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Tülay ERİŞİR, Gökhan MUMCU 155-168

2 Inextensible Flow of Quaternionic Curves According to Type 2-Quaternionic Frame
in the Euclidean Space
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On New Pell Spinor Sequences
Tülay Erişir, Gökhan Mumcu* and Mehmet Ali Güngör

Abstract
Our motivation for this study is to define two new and particular sequences. The most essential feature
of these sequences is that they are spinor sequences. In this study, these new spinor sequences obtained
using spinor representations of Pell and Pell-Lucas quaternions are expressed. Moreover, some formulas
such that Binet formulas, Cassini formulas and generating functions of these spinor sequences, which
are called as Pell and Pell-Lucas spinor sequences, are given. Then, some relationships between Pell and
Pell-Lucas spinor sequences are obtained. Therefore, an easier and more interesting representations of
Pell and Pell-Lucas quaternions, which are a generalization of Pell and Pell-Lucas number sequences, are
obtained. We believe that these new spinor sequences will be useful and advantageable in many branches
of science, such as geometry, algebra and physics.

Keywords: Pell, Pell-Lucas, Spinor

AMS Subject Classification (2020): 53C56, 53Z05
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1. Introduction and Preliminaries
The number sequences are a subject that is frequently used in mathematics and attracts the attention of readers.

The first number sequences that come to mind are the Fibonacci number sequences expressed by Fibonacci (1170-
1250), which are frequently encountered in nature [1–3]. The Lucas number sequence, which is obtained by writing
the next term as the sum of the previous two terms but with different initial conditions, is another example of a
number sequence. In addition, there are many number sequences in the literature, such as the Fibonacci number
sequence, whose characteristic equation is different. Moreover, considering different characteristic equations and
initial values, different number sequences can be obtained, such as Pell, Pell-Lucas, Modified Pell, Jacobsthal
and Jacobsthal-Lucas number sequences etc. [4–6]. Moreover, another studies of this subject are [7, 8, 10, 11, 27].
Horadam discussed Pell numbers and their properties [5]. Patel and Shrivastava obtained some of these with their
proofs using Binet forms of some Pell and Pell-Lucas identities [12]. These properties are used to derive generator
functions, polynomials, divisibility properties, matrices, determinants of Pell and Pell-Lucas sequences, and many
other applications. Koshy mentioned that Pell numbers and Pell-Lucas numbers are special values of Pell and
Pell-Lucas polynomials, respectively [13]. Halıcı and Daşdemir studied some relationships between Pell, Pell-Lucas,
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156 T. Erişir, G. Mumcu & M. A. Güngör

and Modified Pell sequences [14]. Szynal and Wloch studied Pell, Pell-Lucas numbers, quaternions, octonions and
recurrence relations [15]. Catarino discussed k-Pell quaternions and octanions and offered some features, including
the Binet formula and a generating function [16]. Moreover, Çimen and İpek gave a new quaternion sequence such
that Pell and Pell-Lucas quaternion sequence [17].

Spinors can be defined in a simple way as vectors of a space whose transformations are related to spins in
physical space. The person who first introduced spinors in a geometric sense was Cartan [18]. Cartan’s study [18] is
an admirable study in spinor geometry because in this study, spinor representations of the some basic geometric
definitions are expressed by Cartan in an easy and understandable way. Another inspiring study on the spinors in
geometry was done by Vivarelli [19]. In Vivarelli’s study [19], the relationships between quaternions and spinors
and spinor representations of 3D rotations were obtained. In the study of Torres del Castillo and Barrales, the
spinor representations of the Frenet frame and curvatures of any curve in Euclidean 3-space were given [20]. The
spinor representation of the Darboux frame in Euclidean 3-space was obtained [21]. Moreover, in [22], the spinor
representation of the Bishop frame in Euclidean 3-space was expressed. On the other hand, the spinor equations for
some special curves such as Bertrand, involute-evolute, successor, and Mannheim curves and for Lie groups were
obtained [23–27]. Then, for any Minkowski space, hyperbolic spinor equations were given [28–31]. In addition to
that, Fibonacci and Lucas spinors were expressed in [32].

Now, the spinors, real quaternions, relationships between them spinors, and Pell, Pell-Lucas quaternions are
given.

Assume that any isotropic vector is v = (v1, v2, v3) ∈ C3 where v12+v22+v32 = 0 and the complex vector space
with 3-dimensional is C3. We can express the set of isotropic vectors in C3 with the aid of a two-dimensional surface
in C2. Suppose that this two-dimensional surface has coordinates $1 and $2. So, we can write v1 = $1

2 −$2
2,

v2 = i($1
2 + $2

2), v3 = −2$1$2 and $1 = ±
√

v1−iv2
2 , $2 = ±

√
−v1−iv2

2 . Two-dimensional complex vector
mentioned above is called as spinor by Cartan such that

$ = ($1, $2) =

[
$1

$2

]
in spinor space S [18].

Suppose that any real quaternion is q = q0 + iq1 + jq2 + kq3 where q0, q1, q2, q3 ∈ R. {1, i, j,k} is called the
quaternion basis such that

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j

[33]. We can write q = Sq + Vq where q0 = Sq and Vq = iq1 + jq2 + kq3 is called scalar and vector parts of q,
respectively [33]. Assume that two any real quaternions p = Sp + Vp, q = Sq + Vq. So, the quaternion product of
these quaternions is

p× q = SpSq − 〈Vp,Vq〉+ SpVq + SqVp + Vp∧Vq,

where 〈, 〉 is inner product and ∧ is vector product in R3 [33]. We know that the product of two real quaternions is
non-commutative. In addition to that, the quaternion conjugate and the norm of q are given as q∗ = Sq − Vq and
N(q) =

√
q12 + q22 + q32 + q42. Let the norm of q be N(q) = 1, then q is defined as unit quaternion [33].

Vivarelli expressed a relationship between spinors and quaternions such that

f : H→ S

q → f(q0 + iq1 + jq2 + kq3) ∼=
[
q3 + iq0
q1 + iq2

]
≡ $ (1.1)

where q = q0 + iq1 + jq2 + kq3 is any real quaternion [19]. Then, Vivarelli gave a spinor representation of q × p such
that

q × p→ −i$̂ρ. (1.2)

where the spinor ρ corresponds to the real quaternion p with the aid of the transformation f in the equation (1.1)
and the complex, unitary, square matrix $̂ can be written as

$̂ =

[
q3 + iq0 q1 − iq2
q1 + iq2 −q3 + iq0

]
(1.3)
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[19]. In addition, the spinor matrix $L = −i$̂, namely

$L =

[
q0 − iq3 −q2 − iq1
q2 − iq1 q0 + iq3

]
(1.4)

was called the left Hamilton spinor matrix or fundamental spinor matrix of q [19, 34].

Now, the some equalities about Pell and Pell-Lucas quaternions given in [17] can be expressed. But before that
we would like to touch upon an important issue here. There are many studies in the literature about Pell and Pell
Lucas number sequences and Pell and Pell-Lucas quaternion sequences. In these studies, while the initial conditions
of Pell number sequences are taken as 0 and 1, there is an information confusion regarding the initial conditions
of Pell-Lucas number sequences. That is, in some studies, the initial conditions of Pell-Lucas number sequences
are taken as 1, 1, while in some studies, the initial conditions are taken as 2, 2. Additionally, in some studies, the
expression "Modified Pell number sequence" was used in studies with initial conditions of 1, 1. Actually, there is no
problem so far. The real problem is that if the initial conditions are taken differently, some formulas such as Binet,
Cassini and sum formulas turn out to be different. Also, the relationships between Pell and Pell-Lucas are different.
For example, if you take the initial condition of Pell-Lucas number sequence as 1, 1, you shouldn’t use formulas in
another study where the initial condition is 2, 2. Otherwise, an information confusion is created in the literature. In
this study, the initial conditions of Pell-Lucas number sequence are taken as Q0 = 2, Q1 = 2 and the formulas are
used accordingly. Now, we expressed Pell and Pell-Lucas quaternions.

For n ≥ 2 the nth Pell quaternion and Pell-Lucas quaternion is defined that

QPn = Pn + iPn+1 + jPn+2 + kPn+3

and
QPLn = Qn + iQn+1 + jQn+2 + kQn+3

where the nth Pell number and Pell-Lucas number Pn = 2Pn−1+Pn−2 and P0 = 0, P1 = 1 and Qn = 2Qn−1+Qn−2
and Q0 = 2, Q1 = 2 [17]. Moroever, i, j,k coincide with basis vectors given for real quaternions. Therefore, the
recurrence relation of Pell and Pell-Lucas quaternions for n ≥ 2 are

QPn = 2QPn−1 +QPn−2

with initial conditions QP0 = i + 2j + 5k, QP1 = 1 + 2i + 5j + 12k and

QPLn = 2QPLn−1 +QPLn−2

with initial conditions QPL0 = 2 + 2i + 6j + 14k, QPL1 = 2 + 6i + 14j + 34k [17].

Now, we write the some relationship between Pell and Pell-Lucas quaternions with the aid of [5, 12, 14–16, 35, 36].
Therefore, we can write these relationships that

i) QPn−1 +QPn+1 = QPLn,
ii)QPLn +QPLn+1 = 4QPn+1,
iii) QPLn+1 +QPLn−1 = 8QPn.

Moreover, the Binet formula for Pell and Pell-Lucas quaternions are given that

QPn =
γnγ − µnµ
γ − µ

and
QPLn = γnγ + µnµ

where the quaternions γ and µ are γ = 1 + iγ + jγ2 + kγ3 and µ = 1 + iµ+ jµ2 + kµ3, γ = 1 +
√
2, µ = 1−

√
2 are

roots of the characteristic equation x2 − 2x− 1 = 0.
On the other hand, we give the generating functions of Pell and Pell-Lucas quaternions such that

GP (t) =
QP0 + (QP1 − 2QP0) t

1− 2t− t2
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and
GPL(t) =

QPL0 + (QPL1 − 2QPL0) t

1− 2t− t2
,

respectively. In addition to that, Cassini formula for Pell and Pell-Lucas quaternions can be given that

QPn−1QPn+1 − (QPn)
2 = (−1)n

(
γµ γ − µγ µ

γ − µ

)
and

QPLn−1QPLn+1 − (QPLn)
2 = (−1)n−1(γ − µ)(γµ γ − µγ µ),

respectively.

2. Main Theorems and Results
We know that there is a spinor for every real quaternion by means of the transformation f in the equation (1.1).

Considering this information, a new transformation between Pell and Pell-Lucas quaternions and spinors can be
defined and the spinors corresponding to Pell and Pell-Lucas quaternions can be given. Therefore, these spinors
associated with Pell and Pell-Lucas quaternions are called as Pell and Pell-Lucas spinors. Then, some formulas such
that Binet, Cassini, sum formulas and generating functions for these quaternions spinors and theorems are given.

Definition 2.1. Let QPn = Pn + iPn+1 + jPn+2 + kPn+3 be nth Pell quaternion where Pn is nth Pell number and
the set of Pell quaternions be QP . Therefore, the following linear transformation is defined as

fP : QP → S

QPn 7→ fP (QPn) ∼= SPn =

[
Pn+3 + iPn
Pn+1 + iPn+2

] (2.1)

where i, j,k coincide with basis vectors in R3 and i2 = −1. So, a new sequence for the spinors related with Pell
quaternions is defined and this sequence is called as "Pell Spinor Sequence" defined as

{SPn}∞n∈N =

{[
5

1 + 2i

]
,

[
12 + i
2 + 5i

]
,

[
29 + 2i
5 + 12i

]
,

[
70 + 5i
12 + 29i

]
, ...

}

where SPn =

[
Pn+3 + iPn
Pn+1 + iPn+2

]
is nth Pell spinor and Pn is nth Pell number.

Similarly, we can give the following definition of Pell-Lucas spinor sequence.

Definition 2.2. Let QPLn = Qn+ iQn+1+ jQn+2+kQn+3 be nth Pell-Lucas quaternion where Qn is nth Pell-Lucas
number and the set of Pell-Lucas quaternions be QPL. Therefore, the following linear transformation is defined as

fPL : QPL → S

QPLn 7→ fPL(QPLn) ∼= SPLn =

[
Qn+3 + iQn
Qn+1 + iQn+2

]
.

Therefore, a new sequence for the spinors related with Pell-Lucas quaternions is called as "Pell-Lucas Spinor
Sequence" where

{SPLn}∞n∈N =

{[
14 + 2i
2 + 6i

]
,

[
34 + 2i
6 + 14i

]
,

[
82 + 6i
14 + 34i

]
,

[
198 + 14i
34 + 82i

]
, ...

}

where SPLn =

[
Qn+3 + iQn
Qn+1 + iQn+2

]
is nth Pell-Lucas spinor and Qn is nth Pell-Lucas number.

Definition 2.3. The conjugate of Pell quaternion QPn is QP ∗n , and Pell spinor corresponding to this conjugate is
defined as

SP ∗n =

[
−Pn+3 + iPn
−Pn+1 − iPn+2

]
.
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Similarly, Pell Lucas spinor corresponding to the conjugate of Pell-Lucas quaternion QPLn is defined as

SPL∗n =

[
−Qn+3 + iQn
−Qn+1 − iQn+2

]
.

Definition 2.4. Pell spinor representation of the norm of Pell quaternion QPn is

SPn
t
SPn.

Similarly, Pell-Lucas spinor representation of the norm of Pell-Lucas quaternion QPLn is

SPLn
t
SPLn.

Now, the recurrence relations of Pell and Pell-Lucas spinor sequences with the following equations can be
obtained.

Theorem 2.1. The recurrence relation of Pell spinors for n > 2 is

SPn = 2SPn−1 + SPn−2

where nth, (n − 1)th and (n + 1)th Pell spinors are SPn, SPn−1 and SPn−2, respectively. The recurrence relation for
Pell-Lucas spinor for n > 2 is

SPLn = 2SPLn−1 + SPLn−2

where nth, (n− 1)th and (n+ 1)th Pell-Lucas spinors are SPLn, SPLn−1 and SPLn−2, respectively.

Proof. Firstly, we show the recurrence relation for Pell spinors. Therefore, if we calculate 2SPn−1 + SPn−2, then we
obtain

2SPn−1 + SPn−2 = 2

[
Pn+2 + iPn−1
Pn + iPn+1

]
+

[
Pn+1 + iPn−2
Pn−1 + iPn

]

=

[
2Pn+2 + Pn+1 + i(2Pn−1 + Pn−2)

2Pn + Pn−1 + i(2Pn+1 + Pn)

]
.

Since the recurrence relation for Pell number sequence is Pn = 2Pn−1 + Pn−2, we have

2SPn−1 + SPn−2 =

[
Pn+3 + iPn
Pn+1 + iPn+2

]
= SPn.

Similarly, we can easily obtain for Pell-Lucas spinor sequence such that

2SPLn−1 + SPLn−2 = 2

[
Qn+2 + iQn−1
Qn + iQn+1

]
+

[
Qn+1 + iQn−2
Qn−1 + iQn

]

=

[
2Qn+2 +Qn+1 + i(2Qn−1 +Qn−2)

2Qn +Qn−1 + i(2Qn+1 +Qn)

]
=

[
Qn+3 + iQn
Qn+1 + iQn+2

]
= SPLn

where the recurrence relation Qn = 2Qn−1 +Qn−2 of Pell Lucas number sequence is used (n > 2).

Now, the some relations between Pell and Pell-Lucas spinors can be given.

Theorem 2.2. Let nth Pell and Pell-Lucas spinors be SPn and SPLn, respectively. In this case, for n > 2 there are the
following relations between these spinors;

i) SPn−1 + SPn+1 = SPLn,

ii) SPLn + SPLn+1 = 4SPn+1,

iii) SPLn+1 + SPLn−1 = 8SPn,

iv) 2SPn + 2SPn−1 = SPLn.
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Proof. i) Let (n− 1)th and (n+1)th Pell spinors be SPn−1 and SPn+1, respectively. Then, we can write the equation

SPn−1 + SPn+1 =

[
Pn+2 + iPn−1
Pn + iPn+1

]
+

[
Pn+4 + iPn+1

Pn+2 + iPn+3

]

=

[
Pn+2 + Pn+4 + i(Pn−1 + Pn+1)
Pn + Pn+2 + i(Pn+1 + Pn+3)

]
.

On the other hand, we know that the relationship between Pell and Pell-Lucas numbers is Qn = Pn−1 + Pn+1 from
[35]. If we use this relationship we can write

SPn−1 + SPn+1 =

[
Qn+3 + iQn
Qn+1 + iQn+2

]
= SPLn.

This completes the proof.
ii) Assume that nth and (n+ 1)th Pell-Lucas spinors are SPLn and SPLn+1. Therefore, we have

SPLn + SPLn+1 =

[
Qn+3 + iQn
Qn+1 + iQn+2

]
+

[
Qn+4 + iQn+1

Qn+2 + iQn+3

]

=

[
Qn+3 +Qn+4 + i(Qn +Qn+1)
Qn+1 +Qn+2 + i(Qn+2 +Qn+3)

]
.

In addition to that, we know that there is the relationship 4Pn+1 = Qn+Qn+1 between Pell and Pell-Lucas numbers
from [37]. So, we get

SPLn + SPLn+1 =

[
4Pn+4 + i4Pn+1

4Pn+2 + i4Pn+3

]
= 4SPn+1

iii) Suppose that (n− 1)th and (n+ 1)th Pell-Lucas spinors are SPLn−1 and SPLn+1, respectively. Then, we get

SPLn+1 + SPLn−1 =

[
Qn+4 + iQn+1

Qn+2 + iQn+3

]
+

[
Qn+2 + iQn−1
Qn + iQn+1

]

=

[
Qn+4 +Qn+2 + i(Qn+1 +Qn−1)
Qn+2 +Qn + i(Qn+3 +Qn+1)

]
=

[
8Pn+3 + i8Pn

8Pn+1 + i8Pn+2

]
= 8Pn

where 8Pn = Qn+1 +Qn−1.
iv) This proof is clear that SPLn = SPn−1 + SPn+1 from option i). Moreover, we know that SPn+1 = 2SPn +

SPn−1. Consequently,
SPLn = SPn−1 + 2SPn + SPn−1 = 2SPn + 2SPn−1.

This completes the proof.

Theorem 2.3. Assume that nth Pell and Pell-Lucas spinors are SPn and SPLn, respectively. Therefore, the Binet Formulas
for these spinors are the following equations. The Binet formula for Pell spinors is

SPn =
1

γ − µ

(
γnSγ − µnSµ

)
,

the Binet formula for Pell-Lucas spinors is
SPLn = γnSγ + µnSµ

where γ = 1 +
√
2, µ = 1 −

√
2 are the roots of characteristic equation x2 − 2x − 1 = 0 and Sγ =

[
γ3 + i
γ + iγ2

]
and Sµ =[

µ3 + i
µ+ iµ2

]
.
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Proof. First, we prove it for Pell spinors. We know that the Binet formula for Pell number sequence is

Pn =
γn − µn

γ − µ

where γ = 1 +
√
2, µ = 1−

√
2. Therefore, if we write the last equation in the nth Pell spinor we obtain

SPn =

[
Pn+3 + iPn
Pn+1 + iPn+2

]
=

1

γ − µ

[
γn+3 − µn+3 + i(γn − µn)

γn+1 − µn+1 + i(γn+2 − µn+2)

]

SPn =
1

γ − µ

( [
γn+3 + iγn

γn+1 + iγn+2

]
−
[
µn+3 + iµn

µn+1 + iµn+2

])

SPn =
1

γ − µ

(
γn
[
γ3 + i
γ + iγ2

]
− µn

[
µ3 + i
µ+ iµ2

])
or

SPn =
1

γ − µ

(
γnSγ − µnSµ

)
where Sγ =

[
γ3 + i
γ + iγ2

]
and Sµ =

[
µ3 + i
µ+ iµ2

]
.

Now, we give the Binet formula for Pell-Lucas spinors. We know that the Binet formula for Pell-Lucas number
sequence is Qn = γn + µn. In this case, we can obtain

SPLn =

[
Qn+3 + iQn
Qn+1 + iQn+2

]
=

[
γn+3 + µn+3 + i(γn + µn)

γn+1 + µn+1 + i(γn+2 + µn+2)

]

SPLn =

[
γn+3 + iγn

γn+1 + iγn+2

]
+

[
µn+3 + iµn

µn+1 + iµn+2

]
SPLn = γn

[
γ3 + i
γ + iγ2

]
+ µn

[
µ3 + i
µ+ iµ2

]
or

SPLn = γnSγ + µnSµ

where Sγ =

[
γ3 + i
γ + iγ2

]
and Sµ =

[
µ3 + i
µ+ iµ2

]
.

Theorem 2.4. Let nth Pell and Pell-Lucas spinors be SPn and SPLn, respectively. The sum formulas for Pell spinors are the
following options;

i)
n∑
t=0

SPt =
1

4

[
SPLn+1 − SPL0

]
,

ii)
n∑
t=0

SP2t =
1

2

[
SP2n+1 − SP−1

]
,

iii)
n∑
t=0

SP2t−1 =
1

2

[
SP2n − SP−2

]
.

Proof. i) We know that for Pell spinors the Binet formula is SPn = 1
γ−µ (γ

nSγ − µnSµ). Therefore, we can write

n∑
t=0

SPt =

n∑
t=0

1

γ − µ
(γtSγ − µtSµ)

=
1

γ − µ
(

n∑
t=0

γtSγ −
n∑
t=0

µtSµ).

(2.2)
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On the other hand, we know that
∑n
t=0 γ

t = 1−γn+1

1−γ and
∑n
t=0 µ

t = 1−µn+1

1−µ . If we use these information in the last
equation then, we get

n∑
t=0

SPt =
1

4

(
(γn+1Sγ + µn+1Sµ)− (Sγ + Sµ)

)
where γ − µ = 2

√
2. Moreover, for Pell-Lucas spinors the Binet formula is SPLn = γnSγ + µnSµ. So, we can obtain

that
n∑
t=0

SPt =
1

4
(SPLn+1 − SPL0)

and this completes the proof.
ii) Similarly, if we use the Binet formula for Pell spinors then we easily get

n∑
t=0

SP2t =

n∑
t=0

1

γ − µ
(γ2tSγ − µ2tSµ)

=
1

γ − µ

(
n∑
t=0

γ2tSγ −
n∑
t=0

µ2tSµ

)
.

Moreover, we know that
∑n
t=0 γ

2t = 1−γ2n+2

1−γ2 and
∑n
t=0 µ

2t = 1−µ2n+2

1−µ2 . Therefore, we have

n∑
t=0

SP2t =
1

2(γ − µ)

(
1− µ2n+2

µ
Sµ −

1− γ2n+2

γ
Sγ

)

=
1

2(γ − µ)

(
µSγ − γSµ + γ2n+1Sγ − µ2n+1Sµ

)
where γµ = −1. Then, we obtain

n∑
t=0

SP2t =
1

2
(SP2n+1 + SP0 −

1

2
SPL0).

In addition to that, if we use SPL0 = 2SP0 + SP−1 from Theorem (2.2) , we easily get

n∑
t=0

SP2t =
1

2
(SP2n+1 − SP−1).

iii) We use the Binet formula for Pell spinors. So, we can write

n∑
t=0

SP2t−1 =

n∑
t=0

1

γ − µ
(γ2t−1Sγ − µ2t−1Sµ)

=
1

γ − µ

(
n∑
t=0

γ2t−1Sγ −
n∑
t=0

µ2t−1Sµ

)
.

Similar to the other options i) and ii) we can easily obtain that

n∑
t=0

SP2t−1 =
1

2(γ − µ)

(
γ2(1− µ2n+2)Sµ − µ2(1− γ2n+2)Sγ

)

=
1

2(γ − µ)

(
γ2nSγ − µ2nSµ + 2

√
2(Sγ + Sµ)− 3(Sγ − Sµ)

)
.

If we use Binet formulas for Pell and Pell-Lucas spinors then, we get

n∑
t=0

SP2t−1 =
1

2
(SP2n − 3SP0 + SPL0)
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and consequently
n∑
t=0

SP2t−1 =
1

2
(SP2n − SP−2)

where we know that SPL0 = 2SP0 + 2SP−1 and SP0 = 2SP−1 + SP−2. This proof is completed.

Now, considering [18, 34] we express the following definition.

Definition 2.5. Suppose that SPn and SPLn are nth Pell and Pell-Lucas spinors. The fundamental Pell and
Pell-Lucas spinor matrices are

(SPn)L =

[
Pn − iPn+3 −Pn+2 − iPn+1

Pn+2 − iPn+1 Pn + iPn+3

]
and

(SPLn)L =

[
Qn − iQn+3 −Qn+2 − iQn+1

Qn+2 − iQn+1 Qn + iQn+3

]
.

The fundamental Pell and Pell-Lucas spinor matrices are also called as left Hamilton Pell and Pell Lucas spinor
matrices, respectively.

Now, we express the Cassini Formula for Pell and Pell-Lucas spinors.

Theorem 2.5. The similar formula replacing Cassini formula for Pell spinors is

(SPn−1)LSPn+1 − (SPn)LSPn = (−1)n 1

γ − µ
(γ(Sµ)LSγ − µ(Sγ)LSµ)

and for Pell-Lucas spinors the similar formula is

(SPLn−1)LSPLn+1 − (SPLn)LSPLn(−1)n−1(γ − µ)(γ(Sµ)LSγ − µ(Sγ)LSµ)

where Sµ =

[
µ3 + i
µ+ iµ2

]
, (Sµ)L =

[
1− iµ3 −µ2 − iµ
µ2 − iµ 1 + iµ3

]
, Sγ =

[
γ3 + i
γ + iγ2

]
, (Sγ)L =

[
1− iγ3 −γ2 − iγ
γ2 − iγ 1 + iγ3

]
.

Proof. Pell spinor product corresponding to the product of Pell quaternionsQPn−1QPn+1−(QPn)2 is (SPn−1)LSPn+1−
(SPn)LSPn. In this case, if we use the Binet formula in Theorem (2.3) for Pell spinors SPn = 1

γ−µ (γ
nSγ − µnSµ),

then we get

(SPn)L =
1

γ − µ
(γnLSγ − µnLSµ).

Therefore, we obtain

(SPn−1)LSPn+1 − (SPn)LSPn =
1

γ − µ
(γn−1(Sγ)L − µn−1(Sµ)L)

1

γ − µ
(γn+1Sγ − µn+1Sµ)

− 1

γ − µ
(γn(Sγ)L − µn(Sµ)L)

1

γ − µ
(γnSγ − µnSµ)

=
1

(γ − µ)2

(
(−γn−1µn+1 + γnµn)(Sγ)LSµ + (−γn+1µn−1 + γnµn)(Sµ)LSγ

)
=(−1)n−1 1

γ − µ
(µ(Sγ)LSµ − γ(Sµ)LSγ)

=(−1)n 1

γ − µ
(γ(Sµ)LSγ − µ(Sγ)LSµ)

where Sµ =

[
µ3 + i
µ+ iµ2

]
, (Sµ)L =

[
1− iµ3 −µ2 − iµ
µ2 − iµ 1 + iµ3

]
, Sγ =

[
γ3 + i
γ + iγ2

]
, (Sγ)L =

[
1− iγ3 −γ2 − iγ
γ2 − iγ 1 + iγ3

]
.

Similarly, for Pell-Lucas Spinors considering SPLn = γnSγ + µnSµ and (SPLn)L = γn(Sγ)L + µn(Sµ)L we have

(SPLn−1)LSPLn+1 − (SPLn)LSPLn =(γn−1(Sγ)L + µn−1(Sµ)L)(γ
n+1Sγ + µn+1Sµ)

− (γn(Sγ)L + µn(Sµ)L)(γ
nSγ + µnSµ)

=(γn−1µn+1 − γnµn)(Sγ)LSµ + (γn+1µn−1 − γnµn)(Sµ)LSγ
=(−1)n−1(γ − µ)(γ(Sµ)LSγ − µ(Sγ)LSµ)
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and consequently

(SPLn−1)LSPLn+1 − (SPLn)LSPLn = (−1)n−1(γ − µ)(γ(Sµ)LSγ − µ(Sγ)LSµ)

where Sµ =

[
µ3 + i
µ+ iµ2

]
, (Sµ)L =

[
1− iµ3 −µ2 − iµ
µ2 − iµ 1 + iµ3

]
, Sγ =

[
γ3 + i
γ + iγ2

]
, (Sγ)L =

[
1− iγ3 −γ2 − iγ
γ2 − iγ 1 + iγ3

]
.

Conclusion 2.1. The Cassini formulas for Pell and Pell-Lucas spinors can be obtained that

for Pell spinors (SPn−1)LSPn+1 − (SPn)LSPn = (−1)n−1
[
12 + 2i
4 + 10i

]
,

for Pell − Lucas spinors (SPLn−1)LSPLn+1 − (SPLn)LSPLn = 8(−1)n−1
[
12 + 2i
4 + 10i

]
.

Theorem 2.6. The generator function for Pell spinors is

GSP (t) =
1

1− 2t− t2

[
5 + 2t+ it
1 + i(2 + t)

]
and the generator function for Pell-Lucas spinors is

GSPL(t) =
1

1− 2t− t2

[
14 + 6t+ i(2− 2t)
2 + 2t+ i(6 + 2t)

]
Proof. We take nth Pell spinor is SPn. Therefore, for nth Pell spinor the generator function is calculated with the
aid of the equation GSP (t) =

∑∞
n=0 SPnt

n. In this case, using GSP (t), 2tGSP (t) and t2GSP (t) we obtain that

GSP (t) = SP0 + SP1t+ SP2t
2 + SP3t

3 + SP4t
4 + SP5t

5 + ...

−2tGSP (t) = −2SP0t− 2SP1t
2 − 2SP2t

3 − 2SP3t
4 − 2SP4t

5 − 2SP5t
6 + ...

−t2GSP (t) = −SP0t
2 − SP1t

3 − SP2t
4 − SP3t

5 − SP4t
6 − SP5t

7 + ...

and
GSP (t) =

1

(1− 2t− t2)
(SP0 + (SP1 − 2SP0)t)

where

SP0 + (SP1 − 2SP0) =

[
P3 + iP0

P1 + iP2

]
+

([
P4 + iP1

P2 + iP3

]
−
[
2P3 + 2iP0

2P1 + 2iP2

])
t

=

[
5

1 + 2i

]
+

([
12 + i
2 + 5i

]
−
[

10
2 + 4i

])
t =

[
5 + 2t+ it
1 + i(2 + t)

]
.

Consequently, we get

GSP (t) =
1

1− 2t− t2

[
5 + 2t+ it
1 + i(2 + t)

]
.

Now, we calculate the generator function for Pell-Lucas spinors. Therefore, if we consider the function GSPL(t) =∑∞
n=0 SPLnt

n, we have

GSPL(t) =
1

1− 2t− t2
(SPL0 + (SPL1 − 2SPL0)t)

using GSPL(t), 2tGSPL(t) and t2GSPL(t). Finally, we obtain

GSPL(t) =
1

1− 2t− t2

[
14 + 6t+ i(2− 2t)
2 + 2t+ i(6 + 2t)

]
.

This completes the proof.
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Theorem 2.7. Assume that −nth Pell and Pell-Lucas spinors are SP−n and SPL−n. In this case these spinors are calculated
as follows; for Pell spinors

SP−n = (−1)n
[
Pn−3 − iPn
Pn−1 − iPn−2

]
for Pell-Lucas spinors

SPL−n = (−1)n
[
−Qn−3 + iQn
−Qn−1 − iQn−2

]
.

Proof. We know that the Binet formula for nth Pell spinor is SPn = 1
γ−µ (γ

nSγ − µnSµ) where Sµ =

[
µ3 + i
µ+ iµ2

]
,

Sγ =

[
γ3 + i
γ + iγ2

]
. On the other hand, we can write the equation γµ = −1 =⇒ γ = (−1)µ−1. If we take n powers of

both sides then, we get γ−n = (−1)nµn. Similarly, we easily see that µ−n = (−1)nγn. In this case, considering the
Binet formula for −nth Pell spinor SP−n = 1

γ−µ (γ
−nSγ − µ−nSµ) we calculate as

SP−n =
1

γ − µ
((−1)nµnSγ − (−1)nγnSµ)

and
SP−n =

(−1)n

γ − µ
(µnSγ − γnSµ).

If we make this equation even more detailed, we get

SP−n =
(−1)n

γ − µ

[
µnγ3 − γnµ3 + i(µn − γn)
µnγ − γnµ+ i(µnγ2 − γnµ2)

]
(2.3)

where γ = 2− µ and µ = 2− γ. Additionally, if the characteristic equation x2 − 2x− 1 = 0 of Pell number sequence
is used, the equations γ2 = 5− 2µ, µ2 = 5− 2γ, γ3 = 12− 5µ and µ3 = 12− 5γ are obtained. Therefore, we obtain
the Eq (2.3) as

SP−n =
(−1)n

γ − µ

[
µn(12− 5µ)− γn(12− 5γ) + i(µn − γn)

µn(2− µ)− γn(2− γ) + i(µn(5− 2γ)− γn(5− 2γ))

]

= (−1)n
[

−12(γ
n−µn
γ−µ ) + 5(γ

n+1−µn+1

γ−µ )− i(γ
n−µn
γ−µ )

−2(γ
n−µn
γ−µ ) + (γ

n+1−µn+1

γ−µ ) + i(−5(γ
n−µn
γ−µ ) + 2(γ

n+1−µn+1

γ−µ ))

]

= (−1)n
[

−12Pn + 5Pn+1 − iPn
−2Pn + Pn+1 − i(−5Pn + 2Pn+1)

]
= (−1)n

[
Pn−3 − iPn
Pn−1 − iPn−2

]

=


If n is even number,

[
Pn−3 − iPn
Pn−1 − iPn−2

]

If n odd number,
[
Pn−3 − iPn
Pn−1 − iPn−2

] .

Now, we calculate for Pell-Lucas spinors. Considering Binet formula SPLn = γnSγ + µnSµ for Pell-Lucas spinor
sequence and we can write for −n

SPL−n = γ−nSγ + µ−nSµ.

If we use again the equations γ−n = (−1)nµn and µ−n = (−1)nγn then, we have

SPL−n = (−1)n(µnSγ + γnSµ)

and

SPL−n = (−1)n
[
µnγ3 + γnµ3 + i(µn + γn)
µnγ + γnµ+ i(µnγ2 + γnµ2)

]
.
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Finally, we get

SPL−n = (−1)n
[
−Qn−3 + iQn
−Qn−1 + iQn−2

]
.
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[29] Balcı, Y., Erişir, T., Güngör, M. A.: Hyperbolic spinor Darboux equations of spacelike curves in Minkowski 3-space,
Journal of the Chungcheong Mathematical Society, 28(4), 525-535 (2015).
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Abstract
In this paper, we investigate inextensible flows of quaternionic curve according to type 2-quaternionic
frame. We give necessary and sufficient conditions for inextensible flow of quaternionic curves. Moreover,
we obtain evolution equations of the Frenet frame and curvatures according to type 2-quaternionic frame.
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1. Introduction
The quaternions are extensions of the complex numbers. Quaternions were defined as the quotient of two

directed lines in a three dimensional space or equivalently as the quotient of two vectors by Sir William Rowan
Hamilton [1]. Quaternions can be represented in various ways: as the sum of a real scalar and a real three
dimensional vector, as pairs of complex numbers or as four-dimensional vectors with real components. Quaternion
multiplication is generally not commutative, so quaternions are not a field.

K. Baharatti and M. Nagaraj studied quaternionic curves in three-dimensional and four-dimensional Euclidean
space and obtained their Frenet formulas [2]. In analogy with the Euclidean case, A.C. Coken and A. Tuna defined
Frenet formulas for the quaternionic curves in semi-Euclidean space [3]. F. Kahraman Aksoyak introduced a
new version of Frenet formulas for quaternionic curves in four-dimensional Euclidean space and called it type
2-quaternionic frame [4]. After that, by using these quaternionic frames, a lot of papers about quaternionic curves
have been studied [5–12].

A family of curves parametrized by time can be thought as evolving curves. The time evolution of geometric
locus is investigated by using its flow. There have been various studies on flows of curves, but firstly, D.Y. Kwon
and F.C. Park introduced inextensible flows of plane curves [13] and D.Y. Kwon et al. investigated inextensible
flows of curves and developable surfaces in R3 [14]. Then in many different spaces, inextensible flows of curves are
studied (see, [15–19]). Inextensible flows of curves also studied for quaternionic curves (see, [6, 10, 12]).
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Our aim is to study inextensible flows of quaternionic curve according to type 2-quaternionic frame. We give
necessary and sufficient conditions for inextensible flow of quaternionic curves. Moreover, we obtain evolution
equations of the Frenet frame and curvatures according to type 2-quaternionic frame.

2. Preliminaries

In this section, a brief summary of the theory of quaternions in the Euclidean space is presented.
The space of quaternions Q is isomorphic to R4, four-dimensional vector space over the real numbers. There

are three operations in Q: addition, scalar multiplication and quaternion multiplication. Addition and scalar
multiplication of quaternions are defined to be the same as in R4.

A real quaternion q is an expression of the form q = ae1 + be2 + ce3 + de4, where a, b, c and d are real numbers,
and e1, e2, e3 are quaternionic units which satisfy the non-commutative multiplication rules,

i)ei × ei = −e4, (e4 = 1, 1 ≤ i ≤ 3)

ii)ei × ej = ek = −ej × ei, (1 ≤ i, j ≤ 3) ,

where (ijk) is an even permutation of (123) in the Euclidean space R4. Further, a real quaternion can be written as
q = Sq + Vq, where Sq = d is the scalar part and Vq = ae1 + be2 + ce3 is the vector part of q. The product of two
quaternions can be expanded as

p× q = SpSq− < Vp, Vq > +SpVq + SqVp + Vq ∧ Vq,

for every p, q ∈ Q, where <,> and ∧ are inner product and cross product on R3, respectively. The conjugate of the
quaternion q is denoted by q and defined as

q = Sq − Vq = de4 − ae1 − be2 − ce3,

and is called by "Hamiltonian conjugation of q". The h-inner product of two quaternions is defined by

h (p, q) =
1

2
(p× q + q × p) ,

where h is the symmetric, non-degenerate, real-valued and bilinear form. Let p and q be two real quaternions, then
h (p, q) = 0 if and only if p and q are h−orthogonal. The norm of a real quaternion q is defined by

‖q‖2 = h (q, q) = a2 + b2 + c2 + d2.

If q + q = 0, then q is called a spatial quaternion. The three-dimensional Euclidean space R3 is identified with the
space of spatial quaternion Qs = {γ ∈ Q |γ + γ = 0} ⊂ Q in an obvious manner.

Theorem 2.1. Let

γ : [0, 1] ⊂ R−→Qs, γ(s) =

3∑
i=1

γi(s)ei, (1 ≤ i ≤ 3) ,

be a smooth curve with arc-lenght parameter and {t, n1, n2} be the Frenet trihedron of γ. Then Frenet equations are

t′ = kn1

n′1 = −kt+ rn2

n′2 = −rn1,

where t is the unit tangent, n1 is the unit principal normal, n2 is the unit binormal vector fields, k is the principal curvature
and r is the torsion of the quaternionic curve γ, [2].

Theorem 2.2. Let

β : [0, 1] ⊂ R−→Q, β(s) =

4∑
i=1

γi(s)ei, e4 = 1,
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be a smooth curve β in Q and {T,N1, N2, N3} be the Frenet apparatus of β, then the Frenet equations are

T ′ = KN1

N ′
1 = −KT + kN2

N ′
2 = −kN1 + (r −K)N3

N ′
3 = −(r −K)N2,

where N1 = t× T, N2 = n1 × T, N3 = n2 × T and K = ‖T ′(s)‖ , [2].

It is obtained the Frenet formulae in [2] and the apparatus for the curve β by making use of the Frenet formulae
for a curve γ in E3. Moreover, there are relationships between curvatures of the curves β and γ. These relations can
be explained that the torsion of β is the principal curvature of the curve γ. Also, the bitorsion of β is (r −K), where
r is the torsion of γ and K is the principal curvature of β. These relations are only determined for quaternions, [2].

The alternative quaternionic frame for a quaternionic curve in R4 by using of a similar method in [2] given by
Kahraman Aksoyak [4]

Theorem 2.3. Let

ζ : [0, 1] ⊂ R−→Q, ζ(s) =

4∑
i=1

γi(s)ei, e4 = 1,

be a smooth curve ζ in Q. The Frenet equations of ζ(s) for type 2-quaternionic frame are

T ′ = KN1

N ′
1 = −KT +−rN2

N ′
2 = rN1 + (K − k)N3

N ′
3 = −(K − k)N2,

where N1 = b× T, N2 = n1 × T, N3 = t× T and K = ‖T ′‖ , [4].

For further quaternions concepts see [20].

3. Flow of quaternionic curves according to type 2-quaternionic frame

Throughout this section, we investigate flow of quaternionic curve according to type 2-quaternionic frame.
Unless otherwise stated we assume that ζ : [0, l]× [0, w]→ Q is a one parameter family of smooth quaternionic

curve in Q where l is arclength of initial curve and u is the curve parametrization variable, 0 ≤ u ≤ l. Let ζ (u, t) be
a position vector of the semi-real quaternionic curve at time t. The arclength variation of ζ (u, t) is given by

s (u, t) =

u∫
0

∥∥∥∥∂ζ∂u
∥∥∥∥ du =

u∫
0

vdu.

The operator ∂
∂s is given in term of u by ∂

∂s = 1
v
∂
∂u .

Definition 3.1. Let ζ be smooth quaternionic curve. Any flow of ζ can be given by

∂ζ

∂t
= g1T + g2N1 + g3N2 + g4N3, (3.1)

where g1, g2, g3 and g4 are scalar speed functions of ζ.

In Q, the inextensible condition of the length of the curve can be expressed by [13]

∂

∂t
s (u, t) =

u∫
0

∂v

∂t
du = 0. (3.2)
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Definition 3.2. A quaternionic curve evolution ζ (u, t) and its flow ∂ζ
∂t in Q are said to be inextensible if

∂

∂t

∥∥∥∥∂ζ∂u
∥∥∥∥ = 0.

Lemma 3.1. The evolution equation for the speed v according to type 2-quaternionic frame is given by

∂v

∂t
=
∂g1
∂u
− vκg2. (3.3)

Proof. As ∂
∂u and ∂

∂t are commutative and v2 = h
(
∂ζ
∂u ,

∂ζ
∂u

)
, we have

2v
∂v

∂t
=

∂

∂t
h

(
∂ζ

∂u
,
∂ζ

∂u

)
= 2h

(
∂ζ

∂u
,
∂

∂u

(
∂ζ

∂t

))
.

By using the equations of type 2-quaternionic frame, we obtain

∂v

∂t
=
∂g1
∂u
− vκg2.

Theorem 3.1. The flow of quaternionic curve is inextensible according to type 2-quaternionic frame if and only if

∂g1
∂s

= κg2. (3.4)

Proof. Let the flow of quaternionic curve be inextensible. From equation (3.2) and (3.3), we have

∂

∂t
s (u, t) =

u∫
0

∂v

∂t
du =

u∫
0

(
∂g1
∂u
− vκg2

)
du = 0.

This clearly forces
∂g1
∂s

= κg2.

Lemma 3.2. Let the flow of ζ (u, t) be inextensible. Derivatives of the elements of type 2-quaternionic frame with respect to
evolution parameter can be given as follows;

∂T

∂t
=

(
g1κ+

∂g2
∂s

+ g3r

)
N1 +

(
−g2r +

∂g3
∂s
− g4 (κ− k)

)
N2

+

(
g3 (κ− k) +

∂g4
∂s

)
N3,

∂N1

∂t
= −

(
g1κ+

∂g2
∂s

+ g3r

)
T + ψ1N2 + ψ2N3,

∂N2

∂t
=

(
g2r −

∂g3
∂s

+ g4 (κ− k)
)
T − ψ1N1 + ψ3N3,

∂N3

∂t
= −

(
g3 (κ− k) +

∂g4
∂s

)
T − ψ2N1 − ψ3N2,

where ψ1 = h
(
∂N1

∂t , N2

)
, ψ2 = h

(
∂N1

∂t , N3

)
, ψ3 = h

(
∂N2

∂t , N3

)
.

Proof. Let ∂ζ∂t be inextensible. Then, considering that ∂
∂t and ∂

∂s are commutative, we get

∂T

∂t
=

∂

∂t

(
∂ζ

∂s

)
=

∂

∂s

(
∂ζ

∂t

)
=

∂

∂s
(g1T + g2N1 + g3N2 + g4N3) ,
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substituting (3.4) in the last equation, we have

∂T

∂t
=

(
g1κ+

∂g2
∂s

+ g3r

)
N1 +

(
−g2r +

∂g3
∂s
− g4 (κ− k)

)
N2

+

(
g3 (κ− k) +

∂g4
∂s

)
N3.

Now, if we consider orthogonality of {T,N1, N2, N3}, then we get

0 =
∂

∂t
h (T,N1) = h

(
∂T

∂t
,N1

)
+ h

(
T,
∂N1

∂t

)
=

(
g1κ+

∂g2
∂s

+ g3r

)
+ h

(
T,
∂N1

∂t

)
,

0 =
∂

∂t
h (T,N2) = h

(
∂T

∂t
,N2

)
+ h

(
T,
∂N2

∂t

)
=

(
−g2r +

∂g3
∂s
− g4 (κ− k)

)
+ h

(
T,
∂N2

∂t

)
,

0 =
∂

∂t
h (T,N3) = h

(
∂T

∂t
,N3

)
+ h

(
T,
∂N3

∂t

)
=

(
g3 (κ− k) +

∂g4
∂s

)
+ h

(
T,
∂N3

∂t

)
,

0 =
∂

∂t
h (N1, N2) = h

(
∂N1

∂t
,N2

)
+ h

(
N1,

∂N2

∂t

)
= ψ1 + h

(
N1,

∂N2

∂t

)
,

0 =
∂

∂t
h (N1, N3) = h

(
∂N1

∂t
,N3

)
+ h

(
N1,

∂N3

∂t

)
= ψ2 + h

(
N1,

∂N3

∂t

)
,

0 =
∂

∂t
h (N2, N3) = h

(
∂N2

∂t
,N3

)
+ h

(
N2,

∂N3

∂t

)
= ψ3 + h

(
N2,

∂N3

∂t

)
,

which brings about that

∂N1

∂t
= −

(
g1κ+

∂g2
∂s

+ g3r

)
T + ψ1N2 + ψ2N3,

∂N2

∂t
=

(
g2r −

∂g3
∂s

+ g4 (κ− k)
)
T − ψ1N1 + ψ3N3,

∂N3

∂t
= −

(
g3 (κ− k) +

∂g4
∂s

)
T − ψ2N1 − ψ3N2,

where ψ1 = h
(
∂N1

∂t , N2

)
, ψ2 = h

(
∂N1

∂t , N3

)
, ψ3 = h

(
∂N2

∂t , N3

)
.

Theorem 3.2. Let the flow of ζ (u, t) be inextensible. Then the evolution equation of κ is

∂κ

∂t
=
∂g1
∂s

κ+ g1
∂κ

∂s
+
∂2g2
∂s2

+ 2
∂g3
∂s

r + g3
∂r

∂s
− g2r2 − g4r (κ− k) .
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Proof. Since ∂
∂s

(
∂T
∂t

)
= ∂

∂t

(
∂T
∂s

)
, we have

∂

∂s

(
∂T

∂t

)
=

(
−g1κ2 −

∂g2
∂s

κ− g3κr
)
T

+

(
∂g1
∂s

κ+ g1
∂κ

∂s
+
∂2g2
∂s2

+ 2
∂g3
∂s

r + g3
∂r

∂s
− g2r2 − g4r (κ− k)

)
N1

+

(
−g1κr − 2

∂g2
∂s

r − g3r2 + g2
∂r

∂s
+
∂2g3
∂s2

− 2
∂g4
∂s

(κ− k)− g4
∂ (κ− k)

∂s
− g3 (κ− k)2

)
N2

+

(
−g2r (κ− k) + 2

∂g3
∂s

(κ− k)− g4 (κ− k)2

+ g3
∂ (κ− k)

∂s
+
∂2g4
∂s2

)
N3

and

∂

∂t

(
∂T

∂s

)
=

∂

∂t
(κN1) =

∂κ

∂t
N1 + κ

∂N1

∂t

=

(
−g1κ2 −

∂g2
∂s

κ− g3κr
)
T +

∂κ

∂t
N1 + ψ1κN2

+ ψ2κN3.

From equality of the component of N1 in above equations, we obtain

∂κ

∂t
=
∂g1
∂s

κ+ g1
∂κ

∂s
+
∂2g2
∂s2

+ 2
∂g3
∂s

r + g3
∂r

∂s
− g2r2 − g4r (κ− k) .

Corollary 3.1. In theorem (3.2), from rest of the equality, we get

κψ1 = −g1κr − 2
∂g2
∂s

r − g3r2 + g2
∂r

∂s
+
∂2g3
∂s2

− 2
∂g4
∂s

(κ− k)− g4
∂ (κ− k)

∂s
− g3 (κ− k)2 ,

κψ2 = −g2r (κ− k) + 2
∂g3
∂s

(κ− k)− g4 (κ− k)2 + g3
∂ (κ− k)

∂s
+
∂2g4
∂s2

.

Theorem 3.3. Let the flow of ζ (u, t) be inextensible. Then the evolution equation of r is

∂r

∂t
= g2κr −

∂g3
∂s

κ+ g4κ (κ− k)−
∂ψ1

∂s
+ ψ2 (κ− k) .

Proof. Noticing that ∂
∂s

(
∂N1

∂t

)
= ∂

∂t

(
∂N1

∂s

)
, it is seen that

∂

∂s

(
∂N1

∂t

)
=

(
−∂g1
∂s

κ− g1
∂κ

∂s
+
∂2g2
∂s2

+
∂g3
∂s

r + g3
∂r

∂s

)
T

+

(
−g1κ2 +

∂g2
∂s

κ+ g3κr + ψ1k

)
N

+

(
∂ψ1

∂s
− ψ2 (κ− k)

)
N2

+

(
ψ1 (κ− k) +

∂ψ2

∂s

)
N3



Inextensible Flow of Quaternionic Curves 175

and

∂

∂t

(
∂N1

∂s

)
=

∂

∂t
(−κT − rN2)

=

(
−∂κ
∂t
− g2r2 +

∂g3
∂s

r − g4r (κ− k)
)
T

+

(
−g1κ2 −

∂g2
∂s

κ− g3κr + ψ1r

)
N1

+

(
g2rκ−

∂g3
∂s

κ+ g4κ (κ− k)−
∂r

∂t

)
N2

+

(
−g3κ (κ− k)−

∂g4
∂s

κ− ψ3r

)
N3.

From above equations, we get

∂r

∂t
= g2κr −

∂g3
∂s

κ+ g4κ (κ− k)−
∂ψ1

∂s
+ ψ2 (κ− k) .

Corollary 3.2. In theorem (3.3), from rest of the equality, we obtain

ψ1 (κ− k) = −
∂ψ2

∂s
− g3κ (κ− k)−

∂g4
∂s

κ− ψ3r.

Theorem 3.4. Let the flow of ζ (u, t) be inextensible. Then the evolution equation of (κ− k) is

∂ (κ− k)
∂t

= −ψ2r +
∂ψ3

∂s
.

Proof. Noticing that ∂
∂s

(
∂N2

∂t

)
= ∂

∂t

(
∂N2

∂s

)
, it is seen that

∂

∂s

(
∂N2

∂t

)
=

(
∂g2
∂s

r + g2
∂r

∂s
− ∂2g3

∂s2
+
∂g4
∂s

(κ− k) +g4
∂ (κ− k)

∂s
+ ψ1κ

)
T

+

(
g2κr −

∂g3
∂s

κ+ g4κ (κ− k)−
∂ψ1

∂s

)
N1

+ (ψ1r − ψ3 (κ− k))N2

+

(
∂ψ3

∂s

)
N3

and

∂

∂t

(
∂N2

∂s

)
=

∂

∂t
(rN1 + (κ− k)N3)

=

(
−g1rκ−

∂g2
∂s

r − g3r2 −g3 (κ− k)2 −
∂g4
∂s

(κ− k)
)
T

+

(
∂r

∂t
− ψ2 (κ− k)

)
N1

+ (ψ1r − ψ3 (κ− k))N2

+

(
ψ2k +

∂ (κ− k)
∂t

)
N3.

From above equations, we obtain
∂ (κ− k)

∂t
= −ψ2r +

∂ψ3

∂s
.
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[8] Gök, İ., Okuyucu, O. Z., Kahraman, F., Hacısalihoğlu, H. H.: On the quaternionic B2 slant helices in the Euclidean
space E4,. Adv.Appl. Clifford Algebras. 21, 707-719 (2011).

[9] Kahraman Aksoyak, F.: Quaternionic Bertrand curves according to type 2-quaternionic frame in R4. Commun. Fac.
Sci. Univ. Ank. Ser. A1 Math. Stat. 71(2), 395-406 (2022).

[10] Kızılay, A., Yıldız, Ö. G., Okuyucu, O. Z.:Evolution of quaternionic curve in the semi-Euclidean space
E4

2 .Mathematical Methods in the Applied Sciences. 44(9), 7577-7587 (2021).
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Abstract
The famous Taylor Power Law is in general observed in ecology and relates the variance of the population
of a certain species in a unit area while Circle Packing is an arrangement of circles in a given area. We
show that the circle packing problem in R2 satisfies the Taylor power law formula for b = 2.
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1. Introduction
In [1], the author presented a linear relationship between the expectation and the variance of a population size in a
complex system. Since then, this relation stated explicitly as

variance = a(mean)b with a, b > 0.

is called Taylor’s Power Law (abbreviated as TPL) and has been observed in various ecological and biological
systems, including populations of animals, plants, and microorganisms. The exponent b in TPL for the majority of
these analyzed systems ranges from 1 to 2, with a clustering around b = 2. Different models have been investigated
thus far, but no clear cause for this occurrence has yet been found. Our approach here may be a reference to that
phenomenon. Note that when b = 1 the population is distributed homogeneously across space. In order to predict
how populations will behave over time or in determining the spatial distribution of populations TPL is helpful.

In this study, which aims to address the spatial distribution of individuals within a population, we associate
TPL with another important concept the circle packing problem(abbreviated as CPP), which is about optimizing the
maximum radius of n (n ≥ 1) identical circles placed in a closed region in Rd (d ≥ 2) such that none of the circles in
the region overlap. There are several variations of CPP, including the problem where circles must be placed within
a specific shape or the sizes of the circles are not all equal. The reader can find various packing representations of
circles in [2] when d = 2; for example, if the closed region is a square in R2, in the case where n = 1 there exists a
unique circle in the packing and the radius of the circle is 0.5. In the case where n = 7, the best packing is given in
Figure 1 below. The best packing means that the region contains the largest number of non-overlapping identical
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circles. By [2], the radius r of each circle in the packing is approximately 0.1744576302 and the greatest distance
between two centers is approximately 0.535898384. In [2], the CPP is solved up to n = 10000 circles inside the
different shapes in R2.

Figure 1. Packing 7 circles in a square

In dimension 3, the circle packing problem becomes the sphere packing problem which begins with a conjecture of
Kepler and solved in [3]. So far, the problem has been solved up to the case where d = 24.

Here we will see the circle packing problem as the distribution of points in a closed region. More precisely,
suppose we are trying to place n distinct points in a closed region in Rd such that the minimum distance between
any two points is as large as possible. Assuming each of these points to be the center of a circle, the distribution of
points in this closed region coincides with the problem of finding the radius of circles in the circle packing problem.
we show that the distance between the centers of two randomly chosen circles in a packing obeys TPL.

Here, the TPL formula, which has been applied to explain the demographic structure of a living species (insects,
microorganisms, humans) is actually thought to be related to the CPP. Our result mainly based on [4] in which
the author established TPL as an important tool for understanding population dynamics and spatial patterns in
different fields. In the next section, we study the probability distribution of the distance between two randomly
chosen points on a line, on a circle and also on a square in R2. We assume that the distribution of distances between
randomly chosen points is independent and uniformly distributed in the fixed region. In the rest of the work, we
present the relationship between the expectation and the variance of the distance between the centers of the circles
placed in a square with respect to the optimization of the packing and, we show that CPP satisfies TPL.

2. Distance between points in a fixed region and TPL

Let ℓ be a line in R2 of length L > 0. The choice of a randomly chosen point on ℓ is given by a random variable X1

with the probability density function

fX1
(x) =

{
1
L if x ∈ [0, L]

0 otherwise
(2.1)

Now let us choose a second point on ℓ. It gives the random variable X2. Obviously, the distance Y = |X1 −X2|
between the points will also be a random variable. The probability density function of Y is known to be

fX1X2(x1, x2) = fX1(x1)fX2(x2) =
1

L2

Proposition 2.1. With preceding notation, the random variable Y obeys TPL.

Proof. Consider

φ(x1, x2) = |x1 − x2| =

{
x1 − x2, if x1 ≥ x2

x2 − x1, if x2 ≥ x1

(2.2)

The expected value of the distance between two randomly chosen points is

E(Y ) = E(φ(x1, x2)) =

∫ L

0

∫ L

0

φ(x1, x2)fX1X2(x1, x2)dx1dx2
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=
1

L2

∫ L

0

∫ L

0

|x1 − x2|dx2dx1 =
L

3

so the variance is

V ar(Y ) =
1

L2

∫ L

0

∫ L

0

|x1 − x2|2dx2dx1 −
L2

9
=

L2

18

Hence Y obeys TPL with the values b = 2 and a = 1
2 .

Let C be a circle with radius r > 0 in R2. By [4, 5], the probability density function of the distance between two
randomly selected points on C is

f(x) =
4x

πr2

(
arccos

( x

2r

)
− x

2r

(
1− x2

4r2

) 1
2

)
.

Proposition 2.2. The distance between two random points on C obeys TPL.

Proof. Let us choose two points P1 = (T1,Θ1) and P2 = (T2,Θ2) (in polar coordinates) on C. The randomness of the
selection tells us that the probability of one of the points lying in the area dA is proportional to dA:

P{Ti ∈ (ri, ri + dri),Θi ∈ (θi, θi + dθi)} =
ridridθi
πr2

, i = 1, 2.

Let Y be the distance between P1 and P2 which belongs to the interval (x, x+ dx). Consider another circle C′ with
the same center as C. So, its radius is r + dr. Denote by S the annulus between two circles. If two points are in C ′

we have one of the following cases:
(i) Both points are in C,
(ii) At least one point is in S.

C′

C

S

r + dr

r

O

The probability that two points are in C is

P{r + dr} = P{r + dr| case(i) } × P{ case(i) }+ P{r + dr| case(ii) } × P{ case(ii) } (2.3)

Let us consider each point separately to compute P{r + dr| case(i) }:

P{P1 is in C} =
area(C)

area(C’)
=

πr2

π(r + dr)2
==

1

1 + 2dr/r + dr2/r2
= 1− 2dr

r
+ o(dr)

Since the cases (i) and (ii) are independent we obtain

P{case(i)} = (1− 2dr

r
+ o(dr))2 = 1− 4dr

r
+ o(dr)

Hence P{r + dr | case(ii)} =
2xdx

πr2
arccos

x

2r
and P{ case(ii)} = 4dr

r + o(dr).
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Substitution of these values in (3) gives

P{r + dr} = P{r}
(
1− 4dr

r

)
+

2xdx

πr2
arccos

( x

2r

)(4dr

r

)
+ o(dr)

Denote by P . We then get

dP = P{r + dr} − P{r} =

[
−4P

r
+

8x dx

πr3
arccos

(
x

2r

)]
dr + o(dr)

r4dP + 4r3Pdr =
8x dx r

π
arccos

(
x

2r

)
dr + o(dr)

d

dr
(Pr4) =

8x dx r

π
arccos

(
x

2r

)
The integration of both sides gives

Pr4 =
4x2dx

π

∫
2r

x
arccos

(
x

2r

)
dr + C

Therefore,

Pr4 =
4x2dx

π

(
arccos

(
x
2r

)
r2

x
−

√
4r2 − x2

4

)

P =
4xdx

πr2

(
arccos

( x

2r

)
− x

2r

(
1− x2

4r2

) 1
2

)

Now let us compute E(Y ) where Y is the distance between the points.

E(Y ) =

∫ 2R

0

x
4x

πR2

(
arccos

( x

2R

)
− x

2R

(
1− x2

4R2

) 1
2

)
dx

First, replace x
2R = u for computing I1 =

4

πR2

∫
x2 arccos

( x

2R

)
dx, :

I1 =
4

πR2
8R3

∫
u2 arccos(u)du

Integration by parts with f = arccos(u), g′ = u2 gives

I1 =
4

πR2
8R3

(
u3arccos(u)

3
+

(1− u2)
3
2

9
−

√
1− u2

3

)

I1 =
4

πR2

(
x3 arccos( x

2R )

3
+

8R3(1− ( x
2R )2)

3
2

9
−

8R3
√

1− ( x
2R )2)2

3

)

I1 = −
4
(√

4R2 − x2
(
Rx2 + 8R3

)
− 3 |R|x3 arccos

(
x
2R

))
9πR2

∣∣R( x
2R )
∣∣

Substitute u = 4R2 − x2. We get

I2 = −
∫ 2x3

√
1− x2

4R2

πR3
dx = − 1

πR4

∫
x3
√

4R2 − x2

= − 1

πR4

(
1

2

∫
u

3
2 − 4R2

√
u du

)
=

(
24x2 + 64R2

) (
1− x2

4R2

) 3
2

15πR
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Since E(Y ) = (I1 + I2)|2R0 we finally obtain

E(Y ) =

(
−
√
4R2 − x2

(
9x4 + 8R2x2 + 64R4

)
− 60R2x3 arccos

(
x
2R

)
45πR4

)∣∣∣∣∣
2R

0

=
128

45π
R

Hence the mean is E(Y ) ≈ 0.9054R. Let us compute the variance of Y : Let x1 = (x, y) and x2 = (x′, y′). So, the
square of the distance between x1 and x2 is:

d2(x1, x2) = (x− x′)2 + (y − y′)2

Figure 2. The distance on a circle

Therefore,

E(Y 2) =

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

(x− x′)2 + (y − y′)2 dx dy dx′ dy′

By the polar coordinates x = r cos θ, y = r sin θ, x′ = r′ cos θ′, y′ = r′ sin θ′ we get

E(Y 2) =
1

π2R4

∫ 2π

0

∫ 2π

0

∫ R

0

∫ R

0

(r cos θ − r′cosθ′)2 + (r sin θ − r′ sin θ′)rr′ dr dr′ dθ dθ′

=
1

π2R4

∫ 2π

0

∫ 2π

0

∫ R

0

∫ R

0

r3r′ + (r′)3r dr dr′ dθ dθ′ = R2

Therefore V ar(Y ) = R2 −
(

128R
45π

)2

≈ 0.0934R2, which concludes the affirmation of the proposition.

Proposition 2.3. [4] Let S be a square of size R > 0 in R2. The distance d between two randomly selected points in S obeys
TPL.

Proof. To evaluate the expectation of the distance d =
√
(x− x′)2 − (y − y′)2, without loss of generality, we assume

R = 1 and calculate the integral

I =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
(x− x′)2 + (y − y′)2 dx′ dy′ dy dx

By symmetry, we write:

I = 4

∫ 1

0

∫ 1

0

∫ y

0

∫ x

0

√
(x− x′)2 + (y − y′)2 dx′ dy′ dy dx
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First substitute x′ 7→ xx′, y′ 7→ yy′:

I = 4

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
x2(1− x′)2 + y2(1− y′)2yxdx

′
dy

′
dydx

and then substitute x′ 7→ 1− x′, y′ 7→ 1− y′ we have:

I = 4

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
x2x′2 + y2y′2 yx dx′ dy′ dydx

After another substitution y2 = u, x2 = v:

I =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
vx′2 + uy′2 dx′ dy′ dudv

Finally with vx′2 = p, uy′2 = q:

I =

∫ 1

0

∫ 1

0

∫ y′2

0

∫ x′2

0

√
p+ q dpdq

dydw

y2w2

I =
2

3

∫ 1

0

∫ 1

0

∫ y′2

0

(
(q + w2)3/2 − q3/2

)
dq

dy′dx′

y′2y2

I =
4

15

∫ 1

0

∫ 1

0

(
(y′2 + y2)5/2 − y′5 − y5

) dy′dy

y′2y2

By symmetry:

I =
8

15

∫ 1

0

∫ y

0

(
(y′2 + y2)5/2 − y′5 − y5

) dy′dy

y′2y2

Substitute y′ = ys:

I =
8

15

∫ 1

0

∫ 1

0

y2
(
(1 + s2)5/2 − s5 − 1

) dsdy

s2

I =
8

45

∫ 1

0

(
(1 + s2)5/2 − s5 − 1

) ds

s2

I =
15s ln

(∣∣√s2 + 1 + s
∣∣)− 2s5 +

√
s2 + 1

(
2s4 + 9s2 − 8

)
+ 8

45s

∣∣∣∣∣
1

0

I =
5arsinh (1) +

√
2 + 2

15

This says that the mean of d is E(d) =
R

15
(arsinh (1) +

√
2 + 2) ≈ 0.5214R. Hence the variance V ar(d) is

E(d2)− E(d)2 =
R2

3
−
(
R

15

(
arsinh (1) +

√
2 + 2

))2

≈ 0.0615R2

where

E(d2) =
1

(R2)2

∫ R

0

∫ R

0

∫ R

0

∫ R

0

(x− x′)2 + (y − y′)2 dx dx′ dy dy′

Therefore TPL is V ar(d) = a(E(d))b which is satisfied for b = 2. As expectation is a function of R where variance is
a function of R2.
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Listing 1. Python simulation of mean and variance calculation
import math
import matplotlib.pyplot as plt
import pandas as pd
import os
from os.path import exists
import glob
from itertools import combinations

# Auxiliar functions

def Read_file(file_name):
with open(file_name) as file:

points = [(float(line.split()[-1]), float(line.split()[-2])) for line in
file]

return points

def Mean_and_Variance(file_name):
distances = []
points = Read_file(file_name)
for p1, p2 in combinations(points, 2):

distances.append(math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2))
mean = sum(distances) / len(distances)
variance = sum(d**2 for d in distances) / len(distances) - mean**2
return mean, variance

# Execution of the code

file_list = sorted(glob.glob("/path/to/files/*.txt"), key=os.path.getsize)[1:]
means = []
variances = []
for file_name in file_list:

mean, variance = Mean_and_Variance(file_name)
means.append(mean)
variances.append(variance)

coefA = [v / (e**2) for e, v in zip(means, variances)]

3. Main result
In this section, we answer the following question:
(*) Does the distance between the centers of the randomly chosen circles in a best packing in a square obeys TPL?
Let us consider a square in R2 and let n be the number of circles in a best packing. Using the data from [2] (In the
page, circles in square is used) , we proceed as follows:
1st operation. Assign the coordinates to n points P1, P2 . . . Pn each of which represent the center of a circle in the
best packing. For example, for n = 7 we list the data as

Circle x-coordinate y-coordinate
Circle 1 -0.325542369812990561040572795501 -0.325542369812990561040572795501
Circle 2 0.023372890561028316878281613499 -0.325542369812990561040572795500
Circle 3 0.325542369812990561040572795500 -0.151084739625981122081145591001
Circle 4 -0.325542369812990561040572795500 0.023372890561028316878281613499
Circle 5 0.023372890561028316878281613499 0.023372890561028316878281613499
Circle 6 0.300000000000000000000000000000 0.300000000000000000000000000000
Circle 7 -0.151084739625981122081145591001 0.325542369812990561040572795500
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2nd operation. Make a list of pairs (Pi, Pj) for all i ̸= j.
3rd operation. Compute the distance dij between each pair (Pi, Pj) and transfer the results to the list named as
"distances".
4th operation. Compute the mean and the variance using the dij ’s in the list "distances" and transfers the results to
the lists named "AllMeans" and "AllVariances" respectively.
5th operation. Store the mean and variance values in the same level in "AllMeans" and "AllVariances" respectively.
Then, compute the coefficient a in the formula TPL. Transfer the result to the list named "coefA".
6th operation. Constructing a loop on n. Note that, in [2], the author presents 3146 packings.

Theorem 3.1. The distance between two randomly chosen centers in a best circle packing satisfies TPL.

Proof. We will present a visual proof with results that we get from previous simulations. Figure 3a below resulting
from our algorithm represent the change of means with respect to the change of number of circles. On the other
hand, the Figure 3b the change of variances with respect to the change of number of circles.

Since the data in [2] contains 3146 packings, the step size is not 10000. The graph in Figure 4 shows the change of
variance with respect to the change of the number of circles.

(a) Mean change by step (b) Variance change by step
Figure 3. Mean and variance change by step

Fixing b = 2 in the formula TPL, the graph representing the change of coefficient a with respect to the change of
number of circles shows that a converges which concludes the empirical proof of TPL in our specific case.

Figure 4. Convergence of a

Taylor’s Power Law can be applied to the population density problems of a city or country ([6]). In this paper,
we showed that Circle Packing can be used as another method for population density problems.
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Abstract
Modifying the definition of density functions is one method used to generalise statistical convergence.
In the present study, we use sequences of modulus functions and order α ∈ (0, 1] to introduce a new
density. Based on this density framework, we define strong (fk)-lacunary summability of order α and
(fk)-lacunary statistical convergence of order α for a sequence of modulus functions (fk). This concept
holds an intermediate position between the usual convergence and the statistical convergence for lacunary
sequences. We also establish inclusion theorems and relations between these two concepts in the study.
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1. Introduction
The concept of statistical convergence was initially proposed by Zygmund [1] in his research. Independently,

Steinhaus [2] and Fast [3] also introduced this idea. Subsequently, Schoenberg [4] and numerous other mathe-
maticians further explored and analyzed this concept. Statistical convergence and some derived concepts were
introduced and studied in a variety of sequences. Following the demonstration of statistical convergence, the
subject has been approached from many angles and various extensions have been produced. In particular, using
functions belonging to different classes and sequences belonging to some classes, classes of sequences with statistical
convergence have been derived. Meanwhile, it has been established that there is a relationship between statistical
convergence and Cesàro summability, and this relationship has been revealed. Since the pioneering studies of Salat
[5] and Fridy [6], statistical convergence has become a highly active area of research within summability theory.

The concept of asymptotic (or natural) density is the fundamental tool in statistical convergence, and it is defined
for a set K ⊆ N+ as δ(K) = lim

n→∞
n−1 |{k ≤ n : k ∈ K}|whenever the limit exists. Here, the vertical bars indicate the

cardinality of the enclosed set. So, δ (A) = 0 for the finite set A, δ (N�A) = 1− δ (A) and δ (A) ≤ δ (B) whenever
A ⊆ B.
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Base on the concept of natural density, a sequence of numbers (xk) is said to be statistical convergent to some
number x if for each positive number ε > 0,

lim
n→∞

n−1 |{k ≤ n : |xk − x| ≥ ε}| = 0

whenever limit exists. In that case, x is called statistical limit of (xk) and is written as S − limxk = x or xk → x (S).
In literature, there exists generalizations of statistical convergence. For instance, a sequence (xk) is statistically

convergent of order α ∈ (0, 1] to some number x if for each ε > 0,

lim
n→∞

n−α |{k ≤ n : |xk − x| ≥ ε}| = 0.

whenever limit exists (see [7] and [8]).
All statistically convergent sequences and all statistically convergent sequences of order α will be denoted by S

and Sα respectively.
The notions of lacunary summability and convergence with lacunary sequences were established by Fridy and

Orhan ([9] and [10]). A lacunary sequence θ = (kr)r∈N is an increasing sequence of integers such that k0 = 0 and
lim
n→∞

(kr − kr−1) =∞. For lacunary sequences, we use the notations hr = kr − kr−1, Ir = (kr−1, kr] and qr = kr
kr−1

.

For the sake of brevity, the set of all lacunary sequences of integers will be denoted by LS(Z).
A sequence (xk) is lacunary statistically convergent and, respectively, lacunary statistically convergent of order

α to some number L if for every ε > 0,

lim
r→∞

1

hr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0

and, respectively,

lim
r→∞

1

hαr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0

whenever limit exists. All lacunary statistically convergent sequences and all lacunary statistically convergent se-
quences of order α are denoted by Sθ and Sαθ , respectively. Lacunary statistically convergent, lacunary boundedness
order α and strongly summable sequences of order α have been studied by Connor [11], Çolak [12], Şengül and
Et in [13], [14]. Pehlivan and Fisher [15] introduce the concept of lacunary strong convergence with respect to a
sequence of modulus functions in a Banach spaces.

The modulus function is the other idea we employ in our research. A function f : [0,∞)→ [0,∞) is referred
modulus provided that the following conditions hold:

i. f(v) = 0⇔ v = 0

ii. f(v1 + v2) ≤ f(v1) + f(v2) for every v1, v2 ∈ [0,∞)

iii. f is increasing

iv. f is continuous from the right at 0.

Although the continuity of any modulus function is obvious, a modulus function need not to be bounded.
For instance, the modulus f(v) = log(v + 1) is unbounded, while g(v) = v

v+1 is a bounded modulus function.
For any modulus f and for every m ∈ N+, the inequality f(mv) ≤ mf(v) and so that f(m) ≤ mf(1) holds from
the condition (ii). The notion of modulus was first established by Nakano [16] and subsequently, Ruckle [17],
established a new sequence spaces by a modulus function f and these sequence spaces were then used in many
researches (for example see [18], [19], [20], [21]).

The space of sequences of unbounded modulus functions F = (fk) such that lim
u→0+

sup
k∈N

fk (u) = 0 will be denoted

byMub.
Changing definition of the density function is one method used to distinguish the statistical convergence.

Researchers have explored various generalizations of the concept of asymptotic density. One of these is the density
f− given by Aizpuru et al. [22], which is obtained by employing modulus functions.
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Definition 1.1. [22] Let f be an unbounded modulus function. The f -density of a set N is defined by

df (A) = lim
n→∞

f (|A|)
f (n)

in case this limit exists.

Base on this density, Aizpuru et al. [22] defined f -statistical convergence in normed space as follows.

Definition 1.2. [22] Let f be an unbounded modulus function. The sequence (xn) in the normed space X is called
f−statistical convergence to x ∈ X if for every ε > 0,

lim
n→∞

f (|{n ∈ N : ‖xn − x‖ > ε}|)
f (n)

= 0.

Obviously, if the modulus function is the identity function, f -statistical convergence coincides with statistical
convergence, and since the f -density of a finite set is zero, topological convergence coincides with f -statistical
convergence. Consequently, f -statistical convergence lies between ordinary convergence and statistical convergence.
Recently, Bhardwaj and Dhawan [23] proposed f -statistical convergence of order α and strong Cesàro summability
of order α with respect to a modulus f , using the fα-density of a set A ⊆ N. León-Saavedra [24] proved results
related to a characterization of the modulus f for cases where f -strong Cesàro convergence coincides with f -
statistical convergence and uniform integrability. In addition, İbrahim and Çolak [25] introduced strong lacunary
summability of order α via a modulus function.

This paper aims to introduce and study the concept of lacunary statistical convergence and lacunary summability
according to a sequence of modulus for number sequences, using fα-density. This study is motivated by the work
of Pehlivan and Fisher [15], Bhardwaj and Dhawan [23], and İbrahim and Çolak [25].

2. Main results
For each α ∈ R such that α > 1, lacunary statistical convergence is not well defined (see [14], [13]). Therefore, in

the rest of article, we consider the case α ∈ (0, 1].

2.1 Lacunary summability using a sequence of modulus
We proposed a slight generalisation of strongly lacunary summability of order α by using a sequence of modulus

functions. Depending on this definition, inclusion relations are given under certain conditions.

Definition 2.1. Suppose F = (fk) ⊂ Mub, θ = (kr) ∈ LS(Z). The sequence (zk) ⊂ C is strongly Fα−lacunary
summable (briefly Nα

θ (F )−summable) to some L ∈ C provided that

lim
r→∞

1

hαr

∑
k∈Ir

fk (|zk − L|) = 0.

holds and this is denoted by zk → L(Nα
θ (F )) or Nα

θ (F )− limk zk = L. The set of all Nα
θ (F )-summable sequences

is denoted by Nα
θ (F ), i.e.

Nα
θ (F ) = {(zk) : lim

r→∞

1

hαr

∑
k∈Ir

fk(|zk − L|) = 0 for some L ∈ C}.

Remark 2.1. Note that in this definition, the modulus functions fk are not required to be unbounded. On the other
hand, for a sequence of modulus functions F = (fk),

i. Nα
θ (F )- summability is reduced to Nθ− summability in the particular case α = 1 and fk(v) = v for all k ∈ N

(see [26] ).

ii. Nα
θ (F )- summability is reduced to Nα

θ − summability in the particular case fk(v) = v for all k ∈ N (see [7] ).

iii. Nα
θ (F )- summability is reduced to Nα

θ (f)−summability in the particular case α = 1 and fk = f for all k ∈ N
and for a modulus function f (see [15] ).

Theorem 2.1. Suppose F = (fk) ⊂Mub and G = (gk) ⊂Mub, α1, α2 ∈ (0, 1] such that α1 ≤ α2 and θ = (kr) ∈ LS(Z).
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i. If sup
u,k

fk(u)
gk(u)

<∞ holds then Nα1

θ (G) ⊂ Nα2

θ (F ).

ii. If inf
u,k

fk(u)
gk(u)

> 0 holds then Nα1

θ (F ) ⊂ Nα2

θ (G).

iii. If 0 < inf
u,k

fk(u)
gk(u)

≤ sup
u,k

fk(u)
gk(u)

<∞ holds then Nα1

θ (F ) = Nα1

θ (G).

Note that infimum and supremum are taken over all u ∈ (0,∞) and k ∈ N.

Proof. Choose z = (zk) ∈ Nα1

θ (G). If p = sup
u,k

fk(u)
gk(u)

< ∞ holds then 0 < fk(u)
gk(u)

≤ p and hence fk(u) ≤ pgk(u)

holds for all k ∈ N and for any u ∈ R+ ∪ {0}. On the other hand, since 0 < α1 ≤ α2 ≤ 1, we have the following
inequalities:

1

hα2
r

∑
k∈Ir

fk(|zk − l|) ≤
1

hα1
r

∑
k∈Ir

fk(|zk − l|) ≤
1

hα1
r

∑
k∈Ir

pgk(|zk − l|)

Taking limit as r →∞, strongly Nα1

θ (G)−summability to l ∈ C of (zk) implies that z = (zk) ∈ Nα1

θ (F ).
In the proof of (ii), if q = inf

u,k

fk(u)
gk(u)

> 0 holds then gk (u) ≤ 1
q fk (u) for every u ∈ R+ ∪{0} and for all k ∈ N. Thus,

the rest of the proof is exactly similar to (i). Moreover, (iii) is a consequence of (i) and (ii).

Remark 2.2. Let us choose α1 = α2 = 1 and F = (fk) ⊂ Mub and G = (gk) ⊂ Mub such that fk (u) = ku
u+1

and gk (u) = 2ku for all k ∈ N. Considering the sequence in Example 3.1 in [25], we obtain that the inclusion
Nα1

θ (G) ⊂ Nα2

θ (F ) is strict.

Corollary 2.1. Suppose that F = (fk) ⊂ Mub and G = (gk) ⊂ Mub, θ = (kr) ∈ LS(Z), and α1, α2 ∈ (0, 1] such that
α1 ≤ α2. Then the following assertions hold:

i. If sup
u,k

fk(u)
gk(u)

<∞ or inf
u,k

gk(u)
fk(u)

> 0 then Nα1

θ (G) ⊂ Nα1

θ (F ),

ii. If sup
u,k

fk(u)
gk(u)

<∞ or inf
u,k

gk(u)
fk(u)

> 0 then Nθ (G) ⊂ Nθ (F ),

iii. Nα1

θ (F ) ⊂ Nα2

θ (F ).

Note that, supremum is taken over all u ∈ (0,∞) and k ∈ N in (i) and (ii).

Corollary 2.2. Suppose that F = (fk) ⊂ Mub and G = (gk) ⊂ Mub, θ = (kr) ∈ LS(Z), and α1, α2 ∈ (0, 1] such that
α1 ≤ α2. Then the following assertions hold:

i. If sup
u,k

fk(u)
u <∞ then Nα1

θ ⊂ N
α2

θ (F ),

ii. If sup
u,k

fk(u)
u <∞ then Nα1

θ ⊂ N
α1

θ (F ),

iii. If inf
u,k

fk(u)
u > 0 then Nα1

θ (F ) ⊂ Nα2

θ ,

iv. If inf
u,k

fk(u)
u > 0, then Nα1

θ (F ) ⊂ Nα1

θ

v. If 0 < inf
u,k

fk(u)
u ≤ sup

u,k

fk(u)
u <∞ then Nα1

θ (F ) = Nα1

θ .

Corollary 2.3. Suppose that F = (fk) ⊂Mub, α1, α2, γ ∈ (0, 1] such that α1 ≤ α2 ≤ γ, and θ = (kr) ∈ LS(Z). Then the
following assertions hold:

i. If there exists a modulus function f such that fk ≤ f for every k ∈ N then Nα1

θ (f) ⊂ Nα2

θ (F ) holds,

ii. If there exists a modulus function f such that g ≤ fk for every k ∈ N then Nα1

θ (F ) ⊂ Nα2

θ (g) holds,
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iii. If there exists a modulus function f and g such that g ≤ fk ≤ f for every k ∈ N then Nα1

θ (f) ⊂ Nα2

θ (F ) ⊂ Nγ
θ (g)

hold.

Proof. The proof of (i) is clear from Theorem 2.1(i) since the inequality fk ≤ f for every k ∈ N implies sup
u,k

fk(u)
f(u) <∞.

Similarly, the proof of (ii) is follows from Theorem 2.1(ii) since the inequality g ≤ fk for every k ∈ N implies
inf
u,k

fk(u)
g(u) > 0. Hence, (iii) is a consequence of (i) and (ii).

2.2 Lacunary statistically convergence using a sequence of modulus
In this section, we introduced a new concept of lacunary statistical convergence of order α by using sequences of

modulus functions. By some given inclusion theorems, we establish some relations between lacunary summability
and lacunary statistical convergence under certain conditions.

We firstly define a density with the help of sequence of modulus functions and order α ∈ (0, 1] as follows:

Definition 2.2. The density ofA ⊆ N+ with respect to a sequence of unbounded modulus functions F = (fk) ⊂Mub

and order α ∈ (0, 1] is defined by the following limit

δFα (A) = lim
r→∞

fr (|{k ≤ r : k ∈ A}|)
fr (rα)

whenever the limit exists. The abbreviation for this density is referred to as Fα-density.

Remark 2.3. Obviously,

i. If α = 1 and fk (x) = x for all k ∈ N then Fα−density is reduced to the natural density (see [3]),

ii. If α ∈ (0, 1] and fk (x) = x for all k ∈ N then Fα−density is reduced to the α−density (see [7]),

iii. If α = 1 and fk (x) = f (x) for all k ∈ N and for f ∈M then Fα−density is reduced to the f−density (see [22]),

iv. If α ∈ (0, 1] and fk (x) = f (x) for all k ∈ N and for f ∈M then Fα−density is reduced to the fα-density (see
[23]).

Similar to other density types, we may provide an alternative form of the lacunary statistical convergence in
relation to the Fα−density in the following manner.

Definition 2.3. Suppose that F = (fk) ⊂Mub, θ = (kr) ∈ LS(Z). The sequence (zk) ⊂ C is Fα-lacunary statistically
convergent (shortly Sαθ (F )-convergent) to some l ∈ C provided that for every ε > 0

lim
r→∞

1

fr(hαr )
fr(|{k ∈ Ir : |zk − l| ≥ ε}|) = 0.

holds and this is denoted by zk → l(Sαθ (F )) or Sαθ (F )− limk zk = l. The class of all Sαθ (F )-convergent sequences is
denoted by Sαθ (F ), i.e.

Sαθ (F ) = {(zk) : lim
r→∞

1

fr(hαr )
fr(|{k ∈ Ir : |zk − l| ≥ ε}|) = 0 for some l ∈ C}.

Now, we can establish some inclusion theorems between F−lacunary summability of order α and F−lacunary
statistically convergence of order α.

Theorem 2.2. Suppose that F = (fk) ⊂Mub,G = (gk) ⊂Mub, α1, α2 ∈ (0, 1] such that α1 ≤ α2 and θ = (kr) ∈ LS(Z).
If inf
u,k

fk(u)
gk(u)

> 0 and lim
u→∞

gk(u)
u > 0 for all k, then Nα1

θ (F )-summability implies Sα2

θ (G)−statistically convergence, i.e.

Nα1

θ (F ) ⊂ Sα2

θ (G).

Proof. Choose a sequence (zk) which is Nα1

θ (F )-summable to l ∈ C. From the assumption, q = inf
u,k

fk(u)
gk(u)

> 0 implies

that qgk (u) ≤ fk (u) holds for every k ∈ N and for every u ∈ R+ ∪ {0}. Due to (zk) is Nα1

θ (F )−summable to l ∈ C,
we have
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1

hα1
r

∑
k∈Ir

fk(|zk − l|) ≥ q
1

hα1
r

∑
k∈Ir

gk(|zk − l|)

≥ q 1

hα2
r

∑
k∈Ir

gk(|zk − l|)

= q
1

hα2
r

∑
k∈Ir,|zk−l|≥ε

gk(|zk − l|) + q
1

hα2
r

∑
k∈Ir,|zk−l|<ε

gk(|zk − l|)

≥ q 1

hα2
r

∑
k∈Ir,|zk−l|≥ε

gk(|zk − l|)

≥ q 1

hα2
r
|{kεIr : |zk − l| ≥ ε}| gr(ε).

where gr(ε) = inf
k∈Ir

gk(ε). Since |{k ∈ Ir : |zk − l| ≥ ε}| ∈ Z+, the following inequality holds:

1

hα1
r

∑
k∈Ir

fk(|zk − l|) ≥
1

hα2
r

inf
k∈Ir

gk(|{k ∈ Ir : |zk − l| ≥ ε}|)
inf
k∈Ir

gk(ε)

inf
k∈Ir

gk(1)
q

=
gr(|{k ∈ Ir : |zk − l| ≥ ε}|)

gr (h
α2
r )

gr (h
α2
r )

hα2
r

gr(ε)

gr(1)
q.

As the limit r →∞, we conclude that (zk) ∈ Nα1

θ (F ) implies (zk) ∈ Sα2

θ (G).

Remark 2.4. However, Sα2

θ (G)−statistically convergent a sequence do not need to be Nα1

θ (F )−summable. This
observation is evident by referring to Example 3.2 in [25] where we consider fk (u) = gk (u) = u for all k ∈ N.

Corollary 2.4. Suppose that F ∈Mub, θ = (kr) ∈ LS(Z), and α1, α2 ∈ (0, 1] such that α1 ≤ α2. If lim
u→∞

fk(u)
u > 0 holds

for all k ∈ N then Nα1

θ (F )-summability implies Sα2

θ (F )-statistical convergence, i.e. Nα1

θ (F ) ⊆ Sα2

θ (F ).

Proof. Proof is clear by taking F = G in the last Theorem 2.2.

Corollary 2.5. Suppose that F,G ∈ Mub, α ∈ (0, 1] and θ = (kr) ∈ LS(Z). If inf
u,k

fk(u)
gk(u)

> 0 and lim
u→∞

gk(u)
u > 0 for all

k ∈ N, then Nα
θ (F )-summability implies Sαθ (G)-statistical convergence, i.e. Nα

θ (F ) ⊆ Sαθ (G).

Proof. It is consequence of Theorem 2.2 by taking α2 = α.

Corollary 2.6. Suppose that F ∈ Mub, α ∈ (0, 1] and θ = (kr) ∈ LS(Z). If inf
u,k

fk(u)
u > 0 then Nα

θ (F )-summability

implies Sαθ -statitically convergence, i.e. Nα
θ (F ) ⊆ Sαθ and particularly, Nα

θ (F ) ⊆ Sθ whenever α = 1.

Proof. Proof is clear by taking gk(u) = u for all k ∈ N and α = α2 in Corollary 2.4.

Theorem 2.3. Suppose that F = (fk) , G = (gk) ∈ Mub, 0 < α1 ≤ α2 ≤ 1, and θ = (kr), ψ = (sr) ∈ LS(Z) such that
Ir ⊂ Jr for each r ∈ N. If sup

u,k

gk(u)
u < ∞ and lim

r→∞
sr−sr−1

(kr−kr−1)α2
= 1, then each Sα1

θ (F )-convergent bounded sequence is

Nα2

ψ (G)−summable, i.e. `∞∩ Sα1

θ (F ) ⊂ Nα2

ψ (G).

Proof. Suppose that Ir = (kr−1, kr], Jr = (sr−1, sr], hr = kr − kr−1, vr = sr − sr−1 and 0 < α1 ≤ α2 ≤ 1. Choose
(zk) ∈ `∞ ∩ Sα1

θ (F ) such that zk → l(Sα1

θ (F )). Firstly, we will show that Sα1

θ (F ) ⊂ Sα1

θ . Since (zk) ∈ Sα1

θ (F ), for
every ε > 0, we have

lim
r→∞

1

fr(h
α1
r )

fr(|{k ∈ Ir : |zk − l| ≥ ε}|) = 0.

Hence, given p ∈ Nwe can find a natural number r0 such that,
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fr(|{kεIr : |zk − l| ≥ ε}|) ≤
1

p
fr(h

α1
r ) ≤ 1

p
pfr(

hα1
r

p
) = fr(

hα1
r

p
)

for r > r0. Since fr are increasing modulus functions, we have,

1

hα1
r
|{kεIr : |zk − l| ≥ ε}| ≤

1

p
.

It means that the inclusion Sα1

θ (F ) ⊂ Sα1

θ holds and hence `∞∩ Sα1

θ (F ) ⊂ `∞∩ Sα1

θ . From the assumptions
lim
r→∞

vr
h
α2
r

= 1 and Ir ⊂ Jr for each r ∈ N, we have `∞ ∩ Sα1

θ ⊂ N
α2

ψ (see Theorem 2.14, [14]) and Nα2

θ ⊂ N
α2

ψ (G) holds

by Corollary 2.2(ii) since the assumption sup
u,k

gk(u)
u <∞. It follows that `∞∩ Sα1

θ (F ) ⊂ Nα2

ψ (G) holds.

Remark 2.5. For F,G ∈Mub, the inclusion `∞∩ Sα1

θ (F ) ⊂ Nα2

θ (G) may be strict. This fact can be seen from Example
3.3 in [25] if we take fk (u) = gk (u) = u for all k ∈ N.

Corollary 2.7. Suppose that F = (fk) ∈ Mub, θ = (kr), ψ = (ωr) ∈ LS(Z) such that Ir ⊂ Jr for every r ∈ N, and
0 < α1 ≤ α2 ≤ 1 . If sup

u,k

fk(u)
u <∞ for all k ∈ N and lim

r→∞
vr
h
α2
r

= 1, then the following assertions hold:

i. `∞ ∩ Sα1

θ (F ) ⊂ Nα2

ψ (F ),

ii. `∞ ∩ Sα1

θ (F ) ⊂ Nα1

ψ (F ),

iii. `∞ ∩ Sα1

θ ⊂ N
α1

ψ (F ).

In case modulus functions are bounded, a result similar to the above can be obtained.

Theorem 2.4. Suppose that F = (fk) ∈Mub, θ = (kr) ∈ LS(Z) and 0 < α1 ≤ α2 ≤ 1. Then, Sα1

θ (F ) ⊂ Nα1

θ (F ) holds
provided that sup

u>0
sup
n∈N

fn (u) <∞.

Proof. Assume that sup
u>0

sup
n∈N

fn (u) <∞ holds and define T = sup
u>0

T (u) where T (u) = sup
n∈N

fn (u). Choose an arbitrary

element z = (zk) ∈ Sα1

θ (F ) which is Sα1

θ (F )−convergent to l ∈ C. As shown in the proof of Theorem 2.3,
Sα1

θ (F ) ⊂ Sα1

θ is satisfied. Hence lim
r→∞

1
h
α1
r
|{kεIr : |zk − l| ≥ ε}| = 0 holds. On the other hand, we obtain the

following inequality:

1

hα1
r

∑
k∈Ir

fk (|zk − l|) =
1

hα1
r

∑
k∈Ir,|zk−l|≥ε

fk(|zk − l|) +
1

hα1
r

∑
k∈Ir,|zk−l|<ε

fk(|zk − l|)

≤ 1

hα1
r
T |{kεIr : |zk − l| ≥ ε}|+

1

hα1
r
hrT.

Taking the limit r →∞, it follows that lim
r→∞

1
h
α1
r

∑
k∈Ir fk (|zk − l|) = 0, i.e. z = (zk) ∈ Nα1

θ (F ).

3. Concluding remarks and future directions

In this study, the categories of strongly lacunary summable sequences and lacunary statistically convergent
sequences of numbers were introduced by employing a sequence of modulus functions. Furthermore, inclusion
theorems have been established to compare these sets, which depend on parameters such as α, lacunary sequences,
and sequences of modulus.

Statistical convergence is frequently employed in applied mathematics. Typically, a sequence is considered
to converge statistically to a point when the majority of its elements approximate that point closely. However,
achieving this majority often necessitates disregarding many terms in practice. In numerous applications, this
approach to statistical convergence can be overly abrupt, resulting in the exclusion of elements from the sequence.
Employing modulus functions offers a precise method for maintaining terms without discarding them.

As similar to other types of density functions, in this study, a density function defined by a sequence of
unbounded modules and a real number has been used. By using a sequence of module functions instead of a single
constant module function, the number of neglected terms will be much lower. Therefore, it can be considered as a
method to somewhat improve statistical convergence and summability methods.

This research paper could be a resource for obtaining further advanced results. For example, by selecting
different sequences of modulus functions used in various applied fields, application-specific sequence spaces can
be obtained.
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Abstract
The main purpose in this study is to investigate some topological and algebraic properties of the absolutely
double series spaces |C1,1|k defined by combining the first order Cesàro means with the concept of
absolute summability for k ≥ 1. Beside this, we determine the α−dual of the space |C1,1|1 and the
β (bp)− and γ−duals of the spaces |C1,1|k for k ≥ 1. Finally, we characterize some new four-dimensional
matrix classes

(
|C1,1|k , υ

)
,
(
|C1,1|1 , υ

)
,
(
|C1,1|1 ,Lk

)
,
(
|C1,1|k ,Lu

)
,
(
Lu, |C1,1|k

)
and

(
Lk, |C1,1|1

)
, where

υ ∈ {Mu, Cbp} for 1 ≤ k <∞. Hence, some important results concerned on Cesàro matrix summation
methods have been extended to double sequences.

Keywords: Double sequences, Dual spaces, Four dimensional Cesàro matrix, Four dimensional matrix transformations,
Pringsheim convergence
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1. Introduction
Recently, studies on the generalization of single sequence spaces to double sequence spaces have increased.

Important studies on some double sequence spaces are included in [1–12]. Using Cesàro and weighted means for
single series, Hazar, Hazar and Sarıgöl [13–15] have defined new series spaces. Later, Sarıgöl has extended some
results to doubly infinite series by two dimensional weighted means [16]. Further, Başar and Sever have introduced
the Banach space Lk of double sequences corresponding to the well-known classical sequence space `k of single
sequences [17].Also, for the special case k = 1, the space Lk is reduced to the space Lu, which was introduced by
Zeltser [18].

A double sequence x = (xrs) is a double infinite array of elements xrs for all r, s ∈ N, where N = {1, 2, ...} . We
denote the set of all complex-valued double sequences by Ω which is a vector space with coordinatewise addition
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and scalar multiplication of double sequences. Any vector subspace of Ω is called as a double sequence space.
A double sequence x = (xrs) of complex numbers is called bounded if

‖x‖∞ = supm,n∈N |xmn| <∞. The space of all bounded double sequences is denoted byMu which is a Banach space
with the norm ‖.‖∞ .Consider the double sequence x = (xmn) ∈ Ω. If for every ε > 0 there exists n0 = n0 (ε) ∈ N and
L ∈ C such that |xmn − L| < ε for allm,n > n0, then we say that the double sequence x = (xmn) is convergent in the
Pringsheim’s sense to the limit point L, where C denotes the complex field. Then, we write p− limm,n→∞ xmn = L
and L ∈ C is called the Pringsheim limit of x. The space of all convergent double sequences in the Pringsheim’s
sense is denoted by Cp. Unlike single sequences, p−convergent double sequences need not be bounded. Namely,
the set Cp −Mu is not empty. So, we consider the set Cbp of double sequences which are both convergent in the
Pringsheim’s sense and bounded, i.e, Cbp = Cp ∩Mu. Hardy [19] proved that a sequence in the space Cp is said to
be regularly convergent if it is a single convergent sequence with respect to each index and the space of all such
double sequences is denoted by Cr.

Here and after, we assume that υ denotes any of the symbols p, bp or r, and k′ denotes the conjugate of k, that is,
1
k + 1

k′ = 1 for 1 < k <∞, and 1
k′ = 0 for k = 1.

Let x = (xmn) be a double sequence and define the sequence s = (smn) as

smn =

m∑
i=1

n∑
j=1

xij

for all m,n ∈ N. For brevity, here and in what follows we use the abbreviation
∑m,n
i,j=1 xij for the summation∑m

i=1

∑n
j=1 xij . Then, the pair of (x, s) is called as a double series and is denoted by

∑∞
i,j=1 xij , or briefly by

∑
i,j xij .

Let λ be a space of double sequence, converging with respect to some linear convergence rule υ − lim : λ→ C. The
sum of a double series

∑
i,j xij according to this rule is defined by υ −

∑
i,j xij = υ − limm,n→∞ smn.

Let us consider double sequence spaces λ and µ, and four dimensional infinite matrix A = (amnij) . Then we say
that A defines a matrix mapping from λ into µ if for every double sequence x = (xij) ∈ λ, Ax = {(Ax)mn}i,j∈N , the
A- transform of x, is in µ, where

(Ax)mn = υ −
∑
i,j

amnijxij (1.1)

provided that the double series exists for each m,n ∈ N. By (λ, µ) , we denote the set of such all four dimensional
matrices transforming the space λ into the space µ. Thus, A = (amnij) ∈ (λ, µ) if and only if the double series on
the right side of (1.1) converges in the sense of υ for each m,n ∈ N and Ax ∈ µ for all x ∈ λ.

The α− dual λα, β (υ)− dual λβ(υ) in regard to the υ−convergence for υ ∈ {p, bp, r} , and the γ − dual λγ of a
double sequence space λ are respectively described as

λα :=

ε = (εij) ∈ Ω :
∑
i,j

|εijxij | <∞ for all (xij) ∈ λ

 ,

λβ(υ) :=

ε = (εij) ∈ Ω : υ −
∑
i,j

εijxij exists for all (xij) ∈ λ

 ,

and

λγ :=

ε = (εij) ∈ Ω : sup
m,n∈N

∣∣∣∣∣∣
m,n∑
i,j=1

εijxij

∣∣∣∣∣∣ <∞ for all (xij) ∈ λ

 .

The υ−summability domain λ
(υ)
A of a four dimensional complex infinite matrix A = (amnij) in a space λ of

double sequences is introduced by

λ
(υ)
A =

x = (xij) ∈ Ω : Ax =

υ −∑
i,j

amnijxij


m,n∈N

exists and is in λ

 .

The four dimensional Cesàro matrix C = (cmnij) of order one is defined by

cmnij =

{
1
mn , 1 ≤ i ≤ m, 1 ≤ j ≤ n

0, otherwise
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for all m,n, i, j ∈ N.
Let

∑
i,j xij be a doubly infinite series with partial sums (smn) . The Cesàro mean Tmn of order one of a double

sequence s = (smn) is defined by

Tmn =
1

mn

m∑
i=1

n∑
j=1

sij , (m,n ∈ N) .

We say that s = (smn) is (C, 1, 1) summable or double Cesàro summable to some number ` if

p− limTmn = `.

From the notation of Rhoades [20], a double series
∑
i,j xij is called absolutely double Cesàro summable |C, 1, 1|k ,

k ≥ 1, if
∞∑
m=1

∞∑
n=1

(mn)
k−1 ∣∣∆̄Tmn∣∣k <∞,

where, for m,n ≥ 2,
∆̄Tm1 = Tm1 − Tm−1,1 ,

∆̄T1n = T1n − T1,n−1,

∆̄Tmn = Tmn − Tm−1,n − Tm,n−1 + Tm−1,n−1.

Further, it is easily seen that

Tmn =
1

mn

m∑
i=1

n∑
j=1

sij =
1

mn

m∑
i=1

n∑
j=1

xij (m− i+ 1) (n− j + 1) .

So, we have for m,n = 1,
∆̄T11 = x11, (1.2)

and, for m,n ≥ 2,

∆̄Tm1 =
1

m (m− 1)

m∑
i=2

xi1 (i− 1) , (1.3)

∆̄T1n =
1

n (n− 1)

n∑
j=2

x1j (j − 1) , (1.4)

and

∆̄Tmn =

m∑
i=2

n∑
j=2

xij (i− 1) (j − 1)

(m− 1) (n− 1)mn
. (1.5)

Now, referring Sarıgöl [16], we show the double series space |C1,1|k by the set of all series summable by absolutely
double Cesàro summability method of order one |C, 1, 1|k , that is,

|C1,1|k =

x = (xij) ∈ Ω :
∑
i,j

xij is summable |C, 1, 1|k

 .

More recently, Mursaleen and Başar [12] have introduced the spaces M̃u, C̃p, C̃bp, C̃r and L̃u of double sequences
whose Cesàro transforms of order one are in the spacesMu, Cp, Cbp, Cr and Lu, respectively. Also, they examine
some properties of those sequence spaces, determine certain dual spaces and give some matrix characterizations.
In this paper, we investigate some topological and algebraic properties of the absolutely double series spaces
|C1,1|k for k ≥ 1 taking account of the first order double Cesàro means with the concept of absolute summability.
Beside this, we determine the alpha-dual of the space |C1,1|1 and the β (bp)− and γ−duals of the spaces |C1,1|k for
k ≥ 1. Finally, we characterize some new four-dimensional matrix classes

(
|C1,1|k , υ

)
,
(
|C1,1|1 , υ

)
,
(
|C1,1|1 ,Lk

)
,(

|C1,1|k ,Lu
)
,
(
Lu, |C1,1|k

)
and

(
Lk, |C1,1|1

)
, where υ ∈ {Mu, Cbp} for 1 ≤ k <∞.

.
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2. Double series spaces of first order Cesàro means

In this section, we give some new results on the absolutely double Cesàro spaces |C1,1|k for k ≥ 1. Also, we
determine the α− dual of the space |C1,1|1 , β (bp)− and γ−duals of the spaces |C1,1|k for 1 ≤ k <∞.

Theorem 2.1. The set |C1,1|k becomes a linear space with the coordinatewise addition and scalar multiplication, and |C1,1|k
is a Banach space with the norm

‖x‖|C1,1|k
=

( ∞∑
m=1

∞∑
n=1

(mn)
k−1 ∣∣∆̄Tmn∣∣k)1/k

, (2.1)

which is linearly norm isomorphic to the space Lk for 1 ≤ k <∞.

Proof. Since the initial assertion is routine verification and so we omit it.
To prove the fact that |C1,1|k is norm isomorphic to the space Lk, we should show the existence of a linear and

norm preserving bijection between the spaces |C1,1|k and Lk for 1 ≤ k <∞. Consider the transformation B defined
by

B : |C1,1|k → Lk

x→ y = B (x)

where B (x) = (ymn) is defined by
Bmn (x) = ymn = (mn)

1−1/k
∆̄Tmn (2.2)

for m,n ≥ 1 and ∆̄Tmn is as in (1.2− 1.5). The linearity of B is clear. Also, x = θ whenever B (x) = θ, which says
us that B is injective.

Let y = (ymn) ∈ Lk and define the sequence x = (xmn) via y by

xmn =
1

(n− 1) (m− 1)

[
m1/k (m− 1)

(
ymnn

1/k (n− 1)− ym,n−1 (n− 1)
1/k

(n− 2)
)

(2.3)

− (m− 1)
1/k

(m− 2)
(
ym−1,nn

1/k (n− 1)− ym−1,n−1 (n− 1)
1/k

(n− 2)
)]
,

xm1 =
1

m− 1

[
m1/k (m− 1) ym1 − (m− 1)

1/k
(m− 2) ym−1,1

]
, (2.4)

x1n =
1

n− 1

[
n1/k (n− 1) y1n − (n− 1)

1/k
(n− 2) y1,n−1

]
, (2.5)

for m,n ≥ 2, and
x11 = y11. (2.6)

In that case, it seen that

‖x‖|C1,1|k
= ‖B (x)‖Lk

=

(∑
m,n

|Bmn (x)|k
)1/k

= ‖y‖Lk
<∞

for 1 ≤ k <∞. So, this yields that B is surjective and norm preserving. Thus, B is a linear and norm preserving
bijection which says the spaces |C1,1|k and Lk are norm isomorphic for 1 ≤ k <∞, as desired.

Now, we may show that |C1,1|k is a Banach space with norm defined by (2.1). To prove this, we can consider
"Let (X, ρ) and (Y, σ) be semi-normed spaces and z : (X, ρ)→ (Y, σ) be an isometric isomorphism. Then (X, ρ) is
complete if and only if (Y, σ) is complete. In particular, (X, ρ) is a Banach space if and only if (Y, σ) is a Banach
space." which can be found section (b) of Corollary 6.3.41 in [21]. Since the transformation B defined from |C1,1|k
into Lk by (2.2) is an isometric isomorphism and the double sequence space Lk is a Banach space from Theorem 2.1
in [17], we deduce that the space |C1,1|k is a Banach space. This is the result that we desired.

Now we have the following significant lemma, which will be used in the following theorems in order to calculate
the α−, β (bp)− and γ−duals of the spaces |C1,1|k for k ≥ 1.
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Lemma 2.1. [22] LetA = (amnij) be any four dimensional infinite matrix. At that case, the following statements are satisfied:
(a) Let 0 < k ≤ 1. Then, A ∈ (Lk,Mu) iff

ξ1 = sup
m,n,i,j∈N

|amnij | <∞. (2.7)

(b) Let 1 < k <∞. Then, A ∈ (Lk,Mu) iff

ξ2 = sup
m,n∈N

∑
i,j

|amnij |k
′

<∞. (2.8)

(c) Let 0 < k ≤ 1 and 1 ≤ k1 <∞. Then, A ∈ (Lk,Lk1) iff

sup
i,j∈N

∑
m,n

|amnij |k1 <∞.

(d) Let 0 < k ≤ 1.Then, A ∈ (Lk, Cbp) iff the condition (2.7) holds and there exists a (λij) ∈ Ω such that

bp− lim
m,n→∞

amnij = λij . (2.9)

(e) Let 1 < k <∞. Then, A ∈ (Lk, Cbp) iff (2.8) and (2.9) are satisfied.

Lemma 2.2. [23] Let 1 < k <∞ and A = (amnrs) be a four dimensional infinite matrix of complex numbers. Define Wk (A)
and wk (A) by

Wk (A) =

∞∑
r,s=1

( ∞∑
m,n=1

|amnrs|

)k
,

wk (A) = sup
M×N

∞∑
r,s=1

∣∣∣∣∣∣
∑

(m,n)∈M×N

amnrs

∣∣∣∣∣∣
k

,

where the supremum is taken through all finite subsets M and N of N. Then, the following statements are equivalent:

i) Wk′ (A) <∞ , ii) A ∈ (Lk,Lu)

iii) At ∈ (L∞,Lk′ ) <∞ , ii)wk′ (A) <∞.
To shorten the following theorems and their proofs let us define the sets ψp with p ∈ {1, 2, 3, 4} as follows:

ψ1 =

{
b = (bmn) ∈ Ω : sup

i,j∈N

∑
m,n

|gmnij | <∞

}
, (2.10)

ψ2 =

b = (bmn) ∈ Ω : sup
r,s,i,j∈N

∣∣∣∣∣∣
r∑

m=i

s∑
n=j

bmnf
(1)
mnij

∣∣∣∣∣∣ <∞
 , (2.11)

ψ3 =

b = (bmn) ∈ Ω : bp− lim
r,s→∞

r∑
m=i

s∑
n=j

bmnf
(k)
mnij exists

 , (2.12)

ψ4 =

b = (bmn) ∈ Ω : sup
r,s∈N

∑
i,j

∣∣∣∣∣∣
r∑

m=i

s∑
n=j

bmnf
(k)
mnij

∣∣∣∣∣∣
k
′

<∞

 , (2.13)

where the 4-dimensional matrices G = (gmnij) and F (k) =
(
f

(k)
mnij

)
are defined by

gmnij =



bmn
(n− 1) (m− 1)

(−1)
m+n−(i+j)

(i− 1) (j − 1) ij, m− 1 ≤ i ≤ m and n− 1 ≤ j ≤ n
bm1

m− 1
(−1)

m−i
(i− 1) i, m− 1 ≤ i ≤ m and n = 1

b1n
n− 1

(−1)
n−j

(j − 1) j, n− 1 ≤ j ≤ n and m = 1

b11, n = m = 1

(2.14)
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and

f
(k)
mnij =



(−1)
m+n−(i+j)

(n− 1) (m− 1)
(i− 1) (j − 1) (ij)

1/k
, m− 1 ≤ i ≤ m and n− 1 ≤ j ≤ n

(−1)
m−i

m− 1
(i− 1) (i)

1/k
, m− 1 ≤ i ≤ m and n = 1

(−1)
n−j

n− 1
(j − 1) (j)

1/k
, n− 1 ≤ j ≤ n and m = 1

1, n = m = 1

, (2.15)

respectively.

Now we give theorems determining the α−dual of the space |C1,1|1 and β− and γ−duals of the spaces |C1,1|k .

Theorem 2.2. Let the set ψ1 and the 4-dimensional matrix G = (gmnij) be defined as in (2.10) and (2.14), respectively.
Then,

(
|C1,1|1

)α
= ψ1.

Proof. Let b = (bmn) ∈ Ω , x = (xmn) ∈ |C1,1|1 and y = (yij) ∈ Lu. Taking account of relations in (2.3− 2.6) for
m,n ≥ 1, we obtain the following equalities: for m,n ≥ 2

bmnxmn =
bmn

(n− 1) (m− 1)

m∑
i=m−1

n∑
j=n−1

(−1)
m+n−(i+j)

(i− 1) (j − 1) ijyij = (Gy)mn ,

for n = 1 and m ≥ 2

bm1xm1 =
bm1

m− 1

m∑
i=m−1

(−1)
m−i

(i− 1) iyi1 = (Gy)m1 ,

for m = 1 and n ≥ 2

b1nx1n =
b1n
n− 1

n∑
j=n−1

(−1)
n−j

(j − 1) jy1j = (Gy)1n

and for n = m = 1
b11x11 = b11y11 = (Gy)11 ,

where the four-dimensional matrix G = (gmnij) defined by (2.14). In this fact, we see that bx = (bmnxmn) ∈ Lu
whenever x ∈ |C1,1|1 iff Gy ∈ Lu whenever y ∈ Lu. This leads that b = (bmn) ∈

(
|C1,1|1

)α iff G ∈ (Lu,Lu) . Then,
we deduce by using (c) of Lemma 2.1 with k1 = k = 1 that

sup
i,j∈N

∑
m,n

|gmnij | <∞.

Hence, we have
(
|C1,1|1

)α
= ψ1, as desired. This step concludes the proof.

Theorem 2.3. Let the sets ψ2, ψ3, ψ4 and the 4-dimensional matrix F (k) =
(
f

(k)
mnij

)
be defined as in (2.11− 2.13) and

(2.15) , respectively. Then,
(
|C1,1|1

)β(bp)
= ψ2 ∩ ψ3 for k = 1 and

(
|C1,1|k

)β(bp)
= ψ3 ∩ ψ4 for 1 < k <∞.

Proof. Let b = (bmn) ∈ Ω and x = (xmn) ∈ |C1,1|k be given. Then, we write from Theorem 2.1 that there exists a
double sequence y = (yij) ∈ Lk. Therefore, by using the equations (2.3− 2.6) we obtain that

zrs =

r∑
m=1

s∑
n=1

bmnxmn =

r∑
i=1

s∑
j=1

 r∑
m=i

s∑
n=j

bmnf
(k)
mnij

 yij = (Dy)rs

for every r, s ∈ N. Thus, we see that bx = (bmnxmn) ∈ CSbp whenever x = (xmn) ∈ |C1,1|k iff z = (zrs) ∈ Cbp
whenever y = (yij) ∈ Lk. This leads to the fact that b = (bmn) ∈

(
|C1,1|k

)β(bp) iff D ∈ (Lk, Cbp) , where the
four-dimensional matrix D = (drsij) is defined by

drsij =

{ ∑r
m=i

∑s
n=j bmnf

(k)
mnij , 1 ≤ i ≤ r and 1 ≤ j ≤ s

0, otherwise

for every r, s, i, j ∈ N. Hence, we deduce
(
|C1,1|1

)β(bp)
= ψ2 ∩ ψ3 and

(
|C1,1|k

)β(bp)
= ψ3 ∩ ψ4 for 1 < k <∞ from

parts (d) and (e) of Lemma 2.1, respectively.
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Theorem 2.4. Let the sets ψ2, ψ4 and the 4-dimensional matrix F (k) =
(
f

(k)
mnij

)
be defined as in (2.11) , (2.13) and (2.15),

respectively. Then,
(
|C1,1|1

)γ
= ψ2 and

(
|C1,1|k

)γ
= ψ4 for 1 < k <∞.

Proof. This theorem can be proved by analogy with the proof Theorem 2.3 using Parts (a) and (b) of Lemma 2.1 in
place of parts (d) and (e) of Lemma 2.1, respectively. So we leave the details to readers.

3. Characterizations of some classes of four-dimensional matrices
In the present section, we characterize some matrix mappings from double series spaces |C1,1|1 and |C1,1|k to the

double sequence spacesMu, Cbp, Lu and Lk for 1 ≤ k <∞. Although the theorem characterizing matrix mappings
from double series spaces |C1,1|1 and |C1,1|k to the double sequence spaceMu is given with proof, other theorems
characterizing other mappings are given without proof since the proof techniques are similar.

Theorem 3.1. Suppose that A = (amnij) be an arbitrary 4−dimensional infinite matrix and the 4-dimensional matrix
F (k) =

(
f

(k)
mnij

)
be defined as in (2.15) for 1 ≤ k <∞. In that case, the following statements hold:

(a) A ∈
(
|C1,1|1 ,Mu

)
if and only if

Amn ∈
(
|C1,1|1

)β(bp) (3.1)

and

sup
m,n,u,v∈N

∣∣∣∣∣∣
∞∑
i=u

∞∑
j=v

amnijf
(1)
ijuv

∣∣∣∣∣∣ <∞. (3.2)

(b) Let 1 < k <∞. Then, A ∈
(
|C1,1|k ,Mu

)
if and only if

Amn ∈
(
|C1,1|k

)β(bp) (3.3)

and

sup
m,n∈N

∑
u,v

∣∣∣∣∣∣
∞∑
i=u

∞∑
j=v

amnijf
(k)
ijuv

∣∣∣∣∣∣
k
′

<∞. (3.4)

Proof. The part (a) can be proved by using Lemma 2.1 (a) in a similar way to that used in the proof of the part (b) of
Theorem, so, we give the proof only for 1 < k <∞ to avoid the repetition of similar statements.

(b) Let 1 < k <∞ and x = (xij) ∈ |C1,1|k. Then, there exists a double sequence y = (ymn) ∈ Lk. By using the
equalities (2.3− 2.6), for (s, t)th rectangular partial sum of the series

∑
i,j amnijxij , we have

(Ax)
[s,t]
mn =

s,t∑
i,j=1

amnijxij

=

s,t∑
i,j

amnij

i,j∑
u,v

fijuvyuv (3.5)

=

s,t∑
u,v=1

 s∑
i=u

t∑
j=v

fijuvamnij

 yuv

=

s,t∑
u,v=1

hmnstuvyuv

for every m,n, s, t ∈ N, where the 4− dimensional matrix Hmn = (hmnstuv) is defined by

hmnstuv =

{ ∑s
i=u

∑t
j=v fijuvamnij , 1 ≤ u ≤ s and 1 ≤ v ≤ t

0, otherwise

for every s, t, u, v ∈ N. Then, the equality (3.5) can be written as

(Ax)
[s,t]
mn = (Hmny)[s,t] . (3.6)
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Therefore, it follows from (3.6) that the bp-convergence of (Ax)
[s,t]
mn and the statement Hmn ∈ (Lk, Cbp) are equivalent

for all x ∈ |C1,1|k and m,n ∈ N. Hence, the condition (3.3) is satisfied for each fixed m,n ∈ N, that is, Amn ∈(
|C1,1|k

)β(bp) for each fixed m,n ∈ N and 1 < k <∞.
If we take bp-limit in the terms of the matrix Hmn = (hmnstuv) while s, t→∞, we obtain that

bp− lim
s,t→∞

hmnstuv =

∞∑
i=u

∞∑
j=v

amnijfijuv. (3.7)

With the relation (3.7), we can define the 4-dimensional matrix H = (hmnuv) as

hmnuv =

∞∑
i=u

∞∑
j=v

amnijfijuv

for all m,n, u, v ∈ N. In this situation, we deduce from the equations (3.6) and (3.7) that

bp− lim
s,t→∞

(Ax)
[s,t]
mn = bp− lim (Hy)mn . (3.8)

Thus, one can write that A = (amnij) ∈
(
|C1,1|k ,Mu

)
if and only if H ∈ (Lk,Mu) , by having in mind the relation

(3.8).
Therefore, using Lemma 2.1 (b), we obtain that

sup
m,n∈N

∑
u,v

∣∣∣∣∣∣
∞∑
i=u

∞∑
j=v

amnijf
(k)
ijuv

∣∣∣∣∣∣
k
′

<∞,

which satisfies the condition (3.4).
So, we conclude that A = (amnij) ∈

(
|C1,1|k ,Mu

)
if and only if the conditions (3.3) and (3.4) are satisfied. This

completes the proof.

Theorem 3.2. Suppose that A = (amnij) be an arbitrary 4−dimensional infinite matrix and the 4-dimensional matrix
F (k) =

(
f

(k)
mnij

)
be defined as in (2.15) for 1 ≤ k <∞. In that case, the following statements hold:

(a) A ∈
(
|C1,1|1 , Cbp

)
if and only if (3.1), (3.2) hold and there exists

(
α

(1)
uv

)
∈ Ω such that

bp− lim
m,n→∞

∞∑
i=u

∞∑
j=v

amnijf
(1)
ijuv = α(1)

uv .

(b) Let 1 < k <∞. Then, A ∈
(
|C1,1|k , Cbp

)
if and only if (3.3), (3.4) hold and there exists (αuv) ∈ Ω such that

bp− lim
m,n→∞

∞∑
i=u

∞∑
j=v

amnijf
(k)
ijuv = αuv.

Proof. This theorem can be proved by using Lemma 2.1 (d) and (e) in a similar way to that used in the proof of
Theorem 3.1.

Theorem 3.3. Suppose that A = (amnij) be an arbitrary 4−dimensional infinite matrix and the 4-dimensional matrix
F (k) =

(
f

(k)
mnij

)
be defined as in (2.15) for 1 ≤ k <∞. In that case, the following statements hold:

(a) Let 1 ≤ k <∞. Then, A ∈
(
|C1,1|1 ,Lk

)
if and only if (3.1) holds and

sup
r,s∈N

∑
m,n

∣∣∣∣∣∣
∞∑
i=r

∞∑
j=s

amnijf
(1)
ijrs

∣∣∣∣∣∣
k

<∞.
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(b) Let 1 < k <∞. Then, A = (amnij) ∈
(
|C1,1|k ,Lu

)
if and only if (3.3) holds and

∞∑
r,s=1

 ∞∑
m,n

∣∣∣∣∣∣
∞∑
i=r

∞∑
j=s

amnijf
(k)
ijrs

∣∣∣∣∣∣
k

′

<∞.

Proof. This theorem can be proved by using Lemma 2.1 (c) and Lemma 2.2 in a similar way to that used in the proof
of Theorem 3.1.

Lemma 3.1. [22] Let λ and µ be two double sequence spaces in Ω, A = (amnij) an arbitrary 4-dimensional infinite matrix
and Φ = (φmnuv) be triangle 4-dimensional infinite matrix. Then, A ∈ (λ, µΦ) if and only if ΦA ∈ (λ, µ) .

Now, we can give the final results of our work by considering the Lemma 2.1, 2.2 and 3.1.

Corollary 3.1. Let A = (amnij) and Φ = (φmnuv) four dimensional matrices be given by the relation

φmnuv =

m,n∑
i,j=1

bmnijaijuv,

where B = (bmnij) is defined as

bmnij =



1, m = n = 1
(i− 1)

m1/k (m− 1)
, 2 ≤ i ≤ m and n = 1

(j − 1)

n1/k (n− 1)
, 2 ≤ j ≤ n, and m = 1

(i− 1) (j − 1)

(m− 1) (n− 1) (mn)
1/k

, 2 ≤ i ≤ m and 2 ≤ j ≤ n

0, otherwise

and, by considering the relation (2.1) . Then, the necessary and sufficient conditions for the classes
(
Lu, |C1,1|k

)
and(

Lq, |C1,1|1
)

can be found as follows:
(a) A = (amnij) ∈

(
Lu, |C1,1|k

)
if and only if

sup
u,v∈N

∑
m,n

|φmnuv|k <∞

holds for 1 ≤ k <∞.
(b) A = (amnij) ∈

(
Lq, |C1,1|1

)
if and only if

∞∑
u,v=1

( ∞∑
m,n=1

|φmnuv|

)q′
<∞

holds for 1 < q <∞ and k = 1.

4. Conclusion
In this study, we investigate some topological and algebraic properties of the absolutely double series spaces

|C1,1|k defined by combining the first order Cesàro means with the concept of absolute summability for k ≥ 1.
Beside this, we determine the α−dual of the space |C1,1|1 and the β (bp)− and γ−duals of the spaces |C1,1|k for
k ≥ 1. Finally, we characterize some new four-dimensional matrix classes on the absolutely double series spaces
|C1,1|k. Hence, some important results concerned on Cesàro matrix summation methods have been extended to
double sequences.
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