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Abstract. Queues are formed by people waiting for a service in public 

institutions and they can be defined as orderly groups of people. Automatically 

counting the number of people waiting in a queue through video camera footage 

would provide these institutions with valuable information with regards to customer 

service quality. In this paper, our goal is to compare several machine learning 

methods for finding the total number of people waiting in a queue given video 

camera frames. We approached this problem as a regression task. We used a subset 

of the Collective Activity Dataset and compared three different methods. The first 

two methods used bounding box coordinates and orientations provided by the 

dataset, while the last method utilized the bounding box coordinates to extract 

feature maps from the frames using RoiAlign. The first method used XGBoost, 

while the latter methods used Convolutional Neural Networks (CNNs). Results 

show that the method using RoiAlign presents the best prediction performance in 

terms of mean squared error and mean absolute error, compared to other methods. 
 

 

1. Introduction 
 

A queue is a group of people waiting to receive some service in an organized manner. 

Detecting the number of people waiting in a queue has important applications for 

retail stores and public institutions such as hospitals. Knowing the queue length 

density for different time periods would allow public-serving facilities to optimize 

their human resource allocation in order to reduce waiting times and improve their 

quality of service. 

 Compared to a crowd, a queue is characterized by its orderly structure. The people 

comprising a queue form straight or curved lines, and they usually face the same 
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general direction. The known literature mostly focuses on the crowd counting 

problem, which has a similar objective to the queue length detection problem. Crowd 

counting can be implemented through detection, regression or density map 

estimation [7] methods. Detection based methods are used to detect hand-crafted 

features such as the existence of body parts or body appearance [6] to find the total 

body count. Object detection techniques such as YOLO and Faster-RCNN have also 

been used for crowd counting [8, 9, 10, 11]. In contrast to object detection methods, 

regression based methods predict the total count of people in an image directly. 

Finally, the density map estimation methods work by creating a crowd density map 

which is then used to find the total count. Since regression and density map 

estimation methods do not rely on detecting and counting people individually, they 

are more resilient to occlusion problems. 

 

 
 

Figure 1.  A sample frame from the collective activity dataset [1]. 

 

ACTi, which is a corporation that provides video analytics solutions, offers a queue 

management system that can determine the amount of time a person has spent 

waiting on a queue [13]. The system works by counting the number of people in a 

region of interest determined by store managers [14]. 

 Saini et al. used bounding boxes obtained from an object detector to estimate the 

number of people waiting in the queue in a given frame [15]. Their method assumes 

that a queue lies on a straight line on the image and fits a line in the form of y=mx+b 
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that minimizes the distance to the midpoints of the bounding boxes. To estimate the 

parameters of this line, they formulate the problem as an optimization problem and 

solve it using convex hull optimization. 

 In [16], Wu et al. model scenes as `actor-relation graphs` in order to classify 

collective and individual activities carried out by people in video streams. They use 

RoiAlign to extract features for each bounding box, which is then used to obtain 

feature vectors. These vectors are then used to build actor-relation graphs. After 

graph convolution and pooling, classifiers predict group activity and individual 

activity carried out by actors. 

 In this paper, we approached the queue length detection task as a regression 

problem. Given an image, our objective was to count the total number of people 

waiting in a queue while disregarding those that were not part of a queue. To this 

end, we evaluated 3 different methods on a subset of the collective activity dataset. 
 

2. Data and Methods 
 

The Collective Activity dataset was created by Choi et al. with the goal of classifying 

collective activities carried out by groups of individuals [1]. The dataset is made up 

of 44 short videos. In each video, there is a small number of people carrying out a 

group activity such as talking, queuing or walking. Labels provided for each video 

contain the bounding box coordinates, individual activity and pose for every tenth 

frame. 

 

 
 

Figure 2.  Dataset preparation steps. 
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To obtain the subset of the Collective Activity dataset used in this study, we used 

all 7 of the video clips that contained queues as well as 7 video clips that contained 

no queues. For both video sets, 4 out 7 video clips were chosen for the training and 

the remaining 3 video clips were reserved for validation. Separating video clips in 

this manner ensured that the frames in the validation set and the frames in the training 

set came from different video clips. From each video clip in the training set, 21 

frames were selected equidistantly. Similarly, 7 frames were extracted from every 

video clip in the validation set. This process resulted with 168 frames in the training 

set and 42 frames in the validation set with a validation/train split ratio of 20%. For 

each frame, the total number of individuals labeled as `queuing` served as the target 

variable of the regression task. 

 The first method we used was XGBoost utilizing tabular features. XGBoost, 

which stands for `Extreme Gradient Boosting`, was created by Chen and Guestring 

and it is defined as a `scalable tree boosting system` [2]. We used midpoint 

coordinates of each bounding box and pose information as features. Since each frame 

contains a variable number of individuals, and therefore, a variable number of 

bounding boxes; there are a different number of features for each frame. To get a 

fixed number of features to be given to the model, we assumed a limit of 14 people 

in a single frame. If the number of people in the frame was less than this value, the 

features of the individuals that were not present were set to 0. We used the same limit 

in the other methods as well. For the XGBoost model, we ended up with 42 features 

for each frame: 14 X coordinates, 14 Y coordinates and 14 pose labels. 

 

 
 

Figure 3.  CNN model architecture. 
 

 The second method utilized a convolutional neural network (CNN). CNNs are 

deep learning models that are appropriate for input data that has regular spatial 
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structure, such as images [3]. The CNN architecture we used can be seen in Figure 

3. Similar to VGG, the architecture is comprised of a number of convolutional layers 

with 3x3 kernels and max pooling, followed by a fully-connected layer. The input 

dimensions are 9x224x22. The channels in the input correspond to different human 

orientations in the dataset. To create the input for the model, we obtained the middle 

point coordinates of each bounding box in a frame and scaled these coordinates to 

fit in a 224x224 grid. We then marked these coordinates in their respective pose 

channel. For example, if a person's rescaled bounding box coordinates were 

calculated as (100, 200) and that person's orientation was labeled as facing right, 

then the respective coordinate in the first channel (which corresponds to the 

orientation `right`) was set to 1. The persons with unspecified orientations were 

placed in the first channel. 

 

 
 

Figure 4.  RoiAlign model architecture. 
 

The third method also makes use of convolutional neural networks and its 

architecture can be seen in Figure 4. This network corresponds to the feature 

extractor stage in [16] by Wu et al. The model is made up of a feature extractor 

followed by a classifier that utilizes RoiAlign, which was introduced in [4] by He et 

al for extracting feature maps from a region of interest. The feature extractor takes a 

3x224x224 input image and creates feature maps of size 512x7x7. We used a 

VGG16 [5] model without the fully-connected layers as the feature extractor. The 

classifier takes the output of the feature extractor and bounding box positions as 

input. Using RoiAlign, the classifier extracts 3x3 feature maps for each bounding 

box in the frame. This is followed by fully-connected layers. The model outputs a 
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value for each bounding box in the frame that represents the probability of the person 

in the bounding box belonging to a queue. We can then use the number of positive 

predictions output by the model as the number of people predicted to be in a queue 

for a given frame. 

 The XGBoost model was trained with default hyperparameters. To train the CNN 

and CNN RoiAlign models, we used the Adam [12] optimizer. After trying learning 

rates that ranged from 10-5 to 10-2, we used a learning rate of 10-4 for the CNN model 

and a learning rate of 10-5 for the CNN RoiAlign model. Each training run lasted for 

50 epochs, with early stopping after 10 epochs with no improvement. 

 
Table 1. Evaluation results (Average of 5 training runs). 

Method Mean squared error Mean absolute error 

XGBoost 11.20 2.22 

CNN 10.58 2.99 

CNN RoiAlign 4.28 0.97 

 
3. Results  

 
The results are shown on Table 1. We used mean squared error (MSE) and mean 

absolute error (MAE) to evaluate and compare each method. Due to the small size 

of the test set, there is a possibility of high variance in the obtained results. Because 

of this, we trained and evaluated each method 5 times and presented the average 

values obtained from these training runs. The network that utilized RoiAlign had the 

best MSE and MAE scores out of all methods. The CNN model that only used 

bounding box coordinates and pose information was very similar to the XGBoost 

model in terms of the MSE, while the XGBoost model gave better results in terms 

of the MAE. 

 According to the results shown in Table 1, it can be seen that the CNN RoiAlign 

method yields the best results compared to other methods, while the results for 

XGBoost and CNN in terms of the mean squared error were similar. The RoiAlign 

method makes use of extracted feature maps from the input image, while the 

XGBoost and the CNN models used only the bounding box position and pose 

information. The lower performance of the XGBoost and CNN models may have 

been caused by their direct dependency to bounding box coordinates provided in 

pixel coordinates. Since the dataset contained a mix of indoor and outdoor scenes 

with different locations and camera angles, the physical distances related to pixel 

distances were different for each scene. 
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4. Conclusion 
 

This paper presents a comparison of different Machine and Deep Learning based 

methods for Queue Length Detection problem. In order to conduct experiments, a 

subset of the Collective Activity Dataset was employed. Three different methods 

were compared. While the first two methods, XGBoost and CNNs, used bounding 

box coordinates and orientations provided by the dataset; the final method, based on 

CNNs architecture, utilized the bounding box coordinates to extract feature maps 

from the frames using RoiAlign. Results showed the superiority of the final method 

over previous methods. It should be noted that the lower performance of the first two 

methods may have been caused by their direct dependency on pixel coordinates. 

Even though the CNN RoiAlign method still utilizes pixel coordinates of the 

bounding box locations, we found that using RoiAlign to extract feature maps for 

each bounding box and then classifying these boxes individually gives better results 

compared to other methods. Authors are planning to apply more complex Deep 

Learning architectures and larger datasets to the problem at hand in future work. 
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Abstract. In proton beam therapy, the Bragg peak is the point where protons 

lose energy the fastest. This point is crucial for dose control, preserving healthy 

tissues, minimizing lateral scattering, and the success of treatment planning. 

However, accurately predicting the location of the Bragg peak is challenging due 

to the complex interactions of protons with tissues. This study proposes a machine 

learning (ML) approach to predict the exact location of the Bragg peak from 

phantom tissue proton beam therapy experiments. A dataset comprising the eight 

most commonly used biomaterials, which mimic human tissue in proton therapy 

procedures, has been curated for this study. Various ML models are benchmarked 

to find the most successful approach. ML model parameters are further optimized 

using a metaheuristic approach to achieve the highest prediction capability. In 

addition, feature contributions of each feature in the dataset are analyzed using an 

explainable artificial intelligence (XAI) technique. According to experimental 

results, Random Forest (RF) model that is optimized with Genetic Algorithm (GA) 

achieved 0.742 Correlation Coefficient (CC) value, 0.069 Mean Absolute Error 

(MAE) and 0.145 Root Mean Square Error (RMSE) outperforming other ML 

models. The proposed approach can track and predict the movement of the proton 

beam in real-time during treatment, enhancing treatment safety and contributing to 

the more effective management of the treatment process. This study is the first to 

predict exact Bragg curve peak locations from proton beam therapy experiments 

using ML approaches. The optimized ML model can provide higher precision in 

identifying the needed beam dosage for targeted tumor and improving treatment 

outcomes. 
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1. Introduction 
 

Protons are positively charged and heavy, so they lose energy slowly but 

continuously as they scatter through matter. This scattering is at small angles [1, 2, 

3]. The Bragg peak is the point where protons lose energy the fastest [4, 5]. Because 

tumors are large, a single-energy proton beam is not enough to treat them. Instead, 

proton beams with different energies are needed [4, 5, 6, 7]. It is important that the 

target is made of a material that is similar to tissue [8]. This is because the dose of 

radiation delivered to the target should be as accurate as possible. Phantoms are used 

to simulate the target and help optimize the dose [1, 8]. This process continues until 

all energies are depleted, and then they suddenly come to a halt. The dose 

accumulation process forms the characteristic depth-dose curve ("Bragg curve") of 

a broad monoenergetic proton beam. The highest dose point is called the Bragg peak. 

The depth of the peak, i.e., the range of protons, depends on the initial energy. 

Detecting the location of this peak is crucial for dose control, preserving healthy 

tissues, minimizing lateral scattering, and the success of treatment planning [7]. 

 It is generally accepted that the accuracy of the results of a proton beam therapy 

simulation is related to the similarity between the phantom material and the tissue it 

is simulating [8]. The International Atomic Energy Agency (IAEA) recommends 

using water as the phantom material for soft tissue simulations, because it is easy to 

obtain and has a density similar to soft tissue [9, 10, 11]. Other biomaterials, such as 

those with mass densities similar to hard tissue, can also be used [12, 13, 14, 15]. 

The dose delivered to the target, the shape of the Bragg peak, and the results of 

nuclear interactions are all crucial factors to consider when evaluating the properties 

of a phantom material [8, 11]. Even though they are less commonly used, 

biomaterials are still important for simulating interactions such as backscattering, 

collision events, phonon production, and side scattering [1, 12]. 

 The machine learning (ML) model, trained with information that are originated 

from proton beam simulations using tissue like biomaterials, can help researchers 

better understand the interactions of protons within tissues. ML approaches can 

provide higher precision in identifying the needed beam dosage for targeted tumor 

during treatment planning and achieving dose optimization. Accurate detection of 

the Bragg peak of the proton beam allows maximum focus of the treatment dose on 

the tumor region and enables finding methods to minimize damage to normal tissues. 

Additionally, the ML model can track the movement of the proton beam in real-time 

during treatment and quickly provide alerts in case of any deviations. This can 

enhance treatment safety and contributes to the more effective management of the 

treatment process. 

 In the domain of proton beam therapy, where precision and effectiveness are 

paramount, the importance of optimizing ML models and conducting feature impact 
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analysis cannot be overstated. Proton therapy, renowned for its capacity to precisely 

target tumors while preserving healthy tissues, stands to gain immensely from the 

application of ML [16, 17, 18]. The optimization of ML models becomes 

instrumental in refining treatment parameters, ensuring accurate predictions of 

pivotal factors such as the Bragg peak curve location. Through the utilization of 

sophisticated algorithms, clinicians can tailor ML models to accommodate diverse 

patient profiles, optimizing treatment plans to achieve maximum therapeutic impact. 

Feature impact analysis also plays a pivotal role by unveiling the influential variables 

that significantly impact treatment outcomes when using the proton beam therapy 

[19]. This insight into feature impacts enables personalized adjustments in proton 

beam therapy, contributing to more tailored and efficacious cancer treatments. The 

seamless integration of ML model optimization and feature impact analysis not only 

elevates the precision of proton beam therapy but also represents a substantial leap 

toward the implementation of individualized and optimized strategies in cancer care. 

To this end, a dataset is constructed with most commonly used biomaterials, 

which mimics human tissue in proton therapy procedures. Afterwards various ML 

models are benchmarked to find out which one is better on finding the exact location 

of Bragg curve peaks under different energy levels and with different biomaterials. 

To achieve a robust model, ML model parameters are further optimized by using 

genetic algorithm optimization method. As a last step, feature contributions are 

assessed by SHAP (SHapley Additive exPlanations) technique to see which features 

are important when making the predictions. 

Contributions of this study can be summarized as follows: 

- This is the first study that aims to predict exact Bragg curve peak locations 

from proton beam therapy experiments using ML approaches. 

- A dataset comprising the eight most commonly used biomaterials, which 

mimic human tissue in proton therapy procedures, has been curated for this study. 

- Various ML models are benchmarked to find out which one is better on 

finding the exact location of Bragg curve peaks under different energy levels and 

with different biomaterials. 

- ML model parameters are further optimized using a metaheuristic approach 

to achieve the highest prediction capability. 

- Feature contributions of each feature in the dataset are analyzed using an 

explainable artificial intelligence (XAI) technique. 

- By using ML approaches that are optimized by metaheuristic algorithms, this 

approach can track and predict the movement of the proton beam in real-time during 

treatment. This can enhance treatment safety and contributes to the more effective 

management of the treatment process. 

 The paper is organized in the following manner: Section 2 presents details of the 

proposed framework, covering the dataset, feature extraction process, machine 
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learning approaches, genetic optimization algorithm and feature importance 

assessment. Section 3 explains the evaluation metrics and highlights the 

experimental results. Ultimately, Section 4 concludes the paper with conclusion and 

discussion section. 
 

2. Material and Methods 

2.1. Proposed machine learning framework. Proposed ML framework leverages 

biomaterial features and energy levels as input and employ a ML model for 

establishing relationships between biomaterials and Bragg curve peak points. The 

framework involves a straightforward learning process, which encompasses training 

and testing/evaluation stages. To begin, features are extracted from particle therapy 

experiments, a ML model is trained using these feature vectors, where each sample 

corresponds to a specific peak location value. In the last step, the model predicts the 

peak point of a test sample. The trained model's performance is assessed using 

various evaluation metrics. The workflow of proposed approach is illustrated in 

Figure 1. 

 

Figure 1. Workflow of proposed approach. 

 

2.2. Dataset and Feature Extraction. In this study, the necessary data for ML 

models were obtained from the Monte Carlo (MC) Transport of Ions in Matter 
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(TRIM) simulation tool. This tool can calculate ion interactions within the target 

[20]. Information such as the type and energy of ions, selected phantom type and 

shape, incident angle of the beam, parameters to be calculated, particle count, and 

probability can be inputted in TRIM [20]. TRIM can calculate all kinetic events 

related to the energy loss processes of ions, damage inflicted on the target, scattering, 

ionization, voids in the crystal structure of polymeric biomaterials, phonon 

generation, and recoil [20]. All target atom cascades (polymeric, soft tissue, and 

water) in the selected phantom can be tracked and recorded in detail [21]. The 

recorded data aims to determine the most suitable phantom biomaterial and obtain 

biomaterials that are more similar to human tissue. MC TRIM and feature extraction 

procedure is demonstrated in Figure 2. First, experiments are conducted using MC 

TRIM algorithm that includes proton beam reflected on biomaterial and as a second 

stage biomaterial features, and Bragg curve peak locations are recorded for each 

experiment. 

 

Figure 2. Experimental procedure to obtain Bragg curve peak locations and biomaterial 

features. 

The experiments are conducted on 8 biomaterials: Cortical bone, Teflon, Titanium 

alloy, Aluminum oxide, stainless steel, Vitalium, cobalt-nickel-chromium-

molybdenum, and Nital. Each biomaterial is tested with five thicknesses (0.4, 0.6, 

0.8, 1, and 1.2 centimeters (cm)) and 10 different energy levels (80, 100, 120, 140, 

160, 180, 200, 220, 240, and 250 Mega-electronvolt (MeV)). This combination 

results in a dataset of 400 samples for the machine learning models to perform 

predictions. Each sample in the dataset has a feature set containing information 

relevant to predicting the Bragg curve peak point location, which ranges between 

0.23 and 1.43 cm. These features are: 

-  Energy in MeV: Energy value of the proton. 
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- Biomaterial thickness (cm): This directly affects the depth of the Bragg peak within 

the material. 

- Biomaterial mass density: This property influences how much radiation the 

material interacts with. 

- Biomaterial atomic density: Similar to mass density but considers the number of 

atoms per unit volume. 

- Biomaterial atomic composition percentage of each atom: This captures the 

elemental setup of the material, which impacts its interaction with radiation. To 

create this feature, a feature vector is constructed for each unique atom present in the 

dataset. Each biomaterial sample's corresponding feature vector is filled with its 

respective atomic percentages. Any missing elements (not present in the specific 

biomaterial) are represented by zeros in the vector. 

 To ensure all features contribute equally to the machine learning models, the 

dataset undergoes normalization. This process centers the mean value of each feature 

to zero and scales the standard deviation to one. This standardization prevents 

features with larger scales from dominating the model's learning process. 

2.3. Selected Machine Learning Models for Proposed Framework. In order to 

assess the effectiveness of ML models on predicting the exact peak location of the 

Bragg curve, various models are evaluated. Since the prediction task in this study is 

a regression problem due to predicting exact values instead of class labels, models 

that utilize regression process are selected. These models are Decision Tree (DT), 

Random Forest (RF), Linear Regression (LR), eXtreme Gradient Boosting 

(XGBoost), Support Vector Regression (SVR) and k-nearest neighbor (kNN). 

 The Decision Tree (DT) algorithm can manage both numerical and categorical 

data, seeking the feature that best divides the training set [22]. This feature is selected 

based on its maximum information gain. Upon evaluating the potential values of this 

feature, the algorithm branches into sub-trees and assigns target values. Meanwhile, 

it explores other features with high information gain. This iterative process continues 

until a clear decision is made regarding the combination of features that forms a 

definitive rule for predicting target values. By the end of the algorithm, all features 

have been assessed, and every sample has been assigned an appropriate target value 

[22]. Its simplicity and reliability have made it a popular ML tool across various 

domains [23, 24]. 

 Random Forest (RF), a member of the decision tree family, employs an ensemble 

learning technique to enhance its predictive power [25]. This algorithm has gained 

immense popularity for its ability to effectively combat overfitting in both 

classification and regression tasks, while maintaining relatively low computational 

demands [25, 26, 27]. RF builds a multitude of decision trees by randomly sampling 

subsets of data, known as bootstrap samples [25]. Unlike traditional decision tree 

algorithms that strive to identify the optimal variable at each decision point, RF 
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introduces an element of randomness by considering a random subset of variables at 

each split. This approach is primarily implemented to mitigate the correlation among 

individual decision trees [25]. Such correlation can negatively impact predictions 

and hinder overall performance. The incorporation of randomness in RF is crucial 

for sound decision-making. Highly correlated variables can lead to biased 

predictions and suboptimal outcomes [26]. By introducing randomness, RF 

effectively reduces the influence of individual variables, allowing the algorithm to 

make more robust and unbiased decisions. The predictions from these independent 

decision trees are then aggregated to achieve the final outcome [26]. This ensemble 

approach not only addresses overfitting but also enhances the overall accuracy of the 

algorithm. 

 Linear regression (LR) stands out as one of the most fundamental and widely 

employed regression techniques, known for its simplicity [28]. One of its key 

advantages lies in the straightforward interpretability of its outcomes. In essence, 

linear regression fits a linear model characterized by coefficients to minimize the 

residual sum of squares between the observed target values in the dataset and those 

predicted by the linear model. Using this model, it becomes possible to make 

predictions for unknown target values by utilizing specified parameters along with 

the computed coefficients [29]. 

 eXtreme Gradient Boosting (XGBoost) is an ensemble ML approach build on 

decision trees, utilizing an iterative function called gradient descent framework [30]. 

This iterative approach continually enhances model performance by enhancing the 

learning capacity of weak learners. XGBoost is versatile and applicable to both 

classification and regression problems, making it a valuable tool for addressing 

supervised learning tasks. Ensemble learning, a fundamental concept, involves 

creating multiple weak predictors to make predictions for a dataset and subsequently 

combining these individual predictions using a specific strategy to arrive at the final 

prediction result [31]. XGBoost represents an advancement over the traditional 

gradient boosting decision tree algorithm, offering improvements in terms of model 

building speed, prediction ability, and adjustability. In contrast to gradient boosting, 

XGBoost incorporates regularization within the loss function to formulate its 

objective function [32]. 

 Support Vector Regression (SVR) represents a crucial facet of the broader 

Support Vector Machine (SVM) framework [33]. Unlike SVM classification, where 

multiple classes of sample points are involved, SVR is specifically tailored for 

situations where only one type of sample point is present. The fundamental objective 

of SVR differs from SVM as it does not seek to maximize the margin or separation 

distance between multiple types of sample points. Instead, SVR's goal is to minimize 

the collective deviation between the sample points and a hyperplane [34]. In the case 

of addressing nonlinear problems, SVR leverages a kernel function to transform the 
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nonlinear regression task into a higher-dimensional space. This transformation 

allows SVR to identify an optimal hyperplane for effectively separating the sample 

points in this transformed space, thereby facilitating accurate regression in cases 

where linear relationships may not hold [35]. 

 The k-Nearest Neighbors (kNN) model is a supervised ML technique primarily 

employed for classification purposes [36]. This algorithm revolves around a flexible 

parameter, denoted as 'k' which represents the number of nearest neighbor’s to 

consider when doing predictions. The kNN algorithm operates by identifying the 

nearest samples or neighbors within a training dataset in response to a query sample. 

These nearest samples are determined based on their proximity to the query sample. 

Once the k nearest samples are identified, the algorithm employs a majority voting 

rule to determine which class appears most frequently among them. The class with 

the highest frequency is designated as the final classification for the given query 

[37]. For regression problems as in this study, weighted average of the prediction 

value is calculated, where closer neighbors have more influence on the prediction. 

2.4. Genetic Algorithm (GA) for Machine Learning Model Parameters 

Estimation. When building ML models, finding, and estimating the model 

parameters can be a crucial task. Improper parameter sets can lead to weak 

predictors. To solve this problem there are several ways, a classical approach, the 

grid-search is a method for parameter optimization in which a predefined range of 

parameter combinations is exhaustively evaluated to identify the most effective 

configuration for a model. Each combination in the grid is assessed for model 

performance using a chosen scoring metric. The set of parameters that produces the 

best model performance is usually chosen as the optimal configuration [38]. But this 

process can advance slowly and obtaining an optimal parameter set can be difficult 

[39]. Heuristic methods such as genetic algorithm and evolutionary algorithms can 

be used to find approximate solutions to computationally expensive problems more 

quickly and efficiently than conventional methods [40]. These methods have been 

used to solve numerical problems and prediction problems [41, 42]. Heuristic 

methods aim for feasible solutions within the problem domain. Starting from a 

candidate solution, they produce a new generation of solutions with modified 

objective values.  

 In this study, in order to optimize the parameters of ML models, genetic algorithm 

is used. In this study, the best model is selected according to the achieved results and 

then as a second step, GA optimization is applied to this model for further optimizing 

the parameter set for better performance.    

 GA is a type of heuristic search algorithm that mimics the process of natural 

selection to find optimal solutions to complex problems. It is considered as a 

probabilistic optimization method because GA uses randomness to explore different 

solutions and find the best one [43]. When employing GA, every potential solution 
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is represented as a chromosome within the problem's search space. Search space 

corresponds to the population. From a biological perspective, these chromosomes 

mirror the traits of an organism. The distinguishing factor is that the genes contained 

within different chromosomes exhibit variations. Genes are encoded using a binary 

encoding technique (0 or 1). Basic units of operations in GA are the chromosomes, 

three operators adjust the chromosomes to achieve the optimal solution. These 

operators are selection, crossover, and mutation operator [44]. 

 - Selection operator: Throughout the course of biological evolution, all living 

beings must undergo adaptation to their surrounding environment, and it's only those 

individuals who successfully navigate and align with the demands of their habitat 

that emerge as superior individuals. This phenomenon is recognized as natural 

selection, and the selection mechanism in GA emulates this natural process. A 

chromosome's likelihood of elimination diminishes as its fitness score increase. 

 - Crossover operator: This operator is the most crucial one in the algorithm. 

It entails the exchange of gene segments from two different chromosomes, resulting 

in the creation of two completely new chromosomes. 

 - Mutation operator: In a biological perspective not every chromosome 

exchanged, some of it actually mutates to generate previously unseen new 

chromosomes. This probability of mutation actually helps prevent the algorithm 

from prematurely converging to an undesired state. It ensures that evolution is more 

varied and enhance the GA's capacity for local search. 

 In the context of GA parameter optimization, chromosome denotes the parameter 

values to be optimized, while the search space relates to the parameter boundaries. 

Within the population, chromosomes which are made of genes, represent the 

parameters that require optimization for the desired problem. The objective of the 

GA is to seek the optimal individual that meets the criteria of the fitness function. 

Overall working mechanism of optimization is given in Figure 3. 

2.5. Feature importance assessment using SHAP (SHapley Additive 

exPlanations) values. In this study, one of the explainable artificial Intelligence 

(XAI) technique called SHAP is utilized to evaluate and determine the feature 

importance on predicting the peak point location of the Bragg curve [45]. The SHAP 

method is used to compute SHAP values for individual features within a ML model, 

enabling a better grasp of how these features impact the behavior of the model. These 

values are calculated for all features individually, by utilizing ML model’s 

conditional expected value function [46].  

The Shapley value is a concept within cooperative game theory that allocates the 

overall gains derived from collaboration among participants in a game, based on 

their respective incremental contributions [45]. It is shown as (1): 
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Figure 3. Genetic algorithm optimization process. 

 

∅𝑖(𝑓, 𝑥) = ∑
|𝑧′|!(𝑀−|𝑧′|−1)!

𝑀!𝑧′⊆ 𝑥′  [𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧′\𝑖)]                          (1) 

 

𝑓 represents model, 𝑀 corresponds to number of  𝑥′, whereas 𝑥′ represents a 

condensed input that corresponds to the initial input via a mapping function  𝑥 =
ℎ𝑥(𝑥′). Here ℎ𝑥 assigns 1 or 0 to the initial inputs, 0 means that input is not 

considered for the model whereas 1 means otherwise. |𝑧′| represents the count of 

non-zero elements within 𝑧′, and 𝑧′ ⊆  𝑥′ denotes all vectors of  𝑧′  where the non-

zero elements form a subset of the non-zero elements in  𝑥′ [45]. This process 

calculates a significance value for each feature, and it corresponds to the effect on 

prediction of the model. The importance of the 𝑖th feature is calculated by comparing 

the predictions of two models: one trained with all features, and the other trained 

without the 𝑖th feature. As the impact of excluding a feature is contingent on the 

presence of other features in the model, the earlier differences are calculated for 

every potential subset denoted as 𝑧′\𝑖. Thus, the Shapley value can be characterized 

as a distinctive method for attributing features that computes a weighted average of 

all potential differences [46].  

ML SHAP value is created in a similar manner with the traditional SHAP value, 

utilizing the conditional expectations to designate mapped inputs [47]. In ML SHAP 

value calculation, conditional expectation (𝐸[𝑓(𝑧)|𝑧𝑆) is used instead of 𝑓𝑥(𝑧′) to 

acquire the SHAP values. Here, 𝑆 represents the collection of indices contained 

within 𝑧. For every sample in the dataset, SHAP values are calculated and therefore 

contribution of each feature on model prediction can be analyzed [48]. The 

conventional method for calculating feature importance is to average the absolute 
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values of the SHAP values that are calculated for all instances. It is shown as (2) (𝑁 

represents the number of samples in the dataset): 

 

𝑆0 =
1

𝑁
∑ |∅𝑖|𝑁

𝑖=1                                                          (2) 

 

3. Results 

3.1. Experimental Setup. The dataset is divided into two parts, one part for training 

and validation, the other part is for testing. The division ratio is 70% for training and 

validation, 30% for testing. In GA optimization phase, best model parameters are 

determined using a tenfold cross-validation (CV) approach. In this approach, the 

dataset is divided into ten equal parts, with one part reserved for validation while the 

remaining nine parts serve as the training set. The CV process concludes after each 

part has been used as the validation set. The CV approach is used to determine the 

best trained ML model based on available training data. After that the trained model 

is evaluated on a test set that is not seen by the model before and experimental results 

are reported afterwards. This train-validate-test approach measures generalization 

ability of ML models on an unseen test dataset. 

Regression performance of ML models are evaluated in terms of Correlation 

Coefficient (CC), Root Mean Square Error (RMSE) and Mean Absolute Error 

(MAE) metrics. These metrics assess how well the regression models behave when 

predicting exact Bragg curve peak point location values. To attain a high level of 

performance, the model should demonstrate low error rates, alongside a high 

correlation value. 

CC is a metric that ranges from -1 to 1. Positive correlation is depicted as +1 

whereas negative correlation represented by -1. CC metric is consisting of various 

variables, 𝑛 refers to dataset sample size, 𝑎𝑖 and 𝑝𝑖 variables refer to actual and 

predicted values, respectively. �̅� and �̅� are calculated mean values of actual and 

predicted values. The correlation between estimated and actual values is determined 

using the CC value. It is shown as (3): 

 

   𝐶𝐶 =
𝑆𝑃𝐴

√𝑆𝑃𝑆𝐴
                                                            (3) 

 

𝑆𝑃𝐴 =
∑ (𝑝𝑖 − �̅�)(𝑎𝑖 − �̅�)𝑖

𝑛 − 1
 

𝑆𝑃 =
∑ (𝑝𝑖−�̅�)2

𝑖

𝑛−1
, and 𝑆𝐴 =

∑ (𝑎𝑖−�̅�)2
𝑖

𝑛−1
 . 

 

Another metric, MAE quantifies the disparity between two continuous variables. It 

is given as (4): 
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𝑀𝐴𝐸 =
|𝑝1−𝑎1|+⋯+ |𝑝𝑛−𝑎𝑛|

𝑛
                                                 (4) 

 

RMSE, a quadratic metric, serves as a reliable measure of the error magnitude in 

machine learning models. It effectively quantifies the discrepancy between the 

model's predicted values and the actual observed values (5): 

 

𝑅𝑀𝑆𝐸 = √
(|𝑝1−𝑎1|)2+⋯+ |𝑝𝑛−𝑎𝑛|2

𝑛
                                               (5) 

3.2. Experimental Results. Various experiments are performed on existing ML 

models. These models are Decision Tree (DT), Random Forest (RF), Linear 

Regression (LR), eXtreme Gradient Boosting (XGBoost), Support Vector 

Regression (SVR) and k-nearest neighbor (kNN). The parameter setup for selected 

ML models is given in Table 1. 

The experimental results for regression models aimed at predicting the peak 

location values are summarized in Table 2. The RF demonstrated superior 

performance, achieving correlation coefficient (CC), mean absolute error (MAE), 

and root mean square error (RMSE) values of 0.712, 0.073, and 0.151, respectively. 

As can be seen from Table 2, RF model outperforms other regression models across 

all evaluation metrics. The DT model ranked second in terms of CC and RMSE. 

XGBoost also ranked second in terms of MAE. In contrast, SVR performed worst in 

terms of CC, MAE and RMSE values. From these results, we can infer that RF model 

can accurately map the relationships between biomaterial features and energy levels 

when predicting Bragg curve peak point locations. Another conclusion that can be 

drawn from these results is that overall, the models that utilize decision tree 

architectures performed well when making predictions. 

In order to further increase the performance of the best prediction model, 

metaheuristic GA optimization is applied. In this experiment, GA is used to optimize 

the hyperparameters of RF. Optimized hyper parameters are number of trees, 

minimum samples per split, and minimum samples in leaf. Results of this experiment 

can be seen in Table 3. Different GA population (P) sizes are benchmarked to 

determine the best optimization approach to tune the hyperparameters of RF. 

According to Table 3. RF algorithm that is tuned with the population size of 50 

achieved highest CC (0.742), lowest MAE (0.069) and RMSE (0.145) values. RF 

with population size selected as 100 performed worst in terms of CC (0.627), MAE 

(0.081) and RMSE (0.17). As can be seen from Table 3. GA improved the overall 

capacity of RF model when predicting the exact values of Bragg curve peak point 

locations. 
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Table 1. Parameter setup for machine learning models. 

Model Parameters 

RF 

Number of trees = 100 

Minimum samples per split = 2 

Minimum samples in leaf = 1 

Split criteria = MSE 

LR - 

XGBoost 

Objective = MSE  

Number of trees=100 

Learning rate = 0.3 

Maximum depth = 6 

Lambda = 1 

DT 

Split criteria = MSE 

Minimum samples per split = 2 

Minimum samples in leaf = 1 

SVR 

Kernel = rbf 

C = 1 

Epsilon = 0.1 

kNN k = 3 

 
 

Table 2. Experimental results for regression models aimed at predicting peak value. 

Model CC MAE RMSE 

RF 0.712 0.073 0.151 

LR 0.554 0.103 0.179 

XGBoost 0.618 0.078 0.177 

DT 0.682 0.081 0.167 

SVR 0.517 0.12 0.186 

kNN  0.567 0.09 0.178 

 

In order to highlight the positive effect of GA algorithm on RF model, Figure 4 

and Figure 5 are given. In Figure 4, it can be seen that in terms CC values, “RF with 

GA” outperformed “RF without GA”. Same situation is also can be said in terms of 

error metrics. In Figure 5, “RF with GA” had low MAE and RMSE values compared 

with “RF without GA”.  
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Table 3. Performance comparison for different population sizes using genetic algorithm. 

Model CC MAE RMSE 

RF 0.712 0.073 0.151 

RF + GA (P. size=10) 0.666 0.077 0.162 

RF + GA (P. size=50) 0.742 0.069 0.145 

RF + GA (P. size=100) 0.627 0.081 0.17 

 

 
 

Figure 4. Comparison of RF model with applying GA and without GA in terms of CC. 

 

 
 

Figure 5. Comparison of RF model with applying GA and without GA in terms of MAE 

and RMSE. 
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As a final analysis, impact of biomaterial features on Bragg curve peak prediction 

is evaluated. This evaluation is done by SHAP analysis of “RF + GA (P. size=50)” 

ML model. In order to demonstrate this analysis, SHAP values of all samples are 

calculated based on their features. 

Summary plots play a crucial role in SHAP analysis, providing not only the 

hierarchy of input variable importance but also illustrating their correlation with the 

target variable. One type of summary plot, the beeswarm plot, is illustrated in Figure 

6. The beeswarm plot consolidates the SHAP values of all samples, enabling the 

simultaneous visualization of these values. The summary plot displays input 

variables and their importance in descending order on the y-axis, while the x-axis 

represents specific SHAP values. Dot color signifies magnitude (blue for small, red 

for large), with each dot representing a dataset sample. The horizontal x-axis 

illustrates the variation in SHAP values for each variable, ranging from blue to red, 

indicating the shift in input variable magnitude and its impact on prediction. It can 

be clearly observed that energy, biomaterial mass density, and biomaterial thickness 

features make a substantial contribution to Bragg curve peak point location 

prediction. According to Figure 6, lower energy levels result in higher Bragg curve 

peak point locations, while increased biomaterial mass densities and thickness also 

lead to higher Bragg curve peak point locations.  

It is interesting to note that the model identifies lower energy levels as 

contributing to higher Bragg curve peak point locations. This seems counterintuitive 

based on established principles in proton therapy, where lower energy typically leads 

to shallower peaks [2]. This can be caused by the model might not perfectly capture 

the complex relationship between energy and Bragg peak location, especially at the 

lower energy levels. Denser materials require higher energies for protons to reach a 

specific depth. The model reflects this by predicting a deeper Bragg peak with 

increasing mass density. This helps tailor the proton beam energy to ensure the peak 

coincides with the tumor location within the patient's body, composed of tissues with 

varying densities [3]. Similar to mass density, a thicker material necessitates higher 

energy protons to achieve a deeper Bragg peak placement. The model's prediction 

aligns with this principle, allowing for treatment planning that considers the target 

depth within the patient's specific anatomy. By understanding these feature 

relationships, the model's predictions can be leveraged to optimize treatment 

delivery in proton therapy. This translates to more precise targeting of tumors while 

minimizing radiation exposure to healthy tissues. 

 
4. Discussion and Conclusion 

 
This study aims to utilize ML approaches to accurately predict Bragg curve peak 

locations in proton beam therapy. The development of a benchmark dataset 
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encompassing biomaterials that are identical to the human tissue in cancer proton 

therapies establishes a solid footing for evaluating various ML models. It delves into 

the effectiveness of different models across varying energy levels and biomaterial 

characteristics, further employing GA optimization to refine model, thereby 

bolstering predictive prowess. According to experimental results, the RF model 

demonstrated superior performance, achieving correlation coefficient (CC), mean 

absolute error (MAE), and root mean square error (RMSE) values of 0.712, 0.073, 

and 0.151, respectively. RF model outperforms other regression models across all 

evaluation metrics. It can be inferred from this result that RF model can map 

relationships between biomaterial characteristics and energy levels using multiple 

random tree architectures. Further optimizing RF model parameters using GA is 

proven to increase the performance of predicting exact value of Bragg curve peak 

location. RF model with optimized parameters outperformed the model without 

optimization in terms of 0.742 CC, 0.069 MAE and 0.145 RMSE, respectively. 

The study's other main contribution is using SHAP method to dissect the intricate 

web of feature contributions. This analysis unveils the importance of each feature in 

predicting Bragg curve peak locations, providing invaluable insights into the factors 

that profoundly affect treatment outcomes. It can be clearly seen from SHAP analysis 

that energy, biomaterial mass density, and biomaterial thickness make a substantial 

contribution to Bragg curve peak point location prediction. Lower energy levels 

higher Bragg curve peak point locations, while increased biomaterial mass densities 

and thickness also lead to higher Bragg curve peak point locations. This insight into 

feature impacts enables personalized adjustments in proton beam therapy, 

contributing to more tailored and efficacious cancer treatments. The seamless 

integration of ML model optimization and feature impact analysis not only elevates 

the precision of proton beam therapy but also represents a substantial leap toward 

the implementation of individualized and optimized strategies in cancer care. 

Through the utilization of these approaches, clinicians can tailor ML models to 

accommodate diverse patient profiles, optimizing treatment plans to achieve 

maximum therapeutic impact. 

This study has certain limitations, with the primary concern being the 

computational load. Despite the effectiveness of RF models in various tasks, their 

computational complexity becomes significant, especially when dealing with a large 

number of samples and features. The integration of GA optimization can further 

exacerbate computation time in the quest for the optimal parameter combination. To 

alleviate this burden, one approach is to employ feature selection and Principal 

Component Analysis (PCA) methods, which can effectively reduce the 

dimensionality of features, thereby expediting the training phase. 
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Figure 6. Feature importance analysis by SHAP. 

 

An alternative approach involves harnessing Graphics Processor Units (GPUs) 

within a sophisticated centralized computer system to accelerate the training of the 

RF algorithm. Additionally, exploring parallel processing techniques can be a viable 

strategy to address and mitigate this challenge. Another constraint arises from the 

limited number of samples; given the small sample size, it is impractical to 

benchmark and study deep learning approaches within the proposed framework 

using this dataset. Deep learning methods typically require substantial datasets for 
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effective training. To address these limitations, a potential solution is to conduct 

additional experiments involving diverse biomaterials and energy levels to augment 

the sample size. It can increase the performance of proposed framework because the 

model can train with more varied data. Potential biases within the dataset might not 

be fully captured by the current analysis. Expanding the dataset with a broader range 

of biomaterials and energy levels could mitigate bias and improve the model's 

generalizability to real-world clinical scenarios. While the study demonstrates the 

effectiveness of the model in predicting Bragg peak location, further work is 

necessary to translate these findings into clinically applicable tools. Evaluating the 

model's performance on real-world patient data with complex anatomies would be 

crucial for establishing its clinical relevance. Also, developing a seamless integration 

pathway for the model's predictions into existing treatment planning software used 

by clinicians would enhance its practical usability. 

 For the future direction of this study, other potential problems, such as dose 

calculation and treatment planning optimization, which are crucial in particle 

therapy, will be investigated. The applicability of ML methods to these problems will 

be explored thoroughly. Various XAI techniques can be explored to understand how 

these advanced models arrive at their predictions, fostering acknowledgement from 

medical professionals. Multimodal approaches that consider patient, biomaterial, 

imaging data can also be integrated for better prediction capability. Especially, 

multimodal transformers can be adopted to learn joint representations across 

different data modalities, potentially leading to more comprehensive and informative 

features for improved prediction capability. Another future task could be increasing 

the sample size of the curated dataset by conducting more experiments with different 

biomaterials and energy levels. This approach could open up the possibility of 

including deep learning methods. Lastly, different hyperparameter optimization 

algorithms can also be considered to determine which one is better suited for this 

problem. 
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Abstract. Coffee is an agricultural commodity of fundamental and considerable 

economic importance on the global market. In this study, the coffee bean varieties 

were examined from images via artificial intelligence due to their quality and value 

on the market. This study aims to create an automated system that can efficiently 

identify coffee beans without requiring a significant amount of time. In this study, 

five pre-trained Convolutional Neural Network (CNN) architectures were 

performed to detect four varieties of coffee beans through images. Extracting 

features from images is a challenging and specialized task. However, CNN 

possesses the ability to extract features automatically. Therefore, these architectures 

were employed as both deep feature extractors and classifiers. Primarily, 1600 

coffee beans' images were split into 75:25 training and testing sets. Next, 5-fold 

cross-validation was applied during the training process. This study presented both 

validation and testing results. Eventually, ShuffleNet achieved the best 

classification performance with 99.33% and 99.75% accuracy rates in identifying 

types of coffee beans for the training and testing sets, respectively. As a result, this 

study has demonstrated that deep learning technologies can automatically recognize 

the different types of coffee beans. 

 

 

1. Introduction 
 

Coffee holds a crucial role as an economic crop, significantly influencing global 

trade and agriculture, and it ranks among the most widely consumed beverages 

across the globe. Since coffee prices are directly influenced the quality and type of 

coffee, separating coffee beans is very important for world markets. Assessing the 
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color of coffee beans plays a vital role in establishing their quality and market value 

[1, 2].  

This evaluation is typically carried out through visual examination or 

conventional tools, yet these approaches come with challenges like inconsistency, 

time intensity, and subjectivity. Using computer vision systems instead of traditional 

methods is an excellent alternative to eliminate these adverse situations. Computer 

vision systems provide more accurate, impartial, and sensitive classification results 

[3, 4]. 

Computer vision is the field of computer science that deals with technologies that 

enable computers to identify and manipulate objects they see like humans. It covers 

the subjects of acquiring the image, processing, analyzing, understanding, extracting 

numerical data from the images, and making decisions. 

In recent times, deep learning methods have found extensive application in the 

field of computer vision and can extract more detailed information than machine 

learning methods. In deep learning, generally considered a black-box approach, 

features are automatically determined with input given as images [5]. Then, 

classification is performed using these features. 

The wide range of colors in coffee beans poses a challenge for their classification 

through visual inspection. Hence, to tackle the classification of coffee beans, various 

deep learning algorithms, including Convolutional Neural Networks (CNN) 

architectures, have been suggested in the literature. Some of these are presented 

below. 

Unal et al. [6] created a specialized data set containing 1554 images of 3 unique 

coffee types: Espresso, Kenya, and Starbucks Pike Place coffee beans, and classified 

them via 4 different CNN-based models:  SqueezeNet, Inception V3, VGG16, and 

VGG19. The findings indicated that SqueezeNet emerged as the most successful 

model, achieving the highest average classification success rate of 87.3%. 

De Oliveira et al. [1] proposed a computer vision system based on artificial neural 

network (ANN) and Bayes classifier to analyze and categorize four green coffee 

bean types: whitish, cane green, green, and bluish green. The results indicated that 

the system achieved a 100% accuracy rate in categorizing variations in the color of 

green coffee beans. 

Jumarlis et al. [7] provided a website to detect the level of the coffee beans 

utilizing image input through a web-based program used GLCM (gray-level co-

occurrence matrix) and the K-NN (k-Nearest Neighbor) methods, and the system 

provides 90% accuracy. 

Arboleda [8] classified green coffee beans using 22 data mining algorithms 

consisting of decision tree, discriminant analysis, support vector machine (SVM), 

K-NN, and ensembles families and obtained the highest classification accuracy with 

94.1% by Coarse Tree Algorithm. 
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Fukai et al. [9] developed an automatic coffee bean sorting system for coffee bean 

producers using deep CNN to detect the type of coffee beans and trained the ANN 

to implement into Raspberry Pi compute module with the camera module. They 

compared the results of conventional linear SVM. CNN gives better performance 

than SVM. 

Huang et al. [10] designed an automated system for identifying green coffee 

beans, employing image processing and data augmentation technologies to handle 

the data, and utilizing CNN to analyze image information. Following the research, a 

classification accuracy of 94.63% was achieved. 

Gope and Fukai [2] classified green coffee bean images through CNN and SVM. 

Firstly, they created four trained CNN models corresponding to different image 

sizes, including 32×32 pixels, 64×64 pixels, 128×128 pixels, and 256×256 pixels, to 

compare the classification accuracies of CNN and traditional linear SVM for normal 

and pea berry coffee beans. The CNN yielded a notable accuracy rate of 96.71%. 

Santos et al. [11] used SVM, Deep Neural Network (DNN) and Random Forest 

(RF), to assess defects in coffee beans. They concluded that all classification models 

performed similarly. In addition to these studies, state-of-the-art studies were also 

examined, as detailed in Table 1. 

The research is focused on efficiently identifying the type of coffee beans through 

the utilization of deep learning algorithms. In this context, five different CNN-based 

pre-trained architectures, AlexNet, Inception-v1, MobileNet-v2, ShuffleNet, and 

SqueezeNet, have been used to classify coffee beans. The advantages and 

contributions of this study is as follows: 

(i) This study automatically shows recognition of coffee bean types via pre-

trained CNN. 

(ii) Expert opinion is not needed to extract features. 

(iii) To find the optimal architecture, AlexNet, Inception-v1, MobileNet-v2, 

ShuffleNet, and SqueezeNet are compared by using distinct performance 

metrics on training and testing sets. 

(iv) ShuffleNet has the highest performance on training and testing set to 

determine coffee beans. 

(v) This study may shed light on the determination of the quality and diseases 

of agricultural products. 

 

The pipeline of this study is shown in Figure 1. The performance of the techniques 

has been compared using AUC, accuracy, sensitivity, specificity, precision, F1-

score, G-Mean metrics, and ROC curves. Finally, the model having the highest 

success is determined. 
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Table 1. State-of-the-art studies. 

 

Study 
Coffee 

Classes 
Methods Metrics 

Tsai et al.  [12] 2 classes 
Mass spectrometry 

(MS) analysis + ANN 

Accuracy           0.9958 

Sensitivity         0.9875 

Specificity         1.0000 

Arboleda [13] 2 classes 
Feature extraction + K-

NN 

Accuracy           0.9700 

Raveena and Surendran 

[14] 

 

6 classes 

ResNet50 

 

 

 

VGG16 

Accuracy           0.9897 

Sensitivity         0.9844 

F1-score            0.9864 

 

Accuracy           0.9638 

Sensitivity         0.9523 

F1-score            0.9563 

Kim et al. (2024) [15] 2 classes CNN Based Model Accuracy           0.9927 

Chang and Liu (2024) [16] 
8 classes 

 

CNN Based Model 

 

VGG-16 

 

 

ResNet-18 

 

 

AlexNet 

 

 

GoogleNet 

 

Accuracy           0.9600 

Kappa                0.9500 

Accuracy           0.8100 

Kappa                0.7900 

 

Accuracy           0.8900 

Kappa                0.8490 

 

Accuracy           0.8900 

Kappa                0.8000 

 

Accuracy           0.9200 

Kappa                0.9000 

 

The remainder of this paper is organized as follows: In the "Material and 

Methods" section, details about the coffee beans dataset, CNN and pre-trained 

architectures, cross-validation, confusion matrix, and performance measures are 

provided. The "Experimental Results" section presents the outcomes, while the 

"Conclusion" section offers concluding remarks. 
 

2. Materials and Methods 
 

This section provides concise information about the coffee beans dataset, CNN, pre-

trained architectures, cross-validation, and performance measures utilized in the 

study. 
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Figure 1. Pipeline of this study. 

 

2.1. Coffee Beans Dataset. The coffee beans dataset used in this study were from 

study of [17]. In addition, the dataset is publicly available on the Kaggle platform. 

There are four different coffee classifications: dark, green, light, and medium. There 

are 1600 images in total, 400 in each class. Each example bean’s image is 224x224x3 

pixels in size, and images of four different coffee beans were used to recognize the 

coffee type via deep learning. This study's dataset is split into 75% training and 25% 

testing sets. 
 

2.2. Convolutional neural network (CNN). The convolutional neural network 

(CNN) stands out as a prominent deep learning method characterized by its intricate 

structure composed of multiple layers. CNN are commonly applied to address image 

processing challenges due to their capability to conduct feature extraction, learning, 

and classification based on these extracted features. Moreover, CNN overcomes the 

computational complexity problem that other classification algorithms have in real-

time data and provides very good classification results in studies involving both large 

and small datasets. 

CNN processes an image in different layers and then extracts all its features. The 

most used layers are given below [6, 18, 19]: 
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Convolution Layer:  This layer serves as the fundamental building block of CNNs, 

extracting features by systematically applying different filters to the image. To 

effectively determine the increasing number of features, it is essential to augment 

both the number of steps and filters in conventional layers at a proportional rate. 

However, as the number of features increases, learning becomes more difficult for 

the network, so this number must be determined optimally. 

 

Pooling Layer: This layer simplifies big data from the convolution layer by 

preserving their existing properties to reduce programming complexity and improve 

learning. 

 

Activation Layer: This layer, also known as the non-linear layer, activates the 

system with non-linear functions and prevents values from falling outside the valid 

data range. 

 

Fully Connected Layer: This layer is the crucial artificial neural network layer 

within CNNs, playing a pivotal role in the learning processes and feature extraction. 

 

SoftMax Layer: The distribution of classes becomes apparent, and an output is 

generated through the labeling process within this layer. 

In the context of this study, five distinct pre-trained CNN architectures—

AlexNet, Inception_v1, MobileNet_v2, ShuffleNet, and SqueezeNet were employed 

for the classification of coffee bean varieties. 

 

AlexNet was proposed by [20] for image classification. The network won the 

ImageNet Large-Scale Visual Recognition Competition (ILSVRC) 2012 with more 

than 26% accuracy over contemporary models. It comprises eight trainable layers, 

including five convolutional layers and three fully connected layers. The last layer 

of the fully connected layer is associated with a SoftMax classifier configured for N 

classes, where N denotes the number of classes. The network employs multiple 

convolutional kernels for the extraction of features from the image. Additionally, it 

incorporates dropout for regularization and a rectified linear unit (ReLU) activation 

function to expedite training convergence [21]. 

 

Inception_v1 model, which was the winner of ILSVRC in 2015, has a significant 

success in the development of CNN classifiers. Convolution occurs with three sizes 

of filters (1×1, 3×3, 5×5) at the same level with maximum pooling. The outputs from 

this more comprehensive layer are combined and fed as input to the next layer. 
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MobileNet_v2 was proposed by Sandler et al. in 2018. MobileNetv2 comprises one 

convolutional layer, succeeded by 19 residual bottleneck modules, and subsequently, 

two convolutional layers. The bottleneck module incorporates a shortcut connection 

exclusively when the stride is set to 1. Shortcut is not used for higher pitch due to 

size difference. They also used ReLU as a nonlinear function instead of simple ReLU 

to limit the calculations. 

 

ShuffleNet, introduced by  [22], is primarily composed of a standard convolution 

and a series of ShuffleNet units organized into three stages. The ShuffleNet unit 

bears resemblance to the ResNet block, employing depth convolution on 3x3 layers 

and substituting the 1x1 layer with point group convolution. The depth convolution 

layer is preceded by a channel blending process. 

 

SqueezeNet stands out as a more compact and innovative CNN architecture, 

characterized by fewer parameters compared to other CNN models. SqueezeNet 

consists of fifteen layers, including two convolution layers, three max-pooling 

layers, eight fire layers, a global average pooling layer, and a SoftMax layer with an 

output layer. Fire layers create compression and expansion between convolution 

layers. SqueezeNet is an excellent candidate to improve the hardware efficiency of 

neural network architectures. Details of pre-trained architectures used in this study 

are given in Table 2. 

 

2.3. Cross-Validation. During the separation of the data set into the training and test 

sets, irregular distribution of the data set may negatively affect the model's 

performance. This problem can be solved with the k-fold cross-validation method.  

The dataset is partitioned into segments represented as k folds in cross-validation. 

Subsequently, k-1 folds are trained in the framework and tested on the remaining 

folds at each step. The critical point here is to use the previously untested part as the 

test set in each step [24]. We used 5-fold cross-validation for train data in this study. 

 
Table 2. Details of pre-trained architectures used in this study [23]. 

 

Pre-trained 

architectures 

Features 

Parameters 

(millions) 

Input 

Image 

Size 

Depth  

AlexNet 61 227x227 8 

Inception_v1 7 224x224 22 

MobileNet_v2 3.5 224x224 53 

ShuffleNet 1.4 224x224 50 

SqueezeNet 1.24 227x227 18 
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2.4. Confusion matrix and Performance measures. The confusion matrix 

illustrates the current state of the dataset, presenting the count of both accurate and 

inaccurate predictions made by the classification model in a tabular format. For the 

evaluation of classification model performance in this study, a four-class confusion 

matrix was utilized. Moreover, six performance metrics derived from the confusion 

matrix were utilized to analyze the results of the experimental study, as detailed in 

Table 3. Additionally, the distinctiveness of the results was assessed using the values 

of the receiver operating characteristic (ROC) curves and AUC (area under the 

curve). In the ROC curve, the false positive rate is represented on the x-axis, while 

the true positive rate is depicted on the y-axis. An AUC value approaching 1 signifies 

high classification performance for the method [25]. 
 

Table 3. Performance metrics formulas. TP : True Positive, TN : True Negative,   

FP : False Positive, FN   : False Negative. 

 

Metric Formula 

Accuracy 
+

=
+ + +

TP TN
ACC

TP TN FP FN
 

Sensitivity =
+

TP
TPR

TP FN
 

Specificity  =
+

TN
TNR

TN FP
 

Precision  =
+

TP
PPV

TP FP
 

F1-Score 

2
1

1 1
=

+

F score

TPR PPV

 

G-Mean TPR TNR  

 

3. Experimental Results  
 

Section-Times New Roman 11, Figure -illustrated in Figure 1. This study focuses on 

detecting coffee bean types via artificial intelligence.  The acquired images of coffee 

beans were categorized employing five distinct pre-trained CNN models: AlexNet, 

Interception v1, MobileNet_v2, ShuffleNet, and SqueezeNet.  The models were 

trained in the MATLAB environment, utilizing an Intel Core i7-7500U CPU, 

NVIDIA GeForce GTX 950M, 16 GB RAM, and a 64-bit Operating System. 
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The dataset was divided into 75% train and 25% test sets.  5-fold cross-validation 

was applied to the training set to obtain confident results. 

The confusion matrix of each CNN model is presented in Figure 2.  There are 

correct and incorrect classification numbers for each algorithm.  For example, the 

AlexNet model correctly classified 92, 46, 97, and 95 images of Dark, Green, Light, 

and Medium coffee beans, respectively.  The category with the highest 

misclassification of coffee bean images is the green coffee bean class. 

The performance of the models was evaluated using metrics including accuracy, 

sensitivity, specificity, precision, recall, and F-1 score, along with G-Mean. Table 4 

and 5 show 5-fold cross-validation and test results for each algorithm, respectively. 

All performance matrices achieved the highest value with ShuffleNet for validation. 

However, when the architectures were tested, the best optimal performance was 

obtained with MobileNetv2 and ShuffleNet to detect coffee bean varieties. As a 

result, ShuffleNet was found to be the most efficient net in terms of validation and 

testing data results. Because the difference between the validation and test results is 

as small as possible, the algorithm does not learn excessively. Therefore, it was the 

best one. In Table 4 and Table 5, bold values display the highest performance 

metrics. 

To have information about the distinctiveness of the models, ROC curves are 

drawn and given in Figure 3.  It is observed that the ShuffleNet model exhibits the 

highest level of distinctiveness. 

Table 4. Average performance metrics of all models for validation data. 
 

CNN 

Algorithm 
AUC Accuracy Sensitivity Specificity Precision 

F1-

score 

G-

Mean 

AlexNet 0.9717 0.8025 0.8025 0.9342 0.8270 0.8043 0.8658 

Inception_v1 0.9992 0.9892 0.9892 0.9964 0.9894 0.9892 0.9928 

MobileNet_v2 0.9995 0.9842 0.9842 0.9947 0.9847 0.9842 0.9894 

ShuffleNet 0.9999 0.9933 0.9933 0.9978 0.9933 0.9933 0.9956 

SqueezeNet 0.9972 0.9592 0.9592 0.9864 0.9593 0.9591 0.9727 
 

Table 5.  Average performance metrics of all models for test data. 

 
CNN 

Algorithm 

AUC Accuracy Sensitivity Specificity Precision F1-

score 

G-

Mean 

AlexNet 0.9918 0.8250 0.8250 0.9417 0.8796 0.8179 0.8814 

Inception_v1 1.0000 0.9950 0.9950 0.9983 0.9951 0.9950 0.9967 

MobileNet_v2 1.0000 0.9975 0.9975 0.9992 0.9975 0.9975 0.9983 

ShuffleNet 1.0000 0.9975 0.9975 0.9992 0.9975 0.9975 0.9983 

SqueezeNet 0.9998 0.9675 0.9675 0.9892 0.9706 0.9679 0.9783 
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a. AlexNet b.Inception_v1 

  
c. MobileNet_v2 d. ShuffleNet 

 

e.SqueezeNet 

Figure 2. Confusion matrixes of CNN algorithms. 
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a. AlexNet b.Inception_v1 

  

c. MobileNet_v2 d. ShuffleNet 

 

e.SqueezeNet 
 

Figure 3. ROC Curves of CNN algorithms. 
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5. Conclusions 
 

In this study, five distinct CNN architectures—AlexNet, Inception_v1, 

MobileNet_v2, ShuffleNet, and SqueezeNet—were employed for the classification 

of coffee beans. The coffee bean dataset was initially split into a training set 

comprising 75% of the data and a testing set consisting of the remaining 25%. 

Additionally, a training set and validation set were created to prevent overfitting by 

applying 5-fold cross-validation to the training set. For the validation set, the best 

architecture, according to all performance metrics, was determined to be ShuffleNet. 

Among the testing set utilized for assessing model performance, MobileNet_v2 and 

ShuffleNet demonstrated the highest success in classifying the test set. However, it 

is expected that the difference between the validation or training result and the test 

results will be minimal. In this study, Shufflenet was identified with the smallest 

difference as the top choice. Thus, the utilization of ShuffleNet architecture in 

detecting coffee beans can streamline quality control processes and minimize 

decision-making errors. 

This study has some constraints: 

(i) Types of coffee bean is limited. In addition to the identification of species, 

diseases could also be identified. 

(ii) If the same images had features extracted by experts, comparisons could be 

made with other artificial intelligence algorithms. 

 In future studies, different existing or newly proposed architectures and other 

coffee bean or agricultural image datasets can be used for comparison purposes.  
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Abstract. This study presents a framework for predicting hemoglobin (Hb) 

levels utilizing Bayesian optimization-assisted machine learning models, 

incorporating both time-domain and frequency-domain features derived from 

photoplethysmography (PPG) signals. Hemoglobin, a crucial protein for oxygen 

and carbon dioxide transport in the blood, has levels that indicate various health 

conditions, including anemia and diseases affecting red blood cell production. 

Traditional methods for measuring Hb levels are invasive, posing potential risks 

and discomfort. To address this, a dataset comprising PPG signals, along with 

demographic data (gender and age), was analyzed to predict Hb levels accurately. 

Our models employ support vector regression (SVR), artificial neural networks 

(ANNs), classification and regression trees (CART), and ensembles of trees (EoT) 

optimized through Bayesian optimization algorithm. The results demonstrated that 

incorporating age and gender as features significantly improved model 

performance, highlighting their importance in Hb level prediction. Among the 

tested models, ANN provided the best results, involving normalized raw signals, 

feature selection, and reduction methods. The model achieved a mean squared error 

(MSE) of 1.508, root mean squared error (RMSE) of 1.228, and R-squared (R²) of 

0.226. This study's findings contribute to the growing body of research on non-

invasive hemoglobin prediction, offering a potential tool for healthcare 

professionals and patients for convenient and risk-free Hb level monitoring. 

 

 

1. Introduction 
 

The iron-rich protein hemoglobin (Hb), found inside red blood cells, is crucial for 

transporting oxygen and carbon dioxide throughout the body. Fundamentally, if Hb 

level is low, tissues cannot obtain necessary oxygen [1]. Hemoglobin levels play a 
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vital role in overall health, and abnormal levels can indicate underlying diseases. 

Especially, low Hb levels are a sign of anemia, a condition where the body doesn't 

have enough healthy red blood cells. Since iron is fundamental to produce 

hemoglobin, insufficient iron may lead to iron-deficiency anemia, which is the most 

prevalent form [2]. The shape of red blood cells is determined genetically. If an 

individual has a sickle cell disease, sickle-shaped red blood cells can block blood 

vessels, causing pain and tissue damage [3, 4]. Another genetic disorder, known as 

Thalassemia, affects the production of hemoglobin, resulting in lower levels than 

normal in the bodies of individuals [5]. It is known that some types of leukaemia can 

also affect the production of red blood cells, leading to anemia [6]. Healthy kidneys 

secrete a hormone known as erythropoietin (EPO), which aids in the stimulation of 

red blood cell creation. When the kidneys are damaged or in chronic kidney disease, 

they may not produce enough EPO and this situation leads to anemia [7].  

    According to the WHO guidelines anemia classification is based on hemoglobin 

levels [8]. Acceptable hemoglobin levels show difference for men and women. In 

mild anemia hemoglobin value is between 11 g/dL and 12.9 g/dL for men and 

between 11 g/dL and 11.9 g/dL for women. In moderate anemia, hemoglobin value 

is between 8 g/dL and 10.9 g/dL for both men and women. In severe anemia 

hemoglobin value is lower than 8 g/dL for both men and women. Therefore, the 

hemoglobin levels play an important role in people’s lives. Especially for patients 

with hemoglobin related diseases, it is vital to measure hemoglobin values. 

    Traditionally, hemoglobin levels are measured through blood tests, which can be 

inconvenient. Invasive methods for measuring hemoglobin concentration (Hb) are 

generally safe, but there are some potential risks involved. Some low risks include 

the pain caused by the needle to draw blood, slight dizziness, light-headedness, and 

bruising at the puncture site. However, there are some serious risks associated with 

invasive Hb measurement, the probability of them occurring is very low. Infection, 

excessive bleeding, and fainting can be given as examples of potential serious risks. 

Machine learning offers inspiring possibilities for non-invasive hemoglobin 

prediction through various techniques. Leveraging the ubiquity of smartphones, 

researchers have developed hemoglobin prediction tools using smartphone cameras 

and built-in light sources. Techniques involve analyzing fingertip images or videos, 

focusing on color variations related to blood oxygenation [9]. 

Photoplethysmography (PPG) is a widely explored technique that uses light to 

measure blood volume changes in tissues. Machine learning algorithms can analyze 

features extracted from the PPG signal, such as pulse rate and amplitude, to predict 

hemoglobin levels [10, 11].  

    In this study, a machine learning framework was proposed including PPG signals. 

Our contribution to literature is two-fold. To the best of our knowledge, the dataset 

published by Abuzairi et al. was utilized in this study for the first time [12]. Second, 
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a Bayesian optimized method was applied in the training phases of machine learning 

algorithms. 

    The organization of the article is as follows: In Section 2, the related works are 

summarized.  In Section 3, materials and methods including the dataset, machine 

learning, feature selection, feature reduction, and optimization algorithms are 

described. In Section 4, the experimental setup, the evaluation metrics, and the 

empirical results are presented. Section 5 concludes the article. 
 

2. Related Works 
 

There's been a growing focus on using machine learning for non-invasive 

hemoglobin prediction. The study by Dimauro et al. [13] proposed a non-invasive 

method for estimating hemoglobin (Hb) concentration based on digital images of the 

conjunctiva. This innovative approach aimed to assess anemia without requiring a 

blood sample, making it more convenient for patients and healthcare providers. Their 

prototype extracts essential information from colour values in acquired images of the 

conjunctiva. Participants were mainly recruited from Hematology Departments and 

a transfusion center in Italy. Each subject allowed one blood sample for laboratory 

Hb measurement, and simultaneously, images of their conjunctiva were acquired 

using the proposed device. Tests on a mix of 113 anemic and healthy individuals 

demonstrated a strong correlation between the device's estimated Hb value and the 

actual Hb value. A k-nearest neighbor (kNN) classification algorithm was employed 

to assess the anemic condition based on features extracted from the conjunctiva 

images. The study utilized the CIE L*a*b* color space for image analysis, focusing 

on extracting mean values of the a*, b* components, and the G value from the RGB 

components of the conjunctiva images. The methodology included filtering input 

data based on lightness (L) and RGB components to exclude pixels that were too 

dark or too bright, ensuring that only pixels allowing correct pallor evaluation were 

considered. Pearson Correlation Index between conjunctival a* mean values and 

measured Hb was found to be 0.726 for the full dataset indicating a strong 

correlation. The authors concluded that their proposed method and device could 

serve as an effective tool for non-invasive anemia screening and monitoring, with 

the potential for use both in medical settings and by patients at home. 

    Another study presented a method for the non-invasive diagnosis of anemia 

through Hb detection using a spectrophotometric system and a BP-ANN model [14]. 

In their study, the dataset consists of fingertip spectra from 109 volunteers, with 4 

samples identified as outliers and removed, leaving 105 samples for the analysis. 

Samples were divided into calibration (53 samples), correction (26 samples), and 

prediction (26 samples) sets. A spectrophotometric system was developed, 

incorporating a broadband light source, grating spectrograph, and silicon photodiode 
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array for measuring the fingertip spectra. Principal Component Analysis (PCA) was 

employed to reduce the dimensionality of the collected spectra and eliminate 

redundant data. The principal components were then used as inputs to the BP-ANN 

model, with the optimal network structure having 9 input nodes (corresponding to 

the principal components), 11 hidden nodes, and 1 output node. The BP-ANN model 

was trained and validated using the calibration and correction sample sets, 

respectively, and tested with the prediction sample set. The correlation coefficient 

(CC) of the BP-ANN model established by this method was 0.94, indicating a strong 

correlation between the predicted and actual Hb levels. The study successfully 

demonstrated the feasibility of non-invasively predicting hemoglobin levels using a 

combination of PCA and BP-ANN, with satisfactory accuracy and robustness. 

However, the article did not explicitly provide metrics such as Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), or the 

coefficient of determination (R²) for the BP-ANN model's predictions, which are 

commonly used to evaluate the performance of regression models. 

    A study, demonstrating the feasibility of measuring hemoglobin levels 

noninvasively using a standard smartphone's built-in RGB camera and white LED 

flash, was presented by Wang et al. [15]. The study involved 32 participants, 

providing a dataset for evaluating the proposed hemoglobin measurement system. 

Hemoglobin levels were compared against measurements, taken by a device known 

for optical hemoglobin measurement, to validate the smartphone-based approach. 

The proposed system extracted features from the PPG signals, focusing on the ratio 

of peak to trough intensities across different wavelengths (color channels), to assess 

blood absorption characteristics indicative of hemoglobin levels. A linear regression 

model that correlates the features extracted from the PPG signals to hemoglobin 

levels was employed in the study. Although the document did not specifically 

mention feature reduction techniques, it highlighted the importance of adjusting 

color channel gain to balance signal contributions from each channel, effectively 

optimizing the feature set for regression analysis. A Pearson correlation of 0.62 with 

the reference device was reported, indicating a moderate positive correlation 

between the smartphone-based measurements and the reference hemoglobin levels. 

Additionally, an RMSE value of 1.27 g/dL demonstrated the typical deviation of the 

smartphone-based hemoglobin estimates from the reference measurements. 

    A comprehensive study on non-invasively predicting hemoglobin levels using 

PPG signals and various machine learning algorithms was contributed by Kavsaoglu 

et al. [16]. The dataset included data from 33 individuals. PPG signals were collected 

for each participant over 10 periods. Additionally, gender, height, weight, and age 

were added as features, which increased the total number of features to 44. Hemocue 

Hb-201TM device was utilized simultaneously with PPG signal collection as a 

reference for Hb levels. In the study Classification and Regression Trees (CART), 
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Least Squares Regression (LSR), Generalized Linear Regression (GLR), 

Multivariate Linear Regression (MVLR), Partial Least Squares Regression (PLSR), 

Generalized Regression Neural Network (GRNN), Multilayer Perceptrons (MLP), 

and Support Vector Regression (SVR) machine learning algorithms were utilized to 

predict Hb levels. 40 characteristic features were derived from the PPG signal, 

including time-domain features from the signal and its first and second derivatives. 

RELIEF based feature selection (RFS) and Correlation-based feature selection 

(CFS) were utilized to reduce feature dimensions to 10 and 11 features, respectively. 

As performance metrics, MAE, MSE, R2, RMSE, Mean Absolute Percentage Error 

(MAPE), and Index of Agreement (IA) were taken into consideration to calculate the 

effectiveness of the algorithms. RFS-assisted SVR provided promising results with 

the lowest MSE of 0.0027. The study demonstrated that machine learning techniques 

could effectively predict hemoglobin levels non-invasively using PPG signals and 

selected characteristic features, offering a viable method for continuous, pain-free 

monitoring of hemoglobin levels. 

    Another study that exploited Artificial Neural Network (ANN) architecture to 

focus on developing a non-invasive method for estimating blood hemoglobin levels 

was presented by Hasan et al. [17]. Their study involved 75 adults, with hemoglobin 

levels ranging from 7.6 to 13.5 g/dL. The data collection was performed by using 

10-second fingertip videos recorded with a smartphone, resulting in 300 frames per 

video. The participants’ ages ranged from 20 to 56 years. For feature extraction, 

RGB pixel intensities were obtained from 100 area blocks in each frame. Then, ANN 

was utilized to build a prediction model for hemoglobin values. A correlation rank 

order of 0.93 between the predicted hemoglobin values by the model and the gold 

standard was noted, signifying a high level of predictive accuracy. Additionally, the 

dataset was divided into 2 categories for classification purposes. Finally, the 

proposed method demonstrated 94% sensitivity and 96% specificity performance.  

    El-Kenawy et al., presented a study on using machine learning techniques for 

estimating Hemoglobin levels and classifying Anemia based on hematological 

parameters [18]. Their dataset consisted of 9004 records, which were split into 

training (75%) and testing (25%) data. The training dataset included 6753 records, 

while the testing dataset had 2251 records. Z-score Normalization was applied for 

standardizing the data. Some parameters like gender and age were omitted due to 

incomplete data. ANN, LR, and Random Forest (RF) regressors were employed to 

estimate Hb levels. The RF model outperformed other regression models in 

estimating Hemoglobin levels with the lowest RMSE (0.0123) and MAE (0.0435). 

For anemia classification, several classifiers were tested. A hybrid classifier 

combining Decision Tree (DT), Naive Bayes (NB), and ANN, optimized through 

weighted average probabilities, obtained the best performance with an RMSE value 

of 0.0838 and a MAE value of 0.0159. The study demonstrated that machine learning 
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techniques, particularly ensemble methods like RF for regression and a hybrid model 

for classification, can effectively estimate Hemoglobin levels and classify anemia 

types. 

    A novel approach for estimating Hb levels non-invasively by using PPG signals 

captured at four different wavelengths was presented by Chen et al. [19]. Their 

dataset consisted of 58 volunteers, aged between 21-27, with an approximately equal 

male-to-female ratio. The signals were collected at a 200 Hz sampling rate for 1 

minute. For the preprocessing stage, a second-order Butterworth bandpass filter was 

implemented to process the raw PPG signal, removing high-frequency noise and 

motion artifacts. 160 morphological and time-domain feature parameters from the 

PPG signal across four channels were extracted. To identify the most relevant 

features, reliefF, Chi-square Score, and Information Gain methods were employed. 

Three machine learning algorithms, Logistic Regression (LR), SVR, and eXtreme 

Gradient Boosting (XGBoost), were utilized to obtain models. The XGBoost model, 

utilizing the top 30 features selected via the Chi-square method, achieved the best 

performance with a R2 value of 0.997, a RMSE value of 0.762, and a MAE value of 

0.325. The utilization of XGBoost, in combination with carefully selected PPG 

signal features, represented a novel contribution to the field of non-invasive 

hemoglobin measurement, showcasing the potential for clinical application. 

    Another approach to non-invasively predict Hb concentrations by using PPG 

signals was contributed by Peng et al. [10]. The research included 249 volunteers, 

with 199 samples allocated to a training set and 50 samples to a test set. An eight-

wavelength PPG signal acquisition system, alongside a reference value of Hb 

concentration from an automatic blood cell analyzer were utilized for data collection. 

56 feature values were extracted from the PPG signals, considering both 

physiological and demographical (age and gender) data. A Recursive Feature 

Elimination (RFE) algorithm was employed to choose the most contributive features 

for Hb prediction. An ensemble model combining several independent Extreme 

Learning Machine (ELM) models was established to enhance prediction stability and 

accuracy. A RMSE value of 1.72 and a PCC value of 0.76, indicating a strong 

correlation between predicted and actual Hb values, were achieved at the end of the 

experiments. Additionally, the proposed model outperformed other regression 

models (LR, SVR, RF, and traditional ELM) in terms of RMSE and PCC. The study 

introduced an ensemble approach to the ELM algorithm for improved prediction 

accuracy and stability, showcasing potential for broader clinical application and 

research into non-invasive biomarker detection. 

    A study, incorporates deep neural semantic segmentation and convolutional neural 

networks (CNNs), was presented by Chen et al. [20]. The study involved images of 

1065 patients undergoing surgery. Hemoglobin levels among these patients ranged 

from 6 to 18 moL/L. The dataset was balanced by using the SMOTE algorithm due 
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to the original imbalance, where most patients had normal Hb levels. Deep neural 

segmentation was utilized to identify the palpebral conjunctiva region from images, 

ensuring the focus on relevant features for Hb prediction. CNNs and an ensemble of 

ELM were employed to predict Hb values. The proposed model obtained an R² value 

of 0.512, indicating a strong predictive capability. The explained variance score 

(EVS) reached 0.535, and MAE was 1.521, demonstrating the accuracy of the 

prediction model. Compared to other methods like decision trees (DT), LR, and 

SVR, the suggested approach demonstrated enhanced performance in terms of R², 

EVS, and MAE. The research demonstrated the potential of using deep learning and 

image analysis for non-invasive hemoglobin level prediction. Additionally, the study 

highlighted the importance of causal knowledge in improving prediction accuracy 

and reducing the impact of pseudo-correlation noise in the images. 

    Kwon and Kim proposed a non-invasive method for estimating glycated 

hemoglobin (HbA1c) levels using PPG signals [21]. Their dataset was derived from 

40 volunteers, including their PPG signals and corresponding HbA1c levels, 

measured invasively. Additional data such as body mass index (BMI), finger width 

(FW), and SpO2 levels were collected. For the experiments, a custom-developed 

device that measures PPG signals through both reflective and transmissive methods 

was utilized. 18 features were initially considered, based on physiological 

characteristics, signal-directed characteristics, and physical parameters. 7 key 

features were ultimately selected for their importance in estimating HbA1c levels, 

including zero-crossing rate (ZCR), power spectral density (PSD) variance, and FW. 

For feature selection, RFE and importance analysis were employed to identify the 

most contributive features for HbA1c prediction. The study utilized RF and 

XGBoost ensemble models for the prediction of HbA1c levels based on the extracted 

PPG signal features. XGBoost model showed superior performance with a PCC 

value of 0.957 for the reflection method including FW as a feature. For diabetes 

classification, XGBoost also outperformed RF, Beer–Lambert Model, and Photon-

Diffusion Model. The study demonstrated that XGBoost model can provide a 

promising tool for diabetes management without the need for invasive blood 

samples. 
 

3. Material and Methods 
 

3.1. Dataset. The dataset utilized in this study comprises PPG signals, gender, age, 

and Hb value, designed for research into non-invasive hemoglobin measurement 

using machine learning [12]. The dataset includes 68 participants (56% female, 44% 

male) between the ages of 18 and 65. A total of 816 data points were collected, 

corresponding to 12 data points per participant. Red and infra -red light intensity 

values, measured by the PPG sensor in arbitrary units (a.u.), are represented as 
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numerical data (float). Gender corresponds to the categorical variable indicating 

each participant's sex. Age corresponds to the numerical variable (integer), 

indicating the participant's age in years. Hemoglobin (Hb) corresponds to the target 

variable indicating the concentration of hemoglobin in blood, measured in grams per 

deciliter (g/dL) as a numeric data type (float). Hb values were measured invasively. 

For each participant, raw PPG signals were gathered every 40 milliseconds across a 

span of 10 seconds. These signals were then averaged into 12 sets of red and infra-

red data to create the dataset. The study acknowledges potential biases in PPG signal 

measurements due to vibrations, movements, and subjects’ skin tones, and the 

dataset's generalizability to different populations. The dataset is publicly accessible 

for further research and development in the field of non-invasive hemoglobin 

measurement and is hosted on Mendeley Data. 

3.2. General Framework. The first stage in the study is to prepare the features to 

feed the machine learning algorithms. The raw signals, time-domain features, and 

frequency-domain features are utilized to build different models. Time-domain and 

frequency-domain features are extracted from the raw signals. Additionally, 

normalization is applied to improve the model performance and have interpretable 

results, while feature selection and feature reduction algorithms are applied to 

decrease the dimension of the samples. The second stage is to train the machine 

learning algorithms. In this stage, the aim is to optimize the hyper-parameters for a 

machine learning algorithm. Cross-validation technique is applied on the training 

data to obtain the performance values for the related hyper-parameters then this 

information is utilized by the Bayesian optimization algorithm to fine-tune the 

hyper-parameters. The final stage includes the test phase. After building the models, 

they are tested with the independent test set to obtain the performance results. The 

general framework is given in Figure 1. 

 
Figure 1. The general framework. 
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3.3. Normalization. Many machine learning algorithms perform better or require 

that the input data be normally distributed. Standardizing variables helps meet these 

assumptions or improve the algorithm's performance. Z-score normalization process, 

utilized in this study, involves transforming the original dataset so that the mean of 

the transformed data is 0 and the standard deviation is 1 for each feature. Z-score 

normalization is a valuable preprocessing step that can improve model performance. 

Its formula is given as follows: 

 

𝑧 =  
(𝑥−𝜇)

𝜎
       (1) 

 
where, 𝑥 represents the original value to be normalized, 𝜇 represents the mean of the 

selected feature, and 𝜎 represents standard deviation of the same feature. 

3.4. Feature Extraction. Time-domain and frequency-domain features were 

extracted from the raw signals to compare them and to feed machine learning 

regression algorithms. Time-domain features utilized in the study are mean, root 

mean square (RMS), standard deviation, shape factor, signal-to-noise ratio (SNR), 

signal to noise and distortion ratio (SINAD), peak value, crest factor, clearance factor 

and impulse factor. The set of frequency-domain features include mean frequency, 

median frequency, bandpower, occupied bandwidth power bandwidth, peak 

amplitude, peak location, and power spectral density (PSD) estimate. 

3.5. Feature Selection. In our study, rReliefF feature selection algorithm was 

utilized. It is used primarily to identify relevant features that contribute significantly 

to the prediction of the output variable. Instead of looking for nearest neighbours 

within the same class or different classes, rReliefF for regression searches for k 

nearest neighbours based on the closeness of their response values [22]. The 

algorithm assesses how well a feature can discriminate between instances that are 

near each other in the feature space but have different response values. The process 

has 4 main steps. First, weights of each feature are set to 0. Second, an instance is 

selected randomly from the dataset.  Third, for the selected instance, a set of nearest 

neighbours is found based on the feature space. Finally, for each feature, its weight 

is updated based on how much the feature values for selected instance and its nearest 

neighbours differ, considering the differences in their response values.  The intuition 

is that if small differences in a feature correspond to large differences in the response 

variable for otherwise similar instances, then the feature is important for predicting 

the response. 

3.6. Feature Reduction. In our study, Principal Component Analysis (PCA) 

algorithm was utilized for dimensionality reduction. PCA works by identifying the 
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axes (principal components) that maximize the variance in a dataset [23]. These 

principal components are orthogonal to each other, which guarantees that they 

capture distinct aspects or patterns within the data. The first principal component 

captures the most variance, the second captures the second most, and so on, allowing 

for dimensionality reduction by selecting a subset of components to retain while 

minimizing information loss. The principal components serve as novel features that 

can be used in a regression model. These features represent linear combinations of 

the initial variables and are chosen since they explain the maximum amount of 

variance in the data. 

3.7. Machine Learning Regression Algorithms.  

3.7.1. Support Vector Machines (SVM).  Support Vector Regression (SVR) extends 

the concept of SVM from classification to regression problems. It incorporates the 

core principles of SVMs to handle regression, providing a unique approach to predict 

continuous outcomes. Unlike traditional regression methods that aim to minimize 

the error between the predicted and actual outcomes, SVR focuses on ensuring that 

errors do not exceed a certain threshold [24]. This is achieved by fitting the best line 

or hyperplane within a predefined margin of tolerance, effectively capturing as many 

data points as possible while ignoring errors that are within the acceptable range. 

This guarantees that the model does not excessively react to minor fluctuations in 

the training data, leading to more stable and generalizable predictions.  
    In regression tasks, SVR is employed by choosing a type of kernel (linear, 

polynomial, or radial basis function) to transform the original data into a higher-

dimensional space where a linear regression surface seems likely to fit better. The 

SVR model then focuses on minimizing the error for only those data points that fall 

outside the epsilon margin, ignoring errors within the margin. This approach allows 

the SVR to balance the intricacy of the model and the extent to which deviations 

exceeding epsilon are acceptable. 
 

3.7.2. Artificial Neural Networks (ANNs). ANNs are a foundational element of 

machine learning and artificial intelligence, drawing inspiration from the human 

brain's architecture and operations. When applied to regression tasks, they're often 

referred to as neural network regressors. An ANN consists of interconnected 

processing units or nodes, called neurons. There are simply 3 different layers in an 

ANN. The input layer takes the features, the neurons in the hidden layers operate on 

the features, and the output layer produces the predicted value [25]. Every link 

between neurons has a corresponding weight, which is adjusted during the learning 

process. In a regression context, ANNs are designed to predict continuous outcomes 

based on input features, as opposed to classifying inputs into categories. The aim of 
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an ANN regressor is to learn a mapping from inputs to a continuous output, 

minimizing the disparity between forecasted and real values across a training dataset. 

This involves adjusting the weights of the connections in the network to minimize a 

loss function, a measure of prediction error, through a process known as 

backpropagation. 

    The model's complexity and capacity can be adjusted by varying the number of 

hidden layers and neurons within them, allowing ANNs to model complex, nonlinear 

relationships that might be difficult for other regression techniques to capture. 

However, they require careful tuning of hyperparameters and feature scaling, 

especially as model complexity increases. 
 

3.7.3. Classification and Regression Trees (CART). Classification and Regression 

Trees (CART) is a decision tree learning technique that can be used for both 

classification and regression predictive modelling problems. The method involves 

splitting data into subsets based on the value of input features, leading to a tree-like 

model of decisions and their possible consequences [26]. The main goal of CART is 

to develop a model capable of predicting the value of a target variable by deriving 

straightforward decision rules from the features present in the data.  

    In regression tasks, CART involves building a decision tree to model the 

relationship between the features of data and a continuous target variable. The data 

is split at nodes based on feature values, aiming to minimize the variance of the target 

variable within each node. The process continues until a stopping criterion is met, 

like a maximum depth of the tree or a minimum number of samples in a node. The 

outcome is a model where each leaf node represents a prediction value based on the 

input features. 
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3.7.4. Ensembles of Trees (EoT). Ensembles of trees are advanced machine learning 

techniques that combine multiple decision trees to create a more powerful model. 

These models are used for both classification and regression tasks. The core idea 

behind ensemble methods is to leverage the collective power of multiple models to 

achieve better accuracy and performance than any single model could on its own. 

Ensemble methods involve the integration of multiple decision trees to form a 

stronger predictor. Bootstrap Aggregating (Bagging) and Least Squares Boosting 

(LSBoost) can be given as examples for the most common ensemble methods 

[27,28]. LSBoost is a gradient boosting method that uses least squares loss to 

improve models' predictions iteratively. Bagging involves training multiple models 

in parallel, each on a random subset of the data (with replacement), and then 

aggregating their predictions. This approach is effective in reducing variance and 

overfitting. In EoT, a higher number of decision trees (learners) can increase the 

accuracy but may also lead to increased computational complexity and the risk of 

overfitting. The minimum leaf size in trees refers to the smallest number of 

observations that must be present in the leaf (terminal node) of a tree. Setting a higher 

minimum leaf size can help prevent overfitting by ensuring that the trees are not too 

deep or overly complex, which might make them sensitive to noise in the training 

data. By aggregating the predictions of multiple trees, ensembles can capture more 

complex patterns in the data, reduce the risk of overfitting, and handle variance 

better. 

3.8. Bayesian Optimization. Bayesian optimization is a strategy used for optimizing 

objective functions that are expensive to evaluate [29]. It's particularly useful when 

dealing with black-box functions where the underlying mathematical form is 

unknown and derivatives are not available, making traditional optimization methods 

unsuitable. Bayesian optimization is widely used in machine learning and 

hyperparameter tuning where simulations or experiments are costly and time-

consuming. Surrogate Model and Acquisition Function are crucial components in 

Bayesian optimization. They work together to efficiently find the minimum or 

maximum of an expensive function. Bayesian optimization builds a probabilistic 

model of the objective function, called the surrogate model, to approximate the true 

function. This model is used to make predictions about the function's behaviour and 

estimate the uncertainty of those predictions. Gaussian Processes (GP) are the most 

used surrogate models in Bayesian optimization owing to their capability to model 

the uncertainty of predictions. The acquisition function is used to decide where to 

sample next. It determines the trade-off between exploration (sampling where the 

model is uncertain) and exploitation (sampling where the model predicts high 

values). The acquisition function is chosen to be easily maximized unlike the original 

objective function. While Bayesian optimization can be used for regression, it does 

not directly target minimizing MSE or RMSE during the optimization process. 
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Instead, it focuses on finding the model parameters that have the highest posterior 

probability given the data and any prior beliefs. In other words, Bayesian 

optimization is a specific technique used to optimize expensive functions where the 

goal is to minimize or maximize the function's output. Here, the acquisition function 

within Bayesian optimization considers the uncertainty of the surrogate model to 

choose the next data point that will be most informative for finding the minimum or 

maximum.  

    One popular acquisition function is the Expected Improvement (EI), which 

measures the expected amount of improvement over the current best observation at 

a given point. The EI for a point 𝑥 can be computed as follows while assuming 

minimization: 

 

𝐸𝐼(𝑥) = (𝜇(𝑥) − 𝑓(𝑥+) − 𝜉)Φ(𝑍) + 𝜎(𝑥)𝜙(𝑍)                                             (2) 

  𝑍 = {
𝜇(𝑥)−𝑓(𝑥+)−𝜉

𝜎(𝑥)
, 𝜎(𝑥) > 0

0, 𝜎(𝑥) ≤ 0
 

 

where, 𝜇(𝑥) is the mean prediction of the surrogate model at 𝑥, 𝑓(𝑥+) is the value 

of the best sample observed so far, 𝜉 is a small positive number to encourage 

exploration, 𝜎(𝑥) is the standard deviation of the prediction at 𝑥, Φ and 𝜙 represent 

the cumulative distribution function and probability density function of the standard 

normal distribution, respectively. The term 𝑍 is used to calculate the expected 

improvement. If the predictive uncertainty at 𝑥 (𝜎(𝑥)) is zero, implying no 

uncertainty in the model's prediction at 𝑥, 𝑍 is set to 0 since the formula aims to 

prevent division by zero. 𝑍 plays a crucial role in quantifying how much 

improvement a new sample is expected to provide over the current best observation, 

adjusted for the level of uncertainty in the prediction at that point. This 

standardization allows the EI formula to balance exploration and exploitation by 

taking into account both the average prediction and the uncertainty of the prediction. 

    When evaluating the objective function is time-consuming, it's beneficial to 

incorporate the evaluation time into the acquisition function. The Expected 

Improvement Per Second Plus (EIPS) is a variant of the EI that accounts for the 

evaluation time, aiming to maximize the efficiency of the optimization process in 

terms of the improvement gained per unit of time. The EIPS acquisition function can 

be formulated as: 

 

𝐸𝐼𝑃𝑆(𝑥) =
𝐸𝐼(𝑥)

𝑡(𝑥)
         (3) 

 

where, 𝐸(𝑥) is the expected improvement at point 𝑥 and 𝑡(𝑥) is the expected 



 

HEMOGLOBIN VALUE PREDICTION  
 

 

189 

evaluation time for point 𝑥. This formulation encourages selecting points that are not 

only expected to yield high improvement but also are quicker to evaluate, thus 

optimizing the efficiency of the Bayesian optimization process [30]. 

 
4. Results 

 
4.1. Experimental Setup. The dataset utilized in this study was split into training 

and independent test sets. The training set comprised 70% of the data (48 samples), 

while the independent test set included the remaining 30% (20 samples).  

    Given the relatively small size of our dataset, Leave-One-Out (LOO) cross-

validation is a suitable choice for optimizing the hyperparameters of our machine 

learning algorithms during the training phase. In LOO strategy, each sample is used 

once as a validation case, while the remaining part of the training set is used to obtain 

a model. This process is repeated for every sample in the training set. Finally, by 

averaging the performances of all validation samples, hyper-parameters of a machine 

learning algorithm are determined. With the integration of Bayesian optimization 

algorithm, hyper-parameters are optimized, leading to improved model performance. 

    5 setups were prepared utilizing the same machine learning algorithms but with 

different features, in order to compare the performances in terms of evaluation 

metrics.  

    For each machine learning algorithm, the hyper-parameters were fine-tuned by 

utilizing Bayesian optimization. These hyper-parameters were box constraint (cost), 

epsilon, and kernel function (linear, Gaussian, quadratic, and cubic) regarding SVR 

model;  number of hidden layers, size of each layer, activation function (sigmoid, 

rectified layer unit), and regularization strength for ANN model; minimum leaf size 

for CART model; ensemble method (LSBoost or Bag), number of learners, learning 

rate, minimum leaf size, and number of features to sample for EoT model.    

4.2. Evaluation Metrics. Mean Absolute Error (MAE) quantifies the average size 

of the mistakes in a series of forecasts, disregarding their sign. It calculates the 

average of the absolute differences between the forecasted and the actual values. 

Below is the formula for MAE: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1       (4) 

 

where 𝑛, 𝑦𝑖, and �̂�𝑖 represent the number of observations, the actual value of the 

observation, and the predicted value, respectively. The lower the MAE, the better, 

with 0 being the ideal score. 
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    Mean Squared Error (MSE) evaluates the average of the squared discrepancies, 

differences between the predicted values and the true values. The formula for MSE 

is provided below: 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1       (5) 

 

where, 𝑛, 𝑦𝑖, and �̂�𝑖 represent the same meanings in Equation (4). It penalizes larger 

errors more severely than smaller ones, due to the squaring of each term. A smaller 

MSE signifies a closer match to the actual data, where a score of 0 represents an 

ideal fit. 

    Root Mean Squared Error (RMSE) calculates the square root of the mean of the 

squared deviations between the predicted values and the actual observations. It 

provides an indication of the dispersion of these residuals, essentially showing the 

degree to which the data clusters around the best fit line. Below is the formula for 

RMSE: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1      (6) 

 

where, 𝑛, 𝑦𝑖, and �̂�𝑖 represent the same meanings in Equation (5), but the whole 

formula is under a square root. RMSE is the square root of MSE, bringing the error 

metric back to the same units as the target variable. It similarly penalizes larger errors 

more than smaller ones. smaller RMSE value suggests a more accurate model, with 

0 being the ideal score. RMSE is sensitive to outliers. 

    R-squared (R2) quantifies the fraction of variance in the dependent variable that 

can be explained by the independent variables. The formula for R2 is as follows: 

 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
= 1 −

∑ (𝑦𝑖−�̂�𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

    (7) 

 

where, 𝑛, 𝑦𝑖, and �̂�𝑖 represent the same meanings in Equation (4), �̅� represents the 

mean of the actual values. 𝑆𝑆𝑟𝑒𝑠 is the sum of squares of residuals, which measures 

the variability of the prediction errors. 𝑆𝑆𝑡𝑜𝑡 is the total sum of squares, which 

measures the total variability of the observed data around the mean. The nearer R2 

approaches 1, the greater the proportion of variance in the dependent variable 

explained by the model, signifying a stronger model fit. An elevated R2 value does 

not automatically mean the model is the most effective or accurate in its predictions. 

In models where the predictions are worse than merely estimating the average of the 

observed values, R2 can be negative. 

 

 



 

HEMOGLOBIN VALUE PREDICTION  
 

 

191 

4.3. Empirical Results. The results of the first, second, third, fourth, and fifth setups 

are given in Table 1, Table 2, Table 3, Table 4, and Table 5, respectively. 

Table 1. Regression results for raw signals, age and gender. 

 Raw signals + Age + Gender (26 features) 

 Validation Test 

Model MAE MSE RMSE R2 MAE MSE RMSE R2 

SVR 1.419 3.152 1.775 0.157 1.016 1.783 1.335 0.085 

ANN 1.232 2.111 1.453 0.435 1.579 4.1 2.024 -1.01 

CART 1.099 2.052 1.432 0.451 1.254 2.96 1.721 -0.518 

EoT 0.913 1.732 1.316 0.537 1.17 2.529 1.591 -0.297 

 RReliefF (19 features) 

SVR 1.434 2.939 1.714 0.214 1.044 1.859 1.363 0.046 

ANN 1.075 1.729 1.315 0.537 1.677 4.523 2.126 -1.32 

CART 1.12 2.099 1.448 0.439 1.331 2.972 1.724 -0.525 

EoT 1.147 2.712 1.646 0.275 1.422 3.769 1.941 -0.933 

 PCA (95% variance, 2 components) 

SVR 1.506 3.320 1.822 0.112 1.247 2.443 1.563 -0.253 

ANN 1.532 3.562 1.887 0.047 1.101 2.149 1.466 -0.102 

CART 1.52 3.693 1.921 0.012 1.293 3.035 1.742 -0.557 

EoT 1.63 3.804 1.95 -0.017 1.225 2.799 1.673 -0.436 

 RReliefF + PCA 

SVR 1.504 3.314 1.82 0.113 1.24 2.403 1.55 -0.233 

ANN 1.638 4.052 2.013 -0.083 1.131 2.026 1.423 -0.039 

CART 1.576 3.58 1.892 0.042 1.307 2.526 1.589 -0.296 

EoT 1.576 3.739 1.933 4.4e-

16 

1.219 2.289 1.513 -0.174 

 
According to the Table 1, the best performance values were obtained as 1.016, 

1.783, 1.335, and 0.085 in terms of MAE, MSE, RMSE, and R2, respectively for the 

independent test set by utilizing raw signals, age, and gender information as features 

and SVR as regressor.  
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Table 2. Regression results for normalized raw signals, age and gender. 

 Normalized features (26 features) 

 Validation Test 

Model MAE MSE RMSE R2 MAE MSE RMSE R2 

SVR 1.143 2.213 1.487 0.408 1.432 3.325 1.823 -0.705 

ANN 1.015 1.508 1.228 0.597 1.718 4.338 2.082 -1.225 

CART 1.099 2.052 1.432 0.451 1.254 2.96 1.72 -0.518 

EoT 1.22 2.585 1.608 0.308 1.083 2.314 1.521 -0.187 

 RReliefF (19 features) 

SVR 1.132 1.991 1.411 0.467 0.943 1.764 1.328 0.095 

ANN 1.092 2.016 1.42 0.461 1.136 1.806 1.344 0.073 

CART 1.054 1.937 1.392 0.482 1.254 2.96 1.72 -0.518 

EoT 1.054 2.095 1.447 0.439 1.277 2.76 1.661 -0.416 

 PCA (95% variance, 3 components) 

SVR 0.903 1.218 1.103 0.674 1.706 4.605 2.146 -1.362 

ANN 1.091 2.234 1.494 0.403 1.000 1.556 1.247 0.202 

CART 1.122 2.063 1.436 0.448 1.116 2.178 1.475 -0.117 

EoT 1.227 2.292 1.514 0.387 1.022 2.038 1.427 -0.045 

 RReliefF + PCA 

SVR 0.96 1.4 1.184 0.625 2.845 11.999 3.464 -5.155 

ANN 1.042 2.152 1.467 0.424 0.981 1.508 1.228 0.226 

CART 1.226 2.257 1.502 0.396 1.097 2.036 1.426 -0.044 

EoT 1.255 2.508 1.583 0.329 1.072 2.163 1.471 -0.11 

 
According to the Table 2, the best MAE value was obtained as 0.943 by utilizing 

SVR and feature selection. In terms of MSE, RMSE, and R2, the best performance 

values were achieved as 1.508, 1.228, and 0.226, respectively for the independent 

test set by utilizing normalized features, ANN as regressor, and with the inclusion of 

the feature selection and reduction methods.  
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Table 3. Regression results for normalized raw signals and w/o age and gender. 

 Normalized features (24 features) 

 Validation Test 

Model MAE MSE RMSE R2 MAE MSE RMSE R2 

SVR 1.463 3.34 1.827 0.107 1.004 1.951 1.396 -0.001 

ANN 1.295 2.572 1.603 0.312 1.267 2.416 1.554 -0.239 

CART 1.576 3.548 1.883 0.051 1.181 2.416 1.555 -0.239 

EoT 1.677 3.817 1.953 -0.021 1.184 2.598 1.612 -0.333 

 RReliefF (16 features) 

SVR 1.498 3.279 1.811 0.123 1.193 2.392 1.546 -0.227 

ANN 1.397 3.277 1.81 0.124 1.171 2.179 1.476 -0.117 

CART 1.575 3.547 1.883 0.051 1.181 2.416 1.554 -0.239 

EoT 1.645 3.957 1.989 -0.058 1.225 2.482 1.575 -0.273 

 PCA (95% variance,  2 components) 

SVR 1.501 3.304 1.817 0.116 1.236 2.397 1.548 -0.23 

ANN 1.602 3.821 1.954 -0.021 1.256 2.45 1.565 -0.256 

CART 1.576 3.739 1.933 0 1.258 2.39 1.546 -0.226 

EoT 1.59 3.687 1.92 0.013 1.182 2.233 1.494 -0.146 

 RReliefF + PCA 

SVR 1.523 3.31 1.819 0.115 1.23 2.401 1.549 -0.232 

ANN 1.563 3.768 1.941 -0.007 1.16 2.076 1.442 -0.066 

CART 1.602 3.547 1.883 0.051 1.361 3.143 1.772 -0.612 

EoT 1.638 3.907 1.976 -0.044 1.259 2.451 1.565 -0.257 

 
According to the Table 3, the best performance values were obtained as 1.004, 

1.951, 1.396, and -0.001 in terms of MAE, MSE, RMSE, and R2, respectively, by 

utilizing SVR and the normalized features without the gender and the age 

information for the independent test set. 
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Table 4. Regression results for normalized time-domain features. 

 Normalized time-domain features (10 features) 

 Validation Test 

Model MAE MSE RMSE R2 MAE MSE RMSE R2 

SVR 1.434 2.819 1.679 0.246 1.183 2.671 1.634 -0.371 

ANN 1.51 3.151 1.775 0.157 1.238 2.595 1.611 -0.331 

CART 1.519 3.233 1.798 0.135 1.199 2.608 1.615 -0.338 

EoT 1.612 3.662 1.913 0.02 1.232 3.354 1.831 -0.721 

 RReliefF (4 features) 

SVR 1.539 3.415 1.848 0.086 1.111 2.089 1.445 -0.071 

ANN 1.532 3.279 1.811 0.123 1.09 2.124 1.457 -0.089 

CART 1.587 3.492 1.868 0.066 1.199 2.608 1.615 -0.338 

EoT 1.59 3.526 1.877 0.056 1.267 3.288 1.813 -0.686 

 PCA (95% variance,  1 component) 

SVR 1.549 3.68 1.918 0.015 1.159 2.077 1.441 -0.065 

ANN 1.521 3.671 1.916 0.018 1.056 1.968 1.402 -0.009 

CART 1.51 3.616 1.901 0.032 1.269 2.258 1.502 -0.158 

EoT 1.561 3.924 1.981 -0.049 1.145 1.726 1.313 0.114 

 RReliefF + PCA (2 components) 

SVR 1.358 3.116 1.765 0.166 1.319 2.889 1.699 -0.482 

ANN 1.575 3.572 1.89 0.044 1.147 2.352 1.533 -0.206 

CART 1.562 3.61 1.9 0.034 1.291 2.723 1.65 -0.397 

EoT 1.624 3.863 1.965 -0.033 1.236 2.89 1.7 -0.482 

 
According to the Table 4, the best MAE value was obtained as 1.056 on 

normalized time-domain features, extracted from the raw signals, by utilizing ANN 

as regressor and the feature reduction method. The best performance values in terms 

of MSE, RMSE, and R2 were achieved as 1.726, 1.313, and 0.114, respectively by 

utilizing EoT as regressor and the feature reduction method. 

 

 

 

 

 

 

 

 

 

 

 

 



 

HEMOGLOBIN VALUE PREDICTION  
 

 

195 

Table 5. Regression results for normalized frequency-domain features. 

 Normalized frequency-domain features (136 features) 

 Validation Test 

Model MAE MSE RMSE R2 MAE MSE RMSE R2 

SVR 1.574 3.762 1.939 -0.006 1.155 2.061 1.435 -0.057 

ANN 1.571 3.404 1.845 0.089 1.246 2.983 1.727 -0.53 

CART 1.493 3.368 1.835 0.099 1.282 2.853 1.689 -0.463 

EoT 1.536 3.389 1.841 0.093 1.125 2.195 1.481 -0.126 

 RReliefF (2 features) 

SVR 1.426 3.107 1.762 0.168 1.241 2.734 1.653 -0.402 

ANN 1.629 3.917 1.979 -0.047 1.205 2.237 1.495 -0.147 

CART 1.515 3.231 1.797 0.135 1.397 3.759 1.938 -0.928 

EoT 1.519 3.278 1.81 0.123 1.227 2.689 1.639 -0.379 

 PCA (95% variance, 2 components) 

SVR 1.451 3.212 1.792 0.14 1.446 3.081 1.755 -0.58 

ANN 1.62 3.933 1.983 -0.052 1.48 3.542 1.882 -0.817 

CART 1.535 3.252 1.803 0.13 1.037 2.146 1.465 -0.101 

EoT 1.67 3.854 1.963 -0.031 1.082 2.113 1.453 -0.084 

 RReliefF + PCA (2 components) 

SVR 1.488 3.159 1.777 0.155 1.373 3.348 1.83 -0.718 

ANN 1.441 2.959 1.72 0.208 1.456 3.723 1.929 -0.91 

CART 1.468 3.384 1.839 0.094 1.251 2.598 1.611 -0.332 

EoT 1.598 3.636 1.907 0.027 1.265 2.993 1.73 -0.535 

 
According to the Table 5, the best MAE value was obtained as 1.037 on 

normalized frequency-domain features, extracted from the raw signals, by utilizing 

CART as regressor and the feature reduction method. The other best performance 

values were achieved as 2.061, 1.435, and -0.057 in terms of MSE, RMSE, and R2, 

respectively, by utilizing SVR without the inclusion of the feature selection and 

reduction methods. 

    The best performance values, according to the independent test set results, are 

shown in Table 6, for each experimental setup. 
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Table 6. The best regression results for 5 experimental setups. 

 Setup 1: Raw signals + Age + Gender (26 features) 

 Validation Test 

Model MAE MSE RMSE R2 MAE MSE RMSE R2 

SVR 1.419 3.152 1.775 0.157 1.016 1.783 1.335 0.085 

Setup 2: Normalized features + RReliefF (19 features) 

SVR 1.132 1.991 1.411 0.467 0.943 1.764 1.328 0.095 

Setup 2: Normalized features + RReliefF + PCA (3 components) 

ANN 1.042 2.152 1.467 0.424 0.981 1.508 1.228 0.226 

 Setup 3: Normalized features w/o Age & Gender (24 features) 

SVR 1.463 3.34 1.827 0.107 1.004 1.951 1.396 -0.001 

Setup 4: Normalized time-domain features + PCA (1 component) 

ANN 1.521 3.671 1.916 0.018 1.056 1.968 1.402 -0.009 

EoT 1.561 3.924 1.981 -0.049 1.145 1.726 1.313 0.114 

Setup 5: Normalized frequency-domain features + PCA (2 components) 

CART 1.535 3.252 1.803 0.13 1.037 2.146 1.465 -0.101 

Setup 5: Normalized frequency-domain features (136 features) 

SVR 1.574 3.762 1.939 -0.006 1.155 2.061 1.435 -0.057 

 
According to the Table 6, for the first experimental setup, the best performance 

values were obtained by SVR regressor on raw signals with the inclusion of age and 

gender information. For the second experimental setup, the best performance value 

was obtained by SVR regressor on normalized features with the inclusion of the 

feature selection algorithm in terms of MAE, while the best performance values were 

obtained by ANN regressor with the inclusion of the feature selection and reduction 

algorithms in terms of MSE, RMSE, and R2. For the third experimental setup, the 

best performance values were obtained by SVR regressor on normalized features 

without the inclusion of age and gender information. For the fourth experimental 

setup, the best performance value was obtained by ANN regressor on normalized 

time-domain features with the inclusion of the feature reduction algorithm in terms 

of MAE, while the best performance values were obtained by EoT regressor in terms 

of the other evaluation metrics. For the last experimental setup, the best performance 

value was obtained by CART regressor on frequency-domain features with the 

inclusion of the feature reduction algorithm in terms of MAE, while the best 

performance values were obtained by SVR regressor on frequency-domain features 

without the inclusion of the feature selection and reduction algorithms in terms of 

the other evaluation metrics. 

    In the first setup, for the SVR model, the hyperparameters were optimized by 

Bayesian optimization with a cost of 0.279, epsilon value of 1.116, and a kernel 

function of linear. In the second setup, for the SVR model, the hyperparameters were 

optimized with a cost of 0.207, epsilon value of 0.364, and a kernel function of 
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quadratic, while for the ANN model the number of hidden layers, the number of 

neurons, activation function, and regularization strength were optimized as 1, 1, 

sigmoid, and 1.385, respectively. In the third setup, for the SVR model, the 

hyperparameters were optimized with a cost of 0.001, epsilon value of 0.002, and a 

kernel function of quadratic. In the fourth setup, for the ANN model, the number of 

hidden layers, the number of neurons, activation function, and regularization 

strength were optimized as 1, 1, rectified layer unit, and 0.397, respectively. For the 

EoT model, the ensemble method, the number of learners, the learning rate, the 

minimum leaf size, and the number of the features to sample were optimized as 

LSBoost, 24, 0.998, 15, and 1, respectively. In the last setup, the minimum leaf size 

was optimized as 19 for the CART model, while the hyperparameters were optimized 

with a cost of 0.001, epsilon value of 0.013, and a kernel function of Gaussian, for 

the SVR model. 

 
5. Conclusion 

 
According to the data obtained from the experiments, it was observed that 

standardization on the features is an important preprocessing step. Experiments 

further showed that age and gender were informative features, as the performance of 

the regressors dropped when these features were removed from the feature vectors. 

When time-domain and frequency-domain features were used to feed the regressors 

without including age and gender information, the results showed that the time-

domain features led to better performance than the frequency-domain-features. 

Based on R2 evaluation metric, normalized raw signal and age-gender information 

can explain the dependent variable better than other features. It can be interpreted 

that the utilization of time and frequency-domain features is indicative of potential 

information loss relative to the raw signal. If we compare the models, it can be 

observed that while the SVR model stood out in 4 out of 5 different setups, the 

highest performance values were obtained with the ANN model. ANN provided the 

best performance values among the setups in terms of MSE, RMSE, and R2 after 

normalization, feature selection, and reduction were applied. We hope the results 

obtained from the first utilization of this relevant dataset will be established as a 

benchmark, encouraging further research, and paving the way for achieving even 

better results in the future. 
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Abstract. In this paper, we propose a new fiber bending sensor based on speckle 

pattern imaging. The design and implementation of the sensor are demonstrated by 

simulated studies. The speckle pattern imaging technique by using a multimode 

fiber can offer high spatial resolution. In this study, we showed that the bending 

sensor responds very sensitively by using the correlation of the images. The fiber 

sensing part consists of a curve in a form similar to the S structure. We reached a 

sensitivity of 0.0295 μm-1 by bending the fiber only 60°. Sensitivity can be further 

increased by reducing the bending diameter or creating a full loop.  
 

 

1. Introduction 

 

Fiber optic sensors have emerged as a powerful and versatile technology for 

measuring various physical parameters with high accuracy and sensitivity. They use 

the basic principles of light transmission and modulation within optical fibers to 

measure. Unlike conventional sensors that rely on electrical or mechanical 

components, fiber optic sensors exploit the interaction between light and the 

surrounding environment to detect and quantify changes in temperature [1,2 3, 4], 

strain [5, 6, 7], pressure [8, 9, 10], humidity [11, 12, 13, 14], chemical composition 

[15, 16, 17, 18] and more. This ability to convert physical quantities into measurable 

optical signals has opened up new avenues for highly sensitive and reliable sensing. 

Fiber optic sensors offer numerous advantages such as small size, immunity to 

electromagnetic interference, remote sensing capability, and the ability to multiplex 
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multiple sensors along a single fiber. These advantages have prompted extensive 

research into the development of novel fiber optic sensing techniques, including 

those based on the analysis of speckle patterns. 

In recent years, there has been a growing interest in the development of optical 

fiber bending sensors due to their numerous applications in various fields, including 

structural health monitoring, robotics, biomechanics, and industrial automation. 

These sensors utilize the unique properties of optical fibers to detect and measure 

bending-induced deformations, providing accurate and reliable information about 

the bending curvature and applied forces. Researchers have used different techniques 

to measure bending, based on modulation principles such as intensity, wavelength, 

and frequency modulation [19, 20, 21, 22]. In addition, they have proposed fiber 

bending devices using different types of fibers such as single mode fiber, multimode 

fiber, multicore fiber, fiber Bragg grating or long period fiber grating. In a significant 

part of these studies, bending measurement is performed by calculating the intensity 

or optical power loss at a standard single or multi-mode fiber output [23, 24]. In 

others, measurement is performed by analyzing changes in the wavelength spectrum 

resulting from modal interference. Although bending sensors based on wavelength 

or frequency modulation are more sensitive to curvature than those based on 

intensity modulation, the optical spectrum analyzer used in such systems causes a 

high cost and compromises the compact structure of the sensor. 

In this paper, we propose a new fiber bending sensor based on speckle pattern 

imaging. The use of speckle pattern imaging as a detection mechanism in fiber optic 

bending sensors offers many advantages. First, it enables non-contact sensing and 

the quantity to be measured with the sensor eliminates the need for physical contact. 

Secondly, the speckle pattern imaging technique offers high spatial resolution. 

Moreover, it will be sufficient to use only one camera instead of using an expensive 

optical spectrum analyzer.  

We organized the paper in four chapter. In the second chapter, the propagation of 

modes in optical fibers and the formation of the speckle pattern image are presented 

with a theoretical perspective. In the third chapter, the design and implementation of 

the optical fiber bending sensor based on speckle pattern imaging is demonstrated 

by simulated studies. The simulation results and bending sensitivity of the sensor are 

discussed in the fourth section. 
 

2. The formation of speckle pattern image in optical fibers 
 

Optical fibers used in the modern communication industry are the most critical 

passive optical components that carry the signal in the communication infrastructure. 

Single-mode fibers are generally preferred for applications that require high data 

rates or long distances. They are used for very long-distance connections such as 
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telecommunications, cable TV, applications requiring long-distance data 

transmission, and even transatlantic undersea link. On the other hand, multimode 

fibers are often used in many applications such as short-distance local area networks, 

decorative lighting as a light source, and transporting light from a high-power optical 

source to the place where it is needed. Fig. 1 (a) and (b) show the distribution of light 

in the cross-sectional area of single mode and multimode fiber, respectively. As seen 

in the figure, while in a single-mode fiber the light creates a spot appearance similar 

to a Gaussian distribution, in a multimode fiber this appearance turns into a complex 

pattern consisting of many small spots. In fact, this is a result of this fiber carrying 

multiple light rays or modes simultaneously. 

 

 

  

 

 

 

 

 

 

 

 

 

 
Figure 1. Intensity distribution of light at the end of the fiber, (a) Single mode fiber (b) 

Multimode fiber. 

 

Optical fibers have a radial symmetry. In a multimode step index fiber, hundreds 

or even thousands of optical modes can be propagated. Since the index profiles 

exhibit only a small index contrast, they can be assumed to be weakly guiding. In 

this case, the calculation of fiber modes can be greatly simplified and we can 

calculate linearly polarized LP modes. The general wave equation in cylindrical 

coordinates can be written as follows [25]. 

 

 
𝜕2𝐸

𝜕𝑟2
+
1

𝑟

𝜕𝐸

𝜕𝑟
+
1

𝑟2
𝜕2𝐸

𝜕𝜑2
+ (𝑘2 − 𝛽2)𝐸 = 0 (1) 

 

Here 𝐸(𝑟, 𝜑) is the complex electric field, 𝑘 = 2𝜋/𝜆 is the wave number, β is the 

phase constant (imaginary part of the propagation constant) and λ is the vacuum 

wavelength. If a laser beam with an intensity distribution similar to Gaussian is 
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applied to the input of a multimode fiber (z=0), the explanation of the complex 

electric field is as follows: 

 

 𝐸𝑖𝑛(𝑟, 𝜙) =
1

𝜌
𝑒𝑥𝑝 [−

𝑟2

𝜌2
] 𝑒𝑥𝑝(−𝑖𝑘𝜃𝑟𝑐𝑜𝑠𝜙) (2) 

Here ρ is the Gaussian beam radius at the waist and θ is the angle of the incident 

Gaussian beam relative to the optical fiber axis. Any guided field distribution in the 

multimode fiber can be considered as a superposition of all guided modes. So that 

the light field traveling along the fiber can be written as the sum of the lights coupled 

to linear polarization modes: 

 

 
𝐸𝑖𝑛(𝑟, 𝜙) =∑∑𝛼𝑚𝑛𝐿𝑃𝑚𝑛(𝑟, 𝜙)

𝑛𝑚

 
(3) 

Here αmn is the mode field amplitude,  LPmn is any linearly polarized mode and the 

pair m-n represent to indices of the LPmn mode. Any LPmn filed is calculated with 

two separate functions, inside and outside the area surrounded by the fiber core 

radius. At the entrance of the fiber corresponding to the z=0 position, these fields 

can be calculated with the following equations using Bessel functions 

 

 𝐿𝑃𝑚𝑛(𝑟, 𝜙) =

{
 

 𝐴
1

𝐽𝑚(𝑈)
𝐽𝑚 (

𝑈𝑟
𝑎
) cos(𝑚𝜑)         𝑟 ≤ 𝑎

𝐴
1

𝐾𝑚(𝑊)
𝐾𝑚 (

𝑊𝑟
𝑎
) cos(𝑚𝜑)         𝑟 ≥ 𝑎

 (4) 

 

Here A is a constant, 𝑎 is the core radius, 𝐽𝑚 and 𝐾𝑚 are the Bessel and modified 

Bessel functions, U  and W  are normalized transfer propagation constants for 𝑟 ≤
 𝑎 and 𝑟 ≥  𝑎, respectively. The relationships among U, W and normalized 

frequency V are defined by the equations given below. 

 

 

𝑈 = 𝑎(𝑘2𝑛1
2 − 𝛽2)

1
2

𝑊 = 𝑎(𝛽2 − 𝑘2𝑛2
2)
1
2

𝑉2 = 𝑈2 +𝑊2 = 𝑎2𝑘2(𝑛1
2 − 𝑛2

2)

 (5) 

 

By solving the above equations numerically, we can obtain the intensity or power 

distribution of each mode. The speckle patterns in optical fibers result from the 

interference of optical modes that have traveled different paths within the fiber, 

leading to a random pattern of bright and dark spots as seen in Fig. 1(b). By summing 
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all the modes guided by the multimode fiber, we can easily calculate numerically the 

speckle pattern at the incident end of the fiber. The figure 2 shows the patterns of 

several lower order modes, including the fundamental mode, and the speckle pattern 

formed by these modes. 

 

 
Figure 2. Formation of speckle pattern from fiber LP modes. 

 
3. Design and Implementation 

 

The simplest way to measure the response of an optical fiber to bending is to rotate 

it at diameter R. Optical fibers can be rotated in loop form up to a few cm in diameter 

without breaking or permanent deformation, as seen in Figure 3. As the loop radius 

decreases, a portion of the light escapes from the core to the cladding and is lost, 

resulting in a decrease in optical power at the fiber output. Although sensors based 

on the measurement of optical power change at the fiber output are quite practical 

compared to those using the interferometer principle, they are sensitive to noise and 

have low resolution due to power oscillations of the light source. Therefore we 

focused on the change of speckle pattern, not the change of optical power at the fiber 

output.  

 

 

 

 

 

 

 

 
Figure 3. Design of fiber bending sensor for a full loop. 

 

In this study, the optical fiber was rotated in the form of a ring with diameter R 

and the speckle pattern changes at the fiber end were obtained by using beam 

propagation method (BPM). This method is very useful for calculating the 

propagation of light in slowly changing waveguides. However, since the optical field 
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is calculated with the forward propagation algorithm, the backpropagation of light 

in waveguides such as ring fiber cannot be calculated. Therefore, we divided a fiber 

ring into equal arcs of 45 degrees as in Figure 4(a) and we obtained the speckle 

patterns by simulating in the forward propagation direction of the sensor, which has 

a form similar to an S-bend. In the simulation studies, we preferred to use a multi-

mode fiber with core and cladding diameters of 105/125 um and NA = 0.22. The 

number of linear modes guided in this fiber is approximately 6000. To obtain the 

speckle pattern image, simulations must be performed in 3D propagation space. We 

have experienced that the simulation time for any value of the loop diameter took 

longer than a week on an ordinary computer. Therefore, by forming the fiber sensor 

with 6 equal arcs of 10 degrees as shown in Figure 4(b), we reduced the 3D 

propagation area and completed all simulation studies in a limited time. 
 

(a) 

 

(b) 

 

Figure 4. Design of S-bending like fiber sensor for simulation implementation in forward 

propagation a) sensor part whose bending consists of 8 arcs of 45 degrees b) sensor part 

whose bending consists of 6 arcs of 10 degrees. 
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In this study, we examined the effect of 60 degree S bending instead of full loop 

fiber. Of course, bending the fiber 60 degrees around a fixed radius may produce less 

changes in the speckle pattern than full bending. However, we have shown that bends 

as small as 60 degrees around different diameters can be detected by fiber speckle 

pattern imaging. We simulated bends created around different diameters in the range 

of 1-6 cm and recorded speckle pattern images at the fiber exit. Since approximately 

4 cm of straight fiber part is added after bending, the total fiber length increases to 

35.306 cm. The complex optical field propagating along the fiber was calculated in 

a 3D wafer using the BPM method.  

Due to the S structure, the wafer resembles a rectangular prism. Wafer 

dimensions are adapted to the bending diameter. For a bending diameter of 6 cm, the 

X-Y cross-sectional area of the wafer is a rectangular plane with dimensions of 

1100x126 micrometers as shown in Figure 5(a). Instead of the entire image on the 

wafer x-y plane, the process was continued with only the part containing the speckle 

pattern image by cropping and circular masking as shown in Figure 5(b). In addition, 

image enhancement operations such as background illumination correction and 

contrast enhancement were performed to achieve uniform illumination and image 

sharpness. Finally, we quantified how the similarity between consecutive images 

deteriorated as the bending radius changed by calculating the image correlation. 

The cross correlation is a common method to quantify image similarity between 

two images [26]. As the similarity between images decreases, the correlation 

coefficient decreases from 1 to 0. Speckle pattern images contain many small-sized 

speckles. Calculating the average correlation coefficient by segmenting the image 

instead of the entire image gives better correlation for such images. As seen in Figure 

5, the correlation between A and B images whose rows and columns are divided into 

M and N segments can be calculated as follows [27]: 

 

𝐶𝑖,𝑗 =
∑(𝐴𝑖,𝑗 − �̅�)(𝐵𝑖,𝑗 − �̅�)

√∑(𝐴𝑖,𝑗 − �̅�)
2
(𝐵𝑖,𝑗 − �̅�)

2
 

𝐶 =
∑𝐶𝑖,𝑗

𝑀𝑥𝑁
 

 

In the next section, we showed that fiber bending can be detected by performing 

image correlation analysis by applying basic image processing functions. 
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            (a) 

 

           (b) 

 
Figure 5. (a) 3D view of the wafer, (b) image processing steps. 
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4. Result and Discussion 
 

We started the simulations with fiber bending with a diameter of 6 cm. The first 

image recorded at the fiber exit with a bending diameter of 6 cm was labeled as the 

reference image after applying the image processing steps. Then the bending 

diameter was increased by 2 μm in each new simulation and the last simulation was 

performed for a bending diameter of 6.0084 cm. Thus, 43 speckle pattern images 

were obtained. As the bending diameter changes, the sequential speckle pattern 

images obtained are very similar to each other. It is very difficult to notice the change 

when followed with the human eye. However, by performing correlation calculation 

on the segmented image as shown in Figure 5, the change from image to image is 

clearly visible. Figure 6 shows the variation of the correlation coefficient with a 2 

μm diameter increase (ΔR) at each step around the 6 cm bending diameter of the 

fiber. In the correlation coefficient, the C(0) value is equal to 1 and this corresponds 

to the reference image (ΔR=0). After approximately the 40th image, the correlation 

drops below 0.1. This means that there is very little similarity between the two 

images. 

  
Figure 6. The variation of the correlation coefficient versus micrometer changes in bending 

diameter. 
 

It is clearly seen in Figure 6 that diameter changes at 6 cm fiber bending gradually 

deteriorate the correlation. This can be explained by the fact that changes in bending 
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diameter affect the modes propagating along the fiber. However, it is quite 

remarkable that very small diameter changes such as 2 μm create measurable 

changes in the speckle pattern images. This result shows that very small changes in 

bending diameter can be measured by observing the fiber speckle pattern. 

Although the field distributions of all guided modes in a straight fiber can be 

calculated theoretically, this situation is quite complicated in a bent fiber. Fiber 

curvature and bend-induced variations in the refractive index both tend to distort the 

mode field distributions [28]. Therefore, we can predict that as the bending diameter 

of the fiber decreases, there will be more severe distortions in the speckle pattern 

image. To verify this, we also tested our sensor for values of the bending diameter 

in the range of 1-6 cm, respectively. The distortion of correlation in the speckle 

pattern images was analyzed by changing the bending diameter in small steps of 2 

μm, as in the experiment with bending diameter of 6 cm for this range. Figure 7 

shows the variation of the correlation coefficient at different bending diameters. 

 

 

Figure 7. The variation of the correlation coefficient for different bending diameter. 

 

It is clearly seen in Figure 7 that as the bending diameter decreases, micro-

changes in diameter cause more severe correlation deterioration. The bending sensor 

with a diameter of 1 cm responds most sensitively to changes in diameter. We can 

simply define sensor sensitivity by |𝛥𝐶/𝛥𝑅|. Here, ΔC and ΔR are the change 

amounts in correlation and bending diameter, compared to the reference speckle 

pattern image (C = 1). If the diameter of the 6 cm bending sensor changes by 30 μm, 

the correlation coefficient drops to 0.5969 and thus its sensitivity is about 0.0013 
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μm-1. On the other hand, for the bending sensor with a diameter of 1cm, the 

correlation coefficient drops to 0.1152, so its sensitivity is obtained as 0.0295 μm-1. 

As a result, the small diameter bending sensor shows more severe correlation 

changes, which can be used to increase sensor sensitivity. 

 
5. Conclusions 

 

In this paper, a fiber bending sensor is proposed based on the correlation distortion 

in speckle pattern images. The bending sensor designed using a multimode fiber 

curved 60 degrees in a form similar to the S structure. The sensitivity of the sensor 

with different curvature diameters in the range of 1-6 cm was tested. The sensitivity 

was found to be 0.0013 μm-1 at 6 cm bending diameter and 0.0295 μm-1 at 1 cm 

bending diameter. It has been shown that the sensitivity increases as the bending 

diameter decreases. Our sensor can detect changes in the bending diameter at the μm 

level. We have demonstrated detection with only 60 degrees of S-structure bending. 

If the sensor structure is designed in the form of a loop, detection will be even more 

sensitive. On the other hand, the detection process is quite different from the methods 

applied in traditional fiber sensors. The detection principle of the proposed sensor is 

based on the processing of images with fiber speckle patterns, which offers a 

significant advantage for characterizing the sensor. Moreover, the sensor can be 

trained with deep learning algorithms and perform accurate measurements. 

 

Author Contribution Statements The authors equally worked on this study. All 

authors contributed to this study at every stage. 

 

Declaration of Competing Interests The authors declare that there is no conflict of 

interest regarding the publication of manuscript. 

 

Acknowledgement This research was supported by the Scientific and Technological 

Research Council of Turkey (TUBITAK 2209-A Program in 2023). 

 
References 

 

[1]  Gao, H., Hu, H., Zhao, Y., Li, J., Lei, M., Zhang, Y., Highly-sensitive optical fiber 

temperature sensors based on PDMS/silica hybrid fiber structures, Sens. Actuators A 

Phys., 284 (2018), 22-27, https://doi.org/10.1016/j.sna.2018.10.011. 

[2]  Su, H., Zhang, Y., Ma, K., Zhao, Y., Wang, J., High-temperature sensor based on 

suspended-core microstructured optical fiber, Opt. Express, 27 (2019), 20156, 

https://doi.org/10.1364/OE.27.020156. 



 

I. NAVRUZ, C. DILSIZ, E.S. ORTAK, S.N. BOYRAZ  
 

 

212 

[3]  Li, M., Gong, Y., Yin, J., Li, W., Shao, Y., Cong, A., Huang, G., Highly-sensitive and 

wide-range temperature sensor based on polymer-filled micro-cavity in fibre Bragg 

grating by temperature segmentation, Optik, 245 (2021), 167707. 

[4]   Sun, X., Zhang, L., Zeng, L., Hu, Y., Duan, J., Micro-bending sensing based on single 

mode fiber spliced multimode fiber Bragg grating structure, Opt. Commun., 505 (2022),  

127513, https://doi.org/10.1016/j.optcom.2021.127513. 

[5]  Perez-Herrera, R.A., Andre, R.M., Silva, S.F. et al., Simultaneous measurement of 

strain and temperature based on clover microstructured fiber loop mirror, Measurement, 

65 (2015), 50-53, https://doi.org/10.1016/j.measurement.2014.12.052. 

[6]  Bilsel, M., Navruz, I., Tapered optical fiber sensor for discrimination of strain and 

temperature, Advances in Electrical and Electronic Eng., 18 (2020), 50-56. 

[7]  Kissinger, T., Correia, R., Charrett, T. O. H., James, S. W., Tatam, R. P., Fiber segment 

interferometry for dynamic strain measurements, J. Light. Technol., 34 (2016), 4620-

4626, https://doi.org/10.1109/JLT.2016.2530940. 

[8]  Sazio, P. J. A., Microstructured optical fibers as high-pressure microfluidic reactors, 

Science, 311 (2006), 1583-1586. 

[9]  Dong, N., Wang, S., Jiang, L., Jiang, Y., Wang, P., Zhang, L., Pressure and temperature 

sensor based on graphene diaphragm and fiber Bragg gratings, IEEE Photonics 

Technol. Lett., 30 (2018), 431-434, https://doi.org/10.1109/LPT.2017.2786292. 

[10] Zhang, W., Ni, X., Wang, J., Ai, F., Luo et al., Microstructured optical fiber based 

distributed sensor for in vivo pressure detection, J. Lightwave Technol., 37 (2019), 1865-

1872. 

[11] Kim, H. J., Shin, H. Y., Pyeon, C. H., Kim, S., Lee, B., Fiber-optic humidity sensor 

system for the monitoring and detection of coolant leakage in nuclear power 

plants, Nucl. Eng. Technol., 52 (2020), 1689-1696. 

[12] Bian, C., Wang, J., Bai, X., Hu, M., Gang, T., Optical fiber based on humidity sensor 

with improved sensitivity for monitoring applications, Opt. Laser Technol., 130 (2020), 

106342. 

[13] Zhang, J., Shen, X., Qian, M., Xiang, Z., Hu, X., An optical fiber sensor based on 

polyimide coated fiber Bragg grating for measurement of relative humidity, Opt. Fiber 

Technol., 61 (2021), 102406, https://doi.org/10.1016/j.yofte.2020.102406. 

[14] Huang, X. Lai, M., Zhao, Z., Yang, Y. et al., Fiber optic evanescent wave humidity 

sensor based on SiO2/TiO2 bilayer films, Appl. Opt., 60 (2021), 2158-2165. 

[15] Wang, T., Yasukochi, W., Korposh, S., James, S. W., Tatam, R. P., Lee, S.-W., A long 

period grating optical fiber sensor with nano-assembled porphyrin layers for detecting 

ammonia gas, Sens. Actuators B, 228 (2016), 573-580. 

[16] Yu, C.-B., Wu, Y., Li, C., Wu, F., Zhou, J.-H., Gong, Y., Rao, Y.-J., Chen, Y.-F., Highly 

sensitive and selective fiber-optic Fabry-Perot volatile organic compounds sensor based 

on a PMMA film, Opt. Mater. Express, 7 (6) (2017), 2111-2116. 

[17] Sultangazin, A., Kusmangaliyev, J., Aitkulov, A., Akilbekova, D., Olivero, M., Tosi, 

D., Design of a smartphone plastic optical fiber chemical sensor for hydrogen sulfide 

detection, IEEE Sens. J., 17 (21) (2017), 6935-6940. 



 

OPTICAL FIBER BENDING SENSOR BASED ON SPECKLE PATTERN IMAGING 
 

 

213 

[18] Hosok, A., Nishiyama M., Kumekawa N., Watanabe, K. Et al., Hetero-core structured 

fiber optic chemical sensor based on surface plasmon resonance using Au/lipid films, 

Opt. Commun., 524 (2022), 128751, https://doi.org/10.1016/j.optcom.2022.128751. 

[19] Wu, Y., Pei, L., Jin, W., Youchao, J., Yang, Y., et al., Highly sensitive curvature sensor 

based on asymmetrical twin core fiber and multimode fiber, Opt. Laser 

Technol., 92 (2017), 74-79, https://doi.org/10.1016/j.optlastec.2017.01.007. 

[20] Gong, Y., Zhao, T., Rao, Y-J., Wu, Y., All-fiber curvature sensor based on multimode 

interference, IEEE Photonics Technol. Lett., 23 (2011), 679-681. 

[21] Li, Y-P., Zhang, W-G., Wang, S., Chen, J. et al., Bending vector sensor based on a pair 

of opposite tilted long-period fiber gratings, IEEE Photonics Technol. Lett., 29 (2017), 

224-227, https://doi.org/10.1109/LPT.2016.2636446. 

[22] Chen, Y., Yu, Z., Chen, H., Tao, C., et al., Experimental study on temperature-

insensitive curvature sensor based on reflective all-fiber structure, Infrared Phys. 

Techn., 137 (2024), 105146, https://doi.org/10.1016/j.infrared.2024.105146. 

[23] Anderson, D. Z., Bolshtyansky, M. A., and Zel’dovich, B. Y., Stabilization of the 

speckle pattern of a multimode fiber undergoing bending, Opt. Lett., 21 (11) (1996), 

785-787. 

[24] Asawa, C. K., Taylor, H. F., Propagation of light trapped within a set of lowest-order 

modes of graded-index multimode fiber undergoing bending, Appl. Opt., 39 (2000), 

2029-2037. 

[25] Keiser, G., Optical Fiber Communication, Mc Graw Hills, Third Edition, Singapore, 

2000. 

[26] Schreier, H., Orteu, J-J., Sutton, M. A., Image correlation for shape, motion and 

deformation measurements, Springer, 2009. 

[27] Ari, F., Serbetci, H., Navruz, I., Tapered fiber optic refractive index sensor using 

speckle pattern imaging, Opt. Fiber Technol., 79 (2023), 103366. 

[28]  Schermer, R. T., Mode scalability in bent optical fibers, Optics Express, 15 (24) (2007), 

15674-15701, https://doi.org/10.1364/OE.15.015674. 

 
 

https://www.researchgate.net/profile/Jiang-Youchao?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://ieeexplore.ieee.org/author/37851097100
https://ieeexplore.ieee.org/author/37857734400
https://ieeexplore.ieee.org/author/37271658700
https://ieeexplore.ieee.org/author/37859694800


          http://communications.science.ankara.edu.tr 

 

Commun.Fac.Sci.Univ.Ank.Series A2-A3 
Volume 66, Number 2, Pages 214-227 (2024)  

DOI: 10.33769/aupse.1438139  

ISSN 1303-6009 E-ISSN 2618-6462 

 
 

 

Research Article; Received: February 16, 2024; Accepted: May 27, 2024  

 

214 

  

     Keywords. Border security, trail cam, detection, reconnaissance, surveillance. 

 vedat.yilmaz@jsga.edu.tr-Corresponding Author;     0000-0002-3112-9371. 
  

 

© 2024 Ankara University 

 Communications Faculty of Sciences University of Ankara Series A2-A3: Physical Sciences and Engineering 

SENDING PICTURES OVER RADIO SYSTEMS OF THE TRAIL CAM IN 

BORDER SECURITY AND DIRECTING UAVS TO THE RIGHT AREAS 

 
 

  Vedat YILMAZ1 

 

1Institute of Forensics Sciences, Department of Criminalistics, JSGA, Ankara, TÜRKİYE 
  

 

Abstract. In this study, a method is proposed for the trail cams to send data via narrow band 

communication systems in border security and counter-terrorism areas and to direct drones to the right 

areas. The success of UAVs lies in scanning the correct areas for observation or detection. UAVs should 

be fed with data to observe the correct regions, and the probability of detecting border security or 

terrorist elements should be increased. Instantaneous detection is performed by trail cam, which 

generally operate dependent on GSM. However, these devices cannot provide real-time data in border 

areas with low population density and no GSM service, particularly in counter-terrorism operations. In 

this study, the dependence of trail cam devices on GSM was eliminated, and data transfer over the radio 

system was established to enable real-time data flow in a wide field. After the trail cam device makes 

a detection, the data is sent via the APCO-25 JEMUS radio system with a capacity of 9.6 KB. The 

resolution of the detection image is reduced, allowing it to be displayed on a remote-control computer 

in less than one minute. As a result of the study, when an intelligent trail cam with object recognition 

capability is developed, the device can assess what the image might be in real-time. Obtaining real-time 

detection data from trail cams in border areas and counter-terrorism zones without GSM infrastructure 

can expedite the direction of UAVs to the correct regions for intervention by military units. 

Additionally, confirming that trail cam detects via narrowband communication systems in locations 

where units are temporarily stationed and without alpine terrain minimizes the surveillance 

vulnerability of UAVs unable to perform imaging due to adverse weather conditions. This also 

establishes a warning system against potential attacks by terrorist elements. 

 

 

1. Introduction 
 

Trail cams are actively used worldwide, especially to observe natural wildlife [1]. In 

our country, these devices are not only utilized for observing natural life but are also 

actively employed by the armed forces and law enforcement agencies for detection 

purposes in the context of border security and counter-terrorism [2]. Trail cams are 
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equipped with sensors to detect motion or heat, and they feature specialized cameras 

[3]. These cameras are automatically triggered when they detect movement or a 

specific temperature difference [1, 2, 3]. Upon triggering, they capture photographs 

or videos. However, these devices have limitations such as weather and 

environmental factors, energy constraints, false triggers, and data processing 

challenges [4]. Furthermore, the current limitation of these devices lies in their 

reliance on GSM-based transmission for real-time visual communication. This 

reliance restricts their usage within the GSM coverage area or confines them to 

storing images in their own memory outside the coverage area [5]. The devices 

storing detection data on themselves leads to delayed learning by the intervention 

unit, hindering prompt action [1, 3, 4, 5, 6]. Additionally, when terrorists detect the 

devices or realize they are being tracked, they may booby-trap the devices with 

improvised explosive devices [7]. This poses a risk to personnel approaching the 

devices to retrieve data, resulting in injuries or fatalities [8]. 

 To address these issues, new satellite-based camera trap devices are being 

developed to ensure continuous data transmission [7, 8]. Smart trail cams with 

satellite-based data transmission capability use on-device image processing 

algorithms for detection and provide wide coverage [7, 8, 9, 10,11]. However, the 

use of satellite transmission increases the cost of these devices, limiting their 

deployment to critical areas with a constrained number of devices [8]. Instant data 

transmission by trail cam is a crucial factor in minimizing casualties while combating 

terrorism, ensuring operational success, and responding promptly to incidents [7]. In 

areas without GSM infrastructure, narrowband communication systems are 

commonly used for communication [12, 13, 14]. Ensuring real-time visual 

transmission via these narrowband communication systems can address the 

challenges and minimize personnel vulnerabilities [13]. 

Narrowband communication systems generally refer to radio communication, 

providing communication within a limited bandwidth [14]. The coverage area of 

radio-based communication systems is significantly larger compared to GSM, 

especially when considering the eastern and southeastern borders of the Republic of 

Turkey and counter-terrorism operation zones, where the population density is low, 

leading to limited GSM infrastructure and coverage [15]. The existing coverage of 

narrowband (radio) systems in these areas is quite high, and it can be expanded in 

desired areas using mobile repeater centers [16]. Additionally, digital radio systems 

not only facilitate voice communication but also offer limited capabilities for 

location transmission and data transfer [15]. For instance, radios operating according 

to the Apco-25 standards provide a bandwidth of 9.6 kilobytes [15, 17]. 

In today's world, unmanned aerial vehicles (UAVs) used in border security 

operations are continually evolving to maximize the advantages of technology [18]. 

UAVs play an effective role in border areas, particularly due to the advantages they 
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offer in reconnaissance and surveillance [19, 20]. The success of UAVs lies in 

scanning the correct areas for observation and detection [19]. UAVs need to be fed 

with data to observe the correct regions, and the probability of detecting border 

security or terrorist elements should be increased [21, 22]. 

When examining the advantages of UAVs in border security and counter-

terrorism operations, reconnaissance and surveillance functions come to the 

forefront [23]. In situations where traditional surveillance methods fall short, UAVs 

can quickly scan a large area using high-resolution cameras and sensors to detect 

potential threats [24]. UAVs can maneuver rapidly and flexibly in border areas. 

Operating at a lower cost compared to traditional aircraft, UAVs can perform longer 

and more regular missions in border security operations, enabling more effective 

monitoring of border regions. UAVs can detect and analyze potential dangers in 

border areas [25]. Equipped with technological features such as thermal cameras, 

night vision systems, and radars, UAVs can identify smuggling, terrorist activities, 

and other potential threats in border areas, assisting in the implementation of 

preventive measures [26, 27]. The use of UAVs in border security operations can 

enhance personnel safety [24]. UAVs operating in dangerous or hard-to-reach areas 

do not jeopardize human safety [22, 23, 24]. Additionally, with a lower operational 

cost compared to traditional aircraft, UAVs allow for a more efficient utilization of 

border security budgets [24, 28]. To further enhance the effectiveness of UAVs by 

flying them in the correct areas, taking into consideration remote points in borders 

and settlements with natural vegetation, trail cam devices can serve as the "eyes" on 

the ground for UAVs. With advancements in imaging technologies, trail cam devices 

can play a critical role in providing data in border areas and directing UAVs to the 

right locations.  

In this way, national border protection and illegal crossings will be prevented, the 

effectiveness of the fight against terrorists will increase, and effective use will be 

ensured by bringing together intelligent systems and controls in terms of national 

security. The aim of this study is to propose a method for the use of trail cams in 

wide-field applications in border security and counter-terrorism regions. This 

involves the real-time transmission of data through underutilized narrowband 

systems and the deployment of UAVs in the correct areas for control and detection. 

 

2. Literature Review and Current Situation 
 

To transmit image data over a radio system, it is necessary to first convert this image 

into digital data [29]. This process is typically carried out using a video compression 

algorithm. Commonly used algorithms include H.264, H.265 (HEVC), and MPEG-

4 [30]. Radio systems are generally designed for voice communication [12-15, 31]. 

Therefore, it may be necessary to initially convert image data into audio data [31-
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33]. This process involves carrying the image data over a voice communication 

channel and then converting it back into an image on the receiving end [14]. This 

often includes transforming the image data into a format compatible with voice 

communication protocols [31]. Once the image data has been transported over the 

voice communication channel, this audio data is sent to another center via a radio 

frequency [33]. This typically occurs in the form of a radio data packet. On the 

receiving end, the image data is received as audio data [14]. Subsequently, this audio 

data is processed to be transformed back into the original image data. This step 

involves using video compression algorithms utilized to convert audio data back into 

an image [34]. This process is quite complex, especially concerning the specialized 

protocols and algorithms used in radio communication systems. Additionally, issues 

of privacy and security are crucial in such communication, hence specialized 

encryption methods ensuring secure communication are often employed. 

 

2.1. Steps for Data Transmission Over Radio. 

a. Matrix Transformation of the Image;  

 Let's consider a matrix representing the image as I. Each element Ii,j represents a 

pixel of the image. This matrix typically has three channels according to a color 

space (e.g., RGB). 

 I: Original image matrix (dimensions m×n) 

 Ii,j: Element of the original image matrix (dimensions m×n) 

b. Video Compression; 

 If a video compression algorithm is used, it usually employs a transformation 

matrix C. This transformation matrix compresses the original image matrix into a 

compressed format. 

 C: Compression matrix (usually a transformation matrix) 

 ′I′: Compressed image matrix  

 I′=CxI (1) 

c. Conversion to Audio Data; 

 The compressed image matrix is then transmitted over a voice communication 

channel. This communication typically uses a protocol designed for audio data. 

 f: Function that converts the compressed image matrix to audio data 

 S: Audio data  

 S=f(I′) (2) 

d. Transmission via Radio: Audio data is transmitted to another center over a 

specific frequency by the radio system. This process typically occurs using a radio 

communication protocol. 

 T: Transmission matrix (transmission over the radio)  

 T(S) (3) 
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e. Processing at the Receiver Radio: After receiving the audio data at the receiver 

side, this audio data is first transformed back into the original image matrix. This 

process can be mathematically expressed as follows: 

 g: Function that transforms audio data to the original image matrix 

 ′′I′′: Original image matrix obtained at the receiver side 

 I′′=g(T(S)) (4) 

Communication devices conforming to the APCO-25 standard can be connected to 

tablets or computers via connectors for the purpose of data transmission when 

desired [32, 33]. Data transfer is facilitated through data relays located in repeater 

centers. Additionally, the location data of these radio devices can be viewed from 

the central control software through the GPS module [32]. The data transmission 

duration from the radio device is dependent on the size of the transmitted data. 

Therefore, reducing the size of the sent image will decrease the transmission time. 

The process of reducing image size is typically achieved using data compression 

algorithms. The mathematical formulation of these algorithms varies depending on 

the specific details of the algorithms employed and the compression method used. 

The JPEG compression algorithm, for instance, typically compresses the original 

image through a process known as Discrete Cosine Transform (DCT) and 

quantization. These processes can be mathematically expressed as follows. 

 

2.2. Discrete Cosine Transform (DCT) Process F(u,v). DCT coefficients in the 

frequency domain of the original image f(x,y): Pixel values in the time domain of 

the original image M and N: Dimensions of the image, 

F(𝒖, 𝒗) = 𝐂(𝐮)𝐂(𝐯)∑ 𝐱𝑵−𝟏
𝒚=𝟎 ∑ 𝐟(𝐱, 𝐲)𝐜𝐨𝐬 [

(𝟐𝒙+𝟏)𝒖𝝅

𝟐𝑴
] 𝐜𝐨𝐬 [

(𝟐𝒚+𝟏)𝒖𝝅

𝟐𝑵
]

𝑵−𝟏

𝒚=𝟎
  (5) 

c. Quantization Process:  

 Q(u,v): Quantization table  

 Fq(u,v): Quantized DCT coefficients 

 𝐅𝐪(𝐮, 𝐯) =
𝑭(𝒖,𝒗)

𝑸(𝒖,𝒗)
 (6) 

 These steps involve obtaining the Discrete Cosine Transform (DCT) coefficients 

of the original image in the frequency domain, followed by the quantization process 

to represent these coefficients with lower precision [34]. The JPEG algorithm 

compresses these quantized coefficients further through additional steps such as 

zigzag scanning and Huffman coding [34, 35]. This formulation only exemplifies 

the JPEG compression algorithm. For other compression algorithms, different 
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mathematical expressions may arise depending on the methods and techniques 

employed [34, 35]. 

 
3. Material and Method 

 

In the conducted study, two radio devices, one receiver and one transmitter, 

compliant with the Apco-25 standard, one trail camera, connection cables, and one 

tablet were utilized. The transmitter and the trail camera were interconnected and 

placed in a forested area. The location data of the trail camera was obtained through 

the radio device. The acquired location of the trail camera was marked on a map 

within the central control software. When the trail camera captured an image through 

triggering, it stored the image locally and transmitted information about the detection 

via a short message to the receiver radio device. The central control software 

installed on the tablet connected to the receiver radio device issued a notification of 

the detection, including the trail camera's identification number and the date and time 

of the event. The user personnel could view the notification and, at their discretion, 

initiate the process of locking the reduced-resolution image data to be transmitted by 

the transmitter radio device. This allowed the image data to be visible on the control 

computer. 

 
4. The Experimental Section and Discussion 

 
Unmanned Aerial Vehicles (UAVs), also known as drones, provide the capability to 

rapidly diagnose potential threats in border regions and operational zones [19, 23, 

24]. To ensure effective visual monitoring of violations and terrorist elements and to 

enable swift intervention within the legal framework, UAVs must operate in the 

correct areas. Instant visual transmission by trail cameras in the field will offer 

significant advantages to armed forces and law enforcement in maintaining 

dominance and detecting irregular migration movements by directing UAVs to the 

right areas. Trail camera, equipped with high-resolution cameras and sensitive 

sensors, have the capacity to obtain detailed images in border regions. These devices 

can operate effectively in both day and night conditions, providing valuable data in 

various weather conditions. 

While these devices are capable of obtaining high-resolution images or videos, 

for the military and law enforcement, the information that there is a violation and 

detection in the captured image is more crucial in the initial stage for prompt 

intervention. This is because responding to a violation or a terrorist element requires 

a rapid and efficient process that operates against time. Therefore, promptly 

reporting the detection to the control center is of vital importance. 
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The ability of trail cameras to transmit data via radio is often encountered as a 

technology used for remote control and data collection. While these devices are 

typically used for observation and monitoring in nature, their remote control and 

real-time data transfer are facilitated through radio transmission. 

For camera traps to perform data transmission via radio systems, the device must 

establish a connection with a control unit in the field or a main station that enables 

remote access for the user. Additionally, data security during radio transmission is 

another aspect that needs to be considered for such devices. 

During radio transmission, the security of data is of paramount importance. End-

to-end encryption is a critical element for data security. By employing encryption 

during data transmission, protection against threats such as unauthorized access and 

data manipulation is ensured. 

The radio transmission of trail cameras provides users with the ability for remote 

control and monitoring in areas without GSM infrastructure. This allows users 

located remotely from the device's position to view live footage, adjust camera 

settings, and control the device remotely. 

The use of trail cameras must comply with legal regulations and ethical standards. 

Special attention should be paid to matters such as personal privacy, protection of 

private spaces, and conservation of natural habitats. 

 

4.1. Advantages of Radio Transmission of Trail Cameras. Trail Cameras offer 

various advantages in security applications when utilizing radio transmission. 

a. Area Monitoring and Motion Detection: Trail Cameras can detect potential 

threats by continuously monitoring a specific area through their motion detection 

capabilities. This feature is crucial, especially in areas such as border security, 

counter-terrorism, facility security, and wildlife conservation. Combined with 

motion detection, security personnel can be instantly informed, enabling swift 

intervention. 

b. Image and Video Recording: Trail Cameras typically feature integrated 

cameras capable of high-resolution image and video recording. These recordings can 

be used to document, substantiate, and analyze security incidents. Additionally, these 

images can be used to assess the effectiveness of measures taken during an event. 

c. Resilience to Weather and Environmental Conditions: Camera traps are 

generally weather-resistant and can be adapted to various environments with suitable 

casings. This adaptability allows effective use in applications such as counter-

terrorism and border control. 

d. Covert and Remote Positioning: Trail Cameras used in security applications 

are often concealed or camouflaged, allowing them to go unnoticed while detecting 

and recording potential threats. The remote controllability of trail cameras enables 

security personnel to manage devices in areas with difficult access or potential risks. 
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e. Rapid Intervention and Interactive Control: The real-time information provided 

by camera traps enables quick intervention and interactive control. Combined with 

motion detection, security personnel can promptly dispatch airborne elements or 

intervention personnel to the area. If necessary, devices can be remotely controlled, 

providing security teams with the ability to respond quickly and effectively. 

f. Energy Efficiency: One of the significant advantages of camera traps 

transmitting notifications via radio is the use of low-power radio frequency (RF) 

transmission. This contributes to energy efficiency, allowing for prolonged device 

usage. RF transmission typically occurs in dedicated frequency bands, reducing 

interference with other wireless devices. Additionally, the ability of smart camera 

traps to wake up and perform object or person recognition upon motion detection 

minimizes unnecessary data transmission and energy consumption. Designing 

suitable energy sources such as solar panels or battery packs for these devices can 

further enhance their long-term field use. Energy-efficient sensors and electronic 

components also contribute to energy savings. 

 

4.2. Disadvantages of Radio Transmission of Trail Cameras. Trail Cameras have 

the following disadvantages. 

a. Cost Factors and Limitations of Widespread Use The cost of high-quality 

camera traps and radio transmission systems may limit the widespread adoption of 

this technology. Establishing a network spread across large areas for observing 

wildlife, conducting research, or for security purposes can impose a substantial 

financial burden. However, considering the geography of Turkey, military units in 

border areas, especially in operations related to internal security and counter-

terrorism, have existing radio communication infrastructure along the border lines. 

b. Sensor Sensitivity and Environmental Challenges Accurate operation of 

camera traps requires sensitive sensors. However, environmental conditions, 

weather, and natural factors can affect sensor performance. Factors such as dense 

vegetation, precipitation, and temperature fluctuations can lead to sensors providing 

incorrect positive or negative responses, reducing the reliability of the obtained data. 

c. Connectivity Issues Radio transmission can be problematic in remote areas or 

areas with dense vegetation. This can result in devices being unable to reliably 

transmit data to the control center, preventing users from effectively managing the 

device. Particularly in remote and isolated areas, issues like blockage or attenuation 

of radio signals can challenge the reliability of these systems. 

d. Energy Management and Battery Life Considering that camera traps are often 

used in natural environments, energy sources become a critical factor. While energy 

sources such as solar panels or battery packs are used, these sources have limited 

capacities. Especially in situations requiring prolonged observation and data 

collection, special attention must be given to energy management and battery life. 
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Following the detection process, a notification of the detection was sent via short 

message through the radio data transmission channel. The receiver radio device, 

connected to the tablet, displayed an alert of the detection using the control software. 

After receiving the detection alert, a request for image data was sent to the transmitter 

radio device via short message. The process of compressing and reducing the 

resolution of the image data was initiated on the camera trap device, and the 

transmission of the compressed image data to the receiver radio device was started 

by the transmitter radio device. The entire process ensured that the reduced-

resolution image data, approximately 400 to 500 megabytes in size, was visible in 

the control software within a time frame of approximately 45-60 seconds. The 

process is illustrated in Figure 1. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1. Post-detection flowchart.  
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Figure 2. Data transmitting radio (ACK= Acknowledgment). 

Figure 3. Data receiving radio (ACK = Acknowledgment). 
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 Conducted in the experimental study, the process carried out by the camera trap 

device following the detection is depicted in Figure 2. The operation performed by 

the receiver radio device is illustrated in Figure 3.  

The operation of trail cam systems, particularly in border regions, via radio 

systems for data transmission, is crucial for ensuring the perimeter security of 

stationary units. Attacks on these stationary elements typically occur in conditions 

where visibility is limited, and unmanned aerial vehicle (UAV) elements cannot 

conduct surveillance due to adverse weather conditions, such as cloud cover. In this 

context, it can be utilized as a security measure for the unit and as an early warning 

system with advanced surveillance capabilities. Similarly, in densely forested areas, 

UAV surveillance can pose challenges.  

The image obtained by the camera trap device connected to the radio system in a 

forested area is depicted in Figure 4. 

Figure 4. The image captured by the camera trap is transmitted through the radio device. 

After the conducted study, the radio system with a data transmission capacity of 9.6 

kbytes was utilized to transmit image data. By reducing the resolution of the image, 

it was ensured that the image data, ranging between 350-500 kbytes, could be 

captured from the desired camera trap device in less than approximately 1 minute 

when needed. 

5. Conclusion 

The study results indicate that with the development of an intelligent trail camera 

equipped with on-site object recognition capabilities, the device responsible for 

recognition can initially assess what the image might contain in real-time. This 

allows the radio device to provide preliminary information to the user regarding the 

detection through the radio device. Based on the user's preliminary assessment, the 

detection image can be viewed within approximately one minute. This aspect has 

been demonstrated in the established test setup. Consequently, limitations such as 

GSM coverage restrictions or the disadvantage of holding images that cannot be 

obtained instantly on the trail camera can be overcome. This enables the detection of 

 



 
SENDING PICTURES OVER RADIO SYSTEMS OF TRAIL CAM AND DIRECTING UAVS 

 

 

225 

irregular migration movements, border crossings, and the identification of terrorist 

elements in areas where trail cameras cannot be used due to their limitations. As a 

result, UAVs can conduct reconnaissance and surveillance in the right areas. 

Additionally, the technology can be utilized for the safety and advanced surveillance 

of locations where UAVs are temporarily unable to provide surveillance due to 

adverse weather conditions, offering significant advantages to the Armed Forces and 

law enforcement. 

While the transmission advantages of trail cameras through radio signals are 

evident, disadvantages such as compliance with legal regulations and concerns about 

privacy should also be taken into consideration. To effectively and responsibly use 

this technology, users must exercise caution and adhere to local regulations. The 

integration of trail cameras with UAVs has the potential to enhance border security 

operations, making them more efficient, rapid, and secure. This technological 

integration is seen as a crucial step in increasing national security and monitoring 

border areas more effectively. Therefore, trail cameras should be used via GSM-

based communication in areas with GSM infrastructure and through radio or 

satellite-based communication in critical and essential areas where GSM 

infrastructure is not available for real-time visual data transmission and extensive 

field use. 
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Abstract. Composite models, which suggest a possible substructure of funda-

mental particles, can be directly proven by the discovery of the excited quark.
Higher energy and higher-luminosity particle colliders are needed to discover

the composite structure predicted in the proposed models. The High Energy

Large Hadron Collider (HE-LHC) has the potential to be a possible discovery
machine for composite models. In this collider, with a center-of-mass energy

of 27 TeV and integrated luminosity between 750 and 15000 fb-1, we calcu-

lated the exclusion, observation, and discovery limits for the mass of spin-1/2
excited quark in the di-jet final state, as well as the attainable compositeness

scale values. In addition to these calculations, we scanned free parameters
from 0.06 to 1 to determine the HE-LHC potential to reveal spin-1/2 excited

quark.

1. Introduction

The Standard Model (SM) is a theory that best describes the interactions between
fundamental particles and largely explains the dynamics of these interactions. How-
ever, SM cannot provide a sufficient answer to problems such as hierarchy problems,
number of families, parameter excess, matter-antimatter asymmetry, quark-lepton
symmetry, repetition of fermions, neutrino oscillations, and dark matter. For these
problems that particle physicists are trying to solve, new models called Beyond
the Standard Model (BSM) theories have emerged. Composite Models are another
area of research that predicts the possibility of a substructure of fermions among
BSM theories. As research publications that form the basis of Composite Models,
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we can firstly list an article by Low [1] containing the prediction of heavy elec-
trons and muons and the two papers published later by Jogesh C. Pati and Abdus
Salam [2, 3]. In the last two publications mentioned, they predicted the composite
substructure of fermions, which they called ”preons.” After these groundbreaking
studies, extensive research has been conducted in the literature on the composite-
ness of fermions and bosons [4–15]. Based on these predictions, many researchers
have conducted experimental [16–27] and phenomenological [28–53] studies to dis-
cover excited fermions, which will directly prove compositeness.

Researchers hypothesize that excited fermions comprise two distinct elemen-
tary particle systems, excited quarks (q⋆) and excited leptons (l⋆), similar to SM
fermions. The excited quark can exist in four distinct final states: such as di-jet
(q⋆ → jj), photon-jet (q⋆ → γj), W-jet (q⋆ → Wj), and Z-jet (q⋆ → Zj). Ex-
perimentally, some exclusion limits have been imposed on the mass of the excited
quark for each final state in the CMS and ATLAS experiments at the European
Conseil for Nuclear Research (CERN) with a center-of-mass energy of 13 TeV and
total luminosity values of 35.9 fb-1 and 139 fb-1, respectively. These experiments’
research established mass limits of 6.7 TeV in the di-jet final state, 5.5 TeV in the
photon-jet final state, 5.0 TeV in the W-jet final state, and 4.7 TeV in the Z-jet
final state [27,54,55].

In-depth exploration of BSM theories necessitates particle colliders character-
ized by elevated center-of-mass energy and exceptionally high integrated luminosity
values. CERN plans to establish the HE-LHC in the 2030s with 27 TeV center-
of-mass-energy. This new-generation particle collider can provide a comprehensive
spectrum for researching excited quarks, boosting a maximum integrated luminos-
ity of 15000 fb-1 [56].

The research subject of this study is the discovery (5σ), observation (3σ), and
exclusion (2σ) potential of the spin-1/2 excited quark, which transitions to the di-jet
final state in the HE-LHC using the effective Lagrangian method. In the subse-
quent sections, we present the interaction Lagrangian, decay widths, cross-section
plots, and signal-background analyses of the spin-1/2 excited quark. In the follow-
ing section, we describe calculations on the discovery, observation, and exclusion
mass limits of the spin-1/2 excited quark in the di-jet final state at the HE-LHC.
Additionally, we discuss the attainable compositeness scale, a crucial parameter in
compositeness studies. Furthermore, we analyzed the impact of the spin-1/2 ex-
cited quark on the discovery, observation, and exclusion limits by systematically
scanning the free parameters that the precise numerical values are unknown. In
the last part, the findings are interpreted and discussed.

2. Materials and Methods

2.1. Interaction Lagrangian. In the numerical calculations, we utilized the Lan-
HEP [57] software to incorporate the effective Lagrangian of the spin-1/2 excited
quark [47, 58] (Equation 1) into the CalcHEP [59] simulation software. Using the
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simulation software, we calculated the decay width and cross-section values for the
spin-1/2 excited quark in the di-jet final state.

Leff =
1

2Λ
q⋆R σµν [gsfs

λa

2
Ga

µν + gf
−→τ
2

−→
Wµν + g

′
f

′ Υ

2
Bµν ]qL + h.c. (1)

In Equation 1, Λ represents the compositeness scale, q⋆R represents the right-
handed excited quark, and qL represents the left-handed SM quark. In addition, the
symbols g, gs, and g′ represent the gauge coupling constants, and the field strength

tensors SU(3), SU(2), and U(1) are represented by the symbols Ga
µν , W⃗µν , and

Bµν , respectively. The remaining parameters are expressed as Gell-Mann matrices
λa, Pauli spin matrices τ⃗ , weak hyper-charge Υ, and dimensionless free parameters
fs, f and f ′.

2.2. Decay Widths and Cross Sections. Excited quarks may consist of three
families, like the SM quarks. The parton distribution functions of the u quark
and gluon inside the proton are more dominant than those of other quarks, so in
proton-proton colliders, the most dominant production process of excited quarks
occurs as gu → u⋆ → gu. As a result, first-family excited quarks will have a higher
production cross-section. In contrast, the production cross sections of the second
and third family excited quarks, which can be produced in the proton-proton col-
lider through the SM quark-gluon-excited quark vertices corresponding to their
respective families, will be much smaller. As an exception to these statements, it
can be shown that excited quarks can make transitions between families through
the Flavor Changing Neutral Current (FCNC) interactions. Experimentally, it is
evident that an FCNC interaction between SM quarks has not been observed at
the tree level. Excited quarks entering the FCNC interactions with the SM quarks
can cause more complex phenomenological final states. For these reasons, second
and third-family excited quark productions and the FCNC interactions of excited
quarks with the SM quarks are excluded from the scope of this study. So, this study
focused exclusively on examining excited quarks that interact with the first-family
quarks of the SM. For excited quarks, (1) excited quark u⋆ if mu⋆ > md⋆ , (2) excited
quark d⋆ if md⋆ > mu⋆ , and (3) excited quark q⋆ states if mu⋆ = md⋆ (degenerate)
were investigated. In addition, (a) Λ = 27 TeV and (b) Λ = mQ⋆ values were
used in the compositeness scale we used in our calculations (Q⋆ : u⋆, d⋆ , and q⋆).
We performed decay width and cross-section calculations, considering the experi-
mentally determined exclusion mass limit of 6.7 TeV for the excited quark in the
di-jet final state by selecting free parameters as f = fs = f ′ = 1. For the (a) and
(b) preferences of the compositeness scale, the decay width graphs of the excited d
quark (d⋆) and the excited u quark (u⋆) contributed by the total and four different
channels separately are given in Figures 1 and 2, respectively. In these plots, we
observe that the di-jet final state contributes the most to the decay widths of the
excited u and d quarks.
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Figure 1. Total decay width as a function of spin-1/2 excited d quark for Λ = 27 TeV
(left panel) and Λ = md⋆ (right panel).
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Figure 2. Total decay width as a function of spin-1/2 excited u quark for Λ = 27 TeV
(left panel) and Λ = mu⋆ (right panel).

To mitigate potential divergences in the cross-section values, we present the
cross-section graphs for d⋆, u⋆, and q⋆ by imposing the constraint of PTj

> 25 GeV,
as illustrated in Figure 3. We selected CT10 for the quark distribution function [60],
and in these cross-section calculations, we set the renormalization and factorization
scales equal to the mass of the excited quarks. Both plots in Figure 3 depict the
cross-section values capable of yielding at least one event, starting from the exper-
imental exclusion value of 6.7 TeV aligned with the mass of excited quarks. This
consideration incorporates the maximum anticipated integrated luminosity value
for the HE-LHC. The disparity between the two plots arises from employing two
distinct values of the compositeness scale. As anticipated, setting the compositeness
scale equal to the mass of the excited quark results in a higher cross-section.

2.3. Signal and Background Analysis. For the signal, pp → u⋆+X → ug+X,
pp → d⋆ + X → dg + X, and pp → q⋆ + X → qg + X processes were examined
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Figure 3. Distribution plots in cross-section versus mass for the di-jet final state of
spin-1/2 excited quarks at Λ = 27 TeV (left panel) and Λ = mQ⋆ (right panel).

separately. As background, the pp → jj+X process meets the mentioned signal pro-
cesses. We defined the j symbol in the background process as u, ū, d, d̄, c, c̄, s, s̄, b, b,
and g, and performed calculations accordingly in the simulation software. Initially,
we imposed a transverse momentum limitation of 25 GeV for the jets in the signals
and background calculations. However, under this constraint, it became challeng-
ing to distinguish between the signal and background. By obtaining and examining
the transverse momentum (PTj

), pseudo-rapidity (ηj), and invariant mass (mjj)
distributions, we determined the necessary limitations for these three important
parameters that we will use in our later calculations. In Figure 2.3, we present
distribution plots for PTj

, ηj , and mjj, featuring only the case where the compos-
iteness scale is equal to the mass of the excited quark (Λ = mQ⋆), as the Λ = 27
TeV scenario exhibits a comparable distribution.

Examining the distributions in Figure 2.3, we define the constraints applied in
our calculations for PTj

, ηj , and mjj. While determining the PTj
cut from the

plot, the value at which the background is suppressed, and the signal unaffected
was selected as 2 TeV. It can be seen in the ηj plot that in the cut applied by
choosing between -2.5 and 2.5, a large part of the background will be suppressed.
When looking at the mjj plot, the region within mQ⋆–2Γ⋆ < mjj < mQ⋆ + 2Γ⋆

of the peaks where the signal is higher than the background was selected as an
invariant mass cut. Here, mQ⋆ represents the individual masses of all degenerate
and non-degenerate excited quarks, and Γ⋆ represents the decay width of excited
quarks.

In addition to these three critical constraints, we selected a cone angle radius of
∆R > 0.5 to enhance the distinction of jets in the di-jet final state. Utilizing the
specified constraints, we computed the discovery, observation, and exclusion limits
on the excited quark mass by the Statistical Significance (SS) relation outlined in
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Figure 4. Normalized transverse momentum, normalized pseudo-rapidity, and invariant
mass distributions of the di-jet final-state excited quark for some mass values at HE-LHC.

Equation 2. In this relation, σS symbolizes the signal cross section, σB symbolizes
the background cross section, and Lint represents the integrated luminosity value.

SS =
σS√

σS + σB

√
Lint (2)

3. Findings and Conclusions

To reveal the ability of the HE-LHC to investigate the spin-1/2 excited quark,
firstly, using the cross-section results obtained with the help of CalcHEP simulation
software and the statistical significance relation in Equation 2, the spin-1/2 excited
quark mass limits were calculated considering the all confidence level 2σ (exclusion),
3σ (observation), and 5σ (discovery). In Table 1, we consider the compositeness
scale as 27 TeV. We set the integrated luminosity value for the first year of HE-
LHC at 750 fb-1, and we utilize the projected integrated luminosity value of 15000
fb-1 for the end of 20 years. The table displays the discovery, observation, and
exclusion mass limits for the di-jet final state of d⋆, u⋆ and q⋆. As expected, the
mass limits of the spin-1/2 excited quark in the degenerate state were higher. In
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addition, we observe that the potential exclusion limit for the spin-1/2 d⋆ di-jet final
state, which possesses the lowest mass limit in our calculations, is anticipated to
significantly surpass the exclusion limit of 6.7 TeV set by the LHC in the first year.
As the integrated luminosity value increases, one anticipates that these mass limits
will achieve higher values. Although Table 1 numerically presents the statistical
significance values when the integrated luminosity reaches 15000 fb-1, Figure 5
illustrates the 20-year developmental trajectory of these mass limits.

Table 1. Exclusion, observation, and discovery mass limits obtained with the lowest and
highest integrated luminosity values of the HE-LHC for the case where the compositeness
scale Λ is taken equal to 27 TeV.

Lint (fb
-1) : 750 15000

SS* : 2σ 3σ 5σ 2σ 3σ 5σ
md⋆ (TeV) : 10.3 9.7 8.8 12.6 12.0 11.2
mu⋆ (TeV) : 12.6 11.9 11.1 15.1 14.5 13.6
mq⋆ (TeV) : 12.9 12.1 11.5 15.4 14.7 13.9
*SS = Statistical Significance
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Figure 5. Discovery, observation, and exclusion mass limits of the spin-1/2 excited d,
u and q quarks in the di-jet final state according to the integrated luminosity values of
the HE-LHC for Λ = 27 TeV.

We conducted an additional calculation to determine the mass limit of spin-1/2
excited d, u, and q quarks in the di-jet final state at the HE-LHC while considering
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the compositeness scale taken equal to the mass of the excited quark. The result
of our calculations here is higher than the discovery, observation, and exclusion
values in the case of Λ = 27 TeV, as seen in Table 2. Based on the results obtained
at this juncture, it is evident that the HE-LHC could achieve an exclusion value
significantly surpassing the experimentally imposed exclusion limit on the mass of
the excited quark, even within its inaugural year of operation, as seen in Figure 6.
These calculations underscore the high potential of the HE-LHC for the discovery
of excited quarks.

Table 2. Exclusion, observation, and discovery mass limits obtained with the lowest and
highest integrated luminosity values of the HE-LHC for the case where the compositeness
scale Λ is taken equal to the mass of the excited quark.

Lint (fb
-1) : 750 15000

SS* : 2σ 3σ 5σ 2σ 3σ 5σ
md⋆ (TeV) : 11.7 11.1 10.4 13.6 13.1 12.4
mu⋆ (TeV) : 13.8 13.2 12.4 15.9 15.3 14.6
mq⋆ (TeV) : 14.0 13.5 12.7 16.0 15.5 14.8
*SS = Statistical Significance
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Figure 6. Discovery, observation, and exclusion mass limits of the spin-1/2 excited d,
u and q quarks in the di-jet final state according to the integrated luminosity values of
the HE-LHC for Λ = mQ⋆ .
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In our analysis thus far, we have equated the compositeness scale, a pivotal pa-
rameter in compositeness studies, either to the center-of-mass energy of the particle
collider or the mass of the spin-1/2 excited quark. Nevertheless, the compositeness
scale remains an indeterminate parameter. To address this issue, we conducted in-
dependent calculations to determine the potential compositeness scale limits achiev-
able in the HE-LHC regarding the masses of the spin-1/2 excited quarks in the di-jet
final state, specifically d⋆, u⋆, and q⋆. Table 3 details our compositeness scale cal-
culations, considering the highest value of the integrated luminosity at HE-LHC,
which is 15000 fb-1. We present achievable compositeness scale values correspond-
ing to exclusion, observation, and discovery limits at selected mass values, such as
6.7, 8.7, 10.7, and 12.7 TeV for spin-1/2 d⋆, u⋆, and q⋆ in the di-jet final state. At
the end of 20 years, when the integrated luminosity value that the HE-LHC will
achieve is 15000 fb-1, the exclusion values for the compositeness scale corresponding
to masses of 6.7 TeV for d⋆, u⋆, and q⋆ will be 920, 2500, and 3200 TeV, respec-
tively. Figure 7 depicts the compositeness scale scan corresponding to the mass of
the di-jet final state spin-1/2 excited d, u, and q quarks. Our analysis, initiated
from the 6.7 TeV exclusion limit imposed by the LHC on the mass of the excited
quark, reveals the potential of the HE-LHC to explore the di-jet final state excited
quark. Considering our findings, it is conceivable that the HE-LHC might function
as a potential discovery machine for excited quarks.

Table 3. Achievable compositeness scale values corresponding to some mass values of
the excited quark at 15000 fb-1 luminosity of the HE-LHC with center-of-mass energy of
27 TeV.

HE-LHC (Lint=15000 fb-1)

mQ⋆ (TeV)
Λ (TeV)

md⋆ mu⋆ mq⋆

5σ 3σ 2σ 5σ 3σ 2σ 5σ 3σ 2σ
6.7 368 614 920 1000 1668 2500 1280 2133 3200
8.7 126 210 314 400 666 999 503 839 1258
10.7 38.4 64 96 145 242 362 179 298 447
12.7 11 18 27 48 80 120 58 96 144

In the calculations thus far, we have set the free parameters to equal one. The
value f = fs = f ′ = 1 is the highest value that free parameters can take, but
these parameters can also have values between zero and one. Thus, scanning the
numeric value of the free parameters becomes beneficial through the mass of the
excited quark. Given that the most extreme value attained in the free parameter
scan pertains to the scan for excited q quarks, the results for d⋆ and u⋆ scans are
not incorporated into this study. Figure 8 shows the scans we made considering
Λ = 27 TeV and Λ = mq⋆ according to the mass of the excited q quark. In the
calculations involving the scanning of free parameters, we employed an integrated
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Figure 7. Achievable compositeness scale values corresponding to the discovery, ob-
servation, and exclusion masses of d⋆, u⋆ and q⋆ when the integrated luminosity value of
HE-LHC is 15000 fb-1.

luminosity value of 15000 fb-1, representing the HE-LHC can attain over 20 years.
Upon examination of the scan plot for Λ = 27 TeV, the discovery, observation, and
exclusion limits of the excited q quark are apparent, being 6.7 TeV, 8.0 TeV, and
8.8 TeV, respectively, when the free parameters are chosen to 0.13. For the scenario
where Λ equals the mass of the excited quark (Λ = mq⋆) with the free parameters
set to 0.06, the discovery, observation, and exclusion limits of the excited q quark
are identified to be 6.7 TeV, 7.5 TeV, and 8.2 TeV, respectively. As depicted in
Figure 8, the numerical increase in the value of the free parameters results in an
increase in the discovery, observation, and exclusion limits placed on the mass of the
excited q quark. The calculations, conducted through a scan of the free parameters
and unveiling the potential for values as small as 0.06, indicate the considerable
research potential of the HE-LHC for the spin-1/2 excited quark in the di-jet final
state.

This study encompasses three distinct analyses: determination of discovery, ob-
servation, and exclusion limits on the mass of spin-1/2 excited quarks in the di-jet
final state; assessment of achievable compositeness scale; and screening of free pa-
rameters in the context of the High Energy-Large Hadron Collider, taking into
account two separate integrated luminosity values. The outcomes of these analyses
reveal that the HE-LHC exhibits a significantly greater potential than the LHC in



238 Y. O. GÜNAYDIN, M. SAHIN, L AYDIN

8 10 12 14 16 18 20
mq⋆(TeV)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re
e
P
a
ra
m
et
er
s
(f

=
f s

=
f
′ )

2σ

3σ

5σ

Λ = 27 TeV

HE-LHC (pp → jj +X ), Lint = 15000 fb−1,
√
s = 27 TeV

8 10 12 14 16 18 20
mq⋆(TeV)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re
e
P
a
ra
m
et
er
s
(f

=
f s

=
f
′ )

2σ

3σ

5σ

Λ = mq⋆

HE-LHC (pp → jj +X ), Lint = 15000 fb−1,
√
s = 27 TeV

Figure 8. In the cases Λ = 27 TeV (left panel) and Λ = mq⋆ (right panel), the
attainable mass of q⋆ according to the free parameter values limits.

achieving higher limits for the mass of excited quarks, larger values for achievable
compositeness scale, and distinctly small values for free parameters.
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