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1. Introduction
In [1], Alwyn Francis Horadam defined the well-known number sequence called Horadam numbers denoted by second

order linear recurrence relation. The author examined the principle properties of an arbitrary generalized integer sequence and
studied particular cases of this sequence [1]-[3]. The sequence studied by Horadam is re-examined by various authors and
several applications of this sequence are included in [4]-[7].
For nonzero integers p and q, Horadam sequence is given by the recurrence relation

wn+2 = pwn+1−qwn,n≥ 0, (1.1)

where wn = wn(w0,w1; p,q) is the general term. Nicole Oresme, one of the scientists in the 14th century, investigated the sum
of the sequences of rational numbers and the properties of this sum [8]. Later in 1974, this author expanded and defined a new
integer sequence denoted by {On} and this defined sequence is known in the literature as the Oresme sequence [9]. Different
sequences are obtained by customizing the coefficients p, q in the Horadam sequence, which has been studied by many authors.
The Oresme sequences we are working with here is the version of the coefficients p,q obtained by taking special numbers.The
recurrence relation of this sequence is as follows.

On = On−1−
1
4

On−2;O0 = 0,O1 =
1
2
. (1.2)

Horadam examined these numbers in more detail and obtained both linear and non-linear relations involving these numbers and
gave the generating functions for them. Cook [6] generalized the these numbers as k- Oresme numbers denoted by O(k)

n and
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defined by, for k > 2,

O(k)
n = O(k)

n−1−
1
k2 O(k)

n−2, (1.3)

in here the initial conditions are O(k)
0 = 0 and O(k)

1 = 1
k .

It can be noticed that these numbers are reduced to standard Oresme numbers by taking k = 2. In [6], for k2−4 > 0, the closed
formula of k- Oresme numbers is given by

O(k)
n =

αn−β n
√

k2−4
. (1.4)

In the last equation α = k+
√

k2−4
2k and β = k−

√
k2−4

2k . Some identities and sum formulas for this number sequence are studied in
[6], [10]. Moreover, see [6], [10]-[13] for recent studies. In [14], Halici et al. generalized the k- Oresme numbers as k- Oresme
polynomials denoted by O(k)

n (x). The recurrence relation of nth k- Oresme polynomials is as follows.

O(k)
n+2(x) = O(k)

n+1(x)−
1

k2x2 O(k)
n (x),O(k)

0 (x) = 0,O(k)
1 (x) =

1
kx

, (1.5)

where x ∈ R and n ∈ N. Taking k = 1 and x = 1 in (1.5) respectively, one can get Oresme polynomials and k- Oresme numbers.
In [12], k- Oresme numbers are extended to negative indices and gave the following recurrence relation

O(k)
−n = k2

(
O(k)
−n+1−O(k)

−n+2

)
, (1.6)

where O(k)
−1 =−k and O(k)

0 = 0 are the initial conditions. The nth term of this sequence is defined by

O(k)
−n =−k2n (α

n−β n)√
k2−4

. (1.7)

The values α and β are as in the equation (1.4).
Also, the authors in [15] worked on k- Oresme polynomials and derivatives. Some results obtained about these polynomials are
given below.

i)
n

∑
i=1

O(k)
i (x) = k2x2

(
1
kx
−On+2(x)

)
. (1.8)

ii)
n

∑
i=1

(−1)iO(k)
i (x) =

k2x2

2k2x2 +1

(
1
kx

+(−1)n+1
(

O(k)
n+2(x)−2O(k)

n+1(x)
))

. (1.9)

iii)
n

∑
i=1

O(k)
2i+1(x) =

k2x2

2k2x2 +1

(
k2x2

kx+1
+

k2x2

k2x2 +1
O(k)

2n+1(x)− k2x2O(k)
2n+2(x)

)
. (1.10)

iv)
n

∑
i=1

O(k)
2i (x) =

k2x2

2k2x2 +1

(
kx−

(
k2x2 +1

)
O(k)

2n+2(x)+O(k)
2n+1(x)

)
. (1.11)

In [16], Soykan studied a different generalization of Oresme sequences.
In this study, we examined the corresponding generation matrix for the polynomial sequence we define in this paper. We gave
some combinatorial equations for this new sequence studied with the help of basic matrix calculations. Also, we derived new
identities by using the concepts of trace and determinant of a matrix. We also calculated sum formulas for the elements of this
sequence.
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2. Main Results

Definition 2.1. For n ∈ Z+ and x ∈ R, k- Oresme polynomial with negative indices is denoted by O(k)
−n(x) and defined by the

recurrence relation

O(k)
−n(x) = (kx)2

(
O(k)
−n+1(x)−O(k)

−n+2(x)
)
, (2.1)

with initial conditions O(k)
−1(x) =−kx and O(k)

0 (x) = 0.

Some terms of this sequence are{
O(k)
−n(x)

}
n≥0

=
{

0,−kx,−(kx)3 ,(kx)3− (kx)5 , ...
}
.

In the case of k = 2 and x = 1, the recurrence relation (2.1) is reduced to the equation (1.6). If the equation (2.1) is solved, the
roots of this equation are

α =
kx+

√
(kx)2−4

2kx
and β =

kx−
√
(kx)2−4

2kx
, (2.2)

respectively.

Corollary 2.2. The Binet formula for the sequence
{

O(k)
−n(x)

}
n≥0

is

O(k)
−n(x) =−(kx)2n (αn−β n)√

(kx)2−4
. (2.3)

Proof. For the k- Oresme polynomials with negative indices, let us substitute the closed formula for the k- Oresme numbers
with negative indices in equation (1.7).

O(k)
−n(x) =

1√
(kx)2−4

(
1

αn −
1

β n

)
,

O(k)
−n(x) =−

1√
(kx)2−4

(
αn−β n

(αβ )n

)
,

which implies

O(k)
−n(x) =−(kx)2n 1√

(kx)2−4

((
kx+

√
(kx)2−4

2kx

)n

−

(
k−
√

(kx)2−4
2kx

)n)
.

By some elementary operations, the following equation is obtained

O(k)
−n(x) =−(kx)2n (αn−β n)√

(kx)2−4
.

This proves the corollary.

Using the terms of the sequence
{

O(k)
−n(x)

}
n≥0

, the generating matrix corresponds to these polynomials with negative

indices is defined as

O=
1
kx

[
(kx)2O(k)

0 (x) −O(k)
−1(x)

(kx)2O(k)
−1(x) −O(k)

−2(x)

]
. (2.4)

In the following Theorems some fundamental identities for the polynomials mentioned above are deduced by using the matrices
O.
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Theorem 2.3. For the matrix O, the following equation is true.

On =

[
kxO(k)

−n+1(x) − 1
kx O(k)

−n(x)
kxO(k)

−n(x) − 1
kx O(k)

−n−1(x)

]
. (2.5)

Proof. To prove by induction observe that for n = 1, then the equation (2.5) is true. Using the fact that On+1 =OnO, we have

On+1 =

[
kxO(k)

−n(x) kxO(k)
−n+1(x)− kxO(k)

−n(x)
kxO(k)

−n−1(x) kxO(k)
−n(x)− kxO(k)

−n−1(x)

]

and when the necessary procedures and arrangements are made

On+1 =

[
kxO(k)

−(n+1)+1(x) − 1
kx O(k)

−(n+1)(x)

kxO(k)
−(n+1)(x) − 1

kx O(k)
−(n+1)−1(x)

]

is obtained. Thus, the proof is completed.

In the following theorem, we give the generating function of
{

O(k)
−n(x)

}
n≥0

.

Theorem 2.4. The generating function for these polynomials is derived below:

∞

∑
i=1

O(k)
−n(x)z

i =− −kxz
1− z(kx)2 + z2(kx)2 , (2.6)

where x ∈ R.

Proof. Using the definition of generating number function and some elementary operations, we have following equations.

f (z) = O(k)
0 (x)+ zO(k)

−1(x)+ z2O(k)
−2(x)+ z3O(k)

−3(x) · · · .

−z(kx)2 f (z) =−z(kx)2O(k)
0 (x)− z2(kx)2O(k)

−1(x)− z3(kx)2O(k)
−2(x)− z4(kx)2O(k)

−3(x) · · · .

z2(kx)2 f (z) = z2(kx)2O(k)
0 (x)+ z3(kx)2O(k)

−1(x)+ z4(kx)2O(k)
−2(x)+ z5(kx)2O(k)

−3(x) · · · .

From this, the following equation is obtained:

f (z)−z(kx)2 f (z)−z2(kx)2 f (z) = O(k)
0 (x)+z

(
O(k)
−1(x)− (kx)2O(k)

0 (x)
)
+z2

(
O(k)
−2(x)− (kx)2O(k)

−1(x)+(kx)2O(k)
0 (x)

)
· · · .

By using the relation (2.1), it is obviously seen that

f (z)− z(kx)2 f (z)+ z2(kx)2 f (z) =−kxz.

Which implies

f (z) =
−kxz

1− z(kx)2 + z2(kx)2 .

This completes the proof.

The well-known Catalan and Cassini identities for the sequence
{

O(k)
−n(x)

}
n≥0

are given in the following two Theorems.

Theorem 2.5. For n≥ 0, we have

O(k)
−n+1(x)O

(k)
−n−1(x)−

(
O(k)
−n(x)

)2
=−(kx)2n. (2.7)



On Some k- Oresme Polynomials with Negative Indices — 75/79

Proof. By using the matrix O given in the equation (2.5) and the fact that (det (O))n = det (On), we can write

det

[
kxO(k)

−n+1(x) − 1
kx O(k)

−n(x)
kxO(k)

−n(x) − 1
kx O(k)

−n−1(x)

]
= det

[
0 1

(kx)2 (kx)2

]n

.

Hence, we have

(det (O))n =−O(k)
n+1(x)O

(k)
n−1(x)+

(
O(k)

n (x)
)2

=−(kx)2n.

Thus, the desired result is obtained.

We have given an important identity provided by the elements of this polynomial sequence in the Theorem below.

Theorem 2.6. For n≥ r, the following equality is true.

O(k)
−n+r(x)O

(k)
−n−r(x)−

(
O(k)
−n(x)

)2
=−(kx)2n−2r

(
O(k)
−r(x)

)2
. (2.8)

Proof. By substituting the equation (2.5) into the left-hand side of the equation (2.8), we get

LHS =
[

kxO(k)
−n+r+1(x) − 1

kx O(k)
−n+r(x)

kxO(k)
−n+r(x) − 1

kx O(k)
−n+r−1(x)

][
kxO(k)

−n−r+1(x) − 1
kx O(k)

−n−r(x)
kxO(k)

−n−r(x) − 1
kx O(k)

−n−r−1(x)

]
−
[

kxO(k)
−n+1(x) − 1

kx O(k)
−n(x)

kxO(k)
−n(x) − 1

kx O(k)
−n−1(x)

]2
.

By the matrix operation, the LHS equals to

LHS =

[
A B
C D

]
−
[

A
′

B
′

C
′

D
′

]
,

where

A = (kx)2O(k)
−n+r+1(x)O

(k)
−n−r+1(x)−O(k)

−n+r(x)O
(k)
−n−r(x),

B =−O(k)
−n+r+1(x)O

(k)
−n−r(x)+

1
(kx)2 O(k)

−n+r(x)O
(k)
−n−r−1(x),

C = (kx)2O(k)
−n+r(x)O

(k)
−n−r+1(x)−O(k)

−n+r−1(x)O
(k)
−n−r(x),

D =−O(k)
−n+r(x)O

(k)
−n−r(x)+

1
(kx)2 O(k)

−n+r−1(x)O
(k)
−n−r−1(x),

A
′
= (kx)2

(
O(k)
−n+1(x)

)2
−
(

O(k)
−n(x)

)2
,

B
′
= O(k)

−n+1(x)O
(k)
−n(x)+

1
(kx)2 O(k)

−n(x)O
(k)
−n−1(x),

C
′
= (kx)2O(k)

−n+1(x)O
(k)
−n(x)−O(k)

−n(x)O
(k)
−n−1(x)

and

D
′
=−

(
O(k)
−n(x)

)2
+ 1

(kx)2

(
O(k)
−n−1(x)

)2
.

Hence, we obtain

O(k)
−n+r(x)O

(k)
−n−r(x)−

(
O(k)
−n(x)

)2
=−(kx)2n−2r

(
O(k)
−r(x)

)2
,

which proves the theorem.

In the case of r = 1, one can get the Cassini identity from the equation (2.8).
In the below, we give an important identity for these polynomials we are considering with negative indices is given.

Theorem 2.7. For n,m ∈ Z+, we have

O(k)
−(n+m)

(x) = kxO(k)
−n(x)O

(k)
−m+1(x)−

1
kx

O(k)
−n−1(x)O

(k)
−m(x). (2.9)
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Proof. By using (2.5), we can get

On+m =

[
kxO(k)

−(n+m)+1(x) − 1
kx O(k)

−(n+m)
(x)

kxO(k)
−(n+m)

(x) − 1
kx O(k)

−(n+m)−1(x)

]
.

Since On+m =OnOm , equating the corresponding elements of the matrices we have

kxO(k)
−(n+m)

(x) = (kx)2O(k)
−n(x)O

(k)
−m+1(x)−O(k)

−n−1(x)O
(k)
−m(x).

Hence,

O(k)
−(n+m)

(x) = kxO(k)
−n(x)O

(k)
−m+1(x)−

1
kx

O(k)
−n−1(x)O

(k)
−m(x).

The well-known an important identity for these polynomials with negatives indices is deduced in the following Theorem.

Theorem 2.8. For the positive integers m,n, the following is satisfied.

O(k)
−n+1(x)O

(k)
−m(x)−O(k)

−n(x)O
(k)
−m+1(x) =−(kx)2mO(k)

−(n−m)
(x). (2.10)

Proof. Using the closed formula, we can write O(k)
−n+1(x)O

(k)
−m(x)−O(k)

−n(x)O
(k)
−m+1(x) as,

LHS =
1

(kx)2−4
[(
−(kx)2n−2 (

α
n−1−β

n−1)− (kx)2m (αm−β
m)
)
−
(
(kx)2n (αn−β

n)− (kx)2m−2 (
α

m−1−β
m−1))] ,

LHS =
1

(kx)2−4
[
(kx)2n+2m−2 (−α

n−1
β

m−β
n−1

α
m +α

n
β

m−1 +β
n
α

m−1)] ,

LHS =
1

(kx)2−4

[
(kx)2n+2m−2

(
α

n
β

m
(

1
β
− 1

α

)
−α

m
β

n
(

1
β
− 1

α

))]
,

LHS =
1

(kx)2−4

[
(kx)2n+2m−2 (αn

β
m−α

m
β

n)
α−β

αβ

]
,

where α and β are the roots of equation (2.1). By substituting α−β =

√
(kx)2−4

kx and αβ = 1
(kx)2 into the last equation, we

obtain

O(k)
−n+1(x)O

(k)
−m(x)−O(k)

−n(x)O
(k)
−m+1(x) =

1
(kx)2−4

[
(kx)2n+2m−2 (αn

β
m−α

m
β

n)
α−β

αβ

]
.

Making necessary arrangements, we get

LHS =−(kx)2mO(k)
−(n−m)

(x)

which completes the proof.

Now, we have given some sum formulas of this polynomials with negative indices in the Theorem below.

Theorem 2.9. For n≥ 1, we have the followings.

i)
n

∑
i=1

O(k)
−i (x) =−kx(1− kxO−n+1(x)) . (2.11)
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ii)
n

∑
i=1

(−1)iO(k)
−i (x) =

1
2(kx)2 +1

(
kx+(−1)n

(
(kx)2O(k)

−n(x)+O(k)
−n−1(x)

))
. (2.12)

iii)
n

∑
i=1

O(k)
−(2i+1)(x) =

1
2

(
O(k)
−2n(x)

(
−2(kx)3− kx

)
2(kx)2 +1

(
−kx+(kx)2(2O(k)

−2n−1(x)+1)+(kx)4−1
))

. (2.13)

iv)
n

∑
i=1

O(k)
−(2i)(x) =

(kx)2

2(kx)2 +1

(
kx−

(
(kx)2 +1

)
O(k)
−2n−2(x)+O(k)

−2n−1(x)
)
. (2.14)

Proof. i) This equation,

n

∑
i=1

O(k)
−i (x) =−kx(1− kxO0(x))

is true for n = 1. Let us assume that equality is true for n≤ m. Then, we get

LHS =−kx
(

1− kxO(k)
−n+1(x)

)
+
(

O(k)
−n−1(x)

)
,

LHS =−kx
(

1− kxO(k)
−n+1(x)

)
+(kx)2

(
kxO(k)

−n(x)−O(k)
−n+1(x)

)
and

LHS =−kx
(

1− kxO(k)
−n(x)

)
.

ii) The proof can be done similarly by using induction method.
iii) By observing that

n

∑
i=0

O(k)
−2i−1(x) =

1
2

(
2n+1

∑
i=0

O(k)
−i (x)−

2n+1

∑
i=0

(−1)iO(k)
−i (x)

)
,

and using i and ii, the proof is clear.
iv) Similarly, by observing that

n

∑
i=0

O(k)
−2i(x) =

1
2

(
2n

∑
i=0

O(k)
−i (x)−

2n

∑
i=0

(−1)iO(k)
−i (x)

)
,

the desired equality can be shown.

In 2004, Laughlin calculated powers of an arbitrary second order matrix A by using the trace and determinant of this matrix.
In [4],[5], Halici and Akyuz deduced and gave some combinatorial identities involving Horadam sequence. The help of these
studies, we give some important and proper identity for the polynomials we examined with negative indices in the rest of the

section. nth power of an arbitrary matrix A =

[
a b
c d

]
is given by the following formula:

An = znA− zn−1DI2,

where

zn =
αn−β n

α−β
=
b n−1

2 c

∑
m=0

1
2n−1

(
n

2m+1

)
T n−2m−1(T 2−4D)



On Some k- Oresme Polynomials with Negative Indices — 78/79

and α,β are the roots of the characteristic equation of Horadam sequence. Notice that, T and D denotes the trace and
determinant of the matrix A respectively.
The matrix An is given by Laughlin as

An =

[
yn−dyn−1 byn−1

cyn yn−ayn−1

]
,

where

yn =
b n

2 c

∑
i=0

(
n− i

i

)
T n−2iDi.

Theorem 2.10. For n≥ 1, we have
b n

2 c

∑
i=0

(
n− i

i

)
(kx)2n−2i

(
n
(
2− (kx)2

)
−2i

(
1− (kx)2

)
n− i

)
=

1
2n−1

b n
2 c

∑
i=0

(
n
2i

)
(kx)−i

(√
(kx)2−4

)
. (2.15)

Proof. Applying (2.15) to generating matrix O, we can write

On =

[
yn− (kx)2yn−1 yn−1

(kx)2yn yn

]
.

For k > 2, notice that trace and determinant of O are calculated as T = (kx)2 and D =−(kx)2. Hence, we write yn as

yn =
b n

2 c

∑
i=0

(
n− i

i

)
(kx)2n−2i. (2.16)

Using the fact that λ n
1 +λ n

2 = 2yn− (kx)2yn−1, we obtain the left-hand side as

LHS =
n

∑
i=0

(
n
i

)(
1
2

)n−i
(√

(kx)2−4
2kx

)i

−
n

∑
i=0

(
n
i

)(
1
2

)n−i
(
−
√
(kx)2−4

2kx

)i

,

LHS =
n

∑
i=0

(
n
i

)
1
2n

1
(kx)i

[(√
(kx)2−4

)i

−
(
−
√

(kx)2−4
)i
]
,

LHS =
1

2n−1

b n
2 c

∑
i=0

(
n
2i

)
(kx)−i

(√
(kx)2−4

)i

.

Furthermore, by using equation (2.16), we can write right-hand side as

RHS = 2
b n

2 c

∑
i=0

(
n− i

i

)
(kx)2n−2i− (kx)2

b n−1
2 c

∑
i=0

(
n− i−1

i

)
(kx)2n−2i

which equals to

RHS = 2
b n

2 c

∑
i=0

(
n− i

i

)
(kx)2n−2i− (kx)2

b n−1
2 c

∑
i=0

(
n− i

n−2i

)
n−2i
n− i

(kx)2n−2i.

Since n−2i
n−i =

n−2b n
2 c

n−b n
2 c

= 0, we get the desired result as:

RHS =
b n

2 c

∑
i=0

(
n− i

i

)
(kx)2n−2i

(
2− (kx)2 n−2i

n− i

)
,

RHS =
b n

2 c

∑
i=0

(
n− i

i

)
(kx)2n−2i

(
n(2− (kx)2)−2i(1− (kx)2)

n− i

)
.

Equating the left and right hand sides, we get

RHS =
b n

2 c

∑
i=0

(
n− i

i

)
(kx)2n−2i

(
n(2− (kx)2)−2i(1− (kx)2)

n− i

)
=

1
2n−1

b n
2 c

∑
i=0

(
n
2i

)
(kx)−i

(√
(kx)2−4

)i

.
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3. Conclusion
In this study, we define the corresponding generation matrix for the polynomial sequence we define in this work. We

obtained some combinatorial equations for this new sequence studied with the help of basic matrix calculations. Moreover, we
gave new identities by using the concepts of trace and determinant of a matrix. We also derived sum formulas for the elements
of this sequence.
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Abstract
In this work, we give some results about the basic properties of the vector-valued Fibonacci sequence spaces.
In general, sequence spaces with Banach space-valued cannot have a Schauder Basis unless the terms of the
sequences are complex or real terms. Instead, we defined the concept of relative basis in [1] by generalizing the
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1. Introduction
Banach spaces with a Schauder basis have many important advantages. The representation of such spaces with the help

of the basis and the ability to approximate the element in countable steps with the help of this representation provide the
opportunity to solve many structural and numerical problems. But in general, vector-valued sequence and function spaces do
not generally have a Schauder basis. The concept of basis, which we defined in [1] tells us that some of these types of spaces
have this type of basis and allows us to examine the structural properties of the space.

In this work we examine certain properties of some Banach space-valued Fibonacci sequence spaces. Their scalar-valued
versions are defined and investigated in [2]-[6]. Fibonacci numbers have several applications in the field of Science, Engineering
and Architecture. Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that
are part of the Fibonacci sequence are known as Fibonacci numbers . Starting from 1 and 1, the sequence begins

1,1,2,3,5,8,13,21,34,55,89,144, ....

The Fibonacci numbers may be defined by the recurrence relation f1 = 1, f2 = 1 and fn+1 = fn + fn−1 for n≥ 2. We refer to
[3] for detailed studies concerning Fibonacci numbers. Fibonacci matrix is define by the Fibonacci numbers as F = ( fnk) such
that
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fn,k =


− fn+1

fn
,

fn
fn+1

,

0,

i f k = n−1
i f k = n
otherwise

.

More explicitly,

F =


f1/ f2 0 0 0 · · ·
− f3/ f2 f2/ f3 0 0 · · ·

0 − f4/ f3 f3/ f4 0 · · ·
0 0 − f5/ f4 f4/ f5 · · ·
...

...
...

...
. . .

 .
By using this sub-triangular infinite matrix Kara [4] introduced the sequence spaces `p (F) , 1≤ p < ∞, and `∞ (F) such that

`p (F ) =

{
u = (un) ∈ w :

∞

∑
n=0

∣∣∣∣ fn

fn+1
un−

fn+1

fn
un−1

∣∣∣∣p < ∞

}
and

`∞ (F ) =

{
u = (un) ∈ w : sup

n

∣∣∣∣ fn

fn+1
un−

fn+1

fn
un−1

∣∣∣∣< ∞

}
.

For any Banach space V, let us define following V -valued Fibonacci sequence spaces

`p (F ,V ) =

{
u = (un) ∈ w(V ) :

∞

∑
n=0

∥∥∥∥ fn

fn+1
un−

fn+1

fn
un−1

∥∥∥∥p

V
< ∞

}
and

`∞ (F ,V ) =

{
u = (un) ∈ w(V ) : sup

n

∥∥∥∥ fn

fn+1
un−

fn+1

fn
un−1

∥∥∥∥
V
< ∞

}
For V = K , the real or complex number, then `p (F ,V ) = `p (F ) and `∞ (F ,V ) = `∞ (F ) . It is easy to prove that

`p (F ,V ) and `∞ (F ,V ) are Banach spaces with norms

‖u‖`p(F ,V ) =

(
∞

∑
n=0

∥∥∥∥ fn

fn+1
un−

fn+1

fn
un−1

∥∥∥∥p

V

)1/p

and

‖u‖`∞(F ,V ) = sup
n

∥∥∥∥ fn

fn+1
un−

fn+1

fn
un−1

∥∥∥∥
V
,

respectively.
F is an invertible triangle matrix, that is F−1 exists and it defines an isomorphism from `∞ (V ) onto `∞ (F ,V ) and from

`p (V ) onto `p (F ,V ) .
We will see in the sequel that `1 (F ,V ) has Dunford-Pettis property and moreover will prove that `p (F ,V ) have the

approximation property for 1≤ p < ∞ in some conditions.
Let us give some known required results from Banach space theory.

Suppose that U and V are Banach spaces. A linear operator S from U into V is compact if S(B) is a relatively compact
(means S(B) is compact) subset of V whenever B is a bounded subset of U . The collection of all compact linear operators from
U into V is denoted by K(U,V ), or by just K(U) if U =V . The range of a compact linear operator from a Banach space into a
Banach space is closed if and only if the operator has finite rank, that is, the range of the operator is finite-dimensional [7]. A
Banach space U has the approximation property if, for every Banach space V , the set of all finite-rank operators in B(V,U) is
dense in K(V,U) [8]. The spaces c0 and `p, 1≤ p < ∞, have the approximation property [7].

Let us remember that for any sequence (xn) in a Banach space U converges weakly to U, or briefly xn
w→ x, whenever

f (xn)→ f (xn) for each f ∈ U∗, the dual of U. We refer the reader to [7] for the definition of weak topology and weak
convergence in detail. Suppose that U and V are Banach spaces. A linear operator S from U into V is weakly compact if S(B)
is a relatively weakly compact subset of V whenever B is a bounded subset of U .
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Proposition 1.1. [7] Suppose that S is a linear operator from a Banach space U into a Banach space V . Then S is weakly
compact if and only if for any bounded sequence (xn) in U has a subsequence

(
xn j

)∞

j=0
such that

(
Sxn j

)
converges weakly.

Let us give important definitions of D.Hilbert. Suppose that U and V are Banach spaces. A linear operator S from U into V
is completely continuous or a Dunford-Pettis operator if S(K) is a compact subset of V whenever K is a weakly compact subset
of U [9] .

Definition 1.2. Suppose that U and V are Banach spaces. A Banach space U has the Dunford-Pettis property if, for every
Banach space V , each weakly compact linear operator from U into V is completely continuous [7].

Proposition 1.3. [7] `1 has the Dunford-Pettis Property.

Theorem 1.4. (R.S.Phillips, [10]) Let V be a linear subspace of the Banach space U and suppose T : V → `∞ is a bounded
linear operator. Then T may be extended to a bounded linear operator S : U → `∞ having the same norm as T.

In some cites the operator T in the above theorem is known as a Hahn-Banach operator and then it is said that `∞ has the
Hahn-Banach extension property.

2. Some Properties of Banach Space-Value Fibonacci Sequences

Definition 2.1. [1] Let U and V be Banach spaces and A be a set. A family {ηa : a ∈ A} of continuous linear functions
ηa : V →U is called Y-basis for U if the following condition is satisfied. There exist a unique family {Ra : a ∈ A} of linear
functions Ra from U onto V and a subset D of F , directed by some relation�, such that, for each x ∈U, the net (πF (x) : D)
converges to x in U. Where, for each F ∈D ,

πF (x) = ∑
a∈F

(ηa ◦Ra)(x) ,

and F is the family of all finite subsets of the index set A. Furthermore, {ηa} is called a Y-Schauder basis for U whenever
each Ra is continuous.

Definition 2.2. [1] The family {Ra : a ∈ A} is called associate family of functions (A.F.F.) to the V -basis {ηa : a ∈ A} .

Let {ηa : a ∈ A} be a V -basis for U . Clearly, the finite summation πF (x) defines an operator πF on U for each F ∈D . This
operator is called F-projection on U corresponding V -basis and it is continuous whenever {ηa} is a V -Schauder basis.

Remark 2.3. Let V be a Banach space on the field C possessing a basis {xn} (in the classical manner). Then the sequence
{ηn} of the functions

ηn : C→V : ηn (t) = txn

is a C-basis for V in the sense of above Definition. Indeed; take A= N and

D ={{1} ,{1,2} ,{1,2,3} , . . .}

with the relation inclusion again, and {Rn} as the sequence of associate coordinate functionals (gn) to the basis {xn} . Then
(πF (x) : D) converges to x in U iff

n

∑
k=1

(ηk ◦Rk)(x) =
n

∑
k=1

gk (x)xk,

converges to x =
∞

∑
n=1

gn (x)xn.

Theorem 2.4. Let V be a Banach space for which a family {ηa : a ∈ A} be a V -basis for some Banach space V . Then, V is
separable if A is countable [1].
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Main Results
Let us give some main results on V -valued Fibonacci sequence spaces in this section

Theorem 2.5. Let V be a Banach space. Then `p (F ,V ) has an unconditional V -Schauder basis.

Proof. Take A= N and consider

In : V → `p (V )

In (z) = (0, ...,0,z,0, ...)

for and remember the Fibonacci matrix F . Then obviously each F In defines a bounded linear operator from V into `p (F ,V ) .
Now the linear operator sequence

{F In : n ∈ N}

is a V -Schauder basis for `p (F ,V ) . Let us prove this. First of all consider the sequence of coordinate projections

Pn : `p (F ,V )→V ; Pn (x) = xn,

as {Rn : n ∈ N} in the basis definition, and take D as the family of all F finite subsets of N which is directed by the inclusion
relation ⊆ . Then we must show that the net (πF (x) : D) converges to x in `p (F ,V ) where

πF (x) = ∑
n∈F

(F InPn)(x) = ∑
n∈F

F In (xn) .

Obviously convergence of the above net corresponds to the convergence of the partial sums sequence of the series
∞

∑
n=0

F In (xn) .

Now, consider an arbitrary ε > 0. We must find a finite subset F0 = F0 (ε) ∈D such that, for each finite set F ⊇ F0,

‖x−πF (x)‖`p(F ,V ) ≤ ε.

Since x ∈ `p (F ,V ) there exists an n0 (ε) such that
∞

∑
n>n0

‖(F x)n‖
p
V < ε. Now take F0 as

F0 =

{
n ∈ N :

∞

∑
n>n0

‖(F x)n‖
p
V > ε

}
,

Then we get

‖x−πF (x)‖`p(F ,V ) = ‖{xn : n ∈ N\F}‖`p(F ,V ) ≤ ε,

for each finite F ⊇ F0.This implies (πF (x) : D)→ x in `p (F ,V ) .
Let us show the uniqueness of the sequence {Pn} . Suppose

∑
n∈N

(F InPn)(x) = ∑
n∈N

(
F InP′n

)
(x)

and write

π
◦
F (x) = ∑

n∈N

(
F In

(
Pn−P′n

))
(x) , F ∈D .

Remember that

‖π◦F (x)‖`p(F ,V ) =

(
∑
n∈F

∥∥(F In
(
Pn−P′n

))
(x)
∥∥p

)1/p

and

‖π◦F (x)‖`p(F ,V ) ≤ ‖π
◦
G (x)‖`p(F ,V )
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for F ⊆ G. Since (πF (x) : D)→ x in `p (F ,V ) we get

lim
F∈D
‖π◦F (x)‖`p(F ,V ) = 0.

By this observation we have (Pn−P′n)(x) = 0 for each n and for every x ∈ `p (F ,V ) . This implies, Pn = P′n for each n. This
gives the uniqueness of the basis.

Further, each Pn is continuous because ‖xn‖V ≤ ‖x‖`p(F ,V ) . This proves that sequence {F In : n ∈ N} is a V -Schauder basis
for `p (F ,V ) .

Theorem 2.6. For 1≤ p < ∞, the Banach space `p (F ,V ) has the approximation property if and only if V has.

Proof. Suppose T be a compact linear operator from a Banach space V into `p (F ,V ) . We will find a sequence (Tn) of bounded
linear operators of finite-rank from V into `p (F ,V ) . For any x ∈V, T x ∈ `p (F ,V ) and for any bounded sequence (xn) in V,
the sequence (T xn) has a convergent subsequence

(
T xn j

)∞

j=0
in `p (F ,V ) since T is compact. Hence∥∥T xni −T xn j

∥∥p
`p(F ,V )

=
∥∥T
(
xni − xn j

)∥∥p
`p(F ,V )

=
∞

∑
m=0

∥∥∥∥ fm

fm+1
T
(
xni − xn j

)
m
− fm+1

fm
T
(
xni − xn j

)
m−1

∥∥∥∥p

V

If we remember the definition of the space `p (F ,V ) ,∥∥T
(
xni − xn j

)∥∥p
`p(F ,V )

=
∥∥(FT )

(
xni − xn j

)∥∥p
`p(V )

.

Now V has the approximation property if and only if `p (V ) has. Hence∥∥(FT )
(
xni − xn j

)∥∥p
`p(V )

→ 0 as i, j→ ∞.

This means the operator FT : V → `p (V ) is well-defined and compact. The matrix transformation F is clearly bounded linear
and so is FT . Since `p (V ) have the approximation property, there exits a sequence (Am)

∞

m=0 of bounded linear operators of
finite-rank from V to `p (V ) such that ‖FT −Am‖→ 0 as m→ ∞. Now the sequence

(
F−1Am

)∞

m=0 is the desired sequence
of finite-rank operators from V to `p (F ,V ) . Easily we can see that each F−1Am is bounded linear and has the finite-rank.
Further∥∥T −F−1Am

∥∥ = sup
‖x‖=1

∥∥(T −F−1Am
)

x
∥∥
`p(F ,V )

= sup
‖x‖=1

∥∥T x−
(
F−1Am

)
x
∥∥p
`p(F ,V )

= sup
‖x‖=1

∥∥FT x−F
(
F−1Am

)
x
∥∥p
`p(V )

= sup
‖x‖=1

‖(FT −Am)x‖p
`p(V )

→ 0 as m→ ∞.

This completes the proof.

Theorem 2.7. `1 (F ,V ) has the Dunford-Pettis Property if and only if V has.

Proof. Let T be any weakly compact linear operator from `1 (F ,V ) into V and compose T with F−1. Then TF−1 is
obviously a bounded linear operator from `1 (V ) into V. Further it is weakly compact if and only if V is. Let us prove this:
Suppose U is a bounded in `1 (V ) . By the boundedness of the matrix operator F−1 we have F−1 (U) is a bounded subset of
`1 (F ,V ) . Therefore

T
(
F−1 (U)

)
=
(
TF−1)(U)

is a relatively weakly compact set in V. As a result TF−1 : `1 (V )→V is a weakly compact operator if and only if V is. Now,
since `1 (V ) has the Dunford-Pettis Property if and only if V has, we get TF−1 is completely continuous. Let W be a weakly
compact subset of `1 (F ,V ). Then F (W ) is a weakly compact subset of `1 (V ), and so(

TF−1)F (W ) = T (W )

is a compact subset in V.
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Theorem 2.8. Let V be a linear subspace of the Banach space U and suppose T : V → `∞ (F ,V ) is a bounded linear operator.
Then T may be extended to a bounded linear operator H : U→ `∞ (F ,V ) having the same norm as T if V has the Hahn-Banach
extension property.

Proof. Consider any bounded linear operator T : V → `∞ (F ,V ) . Now FT : V → `∞ (V ) is a bounded linear operator since
the Fibonacci matrix is. Now `∞ (V ) has the Hahn-Banach extension property since V has.

For any x ∈V, FT x ∈ `∞ (V ) and

FT x = ((FT x)1 ,(FT x)2 , ...)

= ((P1FT )(x) ,(P2FT )(x) , ...) .

Note that each Pn is coordinate projection from `∞ (V ) into V such that Pn (x) = xn. By the Hahn-Banach extension property
of `∞ (V ) , the operator FT : V → `∞ (V ) can be extended the bounded linear operator S : U → `∞ (V ) with the same norm as
FT , that is ‖S‖= ‖FT‖ . Let us define the operator H from U into `∞ (F ,V ) such that for x ∈U,

Hx =
(
F−1S

)
(x) .

H is well-defined and linear since S and F−1 are. Further

‖Hx‖`∞(F ,V ) =
∥∥F−1 (S (x))

∥∥
`∞(F ,V )

=
∥∥F (

F−1 (S (x))
)∥∥

`∞(V )

= ‖S (x)‖
`∞(V )

≤ ‖S‖ .‖x‖

so that H is bounded. Now for x ∈V,

‖Hx‖`∞(F ,V ) = ‖S (x)‖
`∞(V )

= ‖(FT )(x)‖
`∞(V )

= ‖T x‖
`∞(F ,V )

so that H is an extension of T. Finally

‖H‖ = sup
‖x‖U=1

‖Hx‖`∞(F ,V )

= sup
‖x‖U=1

∥∥F−1 (S (x))
∥∥
`∞(F ,V )

= sup
‖x‖U=1

∥∥F (
F−1 (S (x))

)∥∥
`∞(V )

= sup
‖x‖U=1

‖S (x)‖
`∞(V )

= sup
‖x‖U=1

‖T x‖
`∞(F ,V )

= ‖T‖ .

This completes the proof.

The following property is another desired property of Banach spaces. Now we see that `2 (F ,V ) has this property whenever
V has, which we call it as the Radon-Riesz Property. The Radon-Riesz property is named after J. Radon and F. Riesz proved
that the spaces Lp(Ω,Σ,µ) for 1 < p < ∞ have this property [11]-[13]. Radon-Riesz Property also known as the Kadets-Klee
property since their further investigation and application of this concept [14]-[16].

Definition 2.9. [7] A normed space has the Radon-Riesz property or the Kadets-Klee property, and is called a Radon-Riesz
space, if it satisfies the following condition: Whenever (xn) is a sequence in the space and x an element of the space such that
xn

w→ x and ‖xn‖→ ‖x‖, it follows that xn→ x.

The proof of the following lemma is routine.
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Lemma 2.10. Let V is a Hilbert space. Then `2 (F ,V ) is a Hilbert space with the inner-product

〈u,v〉`2(F ,V ) = 〈Fu,F v〉
`2(V )

=
∞

∑
k=1
〈(Fu)k ,(F v)k〉V .

Theorem 2.11. `2 (F ,V ) has the Radon-Riesz Property whenever V is a Hilbert space possessing the Radon-Riesz Property.

Proof. Let (un) be a sequence in `2 (F ,V ) and u be an element of `2 (F ,V ) . Assume that un
w→ u in `2 (F ,V ) and assume

that ‖un‖`2(F ,V )→‖u‖`2(F ,V ) . We will prove that (un) norm convergent to u that is un→ u in `2 (F ,V ) . Now the assumption

un
w→ u means f (un)→ f (un) for each f ∈ `2 (F ,V )∗ . Let us show that ‖un−u‖`2(F ,V )→ 0 to complete the proof:

‖un−u‖2
`2(F ,V ) = ‖Fun−Fu‖2

`2(V )

= 〈Fun−Fu,Fun−Fu〉`2(V )

= 〈Fun,Fun〉
`2(V )
−〈Fun,Fu〉`2(V )

−〈Fu,Fun〉`2(V )+ 〈Fu,Fu〉`2(V )

= ‖Fun‖2
`2(V )+‖Fu‖2

`2(V )−〈Fun,Fu〉`2(V )−〈Fu,Fun〉`2(V )

Let z = Fu ∈ `2 (V ) = `2 (V )∗ and let us consider z◦F such that (z◦F )u = 〈Fu,Fu〉`2(V ) . Then from the properties of the
matrix F and by the Riesz’s Theorem (on `2 (V )) we have z◦F is a continuous linear functional on `2 (F ,V ) and

(z◦F )un = z(Fun) = 〈Fun,Fu〉`2(V ) .

By the assumption un
w→ u we have

(z◦F )(un) = 〈Fun,Fu〉`2(V )

→ 〈Fu,Fu〉`2(V ) , as n→ ∞,

= (z◦F )(u)

= ‖Fu‖2
`2(V )

Dually, let us now take zn = Fun ∈ `2 (V )∗ = `2 (V ) , for each n, then

(zn ◦F )u = zn (Fu) = 〈Fu,Fun〉`2(V ) .

Now again each zn ◦F is a continuous linear functional on `2 (F ,V ) and again by the assumption un
w→ u we have

(zn ◦F )(u) = zn (Fu)

= 〈Fu,Fun〉`2(V )

= 〈Fun,Fu〉`2(V )

→ 〈Fu,Fu〉`2(V ), as n→ ∞,

= ‖Fu‖2
`2(V ) .

Eventually, by the assumption ‖un‖`2(F ,V )→‖u‖`2(F ,V ) , we have

‖un−u‖2
`2(F ,V ) = ‖Fun‖2

`2(V )+‖Fu‖2
`2(V )−〈Fun,Fu〉`2(V )−〈Fu,Fun〉`2(V )

→ ‖Fu‖2
`2(V )+‖Fu‖2

`2(V )−‖Fu‖2
`2(V )−‖Fu‖2

`2(V )

= 0, as n→ ∞.



On Some Properties of Banach Space-Valued Fibonacci Sequence Spaces — 87/87

Article Information
Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for

their helpful comments and suggestions.

Author’s contributions: All authors contributed equally to the writing of this paper. All authors read and approved the
final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the authors.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under
the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for
this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and
ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program.

References
[1] Y. Yilmaz, Relative bases in Banach spaces, Nonlinear Anal., 71 (2009), 2012–2021.
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1. Introduction
The concept of derivatives of arbitrary order, which is essential to fractional calculus and provides a useful tool for

characterizing the inherent properties of numerous materials and processes, has maintained its appeal to a large number of
scientists in recent years. In [1], Capelas de Oliveira and Sousa presented a generalization concerning these derivatives, in
which they combined many formulations, including the traditional Caputo and Riemann-Liouville operators, and proposed a
new fractional differential operator, known as the fractional ψ-Hilfer operator.

Parallel to fractional derivation, another theory is growing: fractional differential equations. This theory has numerous
applications, especially in the domains of signal processing, biology, physics, engineering, and finance. (Refer to [2, 3]).

One of the best examples of these fractional differential equations is the Langevin equation, which was initially proposed by
Paul Langevin in 1908. Its goal is to give descriptions of specific phenomena that physicians, engineers, economists, and other
experts may use. The Langevin equation first described the random movement of particles suspended in a liquid, which is
commonly referred to as Brownian motion. In addition to being widely applied in all fields, Brownian motion and stochastic
differential equations are also commonly used tools in all scientific fields. (see [4]-[13]).

Furthermore, the best modeling method was found to be fractional differential equations with impulse plus delay included.
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Since fractional differential equations with impulse are used to simulate evolutionary situations involving fast changes at a
finite or infinite number of instants, they represent a fascinating area of study. Similar to this, fractional differential equations
with time delay represent real dynamics. They are used in a wide range of fields, including physics, chemistry, biology, road
traffic, and medicine. Their goal is to simulate by taking into account the past. Giving someone a drug, for instance, doesn’t
result in an instant reaction; instead, you must wait a few minutes to see whether the substance has actually had an impact.
(Refer to [14, 15]).

The majority of the time, it can be difficult to solve fractional differential equations exactly, and even when it can be done,
it can be time-consuming and difficult to compute. Asking whether they are getting close to the exact solutions or if the error
we made was not that big makes it simpler to give an appropriate explanation of the approximate solutions.

The concepts of Ulam-Hyers stability, Lyapunov stability, exponential stability, and finite-time stability are employed to
evaluate the behavior of solutions to differential equations or dynamical systems under perturbations. Every kind of stability has
uses and benefits of its own. Even though Lyapunov, exponential, and finite-time stabilities are important in their own contexts,
Ulam-Hyers stability provides a special benefit by emphasizing the robustness of approximations. This makes it particularly
desirable for real-world applications where we need to be sure that small deviations won’t result in large inaccuracies because
exact conditions are rarely realized. It is a useful tool in the stability analysis toolkit due to its adaptability and wide range of
applications. (see [16]-[18]).

Abdo et al. [19] have studied the Ulam-Hyers-Mittag-Leffler stability, uniqueness, and existence of a fractional delay
differential equation 

HD
p1,p2;ψ
0+,ι w(ι) = f (ι ,wι) , 0≤ ι ≤ b,

I
1−γ;ψ
0+,ι w

(
0+
)
= w0 ∈ R,

w(ι) = ϕ(ι), −∞ < ι ≤ 0.

Recently, Lima KB et al. [20] investigated the Ulam-Hyers stability, uniqueness, and existence of the following fractional
delay impulsive differential equation:

HD
p1,p2;ψ
0+,ι w(ι) = f (ι ,wι) , ι ∈ (0,b]\{ι1, ι2, . . . , ιm} ,

∆w(ιi) = Ii
(
w
(
ι
−
i
))

= w
(
ι
+
i
)
−w

(
ι
−
i
)
, i = 1,2, . . . ,m,

I
1−γ

0+,ι w(0) = w0,

w(ι) = ϕ(ι), ι ∈ [−r,0].

Motivated by the latter work, we present in this work a fairly exhaustive study of a novel class of implicit ψ-Hilfer fractional
Langevin equation with delays and impulses given by the form:



HD
p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι) = f

(
ι ,w(ι),w(σ(ι)) ,HD

p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι)

)
, ι ∈ (0,b]\{ι1, ι2, . . . , ιm} ,

∆w(ιi) = Ii
(
w
(
ι
−
i
))

= w
(
ι
+
i
)
−w

(
ι
−
i
)
, i = 1,2, . . . ,m,

I
1−γ;ψ
0+,ι w(0) = w0, γ = q+(p1 + p2)(1−q) ,

w(ι) = ϕ(ι), ι ∈ [−r,0], 0≤ r < ∞.

(1.1)

Where I
1−γ;ψ
0+,ι and D

ϑ ;ψ
0+,ι represent ψ-fractional integrals in order 1− γ and ψ-Hilfer fractional derivative in order

ϑ ∈ {p1, p2} and type q respectively. 0 < ϑ < 1, 0 ≤ q ≤ 1. Also, f : [0,b]×Ω→ R a given function, Ii : R→ R
and ϕ : [−r,0]→ R continuous functions, w

(
ι
+
i

)
= limτ→0+ w(ιi + τ) ,w

(
ι
−
i

)
= limτ→0− w(ιi− τ) , ιi satisfies 0 = ι0 < ι1 <

ι2 < · · ·< ιm < ιm+1 = b < ∞ and σ : [0,b]→ [−r,b] is a delay function that is continuous and ensures σ(ι)≤ ι , ι ∈ [0,b].

Let J = [0,b], and let C (J,R) and Cn (J,R) be the Banach spaces of continuous functions, n-times continuously differentiable
functions on J, respectively. Moreover, for any f ∈ C (J,R), we have ‖ f‖C = sup{| f (ι)| : ι ∈ J}. On the other hand, we
consider the weighted space in [20], defined by

C1−γ;ψ(J,R) =
{

w : J→ R : (ψ(ι)−ψ(0))1−γ w(ι) ∈C(J,R)
}
, 0 < γ ≤ 1.

Define the Banach space

PC1−γ;ψ(J,R) =
{

w : J→ R; w ∈C1−γ;ψ ([ιi, ιi+1] ,R) , i = 0, . . . ,m,
and there exist w

(
ι
+
i

)
,w
(
ι
−
i

)
,withw(ιi) = w

(
ι
−
i

)
, i = 1,2, . . . ,m

}
, 0 < γ ≤ 1,



A Class of Implicit Fractional ψ-Hilfer Langevin Equation with Time Delay and Impulse in the Weighted Space —
90/103

using the norm
‖w‖PC1−γ;ψ = sup

ι∈J

∣∣(ψ(ι)−ψ(0))1−γ w(ι)
∣∣ .

We then specify the space.

Ωγ;ψ =
{

w : [−r,b]→ R : w ∈C([−r,0],R)∩PC1−γ;ψ(J,R)
}
,

using the norm ‖w‖Ωγ;ψ = max
{
‖w‖C,‖w‖PC1−γ;ψ

}
. One can verify that

(
Ωγ;ψ ,‖ · ‖Ωγ;ψ

)
is a Banach space ( see [19, 20]).

2. Preliminaries
Definition 2.1. ([1]) For p > 0, and ψ ∈C1(J,R), the fractional ψ-Riemann-Liouville operator with order p for an integrable
function w can be written as

I
p;ψ
0+,ι w(ι) =

1
Γ(p)

∫
ι

0
ψ
′(s)(ψ(ι)−ψ(s))p−1w(s)ds, (2.1)

in which ψ ′(ι)> 0, ∀ι ∈ J.

Definition 2.2. ([1]) For 0 < p < 1, w ∈ C(J,R), ψ ∈ C1(J,R) with ψ ′(ι) > 0, ∀ι ∈ J, the fractional ψ-Hilfer derivative
operator with order p and type 0≤ q≤ 1 of w is represented as

HD
p,q;ψ
0+,ι w(ι) = I

q(1−p);ψ
0+,ι

(
1

ψ ′(ι)

d
dι

)
I
(1−q)(1−p);ψ
0+,ι w(ι). (2.2)

Lemma 2.3. ([1]) Let 0 < p < 1, 0≤ q≤ 1, w ∈C1(J,R), then

I
p;ψ
0+,ι

HD
p,q;ψ
0+,ι w(ι) = w(ι)− (ψ(ι)−ψ(0))ρ−1

Γ(ρ)
I

1−ρ;ψ
0+,ι w(0), (2.3)

where ρ = p+q(1− p).

Lemma 2.4. ([1, 21]) Let p,q > 0,δ > p and w ∈C(J,R). Following that ∀ι ∈ J there are
(1) Ip;ψ

0+,ιI
q;ψ
0+,ι w(ι) = I

p+q;ψ
0+,ι w(ι),

(2) HD
p,q;ψ
0+,ι I

p;ψ
0+,ι w(ι) = w(ι),

(3) Ip;ψ
0+,ι(ψ(ι)−ψ(0))q−1 = Γ(p)

Γ(p+q) (ψ(ι)−ψ(0))p+q−1,

(4) Iq;ψ
0+,ι(1) =

(ψ(ι)−ψ(0))q

Γ(q+1) ,

(5) HD
p,q;ψ
0+,ι (ψ(ι)−ψ(0))δ−1 = Γ(δ )

Γ(δ−p) (ψ(ι)−ψ(0))δ−p−1,

(6) HD
p,q;ψ
0+,ι (ψ(ι)−ψ(0))δ−1 = 0, 0 < δ < 1.

Lemma 2.5. ([1]) Let 0≤ γ < 1 and f ∈C1−γ;ψ [0,b]. Then

I
p;ψ
0+,ι f (0) = lim

ι→0+
I

p;ψ
0+,ι f (ι) = 0, 0≤ 1− γ < p.

To show the Ulam-Hyers-Rassias stability for problem (1.1), we generalise the definitions for ψ-Hilfer given by Rizwan et
al in [22].

Take ε > 0,θ > 0 , φ ∈Ωγ;ψ , and considering{ ∣∣∣HDp1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι)− f

(
ι ,w(ι),w(σ(ι)) ,HD

p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι)

)∣∣∣≤ εφ(ι), ι ∈ J,

|∆w(ιk)− Ik
(
w
(
ι
−
k

))
| ≤ εθ , k = 1, . . . ,m.

(2.4)

Definition 2.6. ([20]) Problem (1.1) is Ulam-Hyers-Rassias stable in terms of (φ(ι),θ), when a real number cF,m,φ > 0 exists
in which, for all ε > 0 and all v ∈Ωγ;ψ solution of (2.4), there is a solution w ∈Ωγ;ψ to the problem (1.1) with{

|v(ι)−w(ι)|= 0, ι ∈ [−r,0],∣∣(ψ(ι)−ψ(0))1−γ(v(ι)−w(ι))
∣∣≤ cF,m,φ ε(φ(ι)+θ), ι ∈ J.
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Remark 2.7. ([20]) A continious function v ∈Ωγ;ψ is a solution of (2.4) only if g ∈Ωγ;ψ a function and gk , k = 1,2, . . . ,m a
sequence ( both depends on v ) exist in which
(1) |g(ι)| ≤ εφ(ι), ι ∈ J, |gk| ≤ εθ , k = 1,2, . . . ,m,

(2) HD
p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι) = f

(
ι ,w(ι),w(σ(ι)) ,HD

p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι)

)
+g(ι), ι ∈ J,

(3) ∆w(ιk) = Ik
(
w
(
ι
−
k

))
+gk, k = 1,2, . . . ,m.

Definition 2.8. ([23]) Consider the metric space (E ,d). If there is a w∗ ∈ E in which
1. FT = {w∗}, in which FT = {w ∈ E : T (w) = w}.
2. {T n (w0)}n∈N converges to w∗ for each w0 ∈ E .
Then the operator T : E → E is a Picard operator.

Lemma 2.9. ([24]) Take T : E → E an increasing Picard operator with FT =
{

w∗T
}

, and take (E ,d,≤) an ordered metric
space. Then, for each w ∈ E ,w≤T (w) shows w≤ w∗T .

Lemma 2.10. ([25]) Take w,v be two functions on J that are integrable. Consider ψ ∈C1(J,R) is an increasing function in
which ψ ′(ι) 6= 0,∀ι ∈ J. Suppose that
(i) Both w and v are positive.
(ii) For any J, (gi)i=1,..n are bounded and monotonic increasing functions.
(iii) pi > 0(i = 1,2, . . . ,n). If

w(ι)≤ v(ι)+
n

∑
i=1

gi(ι)
∫

ι

a
ψ
′(s)(ψ(ι)−ψ(s))pi−1w(s)ds,

then

w(ι)≤ v(ι)+
∞

∑
k=1

(
n

∑
1′,2′,3′,...k′=1

∏
k
i=1 (gi′(ι)Γ(pi′))

Γ
(
∑

k
i=1 pi′

) ∫
ι

a

[
ψ
′(s)(ψ(ι)−ψ(s))∑

k
i=1 pi′−1

]
v(s)ds

)
.

Assume further that v(ι) is a nondecreasing function on J. Next, the inequality given by [25, Corollary 2.1], for n = 2, gives
us

w(ι)≤ v(ι)
[
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]
,

where ψ
p
g (ι ,0) := g(ι)Γ(p)(ψ(ι)−ψ(0))p, and Ep is the Mittag-Leffler function defined in [2] by

Ep(z) =
∞

∑
n=0

zn

Γ(np+1)
,z ∈ C,Re(p)> 0.

Lemma 2.11. For n = 2. Let w ∈Ωγ;ψ satisfying the following inequality

w(ι)≤ v(ι)+
2

∑
l=1

gl(ι)
∫

ι

0
ψ
′(τ)(ψ(ι)−ψ(τ))pl−1w(s)ds+ ∑

0<ιk<ι

βkw(ιk) , ι ≥ 0, (2.5)

where βk > 0,k = 1, . . . ,m is a nonnegative constant and v ∈Ωγ;ψ is nonnegative too. Following that

w(ι)≤ v(ι)
(
1+β

[
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)])k [Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]
, ι ∈ (ιk, ιk+1] , (2.6)

where β = max{βk : k = 1,2, . . . ,m}.

Proof. For n = 2, and by lemma 2.10, we derive

w(ι)≤ v(ι)
[
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]
, ι ∈ [0, ι1], (2.7)

w(ι)≤

[
v(ι)+

k

∑
j=0

β jw(ι j)

][
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]
, ι ∈ [ιk, ιk+1]. (2.8)
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By induction, for k = 0, inequality (2.6) holds by (2.7). Suppose that for k = j < m, (2.6) holds. After that, using (2.8) and
the nondecreasing nature of v and Ep, we obtain for ι ∈

(
ι j+1, ι j+2

]
,

w(ι)≤

[
v(ι)+

j+1

∑
i=0

βiw(ιi)

][
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]
≤

[
v(ι)+

j+1

∑
i=1

βiv(ιi)
(
1+β

[
Ep1

(
ψ

p1
g (ιi,0)

)
+Ep2

(
ψ

p2
g (ιi,0)

)])i−1 [Ep1

(
ψ

p1
g (ιi,0)

)
+Ep2

(
ψ

p2
g (ιi,0)

)]]
×
[
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]
≤

[
v(ι)+β

j+1

∑
i=1

v(ι)
(
1+β

[
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)])i−1 [Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]]
×
[
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]
,

then

w(ι)≤

[
v(ι)+βv(ι)

1−
(
1+β

[
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]) j+1

1−
(
1+β

[
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]) [
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]]
×
[
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]
=
[
v(ι)+ v(ι)

((
1+β

[
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]) j+1−1
)][

Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]
≤
[
v(ι)+ v(ι)

(
1+β

[
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]) j+1− v(ι)
][

Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]
= v(ι)

(
1+β

[
Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]) j+1 [Ep1

(
ψ

p1
g (ι ,0)

)
+Ep2

(
ψ

p2
g (ι ,0)

)]
.

This finishes the proof.

3. Formula of Solutions
Lemma 3.1. Let 0 < p1, p2 < 1, 0≤ q≤ 1, and h : J→ R be continuous. A function w ∈Ωγ;ψ given by

w(ι) =

[
w0−I

p1+p2;ψ
0+,ι ha +λI

p2;ψ
0+,ι w(a)

(ψ(a)−ψ(0))γ−1

]
(ψ(ι)−ψ(0))γ−1 +I

p1+p2;ψ
0+,ι h(ι)−λI

p2;ψ
0+,ι w(ι) (3.1)

is the unique solution for the problem that follows

{
HD

p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι) = h(ι) , ι ∈ J,

w(a) = w0, a > 0,
(3.2)

in which I
p1+p2;ψ
0+,ι ha = I

p1+p2;ψ
0+,ι h(ι)

∣∣∣
ι=a

.

Proof. Taking the fractional ψ-integral operator of order p1 + p2 on each side of (3.2). Then utilizing Lemma 2.3, we arrive at

w(ι)− e1(ψ(ι)−ψ(0))γ−1 +λI
p2;ψ
0+,ι

(
w(ι)− (ψ(ι)−ψ(0))γ1−1

Γ(γ1)
I

1−γ1;ψ
0+,ι w(0)

)
= I

p1+p2;ψ
0+,ι h(ι) , (3.3)

where γ1 = q+ p1 (1−q), and e1 is an arbitrary constant.
Since 1− γ < 1− γ1, lemma 2.5 implies that I1−γ1;ψ

0+,ι w(0) = 0.
Hence (3.3) reduces to

w(ι) = e1(ψ(ι)−ψ(0))γ−1 +I
p1+p2;ψ
0+,ι h(ι)−λI

p2;ψ
0+,ι w(ι). (3.4)
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In (3.4), the boundary condition w(a) = w0 leads to e1 =
w0−I

p1+p2;ψ
0+,ι

ha+λI
p2;ψ
0+,ι

w(a)

(ψ(a)−ψ(0))γ−1 . We substitute e1 in (3.4), we obtain
(3.1).

On the other hand, suppose w can be the unique solution satisfying (3.1), taking the fractional ψ-Hilfer derivative HD
p2,q;ψ
0+,ι

on either side of (3.1), and using lemma 2.4, we can obtain

HD
p2,q;ψ
0+,ι w(ι) = I

p1;ψ
0+,ι h(ι)−λw(ι),

then taking fractional HD
p1,q;ψ
0+,ι again, it follows

HD
p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι) = h(ι) .

Hence, the proof is complete.

We obtain the following result from 3.1, which is useful in what follows.

Lemma 3.2. A function w ∈Ωγ;ψ has a solution of (1.1) if and only if w ∈Ωγ;ψ is a solution of the given fractional integral
equation

w(ι) =

 ϕ(ι), ι ∈ [−r,0],[
w0

Γ(γ) +∑
m
i=1

Ii(w(ι
−
i ))

ℜ
γ
ψ (ιi,0)

]
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fw (ι)−λI

p2;ψ
0+,ι w(ι), ι ∈ J,

(3.5)

in which Fw (ι) = f (ι ,w(ι),w(σ(ι)) ,Fw (ι)), and ℜ
γ

ψ(ι ,0) = (ψ(ι)−ψ(0))γ−1.

Proof. Assume that w satisfies (1.1), then w satisfies

HD
p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι) = f

(
ι ,w(ι),w(σ(ι)) ,HD

p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι)

)
.

Take HD
p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι) = Fw (ι). It follows that Fw (ι) = f (ι ,w(ι),w(σ(ι)) ,Fw (ι)). Then, we have

HD
p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι) = Fw (ι) .

If ι ∈ [−r,0], clearly that w(ι) = ϕ(ι). For ι ∈ [0, ι1],
HD

p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι) = Fw (ι) can be writen as

HD
p1+p2,q;ψ
0+,ι w(ι)+λ

HD
p2,q;ψ
0+,ι w(ι) = Fw (ι) . (3.6)

Taking the fractional ψ-integral operator of order p1 + p2 on each side of (3.6). Then utilizing Lemma 2.3, we arrive at

w(ι)− (ψ(ι)−ψ(0))γ−1

Γ(γ)
I

1−γ;ψ
0+,ι w(0)+λI

p2;ψ
0+,ι

(
I

p1;ψ
0+,ι

HD
p1,q;ψ
0+,ι w(ι)

)
= I

p1+p2;ψ
0+,ι Fw (ι) . (3.7)

Utilizing again Lemma 2.3, we can get

w(ι)− (ψ(ι)−ψ(0))γ−1

Γ(γ)
I

1−γ;ψ
0+,ι w(0)+λI

p2;ψ
0+,ι

(
w(ι)− (ψ(ι)−ψ(0))γ1−1

Γ(γ1)
I

1−γ1;ψ
0+,ι w(0)

)
= I

p1+p2;ψ
0+,ι Fw (ι) , (3.8)

where γ1 = q+ p1 (1−q) .
Since 1− γ < 1− γ1, lemma 2.5 implies that I1−γ1;ψ

0+,ι w(0) = 0.

Hence by I
1−γ;ψ
0+,ι w(0) = w0 and ℜ

γ

ψ(ι ,0) = (ψ(ι)−ψ(0))γ−1, equation (3.8) reduces to

w(ι) =
w0

Γ(γ)
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fw (ι)−λI

p2;ψ
0+,ι w(ι). (3.9)

If ι ∈ [ι1, ι2] then HD
p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι) = Fw (ι) with w

(
ι
+
1

)
= w

(
ι
−
1

)
+ I1

(
w
(
ι
−
1

))
By lemma 3.1, one obtain
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w(ι) =

[
w
(
ι
+
1

)
−I

p1+p2;ψ
0+,ι F ι1

w +λI
p2;ψ
0+,ι w(ι1)

ℜ
γ

ψ(ι1,0)

]
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fw (ι)−λI

p2;ψ
0+,ι w(ι)

=

[
w
(
ι
−
1

)
+ I1

(
w
(
ι
−
1

))
−I

p1+p2;ψ
0+,ι F ι1

w +λI
p2;ψ
0+,ι w(ι1)

ℜ
γ

ψ(ι1,0)

]
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fw (ι)−λI

p2;ψ
0+,ι w(ι)

=

[ w0
Γ(γ)ℜ

γ

ψ(ι1,0)+I
p1+p2;ψ
0+,ι F ι1

w −λI
p2;ψ
0+,ι w(ι1)+ I1

(
w
(
ι
−
1

))
−I

p1+p2;ψ
0+,ι F ι1

w +λI
p2;ψ
0+,ι w(ι1)

ℜ
γ

ψ(ι1,0)

]
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fw (ι)

−λI
p2;ψ
0+,ι w(ι)

=

[ w0
Γ(γ)ℜ

γ

ψ(ι1,0)+ I1
(
w
(
ι
−
1

))
ℜ

γ

ψ(ι1,0)

]
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fw (ι)−λI

p2;ψ
0+,ι w(ι)

=

[
w0

Γ(γ)
+

I1
(
w
(
ι
−
1

))
ℜ

γ

ψ(ι1,0)

]
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fw (ι)−λI

p2;ψ
0+,ι w(ι).

If ι ∈ [ι2, ι3] then again by lemma 3.1

w(ι) =

[
w
(
ι
+
2

)
−I

p1+p2;ψ
0+,ι F ι2

w +λI
p2;ψ
0+,ι w(ι2)

ℜ
γ

ψ(ι2,0)

]
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fw (ι)−λI

p2;ψ
0+,ι w(ι)

=

[
w
(
ι
−
2

)
+ I2

(
w
(
ι
−
2

))
−I

p1+p2;ψ
0+,ι F ι2

w +λI
p2;ψ
0+,ι w(ι2)

ℜ
γ

ψ(ι2,0)

]
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fw (ι)−λI

p2;ψ
0+,ι w(ι)

=


[

w0
Γ(γ) +

I1(w(ι
−
1 ))

ℜ
γ
ψ (ι1,0)

]
ℜ

γ

ψ(ι2,0)+I
p1+p2;ψ
0+,ι F ι2

w −λI
p2;ψ
0+,ι w(ι2)+ I2

(
w
(
ι
−
2

))
−I

p1+p2;ψ
0+,ι F ι2

w +λI
p2;ψ
0+,ι w(ι2)

ℜ
γ

ψ(ι2,0)

ℜ
γ

ψ(ι ,0)

+I
p1+p2;ψ
0+,ι Fw (ι)−λI

p2;ψ
0+,ι w(ι)

=

[
w0

Γ(γ)
+

I1
(
w
(
ι
−
1

))
ℜ

γ

ψ(ι1,0)
+

I2
(
w
(
ι
−
2

))
ℜ

γ

ψ(ι2,0)

]
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fw (ι)−λI

p2;ψ
0+,ι w(ι).

Repeating the same fashion in this way for ι ∈ [ιk, ιk+1] , we get

w(ι) =
[

w0
Γ(γ) +∑

k
i=1

Ii(w(ι
−
i ))

ℜ
γ
ψ (ιi,0)

]
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fw (ι)−λI

p2;ψ
0+,ι w(ι), k = 1,2, . . . ,m.

In contrast, Suppose w can be the unique solution satisfying (3.5). If ι ∈ [−r,0], clearly that w(ι) = ϕ(ι). If ι ∈ [0, ι1],
taking the fractional ψ-Hilfer derivative HD

p2,q;ψ
0+,ι on either side of

w(ι) =
w0

Γ(γ)
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fw (ι)−λI

p2;ψ
0+,ι w(ι), (3.10)

using lemma 2.4, we can obtain
HD

p2,q;ψ
0+,ι w(ι) = I

p1;ψ
0+,ι Fw (ι)−λw(ι).

Then taking fractional HD
p1,q;ψ
0+,ι again, it follows

HD
p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι) = Fw (ι) .

Now we show that the initial condition I
1−γ;ψ
0+,ι w(0) = w0 also holds. We apply I

1−γ;ψ
0+,ι on both sides of (3.10), then lemma 2.4

implies that
I

1−γ;ψ
0+,ι w(ι) = w0 +I

1−γ+p1+p2;ψ
0+,ι Fw (ι)−λI

1−γ+p2;ψ
0+,ι w(ι).
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Since 1− γ < 1− γ + p1 + p2 and 1− γ < 1− γ + p2, lemma 2.5 implies that

I
1−γ;ψ
0+,ι w(0) = w0.

If ι ∈ [ιk, ιk+1], k = 1,2, . . . ,m. Using again lemma 2.4, we obtain

HD
p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι) = Fw (ι) and w

(
ι
+
k

)
−w

(
ι
−
k

)
= Ik

(
w
(
ι
−
k

))
.

Hence, the proof is complete.

4. Existence, Uniqueness and Stability
We present the following hypothesis in order to show the existence, uniqueness, and stability of the solution.

H1: f : J×R3→ R is continuous and L > 0, 0 < L f < 1 are constants satisfy :

| f (ι ,w1,w2,w3)− f (ι ,v1,v2,v3)| ≤L (ψ(ι)−ψ(0))1−γ {|w1− v1|+ |w2− v2|}+L f |w3− v3|,

ι ∈ J and w1,v1,w2,v2,w3,v3 ∈ R.
H2: Ii : R→ R,(i = 1, . . . ,m) satisfy :∣∣Ii

(
w
(
ι
−
i
))
− Ii

(
v
(
ι
−
i
))∣∣≤LIi

∣∣w(ι−i )− v
(
ι
−
i
)∣∣ ,

where w,v ∈Ωγ;ψ and LIi > 0.

H3: The inequality

K := mLI +
2L (ψ(b)−ψ(0))1−γ+p1+p2(

1−L f
)

Γ(p1 + p2 +1)
+
|λ |Γ(γ)(ψ(b)−ψ(0))p2

Γ(p2 + γ)
< 1,

where LI = max{LIi : i = 1,2, . . . ,m} .

H4: A non-decreasing function φ , bounded in J, and a constant λφ > 0 exist in which, for each ι ∈ J,

I
p1+p2;ψ
0+,ι φ(ι)≤ λφ φ(ι).

Theorem 4.1. Suppose that H1–H4 are true. Then
(i). There is a unique solution to problem (1.1) in the space Ωγ;ψ .

(ii). Problem (1.1) is Ulam-Hyers-Rassias stable.

Proof. Part 1: In this part we will prove the existence as well as the uniqueness of solutions to problem (1.1).
Considering Lemma 3.2, we set the operator A : Ωγ;ψ −→Ωγ;ψ

(A w)(ι) ==

 ϕ(ι), ι ∈ [−r,0],[
w0

Γ(γ) +∑
m
i=1

Ii(w(ι
−
i ))

ℜ
γ
ψ (ιi,0)

]
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fw (ι)−λI

p2;ψ
0+,ι w(ι), ι ∈ J,

(4.1)

where Fw (ι) = f (ι ,w(ι),w(σ(ι)) ,Fw (ι)).
As we can see, the solution to problem (1.1) will be the fixed point of A .

We demonstrate that on Ωγ;ψ , A is a contraction map. Let, w,v ∈Ωγ;ψ . Then for ι ∈ [−r,0], we have:

‖A w−A v‖C = 0. (4.2)

Further, for any ι ∈ J, we have

|(A w)(ι)− (A v)(ι)| ≤ℜ
γ

ψ(ι ,0)

[
m

∑
i=1

∣∣Ii
(
w
(
ι
−
i

))
− Ii

(
v
(
ι
−
i

))∣∣
ℜ

γ

ψ(ιi,0)

]
+

1
Γ(p1 + p2)

∫
ι

0
N p1+p2

ψ (ι ,s) |Fw (s)−Fv (s)|ds

+
|λ |

Γ(p2)

∫
ι

0
N p2

ψ (ι ,s) |w(s)− v(s)|ds,
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where N p
ψ (ι ,s) = ψ ′(s)(ψ(ι)−ψ(s))p, p = p2, p1 + p2.

Using (H1), (H2), and

|Fw(ι)−Fv(ι)| ≤L (ψ(ι)−ψ(0))1−γ{|w(ι)− v(ι)|+ |w(σ(ι))− v(σ(ι))|}+L f |Fw(ι)−Fv(ι)| .

It follows that

|Fw(ι)−Fv(ι)| ≤
L (ψ(ι)−ψ(0))1−γ

1−L f
{|w(ι)− v(ι)|+ |w(σ(ι))− v(σ(ι))|}.

Therefore, we have

|(A w)(ι)− (A v)(ι)|

≤ℜ
γ

ψ(ι ,0)

[
m

∑
i=1

LIi(ψ(ιi)−ψ(0))1−γ
∣∣w(ι−i )− v

(
ι
−
i
)∣∣]

+
L(

1−L f
)

Γ(p1 + p2)

∫
ι

0
N p1+p2

ψ (ι ,s)(ψ(s)−ψ(0))1−γ ×{|w(s)− v(s)|+ |w(σ(s))− v(σ(s))|}ds

+
|λ |

Γ(p2)

∫
ι

0
N p2

ψ (ι ,s) |w(s)− v(s)|ds.

Then

|(ψ(ι)−ψ(0))1−γ ((A w)(ι)− (A v)(ι)) | ≤
m

∑
i=1

LIi(ψ(ιi)−ψ(0))1−γ
∣∣w(ι−i )− v

(
ι
−
i
)∣∣

+
L (ψ(ι)−ψ(0))1−γ(
1−L f

)
Γ(p1 + p2)

∫
ι

0
N p1+p2

ψ (ι ,s)(ψ(s)−ψ(0))1−γ

×{|w(s)− v(s)|+ |w(σ(s))− v(σ(s))|}ds

+
|λ |(ψ(ι)−ψ(0))1−γ

Γ(p2)

∫
ι

0
N p2

ψ (ι ,s)(ψ(s)−ψ(0))γ−1

× (ψ(s)−ψ(0))1−γ |w(s)− v(s)|ds.

Then
|(ψ(ι)−ψ(0))1−γ ((A w)(ι)− (A v)(ι)) |
≤ mLI‖w− v‖PC1−γ;ψ

+
2L (ψ(ι)−ψ(0))1−γ(

1−L f
)

Γ(p1 + p2)
‖w− v‖PC1−γ;ψ

∫
ι

0
N p1+p2

ψ (ι ,s)ds

+
|λ |(ψ(ι)−ψ(0))1−γ

Γ(p2)
‖w− v‖PC1−γ;ψ

∫
ι

0
N p2

ψ (ι ,s)(ψ(s)−ψ(0))γ−1ds

≤ mLI‖w− v‖PC1−γ;ψ +
2L (ψ(ι)−ψ(0))1−γ(
1−L f

)
Γ(p1 + p2 +1)

‖w− v‖PC1−γ;ψ × (ψ(ι)−ψ(0))p1+p2

+
Γ(γ)|λ |(ψ(ι)−ψ(0))1−γ

Γ(p2 + γ)
‖w− v‖PC1−γ;ψ × (ψ(ι)−ψ(0))p2+γ−1

≤

[
mLI +

2L (ψ(b)−ψ(0))1−γ+p1+p2(
1−L f

)
Γ(p1 + p2 +1)

+
Γ(γ)|λ |(ψ(b)−ψ(0))p2

Γ(p2 + γ)

]
‖w− v‖PC1−γ;ψ .

Therefore,

‖A w−A v‖PC1−γ;ψ = sup
ι∈J

∣∣(ψ(ι)−ψ(0))1−γ((A w)(ι)− (A v)(ι))
∣∣≤K ‖w− v‖PC1−γ;ψ . (4.3)

From (4.2) and (4.3), we have

‖A w−A v‖Ωγ;ψ = max
{
‖A w−A v‖C,‖A w−A v‖PC1−γ;ψ

}
≤K max

{
0,‖w− v‖PC1−γ;ψ

}
≤K ‖w− v‖Ωγ;ψ .
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As K < 1, Banach’s fixed-point theorem shows that the operator A has a fixed point, which is the unique solution to problem
(1.1).

Part 2: Now, let us discuss the Ulam-Hyers-Rassias stability.
Take v ∈Ωγ;ψ as the solution to (2.4) and w ∈Ωγ;ψ as the unique solution to the problem:

HD
p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι) = f

(
ι ,w(ι),w(σ(ι)) ,HD

p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι)

)
, ι ∈ (0,b]\{ι1, ι2, . . . , ιm} ,

∆w(ιi) = w
(
ι
+
i
)
−w

(
ι
−
i
)
= Ii

(
w
(
ι
−
i
))

, i = 1,2, . . . ,m,

I
1−γ;ψ
0+,ι w(0) = w0, γ = q+(p1 + p2)(1−q) ,

w(ι) = ϕ(ι), ι ∈ [−r,0].

(4.4)

According to Lemma 3.2, we have

w(ι) =

 ϕ(ι), ι ∈ [−r,0],[
w0

Γ(γ) +∑
m
i=1

Ii(w(ι
−
i ))

ℜ
γ
ψ (ιi,0)

]
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fw (ι)−λI

p2;ψ
0+,ι w(ι), ι ∈ J.

(4.5)

By assuming that v is a solution of (2.4). Hence, based on Remark 2.7, the solution of

HD
p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
v(ι) = f

(
ι ,v(ι),v(σ(ι)) ,HD

p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι)

)
+g(ι), ι ∈ (0,b]\{ι1, ι2, . . . , ιm} ,

∆v(ιi) = Ii
(
v
(
ι
−
i
))

+gi, i = 1,2, . . . ,m,

I
1−γ;ψ
0+,ι v(0) = w0, γ = q+(p1 + p2)(1−q) ,

v(ι) = ϕ(ι), ι ∈ [−r,0].

It can be formulated as follows:

v(ι) =

 ϕ(ι), ι ∈ [−r,0],[
w0

Γ(γ) +∑
m
i=1

Ii(v(ι
−
i ))+gi

ℜ
γ
ψ (ιi,0)

]
ℜ

γ

ψ(ι ,0)+I
p1+p2;ψ
0+,ι Fv (ι)−λI

p2;ψ
0+,ι v(ι)+I

p1+p2;ψ
0+,ι g(ι), ι ∈ J,

(4.6)

where, Fv (ι) = f (ι ,v(ι),v(σ(ι)) ,Fv (ι)).

Now let, w,v ∈Ωγ;ψ . Then for ι ∈ [−r,0], we have:

‖w− v‖C = 0. (4.7)

Further, for any ι ∈ J, we have

|w(ι)− v(ι)| ≤ℜ
γ

ψ(ι ,0)

[
m

∑
i=1

∣∣Ii
(
w
(
ι
−
i

))
− Ii

(
v
(
ι
−
i

))∣∣
ℜ

γ

ψ(ιi,0)

]
+ℜ

γ

ψ(ι ,0)
m

∑
i=1

|gi|
ℜ

γ

ψ(ιi,0)
+I

p1+p2;ψ
0+,ι |g(ι)|

+
1

Γ(p1 + p2)

∫
ι

0
N p1+p2

ψ (ι ,s) |Fw (s)−Fv (s)|ds+
|λ |

Γ(p2)

∫
ι

0
N p2

ψ (ι ,s) |w(s)− v(s)|ds.

Using (H1), (H2), and remark 2.7, we’ve obtained

|(ψ(ι)−ψ(0))1−γ(w(ι)− v(ι))| ≤
m

∑
i=1

LIi(ψ(ιi)−ψ(0))1−γ
∣∣w(ι−i )− v

(
ι
−
i
)∣∣+ m

∑
i=1

εθ(ψ(ιi)−ψ(0))1−γ

+
L (ψ(ι)−ψ(0))1−γ(
1−L f

)
Γ(p1 + p2)

∫
ι

0
N p1+p2

ψ (ι ,s)(ψ(s)−ψ(0))1−γ

×{|w(s)− v(s)|+ |w(σ(s))− v(σ(s))|}ds

+
|λ |(ψ(ι)−ψ(0))1−γ

Γ(p2)

∫
ι

0
N p2

ψ (ι ,s)(ψ(s)−ψ(0))γ−1

× (ψ(s)−ψ(0))1−γ |w(s)− v(s)|ds+(ψ(ι)−ψ(0))1−γ
ελφ φ(ι).
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Then, if M = max
{

m(ψ(b)−ψ(0))1−γ ,λφ (ψ(b)−ψ(0))1−γ
}

, we get

|(ψ(ι)−ψ(0))1−γ(w(ι)− v(ι))| ≤Mε (θ +φ(ι))+
m

∑
i=1

LIi(ψ(ιi)−ψ(0))1−γ
∣∣w(ι−i )− v

(
ι
−
i
)∣∣

+
L (ψ(b)−ψ(0))1−γ(
1−L f

)
Γ(p1 + p2)

∫
ι

0
N p1+p2

ψ (ι ,s)(ψ(s)−ψ(0))1−γ

×{|w(s)− v(s)|+ |w(σ(s))− v(σ(s))|}ds

+
|λ |(ψ(b)−ψ(0))1−γ

Γ(p2)

∫
ι

0
N p2

ψ (ι ,s)(ψ(s)−ψ(0))γ−1

× (ψ(s)−ψ(0))1−γ |w(s)− v(s)|ds.

(4.8)

And now for every z ∈C ([−r,b],R+), we define T : C ([−r,b],R+)→C ([−r,b],R+) as

(T z)(ι) =


0, ι ∈ [−r,0],
Mε (θ +φ(ι))+∑

m
i=1 LIi (z(ιi))

+L (ψ(b)−ψ(0))1−γ

(1−L f )Γ(p1+p2)

∫
ι

0 N p1+p2
ψ (ι ,s)(z(s)+ z(σ(s))ds

+ |λ |(ψ(b)−ψ(0))1−γ

Γ(p2)

∫
ι

0 N p2
ψ (ι ,s)(ψ(s)−ψ(0))γ−1z(s)ds, ι ∈ J.

(4.9)

We show that T is a Picard operator. Let z,w ∈C ([−r,b],R+). Then,

‖T z−T w‖C = 0. (4.10)

Further, for any ι ∈ J, we have

|(T z)(ι)− (T w)(ι)| ≤
m

∑
i=1

LIi

∣∣z(ι−i )−w
(
ι
−
i
)∣∣

+
L (ψ(ι)−ψ(0))1−γ(
1−L f

)
Γ(p1 + p2)

∫
ι

0
N p1+p2

ψ (ι ,s)×{|z(s)−w(s)|+ |z(σ(s))−w(σ(s))|}ds

+
|λ |(ψ(ι)−ψ(0))1−γ

Γ(p2)

∫
ι

0
N p2

ψ (ι ,s)(ψ(s)−ψ(0))γ−1×|z(s)−w(s)|ds.

Then
|(T z)(ι)− (T w)(ι)| ≤mLI‖z−w‖c

+
2L (ψ(ι)−ψ(0))1−γ(

1−L f
)

Γ(p1 + p2)
‖z−w‖c

∫
ι

0
N p1+p2

ψ (ι ,s)ds

+
|λ |(ψ(ι)−ψ(0))1−γ

Γ(p2)
‖z−w‖c

∫
ι

0
N p2

ψ (ι ,s)(ψ(s)−ψ(0))γ−1ds

≤mLI‖z−w‖c +
2L (ψ(ι)−ψ(0))1−γ(
1−L f

)
Γ(p1 + p2 +1)

‖z−w‖c× (ψ(ι)−ψ(0))p1+p2

+
Γ(γ)|λ |(ψ(ι)−ψ(0))1−γ

Γ(p2 + γ)
‖z−w‖c× (ψ(ι)−ψ(0))p2+γ−1

≤

[
mLI +

2L (ψ(b)−ψ(0))1−γ+p1+p2(
1−L f

)
Γ(p1 + p2 +1)

+
Γ(γ)|λ |(ψ(b)−ψ(0))p2

Γ(p2 + γ)

]
‖z−w‖C.

Therefore,

‖T z−T w‖C = sup
ι∈J
|(T z)(ι)− (T w)(ι)| ≤K ‖z−w‖C.
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By K < 1, the operator T is a contraction mapping. According to [26, Theorem 2.1], we obtain that T is Picard operator
and FT = z∗. Then for all ι ∈ [−r,b],

z∗(ι) =Mε (θ +φ(ι))+ ∑
0<ιi<ι

LIiz
∗(ιi)

+
L (ψ(b)−ψ(0))1−γ(
1−L f

)
Γ(p1 + p2)

∫
ι

0
N p1+p2

ψ (ι ,s)× (z∗(s)+ z∗(σ(s))ds

+
|λ |(ψ(b)−ψ(0))1−γ

Γ(p2)

∫
ι

0
N p2

ψ (ι ,s)(ψ(s)−ψ(0))γ−1× z∗(s)ds.

(4.11)

Next, we prove that z∗ is increasing. Take ι1, ι2 ∈ [−r,b] with ι1 < ι2. Then for ι1, ι2 ∈ [−r,0], we have z∗ (ι2)− z∗ (ι1) = 0.
Further, for 0 < ι1 < ι2 ≤ b. Define N1 = mins∈[0,b] (z∗(s)+ z∗(σ(s))) and N2 = mins∈[0,b] z∗(s), we have

z∗ (ι2)− z∗ (ι1) =Mε (θ +φ(ι2))−Mε (θ +φ(ι1))+ ∑
0<ιi<ι2

LIiz
∗(ιi)− ∑

0<ιi<ι1

LIiz
∗(ιi)

+
L (ψ(b)−ψ(0))1−γ(
1−L f

)
Γ(p1 + p2)

(∫
ι2

0
N p1+p2

ψ (ι ,s)(z∗(s)+ z∗(σ(s)))ds

−
∫

ι1

0
N p1+p2

ψ (ι ,s)(z∗(s)+ z∗(σ(s)))ds
)

+
|λ |(ψ(b)−ψ(0))1−γ

Γ(p2)

(∫
ι2

0
N p2

ψ (ι ,s)(ψ(s)−ψ(0))γ−1× z∗(s)ds

−
∫

ι1

0
N p2

ψ (ι ,s)(ψ(s)−ψ(0))γ−1× z∗(s)ds
)

≥Mε (φ(ι2)−φ(ι1))+ ∑
0<ιi<ι2−ι1

LIiz
∗(ιi)+

N1L (ψ(b)−ψ(0))1−γ(
1−L f

)
Γ(p1 + p2)

(∫
ι2

0
N p1+p2

ψ (ι ,s)ds

−
∫ t1

0
N p1+p2

ψ (ι ,s)ds
)

+
N2|λ |(ψ(b)−ψ(0))1−γ

Γ(p2)

(∫
ι2

0
N p2

ψ (ι ,s)(ψ(s)−ψ(0))γ−1ds

−
∫

ι1

0
N p2

ψ (ι ,s)(ψ(s)−ψ(0))γ−1ds
)

≥ ∑
0<ιi<ι2−ι1

LIiz
∗(ιi)+

N1L (ψ(b)−ψ(0))1−γ(
1−L f

)
Γ(p1 + p2 +1)

(
(ψ (ι2)−ψ(0))p1+p2 − (ψ (ι1)−ψ(0))p1+p2

)
+

N2|Γ(γ)λ |(ψ(b)−ψ(0))1−γ

Γ(p2 + γ)

(
(ψ (ι2)−ψ(0))p2+γ−1− (ψ (ι1)−ψ(0))p2+γ−1

)
>0.

Therefore, The operator z∗ is increasing. Since σ(ι)≤ ι ,z∗(σ(ι))≤ z∗(ι), ι ∈ J. By (4.11), we get

z∗(ι)≤Mε (θ +φ(ι))+ ∑
0<ιi<ι

LIiz
∗(ιi)

+
2L (ψ(b)−ψ(0))1−γ(

1−L f
)

Γ(p1 + p2)

∫
ι

0
N p1+p2

ψ (ι ,s)z∗(s)ds

+
|λ |(ψ(b)−ψ(0))1−γ

Γ(p2)

∫
ι

0
N p2

ψ (ι ,s)(ψ(s)−ψ(0))γ−1× z∗(s)ds.

(4.12)
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As 0 < γ < 1, then (ψ(s)−ψ(0))γ−1 < 1. So, (4.12) reduce to

z∗(ι)≤Mε (θ +φ(ι))+ ∑
0<ιi<ι

LIiz
∗(ιi)

+
2L (ψ(b)−ψ(0))1−γ(

1−L f
)

Γ(p1 + p2)

∫
ι

0
N p1+p2

ψ (ι ,s)z∗(s)ds

+
|λ |(ψ(b)−ψ(0))1−γ

Γ(p2)

∫
ι

0
N p2

ψ (ι ,s)z∗(s)ds.

(4.13)

Using lemma 2.11, with

w(ι) = z∗(ι), v(ι) = Mε (θ +φ(ι))

g1(ι) =
2L (ψ(b)−ψ(0))1−γ(

1−L f
)

Γ(p1 + p2)
, g2(ι) =

|λ |(ψ(b)−ψ(0))1−γ

Γ(p2)
, β = LI ,

we obtain

z∗(ι)≤Mε (θ +φ(ι))

×

(
1+LI

[
Ep1+p2

(
2L (ψ(b)−ψ(0))1−γ(

1−L f
) (ψ(ι)−ψ(0))p1+p2

)
+Ep2

(
|λ |(ψ(b)−ψ(0))1−γ(ψ(ι)−ψ(0))p2

)])k

×

[
Ep1+p2

(
2L (ψ(b)−ψ(0))1−γ(

1−L f
) (ψ(ι)−ψ(0))p1+p2

)
+Ep2

(
|λ |(ψ(b)−ψ(0))1−γ(ψ(ι)−ψ(0))p2

)]

≤Mε (θ +φ(ι))×

(
1+LI

[
Ep1+p2

(
2L (ψ(b)−ψ(0))1−γ+p1+p2(

1−L f
) )

+Ep2

(
|λ |(ψ(b)−ψ(0))1−γ+p2

)])k

×

[
Ep1+p2

(
2L (ψ(b)−ψ(0))1−γ+p1+p2(

1−L f
) )

+Ep2

(
|λ |(ψ(b)−ψ(0))1−γ+p2

)]
≤c f ,m,φ ε (θ +φ(ι)) , ι ∈ J,

where

c f ,m,φ =M

(
1+LI

[
Ep1+p2,ψ

(
2L (ψ(b)−ψ(0))1−γ+p1+p2(

1−L f
) )

+Ep2,ψ

(
|λ |(ψ(b)−ψ(0))1−γ+p2

)])k

×

[
Ep1+p2,ψ

(
2L (ψ(b)−ψ(0))1−γ+p1+p2(

1−L f
) )

+Ep2,ψ

(
|λ |(ψ(b)−ψ(0))1−γ+p2

)]
.

Specifically, when z(ι) = (ψ(ι)−ψ(0))1−γ |w(ι)− v(ι)|, using (4.8), we obtain z≤T (z), where the Picard operator T is
increasing. Next, applying Lemma 2.9, we get to z≤ z∗.Therefore, it follows∣∣(ψ(ι)−ψ(0))1−γ(w(ι)− v(ι))

∣∣≤ c f ,m,φ ε(φ(ι)+θ), ι ∈ J. (4.14)

Thus, problem (1.1) is Ulam-Hyers-Rassias stable.

Remark 4.2. As a consequences of theorem 4.1, we can obtain the Ulam–Hyers stability (U-H).
While φ is increasing function for any ι ∈ J, the inequality (4.14) reduce to∣∣(ψ(ι)−ψ(0))1−γ(w(ι)− v(ι))

∣∣≤ c f ,m,φ ε(φ(b)+θ), ι ∈ J.

Therefore ∣∣(ψ(ι)−ψ(0))1−γ(w(ι)− v(ι))
∣∣≤ c f ε, ι ∈ J,

where c f = c f ,m,φ (φ(b)+θ), and problem (1.1) is Ulam-Hyers stable.
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5. Example

Example 5.1. Taking the following problem:



HD
p1,q;ψ
0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι) =

(ψ(ι)−ψ(0))2
(
1+ |w(ι)|+ |w(ι− 1

2 )|
)

30e(ψ(ι)−ψ(0))2+2(|w(ι)|+ |w(ι− 1
2 )|)

+
1

43
(

1+
∣∣∣HDp1,q;ψ

0+,ι

(
HD

p2,q;ψ
0+,ι +λ

)
w(ι)

∣∣∣) , ι ∈ (0,1]\
{

1
2

}
,

I1

(
w
(

1
2

−))
=

1+ |w
(

1
2
−
)
|

11|w
(

1
2
−
)
|
,

I
1−γ;ψ
0+,ι w(0) = 1, γ = β +(p1 + p2)(1−q) ,

w(ι) = 0, ι ∈ [−1,0].

(5.1)

Define f : (0,1]×R3→ R by

f (ι ,w,v,u) =
(ψ(ι)−ψ(0))2 (1+ |w|+ |v|)

30e(ψ(ι)−ψ(0))2+2(|w|+ |v|)
+

1
43(1+ |u|)

,

and I1 : R→ R by

I1(u) =
1+ |u|
11|u|

.

For ι ∈ (0,1], we have

| f (ι ,w1,v1,u1)− f (ι ,w2,v2,u2)|

≤ (ψ(ι)−ψ(0))2

30e(ψ(ι)−ψ(0))2+2

∣∣∣∣1+ |w1|+ |v1|
|w1|+ |v1|

− 1+ |w2|+ |v2|
|w2|+ |v2|

∣∣∣∣+ 1
43

∣∣∣∣ 1
1+ |u1|

− 1
1+ |u2|

∣∣∣∣
≤ (ψ(ι)−ψ(0))2

30e2 (|w1−w2|+ |v1− v2|)+
1

43
|u1−u2|

≤ (ψ(ι)−ψ(0))γ+1

30e2 (ψ(ι)−ψ(0))1−γ (|w1−w2|+ |v1− v2|)+
1
43
|u1−u2|

≤ (ψ(1)−ψ(0))γ+1

30e2 (ψ(ι)−ψ(0))1−γ (|w1−w2|+ |v1− v2|)+
1

43
|u1−u2| .

This implies that f satisfies (H1) with L = (ψ(1)−ψ(0))γ+1

30e2 , and L f =
1
43 .

Also,

|I1(w)− I1(v)|=
1

11

(∣∣∣∣1+ |w||w|
− 1+ |v|
|v|

∣∣∣∣)≤ 1
11
|w− v|.

Therfore, (H2) is satisfied with LI1 = LI =
1
11 .

Now, take p1 =
1
2 , p2 =

1
4 ,q = 1,λ = 1

2 and ψ(ι) = ι2. Then γ = 1, and L = 1
30e2 .

As m = 1, we have K := 1
11 +

2× 1
30e2

(1− 1
43 )Γ( 3

4+1)
+

1
2

Γ( 1
4+1)

= 0,652593 < 1 and (H3) is satisfied.

Furthermore, by selecting φ(ι) = ι2, for any ι ∈ (0,1], we have

Ip1+p2;ψ
0+,ι φ(ι) = I

3
4 ;ι2

0+,ι φ(ι) =
16

21Γ( 3
4 )

ι
7
2 =

16
21Γ( 3

4 )
ι

3
2 φ(ι)≤ 16

21Γ( 3
4 )

φ(ι).

By setting λφ = 16
21Γ( 3

4 )
, we get (H4). So all conditions of theorem 4.1 are satisfied. Hence, (5.1) has a unique solution and is

Ulam-Hyers-Rassias stable.
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6. Conclusion
During this paper, we have examined the existence and uniqueness of a class of fractional implicit ψ-Hilfer Langevin

equations with time delay and impulsive. The obtained results are proven using Banach’s fixed-point theorem. Additionally, the
Ulam-Heyrs-Rassias stability for problem (1.1) is considered via a novel form of generalized Gronwall inequality and Picard
operator theory. Finally, we provide an example to show how the theoretical findings stated previously are valid.
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1. Introduction
In the realm of research, assessing the sensitive characteristics poses a unique challenge. Questions about illegal activities,

stigmatized behaviours, or private beliefs often fall prey to biased responses, fuelled by factors like social desirability or fear of
judgment. This is where the randomized response technique (RRT) emerges as a beacon of hope, offering a robust method to
collect accurate data while preserving the privacy of the respondent. First proposed by Warner [1], RRT is a statistical method
designed to introduce controlled randomness into the response of sensitive questions. Different modifications of Warner’s
[1] original method have been developed and empirically applied to different situations concerning the sensitive data. While
RRT has revolutionized data collection in sensitive surveys, limitations arise when quantitative information is required. To
handle quantitative data, Warner [2] proposed randomised response (RR) model under additive scrambling in which a random
number is added to the response and the response so obtained is known as scrambled response. Pollock and Bek [3] investigated
and compared additive and multiplicative RR models including Greenberg et al. [4] model. Multiplicative RR model was
discussed in detail by Eichhorn and Hayre [5] which was earlier briefly discussed by Pollock and Bek [3]. This contributed to
understanding the statistical implications of applying RRT to quantitative data.

Gupta et al. [6] introduced an optional randomized response technique (ORRT) where the respondents decide themselves
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whether they want to tell the truth (or scramble their true response) depending upon whether the question being asked is
perceived by them as nonsensitive (or sensitive). The proportion of respondents who consider the question sensitive is called
the sensitivity level (usually denoted by ω) of the question. The Gupta et al. [6] model used multiplicative scrambling
as proposed by Eichhorn and Hayre [5] to estimate the mean of a sensitive variable. Gupta et al. [7] introduced additive
scrambling in optional randomised response (ORR) model. Gupta et al. [8] and Mehta et al. [9] further improved the one stage
additive scrambling ORR models by extending it to the two stage and three stage models respectively. Huang [10] used linear
combination of scrambling variables to scramble the response under ORR model. Gupta et al. [11] observed that the ORR
model under additive scrambling performs better than the ORR model under linear combination scrambling. In an ORR model,
there are two parameters of interest: the sensitivity level of the question and prevalence of the sensitive characteristic in the
population. In the above discussed ORR models, split sample approach is used to estimate the mean of sensitive variable and
sensitivity level of the research question. However, the split sample approach requires a larger total sample size for estimation.

Gupta et al. [12] estimated the finite population mean and sensitivity level using ORR model in the presence of nonsensitive
auxiliary information from a single sample. Tiwari and Mehta [13] proposed an improved methodology for ORR models in
which the sensitivity level (ω) was considered to be known and the RRT was applied only for those respondents who considered
the particular question a sensitive one. Tiwari and Mehta [14] also proposed an improved ORRT for quantitative variable.

In ORRT, the approach to estimate the unknown sensitivity level of the main research question by means of using RRT is
called two-questions approach [15]. In this approach, all respondents are asked two separate questions. The question about
sensitivity level of the sensitive question is asked first via randomization device. In this randomization process, the question
is “Is the main research question sensitive?” This question can be denoted by Question no. 1. It can be asked along with an
unrelated innocuous question. The underlying sensitivity level and its variance can be estimated from the sample by using any
binary RRT. The main research question is denoted by Question no. 2, where respondent answer the question using second
randomisation device. The two-questions approach eliminates the need of a split sample to estimate the mean and sensitivity
level separately. The two-questions approach also increases the precision of the estimate of sensitivity level.

Sihm et al. [16] used two-questions approach to estimate the sensitivity level when using unrelated ORRT. Chhabra et al.
[17] extended this method to the multi stage unrelated ORRT. In a similar way, Kalucha et al. [18] used two-questions approach
to estimate sensitivity level and estimated the mean of the sensitive variable by using one stage additive scrambling ORRT
propounded by Gupta et al. [7].

Narjis and Shabir [15] proposed three unrelated ORR models under two-questions approach to simultaneously estimate
the proportion of sensitive attribute and sensitivity level. In addition, Narjis and Shabir [19] also proposed a multi-question
approach to estimate the proportion of sensitive attribute and sensitivity level when an unrelated innocuous attribute is unknown.
Recently, Gupta et al. [20] addressed lack of trust in RRTs by proposing an optional enhanced trust (OET) model for quantitative
RRT. In OET model, respondents can choose between revealing their true answer or using a scrambling technique either
proposed by Warner [2] or Diana and Perry [21] based on their trust in the respective RR model. The OET model introduces
three unknowns: mean of sensitive variable, sensitivity level (ω), and trust level (A).

Azeem et al. [22] simplify the OET model by assuming sensitivity level and trust level to be known. However, it is
imperative to acknowledge the inherent limitation of this assumption as the sensitivity level and trust level are rarely, if ever,
truly known. For a comprehensive summary of RRT, one may refer to Fox and Tracy [23], Chaudhury et al. [24], and Le et al.
[25].

There are several models to scramble the quantitative response in RRT such as additive scrambling, multiplicative scrambling,
linear combination of scrambling variables etc. However, in this paper we restrict ourselves to additive scrambling in ORRT. In
ORR models under additive scrambling in two-stage [8] and three-stage [9], variance of the estimate of sensitivity level inflates
as the second stage and third stage probability increases. In addition, these two models used split-sample approach to estimate
the prevalence of sensitive characteristics and the sensitivity level. This negatively impacts the estimation of sensitivity level
and requires a larger total sample size.

To overcome these limitations in two-stage and three-stage ORR models, in this paper, we propose two improved two-
stage and three-stage ORR models under additive scrambling. The proposed models estimate the prevalence of the sensitive
characteristic and the sensitivity level of the main research question from two different sets of responses from the same sample.
The proposed models are compared with the existing ORR models using additive scrambling. In Section 2, the ORR models
using split sample approach discussed by Gupta et al. [8] and Mehta et al. [9] and ORR model using two-questions approach
given by Kalucha et al. [18] are discussed in brief. Section 3 deals with the proposed improved two-stage and three stage ORR
models using additive scrambling. In Section 4, the efficiency of the proposed ORR models is compared with the existing ORR
models using a numerical study. Privacy protection of the proposed ORR models is discussed in Section 5, followed by the
conclusion of the study in Section 6.
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2. Brief Description of Quantitative ORRT

Let µ and σ2 be the unknown mean and variance of the sensitive variable X and S is a scrambling variable (independent of
X) with known mean θ and known variance σ2

s . Let ω be the unknown sensitivity level of the survey question in the population.
Under these assumptions, a brief discussion of Gupta et al. [8], Mehta et al. [9] and Kalucha et al. [18] models are as follows:

2.1 The split sample spproach - Gupta et al. and Mehta et al. models
In Gupta et al. [8] two stage ORR model, a known proportion (T ) of the respondents provide truthful response to the

sensitive question. From the remaining known proportion of respondents (1− T ), an unknown proportion (ω) provides
scrambled responses and the rest unknown proportion (1−ω) provide truthful responses to the question. To estimate the
mean of sensitive variable (X) and sensitivity level (ω), the sample size n is split into two sub-samples with sizes n1 and n2,
respectively. Under this model, reported responses (Zi; i = 1,2) in the two sub-samples are given by,

Zi =

{
X with probability T +(1−T )(1−ω),

(X +Si) with probability (1−T )ω,
i = 1,2

Here, Si, i = 1, 2, are independent scrambling variables, independent of X . The unbiased estimators of the mean of sensitive
variable and sensitivity level respectively from the sub-samples are given by,

µ̂G =
θ1z̄2−θ2z̄1

θ1−θ2
and ω̂G =

z̄1− z̄2

(1−T )(θ1−θ2)
, θ1 6= θ2.

Here, z̄1 and z̄2 respectively are the sample mean of reported responses in the two sub-samples. The variances of these estimators
are given by,

Var
(
µ̂G
)
=

1

(θ1−θ2)
2

(
θ

2
2

σ2
Z1

n1
+θ

2
1

σ2
Z2

n2

)
and Var

(
ω̂G
)
=

1

(1−T )2 (θ1−θ2)
2

(
σ2

Z1

n1
+

σ2
Z2

n2

)
,

where σ2
Zi
= σ2 +(1−T )ωσ2

Si
+(1−T )ω {1− (1−T )ω}θ 2

i ; i = 1, 2.

Mehta et al. [9] extended the two-stage ORR model of Gupta et al. [8] to three stages. In three-stage ORRT, in each sub
sample a fixed predetermined proportion (T ) of respondents is instructed to tell the truth and a fixed predetermined proportion
(F) of respondents is instructed to scramble their response. The remaining proportion (1−T −F) of respondents have an
option of scrambling their responses additively if they consider the question to be sensitive, or else they can report their true
response X . For F = 0, the model is same as the Gupta et al. [8] model. For both T and F equal to zero, the model is same as
the Gupta et al. [7] model. The reported response in the sub-samples is given by,

Zi =

{
X with probability T +(1−T −F)(1−ω),

(X +Si) with probability F +(1−T −F)ω,
i = 1,2.

The unbiased estimators of the mean of sensitive variable and sensitivity level from the sub-samples are given by,

µ̂M =
θ1z̄2−θ2z̄1

θ1−θ2
and ω̂M =

1
(1−T −F)

(
z̄1− z̄2

(θ1−θ2)
−F

)
, θ1 6= θ2, T +F 6= 1.

Here, z̄1 and z̄2, respectively are the sample mean of reported responses in the two sub-samples. The variances of these
estimators are given by,

Var
(
µ̂M
)
=

1

(θ1−θ2)
2

(
θ

2
2

σ2
Z1

n1
+θ

2
1

σ2
Z2

n2

)

and

Var
(
ω̂M
)
=

1

(1−T −F)2 (θ1−θ2)
2

(
σ2

Z1

n1
+

σ2
Z2

n2

)
.

Here for i = 1, 2, σ2
Zi
= σ2 +{F +(1−T −F)ω}σ2

Si
+{F +(1−T −F)ω} [1−{F +(1−T −F)ω}]θ 2

i .
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2.2 The two-questions approach- Kalucha et al. model
In this model, from sample of size n, a proportion (1−ω) of respondents truthfully answer the sensitive question (main

research question) directly while the remaining proportion (ω) scramble their responses additively. Here, the underlying
sensitivity level ω and its variance are estimated by using the Greenberg et al. [26] model. Hence, the reported quantitative
response is given by,

Z =

{
X with probability (1−ω),

(X +S) with probability ω,

Here, S is scrambling variable independent of X . The unbiased estimators of the mean of sensitive variable and sensitivity
level respectively from the sample are given by,

µ̂K = z̄− ω̂Kθ and ω̂K =
P̂y− (1−P)π

P
.

Here, z̄ is the sample mean of reported quantitative responses in the sample obtained by asking main research question, P̂y is
the proportion of ‘yes’ responses in the sample from first question (viz., Is the main research question sensitive?), P and π

respectively are design parameters of Greenberg et al. [26] model to estimate sensitivity level ω . The variances of estimators
proposed by Kalucha et al. [18] are given by,

Var
(
µ̂K
)
=

σ2
Z

n
+θ

2 Py (1−Py)

nP2 and Var
(
ω̂K
)
=

Py (1−Py)

nP2 ,

where σ2
Z = σ2 +ωσ2

S +ω(1−ω)θ 2 and Py = Pω +(1−P)π .

3. The Proposed Two-Stage and Three-Stage Improved ORR Models

In the proposed two-stage and three-stage models, all respondents are asked two separate questions. The question to
estimate the sensitivity level is asked first via randomization device 1. In this randomization process, the question is “Is the
main research question sensitive?” It is asked along with an unrelated innocuous question. The underlying sensitivity level ω

and its variance are estimated by using the Greenberg et al. [26] model. Let π be the known probability of the binary innocuous
unrelated question and P be the known probability of the respondent selecting Question no. 1. The probability of getting “yes”
response to the Question no. 1 is Py = Pω +(1−P)π. Solving for ω , we get,

ω =
Py− (1−P)π

P
.

Thus, the unbiased estimate of ω , as per the Greenberg et al. [26] model is given by,

ω̂ =
P̂y− (1−P)π

P
, (3.1)

where P̂y is the proportion of ‘yes’ responses in the sample. The variance of the estimator is given by,

Var (ω̂) =
Py(1−Py)

nP2 .

3.1 Two stage improved ORR model
In the same sample, to answer Question no. 2 (main research question), a known proportion (T ) of the respondents

provide truthful response. From the remaining known proportion of respondents (1−T ), an unknown proportion (ω) provides
scrambled responses and the rest unknown proportion (1−ω) provide truthful responses to the main research question.
Therefore, the reported quantitative response Z to the main research question according to two-stage ORR model is given by,

Z =

{
X with probability T +(1−T )(1−ω),

(X +S) with probability (1−T )ω,
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The mean and variance of Z respectively are given by,

E (Z) = {T +(1−T ) (1−ω)}E (X)+{(1−T ) ω}E(X +S)

E (Z) = E (X)+{(1−T ) ω}E (S)

E (Z) = µ +ω (1−T )θ (3.2)

and

Var (Z) = σ
2
Z = E

(
Z2)−{E (Z)}2

= {T +(1−T ) (1−ω)}E
(
X2)+{(1−T )ω}E(X +S)2−{E (Z)}2

Var (Z) = σ
2 +(1−T )ωσ

2
S +(1−T )ω {1− (1−T )ω}θ

2.

From equation (3.2), the unbiased estimator of µ under this model (denoted by µ̂1) is given by,

µ̂1 = z̄− (1−T )θω̂,

here z̄ is sample mean of reported responses and ω̂ is an unbiased estimator of ω given in equation (3.1). The variance of the
estimator µ̂1 is given by,

Var
(
µ̂1
)
=Var (z̄)+(1−T )2

θ
2Var(ω̂)

Var
(
µ̂1
)
=

σ2
Z

n
+θ

2(1−T )2 Py (1−Py)

nP2

3.2 Three stage improved ORR model
In three stage model, to answer Question no. 2 (main research question) in the same sample, a fixed predetermined

proportion (T ) of respondents is instructed to tell the truth and a fixed predetermined proportion (F) of respondents is instructed
to scramble their response. The remaining proportion (1−T −F) of respondents have an option of scrambling their responses
additively if they consider the question to be sensitive, else they can report their true response X . Thus, the reported quantitative
response Z to the main research question according to three-stage ORR model is given by,

Z =

{
X with probability T +(1−T −F)(1−ω),

(X +S) with probability F +(1−T −F)ω,

The mean and variance of Z are given by,

E (Z) = {T +(1−T −F)(1−ω)}E (X)+{F +(1−T −F)ω}E(X +S)

E (Z) = E (X)+{F +(1−T −F)ω}E (S)

E (Z) = µ +{F +(1−T −F)ω}θ (3.3)

and

Var (Z) = σ
2
Z = {T +(1−T −F)(1−ω)}E

(
X2)+{F +(1−T −F)ω}E(X +S)2−{E (Z)}2

σ
2
Z = σ

2 +{F +(1−T −F)ω}σ
2
s +{F +(1−T −F)ω} [1−{F +(1−T −F)ω}]θ 2.

From equation (3.3), the unbiased estimator of µ under this model (denoted by µ̂2 ) is given by,

µ̂2 = z̄− (1−T −F)θω̂−Fθ ,

here z̄ is sample mean of reported responses and ω̂ is an unbiased estimator of ω given in equation (3.1). The variance of the
estimator µ̂2 is given by,

Var
(
µ̂2
)
=Var (z̄)+(1−T −F)2

θ
2Var(ω̂)

Var
(
µ̂2
)
=

σ2
Z

n
+θ

2(1−T −F)2 Py (1−Py)

nP2
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Table 1. PRE of proposed estimators of mean (µ) w.r.t Gupta et al. [8][G], Mehta et al. [9][M] and Kalucha et al. [18][K]
estimators. (n = 1000, n1 = n2 = 500, X ∼ Poisson (4) , S1 ∼ Poisson (2) , S2 ∼ Poisson (5) , P = 0.70, π = 0.25).

ω T F PRE (µ̂1, µ̂G) PRE (µ̂1, µ̂K) PRE (µ̂2, µ̂G) PRE (µ̂2, µ̂M) PRE (µ̂2, µ̂K)
0.70 0.55 0.30 682.58 139.78 692.00 735.31 141.71
0.70 0.45 0.40 668.72 130.40 698.43 738.94 136.19
0.70 0.35 0.50 650.07 122.18 706.43 737.56 132.77
0.70 0.25 0.60 627.47 114.91 716.20 731.47 131.16
0.70 0.15 0.70 601.61 108.45 728.04 720.62 131.25
0.70 0.05 0.80 573.01 102.67 742.43 704.57 133.03
0.80 0.55 0.30 690.78 134.98 710.57 736.52 138.84
0.80 0.45 0.40 676.82 126.31 716.55 739.36 133.73
0.80 0.35 0.50 657.52 118.93 722.25 737.25 130.64
0.80 0.25 0.60 633.67 112.57 727.91 730.45 129.31
0.80 0.15 0.70 605.82 107.04 733.73 718.85 129.64
0.80 0.05 0.80 574.41 102.20 739.95 701.96 131.65
0.90 0.55 0.30 699.41 128.44 726.29 737.83 133.38
0.90 0.45 0.40 685.60 120.82 730.55 739.87 128.75
0.90 0.35 0.50 665.87 114.57 732.41 737.04 126.02
0.90 0.25 0.60 640.83 109.40 732.08 729.53 124.98
0.90 0.15 0.70 610.88 105.11 729.60 717.17 125.54
0.90 0.05 0.80 576.21 101.55 724.85 699.42 127.74

4. Efficiency Comparison
The efficiency of the proposed estimators with respect to the estimators suggested by Gupta et al. [8] [G], Mehta et al. [9]

[M] and Kalucha et al. [18] [K] is numerically established using the following formula of percent relative efficiency:

PRE (τ̂i, τ̂ j) =
Var (τ̂ j)

Var (τ̂i)
×100; τ = µ̂, ω̂; i = 1,2; j = G,M,K

The PRE of the proposed estimators has been computed at various values of model parameters. The results of the numerical
study are illustrated in the Table 1 and Table 2. For the numerical analysis, we used distribution of sensitive variable and
scrambling variable similar to what is used in Mehta et al. [9]. The distribution of S1 is used for single sample in proposed
ORR models. Table 1 illustrates the PRE of proposed estimator µ̂i, (i = 1,2) of mean (µ) w.r.t the estimators suggested by
Gupta et al. [8], Mehta et al. [9] and Kalucha et al. [18].

It is observed from Table 1 that all the PREs corresponding to the proposed estimators for the mean of sensitive variable,
under two-stage and three-stage ORR models are greater than 100. The results indicate that the proposed two-stage and three
stage ORR models under two-questions approach are more efficient than ORR models of Gupta et al. [8] and Mehta et al. [9]
under split sample approach. Moreover, the proposed two-stage and three-stage ORR models under two questions approach
performs better than the one stage ORR model under two-questions approach as suggested by Kalucha et al. [18] for all values
of the model parameters. Moreover, it is seen from Table 1 that the proposed three-stage ORR model performs much better than
the two-stage and one-stage ORR models under two-questions approach for estimating the mean of sensitive variable. The main
focus of the present study is to check whether the estimation of sensitivity level improved under proposed models or not. In this
regard, the results concerning the PREs of estimators under proposed models for sensitivity level are demonstrated in Table 2.

It is observed from Table 2 that while comparing with the Gupta et al. [8] and Mehta et al. [9] models, the PRE for the
estimators of sensitivity level for the proposed two-stage and three-stage ORR models are significantly higher than 100. A
large gain in PRE is observed for proposed ORR models under two-questions approach in comparison to the two-stage and
three-stage ORR models under split-sample approach due to the reason that the variance of estimate of sensitivity level inflates
as the second stage and third stage probability increases in split samples. However, the two-questions approach used in Kalucha
et al. [18] ORR model and in proposed two-stage and three-stage ORR models yields same precision to estimate the sensitivity
level but the proposed two-stage and three-stage ORR models also improved the precision of estimate of the mean of sensitive
variable under various practical situations (see, Table 1). Hence, the proposed two-stage and three-stage ORR models under
two questions approach outperforms the Gupta et al. [8] and Mehta et al. [9] ORR models under split sample approach and
Kalucha et al. [18] ORR model under two-questions approach.
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Table 2. PRE of proposed estimators of sensitivity level (ω) w.r.t Gupta et al. [8][G], Mehta et al. [9][M] and Kalucha et al.
[18][K] estimators. (n = 1000, n1 = n2 = 500, X ∼ Poisson (4) , S1 ∼ Poisson (2) , S2 ∼ Poisson (5) , P = 0.70, π = 0.25).

ω T F PRE (ω̂, ω̂G) PRE (ω̂, ω̂M) PRE (ω̂, ω̂K)
0.70 0.55 0.30 3601.77 32415.93 100.00
0.70 0.45 0.40 2572.06 34579.95 100.00
0.70 0.35 0.50 1926.98 36184.35 100.00
0.70 0.25 0.60 1489.17 37229.15 100.00
0.70 0.15 0.70 1174.49 37714.33 100.00
0.80 0.55 0.30 3990.81 35917.27 100.00
0.80 0.45 0.40 2830.57 38055.40 100.00
0.80 0.35 0.50 2099.21 39418.46 100.00
0.80 0.25 0.60 1600.26 40006.45 100.00
0.80 0.15 0.70 1240.05 39819.36 100.00
0.90 0.55 0.30 4608.24 41474.14 100.00
0.90 0.45 0.40 3239.07 43547.47 100.00
0.90 0.35 0.50 2371.29 44527.59 100.00
0.90 0.25 0.60 1776.58 44414.50 100.00
0.90 0.15 0.70 1345.58 43208.20 100.00

5. Privacy Protection
The aspect of privacy protection of respondents is an integral part of the RRT. We examine this aspect for the proposed ORR

models. Lanke [27], Yan et al. [28] and Giordano and Perri [29] have discussed this issue in detail. Lanke [27] and Giordano
and Perri [29] devised a privacy measure to assess the privacy protection of binary RRTs while Yan et al. [28] derived a privacy
measure for the quantitative RRTs. Yan et al. [28] defined the measure of privacy protection as ∇ = E (Z−X)2 where X is the
true response of the sensitive variable and Z is the reported response. For a given model, the larger the value of ∇, the larger the
privacy provided by the model.

The privacy measure for one-stage additive scrambling ORR model is given by ∇1 =
(
θ 2 +σ2

S

)
ω and for two-stage additive

scrambling ORR model it is given by ∇2 =
(
θ 2 +σ2

S

)
ω (1−T ). Thus, comparing ∇1 and ∇2, it is observed that for same

precision Gupta et al. [7] model (which is used by Kalucha et al. [18] under two questions approach) is more protective than
Gupta et al. [8] model (proposed two-stage improved ORR model). This shows that the proposed two stage ORR model with
two-questions approach may be made more protective as compared to Kalucha et al. [18] model with two questions approach,
but at the cost of precision. In fact, it is a trade-off between the efficiency and privacy protection. That is, we can have highly
efficient estimator by compromising on privacy. Similarly, we can build a more protective model by compromising on the
efficiency.

Hussain and Al-Zehrani [30] discussed that Gupta et al. [7] one-stage model is more protective compared to Gupta et al. [8]
two-stage model and they argued that Gupta et al. [7] model remain more protective among all other existing ORR models
under additive scrambling. This argument is not true in case of Mehta et al. [9] three-stage ORR model. In case of three-stage
ORR model due to Mehta et al. [9], the reported response is given by,

Z =

{
X with probability T +(1−T −F)(1−ω),

(X +S) with probability F +(1−T −F)ω,

then

Z−X =

{
0 with probability T +(1−T −F)(1−ω),

S with probability F +(1−T −F)ω,

Therefore, the privacy measure in case of the Mehta et al. [9] model is given by,

∇3 = E (Z−X)2 = {F +(1−T −F)ω}E(S2) = {F +(1−T −F)ω}
(
θ

2 +σ
2
S
)

The privacy comparison of the proposed three-stage ORR model with one-stage and two-stage ORR models can be summarised
in the following theorems.

Theorem 5.1. Three stage ORRT with two questions approach offers more privacy than one stage ORRT with two-questions
approach if, F (1−ω)> T ω .
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Proof. Considering the difference of the privacy measures of the models, we observe

∇3−∇1 =
(
θ

2 +σ
2
S
)
{F +(1−T −F)ω}−

(
θ

2 +σ
2
S
)

ω

=
(
θ

2 +σ
2
S
)
(F−Fω−T ω)

=
(
θ

2 +σ
2
S
)
{F(1−ω)−T ω}

For ∇3−∇1 > 0, we get F (1−ω)> T ω . Hence the theorem.

Theorem 5.2. Three stage ORRT with two-questions approach always offers more privacy than two stage ORRT with two-
questions approach.

Proof. Considering the difference of the privacy measures of the models, we observe

∇3−∇2 =
(
θ

2 +σ
2
S
)
{F +(1−T −F)ω}−

(
θ

2 +σ
2
S
)

ω(1−T )

=
(
θ

2 +σ
2
S
)
(F−Fω)

For ∇3−∇2 > 0, we get F > Fω which is always true. This proves the theorem.

The above results establish the superiority of the proposed three-stage improved ORR model. Hence, our two-questions
approach in three-stage ORR model is more protective in comparison to Gupta et al. [8] and Kalucha et al. [18] ORR models.
Numerically, from Table 1 it can be observed that for the suitable choice of parameters, the proposed three stage ORR model
with two-questions approach performs better in terms of efficiency and at the same time protect the privacy of respondents more
than the existing models. For example, when ω = 0.80 taking T = 0.15 and F = 0.70, the proposed three-stage ORR model
has greater precision and the parameter values also satisfy the conditions under Theorem 5.1 and Theorem 5.2. Thus, it may be
concluded that if the parameters are chosen carefully, the three-stage quantitative ORR model with two questions approach
offers better efficiency and more privacy than the Gupta et al. [8], Mehta et al. [9] and Kalucha et al. [18] ORR models.

6. Conclusion
Using two-questions approach, improved two-stage and three-stage ORR models for quantitative variables have been

proposed and their properties are discussed. It is observed from the numerical comparisons that the proposed two-stage
and three-stage ORR models using two-questions approach are found to be more efficient as compared to the two-stage and
three-stage ORR models using the usual split-sample approach. It is also observed that proposed ORR models can be made
more efficient than the existing ORR models by choosing appropriate design parameters. It is also found that the proposed
three-stage ORR model under two-questions approach offers more privacy than one-stage and two-stage ORR models.

In addition, the proposed three-stage ORR model using two-questions approach with suitable choices of design parameters
performs better than the two-stage and one-stage ORR models and provides more privacy as compared to one stage ORRT
using two-questions approach. It is found that there is a significant gain in precision under the two-questions approach to
estimate the sensitivity level. Moreover, the precision of estimate of sensitivity level can also be increased by using forced RRT
or two-stage RRT.

On the basis of our study, we may conclude that, the proposed three-stage ORR model under the two-questions approach
stands out as a particularly valuable tool for surveys that grapple with highly sensitive issues. This model may be highly useful
for data collection in areas where respondents might be reluctant to answer truthfully due to fear of judgment or social stigma.
This model may be quite relevant in research on illegal activities, stigmatized health conditions, or unpopular opinions. Thus, it
may be recommended that to estimate the mean of sensitive variable along with the sensitivity level in a survey concerning
sensitive information, the proposed three stage ORR model under two-questions approach is better choice among other existing
ORR models.
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Abstract
A mathematical model based on a discrete newborn set is proposed to describe the evolution of a sex-age-
structured population, taking into account the temporary pair of sexes, infinite ranges of reproductive age of
sexes, and maternal care of offspring. Pair formation is modeled by a weighted harmonic mean type function.
The model is based on the concept of density of families composed of mothers with their newborns. All individuals
are divided into the pre-reproductive and reproductive age groups. Individuals of the pre-reproductive class are
divided into the newborn and teenager groups. Newborns are under maternal care while the teenagers can live
without maternal care but cannot mate. Females of the reproductive age group are divided into singles and those
who care for their offspring. The model is composed of a coupled system of integro-partial differential equations.
Sufficient conditions for the existence of a one-parameter class of separable solutions of this model are found in
the case of stationary vital rates.

Keywords: Age-sex-structured population models, Population models with parental care, Two sex population
models
2010 AMS: 35A69, 35B09, 35F31, 35F55

1Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania, vladas.skakauskas@mif.vu.lt,
ORCID: 0009-0007-4429-9488
Received: 14 Februrary 2024, Accepted: 29 June 2024, Available online: 30 June 2024
How to cite this article: V. Skakauskas, A one-parameter class of separable solutions for an age-sex-structured population model with an
infinite range of reproductive ages, a discrete set of offspring, and maternal care, Commun. Adv. Math. Sci., 7(2) (2024), 114-124.

1. Introduction
The purpose of this work is to analyze a mathematical model for a spatially homogeneous population structured by age

and sex taking into account temporary (only for the mating period) pairs of sexes, infinite reproductive age ranges of sexes, a
discrete set of offspring, and maternal care of them.

In mathematical biology, the Sharpe-Lotka-McKendrick [1], Fredrickson [2], Hoppensteadt-Staroverov [3], [4], and Hadeler
[5] models are well known. The first of them is usually used for the evolution description of the age-structured asexual
populations. The model [2] describes two-sex age-structured populations with temporary pairs of sexes. The Hoppensteadt–
Staroverov model and its Hadeler modification including a maturation period describe the evolution of age-structured two-sex
populations with permanent pairs of sexes. The existence of the separable solutions to model [3], [4], [5] is studied in [6]
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and [7].
But, all these models do not address the child care phenomenon which is native to many species of mammals and birds.

Birds and some species of mammals care for their offspring in pairs. In populations of some species of mammals and fishes
only the mother cares for her offspring. Several models (see [8]–[12] and literature there) were proposed for description of
child care in two-sex populations with temporary and permanent pairs of sexes. In the first case ([9]), only the mother cares for
her offspring. In the second case ([8], [10]-[12]), both parents take care of offspring. Models [8], [10], and[11] are based on the
idea of the newborn density which is described by a corresponding PDE. However, a problem arises when describing spatially
distributed populations using models of this type, because the equations describing the movement of newborns do not guarantee
that they follow the mother or both parents. To overcome this problem, some models have been proposed based on a discrete
set of newborns and density of the family (mother-newborns [9] or both parents-newborns [12]). In addition to child care, work
[9] takes into account the pregnancy of females. It is also assumed that the reproductive age intervals of males and females in
model [9] are finite. To the best of our knowledge, there has been no work in the last decade that has examined the dynamics of
the caregiver population.

In the present paper, we revise model [9] by dropping the Environmental pressure and female’s pregnancy and contrary
to model [9] assume that the age reproductive intervals of both parents are infinite. This is the novelty of the model under
consideration. As in [9], all individuals are divided into pre-reproductive and reproductive age groups. Individuals of pre-
reproductive class are divided into the newborn and teenager groups. Newborns are under maternal care while the teenagers can
live without maternal care but cannot mate. Individuals of the reproductive age class are divided into singles and those who
care for their offspring. The goal of this paper is to find sufficient conditions for the existence of separable solutions of the
proposed model in the case of stationary vital rates.

The plan of this work is the following: In Section 2, the basic notions are given. In Section 3, we describe the model.
Separable solutions are studied in section 4. Some concluding remarks in section 5 conclude the paper.

2. Notations
The following notions are used in this paper:
T , τi∗: child care and maturation period, respectively (i = 1 for males, i = 2 for females);
ui(t,τi): density at time t of individuals of age τi (τi ∈ (T,τi∗) for juveniles, τi ∈ (τi∗,∞) for adult individuals, i = 1 for

males, i = 2 for females);
u2k1k2(t,τ1,τ2,τ3): density at time t of females aged τ2 who take care of k1 sons and k2 daughters of age τ3, born from

fathers of age τ1;
νi(t,τi): mortality at time t of individuals aged τi (i = 1 for males, i = 2 for females);
ν2k1k2(t,τ1,τ2,τ3): mortality at moment t of mothers aged τ2 caring for k1 sons and k2 daughters of age τ3, born from

fathers of age τ1;
ν2k1k2;s1s2(t,τ1,τ2,τ3): mortality at time t of k1 − s1 sons and k2 − s2 daughters of age τ3, born from fathers of age τ1 and

who are under care of mothers aged τ2;
pi(t,τi)ui(t,τi); density of individuals of age τi who wish to mate at time t (i = 1 for males, i = 2 for females);
u0

i (τi): initial density of individuals aged τi (i = 1 for males, i = 2 for females);
u0

2k1k2
(τ1,τ2,τ3): initial density of females aged τ2 who take care of k1 sons and k2 daughters aged τ3;

|k|= k1 + k2, |s|= s1 + s2 with integer valued k1,k2,s1,s2 where |k|, |s|= 0,1, . . . ,n;
n
∑

|k|=1
ak1k2 =

n−1
∑

k1=0

n−k1
∑

k2=1
ak1k2 ;

p(t,τ1,τ2)α2k1k2(t,τ1,τ2)dt: probability to produce k1 sons and k2 daughters in the time interval [t, t +dt] by a temporal
pair formed of a male aged τ1and female of age τ2;

pk1k2 = p1 p2 pα2k1k2 .
[u2(t,τ)]: jump discontinuity of function u2 at line τ2 = τ .

3. The Model
In this section, we present a deterministic model to describe the evolution of a population structured by sex and age. We

take into account temporary pairs of sexes, a discrete set of offspring, and maternal care for them. By temporary pairs, we mean
pairs that exist during the mating period, duration of which is not taken into account. We use a weighted harmonic mean pair
formation function and assume that when a mother dies all offspring under her care die. Using the balance law, we derive the
following equations for the dynamic description of a population with a discrete set of offspring:
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
∂tu1 +∂τ1u1 +ν1u1 = 0 in (0,∞)× (T,∞),

u1|τ1=T =
∞∫

τ1∗
dτ1

∞∫
τ2∗+T

n
∑

|k|=1
k1u2k1k2 |τ3=T dτ2 in [0,∞),

u1|t=0 = u0
1 in [T,∞),

(3.1)



∂tu2 +∂τ2u2 +ν2u2 = Su
2,

u2|τ2=T =
∞∫

τ1∗
dτ1

∞∫
τ2∗+T

n
∑

|k|=1
k2u2k1k2 |τ3=T dτ2 in [0,∞),

[u2(t,τ)] = 0 in [0,∞), τ = τ2∗,τ2∗+T,
u2|t=0 = u0

2 in [T,∞)

(3.2)

where

Su
2 =



0 in (0,∞)× (T,τ2∗),
n
∑

|k|=0

∞∫
τ1∗

dτ1

(
τ2−τ2∗∫

0
ν2k1k2;00u2k1k2 dτ3 −u2k1k2 |τ3=0

)
in (0,∞)× (τ2∗,τ2∗+T ),

n
∑

|k|=0

∞∫
τ1∗

dτ1

(
T∫
0

ν2k1k2;00u2k1k2 dτ3 +u2k1k2 |τ3=T −u2k1k2 |τ3=0

)
in (0,∞)× (τ2∗+T,∞),



∂tu2k1k2 +
2
∑
j=1

∂τ j u2k1k2 +
(

ν2k1k2 +
|k|−1
∑

|s|=0
ν2k1k2;s1s2

)
u2k1k2 = Su

2k1k2
in (0,∞)× [τ1∗,∞)× (τ2∗+ τ3,∞)× (0,T ),

u2k1k2 |τ3=0 =
pk1k2u1u2

2
∑
j=1

∞∫
τ j∗

p ju j dτ j

in (0,∞)× [τ1∗,∞)× (τ2∗,∞),

u2k1k2 |t=0 = u0
2k1k2

in [τ1∗,∞)× [τ2∗+ τ3,∞)× [0,T ]

(3.3)

where

Su
2k1k2

=

0, |k|= n,
n
∑

|s|=|k|+1
ν2s1s2;k1k2u2s1s2 , |k|= n−1,n−2, . . . ,1.

We add to this system the following compatibility conditions:

u0
i |τi=T =

∞∫
τ1∗

dτ1

∞∫
τ2∗+T

n

∑
|k|=1

kiu0
2k1k2

|τ3=T dτ2, i = 1,2,

u0
2k1k2

|τ3=0 =
p2k1k2 |t=0u0

1u0
2

2
∑
j=1

p j|t=0u0
j dτ j

in [τ1∗,∞)× [τ2∗,∞).

4. Separable Solutions
In this section, we study system (3.1)–(3.3) with the vital rates p, p1, p2, ν1, ν2, ν2k1k2 , ν2k1k2;s1s2 , α2k1k2 independent of

time t and look for solutions of the form

ui(t,τi) = exp{λ t}wi(τi),

wi(τi) = aivi(τi), vi(T ) = 1, i = 1,2,
u2k1k2 = exp{λ t}w2k1k2 ,

w2k1k2 = a1a2e−λτ3v1(τ1)v2(τ2 − τ3)v2k1k2(τ1,τ2,τ3)/α, |k|= 1,2, . . . ,n,
α = a1

∫
∞

τ1∗
p1v1 dτ1 +a2

∫
∞

τ2∗
p2v2 dτ2

(4.1)
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where constants λ , a1 = w1(T ), a2 = w2(T ), and functions vi, v2k1k2 are to be determined. Set:

yi = ai/α , ||vi||=
∞∫

τi∗
vi dτi, i = 1,2, γ =

n
∑

|k|=1
p2k1k2 , P =

∞∫
τ1∗

γ v1 dτ1,

l2 = ν2 +λ + y1P, l2k1k2 = ν2k1k2 +
|k|−1
∑

|s|=0
ν2k1k2;s1s2 , |k|= 1, . . . ,n,

r =
n
∑

|k|=1
v2k1k2 |τ3=T , R =

∞∫
τ1∗

r v1 dτ1, q =
n
∑

|k|=1
ν2k1k2;00 v2k1k2 , Q =

∞∫
τ1∗

qv1 dτ1,

βi(x) =
∞∫

τ1∗
v1(τ1)

n
∑

|k|=1
kiv2k1k2(τ1,x+T,T )dτ1, i = 1,2.

Substituting functions (4.1) into system (3.1)–(3.3) and performing calculations, we get the following equations:
v′1 +(ν1 +λ )v1 = 0 in (T,∞), v1(T ) = 1,

1 = y2e−λT
∞∫

τ2∗
v2(x)β1(x)dx,

(4.2)


v′2 +(ν2 +λ )v2 = Sv

2, v2(T ) = 1, [u2(τ)] = 0, τ = τ2∗,τ2∗+T,

1 = y1e−λT
∞∫

τ2∗
v2(x)β2(x)dx,

(4.3)

where

Sv
2 =



0 in (T,τ2∗),

y1

(
τ2−τ2∗∫

0
v2(τ2 − τ3)Q(τ2,τ3)e−λτ3 dτ3 − v2(τ2)P(τ2)

)
in (τ2∗,τ2∗+T ),

y1

(
T∫
0

v2(τ2 − τ3)Q(τ2,τ3)e−λτ3 dτ3 + e−λT v2(τ2 −T )R(τ2)− v2(τ2)P(τ2)

)
in (τ2∗+T,∞),

(4.4)


3
∑
j=2

∂τ j v2k1k2 +
(

ν2k1k2 +
|k|−1
∑

|s|=0
ν2k1k2;s1s2

)
v2k1k2 = Sv

2k1k2
in [τ1∗,∞)× (τ2∗+ τ3,∞)× (0,T )

v2k1k2 |τ3=0 = p2k1k2 in [τ1∗,∞)× [τ2∗,∞),

(4.5)

where

Sv
2k1k2

=


0, |k|= n,

n
∑

|s|=|k|+1
ν2s1s2;k1k2v2s1s2 , |k|= n−1,n−2, . . . ,1.

We also have the equation for λ ,

y1||p1v1||+ y2||p2v2||= 1. (4.6)

Integrating Eqs. (4.2)1 and (4.3)1, we get wi(τi) = wi(T )vi(τi) where

v1(τ1) = exp
{
−

τ1∫
T

(ν1 +λ )ds
}

in [T,∞),

v2(τ2) = exp
{
−

τ2∫
T

(ν2 +λ )ds
}

in [T,τ2∗].
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Now we transform Eq. (4.3) with a given positive y1 into a set of Volterra’s type integral equations. To do this, we change
variables on the right hand side of Eq. (4.4), then integrate Eq. (4.3)1, and after then change the order of integration. As a result,
we have

v2(τ2) = f (τ2)+

τ2∫
τ2∗+ jT

G(τ2,y)v2(y)dy in [τ2∗+ jT,τ2∗+( j+1)T ] (4.7)

with j = 0,1,2, . . . , where

G(τ2,y) = y1

τ2∫
y

exp
{
−

τ2∫
z

l2(s)ds−λ (z− y)
}

Q(z,z− y)dz,

f (τ2) =



v2(τ2∗)exp
{
−

τ2∫
τ2∗

l2 ds
}

in [τ2∗,τ2∗+T ],

v2(τ2∗+ jT )exp
{
−

τ2∫
τ2∗+ jT

l2 ds
}
+ y1

τ2∫
τ2∗+ jT

exp
{
−

τ2∫
z

l2 ds
}

dz
(

τ2∗+ jT∫
z−T

v2(y)Q(z,z− y)e−λ (z−y) dy

+v2(z−T )R(z)e−λT
)

in [τ2∗+ jT,τ2∗+( j+1)T ],

with j = 1,2, . . . and

v2(τ2∗) = exp
{
−

τ2∗∫
T

(ν2 +λ )ds
}
.

Define:
νi∗ = inf

[τi∗,∞)
νi, ν∗

i = sup
[τi∗,∞)

νi, pi∗ = inf
[τi∗,∞)

pi, p∗i = sup
[τi∗,∞)

pi,

ν2k1k2∗ = inf
[τ1∗,∞)×[τ2∗+τ3,∞)×[0,T ]

ν2k1k2 , p∗ = inf
[τ1∗,∞)×[τ2∗,∞)

p,

ν∗
2k1k2

= sup
[τ1∗,∞)×[τ2∗+τ3,∞)×[0,T ]

ν2k1k2 , p∗ = sup
[τ1∗,∞)×[τ2∗,∞)

p,

ν2k1k2;s1s2∗ = inf
[τ1∗,∞)×[τ2∗+τ3,∞)×[0,T ]

ν2k1k2;s1s2 ,

ν2k1k2;s1s2∗ = sup
[τ1∗,∞)×[τ2∗+τ3,∞)×[0,T ]

ν2k1k2;s1s2 ,

α2k1k2∗ = inf
[τ1∗,∞)×[τ2∗,∞)

α2k1k2 , α∗
2k1k2

= sup
[τ1∗,∞)×[τ2∗,∞)

α2k1k2 ,

l2k1k2∗ = ν2k1k2∗+
|k|−1
∑

s=0
ν2k1k2;s1s2∗, l∗2k1k2

= ν∗
2k1k2

+
|k|−1
∑

s=0
ν∗

2k1k2;s1s2
,

γ∗ =
n
∑

|k|=1
p∗2k1k2

, γ∗ =
n
∑

|k|=1
p2k1k2∗, ν∗ = min(ν1∗,ν2∗),

l2∗ = ν2∗+λ + γ∗||v1||, l∗2 = ν∗
2 +λ + γ∗||v1||.

Consider two functions:

v2k1k2(τ3) =


p∗2k1k2

exp{−l2k1k2∗τ3}, |k|= n,

p∗2k1k2
exp{−l2k1k2∗τ3}+

τ3∫
0

exp{−(τ3 − z)l2k1k2∗} ∑
|s|=|k|+1

ν∗
2s1s2;k1k2

v2k1k2(z)dz, |k|= n−1,n−2, . . . ,1,

(4.8)

and

v2k1k2
(τ3) =


p2k1k2∗ exp{−l∗2k1k2

τ3}, |k|= n,

p2k1k2∗ exp{−l∗2k1k2
τ3}+

τ3∫
0

exp{−(τ3 − z)l∗2k1k2
} ∑
|s|=|k|+1

ν2s1s2;k1k2∗v2k1k2
(z)dz, |k|= n−1,n−2, . . . ,1,
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(4.9)

in [0,T ]. Functions v2k1k2 and v2k1k2
for |k|= n−1,n−2, . . . ,1 can be found recurrently starting from |k|= n−1 since v2k1k2

and v2k1k2
for |k|= n are known.

Lemma 4.1. Let ν∗+λ > 0 be a given positive constant. Assume that functions ν2k1k2 and ν2k1k2;s1s2 lie in C0,1,1([τ1∗,∞)×
(τ2∗+ τ3,∞)× (0,T ))∩C([τ1∗,∞)× [τ2∗+ τ3,∞)× [0,T ]), α2k1k2 ∈ C0,1([τ1∗,∞)× (τ2∗,∞))∩C([τ1∗,∞)×]τ2∗,∞)), p2k1k2 ∈
C0,1([τ1∗,∞)× (τ2∗,∞))∩C([τ1∗,∞)× [τ2∗,∞)) and let they be nonnegative bounded functions in domains of their definition.
Then problem (4.5) has a unique nonnegative solution v2k1k2 ∈ C0,1,1([τ1∗,∞)× (τ2∗+ τ3,∞)× (0,T ))∩C([τ1∗,∞)× [τ2∗+
τ3,∞)× [0,T ]) such that v2k1k2

≤ v2k1k2 ≤ v2k1k2 in [τ1∗,∞)× [τ2∗ + τ3,∞)× [0,T ] where v2k1k2 and v2k1k2
∈ C1([0,T ]) are

determined by formulas (4.8) and (4.9), respectively.

Proof. Conditions of this lemma let us to solve linear equation (4.5) to have

v2k1k2(τ1,τ2,τ3)=



p2k1k2(τ1,τ23)exp
{
−

τ3∫
0

l2k1k2(τ1,s+ τ23,s)ds
}
, |k|= n,

p2k1k2(τ1,τ23)exp
{
−

τ3∫
0

l2k1k2(τ1,s+ τ23,s)ds
}

+
τ3∫
0

exp
{
−

τ3∫
z

l2k1k2(τ1,s+ τ23,s)ds
}

∑
|s|=|k|+1

ν2s1s2;k1k2(τ1,z+ τ22,z)v2k1k2(τ1,z+ τ23,z)dz,

|k|= n−1,n−2, . . . ,1,

(4.10)

in [τ1∗,∞)× [τ2∗+ τ3,∞)× [0,T ], where τ23 = τ2 − τ3.
Function (4.10) for |k| = n− 1,n− 2, . . . ,1 can be found recurrently starting from |k| = n− 1 since v2k1k2 for |k| = n is

known. Note that function v2k1k2 is independent of parameters y1 and λ . Direct comparison of Eq. (4.8) with (4.10) and Eq.
(4.9) with (4.10) proves the inequality v2k1k2

≤ v2k1k2 ≤ v2k1k2 in [τ1∗,∞)× [τ2∗+ τ3,∞)× [0,T ]. Differentiability of v2k1k2 and
v2k1k2

in [0,T ] follows from Eqs.(4.8) with (4.9).

Let
q∗ =

n
∑

k|=1
ν2k1k2,00∗ min

[0,T ]
v2k1k2

, q∗ =
n
∑

k|=1
ν∗

2k1k2,00 max
[0,T ]

v2k1k2 ,

r∗ =
n
∑

|k|=1
v2k1k2(T ), r∗ =

n
∑

|k|=1
v2k1k2

(T ).

Then γ∗||v1|| ≤ P ≤ γ∗||v1||, q∗||v1|| ≤ Q ≤ q∗||v1||, r∗||v1|| ≤ R ≤ r∗||v1||.
Consider two following systems:

v′2 + l2∗v2 =


y1||v1||

τ2−τ2∗∫
0

v2(τ2 − τ3)e−λτ3 dτ3 q∗ in (τ2∗,τ2∗+T ), v2(τ2∗) = exp{−(τ2∗−T )(ν2∗+λ )},

y1||v1||
(

T∫
0

v2(τ2 − τ3)e−λτ3 dτ3 q∗+ v2(τ2 −T )e−λT r∗
)

in (τ2∗+T,∞), [v2(τ2∗+T )] = 0
(4.11)

and

v′2 + l2∗v2 =


y1||v1||

τ2−τ2∗∫
0

v2(τ2 − τ3)e−λτ3 dτ3 q∗ in (τ2∗,τ2∗+T ), v2(τ2∗) = exp{−(τ2∗−T )(ν∗
2 +λ )},

y1||v1||
(

T∫
0

v2(τ2 − τ3)e−λτ3 dτ3 q∗+ v2(τ2 −T )e−λT r∗

)
in (τ2∗+T,∞), [v2(τ2∗+T )] = 0.

(4.12)

Applying the argument used to construct Eq. (4.7), Eqs. (4.11) and (4.12) on each interval [τ2∗+ jT,τ2∗+( j + 1)T ],
j = 0,1, . . ., can be transformed to Volterra integral equations having unique positive solutions.

Lemma 4.2. Assume that function ν2 ∈C([τ2∗,∞)) and parameter y1 are positive and let conditions of Lemma 4.1 be fulfilled.
Then Eq. (4.7) has a unique positive solution v2 ∈C1((τ2∗,∞))∩C([τ1∗,∞)). Moreover, v2 ≤ v2 ≤ v2 in [τ2∗,∞) where v2 and
v2 are unique positive solutions of Eqs. (4.11) and (4.12), respectively.
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Proof. The proof of the existence and uniqueness of the solution is based on the existence and uniqueness theorem of the
Volterra linear integral equation. It remains to prove the inequality v2 ≤ v2 ≤ v2. Set Z = v2 − v2. Subtracting Eq. (4.3)1 from
Eq. (4.11) we get the equation

Z′+ l2∗Z = y1

τ2−τ2∗∫
0

Z(τ2 − τ3)dτ3Q(τ2,τ3)e−λτ3 dτ1 + f (τ2) in (τ2∗,τ2∗+T ),

Z(τ2∗) = exp
{
−

τ2∗∫
T
(ν2∗+λ )ds

}
− exp

{
−

τ2∗∫
T
(ν2 +λ )ds

}
with a known nonnegative term

f (τ2) = (l2 − l2∗)v2 + y1

τ2−τ2∗∫
0

v2(τ2 − τ3)
(

q∗||v1||−Q(τ2,τ3)
)

e−λτ3 dτ3.

This equation can be easily transformed into the Volterra integral equation with a nonnegative kernel and nonnegative known
term. Hence it has a unique nonnegative solution v2 −v2 in [τ2∗,τ2∗+T ] and therefore v2 ≤ v2. Similarly, we prove that v2 ≤ v2
in [τ2∗,τ2∗+T ]. Subtracting (4.12) from Eq. (4.3)1 and arguing similarly as above, we prove the inequality v2 ≤ v2 ≤ v2 in
[τ2∗+T,∞).

It is well known that a solution to the linear Volterra integral equation with a parameter that has a continuous kernel and a
continuous known term with respect to the (argument, parameter) variable is also continuous with respect to the same variable.
Hence, functions v2, v2, and v2 are continuous with respect to (τ2,y1,λ ).

Now we prove that ||v2|| is continuous with respect to parameters y1 and λ . We integrate Eq. (4.3)1 to have

v2(τ2) = v2(τ2∗)exp
{
−

τ2∫
τ2∗

l2∗ ds
}
+

{
I1 in (τ2∗,τ2∗+T ),
I2 + I3 + I4 in (τ2∗+T,∞)

(4.13)

where

I1 = y1

τ2∫
τ2∗

exp
{
−

τ2∫
z

l2∗ ds
}

dz

z−τ2∗∫
0

v2(z−τ3)e−λτ3 dτ3 q∗||v1||= y1

τ2−τ2∗∫
0

e−λτ3 dτ3

τ2∫
τ3+τ2∗

v2(z−τ3)exp
{
−

τ2∫
z

l2∗ ds
}

dzq∗||v1||,

I2 = y1

τ2∗+T∫
τ2∗

exp
{
−

τ2∫
z

l2∗ ds
}

dz

z−τ2∗∫
0

v2(z−τ3)e−λτ3 dτ3 q∗||v1||= y1

T∫
0

e−λτ3 dτ3

τ2∗+T∫
τ3+τ2∗

v2(z−τ3)exp
{
−

τ2∫
z

l2∗ ds
}

dzq∗||v1||,

I3 = y1

τ2∫
τ2∗+T

exp
{
−

τ2∫
z

l2∗ ds
}

dz
T∫

0

v2(z−τ3)e−λτ3 dτ3 q∗||v1||= y1

T∫
0

e−λτ3 dτ3

τ2∫
T+τ2∗

v2(z−τ3)exp
{
−

τ2∫
z

l2∗ ds
}

dzq∗||v1||,

I4 = y1

τ2∫
τ2∗+T

exp
{
−

τ2∫
z

l2∗ ds
}

e−λT v2(z−T )dzr∗||v1||.

Observe that

I2 + I3 = y1

T∫
0

e−λτ3 dτ3

τ2∫
τ3+τ2∗

v2(z− τ3)exp
{
−

τ2∫
z

l2∗ ds
}

dzq∗||v1||.

Integrating Eq. (4.13) we find

||v2||=
∞∫

τ2∗

v2(τ2∗)exp
{
−

τ2∫
τ2∗

l2∗ ds
}

dτ2||v1||+ J1 + J2 + J3,
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where

J1 = y1

τ2∗+T∫
τ28

dτ2

τ2−τ2∗∫
0

e−λτ3 dτ3

τ2∫
τ3+τ2∗

v2(z− τ3)exp
{
−

τ2∫
z

l2∗ ds
}

dzq∗||v1||,

J2 = y1

∞∫
τ2∗+T

dτ2

T∫
0

e−λτ3dτ3

τ2∫
τ3+τ2∗

v2(z− τ3)exp
{
−

τ2∫
z

l2∗ ds
}

e−λτ3 dzq∗||v1||,

J3 = y1

∞∫
τ2∗+T

dτ2

τ2∫
τ2∗+T

exp
{
−

τ2∫
z

l2∗ ds
}

e−λT v2(z−T )dzr∗||v1||.

Changing the order of integration we have

J1 = y1

T∫
0

e−λτ3 dτ3

τ2∗+T∫
τ2∗+τ3

dτ2

τ2∫
τ3+τ2∗

v2(z− τ3)exp
{
−

τ2∫
z

l2∗ ds
}

dzq∗||v1||,

J2 = y1

T∫
0

e−λτ3 dτ3

∞∫
τ2∗+T

dτ2

τ2∫
τ3+τ2∗

v2(z− τ3)exp
{
−

τ2∫
z

l2∗ ds
}

e−λτ3 dzq∗||v1||,

J3 = y1e−λT
∞∫

τ2∗

v2(x)dx
∞∫

x+T

exp
{
−

τ2∫
x+T

l2∗ ds
}

dτ2 r∗||v1||

and then

J1 + J2 = y1

T∫
0

e−λτ3 dτ3

∞∫
τ2∗+τ3

dτ2

τ2∫
τ3+τ2∗

v2(z− τ3)exp
{
−

τ2∫
z

lλ
2 ds

}
dzq∗||v1||.

Thus
||v2||= v2(τ2∗)

∞∫
τ2∗

exp
{
−

τ2∫
τ2∗

l2∗ ds
}

dτ2 + y1
T∫
0

e−λτ3 dτ3
∞∫

τ2∗+τ3

dτ2

τ2∫
τ3+τ2∗

v2(z− τ3)exp
{
−

τ2∫
z

l2∗ ds
}

dzq∗||v1||

+y1e−λT
∞∫

τ2∗
v2(x)dx

∞∫
x+T

exp
{
−

τ2∫
x+T

l2∗ ds
}

dτ2 r∗||v1||.
(4.14)

and after changing the order of integration
||v2||= v2(τ2∗)

∞∫
τ2∗

exp
{
−

τ2∫
τ2∗

l2∗ ds
}

dτ2 + y1
T∫
0

e−λτ3 dτ3
∞∫

τ2∗+τ3

v2(z− τ3)dz
∞∫
z

exp
{
−

τ2∫
z

l2∗ ds
}

dτ2 q∗||v1||

+y1e−λT
∞∫

τ2∗
v2(x)dx

∞∫
x+T

exp
{
−

τ2∫
x+T

l2∗ ds
}

dτ2 r∗||v1||
(4.15)

If ν∗+λ > 0, then

||v2||l2∗ = exp
{
− (τ2∗−T )(ν2∗+λ )

}
+

( T∫
0

e−λτ3 dτ3q∗+ e−λT r∗
)
||v2||||v1||y1.

Hence

||v2|| := ωr(y1,λ ) =
exp{−(τ2∗−T )(ν2∗+λ )}

A(y1,λ )
(4.16)

provided that

A(y1,λ ) := ν1∗+λ + y1||v1||N(λ )> 0 (4.17)
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where

N(λ ) := γ∗−
∫ T

0
e−λτ3dτ3 q∗− e−λT r∗.

Observe that condition (4.17) is fulfilled if N(λ ) ≥ 0 and ν∗+λ ≥ ε, ε > 0. Eq. (4.16) under condition (4.17) shows that
||v2|| is continuous in (y1,λ ). This, the positivity and continuity of v2 with respect to (τ2,y1,λ ) show that ||v2|| converges
uniformly with respect to λ ∈ [−ν∗+ε,λ ′] and y1 ∈ [0,y′1] where λ ′ < ∞, y′1 < ∞. Then Lemma 4.2 shows that ||v2|| converges
uniformly too and the continuity of v2 with respect to (τ2,y1,λ ) proves the continuity of ||v2|| with respect to λ ∈ [−ν∗+ ε,λ ′]
and y1 ∈ [0,y′1].

Define

q̃1(y1,λ ) = e−λT
∞∫

τ2∗

v2(x)β2(x)dx,

q̃2(y1,λ ) = e−λT
∞∫

τ2∗

v2(x)β1(x)dx.

Using Lemma 4.1, we can prove that functions q̃1(y1,λ ) and q̃2(y1,λ ) are continuous in λ ≥−ν∗+ ε and y1 > 0. Eqs. (4.2)2
and (4.3)2 can be rewritten as follows:

y1 −
1

q̃1(y1,λ )
= 0,

y2 −
1

q̃2(y1,λ )
= 0.

(4.18)

Function

z(y1,λ ) = y1 −
1

q̃1(y1,λ )

is continuous with respect to (y1,λ ). Obviously, z|y1=0 < 0. Eq. (4.3)1 shows that

v2(τ2)≥ ṽ2(τ2) := exp
{
−

τ2∫
T
(ν2(τ2)+λ )dτ2 − (τ2 −T )p∗2 p∗

n
∑

|k|=1
α∗

2k1k2
dτ2

}
for all y1 ≥ 0. Define:

q̂1(λ ) = e−λT
∞∫

τ2∗

ṽ2(x)β2(x)dx, q̂2(λ ) = e−λT
∞∫

τ2∗

ṽ2(x)β1(x)dx.

Then by definition q̃1(y1,λ )> q̂1(λ ) for all y1 ≥ 0. Hence, z|y1=1/q̂1(λ ) > 0. The continuity of z shows that function z(y1,λ )
has at least one positive root y1(λ ) ∈ (0,1/q̂1(λ )), which is continuous in λ . Then Eq. (4.18)2 shows that y2(y1(λ ),λ ), is also
continuous with respect to λ ≥−ν∗+ ε with small ε > 0.

Now we find constant λ . Set:

hi =
n

∑
||k||=1

kiv2k1k2(T ), hi =
n

∑
|k|=1

kiv2k1k2
(T ), i = 1,2, B(λ ) = y1(λ )||p1v1||+ y2(y1(λ ),λ )||p2v2||.

It is evident that
q̂i(λ )≥ hi e−λT ||ṽ2||||v1||, i = 1,2.

Then using Eqs. (4.6), (4.16), and (4.18), we get

y1(λ )||p1v1|| ≤
p∗1
q̂2

||v1|| ≤
p∗1eλT

h2||ṽ2||
, y2(λ )||p2v2|| ≥

p∗2eλT

h2||v1||
,

Hence

Hl(λ ) :=
p2∗eλT

h2||v1||
≤ B(λ )≤ Hr(λ ) :=

p∗1eλT

h2||ṽ2||
+

p∗2eλT

h1||v1||
(4.19)

provided that condition (4.17) with y1 = 1/q̂1(λ ) (i.e., A(1/q̂1(λ ),λ )> 0) is satisfied. Analysis of inequalities (4.19) allows
us to formulate the following assertion:
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Lemma 4.3. Let conditions of Lemmas 4.1 and 4.2 be satisfied. Assume that λ0 ≥−ν∗+ ε with a small ε > 0 and λ1 > λ0 are
such that Hr(λ0)< 1, Hl(λ1)> 1, and N(λ0)≥ 0. Then function B(λ )−1 has at least one real root λ2.

The proof of lemma is obvious, since Hl , Hr, and N are monotonous functions of λ .
Based on Lemmas 4.1–4.3, we formulate the following proposition:

Theorem 4.1. Let conditions of Lemmas 4.1–4.3 be satisfied. Then system (3.1)–(3.3) has a one-parametric class of separable
solutions.

5. Conclusion
We proposed a deterministic model for two-sex population with a discrete set of offspring and maternal care assuming that

pairs of sexes exist only during the period of mating, which is disregarded. The Environmental pressure is also neglected in our
model. The reproductive age intervals in model [9] are finite. Contrary to model [9], we let the reproductive age intervals be
infinite. The existence of the separable solutions is proved under some conditions on the model data.

To close the paper, we discuss conditions that led to the existence of the solutions to characteristic equation (4.6) of our
model and equation (4.9) for exponent λ of the model [9] in the case of the absence of the Environmental pressure. Equation
(4.9) of model [9] has at least one real solution without any additional restriction on the model data. As shown in Theorem 1 of
our model, the proof of the solvability of characteristic equation (4.6) is based on the proof of the continuity of the norm ||v2||
with respect to parameter λ . Knowing this, some robust restrictions on the model data were formulated, that are sufficient for
the existence of the solution to characteristic equation (4.6).
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