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Düzce-TÜRKİYE
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Department of Mathematics
Faculty of Science, Sakarya University
Sakarya-TÜRKİYE
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TÜRKİYE

Cristina Flaut
Ovidius University
ROMANIA
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Abstract

The aim of the present article is to characterize some properties of the Miao-Tam equation
on three-dimensional generalized Sasakian space-forms with trans-Sasakian structures. It
has been proved that in such space-forms if the Miao-Tam equation admits non-trivial
solution, then the metric of the space form must be a gradient Ricci soliton. We have
derived that a non-trivial solution of the Fischer-Marsden equation does not exist on the said
space-forms. We have also investigated certain features of Ricci solitons and gradient Ricci
solitons. At the end of the article, we construct an example to verify the obtained results

1. Introduction

Miao-Tam equation on f -cosymplectic manifolds was investigated by X. Chen [1]. He proved that under certain restrictions such a manifold
is either locally the product of a Kähler manifold and an interval or a unit circle, or, the manifold is of constant scalar curvature. He also
established that if the manifold is connected and satisfies the Miao-Tam equation, then the manifold is Einstein under certain conditions.
Since an Einstein manifold or a manifold of constant curvature is model of some interesting physical systems, geometers are naturally
motivated to find the conditions under which a manifold will be Einstein or, a manifold of constant scalar curvature. To this end we
study Miao-Tam equation on generalized Sasakian space-forms with trans-Sasakian structure and established that if a generalized Sasakian
space-form with trans-Sasakian structure admits a non-trivial solution of the Miao-Tam equation, then the scalar curvature is constant and the
manifold is Einstein or the structure is β -Kenmotsu. Several researchers [2–10] have investigated the Miao-Tam equation for some classes of
contact manifolds.
Let (Mn,g),n>2 be a compact orientable Riemannian manifold with a smooth boundary ∂M and λ : Mn→ R be a smooth function on the
manifold. Then the Miao-Tam equation on Mn is given by

Hessλ = (∆λ )g+λS+g, (1.1)

on M and λ = 0 on ∂M, Hess, ∆ being respectively the Hessian operator and Laplacian with respect to the metric g. S indicates the Ricci
curvature and λ indicates the potential function. The metrics satisfying the equation (1.1) are known as Miao-Tam critical metrics [11].
A sub-class of the Miao-Tam equation is the Fischer-Marsden equation which is given by

Hessλ = (∆λ )g+λS.

The Fischer-Marsden equation (FME, in short) was constructed by A.E. Fischer and J. Marsden in [12]. The authors [12] in their paper
conjectured that a compact Riemannian manifold that admits a non-trivial solution of the FME is necessarily Einstein. This statement is
known as Fischer-Marsden conjecture. Later Kobayashi [13] pointed out that the said conjecture is not true in general. They are valid only in
some special cases. After that a huge number of works has been done to analyze Fischer-Marsden conjecture on Riemannian manifolds
admitting several structures.
R. S. Hamilton [14] introduced the notion of the Ricci flow in 1988. On a Riemannian or semi-Riemannian manifold,

∂g
∂ t

+2S = 0
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denotes the Ricci flow equation. A self-similar solution of the above equation is called the Ricci soliton and the soliton equation is given by

£V g+2S+2ψg = 0, (1.2)

£ denotes the Lie-derivative operator. Here V is called the potential vector field and ψ is the soliton constant. If the sign of ψ is positive
then the soliton is known as expanding and for the cases where ψ is zero or negative, the soliton is steady or shrinking, respectively. For
details about Ricci solitons see the articles [15–18]. If the potential vector field V is the gradient of a smooth function ζ , then it is called the
gradient Ricci soliton. Thus the gradient Ricci soliton is given by

Hess(ζ )+S+ψg = 0, (1.3)

here Hess is the Hessian operator.
The theory of generalized Sasakian space-forms came into existence after the work of Alegre et al. [19]. A generalized Sasakian spce-form
(GSSF, in short) is such a manifold whose Riemann curvature R is given by

R(V1,V2)V3 = f1R1(V1,V2)V3 + f2R2(V1,V2)V3 + f3R3(V1,V2)V3, (1.4)

f1, f2 and f3 are smooth functions on M and

R1(V1,V2)V3 = g(V2,V3)V1−g(V1,V3)V2,

R2(V1,V2)V3 = g(V1,φV3)φV2−g(V2,φV3)φV1 +2g(V1,φV2)φV3,

R3(V1,V2)V3 = η(V1)η(V3)V2−η(V2)η(V3)V1 +g(V1,V3)η(V2)ξ −g(V2,V3)η(V1)ξ .

Such a manifold admitting different almost contact structures like Sasakian, K-contact, trans-Sasakian, etc. was analyzed by Alegre and
Carriazo. GSSF is now drawing attention of several geometers. In [20], it is proved that any GSSF with dimension greater than or equal to
five must be Sasakian-space-form. It is also proved in the same article that a K-contact GSSF is a Sasakian manifold. For more details we
cite the papers [21–25].
The present paper is organized as follows: After the introduction, we give some preliminaries in the Section 2. In Section 3, we have studied
Miao-Tam equation on three dimensional GSSFs with trans-Sasakian structure. In the same section we have proved that if a non-trivial
solution of the Miao-Tam equation exists then the metric must be a gradient Ricci soliton and non-existences of the non-trivial solution of the
Fischer-Marsden equation is also deduced. In the next section, we have derived some new results of Ricci solitons and gradient Ricci solitons
on the same space-forms. In the last section, we give an example to verify the deduced results.

2. Preliminaries

A smooth manifold M2n+1 is known as an almost contact manifold (ACM) if there exists a structure (φ ,θ ,η), where φ , θ and η are,
respectively, a (1,1)-tensor field, a (1,0) type vector field and a 1-form, such that

φ
2V1 =−V1 +η(V1)θ , η(θ) = 1, φθ = 0, η .φ = 0 rank(φ) = 2n,

for every vector field V1 on M2n+1 [26, 27].
An ACM M2n+1 is called an almost contact metric manifold (ACMM) if it admits a Riemannian metric g such that

g(φV1,φV2) = g(V1,V2)−η(V1)η(V2), (2.1)

for every vector fields V1, V2 on M2n+1. Equation (2.1) gives

g(φV1,V2) =−g(V1,φV2).

An ACMM is called a contact metric manifold if there exists a 2-form Φ such that dη =Φ, where Φ(V1,V2)= g(V1,φV2). An ACMM is called
normal if Nijenhuis torsion tensor [φ ,φ ](V1,V2)+ 2dη(V1,V2)θ vanishes, where [φ ,φ ](V1,V2) = φ 2[V1,V2] + [φV1,φV2]− φ [φV1,V2]−
φ [V1,φV2]. A normal contact metric manifold is called a Sasakian manifold. An ACMM is called a trans-Sasakian manifold [28] if there
exist two smooth functions α and β such that

(∇V1 φ)V2 = α(g(V1,V2)θ −η(V2)V1)+β (g(φV1,V2)θ −η(V2)φV1), (2.2)

for every vector fields V1, V2 on M2n+1. Actually, trans-Sasakian manifolds are the generalizations of Sasakian manifolds and Kenmotsu
manifolds, that means, if β = 0 (res. α = 0) then the manifold reduces to α-Sasakian (res. β -Kenmotsu) manifold. For more details please
follow the articles [29–33]. From equation (2.2), one can obtain

∇V1 θ =−αφV1 +β (V1−η(V1)θ). (2.3)

In view of (1.4), we have

S(V2,V3) = (2 f1 +3 f2− f3)g(V2,V3)− (3 f2 + f3)η(V2)η(V3), (2.4)

which gives

QV2 = (2 f1 +3 f2− f3)V2− (3 f2 + f3)η(V2)θ , (2.5)

Q is the Ricci operator. Again, contracting V2 in the foregoing equation, we get the scalar curvature as

r = 2(3 f1 +3 f2−2 f3). (2.6)
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Lemma 2.1. For a trans-Sasakian GSSF M, the following relation holds:

f1− f3 +θ(α)+θ(β )−α
2 +β

2 = 0. (2.7)

Proof. According to the equations (2.2) and (2.3), we obtain

R(V1,θ)θ = (θ(α)+αβ )φV1 +(−θ(β )−β
2 +α

2 +αβ )(V1−η(V1)θ). (2.8)

On the other hand, from equation (1.4), it can be easily seen that

R(V1,θ)θ = ( f1− f3)(V1−η(V1)θ). (2.9)

Comparing (2.8) and (2.9), we have

θ(α)+αβ = 0

and

−θ(β )−β
2 +α

2 +αβ = f1− f3.

Combining the last two equations, we obtain the equation (2.7).

Definition 2.2 ( [34, 35]). A vector field V on a Riemannian manifold is called an infinitesimal contact transformation if

£V η = κη , (2.10)

for some smooth function κ on the manifold. If κ = 0, then the vector field is called a strict infinitesimal contact transformation.

3. Miao-Tam Equation (MTE) on Trans-Sasakian Generalized Sasakian Space-forms

The prime aim of the present section is to study the Miao-Tam equation (MTE, in short) on three-dimensional trans-Sasakian GSSFs and
make a bridge between MTE and Ricci solitons. Before going to main topic, we proof the following lemma.

Lemma 3.1. Let M3 be a trans-Sasakian GSSF of dimension three, then

(∇V1 Q)V2 =V1(2 f1 +3 f2− f3)V2−V1(3 f2 + f3)η(V2)θ − (3 f2 + f3)(−αg(φV1,V2)θ +β (g(V1,V2)θ −η(V1)η(V2)θ))

− (3 f2 + f3)(−αφV1 +β (V1−η(V1)θ))η(V2),
(3.1)

1
2

V2(r) =V2(2 f1 +3 f2− f3)−θ(3 f2 + f3)η(V2)−2β (3 f2 + f3)η(V2), (3.2)

and

θ(r) = 4(θ( f1− f3)−β (3 f2 + f3)), (3.3)

for every vector fields V1, V2 on M3.

Proof. Differentiating the equation (2.5) covariantly and using (2.3), one can obtain the equation (3.1). Contracting the equation (3.1) with
respect to V1, we obtain (3.2). Putting V2 = ξ in (3.2), we get the equation (3.3).

Theorem 3.2. If a three-dimensional trans-Sasakian GSSF admits non-trivial solution of the Miao-Tam equation then the scalar curvature
is a constant.

Proof. Let us suppose that the said space form admits non-trivial solution of the Miao-Tam equation. Then, from (1.1), we obtain

(∆λ )g(V1,V2) = (Hessλ )(V1,V2)−λS(V1,V2)−g(V1,V2). (3.4)

Let {u1,u2,ξ} be an orthonormal set of tangent vector fields on M3. Substituting V1 =V2 = ui in the previous equation and summing over i,
we have

(∆λ ) =−(3 f1 +3 f2−2 f3)λ −
3
2
. (3.5)

Using (3.5) in (3.4), we obtain

∇V1 Dλ = λQV1− (3 f1 +3 f2−2 f3)λV1−
1
2

V1. (3.6)

The covariant derivative of the equation (3.6) in the direction of V2 gives

∇V2 ∇V1 Dλ =V2(λ )QV1 +λ∇V2 QV1−V2(3 f1 +3 f2−2 f3)λV1− (3 f1 +3 f2−2 f3)(V2(λ )V1 +λ∇V2V1)−
1
2

∇V2V1. (3.7)

Interchanging V1 and V2 in (3.7), one can obtain

∇V1 ∇V2 Dλ =V1(λ )QV2 +λ∇V1 QV2−V1(3 f1 +3 f2−2 f3)λV2− (3 f1 +3 f2−2 f3)(V1(λ )V2 +λ∇V1V2)−
1
2

∇V1V2. (3.8)
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Again, equation (3.6) gives

∇[V1,V2]Dλ = λQ[V1,V2]− (3 f1 +3 f2−2 f3)λ [V1,V2]−
1
2
[V1,V2]. (3.9)

Using (3.7)-(3.9), we get the curvature tensor as

R(V1,V2)Dλ =V1(λ )QV2−V2(λ )QV1 +λ ((∇V1 Q)V2− (∇V2 Q)V1)−V1(3 f1 +3 f2−2 f3)λV2 +V2(3 f1 +3 f2−2 f3)λV1

− (3 f1 +3 f2−2 f3)(V1(λ )V2−V2(λ )V1).
(3.10)

Contracting (3.10) along the vector field V1, we obtain

S(V2,Dλ ) =(2 f1 +3 f2− f3)V2(λ )− (3 f2 + f3)θ(λ )η(V2)+λ{V2(2 f1 +3 f2− f3)−θ(3 f2 + f3)η(V2)

−2β (3 f2 + f3)η(V2)}.
(3.11)

According to (2.4), we find

S(V2,Dλ ) = (2 f1 +3 f2− f3)V2(λ )− (3 f2 + f3)θ(λ )η(V2). (3.12)

Comparing (3.11) and (3.12), we get

V2(2 f1 +3 f2− f3)−θ(3 f2 + f3)η(V2)−2β (3 f2 + f3)η(V2) = 0, (3.13)

where we have used λ 6= 0. Substituting (3.13) in (3.2), we see that V2(r) = 0, that is, r is a constant.
This completes the proof.

Theorem 3.3. If a three-dimensional trans-Sasakian GSSF admits non-trivial solution of the Miao-Tam equation then either the structure is
β -Kenmotsu or, the manifold is Einstein.

Proof. Replacing V1 by ξ and taking inner product with V1 of the equation (3.10), we have

g(R(θ ,V2)Dλ ,V1) =θ(λ ){−( f1− f3)g(V1,V2)− (3 f2 + f3)η(V1)η(V2)}+( f1 +3 f3)V2(λ )η(V1)

+λ{−θ( f1− f3)g(V1,V2)−θ(3 f2 + f3)η(V1)η(V2)+V2( f1 +3 f2)η(V1)

+(3 f2 + f3)(−αg(V1,φV2)+β (g(V1,V2)−η(V1)η(V2)))}.
(3.14)

Putting V1 = ξ in (1.4) and then taking inner product with Dλ , one can obtain

g(R(θ ,V2)V1,Dλ ) = ( f1− f3)(θ(λ )g(V1,V2)−V2(λ )η(V1)). (3.15)

Comparing (3.14) and (3.15), we find

θ(λ ){−( f1− f3)g(V1,V2)− (3 f2 + f3)η(V1)η(V2)}+( f1 +3 f2)V2(λ )η(V1)

+λ

{
−θ( f1− f3)g(V1,V2)−θ(3 f2 + f3)η(V1)η(V2)+V2( f1 +3 f2)η(V1)

+(3 f2 + f3)(−αg(V1,φV2)+β (g(V1,V2)−η(V1)η(V2)))

}
= ( f3− f1)(θ(λ )g(V1,V2)−V2(λ )η(V1)).

(3.16)

Interchanging V1 and V2 in the foregoing equation, we find

θ(λ ){−( f1− f3)g(V1,V2)− (3 f2 + f3)η(V1)η(V2)}+( f1 +3 f3)V1(λ )η(V2)

+λ

{
−θ( f1− f3)g(V1,V2)−θ(3 f2 + f3)η(V1)η(V2)+V1( f1 +3 f2)η(V2)

+(3 f2 + f3)(αg(V1,φV2)+β (g(V1,V2)−η(V1)η(V2)))

}
= ( f3− f1)(θ(λ )g(V1,V2)−V1(λ )η(V2)).

(3.17)

Subtracting (3.17) from (3.16), one can obtain

(3 f2 + f3)(V2(λ )η(V1)−V1(λ )η(V2))+λ{V2( f1 +3 f2)η(V1)−V1( f1 +3 f2)η(V2)−2(3 f2 + f3)αg(V1,φV2)}= 0.

Replacing V1 and V2 by φV1 and φV2, respectively, in the last equation, we obtain

(3 f2 + f3)αg(V1,φV2) = 0,

which implies that either 3 f2 + f3 = 0 or, α = 0, i.e., the structure is β -Kenmotsu.
Let us now discuss the case when 3 f2 + f3 = 0. Then from(2.6), we get r = 6( f1− f3). With the help of (2.4), (3.1), equation (3.16) can be
written as

θ(λ )(S(V1,V2)−( f3− f1)g(V1,V2))−3( f1− f3)V2(λ )η(V1)+θ( f )g(V1,V2)−V2( f )η(V1) = 0,

where f =− rλ+1
2 and

∇V1 Dλ = λQV1 + fV1. (3.18)

As r is a constant, 2V2( f ) =−rV2(λ ) and so, 2θ( f ) =−rθ(λ ). Applying these relations in the above equation, we obtain

θ(λ ){S(V1,V2)−2( f1− f3)g(V1,V2)}= 0,
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where we have used r = 6( f1− f3). From the foregoing equation we obtain either θ(λ ) = 0 or, S(V1,V2) = 2( f1− f3)g(V1,V2). If we
consider θ(λ ) = 0, i.e., g(θ ,Dλ ) = 0, then by covariant derivative

g(∇V1 θ ,Dλ )+g(θ ,∇V1 Dλ ) = 0.

Using (2.3) and (3.18) in the foregoing equation, we have

−αφV1(λ )+βV1(λ )+λS(V1,θ)+ f η(V1) = 0, (3.19)

where we have used θ(λ ) = 0. Applying (1.5), r = 6( f1− f3) and f =− rλ+1
2 in (3.19), we obtain

−αφV1(λ )+βV1(λ )−{λ ( f1− f3)+
1
2
}η(V1) = 0. (3.20)

Replacing V1 by θ , equation (3.20) gives λ ( f1− f3)+ 1
2 = 0, as θ(λ ) = 0. Thus we find that f = 1, a constant and hence λ is also a non-zero

constant. Applying these data in (3.4), we see that S(V1,V2) = − 1
λ

g(V1,V2), i.e, S(V1,V2) = 2( f1− f3)g(V1,V2), as λ ( f1− f3)+ 1
2 = 0.

Thus for every cases, the space-form obeys S(V1,V2) = 2( f1− f3)g(V1,V2). Hence the manifold is Einstein.
Thus the proof is completed.

A consequence of the above theorem is

Corollary 3.4. There does not exist a non-cosymplectic three-dimensional GSSF with β -Kenmotsu structure obeying non-trivial solution of
the MTE, where β is a constant.

Proof. Putting V1 =V2 = ui in (3.16), where {ui}, (i = 1,2,3) being an orthonormal frame of the tangent space, and summing over i, we
find

θ( f1− f3)−β (3 f2 + f3) = 0. (3.21)

Comparing (3.3) and (3.21), we obtain θ(r) = 0. Using (2.7) in (3.21) and considering β as a constant, we find

β (3 f2 + f3) = 0,

which gives β = 0, as 3 f2 + f3 6= 0. Hence the structure is cosymplectic.

Corollary 3.5. Let a trans-Sasakian GSSF be an Einstein manifold and the space form admit non-trivial solution of MTE. Then the metric
is a gradient Ricci soliton.

Proof. Using S(V1,V2) = 2( f1− f3)g(V1,V2) in (3.18), we see that

∇V1 Dλ = {2( f1− f3)+1}V1.

The foregoing equation can be written as

Hess(λ )(V1,V2)+S(V1,V2)−{2( f1− f3)(λ +1)+1}g(V1,V2) = 0,

which is the gradient Ricci soliton, where the soliton constant is 2( f1− f3)(λ +1)+1.

Theorem 3.6 ( [36]). If λ̃ is a solution of the Fischer-Marsden equation (FME, in short) on a three-dimensional trans-Sasakian GSSF, then
the curvature tensor R is given by

R(V1,V2)Dλ̃ =V1(λ̃ )QV2−V2(λ̃ )QV1 + λ̃{(∇V1 Q)V2− (∇V2 Q)V1}+V1( f̃ )V2−V2( f̃ )V1, (3.22)

for every vector fields V1, V2 on M and f̃ =− rλ̃

2 .
Moreover,

∇V1 Dλ̃ = λ̃QV1 + f̃V1. (3.23)

Theorem 3.7. In a three-dimensional trans-Sasakian GSSF, if the FME admits a solution then either the solution is trivial or, the scalar
curvature is a constant.

Proof. Using (2.4) in (3.22), one can obtain

R(V1,V2)Dλ̃ =(2 f1 +3 f2− f3)V1(λ̃ )V2− (3 f2 + f3)V1(λ̃ )η(V2)θ − (2 f1 +3 f2− f3)V2(λ̃ )V1 +(3 f2 + f3)V2(λ̃ )η(V1)θ

+ λ̃{(∇V1 Q)V2− (∇V2 Q)V1}+V1( f̃ )V2−V2( f̃ )V1.
(3.24)

Contracting (3.24) along V1, we infer

S(V2,Dλ̃ ) = (2 f1 +3 f2− f3)V2(λ̃ )− (3 f2 + f3)θ(λ̃ )η(V2)+
λ̃

2
V2(r), (3.25)

where we have used f̃ =− rλ̃

2 . Comparing (3.25) with (3.12), we find that λ̃V2(r) = 0, which gives either λ̃ = 0, i.e., the solution is trivial
or, V2(r) = 0, i.e., the scalar curvature is a constant.
This establishes the theorem.
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Theorem 3.8. In a three-dimensional trans-Sasakian GSSF, if the FME admits a solution then either the structure is β -Kenmotsu or, the
manifold is Einstein or, the solution is trivial.

Proof. Taking inner product of (3.22) with θ , we find that

g(R(V1,V2)Dλ̃ ,θ) =2( f1− f3){V1(λ̃ )η(V2)−V2(λ̃ )η(V1)}

+ λ̃{2V1( f1− f3)η(V2)−2V2( f1− f3)η(V1)+2(3 f2 + f3)αg(φV1,V2)}
+V1( f̃ )η(V2)−V2( f̃ )η(V1).

(3.26)

Replacing V1 by φV1 and V2 by φV2 in (3.26), one can obtain

g(R(φV1,φV2)Dλ̃ ,θ) =−2λ̃ (3 f2 + f3)αg(V1,φV2). (3.27)

Also, from(1.4), we have

g(R(φV1,φV2)Dλ̃ ,θ) = 0. (3.28)

Comparing (3.27) and (3.28), we obtain

λ̃ (3 f2 + f3)αg(V1,φV2) = 0.

Thus three possibility arise: (1) λ̃ = 0, (2) (3 f2 + f3) = 0 and (3) α = 0.
Let us discuss the case when (3 f2 + f3) = 0. Then, from (2.6), we find that r = 6( f1− f3). From (3.22), we get

g(R(θ ,V2)Dλ̃ ,V1) =θ(λ̃ )S(V1,V2)−V2(λ̃ )S(V1,θ)+θ( f̃ )g(V1,V2)−V2( f̃ )η(V1). (3.29)

Also, from (1.4), we infer

g(R(θ ,V2)Dλ̃ ,V1) =−( f1− f3){θ( f̃ )g(V1,V2)−V2( f̃ )η(V1)}. (3.30)

Comparing (3.29) and (3.30) and using r = 6( f1− f3), f =− rλ̃

2 and the equation (2.4), one can obtain

θ(λ̃ )(S(V1,V2)−2( f1− f3)g(V1,V2)) = 0,

which implies either S(V1,V2) = 2( f1− f3)g(V1,V2), i.e., the manifold is Einstein or, θ(λ̃ ) = 0. Let us discuss the case when (θλ̃ ) = 0.
Then we have g(θ ,Dλ̃ ) = 0, which gives

g(∇V2 θ ,Dλ̃ )+g(θ ,∇V2 Dλ̃ ) = 0.

Applying (2.3), (2.4), (3.23) and f̃ =− rλ̃

2 in the foregoing equation, we see that

−αφV2(λ̃ )+βV2(λ̃ )− ( f1− f3)λ̃η(V2) = 0, (3.31)

where we have used θ(λ̃ ) = 0. Replacing V2 by θ and taking f1 6= f3 in (3.31), we find that λ̃ = 0, i.e., the solution is trivial.
This ensures the validity of the theorem.

4. Ricci Solitons on Three-Dimensional Generalized Sasakian Space-forms with Trans-Sasakian
Structures

In the present section, we study Ricci solitons on three-dimensional generalized Sasakian space-forms with trans-Sasakian structure.

Theorem 4.1. In a three-dimensional trans-Sasakian GSSF obeying Ricci solitons, the potential vector field is an infinitesimal contact
transformation.

Proof. From (1.2), we have

(£V g)(V1,V2)+2S(V1,V2)+2ψg(V1,V2) = 0.

Applying V2 = θ in the foregoing equation and using (2.4), we have

(£V g)(V1,θ) =−2(2( f1− f3)+ψ)η(V1). (4.1)

Again, changing V1 by θ in (4.1), we get

£V θ = (2( f1− f3)+ψ)θ . (4.2)

Applying Lie derivative of η(V1) = g(V1,θ) with respect to V and then using (4.1) and (4.2), we find that

(£V η)(V1) =−(2( f1− f3)+ψ)η(V1),

an infinitesimal contact transformation.

From the above theorem, we prove the following:



Universal Journal of Mathematics and Applications 7

Theorem 4.2. In a three-dimensional trans-Sasakian GSSF obeying Ricci solitons, the soliton is shrinking, expanding or steady if f1− f3 is
positive, negative or zero, respectively.

Proof. We have

(£V dη)(V1,V2) = (£V g)(V1,φV2)+g(V1,(£V φ)V2).

Using (2.4) and (1.2) in the foregoing equation, we infer

(£V dη)(V1,V2) =−2(2 f1 +3 f2− f3 +ψ)g(V1,φV2)

+g(V1,(£V φ)V2). (4.3)

According to Theorem 4.1, V is an infinitesimal contact transformation. Also, since £ and d commutes, equation (2.10) gives

(£V dη)(V1,V2) =((dκ)∧η)(V1,V2)+κg(V1,φV2)

=
1
2
(V1(κ)η(V2)−V2(κ)η(V1))+κg(V1,φV2). (4.4)

Comparing (4.3) and (4.4), we have

g(V1,(£V φ)V2) =
1
2
(V1(κ)η(V2)−V2(κ)η(V1))+(2(2 f1 +3 f2− f3 +ψ)+κ)g(V1,φV2),

which gives

(£V φ)V2 =
1
2
(η(V2)Dκ−V2(κ)θ)+(2(2 f1 +3 f2− f3 +ψ)+κ)φV2.

Changing V2 by θ in the previous equation, we find

(£V φ)θ =
1
2
(Dκ−θ(κ)θ). (4.5)

But

(£V φ)θ = £V φθ −φ(£V θ) = 0, (4.6)

where we used (4.2) and φθ = 0. Using (4.6) in (4.5), we obtain

Dκ = θ(κ)θ ,

which gives

dκ = θ(κ)η . (4.7)

By exterior derivative we find from (4.7) that

0 = d2
κ = d(θ(κ))∧η +θ(κ)dη .

Taking wedge product with η in the foregoing equation, we get

θ(κ)η ∧dη = 0.

As η ∧dη 6= 0, the previous equation gives θ(κ) = 0. Thus, from (4.7), we have dκ = 0, i.e., κ is a constant.
Due to Cartan’s formula, for the closed volume form Ω(= η ∧dη), we have

£V Ω = (divV )Ω, (4.8)

where div is the divergence operator. Again, taking Lie derivative of the volume form Ω(= η ∧dη) and using (4.4) and (4.8), we get

(divV )Ω = 2κΩ,

which implies

divV = 2κ.

Integrating the above equation and using divergence theorem, we see that κ = 0. Thus V is the strict infinitesimal contact transformation and
hence, we get ψ =−2( f1− f3).
This establishes the theorem.

Theorem 4.3. In a three dimensional trans-Sasakian GSSF obeying gradient Ricci solitons, either the structure is β -Kenmotsu or, the
potential function is constant, i.e., the soliton is trivial.
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Proof. Let us suppose that a three dimensional trans-Sasakian generalized Sasakian space-form admit gradient Ricci solitons. Then, from
(1.3), we can write

∇V1 Dζ =−QV1−ψV1. (4.9)

Applying covariant derivative on (4.9), we get

∇V2 ∇V1 Dζ =−∇V2 QV1−ψ∇V2V1. (4.10)

Interchanging V1 and V2 in the previous equation, we obtain

∇V1 ∇V2 Dζ =−∇V1 QV2−ψ∇V1V2. (4.11)

Also, equation (4.9) gives

∇[V1,V2]Dζ =−Q[V1,V2]−ψ[V1,V2]. (4.12)

Using (4.10)-(4.12), we get the curvature tensor as

R(V1,V2)Dζ =−{V1(2 f1 +3 f2− f3)V2−V1(3 f2 + f3)η(V2)θ −V2(2 f1 +3 f2− f3)+V2(3 f2 + f3)η(V1)θ

+2(3 f2 + f3)g(φV1,V2)θ − (3 f2 + f3)(−αφV1 +β (V1−η(V1)θ))η(V2)

+(3 f2 + f3)(−αφV2 +β (V2−η(V2)θ))η(V1)}.
(4.13)

Replacing V1 by θ in (4.13) and then taking inner product with V1, we see that

g(R(θ ,V2)Dζ ,V1) =−{θ(2 f1 +3 f2− f3)g(V1,V2)−θ(3 f2 + f3)η(V1)η(V2)−2V2( f1− f3)η(V1)

+(3 f2 + f3)(−αg(V1,φV2)+β (g(V1,V2)−η(V1)η(V2)))}.
(4.14)

Also, the equation (1.4) can be written as

g(R(θ ,V2)Dζ ,V1) = ( f1− f3){V2(ζ )η(V1)−θ(ζ )g(V1,V2)}. (4.15)

Comparing (4.14) and (4.15), we obtain

θ(2 f1 +3 f2− f3)g(V1,V2)−θ(3 f2 + f3)η(V1)η(V2)−2V2( f1− f3)η(V1)

+(3 f2 + f3)(−αg(V1,φV2)+β (g(V1,V2)−η(V1)η(V2)))+( f1− f3){V2(ζ )η(V1)−θ(ζ )g(V1,V2)}= 0.
(4.16)

Interchanging V1 and V2 in (4.16), we have

θ(2 f1 +3 f2− f3)g(V1,V2)−θ(3 f2 + f3)η(V1)η(V2)−2V1( f1− f3)η(V2)

+(3 f2 + f3)(αg(V1,φV2)+β (g(V1,V2)−η(V1)η(V2)))+( f1− f3){V1(ζ )η(V2)−θ(ζ )g(V1,V2)}= 0.
(4.17)

Subtracting (4.17) from (4.16), we see that

2V1( f1− f3)η(V2)−2V2( f1− f3)η(V1)−2(3 f2 + f3)αg(V1,φV2)+( f1− f3){V2(ζ )η(V1)−V1(ζ )η(V2)}= 0. (4.18)

Replacing V1 by φV1 and V2 by φV2 in (4.18), we obtain

(3 f2 + f3)αg(φV1,V2) = 0,

which indicates that either α = 0, i.e., the structure is β -Kenmotsu or, 3 f2 + f3 = 0. For the later case, with the help of (2.6) and (3.2), we
get

V1( f1− f3) = 0, (4.19)

for every vector field V1, i.e., f1− f3 is a constant. Thus, from (4.18), we obtain

( f1− f3){V2(ζ )η(V1)−V1(ζ )η(V2)}= 0,

which gives either f1 = f3 or

V2(ζ )η(V1) =V1(ζ )η(V2). (4.20)

Let us discuss the second possibility. Putting V2 = θ in (4.20), we obtain

Dζ = θ(ζ )θ . (4.21)

Taking covariant derivative of (4.21) with respect to V1 and using (2.3), we obtain

∇V1 Dζ =V1(θ(ζ ))θ +θ(ζ )(−αφV1 +β (V1−η(V1)θ)). (4.22)

Comparing (4.22) with (4.9), we find that

V1(θ(ζ ))η(V2) =−S(V1,V2)−ψg(V1,V2)−θ(ζ )(−αg(φV1,V2)+β (g(V1,V2)−η(V1)η(V2))).
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Since 3 f2 + f3 = 0, using (2.4) in the above equation, we get

V1(θ(ζ ))η(V2) =−{2( f1− f3)+ψ}g(V1,V2)−θ(ζ )(−αg(φV1,V2)+β (g(V1,V2)−η(V1)η(V2))). (4.23)

Replacing V2 by φV2 in (4.23), we see that

{2( f1− f3)+ψ}g(V1,φV2)+θ(ζ )(−α(g(V1,V2)−η(V1)η(V2))+βg(V1,φV2)) = 0.

Contracting the above equation and using trφ = 0, we get

αθ(ζ ) = 0,

which gives θ(ζ ) = 0, as we consider α 6= 0. Thus, from (4.21), we see that Dζ = 0, i.e., ζ is a constant.
Hence the proof is completed.

From the equation(4.19), we can state the following corollary

Corollary 4.4. If a three-dimensional trans-Sasakian GSSF admits gradient Ricci solitons, then either the structure is β -Kenmotsu or,
f1− f3 is a constant.

5. Example

Let M = {(x,y,z) ∈ R3 : z 6= 0} be a three-dimensional manifold, where (x,y,z) are the standard co-ordinates in R3. We choose the basis
vectors on M as

u1 = e−2z ∂

∂x
, u2 = e−2z ∂

∂y
, u3 =

∂

∂ z
.

Then we find by direct computation that

[u1,u2] = 0, [u1,u3] = 2u1, [u2,u3] = 2u2.

Let g be the metric tensor defined by

g(u1,u1) = 1, g(u2,u2) = 1, g(u3,u3) = 1, g(u1,u2) = 0, g(u1,u3) = 0, g(u2,u3) = 0.

The 1-form η is given by η(V1) = g(V1,u3) for all V1 on M. Let us define the (1,1)-tensor field φ as

φu1 =−u2, φu2 = u1, φu3 = 0.

Then we see that

η(u3) = 1, φ
2V1 =−V1 +η(V1)u3, g(φV1,φV2) = g(V1,V2)−η(V1)η(V2), dη(V1,V2) = g(V1,φV2).

Thus the given manifold admits a contact metric structure (φ ,u3,η ,g).Now, using Koszul’s formula, we obtain

∇u1 u1 =−2u3, ∇u1 u2 = 0, ∇u1 u3 = 2u1, ∇u2 u1 = 0, ∇u2 u2 =−2u3, ∇u2 u3 = 2u2, ∇u3 u1 = 0,

∇u3 u2 = 0, ∇u3 u3 = 0.

Thus the given structure is a trans-Sasakian structure with α = 0, β = 2. The components of the curvature tensor are given by

R(u1,u2)u2 =−4u1, R(u2,u1)u1 =−4u2, R(u1,u3)u3 =−4u1, R(u2,u3)u3 =−4u2, R(u3,u1)u1 =−4u3,

R(u3,u2)u2 =−4u3, R(u1,u2)u3 = 0, R(u1,u3)u2 = 0, R(u2,u3)u1 = 0.

From the above expressions, the given manifold is a generalized Sasakian space-form with f1 = ω−1, f2 =−ω+3
3 and f3 = ω +3, where

ω is a smooth function on M.
The non-zero components of the Ricci tensor are given by

S(u1,u1) =−8, S(u2,u2) =−8, S(u3,u3) =−8.

Thus we see that S(V1,V2) =−8g(V1,V2), for every vector fields V1, V2 on M. Hence the space-form is an Einstein manifold. The scalar
curvature of the manifold is −24.
Let λ = e−

az
2 +b, where a and b are scalars, so that, e−

az
2 = λ −b. Now Dλ =− a

2 e−
az
2 u3 =− a

2 (λ −b)u3. Then

∇u1 Dλ =−a(λ −b)u1, ∇u2 Dλ =−a(λ −b)u2, ∇u3 Dλ =
a2

4
(λ −b)u3.

Thus (∆gλ ) = ( a2

4 − 2a)(λ − b). Now −(∆gλ )g(ui,u j)+ g(∇ui Dλ ,u j)−λS(ui,u j) = g(ui,u j), i, j = 1,2,3, gives the following two
equations

(a− a2

4
)(λ −b)+8λ = 1
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and

2a(λ −b)+8λ = 1.

Comparing the above two equations, we see that a = 0, b =− 7
8 and λ = 1

8 or a =−4, b = 1
8 and λ = e2z + 1

8 . Thus the non-trivial solution
of the Miao-Tam equation exists on the given manifold. Since the manifold is Einstein and the structure is β -Kenmotsu (as α = 0), the
Theorem 3.3 holds good.
Again, let λ̃ = e−

az
2 +b, where a and b are scalars, so that, e−

az
2 = λ̃ −b. Now Dλ̃ =− a

2 e−
az
2 u3 =− a

2 (λ̃ −b)u3. Then

∇u1 Dλ̃ =−a(λ̃ −b)u1, ∇u2 Dλ̃ =−a(λ̃ −b)u2, ∇u3 Dλ̃ =
a2

4
(λ̃ −b)u3.

Thus (∆gλ̃ ) = ( a2

4 −2a)(λ̃ −b). Now −(∆gλ̃ )g(ui,u j)+g(∇ui Dλ̃ ,u j)− λ̃S(ui,u j) = 0, i, j = 1,2,3, gives the following two equations

(a− a2

4
)(λ −b)+8λ = 0

and

2a(λ −b)+8λ = 0.

Solving the last two equations, we see that λ̃ = 0, i.e., the solution is trivial, which ensures the validity of the Theorem 3.8.
Let us consider the potential vector field V = xe2zu1 + ye2zu2 +

1
2 (e

2z−1)u3. Then equation (1.2) is satisfied for that V with ψ = 8− e2z,
i.e., the soliton is steady at z = 3

2 log2 and it is expanding or shrinking if z is less than or greater than 3
2 log2, respectively. Also

(£V η)(V1) = e2zη(V1), for any vector field V1 on M. Hence V is an infinitesimal contact transformation. In this way Theorem 4.1 is satisfied.
Next, we suppose that the potential vector field V is the gradient of a smooth function ζ , i.e., V = Dζ . Then

Dζ = e−2z ∂ζ

∂x
u1 + e−2z ∂ζ

∂y
u2 +

∂ζ

∂ z
u3.

Therefore,

∇u1 Dζ = e−4z ∂ 2ζ

∂x2 u1−2e−2z ∂ζ

∂x
u3 + e−4z ∂ 2ζ

∂x∂y
u2 + e−2z ∂ 2ζ

∂x∂ z
u3 +2

∂ζ

∂ z
u1,

∇u2 Dζ = e−4z ∂ 2ζ

∂y2 u2−2e−2z ∂ζ

∂y
u3 + e−4z ∂ 2ζ

∂y∂x
u1 + e−2z ∂ 2ζ

∂y∂ z
u3 +2

∂ζ

∂ z
u2,

∇u3 Dζ =−2e−2z ∂ζ

∂x
u1 + e−2z ∂ 2ζ

∂ z∂x
u1−2e−2z ∂ζ

∂y
u2 + e−2z ∂ 2ζ

∂ z∂y
u2 +

∂ 2ζ

∂ z2 u3.

Thus the equation ∇V1 Dζ +QV1 +ψV1 = 0 gives

e−4z ∂ 2ζ

∂x2 +2
∂ζ

∂ z
−8+ψ = 0,

e−4z ∂ 2ζ

∂y2 +2
∂ζ

∂ z
−8+ψ = 0,

and

∂ 2ζ

∂ z2 −8+ψ = 0.

The last three equations satisfy simultaneously only when ζ is a constant. Thus we see that the soliton is trivial, which verifies the Theorem 4.3.
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Abstract

The definition of Fermatean fuzzy soft sets and some of its features are introduced in this
study. A Fermatean fuzzy soft set is a parameterized family of Fermatean fuzzy sets and
a generalization of intuitionistic and Pythagorean fuzzy soft sets. This paper presents a
definition of the Fermatean fuzzy soft entropy. Also acquired are the formulae for standard
distance measures such as Hamming and Euclidean distance. Other formulas have also
been proposed for calculating the entropy and distance measurements of FFSSs. Even if the
entropy and distance measures are defined for other set extensions, they cannot be applied
directly to Fermatean fuzzy soft sets. It can be used to determine the uncertainty associated
with a Fermatean fuzzy soft set, discover similarities between any two Fermatean fuzzy soft
sets using the proposed distance measures, and compare it to other existing structures in the
literature. Fermatean fuzzy soft set applications in decision-making and pattern recognition
difficulties are also examined. Finally, comparison studies with other known equations are
performed.

1. Introduction

1.1. Motivation

In generalized set theory, measures of entropy and distance are crucial notions. Distance is the difference between two patterns. The pattern
could be a scalar number, vector, matrix, or other numeric data type. Distance metrics are effective for identifying parallels and differences
in patterns. The dissimilarity, or distance, between two patterns, is zero if they are identical. As the difference between patterns develops,
so does the dissimilarity or distance. Distance measuring between objects is essential in many fields, including information retrieval, data
mining, and machine learning. The items under discussion are frequently made up of numerous components or groups of another object. A
distance can be easily defined if the set or tuple is sorted and may be shown as a vector. However, it is expected to mistakenly believe that the
i− th index of a vector x equals the i− th index of a vector y. One must rely on a less accurate distance measure if such a correlation does
not exist. Entropy measures the degree of ambiguity. A system’s entropy is directly proportional to its irregularity. If the entropy of each
system is known, one can determine which is more stable. Entropy is the amount of practical work that can be produced from the heat energy
emitted into the environment. You cannot work if the heat energy is equal inside and outside the engine. For example, suppose there is an
energy difference between the engine and the external environment. The situation changes if it is cold outside and the engine’s pistons are
hot. The energy will flow from the hot to the cold, and at the same time, it will start the engine. Ludwig Boltzmann later generalized this
definition: Accordingly, the particle configurations (low temperature) corresponding to the equal spread of energy in space are different from
the combinations of energy concentration at a single point (high temperature). After all, space is more significant than a single point. If the
energy is evenly distributed, the entropy always increases because we cannot do work. This is why heat flows from hot to cold. It is not
impossible for the air in a room to spontaneously collect in one corner. However, this is such a low probability that you will not see it in your
lifetime. Thus, Boltzmann showed that entropy is statistical.

Shannon [1] established the concept of information entropy. In information theory, entropy measures the uncertainty associated with a
random variable. Entropy can be conceived of as a system’s hidden information. Entropy, in more technical terms, is a measure of the
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amount of information that may be acquired by measuring the system. In this context, very detailed information can be obtained if the air
molecule particles collected in the corner of the room are measured. As a result, trillions of particles are measured at once. On the other
hand, the air molecules surrounding the room provide more information. As for why the entropy is high, A particle gathered in a single
corner of the room gives clear information about other particles. After all, they are all in the same place. However, if one of the air molecules
emitted into the room is measured, not much information can be obtained about the location of the other molecules. According to Shannon
entropy, the information does not disappear; in this case, it is hidden from view. The number of positional combinations of the air molecules
occupying the room is higher than the number of molecules collected in one corner. In short, the more the different combinations of particles
that make up a system look like the same thing at first glance (in this case, the air surrounding the room), the more information is hidden.
Various entropy and distance measures are available in the literature, helpful in solving real-life problems. FS-type entropy and distance
measures were later defined and studied in SS, IFSS, and PFSS. Fuzzy entropy is a term used to indicate the degree of uncertainty, and
finding the entropy of a set is one of the essential applications of fuzzy set theory. It has yet to be suggested that these studies’ definitions of
entropy and distance measures be extended to include FFSSs. Filling this gap is the primary motivation of this study.

1.2. Literature

Multi-Criteria Decision Making (MCDM) is a collection of analytical approaches that evaluate the advantages and disadvantages of
alternatives based on many criteria. MCDM methods are used to support the DM process and to select one or more alternatives from a
set of alternatives with different characteristics according to conflicting criteria or to rank these alternatives. In other words, in MCDM
methods, decision-makers rank the alternatives with different characteristics by evaluating them according to many criteria. MCDM is a set
of methods frequently used in all areas of life and at all levels. There are many studies in the literature about MCDM in various fields [2]- [11].

Fuzzy sets(FS) and their expansions are a more effective tool for describing vague and imprecise information and explaining it in a way
that is close to human thinking. Although the FSs that emerged with the membership function have made an innovative contribution to
the solution of uncertainties, it is impossible to explain the problems and uncertainties in real life only through membership. Real life
consists of degrees of non-membership and even hesitations as much as degrees of membership. This situation naturally leaves the solution
to uncertainties incomplete. FS expansions proposed by many researchers, especially Atanassov [12], have been powerful tools to solve the
problem. However, FSs must be more comprehensive in explaining uncertainties in real-life problems. Despite all of the possible responses,
these theories have several drawbacks. These limitations include the inability to properly consider the parametrization tool and how to set the
membership function for each unique item. Because of these restrictions, it is challenging for DMRs to make wise judgments throughout the
analysis.

Since the formation of the membership function (MF) differs for each individual, the formation of more than one MF and its belonging
to the set varies according to everyone. Thereupon, Molodtsov [13] initiated the SS theory. While the soft set (SS) theory deals with the
set-valued function, FSs remove the uncertainty with the real-valued function. The problem of establishing an MF does not exist in the
SS. So, the SS is much more useful. An SS is a parameterized family of sets extended into different hybrid structures, such as Fuzzy soft
sets (FSS), intuitionistic fuzzy soft sets (IFSS), and Pythagorean fuzzy soft sets (PFSS). Since the Fermatean fuzzy set (FFS) can deal with
vagueness or uncertainty, the parameterized family of FFSs, the Fermatean fuzzy soft sets (FFSS), also performs well. An FFS is obtained in
the case of FFSSs, corresponding to each parameter. FFSs can manage several real-life situations where the intuitionistic fuzzy sets (IFS) and
Pythagorean fuzzy sets (PFS) fail to explain. Suppose there is a case in which someone expresses his satisfaction to particular criteria as 0.6,
and the degree of dissatisfaction is 0.7. Then, their sum exceeds one, but the square sum does not. So, FFSs can handle this. Thus, a FFSS is
an effective parameterizing tool and an excellent medium to represent vagueness in many real-life situations. An SS is a parameterized
family of sets that can be expanded into various hybrid structures such as FSSs, IFSSs, and PFSSs. The parameterized family of FFSs, the
FFSS, also performs well because the FFS is highly competent in dealing with vagueness or uncertainty. In the case of FFSSs, an FFS is
obtained for each parameter. FFSs can handle a variety of real-world circumstances that IFSs and PFSs cannot explain. Assume someone
expresses his pleasure with specific criteria as 0.7 and his degree of discontent is 0.8. The amount then surpasses one, but not the square sum.
As a result, FFSs can manage it. As a result, an FFSS is an effective parameterizing tool and an ideal medium for representing ambiguity in
many real-world circumstances.

The concept of an FS proposed by Zadeh [14] was used to demonstrate the ambiguity and vagueness of a membership degree(MD). The
IFS developed by Atanassov [12] can more fully explain evaluation information by linking an element’s non-membership degree(ND) to
an item. In light of the IFS mentioned above weakness, Yager [15] pioneered the PFS concept to increase the range of MD and ND so
that MD2 +ND2 ≤ 1. As a result, PFS provides additional evaluation opportunities for professionals to voice their opinions on numerous
objectives. As the decision-making environment becomes more complex, it becomes increasingly challenging for professionals to provide
more credible evaluation information. The notions of IFS and PFS have been supported to impact the vagueness and ambiguity created by
the complicated subjectivity of human cognition. The FFS was the first to broaden the area of information statements by including the cubic
sum of MD and ND. As a result, FFS is a more efficient and practical strategy than IFS and PFS for dealing with indeterminacy of choice
difficulties. Due to its advantages in displaying ambiguous information and providing additional possibilities for professionals, academics
have pushed to create many DM systems to handle genuine DM and evaluation problems.

Senepati and Yager [16] are the creators of the FFS. FFSs explain uncertainties better than IFSs and PFSs. Senapati and Yager [17] expanded
on this article by examining a range of novel operations and arithmetic mean techniques over FFSs. They used the FF-weighted product
model to handle MCDM problems. FFS-related novel aggregation operators have been defined, and [18] has investigated their properties.
Many studies on FFS have appeared in the literature( [17]- [31]).

The SS defines a distinct scenario to address ambiguity and vagueness [13]. A set of features produces a family of subsets regarded as
approximation definitions of a notion (one for each property-defined viewpoint). Many academics with diverse interests were rapidly drawn
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to soft sets( [26], [32]- [40]). With the advancement of communication and technology, many complex topics require more than one analytical
instrument. In this respect, Maji et al. [35] demonstrated that FS and SS theories can coexist. Many articles ( [41]- [46]) studied these models
further. Researchers expanded on this sort of hybridization ( [40], [47]- [49]). Of course, the motivations for studying these generalizations
of IFS sets are reasonable.

In FS theory, which has gotten much attention in recent years, the distance measure is useful for representing the difference between two FSs.
Many authors have proposed various distance measurements for IFSs and PFSs in IFS and PFS theories. Szmidt and Kacprzyk [50] defined
and explained various distance measures for IFSs using the geometric method. Several forms of distance and similarity measurements for
FS, IFS, and PFSs have been introduced since the evolution of FS theory. Several scholars have recently focused on distance or similarity
measurements, which are significant mathematical instruments in DM and pattern recognition problems( [51]- [58]). There are also new
FFSS studies in the literature( [19]- [21], [27], [59], [60]).

In the FSs theory, Zadeh [61] was the first to mention entropy as a measure of fuzziness or ambiguous information. De Luca and Termini [62]
defined the entropy of FSs using Shannon’s function and gave the hypotheses that the fuzzy entropy must follow. According to information
entropy, the volume and quality of accessible information are the most significant factors of the accuracy and reliability of the decision to be
made in a DM situation [63]. Kaufmann [64] showed how to determine an FS’s entropy by measuring the distance between the FS and the
nearest crisp set. In contrast, Yager [65] measured the distance between the FS and its complement.

Higashi and Klir [66] expanded Yager’s [65] approach to a fairly general class of fuzzy complements. Using entropy in DM processes
increases the method’s usefulness in uncertain contexts because entropy is crucial for gauging uncertain information. Mohagheghi et al. [67]
used the idea of entropy to weigh the importance of each criterion. So, the criteria’ relevance was addressed directly by the DMs and
indirectly by computing a weight based on the ideas obtained. Peng et al. [68] provide axiomatic definitions of PF-information metrics such
as entropy, distance measure, inclusion measure, and similarity measure.

1.3. Necessity

“Keep the certain, avoid the uncertain” instructions are familiar to everyone. A person tends to choose what he knows, even if it is
terrible, because that way, he feels more secure. This makes people distant and anxious about the “new”. The goal is to live safely in
a clear and specific world. The serenity of foretelling what might happen to one makes the story, which promises pain, very appealing.
Unexpected situations, social protests, the virus, the evolution of education, and natural disasters convince us that uncertainty is life itself.
In other words, uncertainty is an inevitable human reality. However, man is not faced with uncertainties only outside himself. One’s
expressions, expectations, what one does, and what one wants to do always contain uncertainties. Therefore, people have to make de-
cisions based on these uncertainties at all times and everywhere, from the work they do during the day to the work they plan to do in the future.

The cognitive continuum, which leads to choosing a faith or plan of action from a range of potential possibilities, is known as decision-making.
It might be logical or illogical. Making a choice is a method of deliberation based on the decision-maker’s (DMR) values, preferences, and
beliefs. Every decision-making(DM) continuum ends with a final alternative that may or may not be followed by action. Data are used in
DM to minimize or completely remove ambiguity. Decisions are regularly taken while it is unknown whether they will be beneficial or
harmful. Due to time constraints, a lack of knowledge, carelessness, and their ability to comprehend information, decision-makers often need
more clarity and accurate information to address problems.

IFS and PFS-based techniques, by definition, cannot capture data in FFS format. It is also evident that IFS and PFS-based decision-making
systems cannot withstand scenarios in which experts supply preference values in FFSs. Approaches based on FFS, such as the recommended
technique, effectively obtain and analyze information to rate available options based on predefined criterion values. The FFS environment
manages more information and covers a broader range of themes for dealing with uncertain information since it includes both IFSs and PFSs
into a single platform. As a result, more information is needed in this collection.

An SS is a bag that contains an approximate representation of the objects. It is made up of two parts: a predicate and an approximate value
set. It states the object-related information more accurately and precisely. Traditional mathematics machinery fails because the beginning
description is approximate; however, the SS can manage several challenges in this respect. As a result, it is an effective instrument for
dealing with ambiguous and perplexing knowledge during the DM process. Fuzzy-type soft sets (FSS, IFSS, PFSS, and others) outperform
all other mathematical tools and produce significantly better outcomes, particularly in decision-making procedures. Existing SSs from the
IFS and PFS are considered a subset of the proposed SSs. Furthermore, the proposed SSs can handle more data than the current ones. As a
result, the presented method contains significantly more information than existing methods for dealing with data uncertainties in the IFS and
PFS contexts.

Since the Fermatean fuzzy soft set is an excellent tool to handle more than IFSS and PFSS, obtaining the entropy is also relevant. It is
discovered that entropy can be used in DM problems, and hence, DM problems handle certain broader domains. Distance measures can
be used to solve problems such as DM, pattern identification, and machine learning. Hamming distance and Euclidean distance are the
most commonly used distance measurements. The measure of distance is inversely proportional to the measure of similarity. As a result,
determining the similarity between sets is beneficial. Senapati and Yager [16] provide an FFS distance measure and illustrate with a numerical
example that the proposed distance measures are realistic and appropriate. This definition of FFSs is expanded to define the FFSS distance
measure-both the proposed entropy and distance measurements aid in adequately understanding real-life events. Based on the inspiration of
the soft set structure and the benefits of FFSs in dealing with uncertain and imprecise information, this work investigates the theory of FFSSs
by establishing some new information measures called entropy and distance measures.
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1.4. Contribution

The core contributions of the present work can be expressed as:

(i) The article sets up a Fermatean fuzzy-type soft set. Further, the main structures of FFSSs are investigated.
(ii) New measures of distance and entropy based on FFSSs are provided to measure uncertain information.

(iii) The theoretical background of new measures of distance and entropy has been given in detail.
(iv) DM algorithms related to new distance and entropy measures have been given.
(v) The suggested techniques were corroborated by numerical examples related to medical DM ve PR.

(vi) The new method is compared with PFS elements to see the advantages.

The following are the benefits of this work:

(i) It can be used to determine the level of uncertainty associated with an FFSS.
(ii) It can be used to identify the similarity between any two FFSSs using the provided distance measures.

(iii) It is comparable to other existing structures in the literature.

Entropy and distance metrics in another type of generalized structure will be compared in future work. In addition, topological, algebraic,
and order theoretical structures for FFSSs can be introduced and examined.

Structure: We propose the notion of a FFSS. The essential characteristics of FFSS, such as FFS-subsets, “AND” and “OR” operators, union,
intersection, and complement, are investigated in Section 3. Section 4 focused on the measures of entropy and distance concerning FFSS.
Novel methods for DM and PR problems are devised, and concrete examples are provided in Section 5.

2. Preliminaries

Let Z = {z1,z2, . . . ,zn} and E = {e1,e2, . . . ,em} be the universal and the parameter sets, respectively.

Definition 2.1. • An fuzzy set FS is defined as F = {(z,mF (z)) : z ∈ Z}, where mF (z) : Z→ [0,1] is called MD [14].
• An IFS F is defined as F = {(z,mF (z),nF (z)) : z ∈ Z} such that mF (z)+nF (z)≤ 1, where mF (z),nF (z) : Z→ [0,1] is called MD and

ND, respectively [12].
• An PFS F is defined as F = {(z,mF (z),nF (z)) : z ∈ Z} such that m2

F (z)+n2
F (z)≤ 1, where mF (z),nF (z) : Z→ [0,1] [15].

Definition 2.2 ( [16]). The set F = {< k,mF (k),nF (k)>: k ∈ Z} is called FFS, where 0≤ m3
F (k)+n3

F (k)≤ 1 and mF ,nF : Z→ [0,1].

The hesitancy degree (HD) of F is hF (k) = 3
√

1− (m3
F (k)+n3

F (k)).
For FFSs F = (mF ,nF ), F1 = (mF1 ,nF1) and F2 = (mF2 ,nF2), [16]:

(i) F1∩F2 = [min(mF1 ,mF2),max(nF1 ,nF2)];
(ii) F1∪F2 = [max(mF1 ,mF2),min(nF1 ,nF2)];

(iii) Ft = (nF ,mF );

(iv) F1 �F2 =
(

3
√

m3
F1
+m3

F2
−m3

F1
m3

F2
,nF1 nF2

)
;

(v) F1 �F2 =
(

mF1 mF2 ,
3
√

n3
F1
+n3

F2
−n3

F1
n3

F2

)
;

(vi) αF =

(
3
√

1− (1−m3
F )

α ,nα
F

)
;

(vii) Fα =

(
m3

F1
, 3
√

1− (1−n3
F )

α

)
.

The properties of complement of FFS [16]:

(i) (F1∩F2)
c = Fc

1 ∪Fc
2 ;

(ii) (F1∪F2)
c = Fc

1 ∩Fc
2 ;

(iii) (F1 �F2)
c = Fc

1 �Fc
2 ;

(iv) (F1 �F2)
c = Fc

1 �Fc
2 ;

(v) α(F)c = (Fα )c;
(vi) (Fc)α = (αF)c.

Proposition 2.3 ( [16]). Let three FSSs F,G,H. Then,

(i) If F ⊆ G and G⊆ H, then F ⊆ H;
(ii) (Fc)c = F;

(iii) The properties commutative, associative, and distributive are applied for the union and intersection;
(iv) Union and intersection provide DeMorgan’s laws.

Definition 2.4. The soft sets (SS) are a parameterized family of subsets of Z. That is, for the function F : E→ SS(Z), (F,E) is denoted a SS,
where SS(Z) is a set of all subsets of Z.

According to Definition 2.4, if SS(Z) is selected as Z’s F-, IF-, and PF-subsets, then (F,N) will be defined as fuzzy soft set (FSS) [35],
intuitionistic fuzzy soft set (IFSS) [36] and Pythagorean fuzzy soft set (PFSS) [40], respectively. The definitions of FSS, IFSS, and PFSS are
given as follows:
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Definition 2.5. • The pair (F,E) is called FFS, if the function F : E→ FS(Z) is a mapping from E into set of all fuzzy sets in Z, where
if FS(Z) is a set of all subsets of Z [35].

• The pair (F,E) is called IFFS, if the function F : E→ IS(Z) is a mapping from E into set of all intuitionistic fuzzy power sets in Z,
where if IS(Z) is a set of all subsets of Z [36].

• The pair (F,E) is called PFFS, if the function F : E→ PS(Z) is a mapping from E into set of all Pythagorean fuzzy sets in Z, where if
PS(Z) is a set of all subsets of Z [40].

Definition 2.6. Let d be a mapping d : IFSS(Z)× IFSS(Z)→ R+⋃{0}, where R+⋃{0} denotes the set of non-negative real numbers. For
two IFSS(Z) A,B, if d(A,B) satisfies the following properties:

• d(A,B)≥ 0;
• d(A,B) = d(B,A);
• d(A,B) = 0 if and only if A = B;
• For any C ∈ IFSS(Z) , d(A,B)+d(B,C)≥ d(A,C).

Then d(A,B) is a distance measure between IFSSs A and B [69].

If the sets A and B in Definition 2.6 are taken as PFSSs and d : PFSS(Z)×PFSS(Z)→ R+⋃{0}, then the d transformation is called the
“distance measure between PFSSs A and B” [32].

Definition 2.7. A real function T : IFFS(Z)→ R+ is called a intuitionistic fuzzy soft entropy(IFSE) on IFFS(Z) [69], if T has following
properties;

• T (p) = 0 if and only if p ∈ S(Z).
• Let p = (F,E) = [ai j]m×n, T (p) = mn if and only if mF(e)(z) = 0 = nF(e)(z), ∀e ∈ E,∀z ∈ Z.
• T (p) = T (pc) p ∈ IFSS(Z).
• If p� p̄, then T (p)≥ T (p̄) where (F,T ) = p and (G,T ) = p̄.

If IFSS(Z) in Definition 2.7 is taken as PFSS(Z), then the T transformation is called a Pythagorean fuzzy soft entropy(PFSE) on
PFFS(Z) [32].

3. Fermatean Fuzzy Soft Sets

Definition 3.1. For M ⊆ E, the FFSSs is defined as the pair (F,M) where F : E→ FFS(Z) and FFS(Z) is the set of all Fermatean fuzzy
subsets of Z.

For any parameter e ∈ E, F(e) can be wirtten as a FFS such that

F(e) = {(z,mF(e)(z),nF(e)(z)) : z ∈ Z}

where mF(e)(z) and nF(e)(z) are the MD and ND with condition m3
F(e)(z)+n3

F(e)(z)≤ 1. Further, hF(e)(z) = 3
√

1− (mF(e)(z))3− (nF(e)(z))3.

Example 3.2. The diseases set Z = {z1,z2,z3} and the symptoms set M = {e1 = symptom1,e2 = symptom2,e3 = symptom3}. Hence

F(e1) = {< z1,0.6,0.9)>,< z2,0.8,0.7)>,< z3,0.8,0.9)>}
F(e2) = {< z1,0.7,0.9)>,< z2,0.9,0.5)>,< z3,0.8,0.8)>}
F(e3) = {< z1,0.8,0.7)>,< z2,0.8,0.9)>,< z3,0.9,0.6)>}

and table representation as follows (Table 1):

z1 z2 z3
e1 (0.6, 0.9) (0.8, 0.7) (0.8, 0.9)
e2 (0.7, 0.9) (0.9, 0.5) (0.8, 0.8)
e3 (0.8, 0.7) (0.8, 0.9) (0.9, 0.6)

Table 1: (F,M)

Definition 3.3. Let M,N ⊂ E, and (F,M),(G,N) be two FFSS (F,M) is called a FF soft subset of (G,N) (denoted by (G,N)⊂̂(F,M)) if

(i) M ⊆ N,
(ii) For all z ∈ Z, e ∈M, mM(z)≥ mN(z) and nM(z)≤ nN(z).

Example 3.4. Let M = {e1 = symptom1} ⊂ E. Hence, we can written FFSS (G,N) as:

G(e1) = {< z1,0.6,0.8 >,< z2,0.6,0.8)>,< z3,0.7,0.9)>}

This shows us that (G,N)⊂̂(F,M).

Definition 3.5. Choose the two FFSS (F,M),(F,N).

(i) (F,N)=̂(F,M), if (G,N)⊂̂(F,M) and (F,M)⊂̂(G,N).
(ii) The complement of ( f ,M) is identified (F,M)c, where Fc : M→ FFSS(Z) and Fc(e) = (F(e))c for every e ∈M.
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Further, ((F,M)c)c = (F,M).

Example 3.6. From Example 3.4. If

G(e1) = {< z1,0.6,0.8)>,< z2,0.5,0.7)>,< z3,0.7,0.6)>},

then

Gc(e1) = {< z1,0.8,0.6)>,< z2,0.7,0.5)>,< z3,0.6,0.7)>}.

Definition 3.7. Choose the two FFSS (F,M),(G,N).

• AND Operator: (F,M) AND (G,N) is FFSS denoted by (F,M) ∧ (G,N) is defined by (F,M) ∧ (G,N) = (H,A× B) where
H(α,β ) = F(α)∩G(β ), ∀α,β ∈ A×B. That is, H(α,β )(z) = (z,min{mF(α)(z),mG(β )(z)},max{nF(α)(z),nG(β )(z)}), ∀α,β ∈ A×B
and ∀z ∈ Z.

• OR Operator: (F,M) OR (G,N) is FFSS denoted by (F,M) ∨ (G,N) is defined by (F,M) ∨ (G,N) = (H,A × B) where
H(α,β ) = F(α)∪G(β ), ∀α,β ∈ A×B. That is, H(α,β )(z) = (z,max{mF(α)(z),mG(β )(z)},min{nF(α)(z),nG(β )(z)}), ∀α,β ∈ A×B
and ∀z ∈ Z.

Example 3.8. Choose N = {e1,e2}. Then, FFSS (G,N) as:

G(e1) = {< z1,0.6,0.8)>,< z2,0.4,0.8)>,< z3,0.8,0.5)>},
G(e2) = {< z1,0.6,0.7)>,< z2,0.6,0.4)>,< z3,0.9,0.4)>}.

It is seen that (F,M)⊂̂(G,N). AND and OR operations are shown by Tables 2 and 3.

(e1,e1) (e1,e2) (e2,e1) (e2,e2) (e3,e1) (e3,e2)

z1 (0.6, 0.9) (0.6, 0.9) (0.6, 0.8) (0.6, 0.7) (0.6, 0.9) (0.4, 0.9)
z2 (0.4, 0.9) (0.6, 0.9) (0.4, 0.8) (0.6, 0.5) (0.4, 0.8) (0.6, 0.8)
z3 (0.8, 0.7) (0.8, 0.7) (0.8, 0.9) (0.8, 0.9) (0.8, 0.6) (0.9, 0.6)

Table 2: (F,M)∧ (G,N)

(e1,e1) (e1,e2) (e2,e1) (e2,e2) (e3,e1) (e3,e2)

z1 (0.6, 0.8) (0.6, 0.7) (0.8, 0.7) (0.8, 0.7) (0.8, 0.8) (0.8, 0.7)
z2 (0.7, 0.8) (0.7, 0.4) (0.9, 0.5) (0.9, 0.4) (0.8, 0.8) (0.8, 0.4)
z3 (0.8, 0.5) (0.9, 0.4) (0.8, 0.5) (0.9, 0.4) (0.9, 0.5) (0.9, 0.4)

Table 3: (F,M)∨ (G,N)

Theorem 3.9. For two FFSSs (F,M) and (G,N),

• (i.) ((F,M)∧ (G,N))c = (F,M)c∨ (G,N))c

• (ii.) ((F,M)∨ (G,N))c = (F,M))c∧ (G,N))c.

Proof. (i) First, take (F,M)∧ (G,N) = (H,M×N), where H(α,β ) = F(α)∩G(β ), ∀α,β ∈M×N. That is,

H(α,β )) = (z,min{mF(α)(z),mG(β )(z)},max{nF(α)(z),nG(β )(z)}), for all (α,β ) ∈M×N and z ∈ Z.

Second, ((F,M)∧ (G,N))c = (H,M×N)c = (Hc,M×N). That is, ∀α,β ∈M×N and for all z ∈ Z,

Hc(α,β )) = (z,max{nG(α),nG(β )},min{mF(α),mF(β )}). (3.1)

Let (F,M)c∨ (G,N)c = (Fc,M)∨ (Gc,N) = (I,(M×N)), where I(α,β )) = Fc(α)∪Gc(β ), ∀(α,β ) ∈M×N. So, for z ∈ Z, we get

I(α,β ) = (z,max{mFc(α)(z),mGc(β )(z)},min{nFc(α)(z),nGc(β )(z)})

= (z,max{nF(α)(z),nG(β )(z)},min{mF(α)(z),mG(β )(z)})
(3.2)

We obtain ((F,M)∧ (G,N))c = (F,M)c∨ (G,N)c, from (3.1) and (3.2).

(ii) can be proved similarly to (i).

Definition 3.10. For two FFSSs (F,M) and (G,N), the union (H,P) of (F,M) and (G,N) (F,M)∪ (G,N) = (H,P), is described as

H(e) =


F(e) , e ∈M/N
G(e) , e ∈ N/M
F(e)∪G(e) , e ∈M∩N.

if P = M∪N and for all e ∈ P. So, for all e ∈M∩N, we have F(e)∪G(e) = (z,max(mF(e)(z),mG(e)(z)),min(nF(e)(z),nG(e)(z))>: z ∈ Z.
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Theorem 3.11. The union (H,P) is a FFSS.

Proof. Using Definition 3.10, ∀e ∈ P if e ∈M/N or e ∈ N/M, then H(e) = F(e) or H(e) = G(e). Therefore, H(e) is FFSS.

If e ∈M∩N, for a fixed z ∈ Z, consider mF(e)(z)≤ mG(e)(z), then,

m3
H(e)(z)+n3

H(e)(z) = (m3
F(e)(z)∨m3

G(e)(z))+(n3
F(e)(z)∧n3

G(e)(z))

= m3
F(e)(z)+(n3

F(e)(z)∧n3
G(e)(z))

≤ m3
G(e)(z)+n3

G(e)(z)≤ 1.

Then, union (H,P) is a FFSS.

Definition 3.12. For two FFSSs (F,M) and (G,N), the union (H,P) of (F,M) and (G,N) (F,M)∪ (G,N) = (H,P), is described as

H(e) =


F(e) , e ∈M/N
G(e) , e ∈ N/M
F(e)∩G(e) , e ∈M∩N.

if P = M∪N and for all e ∈ P. So, for all e ∈M∩N, we have F(e)∩G(e) = (z,min(mF(e)(z),mG(e)(z)),max(nF(e)(z),nG(e)(z))) : z ∈ Z.

Theorem 3.13. The intersection (H,P) is a FFSS.

Proof. Using Definition 3.12, ∀e ∈ P if e ∈M/N or e ∈ N/M, then H(e) = F(e) or H(e) = G(e). Therefore, H(e) is FFSS.

If e ∈M∩N, for a fixed z ∈ Z, consider nF(e)(z)≤ nG(e)(z), then, we have,

m3
H(e)(z)+n3

H(e)(z) = (m3
F(e)(z)∧m3

G(e)(z))+(n3
F(e)(z)∨n3

G(e)(z))

= (m3
F(e)(z)∧m3

G(e)(z))+(n3
F(e)(z)∧n3

G(e)(z))

≤ m3
F(e)(z)+n3

G(e)(z)≤ 1.

Hence, intersection (H,P) is a FFSS.

Theorem 3.14. Let (F,M), (G,N) and (H,P) be three FFSSs.

(i) (F,M)∪ (F,M) = (F,M)
(ii) (F,M)∩ (F,M) = (F,M)

(iii) (F,M)∪ (G N) = (G,N)∪ (F,M)
(iv) (F,M)∩ (G,N) = (G,N)∩ (F,M)
(v) ((F,M)∪ (G,N))∪ (H,P) = (F,M)∪ ((G,N)∪ (H,P))

(vi) ((F,M)∩ (G,N))∩ (H,P) = (F,M)∩ ((G,N)∩ (H,P)).

Proof. The proof is obtained by Proposition (2.3), Definitions (3.10) and (3.12).

Theorem 3.15. Let (F,M) and (G,N) be two FFSSs.

(i) ((F,M)∩ (G,N))c = (F,M)c∪ (G,N)c

(ii) ((F,M)∪ (G,N))c = (F,M))c∩ (G,N))c

Proof. If we take P = M∪N and e ∈ P, then (F,M)∩ (G,N) = (H,P),

H(e) =


F(e) , e ∈M/N
G(e) , e ∈ N/M
F(e)∩G(e) , e ∈M∩N.

So, for all e ∈M∩N, we have (F(e)∩G(e) = (z,min(mF(e)(z),mG(e)(z)),max(nF(e)(z),nG(e)(z)) : z ∈ Z). So that, ((F,M)∩ (G,N))t =
(H,P))c and Hc(e) = (H(e))c. Then,

(H(e))c =


(F(e))c , e ∈M/N
(G(e))c , e ∈ N/M
(F(e)∩G(e))c , e ∈M∩N.

That is, ∀e ∈M∩N, we get

(F(e)∩G(e))c = (z,min(mF(e)(z),mG(e)(z)),max(nF(e)(z),nG(e)(z)) : z ∈ Z >c

= (z,max(nFc(e)(z),nGc(e)(z)),min(mFc(e)(z),mGc(e)(z)) : z ∈ Z).

Now, (F,M))c = (Fc,M) and (G,N))c = (Gc,N). So that (F,M)c∪ (G,N)c = (Fc,M)∪ (Gc,N) = (Hc,P), where P = M∪N and

Hc(e) =


Fc(e) , e ∈M/N
Gc(e) , e ∈ N/M
F(e)c∩Gc(e) , e ∈M∩N.

So, for all e ∈ M ∩ N, Fc(e) ∪ Gc(e) = (k,max(nFc(e)(k),nGc(e)(k)),min(mFc(e)(k),mGc(e)(k)) : k ∈ Z). Hence,
((F,M)∩ (G,N))c = (F,M)c∪ (G,N)c.



Universal Journal of Mathematics and Applications 19

Example 3.16. Take the diseases set Z = {z1,z2,z3,z4} = {disease1,disease2,disease3,disease4}. Select E = {e1,e2,e3,e4,e5} =
{symptom1,symptom2,symptom3,symptom4,symptom5} as parameter set. Consider that (F,M), (F,M)c, (G,N), and (H,P) are four
FFSSs over Z given by M = {e1,e2}, N = {e1,e2,e4} and P = {e1,e3,e4} defined as follows (Tables (4)-(7)) :

e1 e2
z1 (0.64, 0.88) (0.81, 0.72)
z2 (0.73, 0.79) (0.94, 0.53)
z3 (0.85, 0.59) (0.92, 0.49)
z4 (0.83, 0.67) (0.67, 0.85)

Table 4: (F,M)

e1 e2
z1 (0.88, 0.64) (0.72, 0.81)
z2 (0.79, 0.73) (0.53, 0.94)
z3 (0.59, 0.85) (0.49, 0.92)
z4 (0.67, 0.83) (0.85, 0.67)

Table 5: (Fc,M)

Table 6: (G,N)

e1 e2 e4
z1 (0.82, 0.73) (0.92, 0.57) (0.85, 0.67)
z2 (0.66, 0.78) (0.75, 0.62) (0.54, 0.91)
z3 (0.84, 0.49) (0.72, 0.39) (0.71, 0.81)
z4 (0.43, 0.87) (0.67, 0.59) (0.76, 0.37)

e1 e3 e4
z1 (0.44, 0.95) (0.57, 0.69) (0.86, 0.59)
z2 (0.56, 0.81) (0.68, 0.69) (0.79, 0.38)
z3 (0.68, 0.56) (0.92, 0.35) (0.72, 0.65)
z4 (0.63, 0.76) (0.84, 0.37) (0.95, 0.29)

Table 7: (H,P)

For the four FFSSs, the operations are in Tables 8 -11:

e1 e2 e3 e4
z1 (0.64, 0.88) (0.81, 0.72) (0.57, 0.69) (0.86, 0.59)
z2 (0.73, 0.81) (0.94, 0.53) (0.68, 0.69) (0.79, 0.38)
z3 (0.85, 0.56) (0.92, 0.49) (0.92, 0.35) (0.72, 0.65)
z4 (0.83, 0.67) (0.67, 0.85) (0.84, 0.37) (0.95, 0.29)

Table 8: (F,M)∪ (H,P)

e1 e2 e3 e4
z1 (0.44, 0.95) (0.81, 0.72) (0.57, 0.69) (0.86, 0.59)
z2 (0.56, 0.81) (0.94, 0.53) (0.68, 0.69) (0.79, 0.38)
z3 (0.68, 0.59) (0.92, 0.49) (0.92, 0.35) (0.72, 0.65)
z4 (0.63, 0.76) (0.67, 0.85) (0.84, 0.37) (0.95, 0.29)

Table 9: (F,M)∩ (H,P)
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(e1,e1) (e1,e2) (e1,e4) (e2,e1) (e2,e2) (e2,e4)

z1 (0.64, 0.88) (0.64, 0.88) (0.64, 0.88) (0.81, 0.73) (0.81, 0.72) (0.81, 0.72)
z2 (0.66, 0.79) (0.73, 0.79) (0.54, 0.91) (0.66, 0.78) (0.75, 0.62) (0.54, 0.91)
z3 (0.84, 0.59) (0.72, 0.59) (0.71, 0.81) (0.84, 0.49) (0.72, 0.49) (0.71, 0.81)
z4 (0.43, 0.87) (0.67, 0.67) (0.76, 0.67) (0.43, 0.87) (0.67, 0.85) (0.67, 0.85)

Table 10: (F,M)∧ (G,N)

(e1,e1) (e1,e2) (e1,e4) (e2,e1) (e2,e2) (e2,e4)

z1 (0.82, 0.73) (0.92, 0.57) (0.85, 0.67) (0.82, 0.72) (0.92, 0.57) (0.85, 0.67)
z2 (0.73, 0.78) (0.75, 0.62) (0.73, 0.79) (0.94, 0.53) (0.94, 0.53) (0.94, 0.53)
z3 (0.85, 0.49) (0.85, 0.39) (0.85, 0.59) (0.92, 0.49) (0.92, 0.39) (0.92, 0.49)
z4 (0.83, 0.67) (0.83, 0.59) (0.83, 0.37) (0.67, 0.85) (0.67, 0.59) (0.76, 0.37)

Table 11: (F,M)∨ (G,N)

4. Fermatean Fuzzy Measures

A crucial technique for quantifying uncertain information is entropy. One can quickly determine whether information is more stable if the
entropy is lower because lower entropies also mean lower levels of uncertainty. Due to its greater generalization, the FFSS can represent
information where other structures cannot. Therefore, introducing the measure of entropy is crucial in the current situation. The equations
for entropy and distance measure for FFSSs are obtained and demonstrated with samples in this section by introducing various concepts and
results.

4.1. Entropy meausre

Definition 4.1. Take the two FFSSs (F,M) and (G,N). For all z∈ Z and e∈E, mF(e)(z)≤mG(e)(z) and nF(e)(z)≤ nG(e)(z), (F,M)� (G,N)
means that (F,M) is less than or equal to (G,N).

The following definition is about a mapping that maps every FFSS to an FSS. It is also shown that the collection of images of FFSSs with
x ∈ [0,1] and with the relation ⊆ is a totally ordered family of FSSs.

Definition 4.2. For x ∈ [0,1], the function fx : FFSS(Z)→ FSS(Z) is described as fx((F,E)) = (FxE), for each FFSS (F,E) with MV mF(e)
and NV nF(e) and Fx(e) = fx(Fe) and,

fx(Fe) = (z,m3
F(ρ)(z)+ x.h3

F(e)(z),1−m3
F(e)(z)− x.h3

F(e)(z) : z ∈ Z). (4.1)

As a result, every FFSS is given an FSS by the map fx. A modification of [70] is the fx. In contrast to the fx described in [70], which is to
assign an FFSS to an FS, the operator fx is assigned to an FFSS to an FSS.

Example 4.3. Take (F,E) = [ai j] =

(
(0.8,0.7) (0.7,0.4)
(0.5,0.8 (0.9,0.6)

)
. Choose x = 0.8. Hence,

Fx(e1) = fx[(k1,0.8,0.7),(k2,0.7,0.4)] = {(k1,0.628,0.372),(k2,0.8174,0.1826)}
Fx(e2) = fx[(k1,0.5,0.8),(k2,0.9,0.6)] = {(k1,0.4154,0.5846),(k2,0.773,0.227)}

Therefore, FSS is symbolized by the matrix
(

(0.628,0.372) (0.8174,0.1826)
(0.4154,0.5846 (0.773,0.227)

)
Theorem 4.4. Let ρ, ρ̄ ∈ FFSS(Z) and x,y ∈ [0,1]. Then,

(i) If x≤ y⇒ fx(ρ)⊂ fy(ρ).
(ii) If ρ ⊂ ρ̄ ⇒ fx(ρ)⊂ fx(ρ̄).

(iii) fx( fy(ρ)) = fy(ρ)
(iv) ( fx(ρc))c = f1−x(ρ).

Proof. For ∀e ∈ E, take

ρ = (F,E), F(e) = {(z,mF(e)(z),nF(e)(z)) : z ∈ Z},

ρ̄ = (G,E), G(e) = {(z,mG(e)(z),nG(e)(z)) : z ∈ Z},

and fx(ρ) = (Fx,E), where

fx(e) = (z,m3
F(e)(z)+ x.h3

F(e)(z),1−m3
F(e)(z)− x.h3

F(e)(z) : z ∈ Z).
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(i) For x≤ y, for all z ∈ Z and e ∈ E,

m3
F(e)(z)+ x.h3

F(e)(z)≤ m3
F(e)(z)+ x.h3

F(e)(z).

Thus,

mFx(e)(z)≤ mFy(e)(z)

for all z ∈ Z and e ∈ E. Hence, fx(ρ)⊂ fy(ρ).
(ii) Take ρ ⊂ ρ̄ . Therefore,

mF(e)(z)≤ mG(e)(z) and nF(e)(z)≥ nG(e)(z), for allz ∈ Z,e ∈ E.

Then,

mFx(e)(z) = m3
F(e)(z)+ x.h3

F(e)(z)

= m3
F(e)(z)+ x.(1−m3

F(e)(z)−n3
F(e)(z))

= m3
F(e)(z)(1− x)+ x− x.n3

F(e)(z)

≤ m3
G(e)(z)(1− x)+ x− x.n3

G(e)(z)

= m3
G(e)(z)+ x.h3

G(e)(z) = mGx(e)(z).

Hence, mFx(e)(z)≤ mGx(e)(z) and fx(ρ)⊂ fy(ρ).

(iii) Let fx( fy(F,E)) = fx(Fy,E) = ((Fy)x,E) where ((Fy)x(e) = fx(Fy(e)) = fx( fy(F(e))) for all e ∈ E. It will be shown as
fx( fy(F(e))) = fy(F(e)). Since

(( fy)(F(e)) = {(z,m3
F(e)(z)+ y.h3

F(e)(z),1−m3
F(e)(z)− y.h3

F(e)(z)>: z ∈ Z},

any e ∈ E, we get

fx[ fy(F(e))] = fx({(z,m3
F(e)(z)+ y.h3

F(e)(z),1−m3
F(e)(z)− y.h3

F(e)(z)>: z ∈ Z})

={(z,(m3
F(e)(z)+ y.h3

F(e)(z))+ xa.[1− (m3
F(e)(z)+ ya.h3

F(e)(z))

− (1−m3
F(e)(z)− y.π3

F(e)(z))],1− [(m3
F(e)(z)+ y.π3

F(e)(z))

+α.(1− (m3
F(e)(z)+ y.h3

F(e)(z))− (1−m3
F(e)(z)− y.h3

F(e)(z)))]) : z ∈ Z}

={(z,m3
F(e)(z)+ y.h3

F(e)(z),1−m3
F(e)(z)− y.h3

F(e)(z)) : z ∈ Z}= fy(F(e))

(iv) For all e ∈ ¬E, Take

ρ
c = (F,E)c = (Fc,¬E) = {(z,nF(e)(z),mF(e)(z)) : z ∈ Z}, fx(ρc) = fx(Fc,¬E) = ((Fc)x,¬E)

where

(Fc(x))(e) = {(z,n3
F(¬e)(z)+ x.h3

F(¬e)(z),1−n3
F(¬e)(z)− x.h3

F(¬e)(z) : z ∈ Z}

(Fc
x )

c(e) = {(z,1−n3
F(e)(z)− x.h3

F(e)(z)),n
3
F(e)(z)+ x.h3

F(e)(z) : z ∈ Z}

for all e ∈ E.

f1−x(ρ) = f(1−x)((F,E)) = f1−x({(z,mF(e)(z),nF(e)(z)) : z ∈ Z})

= (m3
F(e)(z)+(1− x)h3

F(e)(z),1−m3
F(e)(z)− (1− x)h3

F(e)(z),

1−n3
F(e)(z)− x.(1−m3

F(e)(z)−n3
F(e)(z)),n

3
F(e)(z)+ x.h3

F(e)(z))

= F3
xc(e).

Thus, ( fx(ρc))c = f1−x(ρ).

Definition 4.5. If the properties are satisfies, a real mapping T : FFSS(Z)→ R+ is called a FFSE on FFSS(Z):

(i) T (ρ) = 0⇔ ρ ∈ FSS(Z)
(ii) Let ρ = (F,T ) = [ai j]m×n, for all z ∈ Z, T (ρ) = mn⇔ mF(e)(z) = nF(e)(z) = 0, for all e ∈ T .

(iii) T (ρ) = T (ρc), ρ ∈ FFSS(Z).
(iv) For (F,T ) = ρ and (G,T ) = ρ̄ , if ρ � ρ̄ ⇒ T (ρ)≥ T (ρ̄).

From the definition, entropy is minimum(zero) when the FFSS degenerates into SS. The following theorem discusses the case when the
entropy is maximum.
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Theorem 4.6. FFSE ρ is maximum ⇔ ρ = (F,T ) = [ai j]m×n = [0]m×n. So, mF(e j)(zi) = nF(e j)(zi) = 0, for all e j ∈ T , zi ∈ Z where
i ∈ {0,1, · · · ,m} and j ∈ {0,1, · · · ,n} and ρ ∈ FFSS(Z).

Proof. Take ρ = (F,T ) = [0]m×n. Choose ρ̄ = (G,T ) be any FFSS. Since mF(e j)(zi)≥ 0 and nF(e j)(zi)≤ 0 for all e j ∈ T,zi ∈ Z, where
i ∈ {0,1, · · · ,m} and j ∈ {0,1, · · · ,n}, by Definition 4.1, ρ � ρ̄ . Therefore, from Definition 4.5 T (ρ) ≥ T (ρ̄) for all ρ̄ . Then, T (ρ) is
maximum.

Moreover, let T (ρ) be the maximum. If we take ρ = (F,T ) 6= [0]m×n, then there exist e j ∈ T and zi ∈ Z such that mF(e j)(zi) 6= 0 or
nF(e j)(zi) 6= 0. Build the FFSS as ρ̄ = (G,T ) with mG(e j)(zi) = mF(e j)(zi)/2 and nG(e j)(zi) = nF(e j)(zi)/2 for all e j ∈ T and zi ∈ F . Hence,
using the Definition 4.1, ρ ≤ ρ̄ . Thus T (ρ̄)≥ T (ρ) is obtained. This is a contradiction. Therefore, ρ = [0]m×n.

The objective is to provide a statement enabling entropy generation for FFSSs. The method is the same as the one used to calculate concrete
entropies for FFSSs: Let’s build ΛK : K → [0,1] using the set K = {(u,v) ∈ [0,1]× [0,1] : u3 + v3 ≤ 1} given below, which meets the
requirements listed below.

(i) ΛK (u,v) = 1⇔ (u,v) = (0,1) or (u,v) = (1,0)
(ii) ΛK (u,v) = 0⇔ u = v = 0

(iii) ΛK (u,v) = ΛK (v,u)
(iv) If u≤ u

′
and v≤ v

′
then ΛK (u,v)≤ ΛK (u

′
,v
′
).

Theorem 4.7. Let T : FFSS(Z)→ R+ and ρ = (F,T ) = [ai j]m×n ∈ FFSS(Z). If T (ρ) = ∑
n
j=1 ∑

m
i=1[1− (ΛK (mF(e j)(zi),nF(e j)(zi)))]

where ΛK satisfies the conditions (i)-(iv) of FFSE.

Proof. T (ρ) = 0⇔ T (ρ) = ∑
n
j=1 ∑

m
i=1[1− (ΛK (mF(e j)(zi),nF(e j)(zi)))] = 0⇔ ΛK (mF(e j)(zi),nF(e j)(zi))) = 1, ∀e j ∈ T andzi ∈ Z⇔

mF(e j)(zi) = 1, nF(e j)(zi) = 0 or mF(e j)(zi) = 0,nF(e j)(zi) = 1⇔ ρ is a SS. Thus, T satisfies property (i) of Definition 4.5. T (ρ) =
mn⇔ T (ρ) = ∑

n
j=1 ∑

m
i=1[1−(ΛK (mF(e j)(zi),nF(e j)(zi)))] = mn⇔ (ΛK (mF(e j)(zi),nF(e j)(zi))) = 0, ∀e j ∈ T andzi ∈ Z⇔mF(e j)(zi) =

0 = nF(e j)(zi) ∀e j ∈ N and zi ∈ Z. Therefore, T satisfies property (ii) of Definition 4.5. For Fc(e) = {(zi,nF(e j)(zi),mF(e j)(zi)) : zi ∈ Z},
∀¬e j ∈ ¬T , since ρ = (F,T )c = (Fc,¬T ), therefore,

T (ρ) =
n

∑
j=1

m

∑
i=1

[1− (ΛK (mF(e j)(zi),nF(e j)(zi)))]

=
n

∑
j=1

m

∑
i=1

[1− (ΛK(nF(e j)(zi),mF(e j)(zi)))] = T (ρc)

This property (iii) is provided for T . Let ρ̄ = (G,T ) = [bi j]m×n. If ρ ≤ ρ̄ then, mF(e j)(zi)≤ mG(e j)(zi) and nF(e j)(zi)≤ nG(e j)(zi) which
implies ΛK (mF(e j)(zi),nF(e j)(zi))≤ ΛK (mG(e j)(ki),nG(e j)(ki)). T (ρ)≥ T (ρ̄) and so, property (iv) is provided for T . Therefore, T is a
FFSE.

Example 4.8. T (ρ) = ∑
n
j=1 ∑

m
i=1[1− (m4

F(e),n
4
F(e))]. We must show that T (ρ) is FFSE. To demonstrate this, it is necessary to prove that

m4
F(e) + n4

F(e) meets the ΛK requirements. ΛK : K = {(mF(e),nF(e)) ∈ [0,1] × [0,1] : u3 + v3 ≤ 1} → [0,1], where

ΛK (u,v) = m4
F(e)+m4

F(e). Further, m4
F(e)+n4

F(e) = 1⇔ mF(e) = 1, nF(e) = 0 or mF(e) = 0,nF(e) = 1 in the domain K .

Definition 4.9. Let Γ,Γ
′

: [0,1]→ [0,1], if u3 + v3 ≤ 1, then Γ(u3)+Γ
′
(v3) ≤ 1 with u,v ∈ [0,1]. Define the function T

Γ,Γ′ of the FFSS
ρ = (F,T ) = [ai j]m×n to R+ as,

T
Γ,Γ′ = mn−

n

∑
j=1

m

∑
i=1

Γ[mF(e j)(zi)]+Γ
′
[nF(e j)(zi)] (4.2)

Obviously 0≤ T
Γ,Γ′ (ρ)≤ mn and ∀ρ = [ai j]m×n belonging to FFSS(Z).

Theorem 4.10. Let Γ : [0,1]→ [0,1] provide the following items:

(i) Γ is increasing
(ii) Γ(u) = 0⇔ u = 0

(iii) Γ(u)+Γ(v) = 1⇔ (u,v) = (0,1) or (u,v) = (1,0).

Therefore, Γ(u)+Γ(v) provides the properties (i)-(iv) of the ΛK .

Proof. The property (iii) of this theorem is identical to the condition (i) of ΛK if ΛK (u,v) = Γ(u) + Γ(v) is taken into account.
ΛK (u,v) = Γ(u)+Γ(v) = 0 if and only if Γ(u) = 0 = Γ(v) from property (ii), u = v = 0. As a result, the second condition of ΛK

is obtained. Additionally, as Γ(u)+Γ(v) = Γ(v)+Γ(u), ΛK (u,v) = ΛK (v,u). Γ is increasing, hence condition (iv) of ΛK is obtained.
Therefore, the ΛK function’s conditions (i) to (iv) are satisfied by Γ(u)+Γ(v).

Theorem 4.11. Let T : FFSS(Z)→ R+, Γ : [0,1]→ [0,1], and ρ = (F,T ) = [ai j]m×n ∈ FFSS(Z). T is FFSE and a TΓ,Γ− function⇔
T (ρ) = ∑

n
j=1 ∑

m
i=1

(
1−Γ(mF(e j)(zi))+Γ(nF(e j)(zi))

)
.



Universal Journal of Mathematics and Applications 23

Proof. Take Λ : [0,1]× [0,1]→ [0,1] with Λ(u,v) = Γ(u)+Γ(v), and {(u,v) ∈ [0,1]× [0,1] : u3 + v3 ≤ 1}. Restrict the ΛK function from

K to [0,1]. If T (ρ) = ∑
n
j=1 ∑

m
i=1

(
1−Γ(mF(e j)(zi))+Γ(nF(e j)(zi))

)
, then T (ρ) is a FFSE. It is enough to prove that T is an TΓ,Γ-function.

Let α,β ∈ [0,1] and α3 +β 3 ≤ 1 to prove Γ(α3)+Γ(β 3)≤ 1, construct the FFSS:

[ai j]m×n =


(α3,β 3) (1,0) · · · (1,0)
(α3,β 3) (1,0) · · · (1,0)

...
...

...
...

(α3,β 3) (1,0) · · · (1,0)


Thus,

T (p) =
n

∑
j=1

m

∑
i=1

(
1−Γ(mF(e j)(zi))+Γ(nF(e j)(zi))

)
= mn−m

(
Γ(α3)+Γ(β 3)

)
−m(n−1)(Γ(α(1))+Γ(β (0))).

Using Theorem 4.10, Γ(α(1))+Γ(β (0)) = 1. Hence, T (ρ) = mn−m
(
Γ(α3)+Γ(β 3)

)
−m(n− 1) = m

(
Γ(α3)+Γ(β 3)

)
. T (ρ) ≥ 0

because T is entropy. m
(
1− (Γ(α3)+Γ(β 3))

)
≥ 0 which implies that Γ(α3)+Γ(β 3)≤ 1. Therefore, T is entropy and a TΓ,Γ function.

On the other hand, if T is an entropy and TΓ,Γ are functions, then T has the form T (ρ) = ∑
n
j=1 ∑

m
i=1

(
1−Γ(mF(e j)(zi))+Γ(nF(e j)(zi))

)
.

(i) Let α ≤ β , α,β ∈ [0,1] construct the following FFSSs:

ρ = (F,T ) = [ai j]m×n =


(α,0) (0,0) · · · (0,0)
(α,0) (0,0) · · · (0,0)

...
...

...
...

(α,0) (0,0) · · · (0,0)


and

ρ̃ = (G,T ) = [bi j]m×n =


(β ,0) (0,0) · · · (0,0)
(β ,0) (0,0) · · · (0,0)

...
...

...
...

(β ,0) (0,0) · · · (0,0)

 .
Thus,

T (ρ) =
n

∑
j=1

m

∑
i=1

(
1−Γ(mF(e j)(zi))+Γ(nF(e j)(zi))

)
= mn−m(Γ(α)+Γ(0))−m(n−1)2Γ(0),

and

T (ρ̃) =
n

∑
j=1

m

∑
i=1

(
1−Γ(mF(e j)(zi))+Γ(nF(e j)(zi))

)
= mn−m(Γ(Γ(β )+Γ(0))−m(n−1)2Γ(0).

T (ρ)≥ T (ρ̃), because α ≤ β , p� ρ̃ . Therefore,

mn−m(Γ(α)+Γ(0))−m(n−1)2Γ(0)≥ mn−m(Γ(Γ(β )+Γ(0))−m(n−1)2Γ(0)

implies Γ(α)≤ Γ(β ). Therefore, Γ is increasing.

(ii) To prove Γ(α) = 0⇔ α = 0;
If α = 0:

ρ = (F,T ) = [ai j]m×n =


(0,0) (0,0) · · · (0,0)
(0,0) (0,0) · · · (0,0)

...
...

...
...

(0,0) (0,0) · · · (0,0)

 .
Thus,

T (ρ) = mn−mm(Γ(0)+Γ(0))
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hence Γ(0) = 0 and so, Γ(α) = 0.
If Γ(α) = 0:

ρ = (F,T ) = [ai j]m×n =


(α,0) (0,0) · · · (0,0)
(α,0) (0,0) · · · (0,0)

...
...

...
...

(α,0) (0,0) · · · (0,0)

 .
Thus,

T (ρ) =
n

∑
j=1

m

∑
i=1

(
1−Γ(mF(e j)(zi))+Γ(nF(e j)(zi))

)
= mn−m(Γ(Γ(α)+Γ(0))−m(n−1)2Γ(0).

Since Γ(0) = 0 in the preceding section and Γ(α) = 0, the conclusion is that T (ρ) = mn. Thus, α must be equal to 0.

(iii) To prove Γ(α)+Γ(β ) = 1⇔ (α,β ) = (0,1) or (1,0);

If (α,β ) = (0,1) or (1,0):

ρ = (F,T ) = [ai j]m×n =


(α,β ) (α,β ) · · · (α,β )
(α,β ) (α,β ) · · · (α,β )

...
...

...
...

(α,β ) (α,β ) · · · (α,β )

 .
Then ρ ∈ SS(Z). As a result, T (ρ) = 0. Hence,

T (ρ) =
n

∑
j=1

m

∑
i=1

(
1−Γ(mF(e j)(zi))+Γ(nF(e j)(zi))

)
= 0.

Then, Γ(α)+Γ(β ) = 1.

If Γ(α)+Γ(β ) = 1:

ρ = ([ai j]m×n =


(α,β ) (1,0) · · · (1,0)
(α,β ) (1,0) · · · (1,0)

...
...

...
...

(α,β ) (1,0) · · · (1,0)

 .
Thus

T (ρ) =
n

∑
j=1

m

∑
i=1

(
1−Γ(mF(e j)(zi))+Γ(nF(e j)(zi))

)
= mn−m(Γ(α)+Γ(β ))−m(n−1)(Γ(1)+Γ(0)).

Given that Γ(α)+ϕ(β ) = 1 and Γ(0)+Γ(1) = 1 respectively, Then, T (ρ) = 0. ρ ∈ SS(Z), or (α,β ) = (1,0) or (0,1).

Let’s note that: Let ρ = (F,T ) = [ai j]m×n ∈ FFSS(Z), then entropy of ρ is,

T (ρ) =
n

∑
j=1

m

∑
i=1

(
1−Γ(mt

F(e j)(zi)
)+Γ(nt

F(e j)(zi)
)
)
, t = 3,4,5, . . .

4.2. Distance measure

Definition 4.12. Let ρ = (F,M) and ρ̃ = (G,N) be two FFSSs. Let U be a mapping given by U : FFSS(Z)×FFSS(Z)→ R+∪{0} and
U(ρ, ρ̃) satisfies the following axioms:

(i) 0≤U(ρ, ρ̃)≤ 21/2,
(ii) U(ρ, ρ̃) =U(ρ̃,U(ρ, ρ̃)),

(iii) U(ρ, ρ̃) = 0⇔ ρ = ρ̃ ,
(iv) For any σ = (H,P) ∈ FFSS(Z), U(ρ, ρ̃)+U(ρ̃,σ)≥U(ρ,σ).

Then U(ρ, ρ̃) is a distance measure between FFSSs ρ and ρ̃ .
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Definition 4.13. Let ρ1 = (F,E),ρ2 = (G,E) be two FFSSs over Z. Then normalized Euclidean distance between ρ1,ρ2 is defined as
follows:

UE(ρ1,ρ2) =

[
1

4mn

m

∑
j=1

n

∑
i=1

(
(m3

F(e j)
(zi)−m3

G(e j)
(zi))

2 +(n3
F(e j)

(zi)−n3
G(e j)

(zi))
2 +(h3

F(e j)
(zi)−h3

G(e j)
(zi))

2
)]1/2

Theorem 4.14. Properties of Definition 4.12 are provided for normalized Euclidean distances of FFSSs.

Theorem 4.15. For three FFSSs ρ1 = (F,E),ρ2 = (G,E),ρ3 = (H,E) over Z, if ρ1 ≤ ρ2 ≤ ρ3, then UE(ρ1,ρ2) ≤ UE ρ1,ρ3) and
UE(ρ2,ρ3)≤UE(ρ1,ρ3).

5. Applications

5.1. Entropy application

In this subsection, we will practice DM using entropy.

Algortihm:

Step 1: Input each of the FFSSs ρ1,ρ2, · · ·ρk

Step 2: Compute the entropy of each FFSS using the expression

T (ρ) =
n

∑
j=1

m

∑
i=1

[1− (m3
F(e j)

(ai)+n3
F(e j)

(ai))].

Step 3: Obtain ρr with the minimum of T (ρi),

Step 4: The optimum result is to choose the ρr to get from Step 3.

Step 5: If more than one ideal solution is discovered, the user may select any of them.

Because the FFSS is an extension of existing sets such as the IFSS and PFSS, it is an excellent tool for representing information during
decision-making. Consider a set of k options V1,V2, ...,Vk examined by n experts P1,P2, ...,Pn. Each expert Pj evaluates the alternatives using
the parameters K = k1,k2, ...,km and assigns ratings to FFSNs. The challenge then seeks to select the best option among them. The provided
methodology offers a method for solving the problem above using entropy measures.

Example 5.1. Consider the selection of the car from a particular company. For it, a person wants to select a car from three different
alternatives V1,V2, · · · ,Vn. To address it thoroughly and remove the hesitation between them, they hire three experts E1,E2,E3 to evaluate
each alternative under the three significant set of parameters K.

Consider the purchase of an automobile from a specific firm. A customer wants to choose an automobile from three options: A,B,C. To
address it adequately and remove any doubts, they appoint three experts, E1,E2,E3, to analyze each possibility using the three critical sets of
parameters K = {k1,k2,k3}, where k1 = expensive, k2 = good engine capacity and k3 = warranty.
Step 1: Build (F,A),(G,B),(H,C):

F(k1) = {(E1,(0.75,0.58)),(E2,(0.98,0.15)),(E3,(0.47,0.83))}
F(k2) = {(E1,(0.82,0.66)),(E2,(0.59,0.51)),(E3,(0.26,0.95))}
F(k3) = {(E1,(0.54,0.79)),(E2,(0.73,0.55)),(E3,(0.87,0.51))}

G(k1) = {(E1,(0.63,0.87)),(E2,(0.80,0.72)),(E3,(0.56,0.68))}
G(k2) = {(E1,(0.72,0.80)),(E2,(0.51,0.92)),(E3,(0.67,0.71))}
G(k3) = {(E1,(0.82,0.53)),(E2,(0.88,0.45)),(E3,(0.73,0.66))}

H(k1) = {(E1,(0.42,0.93)),(E2,(0.56,0.70)),(E3,(0.88,0.62))}
H(k2) = {(E1,(0.67,0.79)),(E2,(0.77,0.64)),(E3,(0.76,0.39))}
H(k3) = {(E1,(0.68,0.52)),(E2,(0.91,0.36)),(E3,(0.74,0.67))}

Step 2: Compute the FFSEs:

T (F,A) =
n

∑
j=1

m

∑
i=1

[1− (m4
F(e j)

(ki)+n4
F(e j)

(ki))] = 4.60312528

T (G,B) = 3.96972281

T (H,C) = 4.17700393.

Step 3: Find the FFSS with (G,B) as its entropy value, which is the smallest.
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Step 4: The optimum decision is to choose (G,B).

Step 5: The B most likely has an infectious condition because there is only one best course of action.

It is seen from these computed results that the best alternative for the given problem is B while the worst one is either C or A.

5.2. Distance measure application

PR is the process of identifying patterns in data and categorizing them so that there is a strong correlation between patterns belonging to the
same category and a weak correlation between patterns belonging to different categories. FSs, SSs, FSSs, and other tools are helpful for
modeling patterns. Due to the premise that similarity is a parallel concept to distance measurement, sets with reduced distances are presumed
to be similar. FFSS can also illustrate patterns with a more precise representation of ambiguity.

Algorithm:

The supplied pattern is initially displayed in the feature space SSA as FFSSs O1,O2, · · · ,Ok. A single Oi, i = 1,2, · · · ,k should be used to
identify the pattern, also represented as FFSS B. The pattern Oi with the shortest distance to B is then found by calculating the distance
between each Oi and B. This OI most closely resembles pattern B. The PR algorithm is provided below:
Step 1: Enter the patterns O1,O2, . . .Ok

Step 2: Enter the expectedly recognizable pattern B.

Step 3: In Steps 1 and 2, determine the Euclidean distance between each set.

Step 4: The Oi with the smallest Euclidean distance will be chosen at the end.

The scenario and evaluation method of the example below are taken from reference [71].

Example 5.2. We have proposed a MAGDM method based on the novel FFSS entropy measure. In this example, the method will be used
in selecting a missile position. In making a battle plan, staff officers must select a place as a missile position. The following are the main
attributes they took into account: S = {k1,k2,k3,k4,k5}, as k1-the operational intentions of superiors; k2-the geological conditions of
positions; k3-the efficiency of firepower exertion; k4-maneuverability; k4-battlefield viability.

After a thorough screening and comparison, three locations—{O1,O2,O3}—have been tentatively chosen as alternatives. Three experts
are asked to rate the options using their FFNs based on gathered knowledge, facts, and experiences to help them make better decisions.
Let E = {e1,e2} be given such that the parameters for choosing the most suitable location according to these features are defined as
e1-appropriate and e2-not appropriate. Let a P missile location be predetermined.

O1 =

{
e1 = (k1,(0.65,0.45)),(k2,(0.52,0.54)),(k3,(0.11,0.62)),(k4,(0.35,0.72)),(k5,(0.42,0.78))

e2 = (k1,(0.92,0.11)),(k2,(0.76,0.62)),(k3,(0.94,0.10)),(k4,(0.83,0.44)),(k5,(0.69,0.58))

}

O2 =

{
e1 = (k1,(0.86,0.14)),(k2,(0.90,0.26)),(k3,(0.73,0.52)),(k4,(0.44,0.38)),(k5,(0.68,0.60))

e2 = (k1,(0.27,0.88)),(k2,(0.16,0.82)),(k3,(0.48,0.62)),(k4,(0.65,0.54)),(k5,(0.57,0.48))

}

O3 =

{
e1 = (k1,(0.89,0.31)),(k2,(0.87,0.35)),(k3,(0.74,0.52)),(k4,(0.78,0.25)),(k5,(0.73,0.28))

e2 = (k1,(0.14,0.43)),(k2,(0.29,0.47)),(k3,(0.12,0.57)),(k4,(0.32,0.57)),(k5,(0.40,0.70))

}

Build the FFSNs of pattern P

P =

{
e1 = (k1,(0.9,0.2)),(k2,(0.8,0.3)),(k3,(0.8,0.4)),(k4,(0.7,0.5)),(k5,(0.9,0.1))

e2 = (k1,(0.1,0.9)),(k2,(0.2,0.8)),(k3,(0.3,0.8)),(k4,(0.4,0.7)),(k5,(0.2,0.9))

}
.

The Euclidean distance values are:

• For e1, UE(O1,P) = 0.173; UE(O2,P) = 0.1; UE(O3,P) = 0.073
• For e2, UE(O1,P) = 0.202; UE(O2,P) = 0.11; UE(O3,P) = 0.098.

Between O3 and P, the Euclidean distance is the smallest. As a result, pattern O3 resembles pattern P more. It can be concluded that the
predetermined location P should be the location O3.
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5.3. Comparison

For the PFSSs F1,F2,F3 and the attribute set A = {k1,k2,k3}, let the following values be given.

F1 =


e1 = (k1,0.3,0.2),(k2,0.6,0.0),(k3,0.5,0.4),

e2 = (k1,0.6,0.3),(k2,0.7,0.2),(k3,0.4,0.3),

e3 = (k1,0.8,0.1),(k2,0.8,0.1),(k3,0.6,0.1)


F2 =


e1 = (k1,0.6,0.2),(k2,0.8,0.1),(k3,0.8,0.1),

e2 = (k1,0.5,0.5),(k2,0.7,0.2),(k3,0.5,0.4),

e3 = (k1,0.7,0.1),(k2,0.6,0.3),(k3,0.6,0.3)


F3 =


e1 = (k1,0.5,0.4),(k2,0.4,0.1),(k3,0.6,0.2),

e2 = (k1,0.6,0.2),(k2,0.7,0.1),(k3,0.8,0.1),

e3 = (k1,0.9,0.0),(k2,0.5,0.1),(k3,0.6,0.3)


Let’s compare the I(w) given in Theorem 4 in the work of Jiang et al. [69], which offers the entropy measure related to IFSS, with the FFS
entropy measure given in this article.

The IFSSVs are: TIFSS(F1) = 2.12,TIFSS(F2) = 2.02,TIFSS(F3) = 2.11.

The Pythagorean fuzzy soft entropy(PFSE) described in [32] is utilized to compare the proposed entropy metric for FFSSs.
The PFSSVs are: TPFSS(F1) = 6.63,TPFSS(F2) = 6.13,TPFSS(F3) = 6.34.

The FFSEVs were measured as TFFSS(F1) = 4.17,TFFSS(F2) = 3.88,TFFSS(F3) = 3.95 .

It can be seen that IFSE values are very close to each other. However, the result is that F2 has the lowest entropy and F1 has the highest
entropy, which corresponds to TIFSS, TPFSS and TFFSS. Therefore, the entropy equations that have been proposed are consistent (Table 12).

TIFSS TPFSS TFFSS
F1 2.12 6.63 7.37
F2 2.02 6.13 7.08
F3 2.11 6.34 7.11

Table 12: Comparison of IFSE, PFSE and FFSE.

Now let’s make a comparison of distance measures. Let’s compare the normalized Euclidean distance based on IFFS given in Definition 8
in [69] and the normalized Euclidean distance based on PFFS given in Definition 3.6 in [32] with the normalized Euclidean distance based
on FFSS proposed in this study:

Euclidean distance values for IFSS, PFSS, and FFSS are obtained as follows, respectively:
For e1, UIFSS(F1,F2) = 0.281; UIFSS(F2,F3) = 0.367; UIFSS(F1,F3) = 0.302,

For e2, UIFSS(F1,F2) = 0.274; UIFSS(F2,F3) = 0.312; UIFSS(F1,F3) = 0.291,

For e3, UIFSS(F1,F2) = 0.241; UIFSS(F2,F3) = 0.338; UIFSS(F1,F3) = 0.278,
For e1, UPFSS(F1,F2) = 0.277; UPFSS(F2,F3) = 0.325; UPFSS(F1,F3) = 0.318,

For e2, UPFSS(F1,F2) = 0.253; UPFSS(F2,F3) = 0.316; UPFSS(F1,F3) = 0.286,

For e3, UIFSS(F1,F2) = 0.266; UIFSS(F2,F3) = 0.323; UIFSS(F1,F3) = 0.303,

and 
For e1, UFFSS(F1,F2) = 0.225; UFFSS(F2,F3) = 0.344; UFFSS(F1,F3) = 0.327,

For e2, UFFSS(F1,F2) = 0.212; UFFSS(F2,F3) = 0.285; UFFSS(F1,F3) = 0.266,

For e3, UIFSS(F1,F2) = 0.198; UIFSS(F2,F3) = 0.309; UIFSS(F1,F3) = 0.275.

UIFSS UPFSS UFFSS
e1 e2 e3 e1 e2 e3 e1 e2 e3

(F1,F2) 0.281 0.274 0.241 0.277 0.253 0.266 0.225 0.212 0.198
(F2,F3) 0.367 0.312 0.338 0.325 0.316 0.323 0.344 0.285 0.309
(F1,F3) 0.302 0.291 0.278 0.318 0.286 0.303 327 266 275

Table 13: Comparison of distance measures

Distance measures are given in Table 13. When these values for IFSS, PFSS, and FFSS are examined, it is seen that for each of them, the
distance between F1 and F2 is the smallest, while the distance between F2 and F3 is the largest.
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6. Conclusion

This study aims to define FFSSs and provide entropy and distance metrics. First, the FFSS idea is explained. Then, several FFSS activities
and properties are covered. The idea of FSSs has been generalized in the form of FFSSs. Also introduced are the entropy and distance
measures of FFSSs. It is simple to state that FFSS is more accurate and reasonable than current soft-set models. Then, DM issues and pattern
identification on FFSS are suggested as applications. The recommended entropy was determined to be consistent when compared to FFSS
entropy and Pythagorean fuzzy entropy.

This study still has several problems. The first distinction is between risk and uncertainty. The impacts of risk preference rather than
uncertainty preference are the main focus of this study. One form of uncertainty avoidance is risk aversion. This is also important because it
can be challenging to determine the exact probability of real-world problems. Aside from the benefits of the provided FFSS-based technique,
its inability to generate a complete ranking of the available alternatives limits its usefulness in particular DM contexts. Furthermore, when
the number of criteria and possibilities is enormous, constructing FFSSs can become difficult.

This study has some limitations while being objective and quantitative for DM problems. The arithmetic operations of FFSNs are more
difficult to calculate than crisp or FNs; thus, computing solutions must be developed to lessen the effort of specialists.
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Abstract

This paper delves into an inquiry that centers on the exploration of fractional adaptations
of Milne-type inequalities by employing the framework of twice-differentiable convex
mappings. Leveraging the fundamental tenets of convexity, Hölder’s inequality, and the
power-mean inequality, a series of novel inequalities are deduced. These newly acquired
inequalities are fortified through insightful illustrative examples, bolstered by rigorous
proofs. Furthermore, to lend visual validation, graphical representations are meticulously
crafted for the showcased examples.

1. Introduction

Convex functions and the inequalities that describe their properties are fundamental concepts in mathematical optimization and economic
theory, among other fields. These functions are characterized by the shape of their graph, which curves such that any line segment between
two points on the graph does not fall below it. This curvature leads to interesting and useful properties, particularly in the realm of
optimization where they guarantee local minima are also global minima. Inequalities related to convex functions, such as Jensen’s inequality,
play a crucial role in various analytical and theoretical proofs. They are also instrumental in establishing conditions for optimality and
convergence in more complex scenarios. Understanding these functions and their associated inequalities provides a solid foundation for
delving into more advanced topics in mathematics and economics. Now, let’s define the basic notion of a convex function to further grasp the
essence of these intriguing concepts.

Definition 1.1 ( [1]). Let I be convex set on R. The function f : I→ R is called convex on I, if it satisfies the following inequality:

f (tx+(1− t) y)≤ t f (x)+(1− t) f (y) (1.1)

for all (x,y) ∈ I and t ∈ [0,1]. The mapping f is a concave on I if the inequality (1.1) holds in reversed direction for all t ∈ [0,1] and x,y ∈ I.

Within the domain of mathematical analysis, inequalities serve as pivotal tools for examining the intricate nuances of numerical relationships.
These inequalities provide a framework for exploring the dynamic interplay between quantities, shedding light on the disparities that permeate
mathematical landscapes. As researchers endeavor to unveil the mysteries of mathematical systems, inequalities offer a lens through which
the fundamental variations between values can be rigorously scrutinized. Their presence underscores the recognition that the mathematical
continuum is far from a monolithic entity; rather, it is a rich tapestry of gradations and magnitudes. By meticulously navigating the terrain of
inequalities, scholars gain insights into the profound structure and underlying principles governing mathematical phenomena.
In recent times, the attention of researchers has turned significantly toward diverse classes of integral inequalities, including types like
Trapezoid, Midpoint, and Simpson inequalities. Numerous scholars have made substantial contributions to extending and generalizing these
fundamental inequalities. For instance, noteworthy progress has been achieved by Dragomir and Agarwal in investigating error estimates for
the trapezoidal formula, as highlighted in [2]. The variations of the trapezoid formula’s boundedness were explored by Dragomir in [3].
Additionally, Sarikaya and Aktan, in their work [4], delved into novel inequalities of both the Simpson and Trapezoid types, focusing
particularly on functions characterized by a convex absolute value of the second derivative. Fractional trapezoid-type inequalities found their

Email addresses and ORCID numbers: henokddesta@gmail.com, 0000-0003-0395-4857 (H. D. Desta), hsyn.budak@gmail.com, 0000-0001-8843-
955X (H. Budak), hasan64kara@gmail.com, 0000-0002-2075-944X (H. Kara)
Cite as: H. D. Desta, H. Budak, H. Kara, New Perspectives on Fractional Milne-Type Inequalities: Insights from Twice-Differentiable Functions,
Univers. J. Math. Appl., 7(1) (2024), 30-37.

https://orcid.org/0000-0003-0395-4857
https://orcid.org/0000-0001-8843-955X
https://orcid.org/0000-0001-8843-955X
https://orcid.org/0000-0002-2075-944X


Universal Journal of Mathematics and Applications 31

exploration in [5, 6]. Kırmacı, in [7] introduced midpoint-type inequalities tailored for differentiable convex functions, while Sarıkaya and
colleagues derived an array of fresh inequalities suitable for twice differentiable functions as expounded in [8]. The fractional counterparts
of these findings are also comprehensively discussed in [9, 10]. Moreover, a series of mathematical luminaries have established results
applicable to twice differentiable convex functions, exemplified by works such as [11–13].
Explorations within the realm of numerical integration and the establishment of error bounds have assumed a pivotal position within the
tapestry of mathematical literature. Furthermore, scholars have meticulously examined the error bounds of functions that exhibit diverse
levels of differentiability from once to multiple times. The spectrum of mathematical inequalities, including those of Simpson, Newton,
and Milne types, emerges with distinct purposes and applications. These inequalities find their roles reverberating across various domains
of mathematics and numerical analysis, facilitating meticulous scrutiny and enhancement of the efficiency and accuracy of computational
techniques. Remarkably, this journey doesn’t halt here a multitude of researchers have ventured into uncharted territories, harnessing the
potency of fractional calculus to derive novel bounds, expanding the frontiers of understanding and application in this intricate mathematical
terrain.
The Milne-type inequality delves into the realm of mathematical analysis within the context of a function’s behavior over a closed interval.
This inequality offers insights into the intricate connections between a function’s values at the endpoints of the interval, its integral over the
interval, and the fourth derivative of the function. It forms a crucial bridge between differentiability and integration, highlighting the delicate
interplay between these mathematical concepts. The essence of this inequality lies in its ability to encapsulate the behavior of a function in
terms of its derivatives and integrals, offering a powerful tool for understanding and quantifying the relationships within the mathematical
landscape.
The Milne-type inequality, an essential mathematical inequality within the realm of integral estimation, draws its nomenclature from the
distinguished British mathematician Edward Arthur Milne, who bestowed this inequality upon the mathematical community during the early
20th century. The roots of this inequality trace back to the strategic interplay between integral values and specific points, enabling an upper
boundary to be established.
Significant strides in Milne-type inequality research have been witnessed, Budak et al. [14] elegantly derived Milne-type inequalities for
differentiable convex functions through the application of Riemann-Liouville fractional integrals. Inspired by their contributions to literature,
our current study embarks on a journey of exploration, aiming to unveil novel inequalities by harnessing the potential of Riemann-Liouville
integrals to characterize twice-differentiable functions.
Our endeavor begins with a thorough review of the established definitions underpinning the Milne-type inequality and the Riemann-Liouville
integral. These definitions, widely recognized and foundational within the literature, lay the groundwork for our research.
Furthermore, delving into the context of Newton-Cotes formulas reveals intriguing parallels between Milne’s formula, an open-type variant,
and the Simpson’s formula, representing the closed-type counterpart. These similarities emerge as a result of both formulas adhering to
identical conditions. Consider a function f : [a,b]→ R, which boasts four times continuous differentiability over the open interval (a,b).

Here, the expression
∥∥∥ f (4)

∥∥∥
∞
= sup

υ∈(a,b)

∣∣∣ f (4)(υ)∣∣∣< ∞, signifies the supremum of the absolute values of the fourth derivative, symbolizing

the upper echelon of its variations. Under these stipulated conditions, our pursuit culminates in the emergence of the Milne-type inequality:∣∣∣∣13
[

2 f (a)− f
(

a+b
2

)
+2 f (b)

]
− 1

b−a

∫ b

a
f (υ)dυ

∣∣∣∣≤ 7(b−a)4

23040

∥∥∥ f (4)
∥∥∥

∞

This compelling result, as unveiled in [15], substantiates the elegant interplay between mathematical constructs in the exploration of
Milne-type inequalities. For more studies on Milne type inequalities, you can refer to [16–18].

Definition 1.2 ( [19]). Let us consider a function f belonging to the space L1[a,b]. Within this context, we introduce the Riemann-Liouville
fractional integrals, denoted as J α

(a)+
f and J α

(b)−
f , where α > 0, by invoking the following equalities:

J α

(a)+ f (υ) =
1

Γ(α)

∫
υ

a
(υ− t)α−1 f (t)dt, υ > a,

which represents the definitive expression of the left-sided Riemann-Liouville fractional integral of function f with order α at the point a, and

J α

(b)− f (υ) =
1

Γ(α)

∫ b

υ

(t−υ)α−1 f (t)dt, υ < b,

depicting the clear-cut equation that defines the right-sided Riemann-Liouville fractional integral of function f with order α at the point b. It
is pertinent to note that Γ(α) represents the Gamma function, and J 0

(a)+
f (υ) = J 0

(b)−
f (υ) = f (υ) in accordance with the defined context.

For an in-depth exploration into the intricacies of Riemann-Liouville fractional integrals, we refer the interested reader to [19–21]. Armed
with this foundational understanding from the existing literature, we embark on the journey to unveil our novel contributions in the subsequent
sections.

2. Main Results

In this study, we will initially derive an equation for twice differentiable functions. By taking the absolute value of this equation and
employing convexity, we will establish an inequality. Furthermore, leveraging Hölder’s and the power mean inequalities, we will deduce
novel inequalities.

Lemma 2.1. Consider a mapping f : [a,b]→ R that is twice differentiable on the interval (a,b) and satisfies f
′′ ∈ L1([a,b]). Under these

conditions, the subsequent lemma establishes the following equality:

2α−1Γ(α +1)
(b−a)α

[
J α

( a+b
2 )

− f (a)+J α

( a+b
2 )

+ f (b)
]
− 1

3

[
2 f (a)− f

(
a+b

2

)
+2 f (b)

]
=

(b−a)2

8(α +1)

∫ 1

0

(
tα+1− 4

3
(α +1)t

)[
f
′′
(

2− t
2

a+
t
2

b
)
+ f

′′
(

2− t
2

b+
t
2

a
)]

dt.
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Proof. Applying the method of integration by parts, we are able to derive the subsequent expression:

I1 =
∫ 1

0

(
tα+1− 4

3
(α +1)t

)
f
′′
(

2− t
2

a+
t
2

b
)

dt

=
2

b−a

[(
tα+1− 4

3
(α +1)t

)
f
′
(
(1− t)a+ t

a+b
2

)]∣∣∣∣1
0
− 2(α +1)

b−a

∫ 1

0

(
tα − 4

3

)
f
′
(
(1− t)a+ t

a+b
2

)
dt

=
2

b−a

[(
1− 4

3
(α +1)

)
f
′
(

a+b
2

)]
− 2(α +1)

b−a

{∫ 1

0

(
tα − 4

3

)
f
′
(
(1− t)a+ t

a+b
2

)
dt
}

=
2

b−a

[(
1− 4

3
(α +1)

)
f
′
(

a+b
2

)]
− 2(α +1)

b−a

{
− 2

3(b−a)
f
(

a+b
2

)
+

8
3(b−a)

f (a)− 2α+1Γ(α +1)
(b−a)α+1 J α

( a+b
2 )

− f (a)
}

=
2

b−a

[(
1− 4

3
(α +1)

)
f
′
(

a+b
2

)]
+

4(α +1)
3(b−a)2 f

(
a+b

2

)
− 16(α +1)

3(b−a)2 f (a)+
2α+2Γ(α +1)(α +1)

(b−a)α+2 J α

( a+b
2 )

− f (a).

Likewise, we acquire

I2 =
∫ 1

0

(
tα+1− 4

3
(α +1)t

)
f
′′
(

2− t
2

b+
t
2

a
)

dt

=− 2
b−a

[(
1− 4

3
(α +1)

)
f
′
(

a+b
2

)]
+

4(α +1)
3(b−a)2 f

(
a+b

2

)
− 16(α +1)

3(b−a)2 f (b)+
2α+2Γ(α +1)(α +1)

(b−a)α+2 J α

( a+b
2 )

+ f (b).

Subsequently, we can observe the following computation:

(b−a)2

8(α +1)
[I1 + I2] =

2α−1Γ(α +1)
(b−a)α

[
J α

( a+b
2 )

− f (a)+J α

( a+b
2 )

+ f (b)
]
− 1

3

[
2 f (a)− f

(
a+b

2

)
+2 f (b)

]
.

Hence, this concludes the proof.

Theorem 2.2. Assuming f : [a,b]→ R is a function with twice differentiable function on the open interval (a,b), and f
′′ ∈ L1([a,b]), with

| f ′′ | exhibiting convexity across [a,b], the subsequent inequality is valid:∣∣∣∣2α−1Γ(α +1)
(b−a)α

[
J α

( a+b
2 )

− f (a)+J α

( a+b
2 )

+ f (b)
]
− 1

3

[
2 f (a)− f

(
a+b

2

)
+2 f (b)

]∣∣∣∣
≤ (b−a)2 (2(α +1)(α +2)−3)

24(α +1)(α +2)

[
| f
′′
(a)|+ | f

′′
(b)|
]
.

(2.1)

Proof. Upon applying the absolute value to Lemma 2.1 and leveraging the convex property of | f ′′ |, we deduce the following result:∣∣∣∣2α−1Γ(α +1)
(b−a)α

[
J α

( a+b
2 )

− f (a)+J α

( a+b
2 )

+ f (b)
]
− 1

3

[
2 f (a)− f

(
a+b

2

)
+2 f (b)

]∣∣∣∣
=

(b−a)2

8(α +1)

∣∣∣∣∫ 1

0

(
tα+1− 4

3
(α +1)t

)[
f
′′
(

2− t
2

a+
t
2

b
)
+ f

′′
(

2− t
2

b+
t
2

a
)]

dt
∣∣∣∣

≤ (b−a)2

8(α +1)

∫ 1

0

∣∣∣∣tα+1− 4
3
(α +1)t

∣∣∣∣[2− t
2
| f
′′
(a)|+ t

2
| f
′′
(b)|+ 2− t

2
| f
′′
(b)|+ t

2
| f
′′
(a)|
]

dt

=
(b−a)2

8(α +1)

[
| f
′′
(a)|+ | f

′′
(b)|
]∫ 1

0

4
3
(α +1)t− tα+1dt

=
(b−a)2 (2(α +1)(α +2)−3)

24(α +1)(α +2)

[
| f
′′
(a)|+ | f

′′
(b)|
]
.

The necessary inequality (2.1) is established.

Corollary 2.3. The choice α = 1 in Theorem 2.2 yields the following result:∣∣∣∣13
[

2 f (a)− f
(

a+b
2

)
+2 f (b)

]
− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣≤ (b−a)2

16

[
| f
′′
(a)|+ | f

′′
(b)|
]
.

Example 2.4. Consider the interval [a,b] = [0,1], and let’s define the function f : [0,1]→ R as f (t) = t4

12 , so that f
′′
(t) = t2 and | f ′′ | is

convex over the interval [0,1]. Given these conditions,

1
3

[
2 f (a)− f

(
a+b

2

)
+2 f (b)

]
=

31
576

Using the definition of the Riemann-Liouville fractional integral, we attain

J α

( a+b
2 )

− f (a) = J α

( 1
2 )
− f (0) =

1
Γ(α)

∫ 1
2

0
tα−1 t4

12
dt =

1
12Γ(α)(α +4)2α+4
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and

J α

( a+b
2 )

+ f (b) = J α

( 1
2 )

+ f (1) =
1

Γ(α)

∫ 1

1
2

(1− t)α−1 t4

12
dt

=
α4−50α3 +83α2 +262α +384

12αΓ(α)(α +1)(α +2)(α +3)(α +4)2α+4 .

Hence, we possess

2α−1Γ(α +1)
(b−a)α

[
J α

( a+b
2 )

− f (a)+J α

( a+b
2 )

+ f (b)
]

= 2α−1
Γ(α +1)

[
1

12Γ(α)(α +4)2α+4 +
α4−50α3 +83α2 +262α +384

12αΓ(α)(α +1)(α +2)(α +3)(α +4)2α+4

]
=

2α4−44α3 +94α2 +268α +384
384(α +1)(α +2)(α +3)(α +4)

.

Consequently, the left-hand side of inequality (2.1) simplified to∣∣∣∣2α−1Γ(α +1)
(b−a)α

[
J α

( a+b
2 )

− f (a)+J α

( a+b
2 )

+ f (b)
]
− 1

3

[
2 f (a)− f

(
a+b

2

)
+2 f (b)

]∣∣∣∣
=

∣∣∣∣2α4−44α3 +94α2 +268α +384
384(α +1)(α +2)(α +3)(α +4)

− 31
576

∣∣∣∣=: LHS.

(2.2)

In a similar manner, the right-hand side of inequality (2.1) was brought down to

(b−a)2 (2(α +1)(α +2)−3)
24(α +1)(α +2)

[
| f
′′
(a)|+ | f

′′
(b)|
]
=

2(α +1)(α +2)−3
24(α +1)(α +2)

=: RHS.

The outcomes from Example 2.4 are illustrated in Figure 2.1.
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Figure 2.1: Graph of Example 2.4.

Theorem 2.5. Consider a function f : [a,b]→ R, twice differentiable on the interval (a,b), with f
′′ ∈ L1([a,b]). Additionally, let | f ′′ |q

exhibit convexity on [a,b] for q > 1 and 1
p +

1
q = 1. As a result of these conditions, the following inequality is established.

∣∣∣∣2α−1Γ(α +1)
(b−a)α

[
J α

( a+b
2 )

− f (a)+J α

( a+b
2 )

+ f (b)
]
− 1

3

[
2 f (a)− f

(
a+b

2

)
+2 f (b)

]∣∣∣∣
≤ (b−a)2

8(α +1)

(∫ 1

0

(
4
3
(α +1)t− tα+1

)p
dt
) 1

p

×

(3| f ′′(a)|q + | f ′′(b)|q

4

) 1
q

+

(
3| f ′′(b)|q + | f ′′(a)|q

4

) 1
q
 . (2.3)

Proof. By considering the absolute value in Lemma 2.1, we find that∣∣∣∣2α−1Γ(α +1)
(b−a)α

[
J α

( a+b
2 )

− f (a)+J α

( a+b
2 )

+ f (b)
]
− 1

3

[
2 f (a)− f

(
a+b

2

)
+2 f (b)

]∣∣∣∣
=

(b−a)2

8(α +1)

∣∣∣∣∫ 1

0

(
tα+1− 4

3
(α +1)t

)[
f
′′
(

2− t
2

a+
t
2

b
)
+ f

′′
(

2− t
2

b+
t
2

a
)]

dt
∣∣∣∣

≤ (b−a)2

8(α +1)

[∫ 1

0

(
4
3
(α +1)t− tα+1

)∣∣∣∣ f ′′ (2− t
2

a+
t
2

b
)∣∣∣∣dt +

∫ 1

0

(
4
3
(α +1)t− tα+1

)∣∣∣∣ f ′′ (2− t
2

b+
t
2

a
)∣∣∣∣dt

]
.

(2.4)
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Exploiting the convex nature of | f ′′ |q and employing the Holder inequality, leads us to the conclusion that

∫ 1

0

(
4
3
(α +1)t− tα+1

)∣∣∣∣ f ′′ (2− t
2

a+
t
2

b
)∣∣∣∣dt

≤
(∫ 1

0

(
4
3
(α +1)t− tα+1

)p
dt
) 1

p
(∫ 1

0

∣∣∣∣ f ′′ (2− t
2

a+
t
2

b
)∣∣∣∣q) 1

q

≤
(∫ 1

0

(
4
3
(α +1)t− tα+1

)p
dt
) 1

p
(∫ 1

0

(
2− t

2
| f
′′
(a)|q + t

2
| f
′′
(b)|q

)
dt
) 1

q

=

(∫ 1

0

(
4
3
(α +1)t− tα+1

)p
dt
) 1

p
[

3| f ′′(a)|q + | f ′′(b)|q

4

] 1
q

.

(2.5)

Similarly,

∫ 1

0

(
4
3
(α +1)t− tα+1

)∣∣∣∣ f ′′ (2− t
2

b+
t
2

a
)∣∣∣∣dt ≤

(∫ 1

0

(
4
3
(α +1)t− tα+1

)p
dt
) 1

p
[

3| f ′′(b)|q + | f ′′(a)|q

4

] 1
q

. (2.6)

Through the incorporation of inequalities (2.5) and (2.6) into (2.4) we arrive at inequality (2.3), thus finalizing the proof.

Corollary 2.6. When α = 1, based on Theorem 2.5, we get∣∣∣∣13
[

2 f (a)− f
(

a+b
2

)
+2 f (b)

]
− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣
≤ (b−a)2

16

(∫ 1

0

(
8
3

t− t2
)p) 1

p

×

(3| f ′′(a)|q + | f ′′(b)|q

4

) 1
q

+

(
3| f ′′(b)|q + | f ′′(a)|q

4

) 1
q
 .

Example 2.7. Considering [a,b] = [0,1], let’s define the function f : [0,1]→ R as f (t) = t4

12 , satisfying f
′′
(t) = t2, and ensuring | f ′′ |

exhibits convexity over [0,1], with p = q = 2. The left-hand side of the inequality (2.3) resembles the equation presented in (2.2), while the
right-hand side of (2.3) simplifies to

(b−a)2

8(α +1)

(∫ 1

0

(
4
3
(α +1)t− tα+1

)p
dt
) 1

p

×

(3| f ′′(a)|q + | f ′′(b)|q

4

) 1
q

+

(
3| f ′′(b)|q + | f ′′(a)|q

4

) 1
q


=
1

8(α +1)

(∫ 1

0

(
4
3
(α +1)t− tα+1

)2
dt

) 1
2

×

(3| f ′′(0)|2 + | f ′′(1)|2

4

) 1
2

+

(
3| f ′′(1)|2 + | f ′′(0)|2

4

) 1
2


=

√
3+1

16(α +1)

[
16(α +1)2(2α +3)(α +3)−72(2α +3)(α +1)+27(α +3)

27(2α +3)(α +3)

] 1
2

=: RHS.

The findings from Example 2.7 are visually presented in Figure 2.2.
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Figure 2.2: Graph of Example 2.7.
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Theorem 2.8. Consider a function f : [a,b]→ R that is twice differentiable over the interval (a,b), with f
′′ ∈ L1([a,b]) and | f ′′ |q, where

q≥ 1, demonstrating convexity across [a,b]. As a result of these conditions, the subsequent inequality is satisfied.

∣∣∣∣2α−1Γ(α +1)
(b−a)α

[
J α

( a+b
2 )

− f (a)+J α

( a+b
2 )

+ f (b)
]
− 1

3

[
2 f (a)− f

(
a+b

2

)
+2 f (b)

]∣∣∣∣
≤ (b−a)2

8(α +1)

(
2(α +1)(α +2)−3

3(α +2)

)1− 1
q

×

[((
8(α +1)(α +2)(α +3)−18(α +3)+9(α +2)

18(α +2)(α +3)

)
| f
′′
(a)|q +

(
4(α +1)(α +3)−9

18(α +3)

)
| f
′′
(b)|q

) 1
q

+

((
8(α +1)(α +2)(α +3)−18(α +3)+9(α +2)

18(α +2)(α +3)

)
| f
′′
(b)|q +

(
4(α +1)(α +3)−9

18(α +3)

)
| f
′′
(a)|q

) 1
q

]
.

(2.7)

Proof. Through the process of taking the absolute value within Lemma 2.1, we arrive at

∣∣∣∣2α−1Γ(α +1)
(b−a)α

[
J α

( a+b
2 )

− f (a)+J α

( a+b
2 )

+ f (b)
]
− 1

3

[
2 f (a)− f

(
a+b

2

)
+2 f (b)

]∣∣∣∣
=

(b−a)2

8(α +1)

∣∣∣∣∫ 1

0

(
tα+1− 4

3
(α +1)t

)[
f
′′
(

2− t
2

a+
t
2

b
)
+ f

′′
(

2− t
2

b+
t
2

a
)]

dt
∣∣∣∣

≤ (b−a)2

8(α +1)

[∫ 1

0

(
4
3
(α +1)t− tα+1

)∣∣∣∣ f ′′ (2− t
2

a+
t
2

b
)∣∣∣∣dt +

∫ 1

0

(
4
3
(α +1)t− tα+1

)∣∣∣∣ f ′′ (2− t
2

b+
t
2

a
)∣∣∣∣dt

]
.

(2.8)

By exploiting the power-mean inequality in conjunction with the convex property of | f ′′|q, we establish

∫ 1

0

(
4
3
(α +1)t− tα+1

)∣∣∣∣ f ′′ (2− t
2

a+
t
2

b
)∣∣∣∣dt

≤
(∫ 1

0

(
4
3
(α +1)t− tα+1

)
dt
)1− 1

q
(∫ 1

0

(
4
3
(α +1)t− tα+1

)∣∣∣∣ f ′′ (2− t
2

a+
t
2

b
)∣∣∣∣q dt

) 1
q

≤
(

2(α +1)(α +2)−3
3(α +2)

)1− 1
q
(∫ 1

0

(
4
3
(α +1)t− tα+1

)(
2− t

2
| f
′′
(a)|q + t

2
| f
′′
(b)|q

)
dt
) 1

q

=

(
2(α +1)(α +2)−3

3(α +2)

)1− 1
q

×
((

8(α +1)(α +2)(α +3)−18(α +3)+9(α +2)
18(α +2)(α +3)

)
| f
′′
(a)|q +

(
4(α +1)(α +3)−9

18(α +3)

)
| f
′′
(b)|q

)
.

(2.9)

Similarly,

∫ 1

0

(
4
3
(α +1)t− tα+1

)∣∣∣∣ f ′′ (2− t
2

b+
t
2

a
)∣∣∣∣dt

≤
(

2(α +1)(α +2)−3
3(α +2)

)1− 1
q

×
((

8(α +1)(α +2)(α +3)−18(α +3)+9(α +2)
18(α +2)(α +3)

)
| f
′′
(b)|q +

(
4(α +1)(α +3)−9

18(α +3)

)
| f
′′
(a)|q

) 1
q

.

(2.10)

Upon substituting (2.9) and (2.10) into (2.8), we arrive at the intended inequality denoted as (2.7).

Corollary 2.9. If we choose α = 1 in Theorem 2.8, then we acquire

∣∣∣∣13
[

2 f (a)− f
(

a+b
2

)
+2 f (b)

]
− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣
≤ (b−a)2

16

(147| f ′′(a)|q +69| f ′′(b)|q

216

) 1
q

+

(
147| f ′′(b)|q +69| f ′′(a)|q

216

) 1
q
 .

Example 2.10. Let’s take the interval [a,b] = [0,1] and define the function f : [0,1]→ R as f : [0,1]→ R, f (t) = t4

12 , yielding f
′′
(t) = t2.

Notably, | f ′′ | exhibits convex behavior across [0,1] and q is assigned the value of 2. Drawing a parallel, the left-hand side of inequality (2.7)
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shares a resemblance with equality (2.2), while the right-hand side of (2.7) simplifies to

(b−a)2

8(α +1)

(
2(α +1)(α +2)−3

3(α +2)

)1− 1
q

×

[((
8(α +1)(α +2)(α +3)−18(α +3)+9(α +2)

18(α +2)(α +3)

)
| f
′′
(a)|q +

(
4(α +1)(α +3)−9

18(α +3)

)
| f
′′
(b)|q

) 1
q

+

((
8(α +1)(α +2)(α +3)−18(α +3)+9(α +2)

18(α +2)(α +3)

)
| f
′′
(b)|q +

(
4(α +1)(α +3)−9

18(α +3)

)
| f
′′
(a)|q

) 1
q

]

=
1

8(α +1)

(
2(α +1)(α +2)−3

3(α +2)

) 1
2

×

[(
4(α +1)(α +3)−9

18(α +3)

) 1
2

+

(
8(α +1)(α +2)(α +3)−18(α +3)+9(α +2)

18(α +2)(α +3)

) 1
2
]
=: RHS.

The findings extracted from Example 2.10 have been depicted in Figure 2.3.

0 5 10 15 20 25 30
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

LHS
RHS

Figure 2.3: Graph of Example 2.10.

3. Conclusion

In this article, Milne-type inequalities have been derived using Fractional Integrals. The obtained inequalities are exemplified, and the
accuracy of these examples is validated through graphical representations. Future researchers could explore novel inequalities for different
fractional integrals. Furthermore, the current study focused on functions that are twice differentiable. By considering a broader scope of
differentiable functions, new inequalities could potentially be discovered. By employing various types of inequalities in Functional Analysis
and Numerical Analysis, novel results could be obtained using the methodologies presented in this paper.
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[18] B. Meftah, A. Lakhdari, W. Saleh, A. Kiliçman, Some new fractal Milne-type integral inequalities via generalized convexity with applications, Fractal

Fract., 7(2) (2023), Art. 166.
[19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204,

Elsevier Sci. B. V., Amsterdam, 2006.
[20] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Wien: Springer-Verlag, 1997, 223–276.
[21] S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.



Universal Journal of Mathematics and Applications, 7 (1) (2024) 38-45
Research paper

Universal Journal of Mathematics and Applications
Journal Homepage: www.dergipark.gov.tr/ujma

ISSN 2619-9653
DOI: https://doi.org/10.32323/ujma.1390222

Laguerre Collocation Approach of Caputo Fractional
Fredholm-Volterra Integro-Differential Equations

Dilek Varol1 and Ayşegül Daşcıoğlu1*
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Abstract

This paper discusses the linear fractional Fredholm-Volterra integro-differential equations
(IDEs) considered in the Caputo sense. For this purpose, Laguerre polynomials have been
used to construct an approximation method to obtain the solutions of the linear fractional
Fredholm-Volterra IDEs. By this approximation method, the IDE has been transformed into
a linear algebraic equation system using appropriate collocation points. In addition, a novel
and exact matrix expression for the Caputo fractional derivatives of Laguerre polynomials
and an associated explicit matrix formulation has been established for the first time in the
literature. Furthermore, a comparison between the results of the proposed method and those
of methods in the literature has been provided by implementing the method in numerous
examples.

1. Introduction

The integro-differential equations (IDEs) of the fractional order are used by mathematicians and other scientists to model different physical
and biological processes just as the heat conduction problem, radiative equilibrium, fracture mechanics, elasticity, signal processing, control
and robotics, population dynamics, and health issues [1]- [12]. Hence, solving these types of equations and investigating the exact and
approximate solutions has gained importance in recent years. When these investigations are reviewed it can be obviously seen that the
methods handled to solve the fractional Fredholm-Volterra integro-differential equations (FVIDEs) are presented as reliable modified Laplace
Adomian decomposition method [13], generalized hat functions [14], Nyström and Newton-Kantorovitch [15], Chebyshev wavelet [16]- [18],
wavelet-based methods [19], Chebyshev Neural Network [20], Taylor expansion [21], sinccollocation [22], Legendre wavelet [23], Lucas
wavelets with Legendre–Gauss quadrature [24], Bessel polynomials [25], fractional differential transform [26], Bernstein polynomials [27],
Genocchi polynomials [28], spectral Jacobi-collocation [29], Block pulse functions [30], fractional-order Bernoulli functions [31], hybrid
functions [32], Bernoulli wavelets [33], hybrid orthonormal Bernstein and block-pulse functions wavelet method [34].

Additionally, Laguerre polynomials have been used to solve the IDEs of integer order. Obviously, these integer-order equations can
be specialized as 2-evolution equation [35], Altarelli-Parisi equation [36], Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation [37], linear
Fredholm IDE [38], [39], Volterra IDE of pantograph-type [40], delay partial functional differential equation [41], Volterra partial IDE of
parabolic-type [42], [43], and nonlinear partial IDE [44]. In other respects, Laguerre polynomials have been applied to attain the solutions of
the fractional IDE of the Fredholm type [45].

Moreover, in our research articles, approximation methods based on Laguerre polynomials have been developed. Daşcıoğlu et
al. [46] have used a collocation method based upon the Laguerre polynomials to attain the solutions of the linear fractional FVIDEs in
conformable sense. The method described in [46] is an improvement of the method that used for the solutions of the linear fractional IDEs of
the Fredholm type in the Caputo sense [47] and Caputo fractional linear IDEs of the Volterra type [48].

However, for the linear fractional IDEs of the Fredholm-Volterra type in the Caputo sense with mixed conditions there is no method
in the sense of Laguerre polynomials. In this work, a method based on these polynomials is proposed to obtain the solutions of the fractional
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linear IDE of the Fredholm-Volterra type in the following general form:

m

∑
i=1

pi(x)Dαi y(x)+
l

∑
i=1

qi(x)yi(x) = g(x)+λ1

b∫
a

F(x, t)y(t) dt +λ2

x∫
a

V (x, t)y(t) dt, a≤ x≤ b, (1.1)

with the conditions

v−1

∑
k=0

B jky(k)(β jk) = µ j, vi−1 < αi < vi, j = 0,1, ...,v−1, (1.2)

where m, l ∈ N, vi ∈ Z+; µ j,β jk,B jk,λ1,λ2 ∈ R, v = max

((
max︸︷︷︸

0≤i≤m

vi

)
, l

)
. Here pi(x),qi(x),F(x, t),V (x, t), and g(x) are known functions,

y(x) is the unknown function that has to be determined, yi(x), shows the ordinary derivatives of the unknown function y(x), Dαi y(x) stands
for the Caputo fractional derivative of y(x) whose definition has been given below:

Definition 1.1. [49] The Caputo fractional differentiation operator Dα of order α is defined as:

Dα f (x) =
1

Γ(n−α)

∫ x

0

f (n)(t)
(x−n)α+1−n dt, α > 0,

where −1 < α < n,n ∈ Z+ and Γ is the well-known Gamma function.

The main purpose of this work is to obtain an approximate solution of given problem (1.1)-(1.2) in the form

y(x)∼= yN(x) =
N

∑
n=0

anLn(x), (1.3)

where N is any taken positive integer such that N ≥ v, the unknown coefficients an’s must be discovered,and Ln(x) stand for the Laguerre
polynomials of the order n stated by Bell [50] as:

Ln(x) =
n

∑
k=0

(−1)k n!
(n− k)!(k!)2 xk.

The rest of the paper is arranged as follows: In section 2, the fundamental matrix relations for each term in fractional IDE (1.1) are
constituted. In section 3, a functional collocation method based on the Laguerre polynomials is introduced. In section 4, numerical examples
are resolved, their results are presented, and these solutions are compared with the existing results in the literature to affirm the precision and
effectiveness of the proposed method. The last section of the paper presents the conclusions.

2. Elementary Matrix Formulas

In this section, we attempt to transform Eq. (1.1) by formulating the matrix forms of the unknown function and its fractional
derivatives in the Caputo sense.

First, we can formulate the approximate solution (1.3) as the product of L(x) which can be called as the Laguerre matrix and the
coefficient matrix A by

yN(x) = L(x)A, (2.1)

where the matrices are given as

A =
[
a0 a1 · · · aN

]T and L(x) =
[
L0(x) L1(x) · · · LN(x)

]
.

Then, the following theorem has been given which demonstrates the connection between the Laguerre polynomials and the fractional
derivative of Laguerre polynomials in the Caputo sense, which has been given and proved in our previous paper:

Theorem 2.1. [46] Let Ln(x) be the Laguerre polynomial of order n, then the Caputo fractional derivative of Ln(x) in terms of Laguerre
polynomials is found as follows:

Dα Ln(x) = 0,n < dαe,

and otherwise

Dα Ln(x) = x1−α
n

∑
k=dαe

k−1

∑
r=0

(−1)r+k (k−1)!
Γ(k+1−α)

(
n
k

)(
k−1

r

)
Lr(x),

where dαe indicates the smallest integer greater than or equal to α which is known as the ceiling function.
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Secondly, the matrix relations of the differential side of the Eq. (1.1) are formulated. The relation between the Laguerre matrix L(x)
and its integer order derivatives of the Laguerre matrix L(x) will be used in the form given in Eq. (2.2) which can be seen in Ref. [40] to
present the matrix relation for the derivatives of the integer order of the unknown function y(x),

L(i)(x) = L(x)Mi, i = 0,1, . . . ,N, (2.2)

where the matrix M is

M =



0 −1 −1 −1
0 0 −1 · · · −1
0 0 0 −1

...
. . .

...
0 0 0 . . . −1
0 0 0 0


.

Therefore, the derivatives of integer order of the unknown function y(x) in Eq. (1.1) can be represented as below by using Eq. (2.2),

y(i)(x)∼= L(x)MiA. (2.3)

Theorem 2.2. Let L(x) be the Laguerre matrix defined in (2.1) and Dα L(x) be the Caputo fractional derivative of L(x) of the α-th order,
then the Caputo fractional derivative of Laguerre matrix is given as

Dα L(x) = x1−α L(x)Sα , (2.4)

where Sα is an (N +1) dimensional square matrix specified as

Sα =



0
(0

0
)
S1,1

(0
0
)
S1,2 +

(1
0
)
S2,2 · · · ∑

N
k=1
(k−1

0
)
Sk,N

0 0 −
(1

1
)
S2,2 · · · −∑

N
k=2
(k−1

1
)
Sk,N

0 0 0 · · · ∑
N
k=3
(k−1

2
)
Sk,N

...
...

...
. . .

...
0 0 0 · · · (−1)N+1SN,N
0 0 0 · · · 0


or

Sα =
[
(−1)i

∑
j
k=i+1

(k−1
i
)
Sk, j

]
, i, j = 0,1, . . . ,N.

Here, the Sk, j terms in the entries of the matrix Sα are defined as

Sk, j =

{
(−1)k (k−1)!

Γ(k+1−α)

( j
k

)
, if dαe ≤ k ≤ j

0, otherwise
.

Proof. First, the Caputo fractional derivative of L(x) which is denoted by Dα L(x) has been defined by

Dα L(x) =
[
Dα L0(x) Dα L1(x) · · · Dα LN(x)

]
.

By using Theorem 1 above, for j < dαe,Dα L j(x) = 0, and for j ≥ dαe,k = 1,2, . . . , j

Dα L j(x) = x1−α

j

∑
k=dαe

k−1

∑
r=0

(−1)r+k (k−1)!
Γ(k+1−α)

(
j
k

)(
k−1

r

)
Lr(x).

At this point, since the term Sk, j,k = 1,2, . . . , j is defined as follows:

Sk, j =

{
(−1)k (k−1)!

Γ(k+1−α)

( j
k

)
, dαe ≤ k ≤ j

0, otherwise
.

Dα L0(x) = 0 and for j = 1,2, . . . ,N

Dα L j(x) = x1−α

j

∑
k=1

k−1

∑
r=0

(−1)r
(

k−1
r

)
Sk, jLr(x).

Here, for j = 0,Dα L0(x) = 0 and for j ∈ {1, . . . ,N}

Dα L j(x) = x1−α

j

∑
k=1

k−1

∑
r=0

(−1)r
(

k−1
r

)
Sk, jLr(x)

= x1−α

{
j

∑
k=1

(
k−1

0

)
Sk, jL0(x)−

j

∑
k=2

(
k−1

1

)
Sk, jL1(x)−·· ·(−1) j−1

(
j−1
j−1

)
S j, jL j−1(x)

}
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Therefore, all the entries in the 0-th column and all the entries in the N-th row of Dα L(x) is zero, and otherwise, the i, j-th element
of the matrix Dα L(x) is given as

x1−α

j

∑
k=i+1

(−1)i
(

k−1
i

)
Sk, jLi(x).

Thus, the relation between Dα L(x) and L(x) as expressed in Eq. (2.4) has been obtained.

This relation proves the theorem.
Then, using the result of Theorem 2 and using relations (2.1) and (2.4), the Caputo fractional derivative of the unknown function y(x)

which is the differential part of Eq. (1.1) can be represented by

Dα y(x)∼= Dα L(x)A = x1−α L(x)Sα A. (2.5)

Now, finally, the corresponding matrix formula for mixed conditions (1.1) could be given in the form

v−1

∑
k=0

B jkL(β jk)MkA = µ, j = 0,1, . . . ,v−1. (2.6)

by using Eq. (2.3).
Finally, when the matrix in the summation in the left-hand side of Eq. (2.6) is called as U j that is an 1× (N +1) vector matrix, Eq.

(2.6) transforms into

U jA = µ j, j = 0,1, . . . ,v−1.

3. Solution Method

In this part of the paper, we maintain the approximate solution method which can be specified as a collocation method, because we
use the collocation points at the end to solve the matrix equation. In other words, we determine the unknown coefficients ai’s in Eq. (1.3) to
obtain the solution of Equations (1.1)-(1.2) using a collocation method.

Theorem 3.1. Suppose that the fractional FVIDE defined by Eq. (1.1) is given. Utilizing the collocation points xs > 0 and xs ∈ [a,b], this
IDE can be abbreviated as the following matrix equation:{

m

∑
i=0

PiXαi LSαi +
l

∑
i=0

QiLMi−λ1F−λ2V

}
A = G.

Here, the matrices M and Sαi are in forms as in Eq. (2.2) and (2.4), respectively. In addition, G = [g(xs)] is an (N +1)×1 dimensional
matrix; Xαi = diag[x1−αi

s ], Pi = diag[pi(xs)], Qi = diag[qi(xs)], L = [L(xs)], F = [f(xs)], and V = [v(xs)] are (N+1)× (N+1) dimensional
square matrices. Moreover, L(x) corresponds for the Laguerre matrix, as described in Eq. (2.1), f(xs) and v(xs) represent the given integrals;
f(xs) =

∫ b
a F(xs, t)L(t)dt and v(xs) =

∫ xs
a V (xs, t)L(t)dt

Proof. Firstly, substituting matrix relations (2.1), (2.3) and (2.5) into the Eq. (1.1), the following matrix equation has been obtained

m

∑
i=0

pi(x)x1−αi L(x)Sαi A+
l

∑
i=0

qi(x)L(x)MiA = g(x)+λ1

b∫
a

F(x, t)L(t)Adt +λ2

x∫
0

V (x, t)L(t)Adt. (3.1)

By substituting the non-negative collocation points xs(s = 0,1, . . . ,N) into Eq. (3.1), the following system of linear matrix equations
has been gained

m

∑
i=0

pi(xs)xs
1−αi L(xs)Sαi A+

l

∑
i=0

qi(xs)L(xs)MiA = g(xs)+λ1f(xs)A+λ2v(xs)A, (3.2)

where f(xs) =
∫ b

a F(xs, t)L(t)dt and v(xs) =
∫ xs

a V (xs, t)L(t)dt.
The system given by Eq. (3.2) can be written in the compact forms in the form{

m

∑
i=0

PiXαi LSαi +
l

∑
i=0

QiLMi−λ1F−λ2V

}
A = G, (3.3)

where the matrices mentioned above are given as follows:

Xαi =


x0

1−αi 0 0
0 x1

1−αi · · · 0
...

. . .
...

0 0 · · · xN
1−αi

 ,L =


L(x0)

L(x1)
...

L(xN)

 ,Pi =


pi(x0) 0 0

0 pi(x0) · · · 0
...

. . .
...

0 0 · · · pi(xN)

 ,
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Qi =


qi(x0) 0 0

0 qi(x0) · · · 0
...

. . .
...

0 0 · · · qi(xN)

 ,F =


f(x0)

f(x1)
...

f(xN)

 ,V =


v(x0)

v(x1)
...

v(xN)

 ,G =


g(x0)

g(x1)
...

g(xN)

 .

For simplicity, symbolizing the expression in the parenthesis of Eq. (3.3) by W, the fundamental matrix equation associated with Eq.
(1.1) can be abbreviated to WA = G. Apparently, this equation substitutes for a (N +1) dimensional linear algebraic equations system with
the unknown coefficients ai’s for i = 0,1, . . . ,N hich we can call as Laguerre coefficients.

Consequently, to find the solution of Eq. (1.1) with given conditions (1.2), the n rows of the obtained augmented matrix [W;G] are
stacked or replaced by the n rows of the augmented matrix [U j; µ j]. Therefore, because the unknown Laguerre coefficients are discovered by
resolving this system, we obtain the solution of Eq. (1.1) under Conditions (1.2).

4. Numerical Examples

In this section, four examples have been tried to solve by the proposed method. All the numerical calculations were executed with
the aid of Mathcad 15.

Example 4.1. Consider the given fractional Fredholm IDE

y′′(x)+D
1
2 y(x)+ y(x) =

9
4
− 1

3
x− 2

Γ( 5
2 )

x
3
2 + x2 +

1∫
0

(x− t)y(t)dt

with the conditions y(0) = y′(0) = 0. This problem has the exact solution y(x) = x2.

Implementing the methodology explained in Section 3, the expected fundamental matrix equation of the given problem and its
conditions can be presented as{

X 1
2
LS 1

2
+L+LM2−V

}
A = G

and

U0A = L(0)A = 0, U1A = L(0)MA = 0.

Here, the collocation points for N = 2 such as x0 = 0.25, x1 = 0.75, x2 = 1 were used. Then the matrices mentioned above are

X 1
2
=

 1
2 0 0
0

√
3

2 0
0 0 1

 , L =

1 3
4

17
32

1 1
4

−7
32

1 0 −1
2

 , S 1
2
=

0 −2√
Π

−8
3
√

Π

0 0 −4
3
√

Π

0 0 0

 ,

F =

−1
4

−1
24

1
12

1
4

5
24

1
6

1
2

1
3

5
24

 , G =


1

3
√

Π
+ 107

48√
3√
Π
+ 41

16
8

3
√

Π
+ 35

12

 , U0 =
[
1 1 1

]
, U1 =

[
0 −1 2

]

By solving this system, we obtain a0 = 2, a1 =−4, a2 = 2. In the final step, we substitute these coefficients into the approximate Eq. (1.3)
and obtain the exact solution. This problem was solved by Ordokhani et al. [25] by using the Bessel collocation method. They found an
approximate solution with absolute maximum errors 3.70×10−3 for N = 2, 3.28×10−4 for N = 4 and 8.58×10−5 for N = 6. We found
the exact solution for N = 2 with symbolic evaluation in Mathcad 15 using the proposed method. Clearly, the proposed method is more
accurate than the other method.

Example 4.2. Let us consider the fractional FVIDE having the exact solution y(x) = x2 + x3,

D1.7y(x) = g(x)+
x∫

0

(x− t)y(t)dt +
1∫

0

(x+ t)y(t)dt

with the given initial conditions y(0) = y′(0) = 0 where

g(x) =
6

Γ(2.3)
x1.3 +

2
Γ(1.3)

x0.3− x5

20
− x4

12
− 7x

12
− 9

20
.
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Implementing the methodology explained in Section 3, the expected fundamental matrix equation of the given problem and its
conditions can be presented as

{X1.7LS1.7−F−V}A = G

and

U0A = 0, U1A = 0.

Here, we use the collocation points for N = 3 such as x0 = 0.25, x1 = 0.5, x2 = 0.75, x3 = 1. We obtain the Laguerre coefficients as a0 = 8,
a1 =−22, a2 = 20, a3 =−6 by solving this system. In the final step, we substitute these coefficients into the approximate Eq. (1.3), then we
obtain the exact solution.

The approximate solutions to this problem using the Legendre wavelet method were given by Meng et al. [23]. Therefore, the
maximum absolute errors of their method were calculated as 5.3×10−2 for 16 terms, 2.7×10−2 for 32 terms, 1.2×10−2 for 64 terms and
9.0×10−4 for 128 terms. In addition, Genocchi polynomials were used by Loh et al. [28] to obtain the numerical solution of the above
problem with the maximum absolute error 7.0×10−2 for N = 8. Since we obtain the exact solution for N = 3,the proposed method is faster,
more efficient, and more accurate compared than the other methods.

Example 4.3. Consider the given fractional FVIDE with the exact solution y(x) = x
7
2 which is nonpolynomial:

D2.3y(x) = g(x)+
1
4

x∫
0

(x− t)y(t)dt +
1
2

1∫
0

xty(t)dt

with following three conditions y(0) = y′(0) = y′′(0) = 0 where the non-homogenous function given as g(x) = Γ(4.5)
Γ(2.2)x1.2− x5.5

99 −
x

11 .

Implementing the methodology explained in Section 3, the expected fundamental matrix equation of the given fractional equation
and its conditions can be presented as{

X2.3LS2.3−
1
2

F− 1
4

V
}

A = G

and

U0A = 0, U1A = 0, U2A = 0

This problem was solved using the collocation points with the formula xs =
[
1− cos

(
(s+1)Π

N+1

)]
/2 and the numerical results are given in

Table 1 for N = 8 and N = 9. Besides, the illustration of the results for N = 9 is given in Figure 4.1.

LWM ADM FBF GHF GP Present method
x k=2,M=5 n=5 m=8 n=32 N=9 N=8 N=9
1
8 6.6×10−6 1.0 6.9×10−7 4.2×10−6 1.5×10−4 1.3×10−10 1.6×10−8

2
8 4.5×10−5 4.2 3.5×10−7 5.6×10−5 6.3×10−4 9.7×10−10 6.3×10−9

3
8 3.1×10−5 9.2 2.4×10−7 6.2×10−5 1.3×10−3 7.0×10−9 4.0×10−9

4
8 7.4×10−5 4.2 2.3×10−7 6.9×10−5 2.0×10−3 3.3×10−8 9.1×10−11

5
8 2.4×10−4 8.1 8.3×10−7 3.2×10−4 2.8×10−3 1.0×10−7 3.9×10−8

6
8 3.8×10−4 2.3 2.3×10−7 4.5×10−4 3.7×10−3 2.5×10−7 1.2×10−7

7
8 6.0×10−4 8.1 4.6×10−7 6.2×10−4 4.6×10−3 5.0×10−7 2.4×10−7

Table 1: Comparison of absolute maximum errors of Example 4.3.

Figure 4.1: Graphical analysis of Example 4.3 for N=9

The results of the Legendre wavelet method (LWM) and the Adomian decomposition method(ADM) were provided by Meng et
al. [23]. In addition, the fractional order Bernoulli functions (FBF) were used by Rahimkhani et al. [31], Genocchi polynomials (GP) wwere
used by Loh et al. [28] and generalized hat functions (GHF) were used by Li [14] to obtain the approximate solution of this problem. The
numerical results are presented in Table 1. It is obviously seen from the table that the proposed method is more effective and more accurate
than the other methods compared.
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Example 4.4. Let us consider the following fractional IDE

y′′(x)+
1
x

D
1
2 y(x)+

1
x2 y(x) = g(x)+

1∫
0

cos(x− t)y(t)dt +
x∫

0

sin(x− t)y(t)dt

with the boundary conditions y(0) = y(1) = 0. The exact solution of this problem is y(x) = x2− x3.

This problem was also solved by sinc-collocation method proposed by Alkan et al. [22]. They found an approximate solution with
the maximum absolute errors 4.6×10−2 for N = 4, 2.7×10−2 for N = 8, 1.8×10−3 for N = 16, 2.6×10−5 for N = 32 and 3.9×10−7

for N = 64. However, we found the exact solution using the proposed method with N = 3. Therefore, it is evident that the proposed method
is more efficient than the other methods.

5. Conclusion

In this paper, Laguerre polynomials were applied to construct a numerical approximation method to obtain the solutions of the fractional
linear IDEs of the Fredholm-Volterra type. Using this approximation method a great variety of differential and integral (or both) equations has
been covered since the equation in (1) has been presented in a general manner including not only the fractional IDEs of the Fredholm-Volterra
type but also the fractional IDEs of the Fredholm or Volterra type and the fractional differential equations. Specifically, the given general
fractional IDE of the Fredholm-Volterra type is converted into the fractional IDE of the Volterra type for λ1 = 0, λ2 6= 0; the fractional IDE of
the Fredholm type for λ1 6= 0, λ2 = 0 and the fractional differential equation for both λ1 = λ2 = 0. For this reason, the relation for the matrix
of the Caputo fractional derivative of the Laguerre polynomials and the related exact matrix relation have been obtained for the first time in
the fractional calculus literature. Utilizing suitable collocation points and the obtained matrix relations, the fractional IDE was transformed
into an algebraic equations system. This method is more efficient, faster, and easier to apply than the other methods in the literature.
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Abstract

The aim of this paper is to determine the eigenvalue intervals of µk, 1≤ k≤ n for which
an iterative systems of a class of fractional-order differential equations with parameterized
integral boundary conditions (BCs) has at least one positive solution by means of standard
fixed point theorem of cone type. To the best of our knowledge, this will be the first time
that we attempt to reach such findings for the topic at hand in the literature. The obtained
results in the paper are illustrated with an example for their feasibility.

1. Introduction

There is a strong impetus for the study of nonlinear fractional systems, and significant research efforts have been made undertaken lately
for these systems with the aim of implementing findings on the existence of positive solutions in related fields. At this point, differential
calculus expanded its scope to include the dynamics of the complex real world, and new theories began to be put into effect and assessed on
real data [1]. A variety of materials and processes with characteristics of heredity and memory can be accurately described by the nonlocal
nature of fractional calculus [2, 3]. There are numerous applications in a variety of scientific disciplines, including biomathematics [4],
viscoelasticity [5], non-Newtonian fluid mechanics [6], and characterization of anomalous diffusion [7].
Progressively, distinctive scientific advances and tools are created specifically for fractional differential equations (FDEqs). Due to this, a
significant amount of scientists concentrate on boundary value problems (BVPs) for FDEqs involving various derivatives, such as Riemann–
Liouville or Caputo, as well as some novel derivatives, including conformable fractional derivatives [8]. The literature on FDEqs of the
conformable type is not enriched yet. The conformable fractional derivative was first proposed in 2014. The conformable derivative can be
utilized for modeling many physical problems as DEqs with conformable fractional derivatives are easier to solve numerically in comparison
to those with Riemann–Liouville or Caputo fractional derivatives. A new concept, known as the conformable fractional derivative, has
recently [9, 10] been defined. Indeed, several researchers have previously applied conformable fractional derivatives to a wide range of
domains, and numerous replicating methodologies have been established, see [11]. In different industries, such as telecommunication
equipment, synthetic chemicals, automobiles, and pharmaceuticals, BVPs are frequently used. In these processes, positive solutions seem to
be beneficial. In these contexts, the existence of positive solutions is often advantageous. For instance, in [12], the authors established the
existence of multiple positive solutions for a coupled system of Riemann–Liouville FBVPs by means of an Avery generalization of the
Leggett–Williams FPT. Subsequently, in [13], the same authors determined the eigenvalue intervals of the parameters leading to a positive
solution for an iterative system of nonlinear Sturm–Liouville FBVPs by utilizing the Guo–Krasnosel’skii FPT on a cone. Additionally,
in [14], the authors examined p-Laplacian fractional higher-order BVPs, establishing criteria for determining parameter values ensuring at
least one positive solution. Furthermore, they derived sufficient conditions for the existence of an even number of positive solutions for
FBVPs using an Avery–Henderson functional FPT. Moreover, in [15], the authors established the existence of at least three positive solutions
to a system of FBVPs by employing a five-functionals FPT. Lastly, in [16], the authors investigated the eigenvalue intervals of parameters
guaranteeing at least one positive solution for an iterative system of four-point FBVPs under suitable conditions.
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Recently, Zhou et al. [17] the existence, uniqueness, and multiplicity of findings associated with positive solutions to various types of
conformable FBVPs. By using conventional fixed point theorems (FPTs) in conjunction with the theory of the cosine family of linear
operators, Bouaouid [18] showed the existence and continuous dependence of mild solutions for a class of conformable FDEqs with nonlocal
initial conditions. In their study of conformable stochastic functional DEqs of the neutral type, Xiao et al. [19] examined the existence and
stability outcomes. A mild solution to a conformable FBVP was introduced by Jaiswal et al. [20] and the existence, uniqueness of solutions
to the considered problem employing the contraction principle have been proven.
Conformable FDEqs with integral BCs provide a more flexible framework for modeling complex systems that exhibit non-local or memory-
dependent behavior. Many real-world processes, such as heat conduction in non-homogeneous materials or transport phenomena in porous
media, can be better described using fractional calculus. Gokdogan et al. demonstrated the uniqueness of solutions for sequential linear
conformable FDEqs in [21]. Khuddush et al. [22] obtained the existence of positive solutions for an iterative system of conformable fractional
dynamic BVPs on time scales by an application of FPT on a Banach space. Zhong and Wang in [23], where they studied the existence of
positive solutions to the FBVP

Dqu(z)+ f
(
z,u(z)

)
= 0, z ∈ (0,1),

u(0) = 0, u(1) = λ

∫ 1

0
u(z)dz,

where q∈ (1,2], λ is a constant and Dq is the conformable derivative. By utilizing the solution-tube approach and Schauder’s FPT, Bendouma
et al. [24] investigated the existence of solutions to systems of conformable FDEqs concerning periodic conditions.
In [25], Haddouchi used the Kernel characteristics along with the FPT in a cone to investigate the existence of positive solutions to
conformable FBVPs

Dqu(z)+ f
(
z,u(z)

)
= 0, z ∈ (0,1),

u(0) = 0, u(1) = λ

∫
η

0
u(z)dz,

where q ∈ (1,2], η ∈ (0,1], λ is a constant and Dq is the conformable derivative.
Through the use of various FPTs found in the literature, numerous authors have explored the existence of positive solutions to a variety
BVPs for ordinary, FDEqs during the past few years. Motivated and inspired by above highly decorated topics, by employing the Guo–
Krasnosel’skii FPT of cone compression and expansion of norm kind (see [26, 27]) to the considered problem. More explicitly, we construct
the Kernel for the associated linear FBVP, and estimate the bounds of this Kernel in more detail since they are essential for finding suitable
fixed points for the newly indicated operator on a cone in a Banach space. Furthermore, it was explained how to utilize the fixed point
technique and the bootstrapping argument to establish the existence of positive solutions to the iterative system. To the best of our knowledge,
in this work, we attempt for the first time to determine the eigenvalue intervals of parameters that have positive solutions for the following
iterative systems of conformable FDEqs

Dquk(z)+µkpk(z)gk
(
uk+1(z)

)
= 0

un+1(z) = u1(z), z ∈ (0,1),

}
(1.1)

with parameterized integral BCs

uk(0) = 0, uk(1) = ϑ

∫
ξ

0
uk(z)dz,

for 1≤ k≤ n,

 (1.2)

where q∈ (1,2], ξ ∈ (0,1], ϑ ∈R+ is constant and Dq is the conformable fractional derivative. Iterative FDEqs have a variety of applications,
which makes studying them preferable to non-iterative DEqs. For instance, IFDEqs are the most suitable for studying problems associated
with infectious models and the kinetics of particles that are charged with delayed contact and can’t be employed to study such problems via
ordinary non-iterative DEqs. Iterative DEqs model dynamic systems where a variable’s rate of change depends not only on its current value
but also on its past values. These equations capture the influence of a system’s history on its current state, often in a nonlinear fashion. They
find applications across various fields, including modeling object motion, fluid dynamics, disease spread, chemical reactions, population
growth, control systems, electrical circuits, and economic systems. The equation (1.1) relates a diffusion phenomena with source or reaction
term. For example, in thermal conduction, it can be understood as a one dimensional heat conduction equation modeling steady states of a
heating rod of length c with the controller at r= c, while the left end is held at 0◦C and h is function of source distribution temperature over
time delays in thermal conduction [28, 29]. The main advantage of studying IFDEqs over non-iterative DEqs exist in its various applications.
For example, the problems related to infectious models and the motion of charge particles with retarded interaction are best described using
IFDEqs and cannot be studied by general non DEqs.
We provide varied conditions for the functions g1,g2, · · · ,gn and the intervals of µ1,µ2, · · · ,µn ensuring that positive solutions to the iterative
system of FBVP (1.1)–(1.2). A positive solution of the problem (1.1)–(1.2), we mean

(
u1(z),u2(z), · · · ,un(z)

)
∈
(
C2[0,1]

)n satisfying
(1.1) and (1.2) with uk(z)> 0,k= 1,2, · · · ,n,∀ z ∈ (0,1].
Throughout the article, we propose the following hypotheses:

(H1) ∆ = 2−ϑξ 2 > 0.
(H2) pk : [0,1]→ R+ is continuous and pk does not vanish identically on any closed subinterval of [0,1], for k= 1,n.
(H3) gk : R+→ R+ is continuous, for k= 1,n.

(H4) each of gk0 = lim
x→0+

gk(x)

x
and gk∞ = lim

x→∞

gk(x)

x
, for 1≤ k≤ n, exists as positive real numbers.

The paper is arranged as follows: The preliminary results presented in Sect. 2 serve as foundations for the subsequent sections that follow.
This covers the solution to the corresponding linear problem, an investigation of the characteristics of Kernels, and other pertinent information.
The key existence theorems for the problem (1.1)–(1.2) are the focus of Sect. 3. In Sect. 4, an example is coined in support of validity of the
findings concerning the earlier sections.
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2. Preliminaries, Kernel and Bounds

In order to move on to the key results in the subsequent sections, the necessary results are provided here.

Definition 2.1. [8] The conformable derivative of h : [0,∞)→ R is defined as

D
ζ

0h(r) = lim
ε→0

[
h(r+ εr1−ζ )−h(r)

ε

]
, r > 0, ζ ∈ (0,1],

and

D
ζ

0h(0) = lim
r→0+

D
ζ

0h(r).

If h is differentiable then D
ζ

0h(r) = r1−ζh′(r).

Definition 2.2. [8] The conformable fractional integral of a function of order ζ is defined for h : [0,∞)→ R as

I
ζ

0h(r) =
∫ r

0
sζ−1h(s)ds, s> 0, ζ ∈ (0,1].

Lemma 2.3. [30] Let ζ ∈ (0,1] and h : (0,∞)→ R be differentiable. Then

I
ζ

0D
ζ

0h(r) = h(r)−h(0), ∀ r > 0.

Lemma 2.4. Suppose (H1) holds, let h(z) ∈ C
(
[0,1],R

)
. Then u1(z) ∈ C

(
[0,1],R

)
is a solution of the FBVP

HD
q
1+u1(z)+h(z) = 0, z ∈ (0,1), (2.1)

u1(0) = 0, u1(1) = ϑ

∫
ξ

0
u1(z)dz, (2.2)

has a unique solution

u1(z) =
∫ 1

0
ℵ(z,y)h(y)dy,

where

ℵ(z,y) = ℵ1(z,y)+
ϑz

∆
ℵ2(ξ ,y), (2.3)

ℵ1(z,y) =

{
(1−z)yq−1, 0≤ y≤ z≤ 1,
z(1−y)yq−2, 0≤ z≤ y≤ 1,

ℵ2(z,y) =

{
(2z−z2−y)yq−1, y≤ z,

z2(1−y)yq−2, z≤ y.

Proof. Let u1(z) ∈ C2[0,1] be a solution of FBVP (2.1)-(2.2) and is uniquely expressed as

u1(z) =
2

∑
k=1

ckz
2−k−

∫ z

1
(z−y)yq−2h(y)dy.

By the condition (2.2), we get c2 = 0 and c1 = Iqh(1)+u1(1). Hence the unique solution of FBVP (2.1)-(2.2) is

u1(z) =



∫ z

0
(1−z)yq−1h(y)dy+

∫ 1

z
z(1−y)yq−2h(y)dy+

ϑz

∆

∫
ξ

0
yq−2

[
ξ

2(1−y)− (ξ −y)2
]
h(y)dy+

ϑz

∆

∫ 1

ξ

ξ
2(1−y)yq−2h(y)dy

=


∫ 1

0
ℵ1(z,y)h(y)dy+

ϑz

∆

∫
ξ

0
yq−1(2ξ −ξ

2−y
)
h(y)dy+

ϑz

∆

∫ 1

ξ

ξ
2(1−y)yq−2h(y)dy

=
∫ 1

0
ℵ1(z,y)h(y)dy+

ϑz

∆

∫ 1

0
ℵ2(ξ ,y)h(y)dy

=
∫ 1

0
ℵ(z,y)h(y)dy,

where ℵ(z,y) is given in (2.3). The proof is completed.
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Lemma 2.5. The Kernel ℵ(z,y) given in (2.3) is nonnegative, for all z,y ∈ [0,1].

Proof. The Kernel ℵ(z,y) is given in (2.3). Let 0≤ z≤ y≤ 1. Then:

ℵ1(z,y) = z(1−y)yq−2 ≥ 0.

Let 0≤ y≤ z≤ 1. Then:

ℵ1(z,y) = (1−z)yq−1 ≥ 0.

On the other hand, let 0≤ ξ ≤ y≤ 1. Then:

ℵ2(ξ ,y) = ξ
2(1−y)yq−2 ≥ 0.

Let 0≤ y≤ ξ ≤ 1. Then:

ℵ2(ξ ,y) = (2ξ −ξ
2−y)yq−1 ≥ 0.

Hence ℵ(z,y)≥ 0.

Lemma 2.6. Let σ ∈
(
0, 1

2
)
. The Kernel ℵ1(z,y) has the properties:

(1) ℵ1(z,y)≤ℵ1(y,y), ∀ z,y ∈ (0,1],

(2) ℵ1(z,y)≥ z(1−z)ℵ1(y,y),∀ z,y ∈ (0,1],

(3) ℵ1(z,y)≥ σ2ℵ1(y,y),∀ z ∈ [σ ,1−σ ],y ∈ (0,1].

Proof. We prove (1). Let 0≤ z≤ y≤ 1. Then:

ℵ1(z,y) = z(1−y)yq−2

≤ (1−y)yq−1

= ℵ1(y,y).

Let 0≤ y≤ z≤ 1. Then:

ℵ1(z,y) = (1−z)yq−1

≤ (1−y)yq−1

= ℵ1(y,y).

Hence the inequality (1). We establish the inequality (2). Let 0≤ z≤ y≤ 1. Then:

ℵ1(z,y) = z(1−y)yq−2

≥ (1−z)yq−1

≥ z(1−z)ℵ1(y,y).

Let 0≤ y≤ z≤ 1. Then:

ℵ1(z,y) = (1−z)yq−1

≥ (1−z)(1−y)yq−1

≥ z(1−z)ℵ1(y,y).

Hence the inequality (2). On the other hand, if σ ∈
(

0,
1
2

)
, then ℵ1(z,y) satisfies

ℵ1(z,y)≥ σ
2
ℵ1(y,y),∀ z ∈ [σ ,1−σ ],y ∈ (0,1].

Lemma 2.7. Let σ ∈
(
0, 1

2
)
. The Kernels ℵ1(z,y) and ℵ2(z,y) have the properties:

(1) ℵ2(z,y)≤ℵ1(y,y), ∀ z,y ∈ (0,1],

(2) ℵ2(z,y)≥ θ(z)ℵ1(y,y),∀ z,y ∈ (0,1],

where θ(z) = min
{
z2,z(1−z)

}
=

{
z2, z≤ 1

2 ,

z(1−z), z> 1
2 ,

(3) ℵ2(z,y)≥ σ2ℵ1(y,y),∀ z ∈ [σ ,1−σ ],y ∈ (0,1].
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Proof. Let 0≤ z≤ y≤ 1. Then:

ℵ2(z,y) = z2(1−y)yq−2

≤ z(1−y)yq−2

≤ (1−y)yq−1

= ℵ1(y,y).

Let 0≤ y≤ z≤ 1. Then:

ℵ2(z,y) = (2z−z2−y)yq−1

≤
[
(1−y)− (1−z)2]yq−1

≤ (1−y)yq−1

= ℵ1(y,y).

Hence the inequality (1). Let 0≤ z≤ y≤ 1. Then:

ℵ2(z,y) = z2(1−y)yq−2

≥ z2y(1−y)yq−2

= z2(1−y)yq−1

= z2
ℵ1(y,y).

Let 0≤ y≤ z≤ 1. Then:

ℵ2(z,y) = (2z−z2−y)yq−1

=
[
z(1−z)+(z−y)

]
yq−1

≥ z(1−z)yq−1

≥ z(1−z)(1−y)yq−1

≥ z(1−z)ℵ1(y,y).

Therefore ℵ2(z,y)≥ θ(z)ℵ1(y,y),∀ z,y ∈ (0,1], where

θ(z) = min
{
z2,z(1−z)

}
=

{
z2, z≤ 1

2 ,

z(1−z), z> 1
2 .

Hence the inequality (2). On the other hand, if σ ∈
(
0, 1

2
)
, then it follows immediately from (2):

ℵ2(z,y)≥ σ
2
ℵ1(y,y),∀ z ∈ [σ ,1−σ ],y ∈ (0,1].

3. Existence of Positive Solutions

An n-tuple
(
u1(z),u2(z), · · · ,un(z)

)
is a solution of the FBVP (1.1)-(1.2) if and only if uk(z) ∈ C2[0,1], k= 1,2, · · · ,n satisfies:

u1(z) =



µ1

∫ 1

0

[
ℵ1(z,y1)+

ϑz

∆
ℵ2(ξ ,y1)

]
p1(y1)

g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1,

and 

u2(z) = µ2

∫ 1

0

[
ℵ1(z,y)+

ϑz

∆
ℵ2(ξ ,y)

]
p2(y)g2

(
u3(y)

)
dy,

u3(z) = µ3

∫ 1

0

[
ℵ1(z,y)+

ϑz

∆
ℵ2(ξ ,y)

]
p3(y)g3

(
u4(y)

)
dy,

· · ·

un(z) = µn

∫ 1

0

[
ℵ1(z,y)+

ϑz

∆
ℵ2(ξ ,y)

]
pn(y)gn

(
un+1(y)

)
dy,
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where un+1(z) = u1(z), 0 < z< 1. By a positive solution of the FBVP (1.1)-(1.2), we mean
(
u1(z),u2(z), · · · ,un(z)

)
∈
(
C2[0,1]

)n
which satisfying the FDEq (1.1) and BCs (1.2) with uk(z)> 0,k= 1,n ∀ z ∈ [0,1].
Let B=

{
x : x ∈ C[0,1]

}
be the Banach space endowed with the norm

‖x‖= max
z∈[0,1]

|x(z)|

and P⊂ B be a cone defined as

P=

{
x ∈ B : x(z)≥ 0 on [0,1] and min

z∈
[

σ ,1−σ

]x(z)≥ σ
2‖x‖

}
,

where σ ∈
(
0, 1

2
)
. Construct an integral operator T : P→ B, for u1 ∈ P, as

Tu1(z) =


µ1

∫ 1

0

[
ℵ1(z,y1)+

ϑz

∆
ℵ2(ξ ,y1)

]
p1(y1)g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1.

Notice from (H1) and Lemma 2.5 that, for u1 ∈ P, Tu1(z)≥ 0 on [0,1]. In addition, we have

Tu1(z)≤



µ1

∫ 1

0

[
ℵ1(y1,y1)+

ϑ

∆
ℵ2(ξ ,y1)

]
p1(y1)

g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1

so that

‖Tu1‖ ≤ µ1

∫ 1

0

[
ℵ1(y1,y1)+

ϑ

∆
ℵ2(ξ ,y1)

]
p1(y1)

g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆

ℵ2(ξ ,yn)
]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1.


(3.1)

If u1 ∈ P, from Lemmas 2.6, 2.7 and (3.1), we deduce that

min
z∈
[

σ ,1−σ

]Tu1(z) =



min
z∈
[

σ ,1−σ

]µ1

∫ 1

0

[
ℵ1(z,y1)+

ϑz

∆
ℵ2(ξ ,y1)

]
p1(y1)g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆

ℵ2(ξ ,yn)
]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1

≥



µ1σ
2
∫ 1

0

[
ℵ1(y1,y1)+

ϑ

∆
ℵ2(ξ ,y1)

]
p1(y1)g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆

ℵ2(ξ ,yn)
]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1

≥ σ
2‖Tu1‖.

Therefore min
z∈
[

σ ,1−σ

]Tu1(z)≥ σ
2‖Tu1‖. Hence Tu1 ∈ P and so T : P→ P. An application of the Arzela–Ascoli Theorem indicates that the

operator T remains completely continuous.



52 Universal Journal of Mathematics and Applications

3.1. Notations

We introduce:

σ1 = max



[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dyg1∞

]−1

,[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dyg2∞

]−1

,

· · ·[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dygn∞

]−1


,

σ2 = min



[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dyg10

]−1

,[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dyg20

]−1

,

· · ·[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dygn0

]−1


.

Theorem 3.1. Suppose (H1)-(H4) hold. Then for each µk,k= 1,n satisfying

σ1 < µk < σ2, k= 1,n, (3.2)

there exists an n-tuple
(
u1,u2, · · · ,un

)
satisfying the FBVP (1.1)-(1.2) s.t. uk(z)> 0, k= 1,n on (0,1).

Proof. Let µk, k= 1,n be found as in (3.2). Now let ε > 0 be chosen s.t.

max



[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dy(g1∞− ε)

]−1

,[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dy(g2∞− ε)

]−1

,

· · ·[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dy(gn∞− ε)

]−1


≤min



µ1,
µ2,
·
·
·

µn



and

max



µ1,
µ2,
·
·
·

µn


≤min



[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dy(g10 + ε)

]−1

,[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dy(g20 + ε)

]−1

,

· · ·[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dy(gn0 + ε)

]−1


.

Furthermore, according to gk0, k= 1,n, there exists an N1 > 0 s.t., for each 1≤ k≤ n, gk(x)≤ (gk0 + ε)x, 1 < x≤ N1.

Let u1 ∈ P with ‖u1‖= N1. By Lemmas 2.6, 2.7 and the choice of ε , for 0≤ yn−1 ≤ 1,

µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

≤ µn

∫ 1

0

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pn(yn)

(
gn0 + ε

)
u1(yn)dyn

≤ µn

∫ 1

0

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pn(yn)dyn

(
gn0 + ε

)
‖u1‖

≤ ‖u1‖= N1.
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It follows from Lemmas 2.6, 2.7 in the same way, for 0≤ yn−2 ≤ 1,

µn−1

∫ 1

0

[
ℵ1(yn−2,yn−1)+

ϑyn−2

∆
ℵ2(ξ ,yn−1)

]
pn−1(yn−1)

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
dyn−1


≤

 µn−1

∫ 1

0

[
ℵ1(y,yn−1)+

ϑ

∆
ℵ2(ξ ,yn−1)

]
pn−1(yn−1)dyn−1

(
gn−10 + ε

)
‖u1‖

≤ ‖u1‖= N1.

Proceeding with the bootstrapping assertion, for 0≤ z≤ 1,

µ1

∫ 1

0

[
ℵ1(z,y1)+

ϑz

∆
ℵ2(ξ ,y1)

]
p1(y1)

g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1


≤ N1,

so that, for 0≤ z≤ 1, Tu1(z)≤ N1. Hence ‖Tu1‖ ≤ N1 = ‖u1‖. If we set E1 =
{
x ∈ B : ‖x‖< N1

}
, then

‖Tu1‖ ≤ ‖u1‖, for u1 ∈ P∩∂E1. (3.3)

Additionally, according to gk∞, k= 1,n, there exists N2 > 0 s.t., for each 1≤ k≤ n, gk(x)≥ (gk∞−ε)x, x≥ N2. Choose N2 = max
{

2N1,
N2

σ2

}
.

Let u1 ∈ P and ‖u1‖= N2. Then

min
z∈
[

σ ,1−σ

]u1(z)≥ σ
2‖u1‖ ≥ N2.

Based on Lemmas 2.6, 2.7 and choice of ε , for 0≤ yn−1 ≤ 1, we have:

µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

≥σ
2
µn

∫ 1−σ

σ

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pn(yn)

(
gn∞− ε

)
u1(yn)dyn

≥σ
2
µn

∫ 1−σ

σ

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pn(yn)dyn

(
gn∞− ε

)
‖u1‖

≥‖u1‖= N2.

It stems in the same way from Lemmas 2.6, 2.7 and choice of ε , for 0≤ yn−2 ≤ 1:

µn−1

∫ 1

0

[
ℵ1(yn−2,yn−1)+

ϑyn−2

∆
ℵ2(ξ ,yn−1)

]
pn−1(yn−1)

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
dyn−1


≥

 σ
2
µn−1

∫ 1−σ

σ

[
ℵ1(y,yn−1)+

ϑ

∆
ℵ2(ξ ,yn−1)

]
pn−1(yn−1)dyn−1

(
gn−1∞

− ε
)
‖u1‖

≥ ‖u1‖= N2.

By bootstrapping argument, we discover:

µ1

∫ 1

0

[
ℵ1(z,y1)+

ϑz

∆
ℵ2(ξ ,y1)

]
p1(y1)

g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1


≥ N2,
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so that Tu1(z)≥ N2 = ‖u1‖. Hence ‖Tu1‖ ≥ ‖u1‖. So if we set E2 =
{
x ∈ B : ‖x‖< N2

}
, then

‖Tu1‖ ≥ ‖u1‖, for u1 ∈ P∩∂E2. (3.4)

By utilizing (3.3), (3.4) and Guo–Krasnosel’skii FPT (see [26, 27]), we discover that T has a fixed point u1 ∈ P∩ (E2\E1). Setting u1 = un+1
yields a positive solution

(
u1,u2, · · · ,un

)
of the FBVP (1.1)–(1.2) iteratively indicated by:

uk(z) = µk

∫ 1

0

[
ℵ1(z,y)+

ϑz

∆
ℵ2(ξ ,y)

]
pk(y)gk

(
uk+1(y)

)
dy,

k= n,n−1, · · · ,1.

3.2. Notations

We introduce:

σ3 = max



[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dyg10

]−1

,[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dyg20

]−1

,

· · ·[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dygn0

]−1


and

σ4 = min



[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dyg1∞

]−1

,[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dyg2∞

]−1

,

· · ·[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dygn∞

]−1


.

Theorem 3.2. Suppose (H1)-(H4) hold, then for each µk,k= 1,n satisfying

σ3 < µk < σ4, k= 1,n, (3.5)

there exists an n-tuple
(
u1,u2, · · · ,un

)
satisfying the FBVP (1.1)-(1.2) s.t. uk(z)> 0, k= 1,n on (0,1).

Proof. Let µk, k= 1,n be provided as in (3.5). Now let ε > 0 be chosen s.t.

max



[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dy(g10− ε)

]−1

,[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dy(g20− ε)

]−1

,

· · ·[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dy(gn0− ε)

]−1


≤min



µ1,
µ2,
·
·
·

µn


and

max



µ1,
µ2,
·
·
·

µn


≤min



[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dy(g1∞ + ε)

]−1

,[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dy(g2∞ + ε)

]−1

,

· · ·[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dy(gn∞ + ε)

]−1


.

Based on the rules of gk0, 1≤ k≤ n there exists N3 > 0 s.t., for each 1≤ k≤ n,

gk(x)≥
(
gk0− ε

)
x, 1 < x≤ N3.
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According to the definitions of gk0, it follows that gk0(1) = 0, 1≤ k≤ n and so there exist 1 < Θn < Θn−1 < · · ·< Θ2 < N3 s.t.

µkgk(z)≤
Θk−1∫ 1

0

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pk(y)dy

, z ∈
[
1,Θk

]
,

3≤ k≤ n, and

µ2g2(z)≤
N3∫ 1

0

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
p2(y)dy

, z ∈
[
1,Θ2

]
.


Let u1 ∈ P with ‖u1‖= Θn. Then:

µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

≤ µn

∫ 1

0

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

≤

∫ 1
0

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pn(yn)Θn−1dyn∫ 1

0

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pn(yn)dyn

≤Θn−1.

Utilizing this bootstrapping technique, it implies that

µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2)

g2

(
µ3

∫ 1

0

[
ℵ1(y2,y3)+

ϑy2

∆
ℵ2(ξ ,y3)

]
p3(y3) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1


≤ N3.

Then

Tu1(z) =



µ1

∫ 1

0

[
ℵ1(z,y1)+

ϑz

∆
ℵ2(ξ ,y1)

]
p1(y1)

g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1

≥ σ
2
µ1

∫ 1−σ

σ

[
ℵ1(y,y1)+

ϑ

∆
ℵ2(ξ ,y1)

]
p1(y1)

(
g10− ε

)
‖u1‖dy1

≥ ‖u1‖.

So ‖Tu1‖ ≥ ‖u1‖. If we set E1 =
{
x ∈ B : ‖x‖< Θn

}
, then

‖Tu1‖ ≥ ‖u1‖, for u1 ∈ P∩∂E1. (3.6)

It follows that gk, 1≤ k≤ n is unbounded at ∞. Since each gk∞ is considered to be a positive real number. For each 1≤ k≤ n, set

g∗k(x) = sup
y∈[1,x]

gk(y).

Based on the definition of gk∞, 1≤ k≤ n, there exists N4 s.t., for each 1≤ k≤ n,

g∗k(x)≤
(
gk∞ + ε

)
x, x≥ N4.

It follows that there exists N4 = max
{

2N3,N4

}
s.t., for each 1≤ k≤ n,

g∗k(x)≤ g∗k
(
N4
)
, 1 < x≤ N4.
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Choose u1 ∈ P with ‖u1‖= N4. Then, by using bootstrapping argument, we have:

Tu1(z) =



µ1

∫ 1

0

[
ℵ1(z,y1)+

ϑz

∆
ℵ2(ξ ,y1)

]
p1(y1)

g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1

≤



µ1

∫ 1

0

[
ℵ1(y,y1)+

ϑ

∆
ℵ2(ξ ,y1)

]
p1(y1)

g∗1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1

≤ µ1

∫ 1

0

[
ℵ1(y,y1)+

ϑ

∆
ℵ2(ξ ,y1)

]
p1(y1)g

∗
1
(
N4
)
dy1

≤ µ1

∫ 1

0

[
ℵ1(y,y1)+

ϑ

∆
ℵ2(ξ ,y1)

]
p1(y1)dy1

(
g1∞ + ε

)
N4

≤ N4 = ‖u1‖.

Thus ‖Tu1‖ ≤ ‖u1‖. So, if we let E2 =
{
x ∈ B : ‖x‖< N4

}
, then

‖Tu1‖ ≤ ‖u1‖, for u1 ∈ P∩∂E2. (3.7)

By utilizing (3.6), (3.7) and Guo–Krasnosel’skii FPT (see [26, 27]), we get that T has a fixed point u1 ∈ P∩ (E2\E1), which in turn with
u1 = un+1 yields an n-tuple

(
u1,u2, · · · ,un

)
satisfying the FBVP (1.1)-(1.2) for the chosen values of µk, k= 1,n.

4. Application

Let n = 2,p1(z) = z+ 1, p2(z) = z+ 2, ξ =
1
2
,ν = 4,σ =

1
4
, g1(u) = u

(
1− 19

20
e−u
)
, g2(u) = u− 39

40
sinu. Then ∆ = 1, g10 =

1
20

, g20 =
1

40
, g1∞ = g2∞ = 1.

σ1 = max
1≤i≤2


[

σ
2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pi(y)dygi∞

]−1


=max
{

22.67613805,13.41689359
}

=22.67613805.

σ2 = min
1≤i≤2


[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pi(y)dygi0

]−1


= min
{

28.34517257,33.54223396
}

= 28.34517257.

Theorem 3.1’s requirements are all met. Therefore by Theorem 3.1 the following BVP

D1.5u1(z)+µ1(z+1)u2(z)

(
1− 19

20
eu2(z)

)
= 0 z ∈ (0,1),

D1.5u2(z)+µ2(z+2)
(
u1(z)−

39
40

sinu1(z)

)
= 0, z ∈ (0,1),



uk(0) = 0, uk(1) = 4
∫ 1/2

0
uk(z)dz, for k= 1,2,

has a positive solution if 22.67613805 < µk < 28.34517257 for k= 1,2.
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5. Conclusion

In conclusion, this paper effectively fulfills its objective of identifying the eigenvalue intervals of µk, 1 ≤ k ≤ n, for which an iterative
system of a class of fractional-order DEqs with parameterized integral BCs possesses at least one positive solution. This is accomplished
through the utilization of the standard fixed-point theorem of cone type. The significance of this work lies in its novelty; the authors assert
that it represents the inaugural endeavor in the literature to derive such insights for this specific domain.

6. Comparison

In comparison to existing approaches, our study explores the eigenvalue intervals of µk, 1≤ k≤ n for a class of FDEqs with parameterized
integral BCs. By employing standard FPT of cone and combining an incomplete ℵ-function with a broad category of polynomials, the
researchers devised generalized fractional calculus formulations [31]. Additionally, they utilized the natural transform method along with
graph-based approaches to represent solutions for the M-Sturm-Liouville problem [32]. Moreover, the MDLTM was applied to provide
analytic solutions for the fractional pseudo hyperbolic telegraph equation [33]. Notably, the existence and uniqueness of the model underlying
the Caputo-Fabrizio-fractal-fractional derivative were demonstrated using FPTs [34]. Furthermore, the fundamental properties of a new
integral transformation were elucidated, and its application to elementary functions was discussed in [35].
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