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Abstract

This article defines two common q-orthogonal polynomials: homogeneous q-Laguerre polynomials
and homogeneous little q-Jacobi polynomials. They can be viewed separately as solutions to two
q-partial differential equations. Furthermore, an analytic function satisfies a certain system of q-
partial differential equations if and only if it can be expanded in terms of homogeneous q-Laguerre
polynomials or homogeneous little q-Jacobi polynomials. As applications, several generalized
Ramanujan q-beta integrals and Andrews-Askey integrals are obtained.

1. Introduction

The presence of orthogonal polynomials is ubiquitous in various problems encountered in classical mathematical physics. For
instance, the Hermite polynomials manifest in the quantum mechanical treatment of harmonic oscillators, while the Laguerre
polynomials arise in the propagation of electromagnetic waves. However, the study of q-orthogonal polynomials is also a
crucial study topic and can be found in relevant literature [1, 2, 3, 4, 5].
Throughout the paper, it is supposed that 0 < |q| < 1 and denote by N (C) the set of positive integers (complex numbers,
respectively). The q-shifted factorials are defined as

(a;q)0 = 1, (a;q)n =
n−1

∏
k=0

(1−aqk), (a;q)∞ =
∞

∏
k=0

(1−aqk)

and (a1,a2, · · · ,am;q)n = (a1;q)n(a2;q)n · · ·(am;q)n, where n is a non-negative integer or ∞. The q-derivative of f (x) with
respect to x is defined by

Dq{ f (x)}= f (x)− f (qx)
x

.

According to the above definition, it is not difficult to verify

Dq{ f (x)g(x)} = Dq{ f (x)}g(x)+ f (qx)Dq{g(x)} (1.1)

and the Leibniz rule for the product of two functions

Dn
q{ f (x)g(x)}=

n

∑
k=0

[
n
k

]

q
qk(k−n)Dk

q{ f (x)}Dn−k
q {g(qkx)}, (1.2)

where
[

n
k

]

q
=

(q;q)n

(q;q)k(q;q)n−k
, 0≤ k ≤ n, n ∈ N (1.3)
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is the Gaussian binomial coefficients, also see [6]. For any real number r, the q-shift operator ηr
xi

is defined by

η
r
xi
{ f (x1, · · · ,xn)}= f (x1, · · · ,xi−1,qrxi,xi+1, · · · ,xn).

Generalizing Heine’s series, or basic hypergeometric series rφs is defined by

rφs

(
a1,a2, · · · ,ar

b1,b2, · · · ,bs
; q,z

)
=

∞

∑
n=0

(a1;q)n · · ·(ar;q)n

(b1;q)n · · ·(bs;q)n(q;q)n

[
(−1)nq(

n
2)
]1+s−r

zn. (1.4)

Here and in what follows,
(n

k

)
represents the standard combination symbol. The series rφs terminates if one of the numerator

parameters is of the form q−n, n ∈ N∪{0} and q 6= 0. If 0 < |q|< 1, the series rφs converges absolutely for all x if r ≤ s and
for |x|< 1 if r = s+1. The famous q-binomial theorem

1φ0

(
a

−; q,z

)
=

∞

∑
n=0

(a;q)n

(q;q)n
zn =

(az;q)∞

(z;q)∞

, |z|< 1, (1.5)

is a q-analogue of Newton’s binomial series. This theorem can also derive the following two identities

∞

∑
n=0

zn

(q;q)n
=

1
(z;q)∞

, |z|< 1,
∞

∑
n=0

(−1)nq(
n
2)

(q;q)n
zn = (z;q)∞. (1.6)

The theory of basic hypergeometric series has been greatly developed for more than a century, and there are many effective
ways to study it, such as the Wilf-Zeilberg algorithm, transformation, inversion and operator, for example, see [6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Ten years ago, Liu first introduced the q-partial differential equation
method to study q-series. This innovative approach has attracted the attention of numerous mathematicians, For further details,
please refer to [26, 27, 28, 29, 31, 32, 33]. To this end, we initially define the q-partial derivative [28].

Definition 1.1. A q-partial derivative of a function of several variables is its q-derivative with respect to one of those variables,
regarding other variables as constants.

For convenience, the q-partial derivative of a function f with respect to the variable x is denoted by Dq,x{ f}. In [28], Liu
proved the following theorem.

Theorem 1.2. If f (x,y) is a two-variable analytic function at (0,0) ∈ C2, then, f can be expanded in terms of homogeneous
Rogers-Szegő polynomials (for definition see (5.1)) if and only if f satisfies the q-partial differential equation Dq,x{ f} =
Dq,y{ f}.
We should point out that the above theorem has developed a new theory for calculating the q-identity and demonstrated its
universality when applied to many types of q-orthogonal polynomials, including Rogers-Szegő polynomials, Hahn polynomials,
Stieltjes-Wigert polynomials and Askey-Wilson polynomials, as well as classical orthogonal polynomials such as Hermite
polynomials (cf. [30]). Later, some related works by Abdlhusein, Arjika, Aslan, Cao, Jia, Li, Mahaman, Niu and Zhang also
fall into Liu’s theory. Readers interested can see [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47].
Hahn [48] first discovered the q-Laguerre polynomials, according to Koekoek and Swarttouw [49], they are defined by

L
(α)
n (x|q) = (qα+1;q)n

(q;q)n
1φ1

(
q−n

qα+1; q,−qn+α+1x

)
,α >−1. (1.7)

Askey pointed out [50] that the q-Laguerre polynomials converge to the Stieltjes-Wigert polynomials for α → ∞ thus the q-
Laguerre polynomials are sometimes called the generalized Stieltjes-Wigert polynomials [49]. The explicit form of q-Laguerre
polynomials can write as

L
(α)
n (x|q) = (qα+1;q)n

(q;q)n

n

∑
k=0

[
n
k

]

q

qk2+kα

(qα+1;q)k
(−x)k. (1.8)

To study q-Laguerre polynomials from the perspective of q-partial differential equations following Liu’s ideas, it is necessary
to introduce homogeneous q-Laguerre polynomials

L(α)
n (x,y|q) =

n

∑
k=0

[
n
k

]

q

qk2+kα

(qα+1;q)k
(−x)kyn−k,α >−1. (1.9)

Obviously,

L(α)
n (x,y|q) = (q;q)n

(qα+1;q)n
ynL

(α)
n (x/y|q), L(α)

n (x,1|q) = (q;q)n

(qα+1;q)n
L
(α)
n (x|q), L(α)

n (0,y|q) = yn.
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This paper is organized as follows. Section 2 shows that an analytic function satisfies a system of q-partial differential
equations, if and only if it can be expanded in terms of homogeneous q-Laguerre polynomials (see Theorem 2.3). Section 3 is
an application of Theorem 2.3, where we use the method of q-partial differential equations to prove the generating functions of
homogeneous q-Laguerre polynomials with different weights. Section 4 presents that an analytic function can be expanded in
terms of homogeneous little q-Jacobi polynomials (see Theorem 4.2) if and only if it satisfies a system of q-partial differential
equations. In section 5, we obtain some identities by applying Theorems 2.3 and 4.2, which generalize famous formulas such
as Ramanujan q-beta integrals and Andrews-Askey integrals.

2. Homogeneous q-Laguerre polynomials and q-partial differential equations

Firstly, Proposition 2.1 presents an important property of homogeneous q-Laguerre polynomials.

Proposition 2.1. For n ∈ N∪{0}, the homogeneous q-Laguerre polynomials satisfy the q-partial differential equation

Dq,x(1−qα
ηx)
{

L(α)
n (x,y|q)

}
=−qα+1

η
2
x Dq,y

{
L(α)

n (x,y|q)
}
, (2.1)

namely,

Dq,x

{
L(α)

n (x,y|q)−qα L(α)
n (qx,y|q)

}
=−qα+1Dq,y

{
L(α)

n (q2x,y|q)
}
.

Proof. Let LHS denote the left-hand side of the equation (2.1), and by using the formula Dq,x{xn}= (1−qn)xn−1, we can
obtain

LHS =Dq,x

{
n

∑
k=0

(−1)k
[

n
k

]

q

qk2+kα

(qα+1;q)k−1
xkyn−k

}
=

n

∑
k=1

(−1)k
[

n
k

]

q
(1−qk)

qk2+kα

(qα+1;q)k−1
xk−1yn−k.

Similarly, use RHS to denote the right-hand side of the equation (2.1). Through simple calculation, we have

RHS = −qα+1Dq,y

{
n

∑
k=0

(−1)k
[

n
k

]

q

qk2+kα

(qα+1;q)k
(q2x)kyn−k

}

=
n−1

∑
k=0

(−1)k+1
[

n
k

]

q
(1−qn−k)

q(k+1)2+(k+1)α

(qα+1;q)k
xkyn−k−1

=
n

∑
k=1

(−1)k
[

n
k−1

]

q
(1−qn−k+1)

qk2+kα

(qα+1;q)k−1
xk−1yn−k.

From the definition of the q-binomial coefficients (1.3), it is easy to verify that
[

n
k

]

q
(1−qk) =

[
n

k−1

]

q
(1−qn−k+1). (2.2)

It follows from (2.2) that LHS = RHS, which completes the proof.

In order to prove Theorem 2.3, we need the following proposition (for example, see [51, p.5]).

Proposition 2.2. If f (x1,x2, · · · ,xk) is analytic at the origin (0,0, . . . ,0) ∈ Ck, then, f can be expanded in an absolutely and
uniformly convergent power series,

f (x1,x2, . . . ,xk) =
∞

∑
n1,n2,...,nk=0

λn1,n2,...,nk xn1
1 xn2

2 · · ·x
nk
k .

The main result of this section is Theorem 2.3.

Theorem 2.3. If f (x1,y1, · · · ,xk,yk) is a 2k-variable analytic function at (0,0, · · · ,0) ∈ C2k, then, f can be expanded

∞

∑
n1,··· ,nk=0

λn1,··· ,nk L(α1)
n1 (x1,y1|q) · · ·L(αk)

nk (xk,yk|q),

where λn1,··· ,nk are independent of x1,y1, · · · ,xk,yk, if and only if f satisfies the q-partial differential equations

Dq,x j(1−qα j ηx j){ f}=−qα j+1
η

2
x j
Dq,y j { f} (2.3)

for j ∈ {1,2, . . . ,k}.
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Proof. We employ mathematical induction. When k = 1, it follows from Proposition 2.2 that f can be expanded in an
absolutely and uniformly convergent power series in a neighborhood of (0,0). Therefore, there exists a sequence {λm,n}
independent of x1 and y1 for which

f (x1,y1) =
∞

∑
m,n=0

λm,nxm
1 yn

1 =
∞

∑
m=0

xm
1

∞

∑
n=0

λm,nyn
1. (2.4)

Substituting the above equation into the following q-partial differential equation

Dq,x1(1−qα1ηx1){ f (x1,y1)}=−qα1+1
η

2
x1
Dq,y1 { f (x1,y1)} , (2.5)

we obtain

∞

∑
m=1

(1−qα1+m)(1−qm)xm−1
1

∞

∑
n=0

λm,nyn
1 =−qα1+1

∞

∑
m=0

q2mxm
1 Dq,y1

{
∞

∑
n=0

λm,nyn
1

}
. (2.6)

Equating the coefficients of xm−1
1 in (2.6), we have

∞

∑
n=0

λm,nyn
1 =

(−qα1+1)q2(m−1)

(1−qα1+m)(1−qm)
Dq,y1

{
∞

∑
n=0

λm−1,nyn
1

}
.

Iteration m−1 times yields

∞

∑
n=0

λm,nyn
1 =

(−qα1+1)mqm(m−1)

(q;q)m(qα1+1;q)m
Dm

q,y1

{
∞

∑
n=0

λ0,nyn
1

}

=
(−1)mqm2+mα1

(q;q)m(qα1+1;q)m

∞

∑
n=0

λ0,n
(q;q)n

(q;q)n−m
yn−m

1

=
∞

∑
n=m

(−1)m
λ0,n

[
n
m

]

q

qm2+mα1

(qα1+1;q)m
yn−m

1 .

Noting that the series in (2.4) is an absolutely and uniformly convergent series, substituting the above equation into (2.4) and
interchanging the order of the summation, we find

f (x1,y1) =
∞

∑
m=0

xm
1

∞

∑
n=m

(−1)m
λ0,n

[
n
m

]

q

qm2+mα1

(qα1+1;q)m
yn−m

1

=
∞

∑
n=0

λ0,n

n

∑
m=0

(−1)m
[

n
m

]

q

qm2+mα1

(qα1+1;q)m
xm

1 yn−m
1

=
∞

∑
n=0

λ0,nL(α1)
n (x1,y1|q).

The above calculation shows that the sufficiency of Theorem 2.3 is correct. Conversely, if f (x1,y1) can be expanded in terms
of L(α1)

n (x1,y1|q), then using Proposition 4.1, we find that f (x1,y1) satisfies (2.3). So we can prove the case of k = 1.
Next, we assume that Theorem 2.3 is true for the case k−1. Since f is analytic at (0,0) and satisfies (2.5). Thus, there exists a
sequence {cn1(x2,y2, . . . ,xk,yk)} independent of x1 and y1 such that

f (x1,y1, . . . ,xk,yk) =
∞

∑
n1=0

cn1(x2,y2, . . . ,xk,yk)L
(α1)
n1 (x1,y1|q). (2.7)

Putting x1 = 0 in (2.7) and using L(α1)
n1 (0,y1|q) = yn1

1 , we obtain

f (0,y1,x2,y2, . . . ,xk,yk) =
∞

∑
n1=0

cn1(x2,y2, . . . ,xk,yk)y
n1
1 .

Using the Maclaurin expansion theorem, we have

cn1(x2,y2, . . . ,xk,yk) =
∂ n1 f (0,y1,x2,y2, . . . ,xk,yk)

n1!∂y1n1

∣∣∣
y1=0

.
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Since f (x1,y1, . . . ,xk,yk) is analytic near (x1,y1, . . . ,xk,yk) = (0, . . . ,0) ∈ C2k, it follows from the above equation that
cn1(x2,y2, . . . ,xk,yk) is analytic near (x2,y2, . . . ,xk,yk) = (0, . . . ,0) ∈ C2k−2. Substituting (2.7) into (2.3), we find that for
j = 2, . . . ,k,

∞

∑
n1=0

Dq,x j(1−qα j ηx j){cn1(x2,y2, . . . ,xk,yk)}L(α1)
n (x1,y1|q) =

∞

∑
n1=0

(−qα j+1
η

2
x j
)Dq,y j {cn1(x2,y2, . . . ,xk,yk)}L(α1)

n (x1,y1|q).

By equating the coefficients of L(α1)
n (x1,y1|q) in the above equation, we obtain

Dq,x j(1−qα j ηx j){cn1(x2,y2, . . . ,xk,yk)}=−qα j+1
η

2
x j
Dq,y j {cn1(x2,y2, . . . ,xk,yk)} .

Therefore, there exists a sequence {λn1,n2,...,nk} independent of x2,y2, . . . ,xk,yk for which

cn1(x2,y2, . . . ,xk,yk) =
∞

∑
n2,...,nk=0

λn1,n2,...,nk L(α2)
n2 (x2,y2|q) · · ·L(αk)

nk (xk,yk|q).

Then substituting the above equation into (2.7), we proved the sufficiency of Theorem 2.3. Conversely, if f can be expanded in
terms of L(α1)

n1 (x1,y1|q) · · ·L(αk)
nk (xk,yk|q), it follows from Proposition 2.1 that f satisfies (2.3). This completes the proof.

Remark 2.4. Theorem 2.3 implies that all solutions to q-partial differential equation (2.3) can be represented as linear
combinations of homogeneous q-Laguerre polynomials. Its applications are discussed in Sections 3 and 5.

3. Generating functions for homogeneous q-Laguerre polynomials

Since the Stieltjes and Hamburger moment problems corresponding to the q-Laguerre polynomials are indeterminate there
exist many different weight functions, see [2, 52, 53, 54] for details. Theorem 3.2 will use Theorem 2.3 to prove the following
generating functions of homogeneous q-Laguerre polynomials with different weights. We often refer to the following Hartog’s
theorem (see [55, p. 28]) to determine if a given function is an analytic function in several complex variables.

Theorem 3.1. If a complex valued function f (z1,z2, · · · ,zn) is holomorphic (analytic) in each variable separately in a domain
U ∈ Cn, then, it is holomorphic (analytic) in U.

Theorem 3.2. (1) We have

∞

∑
n=0

(−1)nq(
n
2)

(q;q)n
L(α)

n (x,y|q)tn = (ty;q)∞ 0φ2

(
−

qα+1, ty
; q,−qα+1tx

)
. (3.1)

(2) For arbitrarily given γ , and for |ty|< 1, we have

∞

∑
n=0

(γ;q)n

(q;q)n
L(α)

n (x,y|q)tn =
(γty;q)∞

(ty;q)∞

1φ2

(
γ

qα+1,γty
; q,−qα+1tx

)
. (3.2)

Proof. For part (1), denote the right-hand side of (3.1) by f (x,y). It follows from Theorem 3.1 that f (x,y) is an analytic
function of x and y. Thus f (x,y) is analytic at (0,0) ∈ C2. On the one hand, we have

Dq,x(1−qα
ηx){ f (x,y)}=−tqα+1(ty;q)∞

∞

∑
n=0

[(−1)n+1q(
n+1

2 )]3

(q,qα+1;q)n(ty;q)n+1
(−qα+1xt)n.

On the other hand, according to (1.1),

Dq,y { f (x,y)}= (ty;q)∞

∞

∑
n=0

−tqn[(−1)nq(
n
2)]3

(q,qα+1;q)n(ty;q)n+1
(−qα+1xt)n,

from which we obtain

−qα+1
η

2
x Dq,y { f (x,y)}= tqα+1(ty;q)∞

∞

∑
n=0

q3n[(−1)nq(
n
2)]3

(q,qα+1;q)n(ty;q)n+1
(−qα+1xt)n =Dq,x(1−qα

ηx){ f (x,y)} .

Therefore, by Theorem 2.3, there exists a sequence {λn} independent of x and y such that

(ty;q)∞ 0φ2

(
−

qα+1, ty
; q,−qα+1xt

)
=

∞

∑
n=0

λnL(α)
n (x,y|q). (3.3)
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Putting x = 0 in the above equation, using L(α)
n (0,y|q) = yn and (1.6), we find that

∞

∑
n=0

λnyn = (ty;q)∞ =
∞

∑
n=0

(−1)nq(
n
2)

(q;q)n
(ty)n.

Equating the coefficients of yn in the above equation, we have λn = (−1)nq(
n
2)/[tn(q;q)n]. Then substitute it into (3.3) and

equation (3.1) follows.
For part (2), denote the right-hand side of (3.2) by f (x,y). It follows from Theorem 3.1 that f (x,y) is an analytic function of x
and y for |ty|< 1. Thus f (x,y) is analytic at (0,0) ∈ C2. On the one hand, we have

Dq,x(1−qα
ηx){ f (x,y)} = Dq,x

{
(γty;q)∞

(ty;q)∞

∞

∑
n=0

(γ;q)n[(−1)nq(
n
2)]2

(qα+1;q)n−1(q,γty;q)n
(−qα+1xt)n

}

=
−tqα+1(γty;q)∞

(ty;q)∞

∞

∑
n=0

(γ;q)n+1[(−1)nq(
n
2)]2q2n

(q,qα+1;q)n(γty;q)n+1
(−qα+1xt)n.

On the other hand, according to (1.1),

Dq,y { f (x,y)}= t(γty;q)∞

(ty;q)∞

∞

∑
n=0

(γ;q)n+1[(−1)nq(
n
2)]2

(q,qα+1;q)n(γty;q)n+1
(−qα+1xt)n,

from which we obtain

−qα+1
η

2
x Dq,y { f (x,y)}= −tqα+1(γty;q)∞

(ty;q)∞

∞

∑
n=0

(γ;q)n+1[(−1)nq(
n
2)]2q2n

(q,qα+1;q)n(γty;q)n+1
(−qα+1xt)n =Dq,x(1−qα

ηx){ f (x,y)} .

Hence, by Theorem 2.3, there exists a sequence {λn} independent of x and y such that

(γty;q)∞

(ty;q)∞

1φ2

(
γ

qα+1,γty
; q,−qα+1xt

)
=

∞

∑
n=0

λnL(α)
n (x,y|q). (3.4)

Putting x = 0 in the above equation, using L(α)
n (0,y|q) = yn and (1.5), we find that

∞

∑
n=0

λnyn =
(γty;q)∞

(ty;q)∞

=
∞

∑
n=0

(γ;q)n

(q;q)n
(ty)n.

Equating the coefficients of yn in the above equation, we obtain λn = tn(γ;q)n/(q;q)n. Then substitute it into (3.4), which
completes the proof of (3.2).

Remark 3.3. (1) Taking y = 1, Theorem 3.2 degenerates into generating functions of q-Laguerre polynomials [49, p.109].
(2) Taking γ = 0 in (3.2), we can obtain a simpler generating function for L(α)

n (x,y|q):
∞

∑
n=0

L(α)
n (x,y|q)
(q;q)n

tn =
1

(ty;q)∞

0φ1

(
−

qα+1; q,−qα+1xt

)
. (3.5)

4. Homogeneous little q-Jacobi polynomials and q-partial differential equations

A q-analogue of Jacobi polynomials was introduced by Hahn [48] and later studied by Andrews and Askey [56, 57], and
named by them as little q-Jacobi polynomials:

P
(α,β )
n (x|q) = 2φ1

(
q−n,αβqn+1

αq
; q,qx

)
. (4.1)

As q→ 1, the little q-Jacobi polynomials tend to a multiple of Jacobi polynomials. The little q-Jacobi polynomials with β = 0
are q-analogs of Laguerre polynomials and are orthogonal with respect to a discrete measure on a countable set, called little
q-Laguerre (or Wall) polynomials. Moreover, the little q-Legendre polynomials are little q-Jacobi polynomials with α = β = 1.
If we set β →−α−1q−1β , in the little q-Jacobi polynomials and then take the limit α→ 0 we obtain the alternative q-Charlier
polynomials. For more details about q-Jacobi polynomials, see [49].
To establish the relationship between little q-Jacobi polynomials and q-partial differential equations, similar to Section 2, we
naturally introduce homogeneous little q-Jacobi polynomials

p(α,β )
n (x,y|q) =

n

∑
k=0

qk(k+1−2n)/2
[

n
k

]

q

(αβqn+1;q)k

(αq;q)k
(−x)kyn−k. (4.2)



Fundamental Journal of Mathematics and Applications 65

Evidently,

p(α,β )
n (x,y|q) = ynP

(α,β )
n (x/y|q), p(α,β )

n (x,1|q) = P
(α,β )
n (x|q), p(α,β )

n (0,y|q) = yn. (4.3)

Firstly, Proposition 4.1 shows an important property of homogeneous little q-Jacobi polynomials.

Proposition 4.1. The homogeneous little q-Jacobi polynomials satisfy the q-partial differential equation

Dq,x(1−αηx)
{

p(α,β )
n (x,y|q)

}
=−qDq,y(η

−1
y −qαβη

2
x )
{

p(α,β )
n (x,y|q)

}
, (4.4)

namely,

Dq,x

{
p(α,β )

n (x,y|q)−α p(α,β )
n (qx,y|q)

}
=−qDq,y

{
p(α,β )

n (x,y/q|q)−qαβ p(α,β )
n (q2x,y|q)

}
.

Proof. If we use LHS to denote the left-hand side of the equation (4.4), we have

LHS = Dq,x

{
n

∑
k=0

(−1)kqk(k+1−2n)/2
[

n
k

]

q

(αβqn+1;q)k

(αq;q)k−1
xkyn−k

}

=
n

∑
k=1

(−1)kqk(k+1−2n)/2
[

n
k

]

q

(1−qk)(αβqn+1;q)k

(αq;q)k−1
xk−1yn−k.

Similarly, use RHS to denote the right-hand side of the equation (4.4). By simple calculation, we obatin

RHS = Dq,y

{
n

∑
k=0

(−1)k+1q(k+1)(k+2−2n)/2
[

n
k

]

q

(αβqn+1;q)k+1

(αq;q)k
xkyn−k

}

=
n−1

∑
k=0

(−1)k+1q(k+1)(k+2−2n)/2
[

n
k

]

q

(1−qn−k)(αβqn+1;q)k+1

(αq;q)k
xkyn−k−1

=
n

∑
k=1

(−1)kqk(k+1−2n)/2
[

n
k−1

]

q

(1−qn−k+1)(αβqn+1;q)k

(αq;q)k−1
xk−1yn−k.

It follows from (2.2) that LHS = RHS.

The main result of this section is Theorem 4.2.

Theorem 4.2. If f (x1,y1, · · · ,xk,yk) is a 2k-variable analytic function at (0,0, · · · ,0) ∈ C2k, then, f can be expanded

∞

∑
n1,··· ,nk=0

λn1,··· ,nk p(α1,β1)
n1 (x1,y1|q) · · · p(αk,βk)

nk (xk,yk|q),

where λn1,··· ,nk are independent of x1,y1, · · · ,xk,yk, if and only if f satisfies the q-partial differential equations

Dq,x j(1−α jηx j){ f}=−qDq,y j(η
−1
y j
−qα jβ jη

2
x j
){ f} (4.5)

for j ∈ {1,2, . . . ,k}.

Proof. We use mathematical induction. When k = 1, it follows from Proposition 2.2 that f can be expanded in an absolutely
and uniformly convergent power series in a neighborhood of (0,0). Therefore, there exists a sequence {λm,n} independent of
x1 and y1 for which

f (x1,y1) =
∞

∑
m,n=0

λm,nxm
1 yn

1 =
∞

∑
m=0

xm
1

∞

∑
n=0

λm,nyn
1. (4.6)

Substituting the above equation into following q-partial differential equation

Dq,x1(1−α1ηx1){ f (x1,y1)}=−qDq,y1(η
−1
y1
−qα1β1η

2
x1
){ f (x1,y1)} . (4.7)

The left-hand side of (4.7) can be written as

∞

∑
m=1

(1−α1qm)(1−qm)xm−1
1

∞

∑
n=0

λm,nyn
1 =

∞

∑
m=0

(1−α1qm+1)(1−qm+1)xm
1

∞

∑
n=0

λm+1,nyn
1,
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and right-hand side of (4.7) can be expressed as

Dq,y1

{
∞

∑
m=0

∞

∑
n=0

(−q)(q−n−α1β1q2m+1)λm,nxm
1 yn

1

}
=

∞

∑
m=0

∞

∑
n=0

(−q)(1−qn)(q−n−α1β1q2m+1)λm,nxm
1 yn−1

1 .

Therefore, we obtain
∞

∑
m=0

(1−α1qm+1)(1−qm+1)xm
1

∞

∑
n=0

λm+1,nyn
1 =

∞

∑
m=0

∞

∑
n=0

(−q)(1−qn)(q−n−α1β1q2m+1)λm,nxm
1 yn−1

1 . (4.8)

Equating the coefficients of xm
1 in (4.8), we can easily see that

(1−qm)(1−α1qm)
∞

∑
n=0

λm,nyn
1 =−q

∞

∑
n=0

(1−qn+1)(q−(n+1)−α1β1q2(m−1)+1)λm−1,n+1yn
1.

From the recurrence relation of the above equation, we can derive

(1−qm−1)(1−α1qm−1)
∞

∑
n=0

λm−1,nyn
1 = −q

∞

∑
n=0

(1−qn+1)(q−(n+1)−α1β1q2(m−2)+1)λm−2,n+1yn
1, (4.9)

(1−qm−2)(1−α1qm−2)
∞

∑
n=0

λm−2,nyn
1 = −q

∞

∑
n=0

(1−qn+1)(q−(n+1)−α1β1q2(m−3)+1)λm−3,n+1yn
1, (4.10)

...

(1−q2)(1−α1q2)
∞

∑
n=0

λ2,nyn
1 = −q

∞

∑
n=0

(1−qn+1)(q−(n+1)−α1β1q2·1+1)λ1,n+1yn
1, (4.11)

(1−q)(1−α1q)
∞

∑
n=0

λ1,nyn
1 = −q

∞

∑
n=0

(1−qn+1)(q−(n+1)−α1β1q2·0+1)λ0,n+1yn
1. (4.12)

By equating the coefficients of yn
1 on both sides of (4.9)-(4.12), we easily deduce that

λm,n =
−q(1−qn+1)(q−(n+1)−α1β1q2(m−1)+1)

(1−qm)(1−α1qm)
λm−1,n+1,

λm−1,n =
−q(1−qn+1)(q−(n+1)−α1β1q2(m−2)+1)

(1−qm−1)(1−α1qm−1)
λm−2,n+1,

...

λ2,n =
−q(1−qn+1)(q−(n+1)−α1β1q2·1+1)

(1−q2)(1−α1q2)
λ1,n+1,

λ1,n =
−q(1−qn+1)(q−(n+1)−α1β1q2·0+1)

(1−q)(1−α1q)
λ0,n+1.

By iterating the above equations m−1 times, we can deduce that

λm,n =
−q(1−qn+1)(q−(n+1)−α1β1q2(m−1)+1)

(1−qm)(1−α1qm)
× −q(1−qn+2)(q−(n+2)−α1β1q2(m−2)+1)

(1−qm−1)(1−α1qm−1)
· · ·

×−q(1−qn+m−1)(q−(n+m−1)−α1β1q2·1+1)

(1−q2)(1−α1q2)
× −q(1−qn+m)(q−(n+m)−α1β1q2·0+1)

(1−q)(1−α1q)
λ0,n+m

=
(−q)m(qn+1;q)m

(q;q)m(α1q;q)m
(q−(n+1)−α1β1q2(m−1)+1) · · ·(q−(n+m)−α1β1q2·0+1)λ0,n+m

= qm(1−2n−m)/2 λ0,n+m(−1)m(q;q)m+n

(q;q)m(q;q)n(α1q;q)m
(1−α1β1qm+n+1) · · ·(1−α1β1q2m+n)

= λ0,n+m(−1)mqm(1−2n−m)/2
[

n+m
m

]

q

(α1β1qm+n+1;q)m

(α1q;q)m
.

Therefore,
∞

∑
n=0

λm,nyn
1 =

∞

∑
n=0

(−1)m
λ0,n+mqm(1−2n−m)/2

[
n+m

m

]

q

(α1β1qm+n+1;q)m

(α1q;q)m
yn

1

=
∞

∑
n=m

(−1)m
λ0,nqm(1−2n+m)/2

[
n
m

]

q

(α1β1qn+1;q)m

(α1q;q)m
yn−m

1 .
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Noting that the series in (4.6) is an absolutely and uniformly convergent series, substituting the above equation into (4.6) and
interchanging the order of the summation, we obtain

f (x1,y1) =
∞

∑
m=0

xm
1

∞

∑
n=m

λ0,n(−1)mqm(1−2n+m)/2
[

n
m

]

q

(α1β1qn+1;q)m

(α1q;q)m
yn−m

1

=
∞

∑
n=0

λ0,n

n

∑
m=0

(−1)mqm(1−2n+m)/2
[

n
m

]

q

(α1β1qn+1;q)m

(α1q;q)m
xm

1 yn−m
1

=
∞

∑
n=0

λ0,n p(α1,β1)
n (x1,y1|q).

The above calculation shows that the sufficiency of Theorem 4.2 is correct. Conversely, if f (x1,y1) can be expanded in terms
of p(α1,β1)

n (x1,y1|q), then using Proposition 4.1, we find that f (x1,y1) satisfies (4.7). So we can prove the case of k = 1.
Next, we assume that Theorem 4.2 is true for the case k− 1. Since f is analytic at (0,0). Thus, there exists a sequence
{cn1(x2,y2, . . . ,xk,yk)} independent of x1 and y1 such that

f (x1,y1, . . . ,xk,yk) =
∞

∑
n1=0

cn1(x2,y2, . . . ,xk,yk)p(α1,β1)
n1 (x1,y1|q). (4.13)

Putting x1 = 0 in (4.13) and using p(α1,β1)
n1 (0,y1|q) = yn1

1 , we obtain

f (0,y1,x2,y2, . . . ,xk,yk) =
∞

∑
n1=0

cn1(x2,y2, . . . ,xk,yk)y
n1
1 .

Using the Maclaurin expansion theorem, we have

cn1(x2,y2, . . . ,xk,yk) =
∂ n1 f (0,y1,x2,y2, . . . ,xk,yk)

n1!∂y1n1

∣∣∣
y1=0

.

Since f (x1,y1, . . . ,xk,yk) is analytic near (x1,y1, . . . ,xk,yk) = (0, . . . ,0) ∈ C2k, it follows from the above equation that
cn1(x2,y2, . . . ,xk,yk) is analytic near (x2,y2, . . . ,xk,yk) = (0, . . . ,0) ∈ C2k−2. Substituting (4.13) into (4.5), we find that
for j = 2, . . . ,k,

∞

∑
n1=0

Dq,x j(1−αηx j){cn1(x2,y2, . . . ,xk,yk)} p(α1,β1)
n1 (x1,y1|q)

=
∞

∑
n1=0

(−q)Dq,y j(η
−1
y j
−qαβη

2
x j
){cn1(x2,y2, . . . ,xk,yk)} p(α1,β1)

n1 (x1,y1|q).

By equating the coefficients of p(α1,β1)
n1 (x1,y1|q) in the above equation, we obtain

Dq,x j(1−αηx j){cn1(x2,y2, . . . ,xk,yk)}=−qDq,y j(η
−1
y j
−qαβη

2
x j
){cn1(x2,y2, . . . ,xk,yk)} .

Therefore, by the inductive hypothesis, there exists a sequence {λn1,n2,...,nk} independent of x2, y2, . . ., xk, yk such that

cn1(x2,y2, . . . ,xk,yk) =
∞

∑
n2,...,nk=0

λn1,n2,...,nk p(α2,β2)
n2 (x2,y2|q) · · · p(αk,βk)

nk (xk,yk|q).

Substituting this equation into (4.13), we proved the sufficiency of the theorem. Conversely, if f can be expanded in terms of
p(α1,β1)

n1 (x1,y1|q) · · · p(αk,βk)
nk (xk,yk|q), it follows from (4.4) that f satisfies (4.5). This completes the proof of Theorem 4.2.

Remark 4.3. Theorem 4.2 implies that all solutions to q-partial differential equation (4.5) can be represented as linear
combinations of homogeneous little q-Jacobi polynomials. See Section 5 for the application of this theorem.

At the end of this section, we will present the generating function of homogeneous little q-Jacobi polynomials.

Proposition 4.4. Generating function for homogeneous little q-Jacobi polynomials:

∞

∑
n=0

qn(n−1)/2tn

(q,βq;q)n
p(α,β )

n (a,b|q) = 0φ1

(
−
αq

; q,−αqat

)
2φ1

(
b/a,−

βq
; q,−at

)
.
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Proof. It follows from [49] that

∞

∑
n=0

(−1)nqn(n−1)/2tn

(q,βq;q)n
P
(α,β )
n (a|q) = 0φ1

(
−
αq

; q,αqat

)
2φ1

(
1/a,−

βq
; q,at

)
.

If a is replaced by a/b in the above equation, we have

∞

∑
n=0

(−1)nqn(n−1)/2tn

(q,βq;q)n
P
(α,β )
n (a/b|q) = 0φ1

(
−
αq

; q,αqat/b

)
2φ1

(
b/a,−

βq
; q,at/b

)
.

Letting further t→−tb in the above equation gives

∞

∑
n=0

qn(n−1)/2tn

(q,βq;q)n
bnP

(α,β )
n (a/b|q) = 0φ1

(
−
αq

; q,−αqat

)
2φ1

(
b/a,−

βq
; q,−at

)
.

Finally, we can deduce the conclusion by combining the above equation with (4.3).

By using Proposition 4.1, we can determine that the right-hand side of the equation in Proposition 4.4 satisfies the q-partial
differential equation (4.4). Hence, we have the following Corollary 4.5, which will be applied in Section 5.

Corollary 4.5. We have

Dq,a(1−αηa)

{
0φ1

(
−
αq

; q,−αqat

)
2φ1

(
b/a,−

βq
; q,−at

)}

= −qDq,b(η
−1
b −qαβη

2
a )

{
0φ1

(
−
αq

; q,−αqat

)
2φ1

(
b/a,−

βq
; q,−at

)}
.

5. Applications of Theorems 2.3 and 4.2

The Rogers-Szegő polynomials are famous q-polynomials which play an essential role in the theory of orthogonal polynomials.
Liu [28] studied the homogeneous Rogers-Szegő polynomials from the perspective of q-partial differential equations, which
are defined as

hn(x,y|q) =
n

∑
k=0

[
n
k

]

q
xkyn−k. (5.1)

Further, the homogeneous Hahn polynomials

Ψ
(a)
n (x,y|q) =

n

∑
k=0

[
n
k

]

q
(a;q)kxkyn−k (5.2)

are a generalization of homogeneous Rogers-Szegő polynomials. They were first studied by Hahn [48], and then by Al-Salam
and Carlitz [1]. So they are also called Al-Salam-Carlitz polynomials. The following generating functions will be frequently
used (cf. [1, 29])

∞

∑
n=0

Ψ
(a)
n (x,y|q)
(q;q)n

tn =
(axt;q)∞

(xt,yt;q)∞

, max{|xt|, |yt|}< 1. (5.3)

When a = 0, (5.3) degenerates into the generating function of homogeneous Rogers-Szegő polynomials

∞

∑
n=0

hn(x,y|q)
(q;q)n

tn =
1

(xt,yt;q)∞

, max{|xt|, |yt|}< 1. (5.4)

We present two famous Ramanujan q-beta integrals [58, 59].

Proposition 5.1. For m ∈ R, 0 < q = e−2k2
< 1, supposing that |yzq|< 1, we have

∫ +∞

−∞

e−θ2+2mθ

(yq1/2e2kiθ ;q)∞(zq1/2e−2ikθ ;q)∞

dθ =
√

πem2 (−yqe2mki;q)∞(−zqe−2mki;q)∞

(yzq;q)∞
. (5.5)

Supposing that max{|yq1/2e2mk|, |zq1/2e−2mk|}< 1, we have

∫ +∞

−∞
e−θ 2+2mθ (−yqe2kθ ;q)∞(zqe−2kθ ;q)∞dθ =

√
πem2 (yzq;q)∞

(yq1/2e2mk;q)∞(zq1/2e−2mk;q)∞

. (5.6)
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The following Theorem 5.2 is a generalization of the Proposition 5.1.

Theorem 5.2. For m ∈ R and α >−1, 0 < q = e−2k2
< 1, supposing that |yzq|< 1, we have

∫ +∞

−∞

e−θ 2+2mθ

(zq1/2e−2ikθ ;q)∞

∞

∑
n=0

L(α)
n (x,y|q)hn(−qe2mki,q1/2e2kiθ |q)

(q;q)n
dθ

=
√

πem2 (−zqe−2mki;q)∞

(yzq;q)∞

0φ1

(
−

qα+1; q,−qα+2xz

)
. (5.7)

Supposing that max{|yq1/2e2mk|, |zq1/2e−2mk|}< 1, we have

∫ +∞

−∞

e−θ 2+2mθ (zqe−2kθ ;q)∞

∞

∑
n=0

(−1)nq(
n
2)

L(α)
n (x,y|q)gn(−qe2kθ ,q1/2e2mk|q)

(q;q)n
dθ

=
√

πem2 (yzq;q)∞

(zq1/2e−2mk;q)∞

0φ2

[
−

qα+1,zqy
; q,−qα+2zx

]
, (5.8)

where gn(x,y|q) represent the homogeneous Stieltjes-Wigert polynomials:

gn(x,y|q) = hn(x,y|q−1) =
n

∑
k=0

[
n
k

]

q
qk(k−n)xkyn−k.

Proof. (1) We use f (x,y) to represent the right-hand side of (5.7). Obviously, f (x,y) is analytic near (0,0) ∈ C2. It is evident
from (3.5) that f (x,y) satisfies

Dq,x(1−qα
ηx){ f (x,y)}=−qα+1

η
2
x Dq,y { f (x,y)} .

According to Theorem 2.3, there exists a sequence {λn} independent of x and y such that

√
πem2 (−zqe−2mki;q)∞

(yzq;q)∞

0φ1

(
−

qα+1; q,−qα+2xz

)
=

∞

∑
n=0

λnL(α)
n (x,y|q). (5.9)

By letting x = 0 in the above equation and using L(α)
n (0,y|q) = yn, we can derive that

√
πem2 (−zqe−2mki;q)∞

(yzq;q)∞

=
∞

∑
n=0

λnyn. (5.10)

Next, by using equations (5.4) and (5.5),

√
πem2 (−zqe−2mki;q)∞

(yzq;q)∞

=
1

(−yqe2mki;q)∞

∫ +∞

−∞

e−θ 2+2mθ

(yq1/2e2ikθ ,zq1/2e−2ikθ ;q)∞

dθ

=
∞

∑
n=0

∫ +∞

−∞

e−θ 2+2mθ

(zq1/2e−2ikθ ;q)∞

hn(−qe2mki,q1/2e2kiθ |q)
(q;q)n

dθyn. (5.11)

Then comparing the yn coefficients of (5.10) and (5.11), we can obtain

λn =
∫ +∞

−∞

e−θ 2+2mθ

(zq1/2e−2ikθ ;q)∞

hn(−qe2mki,q1/2e2kiθ |q)
(q;q)n

dθ .

Finally, substitute the above equation into (5.9) to complete the proof.
(2) Similarly, we use f (x,y) to represent the right-hand side of (5.8). Obviously, f (x,y) is analytic near (0,0) ∈ C2. It is
evident from (3.1) that f (x,y) satisfies

Dq,x(1−qα
ηx){ f (x,y)}=−qα+1

η
2
x Dq,y { f (x,y)} .

According to Theorem 2.3, there exists a sequence {λn} independent of x and y such that

√
πem2

(yzq;q)∞

(zq1/2e−2mk;q)∞

0φ2

[
−

qα+1,zqy
; q,−qα+2zx

]
=

∞

∑
n=0

λnL(α)
n (x,y|q). (5.12)
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By letting x = 0 in the above equation and using L(α)
n (0,y|q) = yn, we can derive that

√
πem2 (yzq;q)∞

(zq1/2e−2mk;q)∞

=
∞

∑
n=0

λnyn. (5.13)

Next, by using equations (5.6) and [28, Theorem 3.1]:

(sy, ty;q)∞ =
∞

∑
n=0

(−1)nq(
n
2)gn(s, t|q)

yn

(q;q)n
.

So the left-side of (5.13) can be rewritten as

√
πem2 (yzq;q)∞

(zq1/2e−2mk;q)∞

= (yq1/2e2mk;q)∞

∫ +∞

−∞

e−θ 2+2mθ (−yqe2kθ ;q)∞(zqe−2kθ ;q)∞dθ

=
∫ +∞

−∞

e−θ 2+2mθ (zqe−2kθ ;q)∞(yq1/2e2mk;q)∞(−yqe2kθ ;q)∞dθ

=
∫ +∞

−∞

e−θ 2+2mθ (zqe−2kθ ;q)∞

∞

∑
n=0

(−1)nq(
n
2)

gn(q1/2e2mk,−qe2kθ |q)yn

(q;q)n
dθ

=
∞

∑
n=0

∫ +∞

−∞

e−θ 2+2mθ (zqe−2kθ ;q)∞(−1)nq(
n
2)

gn(q1/2e2mk,−qe2kθ |q)
(q;q)n

dθyn.

Then comparing the yn coefficients of (5.13) and the above equation, we can obtain

λn =
∫ +∞

−∞

e−θ 2+2mθ (zqe−2kθ ;q)∞(−1)nq(
n
2)

gn(q1/2e2mk,−qe2kθ |q)
(q;q)n

dθ .

Finally, substitute the above equation into (5.12) to complete the proof.

Remark 5.3. When x = 0, (5.7) and (5.8) degenerate to (5.5) and (5.6), respectively. In the later Theorem 6.4, we will provide
an equivalent form of (5.7), and (5.8) is similar, which we leave for interested readers.

Now, we will present some applications of Theorems 2.3 and 4.2 in q-integral. The Jackson q-integral of the function f (x)
from a to b is defined as

∫ b

a
f (x)dqx = (1−q)

∞

∑
n=0

[b f (bqn)−a f (aqn)]qn. (5.14)

If f is continuous on (a,b), then it is easily seen that

lim
q→1−

∫ b

a
f (x)dqx =

∫ b

a
f (x)dx.

The famous Andrews-Askey integral formula [60, Theorem 1] can be stated in the following proposition.

Proposition 5.4. For max{|bu|, |bv|, |cu|, |cv|}< 1, we have

∫ v

u

(qx/u,qx/v;q)∞

(bx,cx;q)∞

dqx =
(1−q)v(q,u/v,qv/u,bcuv;q)∞

(bu,bv,cu,cv;q)∞

.

In [29, Theorem 4.4], Liu extended Proposition 5.4 and proved the following q-integral formula.

Proposition 5.5. If there are no zero factors in the denominator of the integral, we have

∫ v

u

(qx/u,qx/v,βax;q)∞

(ax,bx,cx,dx;q)∞

dqx =
(1−q)v(q,u/v,qv/u,cduv;q)∞

(cu,cv,du,dv;q)∞

∞

∑
n=0

Wn(c,d,u,v|q)Ψ(β )
n (a,b|q)

(q;q)n

with

Wn(a,b,u,v|q) =
n

∑
k=0

[
n
k

]

q

(av,bv;q)k

(abuv;q)k
ukvn−k. (5.15)

The main results of this section is the following Theorems 5.6 and 5.9.
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Theorem 5.6. For max{|cu|, |cv|, |du|, |dv|, |bzu|, |bzv|}< 1, we have

∫ v

u

(qx/u,qx/v;q)∞

(cx,dx;q)∞

T(β ,y;Dq,z)

{
1

(bzx;q)∞

0φ1

(
−

qα+1; q,−qα+1azx

)}
dqx

=
(1−q)v(q,u/v,qv/u,cduv;q)∞

(cu,cv,du,dv;q)∞

∞

∑
n=0

Wn(c,d,u,v|q)Ψ(β )
n (y,z|q)

(q;q)n
L(α)

n (a,b|q)

with

T(β ,y;Dq,z) =
∞

∑
k=0

(β ;q)k

(q;q)k
(yDq,z)

k,

it is called the Cauchy augmentation operator [61, (1.2)].

Proof. We use I(a,b) to represent the left-hand side of the equation in Theorem 5.3, then we have

I(a,b) = T(β ,y;Dq,z)

{∫ v

u

(qx/u,qx/v;q)∞

(cx,dx,bzx;q)∞

0φ1

(
−

qα+1; q,−qα+1azx

)
dqx

}
. (5.16)

It is evident that the function in braces in (5.16) is analytic near (0,0) ∈ C2 for max{|cu|, |cv|, |du|, |dv|, |bzu|, |bzv|} < 1,
therefore I(a,b) is also analytic. By using

T(β ,y;Dq,z){zn}=
∞

∑
k=0

(β ;q)k

(q;q)k
ykDk

q,z{zn}= Ψ
(β )
n (y,z|q)

and (3.5), then (5.16) can be rewritten as

I(a,b) =
∫ v

u

(qx/u,qx/v;q)∞

(cx,dx;q)∞

T(β ,y;Dq,z)

{
∞

∑
n=0

L(α)
n (a,b|q)
(q;q)n

(xz)n

}
dqx

=
∫ v

u

(qx/u,qx/v;q)∞

(cx,dx;q)∞

∞

∑
n=0

L(α)
n (a,b|q)Ψ(β )

n (y,z|q)
(q;q)n

xndqx. (5.17)

According to the definition of q-integral, it can be seen that (5.17) is a linear combination of L(α)
n (a,b|q), namely,

I(a,b) = (1−q)
∞

∑
m=0

[
vqm(vqm+1/u,qm+1;q)∞

(cvqm,dvqm;q)∞

∞

∑
n=0

L(α)
n (a,b|q)Ψ(β )

n (y,z|q)
(q;q)n

(vqm)n

−uqm(qm+1,uqm+1/v;q)∞

(cuqm,duqm;q)∞

∞

∑
n=0

L(α)
n (a,b|q)Ψ(β )

n (y,z|q)
(q;q)n

(uqm)n

]
.

Since Dq is a difference operator, it follows from the above equation and Proposition 2.1 that

Dq,a(1−qα
ηa){I(a,b)}=−qα+1

η
2
aDq,b {I(a,b)} .

Then by Theorem 2.3, there exists a sequence {λn} independent of a and b such that

∫ v

u

(qx/u,qx/v;q)∞

(cx,dx;q)∞

∞

∑
n=0

L(α)
n (a,b|q)Ψ(β )

n (y,z|q)
(q;q)n

xndqx =
∞

∑
n=0

λnL(α)
n (a,b|q). (5.18)

Putting a = 0 in the above equation, using L(α)
n (0,b|q) = bn and (5.3), we find that

I(0,b) =
∫ v

u

(qx/u,qx/v;q)∞

(cx,dx;q)∞

∞

∑
n=0

Ψ
(β )
n (y,z|q)
(q;q)n

(bx)ndqx =
∫ v

u

(qx/u,qx/v;q)∞

(cx,dx;q)∞

(βybx;q)∞

(ybx,zbx;q)∞

dqx =
∞

∑
n=0

λnbn. (5.19)

Substituting a→ yb and b→ zb in Proposition 5.5 yields the following result

∫ v

u

(qx/u,qx/v,βybx;q)∞

(ybx,zbx,cx,dx;q)∞

dqx =
(1−q)v(q,u/v,qv/u,cduv;q)∞

(cu,cv,du,dv;q)∞

∞

∑
n=0

Wn(c,d,u,v|q)Ψ(β )
n (y,z|q)

(q;q)n
bn.

By combining the above q-integral with (5.19) and equating the coefficients of bn, we can obtain

λn =
(1−q)v(q,u/v,qv/u,cduv;q)∞

(cu,cv,du,dv;q)∞

Wn(c,d,u,v|q)Ψ(β )
n (y,z|q)

(q;q)n
.

Substituting the above equation into (5.18), Theorem 5.6 follows.
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Remark 5.7. (1) When a = b = y = z = 0, Theorem 5.6 immediately reduces to the Proposition 5.4, so Theorem 5.6 is really
an extension of the Andrews-Askey integral.
(2) When a = 0 and b = 1, Theorem 5.6 becomes Proposition 5.5.
(3) When y = 0, z = 1 and combining (3.5), we obtain

∫ v

u

(qx/u,qx/v;q)∞

(bx,cx,dx;q)∞

0φ1

(
−

qα+1; q,−qα+1ax

)
dqx

=
(1−q)v(q,u/v,qv/u,cduv;q)∞

(cu,cv,du,dv;q)∞

∞

∑
n=0

Wn(c,d,u,v|q)
(q;q)n

L(α)
n (a,b|q). (5.20)

(4) Setting d = 0 in (5.20) and noticing that Wn(c,0,u,v|q) = Ψ
(cv)
n (u,v|q). We immediately obtain following corollary.

Corollary 5.8. For max{|cu|, |cv|, |bu|, |bv|}< 1, we have

∫ v

u

(qx/u,qx/v;q)∞

(bx,cx;q)∞

0φ1

(
−

qα+1; q,−qα+1ax

)
dqx =

(1−q)v(q,u/v,qv/u;q)∞

(cu,cv;q)∞

∞

∑
n=0

Ψ
(cv)
n (u,v|q)L(α)

n (a,b|q)
(q;q)n

.

Theorem 5.9. For max{|au|, |av|, |cu|, |cv|, |du|, |dv|, |αq|, |βq|}< 1, we have

∫ v

u

(qx/u,qx/v;q)∞

(cx,dx;q)∞

0φ1

(
−
αq

; q,−αqax

)
2φ1

(
b/a,−

βq
; q,−ax

)
dqx

=
(1−q)v(q,u/v,qv/u,dcuv;q)∞

(du,dv,cu,cv;q)∞

∞

∑
n=0

qn(n−1)/2Wn(d,c,u,v|q)
(q,βq;q)n

p(α,β )
n (a,b|q).

Proof. We use I(a,b) to represent the left-hand side of the equation in Theorem 5.9. Clearly, I(a,b) is analytic near (0,0)∈C2.
According to the definition of q-integral, we have

I(a,b) = (1−q)
∞

∑
n=0

[
vqn(vqn+1/u,qn+1;q)∞

(cvqn,dvqn;q)∞

0φ1

(
−
αq

; q,−αavqn+1

)
2φ1

(
b/a,−

βq
; q,−avqn

)

−uqn(uqn+1/v,qn+1;q)∞

(cuqn,duqn;q)∞

0φ1

(
−
αq

; q,−αauqn+1

)
2φ1

(
b/a,−

βq
; q,−auqn

)]
. (5.21)

By setting t = vqn in Corollary 4.5, we obtain

Dq,a(1−αηa)

{
0φ1

(
−
αq

; q,−αavqn+1

)
2φ1

(
b/a,−

βq
; q,−avqn

)}

= −qDq,b(η
−1
b −qαβη

2
a )

{
0φ1

(
−
αq

; q,−αavqn+1

)
2φ1

(
b/a,−

βq
; q,−avqn

)}
. (5.22)

Similarly,

Dq,a(1−αηa)

{
0φ1

(
−
αq

; q,−αauqn+1

)
2φ1

(
b/a,−

βq
; q,−auqn

)}

= −qDq,b(η
−1
b −qαβη

2
a )

{
0φ1

(
−
αq

; q,−αauqn+1

)
2φ1

(
b/a,−

βq
; q,−auqn

)}
. (5.23)

Since Dq is a difference operator, it follows from equations (5.21)-(5.23) that

Dq,a(1−αηa){I(a,b)}=−qDq,b(η
−1
b −qαβη

2
a ){I(a,b)} .

By Theorem 4.2, there exists a sequence {λn} independent of a and b such that

∫ v

u

(qx/u,qx/v;q)∞

(cx,dx;q)∞

0φ1

(
−
αq

; q,−αqax

)
2φ1

(
b/a,−

βq
; q,−ax

)
dqx =

∞

∑
n=0

λn p(α,β )
n (a,b|q). (5.24)

Letting a = 0 into (5.24) and using p(α,β )
n (0,b|q) = bn, we can find

I(0,b) =
∫ v

u

∞

∑
n=0

qn(n−1)/2(bx)n

(q,βq;q)n

(qx/u,qx/v;q)∞

(cx,dx;q)∞

dqx =
∞

∑
n=0

qn(n−1)/2bn

(q,βq;q)n

∫ v

u

xn(qx/u,qx/v;q)∞

(cx,dx;q)∞

dqx =
∞

∑
n=0

λnbn. (5.25)



Fundamental Journal of Mathematics and Applications 73

We note that interchange the order of summation and the q-integral in (5.25) is reasonable, since

∞

∑
n=0

qn(n−1)/2bn

(q,βq;q)n
and

∫ v

u

xn(qx/u,qx/v;q)∞

(cx,dx;q)∞

dqx

can easily infer that they are converges absolutely and uniformly by using the ratio test. Then by q-integral [17, (3.4)]:

∫ v

u

xn(qx/u,qx/v;q)∞

(dx,cx;q)∞

dqx =
(1−q)v(q,u/v,qv/u,dcuv;q)∞

(du,dv,cu,cv;q)∞

Wn(d,c,u,v|q).

Substituting the above equation into (5.25), we have

I(0,b) =
∞

∑
n=0

qn(n−1)/2bn

(q,βq;q)n

(1−q)v(q,u/v,qv/u,dcuv;q)∞

(du,dv,cu,cv;q)∞

Wn(d,c,u,v|q) =
∞

∑
n=0

λnbn.

Equating the coefficients of bn on both sides of the above equation, we obtain

λn =
(1−q)v(q,u/v,qv/u,dcuv;q)∞

(du,dv,cu,cv;q)∞

qn(n−1)/2Wn(d,c,u,v|q)
(q,βq;q)n

.

Finally, substituting the above equation into (5.24) and Theorem 5.9 follows.

Remark 5.10. (1) When a = b = 0, Theorem 5.9 immediately reduces to the Andrews-Askey integral.
(2) Setting d = 0 in Theorem 5.9, we immediately obtain the following corollary.

Corollary 5.11. For max{|cu|, |cv|, |αq|, |βq|}< 1, we have

∫ v

u

(qx/u,qx/v;q)∞

(cx;q)∞

0φ1

(
−
αq

; q,−αqax

)
2φ1

(
b/a,−

βq
; q,−ax

)
dqx

=
(1−q)v(q,u/v,qv/u;q)∞

(cu,cv;q)∞

∞

∑
n=0

qn(n−1)/2

(βq;q)n(q;q)n
Ψ

(cv)
n (u,v|q)p(α,β )

n (a,b|q).

6. Concluding remark

1. This article interprets homogeneous q-Laguerre polynomials and homogeneous little q-Jacobi polynomials mainly from the
perspective of q-partial differential equations, providing a new method for studying these two q-orthogonal polynomials. This
research method also belongs to Liu’s theory of q-partial differential equations.
2. We notice that homogeneous q-Laguerre polynomials and homogeneous Hahn polynomials appear in the Corollary 5.8. To
calculate their generating function, we introduce the general double basic hypergeometric series is defined as follows [6, p.
282]

Φ
A:B;C
D:E;F

[
aA : bB;cC

dD : eE ; fF
; q;x,y

]
=

∞

∑
m=0

∞

∑
n=0

(aA;q)m+n(bB;q)m(cC;q)n

(dD;q)m+n(q,eE ;q)m(q, fF ;q)n

×
[
(−1)m+nq(

m+n
2 )
]D−A [

(−1)mq(
m
2)
]1+E−B [

(−1)nq(
n
2)
]1+F−C

xmyn, (6.1)

where aA abbreviates the array of A parameters a1,a2, · · · ,aA, etc, and q 6= 0 when min{D−A,1+E−B,1+F−C}< 0. The
series (6.1) converges absolutely for |x|, |y|< 1 when min{D−A,1+E−B,1+F−C} ≥ 0 and |q|< 1. The series (6.1) is
called the q-Kampé de Fériet series when B =C and E = F .

Theorem 6.1. If max{|uyt|, |vyt|}< 1, then, we have

∞

∑
n=0

Ψ
(β )
n (u,v|q)L(α)

n (x,y|q)
(q;q)n

tn =
(βuyt;q)∞

(uyt,vyt;q)∞

Φ
0:2;1
2:1;0

[
− : β ,vyt;0

0,qα+1 : βuyt;−
; q;−xutqα+1,−xvtqα+1

]
.

Proof. Firstly, applying the q-partial derivative operator Dk
q,t to act both sides of the equation (5.3), and then using the formula

(1.2), we deduce that

∞

∑
n=0

Ψ
(β )
n+k(u,v|q)
(q;q)n

tn =
(βut;q)∞

(ut,vt;q)∞

k

∑
j=0

[
k
j

]

q

(β ,vt;q) j

(βut;q) j
u jvk− j. (6.2)
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Let LHS to denote the left-hand side of the equation in Theorem 6.1, we have

LHS =
∞

∑
n=0

Ψ
(β )
n (u,v|q)
(q;q)n

tn
n

∑
k=0

(−1)k
[

n
k

]

q

qk2+kα

(qα+1;q)k
xkyn−k

=
∞

∑
k=0

∞

∑
n=k

(−1)ktnqk2+kα Ψ
(β )
n (u,v|q)

(q;q)k(q;q)n−k(qα+1;q)k
xkyn−k

=
∞

∑
k=0

(−xt)kqk2+kα

(q,qα+1;q)k

∞

∑
n=0

Ψ
(β )
n+k(u,v|q)
(q;q)n

(yt)n.

Letting t→ yt in (6.2), then substituting it into the above equation yields

LHS =
∞

∑
k=0

(−xt)kqk2+kα

(q,qα+1;q)k

(βuyt;q)∞

(uyt,vyt;q)∞

k

∑
j=0

[
k
j

]

q

(β ,yvt;q) j

(βyut;q) j
u jvk− j

=
(βuyt;q)∞

(uyt,vyt;q)∞

∞

∑
j=0

∞

∑
k=0

q(k+ j)2+(k+ j)α(β ,yvt;q) j(−xtu) j(−xtv)k

(qα+1;q)k+ j(q;q) j(q;q)k(βuyt;q) j
,

which is equivalent to the right-hand side of the equation in Theorem 6.1.

Remark 6.2. (1) Letting t → 1, x→ a, y→ b and β → cv in Theorem 6.1, and then substituting that into the equation in
Corollary 5.8, we obtain

∫ v

u

(qx/u,qx/v;q)∞

(bx,cx;q)∞

0φ1

(
−

qα+1; q,−qα+1ax

)
dqx

=
(1−q)v(q,u/v,qv/u,bcuv;q)∞

(bu,bv,cu,cv;q)∞

Φ
0:2;1
2:1;0

[
− : cv,bv;0

0,qα+1 : bcuv;−
; q;−auqα+1,−avqα+1

]
.

(2) Letting β = 0 in Theorem 6.1, and we immediately obtain the following corollary.

Corollary 6.3. If max{|uyt|, |vyt|}< 1, then, we have

∞

∑
n=0

hn(u,v|q)L(α)
n (x,y|q)

(q;q)n
tn =

1
(uyt,vyt;q)∞

Φ
0:1;1
2:0;0

[
− : vyt;0

0,qα+1 :−;−
; q;−xutqα+1,−xvtqα+1

]
.

Applying Corollary 6.3 to (5.7), we immediately arrive at the following theorem. The proof will be omitted.

Theorem 6.4. For m ∈ R and α >−1, 0 < q = e−2k2
< 1 and |yzq|< 1, we have

∫ +∞

−∞

e−θ 2+2mθ

(yq1/2e2kiθ ;q)∞(zq1/2e−2ikθ ;q)∞

×Φ
0:1;1
2:0;0

[
− : yq1/2e2kiθ ;0

0,qα+1 :−;−
; q;xe2mkiqα+2,−xve2kiθ qα+3/2

]
dθ

=
√

πem2 (−yqe2mki;q)∞(−zqe−2mki;q)∞

(yzq;q)∞

0φ1

(
−

qα+1; q,−qα+2xz

)
.
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Abstract

The purpose of this study is to establish recent inequalities based on double integrals of mappings
whose higher-order partial derivatives in absolute value are convex on the co-ordinates on rectangle
from the plane. Also, some special cases of results improved in this study are examined.

1. Introduction

In the past century, Many scholars have been interested in Hermite-Hadamard inequalities Hermite-Hadamard inequalities
have attracted the interest of a good many researchers because of wide application fields in numerical analysis and in the theory
of some special means. A large number of researchers have worked on new results related to Hermite-Hadamard inequalities
for various function classes. One of them is co-ordinated convex functions, and we examine generalizations of these types
results for co-ordinated convex functions in this work.
We define a bidimensional interval ∆ =: [a1,a2]× [b1,b2] in R2 with a1 < a2 and b1 < b2. If the inequality

ϕ (tκ+(1− t)z, tτ +(1− t)w)≤ tϕ (κ,τ)+(1− t)ϕ (z,w)

holds, ϕ : ∆→ R is said to be convex on ∆, for all (κ,τ) ,(z,w) ∈ ∆ and t ∈ [0,1]. If the partial functions ϕτ : [a1,a2]→ R,
ϕτ (u) = ϕ (u,τ) and ϕκ : [b1,b2]→ R, ϕκ (v) = ϕ (κ,v) are convex for all κ ∈ [a1,a2] and τ ∈ [b1,b2] , then ϕ : ∆→ R is
said to be convex on the co-ordinates on ∆ (see, [1]).
In this case, the definition of co-ordinated convex function can be given as follows.

Definition 1.1. Let t,s ∈ [0,1] and (κ,u) ,(τ,v) ∈ ∆ =: [a1,a2]× [b1,b2]. If the inequality

ϕ(tκ+(1− t)τ,su+(1− s)v)≤ tsϕ(κ,u)+ s(1− t)ϕ(τ,u)+ t(1− s)ϕ(κ,v)+(1− t)(1− s)ϕ(τ,v)

holds, then ϕ : ∆→ R will be called co-ordinated convex on ∆.

It is clearly seen that every convex mapping is co-ordinated convex. Also, A coordinated convex function that is not convex
does exist (see, [1]).
Furthermore, in [1], Hermite-Hadamard type inequalities for co-ordinated convex mapping on a rectangle from the plane R2

were established by Dragomir.

≫≫≫ Received: 31-10-2023 ≫≫≫ Revised: 04-03-2024 ≫≫≫ Accepted: 04-04-2024 ≫≫≫ Online: 30-06-2024 ≫≫≫ Published: 30-06-2024
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Theorem 1.2. Let ϕ : ∆→ R be a co-ordinated convex mapping on ∆. Then we possess the inequalities:

ϕ

(
a1 +a2

2
,

b1 +b2

2

)
≤ 1

2

[
1

a2−a1

∫ a2

a1

ϕ

(
κ,

b1 +b2

2

)
dκ+

1
b2−b1

∫ b2

b1

ϕ

(
a1 +a2

2
,τ

)
dτ

]
(1.1)

≤ 1
(a2−a1)(b2−b1)

∫ a2

a1

∫ b2

b1

ϕ (κ,τ)dτdκ

≤ 1
4

[
1

a2−a1

∫ a2

a1

ϕ (κ,b1)dκ+
1

a2−a1

∫ a2

a1

ϕ (κ,b2)dκ

+
1

b2−b1

∫ b2

b1

ϕ (a1,τ)dτ +
1

b2−b1

∫ b2

b1

ϕ (a2,τ)dτ

]

≤ ϕ (a1,b1)+ϕ (a1,b2)+ϕ (a2,b1)+ϕ (a2,b2)

4
.

The above inequalities are sharp.

During the past several years, some mathematicians have worked on double integral inequalities for co-ordinated convex
functions. For illustrate, Hadamard’s type inequalities including Riemann-Liouville fractional integrals for convex and s-convex
functions on the co-ordinates by some authors in [2] and [3]. Latif and Dragomir provided recent double integral inequalities
based on the left side of Hermite- Hadamard type inequality by using co-ordinated convex functions in two variables in [4].
Novel weighted integral inequalities for functions whose partial derivatives in absolute value are convex on the co- ordinates on
a rectangle from the plane are attained by Erden and Sarıkaya in [5] and [6]. some researchers derived Hermite-Hadamard type
results based on the deference between the middle and the rightmost terms in (1.1) by using the derivatives of co-ordinated
convex functions in [7]. Also, some mathematicians found out recent inequalities for co-ordinated convex functions in [8],
[9], [10], and [11]. In [12], [13], and [14], some Hermite-Hadamard type results for different classes of co-ordinated convex
mappings are developed.

On the other side, a large number of researchers have focused on inequalities involving higher-order differentiable functions.
To illustrate, some integral inequalities for n-times differentiable functions are established in [15], [16] and [17]. In addition,
Erden et al. gave weighted inequalities for n−times differentiable functions in [18]. Some mathematicians also focused on
double integral inequalities including higher-order partial derivatives for two-dimensional functions in [19], [20] and [21].

In this work, we first establish a novel double integral equality based on higher-order partial derivatives. After that, recent
inequalities for convex functions on the co-ordinates on the rectangle from the plane are provided. What is more, we observe
relations between results in this work and inequalities presented in the earlier studies.

2. Integral identity

Before we can prove our primary findings, we establish the following equality involving mappings whose partial derivatives
are continuous.

Lemma 2.1. Assuming that ϕ : [a1,a2]× [b1,b2] =: ∆ ⊂ R2→ R is a continuous function such that the partial derivatives
∂ k+lϕ(t,s)

∂ tk∂ sl , k = 0,1,2, ...,n− 1, l = 0,1,2, ...,m− 1 exists and are continuous on ∆, and suppose that the functions g :

[a1,a2]→ [0,∞) and h : [b1,b2]→ [0,∞) are integrable. Additionally, Pn−1 (κ, t) and Qm−1 (τ,s) are defined by

Pn−1 (κ, t) :=





1
(n−1)!

t∫
a1

(u− t)n−1 g(u)du, a1 ≤ t < κ

1
(n−1)!

t∫
a2

(u− t)n−1 g(u)du, κ ≤ t ≤ a2

and

Qm−1 (τ,s) :=





1
(m−1)!

s∫
b1

(u− s)m−1 h(u)dv, b1 ≤ s < τ

1
(m−1)!

s∫
b2

(u− s)m−1 h(u)dv, τ ≤ s≤ b2
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where n,m ∈ N\{0} . Then, for all (κ,τ) ∈ [a1,a2]× [b1,b2], we have the identity

a2∫

a1

b2∫

b1

Pn−1 (κ, t)Qm−1 (τ,s)
∂ n+mϕ(t,s)

∂ tn∂ sm dsdt =
n−1

∑
k=0

m−1

∑
l=0

Mk(κ)
k!

Ml(τ)

l!
∂ k+lϕ(κ,τ)

∂κk∂τ l −
m−1

∑
l=0

Ml(τ)

l!

a2∫

a1

g(t)
∂ lϕ(t,τ)

∂τ l dt

−
n−1

∑
k=0

Mk(κ)
k!

b2∫

b1

h(s)
∂ kϕ(κ,s)

∂κk ds+

a2∫

a1

b2∫

b1

h(s)g(t)ϕ(t,s)dsdt (2.1)

where Mk(κ) and Ml(τ) are defined by

Mk(κ) =
a2∫
a1

(u−κ)k g(u)du, k = 0,1,2, ...

Ml(τ) =
b2∫
b1

(u− τ)l h(u)du, l = 0,1,2, ...

Proof. Applying integration by parts for partial derivatives given in the lemma, via fundamental analysis operations, the
desired identity (2.1) can be obtained.

3. Some inequalities for co-ordinated convex mappings

For convenience, we give the following notations used to simplify the details of some results given in this section;

An(κ) = (a2−a1)
(κ−a1)

n+1

n+1
+

(a2−κ)n+2− (κ−a1)
n+2

n+2
,

Bn(κ) = (a2−a1)
(a2−κ)n+1

n+1
+

(κ−a1)
n+2− (a2−κ)n+2

n+2
,

Cm(τ) = (b2−b1)
(τ−b1)

m+1

m+1
+

(b2− τ)m+2− (τ−b1)
m+2

m+2

and

Dm(τ) = (b2−b1)
(b2− y)m+1

m+1
+

(τ−b1)
m+2− (b2− τ)m+2

m+2
.

We start with the following result.

Theorem 3.1. Suppose that all the assumptions of Lemma 2.1 hold. If
∣∣∣∣

∂ n+mϕ

∂ tn∂ sm

∣∣∣∣ is a convex function on the co-ordinates on ∆,

then the following inequality holds:
∣∣∣∣∣∣

n−1

∑
k=0

m−1

∑
l=0

Mk(κ)
k!

Ml(τ)

l!
∂ k+lϕ(κ,τ)

∂κk∂τ l −
m−1

∑
l=0

Ml(τ)

l!

a2∫

a1

g(t)
∂ lϕ(t,τ)

∂τ l dt (3.1)

−
n−1

∑
k=0

Mk(κ)
k!

b2∫

b1

h(s)
∂ kϕ(κ,s)

∂κk ds+

a2∫

a1

b2∫

b1

h(s)g(t)ϕ(t,s)dsdt

∣∣∣∣∣∣

≤
‖g‖[a1,a2],∞

(a2−a1)n!

‖h‖[b1,b2]∞

(b2−b1)m!

{∣∣∣∣
∂ n+mϕ(a1,b1)

∂ tn∂ sm

∣∣∣∣An(κ)Cm(τ) +

∣∣∣∣
∂ n+mϕ(a1,b2)

∂ tn∂ sm

∣∣∣∣An(κ)Dm(τ)

+

∣∣∣∣
∂ n+mϕ(a2,b1)

∂ tn∂ sm

∣∣∣∣Bn(κ)Cm(τ) +

∣∣∣∣
∂ n+mϕ(a2,b2)

∂ tn∂ sm

∣∣∣∣Bn(κ)Dm(τ)

}

for all (κ,τ) ∈ [a1,a2]× [b1,b2], where ‖g‖[a1,a2],∞
= sup

u∈[a1,a2]

|g(u)| and ‖h‖[b1,b2],∞
= sup

u∈[b1,b2]

|h(u)| .
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Proof. If we take absolute value of both sides of the equality (2.1), we find that

∣∣∣∣∣∣

n−1

∑
k=0

m−1

∑
l=0

Mk(κ)
k!

Ml(τ)

l!
∂ k+lϕ(κ,τ)

∂κk∂τ l −
m−1

∑
l=0

Ml(τ)

l!

a2∫

a1

g(t)
∂ lϕ(t,τ)

∂τ l dt

−
n−1

∑
k=0

Mk(κ)
k!

b2∫

b1

h(s)
∂ kϕ(κ,s)

∂κk ds+

a2∫

a1

b2∫

b1

h(s)g(t)ϕ(t,s)dsdt

∣∣∣∣∣∣
≤

a2∫

a1

b2∫

b1

|Pn−1 (κ, t)| |Qm−1 (τ,s)|
∣∣∣∣
∂ n+mϕ(t,s)

∂ tn∂ sm

∣∣∣∣dsdt.

Since
∣∣∣ ∂ n+mϕ(t,s)

∂ tn∂ sm

∣∣∣ is a convex function on the co-ordinates on ∆, we have

∣∣∣∣
∂ n+m

∂ tn∂ sm ϕ

(
a2− t

a2−a1
a1 +

t−a1

a2−a1
a2,

b2− s
b2−b1

b1 +
s−b1

b2−b1
b2

)∣∣∣∣ ≤
a2− t

a2−a1

b2− s
b2−b1

∣∣∣∣
∂ n+mϕ(a1,b1)

∂ tn∂ sm

∣∣∣∣ (3.2)

+
a2− t

a2−a1

s−b1

b2−b1

∣∣∣∣
∂ n+mϕ(a1,b2)

∂ tn∂ sm

∣∣∣∣

+
t−a1

a2−a1

b2− s
b2−b1

∣∣∣∣
∂ n+mϕ(a2,b1)

∂ tn∂ sm

∣∣∣∣

+
t−a1

a2−a1

s−b1

b2−b1

∣∣∣∣
∂ n+mϕ(a2,b2)

∂ tn∂ sm

∣∣∣∣ .

Utilizing the inequality (3.2), we can write

a2∫

a1

b2∫

b1

|Pn−1 (κ, t)| |Qm−1 (τ,s)|
∣∣∣∣
∂ n+mϕ(t,s)

∂ tn∂ sm

∣∣∣∣dsdt ≤ 1
(a2−a1)(b2−b1)

×





∣∣∣∣
∂ n+mϕ(a1,b1)

∂ tn∂ sm

∣∣∣∣
a2∫

a1

b2∫

b1

(a2− t) |Pn−1 (κ, t)|(b2− s) |Qm−1 (τ,s)|dsdt

+

∣∣∣∣
∂ n+mϕ(a1,b2)

∂ tn∂ sm

∣∣∣∣
a2∫

a1

b2∫

b1

(a2− t) |Pn−1 (κ, t)|(s−b1) |Qm−1 (τ,s)|dsdt

+

∣∣∣∣
∂ n+mϕ(a2,b1)

∂ tn∂ sm

∣∣∣∣
a2∫

a1

b2∫

b1

(t−a1) |Pn−1 (κ, t)|(b2− s) |Qm−1 (τ,s)|dsdt

+

∣∣∣∣
∂ n+mϕ(a2,b2)

∂ tn∂ sm

∣∣∣∣
a2∫

a1

b2∫

b1

(t−a1) |Pn−1 (κ, t)|(s−b1) |Qm−1 (τ,s)|dsdt



 .

If we calculate the above four double inetgrals and also substitute the results in (3.3), because of ‖g‖[a1,κ],∞ , ‖g‖[κ,a2],∞
≤

‖g‖[a1,a2],∞
and ‖h‖[b1,τ]∞

, ‖h‖[τ,b2]∞
≤ ‖h‖[b1,b2]∞

, we obtain required inequality (3.1) which completes the proof.

Remark 3.2. Under the same assumptions of Theorem 3.1 with n = m = 1, then the following inequality holds:

∣∣∣∣∣∣
M0(κ)M0(τ)ϕ(κ,τ)−M0(τ)

a2∫

a1

g(t)ϕ(t,τ)dt−M0(κ)
b2∫

b1

h(s)ϕ(κ,s)ds+

a2∫

a1

b2∫

b1

g(t)h(s)ϕ(t,s)dsdt

∣∣∣∣∣∣
(3.3)

≤
‖g‖[a1,a2],∞

(a2−a1)

‖h‖[b1,b2]∞

(b2−b1)
×
{∣∣∣∣

∂ 2ϕ(a1,b1)

∂ t∂ s

∣∣∣∣A1(κ)C1(τ) +

∣∣∣∣
∂ 2ϕ(a1,b2)

∂ t∂ s

∣∣∣∣A1(κ)D1(τ)

+

∣∣∣∣
∂ 2ϕ(a2,b1)

∂ t∂ s

∣∣∣∣B1(κ)C1(τ)+

∣∣∣∣
∂ 2ϕ(a2,b2)

∂ t∂ s

∣∣∣∣B1(κ)D1(τ)

}

which was given by Erden and Sarikaya in [22] (in case of λ = 0).
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Remark 3.3. If we take g(u) = h(u) = 1 in (3.3), then we get
∣∣∣∣∣∣
(a2−a1)(b2−b1)ϕ(κ,τ)− (b2−b1)

a2∫

a1

ϕ(t,τ)dt −(a2−a1)

b2∫

b1

ϕ(κ,s)ds+

a2∫

a1

b2∫

b1

ϕ(t,s)dsdt

∣∣∣∣∣∣
(3.4)

≤ 1
(a2−a1)(b2−b1)

{∣∣∣∣
∂ 2ϕ(a1,b1)

∂ t∂ s

∣∣∣∣A1(κ)C1(τ)+

∣∣∣∣
∂ 2ϕ(a1,b2)

∂ t∂ s

∣∣∣∣A1(κ)D1(τ)

+

∣∣∣∣
∂ 2ϕ(a2,b1)

∂ t∂ s

∣∣∣∣B1(κ)C1(τ)+

∣∣∣∣
∂ 2ϕ(a2,b2)

∂ t∂ s

∣∣∣∣B1(κ)D1(τ)

}

which was given by Erden and Sarıkaya in [6].

Remark 3.4. Taking κ =
a1 +a2

2
and τ =

b1 +b2

2
in (3.4), it is found that

∣∣∣∣∣∣
(a2−a1)(b2−b1)ϕ

(
a1 +a2

2
,

b1 +b2

2

)
− (b2−b1)

a2∫

a1

ϕ

(
t,

b1 +b2

2

)
dt

− (a2−a1)

b2∫

b1

ϕ

(
a1 +a2

2
,s
)

ds+

a2∫

a1

b2∫

b1

ϕ(t,s)dsdt

∣∣∣∣∣∣

≤ (a2−a1)
2 (b2−b1)

2

16





∣∣∣ ∂ 2ϕ(a1,b1)
∂ t∂ s

∣∣∣+
∣∣∣ ∂ 2ϕ(a1,b2)

∂ t∂ s

∣∣∣+
∣∣∣ ∂ 2ϕ(a2,b1)

∂ t∂ s

∣∣∣+
∣∣∣ ∂ 2ϕ(a2,b2)

∂ t∂ s

∣∣∣
4





which was given by Latif and Dragomir in [4].

Corollary 3.5. Under the same assumptions of Theorem 3.1 with g(u) = h(u) = 1, then we have the inequality

(3.5)∣∣∣∣∣∣

n−1

∑
k=0

m−1

∑
l=0

Xk(κ)
k!

Yl(τ)

l!
∂ k+lϕ(κ,τ)

∂κk∂τ l −
m−1

∑
l=0

Yl(τ)

l!

a2∫

a1

∂ lϕ(t,τ)
∂τ l dt −

n−1

∑
k=0

Xk(κ)
k!

b2∫

b1

∂ kϕ(κ,s)
∂κk ds+

a2∫

a1

b2∫

b1

ϕ(t,s)dsdt

∣∣∣∣∣∣

≤ 1
n!(a2−a1)

1
m!(b2−b1)

{∣∣∣∣
∂ n+mϕ(a1,b1)

∂ tn∂ sm

∣∣∣∣An(κ)Cm(τ) +

∣∣∣∣
∂ n+mϕ(a1,b2)

∂ tn∂ sm

∣∣∣∣An(κ)Dm(τ)+

∣∣∣∣
∂ n+mϕ(a2,b1)

∂ tn∂ sm

∣∣∣∣Bn(κ)Cm(τ)

+

∣∣∣∣
∂ n+mϕ(a2,b2)

∂ tn∂ sm

∣∣∣∣Bn(κ)Dm(τ)

}

where Xk(κ) and Yl(τ) are defined by

Xk(x) =
(a2−κ)k+1 +(−1)k (κ−a1)

k+1

(k+1)
(3.6)

and

Yl(y) =
(b2− τ)l+1 +(−1)l (τ−b1)

l+1

(l +1)
, (3.7)

respectively. This result is a Ostrowski type inequality for mappings whose absolute value of heigher degree partial derivatives
are co-ordinated convex.

Corollary 3.6. Under the same assumptions of Theorem 3.1 with κ = a1+a2
2 and τ = b1+b2

2 , then we have the inequality
∣∣∣∣∣∣

n−1

∑
k=0

m−1

∑
l=0

Mk
( a1+a2

2

)

k!

Ml

(
b1+b2

2

)

l!

∂ k+lϕ

(
a1+a2

2 , b1+b2
2

)

∂κk∂τ l −
m−1

∑
l=0

Ml

(
b1+b2

2

)

l!

a2∫

a1

g(t)
∂ lϕ

(
t, b1+b2

2

)

∂τ l dt

−
n−1

∑
k=0

Mk
( a1+a2

2

)

k!

b2∫

b1

h(s)
∂ kϕ

( a1+a2
2 ,s

)

∂κk ds+

a2∫

a1

b2∫

b1

h(s)g(t)ϕ(t,s)dsdt

∣∣∣∣∣∣

≤
‖g‖[a1,a2],∞

(n+1)!

‖h‖[b1,b2]∞

(m+1)!
((a2−a1)

n+1

2n+1
(b2−b1)

m+1

2m+1

×
{∣∣∣∣

∂ n+mϕ(a1,b1)

∂ tn∂ sm

∣∣∣∣+
∣∣∣∣
∂ n+mϕ(a1,b2)

∂ tn∂ sm

∣∣∣∣+
∣∣∣∣
∂ n+mϕ(a2,b1)

∂ tn∂ sm

∣∣∣∣+
∣∣∣∣
∂ n+mϕ(a2,b2)

∂ tn∂ sm

∣∣∣∣
}
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which is ”weighted mid-point” inequality for functions whoose absolute value of heigher degree partial derivatives are
co-ordinated convex.

We establish some weighted integral inequalities by using convexity of
∣∣∣ ∂ n+mϕ

∂ tn∂ sm

∣∣∣
q
.

Theorem 3.7. Suppose that all the assumptions of Lemma 2.1 hold. If
∣∣∣ ∂ n+mϕ

∂ tn∂ sm

∣∣∣
q

is a convex function on the co-ordinates on ∆,
1
p +

1
q = 1 and q > 1, then the following inequality holds:

∣∣∣∣∣∣

n−1

∑
k=0

m−1

∑
l=0

Mk(κ)
k!

Ml(τ)

l!
∂ k+lϕ(κ,τ)

∂κk∂τ l −
m−1

∑
l=0

Ml(τ)

l!

a2∫

a1

g(t)
∂ lϕ(t,τ)

∂τ l dt−
n−1

∑
k=0

Mk(κ)
k!

b2∫

b1

h(s)
∂ kϕ(κ,s)

∂κk ds (3.8)

+

a2∫

a1

b2∫

b1

h(s)g(t)ϕ(t,s)dsdt

∣∣∣∣∣∣

≤
‖g‖[a1,a2],∞

n!(np+1)
1
p

‖h‖[b1,b2],∞

m!(mp+1)
1
p
(a2−a1)

1
q (b2−b1)

1
q ×
[
(κ−a1)

np+1 +(a2−κ)np+1
] 1

p
[
(τ−b1)

mp+1 +(b2− τ)mp+1
] 1

p

×




∣∣∣ ∂ n+mϕ(a1,b1)
∂ tn∂ sm

∣∣∣
q
+
∣∣∣ ∂ n+mϕ(a1,b2)

∂ tn∂ sm

∣∣∣
q
+
∣∣∣ ∂ n+mϕ(a2,b1)

∂ tn∂ sm

∣∣∣
q
+
∣∣∣ ∂ n+mϕ(a2,b2)

∂ tn∂ sm

∣∣∣
q

4




1
q

for all (κ,τ) ∈ [a1,a2]× [b1,b2], where ‖g‖[a1,a2],∞
= sup

u∈[a1,a2]

|g(u)| and ‖h‖[b1,b2],∞
= sup

u∈[b1,b2]

|h(u)| .

Proof. Taking absolute value of (2.1), from Hölder’s inequality, it follows that

∣∣∣∣∣∣

n−1

∑
k=0

m−1

∑
l=0

Mk(κ)
k!

Ml(τ)

l!
∂ k+lϕ(κ,τ)

∂κk∂τ l −
m−1

∑
l=0

Ml(τ)

l!

a2∫

a1

g(t)
∂ lϕ(t,τ)

∂τ l dt (3.9)

−
n−1

∑
k=0

Mk(κ)
k!

b2∫

b1

h(s)
∂ kϕ(κ,s)

∂κk ds+

a2∫

a1

b2∫

b1

h(s)g(t)ϕ(t,s)dsdt

∣∣∣∣∣∣

≤




a2∫

a1

b2∫

b1

|Pn−1 (κ, t)|p |Qm−1 (τ,s)|p dsdt




1
p



a2∫

a1

b2∫

b1

∣∣∣∣
∂ n+mϕ(t,s)

∂ tn∂ sm

∣∣∣∣
q

dsdt




1
q

.

By utulizing the definition of Pn−1 (κ, t) and Qm−1 (τ,s), we find that




b∫

a

d∫

c

|Pn−1 (κ, t)|p |Qm−1 (τ,s)|p dsdt




1
p

≤
‖g‖[a1,a2],∞

n!(np+1)
1
p

‖h‖[b1,b2],∞

m!(mp+1)
1
p

(3.10)

×
[
(κ−a1)

np+1 +(a2−κ)np+1
] 1

p
[
(τ−b1)

mp+1 +(b2− τ)mp+1
] 1

p
.

Since
∣∣∣ ∂ n+mϕ(t,s)

∂ tn∂ sm

∣∣∣
q

is a convex function on the co-ordinates on ∆, we also have

∣∣∣∣
∂ n+m

∂ tn∂ sm ϕ

(
a2− t

a2−a1
a1 +

t−a1

a2−a1
a2,

b2− s
b2−b1

b1 +
s−b1

b2−b1
b2

)∣∣∣∣
q

≤ a2− t
a2−a1

b2− s
b2−b1

∣∣∣∣
∂ n+mϕ(a1,b1)

∂ tn∂ sm

∣∣∣∣
q

(3.11)

+ +
a2− t

a2−a1

s−b1

b2−b1

∣∣∣∣
∂ n+mϕ(a1,b2)

∂ tn∂ sm

∣∣∣∣
q

+
t−a1

a2−a1

b2− s
b2−b1

∣∣∣∣
∂ n+mϕ(a2,b1)

∂ tn∂ sm

∣∣∣∣
q

+ +
t−a1

a2−a1

s−b1

b2−b1

∣∣∣∣
∂ n+mϕ(a2,b2)

∂ tn∂ sm

∣∣∣∣
q

.
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Using the inequality (3.11), it follows that




a2∫

a1

b2∫

b1

∣∣∣∣
∂ n+mϕ(t,s)

∂ tn∂ sm

∣∣∣∣
q

dsdt




1
q

≤ (a2−a1)
1
q (b2−b1)

1
q (3.12)

×




∣∣∣ ∂ n+mϕ(a1,b1)
∂ tn∂ sm

∣∣∣
q
+
∣∣∣ ∂ n+mϕ(a1,b2)

∂ tn∂ sm

∣∣∣
q
+
∣∣∣ ∂ n+mϕ(a2,b1)

∂ tn∂ sm

∣∣∣
q
+
∣∣∣ ∂ n+mϕ(a2,b2)

∂ tn∂ sm

∣∣∣
q

4




1
q

.

Substituting the inequalities (3.10) and (3.12) in (3.9), we deduce the inequality (3.8). Hence, the proof is completed.

Remark 3.8. Under the same assumptions of Theorem 3.7 with n = m = 1, then the following inequality holds:

∣∣∣∣∣∣
M0(κ)M0(τ)ϕ(κ,τ)−M0(τ)

a2∫

a1

g(t)ϕ(t,τ)dt −M0(κ)
b2∫

b1

h(s)ϕ(κ,s)ds+

a2∫

a1

b2∫

b1

g(t)h(s)ϕ(t,s)dsdt

∣∣∣∣∣∣
(3.13)

≤ ‖g‖[a,b],∞ ‖h‖[c,d]∞ (a2−a1)
1
q (b2−b1)

1
q ×
[
(κ−a1)

p+1 +(a2−κ)p+1

p+1

] 1
p
[
(τ−b1)

p+1 +(b2− τ)p+1

p+1

] 1
p

×




∣∣∣ ∂ 2ϕ(a1,b1)
∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a1,b2)

∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a2,b1)

∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a2,b2)

∂ t∂ s

∣∣∣
q

4




1
q

which was given by Erden and Sarikaya in [22] (in case of λ = 0).

Corollary 3.9. Substituting (κ,τ) = (a1,b1), (a1,b2), (a2,b1) and (a2,b2) in (3.13). Subsequently, if we add the obtained
results and use the triangle inequality for the modulus, we get the inequality

∣∣∣∣M0(κ)M0(τ)
ϕ(a1,b1)+ϕ(a1,b2)+ϕ(a2,b1)+ϕ(a2,b2)

4
(3.14)

+

a2∫

a1

b2∫

b1

g(t)h(s)ϕ(t,s)dsdt− 1
2

M0(τ)

a2∫

a1

g(t) [ϕ(t,b1)+ϕ(t,b2)]dt −1
2

M0(κ)
b2∫

b1

h(s) [ϕ(a1,s)+ϕ(a2,s)]ds

∣∣∣∣∣∣

≤ ‖g‖[a1,a2],∞
‖h‖[b1,b2],∞

(a2−a1)
2 (b2−b1)

2

4(p+1)
1
p

×




∣∣∣ ∂ 2ϕ(a1,b1)
∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a1,b2)

∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a2,b1)

∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a2,b2)

∂ t∂ s

∣∣∣
q

4




1
q

which is a weighted Hermite-Hadamard type inequality for double integrals.

Remark 3.10. If we take g(u) = h(u) = 1 in (3.14), then we have

∣∣∣∣
ϕ(a1,b1)+ϕ(a1,b2)+ϕ(a2,b1)+ϕ(a2,b2)

4

+
1

(a2−a1)(b2−b1)

a2∫

a1

b2∫

b1

ϕ(t,s)dsdt− 1
2(a2−a1)

a2∫

a1

[ϕ(t,b1)+ϕ(t,b2)]dt − 1
2(b2−b1)

b2∫

b1

[ϕ(a1,s)+ϕ(a2,s)]ds

∣∣∣∣∣∣

≤ (a2−a1)(b2−b1)

4(p+1)
1
p




∣∣∣ ∂ 2ϕ(a1,b1)
∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a1,b2)

∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a2,b1)

∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a2,b2)

∂ t∂ s

∣∣∣
q

4




1
q

which was deduced by Sarikaya et al. in [7].
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Remark 3.11. If we take g(u) = h(u) = 1 in (3.13), then we get

∣∣∣∣∣∣
(a2−a1)(b2−b1)ϕ(κ,τ)− (b2−b1)

a2∫

a1

ϕ(t,τ)dt −(a2−a1)

b2∫

b1

ϕ(κ,s)ds+

a2∫

a1

b2∫

b1

ϕ(t,s)dsdt

∣∣∣∣∣∣
(3.15)

≤ (a2−a1)
1
q (b2−b1)

1
q ×
[
(κ−a1)

p+1 +(a2−κ)p+1

p+1

] 1
p
[
(τ−b1)

p+1 +(b2− τ)p+1

p+1

] 1
p

×




∣∣∣ ∂ 2ϕ(a1,b1)
∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a1,b2)

∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a2,b1)

∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a2,b2)

∂ t∂ s

∣∣∣
q

4




1
q

which was given by Erden and Sarıkaya in [6].

Remark 3.12. Taking κ = a1+a2
2 and τ = b1+b2

2 in (3.15), we get

∣∣∣∣∣∣
(a2−a1)(b2−b1)ϕ

(
a1 +a2

2
,

b1 +b2

2

)
− (b2−b1)

a2∫

a1

ϕ

(
t,

b1 +b2

2

)
dt

− (a2−a1)

b2∫

b1

ϕ

(
a1 +a2

2
,s
)

ds+

a2∫

a1

b2∫

b1

ϕ(t,s)dsdt

∣∣∣∣∣∣

≤ (a2−a1)
2 (b2−b1)

2

4(p+1)
2
p

×




∣∣∣ ∂ 2ϕ(a1,b1)
∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a1,b2)

∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a2,b1)

∂ t∂ s

∣∣∣
q
+
∣∣∣ ∂ 2ϕ(a2,b2)

∂ t∂ s

∣∣∣
q

4




1
q

which was given by Latif and Dragomir in [4].

Similarly, the other reults related to Theorem 3.7 can be obtained as in Corollary 3.5 and 3.6.

Theorem 3.13. Suppose that all the assumptions of Lemma 2.1 hold. If
∣∣∣ ∂ n+mϕ

∂ tn∂ sm

∣∣∣
q

is a convex function on the co-ordinates on

∆, 1
p +

1
q = 1 and q≥ 1, then the following inequality holds:

∣∣∣∣∣∣

n−1

∑
k=0

m−1

∑
l=0

Mk(κ)
k!

Ml(τ)

l!
∂ k+lϕ(κ,τ)

∂κk∂τ l −
m−1

∑
l=0

Ml(τ)

l!

a2∫

a1

g(t)
∂ lϕ(t,τ)

∂τ l dt (3.16)

−
n−1

∑
k=0

Mk(κ)
k!

b2∫

b1

h(s)
∂ kϕ(κ,s)

∂κk ds+

a2∫

a1

b2∫

b1

h(s)g(t)ϕ(t,s)dsdt

∣∣∣∣∣∣

≤ 1

[(a2−a1)(b2−b1)]
1
q

‖g‖[a1,a2],∞

n!(n+1)
1
p

‖h‖[b1,b2],∞

m!(m+1)
1
p
×
[
(κ−a1)

n+1 +(a2−κ)n+1
] 1

p
[
(τ−b1)

m+1 +(b2− τ)m+1
] 1

p

×
{∣∣∣∣

∂ n+mϕ(a1,b1)

∂ tn∂ sm

∣∣∣∣
q

An(κ)Cm(τ)+

∣∣∣∣
∂ n+mϕ(a1,b2)

∂ tn∂ sm

∣∣∣∣
q

An(κ)Dm(τ)

+

∣∣∣∣
∂ n+mϕ(a2,b1)

∂ tn∂ sm

∣∣∣∣
q

Bn(κ)Cm(τ)+

∣∣∣∣
∂ n+mϕ(a2,b2)

∂ tn∂ sm

∣∣∣∣
q

Bn(κ)Dm(τ)

} 1
q

for all (κ,τ) ∈ [a1,a2]× [b1,b2], where ‖g‖[a1,a2],∞
= sup

u∈[a1,a2]

|g(u)| and ‖h‖[b1,b2],∞
= sup

u∈[b1,b2]

|h(u)| .

Proof. We take absolute value of (2.1). Because of 1
p +

1
q = 1, 1

p +
1
q can be written instead of 1. Using Hölder’s inequality,
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we find that
∣∣∣∣∣∣

n−1

∑
k=0

m−1

∑
l=0

Mk(κ)
k!

Ml(τ)

l!
∂ k+lϕ(κ,τ)

∂κk∂τ l −
m−1

∑
l=0

Ml(τ)

l!

a2∫

a1

g(t)
∂ lϕ(t,τ)

∂τ l dt (3.17)

−
n−1

∑
k=0

Mk(κ)
k!

b2∫

b1

h(s)
∂ kϕ(κ,s)

∂κk ds+

a2∫

a1

b2∫

b1

h(s)g(t)ϕ(t,s)dsdt

∣∣∣∣∣∣

≤




a2∫

a1

b2∫

b1

|Pn−1 (κ, t)| |Qm−1 (τ,s)|dsdt




1
p

×




a2∫

a1

b2∫

b1

|Pn−1 (κ, t)| |Qm−1 (τ,s)|
∣∣∣∣
∂ n+mϕ(t,s)

∂ tn∂ sm

∣∣∣∣
q

dsdt




1
q

.

By simple calculations, we can write

a2∫

a1

b2∫

b1

|Pn−1 (κ, t)| |Qm−1 (τ,s)|dsdt ≤
‖g‖[a1,a2],∞

(n+1)!

‖h‖[b1,b2],∞

(m+1)!
×
[
(κ−a1)

n+1 +(a2−κ)n+1
][

(τ−b1)
m+1 +(b2− τ)m+1

]
.(3.18)

By similar methods in the proof of Theorem 3.1, from (3.11), we obtain

a2∫

a1

b2∫

b1

|Pn−1 (κ, t)| |Qm−1 (τ,s)|
∣∣∣∣
∂ n+mϕ(t,s)

∂ tn∂ sm

∣∣∣∣
q

dsdt ≤
‖g‖[a1,a2],∞

(a2−a1)n!

‖h‖[b1,b2],∞

(b2−b1)m!
(3.19)

×
{∣∣∣∣

∂ n+mϕ(a1,b1)

∂ tn∂ sm

∣∣∣∣
q

An(κ)Cm(τ)+

∣∣∣∣
∂ n+mϕ(a1,b2)

∂ tn∂ sm

∣∣∣∣
q

An(κ)Dm(τ)

+

∣∣∣∣
∂ n+mϕ(a2,b1)

∂ tn∂ sm

∣∣∣∣
q

Bn(κ)Cm(τ)+

∣∣∣∣
∂ n+mϕ(a2,b2)

∂ tn∂ sm

∣∣∣∣
q

Bn(κ)Dm(τ)

}
.

Substituting the inequalities (3.18) and (3.19) in (3.17), we easily deduce the required inequality (3.16) which completes the
proof.

Remark 3.14. In case (p,q) = (∞,1), if we take limit as p→ ∞ in Theorem 3.13, then the inequality (3.16) becomes the
inequality (3.1). Thus, we obtain all of the results which are similar to Theorem 3.1.

4. Conclusion

In this paper, Ostrowski type inequalities for co-ordinated convex functions are developed. It is also shown that the results
provided in this paper are potential generalizations of the existing comparable results in the literature. Infuture directions, one
may find similar results through different types of co-ordinated convexity.
The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments
and suggestions.
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Abstract

For a bounded and smooth enough domain Ω in Rn, with n≥ 2, we consider the problem −∆u =
au−β +λh(.,u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, where λ > 0, 0 < β < 3, a∈ L∞ (Ω) , ess in f (a)>
0, and with h= h(x,s)∈C

(
Ω× [0,∞)

)
positive on Ω×(0,∞) and such that, for any x∈Ω, h(x, .) is

strictly convex on (0,∞), nondecreasing, belongs to C2 (0,∞) , and satisfies, for some p ∈
(
1, n+2

n−2
)
,

that lims→∞
hs(x,s)

sp = 0 and lims→∞
h(x,s)

sp = k (x) , in both limits uniformly respect to x ∈ Ω, and
with k ∈C

(
Ω
)

such that min
Ω

k > 0. Under these assumptions it is known the existence of Σ > 0
such that for λ = 0 and λ = Σ the above problem has exactly a weak solution, whereas for λ ∈ (0,Σ)
it has at least two weak solutions, and no weak solutions exist if λ > Σ. For such a Σ we prove that
for λ ∈ (0,Σ) the considered problem has it has exactly two weak solutions.

1. Introduction

Let n≥ 2, and let Ω be a C2 bounded domain in Rn , let a : Ω→R, and let h : Ω× [0,∞)→R. For λ ≥ 0 and β > 0, consider
the problem:




−∆u = au−β +λh(.,u) in Ω,
u = 0 on ∂Ω

u > 0 in Ω.
(1.1)

Singular problems like the above appear in many applications to physical and chemical process (cf. [1], [2], [3] and their
references). After the pioneers works [4] [1], [3], [5], [6], [7], [2] and [8], singular elliptic problems have received a lot of
interest in the literature, and many articles concern them. Let us recall some of these works:
The case when h = 0 in (1.1) was studied, under different hypothesis on the function a, in [5], [9], [10], and [11]. In particular,
[11] gives, when a is regular enough, accurate asymptotic estimates near the boundary for the solutions. [12] studied (1.1)
when h = 0 and a is a Radon’s measure. Also, [2] studied problem (1.1) when a =−1, but with h(.,u) replaced by a suitable
positive function h ∈ L1 (Ω).
[8] considered the problem −∆u = au−β +h(.,λu) in Ω, u = 0 on ∂Ω, u > 0 in Ω, and proved that if β > 0, a ∈C1

(
Ω
)
,

a > 0 in Ω, h ∈C1
(
Ω× [0,∞)

)
and if, for some positive constant c, h(x,s)> c(1+ s) for all (x,s) ∈ Ω× [0,∞), then there

exists λ ∗ > 0 such that the studied problem has a positive classical solution u ∈C2 (Ω)∩C
(
Ω
)

for any λ ∈ [0,λ ∗), and has no
positive classical solution if λ > λ ∗.
[13] addressed the equation −∆u = au−β +λup in Ω, u = 0 on ∂Ω, u > 0 in Ω, and obtained existence and nonexistence
theorems when a is a regular enough function, with indefinite sign, 0 < β < 1, 0 < p < 1 and λ ≥ 0.
[10] studied existence, nonexistence, uniqueness and stability issues for weak solutions of the problem −∆u = p(x)u−β in Ω,
u = 0 on ∂Ω, u > 0 in Ω, when β > 0 and p(x) behaves like d−γ

Ω
(x) as x→ ∂Ω, with dΩ (x) := dist (x,∂Ω) and 0 < γ < 2.

[14] investigates equations with singular nonlinearities that involve two bifurcation parameters.
[15] gives existence and nonexistence theorems for equations of the form −∆u = g(x,u)+λ f (x,u, |∇u|) in Ω, u = 0 on ∂Ω,
u > 0 in Ω with g(x,s) singular at s = 0 and also at x ∈ ∂Ω, and where f (x,u, |∇u|) involves a power of |∇u|.

≫≫≫ Received: 16-10-2023 ≫≫≫ Revised: 05-12-2023 ≫≫≫ Accepted: 25-03-2024 ≫≫≫ Online: 30-06-2024 ≫≫≫ Published: 30-06-2024
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[16] studied the problem

−∆u = a(x)g(u)+λh(u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, (1.2)

where h(s) is nondecreasing, positive on (0,∞), and such that s−1h(s) is nonincreasing; and with g satisfying lims→0+ g(s) =∞

but in such a way that, for some α ∈ (0,1) and ε > 0, sα g(s) is bounded on (0,ε) . There it was introduced the space
E :=

{
v ∈C2 (Ω)∩C1,1−α

(
Ω
)

: ∆v ∈ L1 (Ω)
}

and, among other results, it was proved that if g and h are regular enough on
(0,∞) and [0,∞) respectively, and if a is regular enough on Ω, then:
i) if lims→∞ s−1h(s) = 0, problem (1.2) has a solution in E for any λ ≥ 0.
ii) If lims→∞ s−1h(s) > 0 and λ ≥ λ1

lims→∞ s−1h(s) (where λ1 is the principal eigenvalue for −∆ in Ω with Dirichlet boundary
condition) then (1.2) has no solutions u in E.
iii) If lims→∞ s−1h(s)> 0 and min

Ω
a > 0 then (1.2) has a unique weak solution in E for any λ such that 0≤ λ < λ1

lims→∞ s−1h(s) .

[17] sttudied semilinear elliptic problems with singular nonlocal Neumann boundary conditions, obtaining existence and
uniqueness (up to a constant) results.
In [18] existence results were obtained for a one dimensional problem involving the fractional p−Laplacian with multipoint
boundary conditions.
Concerning multiplicity results [19] studied, for β > 0 and 1 < p≤ 2, the problem −∆pu = g(u)+λh(u) in Ω, u = 0 on ∂Ω,
u > 0 in Ω on a smooth, bounded and strictly convex domain in Rn, , and under suitabe conditions on g and h, there was
proved that for some ε > 0 if 0 < λ < ε then there exist at least two weak solutions.
[20] addressed existence and multiplicity issues for positive weak solutions of a family of (p,q)-Laplacian systems on an
open, bounded, and regular enough domain in Rn. Under suitable assumptions on the problem’s data, there it was proved the
existence of at least two (weak) positive solutions of the system.
[21] proved that if B : Ω→Mn (R) satisfies the standard symmetry, ellipticity, and regularity conditions, and if 0 < β < 1 <
p < n+2

n−2 then, for λ positive and small enough, the problem −div(B(x)∇u) = u−β +λup in Ω, u = 0 on ∂Ω has two positive
weak solutions in H1

0 (Ω) .

[22] addressed the problem −∆pu = λu−β + uq in Ω, u = 0 on ∂Ω, u > 0 in Ω under the assumptions that 0 < β < 1,
1 < p < ∞, q < ∞ and p−1 < q≤ p∗−1, with p∗ given by p∗ := np

n−p if p < n, p∗ = Q with Q > p if p = n, and p∗ = ∞ if
p > n. With these assumptions [22] proved that, for some λ ∗ ∈ (0,∞), the problem has a weak solution if λ = λ ∗, has no weak
solution if λ > λ ∗, and has at least two weak solutions if λ ∈ (0,λ ∗) .
[23] studied problems of the form




−∆u = λ

(
u−δ +uq +ρ (u)

)
in Ω,

u = 0 on ∂Ω,
u > 0 in Ω,

(1.3)

where Ω is a bounded and regular enough domain in Rn with n≥ 3, λ > 0, δ > 0, 0 < q≤ 2∗−1 where 2∗−1 = n+2
n−1 and

ρ ∈C1 ([0,∞)) satisfies:
a) ρ (0) = ρ ′ (0) = 0, ρ (t)+ tq ≥ 0, if q < 2∗−1;
b) There exists β < 2∗−2 such that limt→∞ t−β ρ− (t) = 0 and limt→∞ t−−2∗+1ρ+ (t) = 0 if q = 2∗−1.
Under these assumptions there it was proved, for λ positive and small enough, the existence of at least two positive solutions
of (1.3).
[24] studied problems of the form





−∆u = λ

(
u−δ +h(u)euα

)
in Ω,

u = 0 on ∂Ω,
u > 0 in Ω,

(1.4)

where λ > 0, 0 < δ < 1, 1 ≤ α < 2, and h ∈C2 [0,∞) satisfies h(0) = 0, s→ s−δ + h(s)esα

is convex, and for any ε > 0,
lims→∞ h(s)e−εsα

= 0 and lims→∞ h(s)eεsα

= ∞. Under these asumptions there were proved several existence, multiplicity,
and bifurcation results for problem (1.4).
[25] studied the problem −∆Nu = λ f (.,u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, where Ω is a bounded and regular domain in
RN , ∆N is the N−Laplacian on Ω, and where f (x,s) is a regular enough function which may be singular at s = 0 and with
exponential growth as s→ ∞. Under suitable additional assumptions on f , there it was proved the existence of Σ > 0 such that:
for 0 < λ < Σ the problem has at least two solutions, one solution if λ = Σ, and no solutions when λ > Σ.
We mention also that the Nehari manifold method, adapted to the presence of singular nonlinearities through the study of the
associated fibering functions, were used to establish multiplicity results for degenerated elliptic singular nonlinear problems
involving either the pLaplacian or the weighted p− q Laplacian in [26], [27], and [28]. For additional works concerning
singular elliptic problems see e.g., [29], [30], [31], [32], [33], [34], [35], [36], [37], [38]; and for a systematic treatment of the
subject of singular problems, we refer the readers to the research books [39] and [40] and their references.
Our aim in this work is to prove an exact multiplicity result for weak solutions of problem (1.1). By a weak sollution we mean,
as usual, the given by following:
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Definition 1.1. If ρ : Ω→ R is a a measurable function such that ρϕ ∈ L1 (Ω) for any ϕ ∈ H1
0 (Ω) , and if u is a function

defined on Ω we say that u is a weak solution of the problem
{
−∆u = ρ in Ω,
u = 0 on ∂Ω,

if, and only if, u ∈ H1
0 (Ω) and

∫
Ω
〈∇u,∇ϕ〉= ∫

Ω
ρϕ for all ϕ ∈ H1

0 (Ω) .

Also, for u ∈ H1 (Ω) and ρ as above, we will write −∆u≥ ρ in Ω (respectively −∆u≤ ρ in Ω) to mean that
∫

Ω
〈∇u,∇ϕ〉 ≥∫

Ω
ρϕ (resp.

∫
Ω
〈∇u,∇ϕ〉 ≤ ∫

Ω
ρϕ) for any nonnegative ϕ ∈ H1

0 (Ω) .

Since our results depend largely on those of [35], [36], and [37], let us to briefly review them in the next three remarks:

Remark 1.2. In [35] and [36], it was considered, for β ∈ (0,3) , the problem



−∆u = au−β + f (λ , .,u) in Ω,
u = 0 on ∂Ω,
u > 0 in Ω,

(1.5)

with (1.5) understood in weak sense.
Under suitable assumptions on a and f , ([35] Theorem 1.1) states that there exists Σ > 0 such that problem (1.5) has (at least)
a weak solution u ∈ H1

0 (Ω)∩L∞ (Ω) , if and only if, λ ∈ [0,Σ]
Let us mention also that ([35] Theorems 1.2) says that, for λ positive and small enough, there exist at least two weak solutions
in H1

0 (Ω)∩L∞ (Ω). In addition, ([35] Theorem 1.1) says also that any solution u in H1
0 (Ω)∩L∞ (Ω) of (1.5) belongs to C

(
Ω
)
.

In [36] all the hypothesis of [35] were assumed, plus an additional one, and in ([36] Theorem 1.2) it was proved that, for
Σ as in [35] and λ ∈ [0,Σ] , problem (1.5) has a solution uλ ∈ H1

0 (Ω)∩C
(
Ω
)

which is minimal in the sense that uλ ≤ v for
all weak solution v ∈ H1

0 (Ω)∩L∞ (Ω) of (1.5). Additionally, ([36] Theorem 1.2) says that λ → uλ is strictly increasing from
[0,Σ] into C

(
Ω
)

; and ([36] Theorem 1.3) asserts that, for each λ ∈ (0,Σ) , problem (1.5) has at least two weak solutions
u ∈ H1

0 (Ω)∩C
(
Ω
)
.

Remark 1.3. Problem (1.5) was again considered in [37], where, with further hypothesis added, in ([37], Theorem 1.3) it was
proved that the map λ → uλ , defined for λ ∈ [0,Σ], with Σ and uλ as in Remark 1.2, is continuous from [0,Σ] into C

(
Ω
)
, and

belongs to C1
(
(0,Σ) ,C

(
Ω
))

.

Remark 1.4. Also, again for Σ as in Remark 1.2, ([37], Lemma 5.7) states, for each λ ∈ [0,Σ] , the existence of a solution
vλ ∈ H1

0 (Ω)∩L∞ (Ω) of problem (1.5) which is maximal respect to the partial order ≤, that is: vλ has the property that if
u ∈ H1

0 (Ω)∩L∞ (Ω) is a weak solution of (1.5) and u≥ vλ a.e. in Ω , then u = vλ . We mention also that ([37], Theorem 1.4)
states that, for λ = Σ, there exists a unique solution in H1

0 (Ω)∩L∞ (Ω) of problem (1.5) (and so, in particular, uΣ = vΣ).

We assume, from now on and without anymore mention, the following conditions H1)-H6) (with the convention that n+2
n−2 = ∞

if n = 2):

H1) β ∈ (0,3) .
H2) a ∈ L∞ (Ω) and ess in f (a)> 0.
H3) h ∈C2

(
Ω× [0,∞)

)
and there exists p ∈

(
1, n+2

n−2

)
such that lims→∞

h(x,s)
sp = k (x) uniformly on x ∈Ω, with k ∈C

(
Ω
)

such
that min

Ω
k > 0.

H4) For all x ∈Ω, the function s→ h(x,s) is positive, nondecreasing, strictly convex, and belongs to C2 (0,∞) .

H5) hs > 0 in Ω× (0,∞) , and lims→∞
hs(x,s)

sp = 0 uniformly on x ∈Ω, where hs denotes the partial derivative of h respect of s.
H6) There exists q ∈ [1,∞) and a nonnegative and nonidentically zero function b ∈ L∞ (Ω) , such that h(.,s)≥ bsq a.e. in Ω,
for any s≥ 0.

It is immediate to check that, if β , a, and h, satisfy H1)-H6) and if f : [0,∞)×Ω× [0,∞)→R is defined by f (λ , .,s) := λh(.,s) ,
then β , a, and f satisfy all the conditions required in [37] (and so also all the conditions imposed in [35] and [36] hold), thus
all the results in [35], [36], and [37] hold for problem (1.1).

Remark 1.5. We fix, from now on, Σ as given by Remark 1.2, but taking there λh(.,s) instead of f (λ , .,s), and for λ ∈ [0,Σ],
uλ and vλ will denote the functions provided by Remarks 1.2 and 1.4, again now with λh(.,s) instead of f (λ , .,s).

Our aim in this work is to prove the following

Theorem 1.6. Let Ω be a C2 and bounded domain in Rn,n≥ 2, and assume the conditions H1)-H6). Let Σ be as in Remark
1.5. Then for λ ∈ (0,Σ) problem (1.1) has exactly two weak solutions.



90 Fundamental Journal of Mathematics and Applications

.
Let us briefly outline the structure of the article. In Section 2 we recall some results of [11] concerning existence, uniqueness,
and asymptotic properties near the boundary, for classical solutions of problems of the form −∆u = a∗ (x)u−β in Ω, u = 0 on
∂Ω, u > 0 in Ω. Again in Section 2, Lemma 2.10 improves, under the assumptions H1)-H6), the regularity results of [35],
[36], and [37]. In fact, it proves that any weak solution of (1.1) belongs to C1 (Ω)∩C

(
Ω
)
.

The main objective in Section 3 is to prove that the function vλ provided by Remark 1.4 is a maximal solution of (1.1), in
the sense that w≤ vλ for each weak solution of (1.1). After some preliminary lemmas, this is done in Lemma 3.6 by using a
sub-supersolution argument. This property of vλ plays a crucial role in the proof of Theorem 1.6
Section 4 concerns certain principal eigenvalue problems with singular potential needed for the proof of Theorem 1.6.
In Section 5 we prove Theorem 1.6 by a contradiction argument. To do it, we suppose that for some λ ∈ (0,Σ) there exists a
weak solution w of (1.1) such that w 6= uλ and w 6= vλ . We rewrite (1.1) as S (λ ,u) = 0, where

S (λ ,u) := u− (−∆)−1
(

au−β +λh(.,u)
)
,

and where (−∆)−1 denotes the solution operator for the problem −∆u = h in Ω,u = 0 on ∂Ω.
From [37] we know that S : (0,∞)×Uβ → Yβ is a continuously Frechet differentiable operator, where Yβ and Uβ are,
respectively, a suitable Banach’s space and a suitable nonempty open subset of Yβ , with Uβ such that any weak solution u of
(1.1) belongs to Uβ (for the definitions Yβ and Uβ , see Definition 2.8 in Section 2).
In Remark 5.2 we observe that, as in [37], if w≤ vλ and w 6= vλ , then rλ ,w > 1, where rλ ,w denotes the principal eigenvalue
of the operator −∆+βaw−β−1 in Ω, with weight function λhs (.,w), and with homogeneous Dirichlet boundary condition.
(notice that the potential βaw−β−1 is singular at ∂Ω).
We observe also in Remark 5.2, Lemma 5.3, and Lemma 5.4 that the condition rλ ,w > 1 allows, as in [37], the use of the implicit
function theorem to obtain, for some ε > 0, a local continuously differentiable branch ξ : (λ − ε,λ + ε)→Uβ such that
S (σ ,ξ (σ)) = 0 for all σ ∈ (λ − ε,λ + ε) and ξ (λ ) = w. Then we show that ξ can be extended to a continuously differentiable
branch Θ : (0,λ + ε)→Uβ such that S (σ ,Θ(σ)) = 0 for any σ ∈ (0,λ + ε) and limσ→0+ Θ = u0 with convergence in Yβ ,
where u0 is the unique weak solution of (1.1 ) for λ = 0.
Next we repeat the same process, but starting with uλ instead of w, to obtain, for some ε ′ > 0, a continuously differentiable
branch, Φ : (0,λ + ε ′)→ Yβ such that S (σ ,Φ(σ)) = 0 for σ ∈ (0,λ + ε ′) and limσ→0+ Φ = u0 with convergence in Yβ . Our
final step within the proof of Theorem 1.6 will be to obtain, for σ ∈ (0,λ ) , an estimate of the norm ‖Φ(σ)−Θ(σ)‖H1

0 (Ω)

which, by taking the limit as σ → 0+, will give a contradiction.

2. Preliminaries

Let us introduce some notations we will use: δΩ will denote the function defined on Ω by

δΩ (x) := dist (x,∂Ω) . (2.1)

and (−∆)−1 will denote the inverse of the bijection −∆ : H1
0 (Ω)→ H−1 (Ω).

If ξ is a measurable functon defined on Ω we will write ξ ∈ H−1 (Ω) to mean that the map φ → ∫
Ω

ξ φ belongs to H−1 (Ω)
If f and g, are two functions defined a.e. in Ω, we will write f ≈ g to mean that, for some positive constants c1 and c2,
c1 f ≤ g≤ c2 f in Ω, and we will write f / g (respectively f ' g) to mean that for some positive constant c, f ≤ cg in Ω (resp.
f ≥ cg in Ω).
If f and g are functions defined a.e. in Ω, and if no confusion arises, we will write f = g in Ω, f ≤ g in Ω and f ≥ g in Ω to
mean that f = g a.e. in Ω, f ≤ g a.e. in Ω and f ≥ g a.e. in Ω respectively.
We will need the following elementary comparison lemma for singular equations:

Lemma 2.1. i) Let β > 0, and for i = 1,2, let ui ∈ H1
0 (Ω) , and let ai ∈ L∞ (Ω) be such that ess in f (ai)> 0. If a2 ≥ a1 and if

u1 and u2 satisfy, in weak sense,



−∆u1 ≤ a1u−β

1 in Ω,
u1 = 0 on ∂Ω

u1 > 0 in Ω

and




−∆u2 ≥ a2u−β

2 in Ω,
u2 = 0 on ∂Ω

u2 > 0 in Ω,

then u1 ≤ u2 a.e. in Ω.
ii) Let β > 0, let a ∈ L∞ (Ω) be such that ess in f (a)> 0 and, for i = 1,2, let ui ∈ H1

0 (Ω) be such that, in weak sense,




−∆u1 ≤ au−β

1 in Ω,
u1 = 0 on ∂Ω

u1 > 0 in Ω

and




−∆u2 ≥ au−β

2 in Ω,
u2 = 0 on ∂Ω

u2 > 0 in Ω,

then u1 ≤ u2 a.e. in Ω.
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Proof. To see i) observe that, in weak sense,
{
−∆(u2−u1)≥ a2u−β

2 −a1u−β

1 ≥ a1

(
u−β

2 −u−β

1

)
in Ω,

u2−u1 = 0 on ∂Ω,

Now we use the test function ϕ :=−(u2−u1)
− to get

∫

Ω

∥∥∇
(
(u2−u1)

−)∥∥2 ≤−
∫

Ω

a1

(
u−β

2 −u−β

1

)
(u2−u1)

− ≤ 0.

Thus, by the Poincaré’s inequality, u1 ≤ u2.
The proof of ii) is similar. We have, in weak sense,

{
−∆(u2−u1)≥ a

(
u−β

2 −u−β

1

)
in Ω,

u2−u1 = 0 on ∂Ω,

and so, by taking the test function ϕ :=−(u2−u1)
−, we get

∫

Ω

∥∥∇
(
(u2−u1)

−)∥∥2 ≤−
∫

Ω

a
(

u−β

2 −u−β

1

)
(u2−u1)

− ≤ 0.

which, as before, by the Poincaré’s inequality implies u1 ≤ u2 a.e. in Ω.

Remark 2.2. For β ∈ (0,3) and for a ∈ L∞ (Ω) such that 0≤ a 6≡ 0 it is well known that there exists one and only one weak
solution of the problem




−∆w = aw−β in Ω,
w = 0 on ∂Ω

w > 0 in Ω

(2.2)

(and, in fact, this follows immediately from Lemma 2.1).
Notice also that, if in addition, a ∈Cη

loc (Ω) for some η ∈ (0,1) and a≈ 1 in Ω then, as a particular case of ([11], Theorem 1),
problem (2.2) has a unique classical solution w ∈C2 (Ω)∩C

(
Ω
)
. Moreover, w≈Ψβ in Ω, with Ψβ : Ω→ R given by the

following definition:

Definition 2.3. For β ∈ (0,3) let Ψβ : Ω→ R be defined by

Ψβ := δΩ if 0 < β < 1,

Ψ1 := δΩ

(
log
(

ω0

δΩ

)) 1
2

in Ω and Ψ1 := 0 on ∂Ω,

Ψβ := δ

2
1+β

Ω
if 1 < β < 3,

with ω0 an arbitrary constant such that ω0 > diam(Ω) .

Notice that, in each case, Ψβ ∈C
(
Ω
)
. The functions Ψβ , as well as the estimates from [11] quoted in Remark 2.2 will play a

relevant role in our work.

Remark 2.4. Direct computations using the definitions of the functions Ψβ show that δΩΨ
−β

β
∈ L2 (Ω) and Ψ

1−β

β
∈ L1 (Ω)

for any β ∈ (0,3) .

Remark 2.5. If a ∈Cη

loc (Ω) for some η ∈ (0,1) , and a≈ 1 in Ω, then the classical solution w of problem 2.2 (given by the
result quoted in Remark 2.2) belongs to H1

0 (Ω) and is a weak solution of (2.2). Indeed, since w≈Ψβ and since, for β = 1,
Ψβ / dγ

Ω
for some γ ∈ (0,1) , the assertion follows from ([36], Lemma 3.2), taking there f (λ , .,u) = λh(.,u) and λ = 0.

We recall also the following lemma from [37] concerning the functions Ψβ :

Lemma 2.6. (See [37], Lemma 2.9) If f ∈ L∞ (Ω) , then Ψ
−β

β
f ∈ H−1 (Ω) and there exists a constant c > 0, independent of

f , such that
∥∥∥(−∆)−1

(
Ψ
−β

β
f
)∥∥∥

H1
0 (Ω)
≤ c‖ f‖

∞
and

∥∥∥Ψ
−1
β

(−∆)−1
(

Ψ
−β

β
f
)∥∥∥

∞

≤ c‖ f‖
∞
.

Lemma 2.7. (−∆)−1
(

Ψ
−β

β

)
≈Ψβ in Ω.
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Proof. By Lemma 2.6 Ψ
−β

β
∈ H−1 (Ω). Let w ∈C2 (Ω)∩C

(
Ω
)

be such that




−∆w = w−β in Ω,
w = 0 on ∂Ω,
w > 0 in Ω,

(2.3)

(by Remark 2.2 there exists a unique such a w). Then, By Remark 2.5, w ∈ H1
0 (Ω) and w is a weak solution of (2.3), and by

Remark 2.2, there exist positive constants c1 and c2 such that

c1Ψβ ≤ w≤ c2Ψβ in Ω.

Thus cβ

1 w−β ≤Ψ
−β

β
≤ cβ

2 w−β in Ω, and so cβ

1 (−∆)−1 (w−β
)
≤ (−∆)−1

(
Ψ
−β

β

)
≤ cβ

2 (−∆)−1 (w−β
)
. Since (−∆)−1 (w−β

)
=

w and w≈Ψβ , the lemma follows.

The next definition introduces, for β ∈ (0,3) , a Banach space Yβ and an open set Uβ in Yβ which will play a significant role in
our arguments

Definition 2.8. For β ∈ (0,3) , following [37], we define

Yβ :=
{

u ∈ H1
0 (Ω) : Ψ

−1
β

u ∈ L∞ (Ω)
}
,

‖u‖Yβ
:= ‖∇u‖2 +

∥∥∥Ψ
−1
β

u
∥∥∥

∞

Uβ :=
{

u ∈ Yβ : infΩ Ψ
−1
β

u > 0
}
.

As observed in ([37], Lemma 3.2),
(

Yβ ,‖.‖Yβ

)
is a Banach’s space, and Uβ is a nonempty open set in Yβ .

The next remark recalls a celebrated a-priori estimate for subcritical problems due to Gidas and Spruck. It reads as:

Remark 2.9. (see [41], Theorem 1.1): Let g : Ω× [0,∞) → R be a nonnegative and continuous function such that
lims→∞

g(x,s)
sp = k (x) uniformly on x, with p ∈

(
1, n+2

n−2

)
and with k ∈C

(
Ω
)

such that min
Ω

k > 0. Then there exists M ∈ (0,∞)

such that u≤M for any solution (in the sense of distributions on Ω) u ∈C1 (Ω)∩C
(
Ω
)

of the problem



−∆u = g(.,u) in Ω,
u = 0 on ∂Ω,
u > 0 in Ω

Notice that, although the proof of ([41], Theorem 1.1) was written for the case when u ∈C2 (Ω)∩C
(
Ω
)
, the proof can be

adapted for solutions u ∈C1 (Ω)∩C
(
Ω
)

(as said at the comments in [41] after the statement of Theorem 1.1).

Lemma 2.10. If u is a weak solution of (1.1) for some λ ≥ 0, then
i) u≥ ζ , where ζ is the (unique) weak solution of the problem

{
−∆ζ = aζ−β in Ω,
ζ = 0 on ∂Ω.

ii) There exists a positive constant c, independent of λ and u, such that u≥ cΨβ in Ω.

iii) u ∈C
(
Ω
)
∩C1 (Ω) .

iv) u ∈Uβ .

Proof. i) follows immediately from the equations satisfied by u and ζ and the comparison Lemma 2.1.
To see ii) consider two positive constants k1 and k2 such that k1 ≤ a≤ k2 in Ω. Since u is a weak solution of (1.1) we have, in
weak sense,

{
−∆u = au−β +λh(.,u)≥ k1u−β in Ω,
u = 0 on ∂Ω.

Let u0 ∈C2 (Ω)∩C
(
Ω
)

be the (unique) solution of (2.3) given by Remark 2.2. By Remark 2.5 u0 ∈ H1
0 (Ω) and u0 is a weak

solution of (2.3) and, by Remark 2.2, u0 ≥ cΨβ for some constant c > 0. Now, in weak sense,




−∆

(
k

1
1+β

1 u0

)
= k1

(
k

1
1+β

1 u0

)−β

in Ω,

u0 = 0 on ∂Ω.
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Thus, by (2.4), (2.4), and Lemma 2.1, we have u≥ k
1

1+β

1 u0 ≥ ck
1

1+β

1 Ψβ in Ω, and so ii) holds.
Let us prove iii). We have 0≤ a ∈ L∞ (Ω) and, by ii), u≥ cΨβ for some constant c > 0. Therefore, for some constant c′ > 0

we have 0≤ au−β ≤ c′Ψ−β

β
. Thus au−β = gΨ

−β

β
for some g ∈ L∞ (Ω) and then Lemma 2.6 gives that au−β ∈

(
H1

0 (Ω)
)′
. Let

z := (−∆)−1 (au−β
)
. Then, for some constant c′′ > 0,

0≤ z≤ c′ (−∆)−1
(

Ψ
−β

β

)
≤ c′′Ψβ ,

the last inequality by Lemma 2.7. Thus z ∈ L∞ (Ω) . Since 0 ≤ au−β ≤ c′Ψ−β

β
we have also au−β ∈ L∞

loc (Ω) . Thus, by the
inner elliptic estimates (see e.g., [44], Theorem 8.24), z ∈C1 (Ω) , and since 0≤ z≤ c′′Ψβ , we have also that z is continuous at
∂Ω. Thus z ∈C

(
Ω
)
∩C1 (Ω) . Now,

{
−∆(u− z) = λh(.,u) in Ω,
u− z = 0 on ∂Ω.

Let w := u− z. Since −∆(u− z) = λh(.,u)≥ 0 in Ω and u− z = 0 on ∂Ω, the weak maximum principle gives that w≥ 0 a.e.
in Ω. Thus u≥ z in Ω. For (x,s) ∈Ω× [0,∞) let h∗ (x,s) := h(x,s+ z(x)) . Then h∗ ∈C

(
Ω× [0,∞)

)
and




−∆w = λh∗ (.,w) in Ω,
w = 0 on ∂Ω,
w > 0 in Ω,

(2.4)

Now,

h∗ (x,s)
sp =

h(x,s+ z(x))
sp =

h(x,s)
sp +

h(x,s+ z(x))−h(x,s)
sp , (2.5)

and the mean value theorem gives that, for some θ = θx ∈ (0,1) ,

|h(x,s+ z(x))−h(x,s)|
sp =

hs (x,s+θz(x))z(x)
sp ≤ hs (x,2s)

sp ‖z‖
∞
= 2p hs (x,2s)

(2s)p ‖z‖
∞

for s≥ ‖z‖
∞

and thus

lim
s→∞

|h(x,s+ z(x))−h(x,s)|
sp = 0

uniformly on x ∈ Ω. Let k be as given by H3). Then, by (2.5) lims→∞
h∗(x,s)

sp = k (x) uniformly on x ∈ Ω, and so, by
Remark 2.9 and (2.4), w ∈ L∞ (Ω) . Then λh∗ (.,w) ∈ L∞ (Ω) , and thus, from (2.4), w ∈W 2,q (Ω) for any q ∈ [1,∞) . Then
w ∈C

(
Ω
)
∩C1 (Ω) , and thus, since z ∈C

(
Ω
)
∩C1 (Ω) we get that u ∈C

(
Ω
)
∩C1 (Ω) . Thus iii) holds.

To prove iv) it only remains to see that u ∈ Yβ , i.e., to see that, for some positive constant c, u≤ cΨβ in Ω. By iii), u ∈C
(
Ω
)
,

and then, by our assumptions on h, we have λh(.,u) ∈ L∞ (Ω) . Thus, for some positive constant M, au−β +λh(.,u)≤Mu−β

in Ω. Therefore −∆u≤Mu−β and so −∆

(
M−

1
1+β u

)
≤
(

M−
1

1+β u
)−β

and thus, by Lemma 2.1, M−
1

1+β u≤ u0 with u0 as in

the proof of i). By Remark 2.2 u0 ≤ c′Ψβ for some positive constant c′. Therefore u≤ c′M
1

1+β Ψβ in Ω, which concludes the
proof of iv).

Remark 2.11. Lemma 2.10 says that any weak solution of (1.1) belongs to Uβ , and so it improves ([37], Lemma 3.5) which,
applied to our actual case, only says that any weak solution in L∞ (Ω) belongs also to Uβ .

3. On the maximal solution of problem (1.1)

Let Σ be as in Remark 1.5 and, for each λ ∈ [0,Σ] , let vλ as given there, which, we recall, has the property that if u ∈
H1

0 (Ω)∩L∞ (Ω) is a weak solution of (1.1) and u≥ vλ , then u = vλ .
Notice that uλ 6= vλ for any λ ∈ (0,Σ) . Indeed, if λ ∈ (0,Σ) , ([36], Theorems 1.2 and 1.3) give two weak solutions of (1.1).
Suppose that uλ = vλ , and consider any arbitrary weak solution w of (1.1). Since uλ is minimal we have uλ ≤ w and so we
would have vλ ≤ w, which implies vλ = w. Then w = vλ = uλ , which contradicts existence of two weak solutions of (1.1).
Our main purpose in this section is to prove that u≤ vλ for any weak solution u of problem (1.1). To do it, we will proceed by
contradiction, using a sub-supersolutions argument.

Definition 3.1. Let ζ : Ω→ R be a measurable function such that ζ ϕ ∈ L1 (Ω) for any ϕ ∈ H1
0 (Ω) . As usual, a function

u : Ω→ R is called a weak subsolution of the problem
{
−∆u = ζ in Ω,
u = 0 on ∂Ω

(3.1)
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if u ∈ H1 (Ω) , u≤ 0 on ∂Ω, and
∫

Ω

〈∇u,∇ϕ〉 ≤
∫

Ω

ζ ϕ (3.2)

for any nonnegative ϕ ∈ H1
0 (Ω). Weak superolutions are similarly defined by reversing the above inequalties.

Following [46], we say also that u is a subsolution, in the sense of distributions, of the problem

−∆u = ζ in Ω,

if u ∈ L1
loc (Ω) and (3.2 ) holds for any nonnegative ϕ ∈C∞

c (Ω). Supersolutions, in the sense of distributions, are similarly
defined by reversing the inequality (3.2 ).

Proposition 3.2. For β ∈ (0,3) let Uβ be as given in Definition 2.8. If u ∈Uβ and u ∈Uβ are a weak subsolution and a weak
supersolution, respectively, of problem (1.1) such that u≤ u, then problem (1.1) has a weak solution u∗ satisfying u≤ u∗ ≤ u
in Ω.

Proof. Clearly u and u are a subsolution and a supersolution, respectively, in the sense of distributions, of (1.1). Let

k (x) := a(x)u(x)−β +λh(x,u(x))

Let Ψβ be as given by Definition 2.8. Since u−β ≈ Ψ
−β

β
∈ L1

loc (Ω) and u≈Ψβ ∈ L∞ (Ω) then we have k ∈ L1
loc (Ω) . Also,

s→ a(x)s−β is nonincreasing and s→ λh(x,s) is nondecreasing, in both cases for a.e. x ∈Ω, thus for a.e. x ∈Ω it holds that

0≤ a(x)s−β +λh(x,s)≤ k (x) for all s ∈ [u(x) ,u(x)] ,

then, by ([46], Theorem 2.4) (1.1) has a solution z ∈W 1,2
loc (Ω), in the sense of distributions, such that u ≤ u ≤ u a.e. in Ω.

Since 0≤ u≤ u≈Ψβ ∈ L∞ (Ω) we have that u ∈W 1,2
loc (Ω)∩L∞ (Ω) Since u≈Ψβ and u≈Ψβ we have u≈Ψβ . Now:

If 0 < β < 1 we have Ψβ = δΩ and so u≈ δΩ.

If β = 1 then Ψβ = δΩ

(
log
(

ω

δΩ

)) 1
2

and so, for any γ ∈ (0,1) , δΩ / Ψβ / dγ

Ω
which gives δΩ / u / δ

γ

Ω
.

If 1 < β < 2 then Ψβ = δ

2
1+β

Ω
and then u≈ δ

2
1+β

Ω
.

Thus, by ([36], Lemma 3.2), u ∈ H1
0 (Ω) and u is a weak solution of (1.1).

Remark 3.3. (see [42], Proposition 5.9) Let U be a domain in Rn. Let f1, f2 ∈ L1 (U) . If u1, u2 ∈ L1 (U) are such that
∆u1 ≥ f1 and ∆u2 ≥ f2 in the sense of distributions in U, then

∆max{u1,u2} ≥ χ{u1>u2} f1 +χ{u2>u1} f2 +χ{u1=u2}
f1 + f2

2

in the the sense of distributions in U.

Lemma 3.4. If u, v are weak subsolutions (repectively weak supersolutions ) of (1.1) then w := max{u,v} (resp. w :=
min{u,v}) is a weak subsolution (resp. a weak supersolution) of (1.1).

Proof. Suppose that u, v are weak subsolutions of (1.1) and consider an arbitrary ϕ ∈C∞
c (Ω) and an open domain U such that

supp(ϕ)⊂U ⊂U ⊂Ω. Since u,v ∈ H1
0 (Ω) we have u,v ∈ L1 (U) and by Lemma 2.10, there exists a positive constant c such

that u≥ cΨβ and v≥ cΨβ a.e in Ω. Thus au−β and av−β belong to L1 (U) . Also, again by Lemma 2.10, u and v belong to
C
(
Ω
)

and so, since h is nonnegative and s→ h(x,s) is nondecreasing for a.e. x∈Ω, we have 0≤ h(.,u)≤ h(.,‖u‖
∞
)∈ L1 (U)

and thus h(.,u) ∈ L1 (U) . Similarly, h(.,v) ∈ L1 (U) and so au−β + h(.,u) and av−β + h(.,v) belong to L1 (U) . Thus, by
Remark 3.3 i) used with u1 = u, u2 = v, f1 = au−β +h(.,u) and f2 = av−β +h(.,v) , we have

∫

U
〈∇w,∇ϕ〉 ≤

∫

U

(
aw−β +h(.,w)

)
ϕ.

Since u, v belong to C
(
Ω
)

we have w ∈C
(
Ω
)
, and so 0≤ h(.,w)≤ h(.,‖w‖

∞
) and thus the mapping ψ → ∫

Ω
h(.,w)ψ is

continuous on H1
0 (Ω) , and since w ∈ H1

0 (Ω) , the mapping ψ → ∫
Ω
〈∇w,∇ψ〉 is also continuous on H1

0 (Ω) . On the other
hand, since w≥ cΨβ a.e in Ω, Lemma 2.6 gives the continuity of ψ → ∫

Ω
aw−β ψ on H1

0 (Ω) . Thus, by density, (3.3) holds
for any ϕ ∈ H1

0 (Ω) and so w is a subsolution of (1.1).
The assertion of the lemma in the case when u, v are supersolutions of (1.1) follows from the previous one and from the fact
that min(u,v) =−max(−u,−v) .
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Lemma 3.5. For any k > 1 the following two statements are equivalent:
i) The problem

−∆u = kau−β +λh(.,u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, (3.3)

has at least a weak solution.
ii) The problem

−∆u = au−β +λh(.,u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, (3.4)

has at least a weak solution.

Proof. Suppose that i) holds and let z be a solution of problem (3.3). Thus z is a supersolution of problem (3.4). Let u0 be the
(unique) solution of the problem




−∆u0 = au−β

0 in Ω,
u0 = 0 on ∂Ω,
u0 > 0 in Ω.

Then u0 is a subsolution of (3.4). Also,

−∆

(
k−

1
1+β z

)
= k−

1
1+β kaz−β + k−

1
1+β h(λ , .,z)≥ a

(
k−

1
1+β z

)−β

and so, by Lemma 2.1, k−
1

1+β z≥ u0 in Ω. Thus u0 ≤ k−
1

1+β z≤ z in Ω. Then, by Proposition 3.2, (3.4) has a solution u such
that u0 ≤ u≤ z a.e in Ω. Thus i) implies ii).
Suppose now that ii) holds, and let u be a solution of (3.4). Then −∆ku = kau−β + kλh(.,u)≥ kau−β +λh(.,u) and so ku is
a supersolution of (3.3). Also, −∆

( 1
2 u
)
= 1

2 au−β + 1
2 λh(.,u)≤ kau−β +λh(.,u) and so 1

2 u is a subsolution of (3.3) which
satisfies 1

2 u≤ ku. Then, by Proposition 3.2, (3.3) has a solution ũ such that 1
2 u≤ ũ≤ ku a.e in Ω. Thus ii) implies i).

Lemma 3.6. Let Σ be as in Remark 1.5 and let λ ∈ (0,Σ) . Then w≤ vλ for any weak solution w of problem (1.1).

Proof. We proceed by the way of contradiction. Suppose that w is a weak solution of problem (1.1) such that

|{x ∈Ω : w(x)> vλ (x)}|> 0.

For k > 1, by Remark 3.5, the problem



−∆u = kau−β +λh(.,u) in Ω,
u = 0 on ∂Ω,
u > 0 in Ω.

has a weak solution z, and by Lemma 2.10, z ∈Uβ . Since k > 1, u := z is a supersolution of problem (1.1). On the other hand,
by Remark 3.3, u := max(vλ ,w) is a subsolution of problem (1.1) and clearly u≥ vλ and u 6= vλ . Observe that, for k large
enough,

u≤ u a.e. in Ω. (3.5)

Indeed,

−∆

(
k−

1
1+β z

)
= k−

1
1+β kaz−β + k−

1
1+β λh(.,z)≥ a

(
k−

1
1+β z

)−β

.

Let u0 be the (unique) solution of the problem
{
−∆u0 = au−β

0 in Ω,
u0 = 0 on ∂Ω.

Then, by Lemma 2.1, k−
1

1+β z ≥ u0 in Ω and so z ≥ k
1

1+β u0 in Ω. On the other hand, since (by Lemma 2.10) u0, w and vλ

belong to Uβ , there exist positive constants c0, c1 and c2 such that u0 ≥ c0Ψβ , w≤ c1Ψβ and vλ ≤ c2Ψβ . Thus z≥ k
1

1+β u0 ≥
k

1
1+β c0Ψβ ≥ k

1
1+β c0c−1

1 w and, similarly, z ≥ k
1

1+β c0c−1
2 vλ . Then (3.5) holds for k > max

(
1,
(
c−1

0 c1
)1+β

,
(
c−1

0 c2
)1+β

)
.

Notice that, by the assumptions on h, λh(.,s) ∈ L2 (Ω) for any s > 0. Thus, by Proposition 3.2, problem (1.1) has a solution u∗

such that u≤ u∗ ≤ u, which, since u≥ vλ and u 6= vλ , contradicts the property of vλ stated at the beggining of the section.
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4. Some facts about a class of principal eigenvalue problems

In this brief section we recall some facts concerning a class of principal eigenvalue problems with singular potential and weight
function, which we will need to prove Theorem 1.6.

Definition 4.1. Let B :=
{

b : Ω→ R : δ 2
Ω

b ∈ L∞ (Ω)
}
, and for b ∈B let ‖b‖B :=

∥∥δ 2
Ω

b
∥∥

∞
,

and let B+ := {b ∈B : b≥ 0 in Ω} and P := {m ∈ L∞ (Ω) : m > 0 a.e. in Ω} .

Notice that B provided with the norm ‖.‖B is a Banach space.

Remark 4.2. For b ∈B+ and m ∈ P consider the principal eigenvalue problem



−∆z+bz = ρmz in Ω,
z = 0 on ∂Ω,
z > 0 in Ω

(4.1)

where ρ ∈ R and the equation is understood in weak sense, i.e., z ∈ H1
0 (Ω) and

∫

Ω

(〈∇z,∇ϕ〉+bzϕ) = ρ

∫

Ω

mzϕ

for any ϕ ∈ H1
0 (Ω) . Notice that, although b may be singular at ∂Ω (for instance δ

−2
Ω
∈ B+), by ([43], Theorem 4.1), the

principal eigenvalue of (4.1) exists, is unique, positive, and simple. In order to emphasize its dependence on m and b, we will
denote such a ρ by ρm,b. Similarly, we will denote by φm,b its positive eigenfunction normalized by

∥∥φm,b
∥∥

2 = 1. In addition,
by ([43], Theorem 4.3), ρm,b is given by the usual Rayleigh’s variational formula

ρm,b = inf
w∈H1

0 (Ω)\{0}

∫
Ω

(
|∇w|2 +bw2

)

∫
Ω

mw2 (4.2)

Remark 4.3. Let P and B+ be as in Definition 4.1, with P provided with the topology inherited from L∞ (Ω) and B+ endowed
with the topology inherited from the Banach space B. Then, by ([43], Theorem 4.5) we have:
i) The map (m,b)→ ρm,b is continuous from P×B+ into R.
ii) The map (m,b)→ φm,b is continuous from P×B+ into H1

0 (Ω) .

Definition 4.4. Let Σ be as in Remark 1.5 and let Uβ be as given by Definition 2.8. For u ∈Uβ , x ∈Ω, and σ ∈ (0,Σ) , let

bu (x) := βa(x)u−β−1 (x)

and let

Nσ ,u (x) := σhs (x,u(x))

where hs (x, t) := ∂h(x,s)
∂ s |s=t .

Remark 4.5. Let Σ be as in Definition 4.4 and for σ ∈ (0,Σ) and u ∈Uβ , consider the principal eigenvalue problem




−∆z+βau−β−1z = rσhs (.,u)z in Ω,
z = 0 on ∂Ω,
z > 0 in Ω,

(4.3)

which is, with the above notations, the problem



−∆z+buz = rNσ ,uz in Ω,
z = 0 on ∂Ω,
z > 0 in Ω,

(4.4)

Notice that since u ∈Uβ and σ ∈ (0,Σ) then bu ∈B+ and Nσ ,u ∈ P. Indeed, since 0≤ a ∈ L∞ (Ω) and u ∈Uβ there exists a

constant c > 0 such that 0≤ bu ≤ cΨ
−β−1
β

. Thus bu ∈B+. In fact, let Ψβ be as defined by Definition 2.3 and let δΩ be defined
by (2.1). Then (since 0 < a ∈ L∞ (Ω)):

i) If 0 < β < 1 then Ψβ = δΩ and so δ 2
Ω

bu ≤ cδ 2
Ω

Ψ
−β−1
β

= cδ
1−β

Ω
∈ L∞ (Ω) ,

ii) If β = 1 then Ψβ = δΩ

(
log
(

ω0
δΩ

)) 1
2

and so δ 2
Ω

bu ≤ cδ 2
Ω

Ψ
−2
β

= c
(

log
(

ω0
δΩ

))−1
∈ L∞ (Ω),
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iii) If 1 < β < 3 then Ψβ = δ

2
1+β

Ω
and so δ 2

Ω
bu ≤ cδ 2

Ω
Ψ
−β−1
β

= cδ 2
Ω

δ
−−(β+1) 1

1+β

Ω
∈ L∞ (Ω) .

Therefore, for any β ∈ (0,3) and u ∈ Uβ , we have bu ∈ B+. On the other hand, Nσ ,u = σhs (.,u(.)) and so, from the
assumptions on h stated at the introduction, it is clear that Nσ ,u > 0 in Ω and that Nσ ,u ∈ L∞ (Ω) , and so Nσ ,u ∈ P.
Then, by Remark 4.2, problem (4.3) has a unique principal eigenvalue r = ρNσ ,u,bu which is unique, positive, simple, and it is
given by the corresponding Rayleigh’s variational formula.

Remark 4.6. In order to simplify the notation the principal eigenvalue of problem (4.3) will be denoted, from now on, by rσ ,u
(instead of ρNσ ,u,bu ), and its normalized positive principal eigenfunction (normalized by requiring ‖.‖2 = 1) will be denoted by
φσ ,u (instead of φNσ ,u,bu ).

We will need also the following lemma

Lemma 4.7. Let Yβ and Uβ be as given in Definition 2.8 and let u ∈Uβ . Let Σ be as in Remark 1.5 and let σ ∈ (0,Σ). Let{
σ j
}

j∈N and
{

u j
}

j∈N be sequences in (0,Σ) and Uβ respectively, and assume that
{

σ j
}

j∈N converges to σ and that
{

u j
}

j∈N
converges to u in Yβ . Then
i)
{

bu j

}
j∈N converges to bu in B.

ii) {Nσ j ,u j} j∈N converges to Nσ j ,u j in L∞ (Ω) .

iii)
{

rσ j ,u j

}
j∈N converges to rσ ,u in R and

{
φσ j ,u j

}
j∈N converges to φσ ,u in H1

0 (Ω) .

Proof. Let Ψβ be as given by Definition 2.3. Since u ∈Uβ there exists c > 0 such that

u≥ cΨβ in Ω. (4.5)

Let Yβ and ‖.‖Yβ
be as given by Definition 2.8, and let BYβ

(
u, c

2

)
be the open ball in Yβ centered at u and with radius c

2 . Thus

for any z ∈ BYβ

(
u, c

2

)
we have

∥∥∥Ψ
−1
β

(z−u)
∥∥∥

∞

< c
2 and so z > u− c

2 Ψβ ≥
(
c− c

2

)
Ψβ = c

2 Ψβ in Ω. Now,
{

u j
}

j∈N converges

to u in Yβ and so there exists j0 ∈ N such that u j ∈ BYβ

(
u, c

2

)
for any j ≥ j0. Then

u j ≥
c
2

Ψβ in Ω for any j ≥ j0. (4.6)

Let bu j and bu be defined by Definition 4.4. Observe that, for j ∈ N,

∣∣δ 2
Ωbu j −δ

2
Ωbu
∣∣=
∣∣∣βaδ

2
Ω

((
u−β−1

j −u−β−1
))∣∣∣≤ c

∣∣∣δ 2
Ω

(
u−β−1

j −u−β−1
)∣∣∣ in Ω, (4.7)

where c = β ‖a‖
∞

is a positive constant independent of j. Now, for x ∈Ω, the mean value theorem gives that

u−β−1
j (x)−u−β−1 (x) =−(β +1)θ

−β−2
j,x (u j (x)−u(x)) (4.8)

for some number θ j,x belonging to the open segment with endpoints u j (x) and u(x) , and so, by (4.5) and (4.6),

θ j,x ≥
c
2

Ψβ (x) in Ω for any x ∈Ω whenever j ≥ j0. (4.9)

Therefore, from (4.7), (4.8), and (4.9), we have, for any j ≥ j0,

∣∣δ 2
Ωbu j −δ

2
Ωbu
∣∣≤ c(β +1)δ 2

Ω

∣∣u j−u
∣∣

( c
2 Ψβ

)β+2 = c′
δ 2

Ω
Ψβ

∣∣∣Ψ−1
β

(u j−u)
∣∣∣

Ψ
β+2
β

= c′δ 2
ΩΨ
−β−1
β

∣∣∣Ψ−1
β

(u j−u)
∣∣∣ in Ω, (4.10)

with c′ a positive constant independent of j. Direct computations using the definition of the functinos Ψβ give that

δ
2
ΩΨ
−β−1
β

∈ L∞ (Ω) . (4.11)

Then, by (4.10) and (4.11) we get

∣∣δ 2
Ωbu j −δ

2
Ωbu
∣∣≤ c′′

∣∣∣Ψ−1
β

(u j−u)
∣∣∣ in Ω,

with c′′ a positive constant independent of j, and since
{

u j
}

j∈N converges to u in Yβ we have also that lim j→∞

∥∥∥Ψ
−1
β

(u j−u)
∥∥∥

∞

=

0 and then

lim
j→∞

∥∥δ
2
Ωbu j −δ

2
Ωbu
∥∥

∞
= 0
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which gives that
{

bu j

}
j∈N converges to bu in B. Thus i) holds

Let us see that {Nσ j ,u j} j∈N converges to Nσ ,u in L∞ (Ω) . Since each Ψβ is bounded, lim j→∞

∥∥∥Ψ
−1
β

(u j−u)
∥∥∥

∞

= 0 implies that

lim
j→∞

∥∥u j−u
∥∥

∞
= 0.

Also u ∈ L∞ (Ω) (because Ψ
−1
β

u ∈ L∞ (Ω)). Then
{

u j
}

j∈N is bounded in L∞ (Ω) . Thus there exists M > 0 such that ‖u‖
∞
≤M

and
∥∥u j
∥∥

∞
≤M for all j ∈N. Then for each j there exists E j ⊂Ω such that

∣∣E j
∣∣= 0 and 0≤ u j ≤M in Ω\E j, and there exists

E ⊂Ω such that |E|= 0 and 0≤ u≤M in Ω\E. Let F := E ∪∪ j∈NE j. Then |F |= 0, 0≤ u≤M in Ω\F and 0≤ u j ≤M
in Ω \F for all j ∈ N. Now, by our assumptions on h stated at the introduction, there exists a constant M∗ > 0 such that
|hs (x, t)| ≤M∗ and |hss (x, t)| ≤M∗ for any (x, t) ∈Ω× [0,M] . Then by the triangle inequality and the mean value theorem we
have, for any x ∈Ω\F and for all j ∈ N,

|Nσ j ,u j (x)−Nσ ,u (x)|=
∣∣σ jhs (x,u j (x))−σhs (x,u(x))

∣∣
≤
∣∣(σ j−σ)hs (x,u j (x))

∣∣+
∣∣σhs (x,u j (x))−σhs (x,u(x))

∣∣
≤
∣∣(σ j−σ)

∣∣ ∣∣hs (x,u j (x))
∣∣+σ

∣∣hss (x,ζ j,x)
∣∣ ∣∣u j (x)−u(x)

∣∣
(4.12)

where ζ j,x is a number belonging to the open segment with endpoints u j (x) and u(x) . Then, for x ∈Ω\F and for all j ∈ N,∣∣hss (x,ζ j,x)
∣∣≤M∗ and so, for such x and j, (4.12) gives

|Nσ j ,u j (x)−Nσ ,u (x)| ≤M∗
∣∣σ j−σ

∣∣+σM∗
∣∣u j (x)−u(x)

∣∣

which, since lim j→∞

∥∥u j−u
∥∥

∞
= 0 and lim j→∞ σ j = σ , implies that {Nσ j ,u j} j∈N converges to Nσ ,um in L∞ (Ω) . Thus ii)

holds. Now, iii) follows from i), ii), and Remark 4.3.

5. Proof of the main results

We fix, for the whole section, Σ as given by Remark 1.5.

Definition 5.1. Let Yβ and Uβ be as in Definition 2.8, and let S : (0,Σ)×Uβ → Yβ be defined by

S (λ ,u) := u− (−∆)−1
(

au−β +λh(.,u)
)
. (5.1)

By ([37], Lemma 3.3) we have au−β +λh(.,u) ∈ H−1 (Ω), and (−∆)−1 (au−β +λh(λ ,u)
)
∈Yβ for any (λ ,u) ∈ (0,Σ)×Uβ ,

therefore S is well defined. Moreover, by ([37], Lemma 3.7), ([37], Corollary 3.8), and ([37], Lemma 3.9) (all of them
applied with f (λ , .,s) := λh(.,s) ) the operator S is continuously Fréchet differentiable in (0,Σ)×Uβ , and its differential at
(λ ,u) ∈ (0,Σ)×Uβ , denoted by DS(λ ,u), is given by

DS(λ ,u) (τ,ψ) = ψ− (−∆)−1
(
−βaψu−β−1 + τh(.,u)+ψλ

∂h
∂ s (.,u)

)
, (5.2)

and its partial derivative D2S(λ ,u) at (λ ,u) (i.e. the Fréchet differential at u, of the mapping v→ S (λ ,v)) is given by

D2S(λ ,u) (ψ) = ψ− (−∆)−1
((
−βau−β−1 +λ

∂h
∂ s

(.,u)
)

ψ

)
(5.3)

We recall that, as said in Remark 4.6, the principal eigenvalue of a problem of the form (4.3) will be denoted by rσ ,u.

Remark 5.2. In ([37], Lemma 5.17) it is proved that if λ ∈ (0,Σ) and if uλ is the minimal solution (as provided by Remark
1.2) of (1.1) then,

rλ ,uλ
> 1.

where rλ ,uλ
denotes the principal eigenvalue of problem 4.3, taking there u = uλ . By using this fact and a maximum principle

with weight function given by ([37], Lemma 4.4), in ([37], Lemma 5.18) it was proved that

D2S(λ ,uλ )
: Yβ → Yβ is bijective.

An inspection of the proofs of lemmas ([37], Lemma 5.17) and ([37], Lemma 5.18) shows that they work also if uλ is replaced
by any weak solution u of (1.1) such that u≤ vλ and u 6= vλ .

Lemma 5.3. Let λ ∈ (0,Σ), and let u be a weak solution of (1.1) such that u 6= vλ , then:
ii) rλ ,u > 1.
ii) D2S(λ ,u) : Yβ → Yβ is bijective.
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Proof. By Lemma 3.6) we actually know that u≤ vλ for any weak solution of (1.1), then the lemma follows from Remark
5.2

Now we can prove the following

Lemma 5.4. Let λ ∈ (0,Σ), and let u be a weak solution of (1.1) such that rλ ,u > 1, then there exist ε > 0 and an open set
V ⊂ Yβ such that u ∈V ⊂Uβ and if J := (λ − ε,λ + ε) then:
i) J ⊂ (0,Σ) and for any σ ∈ J there exists a unique ξ (σ) ∈V such that

{
S (σ ,ξ (σ)) = 0,
ξ (λ ) = u.

Moreover, ξ : J→ Yβ is continuously differentiable, and its derivative ξ ′ satisfies, in weak sense, for any σ ∈ J,

{
−∆(ξ ′ (σ)) =−βa(ξ (σ))−(1+β )

ξ ′ (σ)+h(.,ξ (σ))+σ
∂h
∂ s (.,ξ (σ))ξ ′ (σ) in Ω,

ξ ′ (σ) = 0 on ∂Ω..
(5.4)

ii) rσ ,ξ (σ) > 1 for any σ ∈ J.
iii) σ → ξ (σ) is nondecreasing on J.
iv) σ → rσ ,ξ (σ) is nonincreasing on J.

Proof. The first assertion of i) follows from Lemma 5.3 and the implicit function theorem and, since S (σ ,ξ (σ)) = 0 for any
σ ∈ J, (5.4) follows from (5.2) and the chain rule.
To see ii), observe that, by i), σ → ξ (σ) is continuous from J into Yβ . Then, by lemma 4.7, σ → rσ ,ξ (σ) is continuous on J.
Thus, since rλ ,u > 1, by diminishing ε if necessary, we get that rσ ,ξ (σ) > 1 for all σ ∈ J. Thus ii) holds.
Let us see iii). We rewrite (5.4) as

{
−∆(ξ ′ (σ))+βa(ξ (σ))−β−1

ξ ′ (σ) = Nσ ,ξ (σ)ξ ′ (σ)+h(.,ξ (σ)) in Ω,
ξ ′ (σ) = 0 on ∂Ω.

Then, since h(.,ξ (σ)) ≥ 0 and rσ ,ξ (σ) > 1, the maximum principle with weight stated in ([37] Lemma 4.4 ii)) gives that
ξ ′ (σ)≥ 0 for any σ ∈ J. Thus σ → ξ (σ) is nondecreasing on J, and so iii) holds.
To see iv), observe that for σ , τ ∈ J such that σ ≤ τ we have, by iii), ξ (σ) ≤ ξ (τ) in Ω, and so, by the assumptions on h
stated at the introduction,

Nσ ,ξ (σ) = σ
∂h
∂ s

(.,ξ (σ))≤ σ
∂h
∂ s

(.,ξ (τ))≤ τ
∂h
∂ s

(.,ξ (τ)) = Nτ,ξ (τ) in Ω.

Then

rσ ,ξ (σ) = inf
z∈H1

0 (Ω)\{0}

∫
Ω

[
|∇z|2 +βaξ (σ)−β−1 z2

]

∫
Ω

Nσ ,ξ (σ)z2
≥ inf

z∈H1
0 (Ω)\{0}

∫
Ω

[
|∇z|2 +βaξ (τ)−β−1 z2

]

∫
Ω

Nτ,ξ (τ)z2.
= rτ,ξ (τ),

and thus iv) holds.

Let us recall the Hardy’s inequality (see e.g., [45], p. 313):

sup
06=ϕ∈H1

0 (Ω)

∥∥ϕδ
−1
Ω

∥∥
L2(Ω)

‖∇ϕ‖L2(Ω)

< ∞

Lemma 5.5. Let Σ be as given by Remark 1.5 and let Yβ and Uβ be as given in Definition 2.8. Let λ0 ∈ (0,Σ) and let w0 be a
weak solution of problem (1.1) such that w0 6= vλ0 , where vλ0 is the maximal solution of (1.1) corresponding to λ = λ0. Then
there exists ε > 0 and a function Θ : [0,λ0 + ε)→Uβ such that
i) Θ(λ0) = w0.
ii) Θ ∈C1

(
(0,λ0 + ε) ,Yβ

)
∩C
(
[0,λ0 + ε) ,Yβ

)
.

iii) S (σ ,Θ(σ)) = 0 for any σ ∈ (0,λ0 + ε)
iv) Θ(0) = u0 with convergence in Yβ , where u0 is the (unique) weak solution of (1.1) corresponding to λ = 0.

Proof. Let G be the family of the pairs (J,ξJ) such that:
1) J is an open interval in R, J ⊂ (0,Σ), and λ0 ∈ J.
2) ξJ ∈C1

(
J,Uβ

)
, ξJ (λ0) = w0, and S (σ ,ξJ (σ)) = 0 for all σ ∈ J.

3) rσ ,ξJ(σ) > 1 for any σ ∈ J.
4) σ → ξJ (σ) is nondecreasing on J
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5) σ → rσ ,ξJ(σ) is nonincreasing on J.
By Lemma 5.4, G 6=∅. Notice that, since ξJ ∈C1

(
J,Uβ

)
then, by Lemma 4.7,

σ → rσ ,ξJ(σ) is continuous on J. (5.5)

We claim that:

If (J,ξJ) ∈ G,(J∗,ξJ∗) ∈ G, and J∩ J∗ 6=∅, then ξJ = ξJ∗ in J∩ J∗. (5.6)

Indeed, let F := {σ ∈ J∩ J∗ : ξJ (σ) = ξJ∗ (σ)} Then λ0 ∈ F and so F 6= ∅. Also, since ξJ and ξJ∗ are continuous in their
respective domains, F is closed in J∩ J∗. Moreover, if σ ∈ F then, by the uniqueness assertion of Lemma 5.4 i) (used taking
there λ = σ ), there exists ε > 0 such that (σ − ε,σ + ε)⊂ F, and so F is open in J∩ J∗. Then, since J∩ J∗ is a connected set,
we conclude that F = J∩ J∗, and thus ξJ = ξJ∗ in J∩ J∗.
Let I := ∪J:(J,ξJ)∈GJ. Since I is a union of open intervals contained in (0,Σ), and all of them contain λ0, it follows that

I is an open interval, I ⊂ (0,Σ) , and λ0 ∈ I. (5.7)

Let Θ : I→Uβ be defined by

Θ(σ) := ξJ (σ) if σ ∈ J for some (J,ξJ) ∈ G. (5.8)

By (5.6) Θ is well defined on I and, from 2) and (5.8),

Θ ∈C1 (I,Uβ

)
, and S (σ ,Θ(σ)) = 0 for all σ ∈ I, (5.9)

(Later, within the proof of the lemma, we will define also Θ(λ∗), where λ∗ is the left endpoint of I, and we will show that Θ is
continuous at λ∗. and that λ∗ = 0 ). For σ ∈ I, let (J,ξJ) ∈ G such that σ ∈ J. From (5.8) we have rσ ,Θ(σ) = rσ ,ξJ(σ) and, by
3), rσ ,ξJ(σ) > 1. Then,

rσ ,Θ(σ) > 1 for any σ ∈ J. (5.10)

Suppose that t ∈ I, s ∈ I, and t ≤ s≤ λ0, and let (J,ξJ) ∈ G such that t ∈ J. Then s ∈ J, and so, since by 4) ξJ is nondecreasing
on J, and taking into account the definition (5.8) of Θ we have Θ(t)≤Θ(s). Then

Θ is nondecreasing on I. (5.11)

For σ ∈ I, let Nσ ,Θ(σ) be defined as in Definition 4.4, that is,

Nσ ,Θ(σ) (x) = σhs (x,Θ(σ)(x)) for any x ∈Ω.

Now, Θ is nondecreasing on I and, by the assumptions on h stated at the introduction, for any x ∈Ω, the mapping s→ hs (x,s)
is nondecreasing , then, for any x ∈Ω,

σ → Nσ ,Θ(σ) (x) is nondecreasing on I. (5.12)

On the other hand, by the Rayleigh’s variational formula for principal eigenvalues we have, for σ ∈ I,

rσ ,Θ(σ) = inf
z∈H1

0 (Ω)\{0}

∫
Ω

[
|∇z|2 +βaΘ(σ)−β−1 z2

]

∫
Ω

Nσ ,Θ(σ)z2
. (5.13)

From this expression, and taking into account (5.11), (5.12), and that Nσ ,Θ(σ) is nonnegative for any σ ∈ I, it follows that

the mapping σ → rσ ,Θ(σ) is nonincreasing on I. (5.14)

Notice that, from (5.7), (5.9), (5.10), (5.11), and (5.14) it follows that

(I,Θ) ∈ G (5.15)

Notice also that, since Θ : I→Uβ is continuous then, by Lemma 4.7,

σ → rσ ,Θ(σ) is continuous from I into R (5.16)

In addition, since Θ ∈C1
(
I,Uβ

)
and S (σ ,Θ(σ)) = 0 for all σ ∈ I, then from (5.2) and the chain rule we have, for any σ ∈ I,

{
−∆(Θ′ (σ)) =−βa(Θ(σ))−(1+β )

Θ′ (σ)+h(.,Θ(σ))+σ
∂h
∂ s (.,Θ(σ))Θ′ (σ) in Ω,

Θ′ (σ) = 0 on ∂Ω..
(5.17)



Fundamental Journal of Mathematics and Applications 101

Since for any σ ∈ I, Θ(σ) is a weak solution of (1.1) (taking there λ = σ ) we have, in weak sense,



−∆(Θ(σ)) = a(Θ(σ))−β +σh(.,Θ(σ))≥ a(Θ(σ))−β in Ω,
Θ(σ) = 0 on ∂Ω

Θ(σ)> 0 in Ω.

(5.18)

On the other hand, the (unique) weak solution u0 of (1.1) corresponding to λ = 0 satisfies



−∆u0 = a(u0)

−β in Ω,
u0 = 0 on ∂Ω

u0 > 0 in Ω.

(5.19)

Then, by Lemma 2.1 ii), Θ(σ) ≥ u0 for any σ ∈ I and, by Lemma 2.10 iv), there exists a positive constant c∗ such that
u0 ≥ c∗Ψβ (with Ψβ given by Definition 2.3). Then, for any σ ∈ I,

Θ(σ)≥ c∗Ψβ in Ω. (5.20)

Let λ∗ and λ ∗ be such that I = (λ∗,λ ∗) . By (5.11), σ → Θ(σ) is nondecreasing on I, and clearly Θ(σ)≥ 0 in Ω (because
Θ(σ) ∈Uβ ). Then there exists the pointwise limit limσ→λ∗Θ(σ). Define, for x ∈Ω

Θ(λ∗)(x) := lim
σ→λ∗

Θ(σ)(x) . (5.21)

We are going to show the following three facts:
A) Θ(λ∗) ∈Uβ .
B) limσ→λ∗Θ(σ) = Θ(λ∗) with convergence in Yβ .
C) Θ(λ∗) is a weak solution of (1.1) corresponding to λ = λ∗.
From (5.20),

Θ(λ∗)≥ c∗Ψβ in Ω. (5.22)

Also, Θ(σ) ≤ Θ(λ0) for any σ ∈ (λ∗,λ0) and, since Θ(λ0) ∈Uβ we have Θ(λ0) ≤ c∗∗Ψβ for some positive constant c∗∗,
then

Θ(λ∗)≤ c∗∗Ψβ in Ω. (5.23)

Now, for any σ ∈ I,
{
−∆(Θ(σ)) = a(Θ(σ))−β +σh(.,Θ(σ)) in Ω,
Θ(σ) = 0 on ∂Ω,

(5.24)

and so, for λ∗ < σ < τ < λ0 we have, in weak sense,
{
−∆(Θ(τ)−Θ(σ)) = a

(
Θ−β (τ)−Θ−β (σ)

)
+ τh(.,Θ(τ))−σh(.,Θ(σ)) in Ω,

Θ(τ)−Θ(σ) = 0 on ∂Ω.

Then, by taking Θ(τ)−Θ(σ) as a test function in the above equation we get
∫

Ω

|∇(Θ(τ)−Θ(σ))|2 =
∫

Ω

a
(

Θ
−β (τ)−Θ

−β (σ)
)
(Θ(τ)−Θ(σ))+

∫

Ω

(Θ(τ)−Θ(σ))(τh(.,Θ(τ))−σh(.,Θ(σ)))

≤
∫

Ω

(Θ(τ)−Θ(σ))(τh(.,Θ(τ))−σh(.,Θ(σ))) (5.25)

where, in the last inequality, we have used that Θ(σ)≤Θ(τ). Now, 0≤Θ(σ)≤Θ(τ)≤Θ(λ0) then, by our assumptions on
h,

0≤ τh(.,Θ(τ))−σh(.,Θ(σ))≤ λ0h(.,Θ(λ0)) ∈ L∞ (Ω) ,

and thus, since there exists the (finite) pointwise limit limσ→λ∗Θ(σ) , we have

lim
σ ,τ→λ∗

(Θ(τ)−Θ(σ))(τh(.,Θ(τ))−σh(.,Θ(σ))) = 0 a.e. in Ω.

Also,

0≤ (Θ(τ)−Θ(σ))(τh(.,Θ(τ))−σh(.,Θ(σ)))≤Θ(λ )λh(.,Θ(λ )) a.e. in Ω,



102 Fundamental Journal of Mathematics and Applications

and, by our assumptions on h stated at the introduction and by Lemma 2.10, Θ(λ )λh(.,Θ(λ )) ∈ L1 (Ω) . Then, by the
L:ebesgue’s dominated convergence theorem,

lim
σ ,τ→λ∗

∫

Ω

(Θ(τ)−Θ(σ))(τh(.,Θ(τ))−σh(.,Θ(σ))) = 0

Thus, by (5.25), limσ ,τ→λ∗ ‖Θ(τ)−Θ(σ)‖H1
0 (Ω) = 0 and so, by the Cauchy criterion, there exists ζ ∈ H1

0 (Ω) such that

lim
σ→λ

+∗ Θ(σ) = ζ with convergence in H1
0 (Ω) . Since lim

σ→λ
+∗ Θ(σ) = Θ(λ∗) with pointwise convergence in Ω, we have

ζ = Θ(λ∗) . Then

Θ(λ∗) ∈ H1
0 (Ω) and lim

σ→λ
+∗

Θ(σ) = Θ(λ∗) with convergence in H1
0 (Ω) . (5.26)

Moreover, from (5.22), (5.23) and (5.26), we have

Θ(λ∗) ∈Uβ .

Let us show that, in weak sense,
{
−∆(Θ(λ∗)) = a(Θ(λ∗))

−β +λ∗h(.,Θ(λ∗)) in Ω,
Θ(λ∗) = 0 on ∂Ω.

(5.27)

Indeed, let ϕ ∈ H1
0 (Ω) . Since lim

σ→λ
+∗ Θ(σ) = Θ(λ∗) with convergence in H1

0 (Ω) , we have

lim
σ→λ

+∗

∫

Ω

〈∇Θ(σ) ,∇ϕ〉=
∫

Ω

〈∇Θ(λ∗) ,∇ϕ〉 .

Also,

lim
σ→λ

+∗
a(Θ(λ∗))

−β
ϕ = a(Θ(λ∗))

−β
ϕ a.e. in Ω

and, since a ∈ L∞ (Ω) and Θ(λ∗)≥ c′Ψβ with c′ a positive constant, we have, for σ ∈ (λ∗,λ ) ,

∣∣∣a(Θ(λ∗))
−β

ϕ

∣∣∣≤
∣∣∣a(Θ(λ∗))

−β
ϕ

∣∣∣≤ cΨ
−β

β
|ϕ|= cδΩΨ

−β

β

∣∣∣∣
ϕ

δΩ

∣∣∣∣ a.e. in Ω,

with c a positive constant independent of σ . By Remark 2.4 we have δΩΨ
−β

β
∈ L2 (Ω) , and then, by the Hölder’s and the

Hardy’s inequalities,

∫

Ω

δΩΨ
−β

β

∣∣∣∣
ϕ

δΩ

∣∣∣∣≤
∥∥∥δΩΨ

−β

β

∥∥∥
2

∥∥∥∥
ϕ

δΩ

∥∥∥∥
2
≤ c′

∥∥∥δΩΨ
−β

β

∥∥∥
2
‖ϕ‖H1

0 (Ω) < ∞

and so δΩΨ
−β

β

∣∣∣ ϕ

δΩ

∣∣∣ ∈ L1 (Ω) . Thus, by the Lebesgue’s dominated convergence theorem,
∫

Ω
a(Θ(λ∗))

−β
ϕ ∈ L1 (Ω) and

lim
σ→λ

+∗

∫

Ω

aΘ
−β (σ)ϕ =

∫

Ω

aΘ
−β (λ∗)ϕ. (5.28)

Also, by the assumptions on h stated at the introduction, and since lim
σ→λ

+∗ Θ(σ) = Θ(λ∗) pointwise in Ω, we have

lim
σ→λ

+∗
σh(.,Θ(σ))ϕ = λ∗h(.,Θ(λ∗))ϕ a.e. in Ω. (5.29)

In addition, for λ∗ < σ < λ0, we have |σh(.,Θ(σ))ϕ| ≤ λ0h(.,Θ(λ0)) |ϕ| . By Lemma 2.10, Θ(λ0) ∈C
(
Ω
)

and then, by
our assumptions on h, λ0h(.,Θ(λ0)) ∈C

(
Ω
)
. Therefore λ0h(.,Θ(λ0)) |ϕ| ∈ L1 (Ω) and thus, by the Lebesgue’s dominated

convergence theorem, λ∗h(.,Θ(λ∗))ϕ ∈ L1 (Ω) and

lim
σ→λ

+∗

∫

Ω

σh(.,Θ(σ))ϕ =
∫

Ω

λ∗h(.,Θ(λ∗))ϕ. (5.30)

By (5.24) we have, for any σ ∈ I
∫

Ω

〈∇Θ(σ) ,∇ϕ〉=
∫

Ω

aΘ
−β (σ)ϕ +

∫

Ω

σh(.,Θ(σ))ϕ
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and then, from (5.28), (5.29), and (5.30), by taking the limit as σ → λ+
∗ we get

∫

Ω

〈∇Θ(λ∗) ,∇ϕ〉=
∫

Ω

aΘ
−β (λ∗)ϕ +

∫

Ω

λ∗h(.,Θ(λ∗))ϕ.

Thus Θ(λ∗) is a weak solution of (5.27).
Now we show that lim

σ→λ
+∗ Θ(σ) = Θ(λ∗) with convergence in Yβ . To do it, it is enough to see that

sup
σ∈(λ∗,λ )

∥∥Θ
′ (σ)

∥∥
Yβ

< ∞. (5.31)

Indeed, if (5.31) holds, then, for λ∗ < σ < τ < λ ,

‖Θ(τ)−Θ(σ)‖Yβ
=

∥∥∥∥
∫

τ

σ

Θ
′ (s)ds

∥∥∥∥
Yβ

≤
∫

τ

σ

∥∥Θ
′ (s)
∥∥

Yβ

ds≤ |τ−σ | sup
σ∈(λ∗,λ )

∥∥Θ
′ (σ)

∥∥
Yβ

,

and so by (5.31) and the Cauchy’s criterion, there exists ξ ∈ Yβ such that lim
σ→λ

+∗ Θ(σ) = ξ with convergence in Yβ , and
since Θ(σ) converges pointwise to Θ(λ∗) we have ξ = Θ(λ∗) and so lim

σ→λ
+∗ Θ(σ) = Θ(λ∗) with convergence in Yβ .

To prove (5.31) observe that, for σ ∈ (λ∗,λ ) , Θ′ (σ) satisfies, in weak sense,
{
−∆Θ′ (σ)+βaΘ−β−1 (σ)Θ′ (σ)−σ

∂h
∂ s (.,Θ(σ))Θ′ (σ) = h(.,Θ(σ)) in Ω,

Θ′ (σ) = 0 on ∂Ω.
(5.32)

Since Θ(σ)≤Θ(λ0) , σ
∂h
∂ s (.,Θ(σ))≤ λ0

∂h
∂ s (.,Θ(λ0)) , and h(.,Θ(σ))≤ h(.,Θ(λ0)) , (5.32) gives that, in weak sense,

{
−∆Θ′ (σ)+βaΘ−β−1 (λ0)Θ′ (σ)−λ0

∂h
∂ s (.,Θ(λ0))Θ′ (σ)≤ h(.,Θ(λ0)) in Ω,

Θ′ (σ) = 0 on ∂Ω.
(5.33)

Also,
{
−∆Θ′ (λ0)+βaΘ−β−1 (λ0)Θ′ (λ0)−λ0

∂h
∂ s (.,Θ(λ0))Θ′ (λ0) = h(.,Θ(λ0)) in Ω,

Θ′ (λ0) = 0 on ∂Ω,
(5.34)

and so, since Nλ0,Θ(λ0) = λ0h(.,Θ(λ0)) and ρ
Nλ0 ,Θ(λ0),Θ(λ0)

> 1, from (5.33), (5.34) and the maximum principle of ([37] Lemma

4.4 ii)) it follows that Θ′ (σ) ≤ Θ′ (λ0) a.e in Ω. We have also Θ′ (σ) ≥ 0 a.e in Ω (because σ → Θ(σ) is nondecreasing).
Therefore

∥∥∥Ψ
−1
β

Θ
′ (σ)

∥∥∥
∞

≤ c for any σ ∈ (λ∗,λ0) (5.35)

where c :=
∥∥∥Ψ
−1
β

Θ′ (λ0)
∥∥∥

∞

(note that c is finite because Θ′ (λ0) ∈Yβ ). In particular, (5.35) gives that for some constant c′ > 0,

∥∥Θ
′ (σ)

∥∥
∞
≤ c′ for any σ ∈ (λ∗,λ0) . (5.36)

From (5.32) we have also
∫

Ω

∣∣∇Θ
′ (σ)

∣∣2 =−
∫

Ω

βaΘ
−β−1 (σ)

(
Θ
′ (σ)

)2
+
∫

Ω

σ
∂h
∂ s

(.,Θ(σ))
(
Θ
′ (σ)

)2
+
∫

Ω

h(.,Θ(σ))Θ
′ (σ)

≤
∫

Ω

λ0
∂h
∂ s

(.,Θ(λ0))
(
Θ
′ (σ)

)2
+
∫

Ω

h(.,Θ(λ0))Θ
′ (σ)

≤M
∫

Ω

(
Θ
′ (σ)

)2
+M

∫

Ω

Θ
′ (σ)

where M;=
∥∥∥λ0

∂h
∂ s (.,Θ(λ0))

∥∥∥
∞

+ ‖h(.,Θ(λ0))‖∞
. Then, taking into account (5.36), we conclude that for some constant

c′′ > 0,
∥∥Θ
′ (σ)

∥∥
H1

0 (Ω)
≤ c′′ for any σ ∈ (λ∗,λ0) .

which jointly with (5.35) gives (5.31).
Now we show that λ∗ = 0. We proceed by the way of contradiction. Suppose λ ∗ > 0. Then, since rλ0,Θ(λ0) > 1 and since,
by 5’), σ → rσ ,Θ(σ) is nonincreasing on I, we have rλ∗,Θ(λ∗) > 1. Thus, by Lemma 5.4 there exists ε > 0 such that Θ has an
extension (still denoted by Θ) to Iε := (λ∗− ε, λ ∗) such that (Iε ,Θ) ∈ G, which contradicts the definition of λ∗.
Then λ∗ = 0, and so, by (5.27), Θ(λ∗) = u0 (where u0 is the unique solution of (1.1) for λ = 0).
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Proof of Theorem 1.6. We proceed by the way of contradiction. Let Σ be as given by Remark 1.5. Let λ0 ∈ (0,Σ) and let uλ0
and vλ0 be the minimal weak solution and the maximal weak solution, respectively, of problem (1.1) corresponding to λ = λ0.
Then uλ0 6= vλ0 . Suppose, by contradiction, that there exists a weak solution w of (1.1, corresponding to λ = λ0 such that
uλ 6= w 6= vλ . By Lemma 5.5, applied with w0 = w , there exists a function Θ∈C1

(
(0,λ0 + ε) ,Uβ

)
∩C
(
[0,λ0 + ε) ,Uβ

)
such

that Θ(λ0) = w, Θ(0) = u0 (where u0 is the unique weak solution of (1.1) corresponding to λ = 0), and such that rσ ,Θ(σ) > 1
for any σ ∈ (0,λ0), and with Θ satisfying, in weak sense and for any σ ∈ (0,λ0),




−∆(Θ(σ)) = aΘ−β (σ)+σh(.,Θ(σ)) in Ω,
Θ(σ) = 0 on ∂Ω,
Θ(σ)> 0 in ∂Ω.

Again by Lemma 5.5, but applied now with w0 = uλ0 , we have that, for some ε ′ > 0, there exists a function Φ ∈
C1
(
(0,λ0 + ε ′) ,Uβ

)
∩C
(
[0,λ0 + ε ′) ,Uβ

)
such that Φ(λ0) = uλ0 ,

Φ(0) = u0 where, as above, u0 is the weak solution of (1.1) for λ = 0, and such that rσ ,Φ(σ) > 1 for any σ ∈ (0,λ0), and
satisfying, in weak sense and for any σ ∈ (0,λ ),




−∆(Φ(σ)) = aΦ−β (σ)+σh(.,Φ(σ)) in Ω,
Φ(σ) = 0 on ∂Ω,
Φ(σ)> 0 in ∂Ω.

Observe that, since w 6= uλ0 , then

Θ(σ) 6= Φ(σ) for any σ ∈ (0,λ0) . (5.37)

Indeed, let

λ∗∗ := sup{η ∈ [0,λ0] : Θ(η) = Φ(η)} . (5.38)

We claim that λ∗∗ = 0. In fact, since Θ(λ0) = w 6= uλ0 = Φ(λ0) , and since Θ and Φ are continuous at λ0 we have, necessarily,
λ∗∗ < λ0. If λ∗∗ > 0 then λ∗∗ ∈ (0,λ0) and so rλ∗∗,Θ(λ∗∗) > 1. Thus Lemma 5.4 can be applied taking there λ = λ∗∗ and
u=Θ(λ∗∗) to obtain a number ε > 0 and an open neighborhood V of Θ(λ∗∗) in Yβ such that for any σ ∈ (λ∗∗− ε,λ∗∗+ ε) there
exists a unique ξ (σ) ∈V such that S (σ ,ξ (σ)) = 0. By diminishing ε if necessary, we can assume that (λ∗∗− ε,λ∗∗+ ε)⊂
(0,λ0) . From the continuity of Θ and Φ at λ∗∗ and from (5.38), we have that Θ(λ∗∗) = Φ(λ∗∗)∈V and so, δ positive and small
enough, we have that if λ∗∗ < σ < λ∗∗+δ then Θ(σ) 6= Φ(σ) and also S (σ ,Θ(σ)) = S (σ ,Φ(σ)) = 0, which contradicts
the uniqueness assertion of Lemma 5.4. Thus λ∗∗ = 0 and so (5.37) holds.
Now, for σ ∈ (0,λ0) ,

{
−∆(Θ(σ)−Φ(σ)) = a

(
(Θ(σ))−β − (Φ(σ))−β

)
+σ (h(.,Θ(σ))−h(.,Φ(σ))) in Ω,

Θ(σ)−Φ(σ) = 0 on ∂Ω,
(5.39)

and, by the mean value theorem, σ (h(.,Θ(σ))−h(.,Φ(σ))) = σ
∂h
∂ s (.,ησ )(Θ(σ)−Φ(σ)) for some function ησ such that,

for x ∈Ω, ησ (x) belongs to the open segment with endpoints Φ(σ)(x) and Θ(σ)(x) .
Since 0 ≤ Θ(σ) ≤ Θ(λ0) and 0 ≤ Φ(σ) ≤ Φ(λ0), and since Θ(λ0) and Φ(λ0) belong to L∞ (Ω) (because they belong to
Yβ ) then there exists a positive constant M1 such that 0≤ ησ ≤M1 for any σ ∈ (0,λ0). Then, from our assumptions on h, it

follows that there exists a constant M such that
∣∣∣ ∂h

∂ s (.,ησ )
∣∣∣≤M for any σ ∈ (0,λ0). Then, for such σ ,

Now we take the test function ϕ = Θ(σ)−Φ(σ) in (5.39) to obtain

‖Θ(σ)−Φ(σ)‖2
H1

0 (Ω) =
∫

Ω

(
(Θ(σ))−β − (Φ(σ))−β

)
(Θ(σ)−Φ(σ))+

∫

Ω

σ (h(.,Θ(σ))−h(.,Φ(σ)))(Θ(σ)−Φ(σ))

≤
∫

Ω

σ |h(.,Θ(σ))−h(.,Φ(σ))| |Θ(σ)−Φ(σ)|

≤ σM
∫

Ω

(Θ(σ)−Φ(σ))2

≤ σMc2
P ‖Θ(σ)−Φ(σ)‖2

H1
0 (Ω)

where cP is the constant of the Poincaré’s inequality in Ω, and where in the first inequality we used that s→ as−β is
nonincreasing and, in the second one, the Poincaré’s inequality was used. Then, since Θ(σ) 6= Φ(σ) for any σ ∈ (0,λ0) we
conclude that 1≤ σMc2

P which, by taking limσ→0+ , gives a contradiction that completes the proof of the theorem.

Remark 5.6. An inspection of the proof given for Theorem 1.6 shows that, if w is a weak solution of (1.1) then, in order to
construct the function Θ (and to prove its properties), the assumption w 6= vλ was used only to guarantee that ρNλ ,w,w > 1 .
From this fact one gets that if for some λ ∈ (0,Σ), rλ ,vλ

> 1 then, proceeding as in the proof of Theorem 1.6, a contradiction is
reached. Therefore necessarily rλ ,vλ

≤ 1 for any λ ∈ (0,Σ).
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6. Conclusion

For a C2 and bounded domain Ω in Rn, n≥ 2, we considered the problem

−∆u = au−β +λh(.,u) in Ω,u = 0 on ∂Ω,u > 0 in Ω, (6.1)

where λ is a nonnegative parameter and the solutions are understood in weak sense. Under the assumptions H1)-H6) stated
at the introduction our main result can be readed as follows. If for some λ ≥ 0 the above problem has at least two weak
solutions, then it has exactly two weak solutions (which belong to H1

0 (Ω)∩C1 (Ω)∩C
(
Ω
)
), namely, a minimal solution uλ

and a maximal solution vλ , such that uλ 6= vλ and uλ ≤ vλ in Ω. This fact, combined with known previous results leads to the
following statement: There exists Σ > 0 such that:
For λ = 0 and λ = Σ there exists exactly one weak solution,
For 0 < λ < Σ there exists exactly two weak solutions in H1

0 (Ω),
For λ > Σ no weak solutions exist.
Let us stress that although there are many results concerning existence and multiplicity for solutions of singular elliptic
problems, exact multiplicity results are far less abundant in the literature .
Our result complements known multiplicity results for these kind of singular problems. As an example, it applies, for instance,
when n ≥ 2, a ∈ C

(
Ω
)

is strictly positive in Ω and h(x,s) = ∑
m
j=1 b j (x)sp j with b j ∈ C

(
Ω
)
, such that b j > 0 in Ω, and

1 < p1 < p2 < .... < pm < n+2
n−2 (with the convention that n+2

n−2 = ∞ if n = 2).
Some possible future directions of research include:
i) Study problem (6.1) in cases where the coefficient a of the singular term of the equation is singular at ∂ (Ω) in order to
obtain, again in some of these situations, exact multiplicity results.
ii) For β > 0 arbitrary search for exact multiplicity results for solutions u ∈C2 (Ω)∩C

(
Ω
)

of problem (6.1).
iii) Investigate the situation when, under suitable assumptions, the Laplacian is replaced by the q−Laplacian in (6.1) for some
1 < q < ∞.
Other interesting questions remain. For instance:
By ([36], Theorem 1.2) λ → uλ is nondecreasing on [0,Σ] , and by ([35], Theorem 1.2), λ = 0 is a bifurcation point
from ∞ for problem (6.1). Then, since for λ ∈ (0,λ ) uλ and vλ are the unique solutions of (6.1), one could suspect that
limλ→0+ ‖vλ‖C(Ω) = ∞, and that the map λ → vλ is non increasing on (0,Σ] . It would interestig to prove these fact (if true).
It would be also interesting to investigate the regularity properties (if any) of the mapping λ → vλ .
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[31] M. Ghergu and V.D. Rădulescu, Sublinear singular elliptic problems with two parameters, J. Differ. Equ., 195(2) (2003), 520–536. [CrossRef]

[Scopus] [Web of Science]
[32] K.S. Yijing and Z. Duanzhi, The role of the power 3 for elliptic equations with negative exponents, Calc. Var. Partial Differ. Equ., 49(3-4),

(2014), 909–922. [CrossRef] [Scopus] [Web of Science]
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Abstract

This study investigates the existence of solutions to integral equations in the form of quadratic
Urysohn type with Hadamard fractional variable order integral operator. Due to the lack of
semigroup properties in variable-order fractional integrals, it becomes challenging to get the
existence and uniqueness of corresponding integral equations, hence the problem is examined by
employing the concepts of piecewise constant functions and generalized intervals to address this
issue. In this context, the problem is reformulated as integral equations with constant orders to
obtain the main results. Both the Schauder and Banach fixed point theorems are employed to prove
the uniqueness results. In addition, an illustration is included in order to verify those results in the
final step.

1. Introduction

As a subject of mathematical analysis, fractional calculus arose as a result of investigating the matter regarding whether it is
feasible to employ the complex or real number powers for integral and differential operators. (see [1, 2]). Over the past three
decades, the theory has led to numerous significant results in both pure and applied mathematics alongside other branches of
sciences, for example: chemistry, ,signal and image processing, physics,control theory, biology, biophysics, economics etc.
(see [3, 4, 5, 6, 7, 8, 9]).
The arbitrary order of integral and differentiation whose order depends on a function of certain variables, which corresponds to
a more complicated category, are known as variable-order operators. Following its introduction in 1993 by Samko and Ross
[10], the concept of fractional variable-order (FVO) differential and integral operators, along with its basic features, have
naturally garnered significant interest from numerous researchers. The investigation of fractional variable models is still in its
early stages since addressing the variable fractional order is certainly tough to study in some cases, whose features like the
semi-group property are separated from the associated characteristics of systems with conventional fractional orders. However,
for recent developments on the theory of fractional variational calculus and numerical methods dealing with fractional problems
of variable order see [11, 12, 13, 14, 15, 16, 17, 18, 19] and the references therein.
There have been very recent publications dealing with fractional equations of variable order coupled with auxiliary conditions
from a qualitative perspective. For example, in [20], the authors examined the existence of solutions to a boundary value
problem for a class of fractional equations of Riemann–Liouville(R-L) variable order with finite delay by employing the Darbo
type fixed-point as well as Kuratowski measure of noncompactness. It has been considered in [21] for the first time a Caputo
FVO initial value problem(IVP) under impulsive conditions, and the uniqueness and existence of solutions have been examined.
Two fixed point theories were employed to show the main results. In [22], monotone iterative technique together with upper
and lower solutions have been applied to IVP for linear homogeneous and non-homogeneous diffusion equations involving the
conformable operator of variable order to show the existence and uniqueness properties. In [23], existence and uniqueness
of a boundary value problem with variable order operators of Hadamard type have been examined with the aid of Schauder,
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and Banach fixed point theorems and stability criteria have been obtained regarding Ulam–Hyers–Rassias(UHR). Suitable
criteria ensuring the existence and uniqueness of a class of FVO Riemann-Liouville equations including fractional boundary
conditions was discussed in [24] and suitable conditions providing the stability in the UHR sense were also established. For
additional papers, one might consult the latest publications[25, 26, 27, 28, 29, 30] and the associated references therein.
The study of integral equations is an essential component of nonlinear analysis and investigated by many scholars in view of
their wide range of scientific applications [31, 32]. There have also been a number of studies that examine the existence of
solutions of functional integral and integro-differential equations of fractional conventional order [33]. However, only a limited
number of papers have discussed the existence of solutions to such problems involving FVO operators [34, 35, 36, 37, 38].
In this work, we study the quadratic integral equation of Urysohn type with fractional variable order (QIEUFVO)

u(t) = q(t)+(Φu)(t)
∫ t

1
1

Γ(ω(t)) (log t
σ
)ω(t)−1ξ (t,σ ,u(σ)) dσ

σ
, (1.1)

where t ∈ϒ := [1,K], q∈C(ϒ,R), ξ : ϒ2×R→R is given function, 1<ω(t)≤ 2 and Φ : C(ϒ,R)→C(ϒ,R) is an appropriate
operator.
In order to find the existence and uniqueness of (1.1), we employ the notions of generalized interval, partition and piece-wise
constant functions, hence converting the equation to fractional integral equations of constant order.

2. Preliminaries

This section provides several concepts and results that will be required throughout the subsequent sections.

Definition 2.1. ([40], [23]) Let ω(t) : ϒ→ (1,2], then the left Hadamard fractional integral of variable order (HFIVO) for
function ψ is

(H Iω(t)
1+ ψ)(t) =

1
Γ(ω(t))

∫ t

1
(log

t
σ
)ω(t)−1

ψ(σ)
dσ

σ
, t > 1, (2.1)

As expected, when ω(t is constant, then HFIVO is corresponds to the standard Hadamard fractional integral operator.

Remark 2.2. ([40], [41]) In the general case, the semi-group property is not satisfied for the Integral operator of variable
order, i.e.

H Iω(t)
1+

H Iv(t)
1+ ψ(t) 6= H Iω(t)+v(t)

1+ ψ(t).

Lemma 2.3. ([41] Let ω : ϒ→ (1,2] be a continuous function, then for ψ ∈Cσ (ϒ,R) where

Cσ (ϒ,R) = {ψ(t) ∈C(ϒ,R), (logt)σ
ψ(s) ∈C(ϒ,R),0≤ σ ≤ 1},

the integral H Iω(t)
1+ ψ(t) exists for any t ∈ ϒ.

Lemma 2.4. ([41]) If ω ∈C(ϒ,(1,2]), then H Iω(t)
1+ ψ(t) ∈C(ϒ,R) for any ψ ∈C(ϒ,R).

Theorem 2.5. (Schauder Fixed Point Theorem) ([42]) Let Λ be a convex subset of Banach Space Π and F : Λ −→ Λ be
completely continuous map, then F has at least one fixed point in Λ.

3. Existence and uniqueness results

We first state the underlying presumption:

(H1) Let

P= {ϒ1 := [0,K1],ϒ2 := (K1,K2],ϒ3 := (K2,K3] . . .ϒn := (Kn−1,K]}

be a partition of the interval ϒ and let ω(s) : ϒ→ (1,2] be a piece-wise continuous function with respect to P, i.e.,

ω(t) =
n

∑
ϑ=1

ωϑ Iϑ (t) =





ω1, i f t ∈ ϒ1,
ω2, i f t ∈ ϒ2,
.
.
.

ωn, i f t ∈ ϒn,

where 1 < ωϑ ≤ 2 are constants, and
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Iϑ (t) =
{

1, f or t ∈ ϒϑ ,
0, f or elsewhere.

The notion Πϑ =C(ϒϑ , R) denotes the Banach space of continuous functions from ϒϑ into R with the norm

‖u‖Πϑ
= sup

t∈ϒϑ

|u(t)|,ϑ ∈ {1,2, ...,n}.

Then, for any t ∈ ϒϑ , ϑ = 1,2, ...,n, the (HFIVO) for function ξ (t,σ ,u(σ)) ∈C(ϒ2×R,R), defined by (2.1), might then be
stated as

H Iω(t)
1+ ξ (t,σ ,u(t)) = ∑

i=ϑ−1
i=1

∫ Ki
Ki−1

1
Γ(ωi)

(log t
σ
)ωi−1ξ (t,σ ,u(σ)) dσ

σ
+
∫ t

Kϑ−1
1

Γ(ωϑ )
(log t

σ
)ωϑ−1ξ (t,σ ,u(σ)) dσ

σ
. (3.1)

According to (3.1), for any t ∈ ϒϑ , ϑ ∈ {1,2, ...,n}, 1.1 can be stated in the following format:

u(t) = q(t)+(Φu)(t)
(

∑
i=ϑ−1
i=1

∫ Ki
Ki−1

1
Γ(ωi)

(log t
σ
)ωi−1ξ (t,σ ,u(σ)) dσ

σ
+
∫ t

Kϑ−1
1

Γ(ωϑ )
(log t

σ
)ωϑ−1ξ (t,σ ,u(σ)) dσ

σ

)
. (3.2)

Let u ∈C(ϒϑ ,R) be a solution of (3.2), such that u(t)≡ 0 on t ∈ [1,Kϑ−1]. Then (3.2) is reduced to

u(t) = q(t)+(Φu)(t)
(∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1

ξ (t,σ ,u(σ))
dσ

σ

)
, t ∈ ϒϑ . (3.3)

We now impose the following assumptions:

(H2) There exists ϖϑ > 0 such that
|(Φu)(t)− (Φũ)(t)| ≤ ϖϑ |u(t)− ũ(t)|

for each u, ũ ∈Πϑ and t ∈ ϒϑ .

(H3) There are non-negative constants η and γ such that

|(Φu)(t)| ≤ η + γ|u(t)|

for each u ∈Πϑ and t ∈ ϒϑ .

(H4) Let ξ : ϒ2
ϑ
×R→R be a continuous function and non-decreasing with respect to its three variables, separately, and there

exists a constants 0≤ σ ≤ 1, Dϑ > 0 such that

(logt)σ |ξ (t,σ ,u)−ξ (t,σ , ũ)| ≤ Dϑ |u− ũ|

for all (t,σ) ∈ ϒ2
ϑ

and u, ũ ∈ R.

(H5) There exists a continuous non-decreasing function g ∈C(R+,R+) and h̄ ∈C(ϒ,R+) and a constant 0≤ σ ≤ 1 such that
for each (t,σ) ∈ ϒ2

m and u ∈ R we have

(logt)σ |ξ (t,σ ,u)| ≤ h̄(σ)g(|u|),

Theorem 3.1. Let ϑ ∈ {1,2, ...,n}, suppose that hypotheses (H1)− (H5) hold, and there exists a constant rϑ , such that

rϑ

q?+ (logKϑ )
1−σ−(logKϑ−1)

1−σ

(1−σ)Γ(ωϑ )
(log Kϑ

Kϑ−1
)ωϑ−1(η + γrϑ )g(rϑ )h̄?

> 1, (3.4)

where h̄? = sup{h̄(σ) : σ ∈ ϒϑ} and q? = sup{q(t) : t ∈ ϒϑ}.
Then, (3.3) has at least solution in Πϑ .

Proof. Let the operator
S : Πϑ →Πϑ

given by

(Su)(t) = q(t)+(Φu)(t)
(∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1

ξ (t,σ ,u(σ))
dσ

σ

)
.

Let the set
Brϑ

= {u ∈Πϑ : ‖u‖Πϑ
≤ rϑ}.

Clearly Brϑ
is nonempty, convex, closed and bounded.
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Step 1: Claim: S(Brϑ
)⊆ (Brϑ

).
For u ∈ Brϑ

, we have

|(Su)(t)| ≤ |q(t)|+ |(Φu)(t)|
∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1|ξ (t,σ ,u(σ))|dσ

σ

≤ |q(t)|+(η + γ|u(t)|)
∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1(logσ)−σ h̄(σ)g(|u(σ)|)dσ

σ

≤ |q(t)|+(η + γ|u(t)|)(log
Kϑ

Kϑ−1
)ωϑ−1

∫ t

Kϑ−1

1
Γ(ωϑ )

(logσ)−σ h̄(σ)g(|u(σ)|)dσ

σ

≤ q?+
(logKϑ )

1−σ − (logKϑ−1)
1−σ

(1−σ)Γ(ωϑ )
(log

Kϑ

Kϑ−1
)ωϑ−1(η + γ‖u‖Πϑ

)g(‖u‖Πϑ
)h̄?.

≤ rϑ .

Step 2: Claim: S is continuous.
Let (un) be a sequence such that un→ u in Πϑ then

|(Sun)(t)− (Su)(t)|=
∣∣∣(Φun)(t)

∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1

ξ (t,σ ,un(σ))
dσ

σ

− (Φu)(t)
∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1

ξ (t,σ ,u(σ))
dσ

σ

∣∣∣

≤
∣∣∣(Φun)(t)

∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1

ξ (t,σ ,un(σ))
dσ

σ

− (Φun)(t)
∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1

ξ (t,σ ,u(σ))
dσ

σ

∣∣∣

+
∣∣∣(Φun)(t)

∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1

ξ (t,σ ,u(σ))
dσ

σ

− (Φu)(t)
∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1

ξ (t,σ ,u(σ))
dσ

σ

∣∣∣

≤ |(Φun)(t)|
∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1|ξ (t,σ ,un(σ))dσ −ξ (t,σ ,u(σ))|dσ

σ

+ |(Φun)(t)− (Φu)(t)|
∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1|ξ (t,σ ,u(σ))|dσ

σ

≤ (η + γ|un(t)|)Dϑ

∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1(logσ)−σ |un(σ)−u(σ)|dσ

σ

+ϖϑ |un(σ)−u(σ)|
∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1(logσ)−σ h̄(σ)g(|u(σ)|)dσ

σ

≤
[(

Dϑ (η + γrϑ )+ h̄?ϖϑ g(rϑ )
) (logKϑ )

1−σ − (logKϑ−1)
1−σ

(1−σ)Γ(ωϑ )
(log

Kϑ

Kϑ−1
)ωϑ−1

]
‖un−u‖Πϑ

i.e., we obtain

‖(Sun)− (Su)‖Πϑ
→ 0 as n→ ∞.

As a consequence, the operator S is a continuous on Πn.

Step 3: Claim: S is compact
Step 1 leads to the outcome ‖S(u)‖Πϑ

≤ rϑ for each u ∈ Brϑ
, yielding the boundedness of S(Brϑ

). We shall now demonstrate
the equicontinuity of S(Brϑ

).
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For t1, t2 ∈ ϒϑ , t1 < t2 and u ∈ Brϑ
, estimate

|(Su)(t2)− (Su)(t1)| ≤ |q(t2)−q(t1)|+
∣∣∣(Φu)(t2)

∫ t2

Kϑ−1

1
Γ(ωϑ )

(log
t2
σ
)ωϑ−1

ξ (t2,σ ,u(σ))
dσ

σ

− (Φu)(t1)
∫ t1

Kϑ−1

1
Γ(ωϑ )

(log
t1
σ
)ωn−1

ξ (t1,σ ,u(σ))
dσ

σ

∣∣∣

≤ |q(t2)−q(t1)|+
∣∣∣(Φu)(t2)

∫ t2

Kϑ−1

1
Γ(ωϑ )

(log
t2
σ
)ωϑ−1

ξ (t2,σ ,u(σ))
dσ

σ

−
∫ t1

Kϑ−1

1
Γ(ωϑ )

(log
t1
σ
)ωϑ−1

ξ (t1,σ ,u(σ))
dσ

σ

∣∣∣

+
∣∣∣
(
(Φu)(t2)− (Φu)(t1)

)∫ t1

Kϑ−1

1
Γ(ωϑ )

(log
t1
σ
)ωϑ−1

ξ (t1,σ ,u(σ))
dσ

σ

∣∣∣

≤ |q(t2)−q(t1)|+
∣∣∣(Φu)(t2)

∫ t1

Kϑ−1

( 1
Γ(ωϑ )

(log
t2
σ
)ωϑ−1

ξ (t2,σ ,u(σ))

− 1
Γ(ωϑ )

(log
t1
σ
)ωϑ−1

ξ (t1,σ ,u(σ))
)dσ

σ

∣∣∣

+
∣∣∣(Φu)(t2)

∫ t2

t1

1
Γ(ωϑ )

(log
t2
σ
)ωϑ−1

ξ (t2,σ ,u(σ))
dσ

σ

∣∣∣

+
∣∣∣
(
(Φu)(t2)− (Φu)(t1)

)∫ t1

Kϑ−1

1
Γ(ωϑ )

(log
t1
σ
)ωϑ−1

ξ (t1,σ ,u(σ))
dσ

σ

∣∣∣

≤ |q(t2)−q(t1)|+
∣∣∣(Φu)(t2)

∫ t1

Kϑ−1

1
Γ(ωϑ )

(log
t2
σ
)ωϑ−1

(
ξ (t2,σ ,u(σ))−ξ (t1,σ ,u(σ))

)dσ

σ

∣∣∣

+
∣∣∣(Φu)(t2)

∫ t1

Kϑ−1

ξ (t1,σ ,u(σ))

Γ(ωϑ )
((log

t2
σ
)ωϑ−1− (log

t1
σ
)ωϑ−1)

dσ

σ

∣∣∣

+
∣∣∣(Φu)(t2)

∫ t2

t1

1
Γ(ωϑ )

(log
t2
σ
)ωϑ−1

ξ (t2,σ ,u(σ))
dσ

σ

∣∣∣

+
∣∣∣
(
(Φu)(t2)− (Φu)(t1)

)∫ t1

Kϑ−1

1
Γ(ωϑ )

(log
t1
σ
)ωϑ−1

ξ (t1,σ ,u(σ))
dσ

σ

∣∣∣

≤ |q(t2)−q(t1)|+ |(Φu)(t2)|
∫ t2

Kϑ−1

1
Γ(ωϑ )

(log
t2
σ
)ωϑ−1

∣∣∣ξ (t2,σ ,u(σ))−ξ (t1,σ ,u(σ))
∣∣∣dσ

σ

+ |(Φu)(t2)||ξ (t1, t1,rϑ )|
∣∣∣
∫ t1

Kϑ−1

1
Γ(ωϑ )

(log
t2
σ
)ωϑ−1− (log

t1
σ
)ωϑ−1 dσ

σ

∣∣∣

+ |(Φu)(t2)||ξ (t2,s2,rϑ )|
∣∣∣
∫ t2

t1

1
Γ(ωϑ )

(log
t2
σ
)ωϑ−1 dσ

σ

∣∣∣

+ |(Φu)(t2)− (Φu)(t1)||ξ (t1, t1,rϑ )|
∣∣∣
∫ t1

Kϑ−1

1
Γ(ωϑ )

(log
t1
σ
)ωϑ−1 dσ

σ

∣∣∣

≤ |q(t2)−q(t1)|+ |(Φu)(t2)|
∫ t2

Kϑ−1

1
Γ(ωϑ )

(log
t2
σ
)ωϑ−1

∣∣∣ξ (t2,σ ,u(σ))−ξ (t1,σ ,u(σ))
∣∣∣dσ

σ

+ |(Φu)(t2)|
|ξ (t1, t1,rϑ )|
Γ(ωϑ +1)

∣∣∣(log
t2
t1
)ωϑ − (log

t2
Kϑ−1

)ωϑ +(log
t1

Kϑ−1
)ωϑ

∣∣∣

+ |(Φu)(t2)|
|ξ (t2, t2,rϑ )|
Γ(ωϑ +1)

(log
t2
t1
)ωϑ + |(Φu)(t2)− (Φu)(t1)|

|ξ (t1, t1,rϑ )|
Γ(ωϑ +1)

(log
t1

Kϑ−1
)ωϑ

Owing to (H4), we know that the function ξ (t,σ ,u) is uniformly continuous on ϒ2
ϑ
×Brϑ

, then we have

lim
t2→t1
|ξ (t2,σ ,u(σ))−ξ (t1,σ ,u(σ))|= 0

uniformly in σ ∈ ϒϑ and u ∈ Brϑ
. Hence, we have

∣∣∣
∫ t2

Kϑ−1

1
Γ(ωϑ )

ξ (t2,σ ,u(σ))−ξ (t1,σ ,u(σ))

(t2−σ)1−ωϑ
dσ

∣∣∣≤ sup
σ∈ϒϑ , u∈Brϑ

(t2−Kϑ−1)
1−ωϑ

Γ(ωϑ +1)
|ξ (t2,σ ,u(σ))−ξ (t1,σ ,u(σ))| → 0 (3.5)

as t2→ t1.

So, ‖(Su)(t2)− (Su)(t1)‖Πϑ
→ 0 as |t2− t1| → 0. It confirms S(Brϑ

) is equicontinuous.
Thereby, considering Theorem 2.5, (3.3) has at least one solution ũϑ ∈ Brϑ

.
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The subsequent result regarding uniqueness relates to the Banach Contradiction Principle.

Theorem 3.2. Assume that given conditions in Theorem 3.1 hold, and moreover
(

Dϑ (η + γrϑ )+ h̄?ϖϑ g(rϑ )
) (logKϑ )

1−σ − (logKϑ−1)
1−σ

(1−σ)Γ(ωϑ )
(log

Kϑ

Kϑ−1
)ωϑ−1 ≤ 1. (3.6)

is satisfied.
Then, (3.3) has a unique solution in Πϑ .

Proof. Let u, ũ ∈ Brϑ
, and t ∈ ϒϑ , we have

|(Su)(t)− (Sũ)(t)|

=
∣∣∣(Φu)(t)

∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1

ξ (t,σ ,u(σ))
dσ

σ
− (Φũ)(t)

∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1

ξ (t,σ , ũ(σ))
dσ

σ

∣∣∣

≤
∣∣∣(Φu)(t)

∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1

ξ (t,σ ,u(σ))
dσ

σ
− (Φu)(t)

∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1

ξ (t,σ , ũ(σ))
dσ

σ

∣∣∣

+
∣∣∣(Φu)(t)

∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1

ξ (t,σ , ũ(σ))
dσ

σ
− (Φũ)(t)

∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1

ξ (t,σ , ũ(σ))
dσ

σ

∣∣∣

≤ |(Φu)(t)|
∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1|ξ (t,σ ,u(σ))dσ −ξ (t,σ , ũ(σ))|dσ

σ

+ |(Φu)(t)− (Φũ)(t)|
∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1|ξ (t,σ , ũ(σ))|dσ

σ

≤ (η + γ|u(t)|)Dϑ

∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1(logσ)−σ |z(σ)− ũ(σ)|dσ

σ

+ ϖϑ |u(σ)− ũ(σ)|
∫ t

Kϑ−1

1
Γ(ωϑ )

(log
t
σ
)ωϑ−1(logσ)−σ h̄(σ)g(|ũ(σ)|)dσ

σ

≤
[(

Dϑ (η + γrϑ )+ h̄?ϖϑ g(rϑ )
) (logKϑ )

1−σ − (logKϑ−1)
1−σ

(1−σ)Γ(ωϑ )
(log

Kϑ

Kϑ−1
)ωϑ−1

]
‖u− ũ‖Πn

Therefore,

‖(Su)(t)− (Sũ)(t)‖Πϑ
≤

[(
Dϑ (η + γrϑ )+ h̄?ϖϑ g(rϑ )

)
(logKϑ )

1−σ−(logKϑ−1)
1−σ

(1−σ)Γ(ωϑ )
(log Kϑ

Kϑ−1
)ωϑ−1

]
‖u− ũ‖Πϑ

Thus, according to equation (3.6), the operator S is a contraction mapping. Therefore, S has a unique fixed point referring to
the uniqueness of solution of (3.3).

The subsequent result discusses uniqueness property of (1.1).

Theorem 3.3. Assume that hypotheses (H1)− (H5) and inequality (3.6) hold for all ϑ ∈ {1,2, ...,n}. Then, the problem
(1.1) has a unique solution in C(ϒ,R).

Proof. In light of the proof previously mentioned, we may conclude that (3.3) has a unique solution.Based on the above proofs,
we know that (3.3) possesses a unique solution ũϑ ∈Πϑ ,ϑ ∈ {1,2, ...,n}. This is in accordance with Theorem 3.2.

Let us define the solution function for any ϑ ∈ {1,2, ...,n} as

uϑ =

{
0, t ∈ [1,Kϑ−1],
ũϑ , t ∈ ϒϑ ,

(3.7)

Thus, uϑ ∈C([1,Kϑ ],R) solves the integral equation (3.2) for t ∈ ϒϑ .
Then, the function

u(t) =





u1(t), t ∈ ϒ1,

u2(t) =
{

0, t ∈ ϒ1,
ũ2, t ∈ ϒ2

.

.

.

.

un(t) =
{

0, t ∈ [1,Kn−1],
ũn, t ∈ ϒn

is a unique solution of (1.1) in C(ϒ,R).
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4. Example

We shall examine the following problem

u(t) =
1

ee
1√
t+2

+
|u(t)|

1+ |u(t)|
∫ t

1

1
Γ(ω(t))

(log
t
σ
)ω(t)−1 (logt)−

1
10

t +2
u(σ)

σ +10
dσ

σ
, t ∈ ϒ := [1,e], (4.1)

where

ω(t) =





3
2 , t ∈ ϒ1 := [1,2],

6
5 , t ∈ ϒ2 :=]2,e].

(4.2)

Let

K0 = 1, K1 = 2, K2 = K = e,

q(t) =
1

ee
1√
t+2

, t ∈ ϒ

(Φu)(t) =
u(t)

1+u(t)
, t ∈ ϒ and u ∈C(ϒ,R+),

ξ (t,σ ,u) =
(logt)−

1
10

t +2
.

1
σ +10

u, (t,σ ,u) ∈ ϒ
2×R+,

and u ∈C(ϒ,R+). It is clear that (4.1) can be written as (1.1).
By using (4.2), according to (3.3) we take into consideration the subsequent auxiliary equations:

u(t) =
1

ee
1√
t+2

+
|u(t)|

1+ |u(t)|
∫ t

1

1
Γ(ω1)

(log
t
σ
)ω1−1 (logt)−

1
10

t +2
u(σ)

σ +10
dσ

σ
, t ∈ ϒ1, (4.3)

and

u(t) =
1

ee
1√
t+2

+
|u(t)|

1+ |u(t)|
∫ t

1

1
Γ(ω2)

(log
t
σ
)ω2−1 (logt)−

1
10

t +2
u(σ)

σ +10
dσ

σ
, t ∈ ϒ2. (4.4)

Let us show that conditions (H1)− (H5) and inequalities (3.4),(3.6) hold.
For ϑ = 1, we have

|(Φu)(t)− (Φũ)(t)|= | u(t)
1+u(t)

− ũ(t)
1+ ũ(t)

|= | u(t)− ũ(t)
(1+u(t))(1+ ũ(t))

| ≤ 1
2
|u(t)− ũ(t)|.

It is obvious that (H2) is satisfied with ϖ1 =
1
2 . for each u, ũ ∈Π1 and t ∈ ϒ1.

|(Φu)(t)|= | u(t)
1+u(t)

| ≤ |u(t)|

Moreover (H3) holds with η = 0 and γ = 1. for each u ∈Π1 and t ∈ ϒ1.

(logt)
1
10 |ξ (t,σ ,u)−ξ (t,σ , ũ)|= | 1

t +2
.

1
σ +10

u− 1
t +2

.
1

σ +10
.ũ|= 1

t +2
.

1
σ +10

|u− ũ| ≤ 1
33
|z− ũ|

Hence, (H4) is satisfied with σ = 1
10 and D1 =

1
33 . for all (t,σ) ∈ ϒ2

1 and u, ũ ∈Π1.

(logt)
1
10 |ξ (t,σ ,u)|= 1

t +2
.

1
σ +10

.|u| ≤ h̄(σ)g(|u|),

Then, (H5) holds with σ = 1
10 , g(|u|) = |u| and h̄(σ) = 1

3(σ+10) which means that h̄? = 1
33 ,

and the inequality

r1

q?+ (logK1)1−σ−(logK0)1−σ

(1−σ)Γ(ω1)
(log K1

K0
)ω1−1(η + γr1)g(r1)h̄?

> 1,

is satisfied for each r1 ∈ (0.2533, 43.8014) which means that condition (3.4) holds, and the inequality

(
D1(η + γr1)+ h̄?ϖ1g(r1)

) (logK1)
1−σ − (logK0)

1−σ

(1−σ)Γ(ω1)
(log

K1

K0
)ω1−1 ≤ 1,
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is satisfied for each r1 ∈ (0, > 29.3685) which means that condition (3.6) holds.
Consequently, by Theorem 3.2, (4.3) has a unique solution ũ1 in Π1.

For ϑ = 2, we have

|(Φu)(t)− (Φũ)(t)|= | u(t)
1+u(t)

− ũ(t)
1+ ũ(t)

|= | u(t)− ũ(t)
(1+u(t))(1+ ũ(t))

| ≤ 1
2
|u(t)− ũ(t)|

Then, (H2) is satisfied with ϖ2 =
1
2 .

for each u, ũ ∈Π2 and t ∈ ϒ2.

|(Φu)(t)|= | u(t)
1+u(t)

| ≤ |u(t)

Then, (H3) holds with η = 0 and γ = 1. for each u ∈Π2 and t ∈ ϒ2.

(logt)
1

10 |ξ (t,σ ,u)−ξ (t,σ , ũ)|= | 1
t +2

.
1

σ +10
.u− 1

t +2
.

1
σ +10

.ũ|= 1
t +2

.
1

σ +10
|u− ũ| ≤ 1

48
|u− ũ|

Hence, (H4) is satisfied with σ = 1
10 and D2 =

1
48 . for all (t,σ) ∈ ϒ2

2 and u, ũ ∈Π2.

(logt)
1
10 |ξ (t,σ ,u)|= 1

t +2
.

1
σ +10

.|u| ≤ h̄(σ)g(|u|),

Then, (H5) holds with σ = 1
10 , g(|u|) = |u| and h̄(σ) = 1

4(σ+10) , h̄? = 1
48 ,

and the inequality

r2

q?+ (logK2)1−σ−(logK1)1−σ

(1−σ)Γ(ω2)
(log K2

K1
)ω2−1(η + γr2)g(r2)h̄?

> 1,

is satisfied for each r2 ∈ (0.2589, 178.3125) which means that condition (3.4) holds, and the inequality

(
D2(η + γr2)+ h̄?ϖ2g(r2)

) (logK2)
1−σ − (logK1)

1−σ

(1−σ)Γ(ω2)
(log

K2

K1
)ω2−1 ≤ 1,

is satisfied for each r2 ∈ (0, 119.0476) which implies that condition (3.6) holds.
Consequently, by Theorem 3.2, (4.4) has a unique solution ũ2 in Π2.
Then, according to Theorem 3.3, problem (4.1) has a unique solution

u(t) =
{

ũ1(t), t ∈ ϒ1,
u2(t), t ∈ ϒ2.

where

u2(t) =
{

0, t ∈ [1,K1],
ũ2, t ∈ ϒ2,

5. Conclusion

In this work, we deal with integral equations in the form of quadratic Urysohn type involving Hadamard fractional variable
order integral operator. A thorough study and an effective mathematical framework for fractional calculus of variable order has
been presented recently. The literature contains surveys of the sorts of variable-order derivatives and integrals, along with some
physical applications. Regrettably, when applied to variables of order, this attribute does not possess the semi-group property.
Because of this, we are unable to simply transform the FVO differential equations into a corresponding integral equation,
unlike with constant-order fractional equations. Based on our understanding of this challenge, we have utilized piece-wise
constant functions to establish existence and uniqueness results. In the final stage, we apply the results of our method by
constructing a numerical example.
As a future study, these findings on the Urysohn integral equation could be applied to other spaces, such as Frechet space
combined with different fractional integral operators.

Declarations

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for
their helpful comments and suggestions



116 Fundamental Journal of Mathematics and Applications

Author’s Contributions: Conceptualization, Z.B., M.S.S., A.B. and A.Y.; methodology Z.B., M.S.S., A.B. and A.Y.;
validation, Z.B., M.S.S., A.B. and A.Y.; investigation, Z.B., M.S.S., A.B. and A.Y.; resources, Z.B., M.S.S., A.B. and A.Y.;
data curation, Z.B., M.S.S., A.B. and A.Y.; writing—original draft preparation, Z.B., M.S.S., A.B. and A.Y.; writing—review
and editing, Z.B., M.S.S., A.B. and A.Y.; supervision, Z.B., M.S.S., A.B. and A.Y. All authors have read and agreed to the
published version of the manuscript.

Conflict of Interest Disclosure: The authors declare no conflict of interest.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the
CC BY-NC 4.0 license.

Supporting/Supporting Organizations: This research received no external funding.

Ethical Approval and Participant Consent: This article does not contain any studies with human or animal subjects. It is
declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies
benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of Data and Materials: Data sharing not applicable.

Use of AI tools: The author declares that he has not used Artificial Intelligence (AI) tools in the creation of this article.

ORCID
Zoubida Bouazza https://orcid.org/0000-0003-2702-5112
Mohammed Said Souid https://orcid.org/0000-0002-4342-5231
Amar Benkerrouche https://orcid.org/0000-0002-3551-6598
Ali Yakar https://orcid.org/0000-0003-1160-577X

References

[1] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics
Studies, Elsevier Science Tech, (2006). [CrossRef]

[2] V. Lakshmikantham, S. Leela and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Scientfic Publishers, Cambridge, (2009).
[Web]

[3] R.K. Saxena and S.L. Kalla, On a fractional generalization of the free electron laser equation, Appl. Math. Comput., 143(1) (2003), 89-97.
[CrossRef] [Scopus] [Web of Science]

[4] A. Tepljakov, Fractional-order Modeling and Control of Dynamic Systems, Springer, (2017). [CrossRef] [Web of Science]
[5] S. Chakraverty, R.M. Jena and S.K. Jena, Time-Fractional Order Biological Systems with Uncertain Parameters, Synthesis Lectures on

Mathematics & Statistics, Springer International Publishing, (2022). [CrossRef]
[6] H. Singh, D. Kumar, D. Baleanu, Methods of Mathematical Modelling: Fractional Differential Equations, Mathematics and its Applications,

CRC Press, (2019). [CrossRef]
[7] J. Singh, J.Y. Hristov, Z. Hammouch, New Trends in Fractional Differential Equations with Real-World Applications in Physics, Frontiers

Research Topics, Frontiers Media SA, 2020. [Web]
[8] V.E. Tarasov, Mathematical economics: application of fractional calculus, Mathematics, 8(5) 660 (2020), 1-3. [CrossRef] [Scopus] [Web of

Science]
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Abstract

Schistosomiasis, a neglected tropical disease caused by parasitic trematodes of the genus Schisto-
soma, affects millions of people in tropical and subtropical regions lacking access to clean water
and proper hygiene. With its impact on health and well-being, the World Health Organization
aspires to eliminate schistosomiasis by 2030. This work addresses the challenge of effective control
in endemic areas by integrating diffusion in each sub-population using reaction-diffusion equations.
The proposed model includes treated individuals who have undergone massive drug administration
and a time-dependent function that models the change in human behavior. We present a Partial Dif-
ferential Equation (PDE) model of schistosomiasis spread that incorporates population movement
and human behavior change. Mathematical analysis explores the system’s dynamics according to
the infection threshold R0, shedding light on the disease’s behavior. Sensitivity analysis is used
to identify the key parameters affecting disease spread. Numerical simulations under different
scenarios elucidate the impact of human behavior on disease dynamics. This research contributes to
a deeper understanding of schistosomiasis transmission and provides insights into control strategies.

1. Introduction

Schistosomiasis, also known as Bilharzia or snail fever, is a neglected tropical disease (NTD) prevalent in tropical and
subtropical countries with limited access to safe drinking water and proper hygiene. It is caused by trematode blood flukes
of the genus Schistosoma and is endemic in 52 countries, affecting over 290 million people in 2018 [1]. The World Health
Organization (WHO) has aimed to eliminate schistosomiasis as a public health problem by 2030 [2]. Schistosomiasis is
transmitted through contact with fresh water contaminated by the infective larvae of Schistosoma parasites [1]. The life
cycle of the disease involves the release of parasite eggs into water bodies through human waste, hatching of eggs into
miracidia, infecting snails, developing into cercariae and eventually infecting humans through skin penetration, leading to
organ damage, abdominal pain, blood in stool or urine, anemia, dysuria and other health complications [3, 4]. Effective control
of schistosomiasis remains challenging in endemic regions and the main approach is mass drug administration (MDA) using
praziquantel, an anthelmintic drug, to reduce morbidity, mortality and transmission rates [5].
Research into the dynamics of Schistosoma infections traces its origins back to 1965 when George Macdonald introduced the
inaugural mathematical framework for schistosome epidemiology [6]. This pioneering model, based on differential equations,
describes the progression of the average worm burden in the human host, taking into account the complex nature of schistosome.
Subsequent to this, researchers have developed the model taking into account the heterogeneity of the intermediate host[7].
Contemporary investigations have leveraged agent-based models (ABMs) and individual-based models (IBMs) to capture
the multifaceted diversity in human behaviors and interactions [8, 9]. These innovative models have not only illuminated
the pivotal role of water-related activities but have also pinpointed regions of heightened transmission risk [8]. However,
human behavior and the movement of individuals between locations, play a significant role in disease spread, as infected
individuals can introduce the parasite to new areas, potentially creating new transmission hotpots [10]. Since then, various
models have been proposed that include more detailed information such as spatial heterogeneity or seasonality [10, 11]. Zhang
et al. [12] studied the spatial distribution of schistosomiasis and the treatment needs in Africa. Manuela Ciddio et al. [10]
utilized a multidimensional network model to investigate the spatial spread of schistosomiasis within the Saint-Louis region of
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Senegal. The study emphasizes the crucial role of spatial connectivity in disease propagation and underscores the significance
of accounting for various transport pathways to develop effective disease control strategies.
This paper aims to develop a mathematical model for schistosomiasis spread based on reaction-diffusion equations that
integrate human behavior change. Reaction-diffusion systems have proven to be effective and appropriate modeling tools for
comprehending the spatiotemporal dynamics of diseases. Operating within the domain of spatial continuity, these systems
have been pivotal in delving into intricate topics such as nonlinear infection mechanisms and spatial diffusivity. The model we
present in this paper takes into account individuals who have undergone mass drug administration (MDA) as detailed in [13].
Moreover, our investigation extends to encompass changes in human behavior and the exploration of diffusion phenomena,
contributing to an enhanced understanding of the spatial distribution of the disease.
The remainder of this work is organized as follows. Section 2 presents a Partial Differential Equation (PDE) model that
incorporates population mobility and the biological description of the infection parameters. A mathematical analysis of the
model to understand the dynamical behavior of the system depending on the value of the threshold of infection R0 is done in
Section 3. Section 4 conducts the sensitivity analysis of R0 to identify parameters sensitive to the disease spread. Section 5
presents the numerical simulations under different scenarios by taking appropriate parameters to explore the effect of human
behavior on disease dynamics. Finally, Section 6 gives a brief discussion and conclusion.

2. Model Formulation

Models of schistosomiasis transmission typically incorporate various aspects of the schistosome life cycle. The populations
considered consist of humans (H) and snails (S), with the presence of cercariae (C) and miracidia (M). Cercariae (C) represent
larval worms shed into the aquatic environment by infected snails, while miracidia (M) are eggs shed into streams by infected
humans engaging in activities like fishing, swimming, or drinking. The human population is divided into sub-populations:
susceptible (Sh), exposed (Eh), infected (Ih) and treated (Th) individuals, while the snail population consists of susceptible (Ss),
exposed (Es) and infected (Is) snails. The susceptible human reproduces at a constant rate Λh and dies naturally at the rate
µh, The susceptible become infected through contact with fresh water contaminated by cercariae from infected snail at the
rate βchθC. The exposed humans become infectious at a rate γh and we assume that a rate σh of infected humans receives
the MDA, while a fraction λ recovers and returns to the susceptible class. Others may die because of the infections at a rate
ρh, We assume that the treated humans are not infectious, i.e., they do not produce eggs for miracidia. Shedding of infection
within the environment by infected humans is assumed to occur at rate αm which represents the rate of miracidia produced by
infected humans. Susceptible snails reproduce at a constant rate Λs and die naturally at the rate µs. They become infected upon
contact with miracidia from the shedding of infected humans and mammals at the rate βmsM. The exposed snails become
infectious at a rate γs and those infected snails shed larva worms (cercariae) in the environment at a rate αc. The death rates of
miracidia and cercariae are µm and µc, respectively. The model assumes no immigration of infectious individuals. Figure 1
illustrates the transmission diagram of Schistosomiasis.

Figure 1: Transmission dynamics of Schistosomiasis. The disease cycle begins when infected individuals release Schistosoma eggs into
freshwater bodies through feces or urine. These eggs hatch, releasing miracidia that infect snails, where they develop into cercariae. The
cercariae are then released into the water, actively seeking contact with human skin. Upon skin penetration, they enter the bloodstream and
migrate to the liver, maturing into adult worms. The worms then migrate to the veins of the urinary or intestinal systems, where they lay eggs,
which starts the whole cycle again. Direct transitions between compartments are represented by the horizontal solid arrows. The mortality
rate is represented by the vertical arrows exiting the compartments. The dashed arrow from C to Sh and from M to Ss indicates the contact of
susceptible humans with freshwater contaminated by cercariae and the contact of susceptible snails with miracidia, respectively. On the
other hand, the dashed arrow from Ih to M and from Is to C indicates the shedding rate of miracidia and cercariae, respectively.
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We assume that snails, miracidia and cercariae can move within their environment due to factors such as water currents, host
movements and other ecological interactions. Diffusion processes allow us to simulate the movement of these populations over
time, which affects how they encounter and interact with each other.

This leads to the following system of partial differential equations:





∂Sh(x, t)
∂ t

= d1∆Sh +Λh +λTh−βchθ(t)CSh−µhSh,

∂Eh(x, t)
∂ t

= d2∆Eh +βchθ(t)CSh− γhEh−µhEh,

∂ Ih(x, t)
∂ t

= d3∆Ih + γhEh−σhIh−ρhIh−µhIh,

∂Th(x, t)
∂ t

= d4∆Th +σhIh−λTh− (1−λ )ρhTh−µhTh,

∂M(x, t)
∂ t

= d5∆M+αmIh−µmM,

∂Ss(x, t)
∂ t

= d6∆Ss +Λs−βmsMSs−µsSs,

∂Es(x, t)
∂ t

= d7∆Es +βmsMSs− γsEs−ρsEs−µsEs,

∂ Is(x, t)
∂ t

= d8∆Is + γsEs−ρsIs−µsIs,

∂C(x, t)
∂ t

= d9∆C+αcIs−µcC.

(2.1)

Where Sh, Eh, Ih and Th, represent the populations of susceptible, exposed, infected and treated humans at position x and time
t, respectively. Ss, Es, and Is represent the populations of susceptible, exposed and infected snails at position x and time t,
respectively. M and C represent the populations of miracidia and cercariae at position x and time t. We assume that the human,
snail, miracidia and cercariae population moves in the region Ω according to Fick’s second law [14], with di (i = 1, ...,9),
being the diffusion coefficients. Each diffusion coefficient di determines how quickly each sub-population spreads through
space. The Laplacian operator ∆ represents the spatial diffusion between neighboring locations and computes the difference
between a compartment’s value at a specific location and the average of its neighboring compartments.

By incorporating the model the time-dependent function θ(t) into the model, we identified human behavioral changes such as
avoiding wading, swimming and other forms of contact with contaminated water, as well as adopting improved sanitation and
gaining access to clean water. This function is given by

θ(t) =

{
1 No intervention,
(1+ζ ert)−1 with intervention

(2.2)

This type of function is often used to capture the gradual change in behavior from initial resistance to eventual widespread
adoption [15]. Here, ζ represents the maximum level of behavior change effectiveness that can be achieved. We have ζ ∈ (0,1),
where 0 represents no behavior change, 1 represents full behavior change compliance and r determines how quickly behavior
change is adopted and becomes effective over time.

The following initial conditions are associated with the system (2.1) :





Sh(x,0) = φ1(x), Eh(x,0) = φ2(x), Ih(x,0) = φ3(x), Th(x,0) = φ4(x), M(x,0) = φ5(x),
Ss(x,0) = φ6(x), Es(x,0) = φ7(x), Is(x,0) = φ8(x), C(x,0) = φ9(x),
x ∈Ω and φi ∈C2(Ω)∩C(Ω), i = 1, ...,9,

(2.3)

and homogeneous Neumann boundary conditions are imposed:

∂Sh

∂η
=

∂Eh

∂η
=

∂ Ih

∂η
=

∂Th

∂η
=

∂M
∂η

=
∂Ss

∂η
=

∂Es

∂η
=

∂ Is

∂η
=

∂C
∂η

= 0, x ∈ ∂Ω, t > 0, (2.4)

where Ω is an open bounded subset of Rn with a smooth boundary ∂Ω and η is the unit outer normal to ∂Ω. The biological
description of all the parameters in the system (2.1) is given in Table 1.
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Table 1: Description of the model parameters.

Param. Biological description Value Unit Source
Λh Recruitment rate of humans 0.62 humans per day [16]
Λs Recruitment rate of snails 2.5 snails per day [16]
βch Infection rate of cercariae on hu-

mans
4×10−6 per day [10]

βms Infection rate of miracidia on snails 5×10−5 per day [10]
θ Time-dependent function describing

human intervention
- - -

ρh Death rate of humans due to infec-
tion

0.000274 per day [13]

ρs Death rate of snails due to infection 0.011 per day [10]
γh Rate of transmission of humans

from exposure to infection
0.0238 per day [13]

γs Rate of transmission of snails from
exposure to infection

0.0286 per day [13]

σh Transmission rate of humans from
infection to treatment

0.03 per day [17]

αm Rate individuals produce miracidia 6.96 miracidia per human per day [18]
αc Rate snails produce cercariae 2.6 cercariae per snail per day [18]
λ Treatment efficacy (for Schistosoma

mansoni)
0.767 - [19]

µh Natural death rate of humans 0.00004379 per day [13]
µs Natural death rate of snails 2.7×10−3 per day [10]
µm Natural death rate of miracidia 3.04 per day [10]
µc Natural death rate of cercariae 0.91 per day [10]

3. Mathematical Analysis of the Model

This section is devoted to the theoretical study of the transmission model of the spread of Schistosomiasis described by a
system of 9-PDE of the system (2.1). The existence and uniqueness of positive solutions and the existence of equilibria and
their stability are established depending on the value of the basic reproduction number.
The system (2.1) can be expressed as:

∂X(x, t)
∂ t

= DX(x, t)+ f (X(x, t)), (3.1)

with X = (Sh,Eh, Ih,Th,M,Ss,Es, Is,C), D = diag(d1,d2,d3,d4,d5,d6,d7,d8,d9), and function f represent the right hand side
of the system (2.1) without the diffusive part, i.e.

f (X(x, t)) =




Λh +λTh−βchθCSh−µhSh,
βchθCSh− γhEh−µhEh,

γhEh−σhIh−ρhIh−µhIh,
σhIh−λTh− (1−λ )ρhTh−µhTh,

αmIh−µmM,
Λs−βmsMSs−µsSs,

βmsMSs− γsEs−ρsEs−µsEs,
γsEs−ρsIs−µsIs,

αcIs−µcC




. (3.2)

3.1. Existence, Uniqueness and Positivity

We said that X−=(S−h ,E
−
h , I−h ,T−h ,M−,S−s ,E

−
s , I−s ,C−) and X+=(S+h ,E

+
h , I+h ,T+

h ,M+,S+s ,E
+
s , I+s ,C+) and in C(Ω×[0,∞))∩

C1,2(Ω× [0,∞)) are lower and upper solutions of system (2.1), respectively, if X− ≤ X+ in Ω× [0,∞) and the following
differential inequalities hold:





∂X−(x, t)
∂ t

≤ DX−(x, t)+ f (X−(x, t)),

∂X+(x, t)
∂ t

≥ DX+(x, t)+ f (X+(x, t)), for (x, t) ∈Ω× (0,∞)
(3.3)
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and





∂X−

∂η
≤ 0≤ ∂X+

∂η
, for (x, t) ∈ ∂Ω× (0,∞),

X−(x, t)≤Φ(x, t)≤ X+(x, t) for (x, t) ∈Ω× (0,∞).
(3.4)

Where ≤ is the standard order relation in Rn (x≤ y⇔ xi ≤ yi, for i = 1, ...,n) and Φ = (φ1,φ2,φ3,φ4,φ5,φ6,φ7,φ8,φ9) .

Theorem 3.1. Let suppose that the initial functions φi (i = 1,2, . . . ,9) are continuous in Ω. Then problem (2.1) has ex-
actly one regular solution X(x, t) = (Sh(x, t),Eh(x, t), Ih(x, t),Th(x, t),M(x, t),Ss(x, t),Es(x, t), Is(x, t),C(x, t)). This solution is
characterized by positivity and boundedness in the region Ω× [0,∞).

Proof. The existence and uniqueness of the solution are obtained using the Lemma 1 in [20].

Let Γ :=C(Ω,R). We observe that 0R9 = (0,0,0,0,0,0,0,0,0) and W = (w1,w2,w3,w4,w5,w6,w7,w8,w9) are respectively
lower and upper solutions of the system (2.1), where

w1 = max
{

Λh
µh
,‖φ1‖Γ

}
, w6 = max

{
Λs
µs
,‖φ6‖Γ

}
,

w2 = max
{

Λh
µh
,‖φ2‖Γ

}
, w7 = max

{
Λs
µs
,‖φ7‖Γ

}
,

w3 = max
{

γhΛh
µ2

h
,‖φ3‖Γ

}
, w8 = max

{
γsΛs
µ2

s
,‖φ8‖Γ

}
,

w4 = max
{

σhγhΛh
µ3

h
,‖φ4‖Γ

}
, w9 = max

{
αcΛs
µcµs

,‖φ9‖Γ

}
,

w5 = max
{

αmΛh
µmµh

,‖φ5‖Γ

}
.

(3.5)

By applying the Redinger’s Lemma, we conclude that the problem (2.1) has exactly one regular solution X(x, t) such that
0R9 ≤ X(x, t)≤W in Ω× [0,∞).

Hence, 0 ≤ Sh(x, t) ≤ w1, 0 ≤ Eh(x, t) ≤ w2, 0 ≤ Ih(x, t) ≤ w3, 0 ≤ Th(x, t) ≤ w4, 0 ≤ M(x, t) ≤ w5, 0 ≤ Ss(x, t) ≤ w6,
0≤ Es(x, t)≤ w7, 0≤ Is(x, t)≤ w8, 0≤C(x, t)≤ w9.

Furthermore, if φi(x) 6= 0 for i = 1, ...,9, then from the maximum principle, we have Sh(x, t) > 0, Eh(x, t) > 0, Ih(x, t) > 0,
Th(x, t)> 0, M(x, t)> 0,Ss(x, t)> 0, Es(x, t)> 0, Is(x, t)> 0, C(x, t)> 0 for all t > 0, x ∈Ω.

3.2. Equilibria and Basic Reproduction Number

3.2.1. Equilibria

The equilibria of the system (2.1) are found by solving

dX(t)
dt

= f (X(t)) = 0, (3.6)

with X = (Sh,Eh, Ih,Th,M,Ss,Es, Is,C) and f given by (3.2). Hence, the system (2.1) has two equilibrium points, namely the
disease-free equilibrium point (DFE) and endemic equilibrium point (EE).

1. The DFE is given by

E0 = (S0
h,0,0,0,0,S

0
s ,0,0,0) =

(
Λh

µh
,0,0,0,0,

Λs

µs
,0,0,0

)
,

and it translates to the ideal case where the disease disappears into the human and snail population and always exists.
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2. The EE is given by E∗ = (S∗h,E
∗
h , I
∗
h ,T

∗
h ,M

∗,S∗s ,E
∗
s , I
∗
s ,C

∗), where





S∗h =
µc(ρs +µs)(γs +ρs +µs)

(
βmsαmI∗h +µsµm

)
(λ +(1−λ )ρh +µh)Λh +λσhI∗h

γsβmsαmαcΛs(λ +(1−λ )ρh +µh)I∗h +µhµc(ρs +µs)(γs +ρs +µs)
(
βmsαmI∗h +µsµm

) ,

E∗h =
σh +ρh +µh

γh
I∗h ,

I∗h =
µhµsµcµm(γh +µh)(ρs +µs)(σh +ρh +µh)(γs +ρs +µs)(λ +(1−λ )ρh +µh)(Re−1)

A1 +A2
,

T ∗h =
σh

λ +(1−λ )ρh +µh
I∗h ,

M∗ =
αm

µm
I∗h ,

S∗s =
µmΛs

βmsαmI∗h +µsµm
,

E∗s =
βmsαmΛs

(γs +ρs +µs)
(
βmsαmI∗h +µsµm

) I∗h ,

I∗s =
γsβmsαmΛs

(ρs +µs)(γs +ρs +µs)
(
βmsαmI∗h +µsµm

) I∗h ,

C∗ =
γsβmsαmαcΛs

µc(ρs +µs)(γs +ρs +µs)
(
βmsαmI∗h +µsµm

) I∗h .

(3.7)

With

Re =
βchθβmsαcαmγhγsΛhΛs

µhµsµcµm(γh +µh)(ρs +µs)(σh +ρh +µh)(γs +ρs +µs)
,

A1 = γsβchθβmsαmαcΛs(ρhσh((1−λ )ρh +µh)+(λ +(1−λ )ρh +µh)(γh(ρs +µs)+µh(σh +ρh +µh))),

A2 = αmµhµcβms(γh +µh)(ρs +µs)(σh +ρh +µh)(γs +ρs +µs)(λ +(1−λ )ρh +µh).

This equilibrium translates the situation of persistence of the disease into the population and exists if Re > 1.

3.2.2. Basic reproduction number

The epidemiological concept of the basic reproduction number (R0) pertains to the average count of fresh infections within a
susceptible population caused by a single infectious individual (human or snail). To determine this metric we use the same
approach as [21] and compute the next generation matrix.
Let the infective compartment be XI = (Eh, Ih,M,Es, Is,C), considering the following system:





∂Eh(x, t)
∂ t

= d2∆Eh +βchθCSh− γhEh−µhEh,

∂ Ih(x, t)
∂ t

= d3∆Ih + γhEh−σhIh−ρhIh−µhIh,

∂M(x, t)
∂ t

= d5∆M+αmIh−µmM,

∂Es(x, t)
∂ t

= d7∆Es +βmsMSs− γsEs−ρsEs−µsEs,

∂ Is(x, t)
∂ t

= d8∆Is + γsEs−ρsIs−µsIs,

∂C(x, t)
∂ t

= d9∆C+αcIs−µcC.

(3.8)

Let’s consider the two vectors F and V . Where F represents the rate of new infections appearing in a compartment and V
represents the rate of infectives leaving the system, defined as follows:

F =




βchθCSh
0
0

βmsSs
0
0



, and V =




(γh +µh)Eh
(σh +ρh +µh)Ih− γhEh

µmM−αmIh
(γs +ρs +µs)Es
(ρs +µs)Is− γsEs

µcC−αcIs



.

The Jacobian matrices of F and V at the DFE E0 are given by:
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JF =




0 0 0 0 0 βchθΛh
µh

0 0 0 0 0 0
0 0 0 0 0 0
0 0 βmsΛs

µs
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0



, JV =




γh +µh 0 0 0 0 0
−γh σh +ρh +µh 0 0 0 0

0 −αm µm 0 0 0
0 0 0 γs +ρs +µs 0 0
0 0 0 −γs ρs +µs 0
0 0 0 0 −αc µc



.

Then, the next generation matrix is given by:

JF J−1
V =




0 0 0 βchθΛhαcγc
µhµc(γs+ρs+µs)(ρs+µs)

βchθ µhαc
µhµc(ρs+µs)

βchθΛh
µhµc

0 0 0 0 0 0
0 0 0 0 0 0

βmsΛsαm
µs(γh+µh)(σh+ρh+µh)

βmsΛsαm
µsµm(σh+ρh+µh)

βmsΛs
µsµm

0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



.

The reproduction number is the spectral radius of the next generation matrix. Hence, we have

R0 := ρ(JF J−1
V ) =

(
βchθβmsαcαmγhγsΛhΛs

µhµsµcµm(γh +µh)(ρs +µs)(σh +ρh +µh)(γs +ρs +µs)

) 1
2
. (3.9)

Using the notations

R0,hs =
βmsαmγsΛs

µsµm(ρs +µs)(γs +ρs +µs)
, and R0,sh =

βchθαcγhΛh

µhµc(γh +µh)(σh +ρh +µh)
, (3.10)

the expression of R0 takes the form:

R0 =
√

R0,hs ·R0,sh. (3.11)

The quantity R0,hs and R0,sh reflect the transmission from human to snail and from snail to human, respectively. This expression
of R0 as a geometric mean of R0,hs and R0,sh, effectively demonstrates how the different population parameters in the life cycle
(Human-Snail-Human), such as birth, death and infection rates impact the transmission intensity as shown in Section 4.

Lemma 3.2. If R0 > 1, then the endemic equilibrium point E∗ of system (2.1) given by (3.7) exists and is unique.

Proof. It is easy to observe that Re = R2
0. Hence Re > 1 if and only if R0 > 1. Therefore the necessary and sufficient condition

for the existence of the endemic equilibrium E∗ is R0 > 1.

The nature of the system (2.1) is determined by the time-dependent intervention function θ(t). The analysis of the stability of
the system is divided into two cases: one where there is no human intervention (θ(t) = 1) and the other where there is human
intervention ( θ(t) = (1+ζ ert)−1).

3.3. Stability of autonomous dynamical system

3.3.1. Local stability of the equilibrium

To establish the local stability of the equilibrium, A similar methodology as in prior works such as [22, 23] is employed.
Consider the eigenvalues of −∆ on Ω with homogeneous Neumann boundary conditions: 0 = ν0 < νi < νi+1, i = 1,2, ...
and E(νi) the associated eigenspace. Let denote by Bi, the orthogonal basis for E(νi). Consequently, the solution space
B= {(Sh,Eh, Ih,Th,M,Ss,Es, Is,C)} of the system (2.1) can be partitioned as follows:

B=
∞⊕

i=1

Bi.

If we denote by J(E) the Jacobian matrix of the system (2.1) at the equilibrim E, then as prove in [24] the eigenvalues of J(E)
are equivalent to the eigenvalue of the matrix

M(E) =−νiD+ J f (E).

Where D = diag(d1,d2,d3,d4,d5,d6,d7,d8,d9) is a diagonal matrix of the diffusion coefficients and J f (E) is the Jacobian
matrix of the function f given in (3.2) at the equilibrium E.
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Theorem 3.3. If R0 < 1 and θ(t) = 1, then the disease-free equilibrium point E0 of system (2.1) is locally asymptotically
stable (LAS).

Proof. Let J(E0) the Jacobian matrix of the system (2.1) at the DFE. The eigenvalue value of J(E0) are equivalent to that the
matrix

M(E0) =−νiD+ J f (E0) =




−a1 0 0 λ 0 0 0 0 −βchθ
Λh

µh

0 −a2 0 0 0 0 0 0 βchθ
Λh

µh
0 γh −a3 0 0 0 0 0 0
0 0 σh −a4 0 0 0 0 0
0 0 αm 0 −a5 0 0 0 0

0 0 0 0 −βms
Λs

µs
−a6 0 0 0

0 0 0 0 βms
Λs

µs
0 −a7 0 0

0 0 0 0 0 0 γs −a8 0
0 0 0 0 0 0 0 αc −a9




.

Where a1 = µh +νid1, a2 = (γh +µh)+νid2, a3 = (σh +ρh +µh)+νid3, a4 = (λ +(1−λ )ρh +µh)+νid4, a5 = µm +νid5,
a6 = µs +νid6, a7 = (σs +ρs +µs)+νid7, a8 = (ρs +µs)+νid8 and a9 = µc +νid9.
The characteristic polynomial of this matrix is given by:

P1(x) =−(a1 + x)(a4 + x)(a6 + x)Q1(x) with

Q1(x) = x6 + k5x5 + k4x4 + k3x3 + k2x2 + k1x+ k0 and the values of the coefficients are:

k0 = a2a3a5a7a8a9

(
1− βchθβmsαcαmγhγsΛhΛs

µhµsa2a3a5a7a8a9

)
,

k1 = a2a3a5a7a8 +a2a3a5a7a9 +a2a3a5a8a9 +a2a3a7a8a9 +a2a5a7a8a9 +a3a5a7a8a9 > 0,
k2 = a2a3a5a7 +a2a3a5a8 +a2a3a5a9 +a2a3a7a8 +a2a3a7a9 +a2a3a8a9 +a2a5a7a8

+ a2a5a7a9 +a2a5a8a9 +a3a5a7a8 +a3a5a7a9 +a3a5a8a9 +a5a7a8a9 > 0,
k3 = a2a3a7 +a2a3a8 +a2a3a9 +a2a5a7 +a2a5a8 +a2a5a9 +a3a5a7 +a3a5a8 +a3a5a9 +a5a7a8

+ a5a7a9 +a5a8a9 +a2a7a8 +a2a7a9 +a2a8a9 +a3a7a8 +a3a7a9 +a3a8a9 +a7a8a9 > 0.
k4 = a2a7 +a2a8 +a2a9 +a3a7 +a3a8 +a3a9 +a7a8 +a7a9 +a8a9 > 0,
k5 = a2 +a3 +a5 +a7 +a8 +a9 > 0.

It is easy to see that P1 has three negative eigenvalues: x1 =−a1, x2 =−a4 and x3 =−a6. The other eigenvalues are roots of
Q1(x).
Since k1,k2,k3,k4,k5 > 0, then by using the Routh-Hurwitz criteria [25] and the conditions of Heffernan [26] that the
polynomial Q1(x) has negative real roots if k5k4 > k3, k4k2 > k0, k2k1 > k3k0. We already have:

k5k4− k3 = a2
2a7 +a2

2a8 +a2
2a9 +a2a3a7 +a2a3a8 +a2a3a9 +a2a5a7 +a2a5a8

+ a2a5a9 +a3a7a8 +a3a7a9 +a3a8a9 +a5a7a8 +a5a7a9 +a5a8a9

> 0.

If R0 < 1, then we have:

βchθβmsαcαmγhγsΛhΛs

µhµsa2a3a5a7a8a9
≤ R2

0 < 1⇒ 0 < k0 < a2a3a5a7a8a9. (3.12)

Hence,

k4k2 > a2a3a5a7a8a9 > k0, and k2k1− k3k0 > k2k1−a2a3a5a7a8a9k3 = 0. (3.13)

Thus all the eigenvalues of P1 have a negative real part, which implies that the disease-free equilibrium E0 is locally
asymptotically stable if R0 < 1.

Theorem 3.4. If R0 > 1 and θ(t) = 1, then the endemic equilibrium point E∗ of system (2.1) is locally asymptotically stable
(LAS).
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Proof. Let J(E∗) the Jacobian matrix of the system (2.1) at the EE. The eigenvalue value of J(E∗) are equivalent to that the
matrix

M(E∗) = νiD+ J f (E∗) =




−b1 0 0 λ 0 0 0 0 −βchθS∗h
βchθC∗ −b2 0 0 0 0 0 0 βchθS∗h

0 γh −b3 0 0 0 0 0 0
0 0 σh −b4 0 0 0 0 0
0 0 αm 0 −b5 0 0 0 0
0 0 0 0 −βmsS∗s −b6 0 0 0
0 0 0 0 βmsS∗s 0 −b7 0 0
0 0 0 0 0 0 γs −b8 0
0 0 0 0 0 0 0 αc −b9




.

Where b1 = βchθC∗ + µh + νid1, b2 = (γh + µh) + νid2, b3 = (σh + ρh + µh) + νid3, b4 = (λ + (1− λ )ρh + µh) + νid4,
b5 = µm +νid5, b6 = βmsM∗+µs +νid6, b7 =−βmsM∗+(σs +ρs +µs)+νid7, b8 = (ρs +µs)+νid8 and b9 = µc +νid9.
We are employing the approach as [27, 28, 29]. Assuming the linearized equation at the equilibrium point E∗ takes the form:

U ′ = M(E∗)U, (3.14)

Here, we consider a solution characterized by the expression:

U(t) =U0etz, z ∈ C9, (3.15)

where U0 = (U1,U2,U3,U4,U5,U6,U7,U8,U9). Upon substituting this particular solution form (3.15) into the linearized system
(3.14), we obtain the relationship zU = M(E∗)U , which can be rephrased as the subsequent system:





zU1 =−b1U1 +λU4−βchθS∗hU9,

zU2 = βchθC∗U1−b2U2 +βchθS∗hU9,

zU3 = γhU2−b3U3,

zU4 = σhU3−b4U4,

zU5 = αmU3−b5U5,

zU6 =−βmsS∗sU5−b6U6,

zU7 = βmsS∗sU5−b7U7,

zU8 = γsU7−b8U7,

zU9 = αcU8−b9U9.

(3.16)

The system (3.16) can be rewritten as

(1+Fi(z))Ui +Gi(U) = (HU)i, i = 1, ...,9 (3.17)

where

F1(z) = 1
b1
, F2(z) = 1

b2
, F3(z) = 1

b3
, F4(z) = 1

b4
, F5(z) = 1

b5
,

F7(z) = 1
b6
, F7(z) = 1

b7
, F8(z) = 1

b8
, F9(z) = 1

b9
,

and

G1(U) =
βchθS∗h

b1
U9, G6(U) = βmsS∗s

b6
U5,

G2(U) = G3(U) = G4(U) = G5(U) = G7(U) = G8(U) = G9(U) = 0,

and a non-negative matrix H given by

H =




0 0 0
λ

b1
0 0 0 0 0

βchθC∗

b1
0 0 0 0 0 0 0

βchθS∗h
b2

0
γh

b3
0 0 0 0 0 0

0 0
σh

b4
0 0 0 0 0 0

0 0
αm

b5
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0
βmsS∗s

b7
0 0 0 0

0 0 0 0 0 0
γs

b8
0 0

0 0 0 0 0 0 0
αc

b9
0




.
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The equilibrium state denoted as E∗ = (S∗h,E
∗
h , I
∗
h ,T

∗
h ,M

∗,S∗s ,E
∗
s , I
∗
s ,C

∗) is defined as the endemic equilibrium, satisfying the
condition E∗ = HE∗. Since all the components of E∗ are positive when R0 > 1. Let U denote a solution of equation (3.17),
there exists a minimal positive real c0 (as established in [29]), such that the following inequality holds:

|U | ≤ c0E∗, (3.18)

where |U | = (|U1|, |U2|, |U3|, |U4|, |U5|, |U6|, |U7|, |U8|, |U9|). The objective is to demonstrate Re(z) < 0. Let us assume by
contradiction that Re(z)≥ 0.
Given that U 6= 0, we conclude that Re(z)> 0, leading to |1+Fi(z)|> 1 for all i = 1, . . . ,9. Hence

c0

Ψ(z)
< c0, where Ψ(z) = min

i=1,..,8
|1+Fi(z)|> 1.

Hence, by the minimality of c0, it is follows that:

|U |> c0

Ψ(z)
E∗. (3.19)

By applying the norm to both sides of the third equation in (3.17) and using the non-negativity of matrix H, we get:

|1+F3(z)||U3|= |(HU)3| ≤ H|U3| ≤ c0H(E∗)3 = c0I∗h , (3.20)

This implies that |U3| ≤ c0
Ψ(z) I∗h and then, contradicts equation (3.19). Hence, Re(z)< 0, which means that all eigenvalues of the

matrix M(E∗) have a negative real part. Therefore, the endemic equilibrium E∗ is locally asymptotically stable if R0 > 1.

3.3.2. Global stability of the disease-free equilibrium

Theorem 3.5. If θ(t) = 1, then disease-free equilibrium point E0 of system (2.1) is globally asymptotically stable (GAS) if
R0 < 1 and unstable if R0 > 1.

Proof. The Lyapunov-LaSalle technique is used to prove the global asymptotic stability of E0. Let’s consider the Lyapunov
function defined as follows :

L =
∫

Ω

[c1Eh(x, t)+ c2Ih(x, t)+ c3M(x, t)+ c4Es(x, t)+ c5Is(x, t)+ c6C(x, t)]dx, (3.21)

where

c1 = αmαcγhγsβsΛs(γh +µh),

c2 = αmαcγsβsΛs(γh +µh)

c3 = αcγsβsΛs(γh +µh)(σh +ρh +µh),

c4 = αcγsµmµs(γh +µh)(σh +ρh +µh),

c5 = µmµs(ρs +µs)(γh +µh)(γs +ρs +µs)(σh +ρh +µh),

c6 = µmµsαc(γh +µh)(γs +ρs +µs)(σh +ρh +µh).

We have:

dL
dt

=
∫

Ω

[
c1

∂Eh(x, t)
∂ t

+ c2
∂ Ih(x, t)

∂ t
+ c3

∂M(x, t)
∂ t

+ c4
∂Es(x, t)

∂ t
+ c5

∂ Is(x, t)
∂ t

+ c6
∂C(x, t)

∂ t

]
dx

=
∫

Ω

[c1(d2∆Eh +βchθCSh− (γh +µhEh)Eh)+ c2(d3∆Ih + γhEh− (σh +ρh +µh)Ih)

+ c3(d5∆M+αmIh−µmM)+ c4(d7∆Es +βmsMSs− (γs +ρs +µs)Es)

+ c5(d8∆Is + γsEs− (ρs +µs)Is)+ c6(d9∆C+αcIs−µcC)]dx

=
∫

Ω

[
c1βh

(
Sh−

c6µc

c1βh

)
C+(c2γh− c1(γ +µh))Eh +(c3αm− c2(σh +ρh +µh))Ih

+ (c5γs− c4(γs +ρs +µs))Es +(c6αc− c5(ρs +µs))Is + c4βs

(
Ss−

c3µm

c4βs

)
M
]
dx

+
∫

Ω

[
c1d2∆Eh + c2d3∆Ih + c3d5∆M+ c4d7∆Es + c5d8∆Is + c6d9∆C

]
dx

According to the Green’s formula and the homogeneous Neumann boundary conditions (2.4), we have
∫

Ω

∆Ehdx =
∫

Ω

∆Ihdx =
∫

Ω

∆Mdx =
∫

Ω

∆Esdx =
∫

Ω

∆Isdx =
∫

Ω

∆Cdx = 0,
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Hence

dL
dt

=
∫

Ω

[
c1βh

(
Sh−

c6µc

c1βh

)
C+ c4βs

(
Ss−

c3µm

c4βs

)
M
]
dx

≤
∫

Ω

[
c1βh

(
Λh

µh
− c6µc

c1βh

)
C+ c4βs

(
Λs

µs
− c3µm

c4βs

)
M
]
dx

≤
∫

Ω

[
c1βh

Λh

µh

(
R2

0−1
)

C
]
dx

Therefore,
dL
dt
≤ 0 whenever R0 < 1. Furthermore,

dL
dt

= 0 if and only if M = C = 0. These conditions are only satisfied

by the DFE E0. It follows that the largest invariant set {(Sh,Eh, Ih,Th,M,Ss,Es, Is,C) | L̇ = 0} when R0 < 1 is reduced to the
singleton E0. Based on LaSalle’s Invariance Principle [30], the DFE E0 is globally asymptotically stable when R0 < 1 and
unstable if R0 > 1.

Figure 2: Birfucation plot. This plot shows the stability of equilibrium points of the system (2.1) for θ(t) = 1 as a function of R0. The
horizontal line represents the stable and unstable states of the DFE E0. The half parabola represents the stable states of the EE E∗. The blue
lines denote the stable states and the red lines the unstable states. The black arrows indicate the direction of the vector field.

3.4. Stability of non-autonomous dynamical system

Theorem 3.6. If θ(t) = (1+ ζ ert)−1, then the arbitrary equilibrium point Ē = (S̄h, Ēh, Īh, T̄h,M̄, S̄s, Ēs, Īs,C̄) of the non-
autonomous dynamical system (2.1) is uniformly stable.

Proof. We are employing the approach as in [15]. Let X(x, t)= (Sh(x, t),Eh(x, t), Ih(x, t),Th(x, t),M(x, t),Ss(x, t),Es(x, t), Is(x, t),C(x, t))
be a solution of the system (2.1). According to the positive and boundedness of the solution in Theorem 3.1, we have

limsup
t→+∞,x∈Ω

X(x, t)≤W,

with W = (w1,w2,w3,w4,w5,w6,w7,w8,w9) given in (3.5). Let assume that

‖φ1‖C(Ω,R) ≤
Λh

µh
and ‖φ6‖C(Ω,R) ≤

Λs

µs
.

Then, for t > 0, we can derive the norm of the equilibrium point

‖E(x, t)‖∞ = ‖(Sh(x, t),Eh(x, t), Ih(x, t),Th(x, t),M(x, t),Ss(x, t),Es(x, t), Is(x, t),C(x, t))‖∞

≤ ‖W‖∞ = max{w1,w6}= max
{

Λh
µh
, Λs

µs

}
.

A time t = 0, we have:

‖E(x,0)‖∞ = ‖(Sh(x,0),Eh(x,0), Ih(x,0),Th(x,0),M(x,0),Ss(x,0),Es(x,0), Is(x,0),C(x,0))‖∞
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= ‖
(

Λh

µh
,0,0,0,0,

Λs

µs
,0,0,0

)
‖∞

= max
{

Λh

µh
,

Λs

µs

}
.

Let consider a class K function α(.) such that

α(‖E‖∞) = c‖E‖∞, with the constant c≥max
{

1,
Λh

µh
,

Λs

µs

}
.

Therefore,

‖E(x,0)‖∞ < c⇒‖E(x, t)‖∞ < c‖E(x,0)‖∞ = α(‖E(x,0)‖∞), ∀t ≥ 0.

By applying Lemma 4.1 in [31] and the fact that all p-norms in Rn are equivalent, it result that an arbitrary equilibrium
point Ē = (S̄h, Ēh, Īh, T̄h,M̄, S̄s, Ēs, Īs,C̄) of the non-autonomous dynamical system (2.1) when θ(t) = θ0(1+ζ ert) is uniformly
stable.

4. Sensitivity Analysis

To assess how model parameters influence schistosomiasis spread, we employed global sensitivity analysis. This approach
computed partial rank correlation coefficients (PRCC) for model parameters affecting the basic reproduction number R0 [32],
assuming statistical independence for each parameter of interest. This analysis identifies critical parameters significantly
impacting the output R0, guiding accurate measurements.

Figure 3: Plot of PRCC R0. The PRCC calculation was performed for R0 using Latin Hypercube Sampling (LHS) technique. Parameters in
Table 1 were sampled from uniform distributions.

Figure 3 presents the PRCC values of the model parameters. We observe that parameters such as βch, βms, γs, αc, αm, Λh and
Λs contribute to an increase in the value of R0, while parameters µh µs, µc, µm, ρs and σh are influential in reducing the burden
of schistosomiasis within the population. Notably, the parameter with the highest sensitivity to R0 is the natural death rate of
the snail population µs. This suggests that an increase in the snail death rate effectively curtails the spread of schistosomiasis
within the population.

Local sensitivity analysis is also used to examine the impact of parameter changes on disease spread using R0, which determines
disease persistence or eradication. The normalized direct sensitivity index of R0 with respect to a parameter v is given by :

SR0
v =

∂R0

∂v
× v

R0
. (4.1)

This index quantifies how R0 changes as v varies. More precisely, if v grows by x% then R0 grows by SR0
v × x%. A positive

index implies a proportional increase (decrease) in R0 with parameter growth (reduction). Conversely, a negative index signals
an opposite relationship. The local sensitivity indexes for R0related parameters are presented in Table 2.
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Table 2: Local sensitivity index for model parameters.

Param.(v) Λh Λs βch βms αc αm γh γs

SR0
v +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.000918 +0.0162

Param.(v) µh µs µc µm ρs ρh σh

SR0
v -0.501 -0.631 -0.5 -0.5 -0.531 -0.0574 -0.442

Table 2 demonstrates that decreasing the recruitment rates of humans and snails results in a substantial decrease in the number
of human infections. Specifically, a 1% reduction in either the human or snail recruitment rate would result in a 0.5% decrease
in R0. Conversely, a 1% increase in the treatment rate σh would result in a 0.442% reduction in R0. It is noteworthy that
the parameter ρh, which characterizes the human death rate attributed to the infection, exerts a relatively low influence on
the disease spread threshold. An augmentation of 1% in the parameter ρh leads to a mere 0.057% decrease in the threshold.
Conversely, the natural death rate of snails, denoted as µs, exhibits the most significant local sensitivity index. If µs were to
increase by 1%, R0 would decrease notably by 0.631%. Additionally, our investigation highlights that the rates of transmission
from exposure to infection, namely γh for humans and γs for snails, do not wield a significant impact on the reproductive
number of the infection. This observation can be rationalized by considering the incubation period required for an exposed
human or snail to become infected, which can be quite prolonged.

(a) (b)

(c) (d)

Figure 4: Contour plot of R0. (a) Simulated the basic reproduction number R0 as a function of the and the natural death rate of snail µs and death rate
of cercariae µc. (b) Simulated R0 as a function of the natural death rate of snail µs and the infection rate of cercariae on human βch. (c) Simulated R0 as a
function of the natural death rate of snail µs and the infection rate of miracidia on snail βms. (d) Simulated R0 as a function of the treatment rate of infected
human σh and the infection rate of cercariae on human βch. The other parameters are taken at their base value in Table 1.

In Figure 4, we illustrate the influence of parameter changes µs, µc, βch, βms and σh on R0 using a contour plot. When µs is
increased while µc remains constant, an observable decrease in R0 follows (see Fig 4 (a)). Conversely, a decrease in µs while
keeping βch or βms constant results in an increase in R0 (see Figure 4 (b)-(c)). Figure 4 (d) demonstrates that even with a high
rate of infection, increasing the rate of treatment for infected humans can substantially reduce the value of R0. Effective control
of these parameters can bring R0 below one, meaning that disease-free equilibrium can be achieved, as proved by Theorem 3.3.
This implies that disease-free equilibrium can be achieved by judiciously controlling these parameters.
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5. Numerical Simulations

In this section, we conduct numerical simulations to examine disease spread in continuous space and validate theoretical analysis.
Numerical computations and plots are performed in MATLAB using the built-in function pdepe (For more information, visit:
https://www.mathworks.com/help/matlab/ref/pdepe.html). This function employs the finite difference method on
a spatial domain 0 ≤ x ≤ L with a grid width set to 10−2. This discretization transforms the system of partial differential
equations (PDEs) into a large system of ordinary differential equations (ODEs), which is then solved using the built-in solver
ode15s with a time step of δ t = 10−2. The 3D plots are generated using the plotsurface function of MATLAB, which
takes as parameters the time vector, the space vector, and the numerical solution produced by the pdepe function.

Spatiotemporal behavior: We consider the model (2.1) with homogeneous Neumann boundary conditions (2.4). For
convenience, we set Ω = [0,1]. In our model, human population movement is influenced by factors like migration and
commuting behaviors, and it is assumed to occur downstream along the river, reflecting the natural flow of infected individuals
and the spread of contamination. Snails, acting as intermediate hosts, can move within the water, primarily influenced by water
currents and environmental factors. This movement contributes to the downstream distribution of cercariae. Miracidia, the
parasite larvae, and cercariae, the infectious stage, are carried downstream by water flow, facilitating their transmission to
susceptible snails and humans in downstream areas. To capture such movement dynamics, we fix the following diffusion
coefficients in units of m2day−1: d1 = 0.1, d2 = 0.05, d3 = 0.02, d4 = 0.1, d5 = 0.0005, d6 = 0.001, d7 = 0.0005, d8 = 0.0003,
d9 = 0.0002.

Additionally, we adopt the subsequent initial conditions: Sh(0) = 0.99 Λh
µh
− 200cos(2πx), Eh(0) = 0, Ih(0) = 0.01 Λ

µs
−

50cos(2πx), Th(0) = 0, M = 10, Ss(0) = 0.99 Λs
µs
−3cos(2πx), Es(0) = 0, Is(0) = 0.01 Λs

µs
−2cos(2πx), C = 10.

We divide the simulations into different cases corresponding to the stability of each one of the equilibrium points of the model
(2.1) as follows:

Case 1: We consider the values βch = 2× 10−6, βms = 3× 10−5, αc = 1.5, αm = 2.96, µs = 6× 10−3, µc = 1.01, µm = 5
and θ(t) = 1, the other parameters are given in a Table 1. The corresponding threshold is R0 = 0.5839 < 1 and from
Theorem 3.5 the DFE is GAS. As depicted in Figure 5, the numbers of infected individuals Ih(t,x) and infected snails
Is(t,x) converge to zero.

Case 2: We consider all the value the parameter values given in a Table 1 with θ(t) = 1. The corresponding threshold is
R0 = 4.989 > 1 and it follows from Theorem 3.4 that the EE is LAS. As shown in Figure 6, the numbers of infected
individuals Ih(t,x) and infected snails Is(t,x) converge to the endemic points I∗h and I∗s , respectively.

Case 3: We consider the same parameters as presented in Table 1, but with θ(t) = (1+ζ ert)−1, where ζ = 0.02 and r = 0.005.
As demonstrated in Theorem 3.6, the equilibrium of the non-autonomous dynamical system displays uniform stability.
Illustrated in Figure 7, the intervention function’s effect, θ(t), leads to a gradual reduction of the reproduction number
below 1 over time. Consequently, both the numbers of infected individuals, Ih(t,x) and infected snails, Is(t,x), decrease
and converge to zero over time, while the populations of susceptible humans and snails increase. We find that the
spatio-temporal evolution of exposed and infected humans are similar, indicating that human interventions have the
same effect on exposed individuals as they do on infected individuals.
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(a) Suceptible humans (b) Exposed humans (c) Infected humans

(d) Treated humans (e) Miracidia (f) Suceptible snails

(g) Exposed snails (h) Infected Snails (i) Cercariae

Figure 5: Spatiotemporal evolution of schistosomiasis transmission when R0 < 1 and θ(t) = 1. The disease-free equilibrium E0 is
globally asymptotically stable.
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(a) Suceptible humans (b) Exposed humans (c) Infected humans

(d) Treated humans (e) Miracidia (f) Suceptible snails

(g) Exposed snails (h) Infected Snails (i) Cercariae

Figure 6: Spatiotemporal evolution of schistosomiasis transmission when R0 > 1 and θ(t) = 1. The endemic equilibrium E∗ is globally
asymptotically stable.
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(a) Suceptible humans (b) Exposed humans (c) Infected humans

(d) Treated humans (e) Miracidia (f) Suceptible snails

(g) Exposed snails (h) Infected Snails (i) Cercariae

Figure 7: Spatiotemporal evolution of schistosomiasis transmission when R0 > 1 and human intervention θ(t) = (1+ζ ert)−1. The
arbitrary equilibrium of the non-autonomous system is uniformly stable

The simulations above illustrate that in a homogeneous system, while the early phase may exhibit variation depending on the
spatial location x, the eventual state of the infectious disease appears to be independent of its dispersal rate.

Control Strategies: Here, an examination of the temporal evolution of the disease progression under different control
measures, namely Mass Drug Administration (MDA) and human interventions is conducted. Figure 8 illustrates the progression
of disease prevalence while varying treatments for infected humans. For all cases, the baseline parameter values listed in Table
1 are used and only manipulate the parameters σh (infected treatment rate) and βch (reinfection rate). The graphs in Figure
8 are generated using the ODE version of the equation (2.1), with each curve representing the proportion (in percentage) of
infected individuals over the total population.

Figure 8 demonstrates the impact of human interventions on the spread of Schistosoma. The curves colored in red, yellow,
green and blue represent infection prevalence with no treatment (σh ≈ 0), low treatment (σh = 0.03), moderate treatment
(σh = 0.12) and high treatment (σh = 0.25), respectively. Notably, the most severe outbreaks manifest during the early phase
across the four scenarios mentioned. These findings suggest that MDA is an effective control strategy not only in the initial
stages of transmission but also throughout the transmission process (see Fig 8 (a)-(c)). Applying appropriate treatment to
infected individuals can substantially diminish disease prevalence. Nevertheless, as depicted in Fig 8 (a)-(c), relying solely on
MDA becomes insufficient when the reinfection rate becomes high. Therefore, it becomes imperative to encourage individuals
to adopt additional control measures such as avoiding contact with contaminated water through wading, swimming and
other activities, along with implementing improved sanitation and securing access to clean water. Fig 8 (d) underscores that
combining MDA with human interventions (ζ = 0.02 and r = 0.005) can lead to a significant reduction in prevalence.
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(a) (b)

(c) (d)

Figure 8: Influence of varying MDA rate on infection prevalence.

6. Conclusion

In this paper, an enhanced mathematical model has been developed utilizing diffusion equations to depict the dynamics of
schistosomiasis, thereby expanding upon a previously established framework. By integrating both the influence of treated
individuals and the temporal function of human interventions, the extended model has been thoroughly analyzed both
temporally and spatially, delving into critical aspects such as the existence, uniqueness, and positivity of solutions, as well as
the existence and stability of endemic and disease-free equilibria, contingent upon the threshold value of the basic reproduction
number, R0. It has been demonstrated that when R0 < 1, the global asymptotic stability of the disease-free equilibrium has been
conclusively established. Conversely, for R0 > 1, the endemic equilibrium has been firmly established as locally stable within
the autonomous system. Furthermore, the results have been extended to non-autonomous systems, showcasing the uniform
stability of any arbitrary equilibrium, irrespective of the value of R0. Additionally, a comprehensive sensitivity analysis of R0
has been conducted, employing PRCC and the local sensitivity index to unravel the intricate dynamics influenced by individual
parameters. It has been determined that a 1% increase in the treatment rate σh would result in a 0.442% reduction in R0. The
theoretical findings have been rigorously validated through numerical simulations, which corroborate the conclusions drawn
from the qualitative analysis, notably emphasizing the profound impact of various control measures. These findings underscore
the efficacy of Mass Drug Administration (MDA) as a control strategy not only during the initial stages of transmission but
also throughout the transmission process. However, it has been elucidated through numerical simulations that relying solely
on MDA becomes inadequate when the reinfection rate escalates. Consequently, it becomes imperative to advocate for the
adoption of additional control measures by individuals, such as avoiding contact with contaminated water through activities
like wading and swimming, in addition to implementing improved sanitation and securing access to clean water. Furthermore,
the combined implementation of mass drug administration (MDA) and targeted human interventions has been identified as a
potent approach, substantially diminishing the prevalence of infection and aligning with the targets set by the World Health
Organization. This holistic strategy not only addresses the immediate challenges posed by schistosomiasis but also lays the
groundwork for sustainable long-term management of the disease. In our future research, we plan to explore the optimization
of intervention strategies by considering socioeconomic factors, geographical variations, and the evolution of drug resistance.
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Furthermore, incorporating predictive modeling techniques could facilitate the development of proactive intervention strategies,
thereby enhancing the overall effectiveness of schistosomiasis control efforts.
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