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Abstract

In this paper we obtain some refinements and reverses of Callebaut’s inequality for isotonic
functionals via a result of Young’s inequality due to Cartwright and Field.

1. Introduction

Let L be a linear class of real-valued functions g : E→ R having the properties

(L1) f , g ∈ L imply (α f +βg) ∈ L for all α, β ∈ R;
(L2) 1 ∈ L, i.e., if f0 (t) = 1, t ∈ E then f0 ∈ L.

An isotonic linear functional A : L→ R is a functional satisfying

(A1) A(α f +βg) = αA( f )+βA(g) for all f , g ∈ L and α, β ∈ R.
(A2) If f ∈ L and f ≥ 0, then A( f )≥ 0.

The mapping A is said to be normalized if
(A3) A(1) = 1.

Isotonic, that is, order-preserving, linear functionals are natural objects in analysis that enjoy a number of convenient properties.
Thus, they provide, for example, Jessen’s inequality, which is a functional form of Jensen’s inequality (see [1], [2] and [3]).
For other inequalities for isotonic functionals see [4], and [5]-[15].
We note that common examples of such isotonic linear functionals A are given by

A(g) =
∫

E
gdµ or A(g) = ∑

k∈E
pkgk,

where µ is a positive measure on E in the first case and E is a subset of the natural numbers N, in the second, with g = {gk}k∈E
and pk ≥ 0, k ∈ E.
We have the following inequality that provides a refinement and a reverse for the celebrated Young’s inequality

1
2

ν (1−ν)
(b−a)2

max{a,b} ≤ (1−ν)a+νb−a1−ν bν ≤ 1
2

ν (1−ν)
(b−a)2

min{a,b} (1.1)
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for any a, b > 0 and ν ∈ [0,1] .
This result was obtained in 1978 by Cartwright and Field [16] who established a more general result for n variables and gave
an application for a probability measure supported on a finite interval.
The functional version of Callebaut’s inequality states that

A2 ( f g)≤ A
(

f 2−ν gν
)

A
(

f ν g2−ν
)
≤ A

(
f 2)A

(
g2) (1.2)

provided that f 2, g2, f 2−ν gν , f ν g2−ν , f g ∈ L for some ν ∈ [0,2]. For the discrete and integral of one real variable versions
see [17].
In this paper we obtain some inequalities for isotonic functionals via the reverse and refinement of Young’s inequality (1.1)
that are related to the second part of Callebaut’s inequality (1.2). Applications for integrals and n-tuples of real numbers are
also provided.

2. On Callebaut’s Inequality

We have the following result that provides a refinement and reverse of Callebaut’s second inequality:

Theorem 2.1. Let A, B : L→ R be two normalized isotonic functionals. If f , g : E→ R are such that, f 2, g2, g4

f 2 , f 2(1−ν)g2ν ,

f 2ν g2(1−ν) ∈ L for some ν ∈ [0,1], and

0 < m≤ f
g
≤M < ∞ (2.1)

for real numbers M > m > 0, then

1
2

ν (1−ν)m2
(

A
(

g4

f 2

)
B
(

f 2)+A
(

f 2)B
(

g4

f 2

)
−2
)
≤ (1−ν)A

(
f 2)B

(
g2)+νA

(
g2)B

(
f 2) (2.2)

−A
(

f 2(1−ν)g2ν

)
B
(

f 2ν g2(1−ν)
)

≤ 1
2

ν (1−ν)M2
(

A
(

g4

f 2

)
B
(

f 2)+A
(

f 2)B
(

g4

f 2

)
−2
)
.

Proof. Since ab = min{a,b}max{a,b} for any a,b > 0, then from (1.1) we have

1
2

ν (1−ν)min{a,b} (b−a)2

ab
≤ (1−ν)a+νb−a1−ν bν ≤ 1

2
ν (1−ν)max{a,b} (b−a)2

ab
,

where ν ∈ [0,1]. This can be written as

1
2

ν (1−ν)min{a,b}
(

b
a
+

a
b
−2
)
≤ (1−ν)a+νb−a1−ν bν ≤ 1

2
ν (1−ν)max{a,b}

(
b
a
+

a
b
−2
)
, (2.3)

for any a, b > 0.
Let x, y ∈ E such that g(x) , g(y) 6= 0. If we use the inequalities (2.3) for

a =
f 2 (x)
g2 (x)

, b =
f 2 (y)
g2 (y)

∈
[
m2,M2]

then we get

1
2

ν (1−ν)m2
(

f 2 (y)
g2 (y)

g2 (x)
f 2 (x)

+
f 2 (x)
g2 (x)

g2 (y)
f 2 (y)

−2
)
≤ (1−ν)

f 2 (x)
g2 (x)

+ν
f 2 (y)
g2 (y)

−
(

f 2 (x)
g2 (x)

)1−ν ( f 2 (y)
g2 (y)

)ν

(2.4)

≤ 1
2

ν (1−ν)M2
(

f 2 (y)
g2 (y)

g2 (x)
f 2 (x)

+
f 2 (x)
g2 (x)

g2 (y)
f 2 (y)

−2
)
,

where ν ∈ [0,1].
If we multiply (2.4) by g2 (x)g2 (y) , then we get

1
2

ν (1−ν)m2
(

f 2 (y)
g4 (x)
f 2 (x)

+ f 2 (x)
g4 (y)
f 2 (y)

−2
)
≤ (1−ν)g2 (y) f 2 (x)+ν f 2 (y)g2 (x) (2.5)

− f 2ν (y)g2(1−ν) (y) f 2(1−ν) (x)g2ν (x)

≤ 1
2

ν (1−ν)M2
(

f 2 (y)
g4 (x)
f 2 (x)

+ f 2 (x)
g4 (y)
f 2 (y)

−2
)
,
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which holds for any x, y ∈ E.
Fix y ∈ E. Then by (2.5) we have in the order of L that

1
2

ν (1−ν)m2
(

f 2 (y)
g4

f 2 +
g4 (y)
f 2 (y)

f 2−2
)
≤ (1−ν)g2 (y) f 2 +ν f 2 (y)g2− f 2ν (y)g2(1−ν) (y) f 2(1−ν)g2ν (2.6)

≤ 1
2

ν (1−ν)M2
(

f 2 (y)
g4

f 2 +
g4 (y)
f 2 (y)

f 2−2
)
.

If we take the functional A in (2.6), then we get

1
2

ν (1−ν)m2
(

f 2 (y)A
(

g4

f 2

)
+

g4 (y)
f 2 (y)

A
(

f 2)−2
)
≤ (1−ν)g2 (y)A

(
f 2)+ν f 2 (y)A

(
g2)− f 2ν (y)g2(1−ν) (y)A

(
f 2(1−ν)g2ν

)

≤ 1
2

ν (1−ν)M2
(

f 2 (y)A
(

g4

f 2

)
+

g4 (y)
f 2 (y)

A
(

f 2)−2
)
,

for any y ∈ E.
If we write this inequality in the order of L, then we have

1
2

ν (1−ν)m2
(

A
(

g4

f 2

)
f 2 +A

(
f 2) g4

f 2 −2
)
≤ (1−ν)A

(
f 2)g2 +νA

(
g2) f 2−A

(
f 2(1−ν)g2ν

)
f 2ν g2(1−ν)

≤ 1
2

ν (1−ν)M2
(

A
(

g4

f 2

)
f 2 +A

(
f 2) g4

f 2 −2
)
,

and by taking the functional B we deduce the desired result (2.2).

Corollary 2.2. Let A : L→ R be a normalized isotonic functional. If f , g : E → R are such that f 2, g2, g4

f 2 , f 2(1−ν)g2ν ,

f 2ν g2(1−ν) ∈ L for some ν ∈ [0,1] and the condition (2.1) holds, then

ν (1−ν)m2
(

A
(

g4

f 2

)
A
(

f 2)−1
)
≤ A

(
f 2)A

(
g2)−A

(
f 2(1−ν)g2ν

)
A
(

f 2ν g2(1−ν)
)

(2.7)

≤ ν (1−ν)M2
(

A
(

g4

f 2

)
A
(

f 2)−1
)
.

In particular, if f 2, g2, g4

f 2 , f g ∈ L and the condition (2.1) holds, then

1
4

m2
(

A
(

g4

f 2

)
A
(

f 2)−1
)
≤ A

(
f 2)A

(
g2)−A2 ( f g) (2.8)

≤ 1
4

M2
(

A
(

g4

f 2

)
A
(

f 2)−1
)
.

The following result also holds:

Theorem 2.3. Let A, B : L→ R be two normalized isotonic functionals. If f , g : E → R are such that f ≥ 0, g > 0, f 2, g2,
f 4

g2 , f 2(1−ν)g2ν , f 2ν g2(1−ν) ∈ L for some ν ∈ [0,1] and the condition (2.1) holds, then

1
2M2 ν (1−ν)

(
A
(
g2)B

(
f 4

g2

)
−2A

(
f 2)B

(
f 2)+A

(
f 4

g2

)
B
(
g2)
)
≤ (1−ν)A

(
f 2)B

(
g2)+νA

(
g2)B

(
f 2) (2.9)

−A
(

f 2(1−ν)g2ν

)
B
(

f 2ν g2(1−ν)
)

≤ 1
2m2 ν (1−ν)

×
(

A
(
g2)B

(
f 4

g2

)
−2A

(
f 2)B

(
f 2)+A

(
f 4

g2

)
B
(
g2)
)
.

Proof. For any x, y ∈ E we have

m2 ≤ f 2 (x)
g2 (x)

,
f 2 (y)
g2 (y)

≤M2.

If we use the inequality (1.1) for

a =
f 2 (x)
g2 (x)

, b =
f 2 (y)
g2 (y)

,
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then we get

1
2M2 ν (1−ν)

(
f 2 (y)
g2 (y)

− f 2 (x)
g2 (x)

)2

≤ (1−ν)
f 2 (x)
g2 (x)

+ν
f 2 (y)
g2 (y)

−
(

f 2 (x)
g2 (x)

)1−ν ( f 2 (y)
g2 (y)

)ν

≤ 1
2m2 ν (1−ν)

(
f 2 (y)
g2 (y)

− f 2 (x)
g2 (x)

)2

for any x, y ∈ E.
This can be written as

1
2M2 ν (1−ν)

(
f 4 (y)
g4 (y)

−2
f 2 (y)
g2 (y)

f 2 (x)
g2 (x)

+
f 4 (x)
g4 (x)

)
≤ (1−ν)

f 2 (x)
g2 (x)

+ν
f 2 (y)
g2 (y)

−
(

f 2 (x)
g2 (x)

)1−ν ( f 2 (y)
g2 (y)

)ν

(2.10)

≤ 1
2m2 ν (1−ν)

(
f 4 (y)
g4 (y)

−2
f 2 (y)
g2 (y)

f 2 (x)
g2 (x)

+
f 4 (x)
g4 (x)

)
.

Now, if we multiply (2.10) by g2 (x)g2 (y)> 0 then we get

1
2M2 ν (1−ν)

(
f 4 (y)
g2 (y)

g2 (x)−2 f 2 (y) f 2 (x)+
f 4 (x)
g2 (x)

g2 (y)
)
≤ (1−ν)g2 (y) f 2 (x)+ν f 2 (y)g2 (x) (2.11)

− f 2ν (y)g2(1−ν) (y) f 2(1−ν) (x)g2ν (x)

≤ 1
2m2 ν (1−ν)

(
f 4 (y)
g2 (y)

g2 (x)−2 f 2 (y) f 2 (x)+
f 4 (x)
g2 (x)

g2 (y)
)

for any x, y ∈ E.
Fix y ∈ E. Then by (2.11) we have in the order of L that

1
2M2 ν (1−ν)

(
f 4 (y)
g2 (y)

g2−2 f 2 (y) f 2 +g2 (y)
f 4

g2

)
≤ (1−ν)g2 (y) f 2 +ν f 2 (y)g2− f 2ν (y)g2(1−ν) (y) f 2(1−ν)g2ν

(2.12)

≤ 1
2m2 ν (1−ν)

(
f 4 (y)
g2 (y)

g2−2 f 2 (y) f 2 +g2 (y)
f 4

g2

)
.

If we take the functional A in (2.12), then we get

1
2M2 ν (1−ν)

(
f 4 (y)
g2 (y)

A
(
g2)−2 f 2 (y)A

(
f 2)+g2 (y)A

(
f 4

g2

))
≤ (1−ν)g2 (y)A

(
f 2)+ν f 2 (y)A

(
g2) (2.13)

− f 2ν (y)g2(1−ν) (y)A
(

f 2(1−ν)g2ν

)

≤ 1
2m2 ν (1−ν)

×
(

f 4 (y)
g2 (y)

A
(
g2)−2 f 2 (y)A

(
f 2)+g2 (y)A

(
f 4

g2

))

for any y ∈ E.
This inequality can be written in the order of L as

1
2M2 ν (1−ν)

(
A
(
g2) f 4

g2 −2A
(

f 2) f 2 +A
(

f 4

g2

)
g2
)
≤ (1−ν)A

(
f 2)g2 +νA

(
g2) f 2−A

(
f 2(1−ν)g2ν

)
f 2ν g2(1−ν)

(2.14)

≤ 1
2m2 ν (1−ν)

(
A
(
g2) f 4

g2 −2A
(

f 2) f 2 +A
(

f 4

g2

)
g2
)
.

Now, if we take the functional B in (2.14), then we get the desired result (2.9).

Corollary 2.4. Let A : L→ R be a normalized isotonic functional. If f , g : E → R are such that f ≥ 0, g > 0, f 2, g2, f 4

g2 ,

f 2(1−ν)g2ν , f 2ν g2(1−ν) ∈ L for some ν ∈ [0,1] and the condition (2.1) is valid, then

1
M2 ν (1−ν)

(
A
(
g2)A

(
f 4

g2

)
−A2 ( f 2)

)
≤ A

(
f 2)A

(
g2)−A

(
f 2(1−ν)g2ν

)
A
(

f 2ν g2(1−ν)
)

(2.15)

≤ 1
m2 ν (1−ν)

(
A
(
g2)A

(
f 4

g2

)
−A2 ( f 2)

)
.
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In particular, if f 2, g2, f 4

g2 , f g ∈ L and the condition (2.1) is valid, then we have

1
4M2

(
A
(
g2)A

(
f 4

g2

)
−A2 ( f 2)

)
≤ A

(
f 2)A

(
g2)−A2 ( f g) (2.16)

≤ 1
4m2

(
A
(
g2)A

(
f 4

g2

)
−A2 ( f 2)

)
.

3. Other Related Results

If we write the inequality (1.1) for a = 1 and b = x we get

1
2

ν (1−ν)
(x−1)2

max{x,1} ≤ 1−ν +νx− xν ≤ 1
2

ν (1−ν)
(x−1)2

min{x,1} (3.1)

for any x > 0 and for any ν ∈ [0,1] .
If x ∈ [t,T ]⊂ (0,∞) , then max{x,1} ≤max{T,1} and min{t,1} ≤min{x,1} and by (3.1) we get

1
2

ν (1−ν)
minx∈[t,T ] (x−1)2

max{T,1} ≤ 1
2

ν (1−ν)
(x−1)2

max{T,1} (3.2)

≤ 1−ν +νx− xν

≤ 1
2

ν (1−ν)
(x−1)2

min{t,1}

≤ 1
2

ν (1−ν)
maxx∈[t,T ] (x−1)2

min{t,1}
for any x ∈ [t,T ] and for any ν ∈ [0,1] .
Observe that

min
x∈[t,T ]

(x−1)2 =





(T −1)2 if T < 1,
0 if t ≤ 1≤ T,
(t−1)2 if 1 < t

and

max
x∈[t,T ]

(x−1)2 =





(t−1)2 if T < 1,

max
{
(t−1)2 ,(T −1)2

}
if t ≤ 1≤ T,

(T −1)2 if 1 < t.

Then

c(t,T ) :=
minx∈[t,T ] (x−1)2

max{T,1} =





(T −1)2 if T < 1,
0 if t ≤ 1≤ T,
(t−1)2

T if 1 < t
(3.3)

and

C (t,T ) :=
maxx∈[t,T ] (x−1)2

min{t,1} =

{
(t−1)2

t if T < 1, 1
t max

{
(t−1)2 ,(T −1)2

}
if t ≤ 1≤ T,

(T −1)2 if 1 < t.
(3.4)

Using the inequality (3.2) we have

1
2

ν (1−ν)c(t,T ) ≤ 1
2

ν (1−ν)
(x−1)2

max{T,1} ≤ 1−ν +νx− xν (3.5)

≤ 1
2

ν (1−ν)
(x−1)2

min{t,1} ≤
1
2

ν (1−ν)C (t,T )

for any x ∈ [t,T ] and for any ν ∈ [0,1] .
Now, if a, b > 0 and assume that b

a ∈ [t,T ] , then by (3.5) we get

1
2

ν (1−ν)c(t,T )a ≤ 1
2

ν (1−ν)
(b−a)2

max{T,1}a
(3.6)

≤ (1−ν)a+νb−bν a1−ν

≤ 1
2

ν (1−ν)
(b−a)2

min{t,1}a
≤ 1

2
ν (1−ν)C (t,T )a

for any ν ∈ [0,1] , where c(t,T ) and C (t,T ) are defined by (3.3) and (3.4), respectively.
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Theorem 3.1. Let A, B : L→ R be two normalized isotonic functionals. If f , g : E → R are such that, f 2, g2, g4

f 2 ,
f 4

g2 ,

f 2(1−ν)g2ν , f 2ν g2(1−ν) ∈ L for some ν ∈ [0,1] and the condition (2.1) holds, then

0 ≤ 1
2

ν (1−ν)
m2

M2

(
A
(

g4

f 2

)
B
(

f 4

g2

)
−2A

(
g2)B

(
f 2)+A

(
f 2)B

(
g2)
)

(3.7)

≤ (1−ν)A
(

f 2)B
(
g2)+νA

(
g2)B

(
f 2)−A

(
f 2(1−ν)g2ν

)
B
(

f 2ν g2(1−ν)
)

≤ 1
2

ν (1−ν)
M2

m2

(
A
(

g4

f 2

)
B
(

f 4

g2

)
−2A

(
g2)B

(
f 2)+A

(
f 2)B

(
g2)
)

≤ 1
2

ν (1−ν)
M2

m2

(
M2

m2 −1
)2

A
(

f 2)B
(
g2) .

Proof. For any x, y ∈ E we have

m2 ≤ f 2 (x)
g2 (x)

,
f 2 (y)
g2 (y)

≤M2.

Consider

a =
f 2 (x)
g2 (x)

, b =
f 2 (y)
g2 (y)

,

then b
a ∈

[
m2

M2 ,
M2

m2

]
and by (3.6) we get

0 ≤ 1
2

ν (1−ν)

(
f 2(y)
g2(y) −

f 2(x)
g2(x)

)2

M2

m2
f 2(x)
g2(x)

≤ (1−ν)
f 2 (x)
g2 (x)

+ν
f 2 (y)
g2 (y)

−
(

f 2 (y)
g2 (y)

)ν ( f 2 (x)
g2 (x)

)1−ν

≤ 1
2

ν (1−ν)

(
f 2(y)
g2(y) −

f 2(x)
g2(x)

)2

m2

M2
f 2(x)
g2(x)

≤ 1
2

ν (1−ν)
M2

m2 max

{(
m2

M2 −1
)2

,

(
M2

m2 −1
)2
}

f 2 (x)
g2 (x)

=
1
2

ν (1−ν)
M2

m2

(
M2

m2 −1
)2 f 2 (x)

g2 (x)

for any x, y ∈ E and ν ∈ [0,1].
This inequality is equivalent to

0 ≤ 1
2

ν (1−ν)
m2

M2

(
f 2(y)
g2(y) −

f 2(x)
g2(x)

)2
g2 (x)

f 2 (x)
(3.8)

≤ (1−ν)
f 2 (x)
g2 (x)

+ν
f 2 (y)
g2 (y)

−
(

f 2 (y)
g2 (y)

)ν ( f 2 (x)
g2 (x)

)1−ν

≤ 1
2

ν (1−ν)
M2

m2

(
f 2(y)
g2(y) −

f 2(x)
g2(x)

)2
g2 (x)

f 2 (x)

≤ 1
2

ν (1−ν)
M2

m2

(
M2

m2 −1
)2 f 2 (x)

g2 (x)

for any x,y ∈ E and ν ∈ [0,1].
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Now, if we multiply (3.8) by g2 (x)g2 (y)> 0 then we get

0 ≤ 1
2

ν (1−ν)
m2

M2

(
f 2(y)
g2(y) −

f 2(x)
g2(x)

)2
g4 (x)g2 (y)

f 2 (x)
(3.9)

≤ (1−ν)g2 (y) f 2 (x)+ν f 2 (y)g2 (x)− f 2ν (y)g2(1−ν) (y) f 2(1−ν) (x)g2ν (x)

≤ 1
2

ν (1−ν)
M2

m2

(
f 2(y)
g2(y) −

f 2(x)
g2(x)

)2
g4 (x)g2 (y)

f 2 (x)

≤ 1
2

ν (1−ν)
M2

m2

(
M2

m2 −1
)2

f 2 (x)g2 (y)

for any x, y ∈ E and ν ∈ [0,1].
Observe that

(
f 2(y)
g2(y) −

f 2(x)
g2(x)

)2
g4 (x)g2 (y)

f 2 (x)
=

(
f 4(y)
g4(y) −2 f 2(y)

g2(y)
f 2(x)
g2(x) +

f 4(x)
g4(x)

)
g4 (x)g2 (y)

f 2 (x)

=

f 4(y)g4(x)
g2(y) −2 f 2 (y) f 2 (x)g2 (x)+ f 4 (x)g2 (y)

f 2 (x)

=
f 4 (y)g4 (x)
g2 (y) f 2 (x)

−2 f 2 (y)g2 (x)+ f 2 (x)g2 (y)

and by (3.9) we get

0 ≤ 1
2

ν (1−ν)
m2

M2

(
f 4 (y)g4 (x)
g2 (y) f 2 (x)

−2 f 2 (y)g2 (x)+ f 2 (x)g2 (y)
)

≤ (1−ν)g2 (y) f 2 (x)+ν f 2 (y)g2 (x)− f 2ν (y)g2(1−ν) (y) f 2(1−ν) (x)g2ν (x)

≤ 1
2

ν (1−ν)
M2

m2

(
f 4 (y)g4 (x)
g2 (y) f 2 (x)

−2 f 2 (y)g2 (x)+ f 2 (x)g2 (y)
)

≤ 1
2

ν (1−ν)
M2

m2

(
M2

m2 −1
)2

f 2 (x)g2 (y)

for any x, y ∈ E and ν ∈ [0,1].
Now, if we use a similar argument to the one from the proof of Theorem 2.1 we deduce the desired result (3.7).

Corollary 3.2. Let A : L→ R be a normalized isotonic functional. If f , g : E→ R are such that, f 2, g2, g4

f 2 ,
f 4

g2 , f 2(1−ν)g2ν ,

f 2ν g2(1−ν) ∈ L for some ν ∈ [0,1] and the condition (2.1) holds, then

0 ≤ 1
2

ν (1−ν)
m2

M2

(
A
(

g4

f 2

)
A
(

f 4

g2

)
−A

(
g2)A

(
f 2)
)

(3.10)

≤ A
(

f 2)A
(
g2)−A

(
f 2(1−ν)g2ν

)
A
(

f 2ν g2(1−ν)
)

≤ 1
2

ν (1−ν)
M2

m2

(
A
(

g4

f 2

)
A
(

f 4

g2

)
−A

(
g2)A

(
f 2)
)

≤ 1
2

ν (1−ν)
M2

m2

(
M2

m2 −1
)2

A
(

f 2)A
(
g2) .

In particular, if f 2, g2, g4

f 2 ,
f 4

g2 , f g ∈ L, then we have

0 ≤ 1
8

m2

M2

(
A
(

g4

f 2

)
A
(

f 4

g2

)
−A

(
g2)A

(
f 2)
)

(3.11)

≤ A
(

f 2)A
(
g2)−A2 ( f g)

≤ 1
8

M2

m2

(
A
(

g4

f 2

)
A
(

f 4

g2

)
−A

(
g2)A

(
f 2)
)

≤ 1
8

M2

m2

(
M2

m2 −1
)2

A
(

f 2)A
(
g2) .
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We observe that the inequality (3.11) can be written as

0 ≤ 1
8

m2

M2




A
(

g4

f 2

)
A
(

f 4

g2

)

A(g2)A( f 2)
−1


≤ 1− A2 ( f g)

A( f 2)A(g2)
(3.12)

≤ 1
8

M2

m2




A
(

g4

f 2

)
A
(

f 4

g2

)

A(g2)A( f 2)
−1


≤ 1

8
M2

m2

(
M2

m2 −1
)2

.

4. Applications for Integrals

Let (Ω,A,µ) be a measurable space consisting of a set Ω, a σ -algebra A of subsets of Ω and a countably additive and positive
measure µ on A with values in R∪{∞} . For a µ-measurable function w : Ω→ R, with w(x)≥ 0 for µ -a.e. (almost every)
x ∈Ω and p≥ 1 consider the Lebesgue space

Lp
w (Ω,µ) := { f : Ω→ R, f is µ-measurable and

∫

Ω

| f (x)|p w(x)dµ (x)< ∞}.

For simplicity of notation we write everywhere in the sequel
∫

Ω
wdµ instead of

∫
Ω

w(x)dµ (x). The same for other integrals
involved below. We assume that

∫
Ω

wdµ = 1.
Let f , g be µ-measurable functions with the property that there exists the constants M, m > 0 such that

0 < m≤ f
g
≤M < ∞ µ-almost everywhere (a.e.) on Ω. (4.1)

If f 2, g2, g4

f 2 , f 2(1−ν)g2ν , f 2ν g2(1−ν) ∈ Lw (Ω,µ) for some ν ∈ [0,1] and the condition (4.1) holds, then by (2.7) we have

ν (1−ν)m2
(∫

Ω

w
g4

f 2 dµ

∫

Ω

w f 2dµ−1
)
≤

∫

Ω

w f 2dµ

∫

Ω

wg2dµ−
∫

Ω

w f 2(1−ν)g2ν dµ

∫

Ω

w f 2ν g2(1−ν)dµ (4.2)

≤ ν (1−ν)M2
(∫

Ω

w
g4

f 2 dµ

∫

Ω

w f 2dµ−1
)
.

In particular, if f 2, g2, g4

f 2 , f g ∈ Lw (Ω,µ) and the condition (4.1) holds, then

1
4

m2
(∫

Ω

w
g4

f 2 dµ

∫

Ω

w f 2dµ−1
)
≤

∫

Ω

w f 2dµ

∫

Ω

wg2dµ−
(∫

Ω

w f gdµ

)2

(4.3)

≤ 1
4

M2
(∫

Ω

w
g4

f 2 dµ

∫

Ω

w f 2dµ−1
)
.

If f 2, g2, f 4

g2 , f 2(1−ν)g2ν , f 2ν g2(1−ν) ∈ Lw (Ω,µ) for some ν ∈ [0,1] and the condition (4.1) holds, then by (2.15) we have

1
M2 ν (1−ν)

(∫

Ω

wg2dµ

∫

Ω

w
f 4

g2 dµ−
(∫

Ω

w f 2dµ

)2
)
≤

∫

Ω

w f 2dµ

∫

Ω

wg2dµ−
∫

Ω

w f 2(1−ν)g2ν dµ

∫

Ω

w f 2ν g2(1−ν)dµ

(4.4)

≤ 1
m2 ν (1−ν)

(∫

Ω

wg2dµ

∫

Ω

w
f 4

g2 dµ−
(∫

Ω

w f 2dµ

)2
)
.

In particular, if f 2, g2, f 4

g2 , f g ∈ Lw (Ω,µ) and the condition (4.1) is valid, then we have

1
4M2

(∫

Ω

wg2dµ

∫

Ω

w
f 4

g2 dµ−
(∫

Ω

w f 2dµ

)2
)
≤

∫

Ω

w f 2dµ

∫

Ω

wg2dµ−
(∫

Ω

w f gdµ

)2

(4.5)

≤ 1
4m2

(∫

Ω

wg2dµ

∫

Ω

w
f 4

g2 dµ−
(∫

Ω

w f 2dµ

)2
)
.
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If f 2, g2, g4

f 2 ,
f 4

g2 , f 2(1−ν)g2ν , f 2ν g2(1−ν) ∈ Lw (Ω,µ) for some ν ∈ [0,1], and the condition (4.1) holds, then

0 ≤ 1
2

ν (1−ν)
m2

M2

(∫

Ω

w
g4

f 2 dµ

∫

Ω

w
f 4

g2 dµ−
∫

Ω

wg2dµ

∫

Ω

w f 2dµ

)
(4.6)

≤
∫

Ω

w f 2dµ

∫

Ω

wg2dµ−
∫

Ω

w f 2(1−ν)g2ν dµ

∫

Ω

w f 2ν g2(1−ν)dµ

≤ 1
2

ν (1−ν)
M2

m2

(∫

Ω

w
g4

f 2 dµ

∫

Ω

w
f 4

g2 dµ−
∫

Ω

wg2dµ

∫

Ω

w f 2dµ

)

≤ 1
2

ν (1−ν)
M2

m2

(
M2

m2 −1
)2 ∫

Ω

w f 2dµ

∫

Ω

wg2dµ.

In particular, if f 2, g2, g4

f 2 ,
f 4

g2 , f g ∈ Lw (Ω,µ), then we have

0 ≤ 1
8

m2

M2

(∫

Ω

w
g4

f 2 dµ

∫

Ω

w
f 4

g2 dµ−
∫

Ω

wg2dµ

∫

Ω

w f 2dµ

)
(4.7)

≤
∫

Ω

w f 2dµ

∫

Ω

wg2dµ−
(∫

Ω

w f gdµ

)2

≤ 1
8

M2

m2

(∫

Ω

w
g4

f 2 dµ

∫

Ω

w
f 4

g2 dµ−
∫

Ω

wg2dµ

∫

Ω

w f 2dµ

)

≤ 1
8

M2

m2

(
M2

m2 −1
)2 ∫

Ω

w f 2dµ

∫

Ω

wg2dµ.

5. Applications for Real Numbers

We consider the n-tuples of positive numbers a = (a1, ...,an) , b = (b1, ...,bn) and the probability distribution p = (p1, ..., pn) ,
i.e. pi ≥ 0 for any i ∈ {1, ...,n} with ∑

n
i=1 pi = 1. If there exist the constants m, M > 0 such that

0 < m≤ ai

bi
≤M < ∞ for any i ∈ {1, ...,n} , (5.1)

then by (4.2) and (4.3) for the counting discrete measure, we have

ν (1−ν)m2

(
n

∑
i=1

pi
b4

i

a2
i

n

∑
i=1

pia2
i −1

)
≤

n

∑
i=1

pia2
i

n

∑
i=1

pib2
i −

n

∑
i=1

pia
2(1−ν)
i b2ν

i

n

∑
i=1

pia2ν
i b2(1−ν)

i (5.2)

≤ ν (1−ν)M2

(
n

∑
i=1

pi
b4

i

a2
i

n

∑
i=1

pia2
i −1

)

for any ν ∈ [0,1] and

1
4

m2

(
n

∑
i=1

pi
b4

i

a2
i

n

∑
i=1

pia2
i −1

)
≤

n

∑
i=1

pia2
i

n

∑
i=1

pib2
i −
(

n

∑
i=1

piaibi

)2

(5.3)

≤ 1
4

M2

(
n

∑
i=1

pi
b4

i

a2
i

n

∑
i=1

pia2
i −1

)
.

If a = (a1, ...,an) , b = (b1, ...,bn) satisfy (5.1), then by (4.4) and (4.5) for the counting discrete measure, we have

1
M2 ν (1−ν)




n

∑
i=1

pib2
i

n

∑
i=1

pi
a4

i

b2
i
−
(

n

∑
i=1

pia2
i

)2

 ≤

n

∑
i=1

pia2
i

n

∑
i=1

pib2
i −

n

∑
i=1

pia
2(1−ν)
i b2ν

i

n

∑
i=1

pia2ν
i b2(1−ν)

i (5.4)

≤ 1
m2 ν (1−ν)




n

∑
i=1

pib2
i

n

∑
i=1

pi
a4

i

b2
i
−
(

n

∑
i=1

pia2
i

)2



for any ν ∈ [0,1] and

1
4M2




n

∑
i=1

pib2
i

n

∑
i=1

pi
a4

i

b2
i
−
(

n

∑
i=1

pia2
i

)2

 ≤

n

∑
i=1

pia2
i

n

∑
i=1

pib2
i −
(

n

∑
i=1

piaibi

)2

(5.5)

≤ 1
4m2




n

∑
i=1

pib2
i

n

∑
i=1

pi
a4

i

b2
i
−
(

n

∑
i=1

pia2
i

)2

 .
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If a = (a1, ...,an) , b = (b1, ...,bn) satisfy (5.1), then by (4.6) and (4.7) for the counting discrete measure, we have

0 ≤ 1
2

ν (1−ν)
m2

M2

(
n

∑
i=1

pi
b4

i

a2
i

n

∑
i=1

pi
a4

i

b2
i
−

n

∑
i=1

pib2
i

n

∑
i=1

pia2
i

)
(5.6)

≤
n

∑
i=1

pia2
i

n

∑
i=1

pib2
i −

n

∑
i=1

pia
2(1−ν)
i b2ν

i

n

∑
i=1

pia2ν
i b2(1−ν)

i

≤ 1
2

ν (1−ν)
M2

m2

(
n

∑
i=1

pi
b4

i

a2
i

n

∑
i=1

pi
a4

i

b2
i
−

n

∑
i=1

pib2
i

n

∑
i=1

pia2
i

)

≤ 1
2

ν (1−ν)
M2

m2

(
M2

m2 −1
)2 n

∑
i=1

pia2
i

n

∑
i=1

pib2
i

for any ν ∈ [0,1] and

0 ≤ 1
8

m2

M2

(
n

∑
i=1

pi
b4

i

a2
i

n

∑
i=1

pi
a4

i

b2
i
−

n

∑
i=1

pib2
i

n

∑
i=1

pia2
i

)
(5.7)

≤
n

∑
i=1

pia2
i

n

∑
i=1

pib2
i −
(

n

∑
i=1

piaibi

)2

≤ 1
8

M2

m2

(
n

∑
i=1

pi
b4

i

a2
i

n

∑
i=1

pi
a4

i

b2
i
−

n

∑
i=1

pib2
i

n

∑
i=1

pia2
i

)

≤ 1
8

M2

m2

(
M2

m2 −1
)2 n

∑
i=1

pia2
i

n

∑
i=1

pib2
i .

6. Conclusion

In this paper, by making use of some reverses and refinements of Young’s inequality (1.1),we obtained some inequalities for
isotonic functionals that are related to the second part of Callebaut’s inequality (1.2). Natural applications for integrals and
n-tuples of real numbers were also provided.
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Abstract

The object of this paper is to study a generalized Mittag-Leffler function and a modified general
class of functions which is reducible to several special functions. convergent conditions of these
functions are discussed. Some results pertaining to the generalized Mittag-Leffler function and
generating relations involving these functions are derived. Further, fractional integrals involving
these functions are achieved. Some illustrative exclusive cases of the results are presented.

1. Introduction

In 1906, Barnes [1] presented a function. In 1940, Wright [2] presented another function. In 1971, Prabhakar [3] studied an
extended Mittag-Leffler function which is a particular case of the Wright’s function. Recently in 2021, Srivastava [4] presented
a more general function which is reducible to the Mittag-Leffler function by giving a suitable value to the general function
involved therein. In this paper, two more general functions are presented which are reducible to the Srivastava’s function
defined by (1.6) and generalized Hurwitz-Lerch zeta function [5].
Now, we present some relevant definitions.

Definition 1.1. A Swedish Scholar namely Magnus Gustaf ”Gösta” Mittag-Leffler introduced his function [6], named after
his name, as follows:

Eδ (x) =
∞

∑
c=0

xc

Γ(δc+1)
, (1.1)

where Re(δ )> 0.

Definition 1.2. Another Swedish Scholar namely Anders Wiman [7] presented a more general function as follows (see also [8], [9]):

Eδ , ρ(x) =
∞

∑
c=0

xc

Γ(δc+ρ)
, (1.2)

where δ , ρ ∈ C and Re(δ )> 0.

It is obvious that when ρ = 1 in (1.2), it becomes (1.1).

Definition 1.3. A British Scholar namely Ernest William Barnes [1] presented his function as follows:

Eξ

δ , ρ
(s; x) =

∞

∑
c=0

xc

(c+ξ )s Γ(δc+ρ)
, (1.3)

where δ , ρ ∈ C and Re(δ )> 0
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It is obvious that when s = 0 in (1.3), it becomes (1.2).

Definition 1.4. Another British Scholar namely Sir Edward Maitland Wright [2], presented his function as follows:

Eδ , ρ(Φ; x) =
∞

∑
c=0

Φ(c)
Γ(δc+ρ)

xc, (1.4)

where F(c) is a general function and δ , ρ ∈ C, Re(δ )> 0.

It is obvious that when Φ(c) = 1
(c+ξ )s in (1.4), it becomes (1.3).

Definition 1.5. If we substitute Φ(c) = (ζ )c
c! in (1.4), we achieve the extended Mittag-Leffler function as follows:

Eζ

δ , ρ
(x) =

∞

∑
c=0

(ζ )c xc

Γ(δc+ρ) c!
, (1.5)

where ζ , δ , ρ ∈ C, Re(ζ )> 0, Re(δ )> 0 and

(a)c =
Γ(a+ c)

Γ(a)
,

that is

(a)0 = 1, (a)c = a(a+1)(a+2)...(a+ c−1),

where c = 1, 2, 3, ... .

It is obvious that when ζ = 1 in (1.5), it becomes (1.2). Indian Scholar namely Tilak Raj Prabhakar [3] studied (1.5). Some
more exclusive cases of (1.4) have been considered and studied, among others, by Kamarujjama et al. [10], Khan and Ahmed
[11], [12], Khan and Khan [13], Khan et al. [14], Shukla and Prajapati [15] and Salim [16].

Definition 1.6. Recently, a Canadian Scholar of Indian origin namely Hari Mohan Srivastava [4], [17] presented his function
as follows:

Eδ , ρ(Φ; x; s, ξ ) =
∞

∑
c=0

Φ(c)
(c+ξ )s Γ(δc+ρ)

xc, (1.6)

where δ , ρ ∈ C and Re(δ )> 0.

It is obvious that when Φ(c) = (ζ )c
c! , s = 0 in (1.6), it becomes (1.5). When s = 0 in (1.6), it becomes (1.4) and when

Φ(c) = (ζ )c, δ = 1, ρ = 1, it becomes Goyal-Laddha zeta function [18].

Definition 1.7. Two More general functions are hereby presented as follows:

Eα, β , δ (x, s, ρ) =
∞

∑
c=0

φ(c) xc

(δc+ρ)s Γ(αc+β )
, (1.7)

where δ , ρ, s, α, β ∈ C, Re(α)> 0, Re(s)≥ 0,
and

Eα, β , δ , η(x, s, ρ) =
∞

∑
c=0

φ(c) xc

(ρ +δcxη)s Γ(αc+β )
, (1.8)

where δ , ρ, s, α, β ∈ C, Re(α)> 0, Re(s)≥ 0, η ≥ 0.

It is obvious that when δ = 1 in (1.7), it becomes (1.6) and when η = 0 in (1.8), it becomes (1.7). If we put φ(c) = (µ)c, α = 1
and β = 1 in (1.8), it becomes the generalized Hurwitz-Lerch zeta function [5].

Definition 1.8. If we assign

φ(c) =
(µ)c

c!

in (1.7), we achieve a more generalized Mittag-Leffler function as follows:

Eµ

α, β , δ
(x, s, ρ) =

∞

∑
c=0

(µ)c xc

(δc+ρ)s Γ(αc+β ) c!
, (1.9)

where Re(µ)> 0, Re(δ )> 0, Re(ρ)> 0, Re(s)≥ 0, Re(α)> 0, Re(β )> 0, |x| ≤ 1 and (a)c is defined in (1.5).
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It is obvious that when s = 0 in (1.9), it becomes (1.5).
The function (1.9) is studied in this paper.

Remark 1.9. Other generalized Mittag-Leffler functions and generalized Hurwitz-Lerch zeta functions can be achieved by
assigning suitable values to φ(c) in (1.7) and (1.8). Three such examples are given here.
(i) If we assign s = 0, φ(c) = Γ(ζ c+µ)

Γ(δc+ρ) in (1.7), we achieve the following generalized Mittag-Leffler function:

Eζ , µ

α, β , δ , ρ
(x) =

∞

∑
c=0

Γ(ζ c+µ) xc

Γ(αc+β ) Γ(δc+ρ)
, (1.10)

where Re(µ)> 0, Re(α)> 0, Re(β )> 0, Re(δ )> 0, Re(ρ > 0.
It is obvious that when ζ = δ , µ = ρ in (1.10), it becomes (1.2). Using (2.2), it may be ascertained that the series in (1.10) is
absolutely convergent when |α +δ |> |ζ | and |x| ≤ 1.
(ii) If we assign φ(c) = Γ(ζ c+µ) in (1.7) and (1.8), we achieve the following generalized Hurwitz-Lerch zeta functions:

φ
δ , α, β

ζ , µ
(x, s, ρ) =

∞

∑
c=0

Γ(ζ c+µ) xc

(ρ +δc)s Γ(αc+β )
, (1.11)

where ζ , µ, δ , ρ,α, β , s ∈ C, Re(ζ )> 0, Re(δ )> 0, Re(α)> 0, Re(s)≥ 0,
and

φ
δ , η , α, β

ζ , µ
(x, s, ρ) =

∞

∑
c=0

Γ(ζ c+µ) xc

(ρ +δcxη)s Γ(αc+β )
, (1.12)

where ζ , µ, α, β , δ , ρ, s ∈ C, Re(ζ )> 0, Re(α)> 0, Re(s)≥ 0, η ≥ 0.
It is obvious that when ζ = α, µ = β , δ = 1 in (1.11), it becomes the Hurwitz-Lerch zeta function [19], (p. 27, Eq. (1)) and
when η = 0 in (1.12), it becomes (1.11). Using (2.2), it may be ascertained that series in (1.11) and (1.12) are absolutely
convergent when |α|> |ζ | and |x| ≤ 1.

Lemma 1.10. The function Eµ

α, β , δ
(x, s,ρ) expressed by (1.9) is represented as an integral as follows:

Eµ

α, β , δ
(x, s,ρ) =

1
Γ(s)

∫
∞

0
ts−1 e−ρt Eµ

α, β
(xe−δ t)dt, (1.13)

where Eµ

α, β
(xe−δ t) is expressed by (1.5) and Re(µ)> 0, Re(α)> 0, Re(β )> 0, Re(δ )> 0, Re(s)> 0, |x| ≤ 1.

Proof. Assigning p = (δc+ρ) in [19], (p. 1, Eq. (5))

p−s =
1

Γ(s)

∫
∞

0
e−pt ts−1dt, Re(s)> 0,

we achieve

(δc+ρ)−s =
1

Γ(s)

∫
∞

0
e−(δc+ρ)t ts−1dt, Re(s)> 0.

Now, from (1.9), we achieve

Eµ

α, β , δ
(x, s,ρ) =

1
Γ(s)

∫
∞

0
ts−1 e−ρt

{
∞

∑
c=0

(µ)c(xe−δ t)c

Γ(αc+β ) c!

}
dt

and applying (1.5), we easily procure (1.13).

Remark 1.11. If we assign α = 1 in (1.13), we procure the expression:

Eµ

β , δ
(x, s,ρ) =

1
Γ(s) Γ(β )

∫
∞

0
ts−1 e−ρt

1F1(µ; β ; xe−δ t)dt,

where 1F1(µ; β ; xe−δ t) is the confluent hypergeometric function [19] and Re(µ) > 0, Re(β ) > 0, Re(δ ) > 0, Re(s) > 0,
|x| ≤ 1.
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Definition 1.12. Riemann-Liouville’s fractional integral of order ω of f (t) is given as follows [20]:

Iω
x { f (t)}= 1

Γ(ω)

∫ x

0
(x− t)ω−1 f (t)dt, (1.14)

where ω , x are complex variables and Re(ω)> 0.

Definition 1.13. A modified general class of functions is hereby presented as follows:

V λ
n (z) =V

λ , hm, c, d, g j
n [p, τ, k, w, q, ρm, km, γ j, a j, br, η , α, β , δ ; z]

= λ

∞

∑
n=0

(p)n t
∏

m=1

[
(hm)nρm+km

]
(c+ηn+β )−τ(z/2)nk+dw+q

s
∏
j=1

[
(g j)nγ j+a j

] u
∏

r=1

[
(d)

αnδ+br

] ,
(1.15)

where

(i) p, k, w and q ∈ R.
(ii) t, s and u ∈ N.

(iii) hm, ρm, km, c, d, g j, γ j, a j, η , α, β , δ , br and τ ∈ C. d may be considered as real or complex.
(iv) Re(hm)> 0, Re(ρm)> 0, Re(g j)> 0, Re(γ j)> 0, Re(d)> 0, z being a variable and λ being an arbitrary constant.
(v) The series in (1.15) is absolutely convergent when |αδ + γ j|> |ρm| and |p(z/2)k| ≤ 1.

Remark 1.14. On substituting ρm = 1, c = d, η = α and γ j = 1 in (1.15), it becomes the general class of functions defined
in [?], [5].

Remark 1.15. If we assign p = 2, k = 1, c = d = 1, τ = 1, w = 0, q = 0, α = η = 1, β =−1, δ = 1, b1 =−1, r = 1, km =

0, a j = 0 and λ =

t
∏

m=1
Γ(hm)

s
∏
j=1

Γ(g j)
in (1.15), it becomes the Wright’s generalized hypergeometric function as follows [19], (p. 183):

tΨs

[
(hm, ρm)1, t
(g j , γ j)1, s

; z
]
=

∞

∑
n=0

t
∏

m=1
Γ(hm +nρm)

s
∏
j=1

Γ(g j +nγ j)

zn

n!
(1.16)

2. Convergence conditions of (1.9) and (1.15)

Here convergence conditions of the series in (1.9) and (1.15) are discussed.

Theorem 2.1. If Re(µ) > 0, Re(α) > 0, Re(β ) > 0, Re(δ ) > 0, Re(ρ) > 0, Re(s) ≥ 0 and |x| ≤ 1, then series in (1.9) is
absolutely convergent.

Proof. D’ Alembert’s ratio test is applied to prove the theorem. Taking

Uc(x) =
(µ)c xc

(δc+ρ)s Γ(αc+β ) c!
.

Then

Uc+1(x) =
(µ)c+1 xc+1

(δc+ρ +δ )s Γ(αc+β +α) (c+1)!

and on simplification

Uc+1(x)
Uc(x)

=
µ + c
c+1

(δc+ρ)s

(δc+δ +ρ)s
Γ(αc+β )

Γ(αc+β +α)
x . (2.1)

Applying in (2.1), the result [19], (p. 5, Eq. (2)):

Γ(a)
Γ(a+b)

= eγ b
∞

∏
n=0

(
1+

b
a+n

)
e
−b
1+n , (2.2)

where γ(= 0.58) is the Euler constant, (2.1) becomes

Uc+1(x)
Uc(x)

=
µ + c
c+1

(δc+ρ)s

(δc+δ +ρ)s eγ α
∞

∏
n=0

(
n+αc+β +α

n+αc+β

)
e
−α
1+n x .
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On simplification we procure

Uc+1(x)
Uc(x)

=
µ

c +1

1+ 1
c

(1+ ρ

δc )
s

(1+ 1
c +

ρ

δc )
s
eγ α

∞

∏
n=0

(
1+ β

αc +
n

αc +
1
c

1+ β

αc +
n

αc

)
e
−α
1+n x .

Now, it is observed that

lim
c→∞

Uc+1(x)
Uc(x)

= x eγ α
∞

∏
n=0

e
−α
1+n .

Therefore, series in (1.9) converges absolutely when

x eγ α
∞

∏
n=0

e
−α
1+n < 1.

Or

|x| ≤ 1,

since

eγ α
∞

∏
n=0

e
−α
1+n < 1,

provided that Re(µ)> 0, Re(α)> 0, Re(β )> 0, Re(δ )> 0, Re(ρ)> 0 and Re(s)≥ 0.

Theorem 2.2. If Re(α)> 0, Re(δ )> 0, |αδ + γ j|> |ρm| and |p(x/2)k| ≤ 1, then series in (1.15) converges absolutely.

Proof. Taking

Un(z) = λ

(p)n t
∏

m=1

[
(hm)nρm+km

]
(c+ηn+β )−τ(z/2)nk+dw+q

s
∏
j=1

[
(g j)nγ j+a j

] u
∏

r=1

[
(d)

αnδ+br

] .

Then

Un+1(z) = λ

(p)n+1 t
∏

m=1

[
(hm)nρm+ρm+km

]
(c+ηn+η +β )−τ(z/2)nk+k+dw+q

s
∏
j=1

[
(g j)nγ j+γ j+a j

] u
∏

r=1

[
(d)

αnδ+αδ+br

]

and on simplification we procure

Un+1(x)
Un(x)

=
t

∏
m=1

{
Γ(hm +nρm + km)

Γ(hm +nρm + km +ρm)

}−1 s

∏
j=1

{
Γ(g j +nγ j +a j)

Γ(g j +nγ j +a j + γ j)

}

×
u

∏
r=1

{
Γ(d +nαδ +br)

Γ(d +nαδ +br +αδ )

}{
(c+nη +β )

(c+nη +β +η)

}τ

p(z/2)k .

(2.3)

On applying (2.2), (2.3) becomes

Un+1(x)
Un(x)

=
t

∏
m=1

{
eγρm

∞

∏
l=0

( hm
nρm

+1+ km
nρm

+ l
nρm

+ 1
n

hm
nρm

+1+ km
nρm

+ l
nρm

)
e−

ρm
l+1

}−1 s

∏
j=1

eγγ j
∞

∏
ρ=0

( g j
nγ j

+1+ a j
nγ j

+ ρ

nγ j
+ 1

n
g j
nγ j

+1+ a j
nγ j

+ ρ

nγ j

)
e−

γ j
ρ+1

×
u

∏
r=1

eγαδ
∞

∏
ε=0

(
d

nαδ
+1+ br

nαδ
+ γ

nαδ
+ 1

n
d

nαδ
+1+ br

nαδ
+ γ

nαδ

)
e−

αδ
ε+1

( c
nη

+1+ β

nη

c
nη

+1+ β

nη
+ 1

n

)τ

p(z/2)k ,

where γ is given with (2.2).
Now, it is observed that

lim
n→∞

Un+1(x)
Un(x)

=
s

∏
j=1

t

∏
m=1

{
eγ(αδ+γ j−ρm)

∞

∏
ε=0

∞

∏
ρ=0

∞

∏
l=0

e−
(

αδ
ε+1+

γ j
ρ+1−

ρm
l+1

)}
p(z/2)k
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Therefore, series in (1.15) converges absolutely when
s

∏
j=1

t

∏
m=1

{
eγ(αδ+γ j−ρm)

∞

∏
ε=0

∞

∏
ρ=0

∞

∏
l=0

e−
(

αδ
ε+1+

γ j
ρ+1−

ρm
l+1

)}
p(z/2)k < 1.

Or

|p(z/2)k| ≤ 1,

since
s

∏
j=1

t

∏
m=1

{
eγ(αδ+γ j−ρm)

∞

∏
ε=0

∞

∏
ρ=0

∞

∏
l=0

e−
(

αδ
ε+1+

γ j
ρ+1−

ρm
l+1

)}
< 1,

provided |αδ + γ j|> |ρm|.

3. Generating relations

Here we drive some generating relations pertaining to (1.9) and (1.15).

Theorem 3.1. If |t| < |ρ|, Re(µ) > 0 along with conditions associated with (1.9), we procure the generating relation as
follows:

∞

∑
n=0

(ξ )n Eµ

α, β , δ
(x, ξ +n, ρ)

tn

n!
= Eµ

α, β , δ
(x, ξ , ρ− t). (3.1)

Proof. Applying (1.9), we find
∞

∑
n=0

(ξ )n Eµ

α, β , δ
(x, ξ +n, ρ)

tn

n!
=

∞

∑
n=0

(ξ )n

∞

∑
c=0

(µ)c xc

(δc+ρ)ξ+n Γ(αc+β ) c!
tn

n!

=
∞

∑
c=0

1
Γ(αc+β )(δc+ρ)ξ

[
∞

∑
n=0

(ξ )n

(
t

δc+ρ)

)n 1
n!

]
(µ)c

xc

c!
.

(3.2)

Applying in (3.2), the result
∞

∑
n=0

(ξ )n xn

n!
= (1− x)−ξ , |x|< 1, (3.3)

we procure

∞

∑
n=0

(ξ )n Eµ

α, β , δ
(x, ξ +n, ρ)

tn

n!
=

∞

∑
c=0

1
Γ(αc+β )(δc+ρ)ξ

(
1− t

δc+ρ)

)−ξ

(µ)c
xc

c!

=
∞

∑
c=0

(µ)c xc

(δc+ρ− t)ξ Γ(αc+β )c!
.

Using (1.9), (3.1) is arrived at, provided |t|< |ρ|.
Theorem 3.2. If |ρ| > |t|, Re(u+ ξ ) > Re(v) > 0 along with conditions associated with (1.9), we procure the bilateral
generating function as follows:

∞

∑
n=0

(ξ )n(u)n

(v)n
Eµ

α, β , δ
(x, ξ +u− v+n, ρ)

tn

n!
=

∞

∑
n=0

(µ)n xn

(δn+ρ)ξ+u−v Γ(αn+β ) n! 2F1

(
ξ , u; v;

t
δn+ρ

)
,

where 2F1 (a, b; v; z) represents the hypergeometric function [19] (p. 56, Eq. (2)).

Proof. applying (1.9), we procure
∞

∑
n=0

(ξ )n(u)n

(v)n
Eµ

α, β , δ
(z, ξ +u− v+n, ρ)

tn

n!
=

∞

∑
n=0

(ξ )n(u)n

(v)n

∞

∑
c=0

(µ)c xc

(δc+ρ)ξ+u−v+n Γ(αc+β ) c!
tn

n!

=
∞

∑
c=0

(µ)c xc

(δc+ρ)ξ+u−v Γ(αc+β ) c!

[
∞

∑
n=0

(ξ )n(u)n

(v)n

(
t

δc+ρ

)n 1
n!

]

=
∞

∑
c=0

(µ)c xc

(δc+ρ)ξ+u−v Γ(αc+β ) c! 2F1

(
ξ , u; v;

t
δc+ρ

)

=
∞

∑
n=0

(µ)n xn

(δn+ρ)ξ+u−v Γ(αn+β ) n! 2F1

(
ξ , u; v;

t
δn+ρ

)
,

provided |ρ|> |t| and Re(u+ξ )>Re(v)> 0.
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Theorem 3.3. If conditions associated with (1.9) and (1.15) are satisfied, we procure the bilateral generating function as
follows:

∞

∑
n=0

(ε)n Eµ

γ, σ , η(x, ε +n, ρ) V λ
n (y)

tn

n!
= Eµ

γ, σ , η

(
x, ε, ρ− pt

( y
2

)k
)( y

2

)dw+q
λ

∞

∑
n=0

t
∏

m=1
[(hm)nρm+km ](c+ηn+β )−τ

s
∏
j=1

[(g j)nγ j+a j ]
u
∏

r=1
[(d)αnδ+br ]

. (3.4)

Proof. Applying (1.15), it is procured that
∞

∑
n=0

(ε)n Eµ

γ, σ , η(x, ε +n, ρ) V λ
n (y)

tn

n!
=

∞

∑
n=0

(ε)n Eµ

γ, σ , η(x, ε +n, ρ)
tn

n!

×λ

∞

∑
n=0

(p)n
t

∏
m=1

[(hm)nρm+km ](c+ηn+β )−τ

s
∏
j=1

[(g j)nγ j+a j ]
u
∏

r=1
[(d)αnδ+br ]

( y
2

)nk+dw+q
.

(3.5)

Applying (1.9) in (3.5), we find

∞

∑
n=0

(ε)n Eµ

γ, σ , η(x, ε +n, ρ) V λ
n (y)

tn

n!
= λ

∞

∑
n=0

(p)n
t

∏
m=1

[(hm)nρm+km ](c+ηn+β )−τ

s
∏
j=1

[(g j)nγ j+a j ]
u
∏

r=1
[(d)αnδ+br ]

( y
2

)nk+dw+q

×
[

∞

∑
n=0

(ε)n

{
∞

∑
ω=0

(µ)ω xω

(ηω +ρ)ε+n Γ(γω +σ) ω!

}
tn

n!

]

=
( y

2

)dw+q
λ

∞

∑
n=0

t
∏

m=1
[(hm)nρm+km ](c+ηn+β )−τ

s
∏
j=1

[(g j)nγ j+a j ]
u
∏

r=1
[(d)αnδ+br ]

×
∞

∑
ω=0

(µ)ω xω

(ηω +ρ)ε Γ(γω +σ) ω!

[
∞

∑
n=0

(ε)n

{
pt( y

2 )
k

ηω +ρ

}n 1
n!

]
.

(3.6)

Applying (3.3) in (3.6), we find

∞

∑
n=0

(ε)n Eµ

γ, σ , η(x, ε +n, ρ) V λ
n (y)

tn

n!
=
( y

2

)dw+q
λ

∞

∑
n=0

t
∏

m=1
[(hm)nρm+km ](c+ηn+β )−τ

s
∏
j=1

[(g j)nγ j+a j ]
u
∏

r=1
[(d)αnδ+br ]

×
∞

∑
ω=0

(µ)ω xω

(ηω +ρ)ε Γ(γω +σ) ω!

{
1− pt( y

2 )
k

ηω +ρ

}−ε

=
( y

2

)dw+q
λ

∞

∑
n=0

t
∏

m=1
[(hm)nρm+km ](c+ηn+β )−τ

s
∏
j=1

[(g j)nγ j+a j ]
u
∏

r=1
[(d)αnδ+br ]

×
∞

∑
ω=0

(µ)ω xω

(
ηω +ρ− pt( y

2 )
k
)ε

Γ(γω +σ) ω!
.

(3.7)

On applying (1.9), (3.7) easily approaches to (3.4).

4. Special cases of the generating relation (3.4)

Here some special cases of (3.4) are achieved.

(i) On taking p = −2, t = 1, s = 2, u = 1, h1 = 1, ρ1 = 1, g1 = 1, g2 = 1, γ1 = 1, γ2 = 1, c = d, τ = 1, k = 1, w =
0, q = 0, k1 = 0, a1 = 0, a2 = 0, η = α, β = 0, δ = 1, b1 = 0 and λ = 1

Γ(d) in (3.4), the modified general class of
functions takes the form of Wright’s generalized Bessel function [21] and we procure the generating relation as follows:

∞

∑
n=0

(ε)n Eµ

γ, σ , α(x, ε +n, ρ) Jα
d (y)

tn

n!
=

1
Γ(1+αn+d) n!

Eµ

γ, σ , α (x, ε, ρ + ty) ,

where Jα
d (y) represents the Wright’s generalized Bessel function.
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(ii) On taking p =−1, t = 1, s = 2, u = 1, h1 = 1, ρ1 = 1, k1 = 0, g1 = 1, g2 = 1, γ1 = 1, γ2 = 1, c = d = 1
2 , τ = 1, k =

2, w = 2, q = 0, a1 = 0, a2 =−1, β =− 1
2 , δ = 1, b1 = 1, η = α = 1 and λ = 1 in (3.4), the modified general class

of functions takes the form of sine function and we procure the generating relation as follows:

∞

∑
n=0

(ε)n Eµ

γ, σ (x, ε +n, ρ) sin y
tn

n!
=

y
√

π

2 Γ( 3
2 +n) n!

Eµ

γ, σ

(
x, ε, ρ + t

( y
2

)2
)
.

(iii) On taking p =−1, t = 1, s = 2, u = 1, h1 = 1, ρ1 = 1, k1 = 0, g1 = 1, g2 = 1, γ1 = 1, γ2 = 1, c = d = 1
2 , τ = 1, k =

2, w = 0, q = 0, a1 = 0, a2 =−1, β =− 1
2 , δ = 1, b1 = 0, η = α = 1 and λ = 1 in (3.4), the modified general class

of functions takes the form of cosine function and we procure the generating relation as follows:

∞

∑
n=0

(ε)n Eµ

γ, σ (x, ε +n, ρ) cos y
tn

n!
=

√
π

Γ( 1
2 +n) n!

Eµ

γ, σ

(
x, ε, ρ + t

( y
2

)2
)
.

(iv) On taking p =−2, u = 1, c = d = 1, ρm = 1, γ j = 1, t = P, s = Q, τ = 1, k = 1, w = 0, q = 0, km = 0, a j = 0, b1 =

−1, η =α = 1, β =−1, δ = 1 and λ =
∏

P
m=1 Γ(hm)

∏
Q
j=1 Γ(g j)

in (3.4), the general class of functions takes the form of MacRobert’s

E− function [19], (p. 203, Eq. (1)) and we procure the generating relation as follows:

∞

∑
n=0

(ε)n Eµ

γ, σ (x, ε +n, ρ) E
[

P; (hP); Q; (gQ);
1
y

]
tn

n!
=

∏
P
m=1 Γ(hm)

∏
Q
j=1 Γ(g j)

∞

∑
n=0

∏
P
m=1(hm)n

∏
Q
j=1 (g j)n

Eµ

γ, σ (x, ε, ρ + yt) .

where E [P; (hP); Q; (gQ); z] represents the MacRobert’s E− function.

Remark 4.1. Other spacial cases of the generating relation (3.4) may be procured using the substitutions of section 7.

5. Some results pertaining to (1.9)

Here we establish some results pertaining to (1.9) associated with differentiation and integration.

Theorem 5.1. If Re(µ)> 0, Re(ε)> 0 along with conditions associated with (1.9), the result procured is as follows:

1
Γ(ε)

∞

∑
c=0

(µ)c xc

(δc+ρ)s Γ(αc+β ) c!

∫ 1

0
tαc+β−1(1− t)ε−1dt = Eµ

α, β+ε, δ
(x, s, ρ). (5.1)

Proof. (5.1) may easily be proved using Beta integral.

Assigning s = 0 in (5.1), it becomes a result procured by Prabhakar [3].

Theorem 5.2. If a > 0 along with conditions associated with (1.9), the result procured is as follows:

Eµ

α, β , δ
(axα , s, ρ) = x

d
dx

Eµ

α, β+1, δ
(axα , s, ρ)+β Eµ

α, β+1, δ
(axα , s, ρ). (5.2)

Proof. Applying (1.9), we procure

d
dx

Eµ

α, β+1, δ
(axα , s, ρ) =

∞

∑
c=0

(µ)c

(δc+ρ)s Γ(αc+β +1) c!
d
dx

(axα)c

=
1
x

∞

∑
c=0

(µ)c ac(αc) xαc

(δc+ρ)s (αc+β ) Γ(αc+β ) c!

=
1
x

∞

∑
c=0

(µ)c ac{(αc+β )−β} xαc

(δc+ρ)s (αc+β ) Γ(αc+β ) c!

=
1
x

{
∞

∑
c=0

(µ)c ac(αc+β ) xαc

(δc+ρ)s (αc+β ) Γ(αc+β ) c!
−β

∞

∑
c=0

(µ)c ac xαc

(δc+ρ)s (αc+β ) Γ(αc+β ) c!

}

=
1
x

{
∞

∑
c=0

(µ)c (axα)c

(δc+ρ)s Γ(αc+β ) c!
−β

∞

∑
c=0

(µ)c (axα)c

(δc+ρ)s Γ(αc+β +1) c!

}

(5.3)

On applying (1.9), (5.3) arrives at

x
d
dx

Eµ

α, β+1, δ
(axα , s, ρ) = Eµ

α, β , δ
(axα , s, ρ)−β Eµ

α, β+1, δ
(axα , s, ρ).

On simplification, (5.2) is arrived at.
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Corollary 5.3. Assigning β = β + ε in (5.2), the result obtained is as follows:

Eµ

α, β+ε, δ
(axα , s, ρ) = x

d
dx

Eµ

α, β+ε+1, δ
(axα , s, ρ)+(β + ε) Eµ

α, β+ε+1, δ
(axα , s, ρ). (5.4)

Theorem 5.4. If a > 0 along with conditions associated with (1.9), the result procured is as follows:

Eµ

α, β , δ
(axδ , s−1, ρ) = x

d
dx

Eµ

α, β , δ
(axδ , s, ρ)+ρ Eµ

α, β , δ
(axα , s, ρ). (5.5)

Proof. Applying (1.9), we procure

d
dx

Eµ

α, β , δ
(axδ , s, ρ) =

∞

∑
c=0

(µ)c

(δc+ρ)s Γ(αc+β ) c!
d
dx

(axδ )c

=
1
x

∞

∑
c=0

(µ)c ac(δc) xδc

(δc+ρ)s Γ(αc+β ) c!

=
1
x

∞

∑
c=0

(µ)c ac{(δc+ρ)−ρ} xδc

(δc+ρ)s Γ(αc+β ) c!

=
1
x

{
∞

∑
c=0

(µ)c ac(δc+ρ) xδc

(δc+ρ)s Γ(αc+β ) c!
−ρ

∞

∑
c=0

(µ)c ac xδc

(δc+ρ)s Γ(αc+β ) c!

}

=
1
x

{
∞

∑
c=0

(µ)c (axδ )c

(δc+ρ)s−1 Γ(αc+β ) c!
−ρ

∞

∑
c=0

(µ)c (axδ )c

(δc+ρ)s Γ(αc+β ) c!

}

(5.6)

On applying (1.9), (5.6) becomes

x
d
dx

Eµ

α, β , δ
(axδ , s, ρ) = Eµ

α, β , δ
(axδ , s−1, ρ)−ρ Eµ

α, β , δ
(axδ , s, ρ).

On simplification, (5.5) is easily arrived at.

Theorem 5.5. Along with conditions associated with (1.9), for any n ∈ N the result procured is as follows:

(
d
dx

)n{
xβ−1Eµ

α, β , δ
(axα , s, ρ)

}
= xβ−n−1 Eµ

α, β−n, δ
(axα , s, ρ). (5.7)

Proof. we find

d
dx

{
xβ−1Eµ

α, β , δ
(axα , s, ρ)

}
=

∞

∑
c=0

(µ)c ac

(δc+ρ)s Γ(αc+β ) c!
d
dx

xαc+β−1

=
∞

∑
c=0

(µ)c ac(αc+β −1) xαc+β−2

(δc+ρ)s Γ(αc+β ) c!
.

(5.8)

Applying Γ(x) = (x−1)Γ(x−1) in (5.8), we procure

d
dx

{
xβ−1Eµ

α, β , δ
(axα , s, ρ)

}
=

∞

∑
c=0

(µ)c ac(αc+β −1) xαc+β−2

(δc+ρ)s (αc+β −1) Γ(αc+β −1) c!

=
∞

∑
c=0

(µ)c ac xαc+β−2

(δc+ρ)s Γ(αc+β −1) c!

= xβ−2
∞

∑
c=0

(µ)c (axα)c

(δc+ρ)s Γ(αc+β −1) c!

= xβ−2 Eµ

α, β−1, δ
(axα , s, ρ)

Similarly, we get
(

d
dx

)2{
xβ−1Eµ

α, β , δ
(axα , s, ρ)

}
= xβ−3 Eµ

α, β−2, δ
(axα , s, ρ).

Following the same process we procure (5.7).

Assigning s = 0 in (5.7), a result of Kilbas, Saigo and Saxena [8] is procured.
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6. Applications

Here fractional integral (1.14) is applied to procure images of (1.9) and (1.15), and finally to gain integrals involving special
functions.

Theorem 6.1. If Re(ε)> 0 along with conditions associated with (1.9), the result procured is as follows:

Iε
x

{
tβ−1 Eµ

α, β , δ
(atα , s, ρ)

}
= xε+β−1 Eµ

α, β+ε, δ
(axα , s, ρ). (6.1)

Proof. On applying (1.14), it is procured that

Iε
x

{
tβ−1 Eµ

α, β , δ
(atα , s, ρ)

}
=

1
Γ(ε)

∫ x

0
tβ−1(x− t)ε−1 Eµ

α, β , δ
(atα , s, ρ)dt. (6.2)

Use of (1.9) in (6.2) gives

Iε
x

{
tβ−1 Eµ

α, β , δ
(atα , s, ρ)

}
=

1
Γ(ε)

∫ x

0
tβ−1(x− t)ε−1

∞

∑
k=0

(µ)k (atα)k

(δk+ρ)s Γ(αk+β ) k!
dt.

Conditions associated with (1.9) permit to interchange the order of integration and summation and it is done to gain

Iε
x

{
tβ−1 Eµ

α, β , δ
(atα , s, ρ)

}
=

1
Γ(ε)

∞

∑
k=0

(µ)k ak

(δk+ρ)s Γ(αk+β ) k!

∫ x

0
tαk+β−1(x− t)ε−1dt. (6.3)

Applying in (6.3), the result [20], (p. 185, Eq. (7))
∫ x

0
yb−1(x− y)a−1dy = xa+b−1 Γ(a) Γ(b)

Γ(a+b)
, (6.4)

where Re(a)> 0, Re(b)> 0, to gain

Iε
x

{
tβ−1 Eµ

α, β , δ
(atα , s, ρ)

}
=

1
Γ(ε)

∞

∑
k=0

(µ)k ak

(δk+ρ)s Γ(αk+β ) k!
xε+αk+β−1 Γ(ε) Γ(αk+β )

Γ(ε +αk+β )
.

On simplifying, it is procured that

Iε
x

{
tβ−1 Eµ

α, β , δ
(atα , s, ρ)

}
= xε+β−1

∞

∑
k=0

(µ)k (axα)k

(δk+ρ)s Γ(αk+β + ε) k!
. (6.5)

Now, use of (1.9) in (6.5) completes the proof.

Corollary 6.2. From (6.1) and (6.2), it is found that

1
Γ(ε)

∫ x

0
tβ−1(x− t)ε−1 Eµ

α, β , δ
(atα , s, ρ)dt = xε+β−1 Eµ

α, β+ε, δ
(axα , s, ρ). (6.6)

Corollary 6.3. x = 1 in (6.6) gives the Eulerian integral as follows:

1
Γ(ε)

∫ 1

0
tβ−1(1− t)ε−1 Eµ

α, β , δ
(atα , s, ρ)dt = Eµ

α, β+ε, δ
(a, s, ρ). (6.7)

Further, on assigning t = x−u
y−u and a = λ (y−u)α in (6.7), an interesting integral is procured as follows:

1
Γ(ε)

∫ y

u
(x−u)β−1(y− x)ε−1 Eµ

α, β , δ
{λ (x−u)α , s, ρ}dx = (y−u)β+ε−1 Eµ

α, β+ε, δ
{λ (y−u)α , s, ρ}

and on assigning t = y−x
y−u and a = λ (y−u)α in (6.7), an interesting integral is procured as follows:

1
Γ(ε)

∫ y

u
(y− x)β−1(x−u)ε−1 Eµ

α, β , δ
{λ (y− x)α , s, ρ}dx = (y−u)β+ε−1 Eµ

α, β+ε, δ
{λ (y−u)α , s, ρ}.

On assigning s = 0 in these integrals, Prabhakar’s [3] integrals are achieved.

Corollary 6.4. If a > 0, Re(ε)> 0 along with the conditions associated with (1.9), the result is procured as follows:

Iε
x

{
tβ−1 Eµ

α, β , δ
(atα , s, ρ); x

}
= xε+β−1

{
x

d
dx

Eµ

α, β+ε+1, δ
(axα , s, ρ)+(β + ε) Eµ

α, β+ε+1, δ
(axα , s, ρ)

}
. (6.8)
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Putting the value of Eµ

α, β+ε, δ
(axα , s, ρ) from (5.4) in (6.1), (6.8) is proved.

Theorem 6.5. If Re(ε)> 0 along with conditions associated with (1.9) and (1.15), the result procured is as follows:

Iε
x

[
zγ−1 Eµ

σ , γ, ω(azσ , y, ρ) V λ
n {b(x− z)σ}

]
=

λ

Γ(ε)

∞

∑
n=0

(p)n t
∏

m=1

[
(hm)nρm+km

]
(c+ηn+β )−τ(b/2)nk+dw+q

s
∏
j=1

[
(g j)nγ j+a j

] u
∏

r=1

[
(d)

αnδ+br

]

×Γ{σ(nk+dw+q)+ ε} xσ(nk+dw+q)+ε+γ−1

×Eµ

σ , γ+σ(nk+dw+q)+ε, ω
(axσ , y, ρ).

(6.9)

Proof. Applying (1.14), it is procured that

Iε
x

[
zγ−1 Eµ

σ , γ, ω(azσ , y, ρ) V λ
n {b(x− z)σ}

]
=

1
Γ(ε)

∫ x

0
zγ−1 Eµ

σ , γ, ω(azσ , y, ρ) V λ
n {b(x− z)σ}(x− z)ε−1dz. (6.10)

Use of (1.9) and (1.15) in (6.10), and interchange of the order of integration and summations permitted by the conditions
associated therein, give the l.h.s of (6.10) (supposing L) as follows:

L = λ

∞

∑
n=0

(p)n t
∏

m=1

[
(hm)nρm+km

]
(c+ηn+β )−τ(b/2)nk+dw+q

s
∏
j=1

[
(g j)nγ j+a j

] u
∏

r=1

[
(d)

αnδ+br

]
∞

∑
v=0

(µ)v av

(ωv+ρ)y Γ(σv+ γ) v!

× 1
Γ(ε)

∫ x

0
zσv+γ−1(x− z)σ(nk+dw+q)+ε−1dz.

(6.11)

On evaluation of z-integral in (6.11) using (6.4), it is procured that

L = λ

∞

∑
n=0

(p)n t
∏

m=1

[
(hm)nρm+km

]
(c+ηn+β )−τ(b/2)nk+dw+q

s
∏
j=1

[
(g j)nγ j+a j

] u
∏

r=1

[
(d)

αnδ+br

]
∞

∑
v=0

(µ)v av

(ωv+ρ)y Γ(σv+ γ) v!

× 1
Γ(ε)

xσ(nk+dw+q)+ε+σv+γ−1 Γ(σv+ γ)Γ{σ(nk+dw+q)+ ε}
Γ{σv+ γ +σ(nk+dw+q)+ ε} .

(6.12)

Now, use of (1.9) in (6.12) completes the proof.

Corollary 6.6. From (6.9) and (6.10), it is found that

∫ x

0
zγ−1(x− z)ε−1 Eµ

σ , γ, ω(azσ , y, ρ) V λ
n {b(x− z)σ}dz = λ

∞

∑
n=0

(p)n t
∏

m=1

[
(hm)nρm+km

]
(c+ηn+β )−τ(b/2)nk+dw+q

s
∏
j=1

[
(g j)nγ j+a j

] u
∏

r=1

[
(d)

αnδ+br

]

×Γ{σ(nk+dw+q)+ ε} xσ(nk+dw+q)+ε+γ−1

×Eµ

σ , γ+σ(nk+dw+q)+ε, ω
(axσ , y, ρ).

7. Special cases of (6.9)

Here some special cases of (6.9) are achieved.

(i) On assigning p =−1, t = 1, β = 0, s = 2, u = 1, h1 = 1, ρ1 = 1, k1 = 0, τ = 1, g1 = 1, g2 = 1, γ1 = 1, γ2 = 1, k =
2,η = α = 1, a1 = 0, a2 = 0, q = 0, c = d, w = 1, b1 = 0, δ = 1 and λ = 1/Γ(d) in (6.9), the result is procured as
follows:

Iε
x
[
zγ−1 Eµ

σ , γ, ω(azσ , y, ρ) Jd{b(x− z)σ}
]
=

1
Γ(ε)

∞

∑
n=0

(−1)n(b/2)2n+d
Γ{σ(2n+d)+ ε}

Γ(1+d +n) n!

× xσ(2n+d)+ε+γ−1 Eµ

σ , γ+σ(2n+d)+ε, ω
(axσ , y, ρ).

Hence
∫ x

0
zγ−1(x− z)ε−1 Eµ

σ , γ, ω(atσ , y, ρ) Jd{b(x− z)σ}dz =
∞

∑
n=0

(−1)n(b/2)2n+d
Γ{σ(2n+d)+ ε}

Γ(1+d +n) n!

× xσ(2n+d)+ε+γ−1 Eµ

σ , γ+σ(2n+d)+ε, ω
(axσ , y, ρ),

where Jd(z) represents the Bessel function of the first kind [22], (p. 4, Eq. (2)).
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(ii) On assigning p = −1, t = 1, s = 2, u = 1, h1 = 1, ρ1 = 1, k1 = 0, τ = 1, g1 = 3/2, g2 = 1, γ1 = 1, γ2 = 1, k =
2, a1 = 0, a2 = 0, w = 1, c = d, q = 1, b1 = 1/2, η = α = 1, β = 1/2, δ = 1 and λ = 1/{Γ(d)Γ(3/2)} in (6.9), the
result is procured as follows:

Iε
x
[
zγ−1 Eµ

σ , γ, ω(azσ , y, ρ) Hd{b(x− z)σ}
]
=

1
Γ(ε)

∞

∑
n=0

(−1)n(b/2)2n+d+1
Γ{σ(2n+d +1)+ ε}

Γ(n+ 3
2 ) Γ(d +n+ 3

2 )

× xσ(2n+d+1)+ε+γ−1 Eµ

σ , γ+σ(2n+d+1)+ε, ω
(axσ , y, ρ).

Hence

∫ x

0
zγ−1(x− z)ε−1 Eµ

σ , γ, ω(azσ , y, ρ) Hd{b(x− z)σ}dz =
∞

∑
n=0

(−1)n(b/2)2n+d+1
Γ{σ(2n+d +1)+ ε}

Γ(n+ 3
2 ) Γ(d +n+ 3

2 )

× xσ(2n+d+1)+ε+γ−1 Eµ

σ , γ+σ(2n+d+1)+ε, ω
(axσ , y, ρ).

where Hd(z) represents the Struve’s function [22], (p. 38, Eq. (55)).
(iii) On assigning p=−1, t = 1, s= 2, u= 1, h1 = 1, ρ1 = 1, η =α = 1, k1 = 0, β =−1, k = 2, g1 = (ζ +ξ +3)/2, g2 =

(ζ−ξ +3)/2,γ1 = 1, γ2 = 1, c= d = 1, τ = 1, w= ζ , q= 1, a1 = 0, a2 = 0, b1 =−1, δ = 1 and λ = 2ζ+1/(ζ±ξ +1)
in (6.9), the result is procured as follow:

Iε
x
[
zγ−1 Eµ

σ , γ, ω(azσ , y, ρ) sζ , ξ{b(x− z)σ}
]
=

2ζ+1

(ζ ±ξ +1)
1

Γ(ε)

∞

∑
n=0

(−1)n(b/2)2n+ζ+1
Γ{σ(2n+ζ +1)+ ε}(

ζ±ξ+3
2

)
n

× xσ(2n+ζ+1)+ε+γ−1 Eµ

σ , γ+σ(2n+ζ+1)+ε, ω
(axσ , y, ρ).

Hence

∫ x

0
zγ−1(x− z)ε−1 Eµ

σ , γ, ω(azσ , y, ρ) sζ , ξ{b(x− z)σ}dz =
2ζ+1

(ζ ±ξ +1)

∞

∑
n=0

(−1)n(b/2)2n+ζ+1
Γ{σ(2n+ζ +1)+ ε}(

ζ±ξ+3
2

)
n

× xσ(2n+ζ+1)+ε+γ−1 Eµ

σ , γ+σ(2n+ζ+1)+ε, ω
(axσ , y, ρ).

where sζ , ξ (z) represents the Lommel’s function [22], (p. 40, Eq. (69)).
(iv) On assigning p = 2, t = 1, s = 1, u = 1, h1 = h, ρ1 = 1, k1 = 0, g1 = 1, γ1 = 1, η = α, a1 = 0, c = d, β =−1, τ =

1, k = 1, w = 0, q = 0, δ = 1, b1 =−1 and λ = 1/Γ(d) in (3.1), the result is procured as follows:

Iε
x

[
zγ−1 Eµ

σ , γ, ω(azσ , y, ρ) Eh
α, d{b(x− z)σ}

]
=

1
Γ(ε)

∞

∑
n=0

(h)n bn Γ(σn+ ε)

Γ(αn+d) n!
xσn+ε+γ−1Eµ

σ , γ+σn+ε, ω(axσ , y, ρ).

Hence
∫ x

0
zγ−1(x− z)ε−1 Eµ

σ , γ, ω(azσ , y, ρ) Eh
α, d{b(x− z)σ}dz =

∞

∑
n=0

(h)n bn Γ(σn+ ε)

Γ(αn+d) n!
xσn+ε+γ−1Eµ

σ , γ+σn+ε, ω(axσ , y, ρ).

where Eh
α, d(z) represents (1.5).

(v) On assigning p = 2, t = 1, s = 1, u = 1, h1 = h, ρ1 = 1, η = α = 1, k1 = 0, c = d, β = 0, k = 1, w = 0, q = 0, g1 =
1, γ1 = 1, a1 = 0, b1 = 0, δ = 0 and λ = 1 in (6.9), the result is procured as follows:

Iε
x
[
zγ−1 Eµ

σ , γ, ω(azσ , y, ρ) φh{b(x− z)σ , τ, d}
]
=

1
Γ(ε)

∞

∑
n=0

(h)n bn Γ(σn+ ε)

(d +n)τ n!
xσn+ε+γ−1

×Eµ

σ , γ+σn+ε, ω(axσ , y, ρ).

Hence
∫ x

0
zγ−1(x− z)ε−1 Eµ

σ , γ, ω(azσ , y, ρ) φh{b(x− z)σ , τ, d}dz =
∞

∑
n=0

(h)n bn Γ(σn+ ε)

(d +n)τ n!
xσn+ε+γ−1

×Eµ

σ , γ+σn+ε, ω(axσ , y, ρ).

where φh{z, τ, d} represents for the Goyal-Laddha zeta function [18].
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(vi) On assigning p = 2, u = 1, ρm = 1, c = d = 1, η = α = 1, τ = 1, β =−1, k = 1, w = 0, q = 0, km = 0, γ j = 1, a j =
0, b1 =−1, δ = 1 and λ = 1 in (6.9), the result is procured as follows:

Iε
x
[
zγ−1 Eµ

σ , γ, ω(azσ , y, ρ) tFs (ht ; gs; b(x− z)σ )
]
=

1
Γ(ε)

∞

∑
n=0

P
∏

m=1
(hm)n bn Γ(σn+ ε)

Q
∏
j=1

(g j)n n!
xσn+ε+γ−1

×Eµ

σ , γ+σn+ε, ω(axσ , y, ρ).

Hence

∫ x

0
zγ−1(x− z)ε−1 Eµ

σ , γ, ω(azσ , y, ρ) PFQ (hP; gQ; b(x− z)σ )dz =
∞

∑
n=0

P
∏

m=1
(hm)n bn Γ(σn+ ε)

Q
∏
j=1

(g j)n n!
xσn+ε+γ−1

×Eµ

σ , γ+σn+ε, ω(axσ , y, ρ).

where tFs (ht ; gs; z) represents the generalized hypergeometric function [19], (p. 182, Eq. (1)).
(vii) On assigning p= 2, k = 1, c= d = 1, τ = 1, w= 0, q= 0, α = η = 1, β =−1, δ = 1, b1 =−1, r = 1, km = 0, a j = 0

and λ =

t
∏

m=1
Γ(hm)

s
∏
j=1

Γ(g j)
in (6.9), the result is procured as follows:

Iε
x

[
zγ−1 Eµ

σ , γ, ω(azσ , y, ρ) tΨs

[
(hm, ρm)1, t
(g j , γ j)1, s

; b(x− z)σ

]]
=

1
Γ(ε)

∞

∑
n=0

t
∏

m=1
Γ(hm +nρm) bn Γ(σn+ ε)

s
∏
j=1

Γ(g j +nγ j) n!
xσn+ε+γ−1

Eµ

σ , γ+σn+ε, ω(axσ , y, ρ).

Hence

∫ x

0
zγ−1(x− z)ε−1 Eµ

σ , γ, ω(azσ , y, ρ) tΨs

[
(hm, ρm)1, t
(g j , γ j)1, s

; b(x− z)σ

]
dz =

∞

∑
n=0

t
∏

m=1
Γ(hm +nρm) bn Γ(σn+ ε)

s
∏
j=1

Γ(g j +nγ j) n!
xσn+ε+γ−1

Eµ

σ , γ+σn+ε, ω(axσ , y, ρ).

where tΨs

[
(hm, ρm)1, t
(g j , γ j)1, s

; z
]

represents the Wright’s generalized hypergeometric function (1.16) [19], (p. 183).

Remark 7.1. Other special cases of (6.9) can be obtained using the substitutions of section 4.

8. Conclusion

Two general functions reducible to Mittag-Leffler function and Riemann-zeta function, and a modified general class of functions
reducible to several special functions have been represented and defined in this paper, and their convergence conditions have
been discussed. Generating relations and fractional integrals involving new defined functions have been achieved. Some
particular cases of the results have been achieved. Similar results may be obtained involving (1.10). A further study of the
fractional integral operator defined by (1.14) may be carried out with the generalized Mittag-Leffler function defined by (1.9)
in the kernel and its integral transforms may be studied. Moreover, composition relations between the fractional integral
operator defined by (1.14) and integral operator with the generalized Mittag-Leffler function defined by (1.9) in the kernel may
be obtained.
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Abstract

In this study, an exact and a numerical method namely direct algebraic method and collocation finite
element method are proposed for solving soliton solutions of a special form of fifth-order KdV
(fKdV) equation that is of particular importance: Caudrey-Dodd-Gibbon (CDG) equation. For these
aims, homogeneous balance method and septic B-spline functions are used for exact and numerical
solutions, respectively. Next, it is proved by applying von-Neumann stability analysis that the
numerical method is unconditionally stable. The error norms L2 and L∞ have been computed to
control proficiency and conservation properties of the suggested algorithm. The obtained numerical
results have been listed in the tables. The graphs are modelled so that easy visualization of properties
of the problem. Also, the obtained results indicate that our method is favourable for solving such
problems.

1. Introduction

The fifth-order KdV-type (fKdV) equation has the following form

ut +αu2ux +βuxuxx + γuuxxx +uxxxxx = 0, (1.1)

where α , β and γ are arbitrary positive parameters [1]-[4]. The fKdV equation (1.1) identifies motions of long waves in
shallow water under gravity and in a one-dimensional nonlinear lattice [5]-[14], and has many physical applications in fields as
diverse as nonlinear optics and quantum mechanics. These parameters greatly modify affect the characteristics of the equation.
For example, if α = 180, β = 30, and γ = 30 are taken the following CDG equation

ut +180u2ux +30uxuxx +30uuxxx +uxxxxx = 0, (1.2)

is obtained. It is well-known that equation is fully integrable. That means that it has multiple-soliton solutions [15]. The CDG
equation owns the Painleve´ property as verified by Weiss in [16]. The equation can be found out to be solved by several
methods, among other methods in the literature; Hirota’s bilinear method [17] Hirota’s direct method [15], Riccati equation
method [18], tanh method [19], exp-function method [20, 21], collocation finite element approach [22].
The paper has been designated as follows: Analytical solutions of the equation are shown in Section 2 along with the graphs.
In Section 3, construction of the numerical method has been done. Section 4 contains stability analysis of the numerical
technique. Test problems taken from the literature have been solved and the obtained results are given in the tabular form as
well as plotted graphically in Section 5. The article ends with the conclusions.
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2. Analytical solutions

Here, we implement the direct algebraic method to the converted ODE of the investigated model by employing u(x, t) =
U(ξ ), ξ = x+ ct, which is given by

cU′+α U2U′+β U′U′′+ γ UU(3)+U(5) = 0. (2.1)

Applying the homogeneous balance rule along with the method’s framework, one gets the next general solutions of the ODE:

U(ξ ) =
n

∑
i=0

ai φ(ξ )i = a2 φ(ξ )2 +a1 φ(ξ )+a0, (2.2)

where a0, a1, a2 are arbitrary constants to be determined later. Using Eq.(2.2) along with the ODE (2.1) and the employed
method’s framework, obtain the values of the above-shown parameters as follows:
Set I

a0→
2a2d

3
,a1→ 0,c→ 2

3
(
a2βd2 +36d2) ,α →−6(a2β +2a2γ +60)

a2
2

. (2.3)

Set II

a1 → 0,a2→−
60

β + γ
,c→ −a2

0β 2γ−2a2
0βγ2−a2

0γ3−80a0βγd−80a0γ2d−160βd2−1360γd2

10(β + γ)
, (2.4)

α → 1
10

γ(β + γ). (2.5)

Set III

a0→−
40d

γ
,a1→ 0,a2→−

60
γ
,c→ 8

(
3γd2−5βd2

)

γ
,α → 1

10
γ(β + γ). (2.6)

Thus, the soliton wave solutions of the investigated model are constructed by
for b < 0, we get

uI,1 =
1
3

a2

(
3b tan2

(√
b
(

2
3

t
(
a2βd2 +36d2)+ x

))
+2d

)
, (2.7)

uI,2 =
1
3

a2

(
3bcot2

(√
b
(

2
3

t
(
a2βd2 +36d2)+ x

))
+2d

)
, (2.8)

uII,1 = a0−
60b tan2

(√
b
(

t(−a2
0β 2γ−2a2

0βγ2−a2
0γ3−80a0βγd−80a0γ2d−160βd2−1360γd2)

10(β+γ) + x
))

β + γ
, (2.9)

uII,2 = a0−
60bcot2

(√
b
(

t(−a2
0β 2γ−2a2

0βγ2−a2
0γ3−80a0βγd−80a0γ2d−160βd2−1360γd2)

10(β+γ) + x
))

β + γ
, (2.10)

uIII,1 =−
20
(

3b tan2
(√

b
(

8t(3γd2−5βd2)
γ

+ x
))

+2d
)

γ
, (2.11)

uIII,2 =−
20
(

3bcot2
(√

b
(

8t(3γd2−5βd2)
γ

+ x
))

+2d
)

γ
. (2.12)

For b > 0, we get

uI,3 =
1
3

a2

(
3b tan2

(√
b
(

2
3

t
(
a2βd2 +36d2)+ x

))
+2d

)
, (2.13)
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uI,4 =
1
3

a2

(
3bcot2

(√
b
(

2
3

t
(
a2βd2 +36d2)+ x

))
+2d

)
,

uII,3 = a0−
60b tan2

(√
b
(

t(−a2
0β 2γ−2a2

0βγ2−a2
0γ3−80a0βγd−80a0γ2d−160βd2−1360γd2)

10(β+γ) + x
))

β + γ
, (2.14)

uII,4 = a0−
60bcot2

(√
b
(

t(−a2
0β 2γ−2a2

0βγ2−a2
0γ3−80a0βγd−80a0γ2d−160βd2−1360γd2)

10(β+γ) + x
))

β + γ
, (2.15)

uIII,3 =−
20
(

3b tan2
(√

b
(

8t(3γd2−5βd2)
γ

+ x
))

+2d
)

γ
, (2.16)

uIII,4 =−
20
(

3bcot2
(√

b
(

8t(3γd2−5βd2)
γ

+ x
))

+2d
)

γ
. (2.17)

For b = 0, we get

uI,5 = a2

(
1( 2

3 t (a2βd2 +36d2)+ x
)

2
+

2d
3

)
, (2.18)

uII,5 = a0−
60

(β + γ)

(
t(−a2

0β 2γ−2a2
0βγ2−a2

0γ3−80a0βγd−80a0γ2d−160βd2−1360γd2)
10(β+γ) + x

)
2
, (2.19)

uIII,5 =

20


−

3(
8t(3γd2−5βd2)

γ
+x

)2 −2d




γ
. (2.20)

The following figures belong to each exact solution family:

= 0.1

= 0.3

= 0.5

Figure 1: Graph of Set I.

3. Numerical scheme for the model problem

In this section, Eq. (1.2) has been solved by using the septic B-spline collocation method with the following boundary and
initial conditions

u(a, t) = 0, u(b, t) = 0,
ux(a, t) = 0, ux(b, t) = 0,
uxx(a, t) = 0, uxx(b, t) = 0,
u(x,0) = f (x), a≤ x≤ b.

(3.1)
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Figure 2: Graph of Set II.

Figure 3: Graph of Set III.

Septic B-spline functions φm(x), m =−3(1)N +3, at the nodes xm are given over the solution interval [a, b] by Prenter [23].
In collocation method, unumeric(x, t) corresponding to the uexact(x, t) can be given as a linear combination of septic B-splines as
follows [24]

uN(x, t) =
N+3

∑
m=−3

φm(x)σm(t). (3.2)

Implementing the following transformation hρ = x− xm, 0 ≤ ρ ≤ 1 to specific region [xm,xm+1], the region turns to an
interval of [0,1] [25]. Thus the septic B-spline functions in the new region [0,1] are obtained as follows:

φm−3 = 1−7ρ +21ρ2−35ρ3 +35ρ4−21ρ5 +7ρ6−ρ7,
φm−2 = 120−392ρ +504ρ2−280ρ3 +84ρ5−42ρ6 +7ρ7,
φm−1 = 1191−1715ρ +315ρ2 +665ρ3−315ρ4−105ρ5 +105ρ6−21ρ7,
φm = 2416−1680ρ +560ρ4−140ρ6 +35ρ7,
φm+1 = 1191+1715ρ +315ρ2−665ρ3−315ρ4 +105ρ5 +105ρ6−35ρ7,
φm+2 = 120+392ρ +504ρ2 +280ρ3−84ρ5−42ρ6 +21ρ7,
φm+3 = 1+7ρ +21ρ2 +35ρ3 +35ρ4 +21ρ5 +7ρ6−ρ7,
φm+4 = ρ7.

(3.3)

Using the equalities given by (3.2) and (3.3), the following expressions are obtained:

uN(xm, t) = ρm−3 +120ρm−2 +1191ρm−1 +2416ρm +1191ρm+1 +120ρm+2 +ρm+3,
u′m = 7

h (−ρm−3−56ρm−2−245ρm−1 +245ρm+1 +56ρm+2 +ρm+3),
u′′m = 42

h2 (ρm−3 +24ρm−2 +15ρm−1−80ρm +15ρm+1 +24ρm+2 +ρm+3),

u′′′m = 210
h3 (−ρm−3−8ρm−2 +19ρm−1−19ρm+1 +8ρm+2 +ρm+3),

uiv
m = 840

h4 (ρm−3−9ρm−1 +16ρm−9ρm+1 +ρm+3),

uv
m = 2520

h5 (−ρm−3 +4ρm−2−5ρm−1 +5ρm+1−4ρm+2 +ρm+3).

(3.4)



30 Fundamental Journal of Mathematics and Applications

Now, putting (3.2) and (3.4) into Eq.(1.2) and simplifying, the following system of ODEs are reached:

·
ρm−3 +120

·
ρm−2 +1191

·
ρm−1 +2416

·
ρm +1191

·
ρm+1 +120

·
ρm+2 +

·
ρm+3

+(180Zm1 +30Zm2)
7
h (−ρm−3−56ρm−2−245ρm−1 +245ρm+1 +56ρm+2 +ρm+3)

+30Zm3
210
h3 (−ρm−3−8ρm−2 +19ρm−1−19ρm+1 +8ρm+2 +ρm+3)

+ 2520
h5 (−ρm−3 +4ρm−2−5ρm−1 +5ρm+1−4ρm+2 +ρm+3) = 0,

(3.5)

where
·
ρ = dσ

dt ,

Zm1 = u2 = (ρm−3 +120ρm−2 +1191ρm−1 +2416ρm +1191ρm+1 +120ρm+2 +ρm+3)
2,

Zm2 = uxx =
42
h2 (ρm−3 +24ρm−2 +15ρm−1−80ρm +15ρm+1 +24ρm+2 +ρm+3),

Zm3 = u = ρm−3 +120ρm−2 +1191ρm−1 +2416ρm +1191ρm+1 +120ρm+2 +ρm+3.

If Crank-Nicolson scheme and forward difference approximation which are defined below is used respectively in Eq.(3.5)

ρi =
ρ

n+1
i +ρn

i
2

,
·
ρ i =

ρ
n+1
i −ρn

i
∆t

(3.6)

the following iteration equation is obtained

λ1ρ
n+1
m−3 +λ2ρ

n+1
m−2 +λ3ρ

n+1
m−1 +λ4ρn+1

m +λ5ρ
n+1
m+1 +λ6ρ

n+1
m+2 +λ7ρ

n+1
m+3

= λ7ρn
m−3 +λ6ρn

m−2 +λ5ρn
m−1 +λ4ρn

m +λ3ρn
m+1 +λ2ρn

m+2 +λ1ρn
m+3,

(3.7)

where

λ1 = [1−E−T −M] ,
λ2 = [120−56E−8T +4M] ,
λ3 = [1191−245E +19T −5M] ,
λ4 = [2416] ,
λ5 = [1191+245E−19T +5M] ,
λ6 = [120+56E +8T −4M] ,
λ7 = [1+E +T +M] ,

E = ϖ

2 ∆t, T = κ
2 ∆t, M = 2520

2h5 ∆t,
ϖ = [180Zm1 +30Zm2],

κ = [ 6300
h3 Zm3].

(3.8)

By eliminating the unknown parameters ρ−3,ρ−2,ρ−1,ρN+1,ρN+2, and ρN+3 which are not in the solution region of the
problem, the system of equations given by (3.7) becomes solvable. This procedure can be easily done using the values of u
and boundary conditions, and then the following system

Rdn+1 = Sdn (3.9)

is obtained where dn = (ρ0,ρ1, ...,ρN)
T .

4. Stability Analysis

For the stability analysis, Von Neumann technique has been used. In a typical amplitude mode, we can define the magnification
factor ξ of the error as follows [26, 27]:

ρ
n
m = ξ

neimkh. (4.1)

Using (4.1) into the (3.7),

ξ =
ρ1− iρ2

ρ1 + iρ2
, (4.2)

is obtained and in which

ρ1 = 2cos(3kh)+240cos(2kh)+2382cos(kh)+2416,
ρ2 = (2M+2T +2E)sin(3kh) , (4.3)

so that |ξ |= 1, which proves unconditional stability of the linearized numerical scheme for the CDG equation.
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5. Numerical Experiments and Discussions

In this section, the proposed scheme is applied for solution of CDG equation for different values of the time and space division
and we approximate them using the described scheme. Error norms, namely L2 and L∞, are used in order to check the method
[28, 29]:

L2 =
∥∥uexact −uN

∥∥
2 '

√√√√h
N

∑
j=1

∣∣∣uexact
j − (uN) j

∣∣∣
2
, (5.1)

and

L∞ =
∥∥uexact −uN

∥∥
∞
'max

j

∣∣∣uexact
j − (uN) j

∣∣∣ , j = 1,2, ...,N. (5.2)

The CDG equation has an exact solution of the form [22]

u(x, t) =
k2 exp(k(x− k4t))

(1+ exp(k(x− k4t)))2 , (5.3)

and the equation will be examined with the boundary-initial condition which is

u(x,0) = f (x) =
k2 exp(kx)

(1+ exp(kx))2 , (5.4)

where k = 1 and u→ 0 as x→±∞.
To prove accuracy of our numerical algorithm, interval of the problem is chosen as [−15,15] and up to time t = 1. In simulation
calculations in terms of compliance comply with the literature, as common values ∆t = 0.0004 and 0.0001 with h = 0.5 and
0.05 are chosen. In Tables (1−3), values of the error norms L2 and L∞ calculated over these values for time levels and step
sizes are presented. So, it can be seen more clearly how the amount of collocation points have an effect on the method. When
tables are examined, the calculated error norms L2 and L∞ are obtained to be marginally small. It is clear that the minimum
L∞ error norm 2.4892×10−5 with the parameters ∆t = 0.0001 and h = 0.05. These errors hardly change as time progresses.
Moreover, it can be said from the tables that the values of the error norms are compatible with the exact solution and the
numerical solution, and the method is quite efficient. Two and three dimensional forms of bell-shaped solitary wave solutions
produced from t = 0 to t = 1 are clearly seen in Figure (4). Besides, the contour line for the movement of the individual wave
is plotted in Figure (4). It can be indicated that the wave maintains its amplitude and shape as time passes from these figures.
Also, error distribution is shown at t = 1 for different values of h and ∆t in Figure (5).

Table 1: Error norms for k = 0.01 and different values of h and ∆t.

∆t = 0.0004,h = 0.5 ∆t = 0.0001,h = 0.05
t L2 L∞ L2 L∞

0.1 .0000494593 .0000249293 .0000414945 .0000270235
0.2 .0000532876 .0000252706 .0000465528 .0000248927
0.3 .0000532946 .0000257885 .0000497414 .0000271132
0.4 .0000537765 .0000249308 .0000557418 .0000303556
0.5 .0000544981 .0000255910 .0000617223 .0000337686
0.6 .0000582073 .0000249191 .0000619409 .0000441115
0.7 .0000563601 .0000249129 .0000679581 .0000468114
0.8 .0000553124 .0000249021 .0000803376 .0000475394
0.9 .0000559314 .0000256542 .0000912949 .0000595731
1.0 .0000587193 .0000256739 .0001058028 .0000597128

6. Conclusion

In this study, two important goals have been executed: Generating the direct algebraic method for obtaining exact solutions
of the CDG equation and based on septic B-spline approximation, a collocation method has been introduced and performed
for the numerical solution of CDG equation by taking into consideration different parameter values of test problem. The von
Neumann method has been applied rigorously to check stability of the numerical scheme and the method has been proved to be
unconditionally stable. The algorithm is run with a single solitary wave motion whose exact solution is known to perform
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Table 2: The error norms for k = 0.01, t = 0.0001 and various values of h.

h L2 L∞

0.25 .0000419227 .0000276440
0.1 .0000337090 .0000230659

0.01 .0000339219 .0000366059
0.05 .0000317705 .0000242181

0.025 .0000335113 .0000341147
1.0 .0000510913 .0000283967

Table 3: The error norms fork = 0.01,h = 0.1 and various values of ∆t.

∆t L2 L∞

0.04 .0000431579 .0000492631
0.02 .0000405068 .0000491365
0.01 .0000380355 .0000489782

0.001 .0000266854 .0000293648
0.005 .0000323331 .0000310227
0.0025 .0000298689 .0000306730

0.00125 .0000274591 .0000298586
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Figure 4: Motion of single solitary wave and its contour line for ∆t = 0.0004 and h = 0.5.
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Figure 5: Error distributions at t = 1 for the parameters with h = 0.05; ∆t = 0.0004; h = 0.05 and ∆t = 0.0001 .
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numerical experiments. The obtained solutions from both methods are plotted graphically to check the dynamical behavior of
the solutions. The reliability and efficiency of the numerical method have been evaluated using L2 and L∞ error norms and it
can be seen that the obtained results are quite good. Finally, it is said that the approach applied in this study can be easily
applied to other nonlinear evolutions and good results can be achieved.
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Abstract

In this article, some mathematical properties of (ι ,x0)-generalized logistic-type function are pre-
sented. This four-parameter generalized function can be considered as a statistical phenomenon
enhancing more vigorous survival analysis models. Moreover, the behaviors of the relevant paramet-
ric functions obtained are examined with graphics using computer programming language Python
3.9.

1. Introduction

1.1. Motivation

Crudely put, the logistic and logistic-type functions play an important role in many scientific disciplines including probability
and statistics, demography, machine learning, ecology, mathematical psychology and biology [1]. Actually, the logistic
function has a long history dating back to the classical statistics and ”belief neural networks” [2], [3]. It has a leading role in
the logistic regression procedure, especially in terms of its statistical properties that we discuss here.While in early studies
this appeared as the solution to a specific differential equation, it was later used as one of many possible smooth, monotonic
”squash” functions that mapped real values to a limited range.
Over time, as a result of the increasing interest and need for learning concept and learning algorithms, the probabilistic
properties of the logistic function have begun to be studied in depth. This orientation has led to more advanced learning
methods. So, it has diversified and strengthened the connections between neural networks (NNs) and statistics.
Methods that preserve the logistic function offer a possibility in this context. So, as alternative methods to contingency table
and general regression model; a simple artificial neural network architecture, a more comprehensive generalized additive
model, or another flexible ”approximate” model in logistic form may be a reason for preference. An example for generalized
linear model is the generalization of logistic regression while probabilistic model for multi-class classification problem is a
multinomial model. In this models, it is a reasonable approach to use a normalized exponential function as a logistic function,
aka ”softmax” function, which is defined below, and used intensively in the NNs literature [4], [5], [6].
Now, let σ : RN 7−→ (0,1)N be a function defined by the formula

σ ( j,z1,z2, ...,zN) =
e

z j

N
∑
j=1

e
z j
,

for N ≥ 1. This function σ called as ”unit softmax function” employs the classical exponential function to each of the
inputs denoted by z1,z2, ...,zN and all these values are normalized by being divided by the sum of all the exponentials. The
normalization process provides that the sum of the components of the output vector is 1. In addition, the softmax function
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takes as inputs z1,z2, ...,zN , and normalizes them into a probability distribution consisting of N probabilities proportional
to the exponentials of the input numbers [7]. Moreover, this function takes values between 0 and 1. Here we give an
(ι ,x0)-generalized logistic-type function (also can be considered as a parametric generalization of softmax function) and also
examine some mathematical properties such as convexity, sub-additivity, and multiplicativity.
The present paper includes four sections. In the following section, the construction of suggested (ι ,x0)-generalized logistic-type
function, and its analytical features are presented. After launching a brief introduction related to survival analysis; probability
density function of related distribution, parametric exponential survival (PES) and parametric failure (hazard) rate (PFR)
functions are given in the third section. We conclude the paper creating ”ceteris paribus” graphics of these functions employing
the computer programming language Python 3.9. Finally, we also add Python 3.9 codes as in Fig. 9 and Fig 10 at the end of
the study to motivate readers to earn/develop her/his programming language ability.

2. Main Results

Let ι ,ρ > 0 be the parameters with ξ > 1; inspired by [8] and [9], we can consider an (ι ,x0)-generalized logistic-type function
as follows:

Ψρ,ι (x) =
1

1+ρξ−ι(x−x0)
=

ξ ι(x−x0)

ρ +ξ ι(x−x0)
, (2.1)

where x,x0 ∈ R.
The first and second derivatives of the (ι ,x0)-generalized logistic-type function Ψρ,ι are given as below:
let ι ,ρ > 0 be the parameters, and ξ > 1

Ψ
′
ρ,ι (x) =

(
1

1+ρξ−ι(x−x0)

)′
= ρι (lnξ )ξ

−ι(x−x0)
(

1+ρξ
−ι(x−x0)

)−2

=
ρι (lnξ )(

1+2ρξ−ι(x−x0)+ρ2ξ−2ι(x−x0)
)

ξ ι(x−x0)

=
ρι (lnξ )(

ξ ι(x−x0)+2ρ +ρ2ξ−ι(x−x0)
) = ρι (lnξ )

(
ξ

ι(x−x0)+2ρ +ρ
2
ξ
−ι(x−x0)

)−1

for all x,x0 ∈ R.

Besides, taking the second derivative of (2.1) for x ∈ R we get

Ψ
′′
ρ,ι (x) = ρι

2 (ln2
ξ
)(

ξ
ι(x−x0)+2ρ +ρ

2
ξ
−ι(x−x0)

)−2(
ρ

2
ξ
−ι(x−x0)−ξ

ι(x−x0)
)

Since

Ψ
′′
ρ,ι (x)> 0⇐⇒

(
ρ

2
ξ
−ι(x−x0)−ξ

ι(x−x0)
)
> 0

⇔ ρ
2
ξ
−ι(x−x0) > ξ

ι(x−x0)

⇔ ρ
2 > ξ

2ι(x−x0)⇔ |ρ|>
∣∣∣ξ ι(x−x0)

∣∣∣⇔ ρ > ξ
ι(x−x0),

and for ρ > 0,ξ > 1

logξ ρ > ι (x− x0)⇔
logξ ρ

ι
+ x0 > x

is obtained.
Let x < x0 +

logξ ρ

ι
−1, then x−1 < x+1 < x0 +

logξ ρ

ι
.

Ψ
′
ρ,ι (x+1)> Ψ

′
ρ,ι (x−1) . Thus Ψ

′
ρ,ι (x) is positive and strictly increasing on

(
−∞, x0 +

logξ ρ

ι

)
. Now, let x > x0+

logξ ρ

ι
+1,

then x+1 > x−1 > x0 +
logξ ρ

ι
, and Ψ

′
ρ,ι (x+1)< Ψ

′
ρ,ι (x−1) . So Ψ

′
ρ,ι (x) is strictly decreasing on

(
x0 +

logξ ρ

ι
,+∞

)
.

Proposition 2.1. Let ι ,ρ > 0 be the parameters, ξ > 1, and Ψρ,ι (x) be described as in (2.1). Now, let us take the first
derivative:

Ψ
′
ρ,ι (x) = ρι (lnξ )ξ

−ι(x−x0)
1

(
1+ρξ−ι(x−x0)

)2

= ι (lnξ )Ψρ,ι (x)
(
1−Ψρ,ι (x)

)
. (2.2)
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By then, let’s take the second derivative of the function Ψρ,ι :

Ψ
′′
ρ,ι (x) = ι (lnξ )

(
Ψρ,ι (x)−Ψ

2
ρ,ι (x)

)′

= ι (lnξ )Ψ
′
ρ,ι (x)

(
1−2Ψρ,ι (x)

)

= ι
2 (ln2

ξ
)

Ψρ,ι (x)
(
1−Ψρ,ι (x)

)(
1−2Ψρ,ι (x)

)
.

Thus the (ι ,x0)-generalized logistic-type function Ψρ,ι has the following properties:

lim
x→+∞

Ψρ,ι (x) = lim
x→+∞

ξ ι(x−x0)

ρ +ξ ι(x−x0)
= 1,

lim
x→−∞

Ψρ,ι (x) = lim
x→−∞

ξ ι(x−x0)

ρ +ξ ι(x−x0)
= 0,

lim
x→x0

Ψρ,ι (x) = lim
x→x0

ξ ι(x−x0)

ρ +ξ ι(x−x0)
=

1
1+ρ

;ρ > 0,

lim
x→x0

Ψ
′
ρ,ι (x) = lim

x→x0

ρι (lnξ )

ξ ι(x−x0)
(
1+ρξ−ι(x−x0)

)2 =
ρι (lnξ )

(1+ρ)2 ,

lim
x→−∞

Ψ
′
ρ,ι (x) = lim

x→−∞
ρι (lnξ )

1
ξ ι(x−x0)+ρ2ξ−ι(x−x0)+2ρ

= 0,

and

∫
Ψρ,ι (x)dx =

∫
ξ ι(x−x0)

ρ +ξ ι(x−x0)
dx =

1
ι(lnξ )

ln
(

ρ +ξ
ι(x−x0)

)
+C, C is a constant. (2.3)

Remark 2.2. Additionally, if ξ = e, then (ι ,x0)-generalized logistic-type function Ψρ,ι acts like an ι−generalization of
softplus function (see [1]). The derivative of (2.3) yields the ι−generalized logistic-type function.

Proposition 2.3. From (2.2), Ψρ,ι (x) is increasing and positive on
(
−∞, x0 +

logξ ρ

ι

)
. Furthermore, l := Ψρ,ι (x) is a solution

to the initial value problem
{

l
′
= ι (lnξ ) l (1− l) , l (x0) =

1
ρ +1

; ρ > 0.

Theorem 2.4. The (ι ,x0)-generalized logistic-type function Ψρ,ι satisfies the following inequality:

Ψρ,ι (x+ y)< Ψρ,ι (x)+Ψρ,ι (y) ,

for x0 ≥ 0, ι ,ρ > 0, x,y ∈ (−∞,0), and also x,y ∈
(

x0 +
logξ ρ

ι
,+∞

)
. In other words, the function Ψρ,ι is sub-additive on

(−∞,0)∪
(

x0 +
logξ ρ

ι
,+∞

)
.

Proof. We need to prove the cases x,y ∈ (−∞,0) and x,y ∈
(

x0 +
logξ ρ

ι
,+∞

)
, respectively.

The case x = y = 0 is straightforward.
For any fixed y: we obtain

ϕρ,ι (x,y) : = Ψρ,ι (x+ y)−Ψρ,ι (x)−Ψρ,ι (y)

=
1

1+ρξ−ι(x+y−x0)
− 1

1+ρξ−ι(x−x0)
− 1

1+ρξ−ι(y−x0)

=
ξ ι(x+y−x0)

ξ ι(x+y−x0)+ρ
− ξ ι(x−x0)

ξ ι(x−x0)+ρ
− ξ ι(y−x0)

ξ ι(y−x0)+ρ
,
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and

∂

∂x
ϕρ,ι (x,y) =

∂

∂x

(
1

1+ρξ−ι(x+y−x0)
− 1

1+ρξ−ι(x−x0)
− 1

1+ρξ−ι(y−x0)

)

=
−
(

ρξ−ι(x+y−x0) (−ι)(lnξ )
)

(
1+ρξ−ι(x+y−x0)

)2 −



−
(

ρξ−ι(x−x0) (−ι)(lnξ )
)

(
1+ρξ−ι(x−x0)

)2




=
ιρ (lnξ )ξ−ι(x+y−x0)

(
1+ρξ−ι(x+y−x0)

)2 −
ιρ (lnξ )ξ−ι(x−x0)

(
1+ρξ−ι(x−x0)

)2 .

For Ψ
′
ρ,ι (x) is decreasing on (x0,+∞), hence Ψρ,ι (x) is decreasing on the same interval. Then for x,y ∈ (x0,+∞), we can

have

ϕρ,ι (x,y) < ϕρ,ι

(
x,x0 +

logξ ρ

ι

)

= lim
x→x0+

log
ξ

ρ

ι

ϕρ,ι

(
x,x0 +

logξ ρ

ι

)

= ϕρ,ι

(
x0 +

logξ ρ

ι
,x0 +

logξ ρ

ι

)

= Ψρ,ι

(
2x0 +

2logξ ρ

ι

)
−Ψρ,ι

(
x0 +

logξ ρ

ι

)
−Ψρ,ι

(
x0 +

logξ ρ

ι

)

=
1

1+ρξ
−ι

(
2x0+

2log
ξ

ρ

ι
−x0

) − 2

1+ρξ
−ι

(
x0+

log
ξ

ρ

ι
−x0

)

=
1

1+ρξ
−ι

(
x0+

2log
ξ

ρ

ι

) − 2
1+ρ

1
ρ

=
1

1+ρξ
−ι

(
x0+

2log
ξ

ρ

ι

) −1

= − ρξ
−ι

(
x0+

2log
ξ

ρ

ι

)

1+ρξ
−ι

(
x0+

2log
ξ

ρ

ι

) < 0.

Thus ϕρ,ι is increasing on
(
−∞,x0 +

logξ ρ

ι

)
.

We have

ϕρ,ι (x,y) < ϕρ,ι (x,0) = lim
x→0

ϕρ,ι (x,0)

= lim
x→0

(
Ψρ,ι (x+0)−Ψρ,ι (x)−Ψρ,ι (0)

)

= lim
x→0

{
1

1+ρξ−ι(x−x0)
− 1

1+ρξ−ι(x−x0)
− 1

1+ρξ−ι(−x0)

}

= lim
x→0
− 1

1+ρξ ιx0
< 0.

Remark 2.5. In Theorem 2.4; if we take x0 = 0, ι > 0,ξ = e, and ρ = 1 then ϕρ,ι (x,y) becomes sub-additive on (−∞,+∞) .

For ι > 0, x0 ∈ (−∞,+∞), and y ∈ (0,+∞) the (ι ,x0)-generalized logistic-type function Ψρ,ι fulfills the followings:

(i)

1 <
Ψρ,ι (x+ y)

Ψρ,ι (x)
< ξ

ιy, ∀x ∈ (−∞,+∞) ,

(ii)

2ξ ιy

1+ξ ιy <
Ψρ,ι (x+ y)

Ψρ,ι (x)
< ξ

ιy,∀x ∈
(
−∞,x0 +

logξ ρ

ι

)
,
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(iii)

1 <
Ψρ,ι (x+ y)

Ψρ,ι (x)
<

2ξ ιy

1+ξ ιy ,∀x ∈
(

x0 +
logξ ρ

ι
,+∞

)
.

Proof. Since for all x ∈ (−∞,+∞),

(
Ψ
′
ρ,ι (x)

Ψρ,ι (x)

)′
=

(
ι (lnξ )

(
1−Ψρ,ι (x)

))′
= ι (lnξ )

(
1−Ψρ,ι (x)

)′

= − ρι2
(
ln2

ξ
)

(
1+ρξ−ι(x−x0)

)2
ξ ι(x−x0)

< 0.

Then
(

Ψ
′
ρ,ι (x)

Ψρ,ι (x)

)′
<− ρι2

(
ln2

ξ
)

(
1+ρξ−ι(x−x0)

)2 < 0,∀x ∈ (−∞,+∞) .

Hence, the function
Ψ
′
ρ,ι (x)

Ψρ,ι (x)
is decreasing on (−∞,+∞) .

Let

ℵ(x) :=
Ψρ,ι (x+ y)

Ψρ,ι (x)
,x ∈ (−∞,+∞) ,

and

ν (x) = loge ℵ(x) = lnℵ(x) .

So

ℵ
′
(x) =

Ψ
′
ρ,ι (x+ y)Ψρ,ι (x)−Ψ

′
ρ,ι (x)Ψρ,ι (x+ y)

Ψ2
ρ,ι (x)

=
Ψ
′
ρ,ι (x+ y)

Ψρ,ι (x)
−

Ψ
′
ρ,ι (x)Ψρ,ι (x+ y)

Ψ2
ρ,ι (x)

,

and also one has

ν
′
(x) =

Ψ
′
ρ,ι (x+ y)Ψρ,ι (x)−Ψ

′
ρ,ι (x)Ψρ,ι (x+ y)

Ψρ,ι (x)Ψρ,ι (x+ y)

=
Ψ
′
ρ,ι (x+ y)

Ψρ,ι (x+ y)
−

Ψ
′
ρ,ι (x)

Ψρ,ι (x)
< 0.

Therefore, ν (x) and ℵ(x) are both decreasing.
Accordingly,

lim
x→+∞

ℵ(x) = lim
x→+∞

Ψρ,ι (x+ y)
Ψρ,ι (x)

= lim
x→+∞

(
1+ρξ−ι(x−x0)

1+ρξ−ι(x+y−x0)

)
ξ ι(x−x0)

ξ ι(x−x0)

= lim
x→+∞

ξ ι(x−x0)+ρ

ξ ι(x−x0)+ρξ−ιy
= 1,

and

lim
x→−∞

ℵ(x) = lim
x→−∞

1+ρξ−ι(x−x0)

1+ρξ−ι(x+y−x0)
= ξ

ιy,

1 = lim
x→+∞

ℵ(x)< ℵ(x)< lim
x→−∞

ℵ(x) = ξ
ιy,x ∈ (−∞,+∞) ,
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and also

lim
x→x0+

log
ξ

ρ

ι

1+ρξ−ι(x−x0)

1+ρξ−ι(x+y−x0)
=

2ξ ιy

1+ξ ιy ,

1 = lim
x→+∞

ℵ(x)< ℵ(x)< lim
x→x0+

log
ξ

ρ

ι

ℵ(x) =
2ξ ιy

1+ξ ιy ,x ∈
(

x0 +
logξ ρ

ι
,+∞

)
.

Corollary 2.6. For ι > 0 and x0 ∈ (−∞,+∞) , the (ι ,x0)-generalized logistic-type function Ψρ,ι yields inequalities below:

1 <
Ψρ,ι

(
x+ 1

ι

)

Ψρ,ι (x)
< ξ ;x ∈ (−∞,+∞) ,

2ρξ

1+ρξ
<

Ψρ,ι

(
x+ 1

ι

)

Ψρ,ι (x)
< ξ ; x ∈ (−∞,x0) ,

and also

1 <
Ψρ,ι

(
x+ 1

ι

)

Ψρ,ι (x)
<

2ρξ

1+ρξ
.

Corollary 2.7. (see [10], [11], [12]) Let S be an open subinterval of (0,∞), and let g : S −→ (0,∞) be differentiable. g is

AH-convex (concave)⇐⇒ g
′
(x)

g2(x) is increasing (decreasing).

Theorem 2.8. For ι > 0 and x0 ∈ [0,∞) , the (ι ,x0)-generalized logistic-type function Ψρ,ι is AH-concave on (x0,+∞) .
Namely,

Ψρ,ι

(
x+ y

2

)
≥ 2Ψρ,ι (x)Ψρ,ι (y)

Ψρ,ι (x)+Ψρ,ι (y)
,x ∈ (x0,+∞) .

Proof. Let us take

Ψ
′
ρ,ι (x) =

ιρ (lnξ )ξ−ι(x−x0)

(
1+ρξ−ι(x−x0)

)2 ,

and

Ψ
2
ρ,ι (x) =

(
1+ρξ

−ι(x−x0)
)−2

.

Then

(
Ψ
′
ρ,ι (x)

Ψ2
ρ,ι (x)

)′
=

(
ιρ (lnξ )ξ

−ι(x−x0)
)′

= −ι
2 (ln2

ξ
)

ξ
−ι(x−x0) < 0.

One has the desired result by Corollary 2.7.

Theorem 2.9. For ι > 0 and x0 ∈ (−∞,+∞), the (ι ,x0)-generalized logistic-type function Ψρ,ι is logarithmically concave on
(−∞,+∞) . Namely, for all x,y ∈ (−∞,+∞) ; z, p > 1 and 1

z +
1
p = 1, the following inequality holds:

Ψρ,ι

(
x
z
+

y
p

)
≥
[
Ψρ,ι (x)

] 1
z
[
Ψρ,ι (y)

] 1
p . (2.4)
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Proof. Let

Dρ,ι (x) := lnΨρ,ι (x) = loge Ψρ,ι (x) = loge

(
1

1+ρξ−ι(x−x0)

)
,

ln
(

1
1+ρξ−ι(x−x0)

)
= ln1− ln

(
1+ρξ

−ι(x−x0)
)
,

thus

Dρ,ι (x) =− ln
(

1+ρξ
−ι(x−x0)

)
.

Now take the first derivative of Dρ,ι ,

D
′
ρ,ι (x) = ιρ (lnξ )

ξ−ι(x−x0)

1+ρξ−ι(x−x0)
,

and also the second derivative of Dρ,ι yields the following:

D
′′
ρ,ι (x) =−ι

2
ρ
(
ln2

ξ
) ξ−ι(x−x0)

(
1+ρξ−ι(x−x0)

)2 < 0,

which indicates the inequality in (2.4).

Theorem 2.10. For ι > 0 and x0 ∈ (−∞,+∞), the (ι ,x0)-generalized logistic-type function Ψρ,ι verifies the following
inequalities:

Ψ
2
ρ,ι (x+ y)≥Ψρ,ι (x)Ψρ,ι (y) ; x,y ∈ [0,+∞) ,

and

Ψ
2
ρ,ι (x+ y)≤Ψρ,ι (x)Ψρ,ι (y) ; x,y ∈ (−∞,0] .

Furthermore, for x = y = 0, equality is satisfied.

Proof. For ι > 0, x,y ∈ [0,+∞) ; x+ y≥ x and x+ y≥ y are valid. Since Ψρ,ι (x) is increasing,

Ψρ,ι (x+ y)≥Ψρ,ι (x) , (2.5)

and

Ψρ,ι (x+ y)≥Ψρ,ι (y) . (2.6)

So, the product of (2.5) and (2.6) demonstrates the first inequality. Using the similar mindset, the second one may be
proved.

Theorem 2.11. For ι > 0 and x0 ∈ (−∞,+∞) , the (ι ,x0)-generalized logistic-type function Ψρ,ι satisfies the inequalities
below:

Ψ
2
ρ,ι (xy)≤Ψρ,ι (x)Ψρ,ι (y) ;x,y ∈ (0,1] ,

and

Ψ
2
ρ,ι (xy)≥Ψρ,ι (x)Ψρ,ι (y) ; x,y ∈ [1,+∞) .

Proof. For x,y ∈ (0,1] , xy≤ x and xy≤ y are true.
As Ψρ,ι (x) is increasing,

Ψρ,ι (x)≥Ψρ,ι (xy)> 0,

and

Ψρ,ι (y)≥Ψρ,ι (xy)> 0.
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are satisfied. Furthermore, product of these two inequalities yields:

Ψρ,ι (x)Ψρ,ι (y)≥Ψ
2
ρ,ι (xy) .

Namely,

Ψ
2
ρ,ι (xy)≤Ψρ,ι (x)Ψρ,ι (y)

is obtained.
Since for x,y ∈ [1,+∞), there exist xy≥ x,xy≥ y and Ψρ,ι (x) is increasing. Then

Ψρ,ι (x)≤Ψρ,ι (xy) ,

and

Ψρ,ι (y)≤Ψρ,ι (xy) .

Multiplication of the last two inequalities gives the following:

Ψρ,ι (x)Ψρ,ι (y)≤Ψ
2
ρ,ι (xy) .

Below, one has the desired inequality:

Ψ
2
ρ,ι (xy)≥Ψρ,ι (x)Ψρ,ι (y) .

Theorem 2.12. For ι > 0 and x0 ∈ (−∞,+∞) , the (ι ,x0)-generalized logistic-type function Ψρ,ι is supermultiplicative on
(1,+∞) .

Ψρ,ι (xy)> Ψρ,ι (x)Ψρ,ι (y) ; x,y ∈ (−∞,+∞)

holds.

Proof. For 0 < Ψρ,ι (u)< 1, then

Ψ
2
ρ,ι (u)< Ψρ,ι (u)

for u ∈ (−∞,+∞) . Since Ψρ,ι is increasing, and xy≥ x, xy > y on (1,+∞) ,

Ψρ,ι (xy)> Ψ
2
ρ,ι (xy)> Ψρ,ι (x)Ψρ,ι (y)

is true.

Presently, some sharp inequalities related to the (ι ,x0)-generalized logistic-type function Ψρ,ι (the (ι ,x0)-generalized softplus
activation function) are studied:

Theorem 2.13. For ι > 0 and x0 ∈ (−∞,+∞) , the following inequalities are satisfied:

ξ ι(x−x0)

1+ρξ ι(x−x0)
< ln

(
+ρξ

ι(x−x0)
)
< ln(1+ρ)− 1

1+ρ
+

ξ ι(x−x0)

1+ρξ ι(x−x0)
,

ln(1+ρ)− 1
1+ρ

+
ξ ι(x−x0)

1+ρξ ι(x−x0)
< ln

(
1+ρξ

ι(x−x0)
)
, x ∈ (x0,+∞) ,

ρξ ι(x−x0)

1+ρξ ι(x−x0)
< ln

(
1+ρξ

ι(x−x0)
)
, x ∈ (−∞,+∞) . (2.7)

Proof. Let us define

∆(x) := ln
(

1+ρξ
ι(x−x0)

)
− ξ ι(x−x0)

1+ρξ ι(x−x0)
, x ∈ (−∞,+∞) ,

∆
′
(x) =

ι (lnξ )ξ ι(x−x0)

1+ρξ ι(x−x0)

(
ρ− 1

1+ρξ ι(x−x0)

)
> 0, x ∈ (−∞,+∞) .
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So, ∆(x) is increasing on (−∞,+∞) .
For x ∈ (−∞,x0) ,

0 = lim
x→−∞

∆(x)< ∆(x)< lim
x→x0

∆(x) = ln(1+ρ)− 1
1+ρ

,

which yields that the first inequality is valid.
For x ∈ (x0,+∞) ,

ln(1+ρ)− 1
1+ρ

= lim
x→x0

∆(x)< ∆(x)< lim
x→+∞

∆(x)<+∞,

which indicates that the second inequality is held.
Also, for x ∈ (−∞,+∞) ,

0 = lim
x→−∞

∆(x)< ∆(x)< lim
x→+∞

∆(x)<+∞,

which demonstrates that the third one is also satisfied.

Theorem 2.14. For ι ,ρ > 0, x0 ∈ (−∞,+∞) and x ∈ (−∞,+∞) , the inequality

ρξ
ι(x−x0)− ln

(
1+ρξ

ι(x−x0)
)
> 0 (2.8)

is provided.

Proof. Let

Ξ(x) := ρξ
ι(x−x0)− ln

(
1+ρξ

ι(x−x0)
)
, x ∈ (−∞,+∞) ,

and

Ξ
′
(x) = ρι (lnξ )ξ

ι(x−x0)

(
ρξ ι(x−x0)

1+ρξ ι(x−x0)

)
> 0,

that indicates that Ξ(x) is increasing on (−∞,+∞) . Hence, we get

lim
x→−∞

Ξ(x) = lim
x→−∞

(
ρξ

ι(x−x0)− ln
(

1+ρξ
ι(x−x0)

))
= 0.

So

0 = lim
x→−∞

Ξ(x)< Ξ(x)< lim
x→−∞

(
ρξ

ι(x−x0)− ln
(

1+ρξ
ι(x−x0)

))
,

which verifies the last inequality, is valid.

Theorem 2.15. For ι ,ρ > 0, ξ > 1; x,x0 ∈ (−∞,+∞) , let m(x)=
(

1+ρξ ι(x−x0)
) 1

ρξ
ι(x−x0) and k (x)=

(
1+ρξ ι(x−x0)

)1+ 1

ρξ
ι(x−x0)

be decreasing and increasing, respectively. Then the following inequalities hold:

(1+ρ) ln(1+ρ)ξ
ι(x−x0) < ln

(
1+ρξ

ι(x−x0)
)
< ρξ

ι(x−x0); x ∈ (−∞,x0) ,

ρξ
ι(x−x0) <

(
1+ρξ

ι(x−x0)
)

ln
(

1+ρξ
ι(x−x0)

)
< (1+ρ) ln(1+ρ)ξ

ι(x−x0);x ∈ (−∞,x0) ,

and

ρξ
ι(x−x0) <

(
1+ρξ

ι(x−x0)
)

ln
(

1+ρξ
ι(x−x0)

)
<
(

1+ρξ
ι(x−x0)

)
ρξ

ι(x−x0);x ∈ (−∞,+∞) .

Proof. For x ∈ (−∞,+∞) , ι ,ρ > 0, and ξ > 1,
let

M (x) := ln(m(x))

= ln

((
1+ρξ

ι(x−x0)
) 1

ρξ
ι(x−x0)

)

=
ln
(

1+ρξ ι(x−x0)
)

ρξ ι(x−x0)
,
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and

K (x) := ln(k (x))

= ln

((
1+ρξ

ι(x−x0)
)1+ 1

ρξ
ι(x−x0)

)

=

(
1+

1
ρξ ι(x−x0)

)
ln
(

1+ρξ
ι(x−x0)

)
.

Now, taking the derivatives,

M
′
(x) =

ι (lnξ )

ρξ ι(x−x0)

(
ρξ ι(x−x0)

1+ρξ ι(x−x0)
− ln

(
1+ρξ

ι(x−x0)
))

< 0.

Thus using (2.7), we conclude that M (x) is decreasing and, accordingly, m(x) is also decreasing.
In like manner,

K
′
(x) =

ι (lnξ )

ρξ ι(x−x0)

(
ρξ

ι(x−x0)− ln
(

1+ρξ
ι(x−x0)

))
> 0,

employing (2.8), it is obvious that K (x) is increasing and so is k (x) .
Besides, let us take

M (x0) =
ln(1+ρ)

ρ
; K (x0) =

(
1+

1
ρ

)
ln(1+ρ) ,

lim
x→−∞

M (x) = 1; lim
x→+∞

M (x) = 0,

lim
x→−∞

K (x) = 1; lim
x→+∞

K (x) = +∞.

For x ∈ (−∞,x0) , we obtain

ln(1+ρ)

ρ
= M (x0)< M (x)< lim

x→−∞
M (x) = 1,

so that the first inequality is satisfied.
Again for x ∈ (−∞,x0) , we have

1 = lim
x→−∞

K (x)< K (x)< K (x0) =

(
1+

1
ρ

)
ln(1+ρ) ,

which yields the second one.
Lastly, for x ∈ (−∞,+∞) , one has

0 = lim
x→+∞

M (x)< M (x)< lim
x→−∞

M (x) = 1,

which verifies the following

ln
(

1+ρξ
ι(x−x0)

)
< ρξ

ι(x−x0).

As well,

1 = lim
x→−∞

K (x)< K (x)< lim
x→+∞

K (x) = +∞,

which again implies

ρξ ι(x−x0)

1+ρξ ι(x−x0)
< ln

(
1+ρξ

ι(x−x0)
)
. (2.9)

By the last two inequalities, the desired third inequality is proved.
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Theorem 2.16. For ι > 0 and x0 ∈ (−∞,+∞), set

z(x) =
ρξ ι(x−x0) ln

(
1+ρξ ι(x−x0)

)

ρξ ι(x−x0)− ln
(
1+ρξ ι(x−x0)

) , x ∈ (−∞,x0) .

It follows that, z(x) is increasing and satisfies the inequality below:

2 <z(x)<
ρ ln(1+ρ)

ρ− ln(1+ρ)
.

Proof. First of all,

lim
x→x0

z(x) =
ln(2)

ρ− ln(2)
,

and

lim
x→−∞

z(x) = lim
x→−∞

ln
(

1+ρξ ι(x−x0)
)
+ ρξ

ι(x−x0)

1+ρξ
ι(x−x0)

1− 1
1+ρξ

ι(x−x0)

= lim
x→−∞


1+

ln
(

1+ρξ ι(x−x0)
)(

1+ρξ ι(x−x0)
)

ρξ ι(x−x0)




= 2.

Furthermore, let

Λ(x) := ρξ
ι(x−x0) ln

(
1+ρξ

ι(x−x0)
)

and

ϒ(x) := ρξ
ι(x−x0)− ln

(
1+ρξ

ι(x−x0)
)

.

Hence

Λ(−∞) = lim
x→−∞

Λ(x)

= lim
x→−∞

(
ρξ

ι(x−x0) ln
(

1+ρξ
ι(x−x0)

))

= 0

and

ϒ(−∞) = lim
x→−∞

ϒ(x)

= lim
x→−∞

(
ρξ

ι(x−x0)− ln
(

1+ρξ
ι(x−x0)

))

= 0.

So,

Λ
′
(x) = ιρ (lnξ )ξ

ι(x−x0)

(
ln
(

1+ρξ
ι(x−x0)

)
+

ρξ ι(x−x0)

1+ρξ ι(x−x0)

)
> 0,

and

ϒ
′
(x) = ιρ (lnξ )ξ

ι(x−x0)

(
1− 1

1+ρξ ι(x−x0)

)
> 0.

Additionally,

(
Λ
′
(x)

ϒ
′
(x)

)′
=




ln
(

1+ρξ ι(x−x0)
)(

1+ρξ ι(x−x0)
)

ρξ ι(x−x0)




′

=
ι (lnξ )

ρξ ι(x−x0)

(
ρξ

ι(x−x0)− ln
(

1+ρξ
ι(x−x0)

))
> 0.
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In this manner, Λ
′
(x)

ϒ
′
(x)

is increasing, which elucidates that Λ(x)
ϒ(x) =z(x) is increasing, too (by the corollary 1.2 of [13]).

Ultimately, for x ∈ (−∞,x0) ,

2 = lim
x→−∞

z(x)<z(x)< lim
x→x0

z(x) =
ρ ln(1+ρ)

ρ− ln(1+ρ)
. (2.10)

Proposition 2.17. Let

ξ :=
ρ ln(1+ρ)

ρ− ln(1+ρ)
,

the inequality (2.10) can be written as

ln
(

1+ρξ
ι(x−x0)

)
<

ξ ρξ ι(x−x0)

ξ +ρξ ι(x−x0)
,

and by inequality (2.9)

ρξ ι(x−x0)

1+ρξ ι(x−x0)
< ln

(
1+ρξ

ι(x−x0)
)
<

ξ ρξ ι(x−x0)

ξ +ρξ ι(x−x0)

is observed.

3. A statistical interpretation of the (ι ,x0)-generalized logistic-type function in survival analysis

Survival Analysis is a subfield of statistics used to describe and measure data on the time until an event occurs. For example,
it analyzes the expected time until failure in mechanical systems and death in biological organisms [14]. ”Time-to-event
processes” are especially common in medical research because they provide more information than whether an event occurred
or not [15]. In addition, ”reliability theory” or ”reliability analysis” are other names used for this area in engineering sciences.
In this section, the (ι ,x0)-generalized logistic-type function

F (x,γ) := Ψρ,ι (x) =
ξ ι(x−x0)

ρ +ξ ι(x−x0)
, ι ,ρ > 0; x0 ∈ (−∞,+∞) ; ξ > 1,

is considered as a distribution function and the probability density function of the suggested distribution is

f (x,γ) = Ψ
′
ρ,ι (x) =

ιρ (lnξ )ξ ι(x−x0)

(
ρ +ξ ι(x−x0)

)2 ,

where, γ = (ι ,x0) is the parameter set.

One of the common terms used in survival analysis is ”survival (reliability) function”. Primarily, we are deeply interested in
parametric exponential version of this function and its graphical results in the sense of behavior of the function with respect to
arbitrary chosen parameters: ξ , ι ,x0, and ρ. The distribution of survival times can be better predicted by a function such as the
exponential function, which, create parametric survival models.
Now, we define parametric exponential survival (PES) and parametric failure (hazard) rate (PFR) functions, respectively as
seen below:

Ψ(x,γ) = 1−F (x,γ) =
ρ

ρ +ξ ι(x−x0)
,

h(x,γ) =
f (x,γ)

Ψ(x,γ)
=

ι (lnξ )ξ ι(x−x0)

ρ +ξ ι(x−x0)
.
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Figure 1: Behaviour of PES with respect to distinct parameter values of ξ .

Figure 2: Behaviour of PES with respect to distinct parameter values of ι .

Figure 3: Behaviour of PES with respect to distinct parameter values of x0.
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Figure 4: Behaviour of PES with respect to distinct parameter values of ρ .

Figure 5: Behaviour of PFR with respect to arbitrary parameter values of ξ .
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Figure 6: Behaviour of PFR with respect to arbitrary parameter values of ι .

Figure 7: Behaviour of PFR with respect to arbitrary parameter values of x0.
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Figure 8: Behaviour of PFR with respect to arbitrary parameter values of ρ .

Figure 9: Algorithm 1.
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Figure 10: Algorithm 2.

Moreover, graphs of the PES functions are visualized in Fig. 1 - Fig. 4 using computer programming language Python 3.9, as
you see [16].

In the second place, we focus on the PFR function of the proposed distribution with arbitrary parameter values obtained as in
Fig. 5 - Fig. 8. This is the function that gives the steadily revised immediate probability of a critical event. With this feature,
it finds applications in many disciplines such as health sciences, and mathematical psychology [17]. Also, while the PES
function serves for surviving, the PFR function deals with the failing [18].

4. Conclusion

In this paper, some important inequalities like concavity, super multiplicativity, and sub-additivity of the (ι ,x0)-generalized
logistic-type function have been proved. ”Ceteris Paribus” plotting for parametric exponential survival (PES) and also
parametric failure (hazard) rate (PFR) functions with four variables have been performed. Thus, when the survival function
we parameterized is compared to a function that is not parametrized; we can say that the parametric one may provide more
detailed and sophisticated modeling in survival analysis. In short, we may obtain higher accuracy values in the validation data
of the models with the help of functions containing four parameters, that is, to make the models more robust.



52 Fundamental Journal of Mathematics and Applications

Declarations

Acknowledgements: The author would like to express their sincere thanks to the editor and the anonymous reviewers for their
helpful comments and suggestions

Conflict of Interest Disclosure: The author declares no conflict of interest.

Copyright Statement: Author own the copyright of their work published in the journal and their work is published under the
CC BY-NC 4.0 license.

Supporting/Supporting Organizations: This research received no external funding.

Ethical Approval and Participant Consent: This article does not contain any studies with human or animal subjects. It is
declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies
benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of Data and Materials: Data sharing not applicable.

ORCID
Seda Karateke https://orcid.org/0000-0003-1219-0115

References

[1] J. Zhang, L. Yin and W. Cui, The monotonic properties of (p,a)-generalized sigmoid function with application, Pak. J. Statist., 35(2) (2019),
171-185. [Scopus]

[2] M.I. Jordan, Why the logistic function? A tutorial discussion on probabilities and neural networks, (1995).
[3] R.M. Neal, Connectionist learning of belief networks, Artif. Intell., 56(1), 1992, 71-113. [CrossRef] [Scopus] [Web of Science]
[4] P. McCullagh and J. Nelder, Generalized Linear Models, Second Edition. Chapman & Hall., (1989), ISBN: 9780412317606. [CrossRef]
[5] D. Yu, Softmax function based intuitionistic fuzzy multi-criteria decision making and applications, Oper. Res. Int. J., 16 (2016), 327-348.

[CrossRef] [Scopus] [Web of Science]
[6] R. Torres, R. Salas and H. Astudillo, Time-based hesitant fuzzy information aggregation approach for decision making problems, Int. J. Intell.

Syst., 29(6) (2014), 579-595. [CrossRef] [Scopus] [Web of Science]
[7] I. Goodfellow, Y. Bengio and A. Courville, 6.2.2.3 Softmax Units for Multinoulli Output Distributions, Deep Learning. MIT Press., (2016),

180-184. ISBN 978-0-26203561-3.
[8] G.A. Anastassiou, Banach Space Valued Multivariate Multi Layer Neural Network Approximation Based on q-Deformed and λ -Parametrized

A-Generalized Logistic Function. In: Parametrized, Deformed and General Neural Networks, Studies in Computational Intelligence, 1116.
Springer, Cham., (2023), 365-394. [CrossRef] [Scopus]

[9] A. Arai, Exactly solvable supersymmetric quantum mechanics, J. Math. Anal. Appl., 158(1) (1991), 63-79. [CrossRef] [Scopus] [Web of
Science]

[10] G.D. Anderson, M. Vamanamurthy, and M.Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335(2) (2007), 1294-1308.
[CrossRef] [Scopus] [Web of Science]

[11] P.S. Bullen, Handbook of Means and Their Inequalities, Springer Science & Business Media (560), 2013. [CrossRef]
[12] P.S. Bullen, D.S. Mitrinovic and M. Vasic, Means and Their Inequalities, Springer Science & Business Media 31, 2013. [CrossRef]
[13] I. Pinelis, L’Hospital type rules for monotonicity, with applications, J. Ineq. Pure & Appl. Math.3(1) (2002), 1-5.
[14] R.G. Miller, Survival Analysis, John Wiley & Sons, (1997), ISBN 0-471-25218-2.
[15] B. George, S. Seals and I. Aban, Survival analysis and regression models, J. Nucl. Cardiol., 21 (2014), 686-694. [CrossRef] [Scopus] [Web

of Science]
[16] S. Karateke, M. Zontul, V.N. Mishra and A.R. Gairola, On the Approximation by Stancu-Type Bivariate Jakimovski–Leviatan–Durrmeyer

Operators, La Matematica, 3 (2024), 211–233. [CrossRef]
[17] R.A. Chechile, Mathematical tools for hazard function analysis, J. Math. Psychol., 47(5-6) (2003), 478-494. [CrossRef] [Scopus] [Web of

Science]
[18] F. Emmert-Streib and M. Dehmer, Introduction to survival analysis in practice, Mach. Learn. Knowl. Extr., 1(3) (2019), 1013-1038. [Cross-

Ref] [Scopus] [Web of Science]

Fundamental Journal of Mathematics and Applications (FUJMA), (Fundam. J. Math. Appl.)
https://dergipark.org.tr/en/pub/fujma

All open access articles published are distributed under the terms of the CC BY-NC 4.0 license (Creative Commons Attribution-
Non-Commercial 4.0 International Public License as currently displayed at http://creativecommons.org/licenses/by-nc/4.
0/legalcode) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the
original work is properly cited.

How to cite this article: S. Karateke, On an (ι ,x0)-generalized logistic-type function, Fundam. J. Math. Appl., 7(1) (2024), 35-52.
DOI 10.33401/fujma.1423906



Fundamental Journal of Mathematics and Applications, 7(1) (2024), 53-58

Research Paper / Open Access

Fundamental Journal of Mathematics and Applications
ISSN Online: 2645-8845

www.dergipark.org.tr/en/pub/fujma

https://doi.org/10.33401/fujma.1424382

A Note On Kantorovich Type Operators Which Preserve Affine
Functions

Didem Aydın Arı 1,†, *, and Gizem Uğur Yılmaz 2,‡,
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Abstract

The authors present an integral widening of operators which preserve affine functions. Influenced
by the operators which preserve affine functions, we define the integral extension of these operators.
We give quantitative type theorem using weighted modulus of continuity. Withal quantitative
Voronovskaya theorem is aquired by classical modulus of continuity. When the moments of the
operator are known, convergence results with the moments obtained for the Kantorovich form of
the same operator is given.

1. Introduction

In mathematical analysis, studies on approximation by linear and positive operators retained its importance for many years.
Recently many researchers have studied some generalizations of these operators, especially the Kantorovich form of Bernstein,
Baskakov and Szàsz operators. Also they have studied some operators which preserve test functions, exponentials and affine
functions (see [1]-[8]).

The Kantorovich version of Bernstein operators [9] defined by replacing the sample values f
(

k
n

)
with the mean values of f

in
[

k
n
,

k+1
n

]
, namely for x ∈ [0,1], n ∈ N and f ∈ L1 [0,1] , Pn,k(x) =

(n
k

)
xk(1− x)n−k, k = 0,1, ...,n

Kn( f )(x) = (n+1)
n

∑
k=0

Pn,k(x)

k+1
n+1∫

k
n+1

f (t)dt. (1.1)

Note that Kn is just reproduced 1. These operators provide us to switch a Lebesgue integrable function by means of its mean

values on the sets
[

k
n
,

k+1
n

]
.

General in use, such a (Ln)n≥1 sequence of linear and positive operators are specified. In 2016, Agratini studied Kantorovich
type operators which preserve affine functions ([2]). Inspire of these general operators which preserve affine functions, we
study these operators on weighted spaces.
Let’s describe the layout of this work. In first part, nodes and moments are given. The second part belongs to some
approximation findings for the operators.
The purpose of this article is to show that if we know the moments of the operators, we find convergence results with the
moments obtained for the Kantorovich type generalization of the same operator.

≫≫≫ Received: 23-01-2024 ≫≫≫ Revised: 27-02-2024 ≫≫≫ Accepted: 11-03-2024 ≫≫≫ Online: 29-03-2024 ≫≫≫ Published: 31-03-2024
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2. Properties of the operators

Througout the paper, we consider an interval R+ = [0,∞). In [9], we can see the Kantorovich form of the Bernstein operators
as

Kn( f )(x) = (n+1)
n

∑
k=0

Pn,k(x)

k+1
n+1∫

k
n+1

f (t)dt, x ∈ [0,1],

where f ∈ L1[0,1]. Let C (R+) denotes the space of real-valued continuous functions on R+, now we give Ln operator which
can be written as

Ln( f ;x) = ∑
k∈Jn

λn,k(x) f (xn,k), x ∈ R+ (2.1)

where λn,k ∈C (R+) and λn,k ≥ 0 and (n,k) ∈ N × Jn. Also (xn,k)k∈Jn be set on the interval R+ where Jn ⊆ N is a set of
indices. Now we consider nodes for each n ∈ N,

xn,k+1− xn,k = un, k ∈ Jn

where lim
n→∞

un = 0 .

We take into about Ln operators given by (2.1) which preserve affine functions,

∑
k∈Jn

λn,k(x) = 1 and ∑
k∈Jn

λn,k(x)xn,k = x, x ∈ R+.

Now let u∗n = sup
n∈N

un. If R+ = [0,∞), then we set A∗ = [ u∗
2 ,∞).

2.1. Auxiliary Results

We give some results which will be necessary for proofs of theorems. At first, we find some moments and central moments of

K̃n( f ;x) =
1
un

∑
k∈Jn

λn,k(x)

xn,k+1∫

xn,k

f (t)dt, x ∈ R+ (2.2)

operators.

Lemma 2.1. Let Ln defined by (2.1), n ∈ N, x ∈ A∗and er(t) = tr for

r = 1, 2, 3, 4. Then we have

(i) K̃n(e0)(x) = 1,
(ii) K̃n(e1)(x) = x+ un

2 ,

(iii) K̃n(e2)(x) = Ln(e2)(x)+unx− u2
n

3 ,

(iv) K̃n(e3)(x) = Ln(e3)(x)+ 3
2 unLn(e2)(x)+u2

nx− u3
n

4 ,

(v) K̃n(e4)(x) = Ln(e4)(x)+2unLn(e3)(x)+2u2
nLn(e2)(x)+u3

nx− u4
n

5 .

Proof. (i) It is clear from the definition of the operator K̃n.
(ii)

K̃n(e1)(x) =
1
un

∑
k∈Jn

λn,k(x)

xn,k+1∫

xn,k

tdt

=
1
un

∑
k∈Jn

λn,k(x)
1
2
(
x2

n,k+1− x2
n,k
)

=
1
un

∑
k∈Jn

λn,k(x)
1
2
(
u2

n +2unxn,k
)

=
un

2
+ x.
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(iii)

K̃n(e2)(x) =
1
un

∑
k∈Jn

λn,k(x)
1
3
(
x3

n,k+1− x3
n,k
)

=
1

3un
∑

k∈Jn

λn,k(x)un

[(
xn,k +un

)2
+ xn,k

(
xn,k +un

)
+ x2

n,k

]
,

= ∑
k∈Jn

λn,k(x)x2
n,k +unx+

u2
n

3

= Ln(e2)(x)+unx+
u2

n

3
.

(iv)

K̃n(e3)(x) =
1
un

∑
k∈Jn

λn,k(x)
1
4
(
x4

n,k+1− x4
n,k
)

=
1

4un
∑

k∈Jn

λn,k(x)
(
xn,k+1− xn,k

)(
xn,k+1 + xn,k

)(
x2

n,k+1 + x2
n,k
)

=
1

4un
∑

k∈Jn

λn,k(x)
[
un(2xn,k +un)(

(
un + xn,k

)2
+ x2

n,k)
]

= ∑
k∈Jn

λn,k(x)x3
n,k +

1
4un

∑
k∈Jn

λn,k(x)6u2
nx2

n,k +
1

4un
∑

k∈Jn

λn,k(x)4u3
nxn,k +

1
4un

∑
k∈Jn

λn,k(x)u4
n

= Ln(e3)(x)+
3
2

unLn(e2)(x)+u2
nx− u3

n

4
.

(v) At that time, (v) can be calculated similarly.

Lemma 2.2. Let ϕn
x (t) = (t− x)n ,n = 0,1,2, ... For the operator K̃n given by (2.2) if we set ζn,2(x) = K̃n(ϕ

2
x (t);x) and

ζn,4(x) = K̃n(ϕ
4
x (t);x), then we have

ζn,2(x) = Ln(e2,;x)+
u2

n

3
− x2,

ζn,4(x) = Ln(e4)(x)+(2un−4x)Ln(e3)(x)+(2u2
n +−6xun +6x2)Ln(e2)(x)+4x3unLn(e1)(x)−3x4Ln(e0)(x)+u4

n−2x2u2
n.

Proof. By using Lemma 1.1, we obtain

ζn,2(x) = K̃n(ϕ
2
x (t);x) = Ln(e2,;x)+

u2
n

3
+unx−2x(x+

un

2
)+ x2

= Ln(e2,;x)+
u2

n

3
− x2.

Now let’s calculate K̃n(ϕ
4
x (t);x).

ζn,4(x) = K̃n(ϕ
4
x (t);x) = K̃n(e4,x)−4K̃n(e3,x)x+6K̃n(e2,x)x2−4K̃n(e1,x)x3 + x4K̃n(e0,,x)

= Ln(e4,;x)+2unLn(e3,;x)+2u2
nLn(e2,;x)+u3

nx+u4
n−4x(Ln(e3,;x)+

3
2

unLn(e2,;x)+u2
nx+

u3
n

4
)

+6x2(Ln(e2,;x)+unx+
u2

n

3
)−4x3(

un

2
+Ln(e1,;x))+ x4Ln(e0,;x))

= Ln(e4)(x)+(2un−4x)Ln(e3)(x)+(2u2
n +−6xun +6x2)Ln(e2)(x)+4x3unLn(e1)(x)−3x4Ln(e0)(x)+u4

n−2x2u2
n,

so the desired result is achieved.

3. Rate Of Convergence

In this part, setting f ∈ R+, approximation result is given for K̃n operator. In [10] and [11], proof of Korovkin theorems are
given.
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Let µ(x) = 1+ x2 be a weight function and K f be a positive constant depending of f , we define

Bµ

(
R+
)
=
{

f : R+→ R : | f (x)| ≤ K f µ(x)
}

and

Cµ

(
R+
)
=C

(
R+
)
∩Bµ

(
R+
)

.

Considering the space of functions

Ck
µ

(
R+
)
=

{
f ∈Cµ

(
R+
)

: lim
x→∞

f (x)
µ(x)

= K f < ∞

}
.

Obviously Ck
µ (R+)⊂Cµ (R+)⊂ Bµ (R+). Here the norm is defined as

‖ f‖
µ
= sup

x∈R+

| f (x)|
µ(x)

.

If f ∈Ck
µ (R+), then ‖Ln( f )‖

µ
≤ ‖ f‖

µ
.These results and Korovkin type theorems can be seen in [12, 10, 11].

Let Ck (R+) be the subspace of all the functions f ∈ C (R+) such that lim
x→∞

| f (x)|
1+x2 = k, where k is a positive constant. For

f ∈Ck (R+), weighted modulus of continuity is defined by

Ω( f ;δ ) = sup
|t−x|≤δ , x∈R+

| f (t)− f (x)|
(1+ x2)(1+(t− x)2)

. (3.1)

Utilizing 3.1, we give quantitative type theorem.

Theorem 3.1. If f ∈Ck
µ (R+), then we have

∣∣∣K̃n( f ;x)− f (x)
∣∣∣≤ 32(1+ x2)Ω( f ;δ ).

Proof. From the property of (3.1), we can write

Ω( f ;λδ )≤ 2(1+λ )(1+δ
2)Ω( f ;δ )

for positive λ (see in [13]). By the definition of Ω( f ;δ ) for f ∈Ck
µ (R+) and x, t ∈R+ and δ > 0, the following inequality is

satisfied:

| f (t)− f (x)| ≤ 16
(
1+ x2)

Ω( f ;δ )

(
1+
|t− x|4

δ 4

)
(3.2)

and by using Lemma 1 and (3.2), we have
∣∣∣K̃n( f ;x)− f (x)

∣∣∣≤ f (x)
∣∣∣1− K̃n(1;x)

∣∣∣+ K̃n(| f (t)− f (x)| ;x).

Now applying (3.1) to K̃n,

∣∣∣K̃n( f ;x)− f (x)
∣∣∣ ≤ 1

un
∑

k∈Jn

λn,k(x)

xn,k+1∫

xn,k

| f (t)− f (x)|dt

≤ 16
(
1+ x2)

Ω( f ;δ )

(
1+

ζn,4(x)
δ 4

)
,

choosing δ = 4
√

ζn,4(x), it follows

∣∣∣K̃n( f ;x)− f (x)
∣∣∣≤ 32

(
1+ x2)

Ω

(
f ; 4
√

ζn,4(x)
)
,

so we obtain desired result.

Let us denote by ω ( f ;δ ) , the classical modulus of continuity defined as

ω ( f ;δ ) = sup
|x−t|≤δ ,x,t∈R+

| f (x)− f (t)| . (3.3)
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Theorem 3.2. Let f
′′ ∈C(R) and ω

(
f
′′
;δ

)
is the modulus of contiuity of f

′′
such as finite for δ > 0. We have

∣∣∣∣
1

ζn,2(x)

[(
K̃n f

)
(x)− f (x)

]
− 1

2
f
′′
(x)
∣∣∣∣≤ ω

(
f
′′
;

√
ζn,4(x)√
ζn,2(x)

)
.

Proof. By using the Taylor expansion at the fixed point x and (3.3) for ξ ∈ [x, t] , we obtain

|h(t,x)| =

∣∣∣∣∣ f (t)− f (x)− f
′
(x)
1!

(t− x)− f
′′
(x)

2!
(t− x)2

∣∣∣∣∣

=
(t− x)2

2!

∣∣∣ f ′′(ξ )− f
′′
(x)
∣∣∣ ≤ (t− x)2

2!
ω

(
f
′′
; |ξ − x|

)

≤ (t− x)2

2!
ω

(
f
′′
; |t− x|

)
≤ (t− x)2

2!

(
1+
|t− x|

δ

)
ω( f

′′
;δ )

=
1
2

(
(t− x)2 +

|t− x|3
δ

)
ω( f

′′
;δ ).

Now applying it to K̃n,we have

∣∣∣
(

K̃nh(·,x)
)
(x)
∣∣∣ =

∣∣∣∣∣
(

K̃n f
)
(x)− f (x)− f

′
(x) ζn,1(x)−

f
′′
(x)
2

ζn,2(x)

∣∣∣∣∣

=

∣∣∣∣∣
(

K̃n f
)
(x)− f (x)− f

′′
(x)
2

ζn,2(x)

∣∣∣∣∣≤ (K̃n |h( f ; ·,x)|)(x)

≤ 1
2
·ω( f

′′
;δ )

(
ζn,2(x)+

(K̃n |e1− x|3)(x)
δ

)

=
ζn,2(x)

2
·ω( f

′′
;δ )

(
1+

1
δ
· (K̃n |e1− x|3)(x)

ζn,2(x)

)
.

If we choose

δ = (K̃n |e1− x|3)(x)/ζn,2(x)

and by using

(K̃n |e1− x|3)(x)≤
√

ζn,4(x) ·
√

ζn,2(x),

inequality, we can write

∣∣∣∣∣
(

K̃n f
)
(x)− f (x)− f

′′
(x)
2

√
ζn,2(x)

∣∣∣∣∣≤
√

ζn,2(x)ω

(
f
′′
;

√
ζn,4(x)√
ζn,2(x)

)
.

Thus we obtain

∣∣∣∣∣
1√

ζn,2(x)

(
K̃n f

)
(x)− f (x)− 1

2
f
′′
(x)

∣∣∣∣∣≤ ω

(
f
′′
;

√
ζn,4(x)√
ζn,2(x)

)
.

4. Conclusion

In this study, we showed that when the moments of an operator are known, some approximation theorems can be given for the
Kantorovich type of the same operator using these moments.
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