

Current Trends in Computing (CTC)
Editors in Chief

• Dr. Burhan SELÇUK (Karabük University, TÜRKİYE)

• Dr. Hakan KUTUCU (Karabük University, TÜRKİYE)

Associate Editors

• Dr. Omar DAKKAK (Karabük University, TÜRKİYE)

• Dr. Kürşat Mustafa KARAOĞLAN (Karabük University, TÜRKİYE))

Managing Editors

• Dr. Sait DEMİR (Karabük University, TÜRKİYE)

• Dr. Ahmet Ziyaeddin BULUM (Karabük University, TÜRKİYE)

Language Editor

• Dr. Kasım ÖZACAR (Karabük University, TÜRKİYE)

Journal Secretary

• Dr. Ayşe Nur Altıntaş TANKÜL (Karabük University, TÜRKİYE)

Area Editors

• Dr. Ivan IZONIN, (University of Birmingham,
UNITED KINGDOM)

• Dr. Solomiia Liaskovska (Kingston University,
UNITED KINGDOM)

• Dr. Ibrahima DIARRASSOUBA, (Le Havre Uni-
versity, FRANCE)

• Dr. A. Ridha MAHJOUB, (Université Paris-
Dauphine, FRANCE)

• Dr. Ivanna Dronyuk, (Jan Dlugosz University in
Czestochowa, POLAND)

• Dr. Nataliia LOTOSHYNSKA, (Lviv Polytechnic
National University, UKRAINE)

• Dr. Myroslav Havryliuk, (Lviv Polytechnic na-
tional University, UKRAINE)

• Dr. Olena Vynokurova (Ivan Franko National
University of Lviv, UKRAINE)

• Dr. Ümit ATİLA (Gazi University, TÜRKİYE)

• Dr. Okan ERKAYMAZ (National Defense Uni-
versity, TÜRKİYE)

• Dr. İlyas ÖZER (Bandırma Onyedi Eylül Uni-
versity, TÜRKİYE)

• Dr. Kemal AKYOL (Kastamonu University,
TÜRKİYE)

• Dr. Şadi ŞEHAB (THK University, TÜRKİYE)

I

• Dr. Abdülkadir TAŞDELEN (Ankara Yıldırım
Beyazıt University, TÜRKİYE)

• Dr. Erdal ÖZBAY (Fırat University, TÜRKİYE)

• Dr. Ayşe Erdoğan YILDIRIM (Fırat University,
TÜRKİYE)

• Dr. Ahmet KARADOĞAN (İnönü University,
TÜRKİYE)

• Dr. Oğuzhan MENEMENCİOĞLU (Karabük
University, TÜRKİYE)

Advisory Board

• Dr. İlker TÜRKER (Karabük University, TÜRKİYE)

• Dr. Oğuz FINDIK (Karabük University, TÜRKİYE)

• Dr. İsmail Rakıp KARAŞ (Karabük University, TÜRKİYE)

• Dr. Ali KARCI (İnönü University, TÜRKİYE)

• Dr. Victoriia Alekseeva, (Technical University of Applied Sciences, GERMANY)

• Dr. Khrystyna Myroniuk, (University of Birmingham, UNITED KINGDOM)

• Dr. Olena Lanets (Kingston University, UNITED KINGDOM)

• Dr. Maryna Nehrey (ETH Zürich, SWITZERLAND)

Scope

Current Trends in Computing (CTC) is a single-blind, peer-reviewed international scientific journal with
an open-access policy. CTC was founded in 2022 by Computer Engineering and Software Engineering
Departments, Karabük University (TÜRKİYE). It regularly publishes two issues. The journal does not charge
submission and publication fees. The journal accepts submissions of manuscripts in the English language
only. CTC is devoted to publishing original research in the niche area of computer sciences.

Contents

• AUTOENCODER-BASED INTRUSION DETECTION IN CRITICAL INFRASTRUCTURES
Hakan Can Altunay, Zafer Albayrak, Muhammet Çakmak
1-12

• DEVELOPING LOW-COST TORQUE MEASUREMENT SYSTEM
Cengiz Ayten, Ferhat Atasoy
13-22

• SOLVING STATIC WEAPON-TARGET ASSIGNMENT PROBLEM USING MULTI-START LATE AC-
CEPTANCE HILL CLIMBING
Selin Alparslan, Emrullah Sonuç
23-35

• EFFECTS OF CHEMICAL AUTAPSE ON INVERSE CHAOTIC RESONANCE IN MORRIS-LECAR
NEURON MODEL
Ali Akçay, Ergin Yılmaz
36-47

• THE GATHERING DECK BUILDER WITH REACT.JS AND CUTTING-EDGE WEB DEVELOPMENT
Daniel Mccloy, Kevin Byrant, Yousef Fazea
48-59

II

https://dergipark.org.tr/en/pub/ctc/issue/86213/1500053
https://dergipark.org.tr/en/pub/ctc/issue/86213/1500071
https://dergipark.org.tr/en/pub/ctc/issue/86213/1518073
https://dergipark.org.tr/en/pub/ctc/issue/86213/1518073
https://dergipark.org.tr/en/pub/ctc/issue/86213/1518081
https://dergipark.org.tr/en/pub/ctc/issue/86213/1518081
https://dergipark.org.tr/en/pub/ctc/issue/86213/1526732

• ANOMALY DETECTION WITH API CALLS BY USING MACHINE LEARNING: SYSTEMATIC LITER-
ATURE REVIEW
Varol Şahin, Ferhat Arat, Sedat Akleylek
60-85

Follow this issue and upcoming issues at: https://dergipark.org.tr/en/pub/ctc

III

https://dergipark.org.tr/en/pub/ctc/issue/86213/1526764
https://dergipark.org.tr/en/pub/ctc/issue/86213/1526764
https://dergipark.org.tr/en/pub/ctc

Vol: 2, Issue: 1, 2024
ISSN: 2980-3152
Pages:1-12
c⃝ 2024 Karabük University

CURRENT TRENDS IN COMPUTING
https://dergipark.org.tr/en/pub/ctc

RESEARCH ARTICLE

AUTOENCODER-BASED INTRUSION DETECTION IN CRITICAL INFRASTRUCTURES

HAKAN CAN ALTUNAY1 , ZAFER ALBAYRAK2∗ AND MUHAMMET ÇAKMAK3

1 Department of Computer Technologies, Carsamba Chamber of Commerce Vocational School,
Ondokuz Mayis University, Türkiye

2 Department of Computer Engineering, Faculty of Technology, Sakarya University of Applied Sciences,
Türkiye

3 Department of Computer Engineering, Faculty of Engineering and Architecture, Sinop University,
Türkiye

ABSTRACT. Securing critical infrastructure systems such as electricity, energy, health, management,
transportation, and production facilities against cyber attacks is the issue on which states spend the
most time and money when creating security strategies. Every day, different methods have emerged to
prevent attackers who endanger our personal and national security with varying types of attacks. The
most important of these methods is intrusion detection systems. This study proposes an autoencoder-
based intrusion detection system model to detect security anomalies in critical infrastructures. The
accuracy of this proposed model in attack detection has been tested with the current and complex
UNSW-NB15 dataset. In the proposed model, training and testing steps were carried out using the at-
tack packages in the data set. These packages are then divided into two: normal or attack. According
to the results obtained in the experiments, it has been confirmed that the proposed intrusion detection
system can effectively detect attacks with high performance.

1. INTRODUCTION

Modern societies depend on advanced cyber and physical infrastructures to carry out daily activities
[1]. These infrastructures are also called critical assets that protect services not only in the physical
world but also in the digital world. Today, the protection of these infrastructures, which cover different
areas such as communication, transportation, and energy, has become a national security concern [2].
Ensuring the continuity, control, and security of the services provided by critical infrastructures is a
costly and difficult process [3].

Cyber attacks are carried out against SCADA systems in various areas, such as nuclear power plants,
electrical networks, and water treatment plants [4]. Figure 1 shows the major attacks on industrial control
systems around the world since 2010.

E-mail address: zaferalbayrak@subu.edu.tr (∗).
Key words and phrases. Intrusion Detection System, Critical Infrastructure, Autoencoder.

https://dergipark.org.tr/en/pub/ctc
https://orcid.org/0000-0002-0175-239X
https://orcid.org/0000-0001-8358-3835
https://orcid.org/0000-0002-3752-6642

FIGURE 1. Major attacks on critical infrastructures.

It is a fact that the use of the Internet in our daily lives increases information sharing, interpersonal
communication, and interaction [5]. The Internet of Things (IoT), defined as the intelligent connection of
objects that communicate by sensing each other, is frequently used today. With IoT, data communication
on devices in the network can be monitored, and this data can be collected using sensors with a wireless
network connection [6].

Intrusion detection systems (IDS) are preferred to prevent cyber attacks and reduce their effects. Secu-
rity is provided by IDS in the transmission of data on the network from the source to the receiving node.
Therefore, IDS plays an important role in ensuring network security. Machine learning is a sub-branch
of artificial intelligence [7]. With its ability and capacity to improve, it can empower various systems
to learn from experience and make decisions without any explicit programming. Machine learning ap-
proaches are generally divided into supervised and unsupervised [8]. Classification of traditional IDSs is
generally presented as signature-based, anomaly-based, and hybrid IDSs. Signature-based IDSs extract
behavioral patterns of intruders [9]. IDSs are generally classified as anomaly-based, signature-based, and
hybrid-based. IDSs in which the behavior of attackers trying to enter the network without permission is
kept as signatures are called signature-based IDSs [10]. These signatures are compared with the attack
types that the network has encountered before [11]. If the signatures match as a result of this compari-
son, the packet is detected as an attack. This type of IDS does not produce false positive values. They
detect any intrusion with a signature pattern. In these IDSs, attacks with unknown signatures cannot be
detected, and accordingly, a high rate of false negative values is produced [12]. If the database has an
updateable feature, the false negative value rate can be reduced. IDSs that analyze events in the network

2

are anomaly-based IDSs. In this type of IDS, normal states and abnormal states are distinguished [13].
In anomaly-based IDSs, the behavioral profiles of users in the system are first determined. Behaviors
that differ from normal behaviors are defined as abnormal behaviors. The higher the correct detection
rate of normal behavior profiles, the higher the correct detection rate of abnormal behaviors. In anomaly-
based IDSs, normal behaviors are continuously updated [14]. Some attack types cannot be detected by
anomaly-based intrusion detection systems. Therefore, anomaly-based systems may have a high false
positive rate. In hybrid-based systems, signature and anomaly-based systems are used together [15]. In
this way, a much more reliable network and management system emerges [16].

Considering the above problems, the main subject of this study is the design of an autoencoder-based
intrusion detection system to detect attack packets by detecting intrusions with high performance in
critical infrastructure systems where the types of attacks and the amount of data increase day by day. The
proposed model subjects intrusion packets to binary classification.

The primary motivation and contribution of this study are summarized below. The number of cyber
attacks on critical infrastructures is increasing day by day. These attacks cause material and moral losses.
Therefore, it is important to detect these attacks and protect the system. In this study, an intrusion
detection system for critical infrastructures is implemented using an autoencoder.

Secondly, the proposed model for intrusion detection systems was tested on UNSW-NB15, a complex
dataset with a large amount of data and a high number of attributes, taking into account the increasing
amount of data in critical infrastructures. The performance of the proposed model was evaluated using
the binary classification procedure carried out on the current data set, providing a more reliable and
observable process.

2. RELATED WORK

Davis and Clark suggested an in-depth examination of request packets to increase the performance
of anomaly-based IDSs developed with the machine learning method and to detect increasing types of
attacks and emphasized that data pre-processing has a great impact on the success of anomaly-based
IDSs [17].

In their study, Naseer and Saleem tried various categorical data coding methods, chose the most ap-
propriate method for the data set they used, and performed hyperparameter optimization by using the
random search method in the models established with the Deep Convolutional Neural Network (DCNN)
algorithm. It has been stated that pre-processing and hyper-parameter optimization significantly improve
the attack detection rate and speed of the created models [18]. In another study, Hancock and Khosh-
goftaar emphasized that stable categorical data coding techniques are suitable for large data sets due to
their low running time and low computational complexity [19]. Tang et al. reached an accuracy rate of
89.82% in the data set on which they applied categorical data coding with the one hot encoding method
and feature selection pre-processing with the Light Gradient Boosting Machine (LightGBM) algorithm
and the attack detection model they created with the Autoencoder (AE) algorithm [20].

Aslan et al. analyzed the malware behavior in the system and proposed a Subtractive Central Behavior
Model to detect this malware. In the proposed model, attributes were created by analyzing malware

3

behaviors and the system in which the behaviors were performed. Additionally, the obtained features
were reduced by proposing a new feature selection algorithm. With the proposed model, 99.9%, 0.2%,
and 99.8% rates were achieved in detection rate, false positive rate, and accuracy metrics, respectively
[21].

Mazini et al. applied hyperparameter optimization to the data set after categorical data coding and
scaling pre-processing and made feature selection with the artificial bee colony algorithm. The resulting
data set and AdaBoost. In the model created with the M2 classifier, 99.61% detection, 0.01% false
detection, and 98.90% correct detection rates were achieved [22]. By selecting features according to the
information gain rate, Balakrishnan et al. achieved 99.11% detection success and 2.08s detection time in
Denial of Service (DoS) attacks with the data set with the resulting feature subset and the Support Vector
Machine (SVM) classification algorithm [23].

Torabi et al. mentioned the importance of using different and up-to-date data sets to prove the gener-
alization success of the developed intrusion detection models [24]. Ozkan Okay et al. proposed a hybrid
attack detection model and achieved 99.65% and 99.17% accuracy rates with KDD99 and UNSW-NB15
datasets, which were pre-processed with a feature selection approach (FSAP) algorithm [25].

Ambusaidi et al. achieved 98.90% attack detection success and 0.521% false positive rate with the data
sets on which they applied hybrid feature selection using mutual information (MI) and helical sequential
forward selection (SFS) methods [26].

Chen et al. have used datasets consisting of different combinations and intersections of features se-
lected by Principal Component Analysis (PCA), C4.5, and Genetic Algorithm (GA) techniques, achieved
the most successful results with the features selected jointly by PCA and GA techniques [27].

Song mentioned that since traditional feature selection algorithms are insufficient for variable-size
datasets, this problem can be solved with online feature selection algorithms [28].

Kanimozhi and Jacob performed hyperparameter optimization for the number of hidden layers and
alpha parameters using the grid search method in the anomaly-based intrusion detection model they
created using the Multilayer Perceptrons (MLP) algorithm, and achieved 99.97% accuracy, 0.001% false
positive and 99% F-criterion rates [29].

In their study, Latah and Toker used the NSL-KDD dataset for anomaly-based attack detection in
software-defined networks (SDN), 12 different classifiers, and the PCA approach for feature extraction
from the dataset. As a result of the experiments, the model established with the Decision Tree (DT)
algorithm showed the best performance in precision, AUC, F1-measure, McNemar, and accuracy met-
rics. While bagging and boosting approaches outperform other traditional machine learning methods
such as Extreme Learning Machines (ELM), K Nearest Neighbors (KNN), Random Forest (RF), Neural
Networks (NN), Latent Dirichlet Allocation (LDA), and SVM with a 99.5% confidence level, the best
results were achieved in FAR and recall metrics with LogitBoost. The best test time was obtained with
ELM [30].

Uğurlu et al. In their study, they selected 30 attributes through the weighting process from 82 attributes
in the CICDarknet2020 data set, which they used to detect and classify darknet traffic. In the study, the
grid method was used for hyper-parameter adjustment, and as a result of the experimental studies, an
accuracy rate of 93.32% was achieved with the Decision Tree algorithm [31].

4

3. DATASET

Using the UNSW-NB15 dataset IXIA PerfectStorm tool, a hybrid model was created in Australian
cyber security center laboratories, including both real modern normal activity and artificial network traffic
attack movements suitable for today’s conditions [32].

The developers of the dataset also divided the dataset into two different groups: the training dataset
and the testing dataset. This data set was later used by many researchers. The training data set consists of
175341 records, and the test data set consists of 82332 records. The original data set consists of 2540044
records [33]. In this study, the subsample data set, which was created by the developers of the original
data set and divided into training and test data sets, which many researchers use in their studies, was used
as the data set. The data set used does not contain any unnecessary records. The UNSW-NB15 dataset
has a total of 49 features and one target value. The value distribution of the types of attacks in the UNSW
NB15 dataset is presented in Table 1.

TABLE 1. Distribution of attack values in the UNSW - NB15 dataset

Attack Types Number
Fuzzers 18184

Backdoor 1746
Analysis 2000
General 40000

Shellcode 1133
Reconnaissance 10491

DoS 12264
Worms 130
Exploits 33393
Benign 56000

In recent years, IDS has been increasing performance using deep learning methods at points where
existing traditional security solutions are insufficient. In particular, anomaly-based IDSs play a very
important role in detecting attacks known as zero-day attacks. One of the most important factors to
evaluate the performance of IDSs and to create more effective and efficient IDSs is the data sets used [32].
The data set used must comply with the age requirements and include current attack types. The UNSW-
NB15 data set, which is frequently preferred in the literature, meets modern conditions in a variety of
attack types and normal traffic scenarios, and the regular distribution of training and test data sets are the
positive aspects of this data set [33].

Deep autoencoders, a specific application of artificial neural networks, are used to perform unsuper-
vised learning. In the deep autoencoder, the data is first compressed and encoded. Then, a representation
closest to the input data is obtained from the code whose features are reduced. [34].

The autoencoder learns how to remove noise from the data to reduce data sizes. An autoencoder
consists of 3 parts: encoder, code, and decoder. The encoder is where the input data is compressed. In this
section, the code is generated. The decoder reconstructs the input data using this code. In other words,
an autoencoder cannot be created without an encoder, decoder, and loss function. The loss function is

5

used in the autoencoder to compare the output with the targeted result [35]. Figure 2 shows a general
deep autoencoder architecture.

FIGURE 2. Deep autoencoder architecture.

The equations of the encoder and decoder sections are shown below.

Y = fø(X) = s(WX +bx) (1)

X
′
= gø′(Y) = s(W

′
Y +bY) (2)

During the autoencoder training process, reconstruction loss is minimized in the dataset. The objective
function is used here. The following equation is used to determine the parameters that will minimize the
loss value along with the objective function.

Ø = minL(X ,X
′
) = minL(X ,g((f (X)))) (3)

6

Autoencoder is the deep learning model used in this study. Recall, precision, F1-Score, and accuracy
were used for evaluation criteria as in [36]. The following equations were used to obtain the relevant
metrics.

Accuracy =
T P+T N

T P+T N +FP+FN
(4)

Recall =
T P

T P+FN
(5)

Precision =
T P

T P+FP
(6)

F1−Score =
2∗Precision∗Recall

Precision+Recall
(7)

First, data from the training and test sections of the data set were taken. These data were then applied
to the Autoencoder model. At the output of the Autoencoder model, the data is classified as attack or
normal. Figure 3 shows the architecture of the proposed model.

FIGURE 3. Architecture of the proposed model.

The experimental study divided the data set into training and testing to prevent overfitting. One of the
critical issues of machine learning is the generalization of the algorithms or models we have developed.
Generalization is the ability to observe how well the model works with the data you have learned and
with new, previously unseen data we will obtain in the future. We can briefly define it as getting good
results with the latest data.

Our primary and greatest goal in machine learning studies is to create a model that accurately predicts
previously unknown data elements. Therefore, the created learning model must be generalized very well
to ensure the accurate classification of future data items. Generalization means our model is good at
learning from given data and applying the learned information elsewhere. If it performs well on data it
has not seen in training, it generalizes well on the provided data [37]. This study’s data set is divided into
80% training and 20% testing.

The multi-layered architectural structures that come with deep learning have brought a series of hyper-
parameter groups waiting to be decided by the designer. Some of these parameters are used to select

7

the basic algorithm to be applied in the model from several algorithm groups, such as the optimization
algorithm and activation function. Since the number of algorithms is limited, it is generally relatively
easy to select such hyperparameters.

However, the number of layers, neurons, learning coefficients, kernel size, etc. Hyperparameter types
also expect us to choose from a set that extends to infinity within certain limits or on the number line. The
selection of such hyperparameters is a laborious and time-consuming process. Our first choices regarding
hyperparameters when designing a model do not yield the right results. By changing the hyperparameters
one after the other iteratively, the model’s performance is observed, and the most appropriate hyperpa-
rameter group for the model is selected. In addition, some methods automate this selection process.

In this study, the heuristic parameter fitting method was used for hyperparameter optimization. In this
method, hyperparameters are estimated using our prior knowledge of the problem, the model is designed
according to these hyperparameters, and the results are observed. According to the results, the model
is rebuilt and trained by making new hyperparameter estimates that will intuitively increase the model’s
performance, and the results are observed. This process continues until suitable parameter groups that
will give the expected performance are found [38]. Hyperparameters of the model used in the study are
shown in Table 2.

TABLE 2. Hyperparameters of the proposed model

Hyperparameters Value
Input Neurons 45

Hidden Neurons 32
Output Neurons 45

Iteration 650

4. RESULTS AND DISCUSSION

The study used the autoencoder model with original data without making a feature selection in perfor-
mance evaluation. Without feature selection, the training dataset and testing dataset were used separately.
The results obtained are shown in Table 3 and Figure 4.

According to these results, the proposed autoencoder-based intrusion detection system reached 97.63%
accuracy in determining attack packets. The accuracy value obtained was supported by precision, recall,
and F1 Score values. Hyperparameter optimization was carried out in the tests carried out with the
UNSW-NB15 data set, which is very rich in terms of the number and diversity of attack packages. The
ROC curve obtained as a result of the study is shown in Figure 5.

The accuracy rates obtained in studies using different data sets in the literature and the rates obtained
in this study are shown in Table 4. The results obtained show that the autoencoder method has a high
detection accuracy in attack classification.

8

TABLE 3. Performance metrics and results

Metrics Value
Accuracy 97.63%
Precision 97.14%

Recall 97.78%
F1 - Score 97.45%

FIGURE 4. Results obtained in the experimental study.

FIGURE 5. ROC of proposed model.

9

TABLE 4. Comparison of the proposed model with studies in the literature

Reference Model Accuracy
[18] DCNN 85.22%
[20] LightGBM + Autoencoder 89.82%
[21] SCBM + J48 99.8%
[22] Artificial Bee Colony + AdaBoost 98.90%
[31] Decision Tree 93.22%

Proposed model Autoencoder 97.63%

5. CONCLUSION

In our study, an autoencoder-based intrusion detection system is proposed. In this system, which can
detect abnormal behavior in the network with high performance, no feature extraction is made from the
data set. According to the results, the proposed autoencoder model reached a 97.63% accuracy value.
In addition, 97.14% precision, 97.78% recall, and 97.45% F1-Score values were achieved in the model.
It is seen that this study achieves higher performance compared to other studies in the literature. The
main reason for this situation is the use of an up-to-date data set and hyperparameter optimization. It is
planned to prepare algorithms based on feature selection in the future. In this way, the effect of feature
selection on classification accuracy will be investigated. In addition, future studies need to examine the
detection time of attack symptoms. Considering that the number of institutions and organizations with
critical infrastructure is increasing day by day, it is thought that deep learning-based intrusion detection
systems will be needed, especially in this field.

DECLARATIONS

• Conflict of interest: The authors have not disclosed any competing interests.
• Data availability: The data will be shared upon request.

REFERENCES

[1] Kasongo S.M., Sun Y., Performance Analysis of Intrusion Detection Systems Using a Feature Selection Method on the
UNSW-NB15 Dataset, J Big Data, 7, 105, 2020.

[2] Yadav M.S., Kalpana R., Data Preprocessing for Intrusion Detection System Using Encoding and Normalization Ap-
proaches, 2019 11th International Conference on Advanced Computing (ICoAC), ChennaiIndia, 265-269, 18-20 Aralık,
2019.

[3] Liu H., Zhou M., Liu Q., An embedded feature selection method for imbalanced data classification, in IEEE/CAA Journal
of Automatica Sinica, 6 (3), 703-715, 2019.

[4] Alabadi, M., Habbal, A., Wei, X., Industrial internet of things: Requirements, architecture, challenges, and future research
directions, IEEE Access, 2022.

[5] Alaca, Y.,Çelik, Y., Cyber attack detection with QR code images using lightweight deep learning models. Computers &
Security, 126, 103065, 2023.

10

[6] Kutluana, G., Turker, I., Classification of cardiac disorders using weighted visibility graph features from ECG signals,
Biomedical Signal Processing and Control, 87, 105420, 2024.

[7] Altunay, H. C., Kritik Altyapılara Yönelik Derin Öğrenme Tabanlı Saldırı Tespit Sistemi Tasarımı, (Doctoral dissertation),
2023.

[8] Altunay, H., C., Albayrak, Z., Network Intrusion Detection Approach Based on Convolutional Neural Network, Avrupa
Bilim ve Teknoloji Dergisi, (26), 22-29, 2021.

[9] Bharadiya, J. P., Machine learning and AI in business intelligence: Trends and opportunities, International Journal of
Computer (IJC), 48(1), 123-134, 2023.

[10] Sharifani, K., Amini, M., Machine Learning and Deep Learning: A Review of Methods and Applications, World Infor-
mation Technology and Engineering Journal, 10(07), 3897-3904, 2023.

[11] Choi, S., Yoon, S., Energy signature-based clustering using open data for urban building energy analysis toward carbon
neutrality: A case study on electricity change under COVID-19, Sustainable Cities and Society, 92, 104471, 2023.

[12] Landauer, M., Wurzenberger, M., Skopik, F., Hotwagner, W., Höld, G., Aminer: A modular log data analysis pipeline
for anomaly-based intrusion detection, Digital Threats: Research and Practice, 4(1), 1-16,2023.

[13] Bhavsar, M., Roy, K., Kelly, J., Olusola, O., Anomaly-based intrusion detection system for IoT application, Discover
Internet of Things, 3(1), 5, 2023.

[14] Sharma, B., Sharma, L., Lal, C., Roy, S., Anomaly based network intrusion detection for IoT attacks using deep learning
technique, Computers and Electrical Engineering, 107, 108626, 2023.

[15] Hnamte, V., Hussain, J., DCNNBiLSTM: An efficient hybrid deep learning-based intrusion detection system, Telematics
and Informatics Reports, 10, 100053, 2023.

[16] Yin, Y., Jang-Jaccard, J., Xu, W., Singh, A., Zhu, J., Sabrina, F., Kwak, J., IGRF-RFE: a hybrid feature selection method
for MLP-based network intrusion detection on UNSW-NB15 dataset, Journal of Big Data, 10(1), 1-26, 2023.

[17] Davis J.J., Clark A.J., Data preprocessing for anomaly based network intrusion detection: A review, Computers &
Security, 30 (6-7), 353- 375, 2011.

[18] Naseer S., Saleem Y., Enhanced Network Intrusion Detection Using Deep Convolutional Neural Networks, KSII Trans.
Internet Inf. Syst, 12 (10), 5159-5178, 2018.

[19] Hancock J.T., Khoshgoftaar T.M., Survey on categorical data for neural networks, Journal of Big Data, 7, 1-41, 2020.
[20] Tang C., Luktarhan N., Zhao Y., An Efficient Intrusion Detection Method Based on LightGBM and Autoencoder. Sym-
metry, 12 (9), 1458, 2020.

[21] Aslan, Ö., Samet, R., Tanriöver, Ö.Ö, Using a Subtractive Center Behavioral Model to Detect Malware, Secur. Commun.
Networks, 7501894, 1-17, 2020.

[22] Mazini M., Shirazi B., Mahdavi I., Anomaly network-based intrusion detection system using a reliable hybrid artificial
bee colony and AdaBoost algorithms, Journal of King Saud University - Computer and Information Sciences, 32 (10),
1206-1207, 2019.

[23] Balakrishnan S.M., Venkatalakshmi K., Kannan A., Intrusion Detection System Using Feature Selection and Classifica-
tion Technique, IJCSA, 3 (4), 145, 2014.

[24] Torabi M., Udzir N.I., Abdullah M.T., Yaakob R.A., Review on Feature Selection and Ensemble Techniques for Intrusion
Detection System, IJACSA, 12 (5), 538-553, 2021.

[25] Özkan Okay M., Aslan Ö., Eryiğit R., Samet R., SABADT: Hybrid Intrusion Detection Approach for Cyber Attacks
Identification in WLAN, IEEE Access, 9, 157639-157653, 2021.

[26] Ambusaidi M.A., He X., Tan Z., Nanda P., Lu L.F., Nagar U.T., A Novel Feature Selection Approach for Intrusion
Detection Data Classification, 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and
Communications, BeijingChina, 82-89, 24-26 Eylül, 2014.

[27] Chen C.W., Tsai Y.H., Chang F.R., Lin W.C., Ensemble feature selection in medical datasets: Combining filter, wrapper,
and embedded feature selection results, Expert Systems, 37 (5), e12553, 2020.

11

[28] Song J., Feature selection for intrusion detection system, Ph.D. Thesis, Aberystwyth University, Department of Com-
puter Science Institute of Mathematics, Physics and Computer Science, Penglais-UK, 2016.

[29] Kanimozhi V., Jacob P., Artificial Intelligence based Network Intrusion Detection with hyper-parameter optimization
tuning on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing, ICT Express, 5 (3), 211-214, 2019.

[30] Latah M., Toker L., Towards an efficient anomaly-based intrusion detection for software-defined networks, IET Netw.,
7, 453-459, 2018.

[31] Uǧurlu M., Doğru İ. A., Arslan R.S., Detection and classification of darknet traffic using machine learning methods,
Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1737-1746, 2023.

[32] Aleesa, A., Younis, M. O. H. A. M. M. E. D., Mohammed, A. A., Sahar, N., Deep-intrusion detection system with
enhanced UNSW-NB15 dataset based on deep learning techniques, Journal of Engineering Science and Technology, 16(1),
711-727, 2021.

[33] Choudhary, S., Kesswani, N., Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15 datasets using deep learning in
IoT, Procedia Computer Science, 167, 1561-1573, 2020.

[34] Yousefi-Azar, M., Varadharajan, V., Hamey, L., Tupakula, U., Autoencoder-based feature learning for cyber security
applications. In 2017 International joint conference on neural networks (IJCNN) (pp. 3854-3861), IEEE, 2017.

[35] Basati, A., Faghih, M., M., APAE: an IoT intrusion detection system using asymmetric parallel auto-encoder. Neural
Computing and Applications, 35(7), 4813-4833, 2023.

[36] Altunay, H., C., Albayrak, Z., A hybrid CNN+ LSTM-based intrusion detection system for industrial IoT networks,
Engineering Science and Technology, an International Journal, 38, 101322, 2023.

[37] Abedi, A., Khan, S. S., Fedsl: Federated split learning on distributed sequential data in recurrent neural networks,
Multimedia Tools and Applications, 1-212, 2023.

[38] Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Lindauer, M., Hyperparameter optimization: Foun-
dations, algorithms, best practices, and open challenges, Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 13(2), e1484, 2023.

12

Vol: 2, Issue: 1, 2024
ISSN: 2980-3152
Pages:13-22
c⃝ 2024 Karabük University

CURRENT TRENDS IN COMPUTING
https://dergipark.org.tr/en/pub/ctc

RESEARCH ARTICLE

DEVELOPING LOW-COST TORQUE MEASUREMENT SYSTEM

CENGIZ AYTEN1 AND FERHAT ATASOY2∗

1Institute of Postgraduate Education, Karabük University, 78050, Karabük, Turkiye

2Computer Engineering Department, Karabük University, 78050, Karabük, Turkiye

ABSTRACT. Torque measurement is critical in industrial, experimental, and medical applications.
Various methods for torque measurement have been introduced in the literature, and application-
specific solutions have been developed. The present work proposes a hybrid method using a rotary
encoder to measure angular displacement and challenges related to external light conditions and res-
olution limitations to overcome. Experimental setups demonstrate the system’s ability to successfully
measure rotary mechanisms’ transient (starting and stopping) torque without noise, providing a cost-
effective, numerically accurate solution. Experimental studies have shown promising results.

1. INTRODUCTION

Electric motors are widely used as an environmentally friendly alternative to internal combustion engines
in the vehicle industry, conveyors, cranes, and production machines in industrial production, refrigera-
tors, washing machines, fans, and vacuum cleaners in household appliances, wind turbines, propulsion
systems of spacecraft, medical devices, curtain, door, window control in smart home automation, drills
and saws in electric vehicles [1]. Especially in industrial applications, motor torque measurements are
needed for performance optimization by optimizing motor efficiency and output, preventing overload
and damage by ensuring operation within safe limits, quality and consistency in production, and energy
optimization. In addition, torque measurements are gaining importance for precise control in medical
devices and aerospace applications.

Torque can be defined as the measure of the rotational force applied to an object about an axis [2].
Looking at the literature, various methods developed for torque measurement stand out. Mathematical
simulation, dynamo-meter, Strain Gauge method, current and voltage measurement, optical methods,
piezoelectric sensors, and hall effect sensors are the most widely used methods in the literature [3, 4].

Mathematical simulation is a cost-effective solution that does not require physical components and
installation, enables safe testing under extreme conditions, and can model a wide range of scenarios and

E-mail address: ferhatatasoy@karabuk.edu.tr .
Key words and phrases. Torque measure system, Encoder, Arduino.

https://dergipark.org.tr/en/pub/ctc
https://orcid.org/0000-0002-1672-0593

conditions [4, 5]. However, the results depend on the accuracy of the model and input data. In addition,
unexpected real-world conditions are ignored.

The dynamo-meter is one of the most widespread methods because it offers direct physical measure-
ment by connecting to the shaft of the motor, is applicable to a wide range of motors and machines, and
provides reliable and repeatable results [6, 7]. However, it is more expensive than many other methods,
requiring equipment, physical space, installation, regular maintenance, and calibration.

In the Strain Gauge method, a strain gauge is connected to the motor shaft, and the torque is calculated
by measuring the stress in the motor shaft. It stands out with its high accuracy, precise measurement, and
small size [8]. However, the disadvantages are that they are easily damaged, require careful installation
and calibration, and are affected by environmental factors such as temperature and humidity.

In the current and voltage measurement method, torque is calculated by comparing it with the per-
formance curves of the motor. As such, it is easy to apply and understand and is cheaper than other
methods [7]. However, the fact that it requires calibration and works with less accuracy than direct
measurement methods prevents it from being used in every field.

The advantages of optical methods are that they measure torque without physical contact, are suitable
for high-speed applications, and allow highly accurate measurements. However, they have disadvantages
such as more complex setup and calculations, more expensive compared to electrical methods, and being
affected by external light conditions [9, 10].

Piezoelectric sensors generate electrical signals under mechanical stress and are used for torque mea-
surement. The high-frequency response makes them suitable for dynamic measurements. Long-term
stability in measurements, wide measurement range, and relatively small size are its advantages [11].
However, cost, sensitivity to temperature and vibrations, and the need for specialized and complex elec-
tronic circuitry for signal processing make it difficult to use.

The advantages of the Hall effect sensor are that it performs non-contact measurement, is robust against
environmental conditions, and can be used in various applications [12], while its disadvantages are that
it requires careful calibration, has a limited measurement range, is affected by magnetic fields and its
performance changes with temperature.

The proposed method uses a rotary encoder to overcome issues with external light conditions and
resolution limitations. The system provides an effective measurement of starting and stopping torque,
offering an accurate, cost-effective solution. The disadvantage of the presented method is that it needs an
inertial moment of the system.

2. RELATED WORK

In previous studies, there are applications where existing methods are customized according to the appli-
cation. In the study presented by Ashwindran et al., an Arduino-based system was developed to measure
the torque of wind turbines [13]. The system consists of two subsystems, including a photo interrupter
(primary) and a load cell (secondary). The developed system has been tested in both laboratory and
simulation environments and has been shown to provide reliable results. The study is proposed as a
cost-effective solution for the measurement of rotating machine torques.

14

Brusamarello et al. presented a system mounted on an aluminum alloy wheel for automotive applica-
tions [14]. In the developed system, the signal received from the strain gauge is amplified and filtered,
and then analog-to-digital conversion is performed and sent to a remote computer via the ZigBee trans-
mission module. The first dynamic tests of the system calibrated with static loads were performed under
flat road conditions.

Bayraktar and Güldaş presented a study on the measurement and optimization of thrust and torque
forces in unmanned aerial vehicles, especially quadrotors, and applied regression analysis in Matlab/Simulink
environment to experimental measurements to minimize errors in trajectory tracking [15]. According to
the results of the study, cubic and quadratic force equations give better results in trajectory tracking than
other methods. The device sold by Surkon Makine Ltd. has been developed to measure the opening
torque of bottle caps [16].

Caruana et al. presented a torque measurement system for use between the crankshaft of an internal
combustion engine and an AC motor. A fully blind strain gauge and an electronic amplifier are used in
the study. In the developed system, data acquisition can be performed up to 40 kHz by writing to an
SD card via an Arduino board. The system was experimentally calibrated and mechanically tested up
to 3000 rpm with no data loss [17]. This paper has shown that a low-cost system can be developed to
measure torque between internal combustion engines and AC motors.

In the study presented by Sutyasadi, it was aimed to develop an effective control algorithm using
a low-cost controller such as Arduino for the control of an aluminum robot arm that can be used in
education due to the high cost of industrial robot arms [18]. In this study, computational torque control,
PID, and cascade PID control were used to control the shoulder joint of the robot arm. According to the
results obtained, computational torque control showed better results than PID and cascade PID control
algorithms.

In the reviewed studies, measurement systems are designed according to the area of use and purpose.
In this study, we focus on the development of a low-cost system to measure the torque of asynchronous
electric motors at start-up.

3. METHODOLOGY

Indirect torque measurement methods can be realized in different ways depending on the specific situa-
tion and the available means. One is by measuring the angular displacement or rotational speed of the
shaft. This information is then used to calculate the torque from the moment of inertia equation.

In the present work, a hybrid method is proposed. Since optical systems are affected by external
light conditions and have low resolution, the angular displacement information is measured with a rotary
encoder. The encoder generates 1024 pulses at one revolution. The encoder used is shown in Figure 1
(a).

Accordingly, the total angular displacement between two pulses is calculated as 2π/1024 radians. The
encoder has a 3-channel output, and accordingly, the pulse sequence from channels A, B, and Z can also
provide information about the direction of rotation of the motor if necessary. Figure 1 (b) shows the
relationship between the output information of the channels and the period.

15

FIGURE 1. (a). Used rotary encoder, (b) Output pulses and period relation for A, B
and Z channels respectively.

Angular velocity is defined as the change of angular displacement with respect to time and is defined
in Eq. 1.

ω =
dθ

dt
. (1)

The unit is radians/second, where ω (omega) represents the angular velocity. When the starting or
stopping torque of an electric motor is to be calculated, the speed is variable. For this reason, the times
of logic 1 and logic 0 outputs from channel A or B allow the motor speed to be calculated. Figure ??
shows the angular displacement and speed. In the SI unit system, the unit of angular path is radian and
denoted by θ .

FIGURE 2. Angular displacement.

16

The relation between rotation and radian is given in Eq.2. 1 radian is defined as the central angle on a
circle with an arc length equal to the radius, and Eq. 3 defines it.

rotation = 2π radian, (2)

θ =
S
R
, (3)

When the angular velocity is not constant, the rotational velocity variation depends on the rotational
moment (torque) acting on the body in circular motion. The change of angular velocity with respect to
time is defined as angular acceleration defined in Eq. 4 and denoted by α;

α =
dω

dt
. (4)

The relationship between angular velocity and torque is expressed by Eq. 5;

τ = l ∗α, (5)

where τ is the torque, I is the moment of inertia and α is the angular acceleration. The moment of inertia
measures a body’s resistance to rotational motion. The moment of inertia is calculated depending on the
geometry of the body and the position of the axis of rotation. For example, the moment of inertia of a
cylinder or disk is calculated according to Eq. 6:

l =
1
2

mr2, (6)

where I is the moment of inertia, m is the mass of the cylinder and r is the radius. For bodies with more
complex geometries, the moment of inertia is calculated using integration.

Considering the 16 MHz clock speed of the Arduino Uno, it is concluded that a processing cycle is
completed in approximately 62.5 nanoseconds. However, considering that the response time of a digital
input is completed in 3 processing cycles, a sampling frequency of approximately 5 kHz is obtained. In
this case, the times of each logic 0 and logic 1 pulses at the encoder output can be detected fast enough.
The flowchart of the algorithm for the measurement software of the designed system is given in Figure
?? in the appendix.

Then, from the sequential information received from the serial port, the period torque is calculated in
the computer environment with the angular velocity, angular acceleration, and moment of inertia infor-
mation obtained from the steady state of the system. The data taken from the serial port is saved as a
CSV file and processed in Matlab. In addition to this, the data can be processed using Arduino. Since the
data processing process is done after the measurements are completed, it will not pose any problems in
terms of performance. This study setup is prepared for just measuring transient torque.

17

4. RESULTS AND DISCUSSIONS

The connection diagram of the designed system is given in Figure 3. When the existing 1.1 kW asyn-
chronous motor is driven from the line and loaded with a Foucault brake via coupling connection, the
speed of the motor can be read optically via a 4-leaf encoder, and the torque generated can be read from
the indicators on the control panel via the load cell. However, the measurement system on the control
panel cannot perform the relevant measurements due to insufficient response speed in situations where
the torque changes dynamically and very quickly, such as starting and stopping.

FIGURE 3. Designed measurement system schema with real system.

The bearing and coupling, whose design is shown in Figure 4, was produced on a 3D printer, and
the 1024 pulse/revolution encoder shown in orange in Figure 2 was connected to the existing system.
The encoder was fed externally with 14 V voltage, and the output was adapted to the 0-5V range with a
voltage divider. It was tested separately on Arduino Uno and Mega boards. In cases where the system
is required to react very fast, the measurements are saved in the microcontroller’s volatile memory to
minimize the error that may be caused by delays.

The moment of inertia of the existing system was determined experimentally. The steady-state torque
of the system is measured and displayed on the panel via the load cell on the Focault brake. Therefore, the
ratio of the torque measured on the panel to the acceleration measured by the 1024 pulse/rotation encoder
gives the inertia value of the system. For this purpose, the angular path, velocity, and acceleration were
calculated from the encoder, and the steady-state torque was found by proportioning it to the value on the
control panel.

18

FIGURE 4. Incremental encoder with foucault brake and connections.

5. CONCLUSION

The moment of inertia is a measure of an object’s resistance to changes in its rotational motion. It
plays a crucial role in calculating torque in systems such as electric motors. Typically, it is determined
experimentally due to the complexity of theoretical calculations, which may not account for all real-world
factors.

Various methods for torque calculations are available in the literature, and a simple comparison of
these methods is provided in Table 1.

With the system developed and successfully tested, the transient (start and stop) torque of rotary mech-
anism systems can be measured silently and successfully. With the proposed method, performance data
of electric motors can be realized in a noiseless and numerical way that is cost-effective. The disadvan-
tage of the system is that it requires calibration for measurements of systems with unknown moments of
inertia.

The work in [6] has examined some of the situations that cause erroneous results in torque measure-
ment systems. Accordingly, the use of data mining and machine learning methods to analyze the signals
obtained in a steady state and to detect possible errors will be discussed in future studies.

19

TABLE 1. Comparison of methods for determining moment of inertia

Method Advantages Limitations
Pendulum Method Simple setup, easy to

conduct, good for basic
shapes.

Accuracy depends on
precise timing and

knowledge of center of
mass.

Rotary Motion Sensor Method Precise measurements,
suitable for complex
shapes, direct data

acquisition.

Requires sophisticated
equipment like rotary

sensors.

Torsional Oscillation Method Good for symmetrical
objects, directly uses
torsional properties.

Requires knowledge of
the spring constant,

precise timing.
Angular Impulse and Momentum Method Directly uses

conservation of angular
momentum, good for

frictionless
environments.

Requires a
near-frictionless

environment,
sophisticated

measuring tools.
Acceleration Method Using Known Masses Flexible for different

configurations,
measures effect of

added masses.

Needs precise
measurement of

angular acceleration,
accurate force
application.

DECLARATIONS

• Conflict of Interest: The authors have no affiliation with any organization with a direct or indi-
rect financial interest in the subject matter discussed in the manuscript.

• Acknowledgment: Special thanks to Karabük University Scientific Research Projects Depart-
ment for supporting the KBÜBAP-21-ABP-115 project; Mehmet Akbaba, an Emeritus Professor
at Karabük University, Turkiye, who provided the theoretical background of the entire study;
Selim Öncü, a Professor at Karabük University, Turkiye, granted permission for laboratory us-
age and Ali Uysal, a Ph.D. from Manisa Celal Bayar University, Turkiye, provided additional
hardware.

REFERENCES

[1] A. Keleşoğlu et al., “Elektrik motorlarında enerji sınıfları arası tüketim farklılıkları ve verimlilik artırıcı metotlar,” Soma
Meslek Yüksekokulu Teknik Bilimler Dergisi, vol. 1, no. 35, pp. 1–15, Jul. 2023, doi: 10.47118/somatbd.1238976.

20

[2] L. Xiao, J. Li, R. Qu, Y. Lu, R. Zhang, and D. Li, “Cogging torque analysis and minimization of axial flux PM ma-
chines with combined rectangle-shaped magnet,” IEEE Trans Ind Appl, vol. 53, no. 2, pp. 1018–1027, Mar. 2017, doi:
10.1109/TIA.2016.2631522.

[3] B. Skala, “The torque measurement based on various principles”, 2004.
[4] H. Işık, “Tork Sensöründe Kullanılan Teknolojiler” European Journal of Science and Technology Special Issue, vol. 28,
pp. 622–626, 2021, doi: 10.31590/ejosat.1009173.

[5] T. Zhang, G. Li, R. Zhou, Q. Wang, and L. Wang, “Torque modeling of reluctance spherical motors using the virtual work
method,” International Journal of Applied Electromagnetics and Mechanics, vol. 71, pp. 199–219, 2023, doi: 10.3233/JAE-
220104.

[6] J. Goszczak, “Torque measurement issues,” IOP Conf Ser Mater Sci Eng, vol. 148, no. 1, p. 012041, Sep. 2016, doi:
10.1088/1757-899X/148/1/012041.

[7] A. Martyr and M. A. Plint, “Dynamometers: The Measurement of Torque, Speed, and Power,” 2012. [Online]. Available:
https://api.semanticscholar.org/CorpusID:111217151

[8] S. Tarakçı et al., “External torque sensor design providing wireless and real-time data customized for drivetrain”, Interna-
tional Journal of Automotive Engineering and Technologies IJAET 11 (1) 18-27 ,2022 doi: 10.18245ijaet.982530.

[9] D. Kvashuk and O. Yashchuk, “Algorithm for determining the torque of electric motors using indirect measurement
methods,” Herald of Khmelnytskyi National University. Technical sciences, vol. 315, no. 6, pp. 138–146, Dec. 2022, doi:
10.31891/2307-5732-2022-315-6(2)-138-146.

[10] V. Kazakbaev, A. Paramonov, V. Dmitrievskii, V. Prakht, and V. Goman, “Indirect Efficiency Measurement Method for
Line-Start Permanent Magnet Synchronous Motors,” 2022, doi: 10.3390/math.

[11] J. Liu, L. Yang, and J. Ma, “The state-of-art and prospect of contactless torque measurement methods,” in IOP
Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jul. 2019. doi: 10.1088/1757-
899X/542/1/012013.

[12] Y. Qin, Y. Zhao, Y. Li, Y. Zhao, and P. Wang, “A high performance torque sensor for milling based on a piezoresistive
MEMS strain gauge,” Sensors (Switzerland), vol. 16, no. 4, Apr. 2016, doi: 10.3390/s16040513.

[13] S. N. Ashwindran, A. A. Azizuddin, and A. N. Oumer, “A Low-Cost Digital Torquemeter Coordinated
by Arduino Board,” International Journal of Integrated Engineering, vol. 15, no. 1, pp. 118–130, 2023, doi:
10.30880/ijie.2023.15.01.011.

[14] V. Brusamarello, A. Balbinot, L. Carlos Gertz, and A. Cervieri, “Dynamic torque measurement for automotive ap-
plication,” in 2010 IEEE Instrumentation and Measurement Technology Conference Proceedings, IEEE, May 2010, pp.
1358–1362. doi: 10.1109/IMTC.2010.5488255.

[15] Ö. Bayraktar and A. Güldaş, “Quadrotor itme ve tork katsayılarının optimizasyonu ve matlab/simulink ile simülasyonu,”
Politeknik Dergisi, vol. 23, no. 4, pp. 1197–1204, Dec. 2020, doi: 10.2339/politeknik.636950.

[16] “Bottle Cap Opening Torque Tester,” Sukron Makina. Accessed: Nov. 18, 2023. [Online]. Available:
https://www.surkonmakina.com/sise-kapak-acma-tork-olcum-cihazi

[17] C. Caruana, P. Mollicone, and M. Farrugia, “Development of a Simple Instantaneous Torque Measurement System on
a Rotating Shaft,” in 2019 IEEE International Conference on Mechatronics (ICM), IEEE, Mar. 2019, pp. 382–388. doi:
10.1109/ICMECH.2019.8722854.

[18] P. Sutyasadi, “Control Improvement of Low-Cost Cast Aluminium Robotic Arm Using Arduino Based Computed
Torque Control,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 8, no. 4, p. 650, Dec. 2022, doi:
10.26555/jiteki.v8i4.24646.

21

APPENDIX

Start

sample = 500
pin = A0

Hduration[sample] =0
Lduration[sample] =0

status = read(pin)
timer = 0

i=0

Yif (status = read(pin))

Y

N

if (read(pin) = true timer = timer +1

Hduration[i] = timer
timer = 0

i=i+1

N

if (read(pin) = false

Y

N if (read(pin) = true

Y timer = timer +1

Lduration[i] = timer
timer = 0

i=i+1

Y

N if (read(pin) = false

Y if(i<sample) SendSerial(Hduration,
Lduration) End

FIGURE 5. Flowchart for algorithm.

22

Vol: 2, Issue: 1, 2024
ISSN: 2980-3152
Pages:23-35
c⃝ 2024 Karabük University

CURRENT TRENDS IN COMPUTING
https://dergipark.org.tr/en/pub/ctc

RESEARCH ARTICLE

SOLVING STATIC WEAPON-TARGET ASSIGNMENT PROBLEM USING MULTI-START
LATE ACCEPTANCE HILL CLIMBING

SELIN ALPARSLAN1 , EMRULLAH SONUÇ1∗

1 Department of Computer Engineering, Karabük University, 78050, Karabük, Türkiye

ABSTRACT. A challenging methodology predicted in modern military strategies is the unprotected
Weapon-Target Assignment (WTA) problem, where weapons under consideration must be assigned
to targets in order to minimize the expected survivability attribute against the targets. In this case,
this study is interested in the static WTA (SWTA) scenario, where the assignments are made on a
one-time basis. Since the SWTA problem has been found to be of NP-complete nature, the more
accurate solution techniques can be considered infeasible due to the escalating complexity. In this pa-
per, it is proposed to extend the library of new methods by implementing the multi-start method and
the technique called Late Acceptance Hill Climbing (LAHC). Performance comparisons between the
Multi-Start Late Acceptance Hill Climbing (MLAHC) and LAHC algorithms, derived from different
examples and problem sizes, prove that the MLAHC algorithm yields better quality solutions and
higher reliability than the traditional LAHC algorithm for large problems. This strategy can be seen
as a revolution in the process of analyzing military resource allocation towards the optimal level.

1. INTRODUCTION

The Weapon-Target Assignment (WTA) problem is a complex optimization task that is aimed at allo-
cating weapons to targets with the intended objective of either realizing the maximum anticipated damage
of or minimizing the expected survival probability of targets. This problem exists in two main forms:
static and dynamic. In the static form, weapons are allocated to the targets once way, and both the
weapons and targets remain fixed for the duration of their assignment. On the other hand, the dynamic
version allows modification of the assignments over some period of time and may allow many assign-
ments [1]. Nonetheless, the Static WTA (SWTA) frameworkfocuses on minimizing optimization where
the goal is to attain the most appropriate weapon to target allocation to deter the enemy’s projected im-
pact. This approach is based on the assessment of the organisational defensive environment and focuses
on the best ways and means of applying the defensive resources available.

The assessment of expected damage for defense assets is carried out after their involvement in a bat-
tlefield scenario. A problem for a defensive mission in SWTA problem can generally be formulated as
follows [2]:

E-mail address: selinalparslann@gmail.com (S.Alparslan), esonuc@karabuk.edu.tr(∗) (E.Sonuç).
Key words and phrases. Combitonarial Optimization, Late Acceptance Hill Climbing, Weapon-Target Assignment Problem.

https://dergipark.org.tr/en/pub/ctc
https://orcid.org/0009-0005-5545-7619
https://orcid.org/0000-0001-7425-6963

f (π) = min
n

∑
i=1

Vi ∏(1− pi j)
xi j

s.t.
n

∑
i=1

xi j = wi, for i = 1, · · · ,m

xi j ∈ Z+, for i = 1, · · · ,m, j = 1, · · · ,n.

(1)

There are m types of weapons (wi represented by i= 1, ...,m) available to counter n targets, represented
by j = 1, ...,n. Each weapon type i is associated with a probability pi j of eliminating target j, while each
target j has a destruction value denoted by Vj. The decision variables xi j signify the quantity of weapons
of type i allocated to target j.

According to [3], SWTA problem is an NP-Complete. Like other assignment problems, e.g. the
quadratic assignment problem [4], it is inherently difficult. In the context of SWTA problem, there are
nm potential permutations for allocating m weapons to n targets. The condition is that all weapons must be
allocated. As the number of weapons and targets increases, this process becomes increasingly complex. It
can be challenging to explore all possible solutions due to the exponential growth of the problem. Exact
solution methods are insufficient for solving the SWTA problem due to its computational complexity.
Therefore, metaheuristics, known for their efficiency and efficacy in discover the solution space to address
complex problems, are preferred for yielding practical and often nearly optimal solutions.

This study proposes an improved methodology for solving the SWTA problem. It suggests combining
a strategy that involves multiple starting points with late acceptance hill climbing. This approach has
been shown to be an alternative option for obtaining quality solutions within reasonable computational
timeframes. The multistart approach increases diversity in the search space, while the hill climbing
approach focuses on exploiting local optima. The study is significant because it addresses a crucial
obstacle in military mission planning: the optimal allocation of weapons to targets. This allocation
is essential for operational success. The research is a significant advancement in the field because it
highlights the importance of assigning weapons to targets to achieve operational success. The rest of
the paper is structured as follows: Section 2 presents the state-of-the-art methods for solving the WTA
problem. Section 3 describes the late acceptance hill-climbing algorithm and the proposed approach with
its components. Section 4 reports the experimental results and the last section concludes the study and
suggests directions for future work.

2. RELATED WORK

In recent years, a large number of exact and approximate algorithms for solving the WTA problem
have been studied [5–7]. Due to its complexity, the WTA problem may be too hard for exact algorithms
to solve. However, metaheuristics help us to overcome this problem by producing good solutions in
a reasonable time. Metaheuristics, which combine several algorithms, are algorithms designed to solve

24

more complex optimization problems and can be applied to different optimization problems. Some meta-
heuristic algorithms, especially preferred for problems with a large number of solutions, can outperform
exact methods and provide an optimal or near optimal solution in a reasonable time [8].

Several approaches to WTA have been studied in the literature. These include genetic algorithms,
heuristic methods, and optimization techniques [9]. Exact algorithms based on mathematical program-
ming have computational requirements that grow exponentially with the size of the problem [2]. There-
fore, these algorithms are limited by some constraints. Recent research has been directed to dynamic
situations and heuristic algorithms [10, 11]. In military operations, the efficient solution of the WTA
problem is crucial. However, the complexity of the problem makes real-time optimal solutions impos-
sible. Researchers are therefore working on heuristic algorithms such as genetic algorithms, simulated
annealing, ant colony optimization, particle swarm optimization [12].

A branch-and-bound algorithm that combines lower bound methods with a search algorithm is pro-
posed to solve the WTA problem. A combination of exact and heuristic algorithms for solving the WTA
problem is presented, providing new methods and approaches for solving WTA in defense-related appli-
cations. Computational results are presented that demonstrate the ability to solve moderately large in-
stances optimally and to obtain near-optimal solutions for fairly large instances within a few seconds. The
ability to obtain optimal solutions for large instances in a short time is a significant achievement. [13]. A
new exact algorithm for solving the WTA problem is presented. The algorithm incorporates new methods
called weapon number limitation and weapon dominance to reduce the number of columns to be enumer-
ated. The use of stage-dependent probabilities in WTA problems is proposed to optimize the allocation
of weapons between different stages and targets. [14].

For the static version of the WTA problem, three approaches from the literature are presented to lin-
earize the problem and transform it into linear optimization problems with complex numbers. The first
approach can only be used as an approximation, the second approach fully linearizes the objective func-
tion of the WTA problem but is inferior to the solution time of the assignment problem, and the third
approach exactly linearizes the objective function of the WTA problem. A special exact algorithm is
proposed that avoids the difficulty of large dimensions. When a larger number of weapons are available
for each weapon type, the optimization problems become intractable [15]. The modified Crow Search
Algorithm (CSA) presents a new approach with a trial mechanism to improve the solution quality in
solving WTA. The results show that the modified CSA performs better than the basic CSA and other
state-of-the-art algorithms in most problem instances [16]. Another study has improved the previously
proposed multi-objective evolutionary optimization algorithm by introducing an innovative approach.
The proposed method consists of a Deep Q-Network (DQN) based mutation operator and a greedy-based
matching operator.Experimental results show that the DQN-based mutation operator is successful in ef-
fectively identifying promising candidate solutions [17].

The WTA problem plays a central role in the improvement of military strategies and security mech-
anisms, and is characterized by its complicated nature stemming from the imperative requirement of
optimal and competent resource allocation. Recent scientific work has witnessed a growing fascination

25

with metaheuristic methods as a means to address the challenges posed by the WTA problem, as dis-
cussed in Kline’s study [2]. Metaheuristics are preferred because they provide flexibility and efficiency
in solving large and complex problems.

3. THE PROPOSED METHOD

3.1. Late Acceptance Hill Climbing:
The Late Acceptance Hill Climbing (LAHC) Algorithm is a metaheuristic approach designed to ad-

dress combinatorial optimization problems [18]. It evaluates recent solution history to decide whether to
accept a new solution, treating each new solution as an improved version of the current one. The LAHC
algorithm has proven effective in various domains, including the traveling salesman problem, scheduling,
and timetabling problems. The late acceptance strategy is straightforward. The control parameter for the
acceptance condition is derived from the search history. This heuristic resembles Hill Climbing but with
a key difference: in Hill Climbing, a candidate solution is compared to the current solution, whereas in
LAHC, a candidate solution is compared to a solution from several iterations in the past. LAHC follows
an acceptance rule by maintaining a fixed-length list, Lh, which represents the history length and contains
previous values of the current cost function. To determine whether to accept a candidate solution, the
candidate cost is compared to the final element in the list. If the candidate cost is better, it is accepted.
Upon acceptance, the list is updated by inserting the new current cost at the beginning and removing
the last element from the end. This process ensures that the added current cost consistently reflects the
present cost. The pseudocode of LAHC is outlined in Algorithm 1.

LAHC has a wide range of applications in various domains. Its primary application has been in course
scheduling, where it optimizes the quality of schedules by significantly reducing the final solution value,
demonstrating an ability to effectively handle complex scheduling constraints [18]. LAHC has been used
to solve the unrelated parallel machine scheduling problem [19], the general lot sizing and scheduling
problem with rich constraints [20], and the traveling salesman problem [21]. Furthermore, LAHC has
been applied in the context of drone trajectory planning algorithms, where it demonstrates superior per-
formance compared to conventional approaches by incorporating local search operators to improve the
efficiency of path determination [22]. In addition, the use of LAHC has been integrated into the feature
selection process, thereby enhancing the ability to utilize metaheuristic algorithms to reduce dimensional-
ity in machine learning tasks [23]. These examples highlight the adaptability and effectiveness of LAHC
in tackling complex optimization and trajectory planning problems.
3.2. Multi-Start Late Acceptance Hill Climbing:

The Multistart Late Acceptance Hill Climbing Algorithm (MLAHC) is one of the most advanced
optimization techniques which is an enhancement of the existing LAHC as it not only considers single
start points of the search space but also in using multiple starts points in the exploration domain. While,
in LAHC, new solutions are accepted after a specific time-interval based on their fitness value, and
thus, navigate away from local optima, MLAHC enhances this by beginning the search process with
different random initial solutions. This, in turn, enhances the prospects of visiting different regions of
the exploration space in pursuit of the near-optimum solutions through what has been referred to as the

26

Algorithm 1 The pseudocode of LAHC.
Input: maxIterations, L (length of history list), initialSolution
Output: bestSolution
Initialisation:

1: currentSolution← initialSolution
2: bestSolution← currentSolution
3: currentValue← Evaluate(currentSolution)
4: historyList← Array of size L initialized with currentValue

Loop for a fixed number of iterations:
5: for i≤ maxIterations do
6: neighborSolution← GenerateNeighbor(currentSolution)
7: neighborValue← Evaluate(neighborSolution)
8: if neighborValue ≤ currentValue or neighborValue ≤ historyList[i % L] then
9: currentSolution← neighborSolution

10: currentValue← neighborValue
11: end if
12: if currentValue ≤ Evaluate(bestSolution) then
13: bestSolution← currentSolution
14: end if
15: historyList[i % L]← currentValue
16: end for
17: return bestSolution

multi-start strategy. In other words, MLAHC is different from the basic LAHC in that it have multiple
initial solutions as opposed to LAHC’s single-start nature, meaning that the exploration of the search
space is going to be better and wider with multiple LAHC.

The MLAHC begins by initializing the number of iterations, acceptance period, and restarts, followed
by generating an initial solution and setting up the acceptance history. The algorithm then enters the
multistart loop, where at each restart it sets the initial solution as the current solution and resets the
acceptance history. Within each restart, the iteration loop generates neighboring solutions, calculates
their costs, and compares these costs to those in the acceptance history. If a neighboring solution’s cost is
less than or meets the acceptance criteria, it becomes the new current solution and the acceptance history
is updated accordingly. The algorithm tracks the best solution from each restart and updates the global
best solution when a superior solution is found. This process continues until all restarts and iterations are
complete, ultimately returning the global best solution as the optimal solution found by the algorithm. By
using multiple starting points, MLAHC enhances its ability to explore the search space more extensively
than traditional LAHC. The flowchart of the MLAHC is shown in Figure 1.

27

Start

Initialize Parameters

Generate Initial Solution
Evaluate Initial Solution

Set Initial as Best Solution
Initialize History List

Set Non-Improved Counter

No YesTermination criteria
is met

Evaluate Neighbor
Solution

Generate Neighbor
Solution

No

YesThe neighbor
solution accepted

Update Current
Update History List

Reset Non-Improved

Increment Counter No

Yes

Current solution
is better than

the best solution

Yes

No

Restart criteria
is metUpdate Best Solution

Generate New Initial
Evaluate New Initial
Set New as Current
Update History List

Reset Non-Improved

Output Best Solution

End

FIGURE 1. The flowchart of MLAHC.

4. EXPERIMENTAL RESULTS

MLAHC is tested on 12 WTA problem instances [7]. The results are given in different metrics: best,
mean, median, worst and standard deviation (SD). Sizes of problem instances are in the range 5 and 200
and shown in Table 1. Results were collected from 10 independent runs. The numerical experiments
were performed on a PC with 8.00 GB of RAM, MacOS 14.4.1 operating system. The MLAHC codes
were written in the C programming language using CLion IDE v2023.3.4.

28

TABLE 1. WTA problem instances.

Instance Number of Weapons Number of Targets
WTA1 5 5
WTA2 10 10
WTA3 20 20
WTA4 30 30
WTA5 40 40
WTA6 50 50
WTA7 60 60
WTA8 70 70
WTA9 80 80
WTA10 90 90
WTA11 100 100
WTA12 200 200

Table 2 presents the results on small-scale WTA instances. The results of the MLAHC show that for
WTA1, WTA2, and WTA3, the algorithm consistently achieves identical best, worst, mean, and median
objective values, with an SD of 0.0000 across all configurations, indicating highly stable performance.
In contrast, WTA4 shows more variability, especially with a history length of 1 and no restarts, resulting
in higher and more variable target values and an SD of 6.4358. This means that there is a direct relation
between the number of identified parameter configurations and the overall performance of the algorithm,
notably when it is faced with more complex instances. Although the algorithm shows consistent perfor-
mance on small instances (WTA1, WTA2, and WTA3) regardless of historical length and restart values, it
requires careful parameter tuning when faced with more complex instances such as WTA4. In particular,
adopting larger historical lengths and using restarts as enhancements could be seen as effective on the
grounds of stability and optimality to these particular cases.

Table 3 presents the results on medium-scale WTA instances. For the WTA5 instance , the best, worst,
mean, and median objective values show some variation across different history lengths and restart values,
indicating that the algorithm’s performance is somewhat sensitive to these parameters. The lowest mean
objective value is 306.8923 for a history length of 1000 and a restart value of 500. For the WTA6 instance,
the results also vary across configurations. The lowest mean objective value is 355.6795 for a history
length of 1000 and a restart value of 1000. For the WTA7 instance , there is variability in the results, with
the lowest mean objective value of 419.5174 achieved with a history length of 1000 and restart value of
1000. For the WTA8 instance, the results show significant variability, especially with a history length
of 1 and no restart, leading to much higher objective values and standard deviation. The lowest mean
objective value is 502.9574 with a history length of 1000 and a restart value of 500. As a result, for
instances WTA5, WTA6, and WTA7, MLAHC consistently achieves better and more stable results with
larger history lengths and higher restart values, suggesting that these configurations help the algorithm
explore the solution space more effectively. For the WTA8 instance, the variability in results is more
pronounced, especially with shorter history lengths and no restarts, resulting in higher objective values

29

TABLE 2. Experimental results on small-scale problem instances.

Instance History Length Restart Best Worst Mean Median SD
1000 1000 48.3640 48.3640 48.3640 48.3640 0.0000
500 500 48.3640 48.3640 48.3640 48.3640 0.0000
500 1000 48.3640 48.3640 48.3640 48.3640 0.0000

WTA1 1000 500 48.3640 48.3640 48.3640 48.3640 0.0000
500 - 48.3640 48.3640 48.3640 48.3640 0.0000
1000 - 48.3640 48.3640 48.3640 48.3640 0.0000

1 - 48.3640 48.3640 48.3640 48.3640 0.0000
1000 1000 96.3123 96.3123 96.3123 96.3123 0.0000
500 500 96.3123 96.3123 96.3123 96.3123 0.0000
500 1000 96.3123 96.3123 96.3123 96.3123 0.0000

WTA2 1000 500 96.3123 96.3123 96.3123 96.3123 0.0000
500 - 96.3123 96.3123 96.3123 96.3123 0.0000
1000 - 96.3123 96.3123 96.3123 96.3123 0.0000

1 - 96.3123 96.3123 96.3123 96.3123 0.0000
1000 1000 142.1070 142.1070 142.1070 142.1070 0.0000
500 500 142.1070 142.1070 142.1070 142.1070 0.0000
500 1000 142.1070 142.1070 142.1070 142.1070 0.0000

WTA3 1000 500 142.1070 142.1070 142.1070 142.1070 0.0000
500 - 142.1070 150.2510 144.7579 144.0702 2.3100
1000 - 142.1070 144.4690 143.3774 143.2416 0.7843

1 - 164.5723 178.6062 173.3124 174.3449 4.5964
1000 1000 248.0285 248.5817 248.3479 248.4051 0.1936
500 500 248.2730 249.3956 248.5891 248.4222 0.3427
500 1000 248.3312 249.0275 248.5460 248.4222 0.2646

WTA4 1000 500 248.0285 248.8386 248.3717 248.3476 0.2605
500 - 249.9979 256.5385 253.2718 253.4581 2.2874
1000 - 250.4865 257.0525 253.6127 253.7566 2.0373

1 - 327.0574 346.8141 339.7976 340.0045 6.4358

and standard deviations. This suggests that for more complex or larger instances, a longer history length
and the ability to restart the search process are critical to achieving optimal and consistent solutions.

Table 4 presents the results on medium-scale WTA instances. For the WTA9 instance, the best, worst,
mean, and median objective values show some variation across different history lengths and restart val-
ues. The lowest mean objective value is 539.2292 with a history length of 1000 and a restart value of
1000. The SD values are relatively low for most configurations, indicating stable performance, except
for configurations with shorter history lengths and no restarts. For the WTA10 instance, the results also
vary, with the lowest mean objective value of 599.2728 achieved with a history length of 1000 and restart
value of 1000. For the WTA11 instance, the results indicate variability, with the lowest mean objective
value of 704.6850 with a history length of 1000 and restart value of 1000. For WTA10 and WTA11
instances, the SD values are also low for most configurations, indicating stable performance, but higher
for shorter history lengths and no restarts. For the WTA12 instance, the variability in results is more
pronounced, especially for a history length of 1 and no restart, leading to much higher objective values

30

TABLE 3. Experimental results on medium-scale problem instances.

Instance History Length Restart Best Worst Mean Median SD
1000 1000 306.5564 308.1392 307.2418 307.2133 0.4812
500 500 306.2859 307.7959 306.9699 307.0481 0.4560
500 1000 306.1562 308.5417 307.1399 306.9142 0.6765

WTA5 1000 500 306.0912 307.5720 306.8923 307.1220 0.5953
500 - 308.0490 319.2780 313.5596 314.6806 3.8503
1000 - 311.2144 320.5870 314.4265 313.8629 2.5515

1 - 461.5889 488.0803 476.8728 477.8627 7.9504
1000 1000 354.0916 356.8551 355.6795 355.6409 0.8638
500 500 355.3909 356.7601 356.2280 356.3174 0.0536
500 1000 355.1825 358.1991 356.6363 356.7981 0.8159

WTA6 1000 500 354.6224 356.2821 355.6847 355.7897 0.5000
500 - 360.1330 370.9876 364.8432 364.1965 3.6817
1000 - 357.4125 364.0606 360.0826 360.0549 1.9652

1 - 545.3753 596.1006 577.8765 579.7290 14.9065
1000 1000 418.5731 420.5899 419.5174 419.5085 0.5927
500 500 417.1001 422.0817 419.6406 419.7593 0.0613
500 1000 417.1754 421.1842 419.8538 420.4126 1.3062

WTA7 1000 500 417.4177 421.3109 419.7452 419.7255 1.1660
500 - 425.9927 432.3662 428.6032 428.5293 2.0944
1000 - 422.9075 435.2173 426.7079 426.1469 3.5601

1 - 700.1578 732.6472 715.8937 713.3675 10.0763
1000 1000 500.0615 504.5395 503.0515 503.4774 1.3633
500 500 499.9063 505.1909 503.3437 503.7197 1.5449
500 1000 501.4779 507.3864 504.4214 504.8288 2.0883

WTA8 1000 500 499.9062 504.4010 502.9574 503.6857 1.6086
500 - 508.2395 519.8273 514.9432 515.8243 3.7444
1000 - 504.3269 520.1396 511.7618 512.2577 5.7482

1 - 864.0853 898.3761 884.8409 884.3876 10.5878

and standard deviation. The lowest mean objective value is 1,306.1270 with a history length of 1000 and
a restart value of 1000. The SD is higher, especially for the history length of 1 and no restart, where the
SD is 20.4028, indicating less stable performance and greater variability in results.

The performance of MLAHC on large instances is strongly influenced by the history length and restart
parameters. For instances WTA9, WTA10, and WTA11, MLAHC consistently yields better and more
stable results with larger history lengths and higher restart values. This suggests that these configurations
help the algorithm explore the solution space more effectively. For the WTA12 instance, the variability
in results is more significant, especially with shorter history lengths and no restarts, resulting in higher
objective values and standard deviations. This suggests that for more complex or larger instances, using
a longer history length and allowing the search process to restart are critical to achieving optimal and
consistent solutions. Overall, adjusting these parameters is key to improving the performance of the
algorithm. Longer history lengths and restarts are generally recommended for large instances to improve
results.

31

TABLE 4. Experimental results on large-scale problem instances.

Instance History Length Restart Best Worst Mean Median SD
1000 1000 537.7873 541.1868 539.2292 539.2745 1.0036
500 500 538.7035 15.2201 541.2645 541.5898 1.3981
500 1000 539.4272 542.8226 541.1484 541.3882 1.3585

WTA9 1000 500 536.7075 541.1680 539.5932 539.9091 1.4354
500 - 543.9957 554.6371 548.5667 548.8087 3.2537

1000 - 540.7142 553.3719 545.6256 544.8100 3.8780
1 - 935.5836 987.4912 969.9581 976.2804 16.8421

1000 1000 598.0171 602.8778 599.8728 599.5441 1.4008
500 500 597.1049 604.1977 601.0149 601.3492 0.0621
500 1000 599.9423 602.5693 601.2927 601.2210 0.9187

WTA10 1000 500 597.2714 602.1404 599.4435 599.5426 1.4863
500 - 606.5543 614.2934 610.2164 610.1721 2.5238

1000 - 603.0792 615.5761 607.9658 607.2778 3.9888
1 - 1,089.2605 1,134.0014 1,118.0351 1,123.5720 14.6743

1000 1000 702.4334 706.9329 704.6850 704.7220 1.5023
500 500 705.8282 709.3710 707.8575 707.7180 0.0810
500 1000 704.9791 708.7655 707.3339 707.3468 1.1818

WTA11 1000 500 702.8853 707.9533 705.0482 704.8346 1.5613
500 - 712.9811 721.9246 716.4566 715.2716 3.3886

1000 - 704.3536 720.3480 712.7618 713.0143 5.0992
1 - 1,297.7713 1,338.8655 1,325.7621 1,329.8928 13.7453

1000 1000 1,304.0334 1,308.1425 1,306.1527 1,306.2038 1.2910
500 500 1,306.3751 1,311.0284 1,308.4978 1,308.6416 0.1910
500 1000 1,305.1196 1,310.4764 1,308.7313 1,309.3100 1.7343

WTA12 1000 500 1,300.8688 1,309.1603 1,304.7562 1,304.9484 2.4993
500 - 1,311.4409 1,324.3238 1,319.0374 1,321.3748 4.6725

1000 - 1,307.7223 1,318.4404 1,312.3279 1,312.8594 3.3418
1 - 2,664.1240 2,727.3161 2,696.9456 2,698.5258 20.4028

5. DISCUSSION

WTA problem experimentation under small, medium, and large problem instances indicate that the
effectiveness of MLAHC depends on the history length and restart parameters. In regard to small sce-
narios, the specific algorithm seems to be highly stable in terms of yielding near-optimal solutions and
is almost inert to these settings. However, these parameters when complex, require adjustments that are
more relevant, with the size of the problem advancing. In medium and large scenarios, the use of larger
history length and inclusion of restarts, generally enhance and stabilize the performance by attaining bet-
ter lower objective values with less variability. In the most difficult problem instances, a history length of
1000 combined with frequent restarts consistently produces the best results. Thus, for more complicated
and extensive tasks, it regimens stable and longer histories, as well as organize restarts when using the
MLAHC algorithm. It also helps give enhanced solution quality and reliability since the best possible
solution is chosen from numerous different solutions.

32

A comprehensive evaluation over a range of problem sizes highlights the effectiveness and stability
of the algorithm. However, the study’s comparison is limited to traditional LAHC and lacks broader
comparisons with other state-of-the-art algorithms. It focuses specifically on SWTA, which may limit
generalizability, and does not investigate scalability or computational requirements for extremely large
or real-time applications. The performance of the MLAHC algorithm is highly dependent on the his-
tory length and restart parameters, which require careful tuning, especially for larger and more complex
problem instances. While the algorithm shows consistent performance on small instances, it requires
more precise parameter settings to achieve efficient solutions as the problem size increases. In addition,
the study focuses primarily on the static version of the WTA problem, and although it suggests potential
applications in dynamic WTA problems, these areas are not explored in this paper. Despite these limita-
tions, the practical relevance of the study to military resource allocation and the novel approach presented
are significant contributions.

6. CONCLUSION

This paper aims to develop a new heuristic approach for solving the Static Weapon-Target Assignment
(SWTA) problem incorporating the multistart strategy and Late Acceptance Hill Climbing. This new
technique called Multistart Late Acceptance Hill Climbing (MLAHC) enhances the search mechanism
coupled with optimization in the local optima, and they deliver the best quality solutions with high
performance. As one can observe from tests on various scenarios of WTA problems, it can been seen
that the MLAHC approach performs well. The simulation results indicate that this technique is also more
efficient than conventional versions of LAHC and this becomes more evident when applied to larger and
complicated problems.

This research also found that except for the history length and restart parameters, MLAHC has signif-
icantly high dependency on these two factors. For the small levels, MLAHC holds an ideal and constant
performance in all environment settings. However, as problem size increase, it becomes paramount to
tweak these parameters within the system. History length is longer and it has more restarts which prove
that it provides better and improved results and it underlines the point that there should be much proper
setting required to get the efficient solutions in the complex problems.

Thus, the MLAHC algorithm gives a strong and versatile method to the SWTA problem, which will
significantly adds its value to the scopes of computational combinatorial optimization in general and
the military operations study in particular. If this algorithm is applied in the dynamic WTA problem
and other optimization problems in defence and other fields, then future research can be on these areas.
Further enhancement of this algorithm can be done by combining several metaheuristic algorithms and
hybridization of the strategies.

Data Statement WTA problem instances are available at https://doi.org/10.17632/jt2ppwr62p.1
Conflict of Interest The authors have no affiliation with any organization with a direct or indirect finan-
cial interest in the subject matter discussed in the manuscript.

33

https://doi.org/10.17632/jt2ppwr62p.1

REFERENCES

[1] R. K. Ahuja, A. Kumar, K. C. Jha, J. B. Orlin, Exact and heuristic algorithms for the weapon-target assignment problem,
Operations research 55 (6) (2007) 1136–1146.

[2] A. Kline, D. Ahner, R. Hill, The weapon-target assignment problem, Computers & Operations Research 105 (2019)
226–236.

[3] S. P. Lloyd, H. S. Witsenhausen, Weapons allocation is np-complete., in: 1986 summer computer simulation conference,
1986, pp. 1054–1058.

[4] E. Sonuc, B. Sen, S. Bayir, A cooperative gpu-based parallel multistart simulated annealing algorithm for quadratic
assignment problem, Engineering Science and Technology, an International Journal 21 (5) (2018) 843–849.

[5] Ö. Tolga, E. BOZKAYA, An evaluation on weapon target assignment problem, Journal of Naval Sciences and Engineer-
ing 18 (2) (2022) 305–332.

[6] H. Xing, Q. Xing, An air defense weapon target assignment method based on multi-objective artificial bee colony
algorithm., Computers, Materials & Continua 76 (3) (2023).

[7] E. Sonuc, B. Sen, S. Bayir, A parallel simulated annealing algorithm for weapon-target assignment problem, Interna-
tional Journal of Advanced Computer Science and Applications 8 (4) (2017) 87–92.

[8] B. Chopard, M. Tomassini, An introduction to metaheuristics for optimization, Springer, 2018.
[9] A. Toet, H. de Waard, The Weapon-Target Assignment Problem, Citeseer, 1995.

[10] C. Wang, G. Fu, D. Zhang, H. Wang, J. Zhao, et al., Genetic algorithm-based variable value control method for solving
the ground target attacking weapon-target allocation problem, Mathematical Problems in Engineering 2019 (2019).

[11] D. Guo, Z. Liang, P. Jiang, X. Dong, Q. Li, Z. Ren, Weapon-target assignment for multi-to-multi interception with
grouping constraint, IEEE Access 7 (2019) 34838–34849.

[12] M. D. Rezende, B. S. P. De Lima, S. Guimarães, A greedy ant colony system for defensive resource assignment problems,
Applied Artificial Intelligence 32 (2) (2018) 138–152.

[13] Exact and heuristic algorithms for the weapon-target assignment problem (2007). doi:10.1287/OPRE.1070.0440.
[14] A new exact algorithm for the weapon-target assignment problem (2021). doi:10.1016/J.OMEGA.2019.102138.
[15] A. C. Andersen, K. Pavlikov, T. A. Toffolo, Weapon-target assignment problem: Exact and approximate solution algo-

rithms, Annals of Operations Research 312 (2) (2022) 581–606.
[16] E. Sonuç, A modified crow search algorithm for the weapon-target assignment problem, An International Journal of

Optimization and Control: Theories & Applications (IJOCTA) 10 (2) (2020) 188–197.
[17] S. Zou, X. Shi, S. Song, Moea with adaptive operator based on reinforcement learning for weapon target assignment,

Electronic Research Archive 32 (3) (2024) 1498–1532.
[18] E. K. Burke, Y. Bykov, The late acceptance hill-climbing heuristic, European Journal of Operational Research 258 (1)

(2017) 70–78.
[19] M. Terzi, T. Arbaoui, F. Yalaoui, K. Benatchba, Solving the unrelated parallel machine scheduling problem with setups

using late acceptance hill climbing, in: Asian Conference on Intelligent Information and Database Systems, Springer,
2020, pp. 249–258.

[20] A. Goerler, E. Lalla-Ruiz, S. Voß, Late acceptance hill-climbing matheuristic for the general lot sizing and scheduling
problem with rich constraints, Algorithms 13 (6) (2020) 138.

[21] S. Clay, L. Mousin, N. Veerapen, L. Jourdan, Clahc-custom late acceptance hill climbing: First results on tsp, in:
Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2021, pp. 1970–1973.

[22] B. S. Shihab, H. N. Abdullah, L. A. Hassnawi, Improved artificial bee colony algorithm-based path planning of un-
manned aerial vehicle using late acceptance hill climbing., International Journal of Intelligent Engineering & Systems
15 (6) (2022).

[23] B. Chatterjee, T. Bhattacharyya, K. K. Ghosh, P. K. Singh, Z. W. Geem, R. Sarkar, Late acceptance hill climbing based
social ski driver algorithm for feature selection, IEEE Access 8 (2020) 75393–75408.

34

https://doi.org/10.1287/OPRE.1070.0440
https://doi.org/10.1016/J.OMEGA.2019.102138

Vol: 3, Issue: 1, 2024
ISSN: 2980-3152
Pages:36-47
c⃝ 2024 Karabük University

CURRENT TRENDS IN COMPUTING
https://dergipark.org.tr/en/pub/ctc

RESEARCH ARTICLE

EFFECTS OF CHEMICAL AUTAPSE ON INVERSE CHAOTIC RESONANCE IN
MORRIS-LECAR NEURON MODEL

ALİ AKÇAY 1, ERGİN YILMAZ 1∗

1 Biomedical Engineering Department, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Türkiye

ABSTRACT. Inverse chaotic resonance is a phenomenon, in which the mean firing rate of a neuron
exhibits a minimum depending on the chaotic signal intensity, which emerges in the firing dynamics
of neurons. In this study, we have investigated the effects of inhibitory and excitatory autapses on
the inverse chaotic resonance phenomenon in Morris-Lecar (ML) neurons. We show that, for proper
constant stimulus current, the ML neurons exhibits inverse chaotic resonance phenomenon in the fir-
ing dynamics as a function of the intensity of the chaotic activity. In addition, we find that, at low and
medium chaotic activity levels, the ML neuron shows multiple-inverse chaotic resonance phenomenon
depending on autaptic time delay for low and intermediate autaptic conductances. Finally, we show
that, both excitatory and inhibitory autapse augment the firing rate of the ML neuron, this increase
is more in the case of excitatory autapse.

1. INTRODUCTION

Neurons serve as the building blocks of the nervous system and play a fundamental role in informa-
tion processing and transmission. The electrical activity occurring in neurons forms the basis for the
processing and encoding of information [1–4]. Researchers have proposed various biophysical models
to explain information processing and electrical activity in neurons [5–8]. In the literature, it is observed
in experimental and theoretical studies that the electrical activity and membrane dynamics in neurons
are not deterministic, meaning that neurons do not always generate firing in the same magnitude and
timing in response to the same stimulus [9–11].The influence of various environmental factors on the
processing of information in the nervous system has been extensively documented in the literature. For
instance, the phenomenon of stochastic resonance (SR) allows for the optimization of the detection and
transmission of weak signals in neurons under certain conditions [12–18]. Gutkin et al. observed in their
studies that at a constant critical current value applied to neurons, the firing rate approaches zero within
an optimal noise range and then increases again for increasing noise levels [19].This situation represents
a phenomenon that is the opposite of stochastic resonance. This phenomenon, widely investigated in the
literature, is known as ”inverse stochastic resonance” (ISR) [20, 21]. In their work, Yu et al. reported
the presence of inverse chaotic resonance (ICR), a phenomenon similar to inverse stochastic resonance,

E-mail address: erginyilmaz@yahoo.com (∗).
Key words and phrases. Morris-Lecar neuron, inverse chaotic resonance, autapse.

https://dergipark.org.tr/en/pub/ctc
https://orcid.org/0000-0001-5080-3432

emerges under the influence of chaotic activity in the average firing rate of neurons. This effect manifests
itself as a kind of squelch in the average firing rate at a given chaotic signal intensity [22].

Neurons communicate through specialized connections called synapses. In the nervous system, there
are two main types of synapses: electrical synapses and chemical synapses. Electrical synapses are
synapses where communication between neurons occurs directly through electrical signals. In this type
of synapse, nerve impulses are transmitted electrically along the cell of a neuron. On the other hand,
chemical synapses are synapses where communication between neurons occurs through chemical sig-
nals. In this type of synapse, an excitatory signal from one neuron is transmitted to the receptors of
another neuron through chemical signals called neurotransmitters. However, it has been documented in
the literature that some neurons form synaptic connections between their own soma and dendrites, creat-
ing a feedback structure. This unusual biological structure was first reported by Van der Loos and Glaser
and named autapse [23]. In studies using different experimental techniques, the presence of autapses in
brain regions has been observed [24–26].

Recently, in addition to the existence of autapse, the effects of autapse on neuron behavior have been
extensively examined in numerical studies [27–29]. By inter spike interval histogram analysis, Li et al.
showed that electrical autapse reduces the number of spontaneous firings in stochastic Hodgkin-Huxley
(H-H) neurons [30]. Qin et al reported that autapse triggers spiral wave formation in an organized network
of Hindmarsh-Rose (HR) neurons [31]. Wang at al. demonstrated that autapse provides a transition
between silence (no firing state) and periodic and chaotic behavioral patterns in the electrical activity of
the Hodgkin-Huxley (H-H) neuron [32]. Baysal at al. examined the effects of chemical autapse on weak
signal transmission in scale-free networks and revealed that autapse blocks the weak signal transmission
at appropriate parameter values [29]. Yilmaz et al., assuming that only the pacemaker neuron in the small
world network has an autapse, demonstrated that the transmission of the local activity of the pacemaker
neuron through the network increases significantly at appropriate autapse parameters [33].

In the literature, although the inverse chaotic resonance phenomenon has been studied in single neurons
and in neuronal network, the effects of autapse on the this phenomenon are not investigated neither in
single neurons nor in complex neuronal networks. To address this gap in the related research topic, in
the current paper, we have analyzed the effects of chemical autapse on the inverse chaotic resonance
phenomenon in Moris-Lecar (ML) neurons via numerical simulations. Obtained results show that for
proper autaptic parameter values, the chemical autapse regardless of it is excitatory or inhibitory induces
M-ICR phenomenon at low and medium chaotic activity cases.

2. MATERIALS AND METHODS

The membrane potential dynamics of the Morris-Lecar neuron, which has an autapse and is exposed
to a chaotic signal, is given by the following equations [34, 35]:

C
dV
dt

=−gCam∞(V)(V −ECa))−gKw(V −EK)−gleak(V −EL)+ Iapp + Ichaos + Iaut (1)

dw
dt

= φ
w∞(V)–w

τw(V)
(2)

37

m∞(V) = 0.5[1+ tanh((V –βm)/βw)] (3)

w∞(V) = 0.5[1+ tanh((V –γm)/γw)] (4)

τw(V) = 0.5[cosh(
V − γm

2γw
)]−1 (5)

The meanings of the symbols used in these equations are given in Table 1:

TABLE 1. Model parameters

Parameter Value

C: Membrane capacitance of the neuron 20µF/cm2

V : Membrane potential variable
w: Slow recovery variable variable
gCa: Conductance of fast Ca++ current 4.4µS/cm2

gK: Conductance of slow K+ current 8µS/cm2

gleak: Conductance of leak current 2µS/cm2

EK: Potassium equilibrium potential −84mV
EL: Leak current equilibrium potential −60mV
ECa: Sodium equilibrium potential 120mV
βm: the activation midpoint potentials at which the corresponding currents are half activated −1.2mV
βw: slope factors of the activation 18mV
γm: the activation midpoint potentials at which the corresponding currents are half activated 2mV
γw : slope factors of the activation 30mV
φ : maximum rate constant for K+ channel opening 0.04
m∞ : the fraction of open calcium channels at steady state variable
w∞ : the fraction of open potassium channels at steady state variable
τw :time constant for the activation of potassium channels variable

The Iapp current given in Equation1 represents the constant stimulation current injected externally. Iaut
represents the autapse current arising from the chemical autapse of the ML neuron and is expressed by
the equation given below.

Iaut =−κ(V (t)−Vsyn)S(t − τ) (6)

S(t − τ) = 1/1+ exp(−k(V (t − τ)−θ)

where V (t) represents membrane potential of The ML neuron and κ is autaptic conductance,Vsyn is re-
verse synaptic potential and τ is autaptic delay. When the reverse synaptic potential is Vsyn=10mV, the
autapse shows excitatory behavior, while when Vsyn=-65mV, the autapse shows inhibitory behavior. The

38

other parameters’s values are set k= 8 and θ= 0.25 [36]. The chaotic current Ichaos whose source is as-
sumed to be the chaotic activity of peripheral neurons, is calculated as Ichaos = ε.x, here ε represents the
chaotic current intensity and x is the chaotic signal source. In this study, the Lorenz system was used as
the chaotic signal source. The equations representing this system are given below [37].

dx/dt = σ(y− x) (7)

dy/dt = px− y− xz (8)

dz/dt = xz−λ z (9)
where chaotic system parameters are set as β = 8/3, σ = 10, p = 28. The initial values for the (x,y,z)
variables are determined randomly. On the other hand, initial values of membrane potential variable
V and slow recovery variable W were randomly determined uniformly between related intervals. After
distracting 1 second transition time, the firing frequency is calculated during δ = 5s simulation time.
20mV is assumed as a firing threshold in the membrane potential of neuron in deciding whether a spike
is present or not. It is accepted that, at each passing of membrane potential with positive slope from this
threshold, a spike occurs. This procedure is repeated N = 1000 times and the average is taken to obtain
the mean firing rate (MFR). Calculation of mean firing rate (MFR) is given below:

MFR =
1

Nδ
(

N

∑
k=1

Nspikes
k) (10)

where Nspikes
k is the total number of spikes produced by the neuron in kth realization.

3. RESULTS

3.1. Inverse Chaotic Resonance in Morris Lecar neuron model. In this section, we investigate the
effect of chaotic activity on the firing rhythms of single ML neuron. To do this, firstly, the time-dependent
change of membrane potentials of ML neuron at different chaotic activity levels are given in Figure 3.1.

FIGURE 1. Time dependence of membrane potential of ML neuron for different chaotic
signal intensities, a) ε = 0.01; b)ε = 0.5; c) ε = 2 (Iapp = 89µA/cm2).

39

It is seen in Figure that, at a low chaotic current intensity (ε = 0.001), the neuron fires continuously under
the effect of constant stimulus current Iapp and has a constant firing rate (Figure 3.1a). For the chaotic
current intensities of moderate level, for example ε = 0.5 (Fig.1b), although the neuron initially emits
one spike due to the initial conditions effect, then it emits no spike and remains silent due to the effects of
the increasing chaotic activity. At further increase in the chaotic current intensity, as the neuron in Fig.1c
in which ε = 2, the neuron stays silent first, and then, it emits spikes in some instants, or vice versa,
first emits spikes, and then stays silent, and this pattern of activity, knowing burst type firing, emerges
continuously in the electrical activity of the ML neuron. Eventually, the neuron has a constant, non-zero
firing rate. From these results presented in Figure 3.1, it can deduced that the chaotic signals can induce
inverse chaotic resonance phenomenon (ICR) in ML neurons.

To investigate whether the chaotic activity induces the ICR phenomenon, the average firing frequency
of the ML neuron for different constant stimulation currents (Iapp) is given as a function of the chaotic
current intensity in Figure 2.

FIGURE 2. The dependence of average firing rate of ML neuron on the chaotic signal
intensity for different Iapp values

When the constant excitation current Iapp = 88µA/cm2, neither the chaotic signal level nor the applied
constant current Iapp is enough to induce spiking activity in ML neuron, and consequently the neuron is
silent mode. In addition with the increase in chaotic signal intensity beyond ε > 1, the neuron starts to
fire and has a increasing firing rate. On the other hand, for Iapp = 93µA/cm2, the neuron produces spikes
at an almost constant firing rate and is unaffected by the chaotic signal levels. But, when we choose
Iapp = 89µA/cm2, some different firing patterns emerge. It is observed that the neuron is not affected
by chaotic signals at a certain level (ε < 0.1) and maintains its firing rate at a constant value of 9Hz.
However, as the chaotic signal intensity increases, the firing frequency of ML neuron decreases swiftly
and within a certain range of chaotic signal intensity the neuron becomes completely silent. Then, as
the chaotic signal intensity further increases, the neuron starts to fire again and reaches a certain firing
rate. These results obtained for Iapp = 89µA/cm2 showed that the inverse chaotic resonance effect can

40

occur in the ML neuron for the appropriate Iapp value. That is, under a certain stimulus current value,
the neuron is observed to exhibit the inverse chaotic resonance phenomenon depending on chaotic signal
level. Finally, the ICR effect was not observed at smaller and larger Iapp values, indicating that this effect
largely depends on the excitability level of the ML neuron.

The mechanism of the occurrence of this phenomenon can be explained by the bifurcation diagram of
the deterministic Morris Lecar neuron depending on the Iapp current [35]. For Iapp excitation current val-
ues of 88.29µA/cm2 < Iapp < 93.86µA/cm2, the ML neuron has a bistable attractor. One of them is the
fixed point, which represents the resting state, and the other is the limit cycle attractor, which represents
the spike formation in the neuron. The membrane potential shows chaotic fluctuations, creating loops
around these attractors in certain orbits, and in appropriate cases, it remains under the influence of one
of these attractors. Fluctuations caused by the chaotic signal in the range of the externally applied Iapp
current can change the membrane potential from firing to silence, or vice versa, from silence to firing.
This triggers to emerge the ICR effect in the ML neuron.

3.2. Effects of excitatory autapse on inverse chaotic resonance. In this part of the study, by assuming
that the ML neuron has a excitatory chemical autapse, we have analyzed the effects of autapse on the ICR
effect in ML neurons. In order to show autapse’s effect, first, we keep constant the excitation current as
Iapp = 89µA/cm2, as the ICR phenomenon is present, and then depending on autaptic time delay τ , we
calculate the MFR for three different chaotic signal intensities, representing low, intermediate and strong
chaotic activity levels, which are marked black arrows in Figure 2. The results obtained for weak chaotic
signal activity (ε = 0.001) and four different autaptic conductance values κ are given in Figure 3.

FIGURE 3. Variation of the mean firing frequency (MFR) of the ML neuron with chem-
ical excitatory autapse according to the autaptic time delay (τ) at different autapse
conductance values: (a)κ = 0.01 , (b)κ = 0.1, (c)κ = 0.5, (d)κ = 0.9 (ε = 0.001,
Iapp = 89µA/cm2).

41

When we examine Figure 3, for low autaptic conductance level κ = 0.01 (Figure 3a), the neuron is
not affected by τ and has approximately 9Hz firing frequency. At a low-intermediate value of κ= 0.1,
it exhibits some minimums almost with zero firing rate and maximums with around 9Hz depending on
τ , implying the occurrence of multi-ICR (M-ICR) phenomenon in the firing activitiy of ML neuron.
The ML neuron exhibits complete silent state in firing dynamics at around τ = 50,150ms which are
closely related to the integer multiple of the half of the intrinsic firing period (Tint ≊ 110ms) of ML
neuron. In addition, at higher autaptic conductance values (Figure 3c, Figure 3d), it is seen that the M-
ICR phenomenon gradually loses its effect depending on increasing autaptic time delay, and the minima
reflecting the silent mode in the firing dynamics of the ML neuron disappear to some extent except for
the first minima.

The effects of excitatory autapse at an intermediate chaotic activity level are given in Fig.4. As can
be seen in Figure 4a, for an intermediate chaotic activity intensity ε = 0.5, the MFR of ML neuron is
consistent with the result obtained in Figure 2 (at ε = 0.5 in red curve) at low κ , except for some small
peaks. But, when the autaptic conductance is increased to κ = 0.1, the neuron starting from silent mode
shows patterns such as silence-firing-silence-firing, which is a clear indication for M-ICR phenomenon,
depending on he autaptic time delay. But, for relatively strong autaptic conductance values (Figure 4c,
4d), The M-ICR phenomenon weakens due to strong autaptic effects.

FIGURE 4. Variation of the mean firing frequency (MFR) of the ML neuron with chemical
excitatory autapse depending on the autaptic time delay (τ) at different autapse conduc-
tance values:(a)κ = 0.01 , (b)κ = 0.1, (c)κ = 0.5, (d)κ = 0.9 (ε = 0.5, Iapp = 89µA/cm2).

Finally, for excitatory autapse, we investigate its effects at high level of high chaotic activity in Figure
5. It can be seen in Figure 5 that when autaptic conductance is low κ = 0.01 the ML neuron fires around
the firing rate of the without autapse case. If the κ is increased to higher values (Figure 5b, Figure 5c
and Figure 5d) the neuron’s firing rate increases up to 15Hz which is two fold increase in firing rate.
Also, the MFR curves resemble the curves in the M-ICR phenomenon, but complete quietness in the

42

firing activity of the ML neuron does not occur. From the above results obtained for excitatory autapse, it
can be deduced that, for weak and intermediate chaotic activity levels, the presence of excitatory autapse
with moderate autaptic conductance levels can induce the M-ICR phenomenon in the firing activity of
the ML neuron. In addition, regardless of the chaotic activity level, although strong autaptic conductance
can increase the firing rate of the neuron, it prevents the occurrence of the M-ICR phenomenon.

FIGURE 5. Variation of the mean firing frequency (MFR) of the ML neuron with chemical
excitatory autapse according to the autaptic time delay (τ) at different autapse conduc-
tance values:(a)κ = 0.01 , (b)κ = 0.1, (c)κ = 0.5, (d)κ = 0.9 (ε = 2, Iapp = 89µA/cm2).

3.3. Effect of inhibitory autapse on inverse chaotic resonance. In the present paper, finally, we have
investigated the effects of inhibitory autapse on the ICR phenomenon in ML neurons. For this purpose,
we consider that the ML neuron has an inhibitory autpase instead of excitatory one used in previous case.
Then, following the way used in the case of exctitory autapse, we calculate the MFR of the ML neuron
for weak, intermediate and strong chaotic activity cases. The results obtained are shown in Figure 6.

When analyzed Figure 6, for weak chaotic activity case ε = 0.01 (top panels of Figure 6), if the autaptic
conductance is small (top left panel in Figure 6), there is no autaptic effects on the MFR of ML neuron,
and the ML neuron has the firing rate similar to without autapse case. But, when κ is increased to κ = 0.2
(top-middle panel in Figure 6), due to the inhibiting effect of autapse the neuron becomes silent at some
τ values. Besides, the autaptic time delay induced M-ICR phenomenon occurs. With the further increase
in κ (κ = 0.7), the M-ICR effect almost disappears. In the case of intermediate chaotic activity case
ε = 0.5 (middle panels in Figure 6 with red colored curves), the ML neuron is in silent mode at small κ

due to too weak autaptic effects. When the κ is increased to κ = 0.2, due to increased autaptic effects
some peaks emerge on the MFR of the ML neuron depending on τ . This pattern with multiple peaks in
the MFR of ML neurons is a concrete evidence of the M-ICR phenomenon in the firing activities of the
neuron. For strong autaptic conductance value (κ = 0.7), the silent mode corresponding to approximately

43

zero firing rate disappears at high values of autaptic time. This result implies that under strong autaptic
effects, the M-ICR phenomenon can not occur in the firing activity of the ML neuron. On the other hand,
for high chaotic activity case (ε = 2) at which the neuron without autapse produces spikes approximately
at the frequency of 6.5Hz, if the κ is low, that is, κ = 0.01, the neuron continuous to fire without being
affected by the autapse. However, for medium and high κ cases, although small amplitude fluctuations
occur in the MFR of the neuron, no strong evidence of M-ICR phenomenon is observed. From all the
results obtained for inhibitory autapse, we can conclude that, on the one hand an inhibitory autapse, with
proper time delay and conductance values, can induce the M-ICR phenomenon at low and medium levels
of chaotic activity. On the other hand it increases the firing rate of the ML neuron to some extent.

FIGURE 6. The mean firing frequency (MFR) of the ML neuron with chemical inhibitory
autapse under different chaotic current intensities: Top panels ε = 0.001, middle panels
ε = 0.5, bottom panels ε = 2 with the various autaptic conductances: left column κ =
0.01, middle column κ = 0.2 and right column κ = 0.7 (Iapp = 89µA/cm2).

4. CONCLUSIONS

Autapse is unusual synapse which forms between the dendrite and soma of the same neuron. After the
discovery of its presence in different brain regions, its effects on neuronal dynamics have been aroused
curiosity in the neuroscience community. Therefore a lot of studies some in numerical other are experi-
mental are dedicated to investigate the effects of autapse on neuron dynamics. In the present paper, we
study the effects of chemical autapse, by considering its excitatory and inhibitory types separately, on
the ICR phenomenon. In excitatory autapse case, for weak chaotic activity level and at medium autaptic

44

conductance values, we found that when the autaptic time delay equals to integer multiple of half the
intrinsic firing period of ML neuron, the presence of autapse causes the neuron stop firings, and by this
way triggers the occurrence of M-ICR effect. In moderate chaotic activity level and at medium autaptic
conductances, the presence of excitatory autapse induces firings in silent neuron when the autaptic time
delay is proper values, and thus triggers the emergence of M-ICR phenomenon. Also, we obtained that
this M-ICR effects gradually disappears as the autaptic conductance is increased regardless of the chaotic
activity level. In case of inhibitory autapse, it is revealed that, for high chaotic activity level, the pres-
ence of inhibitory autapse does not have prominent effects on the firing dynamics of the ML neuron and
not to induce any ICR effect.But, for low and moderate chaotic activity levels, the presence of autapse
has distinct effects on the ML neuron dynamics, and causes the appearance of M-ICR phenomenon for
medium autaptic conductances. In low chaotic activity level, it leads to the ML neuron, which fires a
fixed firing rate, stop firings at some autaptic time delays and thus, induce the emergence of the M-ICR
effect. But, in intermediate chaotic activity levels, the presence of inhibitory autapse gives rise to firing
in silent neuron at some autaptic time delays and triggers the occurrence of autaptic time delay induced
M-ICR phenomenon.

It has prominent importance of understanding the single neuron dynamics in different realistic condi-
tions, since the single neuron is the basic building blocks of complex neuronal networks in brain. On
the other hand, it is known that spiking neural networks (SNNs) mimics natural neuronal networks in
the brain in a more realistic way than the classic artificial neural networks (ANNs) [38]. In this neuronal
networks, the computation unit is a realistic neuron instead of artificial neuron or activation function
in classical ANNs. In this context, Zhao et al. have investigated the performance of a deep SNN with
autapse on standard data sets such as MNIST, CIFAR10, F-MNIST and N-MNIST, and obtained state-of-
the-art performance [39]. Therefore, a clear understanding of the single neuron dynamics is of significant
importance in designing more powerful and accurate SNNs model in solving real world problems with
the approach of deep learning.

We, here, investigate ICR phenomenon in single ML neuron. However, in the brain, neurons are found
in communities with different form of network topologies. Therefore, the investigation of the presented
phenomenon in the complex neural networks is worthy. Thus, we want to put our efforts to investigate
the ICR phenomenon in complex networks such as scale-free and small-world neural networks, in future
studies.

DECLARATIONS

• Conflict of Interest: The authors declare no competing financial interests.

REFERENCES

[1] E. D. Adrian, The impulses produced by sensory nerve endings, The Journal of Physiology 61 (1) (1926) 49–72.
[2] A. P. Georgopoulos, A. B. Schwartz, R. E. Kettner, Neuronal population coding of movement direction, Science

233 (4771) (1986) 1416–1419.
[3] M. Abeles, Corticonics: Neural Circuits of the Cerebral Cortex, Cambridge University Press, 1991.

45

[4] M. Abeles, H. Bergman, E. Margalit, E. Vaadia, Spatiotemporal firing patterns in the frontal cortex of behaving monkeys,
Journal of Neurophysiology 70 (4) (1993) 1629–1638.

[5] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical
Biophysics 5 (4) (1943) 115–133.

[6] R. H. Adrian, W. K. Chandler, A. L. Hodgkin, Voltage clamp experiments in striated muscle fibres, The Journal of
Physiology 208 (3) (1970) 607–644.

[7] J. L. Hindmarsh, R. M. Rose, A. F. Huxley, A model of neuronal bursting using three coupled first order differential
equations, Proceedings of the Royal Society of London. Series B. Biological Sciences 221 (1222) (1984) 87–102.

[8] E. Izhikevich, Simple model of spiking neurons, IEEE Transactions on Neural Networks 14 (6) (2003) 1569–1572.
[9] M. J. Chacron, A. Longtin, K. Pakdaman, Chaotic firing in the sinusoidally forced leaky integrate-and-fire model with

threshold fatigue, Physica D: Nonlinear Phenomena 192 (1) (2004) 138–160.
[10] H. Hayashi, S. Ishizuka, M. Ohta, K. Hirakawa, Chaotic behavior in the onchidium giant neuron under sinusoidal

stimulation, Physics Letters A 88 (8) (1982) 435–438.
[11] Y. Manor, J. Gonczarowski, I. Segev, Propagation of action potentials along complex axonal trees. model and implemen-

tation, Biophysical journal 60 (6) (1991) 1411–1423.
[12] L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance, Reviews of modern physics 70 (1) (1998) 223.
[13] D. F. Russell, L. A. Wilkens, F. Moss, Use of behavioural stochastic resonance by paddle fish for feeding, Nature

402 (6759) (1999) 291–294.
[14] J. K. Douglass, L. Wilkens, E. Pantazelou, F. Moss, Noise enhancement of information transfer in crayfish mechanore-

ceptors by stochastic resonance, Nature 365 (6444) (1993) 337–340.
[15] S. Lu, Q. He, J. Wang, A review of stochastic resonance in rotating machine fault detection, Mechanical Systems and

Signal Processing 116 (2019) 230–260.
[16] B. McNamara, K. Wiesenfeld, Theory of stochastic resonance, Physical review A 39 (9) (1989) 4854.
[17] A. Palonpon, J. Amistoso, J. Holdsworth, W. Garcia, C. Saloma, Measurement of weak transmittances by stochastic

resonance, Optics letters 23 (18) (1998) 1480–1482.
[18] E. Yilmaz, M. Uzuntarla, M. Ozer, M. Perc, Stochastic resonance in hybrid scale-free neuronal networks, Physica A:

Statistical Mechanics and its Applications 392 (22) (2013) 5735–5741.
[19] B. S. Gutkin, J. Jost, H. C. Tuckwell, Inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in

activity with increasing noise, Naturwissenschaften 96 (2009) 1091–1097.
[20] D. Guo, Inhibition of rhythmic spiking by colored noise in neural systems, Cognitive neurodynamics 5 (2011) 293–300.
[21] H. C. Tuckwell, J. Jost, The effects of various spatial distributions of weak noise on rhythmic spiking, Journal of Com-

putational Neuroscience 30 (2011) 361–371.
[22] D. Yu, Y. Wu, Z. Ye, F. Xiao, Y. Jia, Inverse chaotic resonance in hodgkin–huxley neuronal system, The European

Physical Journal Special Topics 231 (22) (2022) 4097–4107.
[23] H. Van Der Loos, E. M. Glaser, Autapses in neocortex cerebri: synapses between a pyramidal cell’s axon and its own

dendrites, Brain research 48 (1972) 355–360.
[24] M. R. Park, J. W. Lighthall, S. T. Kitai, Recurrent inhibition in the rat neostriatum, Brain research 194 (2) (1980)

359–369.
[25] R. Preston, G. Bishop, S. Kitai, Medium spiny neuron projection from the rat striatum: an intracellular horseradish

peroxidase study, Brain research 183 (2) (1980) 253–263.
[26] A. B. Karabelas, D. P. Purrura, Evidence for autapses in the substantia nigra, Brain research 200 (2) (1980) 467–473.
[27] R. Saada, N. Miller, I. Hurwitz, A. J. Susswein, Autaptic excitation elicits persistent activity and a plateau potential in a

neuron of known behavioral function, Current Biology 19 (6) (2009) 479–484.
[28] G. C. Sethia, J. Kurths, A. Sen, Coherence resonance in an excitable system with time delay, Physics Letters A 364 (3-4)

(2007) 227–230.

46

[29] V. Baysal, E. Yılmaz, M. Özer, Blocking of weak signal propagation via autaptic transmission in scale-free networks,
IU-Journal of Electrical & Electronics Engineering 17 (1) (2017) 3091–3096.

[30] Y. Li, G. Schmid, P. Hänggi, L. Schimansky-Geier, Spontaneous spiking in an autaptic hodgkin-huxley setup, Physical
Review E 82 (6) (2010) 061907.

[31] H. Qin, J. Ma, C. Wang, R. Chu, Autapse-induced target wave, spiral wave in regular network of neurons, Science China
Physics, Mechanics & Astronomy 57 (2014) 1918–1926.

[32] H. Wang, J. Ma, Y. Chen, Y. Chen, Effect of an autapse on the firing pattern transition in a bursting neuron, Communi-
cations in Nonlinear Science and Numerical Simulation 19 (9) (2014) 3242–3254.

[33] E. Yilmaz, V. Baysal, M. Ozer, M. Perc, Autaptic pacemaker mediated propagation of weak rhythmic activity across
small-world neuronal networks, Physica A: Statistical Mechanics and its Applications 444 (2016) 538–546.

[34] C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophysical journal 35 (1) (1981) 193–213.
[35] M. Uzuntarla, Inverse stochastic resonance induced by synaptic background activity with unreliable synapses, Physics

Letters A 377 (38) (2013) 2585–2589.
[36] E. Yilmaz, M. Ozer, Delayed feedback and detection of weak periodic signals in a stochastic hodgkin–huxley neuron,

Physica A: Statistical Mechanics and its Applications 421 (2015) 455–462.
[37] V. Baysal, Z. Saraç, E. Yilmaz, Chaotic resonance in hodgkin–huxley neuron, Nonlinear Dynamics 97 (2019) 1275–

1285.
[38] W. Maass, Networks of spiking neurons: the third generation of neural network models, Neural networks 10 (9) (1997)

1659–1671.
[39] D. Zhao, Y. Zeng, Y. Li, Backeisnn: A deep spiking neural network with adaptive self-feedback and balanced excitatory–

inhibitory neurons, Neural Networks 154 (2022) 68–77.

47

Vol: 2, Issue: 1, 2024
ISSN: 2980-3152
Pages:48-59
c⃝ 2024 Karabük University

CURRENT TRENDS IN COMPUTING
https://dergipark.org.tr/en/pub/ctc

RESEARCH ARTICLE

THE GATHERING DECK BUILDER WITH REACT.JS AND CUTTING-EDGE WEB
DEVELOPMENT

DANIEL MCCLOY1, KEVIN BRYANT1 AND YOUSEF FAZEA1∗

1 Department of Computer Sciences and Electrical Engineering, One John Marshall Dr., Huntington,
WV 25704, USA

ABSTRACT. This paper comes with a new web-based application ”MtGDeckBuild”. The main chal-
lenge addressed by this application is the integration of complex data management and user authen-
tication systems within a responsive and interactive web interface. MtGDeckBuild leverages React.js,
Node.js, and SQL Server to tackle these challenges. It uses Scryfall’s full card data and Frontegg’s
secure user authentication APIs. By using the RAD paradigm, the article was able to successfully in-
clude several elements, such as user identification, responsive design, interactivity, and dynamic data
display. The main achievements include the seamless incorporation of secure user authentication, effi-
cient data management, and a scalable architecture, which significantly enhances the user experience
and application performance. The prototype showcases the team’s skill in obtaining and deploying
new technologies and highlights the need to efficiently handle third-party dependencies. Improving
functionality, increasing efficiency and scalability, and exploring greater IoT integration inside Smart
Cities utilizing advanced web development frameworks are some of the prospects.

1. INTRODUCTION

Although web development is a dynamic field, initiatives such as MtGDeckBuild illustrate how user-
centered design and cutting-edge tools can simultaneously accommodate niche audiences and the gen-
eral public. We will examine the intersection of frictionless user experiences and the rapid expansion of
digital systems in this study. The foundations of initiatives like MtGDeckBuild can be traced back to
previous research that prioritized user identification, dynamic data, and flexible design [1]. The findings
of this study hold significant ramifications for application design across various domains, encompassing
strategies for leveraging emerging technologies to enhance application performance and user engage-
ment. React.js, SQL Server, and Node.js comprise the foundation of MtGDeckBuild’s architecture. This
paper demonstrates how React.js can be effectively used to create robust, scalable, and responsive web
applications. Although primarily focused on web development, the study also touches upon the potential
integration of IoT systems within Smart Cities, showcasing how web technologies can support advanced

E-mail address: yousef.fazea@marshall.edu (∗).
Key words and phrases. JavaScript library, Front-End development, Virtual DOM, React JS..

https://dergipark.org.tr/en/pub/ctc
https://orcid.org/0000-0003-3544-2434

urban infrastructures. MtGDeckBuild utilizes Frontegg and Scryfall, third-party APIs to ensure a seam-
less user experience and robust data management [2, 3]. By employing expertise and the most efficient
web development methodologies, initiatives like MtGDeckBuild expedite the development of digital in-
frastructures. To eliminate risks, ensure the stability and scalability of the program, and address the
difficulties of managing and regulating dependencies, additional R&D is required. Making this update
effortless is the well-known server-side web application framework React.js. An improvement in cus-
tomer happiness, an improvement in display quality, and a simplification of developer work are the three
primary benefits of the product.

This paper is organized as follows: Section 2 introduces the literature, Section 3 presents the method-
ology and development process, followed by the findings and discussion in Section 4. The paper is
concluded in Section 5.

2. RELATED WORK

Web applications are made more useful and faster with the help of React.js since it incorporates capa-
bilities like routing 6. As smaller component-based apps bring this framework online, the architecture,
structure, and style of the primary program are retained [4,5]. With its crossover application concept, the
React.js framework makes it easy to combine server-side and client-side websites [6–9]. This method
allows programmers to construct robust JavaScript web applications without being concerned with the
intricacies of the backend. While this approach is simple, it has to be fine-tuned for speed to meet the
high expectations of e-commerce customers who want perfect online buying experiences. The second
iteration of the Digitalization & Sustainability Review measures the amount of time it takes to provide
data, styles, and code to clients, with an emphasis on how crucial it is for developers to use tactics that
enhance the efficiency of React.js apps [10, 11]. For instance, sports-related web apps have complex
tasks, such as collecting and processing many game videos and generating data during page load, which
might hinder optimization and performance. Furthermore, conventional web development approaches
can produce inefficient monolithic apps; in contrast, React.js’s component-based design is quite differ-
ent. Architectures based on cutting-edge parts also tend to use antiquated methods of web development,
which leads to less performant monolithic apps. React.js has revolutionized online application devel-
opment by introducing substantial improvements, making it the optimal solution for creating web apps
that are scalable, easy to maintain, and deliver exceptional performance [12–14]. Finally, utilizing Re-
act.js in online shops and apps overcomes obsolete technology and capitalizes on new buying patterns.
User-centered design and cutting-edge technology may boost customer satisfaction and help companies
compete in the e-commerce industry [15–17]. This literature analysis emphasizes the drawbacks of tra-
ditional methods as well as React.js’ advantages.

3. METHODOLOGY AND DEVELOPMENT PROCESS

Rapid Application Development (RAD) is used for the design, testing, and monitoring of study pro-
totypes. The process has a few sequential steps: requirements, design, execution, validation, and main-
tenance. Efficient team communication is facilitated when everyone has a clear understanding of their

49

designated job. Consistently document and oversee tasks to guarantee excellence. This website seeks to
actively involve and cater to those who have a strong interest in Magic via its goals, methodology, and
range of coverage. Figure1 displays the website for Magic: The Gathering, which is built on the RAD
approach.

• Frontegg’s user identification Software-as-a-Service (SaaS) is unparalleled. Users may now ac-
cess and use Software as a Service (SaaS) via internet platforms.

• Frontegg provides authentication services for website administrators. Users have the option to
either login or use Single Sign-On (SSO) to access the site.

• Utilize Frontegg’s robust authentication system to limit access to site resources. Implement multi-
factor and adaptive risk-based authentication to deter illegal access. API calls include the manip-
ulation of dynamic data and encompass several application technologies. Here are the specific
details of what we offer:

– Frontegg is a sophisticated platform for user authentication. Frontegg may be used to au-
thenticate API requests.

– The card data API is the recommended method for accessing magic-related information on
Scryfall. The app can display Scryfall card information by using its API.

– Axios is an excellent JavaScript library that is interoperable with both browsers and nodes.
JavaScript queries sent to websites. Axios can establish communication with external APIs,
applications running on the server side, and databases. Frontegg, Scryfall, and Axios are
reliable choices for app developers looking to make API calls. These technologies enable
the application to verify the identity of users, conduct tests on API requests, get data from
other sources, and establish communication with other apps and services.

– Sign in to create and distribute presentations. The use of a responsive stylesheet enhances
the app’s performance and facilitates its usability on mobile devices. The app’s layout adapts
to the size of the viewport and is optimized for mobile devices, which improves the user
experience. Adopting a flexible design ensures that mobile users do not experience delays or
have difficulties with navigation. Enabling users to use their increasingly prevalent mobile
devices to access the internet might enhance the app’s value.

3.1. List of Requirements:
Two tables were created from the process’s results: Table 1 presented the functional requirements of

the study, whereas Table2 delineated the non-functional requirements. The priority and level of relevance
of each need are indicated by the same scale in both tables:

• M: Mandatory requirements (essential functions the system must fulfill).
• D: Desirable requirements (functions that are preferred to be included).
• Optional requirements (functions the system may include).

3.2. Activity and Sequence Diagrams:
The user proceeds to the login page of the Software-as-a-Service (SaaS) application and enters their

credentials. Front-egg verifies the credentials and produces an access token. This token is returned to the
SaaS application to verify the user’s identity and authorize access to the primary interface. The process

50

FIGURE 1. Rapid Application Development Model [18].

TABLE 1. Functional Requirements.

of login is shown in Section (a) and visualized in Figures2 (a) and (b). To conduct a card search, the user
enters a string into the designated search field, which initiates an auto-complete feature that produces a
compilation of proposed card names. As soon as the user enters a card name, the application loads the

51

TABLE 2. Non-Functional Requirements.

image that corresponds to that card. The process of card searching is shown in Section (b) and visualized
in Figures3 (a) and (b).

(a) Login:
• The user navigates to the login page of the SaaS application.
• The SaaS application sends a request to Frontegg to initiate the login process.
• Frontegg presents the user with a login page, where they enter their email address and pass-

word.
• The user submits their login credentials.
• Frontegg validates the user’s credentials and generates an access token for the user.
• Frontegg sends the access token back to the SaaS application.
• The SaaS application uses the access token to authenticate the user and grants access to the

application’s resources.
• The user is redirected to the SaaS application’s main dashboard or home page.
• This activity diagram illustrates how Frontegg’s authentication and identity management

capabilities can be used to secure access to SaaS applications. By leveraging Frontegg’s
services, developers can focus on building their core applications, rather than worrying about
the complex details of authentication and access control.

(b) Search Card Activity Diagram:

52

• The user navigates to the Search Card component of the application and inputs a string into
the search field.

• The application triggers an auto-complete method to generate a list of suggested card names
based on the string input by the user.

• The application displays the list of suggested card names in a drop-down menu beneath the
search field. The user selects a card name from the list.

• The application loads the corresponding card image associated with the selected card name.
• he application displays the card image on the page.

FIGURE 2. (a) Login activity diagram, (b) Login sequence diagram.

FIGURE 3. (a) Add and remove card to deck activity diagram, (b) Search card se-
quence diagram.

53

(c) Case Diagram and Geographical User Interface:
According to Figure4, a user may do a variety of functions in the system, including logging

in, searching for cards, adding cards, removing cards, and disengaging from the system. The fact
that these activities are confined inside the system’s limits implies that they are system-provided
characteristics. The user interacts with each of these skills in line with their needs. Following
the completion of the design of each diagram, the next step is to create the website by utilizing
React. JS. Figures4,5,6, and 7 illustrate the proof of concept that was found.

FIGURE 4. Login page (With Feedback Messages).

4. RESULTS AND DISCUSSION

To assess the usability of the prototype, data was collected from a sample of thirty distinct participants.
We have assessed the Web-based application system utilizing criteria such as Intuitive Design, Easy
Navigation, Memorability, and Satisfaction. Figure8 (a) shows the result of a question asked about the

54

FIGURE 5. Home page.

FIGURE 6. Login page.

55

FIGURE 7. Searching page.

intuitive design, a nearly effortless understanding of the architecture and navigation of the site. The
responses were shown using a Likert scale, where a score of 1 indicated ”Strongly Disagree” and a score
of 5 indicated ”Strongly Agree.” The bar chart illustrates the allocation of these scores. The ratings
”Strongly Disagree” and ”Disagree” both received a score of 0%. Only 5% of the survey respondents
selected group 3, indicating their indifference. 20% of the poll respondents agreed with the statement,
classifying them into group 4. Category 5 received 75% of the vote, indicating a widespread consensus
among most individuals. Figure8 (b) shows the ease of navigation, and how fast users can accomplish
tasks. A significant majority of respondents expressed strong agreement with the statement, indicating
a largely positive consensus. Figure8 (b) illustrates that no users had any difficulties with navigation.
Category 3 represented a minuscule proportion of individuals who had a neutral stance, amounting to just
5%. Unsurprisingly, 20% of the study respondents rated the navigation as straightforward, categorizing
it as category 4. The data from Category 5 indicates that most respondents 75% found the navigation
to be straightforward. Based on these statistics, most visitors have a positive perception of the site’s
navigational simplicity.

The bar chart Figure9 (a) measures the site’s memorability after visiting the site if a user can remember
enough to use it effectively for future visits. Only 5% disagreed, suggesting minimal trouble remember-
ing site characteristics for future visits. 15% of users were unclear if the site was memorable. With a
25% agreement, many consumers remembered the site well enough for future visits. The fact that 55%

56

of users agreed suggests that most visitors liked the site and could recall things for their future visits.
These figures suggest that most users find the site simple to remember and can recall details from past
visits. Figure 9 measures user satisfaction where the users were asked if they like using the system and
find it friendly. 30% agreed indicating good satisfaction. Most responders 70% strongly agreed, sug-
gesting high site satisfaction. According to these statistics, most users are satisfied with their experience,
suggesting a positive user impression.

FIGURE 8. (a) Intuitive design (b) Easy navigation.

FIGURE 9. (a)Memorability (b) Satisfaction.

57

5. CONCLUSION

The extensive MtGDeckBuild study investigated contemporary web development methodologies and
tools. Frontegg and Scryfall oversaw the administration of user accounts and the enormous Magic: The
Gathering card database. Simple access to the API via Axios enhanced the app’s usability. Due to the
complexity and breadth of the software development process, adaptability and problem-solving skills are
essential. Webhooks implemented by Frontegg impeded deck storage and viewing integration. The im-
plementation of these fixes and the maintenance of change logs assisted the group in decreasing reliance
on external services and enhancing backend architectural control. Players of Magic: The Gathering de-
rive the greatest benefit from the intuitive and dynamic platform of the study. MtGDeckBuild’s innovative
technologies and user experience establish it as the industry leader in both casual and competitive play.
Enhancing the development, learning, and innovation processes are the objectives of the study team. By
enhancing and empowering users, MtGDeckBuild ensures its success in the ever-evolving market for
web-based gaming applications.

DECLARATIONS

• Conflict of Interest: The authors have not disclosed any competing interests.

REFERENCES

[1] D. Abramov, R. Nabors, Introducing react.dev (2023).
URL https://react.dev/blog/2023/03/16/introducing-react-dev

[2] S. Chen, U. R. Thaduri, V. K. R. Ballamudi, Front-end development in react: an overview, Engineering International
7 (2) (2019) 117–126.

[3] A. Bodepudi, M. Reddy, S. S. Gutlapalli, M. Mandapuram, Voice recognition systems in the cloud networks: Has it
reached its full potential, Asian Journal of Applied Science and Engineering 8 (1) (2019) 51–60.

[4] Z. Dinku, React. js vs. next. js (2022).
[5] G.C.Trends, The new experience economy (2022).

URL www.dynata.com/content/GCT_The-New-Experience-Economy.pdf

[6] L. Duy, Web application development (2024).
[7] Q. Odeniran, H. Wimmer, J. Du, Javascript frameworks—a comparative study between react. js and angular. js, in:

Interdisciplinary Research in Technology and Management, CRC Press, pp. 319–327.
[8] D. M. Nguyen, Design and implementation of a full stack react and node. js application: simulating driver’s license

exams (2024).
[9] E. B. Pranata, T. Tony, Utilizing orb algorithm in web-based sales application, Journal of Information Systems and

Informatics 6 (1) (2024) 378–398.
[10] O. Lyxell, Server-side rendering in react: When does it become beneficial to your web program? (2023).
[11] C. Minnick, Beginning reactjs foundations building user interfaces with reactjs: an approachable guide, John Wiley &

Sons, 2022.
[12] Gaper, How react js is revolutionizing web development (2023).

URL https://gaper.io/how-react-js-is-revolutionizing-web-development/

58

https://react.dev/blog/2023/03/16/introducing-react-dev
https://react.dev/blog/2023/03/16/introducing-react-dev
www.dynata.com/content/GCT_The-New-Experience-Economy.pdf
https://gaper.io/how-react-js-is-revolutionizing-web-development/
https://gaper.io/how-react-js-is-revolutionizing-web-development/

[13] V. Sahni, A. Chopde, M. Goswami, A. Kumar, Mern (mongodb, express-js, react-js, node-js) stack web-based themefied
education platform for placement preparation, Educational Administration: Theory and Practice 30 (5) (2024) 1918–
1928.

[14] T. A. Kràlusz, Mobile application development with react native and leveraging third-party libraries (2024).
[15] I. Rizvi, H. Gupta, I. Bharadwaj, et al., Connect easy: Revolutionizing the college experience through innovative web-

based solutions (2024).
[16] N. Garg, J. Chopra, V. Kumar, K. Aggarwal, J. Parashar, A. Jain, Applego: React js (web application).
[17] B. Gamage, R. Ranaweera, A. Dilshan, R. Paranagama, D. De Silva, S. Vidhanaarachchi, Centralized platform for

managing activities in e-commerce store, International Journal Of Engineering And Management Research 12 (5) (2022)
203–208.

[18] T. Kissflow, What is rapid application development (rad)? an ultimate guide for 2024. (2024).
URL https://kissflow.com/application-development/rad/rapid-application-development/#:

~:text=Rapid%20Application%20Development%2C%20or%20RAD,less%20emphasis%20on%20specific%

20planning

59

https://kissflow.com/application-development/rad/rapid-application-development/#:~:text=Rapid%20Application%20Development%2C%20or%20RAD,less%20emphasis%20on%20specific%20planning
https://kissflow.com/application-development/rad/rapid-application-development/#:~:text=Rapid%20Application%20Development%2C%20or%20RAD,less%20emphasis%20on%20specific%20planning
https://kissflow.com/application-development/rad/rapid-application-development/#:~:text=Rapid%20Application%20Development%2C%20or%20RAD,less%20emphasis%20on%20specific%20planning
https://kissflow.com/application-development/rad/rapid-application-development/#:~:text=Rapid%20Application%20Development%2C%20or%20RAD,less%20emphasis%20on%20specific%20planning

Vol: 2, Issue: 1, 2024
ISSN: 2980-3152
Pages:60-85
c⃝ 2024 Karabük University

CURRENT TRENDS IN COMPUTING
https://dergipark.org.tr/en/pub/ctc

RESEARCH ARTICLE

ANOMALY DETECTION WITH API CALLS BY USING MACHINE LEARNING:
SYSTEMATIC LITERATURE REVIEW

VAROL ŞAHİN1 , FERHAT ARAT2∗ , SEDAT AKLEYLEK3

1 Department of Computer Engineering, Ondokuz Mayis University, Samsun, Türkiye
2 Department of Software Engineering, Samsun University, Samsun, Türkiye
3Department of Computer Engineering, Istinye University, Istanbul, Türkiye

3Institute of Computer Science, University of Tartu, Tartu, Estonia

ABSTRACT. API, in other words system calls are critical data sources for monitoring the operation
of systems and applications, and the data obtained from these calls provides a wealth of information
for anomaly detection. API calls are the basic building blocks of the interaction between the oper-
ating system and user applications, and analysis of these calls provides important data for securing
the system. Anomaly detection is crucial for system security and performance. ML models learn nor-
mal and abnormal behaviors by processing large amounts of data and use this information to detect
anomalies in new data. When anomaly detection using system calls is combined with ML algorithms,
it can make more precise and accurate detections. In this paper, we focus on anomaly detection with
machine learning methods using API calls. We present a SLR on the topic as well as a SoK by provid-
ing basic knowledge. The main goal is to describe, synthesize, and compare security advancements in
anomaly detection using API calls with ML algorithms by examining them through the lens of vari-
ous research questions. More than 30 research papers were retrieved using search phrases identified
from common and reputable databases, and those relevant to the topic were included in the SLR us-
ing different screening criteria. In addition, the reviewed studies were compared in terms of different
metrics such as dataset, platform, success parameter, used ML method, and features.

1. INTRODUCTION

Smartphones, computers and other electronic devices are involved in every aspect of our daily lives.
With the Internet becoming an indispensable element, system security has become an indispensable re-
quirement in both personal and corporate organizations. A system is a set of components that interact
with each other and usually form a complex whole. Alternatively, a system can be defined by the func-
tions and behaviors it contains. The interactions between systems, their interconnections, environmental
conditions and human governing factors make questions about system safety complex. for instance,

E-mail address: ferhat.arat@samsun.edu.tr (∗).
Key words and phrases. API call, system call, anomaly detection, machine learning.

https://dergipark.org.tr/en/pub/ctc
https://orcid.org/0009-0000-3000-9899
https://orcid.org/0000-0002-4347-0016
https://orcid.org/0000-0001-7005-6489

the need for monitoring, measurement and control are critical elements to consider in system intercon-
nections. System security is an important issue not only at the individual and organizational level, but
also at the societal level. Keeping up with rapidly growing and evolving technological developments is
inevitable in this context.

Today, information security has become even more crucial with the increase in cyber threats. Cyber
attacks can cause a wide range of damages at the user and system level, from the theft of personal data
to the collapse of corporate systems. Therefore, security measures need to be handled with a proactive
approach, not just a reactive one. Advanced monitoring and intrusion detection systems, artificial intel-
ligence and machine learning techniques are used to identify and prevent potential threats in advance.
In addition, user training and awareness is also considered an important component of system security.
Human error is one of the fundamental causes of many security breaches. Therefore, making users aware
of security protocols and teaching them the necessary applications and systems will improve the over-
all security posture. Anomaly detection is a critical area that aims to detect security threats in advance
by identifying unusual behavior of systems. Anomaly detection is also a technique used to detect data
samples that do not fit the data model and is an important research area that is being studied for many
applications [1], [2]. The main purpose of anomaly detection is to distinguish between normal and ab-
normal data. This method is very significant in data analysis as it enables the identification of emerging
patterns, trends and anomalies in the data [3].

Anomaly detection is critical for various applications such as security, health, network monitoring [4].
In this context, cybersecurity is an emerging and important research domain with applications across
various domains such as healthcare, building management, weather forecasting, etc. [4]. Anomalies
were considered important because they can point to very important and rare events, enabling critical
measures to be taken in a wide range of application areas.

Anomaly detection using system calls, also known as Application Programming Interface (API) calls,
provides a detailed analysis of the internal dynamics and behavior of systems. System calls are the
basic building blocks that enable the interaction between the operating system and user applications, and
analysis of these calls provides important data to ensure the security of the system. An API is an interface
that a software program provides to other programs, users, and in the case of web APIs, to the world via
the internet [5].

The accuracy and reliability of the methods used in anomaly detection are directly related to the
datasets used and the training of the model. The datasets used in the training process are required to
adequately represent normal and abnormal behaviors. In this context, the datasets include various types
of attacks and system behaviors and provide ideal test environments to evaluate the performance of
anomaly detection models. Various features, such as API calls or system calls, registry modification and
network activity, constitute the behavior of malware. API calls and various information related to these
calls extracted by dynamic analysis are considered as one of the most important features of behavior-
based detection systems. Each API call in the sequence is associated with the previous or next API call.
These and similar relationships may contain patterns of destructive functions of malware. Many anomaly
detection systems, including ML and deep learning models, have been proposed that use various informa-
tion about API and system calls as features. In particular, ML methods and deep learning algorithms are

61

used to improve the performance of such anomaly detection systems. for instance, deep learning models
can achieve high accuracy rates on complex datasets and can be effectively used in malware detection.
In this context, the integration of MLand deep learning methods is of great importance to improve sys-
tem security and detect malware effectively. There are three anomaly detection techniques: supervised,
unsupervised and semi-supervised.

This paper presents a comprehensive Systematic Literature Review (SLR) focusing on anomaly detec-
tion with API calls using ML techniques, utilizing the Systematization of Knowledge (SoK) approach. In
addition to ML fundamentals and principles, we offer an expansive framework with a specific emphasis
on api calls in anomaly detection, contributing to the systematic organization of information. wUnlike
existing reviews, our focus is explicitly directed towards using anomaly detection with API calls. We
have initiated a comprehensive literature search methodology. The objective is to describe, synthesize,
and compare security developments in terms of anomaly detection with API calls.

TABLE 1. Abbreviations and definitions

Abbreviation Definition Abbreviation Definition
API Application Programming Interface ML Machine Learning
KNN K-Nearest Neighbors SVM Support Vector Machine
LSTM Long Short-Term Memory CNN Convolutional Neural Network
ADFA-LD Australian Defence Force Academy Linux Dataset DARPA Defense Advanced Research Projects Agency
UNM University of New Mexico IDS Intrusion Detection System
DDoS Distributed Denial of Service TCP Transmission Control Protocol
URI Uniform Resource Identifier HTTP Hypertext Transfer Protocol
LR Logistic Regression NB Naive Bayes
RBF Radial Basis Function WoS Web of Science
CPS Cyber Physical System

1.1. Motivation and Contribution.
In this section, we give our motivation as well as summarize the main contributions of the paper. With

the rapid advancement of today’s technological developments, the use of interconnected systems and
applications by individuals and corporate organizations to facilitate operations, increase productivity and
provide a seamless experience to users is increasing in parallel.These systems and applications are made
possible by APIs that act as a bridge by enabling communication and data exchange between different
software components. The increasing use of APIs also increases the need for security measures to protect
against potential threats.

The fact that Internet technologies have been adopted and become an integral part of daily life has
brought with it disadvantages such as misuse and vulnerability to abuse. The increasing complexity of
large amounts of data circulating on the Internet increases the risk of anomalies, unexpected patterns
or behaviors.Anomaly identification through API requests is particularly crucial in this context. Espe-
cially monitoring an application’s API calls to understand its behavior and logic. As they facilitate data
transmission and communication between applications, API calls are critical for functionality.

62

Anomaly detection helps identify unusual behaviors in the system, enabling timely responses before
they cause any damage to the application or the system. It detects abnormal requests and intrusion at-
tempts and in this way it helps to protect the system and reduce the costs of deployment and maintenance.

Anomaly detection gives vital information regarding both operations and security. Differences from
standard API behavior might indicate problems. Early identification of anomalies allows applications
to run more smoothly and efficiently. For example, if an API call is unusually slow, anomaly detection
ensures that the issue is identified and resolved before it negatively impact the user experience. Anomaly
detection also help protect against financial losses by identifying illegal activities that produces unusual
API requests patterns. Detecting such unusual activities early protects businesses from financial harm.
As the number of users and systems increase, the volume of API requests also grows. Anomaly detection
helps to monitor these large quantities of requests and identify anomalies, reducing the need for manual
monitoring and minimize the human intervention. In this regard, our contributions are as follows:

• Our Systematic Literature Review (SLR) offers guidelines enabling researchers to analyze and
address specific questions, presenting a Systematization of Knowledge (SoK) approach focused
on anomaly detection methods involving API calls from a ML perspective.

• We only consider anomaly detection approaches with API calls using ML techniques.
• We examine ML methods to detect anomalies in the system which use API call sequences as data

features.
• We present a detailed comparison for literature based on technique, used data, peformance metric,

and other parameters.
1.2. Research Methodology.

A Systematic Literature Review (SLR) is a research method that involves systematically collecting,
critically assessing, and synthesising existing studies on a clearly defined topic. SLR provides a me-
thodical, repeatable, and reliable framework for reviewing literature. This approach aims to reduce the
complexity of research, improve transparency, and offer a thorough understanding of the current state of
knowledge in a specific field. In this paper, we aims to extract anomaly detection approaches which uti-
lize API calls in ML concepts to highlight differences, algorithmic design, data features, environmental
requirements of the existing studies. Therefore, our primary key is to prepare literature summation as
well as presenting compact, collective, and well-constrained SoK. In this Systematic Literature Review
(SLR), we employ a set of key terms pertinent to anomaly detection involving API calls. To conduct the
research and gather relevant studies, keywords such as ”anomaly detection,” ”API calls,” and ”Machine
Learning” are used to create meaningful and consistent search queries. Additionally, an advanced search
mode is utilized across five prominent databases: Scopus, Web of Science (WoS), ACM Digital Library,
Science Direct, and IEEE Xplore. Then, we apply three-stage research model defined as bellows:

(1) Definition: In this step, we create different combinations of essential keywords to ensure a reliable
and consistent search in databases. We also develop research questions that consider our research
focus and key factors, preparing for the SLR.

(2) Determination: In this stage, we determine searching filters and used sentences for advanced
search.

63

(3) Elimination: In the last step, we eliminate obtained studies regarding elimination metrics and
main purpose of the SLR. Therefore, we create inclusion and exclusion methodologies as shown
in Table 2. And we apply the determined manual filters such as ”research article” and ”computer
science research area”.

1.3. Research questions and planning the review.
To outline the review’s future direction, defining the primary objectives is essential. We set these goals

to provide a comprehensive and practical viewpoint. Our SLR results aim to deliver conclusions that are
applicable, realistic, and easy for researchers to understand. We review the papers using various criteria,
including the datasets used, ML methods employed, performance metrics, and data features. To achieve
our objectives, we develop research questions that break the research into sub-phases. We outline the
generated research questions as follows:

(1) What datasets and data features are most commonly used in ML methods for anomaly detection
utilizing API calls?

(2) How is the performance of ML methods for anomaly detection using API calls evaluated, and
which metrics are most commonly utilized?

(3) Which ML methods for anomaly detection using API calls are the most effective, and what char-
acteristics make these methods stand out?

We expand our research by considering the research questions defined above. For each research ques-
tion, we identify the points of description, comparison, and summarizing that we consider important
when reviewing the research papers within the scope of our study. In this context, the first question aims
to identify the datasets and data features that are frequently employed in ML methods for anomaly detec-
tion using API calls. Understanding which data sources and features are preferred and yield successful
results is the goal. The second one focuses on the performance evaluation of studies. Analyzing the
performance metrics used helps compare different methods and identify the most commonly preferred
metrics. The final question aims to determine the effectiveness of different ML methods. Comparing
various methods and analyzing which ones yield better results will be one of the key findings of our
study. Figure 2 shows research methodology applied throughout paper.

64

FIGURE 1. Applied research methodology of the paper

1.4. Determining and performing of the investigation.
In this section, we address the planning process for selecting studies to be reviewed, following the

stages of formulating research questions defined to better specify the focus areas by expanding the SLR

65

and creating search phrases using keywords. The selection of studies is carried out manually and by using
the filtering methods of search engines. In this context, the initial results are subjected to several logical
filters to form a study set appropriate for the research. Table 2 shows inclusion and exclusion metrics
applied during determining and eliminating the articles.

TABLE 2. Applied research criterion

Exclusion criteria Inclusion criteria
The study must focus on anomaly detection using
API calls.

Duplicated papers.

The study must be published in English. Published in any language other than English.
The study must be related with research fields of
computer science or computer engineering.

Review article, conference paper, or another types
except research article.

The study should use ML techniques considering
API calls for anomaly detection.

Studies using different datasets other than API
calls for anomaly detection.

Table 2 outlines the exclusion and inclusion criteria employed in the selection of studies pertinent to
anomaly detection using API calls. The exclusion criteria specify that eligible studies must be published
in English, ensuring they are accessible to an international audience. Additionally, the studies must be
relevant to the fields of computer science or computer engineering, thereby maintaining technical rele-
vance. Methodologically, the studies must utilize ML techniques specifically focusing on API calls for
anomaly detection, ensuring consistency with the research objective. Conversely, the inclusion criteria
exclude duplicated papers, those published in languages other than English, and studies that are not orig-
inal research articles, such as review articles or conference papers. Furthermore, studies using datasets
other than API calls for anomaly detection are also excluded. These stringent criteria ensure that the
selected studies are both methodologically relevant and focused on the specified research area, thereby
enhancing the reliability and validity of the research findings.
1.5. Organization.

The paper is organized as follows: In Section 1, we explain general definitions of the paper, describing
research questions, research structure, and investigation purposes. In Section 2, we give the basics of
the topic defining API calls and importance of the anomaly detection using API calls. In Section 3, we
present ML concepts giving fundamentals, definitions, and classifications. In Section 4, we highlight and
summarize obtained studies in terms of varying research parameters. In addition we compare literature
considering specified metrics. In Section 5, we conclude the paper defining open problems and challenges
for focused research problems.

2. ANOMALY DETECTION

In this section, we address the topic of anomaly detection, providing general information as well as
discussing its significance, the role of API calls in anomaly detection, detection techniques, and the use

66

of ML methods in anomaly detection. By systematically presenting this framework, we establish the
foundational background necessary for the subsequent literature review.

A vital technique in the field of data analytics, anomaly detection plays an important role in various
applications such as security, health and network monitoring [4]. Anomalies can indicate critical and
often rare events that needs immediate attention. In the rapidly evolving field of cybersecurity, where it
is vital for maintaining system integrity and preventing hostile activities, anomaly detection is of a great
importance. Anomaly detection is a fundamental component of IDS in cyber security. These systems
are able to monitor network traffic and system activity to identify unusual actions that may indicate
a security breach. For example, an unexpected increase in data traffic might indicate a DDoS attack,
where an attacker overwhelms a network with excessive traffic to disrupt services. Similarly, unusual
login attempts from unfamiliar locations or devices could signal potential unauthorized access, requiring
further investigation to prevent data theft or system vulnerabilities.

Anomaly detection is a highly important technology with diverse applications across various indus-
tries. Its ability to identify unusual events allows for the implementation of preventive measures, thereby
it enhences safety, reliability, and efficiency in different sectors. As researches in this field enhences, the
integration of advanced machine learning methods and accessible artificial intelligence techniques will
be essential for improving the accuracy, reliability, and interpretability of anomaly detection systems.
This will ensure their continued relevance and effectiveness in a world where data is essential
2.1. API calls in anomaly detection.

The API is a critical element of the operating system and encompasses a set of functions contained
in specific libraries. Users utilize these functions to communicate with the operating system reflecting
the behavior of various files [6]. In the realm of APIs, the term ”application” generally refers to any
software that performs a function. An interface, in this context, acts as a service contract that enables
two applications to communicate through requests and responses. Essentially, APIs serve as mechanisms
that facilitate communication between two software components using specific protocols. API calls are
programming interfaces utilized by applications to interact with each other [7]. During an API call, one
server sends a request to another server’s web interface via the Transmission Control Protocol (TCP).
To make a request, three primary components are necessary: the Uniform Resource Identifier (URI),
headers, and the request body. While each API may use a distinct combination of these components,
communicate in a different format, or require varying data, the request generally follows the Hypertext
Transfer Protocol (HTTP) message structure. APIs provide analysts with a critical foundation for ex-
amining a program’s behavior and functionality, particularly when direct reverse analysis is challenging.
This foundation aids in detecting anomalies within the system’s behavior. A system call, on the other
hand, is a request made by a program to the kernel for a specific service. Analyzing the trace of such
calls can reveal the behavior of the process. These traces are instrumental in classifying the process as
either normal or malicious [8].

67

3. MACHINE LEARNING: FUNDAMENTALS, DEFINITIONS AND CATEGORIZATION

Anomaly detection using ML techniques with API calls is of significant importance in various do-
mains, particularly in cybersecurity, network monitoring, and application performance management. API
calls are a valuable source of data that offers detailed information into system behavior and interactions.
Unusual patterns and deviations in API call data can be identified by using ML techniques, which may
indicate potential security breaches, system problems, or performance issues. This approach simplifies
proactive measures, enhancing system reliability, security, and efficiency. Various ML techniques are
used for anomaly detection with API calls. Some of these techniques are; supervised, unsupervised,
and semi-supervised learning methods. Supervised learning models are trained on labeled datasets that
allows them to recognize known anomalies. Unlike supervised methods, unsupervised methods uncover
hidden patterns in the data to determine anomalies without labeling. Semi-supervised approaches use
both labeled and unlabeled data and improve detection performance by combining both methods. Using
these ML techniques enables the analysis of API call data, providing strong and reliable anomaly detec-
tion. This approach ensures that systems can reduce issues effectively, maintaining optimal performance
and security. Figure 2 illustrates classification of ML methods under varying learning techniques.
3.1. Logistic Legression.

Logistic regression (LR) employs the sigmoid function to calculate probability values and perform
classification tasks. The sigmoid function produces outputs ranging from 0 to 1. Samples with probability
values below 0.5 are classified as belonging to the negative class, while those with values of 0.5 or higher
are assigned to the positive class. 3.1 [9].
3.2. Support Vector Machines.

SVM are supervised learning algorithms frequently utilized for both binary and multiclass classifica-
tion tasks. SVM operates by mapping input data points into a high-dimensional space and constructing
a hyperplane that is one dimension less to distinguish between different groups of data points [9]. The
main objective of SVM is to identify a hyperplane to optimally separate the data into two distinct clusters
by maximizing the distance between them. When a linear separation is not possible, a technique known
as kernel cheating is used (Muhammad and Yan, 2015). Widely utilized kernel functions include Gauss-
ian, radial basis function (RBF) and polynomial kernels. The most significant advantage of SVM is the
ability to avoid overfitting and its non-probabilistic nature [10].
3.3. Naive Bayes.

Naive Bayes (NB) classifiers are straightforward probabilistic models [10]. The term ”naive” stems
from the assumption that all input features are independent and uncorrelated with each other. This algo-
rithm is fundamentally based on Bayes’ theorem and computes the probability of each class for a given
set of input features [11].
3.4. Random Forest.

Random Forest (RF) is an ensemble learning method composed of multiple decision trees. Each tree
in the model employs a decision tree algorithm to choose a subset of features. After the forest is formed
using the RF technique, new data is classified by passing it through each tree. The trees vote for the class
they believe the instance belongs to, and the forest selects the class with the highest number of votes. RF

68

FIGURE 2. Classification of the ML methods

is particularly valued for its noise robustness and lower susceptibility to overfitting compared to other
algorithms [12].
3.5. K-Nearest Neighbor.

The K-Nearest Neighbor (KNN) algorithm is one of the most basic supervised learning techniques used
to classify data into distinct categories [10]. Being non-parametric and probabilistic, KNN is suitable
for classification tasks where there is no prior knowledge about the data distribution. The algorithm
classifies a new sample based on the majority vote of its k nearest neighbors, determined by a similarity
measure (distance). However, its computational complexity increases with data size, often necessitating
dimensionality reduction techniques to mitigate the curse of dimensionality before applying KNN [13].

69

3.6. Deep Neural Network.
DNN is one of the most commonly used methods in ML. Unlike traditional ML techniques, it excels

when processing large datasets. A notable feature of DNN models is their deep architecture consisting
of multiple hidden layers [14]. The design of a DNN reflects the working logic of the human brain and
typically consists of an input layer, several hidden layers and output layers. As a result, DNN models
encompass many units, making them suitable for classifying non-linear and complex data. However,
training DNN models requires more time than other methods due to their complex model structure and
size [14].
3.7. Long Short-Term Memory).

The LSTM model enhances the capabilities of the RNN (Recurrent Neural Network) model. RNNs,
as deep learning models, encounter the vanishing gradient issue when network layers increase, which
hampers the network’s ability to learn from previous information. LSTMs address this problem with a
complex recurrent unit that employs a gating mechanism to regulate information flow. These models
incorporate memory cells with fixed weights and self-contained recurrent nodes, enabling the retention
of state values over long periods and allowing gradients to pass through numerous time steps without
diminishing [15].

Traditional RNNs process sequential data inputs with forward recursive computation, chaining neurons
together to integrate past information with current inputs, effectively functioning as a memory to handle
time sequences. However, due to their limited memory capacity, RNNs retain less historical information
while preserving more recent data. During training, information distortion occurs as it passes through
numerous iterative loops, leading to gradient fading.

In contrast, the LSTM model enhances traditional neurons with memory cells, significantly improving
the network’s information transfer and processing capacity. These memory cells effectively store histori-
cal data, and the input gates within the cells autonomously manage the retention time of values, enabling
better prediction of crucial information [16]
3.8. Convolutional Neural Network.

CNNs have become a cornerstone of deep learning, especially in visual tasks, due to their outstanding
performance in computer vision applications such as object recognition, detection, and segmentation.
These networks have not only achieved top results in various tasks but also matched human-level perfor-
mance in recognizing visual objects and in critical medical applications [17].

CNNs are a favored deep learning technique because of their ability to model complex, non-linear
relationships. They are more efficient than traditional DNNs and excel at learning abstract image features,
which makes them particularly suitable for image processing. A CNN with sparse connections and
shared weights has significantly fewer parameters compared to a fully connected network of similar
size. The architecture of CNNs consists of three main layers: convolutional layers, pooling layers, and
fully connected layers. Unlike standard ANNs where each hidden layer has distinct weights, inputs, and
outputs, CNN neurons operate on two-dimensional planes for inputs and outputs, using feature maps
(kernels) as weights. Convolutional layers extract features from the input images, organizing the outputs
into two-dimensional planes known as feature maps. Each layer’s plane is formed by combining outputs
from the previous layer. As features are passed to higher layers, their size decreases in proportion to

70

the filter size used in the convolution and pooling layers, while the number of feature maps increases
to improve feature extraction and classification accuracy. Pooling layers typically follow convolution
layers. After convolution and pooling, the extracted features are converted into a vector for classification
via fully connected layers, which are recognized for their high performance [18].

CNNs, inspired by the visual processing mechanisms of the human brain, are a type of multi-layer
perceptron within the feed-forward neural networks category. They are designed to automatically and
adaptively learn spatial feature hierarchies through backpropagation using key components such as con-
volution layers, pooling layers, and fully connected layers [19]. The structure of a CNN includes an
input layer, an output layer, and several hidden layers, which can be convolutional, pooling, or fully
connected [20].

4. ANOMALY DETECTION USING API CALLS WITH ML MODELS

In this section, we systematically summarize and analyze the studies obtained in response to the re-
search questions posed earlier. This systematic review forms the core of our investigation, building on
the general concepts, fundamentals, and definitions provided in the preceding sections. By examining
the datasets and data features most commonly used in ML methods for anomaly detection utilizing API
calls, we aim to identify the prevalent data sources and attributes that drive effective anomaly detection.
Furthermore, we evaluate how the performance of these ML methods is assessed, focusing on the metrics
that are most commonly employed in the literature. Lastly, we identify the most effective ML methods for
anomaly detection using API calls and explore the characteristics that make these methods particularly
successful. Through this structured approach, we not only synthesize existing research but also provide
a comprehensive comparison and analysis, offering valuable insights into the state-of-the-art techniques
in this domain. Table 4 highlights general contributions of the investigated papers.

71

TABLE 4. System Call Anomaly Detection Techniques Overview

R
ef

.
C

on
tr

ib
ut

io
n

M
et

ho
d

[2
1]

A
de

ep
le

ar
ni

ng
ap

pr
oa

ch
fo

rd
et

ec
tin

g
an

om
al

ie
s

in
po

w
er

gr
id

sy
st

em
s

D
et

ec
tio

n
of

an
om

al
ie

s
in

po
w

er
m

ea
su

re
m

en
ts

et
s

G
en

er
at

io
n

of
po

w
er

sy
st

em
da

ta
us

in
g

a
cu

st
om

iz
ed

m
od

ul
e

A
dd

re
ss

in
g

im
ba

la
nc

ed
da

ta
se

ti
ss

ue
s

in
an

om
al

y
de

te
ct

io
n.

C
us

to
m

iz
ed

re
al

-t
im

e
cl

us
te

rf
or

m
at

io
n

A
no

m
al

y
de

te
ct

io
n

an
d

id
en

tifi
ca

tio
n

us
in

g
D

N
N

[2
2]

A
ut

om
at

ed
sy

st
em

ca
ll

co
lle

ct
or

fo
ra

no
m

al
y

de
te

ct
io

n
L

ar
ge

-s
ca

le
da

ta
se

to
fs

ys
te

m
ca

lls
in

L
in

ux
ke

rn
el

s
D

ee
p

le
ar

ni
ng

-b
as

ed
an

om
al

y
de

te
ct

io
n

us
in

g
va

ri
ou

s
m

od
el

s
lik

e
C

N
N

,L
ST

M
,e

tc
.

R
ea

l-
tim

e
co

lle
ct

io
n

of
sy

st
em

ca
ll

lo
gs

fr
om

L
in

ux
sy

st
em

s
A

no
m

al
y

de
te

ct
io

n
us

in
g

C
N

N
/R

N
N

,L
ST

M
,W

av
eN

et
,a

nd
E

C
O

D

[2
3]

O
pe

n-
so

ur
ce

an
om

al
y

de
te

ct
io

n
an

d
al

er
tf

ra
m

ew
or

k
fo

ra
pp

lic
at

io
ns

A
no

m
al

y
de

te
ct

io
n

co
ns

id
er

in
g

di
ff

er
en

tp
ar

am
et

er
s

in
sy

st
em

ca
lls

ID
S

fr
am

ew
or

k
ap

pl
ie

d
to

co
nt

ai
ne

rp
la

tf
or

m
s

us
in

g
m

ac
hi

ne
le

ar
ni

ng
m

et
ho

ds

D
at

a
re

ad
in

g
an

d
w

ri
tin

g
us

in
g

E
la

st
ic

se
ar

ch
A

PI
A

no
m

al
y

de
te

ct
io

n
us

in
g

K
ub

er
ne

te
s,

C
N

N
,a

nd
cu

D
N

N

[2
4]

Fr
eq

ue
nc

y
an

d
L

ST
M

-f
oc

us
ed

an
om

al
y

de
te

ct
io

n
fr

am
ew

or
k

fo
rc

lo
ud

sy
st

em
s

A
no

m
al

y
de

te
ct

io
n

us
in

g
L

ST
M

ar
ch

ite
ct

ur
e

w
ith

sy
st

em
ca

lls
A

tta
ck

-b
as

ed
cl

as
si

fic
at

io
n

ba
se

d
on

th
e

fr
eq

ue
nc

y
of

pa
st

ca
ll

se
qu

en
ce

s

L
ST

M
-b

as
ed

ar
ch

ite
ct

ur
e

fo
ra

tta
ck

cl
as

si
fic

at
io

n
Fe

at
ur

e
se

le
ct

io
n

us
in

g
T

F-
ID

F
an

d
at

ta
ck

cl
as

si
fic

at
io

n
us

in
g

N
N

[2
5]

A
no

m
al

y
de

te
ct

io
n

by
an

al
yz

in
g

be
ha

vi
or

al
un

its
T

hr
ea

ta
na

ly
si

s
at

th
e

sy
st

em
ca

ll
an

d
A

PI
le

ve
ls

fo
cu

si
ng

on
cr

iti
ca

lb
eh

av
io

rs
A

no
m

al
y

de
te

ct
io

n
us

in
g

a
m

ul
ti-

le
ve

lD
L

m
od

el
A

tta
ck

pr
ev

en
tio

n
us

in
g

a
m

ul
ti-

le
ve

lt
ra

ns
fo

rm
er

-b
as

ed
m

od
el

[8
]

D
ee

p
le

ar
ni

ng
-b

as
ed

an
om

al
y

de
te

ct
io

n
Im

pr
ov

ed
tr

ai
ni

ng
tim

e
ef

fic
ie

nc
y

w
ith

an
en

ha
nc

ed
ne

ur
al

ar
ch

ite
ct

ur
e

A
no

m
al

y
de

te
ct

io
n

us
in

g
L

ST
M

an
d

C
N

N
w

ith
hy

pe
rp

ar
am

et
er

op
tim

iz
at

io
n

[2
6]

A
na

ly
si

s
of

pr
og

ra
m

be
ha

vi
or

s
ba

se
d

on
ch

ar
ac

te
ri

st
ic

va
lu

es
(C

V
)

M
od

el
in

g
pr

og
ra

m
be

ha
vi

or
by

al
te

ri
ng

fu
nc

tio
n

pa
ra

m
et

er
s

w
ith

C
V

se
qu

en
ce

s
C

re
at

in
g

a
ne

ur
al

ne
tw

or
k

ve
ct

or
us

in
g

w
or

d
em

be
dd

in
g

m
et

ho
d

an
d

pr
ot

ot
yp

e
de

si
gn

L
ea

rn
in

g
m

et
ho

d
ba

se
d

on
C

V
va

lu
es

w
ith

L
ST

M
-R

N
N

[2
7]

R
ea

l-
tim

e
da

ta
se

ta
na

ly
si

s
us

in
g

A
PI

s
A

no
m

al
y

de
te

ct
io

n
us

in
g

m
ac

hi
ne

le
ar

ni
ng

co
ns

id
er

in
g

tr
af

fic
flo

w
th

ro
ug

h
A

PI
s

A
no

m
al

y
de

te
ct

io
n

an
d

cl
as

si
fic

at
io

n
us

in
g

ST
L

an
d

iF
or

es
t

[2
8]

D
es

ig
n

of
an

om
al

y
de

te
ct

io
n

al
go

ri
th

m
fo

rc
lo

ud
sy

st
em

s
C

us
to

m
cl

as
si

fic
at

io
n

m
et

ho
d

fo
rd

et
ec

tin
g

fa
ul

ty
st

at
es

Sc
en

ar
io

de
si

gn
fo

rv
ar

io
us

su
bs

ys
te

m
s

ba
se

d
on

fa
ul

ts
ce

na
ri

os

M
ar

ko
v

m
od

el
fo

rs
ta

te
pr

ob
ab

ili
ty

es
tim

at
io

n
M

od
el

in
g

us
in

g
PP

M
-C

an
d

V
M

M

[2
9]

G
ra

ph
m

od
el

fo
rm

od
el

in
g

st
at

e
da

ta
G

C
N

m
od

el
in

g
w

ith
ne

tw
or

k
tr

af
fic

an
d

sy
st

em
st

at
e

da
ta

In
tr

us
io

n
an

d
an

om
al

y
de

te
ct

io
n

us
in

g
hy

br
id

tG
C

N
-K

N
N

m
et

ho
d

[3
0]

A
no

m
al

y
de

te
ct

io
n

us
in

g
sy

st
em

ca
lls

fo
rL

in
ux

en
vi

ro
nm

en
t

E
nd

-t
o-

en
d

an
om

al
y

cl
as

si
fic

at
io

n
us

in
g

m
ac

hi
ne

le
ar

ni
ng

w
ith

sy
st

em
lo

gs
Fe

at
ur

e
ve

ct
or

tr
an

sf
or

m
at

io
n

us
in

g
D

oc
2V

ec
,R

N
N

-A
E

,a
nd

R
N

N
-D

A
E

A
no

m
al

y
de

te
ct

io
n

us
in

g
IF

,L
O

F,
an

d
1-

SV
M

[3
1]

D
es

ig
n

of
an

M
L

-b
as

ed
de

te
ct

io
n

sy
st

em
fo

ra
no

m
al

ou
s

po
ds

in
K

ub
er

ne
te

s
cl

us
te

rs
M

od
el

in
g

th
e

sy
st

em
us

in
g

L
in

ux
ke

rn
el

ca
lls

C
la

ss
ifi

ca
tio

n
ex

pl
an

at
io

n
us

in
g

SH
A

M
an

d
L

IM
E

M
ac

hi
ne

le
ar

ni
ng

im
pl

em
en

ta
tio

n
us

in
g

de
ci

si
on

tr
ee

s,
A

N
N

,a
nd

E
L

[3
2]

Fe
at

ur
e-

ba
se

d
an

om
al

y
de

te
ct

io
n

an
d

cl
as

si
fic

at
io

n
m

et
ho

d
A

no
m

al
y

de
te

ct
io

n
us

in
g

hi
er

ar
ch

ic
al

cl
us

te
ri

ng
al

go
ri

th
m

s

[3
3]

M
ul

ti-
an

om
al

y
de

te
ct

io
n

sy
st

em
ba

se
d

on
ap

pl
ic

at
io

n
be

ha
vi

or
s

W
ei

gh
te

d
gr

ap
h

re
pr

es
en

ta
tio

n
ba

se
d

on
sy

st
em

ca
ll

nu
m

be
rs

an
d

fr
eq

ue
nc

ie
s

ID
S

m
od

el
in

g
us

in
g

D
N

N
w

ith
sy

st
em

ca
lls

T
hr

ee
-c

om
po

ne
nt

fe
at

ur
e

ve
ct

or
m

et
ho

d
fo

rn
eu

ra
ln

et
w

or
ks

w
ith

D
-M

L
P

A
no

m
al

y
de

te
ct

io
n

us
in

g
ST

ID
E

,t
ex

tc
la

ss
ifi

ca
tio

n,
an

d
sy

st
em

ca
ll

gr
ap

h

[3
4]

A
no

m
al

y
de

te
ct

io
n

by
re

du
ci

ng
tr

ou
bl

es
ho

ot
in

g
tim

e
fo

rd
ev

el
op

er
s

C
ol

le
ct

io
n

of
sy

st
em

ca
lls

du
ri

ng
ex

ec
ut

io
n

in
a

L
in

ux
en

vi
ro

nm
en

t

C
ol

le
ct

io
n

of
sy

st
em

ca
lls

us
in

g
To

ol
ki

tN
ex

tG
en

er
at

io
n

C
la

ss
ifi

ca
tio

n
us

in
g

m
ul

ti-
cl

as
s

SV
M

C
lu

st
er

in
g

us
in

g
K

-m
ea

ns
an

d
D

bs
ca

n

[3
5]

A
no

m
al

y
de

te
ct

io
n

fo
rI

oT
ne

tw
or

ks
w

ith
a

cu
st

om
iz

ed
N

ID
S

m
et

ho
d

na
m

ed
Pa

no
p

Fe
at

ur
e

ex
tr

ac
tio

n
ba

se
d

on
ne

tw
or

k-
re

la
te

d
de

vi
ce

be
ha

vi
or

s
R

ea
l-

tim
e

sc
en

ar
io

re
pr

es
en

ta
tio

n
us

in
g

R
as

pb
er

ry
Pi

de
vi

ce
s

A
no

m
al

y
de

te
ct

io
n

us
in

g
K

its
un

e
an

d
A

N
N

[3
6]

N
L

P
im

pl
em

en
ta

tio
n

fo
rp

ro
gr

am
be

ha
vi

or
an

al
ys

is
us

in
g

B
oS

C
A

no
m

al
y

de
te

ct
io

n
ba

se
d

on
th

e
se

qu
en

ce
of

sy
st

em
ca

lls
at

a
sp

ec
ifi

c
po

in
ti

n
tim

e
A

no
m

al
y

de
te

ct
io

n
us

in
g

C
os

in
e

Si
m

ila
ri

ty
A

lg
or

ith
m

(C
o-

Si
m

)b
as

ed
on

N
L

P

[3
7]

M
L

-b
as

ed
m

et
ho

ds
fo

ra
no

m
al

y
de

te
ct

io
n

ac
cu

ra
cy

us
in

g
no

rm
al

an
d

at
ta

ck
da

ta
N

-g
ra

m
te

ch
ni

qu
e

fo
rc

re
at

in
g

fe
at

ur
e

ve
ct

or
C

la
ss

ifi
ca

tio
n

an
d

pr
ed

ic
tio

n
us

in
g

SV
M

,L
R

,a
nd

K
N

N
m

et
ho

ds

[3
8]

Fe
at

ur
e

ex
tr

ac
tio

n
m

et
ho

d
us

in
g

sy
st

em
ca

ll
na

m
es

L
ow

-c
os

tf
ea

tu
re

ex
tr

ac
tio

n
m

et
ho

d
ap

pl
ic

ab
le

ac
ro

ss
di

ff
er

en
tp

la
tf

or
m

s
N

-g
ra

m
te

ch
ni

qu
e

to
co

nv
er

ts
ys

te
m

ca
lls

to
fr

eq
ue

nc
y

se
qu

en
ce

s
C

la
ss

ifi
ca

tio
n

us
in

g
IF

,L
O

C
,O

C
SV

M
,a

nd
K

N
N

[3
9]

A
no

m
al

y
de

te
ct

io
n

us
in

g
L

ST
M

fr
am

ew
or

k
H

yb
ri

d
de

te
ct

io
n

m
od

el
us

in
g

L
ST

M
an

d
un

su
pe

rv
is

ed
le

ar
ni

ng
fr

am
ew

or
k

C
la

ss
ifi

ca
tio

n
us

in
g

O
C

-S
V

M
,L

ST
M

,a
nd

SV
D

D

[4
0]

Fl
ex

ib
le

an
om

al
y

de
te

ct
io

n
sy

st
em

us
in

g
sy

st
em

se
cu

ri
ty

lo
gs

Se
m

an
tic

fe
at

ur
e

ex
tr

ac
tio

n
an

d
th

re
at

be
ha

vi
or

m
od

el
in

g
fo

ri
nt

er
na

lt
hr

ea
ts

M
od

el
us

in
g

L
ST

M
an

d
G

R
U

72

4.1. Prevalent Datasets and Key Features in API Call Anomaly Detection.
In this section, we will identify and describe the most commonly used datasets and the key features

that are leveraged in ML methods for anomaly detection utilizing API calls. We will provide an overview
of the sources of these datasets, the nature of the data they contain, and the specific features that are
extracted and used for training anomaly detection models. This analysis will help in understanding the
data foundation upon which current research is built and highlight any gaps or opportunities for future
dataset development.

In [8] a hybrid anomaly detection system based on deep learning techniques, aiming to enhance both
accuracy and efficiency was proposed. The proposed system combines CNN and LSTM to achieve im-
proved detection capabilities. The initial step involves inputting the raw sequence of system call traces
into the CNN network to decrease the dimensionality of the traces. Subsequently, the reduced trace vec-
tor was passed to the LSTM network to understand the sequence of system calls and generate the final
detection result.The hybrid model was implemented and trained using TensorFlow-GPU, and its perfor-
mance was evaluated on the ADFA-LD dataset. The ADFA-LD host-based intrusion detection dataset
was generated by the ADFA. This dataset records Linux system calls, which facilitate communication
between user and kernel modes through standard interfaces provided by the Linux kernel. Every system
call on the sequence trace has a unique identifier number. The host was designed to profile a recent
Linux server that logs system call traces during a specific time period. ADFA-LD dataset was used in
the first phase. In the second phase, stratified sampling was applied and the dataset was divided into
training, validation, and test. In the second phase, a hybrid deep learning model utilizing CNN and the
LSTM algorithm was trained. The CNN consists of two layers: the convolution layer and the pooling
layer. The convolution layer applies convolution procedures to the input picture to extract significant
features, while the pooling layer decreases image dimensionality and deals with data nonlinearity. ReLu
activation function was employed. Finally, a hybrid DL-based CNN with LSTM was presented to detect
abnormalities in sequential system calls. The CNN extracted significant features, and the LSTM learned
the sequence patterns from the reduced data. Experiments reveal that the suggested technique displayed
reduced training time and better anomaly detection rates, hence lowering false alarm rates.

In [41], a novel anomaly recognition and detection framework named AnRAD inspired by biological
systems, which utilizes probabilistic inferences was proposed. It investigates feature dependencies and
introduces a self-structuring approach that learns an efficient confabulation network from unlabeled data.
This network enables fast incremental learning, continuously refining its knowledge base with streaming
data. Comparative analysis with existing anomaly detection methods demonstrates competitive detection
quality. Moreover, the AnRAD framework leverages parallel processing capabilities, yielding signif-
icant speed enhancements when implemented on graphic processing units and Xeon Phi coprocessors
compared to sequential execution on standard microprocessors. Versatility of the framework enables
real-time processing of concurrent data streams across various knowledge domains, making it applicable
to large-scale problems characterized by multiple local patterns. The proposed methodology incorporates
the principles of the confabulation theory within a hierarchical cognitive architecture, enabling flexible
network configurations tailored to specific applications. Leveraging the computational power of GPUs

73

and Xeon Phi processors, the notable speed enhancements through both fine-grained and coarse-grained
parallelization methods were achieved.

In [24], a novel intrusion detection framework was introduced, which can identify both known and
unknown attacks through system call sequence analysis. This framework examines the system call se-
quences of VMs using a hybrid model that combines LSTM networks with anomaly detection techniques
based on system call frequency. The effectiveness of this framework was validated using the ADFA-LD.
System call traces are collected and stored as a dataset for offline training, necessitating preprocessing
to remove extraneous information and retain only system call sequences. These sequences are then en-
coded with unique identifiers and labeled as normal or malicious. Frequency-based methods like Bags
of n-grams are employed to generate a Feature Vector Matrix (FVM) from the processed traces. These
vectors, representing the frequency of distinct n-grams, are stored in a feature-vector database file. Ex-
perimental results showed that this framework outperforms existing models in accuracy and has a lower
false positive rate.

In [38], a new feature extraction method designed to derive features that are independent of system
call names, making the samples directly applicable to cross-platform scenarios. The method converts
system call sequences into frequency sequences of n-grams and then extracts a fixed number of statistical
features from these sequences. These features are calculated based on the frequency sequences rather
than the direct system call sequences, and are used to train a one-class classification model for anomaly
detection. The study utilized the ADFA-LD, ADFA-WD, and NGIDS-DS datasets, employing anomaly
detection algorithms like Isolation Forest, LOF, OCSVM, and kNN. The method was compared with
other feature extraction techniques, such as Bag of System Calls, tf-idf, and subsequence frequency.
Even though the proposed method did not always achieve the highest AUC on the same platform, it
generally outperformed other methods, especially in cross-platform scenarios.

Lv et al. developed a system-call sequence-to-sequence prediction model by semantically modeling
system calls [42]. This model predicts future system calls to monitor system states and detect attack be-
haviors. An end-to-end system call prediction model was built to predict subsequent system calls based
on traces generated during malicious process execution. The RNN model was used to ensure the genera-
tion of semantically reasonable sequences. The model was evaluated using the ADFA-LD dataset, which
contains traces from both normal and intrusion attempts. Performance was assessed using the BLEU
score and Euclidean distance between encoded semantic vectors, with TF-IDF used for sequence simi-
larity evaluation. The predicted sequences, when combined with known system call traces, significantly
enhanced intrusion detection performance across various classifiers.

System calls are the primary means for applications to communicate with the Operating System (OS),
making them vital for Host-based Intrusion Detection Systems (HIDS). In [22], several existing datasets
are outdated, prompting the introduction of a large-scale dataset specifically for anomaly detection in
the Linux kernel. The dataset, named DongTing, comprises 85 GB of data, including 18,966 system
call sequences labeled as normal or anomalous. It encompasses over 200 kernel versions and 3600 bug-
triggering programs from the past five years. Cross-dataset evaluation demonstrated that models trained
on this dataset exhibited superior generalization capabilities. The dataset was divided into training, vali-
dation, and testing subsets for training deep learning models to detect anomalies in Linux kernels. Four

74

deep learning models—CNN/RNN, LSTM, WaveNet, and ECOD—were evaluated, showing that models
trained on this dataset achieved the highest generalization scores and better performance when trained on
abnormal data. This framework significantly reduces the time required to produce the dataset.

In [30], an end-to-end strategy was presented for identifying abnormal activities, merging sequential
information preservation through log embedding techniques with anomaly detection algorithms based on
ML. Unlike current ML methods for system anomaly detection, which rely on domain experts to extract
relevant features from log data, the proposed method converts raw log data into fixed-size continuous
vectors regardless of length. These vectors are then utilized to train anomaly detection algorithms. This
paper proposes a strong intrusion detection model designed specifically for Linux settings, combining se-
quential information-preserving log embedding techniques with anomaly detection algorithms. Doc2vec
was used to convert system call traces of different durations into fixed-dimensional real-valued vectors, as
are recurrent neural network-based auto-encoder (RNN-AE) and recurrent neural network-based denois-
ing auto-encoder (RNN-DAE) approaches that keep sequential information. To validate the detection
model, an experiment was carried out using the ADFA-LD dataset, which contains Linux system call
traces. Three assessment measures were utilized to assess the performance of anomaly detection algo-
rithms. The ROC was used to assess the performance of each model. In the studies, the performance
of anomaly detection systems based on unsupervised learning was assessed across several attack types.
After gathering a significant quantity of labeled data, a supervised classification model was trained and
its performance was compared against anomaly detection techniques. Finally, the paper provides an un-
supervised ML-based system anomaly detection framework that does not require labeled data for model
training.

In [30] an end-to-end approach was proposed for detecting abnormal behaviors, integrating sequential
information preservation through log embedding algorithms with anomaly detection algorithms based on
ML. Unlike other ML models for system anomaly detection that rely on domain experts to extract mean-
ingful features from log data, the proposed approach transforms raw log data into fixed-size continuous
vectors regardless of their original length. In this work, a robust intrusion detection model was devel-
oped which was specially created for Linux environments, leveraging sequential information-preserving
log embedding techniques alongside anomaly detection algorithms. To convert system call traces of
varying lengths into fixed-dimensional real-valued vectors, Doc2vec was used, as well as recurrent neu-
ral network-based auto-encoder (RNN-AE) and recurrent neural network-based denoising auto-encoder
(RNN-DAE) methods, which retain the sequential information. To validate the detection model, an ex-
periment was conducted using the ADFA-LD dataset, which comprises Linux system call traces. In the
experiments, firstly the performance of anomaly detection algorithms based on unsupervised learning
was evaluated across different attack types. After gathering a significant quantity of labeled data, a su-
pervised classification model was trained and its performance was compared against anomaly detection
techniques.
4.2. Performance Evaluation Metrics for Machine Learning-Based API Anomaly Detection.

This section will focus on how the performance of ML methods for anomaly detection using API calls
is evaluated. We will examine the most commonly utilized metrics, such as accuracy, precision, recall, F1
score, and area under the ROC curve (AUC). By analyzing these metrics, we aim to provide insights into

75

how researchers measure the effectiveness of their models, the challenges associated with each metric,
and the contexts in which certain metrics are preferred over others. This will offer a comprehensive
understanding of the evaluation landscape in this field. Figure 3 illustrates dataset and platform summary
of the examined studies.

In [34], system calls based anomaly highlighting and detecting framework was proposed to guide
developers regarding performance problems in data. The LTTng was used to collect data from the Linux
kernel, applications, and libraries. A supervised learning method was utilized in order to manage large
amounts of labeled data. In addition, the learning method was improved and modified as semi-supervised.
Then, the feature vector was constructed considering the duration of the most significant call sequences.
In the detection phase, an automated anomaly detection method was implemented as module-by-module.
It was indicated that the proposed method ensures high accuracy and efficiency in large scale systems
and distinguishes CPU and memory shortages as well as detecting normal behavior.

In [39], an unsupervised anomaly detection and innovative algorithms based on LSTM neural net-
works were developed. The proposed structure was started by processing variable length data sequences
through an LSTM-based structure, resulting in fixed-length sequences. Decision functions for anomaly
detection were then derived using One-Class Support Vector Machines (OC-SVMs) or Support Vector
Data Description (SVDD) algorithms.The main contribution of the proposed work was indicated that
the simultaneous training and optimization of LSTM architectural parameters as well as OC-SVM or
SVDD parameters, facilitated by highly effective gradient and quadratic programming-based training
methods.This study extends the unsupervised framework to semi-supervised and fully supervised set-
tings. The resulting anomaly detection algorithms excel in processing variable length data sequences,
particularly time series data, offering superior performance compared to conventional methods.

In [43], an anomaly detection model utilizing LSTM networks as well as intra- and inter-trace context
vectors was proposed to overcome the challenge of online anomaly detection in CPSs. This dynamic ap-
proach allows both identified and unseen anomalies to be addressed while improving the understanding
of kernel event execution contexts both horizontally and vertically. A deep context-aware architecture
was introduced for anomaly detection in semi-structured sequences specifically focused on system calls
or kernel events. Furthermore, the importance of using a context-based attention layer to extract rich
semantics that help identify non-linear high-dimensional relationships present in syslog sequences was
emphasized. In the simulation, a custom dataset generated by existing work was used. Two parameters
were relevant to analyze the complexity of the model. Finally, the proposed approach characterizes the
behavior of the system through online execution trace analysis using recurrent neural networks. Exper-
iments show that the proposed model provides effective and robust results in anomaly detection using
system call sequences.

In [44], a state summarization and and nested-arc hidden semi-Markov model (NAHSMM) model was
proposed to model dynamic usage behavior and identifying anomalies for cloud servers. The model was
designed to control the propagation of system call sequences and less usage transitions. In addition, the
proposed detection algorithm was generated by integration of NAHSMM and state summarization. The
system calls in varying length were summarized using these methods and the NAHMM was utilized to
fit time sequences. As fundamental, the proposed system was constructed as a mathematical model. The

76

FIGURE 3. Comparison of the studies in terms of dataset and platform

77

main concept was to use structured numerical models that include summarization of states to better un-
derstand the behavior of sequences of system call identifiers. In training and testing phases, IXIA Perfect
Storm was used to collect data. As final, the effectiveness of the proposed model in accurately detecting
anomalies within machine operating systems was highlighted . By leveraging descriptive features and a
streamlined structural framework, the model achieves this with fewer parameters, leading to significant
reductions in computational complexity and storage needs. Although the focus is on modeling system
call identifier sequences from servers in cloud environments, the method shows promise for application
in classifying network traffic and identifying anomalous human behavior.

In [40], a threat detection model was proposed implementing the Word2vec-based approach. The pos-
sibility of suspicious behavior was assessed by leveraging Word2vec model trained on a corpus of various
security logs.The method consists of three main components: log2text, text2corpus, and anomaly detec-
tion. The log2text component standardizes events from diverse security logs into uniform text format.
These texts are then merged, sorted chronologically, and processed into a corpus by the text2corpus com-
ponent. Finally, the anomaly detection component trains a Word2vec model on this corpus to compute
the probability of a specific behavior given an event, denoted as p(behavior—user). Events exceeding
a certain threshold are flagged as suspicious, potentially indicating malicious insider activity if multi-
ple suspicious events are associated with a user. The dataset was divided into smaller data and selected
specified security logs. The TPR and FPR were used as success metrics to determine performance of the
anomaly detection. The proposed study was compared with existing ones in terms of cost and complexity.

In [29], a novel anomaly and intrusion detection models were designed. The network data was rep-
resented as a graph structure to identify relation features between samples. The graph structure was
constructed as a triplet graph CNN and it was used to detect anomalies in the system. In addition Graph
Convolutional Network (GCN) was modeled and CSE-CIC-IDS2018 and UNSW-NB15 datasets were
used to monitor performance of the model. IThe dataset includes varying attack types and subtypes. In
the training phase, the value of the neighborhood number K is modified to achieve optimal detection ac-
curacy and the KNN model was utilized to complete learning. A small traffic data sample was used in the
integration phase of the proposed tGCN-KNN. The experiments were performed for a varying number of
samples under tGCN and tCNN learning models. As final, according to the comparison of three methods,
it was indicated that tGCN-KNN outperforms tCNN and CNN in terms of accuracy.

In [28], a novel approach named fault injection analytics was introduced for analyzing data from
fault injection experiments. This approach integrates distributed tracing to gather raw failure data and
employs unsupervised ML to identify failure modes within the injected system. The primary objective
is to aid human analysts in identifying failure modes more efficiently, especially when managing large
volumes of data from fault-injection experiments. A new anomaly detection algorithm was proposed
within this framework, designed to pinpoint unusual events in fault injection experiments. This algorithm
is resilient to noise inherent in cloud systems, which can stem from non-deterministic timing and event
ordering. It is also efficiently trainable with a small set of fault-free executions of the distributed system,
leveraging a variable-order Markov Model. The proposed method treats the cloud-computing system as
a collection of black-box communicating components, eliminating the need for prior knowledge about
their internal workings. Unsupervised ML is applied to execution traces to uncover patterns of failure.

78

The method detects shared symbols among sequences by calculating the Longest Common Subsequence
(LCS) of the sequences. The LCS represents a subset of symbols present in both sequences in the same
order, obtained by minimally eliminating symbols from the original sequences. Using this probabilistic
model, the method effectively detects anomalies in noisy execution traces, reducing false alarms while
maintaining the detection of true anomalies. Results indicate that clustering achieves high accuracy under
various conditions.
4.3. Top Performing Machine Learning Methods for API Call Anomaly Detection: Characteristics
and Effectiveness.

In this section, we will identify the ML methods that have proven to be the most effective for anom-
aly detection using API calls. We will explore the characteristics that make these methods stand out,
such as their ability to handle high-dimensional data, robustness to noise, computational efficiency, and
interpretability. By comparing and contrasting these methods, we will highlight their strengths and weak-
nesses, providing a clear picture of the current best practices and innovative approaches in the field. This
analysis will also suggest directions for future research and potential improvements. Table 5 summarizes
method and platform based summary of the summarized studies.

In [36], an anomaly detection approach was developed utilizing NLP. The Bags of System Calls
(BoSC) was used to analyze application activity on Windows virtual machines operating under the Xen
hypervisor. System call traces were retrieved from both regular (benign) and malware-affected (ma-
licious) apps utilizing virtual memory introspection. The retrieved system call sequences were prepro-
cessed to produce valid sequences by filtering and arranging duplicate system calls. The behavior of these
sequences was then investigated using NLP-based anomaly detection algorithms. The Cosine Similarity
Algorithm (Co-Sim) was used to identify malicious processes on the Virtual Machine (VM). Further-
more, the Point Detection Algorithm was employed to identify the point of breach in the system call
sequence. Virtual Machine Introspection (VMI) was identified as the most flexible approach for detect-
ing, monitoring, and evaluating malware threats at the hypervisor level. In the feature extraction step, a
technique called angle similarity, which is comparable to text classification for anomaly detection, was
applied. In this method, a sequence of system calls was treated as a document, but individual system
calls were treated as words. According to the findings, the suggested algorithms have a high detection
accuracy for spotting abnormalities.

In [25] an innovative method for detecting anomalies with adversarial robustness was proposed to
address vulnerabilities in existing systems against perturbation attacks. The focus of the proposed ap-
proach was on analyzing behavior units, which encapsulate representative semantic information of local
behaviors to enhance the resilience of behavior analysis. A multilevel deep learning model was lever-
aged to understand overall semantics and contextual relationships among behavior units, effectively mit-
igating perturbation attacks targeting both local and large-scale behaviors. Moreover, versatility was
demonstrated across different types of behavior logs, including low-level (e.g., API) and high-level (e.g.,
syscall) logs. The approach assumed limited attacker knowledge and incorporated threat modeling to
address potential modifications to behaviors by attackers. Initially, key behavioral actions were identified
from behavior sequences, followed by the use of the Longest Common Subsequence (LCS) algorithm to
extract related segments that bolstered model robustness. Finally, multilayer transformer models were

79

implemented for feature extraction from behaviors, enabling behavior classification to determine whether
a system sequence was abnormal or normal.

In [26] a novel approach was proposed where program behavior, considered as a sequence of compu-
tational steps, was represented by a single Characteristic Value (CV) rather than individual input values.
This CV sequence was used as input for neural networks, resulting in improved efficiency in modeling
program behavior. Multiple LSTM-RNN models were employed to reduce the neural network’s input
space, marking a significant advancement in program behavior modeling. The primary focus of the pro-
posed model was on modeling program behavior using CV sequences. These sequences were utilized
to represent program behavior after execution steps and were integral to the anomaly detection phase
based on the constructed CV models. A custom dataset was employed to evaluate the proposed model,
comparing its performance in terms of detection accuracy against existing methods.

In [33], a model for an intrusion detection system was developed that integrated various detection
techniques into a single system, aiming to achieve a comprehensive view of application behaviors. The
paper proposed a novel modified system calls graph that was designed to integrate and consolidate infor-
mation from different techniques within a unified data structure. A deep neural network was employed
to combine the results from different detection techniques used in the global model. The effectiveness
of this approach was validated using three datasets of varying complexity levels. The key contribution
of this study was the integration of multiple intrusion detection techniques into a unified system, leading
to improved detection accuracy. The architecture of the proposed system was characterized by two main
stages: detection and integration. In the detection stage, multiple intrusion detection techniques were uti-
lized concurrently. The study employed several datasets, including DARPA, UNM, and ADFA-LD, each
chosen for its distinct complexity levels. Results demonstrated significant improvements in detection ac-
curacy compared to using individual techniques, with higher detection rates and reduced false positives
achieved by the proposed model.

80

TABLE 5. Method and platform based summary of the methods

Reference ML Method Applied
platform

Success Metrics

[21] DNN General Accuracy, loss rate, TNR, precision, F1-score,
FPR, sensitivity, FNR, G-mean

[22] CNN/RNN,
LSTM, WaveNet,
ECOD

Linux Kernel FPR, F1-score, time efficiency, AUC, TPR

[23] DNN, CNN Container
Platforms
(Kubernetes
cluster)

Accuracy, NPV, coverage, sensitivity, FPR,
F1-score, ROC

[24] LSTM Linux, Cloud Accuracy, loss rate, FPR, F1-score, sensitivity
[25] Multi-layer DL Android Precision, F1-score, ROC
[8] LSTM, CNN Linux Accuracy, loss rate, detection rate, FAR,

training time
[26] LSTM-RNN General Accuracy, detection rate, AUROC, AUPR,

CPU cycle count, complexity, memory usage
[27] iForest Smart Traffic

System with
Sensor Devices

Detection rate

[28] Not provided Cloud Systems FAR, time efficiency, TPR, computational cost
[29] tGCN-KNN General Accuracy, precision
[31] DT, ANN Container Clouds Loss rate, F1-score, precision, recall
[30] 1-SVM, LOF,

iForest
Linux AUROC, AUC

[32] Hierarchical
Clustering

Kernel Events,
Operating
System (OS)

Precision, FPR, complexity, FNR

[33] D-MLP Linux Detection rate, FPR, ROC
[34] SVM, K-means,

Dbscan
Linux Accuracy, time efficiency

[35] ANN General, IoT Accuracy, FPR, TPR
[37] SVM, LR, KNN Linux Accuracy, AUC, ROC
[38] IF, LOF,

OC-SVM, KNN
Linux, Windows FPR, computational cost, TPR

[39] OC-SVM,
LSTM, SVDD

General AUC, ROC

[40] Word2vec General FPR, TPR, computational cost

81

5. OPEN PROBLEMS AND CHALLENGES

While anomaly detection using API calls is very significant and quite functional, there are some open
issues that have not been resolved by researchers and application developers. Some of these challenges
are as follows:

• Imbalanced datasets: The performance of ML methods is significantly affected by the imbal-
anced datasets used for anomaly detection. Typically, the volume of data representing anomalous
behavior is significantly smaller than that representing normal system behavior. This imbalance
can lead to inadequate performance of ML methods in both the training and testing phases, re-
sulting in inadequate success metrics. Furthermore, labeling the available dataset is often time-
consuming and resource-intensive, especially when dealing with large and diverse data volumes.

• High data volume in processing: ML models applied to high-volume datasets may struggle to
perform efficiently under heavy loads. The scalability of these models is directly affected by the
increasing number of API calls. The literature shows that performance issues arising from high
data volumes in distributed and cloud systems represent a critical area for improvement.

• Open source datasets: Datasets available in open sources often contain sensitive information
within API calls, raising concerns about privacy violations. Therefore, when creating datasets
related to application and system behavior, it is crucial to prioritize privacy and data security.

• Real-time Processing: The ability of ML models to detect anomalies in real-time remains a sig-
nificant challenge. Real-time processing of data requires advanced algorithms and infrastructure
that can handle large-scale, high-speed data streams without compromising accuracy or speed.

• Adaptability to Emerging Threats: Anomaly detection systems must constantly adapt to new
and evolving threats. Static models can quickly become obsolete, requiring the development
of adaptive learning techniques that can update and evolve in response to new data and threat
patterns.

• Explainability and Interpretability: The black box nature of many ML models poses a prob-
lem for understanding and interpreting results. Developing methods to make anomaly detection
models more transparent and interpretable is crucial for their practical application and reliability.

• Integration with Existing Systems: It is often difficult to seamlessly integrate anomaly detec-
tion systems with existing IT infrastructure and workflows. Ensuring compatibility and minimal
disruption to existing processes requires advanced integration strategies and tools.

6. CONCLUSIONS

In this paper, a systematic literature review on anomaly detection using ML methods with API calls
is presented by providing a systematization of information. A research methodology is established by
selecting appropriate search keywords and the searching sentences are generated with these keywords.
Common databases are used in advanced mode to use generated searching terms. Research questions
are determined and inclusion and exclusion criteria are defined to filter the studies according to the focus
of the literature. Over 30 research papers are summarized and compared based on different criteria.
Fundamental concepts related to API calls, machine learning fundamentals, and the scope of our review

82

are summarized to provide a foundation. Through systematic research and analysis, it is obtained that
models such as KNN, SVM, LSTM, and CNN are frequently used for anomaly detection with API
calls. Additionally, open-source datasets like ADFA-LD, DARPA, and UNM are generally preferred for
classification and detection. It is also observed that custom datasets are often created using various tools
from operating systems like Linux. Metrics such as accuracy, F1-score, recall, and precision are used to
measure the performance of the models in the studies.

DECLARATIONS

• Conflict of Interest: The authors are not affiliated with any entity that has a direct or indirect in
the subject matter covered in this paper.

REFERENCES

[1] S. Garg, S. Batra, A novel ensembled technique for anomaly detection, International Journal of Communication Systems
30 (11) (2017) e3248.

[2] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, N. F. Samatova, Anomaly detection in dynamic networks:
a survey, Wiley Interdisciplinary Reviews: Computational Statistics 7 (3) (2015) 223–247.

[3] M. Ahmed, A. N. Mahmood, M. R. Islam, A survey of anomaly detection techniques in financial domain, Future Gener-
ation Computer Systems 55 (2016) 278–288.

[4] D. Alsalman, A comparative study of anomaly detection techniques for iot security using amot (adaptive machine learn-
ing for iot threats), IEEE Access (2024).

[5] B. Jin, S. Sahni, A. Shevat, Designing Web APIs: Building APIs That Developers Love, ” O’Reilly Media, Inc.”, 2018.
[6] A. Almaleh, R. Almushabb, R. Ogran, Malware api calls detection using hybrid logistic regression and rnn model,

Applied Sciences 13 (9) (2023) 5439.
[7] Y. Li, F. Kang, H. Shu, X. Xiong, Y. Zhao, R. Sun, Apiaso: A novel api call obfuscation technique based on address

space obscurity, Applied Sciences 13 (16) (2023) 9056.
[8] F. Osamor, B. Wellman, Deep learning-based hybrid model for efficient anomaly detection, International Journal of

Advanced Computer Science and Applications 13 (4) (2022).
[9] U. S. Shanthamallu, A. Spanias, C. Tepedelenlioglu, M. Stanley, A brief survey of machine learning methods and their

sensor and iot applications, in: 2017 8th International Conference on Information, Intelligence, Systems & Applications
(IISA), IEEE, 2017, pp. 1–8.

[10] I. Muhammad, Z. Yan, Supervised machine learning approaches: A survey, ICTACT Journal on Soft Computing 5 (3)
(2015).

[11] I. Rish, et al., An empirical study of the naive bayes classifier, in: IJCAI 2001 workshop on empirical methods in artificial
intelligence, Vol. 3, Citeseer, 2001, pp. 41–46.

[12] E. Min, J. Long, Q. Liu, J. Cui, W. Chen, Tr-ids: Anomaly-based intrusion detection through text-convolutional neural
network and random forest, Security and Communication Networks 2018 (1) (2018) 4943509.

[13] K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is “nearest neighbor” meaningful?, in: Database The-
ory—ICDT’99: 7th International Conference Jerusalem, Israel, January 10–12, 1999 Proceedings 7, Springer, 1999,
pp. 217–235.

[14] H. Liu, B. Lang, Machine learning and deep learning methods for intrusion detection systems: A survey, applied sciences
9 (20) (2019) 4396.

[15] Y. Liu, X. Hao, B. Zhang, Y. Zhang, Simplified long short-term memory model for robust and fast prediction, Pattern
Recognition Letters 136 (2020) 81–86.

83

[16] S. Yang, A. Jin, W. Nie, C. Liu, Y. Li, Research on ssa-lstm-based slope monitoring and early warning model, Sustain-
ability 14 (16) (2022) 10246.

[17] J. Bernal, K. Kushibar, D. S. Asfaw, S. Valverde, A. Oliver, R. Martı́, X. Lladó, Deep convolutional neural networks for
brain image analysis on magnetic resonance imaging: a review, Artificial intelligence in medicine 95 (2019) 64–81.

[18] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proceedings of
the IEEE 86 (11) (1998) 2278–2324.

[19] R. Yamashita, M. Nishio, R. K. G. Do, K. Togashi, Convolutional neural networks: an overview and application in
radiology, Insights into imaging 9 (2018) 611–629.

[20] G. Yao, T. Lei, J. Zhong, A review of convolutional-neural-network-based action recognition, Pattern Recognition Letters
118 (2019) 14–22.

[21] A. Akagic, I. Džafić, Enhancing smart grid resilience with deep learning anomaly detection prior to state estimation,
Engineering Applications of Artificial Intelligence 127 (2024) 107368.

[22] G. Duan, Y. Fu, M. Cai, H. Chen, J. Sun, Dongting: A large-scale dataset for anomaly detection of the linux kernel,
Journal of Systems and Software 203 (2023) 111745.

[23] S. L. Rocha, F. L. L. de Mendonca, R. S. Puttini, R. R. Nunes, G. D. A. Nze, Dcids—distributed container ids, Applied
Sciences 13 (9301) (2023) 9301.

[24] A. Chaudhari, B. Gohil, U. P. Rao, A novel hybrid framework for cloud intrusion detection system using system call
sequence analysis, Cluster Computing (2023) 1–17.

[25] D. Zhan, K. Tan, L. Ye, X. Yu, H. Zhang, Z. He, An adversarial robust behavior sequence anomaly detection approach
based on critical behavior unit learning, IEEE Transactions on Computers (2023).

[26] S. Ahn, H. Yi, H. Bae, S. Yoon, Y. Paek, Data embedding scheme for efficient program behavior modeling with neural
networks, IEEE Transactions on Emerging Topics in Computational Intelligence 6 (4) (2022) 982–993.

[27] A. Karamanou, P. Brimos, E. Kalampokis, K. Tarabanis, Exploring the quality of dynamic open government data using
statistical and machine learning methods, Sensors 22 (24) (2022) 9684.

[28] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, Fault injection analytics: A novel approach to discover failure modes
in cloud-computing systems, IEEE transactions on dependable and secure computing 19 (3) (2020) 1476–1491.

[29] Y. Wang, Y. Jiang, J. Lan, Intrusion detection using few-shot learning based on triplet graph convolutional network,
Journal of Web Engineering 20 (5) (2021) 1527–1552.

[30] C. Kim, M. Jang, S. Seo, K. Park, P. Kang, Intrusion detection based on sequential information preserving log embedding
methods and anomaly detection algorithms, IEEE Access 9 (2021) 58088–58101.

[31] R. R. Karn, P. Kudva, H. Huang, S. Suneja, I. M. Elfadel, Cryptomining detection in container clouds using system calls
and explainable machine learning, IEEE transactions on parallel and distributed systems 32 (3) (2020) 674–691.

[32] O. M. Ezeme, A. Azim, Q. H. Mahmoud, Peskea: Anomaly detection framework for profiling kernel event attributes in
embedded systems, IEEE Transactions on Emerging Topics in Computing 9 (2) (2020) 957–971.

[33] F. J. Mora-Gimeno, H. Mora-Mora, B. Volckaert, A. Atrey, Intrusion detection system based on integrated system calls
graph and neural networks, IEEE Access 9 (2021) 9822–9833.

[34] I. Kohyarnejadfard, D. Aloise, M. R. Dagenais, M. Shakeri, A framework for detecting system performance anomalies
using tracing data analysis, Entropy 23 (8) (2021) 1011.

[35] H. Kim, S. Ahn, W. R. Ha, H. Kang, D. S. Kim, H. K. Kim, Y. Paek, Panop: Mimicry-resistant ann-based distributed
nids for iot networks, IEEE Access 9 (2021) 111853–111864.

[36] S. K. Peddoju, H. Upadhyay, J. Soni, N. Prabakar, Natural language processing based anomalous system call sequences
detection with virtual memory introspection, International Journal of Advanced Computer Science and Applications
11 (5) (2020).

[37] Y. Shin, K. Kim, Comparison of anomaly detection accuracy of host-based intrusion detection systems based on different
machine learning algorithms, International Journal of Advanced Computer Science and Applications 11 (2) (2020).

84

[38] Z. Liu, N. Japkowicz, R. Wang, Y. Cai, D. Tang, X. Cai, A statistical pattern based feature extraction method on system
call traces for anomaly detection, Information and Software Technology 126 (2020) 106348.

[39] T. Ergen, S. S. Kozat, Unsupervised anomaly detection with lstm neural networks, IEEE transactions on neural networks
and learning systems 31 (8) (2019) 3127–3141.

[40] L. Liu, C. Chen, J. Zhang, O. De Vel, Y. Xiang, Insider threat identification using the simultaneous neural learning of
multi-source logs, IEEE Access 7 (2019) 183162–183176.

[41] Q. Chen, R. Luley, Q. Wu, M. Bishop, R. W. Linderman, Q. Qiu, Anrad: A neuromorphic anomaly detection framework
for massive concurrent data streams, IEEE transactions on neural networks and learning systems 29 (5) (2017) 1622–
1636.

[42] S. Lv, J. Wang, Y. Yang, J. Liu, Intrusion prediction with system-call sequence-to-sequence model, IEEE Access 6
(2018) 71413–71421.

[43] O. M. Ezeme, Q. H. Mahmoud, A. Azim, Dream: deep recursive attentive model for anomaly detection in kernel events,
IEEE Access 7 (2019) 18860–18870.

[44] W. Haider, J. Hu, Y. Xie, X. Yu, Q. Wu, Detecting anomalous behavior in cloud servers by nested-arc hidden semi-
markov model with state summarization, IEEE Transactions on Big Data 5 (3) (2018) 305–316.

85

	1. Introduction
	2. Related Work
	3. Dataset
	4. Results and Discussion
	5. Conclusion
	Declarations
	References
	1. Introduction
	2. Related Work
	3. Methodology
	4. Results and Discussions
	5. Conclusion
	Declarations
	References
	Appendix
	1. Introduction
	2. Related Work
	3. The Proposed Method
	3.1. Late Acceptance Hill Climbing:
	3.2. Multi-Start Late Acceptance Hill Climbing:

	4. Experimental Results
	5. Discussion
	6. Conclusion
	References
	1. Introduction
	2. Materials and Methods
	3. Results
	3.1. Inverse Chaotic Resonance in Morris Lecar neuron model
	3.2. Effects of excitatory autapse on inverse chaotic resonance
	3.3. Effect of inhibitory autapse on inverse chaotic resonance

	4. Conclusions
	Declarations
	References
	1. Introduction
	2. Related Work
	3. METHODOLOGY AND DEVELOPMENT PROCESS
	3.1. List of Requirements:
	3.2. Activity and Sequence Diagrams:

	4. RESULTS AND DISCUSSION
	5. Conclusion
	Declarations
	References
	1. Introduction
	1.1. Motivation and Contribution
	1.2. Research Methodology
	1.3. Research questions and planning the review
	1.4. Determining and performing of the investigation
	1.5. Organization

	2. Anomaly detection
	2.1. API calls in anomaly detection

	3. Machine learning: Fundamentals, definitions and categorization
	3.1. Logistic Legression
	3.2. Support Vector Machines
	3.3. Naive Bayes
	3.4. Random Forest
	3.5. K-Nearest Neighbor
	3.6. Deep Neural Network
	3.7. Long Short-Term Memory)
	3.8. Convolutional Neural Network

	4. Anomaly detection using API calls with ML models
	4.1. Prevalent Datasets and Key Features in API Call Anomaly Detection
	4.2. Performance Evaluation Metrics for Machine Learning-Based API Anomaly Detection
	4.3. Top Performing Machine Learning Methods for API Call Anomaly Detection: Characteristics and Effectiveness

	5. Open problems and challenges
	6. Conclusions
	Declarations
	References

