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3 On Suzuki−Proinov Type Contractions in Modular b−Metric Spaces with an Application
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Abstract
In this study, previously obtained cobalancing numbers are considered from a different perspective, and the
properties of the numbers are re-examined. The main purpose is to change the recurrence relation of cobalancing
numbers and calculate some relations and properties in a more diverse and easier way. The reason that led us
to this method is that the recurrence relation of cobalancing numbers has a second-order but non-homogeneous
difference equations. Thus, it will be much easier to find the Binet formula, generating function, sum formulas,
and many other relations with a sequence that is homogeneous and has a third-degree recurrence relation. Also
some identities that have not been found before in the sequence are also included in this study.
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1. Introduction
Number sequences have been studied and researched by hundreds of mathematicians for many years. While the authors in

[1] work with a special equation, Diophantine equation,

1+2+3+ · · ·+(n−1) = (n+1)+(n+2)+ · · ·+(n+ r) (1.1)

on triangular numbers, obtained an interesting relation of the numbers n in the solutions (n,r), which they call balancing
numbers, with square triangular numbers. The number r in (n,r) is called the balancer corresponding to n. In the following
years, Behera and Panda continued their work rapidly and continued to find interesting features related to this new number
sequence. Later on, the first article that bridges the gap between Fibonacci numbers and balancing numbers was made by Panda
[2].

Behera and Panda [1] proved that the square of any balancing number is a triangular number. Subramaniam [3] is another
mathematician who established a relationship between balancing numbers and triangular numbers. Panda and Ray [4], studied
another Diophantine equation

1+2+3+ · · ·+n = (n+1)+(n+2)+ · · ·+(n+ r) (1.2)

on triangular numbers and call n a cobalancing number and r the cobalancer corresponding to n. Cobalancing numbers relate to
different triangular numbers that can be given as the product of two consecutive natural numbers or as the arithmetic mean
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of the squares of two approximately consecutive natural numbers [5]. Also, Liptai [5] mentioned his name in a study that
produced important results regarding balancing numbers.

Then, another article that aroused interest in other new topics by giving the literature the relationship between balancing
and cobalancing numbers was written by Panda [6].

There are many studies on the Fibonacci sequence, which is related to the golden ratio, and the Pell sequence, which is
related to the silver ratio, and these articles contain a lot of information that paves the way for integer sequences. Behera and
Panda [1], introduced the Diophantine equation (1.1), then they obtained the sequence {Bn}n∈N of balancing numbers and give
some interesting properties of this sequence. {Bn}n∈N is defined by the following recurrence relation of the second order, given
by

Bn+1 = 6Bn−Bn−1 , n≥ 1 (1.3)

with initial terms B0 = 0 and B1 = 1, where Bn denotes the n−th balancing number. Taking a1 = 1+
√

2 and a2 = 1−
√

2, the
Binet formula for Bn can be written as,

Bn =
a2n

1 −a2n
2

4
√

2
.

The (ordinary) generating function of a sequence {xn}n∈N+ of real or complex numbers is given by

f (s) =
∞

∑
n=1

xnsn = x1s1 + x2s2 + x3s3 + · · · (1.4)

[7]. The generating function for the sequence of balancing numbers {Bn}n∈N ,is

g(s) =
s

1−6s+ s2 .

On the other hand, following Panda and Ray [4] a positive integer n is a cobalancing number with cobalancer r, if it
is the solution of the Diophantine equation (1.2). The sequence {bn}n∈N is defined by the following recurrence relation of
second-order given by

bn+1 = 6bn−bn−1 +2 , n≥ 2 (1.5)

with initial terms b1 = 0 and b2 = 2, where bn denotes the n−th cobalancing number. We will denote cobalancing numbers
with

{
b(2),n

}
n∈N instead of {bn}n∈N to avoid confusion throughout the article. Because throughout the article, a sequence that

has a third-order recurrence relation with the new sequence that will be found shortly will be discussed. Since a cobalancing
number with a second-order recurrence relation is expressed here, this notation will be used. The Binet formula for cobalancing
numbers is given

b(2),n =
a2n−1

1 −a2n−1
2

4
√

2
− 1

2
. (1.6)

The generating function for the sequence of cobalancing numbers
{

b(2),n
}

n∈N ,is

g(s) =
2s2

(1− s)(1−6s+ s2)
. (1.7)

As can be seen, information was given about the sequences with quadratic recurrence relations. Note that the recurrence
relation we wrote with (1.5) has a non-homogeneous structure. Naturally, it is quite difficult to work with this recurrence, and
the results will be obtained more easily if it is transformed into a sequences with another third-order recurrence relation, which
makes it easier to use without changing the sequence. So, let’s get some ideas about sequence with third-order recurrence
relations [8]. The best known of these property is the tribonacci number sequence. The tribonacci sequence is defined by for

Tn+1 = Tn +Tn−1 +Tn−2,n≥ 2

with initial conditions

T0 = 0,T1 = 1,T2 = 1.
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Tribonacci sequence is a well known generalization of the Fibonacci sequence. The roots of characteristic equation of Tribonacci
numbers are α1,β1,γ1 for the x3− x2− x−1 = 0. The Binet formula of Tribonacci sequence is given by

Tn =
α

n+1
1

(α1−β1)(α1− γ1)
+

β
n+1
1

(β1−α1)(β1− γ1)
+

α1γ
n+1
1

(γ1−α1)(γ1−β1)

[9]. The tribonacci numbers can also be computed using the generating function

g(z) =
z

1− z− z2− z3 .

Now let’s talk about a method used for the recurrence change we mentioned above. In the study [10], as a result of the
process performed for the Leonardo sequence with a non-homogeneous second-order recurrence relation, a new sequence with
a third-order recurrence relation is obtained. Let’s obtain the third-order recurrence relation we target with a similar method.

Let’s write n = n−1 and n = n in the equation (1.5)

b(2),n = 6b(2),n−1−b(2),n−2 +2
b(2),n+1 = 6b(2),n−b(2),n−1 +2.

Now we wrote last above and subtract it side by side then the third-order recurrence relation to be obtained is as follows

b(3),n+1 = 7b(3),n−7b(3),n−1 +b(3),n−2 (1.8)

for the initial conditions b(3),0 = 0,b(3),1 = 0 and b(3),2 = 2. The roots of characteristic equation x3− 7x2 + 7x− 1 = 0 of
cobalancing numbers are

α = 3+2
√

2,β = 3−2
√

2 and γ = 1. (1.9)

In mathematics, a recurrence relation is an equation that defines a sequence recursively; each term of the sequence is defined
as a function of the preceding terms [11].

2. Cobalancing Numbers and Some Properties

In this section, it is aimed to find identities regarding cobalancing numbers. The first of these is to obtain the generating
function that was previously found for the sequence that has a second-order recurrence relation. The usual generating function
g(x) for the sequence (1.8) of real numbers is defined as:

g(x) = b(3),0 +b(3),1x+b(3),2x2 +b(3),3x3 + · · ·+b(3),nxn +b(3),n+1xn+1 + · · · .

Now let’s write the g(x) generating function in a different way from (1.7).

Theorem 2.1. Let b(3),n can be the cobalancing number. The generating function g(x), can be written as follows:

g(x) =
2x2

1−7x+7x2− x3 .

Proof. The generating function of the sequence (1.8) is

g(x) = b(3),0 +b(3),1x+b(3),2x2 +b(3),3x3 + · · ·+b(3),nxn +b(3),n+1xn+1 + · · · .

Let’s multiply the function g(x) by 7x, 7x2 and x3.

g(x) = b(3),0 +b(3),1x+b(3),2x2 +b(3),3x3 + · · ·+b(3),nxn +b(3),n+1xn+1 + · · ·
7x.g(x) = 7b(3),0x+7b(3),1x2 +7b(3),2x3 +7b(3),3x4 + · · ·+7b(3),nxn+1 + · · ·

7x2.g(x) = 7b(3),0x2 +7b(3),1x3 +7b(3),2x4 + · · ·+7b(3),n−1xn+1 + · · ·

x3.g(x) = b(3),0x3 +b(3),1x4 +b(3),2x5 +b(3),3x3 + · · ·+b(3),n−2xn+1 + · · · .



Cobalancing Numbers: Another Way of Demonstrating Their Properties — 4/13

Let’s take the necessary actions in the equations we have obtained and let’s get the (2.1) equality.

g(x)−7xg(x)+7x2g(x)− x3g(x) (2.1)
= b(3),0 +b(3),1x+b(3),2x2−7b(3),0x−7b(3),1x2 +(b(3),3−7b(3),2 +7b(3),1−b(3),0)x

2 + · · · (2.2)

+(b(3),n+1−7b(3),n +7b(3),n−1−b(3),n−2)x
n+1.

Let’s take the left side of the equation into the g(x) bracket and write b(3),0 = 0,b(3),1 = 0 and b(3),2 = 2 in the equality. In the
last case, we find the g(x) function written below.

g(x)(1−7x+7x2− x3) = b(3),0 +b(3),1x+b(3),2x2−7b(3),0x−7b(3),1x2 +7b(3),0x2

then

g(x) =
2x2

1−7x+7x2− x3 .

If the generating function is expressed in terms of the roots of the characteristic equation in (1.9), the following result is
obtained.

Corollary 2.2. Let b(3),n can be the cobalancing number. The generating function g(x), can be written as follows:

g(x) =
2x2

1−7x+7x2− x3 =
− 1

2
1− x

+

5−α

2(β−α)

1−αx
+

5−β

2(α−β )

1−βx
.

Proof. We can write the g(x) function as the sum of rational numbers as follows,

2x2

(1− x)(1−6x+ x2)
=

P
1− x

+
Q

1−αx
+

R
1−βx

.

Let’s equalize the denominators and find the values P, Q and R using polynomial equality,

2x2 = P(1−αx)(1−βx)+Q(1− x)(1−βx)+R(1− x)(1−αx)

Let’s write x = 1 in the equation we found. P =− 1
2 is found. We can write the equality we have found in the following way:

2x2 = (P+Qβ +Rα)x2 +(−6P−Q(β +1)−R(α +1))x+P+Q+R.

If we use the equality we have ended up with, we reach the following equations.

P+Qβ +Rα = 2,
−6P−Q(β +1)−R(α +1) = 0,

P+Q+R = 0.

Let’s write P =− 1
2 and let’s solve the following system of equations

Qβ +Rα = 2+
1
2
,

Q+R =
1
2
.

Finally, Q = 5−α

2(β−α) and R = 5−β

2(α−β ) is found, and the function g(x) can be written as follows,

g(x) =
− 1

2
1− x

+

5−α

2(β−α)

1−αx
+

5−β

2(α−β )

1−βx
.

The result given below for [8] was found in another way. We will find the Binet formula for the sequence
{

b(3),n
}

n∈N .
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Theorem 2.3. Let b(3),n can be the cobalancing number. The Binet formula for the cobalancing number is as follows:

b(3),n =
αn−1(α2−2α +5)+β n−1(β 2−2β +5)

64
− 1

2
.

Proof. Let’s write the following equation for the cobalancing sequence,

x3−7x2 +7x−1 = 0,
(x−1)(x2−6x+1) = 0.

Let the roots of the equation we have arranged be (1.9), also

α +β + γ = 7,
αβγ = 1.

Let’s write b(3),n = A1n +Bαn +Cβ n and let us obtain the following equations

for n = 0⇒ b(3),0 = A10 +Bα
0 +Cβ

0⇒ A+B+C = 0, (2.3)

for n = 1⇒ b(3),1 = A11 +Bα
1 +Cβ

1⇒ A+Bα +Cβ = 0, (2.4)

for n = 2⇒ b(3),0 = A12 +Bα
2 +Cβ

2⇒ A+Bα
2 +Cβ

2 = 2 . (2.5)

Let’s subtract (2.3) from (2.4), also subtract (2.3) from (2.5) and get the following system of equations

B(α−1)+C(β −1) = 0 (2.6)
B(α2−1)+C(β 2−1) = 2.

Let’s multiply the (2.6) by −(α +1) and add the equations side by side.

C(β 2−1)−C(β −1)(α +1) = 2
C(β −1)(β +1−α−1) = 2

then we find

C =
2

5β +α−2
. (2.7)

In the above equations, we have reached the (2.7) value by typing β 2 = 6β −1 and α.β = 1. If C = 2
5β+α−2 is written in (2.6),

B = 2
5α+β−2 is found. Let’s write B = 2

5α+β−2 and C = 2
5β+α−2 in the (2.3). So

A+B+C = 0

A+
2

5α +β −2
+

2
5β +α−2

= 0

then

A =−2
(

1
5α +β −2

+
1

5β +α−2

)
. (2.8)

If α.β = 1 and α +β = 6 are written in the (2.8), A = − 1
2 is found. Let’s write the values we found in their places in the

equality b(3),n = A1n +Bαn +Cβ n then,

b(3),n = −1
2
+

2
5α +β −2

α
n +

2
5β +α−2

β
n

= −1
2
+2
(

αn(5β +α−2)+β n(5α +β −2)
(5α +β −2)(5β +α−2)

)
.

In the last case, the Binet formula is as follows:

b(3),n =
αn−1(α2−2α +5)+β n−1(β 2−2β +5)

64
− 1

2
.
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Catalan, Cassini and d’Ocagne identities are given in [12], now let’s talk about their proof in a different way. It is the
Catalan identity in an identity that we can express with cobalancing numbers. We will show the correctness of this identity in
the following theorem.

Theorem 2.4. Let b(3),n can be the cobalancing number. The Catalan identity for the cobalancing number is as follows:

b(3),n+kb(3),n−k−b2
(3),n =

1
32

(αk−β
k)2− αn−k(αk−1)2

5α +β −2
− β n−k(β k−1)2

5β +α−2
.

Proof. Let’s write b(3),n+k, b(3),n−k, b(3),n then

b(3),n = −1
2
+

2
5α +β −2

α
n +

2
5β +α−2

β
n,

b(3),n+k = −1
2
+

2
5α +β −2

α
n+k +

2
5β +α−2

β
n+k,

b(3),n−k = −1
2
+

2
5α +β −2

α
n−k +

2
5β +α−2

β
n−k.

Now B = 2
5α+β−2 and C = 2

5β+α−2 also we have α +β = 6 and α.β = 1.

b(3),n+kb(3),n−k =
1
4
− 1

2
Bα

n−k− 1
2

Cβ
n−k− 1

2
Bα

n+k−BBα
2n +BCα

n+k
β

n−k− 1
2

Cβ
n+k +BCα

n−k
β

n+k +CCβ
2n

and

b(3),nb(3),n =
1
4
− 1

2
Bα

n− 1
2

Cβ
n− 1

2
Bα

n +BBα
2n +BCα

n
β

n− 1
2

Cβ
n +BCα

n
β

n +CCβ
2n.

Let’s subtract the equations written above from side to side

b(3),n+kb(3),n−k−b2
(3),n = BC

((
α

β

)k

−2+
(

β

α

)k
)
− B

2
(αn−k−2α

n +α
n+k)− C

2
(β n−k−2β

n +β
n+k)

= BC
(

αk

β k −2+
β k

αk

)
− B

2
α

n
(

αk

1
−2+

1
αk

)
− C

2
β

n
(

β
k−2+

1
β k

)
= BC(αk−β

k)2− 1
2

2
5α +β −2

α
n−k(αk−1)2− 1

2
2

5β +α−2
β

n−k(β k−1)2.

Let’s show that B.C = 1
32 for α = 3+2

√
2 and β = 3−2

√
2, we have α +β = 6 and α.β = 1,

B.C =
2

5α +β −2
2

5β +α−2

=
4

26αβ +5[(α +β )2−2αβ ]−12(α +β )+4

=
1

32
.

The final state of equality is as follows:

b(3),n+kb(3),n−k−b2
(3),n =

1
32

(αk−β
k)2− αn−k(αk−1)2

5α +β −2
− β n−k(β k−1)2

5β +α−2
.

One of the other identities for cobalancing numbers are

b(3),n−1b(3),n+1−b2
(3),n =

(α−β )2

32
− αn−1(α−1)2

5α +β −2
− β n−1(β −1)2

5β +α−2
.

We will show the correctness of this identity in the following theorem. This identity is called the Cassini identity.
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Theorem 2.5. Let b(3),n can be the cobalancing number. The Cassini identity for the cobalancing number is as follows:

b(3),n−1b(3),n+1−b2
(3),n =

(α−β )2

32
− αn−1(α−1)2

5α +β −2
− β n−1(β −1)2

5β +α−2
.

Proof. Let’s use the Binet formula for the cobalancing numbers and write the following equations

b(3),n−1 = −1
2
+

2
5α +β −2

α
n−1 +

2
5β +α−2

β
n−1,

= −1
2
+

2
5α +β −2

α
n+1 +

2
5β +α−2

β
n+1.

Let’s write B = 2
5α+β−2 and C = 2

5β+α−2 in the above equations, let’s edit the b(3),n−1b(3),n+1−b2
(3),n equation as follows:

b(3),n−1b(3),n+1 =
1
4
− B

2
α

n+1− C
2

β
n+1− B

2
α

n−1 +B2
α

2n +BC(αβ )n
(

β

α

)
− C

2
β

n−1 +BC(αβ )n
(

β

α

)
+C2

β
2n,

then

b(3),nb(3),n =
1
4
− B

2
α

n− C
2

β
n− B

2
α

n +B2
α

2n +BC(αβ )n− C
2

β
n +BC(αβ )n +C2

β
2n.

Let’s subtract the equations written above from side to side and get the expression bn−1bn+1−b2
n,

b(3),n−1b(3),n+1−b2
(3),n = −B

2
α

n+1− C
2

β
n+1− B

2
α

n−1 +BC
(

β

α

)
− C

2
β

n−1 +BC
(

α

β

)
+Bα

n +Cβ
n−2BC

= −B
2

α
n
(

α +
1
α
−2
)
− C

2
β

n
(

β +
1
β
−2
)
+BC

(
β

α
−2+

α

β

)
=

1
32

(α−β )2− 1
2

2
5α +β −2

α
n−1(α−1)2− 1

2
2

5β +α−2
β

n−1(β −1)2.

The final state of equality is as follows

b(3),n−1b(3),n+1−b2
(3),n =

(α−β )2

32
− αn−1(α−1)2

5α +β −2
− β n−1(β −1)2

5β +α−2
.

There are many identities for cobalancing numbers. Another one is d
’
Ocagne’s identity. This equality will be proved in the

following theorem.

Theorem 2.6. Let b(3),n can be the cobalancing number. The d’Ocagne’s identity for the cobalancing number is as follows:

b(3),mb(3),n+1−b(3),m+1b(3),n =
(α−1)(αm−αn)

5α +β −2
+

(β −1)(β m−β n)

5β +α−2
+

(α−β )(αnβ m−αmβ n)

32
.

Proof. Helping by (1.8) sequence

b(3),m =−1
2
+

2
5α +β −2

α
m +

2
5β +α−2

β
m

and

b(3),n+1 =−
1
2
+

2
5α +β −2

α
n+1 +

2
5β +α−2

β
n+1

is written. Let’s write 2
5α+β−2 = B and 2

5β+α−2 =C before multiplying the expressions b(3),m and b(3),n+1.

b(3),mb(3),n+1 =
1
4
− B

2
α

n+1− C
2

β
n+1− B

2
α

m +B2
α

m+n+1 +BCα
m

β
n+1− C

2
β

m +BCα
n+1

β
m +C2

β
m+n+1.



Cobalancing Numbers: Another Way of Demonstrating Their Properties — 8/13

Also from the following equations

b(3),m+1 = −1
2
+

2
5α +β −2

α
m+1 +

2
5β +α−2

β
m+1

b(3),n = −1
2
+

2
5α +β −2

α
n +

2
5β +α−2

β
n,

we get

b(3),m+1b(3),n =
1
4
− B

2
α

n− C
2

β
n− B

2
α

m+1 +B2
α

m+n+1

+BCα
m+1

β
n− C

2
β

m+1 +BCα
n
β

m+1 +C2
β

m+n+1.

Let’s show that BC = 1
32 before finding the b(3),mb(3),n+1−b(3),m+1b(3),n difference. For α = 3+2

√
2 and β = 3−2

√
2, we

have α +β = 6 and α.β = 1, so

B.C =
2

5α +β −2
2

5β +α−2

=
4

26αβ +5[(α +β )2−2αβ ]−12(α +β )+4

=
1

32
.

Then

b(3),mb(3),n+1−b(3),m+1b(3),n =
1
4
− B

2
α

n+1− C
2

β
n+1− B

2
α

m +C2
α

m+n+1 +BCα
m

β
n+1− C

2
β

m +BCα
n+1

β
m +C2

β
m+n+1

−1
4
+

B
2

α
n +

C
2

β
n +

B
2

α
m+1−B2

α
m+n+1−BCα

m+1
β

n +
C
2

β
m+1−BCα

n
β

m+1−C2
β

m+n+1

=
B
2
(α−1)(αm−α

n)+
C
2
(β −1)(β m−β

n)+BC(α−β )(αn
β

m−α
m

β
n)

=
1
2

2
5α +β −2

(α−1)(αm−α
n)+

1
2

2
5β +α−2

(β −1)(β m−β
n)

+
1

32
(α−β )(αn

β
m−α

m
β

n).

The final state of equality is as follows.

b(3),mb(3),n+1−b(3),m+1b(3),n =
(α−1)(αm−αn)

5α +β −2
+

(β −1)(β m−β n)

5β +α−2
+

(α−β )(αnβ m−αmβ n)

32
.

3. Sum of Cobalancing Numbers

By performing various operations, we can show the cobalancing numbers in the form of a different summation formulas.
Sum formulas of cobalancing numbers with positive subscripts are obtained in the following three theorem. The results
regarding the sum formulas can be obtained from the following theorems.

Theorem 3.1. Let b(3),n can be the cobalancing number. The following difference equation is valid:

(x2 +7)W1− (1+7x2)W2−14x = xn(b(3),n+3−7b(3),n+2)+ xn−1(b(3),n+2−7b(3),n+1)

where

W1 =
n−2

∑
k=0

xk.b(3),k+2 and W2 =
n−2

∑
k=0

xk.b(3),k+3.
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Proof. Let’s leave the term b(3),n−2 alone in the (1.8) equation and add the following equations from side to side after writing
them

n = 2 ⇒ x0b(3),0 = x0b(3),3− x07b(3),2 + x07b(3),1

n = 3 ⇒ x1b(3),1 = x1b(3),4− x17b(3),3 + x17b(3),2
...

n = n ⇒ xn−2b(3),n−2 = xn−2b(3),n+1− xn−27b(3),n + xn−27b(3),n−1

n = n+1 ⇒ xn−1b(3),n−1 = xn−1b(3),n+2− xn−17b(3),n+1 + xn−17b(3),n
n = n+2 ⇒ xnb(3),n = xnb(3),n+3− xn7b(3),n+2 + xn7b(3),n+1.

Let’s add the equations from side to side

b(3),0 + xb(3),1 +(x2 +7)
n−2

∑
k=0

xkb(3),k+2 + xn−17b(3),n+1 + xn7b(3),n+2

= 14x+(1+7x2)
n−2

∑
k=0

xkb(3),k+3 + xn−1b(3),n+2 + xnb(3),n+3.

If the equations b(3),0 = 0,b(3),1 = 0,b(3),2 = 2 are written in their places, the following equality is obtained

(x2 +7)
n−2

∑
k=0

xk.b(3),k+2− (1+7x2)
n−2

∑
k=0

xk.b(3),k+3−14x

= xn(b(3),n+3−7b(3),n+2)+ xn−1(b(3),n+2−7b(3),n+1).

Now let the result be given that the even and odd terms of sums are in the same difference equation.

Lemma 3.2. Let b(3),n can be the cobalancing number. The following difference equation is valid:

(7+ x)W3− (1+7x)W4 = xn(b(3),2n+1 +(7+ x)b(3),2n)

where

W3 =
n

∑
k=1

xkb(3),2k and W4 =
n−1

∑
k=1

xkb(3),2k+1.

Proof. Let’s leave the term 7bn alone in the (1.8) equation and add the following equations from side to side after writing them

7b(3),n = b(3),n+1 +7b(3),n−1−b(3),n−2.

n = 2 ⇒ 7x1b(3),2 = x1b(3),3 +7x1b(3),1− x1b(3),0

n = 4 ⇒ 7x2b(3),4 = x2b(3),5 +7x2b(3),3− x2b(3),2
...

n = 2n−2 ⇒ 7xn−1b(3),2n−2 = xn−1b(3),2n−1 +7xn−1b(3),2n−3− xn−1b(3),2n−4

n = 2n ⇒ 7xnb(3),2n = xnb(3),2n+1 +7xnb(3),2n−1− xnb(3),2n−2.

Let’s add the equations from side to side, then

xb(3),0 +(7+ x)
n−1

∑
k=1

xk.b(3),2k = (1+7x)
n−1

∑
k=1

xk.b(3),2k+1.

If the equations b0 = 0, are written in their places, the following equality is obtained

xnb(3),2n+1 = (7+ x)
n−1

∑
k=1

xkb(3),2k− (1+7x)
n−1

∑
k=1

xkb(3),2k+1.
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Let’s add and subtract the term xnb2n in the sum symbol located on the right side of the equation

xnb(3),2n+1 = (7+ x)
n

∑
k=1

xkb(3),2k− (1+7x)
n−1

∑
k=1

xkb(3),2k+1− (7+ x)(xnb(3),2n).

In the last case, the equality is most regularly as follows:

(7+ x)
n

∑
k=1

xkb(3),2k− (1+7x)
n−1

∑
k=1

xkb(3),2k+1 = xn(b(3),2n+1 +(7+ x)b(3),2n).

Lemma 3.3. Let b(3),n can be the cobalancing number. If x 6= 0, following equation is valid:

(7+ x)W5− (
1
x
+7)W6 = xnb(3),2n+2− (

1
x
+7)2x

where

W5 =
n−1

∑
k=1

xkb(3),2k+1 and W6 =
n

∑
k=1

xkb(3),2k.

Proof. Let’s leave the term 7b(3),n alone in the (1.8) equation and add the following equations from side to side after writing
them

7b(3),n = b(3),n+1 +7b(3),n−1−b(3),n−2.

n = 3 ⇒ 7x1b(3),3 = x1b(3),4 +7x1b(3),2− x1b(3),1

n = 5 ⇒ 7x2b(3),5 = x2b(3),6 +7x2b(3),4− x2b(3),3
...

n = 2n−1 ⇒ 7xn−1b(3),2n−1 = xn−1b(3),2n +7xn−1b(3),2n−2− xn−1b(3),2n−3

n = 2n+1 ⇒ 7xnb(3),2n+1 = xnb(3),2n+2 +7xnb(3),2n− xnb(3),2n−1.

Let’s multiply and divide the first terms to the right of the equal sign by x

n = 3 ⇒ 7x1b(3),3 =
x2b4

x
+7x1b(3),2− x1b(3),1

n = 5 ⇒ 7x2b(3),5 =
x3b(3),6

x
+7x2b(3),4− x2b(3),3

...

n = 2n−1⇒ 7xn−1b(3),2n−1 =
xnb(3),2n

x
+7xn−1b(3),2n−2− xn−1b(3),2n−3

n = 2n+1⇒ 7xnb(3),2n+1 = xnb(3),2n+2 +7xnb(3),2n− xnb(3),2n−1.

Let’s add the equations side by side

xb(3),1 +(7+ x)
n−1

∑
k=1

xkb(3),2k+1 = xnb(3),2n+2 +(
1
x
+7)

n

∑
k=2

xkb(3),2k.

In the last case, let’s add the xb(3),2 term to the sum term on the right side in the equality we obtained

xb(3),1 +(7+ x)
n−1

∑
k=1

xkb(3),2k+1 = xnb(3),2n+2 +(
1
x
+7)

n

∑
k=1

xkb(3),2k− (
1
x
+7)xb(3),2
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then

(7+ x)
n−1

∑
k=1

xkb(3),2k+1− (
1
x
+7)

n

∑
k=1

xkb(3),2k = xnb(3),2n+2− xb(3),1− (
1
x
+7)xb(3),2.

If it is written instead of b(3),1 = 0 and b(3),2 = 2, the most regular form of equality is as follows:

(7+ x)
n−1

∑
k=1

xkb(3),2k+1− (
1
x
+7)

n

∑
k=1

xkb(3),2k = xnb(3),2n+2−14x−2.

The results to be found now will be found with the help of the theorems given above.

Theorem 3.4. Let b(3),n can be the cobalancing number. The following equation is valid:

n

∑
k=1

xkb(3),2k =

{
xn(b(3),2n+1 +(7+ x)b(3),2n)(x2 +7x)
+(xnb(3),2n+2−14x−2)(x+7x2)

}
x3−35x2 +35x−1

(3.1)

and

n−1

∑
k=1

xkb(3),2k+1 =

{
xn(b(3),2n+1 +(7+ x)b(3),2n)(1+7x)
+(xnb(3),2n+2−14x−2)(7x+ x2)

}
x3−35x2 +35x−1

. (3.2)

Proof. The following equations have been proved in the previous lemmas

(7+ x)
n

∑
k=1

xkb(3),2k− (1+7x)
n−1

∑
k=1

xkb(3),2k+1) = xn(b(3),2n+1 +(7+ x)b(3),2n)

and

(7+ x)
n−1

∑
k=1

xkb(3),2k+1− (
1
x
+7)

n

∑
k=1

xkb(3),2k = xnb(3),2n+2−14x−2.

Let A1 =
n
∑

k=1
xkb(3),2k and B1 =

n−1
∑

k=1
xkb(3),2k+1. Let’s arrange the above equations in the following way and get a system of

equations

(7+ x)A1− (1+7x)B1 = xn(b(3),2n+1 +(7+ x)b(3),2n) (3.3)

−(1
x
+7)A1 +(7+ x)B1 = xnb(3),2n+2−14x−2. (3.4)

Let’s multiply the first equation by 1
x +7 and multiply the second equation by 7+ x, then add the equations side by side

(
1
x
+7)(7+ x)A1− (

1
x
+7)(1+7x)B1 = xn(b(3),2n+1 +(7+ x)b(3),2n)(

1
x
+7)

−(1
x
+7)(7+ x)A1 +(7+ x)(7+ x)B1 = (xnb(3),2n+2−14x−2)(7+ x).

If the equations are added side by side, the following equality is found

B1 =
xn(b(3),2n+1 +(7+ x)b(3),2n)(1+7x)+(xnb(3),2n+2−14x−2)(7x+ x2)

x3−35x2 +35x−1
.

Let’s multiply (3.3) by (7+ x) and multiply (3.4) by (1+7x), then add the equations side by side

(7+ x)(7+ x)A1− (7+ x)(1+7x)B1 = xn(b(3),2n+1 +(7+ x)b(3),2n)(7+ x)

−(1
x
+7)(1+7x)A1 +(7+ x)(1+7x)B1 = (xnb(3),2n+2−14x−2)(1+7x).
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When the above equations are added side by side, the equal of the expression A1 will be as follows

A1 =
xn(b(3),2n+1 +(7+ x)b(3),2n)(x2 +7x)+(xnb(3),2n+2−14x−2)(x+7x2)

x3−35x2 +35x−1
.

In the last case, the following equations are correct

n

∑
k=1

xkb(3),2k =

{
xn(b(3),2n+1 +(7+ x)b(3),2n)(x2 +7x)
+(xnb(3),2n+2−14x−2)(x+7x2)

}
x3−35x2 +35x−1

n−1

∑
k=1

xkb(3),2k+1 =

{
xn(b(3),2n+1 +(7+ x)b(3),2n)(1+7x)
+(xnb(3),2n+2−14x−2)(7x+ x2)

}
x3−35x2 +35x−1

.

The following theorem is special cases of the summation formulas that we have found.

Theorem 3.5. Let b(3),n can be the cobalancing number. n≥ 0, we have the following sum formulas:

1.
n−1
∑

k=1
(−1)kb(3),2k+1 =

(−1)n

12 (6b(3),2n +b(3),2n+1 +b(3),2n+2)+1

2.
n
∑

k=1
(−1)kb(3),2k =

(−1)n

12 (6b(3),2n +b(3),2n+1−b(3),2n+2)−1

3.
n−2
∑

k=0
(−1)kb(3),k+2 =

(−1)n

16 (b(3),n+3−8b(3),n+2 +15b(3),n+1)+
1
8

Proof. 1) Let’s write x =−1 in the (3.2) equation. Then

n−1

∑
k=1

(−1)kb(3),2k+1 =
(−1)n(b(3),2n+1 +6b(3),2n)(−6)+((−1)nb(3),2n+2 +14−2)(−6)

−1−35−35−1

=
(−1)n(−6)(b(3),2n+1 +6b(3),2n)+(−1)n(−6)b(3),2n+2

−72
+
−72
−72

=
(−1)n

12
(6b(3),2n +b(3),2n+1 +b(3),2n+2)+1

As in other cases, it is proven in a similar way.

4. Conclusions
In this study, cobalancing numbers, which are an integer sequence with a non-homogeneous second-order recurrence

relation, are transformed into a sequence with a homogeneous third-order recurrence relation, thus providing ease of operation.
Some of the results found are the generating function, Binet formula, specially defined Catalan, Cassini and d’Ocagne identities
and some sum formulas.
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1. Introduction
Molodtsov [1] has introduced soft sets and discussed their relationships with several mathematical tools. Moreover, the

author has investigated soft sets’ applications to stability and regularization, game theory and operations research, and soft
analysis. Molodtsov has studied soft limit, soft approximator (soft derivative), and upper and lower Riemann and Perron
integrals in soft analysis. Afterward, the author has written a book entitled Soft Set Theory [2] that contains many topics related
to soft sets. Then, Molodtsov et al. [3] have widely explored the basic concepts of soft analysis. Further, Molodtsov [4] has
suggested higher-order soft derivative and higher-order almost soft derivative. Besides, the author [5, 6] has analyzed the basic
concepts of rational analysis. Additionally, Acharjee and Molodtsov [7] have proposed soft rational line integral. However,
since most of the aforesaid studies are in Russian, soft analysis studies have not become widespread.

On the other hand, despite the considerable developments in classical analysis, the fact that there are many types of
uncertainty in real-life problems and that increasing the need for new mathematical tools makes soft analysis worth studying.
Therefore, this paper focuses on the partial soft derivative, one of the essential concepts in soft analysis. Thus, this study aims
to increase the widespread impact and make soft analysis studies more accessible. Moreover, the partial soft derivative will
shed light on the concepts of higher-order partial soft derivative and soft gradients. Hence, this paper provides ideas concerning
further studies to researchers. Section 2 of the present study provides some basic definitions and properties to be required in the
next section. Section 3 defines partial soft derivative and studies some of its basic properties. The final section discusses the
need for future studies.
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2. Preliminaries
This section presents some of the basic definitions and properties to be needed for the following section. Across this paper,

the notations Z, R, R+, and R≥0 represent the set of integer, real, positive real, and non-negative real numbers, respectively.
Moreover, R2 B R×R and P(U) denotes the set of all the classical subsets of U.

Definition 2.1. [1, 2] Let U be a universal set, E be a parameter set, and f : E→ P(U) be a function. Then, f is called a soft
set parameterized via E over U (briefly over U).

Example 2.2. Let f : Z→ P (R) be a function defined by f (x) = [x + 2, x + 4]. Then, f is a soft set over R.

Definition 2.3. [1, 2] Let M be a set called a model set, U be a universal set, E be a parameter set, and f : M×E→ P(U) be
a function. Then, f is called a soft mapping parameterized via M×E over U (briefly over U).

Definition 2.4. [1, 2, 3] Let A ⊆ R, f : A→ R be a function, a ∈ A, τ f (a) , ∅, and L ∈ R. Then, the real number L is called a
(τ,ε)-soft derivative of f at the point a if x ∈ τ f (a)⇒ | f (x)− f (a)−L(x−a)| ≤ ε(a). The set of all the (τ,ε)-soft derivatives of f
at the point a is denoted by D( f ,a, τ,ε). If D( f ,a, τ,ε) = ∅, then the (τ,ε)-soft derivative of f at the point a does not exist.

Here, τ : R→ P(R) and ε : R→ R≥0 are two functions such that τ(a) is a set of points that are close to the point a but not
equal to a. In addition, τ f (a)B τ(a)∩Dom( f ), for all a ∈ R, where Dom( f ) stands for the domain set of f .

3. Partial Soft Derivative
This section defines the concept of partial soft derivative and studies some of its basic properties. Throughout this section,

let τ,λ,κ : R2→ P
(
R2

)
, ε,α,β : R2→ R≥0, and δ : R2→ R+ be seven functions such that τ(a,b), λ(a,b), and κ(a,b) are sets of

points that are close to the point (a,b) but not equal to (a,b). Besides, let τ f (a,b)B τ(a,b)∩Dom( f ), for all (a,b) ∈ R2.

Definition 3.1. The set of all the points belonging to τ(a,b) and the plane y = b is defined by τx(a,b)B τ(a,b)∩ (R× {b}).
Similarly, the set of all the points belonging to τ(a,b) and the plane x = a is defined by τy(a,b)B τ(a,b)∩ ({a}×R). Therefore, the
set of all the points belonging to τ(a,b) and whose first components are greater than a is defined by τ+

x (a,b)B τ(a,b)∩((a,∞)×R)
and the set of all the points belonging to τ(a,b) and whose first components are less than a is defined by τ−x (a,b)B τ(a,b)∩
((−∞,a)×R). Similarly, the set of all the points belonging to τ(a,b) and whose second components are greater than b is defined
by τ+

y (a,b)B τ(a,b)∩ (R× (b,∞)) and the set of all the points belonging to τ(a,b) and whose second components are less than
b is defined by τ−y (a,b)B τ(a,b)∩ (R× (−∞,b)).

Moreover, if τ−x (a,b) = ∅, for all (a,b) ∈ R2, then this mapping is called by τx-right mapping, and if τ+
x (a,b) = ∅, for all

(a,b) ∈ R2, then this mapping is called by τx-left mapping. Similarly, if τ−y (a,b) = ∅, for all (a,b) ∈ R2, then this mapping is
called by τy-right mapping and if τ+

y (a,b) = ∅, for all (a,b) ∈ R2, then this mapping is called by τy-left mapping.
Furthermore, τδ(a,b) is defined by

τδ(a,b)B
{

(x,y) ∈ R2 : 0 <
√

(x−a)2 + (y−b)2 ≤ δ(a,b)
}

Thus, τ+
xδ(a,b)B τδ(a,b)∩ ((a,∞)×R), τ−xδ(a,b)B τδ(a,b)∩ ((−∞,a)×R), τ+

yδ(a,b)B τδ(a,b)∩ (R× (b,∞)), and τ−yδ(a,b)B
τδ(a,b)∩ (R× (−∞,b)).

Note 3.2. It must be noted that τ(a,b) = τ+
x (a,b)∪ τ−x (a,b), τ(a,b) = τ+

y (a,b)∪ τ−y (a,b), τδ(a,b) = τ+
xδ(a,b)∪ τ−xδ(a,b), and

τδ(a,b) = τ+
yδ(a,b)∪τ−yδ(a,b).

Definition 3.3. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, τ f (a,b) , ∅, and L ∈ R. Then, the real number L is
called a partial (τ,ε)-soft derivative of f with respect to x at the point (a,b) if (x,b) ∈ τ f (a,b)⇒ | f (x,b)− f (a,b)−L(x−a)| ≤
ε(a,b). The set of all the partial (τ,ε)-soft derivatives of f with respect to x at the point (a,b) is denoted by Dx ( f , (a,b), τ,ε). If
Dx ( f , (a,b), τ,ε) = ∅, then the partial (τ,ε)-soft derivative of f with respect to x at the point (a,b) does not exist.

Definition 3.4. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, τ f (a,b) , ∅, and L ∈ R. Then, the real number L is
called a partial (τ,ε)-soft derivative of f with respect to y at the point (a,b) if (a,y) ∈ τ f (a,b)⇒ | f (a,y)− f (a,b)−L(y−b)| ≤
ε(a,b). The set of all the partial (τ,ε)-soft derivatives of f with respect to y at the point (a,b) is denoted by Dy ( f , (a,b), τ,ε). If
Dy ( f , (a,b), τ,ε) = ∅, then the partial (τ,ε)-soft derivative of f with respect to y at the point (a,b) does not exist.

Note 3.5. Each of the concepts of partial (τ,ε)-soft derivative with respect to x and y is a soft mapping parameterized via
Φ (A×B,R)× (A×B)×Φ

(
R2,P

(
R2

))
×Φ

(
R2,R≥0

)
over R such that ∅ , A×B ⊆ R2.
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Example 3.6. Let f : R2→ R be a function defined by f (x,y) = x3 + 2y2 and ε(−1,3) = 2. Since

(x,3) ∈ τ 1
2
(−1,3)∩R2 ⇔ 0 <

√
(x + 1)2 + (3−3)2 ≤ 1

2

⇔ 0 < |x + 1| ≤ 1
2

then, for all (x,3) ∈ τ 1
2
(−1,3)∩R2,

| f (x,3)− f (−1,3)−L(x + 1)| ≤ 2 ⇔ |x3 + 1−L(x + 1)| ≤ 2

⇔ −x3−1−2 ≤ −L(x + 1) ≤ −x3−1 + 2

⇔ x3+1
x+1 −

2
|x+1| ≤ L ≤ x3+1

x+1 + 2
|x+1|

⇔ x2− x + 1− 2
|x+1| ≤ L ≤ x2− x + 1 + 2

|x+1|

⇔ L ∈
[

3
4 ,

23
4

]
Therefore, Dx

(
f , (−1,3), τ 1

2
, ε

)
=

[
3
4 ,

23
4

]
. Similarly, as

(−1,y) ∈ τ 1
2
(−1,3)∩R2 ⇔ 0 <

√
(−1 + 1)2 + (y−3)2 ≤ 1

2

⇔ 0 < |y−3| ≤ 1
2

then, for all (−1,y) ∈ τ 1
2
(−1,3)∩R2,

| f (−1,y)− f (−1,3)−L(y−3)| ≤ 2 ⇔ |2y2−18−L(y−3)| ≤ 2

⇔ −2y2 + 18−2 ≤ −L(y−3) ≤ −2y2 + 18 + 2

⇔
2y2−18

y−3 −
2
|y−3| ≤ L ≤ 2y2−18

y−3 + 2
|y−3|

⇔ 2y + 6− 2
|y−3| ≤ L ≤ 2y + 6 + 2

|y−3|

⇔ L ∈ [9,15]

Thus, Dy

(
f , (−1,3), τ 1

2
, ε

)
= [9,15].

Theorem 3.7. Let A× B ⊆ R2, f : A× B→ R be a function, (a,b) ∈ A× B, and τ f (a,b) be bounded. If Dx ( f , (a,b), τ,ε) , ∅,
then z = f (x,b) is bounded on τ f (a,b).

Proof. Let A× B ⊆ R2, f : A× B→ R be a function, (a,b) ∈ A× B, τ f (a,b) be bounded, and Dx ( f , (a,b), τ,ε) , ∅. Then,
τ f (a,b) , ∅ and there exists an L ∈ R such that

(x,b) ∈ τ f (a,b) ⇒ | f (x,b)− f (a,b)−L(x−a)| ≤ ε(a,b)

⇒ f (a,b) + L(x−a)−ε(a,b) ≤ f (x,b) ≤ f (a,b) + L(x−a) +ε(a,b)

⇒ f (a,b) + inf
x∈τ f (a,b)

{L(x−a)}−ε(a,b) ≤ f (x,b) ≤ f (a,b) + sup
x∈τ f (a,b)

{L(x−a)}+ε(a,b)

Since
f (a,b) + inf

x∈τ f (a,b)
{L(x−a)}−ε(a,b) ∈ R and f (a,b) + sup

x∈τ f (a,b)
{L(x−a)}+ε(a,b) ∈ R

then z = f (x,b) is bounded on τ f (a,b). �

Theorem 3.8. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and τ f (a,b) , ∅. If z = f (x,b) is bounded on τ f (a,b),
then there exists a function ε : R2→ R such that Dx ( f , (a,b), τ,ε) , ∅.



Partial Soft Derivative — 17/26

Proof. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, τ f (a,b) , ∅, and z = f (x,b) be bounded on τ f (a,b). Then,
there exists an M ∈ R such that | f (x,b)| ≤ M, for all (x,y) ∈ τ f (a,b). Then,

(x,b) ∈ τ f (a,b) ⇒ | f (x,b)| ≤ M

⇒ −M− f (a,b) ≤ f (x,b)− f (a,b) ≤ M− f (a,b)

⇒ | f (x,b)− f (a,b)−0(x−a)| ≤max{|M + f (a,b)|, |M− f (a,b)|}

Hence, for any function ε : R2 → R such that ε(a,b) = max{|M + f (a,b)|, |M − f (a,b)|}, 0 ∈ Dx( f , (a,b), τ,ε). Consequently,
Dx( f , (a,b), τ,ε) , ∅. �

Theorem 3.9. Let A× B ⊆ R2, f : A× B→ R be a function, (a,b) ∈ A× B, and τ f (a,b) be bounded. If Dy ( f , (a,b), τ,ε) , ∅,
then z = f (a,y) is bounded on τ f (a,b).

Theorem 3.10. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and τ f (a,b) , ∅. If z = f (a,y) is bounded on τ f (a,b),
then there exists a function ε : R2→ R such that Dy ( f , (a,b), τ,ε) , ∅.

The proofs are as in Theorems 3.7 and 3.8, respectively.

Theorem 3.11. Let A×B ⊆ R2, f : A×B→ R be a function, and (a,b) ∈ A×B. If Dx ( f , (a,b), τ,ε) , ∅, then

Dx ( f , (a,b), τ,ε) =

 sup
(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
−
ε(a,b)
|x−a|

)
, inf
(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
+
ε(a,b)
|x−a|

)
Proof. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and Dx ( f , (a,b), τ,ε) , ∅. Then, τ f (a,b) , ∅ and there exists
an L ∈ R such that, for all (x,b) ∈ τ f (a,b),

| f (x,b)− f (a,b)−L(x−a)| ≤ ε(a,b) ⇒ − ( f (x,b)− f (a,b))−ε(a,b) ≤ −L(x−a) ≤ − ( f (x,b)− f (a,b)) +ε(a,b)

⇒


f (x,b)− f (a,b)

x−a −
ε(a,b)
x−a ≤ L ≤ f (x,b)− f (a,b)

x−a +
ε(a,b)
x−a , (x,b) ∈ τ+

x (a,b)∩A×B
f (x,b)− f (a,b)

x−a +
ε(a,b)
x−a ≤ L ≤ f (x,b)− f (a,b)

x−a −
ε(a,b)
x−a , (x,b) ∈ τ−x (a,b)∩A×B

⇒


f (x,b)− f (a,b)

x−a −
ε(a,b)
|x−a| ≤ L ≤ f (x,b)− f (a,b)

x−a +
ε(a,b)
|x−a| , (x,b) ∈ τ+

x (a,b)∩A×B
f (x,b)− f (a,b)

x−a −
ε(a,b)
|x−a| ≤ L ≤ f (x,b)− f (a,b)

x−a +
ε(a,b)
|x−a| , (x,b) ∈ τ−x (a,b)∩A×B

⇒
f (x,b)− f (a,b)

x−a −
ε(a,b)
|x−a| ≤ L ≤ f (x,b)− f (a,b)

x−a +
ε(a,b)
|x−a| , (x,b) ∈ τ f (a,b)

Hence,
sup

(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a −

ε(a,b)
|x−a|

)
≤ L and L ≤ inf

(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a +

ε(a,b)
|x−a|

)
Consequently,

Dx ( f , (a,b), τ,ε) =

 sup
(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
−
ε(a,b)
|x−a|

)
, inf
(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
+
ε(a,b)
|x−a|

)
�

Theorem 3.12. Let A×B ⊆ R2, f : A×B→ R be a function, and (a,b) ∈ A×B. If Dy ( f , (a,b), τ,ε) , ∅, then

Dy ( f , (a,b), τ,ε) =

 sup
(a,y)∈τ f (a,b)

(
f (a,y)− f (a,b)

y−b
−
ε(a,b)
|y−b|

)
, inf
(a,y)∈τ f (a,b)

(
f (a,y)− f (a,b)

y−b
+
ε(a,b)
|y−b|

)
The proof is as in Theorem 3.11.

Theorem 3.13. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and β(a,b) ≤ α(a,b). If Dx ( f , (a,b), τ,β) , ∅, then
Dx ( f , (a,b), τ,α) , ∅. Moreover, Dx ( f , (a,b), τ,β) ⊆ Dx ( f , (a,b), τ,α).
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Proof. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, β(a,b) ≤ α(a,b), and Dx ( f , (a,b), τ,β) , ∅. Then, τ f (a,b) , ∅
and there exists an L ∈ R such that

(x,b) ∈ τ f (a,b)⇒ | f (x,b)− f (a,b)−L(x−a)| ≤ β(a,b) ≤ α(a,b)

Therefore, Dx ( f , (a,b), τ,α) , ∅. Moreover, since β(a,b) ≤ α(a,b), then

sup
(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
−
α(a,b)
|x−a|

)
≤ sup

(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
−
β(a,b)
|x−a|

)
and

inf
(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
+
β(a,b)
|x−a|

)
≤ inf

(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
+
α(a,b)
|x−a|

)
Thus,

Dx ( f , (a,b), τ,β) =

 sup
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a −

β(a,b)
|x−a|

)
, inf
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a +

β(a,b)
|x−a|

)
⊆

 sup
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a −

α(a,b)
|x−a|

)
, inf
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a +

α(a,b)
|x−a|

)
= Dx ( f , (a,b), τ,α)

�

Theorem 3.14. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and β(a,b) ≤ α(a,b). If Dy ( f , (a,b), τ,β) , ∅, then
Dy ( f , (a,b), τ,α) , ∅. Moreover, Dy ( f , (a,b), τ,β) ⊆ Dy ( f , (a,b), τ,α).

The proof is as in Theorem 3.13.

Theorem 3.15. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and ∅ , λ f (a,b) ⊆ τ f (a,b). If Dx ( f , (a,b), τ,ε) , ∅,
then Dx ( f , (a,b),λ,ε) , ∅. Moreover, Dx ( f , (a,b), τ,ε) ⊆ Dx ( f , (a,b),λ,ε).

Proof. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, ∅ , λ f (a,b) ⊆ τ f (a,b), and Dx ( f , (a,b), τ,ε) , ∅. Then, there
exists an L ∈ R such that

(x,b) ∈ λ f (a,b) ⇒ (x,b) ∈ τ f (a,b)

⇒ | f (x,b)− f (a,b)−L(x−a)| ≤ ε(a,b)

Therefore, Dx ( f , (a,b),λ,ε) , ∅. Moreover, since ∅ , λ f (a,b) ⊆ τ f (a,b), then

sup
(x,b)∈λ f (a,b)

(
f (x,b)− f (a,b)

x−a
−
ε(a,b)
|x−a|

)
≤ sup

(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
−
ε(a,b)
|x−a|

)
and

inf
(x,b)∈τ f (a,b)

(
f (x,b)− f (a,b)

x−a
+
ε(a,b)
|x−a|

)
≤ inf

(x,b)∈λ f (a,b)

(
f (x,b)− f (a,b)

x−a
+
ε(a,b)
|x−a|

)
Thus,

Dx ( f , (a,b), τ,ε) =

 sup
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a −

ε(a,b)
|x−a|

)
, inf
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a +

ε(a,b)
|x−a|

)
⊆

 sup
(x,b)∈λ f (a,b)

( f (x,b)− f (a,b)
x−a −

ε(a,b)
|x−a|

)
, inf
(x,b)∈λ f (a,b)

( f (x,b)− f (a,b)
x−a +

ε(a,b)
|x−a|

)
= Dx ( f , (a,b),λ,ε)

�

Theorem 3.16. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and ∅ , λ f (a,b) ⊆ τ f (a,b). If Dy ( f , (a,b), τ,ε) , ∅,
then Dy ( f , (a,b),λ,ε) , ∅. Moreover, Dy ( f , (a,b), τ,ε) ⊆ Dy ( f , (a,b),λ,ε).

The proof is as in Theorem 3.15.
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Theorem 3.17. Let A×B⊆R2, f ,g : A×B→R be two functions, and (a,b) ∈ A×B. If Dx ( f , (a,b), τ,α), ∅ and Dx (g, (a,b),λ,β),
∅, then Dx ( f + g, (a,b), κ,ε) , ∅ such that ∅ , κ f +g(a,b) ⊆ τ f (a,b)∩λg(a,b) and α(a,b) +β(a,b) ≤ ε(a,b). Moreover,

Dx ( f , (a,b), τ,α) + Dx (g, (a,b),λ,β) ⊆ Dx ( f + g, (a,b), κ,ε)

Proof. Let A×B ⊆ R2, f ,g : A×B→ R be two functions, (a,b) ∈ A×B, Dx ( f , (a,b), τ,α) , ∅, and Dx (g, (a,b),λ,β) , ∅. Then,
there exist L1,L2 ∈ R such that

(x,b) ∈ τ f (a,b)⇒ | f (x,b)− f (a,b)−L1(x−a)| ≤ α(a,b)

and
(x,b) ∈ λg(a,b)⇒ |g(x,b)−g(a,b)−L2(x−a)| ≤ β(a,b)

Therefore,

(x,b) ∈ κ f +g(a,b) ⇒ (x,b) ∈ τ f (a,b)∧ (x,b) ∈ λg(a,b)

⇒ | f (x,b)− f (a,b)−L1(x−a)| ≤ α(a,b)∧ |g(x,b)−g(a,b)−L2(x−a)| ≤ β(a,b)

⇒ −α(a,b)−β(a,b) ≤ f (x,b)− f (a,b)−L1(x−a) + g(x,b)−g(a,b)−L2(x−a) ≤ α(a,b) +β(a,b)

⇒ |( f + g)(x,b)− ( f + g)(a,b)− (L1 + L2) (x−a)| ≤ α(a,b) +β(a,b) ≤ ε(a,b)

⇒ L1 + L2 ∈ Dx ( f + g, (a,b), κ,ε)

⇒ Dx ( f + g, (a,b), κ,ε) , ∅

Moreover, for all L ∈ Dx ( f , (a,b), τ,α) + Dx (g, (a,b),λ,β), there exist L1 ∈ Dx ( f , (a,b), τ,α) and L2 ∈ Dx (g, (a,b),λ,β) such that
L = L1 + L2. Then,

(x,b) ∈ τ f (a,b)⇒ | f (x,b)− f (a,b)−L1(x−a)| ≤ α(a,b)

and
(x,b) ∈ λg(a,b)⇒ |g(x,b)−g(a,b)−L2(x−a)| ≤ β(a,b)

Hence,
(x,b) ∈ κ f +g(a,b)⇒ |( f + g)(x,b)− ( f + g)(a,b)− (L1 + L2) (x−a)| ≤ α(a,b) +β(a,b) ≤ ε(a,b)

Therefore, L = L1 + L2 ∈ Dx ( f + g, (a,b), κ,ε). Thus, Dx ( f , (a,b), τ,α) + Dx (g, (a,b),λ,β) ⊆ Dx ( f + g, (a,b), κ,ε). �

Theorem 3.18. Let A×B⊆R2, f ,g : A×B→R be two functions, and (a,b) ∈ A×B. If Dy ( f , (a,b), τ,α), ∅ and Dy (g, (a,b),λ,β),
∅, then Dy ( f + g, (a,b), κ,ε) , ∅ such that ∅ , κ f +g(a,b) ⊆ τ f (a,b)∩λg(a,b) and α(a,b) +β(a,b) ≤ ε(a,b). Moreover,

Dy ( f , (a,b), τ,α) + Dy (g, (a,b),λ,β) ⊆ Dy ( f + g, (a,b), κ,ε)

The proof is as in Theorem 3.17.

Theorem 3.19. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and t , 0. Then, Dx ( f , (a,b), τ,ε) , ∅ if and only if
Dx (t f , (a,b), τ, |t|ε) , ∅. Moreover,

tDx ( f , (a,b), τ,ε) = Dx (t f , (a,b), τ, |t|ε)

Proof. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and t , 0.
(⇒): Let Dx ( f , (a,b), τ,ε) , ∅. Then, τ f (a,b) , ∅ and there exists an L ∈ R such that

(x,b) ∈ τt f (a,b) ⇒ (x,b) ∈ τ f (a,b)

⇒ | f (x,b)− f (a,b)−L(x−a)| ≤ ε(a,b)

⇒ |t|| f (x,b)− f (a,b)−L(x−a)| ≤ |t|ε(a,b)

⇒ |t f (x,b)− t f (a,b)− tL(x−a)| ≤ |t|ε(a,b)

⇒ |(t f )(x,b)− (t f )(a,b)− tL(x−a)| ≤ |t|ε(a,b)

Thus, tL ∈ Dx (t f , (a,b), τ, |t|ε). That is, Dx (t f , (a,b), τ, |t|ε) , ∅.
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(⇐): Let Dx (t f , (a,b), τ, |t|ε) , ∅. Then, τt f (a,b) , ∅ and there exists an L ∈ R such that

(x,b) ∈ τ f (a,b) ⇒ (x,b) ∈ τt f (a,b)

⇒ |(t f )(x,b)− (t f )(a,b)−L(x−a)| ≤ |t|ε(a,b)

⇒ |t f (x,b)− t f (a,b)−L(x−a)| ≤ |t|ε(a,b)

⇒ |t|
∣∣∣ f (x,b)− f (a,b)− L

t (x−a)
∣∣∣ ≤ |t|ε(a,b)

⇒
∣∣∣ f (x,b)− f (a,b)− L

t (x−a)
∣∣∣ ≤ ε(a,b)

Thus, L
t ∈ Dx ( f , (a,b), τ,ε). That is, Dx ( f , (a,b), τ,ε) , ∅. Moreover, for all L ∈ tDx ( f , (a,b), τ,ε), there exists an L∗ ∈

Dx ( f , (a,b), τ,ε) such that L = tL∗. Since L∗ ∈ Dx ( f , (a,b), τ,ε), then tL∗ ∈ Dx (t f , (a,b), τ, |t|ε) from the proof of the existence.
That is, L ∈ Dx (t f , (a,b), τ, |t|ε). Hence,

tDx ( f , (a,b), τ,ε) ⊆ Dx (t f , (a,b), τ, |t|ε)

In addition, for all L ∈Dx (t f , (a,b), τ, |t|ε), L
t ∈Dx ( f , (a,b), τ,ε) from the proof of the existence. Hence, L = t L

t ∈ tDx ( f , (a,b), τ,ε).
Thus,

Dx (t f , (a,b), τ, |t|ε) ⊆ tDx ( f , (a,b), τ,ε)

Consequently, tDx ( f , (a,b), τ,ε) = Dx (t f , (a,b), τ, |t|ε). �

Theorem 3.20. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ A×B, and t , 0. Then, Dy ( f , (a,b), τ,ε) , ∅ if and only if
Dy (t f , (a,b), τ, |t|ε) , ∅. Moreover,

tDy ( f , (a,b), τ,ε) = Dy (t f , (a,b), τ, |t|ε)

The proof is as in Theorem 3.19.

Corollary 3.21. Let A×B⊆R2, f ,g : A×B→R be two functions, and (a,b) ∈ A×B. If Dx ( f , (a,b), τ,α), ∅ and Dx (g, (a,b),λ,β),
∅, then Dx ( f −g, (a,b), κ,ε) , ∅ such that ∅ , κ f−g(a,b) ⊆ τ f (a,b)∩λg(a,b) and α(a,b) +β(a,b) ≤ ε(a,b). Moreover,

Dx ( f , (a,b), τ,α)−Dx (g, (a,b),λ,β) ⊆ Dx ( f −g, (a,b), κ,ε)

Proof. Let A,B ⊆ R, f ,g : A× B→ R be two functions, (a,b) ∈ A× B, Dx ( f , (a,b), τ,α) , ∅, and Dx (g, (a,b),λ,β) , ∅. From
Theorem 3.19, for t = −1, −Dx(g, (a,b),λ,β) = Dx(−g, (a,b),λ,β). Therefore, from Theorem 3.17, Dx ( f −g, (a,b), κ,ε) , ∅ such
that ∅ , κ f−g(a,b) ⊆ τ f (a,b)∩λg(a,b) and α(a,b) +β(a,b) ≤ ε(a,b). Moreover,

Dx( f , (a,b), τ,α)−Dx(g, (a,b),λ,β) = Dx( f , (a,b), τ,α) + Dx(−g, (a,b),λ,β) ⊆ Dx( f + (−g), (a,b), κ,ε) = Dx( f −g, (a,b), κ,ε)

�

Corollary 3.22. Let A×B⊆R2, f ,g : A×B→R be two functions, and (a,b) ∈ A×B. If Dy ( f , (a,b), τ,α), ∅ and Dy (g, (a,b),λ,β),
∅, then Dy ( f −g, (a,b), κ,ε) , ∅ such that ∅ , κ f−g(a,b) ⊆ τ f (a,b)∩λg(a,b), and α(a,b) +β(a,b) ≤ ε(a,b). Moreover,

Dy ( f , (a,b), τ,α)−Dy (g, (a,b),λ,β) ⊆ Dy ( f −g, (a,b), κ,ε)

The proof is as in Corollary 3.21.

Theorem 3.23. Let A×B ⊆ R2, f ,g : A×B→ R be two functions, (a,b) ∈ A×B, and k, l ∈ R. If g(x,y) = f (x,y) + kx + ly, for
all (x,y) ∈ τ f (a,b) = τg(a,b), and Dx ( f , (a,b), τ,ε) , ∅, then Dx (g, (a,b), τ,ε) , ∅. Moreover,

Dx (g, (a,b), τ,ε) = Dx ( f , (a,b), τ,ε) + k

Proof. Let A× B ⊆ R2, f ,g : A× B→ R be two functions, (a,b) ∈ A× B, k, l ∈ R, g(x,y) = f (x,y) + kx + ly, for all (x,y) ∈
τ f (a,b) = τg(a,b), and Dx ( f , (a,b), τ,ε) , ∅. Then, τ f (a,b) , ∅ and there exists an L ∈ R such that

(x,b) ∈ τ f (a,b)⇒ | f (x,b)− f (a,b)−L(x−a)| ≤ ε(a,b)
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Therefore, for L∗ = k + L and for all (x,b) ∈ τg(a,b) = τ f (a,b),

|g(x,b)−g(a,b)−L∗(x−a)| = | f (x,b) + kx + lb− f (a,b)− ka− lb− (k + L) (x−a)|

= | f (x,y)− f (a,b)−L(x−a)|

≤ ε(a)

Thus, L∗ ∈ Dx(g, (a,b), τ,ε). That is, Dx (g, (a,b), τ,ε) , ∅. Moreover,

Dx (g, (a,b), τ,ε) =

 sup
(x,b)∈τg(a,b)

( g(x,b)−g(a,b)
x−a −

ε(a,b)
|x−a|

)
, inf
(x,b)∈τg(a,b)

( g(x,b)−g(a,b)
x−a +

ε(a,b)
|x−a|

)
=

 sup
(x,b)∈τ f (a,b)

( f (x,b)+kx+lb− f (a,b)−ka−lb
x−a −

ε(a,b)
|x−a|

)
, inf
(x,b)∈τ f (a,b)

( f (x,b)+kx+lb− f (a,b)−ka−lb
x−a +

ε(a,b)
|x−a|

)
=

 sup
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a −

ε(a,b)
|x−a| + k

)
, inf
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a +

ε(a,b)
|x−a| + k

)
=

 sup
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a −

ε(a,b)
|x−a|

)
+ k, inf

(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a +

ε(a,b)
|x−a|

)
+ k


=

 sup
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a −

ε(a,b)
|x−a|

)
, inf
(x,b)∈τ f (a,b)

( f (x,b)− f (a,b)
x−a +

ε(a,b)
|x−a|

)+ k

= Dx ( f , (a,b), τ,ε) + k

�

Theorem 3.24. Let A×B ⊆ R2, f ,g : A×B→ R be two functions, (a,b) ∈ A×B, and k, l ∈ R. If g(x,y) = f (x,y) + kx + ly, for
all (x,y) ∈ τ f (a,b) = τg(a,b), and Dy ( f , (a,b), τ,ε) , ∅, then Dy (g, (a,b), τ,ε) , ∅. Moreover,

Dy (g, (a,b), τ,ε) = Dy ( f , (a,b), τ,ε) + l

The proof is as in Theorem 3.23

Example 3.25. Let f ,g : R2→ R, τ,λ,κ : R2→ P
(
R2

)
, and α,β,ε : R2→ R≥0 be seven functions defined by f (x,y) = x2 + 2y2,

g(x,y) = 2x + y, τ(x,y) = τ1(x,y),

λ(x,y) =

(x0,y0) ∈ R2 : 0 <

√
(x− x0)2

9
+

(y− y0)2

16
≤ 1


κ(x,y) = κ 1

4
(x,y), α(x,y) = |x|+ |y|, β(x,y) = max {|x|, |y|}, and ε(x,y) = 2(|x|+ |y|), respectively. Here, for all (x,y) ∈ R2, τ(x,y) ⊆

λ(x,y), κ(x,y) ⊆ τ(x,y)∩λ(x,y), β(x,y) ≤ α(x,y), and α(x,y) +β(x,y) ≤ ε(x,y). From Theorem 3.11, for (2,−1) ∈ R2,

Dx ( f , (2,−1), τ,β) = [3,5]

and

Dx (g, (2,−1),λ,β) =

[
4
3
,
8
3

]
From Theorem 3.13, since β(2,−1) ≤ α(2,−1), Dx ( f , (2,−1), τ,α) , ∅. Therefore, from Theorem 3.11,

Dx ( f , (2,−1), τ,α) = [2,6]

and thus,
Dx ( f , (2,−1), τ,β) = [3,5] ⊆ [2,6] = Dx ( f , (2,−1), τ,α)

From Theorem 3.15, as τ f (2,−1) ⊆ λ f (2,−1), Dx (g, (2,−1), τ,β) , ∅. Hence, from Theorem 3.11,

Dx (g, (2,−1), τ,β) = [0,4]
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and thus,

Dx (g, (2,−1),λ,β) =

[
4
3
,
8
3

]
⊆ [0,4] = Dx (g, (2,−1), τ,β)

Moreover, from Theorem 3.19, Dx (2 f , (2,−1), τ, |2|α) , ∅ and Dx (−g, (2,−1),λ, | −1|β) , ∅. Thereby, from Theorem 3.11,

Dx (2 f , (2,−1), τ, |2|α) = [4,12]

and

Dx (−g, (2,−1),λ, | −1|β) =

[
−

8
3
,−

4
3

]
Therefore,

2Dx ( f , (2,−1), τ,α) = 2[2,6] = [4,12] = Dx (2 f , (2,−1), τ, |2|α)

and

−Dx (g, (2,−1),λ,β) = −

[
4
3
,
8
3

]
=

[
−

8
3
,−

4
3

]
= Dx (−g, (2,−1),λ, | −1|β)

From Theorem 3.17, because ∅, κ f +g(2,−1)⊆ τ f (2,−1)∩λg(2,−1) and α(2,−1)+β(2,−1)≤ ε(2,−1), then Dx ( f + g, (2,−1), κ,ε),
∅. Hereby, from Theorem 3.11,

Dx ( f + g, (2,−1), κ,ε) =

[
−

71
4
,
119

4

]
and thus,

Dx ( f , (2,−1), τ,α) + Dx (g, (2,−1),λ,β) = [2,6] +
[

4
3 ,

8
3

]
=

[
10
3 ,

26
3

]
⊆

[
− 71

4 ,
119

4

]
= Dx ( f + g, (2,−1), κ,ε)

From Corollary 3.21, since ∅, κ f−g(2,−1)⊆ τ f (2,−1)∩λg(2,−1) and α(2,−1)+β(2,−1)≤ ε(2,−1), then Dx ( f −g, (2,−1), κ,ε),
∅. Herewith, from Theorem 3.11,

Dx ( f −g, (2,−1), κ,ε) =

[
−

87
4
,
103

4

]
and thus,

Dx ( f , (2,−1), τ,α)−Dx (g, (2,−1),λ,β) = [2,6]−
[

4
3 ,

8
3

]
=

[
− 2

3 ,
14
3

]
⊆

[
− 87

4 ,
103

4

]
= Dx ( f −g, (2,−1), κ,ε)

Besides, for the function h : R2→ R defined by h(x,y) = f (x,y) + 3x−5y, from Theorem 3.23, Dx(h, (2,−1), τ,α) , ∅. Hence,
from Theorem 3.11,

Dx(h, (2,−1), τ,α) = [5,9]

and thus,
Dx ( f , (2,−1), τ,α) + 3 = [2,6] + 3 = [5,9] = Dx(h, (2,−1), τ,α)

Note 3.26. For the functions f and τ in Example 3.25, (a,b) = (2,−1), and ε∗(2,−1) = 3
2 , Dx ( f , (2,−1), τ,ε∗) =

[
7
2 ,

9
2

]
and

Dy( f , (2,−1), τ,ε∗) = ∅. Similarly, for the function h : R2 → R defined by h(x,y) = 2x2 + y2, Dx (h, (2,−1), τ,ε∗) = ∅ and
Dy (h, (2,−1), τ,ε∗) =

[
− 5

2 ,−
3
2

]
. Hence, it is clear that the existence of partial soft derivative with respect to x does not require

the existence of partial soft derivative with respect to y and vice versa.

Note 3.27. As in classical analysis, for a function with the variables x and y, if taking the partial soft derivative with respect
to x, then y is fixed and vice versa. Thus, partial soft derivative turns into soft derivative. In other words, for a function
f : A× B→ R and (a,b) ∈ A× B, if L ∈ Dx ( f , (a,b), τ,ε), then L ∈ D (g,a, τ∗, ε∗) such that g : A→ R, τ∗ : R→ P (R), and
ε∗ : R→ R≥0 are three functions defined by g(x) = f (x,b), τ∗(x) = {x ∈ R : (x,b) ∈ τ(a,b)}, and ε∗(x) = ε(x,b), for all x ∈ A,
respectively. Similarly, for a function f : A×B→ R and (a,b) ∈ A×B, if L ∈ Dy ( f , (a,b), τ,ε), then L ∈ D (h,b, τ∗∗, ε∗∗) such
that h : B→ R, τ∗∗ : R→ P (R), and ε∗∗ : R→ R≥0 are three functions defined by h(y) = f (a,y), τ∗∗(y) = {y ∈ R : (a,y) ∈ τ(a,b)},
and ε∗∗(y) = ε(a,y), for all y ∈ B, respectively.
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In Theorems 3.28 and 3.29, the notations (A×B)◦ and (A×B)
′

denote the set of all the interior and accumulation points of
A×B according to the usual topology in R2, respectively.

Theorem 3.28. Let A×B ⊆ R2, f : A×B→ R be a function, and (a,b) ∈ (A×B)◦∩ (A×B)
′

. If fx(a,b) ∈ R, then there exist τ
and ε∗ such that Dx( f , (a,b), τ,ε∗) , ∅.

Proof. Let A×B ⊆ R2, f : A×B→ R be a function, (a,b) ∈ (A×B)◦∩ (A×B)
′

, and fx(a,b) ∈ R. Then, there exists an L ∈ R
such that

fx(a,b) = lim
x→a

f (x,b)− f (a,b)
x−a

= L

Therefore,

∀ε > 0,∃δε > 0 3
(
(x,b) ∈ B0((a,b), δε)∩A×B⇒

∣∣∣∣∣∣ f (x,b)− f (a,b)
x−a

−L

∣∣∣∣∣∣ ≤ ε
)

Thus,
∀ε > 0,∃δε > 0 3

(
(x,b) ∈ B0((a,b), δε)∩A×B⇒

∣∣∣ f (x,b)− f (a,b)−L(x−a)
∣∣∣ ≤ ε|x−a| ≤ εδε

)
Hence, for an ε > 0,

(x,b) ∈ τ f (a,b)⇒
∣∣∣ f (x,b)− f (a,b)−L(x−a)

∣∣∣ ≤ ε∗(a,b)

such that τ(a,b) = B0((a,b), δε) and ε∗(a,b) = εδε. Thereby, L ∈ Dx( f , (a,b), τ,ε∗). Consequently, Dx( f , (a,b), τ,ε∗) , ∅. �

Theorem 3.29. Let A×B ⊆ R2, f : A×B→ R be a function, and (a,b) ∈ (A×B)◦∩ (A×B)
′

. If fy(a,b) ∈ R, then there exist τ
and ε∗ such that Dy( f , (a,b), τ,ε∗) , ∅.

The proof is as in Theorem 3.28.

Remark 3.30. The geometric interpretation of the partial soft derivative of a function f with respect to x at a point (a,b) is the
tangent of the slope angle of the bandwidth 2ε bounded by two linear functions f (a,b) + L(x−a) +ε(a,b) and f (a,b) + L(x−
a)−ε(a,b) which contain the entire graph of z = f (x,b) on the set τx(a,b)∩Dom( f ). Similarly, the geometric interpretation of
the partial soft derivative of a function f with respect to y at a point (a,b) is the tangent of the slope angle of the bandwidth
2ε bounded by two linear functions f (a,b) + L(y−b) +ε(a,b) and f (a,b) + L(y−b)−ε(a,b) which contain the entire graph of
z = f (a,y) on the set τy(a,b)∩Dom( f ). For example, for the functions f , τ, and α and the point (2,−1) ∈ R2 in Example 3.25,
Dx ( f , (2,−1), τ,α) = [2,6]. Moreover, consider the following linear functions and ordered pairs:

for L = 2 ∈ [2,6],
g1(x) = f (2,−1) + L(x−2) +α(2,−1) = 2x + 5 A1 = (x,g1(x))

h1(x) = f (2,−1) + L(x−2)−α(2,−1) = 2x−1 B1 = (x,h1(x))

for L = 3 ∈ [2,6],
g2(x) = f (2,−1) + L(x−2) +α(2,−1) = 3x + 3 A2 = (x,g2(x))

h2(x) = f (2,−1) + L(x−2)−α(2,−1) = 3x−3 B2 = (x,h2(x))

for L = 4 ∈ [2,6],
g3(x) = f (2,−1) + L(x−2) +α(2,−1) = 4x + 1 A3 = (x,g3(x))

h3(x) = f (2,−1) + L(x−2)−α(2,−1) = 4x−5 B3 = (x,h3(x))

for L = 5 ∈ [2,6],
g4(x) = f (2,−1) + L(x−2) +α(2,−1) = 5x−1 A4 = (x,g4(x))

h4(x) = f (2,−1) + L(x−2)−α(2,−1) = 5x−7 B4 = (x,h4(x))

for L = 6 ∈ [2,6],
g5(x) = f (2,−1) + L(x−2) +α(2,−1) = 6x−3 A5 = (x,g5(x))

h5(x) = f (2,−1) + L(x−2)−α(2,−1) = 6x−9 B5 = (x,h5(x))

Then, it is clear that for all i ∈ I5 = {1,2,3,4,5} and for all (x,−1) ∈ τx(2,−1)∩R2, hi(x) ≤ f (x) ≤ gi(x) and the Euclidean

distance of the ordered pairs Ai = (x,gi(x)) and Bi = (x,hi(x)) is 2α such that |AiBi| =

√
(x− x)2 + (gi(x)−hi(x))2 = 6 = 2α.

Figures 3.1 and 3.2 show the graphs of the functions hi, f , and gi, for all i ∈ I5, on the set τx(2,−1)∩R2 from different
perspectives.
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Figure 3.1. Graphs of the functions hi, f , and gi, for all i ∈ I5, on the set τx(2,−1)∩R2

Figure 3.2. Graphs of the functions hi, f , and gi, for all i ∈ I5, on the set τx(2,−1)∩R2 (another perspective)

Besides, for all L ∈ Dx( f , (2,−1), τ,α) = [2,6], the pairs of all the linear functions h and g form two bundles of lines (see
Figure 3.3).

4. Conclusion
This study defined partial soft derivative and investigated some of its basic properties. This paper demonstrated that

• Every function with a partial soft derivative is bounded,

• Every bounded function has a partial soft derivative under certain conditions,

• A partial soft derivative of a function can be considered a soft derivative of the function (see Note 3.27), and
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Figure 3.3. Bundles of lines formed by the pairs of all the linear functions h and g, for all L ∈ [2,6]

• Every function with a classical partial derivative has a partial soft derivative under certain conditions

and investigated algebraic properties and the geometric interpretation of partial soft derivative. Moreover, it clarified the
theoretical section by examples and provided figures for the geometric interpretation. When the results herein are compared
with those of in the classical analysis, the following comments can be briefly made:

• While the classical partial derivative of a function (if any) is equal to a real number, the partial soft derivative of a function
(if any) is equal to a closed interval.

• While a bounded function does not always have a classical partial derivative, it has a partial soft derivative (see Theorems
3.8 and 3.10).

• While equality is valid for the sum rule in the partial derivative, inclusion is valid for the partial soft derivative. Similarly,
while equality holds for the difference rule in the partial derivative, inclusion holds for the partial soft derivative.

• Geometrically, while a tangent line is obtained in the partial derivative, two bundles of lines are obtained in the partial
soft derivative.

Partial soft derivative is a fundamental concept of soft analysis. Therefore, researchers can study this concept and its
applications. Moreover, the concepts of higher-order partial soft derivative and soft gradient, associated with partial soft
derivative, and the concept of directional soft derivative are also worth studying.
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tion at Çanakkale Onsekiz Mart University, Grant number: FDR-2022-4206.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and
ethical principles were followed and all the studies benefited from are stated in the bibliography.



Partial Soft Derivative — 26/26

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

References
[1] D. A. Molodtsov, Soft set theory – First results, Comput. Math. Appl., 37(4-5) (1999), 19–31.
[2] D. A. Molodtsov, Soft Set Theory, URSS, 2004. (In Russian)
[3] D. A. Molodtsov, A. A. Sokolov, D. V. Kovkov, Basic foundations of soft analysis, Nechetkie Sistemy i Myagkie

Vychisleniya, 2(1) (2007), 5–28. (In Russian)
[4] D. A. Molodtsov, Higher order derivatives in soft analysis, Nechetkie Sistemy i Myagkie Vychisleniya, 14(1) (2019),

34–55. (In Russian)
[5] D. A. Molodtsov, Principles of rational analysis – Continuity of functions, Nechetkie Sistemy i Myagkie Vychisleniya,

14(2) (2019), 126–141. (In Russian)
[6] D. A. Molodtsov, Principles of rational analysis – Derivatives and integrals, Nechetkie Sistemy i Myagkie Vychisleniya,

15(1) (2020), 5–25. (In Russian)
[7] S. Acharjee, D. A. Molodtsov, Soft rational line integral, Vestnik Udmurtskogo Universiteta, Matematika, Mekhanika,

Komp’yuternye Nauki, 31(4) (2021), 578–596.



Communications in Advanced Mathematical Sciences
Vol. 7, No. 1, 27-41, 2024

Research Article
e-ISSN: 2651-4001

DOI:10.33434/cams.1414411

On Suzuki−Proinov Type Contractions in Modular
b−Metric Spaces with an Application
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main theorem, and, as an application, we examine the existence of solutions to a class of functional equations
emerging in dynamic programming.
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1. Introduction and Preliminaries
The symbol N is used throughout the research to represent all positive natural numbers, whereas R+ represents the set of all

non-negative real numbers.
Fixed point theory is a significant mathematical technique that finds applications in various scientific research areas. This

theory has played a crucial role in creating several significant concepts and approaches and is an exciting area of ongoing study
and advancement, which acts as an intermediary connecting topology and analysis and is commonly used in pure and applied
mathematics. For the past several years, researchers in this field have been exploring potential applications of this field to a
wide range of physically relevant engineering challenges. On the other hand, the metric fixed point theory is very attractive on
account of the Banach Fixed Point Theorem or Banach Contraction Principle, which was conferred by S. Banach [1] in 1922.
In this theorem, there is an answer about the existence and uniqueness of fixed point of contraction mappings in the setting
of complete metric space. Further, many studies have been done to enhance this theorem’s impressiveness, and it underwent
several changes and generalizations as time progressed, see [2]-[5]. Simultaneously, in this direction, many authors try to obtain
a more general metric space structure and diverse contractive conditions or both of them. Herewith, many new topological
structures and contraction mappings have emerged. The notation of b-metric is one of the popular generalizations of the metric
function, which was depicted by Bakhtin [6] and mainly, Czerwik [7, 8] in 1993 and 1998, as noted below.
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Definition 1.1. [7] A function ρ : U×U→ R+ is a b−metric with τ ≥ 1 on a non−empty set U provided that the following
axioms hold, for all λ ,ζ ,z ∈U:

(ρ1) ρ (λ ,ζ ) = 0⇔ λ = ζ ,

(ρ2) ρ (λ ,ζ ) = ρ (ζ ,λ ) ,

(ρ3) ρ (λ ,ζ )≤ τ [ρ (λ ,z)+ρ (z,ζ )] .

Thereupon, we say that the pair (U,ρ) is a b−metric space, and, by choosing τ = 1, b−metric is reduced to ordinary metric.

Also, except for the continuity, other topological features of b−metric can be defined as in metric ones. For continuity, the
subsequent lemma can be a guide in b−metric.

Lemma 1.2. [9] Let (U,ρ) be a b−metric space with τ ≥ 1 and {λy} and {ζy} be convergent to λ and ζ , respectively. Then

1
τ2 ρ (λ ,ζ )≤ liminf

y→∞
ρ (λy,ζy)≤ limsup

y→∞

ρ (λy,ζy)≤ τ
2
ρ (λ ,ζ ) .

Especially, if λ = ζ , then lim
y→∞

ρ (λy,ζy) = 0. Also, for z ∈U, we have

1
τ

ρ (λ ,z)≤ liminf
y→∞

ρ (λy,z)≤ limsup
y→∞

ρ (λy,z)≤ τρ (λ ,z) .

On the other hand, in 2010, Chistyakov [10, 11] put forth a novel concept which is known as modular metric space.

Definition 1.3. [10, 11] A function µ : (0,∞)×U×U→ [0,∞], defined by µ (σ ,λ ,ζ ) = µσ (λ ,ζ ), is called a modular metric
on a non-void set U if it satisfies the below statements for all λ ,ζ ,z ∈U:

(µ1) µσ (λ ,ζ ) = 0 for all σ > 0⇔ λ = ζ ,

(µ2) µσ (λ ,ζ ) = µσ (ζ ,λ ) for all σ > 0,

(µ3) µσ+χ (λ ,ζ )≤ µσ (λ ,z)+µχ (z,ζ ) for all σ ,χ > 0.

If instead of (µ1), the condition

(µ ′1) µσ (λ ,λ ) = 0 for all σ > 0

is fulfilled, then µ is said to be a (metric) pseudomodular on U.
By using the constant τ ≥ 1, the axiom (µ3) is revised with the following one by M. E. Ege and C. Alaca [12], and in this

case, the function µ is entitled as modular b−metric:

(µ ′3) µσ+χ (λ ,ζ )≤ τ
[
µσ (λ ,z)+µχ (z,ζ )

]
for all σ ,χ > 0.

Consequently, the pair (U,µ) is a modular b−metric space, which denotes M[MS .
Note that the notation of modular b−metric and modular metric coincide when τ = 1. Also, considering modular b−metric

µ on U, a modular set is specified by

Uµ =
{

ζ ∈U : ζ
µ∼λ

}
,

where
µ∼ is a binary relation on U identified by λ ∼ ζ ⇔ lim

σ→∞
µσ (λ ,ζ ) = 0 for λ ,ζ ∈U. Moreover, the set

U∗µ = {λ ∈U : ∃σ = σ (λ )> 0 such that µσ (λ ,λ0)< ∞} (λ0 ∈U)

is mentioned as M[MS (around λ0).
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Example 1.4. [12] Consider the space

`p =

{
(λy)⊂ R :

∞

∑
j=1
|λy|p < ∞

}
0 < p < 1,

σ ∈ (0,∞) and µσ (λ ,ζ ) = d(λ ,ζ )
σ

such that

d (λ ,ζ ) =

(
∞

∑
j=1
|λy−ζy|p

) 1
p

, λ = λy, ζ = ζy ∈ `p.

Eventually, one can conclude that (U,µ) is an M[MS .

Example 1.5. [13] Consider the equality µσ (λ ,ζ ) = (ωσ (λ ,ζ ))s, where (U,ω) is a modular metric space and s ≥ 1.
Thereupon, take into Jensen inequality account, together with the convexity of the function P (λ ) = λ s for λ ≥ 0, we get

(a + b)s ≤ 2s−1 (as + bs)

for a,b ∈ R+. Hence, (U,µ) is an M[MS with τ = 2s−1.

Definition 1.6. [12] Let U∗µ be an M[MS and {λy}y∈N ∈U∗µ be a sequence.

(c1) The sequence {λy}y∈N is µ−convergent to λ ∈U∗µ ⇔ µσ (λy,λ )→ 0, as y→ ∞ for all σ > 0.

(c2) The {λy}y∈N in U∗µ is a µ−Cauchy sequence if lim
y,m→∞

µσ (λy,λm) = 0 for all σ > 0.

(c3) The space U∗µ is called µ−complete provided that any µ−Cauchy sequence in U∗µ is µ−convergent to the point of U∗µ .

(c4) P : U∗µ → U∗µ is a µ−continuous mapping if µσ (λy,λ )→ 0, provided to µσ (P λy,P λ )→ 0 as y→ ∞.

Further, for more detail on modular b−metric, see [14]-[17].
As an auxiliary function, the class of simulation functions (briefly, SF ) was identified by Khojasteh et al. [18] in 2015, as

noted below.

Definition 1.7. [18] Let Ξ : [0,∞)× [0,∞)→ R be a mapping. If the axioms

(Ξ1) Ξ(0,0) = 0,

(Ξ2) Ξ(`,k )< k − ` for all `,k > 0,

(Ξ3) if {`y}, {ky} are sequences in (0,∞) such that lim
y→∞

`y = lim
y→∞

ky > 0, then limsup
y→∞

Ξ(`y,ky)< 0

are fulfilled, then, Ξ is an SF , and Z represents the set of all SF . Also, note that, from (Ξ2), we have Ξ(`,`)< 0 for all
` > 0.

Definition 1.8. [18] A self-mapping P : U→U on a metric space (U,d) is called Z-contraction with respect to Ξ ∈ Z provided
that, for all λ ,ζ ∈U, the subsequent inequality hold:

Ξ(d (P λ ,P ζ ) ,d (λ ,ζ ))≥ 0.

Moreover, Banach contraction mapping can be expressed via SF Ξ ∈ Z for which Ξ(`,k ) = γk − ` for all `,k ∈ [0,∞) and
γ ∈ [0,1).

The following expression was used for the first time by Fulga and Proca [19] in 2017 and subsequently referred to as
E−contraction or E type contraction:

E (λ ,ζ ) = d (λ ,ζ )+ |d (λ ,P λ )−d (ζ ,P ζ )| , (1.1)

whenever (U,d) is a complete metric space and λ ,ζ ∈U. Also, some studies involve such contraction; see [20]-[22]. One of
them was presented by A. Fulga and E. Karapınar [23] via SF in 2018, as indicated below:



On Suzuki−Proinov Type Contractions in Modular b−Metric Spaces with an Application — 30/41

Theorem 1.9. [23] Let P be a self-mapping on a complete metric space (U,d). If there exists Ξ ∈ Z satisfying, for all λ ,ζ ∈U,

Ξ(d (P λ ,P ζ ) ,E (λ ,ζ ))≥ 0,

where E (λ ,ζ ) is defined as in (1.1), then P owns a fixed point.

In 2014, A.H. Ansari [24] proposed C−class functions as characterized in the subsequent definition.

Definition 1.10. [24] A continuous function A : [0,∞)× [0,∞)→ R is entitled C−class function if, for all `,k ∈ [0,∞), the
below statements hold:

(A1) A (`,k )≤ `;

(A2) A (`,k ) = ` implies that either `= 0 or k = 0.

Let C−class functions symbolize as C .

In 2018, Radenovic et al. [25] identified the idea of CA−SF by means of the C−class functions and SF .

Definition 1.11. [25] A mapping Ω : [0,∞)2→ R is referred to as CA−SF if the conditions

(Ω1) Ω(`,k )≤A (k , `) for all `,k > 0, where A : [0,∞)× [0,∞)→ R is a C−class functions,

(Ω2) if {`y} ,{ky} ∈ (0,∞) are sequences such that lim
y→∞

`y = lim
y→∞

ky > 0 and ky < `y, then limsup
y→∞

Ω(`y,ky)< CA

are provided.

Presume that Z ∗ symbolizes the family of all CA−SF .

Definition 1.12. [25] A mapping A : [0,∞)× [0,∞)→ R has the property CA , if CA ≥ 0 exists such that

(1) A (`,k )> CA implies ` > k ,

(2) A (`,`)≤ CA for all ` ∈ [0,∞).

The following theorem has a new precondition added to a contractive mapping and was proved by Suzuki [26] in 2009.
Herewith, many authors have mentioned this notation as a Suzuki-type contraction.

Theorem 1.13. [26] Let P : U → U be a self-mapping on a compact metric space (U,d). If, for all distinc λ ,ζ ∈ U, the
statement

1
2

d (λ ,P λ )< d (λ ,ζ )⇒ d (P λ ,P ζ )< d (λ ,ζ )

is hold, then, P owns a unique fixed point.

Very recently, Proinov [27] demonstrated a novel fixed point theorem by introducing some auxiliary functions, and
subsequently, via this theorem, many significant results were obtained.

Definition 1.14. [27] Let P : U→ U be a self mapping on a metric space (U,d) and F ,Q : (0,∞)→ R are two functions that
provide the following features:

(i) F is non-decreasing,

(ii) Q (s)< F (s) for all s > 0,

(iii) limsup
s→s0+

Q (s)< F (s0+) for any s0 > 0.

If, for all λ ,ζ ∈U and d (P λ ,P ζ )> 0, the inequality

F (d (P λ ,P ζ ))≤ Q (d (λ ,ζ ))

is fulfilled, then P is called Proinov type contraction.
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Theorem 1.15. [27] Let P : U→U be a Proinov type contraction on a complete metric space (U,m). Then, P admits a unique
fixed point.

Various fixed point results involving Proinov type contraction appear in the literature. Some examples are in [28]-[35].
In 2012, Samet et al. [36] introduced the class of α−admissible mappings, and subsequently, many new notations appear

via this mapping.

Definition 1.16. Let P ,S : U→ U be two mappings and α : U×U→ R be a function. Then, we have the following ideas.

(α1) [36] If α (λ ,ζ )≥ 1 implies α (P λ ,P ζ )≥ 1, then P is α−admissible,

(α2) [37] if α (λ ,P λ )≥ 1 implies α
(

P λ ,P 2ζ
)
≥ 1, then, P is α−orbital admissible,

(α3) [37] together with (α2), if α (λ ,ζ )≥ 1andα (ζ ,P ζ )≥ 1implyα (λ ,P ζ )≥ 1, then, P is triangular α−orbital admissible,

(α4) [38] together with (α1), if α (λ ,z)≥ 1 and α (z,ζ )≥ 1 imply α (λ ,ζ )≥ 1, then P is triangular α− admissible,

(α5) [39] together with (α4), if α (λ ,ζ )≥ 1 implies α (P λ ,Sζ )≥ 1 and α (SP λ ,PSζ )≥ 1, then, the pair (P ,S) is triangular
α−admissible.

Lemma 1.17. [37] Let P : U→ U be a triangular α−orbital admissible mapping. Assume that a λ0 ∈ U exists such that
α (λ0,P λ0)≥ 1. Construct a sequence {λy} by λy+1 = P λy. Then we have α (λy,λm)≥ 1 for all y,m ∈ N with y< m.

2. Main Results
Primarily, it is necessary to mention the below conditions to guarantee the existence and uniqueness of fixed points in

M[MS owing to not having to be finite.

(C1) µσ (λ ,P λ )< ∞ for all σ > 0 and λ ∈U∗µ ,

(C2) µσ (λ ,ζ )< ∞ for all σ > 0 and λ ,ζ ∈U∗µ .

Next, we establish a new contraction mapping by defining Suzuki−Proinov Z∗R
E∗(α)−contraction w.r.t Ω in the sense of

M[MS , as follows.

Definition 2.1. Let U∗µ be an M[MS with constant τ ≥ 1 and let P ,S : U∗µ → U∗µ and α : U∗µ ×U∗µ → R be mappings. Then,
we say that P and S are Suzuki−Proinov Z∗R

E∗(α)−contraction if there exists a CA−SF Ω ∈Z ∗ such that

1
2τ

min{µσ (λ ,P λ ),µσ (ζ ,Sζ )} ≤ µσ (λ ,ζ )

implies

Ω

(
α (λ ,ζ )F

(
τ

6
µσ (P λ ,Sζ )2

)
,Q (E∗ (λ ,ζ )R (λ ,ζ ))

)
≥ CA , (2.1)

where the functions F ,Q : (0,∞)→ R are hold the below requirement:

(c1) F is lower semi-continuous and non-decreasing;

(c2) Q (s)< F (s) for all s > 0;

(c3) limsup
s→s0+

Q (s)< F (s0+) for any s0 > 0,

and also,

E∗ (λ ,ζ ) = µσ (λ ,ζ )+ |µσ (λ ,P λ )−µσ (ζ ,Sζ )|

and

R (λ ,ζ ) =
µσ (λ ,P λ )µσ (λ ,Sζ )+ [µσ (λ ,ζ )]

2 +µσ (λ ,P λ )µσ (λ ,ζ )

µσ (λ ,P λ )+µσ (λ ,ζ )+µσ (λ ,Sζ )

for all distinct λ ,ζ ∈U∗µ , µσ (P λ ,Sζ )> 0 and for all σ > 0.
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Theorem 2.2. Let U∗µ be a µ−complete M[MS with constant τ ≥ 1 and P and S be a Suzuki−Proinov Z∗R
E∗(α)−contraction

w.r.t. Ω. Assume that the following conditions hold:

(i) the pair (P ,S) is triangular α−admissible,

(ii) there exists λ0 ∈U∗µ such that α (λ0,P λ0)≥ 1,

(iii) P ,S are µ−continuous,

(iv) there exists λ ,ζ ∈CFix(P ,S), where CFix (P ,S) represents set of common fixed points of P and S , such that α (λ ,ζ )≥ 1.

In case of satisfying (C1), there there exists λ ∗ ∈ U∗µ such that λ ∗ ∈ CFix (P ,S). Also, additionally, if (C2) is hold, then
CFix (P ,S) = {λ ∗}.

Proof. Let λ0 ∈U∗µ be a specified point such that α (λ0,P λ0)≥ 1. Construct an iterative sequence {λy}y∈N in Uµ
∗ such that

λ2y+1 = P λ2y and λ2y+2 = Sλ2y+1, for all y ∈ N.

On the other hand, regarding that (P ,S) is triangular α−admissible, we derive

α (λ0,λ1) = α (λ0,P λ0)≥ 1 ⇒

 α (P λ0,Sλ1) = α (λ1,λ2)≥ 1
and
α (SP λ0,PSλ1) = α (Sλ1,P λ2) = α (λ2,λ3)≥ 1.

Likewise, we get

α (λ2,λ3)≥ 1 ⇒

 α (P λ2,Sλ3) = α (λ3,λ4)≥ 1
and
α (SP λ2,PSλ3) = α (Sλ3,P λ4) = α (λ2,λ3)≥ 1.

Thereby, recursively, we conclude that

α (λ2y,λ2y+1)≥ 1. (2.2)

Also, if there is some y0 ∈ N such that λy0 = λy0+1, then CFix (P ,S) = {y0}. Thereupon, we presume that λk 6= λk+1 for all
k ∈ N, which indicates that µσ (λk,λk+1)> 0 for all σ > 0. Next, we assume that k = 2y for some y ∈ N. Because

1
2τ

min{µσ (λ2y,P λ2y),µσ (λ2y+1,Sλ2y+1)}= 1
2τ

min{µσ (λ2y,λ2y+1),µσ (λ2y+1,λ2y+2)}

≤ µσ (λ2y,λ2y+1),

from (2.1) and (Θ1), we have

CA ≤Ω

(
α (λ2y,λ2y+1)F

(
τ6µσ (P λ2y,Sλ2y+1)

2
)
,Q (E∗ (λ2y,λ2y+1)R (λ2y,λ2y+1))

)
= Ω

(
α (λ2y,λ2y+1)F

(
τ6µσ (λ2y+1,λ2y+2)

2
)
,Q (E∗ (λ2y,λ2y+1)R (λ2y,λ2y+1))

)
< A

(
Q (E∗ (λ2y,λ2y+1)R (λ2y,λ2y+1)) ,α (λ2y,λ2y+1)F

(
τ6µσ (λ2y+1,λ2y+2)

2
))

,

and by (c2), (2.2) and the properties CA , we yield

F
(

τ6µσ (λ2y+1,λ2y+2)
2
)
≤ α (λ2y,λ2y+1)F

(
τ6µσ (λ2y+1,λ2y+2)

2
)
< Q (E∗ (λ2y,λ2y+1)R (λ2y,λ2y+1))

< F (E∗ (λ2y,λ2y+1)R (λ2y,λ2y+1)) ,

(2.3)

where

E∗ (λ2y,λ2y+1) = µσ (λ2y,λ2y+1)+ |µσ (λ2y,P λ2y)−µσ (λ2y+1,Sλ2y+1)|

= µσ (λ2y,λ2y+1)+ |µσ (λ2y,λ2y+1)−µσ (λ2y+1,λ2y+2)|
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and

R (λ2y,λ2y+1) =
µσ(λ2y,P λ2y)µσ (λ2y,Sλ2y+1)+[µσ(λ2y,λ2y+1)]

2
+µσ(λ2y,P λ2y)µσ(λ2y,λ2y+1)

µσ(λ2y,P λ2y)+µσ(λ2y,λ2y+1)+µσ (λ2y,Sλ2y+1)

=
µσ(λ2y,λ2y+1)µσ (λ2y,λ2y+2)+[µσ(λ2y,λ2y+1)]

2
+µσ(λ2y,λ2y+1)µσ(λ2y,λ2y+1)

µσ(λ2y,λ2y+1)+µσ(λ2y,λ2y+1)+µσ (λ2y,λ2y+2)

=
µσ(λ2y,λ2y+1)[µσ (λ2y,λ2y+2)+µσ(λ2y,λ2y+1)+µσ(λ2y,λ2y+1)]

µσ(λ2y,λ2y+1)+µσ(λ2y,λ2y+1)+µσ (λ2y,λ2y+2)

= µσ (λ2y,λ2y+1) .

Denote µσ (λy,λy+1) by κy. Now, if max{κ2y,κ2y+1}= κ2y+1, then, we get E∗ (λ2y,λ2y+1) = κ2y+1 and R (λ2y,λ2y+1) =
κ2y. Thereupon, (2.3) turns into

F
(

κ
2
2y+1

)
≤ F

(
τ

6
κ

2
2y+1

)
< Q (κ2y+1.κ2y)< F (κ2y+1.κ2y) ,

such that, by utilizing the function F ’s characteristics, we conclude that κ2y+1 < κ2y. However, this contradicts our assumptions.
Thereby, we achieve max{κ2y,κ2y+1}= κ2y, which implies that E∗ (λ2y,λ2y+1) = 2κ2y−κ2y+1. Then, (2.3) becomes

F
(

κ
2
2y+1

)
≤ F

(
τ

6
κ

2
2y+1

)
< Q ((2κ2y−κ2y+1.)κ2y)< F ((2κ2y−κ2y+1.)κ2y) , (2.4)

by (c1), we obtain that

κ2
2y+1

< (2κ2y−κ2y+1.)κ2y ⇔ κ2
2y+1

< 2κ2
2y
−κ2yκ2y+1 < 2κ2

2y
−κ2

2y+1

⇔ 2κ2
2y+1

< 2κ2
2y

⇔ κ2y+1 < κ2y.

Likewise, one concludes that κ2y < κ2y−1. So, we say that that {κy}y∈N = {µσ (λy,λy+1)}y∈N is a non-increasing sequence
of non-negative real numbers. Also, a similar consequence can be obtained when k is an odd number. Then, there exists p≥ 0
such that lim

y→∞
κy = p. Assume on the contrary, we aim to show that p > 0. Then, by (2.4), we have

F
(

p2
)
≤ lim

y→∞
F
(

κ2
2y+1

)
< lim

y→∞
Q ((2κ2y−κ2y+1.)κ2y)< lim

y→∞
F ((2κ2y−κ2y+1.)κ2y) = F

(
p2
)
,

which emerges a contradiction, which means that, for all σ > 0,

lim
y→∞

µσ (λy,λy+1) = 0. (2.5)

Now, it is required to indicate {λy}y∈N is a µ−Cauchy sequence. Rather, presume that {λy}y∈N is not a µ−Cauchy sequence.
Then, for at least a ε > 0 and yh > mh > h whenever h ∈ N∪{0} and let yh be the smallest index such that the following
expressions are provided:

µσ

(
λ2mh ,λ2yh

)
≥ ε and µσ

(
λ2mh ,λ2yh−2

)
< ε, for all σ > 0. (2.6)

By using (2.5), (2.6) and (µ ′3), we yield

ε ≤ µ4σ

(
λ2mh ,λ2yh

)
≤ τµ2σ

(
λ2mh ,λ2mh+1

)
+ τ2µσ

(
λ2mh+1,λ2yh+2

)
+τ3µσ/2

(
λ2yh+2,λ2yh+1

)
+ τ3µσ/2

(
λ2yh+1,λ2yh

)
such that

limsup
h→∞

µσ

(
λ2mh+1,λ2yh+2

)
≥ ε

τ2 . (2.7)
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Also, we get

µσ

(
λ2mh ,λ2yh+1

)
≤ τµσ/2

(
λ2mh ,λ2yh−2

)
+ τ2µσ/4

(
λ2yh−2,λ2yh−1

)
+τ3µσ/8

(
λ2yh−1,λ2yh

)
+ τ3µσ/8

(
λ2yh ,λ2yh+1

)
.

(2.8)

Thereby, by taking the limit superior in (2.8) and using (2.5), we obtain that

limsup
h→∞

µσ

(
λ2mh ,λ2yh+1

)
≤ τε. (2.9)

Also, from the (2.5) and (2.6), we achieve that

µσ

(
λ2mh ,λ2yh+2

)
≤ τµσ/2

(
λ2mh ,λ2yh−2

)
+ τ2µσ/4

(
λ2yh−2,λ2yh−1

)
+τ3µσ/8

(
λ2yh−1,λ2yh

)
+ τ4µσ/16

(
λ2yh ,λ2yh+1

)
+ τ4µσ/16

(
λ2yh+1,λ2yh+2

)
and letting h → ∞, we attain

limsup
h→∞

µσ

(
λ2mh ,λ2yh+2

)
≤ τε. (2.10)

Furthermore, if yh > mh > h for sufficiently large h ∈ N, we assert

1
2τ

min
{

µσ

(
λ2yh ,P λ2yh

)
,µσ

(
λ2mh−1,Sλ2mh−1

)}
≤ µσ

(
λ2yh ,λ2mh−1

)
. (2.11)

Given the fact that, yh > mh and {µσ (λy,λy+1)}y≥1 is non-decreasing, we acquire

µσ

(
λ2yh ,P λ2yh

)
= µσ

(
λ2yh ,λ2yh+1

)
≤ µσ

(
λ2mh ,λ2mh+1

)
≤ µσ

(
λ2mh−1,λ2mh

)
= µσ

(
λ2mh−1,Sλ2mh−1

)
.

Hence,

1
2τ

min
{

µσ

(
λ2yh ,P λ2yh

)
,µσ

(
λ2mh−1,Sλ2mh−1

)}
=

1
2τ

µσ

(
λ2yh ,P λ2yh

)
=

1
2τ

µσ

(
λ2yh ,λ2yh+1

)
.

According to (2.5), there exists h1 ∈ N such that for any h > h1,

µσ

(
λ2yh ,λ2yh+1

)
<

ε

2τ
.

Also, there exists h2 ∈ N such that for any h > h2,

µσ

(
λ2mh−1,λ2mh

)
<

ε

2τ
.

Hence, for any h > max{h1,h2} and yh > mh > h , we get

ε ≤ µ2σ

(
λ2yh ,λ2mh

)
≤ τµσ

(
λ2yh ,λ2mh−1

)
+ τµσ

(
λ2mh−1,λ2mh

)
≤ τµσ

(
λ2yh ,λ2mh−1

)
+ τ

ε

2τ
.

So, one can conclude that
ε

2τ
≤ µσ

(
λ2yh ,λ2mh−1

)
.

Thus, we deduce that for any h > max{h1,h2} and yh > mh > h ,

µσ

(
λ2yh ,λ2yh+1

)
<

ε

2τ
≤ µσ

(
λ2yh ,λ2mh−1

)
which implies that (2.11) is hold. Also, by using that (P ,S) is triangular α−admissible pair, we can write α

(
λ2mh ,λ2yh+1

)
≥ 1.

Therefore, from (2.1), we conclude that

CA ≤Ω

(
α
(
λ2mh ,λ2yh+1

)
F
(

τ6µσ

(
P λ2mh ,Sλ2yh+1

)2
)
,Q
(

E∗
(
λ2mh ,λ2yh+1

)
R
(
λ2mh ,λ2yh+1

)))
= Ω

(
α
(
λ2mh ,λ2yh+1

)
F
(

τ6µσ

(
P λ2mh ,Sλ2yh+1

)2
)
,Q
(

E∗
(
λ2mh ,λ2yh+1

)
R
(
λ2mh ,λ2yh+1

)))
< A

(
Q
(

E∗
(
λ2mh ,λ2yh+1

)
R
(
λ2mh ,λ2yh+1

))
,α
(
λ2mh ,λ2yh+1

)
F
(

τ6µσ

(
P λ2mh ,Sλ2yh+1

)2
))

,
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and by the properties of CA and (c2), we deduce that

F
(

τ6µσ

(
P λ2mh ,Sλ2yh+1

)2
)
≤ α

(
λ2mh ,λ2yh+1

)
F
(

τ6µσ

(
P λ2mh ,Sλ2yh+1

)2
)

< Q
(

E∗
(
λ2mh ,λ2yh+1

)
R
(
λ2mh ,λ2yh+1

))
< F

(
E∗
(
λ2mh ,λ2yh+1

)
R
(
λ2mh ,λ2yh+1

))
,

(2.12)

where

E∗
(
λ2mh ,λ2yh+1

)
= µσ

(
λ2mh ,λ2yh+1

)
+
∣∣µσ

(
λ2mh ,P λ2mh

)
−µσ

(
λ2yh+1,Sλ2yh+1

)∣∣
= µσ

(
λ2mh ,λ2yh+1

)
+
∣∣µσ

(
λ2mh ,λ2mh+1

)
−µσ

(
λ2yh+1,λ2yh+2

)∣∣ (2.13)

and

R
(
λ2mh ,λ2yh+1

)
=

µσ

(
λ2mh

,P λ2mh

)
µσ

(
λ2mh

,Sλ2yh+1

)
+
[
µσ

(
λ2mh

,λ2yh+1

)]2
+µσ

(
λ2mh

,P λ2mh

)
µσ

(
λ2mh

,λ2yh+1

)
µσ

(
λ2mh

,P λ2mh

)
+µσ

(
λ2mh

,λ2yh+1

)
+µσ

(
λ2mh

,Sλ2yh+1

)

=
µσ

(
λ2mh

,λ2mh+1

)
µσ

(
λ2mh

,λ2yh+2

)
+
[
µσ

(
λ2mh

,λ2yh+1

)]2
+µσ

(
λ2mh

,λ2mh+1

)
µσ

(
λ2mh

,λ2yh+1

)
µσ

(
λ2mh

,λ2mh+1

)
+µσ

(
λ2mh

,λ2yh+1

)
+µσ

(
λ2mh

,λ2yh+2

) .

(2.14)

Next, letting h → ∞ in (2.12), (2.13) and (2.14), and also, by using (2.5), (2.7), (2.9) and (2.10), we acquire that

F
(
τ2ε2

)
= F

(
τ6
(

ε

τ2

)2
)
≤ limsup

y→∞

F
(

τ6µσ

(
P λ2mh ,Sλ2yh+1

)2
)

< limsup
y→∞

Q
(

E∗
(
λ2mh ,λ2yh+1

)
R
(
λ2mh ,λ2yh+1

))
< limsup

y→∞

F
(

E∗
(
λ2mh ,λ2yh+1

)
R
(
λ2mh ,λ2yh+1

))
≤ F

(
τε. (τε)2

τε+τε

)
= F

(
τ2ε2

2

)
.

This causes a contradictory, that is, {λy}y∈N is a µ−Cauchy sequence on a µ−complete M[MS . Thereby, a point λ ∗ exists in
U∗µ such that

lim
y→∞

λy = λ
∗. (2.15)

Considering the continuity of the mappings and (2.15), we get

P λ ∗ = P
(

lim
y→∞

λ2y

)
= lim

y→∞
P λ2y = lim

y→∞
λ2y+1 = λ ∗

= lim
y→∞

λ2y+2 = lim
y→∞

Sλ2y+1

= S
(

lim
y→∞

λ2y+1

)
= Sλ ∗.

Thereupon, we conclude that λ ∗ is a common fixed point of P and S . Finally, we prove that the point λ ∗ is unique. For this,
there is λ̂ , which is another common fixed point, such that λ ∗ 6= λ̂ . So, from the condition (iv), we deduce that α

(
λ ∗, λ̂

)
≥ 1.

Hence, since

0 =
1

2τ
min

{
µσ (λ ∗,P λ

∗) ,µσ

(
λ̂ ,S λ̂

)}
≤ µσ

(
λ
∗, λ̂
)
,
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by using (2.1) and (Θ1), we gain

CA ≤Ω

(
α

(
λ ∗, λ̂

)
F
(

τ6µσ

(
P λ ∗,S λ̂

)2
)
,Q
(

E∗
(

λ ∗, λ̂
)

R
(

λ ∗, λ̂
)))

= Ω

(
α

(
λ ∗, λ̂

)
F
(

τ6µσ

(
λ ∗, λ̂

)2
)
,Q
(

E∗
(

λ ∗, λ̂
)

R
(

λ ∗, λ̂
)))

< A

(
Q
(

E∗
(

λ ∗, λ̂
)

R
(

λ ∗, λ̂
))

,α
(

λ ∗, λ̂
)

F
(

τ6µσ

(
λ ∗, λ̂

)2
))

and by Definition 1.12 and (c2), we get

F
(

τ6µσ

(
λ ∗, λ̂

)2
)
≤ α

(
λ ∗, λ̂

)
F
(

τ6µσ

(
λ ∗, λ̂

)2
)
< Q

(
E∗
(

λ ∗, λ̂
)

R
(

λ ∗, λ̂
))

< F
(

E∗
(

λ ∗, λ̂
)

R
(

λ ∗, λ̂
))

,

(2.16)

where

E∗
(

λ
∗, λ̂
)
= µσ

(
λ
∗, λ̂
)
+
∣∣∣µσ (λ ∗,P λ

∗)−µσ

(
λ̂ ,S λ̂

)∣∣∣= µσ

(
λ
∗, λ̂
)

and

R
(

λ
∗, λ̂
)
=

µσ (λ ∗,P λ ∗)µσ

(
λ ∗,S λ̂

)
+
[
µσ

(
λ ∗, λ̂

)]2
+µσ (λ ∗,P λ ∗)µσ

(
λ ∗, λ̂

)
µσ (λ ∗,P λ ∗)+µσ

(
λ ∗, λ̂

)
+µσ

(
λ ∗,S λ̂

) =
µσ

(
λ ∗, λ̂

)
2

.

Consequently, considering the above equalities, the inequality (2.16) turns into

F
(

τ
6
µσ

(
λ
∗, λ̂
)2
)
< F

µσ

(
λ
∗, λ̂
)
.
µσ

(
λ ∗, λ̂

)
2

= F

µσ

(
λ ∗, λ̂

)2

2

 ,

which causes a contradiction. In turn, we achieve that λ ∗ = λ̂ , which means that CFix (P ,S) = {λ ∗}. This ends the proof.

3. Consequences
In this part of the study, we discuss some of the implications of the fundamental observation. Primarily, if the restriction

1
2τ

min{µσ (λ ,P λ ),µσ (ζ ,Sζ )} ≤ µσ (λ ,ζ )

is ignored, Theorem 2.2 yields the subsequent consequence.

Corollary 3.1. Let U∗µ be a µ−complete M[MS with τ ≥ 1, α : U∗µ ×U∗µ → R be a function and P ,S : U∗µ → U∗µ be two
self-mappings. Assume that the following assertions are true:

(i) there exists CA−SF Ω ∈Z ∗ such that

Ω

(
α (λ ,ζ )F

(
τ

6
µσ (P λ ,Sζ )2

)
,Q (E∗ (λ ,ζ )R (λ ,ζ ))

)
≥ CA ,

where F ,Q , E (λ ,ζ ) and R (λ ,ζ ) are defined as in Definition 2.1 for all distinct λ ,ζ ∈U∗µ , µσ (P λ ,Sζ )> 0 and for all
σ > 0,

(ii) the pair (P ,S) is triangular α−admissible and there exists λ0 ∈U∗µ such that α (λ0,P λ0)≥ 1,

(iii) P ,S are µ−continuous,
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(iv) there exist λ ,ζ ∈CFix(P ,S) such that α (λ ,ζ )≥ 1.

Under the conditions (C1) and (C2), λ ∗ ∈U∗µ exists such that CFix (P ,S) = {λ ∗}.
Moreover, take into α (λ ,ζ ) = 1 account in Corollary 3.1, the next result is determined.

Corollary 3.2. Let U∗µ be a µ−complete M[MS with τ ≥ 1 and P ,S : U∗µ → U∗µ be two self-mappings there exists CA−SF
Ω ∈Z ∗ such that

Ω

(
F
(

τ
6
µσ (P λ ,Sζ )2

)
,Q (E∗ (λ ,ζ )R (λ ,ζ ))

)
≥ CA ,

where F ,Q , E (λ ,ζ ) and R (λ ,ζ ) are defined as in Definition 2.1 for all distinct λ ,ζ ∈U∗µ , µσ (P λ ,Sζ )> 0 and for all σ > 0.
Thereupon, together with (C1) and (C2), we conclude that CFix (P ,S) = {λ ∗}.
Corollary 3.3. Let U∗µ be a µ−complete M[MS with a constant τ ≥ 1, α : U∗µ ×U∗µ →R be a function and P : U∗µ →U∗µ be a
self-mapping. Assume that the below requirements are met:

(i) there exists CA−SF Ω ∈Z ∗ such that

1
2τ

µσ (λ ,P λ )≤ µσ (λ ,ζ )

implies

Ω

(
α (λ ,ζ )F

(
τ

6
µσ (P λ ,P ζ )2

)
,Q (E∗ (λ ,ζ )R (λ ,ζ ))

)
≥ CA ,

where the functions F ,Q are as indicated in Definition 2.1 and also, E (λ ,ζ ) as in (1.1) and

R (λ ,ζ ) =
µσ (λ ,P λ )µσ (λ ,P ζ )+ [µσ (λ ,ζ )]

2 +µσ (λ ,P λ )µσ (λ ,ζ )

µσ (λ ,P λ )+µσ (λ ,ζ )+µσ (λ ,P ζ )

for all distinct λ ,ζ ∈U∗µ , µσ (P λ ,P ζ )> 0 and for all σ > 0,

(ii) P is a triangular α−orbital admissible mapping and there exists λ0 ∈U∗µ such that α (λ0,P λ0)≥ 1,

(iii) P is µ−continuous,

(iv) there exist λ ,ζ ∈ Fix(P ) such that α (λ ,ζ )≥ 1.

So, under the conditions (C1) and (C2), P has a unique fixed point.

Proof. Letting P = S in Theorem 2.2, and by Lemma 1.17, we achieve the desired results.

Corollary 3.4. Let U∗µ be a µ−complete M[MS with a constant τ ≥ 1, α : U∗µ ×U∗µ → R be a function and P ,S : U∗µ → U∗µ
be two self-mappings. Assume that the following assertions are true:

(i) there exists CA−SF Ω ∈Z ∗ such that

1
2τ

min{µσ (λ ,P λ ),µσ (ζ ,Sζ )} ≤ µσ (λ ,ζ )

implies

α (λ ,ζ )F
(

τ
6
µσ (P λ ,Sζ )2

)
≤ Q (E∗ (λ ,ζ )R (λ ,ζ )),

where F ,Q , E (λ ,ζ ) and R (λ ,ζ ) are defined as in Definition 2.1 for all distinct λ ,ζ ∈U∗µ , µσ (P λ ,Sζ )> 0 and for all
σ > 0;

(ii) the pair (P ,S) is triangular α−admissible and there exists λ0 ∈U∗µ such that α (λ0,P λ0)≥ 1,

(iii) P ,S are µ−continuous,

(iv) there exists λ ,ζ ∈CFix(P ,S) such that α (λ ,ζ )≥ 1.

Thereupon, CFix (P ,S) = {λ ∗} provided that (C1) and (C2) are met.

Proof. Letting CA−SF Ω ∈Z ∗ with the properties CA in Definition 1.12.

Remark 3.5. Note that all of the results can be again evaluated with respect to Ξ ∈ Z in place of CA−SF Ω ∈Z ∗. Besides,
as in Corollary 3.3, different results can be obtained when P = S .
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4. An Application to Dynamic Programming
We assume that Λ and Φ are Banach spaces, Σ ⊆ Λ and ϒ ⊆ Φ such that Σ and ϒ are state space and decision space,

respectively. Consider the system of functional equations:

q(λ ) = max
ζ∈ϒ

{ f (λ ,ζ )+G(λ ,ζ ,q(ξ (λ ,ζ )))} , λ ∈ Σ

where f : Σ×ϒ→ R and G : Σ×ϒ×R→ R are bounded, ξ : Σ×ϒ→ Σ. Let Uµ = B(Σ) denotes the space of all bounded
real-valued functions on Σ. Consider the metric defined by

µσ (ς ,ϖ) =
1
σ

max
λ∈Σ

|ς(λ )−ϖ(λ )|2, for all ς ,ϖ ∈ Λ and σ > 0.

Then, Uµ is a µ−complete M[MS with τ = 2. Moreover, let P : Uµ → Uµ be given by

P ς (λ ) = sup
ζ∈ϒ

{ f (λ ,ζ )+G(λ ,ζ ,ς (ξ (λ ,ζ )))} , (4.1)

where λ ∈ Σ and ς ∈Uµ . If the functions f and G are bounded, then Λ and Φ are well-defined.

Theorem 4.1. Let P : Uµ → Uµ be an operator defined by (4.1) and suppose that the following conditions are hold:

(i) f and G are bounded;

(ii) for ∀ς ,ϖ ∈Uµ , ∀λ ∈ Σ, ∀ζ ∈ ϒ, there exists δ ∈ (0,1) such that

|G(λ ,ζ ,ς (λ ))−G(λ ,ζ ,ϖ (λ ))|< δ
1/4 |ς (λ )−ϖ (λ )| .

Then, the function equation (4.1) has a bounded solution; that is, P has a fixed point.

Proof. Let ε ∈ R+ be arbitrary, λ ∈ Σ and ς ∈Uµ . Assume that P ς 6= ς . Then, ζ1,ζ2 ∈ ϒ exist such that

P ς (λ )< f (λ ,ζ1)+G(λ ,ζ1,ς (ξ (λ ,ζ1)))+ ε, (4.2)

ϖ (λ )< f (λ ,ζ2)+G(λ ,ζ2,ϖ (ξ (λ ,ζ1)))+ ε, (4.3)

P ς (λ )≥ f (λ ,ζ2)+G(λ ,ζ2,ς (ξ (λ ,ζ2))) , (4.4)

ϖ (λ )≥ f (λ ,ζ1)+G(λ ,ζ1,ϖ (ξ (λ ,ζ1))) . (4.5)

Then, from (4.2) and (4.5), we yield that

P ς (λ )−ϖ (λ )< G(λ ,ζ1,ς (ξ (λ ,ζ1)))−G(λ ,ζ1,ϖ (ξ (λ ,ζ1)))+ ε

≤ |G(λ ,ζ1,ς (ξ (λ ,ζ1)))−G(λ ,ζ1,ϖ (ξ (λ ,ζ1)))|+ ε

< δ 1/4 |ς (λ )−ϖ (λ )|+ ε.

Likewise, from (4.3) and (4.4), we get

ϖ (λ )−P ς (λ )< G(λ ,ζ2,ϖ (ξ (λ ,ζ2)))−G(λ ,ζ2,ς (ξ (λ ,ζ2)))+ ε

≤ |G(λ ,ζ2,ϖ (ξ (λ ,ζ2)))−G(λ ,ζ2,ς (ξ (λ ,ζ2)))|+ ε

< δ 1/4 |ς (λ )−ϖ (λ )|+ ε.
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Hence, by considering the above inequalities, we conclude that

|P ς (λ )−ϖ (λ )|< δ
1/4 |ς (λ )−ϖ (λ )|+ ε,

and, for an arbitrary ε

|P ς (λ )−ϖ (λ )| ≤ δ
1/4 |ς (λ )−ϖ (λ )| .

So, we have

µσ (P ς (λ ) ,ϖ (λ )) =
1
σ
|P ς (λ )−ϖ (λ )|2 ≤ 1

σ
δ

1/2|ς (λ )−ϖ (λ )|2 = δ
1/2

µσ (ς (λ ) ,ϖ (λ )) . (4.6)

Now, in Theorem 2.2, we take Ω(`,k ) = γk −` with γ ∈ (0,1), CA = 0 and A (`,k ) = `−k , and also, α (λ ,ζ ) = 1, F (s) = s,
Q (s) = s

2 and lastly S = I, which means that

E∗ (ς (λ ) ,ϖ (λ )) = µσ (ς (λ ) ,ϖ (λ ))+µσ (ς (λ ) ,P ς (λ ))

and

R (ς (λ ) ,ϖ (λ )) =
µσ (ς (λ ) ,ϖ (λ )) [2µσ (ς (λ ) ,P ς (λ ))+µσ (ς (λ ) ,ϖ (λ ))]

µσ (ς (λ ) ,P ς (λ ))+2µσ (ς (λ ) ,ϖ (λ ))
.

Thereby, by a simple calculation, Theorem 2.2 turns into

µσ (P ς (λ ) ,ϖ (λ ))2 ≤ γ

128 E∗ (ς (λ ) ,ϖ (λ ))R (ς (λ ) ,ϖ (λ ))

≤ γ

128 [µσ (ς (λ ) ,ϖ (λ ))+µσ (ς (λ ) ,P ς (λ ))µσ (ς (λ ) ,ϖ (λ ))] .

(4.7)

Consequently, from the inequality (4.6), we deduce that

µσ (P ς (λ ) ,ϖ (λ ))2 ≤ δ µσ (ς (λ ) ,ϖ (λ ))2

≤ δ [µσ (ς (λ ) ,ϖ (λ ))+µσ (ς (λ ) ,P ς (λ ))µσ (ς (λ ) ,ϖ (λ ))] ,

which means that, by taking δ = γ

128 ∈ (0,1), (4.7) is satisfied, that is, all the conditions of Theorem 2.2 are met. Thus, we gain
that P has a fixed point, i.e., the functional equation (4.1) has a bounded solution.
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[34] M. Zhou, X. Liu, N. Saleem, A. Fulga, N. Özgür, A new study on the fixed point sets of Proinov-type contractions via
rational forms, Symmetry, 14(1) (2022), 93.
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1. Introduction
Mersenne numbers, named after the French theologian, philosopher, mathematician, music theorist and priest Marin

Mersenne, who is known as the father of acoustics, in the first half of the 17th century, have an important place in number
theory and computer science. rth Mersenne number mr is stated by mr = 2r−1 with r ∈ N and N = {1,2,3, ...} and this is
called as the Binet formula of the Mersenne sequence.

The Mersenne numbers mr can be described by the recurrence relations

mr+2 = 3mr+1−2mr and
r

∑
s=1

ms = 2mr− r.

The first 10 terms of the Mersenne sequence are as follows:

1,3,7,15,31,63,127,255,511,1023 . . . .

There are prime and non-prime Mersenne numbers, and studies on Mersenne primes have held an important place in the
fields of number theory and computer science until today. It is known that if mr is prime, then r must be a prime, but the its
reverse is not true.

Now, we may give basic information about sequence spaces and summability theory. ω represents all real or complex
sequence’s space and each Γ ⊂ ω named as sequence space. The spaces `∞, c, c0 and `p (1 ≤ p < ∞) express the set
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of all bounded, convergent, null and convergent p-absolutely summable sequences’ well known spaces, respectively. The
spaces mentioned above are Banach spaces with ‖u‖`∞

= ‖u‖c = ‖u‖c0 = supr∈N |ur| and ‖u‖`p = (∑r |ur|p)
1
p , where ∑r |ur|=

∑
∞
r=1 |ur|. Moreover, every finite sequences’ space is represented by Ω and by cs, cs0 and bs, we mean the spaces of all

convergent, null and bounded series, respectively.
Banach spaces in which all coordinate functionals ts described with ts(u) = us are continuous are called BK-spaces.

Additionally, metric vector spaces in which all coordinate functionals are continuous are called FK-spaces.
Let e(1) = (1,0,0, . . .), e(2) = (0,1,0, . . .), e(3) = (0,0,1,0, . . .),. . .. If each u = (ur) ∈ Γ ⊂ ω can be expressed uniquely

as u = ∑r urer, in that case, it is said that the BK-space Γ holds the AK-property. The spaces `p (1 ≤ p < ∞) and c0 hold
AK-property however the spaces c and `∞ do not hold.

For an infinite matrix B = (brs) with real entries, Br represent the rth row for each r ∈ N. The B-transform of u = (us) ∈ ω

is described by (Bu)r = ∑s brsus provided that the series is convergent for each r ∈ N. If Bu ∈Ψ, in that case it is said that B
is a matrix transformation from Γ to Ψ for all u ∈ Γ. The class of every matrices transform Γ to Ψ is represented by (Γ : Ψ).
Matrix domain of B in Γ is described as

ΓB = {u ∈ ω : Bu ∈ Γ} . (1.1)

If Γ and Ψ are two sequence spaces, then the multiplier set D(Γ : Ψ) is described as

D(Γ : Ψ) =

{
x = (xr) ∈ ω : xu = (xrur) ∈Ψ for all (ur) ∈ Γ

}
.

In that case, α-, β - and γ-duals of Γ are described as Γα = D(Γ : `1), Γβ = D(Γ : cs) and Γγ = D(Γ : bs).
Sequences, their spaces and matrix domains have been seen as interesting topics in mathematics by the authors, and in recent

years, many studies have been done in this area. Researchers who want to get more detailed information about summability
theory, infinite matrices, sequences and their spaces, matrix domains and other related subjects can benefit from the studies
[1]-[10] and textbooks [11]-[13].

Special integer sequences have been used extensively in sequence space studies in recent years. In this context, the first
study done is the study with a tag [14] made by Başarır and Kara. After this study, some special integer sequences such as
Lucas, Padovan, Pell, Leanardo, Catalan, Bell, Schröder and Motzkin were used to define new sequence spaces in summability
theory. Researchers who want to get more detailed information about literature can benefit from the studies [15]-[25].

In parallel with the studies mentioned above, this article aims to construct a novel regular matrix operator µ obtained by the
aid of Mersenne sequence and examine sequence spaces described as the domain of µ in `p (1≤ p≤ ∞). It is investigated
algebraic and topological properties, established Schauder basis and stated α−, β− and γ−duals of the aforementioned spaces
and additionally, it is featured the matrix classes from new sequence spaces to the classical sequence spaces. At the end, it is
studied the compactness of matrix operators on related sequence spaces.

2. Mersenne Matrix Operator and Mersenne Sequence Spaces
It is described the Mersenne matrix operator generated with the help of the Mersenne numbers and it is observed that this

aforementioned matrix is regular. After that, we introduced the normed spaces `p(µ) and `∞(µ) and shown that these are
complete and linearly isomorphic to `p and `∞, respectively, for 1≤ p < ∞. Then, it is shown that except for the case p = 2,
`p(µ) is not a Hilbert space, it is established Schauder basis and to determine the location of the newly defined spaces among
the other spaces, it is given the inclusion relations at the end.

Now, we construct the Mersenne matrix operator µ = (µrs) with the help of Mersenne numbers as follows:

µrs :=


ms

2mr− r
, if 1≤ s≤ r,

0 , if s > r,

for all r,s ∈ N. The Mersenne matrix µ can be expressed more clearly in the following form:

µ :=



1 0 0 0 0 · · ·
1
4

3
4 0 0 0 · · ·

1
11

3
11

7
11 0 0 · · ·

1
26

3
26

7
26

15
26 0 · · ·

1
57

3
57

7
57

15
57

31
57 · · ·

...
...

...
...

...
. . .


.
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From its definition, we can understand that µ is a triangle. Moreover, µ-transform of a sequence u = (us) is stated as

νr := (µu)r =
1

2mr− r

r

∑
s=1

msus (r ∈ N). (2.1)

It is known that, an infinite matrix is named as regular if it maps any convergent sequence into a convergent sequence with
the same limit.

Lemma 2.1. An infinite matrix B is regular if and only if the following conditions hold:

(i) supr∈N ∑s |brs|< ∞,

(ii) limr→∞ ∑s brs = 1,

(iii) limr→∞ brs = 0.

Theorem 2.2. The Mersenne matrix µ is regular.

Proof. From the equality

∑
s
|µrs|= ∑

s
µrs =

r

∑
s=1

ms

2mr− r
= 1,

it is easily seen that the conditions (i) and (ii) hold. It is reached the validity of the condition (iii) from the equality

lim
r→∞

µrs = lim
r→∞

ms

2mr− r
= ms. lim

r→∞

1
2mr− r

= ms. lim
r→∞

1
2r+1− r−2

= 0.

Now, let us introduce the sets `p(µ) and `∞(µ) of all Mersenne p-absolutely convergent and Mersenne bounded sequences
by

`p(µ) =

{
u = (us) ∈ ω :

∞

∑
r=1

∣∣∣∣∣ 1
2mr− r

r

∑
s=1

msus

∣∣∣∣∣
p

< ∞

}
(1≤ p < ∞)

and

`∞(µ) =

{
u = (us) ∈ ω : sup

r∈N

∣∣∣∣∣ 1
2mr− r

r

∑
s=1

msus

∣∣∣∣∣< ∞

}
.

In that case, the sets `p(µ) can be rewritten as `p(µ) = (`p)µ for 1≤ p≤ ∞ with the notation (1.1). If Γ⊂ ω is normed, in that
case Γ(µ) is called as a Mersenne sequence space.

Unless otherwise stated in the following parts of the study, 1≤ p < ∞ will be assumed.
Wilansky [26] proved that, if B is triangle and Γ is BK-space, in that case the domain ΓB is BK-space too, with ‖u‖ΓB =

‖Bu‖Γ. Therefore, we are ready to give the theorem without proof regarding the BK-spaceness of the sets we just defined.

Theorem 2.3. `p(µ) and `∞(µ) are BK-spaces with

‖u‖`p(µ) =

(
∞

∑
r=1

∣∣∣∣∣ 1
2mr− r

r

∑
s=1

msus

∣∣∣∣∣
p) 1

p

and

‖u‖`∞(µ) = sup
r∈N

∣∣∣∣∣ 1
2mr− r

r

∑
s=1

msus

∣∣∣∣∣ ,
respectively.

Theorem 2.4. `p(µ) and `∞(µ) are linearly isomorphic to the spaces `p and `∞, respectively.
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Proof. Since, it can be shown similarly for the other spaces, the theorem will be proven only for the spaces `∞(µ) and `∞.
For the proof, it must be shown that there is a norm-preserving bijection between the aforementioned spaces. The linearity

of the function described for this purpose as A : `∞(µ)→ `∞, A (u) = µu can be seen immediately. Besides this, from the
proposition A (u) = 0⇒ u = 0, A is decided to be an injection.

By taking into account the sequences ν = (νs) ∈ `∞ and u = (us) ∈ ω whose terms are

us =
s

∑
i=s−1

(−1)s−i 2mi− i
ms

νi

with u1 = ν1 for all s≥ 2, we reach the surjectivity of A from the expression

(µu)r =
1

2mr− r

r

∑
s=1

msus

=
1

2mr− r

r

∑
s=1

ms

s

∑
i=s−1

(−1)s−i 2mi− i
ms

νi

= νr.

Additionally, since the relation ‖u‖`∞(µ) = ‖µu‖`∞
holds, then A keeps the norm.

Theorem 2.5. Except for the case p = 2, `p(µ) is not a Hilbert space.

Proof. If we consider that x = (1,1,− 4
7 ,0,0, . . .) and y = (1,− 5

3 ,
4
7 ,0,0, . . .), in that case it is obtain that µx = (1,1,0,0, . . .)

and µy = (1,−1,0,0, . . .) and

‖x+ y‖2
`p(µ)

+‖x− y‖2
`p(µ)

= 8 6= 22+ 2
p = 2

(
‖x‖2

`p(µ)
+‖y‖2

`p(µ)

)
.

Hence, the norm associated with the space `p(µ) for p 6= 2 doesn’t hold the parallelogram equality, which is desired result.

Consider the normed sequence space (Γ,‖.‖) and (ηr) ∈ Γ. In that case, (ηr) is Schauder basis for Γ if for any u ∈ Γ, there
is a unique scalars’ sequence (σr) as∥∥∥∥∥u−

r

∑
s=1

σsηs

∥∥∥∥∥−→ 0

as r→ ∞ and it is written as u = ∑s σsηs.
Now, it will be given the result that determines the Schauder basis of `p(µ). It is concluded that the inverse image of the

basis (e(r))r∈N of `p composes the basis of `p(µ) because the function A : `p(µ)→ `p described above is an isomorphism. In
this way, we can present the following theorem about the Schauder basis without proof.

Theorem 2.6. Let us consider the sequences σs = (µu)s and η(s) =
(

η
(s)
r

)
∈ `p(µ) described as

η
(s)
r :=


(−1)r−s 2ms− s

mr
, if r−1≤ s≤ r,

0 , otherwise.

In that case; the set η(s) is a basis for the space `p(µ) and the unique representation of any u ∈ `p(µ) is stated as u = ∑s σsη
(s)

for 1≤ p < ∞.

Theorem 2.7. The inclusion `p(µ)⊂ `p̃(µ) strictly holds for 1≤ p < p̃ < ∞.

Proof. Consider the sequence u = (us) ∈ `p(µ) such that µu ∈ `p. Furthermore, it is known that `p ⊂ `p̃ for 1≤ p < p̃ < ∞

and thus µu ∈ `p̃. Consequently, we can write u = (us) ∈ `p̃(µ).
The strictness of inclusion can be easily seen when ν̃ = µ ũ ∈ `p̃ \ `p is taken.

Theorem 2.8. The inclusion `∞ ⊂ `∞(µ) holds.
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Proof. By taking a sequence u = (us) ∈ `∞, from the inequality

‖u‖`∞(µ)
= sup

r∈N

∣∣∣∣∣ 1
2mr− r

r

∑
s=1

msus

∣∣∣∣∣
≤ ‖u‖

∞
sup
r∈N

∣∣∣∣∣ 1
2mr− r

r

∑
s=1

ms

∣∣∣∣∣
= ‖u‖

∞
< ∞,

it is reached that u ∈ `∞(µ), which is desired result.

Theorem 2.9. The inclusion `p ⊂ `p(µ) holds.

Proof. By taking a sequence u = (us) ∈ `p for 1 < p < ∞, from the inequality

∞

∑
r=1
|(µu)r|p ≤

∞

∑
r=1

(
r

∑
s=1

ms

2mr− r
|us|

)p

≤
∞

∑
r=1

(
r

∑
s=1

ms

2mr− r
|us|p

)(
r

∑
s=1

ms

2mr− r

)p−1

=
∞

∑
r=1

(
r

∑
s=1

ms

2mr− r
|us|p

)

=
∞

∑
s=1
|us|p

(
∞

∑
r=s

ms

2mr− r

)
,

we reach that ‖u‖p
`p(µ)

≤ N.‖u‖p
`p

for N = sups∈N

{
∑

∞
r=s

ms
2mr−r

}
. This implies that u ∈ `p(µ) and `p ⊂ `p(µ). It can be shown

that `1 ⊂ `1(µ) similarly.

3. Dual Spaces

It will be calculated duals of the spaces `p(µ) in the current part. Since, the following results related the duals can be seen
similar to the case 1 < p≤ ∞, the proofs of results involving the case p = 1 will be omitted. In the rest of the paper, unless
otherwise stated, q = p

p−1 will be assumed and F will represented the family of all finite subsets of N.
For the determination of duals, it may be given the following lemmas collected from the study [27] to characterize some

classical matrix classes:

Lemma 3.1. For 1 < p≤ ∞, B = (brs) ∈ (`p : `1) if and only if

sup
E∈F

∞

∑
s=1

∣∣∣∣∣∑r∈E
brs

∣∣∣∣∣
q

< ∞.

Lemma 3.2. For 1 < p < ∞, B = (brs) ∈ (`p : c) if and only if

lim
r→∞

brs exists for all s ∈ N, (3.1)

sup
r∈N

∞

∑
s=1
|brs|q < ∞. (3.2)
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Lemma 3.3. B = (brs) ∈ (`∞ : c) if and only if the conditions (3.1),

sup
r∈N

∞

∑
s=1
|brs|< ∞,

lim
r→∞

∞

∑
s=1

∣∣∣brs− lim
r→∞

brs

∣∣∣= 0

hold.

Lemma 3.4. B = (brs) ∈ (`p : `∞) if and only if (3.2) holds for 1 < p≤ ∞.

Theorem 3.5. Let us consider the set ϖ1 and the infinite matrix G = (grs) described by

ϖ1 =

{
τ = (τs) ∈ ω : sup

E∈F

∞

∑
s=1

∣∣∣∣∣∑r∈E
grs

∣∣∣∣∣
q

< ∞

}
and

grs :=


(−1)r−s 2ms− s

mr
τr , if r−1≤ s≤ r,

0 , otherwise.

In that case; [`p(µ)]
α = ϖ1 for 1 < p≤ ∞.

Proof. By using the equality (2.1), we obtain that

τrur = τr

(
r

∑
s=r−1

(−1)r−s 2ms− s
mr

νs

)

=
r

∑
s=r−1

(
(−1)r−s 2ms− s

mr
τr

)
νs = (Gν)r (3.3)

for all r ∈N. Hence, it is obtained by the relation (3.3) that τu = (τrur)∈ `1 when u∈ `p(µ) if and only if Gν ∈ `1 when ν ∈ `p.
In that case, it is reached the biconditional statement τ ∈ [`p(µ)]

α if and only if G ∈ (`p : `1). By taking into consideration the
condition of Lemma 3.1 with together G = (grs) in place of B = (brs), it is seen that [`p(µ)]

α = ϖ1 for 1 < p≤ ∞, which is
desired result.

Theorem 3.6. Let us consider the sets ϖ
(q)
2 , ϖ3 and ϖ4 by

ϖ
(q)
2 =

{
τ = (τs) ∈ ω :

∞

∑
s=1

∣∣∣∣(2ms− s)
(

τs

ms
− τs+1

ms+1

)∣∣∣∣q < ∞

}
,

ϖ3 =

{
τ = (τs) ∈ ω : sup

r∈N

∣∣∣∣2mr− r
mr

τr

∣∣∣∣< ∞

}
,

ϖ4 =

{
τ = (τs) ∈ ω : lim

r→∞

2mr− r
mr

τr = 0
}
.

In that case; [`p(µ)]
β = ϖ

(q)
2 ∩ϖ3 for 1 < p < ∞ and [`∞(µ)]

β = ϖ
(1)
2 ∩ϖ4.

Proof. Let us choose two sequences τ = (τs) ∈ ω and u ∈ `p(µ) such that ν ∈ `p with the relation (2.1). Then, we reach that

ψr =
r

∑
s=1

τsus =
r

∑
s=1

τs

(
s

∑
i=s−1

(−1)s−i 2mi− i
ms

νi

)

=
r−1

∑
s=1

(2ms− s)
(

τs

ms
− τs+1

ms+1

)
νs +

2mr− r
mr

τrνr

= (Oν)r (3.4)
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where the matrix O = (ors) is described as

ors :=


(2ms− s)

(
τs

ms
− τs+1

ms+1

)
, 1≤ s < r,

2mr− r
mr

τr , s = r,

0 , otherwise.

(3.5)

It can be checked that

lim
r→∞

ors = (2ms− s)
(

τs

ms
− τs+1

ms+1

)
. (3.6)

In that case, from the relation (3.4), it is infered that τu ∈ cs whenever u = (us) ∈ `p(µ) if and only if ψ = (ψr) ∈ c when
ν ∈ `p. Thus, τ ∈ [`p(µ)]

β if and only if O ∈ (`p : c) for 1 < p < ∞. Hence, in view of (3.4), (3.6) and the conditions of Lemma
3.2, it is reached that

∞

∑
s=1

∣∣∣∣(2ms− s)
(

τs

ms
− τs+1

ms+1

)∣∣∣∣q < ∞ and sup
r∈N

∣∣∣∣2mr− r
mr

τr

∣∣∣∣< ∞

which is desired result.
It can be shown similarly for the case p = ∞ by the aid of Lemma 3.3 and the relations (3.4) and (3.6).

Theorem 3.7. For 1 < p≤ ∞, [`p(µ)]
γ = ϖ

(q)
2 ∩ϖ4.

Proof. It can be obtained with similar approach in the proof of the Theorem 3.6 by considering with together the Lemma 3.4
with the matrix O = (ors) described by (3.5).

4. Matrix Transformations
Current part aims to present the matrix classes (`p(µ) : Ψ), where Ψ ∈ (`∞,c,c0) and 1≤ p≤ ∞. For brevity, we take

φrs = (2ms− s)
(

brs

ms
−

br,s+1

ms+1

)
(4.1)

in the rest for infinite matrices Φ = (φrs) and B = (brs) and r,s ∈ N.
Consider that u and ν with the relation (2.1). In that case, it is reached that

n

∑
s=1

brsus =
n−1

∑
s=1

φrsνs +
2mn−n

mn
brnνn. (4.2)

Now, it may be given the following conditions to characterize new matrix classes:

(
2ms− s

ms
brs

)∞

s=1
∈ `∞ for all r ∈ N, (4.3)

sup
r,s∈N
|φrs|< ∞, (4.4)

sup
r∈N

∞

∑
s=1
|φrs|q < ∞, (4.5)(

2ms− s
ms

brs

)∞

s=1
∈ c0 for all r ∈ N, (4.6)

lim
r→∞

φrs exists for all s ∈ N, (4.7)

lim
r→∞

∞

∑
s=1
|φrs−ρs|= 0 for all s ∈ N and (ρs) ∈ ω, (4.8)

lim
r→∞
|φrs|= 0 for all s ∈ N. (4.9)

In that case; from the conditions of the matrix classes in [27] with together Theorem 3.6 and the relation (4.2), it may be given
the following results:
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Theorem 4.1. The following statements hold:

(i) B = (brs) ∈ (`1(µ) : `∞) if and only if (4.3) and (4.4) hold.

(ii) B = (brs) ∈ (`1(µ) : c) if and only if (4.3), (4.4) and (4.7) hold.

(iii) B = (brs) ∈ (`1(µ) : c0) if and only if (4.3), (4.4) and (4.9) hold.

Theorem 4.2. For 1 < p < ∞, the following statements hold:

(i) B = (brs) ∈ (`p(µ) : `∞) if and only if (4.3) and (4.5) hold.

(ii) B = (brs) ∈ (`p(µ) : c) if and only if (4.3), (4.5) and (4.7) hold.

(iii) B = (brs) ∈ (`p(µ) : c0) if and only if (4.3), (4.5) and (4.9) hold.

Theorem 4.3. The following statements hold:

(i) B = (brs) ∈ (`∞(µ) : `∞) if and only if (4.5) and (4.6) hold with q = 1.

(ii) B = (brs) ∈ (`∞(µ) : c) if and only if (4.5), (4.6), (4.7) and (4.8) hold with q = 1.

(iii) B = (brs) ∈ (`∞(µ) : c0) if and only if (4.6) and (4.8) hold for ρs = 0 and s ∈ N.

5. Compactness by Hausdorff Measure of Non-compactness

This part aims to acquire the necessary and sufficient conditions for an operator to be compact from `p(µ) to the space Ψ,
where 1≤ p≤ ∞ and Ψ ∈ {c0,c, `∞, `1,cs0,cs,bs}.

For a normed space Γ, DΓ represents the unit sphere in Γ. It is used the notation

‖u‖�Γ = sup
x∈DΓ

∣∣∣∣∑
s

usxs

∣∣∣∣
for a BK-space Γ⊃Ω and u = (us) ∈ ω , where Ω represents all finite sequences’s space and it is assumed that the series above
is exists and then it is reached that u ∈ Γβ .

Lemma 5.1. [28] The following statements hold:

(i) `
β
∞ = cβ = cβ

0 = `1 and ‖u‖�
Γ
= ‖u‖`1 for all u ∈ `1 and Γ ∈ {`∞,c,c0}.

(ii) `
β

1 = `∞ and ‖u‖�`1
= ‖u‖`∞

for all u ∈ `∞.

(iii) `
β
p = `q and ‖u‖�`p

= ‖u‖`q for all u ∈ `q.

The set B(Γ : Ψ) represents all bounded (continuous) linear operators’ set from Γ to Ψ.

Lemma 5.2. [28] Let Γ and Ψ are the BK-spaces. In that case, for all B∈ (Γ : Ψ), there exists a linear operator LB ∈B(Γ : Ψ)
as LB(u) = Bu for every u ∈ Γ.

Lemma 5.3. [28] Consider that Γ⊃Ω is a BK-space. If B ∈ (Γ : Ψ), in that case ‖LB‖= ‖B‖(Γ:Ψ) = supr∈N ‖Br‖�Γ < ∞.

Let us consider a metric space Γ and A⊂ Γ is bounded. The Hausdorff measure of non-compactness of A is represented
with χ(A) and it is described by

χ(A) = inf
{

ε > 0 : A⊂ ∪r
j=1A(u j,n j),u j ∈ Γ,n j < ε,r ∈ N

}
,

where A(u j,n j) is the open ball centred at u j and radius n j for each j = 1,2, ...,r. Researchers who want to get more detailed
information about Hausdorff measure of non-compactness can benefit from [28] and its references.

Theorem 5.4. [29] Let A⊂ `p is bounded and the operator λn : `p −→ `p described as λn(u) = (u1,u2,u3, ...,un,0,0, ...) for
every u = (us) ∈ `p, 1≤ p < ∞ and each n ∈ N. In that case, for the identity operator I on `p, it is reached that

χ(A) = lim
n→∞

(
sup
u∈A
‖(I−λn)(u)‖`p

)
.
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For the Banach spaces Γ and Ψ, a linear operator L : Γ→Ψ is named as compact operator if domain of L is whole of
Γ and L (A) is totally bounded set in Ψ for all u = (us) ∈ `∞ ∩Γ. Equivalently, L is compact if (L (u)) has a convergent
subsequence in Ψ for all u = (us) ∈ `∞∩Γ.

Let ‖L ‖χ represents Hausdorff measure of non-compactness of L and it is described by ‖L ‖χ = χ(L (DΓ)). The
notions Hausdorff measure of non-compactness and compact operators have a distinct relationship of ”L is compact if and
only if ‖L ‖χ = 0”.

Readers can use the studies [30, 31, 32, 33, 34, 35] for sequence space studies where Hausdorff measure of non-compactness
is used to determine compact operators between BK-spaces.

Lemma 5.5. [30] Let Γ⊃Ω is BK-space. In that case:

(i) If B ∈ (Γ : c0), then ‖LB‖χ = limsupr ‖Br‖�Γ and LB is compact if and only if limr ‖Br‖�Γ = 0.

(ii) If Γ has AK property or Γ = `∞ and B ∈ (Γ : c), then

1
2

limsup
r
‖Br−κ‖�Γ ≤ ‖LB‖χ ≤ limsup

r
‖Br−κ‖�Γ

and LB is compact if

lim
r
‖Br−κ‖�Γ = 0

where κ = (κs) and κs = limr brs.

(iii) If B ∈ (Γ : `∞), then 0≤ ‖LB‖χ ≤ limsupr ‖Br‖�Γ and LB is compact if limr ‖Br‖�Γ = 0.

(iv) If B ∈ (Γ : `1), then

lim
j

(
sup

E∈F j

∥∥∥∥∥∑
r∈E

Br

∥∥∥∥∥
�

Γ

)
≤ ‖LB‖χ ≤ 4. lim

j

(
sup

E∈F j

∥∥∥∥∥∑
r∈E

Br

∥∥∥∥∥
�

Γ

)

and LB is compact if and only if lim j

(
supE∈F j

‖∑r∈E Br‖�Γ
)
= 0, where F represents the family of all finite subsets of

N and F j is the subcollection of F consisting of subsets of N with elements that are greater than j.

In the sequel of the study, it is used the matrices Φ = (φrs) and B = (brs) connected with the relation (4.1).

Lemma 5.6. Let Ψ⊂ ω . If B ∈ (`p(µ) : Ψ), then Φ ∈ (`p : Ψ) and Bu = Φν hold for all u ∈ `p(µ) and 1≤ p≤ ∞.

Theorem 5.7. Let 1 < p < ∞. In that case:

(i) If B ∈ (`p(µ) : c0), then ‖LB‖χ = limsupr (∑s |φrs|q)
1
q and LB is compact if and only if limr (∑s |φrs|q)

1
q = 0.

(ii) If B ∈ (`p(µ) : c), then

1
2

limsup
r

(
∑
s
|φrs−as|q

) 1
q

≤ ‖LB‖χ ≤ limsup
r

(
∑
s
|φrs−as|q

) 1
q

and LB is compact if and only if limr (∑s |φrs−as|q)
1
q = 0, where as = limr φrs.

(iii) If B ∈ (`p(µ) : `∞), then 0≤ ‖LB‖χ ≤ limsupr (∑s |φrs|q)
1
q and LB is compact if limr (∑s |φrs|q)

1
q = 0.

(iv) If B∈ (`p(µ) : `1), then lim j ‖B‖( j)
(`p(µ):`1)

≤‖LB‖χ ≤ 4. lim j ‖B‖( j)
(`p(µ):`1)

and LB is compact if and only if lim j ‖B‖( j)
(`p(µ):`1)

=

0, where ‖B‖( j)
(`p(µ):`1)

= supE∈F j
(∑s |∑r∈E φrs|q)

1
q .
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Proof. (i) Let B ∈ (`p(µ) : c0). It is seen that

‖Br‖�`p(µ)
= ‖Φr‖�`p

= ‖Φr‖`q
=

(
∑
s
|φrs|q

) 1
q

.

Thus, in view of Lemma 5.5-(i), it is reached that

‖LB‖χ = limsup
r
‖Br‖�`p(µ)

= limsup
r

(
∑
s
|φrs|q

) 1
q

and LB is compact if limr (∑s |φrs|q)
1
q .

(ii) Let B ∈ (`p(µ) : c). In that case, Φ ∈ (`p : c) by Lemma 5.6. From Lemma 5.1-(iii) it is concluded that

‖Φr−a‖�`p
= ‖Φr−a‖`q =

(
∑
s
|φrs−as|q

) 1
q

. (5.1)

By the aid of the Lemma 5.5-(ii), it is reached that

1
2

limsup
r
‖Φr−a‖�`p

≤ ‖LB‖χ ≤ limsup
r
‖Φr−a‖�`p

. (5.2)

Then, considering (5.1) and (5.2) together, it is obtained that

1
2

limsup
r

(
∑
s
|φrs−as|q

) 1
q

≤ ‖LB‖χ ≤ limsup
r

(
∑
s
|φrs−as|q

) 1
q

.

Moreover, it is seen by Lemma 5.5-(ii) that LB is compact if and only if

lim
r

(
∑
s
|φrs−as|q

) 1
q

= 0.

(iii) This proof can be made analogous to that of (i) and (ii) considering Lemma 5.5-(iii).
(iv) It is reached that

‖∑
r∈E

Br‖�`p(µ)
= ‖∑

r∈E
Φr‖�`p

= ‖∑
r∈E

Φr‖�`q
=

(
∑
s

∣∣∣∣∣∑r∈E
φrs

∣∣∣∣∣
q) 1

q

.

Let B ∈ (`p(µ) : `1), then by Lemma 5.6, Φ ∈ (`p : `1) holds. In that case, by taking account the Lemma 5.5-(iv), it is
concluded that

lim
j

(
sup

E∈F j
∑
s

∣∣∣∣∣∑r∈E
φrs

∣∣∣∣∣
q) 1

q

≤ ‖LB‖χ ≤ 4. lim
j

(
sup

E∈F j
∑
s

∣∣∣∣∣∑r∈E
φrs

∣∣∣∣∣
q) 1

q

and LB is compact if and only if

lim
j

(
sup

E∈F j
∑
s

∣∣∣∣∣∑r∈E
φrs

∣∣∣∣∣
q) 1

q

= 0.

Lemma 5.8. [30] Let Γ⊃Ω is BK-space and

‖B‖[r]
(Γ:bs) =

∥∥∥∥∥ r

∑
n=1

Bn

∥∥∥∥∥
�

Γ

.

In that case:

(i) If B ∈ (Γ : cs0), then ‖LB‖χ = limsupr ‖B‖
[r]
(Γ:bs) and LB is compact if and only if limr ‖B‖[r](Γ:bs) = 0.
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(ii) If Γ has AK and B ∈ (Γ : cs), in that case

1
2

limsup
r

∥∥∥∥∥ r

∑
n=1

Bn−ξ

∥∥∥∥∥
�

Γ

≤ ‖LB‖χ ≤ limsup
r

∥∥∥∥∥ r

∑
n=1

Bn−ξ

∥∥∥∥∥
�

Γ

and LB is compact if and only if limr ‖∑
r
n=1 Bn−ξ‖�

Γ
= 0, where ξ = ξs with ξs = limr→∞ ∑

r
n=1 bns for each s ∈ N.

(iii) If B ∈ (Γ : bs), then 0≤ ‖LB‖χ
≤ limsupr ‖B‖

[r]
(Γ:bs) and LB is compact if limr ‖B‖[r](Γ:bs) = 0.

Theorem 5.9. Let 1 < p < ∞. In that case:

(i) If B ∈ (`p(µ) : cs0), then ‖LB‖χ = limsupr (∑s |∑r
n=1 φrs|q)

1
q and LB is compact if and only if limr (∑s |∑r

n=1 φrs|q)
1
q = 0.

(ii) If B ∈ (`p(µ) : cs), then

1
2

limsup
r

(
∑
s

∣∣∣∣∣ r

∑
n=1

φns− ãs

∣∣∣∣∣
q) 1

q

≤ ‖LB‖χ ≤ limsup
r

(
∑
s

∣∣∣∣∣ r

∑
n=1

φns− ãs

∣∣∣∣∣
q) 1

q

and LB is compact if and only if limr (∑s |∑r
n=1 φns− ãs|q)

1
q = 0, where ã = (ãs) and ãs = limr ∑

r
n=1 φns.

(iii) If B ∈ (`p(µ) : bs), then

0≤ ‖LB‖χ ≤ limsup
r

(
∑
s

∣∣∣∣∣ r

∑
n=1

φns

∣∣∣∣∣
q) 1

q

and LB is compact if limr (∑s |∑r
n=1 φns|q)

1
q = 0.

Proof. (i) It is clear that∥∥∥∥∥ r

∑
n=1

Bn

∥∥∥∥∥
�

`p(µ)

=

∥∥∥∥∥ r

∑
n=1

Φn

∥∥∥∥∥
�

`p

=

∥∥∥∥∥ r

∑
n=1

φns

∥∥∥∥∥
�

`q

=

(
∑
s

∣∣∣∣∣ r

∑
n=1

φns

∣∣∣∣∣
q) 1

q

.

Hence, by using Lemma 5.8-(i), it is obtained that ‖LB‖χ = limsupr (∑s |∑r
n=1 φns|q)

1
q and LB is compact if and only if

limr (∑s |∑r
n=1 φns|q)

1
q .

(ii) We have∥∥∥∥∥ r

∑
n=1

Φn− ã

∥∥∥∥∥
�

`p

=

∥∥∥∥∥ r

∑
n=1

Φn− ã

∥∥∥∥∥
`q

=

(
∑
s

∣∣∣∣∣ r

∑
n=1

φns− ã

∣∣∣∣∣
q) 1

q

. (5.3)

If B ∈ (`p(µ) : cs), in that case by Lemma 5.6, it is reached that Φ ∈ (`p : cs). In that case, by the aid of the Lemma 5.8-(b), it
is deduced that

1
2

limsup
r

∥∥∥∥∥ r

∑
n=1

Φn− ã

∥∥∥∥∥
�

`p

≤ ‖LB‖χ ≤ limsup
r

∥∥∥∥∥ r

∑
n=1

Φn− ã

∥∥∥∥∥
�

`p

,

which on using (5.3) gives us

1
2

limsup
r

(
∑
s

∣∣∣∣∣ r

∑
n=1

φns− ã

∣∣∣∣∣
q) 1

q

≤ ‖LB‖χ ≤ limsup
r

(
∑
s

∣∣∣∣∣ r

∑
n=1

φns− ã

∣∣∣∣∣
q) 1

q

and also, LB is compact if and only if limr (∑s |∑r
n=1 φns− ãs|q)

1
q = 0.

(iii) It can be done similarly to the proof of the first part, considering Lemma 5.8-(iii).

Theorem 5.10. (i) If B ∈ (`∞(µ) : c0), in that case ‖LB‖χ = limsupr ∑s |φrs| and LB is compact if limr ∑s |φrs|= 0.
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(ii) If B ∈ (`∞(µ) : c), then

1
2

limsup
r

(
∑
s
|φrs−as|

)
≤ ‖LB‖χ ≤ limsup

r

(
∑
s
|φrs−as|

)
and LB is compact if and only if limr (∑s |φrs−as|) = 0.

(iii) If B ∈ (`∞(µ) : `∞), in that case 0≤ ‖LB‖χ ≤ limsupr ∑s |φrs| and LB is compact if limr ∑s |φrs|= 0.

(iv) If B∈ (`∞(µ) : `1), then lim j ‖B‖( j)
(`∞(µ):`1)

≤‖LB‖χ ≤ 4. lim j ‖B‖( j)
(`∞(µ):`1)

and LB is compact if and only if lim j ‖B‖( j)
(`∞(µ):`1)

=

0, where ‖B‖( j)
(`∞(µ):`1)

= supE∈F j
(∑s |∑r∈E φrs|) for all j ∈ N.

Proof. It can be obtained in a similar way to the proof of Theorem 5.7. So, it is omitted.

Theorem 5.11. (i) If B∈ (`1(µ) : c0), in that case ‖LB‖χ = limsupr (sups |φrs|) and LB is compact if and only if limr (sups |φrs|)=
0.

(ii) If B ∈ (`1(µ) : c), in that case

1
2

limsup
r

(
sup

s
|φrs−as|

)
≤ ‖LB‖χ ≤ limsup

r

(
sup

s
|φrs−as|

)
and LB is compact if and only if limr (sups |φrs−as|) = 0.

(iii) If B ∈ (`1(µ) : `∞), in that case 0≤ ‖LB‖χ ≤ limsupr (sups |φrs|) and LB is compact if limr (sups |φrs|) = 0.

Proof. It can be acquired in a analogous procedure of Theorem 5.7. Thence, it is omitted, too.

Article Information
Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for

their helpful comments and suggestions.

Author’s contributions: All authors contributed equally to the writing of this paper. All authors read and approved the
final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under
the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for
this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and
ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

References
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[2] T. Yaying, B. Hazarika, M. İlkhan, M.Mursaleen, Poisson like matrix operator and its application in p−summable space,

Math. Slovaca, 71(5) (2021), 1189-1210.
[3] T. Yaying, On Λ-Fibonacci difference sequence spaces of fractional order, Dera Natung Government College Research

Journal, 6(1) (2021), 92-102. https://doi.org/10.56405/dngcrj.2021.06.01.10
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[23] M. İlkhan, A new conservative matrix derived by Catalan numbers and its matrix domain in the spaces c and c0, Linear

and Multilinear Algebra, https://doi.org/10.1080/03081087.2019.1635071
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1. Introduction
The famous Young inequality for scalars says that if a, b > 0 and ν ∈ [0,1], then

a1−ν bν ≤ (1−ν)a+νb (1.1)

with equality if and only if a = b. The inequality (1.1) is also called ν-weighted arithmetic-geometric mean inequality.
We recall that Specht’s ratio is defined by [1]

S (h) :=


h

1
h−1

e ln
(

h
1

h−1

) if h ∈ (0,1)∪ (1,∞)

1 if h = 1.

(1.2)

It is well known that limh→1 S (h) = 1, S (h) = S
( 1

h

)
> 1 for h > 0, h 6= 1. The function is decreasing on (0,1) and increasing

on (1,∞) .
The following inequality provides a refinement and a multiplicative reverse for Young’s inequality

S
((a

b

)r)
a1−ν bν ≤ (1−ν)a+νb≤ S

(a
b

)
a1−ν bν , (1.3)

where a, b > 0, ν ∈ [0,1], r = min{1−ν ,ν}.
The second inequality in (1.3) is due to Tominaga [2] while the first one is due to Furuichi [3].
Kittaneh and Manasrah [4, 5] provided a refinement and an additive reverse for Young inequality as follows:

r
(√

a−
√

b
)2
≤ (1−ν)a+νb−a1−ν bν ≤ R

(√
a−
√

b
)2

(1.4)

where a, b > 0, ν ∈ [0,1], r = min{1−ν ,ν} and R = max{1−ν ,ν} .
We also consider the Kantorovich’s ratio defined by

K (h) :=
(h+1)2

4h
, h > 0. (1.5)

The function K is decreasing on (0,1) and increasing on [1,∞) , K (h)≥ 1 for any h > 0 and K (h) = K
( 1

h

)
for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms of Kantorovich’s ratio holds

Kr
(a

b

)
a1−ν bν ≤ (1−ν)a+νb≤ KR

(a
b

)
a1−ν bν (1.6)

where a,b > 0, ν ∈ [0,1], r = min{1−ν ,ν} and R = max{1−ν ,ν} .
The first inequality in (1.6) was obtained by Zou et al. in [6] while the second by Liao et al. [7].
In [6] the authors also showed that Kr (h)≥ S (hr) for h > 0 and r ∈

[
0, 1

2

]
implying that the lower bound in (1.6) is better

than the lower bound from (1.3).
In the recent paper [8] we obtained the following reverses of Young’s inequality as well:

0≤ (1−ν)a+νb−a1−ν bν ≤ ν (1−ν)(a−b)(lna− lnb) (1.7)

and

1≤ (1−ν)a+νb
a1−ν bν

≤ exp
[
4ν (1−ν)

(
K
(a

b

)
−1
)]

, (1.8)

where a,b > 0, ν ∈ [0,1].
In [9], we obtained the following Young related inequalities:

Theorem 1.1. For any a,b > 0 and ν ∈ [0,1] we have

1
2

ν (1−ν)(lna− lnb)2 min{a,b} ≤ (1−ν)a+νb−a1−ν bν (1.9)

≤ 1
2

ν (1−ν)(lna− lnb)2 max{a,b}
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and

exp

[
1
2

ν (1−ν)
(b−a)2

max2 {a,b}

]
≤ (1−ν)a+νb

a1−ν bν
(1.10)

≤ exp

[
1
2

ν (1−ν)
(b−a)2

min2 {a,b}

]
.

For an equivalent form and a different approach in proving the results (1.9) and (1.10) see [10].
The second inequalities in (1.9) and (1.10) are better than the corresponding results obtained by Furuichi and Minculete in

[11] where instead of constant 1
2 they had the constant 1. Let I1, ..., Ik be intervals from R and let f : I1× ...× Ik→ R be an

essentially bounded real function defined on the product of the intervals. Let A = (A1, ...,An) be a k-tuple of bounded selfadjoint
operators on Hilbert spaces H1, ...,Hk such that the spectrum of Ai is contained in Ii for i = 1, ...,k. We say that such a k-tuple is
in the domain of f . If

Ai =
∫

Ii
λidEi (λi)

is the spectral resolution of Ai for i = 1, ...,k; by following [12], we define

f (A1, ...,Ak) :=
∫

I1
...
∫

Ik
f (λ1, ...,λk)dE1 (λ1)⊗ ...⊗dEk (λk) (1.11)

as a bounded selfadjoint operator on the tensorial product H1⊗ ...⊗Hk.
If the Hilbert spaces are of finite dimension, then the above integrals become finite sums, and we may consider the functional

calculus for arbitrary real functions. This construction [12] extends the definition of Korányi [13] for functions of two variables
and have the property that

f (A1, ...,Ak) = f1(A1)⊗ ...⊗ fk(Ak),

whenever f can be separated as a product f (t1, ..., tk) = f1(t1)... fk(tk) of k functions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0,∞), namely

f (st)≥ (≤) f (s) f (t) for all s, t ∈ [0,∞)

and if f is continuous on [0,∞) , then [14, p. 173]

f (A⊗B)≥ (≤) f (A)⊗ f (B) for all A, B≥ 0. (1.12)

This follows by observing that, if

A =
∫
[0,∞)

tdE (t) and B =
∫
[0,∞)

sdF (s)

are the spectral resolutions of A and B, then

f (A⊗B) =
∫
[0,∞)

∫
[0,∞)

f (st)dE (t)⊗dF (s) (1.13)

for the continuous function f on [0,∞) .
Recall the geometric operator mean for the positive operators A, B > 0

A#tB := A1/2(A−1/2BA−1/2)tA1/2,

where t ∈ [0,1] and

A#B := A1/2(A−1/2BA−1/2)1/2A1/2.

By the definitions of # and ⊗ we have

A#B = B#A and (A#B)⊗ (B#A) = (A⊗B)#(B⊗A) .
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In 2007, Wada [15] obtained the following Callebaut type inequalities for tensorial product

(A#B)⊗ (A#B)≤ 1
2
[(A#α B)⊗ (A#1−α B)+(A#1−α B)⊗ (A#α B)] (1.14)

≤ 1
2
(A⊗B+B⊗A)

for A, B > 0 and α ∈ [0,1] .
Recall that the Hadamard product of A and B in B(H) is defined to be the operator A◦B ∈ B(H) satisfying〈

(A◦B)e j,e j
〉
=
〈
Ae j,e j

〉〈
Be j,e j

〉
for all j ∈ N, where

{
e j
}

j∈N is an orthonormal basis for the separable Hilbert space H.

It is known that, see [16], we have the representation

A◦B = U ∗ (A⊗B)U (1.15)

where U : H→ H⊗H is the isometry defined by U e j = e j⊗ e j for all j ∈ N.
If f is super-multiplicative (sub-multiplicative) on [0,∞) , then also [14, p. 173]

f (A◦B)≥ (≤) f (A)◦ f (B) for all A, B≥ 0. (1.16)

We recall the following elementary inequalities for the Hadamard product

A1/2 ◦B1/2 ≤
(

A+B
2

)
◦1 for A, B≥ 0

and Fiedler inequality

A◦A−1 ≥ 1 for A > 0. (1.17)

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [17] showed that

A◦B≤
(
A2 ◦1

)1/2 (
B2 ◦1

)1/2
for A, B≥ 0

and Aujla and Vasudeva [18] gave an alternative upper bound

A◦B≤
(
A2 ◦B2)1/2

for A, B≥ 0.

It has been shown in [19] that
(
A2 ◦1

)1/2 (B2 ◦1
)1/2 and

(
A2 ◦B2

)1/2 are incomparable for 2-square positive definite matrices
A and B.

Motivated by these results, in this paper we provide among others some upper and lower bounds for the Young differences

(1−ν)A⊗1+ν1⊗B−A1−ν ⊗Bν

and

[(1−ν)A+νB]◦1−A1−ν ◦Bν

for ν ∈ [0,1] and A, B > 0.

2. Main Results
The first main result is as follows:

Theorem 2.1. Assume that the selfadjoint operators A and B satisfy the condition 0 < m≤ A, B≤M, then

0≤ 1
2

mν (1−ν)
[(

ln2 A
)
⊗1+1⊗

(
ln2 B

)
−2lnA⊗ lnB

]
(2.1)

≤ (1−ν)A⊗1+ν1⊗B−A1−ν ⊗Bν

≤ 1
2

Mν (1−ν)
[(

ln2 A
)
⊗1+1⊗

(
ln2 B

)
−2lnA⊗ lnB

]
≤ 1

2
ν (1−ν)M (lnM− lnm)2
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for all ν ∈ [0,1] .
In particular,

0≤ 1
8

m
[(

ln2 A
)
⊗1+1⊗

(
ln2 B

)
−2lnA⊗ lnB

]
(2.2)

≤ A⊗1+1⊗B
2

−A1/2⊗B1/2

≤ 1
8

M
[(

ln2 A
)
⊗1+1⊗

(
ln2 B

)
−2lnA⊗ lnB

]
≤ 1

8
M (lnM− lnm)2 .

Proof. If t, s ∈ [m,M]⊂ (0,∞) , then by (1.9) we get

0≤ 1
2

mν (1−ν)(ln t− lns)2 ≤ (1−ν) t +νs− t1−ν sν (2.3)

≤ 1
2

Mν (1−ν)(ln t− lns)2

≤ 1
2

Mν (1−ν)(lnM− lnm)2 .

If

A =
∫ M

m
tdE (t) and B =

∫ M

m
sdF (s)

are the spectral resolutions of A and B, then by taking in (2.3) the double integral
∫M

m
∫M

m over dE (t)⊗dF (s) , we get

0≤ 1
2

mν (1−ν)
∫ M

m

∫ M

m
(ln t− lns)2 dE (t)⊗dF (s) (2.4)

≤
∫ M

m

∫ M

m

[
(1−ν) t +νs− t1−ν sν

]
dE (t)⊗dF (s)

≤ 1
2

Mν (1−ν)
∫ M

m

∫ M

m
(ln t− lns)2 dE (t)⊗dF (s)

≤ 1
8

M (lnM− lnm)2
∫ M

m

∫ M

m
dE (t)⊗dF (s) .

Now, observe that, by (1.11)∫ M

m

∫ M

m
(ln t− lns)2 dE (t)⊗dF (s) =

∫ M

m

∫ M

m

(
ln2 t−2ln t lns+ ln2 s

)
dE (t)⊗dF (s)

=
∫ M

m

∫ M

m
ln2 tdE (t)⊗dF (s)+

∫ M

m

∫ M

m
ln2 sdE (t)⊗dF (s)

−2
∫ M

m

∫ M

m
ln t lnsdE (t)⊗dF (s)

=
(
ln2 A

)
⊗1+1⊗

(
ln2 B

)
−2lnA⊗ lnB,

∫ M

m

∫ M

m

[
(1−ν) t +νs− t1−ν sν

]
dE (t)⊗dF (s) =(1−ν)

∫ M

m

∫ M

m
tdE (t)⊗dF (s)+ν

∫ M

m

∫ M

m
sdE (t)⊗dF (s)

−
∫ M

m

∫ M

m
t1−ν sν dE (t)⊗dF (s)

=(1−ν)A⊗1+ν1⊗B−A1−ν ⊗Bν

and ∫ M

m

∫ M

m
dE (t)⊗dF (s) = 1⊗1 = 1.

By employing (2.4), we then get the desired result (2.1).
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Corollary 2.2. With the assumptions of Theorem 2.1,

0≤ 1
2

mν (1−ν)
[(

ln2 A+ ln2 B
)
◦1−2lnA◦ lnB

]
(2.5)

≤ [(1−ν)A+νB]◦1−A1−ν ◦Bν

≤ 1
2

Mν (1−ν)
[(

ln2 A+ ln2 B
)
◦1−2lnA◦ lnB

]
≤ 1

2
ν (1−ν)M (lnM− lnm)2

for all ν ∈ [0,1] .
In particular,

0≤ 1
8

m
[(

ln2 A+ ln2 B
)
◦1−2lnA◦ lnB

]
(2.6)

≤ A+B
2
◦1−A1/2 ◦B1/2

≤ 1
8

M
[(

ln2 A+ ln2 B
)
◦1−2lnA◦ lnB

]
≤ 1

8
M (lnM− lnm)2 .

Proof. The proof follows from Theorem 2.1 by taking to the left U ∗, to the right U , where U : H→ H⊗H is the isometry
defined by U e j = e j⊗ e j for all j ∈ N and utilizing the representation (1.15).

Remark 2.3. If we take B = A in Corollary 2.2, then we get

0≤ mν (1−ν)
[(

ln2 A
)
◦1− lnA◦ lnA

]
≤ A◦1−A1−ν ◦Aν (2.7)

≤Mν (1−ν)
[(

ln2 A
)
◦1− lnA◦ lnA

]
≤ 1

2
ν (1−ν)M (lnM− lnm)2

for all ν ∈ [0,1] .
In particular,

0≤ 1
4

m
[(

ln2 A
)
◦1− lnA◦ lnA

]
≤ A◦1−A1/2 ◦A1/2 (2.8)

≤ 1
4

M
[(

ln2 A
)
◦1− lnA◦ lnA

]
≤ 1

8
M (lnM− lnm)2 .

Theorem 2.4. With the assumptions of Theorem 2.1, we have

0≤ m
2M2 ν (1−ν)

(
A2⊗1+1⊗B2−2A⊗B

)
(2.9)

≤ (1−ν)A⊗1+ν1⊗B−A1−ν ⊗Bν

≤ M
2m2 ν (1−ν)

(
A2⊗1+1⊗B2−2A⊗B

)
≤ M

2m2 ν (1−ν)(M−m)2

for all ν ∈ [0,1] .
In particular,

0≤ m
8M2

(
A2⊗1+1⊗B2−2A⊗B

)
(2.10)

≤ A⊗1+1⊗B
2

−A1/2⊗B1/2

≤ M
8m2

(
A2⊗1+1⊗B2−2A⊗B

)
≤ M

8m2 (M−m)2 .
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Proof. We observe that

0 <
1

max{a,b}
≤ lna− lnb

a−b
≤ 1

min{a,b}
,

which implies that

0 <
1

max2 {a,b}
≤
(

lna− lnb
a−b

)2

≤ 1
min2 {a,b}

for all a,b > 0.
By making use of (1.9), we derive

1
2

ν (1−ν)(b−a)2 min{a,b}
max2 {a,b}

(2.11)

≤ 1
2

ν (1−ν)(lna− lnb)2 min{a,b} ≤ (1−ν)a+νb−a1−ν bν

≤ 1
2

ν (1−ν)(b−a)2 max{a,b}
min2 {a,b}

.

If t, s ∈ [m,M]⊂ (0,∞) , then by (2.11) we get

0≤ m
2M2 ν (1−ν)(t− s)2 ≤ (1−ν) t +νs− t1−ν sν (2.12)

≤ M
2m2 ν (1−ν)(t− s)2 .

If

A =
∫ M

m
tdE (t) and B =

∫ M

m
sdF (s)

are the spectral resolutions of A and B, then by taking in (2.12) the double integral
∫M

m
∫M

m over dE (t)⊗dF (s) , we get

0≤ m
2M2 ν (1−ν)

∫ M

m

∫ M

m
(t− s)2 E (t)⊗dF (s) (2.13)

≤
∫ M

m

∫ M

m

[
(1−ν) t +νs− t1−ν sν

]
E (t)⊗dF (s)

≤ M
2m2 ν (1−ν)

∫ M

m

∫ M

m
(t− s)2 E (t)⊗dF (s) .

Since, by (1.11)∫ M

m

∫ M

m
(t− s)2 E (t)⊗dF (s) =

∫ M

m

∫ M

m

(
t2−2ts+ s2)E (t)⊗dF (s)

=
∫ M

m

∫ M

m
t2E (t)⊗dF (s)+

∫ M

m

∫ M

m
s2E (t)⊗dF (s)−

∫ M

m

∫ M

m
2tsE (t)⊗dF (s)

= A2⊗1+1⊗B2−2A⊗B,

then by (2.13) we derive the first part of (2.9).
The last part follows by the fact that

(t− s)2 ≤ (M−m)2

for all t, s ∈ [m,M] .
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Corollary 2.5. With the assumptions of Theorem 2.1, we have the following inequalities for the Hadamard product

0≤ m
M2 ν (1−ν)

(
A2 +B2

2
◦1−A◦B

)
(2.14)

≤ [(1−ν)A+νB]◦1−A1−ν ◦Bν

≤ M
m2 ν (1−ν)

(
A2 +B2

2
◦1−A◦B

)
≤ M

2m2 ν (1−ν)(M−m)2

for all ν ∈ [0,1] .
In particular,

0≤ m
4M2

(
A2 +B2

2
◦1−A◦B

)
≤ A+B

2
◦1−A1/2 ◦B1/2 (2.15)

≤ M
4m2

(
A2 +B2

2
◦1−A◦B

)
≤ M

8m2 (M−m)2 .

The proof of this corollary is similar to the one of Corollary 2.2 by utilizing Theorem 2.4 and we omit the details.

Remark 2.6. If we take B = A in Corollary 2.5, then we get

0≤ m
M2 ν (1−ν)

(
A2 ◦1−A◦A

)
≤ A−A1−ν ◦Aν (2.16)

≤ M
m2 ν (1−ν)

(
A2 ◦1−A◦A

)
≤ M

2m2 ν (1−ν)(M−m)2

for all ν ∈ [0,1] .
In particular,

0≤ m
4M2

(
A2 ◦1−A◦A

)
≤ A◦1−A1/2 ◦A1/2 (2.17)

≤ M
4m2

(
A2 ◦1−A◦A

)
≤ M

8m2 (M−m)2 .

Further, we also have:

Theorem 2.7. Assume that the selfadjoint operators A and B satisfy the condition 0 < A, B≤M, then

0≤ (1−ν)A⊗1+ν1⊗B−A1−ν ⊗Bν (2.18)

≤Mν (1−ν)

(
A−1⊗B+A⊗B−1

2
−1
)

for all ν ∈ [0,1] .
In particular,

0≤ A⊗1+1⊗B
2

−A1/2⊗B1/2 ≤ 1
4

M
(

A−1⊗B+A⊗B−1

2
−1
)
. (2.19)

Proof. Recall that if a, b > 0 and

L(a,b) :=


b−a

lnb−lna if a 6= b,

b if a = b

is the logarithmic mean and G(a,b) :=
√

ab is the geometric mean, then L(a,b)≥ G(a,b) for all a, b > 0.
Then from (1.9) we have for a 6= b that

(1−ν)a+νb−a1−ν bν ≤ 1
2

ν (1−ν)(lna− lnb)2 max{a,b}

=
1
2

ν (1−ν)(b−a)2
(

lna− lnb
b−a

)2

max{a,b}

≤ 1
2

ν (1−ν)
(b−a)2

ab
max{a,b}

=
1
2

ν (1−ν)

(
b
a
+

a
b
−2
)

max{a,b} ,
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which implies that

(1−ν)a+νb−a1−ν bν ≤ 1
2

ν (1−ν)

(
b
a
+

a
b
−2
)

max{a,b} (2.20)

for all a, b > 0.
If t, s ∈ [m,M]⊂ (0,∞) , then by (2.20) we get

(1−ν) t +νs− t1−ν sν ≤ 1
2

ν (1−ν)
( s

t
+

t
s
−2
)

max{t,s} (2.21)

≤ 1
2

Mν (1−ν)
( s

t
+

t
s
−2
)
.

By taking in (2.21) the double integral
∫M

m
∫M

m over dE (t)⊗dF (s) , we get∫ M

m

∫ M

m

[
(1−ν) t +νs− t1−ν sν

]
dE (t)⊗dF (s)≤ 1

2
Mν (1−ν)

∫ M

m

∫ M

m

( s
t
+

t
s
−2
)

dE (t)⊗dF (s) . (2.22)

Since ∫ M

m

∫ M

m

( s
t
+

t
s
−2
)

dE (t)⊗dF (s) =
∫ M

m

∫ M

m
t−1sE (t)⊗dF (s)+

∫ M

m

∫ M

m
ts−1dE (t)⊗dF (s)

−
∫ M

m

∫ M

m
dE (t)⊗dF (s)

=A−1⊗B+A⊗B−1−2,

hence by (2.22) we derive (2.18).

Corollary 2.8. With the assumptions of Theorem 2.7, we have the inequalities for the Hadamard product

0≤ [(1−ν)A+νB]◦1−A1−ν ◦Bν (2.23)

≤Mν (1−ν)

(
A−1 ◦B+A◦B−1

2
−1
)

for all ν ∈ [0,1] .
In particular,

0≤ A+B
2
◦1−A1/2 ◦B1/2 ≤ 1

4
M
(

A−1 ◦B+A◦B−1

2
−1
)
. (2.24)

The proof of this corollary is similar to the one of Corollary 2.2 by utilizing Theorem 2.7.
We observe that, if we take B = A in Corollary 2.8, then we get

0≤ A◦1−A1−ν ◦Aν ≤Mν (1−ν)
(
A−1 ◦A−1

)
(2.25)

for all ν ∈ [0,1] .
In particular,

0≤ A◦1−A1/2 ◦A1/2 ≤ 1
8

M
(
A−1 ◦A−1

)
. (2.26)

We also have the following multiplicative results:

Theorem 2.9. Assume that the selfadjoint operators A and B satisfy the condition 0 < m≤ A, B≤M, then

A1−ν ⊗Bν ≤ exp

[
1
2

ν (1−ν)

(
M−m

M

)2
]

A1−ν ⊗Bν (2.27)

≤ (1−ν)A⊗1+ν1⊗B

≤ exp

[
1
2

ν (1−ν)

(
M−m

m

)2
]

A1−ν ⊗Bν
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for all ν ∈ [0,1] .
In particular,

A1−ν ⊗Bν ≤ exp

[
1
8

(
M−m

M

)2
]

A1/2⊗B1/2 (2.28)

≤ A⊗1+1⊗B
2

≤ exp

[
1
8

(
M−m

m

)2
]

A1/2⊗B1/2.

Proof. Since

(b−a)2

max2 {a,b}
=

(
max{a,b}−min{a,b}

max{a,b}

)2

=

(
1− min{a,b}

max{a,b}

)2

and

(b−a)2

min2 {a,b}
=

(
max{a,b}−min{a,b}

min{a,b}

)2

=

(
max{a,b}
min{a,b}

−1
)2

,

hence by (1.10) we derive

exp

[
1
2

ν (1−ν)

(
1− min{a,b}

max{a,b}

)2
]
≤ (1−ν)a+νb

a1−ν bν
(2.29)

≤ exp

[
1
2

ν (1−ν)

(
max{a,b}
min{a,b}

−1
)2
]
.

If t, s ∈ [m,M]⊂ (0,∞) , then by (2.29) we get

exp

[
1
2

ν (1−ν)

(
M−m

M

)2
]

t1−ν sν ≤ (1−ν) t +νs≤ exp

[
1
2

ν (1−ν)

(
M−m

m

)2
]

t1−ν sν . (2.30)

Now, if we take the double integral
∫M

m
∫M

m over dE (t)⊗dF (s) in (2.30), we derive the desired result (2.27).

Corollary 2.10. With the assumptions of Theorem 2.9, we have the inequalities for Hadamard product

A1−ν ◦Bν ≤ exp

[
1
2

ν (1−ν)

(
M−m

M

)2
]

A1−ν ◦Bν (2.31)

≤ (1−ν)A+νB

≤ exp

[
1
2

ν (1−ν)

(
M−m

m

)2
]

A1−ν ◦Bν

for all ν ∈ [0,1] .
In particular,

A1/2 ◦B1/2 ≤ exp

[
1
8

(
M−m

M

)2
]

A1/2 ◦B1/2 (2.32)

≤ A+B
2
◦1

≤ exp

[
1
8

(
M−m

m

)2
]

A1/2 ◦B1/2.
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The proof of this corollary is similar to the one of Corollary 2.2 by utilizing Theorem 2.9.
If we take B = A in Corollary 2.10, then we get the following inequalities for one operator A satisfying the condition

0 < m≤ A≤M,

A1−ν ◦Aν ≤ exp

[
1
2

ν (1−ν)

(
M−m

M

)2
]

A1−ν ◦Aν (2.33)

≤ A◦1

≤ exp

[
1
2

ν (1−ν)

(
M−m

m

)2
]

A1−ν ◦Aν

for all ν ∈ [0,1] .
In particular,

A1/2 ◦A1/2 ≤ exp

[
1
8

(
M−m

M

)2
]

A1/2 ◦A1/2 (2.34)

≤ A◦1

≤ exp

[
1
8

(
M−m

m

)2
]

A1/2 ◦A1/2.

3. Inequalities for Sums
We also have the following inequalities for sums of operators:

Proposition 3.1. Assume that 0 < m ≤ Ai, B j ≤ M and pi, q j ≥ 0 for i ∈ {1, ...,n} , j ∈ {1, ...,k} , and put Pn := ∑
n
i=1 pi,

Qk := ∑
k
j=1 q j. Then

0≤ m
2M2 ν (1−ν)

[
Qk

(
n

∑
i=1

piA2
i

)
⊗1+Pn1⊗

(
k

∑
j=1

q jB2
j

)
−2

(
n

∑
i=1

piAi

)
⊗

(
k

∑
j=1

q jB j

)]
(3.1)

≤ (1−ν)Qk

(
n

∑
i=1

piAi

)
⊗1+νPn1⊗

(
k

∑
j=1

q jB j

)
−

(
n

∑
i=1

piA1−ν

i

)
⊗

(
k

∑
j=1

q jBν
j

)

≤ M
2m2 ν (1−ν)

[
Qk

(
n

∑
i=1

piA2
i

)
⊗1+Pn1⊗

(
k

∑
j=1

q jB2
j

)
−2

(
n

∑
i=1

piAi

)
⊗

(
k

∑
j=1

q jB j

)]

≤ M
2m2 ν (1−ν)(M−m)2 PnQk

and

0≤ (1−ν)Qk

(
n

∑
i=1

piAi

)
⊗1+νPn1⊗

(
k

∑
j=1

q jB j

)
−

(
n

∑
i=1

piA1−ν

i

)
⊗

(
k

∑
j=1

q jBν
j

)
(3.2)

≤Mν (1−ν)×

(∑n
i=1 piA−1

)
⊗
(

∑
k
j=1 q jB

)
+(∑n

i=1 piA)⊗
(

∑
k
j=1 q jB−1

)
2

−PnQk

 .
Proof. From (2.9) we get

0≤ m
2M2 ν (1−ν)

(
A2

i ⊗1+1⊗B2
j −2Ai⊗B j

)
≤ (1−ν)Ai⊗1+ν1⊗B j−A1−ν

i ⊗Bν
j

≤ M
2m2 ν (1−ν)

(
A2

i ⊗1+1⊗B2
j −2Ai⊗B j

)
≤ M

2m2 ν (1−ν)(M−m)2
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for all for i ∈ {1, ...,n} , j ∈ {1, ...,k} and ν ∈ [0,1] .
If we multiply by piq j ≥ 0 and sum, then we get

0≤ m
2M2 ν (1−ν)

n

∑
i=1

k

∑
j=1

q j pi
(
A2

i ⊗1+1⊗B2
j −2Ai⊗B j

)
(3.3)

≤
n

∑
i=1

k

∑
j=1

q j pi
[
(1−ν)Ai⊗1+ν1⊗B j−A1−ν

i ⊗Bν
j
]

≤ M
2m2 ν (1−ν)

n

∑
i=1

k

∑
j=1

q j pi
(
A2

i ⊗1+1⊗B2
j −2Ai⊗B j

)
≤ M

2m2 ν (1−ν)(M−m)2
n

∑
i=1

k

∑
j=1

q j pi.

Observe that

n

∑
i=1

k

∑
j=1

q j pi
(
A2

i ⊗1+1⊗B2
j −2Ai⊗B j

)
=

n

∑
i=1

k

∑
j=1

q j piA2
i ⊗1+

n

∑
i=1

k

∑
j=1

q j pi1⊗B2
j −2

n

∑
i=1

k

∑
j=1

q j piAi⊗B j

= Qk

(
n

∑
i=1

piA2
i

)
⊗1+Pn1⊗

(
k

∑
j=1

q jB2
j

)
−2

(
n

∑
i=1

piAi

)
⊗

(
k

∑
j=1

q jB j

)

and

n

∑
i=1

k

∑
j=1

q j pi
[
(1−ν)Ai⊗1+ν1⊗B j−A1−ν

i ⊗Bν
j
]
=(1−ν)

n

∑
i=1

k

∑
j=1

q j piAi⊗1+ν

n

∑
i=1

k

∑
j=1

q j pi1⊗B j

−
n

∑
i=1

k

∑
j=1

q j piA1−ν

i ⊗Bν
j

=(1−ν)Qk

(
n

∑
i=1

piAi

)
⊗1+νPn1⊗

(
k

∑
j=1

q jB j

)

−

(
n

∑
i=1

piA1−ν

i

)
⊗

(
k

∑
j=1

q jBν
j

)
.

By (3.3) we then get the desired result (3.1).
The inequality (3.2) follows in a similar way from (2.18).

Corollary 3.2. With the assumptions of Proposition 3.1, we have the Hadamard product inequalities

0≤ m
2M2 ν (1−ν)

[(
Qk

(
n

∑
i=1

piA2
i

)
+Pn

(
k

∑
j=1

q jB2
j

))
◦1 −2

(
n

∑
i=1

piAi

)
◦

(
k

∑
j=1

q jB j

)]
(3.4)

≤

[
(1−ν)Qk

(
n

∑
i=1

piAi

)
+νPn

(
k

∑
j=1

q jB j

)]
◦1−

(
n

∑
i=1

piA1−ν

i

)
◦

(
k

∑
j=1

q jBν
j

)

≤ M
2m2 ν (1−ν)

[(
Qk

(
n

∑
i=1

piA2
i

)
+Pn

(
k

∑
j=1

q jB2
j

))
◦1 −2

(
n

∑
i=1

piAi

)
◦

(
k

∑
j=1

q jB j

)]

≤ M
2m2 ν (1−ν)(M−m)2 PnQk
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and

0≤

[
(1−ν)Qk

(
n

∑
i=1

piAi

)
+νPn

(
k

∑
j=1

q jB j

)]
◦1−

(
n

∑
i=1

piA1−ν

i

)
◦

(
k

∑
j=1

q jBν
j

)
(3.5)

≤Mν (1−ν)×

(∑n
i=1 piA−1

)
◦
(

∑
k
j=1 q jB

)
+(∑n

i=1 piA)◦
(

∑
k
j=1 q jB−1

)
2

−PnQk

 .
If we take k = n, pi = qi and Bi = Ai, then we get the simpler inequalities

0≤ m
M2 ν (1−ν)×

[
Pn

(
n

∑
i=1

piA2
i

)
◦1−

(
n

∑
i=1

piAi

)
◦

(
n

∑
i=1

piAi

)]
(3.6)

≤ Pn

(
n

∑
i=1

piAi

)
◦1−

(
n

∑
i=1

piA1−ν

i

)
◦

(
n

∑
i=1

piAν
i

)

≤ M
2m2 ν (1−ν)×

[
Pn

(
n

∑
i=1

piA2
i

)
◦1−

(
n

∑
i=1

piAi

)
◦

(
n

∑
i=1

piAi

)]

≤ M
2m2 ν (1−ν)(M−m)2 P2

n

and

0 ≤ Pn

(
n

∑
i=1

piAi

)
◦1−

(
n

∑
i=1

piA1−ν

i

)
◦

(
n

∑
i=1

piAν
i

)
(3.7)

≤ Mν (1−ν)

[(
n

∑
i=1

piA−1

)
◦

(
n

∑
i=1

piA

)
−P2

n

]
,

for all ν ∈ [0,1] , provided that 0 < m≤ Ai ≤M and pi ≥ 0 for i ∈ {1, ...,n} .
We also have the multiplicative inequalities:

Proposition 3.3. With the assumptions of Proposition 3.3,(
n

∑
i=1

piA1−ν

i

)
⊗

(
k

∑
j=1

q jBν
j

)
≤ exp

[
1
2

ν (1−ν)

(
M−m

M

)2
](

n

∑
i=1

piA1−ν

i

)
⊗

(
k

∑
j=1

q jBν
j

)
(3.8)

≤ (1−ν)Qk

(
n

∑
i=1

piAi

)
⊗1+νPn1⊗

(
k

∑
j=1

q jB j

)

≤ exp

[
1
2

ν (1−ν)

(
M−m

m

)2
](

n

∑
i=1

piA1−ν

i

)
⊗

(
k

∑
j=1

q jBν
j

)

and (
n

∑
i=1

piA1−ν

i

)
◦

(
k

∑
j=1

q jBν
j

)
≤ exp

[
1
2

ν (1−ν)

(
M−m

M

)2
](

n

∑
i=1

piA1−ν

i

)
◦

(
k

∑
j=1

q jBν
j

)
(3.9)

≤ (1−ν)Qk

(
n

∑
i=1

piAi

)
◦1+νPn1◦

(
k

∑
j=1

q jB j

)

≤ exp

[
1
2

ν (1−ν)

(
M−m

m

)2
](

n

∑
i=1

piA1−ν

i

)
◦

(
k

∑
j=1

q jBν
j

)
,

for all ν ∈ [0,1] .
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If we take k = n, pi = qi and Bi = Ai in (3.9), then we get the simpler inequalities(
n

∑
i=1

piA1−ν

i

)
◦

(
n

∑
i=1

piAν
i

)
≤ exp

[
1
2

ν (1−ν)

(
M−m

M

)2
](

n

∑
i=1

piA1−ν

i

)
◦

(
k

∑
j=1

q jBν
j

)
(3.10)

≤ Pn

(
n

∑
i=1

piAi

)
◦1

≤ exp

[
1
2

ν (1−ν)

(
M−m

m

)2
](

n

∑
i=1

piA1−ν

i

)
◦

(
n

∑
i=1

piAν
i

)
,

for all ν ∈ [0,1] , provided that 0 < m≤ Ai ≤M and pi ≥ 0 for i ∈ {1, ...,n} .

4. Conclusion
In this paper, by utilizing some recent refinements and reverses of scalar Young’s inequality, we provided some upper and

lower bounds for the Young differences

(1−ν)A⊗1+ν1⊗B−A1−ν ⊗Bν

and

[(1−ν)A+νB]◦1−A1−ν ◦Bν

for ν ∈ [0,1] and A, B > 0. The case of weighted sums for sequences of operators were also investigated.
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urales. Serie A. Matemáticas, 111(2) (2017), 349–354. Preprint RGMIA Res. Rep. Coll., 18 (2015), Art. 126.
[http://rgmia.org/papers/v18/v18a126.pdf].

[9] S. S. Dragomir, A note on new refinements and reverses of Young’s inequality, Transyl. J. Math. Mec. 8(1) (2016), 45–49.
Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. [https://rgmia.org/papers/v18/v18a131.pdf].
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