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Nuray EROĞLU 113-118

3 Investigation of the Spectrum of Nonself-Adjoint Discontinuous Sturm-Liouville Operator
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On Characterization of Smarandache Curves
Constructed by Modified Orthogonal Frame

Kemal Eren* and Soley Ersoy

Abstract
In this study, we investigate Smarandache curves constructed by a space curve with a modified orthogonal
frame. Firstly, the relations between the Frenet frame and the modified orthogonal frame are summarized.
Later, the Smarandache curves based on the modified orthogonal frame are obtained. Finally, the tangent,
normal, binormal vectors and the curvatures of the Smarandache curves are determined. A special curve
known as the Gerono lemniscate curve whose curvature is not differentiable, the principal normal and
binormal vectors are discontinuous at zero point is considered as an example and the Smarandache
curves of this curve are obtained by the aid of its modified orthogonal frame, and their graphics are given.

Keywords: Gerono lemniscate curve, Modified orthogonal frame, Smarandache curves

AMS Subject Classification (2020): 53A04; 14H50

*Corresponding author

1. Introduction
Curve theory is one of the most important and interesting research topics of differential geometry. Many studies

have been done about curves in the scientific world and the characterizations of curves have been examined by
considering different spaces. Even in prehistoric times, curves seem to have an important place in the fields of
art and decoration. Curves are used frequently in many related fields such as computer graphics, animation, and
modeling. In this study, we investigated the Smarandache curves using the modified orthogonal frame to give a
new perspective to curves. The Smarandache curves are characterized using different frames in Euclidean and
non-Euclidean spaces [1–9]. The Smarandache curves obtained from spacelike Salkowski and anti-Salkowski curves
are given by Eren and Şenyurt in Minkowski space [10–13]. Also, the Smarandache curves are characterized using
the positional adapted frame by Özen et al. [14, 15]. However, the Serret-Frenet frame is insufficient at points where
the curvature of the space curve is zero. Because at points where the curvature is zero, the principal normal and
binormal vector of a space curve becomes discontinuous. Sasai has defined the modified orthogonal frame as an
alternative to the Frenet frame to solve this problem [16]. Then, the modified orthogonal frame was defined by
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102 K. Eren & S. Ersoy

Bükçü and Karaca for the curvature and the torsion of non-zero space curves in Minkowski 3-space [17]. This study
aims to investigate the geometric properties of the Smarandache curves according to the modified orthogonal frame.
First of all, the equations of the Smarandache curves according to the modified orthogonal frame are obtained.
Then, the graphs of the obtained Smarandache curves are drawn. Therefore, it is aimed to contribute to the world
of science with the newly obtained curves.

2. Preliminaries
In Euclidean 3-space, Euclidean inner product is given by <,>= dα2

1 + dα2
2 + dα2

3 where α = (α1, α2, α3) ∈ E3.
Norm of a vector α ∈ E3 is ‖α‖ = √< α,α >. For any the space curve α, if ‖α′(s)‖ = 1, then the curve α is unit
speed curve in Euclidean 3-space. Let α be a moving space curve with respect to the arc-length s in Euclidean
3-space E3. t, n, and b are tangent, principal normal, and binormal unit vectors at α(s) point of the curve α,
respectively. Then, there exists an orthogonal frame {t, n, b}which satisfies the Frenet-Serret equation

t′ = κn,
n′ = −κt+ τb,
b′ = −τn

where κ and τ are the curvature and the torsion of the space curve α, respectively. For the reason that the principal
normal and binormal vectors in the Frenet frame of a space curve are discontinuous at the points where the
curvature is zero, the modified orthogonal frame was introduced by Sasai as an alternative to the Frenet frame.
In this sense, we assume that the curvature κ (s) of the space curve α is not zero and then we define the modified
orthogonal frame {T,N,B} as follow:

T =
dα

ds
, N =

dT

ds
, B = T ∧N

where T ∧N is the vector product of T and N . The relations between the modified orthogonal frame {T,N,B} and
Serret-Frenet frame {t, n, b} at non-zero points of κ are

T = t, N = κn, B = κb.

From these equations, it is known that the differentiation of the elements of the modified orthogonal frame {T,N,B}
satisfy

T ′ (s) = N (s) ,

N ′ (s) = −κ2T (s) +
κ′

κ
N (s) + τB (s) ,

B′ (s) = −τN (s) +
κ′

κ
B (s)

where κ′ denotes the differentiation of the curvature with respect to the arc-length parameter s and τ =
det(α′,α′′,α′′′)

κ2

is the torsion of the space curve α. Moreover, the modified orthogonal frame {T,N,B} satisfies

〈T, T 〉 = 1, 〈N,N〉 = 〈B,B〉 = κ2, 〈T,N〉 = 〈T,B〉 = 〈N,B〉 = 0.

3. Smarandache curves constructed by modified orthogonal frame

In this section, we investigate the Smarandache curves according to the modified orthogonal frame {T,N,B} in
Euclidean 3-space. Let α = α(s) be unit speed regular curve with arc-length parameter s.

Definition 3.1. Let α be a space curve with modified orthogonal frame {T,N,B}, then the Smarandache curve
obtained from the unit vectors T and N of the curve α can be defined as

β1(s
∗) =

1√
2
(T (s) +N(s)) (3.1)

such that s∗ is the arc-length parameter of the Smarandache curve β1.
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Now, we investigate the Frenet apparatus of the Smarandache curve β1 obtained from the curve α. Taking the
differential of the equation (3.1) according to s, we get

β′1 =
dβ1
ds∗

ds∗

ds
=

1√
2
(T ′(s) +N ′(s))

and

Tβ1

ds∗

ds
=

1√
2

(
−κ2T +

(
1 +

κ′

κ

)
N + τB

)
where

ds∗

ds
=

1√
2

√
κ4 +

(
1 +

κ′

κ

)2

+ τ2

or
ds∗

ds
=

1√
2
ρ1, ρ1 =

√
κ4 +

(
1 +

κ′

κ

)2

+ τ2. (3.2)

So, the tangent vector of the Smarandache curve β1 is written as follows:

Tβ1
=

(
−κ2T +

(
1 + κ′

κ

)
N + τB

)
ρ1

. (3.3)

By differentiating the equation (3.3) with respect to s, we obtain

dTβ1

ds∗
ds∗

ds
=
λ1T + η1N + µ1B

κρ12
(3.4)

where
λ1 = κ2 (−ρ1 (κ+ 3κ′) + κρ′1) ,

η1 = −κ3ρ1 − κ′ρ′1 − κ
(
ρ1τ

2 + ρ′1
)
+ ρ1 (κ

′ + κ′′) ,

µ1 = 2ρ1τκ
′ + κ (−τρ′1 + ρ1 (τ + τ ′)) .

Substituting the equation (3.2) into the equation (3.4), we get

T ′β1
=

√
2

κρ13
(λ1T + η1N + µ1B) .

Then, the curvature and the normal vector of the Smarandache curve β1 are

κβ1 = ‖T ′β1‖ =

√
2
(
λ1

2 + η12 + µ1
2
)

κρ13

and
Nβ1 =

λ1T + η1N + µ1B√
λ1

2 + η12 + µ1
2
, (3.5)

respectively. From the equations (3.3) and (3.5), the binormal vector of the Smarandache curve β1 is found as

Bβ1
=

1

ρ1q1

((
−η1τ + µ1

(
1 +

κ′

κ

))
T +

(
λ1τ + µ1κ

2
)
N −

(
λ1

(
1 +

κ′

κ

)
+ η1κ

2

)
B

)
,

where q1 =
√
λ1

2 + η12 + µ1
2. To calculate the torsion of the curve, we differentiate the curve β′1

β′′1 =
ϑ1T + σ1N + ω1B√

2κ

where
ϑ1 = −κ2 (κ+ 3κ′) ,

σ1 = −κ
(
κ2 + τ2

)
+ κ′ + κ′′,

ω1 = 2τκ′ + κ (τ + τ ′)
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and similarly

β′′′1 =
1√
2κ

(ς1T + ξ1N + ζ1B)

where
ς1 = κ

(
κ4 + κ2τ2 − 3κ′

2 − κ (3κ′ + 4κ′′)
)
,

ξ1 = −κ3τ + κ′ (2τ + 3τ ′) + 3τκ′′ + κ
(
−τ3 + τ ′ + τ ′′

)
,

ζ1 = −
(
κ3 + 6κ2κ′ + 3τ2κ′ + κτ (τ + 3τ ′)− κ′′ − κ3

)
.

As a result, we get the torsion of the Smarandache curve β1 as follows:

τβ1
=

√
2
((
ω1

(
1 + κ′

κ

)
− σ1τ

)
ς1 +

(
ω1κ

2 − ϑ1τ
)
ξ1 −

(
σ1κ

2 + ϑ1

(
1 + κ′

κ

))
ζ1

)
(
ω1

(
1 + κ′

κ

)
− σ1τ

)2
+ (ω1κ2 − ϑ1τ)2 +

(
σ1κ2 + ϑ1

(
1 + κ′

κ

))2 .

Definition 3.2. Let α be a space curve with modified orthogonal frame {T,N,B}, then the Smarandache curve
obtained from the unit vectors T and B of the curve α can be defined as

β2(s
∗) =

1√
2
(T (s) +B(s)) . (3.6)

Here s∗ is the arc-length parameter of the Smarandache curve β2.

We research the Frenet apparatus of the Smarandache β2 obtained from the curve α. Taking the differential of
the equation (3.6) according to s, we get

β′2 =
dβ2
ds∗

ds∗

ds
=

1√
2
(T ′(s) +B′(s))

and

Tβ2

ds∗

ds
=

1√
2

(
(1− τ)N +

κ′

κ
B

)
where

ds∗

ds
=

1√
2

√
(1− τ)2 +

(
κ′

κ

)2

or
ds∗

ds
=

1√
2
ρ2, ρ2 =

√
(1− τ)2 +

(
κ′

κ

)2

. (3.7)

So, the tangent vector of the Smarandache curve β2 is written as follows

Tβ2
=

(
(1− τ)N + κ′

κ B
)

ρ2
. (3.8)

By differentiating the equation (3.8) with respect to s, we obtain

dTβ2

ds∗
ds∗

ds
=
λ2T + η2N + µ2B

κρ22
(3.9)

where
λ2 = ρ2κ

3(−1 + τ),

η2 = ρ2(κ
′ − κτ ′) + κ(−1 + τ)ρ2

′,

µ2 = κ′ρ2
′ − ρ2(κ(−1 + τ)τ + κ′′.

Substituting the equation (3.7) into the equation (3.9), we get

T ′β2
=

√
2

κρ23
(λ2T + η2N + µ2B) .
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Then, the curvature and the normal vector of the Smarandache curve β2 are

κβ2
= ‖T ′β2

‖ =

√
2
(
λ2

2 + η22 + µ2
2
)

κρ23

and
Nβ2

=
λ2T + η2N + µ2B√
λ2

2 + η22 + µ2
2
, (3.10)

respectively. From the equations (3.8) and (3.10), the binormal vector of the Smarandache curve β2 is found as

Bβ2 =
1

ρ2q2

((
−η2

κ′

κ
+ µ2 (1− τ)

)
T + λ2

κ′

κ
N + λ2 (τ − 1)B

)
where q2 =

√
λ2

2 + η22 + µ2
2. To calculate the torsion of the curve, we differentiate the curve β′2 and we get

β′′2 =
ϑ2T + σ2N + ω2B√

2κ

where
ϑ2 = κ3(−1 + τ),

σ2 = κ′ − κτ ′,
ω2 = κ(−1 + τ)τ + κ′′

and similarly

β′′′2 =
1√
2κ

(ς2T + ξ2N + ζ2B)

where
ς2 = κ2κ′(−3 + 2τ) + 2τ ′,

ξ2 = κ3(−1 + τ)− κ′τ ′ + (1 + τ)κ′′ + κ
(
(−1 + τ)τ2 − τ ′′

)
,

ζ2 = κτ ′(1− 3τ) + (−2 + τ)τκ′ + κ′′′).

As a result, we get the torsion of the Smarandache curve β2 as follows

τβ2
=

√
2
(
ς2

(
ω2 (1− τ)− σ2 κ

′

κ

)
+ ξ2ϑ2

κ′

κ + ζ2ϑ2 (τ − 1)
)

(
ω2 (1− τ)− σ2 κ

′

κ

)2
+
(
ϑ2

κ′

κ

)2
+ (ϑ2 (τ − 1))

2
.

Definition 3.3. Let α be a space curve with modified orthogonal frame {T,N,B}, then the Smarandache curve
obtained from the unit vectors N and B of the curve α can be defined as

β3(s
∗) =

1√
2
(N(s) +B(s)) (3.11)

such that s∗ is the arc-length parameter of the Smarandache curve β3.

We investigate the Frenet apparatus of the Smarandache curve β3 obtained from the curve α. Taking the
differential of the equation (3.11) according to s, we get

β′3 =
dβ3
ds∗

ds∗

ds
=

1√
2
(N ′(s) +B′ (s))

and

Tβ3

ds∗

ds
=

1√
2

(
−κ2T +

(
κ′

κ
− τ
)
N +

(
κ′

κ
+ τ

)
B

)
where

ds∗

ds
=

1√
2

√√√√κ4 + 2

((
κ′

κ

)2

+ τ2

)
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or

ds∗

ds
=

1√
2
ρ3, ρ3 =

√√√√κ4 + 2

((
κ′

κ

)2

+ τ2

)
. (3.12)

So, the tangent vector of the Smarandache curve β3 is written as follows:

Tβ3
=

(
−κ2T +

(
κ′

κ − τ
)
N +

(
κ′

κ + τ
)
B
)

ρ3
. (3.13)

By differentiating the equation (3.13) with respect to s, we obtain

dTβ3

ds∗
ds∗

ds
=
λ3T + η3N + µ3B

κρ32
(3.14)

where
λ3 = −3κ2ρ3κ′ + κ3 (ρ3

′ + τρ3) ,

η3 = −2κ′τρ3 − ρ3′ + κ(−ρ3(τ2 + τ ′) + τρ3
′)− ρ3

(
κ3 + κ′′

)
,

µ3 = κ′(2τρ3 − ρ3′) + κ(ρ3(−τ2 + τ ′)− τρ3′) + ρ3κ
′′.

Substituting the equation (3.12) into the equation (3.14), we get

T ′β3
=

√
2

κρ33
(λ3T + η3N + µ3B) .

Then, the curvature and the normal vector of the Smarandache curve β3 are

κβ3 = ‖T ′β3‖ =

√
2
(
λ3

2 + η32 + µ3
2
)

κρ33

and
Nβ3

=
λ3T + η3N + µ3B√
λ3

2 + η32 + µ3
2
, (3.15)

respectively. From the equations (3.13) and (3.15), the binormal vector of the Smarandache curve β3 is found as

Bβ3
=

1

ρ3q3

((
−η3

(
κ′

κ
+ τ

)
+ µ3

(
κ′

κ
− τ
))

T +

(
λ3

(
κ′

κ
+ τ

)
+ µ3κ

2

)
N −

(
λ3

(
κ′

κ
− τ
)
+ η3κ

2

)
B

)
where q3 =

√
λ3

2 + η32 + µ3
2. To calculate the torsion of the curve, we differentiate the equation of the curve β′3

β′′3 =
ϑ3T + σ3N + ω3B√

2κ

where

ϑ3 = κ3τ − 3κ2κ′

σ3 = −κ3 − 2τκ′ − κ(τ2 + τ ′) + κ′′

ω3 = +2τκ′ + κ(−τ2 + τ ′) + κ′′

and similarly

β′′′3 =
1√
2κ

(ς3T + ξ3N + ζ3B)

where
ς3 = κ5 + κ3(τ2 + 2τ ′) + 4κ2(τκ′ − κ′′)− 3κκ′

2
,

ξ3 = κ3τ − 6κ2κ′ + κ(τ3 − 3ττ ′ − τ ′′) + (−3κ′(τ2 + τ ′)− 3τκ′′ + κ′′′),

ζ3 = −κ3τ + 3κ′(−τ2 + τ ′) + 3τκ′′ + κ(−τ3 − 3ττ ′ + τ ′′) + κ′′′.
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As a result, we get the torsion of the Smarandache curve β3 as follows

τβ3
=

√
2
((
ω3

(
κ′

κ − τ
)
+ σ3

(
κ′

κ + τ
))

ς3 +
(
ω3κ

2 − ϑ3
(
κ′

κ + τ
))

ξ3 −
(
σ3κ

2 + ϑ3

(
κ′

κ − τ
))

ζ3

)
(
ω3

(
κ′

κ − τ
)
+ σ3

(
κ′

κ + τ
))2

+
(
ω3κ2 − ϑ3

(
κ′

κ + τ
))2

+
(
σ3κ2 + ϑ3

(
κ′

κ − τ
))2 .

Definition 3.4. Let α be a space curve with modified orthogonal frame {T,N,B}, then the Smarandache curve
obtained from the unit vectors T , N and B of the curve α can be defined as

β4(s
∗) =

1√
3
(T (s) +N(s) +B (s)) . (3.16)

s∗ is the arc-length parameter of the Smarandache curve β4.

We investigate the Frenet apparatus of the Smarandache curve β4 obtained from the curve α. Taking the
differential of the equation (3.16) according to s, we get

β′4 =
dβ4
ds∗

ds∗

ds
=

1√
3
(T ′(s) +N ′(s) +B′ (s))

and

Tβ4

ds∗

ds
=

1√
3

(
−κ2T +

(
κ′

κ
− τ + 1

)
N +

(
κ′

κ
+ τ

)
B

)
where

ds∗

ds
=

1√
3

√
κ4 +

(
κ′

κ
− τ + 1

)2

+

(
κ′

κ
+ τ

)2

or
ds∗

ds
=

1√
3
ρ4, ρ4 =

√
κ4 +

(
κ′

κ
− τ + 1

)2

+

(
κ′

κ
+ τ

)2

. (3.17)

So, the tangent vector of the Smarandache curve β4 is written as follows:

Tβ4
=

(
−κ2T +

(
κ′

κ − τ + 1
)
N +

(
κ′

κ + τ
)
B
)

ρ4
. (3.18)

By differentiating the equation (3.18) with respect to s, we obtain

dTβ4

ds∗
ds∗

ds
=
λ4T + η4N + µ4B

κρ42
(3.19)

where
λ4 = −3κ2ρ4κ′ + κ3((−1 + τ)ρ4 + ρ4

′),

η4 = κ′((1− 2τ)ρ4 − ρ4′) + κ(−ρ4(τ2 + τ ′)− (1− τ)ρ4′)− ρ4
(
κ3 − κ′′

)
,

µ4 = κ′(2τρ4 − ρ4′) + κ(ρ4(τ(1− τ) + τ ′)− τρ4′) + ρ4κ
′′.

Substituting the equation (3.17) into the equation (3.19), we get

T ′β4
=

√
3

κρ43
(λ4T + η4N + µ4B) .

Then, the curvature and the normal vector of the Smarandache curve β4 are

κβ4
= ‖T ′β4

‖ =

√
3
(
λ4

2 + η42 + µ4
2
)

κρ43

and
Nβ4

=
λ4T + η4N + µ4B√
λ4

2 + η42 + µ4
2
, (3.20)
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respectively. From the equations (3.18) and (3.20), the binormal vector of the Smarandache curve β4 is found as

Bβ4 =
1

ρ4q4


(
−η4

(
κ′

κ
+ τ

)
+ µ4

(
κ′

κ
− τ + 1

))
T +

(
λ4

(
κ′

κ
+ τ

)
+ µ4κ

2

)
N

−
(
λ4

(
κ′

κ
− τ + 1

)
+ η4κ

2

)
B


where q4 =

√
λ4

2 + η42 + µ4
2. To calculate the torsion of the curve, we differentiate the curve β′4

β′′4 =
ϑ4T + σ4N + ω4B√

3κ

where
ϑ4 = κ3(τ − 1)− 3κ2κ′,

σ4 = −κ3 + κ′(1− 2τ)− κ(τ2 + τ ′) + κ′′,

ω4 = 2τκ′ + κ(τ(1− τ) + τ ′) + κ′′

and similarly

β′′′4 =
1√
3κ

(ς4T + ξ4N + ζ4B)

where
ς4 = κ5 + κ3(τ2 + 2τ ′) + κ2((−3 + 4τ)κ′ − 4κ′′)− 3κκ′

2
,

ξ4 = κ3(−1 + τ)− 6κ2κ′ + κ(τ((−1 + τ)τ − 3τ ′)− τ ′′) + (−3κ′(τ2 + τ ′) + κ′′ − 3τκ′′ + κ′′′),

ζ4 = −κ3τ + (−τ3 + τ ′ − 3ττ ′ + τ ′′) + κ′((2− 3τ)τ + 3τ ′) + 3τκ′′ + κ′′′.

As a result, we get the torsion of the Smarandache curve β4 as follows:

τβ4 =

√
3
((
−η4

(
κ′

κ + τ
)
+ µ4

(
κ′

κ − τ + 1
))

ς4 +
(
λ4

(
κ′

κ + τ
)
+ µ4κ

2
)
ξ4 −

(
λ4

(
κ′

κ − τ + 1
)
+ η4κ

2
)
ζ4

)
(
−η4

(
κ′

κ + τ
)
+ µ4

(
κ′

κ − τ + 1
))2

+
(
λ4
(
κ′

κ + τ
)
+ µ4κ2

)2
+
(
λ4
(
κ′

κ − τ + 1
)
+ η4κ2

)2 .

Example 3.1. Let’s plot the graphics of the Smarandache curves based on the modified orthogonal frame of the
eight curve which is known as Gerono lemniscate curve [18]. The parametric equation of this curve is given by

α (s) = (sin (s) , sin (s) cos (s) , s) .

The elements of the Frenet trihedron of the curve α (s) are obtained as

Figure 1. The Gerono lemniscate curve
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t (s) =

(√
2 cos (s) ,

√
2 cos (2s) ,

√
2
)√

4 + cos (2s) + cos (4s)
,

n (s) =
((−1 + 4 cos (2s) + cos (4s)) sin (s) ,− sin (2s) (6 + cos (2s)) , sin (2s) + 2 sin (4s))√

4 + cos (2s) + cos (4s)

√
(27 + 24 cos (2s) + cos (4s)) sin (s)

2
,

b (s) =
(4 sin (2s) ,−2 sin (s) ,−3 sin (s)− sin (3s))
√
2

√
(27 + 24 cos (2s) + cos (4s)) sin (s)

2
.

The curvature of the curve α (s) is found as

κ (s) =
2

√
(27 + 24 cos (2s) + cos (4s)) sin (s)

2

(4 + cos (2s) + cos (4s))
3/2

.

Besides the curvature κ (s) = 2
√

(27+24 cos(2s)+cos(4s)) sin (s)2

(4+cos(2s)+cos(4s))3/2
is not differentiable, the principal normal and binormal

vectors are discontinuous at s = 0 since n+ 6= n− and b+ 6= b− for n+ = lim
s→0+

n (s), n− = lim
s→0−

n (s) and

b+ = lim
s→0+

b (s), b− = lim
s→0−

b (s). Looking for a solution to this problem, Sasai has defined the modified orthogonal

frame as an alternative to the Frenet frame. The elements of the modified orthogonal frame of the curve α (s) are
obtained as

T (s) =

√
2 (cos (s) , cos (2s) , 1)√
4 + cos (2s) + cos (4s)

,

N (s) =
2 (sin (s) (−1 + 4 cos (2s) + cos (4s)) ,− sin (2s) (6 + cos (2s)) , (sin (2s) + 2 sin (4s)))

(4 + cos (2s) + cos (4s))
2 ,

B (s) =

√
2 (4 sin (2s) ,−2 sin (s) ,− (3 sin (s) + sin (3s)))

(4 + cos (2s) + cos (4s))
3/2

.

The Smarandache curves β1, β2, β3 and β4 obtained from the curve α are given as

β1 =


√
2 cos (s)√

4 + cos (2s) + cos (4s)
+
−6 sin (s) + 3 sin (3s) + sin (5s)

(4 + cos (2s) + cos (4s))
2 ,

√
2 cos (2s)√

4 + cos (2s) + cos (4s)

− 2 sin (2s) (6 + cos (2s))

(4 + cos (2s) + cos (4s))
2 ,

√
2√

4 + cos (2s) + cos (4s)
+

2 (sin (2s) + 2 sin (4s))

(4 + cos (2s) + cos (4s))
2

 ,

β2 =


9 cos (s) + 2 cos (3s) + cos (5s) + 8 sin (2s)

√
2(4 + cos (2s) + cos (4s))

3/2
,
1 + 9 cos (2s) + cos (4s) + cos (6s)− 4 sin (s)

√
2(4 + cos (2s) + cos (4s))

3/2
,

2 (4 + cos (2s) + cos (4s)− 3 sin (s)− sin (3s))
√
2(4 + cos (2s) + cos (4s))

3/2

 ,

β3 =



2 sin (s) (4 cos (2s) + cos (4s)− 1)

(4 + cos (2s) + cos (4s))
2 +

4
√
2 sin (2s)

(4 + cos (2s) + cos (4s))
3/2

,

−2 sin (s) (13 cos (s) + cos (3s))

(4 + cos (2s) + cos (4s))
2 +

2
√
2 sin (s)

(4 + cos (2s) + cos (4s))
3/2

,

2 (sin (2s) + 2 sin (4s))

(4 + cos (2s) + cos (4s))
2 −

√
2 (3 sin (s) + sin (3s))

(4 + cos (2s) + cos (4s))
3/2


,
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β4 =



√
2 cos (s)√

4 + cos (2s) + cos (4s)
+

2 sin (s) (4 cos (2s) + cos (4s)− 1)

(4 + cos (2s) + cos (4s))
2 +

4
√
2 sin (2s)

(4 + cos (2s) + cos (4s))
3/2

,

√
2 cos (2s)√

4 + cos (2s) + cos (4s)
− 2 sin (s) (13 cos (s) + cos (3s))

(4 + cos (2s) + cos (4s))
2 − 2

√
2 sin (s)

(4 + cos (2s) + cos (4s))
3/2

,

√
2√

4 + cos (2s) + cos (4s)
+

2 (sin (2s) + 2 sin (4s))

(4 + cos (2s) + cos (4s))
2 −

√
2 (3 sin (s) + sin (3s))

(4 + cos (2s) + cos (4s))
3/2


.

(a) The Smarandache curve β1 (b) The Smarandache curve β2

(c) The Smarandache curve β3 (d) The Smarandache curve β4

Figure 2. The Smarandache curves for s ∈ [−2, 2]

4. Conclusion
In this paper, we investigate the geometric properties of the Smarandache curves with respect to the modified

orthogonal frame. Sasai presented the modified orthogonal frame as an alternative to the Frenet frame. Because the
principal normal and binormal vectors of the Frenet frame of a space curve become discontinuous at the points
where the curvature is zero, However, the Smarandache curves have not been examined under these conditions yet.
For this reason, this research is a new study in the geometry field.
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[4] Gürses, B. N., Bektaş, Ö., Yüce, S.: Special Smarandache curves in R3
1. Communications Faculty of Sciences

University of Ankara Series A1 Mathematics and Statistics. 65(2), 143-160 (2016).

[5] Turgut, M., Yılmaz, S.: Smarandache curves in Minkowski space-time. International Journal of Mathematical
Combinatorics. 3, 51-55 (2008).

[6] Ergut, M., Yılmaz, S., Ünlütürk, Y.: Isotropic Smarandache curves in the complex 4-space. Honam Mathematical
Journal. 40(1), 47–59 (2018).

[7] Solouma, E. M., Mahmoud, W. M.: On spacelike equiform-Bishop Smarandache curves on S2
1 . Journal of the Egyptian

Mathematical Society. 27(1), 7-17 (2019).

[8] Solouma, E. M.: Characterization of Smarandache trajectory curves of constant mass point particles as they move along
the trajectory curve via PAF. Bulletin of Mathematical Analysis and Applications. 13(4), 14-30 (2021).
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Abstract
In this work, we characterize some rings in terms of dual self-CS-Baer modules (briefly, ds-CS-Baer
modules). We prove that any ring R is a left and right artinian serial ring with J2(R) = 0 iff R ⊕M is
ds-CS-Baer for every right R-module M . If R is a commutative ring, then we prove that R is an artinian
serial ring iff R is perfect and every R-module is a direct sum of ds-CS-Baer R-modules. Also, we show
that R is a right perfect ring iff all countably generated free right R-modules are ds-CS-Baer.

Keywords: Dual self-CS-Baer module, Harada ring, Lifting module, Perfect ring, QF-ring, Serial ring

AMS Subject Classification (2020): 16D10;16L30

*Corresponding author

1. Introduction
Throughout the paper, all rings will have an identity element and all modules will be unitary right modules

unless otherwise stated. Let M be a module and N a submodule of M . Then N � M means that N is a small
submodule of M (namely, M is different from N +K for every proper submodule K of M ). J(R) will denote the
Jacobson radical of any ring R and Rad(M) will denote the radical of any module M .

A module M is called lifting (or satisfies (D1)), if every submodule N of M lies above a direct summand, that
is, N contains a direct summand X of M such that N/X �M/X (see [1] and [2]). A module M is said to be dual
self-CS-Baer (briefly, ds-CS-Baer) if for every family (fi)i∈I of homomorphisms fi : M →M ,

∑
i∈I Im(fi) lies above

a direct summand of M (see [3]). Clearly, every lifting module is ds-CS-Baer. Moreover, if R is a right Harada ring,
then every injective right R-module is ds-CS-Baer. Because, remember that any ring R is called a right Harada ring if
every injective right R-module is lifting (see [1]). Recall that any right R-module M is called hollow, if every proper
submodule of M is small in M (see [2, Definition 4.1]) and it is called local, if it is hollow and Rad(M) 6= M . Note
that M is local iff M is cyclic and has a unique maximal submodule (see [4, page 357]). It is not hard to see that
every hollow module and so every local module is a lifting module.

In recent years, ds-CS-Baer modules and their related topics have been studied by Crivei, Keskin Tütüncü, Radu
and Tribak (see for example [3], [5] and [6]). In this paper, we continue the study of ds-CS-Baer modules.

In section 2, we characterize some rings in terms of ds-CS-Baer modules. Among others, we mainly prove the
followings:
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(A) Let R be a ring. Then R is an artinian serial ring with J2(R) = 0 iff for every right R-module M , R ⊕M is
ds-CS-Baer (Theorem 2.1).

(B) Let R be a right self-injective ring. Then R is a QF -ring iff every injective right R-module is ds-CS-Baer
(Theorem 2.3).

(C) Let R be a ring. Then R is a right perfect ring iff every free right R-module is ds-CS-Baer (Theorem 2.4).

(D) Let R be a commutative ring. Then R is semiperfect iff every cyclic R-module is ds-CS-Baer (Proposition 2.1).

(E) Let R be a commutative ring. Then R is an artinian serial ring iff R is perfect and every 2-f.p. R-module is a
finite direct sum of ds-CS-Baer modules (Proposition 2.4).

2. Results
We first give the following easy observation.

Lemma 2.1. Let R be a ring. Let M be a free right R-module. Then M is lifting iff it is ds-CS-Baer.

Proof. Let M be a free right R-module. Then we can assume that M = ⊕i∈IR. Now the result is obvious by the
proof of [3, Proposition 9.4].

Let R be ring and M a module. M is called uniserial if its submodules are linearly ordered by inclusion and
is called serial if it is a direct sum of uniserial submodules. The ring R is called right (left) serial if the right (left)
R-module RR (RR) is serial. Also R is called artinian serial if it is both right and left artinian serial. By [4, Theorem
32.3], we know that if R is an artinian serial ring, then every right R-module and every left R-module is a direct
sum of uniserial R-modules.

Now, we characterize artinian serial rings with J2(R) = 0 via ds-CS-Baer modules.

Theorem 2.1. Let R be a ring. Then the following assertions are equivalent:

(1) R is an artinian serial ring with J2(R) = 0.

(2) Every right R-module is lifting.

(3) For every right R-module M , R⊕M is lifting.

(4) For every right R-module M , R⊕M is ds-CS-Baer.

Proof. (1)⇔ (2): It is satisfied by [1, 29.10].
(3)⇔ (4): It is proved in [3, Proposition 9.4].
(2)⇒ (3): It is clear.
(3)⇒ (2): It is clear since lifting property is preserved by direct summands (see for example [1, Lemma 22.6]).

The next result is a consequence of Theorem 2.1.

Corollary 2.1. Let R be a ring. Then R is an artinian serial ring with J2(R) = 0 iff every (finitely generated) right R-module
is ds-CS-Baer.

Proof. This follows from [7, Theorem 3.15], [3, Proposition 9.4] and Theorem 2.1 and the fact that being ds-CS-Baer
or lifting is preserved by taking direct summands.

Remark 2.1. The left-handed versions of Theorem 2.1 and Corollary 2.1 are equal to being artinian serial ring with
J2(R) = 0.



Rings whose certain modul are ds-CS-Baer 115

A finitely generated right R-module M is said to be finitely presented in case in every exact sequence

0 −→ K −→ F −→M −→ 0

with F finitely generated and free the kernel K is also finitely generated. An exact sequence of right R-modules

P1
f−→ P0 −→M −→ 0

is called a minimal projective presentation of M in case P1 and P0 are finitely generated projective and Kerf � P1 and
Imf � P0. Let M a finitely presented right R-module with no nonzero projective direct summands. Following
[4], M is called a 2-f.p. module if there are primitive idempotents e, e1 and e2 of R and there is a minimal projective
presentation

eR −→ e1R⊕ e2R −→M −→ 0.

Therefore a 2-f.p. module is both 2-primitive generated and finitely presented.
Recall from [8] that a module M is called w-local if it has a unique maximal submodule. Clearly, a module M is

local if and only if M is a cyclic w-local module.
Next, we can give the following.

Theorem 2.2. Let R be a ring. Consider the following statements:

(1) R is serial and every direct sum of two ds-CS-Baer right R-modules and every direct sum of two ds-CS-Baer left
R-modules is ds-CS-Baer.

(2) Every finitely presented right R-module and finitely presented left R-module is ds-CS-Baer.

(3) Every 2-generated finitely presented right R-module and 2-f.p. left R-module is ds-CS-Baer.

(4) R is semiperfect and every 2-f.p. right R-module and 2-f.p. left R-module is ds-CS-Baer.

Then (1)⇒ (2)⇒ (3)⇒ (4).

Proof. (1)⇒ (2): Let M be a finitely presented right R-module and N a finitely presented left R-module. By [9,
Corollary 3.4], M and N are finite direct sum of cyclic w-local submodules. In particular, they are finite direct sum
of local submodules. Since local modules are lifting, they are also ds-CS-Baer. Therefore M and N are ds-CS-Baer
by (1).

(2)⇒ (3)⇒ (4): These are clear by definitions and [3, Proposition 5.9].

Inspired by Theorem 2.1, we give the following theorem that characterizes QF -rings. First, remember that any
ring R is called a QF -ring, if R is noetherian and injective as a left (or right) R-module (see for example [4, page
333]).

Theorem 2.3. Let R be a right self-injective ring. Then the following assertions are equivalent:

(1) R is a QF -ring.

(2) R is a right Harada ring.

(3) For every injective right R-module M , R⊕M is lifting.

(4) For every injective right R-module M , R⊕M is ds-CS-Baer.

(5) Every injective right R-module is ds-CS-Baer.

Proof. (1)⇔ (2): It is clear by [1, 28.10 and 28.16].
(3)⇔ (4): It is clear by [3, Proposition 9.4].
(2)⇒ (3): Let M be an injective right R-module. By hypothesis, R⊕M is an injective right R-module. Since R is

right Harada, it follows that R⊕M is lifting.
(3)⇒ (2): Let M be an injective right R-module. By (3), R⊕M is lifting. Therefore, M is lifting. Hence, R is a

right Harada ring.
(4)⇔ (5): It is clear.
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In the following, we characterize right perfect rings in terms of ds-CS-Baer modules. Firstly, remember that any
module M is called ⊕-supplemented, if for every submodule N of M there exists a direct summand K of M with
M = N +K and N ∩K small in K. This notion is a generalization of lifting modules (see [2]).

Theorem 2.4. Let R be a ring. Then the following assertions are equivalent:

(1) R is a right perfect ring.

(2) R(N) is a ds-CS-Baer right R-module.

(3) Every countably generated free right R-module is ds-CS-Baer.

(4) Every free right R-module is ds-CS-Baer.

Proof. (1)⇒ (2): Assume that R is a right perfect ring. Consider the right R-module M = R(N). By [2, Theorem
4.41], M is lifting, and so it is ds-CS-Baer by definitions.

(2)⇒ (1): Assume that the right R-module R(N) is ds-CS-Baer. Since it is free, by Lemma 2.1, it is lifting. Hence
it is ⊕-supplemented. Therefore, R is a right perfect ring by [7, Theorem 2.10].

(1)⇒ (4): Let M be a free right R-module. Then M is projective. So, M is lifting by [2, Theorem 4.41]. Thus, M
is ds-CS-Baer by definitions.

(4)⇒ (1): Assume that every free right R-module is ds-CS-Baer. Then every free right R-module is lifting by
Lemma 2.1. By [2, Theorem 4.41], R is a right perfect ring.

(4)⇒ (3)⇒ (2): These are clear.

Next, we give a characterization of commutative semiperfect rings in terms of cyclic dual self-CS-Baer modules.

Proposition 2.1. Let R be a commutative ring. Then R is semiperfect iff every cyclic R-module is ds-CS-Baer.

Proof. Let R be a semiperfect ring. Let M be a cyclic R-module. Assume that M = xR, where x ∈M . We know that
M ∼= R/I , for some ideal I of R. By [1, 4.9 (1)], since I is fully invariant in R, R/I is quasi-projective and hence M
is quasi-projective. Then by [2, Theorem 4.41], M is lifting and so M is ds-CS-Baer.

Conversely, assume that every cyclic R-module is ds-CS-Baer. Then R is a ds-CS-Baer R-module. Therefore by
[3, Proposition 5.9], R is semiperfect.

Now, we give a characterization of commutative semiperfect FGC-rings. Let R be a commutative ring. R is
called an FGC-ring, if every finitely generated R-module is a direct sum of cyclic modules (see [10]).

Proposition 2.2. Let R be a commutative ring. Then the following assertions are equivalent:

(1) Every finitely generated R-module is ⊕-supplemented.

(2) Every finitely generated R-module is a finite direct sum of ds-CS-Baer modules.

(3) R is a semiperfect FGC-ring.

(4) R is a direct sum of almost maximal valuation rings.

Proof. (1)⇔ (3)⇔ (4): These are proved in [7, Proposition 2.8].
(1) ⇒ (2): Let M be a finitely generated R-module. By (1), M is ⊕-supplemented. By [7, Corollary 2.6],

M = ⊕n
i=1xiR. Note that each xiR is quasi-projective since R is commutative. Therefore by [2, Theorem 4.41], each

xiR is lifting and so ds-CS-Baer.
(2) ⇒ (1): Let M be a finitely generated R-module. By (2), M = ⊕n

i=1xiR, where each xiR is ds-CS-Baer.
By [3, Proposition 5.12], each xiR is lifting and hence ⊕-supplemented. Therefore by [11, Theorem 1.4], M is
⊕-supplemented.

Corollary 2.2. Let R be a commutative indecomposable ring. Then R is an almost maximal valuation ring iff every finitely
generated R-module is a direct sum of cyclic ds-CS-Baer R-modules.

Next, we characterize commutative serial rings via direct sums of cyclic ds-CS-Baer modules.

Proposition 2.3. Let R be a commutative ring. Then the following assertions are equivalent:

(1) R is serial.
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(2) R is semiperfect and every 2.f.p. R-module is ⊕-supplemented.

(3) R is semiperfect and every finitely presented R-module is a finite direct sum of ds-CS-Baer modules.

(4) R is semiperfect and every 2-generated finitely presented R-module is a finite direct sum of ds-CS-Baer modules.

(5) R is semiperfect and every 2-f.p. R-module is a finite direct sum of ds-CS-Baer modules.

Proof. (1)⇔ (2): This follows from [7, Theorem 3.5].
(1) ⇒ (3): Clearly, R is semiperfect. Now, let M be a finitely presented R-module. Note that M is finitely

generated. By [9, Corollary 3.4], M = ⊕n
i=1Mi, where each Mi is w-local and cyclic. Note that each Mi (1 ≤ i ≤ n) is

a local module. Hence each Mi is ds-CS-Baer.
(3)⇒ (4)⇒ (5): These are clear.
(5)⇒ (2): Let M be a 2-f.p. R-module. By (5), M = ⊕n

i=1Mi, where each Mi is a cyclic ds-CS-Baer R-module. By
[3, Proposition 5.12], each Mi is lifting and hence ⊕-supplemented. Hence M is ⊕-supplemented by [11, Theorem
1.4].

Finally, we characterize commutative artinian serial rings as follows.

Proposition 2.4. Let R be a commutative ring. Then the following assertions are equivalent:

(1) R is an artinian serial ring.

(2) R is perfect and every 2-f.p. R-module is ⊕-supplemented.

(3) R is perfect and every R-module is a direct sum of ds-CS-Baer modules.

(4) R is perfect and every countably generated R-module is a direct sum of ds-CS-Baer modules.

(5) R is perfect and every finitely presented R-module is a finite direct sum of ds-CS-Baer modules.

(6) R is perfect and every 2-f.p. R-module is a finite direct sum of ds-CS-Baer modules.

Proof. (1)⇔ (2): It is proved in [7, Corollary 3.13].
(1) ⇒ (3): By [4, Corollary 28.8], R is a perfect ring. Now, let M be any R-module. By [4, Theorem 32.3],

M = ⊕i∈IMi, where each Mi is uniserial. Clearly every uniserial module is hollow. Since R is perfect, then each Mi

has small radical (see [4, Remark 28.5]). Therefore, each Mi is local, and so cyclic. Hence M is a direct sum of cyclic
ds-CS-Baer modules.

(3)⇒ (4)⇒ (5)⇒ (6): These are clear.
(6)⇒ (2): Let M be a 2-f.p. R-module. By (6), M = ⊕n

i=1Mi, where each Mi is a cyclic ds-CS-Baer R-module.
By [3, Proposition 5.12], each Mi is lifting and hence ⊕-supplemented. Therefore M is ⊕-supplemented by [11,
Theorem 1.4].

Propositions 2.3 and 2.4 are not true over noncommutative rings as we see in the following example.

Example 2.1. (see [7, Example 3.16]) Let R be a local artinian ring with Jacobson radical J(R) such that J2(R) =
0, Q = R/J(R) is commutative, dim(QJ(R)) = 1 and dim(J(R)Q) = 2. Then R is left serial but not right serial. Let
J(R) = uR⊕vR. A1 = R/J(R), A2 = R/uR and A3 = RR are the only three isomorphism types of indecomposable
right R-modules. Here each Ai is lifting and hence ds-CS-Baer. Note that every right R-module is a direct sum of
indecomposable modules, and hence a direct sum of cyclic ds-CS-Baer modules. However, R is not a serial ring.
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Abstract
In this paper, we study nonself-adjoint Sturm-Liouville operator containing both the discontinuous
coefficient and discontinuity conditions at some point on the positive half-line. The eigenvalues and
the spectral singularities of this problem are examined and it is proved that this problem has a finite
number of spectral singularities and eigenvalues with finite multiplicities under two different additional
conditions. Furthermore, the principal functions corresponding to the eigenvalues and the spectral
singularities of this operator are determined.
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1. Introduction
The development of discontinuous boundary value problems has been great interest recently. It has an important

role and making progress in the different field of mathematics and engineering such as mechanics, mathematical
physics, geophysics (see [1–4]) and etc. Therefore, discontinuous Sturm-Liouville problems have attracted attention
and numerous studies have been done on this subject. The difference between this study from others is that the
nonself-adjoint discontinuous Sturm-Liouville problem which includes both a discontinuous coefficient and the
discontinuity conditions at the point on the positive half line is investigated. Namely, we take into account the
following nonself-adjoint problem created by the Sturm-Liouville equation with discontinuous coefficient

`(ϕ) = −ϕ′′ + q(ξ)ϕ = µ2ρ(ξ)ϕ, ξ ∈ (0, a) ∪ (a,∞), (1.1)

with the discontinuity conditions

ϕ(a− 0) = αϕ(a+ 0), ϕ′(a− 0) = α−1ϕ′(a+ 0) (1.2)
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and boundary condition
ϕ(0) = 0, (1.3)

where 0 < α 6= 1, µ is a complex parameter, ρ(ξ) is the piecewise continuous functions

ρ(ξ) =

{
β2, 0 < ξ < a,
1, a < ξ <∞

with 0 < β 6= 1, q(ξ) is a complex-valued function and satisfies the condition∫ ∞
0

ξ|q(ξ)|dξ <∞. (1.4)

The spectral theory of nonself-adjoint operator in the classical case (i.e., ρ(ξ) ≡ 1 and α = 1) was studied by Naimark
[5, 6]. He shows that some poles of the resolvent kernel are not the eigenvalues of the operator and belong to the
continuous spectrum; moreover, these poles are called spectral singularities and were first introduced by Schwartz
[7]. In the self-adjoint case, the operator has a finite number of eigenvalues under the condition (1.4) (see [8]);
however, in the nonself-adjoint case, the operator has a finite number of eigenvalues under the additional restriction.
For example, the condition

sup
0≤ξ<∞

{|q(ξ)| exp(εξ)} <∞, ε > 0

was introduced by Naimark (see [5]) and it is shown that the number of eigenvalues is finite under this condition.
Then, Pavlov weakened this additional condition as follows (see [9]):

sup
0≤ξ<∞

{
|q(ξ)| exp(ε

√
ξ)
}
<∞, ε > 0

and demonstrates that the operator has a finite number of eigenvalues. Moreover, Adıvar and Akbulut [10] obtain
that the operator has a finite number of the eigenvalues under the following additional condition:

sup
0≤ξ<∞

{
|q(ξ)| exp

(
εξδ
)}

<∞, ε > 0,
1

2
≤ δ < 1.

Note that for any 0 < δ < 1
2 , the condition does not provide that the number of eigenvalues is finite (see [11]). The

spectral singularities have an essential role in the spectral analysis of the nonself-adjoint operator and Lyantse
[12, 13] investigated the influence of the spectral singularities in the spectral expansion with respect to the principal
functions of the operator. The investigations on the spectrum, principal functions and the spectral expansion with
respect to the principal functions of the nonself-adjoint operator are very attractive and there are many works on the
nonself-adjoint operator under different boundary conditions (see [14–22] and the references therein). Moreover, the
nonself-adjoint operator with discontinuous coefficient is studied in [10], some spectral properties of the impulsive
Sturm-Liouville operator is worked in [23].

To purpose of this study is to investigate the spectrum and the principal functions of the nonself-adjoint
discontinuous problem (1.1)-(1.3). In examining this problem, we use new Jost solution of the equation (1.1) with
discontinuity condition (1.2). The presence of the discontinuous parameter ρ(ξ) and the discontinuity condition
(1.2) strongly influence the structure of the representation of the Jost solution, so the triangular property of the
Jost solution representation is lost and the kernel function has a discontinuity along the line s = β(a− ξ) + a for
ξ ∈ (0, a) (see [24]).

2. Preliminaries
Assume that the function e(ξ, µ) satisfies the equation (1.1), discontinuity conditions (1.2) and condition at

infinity
lim
ξ→∞

e−iµξe(ξ, µ) = 1.

Note that the function e(ξ, µ) is defined as a Jost solution of equation (1.1).
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Theorem 2.1. Let a complex-valued function q(ξ) satisfies equation (1.4). Then for all µ from the closed upper half-plane,
there exists the Jost solution e(ξ, µ) of equation (1.1) with discontinuity conditions (1.2), it is unique and representable in the
form

e(ξ, µ) = e0(ξ, µ) +

∫ ∞
τ(ξ)

k(ξ, s)eiµsds, (2.1)

where

e0(ξ, µ) =

{
eiµξ, ξ > a,

θ+eiµ(β(ξ−a)+a) + θ−eiµ(−β(ξ−a)+a), 0 < ξ < a,

with θ± = 1
2

(
α± 1

αβ

)
and θ+ + |θ−| > 1,

τ(ξ) =

{
ξ, ξ > a,

β(ξ − a) + a, 0 < ξ < a,

the kernel function k(ξ, .) ∈ L1(τ(ξ),∞) for each fixed ξ ∈ (0, a) ∪ (a,∞) and satisfies the inequality∫ ∞
τ(ξ)

|k(ξ, s)|ds ≤ ecσ1(ξ) − 1, σ1(ξ) =

∫ ∞
ξ

t|q(t)|dt, c = θ+ + |θ−|. (2.2)

Remark 2.1. The above theorem is proved in [24] when the q(ξ) is real valued function. In case the q(ξ) is complex
valued function, the theorem is proved in the same way.

Lemma 2.1. The following estimate holds:

|k(ξ, s)| ≤ c

2
σ

(
τ(ξ) + s

2

)
e(c+1)σ1(ξ), c = θ+ + |θ−|. (2.3)

Proof. The function k(ξ, s) is in the form for 0 < ξ < a:

k(ξ, s) = k0(ξ, s) +
1

2β

∫ a

ξ

q(ζ)

∫ s+β(ζ−ξ)

s−β(ζ−ξ)
k(ζ, u)dudζ +

θ+

2

∫ ∞
a

q(ζ)

∫ s+ζ+β(a−ξ)−a

s−ζ+β(ξ−a)+a
k(ζ, u)dudζ

−θ
−

2

∫ β(a−ξ)+a

a

q(ζ)

∫ s−ζ+β(a−ξ)+a

s+ζ+β(ξ−a)−a
k(ζ, u)dudζ +

θ−

2

∫ ∞
β(a−ξ)+a

q(ζ)

∫ s+ζ+β(ξ−a)−a

s−ζ+β(a−ξ)+a
k(ζ, u)dudζ,

where for β(ξ − a) + a < s < β(a− ξ) + a

k0(ξ, s) =
θ+

2β

∫ a

s+β(ξ+a)−a
2β

q(ζ)dζ +
θ−

2β

∫ a

β(ξ+a)+a−s
2β

q(ζ)dζ +
θ+

2

∫ ∞
a

q(ζ)dζ − θ−

2

∫ s+β(a−ξ)+a
2

a

q(ζ)dζ, (2.4)

and for β(a− ξ) + a < s <∞

k0(ξ, s) =
θ+

2

∫ ∞
s+β(ξ−a)+a

2

q(ζ)dζ +
θ−

2

∫ ∞
s+β(a−ξ)+a

2

q(ζ)dζ, (2.5)

and for the kernel k(ξ, s) has the form for ξ > a

k(ξ, s) = k0(ξ, s) +
1

2

∫ ∞
ξ

q(ζ)

∫ s+ζ−ξ

s−ζ+ξ
k(ζ, u)dudζ,

where

k0(ξ, s) =
1

2

∫ ∞
ξ+s
2

q(ζ)dζ.

When ξ > a, we face the classical case (see [6]) and we have

|k(ξ, s)| ≤ 1

2
eσ1(ξ)σ

(
ξ + s

2

)
.
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Now, let us examine the case 0 < ξ < a. Set

km(ξ, s) =
1

2β

∫ a

ξ

q(ζ)

∫ s+β(ζ−ξ)

s−β(ζ−ξ)
km−1(ζ, u)dudζ

+
θ+

2

∫ ∞
a

q(ζ)

∫ s+ζ+β(a−ξ)−a

s−ζ+β(ξ−a)+a
km−1(ζ, u)dudζ

−θ
−

2

∫ β(a−ξ)+a

a

q(ζ)

∫ s−ζ+β(a−ξ)+a

s+ζ+β(ξ−a)−a
km−1(ζ, u)dudζ

+
θ−

2

∫ ∞
β(a−ξ)+a

q(ζ)

∫ s+ζ+β(ξ−a)−a

s−ζ+β(a−ξ)+a
km−1(ζ, u)dudζ, m = 1, 2...

and k0(ξ, s) is determined by the formulas (2.4) and (2.5). Then, we obtain for 0 < ξ < a:

|k0(ξ, s)| ≤
c

2
σ

(
s+ β(ξ − a) + a

2

)
,

|km(ξ, s)|≤ c

2
σ

(
s+ β(ξ − a) + a

2

)
(c+ 1)m(σ1(ξ))

m

m!
.

This implies that the series
∑∞
m=0 km(ξ, s) converges and its sum k(ξ, s) satisfies the inequality

|k(ξ, s)|≤ c

2
σ

(
β(ξ − a) + a+ s

2

)
e(c+1)σ1(ξ), 0 < ξ < a.

Moreover, since for ξ > a

|k(ξ, s)|≤ 1

2
eσ1(ξ)σ

(
ξ + s

2

)
,

we obtain that for ξ ∈ (0, a) ∪ (a,∞) the inequality (2.3) is valid.

Now, we define ê(ξ, µ) as the solution of the equation (1.1) with discontinuity conditions (1.2) and satisfies

lim
ξ→∞

eiµξ ê(ξ, µ) = 1

and when q(ξ) ≡ 0 in equation (1.1), the solution has the form:

ê0(ξ, µ) =

{
e−iµξ, ξ > a,

θ+e−iµ(−β(a−ξ)+a) + θ−e−iµ(β(a−ξ)+a), 0 < ξ < a.
(2.6)

The Wronskian of the solutions e(ξ, µ) and ê(ξ, µ) is obtained as

w[e(ξ, µ), ê(ξ, µ)] = −2iµ, Imµ > 0.

3. The eigenvalues and spectral singularities

Denote the boundary value problem (1.1)-(1.3) by an operator L operating on the Hilbert space L2,ρ(0,∞).
The values λ = µ2 for which the operator L has a non-zero solution are said eigenvalues and the corresponding
nontrivial solutions are defined as eigenfunctions.

Consider ẽ(ξ, µ) = e(ξ,−µ) with Imµ ≤ 0 and the Wronskian of e(ξ, µ) and ẽ(ξ, µ) is in the form:

w[e(ξ, µ), ẽ(ξ, µ)] = −2iµ, Imµ = 0. (3.1)

Let us describe s(ξ, µ) as the solution of the equation (1.1) under the discontinuity conditions (1.2) and the initial
conditions

s(0, µ) = 0, s′(0, µ) = 1.

It is obtained that

s(ξ, µ) =
ê(0, µ)e(ξ, µ)− e(0, µ)ê(ξ, µ)

2iµ
, Imµ > 0. (3.2)

The following lemma is proved in the same way as in [6]:
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Lemma 3.1. 1. The nonself-adjoint operator L does not have positive eigenvalues.

2. The necessary and sufficient conditions that λ 6= 0 be an eigenvalue of L are that

e(0, µ) = 0, λ = µ2, Imµ > 0.

3. The set of eigenvalues of L is bounded, is no more than countable and its limit points can lie only on the half-axis λ ≥ 0.

All numbers λ of the form λ = µ2, Imµ > 0, e(0, µ) 6= 0 belongs to the resolvent set of L. Assume that λ = µ2

belongs to the resolvent set of L. Then, the resolvent operator Rµ2 =
(
L− µ2I

)−1 exists and has the following
representation:

Rµ2(L) =

∫ ∞
0

r(ξ, s;µ2)f(s)ds,

where

r(ξ, s;µ2) =


ê(0,µ)e(ξ,µ)e(s,µ)

2iµe(0,µ) − ê(ξ,µ)e(s,µ)
2iµ , ξ < s <∞,

ê(0,µ)e(ξ,µ)e(s,µ)
2iµe(0,µ) − e(ξ,µ)ê(s,µ)

2iµ , 0 < s < ξ.

Note that all number λ > 0 belongs to the continuous spectrum of L (see [6]).
The spectral singularities is defined as the poles of the kernel function of the resolvent operator and belong to

the continuous spectrum. The operator L which has the compact set of spectral singularities, has zero measure in
the sense of Lebesgue. This is provided from the boundary uniqueness theorem of analytic functions [25] (also, see
[10]).

Denote the eigenvalues and spectral singularities of the operator L, respectively, as follows:

σd(L) =
{
λ : λ = µ2, Imµ > 0, e(0, µ) = 0

}
,

σss(L) =
{
λ : λ = µ2, Imµ = 0, µ 6= 0, e(0, µ) = 0

}
.

Moreover, the multiplicity of the corresponding eigenvalue and spectral singularity of L is called the multiplicity of
the zero of e(0, µ).

3.1 The finiteness of eigenvalues and spectral singularities
Now, we will demonstrate that the nonself-adjoint operator L has a finite number of eigenvalues and spectral

singularities under the two different additional restrictions, respectively.
Additional restriction 1: ∫ ∞

0

eεξ|q(ξ)|dξ <∞, ε > 0, (3.3)

This condition is introduced by M. A. Naimark (see [6]).

Theorem 3.1. Assume that the condition (3.3) is valid. Then, the operator L has finite number of eigenvalues and spectral
singularities with finite multiplicity.

Proof. The condition (3.3) implies that

σ(ξ) =

∫ ∞
ξ

|q(t)|dt ≤ Cεe−εξ,

σ1(ξ) =

∫ ∞
ξ

t|q(t)|dt ≤ Cε′e−ε
′ξ,

where Cε > 0, Cε′ > 0 and 0 < ε′ < ε (see [6]). Using these relations and the estimate (2.3), we have

|k(ξ, s)| ≤ C exp

{
−ε
(
τ(ξ) + s

2

)}
, (3.4)

where C = c
2cεe

(c+1)dε , c = θ+ + |θ−|> 1, cε > 0 and dε > 0. It is obtained from (3.4) that the function e(0, µ) has
an analytic continuation from the real axis to the half plane Imµ > − ε

2 . Then, there is no limit points of the sets
of the eigenvalues σd(L) and the spectral singularities σss(L) on the positive real line. Since σd(L) and σss(L) are
bounded and e(0, µ) is holomorphic in the half plane Imµ > − ε

2 , the operator L has finite number of eigenvalues
and spectral singularities with finite multiplicity.
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Additional restriction 2:
sup

0≤ξ<∞

{
exp(εξδ)|q(ξ)|

}
<∞, ε > 0,

1

2
≤ δ < 1. (3.5)

To prove the finiteness of the eigenvalues and spectral singularities under the condition (3.5), firstly we define the
set of zeros of e(0, µ) in the closed upper half plane Imµ ≥ 0 :

M1 := {µ : µ ∈ C+, e(0, µ) = 0} , M2 := {µ : µ ∈ R, µ 6= 0, e(0, µ) = 0} ,

moreover, define the sets of all limit points of M1 and M2 as M3 and M4, respectively and the set of all zeros of
e(0, µ) with infinite multiplicity as M5. We have

M1 ∩M5 = ∅, M3 ⊂M2, M4 ⊂M2, M5 ⊂M2

from the uniqueness theorem of analytic functions (see [26]) and

M3 ⊂M5, M4 ⊂M5 (3.6)

from the continuity of all derivatives of the function e(0, µ) up to the real axis.

Lemma 3.2. Assume that the condition (3.5) is satisfied, then M5 = ∅.

Proof. To prove this lemma, we use the following theorem (see [9], also [10, 14]): Suppose that the function ψ is
holomorphic function on the upper half plane without real line and all of its derivatives are also continuous on the
real axis, and there exists T > 0 such that

|ψ(m)(z)| ≤ Km, m = 0, 1, ... z ∈ C+, |z| < 2T, (3.7)

and ∣∣∣∣∣
∫ −T
−∞

ln|ψ(ξ)|
1 + ξ2

dξ

∣∣∣∣∣ <∞,
∣∣∣∣∫ ∞
T

ln|ψ(ξ)|
1 + ξ2

dξ

∣∣∣∣ <∞. (3.8)

If the set Q with linear Lebesgue measure zero is the set of all zeros of the function ψ with infinite multiplicity and if∫ h

0

lnF (s)dµ(Qs) = −∞, (3.9)

then ψ(z) ≡ 0, where F (s) = infm
Kms

m

m! , m = 0, 1, ..., µ(Qs) is the linear Lebesgue measure of s-neighborhood of Q
and h is an arbitrary positive constant.

Now, it is obtained from the relation (2.3) and the condition (3.5) that

|k(ξ, s)|≤ C̃ exp

{
−ε
(
τ(ξ) + s

2

)δ}
, C̃ =

c

2
cεe

(c+1)cε , c = θ+ + |θ−| > 1.

Then, the function e(0, µ) is analytic in C+, all of its derivatives are continuous up to the real axis and we have∣∣∣∣dme(0, µ)dµm

∣∣∣∣ ≤ Km, µ ∈ C+, m = 1, 2, ..., (3.10)

where

Km = C̃(βa+ a)m
{
1 +

∫ ∞
0

sm exp

{
−ε
(s
2

)δ}
ds

}
, m = 1, 2, ...

Moreover, since the set of zeros of e(0, µ) is bounded, for sufficiently large T the function e(0, µ) satisfies the
condition (3.8). Thus, it follows from this fact and the relation (3.10) that e(0, µ) provides the conditions (3.7) and
(3.8). Since the function e(0, µ) 6= 0, from (3.9), we have∫ h

0

lnF (s)dµ(M5,s) > −∞, (3.11)
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where F (s) = infm
Kms

m

m! and µ(M5,s) is the Lebesgue measure of the s-neighborhood ofM5. The following estimate
holds:

Km ≤
(
C̃(βa+ a)m +Ddm

)
mmm!, (3.12)

where D = 4 C̃eδ ε
− 1
δ (m+ 1) and d = 4(βa+ a)ε−

1
δ . In fact, we can write

Km = C̃(βa+ a)m
{
1 +

∫ ∞
0

sm exp

{
−ε
(s
2

)δ}
ds

}
≤ C̃(βa+ a)m

{
1 +

2(m+1)

δ
ε−

(m+1)
δ (2m+ 2)m+1m!

}
≤ C̃(βa+ a)m

{
1 +

22(m+1)

δ
ε−

(m+1)
δ

(
1 +

1

m

)m
(m+ 1)mmm!

}
≤

(
C̃(βa+ a)m +Ddm

)
mmm!.

Putting the estimate (3.12) into F (s), we get

F (s) ≤ C̃ inf
m
{(βa+ a)mmmsm}+D inf

m
{dmmmsm}

≤ C̃ exp
{
−(βa+ a)−1s−1e−1

}
+D exp

{
−d−1s−1e−1

}
. (3.13)

Then, taking into account (3.11) and (3.13), we have∫ h

0

1

s
dµ(M5,s) <∞.

This inequality is valid for an arbitrary s if and only if dµ(M5,s) = 0 or M5 = ∅.

Theorem 3.2. If the condition (3.5) is satisfied, then the operator L has finite number of eigenvalues and spectral singularities
with finite multiplicity.

Proof. It follows from (3.6) and Lemma 3.2 that M3 = ∅ and M4 = ∅. For this reason, the bounded sets M1 and M2

do not have limit points. Thus, the finiteness of the sets of eigenvalues σd(L) and spectral singularities σss(L) are
found. Moreover, due to M5 = ∅, the eigenvalues and spectral singularities have finite multiplicities.

4. Principal functions

In this section, we examine the principal functions of the nonself-adjoint operator L. Now, assume that the
condition (3.5) is provided.

Denote µ1, µ2, ..., µ` by the zeros of e(0, µ) in C+ with multiplicities n1, n2, ..., n`, respectively (note that
µ2
1, µ

2
2, ..., µ

2
` are the eigenvalues of the operator L). We can write{

dm

dµm
W [e(ξ, µ), s(ξ, µ)]

}
µ=µj

=

{
dm

dµm
e(0, µ)

}
µ=µj

= 0 (4.1)

for m = 0, 1, ..., nj − 1, j = 1, `. In case of m = 0, we have

e(ξ, µj) = κ0(µj)s(ξ, µj), κ0(µj) 6= 0, j = 1, `. (4.2)

Lemma 4.1. The following relation{
∂m

∂µm
e(ξ, µ)

}
µ=µj

=

m∑
i=0

(
m
i

)
κm−i

{
∂i

∂µi
s(ξ, µ)

}
µ=µj

(4.3)

is valid for m = 0, nj − 1, j = 1, ` and here κ0, κ1..., κm depend on µj .
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Proof. To prove of this theorem, we use the mathematical induction. Consider m = 0. It follows from the relation
(4.2) that the proof is trivial. Now, suppose that the formula (4.3) holds for m0 such that 0 < m0 ≤ nj − 2. That is,{

∂m0

∂µm0
e(ξ, µ)

}
µ=µj

=

m0∑
i=0

(
m0

i

)
κm0−i

{
∂i

∂µi
s(ξ, µ)

}
µ=µj

. (4.4)

Then, we will show that the formula (4.3) is satisfied for m0 + 1. If ϕ(ξ, µ) is the solution of (1.1), then we find{
− d2

dξ2
+ q(ξ)− µ2ρ(ξ)

}
∂m

∂µm
ϕ(ξ, µ) = 2µmρ(ξ)

∂m−1

∂µm−1
ϕ(ξ, µ) +m(m− 1)ρ(ξ)

∂m−2

∂µm−2
ϕ(ξ, µ). (4.5)

Since the functions e(ξ, µ) and s(ξ, µ) are solutions of the equation (1.1), using (4.4) and (4.5), we calculate{
− d2

dξ2
+ q(ξ)− µ2

jρ(ξ)

}
hm0+1(ξ, µj) = 0,

where

hm0+1(ξ, µj) =

{
∂m0+1

∂µm0+1
e(ξ, µ)

}
µ=µj

−
m0+1∑
i=0

(
m0 + 1

i

)
κm0+1−i

{
∂i

∂µi
s(ξ, µ)

}
µ=µj

.

It follows from (4.1) that

W [hm0+1(ξ, µj), s(ξ, µj)] =

{
dm0+1

dµm0+1
W [e(ξ, µ), s(ξ, µ)]

}
µ=µj

= 0. (4.6)

Then, this shows that
hm0+1(ξ, µj) = κm0+1(µj)s(ξ, µj), j = 1, `.

Consequently, we obtain that the formula (4.3) is satisfied for m = m0 + 1.

Now, we define the functions

ψm(ξ, λj) =

{
∂m

∂µm
e(ξ, µ)

}
µ=µj

=

m∑
i=0

(
m
i

)
κm−i

{
∂i

∂µi
s(ξ, µ)

}
µ=µj

(4.7)

for m = 0, nj − 1, j = 1, ` and λj = µ2
j .

Theorem 4.1. ψm(ξ, λj) ∈ L2,ρ(0,∞), m = 0, nj − 1, j = 1, `.

Proof. Since

|k(ξ, s)|≤ C̃ exp

{
−ε
(
τ(ξ) + s

2

)δ}
, C̃ =

c

2
cεe

(c+1)cε , c = θ+ + |θ−| > 1,

using the integral representation (2.1), we have for 0 < ξ < a∣∣∣∣∣
{
∂m

∂µm
e(ξ, µ)

}
µ=µj

∣∣∣∣∣ ≤ ξmθ+e−Imµjξ + (β(a− ξ) + a)m|θ−|e−Imµj(β(a−ξ)+a)

+C̃

∫ ∞
β(ξ−a)+a

sn exp

{
−ε
(
β(ξ − a) + a+ s

2

)δ}
e−Imµjsds (4.8)

and for a < ξ <∞∣∣∣∣∣
{
∂m

∂µm
e(ξ, µ)

}
µ=µj

∣∣∣∣∣ ≤ ξme−Imµjξ + C̃

∫ ∞
ξ

sm exp

{
−ε
(
ξ + s

2

)δ}
e−Imµjsds. (4.9)

Since λj = µ2
j , j = 1, ` are eigenvalues of the operator L, it is obtained from (4.8) and (4.9) for Imµj > 0 that{

∂m

∂µm
e(ξ, µ)

}
µ=µj

∈ L2,ρ(0,∞), m = 0, nj − 1, j = 1, `.

Consequently, from (4.7) we have ψm(ξ, λj) ∈ L2,ρ(0,∞), m = 0, nj − 1, j = 1, `.
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Definition 4.1. The functions ψ0(ξ, λj), ψ1(ξ, λj),...,ψnj−1(ξ, λj) are called the principal functions associated with
eigenvalues λj = µ2

j , j = 1, ` of the operator L. The function ψ0(ξ, λj) is the eigenfunction, ψ1(ξ, λj), ψ2(ξ, λj),...,
ψnj−1(ξ, λj) are the associated functions of ψ0(ξ, λj) corresponding to eigenvalue λj .

Now, we define the spectral singularities of L: µ`+1, µ`+2, ..., µp are the zeros of the function e(0, µ) in R− {0}
with multiplicities n`+1, n`+2, ..., np, respectively. Then, using the similar way in Lemma 4.1, we obtain{

∂η

∂µη
e(ξ, µ)

}
µ=µr

=

η∑
j=0

(
η
j

)
τη−j(µr)

{
∂j

∂µj
s(ξ, µ)

}
µ=µr

(4.10)

for η = 0, nr − 1, r = `+ 1, `+ 2, ..., p. Denote the functions

ψη(ξ, λr) =

{
∂η

∂µη
e(ξ, µ)

}
µ=µr

=

η∑
j=0

(
η
j

)
τη−j(µr)

{
∂j

∂µj
s(ξ, µ)

}
µ=µr

(4.11)

for η = 0, nr − 1, r = `+ 1, `+ 2, ..., p and λj = µ2
j .

Theorem 4.2. The functions ψη(ξ, λr) do not belong to L2,ρ(0,∞), η = 0, nr − 1, r = `+ 1, `+ 2, ..., p.

Proof. Take into account the relations (4.8) and (4.9) for µ = µr, r = ` + 1, ` + 2, ..., p and since Imµr = 0 for the
spectral singularities, we have{

∂η

∂µη
e(ξ, µ)

}
µ=µr

/∈ L2,ρ(0,∞), η = 0, nr − 1, r = `+ 1, `+ 2, ..., p.

As a result, from the definition of the functions (4.11), we find ψη(ξ, λr) /∈ L2,ρ(0,∞), η = 0, nr − 1, r = `+ 1, `+
2, ..., p.

Now, we introduce the Hilbert spaces

Hζ,ρ =
{
f : ‖f‖ζ,ρ <∞

}
, H−ζ,ρ =

{
f : ‖f‖−ζ,ρ <∞

}
, ζ = 1, 2, ...

with the norms

‖f‖2ζ,ρ =
∫ ∞
0

(1 + τ(s))2ζ |f(s)|2ρ(s)ds, ‖f‖2−ζ,ρ =
∫ ∞
0

(1 + τ(s))−2ζ |f(s)|2ρ(s)ds,

respectively and evidently, H0,ρ = L2,ρ(0,∞).
Let n0 denotes the greatest of the multiplicities of the spectral singularities of L:

n0 = max {n`+1, n`+2, ..., np} .

We put
H+,ρ = H(n0+1),ρ, H− = H−(n0+1),ρ

Then, we have
H+,ρ ⊂ L2,ρ(0,∞) ⊂ H−,ρ

and for all f ∈ H+,ρ, ‖f‖+,ρ ≥ ‖f‖ρ ≥ ‖f‖−,ρ, where ‖.‖±,ρ = ‖.‖±(n0+1),ρ , ‖.‖ρ = ‖.‖0,ρ (see [6]). We are
particularly interested in the space H±,ρ because the space H−,ρ contains the principal functions for the spectral
singularities. Now, we will prove this claim by using following lemma.

Lemma 4.2. The following relation holds:

sup
0≤ξ<∞

|e(n)(ξ, µ)|
(1 + τ(ξ))n

<∞, e(n) =
(
d

dµ

)n
e, Imµ = 0, n = 0, 1, 2, ... (4.12)
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Proof. Using the integral representation (2.1), we obtain for Imµ = 0

|e(n)(ξ, µ)| ≤ ξnθ+ + (β(a− ξ) + a)n|θ−|+ C̃

∫ ∞
β(ξ−a)+a

sn exp

{
−ε
(
β(ξ − a) + a+ s

2

)δ}
ds, 0 < ξ < a (4.13)

and

|e(n)(ξ, µ)| ≤ ξn + C̃

∫ ∞
ξ

sn exp

{
−ε
(
ξ + s

2

)δ}
ds, a < ξ <∞. (4.14)

Then, taking into account (4.13) and (4.14), we find sup0≤ξ<∞
|e(n)(ξ,µ)|
(1+τ(ξ))n <∞ for Imµ = 0.

Theorem 4.3. ψη(ξ, λr) ∈ H−(η+1),ρ, η = 0, nr − 1, r = `+ 1, `+ 2, ..., p.

Proof. Using the relation (4.12), we have∥∥∥e(η)(ξ, µ)∥∥∥2
−(η+1),ρ

=

∫ ∞
0

| e(η)(ξ, µ)

(1 + τ(ξ))η+1
|2ρ(ξ)dξ <∞.

That is, the functions e(η)(ξ, µ) = ∂η

∂µη e(ξ, µ) ∈ H−(η+1) for Imµ = 0 and η = 0, 1, 2, ... . Then, we get{
∂η

∂µη
e(ξ, µ)

}
µ=µr

∈ H−(η+1),ρ

for Imµr = 0, η = 0, nr − 1 and r = ` + 1, ` + 2, ..., p. Consequently, it follows from the formula (4.11) that
ψη(ξ, λr) ∈ H−(η+1),ρ, η = 0, nr − 1, r = `+ 1, `+ 2, ..., p.

Definition 4.2. The functions ψ0(ξ, λr), ψ1(ξ, λr), ..., ψnr−1(ξ, λr) are defined as the principal functions associated
with the spectral singularities λr = µ2

r , r = `+ 1, `+ 2, ..., p of operator L. The function ψ0(ξ, λr) is the generalized
eigenfunction, ψ1(ξ, λr), ..., ψnr−1(ξ, λr) are the generalized associated functions of ψ0(ξ, λr) corresponding to
spectral singularity λr.

5. Conclusion
In this paper, we examine the spectrum and the principal functions of the nonself-adjoint discontinuous Sturm-

Liouville operator which contains the discontinuous coefficient and the discontinuity conditions at the point on the
positive half line. When examining the spectrum of the considered problem (1.1)-(1.3), we use the newly constructed
Jost solution of the equation (1.1) with discontinuity condition (1.3). This solution is completely different from the
classical Jost solution because of the presence of the discontinuous coefficient ρ(ξ) and discontinuity condition
(1.2). We point out that the triangular property of the Jost solution representation is lost and the kernel function
has a discontinuity along the line s = β(ξ − a) + a for ξ ∈ (0, a). Under two different additional conditions, it is
proved that the problem (1.1)-(1.3) has finite number of eigenvalues and spectral singularities with finite multiplicity.
Finally using the additional restriction (3.5) which is weaker than the restriction (3.3), we determine the principal
functions corresponding to the eigenvalues and the spectral singularities of the problem (1.1)-(1.3).
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ADDRESS: Gaziantep University, Department of Mathematics and Science Education, Gaziantep-Turkey
E-MAIL: npkosar@gmail.com
ORCID ID: 0000-0003-2421-7872



MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES
https://doi.org/10.36753/mathenot.1469064
12 (3) 131-144 (2024) - Research Article
ISSN: 2147-6268

On Contra πgs-Continuity
Nebiye Korkmaz*

Abstract
In this work, a novel form of contra continuity entitled as contra πgs-continuity is examined, which has
connections to πgs-closed sets. Furthermore, correlations between contra πgs-continuity and several
previously established forms of contra continuous functions are further explored, as well as basic features
of contra πgs-continuous functions are disclosed.
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1. Introduction
After defining semi-open sets [1] in 1963, Levine introduced the concept of g-closed sets [2] in 1970. This

interesting new set type has led to the emergence of different types of generalized closed sets. Dontchev and Noiri
defined πg-closed sets [3] in 2000. In 2006, Aslım et al. introduced the πgs-closed set [4] definition, which has an
important place in this study, to the literature.

The idea of LC-continuous functions was first introduced and analyzed by Ganster and Reilly [5] in 1989.
Dontchev [6] produced contra-continuity, as a more robust variant of LC-continuity in 1996. As a very interesting
subject, contra continuous functions have continued to attract the attention of many researchers over the years. After
Ekici gave the definition of contra πg-continuous functions [7] in 2008, contra πgs-continuous [8] functions were
also defined in Caldas et al.’s studies in 2010, which essentially introduced and examined contra πgp-continuous
functions [8].

The requirement that every open set in the codomain possesses a preimage that is πgs-closed in the domain
identifies contra πgs-continuous functions [8]. A milder version of contra-continuity [6] and contra gs-continuity [9]
is contra πgs-continuity. Crucial characteristics of contra πgs-continuous functions are also examined.

2. Preliminaries
Unless otherwise specified, topological spaces in this work always refer to on which no separation axioms are

required; Ψ will stand for the topological space (Ψ,>) and Φ will stand for the topological space (Φ,⊥); ℵ will
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stand for any subset of the space Ψ. The interior of ℵ is indicated as int(ℵ) and the closure of ℵ in indicated as cl(ℵ).
Whenever ℵ = int(cl(ℵ)) (correspondingly, ℵ = cl(int(ℵ))), afterwards ℵ is a regular closed set (correspondingly,
regular open set) [10]. Whenever ℵ ⊂ cl(int(ℵ)), afterwards ℵ is considered as a semi-open set [1]. Whenever ℵ
could be expressed as union of regular open sets, afterwards it is accepted as a δ-open set [11]. Complementary of
semi-open set (correspondingly δ-open set) is introduced as semi-closed (correspondingly δ-closed). The intersection
of whole semi-closed sets involving ℵ is known as semi-closure [12] of ℵwhich is expressed by scl(ℵ). Dually the
semi-interior [12] of ℵ is characterized as union of whole semi-open sets involved in ℵ and indicated by sint(ℵ).

ν ∈ Ψ is termed δ-cluster point [11] of ℵ, when int(cl(z)) ∩ ℵ 6= ∅ for every z ∈ O(ν,Ψ), where O(ν,Ψ) stands
for all open subsets of Ψ containing the point ν. Whole δ-cluster points of ℵ composes δ-closure [11] of ℵ that is
shown with clδ(ℵ).

When ℵ ⊂ cl(int(clδ(ℵ))), then ℵ is named as an e∗-open set [13]. We speak of an e∗-closed [13] set as comple-
mentary of an e∗-open. The e∗-closure [13] of ℵ is the intersection of whole e∗-closed sets involving subset ℵ and it
is symbolized by e∗-cl(ℵ).

Whenever e∗-cl(z) ∩ ℵ 6= ∅ for each e∗-open set z involving point ν, afterwards ν is identified as e∗-θ-cluster
point [14] of ℵ. The e∗-θ-closure [14] of ℵ is the set of whole e∗-θ-cluster points of ℵ, and is expressed by e∗-clθ(ℵ).
For ℵ = e∗-clθ(ℵ), then ℵ is e∗-θ-closed [15]. e∗-θC(Ψ) is the notion for the collection of whole e∗-θ-closed subsets of
space Ψ.

When for every ν in ℵ, if there exists an e∗-open set z comprising ν such that z \ℵ is countable, then ℵ is termed
we∗-open [16]. A we∗-closed [16] set is the complementary of an we∗-open.

When ℵ ⊂ cl(int(ℵ)) ∪ int(cl(ℵ)), subsequently ℵ is named as b-open [17] (or sp-open [18] or γ-open [19]).
A b-closed [17] (or γ-closed [20, 21]) set is the complementary of a b-open (or γ-open). The b-closure [17] (or
γ-closure [20]) of ℵ is expressed as bcl(ℵ) (or γcl(ℵ)) and it is the intersection of whole b-closed (or γ-closed) sets
comprising ℵ. The set ℵ is said to be pre-closed [22] if cl(int(ℵ)) ⊂ ℵ. The intersection of all pre-closed sets
containing ℵ is called pre-closure [20] of ℵ and denoted by pcl(ℵ).

A subset ℵ of a space Ψ is characterized as a ĝ-closed [23] set, if cl(ℵ) ⊂ z, whenever z is a semi-open set
satisfying the condition ℵ ⊂ z. ĝ-open sets [23] are the complement of ĝ-closed sets. When bcl(ℵ) ⊂ z whenever
ℵ ⊂ z and z is a ĝ-open set in Ψ, ℵ is a bĝ-closed [24] set. A bĝ-open [25] is the complementary of a bĝ-closed set.
When scl(ℵ) ⊂ z whenever ℵ ⊂ z and z is a bĝ-open set in Ψ, ℵ is called as a sbĝ-closed [26] set.

π-open [27] corresponds to the finite union of regular open sets. π-closed represents the complementary of a
π-open. When ℵ ⊂ z and z is open (correspondingly, π-open), afterwards ℵ is regarded as a generalized closed
(briefly, g-closed) [2] (correspondingly, πg-closed [17]) if cl(ℵ) ⊂ z. g-open [24] (correspondingly, πg-open [7]) is the
complementary of g-closed (correspondingly, πg-closed). While ℵ ⊂ z and z is open (correspondingly, π-open),
afterwards ℵ is regarded to be generalized semi-closed (briefly, gs-closed) [28] (correspondingly, πgs-closed [4]) if
scl(ℵ) ⊂ z. gs-open [24] (correspondingly, πgs-open) constitutes the complementary of a gs-closed (correspond-
ingly, πgs-closed) set. If pcl(ℵ) ⊂ z for all z which are π-open sets containing ℵ, then ℵ is called as πgp-closed [29].
The set ℵ is called as πgγ-closed [20], if γcl(ℵ) ⊂ z for all π-open sets z containing ℵ.

The entire πgs-closed (correspondingly, πgs-open, πgp-closed, πgγ-closed, gs-closed, gs-open, closed, semi-
closed, semi-open, γ-open, π-open, πg-open, regular open, regular closed, g-closed, πg-closed, we∗-closed, e∗-closed,
e∗θ-closed, bĝ-closed, sbĝ-closed) subsets of Ψ are expressed by πGSC(Ψ) (correspondingly, πGSO(Ψ), πGPC(Ψ),
πGγC(Ψ), GSC(Ψ), GSO(Ψ), C(Ψ), SC(Ψ), SO(Ψ), γO(Ψ), πO(Ψ), πGO(Ψ), RO(Ψ), RC(Ψ), GC(Ψ), πGC(Ψ),
we∗C(Ψ), e∗C(Ψ), e∗θC(Ψ), bĝC(Ψ), sbĝC(Ψ)).

πGSC(ν,Ψ) (correspondingly, πGSO(ν,Ψ), RO(ν,Ψ), C(ν,Ψ), SO(ν,Ψ), O(ν,Ψ)) means the collection of whole
πgs-closed (correspondingly, πgs-open, regular open, closed, semi open, open) sets of Ψ comprising point ν ∈ Ψ.

πgs-closure of the set ℵ is denoted by clπgs(ℵ), which is the intersection of whole πgs-closed sets involving ℵ. On
the other hand, πgs-interior of a set ℵ is expressed by intπgs(ℵ), which corresponds to the union of whole πgs-open
sets included in ℵ.

Definition 2.1. A topological space Ψ is said to be:
(ιi) strongly S-closed [6] while a finite subcover matching could found for each closed cover of Ψ,
(ιii) strongly countably S-closed [7] when a finite subcover matching found for each countable cover of Ψ consisting
of closed sets,
(ιiii) strongly S-Lindelöf [7] when a countable subcover matching could found for each closed cover of Ψ,
(ιiv) ultra normal [30] if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets,
(ιv) ultra Hausdorff [30] if for each couple of distinct points, ν1 and ν2 in Ψ there exist clopen sets ℵ1 and ℵ2

comprising ν1 and ν2 correspondingly, providing N1 ∩N2 = ∅ equality.

Definition 2.2. When ℵ in Ψ is strongly S-closed as a subspace, then ℵ is named strongly S-closed [6].
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Definition 2.3. ℵ in Ψ is called:
(ιi) α-open [31] whenever ℵ ⊂ int(cl(int(ℵ))),
(ιii) preopen [22] or nearly open [5] whenever ℵ ⊂ int(cl(ℵ)),
(ιiii) β-open [32] or semi-preopen [33] whenever ℵ ⊂ cl(int(cl(ℵ))).

Complement of an α-open (correspondingly, preopen, β-open) set is introduced as α-closed (correspondingly,
preclosed, β-closed) set [7]. αO(Ψ) (correspondingly, PO(Ψ), βO(Ψ)) stands for the collection of whole α-open
(correspondingly, preopen, β-open) subsets of Ψ.

Lemma 2.1. Whenever ℵ ⊂ Ψ,
(ιi) clπgs(Ψ\ℵ) = Ψ\intπgs(ℵ);
(ιii) ν ∈ clπgs(ℵ)⇔ ∀z ∈ πGSO(ν,Ψ),ℵ ∩z 6= ∅.

Proof. Before starting the proof, let’s remind the definitions of πgs-interior and πgs-closure of a set in a topological
space. Let (Ψ,>) be a topological space, ℵ ⊂ Ψ. Then, πgs-closure of ℵ is clπgs(ℵ) =

⋂
{Θ : ℵ ⊂ Θ,Θ ∈ πGSC(Ψ)}

and πgs-interior of ℵ is intπgs(ℵ) =
⋃
{a : a ⊂ ℵ,a ∈ πGSO(Ψ)}. Now we can start the proof.

(ιi): We will complete the proof by showing that the sets claimed to be equal include each other.
Let (Ψ,>) be a topological space and ℵ ⊂ Ψ.
(⇒): Let ν ∈ clπgs(Ψ\ℵ). Assume that ν /∈ Ψ\intπgs(ℵ). Since ν ∈ intπgs(ℵ) =

⋃
{a : a ⊂ ℵ,a ∈ πGSO(Ψ)},

it can be said that there exists a set z ∈ πGSO(ν,Ψ) such that z ⊂ ℵ. So Θ = Ψ\z ∈ πGSC(Ψ), ν /∈ Θ and
Ψ\ℵ ⊂ Θ. This brings us to the contradiction ν /∈ clπgs(Ψ\ℵ) contrary to our assumption. Hence as a result
clπgs(Ψ\ℵ) ⊂ Ψ\intπgs(ℵ).
(⇐): Let ν ∈ Ψ\intπgs(ℵ). So it can be clearly seen that ν /∈ intπgs(ℵ) =

⋃
{a : a ⊂ ℵ,a ∈ πGSO(Ψ)}. Then for all

of the sets a ∈ πGSO(Ψ) such that a ⊂ ℵ we have ν /∈ a. This means that for all sets Ψ\a ∈ πGSC(Ψ) such that
Ψ\ℵ ⊂ Ψ\a we have ν ∈ Ψ\a. So ν ∈ clπgs(Ψ\ℵ). Hence as a result Ψ\intπgs(ℵ) ⊂ clπgs(Ψ\ℵ).
Now we will give the proof of (ιii).
(ιii):
(⇒): Let ν ∈ clπgs(ℵ). Assume that there exists a set a ∈ πGSO(ν,Ψ) such that a ∩ ℵ = ∅. Under this assumption,
for the set Θ = Ψ\a it can be said that ν /∈ Θ and ℵ ⊂ Θ. These results brings us to the contradiction ν /∈ clπgs(ℵ)
contrary to our assumption.
(⇐): Let ν ∈ Ψ and let for all sets a ∈ πGSO(ν,Ψ) we have a ∩ ℵ 6= ∅. Assume that ν /∈ clπgs(ℵ). Then using
(ιi) we have ν ∈ Ψ\clπgs(ℵ) = Ψ\(Ψ\intπgs(Ψ\ℵ)) = intπgs(Ψ\ℵ). So there exists a set z ∈ πGSO(ν,Ψ) such that
z ⊂ Ψ\ℵ, which means that z ∩ ℵ = ∅which is a contradiction. So ν ∈ clπgs(ℵ).
Thus the proof is completed.

While ℵ is πgs-closed, then clπgs(ℵ) = ℵ. Typically, the opposite of this implication doesn’t hold true, as
demonstrated in the subsequent example:

Example 2.1. Consider the subset ℵ = {ν1, ν2} of the set Ψ = {ν1, ν2, ν3, ν4, ν5} and the topological space (Ψ,>),
where> = {∅, {ν1}, {ν2}, {ν1, ν2}, {ν1, ν2, ν3},Ψ}. Then the set ℵ is an acceptable sample that fits the given situation
just above, since ℵ = clπgs(ℵ), while ℵ /∈ πGSC(Ψ).

ker(0) [34] means
⋂
{z ∈ > : 0 ⊂ z}which is known as the kernel of 0.

Lemma 2.2. [35] The subsequent characteristics apply to subsets z and 0 of Ψ:
(ιi) ν ∈ ker(z)⇔ (∀Θ ∈ C(ν,Ψ))(z ∩Θ 6= ∅);
(ιii) z ⊂ ker(z);
(ιiii) z ∈ Ψ⇒ z = ker(z);
(ιiv) z ⊂ 0⇒ ker(z) ⊂ ker(0).

3. Contra πgs-continuous functions

In this section, first the characterization of contra πgs-continuous functions is presented. Afterwards, the
relationships between some types of contra continuous functions and contra πgs-continuous functions were
examined. In addition, some new definitions in relation with πgs-open sets are given in order to examine various
properties of contra πgs-continuous functions, and these properties are presented through theorems and results.

Definition 3.1. ∆ : (Ψ,>) → (Φ,⊥) is referred as contra πgs-continuous [8], whenever ∆
−1

(0) ∈ πGSC(Ψ) for
each 0 ∈ ⊥.
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Theorem 3.1. Under the assumption πGSO(Ψ) is closed under arbitrary unions (or likewise πGSC(Ψ) is closed under
arbitrary intersections), subsequent statements are coequal for ∆ : (Ψ,>)→ (Φ,⊥).
(ιi) ∆ is contra πgs-continuous;
(ιii) 0 ∈ C(Φ)⇒ ∆−1(0) ∈ πGSO(Ψ);
(ιiii) (∀ν ∈ Ψ)(∀Θ ∈ C(∆(ν),Φ))(∃z ∈ πGSO(ν,Ψ))(∆(z) ⊂ Θ);
(ιiv) ℵ ⊂ Ψ⇒ ∆(clπgs(ℵ)) ⊂ ker(∆(ℵ));
(ιv) Ω ⊂ Φ⇒ clπgs(∆

−1(Ω)) ⊂ ∆−1(ker(Ω)).

Proof. Let ∆ : (Ψ,>)→ (Φ,⊥) be a function, where (Ψ,>) and (Φ,⊥) are two topological spaces and let πGSO(Ψ)
be closed under arbitrary unions (or likewise πGSC(Ψ) be closed under arbitrary intersections).
(ιi) ⇒ (ιii): Let Θ ∈ C(Φ). Then Φ\Θ is open in Φ. Since ∆ is contra πgs-continuous, Ψ\∆−1

(Θ) = ∆
−1

(Φ\Θ) is
πgs-closed in Ψ. Therefore, ∆

−1

(Θ) is πgs-open in Ψ.
(ιii)⇒ (ιi): Obvious.
(ιi)⇒ (ιiii): Let ν ∈ Ψ and Θ ∈ C(∆(ν),Φ). Then by (ιi), we have ∆

−1

(Θ) ∈ πGSO(Ψ). Choosing z = ∆
−1

(Θ) we
obtain that z ∈ πGSO(ν,Ψ) and ∆(z) ⊂ Θ .
(ιiii)⇒ (ιii): Let Θ ∈ C(Φ) and ν ∈ ∆

−1

(Θ). Since ∆(ν) ∈ Θ, by (ιiii) there exist a πgs-open set zν ∈ πGSO(ν,Ψ)

such that ∆(zν) ⊂ Θ. So we have ν ∈ zν ⊂ ∆
−1

(Θ) and hence ∆
−1

(Θ) =
⋃
{zν : ν ∈ ∆

−1

(Θ)} is πgs-open in Ψ
since πGSO(Ψ) is closed under arbitrary unions.
(ιii)⇒ (ιiv): Let ℵ be any subset of Ψ. Suppose that there exist an element µ of ∆(clπgs(ℵ)) such that µ /∈ ker(∆(ℵ)).
Then there exists an open set z of Φ such that ∆(ℵ) ⊂ z and µ /∈ z. Hence, there exists Θ = Φ\z ∈ C(µ,Φ) such
that ∆(ℵ) ∩Θ = ∅ and clπgs(ℵ) ∩∆

−1

(Θ) = ∅. From here we obtain that ∆(clπgs(ℵ)) ∩Θ = ∅ and µ 6∈ ∆(clπgs(ℵ))
which is a contradiction.
(ιiv)⇒ (ιv): Let Ω be any subset of Φ. Then ∆

−1

(Ω) ⊂ Ψ. By (ιiv), ∆(clπgs(∆
−1

(Ω))) ⊂ ker(∆(∆
−1

(Ω))) ⊂ ker(Ω).
Hence, clπgs(∆

−1

(Ω)) ⊂ ∆−1(ker(Ω)).
(ιv)⇒ (ιi): Let z be any open subset of Φ. Then by (ιv) and by Lemma 2.2, clπgs(∆

−1

(z)) ⊂ ∆
−1

(ker(z)) = ∆
−1

(z).
So we have clπgs(∆

−1

(z)) = ∆
−1

(z). Since πGSO(Ψ) is closed under arbitrary unions, πGSC(Ψ) is closed under
arbitrary intersections and hence ∆

−1

(z) = clπgs(∆
−1

(z)) is πgs-closed.

Remark 3.1. Statements (ιi) and (ιii) in Theorem 3.1 are identical even if πGSO(Ψ) is not closed under arbitrary
unions (or likewise, πGSC(Ψ) is not closed under arbitrary intersections).

Definition 3.2. ∆ : (Ψ,>)→ (Φ,⊥) is categorized as:
(ι1) perfectly continuous [36] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ > ∩ C(Ψ)),
(ι2) RC-continuous [9] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ RC(Ψ)),
(ι3) strongly continuous [37] :⇔ (z ⊂ Φ⇒ ∆

−1

(z) ∈ > ∩ C(Ψ)) (identically (ℵ ⊂ Ψ⇒ ∆(cl(ℵ)) ⊂ ∆(ℵ))),
(ι4) contra-continuous [6] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ C(Ψ)),
(ι5) contra-super-continuous [38]:⇔ (∀ν ∈ Ψ)(∀Θ ∈ C(∆(ν),Φ)(∃z ∈ RO(ν,Ψ))(∆(z) ⊂ Θ),
(ι6) contra-semicontinuous [9] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ SC(Ψ)),
(ι7) contra g-continuous [39] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ GC(Ψ)),
(ι8) contra gs-continuous [9] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ GSC(Ψ)),
(ι9) contra πg-continuous [7] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ πGC(Ψ)),
(ι10) contra we∗-continuous [16] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ we∗C(Ψ)),
(ι11) contra e∗θ-continuous [40] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ e∗θC(Ψ)),
(ι12) contra e∗-continuous [41] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ e∗C(Ψ)),
(ι13) almost contra e∗-continuous [42] :⇔ (z ∈ RO(Φ)⇒ ∆

−1

(z) ∈ e∗C(Ψ)),
(ι14) almost contra e∗θ-continuous [42] :⇔ (z ∈ RO(Φ)⇒ ∆

−1

(z) ∈ e∗θC(Ψ)),
(ι15) contra bĝ-continuous [25] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ bĝC(Ψ)),
(ι16) contra sbĝ-continuous [43] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ sbĝC(Ψ)).
(ι17) contra πgp-continuous function [8] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ πGPC(Ψ)),
(ι18) contra πgγ-continuous function [20] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ πGγC(Ψ)).
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Remark 3.2.
ι6←− ι4 ←− ι5←− ι2←− ι1←− ι3
↓ ↓
ι8←− ι7
↓ ↓

contra πgs-continuous← ι9
↓ ↓
ι18← ι17

Remark 3.3. As can be seen from the samples below, reversibility of the consequences in the above diagram need not
to be true.

Example 3.1. > = {∅, {ν2}, {ν1, ν4}, {ν2, ν3}, {ν1, ν2, ν4}, {ν1, ν2, ν3, ν4},Ψ} is the topology on Ψ = {ν1, ν2, ν3, ν4, ν5}.
Since mappings under ∆ : Ψ → Ψ are listed as ∆(ν1) = ν1, ∆(ν2) = ν2, ∆(ν3) = ν3, ∆(ν4) = ν5, ∆(ν5) = ν4 the
contra πgs-continuity of ∆ is evident. However, it is neither contra πg-continuous nor contra gs-continuous since
∆
−1

({ν2}) = {ν2} /∈ πGC(Ψ) and ∆
−1

({ν2}) = {ν2} /∈ πGSC(Ψ).

Example 3.2. Let Ψ = {ν1, ν2, ν3, ν4}, > = {∅, {ν1}, {ν2}, {ν1, ν2},Ψ}. Match-ups for ∆ : Ψ→ Ψ are

∆(ν1) = ∆(ν2) = ∆(ν3) = ν1,∆(ν4) = ν3.

∆ is contra πgs-continuous, but it is not contra e∗θ-continuous since ∆
−1

({ν1}) = ∆
−1

({ν1, ν2}) = {ν1, ν2, ν3} is not
e∗θ-closed w.r.t. >.

Example 3.3. Given Ψ = {ν1, ν2, ν3, ν4}, > = {∅, {ν1}, {ν2}, {ν1, ν2},Ψ}. Match-ups for ∆ : Ψ→ Ψ are

∆(ν1) = ν3,∆(ν2) = ν1,∆(ν3) = ∆(ν4) = ν4.

Although ∆ is contra πgs-continuous, it is not almost contra e∗-continuous,since {ν1, ν3} is regular open and
∆
−1

({ν1, ν3}) = {ν1, ν2} is not an e∗-closed. By checking the connections between these class of functions in [42] we
can easily state that ∆ cannot be almost contra e∗θ-continuous, contra e∗θ-continuous and contra e∗-continuous.

Example 3.4. > = {∅, {ν1}, {ν2}, {ν2, ν1}, {ν3, ν1}, {ν1, ν3, ν2}, {ν1, ν2, ν4},Ψ} is a topology on Ψ = {ν1, ν2, ν3, ν4}.
Match-ups of ∆ : Ψ→ Ψ are

∆(ν1) = ν1,∆(ν2) = ν2,∆(ν3) = ∆(ν4) = ν4.

Since ∆
−1

({ν1, ν2}) = ∆
−1

({ν1, ν2, ν3}) = {ν1, ν2} /∈ πGSC(Ψ), ∆ is not contra πgs-continuous. However, it is
contra e∗θ-continuous. So it is contra e∗-continuous, almost contra e∗θ-continuous and almost contra e∗-continuous.

As seen from the examples above contra πgs-continuity does not require almost contra e∗θ-continuity, almost
contra e∗-continuity, contra e∗θ-continuity and contra e∗-continuity. It is also clear that almost contra e∗θ-continuity,
almost contra e∗-continuity, contra e∗θ-continuity and contra e∗-continuity does not require contra πgs-continuity.
As another result we can state that contra we∗-continuity does not require contra πgs-continuity.

Research Question Does contra πgs-continuity require contra we∗-continuity?

Example 3.5. > = {∅, {ν1}, {ν2}, {ν1, ν2}, {ν3, ν1}, {ν1, ν3, ν2}, {ν2, ν1, ν4},Ψ} is a topology on Ψ = {ν1, ν2, ν3, ν4}.
Match-ups of ∆ : Ψ→ Ψ are

∆(ν1) = ν3,∆(ν2) = ν2,∆(ν3) = ν1,∆(ν4) = ν2

∆ is contra πgs-continuous, but it is not contra bĝ-continuous since ∆
−1

({ν1, ν3}) = {ν1, ν3} is not bĝ-closed. So it
cannot be contra sbĝ-continuous.

Example 3.6. > = {∅, {ν1, ν5}, {ν2, ν4}, {ν1, ν2, ν4, ν5},Ψ} is a topology on Ψ = {ν1, ν2, ν3, ν4, ν5}. Match-ups of
∆ : Ψ→ Ψ are

∆(ν1) = ν1,∆(ν2) = ν2,∆(ν3) = ∆(ν4) = ν3,∆(ν5) = ν5

∆ is contra bĝ-continuous. However, since ∆
−1

({ν1, ν2, ν4, ν5}) = {ν1, ν2, ν5} /∈ πGSC(Ψ), it is not contra πgs-
continuous.
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As seen from the examples above there is no relation between contra bĝ-continuity and contra πgs-continuity.
As another result we see that a contra πgs-continuity does not require contra sbĝ-continuity.

Research Question Does contra sbĝ-continuity require contra πgs-continuity?

Example 3.7. [8] Let > = {∅, {ν1}, {ν2}, {ν1, ν2}, {ν3, ν2}, {ν3, ν2, ν1},Ψ} and ⊥ = {∅, {ν1},Ψ} be two topologies
on Ψ = {ν1, ν2, ν3, ν4}. The identity function ∆ : (Ψ,>) → (Ψ,⊥) is contra πgs-continuous, but it is not contra
πgp-continuous.

Example 3.8. [8] Let > = {∅, {ν2}, {ν3, ν2}, {ν1, ν4}, {ν1, ν2, ν4}, {ν1, ν2, ν4, ν3},Ψ} and ⊥ = {∅, {ν4},Ψ} be two
topologies on Ψ = {ν1, ν2, ν3, ν4, ν5}. The identity function ∆ : (Ψ,>)→ (Ψ,⊥) is contra πgp-continuous and contra
πgγ-continuous, but it is not contra πgs-continuous.

As seen from Example 3.7 and Example 3.8 there is no connection between contra πgp-continuity and contra
πgs-continuity. Example 3.8 also shows that contra πgγ-continuity does not require contra πgs-continuity.

Theorem 3.2. [4] Let ℵ ⊂ Ψ, afterwards ℵ ∈ RO(Ψ) if and only if ℵ ∈ πO(Ψ) ∩ πGSC(Ψ).

Definition 3.3. ∆ : Ψ→ Φ is called as:
(ι1) π-continuous [3] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ πO(Ψ)),
(ι2) πg-continuous [3] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ πGO(Ψ)),
(ι3) πgs-continuous [4] :⇔ (z ∈ C(Φ)⇒ ∆

−1

(z) ∈ πGSC(Ψ)),
(ι4) completely continuous [44] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ RO(Ψ)).

Theorem 3.3. Whenever ∆ : Ψ→ Φ, afterwards the statement below is satisfied:
∆ is contra πgs-continuous and π-continuous if and only if ∆ is completely continuous.

Proof. Obvious from Theorem 3.2.

Theorem 3.4. Under the circumstance πGSO(Ψ) is closed under arbitrary unions, it can be stated that whenever ∆ : Ψ→ Φ
is contra πgs-continuous and Φ is regular, afterwards ∆ is πgs-continuous.

Definition 3.4. Whenever πGSC(Ψ) ⊂ SC(Ψ) afterwards Ψ is accepted as πgs-T 1
2

[4].

Theorem 3.5. Whenever Ψ is considered as πgs-T 1
2

space afterwards, contra πgs-continuity, contra-semicontinuity and
contra gs-continuity of ∆ : Ψ→ Φ are identical.

Proof. Assume that Ψ as a πgs-T 1
2

space. Since SC(Ψ) ⊂ πGSC(Ψ), we have SC(Ψ) = πGSC(Ψ). Using the relation
SC(Ψ) ⊂ GSC(Ψ), we obtain πGSC(Ψ) ⊂ GSC(Ψ). Since GSC(Ψ) ⊂ πGSC(Ψ), we have GSC(Ψ) = πGSC(Ψ).
Therefore πGSC(Ψ) = SC(Ψ) = GSC(Ψ).

Theorem 3.6. For each i ∈ I , pi stands for projection of
∏

Φi onto Φi. If ∆ : Ψ →
∏

Φi is contra πgs-continuous, then
pi ◦∆ : Ψ→ Φi is contra πgs-continuous for each i ∈ I .

Proof. Since pi is continuous and ∆ is contra πgs-continuous, we can state that p
−1

i (Ui) is open in
∏

Yi for any
Ui ∈ ⊥i and (pi ◦∆)

−1

(Ui) = ∆
−1

(p
−1

i (Ui)) ∈ πGSC(Ψ). Hereby, pi ◦∆ is contra πgs-continuous.

Definition 3.5. A topological space Ψ is said to be locally πgs-indiscrete if πGSO(Ψ) ⊂ C(Ψ).

Theorem 3.7. The fact that Ψ is locally πgs-indiscrete for contra πgs-continuous ∆ : Ψ→ Φ requires that ∆ is continuous.

Proof. Allow z ∈ ⊥. Since ∆ is contra πgs-continuous, ∆
−1

(z) ∈ πGSC(Ψ). Since Ψ is locally πgs-indiscrete,
∆
−1

(z) ∈ >.

Theorem 3.8. Whenever Ψ is a πgs-T 1
2

for any ∆ : Ψ→ Φ, afterwards following are equivalent :
(ι1) ∆ is completely continuous;
(ι2) ∆ is π-continuous and contra πgs-continuous;
(ι3) ∆ is π-continuous and contra gs-continuous;
(ι4) ∆ is π-continuous and contra-semicontinuous.
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Proof. Equivalence of (ι2), (ι3) and (ι4) is obvious from Theorem 3.5 and the equivalence of (ι1) and (ι2) can be
easily seen from Theorem 3.2.

Definition 3.6. The topological space (Ψ,>) is called:
(ι1) submaximal [45] :⇔ (∀ℵ ⊂ Ψ)(cl(ℵ) = Ψ⇒ ℵ ∈ >),
(ι2) extremally disconnected [45] :⇔ (∀ℵ ⊂ Ψ)(ℵ ∈ > ⇒ cl(ℵ) ∈ >).

Definition 3.7. ∆ : Ψ→ Φ is called contra α-continuous [46] (correspondingly contra precontinuous [46], contra
β-continuous [47], contra γ-continuous [48]) if the preimage of every open subsets of Φ is α-closed (correspondingly
preclosed, β-closed, γ-closed) in Ψ.

Lemma 3.1. For any (Ψ,>), if πGSC(Ψ) is closed under finite unions then, πgs-> = {U ⊂ Ψ : clπgs(Ψ\U) = Ψ\U}.

Theorem 3.9. Whenever Ψ is extremally disconnected, submaximal and πgs-T 1
2

for any ∆ : Ψ→ Φ, afterwards the following
are equivalent:
(ι1) ∆ is contra πgs-continuous;
(ι2) ∆ is contra gs-continuous;
(ι3) ∆ is contra-semicontinuous;
(ι4) ∆ is contra-continuous;
(ι5) ∆ is contra precontinuous;
(ι6) ∆ is contra β-continuous;
(ι7) ∆ is contra α-continuous;
(ι8) ∆ is contra γ-continuous.

Proof. In an extremally disconnected submaximal space (Ψ,>),

> = αO(Ψ) = SO(Ψ) = PO(Ψ) = γO(Ψ) = βO(Ψ).

From this fact we can say that (ι3), (ι4), (ι5), (ι6), (ι7), (ι8) are equivalent. The equivalence of (ι1), (ι2), (ι3) is obvious
from Theorem 3.5.

Theorem 3.10. Whenever Ψ is said to be extremally disconnected, afterwards any ∆ : Ψ→ Φ is contra πgs-continuous and
πgs-continuous.

Definition 3.8. ∆ : Ψ→ Φ is said to be πgs-irresolute [4] if ∆
−1

(z) ∈ πGSO(Ψ) for each z ∈ πGSO(Φ).

Theorem 3.11. For ∆ : Ψ→ Φ and ρ : Φ→ ζ following properties hold:
(ι1) If ∆ is πgs-irresolute and ρ is contra πgs-continuous, then ρ ◦∆ is contra πgs-continuous;
(ι2) If ∆ is contra πgs-continuous and ρ is continuous, then ρ ◦∆ is contra πgs-continuous;
(ι3) If ∆ is contra πgs-continuous and ρ is RC-continuous, then ρ ◦∆ is πgs-continuous;
(ι4) If ∆ is πgs-continuous and ρ is contra continuous, then ρ ◦∆ is contra πgs-continuous;
(ι5) If ∆ is πgs-irresolute and ρ is RC-continuous (correspondingly contra π-continuous, contra-continuous, contra g-
continuous, contra πg-continuous, contra-semicontinuous, contra gs-continuous), then ρ ◦∆ is contra πgs-continuous.

Definition 3.9. ∆ : Ψ→ Φ is characterized as πgs-open if ∆(ℵ) is πgs-open in Φ for each πgs-open subset ℵ of Ψ.

Theorem 3.12. ∆ : Ψ → Φ and ρ : Φ → ζ be two functions and suppose that πGSC(Φ) is closed under arbitrary
intersections. Whenever ∆ is surjective πgs-open function and ρ ◦ ∆ is contra πgs-continuous, afterwards ρ is contra
πgs-continuous.

Proof. Suppose µ ∈ Φ and Θ ∈ C(ρ(µ), ζ). Since ∆ is surjective, existence of ν ∈ Ψ satisfying ∆(ν) = µ is clear.
Naturally, Θ ∈ C(ρ ◦∆(ν), ζ). Since ρ ◦∆ is contra πgs-continuous, a ∈ πGSO(ν,Ψ) naturally appears satisfying
ρ ◦∆(a) ⊂ Θ relation. Since ∆ is πgs-open, ∆(a) is an element of πGSO(µ,Φ). Hence, for each µ ∈ Φ and for each
Θ ∈ C(ρ(µ), ζ), existence of ∆(a) = z ∈ πGSO(µ,Φ) is natural satisfying ρ(z) ⊂ Θ. By Theorem 3.1 ρ is contra
πgs-continuous.

Corollary 3.1. Whenever πGSC(Φ) is closed under arbitrary intersections and ∆ : Ψ→ Φ is surjective πgs-irresolute and
πgs-open, afterwards for any ρ : Φ→ ζ, ρ ◦∆ is contra πgs-continuous if and only if ρ is contra πgs-continuous.

Proof. Obvious from Theorems 3.11 and 3.12.
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Definition 3.10. ∆ : Ψ→ Φ is characterized as weakly contra πgs-continuous whenever ν ∈ Ψ and Θ ∈ C(∆(ν),Φ),
afterwards a set z ∈ πGSO(ν,Ψ) exists satisfying int(∆(z)) ⊂ Θ.

Definition 3.11. A function ∆ : Ψ→ Φ is called as (πgs-s)-open whenever ∆(z) ∈ SO(Φ) for all z ∈ πGSO(Ψ).

Theorem 3.13. Whenever ∆ : Ψ→ Φ is a weakly contra πgs-continuous and (πgs-s)-open and πGSO(Ψ) is closed under
arbitrary unions, afterwards ∆ is contra πgs-continuous.

Proof. Whenever ν ∈ Ψ and Θ ∈ C(∆(ν),Φ), with the weakly contra πgs-continuity of ∆, as a result the set
z ∈ πGSO(ν,Ψ) appears satisfying int(∆(z)) ⊂ Θ . Since ∆ is (πgs-s)-open, ∆(z) is semi-open in Φ. Hence,
∆(z) ⊂ cl(int(∆(z))) ⊂ cl(Θ) = Θ.

Definition 3.12. frπgs(ℵ) stands for πgs-frontier of ℵ ∈ Ψ and characterized as clπgs(ℵ) ∩ clπgs(Ψ\ℵ).

Theorem 3.14. Let ∆ : Ψ→ Φ be a function. Whenever πGSC(Ψ) is closed under arbitrary intersections then, the set of
whole points ν ∈ Ψ at which ∆ is not contra πgs-continuous is equal to

⋃
{frπgs(∆

−1

(Θ)) : Θ ∈ C(∆(ν),Φ)}.

Proof. Let ν be any element of Ψ at which ∆ is not contra πgs-continuous. Then, there exists a closed subset Θ of Φ

comprising ∆(ν) such that ∆(z) is not contained in Θ for every z ∈ πGSO(ν,Ψ). So z ∩ (Ψ\∆−1

(Θ)) 6= ∅. Then,
we have ν ∈ clπgs(Ψ\∆

−1

(Θ)). Since ν ∈ ∆
−1

(Θ) ⊂ clπgs(∆
−1

(Θ)), ν ∈ frπgs(∆
−1

(Θ)).
For the converse, assume that ∆ is contra πgs-continuous at ν ∈ Ψ and Θ ∈ C(∆(ν),Φ). Naturally a set z ∈
πGSO(ν,Ψ) appears satisfying z ⊂ ∆

−1

(Θ). Therefore, ν ∈ intπgs(∆
−1

(Θ)). Hence, ν /∈ frπgs(∆
−1

(Θ)).

Corollary 3.2. For any ∆ : Ψ→ Φ, whenever πGSC(Ψ) is closed under arbitrary intersections, afterwards ∆ is not contra
πgs-continuous at ν if and only if Θ ∈ C(∆(ν),Φ) appears satisfying ν ∈ frπgs(∆

−1

(Θ)).

4. Preservation theorems
In this section, new separation axioms, connected spaces, compact spaces, covers and graphs related to πgs-open

sets are defined and various results are presented by examining the properties of these new concepts.

Definition 4.1. Ψ is said to be πgs-T1 whenever ν and µ in Ψ are distinct points, sets z ∈ πGSO(ν,Ψ) and
0 ∈ πGSO(µ,Ψ) naturally appears satisfying µ /∈ z and ν /∈ 0.

Definition 4.2. Ψ is said to be πgs-T2 whenever ν and µ in Ψ are distinct points, sets z ∈ πGSO(ν,Ψ) and
0 ∈ πGSO(µ,Ψ) naturally appears satisfying z ∩ 0 = ∅.

Theorem 4.1. Under the assumption 0 is an Uryshon space, whenever ν and µ are distinct points in Ψ a function ∆ : Ψ→ Φ
naturally appears that is contra πgs-continuous at ν and µ and for which ∆(ν) 6= ∆(µ), afterwards Ψ is πgs-T2.

Proof. Assume that ν and µ as distinct points in Ψ. Also, let ∆ : Ψ→ Φ be contra πgs-continuous at ν and µ such
that ∆(ν) 6= ∆(µ). Letting ν

′
= ∆(ν) and µ

′
= ∆(µ) with the knowlegde of Φ is Urysohn, existence of a ∈ O(ν

′
,Φ)

and z ∈ O(µ
′
,Φ) guaranteed such that cl(a) ∩ cl(z) = ∅. Since ∆ is contra πgs-continuous at ν and µ, there exist

πgs-open subsets ℵ and Ω of Ψ comprising ν and µ, correspondingly, such that ∆(ℵ) ⊂ cl(a) and ∆(Ω) ⊂ cl(z).
Hereby, ∆(ℵ ∩ Ω) ⊂ ∆(ℵ) ∩∆(Ω) ⊂ cl(a) ∩ cl(z) = ∅which implies that ℵ ∩ Ω = ∅. Hence, Ψ is πgs-T2.

Corollary 4.1. Whenever ∆ : Ψ→ Φ is contra πgs-continuous injection and Φ is an Urysohn space, afterwards Ψ is πgs-T2.

Definition 4.3. The topological space Ψ is called as,
(ι1) πgs-connected space :⇔ Ψ is not the union of two disjoint non-empty πgs-open sets,
(ι2) gs-connected space [15] :⇔ Ψ is not the union of two disjoint non-empty gs-open sets.

Remark 4.1. Although πgs-connected spaces are gs-connected, the contrary implication is not valid in general.

Example 4.1. Let Ψ = {ν, µ} and > = {∅, {ν},Ψ}. Ψ is gs-connected, but it is not πgs-connected since {ν} and {µ}
are non-empty disjoint πgs-open subsets of Ψ.

Theorem 4.2. For a topological space Ψ the following are equivalent:
(ι1) Ψ is πgs-connected;
(ι2) The only subsets of Ψ which are both πgs-open and πgs-closed are ∅ and Ψ;
(ι3) Each πgs-continuous function of Ψ into a discrete space Φ with at least two points is a constant function.
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Proof. Firstly let Ψ be a topological space.
(ι1)⇒ (ι2) Suppose that ℵ is a proper non-empty subset of Ψ which is both πgs-open and πgs-closed. Then, Ψ\ℵ is
a proper non-empty subset of Ψ which is both πgs-open and πgs-closed, ℵ ∩ (Ψ\ℵ) = ∅ and ℵ ∪ (Ψ\ℵ) = Ψ. But
this result contradicts with the πgs-connectedness of Ψ. Hence, the only subsets of Ψ which are both πgs-open and
πgs-closed ∅ and Ψ.
(ι2)⇒ (ι1) Suppose that Ψ is not πgs-connected. Then as a result two non-empty disjoint πgs-open subsets ℵ and Ω
of Ψ appears such that ℵ ∪ Ω = Ψ. Since ℵ = Ψ\Ω and Ω = Ψ\ℵ, ℵ and Ω are proper non-empty subsets of Ψ which
are both πgs-open and πgs-closed, but this is a contradiction. Hereby, Ψ is πgs-connected.
(ι2)⇒ (ι3) Let Φ be any discrete space with at least two elements and ∆ : Ψ → Φ be any contra πgs-continuous
function. Since Φ is discrete, {µ} is clopen in Φ for each µ ∈ Φ. Therefore, {µ} is both πgs-open and πgs-closed in Φ
for each µ ∈ Φ. We also have Ψ = ∆−1(Φ) = ∆−1(

⋃
{{µ} : µ ∈ Φ}) =

⋃
{∆−1({µ}) : µ ∈ Φ}. By (ι2), ∆−1({µ}) = ∅

or ∆−1({µ}) = Ψ for each µ ∈ Φ. If ∆−1({µ}) = ∅ for some µ ∈ Φ then, ∆ would not be a function anymore. If
there exist at least two distinct elements a and b in Φ such that ∆−1({a}) = Ψ = ∆−1({b}), then ∆ would not be
a function anymore. Therefore, there exists only one element µ of Φ such that ∆−1({µ}) = Ψ, which means that
∆(Ψ) = {µ}. Hence, ∆ is a constant function.
(ι3)⇒ (ι2) Let P be a non-empty set such that P ∈ πGSO(Ψ) ∩ πGSC(Ψ), Φ be any discrete space with at least two
elements and contra πgs-continuous ∆ : Ψ→ Φ defined as ∆(P ) = {ς} and ∆(Ψ\P ) = {η}, for distinct elements ς
and η of Φ. Since ∆ is constant by (ι3), Ψ\P = ∅. Therefore, P = Ψ.

Theorem 4.3. Let ∆ : Ψ → Φ be a surjective contra πgs-continuous function. While Ψ is πgs-connected, Φ cannot be a
discrete space.

Proof. Assume Φ as a discrete space. Let ℵ be any proper non-empty subset of Φ. Since ℵ is clopen in Φ and
∆ : Ψ→ Φ is contra πgs-continuous surjection, ∆−1(ℵ) ∈ πGSO(Ψ) ∩ πGSC(Ψ) is a proper non-empty subset of Ψ.
But this result contradicts with the πgs-connectedness of Ψ. Hence, Φ is not a discrete space.

Theorem 4.4. While whole contra πgs-continuous functions with a domain Ψ into any T0 space Φ is constant, Ψ has to be
πgs-connected.

Proof. Assume that Ψ is not πgs-connected. So, at least one proper non-empty subset ℵ ∈ πGSO(Ψ) ∩ πGSC(Ψ)
appears. Let Φ = {ς, η} and ⊥ = {∅, {ς}, {η},Φ}. Let ∆ : Ψ → Φ be a function such that ∆(ℵ) = {ς} and
∆(Ψ\ℵ) = {η}. Then, Φ is a T0 space and ∆ is a contra πgs-continuous function which is not constant. But this is a
contradiction. Hereby, Ψ has to be πgs-connected.

Theorem 4.5. Whenever ∆ : Ψ→ Φ is surjective contra πgs-continuous function and Ψ is πgs-connected, afterwards Φ has
to be connected.

Proof. Suppose that Φ as a disconnected space. So two non-empty disjoint open sets ℵ and Ω of Φ appear, so that
ℵ ∪ Ω = Φ. So ∆−1(ℵ) 6= ∅, ∆−1(Ω) 6= ∅, ∆−1(ℵ) ∩∆−1(Ω) = ∅, ∆−1(ℵ) ∪∆−1(Ω) = Ψ since ∆ is surjective. Since
∆ is contra πgs-continuous, ∆−1(ℵ) and ∆−1(Ω) are both πgs-open and πgs-closed in Ψ. Therefore, we reach the
result that Ψ is not πgs-connected which is a contradiction. Hereby, Φ is connected.

Theorem 4.6. The projection functions pΨ : Ψ× Φ→ Ψ and pΦ : Ψ× Φ→ Φ are πgs-irresolute.

Proof. Let pΨ : Ψ×Φ→ Ψ be the projection function from Ψ×Φ onto Ψ and ℵ be any πgs-closed subset of Ψ. Then,
pΨ

−1(ℵ) = ℵ × Φ. Let z be any π-open subset of Ψ× Φ involving ℵ × Φ. Then, there exists a π-open subset 0 of Ψ
involving ℵ such that z = 0× Φ. Since ℵ is πgs-closed in Ψ, scl(ℵ) ⊂ 0. Therefore, scl(ℵ)× Φ ⊂ 0× Φ = z. Since
scl(ℵ × Φ) ⊂ scl(ℵ) × Φ, we have scl(ℵ × Φ) ⊂ z. So ℵ × Φ = p−1

Ψ (ℵ) is πgs-closed in Ψ × Φ. Hence, projection
function pΨ : Ψ×Φ→ Ψ is πgs-irresolute. The proof for the other projection function pΦ : Ψ×Φ→ Φ is similar.

Theorem 4.7. Whenever ∆ : Ψ → Φ is a πgs-irresolute surjection and Ψ is πgs-connected, afterwards Φ has to be
πgs-connected.

Proof. Assume that Φ is not πgs-connected. Naturally, two non-empty disjoint πgs-open subsets z and Ω of Φ
appears so that z ∪ Ω = Φ. Then ∆−1(z) and ∆−1(Ω) are non-empty πgs-open subsets of Ψ, since ∆ is surjective
and πgs-irresolute. Besides, ∅ = ∆−1(z ∩ Ω) = ∆−1(z) ∩∆−1(Ω) and Ψ = ∆−1(z) ∪∆−1(Ω). Therefore, we reach
the result that Ψ is not πgs-connected which is a contradiction. Hereby, Φ is πgs-connected.

Theorem 4.8. Whenever the product space of two non-empty spaces is πgs-connected, each factor space has to be πgs-
connected.
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Proof. Accept Ψ and Φ as non-empty topological spaces and the product space Ψ× Φ as πgs-connected. Since the
projection functions are πgs-irresolute and surjective, by Theorem 4.7, Ψ and Φ are πgs-connected.

Definition 4.4. A topological space Ψ is called as:
(ι1) πgs-compact if every πgs-open cover of Ψ has a finite subcover,
(ι2) countably πgs-compact if every countable cover of Ψ by πgs-open sets has a finite subcover,
(ι3) πgs-Lindelöf if every πgs-open cover of Ψ has a countable subcover.

Definition 4.5. ℵ ∈ Ψ is characterized to be πgs-compact relative to Ψ whenever every πgs-open cover of ℵ by
πgs-open sets of Ψ has a finite subcover.

Theorem 4.9. Whenever ∆ : Ψ→ Φ is contra πgs-continuous and ℵ ⊂ Ψ is πgs-compact relative to Ψ, afterwards ∆(ℵ)
has to be strongly S-closed.

Proof. Let {Θi : i ∈ I} be a closed cover of ∆(ℵ) by closed subsets of the subspace ∆(ℵ). Then for each i ∈ I ,
there exits a closed set ℵi in Φ such that ∆(ℵ) =

⋃
{Θi : i ∈ I} =

⋃
{ℵi ∩∆(ℵ) : i ∈ I} = (

⋃
{ℵi : i ∈ I}) ∩∆(ℵ)

and Θi = ℵi ∩ ∆(ℵ). Since for each ν ∈ ℵ, we have ∆(ν) ∈ ∆(ℵ) and since ∆ is contra πgs-continuous, for
each ν ∈ ℵ there exists i(ν) ∈ I and there exists zν ∈ πGSO(ν,Ψ) such that ∆(ν) ∈ ℵi(ν) and ∆(zν) ⊂ ℵi(ν).
Then, {zν : ν ∈ ℵ} is a cover of ℵ by πgs-open sets of Ψ. Since ℵ is πgs-compact relative to Ψ, there exists a
finite subset ℵ0 of ℵ such that ℵ ⊂

⋃
{zν : ν ∈ ℵ0}. Then, we obtain ∆(ℵ) ⊂

⋃
{ℵi(ν) : ν ∈ ℵ0}. Therefore,

∆(ℵ) = ∆(ℵ) ∩ (
⋃
{ℵi(ν) : ν ∈ ℵ0}) =

⋃
{∆(ℵ) ∩ ℵi(ν) : ν ∈ ℵ0} =

⋃
{Θi(ν) : ν ∈ ℵ0} and this means that

{Θi(ν) : ν ∈ ℵ0} is a finite subcover of {Θi : i ∈ I}. Hence, ∆(ℵ) is strongly S-closed.

Corollary 4.2. Whenever ∆ : Ψ→ Φ is a contra πgs-continuous surjection and Ψ is πgs-compact, afterwards Φ has to be
strongly S-closed.

Theorem 4.10. Whenever the product space of two non-empty spaces is πgs-compact, afterwards each factor space has to be
πgs-compact.

Proof. Let Ψ×Φ be the product space of the non-empty topological spaces Ψ and Φ and Ψ×Φ be πgs-compact. Let
{ai : i ∈ I} be any πgs-open cover of Ψ. Then, Ψ× Φ = p−1

Ψ (Ψ) = p−1
Ψ (

⋃
{ai : i ∈ I}) =

⋃
{p−1

Ψ (ai) : i ∈ I}. Since
pΨ is πgs-irresolute, p−1

Ψ (ai) = ai × Φ is πgs-open in Ψ× Φ for each i ∈ I . Therefore, {ai × Φ : i ∈ I} is a πgs-open
cover of Ψ×Φ. Since Ψ×Φ is πgs-compact, there exists a finite subset I0 of I such that

⋃
{ai ×Φ : i ∈ I0} = Ψ×Φ.

Then, Ψ = pΨ(Ψ × Φ) = pΨ(
⋃
{ai × Φ : i ∈ I0}) = pΨ((

⋃
{ai : i ∈ I0}) × Φ) =

⋃
{ai : i ∈ I0}. Hence, Ψ is

πgs-compact. The proof for the space Φ is similar.

Theorem 4.11. Contra πgs-continuous images of πgs-Lindelöf (correspondingly countably πgs-compact) spaces are strongly
S-Lindelöf (correspondingly strongly countably S-closed).

Proof. Let Ψ be a πgs-Lindelöf space and ∆ : Ψ→ Φ be a surjective contra πgs-continuous function. Let {Θi : i ∈ I}
be a closed cover of Φ. Since ∆ is contra πgs-continuous, {∆−1(Θi) : i ∈ I} is a πgs-open cover of Ψ. Since Ψ
is πgs-Lindelöf, there exists a countable subset I0 of I such that

⋃
{∆−1(Θi) : i ∈ I0} = Ψ. Since ∆ is surjective,

Φ = ∆(Ψ) = ∆(
⋃
{∆−1(Θi) : i ∈ I0}) =

⋃
{∆(∆−1(Θi)) : i ∈ I0} =

⋃
{Θi : i ∈ I0} and then Φ =

⋃
{Θi : i ∈ I0}.

Hence, Φ is strongly S-Lindelöf. The proof for the contra πgs-continuous images of countably πgs-compact spaces
is similar.

Definition 4.6. The graph G(∆) of ∆ : Ψ→ Φ is said to be a contra πgs-graph if for each (ν, µ) in (Ψ× Φ)\G(∆),
there exist a set ℵ in πGSO(ν,Ψ) and a set Ω in C(µ,Φ) such that (ℵ × Ω) ∩G(∆) = ∅.

Theorem 4.12. The following are equivalent for the graph G(∆) of any ∆ : Ψ→ Φ.
(ι1) G(∆) is contra πgs-graph;
(ι2) For all (ν, µ) ∈ (Ψ × Φ)\G(∆), there exist a πgs-open set ℵ ⊂ Ψ comprising ν and a closed set Ω ⊂ Φ comprising µ
such that ∆(ℵ) ∩ Ω = ∅.

Theorem 4.13. Whenever ∆ : Ψ→ Φ is contra πgs-continuous and Φ is an Uryshon space, afterwards G(∆) has to be a
contra πgs-graph.

Proof. For all (ν, µ) ∈ (Ψ×Φ)\G(∆), it is clear that ∆(ν) 6= µ. Since Φ is Uryshon space, there exist open sets aν and
aµ in Φ comprising ∆(ν) and µ, correspondingly, such that cl(aν) ∩ cl(aµ) = ∅. Since ∆ is contra πgs-continuous, a
ℵ ∈ πGSO(ν,Ψ) appears so that ∆(ℵ) ⊂ cl(aν). Then, ∆(ℵ) ∩ cl(aµ) = ∅. Hereby, G(∆) is contra πgs-graph.
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Theorem 4.14. Let ∆ : Ψ→ Φ be a function and ρ : Ψ→ Ψ×Φ be the graph function of ∆ defined as ρ(ν) = (ν,∆(ν)) for
every ν ∈ Ψ. If ρ is contra πgs-continuous, then ∆ is contra πgs-continuous.

Proof. For all open set z ⊂ Φ, it is clear that Ψ×z is open in Ψ× Φ. Since ρ is a contra πgs-continuous function,
∆−1(z) = ρ−1(Ψ×z) is πgs-closed in Ψ. Hence, ∆ is contra πgs-continuous.

Theorem 4.15. Let ∆ : Ψ → Φ and ρ : Ψ → Φ be two contra πgs-continuous functions. If Φ is an Uryshon space and
πGSO(Ψ) is closed under finite intersections then, the set E = {ν ∈ Ψ : ∆(ν) = ρ(ν)} is πgs-closed in Ψ.

Proof. If we show that “ν /∈ E ⇒ ν /∈ clπgs(E)”, then the theorem will be proved. Let ν ∈ Ψ\E. Then, ∆(ν) 6= ρ(ν).
Since Φ is Uryshon, there exist open subsets z and 0 of Φ comprising ∆(ν) and ρ(ν), correspondingly, such that
cl(z) ∩ cl(0) = ∅. Since ∆ and ρ are contra πgs-continuous, ∆−1(cl(z)) and ρ−1(cl(0)) are πgs-open in Ψ. Let
∆−1(cl(z)) = a1 and ρ−1(cl(0)) = a2. Then, ν ∈ a1 ∩ a2. Let ℵ = a1 ∩ a2. Since πGSO(Ψ) is closed under finite
intersections, ℵ is a πgs-open set in Ψ comprising ν. So, ∆(ℵ) ∩ ρ(ℵ) = ∅. Hence, ℵ ∩ E = ∅. By Lemma 2.1,
ν /∈ clπgs(E).

Definition 4.7. For a subset ℵ of space Ψ, if clπgs(ℵ) = Ψ then ℵ is said to be πgs-dense in Ψ.

Theorem 4.16. Let ∆ : Ψ→ Φ and ρ : Ψ→ Φ be two functions. If
(ι1) Φ is an Uryshon space and πGSO(Ψ) is closed under finite intersections,
(ι2) ∆ and ρ are contra πgs-continuous,
(ι3) ∆ = ρ on a πgs-dense subset ℵ of Ψ,
then ∆ = ρ on Ψ.

Proof. By Theorem 4.15, the set E = {ν ∈ Ψ : ∆(ν) = ρ(ν)} is πgs-closed in Ψ. Since ∆ = ρ on a πgs-dense subset ℵ,
we have ℵ ⊂ E . Then, Ψ = clπgs(ℵ) ⊂ clπgs(E) = E. Hence, E = Ψ.

Definition 4.8. Ψ is characterized to be weakly Hausdorff [49] if each element of Ψ is an intersection of regular
closed sets.

Theorem 4.17. Let ∆ : Ψ→ Φ be an injective contra πgs-continuous function. If Φ is weakly Hausdorff then, Ψ is πgs-T1.

Proof. Let ν and µ be any two elements in Ψ such that ν 6= µ. Since ∆ is injective, ∆(ν) 6= ∆(µ). Since Φ is weakly
Hausdorff, regular closed subsets Θ1 and Θ2 of Φ comprising ∆(ν) and ∆(µ), correspondingly, appears such that
∆(ν) /∈ Θ2 and ∆(µ) /∈ Θ1. Since regular closed sets are closed and ∆ is contra πgs-continuous, ∆−1(Θ1) and
∆−1(Θ2) are πgs-open subsets of Ψ comprising ν and µ, correspondingly, such that µ /∈ ∆−1(Θ1) and ν /∈ ∆−1(Θ2).
Hence, Ψ is πgs-T1.

Theorem 4.18. If ∆ : Ψ→ Φ is an injective function whose graph G(∆) is contra πgs-graph then, Ψ is πgs-T1.

Proof. Let ν and µ be any two elements in Ψ such that ν 6= µ. Since ∆ is injective, (ν,∆(µ)) ∈ (Ψ× Φ)\G(∆). Since
G(∆) is contra πgs-graph, there exists a πgs-open subset a of Ψ and a closed subset Θ of Φ comprising ν and ∆(µ),
correspondingly, such that ∆(a)∩Θ = ∅. Then ∆−1(Θ)∩a = ∅ and µ /∈ a. Similarly, since (∆(ν), µ) ∈ (Ψ×Φ)\G(∆),
there exists a πgs-open subset Ω of Ψ comprising µ such that ν /∈ Ω. Hence, Ψ is πgs-T1.

Theorem 4.19. Let ∆ : Ψ→ Φ be an injective contra πgs-continuous function. Whenever Φ is an ultra Hausdorff space, Ψ
has to be πgs-T2.

Proof. Let ν and µ be any two elements in Ψ such that ν 6= µ. Since ∆ is injective, ∆(ν) 6= ∆(µ). Since Φ is an ultra
Hausdorff space, there exist disjoint clopen subsets a1 and a2 of Φ comprising ∆(ν) and ∆(µ), correspondingly.
Then, ∆−1(a1) and ∆−1(a2) are disjoint subsets of Ψ comprising ν and µ, correspondingly, which are both πgs-open
and πgs-closed in Ψ since ∆ is contra πgs-continuous. Hence, Ψ is πgs-T2.

Definition 4.9. A space Ψ is said to be πgs-normal if each pair of non-empty disjoint closed sets can be seperated
by disjoint πgs-open sets.

Theorem 4.20. Let ∆ : Ψ → Φ be an injective closed contra πgs-continuous function. If Φ is ultra normal, then Ψ is
πgs-normal.

Proof. Let Θ1 and Θ2 be any two non-empty disjoint closed subsets of Ψ. Since ∆ is injective and closed, ∆(Θ1) and
∆(Θ2) are non-empty disjoint closed subsets of Φ. Since Φ is ultra normal, there exist disjoint clopen subsets a1

and a2 of Φ such that ∆(Θ1) ⊂ a1 and ∆(Θ2) ⊂ a2 . Since ∆ is contra πgs-continuous, ∆−1(a1) and ∆−1(a2) are
disjoint πgs-open subsets of Ψ such that Θ1 ⊂ ∆−1(a1) and Θ2 ⊂ ∆−1(a2). Hence, Ψ is πgs-normal.
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5. Conclusion
It is understood from the studies of many researchers on contra continuity, which is one of the types of continuity

that has been frequently studied recently as in the past, still arouses curiosity today. Researchers have not only
examined various properties of the different types of contra continuous functions they have identified, but also
examined the relationships between different contra continuities. In this study, we not only share the concept of
contra πgs-continuity [8] related with πgs-open sets defined by Çaksu [4], but also investigated various properties
of contra πgs-continuous functions and examined the relationships between different contra continuities. Remark
3.2 clearly shows that the concept of contra πgs-continuity is weaker than the concepts of contra πg-continuity [7],
contra gs-continuity [9], contra g-continuity [39], contra semicontinuity [9], contra super continuity [38], contra
continuity [6], strong contra continuity [37], perfect continuity [35] and RC continuity [9]. We also obtained
important results by examining various properties related to separation axioms, connectedness, compactness,
cover and graph concepts. We believe that our study will shed light on the studies researchers interested in contra
continuous functions.
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Abstract
In this article, the new sequence space M̃q

u is acquainted, described as the domain of the 4d (4-dimensional)
q-Cesàro matrix operator, which is the q-analogue of the first order 4d Cesàro matrix operator, on the
space of bounded double sequences. In the continuation of the study, the completeness of the new space
is given and the inclusion relation related to the space is presented. In the last two parts, the duals of the
space are determined and some matrix classes are acquired.
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1. Introduction
Obtaining q-analoques of known results has recently been found interesting by researchers. The q-analogue of a

mathematical expression is the result that contains the parameter q and is more general than that expression, but
reduces to the basic expression for q → 1. According to the basic information about q-calculus acquired from [1],
the q-analogue of any nonnegative number r is described as

[r]q =


1− qr

1− q
, q 6= 1,

r , q = 1.

A little after the concept of convergence of double series with real terms (convergence in the Pringsheim’s sense)
introduced by Pringsheim [2], Hardy [3] introduced regular convergence, which also requires convergence according
to each index. Zeltser [4] also contributed to these developments by comprehensively examining the topological
structure of double sequences. The spaces of all double sequences that are convergent in the Pringsheim’s sense (CP ),
regularly convergent (Cr), p-absolutely summable (Lp) and bounded (Mu) can be given as examples of the most
basic double sequence spaces. It is known that a convergent double sequences in the Pringsheim’s sense (shortly
P-convergent) need not be bounded. The space of bounded and P-convergent double sequences is specifically
denoted by CbP . Additionally, for p = 1, the space Lp [5] is reduced to the space Lu [6]. The linear space of all
double sequences with real terms is represented by Ω.
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If u = (ulm) ∈ Ω is ϑ-convergent to a limit point M , in that case, it is expressed as ϑ− liml,m→∞ ulm = M for
ϑ ∈ {P, bP, r}. Zeltser [6] described the double sequences erk = (erklm) by

erklm :=

{
1 , if (r, k) = (l,m)
0 , otherwise

and e by e =
∑
r,k e

rk, where
∑
r,k e

rk =
∑∞
r=0

∑∞
k=0 e

rk. If brklm = 0 for l > r or m > k or both, the 4d matrix
B = (brklm) is called as triangular matrix and also if brkrk 6= 0, then the 4d triangular matrix B is named as triangle
for all r, k, l,m ∈ N, where N = {0, 1, 2, 3, ...}.

Consider that Ψ,Λ ∈ Ω, u = (ulm) ∈ Ψ and the 4d matrix B = (brklm). If (Bu)rk = ϑ −
∑
l,m brklmulm (the

B-transform of u) is in Λ, in that case B is called as a matrix mapping from Ψ into Λ and it is denoted by B : Ψ→ Λ
for all u = (ulm) ∈ Ψ. Moreover, B ∈ (Ψ : Λ) if and only if Brk ∈ Ψβ(ϑ) and Bu ∈ Λ, where Brk = (brklm)l,m∈N,
(Ψ : Λ) = {B = (brklm)| B : Ψ→ Λ} for all r, k ∈ N and Ψβ(ϑ) is the β(ϑ) dual of Ψ.

The ϑ-summability domain Ψ
(ϑ)
B of the 4d matrix B is expressed as

Ψ
(ϑ)
B :=

u = (ulm) ∈ Ω : Bu :=

ϑ−∑
l,m

brklmulm


r,k∈N

exists, Bu ∈ Ψ ⊂ Ω

 . (1.1)

The 4d matrix that transforms bounded andP-convergent double sequences intoP-convergent double sequences
with the same limit is called as RH regular [7, 8].

The double series spaces BS and CSϑ spaces, whose sequences of partial sums are in the spacesMu and Cϑ,
respectively, are described by Altay and Başar [9]. In addition to other related studies on single and double sequence
spaces, some q-analogue studies and their references can be also expressed as [10–34].

Recently, Erdem and Demiriz [35] constructed a new double sequence space using the domain in Lp space of
the 4d q-Cesàro matrix operator (q-analogue of the ordinary 4d Cesàro matrix) presented by Çinar and Et [36] and
examined some algebraic and topological properties of this space.

As a continuation of the studies mentioned above, this article aims to acquaint the new double sequence space
M̃q

u as the domain of the 4d q-Cesàro matrix on the spaceMu, to examine its completeness, to determine its duals
and to present some matrix mappings classes related aforementioned space.

2. q-Cesàro bounded double sequence space M̃q
u

In this section, the space M̃q
u ∈ Ω is constructed and we obtain that M̃q

u is Banach space and linearly isomorphic
toMu. Finally, an inclusion relation is presented about the space M̃q

u.
The 4d Cesàro matrix C = (crklm) of order one is given by

crklm :=


1

(r + 1)(k + 1)
, 0 ≤ l ≤ r , 0 ≤ m ≤ k,

0 , otherwise,

(2.1)

for all r, k, l,m ∈ N. The 4d q-Cesàro matrix C(1,1)(q) = (czntk(q)) that is the q-analogue of the matrix C and
presented by Çinar and Et [36], is in the form below:

crklm(q) :=


ql+m

[r + 1]q[k + 1]q
, 0 ≤ l ≤ r , 0 ≤ m ≤ k,

0 , otherwise.

(2.2)

In the same study, the authors showed that C(1,1)(q) is RH-regular for q ≥ 1. The inverse (C(1,1)(q))
−1 of the

C(1,1)(q) is presented by

c−1rklm(q) :=


(−1)r+k−(l+m) [l + 1]q[m+ 1]q

qr+k
, r − 1 ≤ l ≤ r , k − 1 ≤ m ≤ k,

0 , otherwise.

(2.3)



On the q-Cesàro bounded double sequence space 147

From the mentioned above, it can be seen that the C(1,1)(q)-transform of a u = (utk) ∈ Ω is denoted by

νrk := (C(1,1)(q)u)rk =
1

[r + 1]q[k + 1]q

r,k∑
l,m=0

ql+mulm, (r, k ∈ N). (2.4)

It can be said that for the case q → 1, C(1,1)(q) will be reduced to C.
Now, it is acquainted the set M̃q

u of all q-Cesàro bounded double sequences by

M̃q
u =

{
u = (ulm) ∈ Ω : sup

r,k

∣∣∣∣∣∣ 1

[r + 1]q[k + 1]q

r,k∑
l,m=0

ql+mulm

∣∣∣∣∣∣ <∞
}
.

Thus, M̃q
u can be rephrased as M̃q

u = (Mu)C(1,1)(q) with the impression (1.1) and it can be called as q-Cesàro
bounded double sequence space.

When q approaches 1, M̃q
u is reduced to the space M̃u presented in [37]. From now on, any term with a negative

index will be ignored and assumed to be q > 1.

Theorem 2.1. The set M̃q
u is a Banach space with

‖u‖M̃q
u

= ‖C(1,1)(q)u‖Mu
=

 sup
r,k∈N

∣∣∣∣∣∣ 1

[r + 1]q[k + 1]q

r,k∑
l,m=0

ql+mulm

∣∣∣∣∣∣
 . (2.5)

Proof. It is a known procedure to show that M̃q
u is a normed linear space with (2.5) and it is omitted.

Consider the Cauchy sequence u(n) =
(
u
(n)
lm

)
∈ M̃q

u for n ∈ N. In that case, ∀ε > 0, ∃M ∈ N such that

‖u(n) − u(z)‖M̃q
u

=

sup
r,k

∣∣∣∣∣∣ 1

[r + 1]q[k + 1]q

r,k∑
l,m=0

ql+m
(
u
(n)
lm − u

(z)
lm

)∣∣∣∣∣∣


=

(
sup
r,k

∣∣∣(C(1,1)(q)u
(n)
)
rk
−
(
C(1,1)(q)u

(z)
)
rk

∣∣∣) < ε (2.6)

for all n, z > M and it is reached that
{(
C(1,1)(q)u

(n)
)
rk

}
n∈N is Cauchy inMu. From the completeness ofMu,{(

C(1,1)(q)u
(n)
)
rk

}
n∈N converges and it can be written that

{(
C(1,1)(q)u

(n)
)
rk

}
n∈N →

(
C(1,1)(q)u

)
rk

for n→∞. In
that case, we may define the sequence

(
C(1,1)(q)u

)
rk

. After all of these, it must be proven that
(
C(1,1)(q)u

)
rk
∈

Mu. From
{(
C(1,1)(q)u

(n)
)
rk

}
n∈N ∈ Mu, it is obtained that

(
supr,k

∣∣(C(1,1)(q)u
(n)
)
rk

∣∣) < ∞. So, we see that(
C(1,1)(q)u

)
rk
∈Mu from

‖
(
C(1,1)(q)u

)
rk
‖Mu

=

(
sup
r,k

∣∣(C(1,1)(q)u
)
rk

∣∣)

≤

(
sup
r,k

∣∣∣(C(1,1)(q)u
(n)
)
rk
−
(
C(1,1)(q)u

)
rk

∣∣∣)

+

(
sup
r,k

∣∣∣(C(1,1)(q)u
(n)
)
rk

∣∣∣) <∞

by applying limit on (2.6) for z →∞. Consequently, u ∈ M̃q
u and M̃q

u is complete with ‖.‖M̃q
u

.

Theorem 2.2. M̃q
u is linearly norm isomorphic toMu.

Proof. The linearity of the mapping described as Υ : M̃q
u →Mu, Υ(u) = C(1,1)(q)u is obvious for u = (ulm) ∈ M̃q

u.
Additionally, from the expression Υ(u) = 0⇒ u = 0, Υ is injective.

Let us consider the sequences ν = (νlm) ∈Mu and u = (ulm) as follows:
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urk =
1

qr+k

r∑
l=r−1

k∑
m=k−1

(−1)r+k−(l+m)[l + 1]q[m+ 1]qνlm (r, k ∈ N). (2.7)

Then, from the equality

‖u‖M̃q
u

=

sup
r,k

∣∣∣∣∣∣ 1

[r + 1]q[k + 1]q

r,k∑
l,m=0

ql+mulm

∣∣∣∣∣∣


=

sup
r,k

∣∣∣∣∣∣ 1

[r + 1]q[k + 1]q

r,k∑
l,m=0

ql+m
l∑

i=l−1

m∑
j=m−1

1

ql+m
(−1)l+m−(i+j)[i+ 1]q[j + 1]qνij

∣∣∣∣∣∣


=

(
sup
r,k
|νrk|

)
= ‖ν‖Mu

<∞,

it is seen that Υ is surjective. Finally, since ‖u‖M̃q
u

= ‖ν‖Mu , in that case Υ is norm keeping.

Theorem 2.3. The inclusionMu ⊂ M̃q
u holds.

Proof. Consider that u = (ulm) ∈ Mu. In that case, it can be written that supl,m |ulm| < δ for at least positive real
number δ. Consequently, it is achieved that

‖u‖M̃q
u

= sup
r,k

∣∣∣∣∣∣ 1

[r + 1]q[k + 1]q

r,k∑
l,m=0

ql+mulm

∣∣∣∣∣∣
≤ sup

r,k

∣∣∣∣∣∣ 1

[r + 1]q[k + 1]q

r,k∑
l,m=0

ql+m

∣∣∣∣∣∣ |ulm|
≤ δ sup

r,k

∣∣∣∣∣∣ 1

[r + 1]q[k + 1]q

r,k∑
l,m=0

ql+m

∣∣∣∣∣∣ = δ

and thusMu ⊂ M̃q
u.

3. Dual spaces

In this section, the α-, β(P)-, β(bP)-and γ-duals of M̃q
u are determined. For Ψ,Λ ∈ Ω, the set D(Ψ : Λ) is defined

by

D(Ψ : Λ) =

{
τ = (τrk) ∈ Ω : τu = (τrkurk) ∈ Λ for all (urk) ∈ Ψ

}
.

Then, α-, β(ϑ)- and γ-duals of Ψ are defined as

Ψα = D(Ψ : Lu), Ψβ(ϑ) = D(Ψ : CSϑ) and Ψγ = D(Ψ : BS).

Theorem 3.1.
[
M̃q

u

]α
= Lu.

Proof. Consider the sequences u = (ulm) ∈ M̃q
u with ν = (νlm) ∈ Mu and τ = (τlm) ∈ Lu. In that case,

|νlm| < N <∞ for at least N > 0 for all l,m ∈ N.
By using the equality (2.7), it is obtained the inequality
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∑
l,m

|τlmulm| =
∑
l,m

∣∣∣∣∣∣τlm
l∑

i=l−1

m∑
j=m−1

(−1)l+m−(i+j)

ql+m
[i+ 1]q[j + 1]qνij

∣∣∣∣∣∣
≤ N

∑
l,m

|τlm|

∣∣∣∣∣∣
l∑

i=l−1

m∑
j=m−1

(−1)l+m−(i+j)

ql+m
[i+ 1]q[j + 1]q

∣∣∣∣∣∣
= N

∑
l,m

|τlm| <∞

which gives that τ ∈
[
M̃q

u

]α
and thus Lu ⊂

[
M̃q

u

]α
.

On the other hand, consider that τ ∈
[
M̃q

u

]α
\Lu. In that case,

∑
l,m |τlmulm| <∞ for all u = (ulm) ∈ M̃q

u. For

choosing e ∈ M̃q
u, since τe = τ /∈ Lu, it is reached the contradiction τ /∈

[
M̃q

u

]α
. Thus, it should be τ ∈ Lu.

We can express the necessary conditions for the matrix class characterizations that will be used in this and the
next section and the matrix classes with the help of a lemma as follows:

sup
r,k∈N

∑
l,m

|brklm| <∞, (3.1)

∃alm ∈ C 3 ϑ− lim
r,k→∞

brklm = alm subsists, (3.2)

∀l ∈ N, ∃m0 3 brklm = 0, ∀m > m0, (3.3)
∀m ∈ N, ∃l0 3 brklm = 0, ∀l > l0, (3.4)

sup
r,k,l,m∈N

|brklm| <∞, (3.5)

sup
r,k∈N

∑
l,m

|brklm|p
′
<∞, (3.6)

∃alm ∈ C 3 bp− lim
r,k→∞

∑
l,m

|brklm − alm| = 0, (3.7)

bp− lim
r,k→∞

r∑
l=0

brklm subsists, ∀m ∈ N, (3.8)

bp− lim
r,k→∞

k∑
m=0

brklm subsists, ∀l ∈ N, (3.9)∑
l,m

|brklm| converges, (3.10)

where 1
p + 1

p′ = 1.

Lemma 3.1. [6, 7, 38] For B = (bzntk) ∈ Ω, the following statements hold:

(i) B ∈ (Mu :Mu) iff the condition (3.1) holds.

(ii) B ∈ (Mu : CP) iff the conditions (3.2), (3.3) and (3.4) hold.

(iii) B ∈ (Mu : CbP) iff the conditions (3.1), (3.2), (3.7), (3.8), (3.9) and (3.10) hold.

(iv) B ∈ (CbP :Mu :) iff the condition (3.1) holds.

(v) For 0 < p ≤ 1, B ∈ (Lp :Mu) iff the condition (3.5) holds.

(vi) For 1 < p <∞, B ∈ (Lp :Mu) iff the condition (3.6) holds.
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It can be given the abbreviations to be used in the next theorem as follows:

∆11

(
τlm
ql+m

)
=

(
τlm
ql+m

− τl+1,m + τl,m+1

ql+m+1
+
τl+1,m+1

ql+m+2

)
,

∆10

(
τlk
ql+k

)
=

(
τlk
ql+k

− τl+1,k

ql+k+1

)
,

∆01

(
τrm
qr+m

)
=

(
τrm
qr+m

− τr,m+1

qr+m+1

)
.

(3.11)

Theorem 3.2. Consider that Ψ ⊂ Ω, τ = (τlm) ∈ Ω and the 4d infinite matrix O = (orklm) described by

orklm :=



[l + 1]q[m+ 1]q∆11

(
τlm
ql+m

)
, 0 ≤ l ≤ r − 1, 0 ≤ m ≤ k − 1,

[l + 1]q[k + 1]q∆10

(
τlk
ql+k

)
, 0 ≤ l ≤ r − 1, m = k,

[r + 1]q[m+ 1]q∆01

(
τrm
qr+m

)
, 0 ≤ m ≤ k − 1, l = r,

[r + 1]q[k + 1]qτrk
qr+k

, m = k, l = r,

0 , elsewhere

(3.12)

for all r, k, l,m ∈ N.
In that case;

(i)
[
M̃q

u

]β(ϑ)
= {τ = (τlm) : O ∈ (Mu : Cϑ)}, where ϑ ∈ {P, bP}.

(ii)
[
M̃q

u

]γ
= {τ = (τlm) : O ∈ (Mu :Mu)}.

Proof. (i) Consider the sequences τ = (τlm) ∈ Ω and u ∈ M̃q
u with ν ∈ Mu with the relation (2.4). By bearing in

mind the equation (2.7), it is reached that

σrk =

r,k∑
l,m=0

τlmulm =

r,k∑
l,m=0

τlm

 1

ql+m

l∑
i=l−1

m∑
j=m−1

(−1)l+m−(i+j)[i+ 1]q[j + 1]qνij


=

r−1∑
l=0

[l + 1]q[k + 1]q∆10

(
τlk
ql+k

)
νlk +

k−1∑
m=0

[r + 1]q[m+ 1]q∆01

(
τrm
qr+m

)
νrm (3.13)

+

r−1∑
l=0

k−1∑
m=0

[l + 1]q[m+ 1]q∆11

(
τlm
ql+m

)
νlm +

[r + 1]q[k + 1]qτrk
qr+k

νrk = (Oν)rk

for O = (orklm) is defined by (3.12). Thus, by using (3.13), we reach that τu = (τlmulm) ∈ CSϑ whenever

u = (ulm) ∈ M̃q
u iff σ = (σrk) ∈ Cϑ whenever ν ∈ Mu. Consequently, τ ∈

[
M̃q

u

]β(ϑ)
iff O ∈ (Mu : Cϑ) for

ϑ ∈ {P, bP}.
(ii) It can be shown to be similar to the first part using the definition of γ-dual. So, it is omitted.

4. Matrix mappings

This section contains the characterizations of matrix classes (M̃q
u : Λ) and (Ψ : M̃q

u), where Λ ∈ {Mu, CP , CbP}
and Ψ ∈ {Mu, CbP ,Lp} for 0 < p <∞.
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Theorem 4.1. Consider that 4d matrices B = (brklm) and H = (hrklm) with the equality

hrklm = [l + 1]q[m+ 1]q∆
lm
11

(
brklm
qr+k

)
. (4.1)

Then, B ∈
(
M̃q

u : Λ
)

iff H ∈ (Mu : Λ) and

Brk ∈
(
M̃q

u

)β(ϑ)
. (4.2)

Proof. Suppose that B ∈
(
M̃q

u : Λ
)

. Then, Bu ∈ Λ for all u ∈ M̃q
u with ν = C(1,1)(q)u ∈ Mu. Thus, it is obtained

that Brk ∈
(
M̃q

u

)β(ϑ)
. For the (i, j)th partial sums of the series

∑
l,m brklmulm, it is reached that

(Bu)
[i,j]
rk =

i,j∑
l,m=0

brklmulm

=

i−1∑
l=0

j−1∑
m=0

[l + 1]q[m+ 1]q∆
lm
11

(
brklm
ql+m

)
νlm +

i−1∑
l=0

[l + 1]q[j + 1]q∆
lj
10

(
brklj
ql+j

)

+

j−1∑
m=0

[i+ 1]q[m+ 1]q∆
im
01

(
brkim
qi+m

)
+

[i+ 1]q[j + 1]q
qi+j

brkij (4.3)

for all r, k, i, j ∈ N. Let us define the 4d infinite matrix Hrk = (h
[r,k]
ijlm) as

h
[r,k]
ijlm :=



[l + 1]q[m+ 1]q∆
lm
11

(
brklm
ql+m

)
, 0 ≤ l ≤ i− 1, 0 ≤ m ≤ j − 1,

[l + 1]q[j + 1]q∆
lj
10

(
brklj
ql+j

)
, 0 ≤ l ≤ i− 1, m = j,

[i+ 1]q[m+ 1]q∆
im
01

(
brkim
qi+m

)
, 0 ≤ m ≤ j − 1, l = i,

[i+ 1]q[j + 1]q
qi+j

brkij , m = j, l = i,

0 , otherwise

the relation (4.3) can be restated as

(Bu)
[i,j]
rk = (Hrkν)[i,j] . (4.4)

Moreover, if we take ϑ-limit on Hrk =
(
h
[r,k]
ijlm

)
for i, j →∞, it is obtained that

ϑ− limi,j→∞h
[r,k]
ijlm = [l + 1]q[m+ 1]q∆

lm
11

(
brklm
ql+m

)
. (4.5)

From (4.5), it can be defined the 4d matrix H = (hrklm) by

hrklm = [l + 1]q[m+ 1]q∆
lm
11

(
brklm
ql+m

)
. (4.6)

If we take ϑ-limit on (4.4) for i, j →∞, we see that Bu = Hν. Thus, Hν ∈ Λ while ν ∈Mu and H ∈ (Mu : Λ).

Conversely, suppose that Brk ∈
(
M̃q

u

)β(ϑ)
and H ∈ (Mu : Λ). Let u ∈ M̃q

u with ν = C(1,1)(q)u ∈ Mu. In this
case, Bu exists. By the (i, j)th partial sums of

∑
t,k bzntkutk, it is obtained the equality

i,j∑
l,m=0

brklmulm =

i,j∑
l,m=0

h
[r,k]
ijlmνlm
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for all r, k, l,m ∈ N. If we take ϑ-limit as i, j →∞ on the equation above, we reach that Bu = Hν. Consequently,
B ∈

(
M̃q

u : Λ
)

.

Corollary 4.1. Consider that 4d matrices B = (brklm) and H = (hrklm) with (4.1). Then;

(i) B ∈
(
M̃q

u :Mu

)
iff the condition (3.1) holds with H in place of B and the condition (4.2) holds.

(ii) B ∈
(
M̃q

u : CP
)

iff the conditions (3.2), (3.3) and (3.4) hold with H in place of B and the condition (4.2) holds.

(iii) B ∈
(
M̃q

u : CbP
)

iff the conditions (3.1), (3.2), (3.7), (3.8), (3.9) and (3.10) hold with H in place of B and the condition
(4.2) holds.

Lemma 4.1. [39] Suppose that Ψ,Λ ⊂ Ω, a 4d matrix B = (brklm) and 4d triangle Y = (yrklm). Then, B ∈ (Ψ : ΛY ) iff
Y B ∈ (Ψ : Λ).

Corollary 4.2. Consider the 4d matrices B = (brklm) and W = (wrklm) with the equality

wrklm =

r,k∑
l,m=0

crkij(q)bijlm.

In that case;

(i) B ∈
(
Mu : M̃q

u

)
iff the condition (3.1) holds with W instead of B.

(ii) B ∈
(
CbP : M̃q

u :
)

iff the condition (3.1) holds with W instead of B.

(iii) For 0 < s ≤ 1, B ∈
(
Ls : M̃q

u

)
iff the condition (3.5) holds with W instead of B.

(iv) For 1 < s <∞, B ∈
(
Ls : M̃q

u

)
iff the condition (3.6) holds with W instead of B.
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