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CERTAIN RESULTS CONCERNING (p,q)-PARAMETERIZED

BETA LOGARITHMIC FUNCTION AND THEIR PROPERTIES

Nabiullah KHAN1, Mohammad Iqbal KHAN1, Mohd SAIF2 and Talha USMAN3

1Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim
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Chittor-517325, INDIA
3Department of General Requirements, University of Technology and Applied Sciences, Sur-411,
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Abstract. The primary object of this article is to introduce (p, q)-beta loga-

rithmic function with extended beta function by using the logarithmic mean.

We evaluate different properties and representations of beta logarithmic func-
tion. Further, it is evaluated logarithmic distribution, hypergeometric and

confluent hypergeometric functions via logarithmic mean are evaluated and

their essential properties are studied. Numerous formulas of (p, q)-beta loga-
rithmic functions such as integral formula, derivative formula, transformation

formula and generating function are analyzed.

1. Introduction and Preliminaries

The ordinary hypergeometric functions have been the subject of comprehensive
research by various eminent mathematician. These functions play a vital role in
different branches of mathematics. Applications of special functions (higher order
transcendental functions such as Bessel function, Whittaker function, Wright func-
tions etc.) are found in a broad variety of engineering sub-fields. The Euler beta
function plays an important role in special function which introduced by Legendre,
Whittaker and Watson etc. Using techniques to unify and generalize specialized

2020 Mathematics Subject Classification. 33B15, 33B99, 33C15.
Keywords. Beta function, logarithmic mean, beta distribution, hypergeometric function,

confluent hypergeometric function.
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functions has been an active and interesting area of research. An extension of the
Euler beta function was proposed in 1997 by Chaudhry et al. [3] as well as a number
of other researchers.

Definition 1. The beta function (also called the Euler’s integral of the first kind)
is defined as (see [11,13]):

B(ξ, ζ) =
Γ(ξ) Γ(ζ)

Γ(ξ + ζ)
=

∫ 1

0

tξ−1(1− t)ζ−1dt, (Re(ξ) > 0, Re(ζ) > 0) (1)

where Γ (.) is gamma function, the Euler integral of the second kind (commonly
used as extension of factorial function to complex numbers defined for all complex
numbers except for the non-positive integers).

As we know that the gamma and beta functions play a crucial role in the de-
velopment of theory of higher order transcendental functions and their various
generalizations are given by the various number of researchers (see [1], [2], [3], [4],
[5], [7], [8], [9], [12], [15]).

Gamma function is defined by the convergent improper integral as:

Γ(x) =

∫ ∞

0

e−ttx−1dt, (Re(x) > 0).

The underlying extension of Euler’s beta function established by Chaudhry et al. [3]
is defined as

Bp(ξ, ζ) =

∫ 1

0

tξ−1(1− t)ζ−1 exp

[
− p

t(1− t)

]
dt, (Re(p) > 0, Re(ξ) > 0, Re(ζ) > 0).

(2)
For p = 0, the extended beta function reduces to the classical beta function.

In 2004, Chaudhry et al. [4] used new extended beta function B(β, ζ; ρ) to in-
troduced extended Gauss hypergeometric and confluent hypergeometric functions
which are defined by their series representation as

Fρ (ξ, ζ; η; z) =

∞∑
n=0

(ξ)n
Bρ(ζ + n, η − ζ)

B(ζ, η − ζ)

zn

n!
(3)

(ρ ≥ 0, |z| < 1, Re(η) > ℜ(ζ) > 0),

and

Φρ (ζ; η; z) =

∞∑
n=0

Bρ(ζ + n, η − ζ)

B(ζ, η − ζ)

zn

n!
(4)

(ρ ≥ 0, |z| < 1, Re(η) > Re(ζ) > 0).
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In 2014, Choi et al. [5] introduced another extension of beta function, denoted by
Bp,q(ξ, ζ) and is defined by

Bp,q(ξ, ζ) =

∫ 1

0

tξ−1(1− t)ζ−1exp

[
−p

t
− q

(1− t)

]
dt, (5)

(Re(p) > 0, Re(q) > 0), (Re(ξ) > 0, Re(ζ) > 0).

The integral representation for extended Gauss hypergeometric function and ex-
tended confluent hypergeometric function are defined as follows :

Fp,q (ξ, ζ; η; z) =
1

B(ζ, η − ζ)

∫ 1

0

tζ−1 (1−t)η−ζ−1 (1−zt)−ξ exp

[
−p

t
− q

(1− t)

]
dt,

(6)

(p, q ≥ 0; | arg(1− z)| < π; Re(η) > Re(ζ) > 0),

and

Φp,q (ζ; η; z) =
1

B(ζ, η − ζ)

∫ 1

0

tζ−1 (1− t)η−ζ−1 exp

(
zt− p

t
− q

(1− t)

)
dt, (7)

{p, q ≥ 0, Re(η) > Re(ζ) > 0}.

Definition 2. The logarithmic mean for x, y > 0 (quotient of difference of two
non-negative numbers by their logarithmic value) is defined as (see [14])

L(x, y) =

∫ 1

0

x1−tyt dt =

{ x−y
log(x)−log(y) x ̸= y,

x x = y.
(8)

It can be easily seen that the logarithmic mean satisfies the following properties
(see [6], [10]):
• The logarithmic mean always lies between the geometric mean and arithmetic
mean.
• For x = y all three means that are geometric mean, arithmetic mean and loga-
rithmic mean are same.
• The limiting condition of the logarithmic mean is given as:

lim
y→x

L(x, y) = L(x, x) = x.

• The logarithmic mean satisfies the following property that is:

1

L(x, y)
=

∫ 1

0

dt

tx+ (1− ty)
.

• The infinite product of the logarithmic mean of any two positive real numbers
are given as:

L(x, y) =

∞∏
m=1

(
x2−m + y2−m

2

)
.
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2. Construction of (p,q)- Beta Logarithmic Function

For any fixed x, y > 0 the function x1−tyt is continuous in [0, 1] and so it is
bounded on [0, 1]. It means that there exist c ≥ 0 and for any x, y, ξ, ζ > 0, we
have

0 ≤ x1−t yt tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
≤ c tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
, ∀ t ∈ (0, 1).

Thus, x1−t yt tξ−1 (1 − t)ζ−1 exp
[
−p
tm − q

(1−t)m

]
is integrable on (0, 1). We

introduce the underlying definition that defines the relation between beta function
and logarithmic mean.

Definition 3. For any x, y, ξ, ζ ∈ R+, we define

Bm
p,q L(x, y; ξ, ζ) =

∫ 1

0

x1−t yt tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
dt, (9)

(p, q ≥ 0, Re(ξ) > 0, Re(ζ) > 0),

which we call the (p, q) beta-logarithmic function.

Remark 1. Substituting x = y = 1 in (9), we get extended beta function

Bm
p,q L(1, 1; ξ, ζ) = Bm

p,q (ξ, ζ), (Re(ξ) > 0, Re(ζ) > 0)

where,

Bm
p,q(ξ, ζ) =

∫ 1

0

tξ−1(1− t)ζ−1exp

[
−p

tm
− q

(1− t)m

]
dt, (Re(p) > 0, Re(q) > 0).

(10)

Remark 2. By setting x = y = 1, p = q = 0 and m = 1 in (9), we get the Euler
Beta function (1) (see [11], [13])

B1
0,0 L(1, 1; ξ, ζ) = B(ξ, ζ), (Re(ξ) > 0, Re(ζ) > 0.

Remark 3. If we take ξ = ζ = 1, p = q = 0 and m = 1 in (9), we get logarithmic
mean (8) (see [14]).

B1
0,0 L(x, y; 1, 1) = L(x, y), (x, y > 0).

3. Properties of (p,q)- Beta Logarithmic Function

In this section, we analyze different properties and representations of a new form
of beta function that we call the (p, q) beta logarithmic function. This function is
a combined study of a new extended beta function and the logarithmic mean.
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Proposition 1. For x, y, ξ, ζ, p, q > 0, the following assertions hold true:

Bm
p,q L(x, y; ξ, ζ) = Bm

p,q L(y, x; ξ, ζ), (11)

Bm
p,q L(x, x; ξ, ζ) = xBm

p,q (ξ, ζ), (12)

and

Bm
p,q L(δx, δy; ξ, ζ) = δBm

p,q L(x, y; ξ, ζ). (13)

Proof. The result (11) may be reached by altering the variable t by 1−u in equation
(9). The assertions (12) and (13) may be produced by easy computation in equation
(9). □

Proposition 2. For any x, y, ξ, ζ, p, q > 0, the following assertions hold true:

Bm
p,q L(x, y; ξ + 1, ζ) +Bm

p,q L(x, y; ξ, ζ + 1) = Bm
p,q L(x, y; ξ, ζ). (14)

Proof. By using the definition (9) to the left side of (14), we get the required
assertion (14). □

Corollary 1. If we set x = y = 1 in (14), we obtained the well known result
introduced by M. Räıssouli et al. [14]

Bm
p,q(ξ + 1, ζ) +Bm

p,q(ξ, ζ + 1) = Bm
p,q(ξ, ζ). (15)

Proposition 3. For any x, y, ξ, ζ > 0, p, q ≥ 0, the following assertions hold true:

min(x, y)Bm
p,q(ξ, ζ) ≤ Bm

p,qL(x, y; ξ, ζ) ≤ xBm
p,q(ξ, ζ + 1) + yBm

p,q(ξ + 1, ζ)

≤ max(x, y)Bm
p,q(ξ, ζ). (16)

Proof. From the underlying inequality

min(x, y) ≤ √
xy ≤ L(x, y) ≤

(
x+ y

2

)
≤ max(x, y) and Bm

p,q(ξ, ζ) > 0,

we get the following relation

min(x, y)Bm
p,q(ξ, ζ) ≤ Bm

p,qL(x, y; ξ, ζ). (17)

By using the underlying well known Young’s inequality

x1−tyt ≤ x(1− t) + yt, ∀ t ∈ [0, 1]
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we get

Bm
p,q L(x, y; ξ, ζ) ≤

∫ 1

0

x1−t yt tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
dt

≤ x

(∫ 1

0

tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
dt

)
+ y

(∫ 1

0

tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
dt

)
≤ x

(
Bm

p,q(ξ, ζ + 1)
)
+
(
y Bm

p,q(ξ + 1, ζ)
)

≤ max(x, y)
(
Bm

p,q(ξ, ζ + 1) +Bm
p,q(ξ + 1, ζ)

)
by using the relation (15), we achieved the required result. □

Proposition 4. For any x, y, ξ, ζ > 0, p, q ≥ 0 the following assertion holds true:

Bm
p,q L(x, y; ξ, ζ) =

∞∑
n=0

Bm
p,q(x, y; ξ + n, ζ + 1). (18)

Proof. We have

Bm
p,q L(x, y; ξ, ζ) =

∫ 1

0

x1−t yt tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
dt,

By using the series representation (1 − t)−1 =
∑∞

n=0 t
n, for t ∈ (0, 1) with the

arguments of uniform convergence of this power series, we have

Bm
p,q L(x, y; ξ, ζ) =

∫ 1

0

x1−t yt tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
dt

=

∫ 1

0

x1−t yt tξ−1 (1− t)ζ (1− t)−1 exp

[
−p

tm
− q

(1− t)m

]
dt

=

∞∑
n=0

∫ 1

0

x1−t yt tξ−1 (1− t)ζ tn exp

[
−p

tm
− q

(1− t)m

]
dt

=

∞∑
n=0

∫ 1

0

x1−t yt tξ+n−1 (1− t)ζ exp

[
−p

tm
− q

(1− t)m

]
dt,

using the definition (9) in the above expression, we achieved the desired result. □

Theorem 1. Let x, y, ξ, ζ > 0, p, q ≥ 0, the following representation holds true:

Bm
p,q L(x, y; ξ, ζ) =

∞∑
r,n=0

Bm
p,q(ξ + n, ζ + r)

n!r!
(log(x))r(log(y))n. (19)



312 N. U. KHAN, M. I. KHAN, M. SAIF, T. USMAN

Proof. Using the following power series expansion

x1−t =

∞∑
r=0

(log(x))r

r!
(1− t)r, yt =

∞∑
n=0

(log(y))n

n!
tn

using the above expansion in the result (9), we have

Bm
p,q L(x, y; ξ, ζ) =

∫ 1

0

x1−t yt tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
dt

=

∫ 1

0

∞∑
r,n=0

(log(x))r(log(y))n

r!n!
tξ+n−1 (1− t)ζ+r−1 exp

[
−p

tm
− q

(1− t)m

]
dt

=

∫ 1

0

tξ+n−1 (1− t)ζ+r−1

r!n!
(log(x)

∞∑
r,n=0

)r(log(y))n exp

[
−p

tm
− q

(1− t)m

]
dt,

using the definition (10) in the above expression, we achieved the required re-
sult (19). □

4. The (p,q)-Beta Logarithmic Random Variable

In this section, we define beta-logarithmic distribution of (9) and obtain its
mean, variance and moment generating function.

Definition 4. For x, y, ξ, ζ > 0, p, q ≥ 0, the beta-logarithmic distribution is defined
as:

f(t) =

{
1

Bm
p,q L(ξ,ζ) x1−t yt tξ−1(1− t)ζ−1 exp

[
−p
tm − q

(1−t)m

]
, (0 < t < 1),

0, otherwise.
(20)

The kth- moment of a random variable X for any real number k is given as:

E(Xk) =
Bm

p,q L(x, y; ξ + k, ζ)

Bm
p,q L(x, y; ξ, ζ)

, (21)

( p, q ≥ 0, x, y, ξ, ζ > 0).

For k = 1, we obtain the mean as a particular case of (21) given by

µ = E(X) =
Bm

p,q L(x, y; ξ + 1, ζ)

Bm
p,q L(x, y; ξ, ζ)

. (22)

The variance of the distribution is defined as: σ2 = E(X2)− {E(X)}2

σ2 =
Bm

p,q L(x, y; ξ, ζ)Bm
p,q L(x, y; ξ + 2, ζ)−

{
Bm

p,q L(x, y; ξ + 1, ζ)
}2{

Bm
p,q L(x, y; ξ, ζ)

}2 . (23)
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The moment generating function of the distribution is defined as

M(t) =

∞∑
n=0

tn

n!
E(Xn) =

1

Bm
p,qL(x, y; ξ, ζ)

∞∑
n=0

Bm
p,qL(x, y; ξ + n, ζ)

tn

n!
. (24)

Here, we recall the following known lemma.

Lemma 1. Let Y be a random variable with values that exist inside a finite range
[x, y]. Then, we have for all E ∈ [x, y],∣∣∣∣P (Y ≤ E)− y − E(Y )

y − x

∣∣∣∣ ≤ 1

2
+

|E − x+y
2 |

y − x
. (25)

Proposition 5. Let X represent a beta-logarithmic random variable with parame-
ters (x, y; ξ, ζ). Then, for any k, E > 0, the following assumptions are true:∣∣∣∣P (X ≤ E)−

Bm
p,q L(x, y; ξ, ζ + 1)

Bm
p,q L(x, y; ξ, ζ)

∣∣∣∣ ≤ 1

2
+

∣∣∣∣E − 1

2

∣∣∣∣ (26)

and

P (Xk ≥ E) ≤
Bm

p,qL(x, y; ξ + k, ζ)

E Bm
p,qL(x, y; ξ, ζ)

(27)

Proof. With the help of (14) and (22), we have

E(X) = 1−
Bm

p,q L(x, y; ξ, ζ + 1)

Bm
p,qL(x, y; ξ, ζ)

, (28)

using the above relation in inequality (25), we achieved the desired result (26).

The second inequality (27) can be deduced by using the Markov’s inequality

P (Xk ≥ E) ≤ E(Xk)

E
and the definition of E(Xk), we get the desired result (27). □

5. Hypergeometric and Confluent Hypergeometric Representation
by (p,q)-Beta Logarithmic Function

Many researchers gave the extension of hypergeometric and confluent hyperge-
ometric functions (see [4], [5], [12]). Here, we introduce a new hypergeometric and
confluent hypergeometric functions in terms of (p,q)-beta logarithmic function.

The (p, q)-beta logarithmic hypergeometric function is defined as:

Fm
p,q L(ξ, ζ; η; z) =

∞∑
n=0

(ξ)n
Bm

p,q L(x, y; ζ + n, η − ζ)

B(ζ, η − ζ)

zn

n!
, (29)

(p, q ≥ 0, |z| < 1, Re(η) > Re(ζ) > 0, x, y > 0).
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The (p, q)-beta logarithmic confluent hypergeometric logarithmic function is defined
as:

Φm
p,q L (ξ; ζ; z) =

∞∑
n=0

Bm
p,q L(x, y; ξ + n, η − ζ)

B(ζ, η − ζ)

zn

n!
, (30)

(p, q ≥ 0, x, y,> 0, Re(η) > Re(ζ) > 0, Re(ξ) > 0, |z| < 1).

5.1. Integral formula.

Theorem 2. The following integral formula for the (p, q)-beta logarithmic hyper-
geometric and (p, q)-beta logarithmic confluent hypergeometric function holds true:

Fm
p,q L (ξ, ζ; η; z) =

1

B(ζ, η − ζ)

×
∫ 1

0

x1−tyt tζ−1 (1− t)η−ζ−1 (1− zt)−ξ exp

[
−p

tm
− q

(1− t)m

]
dt,

(31)
(| arg(1− z)| < π; p, q ≥ 0; x, y,∈ R+; Re(η) > Re(ζ) > 0),

and

ϕm
p,q L (ζ; η; z) =

1

B(ζ, η − ζ)

∫ 1

0

x1−tyt tζ−1 (1− t)η−ζ−1 eztexp

[
−p

tm
− q

(1− t)m

]
dt

(32)
(p, q ≥ 0; x, y,∈ R+; Re(η) > Re(ζ) > 0).

Proof. By applying the definition of beta logarithmic function (9) into (29) and by
rearranging the order of integral and summation, we get

Fm
p,q L (ξ, ζ; η; z) =

1

B(ζ, η − ζ)

×
∫ 1

0

x1−tyt tζ−1 (1− t)η−ζ−1 exp

[
−p

tm
− q

(1− t)m

] ∞∑
n=0

(ξ)n
(zt)n

n!
dt.

(33)
Applying the binomial theorem in (33), we obtained the desired result (31).

Similarly, we can obtain (32). □

5.2. Derivative formula.

Theorem 3. The following derivative formula for (p, q)-beta logarithmic hyperge-
ometric and (p, q)-beta logarithmic confluent hypergeometric functions hold true:

dn

dzn
{
Fm
p,q L (ξ, ζ; η; z)

}
=

(ξ)n(ζ)n
(η)n

Fm
p,q L (ξ + n, ζ + n; η + n; z) , (34)

and
dn

dzn
{
ϕm
p,q L (ζ; η; z)

}
=

(ζ)n
(η)n

ϕm
p,q L (ζ + n; η + n; z) , (35)
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where

(p, q ≥ 0, Re(η) > Re(ζ) > 0); n ∈ N0.

Proof. We know well known relation of Euler-Beta function,

B(ζ, η − ζ) =
η

ζ
B(ζ + 1, η − ζ), (36)

Differentiating (29) with respect to variable z, we get

d

dz

{
Fm
p,q L(ξ, ζ; η; z)

}
=

∞∑
n=0

(ξ)n
Bm

p,q L(x, y; ζ + n, η − ζ)

B(ζ, η − ζ)

zn−1

n− 1!

=

∞∑
n=0

(ξ)n+1

Bm
p,q L(x, y; ζ + n+ 1, η − ζ)

B(ζ, η − ζ)

zn

n!
,

Using (α)n = Γ(α+n)
Γ(α) and (36) in the above expression, we obtain

d

dz

{
Fm
p,q L(ξ, ζ; η; z)

}
=

ξζ

η

∞∑
n=0

(ξ + 1)n
Bm

p,q L(x, y; ζ + n+ 1, η − ζ)

B(ζ + 1, η − ζ)

zn

n!
,

where (α)n is the Pochhammar symbol defined as

(α)n =
Γ(α+ n)

Γ(α)
=

{
1 (n = 0;α ∈ C \ {0})
α(α+ 1)(α+ 2) . . . (α+ n− 1) (n ∈ N;α ∈ C),

Now continuing the same process up-to (n− 1), we get the required result (34).
Similarly, by applying the same process on (30), we get the required result (35).

□

Remark 4. If we take p = q = 1 and m =1 in the expression (34) and (35), we
obtain a similar result in [4].

5.3. Transformation formulas.

Theorem 4. The following formulae for the hypergeometric logarithmic and con-
fluent hypergeometric logarithmic functions hold true:

Fm
p,q L (ξ, ζ; η; z) = (1− z)−ξ Fm

p,q L

(
ξ, η − ζ; η; − z

1− z

)
, (37)

Fm
p,q L

(
ξ, ζ; η; 1− 1

z

)
= zξ Fm

p,qL (ξ, η − ζ; η; 1− z) , (38)

Fm
p,q L

(
ξ, ζ; η;

z

1 + z

)
= (1 + z)ξ Fm

p,q L (ξ, η − ζ; η; −z) , (39)

Φm
p,q L (ζ, η; z) = ez Φm

p,q L (η − ζ; η; −z) . (40)

(p, q ≥ 0, x, y,∈ R+; |z| < 1; Re(η) > Re(ζ) > 0).
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Proof. Substituting t by 1− t in (1− zt)−ξ and replacing the following equation

[1− z(1− t)]−ξ = (1− z)−ξ

(
1 +

z

1− z
t

)−ξ

in (31) we obtain

Fm
p,q L (ξ, ζ; η; z) =

(1− z)−ξ

B(ζ, η − ζ)

×
∫ 1

0

tζ−1 (1− t)η−ζ−1

(
1 +

z

1− z
t

)−ξ

exp

[
−p

tm
− q

(1− t)m

]
dt,

(41)
further, we have

Fm
p,q L (ξ, ζ; η; z) =

(1− z)−ξ

B(ζ, η − ζ)

×
∫ 1

0

tζ−1 (1− t)η−ζ−1

(
1− −z

1− z
t

)−ξ

exp

[
−p

tm
− q

(1− t)m

]
dt.

(42)
In view of (31), we get the required result (37).
Substituting z by 1− 1

z and z
1+z in (37) yield (38) and (39) respectively.

□

Similarly applying the same process in (37) by simple calculation, we can estab-
lish (40).

Theorem 5. The following relation holds true:

Fm
p,q L (ξ, ζ; η; 1) =

Bm
p,q (x, y; ξ, η − ξ − ζ)

B(ζ, η − ζ)
(43)

(p, q ≥ 0; x, y ∈ R+; Re(η − ξ − ζ) > 0).

Proof. Putting z = 1 in (31) and using the definition (9), we obtain desired result
(43). □

6. Generating function of Fm
p,qL (ξ, ζ; η; z)

Theorem 6. The generating function for Fm
p,q L (ξ, ζ; η; z) holds the underlying

relation
∞∑
k=0

(ξ)k Fm
p,q L(ξ + k, ζ; η; z)

tk

k!
= (1− z)−ξ Fm

p,q

(
ξ, ζ; η;

z

1− t

)
(44)

(p, q ≥ 0, |t| < 1).
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Proof. Let left hand side of (44) be denoted by L, then from (29), we have

L =

∞∑
k=0

(ξ)k

( ∞∑
n=0

(ξ + k)n B
m
p,q L(x, y; ζ + n, η − ζ)

B(ζ, η − ζ)

zn

n!

)
tk

k!
.

Using the identity (α)n(α+ n)k = (α)k(α+ k)n, we get

L =

∞∑
n=0

(ξ)n
Bm

p,q L(a, b; ζ + n, η − ζ)

B(ζ, η − ζ)

( ∞∑
k=0

(ξ + n)k
tk

k!

)
zn

n!
.

Since, we know that
∑∞

n=0 (ξ + n)n
tn

n! = (1− t)−ξ−n, we obtain

L =
∞∑

n=0

(ξ)n
Bm

p,q L(x, y; ζ + n, η − ζ)

B(ζ, η − ζ)
(1− t)−ξ−n zn

n!

L = (1− t)−ξ
∞∑

n=0

(ξ)n
Bm

p,q L(x, y; ζ + n, η − ζ)

B(ζ, η − ζ)

(
z

1− t

)n
1

n!
. (45)

Finally by using (29) in (45), we get the desired result (44). □

7. Conclusions

In this article we define a (p, q)-beta logarithmic function which links with log-
arithmic mean and generalized beta function (see [3], [4]). Here, we analyze yet
another extension of the Euler beta function and study a variety of properties, in-
cluding integral representation, summation formula and derivative formula of the
(p, q)-beta logarithmic function. Some analytical properties of this new extended
function are developed and discuss its probabilistic concept as an application. Fur-
ther, we get the beta distribution and the other statistical formula that go along
with it. Finally, we expand the definition of hypergeometric and confluent hyper-
geometric function and explore the different features of the extended definition.
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Abstract. The objective of this article is to characterize each of compact,
sober, and Ti for i = 0, 1, 2 constant limit spaces as well as to investigate the

relationships between them. Finally, we compare our results in some topolog-

ical categories.

1. Introduction

The lack of natural function spaces in Top, the category of topological spaces and
continuous maps which is not cartesian closed has been recognized as an awkward
situation for various applications in the field of functional analysis and homotopy
theory. The category Lim of limit spaces and continuous maps which is carte-
sian closed [17] supercategory of Top. Limit spaces with compatible vector space
structures are used to develop a calculus for vector spaces without norm [22].

Baran, in [2], introduced the notion of (strong) closedness in terms of final lifts,
initial lifts, and discrete structures which are available in a topological category.
He used these notions to generalize each of compact, sober, and Ti, i = 1, 2, 3, 4
objects in topological categories in [2, 7, 12].

The sober spaces were introduced in [18] and used in the theory of non-T2 spaces.
In 2022, Baran and Abughalwa [12] gave various forms of sober objects in a topo-
logical category and investigated relationships among these various forms.
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The objective of this article is to characterize each of compact, sober, and Ti for
i = 0, 1, 2 constant limit spaces as well as to investigate the relationships between
them. Finally, we compare our results in some topological categories.

2. Preliminaries

Definition 1. Let B ̸= ∅, F (B) be the set of filters (proper or improper) on B, and
the map K : B −→ P (F (B)). We call (B,K) is a constant limit space if K satisfies:

(i) [s] ∈ K, ∀s ∈ B, where [s] = {U ⊂ B : s ∈ U},

(ii) if α ∈ K and α ⊂ β, then β ∈ K,

(iii) if α, β ∈ K, then α ∩ β ∈ K.

Let (B,K) and (C,L) be constant limit spaces. If f(α) ∈ L for every α ∈ K, then
a map f : (B,K) −→ (C,L) is called continuous, where f(α) = {U ⊂ C : ∃V ∈ α
such that f(V ) ⊂ U}.

We denote ConLim by the category of constant limit spaces and continuous
maps.

Proposition 1. ( [5]) (1) Let {(Bi,Ki), i ∈ I} in ConLim, B be a set, and
{fi : B −→ (Bi,Ki), i ∈ I} be a source in Set. {fi : (B,K) −→ (Bi,Ki), i ∈ I} in
ConLim is an initial lift iff K = {α ∈ F (B) : fi(α) ∈ Ki,∀i ∈ I}.

(2) An epi sink {fi : (Bi,Ki) −→ (B,K)} in ConLim is a final lift iff α ∈ K
implies

⋂n
i=1 f(αi) ⊂ α for some αi ∈ Ki, i ∈ I.

(3) K = {α : α = [U ], U ⊂ B is finite } is discrete structure on B, where
[U ] = {V ⊂ B : U ⊂ V }.

The constant limit structure on a finite set B is unique. Let B = {a1, a2, ..., an}.
The discrete structure on B, K = {α : α = [U ], U ⊂ B} = F (B), the indiscrete
structure on B.

3. Closed Subobjects

Let X be a set, X∞ = X ×X × ... be the countable product of X, and a ∈ X.∨∞
a X (resp., X

∨
a X) is formed by taking countably many disjoint (resp., two

distinct) copies of X identifying them at the point a.

Definition 2. ( [2, 6]) Define Sa : X
∨

a X −→ X2 by

Sa(ti) =

{
(t, t) if i = 1

(a, t) if i = 2
,
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▽a : X
∨

a X −→ X by ▽a(ti) = t,

A∞
a :

∨∞
a X −→ X∞ by A∞

a (ti) = (a, a, ..., a, t, a, a, ...),

and ▽∞
a :

∨∞
a X −→ X by ▽∞

a (ti) = t for each i ∈ I, where I is the index
set {i : ti is in the i-th component of

∨∞
a X}.

Definition 3. ( [2]) Let U : E −→ Set be a topological functor [1] and X be an
object of E with U(X) = B.

(1) If the initial lift of the U-source Sa : B
∨

a B −→ U(X2) = B2 and ▽a :
B
∨

a B −→ UD((B)) = B is discrete, then X is called T1 at a, where D is the
discrete functor.

(2) If the initial lift of the U-source
A∞

a : ∨∞
a B −→ U(X∞) = B∞ and ∇∞

a : ∨∞
a B −→ UD((B)) = B

is discrete, then {a} is called closed.

(3) If {∗} is closed in X/M , then M ⊂ X is called closed, where X/M is the
final lift of the epi U -sink

q : B = U(X) → B/M = (B\M) ∪ {∗},
identifying M with a point *.

(4) If X/M is T1 at ∗, then M is called strongly closed in X.

(5) If B = M = ∅ iff then M is to be (strongly) closed.

(6) M ⊂ X is open (resp., strongly open) iff M c is closed (resp., strongly closed)
in X.

Remark 1. (1) In Top, by Corollary 2.2.6 of [2], M ⊂ B is closed iff M is closed
in the usual sense. Moreover, the notion of strong closedness implies closedness
and they coincide when a topological space is T1 [4].

(2) In an arbitrary topological category, in general, the notions of closedness and
strong closedness are independent of each other [4].

Theorem 1. Let (B,K) ∈ ConLim. ∅ ≠ M ⊂ B is closed (open) iff M = B.

Proof. Suppose ∅ ̸= M ⊂ B and M ̸= B. Then ∃t ∈ B with t /∈ M . Take
σ =

⋂∞
i=1[ti] with ti ∈ B/M . We have ▽∗σ = [t] and πjA

∞
∗ σ = [∗] ∩ [t] ∈ K1 for

all i, where K1 is the final structure on B/M . Since σ is generated by the infinite
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set {t1, t2, ..., tn, ...}, σ does not contain a finite set which contradicts {∗} is being
closed. Hence, B = M .

If M = B, then
∨∞

∗ (B/M) = {∗} and by Definition 3 (5), {∗} =
∨∞

∗ (B/M) is
closed and consequently, M is closed.

The proof for openness follows from Definition 3. □

Theorem 2. Every subset of constant limit space is both strongly closed and strongly
open.

Proof. Let (B,K) ∈ ConLim and M ⊂ B. If M = ∅, then by Definition 3,
M is strongly open (strongly closed). Suppose M ̸= ∅ and let K1 be the quotient
structure on B/M induced by q : (B,K) −→ (B/M,K1), Kq be the initial structure
on (B/M)

∨
∗(B/M) induced by

S∗ : (B/M) ∨∗ (B/M) −→ ((B/M)2,K2
1 )

and

▽∗ : (B/M) ∨∗ (B/M) −→ (B/M,Kd),

where K2
1 is structure on (B/M)2 and Kd is the discrete structure on B/M .

Suppose σ ∈ Kq. Then by Proposition 1, π1S∗σ, π2S∗σ ∈ K1 and ▽∗σ ∈ Kd. It
follows that ▽∗σ = [∅] or [U ], U ⊂ B/M is finite with card(U) = m. If ▽∗σ = [∅],
then σ = [∅]. If ▽∗σ = [U ], then ∃V ∈ σ such that U ⊃ ▽∗V . Since U is finite,
card(V ) ≤ 2m and consequently, V is finite. Hence, by Definition 2, (B/M,K1)
is T1 at ∗ and M is strongly closed. The proof for strongly open follows from
Definition 3. □

Theorem 3. (1) Let f : (A,L) −→ (B,K) be in ConLim. If M ⊂ B is (strongly)
closed, then f−1(M) ⊂ A is (strongly) closed.

(2) Let (B,K) ∈ ConLim. If M ⊂ N and N ⊂ B are (strongly) closed, then
M ⊂ B is (strongly) closed.

(3) Let (Bi,Ki) ∈ ConLim for ∀i ∈ I and Mi ⊂ Bi be (strongly) open (resp.,
closed) for each i ∈ I. Then

∏
i∈I Mi is (strongly) open (resp., closed) in

∏
i∈I Bi.

Proof. We get the proof from Theorems 1 and 2. □

Let X be a set and the wedge X2
∨

∆ X2 be two distinct copies of X2 identified
along the diagonal ∆ [2]. Define A : X2

∨
∆ X2 −→ X3 by

A((s, t)i) =

{
(s, t, s) if i = 1

(s, s, t) if i = 2
,

S : X2
∨

∆ X2 −→ X3 by
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S((s, t)i) =

{
(s, t, t) if i = 1

(s, s, t) if i = 2
,

and ∇ : X2
∨

∆ X2 −→ X2 by

▽((s, t)i) = (s, t)

for i = 1, 2.

Definition 4. ( [2, 5]) (1) If the initial lift of the U-source

A : B2 ∨△ B2 −→ U(X3) = B3 and ∇ : B2 ∨△ B2 −→ U(D(B2)) = B2

(resp.,

id : B2∨△B2 −→ U(B2∨△B2)′ = B2∨△B2 and ∇ : B2∨△B2 −→ U(D(B2)) = B2)

is discrete, then X is called T 0 (resp., T
′

0), where (B2
∨

△ B2)′ is the final lift of the

U -sink {i1, i2 : U(X2) = B2 −→ B2 ∨△ B2} and i1, i2 are the canonical injections.

(2) If X does not contain an indiscrete subspace with (at least) two points, then
X is called a T0 object.

(3) If the initial lift of the U-source

S : B2 ∨△ B2 −→ U(X3) = B3 and ∇ : B2 ∨△ B2 −→ U(D(B2)) = B2

is discrete, then X is called T1.

(4) If the initial lift of the U-sources A : B2
∨

△ B2 −→ U(X3) = B3 and

S : B2
∨

△ B2 −→ U(X3) = B3 agree, then X is called preT 2.

(5) If the initial lift of the U-source S : B2∨△B2 −→ U(X3) = B3 and the final

lift of the U-sink {i1, i2 : U(X2) = B2 −→ B2∨△B2} agree, then X is called preT
′

2.

(6) X is KT2 iff X is preT 2 and T
′

0.

(7) X is LT2 iff X is preT
′

2 and T 0.

(8) X is NT2 iff X is preT 2 and T0.

Remark 2. In Top, by Theorem 2.2.11 of [2] and Remark 1.3 of [6], all of T0,
T ′
0 and T0 (resp., KT2, NT2, and LT2) are equal to T0 (resp., T2). In the realm of

preT2 topological spaces, by the Theorem 2.4 of [14], all T0, T1, and T2 spaces are
equivalent.

Theorem 4. Let (B,K) ∈ ConLim. Then (B,K) is LT2 iff (B,K) is KT2.
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Proof. Let (B,K) be KT2. By Theorem 2.3 of [5], (B,K) is T ′
0. Let KA (resp.,

KF ) be the initial lift of A (resp., final lift of {i1, i2 : B2 −→ B2 ∨△ B2} and
σ ∈ F (B2∨△B2)) with σ ∈ KF . By Proposition 1, ∃α, β ∈ K2 with σ ⊃ i1α∩ i2β,
where K2 is structure on B2. Hence,

π1Aσ ⊃ π1A(i1α ∩ i2β) = π1α ∩ π1β,

π2Aσ ⊃ π2A(i1α ∩ i2β) = π2α ∩ π1β,

π3Aσ ⊃ π3A(i1α ∩ i2β) = π1α ∩ π2β.

Since K is a constant limit structure on B and π1α, π2α, π1β, π2β ∈ K, we have
π1α ∩ π1β, π2α ∩ π1β, π1α ∩ π2β ∈ K, and consequently, π1Aσ, π2Aσ, π3Aσ ∈ K.
By Proposition 1, σ ∈ KA. Hence, KF ⊂ KA.

Suppose σ ∈ F (B2 ∨△ B2) with σ ∈ KA. If σ = [∅], then σ ∈ KF . Suppose
σ ̸= [∅]. Let α11 = π1Aσ, α21 = π2Aσ, and α12 = π3Aσ. In case of (1) of The-
orem 3.8 of [3], we have π1Aσ = π2Aσ.Let σ1 = π−1

1 (π1Aσ) ∪ π−1
2 (π3Aσ). Since

π1Aσ1 = π1Aσ = π2Aσ ∈ K and π2Aσ1 = π3Aσ ∈ K, we get σ1 ∈ K2.

We now show i1σ1 = (π1A)−1(π1Aσ) ∪ (π2A)−1(π2Aσ) ∪ (π3A)−1(π3Aσ) = σ0.

If U ∈ i1σ, then U ⊃ (U1 × U2)1 for some U1 ∈ π1Aσ = π2Aσ and U2 ∈ π3Aσ.
Since case 1 of Theorem 3.8 of [3] holds and π1Aσ ∪ π3Aσ is improper, we may
assume U1 ∩ U2 = ∅.
Note that

(π1A)−1(U1) ∩ (π2A)−1(U1) ∩ (π3A)−1(U2) = (U1 × U2)1 ∈ σ0

and consequently, U ∈ σ0. Hence, i1σ1 ⊂ σ0.

If U ∈ σ0, then U ⊃ (U1×U2)1
∨
((U1 ∩U2)×U2)2 for some U1 ∈ π1Aσ = π2Aσ

and U2 ∈ π3Aσ.

Since case (1) of Theorem 3.8 of [3] holds and π1Aσ∪π3Aσ is improper, we may
assume U1 ∩ U2 = ∅. Hence, U ⊃ (U1 × U2)1 and consequently, U ∈ i1σ1. Thus,
i1σ1 = σ0. By Corollary 3.3 of [3], i1σ1 = σ0 ⊂ σ.

In case (2) of Theorem 3.8 of [3] holds, we have π1Aσ = π3Aσ. Let σ1 =
π−1
1 (π1Aσ) ∪ π−1

2 (π2Aσ).

Note that

π1σ1 = π1Aσ ∈ K,

π2σ1 = π2Aσ ∈ K.



SEPARATION, COMPACTNESS, AND SOBRIETY IN CONLIM 325

Consequently, σ1 ∈ K2.

Let σ0 = (π1A)−1(π1Aσ) ∪ (π2A)−1(π2Aσ) ∪ (π3A)−1(π3Aσ). Since case (2) of
Theorem 3.8 of [3] holds, then i2σ1 = σ0 and by Corollary 3.3 of [3], i2σ1 ⊂ σ.

In case (3) of Theorem 3.8 of [3] holds, we have π3Aσ ∩ π2Aσ ⊂ π1Aσ.

Let

σ1 = π−1
1 (π3Aσ) ∪ π−1

2 (π2Aσ)

and

σ0 = (π1A)−1(π3Aσ) ∪ (π2A)−1((π2Aσ) ∩ (π3Aσ)) ∪ (π3A)−1(π3Aσ).

By Corollary 3.3 of [3], σ0 ⊂ σ, π1Aσ0 = π3Aσ ∈ K, π2Aσ0 = (π2Aσ) ∩ (π3Aσ) ∈
K, and π3Aσ0 = π3Aσ ∈ K since K is a constant limit structure on B. We show
that σ0 = i1σ1 ∩ i2σ1.

If U ∈ σ0, then U ⊃ (U1 × (U2 ∩ U3))1
∨
((U1 ∩ U3)× U2)2 for some U1 ∈ π3Aσ,

U3 ∈ (π2Aσ) ∩ (π3Aσ), and U2 ∈ π3Aσ.

Note that

((U1 ∩ U3)× (U2 ∩ U3)) ∈ σ1,

((U1 ∩ U3)× (U3 ∩ U2))1 ∈ i1σ1,

((U1 ∩ U3)× (U3 ∩ U2))2 ∈ i2σ1,

and

((U1 ∩ U3)× (U3 ∩ U2))1
∨

((U1 ∩ U3)× (U3 ∩ U2))2 ∈ i1σ1 ∩ i2σ1.

Hence, U ∈ i1σ1 ∩ i2σ1 and so σ0 ⊂ i1σ1 ∩ i2σ1.

If U ∈ i1σ1 ∩ i2σ1, then U ⊃ (U1 × U2)1
∨
(U1 × U2)2 for some U3 ∈ π2Aσ and

U2 ∈ π3Aσ. Note that

U3 ∪ U2 ∈ (π2Aσ) ∩ (π3Aσ)

and

(π1A)−1(U3) ∩ (π2A)−1(U3 ∪ U2) ∩ (π3A)−1(U3) = (U3 × U2)1
∨

(U3 × U2)2 ∈ σ0

and consequently, U ∈ σ0. Hence, σ0 = i1σ1 ∩ i2σ1 ⊂ σ. Therefore KA ⊂ KF and
consequently, KA = KF . Since (B,K) is KT2, by Definition 4, KS = KA, where
KS is the initial lift of S. Hence, by Definition 4, KS = KF and (B,K) is LT2.
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Suppose (B,K) is LT2. By Theorem 2.3 of [5], (B,K) is T
′

0 and by Remark 3.6
of [11], (B,K) is preT 2. Hence, by Definition 4, (B,K) is KT2. □

Let T ′
0E (resp., T0E, T 0E, T1E, KT2E, LT2E, and NT2E) be the subcategory

of E consisting of T ′
0 (resp., T0, T 0, T1, KT2, LT2, and NT2) objects of E .

Remark 3. (1) By Theorem 2.3 of [5] and Theorem 4, T0, T
′
0 and T1 constant

limit spaces are equivalent. Furthermore, a constant limit space (B,K) is NT2 iff
B is a point or the empty set. Moreover, NT2 ⇒ KT2 ⇐⇒ LT2 but the converse is
not true, in general. For example, let be B = {a, b}, and K = {[a], [b], [a]∩ [b], [∅]}.
(B,K) is LT2 but it is not NT2.

(2) By Theorem 4 and Theorem 2.3 of [5], T0ConLim, T 0ConLim, T ′
0ConLim,

T1ConLim, KT2ConLim, LT2ConLim, and ConLim are pairwise isomor-
phic categories. Since ConLim is a cartesian closed, all of these categories are
cartesian closed.

(3) By Theorems 1 and 4, we have Tietze Extension Theorem for constant limit
spaces. If (B,K) is a KT2 constant limit space and A is non-empty closed subspace
of (B,K), then every morphism f : (A,L) → (R, S) has an extension morphism
g : (B,K) → (R, S), where R is the set of real numbers and S is any constant limit
structure on R.

(4) By Theorem 1, we have Urysohn’s Lemma for constant limit spaces. Suppose
(B,K) is a KT2 constant limit space and M and N are any nonempty disjoint
subsets of B. Then there exists a morphism f : (B,K) → ([0, 1], L), where L is any
constant limit structure on [0, 1] with f(w) = 0 if w ∈ M and f(w) = 1 if w ∈ N .

Note that Tietze Extension Theorem and Urysohn’s Lemma for constant filter
convergence spaces (resp., extended pseudo-quasi-semi metric spaces) are presented
in [21,23,24].

Definition 5. Let (B,K) ∈ ConLim and Z ⊂ B.

scl(Z) =
⋂
{H ⊂ B : Z ⊂ H and H is strongly closed} is said to be

the strong closure of Z.

cl(Z) =
⋂
{H ⊂ B : Z ⊂ H and H is closed} is said to be the closure of

Z.

Q(Z) =
⋂
{H ⊂ B : Z ⊂ H,H is closed and open} is called the quasi-

component closure of Z.

SQ(Z) =
⋂
{H ⊂ B : Z ⊂ H,H is strongly closed and strongly open}

is said to be the strong quasi-component closure of Z.
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Theorem 5. cl = ı = Q, the indiscrete closure operator and scl = δ = SQ, the
discrete closure operator of ConLim.

Proof. Combine Definition 5, Theorems 1, and 5. □

Definition 6. ( [19])Let c be a closure operator of E.

(1) E0c = {W ∈ E : s ∈ c({t}) and t ∈ c({s}) implies s = t with s, t ∈ W},

(2) E1c = {W ∈ E : c({s}) = {s}, ∀s ∈ W},

(3) E2c = {W ∈ E : c(△) = △, the diagonal}.

Theorem 6. A constant limit space (B,K) ∈ ConLimicl for i = 0, 1, 2 iff B = ∅
or B = {a}, a one point set.

Proof. We get the proof from Theorem 1. □

Theorem 7. ConLimiscl, i = 0, 1, 2 are isomorphic to ConLim.

Proof. We get the proof from Theorem 5. □

4. Sober Constant Limit Spaces

In this section, we characterize irreducible, sober, and quasi-sober constant limit
spaces.

Definition 7. ( [12,16]) Let E be a topological category and X ∈ Ob(E).

(1) X is called irreducible if Z1, Z2 are closed subobjects of X and X = Z1 ∪Z2,
then X = Z1 or X = Z2.

(2) X is called quasi-sober if every nonempty irreducible closed subset of X is
the closure of a point .

(3) X is called T0 sober if X is T0 and a quasi-sober.

(4) X is called T ′
0 sober if X is T ′

0 and a quasi-sober.

(5) X is called T0 sober if X is T0 and a quasi-sober.

Remark 4. In Top, by Remark 3.4 of [12], all of T ′
0 sober, T0 sober, and T0 sober

are equivalent and they reduce to the usual sober. Also, the notion of irreducibility
reduces to notion of the usual irreducibility [16].

Theorem 8. Let (B,K) ∈ ConLim.
(A) The following are equivalent:
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(1) A constant limit space (B,K) is quasi-sober.

(2) (B,K) is T0 sober.

(3) (B,K) is T ′
0 sober.

(4) (B,K) is irreducible.

(B) The following are equivalent:

(1) (B,K) is T0.

(2) (B,K) is T0 sober.

(3) card(B) ≤ 1.

Proof. (A) By Theorem 2.4 of [5] and Definition 7, we get (1) ⇐⇒ (2) ⇐⇒ (3).

(1) =⇒ (4): Suppose (B,K) is quasi-sober and B = B1 ∪B2, where B1 and B2

are closed subsets of B. By Theorem 1, B1 = B or ∅ and B2 = B or ∅. Hence, by
Definition 7, (B,K) is irreducible.

(4) =⇒ (1): Suppose (B,K) is irreducible and ∅ ≠ B1 ⊂ B is irreducible closed.
Since B1 is closed, by Theorem 1, B1 = B and by Theorem 5, B = B1 = cl({b})
for some b ∈ B. Hence, by Definition 7, (B,K) is quasi-sober. Thus, (1) ⇐⇒ (4).

(B) (1) =⇒ (2): Suppose (B,K) is T0 and ∅ ̸= B1 ⊂ B is irreducible closed.
Since B1 is closed, by Theorem 1, B1 = B and hence, by Theorem 5, B1 = B =
cl({b}) for some b ∈ B. Hence, consequently, (B,K) is quasi-sober and by Defini-
tion 7, (B,K) is T0 sober.

(2) =⇒ (3): Suppose (B,K) is T0 sober and B ̸= ∅ and B ̸= {a}. Then, ∃s, t ∈ B
with s ̸= t and ({s, t}, F ({s, t})) is the indiscrete subspace of (B,K), contradicting
to (B,K) is being T0 sober. Hence, card(B) ≤ 1.

(3) =⇒ (1): If card(B) ≤ 1, then by Definition 4, (B,K) is T0. □

5. Compact Constant Limit Spaces

Definition 8. ( [7]) Let E be a topological category, A,B ∈ Ob(E), and f : A −→ B
be a morphism in E.
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(1) If the image of every (strongly) closed subobject of A is a (strongly) closed
subobject of B, then f is said to be (strongly) closed.

(2) If the projection π2 : A×B −→ B is (strongly) closed for every object B in
E, then A is called (strongly) compact.

Remark 5. In Top, by Remark 2.2 of [7], the notion of compactness reduces to
usual one, the notion of strong compactness implies compactness and they coincide
when a topological space is T1.

Theorem 9. A constant limit space is compact iff it is strongly compact.

Proof. Suppose (B,K) is a compact constant limit space. We need to show that
for each constant limit space (C,L), the projection π2 : (B,K)× (C,L) −→ (C,L)
is strongly closed. Suppose M ⊂ B×C is strongly closed. If M = ∅, then π2M = ∅
is strongly closed. If M ̸= ∅, then by Theorem 2, π2(M) is strongly closed subset
of C and hence, by Definition 8, π2 : (B,K)× (C,L) −→ (C,L) is strongly closed
and consequently, (B,K) is strongly compact.

Suppose (B,K) is a strongly compact constant limit space. We show π2 :
(B,K) × (C,L) −→ (C,L) is closed for each constant limit space (C,L). Sup-
pose M ⊂ B × C is closed. By Theorem 1, M = ∅ or M = B × C. If M = ∅, then
π2M = ∅ is closed in C. If M = B × C, then C = π2M is closed. By Definition 8,
π2 : (B,K)× (C,L) −→ (C,L) is closed and hence, (B,K) is compact. □

Theorem 10. Let f : (B,K) −→ (C,L) be morphism in ConLim.

(1) If (B,K) is (strongly) compact, then the subspace f(B) is (strongly) compact.

(2) If (B,K) is connected (resp., strongly connected, D-connected, scl-connected,
cl-connected), then the subspace f(B) is connected (resp., strongly connected, D-
connected, scl-connected, cl-connected).

(3) If (B,K) is T 0 (resp., T ′
0, T1, KT2 or LT2), then the subspace f(B) is T 0

(resp., T ′
0, T1, KT2 or LT2).

Proof. It follows from Theorems 1, 2, 4, and 9.
□

6. Comparative Evaluation

We compare our findings in some topological categories and we infer:

(1) In Top,
(i) By Theorem 2.2.11 of [2], Remark 1.3 of [6], and Remark 2.6 of [9],

Top2cl = Top2scl = LT2Top = NT2Top = KT2Top ⊂ Top1cl
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= Top1scl ⊂ Top0cl = Top0scl = T 0Top = T ′
0Top = T0Top.

and
Top1Q = Top2Q

(ii) By Remark 3.4 of [12],

T ′
0SobTop = T 0SobTop = T0SobTop

(iii) By Remark 4.4 of [14], there is no implication between preT2 and each of
T0, T1 and soberity. By Theorem 4.3 of [14], in the realm of PreT2 topological
spaces, all T0 T1, T2, and sober spaces are equivalent.

(2) In ConLim,
(i) By Theorems 4 and 6,

ConLim2cl =ConLim1cl = ConLim2Q

=T0ConLim ⊂ ConLim2scl

=ConLim1scl = ConLim0scl

=T 0ConLim = T ′
0ConLim

=T1ConLim = KT2ConLim = LT2ConLim

(ii) By Theorem 8,

T0ConLim = T0SobConLim

and
T 0SobConLim = T ′

0SobConLim = QSobConLim,

where QSobConLim is the full subcategory of ConLim consisting of all quasi-
sober constant limit spaces.

(iii) By Theorems 8, the categories T 0SobConLim, T ′
0SobConLim, and

QSobConLim have all limits and colimits.
(iv) By Theorem 8, a T0 sober constant limit space is T ′

0 sober, T0 sober, a
quasi-sober, and irreducible. The constant limit space (R, F (R)) is quasi-sober, T 0

sober, and T ′
0 sober, and irreducible but it is not T0 sober, where R is the set of

real numbers.
(v) By Theorem 9, a constant limit space (B,K) is compact iff it is strongly

compact.

(3) In Lim,
(i) By Theorem 2.10 of [9] and Theorem 2.4 of [6],

Lim2scl ⊂ LT2Lim = NT2Lim ⊂ KT2Lim

and
LT2Lim ⊂ Lim1cl = Lim1scl = T1Lim
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⊂ Lim0cl = Lim0scl = T 0Lim = T0Lim = T ′
0Lim

(4) In ConFCO (the category of constant filter convergence spaces and continu-
ous maps), by Theorems 4.3-4.5 of [20], Theorems 2.1, 2.2, 2.9, and 2.10 of [5],

LT2ConFCO ⊂ NT2ConFCO ⊂ KT2ConFCO ⊂ ConFCO2cl = ConFCO2scl

⊂ ConFCO1cl = ConFCO1scl = T0ConFCO = T1ConFCO

= T 0ConFCO ⊂ ConFCO0cl = ConFCO0scl ⊂ T ′
0ConFCO

(5) In FCO (the category of filter convergence spaces and continuous maps),
(i) By Theorems 2.9 and 2.11 of [9] and Theorem 4.10 of [11],

LT2FCO ⊂ NT2FCO ⊂ KT2FCO ⊂ FCO2scl ⊂ FCO2cl

= FCO1cl = FCO1scl = T1FCO ⊂ FCO0cl

= FCO0scl = T 0FCO ⊂ T0FCO ⊂ T ′
0FCO

(ii) By Theorem 6.3 of [10], (B,K) is strongly compact iff every ultrafilter in B
converges and every filter convergence space is compact.

(6) In CApp (the category of approach spaces and contraction maps), by The-
orems 4.8, 4.9, 4.12, and 4.13 of [26] and Theorems 7, 9, and 10 of [25],

CApp2scl ⊂ CApp1scl ⊂ CApp0scl

and

CApp2cl ⊂ CApp1cl ⊂ CApp0cl = T 0CApp ⊂ T0CApp ⊂ T ′
0CApp

(7) In psqMet (the category of extended pseudo-quasi-semi metric spaces and
non-expansive maps),

(i) By Theorem 6 of [15], Theorems 3.3-3.5 and 3.15 of [23], Theorem 3.10 of [16],

LT2pqsMet = KT2pqsMet = T1pqsMet = pqsMet1SQ = pqsMet1scl

=pqsMet2scl ⊂ pqsMet1cl = pqsMet2cl = pqsMet1Q = T 0pqsMet

⊂T0pqsMet ⊂ pqsMet0scl ⊂ pqsMet0cl ⊂ T ′
0pqsMet
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(ii) By Theorem 3.13 of [12], {x} is closed for all x ∈ X and the nonempty
proper irreducible closed subsets of X are exactly the one-point subsets iff an ex-
tended pseudo-quasi-semi metric space (X, d) is T0 sober,

(iii) By Theorem 3.13 of [12], (X, d) is a quasi-sober and an extended quasi-semi
metric space iff (X, d) is T0 sober.

(8) In RRel (the category of reflexive relation spaces and relation preserving func-
tions),

(i) By Theorem 3.7 of [12] and Theorem 3.7 of [13],

KT2RRel ⊂ RRel1cl = T0RRel = T 0RRel

RRel2cl = RRel2scl = RRel1SQ = RRel2SQ = RRel2Q = LT2RRel = T1RRel

(ii) By Theorems 3.8 and 3.9 of [12],

T ′
0SobRRel = QSobRRel,

where QSobRRel is the subcategory of RRel consisting of quasi-sober reflexive
spaces.

(iii) By Theorems 3.8 and 3.9 of [12],

T0SobRRel = T 0SobRRel

(iv) By Theorems 3.8 and 3.9 of [12], a reflexive space (B,R) is T0 sober iff the
nonempty proper irreducible closed subsets of B are exactly the one-point subsets
and {x} is closed for all x ∈ B iff (B,R) is T0 sober.

(v) By Theorems 3.2 and 5.2 of [13], (B,R) ∈ RRel1SQ iff it is NT2.

(vi) By Theorem 5.2, Part (1), and Theorem of 3.8 of [12], if (B,R) ∈ RRel1SQ,
then it is quasi-sober and T0 sober.

(vii) By Theorem 5.3 of [13], RRel1SQ ⊂ RRel1Q and also by Theorem 5.2
of [13], if (B,R) ∈ KT2, then (B,R) ∈ RRel1SQ iff (B,R) ∈ RRel1Q.

(viii) By Theorem 3.4 of [14], a reflexive space (A,R) is compact iff for every
x ∈ A there exist a, b ∈ A with xRa and bRx.

(9) In Rel (the category of relation spaces and relation preserving functions),
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(i) By Theorem 3.3 of [14],

Rel1cl = Rel2cl = Rel1Q = Rel2Q = Rel1SQ = Rel2SQ

(ii) By Theorem 4.5 of [14],

LT2Rel ⊂ NT2Rel ⊂ KT2Rel = T 2Rel = preT 2Rel

⊂ Rel1Q = T1Rel = T ′
0Rel = T 0Rel = Rel

(iii) By Theorem 3.3 of [14],

T 0SobRel = T ′
0SobRel = QSobRel,

where QSobRel is the full subcategory of Rel consisting of all quasi-sober re-
lation spaces.

(iv) By Theorem 3.3 of [14], every relation space is compact.

(10) In any topological category,

(i) By Theorem 2.7 of [6], T0 implies T ′
0 but the converse is not true, in general

and by Theorem 3.1 of [8], preT
′

2 implies preT 2. Furthermore, there is no relation-
ship between T0 and T0. Also, by Theorem 3.1 of [8], LT2 implies KT2 but the
converse is not true, in general. Moreover, by Remark 2.8 (7) of [6], notions of KT2

and NT2 are independent of each other.

By Theorem 3.5 of [11], in the realm of preT 2 objects, T0, T1, and T 2 objects
are equivalent.

(ii) By Theorems 3.5, 3.13 and Parts (2) and (3) of [12], every T0 sober object
is T ′

0 sober. Also, there is no implication between T0 sober and T0 sober.

(iii) By Remark 6.2 of [10] the notions of compactness and strongly compactness
are different from each other, in general.
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ROBUST REGRESSION TYPE ESTIMATORS FOR BODY MASS

INDEX UNDER EXTREME RANKED SET AND QUARTILE

RANKED SET SAMPLING

Arzu Ece CETIN1 and Nursel KOYUNCU2

1Department of Management, Gebze Technical University, Kocaeli, TÜRKİYE
2Department of Statistics, Hacettepe University, Ankara, TÜRKİYE

Abstract. Robust regression-type estimators of population mean that use

auxiliary variable information are proposed by considering robust methods
under extreme ranked set sampling (ERSS) and quartile ranked set sampling

(QRSS). We have used the data concerning body mass index (BMI) for 800

people in Turkey in 2014. The real data example is applied to see efficiency of
the estimators in ERSS and QRSS designs and it is found that the proposed

estimators are better in these designs than the classical ranked set sampling

(RSS) design. In addition, mean square error (MSE) and percent relative
efficiency (PRE) are used to compare the performance of the adapted and

proposed estimators.

1. Introduction

In sampling survey, the supplementary information is mostly used to enhance
accuracy of the estimators due to the correlation between auxiliary and study vari-
ables. Auxiliary information has a major role according to the sampling theory.
Because of improving the precision of estimates, making use of convenient auxiliary
information such as mean, total population, skewness, attribute and correlation is
pretty significant. Auxiliary information has been used in ratio, product and ex-
ponential type estimators to acquire effective estimators under distinct sampling
designs.

RSS is an alternative sampling design to simple random sampling (SRS) for
drawing a sample of observations from a population. It is intended for situations
where the certain measurement of sample units is hard but they can be readily
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ranked without real measurement. The ranking is done either through nominative
judgment or via the use of an accompanying variable, and need not to be precise.
This situation is named defective ranking. If the ranking process is correct, it will
be referred to as excellent ranking structure. RSS design was first proposed by
McIntyre [6]. Many authors such as Samawi and Muttlak [9], Bouza [2], Mehta and
Mandowara [7] used judge mental RSS where ranking is done with respect to auxil-
iary variable. Later, the authors suggested new sampling designs based on ranking
and used auxiliary information to get efficiency. Muttlak [8] proposed QRSS. Tak-
ing into account ranking error, Samawi et al. [10] suggested ERSS for estimating
a population mean. Long et al. [5] suggested ratio estimators of population mean
that used either the first or third quartiles of the auxiliary variable under RSS
and ERSS. Koyuncu [3] studied regression type estimators (RTE) under different
ranked set sampling. Shahzad et al. [11] suggested RTE for mean estimation under
RSS besides the sensitivity issue.

Lately, robust tools are used in estimators under different sampling designs. Za-
man and Bulut [14] are proposed new ratio type estimators using LTS, Huber MM,
LMS, Tukey-M, LAD and Hampel M robust methods in SRS. Ali et al. [1] gener-
alized estimators of Zaman and Bulut [14]. Subzar et al. [13] adapted the diverse
robust regression methods to the ratio estimators. Shahzad et al. [12] identified the
class of RTE utilizing robust regression tools. Recently, Koyuncu and Al-Omari [4]
proposed generalized robust RTE under RSS and MRSS.

The target of this study is to suggest regression type estimators of the population
mean using robust statistics under RSS, ERSS and QRSS. The article is composed
as follows: In Section 2, RSS, ERSS and QRSS designs were explained. In Section
3, the recent robust literature were reviewed and adapted robust regression type
estimators were given. The proposed exponential robust-RTE estimators in RSS,
ERSS and QRSS were introduced in Section 4. In Section 5, a numerical study was
conducted using a real data set on BMI. All results that were explained briefly and
summarized also in Section 6.

2. RSS, ERSS and QRSS Designs

In this section, RSS, ERSS and QRSS designs are explained.

2.1. RSS Design. The RSS procedure can be created by choosing r random sam-
ples of size r units from the population and order the units within each sample
according to the variable of interest. Let (X1, Y1) , (X2, Y2) , ..., (Xr, Yr) be a SRS
of r, then the measured RSS units are indicated by

(
Y(i)j , X[i]j

)
, i = 1, 2, ..., r,

j = 1, 2, ...,m where
(
X[i]j , Y(i)j

)
is the ith ranked unit from the jth cycle of two aux-

iliary variables and study variable, respectively. [ ] and ( ) demonstrate the ith per-
fect ordering in the ith set for auxiliary variable X and the ith judgment ordering in
the ith set for study variable Y. One of the most correlated auxiliary variables with

study variable was choosed to rank the units. Further let x̄RSS = 1
mr

m∑
j=1

r∑
i=1

X[i]j ,
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ȳRSS = 1
mr

m∑
j=1

r∑
i=1

Y(i)j are the sample means under RSS and Ȳ , X̄ are population

means, respectively for the study and auxiliary variables.

2.2. ERSS Design. ERSS investigated by Samawi et al. [10]. To predict the finite
population mean

(
Ȳ
)
using ERSS, the operation can be explained briefly as follows:

(1) The process includes drawing sets of each r units randomly from population
for which the mean is to be predicted. The most important assumption is
the smallest and the biggest units of the set can be fixed visually or with a
little cost.

(2) The lowest ranked unit is determined from the first r unit set. Then, the
largest ranked unit is determined from the second r unit set. And the
lowest ranked unit is determined from the third set of r units and so on.
Thus, the first (r − 1) determined units is obtained using the first (r − 1)
sets. The event of choosing the r − th unit from the r − th (i.e very last)
set depends on whether r is odd or even.

(3) When r is even, the measurement value of the largest unit ranked is mea-
sured.

(4) Two options exist when r is odd:
(a) The average of the largest and lowest units in the r−th set is measured

for the measure of the r − th unit.

(b) The measure of the median for the measure of the r − th unit is mea-
sured.

(5) This procedure complete one cycle of ERSS. The period may be repeated
m times until n elements of desired to obtain.

x̄ERSSe
=

1

2

(
X̄[1] + X̄[r]

)
(1)

where X̄[1] =
2
r

r/2∑
i=1

X2i−1[1]. and X̄[r] =
2
r

r/2∑
i=1

X2i[r].

To observe thatX1[1], X3[1], ..., Xr−2[1] andXr[1]are identically distributed is easy
and so are X2[r], X4[r], ..., Xr−1[r] and Xr(r).

x̄ERSSo =
X1[1], X2[r], X3[1], ..., Xr−1[r] +Xr[ r+1

2 ]

r
(2)

2.3. QRSS Design. Muttlak [8] suggested QRSS to predict the population mean.
The procedure of QRSS can be explained concisely as follows:

(1) Select randomly r2 bivariate sample units of target population.
(2) If the sample size r is even, choose for measurement from the first r

2 samples
the q1 (r + 1) th and from the second r

2 samples the q3 (r + 1)th smallest
ranked unit.
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(3) If the sample size r is odd, choose for measurement from the first (r−1)
2

samples the q1 (r + 1)th and from the last (r−1)
2 samples the q3 (r + 1) th

smallest ranked unit and from the remaining sample the median ranked
unit.

(4) The nearest integer of q1 (r + 1)th and q3 (r + 1)th where q1 = 0.25 and
q3 = 0.75 were always taken.

(5) This procedure complete one cycle of QRSS. The cycle may be repeated m
times until n = mr elements of desired to obtain.

Let Xi[q1(r+1)] and Xi[q3(r+1)] denote the (q1 (r + 1))th and (q3 (r + 1))th order

statistics of the ith sample respectively (i = 1, 2, .., r).
The estimator of the population mean using QRSS with a cycle is given in

equations 3 and 4, respectively, in the case of even and odd sample sizes.

x̄QRSSe =
1

r

 r
2∑

i=1

Xi[q1(r+1)] +

r∑
i= r

2+1

Xi[q3(r+1)]

 (3)

x̄QRSSo
=

1

r

 r−1
2∑

i=1

Xi[q1(r+1)] +

r∑
i= r+1

2

Xi[q3(r+1)] +Xi[(r+1)/2]

 (4)

Xi[(r+1)/2] is the median of sample i = (r + 1) /2. To simplify the notations,

let X[i:q] specify the (q1 (r + 1))th order statistic of ith sample
(
i = 1, 2, ..., r2

)
and

(q3 (r + 1))th order statistic of ith sample
(
i = r

2 + 1, r2 , ..., r
)
if the sample size n is

even. Also specify the (q1 (r + 1))th order statistic of ith sample
(
i = 1, 2, ..., r−1

2

)
,

the median of the ith sample (i = (r + 1) /2) and the (q3 (r + 1))th order statistic
of ith sample

(
i = r−1

2 + 2, r−1
2 + 3, ..., r

)
if the sample size n is odd. Then the

estimator of population mean using QRSS can be written as x̄QRSS = 1
r

∑r
i X[i:q].

3. Adapted Robust Regression Type Estimators

Koyuncu and Al-Omari [4] proposed generalized robust-RTE under SRS, RSS
and median ranked set sampling (MRSS).

ȳN(j) =
[
ȳ(j) + bi(j)

(
X̄ − x̄[j]

)]( FX̄ +G

Fx̄[j] +G

)α

(5)

where F may represent the coefficient of variation Cx, kurtosis β 2(x), first and
third quarters q1(x), q3(x) or any known population information of auxiliary variable.
(j) represents the SRS, RSS and MRSS sampling designs. bi(j) is regression coeffi-
cient calculated from the i robust regression method under (j) design. i represents
Huber M, LMS, Huber MM, S, LAD or LTS.

They showed that Zaman and Bulut [14] estimators are members of their gen-
eralized estimator. Putting suitable values as α = 1, F = 1, G = q1(x), q3(x) and
j=SRS in the ȳN(j), we can get Zaman and Bulut [14] ratio-RTEs under SRS.
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In the same manner, we can extend ȳN(j) estimator to ERSS and QRSS designs
putting j=ERSS, j=QRSS respectively. Zaman and Bulut [14] estimators and some
members of ȳN(j) can be given as

ȳEN(j)1 =

[
ȳ(j) + bi(j)

(
X̄ − x̄[j]

)]
x̄[j]

X̄ (6)

ȳEN(j)2 =

[
ȳ(j) + bi(j)

(
X̄ − x̄[j]

)]
x̄[j] + Cx

(
X̄ + Cx

)
(7)

ȳEN(j)3 =

[
ȳ(j) + bi(j)

(
X̄ − x̄[j]

)]
x̄[j] + β2(x)

(
X̄ + β2(x)

)
(8)

ȳEN(j)4 =

[
ȳ(j) + bi(j)

(
X̄ − x̄[j]

)]
x̄[j] + q1(x)

(
X̄ + q1(x)

)
(9)

ȳEN(j)5 =

[
ȳ(j) + bi(j)

(
X̄ − x̄[j]

)]
x̄[j] + q3(x)

(
X̄ + q3(x)

)
(10)

To obtain the specific MSE of adapted estimators in equation (5) under (j)
design, let us define following notations

ϑo(j) =
(
ȳ(j) − Ȳ

)
/Ȳ , ϑ1(j) =

(
x̄[j] − X̄

)
/X̄ ϑ0(j)ϑ1(j) =

(
x̄[j] − X̄

) (
ȳ(j) − Ȳ

)
/X̄Ȳ
(11)

For the (j) design, expectaions of ϑ terms are given by

E
(
ϑ20(j)

)
= V

(
ȳ(j)
)
/Ȳ 2, E

(
ϑ21(j)

)
= V

(
x̄[j]
)
/X̄2, E

(
ϑ0(j)ϑ1(j)

)
= cov

(
x̄[j], ȳ(j)

)
/Ȳ X̄

If (j) design represents SRS, expectaions of ϑ terms are given by

E
(
ϑ20(SRS)

)
=
S2
y

Ȳ 2
, E

(
ϑ21(SRS)

)
=
S2
x

X̄2
, E

(
ϑ0(SRS)ϑ1(SRS)

)
=
Sxy

Ȳ X̄

If (j) design represents RSS, expectaions of ϑ terms are given by

E
(
ϑ20(RSS)

)
=

1

Ȳ 2

(
S2
y

r
− 1

r2

r∑
i=1

(
µy(j) − Ȳ

)2)

E
(
ϑ21(RSS)

)
=

1

X̄2

(
S2
x

r
− 1

r2

r∑
i=1

(
µx[i] − X̄

)2)
,
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E
(
ϑ0(RSS)ϑ1(RSS)

)
=

1

Ȳ X̄

(
Sxy

r
− 1

r2

r∑
i=1

(
µx[i] − X̄

)(
µy(i) − Ȳ

))
If the sample size is odd and (j) represents the QRSS design, expectaions of ϑ

terms are given by

E
(
ϑ20(QRSS)o

)
=

1

Ȳ 2

[
1

r2

(
(r − 1)

2

(
S2
y( r+1

4 ) + S2

y( 3(r+1)
4 )

)
+ S2

y( r+1
2 )

)]
,

E
(
ϑ21(QRSS)o

)
=

1

X̄2

[
1

r2

(
(r − 1)

2

(
S2
x[ r+1

4 ] + S2

x[ 3(r+1)
4 ]

)
+ S2

x[ r+1
2 ]

)]
,

E
(
ϑ0(QRSS)o

ϑ1(QRSS)o

)
=

1

Ȳ X̄

[
1

r2

(
(r − 1)

2

(
Sxy( r+1

4 ) + S
xy( 3(r+1)

4 )

)
+ Sxy( r+1

2 )

)]
If the sample size is even and (j) represents the QRSS design, expectaions of ϑ

terms are given by

E
(
ϑ20(QRSS)e

)
=

1

Ȳ 2

[
1

2r

(
S2
y( r+1

4 ) + S2

y( 3(r+1)
4 )

)]
,

E
(
ϑ21(QRSS)e

)
=

1

X̄2

[
1

2r

(
S2
x[ r+1

4 ] + S2

x[ 3(r+1)
4 ]

)]
,

E
(
ϑ0(QRSS)e

ϑ1(QRSS)e

)
=

1

Ȳ X̄

[
1

2r

(
Sxy( r+1

4 ) + S
xy( 3(r+1)

4 )

)]
If the sample size is odd and (j) represents the ERSS design, expectaions of ϑ

terms are given by

E
(
ϑ20(ERSS)o

)
=

1

Ȳ 2

[
1

r2

(
(r − 1)

2

(
S2
y(1) + S2

y(r)

)
+ S2

y( r+1
2 )

)]
,

E
(
ϑ21(ERSS)o

)
=

1

X̄2

[
1

r2

(
(r − 1)

2

(
S2
x[1] + S2

x[r]

)
+ S2

x[ r+1
2 ]

)]
,

E
(
ϑ0(ERSS)o

ϑ1(ERSS)o

)
=
Sxy

Ȳ X̄

[
1

r2

(
(r − 1)

2

(
Sxy(1) + Sxy(r)

)
+ Sxy( r+1

2 )

)]
If the sample size is even and (j) represents the ERSS design, expectaions of ϑ

terms are given by

E
(
ϑ20(ERSS)e

)
=

1

Ȳ 2

[
1

2r

(
S2
y(1) + S2

y(r)

)]
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E
(
ϑ21(ERSS)e

)
=

1

X̄2

[
1

2r

(
S2
x[1] + S2

x[r]

)]

E
(
ϑ0(ERSS)e

ϑ1(ERSS)e

)
=

1

Ȳ X̄

(
1

2r

(
Sxy(1) + Sxy(r)

))
Writing ȳEN(j) given in Equation 5 with ϑ terms, extracting Ȳ and squaring

both sides we get MSE of generalized estimator ȳEN(j) under (j) design as

MSE
(
ȳEN(j)i

)
= E

(
Ȳ 2ϑ20(j) +B2

i X̄
2ϑ21(j) + α2ψ2Ȳ 2ϑ21(j) − 2BiȲ X̄ϑ0(j)ϑ1(j)

−2αψȲ 2ϑ0(j)ϑ1(j) + 2αψBiȲ X̄ϑ
2
1(j)) (12)

where ψ =
FX̄

FX̄ +G

MSE
(
ȳEN(j)i

)
= V

(
ȳ(j)
)
+B2

i V
(
x̄[j]
)
+ α2R2

FGV
(
x̄[j]
)
− 2Bi cov

(
x̄[j], ȳ(j)

)
−2αRFG cov

(
x̄[j], ȳ(j)

)
+ 2αRFGBiV

(
x̄[j]
)

(13)

where RFG =
FȲ

FX̄ +G
and Bi robust betas calculated with Huber M, LMS, Huber

MM, S, LAD or LTS of population.
We can get MSEs of estimators given in Equation6-10 using Equation12 easily

putting related expectations and suitable F and G values of each design. The RFGs

for the estimators in Equation6-10 can be given as RFG1 = Ȳ
X̄
, RFG2 = Ȳ

X̄+Cx
,

RFG3 = Ȳ
X̄+β2(x)

, RFG4 = Ȳ
X̄+q1(x)

, RFG5 = Ȳ
X̄+q3(x)

respectively.

4. Proposed Robust Regression type Estimators in RSS, ERSS and
QRSS

We can define the following estimators for the population mean of the study
variable in RSS, ERSS and QRSS design as follows

ȳE(j) =
[
ȳ(j) + bi(j)

(
X̄ − x̄[j]

)]
exp

(
X̄ − x̄[j]

X̄ + 2F + x̄[j]

)
(14)

where F represents the coefficient of variation, kurtosis and quarters Cx, β(x), q1(x),
q3(x) or any known population information of auxiliary variable. j represents the
sampling design such as RSS, ERSS and QRSS and bi(j) is robust regression co-
efficient as defined in Section3. For particulars about all these robust regression
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methods, researchers are referred to Koyuncu and Al-Omari [4]. We have gener-
ated some members of ȳE(j) as ȳE(j)1-ȳE(j)5 setting F=1, Cx,β(x), q1(x) and q3(x)
respectively in Table2-Table4 under (j) design.

The MSE of ȳE(j) is given by

MSE
(
ȳE(j)

)
= V

(
ȳ(j)
)
+B2

i V
(
x̄[j]
)

+
1

4
R2

FiV
(
x̄[j]
)
− 2Bi cov

(
x̄[j], ȳ(j)

)
−RFi cov

(
x̄[j], ȳ(j)

)
+RFiBiV

(
x̄[j]
)

(15)

where RFi =
Ȳ

X̄+Fi
, Bi is robust regression betas using ith robust method, (j)

represents RSS, ERSS and QRSS designs. One can easily obtain the spesific MSE
from Eq.11-12 putting expectation terms belong to design.

5. Numerical Study

If a dataset contains outlying observations, classical methods can be affected
by outliers. To obtain more reliable results in the estimation, different diagnostic
methods and robust tools are used to determine the effect of these observations on
the predictions. With robust methods, estimates that are insensitive to the effects
of outliers and extreme values, can be obtained with little or no sensitivity. Moving
in this direction, in this study, we considered robust methods for the estimation of
population mean. To see the performance of robust regression type estimators of the
population mean under RSS, ERSS and QRSS sampling designs, a numerical study
is considered. A real data is used to observe the performances of the estimators
concerning BMI as a study variable and the weight as an auxiliary variable for 800
people in Turkey in 2014. In Table 1, the summary of population information about
BMI (Y) and weight (X) variables are given.

Table 1. Population information about Body Mass Index (Y) and
Weight (X) variables

N = 800 Ȳ = 23.776
X̄ = 67.558 Cx = 0.2047
ρ = 0.8674 Cy = 0.1763
q1(x) = 56 q3(x) = 78
β2(x) = 0.2318 R = 0.3519

§2x = 191.295 §2y = 17.5804

The scatter plot of BMI data is given in Figure1. As seen in Figure1, the data are
not normally distributed and it is observed that some observations in the dataset
are outliers. For this reason, the use of robust methods is found appropriate for this
dataset. For application we have assumed that r=9 set, m=10 cycle, n=m*r=90
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sample size and calculated theoretical MSE for each design using Equations 13 and
15.

The MSE and PRE of Koyuncu and Al-Omari [4] and the proposed estimators
have been calculated under RSS and the results are given in Table 2. The MSE
and PRE of Koyuncu and Al-Omari [4], Zaman and Bulut [14] adapted estimators
and the proposed estimators for ERSS and QRSS designs are given in Table 3 and
Table 4, respectively.

Figure 1. Scatter plot of BMI data

The numerical study can be summarized as follows:
The highest PRE values of Koyuncu and Al-Omari [4] and proposed estimators un-
der RSS design are 132.55 and 316.81 respectively (see Table 2). From these values
we can say that, for all estimators under RSS design, the best estimator is ȳ(RSS)3

suggested estimator that used kurtosis of auxiliary variable and LMS robust beta.
So, it is concluded that this proposed estimator is approximately three times more
effective than other estimators.
The highest PRE values of adapted estimators of Zaman and Bulut [13] and Koyuncu
and Al-Omari [4] and proposed estimators under ERSS design are 125.23; 132.47
and 316.70 respectively (see Table 3). From these values we can say that, for all
estimators under ERSS design, the best estimator is ȳE(RSS)3 suggested estimator
that used kurtosis of auxiliary variable and LMS robust beta. So, it is concluded
that this proposed estimator is approximately three times more effective than other
estimators.
The highest PRE values of adopted estimators of Zaman and Bulut [13] and Koyuncu
and Al-Omari [4] and proposed estimators under QRSS design are 125.57; 133.15
and 322.25 respectively (see Table 4). From these values we can say that ,for all
estimators under QRSS design, the best estimator is ȳQ(RSS)3 suggested estimator
that used kurtosis of auxiliary variable and LMS robust beta. So, it was concluded
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that this proposed estimator is approximately three times more effective than other
estimators. In conclusion, QRSS have the best performance of all proposed estima-
tors in other set sampling designs and LMS have the best performance of all robust
methods.

6. Conclusion

We considered robust methods for robust-RTE for mean estimation in RSS,
ERSS and QRSS. Firstly, recent proposed robust estimators have been examined.
Then, theoretical results for different sampling designs RSS, ERSS and QRSS have
been extended. A new exponential-robust- RTE of population mean is proposed
and MSEs and PREs of the robust regression type estimators are also obtained
for each designs. The existing estimators and proposed estimators have been com-
pared. In conclusion, the suggested estimators perform better than present Zaman
and Bulut [14] and Koyuncu and Al-Omari [4] estimators. Also, we demonstrated
that the suggested estimator is more effective than adapted estimators of Zaman
and Bulut [14] and Koyuncu and Al-Omari [4] in ERSS and QRSS. To see the per-
formance of proposed estimators, we have carried out a numerical study applying
on a real data set. When the results of the study are examined, the findings are
summarized as follows. The estimators suggested based on the robust methods un-
der RSS designs have better performance over SRS. Also, according to the results
obtained from the numerical study, the best method among ranked set sampling
methods is QRSS method and it is concluded that the best method among robust
methods is LMS. In the light of these results, we desire to develop new estimators
in other RSS methods in oncoming studies.
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ȳ
E
(E

R
S
S
)5

0
.4
6
8

0
.5
0
3

0
.4
7
3

0
.4
7
5

0
.4
2
9

0
.4
9
0

0
.4
7
6

1
5
8
.9
7

1
6
7
.1
6
*
1
6
1
.5
8

1
6
2
.0
1

1
3
3
.7
1

1
6
5
.0
7

1
6
2
.2
2

*
d
em

o
n
st
ra
te
s
th
e
m
o
st

eff
ec
ti
v
e
es
ti
m
a
to
rs

w
it
h
re
sp

ec
t
to

ro
b
u
st

m
et
h
o
d
s

*
*
d
em

o
n
st
ra
te
s
th
e
m
o
st

eff
ec
ti
v
e
es
ti
m
a
to
rs

w
it
h
re
sp

ec
t
to

a
ll
es
ti
m
a
to
rs

a
n
d
ro
b
u
st

m
et
h
o
d
s



348 A.E. CETIN, N. KOYUNCU

T
a
b
l
e
4
.
M
S
E
a
n
d
P
R
E
o
f
a
d
a
p
ted

estim
a
to
rs

o
f
Z
a
m
a
n
a
n
d
B
u
lu
t
(2
0
1
9
),
K
oy
u
n
cu

an
d
A
l-O

m
ari

(2
0
2
0
)
a
n
d
p
ro
p
o
sed

estim
a
to
rs

u
n
d
er

Q
R
S
S

M
S
E

P
R
E

E
stim

a
to

rs
R
o
b
u
st

b
e
ta

s
R
o
b
u
st

b
e
ta

s
A
d
a
p
te
d

E
stim

a
to

rs
o
f
Z
a
-

m
a
n

a
n
d

B
u
lu
t
(2

0
1
9
)

L
in
e
a
r
L
T
S

L
A
D

H
u
b
e
r
L
M

S
S

M
M

L
in
e
a
r
L
T
S

L
A
D

H
u
b
e
r
L
M

S
S

M
M

ȳ
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ȳ
E
(Q

R
S
S
)1

0
.7
9
0

0.889
0.80

6
0.811

0.597
0.854

0.814
303.3

294.22
301

.8
6
301.36

3
1
9
.9
6
*

297.43
301.11

ȳ
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Abstract. Without qualms, studies show that quantum calculus has received

great attention in recent times. This can be attributed to its wide range of

applications in many science areas. In this exploration, we study a new q-
differential operator that generalized many known differential operators. The

new q-operator and the concept of subordination were afterwards, used to de-

fine a new subclass of analytic-univalent functions that invariably consists of
several known and new generalizations of starlike functions. Consequently,

some geometric properties of the new class were investigated. The properties
include coefficient inequality, growth, distortion and covering properties. In

fact, we solved some radii problems for the class and also established its sub-

ordinating factor sequence property. Indeed, varying some of the involving
parameters in our results led to some existing results.

1. Introduction

Define the set

ℵȷ =
{
ȷ, ȷ+ 1, ȷ+ 2, . . .

}
, ȷ = 0, 1, 2, . . . .

Let Ξ = {z : z ∈ C and |z| < 1} be the unit disk and let

A =

{
f : f(z) = z +

∞∑
k=2

akz
k, f(0) = 0, f ′(0) = 1, and z ∈ Ξ

}
(1)

2020 Mathematics Subject Classification. 30C45, 30C55.
Keywords. Analytic function, univalent function, Schwarz function, Janowski q-starlike func-

tion, subordination, radius problem, distortion theorem, growth theorem, covering theorem, coef-
ficient inequality, subordinating factor sequence, Opoola q-differential operator.

1 lasode ayo@yahoo.com-Corresponding author; 0000-0002-2657-7698;
2 opoolato@unilorin.edu.ng; 0000-0002-8692-1606.

©2024 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

349



350 A. O. LASODE, T. O. OPOOLA

be the class of normalized analytic functions. Also, let S which is a subclass of A
represent the class of functions that are analytic and univalent in Ξ. For κ ∈ [0, 1),
let S⋆(κ), C(κ) and K(κ) represent the classes of starlike functions of order κ,
convex functions of order κ, and close-to-convex functions of order κ, respectively.
A function f in (1) belongs to the classes S⋆(κ), C(κ) and K(κ) if for z ∈ Ξ,
Re(zf ′/f) > κ, Re(z(f ′′/f ′) + 1) > κ and Re(f ′/h′) > κ (h ∈ C), respectively.
We shall let S⋆(0) = S⋆, C(0) = C and K(0) = K simply denote the classes of
starlike functions, convex functions and close-to-convex functions, respectively.
Historically, class S⋆ of starlike functions was introduced by Alexander [1] and it
has been numerously studied in various forms, such as starlike functions of order κ,
strongly starlike functions, uniformly starlike functions, close-to-starlike functions,
bi-starlike functions, Janowski-type starlike functions, Mocanu-type starlike func-
tions, starlike functions of complex order, λ-pseudo-starlike functions, and many
more. In deed, an impressive application of starlike functions was demonstrated
by Rensaa [32] where the author used starlike functions to solve frequency analysis
problem. A frequency analysis problem is the problem of determining unknown
frequency fk (k ∈ ℵ1), with its corresponding amplitude ak (k ∈ ℵ1), and of a
trigonometric signal zk(m) where the signal values from k observations are known.
We refer readers to [15,25,39] for more information on starlike functions and to [9,41]
for some details on its applications.

Suppose f1, f2 ∈ A, f1 is said to be subordinate to f2, notationally expressed as
f1(z) ≺ f2(z) (z ∈ Ξ), if there exists a Schwarz function: ω(z) = ω1z + ω2z

2 +
· · · (|ω(z)| < 1, z ∈ Ξ) such that

f1(z) = f2(z) ◦ ω(z) = f2(ω(z)). (2)

In case f2(z) is univalent in Ξ, then f1(z) ≺ f2(z) ⇐⇒ f1(0) = f2(0) and
f1(Ξ) ⊂ f2(Ξ).
Let P(κ) represent the class of Carathéodory functions of order κ and of the form

pκ(z) = 1 +

∞∑
k=1

(1− κ)pkzk
(
Re pκ(z) > κ ∈ [0, 1), pκ(0) = 1, z ∈ Ξ

)
. (3)

Clearly, P(κ) ⊆ P(0) = P, where P is simply called the class of Carathéodory
functions. In 2006, Polatoǧlu et al. [30] generalized function is the class P by
introducing the class

P(λ;A,B) :=
{
p(z) ∈ P : p(z) ≺ (1− λ)

1 +Az

1 + Bz
+ λ ⇐⇒

p(z) = (1− λ)
1 +Aω(z)

1 + Bω(z)
+ λ

}
(4)
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where all parameters are as declared in (8). It is easily seen that P(0, 1,−1) =
P(1,−1) in (3) and P(0,A,B) = P(A,B), the class of Janowski functions intro-
duced in [16], see also [8, 39] for more details.

Quantum calculus (simply known as q-calculus) has received a surge in research
in recent years, owing to its wide range of applications in mathematics, physics and
other sciences. Specifically, its application areas include, for example, quantum
physics, operator theory, ordinary fractional calculus, and optimal control prob-
lems; see [5, 6, 17, 31, 40]. The application of q-calculus (that is, q-differentiation,
q-integration and q-analysis,) in the development of Geometric Function Theory
(GFT) is particularly noteworthy. Current development in GFT shows that the
concept of q-calculus has enticed many geometric function theorists. Since the
introduction of the q-derivative and the q-integral by Jackson [13, 14], many re-
searchers (see [4, 18, 21–24, 27, 28, 35, 42]) have in diverse ways considered them in
the establishment of many properties of the subclasses of A. In particular, au-
thors in [5,6,17,36] extensively discussed some areas of applications of q-operators,
q-functions, q-series and q-analysis in various fields of Pure and Applied Mathemat-
ics.

For function f ∈ A of the form (1) and for q ∈ (0, 1), the q-differential operator
Dq : A −→ A is define by

Dqf(0) = f ′(0) = 1 (z = 0) if it exists,

Dqf(z) =


f(z)−f(qz)

z(1−q) = 1 +
∞∑
k=2

[k]qakz
k−1 (z ̸= 0),

f ′(z) as q −→ 1,

D2
qf(z) = Dq(Dqf(z)) =

∞∑
k=2

[k − 1]q[k]qakz
k−2,

and [k]q = 1−qk

1−q so that by L’Hǒpital’s rule, lim
q↑1

[k]q = k.


(5)

Using (5), then the Opoola q-differential operator Dn,b,u
q,t is defined as follows.

Definition 1. Let f ∈ A, then the Opoola q-differential operator Dn,b,u
q,t : A −→ A

(q ∈ (0, 1), n ∈ ℵ0) is defined by

D0,b,u
q,t f(z) = f(z)

D1,b,u
q,t f(z) = (1 + (b− u− 1)t)f(z)− zt(b− u) + ztDqf(z) = dq,t(f)

D2,b,u
q,t f(z) = dq,t(D

1,b,u
q,t f(z))

...
...

...

Dn,b,u
q,t f(z) = dq,t(D

n−1,b,u
q,t f(z))


(6)
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which implies that

Dn,b,u
q,t f(z) = z +

∞∑
k=2

(1 + ([k]q + b− u− 1)t)nakz
k (z ∈ Ξ) (7)

where

n ∈ ℵ0, t ≧ 0, b ≧ 0, u ∈ [0, b], λ ∈ [0, 1), −1 ≦ B < A ≦ 1,

q ∈ (0, 1), [k]q = 1−qk

1−q , and lim
q↑1

[k]q = k.

}
(8)

The q-operator in (6) is the q-analogue of the well-known Opoola differential
operator introduced in [26]. The following properties hold for the functions in (7).

(1) lim
q↑1

D0,b,u
q,t f(z) = lim

q↑1
Dn,b,u

q,0 f(z) = lim
q↑1

D0,b,u
q,0 f(z) = f(z) ∈ A in (1).

(2) lim
q↑1

Dn,b,b
q,1 f(z) = lim

q↑1
Dn,u,u

q,1 f(z) = Dnf(z), the Sǎlǎgean differential opera-

tor introduced in [33].

(3) lim
q↑1

Dn,b,b
q,t f(z) = lim

q↑1
Dn,u,u

q,t f(z) = Dn
t f(z), the Al-Oboudi differential op-

erator introduced in [3].

(4) lim
q↑1

Dn,b,u
q,t f(z) = Dn,b,u

t f(z), the Opoola differential operator introduced

in [26].

(5) Dn,b,b
q,1 f(z) = Dn,u,u

q,1 f(z) = Dn
q f(z), the Sǎlǎgean q-differential operator

introduced by Govindaraj and Sivasubramanian [11].

(6) Dn,b,b
q,t f(z) = Dn,u,u

q,t f(z) = Dn
q,tf(z) is herein referred to as the Al-Oboudi

q-differential operator.

Instances of some recently studied q-operators in GFT can be found in [2,18,20,
29].

2. A New Class of q-Starlike Functions

In view of the geometric expression of starlike functions, the Polatoḡlu’s function
in (4) and the Opoola q-differential operator in Definition 1 , we therefore, present
the class S⋆

q (n, b, t, u;λ,A,B) as follows.

Definition 2. A function f ∈ A is said to be a member of the class S⋆
q (n, b, t, u;λ,A,B)

if it satisfies the q-differential subordination condition

Dn+1,b,u
q,t f(z)

Dn,b,u
q,t f(z)

≺ (1− λ)
1 +Az

1 + Bz
+ λ (z ∈ Ξ) (9)

where all parameters are as declared in (8).

It can easily be seen that class S⋆
q (n, b, t, u;λ,A,B) consists of numerous sub-

classes of starlike functions when its involving parameters are varied. Some stud-
ies on Janowski’s q-starlike functions with various definitions can be found in
[7, 12,19,38].
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3. Applicable Lemma

Definition 3 ( [43]). (Subordinating Factor Sequence). The sequence
{
hk

}∞
k=1

of complex numbers is called a subordinating factor sequence if whenever

c(z) =

∞∑
k=1

ckz
k (c1 = 1, z ∈ Ξ)

is analytic-univalently convex in Ξ,
∞∑
k=1

ckhk ≺ c(z).

Lemma 1 ( [43]). (Subordinating Factor Sequence). From Definition 3, the

sequence
{
hk

}∞
k=1

is called a subordinating factor sequence if and only if

Re

(
1 + 2

∞∑
k=1

ckz
k

)
> 0 (z ∈ Ξ).

4. The Main Results

For brevity and in what follows from (7), let

∆q,k = (1 + ([k]q + b− u− 1)t) ≧ 1, (10)

so that

Dn,b,u
q,t f(z) = z +

∞∑
k=2

∆n
q,kakz

k (z ∈ Ξ), (11)

Λn
q (k, λ,A,B) = ∆n

q,k

{(
∆q,k − 1

)
+
∣∣∣∆q,kB − [A− λ(A− B)]

∣∣∣}, (12)

and henceforth, all parameters shall be as declared in (8).

4.1. Basic Properties.

Theorem 1 (Coefficient Inequality). Let f ∈ A, then
f ∈ S⋆

q (n, b, t, u;λ,A,B) if and only if

∞∑
k=2

Λn
q (k, λ,A,B)

(A− B)(1− λ)
|ak| ≦ 1. (13)

All parameters are as declared in (8).

Proof. Suppose inequality (13) holds, then in view of the principle of subordination,
we can express (9) as

Dn+1,b,u
q,t f(z)

Dn,b,u
q,t f(z)

=
1 + [A− λ(A− B)]ω(z)

1 + Bω(z)
(14)

which simplifies to

Dn+1,b,u
q,t f(z)−Dn,b,u

q,t f(z)

[A− λ(A− B)]Dn,b,u
q,t f(z)− BDn+1,b,u

q,t f(z)
= ω(z). (15)



354 A. O. LASODE, T. O. OPOOLA

Using (11) in (15) leads to

(z +
∑∞

k=2 ∆
n+1
q,k akz

k)− (z +
∑∞

k=2 ∆
n
q,kakz

k)

[A− λ(A− B)](z +
∑∞

k=2 ∆
n
q,kakz

k)− B(z +
∑∞

k=2 ∆
n+1
q,k akzk)

=

∑∞
k=2 ∆

n
q,k(∆q,k − 1)akz

k−1

(A− B)(1− λ)−
∑∞

k=2 ∆
n
q,k{∆q,kB − [A− λ(A− B)]}akzk−1

= ω(z). (16)

For |ω(z)| < 1 and z ∈ Ξ, we have∣∣∣∣
∑∞

k=2 ∆
n
q,k(∆q,k − 1)akz

k−1

(A− B)(1− λ)−
∑∞

k=2 ∆
n
q,k{∆q,kB − [A− λ(A− B)]}akzk−1

∣∣∣∣
≦

∑∞
k=2 ∆

n
q,k(∆q,k − 1)|ak|

(A− B)(1− λ)−
∑∞

k=2 ∆
n
q,k

∣∣∣∆q,kB − [A− λ(A− B)]
∣∣∣|ak| ≦ 1.

This latter expression on the LHS is bounded above by 1 if
∞∑
k=2

∆n
q,k(∆q,k − 1)|ak| ≦ (A− B)(1− λ)−

∞∑
k=2

∆n
q,k

∣∣∣∆q,kB − [A− λ(A− B)]
∣∣∣|ak|

so that further simplification leads to
∞∑
k=2

∆n
q,k

{(
∆q,k − 1

)
+
∣∣∣∆q,kB − [A− λ(A− B)]

∣∣∣}|ak| ≦ (A− B)(1− λ) (17)

and using (12) gives
∞∑
k=2

Λn
q (k, λ,A,B)|ak| ≦ (A− B)(1− λ). (18)

Conversely, suppose f ∈ S⋆
q (n, b, t, u;λ,A,B), then from (16) we have∣∣∣∣∣

∑∞
k=2 ∆

n
q,k(∆q,k − 1)akz

k−1

(A− B)(1− λ)−
∑∞

k=2 ∆
n
q,k{∆q,kB − [A− λ(A− B)]}akzk−1

∣∣∣∣∣ = |ω(z)| < 1

and since Re z ≦ |z| < 1, then it implies that

Re

{ ∑∞
k=2 ∆

n
q,k(∆q,k − 1)akz

k−1

(A− B)(1− λ)−
∑∞

k=2 ∆
n
q,k{∆q,kB − [A− λ(A− B)]}akzk−1

}
< 1.

Choosing values of z on the real axis of the complex plane and allowing z −→ 1,
implies that ∑∞

k=2 ∆
n
q,k(∆q,k − 1)|ak|

(A− B)(1− λ)−
∑∞

k=2 ∆
n
q,k{∆q,kB − [A− λ(A− B)]}|ak|

≦ 1
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so that further simplification and using (12) leads to
∞∑
k=2

Λn
q (k, λ,A,B)|ak| ≦ (A− B)(1− λ) (19)

as asserted. □

Corollary 1. Observe that from (13), equality occurs for function

fk(z) = z +
(A− B)(1− λ)

Λn
q (k, λ,A,B)

zk (k ∈ ℵ2, z ∈ Ξ). (20)

Corollary 2. Let f ∈ S⋆
q (n, b, t, u;λ,A,B), then

|ak| ≦
(A− B)(1− λ)

Λn
q (k, λ,A,B)

(k ∈ ℵ2). (21)

with extremal function in (20).

Remark 1. Let f ∈ lim
q↑1

S⋆
q (0, b, 1, b; 0; 1,−1) = lim

q↑1
S⋆
q (0, u, 1, u; 0; 1,−1) = S⋆,

then
∞∑
k=2

k|ak| ≦ 1 (k ∈ ℵ2).

This is the result of Goodman [10] and Silverman [34].

Theorem 2 (Growth Property). Let f ∈ S⋆
q (n, b, t, u;λ,A,B), then for

r = |z| < 1,

r −
r2∆n

q,2(A− B)(1− λ)

Λn
q (2, λ,A,B)

≦ |Dn,b,u
q,t f(z)| ≦ r +

r2∆n
q,2(A− B)(1− λ)

Λn
q (2, λ,A,B)

. (22)

Equality occurs for function

f2(z) = z +
(A− B)(1− λ)

Λn
q (2, λ,A,B)

z2. (23)

Proof. From (13) and for the fact that∆q,k is an increasing function of k (∀ k ∈ ℵ2),
then

Λn
q (2, λ,A,B)

∞∑
k=2

|ak| ≦
∞∑
k=2

Λn
q (k, λ,A,B)|ak| ≦ (A− B)(1− λ)

which implies that
∞∑
k=2

|ak| ≦
(A− B)(1− λ)

Λn
q (2, λ,A,B)

. (24)

Recall also that for f ∈ A and since rk < r = |z| < 1, then from (11),

|Dn,b,u
q,t f(z)| =

∣∣∣∣z + ∞∑
k=2

∆n
q,kakz

k

∣∣∣∣ ≦ r +

∞∑
k=2

∆n
q,k|ak|rk ≦ r + r2∆n

q,2

∞∑
k=2

|ak| (25)
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so that putting (24) into (25) leads to

|Dn,b,u
q,t f(z)| ≦ r +

r2∆n
q,2(A− B)(1− λ)

Λn
q (2, λ,A,B)

. (26)

In the same manner, we can show that

|Dn,b,u
q,t f(z)| ≧ r −

r2∆n
q,2(A− B)(1− λ)

Λn
q (2, λ,A,B)

. (27)

Putting (26) and (27) together gives (22) as asserted. □

Corollary 3. Let f ∈ S⋆
q (0, b, t, u;λ;A,B), then for r = |z| < 1,

r − r2(A− B)(1− λ)(
∆q,2 − 1

)
+
∣∣∣∆q,2B − [A− λ(A− B)]

∣∣∣ ≦ |f(z)|

≦ r +
r2(A− B)(1− λ)(

∆q,2 − 1
)
+
∣∣∣∆q,2B − [A− λ(A− B)]

∣∣∣ .
Equality occurs for function

f2(z) = z +
(A− B)(1− λ)(

∆q,2 − 1
)
+
∣∣∣∆q,2B − [A− λ(A− B)]

∣∣∣z2.
Theorem 3 (Distortion Property). Let f ∈ S⋆

q (n, b, t, u;λ,A,B), then for
r = |z| < 1,

1− [2]qr(A− B)(1− λ)

Λn
q (2, λ,A,B)

≦ |Dq(D
n,b,u
q,t f(z))| ≦ 1 +

[2]qr(A− B)(1− λ)

Λn
q (2, λ,A,B)

. (28)

Equality occurs for the extremal function in (23).

Proof. Recall that for f ∈ A, rk < r = |z| < 1, and by using (5) in (11); we have∣∣∣Dq(D
n,b,u
q,t f(z))

∣∣∣ = ∣∣∣∣1 + ∞∑
k=2

∆n
q,k[k]qakz

k−1

∣∣∣∣
≦ 1 +

∞∑
k=2

∆n
q,k[k]q|ak|rk−1 ≦ 1 + r[2]q∆

n
q,2

∞∑
k=2

|ak| (29)

so that using (24) in (29) leads to∣∣∣Dq(D
n,b,u
q,t f(z))

∣∣∣ ≦ 1 +
r[2]q∆

n
q,2(A− B)(1− λ)

Λn
q (2, λ,A,B)

. (30)

In the same manner, we can show that∣∣∣Dq(D
n,b,u
q,t f(z))

∣∣∣ ≧ 1−
r[2]q∆

n
q,2(A− B)(1− λ)

Λn
q (2, λ,A,B)

. (31)
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Putting (30) and (31) together gives (28) as asserted. □

Corollary 4. Let f ∈ lim
q↑1

S⋆
q (0, b, t, u;λ;A,B), then for r = |z| < 1,

1− 2r(A− B)(1− λ)(
∇− 1

)
+
∣∣∣∇B − [A− λ(A− B)]

∣∣∣ ≦ |f ′(z)|

≦ 1 +
2r(A− B)(1− λ)(

∇− 1
)
+
∣∣∣∇B − [A− λ(A− B)]

∣∣∣ .
where ∇ = lim

q↑1
∆q,2. Equality occurs for function

f2(z) = z +
(A− B)(1− λ)(

∇− 1
)
+
∣∣∣∇B − [A− λ(A− B)]

∣∣∣z2.
Theorem 4 (Covering Property). Let f ∈ S⋆

q (n, b, t, u;λ,A,B), then the func-

tion Dn,b,u
q,t f(z) in (11) maps the unit disk Ξ onto a domain that covers the disk

|ϖ| <
Λn
q (2, λ,A,B)−∆n

q,2(A− B)(1− λ)

Λn
q (2, λ,A,B)

The result is sharp for the extremal function in (23).

Proof. From (22),

|ϖ| = |Dn,b,u
q,t f(z)| < r −

r2∆n
q,2(A− B)(1− λ)

Λn
q (2, λ,A,B)

and observe that as |z| = r −→ 1,

|ϖ| < 1−
∆n

q,2(A− B)(1− λ)

Λn
q (2, λ,A,B)

where some simplifications give the assertion. □

Remark 2. Let f ∈ lim
q↑1

S⋆(0, b, t, u; 0; 1,−1) = S⋆, then

|ϖ| < 1

2
.

This result agrees with that of Koebe’s one-quarter theorem, see [39].

4.2. Radii Problems.

Theorem 5 (Radius of Starlikeness). Let f ∈ S⋆
q (n, b, t, u;λ,A,B),

then f ∈ S⋆(κ) (κ ∈ [0, 1)) in the disk

|z| < RS⋆ := inf
k∈ℵ2

{
Λn
q (k, λ,A,B)(1− κ)

(A− B)(1− λ)(k − κ)

} 1
k−1

.

The inequality is sharp for the function in (20).
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Proof. From the definition of starlikeness, it is sufficient to show that

zf ′(z)
f(z) − κ
1− κ

≺ 1 + z

1− z
(κ ∈ [0, 1)). (32)

Using (2) in (32) leads to

zf ′(z)− κf(z)
(1− κ)f(z)

=
1 + ω(z)

1− ω(z)

so that ∣∣∣∣ zf ′(z)− f(z)

zf ′(z) + (1− 2κ)f(z)

∣∣∣∣ = |ω(z)| < 1

and using (1) leads to
∞∑
k=2

k − κ
1− κ

|ak||z|k−1 < 1. (33)

Note that inequalities (13) and (33) can only be valid if

k − κ
1− κ

|z|k−1 <
Λn
q (k, λ,A,B)

(A− B)(1− λ)

where some simplifications affirm the result. □

Theorem 6 (Radius of Convexity). Let f ∈ S⋆
q (n, b, t, u;λ,A,B),

then f ∈ C(κ) (κ ∈ [0, 1)) in the disk

|z| < RC := inf
k∈ℵ2

{
Λn
q (k, λ,A,B)(1− κ)

(A− B)(1− λ)k(k − κ)

} 1
k−1

.

This inequality is sharp for the function in (20).

Proof. From the definition of convexity, it is sufficient to show that

zf ′′(z)
f ′(z) + 1− κ

1− κ
≺ 1 + z

1− z
(κ ∈ [0, 1)). (34)

Using (2) in (34) leads to

zf ′′(z) + (1− κ)f ′(z)

(1− κ)f ′(z)
=

1 + ω(z)

1− ω(z)

so that ∣∣∣∣ zf ′′(z)

zf ′′(z) + 2(1− κ)f ′(z)

∣∣∣∣ = |ω(z)| < 1

and using (1) leads to
∞∑
k=2

k(k − κ)
1− κ

|ak||z|k−1 < 1. (35)
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Note that the inequalities (13) and (35) can only be valid if

k(k − κ)
1− κ

|z|k−1 <
Λn
q (k, λ,A,B)

(A− B)(1− λ)

where some simplifications affirm the result. □

Theorem 7 (Radius of Close-to-convexity). Let f ∈ S⋆
q (n, b, t, u;λ,A,B),

then f ∈ K(κ) (κ ∈ [0, 1)) in the disk

|z| < RK := inf
k∈ℵ2

{
Λn
q (k, λ,A,B)(1− κ)
(A− B)(1− λ)k

} 1
k−1

.

The inequality is sharp for the function in (20).

Proof. From the definition of close-to-convexity, it is sufficient to show that

|f ′(z)− 1| < 1− κ (κ ∈ [0, 1)).

Using (1) leads to

|f ′(z)− 1| =
∣∣∣∣(1 + ∞∑

k=2

kakz
k−1

)
− 1

∣∣∣∣ ≦ ∞∑
k=2

k|ak||z|k−1 < 1− κ,

that is,
∞∑
k=2

k

1− κ
|ak||z|k−1 < 1. (36)

Note that inequalities (13) and (36) can only be valid if

k

1− κ
|z|k−1 <

Λn
q (k, λ,A,B)

(A− B)(1− λ)

where some simplifications affirm the result. □

4.3. Subordination Property.

Theorem 8. Let f ∈ S⋆
q (n, b, t, u;λ,A,B) and c ∈ C, then

Λn
q (2, λ,A,B)

2{(A− B)(1− λ) + Λn
q (2, λ,A,B)}

(f ⋆ c)(z) ≺ c(z) (37)

and

Re f > −
(A− B)(1− λ) + Λn

q (2, λ,A,B)
Λn
q (2, λ,A,B)

. (38)

The constant factor

Λn
q (2, λ,A,B)

2{(A− B)(1− λ) + Λn
q (2, λ,A,B)}

(39)

in (37) cannot be replaced by a larger value. The symbol ⋆ is called Hadamard
product or convolution.
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The following proof adopts the technique of Srivastava and Attiya [37].

Proof. Let f ∈ S⋆
q (n, b, t, u;λ,A,B) and suppose c(z) = z+

∞∑
k=2

ckz
k ∈ C, then from

(37),

Λn
q (2, λ,A,B)

2{(A− B)(1− λ) + Λn
q (2, λ,A,B)}

(f ⋆ c)(z)

=
Λn
q (2, λ,A,B)

2{(A− B)(1− λ) + Λn
q (2, λ,A,B)}

(
z +

∞∑
k=2

akckz
k

)

=

∞∑
k=1

Λn
q (2, λ,A,B)

2{(A− B)(1− λ) + Λn
q (2, λ,A,B)}

akckz
k

and clearly by Definition 3, the subordination result in (37) holds if{
Λn
q (2, λ,A,B)

2{(A− B)(1− λ) + Λn
q (2, λ,A,B)}

ak

}∞

k=1

is a subordinating factor sequence where a1 = 1. Now applying Lemma 1 gives an
equivalence inequality

Re

(
1 +

∞∑
k=1

Λn
q (2, λ,A,B)

(A− B)(1− λ) + Λn
q (2, λ,A,B)

akz
k

)
> 0. (40)

Observe that Λn
q (k, λ,A,B) is an increasing function ∀k ∈ ℵ2, so

Λn
q (2, λ,A,B) ≦ Λn

q (k, λ,A,B), ∀k ∈ ℵ2.

Hence, it follows by using |z| = r < 1, triangle inequality and inequality (13) that

Re

(
1 +

∞∑
k=1

Λn
q (2, λ,A,B)

(A− B)(1− λ) + Λn
q (2, λ,A,B)

akz
k

)

= Re

(
1 +

Λn
q (2, λ,A,B)

(A− B)(1− λ) + Λn
q (2, λ,A,B)

∞∑
k=1

akz
k

)

= Re

(
1 +

Λn
q (2, λ,A,B)

(A− B)(1− λ) + Λn
q (2, λ,A,B)

z +

∑∞
k=2 Λ

n
q (2, λ,A,B)akzk

(A− B)(1− λ) + Λn
q (2, λ,A,B)

)

≧ 1−
Λn
q (2, λ,A,B)

(A− B)(1− λ) + Λn
q (2, λ,A,B)

r −
∑∞

k=2 Λ
n
q (k, λ,A,B)|ak|

(A− B)(1− λ) + Λn
q (2, λ,A,B)

rk

> 1−
Λn
q (2, λ,A,B)

(A− B)(1− λ) + Λn
q (2, λ,A,B)

r − (A− B)(1− λ)

(A− B)(1− λ) + Λn
q (2, λ,A,B)

r

= 1− r > 0.
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This evidently proves inequality (40) and as well as the subordination result (37).
Also, the inequality (38) follows from (37) by taking the convex function

c0(z) =
z

1− z
= z +

∞∑
k=2

zk ∈ C.

To prove the sharpness of the constant (39), consider (see (20)) the function

f2(z) = z +
(A− B)(1− λ)

Λn
q (2, λ,A,B)

z2 ∈ S⋆
q (n, b, t, u;λ,A,B)

so that using (37) leads to

Λn
q (2, λ,A,B)

2{(A− B)(1− λ) + Λn
q (2, λ,A,B)}

f2(z) ≺ c0(z) =
z

1− z
. (41)

It can easily be verified that for f2(z),

min
|z|≦r

{
Re

(
Λn
q (2, λ,A,B)

2{(A− B)(1− λ) + Λn
q (2, λ,A,B)}

f2(z)

)}
= −1

2
(z ∈ Ξ)

which shows that the constant
Λn

q (2,λ,A,B)

2{(A−B)(1−λ)+Λn
q (2,λ,A,B)} cannot be replaced by any

larger value. □

5. Conclusions

The attention geared towards the study of q-operators by scientists and in
particular, by geometric function theorists in recent years is overwhelming. In
this study, a new q-differential operator that generalized the famous Sǎlǎgean
[33], Al-Oboudi [3] and Opoola differential [26] operators was studied. Subse-
quently, the q-differential operator and the principle of subordination were used
to define a subclass of analytic-univalent functions. This new class was repre-
sented by S⋆

q (n, b, t, u;λ,A,B). Further, the geometric properties such as the co-
efficient inequality, growth, distortion and covering theorems were established for
the class S⋆

q (n, b, t, u;λ,A,B). Also, the radii of starlikeness, convexity and close-
to-convexity; as well as the subordinating factor sequence problems were solved
for the new class. Intermittently, some key corollaries and remarks were given to
demonstrate the relationship between this new class (and the new results); and
some exiting classes (and their results).
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Abstract. Let H be a complex Hilbert space. Assume that the power series
with complex coefficients f (z) :=

∑∞
k=0 akz

k is convergent on the open disk

D(0, R), fa (z) :=
∑∞

k=0 |ak| zk that has the same radius of convergence R

and A, B, C ∈ B (H) with ∥A∥ < R, then we have the following Schwarz type
inequality

|⟨C∗Af (A)Bx, y⟩| ≤ fa (∥A∥)
〈
||A|α B|2 x, x

〉1/2
〈∣∣∣|A∗|1−α C

∣∣∣2 y, y〉1/2

for α ∈ [0, 1] and x, y ∈ H. Some natural applications for numerical radius
and p-Schatten norm are also provided.

1. Introduction

The numerical radius ω (T ) of an operator T on H is given by

ω (T ) = sup {|⟨Tx, x⟩| , ∥x∥ = 1} . (1)

Obviously, by (1), for any x ∈ H one has

|⟨Tx, x⟩| ≤ ω (T ) ∥x∥2 . (2)

It is well known that ω (·) is a norm on the Banach algebra B (H) of all bounded
linear operators T : H → H, i.e.,

(i) ω (T ) ≥ 0 for any T ∈ B (H) and ω (T ) = 0 if and only if T = 0;
(ii) ω (λT ) = |λ|ω (T ) for any λ ∈ C and T ∈ B (H) ;
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(iii) ω (T + V ) ≤ ω (T ) + ω (V ) for any T, V ∈ B (H) .

This norm is equivalent with the operator norm. In fact, the following more
precise result holds:

ω (T ) ≤ ∥T∥ ≤ 2ω (T ) (3)

for any T ∈ B (H).
F. Kittaneh, in 2003 [7], showed that for any operator T ∈ B (H) we have the

following refinement of the first inequality in (3):

ω (T ) ≤ 1

2

(
∥T∥+

∥∥T 2
∥∥1/2) . (4)

Utilizing the Cartesian decomposition for operators, F. Kittaneh in [8] improved
the inequality (3) as follows:

1

4
∥T ∗T + TT ∗∥ ≤ ω2 (T ) ≤ 1

2
∥T ∗T + TT ∗∥ (5)

for any operator T ∈ B (H) .
For powers of the absolute value of operators, one can state the following results

obtained by El-Haddad & Kittaneh in 2007, [5]:

If for an operator T ∈ B (H) we denote |T | := (T ∗T )
1/2

, then

ωr (T ) ≤ 1

2

∥∥∥|T |2αr + |T ∗|2(1−α)r
∥∥∥ (6)

and

ω2r (T ) ≤
∥∥∥α |T |2r + (1− α) |T ∗|2r

∥∥∥ , (7)

where α ∈ (0, 1) and r ≥ 1.
If we take α = 1

2 and r = 1 we get from (6) that

ω (T ) ≤ 1

2
∥|T |+ |T ∗|∥ (8)

and from (7) that

ω2 (T ) ≤ 1

2

∥∥∥|T |2 + |T ∗|2
∥∥∥ . (9)

For more related results, see the recent books on inequalities for numerical radii
[3] and [1].

Let (H; ⟨., .⟩) be a complex Hilbert space and B (H) the Banach algebra of all
bounded linear operators on H. If {ei}i∈I an orthonormal basis of H, we say that
A ∈ B (H) is of trace class if

∥A∥1 :=
∑
i∈I

⟨|A| ei, ei⟩ < ∞. (10)

The definition of ∥A∥1 does not depend on the choice of the orthonormal basis
{ei}i∈I . We denote by B1 (H) the set of trace class operators in B (H) .
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We define the trace of a trace class operator A ∈ B1 (H) to be

tr (A) :=
∑
i∈I

⟨Aei, ei⟩ , (11)

where {ei}i∈I an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (11)
converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:

Theorem 1. We have:
(i) If A ∈ B1 (H) then A∗ ∈ B1 (H) and

tr (A∗) = tr (A); (12)

(ii) If A ∈ B1 (H) and T ∈ B (H) , then AT, TA ∈ B1 (H) and

tr (AT ) = tr (TA) and |tr (AT )| ≤ ∥A∥1 ∥T∥ ; (13)

(iii) tr (·) is a bounded linear functional on B1 (H) with ∥tr∥ = 1;
(iv) If A, B ∈ B2 (H) then AB, BA ∈ B1 (H) and tr (AB) = tr (BA) ;
(v) Bfin (H) , the space of operators of finite rank, is a dense subspace of B1 (H) .

For a large number of results concerning trace inequalities, see the recent survey
paper [4].

An operator A ∈ B (H) is said to belong to the von Neumann-Schatten class
Bp (H) , 1 ≤ p < ∞ if the p-Schatten norm is finite [12, p. 60-64]

∥A∥p := [tr (|A|p)]1/p =

(∑
i∈I

⟨|A|p ei, ei⟩

)1/p

< ∞.

For 1 < p < q < ∞ we have that

B1 (H) ⊂ Bp (H) ⊂ Bq (H) ⊂ B (H) (14)

and
∥A∥1 ≥ ∥A∥p ≥ ∥A∥q ≥ ∥A∥ . (15)

For p ≥ 1 the functional ∥·∥p is a norm on the ∗-ideal Bp (H) and
(
Bp (H) , ∥·∥p

)
is a Banach space.

Also, see for instance [12, p. 60-64],

∥A∥p = ∥A∗∥p , A ∈ Bp (H) (16)

∥AB∥p ≤ ∥A∥p ∥B∥p , A,B ∈ Bp (H) (17)

and

∥AB∥p ≤ ∥A∥p ∥B∥ , ∥BA∥p ≤ ∥B∥ ∥A∥p , A ∈ Bp (H) , B ∈ B (H) . (18)

This implies that

∥CAB∥p ≤ ∥C∥ ∥A∥p ∥B∥ , A ∈ Bp (H) , B, C ∈ B (H) . (19)
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In terms of p-Schatten norm we have the Hölder inequality for p, q > 1 with
1
p + 1

q = 1

(|tr (AB)| ≤) ∥AB∥1 ≤ ∥A∥p ∥B∥q , A ∈ Bp (H) , B ∈ Bq (H) . (20)

For the theory of trace functionals and their applications the reader is referred
to [10] and [12].

For E := {ei}i∈I an orthonormal basis of H we define for A ∈ Bp (H) , p ≥ 1

∥A∥E,p :=

(∑
i∈I

|⟨Aei, ei⟩|p
)1/p

.

We observe that ∥·∥E,p is a norm on Bp (H) and

∥A∥E,p ≤ ∥A∥p for A ∈ Bp (H) .

Further, we can take the supremum over all orthonormal basis in H we can also
define, for A ∈ Bp (H) , that

ωp (A) := sup
E

∥A∥E,p ≤ ∥A∥p ,

which is a norm on Bp (H) .
It is also known that, if E = {ei}i∈I and F = {fi}i∈I are orthonormal basis,

then [11]

sup
E,F

∑
i∈I

|⟨Tei, fi⟩|s = ∥T∥ss for s ≥ 1. (21)

2. Vector Inequalities

In 1988 F. Kittaneh [6, Corollary 7] obtained the following Schwarz type inequal-
ity for powers of operators:

Lemma 1. Let A ∈ B (H) and α ∈ [0, 1] . Then for n ≥ 1 we have

|⟨Anx, y⟩|2 ≤ ∥A∥2n−2
〈
|A|2α x, x

〉〈
|A∗|2(1−α)

y, y
〉

(22)

for all x, y ∈ H.

We can state the following result as well:

Corollary 1. Let A, B, C ∈ B (H) and α ∈ [0, 1] . Then for n ≥ 1 we have

|⟨C∗AnBx, y⟩|2 ≤ ∥A∥2n−2
〈
||A|α B|2 x, x

〉〈∣∣∣|A∗|1−α
C
∣∣∣2 y, y〉 (23)

for all x, y ∈ H.

Proof. If we replace x by Bx and y by Cy in (22), then we get

|⟨C∗AnBx, y⟩|2 ≤ ∥A∥2n−2
〈
B∗ |A|2α Bx, x

〉〈
C∗ |A∗|2(1−α)

Cy, y
〉
. (24)
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Observe that B∗ |A|2α B = ||A|α B|2 and C∗ |A∗|2(1−α)
C =

∣∣∣|A∗|1−α
C
∣∣∣2, then by

(24) we get (23). □

We consider the power series with complex coefficients f (z) :=
∑∞

k=0 akz
k with

ak ∈ C for k ∈ N := {0, 1, ...} . We assume that this power series in convergent on
the open disk D(0, R) := {z ∈ C| z < R} . If R = ∞ then D(0, R) = C. We define
fa (z) :=

∑∞
k=0 |ak| zk which has the same radius of convergence R.

As some natural examples that are useful for applications, we can point out that,
if

f (λ) =

∞∑
n=1

(−1)
n

n
λn = ln

1

1 + λ
, λ ∈ D (0, 1) ; (25)

g (λ) =

∞∑
n=0

(−1)
n

(2n)!
λ2n = cosλ, λ ∈ C;

h (λ) =

∞∑
n=0

(−1)
n

(2n+ 1)!
λ2n+1 = sinλ, λ ∈ C;

l (λ) =

∞∑
n=0

(−1)
n
λn =

1

1 + λ
, λ ∈ D (0, 1) ;

then the corresponding functions constructed by the use of the absolute values of
the coefficients are

fa (λ) =

∞∑
n=1

1

n
λn = ln

1

1− λ
, λ ∈ D (0, 1) ; (26)

ga (λ) =

∞∑
n=0

1

(2n)!
λ2n = coshλ, λ ∈ C;

ha (λ) =

∞∑
n=0

1

(2n+ 1)!
λ2n+1 = sinhλ, λ ∈ C;

la (λ) =

∞∑
n=0

λn =
1

1− λ
, λ ∈ D (0, 1) .

Other important examples of functions as power series representations with non-
negative coefficients are:

exp (λ) =

∞∑
n=0

1

n!
λn λ ∈ C, (27)

1

2
ln

(
1 + λ

1− λ

)
=

∞∑
n=1

1

2n− 1
λ2n−1, λ ∈ D (0, 1) ;
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sin−1 (λ) =

∞∑
n=0

Γ
(
n+ 1

2

)
√
π (2n+ 1)n!

λ2n+1, λ ∈ D (0, 1) ;

tanh−1 (λ) =

∞∑
n=1

1

2n− 1
λ2n−1, λ ∈ D (0, 1)

2F1 (α, β, γ, λ) =

∞∑
n=0

Γ (n+ α) Γ (n+ β) Γ (γ)

n!Γ (α) Γ (β) Γ (n+ γ)
λn, α, β, γ > 0,

λ ∈ D (0, 1) ;

where Γ is Gamma function.
The following result is of interest:

Theorem 2. Assume that the power series with complex coefficients f (z) :=∑∞
k=0 akz

k is convergent on D(0, R) and A, B, C ∈ B (H) with ∥A∥ < R, then

|⟨C∗Af (A)Bx, y⟩|2 ≤ f2
a (∥A∥)

〈
||A|α B|2 x, x

〉〈∣∣∣|A∗|1−α
C
∣∣∣2 y, y〉 (28)

for α ∈ [0, 1] and x, y ∈ H.
In particular,

|⟨C∗Af (A)Bx, y⟩|2 ≤ f2
a (∥A∥)

〈∣∣∣|A|1/2 B
∣∣∣2 x, x〉〈∣∣∣|A∗|1/2 C

∣∣∣2 y, y〉 (29)

for x, y ∈ H.

Proof. If we take n = k + 1, k ∈ N in (23) and take the square root, then we get

∣∣〈C∗AAkBx, y
〉∣∣ ≤ ∥A∥k

〈
||A|α B|2 x, x

〉1/2〈∣∣∣|A∗|1−α
C
∣∣∣2 y, y〉1/2

for all x, y ∈ H.
Further, if we multiply by |ak| ≥ 0, k ∈ {0, 1, ...} and sum over k from 0 to m,

then we get ∣∣∣∣∣
〈
C∗A

m∑
k=0

akA
kBx, y

〉∣∣∣∣∣ (30)

=

∣∣∣∣∣
m∑

k=0

ak
〈
C∗AAkBx, y

〉∣∣∣∣∣ ≤
m∑

k=0

|ak|
∣∣〈C∗AAkBx, y

〉∣∣
≤

m∑
k=0

|ak| ∥A∥k
〈
||A|α B|2 x, x

〉1/2〈∣∣∣|A∗|1−α
C
∣∣∣2 y, y〉1/2

for all x, y ∈ H.
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Since ∥A∥ < R then series
∑∞

k=0 akA
k and

∑∞
k=0 |ak| ∥A∥k are convergent and

∞∑
k=0

akA
k = f (A) and

∞∑
k=0

|ak| ∥A∥k = fa (∥A∥) .

By taking now the limit over m → ∞ in (30) we deduce the desired result (28). □

Remark 1. If A, B, C ∈ B (H) with ∥A∥ < 1, then for α ∈ [0, 1]∣∣∣〈C∗A (I ±A)
−1

Bx, y
〉∣∣∣2 (31)

≤ (1− ∥A∥)−2
〈
||A|α B|2 x, x

〉〈∣∣∣|A∗|1−α
C
∣∣∣2 y, y〉

and

|⟨C∗A ln (I ±A)Bx, y⟩|2 (32)

≤ [ln (1− ∥A∥)]2
〈
||A|α B|2 x, x

〉〈∣∣∣|A∗|1−α
C
∣∣∣2 y, y〉

for all x, y ∈ H.
For α = 1/2 in (31) and (32) we obtain∣∣∣〈C∗A (I ±A)

−1
Bx, y

〉∣∣∣2 ≤ (1− ∥A∥)−2 ⟨B∗ |A|Bx, x⟩ ⟨C∗ |A∗|Cy, y⟩ (33)

and

|⟨C∗A ln (I ±A)Bx, y⟩|2 ≤ [ln (1− ∥A∥)]2 ⟨B∗ |A|Bx, x⟩ ⟨C∗ |A∗|Cy, y⟩ (34)

for all x, y ∈ H.
If A, B, C ∈ B (H) and α ∈ [0, 1] , then

|⟨C∗A sin (A)Bx, y⟩|2 ≤ [sinh (∥A∥)]2
〈
||A|α B|2 x, x

〉〈∣∣∣|A∗|1−α
C
∣∣∣2 y, y〉 (35)

and

|⟨C∗A cos (A)Bx, y⟩|2 ≤ [cosh (∥A∥)]2
〈
||A|α B|2 x, x

〉〈∣∣∣|A∗|1−α
C
∣∣∣2 y, y〉 (36)

for all x, y ∈ H.
For α = 1/2 in (35) and (36) we obtain

|⟨C∗A sin (A)Bx, y⟩|2 ≤ [sinh (∥A∥)]2 ⟨B∗ |A|Bx, x⟩ ⟨C∗ |A∗|Cy, y⟩ (37)

and

|⟨C∗A cos (A)Bx, y⟩|2 ≤ [cosh (∥A∥)]2 ⟨B∗ |A|Bx, x⟩ ⟨C∗ |A∗|Cy, y⟩ (38)

for all x, y ∈ H.
Also, if A, B, C ∈ B (H) and α ∈ [0, 1] , then

|⟨C∗A exp (A)Bx, y⟩|2 ≤ exp (2 ∥A∥)
〈
||A|α B|2 x, x

〉〈∣∣∣|A∗|1−α
C
∣∣∣2 y, y〉 , (39)
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|⟨C∗A sinh (A)Bx, y⟩|2 (40)

≤ [sinh (∥A∥)]2
〈
||A|α B|2 x, x

〉〈∣∣∣|A∗|1−α
C
∣∣∣2 y, y〉

and

|⟨C∗A cosh (A)Bx, y⟩|2 (41)

≤ [cosh (∥A∥)]2
〈
||A|α B|2 x, x

〉〈∣∣∣|A∗|1−α
C
∣∣∣2 y, y〉

for all x, y ∈ H.
For α = 1/2 in (39)-(41) we obtain some simpler inequalities. We omit the

details.

3. Norm and Numerical Radius Inequalities

The following vector inequality for positive operators A ≥ 0, obtained by C. A.
McCarthy in [9] is well known,

⟨Ax, x⟩p ≤ ⟨Apx, x⟩ , p ≥ 1

for x ∈ H, ∥x∥ = 1.
Buzano’s inequality [2],

1

2
[∥x∥ ∥y∥+ |⟨x, y⟩|] ≥ |⟨x, e⟩ ⟨e, y⟩| (42)

that holds for any x, y, e ∈ H with ∥e∥ = 1 will also be used in the sequel.
Our first main result is as follows:

Theorem 3. Assume that the power series with complex coefficients f (z) :=∑∞
k=0 akz

k is convergent on D(0, R), α ∈ [0, 1] and A, B, C ∈ B (H) with ∥A∥ < R,
then we have the norm inequality

∥C∗Af (A)B∥ ≤ fa (∥A∥) ∥|A|α B∥
∥∥∥|A∗|1−α

C
∥∥∥ . (43)

We also have the numerical radius inequalities

ω (C∗Af (A)B) ≤ 1

2
fa (∥A∥)

∥∥∥∥||A|α B|2 +
∣∣∣|A∗|1−α

C
∣∣∣2∥∥∥∥ (44)

and

ω2 (C∗Af (A)B) (45)

≤ 1

2
f2
a (∥A∥)

[
∥|A|α B∥2

∥∥∥|A∗|1−α
C
∥∥∥2 + ω

(∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

)]
.

Proof. We have from (28), by taking the supremum over ∥x∥ = ∥y∥ = 1, that

∥C∗Af (A)B∥2 = sup
∥x∥=∥y∥=1

|⟨C∗Af (A)Bx, y⟩|2
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≤ f2
a (∥A∥) sup

∥x∥=1

〈
||A|α B|2 x, x

〉
sup

∥y∥=1

〈∣∣∣|A∗|1−α
C
∣∣∣2 y, y〉

= f2
a (∥A∥)

∥∥∥||A|α B|2
∥∥∥∥∥∥∥∣∣∣|A∗|1−α

C
∣∣∣2∥∥∥∥

= f2
a (∥A∥) ∥|A|α B∥2

∥∥∥|A∗|1−α
C
∥∥∥2 ,

which gives (43).
From (28) we get, by taking y = x, the square root and using the A-G-mean

inequality, that

|⟨C∗Af (A)Bx, x⟩| (46)

≤ fa (∥A∥)
〈
||A|α B|2 x, x

〉1/2〈∣∣∣|A∗|1−α
C
∣∣∣2 x, x〉1/2

≤ 1

2
fa (∥A∥)

(〈
||A|α B|2 x, x

〉
+

〈∣∣∣|A∗|1−α
C
∣∣∣2 x, x〉)

=
1

2
fa (∥A∥)

〈(
||A|α B|2 +

∣∣∣|A∗|1−α
C
∣∣∣2)x, x

〉
for all x ∈ H.

By taking the supremum over ∥x∥ = 1 in (46) we get that

ω (C∗Af (A)B)

= sup
∥x∥=1

|⟨C∗Af (A)Bx, x⟩|

≤ 1

2
fa (∥A∥) sup

∥x∥=1

〈(
||A|α B|2 +

∣∣∣|A∗|1−α
C
∣∣∣2)x, x

〉
=

1

2
fa (∥A∥)

∥∥∥∥||A|α B|2 +
∣∣∣|A∗|1−α

C
∣∣∣2∥∥∥∥ ,

which proves (44).
From (28) for y = x and Buzano’s inequality we derive that

|⟨C∗Af (A)Bx, x⟩|2 (47)

≤ f2
a (∥A∥)

〈
||A|α B|2 x, x

〉〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉

≤ 1

2
f2
a (∥A∥)

×
[∥∥∥||A|α B|2 x

∥∥∥∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 x∥∥∥∥+ ∣∣∣∣〈||A|α B|2 x,

∣∣∣|A∗|1−α
C
∣∣∣2 x〉∣∣∣∣]

=
1

2
f2
a (∥A∥)
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×
[∥∥∥||A|α B|2 x

∥∥∥∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 x∥∥∥∥+ ∣∣∣∣〈∣∣∣|A∗|1−α

C
∣∣∣2 ||A|α B|2 x, x

〉∣∣∣∣]
for all x ∈ H, ∥x∥ = 1.

By taking the supremum over ∥x∥ = 1 in (47) we get that

ω2 (C∗Af (A)B)

= sup
∥x∥=1

|⟨C∗Af (A)Bx, x⟩|2

≤ 1

2
f2
a (∥A∥)

× sup
∥x∥=1

[∥∥∥||A|α B|2 x
∥∥∥∥∥∥∥∣∣∣|A∗|1−α

C
∣∣∣2 x∥∥∥∥+ ∣∣∣∣〈∣∣∣|A∗|1−α

C
∣∣∣2 ||A|α B|2 x, x

〉∣∣∣∣]
≤ 1

2
f2
a (∥A∥)

×

[
sup

∥x∥=1

{∥∥∥||A|α B|2 x
∥∥∥∥∥∥∥∣∣∣|A∗|1−α

C
∣∣∣2 x∥∥∥∥}

+ sup
∥x∥=1

∣∣∣∣〈∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2 x, x

〉∣∣∣∣
]

≤ 1

2
f2
a (∥A∥)

×

[
sup

∥x∥=1

∥∥∥||A|α B|2 x
∥∥∥ sup

∥x∥=1

∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 x∥∥∥∥

+ sup
∥x∥=1

∣∣∣∣〈∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2 x, x

〉∣∣∣∣
]

=
1

2
f2
a (∥A∥)

[∥∥∥||A|α B|2
∥∥∥∥∥∥∥∣∣∣|A∗|1−α

C
∣∣∣2∥∥∥∥+ ω

(∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

)]
=

1

2
f2
a (∥A∥)

[
∥|A|α B∥2

∥∥∥|A∗|1−α
C
∥∥∥2 + ω

(∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

)]
,

which proves (45). □

Remark 2. If we take α = 1/2 in Theorem 3, then we get the norm inequality

∥C∗Af (A)B∥ ≤ fa (∥A∥)
∥∥∥|A|1/2 B

∥∥∥∥∥∥|A∗|1/2 C
∥∥∥ (48)

and the numerical radius inequalities

ω (C∗Af (A)B) ≤ 1

2
fa (∥A∥)

∥∥∥∥∣∣∣|A|1/2 B
∣∣∣2 + ∣∣∣|A∗|1/2 C

∣∣∣2∥∥∥∥ (49)
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and

ω2 (C∗Af (A)B) (50)

≤ 1

2
f2
a (∥A∥)

[∥∥∥|A|1/2 B
∥∥∥2 ∥∥∥|A∗|1/2 C

∥∥∥2 + ω

(∣∣∣|A∗|1/2 C
∣∣∣2 ∣∣∣|A|1/2 B

∣∣∣2)] .
The second main result is as follows:

Theorem 4. Assume that the conditions of Theorem 3 are satisfied. If α ∈ [0, 1] ,
r > 0, p, q > 1 with 1

p + 1
q = 1 and pr, qr ≥ 1, then

ω2r (C∗Af (A)B) ≤ f2r
a (∥A∥)

∥∥∥∥1p ||A|α B|2rp + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2rq∥∥∥∥ . (51)

If r ≥ 1, then

ω2r (C∗Af (A)B) ≤ 1

2
f2r
a (∥A∥)

[
∥|A|α B∥2r

∥∥∥|A∗|1−α
C
∥∥∥2r (52)

+ωr

(∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

)]
.

If r ≥ 1, p, q > 1 with 1
p + 1

q = 1 and pr, qr ≥ 2, then also

ω2r (C∗Af (A)B) ≤ 1

2
f2r
a (∥A∥)

(∥∥∥∥1p ||A|α B|2pr + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2qr∥∥∥∥ (53)

+ωr

(∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

))
.

Proof. If we take the power r > 0 in (28) written for y = x then we get, by Young
and McCarthy inequalities that

|⟨C∗Af (A)Bx, x⟩|2r

≤ f2r
a (∥A∥)

〈
||A|α B|2 x, x

〉r 〈∣∣∣|A∗|1−α
C
∣∣∣2 x, x〉r

≤ f2r
a (∥A∥)

[
1

p

〈
||A|α B|2 x, x

〉rp
+

1

q

〈∣∣∣|A∗|1−α
C
∣∣∣2 x, x〉rq]

≤ f2r
a (∥A∥)

[
1

p

〈
||A|α B|2rp x, x

〉
+

1

q

〈∣∣∣|A∗|1−α
C
∣∣∣2rq x, x〉]

= f2r
a (∥A∥)

[〈
1

p
||A|α B|2rp + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2rq x, x〉]

for x ∈ H with ∥x∥ = 1.
By taking the supremum over ∥x∥ = 1, then we get that

ω2r (C∗Af (A)B)

= sup
∥x∥=1

|⟨C∗Af (A)Bx, x⟩|2r
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≤ f2r
a (∥A∥) sup

∥x∥=1

[〈(
1

p
||A|α B|2rp + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2rq)x, x

〉]
= f2r

a (∥A∥)
∥∥∥∥1p ||A|α B|2rp + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2rq∥∥∥∥ ,

which proves (51).
If we take the power r ≥ 1 in (47) and by using the convexity of the power

function, we get

|⟨C∗Af (A)Bx, x⟩|2r (54)

= f2r
a (∥A∥)

×


∥∥∥||A|α B|2 x

∥∥∥∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 x∥∥∥∥+ ∣∣∣∣〈∣∣∣|A∗|1−α

C
∣∣∣2 ||A|α B|2 x, x

〉∣∣∣∣
2


r

≤ f2r
a (∥A∥)

×

∥∥∥||A|α B|2 x
∥∥∥r ∥∥∥∥∣∣∣|A∗|1−α

C
∣∣∣2 x∥∥∥∥r + ∣∣∣∣〈∣∣∣|A∗|1−α

C
∣∣∣2 ||A|α B|2 x, x

〉∣∣∣∣r
2

for x ∈ H with ∥x∥ = 1.
By taking the supremum over ∥x∥ = 1, then we get that

ω2r (C∗Af (A)B)

≤ f2r
a (∥A∥)

×

∥∥∥||A|α B|2
∥∥∥r ∥∥∥∥∣∣∣|A∗|1−α

C
∣∣∣2∥∥∥∥r + ωr

(∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

)
2

= f2r
a (∥A∥)

×
∥|A|α B∥2r

∥∥∥|A∗|1−α
C
∥∥∥2r + ωr

(∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

)
2

,

which proves (52).
Also, observe that∥∥∥||A|α B|2 x

∥∥∥r ∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 x∥∥∥∥r

≤ 1

p

∥∥∥||A|α B|2 x
∥∥∥pr + 1

q

∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 x∥∥∥∥qr

=
1

p

∥∥∥||A|α B|2 x
∥∥∥2 pr

2

+
1

q

∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 x∥∥∥∥2

qr
2
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=
1

p

〈
||A|α B|4 x, x

〉 pr
2

+
1

q

〈∣∣∣|A∗|1−α
C
∣∣∣4 x, x〉 qr

2

≤ 1

p

〈
||A|α B|2pr x, x

〉
+

1

q

〈∣∣∣|A∗|1−α
C
∣∣∣2qr x, x〉

=

〈(
1

p
||A|α B|2pr + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2qr)x, x

〉
,

for x ∈ H with ∥x∥ = 1. Then∥∥∥||A|α B|2 x
∥∥∥r ∥∥∥∥∣∣∣|A∗|1−α

C
∣∣∣2 x∥∥∥∥r + ∣∣∣∣〈∣∣∣|A∗|1−α

C
∣∣∣2 ||A|α B|2 x, x

〉∣∣∣∣r
2

≤ 1

2

[〈(
1

p
||A|α B|2pr + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2qr)x, x

〉
+

∣∣∣∣〈∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2 x, x

〉∣∣∣∣r]
and by (54)

|⟨C∗Af (A)Bx, x⟩|2r

≤ 1

2
f2r
a (∥A∥)

[〈(
1

p
||A|α B|2pr + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2qr)x, x

〉
+

∣∣∣∣〈∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2 x, x

〉∣∣∣∣r]
for x ∈ H with ∥x∥ = 1.

By taking the supremum over ∥x∥ = 1, we derive (53). □

Remark 3. If we take r = 1 and p, q > 1 with 1
p + 1

q = 1 in (51), then we obtain

ω2 (C∗Af (A)B) ≤ f2
a (∥A∥)

∥∥∥∥1p ||A|α B|2p + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2q∥∥∥∥ , (55)

which for p = q = 2 gives

ω2 (C∗Af (A)B) ≤ 1

2
f2
a (∥A∥)

∥∥∥∥||A|α B|4 +
∣∣∣|A∗|1−α

C
∣∣∣4∥∥∥∥ . (56)

If we take r = 1 and p = q = 2 in (53), then we get

ω2 (C∗Af (A)B) ≤ 1

2
f2
a (∥A∥)

(
1

2

∥∥∥∥||A|α B|4 +
∣∣∣|A∗|1−α

C
∣∣∣4∥∥∥∥ (57)

+ω

(∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

))
.
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If we take r = 2 and p, q > 1 with 1
p + 1

q = 1 in (53), then we get

ω4 (C∗Af (A)B) ≤ 1

2
f4
a (∥A∥)

(∥∥∥∥1p ||A|α B|4p + 1

q

∣∣∣|A∗|1−α
C
∣∣∣4q∥∥∥∥ (58)

+ω2

(∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

))
.

We also have:

Theorem 5. With the assumptions of Theorem 3, we have for r ≥ 1, λ ∈ [0, 1]
that

ω2 (C∗Af (A)B) ≤ f2
a (∥A∥)

∥∥∥∥(1− λ) ||A|α B|2r + λ
∣∣∣|A∗|1−α

C
∣∣∣2r∥∥∥∥1/r (59)

× ∥|A|α B∥2λ
∥∥∥|A∗|1−α

C
∥∥∥2(1−λ)

for all α ∈ [0, 1] .
Also, we have

ω2 (C∗Af (A)B) ≤ f2
a (∥A∥)

∥∥∥∥(1− λ) ||A|α B|2r + λ
∣∣∣|A∗|1−α

C
∣∣∣2r∥∥∥∥1/r (60)

×
∥∥∥∥λ ||A|α B|2r + (1− λ)

∣∣∣|A∗|1−α
C
∣∣∣2r∥∥∥∥1/r

for all α ∈ [0, 1] and r ≥ 1.

Proof. From the first part of (47) we have

|⟨C∗Af (A)Bx, x⟩|2

≤ f2
a (∥A∥)

〈
||A|α B|2 x, x

〉〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉

= f2
a (∥A∥)

〈
||A|α B|2 x, x

〉1−λ
〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉λ

×
〈
||A|α B|2 x, x

〉α〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉1−λ

≤ f2
a (∥A∥)

[
(1− λ)

〈
||A|α B|2 x, x

〉
+ λ

〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉]

×
〈
||A|α B|2 x, x

〉λ〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉1−λ

for all x ∈ H, ∥x∥ = 1.
If we take the power r ≥ 1, then we get by the convexity of power r that

|⟨C∗Af (A)Bx, x⟩|2r (61)
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≤ f2r
a (∥A∥)

[
(1− λ)

〈
||A|α B|2 x, x

〉
+ λ

〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉]r

×
〈
||A|α B|2 x, x

〉rλ〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉r(1−λ)

≤ f2r
a (∥A∥)

[
(1− λ)

〈
||A|α B|2 x, x

〉r
+ λ

〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉r]

×
〈
||A|α B|2 x, x

〉rλ〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉r(1−λ)

for all x ∈ H, ∥x∥ = 1.
If we use McCarthy inequality for power r ≥ 1, then we get

(1− λ)
〈
||A|α B|2 x, x

〉r
+ λ

〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉r

≤ (1− λ)
〈
||A|α B|2r x, x

〉
+ λ

〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2r x〉

=

〈[
(1− λ) ||A|α B|2r + λ

∣∣∣|A∗|1−α
C
∣∣∣2r]x, x〉

and by (61)

|⟨C∗Af (A)Bx, x⟩|2r (62)

≤ f2r
a (∥A∥)

[〈[
(1− λ) ||A|α B|2r + λ

∣∣∣|A∗|1−α
C
∣∣∣2r]x, x〉]

×
〈
||A|α B|2 x, x

〉rλ〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉r(1−λ)

for all x ∈ H, ∥x∥ = 1.
If we take the supremum over ∥x∥ = 1, then we get

ω2r (C∗Af (A)B)

= sup
∥x∥=1

|⟨C∗Af (A)Bx, x⟩|2r

≤ f2r
a (∥A∥) sup

∥x∥=1

[〈[
(1− λ) ||A|α B|2r + λ

∣∣∣|A∗|1−α
C
∣∣∣2r]x, x〉]

× sup
∥x∥=1

〈
||A|α B|2 x, x

〉rλ
sup

∥x∥=1

〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉r(1−λ)

= f2r
a (∥A∥)

∥∥∥∥(1− λ) ||A|α B|2r + λ
∣∣∣|A∗|1−α

C
∣∣∣2r∥∥∥∥

× ∥|A|α B∥2rλ
∥∥∥|A∗|1−α

C
∥∥∥2r(1−λ)

,
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which gives (59).
We also have

|⟨C∗Af (A)Bx, x⟩|2r

≤ f2r
a (∥A∥)

[〈[
(1− λ) ||A|α B|2r + λ

∣∣∣|A∗|1−α
C
∣∣∣2r]x, x〉]

×
[〈[

λ ||A|α B|2r + (1− λ)
∣∣∣|A∗|1−α

C
∣∣∣2r]x, x〉]

for all x ∈ H, ∥x∥ = 1, which proves (60). □

Remark 4. If we take r = 1 in Theorem 5, then we get

ω2 (C∗Af (A)B) ≤ f2
a (∥A∥)

∥∥∥∥(1− λ) ||A|α B|2 + λ
∣∣∣|A∗|1−α

C
∣∣∣2r∥∥∥∥ (63)

× ∥|A|α B∥2λ
∥∥∥|A∗|1−α

C
∥∥∥2(1−λ)

and

ω2 (C∗Af (A)B) ≤ f2
a (∥A∥)

∥∥∥∥(1− λ) ||A|α B|2 + λ
∣∣∣|A∗|1−α

C
∣∣∣2∥∥∥∥ (64)

×
∥∥∥∥λ ||A|α B|2 + (1− λ)

∣∣∣|A∗|1−α
C
∣∣∣2∥∥∥∥

for all α, λ ∈ [0, 1] .
If we take λ = 1/2 in (63), then we obtain

ω2 (C∗Af (A)B) (65)

≤ 1

2
f2
a (∥A∥)

∥∥∥∥||A|α B|2 +
∣∣∣|A∗|1−α

C
∣∣∣2r∥∥∥∥ ∥|A|α B∥

∥∥∥|A∗|1−α
C
∥∥∥

If we take r = 2 in Theorem 5, then we get

ω2 (C∗Af (A)B) ≤ f2
a (∥A∥)

∥∥∥∥(1− λ) ||A|α B|4 + λ
∣∣∣|A∗|1−α

C
∣∣∣4∥∥∥∥1/2 (66)

× ∥|A|α B∥2λ
∥∥∥|A∗|1−α

C
∥∥∥2(1−λ)

and

ω2 (C∗Af (A)B) ≤ f2
a (∥A∥)

∥∥∥∥(1− λ) ||A|α B|4 + λ
∣∣∣|A∗|1−α

C
∣∣∣4∥∥∥∥1/2 (67)

×
∥∥∥∥λ ||A|α B|4 + (1− λ)

∣∣∣|A∗|1−α
C
∣∣∣4∥∥∥∥1/2

for all α, λ ∈ [0, 1] .
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If we take λ = 1/2 in (66), then we obtain

ω2 (C∗Af (A)B) (68)

≤
√
2

2
f2
a (∥A∥)

∥∥∥∥||A|α B|4 +
∣∣∣|A∗|1−α

C
∣∣∣4∥∥∥∥1/2 ∥|A|α B∥

∥∥∥|A∗|1−α
C
∥∥∥ .

4. Inequalities for Trace of Operators

We have the following result for trace of operators:

Theorem 6. Let r ≥ 1/2, p, q > 1 with 1
p + 1

q = 1 and pr, qr ≥ 1. Assume

that the power series with complex coefficients f (z) :=
∑∞

k=0 akz
k is convergent on

D(0, R) and A, B, C ∈ B (H) with ∥A∥ < R. If |A|α B ∈ B2pr (H) and |A∗|1−α
C ∈

B2qr (H) for α ∈ [0, 1] , then C∗Af (A)B ∈ B2r (H) and

∥C∗Af (A)B∥2r ≤ fa (∥A∥) ∥|A|α B∥2pr
∥∥∥|A∗|1−α

C
∥∥∥
2qr

. (69)

In particular,

∥C∗Af (A)B∥2r ≤ fa (∥A∥)
∥∥∥|A|1/2 B

∥∥∥
2pr

∥∥∥|A∗|1/2 C
∥∥∥
2qr

(70)

for |A|1/2 B ∈ B2pr (H) and |A∗|1/2 C ∈ B2qr (H) .

Proof. If we take in (28) the power r > 0 and x = ei, y = fi where E = {ei}i∈I and
F = {fi}i∈I are orthonormal basis and sum, then we get∑

i∈I

|⟨C∗Af (A)Bei, fi⟩|2r (71)

≤ f2r
a (∥A∥)

∑
i∈I

〈
||A|α B|2 ei, ei

〉r 〈∣∣∣|A∗|1−α
C
∣∣∣2 fi, fi〉r

.

If we use the Hölder’s inequality for p, q > 1 with 1
p + 1

q = 1, then we get∑
i∈I

〈
||A|α B|2 ei, ei

〉r 〈∣∣∣|A∗|1−α
C
∣∣∣2 fi, fi〉r

(72)

≤

(∑
i∈I

〈
||A|α B|2 ei, ei

〉pr)1/p(∑
i∈I

〈∣∣∣|A∗|1−α
C
∣∣∣2 fi, fi〉qr

)1/q

By the McCarthy inequality for pr, qr ≥ 1, we have∑
i∈I

〈
||A|α B|2 ei, ei

〉pr
≤
∑
i∈I

〈
||A|α B|2pr ei, ei

〉
and ∑

i∈I

〈∣∣∣|A∗|1−α
C
∣∣∣2 fi, fi〉qr

≤
∑
i∈I

〈∣∣∣|A∗|1−α
C
∣∣∣2qr fi, fi〉 ,
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therefore(∑
i∈I

〈
||A|α B|2 ei, ei

〉pr)1/p(∑
i∈I

〈∣∣∣|A∗|1−α
C
∣∣∣2 fi, fi〉qr

)1/q

≤

(∑
i∈I

〈
||A|α B|2pr ei, ei

〉)1/p(∑
i∈I

〈∣∣∣|A∗|1−α
C
∣∣∣2 fi, fi〉qr

)1/q

=
(
∥|A|α B∥2pr2pr

)1/p(∥∥∥|A∗|1−α
C
∥∥∥2qr
2qr

)1/q

= ∥|A|α B∥2r2pr
∥∥∥|A∗|1−α

C
∥∥∥2r
2qr

.

By (71) and (72) we derive∑
i∈I

|⟨C∗Af (A)Bei, fi⟩|2r ≤ f2r
a (∥A∥) ∥|A|α B∥2r2pr

∥∥∥|A∗|1−α
C
∥∥∥2r
2qr

. (73)

Now, if we take the supremum over E and F in (30), then by (21) we get

∥C∗Af (A)B∥2r2r ≤ f2r
a (∥A∥) ∥|A|α B∥2r2pr

∥∥∥|A∗|1−α
C
∥∥∥2r
2qr

and the inequality (69) is obtained. □

Remark 5. If we take r = 1/2 and p = q = 2, then by (69) we get

∥C∗Af (A)B∥1 ≤ fa (∥A∥) ∥|A|α B∥2
∥∥∥|A∗|1−α

C
∥∥∥
2

(74)

provided that |A|α B ∈ B2 (H) and |A∗|1−α
C ∈ B2 (H) for α ∈ [0, 1] .

Also, if r = 1 and p, q > 1 with 1
p + 1

q = 1, then by (69) we get

∥C∗Af (A)B∥2 ≤ fa (∥A∥) ∥|A|α B∥2p
∥∥∥|A∗|1−α

C
∥∥∥
2q

(75)

provided that |A|α B ∈ B2p (H) and |A∗|1−α
C ∈ B2q (H) for α ∈ [0, 1] .

We also have:

Theorem 7. Let r ≥ 1/2, p, q ≥ 1 with 1
p + 1

q = 1
r . Assume that the power

series with complex coefficients f (z) :=
∑∞

k=0 akz
k is convergent on D(0, R) and

A, B, C ∈ B (H) with ∥A∥ < R. If |A|α B ∈ B2p (H) and |A∗|1−α
C ∈ B2q (H) for

α ∈ [0, 1] , then C∗Af (A)B ∈ B2r (H) and

∥C∗Af (A)B∥2r ≤ fa (∥A∥) ∥|A|α B∥2p
∥∥∥|A∗|1−α

C
∥∥∥
2q

. (76)

In particular,

∥C∗Af (A)B∥2r ≤ fa (∥A∥)
∥∥∥|A|1/2 B

∥∥∥
2p

∥∥∥|A∗|1/2 C
∥∥∥
2q

(77)

for |A|1/2 B ∈ B2p (H) and |A∗|1/2 C ∈ B2q (H) .
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Proof. Assume that E = {ei}i∈I and F = {fi}i∈I are orthonormal basis in H. Ob-

serve that we have 1
p
r
+ 1

q
r
= 1 and by Hölder’s inequality for p

r and q
r we have∑

i∈I

〈
||A|α B|2 ei, ei

〉r 〈∣∣∣|A∗|1−α
C
∣∣∣2 fi, fi〉r

(78)

=
∑
i∈I

[〈
||A|α B|2 ei, ei

〉p] r
p

[〈∣∣∣|A∗|1−α
C
∣∣∣2 fi, fi〉q] r

q

≤

(∑
i∈I

〈
||A|α B|2 ei, ei

〉p)r/p(∑
i∈I

〈∣∣∣|A∗|1−α
C
∣∣∣2 fi, fi〉q

)r/q

.

By McCarthy inequality for p, q > 1 we get∑
i∈I

〈
||A|α B|2 ei, ei

〉p
≤
∑
i∈I

〈
||A|α B|2p ei, ei

〉
and ∑

i∈I

〈∣∣∣|A∗|1−α
C
∣∣∣2 fi, fi〉q

≤
∑
i∈I

〈∣∣∣|A∗|1−α
C
∣∣∣2q fi, fi〉

and by (78)∑
i∈I

〈
||A|α B|2 ei, ei

〉r 〈∣∣∣|A∗|1−α
C
∣∣∣2 fi, fi〉r

(79)

≤

(∑
i∈I

〈
||A|α B|2p ei, ei

〉)r/p(∑
i∈I

〈∣∣∣|A∗|1−α
C
∣∣∣2q fi, fi〉)r/q

= ∥|A|α B∥2r2p
∥∥∥|A∗|1−α

C
∥∥∥2r
2q

.

By (71) and (79) we get∑
i∈I

|⟨C∗Af (A)Bei, fi⟩|2r ≤ f2r
a (∥A∥) ∥|A|α B∥2r2p

∥∥∥|A∗|1−α
C
∥∥∥2r
2q

. (80)

Now, if we take the supremum over E and F in (80) we get

∥C∗Af (A)B∥2r2r ≤ f2r
a (∥A∥) ∥|A|α B∥2r2p

∥∥∥|A∗|1−α
C
∥∥∥2r
2q

and the inequality (76) is thus proved. □

Remark 6. If we take p = q = 2r = s ≥ 1, then by (76) we get

∥C∗Af (A)B∥s ≤ fa (∥A∥) ∥|A|α B∥2s
∥∥∥|A∗|1−α

C
∥∥∥
2s

(81)

provided that |A|α B ∈ B2s (H) and |A∗|1−α
C ∈ B2s (H) for α ∈ [0, 1] .
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For α = 1/2 we have

∥C∗Af (A)B∥s ≤ fa (∥A∥)
∥∥∥|A|1/2 B

∥∥∥
2s

∥∥∥|A∗|1/2 C
∥∥∥
2s

(82)

provided that |A|1/2 B ∈ B2s (H) and |A∗|1/2 C ∈ B2s (H) .
If r = 2 and p, q > 1 with 1

p + 1
q = 1

2 , then

∥C∗Af (A)B∥4 ≤ fa (∥A∥) ∥|A|α B∥2p
∥∥∥|A∗|1−α

C
∥∥∥
2q

(83)

provided that |A|α B ∈ B2p (H) and |A∗|1−α
C ∈ B2q (H) for α ∈ [0, 1] .

In particular,

∥C∗Af (A)B∥4 ≤ fa (∥A∥)
∥∥∥|A|1/2 B

∥∥∥
2p

∥∥∥|A∗|1/2 C
∥∥∥
2q

(84)

for |A|1/2 B ∈ B2p (H) and |A∗|1/2 C ∈ B2q (H) .

Theorem 8. Assume that the power series with complex coefficients f (z) :=∑∞
k=0 akz

k is convergent on D(0, R), A, B, C ∈ B (H) with ∥A∥ < R.

If r ≥ 1/2, p, q > 1 with 1
p +

1
q = 1, pr, qr ≥ 1 and ||A|α B|2pr ,

∣∣∣|A∗|1−α
C
∣∣∣2qr ∈

B1 (H) , then C∗Af (A)B ∈ B2r (H) and

ω2r
2r (C

∗Af (A)B) ≤ f2r
a (∥A∥) tr

(
1

p
||A|α B|2pr + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2qr) . (85)

If r ≥ 1 and |A|α B, |A∗|1−α
C ∈ B4r (H) , then C∗Af (A)B ∈ B2r (H) and

ω2r
2r (C

∗Af (A)B) (86)

≤ 1

2
f2r
a (∥A∥)

(
∥|A|α B∥2r4r

∥∥∥|A∗|1−α
C
∥∥∥2r
4r

+ ωr
r

(∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

))
≤ 1

2
f2r
a (∥A∥)

(
∥|A|α B∥2r4r

∥∥∥|A∗|1−α
C
∥∥∥2r
4r

+

∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

∥∥∥∥r
r

)
.

If r ≥ 1, p, q > 1 with 1
p + 1

q = 1, pr, qr ≥ 2, then

ω2r
2r (C

∗Af (A)B) ≤ 1

2
f2r
a (∥A∥)

[
tr

(
1

p
||A|α B|2pr + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2qr) (87)

+ωr
r

(∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

)]
≤ 1

2
f2r
a (∥A∥)

[
tr

(
1

p
||A|α B|2pr + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2qr)

+

∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

∥∥∥∥r
r

]
.
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Proof. From (28) for y = x we have that

|⟨C∗Af (A)Bx, x⟩|2 ≤ f2
a (∥A∥)

〈
||A|α B|2 x, x

〉〈∣∣∣|A∗|1−α
C
∣∣∣2 x, x〉 (88)

for x ∈ H with ∥x∥ = 1.
If we take the power r > 0, we get, by Young and McCarthy inequalities, that

|⟨C∗Af (A)Bx, x⟩|2r

≤ f2r
a (∥A∥)

〈
||A|α B|2 x, x

〉r 〈∣∣∣|A∗|1−α
C
∣∣∣2 x, x〉r

≤ f2r
a (∥A∥)

[
1

p

〈
||A|α B|2 x, x

〉pr
+

1

q

〈∣∣∣|A∗|1−α
C
∣∣∣2 x, x〉qr]

≤ f2r
a (∥A∥)

[
1

p

〈
||A|α B|2pr x, x

〉
+

1

q

〈∣∣∣|A∗|1−α
C
∣∣∣2qr x, x〉]

= f2r
a (∥A∥)

〈(
1

p
||A|α B|2pr + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2qr)x, x

〉
for x ∈ H with ∥x∥ = 1.

If E = {ei}i∈I is an orthonormal basis, then by taking x = ei and summing over
i ∈ I we get

∥C∗Af (A)B∥2rE,2r
=
∑
i∈I

|⟨C∗Af (A)Bei, ei⟩|2r

≤ f2r
a (∥A∥)

∑
i∈I

〈(
1

p
||A|α B|2pr + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2qr) ei, ei

〉
= f2r

a (∥A∥) tr
(
1

p
||A|α B|2pr + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2qr) ,

which, by taking the supremum over E , proves (85).
By Buzano’s inequality we have〈

||A|α B|2 x, x
〉〈

x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉

≤ 1

2

[∥∥∥||A|α B|2 x
∥∥∥∥∥∥∥∣∣∣|A∗|1−α

C
∣∣∣2 x∥∥∥∥+ ∣∣∣∣〈||A|α B|2 x,

∣∣∣|A∗|1−α
C
∣∣∣2 x〉∣∣∣∣]

=
1

2

[∥∥∥||A|α B|2 x
∥∥∥∥∥∥∥∣∣∣|A∗|1−α

C
∣∣∣2 x∥∥∥∥+ ∣∣∣∣〈∣∣∣|A∗|1−α

C
∣∣∣2 ||A|α B|2 x, x

〉∣∣∣∣]
for x ∈ H with ∥x∥ = 1.

If we take the power r ≥ 1 and use the convexity of power function, then we get〈
||A|α B|2 x, x

〉r 〈
x,
∣∣∣|A∗|1−α

C
∣∣∣2 x〉r
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≤


∥∥∥||A|α B|2 x

∥∥∥∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 x∥∥∥∥+ ∣∣∣∣〈∣∣∣|A∗|1−α

C
∣∣∣2 ||A|α B|2 x, x

〉∣∣∣∣
2


r

≤

∥∥∥||A|α B|2 x
∥∥∥r ∥∥∥∥∣∣∣|A∗|1−α

C
∣∣∣2 x∥∥∥∥r + ∣∣∣∣〈∣∣∣|A∗|1−α

C
∣∣∣2 ||A|α B|2 x, x

〉∣∣∣∣r
2

=

∥∥∥||A|α B|2 x
∥∥∥2 r

2

∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 x∥∥∥∥2 r

2

+

∣∣∣∣〈∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2 x, x

〉∣∣∣∣r
2

=

〈
||A|α B|4 x, x

〉 r
2

〈∣∣∣|A∗|1−α
C
∣∣∣4 x, x〉 r

2

+

∣∣∣∣〈∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2 x, x

〉∣∣∣∣r
2

for x ∈ H with ∥x∥ = 1.
Therefore

∥C∗Af (A)B∥2rE,2r (89)

=
∑
i∈I

|⟨C∗Af (A)Bei, ei⟩|2r

≤ f2r
a (∥A∥)

∑
i∈I

〈
||A|α B|2 ei, ei

〉r 〈
ei,
∣∣∣|A∗|1−α

C
∣∣∣2 ei〉r

≤ 1

2
f2r
a (∥A∥)

[∑
i∈I

〈
||A|α B|4 ei, ei

〉 r
2

〈∣∣∣|A∗|1−α
C
∣∣∣4 ei, ei〉 r

2

+
∑
i∈I

∣∣∣∣〈∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2 ei, ei

〉∣∣∣∣r
]

Using Cauchy-Schwarz inequality we have∑
i∈I

〈
||A|α B|4 ei, ei

〉 r
2

〈∣∣∣|A∗|1−α
C
∣∣∣4 ei, ei〉 r

2

≤

(∑
i∈I

〈
||A|α B|4 ei, ei

〉r)1/2(∑
i∈I

〈∣∣∣|A∗|1−α
C
∣∣∣4 ei, ei〉r

)1/2

≤

(∑
i∈I

〈
||A|α B|4r ei, ei

〉)1/2(∑
i∈I

〈∣∣∣|A∗|1−α
C
∣∣∣4r ei, ei〉)1/2

= ∥|A|α B∥2r4r
∥∥∥|A∗|1−α

C
∥∥∥2r
4r

,

where for the last inequality we used McCarthy’s result for r ≥ 1. This proves (86).
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Further, if we use Young’s inequality for p, q > 1 with 1
p + 1

q = 1,

ab ≤ 1

p
ap +

1

q
bq, a, b ≥ 0,

then we get∥∥∥||A|α B|2 x
∥∥∥r ∥∥∥∥∣∣∣|A∗|1−α

C
∣∣∣2 x∥∥∥∥r ≤ 1

p

∥∥∥||A|α B|2 x
∥∥∥pr + 1

q

∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 x∥∥∥∥qr

=
1

p

∥∥∥||A|α B|2 x
∥∥∥2 pr

2

+
1

q

∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 x∥∥∥∥2

qr
2

=
1

p

〈
||A|α B|4 x, x

〉 pr
2

+
1

q

〈∣∣∣|A∗|1−α
C
∣∣∣4 x, x〉 qr

2

≤ 1

p

〈
||A|α B|2pr x, x

〉
+

1

q

〈∣∣∣|A∗|1−α
C
∣∣∣2qr x, x〉

=

〈(
1

p
||A|α B|2pr + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2qr)x, x

〉
for x ∈ H with ∥x∥ = 1.

Therefore

∥C∗Af (A)B∥2rE,2r =
∑
i∈I

|⟨C∗Af (A)Bei, ei⟩|2r

≤ f2r
a (∥A∥)

∑
i∈I

〈
||A|α B|2 ei, ei

〉r 〈
ei,
∣∣∣|A∗|1−α

C
∣∣∣2 ei〉r

≤ 1

2
f2r
a (∥A∥)

[∑
i∈I

〈(
1

p
||A|α B|2pr + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2qr) ei, ei

〉

+
∑
i∈I

∣∣∣∣〈∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2 ei, ei

〉∣∣∣∣r
]

=
1

2
f2r
a (∥A∥)

[
tr

(
1

p
||A|α B|2pr + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2qr)

+

∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

∥∥∥∥r
E,r

]
,

which proves, by taking the supremum over E , the desired inequality (87). □

Remark 7. Let α ∈ [0, 1] . If r = 1/2, p, q = 2 and ||A|α B|2 ,
∣∣∣|A∗|1−α

C
∣∣∣2 ∈

B1 (H) , then C∗Af (A)B ∈ B1 (H) and by (85) we get

ω1 (C
∗Af (A)B) ≤ 1

2
fa (∥A∥) tr

(
||A|α B|2 +

∣∣∣|A∗|1−α
C
∣∣∣2) . (90)
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If r = 1 and p, q > 1 with 1
p + 1

q = 1, then by (85) we obtain

ω2
2 (C

∗Af (A)B) ≤ f2
a (∥A∥) tr

(
1

p
||A|α B|2p + 1

q

∣∣∣|A∗|1−α
C
∣∣∣2q) , (91)

provided that ||A|α B|2p ,
∣∣∣|A∗|1−α

C
∣∣∣2q ∈ B1 (H) .

If we take r = 1 in (86), then we get

ω2
2 (C

∗Af (A)B) (92)

≤ 1

2
f2
a (∥A∥)

(
∥|A|α B∥24

∥∥∥|A∗|1−α
C
∥∥∥2
4
+ ω1

(∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

))
≤ 1

2
f2
a (∥A∥)

(
∥|A|α B∥24

∥∥∥|A∗|1−α
C
∥∥∥2
4
+

∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

∥∥∥∥
1

)
,

provided that |A|α B, |A∗|1−α
C ∈ B4 (H) .

If r = 1 and p = q = 2 in (87), then we get for ||A|α B|2p ,
∣∣∣|A∗|1−α

C
∣∣∣2q ∈ B1 (H)

that

ω2
2 (C

∗Af (A)B) ≤ 1

4
f2
a (∥A∥)

[
tr

(
||A|α B|2p +

∣∣∣|A∗|1−α
C
∣∣∣2q) (93)

+
1

2
f2
a (∥A∥)ω1

(∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

)
≤ 1

4
f2
a (∥A∥) tr

(
||A|α B|2p +

∣∣∣|A∗|1−α
C
∣∣∣2q)

+
1

2
f2
a (∥A∥)

∥∥∥∥∣∣∣|A∗|1−α
C
∣∣∣2 ||A|α B|2

∥∥∥∥
1

.

We also have:

Theorem 9. With the assumptions of Theorem 8, we have for r ≥ 1, λ ∈ [0, 1]
that

ω2r
2r (C

∗Af (A)B) ≤ f2r
a (∥A∥)

∥∥∥∥(1− λ) ||A|α B|2r + λ
∣∣∣|A∗|1−α

C
∣∣∣2r∥∥∥∥ (94)

× ∥|A|α B∥2rλ2r

∥∥∥|A∗|1−α
C
∥∥∥2r(1−λ)

2r
,

provided that |A|α B, |A∗|1−α
C ∈ B2r (H) .

In particular,

ω2r
2r (C

∗Af (A)B) ≤ 1

2
f2r
a (∥A∥)

∥∥∥∥||A|α B|2r +
∣∣∣|A∗|1−α

C
∣∣∣2r∥∥∥∥ (95)

× ∥|A|α B∥r2r
∥∥∥|A∗|1−α

C
∥∥∥r
2r

.
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Proof. If E = {ei}i∈I is an orthonormal basis, then by taking x = ei in (62) and
summing over i ∈ I we get∑

i∈I

|⟨C∗Af (A)Bei, ei⟩|2r (96)

≤ f2r
a (∥A∥)

∑
i∈I

[〈[
(1− λ) ||A|α B|2r + λ

∣∣∣|A∗|1−α
C
∣∣∣2r] ei, ei〉]

×
〈
||A|α B|2 ei, ei

〉rλ〈∣∣∣|A∗|1−α
C
∣∣∣2 ei, ei〉r(1−λ)

≤ f2r
a (∥A∥)

∥∥∥∥(1− λ) ||A|α B|2r + λ
∣∣∣|A∗|1−α

C
∣∣∣2r∥∥∥∥

×
∑
i∈I

〈
||A|α B|2 ei, ei

〉rλ〈∣∣∣|A∗|1−α
C
∣∣∣2 ei, ei〉r(1−λ)

.

If we use Hölder’s inequality for p = 1
λ , q = 1

1−λ , then we have

∑
i∈I

〈
||A|α B|2 ei, ei

〉rλ〈∣∣∣|A∗|1−α
C
∣∣∣2 ei, ei〉r(1−λ)

≤

(∑
i∈I

〈
||A|α B|2 ei, ei

〉r)λ(∑
i∈I

〈∣∣∣|A∗|1−α
C
∣∣∣2 ei, ei〉r

)1−λ

≤

(∑
i∈I

〈
||A|α B|2r ei, ei

〉)λ(∑
i∈I

〈∣∣∣|A∗|1−α
C
∣∣∣2r ei, ei〉)1−λ

= ∥|A|α B∥2rλ2r

∥∥∥|A∗|1−α
C
∥∥∥2r(1−λ)

2r
,

which proves (94). □

Remark 8. If we take r = 1 in Theorem 9, then we get for α ∈ [0, 1] that

ω2
2 (C

∗Af (A)B) ≤ f2
a (∥A∥)

∥∥∥∥(1− λ) ||A|α B|2 + λ
∣∣∣|A∗|1−α

C
∣∣∣2∥∥∥∥ (97)

× ∥|A|α B∥2λ2
∥∥∥|A∗|1−α

C
∥∥∥2(1−λ)

2
,

provided that |A|α B, |A∗|1−α
C ∈ B2 (H) .

In particular,

ω2
2 (C

∗Af (A)B) ≤ 1

2
f2
a (∥A∥)

∥∥∥∥||A|α B|2 +
∣∣∣|A∗|1−α

C
∣∣∣2∥∥∥∥ (98)

× ∥|A|α B∥2
∥∥∥|A∗|1−α

C
∥∥∥
2
.
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GENERAL LOGARITHMIC CONTROL MODULO AND

TAUBERIAN REMAINDER THEOREMS

Muhammet Ali OKUR

Department of Mathematics, Adnan Menderes University, Aydin, TÜRKİYE

Abstract. Let λ = (λn) be a nondecreasing sequence of positive numbers
such that λn → ∞. A sequence (ξn) is called λ-bounded if

λn(ξn − α) = O(1)

with the limit lim
n→∞

ξn = α. In this work, we obtain several Tauberian re-

mainder theorems on λ-bounded sequences for the logarithmic summability
method with help of general logarithmic control modulo of the oscillatory be-

havior. Tauber conditions in our main results are on the generator sequence

and the general logarithmic control modulo.

1. Introduction

Let ξ = (ξn) be a sequence of real numbers. Throughout this work, the notation
of (ξn) = O(1) means that the sequence of (ξn) is bounded for large enough n.

The (C, 1) mean of (ξn) is defined by σ(1)
n (ξ) =

1

n+ 1

n∑
k=0

ξk and the logarithmic

mean of (ξn) is defined by ℓ(1)n (ξ) =
1

γn

n∑
k=0

ξk
k + 1

, where γn =

n∑
k=0

1

k + 1
∼ log n,

where for two sequences (un) and (vn) of positive numbers, we write un ∼ vn if

lim
n→∞

un

vn
= 1. A sequence (ξn) is said to be (C, 1) summable to a finite number α

if the limit

lim
n→∞

σ(1)
n (ξ) = α (1)
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method, logarithmic general control modulo.
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exists and we say that a sequence (ξn) is logarithmic summable to a finite number
α, if

lim
n→∞

ℓ(1)n (ξ) = α (2)

[1]. It is well known that if a sequence (ξn) is convergent, then (1) and (2) are exist.
In other words, these two methods are regular methods. Also the existence of (1)
implies the existence of (2). However the converse implications are not always true.
For example the sequence (ξn) = (−1)n(2n+ 1) is neither ordinary convergent nor
(C, 1) convergent. But it is logarithmic convergent to 0.

For a sequence (ξn), we have the following identity:

ξn − ℓ(1)n (ξ) = v(0)n (∆ξ), (3)

where v(0)n (∆ξ) =
1

γn

n∑
k=1

γk−1(∆ξk). The identity (3) is called the logarithmic Kro-

necker identity and the sequence (v
(0)
n (∆ξ)) is called the generator sequence of (ξn).

For each integer k ≥ 1, ℓ
(k)
n (ξ) is defined by

ℓ(k)n (ξ) =
1

γn

n∑
t=0

ℓk−1
t (ξ)

t+ 1
, (4)

where ℓ
(0)
n (ξ) = ξn and ℓ

(1)
n (ξ) = ℓn(ξ).

If we get the logarithmic mean of the sequence of (v
(0)
n (∆ξ)), then we obtain

ℓ(1)n (v(0)(∆ξ)) =
1

γn

n∑
k=0

v
(0)
k (∆ξ)

k + 1
= v(1)n (∆ξ).

By getting the logarithmic mean of (v
(1)
n (∆ξ)), then we obtain

ℓn(v
(1)(∆ξ)) =

1

γn

n∑
k=0

v
(1)
k (∆ξ)

k + 1
= v(2)n (∆ξ).

Continuing in this way, we obtain the following sequence:

ℓn(v
(m−1)(∆ξ)) =

1

γn

n∑
k=0

v
(m−1)
k (∆ξ)

k + 1
= v(m)

n (∆ξ),

for m ≥ 1. Hence, all these given sequences can be written as follows:

v(m)
n (∆ξ) =


1
γn

n∑
k=0

v
(m−1)
k (∆ξ)

k + 1
, m ≥ 1

vn(∆ξ), m = 0.

For a sequence (ξn), classical logarithmic control modulo is defined by

ω(0)
n (ξ) = (n+ 1)γn−1∆ξn. (5)
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The general logarithmic control modulo of the oscillatory behavior of integer order
m ≥ 1 of a sequence (ξn) is defined by

ω(m)
n (ξ) = ω(m−1)

n (ξ)− ℓ(1)n (ω(m−1)(ξ)). (6)

Assume that λ = (λn) be a nondecreasing sequence of positive numbers such
that λn → ∞. A sequence (ξn) is called bounded with the rapidity (λn) if

λn(ξn − α) = O(1) (7)

with lim
n→∞

ξn = α. Shortly, we say that the sequence (ξn) is λ-bounded and the set

of all λ-bounded sequences is denoted by mλ.
Also a sequence (ξn) is called λ-bounded by logarithmic method of summability

if

λn(ℓ
(1)
n (ξ)− α) = O(1) (8)

with lim
n→∞

ℓ(1)n (ξ) = α. The set of all logarithmic λ-bounded sequences is denoted

by (ℓ,mλ).
Tauberian theory for the logarithmic method have been studied by various au-

thors. A number of authors such as Kwee [2] and Ishiguro [3–5] obtained some
Tauberian theorems for the logarithmic method and generalized some classical
Tauberian theorems to logaritmic method. Móricz [6] presented some classical
type Tauberian theorems for logarithmic method of sequences and established some
Tauberian theorems by introducing logarithmic summability method of integrals.

Later, Okur and Totur [7,8] introduced general logarithmic control modulo and
classical logarithmic control modulo for logarithmic method of integrals. And
they extanded Tuaberian theorems which are given for (C, 1) method. Sezer and
Çanak [9, 10] investigated new Tauberian conditions with help of general logarith-
mic control modulo for logarithmic method of sequences and proved some Theorems
for logarithmic method of power series.

On the other hand many researchers studied Tauberian remainder theorems for
some summability methods such as Kangro [11] and Tammeraid [12–14] after Kan-
gro’s work [15] in which the author introduced the concepts of Tauberian remiander
theorems by using summability with given rapidity λ. Meronen and Tammeraid [16]
presented some Tauberian remainder theorems for (C, 1) summability method from
a new perspective. In this work, they used the concept of general control modulo
which was defined in [17]. Later Sezer and Çanak [18,19] and Totur and Okur [20,21]
proved some results for weighted mean, Hölder and (C,α) summability methods.
They also benefited from the concept of general control modulo to obtain Tauberian
remainder theorems in these studies.

We aim in this paper to prove some Tauberian remainder theorems for the log-
arithmic summability method. Firstly, we prove 3 lemmas in section 2 and in
each lemma, the relationship between the different-order general logarithmic con-
trol modulo of a sequence and its different-order logarithmic means is given. After
that, the main theorems are presented in the next section. In the main theorems,
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we obtain λ-boundedness of a sequence from its logarithmic λ-boundedness by us-
ing conditions on generator sequence and general logarithmic control modulo of the
given sequence.

2. Auxilary Results

For the proofs of our main results, we require the following lemmas.

Lemma 1. The following equality is valid.

ω(1)
n (ξ) = ω(0)

n (ξ)− ξn + ℓ(1)n (ξ). (9)

Proof. Taking m = 1 in (6) and using (5), we get

ω(1)
n (ξ) = ω(0)

n (ξ)− ℓ(1)n (ω(0)(ξ))

= ω(0)
n (ξ)− 1

γn

n∑
k=0

(k + 1)γk−1∆ξk
k + 1

= ω(0)
n (ξ)− v(0)n (∆ξ).

Using (3) in the last equality, we obtain

ω(1)
n (ξ) = ω(0)

n (ξ)− ξn + ℓ(1)n (ξ).

□

Lemma 2. The following equality is valid.

ω(2)
n (ξ) = ω(0)

n (ξ)− 2ξn + 3ℓ(1)n (ξ)− ℓ(2)n (ξ). (10)

Proof. If we take m = 2 in (6), we obtain

ω(2)
n (ξ) = ω(1)

n (ξ)− ℓ(1)n (ω(1)(ξ)).

Using (9), we get

ω(2)
n (ξ) = ω(0)

n (ξ)− ξn + ℓ(1)n (ξ)− ℓ(1)n (ω(0)(ξ)− ξ + ℓ(1)(ξ))

= ω(0)
n (ξ)− ξn + ℓ(1)n (ξ)− 1

γn

n∑
k=0

1

k + 1
(ω

(0)
k (ξ)− ξk + ℓ

(1)
k (ξ))

From (4), we get

ω(2)
n (ξ) = ω(0)

n (ξ)− ξn + ℓ(1)n (ξ)− v(0)n (∆ξ) + ℓ(1)n (ξ)− ℓ(2)n (ξ).
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By (3), we conclude that

ω(2)
n (ξ) = ω(0)

n (ξ)− 2ξn + 3ℓ(1)n (ξ)− ℓ(2)n (ξ).

□

Lemma 3. The following equality is valid.

ω(3)
n (ξ) = ω(0)

n (ξ)− 3ξn + 6ℓ(1)n (ξ)− 4ℓ(2)n (ξ) + ℓ(3)n (ξ). (11)

Proof. By taking m = 3 in (6), we have

ω(3)
n (ξ) = ω(2)

n (ξ)− ℓ(1)n (ω(2)(ξ)).

From (10), we obtain

ω(3)
n (ξ) = ω(0)

n (ξ)− 2ξn + 3ℓ(1)n (ξ)− ℓ(2)n (ξ)

−ℓ(1)n (ω(0)(ξ)− 2ξ + 3ℓ(1)(ξ)− ℓ(2)(ξ))

= ω(0)
n (ξ)− 2ξn + 3ℓ(1)n (ξ)− ℓ(2)n (ξ)

− 1

γn

n∑
k=0

1

k + 1
(ω

(0)
k (ξ)− 2ξk + 3ℓ

(1)
k (ξ)− ℓ

(2)
k (ξ)).

Now, using (4) in the last equality, we get

ω(3)
n (ξ) = ω(0)

n (ξ)− 2ξn + 3ℓ(1)n (ξ)− ℓ(2)n (ξ)

−v(0)n (∆ξ) + 2ℓ(1)n (ξ)− 3ℓ(2)n (ξ) + ℓ(3)n (ξ).

Finally, from definition of the logarithmic Kronecker identity, we have

ω(3)
n (ξ) = ω(0)

n (ξ)− 3ξn + 6ℓ(1)n (ξ)− 4ℓ(2)n (ξ) + ℓ(3)n (ξ).

□

3. Main Results

Theorem 1. Let ξ is λ-bounded by the (ℓ, 1) method. If

λnv
(0)
n (∆ξ) = O(1), (12)

then ξ is λ-bounded.

Proof. Because of ξ is λ-bounded by the (ℓ, 1) method, we have

λn

(
ℓ(1)n (ξ)− α

)
= O(1). (13)
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By the equality

λn (ξn − α) = λn

(
ℓ(1)n (ξ)− α+ ξn − ℓ(1)n (ξ)

)
,

we obtain

λn (ξn − α) = λn

(
ℓ(1)n (ξ)− α

)
+ λnv

(0)
n (∆ξ)

using (3). By combining (12) and (13) with the last equailty, we get

λn (ξn − α) = O(1).

So, ξ is λ-bounded and proof is completed. □

Theorem 2. Let ξ is λ-bounded by the (ℓ, 1) method. If

λnω
(0)
n (ξ) = O(1) (14)

and

λnω
(1)
n (ξ) = O(1), (15)

then ξ is λ-bounded.

Proof. Benefit from Lemma 1, we get the following equality:

λn (ξn − α) = λn

(
ℓ(1)n (ξ)− α− ω(1)

n (ξ) + ξn − ℓ(1)n (ξ) + ω(1)
n (ξ)

)
.

So, we conclude that

λn (ξn − α) = −λnω
(1)
n (ξ) + λn

(
ℓ(1)n (ξ)− α

)
+ λnω

(0)
n (ξ).

From λ-boundedness by the (ℓ, 1) method, we have (13). Taking (14) and (15) into
account we obtain

λn (ξn − α) = O(1).

This result completed the proof. □

Theorem 3. Let ξ is λ-bounded by the (ℓ, 1) method and the condition (14) is
satisfied. If

λnω
(2)
n (ξ) = O(1) (16)

and

λn

(
ℓ(2)n (ξ)− α

)
= O(1), (17)

then ξ is λ-bounded.

Proof. Using Lemma 2, we obtain the equality of

λn (ξn − α) = λn

(
−ω(2)

n (ξ) + ω(0)
n (ξ)− α− ξn − ℓ(2)n (ξ) + 3ℓ(1)n (ξ)

)
.

Therefore we get the following result:

2λn (ξn − α) = −λnω
(2)
n (ξ) + λnω

(0)
n (ξ)− λn

(
ℓ(2)n (ξ)− α

)
+ 3λn

(
ℓ(1)n (ξ)− α

)
.
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Using (13), (14), (16) and (17) we get the result of

λn (ξn − α) = O(1).

It means that ξ is λ-bounded. □

Theorem 4. Let ξ is λ-bounded by the (ℓ, 1) method and the conditions (14) and
(17) are satisfied. If

λnω
(3)
n (ξ) = O(1) (18)

and

λn

(
ℓ(3)n (ξ)− α

)
= O(1), (19)

then ξ is λ-bounded.

Proof. With the Lemma 3 we obtain the following equality:

λn (ξn − α) = λn

(
−ω(3)

n (ξ) + ω(0)
n (ξ) + ℓ(3)n (ξ)− 4ℓ(2)n (ξ) + 6ℓ(1)n (ξ)− 2ξn − α

)
.

Then it follows that

3λn (ξn − α) = −λnω
(3)
n (ξ) + λnω

(0)
n (ξ) + λn

(
ℓ(3)n (ξ)− α

)
−4λn

(
ℓ(2)n (ξ)− α

)
+ 6λn

(
ℓ(1)n (ξ)− α

)
.

If we combine (13), (14), (17), (18) and (19), we have the equality

λn (ξn − α) = O(1).

Therefore we obtain that ξ is λ-bounded. □
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[7] Totur, Ü., Okur, M. A., On Tauberian conditions for the logarithmic methods of integrability,
Bull. Malays. Math. Sci. Soc., 41 (2018), 879–892. https://doi.org/10.1007/s40840-016-0371-

x



398 M. A. OKUR
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Abstract. In this article, we adopt the tempered fractional integral opera-
tors to develop some novel Minkowski and Hermite-Hadamard type integral

inequalities. Thus, we give several special cases of the integral inequalities for

tempered fractional integrals obtained in the earlier works.

1. Introduction

The theory of convexity plays a vital role in different fields of pure and applied sci-
ences. Consequently, the classical concepts of convex sets and convex functions have
been generalized in different directions. The concept of function is one of the ba-
sic structures of mathematics, and many researchers have focused on new function
classes and have made efforts to classify the space of functions. One of important
class of functions defined as a product of this intense effort is the convex function,
which has applications in statistics, inequality theory, convex programming, and
numerical analysis. This interesting class of functions is defined as follows ( men-
tioned in ([6]).

Definition 1. Let H be an interval in R. Then f : H → R is said to be convex if

f (ξa+ (1− ξ) b) ≤ ξf (a) + (1− ξ) f(b)

for all a, b ∈ H and ξ ∈ [0, 1] .

For more information, see the papers [1-5] and [22]- [24].
Another aspect due to which the convexity theory has attracted many researchers
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is its close relationship with theory of inequalities. Many famous inequalities can be
obtained using the concept of convex functions. For details related to convexity, in-
terested readers are referred to [6,7]. Among these inequalities, Hermite–Hadamard
inequality, which provides us a necessary and sufficient condition for a convex func-
tion, is one of the most studied results. This result of Hermite and Hadamard reads
as follows:

Let f : I ⊆ R → R be a convex mapping defined on the interval I of real numbers
and a, b ∈ I, with a < b. The following double inequality holds:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f (b)

2
(1)

This double inequality is known in the literature as the Hermite-Hadamard inequal-
ity for convex functions.

Definition 2. ([17-18]) Let f ∈ L1(a, b). The Riemann Liouville integrals Iαa+f
and Iαb−f of order α > 0 with a ≥ 0 are defined by

Iαa+f (x) =
1

Γ (α)

∫ x

a

f (ξ) (x− ξ)
α−1

dξ, x > a (2)

and

Iαb−f(x) =
1

Γ (α)

∫ b

x

f (ξ) (ξ − x)
α−1

dξ, b > x (3)

The tempered fractional integral was first studied by Buschman [8], but Liu et al.
[9], Meerschaert et al. [10] and Fernandez et al. [12] have described the associated
tempered fractional calculus more explicitly.

Definition 3. ([10]) Let [a, b] be a real interval and ζ ≥ 0, α > 0. Then, for
a function f ∈ L1[a, b], the left and right tempered fractional integral, respectively,
defined by

a+Jα,ζf (x) =
1

Γ(α)

∫ x

a

(x− ξ)
α−1

e−ζ(x−ξ)f (ξ) dξ (4)

and

b−J
α,ζf (x) =

1

Γ(α)

∫ b

x

(ξ − x)
α−1

e−ζ(ξ−x)f (ξ) dξ, (5)

where Γ(α) is the Gamma function defined by Γ(α) =
∫∞
0

tz−1e−tdt.

For any ζ > 0, the positive one-sided tempered fractional operator of a suitable
function f(x) can be given by;

τJα,ζx f (x) =
1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)f (ξ) dξ.



INTEGRAL INEQUALITIES THROUGH TEMPERED FRACTIONAL INTEGRAL 401

Remark 1. If we take ζ = 0 in the equations (4) and (5), then we have the left
and right R-L operators (2) and (3) respectively.

First of all, we define the new incomplete Gamma function following definition
as in [11].

Definition 4. For the real numbers , α > 0 and , x, ζ ≥ 0, we define the ζ-
incomplete Gamma function by

Iα(α, b) =
1

Γ(α)

b∫
0

xα−1e−ζtdx

If ζ = 1, it reduces to the incomplete Gamma function

Iα(α, b) =
1

Γ(α)

b∫
0

xα−1e−xdx.

Remark 2. For the real numbers α > 0 and x, ζ ≥ 0, we have

a. Iζ(b−a) (α, 1) =
∫ 1

0
xα−1 e−ζ(b−a)xdx = 1

(b−a)α Iα (α,b− a)

b.
∫ 1

0
Iα(b−a) (α, x) dx = Iα(α ,b−a)

(b−a)α − Iα(α+1 ,b−a)

(b−a)α+1

Recently, Nisar et al. [13] established some inequalities via fractional con-
formable integral operators. In [14,15], various researchers established Minkowski
inequalities involving fractional calculus with general analytic kernels and some
novel estimations of Hadamard type inequalities for different kinds of convex func-
tions via tempered fractional integral operator, the Hermite–Hadamard type in-
equalities for k-fractional conformable integrals are found in [16].
This paper is organized in the following way: In Section 2, the main results, the
reverse Minkowski and related Hermite-Hadamard integral inequalities, are estab-
lished using tempered fractional integral operators. The concluding remarks are
given in Section 3.

2. Main Results

In this section, the reverse Minkowski and Hermite-Hadamard type integral in-
equalities are developed using the tempered integral operator.

Theorem 1. Let ζ ≥ 0, α > 0, p≥1 and let there be two positive functions
f1 and f2 on [0,∞) such that for all x> a, τJα,ζx f1

p (x)<∞, τJα,ζx f2
p (x)<∞. If

0 <τ1≤ f1(ξ)
f2(ξ)

≤τ2, holds for τ1, τ2 ∈ R+ and ξ∈[0,x], then we have:(
τJα,ζx f1

p (x)
) 1

p

+
(
τJα,ζx f2

p (x)
) 1

p≤ 1+τ2 (τ1+2)

(τ1+1) (τ2+1)

(
τJα,ζx (f1 + f2)

p
(x)

) 1
p

. (6)
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Proof. Under the given condition f1(ξ)
f2(ξ)

≤τ2, ξ∈[0,x], it can be written as

(τ2+1)
p
f1

p (ξ) ≤ τ2
p(f1 + f2)

p
(ξ) . (7)

Multiplying both sides of (7) by (x−ξ)α−1

Γ(α)eζ(x−ξ) , then integrating the resulting inequality

with respect to ξ over [0,x], we obtain,

(τ2+1)
p 1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)f1
p (ξ) dξ

≤ τp2
1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)(f1 + f2)
p
(ξ)dξ.

(8)

Consequently, we obtain

(τ2+1)
pτJα,ζx f1

p (x) ≤ τ2
pτJα,ζx (f1 + f2)

p
(x) . (9)

Hence, we can write[
τJα,ζx f1

p (x)
] 1

p ≤ τ2
(τ2 + 1)

[
τJα,ζx (f1 + f2)

p
(x)

] 1
p

. (10)

In contrast, as τ1f2(ξ)≤f1(ξ), it follows that(
1 +

1

τ1

)p

f2
p (ξ) ≤ 1

τ1p
[f1 (ξ)+f2 (ξ)]

p
. (11)

Again, if we multiplying both sides of (11) by (x−ξ)α−1

Γ(α)eζ (x−ξ) , then integrating the

resulting inequality with respect to ξ over [0,x], we obtain,[
τJα,ζx f2

p (x)
] 1

p ≤ 1

(τ1 + 1)

[
τJα,ζx (f1 + f2)

p
(x)

] 1
p

. (12)

Adding the inequalities (10) and (12) yields the desired inequality. □

Remark 3. By setting Theorem 1 for α = 1, ζ = 0 and for an arbitrary choice of
function, we obtain Theorem 1.2 in [20].

Remark 4. In Theorem 1, if we choose ζ = 0, we obtain Theorem 2.1 in [19].

Inequality (6) is referred to as the reverse Minkowski inequality for the tempered
fractional integral operator.

Theorem 2. Let ζ ≥ 0, α > 0, p≥1 and let there be two positive functions
f1 and f2 on [0,∞) such that for all x> a, τJα,ζx f1

p (x)<∞, τJα,ζx f2
p (x)<∞. If

0 <τ1≤ f1(ξ)
f2(ξ)

≤τ2, holds for τ1, τ2 ∈ R+ and ξ∈[0,x], then we have:(
τJα,ζx f1

p (x)
) 2

p

+
(
τJα,ζx f2

p (x)
) 2

p

≥
(
(1+τ2) (τ1+1)

τ2
−2

)[
τJα,ζx f1

p (x)
] 1

p
[
τJα,ζx f2

p (x)
] 1

p

.

(13)
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Proof. The product of inequalities (10) and (12) yields

(1+τ2) (τ1+1)

τ2

[
τJα,ζx f1

p (x)
] 1

p
[
τJα,ζx f2

p (x)
] 1

p ≤
[
τJα,ζx (f1 + f2)

p
(x)

] 2
p

. (14)

Now, utilizing the Minkowski inequality to the right hand side of (14), one obtains(
τJα,ζx (f1 + f2)

p
(x)

) 2
p ≤

([
τJα,ζx f1

p (x)
] 1

p

+
[
τJα,ζx f2

p (x)
] 1

p

)2

.

Then, we have(
τJα,ζx (f1 + f2)

p
(x)

) 2
p ≤

[
τJα,ζx f1

p (x)
] 2

p

+
[
τJα,ζx f2

p (x)
] 2

p

+ 2
[
τJα,ζx f1

p (x)
] [

τJα,ζx f2
p (x)

]
.

(15)

Thus, from the above inequalities, we obtain the inequality (13).
□

Remark 5. By setting Theorem 2 for α = 1, ζ = 0 and for an arbitrary choice of
function, we obtain Theorem 2.2 in [21].

Remark 6. In Theorem 2, if we choose ζ = 0, we obtain Theorem 2.3 in [19].

Lemma 1. ([19]) Let G be a concave function on [a, b]. Then the following double
inequality holds:

G (a) + G (b) ≤ G (b+ a− x) + G (x) ≤ 2G
(
a+ b

2

)
. (16)

Theorem 3. Let ζ ≥ 0, α > 0, p ≥ 1 and let there be two positive functions ℏ and
L on [0,∞). If ℏp and Lq are two concave functions on [0,∞), then we have:

2−p−q
(
ℏ(0) + ℏ(x)

)p(L(0)+L(x)
)q[τJα,ζx (xα−1)

]2
≤ τJα,ζx

(
xα−1ℏp (x)

)
τJα,ζx

(
xα−1Lq (x)

)
.

(17)

Proof. Since the ℏp and Lq are two concave functions on [0,∞), then by Lemma 1,
for any ξ > 0 we obtain,

ℏ p (0) + ℏp (x) ≤ ℏp (x− ξ) + ℏp (ξ) ≤ 2ℏp
(x
2

)
, (18)

and

Lq (0) + Lq (x) ≤ Lq (x− ξ) + Lq (ξ) ≤ 2Lq
(x
2

)
. (19)
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Multiplying both sides of (18) and (19) by (x−ξ)α−1ξα−1

Γ(α)eζ (x−ξ) , then integrating the re-

sulting inequality with respect to ξ over [0,x], we obtain,

ℏp (0) + ℏp (x)
Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α dξ

≤ 1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α ℏp (x− ξ) dξ

+
1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α ℏp (ξ) dξ

≤
2ℏp

(
x
2

)
Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α dξ,

(20)

and

Lq (0) + Lq (x)

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α dξ

≤ 1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α Lq (x− ξ) dξ

+
1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α Lq (ξ) dξ

≤
2Lq

(
x
2

)
Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α dξ.

(21)

Using the change of variables x− ξ = y, we have

1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α ℏp (x− ξ) dξ = τJα,ζx

(
xα−1ℏp (x)

)
, (22)

and

1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α Lq (x− ξ) dξ = τJα,ζx

(
xα−1Lq (x)

)
. (23)

Thus, by using (20) and (22) yields,

ℏp (0) + ℏp (x)
(
τJα,ζx

(
xα−1

))
≤ 2τJα,ζx

(
xα−1ℏp (x)

)
≤ ℏp

(x
2

)(
τJα,ζx

(
xα−1

))
,

(24)

Similarly, the use of (21) and (23) yields,

ℏq (0) + Lq (x)
(
τJα,ζx

(
xα−1

))
≤ 2τJα,ζx

(
xα−1Lq (x)

)
≤ Lq

(x
2

)(
τJα,ζx

(
xα−1

))
.

(25)
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The inequalities (24) and (25) imply that

(ℏp (0) + ℏp (x)) (Lq (0) + Lq (x))
(
τJα,ζx

(
xα−1

))2

≤ 4τJα,ζx

(
xα−1ℏp (x)

)
τJα,ζx

(
xα−1Lq (x)

)
.

(26)

Since ℏ and L are positive functions, therefore for any x > 0, p ≥ 1, and q ≥ 1,
we have (

ℏp (0) + ℏp (x)
2

) 1
p

≥ 2−1 (ℏ(0) + ℏ(x)) ,

and (
Lq (0) + ℏp (x)

2

) 1
p

≥ 2−1 (L (0) + L (x)) .

Hence, it follows that

(ℏp (0) + ℏp (x))
2

τJα,ζx

(
xα−1

)
≥ 2−p(ℏ (0) + ℏ (x))pτJα,ζx

(
xα−1

)
, (27)

(Lq (0) + Lq (x))

2
τJα,ζx

(
xα−1

)
≥ 2−q(L (0) + L (x))

qτJα,ζx

(
xα−1

)
. (28)

The inequalities (27) and (28) imply

1

4
(ℏp (0) + ℏp (x)) (Lq (0) + Lq (x))

[
τJα,ζx

(
xα−1

)]2
≥ 2−p−q(ℏ (0) + ℏ (x))p(L (0) + L (x))

q
[
τJα,ζx

(
xα−1

)]2
.

(29)

Thus, by combining (21) and (24), we get the desired result. □

Remark 7. By considering Theorem 3, for α = 1, ζ = 0 and for an arbitrary
choice of function, we obtain Theorem 2.3 in [21].

Remark 8. In Theorem 3, if we choose ζ = 0, we obtain Theorem 2.5 in [19].

Theorem 4. Let ζ ≥ 0, α, β > 0, p≥1 and let there be two positive functions ℏ
and L on [0,∞). If ℏp and Lq are two concave functions on [0,∞), then we have:

22−p−q(ℏ (0)+ℏ (x))p(L (0) + L (x))
q
[
τJα,ζx

(
xβ−1

)]2
≤

[
Γ (β)

Γ (α)
βτJα,ζx

(
xα−1ℏp (x)

)
+ τJα,ζx

(
xβ−1ℏp (x)

)]
×
[
Γ (β)

Γ (α)
βτJα,ζx

(
xα−1Lq (x)

)
+ τJα,ζx

(
xβ−1Lq (x)

)]
.

(30)
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Proof. Multiplying both sides of (18) and (19) by (x−ξ)α−1ξβα−1

Γ(α)eζ (x−ξ) , then integrating

the resulting inequality with respect to ξ over [0,x], we obtain

ℏp (0) + ℏp (x)
Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
dξ

≤ 1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
ℏp (x− ξ) dξ

+
1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
ℏp (ξ) dξ

≤
2ℏp

(
x
2

)
Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
dξ,

(31)

and

Lq (0) + Lq (x)

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
dξ

≤ 1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
Lq (x− ξ) dξ

+
1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
Lq (ξ) dξ

≤
2Lq

(
x
2

)
Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
dξ.

(32)

Using the change of variables x− ξ = y, we have

Γ(β)

Γ(β)Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
ℏp (x− ξ) dξ

=
Γ(β)

Γ(α)
βτJ

α,ζ

x

(
xα−1ℏp (x)

)
,

(33)

and

Γ(β)

Γ(β)Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
Lq (x− ξ) dξ

=
Γ(β)

Γ(α)
βτJ

α,ζ

x

(
xα−1Lq (x)

)
.

(34)
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Thus, from (31) and (33), we write

(ℏp (0) + ℏp (x)) τJαβ,ζx

(
xα−1

)
≤ Γ (β)

Γ (α)
βτJ

α,ζ

x

(
xα−1ℏp (x)

)
+ τJα,ζx

(
xβ−1ℏp (x)

)
≤ 2ℏp

(x
2

)
τJα,ζx

(
xβ−1

)
,

(35)

and with (32) and (34), we can write,

(Lq (0) + Lq (x)) τJαβ,ζx

(
xα−1

)
≤ Γ (β)

Γ (α)
βτJα,ζx

(
xα−1Lq (x)

)
+ τJα,ζx

(
xβ−1Lq (x)

)
≤ 2Lq

(x
2

)
τJα,ζx

(
xβ−1

)
.

(36)

From (30) and (31), it follows that

(ℏp (0) + ℏp (x)) (Lq (0) + Lq (x))
[
τJα,ζx

(
xβ−1

)]2
≤

[
Γ (β)

Γ (α)
βτJα,ζx

(
xα−1ℏp (x)

)
+ τJα,ζx

(
xβ−1ℏp (x)

)]
×
[
Γ (β)

Γ (α)
βτJα,ζx

(
xα−1Lq (x)

)
+ τJα,ζx

(
xβ−1Lq (x)

)]
.

(37)

Since ℏ and L are positive functions, therefore for any x > 0, p ≥ 1, and q ≥ 1,
we have

(ℏp (0) + ℏp (x))
2

τJα,ζx

(
xβ−1

)
≥ 2−p(ℏ (0) + ℏ (x))pτJα,ζx

(
xβ−1

)
, (38)

and

(Lq (0) + Lq (x))

2
τJα,ζx

(
xβ−1

)
≥ 2−q(L (0) + L (x))

qτJα,ζx

(
xβ−1

)
. (39)

Thus from (38) and (39) it follows that

1

4
(ℏp (0) + ℏp (x)) (Lq (0) + Lq (x))

[
τJα,ζx

(
xβ−1

)]2
≥ 2−p−q(ℏ (0) + ℏ (x))p(L (0) + L (x))

q
[
τJα,ζx

(
xβ−1

)]2
.

(40)

Combining inequalities (37) and (40), we get the desired proof.

□

Remark 9. By considering Theorem 4 for α = 1, ζ = 0 and for an arbitrary choice
of function, we obtain Theorem 2.4 in [21].

Remark 10. In Theorem 4, if we choose , ζ = 0, we obtain Theorem 2.8 in [19].

Remark 11. In Theorem 4, if we choose α = β, we obtain Theorem 2.4.
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3. Conclusion

The Minkowski and Hermite-Hadamard inequalities for the tempered fractional
integral operator have been newly established in this paper. Not only do we prove
that the results obtained are mathematically more valuable, but similar inequali-
ties can also be constructed, for example with the help of the incomplete Gamma
function used in Remark 2. We hope that our results can stimulate further research
in various fields of pure and applied science.

Author Contribution Statements Erdal Gül and Abdüllatif Yalçın have con-
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read and approved the final form of the manuscript.

Declaration of Competing Interests The authors declare that there are no
conflicts of interest regarding the publication of this paper.

References

[1] Abramovich, S., Farid, G., Pecaric, J., More about Hermite-Hadamard inequalities, Cauchy’s
means, and superquadracity, Journal of Inequalities and Applications, (2010), 102467.

https://doi.org/10.1155/2010/102467
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[6] Set, E., Özdemir, M. E., Dragomir, S. S., On Hermite-Hadamard inequality and other integral

inequalities involving two functions, Journal of Inequalities and Applications, (2010), 1-9.

https://doi.org/10.1155/2010/148102
[7] Nonnenmacher, Theo F., Metzler., R., On the Riemann-Liouville fractional

calculus and some recent applications, Fractals, 3 (03) (1995), 557-566.

https://doi.org/10.1142/s0218348x95000497
[8] Buschman, R. G., A factorization of an integral operator using Mikusinski calculus, SIAM

Journal on Mathematical Analysis, 3 (1), (1972), 83-85. https://doi.org/10.1137/0503010

[9] Liu, R., Wu, Z., Well-posedness of a class of two-point boundary value problems
associated with ordinary differential equations, Adv. Differ. Equ. 2018, 54 (2018).

https://doi.org/10.1186/s13662-018-1510-5

[10] Meerschaert, M. M., Sabzikar, F., Chen, J., Tempered fractional calculus, Journal of Com-
putational Physics, 293 (2015), 14. https://doi.org/10.1016/j.jcp.2014.04.024

[11] Mohammed, P. O., Sarikaya, M. Z., Baleanu, D., On generalized Hermite-

Hadamard inequalities via fractional integrals, Symmetry, 12 (4), (2020), 595.
https://doi.org/10.3390/sym12040595



INTEGRAL INEQUALITIES THROUGH TEMPERED FRACTIONAL INTEGRAL 409
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INTUITIONISTIC FINE SPACE
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Abstract. In the exploration of intuitionistic fine spaces, this article intro-

duces a novel concept known as intuitionistic fine open sets (IfOS). Delving
into the properties of these sets, the study analyzes both intuitionistic fine

open and closed sets within the context of intuitionistic fine spaces. The arti-

cle establishes fundamental definitions, accompanied by illustrative real time
example, to provide a comprehensive understanding of the newly introduced

sets. Furthermore, the exploration extends to defining and examining key

concepts such as intuitionistic fine continuity, intuitionistic fine irresoluteness,
and intuitionistic fine irresolute homeomorphism. This progression aims to

contribute to the broader comprehension and application of intuitionistic fine

spaces in topological contexts.

1. Introduction

Intuitionistic topology (IT), fuzzy and intuitinistic fuzzy topology [2, 3] plays a
vital role in applied sciences such as pattern recognition, optimization technique,
medical diagnosis, decision-making etc., [1,8,12,17,18] creates interest in introduc-
ing the new set, intuitionistic fine open set (IfOS) in this article. The classical
version of intuitionistic sets, as proposed by Coker [2, 3], serves as a foundational
framework for understanding certain topological structures. Additionally, the con-
cept of fine sets, pioneered by P.L. Powar and K. Rajak [14–16], adds further depth
to the study of these sets. The linkage between fine sets and the newly introduced
concept in this article, namely intuitionistic fine open sets, lies in the amalgamation
of these two theoretical underpinnings.
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The introduction of intuitionistic fine open sets can be seen as an evolution or
extension of these ideas. In essence, the concept of intuitionistic fine open sets
builds upon the foundational notions of intuitionistic sets and fine sets, tailoring
them to address and explore more specialized properties or relations. The objec-
tive of this article is to introduce a new set of concepts termed intuitionistic fine
open sets (IfOS) in intuitionistic fine spaces. As the discourse advances, an in-
depth examination of the characteristics of intuitionistic fine open and closed sets
in such spaces is undertaken. The foundational definitions are meticulously laid
out, accompanied by essential real time example to elucidate the nuances of these
sets.

Moreover, the article delves into the exploration and definition of intuitionis-
tic fine continuity, intuitionistic fine irresoluteness, and intuitionistic fine irresolute
homeomorphism, thus adding layers of understanding to the intricacies of intuition-
istic fine spaces. In particular, there exists applications in image processing predom-
inantly leverage fuzzy topology [12, 17] and intuitionistic fuzzy topology [1, 8, 19],
this article motivates us to anticipate and forecast the potential applications of in-
tuitionistic fine space within the same domain. The focus lies on extrapolating the
applications based on the unique characteristics and features inherent to intuition-
istic fine space. The aim is to project how the distinct attributes of intuitionistic
fine space can contribute to and enhance various aspects, thereby expanding the
scope and utility of this topological framework in practical applications.

2. Preliminaries

Definition 1. [1] Suppose X be a non-empty set, an intuitionistic set (IS) C is an
element of form C = ⟨X,C1, C2⟩, C1 and C2 are subsets of X holding C1 ∩C2 = ϕ.
C1 is known as the set of members of C, and C2 is known as the set of non-members
of C.

Definition 2. [1] An IT on a non-empty set X is a family τ of ISs in X holding:
(i)

˜
X,

˜
ϕ ∈ τ .

(ii) C1 ∩ C2 ∈ τ for any C1, C2 ∈ τ .
(iii) ∪Ci ∈ τ for arbitrary family {Ci : i ∈ L} ⊆ τ
(X,τ) is called intuitionistic topological space (ITS) and IS in τ is called an in-
tuitionistic open set (IOS) in X, the complement of it is said to be intuitionistic
closed set (ICS).

Definition 3. [3] Suppose X be a non empty set, p ∈ X an element in X. IS

˜
p = ⟨X, {p}, {p}c⟩ is an intuitionistic point (IP) in X and the IS (

˜̃
p) = ⟨X,ϕ, {p}c⟩

is said to be a vanishing intuitionistic point (VIP) in X.

Definition 4. [12] Suppose (X, τ) be a TS, we define τ(Cα) = τα = {Kα(̸= X) :
Kα∩Cα ̸= ϕ, for Cα ∈ τ and Cα ̸= ϕ, X for some α ∈ I, I an index set}. We define
τf = {ϕ,X}

⋃
α{τα}. τf of subsets of X is said to be fine collection of subsets of

X, (X, τ, τf ) is known as fine space X generated by topology τ on X.
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Definition 5. [12] A subset O of (X, τ, τf ) is called fine open in X, if O ∈ to τf .
Its complement is fine-closed set.

Example 1. [12] Suppose X = {p, q, r} &
τ = {X,ϕ, {p}, {q}, {p, q}}. Let A1 = {p}, A2 = {q}, A3 = {p, q} then
τ1 = τ(A1) = τ{p} = {{p}, {p, q}, {p, r}},
τ2 = τ(A2) = τ{q} = {{q}, {p, q}, {q, r}},
τ3 = τ(A3) = τ{p, q} = {{p}, {q}, {p, q}, {p, r}, {q, r}}
τf = {ϕ,X} ∪α {τα}
τf = {ϕ,X, {p}, {q}, {p, q}, {p, r}, {q, r}}.

Definition 6. [12]
(i) The largest fine open set ⊆ C is fine interior of C denoted as fint(C).
(ii) The smallest fine closed set ⊇ C is fine closure of C denoted as fcl(C).

Definition 7. [12] Suppose (X, τ, τf ) and x ∈ X, then a fine open set O of X ∈ x
is said to be a fine neighborhood of X.

Definition 8. [4, 8] A subset C of (X, τ) is:
(i) intuitionistic α-open if C ⊆ Iint(Icl(Iint(C))).
(ii) intuitionistic semi-open set if C ⊆ Icl(Iint(C)).
(iii) intuitionistic pre-open if C ⊆ Iint(Icl(C)).
(iv) intuitionistic β-open if C ⊆ Icl(Iint(Icl(C)).
(v) intuitionistic regular-open if C = Iint(Icl(C)).

Definition 9. [12] Map g : (X, τ, τf ) → (Y, τ
′
, τ

′

f ) is known as fine continuous if

g−1(V ) is open in X for every fine open set V of Y.

Definition 10. [12] Map g : (X, τ, τf ) → (Y, τ
′
, τ

′

f ) is known as fine irresolute (or

f-irresolute) if g−1(V ) is fine-open in X for every fine-open set V of Y.

Definition 11. [12] Map g : (X, τ, τf ) → (Y, τ
′
, τ

′

f ) is f-irresolute homeomorphism
if
(i) g is 1-1 and onto.

(ii) Both maps g and inverse map g−1 : (Y, τ
′
, τ

′

f ) → (X, τ, τf ) are f-irresolute.

3. Intuitionistic Fine Open Sets

Definition 12. Suppose (X, τ) be an ITS, we define
τ(Cα) = τ̂α = {Kα( ̸=

˜
X) : Kα ∩ Cα ̸=

˜
ϕ, for Cα ∈ τ and Cα ̸=

˜
ϕ,

˜
X for some

α ∈ I, I an indexed set}. We define τ̂f =
{
˜
ϕ,

˜
X
}
∪α {τ̂α}. τ̂f of subsets of X is

known as intuitionistic fine collection of subsets of X & (X, τ, τ̂f ) is known as an
intuitionistic fine space (IfS) X generated by τ on X.

Definition 13. A subset O of IfS X is known as intuitionistic fine open sets
(IfOS) if O ∈ τ̂f . Complement of (IfOS) is intuitionistic fine closed set (IfCS).
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Example 2. Consider X = {p, q, r} and τ = {
˜
X,

˜
ϕ,A1, A2} where

A1 = ⟨X, {r}, {p, q}⟩ and A2 = ⟨X, {r}, {p}⟩.
Let Aα = A1 and A2.
τ(Aα) = τ̂α = {⟨X, {p}, {ϕ}⟩ , ⟨X, {q}, {ϕ}⟩ , ⟨X, {r}, {ϕ}⟩ , ⟨X, {ϕ}, {p}⟩ ,
⟨X, {ϕ}, {q}⟩ , ⟨X, {ϕ}, {r}⟩ , ⟨X, {p}, {q}⟩ , ⟨X, {q}, {r}⟩ ,
⟨X, {r}, {p}⟩ , ⟨X, {q}, {p}⟩ , ⟨X, {r}, {q}⟩ , ⟨X, {p}, {r}⟩ , ⟨X, {p, q}, {ϕ}⟩ ,
⟨X, {q, r}, {ϕ}⟩ , ⟨X, {p, r}, {ϕ}⟩ , ⟨X, {ϕ}, {p, q}⟩ , ⟨X, {ϕ}, {p, r}⟩ ,
⟨X, {q}, {p, r}⟩ , ⟨X, {r}, {p, q}⟩ , ⟨X, {q, r}, {p}⟩ ,
⟨X, {p, r}, {q}⟩ , ⟨X, {p, q}, {r}⟩ , ⟨X, {ϕ}, {ϕ}⟩}.
τ̂f =

{
˜
X,

˜
ϕ
}
∪ {τ̂α}.

∵ τ̂f = IfOS = {
˜
X,

˜
ϕ, ⟨X, {p}, {ϕ}⟩ , ⟨X, {q}, {ϕ}⟩ , ⟨X, {r}, {ϕ}⟩ ,

⟨X, {ϕ}, {p}⟩ , ⟨X, {ϕ}, {q}⟩ , ⟨X, {ϕ}, {r}⟩ , ⟨X, {p}, {q}⟩ ,
⟨X, {q}, {r}⟩ , ⟨X, {r}, {p}⟩ , ⟨X, {q}, {p}⟩ , ⟨X, {r}, {q}⟩ ,
⟨X, {p}, {r}⟩ , ⟨X, {p, q}, {ϕ}⟩ , ⟨X, {q, r}, {ϕ}⟩ , ⟨X, {p, r}, {ϕ}⟩ ,
⟨X, {ϕ}, {p, q}⟩ , ⟨X, {ϕ}, {p, r}⟩ , ⟨X, {q}, {p, r}⟩ , ⟨X, {r}, {p, q}⟩ ,
⟨X, {q, r}, {p}⟩ , ⟨X, {p, r}, {q}⟩ , ⟨X, {p, q}, {r}⟩ , ⟨X, {ϕ}, {ϕ}⟩ .

3.1. Real-Time example: Advantage of Intuitionistic Fine open sets. Sup-
pose X = {a, b, c} represents the set of three participants involving in various
activities. All combination of subsets (i.e) the power set (intuitionistic) P(X) con-
sist of 27 intuitionistic subsets like A1, A2, ....., A27 involving membership and non-
membership values, in which ϕ represents a set with no participants, X represents
a set with all the participants, {a} represents a set with one participant and so on.
For example, if the following table (Table 1) illustrates the sets to which team they
belong to:

Table 1. Intuitionistic subsets and corresponding teams

X = ⟨X, {p, q, r}, {ϕ}⟩ Intuitionistic set representing social activity team
ϕ = ⟨X, {ϕ}, {p, q, r}⟩ Intuitionistic set representing music team
A1 = ⟨X, {p, r}, {ϕ}⟩ Intuitionistic set representing Project group
A2 = ⟨X, {p, q}, {r}⟩ Intuitionistic set representing Study group
A3 = ⟨X, {p, r}, {q}⟩ Intuitionistic set representing Sports team
A4 = ⟨X, {p}, {q}⟩ Intuitionistic set representing individual activity-1 participant

A5 = ⟨X, {r}, {p}⟩ Intuitionistic set representing individual activity-2 participant

and so on. Also if τ = {{
˜
X,

˜
ϕ, ⟨X, {r}, {p, q}⟩ ,

⟨X, {r}, {p}}⟩} (Ref.Example 2) associated with X, represents possibilities of col-
lection of intuitionistic sets involving in political activity, then we get the collection
of intuitionistic fine open sets, τ̂f (Ref.Example 2) gives a clear picture of the
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various combinations (intuitionistic sets) of participants engaged in different activ-
ities(teams) also involve in political activity so that their intersection is not empty,
with the union of possibilities of no and all participants ({

˜
X and

˜
ϕ}).

Definition 14. Suppose (X, τ, τ̂f ) be an IfS, suppose p ∈ X, then an intuitionistic
fine open set O of X containing

˜
p is known as an intuitionistic fine neighborhood.

Example 3. Consider X = {p, q, r} & τ = {
˜
X,

˜
ϕ,A1, A2} where

A1 = ⟨X, {ϕ}, {p, q}⟩ and A2 = ⟨X, {ϕ}, {p}⟩.
τ̂f = IfOS = {

˜
X,

˜
ϕ, ⟨X, {p}, {ϕ}⟩ , ⟨X, {q}, {ϕ}⟩ , ⟨X, {r}, {ϕ}⟩ , ⟨X, {ϕ}, {p}⟩ ,

⟨X, {ϕ}, {q}⟩ , ⟨X, {ϕ}, {r}⟩ , ⟨X, {p}, {q}⟩ , ⟨X, {q}, {r}⟩ , ⟨X, {r}, {p}⟩ ,
⟨X, {q}, {p}⟩ , ⟨X, {r}, {q}⟩ , ⟨X, {p}, {r}⟩ , ⟨X, {p, q}, {ϕ}⟩ , ⟨X, {q, r}, {ϕ}⟩ ,
⟨X, {p, r}, {ϕ}⟩ , ⟨X, {ϕ}, {p, q}⟩ , ⟨X, {ϕ}, {p, r}⟩ , ⟨X, {q}, {p, r}⟩ ,
⟨X, {r}, {p, q}⟩ , ⟨X, {q, r}, {p}⟩ , ⟨X, {p, r}, {q}⟩ , ⟨X, {p, q}, {r}⟩ , ⟨X, {ϕ}, {ϕ}⟩}.
Consider r ∈ X then the intuitionistic fine neighborhoods of the intuitionistic point

˜
r = ⟨X, {r}, {r}c⟩ (

˜
r = ⟨X, {r}, {p, q}⟩) in X are

{⟨X,X, ϕ⟩ , ⟨X, {r}, {ϕ}⟩ , ⟨X, {r}, {p}⟩ , ⟨X, {r}, {q}⟩ , ⟨X, {q, r}, {ϕ}⟩ ,
⟨X, {p, r}, {ϕ}⟩ , ⟨X, {r}, {p, q}⟩ , ⟨X, {q, r}, {p}⟩ , ⟨X, {p, r}, {q}⟩}.

Definition 15. Suppose (X, τ, τ̂f ) be an IfS and suppose C = ⟨X,C1, C2⟩ be an
IS in X then:
Iclf (C) =

⋂
{J : J is an IfCS in X & C ⊆ J}

Iintf (C) =
⋃
{J : J is an IfOS in X & C ⊇ J}.

Example 4. Suppose X = {p, q} and τ = {
˜
X,

˜
ϕ,A1, A2} where

A1 = ⟨X, {q}, {p}⟩ and A2 = ⟨X, {ϕ}, {p}⟩.
τ̂f = IfOS = {

˜
ϕ,

˜
X, ⟨X, {ϕ}, {p}⟩ , ⟨X, {q}, {p}⟩ , ⟨X, {p}, {ϕ}⟩ ,

⟨X, {q}, {ϕ}⟩ , ⟨X, {ϕ}, {ϕ}⟩}.
IfCS = {

˜
X,

˜
ϕ, ⟨X, {p}, {ϕ}⟩ , ⟨X, {p}, {q}⟩ , ⟨X, {ϕ}, {p}⟩ ,

⟨X, {ϕ}, {q}⟩ , ⟨X, {ϕ}, {ϕ}⟩ .
Icl(⟨X, {p}, {q}⟩) =

˜
X.

Ifcl(⟨X, {p}, {q}⟩) = ⟨X, {p}, {q}⟩ .

Theorem 1. Suppose (X, τ, τ̂f ) be IfS, then the (arbitrary) union of IfOS in X
is IfOS in X.

Proof. Suppose {Kα}α∈I be set of IfOSs of X. Implies Kα ∩ Cα ̸=
˜
ϕ, ∀α ∈ I and

Cα( ̸=
˜
ϕ,

˜
X) ∈ τ . We need T.P that ∪α∈IKα = K is IfOS. It’s enough to S.T

K∩Cβ ̸=
˜
ϕ for Cβ (̸=

˜
ϕ,

˜
X) ∈ τ . Here (∪α∈IKα∩Cβ) = (Kα∩Cβ)∪(Kβ∩Cβ)..... ⇒

∃ an index β ∈ I s.t Kβ ∩ Cβ ̸=
˜
ϕ (∵ Kβ ∈ τ̂f ). Therefore (∪Kα) ∩ Cβ ̸= ϕ ⇒ K

is an IfOS. □

Remark 1. (1) Suppose (X, τ, τ̂f ) be an IfTS then the union of two IfCS in
X need not be IfCS in X.

(2) Suppose (X, τ, τ̂f ) be an IfTS then ∩ of two IfOS in X need not be IfOS
in X.
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Theorem 2. Suppose (X, τ, τ̂f ) be an IfS, then the arbitrary intersection of IfCSs
in X is IfCS in X.

Proof. Assuming {Fα}α∈I to be set of intuitionistic fine-closed sets of X.
T.P:

⋂
Fα = F is intuitionistic fine closed. It is sufficient T.P F c is intuitionistic

fine-open. Using De Morgan’s law to get F c = ∪F c
α. Using the above remark the

union of intuitionistic fine open set implies that F c = ∪F c
α is IfOS. Therefore F is

IfCS. □

Example 5. Consider Example 3, Suppose A = ⟨X, {r}, {ϕ}⟩ and
B = ⟨X, {p}, {r}⟩ be two IfOS then A ∪ B = ⟨X, {p, r}, {ϕ}⟩ which is an IfOS.
Now C = ⟨X, {q}, {r}⟩ and D = ⟨X, {r}, {q}⟩ be IfOS
C ∩D = ⟨X, {ϕ}, {q, r}⟩ which is not an IfOS.
Here IfCS = {

˜
X,

˜
ϕ, ⟨X, {ϕ}, {p}⟩ , ⟨X, {ϕ}, {q}⟩ , ⟨X, {ϕ}, {r}⟩ , ⟨X, {p}, {ϕ}⟩ ,

⟨X, {q}, {ϕ}⟩ , ⟨X, {r}, {ϕ}⟩ , ⟨X, {q}, {p}⟩ , ⟨X, {r}, {q}⟩ , ⟨X, {p}, {r}⟩ ,
⟨X, {p}, {q}⟩ , ⟨X, {q}, {r}⟩ , ⟨X, {r}, {p}⟩ , ⟨X, {ϕ}, {p, q}⟩ , ⟨X, {ϕ}, {q, r}⟩ ,
⟨X, {ϕ}, {p, r}⟩ , ⟨X, {p, q}, {ϕ}⟩ , ⟨X, {p, r}, {ϕ}⟩ , ⟨X, {p, r}, {q}⟩ ,
⟨X, {p, q}, {r}⟩ , ⟨X, {p}, {q, r}⟩ , ⟨X, {q}, {p, r}⟩ , ⟨X, {r}, {p, q}⟩ , ⟨X, {ϕ}, {ϕ}⟩}.
Let E = ⟨X, {q}, {p, r}⟩ and F = ⟨X, {r}, {p, q}⟩ be IfCS
E ∪ F = ⟨X, {q, r}, {p}⟩ which is not an IfCS.
E ∩ F = ⟨X, {ϕ}, {X}⟩ which is an IfCS.

Definition 16. An intuitionistic fine subset C of (X, τ, τ̂f ) is:
(i) an IfαOS if C ⊆ If int(Ifcl(If int(C))). (ii) an IfSOS if C ⊆ Ifcl(If int(C)).
(iii) an IfPOS if C ⊆ If int(Ifcl(C)). (iv) an IfβOS if C ⊆ Ifcl(If int(Ifcl(C))).
(v) an IfROS if C = If int(Ifcl(C)).

Remark 2. An IfOS C of (X, τ, τ̂f) is:
(i) an intuitionistic fine α-open set (IfαOS) if C is an intuitionistic α open subset
of (X, τ). (ii) an intuitionistic fine semi-open set (IfSOS) if C is an intuitionistic
semi open subset of (X, τ). (iii) an intuitionistic fine pre-open set (IfPOS) if C
is an intuitionistic pre open subset of (X, τ). (iv) an intuitionistic fine β-open set
(IfβOS) if C is an intuitionistic β open subset of (X, τ). (v) an intuitionistic fine
regular-open (IfROS) if C is an intuitionistic regular open subset of (X, τ).

Theorem 3. Suppose (X, τ, τ̂f ) be an IfS w.r.t the TS (X, τ), then τ̂f ⊂ every
ISOS and IαOS.

Proof. Assume, E ⊂
˜
X and E /∈ τ̂f .

T.P: E is not ISOS in
˜
X.

∵ E /∈ τ̂f ⇒ Cα ∩ E =
˜
ϕ.

∀α ∈ J ⇒ If int(E) =
˜
ϕ ⇒ Ifcl(If int(E)) =

˜
ϕ ⇒ E not contained in Ifcl(If int(E)).

Hence E is not intuitionistic semi open and hence E is not contained in
If int(Ifcl(If int(E))) and therefore E is not an IαOS. □

Theorem 4. Suppose (X, τ, τ̂f ) be the IfS w.r.t the TS (X, τ), then τ̂f ⊂ every
IPOS and IβOS.
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Proof. Assume, E ⊂
˜
X and E /∈ (X, τ).

T.P: E is not IPOS and not IβOS in
˜
X

∵ it is known that E /∈ τ̂f ⇒ Cα ∩ E = ϕ∀α ∈ J ⇒ E ⊆ (Cα)
c and Ifcl(E) ⊆

(Cα)
c and (Cα)

c is an IfCS containing E. ∵ Cα ∩ (Cα)
c = ϕ and Ifcl(E) ⊆

(Cα)
c ⇒ Cα ∩ Ifcl(E) =

˜
ϕ ⇒ If int(Ifcl(E)) =

˜
ϕ and hence E not contained

in If int(Ifcl(E)). Therefore E is not intuitionistic pre open and thus E is not
contained in Ifcl(If int(Ifcl(E))). Hence E is not IβOS. □

Example 6. Suppose X = {p, q, r} & τ = {
˜
X,

˜
ϕ,A1} where

A1 = ⟨X, {r}, {p, q}⟩
IfOS = {

˜
X,

˜
ϕ, ⟨X, {ϕ}, {ϕ}⟩ , ⟨X, {ϕ}, {p}⟩ , ⟨X, {ϕ}, {q}⟩ , ⟨X, {p}, {ϕ}⟩ ,

⟨X, {q}, {ϕ}⟩ , ⟨X, {r}, {ϕ}⟩ , ⟨X, {ϕ}, {p, q}⟩ , ⟨X, {p, q}, {ϕ}⟩ , ⟨X, {q, r}, {ϕ}⟩ ,
⟨X, {p, r}, {ϕ}⟩ , ⟨X, {r}, {p, q}⟩ , ⟨X, {q, r}, {p}⟩ , ⟨X, {p, r}, {q}⟩ , ⟨X, {p}, {q}⟩ ,
⟨X, {r}, {p}⟩ , ⟨X, {q}, {p}⟩ , ⟨X, {r}, {q}⟩ .
It is found that ⟨X, {ϕ}, {r}⟩ , ⟨X, {ϕ}, {q, r}⟩ , ⟨X, {ϕ}, {p, r}⟩ ,
⟨X, {p}, {q, r}⟩ , ⟨X, {q}, {p, r}⟩ , ⟨X, {p, q}, {r}⟩ , ⟨X, {q}, {r}⟩ , ⟨X, {p}, {r}⟩
are not members of τ̂f , they are not IαOS, IβOS, ISOS and IPOS but they are
IfCS.

Theorem 5. Suppose (X, τ, τ̂f ) be an IfS and C any arbitrary subset of X. Then:
(i)Iint(C) ⊆ If int(C)
(ii)Ifcl(C) ⊆ Icl(C).

Proof. By the definitions of interior, closure, intuitionistic fine interior and intu-
itionistic fine closure Iint(C) ⊆ If int(C) and Ifcl(C) ⊆ Icl(C). □

Theorem 6. Suppose (X, τ, τ̂f ) be an IfS and C be any arbitrary subset of X.
Then x ∈ Ifcl(C) iff every IfOS ’O’ containing x intersects C.

Proof. Assume (X, τ, τ̂f ) to be an IfS and C be any arbitrary subset of X. Let
x ∈ Ifcl(C), consider every IfOS ’O’ containing x by the def. of intuitionistic fine
closure we find that every IfOS ’O’ containing x intersects C.
Conversely assume that every intuitionistic fine open set O containing x intersects
C then using the definition of intuionistic fine open set we find that x ∈ Ifcl(C). □

4. Intuitionistic Fine Maps

Definition 17. Map g : (X, τ, τ̂f ) → (Y, τ
′
, τ̂

′

f ) is known as intuitionistic fine-

continuous if g−1(V ) is intuitionistic open set (IOS) in X ∀ IfOS V of Y.

Definition 18. Map g : (X, τ, τ̂f ) → (Y, τ
′
, τ̂

′

f ) is known as intuitionistic fine-

irresolute if g−1(V ) is intuitionistic fine open in X ∀ IfOS V of Y.

Definition 19. A map g : (X, τ, τ̂f ) → (Y, τ
′
, τ̂

′

f ) is known as intuitionistic fine-
irresolute homeomorphism if
(i) g is 1-1 and onto. (ii) Both maps g and inverse map of g are intuitionistic fine
irresolute.
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Example 7. Suppose X = {p, q, r} & τ = {
˜
X,

˜
ϕ,A} s.t

A = ⟨X, {p}, {q}⟩ and suppose Y = {1, 2, 3} and τ ′ = {
˜
Y,

˜
ϕ,B} where B =

⟨X, {3}, {1, 2}⟩. Suppose g : (X, τ, τ̂f ) → (Y, τ
′
, τ̂

′

f ) where g(p)=1, g(q)=2 and
g(r)=3.
Here IfOS in X are {⟨X,ϕ,X⟩ , ⟨X,X, ϕ⟩ , ⟨X,ϕ, {p}, ⟩ , ⟨X,ϕ, {q}⟩ , ⟨X,ϕ, {r}⟩ ,
⟨X, {p}, ϕ⟩ , ⟨X, {q}, ϕ⟩ , ⟨X, {r}, ϕ⟩ , ⟨X,ϕ, {p, q}⟩ , ⟨X,ϕ, {q, r}⟩ ,
⟨X{p, q}, ϕ⟩ , ⟨X, {q, r}, ϕ⟩ , ⟨X, {p, r}, ϕ⟩ , ⟨X, {p}, {q}⟩ , ⟨X, {q}, {r}⟩ ,
⟨X, {r}, {p}⟩ , ⟨X, {q}, {p}⟩ , ⟨X, {r}, {q}⟩ , ⟨X, {p}, {r}⟩ , ⟨X, {p}, {q, r}⟩ ,
⟨X, {r}, {p, q}⟩ , ⟨X, {q, r}, {p}⟩ , ⟨X, {p, r}, {q}⟩ , ⟨X, {p, q}, {r}⟩ , ⟨X,ϕ, ϕ⟩}.
IfOS in Y are {⟨Y, ϕ, Y ⟩ , ⟨Y, Y, ϕ⟩ , ⟨Y, ϕ, {1}, ⟩ , ⟨Y, ϕ, {2}⟩ , ⟨Y, ϕ, {3}⟩ ,
⟨Y, {1}, ϕ⟩ , ⟨Y, {2}, ϕ⟩ , ⟨Y, {3}, ϕ⟩ , ⟨Y, ϕ, {1, 2}⟩ , ⟨Y, ϕ, {2, 3}⟩ ,
⟨Y {1, 2}, ϕ⟩ , ⟨Y, {2, 3}, ϕ⟩ , ⟨Y, {1, 3}, ϕ⟩ , ⟨Y, {1}, {2}⟩ , ⟨Y, {2}, {3}⟩ ,
⟨Y, {3}, {1}⟩ , ⟨Y, {2}, {1}⟩ , ⟨Y, {3}, {2}⟩ , ⟨Y, {1}, {3}⟩ , ⟨Y, {1}, {2, 3}⟩ ,
⟨Y, {3}, {1, 2}⟩ , ⟨Y, {2, 3}, {1}⟩ , ⟨Y, {1, 3}, {2}⟩ , ⟨Y, {1, 2}, {3}⟩ , ⟨Y, ϕ, ϕ⟩}.
Here the given function is not intuitionistic fine continuous but it is intuitionistic
fine irresolute and intuitionistic fine irresolute homeomorphism.

Theorem 7. Suppose X & Y be IfSs and suppose g : X → Y . The following are
equivalent :
(i) g is intuitionistic fine irresolute.
(ii) For every subset C of X, g(Ifcl(C)) ⊆ Ifclg(C).
(iii) For every IfCS D in Y, g−1(D) is IfCS in X.

Proof. (i) ⇒ (ii) : Suppose that g is intuitionistic fine irresolute. Suppose C be a
subset of X. We S.T if x ∈ Ifcl(C), then g(x) ∈ g(Ifcl(C)) ⇒ g(x) ∈ Ifcl(g(C)).
Assume V to be an intuitionistic fine neighbourhood of g(x). Hence g−1(V ) is IfOS
of X containing x ; this intersects C in some point y. Then V intersects g(C) in
g(y) s.t g(x) ∈ Ifcl(g(C)), which is required.
(ii) ⇒ (iii) : Suppose D be IfCS in Y and suppose that C = g−1(D). We have to
P.T C is IfCSin X; We P.T Ifcl(C) = C. By basic set theory, g(C) = g(g−1(D)) ⊂
D. Hence if x ∈ Ifcl(C), g(x) ∈ g(If (C)) ⊂ Ifcl(C)) ⊂ Ifcl(D) = D, ∵ D is an
IfCS, s.t x ∈ g−1(D) = C. Hence If (C) ⊂ C, s.t Ifcl(C) = C as required.
(iii) ⇒ (i) : Suppose V be an IfOS of Y. Set D = Y − V . Hence g−1(D) =
g−1(Y )− g−1(V ) = X − g−1(V ). Here D is an IfCS of Y. Hence g−1(D) is IfCS
in X by hypothesis s.t g−1(V ) is IfOS, as required. □

5. Envisaging Applications in Image Processing: The Probable
Impacts of Intuitionistic Fine Space

Given that intuitionistic fuzzy sets inherently handle both membership and non-
membership values, their significance in image processing is well-established. The
similarity between intuitionistic fine space and intuitionistic topological space with
fuzzy measures suggests a promising avenue for the application of intuitionistic



418 A. G. ROSE VENISH, L. VIDYARANI, M. VIGNESHWARAN

fine space in the realm of image processing. In the digital plane, each pixel func-
tions as an open set [21]. Notably, intuitionistic sets encompass both membership
and non-membership values, with measures for these values defined in intuitionistic
fuzzy sets. This framework forms the foundation for various applications such as
image extraction, image segmentation, optimization, and more within the domain
of image processing. This article posits that the same rationale can be extended to
intuitionistic fine open sets, potentially yielding intriguing and valuable results in
the context of image processing.

6. Conclusion

The continued advancement of the intuitionistic fine topology, as introduced in
this article, into fuzzy, binary space holds the potential to unlock further applica-
tions in diverse areas. These areas span from digital lines to computer networking,
image processing, and data analysis, among others. Consequently, this article lays
the groundwork for future applications of IfS in both intuitionistic topology and
intuitionistic fuzzy topology, paving the way for broader and more varied practical
implementations.
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2Department of Mathematics and Science Education, Aksaray University, Aksaray, TÜRKİYE

Abstract. Frank matrix is one of the popular test matrices for eigenvalue
routines because it has well-conditioned and poorly conditioned eigenvalues.

In this paper, we investigate the bounds for the maximum eigenvalues of the

special cases of the generalized Frank matrices which are called Fibonacci-
Frank and Lucas-Frank matrices. Then, we obtain the Euclidean norms and

the upper bounds for the spectral norms of these matrices.

1. Introduction

The Fibonacci and Lucas number sequences which are the most famous integer
sequences, are defined by the recurrence relations (n ≥ 1) [8]

fn+1 = fn + fn−1 with f0 = 0, f1 = 1 (1)

and
ln+1 = ln + ln−1 with l0 = 2, l1 = 1. (2)

The Binet formulas for the Fibonacci and Lucas number sequences are

fn =
αn − βn

α− β
and ln = αn + βn, (3)

respectively, where α =
1 +

√
5

2
and β =

1−
√
5

2
[8]. Also, there are some summa-

tion formulas for these number sequences, for example [8, 22]
n∑

i=1

fi = fn+2 − 1,

n∑
i=1

f2
i = fnfn+1 (4)
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and
n∑

i=1

li = ln+2 − 3,

n∑
i=1

l2i = lnln+1 − 2. (5)

Matrix theory plays an important role in mathematics, engineering and many other
sciences because the matrices are very useful tool to solve multidimensional equation
systems. A matrix may be assigned numerical items in various ways, for example
the determinant, trace, eigenvalues, singular values, spectral radius, matrix norm,
etc. Norms for matrices are used to measure the “sizes” of the matrices, have an
importance in the matrix theory. Due to the various applications of the Fibonacci
and Lucas number sequences, there have been many studies on the norms of the
special matrices with entries of the Fibonacci and Lucas numbers [1,2,7,15,17–20].
The Euclidean (Frobenius) and spectral norm of an m× n matrix A are defined as

∥A∥F =

 m∑
i=1

n∑
j=1

| aij |2

1

2
and ∥A∥2 =

√
max
1≤i≤n

λi

(
AHA

)
, (6)

respectively, where AH is the conjugate transpose of the matrix A and λi

(
AHA

)
’s

are the eigenvalues of AHA [6]. The maximum row length norm r1 (A) and the
maximum column length norm c1 (A) of any matrix A are defined by

r1 (A) = max
i

√∑
j

| aij |2 and c1 (A) = max
j

√∑
i

| aij |2, (7)

respectively [6]. Moreover, for any m×n matrices A = [aij ], B = [bij ] and C = [cij ],
if A = B ◦ C, then

∥A∥2 ≤ r1 (B) c1 (C) , (8)

where B ◦ C is the Hadamard product of the matrices B and C, which is defined
by B ◦ C = [bijcij ] [6].

Frank [3] defined the matrix of order n

Fn =



n n− 1 0 0 . . . 0 0
n− 1 n− 1 n− 2 0 . . . 0 0
n− 2 n− 2 n− 2 n− 3 . . . 0 0

...
...

...
...

. . .
...

...
2 2 2 2 . . . 2 1
1 1 1 1 . . . 1 1


, (9)

which is called Frank matrix. The elements of the Frank matrix Fn = [gij ] are
characterized by the formula

gij =

{
n+ 1−max (i, j) , i > j − 2

0, orherwise.
(10)
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Hake [5] investigated the determinant, inverse, LU -decomposition and character-
istic polynomials of the matrix Fn. Because of its well conditioned and poorly
conditioned eigenvalues, the Frank matrix is one of the popular test matrices for
eigenvalue routines. As a consequence of Sturm’s Theorem, all eigenvalues of the
matrix Fn are real and positive [5]. Varah [23] gave a generalization of the Frank
matrix and computed its eigensystem. The generalized Frank matrix Fan

is defined
as

Fan
=



an an−1 0 0 . . . 0 0
an−1 an−1 an−2 0 . . . 0 0
an−2 an−2 an−2 an−3 . . . 0 0
...

...
...

...
. . .

...
...

a2 a2 a2 a2 . . . a2 a1
a1 a1 a1 a1 . . . a1 a1


, (11)

where a = (a1, a2, a3, . . . , an) is a finite sequence with any ai real numbers [12].

The elements of the generalized Frank matrix Fan
=
[
(fa)ij

]
are characterized by

(fa)ij =

{
an+1−max(i,j), i > j − 2

0, otherwise.
(12)

It is clear that for ai = i, (i = 1, 2, . . . n) the generalized Frank matrix turns into
the well-known Frank matrix. The authors investigated some properties of the
matrix Fan and presented that the set of all n×n generalized Frank matrices is an
n-dimensional vector space. They obtained the characteristic polynomials of the
matrix Fan

as

Pn (λ) = (λ− an + an−1)Pn−1 (λ)− an−1λPn−2 (λ) , (13)

with the initial conditions

P1 (λ) = λ− a1 and P2 (λ) = λ2 − (a1 + a2)λ+ a1a2 − a21.

The Sturm’s Theorem gives the exact number of zeros in an interval for any
polynomial without multiple zeros, is used for computing the eigenvalues of sym-
metric or tridiagonal matrices [4,9,16,21,24]. According to the Sturm’s Theorem, if
the sequence P0 (x) , P1 (x) , . . . , Pn (x) has the Sturm sequence properties on (a, b)
and α, β (α < β) are any numbers in (a, b), then Pn (x) has exactly c (β) − c (α)
different zeros in the interval (α, β), where c (α) denotes the number of changes in
sign of consecutive members of the sequence P0 (α) , P1 (α) , . . . , Pn (α) [4]. Mersin
and Bahşi [11] showed that the characteristic polynomial of the generalized Frank
matrix Fan

is the form of the Strum sequence for the positive and strictly increasing
(or negative and strictly decreasing) sequence {an}. They obtained all eigenvalues
of the matrix Fan are different and positive, also the eigenvalues of the matrices
Fai and Fai−1 are interlaced for 1 ≤ i ≤ n, by considering the Sturm’s Theorem.
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Moreover, as a conclusion of the Sturm’s Theorem, for the positive and strictly
increasing sequence {an}, the inequalities

λn < a1 and an < λ1 (14)

are hold, where λn and λ1 are the minimum and the maximum eigenvalues of Fan

for n ≥ 2, respectively [11].
As the special forms of the generalized Frank matrices, Fibonacci-Frank matrix

Ffn and Lucas-Frank matrix Fln are defined as

Ffn =



fn fn−1 0 0 . . . 0 0
fn−1 fn−1 fn−2 0 . . . 0 0
fn−2 fn−2 fn−2 fn−3 . . . 0 0
...

...
...

...
. . .

...
...

f2 f2 f2 f2 . . . f2 f1
f1 f1 f1 f1 . . . f1 f1


(15)

and

Fln =



ln ln−1 0 0 . . . 0 0
ln−1 ln−1 ln−2 0 . . . 0 0
ln−2 ln−2 ln−2 ln−3 . . . 0 0
...

...
...

...
. . .

...
...

l2 l2 l2 l2 . . . l2 l1
l1 l1 l1 l1 . . . l1 l1


, (16)

where fn and ln are the ordinary Fibonacci and Lucas numbers [10]. The elements
of the matrices Ffn = [fij ] and Fln = [lij ] are

fij =

{
fn+1−max(i,j), i > j − 2

0, otherwise
and lij =

{
ln+1−max(i,j), i > j − 2

0, otherwise.
(17)

Since the determinant of the matrix in equation (15) is zero, Fibonacci-Frank matrix
Ffn is used as

Ffn =



fn+1 fn 0 0 . . . 0 0
fn fn fn−1 0 . . . 0 0

fn−1 fn−1 fn−1 fn−2 . . . 0 0
...

...
...

...
. . .

...
...

f3 f3 f3 f3 . . . f3 f2
f2 f2 f2 f2 . . . f2 f2


(18)

in [10].
We note that Ffn will represent the matrix given by (18), throughout the paper.
The determinants, inverses, LU -decompositions and characteristic polynomials of
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the matrices Ffn and Fln are examined in [10]. The characteristic polynomial of
the Fibonacci-Frank matrix Ffn is obtained from equation (13) as

Pn (λ) = (fn−1 − λ)Pn−1 (λ)− fnλPn−2 (λ) , (19)

with the initial conditions P0 (λ) = 1, P1 (λ) = 1−λ, P2 (λ) = λ2 − 3λ+1, and the
characteristic polynomial of the Lucas-Frank matrix Fln is

Qn (µ) = (ln−2 − µ)Qn−1 (µ)− ln−1µQn−2 (µ) , (20)

with Q0 (µ) = 1, Q1 (µ) = 1− µ, Q2 (µ) = µ2 − 4µ+ 2. The characteristic polyno-
mials in equations (19) and (20) have the properties of the Sturm sequences [11].

In this paper, firstly we obtain the number of the eigenvalues of the matrices Ffn

and Fln in the interval (0, 1). We examine the bounds for the maximum eigenvalues
of the matrices Ffn and Fln . Then, we present the Euclidean norm and the upper
bounds for the spectral norms of these matrices. Additionally, we give an example
to illustrate our results.

2. Main Results

Lemma 1. Let the characteristic polynomials of the Fibonacci-Frank matrix Ffn

and Lucas-Frank matrix Fln be Pn (λ) and Qn (µ), respectively. Then, for the value
of λ = µ = 1, we have

(i) Pn (1) < 2Pn−1 (1), for n ≥ 6,
(ii) Qn (1) > 3Qn−1 (1), for n ≥ 3.

Proof. (i) We use the induction method on n. Since P6 (1) = 0 < 2P5 (1) = 12,
the result is true for n = 6. Suppose that the result is true for n = k > 6.
Then,

Pk (1) < 2Pk−1 (1) . (21)

Hence, we have

0 > P7 (1) > P8 (1) > P9 (1) > . . . > Pk−1 (1) . (22)

For n = k + 1,

Pk+1 (1)− 2Pk (1) = (fk − 1)Pk (1)− fk+1Pk−1 (1)− 2Pk (1)
= fkPk (1)− 3Pk (1)− (fk + fk−1)Pk−1 (1)
= fk (Pk (1)− Pk−1 (1))− fk−1Pk−1 (1)− 3Pk (1)
< fkPk−1 (1)− fk−1Pk−1 (1)− 3Pk (1)
= fk−2Pk−1 (1)− 3Pk (1)
< fk−2Pk−1 (1)− 6Pk−1 (1)
< (fk−2 − 6)Pk−1 (1)
< 0.

Hence,
Pk+1 (1) < 2Pk (1) . (23)
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(ii) The proof is similar to the proof of (i).
□

Theorem 1. The number of the eigenvalues of the Fibonacci-Frank matrix Ffn in
the interval (0, 1) is three for n ≥ 7.

Proof. Considering the Sturm’s Theorem, we must show that c (1) − c (0) = 3,
where c (x) denotes the number of changes in sign of consecutive members of the
sequence in equation (19), for n ≥ 7.

Table 1. The number of sign changes of Pi≤7 (λ) for λ = 0, λ = 1

Characteristic polynomials Pi (λ) for i ≤ 7
Sign of Pi (λ)
for λ = 0

Sign of Pi (λ)
for λ = 1

P0 (λ) = 1 + +
P1 (λ) = 1− λ + 0
P2 (λ) = λ2 − 3λ+ 1 + −
P3 (λ) = −λ3 + 6λ2 − 6λ+ 1 + 0
P4 (λ) = λ4 − 11λ3 + 27λ2 − 16λ+ 2 + +
P5 (λ) = −λ5 + 19λ4 − 90λ3 + 127λ2 − 55λ+ 6 + +
P6 (λ) = λ6 − 32λ5 + 273λ4 − 793λ3 + 818λ2 −
297λ+ 30

+ 0

P7 (λ) = −λ7+53λ6−776λ5+4147λ4−8813λ3+
7756λ2 − 2484λ+ 240

+ −

Number of sign changes c7 (0) = 0 c7 (1) = 3

From Table 1, we have c7 (0) = 0 and c7 (1) = 3. Then, P7 (λ) has c7 (1) −
c7 (0) = 3 eigenvalues in the interval (0, 1). The eigenvalues of the matrix Ff7

are λ1 = 33.108, λ2 = 11.495, λ3 = 4.834, λ4 = 2.083, λ5 = 0.882, λ6 = 0.433,
λ7 = 0.164. Then, the eigenvalues in the interval (0, 1) are λ5, λ6 and λ7, so it is
clear that our result is correct for n = 7. As it seen in Table 1, P7 (1) < 0. From
Lemma 1, we have Pn (1) < 2Pn−1 (1), then Pn (1) < 0 for n > 7. That is, there is
no sign change of Pn (1) for n > 7. Hence, cn (1) = 3 is true for n > 7. To complete
the proof we must show that cn (0) = 0 is true for n > 7. From the initial condition
of the recurrence relation in equation (19), we have P1 (0) = 1. Considering the
recurrence relation in equation (19), we have

Pn (0) = fn−1Pn−1 (0)
= fn−1fn−2Pn−2 (0)
...
= fn−1fn−2fn−3 . . . f1P1 (0)
> 0.

That is, there is no sign change of Pn (0) for any positive integer n. Thus, cn (0) = 0
for n ≥ 1. Hence, we have cn (1) − cn (0) = 3 for n ≥ 7. That is, the number of
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the eigenvalues of the Fibonacci-Frank matrix Ffn in the interval (0, 1) is three for
n ≥ 7, as desired. □

Theorem 2. The number of the eigenvalues of the Lucas-Frank matrix Fln in the
interval (0, 1) is two for n ≥ 4.

Proof. The proof is similar to the proof of Theorem 1. □

Lemma 2. The equalities for the Fibonacci-Frank matrix Ffn

(i) trFfn = fn+3 − 2,
(ii) trF 2

fn
= 3 (fnfn+1 − 1) + f2

n+1,

(iii)

n∑
i=1

(
λi −

trFfn

n

)2

= 3 (fnfn+1 − 1) + f2
n+1 −

1

n
(fn+3 − 2)

2

are valid and also the equalities for the Lucas-Frank matrix Fln

(i’) trFln = ln+2 − 3,
(ii’) trF 2

ln
= 3 (lnln+1 − 2)− 2l2n,

(iii’)

n∑
i=1

(
µi −

trFln

n

)2

= 3 (lnln+1 − 2)− 2l2n − 1

n
(ln+2 − 3)

2

are hold, where λi’s and µi’s (i = 1, 2, . . . , n) are the eigenvalues of the matrices
Ffn and Fln , respectively.

Proof. (i) For the Fibonacci-Frank matrix Ffn = [fij ], we have

trFfn =

n+1∑
i=2

fi =

n∑
i=1

fi + fn+1 − f1 = fn+2 + fn+1 − 2 = fn+3 − 2.

(ii) For the matrix F 2
fn

=
[
f
(2)
ij

]
, we have

trF 2
fn =

n∑
i=1

f
(2)
ii =

n∑
i=1

(
n∑

k=1

fikfki

)
.

From the following equalities

fik =

{
fn+2−max (i,k), i > k − 2

0, otherwise

and

fki =

{
fn+2−max (k,i), k > i− 2

0, otherwise,

we can say that if | i − k |< 2, then fikfki ̸= 0, otherwise fikfki = 0.
| i − k |< 2 yields i = k, i = k − 1 and i = k + 1 for 1 < i < n. Since,



THE FIBONACCI-FRANK AND LUCAS-FRANK MATRICES 427

f11
(2) = f2

n+1 + f2
n and fnn

(2) = f2
2 + f2

2 , we have

trF 2
fn

=

n∑
i=1

fii
(2) = f2

n+1 + f2
n +

n−1∑
i=2

(
i+1∑

k=i−1

fikfki

)
+ f2

2 + f2
2

=

n−1∑
i=2

(
2f2

n+2−i + f2
n+1−i

)
+ f2

n+1 + f2
n + 2f2

2

= 2

n−1∑
i=2

f2
n+2−i +

n−1∑
i=2

f2
n+1−i + f2

n+1 + f2
n + 2f2

2

= 2
(
f2
n + f2

n−1 + . . .+ f2
3

)
+
(
f2
n−1 + f2

n−2 + . . .+ f2
3 + f2

2

)
+f2

n + f2
n+1 + 2f2

2

= 2

n∑
i=2

f2
i +

n∑
i=2

f2
i + f2

n+1

= 3 (fnfn+1 − 1) + f2
n+1.

(iii) By using (i) and (ii), we get

n∑
i=1

(
λi −

trFfn

n

)2

=

n∑
i=1

(λi)
2 − 2

trFfn

n

n∑
i=1

λi +

n∑
i=1

(
trFfn

n

)2

=

n∑
i=1

(λi)
2 − 2

(trFfn)
2

n
+ n

(
trFfn

n

)2

= 3 (fnfn+1 − 1) + f2
n+1 −

1

n
(fn+3 − 2)

2
.

The proofs of (i’), (ii’) and (iii’) are similar to the proofs of (i), (ii) and (iii),
respectively. □

Theorem 3. There are the following inequalities for the Fibonacci-Frank matrix
Ffn and Lucas-Frank matrix Fln whose eigenvalues are ordered as λ1 > λ2 > · · · >
λn and µ1 > µ2 > · · · > µn, respectively

(i) fn+1 ≤ λ1 ≤

√(
1− 1

n

)(
3 (fnfn+1 − 1) + f2

n+1 −
1

n
(fn+3 − 2)

2

)
+
1

n
(fn+3 − 2),

(ii) ln ≤ µ1 ≤

√(
1− 1

n

)(
3 (lnln+1 − 2)− 2ln

2 − 1

n
(ln+2 − 3)

2

)
+
1

n
(ln+2 − 3).

Proof. (i) The equation

λ1 −
trFfn

n
= −

n∑
i=2

(
λi −

trFfn

n

)
(24)
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is clearly holds for the Fibonacci-Frank matrix Ffn . Then, we can write
the inequality

|λ1 −
trFfn

n
| ≤

n∑
i=2

|λi −
trFfn

n
|. (25)

By means of [13, 14], we have for the sequence of positive real numbers
q = (qi) and the sequences of non-negative real numbers with similar
monocity a = (ai) and b = (bi), (i = 1, 2, . . . ,m)

m∑
i=1

qi

m∑
i=1

qiaibi ≥
m∑
i=1

qiai

m∑
i=1

qibi. (26)

Moreover, if a = (ai) and b = (bi) has opposite monocity, then the sense of
the inequality in (26) reverses [13,14].

If equation (26) is applied to the right hand side of the inequality (25)

by using as ai =
1

| λi −
trFfn

n
|
and bi = qi =| λi −

trFfn

n
|, then we get

| λ1 −
trFfn

n
|≤

n∑
i=2

| λi −
trFfn

n
| ≤

√√√√(n− 1)

n∑
i=2

| λi −
trFfn

n
|2.

Hence, we have(
λ1 −

trFfn

n

)2

≤ (n− 1)

(
n∑

i=1

(
λi −

trFfn

n

)2

−
(
λ1 −

trFfn

n

)2
)
,

n

n− 1

(
λ1 −

trFfn

n

)2

≤
n∑

i=1

(
λi −

trFfn

n

)2

,

λ1 −
trFfn

n
≤

√√√√(1− 1

n

) n∑
i=1

(
λi −

trFfn

n

)2

.

Then, by using Lemma 2 (iii),

λ1 ≤

√(
1− 1

n

)(
3 (fnfn+1 − 1) + f2

n+1 −
1

n
(fn+3 − 2)

2

)
+

1

n
(fn+3 − 2)

as desired. Considering equation (14), we have fn+1 < λ1. This completes
the proof.

(ii) The proof is similar to the proof of (i).
□
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Theorem 4. The Euclidean (Frobenius) norms of the Fibonacci-Frank matrix Ffn

and Lucas-Frank matrix Fln are

(i) ∥Ffn∥F =

√
1

5
(3l2n+1 + l2n) + f2

n+1 − n− 1

2
((−1)

n
+ 5),

(ii) ∥Fln∥F =

√
2l2n−1 + l2n + l2n − 2n− 1

2
(5 (−1)

n
+ 11),

where fn and ln are the ordinary Fibonacci and Lucas numbers, respectively.

Proof. (i) By using the Binet formulas for the Fibonacci numbers, we have

∥Ffn∥2F =

n−1∑
i=1

(n− i+ 2) f2
i+1 + f2

n+1

=

n−1∑
i=1

(n+ 2) f2
i+1 −

n−1∑
i=1

if2
i+1 + f2

n+1

=
(n+ 2)

5

n−1∑
i=1

(
αi+1 − βi+1

)2 − i

5

n−1∑
i=1

(
αi+1 − βi+1

)2
+ f2

n+1

=
n+ 2

5

n−1∑
i=1

(
α2
(
α2
)i

+ β2
(
β2
)i − 2 (−1)

i+1
)

− i

5

n−1∑
i=1

(
α2
(
α2
)i

+ β2
(
β2
)i − 2 (−1)

i+1
)
+ f2

n+1.

Using the well known equalities

n−1∑
i=1

αi =
αn − α

α− 1
and

n−1∑
i=1

iαi =
α− nαn + (n− 1)αn+1

(α− 1)
2 , (27)

we have

∥Ffn∥2F =
n+ 2

5

(
α2

(
α2
)n − α2

α2 − 1
+ β2

(
β2
)n − β2

β2 − 1
+ 2

n−1∑
i=1

(−1)
i

)

− 1

5

(
α2

(
α2 − n

(
α2
)n

+ (n− 1)
(
α2
)n+1

(α2 − 1)
2

)

+β2

(
β2 − n

(
β2
)n

+ (n− 1)
(
β2
)n+1(

β2 − 1
)2

)
+ 2

n−1∑
i=1

i (−1)
i

)
+ f2

n+1
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=
n+ 2

5

((
α2n+1 + β2n+1

)
−
(
α3 + β3

)
− ((−1)

n
+ 1)

)

− 1

5

((
α2 + β2

)
− n

(
α2n + β2n

)
+ (n− 1)

(
α2n+2 + β2n+2

)
−1 + (2n− 1) (−1)

n

2

)
+ f2

n+1

=
n+ 2

5
(l2n+1 − l3)−

1

5
(l2 − nl2n + (n− 1) l2n+2)−

(−1)
n

2

− 2n+ 3

10
+ f2

n+1

=
1

5
(3l2n+1 + l2n) + f2

n+1 − n− 1

2
((−1)

n
+ 5) .

Thus, desired result is obtained.
(ii) The proof is similar to the proof of (i).

□

Theorem 5. There are the following upper bounds for the spectral norms of the
Fibonacci-Frank matrix Ffn and Lucas-Frank matrix Fln

(i) ∥Ffn∥2 ≤
√(

f2
n+1 + 1

)
(f2

n + n− 1),

(ii) ∥Fln∥2 ≤
√
(l2n + 1)

(
l2n−1 + n− 1

)
,

where fn and ln are the ordinary Fibonacci and Lucas numbers, respectively.

Proof. (i) By using the Hadamard product, the matrix Ffn can be written as

Ffn =



fn+1 1 0 0 . . . 0 0
fn fn 1 0 . . . 0 0

fn−1 fn−1 fn−1 1 . . . 0 0
...

...
...

...
. . .

...
...

f3 f3 f3 f3 . . . f3 1
f2 f2 f2 f2 . . . f2 f2


︸ ︷︷ ︸

A

◦



1 fn 0 0 . . . 0 0
1 1 fn−1 0 . . . 0 0
1 1 1 fn−2 . . . 0 0
...

...
...

...
. . .

...
...

1 1 1 1 . . . 1 f2
1 1 1 1 . . . 1 1


.

︸ ︷︷ ︸
B

Considering the inequality 2f2
n < f2

n+1, which can be proven by the math-
ematical induction method, we have the maximum row length norm of the
matrix A = [aij ] and maximum column length norm of the matrix B = [bij ]
as

r1 (A) = max
i

√∑
j

| aij |2 =
√
f2
n+1 + 1, (28)
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c1 (B) = max
j

√∑
i

| bij |2 =
√

f2
n + n− 1, (29)

respectively. Then, by using equation (8), we have

∥Ffn∥2 ≤ r1 (A) c1 (B) =
√(

f2
n+1 + 1

)
(f2

n + n− 1). (30)

(ii) The proof is similar to the proof of (i).
□

Now, we give the following example to illustrate our results:

Example 1. Consider the Fibonacci-Frank and Lucas-Frank matrices for n = 8.
Then, the matrices are

Ff8 =



34 21 0 0 0 0 0 0
21 21 13 0 0 0 0 0
13 13 13 8 0 0 0 0
8 8 8 8 5 0 0 0
5 5 5 5 5 3 0 0
3 3 3 3 3 3 2 0
2 2 2 2 2 2 2 1
1 1 1 1 1 1 1 1


and Fl8 =



47 29 0 0 0 0 0 0
29 29 18 0 0 0 0 0
18 18 18 11 0 0 0 0
11 11 11 11 7 0 0 0
7 7 7 7 7 4 0 0
4 4 4 4 4 4 3 0
3 3 3 3 3 3 3 1
1 1 1 1 1 1 1 1


.

The characteristic polynomials of the matrices Ff8 and Fl8 are

P8 (λ) = λ8 − 87λ7 + 2137λ6 − 19968λ5 + 79377λ4 − 139303λ3 + 106949λ2

−33162λ+ 3120,
Q8 (µ) = µ8 − 120µ7 + 4054µ6 − 51792µ5 + 278231µ4 − 647740µ3

+652566µ2 − 268188µ+ 33264

and the eigenvalues of the matrices Ff8 and Fl8 are

λ1 = 53.563, µ1 = 74.018,
λ2 = 18.591, µ2 = 25.689,
λ3 = 7.889, µ3 = 10.920,
λ4 = 3.753, µ4 = 5.232,
λ5 = 1.756, µ5 = 2.300,
λ6 = 0.851, µ6 = 1.009,
λ7 = 0.432, µ7 = 0.618,
λ8 = 0.164, µ8 = 0.214.

It is clear that λ6, λ7 and λ8 are in the interval (0, 1), then the matrix Ff8 has three
eigenvalues in the interval (0, 1). Similarly, since µ7 and µ8 are in the interval
(0, 1), the matrix Fl8 has two eigenvalues in the interval (0, 1).
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There are the following bounds for the maximum eigenvalues of the matrices Ff8

and Fl8 from Theorem 3

f9 ≤ λ1 ≤

√(
1− 1

8

)(
3 (f8f9 − 1) + f2

9 − 1

8
(f11 − 2)

2

)
+

1

8
(f11 − 2) ,

34 ≤ λ1 = 53.563 ≤ 56.210

and

l8 ≤ µ1 ≤

√(
1− 1

8

)(
3 (l8l9 − 2)− 2l8

2 − 1

8
(l10 − 3)

2

)
+

1

8
(l10 − 3) ,

47 ≤ µ1 = 74.018 ≤ 77.694.

Considering Theorem 4, the Euclidean norms of the matrices Ff8 and Fl8 are

∥Ff8∥F =

√
1

5
(3l17 + l16) + f2

9 − 8− 1

2

(
(−1)

8
+ 5
)
= 61.065

and

∥Fl8∥F =

√
2l15 + l16 + l28 − 16− 1

2

(
5 (−1)

8
+ 11

)
= 84.380.

By using Theorem 5 we have the following upper bounds for the spectral norms of
the matrices Ff8 and Fl8

∥Ff8∥2 = 56.911 ≤
√
(f2

9 + 1) (f2
8 + 7) = 719.955

and

∥Fl8∥2 = 78.643 ≤
√
(l28 + 1) (l27 + 7) = 1368.970.

In Example 1, we gave our results for Fibonacci-Frank matrix Ffn and Lucas-
Frank matrix Fln for n=8. The bounds we have obtained for the maximum eigen-
values of these matrices for increasing values of n obtained from Theorem 3 are
given in the following tables:
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Table 2. The bounds for the maximum eigenvalues of the matrix
Ffn according to the increasing values of n.

n = 2 2 ≤ λ1 = 2.618 ≤ 2.618

n = 3 3 ≤ λ1 = 4.791 ≤ 4.828

n = 4 5 ≤ λ1 = 7.796 ≤ 8.095

n = 5 8 ≤ λ1 = 12.654 ≤ 13.130

n = 6 13 ≤ λ1 = 20.455 ≤ 21.337

n = 7 21 ≤ λ1 = 33.108 ≤ 34.654

n = 8 34 ≤ λ1 = 53.563 ≤ 56.210

n = 9 55 ≤ λ1 = 86.672 ≤ 91.153

n = 10 89 ≤ λ1 = 140.235 ≤ 147.760

n = 20 10946 ≤ λ1 = 17247.848 ≤ 18340.237

n = 30 1346269 ≤ λ1 = 2121345.008 ≤ 2262287.634

n = 40 165580141 ≤ λ1 = 260908188.115 ≤ 278631218.037

n = 50 20365011074 ≤ λ1 = 32089585793.157 ≤ 34297378604.5

Table 3. The bounds for the maximum eigenvalues of the matrix
Fln according to the increasing values of n.

n = 2 3 ≤ µ1 = 3.414 ≤ 3.414

n = 3 4 ≤ µ1 = 6.702 ≤ 6.722

n = 4 7 ≤ µ1 = 10.761 ≤ 11.034

n = 5 11 ≤ µ1 = 17.512 ≤ 18.186

n = 6 18 ≤ µ1 = 28.258 ≤ 29.494

n = 7 29 ≤ µ1 = 45.762 ≤ 47.918

n = 8 47 ≤ µ1 = 74.018 ≤ 77.694

n = 9 76 ≤ µ1 = 119.780 ≤ 125.988

n = 10 123 ≤ µ1 = 193.798 ≤ 204.213

n = 20 15127 ≤ µ1 = 23835.939 ≤ 25345.591

n = 30 1860498 ≤ µ1 = 2931626.699 ≤ 3126404.622

n = 40 228826127 ≤ µ1 = 360566248.032 ≤ 385058873.003

n = 50 28143753123 ≤ µ1 = 44346716881.237 ≤ 47397811506.4

According to Table 2 and Table 3, the bounds are quite close to the exact values
of the maximum eigenvalues of the matrices Ffn and Fln . Also, the upper bounds
are closer to the maximum eigenvalues than the lower bounds. Additionally, we
give the following figures to better illustrate this result.
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Figure 1. The graph of the maximum eigenvalues of the matrix
Ffn and their lower and upper bounds for n = 2, 3, 4, . . . , 10.

In Figure 1, the horizontal axis contains the values of n from 2 to 10, and the
vertical axis contains the maximum eigenvalues of the matrix Ffn corresponding to
these values of n, as well as the values of its lower and upper bounds.

Figure 2. The graph of the maximum eigenvalues of the matrix
Fln and their lower and upper bounds for n = 2, 3, 4, . . . , 10.
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Similarly, in Figure 2, the values of n between 2 and 10 are on the horizontal axis,
and the maximum eigenvalue of the matrix Fln corresponding to these n values and
their lower and upper bounds are on the horizontal axis.

As indicated by the graphs in Figures 1 and 2, the lower and upper bounds
are very close to the maximum eigenvalues of the matrices Ffn and Fln for small
values of n. As the value of n increases, the distance between these bounds and the
maximum eigenvalues widens. In this case, it is observed that the upper bounds
remain closer to the maximum eigenvalues than the lower bounds.
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Abstract. In this paper, the Riesz potential (B−Riesz potential) which are

generated by the Laplace-Bessel differential operator will be studied. We ob-

tain the necessary and sufficient conditions for the boundedness of the B−Riesz
potential Iαγ in the B−local Morrey-Lorentz spaces M loc

p,q,λ,γ(R
n
k,+) with the

use of the rearrangement inequalities and boundedness of the Hardy operators

Hβ
ν and Hβ

ν with power weights.

1. Introduction

Lorentz spaces, which are very useful in the theory of interpolation, have first
been introduced by Lorentz [18]. These spaces are Banach spaces and generaliza-
tions of Lebesgue spaces. The Lorentz space Lp,q(Rn), 0 < p, q ≤ ∞, is known as
the set of all measurable functions f such that

∥f∥Lp,q(Rn) = ∥t
1
p−

1
q f∗(t)∥Lq(0,∞) < ∞.

Here, by f∗ we denote the nonincreasing rearrangement of f and

f∗(t) = inf {λ > 0 : |{y ∈ Rn : |f(y)| > λ}| ≤ t} , t ∈ (0,∞).

The necessary and sufficient condition for the functional ∥ · ∥Lp,q be a norm is
1 ≤ q ≤ p or p = q = ∞. If p = q = ∞, then L∞,∞(Rn) ≡ L∞(Rn). One can
easily observe that Lp,p(Rn) ≡ Lp(Rn) and Lp,∞(Rn) ≡ WLp(Rn). It is obvious
that Lp,q ⊂ Lp ⊂ Lp,r ⊂ WLp for 0 < q ≤ p ≤ q ≤ r ≤ ∞. For further details, we
refer the interested reader to [5, 18,19].
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On Lorentz spaces, the boundedness of the Riesz potential and the boundedness
of its version related to the Laplace-Bessel differential operator

∆B :=

k∑
i=1

∂2

∂x2
i

+
γi

xi

∂

∂xi
+

n∑
i=k+1

∂2

∂x2
i

, 1 ≤ k ≤ n,

have been studied by many researchers [3, 4, 10–15, 21]. The Riesz potential con-
nected with the Laplace-Bessel differential operator (B−Riesz potential) is gener-
ated by generalized shift operator

T yf(x) := Cγ,k

∫ π

0

. . .

∫ π

0

f [(x1, y1)α1
, . . . , (xk, yk)αk

, x′′ − y′′] dγ(α).

Here Cγ,k = π− k
2 Γ(γi+1

2 )[Γ(γi

2 )]
−1, (xi, yi)αi = (x2

i −2xiyi cosαi+y2i )
1
2 , 1 ≤ i ≤ k,

1 ≤ k ≤ n and dγ(α) =

k∏
i=1

sinγi−1 αi dαi [16, 17].

The B−convolution operator is defined as:

(f ⊗ g)(x) =

∫
Rn

k,+

f(y)T yg(x)(y′)γdy.

Here, Rn
k,+ = {x ∈ Rn : x1 > 0, . . . , xk > 0, 1 ≤ k ≤ n}, γ = (γ1, . . . , γk), γ1 >

0, . . . , γk > 0, |γ| = γ1 + . . . + γk. Let us set x = (x′, x′′), x′ = (x1, . . . , xk) ∈ Rk,
and x′′ = (xk+1, . . . , xn) ∈ Rn−k.

The purpose of this paper is to obtain the boundedness of the B−Riesz potential
operator Iαγ on B−local Morrey-Lorentz spaces with the use of the rearrangement

inequalities and the Hardy inequality. Local Morrey-Lorentz spaces M loc
p,q,λ(Rn)

which have first been introduced by Aykol et al. [2] and are generalizations of
Lorentz spaces. One has M loc

p,q,0(Rn) = Lp,q(Rn). They have also proved that the
Riesz potential operator is bounded in these spaces. In this study, we consider the
B−Riesz potential by

Iαγ f(x) =

∫
Rn

k,+

T y|x|α−Qf(y)(y′)γdy, 0 < α < Q.

The maximal operator has a crucial role in the study of the regularity of some partial
differential equations and in the study of the boundedness of some singular integrals
and on the differentiability properties of functions. For a function f ∈ Lloc

1,γ(Rn
k,+),

the B−maximal operator and B−fractional maximal operator are defined by, (see
[7]) respectively,

Mγf(x) = sup
r>0

|B+(0, r)|−1
γ

∫
B+(0,r)

T y|f(x)|(y′)γdy,

Mα
γ f(x) = sup

r>0
|B+(0, r)|

α
Q−1
γ

∫
B+(0,r)

T y|f(x)|(y′)γdy, 0 ≤ α < Q,
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where B+(x, r) = {y ∈ Rn
k,+ : |x − y| < r}. Let B+(0, r) ⊂ Rn

k,+ be a measurable
set, then

|B+(0, r)|γ =

∫
B+(0,r)

(x′)γdx = ω(n, k, γ)rQ,

where ω(n, k, γ) =
π

n−k
2

2k

k∏
i=1

Γ
(

γi+1
2

)
Γ
(γi

2

) , Q = n + |γ|. It is easy to observe that

M0
γf = Mγf for α = 0 (see [7]). It is well known that the inequality Mα

γ ≤ C Iαγ
holds.

On local Morrey-Lorentz space, the necessary and sufficient conditions for the
boundedness of the Riesz potential operator are given in [13]. On the other hand,
the B− Riesz potential has been investigated in various function spaces by many
mathematicians (see, for example [3,10–12]). The above results inspire us to investi-
gate the boundedness of the B−Riesz potential defined on B−local Morrey-Lorentz
spaces.

Throughout the paper, C denotes a positive constant independent of appropriate
parameters and not necessary the same at each occurrence.

2. Preliminaries

Given any measurable set E with |E|γ =

∫
E

(x′)γdx and a measurable function

f : Rn
k,+ → R, the γ−rearrangement of f in decreasing order is defined as

f∗
γ (t) = inf {s > 0 : f∗,γ(s) ≤ t} , ∀t ∈ (0,∞),

where f∗,γ(s) denotes the γ−distribution function of f given by

f∗,γ(s) =
∣∣{x ∈ Rn

k,+ : |f(x)| > s
}∣∣

γ
.

The average function of f∗∗
γ is defined as

f∗∗
γ (t) =

1

t

∫ t

0

f∗
γ (s)ds, t > 0,

and the following inequality holds (see [20]):

(f + g)∗∗γ (t) ≤ f∗∗
γ (t) + g∗∗γ (t).

Now, we give some characteristics of the γ−rearrangement of functions:

• if 0 < p < ∞, then∫
Rn

k,+

|f(x)|p(x′)γdx =

∫ ∞

0

(f∗
γ (t))

pdt,

• for any t > 0,

sup
|E|γ=t

∫
E

|f(x)|(x′)γdx =

∫ t

0

f∗
γ (s)ds, (1)
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• the following inequality holds:∫
Rn

k,+

|f(x)g(x)|(x′)γdx ≤
∫ ∞

0

f∗
γ (t)g

∗
γ(t)dt,

• the following inequality holds (see [5, 20,22]):

(f + g)∗γ(t) ≤ f∗
γ (t/2) + g∗γ (t/2) . (2)

Definition 1. [18] If 0 < p, q ≤ ∞, then we define the Lorentz space Lp,q,γ(Rn
k,+)

is the set of all measurable functions f ∈ Rn
k,+ such that

∥f∥Lp,q,γ
=

∥∥∥t 1
p−

1
q f∗

γ (t)
∥∥∥
Lq(0,∞)

< ∞.

If 0 < p ≤ ∞, q = ∞, then Lp,∞,γ(Rn
k,+) = WLp,γ(Rn

k,+), where WLp,γ(Rn
k,+)

is weak Lebesgue space of all measurable functions f such that

∥f∥WLp,γ(Rn
k,+) = sup

t>0
t1/pf∗

γ (t) < ∞, 1 ≤ p < ∞.

If p = q = ∞ or 1 ≤ q ≤ p, then the functional ∥f∥p,q,γ is a norm [5, 11, 22].
However if p = q = ∞, then L∞,∞,γ(Rn

k,+) = L∞,γ(Rn
k,+).

In case 0 < p, q ≤ ∞, a functional ∥ · ∥∗Lp,q,γ
is given by

∥f∥∗Lp,q,γ
= ∥f∥∗Lp,q,γ(0,∞) = ∥t

1
p−

1
q f∗∗

γ (t)∥Lq(0,∞),

which is a norm on Lp,q,γ(Rn
k,+) for 1 ≤ q ≤ ∞, 1 < p < ∞ or p = q = ∞.

If 1 < p ≤ ∞, 1 ≤ q ≤ ∞, then

∥f∥p,q,γ ≤ ∥f∥∗p,q,γ ≤ p

p− 1
∥f∥p,q,γ ,

that is, ∥f∥p,q,γ and ∥f∥∗p,q,γ are equivalent.

Definition 2. [8] Let 1 ≤ p < ∞, and 0 ≤ λ ≤ Q. The B−Morrey space
Lp,λ,γ(Rn

k,+) is the set of all measurable functions with f ∈ Lloc
p,γ(Rn

k,+) such that

∥f∥Lp,λ,γ(Rn
k,+) = sup

x∈Rn
k,+,ρ>0

ρ−
λ
p ∥f∥Lp,γ(B+(x,ρ)) < ∞.

If λ = 0, then Lp,0,γ(Rn
k,+) = Lp,γ(Rn

k,+); if λ > Q or λ < 0, then Lp,λ,γ(Rn
k,+) = Θ,

where Θ is the set of all functions equivalent to 0 on Rn
k,+. Also, the weak B−Morrey

space WLp,λ,γ(Rn
k,+) is the set of all functions f ∈ WLloc

p,γ(Rn
k,+) with following

norm

∥f∥WLp,λ,γ(Rn
k,+) = sup

x∈Rn
k,+,ρ>0

ρ−
λ
p ∥f∥WLp,γ(B+(x,ρ)) < ∞.

Definition 3. [6] Let 0 ≤ λ ≤ 1 and 0 ≤ p < ∞. The local Morrey space
LMp,λ ≡ LMp,λ(0,∞) is the set of all functions f ∈ Lloc

p (0,∞) such that

∥f∥LMp,λ(0,∞) = sup
ρ>0

ρ−
λ
p ∥f∥Lp(0,ρ) < ∞.
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Moreover, WLMp,λ ≡ WLMp,λ(0,∞) denotes the weak local Morrey space of all
functions f ∈ WLloc

p (0,∞) such that

∥f∥WLMp,λ(0,∞) = sup
ρ>0

ρ−
λ
p ∥f∥WLp(0,ρ) < ∞.

Definition 4. [9] Given a function f ∈ Lloc
1,γ(Rn

k,+), and a ball B+(x, r). By fB+
(x)

we denote the average of T yf on the ball B+,

fB+
(x) = |B+|−1

γ

∫
B+

T yf(x)(y′)γdy.

The BMO−Bessel space BMOγ(Rn
k,+) is the set of all functions on Lloc

1,γ(Rn
k,+)

with

∥f∥∗,γ = sup
B+

|B+|−1
γ

∫
B+

|T yf(x)− fB+ |(y′)γdy < ∞.

Definition 5. Let 0 < p, q ≤ ∞ and 0 ≤ λ ≤ 1. The B−local Morrey-Lorentz
space M loc

p,q,λ,γ(Rn
k,+) is set of all measurable functions with the quasinorm

∥f∥M loc
p,q,λ,γ

= sup
ρ>0

ρ−
λ
q ∥t

1
p−

1
q f∗

γ (t)∥Lq(0,ρ) < ∞.

If λ > 1 or λ < 0, then M loc
p,q,λ,γ(Rn

k,+) = Θ, where Θ is the set of all functions
equivalent to 0 on Rn

k,+. Also,

M loc
p,q,0,γ(Rn

k,+) = Lp,q,γ(Rn
k,+) and M loc

p,p,λ,γ(Rn
k,+) ≡ M loc

p,0,γ(Rn
k,+).

The weak B−local Morrey-Lorentz space WM loc
p,q,λ,γ(Rn

k,+) is the set of all measur-
able functions with the quasinorm

∥f∥WM loc
p,q,λ,γ

= sup
ρ>0

ρ−
λ
q ∥t

1
p−

1
q f∗

γ (t)∥WLq(0,ρ) < ∞.

We need the boundedness of the Hardy operators which will be used in the proof
of our main theorem.

Definition 6. [21] Let φ be a measurable function on (0,∞) and β ∈ R. The
weighted Hardy operators Hβ

ν and Hβ
ν with power weights are defined as

Hβ
ν φ(t) = tβ+ν−1

∫ t

0

φ(y)

yν
dy, Hβ

νφ(t) = tβ+ν

∫ ∞

t

φ(y)

yν+1
dy.

In the following theorem, we state that the Hardy operators are bounded in local
Morrey and weak local Morrey spaces.

Theorem 1. [1, 21] Let 0 < λ < 1, 0 < β < 1 − λ, 1 ≤ r <
1− λ

β
and

1

r
− 1

s
=

β

1− λ
.
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i. If ν <
1

r′
+

λ

r
, then∥∥Hβ

ν φ
∥∥
LMs,λ(0,∞)

≤ C ∥φ∥LMr,λ(0,∞) .

ii. If ν =
1

r′
+

λ

r
, then∥∥Hβ

ν φ
∥∥
WLMs,λ(0,∞)

≤ C ∥φ∥LMr,λ(0,∞) .

iii. If ν >
λ− 1

r
, then∥∥Hβ

νφ
∥∥
LMs,λ(0,∞)

≤ C ∥φ∥LMr,λ(0,∞) .

iv. If ν =
λ− 1

r
, then∥∥Hβ

νφ
∥∥
WLMs,λ(0,∞)

≤ C ∥φ∥LMr,λ(0,∞) .

3. B−Riesz Potential in B−Local Morrey-Lorentz Space

This section devoted to obtain the boundedness of the B−Riesz potential in
B−local Morrey-Lorentz and weak B−local Morrey-Lorentz space.

For the B−Riesz potential, the following inequality

(Iαγ f)
∗
γ(t) ≤ (Iαγ f)

∗∗
γ (t) ≤ C2

(
t

α
Q−1

∫ t

0

f∗
γ (y)dy +

∫ ∞

t

y
α
Q−1f∗

γ (y)dy

)
(3)

holds, where C2 = Cγ,k(Q/α)2ω(n, k, γ)(Q−α)/Q (see [10]).

Theorem 2. Let 0 ≤ λ < 1, 0 < α < Q, 1 ≤ q ≤ ∞, 1 ≤ r ≤ s ≤ ∞,

r
r+λ ≤ p ≤

(
λ
r + α

Q

)−1

and f ∈ M loc
p,r,λ,γ .

(i) If r
r+λ < p <

(
λ
r + α

Q

)−1

, then 1
p − 1

q = λ
(
1
r − 1

s

)
+ α

Q is necessary and

sufficient condition for the boundedness of Iαγ from M loc
p,r,λ,γ to M loc

q,s,λ,γ .

(ii) If p = r
r+λ , then 1 − 1

q = α
Q − λ

s is necessary and sufficient condition for

the boundedness of Iαγ from M loc
p,r,λ,γ to WM loc

q,s,λ,γ .

Proof. (i) Sufficiency. Let r
r+λ < p <

(
λ
r + α

Q

)−1

. From (3), we have

∥Iαγ f∥M loc
q,s,λ,γ(R

n
k,+) = sup

ρ>0
ρ−

λ
s

∥∥∥t 1
q−

1
s (Iαγ f)

∗
γ(t)

∥∥∥
Ls(0,ρ)

≤ sup
ρ>0

ρ−
λ
s

∥∥∥t 1
q−

1
s (Iαγ f)

∗∗
γ (t)

∥∥∥
Ls(0,ρ)

≤ C2 sup
ρ>0

ρ−
λ
s

∥∥∥∥t 1
q−

1
s

(
t

α
Q−1

∫ t

0

f∗
γ (y)dy +

∫ ∞

t

y
α
Q−1f∗

γ (y)dy

)∥∥∥∥
Ls(0,ρ)



B−RIESZ POTENTIAL IN B−LOCAL MORREY-LORENTZ SPACES 443

≤ C2 sup
ρ>0

ρ−
λ
s

∥∥∥∥t 1
q−

1
s+

α
Q−1

∫ t

0

f∗
γ (y)dy

∥∥∥∥
Ls(0,ρ)

+ C2 sup
ρ>0

ρ−
λ
s

∥∥∥∥t 1
q−

1
s

∫ ∞

t

y
α
Q−1f∗

γ (y)dy

∥∥∥∥
Ls(0,ρ)

= I1 + I2.

We take ν =
1

p
− 1

r
and φ(y) = y

1
p−

1
r f∗

γ (y). Then, we have

β =
1

q
− 1

s
+

1

r
− 1

p
+

α

Q
.

From Theorem 1, we can write β = (1−λ)

(
1

r
− 1

s

)
. Then we get

1

p
− 1

q
=

λ

(
1

r
− 1

s

)
+

α

Q
. Therefore, again by Theorem 1, we get

I1 = C2 sup
ρ>0

ρ−
λ
s

∥∥∥∥t 1
q−

1
s+

α
Q−1

∫ t

0

f∗
γ (y)dy

∥∥∥∥
Ls(0,ρ)

= C2 sup
ρ>0

ρ−
λ
s

∥∥∥∥tβ+ν−1

∫ t

0

φ(y)

yν
dy

∥∥∥∥
Ls(0,ρ)

= C sup
ρ>0

ρ−
λ
s

∥∥Hβ
ν φ

∥∥
Ls(0,ρ)

= C
∥∥Hβ

ν φ
∥∥
LMs,λ(0,∞)

≤ C ∥φ∥LMr,λ(0,∞) = C sup
ρ>0

ρ−
λ
r ∥φ∥Lr(0,ρ)

= C sup
ρ>0

ρ−
λ
r ∥t

1
p−

1
r f∗

γ (y)∥Lr(0,ρ) = C ∥f∥M loc
p,r,λ,γ(R

n
k,+).

We now estimate I2. We take ν =
1

p
− 1

r
− α

Q
and φ(y) = y

1
p−

1
r f∗

γ (y).

Then, we get

β =
1

q
− 1

s
+

1

r
− 1

p
+

α

Q
.

Therefore, by using Theorem 1, we obtain

I2 = C2 sup
ρ>0

ρ−
λ
s

∥∥∥∥t 1
q−

1
s

∫ ∞

t

y
α
Q−1f∗

γ (y)dy

∥∥∥∥
Ls(0,ρ)

= C2 sup
ρ>0

ρ−
λ
s

∥∥∥∥tβ+ν

∫ ∞

t

φ(y)

yν+1
dy

∥∥∥∥
Ls(0,ρ)

= C2 sup
ρ>0

ρ−
λ
s

∥∥Hβ
νφ

∥∥
Ls(0,ρ)
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= C
∥∥Hβ

νφ
∥∥
LMs,λ(0,∞)

≤ C ∥φ∥LMr,λ(0,∞) = C sup
ρ>0

ρ−
λ
r ∥φ∥Lr,λ(0,ρ)

= C sup
ρ>0

ρ−
λ
r ∥t

1
p−

1
r f∗

γ (τ)∥Lr(0,ρ) = C ∥f∥M loc
p,r,λ,γ(R

n
k,+).

Hence, we obtain that the B−Riesz potential Iαγ bounded from M loc
p,r,λ,γ to

M loc
q,s,λ,γ .
Necessity. Suppose that the B−Riesz potential Iαγ is bounded from

M loc
p,r,λ,γ to M loc

q,s,λ,γ and
r

r + λ
≤ p ≤

(
λ

r
+

α

Q

)−1

. For τ > 0, we define

fτ (x) := f(τx). Then (fτ )
∗
γ(t) = f∗

γ (tτ
Q) and

∥fτ∥M loc
p,r,λ,γ

= sup
ρ>0

ρ−
λ
r ∥t

1
p−

1
r (fτ )

∗
γ(t)∥Lr(0,ρ)

= sup
ρ>0

ρ−
λ
r ∥t

1
p−

1
r f∗

γ (tτ
Q)∥Lr(0,ρ)

= sup
ρ>0

ρ−
λ
r τ−

Q
p ∥t

1
p−

1
r f∗

γ (t)∥Lr(0,ρτQ)

= τ−
Q
p +Qλ

r sup
ρ>0

(ρτQ)−
λ
r ∥t

1
p−

1
r f∗

γ (t)∥Lr(0,ρτQ)

= τ−Q( 1
p−

λ
r )∥f∥M loc

p,r,λ,γ
.

Also, (Iαγ fτ )(x) = τ−α(Iαγ f)(τ
Qx) and (Iαγ fτ )

∗
γ(t) = τ−α(Iαγ f)

∗
γ(tτ

Q). Then,
we get

∥Iαγ fτ∥M loc
q,s,λ,γ

= sup
ρ>0

ρ−
λ
s ∥t

1
q−

1
s (Iαγ fτ )

∗
γ(t)∥Ls(0,ρ)

= τ−α sup
ρ>0

ρ−
λ
s ∥t

1
q−

1
s (Iαγ f)

∗
γ(tτ

Q)∥Ls(0,ρ)

= τ−α sup
ρ>0

ρ−
λ
s

(∫ ∞

0

(tτQ)
s
q−1((Iαγ f)

∗
γ(tτ

Q))sd((tτQ))

) 1
s

τ−
Q
q

= τ−α−Q
q −Qλ

s sup
ρ>0

(ρτQ)−
λ
s ∥t

1
q−

1
s Iαγ f

∗
γ (t)∥Ls(0,ρ)

= τ−α−Q( 1
q−

λ
s )∥Iαγ f∥M loc

q,s,λ,γ
.

Since the B−Riesz potential Iαγ is bounded from M loc
p,r,λ,γ to M loc

q,s,λ,γ , we

can write ∥Iαγ f∥M loc
q,s,λ,γ

≤ C∥f∥M loc
p,r,λ,γ

, where C > 0 is a constant. Then

∥Iαγ f∥M loc
q,s,λ,γ

= τα+Q( 1
q−

λ
s )∥Iαγ fτ∥M loc

q,s,λ,γ

≤ Cτα+Q( 1
q−

λ
s )∥fτ∥M loc

p,r,λ,γ
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= τα+Q( 1
q−

λ
s )∥f∥M loc

p,r,λ,γ

= τα+Q( 1
q−

1
p )+Qλ( 1

r−
1
s )∥f∥M loc

p,r,λ,γ
.

• If 1
p < 1

q + λ
(
1
r − 1

s

)
+ α

Q , then we have ∥Iαγ f∥M loc
q,s,λ,γ

= 0 as τ → 0

for all f ∈ M loc
p,r,λ,γ .

• If 1
p > 1

q + λ
(
1
r − 1

s

)
+ α

Q , then we have ∥Iαγ f∥M loc
q,s,λ,γ

= 0 as τ → ∞
for all f ∈ M loc

p,r,λ,γ .

• If 1
p −

1
q ̸= λ

(
1
r − 1

s

)
+ α

Q , then we have Iαγ f(x) = 0 for all f ∈ M loc
p,r,λ,γ

and a.e. x ∈ Rn
k,+, which is impossible.

Hence, we obtain 1
p − 1

q = λ
(
1
r − 1

s

)
+ α

Q .

(ii) Sufficiency. Let r
r+λ < p <

(
λ
r + α

Q

)−1

. From (3), we have

∥Iαγ f∥WM loc
q,s,λ,γ(R

n
k,+) = sup

ρ>0
ρ−

λ
s

∥∥∥t 1
q−

1
s (Iαγ f)

∗
γ(t)

∥∥∥
WLs(0,ρ)

≤ sup
ρ>0

ρ−
λ
s

∥∥∥t 1
q−

1
s (Iαγ f)

∗∗
γ (t)

∥∥∥
WLs(0,ρ)

≤ C2 sup
ρ>0

ρ−
λ
s

∥∥∥∥t 1
q−

1
s

(
t

α
Q−1

∫ t

0

f∗
γ (y)dy +

∫ ∞

t

y
α
Q−1f∗

γ (y)dy

)∥∥∥∥
WLs(0,ρ)

≤ C2 sup
ρ>0

ρ−
λ
s

∥∥∥∥t 1
q−

1
s+

α
Q−1

∫ t

0

f∗
γ (y)dy

∥∥∥∥
WLs(0,ρ)

+ C2 sup
ρ>0

ρ−
λ
s

∥∥∥∥t 1
q−

1
s

∫ ∞

t

y
α
Q−1f∗

γ (y)dy

∥∥∥∥
WLs(0,ρ)

= J1 + J2.

We take ν = 1 +
λ− 1

r
and φ(y) = y1+

λ−1
r f∗

γ (y) in the Hardy operator.

Then, we get

β =
1

q
− 1

s
+

1

r
+

α

Q
− 1− λ

r
.

From Theorem 1, we can write β = (1 − λ)

(
1

r
− 1

s

)
. Then we have

1− 1

q
=

α

Q
− λ

s
. Therefore, again by Theorem 1, we get

J1 = C2 sup
ρ>0

ρ−
λ
s

∥∥∥∥t 1
q−

1
s+

α
Q−1

∫ t

0

f∗
γ (y)dy

∥∥∥∥
WLs(0,ρ)

= C2 sup
ρ>0

ρ−
λ
s

∥∥∥∥tβ+ν−1

∫ t

0

φ(y)

yν
dy

∥∥∥∥
WLs(0,ρ)
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= C sup
ρ>0

ρ−
λ
s

∥∥Hβ
ν φ

∥∥
WLs(0,ρ)

= C
∥∥Hβ

ν φ
∥∥
WLMs,λ(0,∞)

≤ C ∥φ∥LMr,λ(0,∞)

= C sup
ρ>0

ρ−
λ
r ∥φ∥Lr(0,ρ)

= C sup
ρ>0

ρ−
λ
r ∥y1+

λ−1
r f∗

γ (y)∥Lr(0,ρ)

= C ∥f∥M loc
p,r,λ,γ(R

n
k,+).

We now estimate J2. We take ν = 1+
λ− 1

r
− α

Q
and φ(y) = y1+

λ−1
r f∗

γ (y)

in the Hardy operator. Then, we get

β =
1

q
− 1

s
+

1

r
+

α

Q
− 1− λ

r
.

Therefore, by using Theorem 1, we obtain

J2 = C2 sup
ρ>0

ρ−
λ
s

∥∥∥∥t 1
q−

1
s

∫ ∞

t

y
α
Q−1f∗

γ (y)dy

∥∥∥∥
WLs(0,ρ)

= C2 sup
ρ>0

ρ−
λ
s

∥∥∥∥tβ+ν

∫ ∞

t

φ(y)

yν+1
dy

∥∥∥∥
WLs(0,ρ)

= C2 sup
ρ>0

ρ−
λ
s

∥∥Hβ
νφ

∥∥
WLs(0,ρ)

= C
∥∥Hβ

νφ
∥∥
WLMs,λ(0,∞)

≤ C ∥φ∥LMr,λ(0,∞)

= C sup
ρ>0

ρ−
λ
r ∥φ∥Lr,λ(0,ρ)

= C sup
ρ>0

ρ−
λ
r ∥y1+

λ−1
r f∗

γ (y)∥Lr(0,ρ)

= C ∥f∥M loc
p,r,λ,γ(R

n
k,+).

Necessity. Suppose that the B− Riesz potential is Iαγ bounded fromM loc
p,r,λ,γ

to WM loc
q,s,λ,γ and p =

r

r + λ
. Again, for τ > 0, we define fτ (x) := f(τx).

Then ∥fτ∥M loc
r/(r+λ),r,λ,γ

= τ−Q∥f∥M loc
r/(r+λ),r,λ,γ

and

∥Iαγ fτ∥WM loc
q,s,λ,γ

= sup
ρ>0

ρ−
λ
s ∥y

1
q−

1
s (Iαγ fτ )

∗
γ(y)∥WLs(0,ρ)

= τ−α sup
ρ>0

ρ−
λ
s ∥y

1
q−

1
s (Iαγ f)

∗
γ(yτ

Q)∥WLs(0,ρ)
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= τ−α−Q
q −Qλ

s sup
ρ>0

(ρτQ)−
λ
s ∥y

1
q−

1
s Iαγ f

∗
γ (y)∥WLs(0,ρ)

= τ−α−Q( 1
q−

λ
s )∥Iαγ f∥WM loc

q,s,λ,γ
.

Since the B−Riesz potential Iαγ is bounded from M loc
p,r,λ,γ to WM loc

q,s,λ,γ , we

have ∥Iαγ f∥WM loc
q,s,λ,γ

≤ C∥f∥M loc
p,r,λ,γ

, where C > 0 is a constant. Then we

get

∥Iαγ f∥WM loc
q,s,λ,γ

= τα+Q( 1
q−

λ
s )∥Iαγ fτ∥WM loc

q,s,λ,γ

≤ Cτα+Q( 1
q−

λ
s )∥fτ∥M loc

p,r,λ,γ

= τα+Q( 1
q−

λ
s )∥f∥M loc

p,r,λ,γ

= τα+Q( 1
q−1−λ

r )+Qλ( 1
r−

1
s )∥f∥M loc

p,r,λ,γ
.

• If 1 < 1
q + α

Q − λ
s , then we have ∥Iαγ f∥WM loc

q,s,λ,γ
= 0 as τ → 0 for all

f ∈ M loc
r/(r+λ),r,λ,γ .

• If 1 > 1
q + α

Q − λ
s , then we have ∥Iαγ f∥WM loc

q,s,λ,γ
= 0 as τ → ∞ for all

f ∈ M loc
r/(r+λ),r,λ,γ .

• If 1 ̸= 1
q + α

Q − λ
s , then we have Iαγ f(x) = 0 for all f ∈ M loc

p,r,λ,γ and

a.e. x ∈ Rn
k,+, which is impossible.

Hence, we obtain 1− 1
q = α

Q − λ
s . This completes the proof.

□

The following corollary is easily obtained from the inequality Mα
γ ≤ C Iαγ and

Theorem 2, .

Corollary 1. Let 0 ≤ λ < 1, 0 < α < Q, 1 ≤ q ≤ ∞, 1 ≤ r ≤ s ≤ ∞,

r
r+λ ≤ p ≤

(
λ
r + α

Q

)−1

.

(i) If r
r+λ < p <

(
λ
r + α

Q

)−1

, then 1
p −

1
q = λ

(
1
r − 1

s

)
+ α

Q is necessary and suf-

ficient condition for the boundedness of the B−fractional maximal operator
Mα

γ from M loc
p,r,λ,γ to M loc

q,s,λ,γ .

(ii) If p = r
r+λ , then 1 − 1

q = α
Q − λ

s is necessary and sufficient condition for

the boundedness of the B−fractional maximal operator Mα
γ from M loc

p,r,λ,γ

to WM loc
q,s,λ,γ .
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[11] Guliyev, V. S., Şerbetçi, A., Ekincioǧlu, I., Necessary and sufficient conditions for the bound-

edness of rough B−fractional integral operators in the Lorentz spaces, J. Math. Anal. Appl.,

336 (2007), 425–437. https://doi.org/10.1016/j.jmaa.2007.02.080
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Abstract. In this work, we define the rotational surface with a light-like axis

in conformally flat pseudo-spaces
(
E1
3

)
λ
, where λ is a radial-type conformal

factor. We relate the principal curvatures of a non-degenerate surface that

belongs to conformally equivalent spaces
(
E1
3

)
λ

and R3
1, based on the radial

conformal factor. Thus, we establish a relationship between the radial con-
formal factor and the profile curve of the rotational flat surface in

(
E1
3

)
λ
, but

also for that of the rotational surface with zero extrinsic curvature.

1. Introduction

The theory of surfaces is one of the significant subfields of study that belong to
the field of differential geometry. This theory has a wide variety of applications.
For instance, it is used in computer graphics to create 3D models of objects, in
physics to describe the behavior of fluids and solids, and in engineering to design
structures with optimal shapes [1, 2].
In contrast to the creation of a helicoidal surface, which has been differently charac-
terized in a recent publication [3], the formation of a rotational surface is achieved
only through the rotation of a curve around an axis. The investigation of rota-
tional surfaces has been the subject of considerable scholarly research. To access
studies done in recent years, refer to references [4–6]. The study of special surfaces,
such as rotational and helicoidal surfaces, is conducted in the setting of conformally
flat spaces. Conformally flat spaces possess distinctive characteristics through the
utilization of their conformal factors. The determination of the proper conformal
factor is important for undertaking surveys of the aforementioned surfaces in con-
formally flat spaces. A function f is said to be invariant under a transformation T
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of the space into itself if the condition f (Tx) = f (x) is satisfied for all x. If the
conformal factor λ is a function that meets this criterion, it is reasonable to consider
such surfaces in conformally flat spaces. An estimation for this type of function
can be derived from the Cartesian equation of geometric shapes such as the sphere
and the cylinder. In contrast to the cylinder type, which exhibits invariance under
both rotational and translational symmetries, the spherical type is only invariant
under rotational symmetry. For more on research done in the framework of the
spherical type t := x2

1 + x2
2 + x2

3, see [7, 8]. For another type, see [9–15]. In the
aforementioned studies, the authors consider the various conformal factors, such
as

√
t, 1√

t
, and e−t. It is worth noting that the first two factors contribute to the

formation of the generic metric, whereas the third factor serves as a metric that is
a solution to Einstein’s equation.

Yerlikaya [14] introduces the conformally flat pseudo-space of dimensional three,
and presents a non-degenerate surface’s curvatures for an arbitrary conformal fac-
tor. But, this work is based on the utilization of the radial conformal factor as the
framework. From this perspective, rotational surfaces in conformally flat pseudo-
spaces are analyzed.

2. Basic Notations

Denote the Minkowski space by R3
1, defined by the Minkowski metric g (x, y) =

−x1y1 + x2y2 + x3y3 with respect to a cononical basis {e1, e2, e3} of R3
1, where

x = (x1, x2, x3), y = (y1, y2, y3). Observe that for a pseudo-orthonormal basis
{ξ1, ξ2, ξ3} of R3

1, the metric becomes g (x, y) = x1y3+x2y2+x3y1. In a such basis,
the following equalities hold

g (ξ1, ξ1) = g (ξ1, ξ2) = g (ξ2, ξ3) = g (ξ3, ξ3) = 0, (1)

g (ξ1, ξ3) = g (ξ2, ξ2) = 1. (2)

For some tools regarding the transition matrix given bye1e2
e3

 =

− 1√
2

0 1√
2

1√
2

0 1√
2

0 1 0

ξ1ξ2
ξ3

 , (3)

see [16]. The rotational motion about the null coordinate axis Oξ3 is represented
by x1

x2

x3

→ A−1RA

x1

x2

x3

 ,

i.e. x1

x2

x3

→

− 1√
2

1√
2

0

0 0 1
1√
2

1√
2

0

1 + θ2

2 − θ2

2 θ
θ2

2 1− θ2

2 θ
θ −θ 1

− 1√
2

0 1√
2

1√
2

0 1√
2

0 1 0

x1

x2

x3

 ,
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or the more useful form x1

x2

x3

→

 1 0 0
t 1 0

− t2

2 −t 1

x1

x2

x3

 , (4)

where t = −
√
2θ.

Equipped the Minkowski space R3
1 with a conformally flat pseudo-metric given

by the angle-bracket notation

⟨w1, w2⟩gλ =
1

λ2 (p)
⟨w1, w2⟩L , ∀w1, w2 ∈ TpR3

1, ∀p ∈ R3
1,

the resulting space is said to be the complete pseudo-Riemannian manifold if the
conformal factor λ is bounded. From now on, unless otherwise stated, this pseudo-
manifold shall be mentioned as the conformally flat pseudo-space, represented by(
E1
3

)
λ
. Here, note that the pseudo-metric ⟨, ⟩L is the Minkowski metric whose co-

efficients are those of Eqs. (1) and (2).

3. Surfaces in a conformally flat pseudo-space with radial
conformal metrics

(
E1
3

)
λ(r)

In [14], the author calculates the principal curvatures of a non-degenerate param-
eterized surface for an arbitrary conformal factor in the conformally flat pseudo-
space. Now, we’ll modify the process so that it works with the radial conformal
factor

λ = λ (r) , r = 2x1x3 + x2
2, (5)

which implies the spherical type with respect to the pseudo-orthonormal basis of
R3

1. Consider a non-degenerate parametrized surface M = X (U) in the Minkowski
space as

X : U ⊂ R2 → R3
1

(s, t) → X (s, t) = (x1 (s, t) , x2 (s, t) , x3 (s, t)) .

Since this surface also belongs to a pseudo-space that is conformal to the Minkowski

space, we can write
∼
N (s, t) = (λN) (s, t) for (s, t) in some planar domain, where

N and
∼
N denote the normal vector fields in Minkowski space and conformally flat

pseudo-space, respectively. Let ∇ be the Levi-Civita connection of
(
E1
3

)
λ(r)

. Thus,

we get

∇X,s

∼
N = ∇X,s

(λN) = Xs (λ)N + λ∇X,s
N, (6)
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whereX,s denotes the partial derivative ofX with respect to the parameter s. Using

the properties of the connection ∇ and considering N as the linear combination of
the pseudo-basis, we write

∇X,s
N = N,s +

3∑
i,j,k=1

Xi
,sN

jΓk
ijξk, (7)

where Γk
ij denote the Christoffel symbols of the conformal pseudo metric. Note that

Eq. (7) holds for the parameter t, as well.

Taking Eq. (5) into account, we have ∂λ
∂xi

= ∂λ
∂r

∂r
∂xi

. From now on, we use the

notation ∂λ
∂r =

.

λ. Thus, we can write

Γk
ij = −ḡjk

ϵj
ϵk

.

λ (r)

λ

∂r

∂xi
− ḡik

ϵi
ϵk

.

λ (r)

λ

∂r

∂xj
+ ḡij

ϵi
ϵk

.

λ (r)

λ

∂r

∂xk
, (8)

where ϵi = ḡii. From Eq. (8) together with Eq. (5), we get

Γ2
11 = Γ3

11 = Γ3
12 = Γ1

13 = Γ3
13 = Γ1

23 = Γ1
33 = Γ2

33 = 0,

Γ1
11 = 2Γ2

12 = −2Γ3
22 = −4x3

.

λ (r)

λ
(9)

Γ1
12 = −Γ2

13 = Γ2
22 = Γ3

23 = −2x2

.

λ (r)

λ

−2Γ1
22 = 2Γ2

23 = Γ3
33 = −4x1

.

λ (r)

λ

Theorem 1. Let X : U → R3
1 be a non-degenerate surface parametrized as X (s, t) =

(x1 (s, t) , x2 (s, t) , x3 (s, t)) in the Minkowski space R3
1. Consider X (U) as a non-

degenerate surface in a conformally flat pseudo-space
(
E1
3

)
λ(r)

. Then, the eigenval-

ues
∼
kl of X in

(
E1
3

)
λ(r)

are calculated as

∼
kl = λkl − 2

.

λ ⟨(x1, x2, x3) , N⟩ , 1 ≤ l ≤ 2, (10)

where N denotes the normal Gauss mapping of X in R3
1 and kl are the eigenvalues

of N .

Proof. Let’s proceeed with the proof for the parameter s. Putting (9) into Eq. (7),
we have

∇X,sN = N,s −
2
.

λ

λ
⟨X,N⟩X,s −

2
.

λ

λ
⟨X,s, X⟩N.

Substituting this into Eq. (6), we obtain

∇X,s

∼
N = λN,s − 2

.

λ ⟨X,N⟩X,s. (11)
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Taking N,s = k1X,s and ∇X,s

∼
N =

∼
k1X,s into account and using Eq. (11), we

obtain
∼
k1 = λk1 − 2

.

λ ⟨X,N⟩ , (12)

which concludes the proof. □

3.1. Rotational Surfaces with a light-like axis in
(
E1
3

)
λ(r)

. We now consider

the Gauss and extrinsic curvatures of a non-degenerate rotational surface in con-
formally flat pseudo-spaces

(
E1
3

)
λ(r)

, as it relates to the radial conformal factor.

As mentioned in the introduction, helicoidal surfaces are described as the general
category to which rotational surfaces belong. For this reason, the ability to define
helicoidal surfaces in conformally flat pseudo-spaces, as made possible in [14], also
allows for the definition of a new type of rotational surface in these spaces.

Let γ (s) = (s, 0, f(s)), s > 0 be a curve x1x3-plane defined on I ⊂ R, which
is called the profile curve. Applying this curve to the rotation in Eq. (4), in the
following way:  1 0 0

t 1 0

− t2

2 −t 1

 s
0

f(s)

 ,

we get a non-degenerate surface given by the parametric form

X : I × R →
(
E1
3

)
λ(r)

(s, t) → X (s, t) =

(
s, st, f(s)− st2

2

)
, (13)

which implies that it is a rotational surface in
(
E1
3

)
λ(r)

, where f(s) is a function

defined on an open interval I of R.

Lemma 1. Let X (s, t) =
(
s, st, f (s)− st2

2

)
be a rotational surface in

(
E1
3

)
λ(r)

.

Thus, the Gaussian curvature of X is computed as

K =
−ϵλ2

s
√
2f ′

∂

∂s

(
λ− 2

.

λs (f + sf ′))

λ
√
2f ′

)
, (14)

where
.

λ = dλ
dr and ϵ = ±1.

Proof. To find the Gaussian curvature of X in the conformally flat pseudo-space(
E1
3

)
λ(r)

, we need to calculate the coefficients of the first fundamental form of X

with respect to the conformal metric. Then, it is easily seen that

∼
E =

2f ′

λ2 ,
∼
F = 0 and

∼
G =

s2

λ2 . (15)
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Due to
∼
F = 0, we have from [17] the knowledge that there is a formula for calculating

the Gaussian curvature in the Euclidean version. Based on this knowledge, we
modify, in the Minkowskian version, the formula of Gaussian curvature such that

K =
−ϵ

2

√
∼
E

∼
G

(
∂

∂t

 ∼
Et√
∼
E

∼
G

+
∂

∂s

 ∼
Gs√
∼
E

∼
G

). (16)

Hence, together with
∼
Et = 0 and

∼
Gs =

2sλ2−4λ
.

λ(f+sf ′)s2

λ4 , using Eq. (16), we get
Eq. (14). This concludes the proof.

□

Theorem 2. Let X (s, t) =
(
s, st, f (s)− st2

2

)
be a rotational surface in

(
E1
3

)
λ(r)

.

Thus, X (s, t) is flat in
(
E1
3

)
λ(r)

if and only if λ = λ (2sf) = e−
∫ c1

√
2f′−1
s ds, c1 ̸= 0.

Proof. It is clear from Eq. (14) that the necessary condition for X to be flat in(
E1
3

)
λ(r)

have to satisfy the following equation

sλ− 2s2
.

λ (f + sf ′)

λ
√
2s2f ′

= c1. (17)

Hence, if c1 = 0, we get a contradiction about the completeness of the metric. If

c1 ̸= 0, then Eq. (17) becomes
.

λ
λ = c1

√
2f ′−1

2s(f+sf ′) . By integrating both sides, we obtain

the desired outcome. □

Lemma 2. Let X (s, t) =
(
s, st, f (s)− st2

2

)
be a rotational surface in

(
E1
3

)
λ(r)

.

Thus, the extrinsic curvature of X is computed as
∼
KE =

−ϵ

4sf ′2

(
λf ′′ − 4

.

λf ′ (f − sf ′)
)(

λ+ 2s
.

λ (f − sf ′)
)
, (18)

where ϵ = ±1.

Proof. If we proceed through the steps of proving Lemma (1) for the Minkowskian
metric, then the coefficients of the first fundamental form are as follows:

E = 2f ′, F = 0 and G = s2, (19)

and the coefficients of the second fundamental form are calculated as

e = −sf ′′

α
, f = 0 and g =

s2

α
, (20)

where α =
√
2s2f ′. On the other hand, taking into account the partial derivatives

of X, we find
∼
ki = λki − 4

.

λ
sff ′ (1− sf ′)

α
. (21)



456 F. YERLİKAYA

Ultimately, using together Eqs. (19) and (20) with Eq. (21), we get
∼
KE =

∼
k1

∼
k2 =

−ϵ

4sf ′2

(
λf ′′ − 4

.

λf ′ (f − sf ′)
)(

λ+ 2s
.

λ (f − sf ′)
)
. (22)

□

Theorem 3. Let X (s, t) =
(
s, st, f (s)− st2

2

)
be a rotational surface in

(
E1
3

)
λ(r)

.

Thus, X (s, t) has zero extrinsic curvature in
(
E1
3

)
λ(r)

if and only if either one of

the next two equations

λ = λ (2sf) =
c1
√
f ′

f − sf ′ or λ = λ (2sf) = e
−

∫ f+sf′

s(f−sf′)
ds

(23)

are satisfied, where c1 is a positive real number.

Proof. In order for X to have zero extrinsic curvature in
(
E1
3

)
λ(r)

, the following

equations must be met:

λf ′′ − 4
.

λf ′ (f − sf ′) = 0 or λ+ 2s
.

λ (f − sf ′) = 0.

Of these, the first one becomes
.

λ
λ = f ′′

4f ′(f−sf ′) . Using the integration, we get

λ = c1
√
f ′

f−sf ′ . As similar to this, we find the other one. The proof concludes here. □

Remark 1. In the first equality of Eq. (23), for λ (r) = 1√
r
, rotational surfaces

X with zero extrinsic curvature are rational kinds. More clearly, from Eq. (18),

when λ (r) = 1√
r
,

∼
KE = 0 if and only if sff ′′ + ff ′ − sf ′2 = 0, whose general

solution is f(s) = nsm, where m is a constant and n is a positive real number.
Rotational surfaces with zero extrinsic curvature can be determined to be polynomial
in character with isothermal parameters by a special solution of the differential

equation mentioned above. In the second one, for λ (r) = e−r,
∼
KE = 0 if and only

if it satisfies the equation 2s2f ′−2sf+1 = 0, which ensures that the general solution
is f(s) = ms + 1

4s , where m is a real number. By using a special solution of the
differential equation, we just talked about above, we can figure out that rotational
surfaces with zero extrinsic curvature are of constant Gaussian curvature. Both
conformal factors are useful, but in different ways for different models, as was
mentioned in the introduction.

Example 1. Let’s use Theorem 3 to describe a rotational surface with zero extrinsic
curvature in

(
E1
3

)
1√
r

. From Remark 1, for λ (r) = 1√
r
, we have the knowledge whose

profile curve will be f(s) = nsm. Substituting this profil curve into Eq. (13), we get
the parametrization of a rotational surface with zero curvature surface as follows:

X (s, t) =

(
s, st, nsm − st2

2

)
.

We now plot it putting for m = 3 and n = 2. See Fig. (1).
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Figure 1. The graphic belongs to a rotational surface of rational
kind with zero extrinsic curvature in

(
E1
3

)
1√
r

.

We also sketch it out with respect to the constants m = 3 and n = 1
6 that serves

as the isothermal parametrization condition. See Fig. (2).

Figure 2. The graphic belongs to a rotational surface of rational
type with zero extrinsic curvature having the isothermal parameter
in
(
E1
3

)
1√
r

.

Example 2. As similar to Example (1), the profile curve of a rotational surface
with zero curvature in

(
E1
3

)
e−r is f (s) = ms+ 1

4s . Applying this to Eq. (13) yields

X (s, t) =

(
s, st,ms+

1

4s
− st2

2

)
.

For m = 1, see Fig. (3).
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Figure 3. The graphic belongs to a rotational surface of with zero
extrinsic curvature in

(
E1
3

)
e−r .
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PARAMETRIC GENERALIZATION OF THE MODIFIED

BERNSTEIN-KANTOROVICH OPERATORS

Kadir KANAT,1 Melek SOFYALIOĞLU2 and Selin ERDAL3

1,2,3Department of Mathematics, Ankara Hacı Bayram Veli University, Ankara, TÜRKİYE

Abstract. In the current article, a parametrization of the modified Bernstein-

Kantorovich operators is studied. Then the Korovkin theorem, approximation
properties and central moments of these operators are investigated. The rate

of approximation of the operators is obtained by the help of modulus of con-

tinuity, functions from Lipschitz class and Peetre-K functional. Finally, some
numerical examples are illustrated to show the effectiveness of the newly de-

fined operators.

1. Introduction

Approximation theory has an important place in studies in the field of math-
ematics. Let f be a continuous function on the interval [a, b] and then for every
ε > 0, there is a polynomial p that satisfies the ∥f(x)− p(x)∥ < ε condition. This
theorem was given by Weierstrass [19] in 1885. In 1912, Bernstein [3] proved the
approximation theorem defined by Weierstrass on the closed interval [0, 1]. A gener-
alization of Bernstein operators was made by Chen et al. [7] in 2017. Fuat Usta [18]
defined modified Bernstein operators in 2020 as

B∗
η(g;x) =

1

η

η∑
ζ=0

(
η
ζ

)
(ζ − ηx)2xζ−1(1− x)η−ζ−1g

(
ζ

η

)
.

By definition of the operator B∗
η(g;x), he obtained the following equalities

B∗
η(1;x) = 1,
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B∗
η(t;x) =

η − 2

η
x+

1

η
,

B∗
η(t

2;x) =
(η2 − 7η + 6)

η2
x2 +

5η − 6

η2
x+

1

η2
.

Certain examples of articles on parametric generalizations of operators can be
found in [2], [4], [5], [6], [8], [7], [9], [10], [12], [13], [14], [16], [17], [20] and [21].

The θ parameterization of modified Bernstein operators were defined for every
g ∈ C[0, 1] by Sofyalıoğlu et al. [15] as

B∗
η,θ(g;x) =

η∑
ζ=0

ρ
(θ)
η,ζ(x)g

(
ζ

η

)
, (1)

where η ≥ 1, 0 ≤ θ ≤ 1, x ∈ (0, 1) and

ρ
(θ)
1,0(x) = x, ρ

(θ)
1,1(x) = 1− x,

ρ
(θ)
η,ζ(x) =

{
1

η − 1

(
η − 2
ζ

)
(ζ − (η − 1)x)2(1− θ)x

+
1

η − 1

(
η − 2
ζ − 2

)
(ζ − 1− (η − 1)x)2(1− θ)(1− x)

+
1

η

(
η
ζ

)
(ζ − ηx)2θx(1− x)

}
xζ−2(1− x)η−ζ−2, η ≥ 2

with binomial coefficients(
η
ζ

)
=

{ η!
(η−ζ)!ζ! if 0 ≤ ζ ≤ η

0 otherwise
.

In this paper, we give the Kantorovich type of parametric generalizations of the
modified Bernstein operators created by Sofyalıoğlu et al. [15]. Later, we study
approximation properties of the operators. Then we give central moments and rate
of convergence.
Now, we define the parametric generalization of the modified Bernstein-Kantorovich
operators

K∗
η,θ(g;x) =

η∑
ζ=0

ρ
(θ)
η,ζ(x)

∫ ζ+1
η

ζ
η

g(t)dt, (2)

where η ≥ 1, 0 ≤ θ ≤ 1, x ∈ (0, 1) and

ρ
(θ)
1,0(x) = x, ρ

(θ)
1,1(x) = 1− x,

ρ
(θ)
η,ζ(x) =

{
η

η − 1

(
η − 2
ζ

)
(ζ − (η − 1)x)2(1− θ)x

+
η

η − 1

(
η − 2
ζ − 2

)
(ζ − 1− (η − 1)x)2(1− θ)(1− x)
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+

(
η
ζ

)
(ζ − ηx)2θx(1− x)

}
xζ−2(1− x)η−ζ−2, η ≥ 2

with binomial coefficients(
η
ζ

)
=

{ η!
(η−ζ)!ζ! if 0 ≤ ζ ≤ η

0 otherwise
.

Choosing θ = 1, it is seen that the operators B∗
η,θ(g;x) turn into B∗

η(g;x) given

by Usta [18].
The following equalities are going to use in the proof of the next theorem(

η − 2
ζ

)
=

(
1− ζ

η − 1

)(
η − 1
ζ

)
, (3)(

η − 2
ζ − 1

)
=

ζ

η − 1

(
η − 1
ζ

)
. (4)

Theorem 1. The parametric generalization of the modified Bernstein-Kantorovich
operators can be expressed as

K∗
η,θ(g;x) = (1− θ)

η−1∑
ζ=0

η

η − 1

[(
1− ζ

η − 1

)∫ ζ+1
η

ζ
η

g(t)dt+
ζ

η − 1

∫ ζ+2
η

ζ+1
η

g(t)dt

]

×
(

η − 1
ζ

)
(ζ − (η − 1)x)2xζ−1(1− x)η−ζ−2

+θ

η∑
ζ=0

(
η
ζ

)
(ζ − ηx)2xζ−1(1− x)η−ζ−1

∫ ζ+1
η

ζ
η

g(t)dt.

Proof. We rewrite the Eqn. (2) in more explicit form as

K∗
η,θ(g;x) = (1− θ)

 η∑
ζ=0

η

η − 1

(
η − 2
ζ

)
(ζ − (η − 1)x)2xζ−1(1− x)η−ζ−2

×
∫ ζ+1

η

ζ
η

g(t)dt

+

η∑
ζ=0

η

η − 1

(
η − 2
ζ − 2

)
(ζ − 1− (η − 1)x)2xζ−2(1− x)η−ζ−1

×
∫ ζ+1

η

ζ
η

g(t)dt

]

+θ

η∑
ζ=0

(
η
ζ

)
(ζ − ηx)2xζ−1(1− x)η−ζ−1

∫ ζ+1
η

ζ
η

g(t)dt.
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In other words,

K∗
η,θ(g;x) = (1− θ)(µ1 + µ2) + θ

η∑
ζ=0

(
η
ζ

)
(ζ − ηx)2xζ−1(1− x)η−ζ−1

×
∫ ζ+1

η

ζ
η

g(t)dt, (5)

where µ1 and µ2 are

µ1 =

η−2∑
ζ=0

η

η − 1

(
η − 2
ζ

)
(ζ − (η − 1)x)2xζ−1(1− x)η−ζ−2

∫ ζ+1
η

ζ
η

g(t)dt,

µ2 =

η∑
ζ=1

η

η − 1

(
η − 2
ζ − 2

)
(ζ − 1− (η − 1)x)2xζ−2(1− x)η−ζ−1

×
∫ ζ+1

η

ζ
η

g(t)dt.

When we choose the term ζ = η and ζ = η − 1 respectively, we get µ1 = 0.
Similarly, replacing ζ = 0 gives µ2 = 0.
Therefore, we obtain

µ2 =

η−2∑
ζ=0

η

η − 1

(
η − 2
ζ − 1

)
(ζ − (η − 1)x)2xζ−1(1− x)η−ζ−2

∫ ζ+2
η

ζ+1
η

g(t)dt.

By using Eqn. (3) and Eqn. (4), we have

µ1 + µ2 =

η−2∑
ζ=0

η

η − 1

[(
η − 2
ζ

)∫ ζ+1
η

ζ
η

g(t)dt+

(
η − 2
ζ − 1

)∫ ζ+2
η

ζ+1
η

g(t)dt

]
×(ζ − (η − 1)x)2xζ−1(1− x)η−ζ−2.

If we rewrite the above equation in (5), we achieve the desired result. □

2. Auxiliary Results

Lemma 1. For every x ∈ (0, 1), the operator K∗
η,θ(em;x) has the following identi-

ties:

K∗
η,θ(e0;x) = 1,

K∗
η,θ(e1;x) =

η − 2

η
x+

3

2η
,

K∗
η,θ(e2;x) =

(3η3 − 18η2 − 3η + 18)− θ(6η2 − 42η + 36)

3η2(η − 1)
x2
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+
(18η2 − 6η − 24)− θ(36η − 48)

3η2(η − 1)
x

+

(
η2 + 5η + 6

)
− 12θ

3η2(η − 1)
,

where em = tm for m = 0, 1, 2.

Proof. We briefly mention the results of K∗
η,θ(em;x), where em = tm, m = 0, 1, 2.

For e0 = 1, we write

K∗
η,θ(1;x) = (1− θ)

η−1∑
ζ=0

1

η − 1

[(
1− ζ

η − 1
+

ζ

η − 1

)](
η − 1
ζ

)
×(ζ − (η − 1)x)2xζ−1(1− x)η−ζ−2

+θ

η∑
ζ=0

1

η

(
η
ζ

)
(ζ − ηx)2xζ−1(1− x)η−ζ−1

= (1− θ)B∗
η(1;x) + θB∗

η(1;x)

= 1.

For e1 = t, we have

K∗
η,θ(t;x) = (1− θ)

η−1∑
ζ=0

η

η − 1

[(
1− ζ

η − 1

)∫ ζ+1
η

ζ
η

tdt+
ζ

η − 1

∫ ζ+2
η

ζ+1
η

tdt

]

×
(

η − 1
ζ

)
(ζ − (η − 1)x)2xζ−1(1− x)η−ζ−2

+θ

η∑
ζ=0

(
η
ζ

)
(ζ − ηx)2xζ−1(1− x)η−ζ−1

∫ ζ+1
η

ζ
η

tdt.

Since
∫ ζ+1

η
ζ
η

tdt = 2ζ+1
2η2 and

∫ ζ+2
η

ζ+1
η

tdt = 2ζ+3
2η2 ,

K∗
η,θ(t;x) = (1− θ)

η−1∑
ζ=0

η

η − 1

[(
1− ζ

η − 1

)(
2ζ + 1

2η2

)
+

ζ

η − 1

(
2ζ + 3

2η2

)]

×
(

η − 1
ζ

)
(ζ − (η − 1)x)2xζ−1(1− x)η−ζ−2

+θ

η∑
ζ=0

(
η
ζ

)
(ζ − ηx)2xζ−1(1− x)η−ζ−1

(
2ζ + 1

2η2

)
= (1− θ)B∗

η(t;x) +
1− θ

2η
+ θB∗

η(t;x) +
θ

2η

=
η − 2

η
x+

3

2η
.



PARAMETRIC GENERALIZATION OF THE MODIFIED BERNSTEIN-KANTOROVICH 465

For e2 = t2, we have

K∗
η,θ(t

2;x) = (1− θ)

η−1∑
ζ=0

η

η − 1

[(
1− ζ

η − 1

)∫ ζ+1
η

ζ
η

t2dt+
ζ

η − 1

∫ ζ+2
η

ζ+1
η

t2dt

]

×
(

η − 1
ζ

)
(ζ − (η − 1)x)2xζ−1(1− x)η−ζ−2

+θ

η∑
ζ=0

(
η
ζ

)
(ζ − ηx)2xζ−1(1− x)η−ζ−1

∫ ζ+1
η

ζ
η

t2dt.

Since
∫ ζ+1

η
ζ
η

t2dt = 3ζ2+3ζ+1
3η3 and

∫ ζ+2
η

ζ+1
η

t2dt = 3ζ2+9ζ+7
3η3 ,

K∗
η,θ(t

2;x) = (1− θ)

η−1∑
ζ=0

η

η − 1

[(
1− ζ

η − 1

)(
3ζ2 + 3ζ + 1

3η3

)

+
ζ

η − 1

(
3ζ2 + 9ζ + 7

3η3

)]
×
(

η − 1
ζ

)
(ζ − (η − 1)x)2xζ−1(1− x)η−ζ−2

+θ

η∑
ζ=0

(
η
ζ

)
(ζ − ηx)2xζ−1(1− x)η−ζ−1

(
3ζ2 + 3ζ + 1

3η3

)

=

(
1− θ

η − 1
+

(1− θ) η

η − 1
+ θ

)
B∗

η(t
2;x)

+

(
1− θ

η − 1
+

1− θ

η (η − 1)
+

θ

η

)
B∗

η(t;x) +
1− θ

3η
+

θ

3η

=
(3η3 − 18η2 − 3η + 18)− θ(6η2 − 42η + 36)

3η2(η − 1)
x2

+
(18η2 − 6η − 24)− θ(36η − 48)

3η2(η − 1)
x

+

(
η2 + 5η + 6

)
− 12θ

3η2(η − 1)
.

□

Lemma 2. For every x ∈ (0, 1), we have the central moments as

K∗
η,θ(t− x;x) =

−4x+ 3

2η
,

K∗
η,θ((t− x)2;x) =

1

3η2(η − 1)

{
18x2 − 24x+ 6 + η(5 + 3x− 15x2)
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+η2(1 + 9x− 3x2)

−θ[12− 48x+ 36x2 + 6η2x2 + η(36x− 42x2)]
}
.

Proof. For the sake of brevity, central moments can be expressed as

K∗
η,θ(t− x;x) = K∗

η,θ(e1;x)− xK∗
η,θ(e0;x),

K∗
η,θ((t− x)2;x) = K∗

η,θ(e2;x)− 2xK∗
η,θ(e1;x) + x2K∗

η,θ(e0;x).

The proof is completed by using these equalities. □

Let C[0, 1] be the Banach space of all continuous functions g on [0, 1] with
the norm

∥g∥ = max
x∈(0,1)

|g(x)|.

Theorem 2. For every x ∈ (0, 1) and g ∈ C[0, 1]∥∥K∗
η,θ(g;x)− g(x)

∥∥ → 0, (6)

uniformly as η → ∞.

Proof. In the light of Lemma 1, we have

lim
η→∞

K∗
η,θ(ei;x) = ti, i = 0, 1, 2.

By Korovkin theorem [11] the proof is completed. □

3. Rate of convergence

The modulus of continuity is given by

ω(g, δ) := sup
|t−x|≤δ

sup
x∈(0,1)

|g(t)− g(x)|, δ > 0,

where g ∈ C[0, 1]. Following feature of the modulus of continuity [1]

|g(t)− g(x)| ≤
(
1 +

|t− x|
δ

)
ω(g, δ)

will be used in the proof of the next theorem.

Theorem 3. For every x ∈ (0, 1) and g ∈ C[0, 1],

|K∗
η,θ(g;x)− g(x)| ≤ 2ω(g; δη). (7)

Here,

δη(x) =
[
K∗

η,θ((t− x)2;x)
] 1

2

=

{
1

3η2(η − 1)

{
−9η4x+ 9η3x+ 18x2 − 24x+ 6 + η2(1 + 18x− 3x2)

+η(5− 6x− 15x2)− θ[12− 48x+ 36x2 + 6η2x2 + η(36x− 42x2)]
}}1/2

.
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Proof. For K∗
η,θ, we write∣∣K∗

η,θ(g;x)− g(x)
∣∣ =

∣∣K∗
η,θ(g(t)− g(x);x)

∣∣
≤ K∗

η,θ(|g(t)− g(x)| ;x)

≤ ω (g; δ)

{
K∗

η,θ(1;x) +
1

δ
K∗

η,θ(|t− x| ;x)
}

≤ ω (g; δ)

{
1 +

1

δ

[
K∗

η,θ((t− x)2;x)
] 1

2

}
.

If we select

δ = δη =
[
K∗

η,θ((t− x)2;x)
] 1

2 ,

then we get

|K∗
η,θ(g;x)− g(x)| ≤ 2ω

(
g;
[
K∗

η,θ((t− x)2;x)
] 1

2

)
,

which is the desired result. □

Here, we investigate the rate of convergence of K∗
η,θ(g;x) by using functions

of Lipschitz class. Let’s recall that a function g ∈ LipM (ς) on (0, 1) if the
inequality

|g (t)− g (x)| ≤ M |t− x|ς ; ∀t, x ∈ (0, 1) (8)

holds.

Theorem 4. Let x ∈ (0, 1), g ∈ LipM (ς), 0 < ς ≤ 1, then we get∣∣K∗
η,θ(g;x)− g(x)

∣∣ ≤ Mδςη (x) ,

where

δη(x) =
[
K∗

η,θ((t− x)2;x)
] 1

2

=

{
1

3η2(η − 1)

{
−9η4x+ 9η3x+ 18x2 − 24x+ 6 + η2(1 + 18x− 3x2)

+η(5− 6x− 15x2)− θ[12− 48x+ 36x2 + 6η2x2 + η(36x− 42x2)]
}}1/2

.

Proof. Let x ∈ (0, 1), g ∈ LipM (ς) and 0 < ς ≤ 1. From the linearity and
monotonicity of the operators K∗

η,θ, we have∣∣K∗
η,θ(g;x)− g (x)

∣∣ ≤ K∗
η,θ(|g (t)− g (x)| ;x)

≤ MK∗
η,θ(|t− x|ς ;x).

By putting p = 2
ς , q = 2

2−ς in the Hölder inequality, we obtain∣∣K∗
η,θ (g;x)− g (x)

∣∣ ≤ M
[
K∗

η,θ((t− x)
2
;x)

] ς
2

≤ Mδςη (x) .

By choosing

δη(x) =
[
K∗

η,θ((t− x)2;x)
] 1

2
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the proof is completed. □

Lastly, we will give the rate of convergence of our operator K∗
η,θ(g;x) by means

of Peetre-K functionals. First of all, we give the following lemma.

Lemma 3. For x ∈ (0, 1) and g ∈ C[0, 1], we get

|K∗
η,θ(g;x)| ≤ ||g||. (9)

Proof. For K∗
η,θ,

|K∗
η,θ(g;x)| =

∣∣∣∣∣∣
η∑

ζ=0

ρ
(θ)
η,ζ(x)

∫ ζ+1
η

ζ
η

g(t)dt

∣∣∣∣∣∣
≤

η∑
ζ=0

ρ
(θ)
η,ζ(x)

∣∣∣∣∣
∫ ζ+1

η

ζ
η

g(t)dt

∣∣∣∣∣
≤

η∑
ζ=0

ρ
(θ)
η,ζ(x)

∫ ζ+1
η

ζ
η

|g(t)| dt

≤ ||g||K∗
η,θ(1;x)

= ||g||.

□

C2[0, 1] is the space of the functions g, for which g, g′ and g′′ are continuous on
[0, 1]. The norm on the space C2[0, 1] is given by

∥h∥C2[0,1] := ∥h∥C[0,1] + ∥h′∥C[0,1] + ∥h′′∥C[0,1] .

Now, we define classical Peetre-K functional as follows:

K(g, λ) := inf
h∈C2[0,1]

{∥g − h∥+ λ ∥h′′∥}

where λ > 0.

Theorem 5. Let x ∈ (0, 1) and g ∈ C[0, 1]. Then we have for all η ∈ N,

|K∗
η,θ(g;x)− g (x) | ≤ 2K(g;λη(x)),

where

λη (x) =
1

6η2 (η − 1)

∣∣10η2 − 4η + 6− 12θ +
(
−24 + 15η − 3η2 − 6θ (6η − 8)

)
x

+
(
18− 15η − 3η2 − 6θ

(
6− 7η + η2

))
x2

∣∣ .
Proof. For a given function h ∈ C2[0, 1], we have the following Taylor expansion

h(t) = h(x) + (t− x)h′(x) +

∫ t

x

(t− s)h′′(s)ds, t ∈ (0, 1). (10)
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Applying K∗
η,θ operator to the Eqn. (10), we get

∣∣K∗
η,θ(h;x)− h(x)

∣∣ =
∣∣K∗

η,θ ((t− x)h′(x);x)
∣∣+ ∣∣∣∣K∗

η,θ

(∫ t

x

(t− s)h′′(s)ds;x

)∣∣∣∣
≤ ||h′||

∣∣K∗
η,θ (t− x;x)

∣∣+ ||h′′||
∣∣∣∣K∗

η,θ

(∫ t

x

(t− s)ds;x

)∣∣∣∣
≤ ||h′||

∣∣K∗
η,θ (t− x;x)

∣∣+ ||h′′||1
2
K∗

η,θ

(
(t− x)2;x

)
.

So, ∣∣K∗
η,θ(h;x)− h(x)

∣∣ ≤ λ||h||.
Using the above inequality, we get∣∣K∗

η,θ(g;x)− g(x)
∣∣ =

∣∣K∗
η,θ(g;x)− g(x) +K∗

η,θ(h;x)−K∗
η,θ(h;x) + h(x)− h(x)

∣∣
≤ ||g − h||

∣∣K∗
η,θ(1;x)

∣∣+ ||g − h||+
∣∣K∗

η,θ(h;x)− h(x)
∣∣

≤ 2 (||g − h||+ λ||h||)
= 2K (g;λ) .

As a result, by choosing

λ = λη (x) =
1

6η2 (η − 1)

∣∣10η2 − 4η + 6− 12θ

+
(
−24 + 15η − 3η2 − 6θ (6η − 8)

)
x

+
(
18− 15η − 3η2 − 6θ

(
6− 7η + η2

))
x2

∣∣ ,
we obtain

|K∗
η,θ(g;x)− g(x)| ≤ 2K (g;λη) . (11)

Thus, the proof is completed. □

4. Graphical Analysis

In this part, we present some graphics to show the convergence of the operators
K∗

η,θ to the function g. It is already known that, the operators K∗
η,θ(g;x) have been

defined for x ∈ (0, 1). For this reason, the closed interval is given by [0 + ϵ, 1− ϵ],
where ϵ = 0.0001.

Example 1. Let

g(x) = x(x− 1)

(
x− 1

12

)
.

Then for θ = 0.25, θ = 0.5 and θ = 0.9, we have plotted the convergence of the
new constructed K∗

η,θ parametric Bernstein-Kantorovich operators and B∗
η modified

Bernstein operators [18] to the function g in Fig. 1 for η = 125.
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Figure 1. Convergence of K∗
η,θ(g;x) for different values of θ with

fixed η = 125.

Figure 2. Convergence of K∗
η,θ(g;x) for different values of η with

fixed θ.

In Fig. 2, we have illustrated the convergence of the K∗
η,θ operators to the

target function g(x) = x(x − 1)
(
x− 1

12

)
for fixed θ = 0.5 and θ = 0.9, where

η ∈ {25, 50, 100, 125}. The maximum errors for the operators K∗
η,θ and B∗

η to the

function g(x) = x(x− 1)
(
x− 1

12

)
are presented in Table 1 for different values of θ

and η.
It is obvious from the Table 1 that the best error in the approximation of g

by K∗
η,θ is achieved when θ = 0.999. Moreover, we note that the error in the

approximation of K∗
η,0.99(g) and K∗

η,0.999(g) is much smaller than the errors in the
approximation B∗

η(g), where η ∈ {25, 50, 100, 125}.

Example 2. As a second example, we choose

g(x) = xe−3x
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Table 1. Error for approximation of the parametric Bernstein-
Kantorovich operators K∗

η,θ and modified Bernstein operators B∗
η .

θ η ||B∗
η(g)− g|| ||K∗

η,θ(g)− g||

0.99 25 0.0296 0.0262
0.99 50 0.0155 0.0134
0.99 100 0.0079 0.0069
0.99 125 0.0063 0.0056
0.999 25 0.0296 0.0258
0.999 50 0.0155 0.0131
0.999 100 0.0079 0.0066
0.999 125 0.0063 0.0053

and x ∈ (0, 1). Then for θ = 0.79, θ = 0.89 and θ = 0.99, we have plotted the
convergence of the K∗

η,θ Bernstein-Kantorovich operators to the function g in Fig.
3 for η = 170.

Figure 3. Convergence of K∗
η,θ(g;x) for θ = 0.79, θ = 0.89 and

θ = 0.99.

In Fig. 4, we have presented K∗
η,θ(g;x) for fixed θ = 0.9 and θ = 0.99, where

η ∈ {25, 100, 125, 170}.
The error estimation for newly constructed operators K∗

η,θ to the function g(x) =

xe−3x is presented in Table 2 for different values of θ and η.
It is evident from the Table 2 that the best error in the approximation of g by

K∗
η,θ is achieved when θ = 0.99 and η = 170.
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Figure 4. Convergence of K∗
η,θ(g;x) for θ = 0.9 and θ = 0.99.

Table 2. Error for approximation of the K∗
η,θ for θ = 0.79, 0.89, 0.99.

θ η ||K∗
η,θ(g)− g||

0.79 25 0.0496
0.79 125 0.0194
0.79 170 0.0171
0.89 25 0.0194
0.89 125 0.0157
0.89 170 0.0130
0.99 25 0.0171
0.99 125 0.0119
0.99 170 0.0090
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[9] Kadak, U., Özger, F., A numerical comparative study of generalized Bernstein-

Kantorovich operators, Mathematical Foundations of Computing., 4(4) (2021), 311-332. doi:
10.3934/mfc.2021021

[10] Kajla, A., Mursaleen, M., Acar, T., Durrmeyer-Type generalization of parametric Bernstein

operators, Symmetry, 12(7) (2020), 1141. https://doi.org/10.3390/sym12071141
[11] Korovkin, P. P., On convergence of linear operators in the space of continuous functions

(Russian), Dokl. Akad. Nauk. SSSR (N.S.), 90 (1953), 961-964.
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[15] Sofyalıoğlu, M., Kanat, K., Çekim, B., Parametric generalization of the modified Bernstein

operators, Filomat, 36(5) (2022), 1699-1709.
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B-LIFT CURVES AND INVOLUTE CURVES IN LORENTZIAN

3-SPACE
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Abstract. The involute of a curve is often called the perpendicular trajecto-
ries of the tangent vectors of a unit speed curve. Furthermore, the B-Lift curve

is the curve acquired by combining the endpoints of the binormal vectors of

a unit speed curve. In this study, we investigate the correspondences between
the Frenet vectors of a curve’s B-lift curve and its involute. We also give an

illustration of a helix that resembles space in Lorentzian 3-space and show how
to visualize these curves by deriving the B-Lift curve and its involute.

1. Introduction

The Lorentz-Minkowski space was expressed in a special metric by the German
mathematician Hermann Minkowski in 1907. Unlike the Euclidean space, this space
has a temporal dimension. Studies in the Lorentzian space have many physical
applications. For example, Lorentzian space is used to formalize Einstein’s relativity
theory. The character of a vector in Lorentzian space is also defined as spacelike,
timelike or lightlike (null).

C. Huygens carried out the curvature of the plane curves at any point in Eu-
clidean space. Sir Isaac Newton defined the curve depending on a parameter and
expressed the curvature of the curve. The differential geometry of curves in Eu-
clidean or Lorentzian spaces has been the subject of numerous investigations. [1–9].
Especially at the mutual point of the two curves, new ideas were put forward by
establishing connections between Frenet operators. Involute curves and natural lift
curves are some of them.
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The involute of a curve is generally referred to as the orthogonal trajectories of
the tangent vectors of a unit speed curve. In 1668, the idea of involute curves was
first discovered by C. Huygens in optical studies. Afterward, Millman and Parker
(1977) [10] and Hacısalihoğlu (1983) [11] clarified the known theorems and results.
A basic study on the involute-evolute curves was examined by Çalışkan and Bilici
in 2002 [12].They looked into the relationship between the main curve’s Frenet
operators and its involute curve. They also introduced some important results
in 2009 [13], such as curvature and torsion for involute curves, Frenet vectors of
non-null curves in Lorentzian space.

By definition, a natural lift curve is created by joining the ends of a unit speed
curve’s tangent vectors. [14]. The natural lift curve has been investigated by many
mathematicians [15–19]. In [18], the authors identified the correlations between the
Frenet vectors of the natural lift curve and the main curve. They also gave the
characterizations between the natural lift and involute of a curve [19].

In this article, we present the relationships between the B-Lift curve and the
involute curve’s Frenet vectors in Minkowski 3-space. In this context, the results
show that the Frenet vectors of the B-Lift curve and the involute curves are the
same; only their signs are different. Additionally, we illustrate our curves and
provide an example based on these findings.

2. Preliminaries

The real vector space R3 that is supplied with a Lorentzian inner product is
known as the Lorentzian 3-space R3

1 and is defined as

⟨x, y⟩L = −x1y1 + x2y2 + x3y3

where x = (x1, x2, x3) and y = (y1, y2, y3) are in R3 [20].
Let x = (x1, x2, x3) be a vector in R3

1. Then, x is considered timelike if ⟨x,
x⟩ < 0, lightlike if ⟨x, x⟩ = 0 and x ̸= 0, spacelike if ⟨x, x⟩ > 0 or x=0 [20].

If γ
′
(s) is timelike, lightlike, or spacelike at any s ∈ I, then a curve γ : I ⊂ R

→ R3
1 is either timelike, lightlike, or spacelike, respectively. Using the Lorentzian

inner product, the norm of the vector x = (x1, x2, x3) is defined as [20]

∥x∥L=
√
|⟨x, x⟩|.

If ∥x∥L=1, the vector x is called a unit vector. The definition of the Lorentzian
vector product of the vectors x and y for the vectors x and y in R3

1 is [21]

x× y =

∣∣∣∣∣∣
e1 −e2 −e3
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ .
Assume that γ is a unit speed curve. Given by tangent, primary normal, and

binormal vectors, respectively, the set {T (s), N(s), B(s)} is known as the Frenet
frame. For any unit speed curve γ, the Darboux vector represented by W , and we
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call W (s) = τ(s)T (s)+κ(s)B(s). Let θ be the angle formed by the binormal vector
B and the Darboux vector W , then we have

κ = ∥W∥cos θ, τ = ∥W∥sin θ.
We now look at Frenet-Serret formulas based on the curve’s Lorentzian character-
istics [22]:

i) Suppose that γ is a unit speed spacelike curve and B is a spacelike vector.
As a result, N is a timelike vector, while T and B are spacelike vectors. In that
condition, we have:

N ×B = −T, T ×N = −B, B × T = −N.

The Frenet-Serret formulas follow as

T
′

= κN,

N
′

= κT + τB,

B
′

= τN.

ii) Assume that γ is unit speed spacelike curve and B is a timelike vector. Then,
T and N are spacelike vectors, B is a timelike vector. In that case, we can write

N ×B = −T, T ×N = B, B × T = −N.

Here are the Frenet-Serret formulas

T
′

= κN,

N
′

= −κT + τB,

B
′

= τN.

iii) Assume that γ is a unit speed timelike curve. Then, N and B are spacelike
vectors and T is a timelike vector. In that case, we have

N ×B = T, T ×N = −B B × T = −N.

Here are the Frenet-Serret formulas

T
′

= κN,

N
′

= κT + τB,

B
′

= −τN.

Lemma 1 ( [23]). Assume that x and y are linearly independent spacelike vectors
that span a spacelike vector subspace in R3

1. In that case, we get the following
inequality:

|⟨x, y⟩|≤ ∥x∥L·∥y∥L.
Hence we can write

⟨x, y⟩ = ∥x∥L·∥y∥Lcosφ,
where the angle amongst x and y is φ.
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Lemma 2 ( [23]). Assume that x and y are linearly independent spacelike vectors
that span a timelike vector subspace in R3

1. Thus we get

|⟨x, y⟩|> ∥x∥L·∥y∥L.
Therefore we can write

|⟨x, y⟩|= ∥x∥L·∥y∥Lcoshφ,
where the angle amongst x and y is φ

Lemma 3 ( [23]). Assume that x is a spacelike vector and y is a timelike vector in
R3

1. In that condition, we can write

|⟨x, y⟩|= ∥x∥L·∥y∥Lsinhφ,
where the angle amongst x and y is φ

Lemma 4 ( [23]). Suppose that x and y are timelike vectors in R3
1. In that case,

we can write

⟨x, y⟩ = −∥x∥L·∥y∥Lcoshφ,
where the angle amongst x and y is φ

Definition 1 ( [19]). Let γ= (γ(s); T (s), N(s), B(s)) and γ∗= (γ∗(s∗); T ∗(s∗),
N∗(s∗), B∗(s∗)) are regular curves in R3

1. γ
∗(s∗) is called the involute of γ(s) (γ(s)

is called the evolute of γ∗(s∗)) if ⟨T (s), T ∗(s∗)⟩ = 0. In that case, (γ, γ∗) is called
involute-evolute curve couple.

Proposition 1 ( [19]). Assume that γ is a timelike curve. Then, γ∗ is a spacelike
curve and B∗ is a timelike or spacelike vector. We are aware of the following
equations connecting the Frenet frames {T , N , B} and {T ∗, N∗, B∗} of curves γ
and γ∗:
i) Assume that γ is a spacelike curve and B is a spacelike vector.
a) If W Darboux vector is timelike, then we can write T ∗

N∗

B∗

 =

 0 1 0
sinhφ 0 coshφ

− coshφ 0 − sinhφ

  T
N
B

.

b) If W Darboux vector is spacelike, then we can write T ∗

N∗

B∗

 =

 0 1 0
coshφ 0 sinhφ
− sinhφ 0 − coshφ

  T
N
B

.

ii) Let γ be a spacelike curve and B be a timelike vector.
a) If W Darboux vector is timelike, then we can write T ∗

N∗

B∗

 =

 0 1 0
− sinhφ 0 − coshφ
− coshφ 0 − sinhφ

  T
N
B

.

b) If W Darboux vector is spacelike, then we can write
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N∗

B∗

 =

 0 1 0
− coshφ 0 − sinhφ
− sinhφ 0 − coshφ

  T
N
B

.

Proposition 2 ( [19]). Let γ be a spacelike curve and B be spacelike or timelike
vector. Then γ∗ is a spacelike curve. We know the following equations:
i) Let γ be a spacelike curve and B be spacelike vector. T ∗

N∗

B∗

 =

 0 1 0
cosφ 0 sinφ
sinφ 0 − cosφ

  T
N
B

.

ii) Let γ be a spacelike curve and B be timelike vector.
a) If W Darboux vector is timelike, then we have T ∗

N∗

B∗

 =

 0 1 0
coshφ 0 − sinhφ
sinhφ 0 − coshφ

  T
N
B

.

b) If W Darboux vector is spacelike, then we have T ∗

N∗

B∗

 =

 0 1 0
sinhφ 0 − coshφ
coshφ 0 − sinhφ

  T
N
B

.

Proposition 3 ( [19]). Assume that γ is a spacelike curve and B is a spacelike
vector. Then γ∗ is a spacelike curve and the following equations are available:
i) Let γ∗ be a spacelike curve and B∗ be a spacelike vector. T ∗

N∗

B∗

 =

 0 1 0
sinφ 0 − cosφ

− cosφ 0 − sinφ

  T
N
B

.

ii) Let γ∗ be a spacelike curve and B∗ be a timelike vector. T ∗

N∗

B∗

 =

 0 1 0
sinφ 0 − cosφ
cosφ 0 sinφ

  T
N
B

.

Proposition 4 ( [19]). Assume that γ is a spacelike curve and B is a timelike
vector. In that case, γ∗ is a spacelike curve and the following equations exist:
i) Suppose that γ∗ is a spacelike curve and B∗ is a spacelike vector.
a) If W Darboux vector is spacelike, then we have T ∗

N∗

B∗

 =

 0 1 0
− sinhφ 0 coshφ
coshφ 0 − sinhφ

  T
N
B

.

b) If W Darboux vector is timelike, then we have T ∗

N∗

B∗

 =

 0 1 0
− coshφ 0 sinhφ
sinhφ 0 − coshφ

  T
N
B

.
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ii) Suppose that γ∗ is a spacelike curve and B∗ is a timelike vector.
a) If W Darboux vector is spacelike, then we have T ∗

N∗

B∗

 =

 0 1 0
sinhφ 0 − coshφ
coshφ 0 − sinhφ

  T
N
B

.

b) If W Darboux vector is timelike, then we have T ∗

N∗

B∗

 =

 0 1 0
coshφ 0 − sinhφ
sinhφ 0 − coshφ

  T
N
B

.

Definition 2 ( [24]). If γ : I → P is a unit speed curve, then γB : I → TP is
known as the B-Lift curve and guarantees the following equation:

γB(s) = (γ(s), B(s)) = B(s)|γ(s), (1)

where P ⊂ R3
1 is a surface.

3. Involute Curves and B-Lift Curves in Minkowski 3-Space

Proposition 5. Assume that γ is a timelike curve. Then, γB is a spacelike curve
and B is spacelike or timelike.

i) Suppose that γB is a spacelike curve and BB is timelike vector. The following
equations are available:

a) If W Darboux vector is spacelike, we can write TB

NB

BB

 =

 0 −1 0
− coshφ 0 − sinhφ
sinhφ 0 − coshφ

  T
N
B

.

b) If W Darboux vector is timelike, we can write TB

NB

BB

 =

 0 −1 0
− sinhφ 0 − coshφ
coshφ 0 sinhφ

  T
N
B

.

ii) Assume that γB is a spacelike curve and BB is spacelike vector. We are aware
of the following equations connecting the Frenet frames {TB, NB, BB} and {T , N ,
B} of curves γB and γ:

a) If W Darboux vector is spacelike, we know that TB

NB

BB

 =

 0 −1 0
coshφ 0 sinhφ
− sinhφ 0 − coshφ

  T
N
B

.

b) If W Darboux vector is timelike, we know that TB

NB

BB

 =

 0 −1 0
sinhφ 0 coshφ
coshφ 0 sinhφ

  T
N
B

.
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Proposition 6. Suppose that γ is a spacelike curve and B is a spacelike vector.
Then, γB is a timelike curve. We know the following equations: TB

NB

BB

 =

 0 −1 0
cosφ 0 sinφ
sinφ 0 − cosφ

  T
N
B

.

Proposition 7. Suppose that γ is a spacelike curve and B is timelike vector. Then,
γB is a spacelike curve and BB is timelike or spacelike vector.

i) Let γB be a spacelike curve and BB be a timelike vector.The following equations
are available:

a) If W Darboux vector is spacelike, we have TB

NB

BB

 =

 0 −1 0
− sinhφ 0 coshφ
coshφ 0 − sinhφ

  T
N
B

.

b) If W Darboux vector is timelike, we have TB

NB

BB

 =

 0 −1 0
− coshφ 0 sinhφ
sinhφ 0 − coshφ

  T
N
B

.

ii) Let γB be a spacelike curve and BB be spacelike vector. We have the following
equations:

a) If W Darboux vector is spacelike, we have TB

NB

BB

 =

 0 −1 0
sinhφ 0 − coshφ
coshφ 0 − sinhφ

  T
N
B

.

b) If W Darboux vector is timelike, we have TB

NB

BB

 =

 0 −1 0
coshφ 0 sinhφ
sinhφ 0 − coshφ

  T
N
B

.

Corollary 1. Assume that γ is a timelike curve. Then γ∗ is a spacelike curve and
B∗ is spacelike vector.
i) If W Darboux vector is spacelike, then we get

T ∗ = −TB ,

N∗ = NB ,

B∗ = BB .

ii) If W Darboux vector is timelike, then we get

T ∗ = −TB ,

N∗ = BB ,

B∗ = NB .

where {TB, NB, BB} is the Frenet frame of the curve γB.
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Corollary 2. Assume that γ is a timelike curve. Therefore γ∗ is a spacelike curve
and B∗ is timelike vector.
i) If W Darboux vector is spacelike, then we get

T ∗ = −TB ,

N∗ = −BB ,

B∗ = NB .

ii) If W Darboux vector is timelike, then we get

T ∗ = −TB ,

N∗ = NB ,

B∗ = −BB ,

where {TB, NB, BB} is the Frenet frame of the curve γB.

Corollary 3. Assume that γ is a spacelike curve and B is a spacelike vector. Then
γ∗ is a timelike curve.
i) If W Darboux vector is spacelike, then we have

T ∗ = −TB ,

N∗ = −BB ,

B∗ = NB .

ii) If W Darboux vector is timelike, then we have

T ∗ = −TB ,

N∗ = NB ,

B∗ = −BB ,

where {TB, NB, BB} is the Frenet frame of the curve γB.

Corollary 4. Assume that γ is a spacelike curve and B is timelike vector. Then
γ∗ is a timelike curve.

T ∗ = −TB ,

N∗ = NB ,

B∗ = −BB ,

where {TB, NB, BB} is the Frenet frame of the curve γB.

Corollary 5. Assume that γ is a spacelike curve and B is spacelike vector.
i) If γ∗ is spacelike curve and B∗ is spacelike vector, hence we get

T ∗ = TB ,

N∗ = NB ,

B∗ = BB .
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ii) If γ∗ is spacelike curve and B∗ is timelike vector, hence we get

T ∗ = TB ,

N∗ = −NB ,

B∗ = BB ,

where {TB, NB, BB} is the Frenet frame of the curve γB.

Corollary 6. Assume that γ is a spacelike curve and B is timelike vector.
i) If γ and γ∗ are spacelike curves with timelike binormal, then we get

T ∗ = TB ,

N∗ = −NB ,

B∗ = −BB .

ii) If γ∗ is spacelike curve and B∗ is spacelike vector, then we get

T ∗ = TB ,

N∗ = NB ,

B∗ = BB ,

where {TB, NB, BB} is the Frenet frame of the curve γB.

Corollary 7. Let γ∗ and γB be involute curve and B-Lift curve of a unit speed
curve γ, respectively. Then, the sets {T ∗, TB}, {N∗, NB} and {B∗, BB} are linearly
dependent.

Example 1. Suppose that the spacelike circular helix curve is given by

γ(s) = (
s√
3
, 2 cos(

s√
3
), 2 sin(

s√
3
)).

Figure 1. The spacelike helix curve γ(s)
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For the spacelike helix curve γ, Frenet frames can be calculated by

T (s) = (
1√
3
,− 2√

3
sin(

s√
3
),

2√
3
cos(

s√
3
)),

N(s) = (0,− cos(
s√
3
),− sin(

s√
3
)),

B(s) = (
2√
3
,− 1√

3
sin(

s√
3
),

1√
3
cos(

s√
3
)).

Then the B-lift curve is following as

γB(s) = (
2√
3
,
1√
3
sin(

s√
3
),

1√
3
cos(

s√
3
)).

-0.5

0

0.5

1

1.5

2

-2

-1

0

1

2

-2

-1

0

1

2

Figure 2. B-Lift curve of the curve γ(s)

For λ=−
√
3, the involute of the curve γ(s) is given by

γ∗(s) = γ(s) + λ.T (s)

= (
s√
3
, 2 cos(

s√
3
), 2 sin(

s√
3
)) + (−

√
3).(

1√
3
,− 2√

3
sin(

s√
3
),

2√
3
cos(

s√
3
))

= (
s√
3
− 1, 2(cos(

s√
3
) + sin(

s√
3
)), 2(sin(

s√
3
)− cos(

s√
3
)))
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Figure 3. Involute curve of the curve γ(s)

4. Conclusions

In this study, the relations of a spacelike or timelike unit speed curve given in
Minkowski-3 space with the B-Lift curve were examined. Furthermore, the equa-
tions relating the Frenet operators of the involute curve and the B-Lift curve were
discovered. As a consequence, we may summarize the findings of this study as
follows:

1. When the Frenet apparatus of the B-Lift curve of a unit speed curve are
compared with the Frenet apparatus of the involute curve of a unit speed curve, it
is shown that the Frenet vectors are similar; only their signs differ.

2. By giving an example, we obtained the B-Lift curve and the Frenet operators
of the involute curve of a given curve and checked the results we found with the
help of an example.
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[17] Ergün, E., Çalışkan, M., The natural lift curve of the spherical indicatrix of a non-

null curve in Minkowski 3-space, International Mathematical Forum, 7 (2012) 707-717.

https://doi.org/10.32513/asetmj/19322008226
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COMPLEX DEFORMABLE CALCULUS

Serkan ÇAKMAK
Management Information Systems Department, Faculty of Economics, Administrative and Social

Science, Istanbul Gelisim University, Istanbul, TÜRKİYE

Abstract. In this paper, we give a new complex deformable derivative and

integral of order λ which coincides with the classical derivative and integral

for the special values of the parameters. We examine the basic properties of
this derivative and integral. We also investigate the basic concepts of com-

plex analysis for the λ-complex deformable derivative. Finally, we give some
applications.

1. Introduction

The derivative of a complex-valued function is defined as a certain limit, similar
to the derivative of real-valued functions. The official definition is

f ′(ζ0) = lim
ε→ 0

f(ζ0 + ε)− f(ζ0)

ε
. (1)

For this limit to exist, it must be equal to the same complex number from any
direction. Therefore, the differentiability of a complex-valued function at a point
is more complex than the differentiability of a real-valued function at a point.
See [1, 7].

The fractional derivative emerged in 1965 when Leibniz asked L’Hospital what
does it mean derivative of order 1/2 [3]. Since then, the fractional derivative has
attracted the attention of many researchers. Many fractional derivatives have
been defined so far. An integral form was generally used in these definitions.
Fractional derivatives, introduced by mathematicians such as Caputo, Riemann-
Liouville, Hadamard, Riesz, and Grunwald-Letnikov, are the most popular of the
fractional derivatives. See [4–6] for more information on the fractional derivative.
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In 2014, Khlalil et al. [2] presented a limit-based definition of the fractional
derivative for real-valued functions, similar to the standard derivative definition.
Recently, Zulfeqarr et al. [8] introduced a new derivative called the deformable de-
rivative, similar to Khalil’s definition of the derivative. The conformable derivative
is defined for functions whose domain is zero and positive numbers. Therefore,
this derivative definition lacks to include negative numbers. Deformable derivative
overcomes this deficiency in the conformable derivative.

The aim of this study is to introduce the λ-complex deformable derivative. In
the second section, we give the relationship between λ-complex differentiability
and complex differentiability. In the third section, we investigate the fundamental
properties of the λ-complex deformable derivative. On the other hand, we examine
the fundamental concepts of complex analysis according to this derivative. In the
fourth section, we introduce the deformable integral operator for complex functions
and give some of its properties. In the last section, we give some applications.

2. Complex Deformable Derivative

We first give the λ-complex deformable derivative definition.

Definition 1. Let f be a complex-valued function and 0 ≤ λ ≤ 1. Then the
λ-complex deformable derivative is defined by

Dλf(z) = lim
ε→ 0

(1 + εδ)f(z + ελ)− f(z)

ε
(2)

where λ+ δ = 1.

Note that this definition is compatible with λ = 0 and λ = 1. Because, if λ = 0,
we get D0f(z) = f(z), and if λ = 1, we get Df(z) = f ′(z). In this study, we
assume that 0 < λ ≤ 1 unless otherwise stated.

The first result implies a relationship between the complex differentiability and
the λ-complex deformable differentiability.

Theorem 1. A complex differentiable f at ζ0 ∈ C is always λ-complex deformable
differentiable at that point for any λ. Moreover, we have

Dλf(ζ0) = δf(ζ0) + λDf(ζ0), where λ+ δ = 1. (3)

Proof. By definition, we have

Dλf(ζ0) = lim
ε→ 0

(1 + εδ)f(ζ0 + λε)− f(ζ0)

ε

= lim
ε→ 0

(
f(ζ0 + λε)− f(ζ0)

ε
+ δf(ζ0 + λε)

)
= λDf(ζ0) + δ lim

ε→ 0
f(ζ0 + λε).

Since f is differentiable at ζ0, it is continuous at ζ0. Hence, lim
ε→ 0

f(ζ0 + λε) exist.

Thus, the proof is complete. □
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We know that a differentiable function f is continuous. The following result
gives a similar result for λ-complex deformable differentiable functions.

Theorem 2. If f is λ-complex deformable differentiable at a point ζ0, then f is
continuous at ζ0.

Proof. By hypothesis, the limits lim
ε→ 0

(1+εδ)f(ζ0+ελ)−f(ζ0)
ε and lim

ε→ 0
ε exist and equal

Dλf(ζ0) and 0, respectively. Hence, we can write

lim
ε→ 0

((1 + εδ)f(ζ0 + ελ)− f(ζ0)) = lim
ε→ 0

(1 + εδ)f(ζ0 + ελ)− f(ζ0)

ε
ε

= lim
ε→ 0

(1 + εδ)f(ζ0 + ελ)− f(ζ0)

ε
lim
ε→ 0

ε

= Dλf(ζ0).0 = 0.

Since lim
ε→ 0

(1 + εδ) = 1, we get lim
ε→ 0

f(ζ0 + ελ) = f(ζ0). Thus, f is continuous at

ζ0.
□

Theorem 3. Let f be λ-complex deformable differentiable function at ζ0. Then f
is differentiable at ζ0.

Proof. By the description of complex differentiability

Df(ζ0) =
1

λ
lim
ε→ 0

f(ζ0 + ελ)− f(ζ0)

ε

=
1

λ
lim
ε→ 0

(1 + εδ)f(ζ0 + ελ)− f(ζ0)− εδf(ζ0 + ελ)

ε

=
1

λ

(
lim
ε→ 0

(1 + εδ)f(ζ0 + ελ)− f(ζ0)

ε
− δ lim

ε→ 0
f(ζ0 + ελ)

)
.

Since the function f is λ-complex deformable differentiable at point ζ0, it is con-
tinuous at the same point. Thus, the proof is complete. □

Theorem 4. A function f is λ-complex deformable differentiable at ζ0 if and only
if it is differentiable at ζ0.

Definition 2. Suppose that f is an m-times differentiable at ζ0. For λ ∈ (m,m+1],
λ-complex deformable differentiable at ζ0 is defined as

Dλf(ζ0) = lim
ε→ 0

(1 + ε{δ})Dmf(ζ0 + ε{λ})−Dmf(ζ0)

ε

where {λ} is the fractional part of λ and {λ}+{δ}=1.
By the above definition, if f is (m+1)-times differentiable, we get

Dλf(ζ0) = {δ}Dmf(ζ0) + {λ}Dm+1f(ζ0).
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3. Basic Properties of Complex Deformable Derivative

In this part, we investigate certain properties of λ-complex deformable derivative.

Theorem 5. The operator Dλ provides the following properties:

(a) Dλ(αf(z) + βg(z)) = αDλf(z) + βDλg(z) (Linearity),
(b) Dλ1 .Dλ2 = Dλ2 .Dλ1 . (Commutativity),
(c) For any constant c, Dλ(c) = δc,
(d) Dλ(fg)(z) = (Dλf(z))g(z) + λf(z)Dg(z).

Theorem 6. The operator Dλ possesses the following property

Dλ

(
f

g

)
(z) =

g(z)Dλ(f(z))− λfD(g(z))

g2(z)
.

Proof. We have

Dλ

(
f

g

)
(z) = δ

(
f(z)

g(z)

)
+ λD

(
f(z)

g(z)

)
= δ

(
f(z)

g(z)

)
+ λ

(
(Df(z))g(z)− f(z)(Dg(z))

g2(z)

)
=

g(z) (λDf(z) + δf(z))− λf(z)(Dg(z))

g2(z)

=
g(z)Dλf(z)− λf(z)(Dg(z))

g2(z)
.

□

The following result gives the chain rule for the λ-complex deformable derivative.

Theorem 7. Suppose f and g are λ-complex deformable differentiable at ζ0. Then,

Dλ(fog)(ζ0) = δ(fog)(ζ0) + λD(fog)(ζ0).

Proof. Since

Dλf(ζ0) = lim
ε→ 0

(1 + εδ)f(ζ0 + ελ)− f(ζ0)

ε
= lim

ε→ 0

[
f(ζ0 + ελ)− f(ζ0)

ε
+ δf(ζ0 + ελ)

]
,

we have

Dλf(g(ζ0)) = lim
ε→ 0

[
f(g(ζ0 + ελ))− f(g(ζ0))

ε
+ δf(g(ζ0 + ελ))

]
= lim

ε→ 0

[
f(g(ζ0 + ελ))− f(g(ζ0))

g(ζ0 + ελ)− g(ζ0)

g(ζ0 + ελ)− g(ζ0)

ε
+ δf(g(ζ0 + ελ))

]
= lim

ε→ 0

[
f(g(ζ0) + ε0)− f(g(ζ0))

ε0

g(ζ0 + ελ)− g(ζ0)

ε
+ δf(g(ζ0 + ελ)

]
,
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where ε0 → 0 as ε → 0. We obtain

Dλf(g(ζ0)) = lim
ε0→ 0

f(g(ζ0) + ε0)− f(g(ζ0))

ε0
lim
ε→ 0

g(ζ0 + ελ)− g(ζ0)

ε
+ lim

ε→ 0
δf(g(ζ0 + ελ))

= Df(g(ζ0))λDg(ζ0) + δf(g(ζ0))

= λD[f(g(ζ0))] + δf(g(ζ0)).

The proof is completed. □

Proposition 1.

(a) Dλ(zn) = δzn + nλzn−1, n ∈ R.
(b) Dλ(ez) = ez.
(c) Dλ(sinz) = δsinz + λcosz.
(d) Dλ(logz) = δlogz + λ

z .

We now give the notion of real deformable partial derivatives.

Definition 3. Suppose f(x1, x2, ..., xj) is real function. Then the formula for the
partial derivative of f with respect to xi is given by

∂λ

∂xλ
i

f(x1, x2, ..., xj) = lim
ε→ 0

(1 + εδ)f(x1, ..., xi−1, xi + λε, ..., xj)− f(x1, x2, ..., xj)

ε
. (4)

∂λ

∂xλ
i

f can be also represented f
(λ)
xi .

Theorem 8. Let f(z) = u(x, y)+iv(x, y) be an λ-complex deformable differentiable
at ζ0 = x0 + iy0. Then the λ-complex deformable derivative of f

Dλf(ζ0) = u(λ)x (x0, y0) + iv(λ)x (x0, y0) = v(λ)y (x0, y0)− iu(λ)y (x0, y0). (5)

Proof. Let ε = a+ ib. For b = 0 and a → 0, we get

Dλf(ζ0) = lim
ε→ 0

(1 + εδ)f(ζ0 + ελ)− f(ζ0)

ε

= lim
a→ 0

[
(1 + aδ)u(x0 + aλ, y0)− u(x0, y0)

a
+ i

(1 + aδ)v(x0 + aλ, y0)− v(x0, y0)

a

]
= u(λ)x (x0, y0) + iv(λ)x (x0, y0).

For a = 0 and b → 0, we get

Dλf(ζ0) = lim
ε→ 0

(1 + εδ)f(ζ0 + ελ)− f(ζ0)

ε

= lim
b→ 0

[
(1 + ibδ)u(x0, y0 + ibλ)− u(x0, y0)

ib
+ i

(1 + ibδ)v(x0, y0 + ibλ)− v(x0, y0)

ib

]
= v(λ)y (x0, y0)− iu(λ)y (x0, y0).

Therefore, we have

Dλf(ζ0) = u(λ)x (x0, y0) + iv(λ)x (x0, y0) = v(λ)y (x0, y0)− iu(λ)y (x0, y0).

□
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Corollary 1. Let f(z) = u(x, y)+iv(x, y) be an λ-complex deformable differentiable
at ζ0. Then, u(x, y) and v(x, y) satisfy the λ-deformable Cauchy-Riemann equations
as

u(λ)x = v(λ)y and u(λ)y = −v(λ)x . (6)

The conversely of Corollary 1 is not always true. For example, consider the function

f(z) =

{
(z̄)2

z , z ̸= 0
0, z = 0.

For z = x+ iy ̸= 0, we have

lim
z→ 0

f(z)− f(0)

z
= lim

z→ 0

(
x− iy

x+ iy

)2

.

This limit is equal to 1 when approaching the origin along the real axis, and -1
when approaching along the y = x line. Then the function f is not differentiable
at z = 0. Therefore, f is not λ-complex deformable differentiable at z = 0. On the
other hand, since

u(λ)x (0, 0) = λ = v(λ)y (0, 0)

and

u(λ)y (0, 0) = 0 = −v(λ)x (0, 0)

the λ-deformable Cauchy Riemann equations satisfy at z = 0.

Now we give the notion of an λ-deformable analytic function using a complex
deformable derivative.

Definition 4. The function that is λ-complex deformable differentiable at every
point of an open set U is called to be λ-deformable analytic in U .

Definition 5. A function that is analytic at every point in the complex plane is
called a λ-deformable entire function.

Definition 6. A mapping is called conformal at the point ζ0 if it preserves the
angles between pairs of regular curves intersecting at ζ0.

Theorem 9. Let f be λ-deformable analytic in D. If Dλf(ζ0) ̸= 0 at ζ0 ∈ D, then
f is conformal at ζ0.

4. Complex Deformable Integral

In this section, we introduce λ-complex deformable integral and examine some
of its basic properties.
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Definition 7. Let C be a smooth curve given by the equation z(t) = x(t) + iy(t),
a ≤ t ≤ b. If the function f(z) is defined and continuous on C, then f(z(t)) is also
continuous and we can set

IλCf =
1

λ
e

−δ
λ z

∫ b

a

e
δ
λ z(t)f(z(t))z′(t)dt.

Definition 8. Let f : [a, b] → C be a continuous function. We define λ-complex
deformable integral of f ,

Iλa f =
1

λ
e

−δ
λ z

∫ b

a

e
δ
λ zf(z)dz. (7)

Proposition 2. The operator Iλa f possesses the following properties:

(a) Iλa (bf + cg) = bIλa f + cIλa g,
(b) Iλ1

a Iλ2
a = Iλ2

a Iλ1
a , where λi + δi = 1, i = 1, 2.

Definition 9. Let f be continuous on D. If there exists a function F such that
Dλ(F )(z) = f(z) for every z in D, then F is called an anti-λ-complex deformable
derivative of f .

We now give another version of the fundamental theorem of calculus.

Theorem 10. Let a function f be continuous on a domain D. Then Iλa f is λ-
complex deformable differentiable in D.

Proof. If we set F = Iλa f then we have

Dλ(Iλa f(z)) = Dλ(F (z)) = λDF (z) + δF (z).

Moreover, a particular solution of the differential equation λDF + δF = f is ob-
tained as

F (z) =
1

λ
e

−δ
λ z

∫ b

a

e
δ
λ zf(z)dz.

The proof is completed. □

Theorem 11. Let a function f be continuous on D and F is a continuous anti-λ-
complex deformable derivative of f in D. Then we have

Iλa
(
Dλf(z)

)
= Iλa (g(z)) = f(t)− e

δ
λ (a−z)f(a).

Proof. Since

F (z) =
(
Dλf(z)

)
= λDf + δf

we get

IλaF (z) = λIλaDf(z) + δIλa f(z)

= e
−δ
λ z

∫ b

a

e
δ
λ zDf(z)dz + δIλa f(z)
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= e
−δ
λ z

([
e

δ
λ zDf(z)

]b
a
− δ

λ

∫ b

a

e
δ
λ zf(z)dz

)
+ δIλa f(z)

= f(z)− e
δ
λ (a−z)f(a).

The proof is completed. □

5. Applications to Differential Equations

The linear first-order λ-complex differential equation can be expressed in the
form

Dλw + p(z)w = q(z)

where ω = f(z) be a complex valued function and p(z) is continuous complex valued
function. Using expression (3), we get

Dω +
δ + p(z)

λ
ω = q(z).

Then commonly written as

ω =
1

µ(z)

∫
µ(z)q(z)dz +

C

µ(z)
,

with

µ(z) = e
∫ δ+p(z)

λ dz

the integrating factor. Thus, we obtain the general solution of the linear first-order
λ-complex deformable differential equation is given by

w = e
−(δ+

∫
P (z)dz)
λ

∫
e
(δ+

∫
P (z)dz)
λ q(z)dz + Ce

−(δ+
∫

P (z)dz)
λ (8)

where C is arbitrary complex constant.

Example 1. Suppose ω = f(z) is λ-complex deformable differentiable function.
Solve

Dλω + ω = 0.

Using expression (3), we can write

Dω +

(
δ + 1

λ

)
ω + ω = 0.

Hence, by using an integrating factor

µ(z) = e
∫
( δ+1

λ )dz = e(
δ+1
λ )z,

we have

ω = Ce−(
δ+1
λ )z

where C is an arbitrary complex constant.
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Example 2. Suppose ω = f(z) is λ-complex deformable differentiable function.
Solve

D
1
3ω + ω = e2z.

Using expression (3), we can write

1

3
Dω +

2

3
ω + ω = e2z,

or equally

Dω + 5ω + ω = 3e2z.

Hence, by using an integrating factor

µ(z) = e
∫
5dz = e5z,

we have

ω = 3e−5z

∫
e7zdz + Ce−5z

=
3

7
e2z + Ce−5z

where C is an arbitrary complex constant.

Example 3. Suppose ω = f(z) is λ-complex deformable differentiable function.
Solve

D
1
2ω +

1

z
ω = z2ω2.

To solve the 1
2 -complex deformable differential equation, the expansion (3) is first

used, and then both sides of the obtained equation are multiplied by ω−2. Then we
have

ω−2Dω +

(
1 +

2

z

)
ω−1 = 2z2.

By substituting ω−1 = η in the above equation, we get

Dη −
(
1 +

2

z

)
η = −2z2.

Since the integrating factor of the last differential equation is

µ(z) = e−zz−2,

we find the general solutions

η = ezz2
∫

e−zz−2(−2z2)dz + Cezz2 = z2(2 + Cez)

where C is an arbitrary complex constant. Thus, its general solution may be ex-
pressed as

ω =
1

z2(2 + Cez)
.
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Abstract. A mathematical model for the dynamics of alcohol-marijuana co-
abuse is presented in this work. In the past years legalization of recreational

marijuana in several states in the United States has added a new layer to

alcohol addiction. Much research has been done for alcohol addiction or drug
abuse independently, but few include the incidence of marijuana use for alcohol

users. A compartmental epidemiological model is used, and results such as the
existence and boundedness of solutions, the basic reproduction number using

the next-generation method, the disease-free equilibrium, and an analytical

expression for the endemic equilibrium are included. Numerical simulations
with parameters obtained from data in the United States are performed for

different compartments of the population as well as the reproduction number

for the alcohol and marijuana sub-models. The model can be adapted for
different regions worldwide using appropriate data. This work contributes to

understanding the dynamics of the co-abuse of addictive substances. Even

though alcohol and marijuana are both legal, they can be of great harm to the
brain of the individual when combined, having tremendous consequences for

society as a whole. Creating awareness of a public health concern with facts

based on scientific research is the ultimate goal of this work.

1. Introduction

Alcohol consumption is a widely accepted social practice between friends and
family and sometimes in work environments. Despite its status as an intoxicating
substance, classification as a central nervous system depressant [16], and its risk
of addiction for one in ten who try alcohol, networking events, business meetings,
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and social gatherings normalize the use of this substance. Since alcohol is socially
acceptable, many users disregard the consequences that come with its use [16]. Cur-
rently, alcohol use can be placed on a spectrum. Drinking habits can be classified
as occasional, such as casual drinking at social events, as moderate, including binge
drinking, or as heavy, which is the most dangerous and can lead to many health
problems and even death.

The behavior becomes a public health crisis when someone cannot cut back on
consumption despite efforts to control consumption habits. This leads to physical
health issues, possible driving while intoxicated, and the less quantified suffering
that abusers experience with out-of-control behavior when intoxicated [12]. In
addition to drinking alcohol, cigarette smoking, marijuana, and other drug use
while drinking alcohol is common, as studies show that using one often involves
using the other in the same event/occurrence [30].

Studies have shown that peer pressure in adolescence plays a significant role
in young adults starting to consume alcohol and/or marijuana [28]. Furthermore,
college students are constantly participating in activities that involve the use of
alcohol and/or marijuana [20]. Some studies have shown that certain conditions
in individuals make them more vulnerable to becoming addicted to alcohol and/or
marijuana [14].

Researchers from NIH:NIAAA present a comprehensive study on risk factors
periodically, [19], where several studies have shown the severity of alcoholism in
modern society. Another study [27] examines alcohol abuse using a mathematical
model with recovery and relapse from epidemiology. Neurologists have studied
the brain during addictions and concluded that when trauma happens at an early
age, the brain structure of an individual may change predisposing someone to be
more likely to be addicted than others [14]. Additionally, the use of alcohol and/or
marijuana during pregnancy causes “impaired neuro-development” [17].

From well-known studies on rats in the 1950’s where pleasure in the brain was
identified when certain areas were electronically stimulated and rats would seek
that sensation despite negative consequences, scientists observed something that
is now termed “hijacking” of the brain [23]. This is where the brain confuses
the pleasurable results of the drug with survival such as eating for nutrients or
procreating to perpetuate the species [23].

Similar studies have yet to be done for the use of marijuana and the nature of
each differs in that alcohol is a depressant but marijuana has other properties, [11].
In the United States the use of medical and recreational marijuana is fully legal and
decriminalized in several states [33]. However not enough research has been done on
the effects of the use of marijuana, or the co-abuse of alcohol and marijuana. Many
teenagers are engaging in the use of alcohol and marijuana at an early age, without
knowing the side effects. Unfortunately for many of them, the recreational use
of this combination ends in a disorder they cannot control, affecting their health,
their family environment, and their future as productive members of society. In
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the majority of cases, treatment plans are not affordable for most families, and
numbers as few as one out of ten of those who have a substance use disorder attend
treatment with approximately 13% attending alcohol treatment, 50% drugs only,
and 30% both [22].

There is plenty of literature using mathematical models to analyze the dynamics
of alcohol addiction or marijuana addiction individually, see for example [9, 13, 25,
27,29]. However, the literature surrounding the co-abuse of alcohol and marijuana,
to the authors’ knowledge, is sparse. As the use of marijuana becomes socially
acceptable and legalized in many states, related data for the co-abuse is not totally
available. Since multiple health organizations show several studies where the co-
abuse of alcohol and marijuana is at the top of health concerns in the United
States [1, 5, 6], the necessity of developing mathematical models to contribute to
the analysis of alcohol-marijuana co-abuse is imperative.

A mathematical model for the dynamics of the co-abuse of alcohol and marijuana
is presented in this work, by using a system of ordinary differential equations under
certain assumptions for the whole population. In the first part of this work, the
analysis of the model is carried out. The system was divided in two subsystems,
one corresponding to the dynamics of alcohol, and the second to the dynamics
of marijuana, the evaluation of the basic reproduction number was performed for
each sub-system by using the next generation method [31]. The basic reproduction
number for the entire system is evaluated in terms of the population parameters.
Stability results for the disease-free equilibrium are included. Furthermore a sec-
tion with the analytic solution for the endemic equilibrium is included. The last
section of this work includes multiple simulations for different compartments of
the population using parameters for the population and simulations for the repro-
duction number for the sub-systems as well as the entire system. Most of these
parameters were gathered from health organizations in the United States, [1, 4, 6].

By using mathematical modeling, the ultimate goal of this work is to contribute
to understanding the co-abuse of alcohol and marijuana as it is now a public concern
of the 21st century and to create awareness in teenagers, young-adults, and adults of
the consequences of co-abuse. Public health reports indicate that even though both
alcohol and marijuana are legal, this does not mean they are good for consumption
together. This model can be used for different geographic regions, by changing the
parameter values in the simulations.

2. Model Formulation

A compartmental epidemiological model is used to describe the dynamics of
the co-abuse of alcohol and marijuana in the population. The total population is
divided in 13 compartments, S(t) – Susceptible, Ea(t) – latent alcohol consumers,
Em(t) – latent marijuana consumers, Eam(t) – latent alcohol-marijuana consumers,
Ua(t) – alcohol users, Um(t) – marijuana users, Uam(t) – alcohol-marijuana users,
Ta(t) – alcohol users in treatment, Tm(t) – marijuana users in treatment, Tam
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– alcohol-marijuana users in treatment, Qa(t) – alcohol quitters (recovery from
alcoholism), Qm(t) – marijuana quitters (recovery from marijuana abuse), Qam(t)
– alcohol-marijuana quitters (recovery from alcohol-marijuana co-abuse). For ease
of exposition, we will simply write compartments, rather than list each compartment
individually. With the above assumptions in place, we have

N(t) = S(t) + Ea(t) + Em(t) + Eam(t) + Ua(t) + Um(t) + Uam(t)

+ Ta(t) + Tm(t) + Tam(t) +Qa(t) +Qm(t) +Qam(t).

Our model draws inspiration from a co-abuse model for alcohol and metham-
phetamine presented in [26]. We build on this model by introducing a latent com-
partment E consisting of users who are not yet addicted. It is assumed that sus-
ceptible individuals become alcohol/marijuana users after an effective contact with
alcohol/marijuana users. In this model, latent classes represent individuals who
use alcohol/marijuana moderately, user classes represent individuals who use al-
cohol/marijuana on a regular basis (these are the infected individuals in general
epidemiological terminology, meaning they are alcoholic individuals or marijuana
addicted individuals or both). In Table 1, the symbol ∗ indicates that the range
for those parameters were estimated for numerical simulation purposes. Those val-
ues are still a very good approximation following the literature. Data collection for
marijuana use is still in process due to the fact that legalization of recreational mar-
ijuana is pretty recent in many states in the United States. The main public health
organizations are making a great effort to collect data as mentioned in [18,32].

We assume a homogeneous mixing of populations. A complete analysis for the
theory that human social networks may exhibit a “three degrees of influence” prop-
erty was included in [15], which suggests that individuals acquire habits of alcohol
use, marijuana use, or both, based on interactions with different populations. In this
model we also assume that individuals who consume alcohol at any level, including
during treatment (rehabilitation), contribute to the new alcohol user population.
Individuals from Tam relapsing during treatment from abusing multiple drugs [4,21]
also have the potential to influence susceptible individuals to drink alcohol. There-
fore, individuals adopt the habit of alcohol consumption at the rate λ1 given by the
following expression:

λ1 = β1

(
Ea + θ1Ua + θ2Ta + Eam + θ3Uam + θ4Tam

N

)
,

where β1 denotes the effective contact rate (the contact with an alcoholic drinker
that will result in one taking alcohol). Similarly, individuals acquire the habit of
smoking marijuana at the rate λ2 given by

λ2 = β2

(
Em + ϵ1Um + ϵ2Tm + Eam + ϵ3Uam + ϵ4Tam

N

)
,

where β2 denotes the effective contact rate (the contact with a marijuana user that
will result in one smoking marijuana).
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It is assumed that individuals under alcohol/marijuana treatment tend to have
lower recruitment rates relative to alcoholics without treatment or marijuana ad-
dicts. Then the following relations hold: θ1 > 1, θ3 > 1, θ2 < 1, θ4 < 1, ϵ1 > 1,
ϵ3 > 1, ϵ2 < 1, ϵ4 < 1.

Epidemiological models for co-abuse or co-infections are of tremendous interest
in recent research [8]. For example in [7] a complete study for the co-infection
between HIV and HCV was developed.

The following system of ordinary differential equations captures the dynamics of
alcohol-marijuana co-abuse:

dS

dt
= Λ− (λ1 + λ2 + µ)S (1)

dEa
dt

= λ1S + ρ1Eam − (ηaλ2 + σa + µ)Ea (2)

dEam
dt

= ηaλ2Ea + ηmλ1Em − (ρ1 + ρ2 + σam + µ)Eam (3)

dEm
dt

= λ2S + ρ2Eam − (σm + ηmλ1 + µ)Em (4)

dUa
dt

= σaEa + ρ3Uam + ψaTa − (ηaλ2 + αa + ξa + δa + µ)Ua (5)

dUam
dt

= σamEam + ηaλ2Ua + ηmλ1Um + ψamTam

− (ρ3 + ρ4 + αam + ξam + δam + µ)Uam (6)

dUm
dt

= σmEm + ρ4Uam + ψmTm − (ηmλ1 + αm + ξm + µ)Um (7)

dTa
dt

= αaUa − (ψa + γa + µ)Ta (8)

dTam
dt

= αamUam − (ψam + γam + µ)Tam (9)

dTm
dt

= αmUm − (ψm + γm + µ)Tm (10)

dQa
dt

= ξaUa + γaTa − µQa (11)

dQam
dt

= ξmUam + γamTam − µQam (12)

dQm
dt

= ξmUm + γmTm − µQm (13)

Figure 1 represents the transition between compartments for the alcohol-marijuana
co-abuse model.

In the next section a complete mathematical analysis is developed, positiveness
and boundedness of solutions are always fundamental properties for a consistent
dynamical system in epidemiology. The basic reproduction number is included. The
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Table 1. Parameters values1

Symbol Description Value

Λ Recruitment rate for susceptible .0546 [1]

µ Natural mortality rate 0.001 [2]

β1 Alcohol transmission rate .24 – .27 [3, 10]

β2 Marijuana transmission rate 0.169 [1]

σa Alcoholism effective rate 0.056 [1]

σm Marijuana users effective rate 0.011 [1]

σam Co-abusers effective rate [0.01-0.06] [1]

αa Alcoholism treatment rate 0.131 [1]

αm Marijuana users treatment rate 0.09 [1]

αam Co-abusers treatment rate 0.32 [1]

γa Alcoholism recovery rate after treatment 0.87 [24]

γm Marijuana users recovery rate after treatment 0.45 [1]

γam Co-abusers recovery rate after treatment [0.1-0.4] [1]

θ1, θ3 Weight contributions to λ1 from Ua, Uam [1.01-1.05] [1]

θ2, θ4 Weight contributions to λ1 from Ta, Tam [0.01-0.03] [1]

ϵ1, ϵ3 Weight contributions to λ2 from Um, Uam [1.01-1.08] [1]

ϵ2, ϵ4 Weight contributions to λ2 from Tm, Tam [0.4-0.7] [1]

ηa Rate at which alcohol users become marijuana users [0.5-0.9] [1]

ηm Rate at which marijuana users become alcohol users [0.5-0.9] [1]

ψa Relapsing rate from alcoholism 0.13 [24]

ψm Relapsing rate from marijuana use [0.4− 0.6]∗

ψam Relapsing rate from Co-abusers [0.4− 0.6]∗

ξa Quitting rate from alcohol abusers without treatment 0.36 [1]

ξm Quitting rate from marijuana abusers without treatment [0.1− 0.4]∗

ξam Quitting rate from Co-abusers without treatment [0.2− 0.6]∗

δa Alcohol-induced mortality rate .000392 [3]

δam Co-abusers mortality rate [0.0004− 0.0007]∗

ρ1 Rate at which individuals from Eam-class back to Ea-class [0.4− 0.7]∗

ρ2 Rate at which individuals from Eam-class back to Em-class [0.4− 0.7]∗

ρ3 Rate at which Co-abusers back to Ua-class [0.4− 0.8]∗

ρ4 Rate at which Co-abusers back to Um-class [0.2− 0.7]∗

1The scenarios used to choose most of the parameters were obtained from statistics found
in [1, 5, 6] for the state of Virginia, United States in 2017. For example, σa, σm, and αa

are taken from the Behavioral Health Barometer for Virginia which can be found in [1].
Other parameters, in particular those for co-abuse such as αam, were estimated using
rates for general drug and alcohol co-abuse or by using compartmental rates as bounds.
For example, bounds for σam were assumed based on σa and σm. The validity of these
bounds, such as σam can be checked using Crosstab, also from [1]. Individual state level
data is not available in Crosstab for general public use. In the case of σam, this Crosstab
tells us that almost 3% of Virginians and Marylanders co-abused alcohol and marijuana
in 2017.

https://www.samhsa.gov/data/sites/default/files/cbhsq-reports/Virginia-BH-BarometerVolume5.pdf
https://datatools.samhsa.gov/nsduh/2017/nsduh-2016-2017-rd02yr/crosstab?row=CADRKMARJ2&column=STNAME_RECODE&weight=DASWT_1&recodes=STNAME_RECODE%7CVIRGINIA%3DState%26MARYLAND%3DState%26ALABAMA%3DNot%26ARIZONA%3DNot%26ALASKA%3DNot%26CALIFORNIA%3DNot%26COLORADO%3DNot
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Figure 1. Visual representation of alcohol-marijuana co-abuse model.

free disease equilibrium and an analytical expression for the endemic equilibrium
point are included. Some stability results are proven as well.

3. Mathematical Analysis for the Alcohol-Marijuana Co-Abuse
Model

Positiveness and long-term behavior for the solutions of System (1)–(13) are
established in this section. Assume that the variables and the parameters are all
non-negative for all times t ≥ 0.

Theorem 1. If each compartment is non-negative at t = 0, then each compartment
is non-negative for time t > 0. Moreover,

lim
t→∞

N(t) ≤ Λ

µ
.

Proof. Assume that T is the maximum time for the epidemic. That is,

T = sup {S > 0, Ea ≥ 0, Eam ≥ 0, . . . , Qm ≥ 0} ∈ [0, t].
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Therefore for T > 0, from System (1)–(13), equation (1) is equivalent to

dS

dt
+ (µ+ λ1 + λ2)S = Λ,

from which it holds

S(T ) ≥ S(0) exp

{
−µT +

∫ t

0

(λ1(s) + λ2(s))ds

}
.

Hence, S(T ) ≥ 0 for all T > 0.
From System (1)–(13) equation (2),

dEa
dt

= λ1S + ρ1Eam − (ηaλ2 + σa + µ)Ea

≥ −(ηaλ2 + σa + µ)Ea.

Then

Ea(T ) ≥ Ea0 exp

{
−
(
(σa + µ)t+

∫ t

0

ηaλ2(s)ds

)}
.

Hence, Ea(T ) ≥ 0 for all T > 0. The positiveness of the remaining compartments
can be shown in a similar way.

The evolution change in the population is given by

dN

dt
= Λ− µN − δa − δamUam.

Then
dN

dt
≤ Λ− µN,

from which it holds
dN

dt
+ µN ≤ Λ.

Then

N(t) ≤ Λ

µ
+

(
N0 −

Λ

µ

)
exp(−µt).

Since (N0 − Λ/µ) is a constant and µ > 0,

Λ

µ
+

(
N0 −

Λ

µ

)
exp(−µt) → Λ

µ
as t→ ∞.

So limt→∞N(t) ≤ Λ
µ as desired. □

The feasible region D, for System (1)–(13) is therefore

D =

{
(S,Ea, Eam, Em, . . . , Qa, Qam, Qm) ∈ R13

+ | N ≤ Λ

µ

}
.
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3.1. Basic reproduction number. The basic reproduction number is the number
of secondary infections. In the context of this model, if an individual is an alcoholic
or a marijuana user or both, after an effective contact with susceptible individuals,
the basic reproduction number corresponds to how many susceptible individuals
become alcoholics or marijuana codependent or alcohol-marijuana co-abusers. The
next generation matrix method is used to find the basic reproduction number for
the co-abuse model System (1)–(13) [31]. First the basic reproduction number is
found for the alcohol model, denoted Ra0. Second the basic reproduction number
was found for the marijuana model, denoted Rm0. The basic reproduction number
Ram is the larger of Ra0 and Rm0. So one only needs to calculate the reproduction
number for these individual models to determine the reproduction number of the
co-abuse model, see [7] for a detailed calculation of the basic reproduction number
for a co-abuse model.

In the next sub-sections, System (1)–(13) is sub-divided into two models, one
corresponding to the dynamics of alcohol use, and the other to the marijuana use.

3.2. Alcohol abuse model. Taking S together with the first column of Figure 1,
one can see that the alcohol abuse model is given by

dS

dt
= Λ− (µ+ λ̃1)S (14)

dEa
dt

= λ̃1S − (σa + µ)Ea (15)

dUa
dt

= σaEa + ψaTa − (αa + ξa + δa + µ)Ua (16)

dTa
dt

= αaUa − (ψa + γa + µ)Ta (17)

dQa
dt

= ξaUa + γaTa − µQa (18)

where

λ̃1 = β1

(
Ea + θ1Ua + θ2Ta

N

)
.

The corresponding matrices to apply to the next generation method to are

F =



λ̃1S

0

0

0

0


and V =



(σa + µ)Ea

−σaEa − ψaTa+ (αa + ξa + δa + µ)Ua

−αaUa + (ψa + γa + µ)Ta

−Λ + (µ+ λ̃1)S

−ξaUa − γaTa + µQa


.
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The alcohol model has a disease-free equilibrium X0
a = (Λ/µ, 0, 0, 0, 0). The

matrices F and V at the disease-free equilibrium, following the next generation
matrix method in [31], are given by:

F =


β1 β1θ1 β1θ2

0 0 0

0 0 0

 and V =


σa + µ 0 0

−σa αa + ξa + δa + µ −ψa

0 −αa ψa + γa + µ

 ,
or

V =


σa + µ 0 0

−σa b1 −ψa

0 −αa b2

 ,
where b1 = αa + ξa + δa + µ and b2 = ψa + γa + µ.

The basic reproduction number Ra0 corresponds to the spectral value of the
matrix FV −1, so

Ra0 =
β1

σa + µ
+

β1θ1σa
b1(σa + µ)(1− Φa)

+
β1θ2σaαa

b1b2(σa + µ)(1− Φa)
,

where Φa = αaψa/b1b2.

3.3. Marijuana abuse model. Taking S together with the right column of Fig-
ure 1, one can see that the Marijuana abuse model is given by

dS

dt
= Λ− (µ+ λ̃2)S (19)

dEm
dt

= λ̃2S − (σm + µ)Em (20)

dUm
dt

= σmEm + ψmTm − (αm + δm + µ)Um (21)

dTm
dt

= αmUm − (ψm + γm + µ)Tm (22)

dQm
dt

= ξmUm + γmTm − µQm (23)

where

λ̃2 = β2

(
Em + ϵ1Um + ϵ2Tm

N

)
.
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The corresponding matrices to apply the next generation method to are

F =



λ̃2S

0

0

0

0


and V =



(σm + µ)Em

−σmEm − ψmTw + (αm + ξm + δm + µ)Um

−αmUm + (ψm + γm + µ)Tm

−Λ + (µ+ λ̃2)S

−ξaUa − γaTa + µQa


.

Similarly to the alcohol model, the marijuana model has a disease-free equi-
librium X0

m = (Λ/µ, 0, 0, 0, 0), and the matrices F and V at the marijuana-free
equilibrium, following the next generation matrix method, are given by

F =


β2 β2ϵ1 β2ϵ2

0 0 0

0 0 0

 and V =


σm + µ 0 0

−σm αm + ξm + µ −ψm

0 −αm ψm + γm + µ

 ,
or

V =


σa + µ 0 0

−σm c1 −ψm

0 −αm c2

 ,
where c1 = αm + ξm + µ and c2 = ψm + γm + µ.

The basic reproduction number Rm0 is

Rm0 =
β2

σm + µ
+

β2ϵ1σm
c1(σm + µ)(1− Φm)

+
β2ϵ2σmαm

c1c2(σm + µ)(1− Φm)
,

where Φm = αmψm/c1c2.
Then the basic reproduction number for System (1)–(13) is given by

Ram = max{Ra0,Rm0}.

Graphs for Ra0, Rm0, and Ram were obtained using Matlab, the graphs gave
us an insight for the behaviour of the basic reproduction number when parameters
are varied. Most of the parameters used were found from publicly available data
and recent literature.

In Figure 2, notice that Ra0 > 1 for values of σa < 0.3. From the data σa =
0.056 < 0.3, meaning that alcoholism is not under control, a similar situation is
observed for the marijuana model, since Rm0 > 1 for values of σm < 0.2, and from
the data σm = 0.0011 < 0.2. So marijuana use is not under control either. For this
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range of values, notice that Ram = Ra0. Then the alcohol-marijuana co-abuse is
an epidemic and can become a pandemic if severe actions are not implemented.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 R
a0

R
m0

Figure 2. Ra0 and Rm0 with .1 ≤ σa, σm ≤ .9, θ1 = 1.01, ϵ1 =
1.05 and θ2 = .01, ϵ2 = .7. On this interval, Ram = Ra0.

Theorem 2. The disease-free equilibrium X0
a for the Alcohol abuse model is stable.

Proof. The Jacobian for the Alcohol abuse model at X0
a , is given by

Ja(X
0
a) =



−(µ+ λ̃1) 0 0 0 0

λ̃1 −(σa + µ) 0 0 0

0 σa −(αa + ξa + δa + µ) ψa 0

0 0 αa −(ψa + γa + µ) 0

0 0 ξa γa −µ


,

The eigenvalues of Ja(X
0
a) are given by

− µ, −(µ+ λ̃1), −(µ+ σa),

− 1
2αa−

1
2δa−

1
2γa−µ−

1
2ψa−

1
2ξa−

1
2

(
α2
a+2αaδa−2αaγa+2αaψa+2αaξa+δ

2
a−2∗δaγa

− 2δaψa + 2δaξa + γ2a + 2γaψa − 2γaξa + ψ2
a − 2ψaξa + ξ2a

)1/2
,

and
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1
2

(
α2
a+2αaδa−2αaγa+2αaψa+2αaξa+δ

2
a−2δaγa−2δaψa+2δaξa+γ

2
a+2γaψa

− 2γaξa + ψ2
a − 2ψaξa + ξ2a

)1/2 − 1
2δa −

1
2γa − µ− 1

2ψa −
1
2ξa −

1
2αa.

notice that the real parts for the five eigenvalues are negative, therefore when t
approaches infinity, the solutions approach X0

a . □

Similarly, it is possible to show results for the marijuana abuse model, and for
the alcohol-marijuana co-abuse model.

4. Characterization of the Endemic Equilibrium

Analytic expressions for the endemic equilibrium are presented in this section.
Setting equations from System (1)–(13) to zero and performing several calculations,
the endemic equilibrium is obtained depending on the force of infectious λ∗1 and λ∗2,
and the parameters for the model. System (1)–(13) was sub-divided to accomplish
this task, the first set of equations correspond to the variables S, Ea, Eam, Em, as
follows:

S∗ =
Λ

µ+ λ∗1 + λ∗2
(24)

E∗
am =

λ∗1λ
∗
2[b5ηa + b4ηm]

b3b4b5[1− Φ3]
S∗ (25)

E∗
a =

ρ1
b4
E∗
am +

λ1
b4
S∗ (26)

E∗
m =

ρ2
b5
E∗
am +

λ2
b5
S∗ (27)

where b3 = ρ1 + ρ2 + σam + µ, b4 = ηaλ
∗
2 + σa + µ, b5 = ηmλ

∗
1 + σm + µ and

Φ3 =
ηaλ

∗
2ρ1

b3b4
+

ηwλ
∗
1ρ2

b3b5
.

The second set of equations correspond to the variables Ua, Um, Uam, as follows:

U∗
am =

σaηaλ
∗
2

ΓamΦ4
E∗
a +

σmηmλ
∗
1

ΓamΦ5
E∗
m +

σam
Γam

E∗
am (28)

U∗
a =

ρ3
Φ4
U∗
am +

σa
Φ4
E∗
a (29)

U∗
m =

ρ4
Φ5
U∗
am +

σm
Φ5

E∗
m, (30)

where c3 = ψam+γam+µ, c4 = ρ3+ρ4+αam+ξm+δam+µ, Φ4 = ηaλ
∗
2+b1−

αaψa

b2
,

Φ5 = ηmλ
∗
1 + c1 − αmψm

c2
, and Γam = c4 − αamψam

c3
− ρ3ηaλ

∗
2

Φ4
− ρ4ηmλ

∗
1

Φ5
.

The last set of equations correspond to the variables T ∗
am, T ∗

a , T
∗
m, Q∗

am, Q∗
a,

Q∗
m, as follows:

T ∗
am =

αam
c3

U∗
am (31)

T ∗
a =

αa
b2
U∗
a (32)
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T ∗
m =

αm
c2
U∗
m, (33)

and

Q∗
am =

(
ξam
µ

+
γamαam
µc3

)
U∗
am (34)

Q∗
a =

(
ξa
µ

+
γaαa
µb2

)
U∗
a (35)

Q∗
m =

(
ξm
µ

+
γmαm
µc2

)
U∗
m (36)

Reaching an analytic expression for the endemic equilibrium is considered of
great value in epidemiological models because the disease free-equilibrium and the
endemic equilibrium are the two stages that the population approaches, in the long
term. But, in general, for the majority of contagious diseases, the disease remains
in the populations, and therefore approaches to the endemic equilibrium.

5. Numerical Simulations

In this section, numerical simulations are presented.
Figure 3 shows the behavior for compartments S,E,U, T,Q, for the sub-model

of alcohol abuse. Observe that with a small initial amount of latent population
(E), after interactions with susceptible individuals, the number of alcohol users (U)
increased, peaking in the fifth year. With treatment programs in effect, the number
of alcoholics decreases after the fifth year. Notice that population Q increases,
indicating treatment is effective.

The most relevant compartment to observe in this work is the compartment Ua
of alcohol-dependent individuals. In Figure 3, it is noticeable that if the alcoholism
effective rate increases, the number of alcoholic individuals will increase, having a
peak around the fifth year. As treatment plans and programs are implemented, the
number of alcohol-dependent users starts decreasing, even though the treatment
rate is very low.

For the marijuana abuse model, Figure 4 shows that the population of mari-
juana users Um steadily increases during the first five years after 2017. Between
five to thirty years after 2017, the user population appears to transition from a
slow increase to a slow decrease. After the thirty year mark, the user population
decreases more quickly, perhaps due to treatment for marijuana-abuse not being as
ubiquitous as treatment for alcohol-abuse.

When simulating System (1)–(13), in Figure 5 notice that the compartment
classes Eam, Uam, Tam, and Qam for co-abuse reach their maximum close to the first
year, meaning that the use of both alcohol and marijuana lead faster to addiction
that the independent use of the substances. Again, if entering treatment happen
as soon as the individual detect an addiction, then the probability of recovery is
higher than without treatment.
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Figure 3. Simulation of alcohol-abuse system with θ1 = 1.05 and
θ2 = 0.7.
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Figure 4. Simulation of marijuana-abuse system with ϵ1 = 1.05
and ϵ2 = 0.7.

For the alcohol abuse model, in Figure 6, alcohol users Ua increases significantly
during the first five years after the year 2017. Notice that the dominant graph of
Ua corresponds to σa = 0.076, which is the maximum value for σa.
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Figure 5. Simulation of co-abuse system with ϵ1 = 1.05 and ϵ2 = 0.7.
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Figure 6. Ua with .25 ≤ σa ≤ .9, θ1 = 0.01 and θ2 = 1.01.

For the marijuana abuse model, in Figure 7, data corresponding to marijuana
treatment is not available yet because legalization is very recent in many states.
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Figure 7. Tm with .1 ≤ ξm ≤ .3, ϵ1 = 1.01 and ϵ2 = 1.01.
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Figure 8. Qm with .1 ≤ ξm ≤ .3, θ1 = 0.01 and θ2 = 1.01.
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The parameters used for this simulations were estimated based on parameters for
treatment for other types of drugs.

For the marijuana abuse model, in Figure 8, the parameter in consideration
ξ corresponds to the quitting rate of marijuana users without treatment. The
reason Qm increases slowly is because of a lack of treatment programs for marijuana
addicts.

6. Conclusions

Even though alcohol-marijuana co-abuse will always be present in modern so-
ciety, the question of how to prevent co-abuse from becoming a pandemic can be
asked. A mathematical model that describes the dynamics of the alcohol-marijuana
co-abuse allowed us to identify the most relevant parameters to help control this
epidemic. Alcohol and marijuana are two addictive substances that when combined
can cause severe damage to young generations. This co-abuse is a social problem
that is growing out of control, and if public health entities do not implement pre-
vention programs, susceptible individuals are at high risk of becoming addicted to
both substances. Analytical evaluations and numerical simulations show that for
some parameters the alcohol-marijuana co-abuse can be controlled under certain
constraints. The basic reproduction number for the independent models of alcohol
and marijuana, and for the co-abuse model, in terms of the parameters, is a very
standard way of defining public policies with the purpose of avoiding pandemics.
This work can be implemented for any region by changing the parameters for the
model using data values that correspond to each region. The model is well de-
fined since positiveness and boundedness of solutions were shown. Stability for the
disease-free equilibrium was attained by evaluation of eigenvalues for the sub-matrix
for the newly infectious (latent and alcoholic individuals). Additionally, we were
able to find an analytic expression for the endemic equilibrium which will help to
identify where the individuals from different compartments will approach in the long
term. Simulations for the most relevant parameters were included, showing that
it is possible to control the co-abuse by implementing different approaches. These
approaches include voluntarily quitting the use of the substances or, for a faster
recovery, by entering a treatment program. Unfortunately, if quitting excessive al-
cohol consumption is not accomplished on time, the consequences of alcoholism can
cause irreparable damage in the individual, for example, cardio vascular diseases,
diabetes, cirrhosis, and some type of cancers, among others. Similarly, recent re-
search shows that uncontrolled use of marijuana can cause neural damage, mental
health disorders such as anxiety, depression, and in some cases paranoia. Also,
some studies show that the constant use of marijuana causes digestive problems.
When modeling co-abuse, it is expected that health consequences will be worse.
Therefore, conduction of more research in this area, and collection of data are very
important in order to create awareness and prevention programs for a real problem
in society.
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Abstract. This research introduces a novel category of dual-generalized com-

plex numbers, with components represented by unrestricted Horadam num-
bers. We present various recurrence relations, summation formulas, the Binet

formula, and the generating function associated with these numbers. Addi-

tionally, a comprehensive bilinear index-reduction formula is derived, which
encompasses Vajda’s, Catalan’s, Cassini’s, D’Ocagne’s, and Halton’s identi-

ties as specific cases.

1. Introduction

Hypercomplex numbers have many applications such as in physics, geometry,
robotics, and quantum mechanics. There are many studies related to different types
of hypercomplex numbers. One among them is dual-generalized complex numbers.
They are defined by Gurses et al. [11] as a generalization of dual-complex numbers,
hyper-dual numbers, and dual-hyperbolic numbers. The set of dual-generalized
complex numbers is defined by

DCp = {a0 + a1J + a2ε+ a3Jε | a0, a1, a2, a3 ∈ R} , (1)

where the dual unit ε and the generalized complex unit J adhere to the following
rules:

J2 = p,−∞ < p < ∞, ε2 = 0, ε ̸= 0, εJ = Jε. (2)
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Table 1. Multiplication table of units J, ε, Jε.

1 J ε Jε
1 1 J ε Jε
J J p Jε pε
ε ε Jε 0 0
Jε Jε pε 0 0

The multiplication scheme for the basis elements of dual generalized complex
numbers can also be given in the following table.

Clearly, when the parameter p takes the value of −1, the newly introduced
commutative number system corresponds into dual-complex numbers. Similarly,
for p = 0, it aligns with hyper-dual numbers, and for p = 1, it corresponds to
dual-hyperbolic numbers. Consequently, an examination of dual-generalized com-
plex numbers allows for the simultaneous understanding of dual-complex numbers,
hyper-dual numbers, and dual-hyperbolic numbers. For a more in-depth under-
standing of dual-generalized complex numbers, one may refer to the relevant liter-
ature [5, 6, 9, 11,17,18] and the cited references therein.

Extensive research has been conducted on quaternion sequences within specific
quaternion algebras. Notably, Horadam [14] explored Fibonacci quaternions within
the realm of real quaternion algebra, focusing on quaternion sequences comprising
Fibonacci number components. Expanding on the concept of Fibonacci quater-
nions, Sentürk et al. [19] introduced unrestricted Horadam quaternions within a
generalized quaternion algebra by

H(x,y,z)
n = wn + wn+xi+ wn+yj + wn+zk,

where {wn} is the Horadam sequence [15] defined by

wn = pwn−1 + qwn−2, n ≥ 2 (3)

with the arbitrary initial values w0, w1 and nonzero integers p, q. Here the basis
{1, i, j, k} satisfies the following multiplication rules:

i2 = −λ, j2 = −µ, k2 = −λµ,

ij = −ji = k, jk = −kj = µi, ki = −ik = λj,

with λ, µ ∈ R. For λ = µ = 1, it simplifies to the real quaternion algebra, and
when x = 1, y = 2, and z = 3, the unrestricted Horadam quaternions reduce
to the Horadam quaternions in [13]. Some matrix representations of Horadam
quaternions can be found in [22], and for some recent papers related to special
types of quaternions with unrestricted subscripts can be found in [2, 3, 7, 8]. For
more on Horadam sequences, see [16,20].

Several researchers have explored the realm of dual-generalized complex numbers
incorporating components resembling Fibonacci sequences. Specifically, Cihan et
al. [4] pioneered the study of dual-hyperbolic Fibonacci and Lucas numbers, while
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Gungor and Azak [10] established the framework for dual-complex Fibonacci and
Lucas numbers. In a similar context, Tan et al. [21] introduced the concept of hyper-
dual Horadam quaternions. Furthermore, Gurses et al. [12] innovatively presented
the dual-generalized complex Fibonacci quaternions, utilizing dual Fibonacci num-
bers as coefficients in lieu of real numbers. Recently, Tan and Ocal [23] introduced
the dual generalized complex Horadam quaternions.

Inspired by the studies mentioned earlier, we now present the unrestricted dual
generalized complex Horadam numbers. We obtain some recurrence relations, the
generating function, and the Binet formula of these numbers. We also obtain the
general bilinear index-reduction formula of these numbers which reduces to the
Vajda’s, Halton’s, Catalan’s, Cassini’s, and D’Ocagne’s identities as a special case.
Moreover, we give summation formulas and a matrix representation of them.

We conclude this section with some preliminaries related to the Horadam se-
quence.

The Horadam sequence {wn} transforms into the (p, q)-Fibonacci sequence {un}
when w0 = 0, w1 = 1, and into the (p, q)-Lucas sequence {vn} when w0 = 2, w1 = p.
When p = q = 1, these sequences simplify to the traditional Fibonacci sequence
{Fn} and Lucas sequence {Ln}, respectively.

The Binet formula of Horadam sequence {wn} is

wn =
Aαn −Bβn

α− β
, (4)

where A := w1 − w0β,B := w1 − w0α, and α, β are the roots of the characteristic

polynomial x2 − px − q, that is; α =
p+

√
p2+4q

2 , β =
p−

√
p2+4q

2 . Also we have

αβ = −q, α+ β = p,∆ := α− β =
√
p2 + 4q with p2 + 4q > 0.

2. Main Results

In this section, we initially establish the concept of unrestricted dual-generalized
complex Horadam numbers, followed by an exploration of some fundamental prop-
erties associated with these numbers. Throughout this section, we simply denote
the unrestricted dual-generalized complex Horadam numbers as unrestricted DGC
Horadam numbers. Let also x, y and z be arbitrary positive integers.

Definition 1. The nth unrestricted DGC Horadam number is defined as

w̃(x,y,z)
n = wn + wn+xJ + wn+yε+ wn+zJε,

where wn is the nth Horadam number, ε is dual unit, and J is generalized complex
unit adhering to the multiplication rules in (2) .

In the following table, we give some special cases of the unrestricted dual-

generalized complex DGC Horadam numbers w̃
(1,2,3)
n . We should note that when
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Table 2. Special cases of the unrestricted DGC Horadam numbers.

p p q w0 w1

p 1 1 0 1 DGC Fibonacci numbers [12]
p 1 1 2 1 DGC Lucas numbers [12]
−1 1 1 0 1 Dual-complex Fibonacci numbers [10]
−1 1 1 2 1 Dual-complex Lucas numbers [10]
−1 k 1 0 1 Dual-complex k-Fibonacci numbers [1]
1 1 1 0 1 Dual-hyperbolic Fibonacci numbers [4]
1 1 1 2 1 Dual-hyperbolic Lucas numbers [4]
0 1 1 w0 w1 Hyper-dual Fibonacci numbers [22]

x = 1, y = 2, and z = 3, the unrestricted dual-generalized complex Horadam num-

bers w̃
(x,y,z)
n reduce to the conventional dual generalized complex Horadam numbers

in [23].
The addition, subtraction, and multiplication of two unrestricted DGC Horadam

numbers w̃
(x,y,z)
n and w̃

(x,y,z)
m are defined as

w̃(x,y,z)
n ± w̃(x,y,z)

m = (wn ± wm) + (wn+x ± wm+x) J

+(wn+y ± wm+y) ε+ (wn+z ± wm+z) Jε

and

w̃(x,y,z)
n w̃(x,y,z)

m = (wnwm + pwn+xwm+x)+(wnwm+x + wn+xwm) J

+ (wnwm+y + wn+ywm + pwn+xwm+z + pwn+zwm+x) ε

+ (wnwm+z + wn+xwm+y + wn+ywm+x + wn+zwm) Jε,

respectively.

Theorem 1. The unrestricted DGC Horadam numbers satisfy the following rela-
tion:

w̃(x,y,z)
n = pw̃

(x,y,z)
n−1 + qw̃

(x,y,z)
n−2 , n ≥ 2.

Proof. Using the definition of unrestricted DGC Horadam numbers and the defini-
tion of classical Horadam numbers, we get

pw̃
(x,y,z)
n−1 +qw̃

(x,y,z)
n−2 = p (wn−1 + wn−1+xJ + wn−1+yε+ wn−1+zJε)

+q (wn−2 + wn−2+xJ + wn−2+yε+ wn−2+zJε)

= (pwn−1 + qwn−2) + (pwn−1+x + qwn−2+x) J

+(pwn−1+y + qwn−2+y) ε+ (pwn−1+z + qwn−2+z) Jε

= wn + wn+xJ + wn+yε+ wn+zJε = w̃(x,y,z)
n .

□

In the following Theorem, we give a relation between (p, q)-Fibonacci numbers
and the unrestricted DGC Horadam numbers.
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Theorem 2. For n ≥ 1, we have

w̃(x,y,z)
n = unw̃

(x,y,z)
1 + qun−1w̃

(x,y,z)
0 .

Proof. From the definition of (p, q)-Fibonacci numbers and the definition of the
unrestricted DGC Horadam numbers, we get

un (w1 + wx+1J + wy+1ε+ wz+1Jε) + qun−1 (w0 + wxJ + wyε+ wzJε)

= unw1 + qun−1w0

+(unwx+1 + qun−1wx) J + (unwy+1 + qun−1wy) ε+ (unwz+1 + qun−1wz) Jε

= wn + wn+xJ + wn+yε+ wn+zJε

= w̃(x,y,z)
n .

□

Theorem 3. The generating function for unrestricted DGC Horadam numbers is

G(t) =
w̃

(x,y,z)
0 +

(
w̃

(x,y,z)
1 − pw̃

(x,y,z)
0

)
t

1− pt− qt2
.

Proof. Let

G(t) :=

∞∑
n=0

w̃(x,y,z)
n tn = w̃

(x,y,z)
0 + w̃

(x,y,z)
1 t+

∞∑
n=2

w̃(x,y,z)
n tn.

From Theorem 1, we have(
1− pt− qt2

)
G(t)

= w̃
(x,y,z)
0 + w̃

(x,y,z)
1 t+

∞∑
n=2

w̃(x,y,z)
n tn − pw̃

(x,y,z)
0 t− p

∞∑
n=2

w̃
(x,y,z)
n−1 tn − q

∞∑
n=2

w̃
(x,y,z)
n−2 tn

= w̃
(x,y,z)
0 + w̃

(x,y,z)
1 t− pw̃

(x,y,z)
0 t+

∞∑
n=2

(
w̃(x,y,z)

n − pw̃
(x,y,z)
n−1 − qw̃

(x,y,z)
n−2

)
tn

= w̃
(x,y,z)
0 +

(
w̃

(x,y,z)
1 − pw̃

(x,y,z)
0

)
t.

Thus, we get the desired result. □

Theorem 4. The Binet formula of unrestricted DGC Horadam numbers is

w̃(x,y,z)
n =

Aααn −Bββn

α− β
,

where α = 1 + αxJ + αyε+ αzJε and β = 1 + βxJ + βyε+ βzJε.

Proof. Using the Binet formula of Horadam numbers in (4), we have

w̃(x,y,z)
n = wn + wn+xJ + wn+yε+ wn+zJε
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=

(
Aαn −Bβn

α− β

)
+

(
Aαn+x −Bβn+x

α− β

)
J

+

(
Aαn+y −Bβn+y

α− β

)
ε+

(
Aαn+z −Bβn+z

α− β

)
Jε

=
Aαn

α− β
(1 + αxJ + αyε+ αzJε)− Bβn

α− β
(1 + βxJ + βyε+ βzJε)

=
Aααn −Bββn

α− β
.

□

From Theorem 4, we derive the Binet formulas of unrestricted DGC (p, q)-
Fibonacci and Lucas cases:

ũ(x,y,z)
n =

ααn − ββn

α− β
and ṽ(x,y,z)n = ααn + ββn, (5)

respectively. By considering (5), the following relation can be easily derived:

ṽ(x,y,z)n = ũ
(x,y,z)
n+1 + qũ

(x,y,z)
n−1 .

To establish various properties of unrestricted DGC Horadam numbers, we re-
quire the following lemma.

Lemma 1. Let x, y, z be positive integers with z > y > x. Then we have

αβ = ṽ
(x,y,z)
0 − 1 + (−q)

x
((1 + vz−xε) p+ vy−xJε) .

Proof.

αβ = (1 + αxJ + αyε+ αzJε) (1 + βxJ + βyε+ βzJε)

= 1 + p (αβ)
x

+(αx + βx) J

+(αy + βy + p (αxβz + αzβx)) ε

+(αz + βz + αxβy + αyβx) Jε

αβ = 1 + p (−q)
x
+ vxJ + vyε+ p (αxβz + αzβx) ε+ vzJε+ (αxβy + αyβx) Jε

= 1 + vxJ + vyε+ vzJε+ p (−q)
x
+ p (αxβz + αzβx) ε+ (αxβy + αyβx) Jε

= ṽ
(x,y,z)
0 − 1 + p (−q)

x
+ p (αxβz + αzβx) ε+ (αxβy + αyβx) Jε

= ṽ
(x,y,z)
0 − 1 + p (−q)

x
+ p

(
(αβ)

x (
αz−x + βz−x

))
ε+

(
(αβ)

x (
αy−x + βy−x

))
Jε

= ṽ
(x,y,z)
0 − 1 + (−q)

x (
p+ p

(
αz−x + βz−x

)
ε+

(
αy−x + βy−x

)
Jε
)

= ṽ
(x,y,z)
0 − 1 + (−q)

x
((1 + vz−xε) p+ vy−xJε) .

□
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Utilizing the Binet formula for unrestricted DGC Horadam numbers and apply-
ing Lemma 1, we derive the following identity.

Theorem 5. (General bilinear index-reduction formula) For nonnegative integers
a, b, c, d such that a+ b = c+ d, b > a, d > c, we have

w̃(x,y,z)
a w̃

(x,y,z)
b − w̃(x,y,z)

c w̃
(x,y,z)
d = −AB

∆2
αβ ((−q)

a
vb−a − (−q)

c
vd−c) .

Proof. Let ∆ =α−β. Using the Binet formula of unrestricted DGC Horadam num-
bers, we have

(α− β)
2
(
w̃(x,y,z)

a w̃
(x,y,z)
b − w̃(x,y,z)

c w̃
(x,y,z)
d

)
=
(
Aααa −Bββa

) (
Aααb −Bββb

)
−
(
Aααc −Bββc

) (
Aααd −Bββd

)
= A2α2αa+b−ABαβαaβb−ABβααbβa+B2β2βa+b

−A2α2αc+d+ABαβαcβd+ABβαβcαd−B2β2βc+d

= A2α2
(
αa+b − αc+d

)
−ABαβ

(
αaβb − αcβd + αbβa − αdβc

)
+B2β2

(
βa+b − βc+d

)
= −ABαβ

(
αaβb + αbβa − αcβd − αdβc

)
= −ABαβ

[(
(αβ)

a
(
αb−a + βb−a

))
−
(
(αβ)

c
(
αd−c + βd−c

))]
= −ABαβ ((−q)

a
vb−a − (−q)

c
vd−c) .

Thus we get the desired result. □

From Theorem 5, we have the following corollaries.

Corollary 1. (Vajda’s identity) For a = m + k, b = n − k, c = m, and d = n, we
have

w̃
(x,y,z)
m+k w̃

(x,y,z)
n−k − w̃(x,y,z)

m w̃(x,y,z)
n

= −AB

∆2
αβ
(
(−q)

m+k
vn−m−2k − (−q)

m
vn−m

)
= −AB

∆2
αβ (−q)

m
(
(−q)

k
vn−m−2k − vn−m

)
.

Since vn−m − (−q)
k
vn−m−2k = ∆2ukun−m−k, we also have

w̃
(x,y,z)
m+k w̃

(x,y,z)
n−k − w̃(x,y,z)

m w̃(x,y,z)
n = ABαβ (−q)

m
ukun−m−k.

Corollary 2. (Catalan’s identity) For a = n − m, b = n + m and c = d = n, we
have

w̃
(x,y,z)
n−m w̃

(x,y,z)
n+m − w̃(x,y,z)

n w̃(x,y,z)
n

= −AB

∆2
αβ
(
(−q)

n−m
v2m − 2 (−q)

n
)
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= −AB

∆2
αβ (−q)

n−m
(v2m − 2 (−q)

m
) .

Since v2m − 2 (−q)
m

= ∆2u2
m, we also have

w̃
(x,y,z)
n−m w̃

(x,y,z)
n+m − w̃(x,y,z)

n w̃(x,y,z)
n = −ABαβ(−q)

n−m
u2
m.

Corollary 3. (Cassini’s identity) For a = n− 1, b = n+1 and c = d = n, we have

w̃
(x,y,z)
n−1 w̃

(x,y,z)
n+1 −w̃(x,y,z)

n w̃(x,y,z)
n = −ABαβ(−q)

n−1

By using Lemma 1, we get

w̃
(x,y,z)
n−1 w̃

(x,y,z)
n+1 −w̃(x,y,z)

n w̃(x,y,z)
n

= −AB(−q)
n−1

(
ṽ
(x,y,z)
0 − 1 + (−q)

x
((1 + vz−xε) p+ vy−xJε)

)
.

Corollary 4. (d’Ocagne’s identity) For a = n, b = m + 1, c = n + 1, and d = m,
we have

w̃(x,y,z)
n w̃

(x,y,z)
m+1 − w̃

(x,y,z)
n+1 w̃(x,y,z)

m = −AB

∆2
αβ (−q)

n
(vm−n+1 + qvm−n−1) .

Since vm−n+1 + qvm−n−1 = −∆2um−n, we also have

w̃(x,y,z)
n w̃

(x,y,z)
m+1 − w̃

(x,y,z)
n+1 w̃(x,y,z)

m = ABαβ(−q)
n
um−n.

Corollary 5. (Halton’s identity) For a = m+ k, b = n, c = k, and d = m+ n, we
have

w̃
(x,y,z)
m+k w̃(x,y,z)

n − w̃
(x,y,z)
k w̃

(x,y,z)
m+n = −AB

∆2
αβ
(
(−q)

m+k
vn−m−k − (−q)

k
vm+n−k

)
= −AB

∆2
αβ (−q)

k
((−q)

m
vn−k−m − vn−k+m) .

Since vn−k+m − (−q)
m
vn−k−m = ∆2umun−k, we have

w̃
(x,y,z)
m+k w̃(x,y,z)

n − w̃
(x,y,z)
k w̃

(x,y,z)
m+n = ABαβ(−q)

k
umun−k.

Next, we give a relation between the unrestricted DGC (p, q)-Fibonacci numbers
and the unrestricted DGC (p, q)-Lucas numbers.

Theorem 6. For nonnegative integers n and m such that m ≥ n, we have

ṽ(x,y,z)n ũ(x,y,z)
m − ṽ(x,y,z)m ũ(x,y,z)

n = 2 (−q)
n
um−n

(
ṽ
(x,y,z)
0 − 1

+ (−q)
x
((1 + vz−xε) p+ vy−xJε)

)
.

Proof. Using the Binet formula of unrestricted DGC Horadam numbers, we have

∆
(
ṽ(x,y,z)n ũ(x,y,z)

m − ṽ(x,y,z)m ũ(x,y,z)
n

)
=

(
ααn + ββn

) (
ααm − ββm

)
−
(
ααm + ββm

) (
ααn − ββn

)
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= α2αn+m − αβαnβm + αβαmβn − β2βn+m

−α2αn+m + αβαmβn − αβαnβm + β2βn+m

= 2 (αβ)
n
αβ
(
αm−n − βm−n

)
= 2 (−q)

n
αβ∆um−n.

By using Lemma 1, we have

ṽ(x,y,z)n ũ(x,y,z)
m − ṽ(x,y,z)m ũ(x,y,z)

n = 2 (−q)
n
um−n

(
ṽ
(x,y,z)
0 − 1

+ (−q)
x
((1 + vz−xε) p+ vy−xJε)

)
.

□

Presently, we provide a sum formula for unrestricted DGC Horadam numbers.

Theorem 7. For n ≥ 2, we have

n−1∑
r=1

w̃(x,y,z)
r =

w̃
(x,y,z)
n − w̃

(x,y,z)
1 + q

(
w̃

(x,y,z)
n−1 − w̃

(x,y,z)
0

)
p+ q − 1

.

Proof. Using the Binet formula for unrestricted DGC Horadam numbers, we have

n−1∑
r=1

w̃(x,y,z)
r =

n−1∑
r=1

Aααr −Bββr

α− β

=
Aα

α− β

n−1∑
r=1

αr −
Bβ

α− β

n−1∑
r=1

βr

=
Aα

α− β

(
αn − α

α− 1

)
−

Bβ

α− β

(
βn − β

β − 1

)

=
1

(α− β) (1− p− q)

(
−
(
Aααn −Bββn

)
− q

(
Aααn−1 −Bββn−1

)
+q
(
Aα−Bβ

)
+
(
Aαα−Bββ

))
=

−w̃
(x,y,z)
n − qw̃

(x,y,z)
n−1 + qw̃

(x,y,z)
0 + w̃

(x,y,z)
1

1− p− q
.

□

Theorem 8. For nonnegative integers n and r, we have

n∑
m=0

(
n

m

)
qn−mpmw̃

(x,y,z)
m+r = w̃

(x,y,z)
2n+r .
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Proof. Using the Binet formula for unrestricted DGC Horadam numbers, we obtain
n∑

m=0

(
n

m

)
qn−mpmw̃

(x,y,z)
m+r

=

n∑
m=0

(
n

m

)
qn−mpm

(
Aααm+r −Bββm+r

α− β

)

=
Aααr

α− β

n∑
m=0

(
n

m

)
qn−m (pα)

m −
Bββr

α− β

n∑
m=0

(
n

m

)
qn−m (pβ)

m

=
Aααr

α− β
(q + pα)

n −
Bββr

α− β
(q + pβ)

n

=
Aαα2n+r −Bββ2n+r

α− β
= w̃

(x,y,z)
2n+r .

□

Ultimately, we present a matrix representation for unrestricted DGC Horadam
numbers.

Theorem 9. For n ≥ 0, we have[
p q
1 0

]n [
w̃

(x,y,z)
2 w̃

(x,y,z)
1

w̃
(x,y,z)
1 w̃

(x,y,z)
0

]
=

[
w̃

(x,y,z)
n+2 w̃

(x,y,z)
n+1

w̃
(x,y,z)
n+1 w̃

(x,y,z)
n

]
.

Proof. By using Theorem 2, it can be easily demonstrated through mathematical
induction on n. □

By computing the determinant on both sides of the matrix equality mentioned
earlier, we derive Cassini’s identity for the sequence {w̃n} in a straightforward
manner as:

w̃
(x,y,z)
n+2 w̃(x,y,z)

n − w̃
(x,y,z)
n+1 w̃

(x,y,z)
n+1 = (−q)

n
(
w̃

(x,y,z)
2 w̃

(x,y,z)
0 − w̃

(x,y,z)
1 w̃

(x,y,z)
1

)
.

3. Conclusion

In this paper we define a novel category of dual-generalized complex numbers,
with components represented by unrestricted Horadam numbers. The main advan-
tage to introducing unrestricted dual-generalized complex Horadam numbers is that
many unrestricted dual-generalized complex numbers with the well-known numbers
such as Fibonacci, Lucas, Jacobsthal, Jacobsthal-Lucas, Pell, Pell-Lucas can be de-
duced as particular cases of these unrestricted DGC numbers. We state recurrence
relations, summation formulas, Binet formula, and generating function associated
with these numbers. In addition, a comprehensive bilinear index-reduction formula
is derived, which encompasses Vajda’s, Catalan’s, Cassini’s, D’Ocagne’s, and Hal-
ton’s identities as specific cases. For interested readers, the results of this paper
could be applied for any other type of hypercomplex numbers.
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Abstract. In the case of oscillatory potential, we present some new Lyapunov

-type inequalities for linear hyperbolic and elliptic equations on a rectangular

domain in R2. No sign restriction is imposed on the potential function. As
applications of the Lyapunov-type inequalities obtained, we give some esti-

mations for disconjugacy of hyperbolic and elliptic Dirichlet boundary value

problems.

1. Introduction

In the paper, we first obtain a Lyapunov-type inequality for the linear hyperbolic
equation of the form

utt(x, t)− uxx(x, t) + q(t)u(x, t) = 0, (x, t) ∈ R (1)

satisfying the Dirichlet boundary condition

u(x, t) = 0, (x, t) ∈ ∂R, (2)

where

R = {(x, t) : x ∈ [x1, x2], t ∈ [t1, t2]}, (3)

and that no sign restriction is imposed on the potential function q(t) ∈ L1[t1, t2].
Secondly, we give an analogous result for the linear elliptic equation of the form

utt(x, t) + uxx(x, t) + q(t)u(x, t) = 0, (x, t) ∈ R (4)

satisfying the Dirichlet boundary condition (2).
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The well-known Lyapunov inequality [13] for Hill’s equation

x′′(t) + ν(t)x(t) = 0 (5)

states that if t1 and t2 (t1 < t2) are consecutive zeros of a nontrivial solution x(t)
of this equation, then the inequality∫ t2

t1

|ν(t)|dt > 4

t2 − t1
(6)

holds. Inequality (6) was later strengthened by replacement of |ν| by ν+, i.e.,∫ t2

t1

ν+(t)dt >
4

t2 − t1
, (7)

cf. Wintner [17], and thereafter by some other authors, where ν+ = max{ν, 0}. In-
equality (7) is the best possible in the sense that the constant “4”can not be replaced
by any larger constant in (7) due to Hartman [8, Theorem 5.1]. Inequalities (6) and
(7) and their several generalizations to Hamiltonian systems, higher order differ-
ential equations, nonlinear and half-linear differential equations, difference and dy-
namic equations, functional and impulsive differential equations, have found many
applications in areas like oscillation and Sturmian theory, disconjugacy, asymptotic
theory, eigenvalue problems, boundary value problems, and various properties of
the solutions of related differential equations, see [5, 12, 16] and their references.
We also refer reader to recently published monograph by Agarwal et al. [1] for the
historical development of Lyapunov inequalities and its applications.

The classical result of Lyapunov is usually connected with the disconjugacy of
Eq. (5), i.e. the inequality ∫ t2

t1

ν+(t)dt ≤ 4

t2 − t1
(8)

implies that (5) is disconjugate in [t1, t2].
There has been an increasing interest for the Lyapunov-type inequalities for

partial differential equations in the last few decades; see for example [2–4,6,7,9,10,
14,15] and their references. In 2006, Canada et al. [2] considered the linear partial
differential equations{ −∆u(x) = a(x)u(x), x ∈ Ω

∂u

∂n
(x) = 0, x ∈ ∂Ω,

where Ω ⊂ RN (N ≥ 2) is a bounded and regular domain and the function a : Ω →
R. They proved how the relation between the quantity p and N/2 play a crucial
role by considering the sub-critical (1 < p < N/2), super-critical (p > N/2) and
the critical (p = N/2) cases.
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In 2016, de Nápoli and Pinasco [7] proved Lyapunov-type inequalities for the
p-Laplacian equations{

∆pu(x) + w(x)|u(x)|p−2u(x) = 0, x ∈ Ω
u(x) = 0, x ∈ ∂Ω,

where p > 1 and the weight function w ∈ Ls for some s depending on p and N .
They obtained Lyapunov-type inequalities for two separate cases p < N and p > N ,
and the case p = N was given as an open problem for the reader. Recently, Kumar
and Tyagi [11] solved this open problem and established Lyapunov-type inequality
for a class of the following N -Laplace equations:{

∆Nv(x) + f(x)|v(x)|N−2v(x) = 0, x ∈ Ω,
v(x) = 0, x ∈ ∂Ω

under some conditions on µ, g, R and b, where

f(x) = µg(x)

(
|x| log R

|x|

)−N

+ b(x).

In 2020, Jleli at al. [10] established Lyapunov-type inequalities for the partial dif-
ferential equations of the form{

−Gγu(x, y) = w(x)u(x, y), (x, y) ∈ Γ
u(x, y) = 0, (x, y) ∈ ∂Γ,

where Γ = (a, b) × O; (a, b) ∈ R2 and O is an open bounded subset in RN for
N ≥ 1. Here Gγ is the Grushin operator

Gγu(x, y) =
∂2u

∂x2
(x, y) + x2γ∆yu(x, y), (x, y) ∈ Γ.

When γ = 0, Grushin operator reduces to the standart Laplace operator but the
presence of x2γ , this operator can not be elliptic on Γ. In 2020, Jleli et al. [10] proved
the Lyapunov-type inequality for the Grushin operator via sign change criteria.

In this paper, we obtain a Lyapunov-type inequality for the hyperbolic equa-
tion (1) satisfying the Dirichlet boundary condition (2). Moreover, we extend this
result to the elliptic equation (4) satisfying the Dirichlet boundary condition (2).
To obtain such type of inequalities, we use the separation of variables technique in
problems both (1)–(2) and (4)–(2). In Section 3, we present several examples which
illustrate how easily the results obtained can be applied to the related equations.
At the end of the paper, we impose some open problems.

2. Main Results

Throughout this section, we denote h+ = max{h, 0} and we shall assume that
the potential q is in the set L1[t1, t2].
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Now, let us restate Prb. (1)–(2) as utt(x, t)− uxx(x, t) + q(t)u(x, t) = 0, (x, t) ∈ R;
u(x, t1) = u(x, t2) = 0, x1 ≤ x ≤ x2;
u(x1, t) = u(x2, t) = 0, t1 ≤ t ≤ t2,

(9)

where R is defined in (3).
The first main result of the paper is the following.

Theorem 1 (Lyapunov-type inequality). If u is a nontrivial solution of Prb. (9),
then the inequality∫ t2

t1

[
(x2 − x1)

2q(t) + π2
]+

dt >
4

t2 − t1
(x2 − x1)

2 (10)

holds.

Proof. Let u be a nontrivial solution of Prb. (9). The method of separation of
variables starts by looking the solutions of Eq. (1) of the form

u(x, t) = y(x)z(t), (11)

where the variables separate with y(x) ̸≡ 0 on (x1, x2) and z(t) ̸≡ 0 on (t1, t2).
Substituting (11) in (1), we obtain

y(x)z′′(t)− y′′(x)z(t) + q(t)y(x)z(t) = 0 (12)

for x ∈ (x1, x2) and t ∈ (t1, t2). Since y(x)z(t) ̸≡ 0, dividing both sides of (12) by
it, we separate the variables x and t as

z′′(t)

z(t)
+ q(t) =

y′′(x)

y(x)
. (13)

The left-hand side of (13) is a function of t only, whereas the right-hand side has
just x. But x and t are independent variables so (13) is possible only when both
sides of it are constant; that is

z′′(t)

z(t)
+ q(t) =

y′′(x)

y(x)
= λ (14)

for some real number λ. On the other hand, we have boundary conditions to be
satisfied. The first boundary conditions in (9) imply that

y(x)z(t1) = 0 and y(x)z(t2) = 0 (15)

for all x ∈ (x1, x2). Since y(x) ̸≡ 0 on (x1, x2), (15) is possible only when z(t1) =
z(t2) = 0. Applying the similar argument to the second boundary conditions in (9),
we must have y(x1) = y(x2) = 0. Using these conditions together with (14), we
can conclude that z(t) is a nontrivial solution of the boundary value problem{

z′′(t) + [q(t)− λ]z(t) = 0,
z(t1) = z(t2) = 0

(16)
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and y(x) is a nontrivial solution of the boundary value problem{
y′′(x)− λy(x) = 0,
y(x1) = y(x2) = 0.

(17)

We note that t1, t2 (t1 < t2) and x1, x2 (x1 < x2) are consecutive zeros of z(t) and
y(x), respectively. Now consider the boundary value problem{

w′′(x) + kw(x) = 0,
w(x1) = w(x2) = 0,

(18)

where k is a constant. It is known that the eigenvalues kn of Prb. (18) are

kn =
n2π2

(x2 − x1)2
, n = 1, 2, . . . ,

and hence the smallest eigenvalue of it is k1 = π2/(x2 − x1)
2. Since Prb. (17) has

a nontrivial solution, we take λ = −k1. Now replacing λ by −k1 in Prb. (16), it
turns out that {

z′′(t) +Q(t)z(t) = 0,
z(t1) = z(t2) = 0,

(19)

where

Q(t) = q(t) +
π2

(x2 − x1)2
.

Applying Lyapunov’s result to Prb. (19), we see that inequality (10) holds. The
proof of Theorem 1 is complete. □

In case

q(t) > − π2

(x2 − x1)2
for t ∈ (t1, t1),

inequality (10) turns out to be∫ t2

t1

[
(x2 − x1)

2q(t) + π2
]
dt >

4

t2 − t1
(x2 − x1)

2

which requires that ∫ t2

t1

q(t)dt >
4

t2 − t1
− t2 − t1

(x2 − x1)2
π2.

Corollary 1. If the inequality∫ t2

t1

[
(x2 − x1)

2q(t) + π2
]+

dt ≤ 4

t2 − t1
(x2 − x1)

2 (20)

holds, then Prb. (9) has no nontrivial solution.
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Now consider the elliptic equation (4) satisfying the Dirichlet boundary condi-
tion (2) by restating it as utt(x, t) + uxx(x, t) + q(t)u(x, t) = 0, (x, t) ∈ R;

u(x, t1) = u(x, t2) = 0, x1 ≤ x ≤ x2,
u(x1, t) = u(x2, t) = 0, t1 ≤ t ≤ t2,

(21)

where R is defined in (3).
The following is the second main result of the paper.

Theorem 2 (Lyapunov-type inequality). If u is a nontrivial solution of Prb. (21),
then the inequality∫ t2

t1

[
(x2 − x1)

2q(t)− π2
]+

dt >
4

t2 − t1
(x2 − x1)

2 (22)

holds.

Proof. The proof Theorem 2 is analogous to that of Theorem 1, and hence it is left
to the reader. □

When

q(t) >
π2

(x2 − x1)2
for t ∈ (t1, t1),

inequality (10) turns out to be∫ t2

t1

[
(x2 − x1)

2q(t)− π2
]
dt >

4

t2 − t1
(x2 − x1)

2

which requires that ∫ t2

t1

q(t)dt >
4

t2 − t1
+

t2 − t1
(x2 − x1)2

π2.

Corollary 2. If the inequality∫ t2

t1

[
(x2 − x1)

2q(t)− π2
]+

dt ≤ 4

t2 − t1
(x2 − x1)

2 (23)

holds, then Prb. (21) has no nontrivial solution.

3. Applications

In this section, we give some disconjugacy estimations for hyperbolic and elliptic
Dirichlet boundary value problems, by applying the Lyapunov-type inequalities
obtained in Section 2.

Example 1. Consider the hyperbolic boundary value problem utt(x, t)− uxx(x, t) + (1− π2)u(x, t) = 0, (x, t) ∈ R0,
u(x, 0) = u(x, π) = 0, 0 ≤ x ≤ 1,
u(0, t) = u(1, t) = 0, 0 ≤ t ≤ π,

(24)
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where R0 is the rectangular region

R0 = {(x, t) : x ∈ [0, 1], t ∈ [0, π]}.

Substituting q(t) = 1− π2, x2 − x1 = 1 and t2 − t1 = π in Lyapunov-type inequal-
ity (10), we see that it is satisfied by π2 > 4. Note that the solution of Prb. (24) is
the function u(x, t) = sin(πx) sin t.

Example 2. Consider the hyperbolic boundary value problem utt(x, t)− uxx(x, t) + µ(2 + t− t2)u(x, t) = 0, (x, t) ∈ R1,
u(x, 0) = u(x, 1) = 0, 0 ≤ x ≤ π,
u(0, t) = u(π, t) = 0, 0 ≤ t ≤ 1,

(25)

where µ is a positive constant and R1 is the rectangular region

R1 = {(x, t) : x ∈ [0, π], t ∈ [0, 1]}. (26)

In the view of Lyapunov-type inequality (10), the following inequality must be
satisfied: ∫ 1

0

h+(t;µ)dt > 4, (µ > 0) (27)

where h(t;µ) = 2µ+1+µt−µt2. It can be shown that h(t;µ) > 0 for all t ∈ [−1, 2],
and hence (27) turns to∫ 1

0

h(t;µ)dt =

∫ 1

0

[2µ+ 1 + µt− µt2]dt =
13

6
µ+

1

6
> 4. (28)

So Prb. (25) has no nontrivial solution, if µ ≤ 23/13 ≈ 1, 76923 by Corollary 1. In
particular if µ = 4, then Prb. (25) has a nontrivial solution

u(x, t) = t(1− t)et(1−t) sinx, (x, t) ∈ R1.

Example 3. Consider the elliptic boundary value problem utt(x, t) + uxx(x, t) + σ(5/2 + t− t2)u(x, t) = 0, (x, t) ∈ R1,
u(x, 0) = u(x, 1) = 0, 0 ≤ x ≤ π,
u(0, t) = u(π, t) = 0, 0 ≤ t ≤ 1,

(29)

where σ is a positive constant and R1 is the rectangular region defined in (26). In
the view of Lyapunov-type inequality (22), the inequality∫ 1

0

ν+(t;σ)dt > 4 (σ > 0) (30)

must be hold, where ν(t;σ) = 5σ/2−1+σt−σt2, σ > 0. It is clear that ν(t;σ) < 0
for all σ ∈ (0, 4/11). Moreover, if σ ≥ 4/11, then ν(t;σ) ≥ 0 for all t ∈ [(1 −√
11)/2, (1 +

√
11)/2], and hence (30) turns to∫ 1

0

ν(t;σ)dt =

∫ 1

0

[5σ/2− 1 + σt− σt2]dt =
8

3
σ − 1 > 4. (31)
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So Prb. (29) has no nontrivial solution, if σ ≤ 15/8 ≈ 1, 875 by Corollary 2. In
particular if σ = 4, then Prb. (29) has a nontrivial solution

u(x, t) = t(1− t)et(1−t) sinx, (x, t) ∈ R1.

Finally, we present some open problems concerning possible extensions of The-
orem 1 and Theorem 2. It will be of interest to find a Lyapunov-type inequalities
for the linear parabolic equation of the form

ut(x, t)− uxx(x, t) + p(t)u(x, t) = 0, (x, t) ∈ R (32)

satisfying the Dirichlet boundary condition (2), where R is defined in (3), and that
no sign restriction is imposed on the potential function p(t) ∈ L1[t1, t2]. In fact,
the nonlinear cases

utt(x, t)± uxx(x, t) + F (t, u(x, t)) = 0, (x, t) ∈ R
and

ut(x, t)− uxx(x, t) +G(t, u(x, t)) = 0, (x, t) ∈ R
are of immense interest. Moreover, Lyapunov-type inequalities for elliptic, hyper-
bolic and parabolic equations of the form

utt(x, t)±∆u(x, t) + F (t, u(x, t)) = 0, (x, t) ∈ Ω

and

ut(x, t)−∆u(x, t) +G(t, u(x, t)) = 0, (x, t) ∈ Ω

may give remarkable results under some appropriate boundary conditions, where
Ω is any closed subset of Rn.
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[1] Agarwal, R. P., Bohner, M., Özbekler, A., Lyapunov Inequalities and Applications, Springer,

Switzerland, 2021. https://doi.org/10.1007/978-3-030-69029-8
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[4] Cañada, A. , Villegas, S., Lyapunov inequalities for Partial differential equations
at radial higher eigenvalues, Discrete Contin. Dyn. Syst., 33(1) (2013), 111-122.

10.3934/dcds.2013.33.111



LYAPUNOV INEQUALITY 537

[5] Cheng, S. S., Lyapunov inequalities for differential and difference equations, Fasc. Math., 23

(1991), 25-41.
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A NEW APPROACH TO CONSTRUCT AND EXTEND THE

SCHUR STABLE MATRIX FAMILIES

Güner TOPCU1 and Kemal AYDIN2

1,2Department of Mathematics, Selcuk University, Konya, TÜRKİYE

Abstract. In this study, Schur stability, sensitivity and continuity theorems
have been mentioned. In addition, matrix families, interval matrix and extend

of the intervals also have been mentioned. The IL and IC intervals of the

matrix families have been determined so that the linear sums family L and
convex combination family C are Schur stable. Samely, the I∗

L and I∗
C intervals

have been determined and L and C are ω∗−Schur stable. Afterwards, the
methods which based on continuity theorems and the algorithms which based

on the methods have been given. Extended intervals have been obtained with

the help of the methods and the algorithms. All definitions are supported by
examples.

1. Introduction

One of the real problems of the stability analysis is to determine the stability
of the matrix families. In this paper the intervals IL and IC have been presented
to make the matrix families L and C Schur stable. Here the matrix families L and
C consist of linear sum and convex combination, respectively. Also, these intervals
are extended with the help of continuity theorems and the matrix families are
constructed in order to provide Schur stability [13, 16]. There are many studies in
the literature specifically related to linear sum and convex combination [5–8,19,24].
Unlike studies that control the Schur stability of interval matrices, Schur stable
interval matrices are constructed in this study.

In 1892, Lyapunov studied the behavior of solutions of systems and developed
the concept of stability (see, for instance, [1,9,18]). The stability problem is reduced
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to the problem of the existence of a positive definite solution of the matrix equation
known as the Lyapunov equation with this concept for linear systems.

A necessary and sufficient condition for the matrix A to be discrete-asymptotic
stable is that the eigenvalues of the matrix A lay in the unit disk, that is, |λi(A)| < 1
for all i = 1, 2, . . . , N , where λi(i = 1, 2, . . . , N) are the eigenvalues of the ma-
trix A [1, 18]. On the other hand, this is also known as spectral criterion in
the literature. The spectral criterion can also be represented by the spectrum.
σ(A) = {λ | λ = λi(A)} to be spectrum, the matrix A is said to be Schur stable if
it satisfies the condition σ(A) ⊂ Cs = {z | |z| < 1} [27]. Let’s also give the family
of Schur stable matrices as follows;

SN = {A ∈ MN (C) | |λi(A)| < 1 (i = 1, 2, ..., N)} .
If the locations of these eigenvalues are known approximately, stability anal-

ysis of the system can be done with help of many well-known methods. Sta-
bility analysis of many control systems is concerned with the region where the
eigenvalues of the matrices are located. Gerschgorin and Rouche theorems, which
are used in determining the region, can be given as an example to this situa-
tion [18,20]. However, it is not easy to determine the eigenvalue in practice. Small
changes in the inputs of the matrices lead to the big changes in the eigenvalues,
i.e. the eigenvalue problem is an ill-posed problem for the non-symmetric matri-
ces [9, 28]. We can give the example of Ostrowski to explain this situation better.
Aω = (aij) ∈ MN (R) ; ai,i = 0.5, ai,i+1 = 10, aN,1 = ω, i = 1, 2, ..., N−1. It is seen
that ∥A10−100 −A0∥ = 10−100 and λi (A10−100) = 1.5 so |λi (A10−100)− λi (A0)| ≤ 1
[1]. As can be seen here, while the matrix A0 is Schur stable, the matrix A10−100

is not Schur stable because of λi (A10−100) = 1.5. Therefore, it is more convenient
to use the parameters calculated with the help of the solution of a linear algebraic
equation which characterizes the stability for the determination of stability.

Thus, the stability problem is reduced to the problem of the existence of a
positive definite solution of the matrix equation given as the Lyapunov equation
[1,2,18]. According to Lyapunov’s theorem, the Lyapunov matrix equation, which
determines the Schur stability of the systems, is given as follow

A∗HA−H + I = 0. (1)

If this system of equations has a positive definite solution

H =

∞∑
k=0

(A∗)
k
Ak, H = H∗ > 0 (2)

then the matrix A is said to be Schur stable [1, 9, 18, 23, 27]. The existence of
H = H∗ > 0 equivalent to having the eigenvalues of the matrix A inside the unit
circle.

The parameter ω(A) = ∥H∥ ≥ 1, which determines the quality of the stability,
is known as the Schur stability parameter of the matrix A [1, 9, 11]. Furthermore,
ω∗ is the practical Schur stability parameter of the matrix A, where 1 < ω∗ ∈ R
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and the users choose the value ω∗ in view of their problem. If ω(A) ≤ ω∗ then
the matrix A is ω∗-Schur stable. Otherwise, the matrix A is ω∗-Schur unstable
matrix [1, 3, 26]. Let’s examine the following matrices in order to see the notion of
quality of stability more easily.

Let’s take Ak ∈ SN as follow

Ak =

(
−0.1 10k−1 − 1
0 0.1

)
, k ∈ N.

It is clear that, although σ (Ak) = {−0.1, 0.1} for k ∈ N, it can be seen from the
Table 1 that the values of ω (Ak) also increase as the values of k increase.

Table 1. The quality of Schur stability of the matrix Ak

k 1 2 3 4 5
ω(Ak) 1.0101 82.0282 9803 998102 9.999e+007

Also the quality of the Schur stability increases as it approaches 1. Especially,
in case of A = 0, when we substitute it in (2), H = I and ω(A) = 1 are obtained.
This state is also known as the perfect state.

In [25], Hurwitz stability intervals for the matrix families were studied. The
matrix families were introduced. The intervals were determined to make these
families Hurwitz stable. A method and an algorithm were given to extend these
intervals.

This study is an analogy of [25]. Here, Schur and ω∗−Schur stability of linear
sum and convex combination families are discussed. In Section 2, L and C matrix
families are introduced, IL and IC intervals are determined to make these families
Schur stable. The illustrative examples related to the subject are given. In Section
3, I∗

L and I∗
C intervals are determined to make these families ω∗−Schur stable.

Thereafter, the illustrative examples related to the subject are given. In Section 4,
a new approach is given for the Schur stability of the matrix families. According to
the approach, the methods which based on continuity theorems are given. These
theorems shows the sensitivity of Schur stability and ω∗−Schur stability. The
algorithms which based on the methods are given. The extended intervals Ie

L,
Ie
C , I∗e

L and I∗e
C are obtained with the help of methods and algorithms. End of the

paper, examples are given. The numerical results in the article are obtained using
the computer dialogue system MVC [10].

2. Schur Stability of the Matrix Families

Let’s give the theorems which determining the intervals IL and IC for the matrix
families

L = L (A1, A2) = {A (r) = A1 + rA2 | A1, A2 ∈ MN (C)} (3)
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and

C = C (A1, A2) = {A (r) = (1− r)A1 + rA2 | A1, A2 ∈ MN (C)} (4)

to be Schur stable for A1 ∈ SN and A2 ∈ MN (C). Before giving the theorems
for these matrix families, let’s give the continuity theorem which determines the
sensitivity of the stability. We use this theorem for Schur stability. Let’s remember
the family of Schur stable matrices as follows;

SN = {A ∈ MN (C) | ω(A) < ∞} .

Theorem 1. Let A ∈ SN . If ∥B∥ <
√
∥A∥2 + 1

ω(A) −∥A∥ then the matrix A+B ∈
SN and

ω(A+B) ⩽ ω(A)
1−(2∥A∥+∥B∥)∥B∥ω(A) ,

|ω(A+B)− ω(A)| ⩽ (2∥A∥+∥B∥)∥B∥ω2(A)
1−(2∥A∥+∥B∥)∥B∥ω(A)

holds [4, 14].

Theorem 2. If A1 ∈ SN , A2 ∈ MN (C) and r ∈ IL = [r, r] then L (A1, A2) ⊂ SN ,

where −l = u = −∥A1∥
∥A2∥ + 1

∥A2∥

√
∥A1∥2 + 1

ω(A1)
, l < r < r < u.

Proof. Let us consider the given linear sum as follow

A (r) = A1 + rA2.

If A2 = 0 then A(r) = A1. We know that A1 ∈ SN so A(r) ∈ SN , too. Let’s take
A2 ̸= 0. If we substitute A(r) in the Lyapunov equation, we get the equation as
follow

(A1 + rA2)
∗
H (A1 + rA2)−H + I = 0

A∗
1HA1 −H = −

(
I + rA∗

1HA2 + rA∗
2HA1 + r2A∗

2HA2

)
.

At that rate,

C = I + rA∗
1HA2 + rA∗

2HA1 + r2A∗
2HA2 > 0

C = C∗ > 0 is available. The obtained result is written as follows

∥C∥ ≤ 1 + 2 |r| ∥A1∥ ∥H∥ ∥A2∥+ r2 ∥A2∥2 ∥H∥
then, if the inequality is substituted in the equation which is the solution of the
Lyapunov equation

H =

∞∑
k=0

(A∗
1)

k
CAk

1

∥H∥ ≤ ∥C∥ω (A1)

∥H∥ ≤
(
1 + 2 |r| ∥A1∥ ∥H∥ ∥A2∥+ r2 ∥A2∥2 ∥H∥

)
ω (A1)

∥H∥ ≤ ω (A1)

1− 2 |r| ∥A1∥ ∥A2∥ω (A1)− r2 ∥A2∥2 ω (A1)
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is obtained. While A1 ∈ SN , the following condition must be verified for A(r) to
be Schur stable

1− 2 |r| ∥A1∥ ∥A2∥ω (A1)− r2 ∥A2∥2 ω (A1) ≥ 0.

Then if the inequality is arranged with according to r, the Schur stability intervals
[r, r] of the matrix A(r) are obtained, where

r > l =
∥A1∥ω(A1)−

√
∥A1∥2 (ω(A1))

2
+ ω(A1)

∥A2∥ω(A1)

and

r < u =
−∥A1∥ω(A1) +

√
∥A1∥2 (ω(A1))

2
+ ω(A1)

∥A2∥ω(A1)
.

□

Theorem 3. If A1 ∈ SN , A2 ∈ MN (C) and r ∈ IC = [r, r] then C (A1, A2) ⊂ SN ,

where −l = u = − ∥A1∥
∥A2−A1∥ + 1

∥A2−A1∥

√
∥A1∥2 + 1

ω(A1)
, l < r < r < u.

Proof. If we write A2−A1 instead of A2 in Theorem 2, proof is clear from Theorem
2. □

Here, the equation expressed as a convex combination is shown with A(r) =
(1− r)A1 + rA2 and the values r are examined in such a way that the convex sums
of two matrices are Schur stable without the condition r ∈ (0, 1).

Let’s examine the values r of the matrix families L (A1, A2) and C (A1, A2), which
provide the Schur stability, by using the Schur stability of A1. During this review,
the articles of Duman and Aydın were taken into consideration [14,15].

It is possible to write the convex combination as a special case of the linear
sum. In other words, we can express the convex combination given as A(r) =
(1− r)A1+rA2 as a linear sum as A(r) = A1+r (A2 −A1). In order to the matrix
A(r) to be Schur stable, let’s determine the intervals IL and IC using the Schur
stability of the matrix A1.

Example 1. For α ∈ (−1, 1), A1 =

(
α 0
0 0

)
and A2 =

(
1 0
0 0

)
. Let’s exam-

ine the interval IL which leaves the matrix families L (A1, A2) Schur stable.
According to the Theorem 2, from ∥A1∥ = |α|, ∥A2∥ = 1, ω (A1) = 1

1−α2 , we
obtained as follows,

l = |α| − 1 , u = − |α|+ 1.

ω (A (r)) = 1
1−(α+r)2

is known, then
α < 0 , limr→|α|−1

(
1

1−(α+r)2

)
= ∞

α > 0 , limr→−|α|+1

(
1

1−(α+r)2

)
= ∞
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is obtained.

Example 2. Let’s examine the following matrices

A1 =

(
0.5 0
0 0.5

)
, A2 =

(
1 0
0 0

)
.

For these matrices we obtained ∥A1∥ = 0.5, ∥A2 −A1∥ = 0.5, ω (A1) = 1.33333.
So we know that A1 is Schur stable.

Table 2. The effectiveness of the interval IC

r -0.9999 -0.99 -0.9 . . . 0.9 0.99 0.9999
ω (A(r)) 10000.3 100.251 10.2564 . . . 10.2564 100.251 10000.3

According to the Theorem 3, we obtained l = −1, u = 1. As can be seen in the
Table 2, the condition numbers change according to the values r selected from the
intervals IC. Also the quality of the stability decrease as the value r approaches −1
or 1.

Remark 1. In particular, if taken A1 = A2 = 0, we get the matrix family L (0, 0) =
{0} ⊂ SN . Lets take A2 ̸= 0, the matrix family L (0, A2), r ∈ IL specified here,
which is obtained in the form of −l = u = 1

∥A2∥ for ∥A1∥ = 0 and ω (A1) = 1. If

we call this interval obtained for the r value “perfect interval”, we can say that the
result obtained here is the “perfect state”.

3. ω∗−Schur Stability of the Matrix Families

Let ω∗ be the practical Schur stability parameter, where 1 < ω∗ ∈ R and the
users choose the value ω∗ in view of their problem. If ω(A) ≤ ω∗ then the matrix
A is ω∗-Schur stable matrix. Otherwise, the matrix A is ω∗-Schur unstable matrix
[1, 3, 26].

Although there are theorems known as continuity theorems in the literature that
determine the sensitivity of the problem, these theorems show under which condi-
tions the given problems maintain the same property [1,9,11,14,15,17]. Let’s give
the continuity theorem which determines the sensitivity of the ω∗−Schur stability.

Theorem 4. Let A be a ω∗−Schur stable matrix (ω(A) ≤ ω∗). If the matrix B

satisfies ∥B∥ ≤
√

∥A∥2 + ω∗−ω(A)
ω∗ω(A) − ∥A∥, then A+B is ω∗−Schur stable [14].

Let’s define the family of ω∗−Schur stable matrices as follows;

S∗
N = {A ∈ SN | ω(A) ≤ ω∗} .

Now, considering Theorem 4, let’s give the following two theorems.

Theorem 5. If A1 ∈ S∗
N , A2 ∈ MN (C) and r ∈ I∗

L = [r, r] then L (A1, A2) ⊂ S∗
N ,

where −l∗ = u∗ = −∥A1∥
∥A2∥ + 1

∥A2∥

√
∥A1∥2 − 1

ω∗ + 1
ω(A1)

, l∗ ≤ r < r ≤ u∗.
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Proof. If A2 = 0 then A(r) = A1. We know that A1 ∈ S∗
N so A(r) ∈ S∗

N too.
Lets take A2 ̸= 0. For r ∈ I∗

L we can write l∗ ≤ r ≤ u∗. Then we get following
inequality,

r2 ∥A2∥2 ω (A1)ω
∗ + 2 |r| ∥A1∥ ∥A2∥ω (A1)ω

∗ − ω∗ + ω (A1) ≤ 0.

If we arrange above inequality

ω (A1)

1− r2 ∥A2∥2 ω (A1)− 2 |r| ∥A1∥ ∥A2∥ω (A1)
≤ ω∗

holds. Since ω (A1 + rA2) ≤ ω(A1)

1−r2∥A2∥2ω(A1)−2|r|∥A1∥∥A2∥ω(A1)
is valid from the

Theorem 2, the inequality ω (A1 + rA2) ≤ ω∗ is found. □

Theorem 6. If A1 ∈ S∗
N , A2 ∈ MN (C) and r ∈ I∗

C = [r, r] then C (A1, A2) ⊂ S∗
N ,

where −l∗ = u∗ = − ∥A1∥
∥A2−A1∥ + 1

∥A2−A1∥

√
∥A1∥2 − 1

ω∗ + 1
ω(A1)

, l∗ ≤ r < r ≤ u∗.

Proof. It is obvious from the previous proof. □

Now let’s give the following illustrative example on this subject.

Example 3. For α ∈
(
−
√

1− 1
ω∗ ,

√
1− 1

ω∗

)
⊂ (−1, 1), A1 =

(
α 0
0 0

)
∈

S∗
N and A2 =

(
1 0
0 0

)
. Let’s examine the interval I∗

L which leaves the matrix

family L (A1, A2) is ω∗−Schur stable.
According to the Theorem 5, we obtained,

l∗ = |α| −
√
1− 1

ω∗ , u∗ = − |α|+
√
1− 1

ω∗

from ∥A1∥ = |α|, ∥A2∥ = 1, ω (A1) =
1

1−α2 . ω (A (r)) = 1
1−(α+r)2

is known, then
α < 0 , lim

r→|α|−
√

1− 1
ω∗

(
1

1−(α+r)2

)
= ω∗

α > 0 , lim
r→−|α|+

√
1− 1

ω∗

(
1

1−(α+r)2

)
= ω∗

is obtained.

Example 4.

A1 =

(
0.5 0
0 0.5

)
, A2 =

(
1 0
0 0

)
.

For these matrices we obtained ω (A1) = 1.33333, ∥A1∥ = 0.5, ∥A2 −A1∥ = 0.5. So
we know that A1 ∈ S∗

N . If we choose ω∗ = 10 then we get −l = u = 0.897367. Let’s
examine the interval r ∈ I∗

C which leaves the matrix family C (A1, A2) is 10−Schur
stable. According to the Theorem 6, as can be seen in the Table 3, sharp intervals
are obtained for the specified ω∗ = 10 parameter. It is seen that ω∗ < ω(A(r)) for
the r value selected outside these intervals.
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Table 3. Sharpness of the interval I∗
C of 10−Schur stability

r -0.897368 l -0.897366 . . . 0.897366 u 0.897368
ω (A(r)) 10.0003 10 9.99937 . . . 9.99937 10 10.0003

Remark 2. From the above example, when values of Schur stability parameter
ω (A (r)) are checked for the r values, it can be seen clearly that Theorem 2, Theorem
3, Theorem 5 and Theorem 6 gave sharp bounds.

4. Obtaining the Extended Intervals

The intervals IL, IC , I∗
L and I∗

C are given in the Section 3. Although these
intervals are found, actually it has been realized that big intervals which preserve
Schur stability or ω∗− Schur stability of the matrix families L and C can be found.
For this reason, the intervals are extended with certain rule in this section. Here,
the extended intervals for the matrix families which preserve the Schur stability
or ω∗− Schur stability are given. In addition, the extended intervals also allow us
to introduce the Schur stable interval matrices or and ω∗− Schur stable interval
matrices. To extend the intervals IL and IC , the methods which based on continuity
theorems are given and the algorithms which based on the methods are given.
Similarly, to extend the intervals I∗

L and I∗
C , the methods and the algorithms are

given. So it can be obtained bigger intervals which preserve the Schur stability or
ω∗− Schur stability of the matrix families L and C. In this process, the stepsize
is determined from the continuity theorems which are Theorem 2, Theorem 3,
Theorem 5 and Theorem 6. The extended intervals Ie

L, Ie
C , I∗e

L and I∗e
C are obtained

at the end of processing. Let’s give the methods and the algorithms as below.

4.1. A method and an algorithm to find the extended interval Ie
L.

4.1.1. A method. Keeping the Schur stability of the matrix family L (A1, B), a
method is given to extend the intervals with the Schur stable matrix A1 and the
matrix B. IL = [r, r] has been chosen with Theorem 2. For r ∈ IL, the matrices
A (r) = Ar = A1 + rB are Schur stable.

i) Defining the stepsize
The stepsize parameter r is used to extend the interval IL. So, generalizing form

the Theorem 2, it is chosen as rk ⪅ −∥Ak∥
∥B∥ + 1

∥B∥

√
∥Ak∥2 + 1

ω(Ak)
.

ii) Determining the initial value
From the Theorem 2, the first value of the parameter r1 is taken as r1 ⪅ u.
iii) Calculating the upper bound ue

To extend the upper bound of the intervals IL, the following steps are done,

Ak = Ak−1 + rk−1B , r1 ⪅ u , k ≥ 2, (5)
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rk ⪅ −∥Ak∥
∥B∥

+
1

∥B∥

√
∥Ak∥2 +

1

ω(Ak)
, (6)

uk = uk−1 + rk , u1 = r1. (7)

The new matrix Ak in the equality (5) is obtained as Schur stable. rk in equality
(6) is calculated with Theorem 2. uk in the equality (7) is the upper bound of the
extended interval obtained in step k. At the end of this process, the upper bound
ue of the extended interval Ie

L is obtained.
iv) Calculating the lower bound le

Similar to the above application, to extend the lower bound of the intervals IL,
the matrix Ak is taken as Ak = Ak−1 − rk−1B in the equality (5) and the equality
(7) is replaced by the recurrence relation lk = lk−1 − rk , l1 = −r1. lk is the lower
bound of the extended interval obtained in step k. The result obtained with the
new equations, the lower bound le of the extended interval Ie

L is obtained.

Remark 3. If the method is applied consecutively to get the upper bound, the
stepsize rk is become smaller and the parameter ω continues to grow by increasing.
A similar situation is also observed for the lower bound. Because of these reasons,
the working with very small numbers is non-practical.

4.1.2. An algorithm. As given in the Remark 3, to stop the calculation, the stopping
criterion is given as follow.

Stopping parameter r∗

After a certain step, the new stepsize becomes too small. Calculations with such
values are not practical due to some reasons (i.e. floating point arithmetic)(see.
[12, 16]). r∗ is called the practical parameter for the stepsize which chosen by user
small enough [21, 22]. With this criterion, less processing is needed and the given
method run smoothly.

Let’s give the algorithm to extend the upper bound of the intervals IL.
Algorithm 1.1 (for the upper bound ue)

(1) Input; A ∈ SN , B, r∗, γ ⪅ 1.
(2) Calculate ω(A), ∥A∥ , ∥B∥

β = − ∥A∥
∥B∥ + 1

∥B∥

√
∥A∥2 + 1

ω(A) , r1 = γ.β.

(3) Take k = 1, A1 := A, u1 := r1.
(4) If r1 < r∗ then write “The interval cannot be extended based on the avail-

able data.” and go 7. step.
(5) Calculate;

Ak+1 = Ak + rkB , ∥Ak+1∥ , ω(Ak+1),

βk+1 = −∥Ak+1∥
∥B∥ + 1

∥B∥

√
∥Ak+1∥2 + 1

ω(Ak+1)
,

rk+1 = γ.βk+1.
(6) If rk+1 ≥ r∗ then calculate uk+1 = uk + rk+1, take k := k + 1 and go 5.

step.
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(7) Write as M := k and the upper bound of interval ue = uM .

To extend the lower bound of the intervals IL, steps (5)-(7) in Algorithm 1.1 are
taken as follow.

Algorithm 1.2 (for the lower bound le)

(5́) Calculate;
Ak+1 = Ak − rkB , ∥Ak+1∥ , ω(Ak+1),
rk+1 = γ.βk+1.

(6́) If rk+1 ≥ r∗ then calculate lk+1 = lk − rk+1 (l1 := −r1), take k := k + 1
and go 5́. step.

(7́) Write as M := k and the lower bound of interval le = lM .

Finally, the found values ue and le are combined and these values constitute of
the Schur stability interval Ie

L = [le, ue] of the matrix family L (A1, B). Here, the
interval Ie

L preserves the Schur stability of the given matrix family.

Theorem 7 (Generalization of the Theorem 2). If A1 ∈ SN , B ∈ MN (C) and
r ∈ Ie

L = [le, ue] then L (A1, B) ⊂ SN , where ue and le are defined as in Algorithm
1.1 and Algorithm 1.2, respectively.

Proof. It is clear from the Theorem 2, Algorithm 1.1 and Algorithm 1.2. □

4.2. A method and an algorithm to find the extended interval I∗e
L .

4.2.1. A method. Keeping the ω∗−Schur stability of the matrix family L (A1, B),
a method is given to extend the intervals with the ω∗−Schur stable matrix A1

and the matrix B. I∗
L = [r, r] has been chosen with Theorem 5. For r ∈ I∗

L,
the matrices A (r) = Ar = A1 + rB are ω∗−Schur stable. The stepsize chosen as

rk = −∥Ak∥
∥B∥ + 1

∥B∥

√
∥Ak∥2 − 1

ω∗ + 1
ω(Ak)

, the initial value taken as u∗. To extend

the upper bound of the intervals I∗
L, the following steps are done,

Ak = Ak−1 + rk−1B , r1 = u∗ , k ≥ 2 (8)

rk = −∥Ak∥
∥B∥

+
1

∥B∥

√
∥Ak∥2 −

1

ω∗ +
1

ω(Ak)
, (9)

uk = uk−1 + rk , u1 = r1. (10)

On the other hand, to extend the lower bound of the intervals I∗
L, the matrix Ak

is taken as Ak = Ak−1− rk−1B in the equality (8) and the equality (10) is replaced
by the recurrence relation lk = lk−1− rk , l1 = −r1. At the end of this process, the
upper bound u∗e and lower bound l∗e of the extended interval I∗e

L .

Remark 4. Let’s take A1 and B.

A1 =

(
0.1 0
0 0.2

)
, B =

(
0 1
0 0

)
.

From the Theorem 5, it is known that u = 0.748683 for ω∗ = 10. If the method is
applied consecutively to get the upper bound, the stepsize is become smaller and the
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parameter ω approaches to 10 as in Table 4. A similar situation is also observed for
the lower bound. Because of these reasons, the working with very small numbers is
non-practical. For this reason, as in Remark 3 for the Algorithm 1.1 and Algorithm
1.2, the stopping parameter r∗ is needed for the algorithm to stop.

Table 4. The values r and ω(Ak) corresponding to the number
of steps k

k 1 50 100 200 300 380

r 0.748683 0.00817741 0.00310605 0.00079299 0.000245453 9.98825e-005

ω(Ak) 1.66462 7.23792 8.61111 9.57978 9.86377 9.94385

4.2.2. An algorithm. As given in the Remark 4, to stop the calculation, the stopping
criterion r∗ is used as follow.

Let’s give the algorithm to extend the upper bound of the intervals I∗
L.

Algorithm 2.1 (for the upper bound u∗e)

(1) Input; A ∈ SN , B, ω∗, r∗.
(2) Calculate ω(A).
(3) If ω(A) > ω∗ then “The matrix A is not ω∗−Schur stable” and finish the

algorithm.

(4) Calculate ∥A∥ , ∥B∥ , u∗ = − ∥A∥
∥B∥ + 1

∥B∥

√
∥A∥2 − 1

ω∗ + 1
ω(A) .

(5) Take k = 1, A1 := A, r1 := u∗, u1 := r1.
(6) Calculate;

Ak+1 = Ak + rkB , ∥Ak+1∥ , ω(Ak+1),

rk+1 = −∥Ak+1∥
∥B∥ + 1

∥B∥

√
∥Ak+1∥2 − 1

ω∗ + 1
ω(Ak+1)

.

(7) If rk+1 ≥ r∗ then calculate uk+1 = uk + rk+1, take k := k + 1 and go 6.
step.

(8) Write as M := k and the upper bound of interval u∗e = uM .

To extend the lower bound of the intervals I∗
L, steps (6)-(8) in Algorithm 2.1 are

taken as follow.

Algorithm 2.2 (for the lower bound l∗e)

(6́) Calculate;
Ak+1 = Ak − rkB , ∥Ak+1∥ , ω(Ak+1),

rk+1 = −∥Ak+1∥
∥B∥ + 1

∥B∥

√
∥Ak+1∥2 − 1

ω∗ + 1
ω(Ak+1)

.

(7́) If rk+1 ≥ r∗ then calculate lk+1 = lk − rk+1 (l1 := −r1), take k := k + 1
and go 6́. step.

(8́) Write as M := k and the lower bound of interval l∗e = lM .

Finally, the found values u∗e and l∗e are combined and these values constitute
of the ω∗−Schur stability interval I∗e

L = [l∗e, u∗e] of the matrix family L (A1, B).
Here, the interval I∗e

L preserves the ω∗−Schur stability of the given matrix family.
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Theorem 8 (Generalization of the Theorem 5). If A1 ∈ S∗
N , B ∈ MN (C) and

r ∈ I∗e
L = [l∗e, u∗e] then L (A1, B) ⊂ S∗

N , where u∗e and l∗e are defined as in
Algorithm 2.1 and Algorithm 2.2, respectively.

Proof. It is clear from the Theorem 5, Algorithm 2.1 and Algorithm 2.2. □

Example 5. Let us consider the matrices A1 and B as follow,

A1
1 =

(
−0.1 0
0 0.1

)
, A2

1 =

(
0.2 1
0 0.1

)
,

B1 = E11 + E22, B2 = E12, B3 = E11 + E12 + E22

Here Eij is a real matrix which the element in position (i, j) equals 1 and all other
elements are 0.

Let’s examine the Table 5 (Table 6). The matrices A1, B and the parameters
r∗ and ω∗ are the input elements, where r∗ and ω∗ selected by the users. l
(l∗) are the lower bounds and u (u∗) are the upper bounds of the interval IL (I∗

L)
which is calculated with the help of Theorem 2 (Theorem 5). le (l∗e) are the lower
bounds and ue (u∗e) are the upper bounds of the interval Ie

L (I∗e
L ) which is the

extended interval obtained by the Algorithm 1.1 (Algorithm 2.1) and Algorithm 1.2
(Algorithm 2.2). M indicates how many steps the algorithms stopped.

Table 5. The computed values for the data A1, B, r∗

A1 B γ r∗ r = γ.u ue M

A1
1 B1

0.9
0.01

0.81
0.891 2

0.001 0.8991 3

0.95
0.01

0.855
0.89775 2

0.001 0.899888 3

A2
1 B1

0.9
0.1

0.185918
0.320172 2

0.01 0.638475 12

0.95
0.1

0.196247
0.334315 2

0.01 0.635644 11

A2
1 B2

0.9
0.1

0.185918
0.429824 3

0.01 2.35532 88

0.95
0.1

0.196247
0.448457 3

0.01 2.42436 90

A2
1 B3

0.9
0.01

0.114904
0.486169 14

0.001 0.667356 77

0.95
0.01

0.121287
0.494272 14

0.001 0.66961 75

(a) The computed values r and ue

A1 B γ r∗ r = −γ.u le M

A1
1 B1

0.9
0.01

-0.81
-0.891 2

0.001 -0.8991 3

0.95
0.01

-0.855
-0.89775 2

0.001 -0.899888 3

A2
1 B1

0.9
0.1

-0.185918
-0.663416 4

0.01 -0.932985 13

0.95
0.1

-0.196247
-0.6847 4

0.01 -0.940808 13

A2
1 B2

0.9
0.1

-0.185918
-2.40175 8

0.01 -4.36254 94

0.95
0.1

-0.196247
-2.45135 8

0.01 -4.42464 95

A2
1 B3

0.9
0.01

-0.114904
-1.08201 9

0.001 -1.09759 14

0.95
0.01

-0.121287
-1.08676 9

0.001 -1.0975 13

(b) The computed values r and le

For example, according to Table 5a (Algorithm 1.1) and Table 5b (Algorithm
1.2), the initial value is obtained as u = −l = 0.206575 for the matrices A2

1, B2.

• For γ = 0.9,
– The extended upper bound is obtained as ue = 0.320172 in 2 steps for

r∗ = 0.1 and ue = 0.638475 in 12 steps for r∗ = 0.01.
– The extended lower bound is obtained as le = −0.663416 in 4 steps for

r∗ = 0.1 and le = −0.932985 in 13 steps for r∗ = 0.01.
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The extended interval Ie
L = [le, ue] = [l13, u12] = [−0.932985, 0.638475] is ob-

tained from the Table 5 for the matrices A2
1, B2 and the parameter r∗ = 0.01 and

γ = 0.9.

• For γ = 0.95,
– The extended upper bound is obtained as ue = 0.334315 in 2 steps for

r∗ = 0.1 and ue = 0.635644 in 11 steps for r∗ = 0.01.
– The extended lower bound is obtained as le = −0.6847 in 4 steps for

r∗ = 0.1 and le = −0.940808 in 13 steps for r∗ = 0.01.

The extended interval Ie
L = [le, ue] = [l13, u11] = [−0.940808, 0.635644] is obtained

from the Table 5 for the matrices A2
1, B2 and the parameter r∗ = 0.01 and γ = 0.95.

Table 6. The computed values for the data A1, B, ω∗, r∗

A1 B ω∗ r∗ u∗ u∗e M

A1
1 B1

10 0.01 0.848683 0.848683 -
100 0.01 0.894987 0.894987 -

A2
1 B1

10
0.1

0.165268
0.281339 1

0.01 0.476099 7

100
0.1

0.202507
0.341518 1

0.01 0.615616 9

A2
1 B2

10
0.05

0.165268
0.627035 6

0.005 1.51639 69

100
0.1

0.202507
0.457834 2

0.01 2.3151 82

A2
1 B3

10
0.01

0.102141
0.344321 8

0.001 0.403404 24

100
0.01

0.125156
0.479542 12

0.001 0.612721 54

(a) The computed values u∗ and u∗e

A1 B ω∗ r∗ l∗ l∗e M

A1
1 B1

10 0.01 -0.848683 -0.848683 -
100 0.01 -0.894987 -0.894987 -

A2
1 B1

10
0.1

-0.165268
-0.604153 3

0.01 -0.769007 8

100
0.1

-0.202507
-0.694796 3

0.01 -0.921211 11

A2
1 B2

10
0.05

-0.165268
-2.60586 11

0.005 -3.51925 75

100
0.1

-0.202507
-2.48489 7

0.01 -4.31782 87

A2
1 B3

10
0.01

-0.102141
-1.03721 8

0.001 -1.04426 10

100
0.01

-0.125156
-1.07752 7

0.001 -1.08955 10

(b) The computed values l∗ and l∗e

On the other hand, according to Table 6a (Algorithm 2.1) and Table 6b (Algo-
rithm 2.2), if the parameter ω∗ is chosen as 10, the initial value is obtained as
u∗ = −l∗ = 0.165268 for the matrices A2

1, B2. If the stopping parameter r∗ is
chosen as r∗ = 0.05 (r∗ = 0.005),

• the extended upper bound is obtained as u∗e = 0.627035 (u∗e = 1.51639) in
6 (69) steps.

• the extended lower bound is obtained as l∗e = −2.60586 (l∗e = −3.51925)
in 11 (75) steps.

The extended interval I∗e
L = [l∗e, u∗e] = [−2.60586, 0.627035] is obtained from

the Table 6 for the matrices A2
1, B2 and the parameters ω∗ = 10, r∗ = 0.05.

According to the Table 5 and the Table 6, let’s give the following;

• The interval Ie
L is bigger than the interval I∗e

L with same condition.
• The number of steps increases while the stopping parameter decreases.
• If the matrices A1 and B are taken diagonal, the extended intervals are
obtained by the theorems.

• If the parameter ω∗ is chosen bigger, the extended interval I∗e
L is obtained

bigger in the same conditions.



A NEW APPROACH FOR SCHUR STABLE MATRIX FAMILIES 551

4.3. Methods and algorithms to find the extended interval Ie
C and I∗e

C .
The methods and the algorithms can be given to extend the intervals IC and I∗

C as
similar to the methods and algorithms to extend the intervals IL and I∗

L in Section
4. So, in this paper, the methods and the algorithms to find the intervals Ie

C and
I∗e
C won’t be given to avoid repeat.

5. Conclusion

In this study, the matrix families L and C based on linear sum and convex
combination were constructed, respectively. This construction is a new approach
that preserves the Schur stability of the matrix families. The intervals IL and IC
that make these matrix families Schur stable were determined in the Theorem 2 and
Theorem 3 and supported by the illustrative examples. Here it is seen that the sharp
results are obtained from the Theorem 2 and Theorem 3, especially in the Example
1 and Example 2, for the matrix families L and C. Similarly, the intervals I∗

L and
I∗
C that provide ω∗−Schur stability of the matrix families L and C are determined

in the Theorem 5 and Theorem 6 and supported with the numerical examples. It
is seen that the Theorem 5 and Theorem 6 give sharp results in the Example 3 and
Example 4. At the end, the methods and the algorithms are given to extended the
intervals IL, IC , I∗

L and I∗
C . Here, the methods are based on continuity theorems

and the algorithms based on the methods. With the help of these theorems, the
obtained intervals are extended and the results are presented with the numerical
example.

On the other hand, unlike other studies in the literature, this study shows the
importance of continuity theorems which guarantee Schur stability. With the help
of these theorems, the matrix families are extended in such a way that their Schur
stability is preserved. Also, in many studies, the matrices A1 and B were taken as
Schur stable but in this study there is no need for the matrix B to be Schur stable
or ω∗-Schur stable.
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Abstract. In this paper, we study minimal translations surfaces in a strict

Walker 3-manifold. Based on the existence of two isometries, we classify min-
imal translation surfaces on this class of manifold. Some drawings have been

added to illustrate the shape of certain surfaces.

1. Introduction

Minimal surfaces are the most natural objects in differential geometry, and have
been studied during the last two and half centuries since J. L. Lagrange. In par-
ticular, minimal surfaces have encountered striking applications in other fields, like
mathematical physics, conformal geometry, computer aided design, among others.
In order to search for more minimal surfaces, some natural geometric assumptions
arise. Translation surfaces were studied in the Euclidean 3-dimensional space and
they are represented as graphs z = α(x)+β(y), where α and β are smooth functions.
Scherk [11] proved in 1835 that, besides the planes, the only minimal translation
surfaces are the surfaces given by

z =
1

a
log
∣∣∣cos(ax)
cos(ay)

∣∣∣,
where a is a non-zero constant. Since then, minimal translation surfaces were gen-
eralized in several directions. For example, the Euclidean space R3 was replaced
with other spaces of dimension 3-usually being 3-dimensional Lie groups and the
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notion of translation was often replaced by using the group operation (see for exam-
ple [6], [8], [14] and references therein). Another generalizations of Scherk surfaces
are: affine translation surfaces in Euclidean 3-space [7], affine translation surfaces in
affine 3-dimensional space [12] and translation surfaces in Galilean 3-space [14]. On
the other hand, Scherk surfaces were generalized to minimal translation surfaces in
Euclidean spaces of arbitrary dimensions(see [5], [9]). In [13], the authors introduce
and define the notion of translation surfaces in the Heisenberg group H(1; 1) as the
formal analogue to those in the Euclidean 3-space.

In this paper, we define and classify minimal translation surfaces in a 3-dimensional
strict Walker manifold. The strict Walker manifolds are described in terms of a
suitable coordinates (x, y, z) of the manifolds R3 and their metric depends on an
arbitrary function of two variables f = f(y, z) and their metric tensor is given by

gϵf = ϵdy2 + 2dxdz + fdz2 (1)

where ϵ = ±1. These manifolds are denoted by (M, gϵf ). In [4], the authors study
a class of minimal surfaces in the three-dimensional Lorentzian Walker manifolds.
Their proved the existence of minimal flat and non totally geodesic graphs on three
dimensional Lorentizain Walker manifolds. In [2], the authors have found that the
strict Walker manifold (M, gϵf ) where f depends only on the variable y are very

important. Here we will work with the manifold (M, gϵf ) where f depends only on
y and f is not locally a constant.

Three dimensional geometry plays a central role in the investigation of many
problem in Riemannian and Lorentzian geometry. The fact that Ricci operator
completly determines the curvature tensor is crucial to these investigations, (for
detail see [1]).

The paper is organised as follow: in section 2, we recall some preliminaries results
for three-dimensional Walker manifold (M, gϵf ) and we give some basic formula for

immersed surface in (M, gϵf ). We consider two families of translation surfaces in

(M, gϵf ) which are used in the main result. In the last section we classify those
which are minimal.

2. Preliminaries

A Walker n-manifold is a pseudo-Riemannian manifold, which admits a field
of null parallel r-planes, with r ≤ n

2 . The canonical forms of the metrics were
investigated by A. G. Walker [15]. Walker has derived adapted coordinates to
a parallel plan field. Hence, the metric of a three-dimensional Walker manifold
(M, gϵf ) with coordinates (x, y, z) is expressed as

gϵf = dx ◦ dz + ϵdy2 + f(x, y, z)dz2 (2)
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and its matrix form as

gϵf =

 0 0 1
0 ϵ 0
1 0 f

 with inverse (gϵf )
−1 =

 −f 0 1
0 ϵ 0
1 0 0


for some function f(x, y, z), where ϵ = ±1 and thus D = Span{∂x} as the parallel
degenerate line field. Notice that, when ϵ = 1 and ϵ = −1 the Walker manifold has
signature (2, 1) and (1, 2) respectively, and therefore is Lorentzian in both cases.
Hence, if (M, gϵf ) is a strict Walker manifolds i.e., f(x, y, z) = f(y, z), then the
associated Levi-Civita connection satisfies

∇∂y
∂z =

1

2
fy∂x, ∇∂z

∂z =
1

2
fz∂x − ϵ

2
fy∂y. (3)

Let now u and v be two vectors in M . Denoted by (e1, e2, e3) the canonical
frame in R3. The vector product of u and v in (M, gϵf ) with respect to the metric
gϵf is the vector denoted by u× v in M defined by

gϵf (u× v, w) = det(u, v, w) (4)

for all vector w in M , where det(u, v, w) is the determinant function associated to
the canonical basis of R3. If u = (u1, u2, u3) and v = (v1, v2, v3) then by using (4),
we have:

u× v =

(∣∣∣∣u1 v1
u2 v2

∣∣∣∣− f

∣∣∣∣u2 v2
u3 v3

∣∣∣∣) e1 − ϵ

∣∣∣∣u1 v1
u3 v3

∣∣∣∣ e2 + ∣∣∣∣u2 v2
u3 v3

∣∣∣∣ e3
LetD be an open subset of the plane R2 satisfying this interval condition: horizontal
or vertical lines intersect D in intervals (if at all). A two-parameter map is a smooth
map φ : D → M . Thus φ is composed of two interwoven families of parameter
curves:

(1) the u-parameter curves v = v0 of φ is u 7→ φ(u, v0).
(2) the v-parameter curves u = u0 of φ is v 7→ φ(u0, v).

The partial velocities φu = dφ(∂u) and φv = dφ(∂v) are vector fields on φ. Ev-
idently φu(u0, v0) is the velocity vector at u0 of the u-parameter curve v = v0,
and symmetrically for φv(u0, v0). If φ lies in the domain of a coordinate system
x1, . . . , xn, then its coordinate functions xi ◦φ (1 ≤ i ≤ n) are real-valued functions
on D and

φu =
∑ ∂xi

∂u
∂i, φv =

∑ ∂xi

∂v
∂i.

So far M could be a smooth manifold: now suppose it is pseudo-Riemannian. If Z
is a smooth vector field on φ, its partial covariant derivatives are: Zu = ∇Z

∂u , the

covariant derivative of Z along u-parameter curves, and Zv = ∇Z
∂v , the covariant

derivative of Z along v-parameter curves. Explicitly, Zu(u0, v0) is the covariant
derivative at u0 of the vector field u 7→ Z(u, v0) on the curve u 7→ φ(u, v0). In
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terms of coordinates, Z =
∑

Zi∂i, where each Zi = Z(xi) is a real valued function
on D. Then

Zu =
∑
k

{∂Zk

∂u
+
∑
i,j

Γk
ijZ

i ∂x
j

∂u

}
∂k. (5)

In the special case Z = φu, the derivative Zu = φuu gives the accelerations of
u-parameter curves, while φvv gives v-parameter accelerations. With coordinate
notation as above, we have:

φuv =
∑
k

{ ∂2xk

∂v∂u
+
∑
i,j

Γk
ij

∂xi

∂u

∂xj

∂v

}
∂k. (6)

Now we will assume that φ is an isometric immersion. The first fondamental form
of the immersion φ is given by E = gf (φ∗(∂u), φ∗(∂u))

F = gf (φ∗(∂u), φ∗(∂v))
G = gf (φ∗(∂v), φ∗(∂v)) .

(7)

The coefficients of the second fundamental form of φ are L = ε1gf (φuu, ξ)
M = ε1gf (φuv, ξ)
N = ε1gf (φvv, ξ)

(8)

where ε1 = gϵf (ξ, ξ) the sign of the unit normal ξ along φ.
The mean curvature of φ is given by

H = ε1
1

2

(LG− 2MF +NE

EG− F 2

)
. (9)

The idea of translation surface have its origine in the classical text of G. Dar-
boux [3] where the so-called ”surfaces définies par des propriétés cinématiques”
is introduced. A Darboux surface of translation is defined kinematically as the
movement of a curve by a uniparameter family of rigid motion of R3. Hence, such
a surface in locally described by φ(s, t) = A(t).α(s) + β(t) where α and β are
parametrized curves in R3 and A(t) is an orthogonal transformation. A(t) being
identity is the case which is most investigated. So a surface S in R3 is called a
translation surface if S can be locally discribed as a sum

φ(s, t) = α(s) + β(t).

Next, we consider a three-dimensional strict Walker manifold (M, gεf ), where f is
not locally a constant and depends only on the variable y. For any real number a,
the following two maps:

R3 → R3

(x, y, z) 7→ (x, y, z + a)
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and

R3 → R3

(x, y, z) 7→ (x+ a, y, z)

are isometries of (M, gεf ). Based in these isometries, we will define two types of
translation surfaces.

Definition 1. A non-degenerate surface S of sign ε1 in (M, gεf ) is a translation

surface if it can be described locally by an isometric immersion φ : U ⊂ R2 →
(M, gϵf ) of the form

φ(u, v) = (u, v, α(u) + β(v)), Type I (10)

or

φ(u, v) = (α(u) + β(v), u, v), Type II (11)

where α and β are smooth functions on opens of R.

The aim of this work is to classify the minimal translation surfaces in (M, gεf ) of
the Type I and type II as above.

3. Main Results

3.1. Minimal translation surfaces of Type I. Let us consider a translation
surface of Type I in (M, gϵf ) parametrized by φ(u, v) = (u, v, α(u) + β(v)). In this

case we have x = u, y = v and z = α(u) + β(v). For a function g of one variable u

(respectively v) we denote dg
du by ġ (respectively dg

dv by g′). The tangent plane of S
is spanned by

φu = ∂x + α̇∂z and φv = ∂y + β′∂z. (12)

The unit normal ξ (up to orientation) is given by

ξ =
1

∆

[
(1 + α̇f)∂x − εβ′∂y − α̇∂z

]
. (13)

where ∆ = ∥φu × φv∥. We obtain the coefficients of the first fundamental form of
φ as

E = 2α̇+ α̇2f, F = β′ + α̇β′f, G = ε+ β′2f. (14)

And using (6) we have

φuu =

 0
− ε

2 α̇
2fy

α̈

 , φuv =

 1
2 α̇fy

− ε
2 α̇β

′fy
0

 , φvv =

 β′fy
− ε

2β
′2fy

β′′

 . (15)

Then the coefficients of the second fundamental form of φ

L =
ε1
∆

[ε
2
β′α̇2fy + α̈

]
,



MINIMAL TRANSLATION SURFACES IN A STRICT WALKER 3-MANIFOLD 559

M =
ε1
∆

[
−1

2
α̇2fy +

ε

2
α̇β′2fy

]
,

N =
ε1
∆

[
−α̇β′fy +

ε

2
β′3fy + β′′

]
. (16)

Consequently, the minimality condition (9) may be expressed as follows:

α̈(ε+ β′2f) + α̇2(−1

2
β′fy + fβ′′) + 2α̇β′′ = 0. (17)

Since y = v, we can rewrite the minimal condition for Type I in the form

α̈(ε+ β′2f) + α̇2(−1

2
β′f ′ + fβ′′) + 2α̇β′′ = 0. (18)

We have the following solutions:

(1) Case 1: Assume that α̇ = 0 that is α = α0 (constant). We get the following
surface:

(s1) : φ(u, v) = (u, v, α0 + β(v))

for any smooth functions β.
(2) Case 2: Assume that α̇ ̸= 0 and α̈ = 0. Equation (18) becomes

α̈

α̇
(ε+ β′2f) + α̇(−1

2
β′f ′ + fβ′′) + 2β′′ = 0. (19)

Since α̈ = 0, from (19) we have:{
α(u) = au+ b with a ∈ R∗, b ∈ R

(af + 2)β′′ = 1
2af

′β′.
(20)

(a) If β′ = 0, then β = β0 is a constant with α(u) = au+ b, a ∈ R∗ satisfy
(19) as (18). Thus we have the plan:

(s2) : φ(u, v) = (u, v, au+ b̃), a ∈ R∗, b̃ ∈ R

(b) Now assume β′ ̸= 0. An easy integration of the second equation in
(20) gives

β(v) = c̃

∫ v

v∗

√
|2 + af |dv,

where c̃ ∈ R∗, v∗ is a real number such that v and v∗ belong to interval
on which (2 + af > 0) or (2 + af < 0). So we get the solution

(s3) : φ(u, v) =
(
u, v, au+ b+ c̃

∫ v

v∗

√
|2 + af |dv

)
, a, c̃ ∈ R∗, b ∈ R.

(3) Case 3: Assume that α̇ ̸= 0 and α̈ ̸= 0. Then equation (18) can be written
as (19) anywhere where α̇ ̸= 0. By differentiating the equation (19) with
respect to u and v, we get:

d

du

(
α̈

α̇

)
(ε+ β′2f)′ + α̈(−1

2
β′f ′ + fβ′′)′ = 0. (21)
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(a) Case 3-1: (ε + β′2f)′ = 0. Since α̈ ̸= 0, the equation (21) gives
(− 1

2β
′f ′ + fβ′′)′ = 0. So we get{

ε+ β′2f = c1
− 1

2f
′β′ + fβ′′ = c2,

(22)

where c1, c2 ∈ R. Then the equation(19) becomes(
α̈

α̇

)
c1 + α̇c2 = −2β′′. (23)

Since the left member depends only on u and the right member depends
only on v, then there exist a constant c3 and we have:{

β′ = − 1
2c3v + c4(

α̈
α̇

)
c1 + α̇c2 = c3,

(24)

where c3, c4 ∈ R. If c3 = 0, then β′′ = 0 and β′ = c4. From (22), one
gets ε + c24f = c1. Then c24f

′ = 0 and c4 = 0 by the hypothesis on f .
So β′ = 0 implies c2 = 0 and c1 = ε. Using this with (24) we get α̈ = 0
(contradiction with the hypothesis). So c3 ̸= 0. And then β′ ̸= 0 and
β′′ = − 1

2c3 ̸= 0. Then (22) becomes{
f = c1−ε

(− 1
2 c3v+c4)2

− 1
2f

′β′ + fβ′′ = c2.
(25)

So we get f ′ = c3(c1−ε)

(− 1
2 c3v+c4)3

. Thus (25) gives c3(c1−ε)

(− 1
2 c3v+c4)2

= c2, and then

we must have c2 = 0 and c1 = ε. Then we get f = 0 (a contradiction).
So the sub-case (ε+ β′2f)′ = 0 is not possible.

(b) Case 3-2: (ε+ β′2f)′ ̸= 0. The equation (21) becomes

d
du

(
α̈
α̇

)
α̈

= −
(− 1

2β
′f ′ + fβ′′)′

(ε+ β′2f)′
. (26)

Since the left member depends only on u and the right member depends
only on v, its must be constant c. So we get d

du

(
α̈
α̇

)
= cα̈ and (− 1

2β
′f ′+

fβ′′)′ = −c(ε+β′2f)′. Then, there exist constants c1, c2 ∈ R such that

α̈

α̇
= cα̇+ c1 and (−1

2
β′f ′ + fβ′′) = −c(ε+ β′2f) + c2. (27)

If we put the equations (27) in (19), we get

c1(ε+ β′2f) + α̇c2 + 2β′′ = 0.

If we differentiate with respect to u, we obtain α̈c2 = 0 i.e., c2 = 0. So
we get:

c1(ε+ β′2f) + 2β′′ = 0

−c(ε+ β′2f) = − 1
2β

′f ′ + fβ′′

α̈
α̇ = cα̇+ c1

(28)
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And now we have two possibilities: c1 = 0 or c1 ̸= 0.
• Case 3-2-1: c1 = 0. We have c ̸= 0 otherwise α̈ = 0. The first
equation in (28) gives β′′ = 0, so β′ = β′

0 ∈ R. And we get

−c(ε+ β′2f) = −1

2
f ′β′

0. (29)

If β′
0 = 0, then by using (29) we get cε = 0, which is impossible.

Therefore β′
0 ̸= 0. An easy integration of (29) gives f(v) =

Ke2cβ
′
0v − ε

(β′
0)

2 and β = β′
0v + β0. The equation α̈

α̇ = cα̇ gives

α = − 1
c log |cu + c1|, c ∈ R∗ and c1 ∈ R. Then we get solution

of the form

(s4) :

{
φ(u, v) = (u, v,− 1

c log |cu+ c1|+ β′
0v + β0)

f(v) = Ke2cβ
′
0v − ε

(β′
0)

2

where K, c, β′
0 ∈ R∗ and c1, β0 ∈ R.

• Case 3-2-2: c1 ̸= 0. The first and the second equations in (28)
give:{

(f − 2c
c1
)β′′ = 1

2f
′β′

β′2f = −(2β′′ + εc1).

If β′ = 0 then β′′ = 0 and εc1 = 0, which is impossible since
c1 ̸= 0. Therefore we have β′ ̸= 0. So we get f = − 2β′′+εc1

β′2

β′′

β′ = 1
2

f ′

f− 2c
c1

.
(30)

The second equation of (30) gives

β′ = ±c∗

√∣∣∣f − 2c

c1

∣∣∣ with c∗ ∈ R∗
+.

Denoted by µ = sign
(
f − 2c

c1

)
and we get:

β′2 = µc2∗

(
f − 2c

c1

)
β′′ = ±c∗

µf ′

2

√
µ

(
f− 2c

c1

) (31)

The first equation of (31) gives: β = ±
∫ v

v∗

√∣∣∣f − 2c
c1

∣∣∣dτ where v∗

and v belong to an intervall on which
(
f− 2c

c1

)
> 0 or

(
f− 2c

c1

)
<
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0.
The first equation of (30) gives

f = −

±c∗
µf ′

2

√
µ

(
f− 2c

c1

) + εc1

µc2∗

(
f − 2c

c1

) .

If we put t =

√
µ
(
f − 2c

c1

)
then t2 = µ

(
f − 2c

c1

)
, we have f =

µt2 + 2c
c1

and t satisfy −µc2∗(t
2 + 2c

c1
)t2 ± c∗t

′ = εc1. We get the
solution:

(s5) : φ(u, v) = (u, v, α(u) + β(v))

where α and β are given by:
(i) α(u) = Aec1u + B and β(v) = ±c∗

∫ v

v∗

√
|f |dτ with f =

µt2 (µ = ±1) where t is solution of differential equation
−µc2∗t

4 ± c∗t
′ = εc1;

(ii) α(u) =
∫ u

u∗
dτ

Ke−c1u− c
c1

and β(v) = ±c∗
∫ v

v∗

√
|f − 2c

c1
|dτ ,

where K, c, c1 ∈ R∗, c∗ > 0 with f = µ(t2 + 2c
c1
) where t is

solution of −µc2∗(t
2 + 2c

c1
)t2 ± t′ = εc1.

We conclude with the following:

Theorem 1. A translation surface S of Type I in (M, gϵf ) where f depends only on

y and not locally a constant, is minimal if and only if there is an interval I (u ∈ I)
and an interval J (v ∈ J) such that on I × J the surface take one of the following
form

1) φ(u, v) = (u, v, α0 + β(v)) for any smooth functions β where α0 ∈ R.
2) φ(u, v) = (u, v, au+ b̃), where a ∈ R∗, b̃ ∈ R.
3) φ(u, v) =

(
u, v, au+ b+ c̃

∫ v√|2 + af |dτ
)
, where a, c̃ ∈ R∗, b ∈ R.

4) φ(u, v) = (u, v,− 1
c log |cu + c1| + β′

0v + β0) where the function f(v) =

Ke2cβ
′
0v − ε

(β′
0)

2 and K, c, β′
0 ∈ R∗ and c1, β0 ∈ R.

5) φ(u, v) = (u, v, α(u) + β(v)) where α and β are given by

(i) α(u) = Aec1u + B, A ∈ R∗, B ∈ R and β(v) = ±c∗
∫ v√|f |dτ , with

f = µt2 where t = t(v) is solution of differential equation ±c∗t
′ =

µc2∗t
4 + εc1;

(ii) α(u) =
∫ u dτ

Ke−c1u− c
c1

and β(v) = ±c∗
∫ v
√
|f − 2c

c1
|dτ ; K, c, c1 ∈ R∗,

c∗ > 0 with f = µ(t2 + 2c
c1
) where t = t(v) is solution of ±c∗t

′ =

µc2∗(t
2 + 2c

c1
)t2εc1.
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Example 1. Let (M, gϵf ) be a Walker manifold where the function f(y) = y2. Let

S be a translation surface in M satisfying the condition of the theorem 1. In 3) of
the above theorem, if we take a = 2, b = 0, c̃ = 1 then the surface S is given by (see
figure (A)):

φ(u, v) =

(
u, v, 2u+

1√
2
ln(v +

√
1 + v2) +

1√
2
v
√
1 + v2

)
. (32)

In 5)i), if we take A = 1, B = −3, c∗ = 1, c1 = 1 then the surface S is given by (see
figure (B)):

φ(u, v) =

(
u, v, eu +

1

2
v2 − 3

)
. (33)

3.2. Minimal translation surfaces of Type II. Let us consider a translation
surface S of Type II in (M, gϵf ) parametrized by φ(u, v) = (α(u) + β(v), u, v). In

this case we have x = α(u)+β(v), y = u and z = v. For a function g of one variable

u (respectively v) we denote dg
du by ġ (respectively dg

dv by g′). The tangent plane of
S is spanned by

φu = α̇∂x + ∂y and φv = β′∂x + ∂z, (34)

while the unit normal ξ (up to orientation) is given by

ξ =
1

∆

[
(−β′ − f)∂x − εα̇∂y + ∂z

]
(35)

where ∆ = ∥φu × φv∥. We obtain the coefficients of the first fundamental form of
φ as

E = ε, F = α̇, G = 2β′ + f. (36)

And we have by using (6)

φuu =

 α̈
0
0

 , φuv =

 1
2fy
0
0

 , φvv =

 β′′

− ε
2fy
0

 . (37)

Then the coefficients of the second fundamental form of φ

L =
ε1
∆
(α̈
)
,

M =
ε1
∆

(1
2
fy

)
,

N =
ε1
∆

(
β′′ +

ε

2
α̇fy

)
. (38)

Consequently, the minimality condition (9) may be expressed as follows:

α̈(2β′ + f)− 1

2
α̇ḟ + εβ′′ = 0 (39)
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(a) φ(u, v) =
(
u, v, 2u+ 1√

2
ln(v +

√
1 + v2) + 1√

2
v
√
1 + v2

)

(b) φ(u, v) =
(
u, v, eu + 1

2
v2 − 3

)
Figure 1. Figures of the Example 1

Taking the derivatives with respect to v, we get

2α̈β′′ + εβ′′′ = 0. (40)

We will consider the following cases:

(1) Case 1: Assume that α̈ = 0. Since (40), we get β′′ = β′′
0 ∈ R and

α̇ = α̇0 ∈ R. And the equation (39) becomes − 1
2 α̇0ḟ + εβ′′

0 = 0. We have
the following two subcases:
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(a) Case 1-1: α̇0 = 0. If α̇0 = 0 then β′′
0 = 0. Thus we get α = α0 and

β(v) = av + b. We get the plane

(s′1) : φ(u, v) = (a1v + a2, u, v); a1, a2 ∈ R.

(b) Case 1-2: α̇ ̸= 0. If α̇ ̸= 0 then β′′
0 ̸= 0 and we get ḟ =

2εβ′′
0

α̇ . We get
the solution

(s′2) :

{
φ(u, v) = (a1u+ a2v + a3, u, v)
f(u) = 2εa2

a1
u+ a4

where a1, a2 ∈ R∗, a3, a4 ∈ R.
(2) Case 2: Assume that α̈ ̸= 0. We will consider the following two sub-cases.

(a) Case 2-1: β′′ = 0. If β′′ = 0 then β′ = β′
0 ∈ R. And the equation in

(39) becomes

α̈

α̇
=

1

2

(
ḟ

2β′
0 + f

)
,

which gives{
α(u) = c̃

∫ u

u∗

√
|f + 2a|dτ, a ∈ R

β(v) = av + d

where u∗ and u belong to an interval on which (f+2a > 0) or (f+2a <
0). We get the solution

(s′3) :

{
φ(u, v) =

(
c̃
∫ u

u∗

√
|f + 2a|dτ + av + d, u, v

)
c̃ ∈ R∗, a, d ∈ R

(b) Case 2-2: β′′ ̸= 0. If β′′ ̸= 0 then there exist c ∈ R∗ such that{
2α̈ = c
β′′′

β′′ = −cε.

Thus we have{
2α̇ = cu+ c1
β′′ = −cεβ′ + c2

where c1, c2 ∈ R. And the equation in (39) becomes

c

2
(2β′ + f)− 1

4
(cu+ c1)ḟ + ε(−εcβ′ + c2) = 0,

that is

c

2
f =

1

4
(cu+ c1)ḟ + εc2.

And then we have the solution

(s4) φ(u, v) =
(1
4
cu2 +

1

2
c1u+ c̃1 +

εc2
c

v +K1e
−εcv, u, v

)
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with f(u) = K2(cu+ c1)
2 + 2c2ε

c , where c1, c̃1, c2, c̃2 ∈ R and K1,K2 ∈
R∗.

We have the following result:

Theorem 2. A translation surface S of Type II in (M, gϵf ) where f depends only
on y and not locally a constant, is minimal if and only if there is an interval I
(u ∈ I) and an interval J (v ∈ J) such that on I × J the surface take one of the
following form

(1) φ(u, v) = (a1v + a2, u, v); a1, a2 ∈ R.
(2) φ(u, v) = (a1u + a2v + a3, u, v); a1, a2 ∈ R∗, a3, a4 ∈ R with f(u) =

2εa2

a1
u+ a4.

(3) φ(u, v) =
(
c̃
∫ u

u∗

√
|f + 2a|dτ + av + d, u, v

)
; a, d ∈ R.

(4) φ(u, v) =
(

1
4cu

2+ 1
2c1u+c̃1+

εc2
c v+K1e

−εcv, u, v
)
; c1, c̃1, c2, c̃2 ∈ R, c,K1,K2 ∈

R∗ with f(u) = K2(cu+ c1)
2 + 2c2ε

c .

Example 2. Let (M, gϵf ) be a Walker manifold where the function f(y) = 2y2. Let

S be a translation surface in M satisfying the condition of the theorem 2. In 3) of
the above theorem 2, if we take a = 1, c̃ = 1, d = 0 then the surface S is given by
(see figure 2a):

φ(u, v) =

(
1√
2
ln(u+

√
1 + u2) +

1√
2
u
√
1 + u2 + v, u, v

)
. (41)

Figure 2. φ(u, v) =
(

1√
2
ln(u+

√
1 + u2) + 1√

2
u
√
1 + u2 + v, u, v

)
,

Figure of the Example 2.
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4. Conclusion

In this paper we have defined two types of translation surfaces using two kind of
isometries in a strict Walker manifold (M, gϵf ). First we have studied and classified
the minimality of the translation surface of type I and we draw some examples of
these family of surfaces. Secondely, we considered the family of translation surfaces
of type II and we studied their minimality. We classify these surfaces and draw
some example.
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A SECOND-ORDER NUMERICAL METHOD FOR

PSEUDO-PARABOLIC EQUATIONS HAVING BOTH LAYER

BEHAVIOR AND DELAY PARAMETER

Baransel GUNES1 and Hakkı DURU2

1,2Department of Mathematics, Faculty of Science, Van Yuzuncu Yil University, Van, TÜRKİYE

Abstract. In this paper, singularly perturbed pseudo-parabolic initial-boundary

value problems with time-delay parameter are considered by numerically. Ini-
tially, the asymptotic properties of the analytical solution are investigated.

Then, a discretization with exponential coefficient is suggested on a uniform

mesh. The error approximations and uniform convergence of the presented
method are estimated in the discrete energy norm. Finally, some numerical

experiments are given to clarify the theory.

1. Introduction

Singularly perturbed problems are defined by a small parameter ε multiplying
the highest order derivative term in the differential equation. The solutions of
them typically include the boundary or interior layers depending on the situation
of the problem. Because of the existence of the layers, the solution shows a mul-
tiscale character, i.e., the solution behaves stable and slowly away from the layer
region while it behaves unstable and rapidly in the layer region. Therefore, the con-
ventional numerical approaches do not produce the reliable results and ε-uniform
computational techniques are required [19,24,35,37,43,45,47,51] (see, also the ref-
erences therein). To examine singular perturbation problems and their applications
more comprehensively, one may refer in [19,24,35,37,43,45,47,51].

Intercalarily, many mathematical models of real life situations in science are ex-
plained with the singularly perturbed delay differential equations (SPDDEs). Their
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applications can be found in processes for metal plates, spread of HIV and bacte-
rial infections, control theory, population dynamics, neurobiology, thermo elastic-
ity, hydrodynamics of liquid helium, mechanic systems, laser optics and financial
mathematics [10, 20, 31, 38, 57, 61] (see, also the references therein). In the liter-
ature, SPDDEs have been investigated widely by many authors and different nu-
merical methods have been introduced. These include: Reproducing kernel method
[16,28,29], initial value technique [59], numerical integration method [27,50,57], Nu-
merov method [15], the method of hybrid difference schemes [13,14], discontinuous
Galerkin method [64], collocation methods [39, 60, 63], Ritz-Galerkin method [34],
hp−finite element method [46], fitted mesh technique [33, 42], domain decomposi-
tion approach [56], cubic spline methods [36], finite difference methods [5,7,9,22,53]
and so on [11,25,44,48,49,54].

In this paper, we consider the singularly perturbed linear initial-boundary value
pseudo-parapolic problem with time-delay on the domain D̄ = Ω̄ × [0, T ]; Ω̄ =
[0, l] , Ω = (0, l), D = Ω× (0, T ]:

Lu ≡ L1

[
∂u

∂t

]
+ L2u+ c (t)u (x, t− r) = f (x, t) , (x, t) ∈ D, (1)

u (x, t) = φ (x, t) , (x, t) ∈ Ω̄× [−r, 0] , (2)

u(0, t) = u(l, t) = 0, t ∈ (0, T ] , (3)

where

L1

[
∂u

∂t

]
= −ε

∂3u

∂x2∂t
+ a (x)

∂u

∂t
,

L2 [u(x, t)] = −ε
∂2u

∂x2
+ b (x, t)u (x, t) ,

and 0 < ε ≪ 1 is the perturbation parameter; the functions a, b, c, f and φ are
sufficiently smooth, r > 0 is delay parameter and a(x) ≥ α > 0. The problem (1)-
(3) have been studied on Boglaev-type adaptive mesh by conducting linear basis
functions and energy inequalities in [32]. Also, G. Amiraliyev and Y. Mamedov [4]
have proposed an exponentially difference scheme for solving the problem (1)-(3)
without delay parameter.

Pseudo-parabolic or Sobolev type problems have had an important role in the
literature. For scientific background and existence-uniqueness results of pseudo-
parabolic problems without singular perturbation and the delay parameter, one
may refer in [55, 58]. I. Amirali et. al [1] have constructed two-level difference
scheme for semilinear pseudo-parabolic initial-boundary value problems with de-
lay parameter (Please, see also a series of the papers [2, 3, 8]). C. Zhang and Z.
Tan [65] have used linearized compact finite difference methods for solving non-
linear delay Sobolev partial differential equations. On the other hand, latterly,
various numerical schemes have been proposed for parabolic type problems with
singular perturbation case. L. Govindarao and J. Mohapatra [30] have suggested a
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numerical scheme comprised of implicit-trapezoidal scheme on temporal direction
and hybrid type scheme on spatial direction for solving singularly perturbed delay
parabolic initial-boundary value problems. In the paper [6], a fully discrete scheme
has been generated on Shishkin mesh to solve singularly perturbed Sobolev initial-
boundary value problem with initial jump. S. Kumar and M. Kumar [40] have
discretized singularly perturbed nonlinear delay parabolic type partial differential
equations on a generalized Shishkin mesh by using quasilinearization techniques.
M. M. Woldaregay et. al [61] have developed a numerical approach by using Crank-
Nicolson technique for temporal discretization and exponentially fitted difference
scheme for spatial discretization to analyse parabolic convection-diffusion problems
with layer behavior. N. A. Mbroh et. al [41] have designed a numerical discretiza-
tion using fitted operator finite difference method on spatially direction and Crank
Nicolson finite difference approach on time direction. S. Yadav and P. Rai [62]
have constructed a higher-order difference method consisting of hybrid scheme on
Shishkin mesh and implicit Euler method on a uniform mesh to examine singularly
perturbed delay parabolic turning point problems of convection-diffusion type. Au-
thors in [10,12] have provided the standard finite difference scheme on piecewise uni-
form fitted mesh to analyze singularly perturbed delay parabolic initial-boundary
value problems. L Govindarao et. al [31] have established a fourth-order numerical
scheme on Shishkin-type mesh by using Richardson extrapolation to examine sin-
gularly perturbed delay parabolic reaction-diffusion problems. A. B. Chiyaneh and
H. Duru [17,18] have formulated difference schemes to resolve singularly perturbed
Sobolev initial-boundary value problems with time-delay parameter. S. Elango
et. al [23] have provided finite difference scheme on the rectangular piecewise uni-
form mesh by using trapezoidal rule for solving singularly perturbed partial delay
differential equations with integral boundary condition. F. W. Gelu and G. F.
Duressa [26] have suggested B-spline collocation technique on Shishkin mesh to ob-
tain a numerical approximation of singularly perturbed delay parabolic problems of
reaction-diffusion type. In [21], singularly perturbed Sobolev type initial-boundary
value problems with Robin boundary condition have been discretized on a uniform
mesh.

Our focus in this study is to present a robust and stable finite difference scheme
on a uniform mesh for solving problem (1)-(3). With in this mind, we use the
interpolating quadrature rules and exponential basis functions (see [4]).

The rest of this paper is as follows: In Section 2, some priori estimates for
the continuous problem are given. The finite difference scheme is constructed on a
uniform mesh in Section 3. Section 4 presents the stability and convergence analysis
of the proposed scheme in the discrete energy norm. Two numerical examples are
solved and the computed results are tabulated in Section 5. Lastly, the paper ends
with a brief conclusion.
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2. A Priori Bounds

In this section, we give the asymptotic behavior of the analytical solution and
its derivatives.

Lemma 1. The solution u(x, t) of the problem (1)-(3) satisfies that

ε

∥∥∥∥∂u∂x
∥∥∥∥2 + α ∥u∥2 ≤

{[
ε

∥∥∥∥∂φ (x, 0)

∂x

∥∥∥∥2 + ∥φ (x, 0)∥2
]
eCt

+

∫ t

0

c∗ ∥φ (x, s)∥2 eCtds+

t∫
0

∥f∥2 eCtds


where ∥.∥ = ∥.∥L2(0,l)

, C is a generic positive constant and c∗ = max
t∈[0,T ]

|c(t)| .

Proof. The proof of the lemma can be found in the paper [32]. □

Lemma 2. Under the assumptions a ∈ C2 [0, l], b ∈ C2
(
D̄
)
, f ∈ C

(
D̄
)
and

|a(0)− b(0, t)| ≤ Cε, |a(l)− b(l, t)| ≤ Cε, (4)

asymptotic expansion of the solution of the problem (1)-(3) can be written in the
form

u (x, t) = u0 (x, t) + ϑ0 (ξ, t) + w0 (η, t)

+
√
ε [u1 (x, t) + ϑ1 (ξ, t) + w1 (η, t)] +R∗ (x, t) , (5)

where the functions u0 (x, t), u1 (x, t), ϑ0 (ξ, t), w0 (η, t), ϑ1 (ξ, t), w1 (η, t) are the
solutions of the following problems:{

a(x)∂u0

∂t + b(x, t)u0 + c(t)u0 (x, t− r) = f(x, t),
u0(x, t− r) = φ(x), −r ≤ t ≤ 0;{

a (x) ∂u1

∂t + b (x, t)u1 + c(t)u1 (x, t− r) = −
√
ε
[

∂3u0

∂t∂x2 + ∂2u0

∂x2

]
,

u1 (x, t) = 0,−r ≤ t ≤ 0;
−ε ∂3ϑ0

∂t∂ξ2
+ a (0) ∂ϑ0

∂t − ε∂2ϑ0

∂ξ2
+ a(0)ϑ0 + c(t)ϑ0 (x, t− r) = 0,

ϑ0(ξ, t) = 0, −r ≤ t ≤ 0;
ϑ0(0, t) = −u0 (0, t) ; ϑ0(

l√
ε
, t) = 0,

−ε ∂3ϑ1

∂t∂ξ2
+ a(0)∂ϑ1

∂t − ε∂2ϑ1

∂ξ2
+ a(0)ϑ1 + c(t)ϑ1 (x, t− r)

=−ξ ∂b
∂x (0, t)ϑ0 − ξa′(0)∂ϑ0

∂t ,
ϑ1(ξ, t) = 0, −r ≤ t ≤ 0;
ϑ1(0, t) = −u1 (0, t) ; ϑ1(

l√
ε
, t) = 0,

−ε ∂3w0

∂t∂η2 + a(l)∂w0

∂t − ε∂2w0

∂η2 + a(l)w0 + c(t)w0 (x, t− r) = 0,

w0(η, t) = 0, −r ≤ t ≤ 0;
w0(

l√
ε
, t) = 0;w0(0, t) = −u0 (l, t) ,
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−ε ∂3w1

∂t∂η2 + a(l)∂w1

∂t − ε∂2w1

∂η2 + a(l)w1 + c(t)w1 (x, t− r)

=−η ∂b
∂x (l, t)ω0 − ηa′(l)∂

2w0

∂t2 ,
w1(η, t) = 0, −r ≤ t ≤ 0;
w1(

l√
ε
, t) = 0 ; w1(0, t) = −u1 (l, t) ,

where ξ = x√
ε
and η = l−x√

ε
. Additionally, the remainder term of the asymptotic

expansion can be estimated as

εs
∥∥∥∥∂k+sR∗

∂tk∂xs

∥∥∥∥ ≤ Cε1−s/2 k, s = 0, 1, 2.

Proof. The proof can be shown by using a similar approach of [4,17,18,21,32]. □

Lemma 3. Under the conditions of Lemma (2), using∣∣∣∣∂k+sϑ0

∂tk∂xs

∣∣∣∣ ≤ Cε−s/2e−x
√

a(0)/ε

and ∣∣∣∣∂k+sw0

∂tk∂xs

∣∣∣∣ ≤ Cε−s/2e−(l−x)
√

a(l)/ε,

we have the following bound:∣∣∣∣ ∂k+su

∂tk∂xs

∣∣∣∣ ≤ C
{
1 + ε−s/2

[
e−x

√
a(0)/ε + e−(l−x)

√
a(l)/ε

]}
, (6)

(x, t) ∈ D̄, k = 0, 1, 2; s = 0, 1, 2.

Proof. The proof of the lemma is similar to those of [4, 17,18,21,32]. □

3. Spatial and Temporal Discretization

In this section, we propose the discretization for the problem (1)-(3). Let ωhτ =
ωh × ωτ denote the mesh on D:

ωh = {xi = ih, i = 1, 2, ..., N − 1, h = l/N}
ωτ = {tj = jτ , j = 1, 2, ...,M ; τ = T/M}

and
ω̄h = ωh ∪ {x0 = 0, xN = l} , ω̄τ = ωτ ∪ {t = 0} .

For any mesh function v(x) described on ω̄h, we use the difference formulas in [52]:

vi = v(xi), vx̄,i =
vi − vi−1

h
,

vx,i =
vi+1 − vi

h
, vx̄x,i =

vi+1 − 2vi + vi−1

h2
.

Also, for a function w ≡ wj
i ≡ w(xi, tj) defined on ω̄τ , we need (see [52])

wj
t̄,i =

wj
i − wj−1

i

τ
.
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Now, we begin to establish the difference scheme according to the space variable.
To formulate the difference method, the following integral identity is used:

h−1

∫ xi+1

xi−1

L1

[
∂u

∂t

]
φi (x) dx+h−1

∫ xi+1

xi−1

L2 [u]φi (x) dx

+h−1

∫ xi+1

xi−1

c (t)u (x, t− r)φi (x) dx=h−1

∫ xi+1

xi−1

f(x, t)φi (x) dx (7)

where the exponential basis function

φi (x) =


φ
(1)
i (x) ≡ sinh γi−0,5(x−xi−1)

sinh γi−0,5h
, x ∈ [xi−1, xi] ,

φ
(2)
i (x) ≡ sinh γi+0,5(xi+1−x)

sinh γi+0,5h
, x ∈ [xi, xi+1] ,

0, x /∈ (xi−1, xi+1) .

Also γi =
√
ai/ε (i = 1, 2, ..., N − 1), and a(xi±0,5) = a

(
xi ± h

2

)
. The functions

φ
(1)
i (x) and φ

(2)
i (x) are the solutions of the following problems, respectively:{

−εφ
(1)

′′

i (x) + ai−0.5φ
(1) (x) = 0, xi−1 < x < xi,

φ(1) (xi−1) = 0, φ(1) (xi) = 1,{
−εφ

(2)
′′

i (x) + ai+0.5φ
(2) (x) = 0, xi < x < xi+1,

φ(2) (xi) = 1, φ(2) (xi+1) = 0.

For the first term of the equality (7), applying interpolating quadrature rules in [4]
and some processes in [17], it is found that

h−1

∫ xi+1

xi−1

L1

[
∂u

∂t

]
φi (x) dx =h−1

∫ xi+1

xi−1

{
−ε

∂3u

∂x2∂t
+ a (x)

∂u

∂t

}
φi (x) dx

=h−1

∫ xi

xi−1

{
−ε

∂3u

∂x2∂t
+ ai−0.5

∂u

∂t

}
φ
(1)
i (x) dx

+h−1

∫ xi+1

xi

{
−ε

∂3u

∂x2∂t
+ ai+0.5

∂u

∂t

}
φ
(2)
i (x) dx

+h−1

∫ xi

xi−1

[a(x)− ai−0.5]
∂u

∂t
φ
(1)
i (x) dx+h−1

∫ xi+1

xi

[a(x)− ai+0.5]
∂u

∂t
φ
(2)
i (x) dx.

Then, we get

h−1

∫ xi+1

xi−1

L1

[
∂u

∂t

]
φi (x) dx = −ε

(
θ0

[
∂u

∂t

]
x̄

)
x,i

+Aθ1

(
∂u

∂t

)
i

+R∗
1,i (t) (8)

where

A =
1

2
(ai−0.5 + ai+0.5) ,

R∗
1,i (t) = h−1

∫ xi

xi−1

[a(x)− ai−0.5]
∂u

∂t
φ
(1)
i (x) dx+h−1

∫ xi+1

xi

[a(x)− ai+0.5]
∂u

∂t
φ
(2)
i (x) dx
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+
[
(ai−0.5 −A) θ

(1)
1 + (ai+0.5 −A) θ

(2)
1

](∂u

∂t

)
and

θ0 ≡ (θ0)i = 1 + ε−1ai−0.5

∫ xi

xi−1

(x− xi)φ
(1)
i (x) dx

=
ρ
√
ai−0.5

sinh
(
ρ
√
ai−0.5

) , (ρ = h/
√
ε
)
,

θ
(1)
1 = h−1

∫ xi

xi−1

φ
(1)
i (x) dx =

1

ρ
√
ai−0.5

tanh
ρ
√
ai−0.5

2
,

θ
(2)
1 = h−1

∫ xi+1

xi

φ
(2)
i (x) dx =

1

ρ
√
ai+0.5

tanh
ρ
√
ai+0.5

2
,

θ1,i = θ
(1)
1,i + θ

(2)
1,i , Ai =

1

2
(a (xi−0.5) + a (xi+0.5)) .

For the second term of the equation (7), we obtain

h−1

∫ xi+1

xi−1

L2 [u]φi (x) dx =h−1

∫ xi+1

xi−1

(
−ε

∂2u

∂x2
+ b (x, t)u (x, t)

)
φi (x) dx

= −ε (θ0ux̄)x,i +Bθ1u (xi, t) + θ1R
∗
2,i (t) (9)

where

B =
1

2
[b(xi−0.5, t) + b(xi+0.5, t)]

and

R∗
2,i (t) = θ−1

1

[
h−1

∫ xi+1

xi−1

L2 [u]φi (x) dx+
(
ε (θ0ux̄)x,i −Bθ1u (xi, t)

)]
.

For the third term of the equation (7), it is found that

h−1

∫ xi+1

xi−1

c (t)u (x, t− r)φi (x) dx =h−1c (t)

∫ xi+1

xi−1

u (x, t− r)φi (x) dx

= c (t)u (xi, t− r)h−1

∫ xi+1

xi−1

φi (x) dx+R∗
3,i (t)

= θ1c (t)u (xi, t− r)+R∗
3,i (t) (10)

where

R∗
3,i (t) = θ−1

1 h−1c (t)

∫ xi+1

xi−1

[u(x, t− r)− u(xi, t− r)]φi (x) dx.

The term of the right side of the equation (7), we can write:

h−1

∫ xi+1

xi−1

f(x, t)φi (x) dx =θ1Fi − θ1R
∗
4,i (t) (11)
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where

R∗
4,i (t) = −h−1θ−1

1

∫ xi+1

xi−1

[f(x, t)− F (xi, t)]φi (x) dx

and

F (xi, t) =
1

2
[f(xi−0.5, t) + f(xi+0.5, t)] .

By combining (8),(9),(10) and (11), we have

−ε

(
θ0

[
∂u

∂t

]
x̄

)
x,i

+Aθ1

(
∂u

∂t

)
−ε (θ0ux̄)x,i+Bθ1u (xi, t)+θ1c(t)u (xi, t− r)+θ1R

∗
i = θ1Fi

where
R∗

i = R∗
1,i (t) +R∗

2,i (t) +R∗
3,i (t) +R∗

4,i (t) .

Then, to obtain the discretization for the time variable, we consider the integral
equality in the form

τ−1

∫ tj

tj−1

[Lu− f (xi, t)] dt =τ−1

∫ tj

tj−1

{
ε

[
θ0

(
∂u

∂t

)
x̄

]
x,i

+Aθ1

(
∂u

∂t

)
i

− ε (θ0ux̄)x,i

+Bθ1u(xi, t) + θ1c(t)u(xi, t− r)− θ1Fi + θ1R
∗
i } dt (12)

Applying the interpolating quadrature rules [4] to first two terms of the equation
(12), we have

τ−1

∫ tj

tj−1

[
−ε

(
θ0

(
∂u

∂t

)
x̄

)
x,i

+Aθ1

(
∂u

∂t

)
i

]
dt = −ε (θ0ut̄x̄)x + θ1Aut̄.

For the third and fourth terms of the equation (12), it is obtained that

τ−1

∫ tj

tj−1

[−ε (θ0ux̄)x + θ1Biui] dt = −ε
(
θ0u

(σ)
x̄

)
x
+ θ1B

j
i u

(σ)
i + ε

(
θ0R

(0)
)
x̄
+R

(1)
1

where

R(0) = u(σ) (xi, tj)− τ−1

∫ tj

tj−1

u (xi, η) dη

and

R
(1)
1 = θ1B

j
i

(
τ−1

∫ tj

tj−1

u(xi, t)dt− u
(σ)
i

)
.

For the term involving the delay parameter, rewriting τ = T/M and rM/T = M0,
we have

θ1τ
−1

∫ tj

tj−1

c(t)u (xi, t− r) dt =θ1c
juj−M0

i +Rj
c

where

Rj
c = θ1

{
τ−1

∫ tj

tj−1

[
c(t)− cj

]
u (xi, t− r) dt
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+τ−1

∫ tj

tj−1

cj (u (xi, t− r)− u (xi, tj − r)) dt

}
.

For the term of the right side of the equation (12), we find

τ−1

∫ tj

tj−1

θ1F (xi, t)dt =θ1F
j
i +Rf ,

where

Rf = τ−1

∫ tj

tj−1

θ1F (xi, t)dt−θ1F
j
i .

Thus, we can suggest the following difference scheme

ℓuj
i := ℓ1

(
uj
t̄,i

)
+ ℓ2

(
uj
i

)
+ θ1c

juj−M0

i +Rj
i = θ1F

j
i . (13)

where

ℓ1

(
uj
t̄,i

)
= −ε

(
θ0u

j
t̄x̄

)
x,i

+ θ1Auj
t̄ ,

ℓ2

(
uj
i

)
= −ε

(
θ0u

(σ)
x̄

)
x,i

+ θ1B
j
i u

(σ)
i ,

and the remainder term is denoted by

Rj
i = ε

(
θ0R

(0)
)
x
+ θ1R

(1) + θ1Rc,j

where

R(1) = τ−1

∫ tj

tj−1

R∗
i (t)dt+R

(1)
1 −Rf .

By omitting the remainder term Rj
i in (13), we can write for the approximate

solution

−ε
(
θ0y

j
t̄x̄

)
x,i

+ θ1Ayjt̄−ε
(
θ0y

(σ)
x̄

)
x,i

+ θ1B
j
i y

(σ)
i + θ1c

jyj−M0

i = θ1F
j
i , (14)

y (xi, tj) = φ (xi, tj) , −M0 ≤ j ≤ 0, 0 ≤ i ≤ N, (15)

yj0 = yjN = 0. (16)

4. Error Bounds

Let uj
i be the solution of the problem (1)-(3) and let yji be the solution of the

problem (14)-(16). Then, the error function zji = yji − uj
i be the solution of the

following discrete problem:

ℓ1

(
zjt̄,i

)
+ ℓ2

(
zji

)
+ θ1c

jzj−M0

i = Rj
i . (17)

z (xi, tj) = 0, 0 ≤ i ≤ N, −M0 ≤ j ≤ 0, (18)

zj0 = zjN = 0, t ∈ ω̄τ , (19)

where

ℓ1

(
zjt̄,i

)
= −ε

(
θ0z

j
t̄x̄

)
x,i

+ θ1Azjt̄
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and

ℓ2

(
zji

)
= −ε

(
θ0z

(σ)
x̄

)
x,i

+ θ1B
j
i z

(σ)
i .

Lemma 4. Under the conditions 1 + στ > 0 and A + στB > 0, the following
estimate is satisfied:

∥z∥2 ≤ Cτ

j∑
k=1

∥∥θ−1
1 R

∥∥2
−∗ .

where

∥∥θ−1
1 R

∥∥2
−∗ = (θ1)

−1
sup
v

|(R, v)|2

(θ0vx̄, vx̄) + (θ1v, v)

≤ (θ1)
−1
{
ε
(
θ0R

(0), R(0)
)
+
(
θ1R

(1), R(1)
)
+ (θ1Rc, Rc)

}
.

Proof. To carry out the error analysis, we use a similar approach in [4,17,32]. First
of all, we consider the following equation for the discrete problem (17)-(19):

(ℓz, z) = (R, z) .

From here, we get(
−ε (θ0zt̄x̄)x,i , z

)
=

ε

2

(
θ0zt̄x̄,i, zx̄,i

)
=

ε

2
(θ0zx̄,i, zx̄,i)t̄ +

ετ

2

(
θ0zt̄x̄,i, zt̄x̄,i

)
and

(θ1Azt̄, z) =
1

2
(Aθ1z, z)t̄ +

τ

2

(
Aθ1z

t̄
, z

t̄

)
.

Then, to obtain the bound for the term z(σ)(xi, tj), we take the following equality
into account:

z(σ) = σz + (1− σ)ž = σz(xi, tj) + (1− σ)z(xi, tj−1) (20)

Hence, we acquire as(
−ε
(
θ0z

(σ)
x̄

)
x,i

, z

)
= ε (θ0žx̄, žx̄) + ετ (θ0žx̄, zt̄x̄)

+
εστ

2
(θ0zx̄, zx̄)t̄ +

εστ2

2
(θ0zt̄x̄, zt̄x̄)

and (
θ1Bz(σ), z

)
= (θ1Bž, ž) + τ (θ1Bž, zt̄)

+
στ

2
(θ1Bz, z)t̄ +

στ2

2
(θ1Bzt̄, zt̄) .
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Furthermore, we can write the following estimates:∣∣∣(θ1cjzj−M0

i , z
)∣∣∣ ≤ c∗µ1

(
θ1z

j−M0

i , zj−M0

i

)
+

c∗

4µ1

(θ1z, z) ,

∣∣∣(−ε
(
θ0R

(0)
)
x
, z
)∣∣∣ ≤ ε

∣∣∣(θ0R(0), zx̄

)∣∣∣ ≤ εµ2 |(θ0zx̄, zx̄)|+
ε

4µ2

(
θ0R

(0), R(0)
)
,

∣∣∣(θ1R(1), z
)∣∣∣ ≤ µ3 |(θ1z, z)|+

1

4µ3

(
θ1R

(1), R(1)
)

and

|(θ1Rc, z)| ≤ µ4 |(θ1Rc, Rc)|+
1

4µ4

(θ1z, z) .

Taking µ1 = µ2 = µ3 = µ4 = 1
2 and merging these results, we obtain

1

2
{ε (1 + στ) (θ0zx̄,i, zx̄,i) + (A+ στB) (θ1z, z)}t̄

+
τ

2

{
ε (1 + στ)

(
θ0zt̄x̄,i, zt̄x̄,i

)
+ (A+ στB)

(
θ1z

t̄
, z

t̄

)}
+ε (θ0žx̄, žx̄) + (θ1Bž, ž) + ετ (θ0žx̄, zt̄x̄) + τ (θ1Bž, zt̄)

≤ c∗

2

(
θ1z

j−M0

i , zj−M0

i

)
+

c∗

2
(θ1z, z) +

ε

2
(θ0zx̄, zx̄)

+
ε

2

(
θ0R

(0), R(0)
)
+ (θ1z, z) +

1

2

(
θ1R

(1), R(1)
)
+

1

2
(θ1Rc, Rc) (21)

which concludes the proof of the lemma. □

Lemma 5. Under the conditions of the Lemma (3) and rewriting σ = 0.5 in the
relation (20), the remainder term R holds the following estimate:

∥R∥ ≤ C
(
h+ τ2

)
.

Proof. The proof of the lemma is similar manner as in [4, 17]. □

5. Numerical Results

In this section, the numerical method is tested on two examples to validate the
theory. To determine the reliability of the numerical approximation, we take into
consideration the elimination method in [52]. Firstly, the difference equation (14)
can be written explicitly:

−εh−2τ−1
[
θ0,i+1

(
yji+1 − yj−1

i+1 − yji + yj−1
i

)
− θ0,i

(
yji − yj−1

i − yji−1 + yj−1
i−1

)]
+τ−1Aθ1

(
yji − yj−1

i

)
− εh−2

[
θ0,i+1

(
y
(σ)
i+1 − y

(σ)
i − y

(σ)
i + y

(σ)
i−1

)]
+θ1,iBy

(σ)
i + θ1c

jyj−M0

i = θ1,iFi. (22)
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Secondly, we adapt the relation (22) according to the following difference equality:

D∗
i y

j
i−1 − E∗

i y
j
i +G∗

i y
j
i+1 = −H∗

i , i = 2, 3, ..., N − 1, j = 2, 3, ...,M − 1.

Here, to express the term y
(σ)
i in (22), we use

y(σ) = σy + (1− σ) y̌ = σy (xi, tj) + (1− σ) y (xi, tj−1) . (23)

Substituting σ = 1
2 in the equation (23), we obtain

D∗
i = −εh−2

(
θ0,iτ

−1 − θ0,i+1

2

)
, G∗

i = −εh−2θ0,i+1

(
τ−1 +

1

2

)
,

E∗
i = −εh−2θ0,i+1

(
τ−1 + 1

)
+ θ0,i+1τ

−1 − θ1,i

(
Aiτ

−1 +
Bi

2

)
and

H∗
i = −θ1,iFi + θ1,ic

jyj−M0

i + yj−1
i−1

(
−εh−2

(
θ0,i+1

2
+ θ0,iτ

−1

))
+yj−1

i+1

(
−εh−2θ0,i+1

(
1

2
+ τ−1

))
+yj−1

i

(
θ1,i

Bi

2
− εh−2

(
θ0,i+1 + τ−1 (1 + θ0,i)

)
− θ0,i+1Aiτ

−1

)
.

Thirdly, the coefficients of the elimination method [52] are indicated as

αi+1 =
G∗

i

E∗
i −D∗

i αi
, βi+1 =

H∗
i +D∗

i βi

E∗
i −D∗

i αi
,

and the output of the computational approach is calculated by

yji = αi+1y
j
i+1 + βi+1, i = 1, ..., N − 1.

In numerical calculations, we use the double-mesh approach [19, 24]. The approxi-
mate errors and ε-uniform maximum pointwise errors are noted as

eNε = max
ωh×ωτ

∣∣∣yε,Ni − yε,2Ni

∣∣∣
and

eN = max
ε

eNε .

Additionally, the order of convergence and ε-uniform rate of convergence are cal-
culated as

pNε =
ln(eNε /e2Nε )

ln 2
, pN =

ln(eN/e2N )

ln 2
.

Example 1. Consider the following singularly perturbed pseudo-parabolic initial-
boundary value problem:

−ε
∂3u

∂t∂x2
+ (x2(1− x) + 1)

∂u

∂t
− ε

∂2u

∂x2
+ (3 + t sin(πxt))u+ (1 + t2)u (x, t− r)

= e−t sin t(x+ sin(πx)), (x, t) ∈ (0, l)× (0, T ] ,
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subject to the conditions

u(x, t) = φ (x, t) = e−t sin(πx), (x, t) ∈ Ω̄× [−r, 0] ,

u(0, t) = u(1, t) = 0, t ∈ (0, T ] ,

where l = 1, r = 1 and T = 2. The computed results are shown in Table 1.

Example 2. Take into account the second test problem:

−ε
∂3u

∂t∂x2
+ (1 +

x

2
(1− x))

∂u

∂t
− ε

∂2u

∂x2
+ (3 + t cos(πxt))u+ (1 +

t2

2
)u (x, t− r)

= e−t sin t(x− cos(πx)), (x, t) ∈ (0, l)× (0, T ] ,

with

u(x, t) = φ (x, t) = e−t sin(2πx), (x, t) ∈ Ω̄× [−r, 0] ,

u(0, t) = u(1, t) = 0, t ∈ (0, T ] ,

where l = 1, r = 1 and T = 2. The experimental results are presented in Table 2.

In Tables 1-2, the maximum nodal errors and order of convergence are presented
for the values N = 2n, (n = 7, 8, ..., 11) and ε = 2−2w, (w = 1, 2, ..., 8). It is
concluded that as the value N increases the maximum pointwise errors eN , e2N

are decrease. This implies the reliability of the proposed scheme. Even though the
presented numerical algorithm produce stable results, it can be further improved
in terms of computational timing.

6. Discussion and Conclusion

In this paper, we have generated a new and efficient numerical scheme to solve
initial-boundary value problems of singularly perturbed delay pseudo-parabolic
equations. Using the energy estimates and difference analogues of integral inequal-
ities, the error bounds and the parameter-uniform convergence of the proposed
scheme have been analyzed. Two test problems have been solved and the experi-
mental results have been reflected in Tables 1-2. From these results, it is observed
that the order of convergence pN is almost 2. In a nutshell, numerical applica-
tions agree with the theory. To improve the outlines of this study, the suggested
approach can be carried out for more sophisticated problems involving higher di-
mensional equations, nonlinear functions, fractional derivatives.
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Table 1. Maximum pointwise errors eN , e2N and the order of
convergence pN on ωh × ωτ

ε N
128 256 512 1024 2048

2−2 eN 0.00002343 0.00000586 0.00000146 0.00000037 0.00000009
e2N 0.00000586 0.00000146 0.00000037 0.00000009 0.00000002
pN 1.9997 2.0003 2.0002 2.0002 2.0000

2−4 eN 0.00009372 0.00002343 0.00000586 0.00000146 0.00000037
e2N 0.00002343 0.00000586 0.00000146 0.00000037 0.00000009
pN 1.9997 2.0003 2.0002 2.0001 2.0001

2−6 eN 0.00037489 0.00009374 0.00002346 0.00000586 0.00000146
e2N 0.00009374 0.00002343 0.00000586 0.00000146 0.00000037
pN 1.9998 2.0003 2.0002 2.0001 2.0001

2−8 eN 0.00150000 0.00037497 0.00009371 0.00002342 0.00000586
e2N 0.00037497 0.00009371 0.00002342 0.00000586 0.00000146
pN 2.0001 2.0004 2.0003 2.0001 2.0000

2−10 eN 0.00600672 0.00150030 0.00037488 0.00009370 0.00002342
e2N 0.00150030 0.00037488 0.00009370 0.00002342 0.00000585
p 2.0013 2.0007 2.0003 2.0001 2.0001

2−12 eN 0.02413597 0.00600810 0.00149997 0.00037481 0.00009369
e2N 0.00600810 0.00149997 0.00037481 0.00009369 0.00002342
pN 2.0062 2.0019 2.0006 2.0002 2.0001

2−14 eN 0.09832477 0.02414373 0.00600685 0.00149968 0.00037477
e2N 0.02414320 0.00600685 0.00149968 0.00037477 0.00009368
pN 2.0259 2.0069 2.0019 2.0005 2.0001

2−16 eN 0.42375898 0.09838510 0.02413962 0.00600574 0.00149951
e2N 0.09838312 0.02413933 0.00600574 0.00149951 0.00037474
pN 2.1067 2.0270 2.0069 2.0018 2.0005
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