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3 Some Results on Composition of Analytic Functions in a Unit Polydiscs
Andriy Bandura, Petro Kurliak, Oleh Skaskiv 121-128

4 Multiple Positive Symmetric Solutions for the Fourth-Order Iterative Differential
Equations Involving p-Laplacian with Integral Boundary Conditions
Rajendra Prasad Kapula, Kosuri Bhushanam, Sreedhar Namburi 129-143

5 Binomial Transforms of the Third-Order Jacobsthal and Modified Third-Order Jacobsthal
Polynomials
Gamaliel Morales 144-151

iii



Universal Journal of Mathematics and Applications, 7 (3) (2024) 102-110
Research paper

Universal Journal of Mathematics and Applications
Journal Homepage: www.dergipark.gov.tr/ujma

ISSN 2619-9653
DOI: https://doi.org/10.32323/ujma.1443527

LP-Kenmotsu Manifolds Admitting Bach Almost Solitons
Rajendra Prasad1, Abhinav Verma1, Vindhyachal Singh Yadav1, Abdul Haseeb2* and Mohd Bilal3

1Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India
2Department of Mathematics, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Kingdom of Saudi Arabia

3Department of Mathematical Sciences, Faculty of Applied Sciences, Umm Al Qura University, Makkah 21955, Saudi Arabia
*Corresponding author

Article Info

Keywords: Bach almost solitons, LP-
Kenmotsu manifolds, Perfect fluid, Weyl
tensor
2010 AMS: 53C25, 53C44, 53C50
Received: 27 February 2024
Accepted: 12 May 2024
Available online: 25 August 2024

Abstract

For a Lorentzian para-Kenmotsu manifold of dimension m (briefly, (LPK)m) admitting
Bach almost soliton (g,ζ ,λ ), we explored the characteristics of the norm of Ricci operator.
Besides, we gave the necessary condition for (LPK)m (m≥ 4) admitting Bach almost soliton
to be an η-Einstein manifold. Afterwards, we proved that Bach almost solitons are always
steady when a Lorentzian para-Kenmotsu manifold of dimension three has Bach almost
soliton.

1. Introduction

In 1976, the concept of almost paracontact manifolds was proposed by Sato [1]. An almost paracontact structure on a semi-Riemannian
manifold M was established by Kaneyuki and Kozai in [2]. They created almost paracomplex shape on M ×R. According to Kaneyuki et
al. [3], the key variation among an almost paracontact manifold is the signature of metric. In 1995, the authors Sinha and Prasad described
para-Kenmotsu as well as special para-Kenmotsu manifolds and found significant properties of para-Kenmotsu manifolds [4]. Afterwards,
para-Kenmotsu manifolds drew huge attention and a number of mathematicians brought forward the significant characteristics of such
manifolds [5–9].
Semi-Riemannian geometry, used in the relativity theory, was studied in [10]. About four decades ago, Kaigorodov has explored the curvature
structure of the spacetime [11]. Raychaudhuri et al. [12] extended the above concepts of the general theory of spacetime. Recently, Haseeb
and Rajendra introduced and studied the Lorentzian para-Kenmotsu manifolds [13, 14].
1921 was the year, when Bach initiated Bach tensor [15] to explore conformal geometry. He proved that the Bach tensor is a rank 2 trace-free
tensor and is conformally invariant in dimension 4. So, in lieu of Hilbert-Einstein functional, the functional is taken in the following way

W (g) =
∫
M
‖C ‖2

gdνg,

where, M is a manifold of dimension-four and C repersents the Weyl tensor of type (1,3) given by

C (U,V )W = R(U,V )W +
1

m−2
[S (U,W )V −S (V ,W )U +g(U,W )QV −g(V ,W )QU ]

− r
(m−1)(m−2)

[g(U,W )V −g(V ,W )U ],
(1.1)

here, R represents the Riemannian curvature tensor, Q is the Ricci operator and S denotes the Ricci tensor, such that, g(QU,V )=S (U,V ),
∀ differentiable vector fields U,V ,W . Bach tensor of type (0,2) on a semi-Riemannian manifold (M m,g) of dimension m(≥ 3) is given by

B(U,V ) =
1

(m−3) ∑
i∈{1,...,m}

∑
j∈{1,...,m}

εiε j(∇Ei ∇E j C
′
)(U,Ei,E j,V )

+
1

(m−2) ∑
i∈{1,...,m}

∑
j∈{1,...,m}

εiε jS (Ei,E j)C
′
(U,Ei,E j,V ),

(1.2)
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here, g(Ei,Ei) = εi, g(C (U,V )W ,Y ) = C
′
(U,V ,W ,Y ) and {{Ei}m−1

i=1 ,Em = ζ} is a local orthonormal frame at each point p of TpM .
Relation (1.1), together with contracting Bianchi second identity, we obtain

divC =
(m−3)
(m−2)

C0, (1.3)

where, C0 is Cotton tensor [16] given by

C0(U,V )W =−(∇V S )(U,W )+(∇US )(V ,W )+
1

2(m−1)
[(V r)g(U,W )− (Ur)g(V ,W )]. (1.4)

In view of equation (1.3), together with equation (1.2), the Bach tensor takes the form,

B(U,V ) =
1

(m−2)
[ ∑
i∈{1,...,m}

εi(∇EiC0)(Ei,U)V + ∑
i∈{1,...,m}

∑
j∈{1,...,m}

εiε jS (Ei,E j)C
′
(U,Ei,E j,V )], (1.5)

∀ differentiable vector fields U,V . For dimension three, the Weyl tensor vanishes. Therefore, Bach tensor given in equation (1.5) reduces to

B(U,V ) = ∑
i∈{1,2,3}

εi(∇EiC0)(Ei,U)V . (1.6)

For further study, the references [17–24] may be seen.
In 2012, Das and Kar [25] studied different characteristics of Bach flow on product manifolds and analysed their outcomes with the Ricci
flow. Bach flow is suggested in [26] to specify the Harava-Lifschitz gravity in general relativity. In 2011, Bahuaud and Helliwell in [27]
studied the presence of Bach flow for short time. Cao and Chen, in the year 2013, explored Bach flat Ricci solitons [28]. Subsequently,
Ho [29] worked comprehensively on the solitons of Bach flow. He also studied the Bach flows on Lie group of dimension 4. In 2020,
Helliwell specified Bach flow of dimension 4 on locally homogeneous product manifolds [30]. In recent times, Ghosh [31] investigated the
Bach almost solitons (g,ζ ,λ ) in semi-Riemannian geometry and is given by

(£X g+2B−2λg)(U,V ) = 0, (1.7)

here, £X is the Lie derivative operator along X ; X is a potential vector field and λ ∈C∞(M m). The Bach almost solitons (g,ζ ,λ ) is said
to be expanding, steady and shrinking according to λ < 0, λ = 0 and λ > 0, respectively.
This article is organized in the following manner: Section 1 contains introduction, based on development of almost paracontact manifold and
other concepts. Preliminaries are given in Section 2, based on (LPK)m. Section 3 contains the work on (g,ζ ,λ ) in (LPK)m. In Section 4, we
examine (LPK)m of dimension 3, which admits Bach almost solitons.

2. Preliminaries

An m-dimensional smooth manifold M m is called Lorentzian almost paracontact manifold, if it is equipped with a (1,1)-tensor field φ , a
contravariant vector field ζ , a 1-form η and a Lorentzian metric g of type (0, 2). The following relations for an m-dimensional Lorentzian
metric manifold hold [32],

φ
2(U) =U +η(U)ζ , η(ζ )+1 = 0, (2.1)

g(U,ζ ) = η(U), g(φU,φV ) = η(U)η(V )+g(U,V ), (2.2)

∀U,V on M m, and the structure (φ ,ζ ,η ,g) is named the Lorentzian almost paracontact structure. An M m endowed with (φ ,ζ ,η ,g) is
known as Lorentzian almost paracontact manifold and holding the following results:

φζ = 0, η(φU) = 0, Ω(U,V ) = Ω(V ,U), (2.3)

here, Ω(U,V ) = g(U,ϕV ).

Definition 2.1. A Lorentzian almost paracontact manifold M m is known as (LPK)m if

(∇U φ)(V ) =−η(V )φU−g(φU,V )ζ ,

∀U and V on M m.

Further, for (LPK)m, following results hold good:

∇U ζ +U +η(U)ζ = 0, (2.4)

(∇U η)(V )+g(U,V )+η(U)η(V ) = 0, (2.5)

R(U,V )ζ = η(V )U−η(U)V , (2.6)
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R(ζ ,V )U = g(U,V )ζ −η(U)V , (2.7)

R(ζ ,U)ζ =U +η(U)ζ , (2.8)

S (U,ζ ) = (m−1)η(U), (2.9)

Qζ = (m−1)ζ , (2.10)

S (φV ,φU) = S (V ,U)+(m−1)η(V )η(U), (2.11)

∀ U,V ,W on (LPK)m [33, 34]. In the above results, ∇ represents the covariant differentiation operator w.r.t. g in semi-Riemannian
manifolds.

Proposition 2.2. We assume M to be an (LPK)m. Subsequently, we have

S (φU,V ) = S (U,φV ), (2.12)

∀U, V on (LPK)m.

Proof. Setting φU for U in (2.11), we get,

S (φ 2U,φV ) = S (φU,V )+(m−1)η(φU)η(V ).

Using equations (2.1) and (2.3) in the foregoing equation, we yield

S (U +η(U)ζ ,φV ) = S (φU,V ). (2.13)

From equation (2.13), the Proposition 2.2 follows.

3. Bach Almost Solitons and (LPK)m

Definition 3.1. A semi-Riemannnian manifold is called Bach perfect fluid if Bach almost tensor is given by

B(U,V ) = βη(U)η(V )+αg(U,V ), ∀V ,U,

where, α and β are scalars.

Let (LPK)m admit (g,ζ ,λ ). Then (1.7) holds and thus, we have

(£ζ g)(U,V )+2B(U,V ) = 2λg(U,V ). (3.1)

As we have

(£ζ g)(U,V ) = g(∇U ζ ,V )+g(U,∇V ζ ). (3.2)

The result (2.4), together with (3.2) yields

(£ζ g)(U,V )+2[g(U,V )+η(U)η(V )] = 0. (3.3)

Putting the preceding result (3.3) in (3.1), we lead to

B(V ,U) = (1+λ )g(V ,U)+η(V )η(U). (3.4)

Result (3.4) shows the succeeding proposition:

Proposition 3.2. An (LPK)m admitting a Bach almost soliton (g,ζ ,λ ) is Bach perfect fluid.

Replacing W by ζ in (1.1), we have

C (U,V )ζ = R(U,V )ζ +
1

(m−2)
[S (U,ζ )V −S (V ,ζ )U +g(U,ζ )QV −g(V ,ζ )QU ]

− r
(m−1)(m−2)

[g(U,ζ )V −g(V ,ζ )U ],
(3.5)

∀ differentiable vector fields U,V . Operating Q in (3.5) and using relations (2.2), (2.6), (2.7) and (2.10), we get

Q(C (U,V )ζ ) =
(r−m+1)

(m−1)(m−2)
[−η(U)QV +η(V )QU ]− 1

(m−2)
[η(V )Q2U−η(U)Q2V ]. (3.6)
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The inner product of (3.6) with X leads to

g(Q(C (U,V )ζ ),X ) =
(r−m+1)

(m−1)(m−2)
[η(V )g(QU,X )−η(U)g(QV ,X )]

− 1
(m−2)

[η(V )g(Q2U,X )−η(U)g(Q2V ,X )].

(3.7)

Let {{Ei}m−1
i=1 ,Em = ζ} be an orthonormal frame at each point p of TpM . Now, setting V = X = Ei in (3.7) with summation i = 1 to m

and on evaluation, we get

∑
i∈{1,..,m}

εig(Q(C (U,Ei)ζ ),Ei) =−
(r−m+1)2

(m−1)(m−2)
η(U)+

1
(m−2)

[|Q|2− (m−1)2]η(U). (3.8)

Setting ζ in place of W in relation (1.4) gives

C0(U,V )ζ = g((∇UQ)V ,ζ )−g((∇V Q)U,ζ )− 1
2(m−1)

[U(r)η(V )−V (r)η(U)]. (3.9)

From equation (2.12), we have the relation

φQU = QφU. (3.10)

From the equation (3.10), we also have

g((∇UQ)V ,ζ ) = g(QU,V )− (m−1)g(U,V ). (3.11)

Applying above equation (3.11) in (3.9), it gives

C0(U,V )ζ =− 1
2(m−1)

[U(r)η(V )−V (r)η(U)]. (3.12)

After differentiating covariantly the above relation w.r.t. W and using the relation (2.5), we obtain

(∇W C0)(U,V )ζ =−(∇V S )(U,W )+(∇US )(V ,W )

− 1
2(m−1)

[g(∇W Dr,U)η(V )−g(∇W Dr,V )η(U)],
(3.13)

here D represents the gradient operator. Let {{Ei}m−1
i=1 ,Em = ζ} be the orthonormal frame at each point p of TpM . Replacing U = W = Ei

with summation over i = 1 to m in equation (3.13), this gives

∑
i∈{1,...,m}

εi(∇EiC0)(Ei,V )ζ =− 1
2(m−1)

[(divDr)η(V )−g(∇ζ Dr,V )]− V (r)
2

. (3.14)

Now, by rewriting the equation (1.5), we have

B(U,V ) =
1

(m−2)
[ ∑
i∈{1,...,m}

εi(∇EiC0)(Ei,U)V + ∑
i∈{1,...,m}

∑
j∈{1,...,m}

εiε jS (Ei,E j)C
′
(U,Ei,E j,V )]. (3.15)

After evaluation, the second term of the above equation takes the form

∑
i∈{1,...,m}

∑
j∈{1,...,m}

εiε jS (Ei,E j)C
′
(U,Ei,E j,V ) =− ∑

i∈{1,...,m}
∑

j∈{1,...,m}
εiε jg(QEi,E j)g(C (U,Ei)V ,E j),

=− ∑
i∈{1,...,m}

εig(Q(C (U,Ei)V ),Ei).

Taking the above equation and equation (3.15) together, we obtain

B(U,V ) =
1

(m−2)
[ ∑
i∈{1,...,m}

εi(∇EiC0)(Ei,U)V − ∑
i∈{1,...,m}

εig(Q(C (U,Ei)V ),Ei)]. (3.16)

Replacing V for ζ in the above relation (3.16), it gives

B(U,ζ ) =
1

(m−2)
[ ∑
i∈{1,...,m}

εi(∇EiC0)(Ei,U)ζ − ∑
i∈{1,...,m}

εig(Q(C (U,Ei)ζ ),Ei)]. (3.17)

Equations (3.8), (3.14) and (3.17) taken together give

B(U,ζ ) =
1

(m−2)
[−U(r)

2
− 1

2(m−1)
{(divDr)η(U)−g(∇ζ Dr,U)}

+
(r−m+1)2

(m−1)(m−2)
η(U)− 1

(m−2)
{|Q|2− (m−1)2}η(U)].

(3.18)
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Setting V for ζ in equation (3.4), we get

B(U,ζ ) = λη(U). (3.19)

Relation (3.18) and (3.19), taken together give

λη(U) =
1

(m−2)
[−U(r)

2
− 1

2(m−1)
{(divDr)η(U)−g(∇ζ Dr,U)}

+
(r−m+1)2

(m−1)(m−2)
η(U)− 1

(m−2)
{|Q|2− (m−1)2}η(U)].

(3.20)

Setting U for φU in relation (3.20), we obtain

1
(m−2)

[−φU(r)
2

+
1

2(m−1)
g(∇ζ Dr,φU)] = 0.

This implies that

g(∇ζ Dr,φU) = (m−1)g(Dr,φU).

This gives

φ∇ζ Dr = (m−1)φDr. (3.21)

Taking covariant differentiation of equation (2.10) w.r.t. U and using the relations (2.3) and (2.4), we get

(∇UQ)ζ = QU− (m−1)U. (3.22)

Contracting the preceding equation w.r.t. U , we have

∑
i∈{1,...,m}

εig(∇EiQ)ζ ,Ei) =
m

∑
i=1

εi[g(QEi,Ei)− (m−1)g(Ei,Ei)].

or,

(divQ)ζ = r− (m−1)m,

or,

ζ (r) = 2[r−m(m−1)], (3.23)

which can be written as

£ζ r = 2r−2m(m−1).

Applying the exterior derivative in the above relation, we have

d£ζ r = 2dr.

Since, d and the Lie derivative commutes, therefore, we have

£ζ dr = 2dr.

Writing the above relation in the form of gradient operator, we have

£ζ Dr = 2Dr,

or,

∇ζ Dr−∇Drζ = 2Dr.

Using the relation (2.4) in the above relation, we lead to

∇ζ Dr = Dr−ζ (r)ζ . (3.24)

Applying φ in the above relation (3.24) and using the relations in (2.3) and (3.21), we get

φDr = 0.

This implies

Dr =−ζ (r)ζ . (3.25)

Differentiating (3.25) covariantly w.r.t. X , it yields

∇X Dr =−[g(∇X Dr,ζ )ζ −g(Dr,X )ζ −g(Dr,ζ )X −2g(Dr,ζ )η(X )ζ ], (3.26)
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which by contracting over X gives

(divDr) = (m−3)ζ (r). (3.27)

Relations (3.24) and (3.25) give

∇ζ Dr =−2ζ (r)ζ . (3.28)

Using relations (3.25), (3.27) and (3.28) in (3.20), we obtain

λη(U) =
1

(m−2)
[
ζ (r)

2
η(U)− 1

2(m−1)
{(m−3)ζ (r)η(U)+2ζ (r)η(U)}

+
(r+1−m)2

(m−1)(m−2)
η(U)− 1

(m−2)
{|Q|2− (m−1)2}η(U)].

(3.29)

On simplification, relation (3.29) gives

λ =
1

(m−2)2 [
(r+1−m)2

(m−1)
+(m−1)2−|Q|2]. (3.30)

In the light of the relation (3.30), succeeding theorem holds:

Theorem 3.3. The Bach almost solitons (g,ζ ,λ ) on an (LPK)m are expanding, steady and shrinking according as

[
(r+1−m)2

(m−1)
+(m−1)2]> |Q|2, [

(r+1−m)2

(m−1)
+(m−1)2] = |Q|2 and [

(r+1−m)2

(m−1)
+(m−1)2]< |Q|2.

Consider a Lorentzian para-Kenmotsu space form of m-dimension. Then by relation (3.23), we have r = m(m−1). Hence,

λ =
1

(m−2)2 [m(m−1)2−|Q|2].

The above relation leads the following corollary:

Corollary 3.4. The Bach almost solitons (g,ζ ,λ ) on an LP-Kenmotsu space form of dimension m is expanding, steady and shrinking
according as m(m−1)2 > |Q|2, m(m−1)2 = |Q|2 and m(m−1)2 < |Q|2.

Definition 3.5. An (LPK)m is named η-Einstein if its S satisfies [35]

S (V ,U) = ag(V ,U)+bη(V )η(U),

∀ V ,U, where, a and b are scalars.

Now, replacing U = ζ in relation (3.13), we have

(∇W C0)(ζ ,V )ζ =−(∇V S )(ζ ,W )+(∇ζ S )(V ,W )− 1
2(m−1)

[g(∇W Dr,ζ )η(V )−g(∇W Dr,V )η(ζ )]. (3.31)

Taking the inner product of relation (3.26) with V and replacing X by W , we obtain

g(∇W Dr,V ) =−[g(∇W Dr,ζ )η(V )−g(Dr,W )η(V )−g(Dr,ζ )g(V ,W )−2g(Dr,ζ )η(V )η(W )]. (3.32)

The relations (3.22), (3.31) and (3.32) give

(∇W C0)(ζ ,V )ζ = g((∇ζ Q)V ,W )−g((∇V Q)ζ ,W )− ζ (r)
2(m−1)

[g(V ,W )+η(V )η(W )]. (3.33)

In an (LPK)m, the following result holds (for perusal, see [36])

(∇ζ Q)V = 2QV −2(m−1)V . (3.34)

Applying relations (3.22) and (3.34) into (3.33), it yields

(∇W C0)(ζ ,V )ζ = g(QV ,W )− (m−1)g(V ,W )− ζ (r)
2(m−1)

[g(V ,W )+η(V )η(W )]. (3.35)

If (∇W C0)(ζ ,V )ζ = 0 and (3.23), then (3.35) leads to

S (V ,W ) = (
r

m−1
−1)g(V ,W )+(

r
m−1

−m)η(V )η(W ). (3.36)

The relation (3.36) leads the following theorem:

Theorem 3.6. An (LPK)m (m≥ 4) admitting (g,ζ ,λ ) is an η-Einstein manifold provided (∇W C0)(ζ ,V )ζ = 0, ∀ V ,W .
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4. 3-Dimensional Bach Perfect Fluid Lorentzian Para-Kenmotsu Manifold

We consider an (LPK)3 admitting (g,ζ ,λ ). Curvature tensor of Riemannian manifold in dimension 3 states

R(U,V )W =−S (U,W )V +S (V ,W )U−g(U,W )QV +g(V ,W )QU− r
2
[g(U,W )V −g(V ,W )U ], (4.1)

∀ differentiable vector fields U , V and W .
Replacing U = W = ζ in (4.1) and using (2.1), (2.8), (2.9) and (2.10), we obtain

QV = (
r
2
−3)η(V )ζ +(

r
2
−1)V . (4.2)

The preceding result gives

Qφ = φQ.

The equation (4.2), together with (2.4), gives

(∇UQ)ζ = QU−2U. (4.3)

Equation (3.12), together with (4.3) leads to

C0(U,V )ζ =
1
4
[V (r)η(U)−U(r)η(V )].

The covariant differentiation of above result w.r.t. W yields

(∇W C0)(U,V )ζ =−(∇V S )(U,W )− (∇US )(V ,W )− 1
4
[g(∇W Dr,U)η(V )−g(∇W Dr,V )η(U)].

Putting W =U = Ei and taking sum over i = 1,2,3 in above relation, where {E1,E2,E3 = ζ} is orthonormal frame at each point p of TpM ,
we have

∑
i∈{1,2,3}

εi(∇EiCo)(Ei,V )ζ =−V (r)
2
− 1

4
[(divDr)η(V )−g(∇ζ Dr,V )]. (4.4)

Taking V = ζ in (1.6), we have

B(U,ζ ) = ∑
i∈{1,2,3}

εi(∇EiC0)(Ei,U)ζ . (4.5)

Equations (3.4), (4.4) and (4.5) taken together give

λη(U) =−1
2

g(Dr,U)− 1
4
[(divDr)η(U)−g(∇ζ Dr,U)]. (4.6)

Replacing φU for U in (4.6), we get

φ∇ζ Dr = 2φDr. (4.7)

We have the relation (3.23) and (3.24), for m = 3, which yields

∇ζ Dr = Dr−2(r−6)ζ . (4.8)

The relations (4.7) and (4.8) provide

Dr =−2(r−6)ζ . (4.9)

By the covariant diffentiation of (4.9) w.r.t. X yields

∇X Dr =−2g(Dr,X )ζ +2(r−6)X +2(r−6)η(X )ζ . (4.10)

By contracting the relation (4.10) over X , we get

(divDr) = 0. (4.11)

Using relations (4.8), (4.9) and (4.11) in (4.6), it yields

λ = 0. (4.12)

With the help of (4.12), the relation (3.4) reduces to

B(U,V ) = η(U)η(V )+g(U,V ).

The above results imply the succeeding theorem:

Theorem 4.1. Let (LPK)3 admit a (g,ζ ,λ ), then the manifold is a Bach perfect fluid and (g,ζ ,λ ) is always steady.



Universal Journal of Mathematics and Applications 109

5. Example

We assume a manifold M 3 = {(u1,v1,w1) ∈ R3 : w1 > 0}, here (u1,v1,w1) are the general coordinates in R3. Consider Ê1, Ê2, Ê3, the vector
fields on M 3 given as

Ê1 = w1
∂

∂u1
, Ê2 = w1

∂

∂v1
, Ê3 = w1

∂

∂w1
= ζ

and are linearly independent at each point of M 3. This implies

g(Êi, Ê j) =


0, 1≤ i 6= j ≤ 3,
−1, i = j = 1,2,
0, otherwise.

Suppose that η is 1-form on M 3 given by η(U) = g(U, Ê3) = g(U,ζ ), ∀ U ∈ χ(M 3). Again, assume that φ is (1,1) tensor field on M 3

given below:

φ Ê1 =−Ê2, φ Ê2 =−Ê1, φ Ê3 = 0.

The linear property of g and φ give the following relations

η(ζ ) = g(ζ ,ζ ) =−1,φ 2 =U +η(U)ζ , g(U,ζ ) = η(U), η(φU) = 0, g(φU,φV ) = η(U)η(V )+g(U,V ).

Assuming ∇ to be Levi-Civita connection w.r.t. Lorentzian metric g, then

[Ê2, Ê1] = 0, [Ê3, Ê1] = Ê1, [Ê3, Ê2] = Ê2.

Applying Koszul’s formula, we can comfortably obtain

∇Êi
Ê j =


−Ê3, i = j = 1,2,
−Êi, i = 1,2, j = 3,
0, otherwise

(5.1)

Let U ∈ χ(M 3), then the following relations can also be verified

∇U ζ +U +η(U)ζ = 0, (∇U φ)V =−g(φU,V )ζ −η(V )φ(U).

For U,V ,W ∈ χ(M 3).
Equation (5.1) helps to get the following non-vanishing values:{

R(Ê1, Ê2)Ê1 =−Ê2, R(Ê1, Ê3)Ê1 =−Ê3, R(Ê1, Ê2)Ê2 = Ê1,

R(Ê2, Ê3)Ê2 =−Ê3,R(Ê2, Ê3)Ê3 =−Ê2.

The above results help to verify

R(U,V )W =−g(U,W )V +g(V ,W )U. (5.2)

Hence, M 3 is a Lorentzian para-Kenmotsu manifold of constant curvature. By contracting (5.2) over W , we obtain

S (U,V ) = 2g(V ,W ).

This implies

r = 6.

Then, (4.6) provides λ = 0. Hence, in this manifold, the Bach almost solitons are steady.
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Abstract

Discrete-time systems are sometimes used to explain natural phenomena that happen in
nonlinear sciences. We study the periodicity, boundedness, oscillation, stability, and certain
exact solutions of nonlinear difference equations in this paper. Using the standard iteration
method, exact solutions are obtained. Some well-known theorems are used to test the
stability of the equilibrium points. Some numerical examples are also provided to confirm
the theoretical work’s validity. The numerical component is implemented with Wolfram
Mathematica. The method presented may be simply applied to other rational recursive
issues.
In this paper, we explore the dynamics of adhering to a rational difference formula

xn+1 =
xn−29

±1± xn−5xn−11xn−17xn−23xn−29
,

where the initials are arbitrary nonzero real numbers.

1. Introduction

A particular natural phenomenon’s evolution is frequently explained over a period of time employing differential equations. Nevertheless,
in certain instances, numerous real-life issues can be modeled using discrete time intervals, resulting in difference equations. As a result,
recursive equations play an influential and potent role in mathematics. They are effectively employed to explore various applications in
engineering, physics, biology, economics, and other fields [1–5]. For example, recursive equations have been effectively employed in
modeling various natural phenomena, including population size, the Fibonacci sequence, drug concentrations in the bloodstream, information
transmission, pricing dynamics of certain commodities, propagation patterns of annual plants, and more [6–12]. Additionally, certain
scholars have utilized difference equations to obtain numerical solutions for certain differential equations. In particular, discretizing a
given differential equation produces a corresponding difference equation. For example, the Runge-Kutta scheme arises from discretizing
a first-order differential equation. This prompts consideration regarding the convergence of the difference scheme to the solution of a
differential equation. The study discussed in reference [13] is dedicated to investigating the preservation of a solution bounded on the entire
axis during the transition from differential to difference equations and vice versa. In reference [14], analogous inquiries were undertaken
to maintain the oscillatory nature of solutions to second-order equations. Advancements in technology have spurred the utilization of
recurrence equations as approximations to partial differential equations. It’s noteworthy that fractional-order difference equations are
frequently employed to study certain real-life phenomena that arise in nonlinear sciences. Almatrafi et. al. in [15] aim to analyzed the
asymptotic stability, global stability, periodicity of the solution of an eighth-order difference equation. Sanbo et. al. in [16], discussed the
periodicity, stability, and some solutions of a fifth-order recursive equation. Yeniçerioğlu et. al. in [17], examined the behavior of solutions
of the neutral functional differential equations. Using a suitable real root of the corresponding characteristic equation, they explained the
asymptotic behavior of the solutions and the stability of the trivial solution. Ahmed et al. [18] discovered new solutions and conducted a
dynamical analysis for certain nonlinear difference relations of fifteenth order. Berkal et. al. in [19], have derived the forbidden set and
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determined the solutions of the difference equation that contains a quadratic term. Oğul et. al. in [20], examined soluttions of the sixth-order
difference equations.
The inspiration behind this article stems from the exploration of eighteenth-order difference equations outlined in [21]. As such, the objective
of this study is to analyze various dynamical properties including equilibrium points, local and global behaviors, boundedness, and analytic
solutions of the nonlinear recursive equations (1.1).

xn+1 =
xn−29

±1± xn−5xn−11xn−17xn−23xn−29
. (1.1)

Here, the initial values x−29,x−28,x−27, . . . ,x−2,x−1,x0, are arbitrary non-zero real numbers. In this work, we also illustrate some 2D figures
with the help of Wolfram Mathematica to validate the obtained results.
In this study, stability, periodicity and global asymptotic stability definitions and theorems in the [1] source were used.

2. Solution of the Difference Equation xn+1 =
xn−29

1+xn−5xn−11xn−17xn−23xn−29

In this section, we give a specific form of the solutions of the difference equation below, provided that the initial conditions are arbitrary real
numbers.

xn+1 =
xn−29

1+ xn−5xn−11xn−17xn−23xn−29
, (2.1)

where,

x−29 = A30, x−28 = A29, x−27 = A28, x−26 = A27, x−25 = A26, x−24 = A25, x−23 = A24, x−22 = A23,

x−21 = A22, x−20 = A21, x−19 = A20, x−18 = A19, x−17 = A18, x−16 = A17, x−15 = A16, x−14 = A15, (2.2)

x−13 = A14, x−12 = A13, x−11 = A12, x−10 = A11, x−9 = A10, x−8 = A9, x−7 = A8, x−6 = A7,

x−5 = A6, x−4 = A5, x−3 = A4, x−2 = A3, x−1 = A2, x0 = A1.

Theorem 2.1. Let {xn}∞
n=−29 be a solution of (2.1). Then,

x30n+1 =
A30 ∏

n
i=0(1+5iA6A12A18A24A30)

∏
n
i=0(1+(5i+1)A6A12A18A24A30)

, x30n+2 =
A29 ∏

n
i=0(1+5iA5A11A17A23A29)

∏
n
i=0(1+(5i+1)A5A11A17A23A29)

,

x30n+3 =
A28 ∏

n
i=0(1+5iA4A10A16A22A28)

∏
n
i=0(1+(5i+1)A4A10A16A22A28)

, x30n+4 =
A27 ∏

n
i=0(1+5iA3A9A15A21A27)

∏
n
i=0(1+(5i+1)A3A9A15A21A27)

,

x30n+5 =
A26 ∏

n
i=0(1+5iA2A8A14A20A26)

∏
n
i=0(1+(5i+1)A2A8A14A20A26)

, x30n+6 =
A25 ∏

n
i=0(1+5iA1A7A13A19A25)

∏
n
i=0(1+(5i+1)A1A7A13A19A25)

,

x30n+7 =
A24 ∏

n
i=0(1+(5i+1)A6A12A18A24A30)

∏
n
i=0(1+(5i+2)A6A12A18A24A30)

, x30n+8 =
A23 ∏

n
i=0(1+(5i+1)A5A11A17A23A29)

∏
n
i=0(1+(5i+2)A5A11A17A23A29)

,

x30n+9 =
A22 ∏

n
i=0(1+(5i+1)A4A10A16A22A28)

∏
n
i=0(1+(5i+2)A4A10A16A22A28)

, x30n+10 =
A21 ∏

n
i=0(1+(5i+1)A3A9A15A21A27)

∏
n
i=0(1+(5i+2)A3A9A15A21A27)

,

x30n+11 =
A20 ∏

n
i=0(1+(5i+1)A2A8A14A20A26)

∏
n
i=0(1+(5i+2)A2A8A14A20A26)

, x30n+12 =
A19 ∏

n
i=0(1+(5i+1)A1A7A13A19A25)

∏
n
i=0(1+(5i+2)A1A7A13A19A25)

,

x30n+13 =
A18 ∏

n
i=0(1+(5i+2)A6A12A18A24A30)

∏
n
i=0(1+(5i+3)A6A12A18A24A30)

, x30n+14 =
A17 ∏

n
i=0(1+(5i+2)A5A11A17A23A29)

∏
n
i=0(1+(5i+3)A5A11A17A23A29)

,

x30n+15 =
A16 ∏

n
i=0(1+(5i+2)A4A10A16A22A28)

∏
n
i=0(1+(5i+3)A4A10A16A22A28)

, x30n+16 =
A15 ∏

n
i=0(1+(5i+2)A3A9A15A21A27)

∏
n
i=0(1+(5i+3)A3A9A15A21A27)

,

x30n+17 =
A14 ∏

n
i=0(1+(5i+2)A2A8A14A20A26)

∏
n
i=0(1+(5i+3)A2A8A14A20A26)

, x30n+18 =
A13 ∏

n
i=0(1+(5i+2)A1A7A13A19A25)

∏
n
i=0(1+(5i+3)A1A7A13A19A25)

,

x30n+19 =
A12 ∏

n
i=0(1+(5i+3)A6A12A18A24A30)

∏
n
i=0(1+(5i+4)A6A12A18A24A30)

, x30n+20 =
A11 ∏

n
i=0(1+(5i+3)A5A11A17A23A29)

∏
n
i=0(1+(5i+4)A5A11A17A23A29)

,

x30n+21 =
A10 ∏

n
i=0(1+(5i+3)A4A10A16A22A28)

∏
n
i=0(1+(5i+4)A4A10A16A22A28)

, x30n+22 =
A9 ∏

n
i=0(1+(5i+3)A3A9A15A21A27)

∏
n
i=0(1+(5i+4)A3A9A15A21A27)

,

x30n+23 =
A8 ∏

n
i=0(1+(5i+3)A2A8A14A20A26)

∏
n
i=0(1+(5i+4)A2A8A14A20A26)

, x30n+24 =
A7 ∏

n
i=0(1+(5i+3)A1A7A13A19A25)

∏
n
i=0(1+(5i+4)A1A7A13A19A25)

,

x30n+25 =
A6 ∏

n
i=0(1+(5i+4)A6A12A18A24A30)

∏
n
i=0(1+(5i+5)A6A12A18A24A30)

, x30n+26 =
A5 ∏

n
i=0(1+(5i+4)A5A11A17A23A29)

∏
n
i=0(1+(5i+5)A5A11A17A23A29)

,

x30n+27 =
A4 ∏

n
i=0(1+(5i+4)A4A10A16A22A28)

∏
n
i=0(1+(5i+5)A4A10A16A22A28)

, x30n+28 =
A3 ∏

n
i=0(1+(5i+4)A3A9A15A21A27)

∏
n
i=0(1+(5i+5)A3A9A15A21A27)

,

x30n+29 =
A2 ∏

n
i=0(1+(5i+4)A2A8A14A20A26)

∏
n
i=0(1+(5i+5)A2A8A14A20A26)

, x30n+30 =
A1 ∏

n
i=0(1+(5i+4)A1A7A13A19A25)

∏
n
i=0(1+(5i+5)A1A7A13A19A25)

,

where, x0, . . . ,x−29 defines as in (2.2).
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Proof of Theorem 2.1. The proof of each formula are carried out in similar way. So, we will demonstrate proof using one of the formula. We
will employ the mathematical induction method. Let’s posit that, with n being greater than zero and supposing our assumption is true for
n = 1. That is,

x30n−29 =
A30 ∏

n−1
i=0 (1+5iA6A12A18A24A30)

∏
n−1
i=0 (1+(5i+1)A6A12A18A24A30)

, x30n−28 =
A29 ∏

n−1
i=0 (1+5iA5A11A17A23A29)

∏
n
i=0(1+(5i+1)A5A11A17A23A29)

,

x30n−27 =
A28 ∏

n−1
i=0 (1+5iA4A10A16A22A28)

∏
n−1
i=0 (1+(5i+1)A4A10A16A22A28)

, x30n−26 =
A27 ∏

n−1
i=0 (1+5iA3A9A15A21A27)

∏
n−1
i=0 (1+(5i+1)A3A9A15A21A27)

,

x30n−25 =
A26 ∏

n−1
i=0 (1+5iA2A8A14A20A26)

∏
n−1
i=0 (1+(5i+1)A2A8A14A20A26)

, x30n−24 =
A25 ∏

n−1
i=0 (1+5iA1A7A13A19A25)

∏
n−1
i=0 (1+(5i+1)A1A7A13A19A25)

,

x30n−23 =
A24 ∏

n−1
i=0 (1+(5i+1)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+2)A6A12A18A24A30)

, x30n−22 =
A23 ∏

n−1
i=0 (1+(5i+1)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+2)A5A11A17A23A29)

,

x30n−21 =
A22 ∏

n−1
i=0 (1+(5i+1)A4A10A16A22A28)

∏
n−1
i=0 (1+(5i+2)A4A10A16A22A28)

, x30n−20 =
A21 ∏

n−1
i=0 (1+(5i+1)A3A9A15A21A27)

∏
n−1
i=0 (1+(5i+2)A3A9A15A21A27)

,

x30n−19 =
A20 ∏

n−1
i=0 (1+(5i+1)A2A8A14A20A26)

∏
n−1
i=0 (1+(5i+2)A2A8A14A20A26)

, x30n−18 =
A19 ∏

n−1
i=0 (1+(5i+1)A1A7A13A19A25)

∏
n−1
i=0 (1+(5i+2)A1A7A13A19A25)

,

x30n−17 =
A18 ∏

n−1
i=0 (1+(5i+2)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+3)A6A12A18A24A30)

, x30n−16 =
A17 ∏

n−1
i=0 (1+(5i+2)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+3)A5A11A17A23A29)

,

x30n−15 =
A16 ∏

n−1
i=0 (1+(5i+2)A4A10A16A22A28)

∏
n−1
i=0 (1+(5i+3)A4A10A16A22A28)

, x30n−14 =
A15 ∏

n−1
i=0 (1+(5i+2)A3A9A15A21A27)

∏
n−1
i=0 (1+(5i+3)A3A9A15A21A27)

,

x30n−13 =
A14 ∏

n−1
i=0 (1+(5i+2)A2A8A14A20A26)

∏
n−1
i=0 (1+(5i+3)A2A8A14A20A26)

, x30n−12 =
A13 ∏

n−1
i=0 (1+(5i+2)A1A7A13A19A25)

∏
n−1
i=0 (1+(5i+3)A1A7A13A19A25)

,

x30n−11 =
A12 ∏

n−1
i=0 (1+(5i+3)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+4)A6A12A18A24A30)

, x30n−10 =
A11 ∏

n−1
i=0 (1+(5i+3)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+4)A5A11A17A23A29)

,

x30n−9 =
A10 ∏

n−1
i=0 (1+(5i+3)A4A10A16A22A28)

∏
n−1
i=0 (1+(5i+4)A4A10A16A22A28)

, x30n−8 =
A9 ∏

n−1
i=0 (1+(5i+3)A3A9A15A21A27)

∏
n−1
i=0 (1+(5i+4)A3A9A15A21A27)

,

x30n−7 =
A8 ∏

n−1
i=0 (1+(5i+3)A2A8A14A20A26)

∏
n−1
i=0 (1+(5i+4)A2A8A14A20A26)

, x30n−6 =
A7 ∏

n−1
i=0 (1+(5i+3)A1A7A13A19A25)

∏
n−1
i=0 (1+(5i+4)A1A7A13A19A25)

,

x30n−5 =
A6 ∏

n−1
i=0 (1+(5i+4)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+5)A6A12A18A24A30)

, x30n−4 =
A5 ∏

n−1
i=0 (1+(5i+4)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+5)A5A11A17A23A29)

,

x30n−3 =
A4 ∏

n−1
i=0 (1+(5i+4)A4A10A16A22A28)

∏
n−1
i=0 (1+(5i+5)A4A10A16A22A28)

, x30n−2 =
A3 ∏

n−1
i=0 (1+(5i+4)A3A9A15A21A27)

∏
n−1
i=0 (1+(5i+5)A3A9A15A21A27)

,

x30n−1 =
A2 ∏

n−1
i=0 (1+(5i+4)A2A8A14A20A26)

∏
n−1
i=0 (1+(5i+5)A2A8A14A20A26)

, x30n =
A1 ∏

n−1
i=0 (1+(5i+4)A1A7A13A19A25)

∏
n−1
i=0 (1+(5i+5)A1A7A13A19A25)

.

Now, using the main (2.1), one has

x30n+1 =
x30n−29

1+ x30n−5x30n−11x30n−17x30n−23x30n−29

=

A30 ∏
n−1
i=0 (1+5iA6A12A18A24A30)

∏
n−1
i=0 (1+(5i+1)A6A12A18A24A30)

1+A6A12A18A24A30
∏

n−1
i=0 (1+5iA6A12A18A24A30)

∏
n−1
i=0 (1+(5i+1)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+1)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+2)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+2)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+3)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+3)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+4)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+4)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+5)A6A12A18A24A30)

=
A30 ∏

n−1
i=0

(1+5iiA6A12A18A24A30)
(1+(5i+1)iA6A12A18A24A30)

1+5iA6A12A18A24A30 ∏
n−1
i=0

1+5iA6A12A18A24A30
1+(5i+5)A6A12A18A24A30

= A30

n−1

∏
i=0

1+5iA6A12A18A24A30

1+(5i+1)iA6A12A18A24A30

(
1

1+ A6A12A18A24A30
1+(5i−5)A6A12A18A24A30

)

= A30

n−1

∏
i=0

1+5iA6A12A18A24A30

1+(5i+1)A6A12A18A24A30

(
1+(5i−5)A6A12A18A24A30

1+(5i−4)A6A12A18A24A30

)
.

Hence, we have

x30n+1 = A30

n

∏
i=0

1+5iA6A12A18A24A30

1+(5i+1)A6A12A18A24A30
.

Similarly,
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x30n+2 =
x30n−28

1+ x30n−4x30n−10x30n−16x30n−22x30n−28

=

A29 ∏
n−1
i=0 (1+5iA5A11A17A23A29)

∏
n
i=0(1+(5i+1)A5A11A17A23A29)

1+
A5 ∏

n−1
i=0 (1+(5i+4)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+5)A5A11A17A23A29)

A11 ∏
n−1
i=0 (1+(5i+3)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+4)A5A11A17A23A29)

A17 ∏
n−1
i=0 (1+(5i+2)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+3)A5A11A17A23A29)

A23 ∏
n−1
i=0 (1+(5i+1)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+2)A5A11A17A23A29)

A29 ∏
n−1
i=0 (1+5iA5A11A17A23A29)

∏
n
i=0(1+(5i+1)A5A11A17A23A29)

=
A29 ∏

n−1
i=0

(1+5iA5A11A17A23A29)
(1+(5i+1)A5A11A17A23A29)

1+5iA5A11A17A23A29 ∏
n−1
i=0

1+5iA5A11A17A23A29
1+(5i+5)A5A11A17A23A29

= A29

n−1

∏
i=0

1+5iA5A11A17A23A29

1+(5i+1)A5A11A17A23A29

(
1

1+ 5iA5A11A17A23A29
1+(5i−5)A5A11A17A23A29

)

= A29

n−1

∏
i=0

1+5iA5A11A17A23A29

1+(5i+1)A5A11A17A23A29

(
1+(5i−5)A5A11A17A23A29

1+(5i−4)A5A11A17A23A29

)
.

Therefore, we have

x30n+2 = A29

n

∏
i=0

1+5iA5A11A17A23A29

1+(5i+1)iA5A11A17A23A29
.

Additional relationships can be acquired in the same way, thereby completing the proof.

Theorem 2.2. The equation (2.1) has a unique equilibrium point which is the number zero and this equilibrium is not locally asymptotically
stable. Also x is non hyperbolic.

Proof of Theorem 2.2. For the equilibriums of equation (2.1), we have

x =
x

1+ x5
,

then

x+ x6 = x, x6 = 0.

In consequence, the equilibrium point of (2.1), is x = 0.
Consider f : (0,∞)5→ (0,∞) as the function defined by

f (ξ ,ν ,ρ,χ,κ) =
ξ

1+ξ νρχκ
.

Therefore, it is deduced that,

fξ (ξ ,ν ,ρ,χ,κ) =
1

(1+ξ νρχκ)2 , fν (ξ ,ν ,ρ,χ,κ) =
−ξ 2ρχα

(1+ξ νρχκ)2
, fρ (ξ ,ν ,ρ,χ,κ) =

−ξ 2νχκ

(1+ξ νρχκ)2
,

fχ (ξ ,ν ,ρ,χ,κ) =
−ξ 2νρκ

(1+ξ νρχκ)2
, fκ (ξ ,ν ,ρ,χ,κ) =

−ξ 2νχρ

(1+ξ νρχκ)2
.

We see that,

fξ (x,x,x,x,x) = 1, fν (x,x,x,x,x) = 0, fρ (x,x,x,x,x) = 0, fχ (x,x,x,x,x) = 0, fκ (x,x,x,x,x) = 0.

The proof now follows by using Theorem 2.1.

3. Solution of the Difference Equation xn+1 =
xn−29

1−xn−5xn−11xn−17xn−23xn−29

In this part, we furnish a specific pattern for the solutions of the difference equation given, assuming that the initial conditions are arbitrary
real numbers, where, x0, . . . ,x−29 defines as in (2.2)

xn+1 =
xn−29

1− xn−5xn−11xn−17xn−23xn−29
. (3.1)
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Theorem 3.1. Let’s {xn}∞
n=−29 be a solution of equation (3.1). Accordingly,

x30n+1 =
A30 ∏

n
i=0(1−5iA6A12A18A24A30)

∏
n
i=0(1− (5i+1)A6A12A18A24A30)

, x30n+2 =
A29 ∏

n
i=0(1−5iA5A11A17A23A29)

∏
n
i=0(1− (5i+1)A5A11A17A23A29)

,

x30n+3 =
A28 ∏

n
i=0(1−5iA4A10A16A22A28)

∏
n
i=0(1+(5i+1)A4A10A16A22A28)

, x30n+4 =
A27 ∏

n
i=0(1−5iA3A9A15A21A27)

∏
n
i=0(1+(5i+1)A3A9A15A21A27)

,

x30n+5 =
A26 ∏

n
i=0(1−5iA2A8A14A20A26)

∏
n
i=0(1− (5i+1)A2A8A14A20A26)

, x30n+6 =
A25 ∏

n
i=0(1−5iA1A7A13A19A25)

∏
n
i=0(1− (5i+1)A1A7A13A19A25)

,

x30n+7 =
A24 ∏

n
i=0(1− (5i+1)A6A12A18A24A30)

∏
n
i=0(1− (5i+2)A6A12A18A24A30)

, x30n+8 =
A23 ∏

n
i=0(1− (5i+1)A5A11A17A23A29)

∏
n
i=0(1− (5i+2)A5A11A17A23A29)

,

x30n+9 =
A22 ∏

n
i=0(1− (5i+1)A4A10A16A22A28)

∏
n
i=0(1− (5i+2)A4A10A16A22A28)

, x30n+10 =
A21 ∏

n
i=0(1− (5i+1)A3A9A15A21A27)

∏
n
i=0(1− (5i+2)A3A9A15A21A27)

,

x30n+11 =
A20 ∏

n
i=0(1− (5i+1)A2A8A14A20A26)

∏
n
i=0(1− (5i+2)A2A8A14A20A26)

, x30n+12 =
A19 ∏

n
i=0(1− (5i+1)A1A7A13A19A25)

∏
n
i=0(1− (5i+2)A1A7A13A19A25)

,

x30n+13 =
A18 ∏

n
i=0(1− (5i+2)A6A12A18A24A30)

∏
n
i=0(1− (5i+3)A6A12A18A24A30)

, x30n+14 =
A17 ∏

n
i=0(1− (5i+2)A5A11A17A23A29)

∏
n
i=0(1− (5i+3)A5A11A17A23A29)

,

x30n+15 =
A16 ∏

n
i=0(1− (5i+2)A4A10A16A22A28)

∏
n
i=0(1− (5i+3)A4A10A16A22A28)

, x30n+16 =
A15 ∏

n
i=0(1− (5i+2)A3A9A15A21A27)

∏
n
i=0(1− (5i+3)A3A9A15A21A27)

,

x30n+17 =
A14 ∏

n
i=0(1− (5i+2)A2A8A14A20A26)

∏
n
i=0(1− (5i+3)A2A8A14A20A26)

, x30n+18 =
A13 ∏

n
i=0(1− (5i+2)A1A7A13A19A25)

∏
n
i=0(1− (5i+3)A1A7A13A19A25)

,

x30n+19 =
A12 ∏

n
i=0(1− (5i+3)A6A12A18A24A30)

∏
n
i=0(1− (5i+4)A6A12A18A24A30)

, x30n+20 =
A11 ∏

n
i=0(1− (5i+3)A5A11A17A23A29)

∏
n
i=0(1− (5i+4)A5A11A17A23A29)

,

x30n+21 =
A10 ∏

n
i=0(1− (5i+3)A4A10A16A22A28)

∏
n
i=0(1− (5i+4)A4A10A16A22A28)

, x30n+22 =
A9 ∏

n
i=0(1− (5i+3)A3A9A15A21A27)

∏
n
i=0(1− (5i+4)A3A9A15A21A27)

,

x30n+23 =
A8 ∏

n
i=0(1− (5i+3)A2A8A14A20A26)

∏
n
i=0(1− (5i+4)A2A8A14A20A26)

, x30n+24 =
A7 ∏

n
i=0(1− (5i+3)A1A7A13A19A25)

∏
n
i=0(1− (5i+4)A1A7A13A19A25)

,

x30n+25 =
A6 ∏

n
i=0(1− (5i+4)A6A12A18A24A30)

∏
n
i=0(1− (5i+5)A6A12A18A24A30)

, x30n+26 =
A5 ∏

n
i=0(1− (5i+4)A5A11A17A23A29)

∏
n
i=0(1− (5i+5)A5A11A17A23A29)

,

x30n+27 =
A4 ∏

n
i=0(1− (5i+4)A4A10A16A22A28)

∏
n
i=0(1− (5i+5)A4A10A16A22A28)

, x30n+28 =
A3 ∏

n
i=0(1− (5i+4)A3A9A15A21A27)

∏
n
i=0(1− (5i+5)A3A9A15A21A27)

,

x30n+29 =
A2 ∏

n
i=0(1− (5i+4)A2A8A14A20A26)

∏
n
i=0(1− (5i+5)A2A8A14A20A26)

, x30n+30 =
A1 ∏

n
i=0(1− (5i+4)A1A7A13A19A25)

∏
n
i=0(1− (5i+5)A1A7A13A19A25)

,

holds.

Proof of Theorem 3.1. Let’s suppose that n is greater than 0, and our assumption remains valid for n=1. That is,

x30n−29 =
A30 ∏

n−1
i=0 (1−5iA6A12A18A24A30)

∏
n−1
i=0 (1− (5i+1)A6A12A18A24A30)

, x30n−28 =
A29 ∏

n−1
i=0 (1−5iA5A11A17A23A29)

∏
n
i=0(1− (5i+1)A5A11A17A23A29)

,

x30n−27 =
A28 ∏

n−1
i=0 (1−5iA4A10A16A22A28)

∏
n−1
i=0 (1− (5i+1)A4A10A16A22A28)

, x30n−26 =
A27 ∏

n−1
i=0 (1−5iA3A9A15A21A27)

∏
n−1
i=0 (1− (5i+1)A3A9A15A21A27)

,

x30n−25 =
A26 ∏

n−1
i=0 (1−5iA2A8A14A20A26)

∏
n−1
i=0 (1− (5i+1)A2A8A14A20A26)

, x30n−24 =
A25 ∏

n−1
i=0 (1−5iA1A7A13A19A25)

∏
n−1
i=0 (1− (5i+1)A1A7A13A19A25)

,

x30n−23 =
A24 ∏

n−1
i=0 (1− (5i+1)A6A12A18A24A30)

∏
n−1
i=0 (1− (5i+2)A6A12A18A24A30)

, x30n−22 =
A23 ∏

n−1
i=0 (1− (5i+1)A5A11A17A23A29)

∏
n−1
i=0 (1− (5i+2)A5A11A17A23A29)

,

x30n−21 =
A22 ∏

n−1
i=0 (1− (5i+1)A4A10A16A22A28)

∏
n−1
i=0 (1− (5i+2)A4A10A16A22A28)

, x30n−20 =
A21 ∏

n−1
i=0 (1− (5i+1)A3A9A15A21A27)

∏
n−1
i=0 (1− (5i+2)A3A9A15A21A27)

,

x30n−19 =
A20 ∏

n−1
i=0 (1− (5i+1)A2A8A14A20A26)

∏
n−1
i=0 (1− (5i+2)A2A8A14A20A26)

, x30n−18 =
A19 ∏

n−1
i=0 (1− (5i+1)A1A7A13A19A25)

∏
n−1
i=0 (1− (5i+2)A1A7A13A19A25)

,

x30n−17 =
A18 ∏

n−1
i=0 (1− (5i+2)A6A12A18A24A30)

∏
n−1
i=0 (1− (5i+3)A6A12A18A24A30)

, x30n−16 =
A17 ∏

n−1
i=0 (1− (5i+2)A5A11A17A23A29)

∏
n−1
i=0 (1− (5i+3)A5A11A17A23A29)

,

x30n−15 =
A16 ∏

n−1
i=0 (1− (5i+2)A4A10A16A22A28)

∏
n−1
i=0 (1− (5i+3)A4A10A16A22A28)

, x30n−14 =
A15 ∏

n−1
i=0 (1− (5i+2)A3A9A15A21A27)

∏
n−1
i=0 (1− (5i+3)A3A9A15A21A27)

,

x30n−13 =
A14 ∏

n−1
i=0 (1− (5i+2)A2A8A14A20A26)

∏
n−1
i=0 (1− (5i+3)A2A8A14A20A26)

, x30n−12 =
A13 ∏

n−1
i=0 (1− (5i+2)A1A7A13A19A25)

∏
n−1
i=0 (1− (5i+3)A1A7A13A19A25)

,
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x30n−11 =
A12 ∏

n−1
i=0 (1− (5i+3)A6A12A18A24A30)

∏
n−1
i=0 (1− (5i+4)A6A12A18A24A30)

, x30n−10 =
A11 ∏

n−1
i=0 (1− (5i+3)A5A11A17A23A29)

∏
n−1
i=0 (1− (5i+4)A5A11A17A23A29)

,

x30n−9 =
A10 ∏

n−1
i=0 (1− (5i+3)A4A10A16A22A28)

∏
n−1
i=0 (1− (5i+4)A4A10A16A22A28)

, x30n−8 =
A9 ∏

n−1
i=0 (1− (5i+3)A3A9A15A21A27)

∏
n−1
i=0 (1− (5i+4)A3A9A15A21A27)

,

x30n−7 =
A8 ∏

n−1
i=0 (1− (5i+3)A2A8A14A20A26)

∏
n−1
i=0 (1− (5i+4)A2A8A14A20A26)

, x30n−6 =
A7 ∏

n−1
i=0 (1− (5i+3)A1A7A13A19A25)

∏
n−1
i=0 (1− (5i+4)A1A7A13A19A25)

,

x30n−5 =
A6 ∏

n−1
i=0 (1− (5i+4)A6A12A18A24A30)

∏
n−1
i=0 (1− (5i+5)A6A12A18A24A30)

, x30n−4 =
A5 ∏

n−1
i=0 (1− (5i+4)A5A11A17A23A29)

∏
n−1
i=0 (1− (5i+5)A5A11A17A23A29)

,

x30n−3 =
A4 ∏

n−1
i=0 (1− (5i+4)A4A10A16A22A28)

∏
n−1
i=0 (1− (5i+5)A4A10A16A22A28)

, x30n−2 =
A3 ∏

n−1
i=0 (1− (5i+4)A3A9A15A21A27)

∏
n−1
i=0 (1− (5i+5)A3A9A15A21A27)

,

x30n−1 =
A2 ∏

n−1
i=0 (1− (5i+4)A2A8A14A20A26)

∏
n−1
i=0 (1− (5i+5)A2A8A14A20A26)

, x30n =
A1 ∏

n−1
i=0 (1− (5i+4)A1A7A13A19A25)

∏
n−1
i=0 (1− (5i+5)A1A7A13A19A25)

.

Now, using the main equation (3.1), one has

x30n+1 =
x30n−29

1− x30n−5x30n−11x30n−17x30n−23x30n−29

=

A30 ∏
n−1
i=0 (1+5iA6A12A18A24A30)

∏
n−1
i=0 (1−(5i+1)A6A12A18A24A30)

1+A6A12A18A24A30
∏

n−1
i=0 (1−5iA6A12A18A24A30)

∏
n−1
i=0 (1−(5i+1)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+1)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+2)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+2)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+3)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+3)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+4)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+4)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+5)A6A12A18A24A30)

=
A30 ∏

n−1
i=0

(1−5iA6A12A18A24A30)
(1−(5i+1)iA6A12A18A24A30)

1+ iA6A12A18A24A30 ∏
n−1
i=0

1−5iA6A12A18A24A30
1−(5i+5)A6A12A18A24A30

= A30

n−1

∏
i=0

1−5iA6A12A18A24A30

1− (5i+1)iA6A12A18A24A30

(
1

1− A6A12A18A24A30
1−(5i−5)A6A12A18A24A30

)

= A30

n−1

∏
i=0

1−5iA6A12A18A24A30

1− (5i+1)A6A12A18A24A30

(
1− (5i−5)A6A12A18A24A30

1− (5i−4)A6A12A18A24A30

)
.

Hence, we have

x30n+1 =
A30 ∏

n
i=0(1−5iA6A12A18A24A30)

∏
n
i=0(1− (5i+1)A6A12A18A24A30)

.

Similarly,

x30n+2 =
x30n−28

1− x30n−4x30n−10x30n−16x30n−22x30n−28

=

A29 ∏
n−1
i=0 (1−5iA5A11A17A23A29)

∏
n
i=0(1−(5i+1)A5A11A17A23A29)

1+
A5 ∏

n−1
i=0 (1−(5i+4)A5A11A17A23A29)

∏
n−1
i=0 (1−(5i+5)A5A11A17A23A29)

A11 ∏
n−1
i=0 (1−(5i+3)A5A11A17A23A29)

∏
n−1
i=0 (1−(5i+4)A5A11A17A23A29)

A17 ∏
n−1
i=0 (1−(5i+2)A5A11A17A23A29)

∏
n−1
i=0 (1−(5i+3)A5A11A17A23A29)

A23 ∏
n−1
i=0 (1−(5i+1)A5A11A17A23A29)

∏
n−1
i=0 (1−(5i+2)A5A11A17A23A29)

A29 ∏
n−1
i=0 (1−5iA5A11A17A23A29)

∏
n
i=0(1−(5i+1)A5A11A17A23A29)

=
A29 ∏

n−1
i=0

(1−5iA5A11A17A23A29)
(1−(5i+1)A5A11A17A23A29)

1+5iA5A11A17A23A29 ∏
n−1
i=0

1−5iA5A11A17A23A29
1−(5i+5)A5A11A17A23A29

= A29

n−1

∏
i=0

1−5iA5A11A17A23A29

1− (5i+1)A5A11A17A23A29

(
1

1− 5iA5A11A17A23A29
1−(5i+1)A5A11A17A23A29

)

= A29

n−1

∏
i=0

1−5iA5A11A17A23A29

1− (5i+1)A5A11A17A23A29

(
1− (5i−5)A5A11A17A23A29

1− (5i−4)A5A11A17A23A29

)
.

Therefore, we have

x30n+2 = A29

n

∏
i=0

1−5iA5A11A17A23A29

1− (5i+1)iA5A11A17A23A29
.

In a similar way, it is readily achieved in extra relationships.

Theorem 3.2. In (3.1) there is a unique equilibrium point located at x = 0, yet it does not fulfill the criteria for local asymptotic stability.

Proof of Theorem 3.2. The proof follows the same procedure as the proof of Theorem 2.2, thus it is not detailed.

4. Solution of the Difference Equation xn+1 =
xn−29

−1+xn−5xn−11xn−17xn−23xn−29

In this case, we give a specific form of the solutions of the difference equation below, provided that the initial conditions are arbitrary real
numbers,

xn+1 =
xn−29

−1+ xn−5xn−11xn−17xn−23xn−29
, (4.1)

where, x0, . . . ,x−29 defines as in (2.2) with x−5x−11x−17x−23x−29 6= 1, x−4x−10x−16x−22x−28 6= 1, x−3x−9x−15x−21x−27 6= 1,
x−2x−8x−14x−20x−26 6= 1, x−1x−7x−13x−19x−25 6= 1, x0x−6x−12x−18x−24 6= 1.
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Theorem 4.1. Each solution {xn}∞
n=−29 of equation (4.1) recurs every sixty units and has the structure,

x60n+1 =
A30

−1+A6A12A18A24A30
, x60n+2 =

A29

−1+A5A11A17A23A29
, x60n+3 =

A28

−1+A4A10A16A22A28
,

x60n+4 =
A27

−1+A3A9A15A21A27
, x60n+5 =

A26

−1+A2A8A14A20A26
, x60n+6 =

A25

−1+A1A7A13A19A25
,

x60n+7 = A24(−1+A6A12A18A24A30) , x60n+8 = A23(−1+A5A11A17A23A29) , x60n+9 = A22(−1+A4A10A16A22A28) ,

x60n+10 = A21(−1+A3A9A15A21A27) , x60n+11 = A20(−1+A2A8A14A20A26) , x60n+12 = A19(−1+A1A7A13A19A25) ,

x60n+13 =
A18

−1+A6A12A18A24A30
, x60n+14 =

A17

−1+A5A11A17A23A29
, x60n+15 =

A16

−1+A4A10A16A22A28
,

x60n+16 =
A15

−1+A3A9A15A21A27
, x60n+17 =

A14

−1+A2A8A14A20A26
, x60n+18 =

A13

−1+A1A7A13A19A25
,

x60n+19 = A12(−1+A6A12A18A24A30) , x60n+20 = A11(−1+A5A11A17A23A29) , x60n+21 = A10(−1+A4A10A16A22A28) ,

x60n+22 = A9(−1+A3A9A15A21A27) , x60n+23 = A8(−1+A2A8A14A20A26) , x60n+24 = A7(−1+A1A7A13A19A25) ,

x60n+25 =
A6

−1+A6A12A18A24A30
, x60n+26 =

A5

−1+A5A11A17A23A29
, x60n+27 =

A4

−1+A4A10A16A22A28
,

x60n+28 =
A3

−1+A3A9A15A21A27
, x60n+29 =

A2

−1+A2A8A14A20A26
, x60n+30 =

A1

−1+A1A7A13A19A25
,

x60n+31 = A30, x60n+32 = A29, x60n+33 = A28, x60n+34 = A27, x60n+35 = A26, x60n+36 = A25, x60n+37 = A24,

x60n+38 = A23, x60n+39 = A22, x60n+40 = A21, x60n+41 = A20, x60n+42 = A19, x60n+43 = A18, x60n+44 = A17,

x60n+45 = A16, x60n+46 = A15, x60n+47 = A14, x60n+48 = A13, x60n+49 = A12, x60n+50 = A11, x60n+51 = A10,

x60n+52 = A9, x60n+53 = A8, x60n+54 = A7, x60n+55 = A6, x60n+56 = A5, x60n+57 = A4, x60n+58 = A3,

x60n+59 = A2, x60n+60 = A1.

The solutions consist of 60 periods.

Proof of Theorem 4.1. Suppose,

x60n−59 =
A30

−1+A6A12A18A24A30
, x60n−58 =

A29

−1+A5A11A17A23A29
, x60n−57 =

A28

−1+A4A10A16A22A28
,

x60n−56 =
A27

−1+A3A9A15A21A27
, x60n−55 =

A26

−1+A2A8A14A20A26
, x60n−54 =

A25

−1+A1A7A13A19A25
,

x60n−53 = A24(−1+A6A12A18A24A30) , x60n−52 = A23(−1+A5A11A17A23A29) , x60n−51 = A22(−1+A4A10A16A22A28) ,

x60n−50 = A21(−1+A3A9A15A21A27) , x60n−49 = A20(−1+A2A8A14A20A26) , x60n−48 = A19(−1+A1A7A13A19A25) ,

x60n−47 =
A18

−1+A6A12A18A24A30
, x60n−46 =

A17

−1+A5A11A17A23A29
, x60n−45 =

A16

−1+A4A10A16A22A28
,

x60n−44 =
A15

−1+A3A9A15A21A27
, x60n−43 =

A14

−1+A2A8A14A20A26
, x60n−42 =

A13

−1+A1A7A13A19A25
,

x60n−41 = A12(−1+A6A12A18A24A30) , x60n−40 = A11(−1+A5A11A17A23A29) , x60n−39 = A10(−1+A4A10A16A22A28) ,

x60n−38 = A9(−1+A3A9A15A21A27) , x60n−37 = A8(−1+A2A8A14A20A26) , x60n−36 = A7(−1+A1A7A13A19A25) ,

x60n−35 =
A6

−1+A6A12A18A24A30
, x60n−34 =

A5

−1+A5A11A17A23A29
, x60n−33 =

A4

−1+A4A10A16A22A28
,

x60n−32 =
A3

−1+A3A9A15A21A27
, x60n−31 =

A2

−1+A2A8A14A20A26
, x60n−30 =

A1

−1+A1A7A13A19A25
,

x60n−29 = A30, x60n−28 = A29, x60n−27 = A28, x60n−26 = A27, x60n−25 = A26, x60n−24 = A25, x60n−23 = A24,

x60n−22 = A23, x60n−21 = A22, x60n−20 = A21, x60n−19 = A20, x60n−18 = A19, x60n−17 = A18, x60n−16 = A17,

x60n−15 = A16, x60n−14 = A15, x60n−13 = A14, x60n−12 = A13, x60n−11 = A12, x60n−10 = A11, x60n−9 = A10,

x60n−8 = A9, x60n−7 = A8, x60n−6 = A7, x60n−5 = A6, x60n−4 = A5, x60n−3 = A4, x60n−2 = A3,

x60n−1 = A2, x60n = A1.

Now, it follows from equation (4.1) that

x60n+1 =
x60n−29

−1+ x60n−5x60n−11x60n−17x60n−23x60n−29
=

A30

−1+A6A12A18A24A30
.
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Then, we have

x60n+1 =
A30

−1+A6A12A18A24A30
.

Other relation can be given by the same way.

Theorem 4.2. Equation (4.1) has three equilibrium points which 0,± 5
√

2, and these equilibrium points aren’t locally asymptotically stable.

Proof of Theorem 4. The proof follows the same procedure as the proof of Theorem 2.2, thus it is not detailed.

5. Solution of the Difference Equation xn+1 =
xn−29

−1−xn−5xn−11xn−17xn−23xn−29

In this case, we give a specific form of the solutions of the difference equation below, provided that the initial conditions are arbitrary real
numbers,

xn+1 =
xn−29

−1− xn−5xn−11xn−17xn−23xn−29
, (5.1)

where, x0, . . . ,x−29 defines as in (2.2) with x−5x−11x−17x−23x−29 6=−1, x−4x−10x−16x−22x−28 6= 1, x−3x−9x−15x−21x−27 6=−1,
x−2x−8x−14x−20x−26 6=−1, x−1x−7x−13x−19x−25 6=−1, x0x−6x−12x−18x−24 6=−1.

Theorem 5.1. Each solution {xn}∞
n=−29 of equation (4.1) is periodic with period sixty and is of the form,

x60n+1 =
A30

−1−A6A12A18A24A30
, x60n+2 =

A29

−1−A5A11A17A23A29
, x60n+3 =

A28

−1−A4A10A16A22A28
,

x60n+4 =
A27

−1−A3A9A15A21A27
, x60n+5 =

A26

−1−A2A8A14A20A26
, x60n+6 =

A25

−1−A1A7A13A19A25
,

x60n+7 = A24(−1−A6A12A18A24A30) , x60n+8 = A23(−1−A5A11A17A23A29) , x60n+9 = A22(−1−A4A10A16A22A28) ,

x60n+10 = A21(−1−A3A9A15A21A27) , x60n+11 = A20(−1−A2A8A14A20A26) , x60n+12 = A19(−1−A1A7A13A19A25) ,

x60n+13 =
A18

−1−A6A12A18A24A30
, x60n+14 =

A17

−1−A5A11A17A23A29
, x60n+15 =

A16

−1−A4A10A16A22A28
,

x60n+16 =
A15

−1−A3A9A15A21A27
, x60n+17 =

A14

−1−A2A8A14A20A26
, x60n+18 =

A13

−1−A1A7A13A19A25
,

x60n+19 = A12(−1−A6A12A18A24A30) , x60n+20 = A11(−1−A5A11A17A23A29) , x60n+21 = A10(−1−A4A10A16A22A28) ,

x60n+22 = A9(−1−A3A9A15A21A27) , x60n+23 = A8(−1−A2A8A14A20A26) , x60n+24 = A7(−1−A1A7A13A19A25) ,

x60n+25 =
A6

−1−A6A12A18A24A30
, x60n+26 =

A5

−1−A5A11A17A23A29
, x60n+27 =

A4

−1−A4A10A16A22A28
,

x60n+28 =
A3

−1−A3A9A15A21A27
, x60n+29 =

A2

−1−A2A8A14A20A26
, x60n+30 =

A1

−1−A1A7A13A19A25
,

x60n+31 = A30, x60n+32 = A29, x60n+33 = A28, x60n+34 = A27, x60n+35 = A26, x60n+36 = A25, x60n+37 = A24,

x60n+38 = A23, x60n+39 = A22, x60n+40 = A21, x60n+41 = A20, x60n+42 = A19, x60n+43 = A18, x60n+44 = A17,

x60n+45 = A16, x60n+46 = A15, x60n+47 = A14, x60n+48 = A13, x60n+49 = A12, x60n+50 = A11, x60n+51 = A10,

x60n+52 = A9, x60n+53 = A8, x60n+54 = A7, x60n+55 = A6, x60n+56 = A5, x60n+57 = A4, x60n+58 = A3,

x60n+59 = A2, x60n+60 = A1.

The solutions consist of 60 periods.

Proof. The proof mirrors the proof of Theorem 4.1, and hence, it is not elaborated upon.

Theorem 5.2. Equation (5.1) has three equilibrium points which 0,± 5
√
−2, and these equilibrium points are not locally asymptotically

stable.

Proof. The proof follows the same procedure as the proof of Theorem 2.2, thus it is not detailed.
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6. Numerical Investigation

We devote this section to verifying the theoretical work obtained in this article.

Example 6.1. For Eq. 2.1 and 3.1 we consider following initial conditions.

x−29 = 3.2, x−28 = 3.3, x−27 = 3.4, x−26 = 3.5, x−25 = 3.6, x−24 = 3.7,

x−23 = 3.8, x−22 = 3.9, x−21 = 4, x−20 = 4.1, x−19 = 4.2, x−18 = 4.3,

x−17 = 4.4, x−16 = 4.5, x−15 = 4.6, x−14 = 4.7, x−13 = 4.8, x−12 = 4.9,

x−11 = 5, x−10 = 5.1, x−9 = 5.2, x−8 = 5.3, x−7 = 5.4, x−6 = 5.5,

x−5 = 5.6, x−4 = 5.7, x−3 = 5.8, x−2 = 5.9, x−1 = 6.1, x0 = 6.

Example 6.2. For Eq. 4.1 and 5.1 we consider following initial conditions.

x−29 = 0.32, x−28 = 0.33, x−27 = 0.34, x−26 = 0.35, x−25 = 0.36, x−24 = 0.37,

x−23 = 0.38, x−22 = 0.39, x−21 = 0.4, x−20 = 0.41, x−19 = 0.42, x−18 = 0.43,

x−17 = 0.44, x−16 = 0.45, x−15 = 0.46, x−14 = 0.47, x−13 = 0.48, x−12 = 0.49,

x−11 = 0.5, x−10 = 0.51, x−9 = 0.52, x−8 = 0.53 x−7 = 0.54, x−6 = 0.55,

x−5 = 0.56, x−4 = 0.57, x−3 = 0.58, x−2 = 0.59, x−1 = 0.61, x0 = 0.6.
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Figure 6.1: Plot illustrates the stability of Eq. 2.1
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Figure 6.2: Plot illustrates the stability of Eq. 3.1
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Figure 6.3: Plot illustrates the stability of Eq. 4.1

50 100 150
n

- 1.0

- 0.5

0.5

x(n)

x
-
=0

Figure 6.4: Plot illustrates the stability of Eq. 5.1

7. Conclusion

This article extensively explores the qualitative behaviors of difference equations. It effectively examines local stability, periodicity,
oscillation, and solutions. Traditional iteration methods are employed to derive exact solutions for the relevant equations.
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Abstract

The manuscript is an attempt to consider all methods which are applicable to investigation
a directional index for composition of an analytic function in some domain and an entire
function. The approaches are applied to find sufficient conditions of the L-index bound-
edness in a direction b ∈ Cn \{0}, where the continuous function L satisfies some growth
condition and the condition of positivity in the unit polydisc. The investigation is based on
a counterpart of the Hayman Theorem for the class of analytic functions in the polydisc
and a counterpart of logarithmic criterion describing local conduct of logarithmic derivative
modulus outside some neighborhoods of zeros. The established results are new advances
for the functions analytic in the polydisc and in multidimensional value distribution theory.

1. Main Definitions and Notations

We will use notations from [1, 2]. Let Cn be an n-dimensional complex vector space, 0 = (0, . . . ,0), and b = (b1, . . . ,bn) ∈ Cn \{0} be a
fixed direction. Other denotations are the following: R+ = (0,+∞), the unit polydisc Dn is the Cartesian products of the discs with radius 1,
i.e. Dn = {z ∈ Cn : |z j|< 1 for every j ∈ {1,2, . . . ,n}}. A continuous function L : Dn→ R+ is such that for any z = (z1,z2, . . . ,zn) ∈ Dn

L(z)> β max
1≤ j≤n

|b j|
1−|z j|

, β = const > 1. (1.1)

Recently, Salo T. with her co-authors [1] introduced a notion of the directional L-index for functions analytic in the polydisc. They proved
many criteria belonging functions to the class. They describe the local behavior of the function and its directional derivative and its value
distribution on all slices generated by the vector b and give estimates of logarithmic derivative modulus in the same vector. Now we justify
some application of the results to related topics. In particular, we will examine some compositions of a function analytic in Cn and a function
analytic in the Dn, and will present sufficient conditions of boundedness of the L-index in direction for such a composition. Note there are
results [3, 4] on the finiteness of the index for analytic functions of single variable for which multidimensional analogs are still unknown.
The notation A (Dn) we use for the class of functions which are analytic in Dn. Similarly, A (Cn) means the class of entire functions of n
complex variables.
Let us remind the main definition from [1]. A function F ∈A (Dn) is said to be of bounded L-index in a direction b, if it is possible to find
m0 ∈ Z+ such that for every non-negative integer m and for any point z from the polydisc one has

|∂ m
b F(z)|

m!Lm(z)
≤max

{
|∂ k

bF(z)|
k!Lk(z)

: for every k ∈ {0,1, . . . ,m0}

}
, (1.2)
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where ∂ 0
b F(z) matches with the function F, ∂bF(z) is the dot product of the gradient of the function F and the conjugate of the vector b,

∂ k
bF(z) = ∂b

(
∂

k−1
b F(z)

)
, k ≥ 2. The definition firstly appeared for entire functions of single variable in the paper of B. Lepson [5] if L≡ 1,

b = 1 and in paper [6] if L is an arbitrary positive continuous function and b = 1. If such least integer m0 = m0(b) exists then it is is called
the L-index in the direction b of F . The value m0 will be denoted by Nb(F,L).
For a fixed point z∗ = (z∗1, . . . ,z

∗
n) from the polydisc by Dz we denote an intersection of the Dn and a complex line crossing the point in a

given direction b, i.e. Dz∗ = {t ∈ C : (z∗1 + tb1, . . . ,z∗n + tbn) ∈ Dn}. In other words, Dz = {t ∈ C : |t| < min1≤ j≤n
1−|z j |
|b j | }. Here if b j = 0

then we suppose 1−|z j |
|b j | =+∞. Denote

λb(ζ ) = sup
w∈Dn

sup
s1,s2∈Dw

{
L(w+ s2b)
L(w+ s1b)

: |s1− s2| ≤
ζ

min{L(z+ s2b),L(z+ s1b)}

}
.

As in [1] the Qb(Dn) denotes a class of continuous functions L : Dn→ R+, which satisfy (1.1) and for each ζ from the segment [0,β ] the
quantity λb(ζ ) is finite (the parameter β is defined in condition (1.1)).

2. Boundedness of L-index in Direction for Composition of Analytic Functions in the Polydisc

For simplicity, we suppose that for Ψ ∈A (Dn) there exist κ > 0 and natural p such that for all z ∈ Dn and for all integer m ∈ {0,1, . . . , p}
next inequality is fulfilled

|∂ m
b Ψ(z)| ≤ κ|∂bΨ(z)|m. (2.1)

For functions h : Cm → C (or R instead of C) and g : Dn → C by h◦mg we denote such a composition h(g(z), . . . ,g(z)︸ ︷︷ ︸
m times

) The following

proposition was early deduced for the unit ball [7] and n-dimensional complex space [8]. Now we formulate it for the class A (Dn).

Theorem 2.1. Let b be non-zero n-dimensional complex vector, f ∈A (Cm), Ψ∈A (Dn) and its derivative in the direction b has empty zero
set. Suppose that function l belongs to the class Qm

1 and its values are not lesser than 1, and the function L is defined as L(z) =
∣∣∂bΨ(z)

∣∣l ◦mΨ(z)
and it belongs to the class Qb(Dn).
If the l-index in the direction 1 of the function f ∈ A (Cm) is finite and the function Ψ satisfies (2.1) with N1( f , l) instead of p then the
L-index in the direction b of the function F(z) = f ◦mΨ(z) is also finite.
And if the function F(z) = f ◦mΨ(z) has finite Nb(F,L) and inequality (2.1) is fulfilled for the function Ψ and p = Nb(F,L) then N1( f , l) is
finite.

Let us formulate some auxiliary propositions. They are counterparts the Hayman Theorem for the class A (Cn) [9] and the class A (Dn) [1],
It was firstly proved by W. Hayman [10] for entire functions of one variable having bounded index.

Theorem 2.2 ( [9]). Let L ∈ Qn
b. A function F ∈A (Cn) is of bounded L-index in the direction b if and only if there exist numbers p ∈ Z+,

R > 0 and C > 0 such that for every z ∈ Cn outside the disc of radii R one has

|∂ p+1
b F(z)|
Lp+1(z)

≤C max

{
|∂ k

bF(z)|
Lk(z)

: k ∈ {0, . . . , p}

}
. (2.2)

Theorem 2.3 ( [1]). Let L ∈ Qb(Dn). A function F ∈A (Dn) has finite Nb(F,L) if and only if for some positive integer p and positive real
C, and for every z belonging the polydisc inequality (2.2) holds.

Proof of Theorem 2.1. Denote ∇ f = ∂1 f = ∑
m
j=1

∂ f
∂ z j

, ∇k f ≡ ∂ k
1 f for k ≥ 2. Firstly, we present two following formulas from [7, 8, 11]

∂
k
bF(z) = ∇

k f ◦mΨ(z)(∂bΨ(z))k +
k−1

∑
j=1

∇
j f ◦mΨ(z)Q j,k(z), (2.3)

where

Q j,k(z) = ∑
n1+2n2+...+knk=k

0≤n1≤ j−1

c j,k,n1,...,nk (∂bΨ(z))n1
(

∂
2
b Ψ(z)

)n2
. . .
(

∂
k
bΨ(z)

)nk
,

c j,k,n1,...,nk are non-negative integer numbers, and

∇
k f ◦mΨ(z) = ∂

k
bF(z)

(
∂bΨ(z)

)−k
+
(
∂bΨ(z)

)−2k
k−1

∑
j=1

∂
j

bF(z)(∂bΨ(z)) j Q∗(z; j,k), (2.4)

with

Q∗(z; j,k) = ∑
m1+2m2+...+kmk=2(k− j)

b j,k,m1,...,mk (∂bΨ(z))m1
(

∂
2
b Ψ(z)

)m2
. . .
(

∂
k
bΨ(z)

)mk
,

b j,k,m1,...,mk are some integer coefficients. Their detailed proofs were presented in [7] for the unit ball and use the mathematical induction
method. Obviously, their proofs for the polydisc is the same, so we omit them.
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Suppose that N1( f , l) is finite and f belongs to the class A (Cm). By Theorem 2.2 inequality (2.2) holds for n = m, F = f , L = l, b = 1.
Taking into account (2.1) and (2.3), for k = p+1 we obtain

|∂ p+1
b F(z)|
Lp+1(z)

≤ |∇
p+1 f ◦mΨ(z)|
Lp+1(z)

|∂bΨ(z)|p+1 +
p

∑
j=1

|∇ j f ◦mΨ(z)||Q j,p+1(z)|
Lp+1(z)

≤

≤max
{
|∇k f ◦mΨ(z)|
(l ◦mΨ(z))k : k∈ {0, . . . , p}

}(
C+

p

∑
j=1

|Q j,p+1(z)|
(l ◦mΨ(z))p+1− j|∂bΨ(z)|p+1

)
≤max

{
|∇k f ◦mΨ(z)|
(l ◦mΨ(z))k : k∈ {0, . . . , p}

}
×

×

C+
p

∑
j=1

∑
n1+2n2+...+(p+1)np+1=p+1

0≤n1≤ j−1

c j,p+1,n1,...,np+1

|(∂bΨ(z))n1
(
∂ 2

b Ψ(z)
)n2 . . .

(
∂

p+1
b Ψ(z)

)np+1
|

(l ◦mΨ(z))p+1− j|∂bΨ(z)|p+1

≤

≤max
{
|∇k f ◦mΨ(z)|
(l ◦mΨ(z))k : k∈ {0, . . . , p}

}C+
p

∑
j=1

∑
n1+2n2+...+(p+1)np+1=p+1

0≤n1≤ j−1

c j,p+1,n1,...,np+1 κ p+1

(l ◦mΨ(z))p+1− j

≤C1 max
k∈{0,...,p}

|∇k f ◦mΨ(z)|
(l ◦mΨ(z))k .

Now we substitute the right-hand side of (2.4) instead of ∇k f ◦mΨ(z) and perform some algrebraic transformations:

|∇k f ◦mΨ(z)|
(l ◦mΨ(z))k ≤

|∂ k
bF(z)|

(l ◦mΨ(z))k|∂bΨ(z)|k
+

k−1

∑
j=1

|∂ j
bF(z)||Q∗(z; j,k)|

(l ◦mΨ(z))k|∂bΨ(z)|2k− j ≤ max
1≤ j≤k

|∂ j
bF(z)|
L j(z)

(
1+

k−1

∑
j=1

|Q∗(z; j,k)|
(l ◦mΨ(z))k− j|∂bΨ(z)|2(k− j)

)
≤

≤ max
j∈{1,2,...,k}

{
L− j(z)

∣∣∣∣∂ j
bF(z)

∣∣∣∣}
(

1+
k−1

∑
j=1

∑
m1+2m2+...+kmk=2(k− j)

|b j,k,m1,...,mk |
|(∂bΨ(z))m1

(
∂ 2

b Ψ(z)
)m2 . . .

(
∂ k

bΨ(z)
)mk |

(l ◦mΨ(z))k− j|∂bΨ(z)|2(k− j)

)
≤

≤max

{
|∂ j

bF(z)|
L j(z)

: 1≤ j ≤ k

}(
1+

k−1

∑
j=1

∑
m1+2m2+...+kmk=2(k− j)

|b j,k,m1,...,mk |κk

(l ◦mΨ(z))k− j

)
≤C2 max

1≤ j≤k

|∂ j
bF(z)|
L j(z)

.

Hence, it follows that

|∂ p+1
b F(z)|
Lp+1(z)

≤C1C2 max

{
|∂ k

bF(z)|
Lk(z)

: k∈ {0, . . . , p}

}
.

The last inequality is the same as (2.2) in Theorem 2.3. It means that the theorem is applicable. Hence, we conclude that the directional
L-index of the function F is bounded. The first part is proved.
Now we will start coinsiderations vice versa. Assume that the L-index in the direction b of the function F is bounded. In view of Hayman’s
Theorem the function must satisfies (2.2). Using (2.1) and (2.4), we will estimate

|∇p+1 f ◦mΨ(z)|
(l ◦mΨ(z))p+1 ≤

|∂ p+1
b F(z)|

(l ◦mΨ(z))p+1|∂bΨ(z)|p+1 +
p

∑
j=1

|∂ j
bF(z)||Q∗(z; j, p+1)|

(l ◦mΨ(z))p+1|∂bΨ(z)|2p+2− j ≤

≤max

{
|∂ k

bF(z)|
Lk(z)

: k∈ {0, . . . , p}

}(
C+

p

∑
j=1

|Q∗(z; j, p+1)|
(l ◦mΨ(z))p+1− j|∂bΨ(z)|2(p+1− j)

)
≤

≤max

{
|∂ k

bF(z)|
Lk(z)

: k∈ {0, . . . , p}

}C+
p

∑
j=1

∑
m1+...+(p+1)mp+1=

=2(p+1− j)

|b j,p+1,m1,...,mp+1 |
|(∂bΨ(z))m1

(
∂ 2

b Ψ(z)
)m2 . . .

(
∂

p+1
b Ψ(z)

)mp+1
|

(l ◦mΨ(z))p+1− j|∂bΨ(z)|2(p+1− j)

≤

≤max

{
|∂ k

bF(z)|
Lk(z)

: k∈ {0, . . . , p}

}C+
p

∑
j=1

∑
m1+...+(p+1)mp+1=

=2(p+1− j)

|b j,p+1,m1,...,mp+1 |κ2p+2−2 j

lp+1− j(Ψ(z))

≤C3 max
k∈{0,...,p}

|∂ k
bF(z)|
Lk(z)

.

Instead ∂ k
bF(z) in previous expression we substitute (2.3) and again deduce

|∂ k
bF(z)|
Lk(z)

≤ |∇
k f ◦mΨ(z)||∂bΨ(z)|k

Lk(z)
+

k−1

∑
j=1

|∇ j f ◦mΨ(z)||Q j,k(z)|
Lk(z)

≤

≤max
{
|∇ j f ◦mΨ(z)|
(l ◦mΨ(z)) j : 1≤ j ≤ k

}(
1+

k−1

∑
j=1

|Q j,k(z)|
(l ◦mΨ(z))k− j|∂bΨ(z)|k

)
≤C4 max

{
|∇ j f ◦mΨ(z)|
(l ◦mΨ(z)) j : j ∈ {1,2, . . . ,k}

}
.

It implies that

|∇p+1 f ◦mΨ(z)|
(l ◦mΨ(z))p+1 ≤C3C4 max

{
|∇ j f ◦mΨ(z)|
(l ◦mΨ(z)) j : j∈ {0, . . . , p}

}
.

Application of Theorem 2.2 for such values n = m, F = f , L = l, b = 1 give us finiteness of the l-index in the direction b.



124 Universal Journal of Mathematics and Applications

Theorem 2.4. Let b be a fixed n-dimensional non-zero complex direction, the functions l, f , Ψ belong to the classes Qm
1 , A (Cm), A (Dn),

respectively. For each w ∈ Cm the values of l(w) are not lesser than 1, and the l-index in the direction 1 of the function f is bounded.
Suppose that the function L(z) = max{1, |∂bΨ(z)|} l ◦mΨ(z) belongs to the class Qb(Dn) and for every point z from the polydisc Dn and for
each k ∈ {1,2, . . . ,N1( f , l)+1} the function Ψ satisfies

|∂ k
bΨ(z)| ≤ κ(l ◦mΨ(z))1/(N1( f ,l)+1)|∂bΨ(z)|k, (1≤ kappa≡ const). (2.5)

Then the function F(z) = f ◦mΨ(z) belongs to the function class having bounded L-index in the direction b.

Proof of Theorem 2.4. As above, we will merge methods from appropriate statements in [7, 8].
Denote L0(z) = l ◦mΨ(z)|∂bΨ(z)|. We estimate Equation (2.3) with L0 instead of L by modulus and substitute l ◦mΨ(z)|∂bΨ(z)| instead of the
function L0, for k = p+1 we conclude

|∂ p+1
b F(z)|L−p−1

0 (z)≤ |∇p+1 f ◦mΨ(z)|L−p−1
0 (z) |∂bΨ(z)|p+1 +

p

∑
j=1
|∇ j f ◦mΨ(z)||Q j,p+1(z)|L−p−1

0 (z)≤

≤ |∇
p+1 f ◦mΨ(z)| |∂bΨ(z)|p+1

(l ◦mΨ(z))p+1 |∂bΨ(z)|p+1 +
p

∑
j=1

|∇ j f ◦mΨ(z)|
(l ◦mΨ(z)) j ·

|Q j,p+1(z)|(l ◦mΨ(z)) j

|∂bΨ(z)|p+1 (l ◦mΨ(z))p+1
. (2.6)

Let us remind that f ∈A (Cm) has finite Nb( f , l) (by hypothesis of the assertion). Theorem 2.2 yields validity of inequality (2.2) in this form

(∀τ ∈ Cm) :
|∇p+1 f (τ)|

lp+1(τ)
≤C max

{
|∇k f (τ)|

lk(τ)
: k∈ {0, . . . , p}

}
for such values of parameters n = m, F = f , L = l, b = 1 and p = N1( f , l). We enhance (2.6), if we substitute previous inequality with
τ = (Ψ(z), . . . ,Ψ(z)︸ ︷︷ ︸

m times

)

|∂ p+1
b F(z)|
Lp+1

0 (z)
≤max

{ |∇k f ◦mΨ(z)|
(l ◦mΨ(z))k : k∈ {0, . . . , p}

}(
C+

p

∑
j=1

|Q j,p+1(z)|(l ◦mΨ(z)) j−p−1

|∂bΨ(z)|p+1

)
≤

≤ max
k∈{0,...,p}

|∇k f ◦mΨ(z)|
(l ◦mΨ(z))k

(
C+

p

∑
j=1

∑
n1+2n2+...+(p+1)np+1=p+1

0≤n1≤ j−1

c j,p+1,n1,...,np+1

|(∂bΨ(z))n1
(
∂ 2

b Ψ(z)
)n2 . . .

(
∂

p+1
b Ψ(z)

)np+1
|

(l ◦mΨ(z))p+1− j |∂bΨ(z)|p+1

)
. (2.7)

Now we use condition (2.5) for the function Ψ. Then inequality (2.7) transforms in the following

|∂ p+1
b F(z)|
Lp+1

0 (z)
≤max

{ |∇k f (Ψ(z))|
(l ◦mΨ(z))k : k ∈ {0,1, . . . , p}

}
×

×
(

C+
p

∑
j=1

∑
n1+2n2+...+(p+1)np+1=p+1

0≤n1≤ j−1

c j,p+1,n1,...,np+1 κ p+1l(Ψ(z), . . . ,Ψ(z))|∂bΨ(z)|p+1

(l ◦mΨ(z))p+1− j |∂bΨ(z)|p+1

)
≤

≤max
{ |∇k f ◦mΨ(z)|

(l ◦mΨ(z))k : k ∈ {0,1,2, . . . , p}
}(

C+
p

∑
j=1

∑
n1+2n2+...+(p+1)np+1=p+1

0≤n1≤ j−1

c j,p+1,n1,...,np+1 κ p+1

(l ◦mΨ(z))p− j

)
. (2.8)

Since the values of the function l are not lesser than 1, the composition l ◦mΨ(z) is also not lesser than 1. We substitute it in (2.8)

|∂ p+1
b F(z)|
Lp+1

0 (z)
≤C1 max

{
|∇k f ◦mΨ(z)|
(l ◦mΨ(z))k : k∈ {0, . . . , p}

}
, (2.9)

with C1 =C+κ p+1
∑

p
j=1 ∑

n1+2n2+...+(p+1)np+1=p+1

0≤n1≤ j−1

c j,p+1,n1,...,np+1 . To estimate the fraction |∇
k f ◦mΨ(z)|

(l ◦mΨ(z))k , we find the modulus of equality (2.4)

|∇k f ◦mΨ(z)|
(l ◦mΨ(z))k ≤

|∂ k
bF(z)|

(l ◦mΨ(z))k|∂bΨ(z)|k
+

k−1

∑
j=1

|∂ j
bF(z)||Q∗(z; j,k)|

(l ◦mΨ(z))k|∂bΨ(z)|2k− j ≤

≤ max
1≤ j≤k

{ |∂ j
bΨ(z)|

(l ◦mΨ(z)) j|∂bΨ(z)| j
}(

1+
k−1

∑
j=1

|Q∗(z; j,k)|
(l ◦mΨ(z))k− j|∂bΨ(z)|2(k− j)

)
≤

≤ max
1≤ j≤k

|∂ j
bΨ(z)|

(l ◦mΨ(z)) j|∂bΨ(z)| j

(
1+

k−1

∑
j=1

∑
m1+2m2+...+kmk=2(k− j)

|b j,k,m1,...,mk |
|(∂bΨ(z))m1(∂ 2

b Ψ(z))m2 . . .(∂ k
bΨ(z))mk |

(l ◦mΨ(z))k− j|∂bΨ(z)|2(k− j)

)
. (2.10)
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Since l(w) ≥ 1 and for s ∈ {1,2, . . . ,N1( f , l)+ 1} and N1( f , l) ≥ 1 one has s/2 ≥ 1/(N1( f , l)+ 1), inequality (2.5) can be reinforced
|∂ s

bΨ(z)| ≤ κls/2(Ψ(z))|∂bΨ(z)|s. Applying this inequality to (2.10), we deduce

|∇k f ◦mΨ(z)|
(l ◦mΨ(z))k ≤ max

1≤ j≤k

|∂ j
bF(z)|

(l ◦mΨ(z)) j|∂bΨ(z)| j

(
1+

k−1

∑
j=1

∑
m1+2m2+...+kmk=2(k− j)

|b j,k,m1,...,mk |κ
m1+m2+...+mk×

× (l ◦mΨ(z))(m1+2m2+...+kmk)/2|∂bΨ(z)|m1+2m2+...+kmk

(l ◦mΨ(z))k− j|∂bΨ(z)|2(k− j)

)
≤C2 max

{ |∂ j
bΨ(z)|

(l ◦mΨ(z)) j|∂bΨ(z)| j
: j ∈ {1,2, . . . ,k

}
,

with

C2 = 1+
k−1

∑
j=1

∑
m1+2m2+...+kmk=2(k− j)

|b j,k,m1,...,mk |κ
m1+m2+...+mk .

Then from inequality (2.9) we get

|∂ p+1
b F(z)|
Lp+1

0 (z)
≤C1 max

k∈{0,...,p}

| f (k)(Ψ(z), . . . ,Ψ(z))|
(l ◦mΨ(z))k ≤C1C2 max

{ |∂ j
bF(z)|
L j

0(z)
: j∈ {0, . . . , p}

}
, (2.11)

p = N1( f , l). Remind that inequality (2.11) is proved for all z outside zero set of the function ∂bΦ and with usage the condtion N1( f , l)≥ 1.
If N1( f , l) = 0 then the parameter p also equals zero and estimate (2.9) yields

|∂bF(z)|
L0(z)

≤C1| f ◦mΨ(z)|=C1|F(z)|.

Thus, (2.11) is proved for all possible finite values of the directional l-index for the function f .
Since L(z) = (l ◦mΨ(z)max{1, |∂bΨ(z)|}, we can rewrite inequality (2.11):

∣∣∣∂ p+1
b F(z)

∣∣∣
Lp+1(z)

· L
p+1(z)

Lp+1
0 (z)

≤C1C2 max

{∣∣∂ k
bF(z)

∣∣
Lk(z)

Lk(z)
Lk

0(z)
: k∈ {0, . . . , p}

}
.

Then ∣∣∣∂ p+1
b F(z)

∣∣∣
Lp+1(z)

≤C1C2
Lp+1

0 (z)
Lp+1(z)

max

{∣∣∂ k
bF(z)

∣∣
Lk(z)

Lk(z)
Lk

0(z)
: k∈ {0, . . . , p}

}
≤

≤C1C2
Lp+1

0 (z)
Lp+1(z)

max

{∣∣∂ k
bF(z)

∣∣
Lk(z)

: k∈ {0, . . . , p}

}
max

{
Lk(z)
Lk

0(z)
: k ∈ {0, . . . , p}

}
=

C1C2(L0(z)/L(z))p+1

min
k∈{0,...,p}

(L0(z)/L(z))k max
k∈{0,...,p}

∣∣∂ k
bF(z)

∣∣
Lk(z)

.

(2.12)

Let t0 = t(z) = L0(z)/L(z) and k0 ≤ p (k0 ∈Z+) be such that (t0)k0 = mink∈{0,...,p} tk
0 . One should observe that t0 ∈ (0,1] and p+1−k0 ≥ 1.

Hence, t p+1
0

tk0
0

= t p+1−k0
0 ≤ t0 ≤ 1. Therefore, (L0(z)/L(z))p+1

mink∈{0,...,p}(L0(z)/L(z))k = t p+1−k0
0 ≤ t0 ≤ 1. Thus, from inequality (2.12) we get∣∣∣∂ p+1

b F(z)
∣∣∣

Lp+1(z)
≤C1C2 max

{∣∣∂ k
bF(z)

∣∣
Lk(z)

: k∈ {0, . . . , p}

}
(2.13)

for all z outside zero set of the b-directional derivative of the function Ψ.
If for some point z from the polydisc Dn the b-directional derivative of the function Ψ vanishes then for any natural value of k does not
exceeding N( f , l)+ 1 condition (2.5) means that k-th order b-directional derivative of the function Ψ also vanishes at this same point.
Substituting this point in (2.3) we conclude that k-th order b-directional derivative of the function Ψ also vanishes at this same point for each
natural 1≤ k ≤ N( f , l)+1. Hence, for all points z belonging zero set of the b-directional derivative of the function Ψ inequality (2.13) is
true.
Applying Theorem 2.3 we establish that the function F belong to the class of functions with bounded L-index in the direction b.

3. Application of Logarithmic Criterion to Composition

In this section, we consider an application of the logarithmic criterion to investigation of the index boundedness for a composition of functions
from the classes A (Dn) and A (Cm). Another applications of the statement in function theory of bounded index are decribed in [12–15].
Let us introduce the slice function as gz(t) := F(z+ tb) (z ∈ Dn). If one has for some z from the unit polydisc the slice function gz(t) has
empty zero set, then we put Gb

r (F,z) :=∅; otherwise if gz(t) identically equals zero then we put Gb
r (F,z) := {z+ tb : |t| ≤ min

j∈{1,...,n}
1−|z j |
|b j | }.

And last possible case is if gz(t) 6≡ 0 and ak,z are zeros of gz(t), then we denote Gb
r (F,z) :=

⋃
k

{
z+ tb : |t−ak,z| ≤ r

L(z+ak,zb)

}
, r > 0.

Let Gb
r (F) =

⋃
z0∈Dn Gb

r (F,z
0), n

(
r,z0,1/F

)
= ∑|a0

k |≤r 1 is the counting function of zeros (a0
k) of the function F(z0 + tb) in the disk

{t ∈ C : |t| ≤ r}. Below we formulate two auxiliary propositions proved in [1]. The first of them is the logarithmic criterion analog, and the
second of them is weaker sufficient conditions for functions belonging to the class A (Dn).
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Theorem 3.1. [1] Let F :∈A (Dn), L ∈ Qb(Dn) and Dn \Gb
β
(F) 6=∅. The function F has finite Nb(F,L) if and only if

1) for every radius r belonging to the half-closed interval (0,β ] there exists a positive real P = P(r) such that for every point z ∈ Dn

outside the set Gb
r (F) the following directional logarithmic derivative estimate is true

|∂bF(z)| ≤ PL(z)|F(z)|; (3.1)

2) for every radius r belonging to the segment [0,β ] and some ñ(r) ∈ Z+ amount of zeros for the slice function in some circles within the
unit polydisc is uniformly bounded, i.e.

n
(

r/L(z0),z0,1/F
)
≤ ñ(r). (3.2)

for each z0 ∈ Dn with F(z0 + tb) 6≡ 0.

Theorem 3.2. [1] Let L ∈ Qb(Dn), Dn \Gb
β
(F) 6= /0, F : Dn→ C be an analytic function. If the following conditions are satisfied

1) there exists r1 ∈ (0,β/2) (or there exists r1 ∈ [β/2,β ) and (∀z ∈ Dn) : L(z)> 2β |b|
1−|z| ) such that n(r1) ∈ [−1;∞);

2) there exist r2 ∈ (0,β ), P > 0 such that 2r2 ·n(r1)< r1/λb(r1) and for all z ∈ Dn\Gr2(F) inequality (3.1) holds,

then the function F has bounded L-index in the direction b.

Within the notion of bounded index the local properties of analytic solutions of ordinary [5, 16, 17], directional [13] and partial differential
equations [18] and their systems [19] are considered in many papers. Moreover, application of the Hayman theorem and its analogs is main
method to justify sufficent conditions for boundedness of L-index in direction, if they are applied to composition of entire [4, 8, 15] and
analytic functions [2, 7].
Below there are presented other results on functions’ composition from the classes A (Dn) and A (Cm). They are proved with usage of
logarithmic criterion analog for the unit polydisc (similar results for the unit ball see in [2]). In this section we suppose that 1=(1, . . . ,1)∈Rm.

Proposition 3.3. Let Ψ ∈A (Dn), f ∈A (Cm) with an empty zero set.
1) Suppose that l ∈Q1(Cm), L ∈Qb(Dn) and for every point z from the unit polydisc the value L(z) is not lesser than

∣∣∂bΨ(z)
∣∣l ◦mΨ(z). If the

1-directional l-index of the function f is finite, then the function F(z) = f ◦mΨ(z) has finite Nb(F,L).
2) Suppose that L ∈ Qb(Dn), the b-directional derivative of the function Ψ has empty zero set and l ∈ Q1(Cm) and such a function l ◦mΨ(z)
is not lesser than L(z)/

∣∣∂bΨ(z)
∣∣ for every point z from the polydisc Dn. And if the function F(z) = f ◦mΨ(z) is of bounded L-index in the

direction b, then the 1-directional l-index of the function f is also finite.

Proof. It is not difficult to verify that

∂bF(z) = ∂1 f ◦mΨ(z) ·∂bΨ(z). (3.3)

Remind that zero set of f is empty. So such a function f ◦mΨ(z) has also empty zero set. Then Gb
r (F) = ∅. Thus, it leaves to validate

condition 2) in Theorem 3.2. Indeed, we need to justify inequality (3.1) for every point z belonging the polydisc Dn. Using (3.3) for the
directional logarithmic derivative estimate we obtain∣∣∂bF(z)/F(z)

∣∣= ∣∣∂1 f ◦mΨ(z)
∣∣ · |∂bΨ(z)|/| f ◦mΨ(z)| (3.4)

Let f be of bounded l-index in the direction 1. By Theorem 3.1 (see also [20]) for ther multivariate entire functions inequality (3.1) is valid
for the function f and for all w ∈ Cm :

|∂1 f (w)| ≤ Pl(w) · | f (w)| (3.5)

After substitution w = (Ψ(z), . . . ,Ψ(z)︸ ︷︷ ︸
m times

in (3.5) and usage (3.4) the following estimate become valid

|∂bF(z)|/|F(z)|= Pl ◦mΨ(z) · |∂bΨ(z)| ≤ PL(z). (3.6)

The function F also does not vanish. Thus, we have proved validity of condition 2) in Theorem 3.1. It means that the function F belongs to
the class of functions with bounded L-index in the direction b.
By analogy to the first part of the proof we can justify the second part of the assertion.

By 1 j we denote m-dimensional complex vector, in which j-th component equals one, other components are zeros.

Proposition 3.4. Let Ψ j ∈ A (Dn) and l ∈ Qm
1 j

for j ∈ {1, . . . ,m}, f ∈ A (Cm) with empty zero set. Suppose that L ∈ Qb(Dn) and

L(z)≥ ∑
m
j=1
∣∣∂bΨ j(z)

∣∣l(Ψ1(z),Ψ2(z), . . . ,Ψm(z)) for every point z within the polydisc Dn. If for every j ∈ {1, . . . ,m} the function f is of
bounded l-index in the direction 1 j , then the composite function F(z) = f (Ψ1(z),Ψ2(z), . . . ,Ψm(z)) is of bounded L-index in the direction b.

Proof. Using direct calculations it can be substantiated

∂bF(z) =
m

∑
j=1

f ′Ψ j
(Ψ1(z),Ψ2(z), . . . ,Ψm(z))∂bΨ j(z). (3.7)
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Since f has empty zero set, the composite function f (Ψ1(z),Ψ2(z), . . . ,Ψm(z)) does not vanish for all z from the polydisc Dn that is
Gb

r (F) =∅. It leaves to validate inequality (3.1) within the polydisc Dn because it is equivalent condition 2) in Theorem 3.2. From (3.7) it
follows that

|∂bF(z)|/|F(z)| ≤
m

∑
j=1

∣∣∣∣∣ f ′
Ψ j
(Ψ1(z),Ψ2(z), . . . ,Ψm(z))

f (Ψ1(z),Ψ2(z), . . . ,Ψm(z))

∣∣∣∣∣ · |∂bΨ j(z)| (3.8)

Since f is of bounded l-index in each direction 1 j , by analog of Theorem 3.1 for entire functions of m complex variables (see [20]) inequality
(3.1) holds for the function f and for all w ∈ Cm :

|∂1 j f (w)|
| f (w)|

≤ Pl(w) (3.9)

Replacing w by (Ψ1(z),Ψ2(z), . . . ,Ψm(z)) in (3.9) and using it in (3.8) we establish such a directional logarithmic derivative estimate

|∂bF(z)|/|F(z)|= Pl(Ψ1(z),Ψ2(z), . . . ,Ψm(z)) ·
m

∑
j=1
|∂bΨ j(z)| ≤ PL(z). (3.10)

Since function F has not zero points as the function f , from (3.10) it follows that by Theorem 3.1 b-directional L-index of the function F is
finite. Proposition 3.4 is proved.

The condition of absence zero points in the function f can be replaced by another condition on the function Ψ generated of the notion of
multidimensional directional multivalence.
Let us remind the definition of function having bounded value L-distribution in a direction.
Function F ∈A (Dn) is called [1] a function of bounded value L-distribution in the direction b, if for some natural p and for any complex
w and for every point z0 within the polydisc Dn such that the slice function F(z0 + tb) does not equal identically w, the inequality holds
n
(
1/L(z0),z0,1/(F−w)

)
≤ p, i.e. the equation F(z0 + tb) = w has at most p solutions in the disc {t : |t| ≤ 1/L(z0)}. Using the one-

dimensional notion of multivalence, we can claim that the slice function F(z0 + tb) is p-valent in every disc {t : |t| ≤ 1/L(z0)} for every
point z0 ∈ Dn. For another classes of multivariate analytic and slice holomorphic functions the notion is considered in [21]. If n = 1, b = 1
and L≡ 1 then the notion matches with a definition of function of bounded value distribution [22–25], and if n = 1, b = 1, L = l 6≡ 1 then it is
a definition of function of bounded value l-distribution [6, 26]. Another approach to multivalence of bivariate function is considered in [27].
Our main result on this topic is the following

Proposition 3.5. Let Ψ ∈A (Dn), f ∈A (S), F(z) = f ◦Ψ(z). l ∈ Q, L ∈ Qb(Dn) be such that L(z)≥
∣∣∂bΨ(z)

∣∣l ◦Ψ(z) for any z with Dn.
If these functions satisfy such hypotheses
1) N( f , l) is finite;
2) the function Ψ has bounded value L-distribution in the direction b,
3) for any r1 ∈ (0;β ] there exist r2 > 0 and r3 > 0 for which the following inclusion Gr2( f ; l)⊂Ψ(Gb

r1
(F ;L))⊂ Gr3( f ; l) is true,

then F is of bounded L-index in the direction b.

Proof. The condition 3) allows us to prove inequality (3.6) by similarity to Proposition 3.3.
Inequality (3.2) is valid for F because equality F(z0 + tb) = 0 yields the equation Ψ(z0 + tb) = ck, where ck span whole zero set of the
function f , k ∈ N. Since Ψ has bounded value L-distribution in the direction b, the last equation Ψ(z0 + tb) = ck has at most p(r1) solutions
for given k at the disc {t : |t| ≤ r1

L(z0)
}, if r1 ∈ (0;β ). Condition 3) means that the set {Ψ(z0 + tb) : |t| ≤ r1

L(z0)
} includes at most n(r3) zeros

of f . Thus, such a set {z0 + tb : |t| ≤ r1
L(z0)
} holds at most p(r1) ·n(r3) zeros of F. In other words, zeros of the F are uniformly distributed in

the sense of validity (3.2). Then by the logarithnmic criterion analog (Theorem 3.2) the function F is of bounded L-index in the direction
b.

It is worth recognizing that Theorems 2.1 and 2.4, Propositions 3.3 and 3.5 are varied assumptions by the outer and inner function of the
composition. But their consequence is the similar: a composite function is of bounded L-index in the direction b with alike functions

L(z) =
∣∣∂bΨ(z)

∣∣ · l ◦mΨ(z) or L(z) = max{1, |∂bΨ(z)|} · l ◦mΨ(z).

But there were presented examples of analytic functions in the unit ball which dissatisfy concurrently assumptions of these statements (see
examples in [2]).

4. Conclusion

Proposition 3.5 has not an analog for another multidimensional approach — so-called index in joint variables. Recent results for composite
entire functions with bounded index in joint variables were deduced in [28]. They are similar to Theorem 2.1 and Theorem 2.4. Proposition
3.5 uses the notion of bounded value distribution in a direction. For multivariate complexvalued entire functions F. Nuray [27] introduced a
notion of multivalence and indicated some connection between multivalued functions and functions with finite index in joint variables. The
multivalence means bounded value distribution in some sense. But we do not know whether is it possible to deduce analogs of Propositon
3.5 for this class of functions which is intensively examined in papers of F. Nuray and R. Patterson [19, 29–31].
Let us present a brief description of possible investigations. Other important meanings of the obtained results is their application to composite
differential equations. Changing variables we can reduce such a equation to simpler form and investigate the form by index boundedness of
its solution. Further, we perform the inverse changing variables and obtain composition of analytic solutions of simpler equations and a
mapping given by the changing variables. Therefore, we can apply the obtained results to such compositions and conclude about L-index
boundedness in direction of primary equation for some function L and direction b.
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Abstract

The purpose of this paper is to investigate the existence of multiple positive symmetric
solutions for fourth order p-Laplacian iterative system with integral boundary conditions.
Initially, we establish the existence of at least one and two positive symmetric solutions
for the fourth order problem using Krasnosel’skii fixed point theorem. Subsequently, we
establish the existence of at least three positive symmetric solutions by applying five-
functionals fixed point theorem.

1. Introduction

Boundary value problems (BVPs) associated with ordinary differential equations play a significant role in various fields, including physics,
chemistry, engineering, biotechnology, and social sciences. The higher order differential equations with specific types of iterative differential
equations are important for analyzing the characteristics like monotonicity, convexity, equivariance, smoothness, and numerical solutions
(see [1–5] ). It is also worth noting that differential equations with integral boundary conditions are crucial in modeling phenomena such as
plasma physics, underground water flow, chemical engineering, heat conduction, and thermo-elasticity.
In the theory of differential equations, one of the most significant operators is one dimensional p-Laplacian operator and is defined as
φp(z) = |z|p−2z, where p > 1, φ−1

p = φq and 1
p +

1
q = 1. Such problems can be found in the mathematical modeling of image processing,

heat radiation, glaciology, biophysics, plasma physics, rheology, plastic molding, etc (see [6, 7]). In particular, fourth-order BVPs with the
p-Laplacian operator, have diverse applications in brain warping, fluids in lungs, ice formation, beam theory, and designing special curves on
surfaces. The applications highlight the wide range of uses and significance of the p-Laplacian operator in several fields (see [8–14]). Various
approaches, like fixed point theorems, iterative techniques, and shooting methods, are employed to establish the existence of solutions for
such problems (see [15–17]). In 2000, Avery and Henderson [18] considered the problem

y′′(z)+f(y) = 0, 0 6 z 6 1,

y(0) = 0 = y(1),

and established the existence of at least three symmetric positive solutions by using the generalization of Leggett-Williams fixed point
theorem. In 2015, Akcan and Hamal [19] established the existence of concave symmetric positive solutions for the BVP

y′′(z)+f(z,y(z),y′(z)) = 0, 0 < z < 1,

y(0) = y(1) = ψ

∫
η

0
y(x)dx,
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where ψ,η ∈ (0,1) by applying monotone iterative technique. In 2016, [20] Ding established the existence of symmetric positive solutions
for the p-Laplacian BVP

(φp(y′(z)))′+f(z,y(z),y′(z)) = 0, 0≤ z≤ 1,

y(0) = y(1) =
∫ 1

0
y(x)g(x)dx,

by using the fixed point theorem due to Avery and Peterson. In 2020, [21] Asaduzzamana and Ali established the existence of symmetric
positive solutions for the BVP

− y(4)(z) = f(y,v), z ∈ [0,1],

− v(4)(z) = f(y,v), z ∈ [0,1],

y(z) = y(1− z), y′′′(0)− y′′′(1) = y′′(z1)+ y′′(z2),

v(z) = v(1− z), y′′′(0)− v′′′(1) = v′′(z1)+ v′′(z2), 0 < z1 < z2 < 1,

by applying Krasnoselskii’s fixed point theorem. Following that, the researchers have explored the study of symmetric positive solutions,
see [22–30]. Inspired by the works mentioned above, we investigate the existence of multiple positive symmetric solutions for the fourth
order p-Laplacian iterative system with integral boundary conditions

(φp(v(z)y′′n(z)))
′′ = w(z)fn(z,yn+1(z)), 1≤ n≤ i, z1 ≤ z≤ z2,

yi+1(z) = y1(z), z1 ≤ z≤ z2,

}
(1.1)

satisfying boundary conditions

yn(z1) =
∫ z2

z1

g(s)yn(s)ds, yn(z2) =
∫ z2

z1

g(s)yn(s)ds, 1≤ n≤ i,

φp(v(z1)y′′n(z1)) =
∫ z2

z1

h(s)φp(v(s)y′′n(s))ds, φp(v(z2)y′′n(z2)) =
∫ z2

z1

h(s)φp(v(s)y′′n(s))ds, 1≤ n≤ i,

 (1.2)

where i ∈ N with 2z1 < z2, φp(z) = |z|p−2z, p > 1, φ−1
p = φq, 1

p +
1
q = 1. The following conditions are presumed to be valid in the entire

paper:

(I1) fn : [z1,z2]× [z1,∞)→ [z1,∞) is continuous, fn(z2 + z1− z,y) = fn(z,y), 1 6 n6 i for all (z,y) ∈ [z1,z2]× [z1,∞). (For existence of
solution)

(I2) v(z),w(z) ∈ L1[z1,z2] are positive, symmetric on [z1,z2] (i.e.,v(z2 + z1− z) = v(z) for z ∈ [z1,z2]). (For positive symmetric solution)
(I3) g(z),h(z) ∈ L1[z1,z2] are non-negative, symmetric on [z1,z2], and µ1, µ2 ∈ (z1,z2), µ1 =

∫ z2
z1
g(s)ds, µ2 =

∫ z2
z1
h(s)ds. (For positive

symmetric solution)

The organization of the remaining part of the paper is as follows. In Section 2, we construct Green’s function and estimate the bounds for
Green’s function for the problem (1.1)-(1.2). In section 3, we establish the existence of at least one and two positive symmetric solutions by
using Krasnoselskii’s fixed point theorem. Using the five-functional fixed point theorem, we establish the existence of at least three positive
symmetric solutions. In Section 4, we provide examples to check the validity of the results.

2. Green’s Function and Its Bounds

Here, we determine the solution of (1.1)-(1.2) as a solution of the integral equation that includes Green’s function. After that, we establish a
few characteristics of the Green’s function which are useful in establishing our main results.

Lemma 2.1. Assume that (I2)− (I3) hold. Then for any u1(z) ∈ C([z1,z2],R), the BVP

φp(v(z)y′′1(z)) = u1(z), z1 ≤ z≤ z2, (2.1)

y1(z1) =
∫ z2

z1

g(s)y1(s)ds, y1(z2) =
∫ z2

z1

g(s)y1(s)ds, (2.2)

has one and only one solution

y1(z) =−
∫ z2

z1

H1(z, t)v−1(t)φq(u1(t))dt,

where H1(z, t) is the Green’s function and is given by

H1(z, t) = G(z, t)+
1

1−µ1

∫ z2

z1

G(s, t)g(s)ds, (2.3)

in which

G(z, t) =
1

z2− z1

{
(z− z1)(z2− t), z 6 t,

(t− z1)(z2− z), t 6 z.
(2.4)
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Proof. Integrating (2.1) twice from z1 to z, we get

y1(z) =
∫ z

z1

(z− t)v−1(t)φq(u1(t))dt+ c1(z− z1)+ c2.

By using boundary conditions (2.2), we get

c1 =
−1

z2− z1

∫ z2

z1

(z2− t)v−1(t)φq(u1(t))dt, and c2 =
∫ z2

z1

g(s)y1(s)ds.

So, we have

y1(z) =
∫ z

z1

(z− t)v−1(t)φq(u1(t))dt+
−1

z2− z1

∫ z2

z1

(z− z1)(z2− t)v−1(t)φq(u1(t))dt+
∫ z2

z1

g(s)y1(s)ds

=−
∫ z2

z1

G(z, t)v−1(t)φq(u1(t))dt+
∫ z2

z1

g(s)y1(s)ds.

After certain computations, we obtain∫ z2

z1

g(s)y1(s)ds=
−1

1−µ1

∫ z2

z1

∫ z2

z1

G(s, t)v−1(t)φq(u1(t))dtds.

Therefore,

y1(z) =−
∫ z2

z1

G(z, t)v−1(t)φq(u1(t))dt+
−1

1−µ1

∫ z2

z1

∫ z2

z1

G(s, t)v−1(t)φq(u1(t))dtds

=−
∫ z2

z1

[
G(z, t)+

1
1−µ1

∫ z2

z1

G(s, t)g(s)ds
]

v−1(t)φq(u1(t))dt

=−
∫ z2

z1

H1(z, t)v−1(t)φq(u1(t))dt.

Lemma 2.2. Suppose (I3) holds. For λ ∈ (z1,
z2
2 ), let σ(λ ) = λ−z1

z2−z1
, α1 =

1
1−µ1

. Then G(z, t), H1(z, t) have the following properties:

(A1) 0 6 G(z, t)6 G(t, t), ∀ z, t ∈ [z1,z2],
(A2) 0 6 H1(z, t)6 α1G(t, t), ∀ z, t ∈ [z1,z2],
(A3) G(z, t)> σ(λ )G(t, t), ∀ z ∈ [λ ,z2−λ ] and t ∈ [z1,z2],
(A4) H1(z, t)> σ(λ )α1G(t, t), ∀ z ∈ [λ ,z2−λ ] and t ∈ [z1,z2],
(A5) G(z2 + z1− z,z2 + z1− t) = G(z, t), H1(z2 + z1− z,z2 + z1− t) = H1(z, t), ∀ z, t ∈ [z1,z2].

Proof. From (2.3) and (2.4), it is clear that the properties (A1) and (A2) hold.

For inequality (A3), let z ∈ [λ ,z2−λ ] and z 6 t, then

G(z, t)
G(t, t)

=
(z− z1)(z2− t)
(t− z1)(z2− t)

> σ(λ ),

and for t 6 z,

G(z, t)
G(t, t)

=
(t− z1)(z2− z)
(t− z1)(z2− t)

> σ(λ ).

Hence, the inequality (A3). For the inequality (A4), consider

H1(z, t) = G(z, t)+
1

1−µ1

∫ z2

z1

G(s, t)g(s)ds

>σ(λ )G(t, t)+
1

1−µ1

∫ z2

z1

σ(λ )G(t, t)g(s)ds.

Hence, H1(z, t)> σ(λ )α1G(t, t). For inequality (A5), consider

G(z2 + z1− z,z2 + z1− t) =
1

z2− z1

{
(z2 + z1− z− z1)(z2− (z2 + z1− t)), z2 + z1− z 6 z2 + z1− t,

(z2 + z1− t− z1)(z2− (z2 + z1− z)), z2 + z1− t 6 z2 + z1− z,

=
1

z2− z1

{
(z− z1)(z2− t), z 6 t,

(t− z1)(z2− z), t 6 z,

=G(z, t).
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Consider

H1(z2 + z1− z,z2 + z1− t) =G(z2 + z1− z,z2 + z1− t)+
1

1−µ1

∫ z2

z1

G(s,z2 + z1− t)g(s)ds

=G(z, t)+
1

1−µ1

∫ z1

z2

G(z2 + z1−s,z2 + z1− t)g(z2 + z1−s)d(z2 + z1−s)

=G(z, t)+
1

1−µ1

∫ z2

z1

G(s, t)g(s)ds

=H1(z, t).

Lemma 2.3. Assume that (I2)− (I3) hold. Then for any u2(z) ∈ C([z1,z2],R), the BVP

(φp(v(z)y′′1(z)))
′′ = u2(z), z1 ≤ z≤ z2,

satisfying boundary conditions

y1(z1) =
∫ z2

z1

g(s)y1(s)ds, y1(z2) =
∫ z2

z1

g(s)y1(s)ds,

φp(v(z1)y′′1(z1)) =
∫ z2

z1

h(s)φp(v(s)y′′1(s))ds, φp(v(z2)y′′1(z2)) =
∫ z2

z1

h(s)φp(v(s)y′′1(s))ds,

has a unique solution

y1(z) =
∫ z2

z1

H1(z, t)v−1(t)φq

[∫ z2

z1

H2(t,s)u2(s)ds
]
dt,

where H1(z, t) is given in (2.3) and

H2(z, t) = G(z, t)+
1

1− µ2

∫ z2

z1

G(s, t)h(s)ds.

Proof. Let, u1(z) = φp(v(z)y′′1(z)) for z1 ≤ z≤ z2. Then the BVP

(φp(v(z)y′′1(z)))
′′ = u2(z), z1 ≤ z≤ z2,

φp(v(z1)y′′1(z1)) =
∫ z2

z1

h(s)φp(v(s)y′′1(s))ds, φp(v(z2)y′′1(z2)) =
∫ z2

z1

h(s)φp(v(s)y′′1(s))ds

is equivalent to the problem

u′′1(z) = u2(z), z1 ≤ z≤ z2, (2.5)

u1(z1) =
∫ z2

z1

h(s)u1(s)ds, u1(z2) =
∫ z2

z1

h(s)u1(s)ds. (2.6)

By Lemma 2.1, the BVP (2.5)-(2.6) has unique solution u1(z) =−
∫ z2

z1
H2(z, t)u2(t)dt. That is

φp(v(z)y′′1(z)) =−
∫ z2

z1

H2(z, t)u2(t)dt (2.7)

Again by Lemma 2.1, the differential equation (2.7) with boundary conditions

y1(z1) = y1(z2) =
∫ z2

z1

g(s)y1(s)ds,

has a unique solution

y1(z) =
∫ z2

z1

H1(z, t)v−1(t)φq

[∫ z2

z1

H2(t,s)u2(s)ds
]
dt.

This completes the proof.

Lemma 2.4. Suppose (I3) holds. For λ ∈ (z1,
z2
2 ), let σ(λ ) = λ−z1

z2−z1
, α2 =

1
1− µ2

. Then, H2(z, t) has the following properties:

(A6) 0 6 H2(z, t)6 α2G(t, t), ∀ z, t ∈ [z1,z2],
(A7) H2(z, t)> σ(λ )α2G(t, t), ∀ z ∈ [λ ,z2−λ ] and t ∈ [z1,z2],
(A8) H2(z2 + z1− z,z2 + z1− t) = H2(z, t), ∀ z, t ∈ [z1,z2].
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Note that an i-tuple
(
y1(z),y2(z), · · · ,yi(z)

)
is a solution of (1.1)-(1.2) if and only if

yn(z) =
∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)fn(t2,yn+1(t2))dt2

]
dt1, n= 1,2, · · · , i,

yi+1(z) = y1(z), z ∈ [z1,z2], 1≤ n≤ i,

i.e.,

y1(z) =
∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)

f2 · · ·fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))

dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
dt1.

3. Existence of Positive Symmetric Solutions

Let B = {y : y ∈ C([z1,z2],R)} be a Banach space with norm ‖y‖= max
z∈[z1,z2]

|y(z)|. For λ ∈ (z1,
z2
2 ), we define the cone K⊂ B as

K =
{

y ∈ B : y(z)> 0,y(z) is concave, symmetric on [z1,z2] and min
z∈[λ ,z2−λ ]

y(z)> σ(λ )‖y‖
}
.

Define operator T : K→ B by

Ty1(z) =
∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·fi−1

(
t2i−2,∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
dt1.

Let,

m 6 α1

∫ z2

z1

G(tj, tj)v−1(tj)φq

[∫ z2

z1

fG(tj+1, tj+1)w(tj+1)dtj+1

]
dtj, j = 1,2, · · ·2i−1,

M > σ(λ )α1

∫ z2−λ

λ

G(tj, tj)v−1(tj)φq

[∫ z2−λ

λ

σ(λ )α2G(tj+1, tj+1)w(tj+1)dtj+1

]
dtj, j = 1,2, · · ·2i−1.

Lemma 3.1. For each λ ∈ (z1,
z2
2 ), T(K)⊂ K and T : K→ K is completely continuous.

Proof. Since H1(z, t)> 0, H2(z, t)> 0, ∀ z, t ∈ [z1,z2], (Ty1)(z)> 0. Let y1 ∈ K, then consider

(Ty1)(z2 + z1− z) =
∫ z2

z1

H1(z2 + z1− z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)

w(t4)f2 · · ·fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))

dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
dt1

=
∫ z1

z2

H1(z2 + z1− z,z2 + z1− t1)v−1(z2 + z1− t1)φq

[∫ z2

z1

H2(z2 + z1− t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)

· · ·φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
d(z2 + z1− t1)

=
∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z1

z2

H2(z2 + z1− t1,z2 + z1− t2)w(z2 + z1− t2)f1

(
z2 + z1− t2,∫ z2

z1

H1(z2 + z1− t2, t3) · · ·φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
d(z2 + z1− t2)

]
dt1

...

=
∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·

fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
dt1

=(Ty1)(z).
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Hence Ty1 is symmetric on [z1,z2]. From Lemma 2.2, we get

(Ty1)(z) =
∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·fi−1

(
t2i−2,∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
dt1

6 α1

∫ z2

z1

G(t1, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·fi−1

(
t2i−2,∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
dt1.

So,

‖Ty1‖6α1

∫ z2

z1

G(t1, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·fi−1

(
t2i−2,∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
dt1.

Again from Lemma 2.2, we get

min
z∈[λ ,z2−λ ]

{(Ty1)(z)}= min
z∈[λ ,z2−λ ]

∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)

w(t4)f2 · · ·fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))

dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
dt1

>α1 σ(λ )
∫ z2

z1

G(t1, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)

w(t4)f2 · · ·fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))

dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
dt1.

By using above two inequalities one can write

min
z∈[λ ,z2−λ ]

{(Ty1)(z)}> σ(λ )‖Ty1‖.

So, Ty1 ∈ K and thus T(K)⊂ K. By using Arzela-Ascoli theorem and standard methods it can be prove T is completely continuous.

Theorem 3.2. Let (I1)− (I3) hold. Also assume that the following hold,

(I4) lim
y→0+

fn(z,y)
φp(y)

= 0, lim
y→+∞

fn(z,y)
φp(y)

= +∞, 1≤ n≤ i for z ∈ [z1,z2].

Then the BVP (1.1)-(1.2) has at least one positive symmetric solution.

Proof. Since lim
y→0+

fn(z,y)
φp(y)

= 0, there exists l1 > 0 such that

fn(z,y)6 ηφp(y), 0 6 y 6 l1, z ∈ [z1,z2], where η 6 φp

(
1
m

)
.

Let Θ1 = {y ∈ B : ‖y‖< l1}, if y1 ∈ K∩∂Θ1, and for t2i−2 ∈ [z1,z2], we have

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

6
∫ z2

z1

α1G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

α2G(t2i, t2i)w(t2i)ηφp(y1(t2i))dt2i

]
dt2i−1

6 φq(η)α1l1
∫ z2

z1

G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

α2G(t2i, t2i)w(t2i)dt2i

]
dt2i−1

6 l1mφq(η)6 l1.
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Similarly for t2i−4 ∈ [z1,z2]∫ z2

z1

H1(t2i−4, t2i−3)v−1(t2i−3)φq

[∫ z2

z1

H2(t2i−3, t2i−2)w(t2i−2)fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)

φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
dt2i−1

]
dt2i−3

6
∫ z2

z1

H1(t2i−4, t2i−3)v−1(t2i−3)φq

[∫ z2

z1

H2(t2i−3, t2i−2)w(t2i−2)fi−1

(
t2i−2, l1

)
dt2i−1

]
dt2i−3

6
∫ z2

z1

α1G(t2i−4, t2i−3)v−1(t2i−3)φq

[∫ z2

z1

α2G(t2i−3, t2i−2)w(t2i−2)ηφp(l1)dt2i−1

]
dt2i−3

6 φq(η)α1l1
∫ z2

z1

G(t2i−3, t2i−3)v−1(t2i−3)φq

[∫ z2

z1

α2G(t2i−2, t2i−2)w(t2i−2)dt2i−1

]
dt2i−3

6 l1mφq(η)6 l1.

Continuing in this fashion, we get

Ty1(z) =
∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·fi−1

(
t2i−2,∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
dt1

6 l1 = ‖y1‖.

So ‖Ty1‖6 ‖y1‖ for all y1 ∈ K∩∂Θ1.

Since lim
y→+∞

fn(z,y)
φp(y)

= +∞, there exists l2 > 0 such that

fn(z,y)> ζ φp(y), y > l2, z ∈ [z1,z2], where ζ > φp(
1
M

).

Let l2 = max{2l1,
l2

σ(λ )
} and Θ2 = {y ∈ B : ‖y‖< l2}. For y1 ∈ K∩∂Θ2, we have

min
z∈[λ ,z2−λ ]

y1(z)> σ(λ )‖y1‖> σ(λ )l2 > l2.

For t2i−2 ∈ [z1,z2], we have∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

>
∫ z2−λ

λ

σ(λ )α1G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2−λ

λ

σ(λ )α2G(t2i, t2i)w(t2i)ζ φp(y1(t2i))dt2i

]
dt2i−1

> φq(ζ )σ(λ )α1l2
∫ z2−λ

λ

G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2−λ

λ

σ(λ )α2G(t2i, t2i)w(t2i)dt2i

]
dt2i−1

> l2Mφq(ζ )> l2.

Similarly for t2i−4 ∈ [z1,z2]∫ z2

z1

H1(t2i−4, t2i−3)v−1(t2i−3)φq

[∫ z2

z1

H2(t2i−3, t2i−2)w(t2i−2)fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)

φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
dt2i−1

]
dt2i−3

>
∫ z2

z1

H1(t2i−4, t2i−3)v−1(t2i−3)φq

[∫ z2

z1

H2(t2i−3, t2i−2)w(t2i−2)fi−1

(
t2i−2, l2

)
dt2i−1

]
dt2i−3

>
∫ z2−λ

λ

σ(λ )α1G(t2i−4, t2i−3)v−1(t2i−3)φq

[∫ z2−λ

λ

σ(λ )α2G(t2i−3, t2i−2)w(t2i−2)ζ φp(l1)dt2i−1

]
dt2i−3

> φq(ζ )σ(λ )α1l2
∫ z2−λ

λ

G(t2i−3, t2i−3)v−1(t2i−3)φq

[∫ z2−λ

λ

σ(λ )α2G(t2i−2, t2i−2)w(t2i−2)dt2i−1

]
dt2i−3

> l2Mφq(ζ )> l2.

Continuing in this fashion, we get

Ty1(z) =
∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·fi−1

(
t2i−2,∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
dt1

> l2 = ‖y1‖.

So ‖Ty1‖ > ‖y1‖ for all y1 ∈ K∩ ∂Θ2. Consequently, Krasnoselskii’s fixed point theorem [31, 32] guarantees that T has a fixed point
K∩ (Θ2 \Θ1).
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Theorem 3.3. Let (I1)− (I3) hold. Also assume that the following conditions hold,

(I5) lim
y→0+

fn(z,y)
φp(y)

= +∞, lim
y→+∞

fn(z,y)
φp(y)

= 0, 1≤ n≤ i for z ∈ [z1,z2].

Then the BVP (1.1)-(1.2) has at least one positive symmetric solution.

Proof. We can establish the result by using the previous argument is in Theorem 3.2.

Theorem 3.4. Let (I1)− (I3) hold. Also assume that the following conditions hold,

(I6) lim
y→0+

fn(z,y)
φp(y)

= +∞, lim
y→+∞

fn(z,y)
φp(y)

= +∞, 1≤ n≤ i for z ∈ [z1,z2].

(I7) There exists a constant r1 such that fn(z,y)6 φp(
r1
m ) for y ∈ [0,r1], z ∈ [z1,z2].

Then the BVP (1.1)-(1.2) has at least two positive symmetric solutions y∗1 and y∗∗1 such that 0 < ‖y∗1‖< r1 < ‖y∗∗1 ‖.

Proof. Since lim
y→0+

fn(z,y)
φp(y)

= +∞, there exists r∗ ∈ (0,r1) such that fn(z,y)> ζ1φp(y), for 0 6 y 6 r∗, z ∈ [z1,z2], where ζ1 > ζ; here ζ is

given in the proof of Theorem 3.2. Set Θ3 = {y ∈ B : ‖y‖< r∗}. For y1 ∈ K∩∂Θ3, and t2i−2 ∈ [z1,z2], we have

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

>
∫ z2−λ

λ

σ(λ )α1G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2−λ

λ

σ(λ )α2G(t2i, t2i)w(t2i)ζ1φp(y1(t2i))dt2i

]
dt2i−1

> φq(ζ1)σ(λ )α1r∗
∫ z2−λ

λ

G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2−λ

λ

σ(λ )α2G(t2i, t2i)w(t2i)dt2i

]
dt2i−1

> r∗Mφq(ζ1)> r∗.

Similarly for t2i−4 ∈ [z1,z2]∫ z2

z1

H1(t2i−4, t2i−3)v−1(t2i−3)φq

[∫ z2

z1

H2(t2i−3, t2i−2)w(t2i−2)fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)

w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
dt2i−1

]
dt2i−3

>
∫ z2

z1

H1(t2i−4, t2i−3)v−1(t2i−3)φq

[∫ z2

z1

H2(t2i−3, t2i−2)w(t2i−2)fi−1

(
t2i−2,r∗

)
dt2i−1

]
dt2i−3

>
∫ z2−λ

λ

σ(λ )α1G(t2i−4, t2i−3)v−1(t2i−3)φq

[∫ z2−λ

λ

σ(λ )α2G(t2i−3, t2i−2)w(t2i−2)ζ1φp(r∗)dt2i−1

]
dt2i−3

> φq(ζ1)σ(λ )α1r∗
∫ z2−λ

λ

G(t2i−3, t2i−3)v−1(t2i−3)φq

[∫ z2−λ

λ

σ(λ )α2G(t2i−2, t2i−2)w(t2i−2)dt2i−1

]
dt2i−3

> r∗Mφq(ζ1)> r∗.

Continuing in this fashion, we get

Ty1(z) =
∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·fi−1

(
t2i−2,∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
dt1

> r∗ = ‖y1‖.

So,

‖Ty1‖> ‖y1‖ for all y1 ∈ K∩∂Θ3. (3.1)

Since lim
y→+∞

fn(z,y)
φp(y)

= +∞, there exists r∗ > r1 such that fn(z,y)> ζ2φp(y), for y > r∗, z ∈ [z1,z2], where ζ2 > ζ ; here ζ is given in the

proof of Theorem 3.2. Choose r∗ > max{ r∗
σ(λ )

,r1} and set Θ4 = {y ∈ B : ‖y‖< r∗}. For any y1 ∈ K∩∂Θ4, we get

y1 > min
z∈[λ ,z2−λ ]

y1(z)> σ(λ )‖y1‖> σ(λ )r∗ > r∗.

For t2i−2 ∈ [z1,z2], we have
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∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

>
∫ z2−λ

λ

σ(λ )α1G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2−λ

λ

σ(λ )α2G(t2i, t2i)w(t2i)ζ2φp(y1(t2i))dt2i

]
dt2i−1

> φq(ζ2)σ(λ )α1r∗
∫ z2−λ

λ

G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2−λ

λ

σ(λ )α2G(t2i, t2i)w(t2i)dt2i

]
dt2i−1

> r∗Mφq(ζ1)

> r∗.

Continuing in this fashion, we get

Ty1(z) =
∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·

fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
dt1

> r∗ = ‖y1‖.

So,

‖Ty1‖> ‖y1‖ for all y1 ∈ K∩∂Θ4. (3.2)

Let Θ5 = {y ∈ B : ‖y‖< r1}, if y1 ∈ K∩∂Θ5, and for t2i−2 ∈ [z1,z2], we have∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

6
∫ z2

z1

α1G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

α2G(t2i, t2i)w(t2i)φp(
r1

m
)dt2i

]
dt2i−1

6
r1

m
α1

∫ z2

z1

G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

α2G(t2i, t2i)w(t2i)dt2i

]
dt2i−1

6 r1.

Continuing in this fashion, we get

Ty1(z) =
∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·fi−1

(
t2i−2,∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·dt4

]
dt3

)
dt2

]
dt1

6r1 = ‖y1‖.

So,

‖Ty1‖6 ‖y1‖ for all y1 ∈ K∩∂Θ5. (3.3)

Since r∗ 6 r1 < r∗ and from (3.1), (3.2), and (3.3) it follows from Krasnoselskii’s fixed point theorem [31, 32] T has a fixed point y∗1 in
K∩ (Θ5 \Θ3) and a fixed point y∗∗1 in K∩ (Θ4 \Θ5) such that 0 < ‖y∗1‖< r1 < ‖y∗∗1 ‖.

Theorem 3.5. Let (I1)− (I3) hold. Also assume that the following conditions hold,

(I8) lim
y→0+

fn(z,y)
φp(y)

= 0, lim
y→+∞

fn(z,y)
φp(y)

= 0, 1≤ n≤ i for z ∈ [z1,z2].

(I9) There exists a constant r2 such that fn(z,y)> φp(
r2
M ) for y ∈ [σ(λ )r2,r2], z ∈ [z1,z2].

Then the BVP (1.1)-(1.2) has at least two positive symmetric solutions y∗1 and y∗∗1 such that 0 < ‖y∗1‖< r2 < ‖y∗∗1 ‖.

Proof. We can establish the result by using the previous argument is in Theorem 3.4.

Next, we establish sufficient conditions for the existence of at least three positive symmetric solutions for the BVP (1.1)-(1.2) by using
the five functionals fixed point theorem. For that we define the nonnegative continuous concave functionals ψ1,ψ2 and the nonnegative
continuous convex functionals γ1,γ2,γ3 on K by

ψ1(y) = min
z∈I
|y|, ψ2(y) = min

z∈I1
|y|, γ1(y) = max

z∈[z1,z2]
|y|, γ2(y) = max

z∈I1
|y|, γ3(y) = max

z∈I
, |y|,

ψ1(y) = min
z∈I
|y|6 max

z∈I1
|y|= γ2(y), (3.4)
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‖y‖= 1
σ(λ )

min
z∈I
|y|6 1

σ(λ )
max

z∈[z1,z2]
|y|= 1

σ(λ )
γ1(y), (3.5)

where I = [λ ,z2−λ ], I1 = [λ1,λ2], λ < λ1 < λ2 < z2−λ . Then for nonnegative numbers d1,d2,d3,d4, and d5, convex sets are defined as
follows

K(γ1,d3) = {y ∈ K : γ1(y)< d3},
K(γ1,ψ1,d1,d3) = {y ∈ K : d1 6 ψ1(y);γ1(y)6 d3},
K(γ1,γ2,d4,d3) = {y ∈ K : γ2(y)6 d4;γ1(y)6 d3},
K(γ1,γ3,ψ1,d1,d2,d3) = {y ∈ K : d1 6 ψ1(y);γ3(y)6 d2;γ1(y)6 d3}, and

K(γ1,γ2,ψ2,d5,d4,d3) = {y ∈ K : d5 6 ψ2(y);γ2(y)6 d4;γ1(y)6 d3}.

Theorem 3.6. Suppose that 0 < d1 < d2 <
d2

σ(λ )
< d3 such that fn satisfies the following conditions:

(I10) fn(z,y)6 φp(
d1
m ) for y ∈ [σ(λ )d1,d1], z ∈ [z1,z2],

(I11) fn(z,y)> φp(
d2
M ) for y ∈ [d2,

d2
σ(λ )

], z ∈ I,

(I12) fn(z,y)6 φp(
d3
m ) for y ∈ [0,d3], z ∈ [z1,z2],

Then the BVP (1.1)-(1.2) has at least three positive symmetric solutions y∗1,y
∗∗
1 , and y∗∗∗1 such that γ2(y∗1) < d1, d2 < ψ1(y∗∗1 ) and

d1 < γ2(y∗∗∗1 ) with ψ1(y∗∗∗1 )< d2.

Proof. From Lemma 3.1 the operator T is completely continuous. From (3.4) and (3.5), for each y ∈K, ψ1(y)6 γ2(y) and ‖y‖6 1
σ(λ )

γ1(y).

Now to show that T : K(γ1,d3)→ K(γ1,d3). Let y ∈ K(γ1,d3), then 0 6 |y|6 d3.
By (I12), and for t2i−2 ∈ [z1,z2], we have

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

6
∫ z2

z1

α1G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

α2G(t2i, t2i)w(t2i)ηφp
(d3

m

)
dt2i

]
dt2i−1

6
d3

m
α1

∫ z2

z1

G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

α2G(t2i, t2i)w(t2i)dt2i

]
dt2i−1 6 d3.

Continuing in this fashion, we get

γ1(Ty1(z)) = max
z∈[z1,z2]

[∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·

fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·

dt4

]
dt3

)
dt2

]
dt1

]
6 d3.

Therefore T : K(γ1,d3)→ K(γ1,d3). It obvious that

d2(σ(λ )+1)
σ(λ )

∈ {y ∈ K(γ1,γ3,ψ1,d2,
d2

σ(λ )
,d3) : ψ1(y)> d2} 6= /0 and

d1(σ(λ )+1) ∈ {y ∈ K(γ1,γ2,ψ2,σ(λ )d1,d1,d3) : γ2(y)< d1} 6= /0.

Next, let y ∈ K(γ1,γ3,ψ1,d2,
d2

σ(λ )
,d3) or y ∈ K(γ1,γ2,ψ2,σ(λ )d1,d1,d3). Then, d2 6 |y|6 d2

σ(λ )
and d1σ(λ )6 |y|6 d1.

By (I11) and for t2i−2 ∈ [z1,z2], we have

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

>
∫ z2−λ

λ

σ(λ )α1G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2−λ

λ

σ(λ )α2G(t2i, t2i)w(t2i)φp(
d2

M
)dt2i

]
dt2i−1

>
d2

M
σ(λ )α1

∫ z2−λ

λ

G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2−λ

λ

σ(λ )α2G(t2i, t2i)w(t2i)dt2i

]
dt2i−1

> d2.
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Continuing in this fashion, we get

ψ1(Ty1(z)) = min
z∈I

[∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·

fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·

dt4

]
dt3

)
dt2

]
dt1

]
> d2.

By (I10), and for t2i−2 ∈ [z1,z2], we have

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

6
∫ z2

z1

α1G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

α2G(t2i, t2i)w(t2i)ηφp
(d1

m

)
dt2i

]
dt2i−1

6
d1

m
α1

∫ z2

z1

G(t2i−1, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

α2G(t2i, t2i)w(t2i)dt2i

]
dt2i−1

6 d1.

Continuing in this fashion, we get

γ2(Ty1(z)) = max
z∈I1

[∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·

fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·

dt4

]
dt3

)
dt2

]
dt1

]
6 d1.

Next, let y ∈ K(γ1,ψ1,d2,d3) with γ3(Ty1(z))>
d2

σ(λ )
. Then

ψ1(Ty1(z)) = min
z∈I

[∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·

fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·

dt4

]
dt3

)
dt2

]
dt1

]
> σ(λ )

[∫ z2

z1

α1G(t1, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·

fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·

dt4

]
dt3

)
dt2

]
dt1

]
> σ(λ ) max

z∈[z1,z2]

[∫ z2

z1

α1G(t1, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·

fi−1

(
t2i−2

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·

dt4

]
dt3

)
dt2

]
dt1

]
> σ(λ )max

z∈I

[∫ z2

z1

α1G(t1, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·

fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·

dt4

]
dt3

)
dt2

]
dt1

]
= σ(λ )γ3(Ty1(z))> d2.

Let y ∈ K(γ1,γ2,d1,d3) with ψ2(Ty)< σ(λ )d1. Then we have



140 Universal Journal of Mathematics and Applications

γ2(Ty1(z)) = max
z∈I1

[∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·

fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·

dt4

]
dt3

)
dt2

]
dt1

]
6 max

z∈[z1,z2]

[∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·

fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·

dt4

]
dt3

)
dt2

]
dt1

]
6

1
σ(λ )

min
z∈I

[∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·

fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i)fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·

dt4

]
dt3

)
dt2

]
dt1

]
6

1
σ(λ )

min
z∈I1

[∫ z2

z1

H1(z, t1)v−1(t1)φq

[∫ z2

z1

H2(t1, t2)w(t2)f1

(
t2,
∫ z2

z1

H1(t2, t3)v−1(t3)φq

[∫ z2

z1

H2(t3, t4)w(t4)f2 · · ·

fi−1

(
t2i−2,

∫ z2

z1

H1(t2i−2, t2i−1)v−1(t2i−1)φq

[∫ z2

z1

H2(t2i−1, t2i)w(t2i) fi(t2i,y1(t2i))dt2i

]
dt2i−1

)
· · ·

dt4

]
dt3

)
dt2

]
dt1

]
=

1
σ(λ )

ψ2(Ty1(z))< d1.

So, proved all the conditions of the five functionals fixed point theorem [33]. Therefore, the BVP (1.1)-(1.2) has at least three positive
symmetric solutions y∗1,y

∗∗
1 , and y∗∗∗1 such that γ2(y∗1)< d1, d2 < ψ1(y∗∗1 ) and d1 < γ2(y∗∗∗1 ) with ψ1(y∗∗∗1 )< d2.

4. Examples

In this section, as an application, the results are demonstrated with examples.

Example 4.1.

Consider the following problem

(φp(v(z)y′′n(z)))
′′ = w(z)fn(z,yn+1(z)), 1≤ n≤ 2, 0≤ z≤ 1,

y3(z) = y1(z),

}
(4.1)

satisfying boundary conditions

yn(0) =
∫ 1

0
g(s)yn(s)ds, yn(1) =

∫ 1

0
g(s)yn(s)ds,

φp(v(0)y′′n(0)) =
∫ 1

0
h(s)φp(v(s)y′′n(s))ds, φp(v(1)y′′n(1)) =

∫ 1

0
h(s)φp(v(s)y′′n(s))ds,

 (4.2)

where v(z) = 2+ z− z2, w(z) = 10, g(z) = 1
4 , h(z) =

5
9 ,

f1(z,y) = f2(z,y) =

{
z2(1− z)2y3, (z,y) ∈ [0,1]× (0,6];

6z2(1− z)2y2, (z,y) ∈ [0,1]× [6,∞).

After algebraic computations, we get µ1 =
1
4 , µ2 =

5
9 , α1 =

4
3 , f=

9
4 ,

H1(z, t) = G(z, t)+
1

1−µ1

∫ 1

0
G(s, t)g(s)ds,

H2(z, t) = G(z, t)+
1

1− µ2

∫ 1

0
G(s, t)h(s)ds,

in which

G(z, t) =

{
z(1− t), z 6 t,

t(1− z), t 6 z.



Universal Journal of Mathematics and Applications 141

Figure 4.1: Pictorial representation of G(z, t)

Let λ = 103
356 then σ(λ ) = 103

356 and M = 0.3790187963, M = 0.01103127360

lim
y→0+

fn(z,y)
φp(y)

= lim
y→0+

z2(1− z)2y3

y
= lim

y→0+

(
1
2

)4
y2 = 0,

lim
y→∞

fn(z,y)
φp(y)

= lim
y→∞

6z2(1− z)2y2

y
= lim

y→∞
6× (0.0423)y = ∞,

fn(z,y)6 ηφp(y) = 2y,∀z ∈ [0,1], 0 6 y 6 5,

fn(z,y)> ζ φp(y) = 101y,∀z ∈ [0,1], y > 53.

Hence by Theorem 3.2, the BVP (4.1)-(4.2) has at least one positive symmetric solution.

Example 4.2.

Consider the following problem

(φp(v(z)y′′n(z)))
′′ = w(z)fn(z,yn+1(z)), 1≤ n≤ 2, 1≤ z≤ 3,

y3(z) = y1(z),

}
(4.3)

satisfying boundary conditions

yn(1) =
∫ 3

1
g(s)yn(s)ds, yn(3) =

∫ 3

1
g(s)yn(s)ds,

φp(v(1)y′′n(1)) =
∫ 3

1
h(s)φp(v(s)y′′n(s))ds, φp(v(3)y′′n(3)) =

∫ 3

1
h(s)φp(v(s)y′′n(s))ds,

 (4.4)

where v(z) = 2, w(z) = z2(4− z)2, g(z) = 2
7 , h(z) =

3
5 ,

f1(z,y) = f2(z,y) =


1
5

z(4− z)y, (z,y) ∈ [1,3]× (0,20];

4z(4− z)+(y−20)ey, (z,y) ∈ [1,3]× [20,∞).

After algebraic computations, we get µ1 =
2
7 , µ2 =

3
5 , α1 =

7
5 , f=

5
2 ,

H1(z, t) = G(z, t)+
1

1−µ1

∫ 3

1
G(s, t)g(s)ds,

H2(z, t) = G(z, t)+
1

1− µ2

∫ 3

1
G(s, t)h(s)ds,

in which

G(z, t) =
1
2

{
(z−1)(3− t), z 6 t,

(t−1)(3− z), t 6 z.
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Figure 4.2: Pictorial representation of G(z, t)

Let λ = 1.5 then σ(λ ) = 0.25 and m = 11.276666,

lim
y→0+

fn(z,y)
φp(y)

=
1
5 z(4− z)y

y2 =+∞, lim
y→+∞

fn(z,y)
φp(y)

=
4z(4− z)+(y−20)ey

y2 =+∞ for z ∈ [1,3].

Choose a constant r1 = 20 such that

fn(z,y)6 φp

( r1

M

)
= 76.07776843 for y ∈ [0,20], z ∈ [1,3].

Hence by Theorem 3.4, the BVP (4.3)-(4.4) has at least two positive symmetric solutions y∗1 and y∗∗1 . such that

0 < ‖y∗1‖< 20 < ‖y∗∗1 ‖.

Example 4.3.
Consider the following problem

(φp(v(z)y′′n(z)))
′′ = w(z)fn(z,yn+1(z)), 1≤ n≤ 2, 0≤ z≤ 1,

y3(z) = y1(z),

}
(4.5)

satisfying boundary conditions

yn(0) =
∫ 1

0
g(s)yn(s)ds, yn(1) =

∫ 1

0
g(s)yn(s)ds,

φp(v(0)y′′n(0)) =
∫ 1

0
h(s)φp(v(s)y′′n(s))ds, φp(v(1)y′′n(1)) =

∫ 1

0
h(s)φp(v(s)y′′n(s))ds,

 (4.6)

where v(z) = 2
5 , w(z) = 4

11 , g(z) =
1+z−z2

2 , h(z) = 10
17 ,

f1(z,y) = f2(z,y) =


ez(1−z)+

sin(y)
4

+
6y4

7
, (z,y) ∈ [0,1]× (0,5];

ez(1−z)+
sin(y)

4
+

3750
7

, (z,y) ∈ [0,1]× [5,∞).

After algebraic computations, we get µ1 =
7

12 , µ2 =
10
17 , α1 =

12
5 , f= 17

7 ,

H1(z, t) = G(z, t)+
1

1−µ1

∫ 1

0
G(s, t)g(s)ds,

H2(z, t) = G(z, t)+
1

1− µ2

∫ 1

0
G(s, t)h(s)ds,

in which

G(z, t) =

{
z(1− t), z 6 t,

t(1− z), t 6 z.

Let λ = 1
3 then σ(λ ) = 1

3 and m = .1471861472, M = 0.003791260308. Choose d1 = 1.5, d2 = 5, d3 = 100 then

fn (z,y)6 φp

(
d1

m

)
= 10.19117647 for y ∈ [0.5,1.5], z ∈ [0,1],

fn (z,y)> φp

(
d2

M

)
= 211.6628959 for y ∈ [5,15], z ∈ I,

fn (z,y)6 φp

(
d3

m

)
= 679.4521 for y ∈ [0,100], z ∈ [0,1],

Hence by Theorem 3.6, the BVP has (4.5)-(4.6) has at least three positive symmetric solutions y∗1,y
∗∗
1 , and y∗∗∗1 . such that γ2(y∗1)< 1.5,

5 < ψ1(y∗∗1 ) and 1.5 < γ2(y∗∗∗1 ) with ψ1(y∗∗∗1 )< 5.
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5. Conclusion

The current research work is devoted to establish the presence and characteristics of positive symmetric solutions for iterative system of
p-Laplacian problem with integral boundary conditions based on the Krasnoselskii’s and five functionals fixed point theorems. We anticipate
that our findings will inspire and serve as a reference for future developments in this field.
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Abstract

In this study, we define the binomial transforms of third-order Jacobsthal and modified
third-order Jacobsthal polynomials. Further, the generating functions, Binet formulas and
summation of these binomial transforms are found by recurrence relations. Also, we
establish the relations between these transforms by deriving new formulas. Finally, the
Vajda, d’Ocagne, Catalan and Cassini formulas for these transforms are obtained.

1. Introduction

The study of number sequences has been the subject of several studies published in recent decades. Algebraic properties, generating function,
Binet’s formula and some well-known identities have been studied in this research topic.
In 2013, Cook and Bacon [1] introduced the notion of third-order Jacobsthal numbers {J(3)n }n≥N as an extension to the famous properties of

the Jacobsthal sequence. The recurrence relation of this number is J(3)n+3 = J(3)n+2 + J(3)n+1 +2J(3)n for n≥ 0, where J(3)0 = 0 and J(3)1 = J(3)2 = 1.

A new study on the modified third-order Jacobsthal numbers K(3)
n+2 = J(3)n+2 + J(3)n+1 + 6J(3)n was published in 2020 by Morales [2]. The

recurrence relation of this number is K(3)
n+3 = K(3)

n+2 +K(3)
n+1 +2K(3)

n for n≥ 0, where K(3)
0 = 3, K(3)

1 = 1 and K(3)
2 = 3. In addition, Soykan et.

al. in [3] studied the binomial transforms of the generalized third-order Jacobsthal numbers.
Some generalizations of third-order Jacobsthal numbers can be obtained in various ways (see, e.g., [4–6]). A natural extension is to consider
for x ∈C sequences of third-order Jacobsthal and modified third-order Jacobsthal polynomials {J(3)n (x)}n≥N and {K(3)

n (x)}n≥N, respectively.
Third-order Jacobsthal and modified third-order Jacobsthal polynomials are defined by the recurrence relations

J(3)n+3(x) = (x−1)J(3)n+2(x)+(x−1)J(3)n+1(x)+ xJ(3)n (x),

J(3)0 (x) = 0, J(3)1 (x) = 1, J(3)2 (x) = x−1
(1.1)

and

K(3)
n+3(x) = (x−1)K(3)

n+2(x)+(x−1)K(3)
n+1(x)+ xK(3)

n (x),

K(3)
0 (x) = 3, K(3)

1 (x) = x−1, K(3)
2 (x) = x2−1,

(1.2)

respectively. For more information, see [7].
On the other hand, some matrix-based transforms can be introduced for a given sequence. The binomial transform is one such transform
and there are also other transforms such as rising and falling binomial transforms (see, e.g., [8]). Also, there is an interesting study on
watermarking and the binomial transform. In [9], Falcón and Plaza studied the binomial transforms of the k-Fibonacci sequences. In [10],
Prodinger gave some information about binomial transform. In [11], a novel Binomial transform based fragile watermarking technique
has been proposed for color image authentication. In [12], Yilmaz defined and studied the binomial transforms of the Balancing and

Email address and ORCID number: gamaliel.cerda.m@mail.pucv.cl, 0000-0003-3164-4434
Cite as: G. Morales, Binomial transforms of the third-order Jacobsthal and modified third-order Jacobsthal polynomials, Univers. J. Math. Appl.,
7(3) (2024), 144-151.
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Lucas-Balancing polynomials. In [13], Özkoç and Gündüz studied the binomial transform for quadra Fibona-Pell sequence and quadra
Fibona-Pell quaternion. In [14], Yilmaz and Aktaş studied special transforms of the generalized bivariate Fibonacci and Lucas polynomials.
Other examples can be reviewed in [15, 16].
Now we give some preliminaries related our study. Given an integer sequence Ψ = {ψ0,ψ1,ψ2, · · ·}, the binomial transform B of the
sequence Ψ, B(Ψ) = {Φn}, is given by

Φn =
n

∑
j=0

(
n
j

)
ψ j.

Furthermore, in [17], Boyadzhiev studied the following properties of the binomial transform Φn:

n

∑
j=0

(
n
j

)
jψ j = n(Φn−Φn−1)

and
n

∑
j=1

(
n
j

)
ψ j j−1 =

n

∑
j=1

Φ j j−1.

Motivated essentially by the previous papers, the objective of this study is to apply the binomial transforms to the third-order Jacobsthal
{J(3)n (x)} and modified third-order Jacobsthal polynomials {K(3)

n (x)} in Eqs. (1.1) and (1.2). Furthermore, the generating functions of
binomial transforms of third-order Jacobsthal and modified third-order Jacobsthal polynomials are found by recurrence relations. Also, we
describe the Vajda and d’Ocagne formulas and the relations between these transforms by deriving new formulas.

2. Binomial Transforms of Third-Order Jacobsthal Polynomials

In this section, we will mainly focus on binomial transforms of third-order Jacobsthal and modified third-order Jacobsthal polynomials to get
some important results. In fact, as a middle step, we will also present the recurrence relations, generating functions and Binet formulas.

Definition 2.1. Let Jn(x) and Kn(x) be the third-order Jacobsthal and modified third-order Jacobsthal polynomials, respectively. The
binomial transforms of these polynomials can be expressed as follows:

1. the binomial transform of the third-order Jacobsthal polynomial is

Jn(x) =
n

∑
j=0

(
n
j

)
J(3)j (x),

2. the binomial transform of the modified third-order Jacobsthal polynomial is

Kn(x) =
n

∑
j=0

(
n
j

)
K(3)

j (x).

Before starting the results, it is useful to say
(n

j
)
= 0 for j > n.

The following lemma will be key to the proof of the next theorem.

Lemma 2.2. For n≥ 0, the following equalities hold:

Jn+1(x)−Jn(x) =
n

∑
j=o

(
n
j

)
J(3)j+1(x), (2.1)

Kn+1(x)−Kn(x) =
n

∑
j=o

(
n
j

)
K(3)

j+1(x). (2.2)

Proof. We will only prove Eq. (2.1) since the proof of Eq. (2.2) is analogous. By using Definition 2.1 and the well known binomial equality
for 1≤ j ≤ n(

n+1
j

)
=

(
n
j

)
+

(
n

j−1

)
, (2.3)

we obtain

Jn+1(x) =
n+1

∑
j=1

(
n+1

j

)
J(3)j (x)+ J(3)0 (x)

=
n+1

∑
j=0

(
n
j

)
J(3)j (x)+

n+1

∑
j=1

(
n

j−1

)
J(3)j (x)

=
n

∑
j=0

(
n
j

)(
J(3)j (x)+ J(3)j+1(x)

)
,

which is desired result.
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Theorem 2.3. For n≥ 0, we have to

1. the recurrence relation of sequences {Jn(x)} is

Jn+3(x) = (x+2) [Jn+2(x)−Jn+1(x)]+(x+1)Jn(x), (2.4)

with initial conditions J0(x) = 0, J1(x) = 1 and J2(x) = x+1.
2. the recurrence relation of sequences {Kn(x)} is

Kn+3(x) = (x+2) [Kn+2(x)−Kn+1(x)]+(x+1)Kn(x), (2.5)

with initial conditions K0(x) = 3, K1(x) = x+2 and K2(x) = x2 +2x.

Proof. Similar to the proof of the previous theorem, only the first case (2.4) will be proved. We omit the other cases since the proofs are
similar. By considering Definition 2.1 and J(3)0 (x) = 0, we obtain

Jn+3(x) =
n+3

∑
j=0

(
n+3

j

)
J(3)j (x) =

n+2

∑
j=0

(
n+3
j+1

)
J(3)j+1(x).

By taking into account Eq. (2.3), we get

Jn+3(x) =
n+2

∑
j=0

[(
n+1
j+1

)
+2
(

n+1
j

)
+

(
n+1
j−1

)]
J(3)j+1(x).

By considering recurrence relations of third-order Jacobsthal polynomials

J(3)j+3(x) = (x−1)J(3)j+2(x)+(x−1)J(3)j+1(x)+ xJ(3)j (x), j ≥ 0,

and the equality
(n+1

j
)
=
(n

j
)
+
( n

j−1
)
, we obtain

Jn+3(x) =
n+2

∑
j=0

(
n+1
j+1

)
J(3)j+1(x)+2

n+2

∑
j=0

(
n+1

j

)
J(3)j+1(x)+

n+2

∑
j=0

(
n+1
j−1

)
J(3)j+1(x)

=
n+1

∑
j=0

(
n+1

j

)
J(3)j (x)+2

n+1

∑
j=0

(
n+1

j

)
J(3)j+1(x)

+
n+2

∑
j=0

(
n+1
j−1

)[
(x−1)J(3)j (x)+(x−1)J(3)j−1(x)+ xJ(3)j−2(x)

]
= Jn+1(x)+2(Jn+2(x)−Jn+1(x))

+ x
n+2

∑
j=0

(
n+1
j−1

)
J(3)j (x)−

n+2

∑
j=0

(
n+1
j−1

)
J(3)j−1(x)

−
n+2

∑
j=0

(
n+1
j−1

)
J(3)j (x)+ x

n+2

∑
j=0

(
n+1
j−1

)
J(3)j−1(x)+ x

n+2

∑
j=0

(
n+1
j−1

)
J(3)j−2(x).

Using Lemma 2.2 and
(n+1

j−1
)
=
( n

j−1
)
+
( n

j−2
)
, we have

Jn+3(x) = Jn+1(x)+2(Jn+2(x)−Jn+1(x))+ x(Jn+2(x)−Jn+1(x))−Jn+1(x)

−
n+2

∑
j=0

(
n+1
j−1

)
J(3)j (x)+ x

n+2

∑
j=0

(
n+1
j−1

)
J(3)j−1(x)+ x

n+2

∑
j=0

(
n

j−1

)
J(3)j−2(x)+ x

n+2

∑
j=0

(
n

j−2

)
J(3)j−2(x)

= Jn+1(x)+2(Jn+2(x)−Jn+1(x))+ x(Jn+2(x)−Jn+1(x))−Jn+1(x)+(x+1)Jn(x)

−
n

∑
j=0

(
n
j

)[
J(3)j+1(x)− (x−1)J(3)j (x)− (x−1)J(3)j−1(x)− xJ(3)j−2(x)

]
= (x+2) [Jn+2(x)−Jn+1(x)]+(x+1)Jn(x)

which completes the proof in this case.

Remark 2.4. For n≥ 0 and x = 2 in Theorem 2.3, we have to

1. the recurrence relation of binomial transform for third-order Jacobsthal numbers J(3)n is

Jn+3 = 4 [Jn+2−Jn+1]+3Jn,

with initial conditions J0 = 0, J1 = 1 and J2 = 3.

2. the recurrence relation of binomial transform for modified third-order Jacobsthal numbers K(3)
n is

Kn+3 = 4 [Kn+2−Kn+1]+3Kn,

with initial conditions K0 = 3, K1 = 4 and K2 = 8.
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Also, the generating functions for third-order Jacobsthal and modified third-order Jacobsthal polynomials play a vital role in determining
some important identities of these new polynomial sequences. In the following theorem, we develop the generating functions for the binomial
transforms of third-order Jacobsthal and modified third-order Jacobsthal polynomials.

Theorem 2.5. The generating functions of the binomial transforms for {Jn(x)} and {Kn(x)} are

g(Jn(x);λ ) =
∞

∑
j=0

J j(x)λ j =
λ

1− (x+2)λ +(x+2)λ 2− (x+1)λ 3 (2.6)

and

g(Kn(x);λ ) =
∞

∑
j=0

K j(x)λ j =
3− (2x+4)λ +(x+2)λ 2

1− (x+2)λ +(x+2)λ 2− (x+1)λ 3 . (2.7)

Proof. We omit the third-order Jacobsthal case in Eq. (2.6) since the proof is similar. For Eq. (2.7), assume that g(Kn(x);λ ) is the
generating function of the binomial transform for {Kn(x)}. The, we obtain

g(Kn(x);λ ) =
∞

∑
j=0

K j(x)λ j = K0(x)+K1(x)λ +K2(x)λ 2 + · · · .

Using Theorem 2.3, we have

g(Kn(x);λ ) = K0(x)+K1(x)λ +K2(x)λ 2 +
∞

∑
j=3

(
(x+2)

[
K j−1(x)−K j−2(x)

]
+(x+1)K j−3(x)

)
λ

j

= K0(x)+(K1(x)− (x+2)K0(x))λ +(K2(x)− (x+2)(K1(x)−K0(x)))λ
2

+(x+2)λg(Kn(x);λ )− (x+2)λ 2g(Kn(x);λ )− (x+1)λ 3g(Kn(x);λ ) .

Now rearrangement the equation implies that

g(Kn(x);λ ) =
K0(x)+(K1(x)− (x+2)K0(x))λ +(K2(x)− (x+2)(K1(x)−K0(x)))λ 2

1− (x+2)λ +(x+2)λ 2− (x+1)λ 3 ,

which is equal to ∑
∞
j=0 K j(x)λ j in the theorem.

Further, we note that g(Jn(x);λ ) and g(Kn(x);λ ) may be obtained from the generating functions of the third-order Jacobsthal and
third-order Jacobsthal polynomials in [7], we have

g
(

J(3)n (x);λ

)
=

λ

1− (x−1)λ − (x−1)λ 2− xλ 3

and

g
(

K(3)
n (x);λ

)
=

3− (x−1)λ − (x−1)λ 2

1− (x−1)λ − (x−1)λ 2− xλ 3 .

It is seen by using the following result proved by Prodinger in [10]:

g(Jn(x);λ ) =
1

1−λ
g
(

J(3)n (x);
λ

1−λ

)
and

g(Kn(x);λ ) =
1

1−λ
g
(

K(3)
n (x);

λ

1−λ

)
.

To derive new identities of the binomial transform of third-order Jacobsthal and modified third-order Jacobsthal polynomials, we now present
an explicit formula for {Jn(x)} and {Kn(x)} for n≥ 0.

Theorem 2.6. The Binet formulas of sequences {Jn(x)} and {Kn(x)} are

Jn(x) =
x(x+1)n

x2 + x+1
+

ω
n−1
1

(x+ω2)(ω1−ω2)
−

ω
n−1
2

(x+ω1)(ω1−ω2)
(2.8)

and

Kn(x) = (x+1)n +ω
n
1 +ω

n
2 ,

where ω1 and ω2 are the conjugate roots of the characteristic equation λ 3− (x+2)λ 2 +(x+2)λ − (x+1) = 0.
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Proof. (2.8): From Theorem 2.5 and Eq. (2.6), we have

g(Jn(x);λ ) =
∞

∑
j=0

J j(x)λ j =
λ

1− (x+2)λ +(x+2)λ 2− (x+1)λ 3 .

Using the partial fraction decomposition, g(Jn(x);λ ) can be expressed as

g(Jn(x);λ ) =
1

Φ(x)

[
x

1− (x+1)λ
+

ω2(x+ω1)

i
√

3(1−ω1λ )
− ω1(x+ω2)

i
√

3(1−ω2λ )

]
,

where Φ(x) = x2 + x+1.
However, note that ω1 +ω2 = 1, ω1−ω2 = i

√
3 and ω1ω2 = 1. Then, we have

g(Jn(x);λ ) =
1

Φ(x)

[
x

1− (x+1)λ
+

ω2(x+ω1)

i
√

3(1−ω1λ )
− ω1(x+ω2)

i
√

3(1−ω2λ )

]
=

1
Φ(x)

∞

∑
n=0

[
x(x+1)n +

ω2(x+ω1)ω
n
1

i
√

3
−

ω1(x+ω2)ω
n
2

i
√

3

]
xn

=
∞

∑
n=0

[
x(x+1)n

x2 + x+1
+

ω
n−1
1

(x+ω2)(ω1−ω2)
−

ω
n−1
2

(x+ω1)(ω1−ω2)

]
xn.

Thus, by the equality of generating function, we get

Jn(x) =
x(x+1)n

x2 + x+1
+

ω
n−1
1

(x+ω2)(ω1−ω2)
−

ω
n−1
2

(x+ω1)(ω1−ω2)
.

The proof of the binomial transform of modified third-order Jacobsthal polynomials Kn(x) can be seen by taking Theorem 2.5 and Eq.
(2.7).

3. Some Properties of Binomial Transforms of Third-Order Jacobsthal Polynomials

Now, we give the sums of binomial transforms for third-order Jacobsthal and modified third-order Jacobsthal polynomials.

Theorem 3.1. For n≥ 3, sums of sequences Jn(x) and Kn(x) are

n

∑
j=0

J j(x) =
1
x
[Jn+2(x)− (x+1)(Jn+1(x)−Jn(x))] (3.1)

and
n

∑
j=0

K j(x) =
1
x
[Kn+2(x)− (x+1)(Kn+1(x)−Kn(x))+ x−1] . (3.2)

Proof. (3.1): By considering recurrence relation in Eq. (2.4), we have

J3(x) = (x+2) [J2(x)−J1(x)]+(x+1)J0(x)

J4(x) = (x+2) [J3(x)−J2(x)]+(x+1)J1(x)

J5(x) = (x+2) [J4(x)−J3(x)]+(x+1)J2(x)

. . .

Jn−1(x) = (x+2) [Jn−2(x)−Jn−3(x)]+(x+1)Jn−4(x)

Jn(x) = (x+2) [Jn−1(x)−Jn−2(x)]+(x+1)Jn−3(x).

Adding these equations, we obtain

n

∑
j=0

J j(x) = (x+2)Jn−1(x)+(x+1)
n−3

∑
j=0

J j(x)

= (x+2)Jn−1(x)+(x+1)
n

∑
j=0

J j(x)− (x+1) [Jn(x)+Jn−1(x)+Jn−2(x)] .

Then, using the relation Jn+3(x) = (x+2) [Jn+2(x)−Jn+1(x)]+(x+1)Jn(x), we have

n

∑
j=0

J j(x) =
1
x
[(x+1)(Jn(x)+Jn−2(x))−Jn−1(x)] =

1
x
[Jn+2(x)− (x+1)(Jn+1(x)−Jn(x))] .

Similar to (3.1), by considering equation (2.5), Eq. (3.2) into account similar to the proof of (3.1).

Now, we give the sums of the first n of binomial transforms for third-order Jacobsthal and modified third-order Jacobsthal polynomials with
even subscripts.
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Corollary 3.2. Sums of sequences Jn(x) and Kn(x) with even subscripts are

n

∑
j=0

J2 j(x) =
1
x

[
(x+3)J2n+2(x)− (x2 +3x+3)J2n+1(x)+(2x2 +5x+3)J2n(x)− x

]
and

n

∑
j=0

K2 j(x) =
1
x

[
(x+3)K2n+2(x)− (x2 +3x+3)K2n+1(x)+(2x2 +5x+3)K2n(x)− (2x3 +7x2 +12x+15)

]
.

Proof. The proof can be easily established using [18, Theorem 2.1].

Now, we give the combinatorial equalities of the binomial transforms for third-order Jacobsthal and modified third-order Jacobsthal
polynomials.

Theorem 3.3. For n≥ 0, we have the equalities

n

∑
i=0

i

∑
j=0

(
n
i

)(
i
j

)
(−1) j

(
−x+2

x+1

)i
Ji+ j(x) = (x+1)−nJ3n(x) (3.3)

and

n

∑
i=0

i

∑
j=0

(
n
i

)(
i
j

)
(−1) j

(
−x+2

x+1

)i
Ki+ j(x) = (x+1)−nK3n(x). (3.4)

Proof. (3.3): Let λ stand for a root of the characteristic equation of Eq. (2.4). Then, we have λ 3 = (x+2)(λ 2−λ )+x+1 and we can write
by considering binomial expansion with x+1 6= 0:(

λ 3

x+1

)n

=
n

∑
i=0

(
n
i

)(
λ 3

x+1
−1
)i

=
n

∑
i=0

(
n
i

)(
x+2
x+1

(λ 2−λ )

)i

=
n

∑
i=0

(
n
i

) i

∑
j=0

(
i
j

)(
x+2
x+1

λ
2
) j(
−x+2

x+1
λ

)i− j

=
n

∑
i=0

i

∑
j=0

(
n
i

)(
i
j

)
(−1) j

(
−x+2

x+1

)i
λ

i+ j.

If we replace to ω1 and ω2 by λ and rearrange, then we obtain

J3n(x)
(x+1)n =

1
(x+1)n

[
x(x+1)3n

x2 + x+1
+

ω
3n−1
1

(x+ω2)(ω1−ω2)
−

ω
3n−1
2

(x+ω1)(ω1−ω2)

]

=
n

∑
i=0

i

∑
j=0

(
n
i

)(
i
j

)
(−1) j

(
−x+2

x+1

)i
Ji+ j(x),

where ω1 and ω2 are the roots of the characteristic equation λ 3− (x+2)λ 2 +(x+2)λ − (x+1) = 0. Finally, Eq. (3.4) can be obtained in a
similar way.

For simplicity of notation, let

Zn(x) =
(x+ω1)ω

n−1
1 − (x+ω2)ω

n−1
2

ω1−ω2
=

Aωn
1 −Bωn

2
ω1−ω2

,

Wn = ω
n
1 +ω

n
2 =

1
x2 + x+1

[(x+2)Zn+1(x)− (2x+1)Zn(x)] ,

(3.5)

where A = ω2x+1 and B = ω1x+1.
Further, the Binet formula of the binomial transforms for third-order Jacobsthal and modified third-order Jacobsthal polynomials are given
by

Jn(x) =
1

x2 + x+1
[x(x+1)n +Zn(x)] (3.6)

and

Kn(x) = (x+1)n +Wn.

Note that Zn+2(x) = Zn+1(x)−Zn+2(x), with initial conditions Z0(x) =−x and Z1(x) = 1.
The Vajda’s identity for the sequence Zn(x) and binomial transform of third-order Jacobsthal polynomials is given in the next theorem.
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Theorem 3.4. Let n≥ 0, p≥ 0, q≥ 0 be integers. Then, we have

Zn+p(x)Zn+q(x)−Zn(x)Zn+p+q(x) = (x2 + x+1)ApAq (3.7)

and

Jn+p(x)Jn+q(x)−Jn(x)Jn+p+q(x)

=
1

(x2 + x+1)2

[
(x2 + x+1)ApAq− x2(x+1)n (Bn+p(q)− (x+1)pBn(q)

)]
,

(3.8)

where An =
ωn

1−ωn
2

ω1−ω2
and Bn(q) = Zn+q(x)− (x+1)qZn(x).

Proof. (3.7): By using Eq. (3.5), A = ω2x+1 and B = ω1x+1 and AB = x2 + x+1, we have

Zn+p(x)Zn+q(x)−Zn(x)Zn+p+q(x)

=
1

(ω1−ω2)2

[(
Aω

n+p
1 −Bω

n+p
2

)(
Aω

n+q
1 −Bω

n+q
2

)
− (Aω

n
1 −Bω

n
2 )
(

Aω
n+p+q
1 −Bω

n+p+q
2

)]
=

1
(ω1−ω2)2

[
AB(ω p

1 −ω
p
2 )
(
ω

q
1 −ω

q
2
)]

= (x2 + x+1)ApAq,

where An =
ωn

1−ωn
2

ω1−ω2
is the n-th companion sequence of Zn(x).

(3.8): By formulas (3.5), (3.6) and Eq. (2.4), we get

Jn+p(x)Jn+q(x)−Jn(x)Jn+p+q(x)

=
1

(x2 + x+1)2

[(
x(x+1)n+p +Zn+p(x)

)(
x(x+1)n+q +Zn+q(x)

)
− (x(x+1)n +Zn(x))

(
x(x+1)n+p+q +Zn+p+q(x)

)]
=

1
(x2 + x+1)2

[
Zn+p(x)Zn+q(x)−Zn(x)Zn+p+q(x)+ x2(x+1)n+pBn(q)− x2(x+1)nBn+p(q)

]
=

1
(x2 + x+1)2

[
(x2 + x+1)ApAq− x2(x+1)n (Bn+p(q)− (x+1)pBn(q)

)]
,

where Bn(q) = Zn+q(x)− (x+1)qZn(x).

It is easily seen that for special values of p and q by Theorem 3.4, we get new identities for binomial transform of the third-order Jacobsthal
polynomials:

• Catalan’s identity: q =−p.
• Cassini’s identity: p = 1, q =−1.
• d’Ocagne’s identity: p = 1, q = m−n, with m≥ n.

Corollary 3.5. Catalan identity for binomial transform of the third-order Jacobsthal polynomials. Let n≥ 0, p≥ 0 be integers such that
n≥ p. Then

Jn+p(x)Jn−p(x)− (Jn(x))
2

=
1

(x2 + x+1)2

[
−(x2 + x+1)A 2

p − x2(x+1)n (Bn+p(−p)− (x+1)pBn(−p)
)]

.

Corollary 3.6. Cassini identity for binomial transform of the third-order Jacobsthal polynomials. Let n≥ 1 be an integer. Then

Jn+1(x)Jn−1(x)− (Jn(x))
2

=
1

(x2 + x+1)2

[
−(x2 + x+1)− x2(x+1)n (Bn+1(−1)− (x+1)Bn(−1))

]
.

Corollary 3.7. d’Ocagne identity for binomial transform of the third-order Jacobsthal polynomials. Let n≥ 0, m≥ 0 be integers such that
m≥ n. Then

Jn+1(x)Jm(x)−Jn(x)Jm+1(x)

=
1

(x2 + x+1)2

[
(x2 + x+1)Am−n− x2(x+1)n (Bn+1(m−n)− (x+1)Bn(m−n))

]
.

4. Conclusion

In this paper, we first define the binomial transforms of third-order Jacobsthal polynomials Jn(x) and give some identities of this new
sequence of polynomials. By taking into account these transforms and its properties, identities of the binomial transforms of third-order
Jacobsthal and modified third-order Jacobsthal numbers can also be obtained. Furthermore, if we replace x = 2 in Jn(x), we obtain the
binomial transform of third-order Jacobsthal numbers and if we replace x = 2 in Kn(x), we obtain the binomial transform of modified
third-order Jacobsthal numbers (in the same sense as Soykan in [3]). Finally, we obtained the generating functions, Binet formulas,
summations, and relationships for the binomial transforms of the third-order Jacobsthal and modified third-order Jacobsthal polynomials.



Universal Journal of Mathematics and Applications 151

Article Information

Acknowledgements: The author would like to express his sincere thanks to the editor and the anonymous reviewers for their helpful
comments and suggestions.

Author’s Contributions: The article has a single author. The author has read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Author owns the copyright of his work published in the journal and his work is published under the CC BY-NC 4.0
license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles
were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program.

References

[1] C. K. Cook, M. R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations, Ann. Math.
Inform., 41 (2013), 27-39.

[2] G. Morales, A note on modified third-order Jacobsthal numbers, Proyecciones, 39(2) (2020), 409-420.
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[14] N. Yilmaz, I. Aktaş, Special transforms of the generalized bivariate Fibonacci and Lucas polynomials, Hacet. J. Math. Stat., 52(3) (2023), 640-651.
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