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ABSTRACT The study of dynamical systems is based on the solution of differential equations that may exhibit
various behaviors, such as fixed points, limit cycles, periodic, quasi-periodic attractors, chaotic behavior, and
coexistence of attractors, to name a few. In this paper, we present a simple and novel method for predicting
the occurrence of tipping points in a family of Piece-Wise Linear systems (PWL) that exhibit a transition
from monostability to multistability with the variation of a single parameter, without the need to compute time
series, i.e., without solving the differential equations of the system. The linearized system of the model is
analyzed, the stable and unstable manifolds are taken to be real vectors in space, and the changes suffered by
these vectors as a result of the modification of the parameter are examined using such simple metrics as the
magnitude of a vector or the angle between two vectors in space. The results obtained with the linear analysis
of the system agree well with those obtained with the numerical resolution of the dynamical system itself. The
work presented here is an extension of previous results on this topic and contributes to the understanding of
the mechanisms by which a system changes its stability by fragmenting its basin of attraction. This, in turn,
enriches the field by providing an alternative to numerical resolution to identify quantitative changes in the
dynamics of complex systems without having to solve the differential equation system.

KEYWORDS

Nonlinear
dynamics
Chaotic system
Multistability
PWL system
Bifurcation
Tipping point

INTRODUCTION

In a world governed by complex systems that describe behaviors as
mundane as our social interactions to the interconnected workings
of our brains as the control center of the human body, the ability
to anticipate the moment when a system reaches a point of no
return is critical (Scheffer et al. 2001; Lenton et al. 2008; Jung and
Ager 2023). This is a strategic advantage that can be applied to
a wide range of disciplines. In this context, we should think of a
complex system as an entity consisting of multiple parts whose
individual behavior is known and which interact with each other.
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Revised: 18 November 2023,
Accepted: 22 November 2023.
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The behavior of the complex system, in turn, is not equal to the sum
of the behaviors of the individual parts, resulting in structures that
are generally characterized by nonlinearities (Ott 2002; Echenausía-
Monroy et al. 2022; Keleş et al. 2023).

In the study and characterization of dynamical systems lies one
of the central problems: exploring the asymptotic properties of
the model when the parameter is continuously changed (Guan
et al. 2005). A variety of behaviors that a dynamical system can ex-
hibit include equilibrium points, limit cycles, periodic oscillations,
chaotic behavior, quasi-periodic behavior, and even the coexistence
of attractors can occur, to name a few examples (Ott 2002; Awal
and Epstein 2021).

Even if a system exhibits only one type of behavior, the contin-
uous change of system parameters or the influence of external dis-
turbances can lead the system to the point of no return mentioned
above. This point is called tipping point, where the dynamic be-
havior of the system changes abruptly and sometimes irreversibly
(Biggs et al. 2009; Lane 2011). These two types of bifurcations can
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be distinguished from a bifurcation point because the tipping point
refers to an abrupt and irreversible change in dynamic behavior. In
contrast, the bifurcation point can describe changes in equilibrium
points, for example, but does not necessarily imply a dynamic
change. Examples of this type of abrupt modification in behavior
include power outages in electricity grids or the occurrence of
massive congestion in urban transportation systems. It is there-
fore crucial to have tools that allow us to predict the occurrence
of these bifurcation points, for example, to make public health
decisions regarding the spread of a disease that could lead to a
pandemic, to predict a financial crisis, or to measure the tolerance
of an ecosystem on the verge of collapse (Rial et al. 2004; Jiang et al.
2019; O’Regan et al. 2020; Lohmann et al. 2021; Wunderling et al.
2023).

Such a change in parameters in a complex system can lead to
transitions between different behaviors, for example, a double
limit cycle can bifurcate into the occurrence of chaotic states. These
transitions may also involve the occurrence of coexisting states,
which is referred to as multistability (Gilardi-Velázquez et al. 2018;
Echenausía-Monroy et al. 2020; Fang et al. 2022; Safavi and Dayan
2022). This nearly universal phenomenon describes a range of
behaviors from optical illusions to chemical reactions, the use of
words, and even emotions. The coexistence of states in complex
systems entails the existence of more than one basin of attraction.
For a given parameter of the system, the dynamics may oscillate at
near of a stable attractor (equilibrium points, periodic orbit, chaotic
attractor) for certain initial conditions, but converge to another for
a different set of, albeit very similar, initial conditions.

Since Lorenz’s work (Lorenz 1963), many research has been
done on how to characterize and find the existing behaviors in
a dynamic system with complex behavior. One of the most com-
monly used forms for this is bifurcation diagrams, both for the
existence of fixed points and for changes in their stability, but de-
scribing only local behaviors. In the case of systems with complex
behavior, there are no tools that allow to describe the types of
behavior through the analysis of vector fields, but only through
the analysis of time series (Nazarimehr et al. 2018).

Currently, the search for new ways to predict tipping points
in dynamical systems has attracted the attention of the scientific
community, as it is seen as an advantage for decision making in
critical situations (Moore 2018; Peng et al. 2019). In this search and
the development of techniques capable of anticipating the occur-
rence of abrupt dynamic changes, tools based on the analysis of
time series are used. This technique is based either on the storage
of time series of the phenomenon under study or on the system of
equations that describes it. Various statistical and mathematical
techniques are used to detect patterns, trends, or changes in the be-
havior of the system that may indicate that the dynamic behavior is
approaching a tipping point. In these cases, early warning signals
may be observed, such as increased variance, autocorrelation, or
a slowing of recovery rates in response to system perturbations,
also known as resilience (Nazarimehr et al. 2018; Chen et al. 2020;
Moghadam et al. 2022). Bifurcation theory has also been used to
study how the qualitative behavior of a system changes as its pa-
rameters vary. By analyzing bifurcation points, it is possible to
identify critical thresholds at which inflection points are likely to
occur. Similarly, the use of Lyapunov exponents is a popular tool
for identifying when a dynamical system is about to change its
behavior (Tsakonas et al. 2022).

In some cases where the descriptor model leads to a numerical
simulation with high computational costs, surrogate or reduced-
order models can be used to approximate the behavior of the

system and predict inflection points, just as network-based ap-
proaches have been used to detect changes in the network struc-
ture that might indicate an impending tipping point (Jiang et al.
2018).

Although there is a wealth of literature with different ap-
proaches to identifying and predicting tipping points in dynamical
systems, in most cases there is one constant: time series analysis,
which is effective but involves a high computational cost. We have
recently published a paper that addresses the prediction of inflec-
tion points in a single-parameter Piece Wise Linear (PWL) system
that generates multiple scrolls based on the study of the linear
operator of the system. This approach shows a relation between
vector field properties and the occurrence of coexisting states, with
which is possible to predict the tipping points when the system un-
dergoes a change in its global stability due to the variation of one
parameter, which causes the system to go from monostability to
multistability. The method described in (Echenausía-Monroy et al.
2022b) is based on the study of the stable and unstable manifolds
of the system as real vectors in three-dimensional space which
characterizes the changes in their magnitudes so that the points
at which an abrupt change in the dynamics of the system can be
identified. While the results are interesting, they are limited to a
monoparametric family of attractors that are not able to predict
the emergence of multistable dynamics in a system like the one
published in (Gilardi-Velázquez et al. 2017), where the multi-scroll
system has three distinct parameters.

In the present work, the results shown in (Echenausía-Monroy
et al. 2022b) are generalized to a multiparametric family of oscil-
lators, which are described by three dynamical parameters that
change the size, order, and the Lyapunov exponent of the dynam-
ics. In this paper, metrics of vector fields such as the magnitude of
a vector and the angle between two vectors in space are used to
characterize the variations of real vectors associated with the vari-
eties of the multiple scroll system. The proposed method allows
the prediction of tipping points through the eigenspace associated
to the vector field, i.e., without the need to solve the system of
differential equations, which brings a significant reduction in com-
putational costs. Since the numerical resolution of the system is
eliminated, these results can be extended to systems with a larger
number of variables without increasing the computational cost.

The remainder of the work consists of the following sections:
Section 2 presents the necessary groundwork used in this paper
and delineates the problem to be solved. Section 3 describes the
methodology used, while the results are discussed in Section 4.
The conclusions are explained at the end of the work.

PRELIMINARIES

Consider a third-order Piece-Wise Linear system defined as fol-
lows:

Ẋ = MX + g(X), (1)

where M is a non-singular linear operator, X is the state vector,
g : Rn → Rn is a real commutation function based on a state
variable and defined for a set of constant vectors as shown in Eq.
(2), where Bi = [b1, . . . , bl ] ∈ Rn for h = 1, 2, . . . , l is a set of vectors
with real entries. On the other hand, Ω1, . . . , Ωl denote a polytopic
partition of the state space, also called switching domains, such
that

⋃l
h=1 Ωh = Rn and Ωh

⋂
(Ωm)

0 = ∅, where the notation
(Ωm)

0 denotes the interior of Ωm. Moreover, in each domain Ωh ⊂
Rn, the system has equilibrium points located at χ∗

h = −M−1g(X),
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where M is the linear operator of the system, and it is easy to see
that there are as many equilibria as domains Ωh.

g(X) =



B1 if X ∈ Ω1,

B2 if X ∈ Ω2,
...

...

Bl if X ∈ Ωl .

(2)

The interest of this work is to characterize the behavior of PWL
systems with the same number of scrolls as equilibrium points.
To this end, the eigenvalues of Eq. (1) must be described by an
Unstable Dissipative System type 1 (UDS I) (Campos-Cantón et al.
2010; Campos-Cantón 2015), characterized by having unstable
saddle points for the following conditions:

• The linear operator M must have a negative real eigenvalue
and a pair of complex conjugates with a real positive compo-
nent.

• The eigenvalues λ ∈ C1×3 of M must satisfy: ∑3
i=1 λi < 0.

Under these conditions, this article examines a jerk-inspired
oscillator generated by:

M =


0 1 0

0 0 1

−α1 −α2 −α3

 , X =


x1

x2

x3

 , g(X) =


0

0

α1b(x1)

 ,

(3)

b(x1) =


−2 if X ∈ Ω1 = {X ∈ Rn : x1 < −1} ,

0 if X ∈ Ω2 = {X ∈ Rn : −1 ≤ x1 < 1} ,

2 if X ∈ Ω3 = {X ∈ Rn : x1 ≥ 1} ,
(4)

where xi are the state variables, αi, i = 1, 2, 3 are the dynamical
parameters corresponding to the family of oscillators that also
modify the Lyapunov exponent, the order and the size of the
attractor (Echenausía-Monroy et al. 2018), where b(x1) is a function
that generates a commutation based on a state variable that induces
multiple scrolls in the x1-dimension.

Since this work focuses on the system responding to the con-
figuration of eigenvalues defined as UDS I, which in turn are
defined by the combination of the system parameters, mathemati-
cal analysis as described in (Anzo-Hernández et al. 2018) is used to
determine the proper values:

Proposition 1 (Anzo-Hernández et al. 2018) Consider the family of
affine linear systems given by Eq. (1,3), and the linear operator MMM with
parameters α1, α2, α3 ∈ R+. If α1 > 0, 0 < α2 <

α1
α3

, and α3 > 0, then

the system described by Eqs. (1,3) is based on an Unstable Dissipative
System type 1 (UDS-I).

Proof 1 (Anzo-Hernández et al. 2018) Suppose that α1, α2 > 0. Since
α3 = Trace(M) = ∑3

i=1 λi < 0, where λi, i = 1, 2, 3, is each of
the eigenvalues of M, the system Eq. (1,3) is dissipative. Moreover,
with α1 = det(M), the system Eq. (3) has saddle equilibrium points

determined by the characteristic polynomial of the linear operator M,
λ3 + α3λ2 + α2λ + α1 = 0, which for α2 <

α1
α3

by the Hurwitz polyno-

mial criterion implies instability. Since α1, α2 and α3 are positive real
constants and the characteristic polynomial has no positive characteristic
values by Descartes’ sign rule, it has only one negative eigenvalue by
which the equilibrium point is saddle fixed. Then the eigen spectrum
is given by a negative real eigenvalue and a pair of complex conjugate
eigenvalues with a positive real part.

Considering Proposition 1, a multi-scroll jerk inspired system
with parameters α1 = 10.5, α2 = 7; α3 = 0.7 for Eq. (3) and the
commutation function described by Eq. (4) satisfies the UDS I
conditions, generating the attractor shown in Figure 1. The red
dots indicate the location of the equilibrium point, and the vertical
lines indicate the location of the commutations delimiting each of
the system domains, or polytopic partitions.

(a)

(b)

Figure 1 Attractor generated by Eq. (3) and Eq. (4) for α1 =
10.5, α2 = 7; α3 = 0.7 seen in the projection (a) x1 − x2 and
(b) in phase space. The red dots denote the equilibrium points, while
the black vertical lines (plane) represent the commutation surfaces.

Remark 1 Note that the αi values used in Figure 1 are the same as
described in (Gilardi-Velázquez et al. 2017), but with a restricted commu-
tation function, since the authors use the "round to the nearest integer"
function as commutation law in the work described, generating an infinite
number of equilibrium points.
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In (Gilardi-Velázquez et al. 2017), the authors show that a multi-
scroll system like the one described in Eq. (3) (for α1 = 10.5,
α2 = 7, α3 = 0.7) is able to go from monostability to multistability
by changing a bifurcation parameter that affects the third equation
of the descriptor system. The resulting system of equations is
shown in Eq. (5), where the parameter µ is a positive constant that
scales with the dynamical parameters of the system, changing its
stability and allowing the transition between monostability and
the coexistence of stable single-wing attractors.

ẋ1 = x2,

ẋ2 = x3,

ẋ2 = µ[−α1x1 − α2x2y − α3x3 + α1b(x1)].

(5)

Through numerical simulations, it is possible to identify the
points at which the system changes its global stability by frag-
menting its basin of attraction, from the generation of a 3-scroll
attractor (as in Figure 1) to the generation of a single-wing attractor
capable of living stably at each of the equilibrium points of the
system. If we use a bifurcation diagram, by µ variation (see Figure
2(a)), and count the number of scrolls that the dynamics generates
by changing the parameter µ, we obtain the graph shown in Fig-
ure 2(b), where the starting point of the multistable dynamics is
1.03 ≤ µ ≤ 2.14. For µ ≥ 2.14, all dynamics are eliminated from
the system and converge to the equilibrium point.

Remark 2 Although the results shown in Figure 2 are not identical to
those previously published in (Gilardi-Velázquez et al. 2017), they are
not the main result of this work, but they are necessary to understand the
contribution of the paper, which is why they are kept in the Preliminary
remarks section.

Problem Statement
In our previous study (Echenausía-Monroy et al. 2022b), we pre-
sented an innovative approach to predict tipping points in Piece
Wise-Linear (PWL) systems by using linear algebra techniques
to analyze the magnitude of manifolds within a monoparametric
family of oscillators (α1 = α2 = α3). The focus of that research was
primarily on identifying these tipping points for a particular class
of oscillators. In this current work, we have extended, refined our
methodology and generalized its applicability to multiparametric
families of multi-scroll PWL oscillators. Our main goal remains the
same: to predict the occurrence of tipping points in PWL systems
transitioning from monostability to the occurrence of multistable
behavior without the need to compute time series, i.e., without
solving the differential equations of the system. To achieve this,
we have developed an innovative approach that analyzes the an-
gular relationships between real vectors associated with stable and
unstable manifolds.

This study builds on our previous research, but it is important to
emphasize that the problem, while conceptually related, applies to
a broader range of dynamical systems. We improve and generalize
the methodology so that it is applicable to different families of
multiparametric oscillators. This advance is crucial to gain deeper
insights into the transition from monostability to multistability
in complex systems without relying on numerical resolution or
bifurcation parameter change detection.
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Figure 2 Numerical simulation of the system described by Eqs. (4,5)
for α1 = 10.5, α2 = 7; α3 = 0.7 by µ variation. (a) Bifurcation
diagram of the local maxima in x1 by tracking the attractor (using the
final state as the initial condition for parameter variation for the initial
conditions xi = [−0.1 0.1 0.1]'). (b) Summary of the behavior shown
in the bifurcation diagram.

METHODOLOGY

Matrix algebra, or linear algebra as it is treated in college textbooks,
focuses on the study and manipulation of algebraic structures
called vectors and matrices. At its core, it deals with the proper-
ties and operations associated with these objects and is used to
solve a variety of problems in fields ranging from physics and
engineering to computer science and statistics. It has its origins
in civilizations such as the Babylonians and Greeks, who were
concerned with problems of systems of linear equations by matrix
representation, and developed into a mathematical discipline with
the contributions of notable mathematicians such as Leonhard
Euler and Joseph-Louis Lagrange (Kleiner 2007).

As mentioned in the previous sections, the methodology used
in this paper is based on the notion of the changes suffered by the
stable and unstable manifolds of the multi-scroll system, which
are conceived as real vectors in space. By conceptualizing them as
vectors in space, we can quantify their changes by examining their
magnitude and the angle that exists between these in the plane or
in space.

The determination of the manifolds and their subsequent con-
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struction as vectors is done using the linear operator of the de-
scriptor system by computing the eigenvalues and eigenvectors
of the model, graphing them in space, and determining their
three-dimensional coordinates. As example, and considering
Proposition 1, a multi-scroll jerk inspired system with parame-
ters α1 = 10.5, α2 = 7, α3 = 0.7, µ = 1 for Eq. (5) and the
commutation function described by Eq. (4) satisfies the UDS I
conditions, generating the attractor shown in Figure 1. For this
combination of αi values, the linear system to study is described
by Eq. (6), being its eigenvalues described in (7):

M =


0 1 0

0 0 1

−µα1 −µα2 −µα3

 , (6)

Λ = {λ1,2,3},

= {−1.3372, 0.3186 ± 2.784 i},
(7)

and their corresponding eigenvectors are equal to:

ϑ = {ϑ1,2,3},

=




0.4087

−0.5466

0.7309




−0.1160 ± 0.0269 i

0.0379 ± 0.3316 i

0.9351




.

(8)

The stable and unstable manifolds of the multiscroll system
are defined such that ϑ = [ϑi], for i = 1, 2, 3 is a set of column
eigenvectors, where Mϑi = λiϑi, where λi are the system eigen-
values. Under this assumption, the stable manifold is defined by
E∗

s =Span{ϑ1} and the unstable manifold by E∗
u =Span{ϑ2,3}, and

to represent these manifolds, we consider the real part of both as
Es = Re{E∗

s } and Eu = Re{E∗
u}. With this in mind, it is possible

to plot the attractor shown in Figure 1 along with the real vectors
associated with the stable and unstable manifolds as shown in
Figure 3.

Note that Figure 3 shows both manifolds (Eu, Es) as real vec-
tors in space that always intersect the equilibrium point and are
bounded by the commutations induced by the nonlinear function.
Under this premise, it is possible to analyze the behavior of these
vectors by characterizing their variation and calculating their mag-
nitude change induced by the parameter µ in the system. For this
purpose, consider the points A, B, C, and D (see Fig. 3(b)), which
have three-dimensional coordinates, intersections with the com-
mutation surfaces, and intersections with the equilibrium point;
the associated real vectors can be constructed as follows:

M⃗s = D⃗B = D − B,

M⃗u = A⃗C = A − C,
(9)

where the vectors associated with both manifolds have coordinates
in space and their magnitude is then defined as:

(a)

(b)

Figure 3 (a) Attractor generated by Eq. (3,5) for µ = 1, α1 =
10.5, α2 = 7, α3 = 0.7, where the real vector associated with the
stable manifold is shown in blue and the one associated with the
unstable manifold is shown in red. (b) Real vectors associated with
the system manifolds in phase space, omitting the trajectory shown
in (a).

||M⃗s|| =
√
(x1s1 − x1s2 )

2 + (x2s1 − x2s2 )
2 + (x3s1 − x3s2 )

2 ,

||M⃗u|| =
√
(x1u1 − x1u2 )

2 + (x2u1 − x2u2 )
2 + (x3u1 − x3u2 )

2 .
(10)

In the same way as for the magnitude of the real vectors as-
sociated with the stable and unstable manifolds, it is possible
to calculate the cross product between these vectors, defined as
shown in Eq. (11), where θ is the angle between the vectors M⃗s
and M⃗u.

||M⃗s × M⃗u|| = ||M⃗s|| ||M⃗u|| sin(θ), (11)

Remark 3 Both metrics described previously, the magnitude of the vec-
tors described in Eq. (10) and the cross product between the vectors
shown in Eq. (11), are defined for a set of parameters αi and µ. In this
work, the variations of the two metrics are analyzed based on the effect in-
duced by the bifurcation parameter µ, and these variations are illustrated
in Figure 4.
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Figure 4 Illustration of the variations of the real vectors associated with the stable and unstable manifolds as the parameter µ changes, consid-
ering the vector magnitude (||M⃗u,s||) and the angle between vectors (θ).

In addition, Appendix A presents an analytical method for character-
izing the angles between real vectors in the system. This approach uses
both the eigenvalues and the eigenvectors of the system under analysis.

RESULTS AND DISCUSSION

In the same spirit that (Echenausía-Monroy et al. 2022b), the
eigenspace changes are analyzed along the variation of the pa-
rameter µ in the linear operator of the system described by Eq. (5).
For each value of µ, the real vectors associated with the stable and
unstable manifolds are computed, and in turn, the magnitude of
these vectors is calculated. These changes are plotted (for both the
stable and unstable manifolds), and points are searched for where
these curves intersect. The intersections describe (from what has
been reported) the regions where the system shows qualitative
changes in its behavior, indicating the occurrence of multistable
states, associated with the tipping points in the system. Figure
5 shows the curves obtained for the parametric variations of the
magnitudes of the vectors M⃗s (solid lines) and M⃗u (dashed lines).
Each of the magnitudes is calculated for the three-dimensional
space and in each of the system projections, resulting in 4 curves
for each of the vectors.

Remark 4 In the results presented in this section, the notation xI, θI is
used, where the subindex I indicates whether the result was computed
in the three-dimensional plane I = 1, 2, 3 or in one of the state-space
projections (I = 1, 2, I = 1, 3, I = 2, 3). Then for each metric used
(vector magnitude and angle between vectors) there are 4 values.

Analyzing the behavior of Figure 5, it becomes clear that there
are no intersections in the curves describing the changes in the
magnitudes of the real vectors associated with the manifolds of the
system under study. The linear operator of the system described
by Eq. (5) for the values α1 = 10.5, α2 = 7, α3 = 0.7 serves as a
reference point. The absence of the appearance of intersections,
as seen in Figure 10 of (Echenausía-Monroy et al. 2022b), is due
to the fact that in this work we analyze the behavior of the whole
family of oscillators described by different parameters αi. The
above mentioned article it was worked with a family of attractors
described in the UDS I-value section (α1 = α2 = α3), which allows
visualization of intersection points between the magnitudes of M⃗s
and M⃗u as a function of µ.

In this sense, and maintaining the goal of being able to predict
the occurrence of multistable states of the system in the context of a
linear analysis without having to analyze the time series, the cross
product between vectors is used. This vector operation results in
a new vector that is perpendicular to the analyzed vectors. With
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Figure 5 Behavior of the magnitudes of vectors M⃗s and M⃗u through-
out the change of parameter µ. The values used are the same as in
the attractor in Figure 1 (α1 = 10.5, α2 = 7, α3 = 0.7), and the sub-
index indicate the projection in which the magnitude is calculated
(see Remark 4).

the vectors M⃗s and M⃗u, a perpendicular vector between them is
obtained, which in turn gives the angle between the analyzed
vectors (θ). This is the value used to characterize the variations of
the linear operator, as described in Eq. (11). Figure 6 shows the
results obtained by graphing the angle between the vectors of the
variations obtained by the cross product. Appendix A presents
an analytical method to describe the angles between real vectors
within the system. This method relies on both the eigenvalues and
eigenvectors of the system under study. It provides an alternative
to the visual representation of changes in the system.

Analyzing the behavior of the curves of the angles between the
vectors M⃗s and M⃗u in space and in each of the projections, we can
identify three intersections. The first one for µ = 1.038; it occurs
when the angle between the vectors in both projections x1,2 − x1,3
reaches the same value, where the plane x1,2 is the one where the
attractor projection reveals the multistable behavior.

The second intersection point appears for µ = 1.158 when the
angle between the vectors reaches the same value for both the
projection x1,2 and the plane x2,3. The last interesting point ap-
pears for µ = 1.5 when the angle between the vectors in the three-
dimensional space reaches the same value as the angle between
the vectors in the plane where the coexistence of the attractors is
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Figure 6 Behavior of the angle between the vectors M⃗s and M⃗u
when varying the parameter µ, determined with the cross product.
The values used are α1 = 10.5, α2 = 7, α3 = 0.7, which are the
same as in the attractor in Figure 1.

appreciated (x1,2).

Remark 5 The first intersection point, where the angles between the va-
rieties converge to the same value, is consistent with what was determined
by the analysis of the time series (see Figure 2).

Comparing the behavior of the angles between the vectors (Fig-
ure 6) with the bifurcation diagram shown in Figure 1, we can see
that the first intersection between the curves corresponds to the
value of µ at which the system breaks its global stability and the
coexisting states arise. But it is impossible to ignore the fact that
these angular curves have three intersection points. To investigate
this behavior, Figure 7 shows the attractors obtained for the values
of µ given in the angular curves, where the vectors reach interest-
ing values. The time series used for these figures were calculated
for 218 points for an integration step τ = 0.01 with RK4.
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Figure 7 Multistable behavior of the system described by Eqs. (3,5)
for the values used corresponds to that of the attractor in Figure
1 α1 = 10.5, α2 = 7, α3 = 0.7 and initial conditions x1i =
−1, x2i,3i = 0.1. (a) µ = 1.038, (b) µ = 1.158, (c) µ = 1.5.

After analyzing the dynamic behavior of the multi-scroll system
described by Eqs. (3,5), we can say that the intersection points
between the curves of the angles between the vectors correspond
to three points where the dynamics of the system undergoes a
change, or tipping points:

• 1 < µ < 1.15 The system exhibits the coexistence of attractors,
but the dynamics is such that there is a basin of attraction with
6 possible attractors, as shown in the (Echenausía-Monroy
et al. 2022a) obtained by using fractional derivatives. The
global monostability has been slightly modified. There is the
possibility of i) attractors of a single-wing living in each of the

equilibrium points, ii) two symmetric double-scroll attractors,
and iii) a small region in the initial conditions for which the
system remains monostable.

• 1.15 < µ < 1.5 The basins of attraction of the multistable
system have become larger, the monostable attractor is almost
improbable, and the probability of the occurrence of a double-
scroll attractor is small.

• 1.5 < µ < 2.14 The system exhibits only the coexistence
of attractors of one wing, which live stably in each of the
polytopic partitions of the system, which in turn have a single
associated equilibrium point.

• µ > 2.14 The system exhibits only the coexistence of stable
equilibrium points, in accordance with Proposition 1.

CONCLUSION

The work developed and presented here addresses the problem of
predicting the occurrence of inflection points, also called tipping
points, in a multi-scroll system moving from monostability to
coexistence of attractors. The implemented methodology is based
on the study of the linear operator of the descriptor model. Without
having to solve the system of equations and/or analyze time series,
the points at which the dynamics change such that the coexistence
of attractors occurs were predicted.

Using simple techniques of matrix algebra, such as the magni-
tude of a vector and the cross product between vectors, the linear
operator of the system was analyzed. The results obtained are in
agreement with those published in other papers on time series anal-
ysis. More importantly, considering Proposition 1, the developed
method is applicable to the whole family of oscillators described
by Eq. (5), and the linear operator depicted in (9). At the same
time, it is worth noting that the result can be extrapolated to any
number of scrolls in phase space as long as a nonlinear function
with equidistant equilibrium points at the center of each of the
polytopic partitions is used.

Although the analysis and metrics used are simple and easy to
implement, it is worth noting that this allows us to better under-
stand the transition between monostability and coexistence with
attractors in dynamical systems. If we develop a tool to relate the
angles between the stable and unstable manifolds to the dynam-
ical transitions of the oscillator, then the points where the angles
between said manifolds reach the same values in the projection
x1,2 with the projection x2,3 are the points where the system breaks
its stability. It is important to emphasize that the projection in
which the multistability is estimated is in the plane x1,2. It is worth
noting that, contrary to what was reported in (Echenausía-Monroy
et al. 2022b), the methodology proposed in this article is not able to
predict the point at which the system changes the stability of its
equilibrium points and transforms them into attractive foci points.

In addition, throughout Appendix A, the approach to analyti-
cally describe the angle between the real vectors in the system is
described by using both the eigenvalues and the eigenvectors of
the analyzed system. This is an alternative to the graphical method
of visualizing the varieties of the system as real vectors, and en-
riches the contribution of the paper. It should be emphasized that
with the results shown in this paper it is possible to predict the
occurrence of multistable states in jerky systems given by Eq. (5)
for any nonlinear function b(x1) such that there are as many scrolls
as equilibrium points, regardless of whether the parameters of the
system are the same (α1 = α2 = α3) or different (α1 ̸= α2 ̸= α3), as
long as the system satisfies the conditions to be classified as UDS I.

Future work must be able to apply the obtained results to other
systems to confirm the generality of the developed technique, or
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otherwise implement new tools for predicting tipping points in
dynamical systems without having to solve the systems of equa-
tions. Overall, this study advances our understanding of inflection
points in dynamical systems and provides a solid foundation for
future research in this field since the prediction of tipping points is
critical in numerous contexts, from ecology to economics.

APPENDIX: ANGULAR EQUIVALENCE

Next we will develop an equivalent form to Eq. (11 ) to determine
the angle between the manifolds.

Let ϑ1 ∈ R and ϑ2 = ϑ3 ∈ C are the eigenvectors of the matrix
M given in (6). We define the vectors vi = Re{ϑi} for i = 1, 2
and form the set V = {v1, v2}. Let χ = (χ1, χ2, χ3) ∈ R3 be the
equilibrium point of the system described by Eq. (1) for the region
Ω2 ⊂ R3, and the parameter γi

d ∈ R defined as:

γi
d = {γ ∈ R : χ1 + γvi1 = d},

where vi = (vi1, vi2, vi3) ∈ V. Then, the points A, B, C, and D
illustrated in Figure 3 can be described as follows:

A = χ + γ2
−1v2, B = χ + γ1

+1v1,

C = χ + γ2
+1v2, D = χ + γ1

−1v1.
(12)

Explicitly, the parameter can be obtained as follows:

γi
d =

d − χ1
vi1

,

and since the equilibrium point for the region Ω2 is the origin, we
have χ = 0 ∈ R3. Thus, the parameters are:

γi
−1 =

−1
vi1

, γi
+1 =

+1
vi1

, (13)

where it can be observed that γi
+1 = −γi

−1, i = 1, 2.
If we use the same construction as in Eq. (9), but substitute the

points from (12), we get the following:

Ms = D⃗B = D − B = (χ + γ1
−1v1)− (χ + γ1

+1v1) = . . .

γ1
−1v1 − γ1

+1v1 = (γ1
−1 − γ1

+1)v1,

Mu = A⃗C = A − C = (χ + γ2
−1v2)− (χ + γ2

+1v2) = . . .

γ2
−1v2 − γ2

+1v2 = (γ2
−1 − γ2

+1)v2.

(14)

Substituting (13) into Eq. (14), we have that

Ms = 2γ1
−1v1, Mu = 2γ2

−1v2. (15)

Without loss of generality, let’s assume that γ1
−1, γ2

−1 > 0, and
therefore

∥Ms∥ = 2γ1
−1∥v1∥, ∥Mu∥ = 2γ2

−1∥v2∥. (16)

To calculate the angle between the vectors Ms and Mu, the dot
product (denoted by ·) can be implemented as follows:

Ms · Mu = ∥Ms∥∥Mu∥ cos(θ).

When substituting (15) and (16) into the above equation, you
get:

(2γ1
−1)(2γ2

−1)(v1 · v2) = (2γ1
−1)(2γ2

−1)∥v1∥∥v2∥ cos(θ),

and therefore:
cos(θ) =

1
⟨v1⟩⟨v2⟩ ∑

i∈I

v1iv2i,

where

⟨vj⟩ =
(

∑
i∈I

v2
ji

)1/2

,

for j = 1, 2 and with I ⊆ {1, 2, 3} a collection of indices. Note that
⟨vj⟩ ≡ ∥vj∥ when I = {1, 2, 3}. Then the angle between vectors is
defined by:

cos(θI) =
1

⟨v1⟩⟨v2⟩

∣∣∣∣∣∑i∈I

v1iv2i

∣∣∣∣∣ .

Explicity, we will have:

cos(θ1,2) = |v11v21+v12v22|√
v2

11+v2
12

√
v2

21+v2
22

,

cos(θ1,3) = |v11v21+v13v23|√
v2

11+v2
13

√
v2

21+v2
23

,

cos(θ2,3) = |v12v22+v13v23|√
v2

12+v2
13

√
v2

22+v2
23

,

cos(θ1,2,3) = |v11v21+v12v22+v13v23|√
v2

11+v2
12+v2

13

√
v2

21+v2
22+v2

23
.

(17)

Now suppose that the matrix M given in (6) has the eigenvalues
λ1 = p ∈ R, and λ2,3 = a± ib with a, b ∈ R. Then the eigenvectors
of the matrix M can be written as:

(
ϑ1, ϑ2, ϑ3

)
=


1 1 1

p a − ib a + ib

p2 −b2 − 2iab + a2 −b2 + 2iab + a2

 ,

while their real part is as follows:

(
v1 v2

)
=


1 1

p a

p2 a2 − b2

 .

Substituting the aboved described into Eq. (17), we get:

cos(θ1,2) =
|1+pa|√

1+p2
√

1+a2
,

cos(θ1,3) =
|1+p2(a2−b2)|√

1+p4
√

1+(a2−b2)2
,

cos(θ2,3) =
|pa+p2(a2−b2)|√

p2+p4
√

a2+(a2−b2)2
,

cos(θ1,2,3) =
|1+pa+p2(a2−b2)|√

1+p2+p4
√

1+a2+(a2−b2)2
.

(18)

Regardless of which way is chosen, via eigenvectors as de-
scribed in Eqs. (17) or using the eigenvalues as in Eqs. (18), analy-
sis of these expressions when the parameter µ is varied yields the
same plot as in Figure 6.
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ABSTRACT
A theoretically and numerically analysis on Duffing Jerk systems with a sixth-order type potential and a
sixth-order potential smoothed by a Gaussian function are carried out in this work. This kind of systems
can modelate the response in circuits which may be used in cryptography. The Jerk system is transformed
into a dynamical system of dimension three. Choosing the set of values for the parameters to guaranty that
Jerk systems are Duffing type with triple well potential. The dynamics and stability of the resulting system
are analyzed, through phase space, bifurcation diagrams and Lyapunov exponents by varying the relevant
parameters, finding the existence of a strange attractor. The dynamics of system with potential smoothed
was studied by varying the smoothing parameter α, finding that this parameter can be used to controlling
chaos, since the exponential factor keeps the same fixed points and it regulates smoothly the amplitude of the
potential.

KEYWORDS

Jerk system
Duffing system
Bifurcation dia-
grams
Lyapunov expo-
nent

INTRODUCTION

In recent years, Jerk systems have been the subject of great interest
in the specialized community (Louodop et al. 2017; Kengne et al.
2020). In fact, the wide range of applications in fields such as con-
trol engineering (Raineri and Bianco 2019), biomechanics (Sharker
et al. 2019) and robotics (Chen and Zhang 2016) in which it is nec-
essary a third order derivative for the description of the system.
This type of systems are, in general, described by the following
equation ...

x = J (ẍ, ẋ, x) , (1)

where the J stands for "Jerk" (Louodop et al. 2017), which represents
a measure of the "abruptness" or "smoothness" of movement (from
a classical perspective).

Jerk systems can describe phenomena and behaviors more com-
plex than traditional second-order systems, which makes them
useful in modeling and controlling systems that experience rapid
changes or nonlinearities. Among the Jerk systems the most no-
table are those that present chaotic behavior. In an autonomous
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Jerk system, this chaotic behavior is achieved by considering a
certain degree of nonlinearity in J and because an increase in this
nonlinearity does not necessarily lead to a greater degree of chaos
in the system (Patidar and Sud 2005). However, it is possible to
work with systems with subjectively simple nonlinearities.

In physical models, Jerk-type arrangements can be used to
model, for example, the Nosé-Hoover dynamic system in ther-
mostated dynamic which exhibits time-reversible Hamiltonian
chaos (Posch et al. 1986). Furthermore, Jerk systems are often im-
plemented in variants of circuits, as they are easy to analyze numer-
ically and experimentally, and can be easily scaled to a wide range
of frequencies (Sprott 2011), with hump structure (Folifack Signing
et al. 2021) and a memristive model with quadratic memductance
which is used to build the nonlinear term of a Jerk system (Njitacke
et al. 2022). Those Jerk systems are used to image encryption.

Due to its applicability in modeling synchronization, one of the
most recurring system in the literature on chaos is the non-linear
Duffing oscillator (Uriostegui-Legorreta and Tututi-Hernández
2022; Uriostegui and Tututi 2023). Although the Duffing oscillator
is a dynamical system of low dimensionality, it can present chaos
if it is under an external forcing. Moreover, chaotification (Zhang
et al. 2009) allows converting the dynamics of autonomous systems
to a non-periodic one that presents chaotic motion. Different con-
trol methods and chaotification techniques of discrete-time and
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continuous-time dynamic systems exist in the literature, such as
feedback control with temporal delay (Zhou et al. 2010) or the co-
sine chaotification technique (Natiq et al. 2019). Furthermore, the
chaotic dynamics of the non-linear system can be modulated to
obtain a stable state or different types of dynamics (Haluszczynski
and Räth 2021)

However, in the first instance it is necessary to identify under
what parameters or conditions the system presents a chaotic behav-
ior. For this purpose, it is necessary to find regions of the param-
eters space that present non-periodical behavior. Thus, methods
such as bifurcation diagrams and Lyapunov’s spectrum, consti-
tuted by Lyapunov’s characteristic exponents (LCE), result useful.
In last case, a positive LCE is indicative of the presence of a chaotic
attractor in the system (Sandri 1996).

In this work, we study both a Duffing Jerk system with sixth-
order potential and a Duffing Jerk system with sixth-order poten-
tial smoothed by a Gaussian function. The proposed systems are
analyzed numerically, showing a change in dynamics by changing
the smoothed factor that ranges from presenting chaos to present-
ing a limit cycle. In addition, we classify the dynamics of the
system for different parameters finding that an increase in the
smoothed factor leads to restricting the dynamics to two types.

THEORETICAL FRAMEWORK

System

The dynamics of the Jerk system with a potential type ϕ6 is given
by

...
x = −c1 ẍ − c5c2 ẋ + c5

d
dx

U (x) , (2)

being

U (x) =
x2

2
+

c3x4

4
+

c4x6

6
, (3)

the energy potential. Whenever c4 > 0 and c3 < 0, U is triple
well potential (Hong et al. 2015; Uriostegui-Legorreta and Tututi
2023a,b). Notice that Eq.(2) can be written as an autonomous
dynamical system, as follows

ẋ = y,

ẏ = c5z,

ż = −c1z − c2y +
d

dx
U (x) , (4)

where the c1, c2, c3, c4 and c5 parameters are real numbers. Since
the system in Eq.(4) is nonlinear and three-dimensional, it could
give rise to chaos. In the following it will be established the condi-
tions for chaos.

It is well known that there exists an attractor if the ratio of the
contraction of the volume (V) of initial conditions in phase space
over time is less than zero(Hilborn et al. 2000), that is

1
V

dV
dt

=
∂ẋ
∂x

+
∂ẏ
∂y

+
∂ẋ
∂z

= −c1 < 0, (5)

which is satisfied for c1 > 0. It is known that when 1
V

dV
dt < 0, the

volume contracts exponentially thus the system results dissipative
and there may be a stable attractor. On the other hand, when
1
V

dV
dt > 0 the volume in phase space expands and there are only

unstable fixed points, limit cycles or chaotic repellers; that is, the
dynamics diverge if the initial condition is not exactly one of the

fixed points. These points (x0, y0, z0) are given by

d
dx

U (x) |x0 = 0,

y0 = 0,

z0 = 0. (6)

Hence, the fixed points depend on the parameters of U(x).
To analyze the dynamics, it is necessary obtain the eigenvalues

of the Jacobian matrix J of the system, given by

J =


0 1 0

0 0 c5

µ (x) −c2 −c1

 , (7)

with
µ (x) = 1 + 3c3x2 + 5c4x4. (8)

Notice that Eq. (8) is the second derivative with respect to x of the
Eq. (3). In this manner, the characteristic polynomial evaluated at
each of the fixed points is

P (λ) = −λ3 − c1λ2 − c2c5λ − c5µ (x0) , (9)

from which, we obtain the type of stability of the fixed points. No-
tice that Eq. (9) gives three solutions λ1, λ2, and λ3, for which, the
dynamics of the system depends on these values. The classification
of the stability of system is shown in Table 1 (Francomano et al.
2017; Stumpf et al. 2011) .

Potential Function U (x)

Notice that d
dx U (x) can be written as

d
dx

U (x) = (x − 0)
(

x − p+
) (

x + p+
) (

x − p−
) (

x + p−
)

, (10)

being

p± (c3, c4) = ±

√
1

2c4

(
−c3 ±

√
c2

3 − 4c4

)
, (11)

consequently, the fixed points of the system in Eq. (4) are

x0 = 0, p+,−p+, p−,−p−,

y0 = 0,

z0 = 0. (12)

The p± (c3, c4) in Eq. (11) are, in general, complex functions, so
different scenarios can occur: i) all roots are real, ii) one root is
real and 4 complex roots (2 complex and its conjugated), iii) 3 real
roots and 2 complex roots (1 complex root an its conjugated). It is
assume that all the roots are different, otherwise a degenerate case
is obtained which is avoided for the interest of the problem.

Then, the conditions for Eq. (11) to be purely real are

c4 ≤
( c3

2

)2
(13)

and

1
2c4

(
−c3 ±

√
c2

3 − 4c4

)
≥ 0. (14)

In the case of the triple well potential, only the condition in Eq. (13)
is necessary. The first condition is bounded by the upper parabola
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■ Table 1 Classification of equilibrium points for 3D system with two complex eigenvalues and one real λ1.

Equilibrium type Relation

Asymptotically Stable Focus-Node Re (λ1) < Re (λ2) = Re (λ3) < 0

Im (λ2) = − Im (λ3)

Unstable Focus-Node 0 < Re (λ1) < Re (λ2) = Re (λ3)

Im (λ2) = − Im (λ3)

Repelling Focus-Saddle Re (λ1) < 0 < Re (λ2) = Re (λ3)

Im (λ2) = − Im (λ3)

Attracting Focus-Saddle Re (λ3) = Re (λ2) < 0 < Re (λ1)

Im (λ3) = − Im (λ2)

defined by c4 = (c3/2)2 : c3 ∈ {−∞, ∞} / {0}. However, it must
satisfy at the same time with the second condition, so two cases
occur. The first one being with the positive root

p+

 c4 ≤
( c3

2
)2 ,

c3
c4

≤
√

c2
3−4c4
c4

.
(15)

The region where it is purely real is found graphically by looking
at the regions where the imaginary part of p+ is zero as shown in
Figure 1 (a). In the same way, in the second case with the negative
root should occur that the imaginary part of p− must be zero as
shown the Figure 1 (b) in te regions delimited by

p−

 c4 ≤
( c3

2
)2 ,

c3
c4

≥ −
√

c2
3−4c4
c4

.
(16)

Figures 1 (a) and (b) show the region where p± are pure real. That
is for c3 < 0, c4 > 0 and c4 < (c3/2)2. In the subsequent discussion
it is restricted to the case of the triple well potential.

NUMERICAL ANALYSIS

Bifurcation Diagrams
In order to obtain a dissipative system, it is necessary to take
c5 > 0 and c2 > 0 (Louodop et al. 2014). To obtain the bifurcation
diagrams as function of the c1, c2 and c5 and identify the chaotic
regions of the system, we take the values c3 = −0.6 and c4 = 0.06
and take two different initial conditions x1 = (2.7083, 0, 0) and
x2 = (−2.7083, 0, 0), being xi = (xi, yi, zi) with i = 1, 2, both taken
at the same initial time t = 0. In Figure 2 it is shown the bifurcation
diagrams for the two initial conditions. These bifurcation diagrams
were obtained by considering the local maxima of x(t), y(t) and
z(t) as a function of the c1, c2 and c5 parameters, respectively, in a
interval of time between [250, 310], using a step time of 0.01 in the
fourth-order Runge–Kutta method.

Phase Space
As it can be observed from Figure 2 there are regions where the
system exhibits chaos. A particular set of values of the parameters

Figure 1 Values of imaginary part of p+ in (a) and p− in (b), both
normalized to its maximum value.
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Figure 2 Bifurcation diagrams for the initial conditions x1 =
(2.7083, 0, 0) in red and x2 = (−2.7083, 0, 0) in blue, as function
the parameters. The first column (Figures (a), (d) and (g)) is for
the x variable. The second column (Figures (b), (e) and (i)) is for
the y variable, and finally the third column is for the z variable.

Figure 3 The strange attractors for the Jerk system obtained for
the initial conditions of (1, 0, 0) (a) and (2.7083, 0, 0) (b). In (c)
and (d) it is displayed the Lyapunov exponents for the corre-
sponding initial conditions. In (e) and (f) it is shown the corre-
sponding time series for the variables x, y and z.

is

c1 = 0.67,

c2 = 0.7,

c3 = −0.6,

c4 = 0.06,

c5 = 3.55,

which are used for obtain the attractor solutions, shown in figure
Figure 3 (a) and (b). The fixed points in Eq. (12) are found by
substituting the respective parameters into Eq. (11), resulting the
values x0 = 0, 2.8083, −1.4537, −2.8083, 1.4537 with y0 = z0 = 0.
We are interested in corroborating that the solutions obtained with
the values of the parameters correspond to strange attractors. To
do that it is necessary to obtain the LCE. According to reference
(Wolf et al. 1985), for a 3-dimensional system, where it is possible
to define tree Lyapunov exponents, if one Lyapunov exponent
is positive, other equal to zero and the third is negative then it
is obtained a strange attractor. It will be used this criterion for
the following analysis. In Figures 3 (a) and (b) it is displayed
the attractor obtained for the initial conditions of (1, 0, 0) (a) and
(2.7083, 0, 0) (b). In Figures 3 (c) and (d) it is shown the Lyapunov
exponent for these initial conditions, respectively. The values LCEs,
at the time t = 310, obtained are 0.1193, −0.0040, −0.7853 for the
first initial condition and 0.1329, −0.0016, −0.8013 for the second
initial condition. Figures 3 (e) and (f) show the time series for the
the variables x, y and z in a time interval of [0, 310]. As it can be
observed the results are not periodic. According to (Wolf et al. 1985)
the results indicates the presence of strange attractors.

Adding smoothed
Now let us add an exponential term that smooths the derivative of
the potential in the system under study, hence the new system is

ẋ = y,

ẏ = c5z,

ż = −c1z − c2y +

(
d

dx
U (x)

)
e−αx2

, (17)

where α ≥ 0 is the smoothing term. In the case of α = 0 it is
recovered the former system. Notice that its fixed points, Jacobian
and characteristic polynomial of the system described by Eq. (17)
do not change in its form, (see Eq.(7)) except for the function

µα (x) =
[
1 + (3c3 − 2α) x2 + (5c4 − 2αc3) x4 − 2αc4x6

]
e−αx2

.
(18)

Defining the function

ϕα (x) =
(

d
dx

U (x)
)

e−αx2
, (19)

whose behavior is illustrated in Figure 4 for different values of α.
With the introduction of the smoothing term, it is possible to

obtain bifurcation diagrams varying α in Eqs. (17) to recognize the
chaotic regions of the smoothed system. In Figure 5 it is shown
the bifurcation diagrams as a function of this parameter. As ex-
pected, for small values of α, the system remains chaotic, while
for values greater than 0.1, the system becomes non-chaotic, since
the nonlinear terms tends to zero for values of α large enough.
Despite the presence of regions of non-periodic behavior in the
bifurcation diagrams there is a transition to regions of periodicity
in which it can be found limit cycles in a region of the parameter
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Figure 4 Functions ϕα(x) (left) and |ϕ0(x) − ϕα(x)| (right) for
α = 1 × 10−4, in (a), α = 1 × 10−2 in (c), α = 0.5 in (e) and α = 1
in (g). Fixed points in red.

α. In fact, a qualitative analysis is carried out in the phase space
of the trajectories at different values of α, finding a limit cycle for
a value of α = 0.5. This assertion is verified with the values of
the LCE obtained for this case λx = −0.0094, λy = −0.0458 and
λz = −0.6148 taken at the time t = 310. To illustrate this let us take
25 initial conditions distributed over the sphere of radius r = 0.1
centered at the point (1.5,−0.39, 0) as it is shown in Figure 6 (a)
where it is noticeable that there is a different behavior from the
strange attractor of the system without smoothed. Then the radius
is reduced to a value of r = 0.001, revealing the limit cycle as shows
Figure 6 (b). In addition, there are points that are approximately
fixed since numerically they are values close to zero.

Figure 5 Bifurcation diagrams for the α parameter for the three
signals with different initial conditions shown in red and in blue.
In the vertical axis it is shown the maxima of corresponding
variable.
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Figure 6 Trajectories in the phase space for smoothed system in
Eq. (17) with α = 0.5 for initial conditions distributed over the
sphere (in red) centered in the point point (1.5,−0.39, 0) with
radius r = 0.1 in (a) and r = 0.001 in (b).

CONCLUSION

Let us briefly discuss the dynamics of the system around the fixed
points. Under the values of the parameters ci, with i = 1, 2, ..., 5
previously given, the eigenvalues are found given by the roots
of Eq. (9), were it is substituted the function µ(x) → µα(x) by
using Eq. (18). The eigenvalues are show in Figure 7. According
to the classification of the dynamics around fixed points in 3D
(Francomano et al. 2017; Stumpf et al. 2011) for the case α = 0
(where the distribution of eigenvalues in the complex plane for the
different fixed points is shown in Figure 7 (a)), the dynamics are
(see Table 1):

(0, 0, 0) : Attracting Focus-Saddle.(
p+, 0, 0

)
: Attracting Focus-Saddle.(

p−, 0, 0
)

: Repelling Focus-Saddle.(
−p+, 0, 0

)
: Attracting Focus-Saddle.(

−p−, 0, 0
)

: Repelling Focus-Saddle.

Note that the dynamics around points
(

p±, 0, 0
)

and
(
−p±, 0, 0

)
is the same. The different types of dynamics are maintained for
the values of α shown in Figure 7 (a)-(d) where the imaginary
and real parts of the eigenvalues change but remain positive or
negative regardless the value of α. Then in (e) of the same figure,
the dynamics of the fixed points change to:

(0, 0, 0) : Attracting Focus-Saddle.(
p+, 0, 0

)
: Attracting Focus-Saddle.(

p−, 0, 0
)

: Asymptotically Stable Focus-Node .(
−p+, 0, 0

)
: Attracting Focus-Saddle.(

−p−, 0, 0
)

: Asymptotically Stable Focus-Node .

The results of Figure 7 (f) show that as the value of α increases,
the dynamics of the system tend to be only two different types,
since the eigenvalues tend to degenerate. Taking a value of α = 3
is enough to appreciate this behavior.

Figure 7 Complex mapping of the eigenvalues λ of the Jerk sys-
tem for: α = 0 (a), α = 1 × 10−4 (b), α = 1 × 10−2 (c), α = 0.5
(d), α = 1 (e) and α = 3 (f). Notice the some eigenvalues coincide
for certain values of α, for example for the fixed points p+ (in
yellow) and −p+ (in green).

In this work, a chaotic system, constructed by immersing the
Duffing oscillator with a potential type ϕ6 in a Jerk type system
and then adding an exponential smoothed factor to the Duffing
potential with a parameter α, that modulates the amplitude of the
potential was studied. It was found that for α = 0 and for adequate
values of the potential there exists a strange attractor, result that
was corroborated by using bifurcation diagrams and by analyzing
the Lyapunov exponents. By increasing from zero to certain values
of α there is found a transition from the chaotic motion to regular
one. In some cases the regular motion corresponds to limit cycles.

The way of controlling chaos by means of the function used in
this work can also be used in other dynamical system of low- or
high-dimensionality.

Expanding upon the current study, future research initiatives
may explore other alternative methods for analyzing the dynam-
ics of systems such as the behavior of Lyapunov Exponents as
a function of parameters, Poincaré sections, basins of attraction,
and exploring different approaches for parameter estimation that
induce chaotic behavior in the system. The thorough study of Jerk-
type systems with Duffing potential, whose dynamics can transit
from periodic to chaotic, provides the opportunity to analyze this
behavior in the synchronization of the dynamics of the system to a
better understanding on implications and applications of imple-
menting Jerk systems (Uriostegui-Legorreta and Tututi-Hernández
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2022; Uriostegui and Tututi 2023; Vaidyanathan et al. 2017).
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Investigating Feed-Forward Back-Propagation Neural
Network with Different Hyperparameters for Inverse
Kinematics of a 2-DoF Robotic Manipulator: A
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ABSTRACT Inverse kinematics is a significant challenge in robotic manipulators, and finding practical solutions
plays a crucial role in achieving precise control. This paper presents a study on solving inverse kinematics
problems using the Feed-Forward Back-Propagation Neural Network (FFBP-NN) and examines its performance
with different hyperparameters. By utilizing the FFBP-NN, our primary objective is to ascertain the joint angles
required to attain precise Cartesian coordinates for the end-effector of the manipulator. To accomplish this,
we first formed three input-output datasets (a fixed-step-size dataset, a random-step-size dataset, and a
sinusoidal-signal-based dataset) of joint positions and their respective Cartesian coordinates using direct
geometrical formulations of a two-degree-of-freedom (2-DoF) manipulator. Thereafter, we train the FFBP-NN
with the generated datasets using the MATLAB Neural Network Toolbox and investigate its potential by altering
the hyperparameters (e.g., number of hidden neurons, number of hidden layers, and training optimizer). Three
different training optimizers are considered, namely the Levenberg-Marquardt (LM) algorithm, the Bayesian
Regularization (BR) algorithm, and the Scaled Conjugate Gradient (SCG) algorithm. The Mean Squared Error
is used as the main performance metric to evaluate the training accuracy of the FFBP-NN. The comparative
outcomes offer valuable insights into the capabilities of various network architectures in addressing inverse
kinematics challenges. Therefore, this study explores the application of the FFBP-NNs in tackling the inverse
kinematics, and facilitating the choice of the most appropriate network design by achieving a portfolio of
various experimental results by considering and varying different hyperparameters of the FFBP-NN.

KEYWORDS
Robotic manipulator
Inverse kinematics
Feed-Forward back
propagation
Artifical neural net-
work
Hyperparameters
Levenberg-
Marquardt algorithm
Bayesian regulariza-
tion algorithm
Scaled conjugate
gradient algorithm
Different datasets
Mean squared error
R-value

INTRODUCTION

Robot kinematics plays a fundamental role in respective robotic
research and applications. The progress in inverse kinematics algo-
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rithms is of utmost importance for advancing this field, as noted
in various studies (Gao et al. 2017; Liu et al. 2017; Rea Minango and
Ferreira 2017). However, conventional approaches for solving in-
verse kinematics problems frequently face issues with convergence
and entail intricate iterative procedures, which can negatively
impact the overall efficiency and quality of these algorithms, as
highlighted in the work of Reiter et al. (2018). Additionally, it has
been noted in the research work of Zhao et al. (2018) and that of
Di Pietro et al. (2012) that conventional approaches for solving
inverse problems lack a unified equation for describing motion.
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Compared to forward kinematics equations, inverse kinematics
equations present more significant challenges. Solving inverse
kinematics difficulties is typically more complex than solving for-
ward kinematics ones Bouzid et al. (2024d,c). The purpose of
forward kinematics is to identify the end-effector’s position based
on joint angles or positions (Bouzid et al. 2023, 2024b). In most
cases, this can be accomplished using simple geometric calcula-
tions. However, inverse kinematics entails determining the joint
angles or positions that match to a desired end-effector position,
which requires solving a set of nonlinear equations. This can be
computationally intensive, with complex relationships and limits
(Bouzid et al. 2024d,c).

Many researchers and organizations have conducted thorough
research into inverse kinematics algorithms within the field of
robotics (Benavente-Peces et al. 2014; Narayan et al. 2022; Becerra
and Kremer 2011; Narayan and Singla 2017a). These algorithms
primarily concentrate on four key aspects: geometric algorithms,
analytical algorithms, geometric-analytic algorithms, and numer-
ical algorithms. An analytical algorithm for solving kinematics’
inverse problems in palletization manipulator robotics was pro-
posed by Xu et al. (2017). While this analytical algorithm offers
certain practicality to some possible extent, it was found to en-
counter the probem of yielding multiple analytical solutions for a
single pose, thereby complicating the determination of a unique
solution. Practical experience has revealed that while applying
the algorithm to robotics offers flexibility, the design process tends
to become overly convoluted. This often leads to the need for
numerous iterations, resulting in inefficiencies (Abbas et al. 2019;
Narayan et al. 2018).

Therefore, to address the problem of computationally expen-
sive analytical and numerical solutions, researchers have started
exploring intelligent solutions in the last few years (Li and Savkin
2018; Mahajan et al. 2017). The authors in (Duka 2014) generated
training data for the Neural Network by randomly choosing joint
angle values and then determining the resulting end-effector po-
sition, following circular trajectories through forward kinematics.
Furthermore, the paper introduces a method to rescale the input
and output data to fall within the [−1, 1] range, thereby improv-
ing the network’s performance. In another research by Dash et al.
(2017), the Levenberg-Marquardt (LM) algorithm was used to train
the designed network over a set number of epochs. This study
focuses on tackling the problem of solving the inverse kinematics
of a 6-DoF system through the application of an artificial neural
network (ANN). In the work by Mahajan et al. (2017), a neural net-
work model was presented, capable of independently governing
the actions of a manipulator, thus obviating the need for external
guidance. The neural network was trained through unsupervised
learning methods, focusing on a 2-DoF system. The primary focus
of the study is to trace a circular path and intercept a moving ball.
In the study by Narayan and Singla (2017a), the researchers used
the adaptive neuro-fuzzy inference system (ANFIS) with a Gaus-
sian membership function to solve the inverse kinematics problem
of a 4-DoF SCARA robot, combining fuzzy inference systems and
neural network approaches from prior work.

Li and Savkin (2018) proposed a solution using competitive neu-
ral networks to address the inverse kinematics problem in robotics,
focusing on the task of a mechanical arm grabbing an object. A
MATLAB-based simulation was carried out, as referenced in (Ku-
mar et al. 2018), to assess the efficacy of an intelligent technique in
rectifying position errors during the execution of a circular trajec-
tory by a 2R robot. By introducing minor variations in link lengths,
geometric discrepancies were examined by generating a simulated

dataset using the kinematic models derived. Subsequently, the
neural network was trained on this dataset to forecast position
error values within the operational area of the robot. In (Lathifah
et al. 2018), authors explored an ANN to solve the problem of an in-
verse kinematics for a 3-link planar serial robotic manipulator. The
trained neural network was tested by considering that the robotic
manipulator performs square and/or triangle motions within the
admissible working-space (Bouzid et al. 2024d). Moreover, the LM
algorithm trained the neural network for the inverse kinematics
problem’s solution. Various network architectures were tested by
Handayani et al. (2018) to find the optimal solution. The proposed
method was evaluated using a simple planar manipulator perform-
ing tasks such as drawing a square and a triangle, and the results
demonstrate the validity of the neural network trained with the
Bayesian Regularization (BR) algorithm for solving the inverse
kinematics problem. Theofanidis et al. (2018) have introduced a
novel neural network-based approach for estimating a kinemati-
cally redundant robotic arm’s forward kinematics and testing it
for different configurations.

The neural network is trained in the work by Dumitriu et al.
(2020), using the LM algorithm to map the manipulator’s joints and
the end-effector’s position based on forward kinematics calcula-
tions. The network is trained for different scenarios, and the Mean
Square Error (MSE) is used to evaluate the accuracy of the results.
The research work in (Gao 2020) demonstrated that the proposed
algorithm of the inverse kinematics, which employs an enhanced
BPNN, outperforms better than traditional/classical algorithms
for inverse solutions when handling with the inverse kinemat-
ics problem in manipulator robots with six degrees of freedom
(Bouzid et al. 2024d). Aravinddhakshan et al. (2021) introduced a
neural network-based approach for a 5-DoF manipulator through
supervised learning, achieving accurate inverse kinematics and
optimizing path planning during pick and place operations. This
highlights the effectiveness of neural networks in manipulator
control. Furthermore, the research of Köker et al. (2004) focused
on a three-joint robotic manipulator and utilized simulation soft-
ware to plan cubic trajectories and define the manipulator’s work
volume. A key strength highlighted in the study is the neural
network’s remarkable online performance. In addition, multiple
neural networks were employed in (Takatani et al. 2019) to learn
the inverse kinematics of redundant robotic manipulators using an
independent approach, and by studying different structures of the
evaluation function (Bouzid et al. 2024d). Furthermore, the training
data employed in this learning methodology consists of different
endpoints, different postures, and different evaluation values of
the robotic manipulators. Meanwhile, Ibarra-Pérez et al. (2022)
emphasizes the challenge of setting structural parameters for neu-
ral networks, advocating for optimization-based methods over
trial-and-error, saving time and improving performance. Lastly,
in the work of Aysal et al. (2023), machine learning techniques are
found to be a viable option for analyzing the kinematics of a 3-DoF
robot arm with an RRR design, mainly using an MLP model to
ensure system stability.

In (Wagaa et al. 2023), various Deep Learning networks were
developed to solve the inverse kinematics of 6-DoF manipulator
robots. ANN, Convolutional Neural Network (CNN), Long-Short
Term Memory (LSTM), and Gated Recurrent Unit (GRU) are the
neural network architectures that have been considered. Further-
more, authors examined the performance of analytical and neural
systems in producing robot trajectories using the RoboDK simula-
tor to display simulation results with real-world implications. In
(Cagigas-Muñiz 2023), various strategies involving ANNs were
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proposed and studied. The results revealed that the proposed orig-
inal bootstrap sampling and hybrid methods could significantly
outperform approaches that just use one ANN. Nevertheless, none
of these advancements completely solved the inverse kinematics
problem in articulated robots. García-Samartín and Barrientos
(2023) addressed the forward kinematics’ problem using ANNs
and Genetic Algorithms (GA). Using the publicly available Inverse
Kinematic (IK) model, both GA and ANN approaches were im-
plemented. Authors showed, compared to another approach, that
the proposed methodologies produced equivalent or higher re-
sults in terms of accuracy and time. Authors in (Bouzid et al. 2023,
2024b) studied the forward kinematics problem of a 2-DoF robotic
manipulator via ANNs. Moreover, they tackled in (Bouzid et al.
2024a) the same problem for a SCARA manipulator robot. Further-
more, the problem of studying and solving the issues of the inverse
kinematics for the manipulator robot was considered in (Bouzid
et al. 2024d,c). Other solving approaches of the inverse kinematics
problem for articulated manipulator robots can be found within
these previous references.

The existing literature on the subject reveals a noticeable gap
in research related to the comparative analysis of neural networks
with different hyperparameters when applied to solving the in-
verse kinematics of robot manipulators. As a response to this
deficiency, our study makes a substantial contribution by introduc-
ing a Feed-Forward Back-Propagation Neural Network (FFBP-NN)
specifically designed to tackle the inverse kinematics problem of a
2-DoF articulated robotic manipulator. Through the process, we in-
vestigated the effectiveness of the FFBP network architecture with
three distinct generated datasets: a random-step-size dataset, a
fixed-step-size dataset, and a sinusoidal-signal-based dataset with
varying frequencies (Bouzid et al. 2024d,c, 2023, 2024b). Moreover,
for each dataset type, the network architecture is tested with dif-
ferent hyperparameters, such as the number of hidden layers, neu-
rons in the hidden layer, and three different training optimization
algorithms, namely the Levenberg-Marquardt (LM) (Ranganathan
2004), the Bayesian regularization (BR) (Kayri 2016), and the Scaled
conjugate gradient (SCG) (Møller 1993). The testing and verifica-
tion phases are achieved in order to evaluate the capacity of the
trained neural network to minimize approximation errors and
appropriately estimate inverse kinematics.

The rest of this paper is structured like so: Section 2 delves
into the mathematical representation of the forward kinematics
of manipulator robots with n degrees of freedom, while Section 3
explores the computational aspects of the inverse kinematics for a
2-DoF manipulator robot. Section 4 introduces a novel approach
using an FFBP-NN to efficiently solve inverse kinematics prob-
lems, detailing the network’s architecture. In this previous Section,
we provide a brief overview of FFBP-NNs to ensure reader un-
derstanding. A flowchart and the hyperparameters used in the
proposed FFBP-NNs are also illustrated in this previous same sec-
tion. Section 5 presents numerical results obtained through the
FFBP-NNs’ application and initiates a discussion on implications,
potential improvements, and broader applications within the field
of robotics. The paper concludes with a conclusion and some pos-
sible future directions for improvements, presented in Section 6.

FORWARD KINEMATICS OF n-DOF MANIPULATOR
ROBOTS

It is worth mentioning first that the terminology DoF stands for
“Degree of Freedom”. In the context of robotics, mechanics, and
other related disciplines, it refers to the number of independent
parameters or variables that define the configuration or motion

of a system. Thus, in the context of a robot arm, the number of
degrees of freedom would represent the number of independent
ways the arm can move or rotate.

A Brief Description on Forward Kinematics of n-DoF Manipulator
Robots

Forward kinematics of n-DoF manipulator robots is a fundamental
concept in robotics that deals with determining the position and
orientation of the robot’s end-effector (usually a tool or gripper) in
the workspace based on the joint angles or variables of the robot’s
individual links. It is akin to tracing the path of a robot’s “hand” as
it moves through its various joint configurations. Methods from ge-
ometry and linear algebra, trigonometric transformation matrices,
and homogeneous coordinate transformations are frequently used
in traditional solutions to the forward kinematics problem. Here is
a brief overview of the conventional solution approaches for the
computation of the forward kinematics of manipulator robots:

1. Geometric Approach: It offers a straightforward understanding
of how a robot’s joints and links affect its end-effector’s po-
sition and orientation, useful for simpler robots like planar
ones but less effective for complex structures with closed-loop
chains or redundancy due to accuracy challenges and lack of
closed-form solutions (Kim et al. 2016).

2. Trigonometric methods: While excelling in simplicity and com-
putational efficiency, trigonometric methods are most suitable
for planar robots because they provide analytical solutions
without iterative techniques (Petrescu et al. 2017). However,
they may not be as effective for complex robots in three-
dimensional spaces or with unconventional joint arrange-
ments, as their assumptions may lead to reduced accuracy. En-
gineers and roboticists should assess their suitability for spe-
cific applications and consider alternative approaches when
dealing with intricate systems or non-standard geometries.

3. Coordinate transformations: Coordinate transformations have
versatile applications in various robotic systems, including
2D and 3D environments with different degrees of freedom
(Wang et al. 2014). They provide a mathematically rigorous
foundation, enhancing complex robots’ capabilities and in-
tegrating seamlessly with other techniques. However, im-
plementing them can be intricate, especially for robots with
many joints and complex link geometries, potentially lead-
ing to longer development times and errors. Proficiency in
coordinate transformations may require a robust mathemat-
ical background, posing a learning curve for some robotic
practitioners.

Extending the concept of coordinate transformation, forward
kinematics is calculated using Denavit-Hartenberg (DH) param-
eters and the homogeneous transformation matrix (Denavit and
Hartenberg 1955). The DH parameters provide a systematic way to
describe the geometric relationship between the robot’s successive
joints and links (Narayan and Singla 2017a). The Homogeneous
Transformation Matrix combines DH parameters to express the
transformation from one coordinate frame (associated with a spe-
cific joint) to another, effectively mapping the position and orien-
tation of each link concerning the previous one. By multiplying
these transformation matrices sequentially from the base link to the
end-effector, the forward kinematics algorithm computes the final
transformation that represents position of the robot’s end-effector
in the base coordinate frame.
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Furthermore, for each joint/frame, the parameters in this pre-
vious homogeneous transformation matrix, noted as i

i−1H, are
defined, according to the DH method, like so (Ganapathy 1984):

• Link length (a): The path of the shared normal defining the
difference between the preceding z-axis (that is of the (i − 1)th
frame) and the actual z-axis (that is of the ith frame).

• Link twist (α): The angle about the shared normal between
the preceding z-axis and the present z-axis.

• Link offset (d): The path from the previous x-axis to the actual
x-axis, along the preceding z-axis.

• Joint angle (θ): The degree of rotational angle about the z-axis
between the preceding x-axis and the actual x-axis.

The homogeneous transformation matrix i
i−1H from the (i −

1)th frame to the next one (ith frame) is represented via the follow-
ing expression (Ganapathy 1984):

i
i−1H =

 i
i−1R

i
i−1T

O 1

 (1)

where i
i−1R and i

i−1T are, respectively, the rotation and translation
matrices from one frame to the next one. Moreover, the symbol O
stands for the zero matrix with appropriate dimension.

Such homogeneous transformation matrix (1) is explicitly ex-
pressed in terms of the DH parameters, θ, d, α and a, as follows:

i
i−1H =


cos(θ) − sin(θ) cos(α) sin(θ) sin(α) a cos(θ)

sin(θ) cos(θ) cos(α) − cos(θ) sin(α) a sin(θ)

0 sin(α) cos(α) d

0 0 0 1


(2)

The Adopted 2-DoF Robotic Manipulator and its Forward Kine-
matics

In our study, we utilize a 2-DoF manipulator robotic model as
shown in Figure 1. In the kinematic description of the robotic
system under consideration, the joints are denoted as joint 1 and
joint 2, representing the rotational angles θ1 and θ2, respectively.
The associated links are labeled as follows: link 0 corresponds to
l0, link 1 to l1, and link 2 to l2. This notation establishes a clear
and concise representation of the joint angles and link lengths,
facilitating the systematic analysis of the robot’s kinematics.

By following the steps and the implementation of the geomet-
rical method and validating with the DH method, the forward
kinematics equations for the 2-DoF manipulator robot can be ob-
tained as follows (Ghaleb and Aly 2018):

X = l0 + l1 cos(θ1) + l2 cos(θ1 + θ2) (3)

Y = l1 sin(θ1) + l2 sin(θ1 + θ2) (4)

For our specific scenario, the lengths of the 2-DoF manipulator
robot are set as follows: l0 = 1 [m], l1 = 2 [m], and l2 = 3 [m].
Note that in these equations (3) and (4), the parameters θ1 and θ2
represent the joint angles of the 2-DoF manipulator robot, serving
as input parameters for computing the Cartesian coordinates X
and Y.

Figure 1 Schematic of a 2-DoF manipulator robot (updated from
(Madhuraghava et al. 2018)).

INVERSE KINEMATICS OF THE 2-DOF MANIPULATOR
ROBOT

In the case of inverse kinematics for the 2-DoF manipulator robot,
the problem is formulated to calculate the joint angles necessary
to position the end-effector at a specific Cartesian coordinate in
the workspace, as shown in Figure 2. Thereafter, an intelligent
neural network-based solution is proposed to address the problem
formulation.

Figure 2 Schema of the Forward/Inverse Kinematics. The left-hand
side of the figure represents the manipulator articulation variable.
The right-hand side represents the location of the robot end-part.

Problem Formulation
The complexity arises from the nonlinear and intricate mathemat-
ical equations governing the connection between joint angles q
and the resulting end-effector position Z, modeling the following
forward kinematics model (Narayan and Singla 2017b):

Z = F (q), q ∈ Rn, Z ∈ Rm (5)

and therefore the following inverse kinematics model, which is
considered to be unknown:

q = φ(Z) (6)

Here are a few problems associated with the inverse kinematics:

1. Nonlinearity: Nonlinear inverse kinematics challenges arise
due to complex joint configurations or irregular manipulator
robot shapes, necessitating computationally intensive solu-
tions through iterative numerical methods or optimization
techniques (Snieder 1998).
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2. High-dimensional Spaces: As the number of joints in a manipula-
tor robot increases, the dimensionality of the inverse kinemat-
ics problem also increases. To tackle this problem, dimension
reduction and advanced optimization methods may be re-
quired (Petrović 2018).

3. Joint limits: Manipulator robots typically have joint limits
that restrict the range of motion for each joint. Ensuring that
the solutions of the inverse kinematics respect these physical
limits is essential to prevent damage to the manipulator robot
(Huo and Baron 2008).

Proposed Method
In this research work and to solve the inverse kinematics of the
2-DoF manipulator robot, the proposed approach is articulated
around the following points:

• Our research project centers on applying intelligent tech-
niques to tackle inverse kinematics challenges, particularly on
ANNs.

• In our investigation, we will explore the use of FFBP-NNs
utilizing various training optimizers and diverse numbers of
hidden layers.

• We aim to evaluate their effectiveness across three different
datasets to enhance our understanding of their capabilities.

FEED-FORWARD BACK-PROPAGATION NEURAL NET-
WORK FOR SOLVING THE INVERSE KINEMATICS PROB-
LEM

A Brief Overview on Feed-Forward Back-Propagation Neural Net-
works
An FFBP-NN stands as a pivotal construct within the expansive
realm of ANNs, designed primarily to excel in supervised machine
learning endeavors such as classification and regression, prediction
of time series, as well as modeling of complex nonlinear dynamical
systems (Cimen et al. 2019; Martinez-garcia et al. 2022; Karaca 2023;
Keleş et al. 2023; Noorani and Mehrdoust 2022). An FFBP-NN
fundamentally comprises a layered architecture where neurons
are intricately linked, guiding information in a carefully designed
unidirectional path. This complex network structure typically in-
cludes an input layer, which receives initial data inputs; a series
of hidden layers, one or more in the count, actively involved in
intermediate data processing and the extraction of vital features;
and, to complete the sequence, an output layer tasked with gener-
ating the network’s predictions. The core of this neural architecture
hinges on two essential components: the allocation of weights to
neural connections, which indicates the connection strength, and
the inclusion of bias terms at each neuron, discreetly introducing
an adjustment to the neuron’s activation function output.

The crux of FFBP-NN operation is the feedforward process,
wherein data systematically traverses the network’s layers. Within
each layer, a neuron undertakes the intricate task of computing a
weighted sum of its inputs, adding the bias term into the equation,
and applying a designated activation function, resulting in an
output that cascades to the next layer. These activation functions,
spanning the spectrum from sigmoid and hyperbolic tangent to
the robust rectified linear unit (ReLU), serve to imbue the network
with a capacity for nonlinearity, thereby empowering it to model
intricate and non-trivial data relationships effectively. We find the
eagerly awaited predictions at the apex of the network, located
within the output layer. An essential aspect of this procedure
entails the utilization of a loss or cost function, which scrupulously

quantifies the gap between these predictions and the pristine target
values present in the training dataset. The optimization process,
a crucial stage in an FFBP-NN, is guided by the venerable back-
propagation algorithm.

This iterative mechanism recalibrates the network’s core param-
eters - the weights and biases - in pursuit of the singular objective:
minimizing the loss function. Underpinning this algorithmic oper-
ation is the gradient descent technique, a stalwart of optimization
methodologies, masterfully guiding parameter adjustments. Cen-
tral to this process is the learning rate, a hyperparameter wielding
influence over the scale of parameter updates, thereby determining
the network’s convergence rate. With the profound complexity
and nuance embedded within FFBP-NNs, hyperparameters serve
as vital navigational coordinates in this intricate journey. These
encompass many facets, encompassing the count of hidden lay-
ers, the number of neurons nested within each layer, the judicious
selection of activation functions, and the meticulous tuning of
the learning rate. Through these careful adjustments, FFBP-NNs
evolve from their nascent state into formidable models, attaining
an esteemed position within the pantheon of machine learning
paradigms. FFBP-NNs play a pivotal role across multifarious do-
mains, underscoring their enduring relevance and adaptability
through their ability to capture, decode, and illuminate intricate
data relationships.

Training With Three Different Datasets

The proposed method employs three distinct datasets: (1) a dataset
with a fixed step size, (2) another with random step sizes, and (3)
a sinusoidal-signal-based dataset featuring varying frequencies.
The selection of these datasets aims to thoroughly evaluate the
FFBP-NN’s performance across various input data types.

It is important to note that we arbitrarily use the parameters,
and multiple possible combinations depend on our choices. We
have discovered these results through numerical experimentation,
but obtaining other values and even more efficient models is possi-
ble. We conducted tests over 1000 epochs, exploring using 1 to 5
hidden layers for a given number of layers (as shown in Figure 3),
and a specific dataset size.

Fixed-step-size Dataset: This initial dataset served as the main
foundation for training ANNs through a FFBP method. This
dataset was meticulously curated to evaluate the ANN’s perfor-
mance across various scenarios (Bouzid et al. 2023, 2024d,b,c). The
dataset creation process involved systematically altering the val-
ues of θ1 and θ2, incrementing them by a fixed step size h equal
to h = 0.02, within the interval from θmin

i = −π to θmax
i = π, for

i = 1, 2.
Thus, for each articulated variable θi, we build the vector of

all values of θi by sweeping the interval [θmin
i : θmax

i ], for all i =
1, 2, for left to right with the fixed step h = 0.02. The following
expressions are used to build such intervals of the two parameters
θ1 and θ2.

θ
Range
1 = [θmin

1 : h : θmax
1 ] (7)

θ
Range
2 = [θmin

2 : h : θmax
2 ] (8)

The size of each vector θ
Range
i , with i = 1, 2, is equal to N =

2π
h + 1 = 315. It is worth to note that the decrease of the value of

the parameter h will lead to the increase of the value of N, and
hence of the size of the dataset in question, which is equal in the
present case (that is with h = 0.02) to N2 = 99225.
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(a)

(b)

(c)

(d)

(e)

Figure 3 Different adopted ANN architectures with a different number of neurons in each hidden layer: (a) ANN model with only one hidden
layer having 10 neurons, it will be noted as 1 Hidden layer (10), (b) ANN model with two hidden layers where the first hidden layer has 10
neurons, whereas the second hidden layer has only 2 neurons, it will be referred to as 2 Hidden layers (10,2), (c) ANN model with three hidden
layers, where the number of neurons in each hidden layer is successively 10, 20 and 2, it will be noted as 3 Hidden layers (10,20,2), (d) ANN
model with four hidden layers and where the number of neurons associated to each layer is respectively 10, 20, 5, and 2, and it will be referred
to as 4 Hidden layers (10,20,5,2), and (e) ANN model with five hidden layers, and it will be indicated as 5 Hidden layers (10,20,10,5,2).

For each possible combination of these joint angles θi in the
interval θ

Range
i , for all i = 1, 2, by sweeping then from left to

right, we employed the forward kinematics equations (3) and (4)
to compute the corresponding Cartesian coordinates (X and Y).
Therefore, the dataset consisted of pairs of input and output data,
where the Cartesian coordinates represent the outputs, whereas
the inputs are the two joint angles (θ1 and θ2).

The main goal is to enable the FFBP-NN to accurately predict
joint angles from various end-effector positions. We achieved this
by using diverse input and output data in the dataset and the
FFBP-NN during training to improve the proposed ANN’s ability
to generalize and make precise predictions of the positions of the
adopted 2-DoF manipulator robot.

Random-step-size Dataset: This dataset was deliberately designed
to inject an element of unpredictability and variability into the

input data, serving as a test of the FFBP-NN’s adaptability and
resilience. The primary objective behind creating this dataset was
to gauge the FFBP-NN’s capacity to handle unforeseen patterns
and assess its robustness when confronted with such unanticipated
scenarios (Bouzid et al. 2023).

To generate the random dataset for the inverse kinematics of the
2-DoF manipulator robot, we harnessed the power of the “rand”
function to produce random values for the joint angles, θ1 and θ2.
Each data point within this dataset was characterized by two joint
angles, θ1 and θ2, randomly chosen from a non-uniform distribu-
tion (Bouzid et al. 2023, 2024b). We applied a scaling and shifting
technique to ensure that these randomly generated joint angles fell
within the desired range of −π to π. Specifically, we multiplied the
random values by 2π and subtracted π, yielding joint angles that
span the entire range from −π to π (Bouzid et al. 2023, 2024d,b).

The following expression elucidates the computation process
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for this random dataset (Bouzid et al. 2023, 2024d,b):

θRange = rand(N, 2)× 2π − π (9)

where N is the desired total number of parameters, which gives
hence the size of the dataset. Note that this expression (9) will
generate the complete dataset for the two variables θ1 and θ2. The
output of this equation is then a vector composed of two columns:
the first column is for θ1, whereas the second column is for θ2.

Then, once the random part/subset of the dataset is generated,
we compute the two Cartesian coordinates X and Y of the manip-
ulator robot using the forward kinematics equations (3) and (4).
As a result, we obtain a matrix with two columns where the first
column is for the X coordinate and the second column is for the
Y coordinate. This matrix is therefore saved in the dataset along
with the first part composed of the two variables θ1 and θ2. Thus,
the resulting matrix is composed of four columns and N rows. For
this random dataset, we fixed N = 1000.

The inherent randomness and variability of this adopted dataset
pose a robust challenge to the FFBP-NN, forcing it to adapt and
learn from unforeseen patterns. Using previously generated joint
angles, we systematically cycled through forward kinematics equa-
tions for each data point. This iterative process created a dataset
with diverse and random combinations of Cartesian coordinates
and joint angles. Each entry in the dataset displayed a unique
combination of joint angles associated with Cartesian coordinates,
enabling a comprehensive and random exploration of the end-
effector positions of the manipulator robot (Bouzid et al. 2023,
2024d,b,c).

Sinusoidal-signal-based Dataset: We harnessed the capabilities of
the FFBP-NN by introducing a third dataset tailored to evaluate its
proficiency in handling sinusoidal signals characterized by varying
frequencies. This dataset was pivotal in assessing the performance
of the FFBP-NN when confronted with diverse frequency patterns.
Our primary goal was to comprehensively examine how effectively
the FFBP-NN could discern and predict the intricate cyclic patterns
inherent in the input data. This exploration was instrumental in
enabling the FFBP-NN to acquire an in-depth understanding of
these complex signals and enhance its ability to generalize across
a broad spectrum of cyclic patterns (Bouzid et al. 2023, 2024d,b,c).

The sinusoidal-signal-based dataset encompassed two sinu-
soidal signals with distinct characteristics, as outlined in Table 1.
Each signal i corresponds to the joint variable θi, for i = 1, 2.

This dataset facilitates the creation of visualizations for tracking
the fluctuations in joint angles θ1 and θ2 concerning an angular pa-

■ Table 1 Parameters used for the sinusoidal-signal-based
dataset for generating the values of the two angular positions
θ1 and θ2 of the 2-DoF manipulator robot.

Parameter Signal 1 of θ1 Signal 2 of θ2

Frequency f [Hz] 1.5 10

Phase ϕ [rad] 0 π/4

Amplitude A [rad] π π

Angle ξ [rad] [−π, π] [−π, π]

Number of samples N 1000 1000

rameter. These visualizations are constructed using the following
equations:

θ1 = A1 × sin( f1 × ξ1 + ϕ1) (10)

θ2 = A2 × sin( f2 × ξ2 + ϕ2) (11)

In these equations (10) and (11), and in order to generate the
two sinusoidal signals, the two parameters ξ1 and ξ2 are varied
within the admissible interval [−π, π]. As a result, another form
of the distribution of the values of the two angles θ1 and θ2 will
be obtained. A such distribution is entirely different to that of the
first and second datasets.

When we generate the parameters and equations for the
sinusoidal-signal-based dataset, a figure emerges as its represen-
tation. This figure encompasses two subplots illustrating the gen-
erated curves of our variables, which are θ1 and θ2 (see Figure 4).
In the initial subplot at the top, the curve is depicted in blue, il-
lustrating the connection between the angle on the x-axis (ξ) and
the corresponding joint angle (θ1) on the y-axis. This subplot pro-
vides insights into how the joint angle θ1 varies with respect to
the angle/variable ξ. In the second subplot at the bottom, the
curve is presented in magenta. Here, the x-axis (ξ) signifies the
angle, while the y-axis represents the joint angle (θ2). This subplot
enables us to examine how the joint angle θ2 responds to changes
in the angle/variable ξ. Collectively, these subplots offer a visual
depiction of the sinusoidal-signal-based dataset, highlighting the
interplay between angles and their corresponding joint angles, as
demonstrated in Figure 4. Additionally, this visual representation
aids in understanding the dataset’s characteristics.
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Figure 4 Presentation of the generated signals of the two sinusoidal
signals of the two variables θ1 and θ2 of the 2-DoF manipulator
robot.

Therefore, once the values of two joint angles θ1 and θ2 are
obtained according to the adopted sinusoidal distributions, we
introduce the forward kinematic model, that is equations (3) and
(4), for the computation of the Cartesian coordinates X and Y of the
2-DoF manipulator robot. These results of X and Y are then putted
together with the generated variables θ1 and θ2 to form hence the
dataset in question. Such dataset has a size equal to N = 1000.
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Adopted Training Optimizers for the FFBP-NNs
In the complex world of training neural networks, there are many
optimization methods to tweak the inner workings of a model
to get better at reducing errors. Within this realm, the tapestry
of algorithms is rich, each weaving its own unique pattern in
the grand design of optimization. Our work focuses on three of
these distinguished algorithms, each bearing its own distinctive
character and prowess.

Levenberg-Marquardt (LM) Optimizer: First, the Levenberg-
Marquardt (LM) algorithm emerges as a stalwart choice (Ran-
ganathan 2004). Emerging from the challenges of nonlinear least
squares problems, this method utilizes a repetitive process of
tweaking parameters. It skillfully estimates the Hessian matrix,
which plays a crucial role in governing the shape of the error sur-
face, and combines it with a stabilizing factor. This approach excels
when dealing with relatively modest-sized networks, achieving
rapid and captivating convergences.

Bayesian Regularization (BR) Optimizer: Delving deeper into the
optimization domain, the Bayesian Regularization (BR) algorithm
emerges as a prudent approach where the role of a Bayes theorem is
crucial, steering the training process towards regularization (Kayri
2016). Endowed with prior knowledge concerning the model’s
parameters, it safeguards against the perilous pitfalls of overfit-
ting. Pioneering a trail where prior probability distributions are
important, the algorithm’s objective is to unearth the posterior
distribution that, with a predestined sense, maximizes the like-
lihood of the available data. This algorithm offers unwavering
performance against noisy or scanty data.

Scaled Conjugate Gradient (SCG) Optimizer: The Scaled Conju-
gate Gradient (SCG) algorithm takes the stage as an efficient ap-
proach where it marries the concepts of conjugate gradients with
adaptive step sizes (Møller 1993). The algorithm dynamically
scales its step size according to the undulating contours of the
error surface. In doing so, it navigates the rugged terrain of opti-
mization with unparalleled grace, achieving swifter convergence.
The algorithm’s reputation precedes it, proving its mettle in the
daunting task of handling large-scale networks. Its legacy lies in
computational efficiency and an unwavering commitment to the
cause of convergence.

Evaluation Metrics
MSE: In the context of our research, the MSE is used as a the main
metric for assessing the accuracy of predictions of the adopted
FFBP-NNs. Such metric is calculated using the following expres-
sion:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (12)

where n is the number of observations, yi represents the actual
values, and ŷi represents the predicted values. This equation quan-
tifies the average squared difference between the actual and pre-
dicted values. The MSE is a valuable tool in evaluating the perfor-
mance of predictive models. Such metric will be essentially used
to compared between the performance of the different adopted
artificial neural networks.

Coefficient of correlation R-value: Moreover, to evaluate the per-
formance of the neural network models, we will use the regression
metric, the coefficient of correlation R, called also as the coefficient
of determination R2. Such metric R is expressed and computed

according to the following relation (del Rosario Martinez-Blanco
et al. 2016):

R =

√
∑n

i=1(ŷi − ȳ)2√
∑n

i=1(yi − ȳ)2
(13)

where ȳ stands for the mean of the actual values.

It is important to note that it is possible to use other metrics to
measure the performance of the FFBP-NN models. Such metrics
can be the Mean Absolute Error (MAE), the Root Mean Square
Error (RMSE), the Mean Absolute Percentage Error (MAPE), the
Relative Root Mean Squared Error (rRMSE), the Normalized Mean
Square Error (NMSE), the Relative Mean Absolute Error (rMAE),
the Mean Biased Error (MBE), the Mean Relative Error (MRE),
just to mention a few (del Rosario Martinez-Blanco et al. 2016;
Darba et al. 2022; Keleş et al. 2023). In this present work, only the
MSE and the R-value are considered as two metrics to evaluate
the performance of the FFBP-NN models in solving the inverse
kinematics of the 2-DoF manipulator robot.

Solving Methodology of the FFBP-NNs Training Process
In pursuit of transparency and reproducibility, we adopted MAT-
LAB as our primary software platform, harnessing a suite of spe-
cialized toolboxes to streamline implementation and experimenta-
tion. The Neural Network Toolbox (NNT) within MATLAB played
a pivotal role in this pursuit, offering crucial functionalities for the
design, training, and simulation of neural networks. The NNT in
MATLAB is a versatile collection of tools tailored for a spectrum of
applications, ranging from pattern recognition to time-series pre-
diction. Noteworthy features include its support for diverse neu-
ral network architectures, encompassing feedforward networks,
radial basis networks, and self-organizing maps. The toolbox em-
powers users to define network structures with ease, specifying
layers, nodes, and activation functions. MATLAB’s NNT further
stands out with its array of training algorithms, including Lev-
enberg Marquardt and Bayesian regularization, allowing us to
fine-tune parameters for optimal results. Moreover, its graphical
tools facilitate the visualization of neural network architectures,
enabling us to analyze performance through plots and confusion
matrices.

In this work, and in order to solve the inverse kinematics of the
2-DoF manipulator robot using ANNs models, we followed some
specific steps. The flowchart of Figure 5 reveals these different and
specific steps followed to train the adopted FFBP-NNs using the
proposed datasets arriving to the final step, which is the displaying
of simulation results by plotting the MSE, the regression curves
and the error histograms.

Hyperparameters for the Training Process
Table 2 reveals the different parameters and hyperparameters used
for the training of the proposed FFBP-NNs and their values. For
each set of (hyper-)parameters, the training process is executed
according to the flowchart presented in Figure 5. The adopted
FFBP-NN models are illustrated in Figure 3, where we used an
architecture composed of 1, or 2, or 3, or 4, or 5 hidden layers. For
each hidden layer, it corresponds the number of neurons.

In this work, two kinds of the activation function have been
considered in the training phase: (1) the hyperbolic tangent sig-
moid transfer function (tansig) used for all hidden layers, and
(2) the linear transfer function (purelin) for the output layer (see
(Keleş et al. 2023) for for further details about these two activation
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Initialize the Artificial Neural Network
(ANN) System

Select the Hyperparameters
for Learning:

Number of Epochs, Hidden Layers,
and Neurons

Load the desired Dataset 
(Fixed step size, Random step size,
Sinusoidal signal-based Datasets)

Choose the Algorithm for Training :
LM, BR, SCG Algorithm

Start

Choose the Activation Function 

Start to Train

Display Results

MSE Regression Error Histograms

Figure 5 Flowchart describing the procedure for training the FFBP-
NN and displaying graphical results.

■ Table 2 Parameters/hyperparameters, and their adopted
values, used for the training process of the proposed FFBP-
NNs.

Parameter Value

Number of inputs 2

Number of outputs 2

Number of hidden layers (NbHLs) 1 or 2 or 3 or 4 or 5

Number of neurons for each layer
(NbNs)

NbHLs NbNs

1 10

2 10, 20

3 10, 20, 5

4 10, 20, 10, 5

5 10, 20, 10, 5, 2

Activation function of the hidden
layers

tansig

Activation function of the output
layer

purelin

Optimizer LM or BR or SCG

Maximum validation failures 50

Minimum gradient 10−6

Training goal 10−6

Maximum number of epochs 1000
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functions). Although it is possible to select the activation function
tansig for the output layer; however, no clear enhancement of the
results has been observed.

Remark 1. It is worth to note that in the present work, we have adopted
five different architectures of the FFBP-NN, as seen in Figure 3. For each
model, we increased the number of the hidden layer, for which the first
model has only one hidden layer, whereas the last and fifth one has five
hidden layers. However, the number of neurons for each hidden layer
is entirely arbitrary. Actually, we tried with other possibilities of the
number of neurons, but we have not observed a clear difference in the
MSE results. Moreover, the type of the activation functions for the hidden
layers and the output layer is fixed for all models. As noted previously,
by selecting a tansig activation function for the output layer, we have not
noted a clear difference in the simulation results.

RESULTS AND DISCUSSIONS

In this section, we will show some simulation results of the training
of the adopted FFBP-NN architectures using the three optimizers:
the Levenberg-Marquardt (LM) optimizer, the Bayesian Regular-
ization (BR) optimizer, and the Scaled Conjugate Gradient (SCG)
optimizer. Moreover, the values of the different hyperparameters,
along with these optimizers, are given in Table 2. As noted previ-
ously, the MSE will be used as the main metric for the evaluation of
the performance of the training process and hence of the FFBP-NN
models illustrated in Figure 3.

Feed-Forward Back-Propagation Neural Network with the
Levenberg-Marquardt (LM) Algorithm
When assessing the training performance of the FFBP-NN using
the LM optimization algorithm across a diverse range of datasets –
fixed, random, and sinusoidal – it becomes evident that their per-
formance exhibits relatively significant variations. The outcomes
of these experiments are visually presented in Figure 6.

In the case of the fixed-step-size dataset, the FFBP-NN model
demonstrated its most favorable validation MSE of 2.3255, achiev-
ing this at the 116th epoch. This specific neural architecture com-
prised one hidden layer with 10 neurons. In contrast, when the
FFBP-NN model was trained using the random-step-size dataset,
its highest validation MSE of 2.2345 was observed at the 75th epoch.
The FFBP-NN architecture featured four hidden layers with (10,
20, 5, 2) neurons in this scenario. Lastly, when the FFBP-NN model
was trained with a sinusoidal-signal-based dataset, it yielded the
best validation MSE of 2.4656 at the 41st epoch. Similarly, this
model employed a neural architecture with four hidden layers
having (10, 20, 5, 2) neurons, as detailed in the accompanying
Table 3.

Comparing these results, it is evident that the FFBP-NN model’s
performance varies significantly depending on the nature of the
dataset used for training. When trained on a dataset with random
step-size values, the model demonstrated its best performance
regarding the lowest validation MSE. This indicates its ability
to generalize and adapt to the irregular patterns within the ran-
dom dataset. However, when exposed to a dataset based on sinu-
soidal signals, the performance of the FFBP-NN model declined, as
shown by a significantly higher validation MSE. This observation
suggests that the model faced difficulties in effectively capturing
the complex and oscillatory nature of the sinusoidal data. In con-
trast, when the model was trained on a dataset with a fixed step
size, it exhibited an even higher validation MSE. This indicates that
the FFBP-NN model excelled at capturing the inherent patterns
within this specific data distribution.

The neural architecture used in these experiments consistently
had two hidden layers with varying neuron configurations, except
for the sinusoidal dataset, which had four hidden layers. This
architectural difference didn’t have a straightforward correlation
with model performance, as seen in the varying MSE values across
the three different datasets. Therefore, the dataset choice signif-
icantly impacts the model performance more than the specific
neural architecture.

When training an FFBP-NN model in MATLAB for regression,
it is common to split the dataset into three subsets: training, val-
idation, and test. The training set is the largest and forms the
foundation for model development, involving weight and bias
adjustments based on prediction errors and a chosen regression
loss function like MSE. The validation set, smaller in size, is used
to evaluate the model’s performance during training, helping to
identify overfitting or underfitting and compute key regression
metrics, including MSE. Finally, the test set, a distinct data subset
untouched during training or parameter adjustments, rigorously
evaluates the model’s performance. It tests the model on unseen
data, calculating regression metrics to assess its ability to make
precise predictions. By dividing data into training, validation, and
test sets, an evaluation framework is created to select the best
model based on validation performance and provide an unbiased,
comprehensive evaluation of the test set for overall efficacy.

The results obtained for regression are graphically represented
in Figure 7. The first dataset, using a fixed step size, had regression
coefficients of R = 0.53114 (training), R = 0.54541 (validation), and
R = 0.52057 (testing), resulting in an overall R = 0.53171. In the
second dataset with random step sizes, we obtained R = 0.57484
(training), R = 0.55223 (validation), and R = 0.55394 (testing),
leading to an overall R of 0.56834. The third dataset, with a si-
nusoidal signal, performed the best values, with R = 0.73744
(training), R = 0.72915 (validation), and R = 0.67531 (testing),
resulting in an overall regression coefficient R = 0.72444. These
results underscore the importance of tailoring the regression ap-
proach to the specific characteristics of each dataset. While the
fixed step size and random step size datasets yielded distinct re-
gression coefficients, the sinusoidal-signal-based dataset displayed
the highest overall R values, highlighting the adaptability and effi-
cacy of the FFBP-NN with the LM algorithm in handling diverse
data types.

The comparative analysis of estimated joint angles from the
system output and the FFBP-NN model is shown in Figure 8. We
observe a remarkable congruence between the system outputs and
the FFBP-NN model outputs in the first set of plots, representing
the lowest MSE scenario with a random dataset. The blue and
cyan lines represent the system and FFBP-NN model’s outputs
that appear nearly superimposed, indicating that the model accu-
rately captures the underlying patterns in the random data. This
suggests the model’s performance is relatively acceptable in a sce-
nario where the data is relatively unstructured and lacks a clear
pattern. However, a different picture emerges in the second set of
plots depicting the highest MSE with a sinusoidal dataset. Here,
the system outputs (in blue) follow a distinct sinusoidal pattern,
while the FFBP-NN model’s outputs (in cyan) exhibit significant
deviations. The model seems to struggle to accurately capture the
cyclical nature of the sinusoidal data, resulting in a noticeable dis-
crepancy between the two lines. This highlights the challenges that
an FFBP-NN model may encounter when dealing with datasets
characterized by complex, periodic, or oscillatory behaviors.
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Figure 6 Lowest MSEs obtained with the LM algorithm and for the three different datasets: (a) Lowest MSE (Fixed Dataset, 1 hidden layer), (b)
Lowest MSE (Random Dataset, 4 hidden layers), and (c) Lowest MSE (Sinusoidal Dataset, 4 hidden layers).

■ Table 3 Results of training with the LM algorithm for the three different proposed datasets.

Number of hidden layers (number
of neurons in each layer)

FIXED dataset RANDOM dataset SINUSOIDAL dataset

1 Hidden layer (10) MSE: 2.3255 Epoch: 116 MSE: 2.2996 Epoch: 49 MSE: 3.6382 Epoch: 84

2 Hidden layers (10,2) MSE: 2.3771 Epoch: 43 MSE: 2.2836 Epoch: 192 MSE: 3.1784 Epoch: 243

3 Hidden layers (10,20,2) MSE: 2.4669 Epoch: 49 MSE:2.2813 Epoch: 78 MSE: 3.1859 Epoch: 29

4 Hidden layers (10,20,5,2) MSE: 2.501 Epoch: 57 MSE: 2.2345 Epoch: 75 MSE: 2.4517 Epoch: 53

5 Hidden layers (10,20,10,5,2) MSE: 2.5121 Epoch: 19 MSE: 2.3068 Epoch: 63 MSE: 2.9133 Epoch: 39
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Figure 7 Regression results obtained by means of the LM algorithm and with the three proposed datasets: (a) Regression (Fixed Dataset, 1
hidden layer), (b) Regression (Random Dataset, 4 hidden layers), and (c) Regression (Sinusoidal Dataset, 4 hidden layers).

Feed-Forward Back-Propagation Neural Network with the
Bayesian Regularization (BR) Algorithm

In the subsequent phase of our research, we examined the perfor-
mance of the FFBP-NN, which had undergone training using the

BR algorithm. This analysis encompassed an exploration of vari-
ous datasets, including those of a fixed, random, and sinusoidal
nature. The outcomes of this investigation illuminated pronounced
variations in the network’s performance, as visually represented in
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Figure 8 Comparative analysis of actual and estimated outputs obtained by means of the LM Algorithm: (a) Lowest MSE (Random Dataset, 4
hidden layers), and (b) Highest MSE (Sinusoidal Dataset, 1 hidden layer).

Figure 9. Notably, when the FFBP-NN underwent training on the
fixed dataset, a remarkable achievement was observed, with the
network achieving its most favorable MSE of 2.3348, a milestone
reached precisely at epoch 37. The architectural configuration of
this particular model featured three hidden layers with neuron
configurations specified as (10, 20, 2). This outcome clearly demon-
strated the BR algorithm’s exceptional effectiveness in curbing
overfitting tendencies and reinforcing the network’s aptitude for
generalization, resulting in notably proficient training outcomes
when dealing with the fixed dataset. In a distinct vein, a different
set of findings emerged when the FFBP-NN was subjected to train-
ing with random data. Specifically, it achieved its lowest recorded
MSE, amounting to 2.1682, a noteworthy accomplishment at epoch
68. The architectural blueprint for this particular model diverged
from the previous one, featuring a configuration of four hidden
layers. This divergence in the network’s architecture hinted at
its adaptability and robustness, particularly in the face of more
erratic and unpredictable data distributions, as with random data.
Furthermore, our exploration extended to the training of the FFBP-
NN on sinusoidal data. This endeavor yielded an MSE of 2.4632,
attained at epoch 79. The architectural design for this specific
scenario encompasses four hidden layers.

Our comprehensive comparison of these results underscores
the multifaceted nature of the BR algorithm’s impact on the FFBP-
NN performance, as shown in Table 4. It facilitates the network’s
generalization and efficacy across various datasets with varying
characteristics. The fixed dataset showcases the algorithm’s profi-
ciency in handling stable and non-random data patterns, whereas
the random dataset demonstrates the network’s adaptability to
more unpredictable and erratic data distributions. Finally, the sinu-
soidal dataset reflects the algorithm’s capability to address cyclical
and periodic patterns, albeit with slightly lower performance than
the fixed and random datasets. This nuanced understanding of
the algorithm’s behavior provides valuable insights for practition-
ers seeking to optimize neural network training across diverse
datasets, emphasizing the significance of tailoring the approach to
the specific data context.

When delving into the analysis of regression results for the BR
algorithm, it becomes apparent that the primary focus lies on iden-
tifying the most optimal MSE value, particularly in the context
of random data. The MSE is a pivotal metric in regression tasks,
which is a crucial indicator of the model’s accuracy in predict-
ing target values. In the case of the BR algorithm, achieving the
best possible MSE for random data sets a profound benchmark
for the algorithm’s performance. The consistent trend toward an
MSE value close to 1 underscores the algorithm’s capacity to mini-
mize prediction errors and enhance the precision of its forecasts,
as shown in Figure 10. Results showed promising performance
in one experiment involving fixed step size data for training a
three-layer FFBP-NN. The regression coefficient (R) during train-
ing reached the value 0.55022, indicating effective learning from
the dataset. Validation yielded an R-value of 0.54578, demon-
strating the network’s generalization ability. Testing produced
an R-value of 0.54834, reinforcing the model’s real-world applica-
bility. The overall R-value was 0.54922, indicating stability and
accuracy in diverse scenarios. The results remained strong in a
separate experiment using datasets with random step sizes and
a four-layer neural network. The training phase achieved the
R-value of 0.56858, showing adaptability to erratic data. Valida-
tion maintained high performance with an R of 0.57789. Testing,
slightly lower at R = 0.55223, still offered reliability for practical
use. The overall R-value was 0.56759, highlighting robustness
even with challenging data. For a third dataset characterized by
sinusoidal patterns, the FFBP-NN excelled. Training achieved an
exceptional R of 0.70922, showing the model’s ability to capture in-
tricate patterns. Validation and testing displayed strong R-values
(0.70532 and 0.70213), confirming suitability for sinusoidal data in
real-world scenarios. The overall R-value of 0.70756 affirmed the
network’s robustness with complex, signal-based datasets.

In our training process, and as shown in Figure 11, we will delve
deeper into the insights gained from our neural network model,
using the BR algorithm. We will examine two distinct scenarios,
each showcasing unique characteristics. In the first set of visual
representations, we explore the domain of the lowest MSE. Here,
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(c)

Figure 9 Lowest MSEs obtained using the BR algorithm and for the three generated datasets: (a) Lowest MSE (Fixed Dataset, 3 hidden layers),
(b) Lowest MSE (Random Dataset, 4 hidden layers), and (c) Lowest MSE (Sinusoidal Dataset, 4 hidden layers).

■ Table 4 Results of training obtained with the BR algorithm for the three proposed different datasets.

Number of hidden layers (number
of neurons in each layer)

FIXED dataset RANDOM dataset SINUSOIDAL dataset

1 Hidden layer (10) MSE: 2.460 Epoch: 515 MSE: 2.3009 Epoch: 90 MSE: 3.4353 Epoch: 45

2 Hidden layers (10,2) MSE: 2.4824 Epoch: 33 MSE: 2.1895 Epoch: 308 MSE: 3.1628 Epoch: 152

3 Hidden layers (10,20,2) MSE: 2.3348 Epoch: 101 MSE: 2.2516 Epoch: 52 MSE: 2.7771 Epoch: 106

4 Hidden layers (10,20,5,2) MSE: 2.3915 Epoch: 125 MSE: 2.1682 Epoch: 68 MSE: 2.4632 Epoch: 79

5 Hidden layers (10,20,10,5,2) MSE: 2.4865 Epoch: 88 MSE: 2.3547 Epoch: 33 MSE: 2.8119 Epoch: 41
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(c)

Figure 10 Regression results obtained with the BR algorithm and for the three distinct datasets: (a) Regression (Fixed Dataset, 3 hidden
layers), (b) Regression (Random Dataset, 4 hidden layers), and (c) Regression (Sinusoidal Dataset, 4 hidden layers).

our neural network confronts a random dataset. It is immediately
evident that there is a remarkable alignment between the system’s
outputs and the FFBP-NN model’s outputs. The blue and cyan
lines, representing the outputs, are almost identical, highlighting

the model’s proficiency in capturing the underlying complexity
of the random data. This strong correspondence underscores the
model’s exceptional performance, especially when data lacks a
clear structure or recognizable patterns. On the other hand, we
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Figure 11 Comparative analysis of actual and estimated outputs obtained with the BR Algorithm and for two different datasets and for two
different structures of the FFBP-NN model: (a) Lowest MSE (Random Dataset, 4 hidden layers), and (b) Highest MSE (Sinusoidal Dataset, 1
hidden layer).

shift our focus to the second set of visualizations, where we face the
challenges of the highest MSE. In this case, our FFBP-NN model
deals with a sinusoidal dataset. Here, the system’s outputs, illus-
trated by the blue curve, gracefully follow the sinusoidal pattern,
while the FFBP-NN model’s outputs, depicted in cyan, exhibit no-
ticeable deviations. It becomes apparent that the FFBP-NN model
struggles to accurately replicate the cyclic nature inherent in si-
nusoidal data, resulting in significant disparities between the two
curves.

Feed-Forward Back-Propagation Neural Network with the Scaled
Conjugate Gradient (SCG) Algorithm

The SCG algorithm is highly regarded for its remarkable conver-
gence rate and capability to effectively address intricate optimiza-
tion challenges. In our investigation, we conducted a compara-
tive analysis of training the FFBP-NN model using the SCG al-
gorithm across different datasets: fixed, random, and sinusoidal.
The outcomes exhibited notable variations in their performance,
as depicted in Table 5. Specifically, when employing the SCG
algorithm with the fixed data, the FFBP-NN model achieved its
most favorable MSE of 2.4327 at the 130th epoch. The architectural
configuration of this model comprised two hidden layers with
respective neuron arrangements of (10, 2). Conversely, training
the FFBP-NN model using random data yielded the best MSE of
2.2804 at the 463rd epoch, with a simpler model architecture con-
sisting of 3 hidden layers configured as (10, 20, 2). Additionally, we
conducted training on sinusoidal data, resulting in the FFBP-NN
model achieving its lowest MSE of 2.4054 at the 835th epoch. The
model architecture employed in this scenario also featured four
hidden layers, as detailed in Figure 12. Some key observations
emerge when comparing the FFBP-NN model’s performance with
the SCG algorithm across three datasets. The SCG algorithm ex-
celled in optimizing performance on the fixed dataset, achieving
a low MSE of 2.4327 at epoch 130, indicating its suitability for
well-defined data. Conversely, on the random dataset, while still
benefiting from SCG, it reached the lowest MSE of 2.2804 at epoch

463, indicating the challenge of adapting to random data. The SCG
algorithm took longer for sinusoidal data to achieve its best MSE
of 2.4054 at epoch 835, showing adaptability to different data types
with consistent model architecture.

In summary, the SCG algorithm’s efficacy in optimization tasks
is underscored by its convergence rate, yet its performance is con-
tingent on the characteristics of the dataset. It excels in scenarios
with clear data patterns, such as fixed data, while it may require
more time and iterations to converge on datasets with randomness
or complex patterns, like random and sinusoidal data. Therefore,
selecting the appropriate optimization algorithm and model ar-
chitecture should be a deliberate decision based on the specific
characteristics of the dataset and the desired outcomes.

In training FFBP-NN with the SCG algorithm, we conducted re-
gression tasks on three distinct datasets to optimize the MSE. These
experiments involved fixing the step size data and utilizing two
hidden layers. The results of the first dataset revealed regression
coefficients as follows: an R-value of 0.49759 for the training set,
an R-value of 0.5263 for the validation set, an R-value of 0.49396
for the test set, and an overall R-value of 0.50141. In the second
dataset, we focused on minimizing the MSE using random step
size data and expanding to three hidden layers. The correspond-
ing regression statistics were found to be an R-value of 0.55522 for
the training set, an R-value of 0.55847 for the validation set, an R-
value of 0.55722 for the test set, and an overall R-value of 0.55599.
Lastly, when dealing with a dataset based on a sinusoidal signal,
the aim was again to minimize the MSE. The regression results
for this dataset included an R-value of 0.72855 for the training set,
an R-value of 0.7177 for the validation set, an R-value of 0.72493
for the test set, and an overall R-value of 0.72638. These distinct
regression analyses shed light on the varying performance of the
FFBP-NN trained with the SCG algorithm across different datasets,
step sizes, and hidden layer configurations, offering valuable in-
sights for further optimization and model selection, as shown in
Figure 13.

A comparative examination was conducted to assess the actual
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■ Table 5 Results obtained after training different FFBP-NN models with the SCG algorithm and for the three different datasets.

Number of hidden layers (number
of neurons in each layer)

FIXED dataset RANDOM dataset SINUSOIDAL dataset

1 Hidden layer (10) MSE: 2.5814 Epoch: 158 MSE: 2.4924 Epoch: 90 MSE: 3.7088 Epoch: 537

2 Hidden layers (10,2) MSE: 2.4327 Epoch: 130 MSE: 2.3492 Epoch: 407 MSE: 3.6975 Epoch: 606

3 Hidden layers (10,20,2) MSE: 2.5152 Epoch: 188 MSE: 2.2804 Epoch: 463 MSE: 2.6966 Epoch: 998

4 Hidden layers (10,20,5,2) MSE: 2.4944 Epoch: 269 MSE: 2.2983 Epoch: 213 MSE: 2.4054 Epoch: 835

5 Hidden layers (10,20,10,5,2) MSE: 2.4609 Epoch: 146 MSE: 2.349 Epoch: 577 MSE: 3.4659 Epoch: 384

(a) (b)

(c)

Figure 12 Lowest MSEs obtained by training the FFBP-NN models with the SCG algorithm and for the three different datasets: (a) Lowest
MSE (Fixed Dataset, 2 hidden layers), (b) Lowest MSE (Random Dataset, 3 hidden layers), and (c) Lowest MSE (Sinusoidal Dataset, 4 hidden
layers).

106 | Bouzid et al. CHAOS Theory and Applications



(a) (b)

(c)

Figure 13 Regression results of some proposed FFBP-NN models obtained with the SCG algorithm and for the three different datasets: (a)
Regression (Fixed Dataset, 2 hidden layers), (b) Regression (Random Dataset, 3 hidden layers), and (c) Regression (Sinusoidal Dataset, 4
hidden layers).

and predicted results produced by the SCG Algorithm using two
different datasets. When employing the SCG algorithm, it became
evident that our neural network excelled when dealing with ran-

dom data. However, it faced difficulties in accurately reproducing
sinusoidal patterns. The analysis comparing the estimated joint
angles between the system output and the FFBP-NN model is illus-
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trated in Figure 14. In the first series of plots, which represents the
scenario with the lowest MSE using a random dataset, a striking
similarity is observed between the outputs of the system and the
FFBP-NN model. The blue and cyan lines, representing the sys-
tem and FFBP-NN model outputs, closely overlap, indicating that
the model effectively captures the underlying patterns within the
random data. This suggests the model performs reasonably well
when the data lacks a clear structure and is relatively unorganized.
Conversely, a different story unfolds in the second series of plots
depicting the scenario with the highest MSE using a sinusoidal
dataset. In this case, the system outputs (depicted in blue) follow a
clear sinusoidal pattern, while the FFBP-NN model’s outputs (de-
picted in cyan) exhibit noticeable deviations. The model appears to
encounter challenges in accurately replicating the cyclical nature
of sinusoidal data, resulting in a significant disparity between the
two lines. This emphasizes the difficulties of an FFBP-NN model
when confronted with datasets characterized by intricate, periodic,
or oscillatory behaviors.

(a) (b)

Figure 14 Comparative analysis of actual and estimated outputs
obtained with the SCG Algorithm and using two different datasets:
(a) Lowest MSE (Random Dataset, 3 hidden layers), and (b) Highest
MSE (Sinusoidal Dataset, 1 hidden layer).

CONCLUSION

In conclusion, our work presented a contribution in the fields of
robotics and automation through the development and implemen-
tation of various Feed-Forward Back-Propagation Neural Network
(FFBP-NN) algorithms for the computation of the inverse kinemat-
ics of a 2-DoF manipulator robot. A pivotal aspect of our research
involves an in-depth exploration of these algorithms, coupled with
rigorous experimentation and evaluations to discern their perfor-
mance characteristics.

We mainly used the MSE metric to evaluate the performance of
the different proposed neural network architectures. Based on such
metric, our findings highlighted the substantial impact of train-
ing with Levenberg-Marquardt (LM) and Bayesian Regularization
(BR) algorithms, particularly noting that the optimal results (that
correspond to the lowest MSEs) were achieved when trained with
random-step-size datasets in the context of a four-hidden-layer
configuration. Similarly, for the Scaled Conjugate Gradient (SCG)
algorithm, we observed the best outcomes (lowest MSE) when
employing random-step-size datasets in a three-hidden-layer set-
ting. This nuanced understanding of algorithmic behavior pro-
vides valuable insights for practitioners. Most notably, our work
achieves a remarkable milestone by applying FFBP-NN models
to address inverse kinematics problems with an unprecedented
level of precision and reliability, surpassing the capabilities of tra-
ditional methods. These outcomes underscore the transformative

potential of FFBP-NN models in tackling complex problems within
the realm of robotics.

In future works, it is essential to expand the applicability of
the proposed FFBP-NN models by testing them on manipulator
robots with greater degrees of freedom, such as SCARA or 6-DoF
industrial robots. This evaluation will assess the scalability and
adaptability of the FFBP-NN models across diverse robotic plat-
forms.

Furthermore, in order to improve the selection phase of the
hyperparameters of the FFBP-NN, the idea is to integrate the meta-
heuristic optimization algorithms within the training process in
order to find the optimal architecture to provide the best accuracy
or the lowest MSE. In addition, the objective is to explore and uti-
lize more advanced ANN architectures, such as Recurrent Neural
Networks (RNNs) and Convolutional Neural Networks (CNNs),
for the modeling of the inverse kinematics of manipulator robots.
This exploration can significantly enhance the capabilities of the
training process and prediction when operating with a complex
structure of the robot and also with a high number of degrees of
freedom and then for redundant manipulator robots.

Moreover, the current work can be extended and applied to
the control part of manipulator robots using some nonlinear con-
trol approaches as those proposed in (Jenhani et al. 2022) for the
position control of robotic systems, as well as for particular appli-
cations like in medical robotics such as exoskeleton systems for
pediatric gaits (Narayan et al. 2018, 2023).
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ABSTRACT Phononic crystal waveguides (PnCW) have been of great interest due to their properties of
manipulating or filtering the acoustic waves with which they interact. Similarly, the presence of the phenomenon
of chaos in the classical transport of particles through billiards with analogous geometries has been investigated.
With this in consideration, in the present work an acoustic system of a two-dimensional PnCW is modeled,
composed of two plane-parallel plates and a periodic arrangement of circular cylindrical inclusions with acoustic
surfaces of real materials. In this system, we use the numerical technique of the integral equation, which
allows us to obtain the pressure field corresponding to the normal modes in a range of frequencies. In addition,
spatial statistical properties of pressure intensity such as the autocorrelation function (ACF) and its standard
deviation called correlation length were calculated. The results show that when the correlation length is very
small, the system presents disordered patterns of field intensities. Thus under certain conditions, the system
under consideration presents a chaotic behavior, similar to the corresponding classical system.
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INTRODUCTION

A phononic crystal (PnC) is a periodic material that exhibits a
forbidden band structure for certain frequency ranges of acoustic
waves (Maldovan 2013). This feature allows effective control of
sound propagation, as waves cannot propagate in certain direc-
tions or specific frequency ranges. These bands are determined by
the geometric parameters and the elastic properties of the material
used in the PnC (Khelif et al. 2004). The constant study of the prop-
erties of PnCs has allowed the development of structures that offer
optimal control over wave propagation. Thanks to this, advanced
devices such as acoustic diodes, waveguides (Otsuka et al. 2013),
selective filters, and acoustic superlenses (Chen et al. 2018) have
been manufactured, among others.

Among these devices, waveguides stand out as they are used
in various scientific and technological fields; such as optics, in pho-
tonic circuits of nanometric order (Lee et al. 2016); and concerning
this work, in acoustics, in phononic crystal waveguides (PnCWs).
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PnCWs are systems composed of a periodic structure formed by
two or more fluids, or a combination of solid and fluid, that interact
with a pressure field. In fact, the crystalline structures that make
up the PnCWs are fundamental in solid state physics (Kittel et al.
1996). That is why PnCW systems have emerged as a fascinating
area of research in recent years. As these band structures exhibit
properties such as the manipulation of acoustic wave propagation,
which has shown great potential for the control and direction of
acoustic waves in a wide range of applications.

The design of PnCW involves the manipulation of parameters
such as geometry, spacing, and material composition (Jia et al. 2018).
This allows the creation of specific frequency bands where acoustic
waves can be confined and guided along predetermined paths.
This ability to control sound propagation opens up a wide range
of potential applications, ranging from acoustic signal processing
devices (El-Kady et al. 2008) to noise isolation systems (Torrent and
Sánchez-Dehesa 2008).

Similarly, there have been notable advances in the theoretical
understanding, simulation, and manufacturing of PnCWs. Ex-
haustive research has been carried out on multiple waveguide
configurations, ranging from one- to two-dimensional and three-
dimensional (Pennec et al. 2010b; Liu et al. 2020). The literature has
studied the response of PnC and PnCW systems made of different
materials such as quartz whose acoustic response is in the order of

CHAOS Theory and Applications 111

CHAOS
Theory and Applications

in Applied Sciences and Engineering

e-ISSN: 2687-4539
RESEARCH ARTICLE

Vol.6 / No.2 / 2024 / pp.111-121
Special Issue (EDIESCA 2023)

https:/ /doi .org/10.51537/chaos.1376424

https://orcid.org/0009-0000-3295-4157
https://orcid.org/0000-0002-8572-1485
https://orcid.org/0009-0006-0076-2402


kiloHertz (He et al. 2020), lead-epoxy unit cell to detect different
gases at different temperatures (Zaki et al. 2020), gas and water
pipelines over the 1-50 kHz (Jing et al. 2018), stainless steel with
mechanically drilled holes filled with liquid for its characterization
by measuring its bulk modulus (Mukhin et al. 2022). These ad-
vances have allowed a greater understanding of the fundamental
principles that govern the behavior of waves in these systems, as
well as the development of more sophisticated techniques for their
design and manufacture.

Additionally, it is important to note that PnCs share various
similarities with photonic crystals (PC). One of these similarities is
the simultaneous existence of forbidden bands for both photons
and phonons (Pennec et al. 2010a). This connection between PnCs
and PCs has led us to the hypothesis that the former can also
exhibit chaotic dynamics in systems of geometries similar to the
latter (Navarro-Urrios et al. 2017). These observations open the
door to new research and explorations in the field of phononic
crystals, in search of better understanding of their behavior and
take advantage of their properties for various purposes.

Classical fields (electromagnetic, acoustic, etc.) or quantum am-
plitude probabilities share the same interesting statistical features
when, in the corresponding geometrical or classical limits (wave-
length tends to zero), the dynamics of rays or trajectories exhibit
chaos (Stöckmann 1999). Wave and quantum chaos are thus now
well-documented topics covering a wide variety of physical sys-
tems: electrons in quantum dots (Wilkinson et al. 1996), cold atoms
(Hensinger et al. 2001), surface waves (Kudrolli et al. 2001), elasto-
dynamics (Weaver 1989), acoustics (de Rosny et al. 2000; Ellegaard
et al. 2001), microwaves (Sridhar 1991; Dembowski et al. 2000) and
optical cavities (Nöckel and Stone 1997; Doya et al. 2002a). In wave
cavities for which the limit of rays exhibits chaos, wave function
statistics is generally expected to follow the predictions of Random
Matrix Theory (RMT). According to this theory, wave functions
are uniformly distributed over the whole available phase space
which is ergodically explored by the rays, thus locally resulting in
a random superposition of plane waves (Berry 1977). Neverthe-
less, some ergodic modes of chaotic billiard systems are known to
show an anomalous increase in intensity along weakly unstable
periodic orbits, a phenomenon called scarring (Heller 1984; Kaplan
1998; Ellegaard et al. 2001; Doya et al. 2002a). Two alternative ap-
proaches are generally considered to study the influence of scars
on wave statistics in chaotic wave cavities. One is devoted to the
analysis of individual scarred eigenstates (Heller 1984), while the
other is dynamical as it is based on the evolution of wave pack-
ets launched along periodic orbits (Kaplan and Heller 1999), that
generally the long time evolution yields a typical specklelike field
pattern characterized by the well-known isotropic field autocor-
relation function (ACF) (Berry 1977; Doya et al. 2002a; Kuhl et al.
2005). In this context, it is relevant to highlight that the analysis
of the ACF has proven to be a very useful tool for understanding
and characterizing both theoretically and experimentally chaotic
behavior. This technique has been particularly applied in the study
of optical fibers with non-circular cross-sections, where light rays
exhibit chaotic dynamics (Doya et al. 2002b).

There are advances in the theory of chaotic dynamical systems,
particularly the results of Sinai (Sinai 1970) and Ruelle (Ruelle
1991), on wave mechanics experiments that use microwaves for
studying the so-called quantum-classical correspondence, a central
issue in quantum chaos. The properties of closed Sinai billiard
microwave cavities have been discussed in terms of universal pre-
dictions from RMT, as well as periodic orbit contributions, which
manifest as scars in eigenfunctions and standing wave patterns

(Sridhar and Lu 2002). In an equivalent analogy we study the
acoustic-classical correspondence of the properties of the eigenval-
ues and eigenfunctions of the Sinai billiard-shaped cavities and the
2-D n-disk billiards in PnCWs. Consequently, through the ACF, it
is possible to obtain precise information about the statistical prop-
erties of the acoustic response of the study system. The ACF allows
evaluating the similarity of a signal with itself as it moves both
in time and space, especially in cases where the stationary case is
assumed. In this way, the analysis of the ACF is positioned as a
valuable tool to deepen the study of chaotic systems and contribute
to a greater understanding of their dynamic behavior.

In our study, we have considered two acoustic systems of two-
dimensional PnCWs, one of infinite length and another of trun-
cated length. These systems are composed of two plane-parallel
plates and a periodic arrangement of circular cylindrical inclusions
with acoustic surfaces of particular materials, as illustrated in Fig-
ures 1 and 2. The inclusions play a crucial role in wave behavior,
acting as reflectors and diffractors. This leads to a significant mod-
ification in the pressure field compared to the case of a PnCW
having two plates with acoustic surfaces but no inclusions.

In our numerical simulations, we have used the Integral Equa-
tion Method (IEM) (Mendoza-Suárez and Pérez-Aguilar 2016; Villa-
Villa et al. 2017), which has proven to be a powerful tool for analyz-
ing acoustic response. This method has the advantage of consider-
ing interaction between two plane-parallel plates and cylindrical
inclusions, allowing more accurate results. Through this technique,
we can investigate and understand normal mode behavior in dif-
ferent geometric configurations and frequencies, specifically in
our particular systems. This gives us greater ability to analyze the
acoustic response of our system and allows us to obtain valuable
information about its statistical properties.

METHODOLOGY

Firstly, it is necessary to find the equation that characterizes the
problem posed. The wave equation is the central element that
determines and conditions the propagation of acoustic waves in
a given medium. For this, we consider the continuum theory in
a homogeneous medium, which means that its properties in the
unperturbed state are the same everywhere. We also consider
the case of perfect fluids, as these do not deform nor allow the
propagation of transverse mechanical waves, so processes such as
energy dissipation due to viscosity are ignored. Therefore, a linear
approximation is performed on the continuity equation of mass,
the non-viscous force equation and the equation of state around an
initial stationary state of the system (Blackstock 2001), obtaining

∂s
∂t

+∇ · u = 0, (1a)

−∇p(r, t) = ρ0
∂u
∂t

, (1b)

p = Bs, (1c)

where u is the average vectorial velocity of the fluid, B is called the
adiabatic volumetric modulus, s is the condensation at any point
and p is the acoustic pressure at any point, considered harmonic
in time. As acoustics studies the generation and spatio-temporal
evolution of small mechanical perturbations (vibrations) in a fluid
(sound waves) or in a solid (elastic waves), it is natural to de-
scribe the behavior of the acoustic pressure field in the waveguide
through the Helmholtz equation, similar to Maxwell equations in
electromagnetic system, from Eqs. (1). Thus, applying the diver-
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Figure 1 Infinite 2D PnCW system diagram. The system is composed of two plane-parallel plates and a periodic arrangement of circular cylin-
drical inclusions with acoustic surfaces. The Γ contours define the unit cell of the system with periodicity in the x-direction.

gence to Eq. (1a), we obtain

−∇2 p(r, t) = ρ0∇ · ∂u
∂t

, (2)

where ∇2 is the three-dimensional Laplacian operator. On the
other hand, considering the temporal derivative of Eq. (1a) and
using ∂(∇ · u)/∂t = ∇ · (∂u/∂t), we arrive at

∂2s
∂t2 +∇ · ∂u

∂t
= 0. (3)

Now, combining Eqs. (2) and (3), can be reduced to

∇2 p(r, t) = ρ0
∂2s
∂t2 , (4)

and substituting Eq. (1c) into Eq. (4) yields the acoustic wave
equation,

∇2 p(r, t) =
1

c2
m

∂2 p(r, t)
∂t2 , (5)

where cm is the longitudinal wave velocity in the acoustic medium
given by

cm =

√
β0
ρ0

γ, (6)

as the adiabatic bulk modulus has the relation B = β0γ, with ρ0
being the constant equilibrium density. Additionally, this is a char-
acteristic property of the fluid and depends on the equilibrium
conditions. Eq. (5) is also known as the homogeneous acoustic
wave equation for pressures. For a linear acoustic pressure wave
in a unit cell p(r, t), considering the harmonic case with time fre-
quency ω; that is, p(r, t) = p(r)e−iωt, we obtain the stationary
wave equation,

∇2 p(r) + k2 p(r) = 0, (7)

being

k2 =

(
ω

cm

)2
, (8)

the magnitude of the wave vector that gives us the dispersion
relation as a function of the frequency ω and the wave speed in the
medium cm (for more detailed of acoustic wave equation deduc-
tion is suggested see (Ginsberg 2018a)). The only property of the
medium that appears in Eq. (8) is the wave speed, which depends
on conditions such as laboratory temperature and pressure and
is closely related to the opposition that the medium presents to

the propagation of the pressure wave. That is why the specific
acoustic impedance plays a fundamental role since it is the quo-
tient between the acoustic pressure at a point in the medium and
the instantaneous velocity of the particles at that point,

Z =
p
u

. (9)

There are three limit cases for the acoustic impedance of a surface
(Ginsberg 2018b); when the opposition of the medium is enormous,
that is, it is not possible to disturb the medium for any pressure,
it is said that the impedance Z → ∞ and the surface is rigid; the
opposite case of the soft surface occurs when Z → 0, so a small
pressure on surface induces a great speed. The third case is when
the quotient of impedance is one, which represents a non-reflective
medium. In addition, when impedance is finite and different from
zero, a real material will be considered, and since we consider
time-harmonic plane waves, the characteristic acoustic impedance
is given by (Beranek and Mellow 2012)

Zm = ρcm, (10)

where the density ρ is the main constitutive parameter that deter-
mines the characteristics of the propagation of acoustic waves in
the medium. The dispersion relation for real acoustic media for
real constitutive media is obtained by substituting Eq. (10) into Eq.
(8), given by

k =
ρr

Zr

ω

cm
, (11)

where ρr and Zr are the relative density and relative characteristic
acoustic impedance of the medium in relation to air, respectively.
Finally, when it comes to a system of this type, it is necessary to
consider the boundary conditions at the interfaces between the
media involved (Filippi et al. 1998),

p(1) = p(2), (12a)

cm1

Zm1

∂p(1)

∂n
=

cm2

Zm2

∂p(2)

∂n
. (12b)

The first condition tells us that the pressure is continuous on the
interface, that is, there is no net force on the interface separating the
media. The second condition tells us that the normal component
of the pressure is continuous and requires that the media involved
remain in contact (Kinsler et al. 2000).

In extreme cases of infinite or zero impedance (soft or rigid
surface) the problem is significantly simplified. When there is a
rigid surface, the normal pressure of the particles at the boundary

CHAOS Theory and Applications 113



is zero; that is, the second boundary condition at the interface
equals zero. Whereas, when there is a soft surface, the transmitted
wave has zero pressure amplitude at the boundary, so the first
condition at the interface equals zero (Pike and Sabatier 2001).

Let us also note the similarity between transverse electrical
polarization (TE) with a surface considered as limits a perfect
electric conductor is equivalent to the case of the soft acoustic
surface; that is, a Dirichlet problem. In the same way, the transverse
magnetic polarization (TM) is equivalent to the case of the rigid
acoustic surface; that is, a Neumann problem (McGurn 2020).

NUMERICAL INTEGRAL METHOD

To calculate the corresponding pressure intensities of the eigen-
modes of the system, we use the numerical technique of the IEM
for a PnCW (Pérez-Aguilar et al. 2013). This technique is used, in
particular, to model the interaction of waves that disturb a system
with two-dimensional bodies (Pérez et al. 2009; Mendoza-Suárez
and Pérez-Aguilar 2016). This method has two analogous ap-
proaches depending on whether the system is infinite or a finite
length. The method is based on Green’s second integral theorem in
the equation that models our problem, allowing us to obtain a sys-
tem of coupled integral equations. Subsequently, the discretization
of the system of integral equations is carried out, which results in a
set of linear equations under boundary conditions that can be rep-
resented in a single homogeneous matrix equation MX = 0 in the
case of the infinite system, and inhomogeneous MX = A for the
finite system. It is important to mention that only a finite number
of sampling points are taken into account along the contours that
define the surface of the two-dimensional system of study, which
allows savings in computational resources when numerically cal-
culating line integrals in a discrete approximation form unlike
differential methods that require a two-dimensional discrete mesh.
Next, we describe the IEM corresponding to a two-dimensional
PnCW of infinite and finite length.

Infinite waveguide
In Figure 1, P is the period of the PnCW system in x-direction; b is
the distance between the flat plates; r is the radius of the circular
inclusion, and the region enclosed by the curves Γi for i = 1, 2, 3
and 4 can be considered as an unit cell of the system. This region
contains the circular inclusion with a profile given by Γ5. Taking
into account that the system is periodic along the direction of the
waveguide, it is possible to apply Bloch’s theorem (Bloch 1929),
which states that the field can be written as a product of a plane
wave and a periodic function along its direction of periodicity as

p(x + P, y) = p(x, y) exp(−iKP), (13)

where K is the one-dimensional Bloch vector. For each j-th
medium, the two-dimensional Green’s function corresponds,
which is the equivalent solution to Eq. (7), so the general form of
the Helmholtz integral equation is

1
4π

∮
Γ

[
G
(
r, r′

) ∂p (r′)
∂n′ − p

(
r′
) ∂G (r, r′)

∂n′

]
ds′ = p(r)Θ(r), (14)

with
G(R) =

i
4

H1
0(kR), (15)

where H1
0(ζ) is the Hankel function of the first kind and zero

order, R = |r − r′| and Θ (r) = 1 if r is inside the region and
Θ (r) = 0 otherwise. Given the geometry, the problem must be
posed as a system of n equations (one for each region between

the interfaces of the different homogeneous media) in which the
boundary conditions (Eqs. (12)) must be satisfied.

To solve the Eq. (14) numerically, it is necessary to discretize by
dividing curve Γ of the j-th region into curve segments Γi of arc
length ∆s small enough so that the field and its normal derivative
are constant. Thus, the integrals of Eq. (14) for the j-th region can
be approximated as follows (Mendoza-Suárez et al. 2011)∮

Γ

[
G
(
r, r′

) ∂E (r′)
∂n′

]
ds′ ≈ ∑

n
ΦnLmn, (16a)

∮
Γ

[
p
(
r, r′

) ∂G (r′)
∂n′

]
ds′ ≈ ∑

n
Ψn′ Nmn, (16b)

where the source functions are

Φn =
∂p (r′)

∂n′

∣∣∣∣
r′=r′n

, (17a)

Ψn = p
(
r′
)∣∣

r′=r′n
, (17b)

and matrix elements are defined as

Lmn =
∫ sn+∆s/2

sn−∆s/2
G
(
r, r′

)
ds′, (18a)

Nmn =
∫ sn+

∆s
2

sn− ∆s
2

∂G (r, r′)
∂n′ ds′. (18b)

In the previous expressions, the subscript m denotes the observa-
tion point and n the integration point. Substituting Eq. (15) in Eqs.
(18) to obtain explicit forms, it is also necessary to consider that the
Green function has a removable singularity in the two-dimensional
case at r = r′; since this is where the point source that gives rise
to this function is located. We then got the fact that Eqs. (18) are
respectively (Mendoza-Suárez and Villa-Villa 2006)

Lmn = [1 − δmn]
i∆s
4

H(1)
0

(
kj |rm − rn|

)
+

+

[
i∆s
4

H(1)
0

(
kj

∆s
2e

)]
δmn

(19)

and

Nmn = [1 − δmn]
i∆skj

4
nn · (rm − rn)

| rm − rn]1
H(1)

1

(
kj |rm − rn|

)
+

+

[
1
2
+

∆s
4π

nn · t′n

]
δmn,

(20)

where nn is the normal to the contour Γ at the point rn and t′n is
the curvature vector of the surface at the same integration point.

Therefore, we have converted the set of integral equations given
by Eq. (14) into a homogeneous system of linear equations,

∑
n

ΦnLmn − ∑
n

pn Nmn ≈ p(r)Θ(r), (21)

which can be represented by matrices such as

M (K, ω) X (K, ω) = 0, (22)

where M (K, ω) is the representative matrix associated with the
system, X (K, ω) are the source functions to be found that depend
on the Bloch vector K and the frequency ω. Since the system of
linear equations is homogeneous, a non-trivial solution can be
obtained if the determinant of this matrix is zero. It is possible to
determine the band structure, defining the function

D (K, ω) = ln (det M (K, ω)) , (23)
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which presents local minimum points that will give the numerical
dispersion relation ω(K), that determine the eigenmodes of the
system for a specific frequency.

For the idealized cases where soft or rigid acoustic surfaces
are present, which are characterized by having zero and infinite
impedance respectively, the problem is significantly simplified.
For example, in the case of the soft surface, the field is zero so there
is no pressure inside the surface, on the other hand, in the case
of the rigid surface, the normal derivative of the field is zero, so
modes propagate even with the surface (Pike and Sabatier 2001).

Finite waveguide
Because in nature the dimensions of this type of system is finite,
we can model a more realistic system taking the case of PnCW
characterized by the number of consecutive unit cells to choose,
thus we can truncate the infinite system to obtain a finite model
of the waveguide as shown in Figure 2. Furthermore, we consider
a plane pressure wave of pressure that interacts with the system
at normal incidence; so in addition to the theory already men-
tioned, together with the fact that we are now dealing with matrix
inversion problem (that is, a homogeneous matrix system) an inci-
dent pressure beam is considered (in region R0) and calculation of
scattered pressure field as response of the waveguide.

Since we have already described the integral numerical method,
we use Eq. (14) in such a way that we can express the field in
region R0 as

p(0)(r) = p(0)inc(r)+
1

4π

M

∑
j=1

∫
ri

[
G
(
r, r′

) ∂p (r′)
∂n′ −

−p
(
r′
) ∂G (r, r′)

∂n′

]
ds′.

(24)

The terms on the right side correspond to the incident pressure
field and the scattered pressure field, respectively. Then, for the
other regions, when approximating to the observation point, we
obtain

p(j)(r)Θj(r) =
1

4π

∮
ri

[
ρr,j

Zr,j
Gj

(
r, r′

) ∂pj (r′)
∂n′ −

−pj
(
r′
) ∂Gj (r, r′)

∂n′

]
δjids′,

(25)

where Θj (r) = 1 if r is inside the j-th medium or zero otherwise, δji
is the Kronecker delta and ρr,j, Zr,j are the density and impedance
of the j-th medium relative to that of air, respectively. With this the
inhomogeneous algebraic system is found that has the field and
its normal derivative as unknowns.

To deal with the finite PnCW problem with method described
above, it is necessary to make assumptions about the incident

pressure field. Once the sources Ψ(j)
n and Φ(j)

n are obtained, with
j = 1, 2, . . . , M bodies (using the notation of Eqs. (17)), the field
can be calculated at any point within the pressure regions that
constitute the system using the same integral equations. If r ∈ R0,
that is, the propagation region, the corresponding equation is

Ψ(0)
m =

N

∑
n=1

L(0)
mnΦ(0)

n −
N

∑
n=1

N(0)
mn Ψ(0)

n − Ψinc(0)
m , (26)

where, the incident pressure field is expressed as

Ψ(inc )(r) = Ψ0eik·r, (27)

where Ψ0 is a constant with appropriate units, k is the propagation
wave vector and r is the position of each point at which the wave
comes into contact. On the other hand, for the other regions r ∈ Rj,
the associated equation is

Ψ(j)
m =

N

∑
n=1

L(j)
mnΦ(j)

n −
N

∑
n=1

N(j)
mnΨ(j)

n . (28)

RESULTS

In the programming of the integral equation method, the Message
Passing Interface (MPI) protocol was implemented to reduce the
computation time for obtaining results. To obtain reliable results in
the case of high frequencies, it is necessary to use small discretiza-
tion intervals ∆s. To ensure the accurate approximation of the
integral corresponding to the profile that models the system, the
intervals must be smaller than the periodicity of the system, which
is related to the wavelength λ = 2πcm/ω. Thus, it is necessary
that ∆s ≪ λ. Furthermore, since statistical properties envision
disordered behavior in systems where chaos phenomenon occurs,
we calculated the average of the ACF for several data sets. This
tells us the similarity between the behavior of the function at a
given point and its behavior at any consecutive point.

Autocorrelation Function
An important mathematical tool for the interpretation of numerical
data is the ACF. The ACF defines how data points in a spatial (or
temporal) series relate, on average, to previous data points. In
other words, it measures the self-similarity of the data set (Vilela
et al. 2013).

The ACF for a pattern of acoustic pressure field intensity, I(r),
in the unit cell is defined as:

ACFj ≡
Np

∑
i=1

(
I (ri)− µ

(
I
(

ri−j

)
− µ

)
/Np

σ2 , (29)

being the average value of I,

µ =
Np

∑
i=1

I (ri)

Np
(30)

and the variance,

σ2 =
Np

∑
i=1

(I (ri)− µ)2

Np
, (31)

where Np is the number of sampling points with coordinates
(xi, y (xi)). In this case y(x) being fixed, with 0 < x < P in the
infinite system and 0 < x < 10P in the finite system and the
subscript j indicates the value of the ACF with respect to the j-th
coordinate point. In this way, autocorrelation was calculated using
points located in the upper middle section of the waveguide. The
autocorrelations of the intensity patterns that we will show in this
work result from correlations between the values of intensity I(r)
themselves. The ACF is positive when the relationship between
values is linear (they are very similar), it is negative when the
relationship is linearly inverse (they are very different) and it is
null when there is no linear relationship (Montenegro-García 1989;
Legendre 1993). A quantity that could be even more important
is the standard deviation of the ACF, known as correlation length
lc, which helps us to compare the cases considered since it is a
measure used to quantify the dispersion of a set of numerical data
(Doya et al. 2002a). Due to the oscillatory nature of the ACF, the
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Figure 2 Finite 2D PnCW system diagram.

length of the correlation is related to the typical speckle grain size.
Therefore, the decrease in the length of the correlation as the fre-
quency increases is a characteristic feature of chaos or equivalently
of the presence of a positive Lyapunov exponent (Sugihara and
May 1990).

Infinite PnCW
Let us consider the system illustrated in Figure 1 with a periodicity
P = 2π µm in one direction, a plate spacing b = 2π µm, a periodic
arrangement of circular inclusions with a filling fraction f for a
sufficiently small discretization step ∆s = 0.0126 µm for better data
acquisition. Furthermore, the determinant function D (kr = 0, ωr)
was calculated for a number of frequencies given by nω = 400
choosing a particular propagation mode given by (kr = 0, ωr). The
system is modeled in particular for a brass inclusion, however, it
is possible to apply the method for different types of materials
considering the characteristic acoustic impedance of the inclusion.
In the case of brass it is given by a value of Z = 40 MRayls, which
is a real rigid surface; while the top and bottom plates of the system
are composed of an ideal soft acoustic material.

First, the inclusion centered on the unit cell with a filling fraction
factor of f = 0.003 is considered. The pressure field intensities
as well as the ACFs are obtained. The numerical results obtained
range for frequencies from 504.8964 MHz to ω = 199.308 GHz
(from ultrasound to hypersonic) are shown in Figure 3. Data sets
are taken along 1200 different lines parallel to x that are equidistant
a distance ε > 0. Each of the ACFs are calculated from NP = 3063
sampling points and the ACFs are averaged showing behavior that
tends to zero with increasing frequency. Similarly, pressure field
intensity patterns are obtained for a brass inclusion with a larger
value of the filling fraction factor f = 0.3, leading to different
vibration modes as seen in Figure 4. The parameters used and
obtained are compiled in Table 1 for both cases.

The numerical results of infinite PnCW with different filling
fractions shown in both tables indicate that the value of the correla-
tion length is smaller as the frequency increases. Such decrease in
the correlation length deduced from the standard deviation of the
spatial ACF with increasing frequency is a characteristic feature of
chaos (or equivalently, of the presence of a positive Lyapunov expo-
nent) (Sugihara and May 1990). Furthermore, it complies with the

acoustic-classical correspondence of the already known properties
of the eigenvalues and eigenfunctions of the Sinai billiard-shaped
cavities. This also provides further evidence that the acoustic
modes in a PnCW at high frequencies (small wavelengths) is a
deterministically chaotic system.

To break the symmetry of the unit cell, the inclusion is placed in
the upper right corner of the unit cell for both values of the filling
fractions previously considered. Observing in Figures 5 and 6 how
field pressure patterns change as the frequency ω increases, we
see that modes inside the inclusion in some cases differ greatly
from the form held outside it. However, the continuity of the field
is maintained by boundary conditions. Table 2 shows the values
obtained for both figures.

■ Table 1 Numerical results of infinite PnCW with centered
brass inclusion.

f ω (MHz) lc

0.003 504.8964 0.37695

0.003 16958.3923 0.12054

0.003 66640.7837 0.06492

0.003 199308.6716 0.0555

0.3 509.2547 0.38954

0.3 16957.3781 0.11355

0.3 66640.9522 0.16325

0.3 199229.8121 0.10516

Finite PnCW
Let us now consider a more realistic system, such as the finite
PnCW of length d = 20π µm, plate spacing b = 2π µm, which
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Figure 3 Pressure field intensity patterns and their respective ACFs
for an infinite PnCW with small brass inclusion ( f = 0.003) centered
on the unit cell. The frequency values chosen for each field pattern
are indicated in Table 1.

■ Table 2 Numerical results of infinite PnCW with non-
centered brass inclusion.

f ω (MHz) lc

0.003 491.8217 0.38589

0.003 16956.8086 0.087289

0.003 66629.7729 0.071931

0.003 199323.604 0.050629

0.3 601.8675 0.31883

0.3 16953.4455 0.132

0.3 66646.2891 0.12757

0.3 199323.604 0.069709

Figure 4 Pressure field intensity patterns and their respective ACFs
for an infinite PnCW with a large brass inclusion ( f = 0.3) centered
on the unit cell. The frequency values chosen for each field pattern
are indicated in Table 1.
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Figure 5 Pressure field intensity patterns and their respective ACFs
for an infinite PnCW with small brass inclusion ( f = 0.003) non
centered on the unit cell. The frequency values chosen for each field
pattern are indicated in Table 2.

have a thickness of l = 30 µm to avoid edge effects and 10 brass
inclusions with filling fraction of f = 0.3 distributed by a period
P = 2π and the discretization of the mesh given by ∆s = 0.00338
µm (see Figure 2).

As in the finite system, brass inclusions are considered, while
the plates are made of soft acoustic material. The pressure field
intensities that were obtained for frequencies from ω = 830 MHz
to 66 GHz are shown in Figure 7. The values considered for the
case of a finite PnCW are shown in Table 3. The respective ACFs
are calculated from NP = 6254 sampling points in the same way
over the average of 1200 ACFs of the data set within the PnCW.
From the average of the ACFs, the minimum correlation length of
lc = 0.034718 corresponding to the highest frequency is obtained.
Similar to the case of the infinite system, in both cases the increase
in frequency results in a decrease in the correlation length, which
we also attribute to the fact that the system response is chaotic.

Figure 6 Pressure field intensity patterns and their respective ACFs
for infinite PnCW with a large brass inclusion ( f = 0.3) non centered
on the unit cell. The frequency values chosen for each field pattern
are indicated in Table 2.

■ Table 3 Numerical results of finite PnCW with centered
brass inclusion.

f ω (MHz) lc

0.3 830.269 0.20757

0.3 8459.2819 0.087232

0.3 16742.771 0.065393

0.3 33153.8227 0.038081

0.3 66260.371 0.034718

118 | Bucio-Gutiérrez et al. CHAOS Theory and Applications



Figure 7 Pressure field intensity patterns and their respective ACFs
for a finite PnCW with 10 large brass inclusion ( f = 0.3) centered on
the waveguide. The frequency values chosen for each field pattern
are indicated in Table 3.

CONCLUSION

We conducted a theoretical and numerical study to analyze the
chaotic effects in phononic crystal waveguides composed of two
plane-parallel plates and a periodic arrangement of circular cylin-
drical inclusions with acoustic surfaces of real materials. We used
the numerical integral method to study the acoustic response of
the system and examine the chaos phenomenon present in it. In
our simulations, we have observed that the periodic arrangement
of circular cylindrical inclusions in our acoustic systems has a
notable impact on the pressure field intensity patterns as the fre-
quency increases. This effect has been studied using the ACF and

it has been observed that the correlation length decays at higher
frequencies in both types of systems considered. This behavior
is an indication of the presence of chaotic behavior in the system
due to non-periodicity and disordered response. These findings
support our initial hypothesis and demonstrate that inclusions in
the system introduce complex and chaotic dynamics in the propa-
gation of acoustic waves. Our study has also revealed that the size
and arrangement of circular cylindrical brass inclusions influence
the acoustic response of the system. By changing the radius and
position of the inclusions, significant changes in the intensity of
the acoustic pressure field can be obtained. In summary, numerical
analysis using the Integral Equation Method has allowed us to
better understand the behavior of two-dimensional PnCW acous-
tic systems. This approach offers opportunities for design and
optimization of acoustic devices with customized properties, and
their application in fields such as sound engineering, acoustic com-
munication, and noise control. Furthermore, the phenomenon of
chaotic dynamics in PnCW could give rise to applications such as
the detection of defects in crystal geometry with ACF, the transmis-
sion and control of acoustic waves with metamaterials (Deymier
2013), or information encryption (Bose and Pathak 2006; Zhou et al.
2014).
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ABSTRACT This paper presents the emergence of two collective behaviors in interconnected networks.
Specifically, the nodes in these networks belong to a particular class of piece-wise linear systems. The global
topology of the network is designed in the form of connected subnetworks, which do not necessarily share the
same structure and coupling strength. In particular, it is considered that there are two levels of connection,
the internal level is related to the connection between the nodes of each subnetwork; while the external
level is related to connections between subnetworks. In this configuration, the internal level is considered to
provide lower bounds on the coupling strength to ensure internal synchronization of subnetworks. The external
level has a relevant value in the type of collective behavior that can be achieved, for which, we determine
conditions in the coupling scheme, to achieve partial or complete cluster synchronization, preserving the
internal synchronization of each cluster. The analysis of the emergence of stable collective behavior is
presented by using Lyapunov functions of the different coupling. The theoretical results are validated by
numerical simulations.

KEYWORDS

Network of sub-
networks
Multi-scroll sys-
tems
Synchronization
PWL systems

INTRODUCTION

In recent years, there has been a growing interest in the study of
networks containing subnetworks, spanning various scientific and
technological fields. This is because studying interconnected net-
works plays a fundamental role in modeling systems composed
of multiple interacting components (Huang et al. 2008; Mucha
et al. 2010; Lu et al. 2014; Boccaletti et al. 2023). Usually, a network
of subnetworks is considered to be composed of a large set of
interconnected groups, where subnetworks, clusters, or communi-
ties can be identified, sharing a common topological or dynamic
classification feature (Chen et al. 2014; Kenett et al. 2015). Further-
more, synchronization in complex dynamic networks has many
applications in different fields as secure communications (Méndez-
Ramírez et al. 2023; Zhou and Wang 2016).
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In this field, research approaches can be categorized into two
main lines. The first line concentrates on the analysis of the struc-
tural or spectral properties of networks of subnetworks, with the
primary objective of characterizing the "subnetwork structure" of
a complex system. This involves the identification of groups of
closely interconnected nodes that can address aspects such as tran-
sitivity, degree distribution, the presence of recurring patterns,
as well as the spectral characteristics of their Laplacian matri-
ces (De Domenico et al. 2013; Cozzo et al. 2016; Tang et al. 2023;
Katakamsetty et al. 2023). The second research line focuses on the
dynamic properties of networks of subnetworks, where each sub-
network is composed of nodes with similar or identical dynamic
properties Kenett et al. (2015). In this context, the principal objec-
tive is to describe the development of collective motion within
these subnetworks, which includes the observation of various pat-
terns of synchronized behavior and other dynamic phenomena
(Liu et al. 2023; Arellano-Delgado et al. 2023; Boccaletti et al. 2014,
2023; Lu et al. 2014).

Many recent studies have been dedicated to analyzing the emer-
gence of collective behavior in subnetworks, often defining two
types of collective behaviors: inner synchronization and outer syn-
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chronization. Usually, outer synchronization, also referred to as
complete synchronization, happens when all nodes within a net-
work of subnetworks synchronize their dynamics, demonstrating
that same behavior or state. In outer synchronization, there is no
distinction between nodes or subnetworks of nodes; instead, the
entire network functions as a single coherent unit. This synchro-
nization is typically observed in networks with strong couplings
or interactions between nodes, where information and dynamics
propagate swiftly throughout the network, resulting in a collective
behavior where all nodes converge to the same state.

On the other hand, inner synchronization, also referred to as
local synchronization or cluster synchronization, occurs when a
subnetwork of nodes within a network achieve synchronization
of their dynamics while maintaining distinct dynamics between
the subnetwork or cluster (Ruiz-Silva and Barajas-Ramírez 2018;
Ruiz-Silva 2021). In other words, nodes within each subnetwork
synchronize with one another, while nodes in separate subnet-
works exhibit distinct behaviors. Inner synchronization is often
observed in networks with a modular or hierarchical structure,
where nodes within the same module or hierarchy exhibit stronger
synchronization with each other compared to nodes outside their
respective module or hierarchy. It should be noted that most pre-
vious studies on cluster synchronization analyze the collective
behavior for networks in which nodes are different systems where
different emergent behaviors are mainly related to the nature of the
nodes. However, there are few investigations focused on the syn-
chronization problem for a set of dynamical systems that exhibit
different collective behaviors in networks with identical nodes,
where depending on the correlation between the states and the
dynamical systems involved is the type of collective behavior that
appears.

The simplest type of synchronization to identify is when states
oscillate identically, and when they oscillate differently it is known
as generalized synchronization. In particular, we consider piece-
wise linear systems, since represent a specific category of dynamic
systems that display linear properties within discrete regions of
their state space, delimited by potentially nonlinear boundaries.
These systems have proven to be valuable tools for modeling a
wide range of phenomena in various disciplines, from physics to
biology and engineering. In this research, we focus on the analysis
of networks whose nodes are piece-wise linear systems, adding a
layer of complexity to the interconnected dynamics. The use of this
type of system is attributed to its facilitation of stability analysis for
network models. Furthermore, there exist prior results regarding
the synchronization of these systems in regular network models
(Ruiz-Silva et al. 2022b; Ávila-Martínez et al. 2022; Ruiz-Silva et al.
2022a).

In this work, our primary focus is on the exploration of the
emergence of collective behaviors in interconnected subnetworks
under changes in the nature of coupling scheme, which have been
configured with two levels of interconnection. The internal level
pertains to individual connections within each subnetwork, while
the external level encompasses connections between different sub-
networks. It is imperative to highlight that the external level serves
a dual role, as it not only facilitates communication between sub-
networks but also plays a crucial role in determining the collective
behaviors observed in the entire network. Furthermore, in order to
simplify the analysis, the nodes are regarded as a specific class of
piece-wise linear systems capable to displays infinite scrolls along
one-dimensional grid (Gilardi-Velázquez et al. 2017).

In particular, we consider a network of identical multiscroll
systems where the coupling scheme is linear, bidirectional, and

diffusive, for which the emergence of stable collective behavior
is analyzed. For this purpose, we consider that systems are cou-
pled by one, two, or three state variables. There is a theoretical
analysis to determine the conditions under which synchronization
arises using a common Lyapunov function for all the nodes in
an unweighted network. The stabilization analysis, in the syn-
chronization problem between clusters in a complex network, is
interesting because the individual dynamics of each cluster can
have a different qualitative behavior that depends on the initial
conditions and its inner coupling, hence the steady state of the syn-
chronous solution. It isn’t easy to know it a priori due to sensitivity
to initial conditions. Moreover, numerical simulations are used to
illustrate the emergent behavior in the networks of multi-scrolls as
partial and complete cluster synchronization.

The rest of the document is structured as follows: First, we
introduce multi-scroll systems, the subnetwork model, and the
construction of the subnetwork network model. Second, we ana-
lyze the synchronized behavior for a subnetwork and network of
subnetworks using Lyapunov stability theory. Third, we present a
case study, followed by numerical simulations that illustrate our
result. Finally, we conclude with a discussion of our findings.

PRELIMINARIES

Multi-scroll System
In literature, various approaches have been proposed for gener-
ating attractors with multiple scrolls (Campos-Cantón et al. 2010;
Echenausía-Monroy and Huerta-Cuéllar 2020). It is widely known
that the generation of this type of attractor is influenced both by
the stability properties of the generated equilibrium points and the
choice of an appropriate switching function for implementation.
In general terms, it is possible to evaluate the stability of the equi-
librium points in these systems by applying the theory of Unstable
Dissipative Systems (UDS). This theory is formulated within a
three-dimensional manifold encompassing dissipative and conser-
vative components. Consequently, the coexistence of these two
components results in the emergence of attractors referred to as
multi-scroll attractors (Campos-Cantón et al. 2012; Campos-Cantón
2016).

As a previous work (Gilardi-Velázquez et al. 2017), we consider
that each node is a nonlinear dynamical system defined for a
specific class of affine linear systems given by the round function
which is defined as follows:

ψ̇i = Aψi + B(ψi),
ẋi

ẏi

żi

 =


yi

zi

−a31xi − a32yi − a33zi

+


0

0

c ∗ Round
( xi

0.6
)

 , (1)

where ψi = [xi, yi, zi]
T ∈ R3 is the state vector of the i-th node,

the constant matrix A = {aij} ∈ R3×3 is the linear operator of the
system, and B = [b1, b2, b3]

T ∈ R3 is the affine vector. It should
be noted that the behavior of the system (1) is determined by the
spectrum of matrix A, which can generate a wide variety of combi-
nations and, therefore, various dynamic behaviors. In particular,
(Gilardi-Velázquez et al. 2017) introduced a commutation law be-
tween different regions of the phase space, reflected in the affine
vector B, which is controlled by the Round(x) function. So that the
system can show infinite scrolls along one dimension or infinite
attractors for a specific bifurcation parameter, in this work we just
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consider the parameters for which the systems display infinite
scrolls.

Under these conditions, an example of the system described in
equation (1) is shown in Figure 1 for a31 = 10.5, a32 = 7.0, a33 =
0.7, and c = 6.3 with initial condition ψ0 = [3, −0.5, 0.5]T . In Figu-
re 1(a) we show the projection of the multi-scroll system onto the
planes (xi, yi), (xi, zi), and (yi, zi). Figure 1(b) corresponds to the
temporal behavior of the states xi, yi, and zi with arbitrary units
(a.u.) time. Additionally, in Figure 2 we show the phase portrait of
the resulting attractor.

Figure 1 Projection of trajectories of the system (1) onto the the
planes (xi, yi), (xi, zi) and (yi, zi), and time series with initial condi-
tion ψ0 = [3,−0.5, 0.5]T marked by black asterisk.

Subnetworks model

Consider a regular dynamical subnetwork (RDS) formed by a set
of r interconnected nodes, where each of the node is a multi-scroll
system (1), and the interaction structure between them is modeled
by a regular graph. Therefore, the individual dynamics of each
node in the subnetwork of the RDS is given by:

ψ̇
[k]
i = f (ψ[k]

i ) + g[k]
r

∑
j=1

ℓ
[k]
ij Γ[k]ψ

[k]
j , for i = 1, 2, · · · , r. (2)

Here, the supra-index k indicates the label of each subnetwork,

ψ
[k]
i = [x[k]i , y[k]i , z[k]i ]T ∈ R3 is the state vector of i-th node in

k-th subnetwork; f (ψ[k]
i ) = Aψ

[k]
i + B(ψ[k]

i ) determines the dy-
namics of an isolated node, i.e., multi-scroll system. The constant
g[k] > 0 denotes the uniform coupling strength of the subnetwork;
Γ[k] ∈ R3×3 is a zero-one diagonal matrix describing the internal
coupling between nodes in the k-th subnetwork. The Laplacian
matrix gives its external coupling configuration for each subnet-

work, L[k] = {ℓ[k]ij } ∈ Rr×r, which is considered to be a regularly
connected graph. Furthermore, we assume that each subnetwork

Figure 2 Multi-scroll attractor, in the phase space (xi, yi, zi) with the
initial condition ψ0 = [3,−0.5, 0.5]T .

is connected, i.e., that there are no isolated nodes in the subnet-
work. As a result, the Laplacian matrix, L[k], is a symmetric and
irreducible matrix, with just one zero eigenvalue and all other
eigenvalues strictly negative (Wang and Chen 2002).

Notice that in general, the set of admissible structures L[k] may
include all possible patterns of connections. However, it is neces-
sary to determine some restrictions when establishing the model
for a network of subnetworks. Although they may be networks
with different topologies, they must contain the same number of
nodes.

Defining χk = [ψ
[k]
1 , ψ

[k]
2 , · · · , ψ

[k]
r ] ∈ R3r as the state variable

of a single subnetwork. Then, (2) can be expressed as

χ̇[k] = F[k](χ[k], g[k], Γ[k], L[k]). (3)

In what follows we will use the following shorthand notation,
F[k](χ[k]), for the dynamics of the k-th subnetwork, whose elements
depend on the coupling matrix, the connection strength and the
internal dynamics of the nodes.

Network of subnetworks
Now, consider that M subnetworks are interconnected in a network
model. In this context, the dynamical equation of the full system is
described as follows

ψ̇
[k]
i = f (ψ[k]

i ) + g[k]
r

∑
j=1

ℓ
[k]
ij Γ[k]ψ

[k]
j +

M

∑
l=1

dkl H
[l]ψ

[l]
i , (4)

for i = 1, 2, · · · , r, and k, l = 1, 2, · · · , M. Note that the first two
terms on the right-hand side of (4) represent the individual dy-
namics of each subnetwork, whose elements were described in (2).
While the third element to the right-hand side of (4) is related to
the coupling among subnetworks.

Hence, H[l] is the inner connection matrix for nodes in different
subnetworks, and the D = {dkl} ∈ RM×M elements belong to the
outer connection matrix for different subnetworks, which is con-
structed as follows: if a node in the k-th subnetwork is connected
with its replica in the l-th subnetwork thus dkl ̸= 0 (with k ̸= l),
otherwise dkl = 0, and dkk = −∑M

l=1 dkl for k, l = 1, 2, · · · , M.
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In vector form the eq. (4) can be written as:

χ̇ = F(χ) + (D ⊗ H)χ (5)

where χ = [χ[1], χ[2], · · · , χ[M]]T ∈ R3rM, is the state equations
of the networks of subnetworks, with χ[k] ∈ R3r; D ∈ RM×M is
the outer connection matrix described in the previous paragraph,
while H = Diag(H[1], H[2], · · · , H[M]) ∈ R3r×3r, and ⊗ denotes
the Kronecker product. It is worth noting that the network model
describes all kinds of topologies, where they can consider connec-
tion patterns with uniform weights or non-uniform connections.

An example of our proposed structures is shown in Figure 3. In
this case, both networks are composed of six subnetworks made
up of r = 4 nodes, each of the subnetworks is represented by a
color, and black lines represent the connections between the sub-
networks. In Figure 3(a) all subnetworks have a star structure with
a bidirectional coupling. Additionally, the connection between
subnetworks is through a bidirectional ring structure. In Figure
3(b) the subnetworks have different topologies, and the connection
between subnetworks is shown with some directed links.

Figure 3 Two schematic illustrations of a network consisting of six
subnetworks. Each subnetwork is represented by a color, and black
lines represent the connections between subnetworks.

For complex dynamical networks, one of the most investigated
collective behavior is synchronization, which occurs when the
dynamics of its nodes are correlated over time (Chen et al. 2014;
Pecora and Carroll 1998; Arenas et al. 2008). There are several
definitions of synchronization among nodes in a network (Arenas
et al. 2008). Even the definitions can be extended when consid-
ering the synchronization problem in a group of interconnected
subnetworks.

In this paper, we will mainly focus on complete synchroniza-
tion when discussing the subnetwork model. According to (Chen
et al. 2014; Ruiz-Silva et al. 2021), a subnetwork of uniform, linearly,
and diffusively coupled identical dynamical systems with a state
equations description given by (2) is said to achieve (asymptoti-
cally) synchronization, if all the solutions converge to the same
solution s[k] as t tends to infinity. For any initial condition in the
neighborhood of the synchronization solution, one has that

lim
t→∞

∥ψ
[k]
i − s[k]∥ = 0, for i = 1, 2, · · · , r. (6)

where s[k] ∈ R3 satisfies the dynamics of an isolated multi-scroll
attractor ṡ[k] = A(s[k]) + B(s[k]).

To demonstrate that each subnetwork achieves the synchroniza-
tion there are different methodologies. Following the proposal in

(Ruiz-Silva et al. 2021) where they define the error as ei = ψ
[k]
i − s[k]

for each i = 1, 2, · · · , r, and the error dynamics are linearized

around the synchronization solution and diagonalized in terms of
the eigenvalues of the Laplacian matrix for a subnetworks, result-
ing in the λ2 criterion for the stability of the synchronized solutions.
Therefore, the following Theorem has been reconstructed to estab-
lish complete synchronization on subnetwork:

Theorem 1 (Ruiz-Silva et al. 2021) The RDS (2) achieves the complete
synchronization (5). If the internal coupling matrix Γ[k] ∈ Γcs with

Γcs = {Diag(1, 1, 1), Diag(1, 0, 1), Diag(1, 1, 0), Diag(1, 0, 0)},
(7)

and the coupling strength, g[k] ∈ R+ satisfies the condition:

g[k] ≥ |d∗|
|λ[k]

2 |
(8)

where d∗ is a non-positive constant, and λ
[k]
2 is the largest nonzero

eigenvalues of L[k] ∈ Rr×r.

The above theorem is a useful result to simplify the analysis of
the collective behaviors that can arise in a network of subnetworks.
Therefore, when each subnetwork has completely synchronized
the solution to (2) has r identical components s[k] ∈ R3, which we
write as S[k] = [s[k], s[k], · · · , s[k]]T ∈ R3r.

In this paper, our aim is to find sufficient conditions for the
interconnected subnetwork to achieve different collective behavior.
Since that we assume that each subnetwork achieves complete
synchronization then the global analysis of collective behavior can
be transformed into the synchronization problem for a weighted
network. In this context, the complete and cluster synchronization
between subnetworks is defined as follows:

Definition 1 The network of subnetworks (4) is said to achieve identical
synchronization, if

lim
t→∞

∥S[k] − S[l]∥ = 0, for k, l = 1, 2, · · · , M (9)

where the symbols ∥ · ∥ is the Euclidean norm of a vector, and S[k]

and S[l] are the synchronous solutions of the k-th and l-th subnetworks,
respectively.

Definition 2 The network of subnetworks (4) is said to achieve cluster
synchronization, if nodes in the same subnetwork achieves the complete
synchronization, in the sense of equation (6), and the differences among
the synchronization solutions of different subnetworks do not converge to
zero, i.e.,

lim
t→∞

∥S[k] − S[l]∥ = ϵ, for k, l = 1, 2, · · · , M (10)

where ϵ ∈ R+, and S[k] and S[l] are the synchronous solutions of the
k-th and l-th subnetworks, respectively.

Synchronization stability analysis
To begin our analysis of the emergence of synchronized behavior in
the network of subnetworks, we have the following assumptions:

A1. The interconnected subnetworks contain the same number of
nodes.

A2. For simplicity, the inner connected matrices H[l] are the same
throughout the network of the subnetworks model to be stud-
ied.

CHAOS Theory and Applications 125



A3. From each weighted outer connected matrix D we obtain the
unweighted matrix B whose elements are

bkl =

1 dkl ̸= 0

0 dkl = 0
, for k, l = 1, 2, · · · , M and k ̸= l. (11)

and bkk = −∑M
k=1,k ̸=l bkl . Also, these matrices satisfy the

following condition

λ2(D) ≤ d̃λ2(B). (12)

Similar to the case of a simple network, we need to find suf-
ficient conditions to achieve complete synchronization or clus-
ter synchronization. Firstly, we assume that there exists a global
synchronization solution S ∈ R3rM, to which all subnetworks
are synchronized so that analysis can be carried out. Here, the
synchronization solution, S, may be an equilibrium point of the
subnetwork, the average dynamics of all subnetworks, some peri-
odic orbit, or a chaotic solution. Therefore, we define the error as
Ek = S[k] − S for k = 1, 2, · · · , M, and its variational equation as
follow

Ėk = F(Ek + S)− F(S) +
M

∑
j=1

dkl HEl (13)

The stability of the solution S[k] for the subnetwork intercon-
nected in a weighted network can be established following a simi-
lar procedure as in (Ruiz-Silva et al. 2021; Ruiz-Silva and Barajas-
Ramírez 2018). That is, by establishing stability conditions for an
unweighted network, and the difference between the weighted
and unweighted outer Laplacian matrices, we obtain sufficient
conditions to guarantee synchronization. The result is stated in the
following result:

Theorem 2 Consider a dynamical network of M identical subnetworks
(4), which satisfy conditions the Asssumptions A1. and A2.. If the
elements of the outer connection matrix D satisfies

dkl ≥
|d∗|
|µ2|

, (14)

where d∗ is a non-negative constant and µ2 is the second largest eigen-
value of the unweighted outer connection matrix (Assumption A3.),
then Ek = 0 for all k = 1, 2, · · · , M. Consequently, the network of
subnetworks achieves synchronization.

Proof: To prove the stability of the systems (13) a Lyapunov func-
tion is chosen as follows: V = 1

2 ∑M
k=1 E⊤

k Ek > 0. The time derivate
of V along the trajectories of (13) gives:

V̇ =
M

∑
k=1

ET
k

(
F(Ek + S)− F(S) +

M

∑
l=1

dkl HEl

)
(15)

Assuming that each subnetwork is a connected graph, which
achieves internal synchronization, it is considered that the dynam-
ics of each subnetwork are bounded by

∥F(Ek + S)− F(S)∥ ≤ d∥Ek∥. (16)

where d is a non-negative real number, which is related to a limit
for the dynamics of each subnetwork in isolation. Due to the

eigenvalues of the external coupling matrix D can be sorted in
ascending order, this implies that µ̄k ≤ µ̄2, and holds

V̇ ≤
M

∑
k=1

(
dE⊤

k Ek +
M

∑
l=1

E⊤
k (µ̄2H)El

)
≤

M

∑
k=1

(
d∥Ek∥2 − µ̄2h

M

∑
l=1

∥Ek∥∥El∥
)

(17)

where h > 0 is the largest eigenvalue of the inner con-
nection matrix. The right-hand side of (17) is quadratic in
p = (∥E1∥, ∥E2∥, · · · , ∥EM∥)⊤, which can be written as
V̇ = −p⊤Φp, whose elements are defined by

ϕkl =

d − µ̄2h l = k

−µ̄2h l ̸= k
(18)

If one choose d ≤ µ̄2h, then Φ ≥ 0. If follows that V̇ ≤ 0. Now to
guarantee that the derivative of the Lyapunov function is strictly
negative, we use the properties of the weighted and unweighted
outer connection matrices.

Since the outer connection matrix satisfies the assumption A3.
It follows that there exists a positive constant d̄ such that the ma-
trices satisfy d̄B ≥ D. It is known that both matrices are negative
semidefinite, which implies that their second largest non-zero
eigenvalues are: µ2 < 0 for the weighted connection matrix and
µ̄2 < 0 for the unweighted connection matrix. Therefore,

µ2 ≤ d̄µ̄2 (19)

Additionally, individually the elements of the weighted matrix
satisfy

dkl > d̄ f or k ̸= l k, l = 1, 2, · · · , M (20)

Now, defining a constant d∗ = d/h such that d∗ > d, and using
the (19)-(20), the condition (14) is obtained.

□

It is important to emphasize that the previous problem provides
us with sufficient conditions for the error to be asymptotically sta-
ble. However, to achieve identical synchronization of the network
of networks, the inner connection matrices of each subnetwork H[l]

play a very important role because these matrices must be a com-
bination of the matrices of the equation (7). So that the error in all
states of the network is exactly zero. On the other hand, if the ma-
trix H is made up of any linear combination that does not connect
the first state of each node, then identical synchronization cannot
be achieved, for these cases, the type of synchronization achieved
is by cluster. To compactly express the previous discussion, the
following two corollaries are extended from the theorem.

Corollary 1 Ruiz-Silva et al. (2022b) The network of subnetworks (4)
achieves the identical synchronization (9). If the elements of the outer
connection matrix (14), and all inner connection matrix H[l] belongs to

{Diag(1, 1, 1), Diag(1, 0, 1), Diag(1, 1, 0), Diag(1, 0, 0)} (21)

for all k = 1, 2, · · · , M.

Corollary 2 Ruiz-Silva et al. (2022b) The dynamical network (4)
achieves the cluster synchronization (10). If the elements of the outer
connection matrix (14), and some of the inner connection matrix H[l]

belongs to

{Diag(0, 1, 0), Diag(0, 0, 1), Diag(0, 1, 1)}, (22)

for all k = 1, 2, · · · , M.
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Figure 4 Numerical simulation of six decoupled subnetworks with an
internal coupling matrix Γ[k] = Diag(1, 0, 1) for k = 1, 2, · · · , M, and
the coupling strengths are: g[1] = 1, g[2] = 2, g[3] = 1.5, g[4] =
3, g[5] = 2.3, g[6] = 4

NUMERICAL SIMULATIONS

We consider a network of M = 6 subnetworks each made up of
4 identical multi-scroll systems (1). Thus, we describe the RDS
model by equation (2) whose topology to use is a star graph (see
Figure 3(a)).

First, it is necessary to ensure that identical synchronization is
achieved within each RDS. In this example, let the internal cou-
pling matrix Γ = Diag(1, 0, 1) for each RDS. Consequently, condi-
tion (7) of Theorem 1 is satisfied, so it is necessary to obtain the
appropriate critical value, d∗, associated with the internal matrix
(see table 1). Finally, we calculate the minimum coupling strength
to achieve synchronization, that is,

g[k] >
|d∗|
|λk

2|
=

0.9
1

, for k = 1, 2, · · · , M. (23)

For this example, it is possible to choose the coupling strengths
g[1] = 1, g[2] = 2, g[3] = 1.5, g[4] = 3, g[5] = 2.3, g[6] = 4, with
which the conditions (7) of Theorem 1 are satisfied.

To illustrate the above in more detail, Figure 4 shows the time
series of the subnetworks, with randomly chosen initial conditions.
In numerical simulations, it is assumed that for t < 25 (a.u.) the
nodes are decoupled so that each solution evolves its own attractor.
While for t ≥ 25 (a.u.) the multi-scroll are connected in a subnet-
work structure with a respective coupling strength. Moreover, for
each subnetwork. In the first state of the nodes it is easy to observe
how the trajectories collapse into six solutions, each one belonging
to the synchronous state of each subnetwork.

Complete synchronization
Now, to illustrate complete synchronization in a network of subnet-
works, we consider that the inner connection matrices described
in Equation (21), particularly for H[l] = Diag(1, 0, 0) ∈ R3×3 for
l = 1, 2, · · · , M, satisfying Corollary 1. Moreover, using the Table

Figure 5 Numerical simulations of a network of six subnetworks
interconnected in a ring structure, where the inner connection matri-
ces are: H[l] = Diag(1, 0, 0) for l = 1, 2, · · · , 6.

1 we obtain the critical value for the entries of the outer Laplacian
matrix, whose elements must satisfy the Theorem 2 equation (14),
i.e.,

dkl >
|d∗|
|µ2|

=
3
1

, f or k ̸= l (24)

and k, l = 1, 2, · · · , M. Consequently, we select the external con-
nection matrix as:

−6.6 3.1 0 0 0 3.5

3.1 −7.1 4 0 0 0

0 4 −7.1 3.1 0 0

0 0 3.1 −11.1 8 0

0 0 0 8 −11 3

3.5 0 0 0 3 −6.5



. (25)

The results of the numerical simulation are presented in Figures
5. First, for times less than 25, the 24 multi-scrolls of the global
network are decoupled. At time 25, each of the subnetworks is
individually connected with the aforementioned coupling strength,
g[k]. Furthermore, in the numerical simulation corresponding to
the first state of the systems it is possible to observe how the 24
individual solutions collapse into six different solutions, that is,
the synchronization solution of each subnetwork.

Finally, starting at time 75, the subnetworks are connected
to each other, generating the entire network of the subnetworks
model. Here, it can be observed how the trajectories of all subnet-
works collapse in the three states, i.e., the nodes achieve complete
synchronization. It is important to note that the synchronization
solution location is related to the mean of each state for both cases:
the subnetwork and the entire network (Ruiz-Silva et al. 2022b).

In Figure 6, we show the error synchronization between nodes
that belong to different subnetworks. Since the subnetworks
archive the complete synchronization, we can observe that the
error converges to zero in the three states.
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■ Table 1 Bounded of d∗ for each internal coupling matrix

Γ d∗ Γ d∗

Diag(1, 1, 1) 0.6 Diag(0, 1, 0) 3.4

Diag(1, 0, 1) 0.9 Diag(0, 0, 1) 1.8

Diag(1, 1, 0) 0.32 Diag(0, 1, 1) 0.6

Diag(1, 0, 0) 3

Figure 6 Evolution of the error synchronization between nodes of
different subnetworks

Cluster synchronization
For the cluster synchronization model, the same structure of the
network of subnetworks is considered (see Figure 3 (a)), only that
the association matrices between subnetworks described in eq. (22)
particularly for Hl = Diag(0, 1, 1) for l = 1, 2, · · · , 6, satisfying
Corollary 2.

Analogously to what is calculated in complete synchronization,
the connection strength between the subnetworks can be calcu-
lated with Theorem 2, specifically with Equation (14). Under the
proposed connection scheme, the critical value of d∗ is 0.6 (see
Table 1). Therefore, the elements of the external coupling matrix
must satisfy

dkl >
|d∗|
|µ2|

=
0.6
1

, f or k ̸= l, (26)

and l = 1, 2, · · · , 6. It is easy to verify that the elements of the
matrix (25) satisfy the previous condition. Therefore, it is the
matrix that we will use for this scheme. The results of the numerical
simulation are presented in Figure 7 where the dynamics of the six
subnetworks are shown. First, for times less than 25, the 24 multi-
scrolls of the global network are decoupled. At time 25, each of the
subnetworks is individually connected with the aforementioned
coupling strength, g[k].

Figure 7 Numerical simulations of a network of six subnetworks
interconnected in a ring structure, where the inner connection matri-
ces are: H[l] = Diag(0, 1, 1) for l = 1, 2, · · · , 6.

For simulation times less than 75 a.u., it is possible to observe
the six synchronous solutions of each uncoupled subnetwork. Sub-
sequently, starting at time 75 the subnetworks are connected to
each other, it can be observed how the trajectories of all subnet-
works collapse in two states, but they are kept separate in the
first state, i.e. the complete synchronization in each subnetwork
is preserved but the subnetworks reach partial synchronization
between them. This can also be observed in Figure 8, note that the
error between the nodes that connect the subnetworks are shown,
where the error in the first state remains constant, and for the state
two and three the error converges to zero.
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Figure 8 Evolution of the error synchronization between nodes of
different subnetworks.

CONCLUSION

Our work focused on studying the synchronization of a set of cou-
pled subnetworks and the emergence of collective behaviors in
interconnected subnetworks when the coupling scheme changes.
We considered subnetworks coupled by one, two, or three state
variables and found two emerging behaviors in the synchroniza-
tion state: complete and partial cluster synchronization. The results
were validated using complex network theory and Lyapunov sta-
bility analysis and numerical simulations. In the first instance, we
analyze a subnetwork of mutually coupled systems with uniform
coupling strength, which must achieve complete synchronization
to simplify the synchronization problem of a network of subnet-
works. Furthermore, it is considered that the subnetworks have the
same number of nodes and the same structure, so as not to have to
perform an analysis to determine the node or nodes that should be
interconnected between subnetworks. As a second instance, our
analysis focused on the synchronization problem for subnetworks,
where the outer connection matrix is crucial in determining the col-
lective behavior of the network of subnetworks. In summary, this
study delves into the emergence and characterization of collective
behaviors in interconnected subnetworks. We strongly believe that
the methodology discussed here can be applied to a subnetwork
whose node dynamics are given by a broad class of PWL systems.

As future studies, it would be interesting to verify that the syn-
chronization results can be extended to subnetworks with different
structures or sizes, or even change the linear coupling between
subnetworks.
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Opposition to Synchronization of Bistable State in Motif
Configuration of Rössler Chaotic Oscillator Systems
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ABSTRACT This paper presents the study of the opposition to the synchronization of bistable chaotic oscillator
systems in basic motif configurations. The following configurations were analyzed: Driver-response oscillator
systems coupling, two driver oscillator systems to one response oscillator, and a three-oscillator systems
ring unidirectional configuration. The study was conducted using the differential equations representing the
piecewise linear Rössler-like electronic circuits; the initial conditions were changed to achieve a bistable
characteristic Homoclinic H-type or Rössler R-type attractor. Analyzing a sweep of the initial conditions, the
basin attractor was obtained. It can be observed that each system has a preferred Homoclinic chaotic attractor
with any perturbation or change in initial conditions. A similarity analysis based on the coupling factor was also
performed and found that the system has a preferentially Homoclinic chaotic attractor.

KEYWORDS

Rössler oscillator
Opposition to
synchronization
Complex network
Coupled oscilla-
tors

INTRODUCTION

According to the Britain English dictionary, the meaning of the
term synchronization is to occur at the same time. This phe-
nomenon is now known as synchronization and represents the
adjustment of the rhythm of the oscillations of two or more sys-
tems due to the weak interaction between them. Synchronization
is commonly understood as a collective state of a coupled system.
In general, it indicates the existence of some relation between func-
tions of the different processes due to interaction (Boccaletti et al.
2001). Synchronization is also a process during which coupled
system adjust their individual frequency in an organized fashion.
Synchronization is a process where, due to their interaction or an
external driving force, a dynamic system adjusts some properties
of their trajectories so that they eventually operate macroscopically
coherently.

The first studies on synchronization are historically attributed
to the Dutch scientist Christian Huygens who invented two pendu-
lum clocks attached to the same beam supported by two chairs in
1657. Studying synchronization in dynamic systems is extremely
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important in science and engineering and has numerous applica-
tions in many fields, from mechanics and electronics to physics,
chemistry, biology, and even economics. Synchronization is ubiq-
uitous in a natural and man-made system (Rosenblum and Kurths
2003; Boccaletti 2008). As examples of synchronization motion
that are observed in a real-world system, we can mention a sym-
phony orchestra is synchronized by the conductor, a school of fish
changing its shape when attacked by sharks, the unison song of
crickets, the synchronous rhythmic flash of fireflies observed in
Borneo forest, the spontaneous synchronizations of clapping in a
human platea.

Another manifestation of synchronization is the study con-
ducted by Farkas et al. (2002) focusing on "La ola," which serves
as an example illustrating how synchronization behaviors emerge
within complex dynamical systems. Under specific initial condi-
tions, this system transitions from a dormant state with sporadic
fluctuations (where most individuals are seated, occasionally with
a few raised hands) to a collective action phase. During this phase,
the crowd synchronizes coherently by standing up with raised
arms and sitting down, creating a phenomenon resembling a trav-
eling wave – commonly known as "La ola" – that periodically
traverses the stadium.

In man-made systems, physical devices exist where syn-
chronous behavior enhances overall performance. An example
is the Van der Pol electrical circuit (1889-1959), which employed
vacuum tubes and discovered that they exhibit stable oscillations.
When these circuits were driven by a periodic signal near the limit
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cycle, their oscillation frequency became entrained by the external
driven. This discovery had a great deal of practical importance
because the vacuum tube was, at that time, the basic element of
the radio communications systems (Pol and Mark 1927).

Furthermore, an arrangement of Josephson junctions exhibits
heightened output power when these junctions oscillate in syn-
chrony, as Barbara et al. (1999) demonstrated. Synchronous peri-
odic states have been documented in numerous dynamic processes
across diverse scientific and engineering domains. For a compre-
hensive exploration of this topic, we recommend readers consult
the outstanding monograph authored by Pikovsky et al. (2001).
Therefore, the examination of synchronization within complex sys-
tems holds a dual significance: from a theoretical standpoint, it
provides valuable insights into understanding natural phenomena,
and from a technological point of view, it proves to be advan-
tageous for the development of high-performance devices and
systems. During these years, chaotic synchronization has attracted
great interest in applications such as the design of private and
secure communication systems from the paper by Sharma and Ott
(2000), to Méndez-Ramírez et al. (2023).

Currently, various forms of chaos synchronization can be dis-
tinguished. These include Complete Synchronization: The most
robust form of synchronization where the state variables of two
systems perfectly coincide Pikovsky et al. (2001); Phase Synchro-
nization: Which involves a phase difference between chaotic os-
cillations locked within a range of 2π, representing the weakest
manifestation of synchronization in chaotic systems Pecora and
Carroll (1990); Antiphase Synchronization: Defines a state where
the variables of two interacting systems have the same ampli-
tude but differ in sign Rosenblum et al. (1996); Lag Synchroniza-
tion: Characterized by the coincidence of two chaotic trajectories
with a constant time lag Liu et al. (2006); Anticipating Synchro-
nization: The opposite of lag synchronization, wherein chaotic
trajectories coincide with a constant anticipated time Rosenblum
et al. (1997); Generalized Synchronization: Involves trajectories
of coupled systems that exhibit a specific functional dependence
on each other, often utilized to describe synchronous behavior in
coupled non-identical systems Rulkov et al. (1995). Additionally,
there are unstable synchronization states like Intermittent Syn-
chronization, which occurs when any form of synchronization is
intermittently interrupted by asynchronous oscillations or the sys-
tem changes synchronization type periodically, such as switching
between phase synchronization and lag synchronization reported
by Gauthier and Bienfang (1996); Buldú et al. (2006); Pisarchik and
Jaimes-Reategui (2005).

Most research on synchronization has primarily focused on
monostable systems, which are relatively straightforward dynam-
ical systems characterized by a single attractor when they are
uncoupled. However, the prediction of synchronization in multi-
stable systems remains a topic of significant debate, even in seem-
ingly uncomplicated systems like iterative maps. Multistability is
a phenomenon that arises in dissipative systems when multiple
stable attractors coexist for a specific set of system parameters.
This phenomenon has been observed across various scientific do-
mains, including electronics Maurer and Libchaber (1980), optics
Brun et al. (1985), mechanics Stewart et al. (1986), and biology Foss
et al. (1996). The mechanisms underlying multistability can be di-
verse, encompassing delayed feedback and homoclinic tangencies
in weakly dissipative systems Boccaletti et al. (2018). Nonetheless,
despite potential differences in the origins of multistability, mul-
tistable systems share several common traits. They all exhibit an
extremely high sensitivity to initial conditions, where even the

slightest perturbations can significantly change the final attractor
state. Additionally, their qualitative behavior often undergoes dra-
matic shifts with only minor parameter variations Boccaletti et al.
(2018).

Recently, Ahmed et al. (2016) conducted a study on robust syn-
chronization in multistable systems evolving on manifolds within
an Input-to-State Stability framework. Parallelly, Pm and Kapita-
niak (2017) explored synchronization in coupled multistable sys-
tems featuring hidden attractors. Additionally, Khan et al. (2017)
achieved the design of multistable systems through partial synchro-
nization. It is noteworthy that highly multistable synchronized
systems can be engineered, wherein all states of one system syn-
chronize with their corresponding states in the other system, as
demonstrated by Chakraborty and Poria (2019) and Khan et al.
(2021). Furthermore, Dudkowski et al. (2021) illustrated that multi-
stable synchronous states, encompassing in-phase, anti-phase, and
phase-locked synchronization, can emerge based on parameters
and initial conditions.

Moreover, Moskalenko et al. (2021) made a significant contribu-
tion by discovering multistability within the intermittent general-
ized synchronization regime in unidirectionally coupled chaotic
systems. Additional noteworthy work on synchronization in mul-
tistable systems has been conducted by Ruiz-Silva et al. (2021);
Vaidyanathan et al. (2022). Similarly, the synchronization of chaotic
oscillator system with the application to new technologists has
become an area of great importance as it allows us to perform
information security analysis in various communication schemes,
such as information encryption, data hiding, secure wireless com-
munication, machine-to-machine communication, watermarking,
synchronization of chaos, image encryption by Rodríguez-Orozco
et al. (2018); García-Guerrero et al. (2020); Sarosh et al. (2022) and
Trujillo-Toledo et al. (2023).

Nevertheless, developing the states within multistable systems
when these systems are coupled remains a largely unresolved
question, particularly when dealing with complex scenarios like
the coupling of three chaotic bistable systems arranged in a motif
configuration. One may naturally speculate about the behavior of
the motif system as the coupling strength is increased. It might
seem intuitive that the motif system would initially adjust its state
to that of one of the bistable systems, transforming the problem
into a well-understood case involving identical chaotic monos-
table systems. However, this simplistic view only captures part
of the truth. In this context, the synchronization of multistable
systems has received relatively little attention. In a preliminary
investigation, we explored the synchronization of two identical
chaotic bistable systems coupled in a driver-response oscillator
configuration, exemplified by Homoclinic H-type or the Rössler
R-type of the attractor Pisarchik et al. (2006).

A homoclinic orbit normally changes its period when the num-
ber of loops of the orbit increases or decreases by one saddle point
by adding or omitting a loop while varying a control parameter
by Pisarchik et al. (2005). Our findings revealed that the dynam-
ics of coupled multistable systems are remarkably intricate, en-
compassing various forms of phase synchronization. The main
objective of this work is to study of the opposition to synchroniza-
tion of bistable chaotic oscillator systems. Our focus here is on
synchronizing three coupled chaotic bistable systems arranged in
a motif configuration. We examine electronic circuits that resem-
ble Rössler-like systems as previously used by Pecora and Carroll
(1990); Carroll and Pecora (1995) in their synchronization studies
in chaotic systems.
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The next sections of this manuscript are outlined as follows. In
Section 2, we provide an overview of the mathematical model. Sec-
tion 3 offers a detailed examination of the dynamics of an isolated
Rössler oscillator, encompassing the bifurcation diagram and the
system’s time series. Section 4 investigates the synchronization
stage of two coupled Rössler oscillators. Section 5 extends this
analysis to three coupled Rössler oscillators, presenting the out-
comes of numerical simulations and a comprehensive description
of the synchronization stages observed. Finally, the conclusions
derived from this numerical study are resumed in Section 6.

MATHEMATICAL MODEL

Presenting our analysis without generalization, let us consider
the following case: (a) First case two identical unidirectional cou-
pled chaotic oscillators, where the driver system is represented by
Eqs. (1) and the response system by Eqs. (2), see Fig. 1; (b) Second
case is shown in the Fig. 2: Three identical coupled chaotic oscilla-
tors in network motif configuration, two driver oscillators and one
response oscillator represented by the systems of Eqs. (3), Eqs. (4)
and Eqs. (5); (c) Third case in a ring configuration where all oscil-
lators act together as a driver and response system, represented in
this case by the systems of Eqs. (6), Eqs. (7) and Eqs. (8) and shown
in the Fig. 3. For all cases, piecewise linear Rössler-like oscillators.

Two identical unidirectional driver-response coupled chaotic os-
cillators

ẋ1 = −δx1 − βy1 − λz1,

ẏ1 = x1 + γy1,

ż1 = g(x1)− z1,

(1)

ẋ2 = −δx2 − β[y2 − ϵ(y2 − y1)]− λz2,

ẏ2 = x2 + γ[y2 − ϵ(y2 − y1)],

ż2 = g(x2)− z2,

(2)

where

g(x1,2) =

0, if x1,2 ≤ 3

µ(x1,2), if x1,2 > 3
with δ = 0.05 , β = 0.50, λ = 1.00, γ = R

Rc
, (in the experimental

circuits R = 10kΩ and Rc = 32kΩ) and ϵ ∈ [0, 1] is the coupling
strength.

Three identical coupled chaotic oscillators, two drivers and one
response

ẋ1 = −δx1 − βy1 − λz1,

ẏ1 = x1 + γy1,

ż1 = g(x1)− z1,

(3)

ẋ2 = −δx2 − βy2 − λz2,

ẏ2 = x2 + γy2,

ż2 = g(x2)− z2,

(4)

ẋ3 = −δx3 − β[y3 − ϵ(y3 − y2 − y1)]− λz3,

ẏ3 = x3 + γ[y3 − ϵ(y3 − y2 − y1)],

ż3 = g(x3)− z3,

(5)

where g(x1,2,3) =

0, if x1,2,3 ≤ 3

µ(x1,2,3), if x1,2,3 > 3
with the same values for the parameters δ, β, λ, γ = R

Rc
and ϵ ∈

[0, 1] with similar coupling strength for all systems of equations.

Three identical coupled chaotic oscillators in a unidirectional ring
configuration (or a motif configuration in which all oscillators act
as driver and response form)

ẋ1 = −δx1 − β[y1 − ϵ1(y1 − y3))]− λz1,

ẏ1 = x1 + γ[y1 − ϵ1(y1 − y3)],

ż1 = g(x1)− z1,

(6)

ẋ2 = −δx2 − β[y2 − ϵ2(y2 − y1)]− λz2,

ẏ2 = x2 + γ[y2 − ϵ2(y2 − y1)],

ż2 = g(x2)− z2,

(7)

ẋ3 = −δx3 − β[y3 − ϵ3(y3 − y2)]− λz3,

ẏ3 = x3 + γ[y3 − ϵ3(y3 − y2)],

ż3 = g(x3)− z3,

(8)

where g(x1,2,3) =

0, if x1,2,3 ≤ 3

µ(x1,2,3), if x1,2,3 > 3
in this third case was used same values for the parameters δ, β,
λ, γ = R

Rc
and ϵ1,2,3 ∈ [0, 1] with similar coupling strength for all

systems of equations.

DYNAMIC OF AN ISOLATED OSCILLATOR

When the driver and response chaotic oscillator, systems of Eqs.1
and Eqs.2 are not coupled (ϵ = 0), each of them exhibits a complex
dynamical behavior depending on the control parameter Rc and
the initial condition. Fig. 4 (a) shows the bifurcation diagram of
the local maximum of the variables x1 of Eqs.1 as a function of
the parameter Rc. This bifurcation diagram is computed under
different initial conditions and shows different coexisting attractors.
For large values of 28kΩ < Rc < 141kΩ, the variable x1 < 3
the dynamics of the system Eqs.1 or Eqs.2 similar to the classical
Rössler oscillator. It exhibit route to the Rössler chaos from a limit
cycle with one period and a period-doubling when Rc decreases.

An interesting result was found at relatively low values of the
control parameter Rc < 34kΩ, once the variable x1 > 3, a sec-
ond, different chaotic attractor appears, a Homoclinic-type chaotic
attractor coexisting with Rössler-type chaotic attractors. The en-
larged part of the bifurcation diagram in the region of small values
of Rc < 34kΩ is shown in Fig. 4 (b). The diagram contains two
branches, the red and blue dots, which are obtained by taking dif-
ferent initial conditions. The branch with the red dot corresponds
to the typical dynamics of the classical Rössler chaotic attractor,
while the branch with the blue dot corresponds to the Homoclinic
chaotic attractor. The left column in Fig. 5 represents the Rössler
chaotic attractor, in which we plot the time series in Fig. 5 (a), the
phase space 5 (c), and the power spectra 5 (e). Fig. 5 right column
shows the homoclinic chaotic attractor, where the time series Fig. 5
(b), the phase space 5 (d), and the power spectrum 5 (f) are shown.

In Fig. 6 we show the Poincare section for z1 of the Eqs.1 or
Eqs.2 without coupling. The initial condition for the system Eqs.1
or Eqs.2 representing a homoclinic chaotic attractor H is reached
using I.C.: x10 = 2.38019, y10 = −5.31956 and z10 = 2.32858, see
Fig. 6a and showing a Rössler chaotic attractor R is reached using
I.C.: x20 = 3.034636, y20 = −4.64063 and z20 = 0.00920 see Fig.
6b. In this Poincare section, the basin attraction of the Rössler and
Homoclinic chaotics attractors are presented in green and blue
colors, respectively. In both plots of the Fig. 6 we can see that the
basin attraction of the homoclinic-type chaotic attractor is much
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Rössler chaotic oscillators
Driver

Rössler chaotic oscillators
ResponseFigure 1 Two identical oscillators, unidirectionally coupled (up) and piecewise linear Rössler-like electronic circuits (down)

Rössler chaotic oscillator
Response

Rössler chaotic oscillator
Driver 2

Rössler chaotic oscillator
Driver 1

Figure 2 Two drives and one response motif configuration, unidi-
rectionally coupled

larger than the basin attraction of the Rössler-type chaotic attractor
and while that the yellow region shows that the system of equation
1 or equation 2 without coupling has no solution.

To study the synchronization of multistable systems, we fixed
the control parameter Rc = 32kΩ, where our system exhibits the
coexistence of two different chaotic attractors. Then we chose the
initial condition for drive system Eqs.1 and response system Eqs.2
so that their chaotics state would be different without coupling
ϵ2 = 0.

Quantitatively, phase synchronization between a pair of oscilla-
tors i and j can be characterized by the difference phase between
their instantaneous phases Rosenblum and Kurths (2003),

Rössler chaotic oscillator

Rössler chaotic oscillator

Rössler chaotic oscillator

Figure 3 Rössler system unidirectional (A ring of three nodes)
motif configuration

θi,j = ϕi − ϕj (9)

ϕi,j = arctan(
yi,j

xi,j
) (10)

whereas identical or complete synchronization between a pair
of Rössler chaotic oscillators can be determined by the synchro-
nization error Euclidean norma as∥∥∥eij

∥∥∥ =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (11)

As soon as the oscillator’s phases have synchronized, synchro-
nization quality can be characterized by comparing amplitudes
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Figure 4 Bifurcation diagram for a Rössler circuit (a) Bifurcation
diagram, In blue color from 140 to 0kΩ, and in red from 0 to
140kΩ, (b) A close up of 30 to 34kΩ in the Bifurcation diagram.

of coupled oscillators The commonly used measure for delay syn-
chronization is similarity function S defined as

S2
i,j(τ) = ⟨

[xj(t)− xi(t + τ)]2√
⟨xj(t)2⟩⟨xi(t)2⟩

⟩ (12)

where τ is the time shift between two signals. The lower the mini-
mum of similarity function Smin, means the better synchronization

SYNCHRONIZATION TWO IDENTICAL RÖSSLER CHAOTIC
OSCILLATORS COUPLED

Within this section, phase synchronization in a system of two iden-
tical chaotic Rössler oscillators is shown. Specifically, a dynamic
system comprising two Rössler chaotic oscillators coupled in a

Figure 5 Dinamic of an isolated oscillator (left) Rössler type at-
tractor: Temporal series, space state, and power spectrum, (rigth)
Homoclinic type attractor: Temporal series, space state, and
power spectrum.

unidirectional manner is examined, as described by Eqs. (1) and
Eqs. (2), where ϵ ∈ [0, 1]. In this setup, the response system, de-
fined by Eqs. (2), is influenced by the variable y1. It’s important
to note that the concept of phase lacks a precise definition for
complex, chaotic systems, and thus, synchronization stages are
interpreted as dimensions. In this context, we delineate three cou-
pling ranges: (i) At very low coupling strength (ϵ ≪ 1), the driver
signal given by Eqs. (1) is extremely small, resembling noise that
doesn’t significantly impact the overall structure of the phase space
and the attractors in the response system described by Eqs. (2). (ii)
the relatively robust chaotic driving from Eqs is at intermediate
coupling strength. (1) increases the dimension of the phase space,
potentially leading to the emergence of new attractors. And (iii)
For very strong coupling (ϵ < 1), the large amplitudes reduce the
phase space dimension in the coupled identical multistable system.

To study the synchronization of multistable systems, the param-
eter Rc is set to Rc = 32Ω, where the system has the coexistence of
two different chaotic tractors. Then, we choose the initial condition
for the system Eqs.1 representing a homoclinic chaotic or Rössler
chaotic attractor. The analysis of synchronization is performed
for two different cases: (a) driver system in Homoclinic H chaotic
attractor and response system in Rössler R chaotic attractor, (b)
driver system in Rössler R chaotic attractor and response system
in Homoclinic H chaotic attractor.
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Figure 6 Basin attractor, the area for Homoclinic (green) is big-
ger than Rössler (blue) behavior. Using initial conditions to a)
Homoclinic (H) and b) Rössler (R) attractor.

Case (a) driver system in Homoclinic chaotic attractor and re-
sponse system in Rössler chaotic attractor

The time series of the coupled variables x1 and x2, the phase dif-
ference θi,j (see Eq.9) and similarity function Si,j(τ) (see Eq.12 are
shown in Fig. 7 (a)-(c) for a very low coupling strength (ϵ = 0.002).
θi,j increases linearly with time, indicating no synchronization. At
a very low coupling strength (ϵ = 0.004), the driven signal does
not affect the response system, and the states are defined by the
initial condition. Both oscillators are isolated, and their trajectory
occupies a different space phase; see Fig. 5 and fig. 7 (d)-(f). There
is a critical value of the coupling strength ϵc = ϵ = 0.005 at which
the response oscillator system jumps from the Rössler chaotic at-
tractor R to a new Homoclinic chaotic attractor H2 different from
the Homoclinic chaotic attractor H1 of the driver oscillator system,
i.e., the response oscillator system is sensitive to the driver when
the response oscillator system switches to the attractors similar to
the driver oscillator system, see Fig. 7 (g)-(i). This behavior for
parameter ϵ2 = 0.005 is a precursor of phase synchronization in
the multistable system. In Fig. 7 (h) we see how the phase looked
θi,j approaches θi,j ≈ 80 and while Fig. 7 (i) the minimum Smin

of the similarity function S2
i,j(τ) is close to S ≈ 1.1, which means

that the response and the driven system are synchronized in the
delayed phase synchronization, see time series 7 (g).

Further increasing the coupling parameter ϵ = 0.012, the phase
synchronization is most evident where the response oscillator sys-
tem remains in the Homoclinic attractor, similar to the driver sys-

tem’s attractor. In the Fig. 7 (j)-(l) we can see that the phase looked
θi,j decreases to θi,j ≈ 20, see Fig. 7 (k), just as the minimal simi-
larity function Smin suffers a decrease Fig. 7 (k) and likewise the
response time series is delayed for the driver oscillator time series
Fig. 7 (j). While the coupling strength continues to increase at
ϵ = 0.018, Fig. 7 (m)-(p), the response oscillator system responds
not only to the single peaks of the driver oscillator system, causing
a change from the Rössler attractor to the Homoclinic attractor
in the response oscillator system but also to the phase oscillation
when the system remains in the similar attractors. It is noteworthy
that phase synchronization is always accompanied by delay syn-
chronization, where the shift time τ > 0 of the similarity function
is positive and the minimum Smin of this function also decreases
S ≈ 1, see Fig. 7 (p), which means that the response and drive
oscillator systems reach phase synchronization, with the phase
difference θi,j reaching θi,j ≈ 0, see Fig. 7 (n), and while the time
series Fig. 7 (n) show that the delayed phase synchronization of
the driver and response oscillator system has been achieved. For
stronger coupling parameter ϵ2 > 0.02 the response oscillator sys-
tem becomes unstable and there is no numerical solution the of the
equation system (1).

Similar work on synchronization of a multistable system was
done by Pisarchik et al. (2008). In this work, the authors show
a detailed study of synchronizing two unidirectionally coupled
identical systems with coexisting chaotic attractors and analyze
the system dynamics observed on the route from asynchronous
behavior to complete synchronization when the coupling strength
is increased. In contrast to our work, they have studied two simi-
lar coexisting chaotic Rössler attractors. However, in the present
work, we study the phase synchronization of two different chaotic
attractors: the Homoclinic chaotic attractor and Rössler chaotic
attractor. Because the system of equations (1) becomes unstable,
complete synchronization was not found for the stronger coupling
parameter ϵ > 0.02. In Fig. 8 (a), the average synchronization
error, see system equation (9) as a function of the coupling strength
ϵ is shown. This figure shows that the synchronization error e
increases when the control parameter ϵ is increased, i.e., complete
synchronization between driver and response oscillator systems
was not found. On the other hand, Fig. 8 (b) shows the aver-
age phase synchronization < θi,j > as a function of the coupling
strength ϵ, where we can see that < θi,j > approaches zero when
the control parameter ϵ is increased, indicating that phase or delay
phase synchronization has been achieved.

Similarly, the bifurcation diagram of the local maximum of
the state variables x1 driver and x2 response oscillator are shown
in Figs. 9( a) and (b), respectively, as a function of the coupling
strength ϵ. In this figure, we can see when the response oscillator
system (Fig. 9 (b)) jumps from the Rössler chaotic attractor R to
a new Homoclinic chaotic attractor H2, which is different from
the Homoclinic chaotic attractor H1 of the driver oscillator system,
i.e., there is a critical value of coupling strength ϵc = ϵ = 0.005 at
which the response oscillator system changes its local maximum
from xmax

2 ≈ 3.6 (Rössler attractor) to xmax
2 ≈ 4.3 (Homoclinic

attractor H2).

Case (b) driver system in Rössler chaotic attractor and response
system in Homoclinic chaotic attractor

Similar to the synchronization analysis performed in the Figs. 7 -9,
in the Figs. 10- 12, a synchronization analysis is also performed, but
in this case, we have the initial condition for the driver oscillator
system equations.

The initial condition for the system Eqs.1 or Eqs.2 representing a
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Figure 7 The time series of the coupled variables x1, x2 (left) and
the phase difference θi,j (center) and Similarity Function (right).

Figure 8 Show the average synchronization error equation sys-
tem < ei,j > equation (9) as function of the coupling strength ϵ,
the average phase synchronization < θi,j > as function of the
coupling strength ϵ.

Homoclinic chaotic attractor H is reached using I.C.: x10 = 2.38019,
y10 = −5.31956 and z10 = 2.32858, see Fig. 6a and showing a
Rössler chaotic attractor R is reached using I.C.: x20 = 3.034636,
y20 = −4.64063 and z20 = 0.00920 see Fig. 6b.

Eqs. 1 representing the Rössler chaotic oscillator R (I.C. x20 =
3.034636, y20 = −4.64063 and z20 = 0.00920) and while the ini-
tial condition of the response system represents a Homoclinic
chaotic oscillator H1 (I. C. x10 = 2.38019, y10 = −5.31956 and
z10 = 2.32858). The time series of the coupled variables x1 and
x2, the phase difference θi,j, and the similarity function Si,j(τ) for
different values of the coupling strength (ϵ) are shown in Fig. 10.
In this figure, we can see that the phase synchronization was not
achieved. Similarly, the average error synchronization < e > and
the average phase synchronization < θi,j > as a function of the
coupling strength ϵ are shown in the Fig. 11 (a),(b) respectively,
where no complete and no phase synchronization was found.

Also, the bifurcation diagrams of the local maximum of the
state variables x1 drive and x2 response are shown in Fig. 12 (a)

Figure 9 The bifurcation diagram of the local max of the state
variables x1 and x2 as a function of the coupling strength ϵ.

and (b), respectively, as a function of the coupling strength ϵ. It
can be observed that there is no critical value for the coupling
strength ϵc at which the response oscillator system changes its
local maximum from the xmax

2 form of the Homoclinic attractor to
the xmax

2 Rössler attractor. It is worth noting that for larger values
of the coupling strength ϵ the response oscillator system has no
solution or it becomes an unstable system.

Thus, this result indicates an opposition to the synchronization
of the response oscillator system when it operates as a Homoclinic
chaotic attractor and the driver oscillator system operates as a
Rössler chaotic attractor. Remarkably, to our knowledge, this is
the first study of the opposition to the synchronization of bistable
chaotic oscillator systems. In particular, the Homoclinic chaotic
attractor of the response oscillator system resists entrainment or
synchronization with the Rössler signal of the driver oscillator sys-
tem. In contrast, in the cases where the response oscillator system
is fixed in the Rössler chaotic attractor and the driver oscillator sys-
tem is fixed in the Homoclinic chaotic attractor, there is a threshold
coupling strength ϵ at which the Rössler chaotic attractor jump a
new Homoclinic chaotic attractor and, depending on the coupling
strength, the driver-response oscillator systems achieves delayed
phase synchronization.

SYNCHRONIZATION OF THREE IDENTICAL RÖSSLER OS-
CILLATOR SYSTEMS COUPLED IN MOTIF CONFIGURA-
TION.

In this work, we also study opposition to synchronization of multi-
stable systems for another type of coupling, such as motif config-
uration of three identical bistable Rössler oscillator systems uni-
directionally coupled. For example, two driver oscillator systems
coupled to one response oscillator system, see equation systems
Eqs.3, Eqs.4 and Eqs.5 where the two driver oscillator systems
operate as a Rössler chaotic attractor and the response oscillator
system operates in Homoclinic chaotic attractors, see the Fig.13.a)
and Fig.14.a) for the average error synchronization < ei,j >, and
the average phase synchronization < θi,j > respectively, and also
the Fig.15.a) the bifurcation diagrams of the local maximum of the
state variables x1 driver and x2 response oscillator, as a function
of the coupling strength ϵ. In these figures, it is clear that com-
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Figure 10 The time series of the coupled variables x1 (left), x2
and the phase difference θi,j (center) and Similarity Function
(right).

Figure 11 Show the average synchronization error equation sys-
tem < ei,j > equation (9) as function of the coupling strength ϵ,
the average phase synchronization < θi,j > as function of the
coupling strength ϵ.

plete and phase synchronization between the driver and response
oscillator systems has not been achieved.

In contrast, when the two driver oscillator systems operate in
the Homoclinic chaotic attractor and the response oscillator system
operates in the Rössler chaotic attractor, delayed phase synchro-
nization between the driver and response oscillator systems is
achieved since a value threshold of coupling strength ϵ. To observe
these results, see Fig.13.b), Fig.14.b) and Fig.15.b) for the bifurca-
tion diagrams, the average error synchronization < ei,j >, and the
average phase synchronization < θi,j > respectively.

In addition, this study also considered the opposition to syn-
chronization of bistable chaotic oscillator systems in a configu-
ration ring with unidirectional coupling schemes, where all os-
cillators act simultaneously as drivers and as response oscillator
systems, see equation systems Eqs.6, Eqs.7 and Eqs.8. In this

Figure 12 The bifurcation diagram of the local max of the state
variables x1 and x2 as a function of the coupling strength ϵ.

configuration, it is sufficient for only one oscillator operating in
Homoclinic chaotic attractors to trigger the entrainment of other
two oscillators operating in Rössler chaotic attractors jump to new
Homoclinic chaotic attractor since a value threshold of coupling
strength ϵ.

The following figures show the dependence of the average
error synchronization < ei,j > see Fig. 16 a), b), the average phase
synchronization < θi,j > see Fig. 17 a),b), and the bifurcation
diagrams of the local maximum of the state variables x1 driver and
x2 response oscillator systems in Fig. 18 a), b), for the coupling
strength ϵ. This means that all oscillators achieve synchronization
in phase synchronization. This is an unexpected result since one
might expect that these two oscillator systems operating in the
Rössler chaotic attractor should cause the other oscillator operating
in the Homoclinic chaotic attractor to jump to the Rössler chaotic
attractor and that all oscillators should be able to synchronize
in-phase synchronization.

The above result shows that the Homoclinic chaotic attractor
opposes synchronization with Rössler chaotic attractor. In contrast,
the homoclinic chaotic attractor is the one that stimulates the other
two oscillators operating in the Rössler chaotic attractor to jump to
the new Homoclinic chaotic attractor and then all these oscillators
achieve phase synchronization.
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Figure 13 Synchronization error as function of the coupling
strength (ϵ), a) Two drivers Rössler type, one response Ho-
moclinic type, b) Two drivers Homoclinic type, one response
Rössler type.

Figure 14 Phase synchronization as function of the coupling
strength (ϵ), a) Two drivers Rössler type, one response Ho-
moclinic type, b) Two drivers Homoclinic type, one response
Rössler type.
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Figure 15 The bifurcation diagram of the local max of the state
variables x1, x2 and x3 as function of the coupling strengthϵ, a)
Two drivers Rössler type, one response Homoclinic type, b) Two
drivers Homoclinic type, one response Rössler type.

Figure 16 Synchronization error as function of the coupling
strength (ϵ), a) Ring with two Rössler type, one Homoclinic type,
b) Ring with two Homoclinic type, one Rössler type.
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Figure 17 Phase synchronization as function of the coupling
strength (ϵ), a) Ring with two Rössler type, one Homoclinic type,
b)Ring with two Homoclinic type, one Rössler type.

Figure 18 The bifurcation diagram of the local max of the state
variables x1, x2 and x3 as function of the coupling strengthϵ, a)
Ring with two Rössler type, one Homoclinic type, b) Ring with
two Homoclinic type, one Rössler type.
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CONCLUSION

We have performed numerical investigations with Rössler oscilla-
tor system the opposition to synchronization of a bistable chaotic
dynamical system coupled in different configurations: (a) two iden-
tical bistable chaotic oscillators coupled in a driver and a response
system; (b) three identical bistable chaotic oscillators coupled in
motif configuration; two drivers and one response oscillator, and
(c) three identical coupled oscillators in a ring configuration where
all oscillators act together as driver and response system. We have
chosen the initial conditions of the driver or response oscillator
system to be either a Homoclinic chaotic attractor or a Rössler
chaotic attractor. In the first (a) case, when the driver oscillator
system operates in the regime of the Homoclinic chaotic attractor
and the response oscillator system in the regime of the Rössler
chaotic attractor, there is a critical value of the coupling strength
ϵc = ϵ = 0.005 at which the response oscillator system jumps from
the Rössler chaotic attractor R to a new Homoclinic chaotic attrac-
tor H2 that is different from the Homoclinic chaotic attractor H1 of
the driver oscillator system, i.e., the response oscillator system is
sensitive to the driver signal.

Further increasing the coupling parameter ϵ > 0.005, the phase
synchronization is most evident where the response oscillator sys-
tem remains into a homoclinic chaotic attractor, which is similar
to the attractor of the driver oscillator system. An unexpected
result was found when the driver oscillator system operates in the
Rössler chaotic attractor regime and the response oscillator system
operates into the Homoclinic chaotic attractor regime, as one might
expect the driver oscillator system to cause the response oscillator
system to jump to the Rössler chaotic attractor and the driver re-
sponse oscillator system to be able to synchronize in phase, but
this was not found. On the contrary, the result shows that the
Homoclinic chaotic attractor opposes synchronization with Rössler
chaotic attractor. The above results are because the basin attrac-
tion of the Homoclinic chaotic attractor is greater than the basin
attraction of the Rössler chaotic attractor. When the response sys-
tem operating in the homoclinic regime receives the signal of the
Rössler chaotic attractor from the driver system, the response oscil-
lator system does not change the attractor but maintains its original
regime of the Homoclinic chaotic attractor, so that synchroniza-
tion between the Homoclinic and Rössler chaotic attractors is not
possible.

In contrast, the basin of attraction of the Rössler chaotic attrac-
tor is smaller than that of the Homoclinic chaotic attractor. When
the response system operating in the Rössler chaotic attractor re-
ceives the homoclinic signal from the driver oscillator system, the
response oscillator system is sensitive to the signal from the driver
oscillator system, which acts like an external signal and causes
the response oscillator system to jump from the Rössler chaotic
attractor to the Homoclinic chaotic attractor, achieving the phase
synchronization regime between the driver and response oscillator
systems. A similar result was found regarding the opposition of the
Homoclinic chaotic attractor to synchronization with the Rössler
attractors when the network of three coupled bistable chaotic dy-
namical systems is considered: (b) three identical bistable chaotic
oscillators coupled in motif configuration; two drivers and one
response oscillator, and (b) three identical coupled oscillators in a
ring configuration where all oscillators act together as driver and
response oscillator system.
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ABSTRACT In the present work, an interesting mini-review of hidden attractors in dynamical systems with
associated nonlinear functions is carried out. Chaotic systems with nonlinear functions often possess hidden
attractors due to their inherent complexity. These attractors can arise in various mathematical models, such
as the Lorenz system, Rössler system, or Chua’s circuit. The identification and comprehension of hidden
attractors broaden our understanding of complex systems and provide new directions for future study and
technological development. The discovery and characterization of hidden attractors in chaotic systems have
profound implications for various scientific disciplines, including physics, biology, and engineering.
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INTRODUCTION

Bifurcation theory deals with the study of how certain behaviors
or patterns in a system change as its parameters vary (Dueñas
et al. 2023). One interesting phenomenon in this theory is the
concept of a hidden oscillation (Ye and Wang 2023). This refers to
a bounded back-and-forth movement that emerges in a system
without causing the stationary points (equilibrium states) of the
system to become unstable (Djorwe et al. 2023).

In nonlinear control theory, we focus on managing systems
that do not have a simple linear relationship between their input
and output (Gray et al. 2023). When we talk about the birth of
a hidden oscillation in a time-invariant control system (meaning
the system doesn’t change over time) with bounded states (the
system’s variables remain within certain limits), it implies reaching
a critical point in the parameter space (Kuznetsov 2020). At this
critical point, the stationary states of the system switch from being
locally stable (stable in the nearby region) to becoming globally
stable (Kuznetsov et al. 2020) (stable across the entire system).

In simpler terms, when a system has hidden movements or
vibrations that exist within a small part of its overall behavior, and
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these hidden motions draw in all the nearby movements, we call
it a hidden attractor (Djorwe et al. 2023). This means that even
though these movements may not be obvious at first glance, they
have a strong influence on the nearby motions of the system.

The study of hidden attractors gained further momentum in
the 21st century, with results obtained by researchers applying ad-
vanced analytical and computational techniques to uncover these
elusive phenomena (Wang et al. 2021; Gong et al. 2022; Kuznetsov
et al. 2023; Zaqueros-Martinez et al. 2023). Scientists have explored
various mathematical models and physical systems to identify
hidden attractors and understand their underlying mechanisms.

From a computational perspective, attractors can be classified
into two categories: self-excited attractors and hidden attractors.
Self-excited attractors can be easily localized using standard com-
putational procedures and standard analytical procedures (Yang
and Lai 2023). These attractors exhibit a transient process where a
trajectory, starting from a point on the unstable manifold near an
equilibrium, eventually reaches a state of oscillation (Lakshmanan
and Rajaseekar 2012). Examples of systems with self-excited at-
tractors include the Lorenz (Dubois et al. 2020), Rössler (Rybin
et al. 2021), and Chua oscillators (Njitacke et al. 2020). The pres-
ence of self-excited attractors can be readily identified due to the
observable oscillatory behavior.

In contrast, hidden attractors pose a greater challenge for local-
ization. In these systems, the basin of attraction does not intersect
with any small neighborhoods of equilibria (Cang et al. 2019). Hid-
den attractors can exhibit both chaotic and periodic behavior, such
as the coexistence of a stable stationary point and a stable limit
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cycle. Unlike self-excited attractors, the existence of hidden attrac-
tors in the phase space is not easily predictable. Therefore, special
procedures need to be developed to localize hidden attractors since
there are no analogous transient processes leading to their emer-
gence. If a hidden attractor is present in the dynamics of a system
and happens to be reached, the system (such as an airplane or
electronic circuit) can exhibit quasi-cyclic behavior (Zelinka 2016),
which can potentially result in disastrous consequences depend-
ing on the nature of the device. Traditionally, dynamical systems
without equilibrium points have been considered nonphysical or
mathematically incomplete. However, empirical evidence shows
that systems can possess hidden dynamical behavior without the
presence of an unstable equilibrium state (Dudkowski et al. 2016).

In short, hidden attractors represent a unique challenge in the
study of dynamical systems. Their existence is not easily pre-
dictable, and special procedures are required for their localization
(Campos et al. 2020). While systems with hidden attractors have
been viewed as nonphysical in the past, it is now evident that such
behavior can occur even without an unstable equilibrium state.

The discovery and characterization of hidden attractors in
chaotic systems have profound implications for various scientific
disciplines, including physics (Kingni et al. 2019; Kuznetsov et al.
2023), biology (Chen et al. 2020; Lin et al. 2020), and engineering
(Abdolmohammadi et al. 2018; Jasim et al. 2021). Hidden attractors
are also found in nonlinear systems with applications consider-
ing fuzzy control and synchronization, as the works reported by
(Tanaka et al. 1998; Zaqueros-Martinez et al. 2023)

In Section 2 of this short review, addressed the fascinating areas
of hidden chaotic attractors in nonlinear dynamical systems. we
explored the domain of hidden chaotic attractors without equilib-
ria. Then we discussed hidden chaotic attractors that coexist with
equilibria. We also ventured into the realm of hidden chaotic attrac-
tors that exhibit extreme multi-stability. Finally, we have studied
hidden chaotic attractors with multi-scroll, a class of hidden attrac-
tors characterized by their complex multidimensional structure.
Section 3, summarises the main discussion on these hidden chaotic
attractors, which make a valuable contribution to combining the
different studies for a better understanding of nonlinear dynamics.

HIDDEN ATTRACTORS IN NONLINEAR CHAOTIC DYNAMI-
CAL SYSTEMS

In nonlinear chaotic dynamical systems, the region in phase space
where a hidden attractor exerts its influence is not connected to
any unstable equilibrium point. This phenomenon can be seen in
systems where there are either no unstable equilibrium points at
all or only one stable equilibrium point, which is a specific instance
of having multiple stable equilibrium points. This characteristic
defines the nature of hidden attractors in such systems.

In this section, we discuss hidden attractors with different as-
pects.

Hidden attractor in chaotic dynamical systems

The idea of hidden attractors has been proposed in relation to the
identification of unforeseen attractors in Chua’s circuit. These un-
expected behaviors in the circuit’s dynamics have been discussed
in various studies (Wang et al. 2021; Wu et al. 2021; Kuznetsov et al.
2023).

We discuss hidden attractors in chaotic dynamical systems
with an interesting example of the classical Lorenz system (Mun-
muangsaen and Srisuchinwong 2018). The classical Lorenz system
is explained using three connected equations that represent simple

mathematical relationships:

ẋ = a(y − x),

ẏ = −xz + rx − y,

ż = xy − bz.

(1)

Figure 1 shows a newly discovered chaotic attractor represented
in red on a coordinate plane (x, y) with parameters a = 4, r = 29,
and b = 2. This attractor is revealed using the starting values
L1 = (x0, y0, z0) = (5, 5, 5). The figure also displays two point
attractors, one in blue and the other in pink. These point attractors
move towards stable equilibrium points S2 and S3, respectively.
The blue point attractor starts at L2 = (x0, y0, z0) = (0.1, 0, 0),
while the red point attractor starts and also in 3D is shown in
Figure 2. The Runge-Kutta method of order 4 (RK4) is a numerical
technique that is used to solve the nonlinear differential equations
(ODEs) of system (1) with time step size 0.01 and total number of
steps are 216.

Figure 1 Classical Lorenz system plotted on a coordinate plane
(x, y), a novel chaotic attractor, depicted in red, has emerged
alongside two distinct point attractors, represented in blue and
pink.

Figure 2 Classical Lorenz system plotted on coordinates (x, y, z),
a novel chaotic attractor, depicted in red, has emerged alongside
two distinct point attractors, represented in blue and pink.

Hidden chaotic attractors without equilibria
Hidden chaotic attractors without equilibria are a fascinating phe-
nomenon in the field of nonlinear dynamics. Unlike well-studied
chaotic systems with equilibria (such as the Lorenz system or the
Rössler system), these attractors do not have stable fixed points.
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Instead, they exhibit chaotic behavior with no underlying stable
states. The discovery and study of such systems have challenged
traditional notions of chaotic dynamics.

As an example, the Sprott case D system pioneered the investi-
gation of a dynamical system that does not have equilibria, along
with its various modifications (Wei 2011). The following is the
system that has hidden chaotic attractors without equilibria/fixed
points, as depicted in Figure 3.

ẋ = −y,

ẏ = x + z,

ż = 3y2 + xz.

(2)

Figure 3 Hidden chaotic attractor of the system (2) with no equi-
libria in system plotted on coordinates (x, y, z) with the initial
value (-1.6, 0.82, 1.9).

The chaotic system (2) has a single equilibrium point at
O(0, 0, 0). If we analyze the linearized version of the system at
this equilibrium point, the characteristic values (λ1, λ2, λ3) of the
Jacobian matrix are λ1 = 0 and λ2,3 = ±i.

Jafari and Sprott conducted a mathematical exploration to iden-
tify the most basic three-dimensional chaotic systems with hidden
attractor without equilibria (Jafari et al. 2013). The following is the
mathematical modeling and depicted in Figure 4.

The Runge-Kutta method of order 4 (RK4) is used for systems
(2) & (3) with time step size 0.01 and total number of steps are 216.

ẋ = −y,

ẏ = −x + z,

ż = −0.8x2 + z2 + 2.

(3)

This system incorporated quadratic nonlinear and the absence of
equilibria.

Many other researchers worked on hidden attractors that are
chaotic systems with no equilibrium. Pham et al. discussed a novel
autonomous system with a hidden attractor there is no equilibrium
point in this system (Pham et al. 2017). Although their proposed
system is simple with six terms, it exhibits complex behavior. Mov-
ing forward, Lai et al. have created a novel chaotic system and
designed both the model and the circuit itself (Lai et al. 2020). This
system behavuniquely way, it does not follow the usual patterns,
and it has a hidden attractor with no equilibrium. Furthermore,
Nag and Ghosh have developed an innovative 3D system that has
some unique features (Nag Chowdhury and Ghosh 2020). In this
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Figure 4 Hidden attractor of the system (3) without fixed-point
(a) in xy-plane, (b) in yz-plane and (c) in xz-plane with the initial
value (0, 2.3, 0).

system, there are certain hidden attractors with no equilibrium
that cannot be predicted or tracked by conventional methods. The
behavior of the system can be seen as a slow and steady trend by
looking at its changes over time.

Hidden chaotic attractors with equilibria

The study of hidden chaotic attractors with equilibria remains a
vibrant area of research. These systems exhibit a combination of
stable equilibria and chaotic behavior.

We consider Wang and Chen’s work as an example (Wang and
Chen 2012). They introduced a chaotic system that operates in
three dimensions. Within this system, there is a unique equilibrium
point p⋆ = (0.25, 0.0625,−0.096) as shown in Figure 5 & 6.

ẋ = yz + 0.006,

ẏ = x2 − y,

ż = 1 − 4x.

(4)

M. Molaie found twenty-three systems that have hidden attractors
with one equilibrium point (Molaie et al. 2013). We found another
fascinating example from one of those three-dimensional nonlinear
systems. Following is the system and It is illustrated in Figure
7. The Runge-Kutta method of order 4 (RK4) is used to solve the
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Figure 5 Hidden attractor of the system (4) with stable fixed-
point in 3D with the initial value (0, 0, 0).

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Fixed Point

Hidden Attractor

(a)

0 0.5 1 1.5 2 2.5
-3

-2

-1

0

1

2

3

4

5

6

Fixed Point

Hidden Attractor

(b)

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-3

-2

-1

0

1

2

3

4

5

6

Fixed Point

Hidden Attractor

(c)

Figure 6 Hidden attractor of the system (4) with stable fixed-
point in different phase spaces with the initial value (0, 0, 0). (a)
in xy-axis, (b) in yz-axis, (c) in xz-axis.

nonlinear system (4) & (5) with time step size 0.01 and total number

of steps are 216.

ẋ = y,

ẏ = −x + yz,

ż = 2x − 2z + y2 − 0.3.

(5)

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Fixed Point

(a)

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Fixed Point

(b)

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Fixed Point

(c)

Figure 7 Hidden attractor of the system (5) with fixed-point in
different phase spaces have initial value (0.9, 0, 0.7). (a) in xy-
axis, (b) in yz-axis, (c) in xz-axis.

Other chaotic systems with equilibrium points were also ex-
plained.

Gong et al. have developed a chaotic system that generates
both four-wing and single-wing hidden patterns, with only one
stable node-focus equilibrium point (Gong et al. 2020). In addition,
Cao and Zhao presented a unique chaotic system that exists in
four dimensions and exhibits various interesting behaviors (Cao
and Zhao 2021). The proposed system is characterized by three
quadratic nonlinearity terms and exhibits various types of hidden
attractors with equilibrium points. Further, Islam et al. studied
a three-dimensional chaotic system that makes a hidden chaotic
attractor with a line equilibrium in which a single non-bifurcation
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parameter is used to control the amplitude and frequency (Islam
et al. 2022).

Hidden chaotic attractor with extreme multi-stability
The study of multistability in the context of hidden chaotic attrac-
tors is crucial. Multistability with hidden attractors means that
a system may have more than one stable state and that these sta-
ble states may not be directly observable or predictable without a
detailed understanding of the underlying dynamics of the system.

The discovery of the hidden chaotic attractor with extreme
multistability is a proof of the elusive nature of complex dynamical
systems. It emerged in the late 20th century as researchers delved
deeper into nonlinear dynamics.

The fascinating example of such type of work derived by Jafari
(Jafari et al. 2018). They created a unique chaotic system with
five dimensions. It’s special because it has a hidden attractor and
shows extreme multi-stability. These traits are quite rare in existing
studies. The following is the mathematical model and illustration
shown in Figures 8 & 9. To solve this nonlinear system (6) & (7)
numerically with time step size 0.01 and total number of steps are
216 the Runge-Kutta method of order 4 (RK4) is used.

ẋ = y,

ẏ = z,

ż = w,

ẇ = 4v + 1.7xz + 0.5xw,

v̇ = y2 + 1.1xy + xz.

(6)

Let us consider another system as an example by Khalaf, A. J.
M. (Khalaf et al. 2020):

ẋ = y,

ẏ = z,

ż = w,

ẇ = −0.16w2 − 0.86w + v + 3.35xz − 0.36yz,

v̇ = 1.09y2 − 0.96y + 1.09xz − 1.92zw.

(7)

Khalaf Analyzed a new 5D chaotic system that reveals hidden
attractors with extreme multi-stability which is the modification of
Jafari (Jafari et al. 2018) work shown in Figure 10.

In recent findings, researchers worked with chaotic systems that
have hidden attractors with extreme multi-stability in nonlinear
dynamics. Ahmadi et al. presented a rare chaotic system with
extreme multistability and a unique equilibrium line (Ahmadi et al.
2020). Such systems are exceptionally rare. This newly developed
chaotic system falls into the category of dynamical systems with
hidden attractors. Its complete dynamical properties have been
thoroughly investigated. This discovery expands our understand-
ing of the hidden chaotic system’s behavior. Additionally, Huang
et al., derived a novel four-dimensional chaotic system from a
known three-dimensional chaotic system that exhibits extreme
multi-stability with an equilibrium point along a line (Huang et al.
2022). This system can generate innumerable symmetric and ho-
mogeneous attractors.

(a)

(b)

(c)

Figure 8 Strange attractor of the System (6) displays distinct
shapes in three distinct projections when started from initial
conditions (0,-5,-1,-4, 0).

Multi-scroll hidden chaotic attractors in nonlinear dynamics

Multi-scroll hidden chaotic attractors are a fascinating phe-
nomenon in nonlinear dynamical systems. Unlike traditional at-
tractors, these possess multiple basins of attraction, leading to
complex, unpredictable trajectories.

An interesting example of multi-scroll hidden attractors has
been derived by Xiaoyu Hu (Hu et al. 2017). They proposed the
following novel 5-dimensional chaotic system in which hidden
multi-scroll attractors and hidden multi-wing attractors can be
observed at different phase levels as shown in Figure 11. The
same as the previous RK4 method is used to solve the system (8)
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Figure 9 Strange attractor of the System (6) in 3D has initial con-
ditions (0,-5,-1,-4, 0).

(a)

(b)

(c)

Figure 10 Visualize chaotic trajectories of system (7) with initial
conditions (-1.44, 0.57, -0.82, -1.62, -0.75) through phase portrait
projections of strange attractors. (a) in XZ, (b) in YW, (c) in ZV.

numerically.

ẋ = ay,

ẏ = by − z + csin(2πdx),

ż = y − ez,

u̇ = −xy − (g + hϕ2)u + k,

ϕ̇ = u.

(8)

(a)

(b)

Figure 11 Hidden attractors of the system (8) with initial values
(x0, y0, z0, u0, ϕ0 = 0.2, 0, 0, 0.2), fascinating dynamics develop
over a transient simulation period of 3000-time units. In (a) x − y
phase plane reveals the presence of 4 scroll hidden attractors,
while in (b) y − u phase plane reveals the presence of eight butter-
fly wings hidden attractors.

In this given scenario, the system parameters have been defined
as follows: a = 0.25, b = 0.4, c = 2, d = 0.5, e = 0.5, g = 15, h = 0.01,
and k = 0.05.

Some notable researchers have contributed to the study of multi-
scroll hidden chaotic attractors. Escalante and Campos explored
hidden attractors in addition to self-excitation (Escalante-González
and Campos-Cantón 2019). First, a double-scroll attractor is gen-
erated from two equilibria connected by heteroclinic orbits. Hid-
den attractors arise when trajectories resembling these trajectories
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break apart on a larger scale, increasing the complexity of the sys-
tem. Pulido et al. have developed a method to generate dynamical
systems with unique patterns, which they call bidirectional mul-
tiscroll hidden attractors (Pulido-Luna et al. 2021). These special
attractors arise from piecewise linear systems, starting from their
rest states, and can have both unidirectional (1D) and bidirectional
(2D) lattice multiscroll patterns. This method opens up exciting
possibilities for the design of complex and fascinating dynamical
systems. In addition, Escalante and Campos have developed a
method to generate complex systems with multiple hidden attrac-
tors (Escalante-González and Campos 2022). They use a nonlin-
ear function to generate multiple self-excited attractors at specific
points. Each pair of self-excited attractors leads to a hidden attrac-
tor, and these pairs combine to form larger hidden attractors. The
number of self-excited attractors determines how many nested hid-
den attractors are created. These researchers have made significant
strides in uncovering and studying multi-scroll hidden chaotic
attractors, advancing our understanding of complex dynamical
systems.

CONCLUSION

In this short review paper, we have addressed the fascinating area
of hidden attractors in chaotic systems characterized by nonlinear
functions. Through an extensive survey of various papers, we
have discussed a variety of hidden chaotic attractors, each with
particular features and behaviors.

First, we explored the realm of hidden chaotic attractors with-
out equilibria. These fascinating phenomena challenge conven-
tional wisdom and show that chaotic behavior can manifest in
systems without stable equilibrium points. Moving forward, we
have examined hidden chaotic attractors that coexist with equi-
libria. Furthermore, we have ventured into the realm of hidden
chaotic attractors that exhibit extreme multiple stability. These
systems exhibit a remarkable richness of dynamical behavior. This
phenomenon has significant implications in the areas of control
and synchronization, as it introduces a variety of possible states
that the system can assume under different conditions. Lastly, we
explored multi-scroll hidden chaotic attractors, a class of attractors
characterized by their complex, multi-dimensional structure.

Collectively, this review underscores the profound importance
of hidden attractors in nonlinear dynamics. These elusive phenom-
ena challenge our conventional understanding of chaotic systems
and offer new perspectives and avenues for research. Moreover,
the diversity of hidden attractors discussed in this review provides
fertile ground for further exploration and application in various
scientific and engineering domains.
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ABSTRACT
In the present work a detailed study is presented, on the design, programming, and investigation of the
behavior of flocking (Movement type flock), through the model of BOIDS, for its acronym in English "Bird Oid
Object" (Object type bird), which was devised by Craig Reynolds in 1986. This complex flocking behavior
that occurs arises from the interaction of simple local rules, in which complexity and sensitivity to initial
conditions are present. A measure of chaotic compound will be introduced to the algorithm by means of a new
four-dimensional autonomous hyperchaotic system based on the 3D Méndez-Arellano-Cruz-Martínez (MACM)
system. The measures proposed herein, therefore, may have the potential to predict, control, and exemplify
the behavior of group intelligence study systems that occur in nature, allowing the implementation of these
systems in groups of robots through the implementation of hyperchaotic trajectories in the future, to obtain
greater speed and efficiency, obstacle and collisions avoidance in their flights.

KEYWORDS

Flocking behav-
ior
Boids
Hyperchaotic
MACM system

INTRODUCTION

The grouping of animals that occurs frequently in nature be-
tween different types of species; such as the behavior of bee
swarms Karaboga et al. (2005), schools of fish (Pourpanah et al.
2023), flocks of birds (Duman et al. 2012), among others, has been
an inspiration for different research groups in recent years, taking
this behavior as an approach to solve very complex problems. By
studying and simulating how animals behave, scientists hope to
create powerful computational models that can solve challeng-
ing problems, optimize processes, and make decisions in ways
inspired by the efficient and adaptive strategies found in nature.

Multi-agent-based simulation (MBS) is a valuable technique
used to model flocking behavior, where collective behavior
emerges from individual interactions. It helps understand com-
plex interactions at a larger scale, which are often hard to pre-
dict, comprehend, and simulate. This difficulty arises because

Manuscript received: 15 October 2023,
Revised: 23 February 2024,
Accepted: 9 March 2024.

1ana.medina.galindo@uabc.edu.mx
2 lcardoza@uabc.edu.mx
3roslopez@uabc.edu.mx
4ccruz@cicese.mx (Corresponding author)

of the non-linear relationship between micro (individual agent)
and macroscopic (overall group) properties. Small changes in an
agent’s environment or rules can result in vastly different out-
comes in the simulation. Due to these complexities, MBS becomes
a powerful tool for studying and analyzing emergent phenom-
ena, providing insights into systems where traditional approaches
might fall short.

One of the most commonly used methods to simulate the emer-
gent behavior that occurs in different groups of animals in na-
ture, are the so-called boids, devised by Craig Reynolds in 1987
(Reynolds 1987). This model was the first published way of simu-
lating a fairly realistic flock simulation from an algorithm. It was
developed into an artificial life program where each individual in
the flock is called an agent, which has its own position, speed, and
orientation, exhibiting complex flock behavior that arises from the
interaction of three simple local rules:

• Separation. An agent must avoid collisions with other nearby
agents. To avoid collisions, a separation factor is added. An
agent will keep a certain distance from all other agents in his
neighborhood. If the agent finds another agent too close, it
will try to move away from them to avoid collisions.

• Cohesion. An agent must stick to the group or flock. To
ensure this, a cohesive factor is added. The agent will move
towards the average position of the neighboring agents. When
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other agents are within the neighborhood, the agent will try
to move to the midpoint of all the others.

• Alignment. The alignment rule is obtained by calculating a
force directed at the average of the velocities of the neighbors.

The three rules of separation, alignment, and cohesion will re-
sult in different vector forces that must act on the agent to which
they belong. Since animals cannot turn instantly in real life, a resul-
tant force is calculated by adding the three effective vectors. The
three forces can be applied differently by normalizing the individ-
ual vectors and then multiplying them with appropriate weights.
Therefore, the specific behavior of each agent could be induced by
the slight alteration of an aspect of the so-called flocking.

The resulting force is added to the velocity vector of the agent.
Then the speed is normalized or limited to a maximum allowed
speed. Finally, the agent’s velocity is added to its position vector
resulting in motion. The previous velocity can also be used as
the base vector for the resultant, giving each agent a flow motion
closer to what occurs in nature. Currently there are few works that
can be found about the study of boids applied to chaotic systems,
however there is great potential to use the dynamics of boids in
relation to this type of systems, since adding rules can present
behaviors that can be considered emergent, as was presented in
previous work (Itoh and Chua 2007).

In this paper, we propose implement a new rules for the be-
havior of the boids, first with the introduction of a hyper MACM
chaotic system (Méndez-Ramírez et al. 2021), where the boids are
led in this trajectory. Emerging behavior was investigated through
simulations implemented in MATLAB. After the analysis of the
movement of each boid as well as the chaotic component of their
trajectories, finally the conclusions obtained about the control of
the boids are presented.

BASIC ANALYSIS AND MODELING OF BOIDS

We consider a network of N identical nodes that will be called
boids, each node is considered like basic element with behavior de-
pending on the nature of the network, which can be modeled by a
set of nonlinear autonomous differential equations, with each boid
being an n-dimensional dynamical system. The state equations of
the entire network of boids are described as follows,

u̇i = fi(u1, u2, ..., un), i = 1, 2, ..., n (1)

where ui = (u1, u2, ..., un)T ∈ Rn is a state vector of boid i, and
f(u) = ( f1(u), f2(u), ... fn(u)) is a nonlinear vector function of u.
Given initial state ui

α(0) at t = 0, the state ui
α of each isolated boid

Bα is assumed to envolve for all t ≥ 0 via state equations,

u̇α
i = fi(u1, u2, ..., un), i = 1, 2, ..., n. (2)

For ease of modeling we will assume that all boids are identi-
cal, they are only influenced in their trajectories by those nearby
neighboring boids which are located on a sphere described as Sα,
if a boid moves in a random trajectory but in its trajectory the boid
gets close to another boid they will be coupled as long as they are
positioned at any distance inside the sphere Sα with radius ϵ as
shown in Figure 1 a),

Sα(ϵ, t) =

{
Bβ : rα,β ≜

√
n

∑
i=1

(ui
α(t)− ui

β(t))2 ≤ ϵ

}
, (3)

at time t, where rα,β indicates the distance between the boids Bα

and Bβ. We will usually delete ϵ and t from Sα(ϵ, t) and simply
write Sα to prevent confusions, see Figure 1 a.

Then, the dynamics of the nonlinear chaotic network of the locally
coupled boids defined by

u̇α
i = fi(uα

1 , uα
2 , ..., uα

n) + ∑
Bβ∈Sα

Dβ
i gi(u

β
1 , uβ

2 , ..., uβ
n),

i = 1, 2, ..., n, α = 1, 2, ..., M (4)

where Dβ
i are coupling coefficients, and g(u) =

(g1(u), g2(u), ..., gn(u)) is a nonlinear vector function of u.
The dynamics of Equation (4) describes networks of boids with

nonlinear behaviors, the number of boids belonging to Sα can
change continuously as time t increases. Since at first, the boids
can be found in random positions and speeds within some area,
and as time passes they can get closer to a certain distance within
the sphere Sα, continuously changing the number of boids in Sα.

The behaviors that make up the flock model are expressed in
terms of "close flockmates". While a boid is in motion, it does not
require full knowledge of the position and speed of each boid in
the entire herd, it only knows the information of a small subset of
it. This subset is composed of what we call the expression "near
flockmates", often used in boid modeling of steering behavior,
which refers to the awareness each boid has of the bodies of other
nearby boids, based on the distance between them. Thus the boid
has a range of perception of the world in the shape of the sphere
around it, described in Equation (3). When different boids are
within a very close distance of each other the boids perception
spheres can overlap, influencing each other’s behavior depending
on their rule parameters.

In this section, we will describe the implementation of the boid
rules. Based on the Reynolds model (Reynolds 1987), a model was
made a boid swarm model in MATLAB software, the boid model
has 5 rules: separation, cohesion, alignment, edge avoidance, and
hyperchaotic MACM attractor, described as follows.

Cohesion
The cohesion force has the objective of keeping the flock of boids

together. This means that this force will drive each agent to move
towards the average position of its nearest neighbors which is in
the volume of the sphere Sα(ϵ, t) of each boid, as shown in Figure
1 b). This is expressed mathematically in the Equation (5). Boid
cohesion is calculated using two steps.

First, the central position of the nearest neighbors of each agent
is calculated by,

uα
i (t) =

∑
β∈Sα

uβ
i (t)

Nα
, (5)

where Nα indicates the number of nearby flockmates. Then the
tendency of the boid to sail towards the visible flock center of
density uα

i (t). Therefore the control dynamics is calculated as
shown below,

u̇α
i = fi(uα

1 , uα
2 , ..., uα

n) + dα
i (u

α
i − uα

i ), (6)

where dα
i > 0.

There is a special case when there is no one around. The center
of the nearby flockmates uα

i (t) = 0. In this case, Equation (5) is not
defined and the cohesion rule does not apply.

This principle encourages boids to stay close to their neighbors,
leading to a sense of togetherness within the flock. By gravitating
towards the average position of nearby companions, the cohesion
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rule promotes collective movement, enabling boids to exhibit coor-
dinated behaviors without any centralized leadership. As a result,
the flock maintains a cohesive structure.

a)

b)

c)

r

B B

f 
d)

Figure 1 Graphic description of boids: a) Boid inside sphera Sα with
radius ϵ. Rules governing the movement of boids, b) Cohesion, c)
Separation, d) Alignment.

Separation
Separation force is the complementary force to the cohesion

force as shown in Figure 1 c). Each member of a flock tends to
avoid collision with its nearby neighbors. This tendency is called
separation or collision avoidance. In the case where the distance
rα, between the boids Bα and Bβ becomes less than δ > 0, the
boids will tend to disperse from the center of nearby flockmates.
This is calculated by the following dynamics:

u̇α
i = fi(uα

1 , uα
2 , ..., uα

n) + eα
i (u

α
i − uα

i ),

u̇β
i = fi(u

β
1 , uβ

2 , ..., uβ
n) + eβ

i (u
β
i − uβ

i ),

 (7)

where eα
i , eβ

i > 0.
The separation rule in boids algorithm is a fundamental principle

for simulating flocking behavior. Each boid maintains a minimum
distance from its nearby flockmates, preventing collisions and
promoting spacing within the group. By avoiding crowding, boids
create a sense of personal space, enhancing overall flock stability
and preventing individual boids from getting too close to each
other.

Alignment
Alignment is the process by which each boid attempts to match

its velocity and direction with that of its nearby flockmates as
shown in Figure 1 d). It promotes the cohesive and coordinated
movement of the group, leading to the emergence of flocking
behavior. This rule is essential because it enables the boids to
maintain alignment and unity without relying on any centralized
control or explicit communication between individuals.

The alignment rule is implemented as follows: each boid exam-
ines its surroundings and identifies its nearby neighbors within
a certain perception radius Sα(ϵ, t), dictating how far it can "see"
other flockmates. The boid then calculates the average velocity
of its neighbors, which represents the average direction in which
the neighboring boids are moving. The average velocity of nearby
flockmates is defined by

f α
i =

∑
β∈Sα

fi(u
β
1 , uβ

2 , ..., uβ
n)

Nα
. (8)

To align with the flock, the boid adjusts its own velocity to
match the computed average velocity of its neighbors. However,
it doesn’t do this instantaneously; instead, it gradually changes
its velocity over time to create a smooth and realistic alignment
process. This gradual adjustment prevents sudden changes in
direction that could disrupt the cohesion of the flock.

IMPLEMENTATION OF THE HYPERCHAOTIC MACM AT-
TRACTOR TO THE NETWORK OF BOIDS

The behavior of the boids is given by Reynolds (1987), and each
of the behavioral rules is expressed as a vector. These rules are
sorted by priority and added to an accumulator of the boids. This
continues until the sum of the accumulated magnitudes increases
the maximum acceleration value. In this work, the value of a new
vector given by the new 4D hyperchaotic MACM system in the
network of boids is prioritized, so that the boid has the priority to
follow the hyperchaotic attractor trajectory, see Figure 2.

The implementation of a new rule consists of placing a new 4D
hyperchaotic MACM system (Méndez-Ramírez et al. 2021), as a
new rule in the behavior of the boids. This MACM attractor is
obtained by modifying the 3D MACM system inspired by previous
works (Méndez-Ramírez et al. 2017). A hyperchaotic system is a
mathematical concept that extends the idea of a chaotic system.
It has more than one positive Lyapunov exponent, see Table 1,
this indicates greater complexity in its dynamic behavior in the
projection of the phase space in the plane (Rajagopal et al. 2018).
To create a hyperchaotic system, k chaotic systems can be coupled,
resulting in an attractor with n positive Lyapunov exponents. This
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■ Table 1 Analysis of stability of equilibrium points for a new
hyperchaotic MACM system based on the Lyapunov exponents.

Point Eigenvalues Stability

P0 λ1 = −0.5247 λ1,λ2,λ4< 0, and λ3 > 0

λ2 = −1

λ3 = 4.5361 unstable saddle point

λ4 = −6.5113

P1−4 λ1 = −0.4939 λ1,λ4 < 0, and the real part

λ2 = 0.94767 − 3.4506i λ2,λ3 > 0

λ3 = 0.94767 + 3.4506i unstable saddle point

λ4 = −4.9014

P5−6 λ1 = −0.4918 λ1,λ4 < 0, and λ2, λ3 > 0

λ2 = 1.5384

λ3 = 2.7915 unstable saddle point

λ4 = −7.3381

P7−8 λ1 = 0 λ2< 0, and the real part

λ2 = −1 λ2,λ3 < 0

λ3 = 1.25 + 0.9682i Spiral stable point

λ4 = −1.25 − 0.9682i

coupling causes the dimension of the attractor to increase, leading
to a transition from chaos to hyperchaos. As this transition occurs,
the second Lyapunov exponent increases continuously (Kapitaniak
et al. 2000), highlighting the greater complexity and richness of the
system in its behavior compared to a normal chaotic system.

The dynamics of the hyperchaotic MACM system used is defined
as follows (Méndez-Ramírez et al. 2021):

ẋ = −ax − byz,

ẏ = −x + cy + cw,

ż = d − y2 − z,

ẇ = x − w.

(9)

The given system in the Equation (9) is a mathematical repre-
sentation with ten terms, including two quadratic nonlinearities.
It also involves four parameters, denoted as a, b, c, and d, which
must satisfy certain conditions: a, b, c, d ∈ R+ and c < a + 2. In
this context, b and d are referred to as the bifurcation parameters,
which influence the system’s behavior. When the specific values
a = 2, b = 2, c = 0.5, and d = 14.5 are used in the MACM system
exhibits hyperchaotic behavior.

ALGORITHM IMPLEMENTATION HIERARCHY

The algorithm for the simulation of the boids was realized in
MATLAB software.

-30

-20
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100
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10

z

10

20
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 y 
0

x
-10 -100

Figure 2 Hyperchaotic attractor of MACM system (9). Phase space
x versus y versus z.

A boid can have conflicting requests as long as the matching
algorithm is applied. The behavior is simply the result of the
interaction of the aforementioned rules. For example, if two boids
are moving in such a way that they are getting closer, with different
speeds, the cohesion priority could override the spacing rule, since
the boid cohesion request is opposite to the spacing rule, and
therefore they could overlap, cancel directions, the boid could
make only a small turn and crash into another boid. The highest
priority should be to avoid collisions between the boids and the
cohesion rule. Therefore, the behavior of the boids is modeled
using a rule order priority as shown in Table 2.

■ Table 2 Rule Order Priority.

Priority Order Rule

High 1 Avoid edge

High 2 Cohesion

Medium 3 Separation

Low 4 Alignment

Low 5 MACM attractor

NUMERICAL SIMULATION RESULTS

This section shows the results obtained from the numerical sim-
ulation.

Numerical simulations for two boids
Figures 3 and 4 show the modeling of two boids following

the trajectory of the hyperchaotic MACM attractor, Figure 3 show
the projections of the phase space in the planes. Figure 4 shows
the temporary states x, y, z, and w. Both figures show two boids
modeled with the strange attractor of Equation (9) system by using
the initial conditions x(0) = 0.5, y(0) = 0, z(0) = −5, w(0) = 0.51,
the parameter values a = 2, b = 2, c = 0.5, and d = 14.5. The
value of 80 has been added to each point of the solution of the
Equation (9) system, because the attractor is located from -80 to 80
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on the x axis, from -13 to 13 on the y axis, -30 to 13 on the z axis
approximately.

Computer simulations use the following parameters.

■ Table 3 MACM´s oscillator.

Rule Parameter

Flock centering dα
i = 5

Velocity matching Rmax = 2

Collision avoidance δ = 1.5

Figures 3 and 4 show the trajectories followed by two boids,
their cohesive movement as a flock. The distance between the two
boids can be seen in Figure 5, it is shown that for 1000 iterations,
the maximum distance does not exceed the value of 8, proving that
the cohesion rule holds along the trajectory of the two boids.

The value of 80 has been added to each point of the solution of
the hyperchaotic MACM system, because the attractor is located
from -80 to 80 on the x axis, from -13 to 13 on the y axis, -30 to 13
on the the z axis approximately, to facilitate the implementation in
robot trajectories in the future.

The synchronization behavior of the two boids is presented in
Figure 6. However, it is important to note that exact synchroniza-
tion is not achieved, leading to a certain thickness in the Lissajous
figures. A thinner line would indicate perfect timing, but it can
also lead to potential collisions.

In Figure 6 in particular, when considering the MACM oscil-
lators, the two boids maintain a close distance of approximately
δ = 1.5.

Error analysis in trajectories of 2 boids
The separation measure was obtained in the trajectories of two
boids, concerning the desired trajectory of the hyperchaotic MACM
attractor employing the Root Mean Square Error, commonly re-
ferred to as RMSE, which is a statistical measure used to quantify
the average magnitude of the error between predicted values and
actual values. It is frequently employed to evaluate the precision of
a predictive model. RMSE calculates the mean squared difference
between forecasted numbers and subsequently observed numbers.
the RMSE is defined by:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (9)

where n represents the total number of data points or observations
being considered, yi represents the actual observed values, y repre-
sents the predicted values from the model. An RMSE = 7.54 was
obtained for boid 1 and an RMSE = 8.56 for boid 2.

It is observed that there is a difference between the trajectory of
the hyperchaotic MACM attractor and the trajectory of the boids,
this is because of the order of priority shown in Table 2. is imple-
mented so that the boids adjust their speed and position to the
rules that define the boids, this implies that the distance between
the trajectory of the boids and the trajectory of the MACM chaotic
attractor will increase for certain coordinates, despite this, the abil-
ity of the boids to drive along the trajectory of the chaotic attractor
is observed in Figure 3.

It is worth mentioning that RMSE gives greater weight to larger
variations, as it squares off the differences before averaging. Con-
sequently, larger variations between the position of the boids con-
cerning the hyperchaotic MACM attractor trajectory have a greater
impact on the RMSE than smaller gaps.

It is observed that the distance maintained between the tra-
jectories of the two boids is less than the distance between the
trajectories of the boids and the trajectory of the hyperchaotic at-
tractor, this is because the rules of behavior are imposed, and it
is the objective in this studio. If the boids give priority to follow-
ing the trajectory of the hyperchaotic attractor, collisions could
occur between them since the separation rule would be secondary.
The scenario could also arise that the distance between them was
greater than the parameter implemented in the cohesion rule and
the boids would no longer remain together in the trajectory since
they would not recognize each other as close neighbors.
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Figure 5 Distance between two boids (MACM’s oscillators).
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Figure 7 Synchronization of 5 boids (MACM’s oscillators for
t ∈ [0, 50]. MATLAB overwrites the existing graph in some sec-
tions and plots the trajectories in order of purple, green, yellow,
orange, red, blue).

Computer simulations of the behavior of 5 boids controlled by
the hyperchaotic MACM system is illustrated in Figure 7, it is
observed that the flock of 5 boids that two boids are together all
the way from the start and as time increases. In Figure 7, it can be
seen that the trajectories are intertwined by observing the different
colors throughout the entire journey. It is observed that in some
sections the trajectories overlap over the same region in space,
observing only two or three lines.

CONCLUSION

The investigation of a nonlinear system was carried out through
the implementation of an algorithm that describes the behavior of
the boids, which are controlled by a hyperchaotic MACM system,
the implementation of this system forces the boids to follow their
attractor trajectory, induce them to follow it. In this work a network
formed by N identical nodes was considered, this behavior can be
described using a set of nonlinear autonomous differential equa-
tions. The boids maintain the three rules of cohesion, alignment,
and separation that define them while maintaining a hyperchaotic
trajectory.

It is observed that the boids have characteristics that they share
with complex systems with dynamic behavior, and emergent prop-
erties that arise from the interactions between the boids were pre-
sented.

For future work, tasks remain to be performed described below:

• Implementation of a rule for the introduction of one or more
predators in the system, where the prey are the boids.

• Implementation of the rule to avoid obstacles, which prevent
continuing with the trajectory, and the boids are forced to sur-
round them to continue with the trajectory of the hyperchaotic
attractor.

• Implement a rule to find specific targets.
• Implement a rule to adhere to a leader, the boid who is in front

will take the position of leader and the others will follow.
• Implement this study in robots through the generation of hy-

perchaotic trajectories to directly influence the behavior of
the robot’s speeds, using the inputs to the system; as are the
speeds of the engines. One of the advantages of this method is
its simplicity and ease of being implemented in mobile robots
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since it is only necessary to know the number of inputs han-
dled by the robot to implement the algorithm. For a potential
application in experimentation, we are considering the use
of quadcopters. Each quadcopter would function as a boid,
interconnected through wireless communication employing
a Wi-Fi network, facilitating information exchange through
sockets. The positional data for each boid would be acquired
either through a Motion Capture System (Mocap, such as
OptiTrack) or alternative methods like mounting cameras on
each quadcopter, implementing infrared sensors, or utiliz-
ing radio frequency triangulation. To attain synchronization
within a hyperchaotic MACM system, we propose the inclu-
sion of an additional rule, assigned a lower priority compared
to existing rules. This supplementary rule endows each boid
with a distinct speed component, individually generated by
a hyperchaotic trajectory generator algorithm as reported in
(Cetina-Denis et al. 2022). This approach aims to provide each
boid with a unique characteristic, similar to the individuality
observed in a flock of birds, where differences in size, weight
or, agility contribute to distinctive behaviors emerging from
group interactions.
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