)  ∈ Φ0(𝑈0), 

𝑔𝑖𝑗(𝑥, 𝑦) =
1

2

𝜕2𝐹∗

𝜕𝑦𝑖𝜕𝑦𝑗

(𝑥, 𝑦),   𝑖, 𝑗 ∈ {1,2, … ,2𝑛 + 1} 
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are the components of a quadratic form on ℝ2𝑛+1 with (2𝑛 + 1) − 𝑞 positive eigenvalues and 𝑞 negative 

eigenvalues (0 < 𝑞 < 2𝑛 + 1). In this state 𝐹2𝑛+1 = (𝑀, 𝑀0, 𝐹∗) is called indefinite Finsler manifolds 

with index 𝑞. Particularly, if chosing 𝑞 = 1, we get Lorentzian indefinite Finsler manifolds [2]. 

Consider the structure of 𝐹2𝑛+1 = (𝑀, 𝑀0, 𝐹∗) indefinite Finsler manifold with index 𝑞.  Then the tangent 

mapping 𝜋∗: 𝑇𝑀0 → 𝑇𝑀 of the submersion 𝜋: 𝑀0→𝑀 and define the vector bundle (𝑇𝑀0)𝑉 = 𝑘𝑒𝑟𝜋∗. As 

locally, 𝜋⬚
𝑖 (𝑥, 𝑦) = 𝑥𝑖 , we obtain  

𝜋∗
𝑖 (

𝜕

𝜕𝑥𝑗) = 𝛿𝑗
𝑖 𝑎𝑛𝑑  𝜋∗

𝑖 (
𝜕

𝜕𝑦𝑗) = 0, on the coordinate neighborhood 𝑈0 ⊂ 𝑀0. Thus, {
𝜕

𝜕𝑦𝑖} is a basis of 

Γ ((𝑇𝑀0)𝑉
|
𝑈0

). We call (𝑇𝑀0)𝑉  the vertical vector bundle of 𝐹2𝑛+1. Locally, on a coordinate 

neighborhood 𝑈0 ⊂ 𝑀0. we have  

𝑋𝑉 = 𝑋𝑖(𝑥, 𝑦)
𝜕

𝜕𝑦𝑖 , where 𝑋𝑖  smooth functions on 𝑈0. After we denote by (𝑇∗𝑀0)𝑉 the dual vector bundle 

of (𝑇𝑀0)𝑉 . Thus a Finsler 1-form is smooth section of  (𝑇∗𝑀0)𝑉. Assume {𝛿𝑦1, … , 𝛿𝑦2𝑛+1} is a dual basis 

to  {
𝜕

𝜕𝑦1 , … ,
𝜕

𝜕𝑦2𝑛+1}, i.e., 𝛿𝑦𝑖 (
𝜕

𝜕𝑦𝑗)=𝛿𝑗
𝑖.  Then each for 𝑤 ∈ (𝑇∗𝑀0)𝑉, 𝑤𝑉 = 𝑤𝑖(𝑥, 𝑦) 𝛿𝑦𝑖, where 𝑤𝑖(𝑥, 𝑦) =

𝑤 (
𝜕

𝜕𝑦𝑖) [1, 2]. 

The complementary distribution (𝑇𝑀0)𝐻 to (𝑇𝑀0)𝑉 in 𝑇𝑀0 is said a horizontal distribution (non- linear 

connection) on 𝑀0. Thus we can write 

𝑇𝑀0 = (𝑇𝑀0)𝐻 ⊕ (𝑇𝑀0)𝑉 

The set of the local vector fields {
𝛿

𝛿𝑥1 , … ,
𝛿

𝛿𝑥2𝑛+1} is a basis in Γ((𝑇𝑀0)𝐻). Then  

𝛿

𝛿𝑥𝑖
=

𝜕

𝜕𝑥𝑖
− 𝑁𝑖

𝑗 𝜕

𝜕𝑦𝑗
 

Let 𝑋 be a vector field on 𝑀0. Then locally we get  

𝑋 = 𝑋𝑖
𝛿

𝛿𝑥𝑖
+ �̃�𝑖

𝜕

𝜕𝑦𝑖
 

Clearly, for �̃�𝑖(𝑥, 𝑦) = 0, we obtain the subbundle of (𝑀0)ℎ ⊂ 𝑀0 and for 𝑋𝑖(𝑥, 𝑦) = 0, we obtain the 

subbundle of (𝑀0)𝑣 ⊂ 𝑀0. Suppose {𝑑𝑥1, … , 𝑑𝑥2𝑛+1} is a dual basis to {
𝛿

𝛿𝑥1 , … ,
𝛿

𝛿𝑥2𝑛+1}, i.e., 𝑑𝑥𝑖 (
𝛿

𝛿𝑥𝑗) =

𝛿𝑗
𝑖.  Then each 𝑤 ∈ Γ(𝑇∗𝑀0)𝐻 is locally written as  𝑤𝐻 = �̃�𝑖(𝑥, 𝑦)𝑑𝑥𝑖, where  �̃�𝑖 = 𝑤𝑖 − 𝑁𝑖

𝑗
𝑤𝑗. Thus we 

can write  

 𝛿𝑦𝑖 =  𝑑𝑦𝑖 + 𝑁𝑗
𝑖(𝑥, 𝑦)𝑑𝑥𝑗 

Consider a 𝑤, 1-form, then  

𝑤 = �̃�𝑖(𝑥, 𝑦)𝑑𝑥𝑖+𝑤𝑖(𝑥, 𝑦)  𝛿𝑦𝑖 . 

Also, 𝑤𝐻(𝑋𝑉) = 0, 𝑤𝑉(𝑋𝐻) = 0 , where 𝑤 = 𝑤𝐻 + 𝑤𝑉 [2]. 

Definition 2.1. A Finsler connection is a linear connection ∇= 𝐹Γ with the property that the horizontal 

linear space (𝑇(𝑥,𝑦)𝑀0)
𝐻

, (𝑥, 𝑦) ∈  𝑀0 of the distribution 𝑁 is parallel with respect to ∇. 

Similarly, a Finsler connection is called linear connection ∇= 𝐹Γ with the vertical linear space 

(𝑇(𝑥,𝑦)𝑀0)
𝑉

, (𝑥, 𝑦) ∈  𝑀0 of the distribution 𝑁 parallel relative to ∇. 

Necessary and sufficient condition for linear connection ∇ on 𝑀0 to be Finsler connection is 

(𝛻𝑋
𝑉𝑌𝐻)⬚ = 0, (𝛻𝑋

𝐻𝑌𝑉)⬚ = 0 
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𝛻𝑋𝑌 = 𝛻𝑋
𝐻𝑌𝐻 + 𝛻𝑋

𝑉𝑌𝑉 

for each 𝑋, 𝑌 ∈ 𝑇(𝑥,𝑦)𝑀0.  

𝛻𝑋𝑤 = 𝛻𝑋
𝐻𝑤𝐻 + 𝛻𝑋

𝑉𝑤𝑉 

for all 𝑤 ∈ 𝑇(𝑥,𝑦)
∗

⬚
𝑀0[15]. 

Let ∇ be a Finsler connection and the curvature of this connection is given with the below equation. 

𝑅(𝑋, 𝑌)𝑍 = 𝛻𝑋𝛻𝑌𝑍 − 𝛻𝑌𝛻𝑋𝑍 − 𝛻[𝑋,𝑌]𝑍 = 𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝑍𝐻 + 𝑅𝑉(𝑋𝑉, 𝑌𝑉)𝑍𝑉  

where 𝑋, 𝑌, 𝑍 ∈ 𝑇(𝑥,𝑦)𝑀0 [14]. 

Theorem 2.1. The curvature of a Finsler connection  ∇ on 𝑇(𝑥,𝑦)𝑀0 is totally stated with the following 

Finsler tensor fields equations: 

𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝑍𝐻 = 𝛻𝑋𝐻𝛻𝑌𝐻𝑍𝐻 − 𝛻𝑌𝐻𝛻𝑋𝐻𝑍𝐻 − 𝛻[𝑋𝐻,𝑌𝐻]𝑍
𝐻 

𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝑍𝑉 = 𝛻𝑋𝑉𝛻𝑌𝑉𝑍𝑉 − 𝛻𝑌𝑉𝛻𝑋𝑉𝑍𝑉 − 𝛻[𝑋𝑉,𝑌𝑉]𝑍
𝑉 

[14]. 

2.2. Almost Contact Pseudo-Metric Finsler Structures  

Consider tensor field 𝜙, 1-form 𝜂 and vector field 𝜉 given as below: 

𝜙 = 𝜙𝐻 + 𝜙𝑉 = 𝜙𝑖
𝑗(𝑥, 𝑦)

𝛿

𝛿𝑥𝑖
⊗ 𝑑𝑥𝑗 + 𝜙𝑖

�̃�
(𝑥, 𝑦)

𝜕

𝜕𝑦𝑖 ⊗ 𝛿𝑦𝑗                           (2.1) 

𝜂 = 𝜂𝐻 + 𝜂𝑉 = 𝜂𝑖(𝑥, 𝑦)𝑑𝑥𝑖 + 𝜂�̃�(𝑥, 𝑦)𝛿𝑦𝑖                                                      (2.2) 

𝜉 = 𝜉𝐻 + 𝜉𝑉 = 𝜉𝑖(𝑥, 𝑦)
𝛿

𝛿𝑥𝑖
+ 𝜉 �̃�(𝑥, 𝑦) 

𝜕

𝜕𝑦𝑖                                                       (2.3) 

Then, we can write the following statements. 

(𝜙𝐻)2𝑋𝐻 = −𝑋𝐻 + 𝜂𝐻(𝑋𝐻) 𝜉𝐻, (𝜙𝑉)2𝑋𝑉 = −𝑋𝑉 + 𝜂𝑉(𝑋𝑉) 𝜉𝑉                (2.4) 

𝜂𝐻(𝜉𝐻) = 𝜂𝑉(𝜉𝑉) = 1                                                                                     (2.5) 

𝜙𝐻(𝜉𝐻) = 𝜙𝑉(𝜉𝑉) = 0                                                                                    (2.6) 

𝜂𝐻 ∘ 𝜙𝐻 = 𝜂𝑉 ∘ 𝜙𝑉 = 0                                                                                    (2.7) 

𝑟𝑎𝑛𝑘(𝜙𝐻) = 𝑟𝑎𝑛𝑘(𝜙𝑉) = 2𝑛                                                                          (2.8) 

Thus, (𝜙𝐻, 𝜉𝐻 , 𝜂𝐻) and (𝜙𝑉 , 𝜉𝑉 , 𝜂𝑉) are called the almost contact Finsler structures on vector bundles 

(𝑀0)ℎ and (𝑀0)𝑣,respectively, where  𝑀0 = (𝑀0)ℎ ⊕ (𝑀0)𝑣. Also, we call 

that     ((𝑀0)ℎ, 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻) and   ((𝑀0)𝑣 , 𝜙𝑉 , 𝜉𝑉 , 𝜂𝑉) are almost contact Finsler manifolds [3]. 

Let 𝐹2𝑛+1 = (𝑀, 𝑀0, 𝐹∗) be an indefinite Finsler manifold. Then, we define 

𝑔𝐹∗
: Γ(𝑇𝑀0)𝑉 × Γ(𝑇𝑀0)𝑉 → 𝔉(𝑀0), 

𝑔𝑖𝑗
𝐹∗

(𝑥, 𝑦) = 𝑔𝐹∗
(

𝜕

𝜕𝑦𝑖 ,
𝜕

𝜕𝑦𝑗)(𝑥, 𝑦). 

Obviously, 𝑔𝐹∗
 is a symmetric Finsler tensor field. 𝑔𝐹∗

 is called the pseudo-Finsler metric of 𝐹2𝑛+1. Thus,  

𝑔𝐹∗
 is thought to be a pseudo-Riemannian metric on (𝑇𝑀0)𝑉. 

Similarly, we define the metric for horizontal distrubituon as following:  

𝑔𝐹∗
: Γ(𝑇𝑀0)𝐻 × Γ(𝑇𝑀0)𝐻 → 𝔉(𝑀0), 
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𝑔𝑖𝑗
𝐹∗

(𝑥, 𝑦) = 𝑔𝐹∗
(

𝛿

𝛿𝑥𝑖
,

𝛿

𝛿𝑥𝑗
)(𝑥, 𝑦) 

[1, 2]. A Finsler vector can be described with below statements. 

𝑔𝐹∗
(𝒳, 𝒳) = 0 and 𝒳 ≠ 0 ⇒ light-like 

𝑔𝐹∗
(𝒳, 𝒳) > 0 or 𝒳 = 0 ⇒ space-like 

𝑔𝐹∗
(𝒳, 𝒳) < 0 ⇒ time-like, 

where 𝒳 ∈ 𝑇(𝑥,𝑦)𝑀0, (𝑥, 𝑦) ∈  𝑀0. The Finsler norm of 𝒳 is a nonnegative number and ‖𝒳‖ is described 

with following equation: 

‖𝒳‖ = |𝑔𝐹∗
(𝒳, 𝒳)|

1
2⁄

. 

If 𝑔𝐹∗
(𝒳, 𝒳) = 1, 𝒳 is called unit space-like Finsler vector or 𝑔𝐹∗

(𝒳, 𝒳) = −1, 𝒳 is called unit time-like 

Finsler vector. 𝑔𝐹∗
(𝒳, 𝒳) = 𝜀 and 𝜀 is said the signature of 𝒳 when 𝒳 is a unit Finsler vector. 

Also,  

𝐺: Γ(𝑇𝑀0)⬚ × Γ(𝑇𝑀0)⬚ → 𝔉(𝑀0) 

𝐺(𝑋, 𝑌) = 𝐺𝐻(𝑋, 𝑌) + 𝐺𝑉(𝑋, 𝑌). 

is defined. Obviously, 𝐺 is a symmetric tensor field of type (0,2), non-degenerate and pseudo-

Riemannian metric on 𝑀0 with index 2𝑞. Then, 𝐺 is called Sasaki Finsler metric on 𝑀0. Then, 𝐺 can be 

defined as below. 

 𝐺 = 𝐺𝐻 + 𝐺𝑉 = 𝑔𝑖𝑗
𝐹∗

𝑑𝑥𝑖 ⊗ 𝑑𝑥𝑗 + 𝑔𝑖𝑗
𝐹∗

 𝛿𝑦𝑖  ⊗ 𝛿𝑦𝑖  

[1, 2]. 

Definition 2.2. Suppose that (𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻) and (𝜙𝑉, 𝜉𝑉 , 𝜂𝑉) are almost contact structures on horizontal 

and vertical Finsler vector bundles (𝑀0)ℎ and (𝑀0)𝑣. If the 𝐺𝐻 and 𝐺𝑉 satisfy the following conditions,  

𝐺𝐻(𝜙𝑋𝐻 , 𝜙𝑌𝐻) = 𝐺𝐻(𝑋𝐻 , 𝑌𝐻) − 𝜀𝜂𝐻(𝑋𝐻)𝜂𝐻(𝑌𝐻) 

𝐺𝑉(𝜙𝑋𝑉 , 𝜙𝑌𝑉) = 𝐺𝑉(𝑋𝑉 , 𝑌𝑉) − 𝜀𝜂𝑉(𝑋𝑉)𝜂𝑉(𝑌𝑉) 

𝜂𝐻(𝑋𝐻) =  𝜀 𝐺𝐻(𝑋𝐻 , 𝜉𝐻), 𝜂𝑉(𝑋𝑉) =  𝜀 𝐺𝑉(𝑋𝑉 , 𝜉𝑉) 

where 𝜀 = ±1, then (𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and (𝜙𝑉 , 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉)  are called almost contact pseudo-metric 

Finsler structures on (𝑀0)ℎ and (𝑀0)𝑣. 

Now, we define   

𝛺 (𝑋 , 𝑌) = 𝐺(𝑋 , 𝜙𝑌), Ω𝐻(𝑋𝐻 , 𝑌𝐻) = 𝐺𝐻(𝑋𝐻 , 𝜙𝑌𝐻),     𝛺𝑉(𝑋𝑉 , 𝑌𝑉) = 𝐺𝑉(𝑋𝑉, 𝜙𝑌𝑉) 

and call it the fundamental 2-form [4]. 

The fundamental 2-form, defined above, satisfies the following equations: 

𝛺𝐻(𝜙𝑋𝐻 ,  𝜙𝑌𝐻) =  Ω𝐻(𝑋𝐻 , 𝑌𝐻),   𝛺𝑉(𝜙𝑋𝑉 ,  𝜙𝑌𝑉) =  Ω𝑉(𝑋𝑉 , 𝑌𝑉) 

𝛺𝐻(𝑌𝐻 , 𝑋𝐻) = − Ω𝐻(𝑋𝐻 , 𝑌𝐻) ,   𝛺𝑉(𝑌𝑉 ,  𝑋𝑉) =  −Ω𝑉(𝑋𝑉 , 𝑌𝑉) 

Proposition 2.1. Let ∇ be a Finsler connection on M0 and 𝛺 be the fundamental 2-form which satisfies  

𝑑𝜂𝑉(𝑋𝑉 , 𝑌𝑉) =  Ω𝑉(𝑋𝑉 , 𝑌𝑉), 𝑑𝜂𝐻(𝑋𝐻 , 𝑌𝐻) =  Ω𝐻(𝑋𝐻 , 𝑌𝐻),  

 Ω𝐻(𝑋𝐻 , 𝑌𝐻) = (∇𝑋
𝐻𝜂𝐻)(𝑌𝐻) − (∇𝑌

𝐻𝜂𝐻)(𝑋𝐻) + 𝜂𝐻(𝑇(𝑋𝐻 , 𝑌𝐻)), 
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 Ω𝑉(𝑋𝑉 , 𝑌𝑉) = (∇𝑋
𝑉𝜂𝑉)(𝑌𝑉) − (∇𝑌

𝑉𝜂𝑉)(𝑋𝑉) + 𝜂𝑉(𝑇(𝑋𝑉  , 𝑌𝑉)). 

Then the almost contact pseudo-metric Finsler structure is called almost 𝜀 −Sasakian Finsler structure 

on M0.  

(𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and (𝜙𝑉 , 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉)  are called almost 𝜀 −Sasakian Finsler structures on (𝑀0)ℎ 

and (𝑀0)𝑣 , respectively [4]. 

Theorem 2.2. Let 𝛺 be the fundamental 2-form and almost 𝜀 −Sasakian Finsler connection ∇ on M0 is 

torsion free then 

 Ω𝐻(𝑋𝐻 , 𝑌𝐻) = (∇𝑋
𝐻𝜂𝐻)(𝑌𝐻) − (∇𝑌

𝐻𝜂𝐻)(𝑋𝐻) 

 Ω𝑉(𝑋𝑉 , 𝑌𝑉) = (∇𝑋
𝑉𝜂𝑉)(𝑌𝑉) − (∇𝑌

𝑉𝜂𝑉)(𝑋𝑉) 

 

[4]. 

Definition 2.3. An almost 𝜀 −Sasakian Finsler structure on M0 is said to be an  𝜀 −Sasakian Finsler 

structure if the 1-form η is a killing vector field, i.e., 

(∇𝑋
𝐻𝜂𝐻)(𝑌𝐻) + (∇𝑌

𝐻𝜂𝐻)(𝑋𝐻) = 0,  (∇𝑋
𝑉𝜂𝑉)(𝑌𝑉) + (∇𝑌

𝑉𝜂𝑉)(𝑋𝑉) = 0 

 Ω𝐻(𝑋𝐻 , 𝑌𝐻) = 2(∇𝑋
𝐻𝜂𝐻)(𝑌𝐻),  Ω𝑉(𝑋𝑉 , 𝑌𝑉) = 2(∇𝑋

𝑉𝜂𝑉)(𝑌𝑉) 

[4]. 

3. Trans- Sasakian Indefinite Finsler  Manifolds  

We introduce trans-Sasakian indefinite Finsler manifolds in our main results. Also, we give the special 

case of these structures 𝛼 −Sasakian and 𝛽 −Kenmotsu indefinite Finsler manifolds. 

The almost contact pseudo-metric Finsler manifolds ((𝑀0)ℎ, 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and ((𝑀0)𝑣 , 𝜙𝑉, 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉)  

are said to be trans-Sasakian indefinite Finsler manifolds if and only if the following conditions are hold. 

(∇𝑋
𝐻𝜙𝐻)𝑌𝐻 =

𝛼

2
{𝐺𝐻(𝑋𝐻 , 𝑌𝐻)𝜉𝐻 − 𝜀𝜂𝐻(𝑌𝐻)𝑋𝐻} +

𝛽

2
{𝜀𝐺𝐻(𝜙𝑋𝐻 , 𝑌𝐻)𝜉𝐻 − 𝜂𝐻(𝑌𝐻)𝜙𝑋𝐻}                        (3.1)                        

(∇𝑋
𝑉𝜙𝑉)𝑌𝑉 =

𝛼

2
{𝐺𝑉(𝑋𝑉 , 𝑌𝑉)𝜉𝑉 − 𝜀𝜂𝑉(𝑌𝑉)𝑋𝑉} +

𝛽

2
{𝜀𝐺𝑉(𝜙𝑋𝑉 , 𝑌𝑉)𝜉𝑉 − 𝜂𝑉(𝑌𝑉)𝜙𝑋𝑉}                              (3.2)                                

where  𝛼 and 𝛽 are smooth functions on (𝑀0)ℎ and (𝑀0)𝑣 then we say such a structure the trans-

Sasakian pseudo-metric Finsler structure of type (𝛼, 𝛽). If  𝛼, 𝛽 =constant, then the getting 

𝛼, 𝛽 =constant from (3.1) and (3.2) we get 

(∇𝑋
𝐻𝜉𝐻) = −𝜀

𝛼

2
 𝜙𝑋𝐻 +

𝛽

2
(𝑋𝐻 − 𝜂𝐻(𝑋𝐻)𝜉𝐻)                                                                                                         (3.3) 

(∇𝑋
𝑉𝜉𝑉) = −𝜀

𝛼

2
 𝜙𝑋𝑉 +

𝛽

2
(𝑋𝑉 − 𝜂𝑉(𝑋𝑉)𝜉𝑉)                                                                                                           (3.4) 

(∇𝑋
𝐻𝜂𝐻)(𝑌𝐻) =

𝛼

2
𝐺𝐻(𝑋𝐻 , 𝜙𝑌𝐻) + 𝜀

𝛽

2
𝐺𝐻(𝜙𝑋𝐻 , 𝜙𝑌𝐻)                                                                                         (3.5) 

(∇𝑋
𝑉𝜂𝑉)(𝑌𝑉) =

𝛼

2
𝐺𝑉(𝑋𝑉 , 𝜙𝑌𝑉) + 𝜀

𝛽

2
𝐺𝑉(𝜙𝑋𝑉 , 𝜙𝑌𝑉)                                                                                            (3.6) 

Theorem 3.1. In the trans-Sasakian indefinite Finsler manifolds ((𝑀0)ℎ, 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and 

((𝑀0)𝑣 , 𝜙𝑉 , 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉)   the following relations hold. 
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𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝜉𝐻 =
(𝛼2−𝛽2)

4
{𝜂𝐻(𝑌𝐻)𝑋𝐻 − 𝜂𝐻(𝑋𝐻)𝑌𝐻} + 𝜀

𝛼𝛽

2
{𝜂𝐻(𝑌𝐻)𝜙𝑋𝐻 − 𝜂𝐻(𝑋𝐻)𝜙𝑌𝐻}                    (3.7)  

𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝜉𝑉 =
(𝛼2−𝛽2)

4
{𝜂𝑉(𝑌𝑉)𝑋𝑉 − 𝜂𝑉(𝑋𝑉)𝑌𝑉} + 𝜀

𝛼𝛽

2
{𝜂𝑉(𝑌𝑉)𝜙𝑋𝑉 − 𝜂𝑉(𝑋𝑉)𝜙𝑌𝑉}                         (3.8) 

𝑅𝐻(𝜉𝐻, 𝑋𝐻)𝑌𝐻 =
(𝛼2 − 𝛽2)

4
{𝜀𝐺𝐻(𝑋𝐻 , 𝑌𝐻)𝜉𝐻 − 𝜂𝐻(𝑌𝐻)𝑋𝐻}         

+ 𝜀
𝛼𝛽

2
{𝜂𝐻(𝑌𝐻)𝜙𝑋𝐻 − 𝜀𝐺𝐻(𝜙𝑋𝐻 , 𝑌𝐻)𝜉𝐻}                                                                               (3.9) 

𝑅𝑉(𝜉𝑉 , 𝑋𝑉)𝑌𝑉 =
(α2 − β2)

4
{𝜀𝐺𝑉(𝑋𝑉 , 𝑌𝑉)𝜉𝑉 − 𝜂𝑉(𝑌𝑉)𝑋𝑉}

+ 𝜀
𝛼𝛽

2
{𝜂𝑉(𝑌𝑉)𝜙𝑋𝑉 − 𝜀𝐺𝑉(𝜙𝑋𝑉 , 𝑌𝑉)𝜉𝑉}                                                                               (3.10) 

𝜂𝐻(𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝑍𝐻) =  𝜀
(𝛼2−𝛽2)

4
{𝐺𝐻(𝑌𝐻 , 𝑍𝐻)𝜂𝐻(𝑋𝐻) − 𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝜂𝐻(𝑌𝐻)}  

+
𝛼𝛽

2
{𝜂𝐻(𝑋𝐻)𝐺(𝜙𝑌𝐻 , 𝑍𝐻) − 𝜂𝐻(𝑌𝐻)𝐺𝐻(𝜙𝑋𝐻 , 𝑍𝐻)}                                                                                         (3.11)                     

𝜂𝑉(𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝑍𝑉) =  𝜀
(𝛼2−𝛽2)

4
{𝐺𝑉(𝑌𝑉, 𝑍𝑉)𝜂𝑉(𝑋𝑉) − 𝐺𝑉(𝑋𝑉, 𝑍𝑉)𝜂𝑉(𝑌𝑉)}  

+
𝛼𝛽

2
{𝜂𝑉(𝑋𝑉)𝐺(𝜙𝑌𝑉 , 𝑍𝑉) − 𝜂𝑉(𝑌𝑉)𝐺𝑉(𝜙𝑋𝑉 , 𝑍𝑉)}                                                                                            (3.12) 

𝜂𝐻(𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝜉𝐻) = 0, 𝜂𝑉(𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝜉𝑉)=0                                                                                                 (3.13) 

𝑆𝐻(𝑋𝐻 , 𝜉𝐻) = 𝑛
(𝛼2−𝛽2)

2
𝜂𝐻(𝑋𝐻) ,    𝑆𝑉(𝑋𝑉 , 𝜉𝑉) =  𝑛

(𝛼2−𝛽2)

2
𝜂𝑉(𝑋𝑉)                                                             (3.14) 

𝑆𝐻(𝜉𝐻, 𝜉𝐻)= 𝑛
(𝛼2−𝛽2)

2
,    𝑆𝑉(𝜉𝑉, 𝜉𝑉) =  𝑛

(𝛼2−𝛽2)

2
                                                                                               (3.15) 

Q𝑋𝐻= 𝜀 𝑛
(𝛼2−𝛽2)

2
𝑋𝐻 ,  Q𝑋𝑉= 𝜀 𝑛

(𝛼2−𝛽2)

2
𝑋𝑉 ,  Q𝜉𝐻= 𝜀 𝑛

(𝛼2−𝛽2)

2
𝜉𝐻 ,   Q𝜉𝑉= 𝜀 𝑛

(𝛼2−𝛽2)

2
𝜉𝑉                      (3.16) 

 

Proof:  

𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝜉𝐻 = ∇
𝑋𝐻
𝐻 ∇

𝑌𝐻
𝐻 𝜉𝐻 − ∇

𝑌𝐻
𝐻 ∇

𝑋𝐻
𝐻 𝜉𝐻 − ∇∇

𝑋𝐻
𝐻 𝑌𝐻−∇

𝑌𝐻
𝐻 𝑋𝐻𝜉𝐻 

=∇
𝑋𝐻
𝐻 {−𝜀

𝛼

2
 𝜙𝑌𝐻 +

𝛽

2
(𝑌𝐻 − 𝜂𝐻(𝑌𝐻)𝜉𝐻)} − ∇

𝑌𝐻
𝐻 {−𝜀

𝛼

2
 𝜙𝑋𝐻 +

𝛽

2
(𝑋𝐻 − 𝜂𝐻(𝑋𝐻)𝜉𝐻)} 

−∇
∇

𝑋𝐻
𝐻 𝑌𝐻

𝐻 𝜉𝐻 + ∇
∇

𝑌𝐻
𝐻 𝑋𝐻

𝐻 𝜉𝐻 

=  𝜀
𝛼

2
{(∇𝑌

𝐻𝜙𝐻)𝑋𝐻 − (∇𝑋
𝐻𝜙𝐻)𝑌𝐻} +

𝛽

2
{(∇𝑌

𝐻𝜂𝐻)𝑋𝐻𝜉𝐻 − (∇𝑋
𝐻𝜂𝐻)𝑌𝐻𝜉𝐻 + 𝜂𝐻(𝑋𝐻)∇𝑌

𝐻𝜉𝐻 − 𝜂𝐻(𝑌𝐻)∇𝑋
𝐻𝜉𝐻} 

then we get following equation 
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=  𝜀
𝛼

2
{− 𝜀

𝛼

2
𝜂𝐻(𝑋𝐻)𝑌𝐻 + 𝜀𝛽𝐺𝐻(𝜙𝑌𝐻 , 𝑋𝐻) −

𝛽

2
𝜂𝐻(𝑋𝐻)𝜙𝑌𝐻 + 𝜀

𝛼

2
𝜂𝐻(𝑌𝐻)𝑋𝐻 +

𝛽

2
𝜂𝐻(𝑌𝐻)𝜙𝑋𝐻} +

𝛽

2
{𝛼𝐺𝐻(𝑌𝐻, 𝜙𝑋𝐻)𝜉𝐻 − 𝜀

𝛼

2
𝜂𝐻(𝑋𝐻)𝜙𝑌𝐻 +

𝛽

2
𝜂𝐻(𝑋𝐻)𝑌𝐻 −

𝛽

2
𝜂𝐻(𝑋𝐻)𝜂𝐻(𝑌𝐻)𝜉𝐻 + 𝜀

𝛼

2
𝜂𝐻(𝑌𝐻)𝜙𝑋𝐻 −

𝛽

2
𝜂𝐻(𝑌𝐻)𝑋𝐻 +

𝛽

2
𝜂𝐻(𝑋𝐻)𝜂𝐻(𝑌𝐻)𝜉𝐻}, 

If we rearrange last equation, then we have the following one and the proof is completed 

𝑅(𝑋𝐻 , 𝑌𝐻)𝜉𝐻 =
(𝛼2 − 𝛽2)

4
{𝜂𝐻(𝑌𝐻)𝑋𝐻 − 𝜂𝐻(𝑋𝐻)𝑌𝐻} + 𝜀

𝛼𝛽

2
{𝜂𝐻(𝑌𝐻)𝜙𝑋𝐻 − 𝜂𝐻(𝑋𝐻)𝜙𝑌𝐻} 

By using similar processing steps, we can obtain the proof for vertical distribution. 

Using the equations 𝐺𝐻(𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝜉𝐻 , 𝑊𝐻) =  𝐺𝐻(𝑅𝐻(𝜉𝐻, 𝑊𝐻) 𝑋𝐻 , 𝑌𝐻) and 𝐺𝑉(𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝜉𝑉, 𝑊𝑉) =

 𝐺𝑉(𝑅𝑉(𝜉𝑉, 𝑊𝑉) 𝑋𝑉 , 𝑌𝑉), we get 

𝑅𝐻(𝜉𝐻 , 𝑊𝐻) 𝑋𝐻 =
(𝛼2−𝛽2)

4
{𝜀 𝐺𝐻(𝑊𝐻 , 𝑋𝐻)𝜉𝐻 − 𝜂𝐻(𝑋𝐻)𝑊𝐻} + 𝜀

𝛼𝛽

2
{𝜂𝐻(𝑋𝐻)𝜙𝑊𝐻 − 𝜀𝐺𝑉(𝜙𝑊𝐻 , 𝑋𝐻)𝜉𝐻}. 

and 

𝑅𝑉(𝜉𝑉, 𝑊𝑉) 𝑋𝑉 =
(𝛼2−𝛽2)

4
{𝜀 𝐺𝑉(𝑊𝑉, 𝑋𝑉)𝜉𝑉 − 𝜂𝑉(𝑋𝑉)𝑊𝑉} + 𝜀

𝛼𝛽

2
{𝜂𝑉(𝑋𝑉)𝜙𝑊𝑉 − 𝜀𝐺𝑉(𝜙𝑊𝑉 , 𝑋𝑉)𝜉𝑉}. 

We have from equations (3.7) and (3.8), we get 

𝜂𝐻(𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝑍𝐻) = 𝜀𝐺(𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝑍𝐻 , 𝜉𝐻) = −𝜀𝐺(𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝜉𝐻 , 𝑍𝐻) 

= −𝜀𝐺 ( 
(𝛼2−𝛽2)

4
{𝜂𝐻(𝑌𝐻)𝑋𝐻 − 𝜂𝐻(𝑋𝐻)𝑌𝐻} + 𝜀

𝛼𝛽

2
{𝜂𝐻(𝑌𝐻)𝜙𝑋𝐻 − 𝜂𝐻(𝑋𝐻)𝜙𝑌𝐻} , 𝑍𝐻) 

= 𝜀 
(𝛼2−𝛽2)

4
{𝐺𝐻(𝑌𝐻 , 𝑍𝐻)𝜂𝐻(𝑋𝐻) − 𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝜂𝐻(𝑌𝐻)} 

+
𝛼𝛽

2
{𝜂𝐻(𝑋𝐻)𝐺(𝜙𝑌𝐻 , 𝑍𝐻) − 𝜂𝐻(𝑌𝐻)𝐺𝐻(𝜙𝑋𝐻 , 𝑍𝐻)} 

and 

𝜂𝑉(𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝑍𝑉) = 𝜀𝐺(𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝑍𝑉 , 𝜉𝑉) = −𝜀𝐺(𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝜉𝑉, 𝑍𝑉) 

=−𝜀𝐺( 
(𝛼2−𝛽2)

4
{𝜂𝑉(𝑌𝑉)𝑋𝑉 − 𝜂𝑉(𝑋𝑉)𝑌𝑉} + 𝜀

𝛼𝛽

2
{𝜂𝑉(𝑌𝑉)𝜙𝑋𝑉 − 𝜂𝑉(𝑋𝑉)𝜙𝑌𝑉}⬚,  𝑍𝑉) 

=  𝜀
(𝛼2 − 𝛽2)

4
{𝐺𝑉(𝑌𝑉 , 𝑍𝑉)𝜂𝑉(𝑋𝑉) − 𝐺𝑉(𝑋𝑉 , 𝑍𝑉)𝜂𝑉(𝑌𝑉)} 

+
𝛼𝛽

2
{𝜂𝑉(𝑋𝑉)𝐺(𝜙𝑌𝑉 , 𝑍𝑉) − 𝜂𝑉(𝑌𝑉)𝐺𝑉(𝜙𝑋𝑉 , 𝑍𝑉)}. 

Putting 𝑍𝐻 = 𝜉𝐻 𝑎𝑛𝑑 𝑍𝑉 = 𝜉𝑉, we get 𝜂𝐻(𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝜉𝐻) = 0, 𝜂𝑉(𝑅𝑉(𝑋𝑉, 𝑌𝑉)𝜉𝑉)=0.   

For  the trans-Sasakian indefinite Finsler manifolds ((𝑀0)ℎ, 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and ((𝑀0)𝑣 , 𝜙𝑉, 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉), 

the Ricci tensor S and scalar curvature r is defined by 

𝑆𝐻(𝑋𝐻 , 𝑌𝐻) =  ∑ 𝜀𝑖 𝐺𝐻2𝑛
𝑖=1 (𝑅𝐻(𝐸𝑖

𝐻 , 𝑋𝐻)𝑌𝐻 , 𝐸𝑖
𝐻) +  𝜀 𝐺𝐻(𝑅𝐻(𝜉𝐻, 𝑋𝐻)𝑌𝐻 , 𝜉𝐻), 

𝑟𝐻 = ∑ ⬚2𝑛
𝑖=1 𝑆𝐻(𝐸𝑖

𝐻 , 𝐸𝑖
𝐻),  𝑟𝑉 = ∑ ⬚2𝑛

𝑖=1 𝑆𝑉(𝐸𝑖
𝑉, 𝐸𝑖

𝑉), 

𝑆𝑉(𝑋𝑉 , 𝑌𝑉) =  ∑ 𝜀𝑖
2𝑛
𝑖=1 𝐺𝑉(𝑅𝑉(𝐸𝑖

𝑉, 𝑋𝑉)𝑌𝑉 , 𝐸𝑖
𝑉) +  𝜀 𝐺𝑉(𝑅𝑉(𝜉𝑉, 𝑋𝑉)𝑌𝑉 , 𝜉𝑉), 
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where { 𝐸1
𝐻 , 𝐸2

𝐻 , … , 𝐸2𝑛
𝐻 , 𝜉𝐻}  is orthonormal basis field in (𝑀0)ℎand  𝐺𝐻(𝐸𝑖

𝐻 , 𝐸𝑖
𝐻) =  𝜀𝑖  

(similarly, { 𝐸1
𝑉 , 𝐸2

𝑉 , … , 𝐸2𝑛
𝑉 , 𝜉𝑉}  is orthonormal basis field in (𝑀0)𝑣and  𝐺𝑣(𝐸𝑖

𝑣 , 𝐸𝑖
𝑣) =  𝜀𝑖). 

Replacing 𝑌𝐻 by 𝜉𝐻, we get 

𝑆𝐻(𝑋𝐻 ,  𝜉𝐻) =  ∑ 𝜀𝑖  𝐺𝐻2𝑛
𝑖=1 (𝑅𝐻(𝐸𝑖

𝐻 , 𝑋𝐻)𝜉𝐻 , 𝐸𝑖
𝐻) +  𝜀 𝐺𝐻(𝑅𝐻(𝜉𝐻 , 𝑋𝐻)𝜉𝐻 , 𝜉𝐻) 

= ∑ 𝜀𝑖𝐺𝐻2𝑛
𝑖=1 (

(𝛼2−𝛽2)

4
{𝜂𝐻(𝑋𝐻)𝐸𝑖

𝐻 − 𝜂𝐻(𝐸𝑖
𝐻)𝑋𝐻} + 𝜀

𝛼𝛽

2
{𝜂𝐻(𝑋𝐻)𝜙𝐸𝑖

𝐻 − 𝜂𝐻(𝐸𝑖
𝐻)𝜙𝑋𝐻} , 𝐸𝑖

𝐻) +

 𝜀 𝐺𝐻(
(𝛼2−𝛽2)

4
{𝜂𝐻(𝑋𝐻) 𝜉𝐻 − 𝜂𝐻( 𝜉𝐻)𝑋𝐻} + 𝜀

𝛼𝛽

2
{𝜂𝐻(𝑋𝐻)𝜙𝜉𝐻 − 𝜂𝐻( 𝜉𝐻)𝜙𝑋𝐻} , 𝜉𝐻), 

where, since 𝐺𝐻(𝑅𝐻( 𝜉𝐻 , 𝑋𝐻)𝜉𝐻 , 𝜉𝐻) =0 we get 

𝑆𝐻(𝑋𝐻 , 𝜉𝐻) = 𝑛
 (𝛼2−𝛽2)

2
𝜂𝐻(𝑋𝐻),  𝑆𝐻(𝜉𝐻 ,  𝜉𝐻) = 𝑛

 (𝛼2−𝛽2)

2
. 

The Ricci operatör Q given by 

𝑆𝐻(𝑋𝐻 , 𝑌𝐻) = 𝐺𝐻(𝑄𝑋𝐻 , 𝑌𝐻) and 𝑆𝑉(𝑋𝑉 , 𝑌𝑉) = 𝐺𝑉(𝑄𝑋𝑉 , 𝑌𝑉). 

By using 𝑆𝐻(𝑋𝐻 , 𝜉𝐻) = 𝐺𝐻(𝑄𝑋𝐻 , 𝜉𝐻) and  𝑆𝑉(𝑋𝑉 , 𝜉𝑉) = 𝐺𝑉(𝑄𝑋𝑉 , 𝜉𝑉), we obtain 

𝑄𝑋𝐻 = 𝜀
 𝑛(𝛼2−𝛽2)

2
(𝑋𝐻),  𝑄𝜉𝐻= 𝜀

 𝑛(𝛼2−𝛽2)

2
𝜉𝐻 and 𝑄𝑋𝑉  = 𝜀

 𝑛(𝛼2−𝛽2)

2
(𝑋𝑉),  𝑄𝜉𝐻= 𝜀

 𝑛(𝛼2−𝛽2)

2
𝜉𝑉. 

Example 3.1. Consider the structure of  𝐹3 = (ℝ3, (ℝ3)0, 𝐹∗) indefinite Finsler manifold. (ℝ3)0= ℝ6 ∖

{0} is a real 6-dimensional  C∞  manifold and 𝑇ℝ3 is the tangent bundle of  ℝ3. A coordinate system in 

ℝ3can be stated with {(𝑈, 𝜑): 𝑥1, 𝑥2, 𝑥3}, where 𝑈 is an open subset of  ℝ3 ; for any 𝑥 ∈ 𝑈, 𝜑: 𝑈 → ℝ3 is 

a diffeomorphism of 𝑈 onto 𝜑(𝑈), and    𝜑(𝑥) = (𝑥1, 𝑥2, 𝑥3). On ℝ3, denote by 𝜋 the canonical projection 

of 𝑇ℝ3 and by 𝑇𝑥𝑀 the fibre, at 𝑥 ∈ ℝ3, i.e., 𝑇𝑥ℝ3 = 𝜋−1(𝑥). Through the coordinate system {(𝑈, 𝜑): 𝑥𝑖} 

in ℝ3 , we can describe a new coordinate system {(𝑈∗, Φ); 𝑥1, 𝑥2, 𝑥3; 𝑦1, 𝑦2, 𝑦3} or shortly 

{(𝑈∗, Φ): 𝑥𝑖, 𝑦𝑖 } in 𝑇ℝ3, where 𝑈∗ = 𝜋−1(𝑈) and Φ: 𝑈∗ → ℝ6 is a diffeomorphism of 𝑈∗ on 𝜑(𝑈) × ℝ3, 

and Φ(𝑦𝑥) = (𝑥1, 𝑥2, 𝑥3; 𝑦1, 𝑦2, 𝑦3) for any 𝑥 ∈ 𝑈 and 𝑦𝑥 ∈ 𝑇𝑥ℝ3. Let (ℝ3)0 be a non-empty open 

submanifold of  𝑇ℝ3  such that 𝜋((ℝ3)0) = ℝ3  and 𝜃( ℝ3 ) ∩ (ℝ3)0 = ∅, where 𝜃 is the zero section of 

𝑇ℝ3 . Assume that (ℝ3)𝑥
0 = 𝑇𝑥ℝ3 ∩ (ℝ3)0 is a positive conic set, for any 𝑘 > 0 and 𝑦 ∈ (ℝ3)𝑥

0 .                                                

we have  𝑘𝑦 ∈  (ℝ3)𝑥
0  .  Obviously, the largest (ℝ3)0 holding the above circumstances is 𝑇ℝ3 ∖ 𝜃(𝑀), 

ordinarily given with the description of a Finsler manifold. The set of the local vector fields {
𝛿

𝛿𝑥1 ,
𝛿

𝛿𝑥2 ,
𝛿

𝛿𝑥3} 

is a basis in  (𝑇( ℝ3)0)𝐻 and  {
𝜕

𝜕𝑦1  ,
𝜕

𝜕𝑦2  ,
𝜕

𝜕𝑦3} is a basis in (𝑇( ℝ3)0)𝑉. We get 

 𝑋𝑉 = 𝑋1
𝑉(𝑥, 𝑦)

𝜕

𝜕𝑦1 + 𝑋2
𝑉(𝑥, 𝑦)

𝜕

𝜕𝑦2 + 𝑋3
𝑉(𝑥, 𝑦)

𝜕

𝜕𝑦3 , 𝑋𝐻 = 𝑋1
𝐻(𝑥, 𝑦)

𝛿

𝛿𝑥1 + 𝑋2
𝐻(𝑥, 𝑦)

𝛿

𝛿𝑥2 + 𝑋3
𝐻(𝑥, 𝑦)

𝛿

𝛿𝑥3, for 

any  𝑋𝑉 ⋲ (𝑇( ℝ3)0)𝑉and 𝑋𝐻 ⋲ (𝑇( ℝ3)0)𝐻. Thus, for any X⋲  𝑇( ℝ3)0,  𝑋 = 𝑋𝑖
𝐻(𝑥, 𝑦)

𝛿

𝛿𝑥𝑖 + 𝑋𝑖
𝑉(𝑥, 𝑦)

𝜕

𝜕𝑦𝑖 

( i =1, 2, 3). Consider a  𝜂, 1-form, 𝜂 = 𝜂𝐻 + 𝜂𝑉 = 𝜂𝑖
𝐻(𝑥, 𝑦)𝑑𝑥𝑖 + 𝜂𝑖

𝑉(𝑥, 𝑦)𝛿𝑦𝑖 ( i =1, 2, 3), 

 𝜂𝐻 ⋲ (𝑇∗(ℝ3)0)𝐻 and 𝜂𝑉 ⋲ (𝑇∗(ℝ3)0)𝑉. 

𝐺 is a symmetric tensor field of type (0,2), non-degenerate and pseudo-Riemannian metric on ( ℝ3)0. 

Then, 𝐺 is called Sasaki Finsler metric on ( ℝ3)0 . Then, 𝐺 can be defined as below: 

𝐺 = 𝐺𝐻 + 𝐺𝑉 = 𝑔𝑖𝑗
𝐹∗

𝑑𝑥𝑖 ⊗ 𝑑𝑥𝑗 + 𝑔𝑖𝑗
𝐹∗

 𝛿𝑦𝑖  ⊗ 𝛿𝑦𝑖  ( i=1, 2, 3). 

The vector fields 
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𝐸1
𝐻 = 𝑥3

𝛿

𝛿𝑥1   ,  𝐸2
𝐻 = 𝑥3

𝛿

𝛿𝑥2   ,  𝐸3
𝐻 = 𝑥3

𝛿

𝛿𝑥3 = 𝜉𝐻 

are linear independent at every point of  ((ℝ3)0)ℎ. Let G be the Sasaki Finsler pseudo-metric given by 

𝐺𝐻(𝐸1
𝐻 , 𝜉𝐻)  = 𝐺𝐻(𝐸1

𝐻 , 𝐸2
𝐻) = 𝐺𝐻(𝐸2

𝐻, 𝜉𝐻) = 0 

𝐺𝐻(𝐸1
𝐻 , 𝐸1

𝐻) = 𝐺𝐻(𝐸2
𝐻 , 𝐸2

𝐻) = 1, 𝐺𝐻(𝜉𝐻 , 𝜉𝐻) = 𝜀 = -1. 

Let 𝜂𝐻 be the 1-form derscribed by 

𝜂𝐻(𝑍𝐻) = −𝐺𝐻(𝑍𝐻, 𝜉𝐻) = −𝐺𝐻(𝑧1𝐸1
𝐻 + 𝑧2𝐸2

𝐻 + 𝑧3 𝜉𝐻 , 𝜉𝐻) = 𝑧3 ,  ∀ 𝑍𝐻 ∈ (𝑇( ℝ3)0)𝐻. 

Consider 𝜙𝐻 the (1, 1) tensör field stated by 

𝜙𝐻(𝐸1
𝐻) = −  𝐸2

𝐻  , 𝜙𝐻( 𝐸2
𝐻) = 𝐸1

𝐻 , 𝜙𝐻(𝜉𝐻) = 0. 

Then using the linearity of 𝜙𝐻, we have 

𝑍𝐻 = 𝑧1𝐸1
𝐻 +  𝑧2𝐸2

𝐻 + 𝑧3 𝜉𝐻 , 𝑊𝐻 = 𝑤1𝐸1
𝐻 +  𝑤2𝐸2

𝐻 + 𝑤3 𝜉𝐻 

𝜙𝐻(𝑍𝐻) = 𝜙𝐻(𝑧1𝐸1
𝐻 +  𝑧2𝐸2

𝐻 + 𝑧3 𝜉𝐻 ) = 𝑧1𝜙𝐻(𝐸1
𝐻) + 𝑧2𝜙𝐻( 𝐸2

𝐻) + 𝑧3 𝜙
𝐻(𝜉𝐻) 

𝜙𝐻(𝑍𝐻) = −𝑧1𝐸2
𝐻 +  𝑧2𝐸1

𝐻 

𝜙𝐻(𝑊𝐻) = 𝜙𝐻(𝑤𝐸1
𝐻 +  𝑤𝐸2

𝐻 + 𝑤3 𝜉𝐻 ) = 𝑤1𝜙𝐻(𝐸1
𝐻) + 𝑤2𝜙𝐻( 𝐸2

𝐻) + 𝑤3 𝜙
𝐻(𝜉𝐻) 

𝜙𝐻(𝑊𝐻) = −𝑤1𝐸2
𝐻 + 𝑤2𝐸1

𝐻 

(𝜙𝐻)2(𝑍𝐻) = −𝑧2𝐸2
𝐻 −  𝑧1𝐸1

𝐻 = - Z + 𝜂𝐻(𝑍𝐻)𝜉𝐻 

Thus we get 

𝐺𝐻(𝜙𝐻(𝑍𝐻), 𝜙𝐻(𝑊𝐻)) =  𝐺𝐻(𝑍𝐻 ,  𝑊𝐻) + 𝜂𝐻(𝑍𝐻) 𝜂𝐻(𝑊𝐻) 

∀ 𝑍𝐻 ∈ (𝑇( ℝ3)0)𝐻 and ∀ 𝑊𝐻 ∈ (𝑇( ℝ3)0)𝐻. Thus the structure (((ℝ3)0)ℎ , 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) define the 

almost contact pseudo-metric Finsler structure on ((ℝ3)0)ℎ. 

Let ∇ be the Levi-Civita connection with respect to pseudo-metric 𝐺𝐻. Then we have 

[𝐸1
𝐻 , 𝐸2

𝐻] = 0  , [ 𝐸1
𝐻 , 𝜉𝐻] = −𝐸1

𝐻 , [𝐸2
𝐻 , 𝜉𝐻] = − 𝐸2

𝐻. 

The connection ∇ of the pseudo-metric 𝐺𝐻 is given by 

2𝐺𝐻(∇𝑋𝐻𝑌𝐻 , 𝑍𝐻) = 𝑋𝐻𝐺𝐻(𝑌𝐻 , 𝑍𝐻) + 𝑌𝐻𝐺𝐻(𝑋𝐻 , 𝑍𝐻) − 𝑍𝐻𝐺𝐻(𝑋𝐻 , 𝑌𝐻) 

−𝐺𝐻(𝑋𝐻 , [𝑌𝐻 , 𝑍𝐻]) −𝐺𝐻(𝑌𝐻 , [𝑋𝐻 , 𝑍𝐻])  + 𝐺𝐻(𝑍𝐻 , [𝑋𝐻 , 𝑌𝐻])                           (3.17) 

Which is known as Koszul’s formula. Using this formula, we have 

2𝐺𝐻 (∇𝐸1
𝐻𝜉𝐻,  𝐸1

𝐻) = −𝐺𝐻(𝐸1
𝐻 , [𝜉𝐻 ,  𝐸1

𝐻 ] ) −𝐺𝐻(𝜉𝐻 , [ 𝐸1
𝐻 ,  𝐸1

𝐻]) + 𝐺𝐻(𝐸1
𝐻 , [ 𝐸1

𝐻 , 𝜉𝐻]) 

= 2𝐺𝐻(−𝐸1
𝐻,  𝐸1

𝐻). 

Thus, 

∇𝐸1
𝐻𝜉𝐻 = −𝐸1

𝐻 ,  ∇𝜉𝐻𝐸1
𝐻 = 0. 

Again by using Koszul’s formula we obtain 

2𝐺𝐻 (∇𝐸2
𝐻𝜉𝐻,  𝐸2

𝐻) = −𝐺𝐻(𝐸2
𝐻 , [𝜉𝐻 ,  𝐸2

𝐻 ] ) −𝐺𝐻(𝜉𝐻 , [ 𝐸2
𝐻 ,  𝐸2

𝐻]) + 𝐺𝐻(𝐸2
𝐻 , [ 𝐸2

𝐻 , 𝜉𝐻]) 

= 2𝐺𝐻(− 𝐸2
𝐻,  𝐸2

𝐻). 

Thus, 
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∇ 𝐸2
𝐻𝜉𝐻 =  − 𝐸2

𝐻    ,  ∇𝜉𝐻𝐸2
𝐻 = 0. 

Also by using Koszul’s formula we obtain 

2𝐺𝐻 (∇𝐸1
𝐻  𝐸2

𝐻 ,  𝜉𝐻) = 𝐺𝐻(𝐸1
𝐻, [𝜉𝐻 ,  𝐸2

𝐻 ] ) +𝐺𝐻(𝜉𝐻, [ 𝐸1
𝐻 ,  𝐸2

𝐻]) − 𝐺𝐻(𝐸2
𝐻 , [ 𝐸1

𝐻 , 𝜉𝐻])= 0. 

Thus, 

∇𝐸1
𝐻  𝐸2

𝐻 = 0 ,      ∇ 𝐸2
𝐻  𝐸1

𝐻 = 0 

Similarly we get 

2𝐺𝐻 (∇𝐸1
𝐻  𝐸1

𝐻 ,  𝜉𝐻) = − 𝐺𝐻(𝐸1
𝐻 , [𝐸1

𝐻 , 𝜉𝐻 ] ) +𝐺𝐻(𝜉𝐻 , [ 𝐸1
𝐻 ,  𝐸1

𝐻]) − 𝐺𝐻(𝐸1
𝐻 , [ 𝐸1

𝐻 , 𝜉𝐻]) 

= 2𝐺𝐻( 𝐸1
𝐻 ,  𝐸1

𝐻) = −2𝐺𝐻( 𝜉𝐻 ,  𝜉𝐻). 

Thus, 

∇𝐸1
𝐻  𝐸1

𝐻 = − 𝜉𝐻 . 

(3.17) further yields 

∇𝐸2
𝐻  𝐸2

𝐻 = − 𝜉𝐻,   ∇ 𝜉𝐻  𝐸1
𝐻 = 0,   ∇ 𝜉𝐻  𝐸2

𝐻 = 0, ∇𝐸2
𝐻  𝐸1

𝐻 = 0. 

If we use the equations we found   

(∇𝑋
𝐻𝜉𝐻) = 𝑥1∇𝐸1

𝐻𝜉𝐻 + 𝑥2∇ 𝐸2
𝐻𝜉𝐻 = (−𝑥1) 𝐸1

𝐻 − (𝑥2 )𝐸2
𝐻 , 

∀ 𝑋𝐻 ∈ (𝑇( ℝ3)0)𝐻. 

The above equations tell us the almost contact pseudo-metric Finsler manifold 

((ℝ3)0)ℎ , 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) satisfy (3.3) for  𝛼 = 0 , 𝛽 = −2 ,  𝜀 =  −1. 

With the help of the above results it can be verified that 

𝑅𝐻( 𝐸1
𝐻 ,  𝐸2

𝐻) 𝐸2
𝐻 =  𝐸1

𝐻 , 𝑅𝐻( 𝜉𝐻 ,  𝐸2
𝐻) 𝐸2

𝐻 = 𝜉𝐻 , 𝑅𝐻( 𝐸1
𝐻 ,  𝜉𝐻) 𝜉𝐻 = − 𝐸1

𝐻 

𝑅𝐻( 𝐸2
𝐻 ,  𝜉𝐻) 𝜉𝐻 = − 𝐸2

𝐻 , 𝑅𝐻( 𝐸2
𝐻 ,  𝐸1

𝐻) 𝐸1
𝐻 =  𝐸2

𝐻 , 𝑅𝐻( 𝜉𝐻,  𝐸1
𝐻) 𝐸1

𝐻 =  𝜉𝐻 

𝑆𝐻(𝜉𝐻,  𝜉𝐻) = 𝐺𝐻(𝑅𝐻( 𝐸1
𝐻,  𝜉𝐻) 𝜉𝐻 ,  𝐸1

𝐻) + 𝐺𝐻(𝑅𝐻( 𝐸2
𝐻,  𝜉𝐻) 𝜉𝐻,  𝐸2

𝐻)=𝐺𝐻(−𝐸1
𝐻 ,  𝐸1

𝐻)+𝐺𝐻(−𝐸2
𝐻,  𝐸2

𝐻) 

𝑆𝐻(𝜉𝐻,  𝜉𝐻) = 𝑛
 (𝛼2−𝛽2)

2
 = - 2 

Example 3.2. Consider the structure of  𝐹3 = (ℝ3, (ℝ3)0, 𝐹∗) indefinite Finsler manifold. (ℝ3)0= ℝ6 ∖

{0} is a real 6-dimensional  C∞  manifold and 𝑇ℝ3 is the tangent bundle of  ℝ3. A coordinate system in 

ℝ3 can be stated with {(𝑈, 𝜑): 𝑥1, 𝑥2, 𝑥3}, where 𝑈 is an open subset of  ℝ3 ; for any 𝑥 ∈ 𝑈, 𝜑: 𝑈 → ℝ3 is 

a diffeomorphism of 𝑈 onto 𝜑(𝑈), and    𝜑(𝑥) = (𝑥1, 𝑥2, 𝑥3). On ℝ3, denote by 𝜋 the canonical projection 

of 𝑇ℝ3 and by 𝑇𝑥𝑀 the fibre, at 𝑥 ∈ ℝ3, i.e., 𝑇𝑥ℝ3 = 𝜋−1(𝑥). Through the coordinate system {(𝑈, 𝜑): 𝑥𝑖} 

in ℝ3 , we can describe a new coordinate system {(𝑈∗, Φ); 𝑥1, 𝑥2, 𝑥3; 𝑦1, 𝑦2, 𝑦3} or shortly 

{(𝑈∗, Φ): 𝑥𝑖, 𝑦𝑖 } in 𝑇ℝ3, where 𝑈∗ = 𝜋−1(𝑈) and Φ: 𝑈∗ → ℝ6 is a diffeomorphism of 𝑈∗ on 𝜑(𝑈) × ℝ3, 

and Φ(𝑦𝑥) = (𝑥1, 𝑥2, 𝑥3; 𝑦1, 𝑦2, 𝑦3) for any 𝑥 ∈ 𝑈 and 𝑦𝑥 ∈ 𝑇𝑥ℝ3. Let (ℝ3)0 be a non-empty open 

submanifold of  𝑇ℝ3  such that 𝜋((ℝ3)0) = ℝ3  and 𝜃( ℝ3 ) ∩ (ℝ3)0 = ∅, where 𝜃 is the zero section of 

𝑇ℝ3 . Assume that (ℝ3)𝑥
0 = 𝑇𝑥ℝ3 ∩ (ℝ3)0 is a positive conic set, for any 𝑘 > 0 and 𝑦 ∈ (ℝ3)𝑥

0 .                                                

we have  𝑘𝑦 ∈  (ℝ3)𝑥
0  .  Obviously, the largest (ℝ3)0 holding the above circumstances is 𝑇ℝ3 ∖ 𝜃(𝑀), 

ordinarily given with the description of a Finsler manifold. The set of the local vector fields {
𝛿

𝛿𝑥1 ,
𝛿

𝛿𝑥2 ,
𝛿

𝛿𝑥3} 

is a basis in  (𝑇( ℝ3)0)𝐻 and  {
𝜕

𝜕𝑦1  ,
𝜕

𝜕𝑦2  ,
𝜕

𝜕𝑦3} is a basis in (𝑇( ℝ3)0)𝑉. We get 
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 𝑋𝑉 = 𝑋1
𝑉(𝑥, 𝑦)

𝜕

𝜕𝑦1 + 𝑋2
𝑉(𝑥, 𝑦)

𝜕

𝜕𝑦2 + 𝑋3
𝑉(𝑥, 𝑦)

𝜕

𝜕𝑦3 , 𝑋𝐻 = 𝑋1
𝐻(𝑥, 𝑦)

𝛿

𝛿𝑥1 + 𝑋2
𝐻(𝑥, 𝑦)

𝛿

𝛿𝑥2 + 𝑋3
𝐻(𝑥, 𝑦)

𝛿

𝛿𝑥3, for 

any  𝑋𝑉 ⋲ (𝑇( ℝ3)0)𝑉and 𝑋𝐻 ⋲ (𝑇( ℝ3)0)𝐻. Thus, for any X⋲  𝑇( ℝ3)0,  𝑋 = 𝑋𝑖
𝐻(𝑥, 𝑦)

𝛿

𝛿𝑥𝑖 + 𝑋𝑖
𝑉(𝑥, 𝑦)

𝜕

𝜕𝑦𝑖 

( i=1, 2, 3). Consider a  𝜂, 1-form, 𝜂 = 𝜂𝐻 + 𝜂𝑉 = 𝜂𝑖
𝐻(𝑥, 𝑦)𝑑𝑥𝑖 + 𝜂𝑖

𝑉(𝑥, 𝑦)𝛿𝑦𝑖 ( i=1, 2, 3), 

 𝜂𝐻 ⋲ (𝑇∗(ℝ3)0)𝐻 and 𝜂𝑉 ⋲ (𝑇∗(ℝ3)0)𝑉. 

𝐺 is a symmetric tensor field of type (0,2), non-degenerate and pseudo-Riemannian metric on ( ℝ3)0. 

Then, 𝐺 is called Sasaki Finsler metric on ( ℝ3)0 . Then, 𝐺 can be defined as below: 

𝐺 = 𝐺𝐻 + 𝐺𝑉 = 𝑔𝑖𝑗
𝐹∗

𝑑𝑥𝑖 ⊗ 𝑑𝑥𝑗 + 𝑔𝑖𝑗
𝐹∗

 𝛿𝑦𝑖  ⊗ 𝛿𝑦𝑖  ( i=1, 2, 3). 

The vector fields 

𝐸1
𝐻 =

𝑥1

𝑥3

𝛿

𝛿𝑥1   ,  𝐸2
𝐻 =

𝑥2

𝑥3

𝛿

𝛿𝑥2   ,  𝐸3
𝐻 =

𝛿

𝛿𝑥3 = 𝜉𝐻 

are linear independent at every point of  ((ℝ3)0)ℎ. Let 𝐺𝐻 be the Sasaki Finsler pseudo-metric of index 

2 given by 

𝐺𝐻(𝐸1
𝐻 , 𝜉𝐻)  = 𝐺𝐻(𝐸1

𝐻 , 𝐸2
𝐻) = 𝐺𝐻(𝐸2

𝐻, 𝜉𝐻) = 0 

𝐺𝐻(𝐸1
𝐻 , 𝐸1

𝐻) = 𝐺𝐻(𝐸2
𝐻 , 𝐸2

𝐻) =  −1, 𝐺𝐻(𝜉𝐻 , 𝜉𝐻) = 𝜀 = 1. 

Let 𝜂𝐻 be the 1-form derscribed by 

𝜂𝐻(𝑍𝐻) = 𝐺𝐻(𝑍𝐻 , 𝜉𝐻) = 𝐺𝐻(𝑧1𝐸1
𝐻 + 𝑧2𝐸2

𝐻 + 𝑧3 𝜉𝐻 , 𝜉𝐻) = 𝑧3 ,  ∀ 𝑍𝐻 ∈ (𝑇( ℝ3)0)𝐻. 

Consider 𝜙𝐻 the (1, 1) tensör field stated by 

𝜙𝐻(𝐸1
𝐻) =   𝐸2

𝐻  , 𝜙𝐻( 𝐸2
𝐻) = −𝐸1

𝐻 , 𝜙𝐻(𝜉𝐻) = 0. 

Then using the linearity of 𝜙𝐻, we have 

𝑍𝐻 = 𝑧1𝐸1
𝐻 +  𝑧2𝐸2

𝐻 + 𝑧3 𝜉𝐻 , 𝑊𝐻 = 𝑤1𝐸1
𝐻 +  𝑤2𝐸2

𝐻 + 𝑤3 𝜉𝐻 

𝜙𝐻(𝑍𝐻) = 𝜙𝐻(𝑧1𝐸1
𝐻 +  𝑧2𝐸2

𝐻 + 𝑧3 𝜉𝐻 ) = 𝑧1𝜙𝐻(𝐸1
𝐻) + 𝑧2𝜙𝐻( 𝐸2

𝐻) + 𝑧3 𝜙
𝐻(𝜉𝐻) 

𝜙𝐻(𝑍𝐻) = 𝑧1𝐸2
𝐻 −  𝑧2𝐸1

𝐻 

𝜙𝐻(𝑊𝐻) = 𝑤1𝜙𝐻(𝐸1
𝐻) + 𝑤2𝜙𝐻( 𝐸2

𝐻) + 𝑤3 𝜙
𝐻(𝜉𝐻) = 𝑤1𝐸2

𝐻 −  𝑤2𝐸1
𝐻 

(𝜙𝐻)2(𝑍𝐻) = −𝑧2𝐸2
𝐻 −  𝑧1𝐸1

𝐻 = -Z + 𝜂𝐻(𝑍𝐻)𝜉𝐻 

Thus we get 

𝐺𝐻(𝜙𝐻(𝑍𝐻), 𝜙𝐻(𝑊𝐻)) =  𝐺𝐻(𝑍𝐻 ,  𝑊𝐻) − 𝜂𝐻(𝑍𝐻) 𝜂𝐻(𝑊𝐻) 

∀ 𝑍𝐻 ∈ (𝑇( ℝ3)0)𝐻 and ∀ 𝑊𝐻 ∈ (𝑇( ℝ3)0)𝐻. Thus the structure (((ℝ3)0)ℎ , 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) define the 

almost contact pseudo-metric Finsler structure on ((ℝ3)0)ℎ. 

Let ∇ be the Levi-Civita connection with respect to pseudo-metric 𝐺𝐻. Then we have 

[𝐸1
𝐻 , 𝐸2

𝐻] = 0  , [ 𝐸1
𝐻 , 𝜉𝐻] =

1

𝑥3
𝐸1

𝐻 , [𝐸2
𝐻 ,  𝜉𝐻] =

1

𝑥3
 𝐸2

𝐻 . 

The connection ∇ of the pseudo-metric 𝐺𝐻 is given by 

2𝐺𝐻(∇𝑋𝐻𝑌𝐻 , 𝑍𝐻) = 𝑋𝐻𝐺𝐻(𝑌𝐻 , 𝑍𝐻) + 𝑌𝐻𝐺𝐻(𝑋𝐻 , 𝑍𝐻) − 𝑍𝐻𝐺𝐻(𝑋𝐻 , 𝑌𝐻) − 𝐺𝐻(𝑋𝐻 , [𝑌𝐻 , 𝑍𝐻]) 

−𝑔(𝑌𝐻 , [𝑋𝐻 , 𝑍𝐻])  + 𝐺𝐻(𝑍𝐻 , [𝑋𝐻 , 𝑌𝐻]) 

Which is known as Koszul’s formula. Using this formula, we have 
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2𝐺𝐻 (∇𝐸1
𝐻𝜉𝐻,  𝐸1

𝐻) = −𝐺𝐻(𝐸1
𝐻 , [𝜉𝐻 ,  𝐸1

𝐻 ] ) −𝐺𝐻(𝜉𝐻 , [ 𝐸1
𝐻 ,  𝐸1

𝐻]) + 𝐺𝐻(𝐸1
𝐻 , [ 𝐸1

𝐻 , 𝜉𝐻]) 

= 2𝐺𝐻( 
1

𝑥3
𝐸1

𝐻,  𝐸1
𝐻). 

Thus, 

∇𝐸1
𝐻𝜉𝐻 =

1

𝑥3
𝐸1

𝐻 ,  ∇𝜉𝐻𝐸1
𝐻 = 0. 

Again by using Koszul’s formula we obtain 

2𝐺𝐻 (∇𝐸2
𝐻𝜉𝐻,  𝐸2

𝐻) = −𝐺𝐻(𝐸2
𝐻 , [𝜉𝐻 ,  𝐸2

𝐻 ] ) −𝐺𝐻(𝜉𝐻 , [ 𝐸2
𝐻 ,  𝐸2

𝐻]) + 𝐺𝐻(𝐸2
𝐻 , [ 𝐸2

𝐻 , 𝜉𝐻]) 

= 2𝐺𝐻( 
1

𝑥3
 𝐸2

𝐻,  𝐸2
𝐻). 

Thus, 

∇ 𝐸2
𝐻𝜉𝐻 =  

1

𝑥3
 𝐸2

𝐻    ,    ∇𝜉𝐻𝐸2
𝐻 = 0. 

Also by using Koszul’s formula we obtain 

2𝐺𝐻 (∇𝐸1
𝐻  𝐸2

𝐻 ,  𝜉𝐻) = 𝐺𝐻(𝐸1
𝐻, [𝜉𝐻 ,  𝐸2

𝐻 ] ) +(𝜉𝐻 , [ 𝐸1
𝐻 ,  𝐸2

𝐻]) − 𝐺𝐻(𝐸2
𝐻 , [ 𝐸1

𝐻 , 𝜉𝐻])= 0. 

Thus, 

∇𝐸1
𝐻  𝐸2

𝐻 = 0 ,      ∇ 𝐸2
𝐻  𝐸1

𝐻 = 0 

Similarly we get 

2𝐺𝐻 (∇𝐸1
𝐻  𝐸1

𝐻 ,  𝜉𝐻) = − 𝐺𝐻(𝐸1
𝐻 , [𝐸1

𝐻 , 𝜉𝐻 ] ) +(𝜉𝐻 , [ 𝐸1
𝐻 ,  𝐸1

𝐻]) − 𝐺𝐻(𝐸1
𝐻 , [ 𝐸1

𝐻 , 𝜉𝐻]) 

= −2𝐺𝐻 ( 
1

𝑥3
𝐸1

𝐻 ,  𝐸1
𝐻) = =

2

𝑥3
= 2𝐺𝐻 ( 

1

𝑥3
𝜉𝐻 ,  𝜉𝐻). 

Thus, 

∇𝐸1
𝐻  𝐸1

𝐻 =
1

𝑥3
 𝜉𝐻 . 

If we use the equations we found   

(∇𝑋
𝐻𝜉𝐻) = 𝑥1∇𝐸1

𝐻𝜉𝐻 + 𝑥2∇ 𝐸2
𝐻𝜉𝐻 = 𝑥1  

1

𝑥3
 𝐸1

𝐻 + 𝑥2  
1

𝑥3
𝐸2

𝐻 , 

∀ 𝑋𝐻 ∈ (𝑇( ℝ3)0)𝐻. 

The above equations tell us the almost contact pseudo-metric Finsler manifold 

((ℝ3)0)ℎ , 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) satisfy (3.3) for 𝛼 = 0  ,   𝛽 =
2

𝑥3
 ,  𝜀 =  1. 

3.1. 𝜶 −Sasakian Indefinite Finsler Manifolds 

𝐹2𝑛+1 = (𝑀, 𝑀0, 𝐹∗) be an indefinite Finsler manifold. The almost contact pseudo-metric Finsler structures 

(𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and (𝜙𝑉 , 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉)  on  (𝑀0)ℎ and (𝑀0)𝑣 are the 𝛼 −Sasakian pseudo-metric Finsler 

structures if and only if 

(∇𝑋
𝐻𝜙𝐻)𝑌𝐻 =

𝛼

2
{𝐺𝐻(𝑋𝐻 , 𝑌𝐻)𝜉𝐻 − 𝜀𝜂𝐻(𝑌𝐻)𝑋𝐻}                                                                                                  (3.18) 

(∇𝑋
𝑉𝜙𝑉)𝑌𝑉 =

𝛼

2
{𝐺𝑉(𝑋𝑉 , 𝑌𝑉)𝜉𝑉 − 𝜀𝜂𝑉(𝑌𝑉)𝑋𝑉}                                                                                                    (3.19)                                                                                            
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and  

(∇𝑋
𝐻𝜉𝐻) = −𝜀

𝛼

2
 𝜙𝑋𝐻 , (∇𝑋

𝑉𝜉𝑉) = −𝜀
𝛼

2
 𝜙𝑋𝑉 . 

Moreover, from (3.18) and (3.19) we obtain 

(∇𝑋
𝐻𝜂𝐻)(𝑌𝐻) =

𝛼

2
Ω𝐻(𝑋𝐻 , 𝑌𝐻) =

𝛼

2
𝐺𝐻(𝑋𝐻 , 𝜙𝑌𝐻) 

(∇𝑋
𝑉𝜂𝑉)(𝑌𝑉) =

𝛼

2
𝛺𝑉(𝑋𝑉 , 𝑌𝑉) =

𝛼

2
𝐺𝑉(𝑋𝑉, 𝜙𝑌𝑉) 

Thus, these structures are the 𝛼 −Sasakian pseudo-metric structures in the 𝛼 −Sasakian indefinite Finsler 

manifolds ((𝑀0)ℎ, 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and ((𝑀0)𝑣 , 𝜙𝑉, 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉). Also, the following relations hold. 

𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝜉𝐻 =
𝛼2

4
{𝜂𝐻(𝑌𝐻)𝑋𝐻 − 𝜂𝐻(𝑋𝐻)𝑌𝐻} 

𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝜉𝑉 =
𝛼2

4
{𝜂𝑉(𝑌𝑉)𝑋𝑉 − 𝜂𝑉(𝑋𝑉)𝑌𝑉} 

𝜂𝐻(𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝑍𝐻) = 𝜀
𝛼2

4
{𝐺𝐻(𝑌𝐻 , 𝑍𝐻)𝜂𝐻(𝑋𝐻) − 𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝜂𝐻(𝑌𝐻)} 

𝜂𝑉(𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝑍𝑉) =  𝜀
𝛼2

4
{𝐺𝑉(𝑌𝑉 , 𝑍𝑉)𝜂𝑉(𝑋𝑉) − 𝐺𝑉(𝑋𝑉 , 𝑍𝑉)𝜂𝑉(𝑌𝑉)} 

(∇𝑍
𝐻𝑅𝐻)(𝑋𝐻 , 𝑌𝐻)𝜉𝐻 = 𝜀

𝛼2

8
{𝐺𝐻(𝑌𝐻 , 𝑍𝐻)𝑋𝐻 − 𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝑌𝐻} −

1

2
 𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝑍𝐻 

(∇𝑍
𝑉𝑅𝑉)(𝑋𝑉 , 𝑌𝑉)𝜉𝑉 =  𝜀

𝛼2

8
{𝐺𝑉(𝑌𝑉, 𝑍𝑉)𝑋𝑉 − 𝐺𝑉(𝑋𝑉 , 𝑍𝑉)𝑌𝑉} −

1

2
 𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝑍𝑉 

𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝑍𝐻 = 𝜀
𝛼2

4
{𝐺𝐻(𝑌𝐻 , 𝑍𝐻)𝑋𝐻 − 𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝑌𝐻} 

𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝑍𝑉 =  𝜀
𝛼2

4
{𝐺𝑉(𝑌𝑉, 𝑍𝑉)𝑋𝑉 − 𝐺𝑉(𝑋𝑉 , 𝑍𝑉)𝑌𝑉} 

𝑅𝐻(𝑋𝐻 , 𝜉𝐻)𝑌𝐻 =
𝛼2

4
{𝜂𝐻(𝑌𝐻)𝑋𝐻 − 𝜀𝐺𝐻(𝑋𝐻 , 𝑌𝐻)𝜉𝐻} 

𝑅𝑉(𝑋𝑉 , 𝜉𝑉)𝑌𝑉 =  
𝛼2

4
{𝜂𝑉(𝑌𝑉)𝑋𝑉 − 𝜀𝐺𝑉(𝑋𝑉 , 𝑌𝑉)𝜉𝑉} 

𝑅𝐻(𝜉𝐻 , 𝑋𝐻)𝑌𝐻 =
𝛼2

4
{𝜀𝐺𝐻(𝑋𝐻 , 𝑌𝐻)𝜉𝐻 − 𝜂𝐻(𝑌𝐻)𝑋𝐻} 

𝑅𝑉(𝜉𝑉, 𝑋𝑉)𝑌𝑉 =
𝛼2

4
{𝜀𝐺𝑉(𝑋𝑉 , 𝑌𝑉)𝜉𝑉 − 𝜂𝑉(𝑌𝑉)𝑋𝑉} 

𝑆𝐻(𝜉𝐻 , 𝜉𝐻) = {
𝛼2 (

2𝑛 − 𝑞

4
) , 𝜉𝐻 𝑖𝑠 𝑎 𝑠𝑝𝑎𝑐𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 

𝛼2 (
2𝑛 − 𝑞 + 1

4
) , 𝜉𝐻 𝑖𝑠 𝑎 𝑡𝑖𝑚𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟
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𝑆𝑉(𝜉𝑉, 𝜉𝑉) = {
𝛼2 (

2𝑛 − 𝑞

4
) , 𝜉𝑉  𝑖𝑠 𝑎 𝑠𝑝𝑎𝑐𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 

𝛼2 (
2𝑛 − 𝑞 + 1

4
) , 𝜉𝑉  𝑖𝑠 𝑎 𝑡𝑖𝑚𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

 

𝑆𝐻(𝑋𝐻 , 𝜉𝐻) = {
𝛼2 (

2𝑛 − 𝑞

4
) 𝜂𝐻(𝑋𝐻), 𝜉𝐻 𝑖𝑠 𝑎 𝑠𝑝𝑎𝑐𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 

𝛼2 (
2𝑛 − 𝑞 + 1

4
) 𝜂𝐻(𝑋𝐻), 𝜉𝐻 𝑖𝑠 𝑎 𝑡𝑖𝑚𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

 

𝑆𝑉(𝑋𝑉 , 𝜉𝑉) = {
𝛼2 (

2𝑛 − 𝑞

4
) 𝜂𝑉(𝑋𝑉), 𝜉𝑉 𝑖𝑠 𝑎 𝑠𝑝𝑎𝑐𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 

𝛼2 (
2𝑛 − 𝑞 + 1

4
) 𝜂𝑉(𝑋𝑉), 𝜉𝑉  𝑖𝑠 𝑎 𝑡𝑖𝑚𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

 

If 𝜉𝐻 and 𝜉𝑉 are the space-like vectors, then we get  

𝑆𝐻(𝜙𝑋𝐻 , 𝜙𝑌𝐻) = 𝑆𝐻(𝑋𝐻 , 𝑌𝐻) + 𝛼2 (
𝑞 − 2𝑛

4
) 𝜂𝐻(𝑋𝐻)𝜂𝐻(𝑌𝐻) 

𝑆𝑉(𝜙𝑋𝑉, 𝜙𝑌𝑉) = 𝑆𝑉(𝑋𝑉 , 𝑌𝑉) + 𝛼2 (
𝑞 − 2𝑛

4
) 𝜂𝑉(𝑋𝑉)𝜂𝑉(𝑌𝑉). 

If 𝜉𝐻 and 𝜉𝑉 are the time-like vectors, then we get 

𝑆𝐻(𝜙𝑋𝐻 , 𝜙𝑌𝐻) = 𝑆𝐻(𝑋𝐻 , 𝑌𝐻) + 𝛼2 (
𝑞 − 2𝑛 − 1

4
) 𝜂𝐻(𝑋𝐻)𝜂𝐻(𝑌𝐻) 

𝑆𝑉(𝜙𝑋𝑉, 𝜙𝑌𝑉) = 𝑆𝑉(𝑋𝑉 , 𝑌𝑉) + 𝛼2 (
𝑞 − 2𝑛 − 1

4
) 𝜂𝑉(𝑋𝑉)𝜂𝑉(𝑌𝑉). 

3.2.  𝜷 −Kenmotsu Indefinite Finsler Manifolds 

Let 𝐹2𝑛+1 = (𝑀, 𝑀0, 𝐹∗) be an indefinite Finsler manifold with the warped product space 𝑀2𝑛+1 =

ℝ ×𝑓 𝑁2𝑛. We suppose that (𝑁0)2𝑛 = 𝑇𝑁2𝑛 ∖ 𝜃 is a Kahlerian manifold and 𝑓(𝑡) = 𝑐𝑒𝛽
𝑡

2. For the almost 

Kenmotsu pseudo-metric Finsler structures (𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and (𝜙𝑉, 𝜉𝑉, 𝜂𝑉 , 𝐺𝑉)  on  (𝑀0)ℎ and (𝑀0)𝑣 

resp., 1-forms 𝜂𝐻 and 𝜂𝑉 and 2-forms Ω𝐻 and Ω𝑉  satisfy the below conditions. 

𝑑𝜂𝐻 = 𝑑𝜂𝑉 = 0, 𝑑𝜂𝐻 = 𝛽𝜂𝐻 ∧ 𝛺𝐻 , 𝑑𝜂𝑉 = 𝛽𝜂𝑉 ∧ Ω𝑉 

where 𝛽 being a non-zero real constant. 

The almost contact pseudo-metric Finsler structures (𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and (𝜙𝑉, 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉)  on  (𝑀0)ℎ 

and (𝑀0)𝑣 resp., are the 𝛽-Kenmotsu pseudo-metric Finsler structures if and only if 

(∇𝑋
𝐻𝜙)𝑌𝐻 =

𝛽

2
{𝜀𝐺𝐻(𝜙𝑋𝐻 , 𝑌𝐻)𝜉𝐻 − 𝜂𝐻(𝑌𝐻)𝜙𝑋𝐻}                                                                                   (3.20) 

(∇𝑋
𝑉𝜙)𝑌𝑉 =

𝛽

2
{𝜀𝐺𝑉(𝜙𝑋𝑉 , 𝑌𝑉)𝜉𝑉 − 𝜂𝑉(𝑌𝑉)𝜙𝑋𝑉}                                                                                     (3.21) 

and  

(∇𝑋
𝐻𝜉𝐻) =

𝛽

2
(𝑋𝐻 − 𝜂𝐻(𝑋𝐻)𝜉𝐻) = −

𝛽

2
𝜙2𝑋𝐻 

(∇𝑋
𝑉𝜉𝑉) =

𝛽

2
(𝑋𝑉 − 𝜂𝑉(𝑋𝑉)𝜉𝑉) = −

𝛽

2
𝜙2𝑋𝑉 . 

Moreover from (3.20) and (3.21) we obtain 
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(∇𝑋
𝐻𝜂𝐻)(𝑌𝐻) =

𝛽

2
𝐺𝐻(𝜙𝑋𝐻 , 𝜙𝑌𝐻) =

𝛽

2
𝛺𝐻(𝜙𝑋𝐻 , 𝑌𝐻) 

(∇𝑋
𝑉𝜂𝑉)(𝑌𝑉) =

𝛽

2
𝐺𝑉(𝜙𝑋𝑉 , 𝜙𝑌𝑉) =

𝛽

2
𝛺𝑉(𝜙𝑋𝑉 , 𝑌𝑉). 

Thus, these structures are the 𝛽 −Kenmotsu pseudo-metric Finsler structures. 

In the 𝛽 −Kenmotsu indefinite Finsler manifolds ((𝑀0)ℎ , 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻)  and((𝑀0)𝑣 , 𝜙𝑉 , 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉), 

the following relations hold. 

𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝜉𝐻 =
𝛽2

4
{𝜂𝐻(𝑋𝐻)𝑌𝐻 − 𝜂𝐻(𝑌𝐻)𝑋𝐻} 

𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝜉𝑉 =
𝛽2

4
{𝜂𝑉(𝑋𝑉)𝑌𝑉 − 𝜂𝑉(𝑌𝑉)𝑋𝑉} 

𝜂𝐻(𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝑍𝐻) =  𝜀
𝛽2

4
{𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝜂𝐻(𝑌𝐻) − 𝐺𝐻(𝑌𝐻 , 𝑍𝐻)𝜂𝐻(𝑋𝐻)} 

𝜂𝑉(𝑅(𝑋𝑉 , 𝑌𝑉)𝑍𝑉) =  𝜀
𝛽2

4
{𝐺𝑉(𝑌𝑉 , 𝑍𝑉)𝜂𝑉(𝑌𝑉) − 𝐺𝑉(𝑌𝑉, 𝑍𝑉)𝜂𝑉(𝑋𝑉)} 

(∇𝑍
𝐻𝑅𝐻)(𝑋𝐻 , 𝑌𝐻)𝜉𝐻 =  𝜀

𝛽2

8
{𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝑌𝐻 − 𝐺𝐻(𝑌𝐻 , 𝑍𝐻)𝑋𝐻} −

1

2
 𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝑍𝐻 

(∇𝑍
𝑉𝑅𝑉)(𝑋𝑉 , 𝑌𝑉)𝜉𝑉 =  𝜀

𝛽2

8
{𝐺𝑉(𝑋𝑉 , 𝑍𝑉)𝑌𝑉 − 𝐺𝑉(𝑌𝑉 , 𝑍𝑉)𝑋𝑉} −

1

2
 𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝑍𝑉 

𝑅𝐻(𝑋𝐻 , 𝑌𝐻)𝑍𝐻 = − 𝜀
𝛽2

4
{𝐺𝐻(𝑌𝐻 , 𝑍𝐻)𝑋𝐻 − 𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝑌𝐻} 

𝑅𝑉(𝑋𝑉 , 𝑌𝑉)𝑍𝑉 = − 𝜀
𝛽2

4
{𝐺𝑉(𝑌𝑉 , 𝑍𝑉)𝑋𝑉 − 𝐺𝑉(𝑋𝑉, 𝑍𝑉)𝑌𝑉} 

𝑅𝐻(𝜉𝐻 , 𝑋𝐻)𝑌𝐻 =  𝜀
𝛽2

4
{−𝐺𝐻(𝑋𝐻 , 𝑌𝐻)𝜉𝐻 + 𝜀𝜂𝐻(𝑌𝐻)𝑋𝐻} 

𝑅𝑉(𝜉𝑉 , 𝑋𝑉)𝑌𝑉 = 𝜀
𝛽2

4
{−𝐺𝑉(𝑋𝑉 , 𝑌𝑉)𝜉𝑉 + 𝜀𝜂𝑉(𝑌𝑉)𝑋𝑉} 

𝑆𝐻(𝜉𝐻 , 𝜉𝐻) = {
𝛽2 (

𝑞 − 2𝑛

4
) , 𝜉𝐻 𝑖𝑠 𝑎 𝑠𝑝𝑎𝑐𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 

𝛽2 (
𝑞 − 2𝑛 − 1

4
) , 𝜉𝐻 𝑖𝑠 𝑎 𝑡𝑖𝑚𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

 

𝑆𝑉(𝜉𝑉 , 𝜉𝑉) = {
𝛽2 (

𝑞 − 2𝑛

4
) , 𝜉𝑉  𝑖𝑠 𝑎 𝑠𝑝𝑎𝑐𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 

𝛽2 (
𝑞 − 2𝑛 − 1

4
) , 𝜉𝑉  𝑖𝑠 𝑎 𝑡𝑖𝑚𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

 

𝑆𝐻(𝑋𝐻 , 𝜉𝐻) = {
𝛽2 (

𝑞 − 2𝑛

4
) 𝜂𝐻(𝑋𝐻), 𝜉𝐻 𝑖𝑠 𝑎 𝑠𝑝𝑎𝑐𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 

𝛽2 (
𝑞 − 2𝑛 − 1

4
) 𝜂𝐻(𝑋𝐻), 𝜉𝐻 𝑖𝑠 𝑎 𝑡𝑖𝑚𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟
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𝑆𝑉(𝑋𝑉 , 𝜉𝑉) = {
𝛽2 (

𝑞 − 2𝑛

4
) 𝜂𝑉(𝑋𝑉), 𝜉𝑉  𝑖𝑠 𝑎 𝑠𝑝𝑎𝑐𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 

𝛽2 (
𝑞 − 2𝑛 − 1

4
) 𝜂𝑉(𝑋𝑉), 𝜉𝑉  𝑖𝑠 𝑎 𝑡𝑖𝑚𝑒 − 𝑙𝑖𝑘𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

 

𝑆𝐻(𝜙𝑋𝐻 , 𝜙𝑌𝐻) = 𝑆𝐻(𝑋𝐻 , 𝑌𝐻) + 𝛽2 (
2𝑛 − 𝑞

4
) 𝜂𝐻(𝑋𝐻)𝜂𝐻(𝑌𝐻) 

𝑆𝑉(𝜙𝑋𝑉 , 𝜙𝑌𝑉) = 𝑆𝑉(𝑋𝑉 , 𝑌𝑉) + 𝛽2 (
2𝑛 − 𝑞

4
) 𝜂𝑉(𝑋𝑉)𝜂𝑉(𝑌𝑉). 

4. Conformally Flat Trans-Sasakian Indefinite Finsler Manifolds 

We consider conformally flat trans-Sasakian indefinite Finsler manifolds ((𝑀0)ℎ, 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and 

((𝑀0)𝑣 , 𝜙𝑉 , 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉). The conformal curvature tensor field C is given by 

𝐶𝐻(𝑋𝐻 ,  𝑌𝐻)𝑍𝐻 = 𝑅𝐻(𝑋𝐻 ,  𝑌𝐻)𝑍𝐻 − 
1

(2𝑛−1)
[𝑆𝐻(𝑌𝐻 ,  𝑍𝐻)𝑋𝐻 −  𝑆𝐻(𝑋𝐻 ,  𝑍𝐻)𝑌𝐻 + 𝐺𝐻(𝑌𝐻, 𝑍𝐻)𝑄𝑋𝐻 −

𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝑄𝑌𝐻] +
𝑟

2𝑛(2𝑛−1)
[𝐺𝐻(𝑌𝐻 , 𝑍𝐻)𝑋𝐻 − 𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝑌𝐻]   (4.1) 

and 

𝐶𝑉(𝑋𝑉 ,  𝑌𝑉)𝑍𝑉 = 𝑅𝑉(𝑋𝑉 ,  𝑌𝑉)𝑍𝑉 − 
1

(2𝑛−1)
[𝑆𝑉(𝑌𝑉 ,  𝑍𝑉)𝑋𝑉 −  𝑆𝑉(𝑋𝑉 ,  𝑍𝑉)𝑌𝑉 + 𝐺𝑉(𝑌𝑉,  𝑍𝑉)𝑄𝑋𝑉 −

𝐺𝑉(𝑋𝑉, 𝑍𝑉)𝑄𝑌𝑉] +
𝑟

2𝑛(2𝑛−1)
[𝐺𝑉(𝑌𝑉, 𝑍𝑉)𝑋𝑉 − 𝐺𝑉(𝑋𝑉 ,  𝑍𝑉)𝑌𝑉]   (4.2), 

where  𝑅𝐻 , 𝑆𝐻 , 𝑄𝐻 and 𝑟  are the curvature tensor, the Ricci tensor, the Ricci operatör and the scalar 

curvature tensor  of the (𝑀0)ℎ, respectively. (𝑅𝑉, 𝑆𝑉 , 𝑄𝑉  and 𝑟  are the curvature tensor, the Ricci 

tensor, the Ricci operatör and the scalar curvature tensor  of the (𝑀0)𝑣). If the trans-Sasakian indefinite 

Finsler manifolds ((𝑀0)ℎ , 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and ((𝑀0)𝑣 , 𝜙𝑉, 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉) are conformally flat, i. e.   

𝐶𝐻 = 0 and 𝐶𝑉 = 0, then from (4.1) and (4.2), we have  

𝑅𝐻(𝑋𝐻 ,  𝑌𝐻)𝑍𝐻 = 
1

(2𝑛−1)
[𝑆𝐻(𝑌𝐻,  𝑍𝐻)𝑋𝐻 −  𝑆𝐻(𝑋𝐻 ,  𝑍𝐻)𝑌𝐻 + 𝐺𝐻(𝑌𝐻 , 𝑍𝐻)𝑄𝑋𝐻 − 𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝑄𝑌𝐻] −

𝑟

2𝑛(2𝑛−1)
[𝐺𝐻(𝑌𝐻, 𝑍𝐻)𝑋𝐻 − 𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝑌𝐻] 

𝑅𝑉(𝑋𝑉 ,  𝑌𝑉)𝑍𝑉 = 
1

(2𝑛−1)
[𝑆𝑉(𝑌𝑉,  𝑍𝑉)𝑋𝑉 −  𝑆𝑉(𝑋𝑉 ,  𝑍𝑉)𝑌𝑉 + 𝐺𝑉(𝑌𝑉,  𝑍𝑉)𝑄𝑋𝑉 − 𝐺𝑉(𝑋𝑉 , 𝑍𝑉)𝑄𝑌𝑉] −

𝑟

2𝑛(2𝑛−1)
[𝐺𝑉(𝑌𝑉, 𝑍𝑉)𝑋𝑉 − 𝐺𝑉(𝑋𝑉,  𝑍𝑉)𝑌𝑉] 

Now, taking scalar product on both side of above equations with  𝑊𝐻 and 𝑊𝑉, we have 

𝐺𝐻(𝑅𝐻(𝑋𝐻 ,  𝑌𝐻)𝑍𝐻 ,  𝑊𝐻)= 𝐺𝐻( 
1

(2𝑛−1)
[𝑆𝐻(𝑌𝐻 ,  𝑍𝐻)𝑋𝐻 − 𝑆𝐻(𝑋𝐻 ,  𝑍𝐻)𝑌𝐻 + 𝐺𝐻(𝑌𝐻 ,  𝑍𝐻)𝑄𝑋𝐻 −

𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝑄𝑌𝐻] +
𝑟

2𝑛(2𝑛−1)
[𝐺𝐻(𝑌𝐻 ,  𝑍𝐻)𝑋𝐻 − 𝐺𝐻(𝑋𝐻 ,  𝑍𝐻)𝑌𝐻] , 𝑊𝐻) 

and 

𝐺𝑉(𝑅𝑉(𝑋𝑉 ,  𝑌𝑉)𝑍𝑉 ,  𝑊𝑉)= 𝐺𝑉( 
1

(2𝑛−1)
[𝑆𝑉(𝑌𝑉,  𝑍𝑉)𝑋𝑉 −  𝑆𝑉(𝑋𝑉 ,  𝑍𝑉)𝑌𝑉 + 𝐺𝑉(𝑌𝑉 ,  𝑍𝑉)𝑄𝑋𝑉 −

𝐺𝑉(𝑋𝑉, 𝑍𝑉)𝑄𝑌𝑉] +
𝑟

2𝑛(2𝑛−1)
[𝐺𝑉(𝑌𝑉,  𝑍𝑉)𝑋𝑉 − 𝐺𝑉(𝑋𝑉,  𝑍𝑉)𝑌𝑉] , 𝑊𝑉) 

𝐺𝐻(𝑅𝐻(𝑋𝐻 ,  𝑌𝐻)𝑍𝐻 ,  𝑊𝐻) = 
1

(2𝑛−1)
[𝑆𝐻(𝑌𝐻 ,  𝑍𝐻)𝐺𝐻(𝑋𝐻 ,  𝑊𝐻) − 𝑆𝐻(𝑋𝐻 ,  𝑍𝐻)𝐺𝐻(𝑌𝐻 ,  𝑊𝐻) +

𝐺𝐻(𝑌𝐻 , 𝑍𝐻)𝐺𝐻(𝑄𝑋𝐻 ,  𝑊𝐻) − 𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝐺𝐻(𝑄𝑌𝐻 ,  𝑊𝐻)] 
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+
𝑟

2𝑛(2𝑛−1)
[𝐺𝐻(𝑌𝐻 ,  𝑍𝐻)𝐺𝐻(𝑋𝐻 ,  𝑊𝐻) − 𝐺𝐻(𝑋𝐻 , 𝑍𝐻)𝐺𝐻(𝑌𝐻 ,  𝑊𝐻)] , 

on putting   𝑊𝐻 = 𝜉𝐻 we get 

𝐺𝐻(𝑅𝐻(𝑋𝐻 ,  𝑌𝐻)𝑍𝐻 , 𝜉𝐻) = 
1

(2𝑛−1)
[𝑆𝐻(𝑌𝐻,  𝑍𝐻)𝜀 𝜂𝐻(𝑋𝐻) −  𝑆𝐻(𝑋𝐻 ,  𝑍𝐻) 𝜀 𝜂𝐻(𝑌𝐻) + 𝐺𝐻(𝑌𝐻 ,

𝑍𝐻) 𝑆𝐻(𝑋𝐻 , 𝜉𝐻) − 𝐺𝐻(𝑋𝐻 , 𝑍𝐻) 𝑆𝐻(𝑌𝐻, 𝜉𝐻)] − 𝜀 
𝑟

2𝑛(2𝑛−1)
[𝐺𝐻(𝑌𝐻 ,  𝑍𝐻) 𝜂𝐻(𝑋𝐻)−𝐺𝐻(𝑋𝐻 , 𝑍𝐻) 𝜂𝐻(𝑌𝐻)] . 

Replacing 𝑌𝐻 by 𝜉𝐻 in equation (3.11) we have 

𝐺𝐻(𝑅𝐻(𝑋𝐻 , 𝜉𝐻)𝑍𝐻 , 𝜉𝐻) = 𝜀 𝜂𝐻(𝑅𝐻(𝑋𝐻 , 𝜉𝐻)𝑍𝐻)=  
(𝛼2−𝛽2)

4
{𝜀 𝜂𝐻(𝑋𝐻)𝜂𝐻(𝑍𝐻) − 𝐺𝐻(𝑋𝐻 , 𝑍𝐻)} 

−𝜀
𝛼𝛽

2
{𝐺𝐻(𝜙𝑋𝐻 , 𝑍𝐻)}=

1

(2𝑛−1)
[𝜀 𝑆𝐻(𝜉𝐻 ,  𝑍𝐻) 𝜂𝐻(𝑋𝐻) −  𝜀 𝑆𝐻(𝑋𝐻 ,  𝑍𝐻)   + 𝜀 𝜂𝐻(𝑍𝐻)𝑆𝐻(𝑋𝐻 , 𝜉𝐻) −

𝐺𝐻(𝑋𝐻 , 𝑍𝐻) 𝑆𝐻(𝜉𝐻,  𝜉𝐻)] −
𝑟

2𝑛(2𝑛−1)
[ 𝜂𝐻(𝑍𝐻) 𝜂𝐻(𝑋𝐻) − 𝜀 𝐺𝐻(𝑋𝐻 , 𝑍𝐻)] . 

by using equations (3.14), (3.15) and (3.16) 

 𝑆𝐻(𝑋𝐻 ,  𝑍𝐻) = [ 
𝑟

2𝑛
+ 

(𝛼2 − 𝛽2)

4
((2𝑛 − 1) − 𝜀(2𝑛))] 𝐺𝐻(𝑋𝐻 , 𝑍𝐻) 

+[ 
−𝜀 𝑟

2𝑛
+

(𝛼2−𝛽2)

4
(4𝑛 − 𝜀 (2𝑛 − 1)] 𝜂𝐻(𝑍𝐻) 𝜂𝐻(𝑋𝐻) + 𝜀

𝛼𝛽

2
(2𝑛 − 1){𝐺𝐻(𝜙𝑋𝐻 , 𝑍𝐻)} 

and 

 𝑆𝑉(𝑋𝑉 ,  𝑍𝑉) = [ 
𝑟

2𝑛
+ 

(𝛼2 − 𝛽2)

4
((2𝑛 − 1) − 𝜀(2𝑛))] 𝐺𝑉(𝑋𝑉 , 𝑍𝑉) 

+[ 
−𝜀 𝑟

2𝑛
+

(𝛼2−𝛽2)

4
(4𝑛 − 𝜀 (2𝑛 − 1)] 𝜂𝑉(𝑍𝑉) 𝜂𝑉(𝑋𝑉) + 𝜀

𝛼𝛽

2
(2𝑛 − 1){𝐺𝑉(𝜙𝑋𝑉 , 𝑍𝑉)} 

Hence we have the following theorem 

Theorem 4.1. The conformally flat trans-Sasakian indefinite Finsler manifolds ((𝑀0)ℎ, 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) 

and ((𝑀0)𝑣 , 𝜙𝑉 , 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉) are the 𝜂 − Einstein manifolds if and only if 𝛼. 𝛽 = 0, where 𝛼, 𝛽 are 

constant functions defined on (𝑀0)ℎ  and (𝑀0)𝑣. 

Corollary 4.1. The conformally flat 𝛼 -Sasakian indefinite Finsler manifolds ((𝑀0)ℎ, 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and 

((𝑀0)𝑣 , 𝜙𝑉 , 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉) are the 𝜂 − Einstein manifolds. 

Corollary 4.2. The conformally flat 𝛽 -Kenmotsu indefinite Finsler manifolds ((𝑀0)ℎ, 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and 

((𝑀0)𝑣 , 𝜙𝑉 , 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉) are the 𝜂 − Einstein manifolds. 

5. Conclusion 

In this article, we study indefinite trans-Sasakian structures on indefinite Finsler manifolds by using 

pseudo-Finsler metric. Also,  𝛼 −Sasakian and   𝛽 −Kenmotsu indefinite Finsler manifolds are presented. 

The conformally flat trans-Sasakian indefinite Finsler manifolds ((𝑀0)ℎ , 𝜙𝐻 , 𝜉𝐻 , 𝜂𝐻 , 𝐺𝐻) and 

((𝑀0)𝑣 , 𝜙𝑉 , 𝜉𝑉 , 𝜂𝑉 , 𝐺𝑉) are the 𝜂 − Einstein manifolds if and only if 𝛼. 𝛽 = 0, where 𝛼, 𝛽 are constant 

functions defined on (𝑀0)ℎ and (𝑀0)𝑣. 
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Abstract − The bipolar soft set is supplied with two soft sets, one positive and the other negative.

Whichever feature is stronger can be selected to find the object we want. In this paper, the notion

of bipolar near soft set, which near set features are added to a bipolar soft set, and its fundamental

properties are introduced. In this new set, its features can be restricted and the basic properties and

topology of the set can be examined accordingly. With the soft set close to bipolar, it will be easier

for us to decide to find the most suitable object in the set of objects. This new idea is illustrated

with real-life examples. With the help of the bipolar near soft set, we make it easy to choose the one

closest to the criteria we want in decision making. Among the many given objects, we can find the

one with the properties we want by using the ones with similar properties.
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1. Introduction

The models used for each uncertainty problem are different from each other. For this, different set concepts

have been created. With the help of objects and features on these objects, Pawlak [17] first presented the

concept of rough set and then Peters [18, 19] presented the concept of near set, in which he examined sets

close to each other with these features. Another set, the soft set, was created by Molodtsov [14] and has been

studied by many people both in practice and in theory [1–3, 5–7, 12, 13, 15]. Feng and Li [9], on the other

hand, established a new concept by integrating the concepts of soft set and near set. Similarly, Tasbozan et

al. [22] combined the concepts of near and soft set. These concepts have been developed and produced in

the topology [23, 24].

The idea of bipolar soft set was presented by Shabir and Naz [20] and later this definition was used by many

researchers in applications. Karaaslan and Karatas [10] created the idea of bipolar soft cluster and used it in

applications. Mahmood [11] gave the bipolar soft set approach and its application. The notion of bipolar

soft set, which is a set in which human decisions are made with two types of notice, positive and negative,

was defined [4, 8, 10, 11, 16, 21]. Parameters with positive or negative properties give us information about

objects. In some uncertainty problems, a decision making approach should be established in order to make

the most accurate object selection under these conditions with the parameters determined by the decision

maker. The construction of all these mathematical models is up to the decision maker. By restricting this
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information to the selected parameters, we have obtained the concept of bipolar near soft set in order to

distinguish the ones with similar properties more quickly. In the application with bipolar near soft sets,

practicality can be provided in decision making so that we can find the object we will choose. Therefore, it

can be applied to multi-criteria decision making problems. Today, bipolar theory is used in the evaluation

system to understand people’s positive or negative opinions about objects. In this way, organizations can

track how much their products are liked or help buyers find the products closest to their needs.

In this study, the necessary definitions were given in the first part, and in the other part, we reached the

concept of bipolar near soft sets, in which we added set characteristics near to bipolar sets. It is exemplified

how this concept can be applied in an environment of uncertainty. In order to find the one with the features

we want among many objects, we were restricted to the features desired by the decision maker, and with

the choices we made, we were able to see the objects with similar features more clearly. This has provided

us with the practice of choosing the most suitable products for us that we need.

2. Preliminary

Let O be an objects set, F be a set of parameters that define properties on objects and P (O ) is the set of all

subsets of O .

Definition 2.1. [3] Let B ⊆F and F : B →P (O ), then (F,B) is a soft set(SS) over O .

Definition 2.2. [22] Let N AS = (O ,F ,∼Br , Nr ,υNr ) be a nearness approximation space, B be a non-empty

subsets of F and (F,B) be a SS over O . Then

Nr∗((F,B)) = (Nr∗(F (k) =∪{x ∈O : [x]Br ⊆ F (k)},B))

and

N∗
r ((F,B)) = (N∗

r (F (k) =∪{x ∈O : [x]Br ∩F (k) ̸= ;},B))

are lower and upper near approximation operators where [x]Br be equivalence classes denoted by the sub-

script r for the cardinality of the restricted subset Br . The SS Nr ((F,B)) with BndNr (B)((F,B)) ⩾ 0 called a

near soft set(N SS) where

BndNr (B)((F,B)) = N∗
r ((F,B))\Nr∗((F,B)).

Definition 2.3. [21] Let F : B → P (O ) and G : ¬B → P (O ) be a mappings which F (k)∩G(¬k) = ;, ∀k ∈ B .

(F,G ,B) is called a bipolar soft set (BSS) over O .

3. Bipolar Near Soft Set

In this section, by introducing the bipolar set, we have reached the concept of bipolar near soft sets, to

which we add near set properties. How this concept can be applied in an environment of uncertainty is

discussed with assumptions about the values of the data on the example. Thus, in order to find the one with

the features we want among many objects, we can select objects with similar features by limiting them to

the features the decision maker wants.

Definition 3.1. Let σ= (F,B), Nr (σ) be a N SS and (F,G ,B) be a BSS over O . F : B → P (O ) and G : ¬B → P (O )

are mappings which F (k)∩G(¬k) =;, ∀k ∈ B. Then the triplet N (F,G ,B) is called a bipolar near soft set over

O (B N SS).
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Definition 3.2. Let N (Fs ,Gs , A) and N (F1,G1,B) be B N SS over O , if

1. A ⊆ B ,

2. Fs(k) ⊆ F1(k) and G1(¬k) ⊆Gs(¬k), ∀k ∈ A,

3. For N∗(σ) = N∗(Fs(k), A) of a set (Fs , A) and N∗(µ) = N∗(F1(k),B) of a set (F1,B), N∗(σ) ⊆ N∗(µ),

then N (Fs ,Gs , A) is a bipolar near soft subset B N Ss of N (F1,G1,B) and denoted by N (Fs ,Gs , A) ⊆ N (F1,G1,B).

Definition 3.3. If N (Fs ,Gs , A) is a B N Ss of N (F1,G1,B) and N (F1,G1,B) is a B N Ss of N (Fs ,Gs , A), then

N (Fs ,Gs , A) and N (F1,G1,B) are equal B N SS over O .

Definition 3.4. Let F c and Gc be mappings where F c (k) = G(¬k) and Gc (¬k) = F (k), ∀k ∈ A. N (F,G , A)c

= N (F c ,Gc , A) is a complement of a B N SS.

Definition 3.5. IfΦ(k) =; and N (O (¬k)) = O , for all k ∈ A, then N (Φ,O , A) is a null B N SS over O .

Definition 3.6. If N (O (k)) = O and N (Φ(¬k)) =;, for all k ∈ A, then N (O ,Φ, A) is an absolute B N SS over O .

Definition 3.7. Let N (F,G , A) and N (F1,G1,B) be two B N SS over O . The intersection of N (F,G , A) and

N (F1,G1,B), denoted by N (H , I ,C ) = N (F,G , A)∩N (F1,G1,B), ∀k ∈C = A∩B where H = F∩F1 and I =G∩G1,

the union of N (F,G , A) and N (F1,G1,B) where denoted by N (H , I ,C ), ∀k ∈C = A ∪B where H = F ∪F1 and

I =G ∪G1.

Example 3.8. Let O = {y1, y2, y3, y4, y5} be a five person and B = {k1,k2} ⊆ F = {k1,k2,k3,k4} be a set of pa-

rameters, where k1,k2,k3,k4 stand for tall, strong, well dressed and intelligent, respectively. Sample values

of the ki , i = 1,2,3,4 functions are shown

[y1]k1 = {y1, y4}, [y2]k1 = {y2, y3, y5},

[y1]k2 = {y1, y4}, [y2]k2 = {y2, y3}, [y5]k2 = {y5},

[y1]k1,k2 = {y1, y4},

[y2]k1,k2 = {y2, y3},

[y5]k1,k2 = {y5}.

Let B = {k1,k2} and (F,B) be a SS defined by (F,B) = ((k1, {y1, y4}), (k2, {y3, y5})) is a N SS with r = 1 and r = 2.

We get

N∗((F,B)) = (F∗(k2),B) = {(k2, {y5})}, f or k2 ∈ B

and

N∗((F,B)) = {(k2, {y2, y3, y5})}, f or k1,k2 ∈ B.

Hence, BndN (σ) ≥ 0, then (F,B) is a N SS.

Let F : B → P (O ) and G : −B → P (O ) be mappings given as follows:

F (k1) = {y1, y4},G(¬k1) = {y3},

F (k2) = {y3, y5},G(¬k2) =;.

Then

N (F,G ,B) = {(k1, {y1, y4}, {y3}), (k2, {y3, y5},;)}
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is a B N SS.

Definition 3.9. Let (F,B) be a N SS over O , u ∈ O . Then N (Fu ;Gu ;B) denotes the bipolar near soft set over

O and (uk ,u
′
(−k),B) called a bipolar near soft point, defined by Fu(k) = {u} and Fu(k

′
) =; for all k

′ ∈ B − {k}

and Gu(−k) =O−{u} = u′, for each k ∈ B .

Definition 3.10. Let µ= N (F,G ,B) be a B N SS over O and τ be the collection of B N Ss of O . If the following

are provided

i) (;,G ,B), (O ,G ,B) ∈ τ,

ii) N (F1,G1,B), N (F2,G2,B) ∈ τ then N (F1,G1,B)∩N (F2,G2,B) ∈ τ,

iii) N (Fi ,Gi ,B),∀k ∈ B then ∪
i

N (Fi ,Gi ,B) ∈ τ,

then N (O ,τ,B ,−B) is a bipolar near soft topological space(B N ST S).

Definition 3.11. Let N (O ,τ,B ,−B) be called a B N ST S over O . Then the collection τk = {F (k) : N (F,G ,B) ∈ τ}

for each k ∈ B defines a topology on O .

Definition 3.12. Let N (O ,τ,B ,−B) be a B N ST S over O and N (F,G ,B) be a B N SS over O . Then N (F,G ,B) is

said to be bipolar near soft closed (B N SC ) if and only if N (F,G ,B)c in τ. Then (O ,τ,B ,−B) is a B N ST S over

O and the members of are bipolar near soft open (B N SO) sets in O .

Definition 3.13. Let N (F,G ,B) be a B N SS over O and Y ̸= ; ⊆ O . Then the B N SS of N (F,G ,B) over Y is

defined as follows: Y F (k) = Y ∩F (k) and Y G(−k) = Y ∩G(−k); for each k ∈ B and denoted by N (Y F,Y G ,B).

Definition 3.14. Let N (O ,τ,B ,−B) be a B N ST S over O and Y ̸= ;⊆O . Then τY = {N (Y F,Y G ,B) : N (F,G ,B) ∈
τ} is a B N ST on Y .

Definition 3.15. Let N (O ,τs ,B ,−B) be a B N ST S over O . Then the collection consisting of B N SS, N (F,G ,B)

such that (F,B) ∈ τ, G(−k) = F ′(k) =O\F (k) ∀−k ∈−B , defined a B N ST over O .

Example 3.16. Let O , B be sets, F : B → P (O ) and G : −B → P (O ) be two maps as in Example 16. Then

N (F1,G1,B) = {(k1, {y1, y4}, {y1}), (k2, {y3, y5},;)},

N (F2,G2,B) = {(k1, {y1, y4, y2}, {y1}), (k2, {y5},;)},

N (F3,G3,B) = {(k1, {y1, y4}, {y1}), (k2, {y5},;)}

are B N SS. Also, we obtained

τ= {N (F1,G1,B), N (F2,G2,B), N (F3,G3,B), (;,G ,B), (O ,G ,B)}.

Then, N (O ,τ,B ,−B) is a B N ST S.

Definition 3.17. Let Y ̸= ; and Y ⊆ O , then the whole B N SS, N (Y ,G ,B) over O for which Y (k) = Y , for all

k ∈ B.

Definition 3.18. Let N (F,G ,B) be a B N SS over O , Y ̸= ; and Y ⊆O . Then the B N SsS of N (F,G ,B) over Y is

defined as follows:
Y F (k) = Y ∩F (k),∀k ∈ B

and denoted by N (Y F,G ,B).



H. Taşbozan / IKJM / 6(1) (2024) 21-29 25

Definition 3.19. Let N (K1,P1,B) and N (K2,P2,D) be two B N SS over O1 and O2, respectively. The cartesian

product N (K1,P1,B) × N (K2,P2,D) is defined by (K1 ×K2)(B×C ) where (K1 ×K2)(B×D)(k,m) = K1(k)×K2(m),

∀(k,m) ∈ B ×D . According to this definition, the soft set N (K1,P1,B) × N (K2,P2,D) is a B N SS over O1 × O2

and its parameter universe is B ×D.

Definition 3.20. Let N (O ,τ,B ,−B) be a B N ST S over O , then the members of τ are said to be bipolar near

soft open(B N SO) sets in O .

Definition 3.21. Let N (O ,τ,B ,−B) be a B N ST S and N (F,G ,B) be a B N SS over O . Then the B N S closure

N (F,G ,B)− is the intersection of all B N SC sets of (F,G ,B) is the smallest B N SC over O and the B N S interior

N (F,G ,B)◦ is the combination of all B N SO sets of N (F,G ,B) is the biggest B N SO set over O .

3.1. Application of Bipolar Near Soft Sets

In this part, we will use the notion of bipolar near soft sets to make the best choice available to us. In order

to do this, we will follow some steps. Let us now consider this with an example.

Example 3.22. Assume that a house selling firm has a set of houses O with a set of parameters F . Let

O = {y1, y2, y3, y4, ..., y12} be a set of twelve house and B = {k5,k7} ⊆ F = {k1,k2,k3, ...,k7} be a set of seven

parameters, where ki , i = (1,2,3,4,5,6,7) stand for “expensive,”“cheap,” “modern,” “earthquake resistant”

“good location,” “multi-storey,”and “quality material,”respectively. We should noted that -k1 does not de-

note “cheap” and ¬k2 does not denote “expensive.” Now, assume that a house selling firm categorises these

houses with interest to the set of parameters using a concept of a B N SS, N (F,G ,B) as follows:

F (k1) = {yi : i = 1,2,5,7,9},G(−k1) = {yi : i = 3,4,10},

F (k2) = {yi : i = 3,5,8,11,12},G(−k2) = {yi : i = 1,2,9,10},

F (k3) = {yi : i = 1,7,8,9,12},G(−k3) = {yi : i = 2,5,10},

F (k4) = {yi : i = 1,5,8,9,11,12},G(−k4) = {yi : i = 2,3,4},

F (k5) = {yi : i = 1,2,7,8,9,10,11,12},G(−k5) = {yi : i = 4,5},

F (k6) = {yi : i = 2,10},G(−k6) = {yi : i = 7,9,11},

F (k7) = {yi : i = 8,12},G(−k7) = {yi : i = 6,7,11}.

Now, suppose that we want to select a house with respect to B = {k5,k7} ⊆F . We will construct table respect

with F : B → P (O ) and G : −B → P (O ).
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Table 1

k1 −k1 k2 −k2 k3 −k3 k4 −k4 k5 −k5 k6 −k6 k7 −k7

y1 1 0 0 −1 1 0 1 0 1 0 0 0 0 0

y2 1 0 0 −1 0 −1 0 −1 1 0 1 0 0 0

y3 0 −1 1 0 0 0 0 −1 0 0 0 0 0 0

y4 0 −1 0 0 0 0 0 −1 0 −1 0 0 0 0

y5 1 0 1 0 0 −1 1 0 0 −1 0 0 0 0

y6 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

y7 1 0 0 0 1 0 0 0 1 0 0 −1 0 −1

y8 0 0 1 0 1 0 1 0 1 0 0 0 1 0

y9 1 0 0 −1 1 0 1 0 1 0 0 −1 0 0

y10 0 −1 0 −1 0 −1 0 0 1 0 1 0 0 0

y11 0 0 1 0 0 0 1 0 1 0 0 −1 0 −1

y12 0 0 1 0 1 0 1 0 1 0 0 0 1 0

We determine the value of (yn ,F (ki )) and (yn ,G(−ki )) by the following two roles and construct table:

(yn ,F (ki )) =
{

1, yn ∈ F (ki )

0, yn ∉ F (ki )
.

If we combine it using F (ki )∩G(¬ki ) =; for each ki ∈F , we get the following table:

(yn , (F (ki ),G(−ki ))) =


1, yn ∈ F (ki )

−1, yn ∈G(−ki )

0, yn ∉ F (ki )∪G(−ki )

.

Table 2

(k1,−k1) (k2,−k2) (k3,−k3) (k4,−k4) (k5,−k5) (k6,−k6) (k7,−k7) Sum

y1 1 −1 1 1 1 0 0 3

y2 1 −1 −1 −1 1 1 0 0

y3 −1 1 0 −1 0 0 0 −1

y4 −1 0 0 −1 −1 0 0 −3

y5 1 1 −1 1 −1 0 0 1

y6 0 0 0 0 0 0 −1 −1

y7 1 0 1 0 1 −1 −1 1

y8 0 1 1 1 1 0 1 5

y9 1 −1 1 1 1 −1 0 2

y10 −1 −1 −1 0 1 1 0 −1

y11 0 1 0 1 1 −1 −1 1

y12 0 1 1 1 1 0 1 5
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Enumerate the values by the rule

Sumn =
7∑

i=1
(yn , (F (ki ),G(¬ki ))).

Find the verdict, denoted by d , for which d = {maxSumn : n = 1,2, ..., s}, where s = |y |. Then, d is the

suitable select house. If d has more than one value, any of them can be selected.

Let σ= (F,B), B = {k5,k7} be a SS defined by

N (F,G ,B) = ((k5, {y1, y2, y7, y8, y9, y10, y11, y12}, {y4, y5}), (k7, {y8, y12}, {y6, y7, y11})) is a B N SS with r = 2. From

the table, we obtained

[y1]k5 = {y1, y2, y7, y8, y9, y10, y11, y12}, [y3]k5 = {y3, y4, y5, y6},

[y8]k7 = {y8, y12}, [y1]k7 = {y1, y2, y3, y4, y5, y6, y7, y9, y10, y11},

[y8]k5,k7 = {y8, y12},

[y1]k5,k7 , = {y1, y2, y7, y9, y10, y11},

[y3]k5,k7
= {y3, y4, y5, y6}.

Hence, we get

N∗(σ) = N∗(F (k),B)

= (N∗F (k),B)

= (F∗(k),B)

= (F∗(k7),B)

= {(k7, {y8, y12})}, f or k7 ∈ B

and

N∗(σ) = (F∗(k),B)

= {((k5, {y1, y2, y7, y8, y9, y10, y11, y12}), (k7, {y8, y12}))} f or k5,k7 ∈ B.

Then, N (F,G ,B) is a B N SS.
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Table 3

(k5,−k5) (k7,−k7) Sum

y1 1 0 1

y2 1 0 1

y3 0 0 0

y4 −1 0 −1

y5 −1 0 −1

y6 0 −1 −1

y7 1 −1 0

y8 1 1 2

y9 1 0 1

y10 1 0 1

y11 1 −1 0

y12 1 1 2

From the table, we obtained

Sumn =
7∑

i=1
(yn , (F (ki ),G(¬ki ))) = 2.

Now, one can note from table that houses y8 and y12 are the optimal houses. Therefore, any of them can be

chosen by us to get the house, we want. Accordingly, we find the most suitable house or houses according

to the k5 and k7 features.

4. Conclusions

In order to find the one with the properties we want among the many objects given in this study, we reached

the concept of near soft sets, which we obtained that have properties near to each other, with a bipolar

approach. The concept of bipolar near soft set enabled us to see more clearly what we want, namely the

practice of choosing the best products. It reduced the features so we could choose what we needed. We aim

to obtain similar examples according to the definitions we will find in future studies.
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Abstract − Group action is determined by the automorphism group and algebra action is defined

by the multiplication algebra. In the study we generalize the multiplication algebra by defining

multipliers of an R-algebroid M. Firstly, the set of bimultipliers on an R-algebroid is introduced, it

is denoted by Bi m(M), then it is proved that this set is an R-algebroid, it is called multiplication

R-algebroid. Using this Bi m(M), for an R-algebroid morphism A −→ Bi m(M) it is shown that this

morphism gives an R-algebroid action. Then we examine some of the properties associated with
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1. Introduction

In the realm of group theory, the interplay between groups and their actions on one another is a subject of

profound importance. Central to this discourse is the notion that the action of a group on another group

is intricately determined by the automorphism group. This relationship is encapsulated in the form of a

homomorphism, mapping the acting group to the automorphism group of the target group. Moreover, any

extension of groups also finds its roots in such homomorphisms, further underscoring their significance in

understanding the dynamics between groups.

Extending beyond the confines of group theory, similar principles resonate in the domain of algebra, where

the action of an algebra on another is closely intertwined with the concept of multiplication algebras. The

seminal work of Maclane [1] lays the foundation for this concept, elucidating its pivotal role in algebraic

structures. Building upon this framework, Ege and Arvasi [2] introduce actor crossed modules of commuta-

tive algebras, leveraging multiplication algebras to generalize aspects from commutative algebras to crossed

modules [13], [14].

Within the realm of R-algebroids, a branch of algebraic structures, significant attention has been directed

towards their study, notably by Mitchell [3], [4], [5] and Amgott [6]. Mitchell’s categorical definition of R-

algebroids and Mosa’s introduction of crossed modules of R-algeb-

roids serve as pivotal contributions to this field. Notably, the equivalence between crossed modules of R-

algebroids and special double algebroids with connections, established by Mosa [7], further enriches our
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understanding of these structures. Subsequent investigations by Akca and Avcioglu [8], [9], [10], [11], [12]

delve deeper into crossed modules of R-algebroids, unraveling intricate connections and properties. By

means of algebra action, the 2-crossed module structure is defined [15] and the equivalence of 2-crossed

modules to simplicial algebras is shown [16]. There are also studies [17], [18], [19], [20], [21] on 2-crossed

modules.

In this paper, we embark on a journey to explore the multifaceted landscape of R-algebroids, with a specific

focus on their actions and associated properties. Our endeavor begins with the introduction of the set de-

noted Bim(M), comprising multipliers of an R-algebroid M. Through a rigorous exposition, we establish that

this set itself forms an R-algebroid, aptly termed the multiplication R-algebroid, by defining suitable oper-

ations. Leveraging this newfound structure, we define an R-algebroid morphism from an arbitrary algebra

to Bim(M), thereby elucidating the mechanism through which actions manifest. Finally, we undertake a

comprehensive examination of the properties entailed by this action, shedding light on its intricacies and

implications.

Throughout our discourse, we maintain R as a fixed commutative ring, anchoring our investigations within

a well-defined mathematical framework. As we delve deeper into the intricacies of R-algebroids and their

actions, we aim to uncover novel insights and forge connections that resonate across various mathematical

domains.

Throughout this paper R will be a fixed commutative ring.

1.1. Preliminaries

Most of the following data can be found in [3–5].

Definition 1.1. An R-category is defined as a category in which each homset possesses an R-module struc-

ture, and the composition is R-bilinear. Consequently, a category earns the designation of an R-category

only when it satisfies these conditions.

Specifically, a small R-category, termed as an R-algebroid, delineates a more specialized class within this

framework. This classification is attributed to a category where homsets exhibit an R-module structure,

composition is R-bilinear, and additionally, the category is small in size.

Definition 1.2. An R-linear functor, denoted as an R-functor, denotes a functorial mapping between two

R-categories, preserving the R-module structures inherent in their homsets. This functor encapsulates the

essence of R-linearity within the categorical framework.

Moreover, within the realm of R-algebroids, an R-functor between two such structures assumes the appel-

lation of an R-algebroid morphism. This morphism elucidates the preservation of the algebraic structure,

including R-linearity and compositionality, between the respective R-algebroids.

Definition 1.3. Let A be a pre-R-algebroid, and consider the family I = {I (x; y) ⊆ A(x; y) : x, y ∈ A0} of R-

submodules. If ab,ba′ ∈ I for all b ∈ I , a, a′ ∈ A with t a = sb, tb = sa′, then I is denoted as a two-sided ideal

of A.

Definition 1.4. Let A and N be two pre-R-algebroids sharing the same object set A0. Consider a family of
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maps defined for all x, y, z ∈ A0 as follows:

N (x, y)× A(y, z) −→ N (x, z)

(n, a) 7→ na

is called a right action of A on N if the conditions

1. na1+a2 = na1 +na2 4. (n′n) = n′na

2. (n1 +n2)a = na
1 +na

2 5. r �na = (r �n)a = nr �a

3. (na)a′ = naa′

and the condition n1tn = n, whenever 1tn exists, are satisfied for all r ∈ R, a, a′, a1, a2 ∈ A, n,n′,n1,n2 ∈ N

with compatible sources and targets.

In a similar vein, a left action of A on N is established, albeit with a distinction in the side of application.

Additionally, if A exhibits both a right and a left action on N , and if the actions conform to the condition

(an)a′ = a(na′
) for all n ∈ N , a, a′ ∈ A with t a = sn and tn = sa′, where t denotes the target map and s

denotes the source map, then A is termed to possess an associative action on N , or to act associatively on

N .

Corollary 1.5. Given two pre-R-algebroids A and N with the same object set

i. if A has a left action on N then 0A(x,sn) n = 0A(x,tn) and −an = a(−n) =−an,

ii. if A has a right action on N then n0A(tn,y) = 0A(sn,y) and n−a′ = (−n)a′ =−na′

for all n ∈ N , a, a′ ∈ A, x, y ∈ A0 with t a = sn, tn = sa′.

Definition 1.6. Let M is an R-Algebroid, for all m,m′,m′′ ∈ M , with t (m) = s(m′) and t (m′′) = s(m)

AnnM M = {
m ∈ M : mm′ = 0,m′′m = 0,m′,m′′ ∈ M

}
is called Annihilator of M R-Algebroid.

Definition 1.7. [7] For R-algebroids A and M sharing the same object sets and with A exhibiting an asso-

ciative action on M , an R-algebroid morphism η : M → A is termed a crossed module of R-algebroids if it

satisfies the following conditions:

C M1. η(am) = aη(m)

η(ma′
) = η(m)a′

C M2. mη(m′) = mm′ =η(m) m′

2. Bimultipliers of an R-algebroid

In this section, we commence our exploration by defining the bimultipliers of an R-algebroid M . Subse-

quently, we embark on a rigorous proof, establishing that the set of bimultipliers of M indeed forms an

R-algebroid, which we aptly term the multiplication R-algebroid. This designation arises from the inherent

structure and operations defined on this set, which align with the fundamental principles of R-algebroids.

Definition 2.1. Let M is an R-Algebroid and f , g : M → M be an R-Linear mappings with identity on object
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set satisfying the following equations for m,m′ ∈ M with t (m) = s(m′),

f (mm′) = m f (m′)
g (mm′) = g (m)m′

f (m)m′ = mg (m′)

The pair ( f , g ) is called bimultipliers of M. Set of all bimultipliers of M are denoted by Bi m(M).

Theorem 2.2. Let Bi m(M) be a set of bimultipliers of M. Bi m(M) is an R-Algebroid with single object and

with the following operations,

( f , g )+ ( f ′, g ′) = ( f + f ′, g + g ′)
( f , g )◦ ( f ′, g ′) = ( f ′ ◦ f , g ◦ g ′)

r · ( f , g ) = (r · f ,r · g )

Proof.

r · (( f , g )+ ( f ′, g ′)) = r · ( f + f ′, g + g ′)
= (r · f + r · f ′,r · g + r · g ′)
= r · ( f , g )+ r · ( f ′, g ′)

(r1 + r2) · ( f , g ) = ((r1 + r2) · f , (r1 + r2) · g )

= (r1 · f + r2 · f ,r1 · g + r2 · g )

= (r1 · f ,r1 · g )+ (r2 · f ,r2 · g )

= r1 · ( f , g )+ r2 · ( f , g )

(r1r2) · ( f , g ) = (r1r2 · f ,r1r2 · g )

= r1(r2 · f ,r2 · g )

= r1 · (r2 · ( f , g ))

r · ( f , g )◦ ( f ′, g ′) = (r · f ,r · g )◦ ( f ′, g ′)
= ((r · f ′)◦ f , (r · g )◦ g ′)
= (r · ( f ′ ◦ f ),r · (g ◦ g ′))

= r · ( f ′ ◦ f , g ◦ g ′)
= r · (( f , g )◦ ( f ′, g ′))

( f , g )◦ r · ( f ′, g ′) = ( f , g )◦ (r · f ′,r · g ′)
= ((r · f ′)◦ f , g ◦ (r · g ′))

= (r · ( f ′ ◦ f ),r · (g ◦ g ′))

= r · ( f ′ ◦ f , g ◦ g ′)
= r · (( f , g )◦ ( f ′ ◦ g ′))

In the realm of group theory, the characterization of an action is facilitated by the automorphism group.

Specifically, for any group A, its action on itself is delineated by a homomorphism A → Aut(A). However,

in certain algebraic contexts, the mere structure of automorphisms proves insufficient to define an action.

Unlike groups, the set of automorphisms of an algebra typically does not form an algebra itself.
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In the study conducted by Arvasi and Ege [2], attention is directed towards the case of commutative algebras,

where the limitations of the automorphism structure are explored. Furthermore, MacLane [1] delves into

the realm of associative algebras, introducing the notion of the bimultiplication algebra Bi m(M) associated

with an associative algebra M . This concept serves as an alternative to the automorphism group, effectively

fulfilling the role of providing an action within the associative algebraic framework.

Definition 2.3. Let A and M be R-Algebroids with same object we define the set

M
a

t×s M = {(m,m′) ∈ M ×M : t (m) = s(a), t (a) = s(m′)}

for an a ∈ A.

Theorem 2.4. Let A and M be R-Algebroids with same object set and Ann(M) = 0 or M 2 = M . For the maps

fa : M → M

m 7→ fa(m) = ma

and
ga : M → M

m′ 7→ ga(m′) =a m′

for an a ∈ A with (m,m′) ∈ M
a

t×s M , let ( fa , ga) ∈ Bi m(M). Then the R-Algebroid morphism

φ : A → Bi m(M)

a 7→φ(a) =φa = ( fa , ga)

gives an R-Algebroid action of A on M.

Proof.

(i ) Since φ is an R-algebroid homomorphism, then

r ·φ(a) =φ(r ·a) ⇒ r ·φ(a) =φ(r ·a)

for a ∈ A and
r ·φa(m,m′) = r · ( fa , ga)(m,m′)

= r · ( fa(m), ga(m′))

= (r · fa(m),r · ga(m′))

φr ·a(m,m′) = ( fr ·a , gr ·a)(m,m′)
= ( fr ·a(m), gr ·a(m′))

for (m,m′) ∈ M
a

t×s M . Therefore we get

fr ·a(m) = r · fa(m) ⇒ mr ·a = r ·ma

gr ·a(m′) = r · ga(m′) ⇒ m′(r ·a) = r · (m′a) =r ·a m′ = r ·a m′.
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(i i ) Since φ is an R-Algebroid homomorphism, then

φ(a1 +a2) =φ(a1)+φ(a2) ⇒φa1+a2 =φa1 +φa2

for a1, a2 ∈ A with s(a1) = s(a2), t (a1) = t (a2) and

φa1+a2 (m,m′) = ( f(a1+a2), g(a1+a2))(m,m′)

φa1 (m,m′)+φa2 (m,m′) = ( fa1 (m), ga1 (m′))+ ( fa2 (m), ga2 (m′))

= ( fa1 (m)+ fa2 (m), ga1 (m′)+ ga2 (m′))

for (m,m′) ∈ M
a

t×s M .

Therefore we get

fa1+a2 (m) = fa1 (m)+ fa2 (m) ⇒ ma1+a2 = ma1 +ma2

ga1+a2 (m′) = ga1 (m′)+ ga2 (m′) ⇒a1+a2 m′ =a1 m′+a2 m′

.

(i i i ) Since φa = ( fa , ga) ∈ Bi m(M) for a ∈ A, then,

φa((m1,m′
1)+ (m2,m′

2)) =φa(m1,m′
1)+φa(m2,m′

2)

and
φa((m1,m′

1)+ (m2,m′
2)) =φa(m1 +m2,m′

1 +m′
2)

= ( fa(m1 +m2), ga(m′
1 +m′

2))

= ((m1 +m2)a ,a (m′
1 +m′

2)),

φa(m1,m′
1)+φa(m2,m′

2) = ( fa(m1), ga(m′
1))+ ( fa(m2), ga(m′

2))

= (ma
1 ,a m′

1)+ (ma
2 ,a m′

2)

= (ma
1 +ma

2 ,a m′
1 +a m′

2)

for (m1,m′
1), (m2,m′

2) ∈ M
a

t×s M ,(s(m1) = s(m2)) and (t (m′
1) = t (m′

2)) therefore we get

(m1 +m2)a = ma
1 +ma

2

and
a(m′

1 +m′
2) =a m′

1 +a m′
2.

(i v) Since φa = ( fa , ga) ∈ Bi m(M) for a ∈ A, then

φa(m1m2,m′
1m′

2) = ( fa , ga)(m1m2,m′
1m′

2)

= ( fa(m1m2), ga(m′
1m′

2))

= ((m1m2)a ,a (m′
1m′

2))

and
( fa(m1m2), ga(m′

1m′
2)) = (m1 fa(m2), ga(m′

1)m′
2)

= (m1(ma
2 ), ((am′

1)m′
2))
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for (m1m2,m′
1m′

2) ∈ M
a

t×s M and t (m1) = s(m2), t (m′
1) = s(m′

2) therefore we get

m1ma
2 = m1(m2)a

and
am′

1m′
2 = (am′

1m′
2).

(v) Since φ is an R-Algebroid homomorphism, then

φaa′ =φa ◦φa′

φaa′ = ( faa′ , gaa′)

φa ◦φa′ = ( fa , ga)◦ ( fa′ , ga′)

= ( fa′ ◦ fa , ga ◦ ga′)

for a, a′ ∈ A with t (a) = s(a′) and

φaa′(m,m′) = ( faa′ , gaa′)(m,m′)
= ( faa′(m), gaa′(m′))

= (maa′
,aa′

m′)

(φa ◦φa′)(m,m′) = ( fa′ ◦ fa , ga ◦ ga′)(m,m′)
= (( fa′ ◦ fa)(m), (ga ◦ ga′)(m′))

= ( fa′( fa(m)), ga(ga′(m′)))

= ( fa′(ma), ga(a′
m′))

= ((ma)a′
,a (a′

m′))

for (m,m′) ∈ M
aa′

t×s M , therefore we get maa′ = (ma)a′
and aa′

m′ =a (a′
m′).

Thus, φ : A → Bi m(M) R-Algebroid morphism induces an R-Algebroid action of A on M.

Definition 2.5. Let A be an R-Algebroid. For an R-Algebroid morphism

φ : A → Bi m(A)

a 7→φ(a) = ( fa , ga)

the pair ( fa , ga)(a′, a′′) = ( fa(a′), ga(a′′)) = (a′a, aa′′) is called inner bimultipliers of A for (a′, a′′) ∈ A
a

t×s A.

Set of all bimultipliers of A are denoted by I (A) and I (A) = Im(φ) .

Theorem 2.6. Let M be an R-Algebroid. The kernel of homomorphism

φ : M → Bi m(M)

m 7→φ(m) = ( fm , gm)

is Annihilator of M.

Proof.
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The annihilator of M is

AnnM (M) = {m ∈ M : fm(m′) = m′m = 0, gm(m′′) = m′′m = 0,m′,m′′ ∈ M }.

fm1m2 (m′) = m′(m1m2)

= (m′m1)m2

= fm2 (m′m1)

= fm2 ( fm1 (m′))

= ( fm2 ◦ fm1 )(m′)

gm1m2 (m′′) = (m1m2)(m′′)
= m1(m2m′′)
= gm1 (m2m′′)
= gm1 (gm2 (m′′))

= (gm1 ◦ gm2 )(m′′)

and
φm1m2 = ( fm1m2 , gm1m2 )

= ( fm2 ◦ fm1 , gm1 ◦ gm2 )

= ( fm1 , gm1 )◦ ( fm2 , gm2 )

= (φm1φm2 )

for (m′,m′′) ∈ M
m1m2
t×s M . Also

m ∈ K erφ ⇔φm = ( fm , gm) = (0,0)

and

fm(m′) = 0, gm(m′′) = 0 ⇔ m′m = 0,mm′′ = 0 ⇔ m ∈ AnnM (M)

for (m′,m′′) ∈ M
m

t×s M . Thus K erφ= AnnM (M).

Theorem 2.7. Let I (M) be image of φ : M → Bi m(M) algebroid homomorphism. I (M) is ideal of Bi m(M) .

Proof.

For ( fm , gm) ∈ I (M) and ( f ′, g ′) ∈ Bi m(M) and (m′,m′′) ∈ M
m

t×s M .

I (M)×Bi m(M) → I (M)

(( fm , gm), ( f ′, g ′)) 7→ (( fm , gm)◦ ( f ′, g ′)) = (( f ′ ◦ fm), (gm ◦ g ′))

f ′ fm(m′) = f ′(m′m)

= m′ f ′(m)

= f f ′(m)(m′)

gm g ′(m′′) = mg ′(m′′)
= fg ′(m′′)(m)
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and
Bi m(M)× I (M) → I (M)

(( f ′, g ′), ( fm , gm)) 7→ (( f ′, g ′)◦ ( fm , gm)) = (( fm ◦ f ′), (g ′ ◦ gm))

fm f ′(m′) = f ′(m′)m

= g f ′(m′)(m)

g ′gm(m′′) = g ′(mm′′)
= g ′(m)m′′

= gg ′(m)(m′′)

Thus I (M) is ideal of Bi m(M).

Definition 2.8. Let I (M) be ideal of Bi m(M) algebroid,

O(M) = Bi m(M)/I (M)

division algebroid is called the outer multiplication of M algebroid and denoted by O(M).

Theorem 2.9. Let M be an R-Algebroid such that Ann(M) = 0 or M 2 = M and

η : M → Bi m(M)

m 7→ η(m) = ( fm , gm)

be an R-Algebroid morphism with the pair ( fm , gm)(m′,m′′) = ( fm(m′), gm(m′′)) = (m′m,mm′′) for (m′,m′′) ∈
M

m
t×s M . Then (M ,Bi m(M),η) is a crossed module.

Proof.

Bi m(M) acts on M by

Bi m(M)×M → M

(( f ′, g ′),m′) 7→ ( f ′, g ′) ·m′ = g ′(m′)

and
M ×Bi m(M) → M

(m′′, ( f ′, g ′)) 7→ m′′ · ( f ′, g ′) = f ′(m′′)

for (m′,m′′) ∈ M
m

t×s M and

f ′
m : M → M

m′ 7→ f ′
m(m′) = m′m

and
g ′

m : M → M

m′′ 7→ g ′
m(m′′) = mm′′

such that
η : M → Bi m(M)

m 7→ η(m) = ( f ′
m , g ′

m).
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CM1.
η(( f ′, g ′) ·m)(m′,m′′) = η(g ′(m))(m′,m′′)

= ( f ′
g ′(m), g ′

g ′(m))(m′,m′′)

= (m′g ′(m), g ′(m)m′′)
= ( f ′(m′)m, g ′(mm′′))

= ( f ′
m( f ′(m′)), g ′(g ′

m(m′′)))

= ( f ′
m f ′, g ′g ′

m)(m′,m′′)
= ( f ′, g ′)◦ ( f ′

m , g ′
m)(m′,m′′)

then
η(( f ′, g ′) ·m) = ( f ′, g ′)◦ ( f ′

m , g ′
m)

= ( f ′, g ′)◦η(m)

η(m · ( f ′, g ′))(m′,m′′) = η( f ′(m))(m′,m′′)
= ( f ′

f ′(m), g ′
f ′(m))(m′,m′′)

= (m′ f ′(m), f ′(m)m′′)
= ( f ′(m′m),mg ′(m′′))

= ( f ′( f ′
m(m′)), g ′

m(g ′(m′′)))

= ( f ′ f ′
m , g ′

m g ′)(m′,m′′)
= ( f ′

m , g ′
m)◦ ( f ′, g ′)(m′,m′′)

then
η(m · ( f ′, g ′)) = ( f ′

m , g ′
m)◦ ( f ′, g ′)

= η(m)◦ ( f ′, g ′)

CM2.
η(m′) ·m = ( f ′

m′ , g ′
m′)

= g ′
m′(m)

= m′m

m′ ·η(m) = m′ · ( f ′
m , g ′

m)

= f ′
m(m′)

= m′m

Thus (M ,Bi m(M),η) is a crossed module.
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1. Introduction

Recently, examining the properties of polynomials with operator theory and deriving special

numbers with the help of operators are among the trendy topics in mathematics. Because

special numbers and polynomials are among the basic tools that can be easily applied in
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mathematical modeling problems used in problem solving. Especially the special numbers

and polynomials have also been used in almost all areas of mathematics, and in all applied

sciences (cf. [1]-[40]). Investigating formulas and finite sums for certain family of polynomi-

als and numbers using operators and Volkenborn integral methods also form the basis of the

motivation of this article.

We use the following basic standard notations and definitions:

N= {1,2,3, . . .}, N0 =N∪ {0},

C denotes a set of complex numbers,

0n =
{

1, (n = 0)

0, (n ∈N)

and (
λ

0

)
= 1 and

(
λ

v

)
= λ(λ−1) · · · (λ− v +1)

v !
= (λ)(v)

v !
,

where v ∈N, λ ∈C (see [1]-[40]).

The Bernoulli polynomials Bn(x) are defined by

t

e t −1
ext =

∞∑
n=0

Bn(x)
t n

n!
, (1.1)

where |t | < 2π and when x = 0, we have Bn := Bn(0) denotes the Bernoulli numbers (see [1]-

[40]).

The Euler numbers are defined by

h(t ) = 2

e t +1
=

∞∑
n=0

En
t n

n!
,

where |t | <π (see [1]-[40]).

The Euler polynomials are defined by

g (t , x) = h(t )e t x =
∞∑

n=0
En(x)

t n

n!
, (1.2)

which satisfies En := En(0) (see [1]-[40]).

The Stirling numbers of the second kind S2(n,k) are defined by means of the following gen-
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erating function:

Fs(t ,k) =
(
e t −1

)k

k !
=

∞∑
n=0

S2(n,k)
t n

n!
, (1.3)

which satisfies

S2(n,k) = 0

if n < k or k < 0 and k ∈N0 (see [1]-[40]).

By combining (1.2) and (1.3), assuming
∣∣e t −1

∣∣ < 1, we reach the following functional equa-

tion:

g (t , x) = h(t )
∞∑

m=0

(
x

m

)
m!Fs(t ,m) (1.4)

and

e t (x+v) =
∞∑

m=0

(
x + v

m

)
m!Fs(t ,m). (1.5)

By using Eq. (1.4), we obtain

∞∑
n=0

En(x)
t n

n!
=

∞∑
n=0

n∑
v=0

(
n

v

)
En−v

v∑
m=0

(
x

m

)
m!S2(v,m)

t n

n!
.

By equalizing the coefficients of t n

n! found on both sides of the previous equation, we reach

the proof of the following theorem:

Theorem 1.1. Let n ∈N0. Then we have

En(x) =
n∑

v=0

(
n

v

)
En−v

v∑
m=0

(
x

m

)
m!S2(v,m).

By using Eq. (1.5), we obtain

∞∑
n=0

(x + v)n t n

n!
=

∞∑
n=0

n∑
m=0

(
x + v

m

)
m!S2(n,m)

t n

n!
.

By equalizing the coefficients of t n

n! found on both sides of the previous equation, we reach

the proof of the following theorem:

Theorem 1.2. Let n, v ∈N0. Then we have

(x + v)n =
n∑

m=0

(
x + v

m

)
m!S2(n,m). (1.6)



Yılmaz Şimşek / IKJM / 6(1) (2024) 41-58 44

When v = 0, Eq. (1.6) reduces to

xn =
n∑

m=0

(
x

m

)
m!S2(n,m) (1.7)

(cf. [6, 27, 28, 39]).

The λ-array polynomials Sn
k (x;λ) are defined by means of the following generating function:

1

k !
e t x (

λe t −1
)k =

∞∑
n=0

Sn
k (x;λ)

t n

n!
(1.8)

(see [1, 28]).

Substituting λ= 1 into (1.8), we have

Sn
k (x) := Sn

k (x;1) = 1

k !

k∑
j=0

(−1)k− j

(
k

j

)(
x + j

)n (1.9)

with

S0
0(x) = Sn

n (x) = 1,Sn
0 (x) = xn .

If k > n, then

Sn
k (x) = 0

(see [1, 3, 28]; and also the references cited therein).

The Fubini-type numbers and polynomials of order k are defined, respectively, by

(
2

2−e t

)k

=
∞∑

n=0
a(k)

n
t n

n!
(1.10)

and (
2

2−e t

)k

ext =
∞∑

n=0
a(k)

n (x)
t n

n!
(1.11)

which satisfies a(k)
n := a(k)

n (0) (see [9]; and also [8, 10, 12, 13, 36]).

When k = 1 in (1.10), we have

an := a(1)
n

and

an = 2
n∑

j=0

(
n

j

)
wg ( j )wg (n − j ),
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where wg (n) denote the Fubini numbers which are defined by

1

2−e t =
∞∑

n=0
wg (n)

t n

n!
(1.12)

(see [4]; and also [8–10, 12, 13, 36]).

Using (1.3) and (1.12), we have the following well-known relation [4]:

wg (n) =
n∑

j=0
j !S2(n, j ).

From (1.11) and (1.3), Kilar and Simsek [9] gave the following formula:

xn = 2−k
n∑

r=0

2k∑
j=0

(−1) j

(
2k

j

)(
n

r

)
j !S2(r, j )a(k)

n−r (x). (1.13)

1.1. The operators Oλ

[
f ; a,b

]
and Tλ

[
f ; a,b

]
Let

E a [
f
]

(x) = f (x +a),

(see [1, 18, 23, 37]). We [30] gave the following operator Oλ

[
f ; a,b

]
for real parameters λ, a

and b:

Oλ

[
f ; a,b

]
(x) =λE a [

f
]

(x)+E b [
f
]

(x), (1.14)

where x ∈R and

Tλ

[
f ; a,b

]
(x) = Oλ

[
f ; a,b

]
(x)

a +b +1
. (1.15)

We [30] showed that

1

2
T1

[
f ;0,0

]
(x) = I

[
f
]

(x), (Identity Operator)

−2T−1
[

f ;1,0
]

(x) = ∆
[

f
]

(x), (Forward Difference Operator)

I
[

f
]

(x)+ 1

2
T1

[
f ;−1,−1

]
(x) = ∇[

f
]

(x), (Backward Difference Operator)

T1
[

f ;1,0
]

(x) = M
[

f
]

(x), (Means Operator)

−T−1

[
f ;

1

2
,−1

2

]
(x) = δ

[
f
]

(x), (Central Difference Operator)

1

2
T1

[
f ;

1

2
,−1

2

]
(x) = µ

[
f
]

(x), (Averaging Difference Operator)
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and also

−(2a +b +1)T−1
[

f ; a +b, a
]

(x) = ∆bE a [
f
]

(x), (a ̸= b, Gould Operator)

−2T−λ
[

f ;1,0
]

(x) = ∆λ
[

f
]

(x).

For details about the above operators and their applications, see [30] and also [38].

We [32] modified the operators Oλ

[
f ; a,b

]
and Tλ

[
f ; a,b

]
as follows:

Yλ,β
[

f ; a,b
]

(x) =λE a [
f
]

(x)+βE b [
f
]

(x) (1.16)

and

Yλ,β
[

f ; a,b
]

(x) =βO λ
β

[
f ; a,b

]
(x) =β (a +b +1)T λ

β

[
f ; a,b

]
(x),

where λ and β are complex or real parameters, a and b are real parameters.

We [32] showed that

Y−λ,1
[

f ;1,0
]

(x) =−∆λ
[

f
]

(x)

(see also [1]),

E a [
f
]

(x) =Y1,0
[

f ; a,0
]

(x)

and

∆a
[

f
]

(x) =Y1,−1
[

f ; a,0
]

(x),

where ∆a denotes the forward difference operator,

▽−b
[

f
]=Y1,−1

[
f ;0,−b

]
,

which yields

Y1,−1
[

f ;b,0
]
Y1,0

[
f ;−b,0

]=Y1,−1
[

f ;b,0
]
Y1,0

[
f ;0,−b

]
,

where ▽−b denotes the backward difference operator.

δa
[

f
]=Y1,−1

[
f ;

a

2
,−a

2

]
,

where δa denotes the central difference operator. The Gould operator

Ga,b
[

f
]=Y1,0

[
f ; a +b,0

]−Y1,0
[

f ; a,0
]

,
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where a ̸= b. Let k ∈N. With the aid of (1.14), we [32] also showed that

Yk
λ,β

[
f ; a,b

]
(x) =

k∑
j=0

(
k

j

)
λk− jβ j f (x + j b + (k − j )a). (1.17)

Putting b = 0 and β=−1 in (1.17), we have

Yk
λ,−1

[
f ;1,0

]
(x) =

k∑
j=0

(
k

j

)
λk− j (−1) j f (x + (k − j )a) =∆k

λ

[
f
]

(x)

(see [1, p. 155, Eq. (29)], [32]).

Putting b = 0 and β=−1 in the above equation, we have

Yk
λ,−1

[
xn ;1,0

]
(x) = ∆k

λ

[
xn]

(x)

= Sn
k (x,λ)

(cf. [1, p. 155], [32]).

Therefore,

Sn
k (x) = 1

k !
∆k [

xn]
(cf. [1, p. 155], [3], [32]).

The results of this article are briefly summarized for the reader as follows, section by section.

In Section 2, some basic properties of the Euler polynomials are given with the help of op-

erators. We also give formulas for the Fubini-type polynomials, the Stirling numbers of the

second kind and the Euler polynomials.

In Section 3, we derive some formulas, identities and finite sums for the Bernoulli numbers

and polynomials, the Euler numbers and polynomials, the array polynomials, and the Stirling

numbers of the second kind with the aid of operators and Volkenborn integrals.

In Section 4, we give a conclusion section.

2. Formulas for Euler Polynomials in terms of Operators

The purpose of this section is to study the Euler polynomials with the help of operators and

to provide an introductory discussion of some of their properties and applications. Here, we

note that the operators Tλ

[
f ; a,b

]
and derivative operator D action the variable x (see [22, p.
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406]). Using the averaging operator

M
[

f
]= T1

[
f ;1,0

]= E + I

2

[
f
]

,

we have

T1 [En(x);1,0](x) = xn , (2.1)

which satisfies
En(x +1)+En(x)

2
= xn

and

En(x) = T −1
1

[
xn ;1,0

]
(x).

Thus, we see that

En(x) =
∞∑

j=0

(
T−1

[
xn ;1,0

]
(x)

) j .

For j > n,

∆ j {
xn}= 0,

the Euler polynomials are given by

En(x) =
n∑

j=0

(−1) j

2 j
∆ j {

xn}
(2.2)

(see [22, p. 406]).

Applying derivative operator D to the equation (2.1) yields

D [M [En(x)]] = D
{

xn}
.

Therefore

D

{
En(x +1)+En(x)

2

}
= nxn−1.

Combining the above equation with the following derivative formula for the Euler polynomi-

als, which are members of Appell polynomials,

D {En(x)} = nEn−1(x),
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we get
En−1(x +1)+En−1(x)

2
= xn−1.

Thus we get

D {M [En(x)]} = M [En−1(x)] .

From the above equation, we get

M−1 [D {M [En(x)]}] = En−1(x).

Hence

D {En(x)} = M−1 [D {M [En(x)]}]

n
,

and

Dk {En(x)} =


(n)(k) En−k (x), 1 ≤ k < n

k !, n = k

0, n < k

(see [22, p. 406]).

Combining (1.13) with (2.2), we have the following result:

Corollary 2.1. Let k,n ∈N0. Then we have

T1 [En(x);1,0](x) = 2−k
n∑

r=0

2k∑
j=0

(−1) j

(
2k

j

)(
n

r

)
j !S2(r, j )a(k)

n−r (x).

or, equivalently,

En(x +1)+En(x) = 2−k+1
n∑

r=0

2k∑
j=0

(−1) j

(
2k

j

)(
n

r

)
j !S2(r, j )a(k)

n−r (x).

3. Formulas for the Bernoulli and Euler Numbers and Polynomials with the
aid of Operators and Volkenborn Integrals

The purpose of this section is to derive formulas, finite sums and relations involving the

Bernoulli and Euler numbers and polynomials, and the Stirling numbers using operators and

applications of the Volkenborn integral.

Before giving the essential formulas of this section, the following some properties of the

Volkenborn integral are given with a very brief introduction.
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Let Zp be a set of p-adic integers. Let f : Zp → Cp , where Cp is a field of p-adic completion

of algebraic closure of set of p-adic rational numbers. f is called a uniformly differential

function at a point a ∈Zp if f satisfies the following conditions:

If the difference quotientsΦ f :Zp ×Zp →Cp such that

Φ f (x, y) = f (x)− f (y)

x − y

have a limit f ′(z) as (x, y) → (0,0) (with x ̸= y). A set of uniformly differential functions is

briefly indicated by f ∈U D(Zp ) or f ∈C 1(Zp →Cp ).

The Volkenborn integral of the uniformly differential function f is given as follows:

∫
Zp

f (x)dµ1 (x) = lim
N→∞

1

pN

pN−1∑
x=0

f (x) , (3.1)

where µ1 (x) denote the Haar distribution, given by

µ1 (x) = 1

pN

(see [7, 15, 17, 21, 25, 31, 34, 40]).

Let n ∈N0. Some examples for p-adic integrals are given as follows:

Bn =
∫
Zp

xndµ1 (x) (3.2)

and

Bn(y) =
∫
Zp

(
x + y

)n dµ1 (x) , (3.3)

where Bn and Bn(y) denote the Bernoulli numbers and the Bernoulli polynomials, respec-

tively (see [7, 15, 16, 21, 25, 31, 34]).

By applying the Volkenborn integral to the Eq. (2.2), we obtain

∫
Zp

En(x)dµ1 (x) =
n∑

j=0

(−1) j

2 j

∫
Zp

∆ j {
xn}

dµ1 (x) .
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Combining the above equation with the following well-known formulas

∆= E − I

and

∆ j =
j∑

v=0
(−1)v

(
j

v

)
E v ,

we get ∫
Zp

En(x)dµ1 (x) =
n∑

j=0

(−1) j

2 j

j∑
v=0

(−1)v

(
j

v

)∫
Zp

(x + v)n dµ1 (x) .

Combining the above equation with (3.3) yields the following theorem:

Theorem 3.1. Let n ∈N0. Then we have

∫
Zp

En(x)dµ1 (x) =
n∑

j=0

(−1) j

2 j

j∑
v=0

(−1)v

(
j

v

)
Bn(v). (3.4)

By combining (3.4) with the following known formula:

En(x) =
n∑

v=0

(
n

v

)
xn−v Ev ,

we also get
n∑

j=0

(−1) j

2 j

j∑
v=0

(−1)v

(
j

v

)
Bn(v) =

n∑
v=0

(
n

v

)
Ev

∫
Zp

xn−v dµ1 (x) .

Combining the above equation with (3.2), we arrive at the following theorem:

Theorem 3.2. Let n ∈N0. Then we have

(B +E)n =
n∑

j=0

(−1) j

2 j

j∑
v=0

(−1)v

(
j

v

)
Bn(v),

where

(B +E)n =
n∑

v=0

(
n

v

)
Ev Bn−v

and after applying binomial expansion, each index of B n and E n are to be replaced by the

corresponding suffix: Bn and En , respectively.
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By applying the Volkenborn integral to the Eq. (1.6), we get

∫
Zp

(x + v)n dµ1 (x) =
n∑

m=0
m!S2(n,m)

∫
Zp

(
x + v

m

)
dµ1 (x) .

Combining the left-hand side of the above equation with (3.3), we obtain

Bn(v) =
n∑

m=0
m!S2(n,m)

∫
Zp

(
x + v

m

)
dµ1 (x) .

Combining the right-hand side of the above equation with the following formula

∫
Zp

(
x + v

m

)
dµ1 (x) =

m∑
k=0

(−1)k

(
v

m −k

)
1

k +1

(see [34, p. 21]), we arrive at the following theorem:

Theorem 3.3. Let n, v ∈N0. Then we have

Bn(v) =
n∑

m=0

m∑
k=0

(−1)k

(
v

m −k

)
m!S2(n,m)

k +1
. (3.5)

Combining (3.4) with (3.5), we also arrive at the following theorem:

Theorem 3.4. Let n ∈N0. Then we have

∫
Zp

En(x)dµ1 (x) =
n∑

j=0

(−1) j

2 j

j∑
v=0

(−1)v

(
j

v

)

×
n∑

m=0

m∑
k=0

(−1)k

(
v

m −k

)
m!S2(n,m)

k +1
.

By using (1.9) and (1.8), we have (cf. [28]):

Sn
k (x) = 1

k !

k∑
j=0

(−1)k− j

(
k

j

)(
x + j

)n

=
n∑

j=0

(
n

j

)
S2( j ,k)xn− j .
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By applying the Volkenborn integral to the above equation, we get

n∑
j=0

(
n

j

)
S2( j ,k)

∫
Zp

xn− j dµ1 (x)

= 1

k !

k∑
j=0

(−1)k− j

(
k

j

)∫
Zp

(x + j )ndµ1 (x) .

Combining the above equation with (3.3), we obtain the following theorem:

Theorem 3.5. Let n,k ∈N0. Then we have

n∑
j=0

(
n

j

)
S2( j ,k)Bn− j = 1

k !

k∑
j=0

(−1)k− j

(
k

j

)
Bn( j ). (3.6)

Here we note that using (3.6), we set the following sequences of numbers:

Y10(n,k) =
n∑

j=0

(
n

j

)
S2( j ,k)Bn− j (3.7)

and

Y11(n,k) = 1

k !

k∑
j=0

(−1)k− j

(
k

j

)
Bn( j ). (3.8)

Thus, generating function for the numbers Y10(n,k) is defined by

F (t ) =
∞∑

n=0
Y10(n,k)

t n

n!
(3.9)

and generating function for the numbers Y11(n,k) is defined by

G(t ) =
∞∑

n=0
Y11(n,k)

t n

n!
. (3.10)

Examination of the fundamental properties of the functions F (t ) and G(t ) is left to the reader.

With the help of these functions, interesting and applicable results can be derived by exam-

ining the fundamental properties of the numbers Y10(n,k) and Y11(n,k).

Let us end our article with guiding tips by giving the reader a brief introduction about the

functions F (t ) and G(t ).
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Observe that

F (t ) = t (e t −1)k−1

k !
, (3.11)

where k is a positive integer. By using the above function, we get

∞∑
n=0

Y10(n,k)
t n

n!
=

∞∑
n=0

S2(n,k −1)
t n+1

kn!
(3.12)

By equalizing the coefficients of t n

n! found on both sides of the previous equation, we reach

the proof of the following theorem:

Theorem 3.6. Let n,k ∈N. Then we have

Y10(n,k) = n

k
S2(n −1,k −1). (3.13)

Thus, by combining (3.6) and (3.7) with (3.13), we also have the following result:

Theorem 3.7. Let n,k ∈N. Then we have

S2(n −1,k −1) = k

n

n∑
j=0

(
n

j

)
S2( j ,k)Bn− j . (3.14)

With the help of similar operations and methods above, new and applicable formulas can be

achieved by performing the function G(t ) and the numbers Y11(n,k).

4. Conclusions

We gave generating functions for the Bernoulli numbers and polynomials, the Euler numbers

and polynomials, the Fubini-type polynomials, and the Stirling numbers. We also gave some

properties of the operator. Some properties of the Euler polynomials were examined with the

aid of operators.

By using operators and the Volkenborn integrals, we derived some formulas, identities and

finite sums involving the Bernoulli numbers and polynomials, the Euler numbers and poly-

nomials, the Fubini numbers and polynomials, the array polynomials, and Stirling numbers.

With the help of Theorem 3.5, we set new special number families with their generating func-

tions, and gave very important footnotes about their definitions and properties.

We think that these formulas will have the potential to be used in mathematics, mathematical

physics, and engineering.
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