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Valéria Neves DOMINGOS CAVALCANTI
Universidade Estadual de Maringá, Brazil
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Abstract. Let H be a Hilbert space. Assume that f is continuously differ-

entiable on I with ‖f ′‖I,∞ := supt∈I |f ′ (t)| < ∞ and A, B are selfadjoint

operators with Sp (A) , Sp (B) ⊂ I, then∥∥∥∥f ((1− λ)A⊗ 1 + λ1⊗B)−
∫ 1

0
f ((1− u)A⊗ 1 + u1⊗B) du

∥∥∥∥
≤
∥∥f ′∥∥

I,∞

[
1

4
+

(
λ−

1

2

)2
]
‖1⊗B −A⊗ 1‖

for λ ∈ [0, 1] . In particular, we have the midpoint inequality∥∥∥∥f (A⊗ 1 + 1⊗B
2

)
−
∫ 1

0
f ((1− u)A⊗ 1 + u1⊗B) du

∥∥∥∥
≤

1

4

∥∥f ′∥∥
I,∞ ‖1⊗B −A⊗ 1‖ .

1. Introduction

In 1938, A. Ostrowski [13], proved the following inequality concerning the dis-

tance between the integral mean 1
b−a

∫ b
a
f (t) dt and the value f (x), x ∈ [a, b].

Theorem 1.1. Let f : [a, b]→ R be continuous on [a, b] and differentiable on (a, b)
such that f ′ : (a, b) → R is bounded on (a, b), i.e., ‖f ′‖∞ := sup

t∈(a,b)
|f ′ (t)| < ∞.

Then ∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 ‖f ′‖∞ (b− a) , (1.1)
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2 S. S. DRAGOMIR

for all x ∈ [a, b] and the constant 1
4 is the best possible.

If we take x = a+b
2 , we get the midpoint inequality∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1

4
‖f ′‖∞ (b− a) ,

with 1
4 as best possible constant.

In order to extend this result for tensorial products of selfadjoint operators and
norms, we need the following preparations.

Let I1, ..., Ik be intervals from R and let f : I1 × ... × Ik → R be an essentially
bounded real function defined on the product of the intervals. Let A = (A1, ..., An)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces H1, ...,Hk such that
the spectrum of Ai is contained in Ii for i = 1, ..., k. We say that such a k-tuple is
in the domain of f . If

Ai =

∫
Ii

λidEi (λi)

is the spectral resolution of Ai for i = 1, ..., k; by following [2], we define

f (A1, ..., Ak) :=

∫
I1

...

∫
Ik

f (λ1, ..., λk) dE1 (λ1)⊗ ...⊗ dEk (λk) (1.2)

as a bounded selfadjoint operator on the tensorial product H1 ⊗ ...⊗Hk.
If the Hilbert spaces are of finite dimension, then the above integrals become

finite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the definition of Korányi [7] for functions of two
variables and have the property that

f (A1, ..., Ak) = f1(A1)⊗ ...⊗ fk(Ak),

whenever f can be separated as a product f(t1, ..., tk) = f1(t1)...fk(tk) of k func-
tions each depending on only one variable.

It is know that, if f is super-multiplicative (sub-multiplicative) on [0,∞), namely

f (st) ≥ (≤) f (s) f (t) for all s, t ∈ [0,∞)

and if f is continuous on [0,∞) , then [10, p. 173]

f (A⊗B) ≥ (≤) f (A)⊗ f (B) for all A, B ≥ 0. (1.3)

This follows by observing that, if

A =

∫
[0,∞)

tdE (t) and B =

∫
[0,∞)

sdF (s)

are the spectral resolutions of A and B, then

f (A⊗B) =

∫
[0,∞)

∫
[0,∞)

f (st) dE (t)⊗ dF (s) (1.4)

for the continuous function f on [0,∞) .
Recall the geometric operator mean for the positive operators A, B > 0

A#tB := A1/2(A−1/2BA−1/2)tA1/2,

where t ∈ [0, 1] and

A#B := A1/2(A−1/2BA−1/2)1/2A1/2.
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By the definitions of # and ⊗ we have

A#B = B#A and (A#B)⊗ (B#A) = (A⊗B) # (B ⊗A) .

In 2007, S. Wada [14] obtained the following Callebaut type inequalities for ten-
sorial product

(A#B)⊗ (A#B) ≤ 1

2
[(A#αB)⊗ (A#1−αB) + (A#1−αB)⊗ (A#αB)] (1.5)

≤ 1

2
(A⊗B +B ⊗A)

for A, B > 0 and α ∈ [0, 1] . For other similar results, see [1], [3] and [8]-[11].
Motivated by the above results, if f is continuously differentiable on I with

‖f ′‖I,∞ := supt∈I |f ′ (t)| < ∞ and A, B are selfadjoint operators with Sp (A) ,

Sp (B) ⊂ I, then∥∥∥∥f ((1− λ)A⊗ 1 + λ1⊗B)−
∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du

∥∥∥∥
≤ ‖f ′‖I,∞

[
1

4
+

(
λ− 1

2

)2
]
‖1⊗B −A⊗ 1‖

for λ ∈ [0, 1] .
In particular, we have the midpoint inequality∥∥∥∥f (A⊗ 1 + 1⊗B

2

)
−
∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du

∥∥∥∥
≤ 1

4
‖f ′‖I,∞ ‖1⊗B −A⊗ 1‖ .

2. Main Results

Recall the following property of the tensorial product

(AC)⊗ (BD) = (A⊗B) (C ⊗D) (2.1)

that holds for any A,B,C,D ∈ B (H) .
If we take C = A and D = B, then we get

A2 ⊗B2 = (A⊗B)
2
.

By induction and using (2.1) we derive that

An ⊗Bn = (A⊗B)
n

for natural n ≥ 0. (2.2)

In particular

An ⊗ 1 = (A⊗ 1)
n

and 1⊗Bn = (1⊗B)
n

(2.3)

for all n ≥ 0.
We also observe that, by (2.1), the operators A⊗ 1 and 1⊗B are commutative

and

(A⊗ 1) (1⊗B) = (1⊗B) (A⊗ 1) = A⊗B. (2.4)

Moreover, for two natural numbers m, n we have

(A⊗ 1)
m

(1⊗B)
n

= (1⊗B)
n

(A⊗ 1)
m

= Am ⊗Bn. (2.5)

We have the following representation results for continuous functions:
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Lemma 2.1. Assume A and B are selfadjoint operators with Sp (A) ⊂ I and
Sp (B) ⊂ J. Let f, h be continuous on I, g, k continuous on J and ϕ continuous
on an interval K that contains the sum of the intervals h (I) + k (J) , then

(f (A)⊗ 1 + 1⊗ g (B))ϕ (h (A)⊗ 1 + 1⊗ k (B)) (2.6)

=

∫
I

∫
J

(f (t) + g (s))ϕ (h (t) + k (s)) dEt ⊗ dFs,

where A and B have the spectral resolutions

A =

∫
I

tdE (t) and B =

∫
J

sdF (s) . (2.7)

Proof. By Stone-Weierstrass theorem, any continuous function can be approxi-
mated by a sequence of polynomials, therefore it suffices to prove the equality
for the power function ϕ (t) = tn with n any natural number.

For natural number n ≥ 1 we have

K :=

∫
I

∫
J

(f (t) + g (s)) (h (t) + k (s))
n
dEt ⊗ dFs (2.8)

=

∫
I

∫
J

(f (t) + g (s))

n∑
m=0

Cmn [h (t)]
m

[k (s)]
n−m

dEt ⊗ dFs

=

n∑
m=0

Cmn

∫
I

∫
J

(f (t) + g (s)) [h (t)]
m

[k (s)]
n−m

dEt ⊗ dFs

=

n∑
m=0

Cmn

[∫
I

∫
J

f (t) [h (t)]
m

[k (s)]
n−m

dEt ⊗ dFs

+

∫
I

∫
J

[h (t)]
m
g (s) [k (s)]

n−m
dEt ⊗ dFs

]
.

Observe that∫
I

∫
J

f (t) [h (t)]
m

[k (s)]
n−m

dEt ⊗ dFs

= f (A) [h (A)]
m ⊗ [k (B)]

n−m
= (f (A)⊗ 1)

(
[h (A)]

m ⊗ [k (B)]
n−m

)
= (f (A)⊗ 1) ([h (A)]

m ⊗ 1)
(

1⊗ [k (B)]
n−m

)
= (f (A)⊗ 1) (h (A)⊗ 1)

m
(1⊗ k (B))

n−m

and ∫
I

∫
J

[h (t)]
m
g (s) [k (s)]

n−m
dEt ⊗ dFs

= [h (A)]
m ⊗

(
g (B) [k (B)]

n−m
)

= (1⊗ g (B))
(

[h (A)]
m ⊗ [k (B)]

n−m
)

= (1⊗ g (B)) ([h (A)]
m ⊗ 1)

(
1⊗ [k (B)]

n−m
)

= (1⊗ g (B)) (h (A)⊗ 1)
m

(1⊗ k (B))
n−m

,

with h (A)⊗ 1 and 1⊗ k (B) commutative.
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Therefore

K = (f (A)⊗ 1 + 1⊗ g (B))

n∑
m=0

Cmn (h (A)⊗ 1)
m

(1⊗ k (B))
n−m

= (f (A)⊗ 1 + 1⊗ g (B)) (h (A)⊗ 1 + 1⊗ k (B))
n
,

for which the commutativity of h (A)⊗ 1 and 1⊗ k (B) has been employed. �

Theorem 2.2. Assume that f is continuously differentiable on I, A and B are
selfadjoint operators with Sp (A) , Sp (B) ⊂ I, then

f ((1− λ)A⊗ 1 + λ1⊗B)−
∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du (2.9)

= λ2 (1⊗B −A⊗ 1)

×
∫ 1

0

uf ′ ((1− uλ)A⊗ 1 + uλ1⊗B) du

− (1− λ)
2

(1⊗B −A⊗ 1)

×
∫ 1

0

uf ′ (u (1− λ)A⊗ 1 + (1− (1− λ)u) 1⊗B) du,

for all λ ∈ [0, 1] . In particular, for λ = 1
2 , we have the midpoint identity

f

(
A⊗ 1 + 1⊗B

2

)
−
∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du (2.10)

=
1

4
(1⊗B −A⊗ 1)

∫ 1

0

u
[
f ′
((

1− u

2

)
A⊗ 1 +

u

2
1⊗B

)
−f ′

(u
2
A⊗ 1 +

(
1− u

2

)
1⊗B

)]
du.

Proof. We start to the Montgomery identity for real valued absolutely continuous
functions on [a, b] that can be easily proved integrating by parts in the right side
of the equality,

(b− a) f (x)−
∫ b

a

f (t) dt =

∫ x

a

(t− a) f ′ (t) dt+

∫ b

x

(t− b) f ′ (t) dt (2.11)

for a ≤ x ≤ b.
If we use the change of variable t = (1− u) a+ux, then we have dt = (x− a) du

and ∫ x

a

(t− a) f ′ (t) dt = (x− a)
2
∫ 1

0

uf ′ ((1− u) a+ ux) du.

If we use the change of variable t = (1− u)x + ub, then we have dt = (b− x) du
and ∫ b

x

(t− b) f ′ (t) dt = − (b− x)
2
∫ 1

0

(1− u) f ′ ((1− u)x+ ub) du.
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By (2.11) we get

(b− a) f (x)− (b− a)

∫ 1

0

f ((1− u) a+ ub) du (2.12)

= (x− a)
2
∫ 1

0

uf ′ ((1− u) a+ ux) du

− (b− x)
2
∫ 1

0

(1− u) f ′ ((1− u)x+ ub) du.

If we take x = (1− λ) a+ λb, λ ∈ [0, 1] in (2.12), then we get

(b− a) f ((1− λ) a+ λb)− (b− a)

∫ 1

0

f ((1− u) a+ ub) du (2.13)

= (b− a)
2
λ2
∫ 1

0

uf ′ ((1− u) a+ u [(1− λ) a+ λb]) du

− (b− a)
2

(1− λ)
2
∫ 1

0

(1− u) f ′ ((1− u) [(1− λ) a+ λb] + ub) du

= (b− a)
2
λ2
∫ 1

0

uf ′ ((1− uλ) a+ uλb) du

− (b− a)
2

(1− λ)
2
∫ 1

0

(1− u) f ′ ((1− u) (1− λ) a+ (λ+ (1− λ)u) b) du.

Therefore, for all a, b ∈ I and λ ∈ [0, 1] ,

f ((1− λ) a+ λb)−
∫ 1

0

f ((1− u) a+ ub) du (2.14)

= (b− a)λ2
∫ 1

0

uf ′ ((1− uλ) a+ uλb) du

− (b− a) (1− λ)
2
∫ 1

0

(1− u) f ′ ((1− u) (1− λ) a+ (λ+ (1− λ)u) b) du

= λ2 (b− a)

∫ 1

0

uf ′ ((1− uλ) a+ uλb) du

− (1− λ)
2

(b− a)

∫ 1

0

uf ′ (u (1− λ) a+ (1− (1− λ)u) b) du,

where for the last equality we change the variable 1−u with u in the second previous
integral.

Assume that A and B have the spectral resolutions

A =

∫
I

tdE (t) and B =

∫
I

sdF (s) .
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If we take the integral
∫
I

∫
I

over dEt ⊗ dFs in (2.14), then we get∫
I

∫
I

f ((1− λ) t+ λs) dEt ⊗ dFs (2.15)

−
∫
I

∫
I

(∫ 1

0

f ((1− u) t+ us) du

)
dEt ⊗ dFs

= λ2
∫
I

∫
I

(
(s− t)

∫ 1

0

uf ′ ((1− uλ) t+ uλs) du

)
dEt ⊗ dFs

− (1− λ)
2

×
∫
I

∫
I

(
(s− t)

∫ 1

0

uf ′ (u (1− λ) t+ (1− (1− λ)u) s) du

)
dEt ⊗ dFs,

for all λ ∈ [0, 1] .
By utilizing the Fubini’s theorem and Lemma 2.1 for appropriate choices of the

functions involved, we have successively∫
I

∫
I

f ((1− λ) t+ λs) dEt ⊗ dFs = f ((1− λ)A⊗ 1 + λ1⊗B) ,

∫
I

∫
I

(∫ 1

0

f ((1− u) t+ us) du

)
dEt ⊗ dFs

=

∫ 1

0

(∫
I

∫
I

f ((1− u) t+ us) dEt ⊗ dFs
)
du

=

∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du,

∫
I

∫
I

(
(s− t)

∫ 1

0

uf ′ ((1− uλ) t+ uλs) du

)
dEt ⊗ dFs

=

∫ 1

0

u

(∫
I

∫
I

(s− t) f ′ ((1− uλ) t+ uλs) dEt ⊗ dFs
)
du

= (1⊗B −A⊗ 1)

∫ 1

0

uf ′ ((1− uλ)A⊗ 1 + uλ1⊗B) du

and ∫
I

∫
I

(
(s− t)

∫ 1

0

uf ′ (u (1− λ) t+ (1− (1− λ)u) s) du

)
dEt ⊗ dFs

=

∫ 1

0

u

(∫
I

∫
I

(s− t) f ′ ((1− λ) t+ (1− (1− λ)u) s) dEt ⊗ dFs
)
du

= (1⊗B −A⊗ 1)

∫ 1

0

u (f ′ ((1− λ)A⊗ 1 + (1− (1− λ)u) 1⊗B)) du.

By employing (2.15), we then get the desired result (2.9). �

Theorem 2.3. Assume that f is continuously differentiable on I with ‖f ′‖I,∞ :=

supt∈I |f ′ (t)| < ∞ and A, B are selfadjoint operators with Sp (A) , Sp (B) ⊂ I,
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then ∥∥∥∥f ((1− λ)A⊗ 1 + λ1⊗B)−
∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du

∥∥∥∥ (2.16)

≤ ‖f ′‖I,∞

[
1

4
+

(
λ− 1

2

)2
]
‖1⊗B −A⊗ 1‖

for λ ∈ [0, 1] .
In particular, we have the midpoint inequality∥∥∥∥f (A⊗ 1 + 1⊗B

2

)
−
∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du

∥∥∥∥ (2.17)

≤ 1

4
‖f ′‖I,∞ ‖1⊗B −A⊗ 1‖ .

Proof. If we take the operator norm and use the triangle inequality, we get∥∥∥∥f ((1− λ)A⊗ 1 + λ1⊗B)−
∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du

∥∥∥∥ (2.18)

≤ λ2 ‖1⊗B −A⊗ 1‖

×
∥∥∥∥∫ 1

0

uf ′ ((1− uλ)A⊗ 1 + uλ1⊗B) du

∥∥∥∥
+ (1− λ)

2 ‖1⊗B −A⊗ 1‖

×
∥∥∥∥∫ 1

0

uf ′ (u (1− λ)A⊗ 1 + (1− (1− λ)u) 1⊗B) du

∥∥∥∥ ,
for all λ ∈ [0, 1] .

By the properties of the integral and norm, we have∥∥∥∥∫ 1

0

uf ′ ((1− uλ)A⊗ 1 + uλ1⊗B) du

∥∥∥∥ (2.19)

≤
∫ 1

0

u ‖f ′ ((1− uλ)A⊗ 1 + uλ1⊗B)‖ du

and ∥∥∥∥∫ 1

0

uf ′ (u (1− λ)A⊗ 1 + (1− (1− λ)u) 1⊗B) du

∥∥∥∥ (2.20)

≤
∫ 1

0

u ‖f ′ (u (1− λ)A⊗ 1 + (1− (1− λ)u) 1⊗B)‖ du.

Observe that, by Lemma 2.1

|f ′ ((1− uλ)A⊗ 1 + uλ1⊗B)| =
∫
I

∫
I

|f ′ ((1− uλ) t+ uλs)| dEt ⊗ dFs

for u, λ ∈ [0, 1] .
Since

|f ′ ((1− uλ) t+ uλs)| ≤ ‖f ′‖I,∞
for u, λ ∈ [0, 1] and t, s ∈ I.
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If we take the integral
∫
I

∫
I

over dEt ⊗ dFs, then we get

|f ′ ((1− uλ)A⊗ 1 + uλ1⊗B)| (2.21)

=

∫
I

∫
I

|f ′ ((1− uλ) t+ uλs)| dEt ⊗ dFs ≤ ‖f ′‖I,∞
∫
I

∫
I

dEt ⊗ dFs

= ‖f ′‖I,∞
for u, λ ∈ [0, 1] . This implies that

‖f ′ ((1− uλ)A⊗ 1 + uλ1⊗B)‖ ≤ ‖f ′‖I,∞
for u, λ ∈ [0, 1] which gives∫ 1

0

u ‖f ′ ((1− uλ)A⊗ 1 + uλ1⊗B)‖ du ≤ ‖f ′‖I,∞
∫ 1

0

udu =
1

2
‖f ′‖I,∞

Similarly, we have∫ 1

0

u ‖f ′ (u (1− λ)A⊗ 1 + (1− (1− λ)u) 1⊗B)‖ du ≤ 1

2
‖f ′‖I,∞ .

By (2.18)-(2.20) we derive∥∥∥∥f ((1− λ)A⊗ 1 + λ1⊗B)−
∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du

∥∥∥∥
≤ 1

2
‖f ′‖I,∞ ‖1⊗B −A⊗ 1‖

[
λ2 + (1− λ)

2
]

= ‖1⊗B −A⊗ 1‖

[
1

4
+

(
λ− 1

2

)2
]
‖f ′‖I,∞ ,

which proves (2.16). �

3. Related Results

We start by the following result:

Theorem 3.1. Assume that f is continuously differentiable on I with |f ′| is convex
on I, A and B are selfadjoint operators with Sp (A) , Sp (B) ⊂ I, then∥∥∥∥f ((1− λ)A⊗ 1 + λ1⊗B)−

∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du

∥∥∥∥ (3.1)

≤ ‖1⊗B −A⊗ 1‖ [p (1− λ) ‖f ′ (A)‖+ p (λ) ‖f ′ (B)‖] ,

for λ ∈ [0, 1] , where

p (λ) =
1

3

[
λ3 − (1− λ)

3
]

+
1

2
(1− λ)

2
, λ ∈ [0, 1] .

In particular, for λ = 1
2 , we get the midpoint inequality:∥∥∥∥f (A⊗ 1 + 1⊗B

2

)
−
∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du

∥∥∥∥ (3.2)

≤ 1

8
‖1⊗B −A⊗ 1‖ [‖f ′ (A)‖+ ‖f ′ (B)‖] .
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Proof. Since |f ′| is convex on I, then we get

|f ′ ((1− uλ) t+ uλs)| ≤ (1− uλ) |f ′ (t)|+ uλ |f ′ (s)|

for all for u, λ ∈ [0, 1] and t, s ∈ I.
If we take the integral

∫
I

∫
I

over dEt ⊗ dFs, then we get

|f ′ ((1− uλ)A⊗ 1 + uλ1⊗B)| (3.3)

=

∫
I

∫
I

|f ′ ((1− uλ) t+ uλs)| dEt ⊗ dFs

≤
∫
I

∫
I

[(1− uλ) |f ′ (t)|+ uλ |f ′ (s)|] dEt ⊗ dFs

= (1− uλ) |f ′ (A)| ⊗ 1 + uλ1⊗ |f ′ (B)|

for all for u, λ ∈ [0, 1] .
If we take the norm in (3.3), then we get

‖f ′ ((1− uλ)A⊗ 1 + uλ1⊗B)‖ (3.4)

≤ ‖(1− uλ) |f ′ (A)| ⊗ 1 + uλ1⊗ |f ′ (B)|‖
≤ (1− uλ) ‖|f ′ (A)| ⊗ 1‖+ uλ ‖1⊗ |f ′ (B)|‖
= (1− uλ) ‖f ′ (A)‖+ uλ ‖f ′ (B)‖ .

Therefore, ∫ 1

0

u ‖f ′ ((1− uλ)A⊗ 1 + uλ1⊗B)‖ du

≤ ‖f ′ (A)‖
∫ 1

0

u (1− uλ) du+ ‖f ′ (B)‖λ
∫ 1

0

u2du

=

(
1

2
− λ

3

)
‖f ′ (A)‖+ ‖f ′ (B)‖ λ

3
.

Similarly, ∫ 1

0

u ‖f ′ (u (1− λ)A⊗ 1 + (1− (1− λ)u) 1⊗B)‖ du

≤
∫ 1

0

u [u (1− λ) ‖f ′ (A)‖+ (1− (1− λ)u) ‖f ′ (B)‖]

=
1

3
(1− λ) ‖f ′ (A)‖+

(
1

2
− (1− λ)

3

)
‖f ′ (B)‖ .

From (2.18) we get∥∥∥∥f ((1− λ)A⊗ 1 + λ1⊗B)−
∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du

∥∥∥∥
≤ λ2 ‖1⊗B −A⊗ 1‖

[(
1

2
− λ

3

)
‖f ′ (A)‖+ ‖f ′ (B)‖ λ

3

]
+ (1− λ)

2 ‖1⊗B −A⊗ 1‖

×
[

1

3
(1− λ) ‖f ′ (A)‖+

(
1

2
− (1− λ)

3

)
‖f ′ (B)‖

]
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= ‖1⊗B −A⊗ 1‖

×
{
λ2
[(

1

2
− λ

3

)
‖f ′ (A)‖+ ‖f ′ (B)‖ λ

3

]
+ (1− λ)

2

[
1

3
(1− λ) ‖f ′ (A)‖+

(
1

2
− (1− λ)

3

)
‖f ′ (B)‖

]}
= ‖1⊗B −A⊗ 1‖

×
{[

1

3
(1− λ)

3
+ λ2

(
1

2
− λ

3

)]
‖f ′ (A)‖

+

[
1

3
λ3 + (1− λ)

2

(
1

2
− 1− λ

3

)]
‖f ′ (B)‖

}
,

which gives the desired result (3.1). �

We recall that the function g : I → R is quasi-convex, if

g ((1− λ) t+ λs) ≤ max {g (t) , g (s)} =
1

2
(g (t) + g (s) + |g (t)− g (s)|)

for all t, s ∈ I and λ ∈ [0, 1] .

Theorem 3.2. Assume that f is continuously differentiable on I with |f ′| is quasi-
convex on I, A and B are selfadjoint operators with Sp (A) , Sp (B) ⊂ I, then∥∥∥∥f ((1− λ)A⊗ 1 + λ1⊗B)−

∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du

∥∥∥∥ (3.5)

≤ 1

2

[
1

4
+

(
λ− 1

2

)2
]
‖1⊗B −A⊗ 1‖

× (‖|f ′ (A)| ⊗ 1 + 1⊗ |f ′ (B)|‖+ ‖|f ′ (A)| ⊗ 1− 1⊗ |f ′ (B)|‖)
for λ ∈ [0, 1] .

In particular, we have the midpoint inequality:∥∥∥∥f (A⊗ 1 + 1⊗B
2

)
−
∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du

∥∥∥∥ (3.6)

≤ 1

8
‖1⊗B −A⊗ 1‖

× (‖|f ′ (A)| ⊗ 1 + 1⊗ |f ′ (B)|‖+ ‖|f ′ (A)| ⊗ 1− 1⊗ |f ′ (B)|‖) .
Proof. Since |f ′| is quasi-convex on I, then we get

|f ′ ((1− uλ) t+ uλs)| ≤ 1

2
(|f ′ (t)|+ |f ′ (s)|+ ||f ′ (t)| − |f ′ (s)||)

for all for u, λ ∈ [0, 1] and t, s ∈ I.
If we take the integral

∫
I

∫
I

over dEt ⊗ dFs, then we get

|f ′ ((1− uλ)A⊗ 1 + uλ1⊗B)| (3.7)

=

∫
I

∫
I

|f ′ ((1− uλ) t+ uλs)| dEt ⊗ dFs

≤ 1

2

∫
I

∫
I

(|f ′ (t)|+ |f ′ (s)|+ ||f ′ (t)| − |f ′ (s)||) dEt ⊗ dFs

=
1

2
(|f ′ (A)| ⊗ 1 + 1⊗ |f ′ (B)|+ ||f ′ (A)| ⊗ 1− 1⊗ |f ′ (B)||)
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for all for u, λ ∈ [0, 1] .
If we take the norm, then we get

‖f ′ ((1− uλ)A⊗ 1 + uλ1⊗B)‖

≤ 1

2
‖(|f ′ (A)| ⊗ 1 + 1⊗ |f ′ (B)|+ ||f ′ (A)| ⊗ 1− 1⊗ |f ′ (B)||)‖

≤ 1

2
(‖|f ′ (A)| ⊗ 1 + 1⊗ |f ′ (B)|‖+ ‖|f ′ (A)| ⊗ 1− 1⊗ |f ′ (B)|‖)

for all for u, λ ∈ [0, 1] .
Therefore

∫ 1

0

u ‖f ′ ((1− uλ)A⊗ 1 + uλ1⊗B)‖ du

≤ 1

2
(‖|f ′ (A)| ⊗ 1 + 1⊗ |f ′ (B)|‖+ ‖|f ′ (A)| ⊗ 1− 1⊗ |f ′ (B)|‖)

∫ 1

0

udu

=
1

4
(‖|f ′ (A)| ⊗ 1 + 1⊗ |f ′ (B)|‖+ ‖|f ′ (A)| ⊗ 1− 1⊗ |f ′ (B)|‖)

and, in a similar way∫ 1

0

u ‖f ′ (u (1− λ)A⊗ 1 + (1− (1− λ)u) 1⊗B)‖ du

≤ 1

4
(‖|f ′ (A)| ⊗ 1 + 1⊗ |f ′ (B)|‖+ ‖|f ′ (A)| ⊗ 1− 1⊗ |f ′ (B)|‖) .

By utilizing (2.18) we then get∥∥∥∥f ((1− λ)A⊗ 1 + λ1⊗B)−
∫ 1

0

f ((1− u)A⊗ 1 + u1⊗B) du

∥∥∥∥
≤ λ2 ‖1⊗B −A⊗ 1‖

× 1

4
(‖|f ′ (A)| ⊗ 1 + 1⊗ |f ′ (B)|‖+ ‖|f ′ (A)| ⊗ 1− 1⊗ |f ′ (B)|‖)

+ (1− λ)
2 ‖1⊗B −A⊗ 1‖

× 1

4
(‖|f ′ (A)| ⊗ 1 + 1⊗ |f ′ (B)|‖+ ‖|f ′ (A)| ⊗ 1− 1⊗ |f ′ (B)|‖)

=
1

4

(
λ2 + (1− λ)

2
)
‖1⊗B −A⊗ 1‖

× (‖|f ′ (A)| ⊗ 1 + 1⊗ |f ′ (B)|‖+ ‖|f ′ (A)| ⊗ 1− 1⊗ |f ′ (B)|‖)

=
1

2

[
1

4
+

(
λ− 1

2

)2
]
‖1⊗B −A⊗ 1‖

× (‖|f ′ (A)| ⊗ 1 + 1⊗ |f ′ (B)|‖+ ‖|f ′ (A)| ⊗ 1− 1⊗ |f ′ (B)|‖) ,

which proves the desired inequality (3.5). �

4. Examples

It is known that if U and V are commuting, i.e. UV = V U , then the exponential
function satisfies the property

exp (U) exp (V ) = exp (V ) exp (U) = exp (U + V ) .
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Also, if U is invertible and a, b ∈ R with a < b then∫ b

a

exp (tU) dt = U−1 [exp (bU)− exp (aU)] .

Moreover, if U and V are commuting and V − U is invertible, then∫ 1

0

exp ((1− s)U + sV ) ds =

∫ 1

0

exp (s (V − U)) exp (U) ds

=

(∫ 1

0

exp (s (V − U)) ds

)
exp (U)

= (V − U)
−1

[exp (V − U)− I] exp (U)

= (V − U)
−1

[exp (V )− exp (U)] .

Since the operators U = A⊗1 and V = 1⊗B are commutative and if 1⊗B−A⊗1
is invertible, then∫ 1

0

exp ((1− u)A⊗ 1 + u1⊗B) du

= (1⊗B −A⊗ 1)
−1

[exp (1⊗B)− exp (A⊗ 1)] .

If A, B are selfadjoint operators with Sp (A) , Sp (B) ⊂ [m,M ] and 1⊗B −A⊗ 1
is invertible, then by (2.16)

‖exp ((1− λ)A⊗ 1 + λ1⊗B) (4.1)

− (1⊗B −A⊗ 1)
−1

[exp (1⊗B)− exp (A⊗ 1)]
∥∥∥

≤ exp (M)

[
1

4
+

(
λ− 1

2

)2
]
‖1⊗B −A⊗ 1‖ ,

for λ ∈ [0, 1] .
In particular, ∥∥∥∥exp

(
A⊗ 1 + 1⊗B

2

)
(4.2)

− (1⊗B −A⊗ 1)
−1

[exp (1⊗B)− exp (A⊗ 1)]
∥∥∥

≤ 1

4
exp (M) ‖1⊗B −A⊗ 1‖ .

Since for f (t) = exp t, t ∈ R, |f ′| is convex, then by Theorem 3.1 we get

‖exp ((1− λ)A⊗ 1 + λ1⊗B) (4.3)

− (1⊗B −A⊗ 1)
−1

[exp (1⊗B)− exp (A⊗ 1)]
∥∥∥

≤ 1

2

[
1

4
+

(
λ− 1

2

)2
]
‖1⊗B −A⊗ 1‖

× (‖exp (A)⊗ 1 + 1⊗ exp (B)‖+ ‖exp (A)⊗ 1− 1⊗ exp (B)‖)

for λ ∈ [0, 1] .
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In particular,∥∥∥∥exp

(
A⊗ 1 + 1⊗B

2

)
(4.4)

− (1⊗B −A⊗ 1)
−1

[exp (1⊗B)− exp (A⊗ 1)]
∥∥∥

≤ 1

8
‖1⊗B −A⊗ 1‖

× (‖exp (A)⊗ 1 + 1⊗ exp (B)‖+ ‖exp (A)⊗ 1− 1⊗ exp (B)‖)
provided that 1⊗B −A⊗ 1 is invertible.

5. Conclusion

In this paper we established various Ostrowski type tensorial norm inequalities
for continuous functions of selfadjoint operators in Hilbert spaces. Some examples
for the operator exponential are also given.
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Abstract. In this article, we discuss the exact solutions forthe Chafee-Infante

equation involving beta fractional derivative. Beta fractional derivative which
is a local derivative, is a modification of conformable fractional derivative.

Using the Modified Kudryashov Method, we obtain the general solution of

the time fractional Chafee-Infante equation with the help of Wolfram Math-
ematica. We use chain rule and wave transform to convert the equation into

integer order nonlinear ordinary differential equation. Hence, we don’t need

any discretization, normalization, or reduction. Moreover, 3D graphical rep-
resentations are given. With the help of these representations, we can have an

idea on the physical and geometrical behavior of the solutions.

1. Introduction

Differential equations are used for modeling problems in many areas of science
and have been developed from centuries ago. The definition of fractional derivative
originated in the correspondence between L’Hospital and Leibniz in 1695, based
on their work on derivatives and integrals. L’Hospital asked Leibniz how to ex-
tend the integer derivative to a fractional order, which drew the attention of many
mathematicians and led to numerous studies on fractional order derivatives. In the
fields of mathematics, physics, and engineering, studies on fractional derivatives
can provide much more accurate results in modeling and solving problems. Frac-
tional derivatives are used in control theory of dynamic systems [1], formulating
and solving viscoelasticity problems [2], modeling the mechanical [3] and electrical
properties of materials, describing properties of various materials in electrochem-
istry [4]. Additionally, it can be observed that fractional calculus is used in fields
such as control theory [5], heat conduction [6], electricity [7] and etc.

Recently, many articles have been published using fractional derivatives. For
instance, Yalcinkaya et al.[8] have achieved soliton and periodic wave solutions for
the long wave equation (SRLW) and Ostrovsky equation (OE) emerging as a model
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in ocean engineering using Beta derivative in their articles. Uddin et al. [9] have
investigated the inclined plane waves with the dynamic behaviors of the gradient
and evolution of the beta derivative, along with a nonlinear Schrödinger equation
(NLSE) in their article. In another study, Ozkan et al. [10] obtained exact solutions
for the Benjamin-Bona-Mahony equation and the Schrödinger equation using the
F-expansion method. Farah et al. [11] studied the effects of white noise containing
Beta derivative.

2. Preliminaries

This section mentions fractional derivatives [12] and provides the Beta derivative
[13, 14]. Anomalous diffusion processes are extensively observed in physics, chem-
istry, and biology. Integer-order fractional diffusion equations have been relied
upon to characterize anomalous diffusion processes and have succeeded tremen-
dously. However, it has been found that integer-order fractional diffusion equations
cannot characterize certain complex diffusion processes, such as in-homogeneous
or heterogeneous diffusion processes. Additionally, when considering diffusion pro-
cesses in porous media, if the medium structure or external environment changes
over time, the model based on the integer-order fractional diffusion equation cannot
effectively characterize such cases. Nevertheless, in some biological diffusion pro-
cesses, the concentration of particles determines the diffusion model. To solve the
above problems, it is proposed to use fractional-order diffusion equation models.

In the Riemann-Liouville fractional derivative, an arbitrary function doesn’t need
to be continuous and differentiable at the origin. In Jumarie’s definition which is
the modified version of Riemann-Liouville fractional derivative, non continuous
function needs to be differentiable; the fractional derivative of a constant is equal
to zero, and more importantly, it removes singularity at the origin for all functions.

One of the biggest advantages of the Caputo fractional derivative is that it
includes a fully specified initial condition and boundary conditions in formulating
the problem. In addition, the derivative of any constant is zero. The Caputo
derivative is a fractional operator used in modeling real-world problems.

Locally defined fractional derivatives are useful in studying the fractional differ-
entiability properties of highly irregular functions that are not differentiable any-
where. These derivatives adhere to the Leibniz and chain rules of differentiation.

Fractional analysis can easily express the dependence of system analysis on pre-
vious processes comprehensively. However, integer arithmetic is insufficient in de-
scribing the past structure of the system due to its locality characteristics. Theo-
retical models expressed with fractional analysis are more compatible with exper-
imental data than models expressed with integer arithmetic. It has been revealed
that when defining complex physical mechanical problems, the model expressed
with fractional analysis has a clearer physical meaning and a simpler expression.

Definition 2.1. Let a ∈ R and g : [a,∞) → R. The β − th order fractional
derivative of function g is defined as:

Dβ
t (g(t)) =

 limε→0

g

(
t+ ε

(
t+

1

Γ (β)

)1−β
)
− g(t)

ε
, t ≥ 0, 0 < β ≤ 1

g(t), t ≥ 0, β = 0
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where Γ is the Gamma function. If the above limit exists, then it can be said as g is

β − th order differentiable is said to be. Notice that, for β = 1 Dβ
t (g(t)) =

d

dt
g(t).

Moreover, unlike other fractional derivatives, the β derivative of a function can
be defined locally at a given point, like the first-order derivative [12].

3. A Brief Description of the Considered Method

This section summarizes the considered method as follows: First of all the ho-
mogeneous balance method which is used to find the homogeneous balance number
is going to be expressed

3.1. Homogeneous Balance Technique. The homogeneous equilibrium number
represents the upper bound of the solution series. In a nonlinear ordinary differ-
ential equation, a constant number is obtained between the highest-order linear
term and the highest-degree nonlinear term. In an ordinary differential equation,

let the highest order linear term be
dqu

dξq
and the highest order nonlinear term be

up
(
dru

dξr

)s
. If u = τN transform is made, homogeneous equilibrium relation is

obtained as

N + q = Np+ s(N + r)

where p, q, r, s are positive integers and N is a homogeneous equilibrium number.
From this equation, N positive homogeneous equilibrium number is obtained [16].

3.2. Modified Kudryashov Method. In this part the Modified Kudryashov
Method [15] is expressed briefly. The general form of a fractional nonlinear partial
differential equation can be considered as follows:

F

(
u,
δβu

δtβ
,
δu

δx
,
δβ

δtβ

(
δβu

δtβ

)
,
δ2u

δx2
,
δ

δx

(
δβu

δtβ

)
, ...

)
= 0 (3.1)

where u = u(x, t) is the unknown function.

Step 1. With the help of wave transform ξ = mx +
n(t+ 1

Γ(β) )
β

β , and chain rule

Equation 3.1

G(U,U ′, U ′′, ...) = 0 (3.2)

is reduced to integer order nonlinear ordinary differential equation. Here, G is a
polynomial that includes the transformed function U and its derivatives, and the
expression U ′ represents the ordinary derivatives of U with respect to the new
independent variable ξ.
Step 2. Assume that the solution of Equation 3.2 is defined as

U(ξ) =

N∑
i=1

aiφ
i(ξ) + a0 (3.3)

Here, ai(i = 1, 2, ..., N) are arbitrary constants to be determined later and N is the
positive integer that can be evaluated by using the homogenous balance technique.

In Equation 3.3 the function φ(ξ) is regarded as the solution of the following
differential equation.

φ
′
(ξ) = (φ2(ξ)− φ(ξ)) ln(k) (3.4)
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The general solution of the Equation 3.4 is

φ(ξ) =
1

1 + dkξ
(3.5)

where k > 1.
Step 3. If we substitute Equation 3.3 along with Equation 3.4 into Equation 3.2,
and equate the coefficients of the functions φi(ξ) to zero for ai(i = 1, 2, ..., N),
a system of algebraic equations depending on ai,m, and n, are obtained. If this
system is solved using the computer software Mathematica, the desired values can
be found.
Step 4. If the obtained values obtained in Step 3 are substituted using Equations
3.3 and 3.5, the exact solutions of the non-linear fractional partial differential equa-
tion can be obtained.

4. Application of the Method

In this section, time fractional the Chafee-Infante differential equation [17] is
considered where the fractional derivatives are in terms of beta derivative [10].
We use the modified Kudryashov method to find the exact solutions. The time-
fractional Chafee-Infante equation can be expressed as follows

Dβ
t u−D2

xu+ λ(u3 − u) = 0 (4.1)

By using the chain rule and the wave transform Equation 4.1 turns into an integer
order non-linear ordinary differential equation as

nU ′(ξ)−m2U ′′(ξ) + λ((U(ξ))3 − U(ξ)) = 0 (4.2)

The solution of this nonlinear equation can be supposed as

U(ξ) =
∑N
i=0 aiφ

i(ξ)

where the function φ(ξ) is the solution of Equation 3.4. If the homogeneous balance
principle is used in Equation 4.2 to find N , the following equation arises.

N + 2 = 3N

Hence we calculate N = 1. Hence the solution of Equation 4.2 can be supposed as
follows:

u(ξ) = a0 + a1φ(ξ) (4.3)

If Equation 4.3 is substituted into equation 4.2 with using Equation 3.4, then ar-
ranging the resulting expression with respect to powers of φi(ξ) and equating the
coefficients of the corresponding function powers to zero, the following algebraic
system of equations is obtained.

a0
3λ− a0λ = 0

3a0
2a1λ− a1m

2 log2(k)− a1n log(k)− a1λ = 0

3a0a1
2λ+ 3a1m

2 log2(k) + a1n log(k) = 0

a1
3λ− 2a1m

2 log2(k) = 0 (4.4)

By solving the equation system is solved, the following results are acquired

Set 1. n = 3λ
2 log(k) , a0 = −1, m = −

√
λ√

2 log(k)
, a1 = 1

Set 2. n = − 3λ
2 log(k) , a0 = 0, m = −

√
λ√

2 log(k)
, a1 = −1

Set 3. n = − 3λ
2 log(k) , a0 = 0, m = −

√
λ√

2 log(k)
, a1 = 1
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Set 4. n = 3λ
2 log(k) , a0 = 1, m = −

√
λ√

2 log(k)
, a1 = −1

Set 5. n = 3λ
2 log(k) , a0 = −1, m =

√
λ√

2 log(k)
, a1 = 1

Set 6. n = − 3λ
2 log(k) , a0 = 0, m =

√
λ√

2 log(k)
, a1 = −1

Set 7. n = − 3λ
2 log(k) , a0 = 0, m =

√
λ√

2 log(k)
, a1 = 1

Set 8. n = 3λ
2 log(k) , a0 = 1, m =

√
λ√

2 log(k)
, a1 = −1

If the obtained results are put into Equation 4.3 by using wave transform and
Equality 3.5, general solutions of Time-Fractional Chafee-Infante Equation 4.1 are
obtained as follows:

u1,2(x, t) = ± 1

dk
3λ( 1

Γ(β)
+t)

β

2β log(k)
−

√
λx√

2 log(k) + 1

∓ 1

u3,4(x, t) = ∓ 1

dk
−

3λ( 1
Γ(β)

+t)
β

2β log(k)
−

√
λx√

2 log(k) + 1

u5,6(x, t) = ± 1

dk
3λ( 1

Γ(β)
+t)

β

2β log(k)
+

√
λx√

2 log(k) + 1

∓ 1

u7,8(x, t) = ∓ 1

dk

√
λx√

2 log(k)
−

3λ( 1
Γ(β)

+t)
β

2β log(k) + 1

5. Graphical Simulation

In this part, some graphical representations of some solutions are given. Figures
1 and 3 show kink soliton solutions, and Figures 2, 5, and 6 manifest singular kink
solitons. In this way, we understand that soliton solutions which can be described
as a self-reinforcing wave packet that maintains their shape while it propagates at
a constant velocity have appeared.

Figure 1. Graphichal representation of u1(x, t) for λ = 1.7, β =
0.9, k = 2.7, and d = 2
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Figure 2. Graphichal representation of u2(x, t) for β = 0.9, λ =
0.9, k = 2, and d = −1

Figure 3. Graphichal representation of u4(x, t) for β = 0.5, λ =
3.9, k = 9.9, and d = 10

Figure 4. Graphichal representation of u5(x, t) for β = 0.9, λ =
0.5, k = 1.9, and d = −1.8
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Figure 5. Graphichal representation of u6(x, t) for β = 0.9, λ =
0.9, k = −3.9, and d = −3.5

Figure 6. Graphichal representation of u7(x, t) for β = 0.9, λ =
0.9, k = 20, and d = −0.5

Figure 7. Graphichal representation of u8(x, t) for β = 0.9, λ =
0.5, k = 2, and d = −0.1
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6. Conclusion

In this article, the analytical solutions for the time-fractional Chafee-Infante
equation are obtained by using the Modified Kudryashov Method. Wave transform
and chain rule give a chance to convert the fractional nonlinear partial differential
equation into integer order nonlinear ordinary differential equation. Many meth-
ods can be applied to fractional partial differential equations which are suitable
for integer-order ordinary differential equations. In this way, we can understand
the nature of the solutions and the physical behavior of the solutions of consid-
ered equations. This may cause different insights to the scientists studying the
mathematical models of real nature problems with fractional terms.
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[8] İ Yalçınkaya, H. Ahmad, O. Tasbozan, A. Kurt, Soliton Solutions for Time Fractional Ocean

Engineering Models With Beta Derivative, Journal of Ocean Engineering and Science 7 (5)

(2022) 444-448.
[9] M. F. Uddin, M. G. Hafez, S. A. Iqbal, Dynamical Plane Wave Solutions for the Heisenberg

Model of Ferromagnetic Spin Chains With Beta Derivative Evolution and Obliqueness,
Heliyon 8 (3) (2022) e09199 17 pages.

[10] E. M. Ozkan, New Exact Solutions of Some Important Nonlinear Fractional Partial Differ-

ential Equations With Beta Derivative, Fractal and Fractional 6 (3) (2022) 173.
[11] F. M. Al-Askar, C. Cesarano, W. W. Mohammed, The Influence of White Noise and the

Beta Derivative on the Solutions of the BBM Equation, Axioms 12 (5) (2023) 447.

[12] A. Atangana, Derivative With a New Parameter: Theory, Methods and Applications, 1st
Edition, Academic Press, 2015.

[13] M. A. Iqbal, M. A. Akbar, M. A. Islam, The nonlinear wave dynamics of fractional foam

drainage and Boussinesq equations with Atangana’s beta derivative through analytical so-
lutions, Results in Physics 56 (2024) 107251.

[14] L. Tang, Dynamical behavior and multiple optical solitons for the fractional

Ginzburg–Landau equation with β-derivative in optical fibers, Optical and Quantum Elec-
tronics, 56 (2) (2024) 175.

[15] D. Kumar, A. R. Seadawy, A. K. Joardar, Modified Kudryashov Method via New Exact

Solutions for Some Conformable Fractional Differential Equations Arising in Mathematical
Biology, Chinese Journal of Physics 56 (1) (2018) 75-85.



NEW WAVE SOLUTIONS OF TIME FRACTIONAL CHAFEE-INFANTE EQUATION 23

[16] O. Tasbozan, Y. Çenesiz, A. Kurt, New Solutions for Conformable Fractional Boussinesq

and Combined KdV-mKdV Equations Using Jacobi Elliptic Function Expansion Method,

The European Physical Journal Plus 131 (7) (2016) 1-14.
[17] M. Cina, A. Secer, M. Bayram, Solving Nonlinear Fractional PDEs Using Novel Wavelet

Collocation Method, New Trends in Mathematical Sciences 10 (1) (2022).

Sena ALAKUŞ,
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