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Abstract − In the present paper, the solutions of the following system of difference equations

un =α1vn−2 +
δ1vn−2un−4

β1un−4 +γ1vn−6
, vn =α2un−2 +

δ2un−2vn−4

β2vn−4 +γ2un−6
, n ∈N0,

where the initial values u−l , v−l , for l = 1,6 and the parameters αp , βp , γp , δp , for p ∈ {1,2} are

non-zero real numbers, are investigated. In addition, the solutions of the aforementioned system

of difference equations are presented by utilizing the Fibonacci sequence when the parameters are

equal to 1. Finally, the periodic solutions according to some special cases of the parameters are

obtained.

Subject Classification (2020): 39A10, 39A20, 39A23.

1. Introduction and Preliminaries

Difference equations are one of the important topics of applied mathematics. Therefore, some mathemati-

cians have studied in this field [1–20]. Some difference equations occur as the recurrence relation of a num-

ber sequence. For example, Fibonacci sequence {Fn}∞n=0 is identified by

Fn+1 = Fn +Fn−1, n ∈N, (1.1)

with the initial conditions F0 = 0 and F1 = 1 in [21]. Binet’s formula for equation (1.1) is

Fn = An −B n

A−B
, n ∈N0, (1.2)

where A = 1+p5
2 , B = 1−p5

2 . Equation (1.2) is a solution of equation (1.1) and the general term Fibonacci

sequence. In addition, there are some types of nonlinear difference equations for which their general solu-

tions can be found. One of them is Riccati difference equation, which is in the following form:

zn+1 = ϵzn +θ

ζzn +η
, n ∈N0, (1.3)
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for ζ ̸= 0, ϵη−ζθ ̸= 0, where the parameters ϵ,θ,ζ,η and the initial condition z0 are real numbers. The general

solution of equation (1.3) can be written as follows

zn = z0
(
θζ−ϵη

)
sn−1 + (ϵz0 +θ) sn

(ζz0 −ϵ) sn + sn+1
, n ∈N, (1.4)

where the sequence (sn)n∈N0
is satisfying

sn+1 −
(
ϵ+η

)
sn − (

θζ−ϵη
)

sn−1 = 0, n ∈N,

where s0 = 0, s1 = 1, in [22].

The following higher-order difference equation,

xn =αxn−k +
δxn−k xn−(k+l )

βxn−(k+l ) +γxn−l
, n ∈N0, (1.5)

where k and l are fixed natural numbers, the initial conditions x− j , j = 1,k + l and the parameters α, β, γ,

δ are real numbers, was solved by the authors in [23]. In addition, the case k = 2, l = 4 in equation (1.5),

it was obtained the exact solutions and investigated equilibria, local stability and global attractivity in [24].

Similarly, the authors of [25] studied the behavior of the solutions of the difference equation which was

obtained by taking k = 1, l = 3 in equation (1.5).

There are some difference equations that are similar in shape to the difference equation in (1.5). But, they

are not particular cases of equation (1.5). For example, in [26], the authors explored the qualitative behavior

of the solutions of the following difference equations:

yn+1 = Ayn−1 + ±B yn−1 yn−3

C yn−3 ±D yn−5
, n ∈N0, (1.6)

where the initial conditions y−k , for k = 0,5, are arbitrary positive real numbers and the parameters A, B , C

and D are positive real numbers.

Similarly, the authors studied the behaviour of the rational difference equation

yn+1 =αyn + βyn yn−3

Ayn−4 +B yn−3
, n ∈N0, (1.7)

where the initial conditions y−k , for k = 0,4, are positive real numbers and the parameters α, β, A and B are

real numbers, in [27].

In addition, in [28], Almatrafi and Alzubaidi studied the local and global stability, periodicity and solutions

of the following rational difference equations

un+1 = aun−1 ± bun−1un−4

cun−4 −dun−6
, n ∈N0, (1.8)

where the parameters a,b,c and d are positive real numbers and the initial values u−k , for k = 0,6, are non-

zero real numbers.
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Moreover, the authors of [29] studied the behavior of the difference equation

xn+1 = axn + bxn xn−1

cxn−1 +d xn−2
, n ∈N0, (1.9)

where the initial conditions x−k , for k = 0,2 are arbitrary positive real numbers and the parameters a,b,c

and d are positive constants. In [30], Elsayed and Al-Rakhami investigated some of the qualitative behavior

of the rational difference equation

Ψn+1 =αΨn−2 + βΨn−2Ψn−3

γΨn−3 +δΨn−6
, n ∈N0, (1.10)

where the parameters α, β, γ and δ are arbitrary positive real numbers.

Further, in [31] Elsayed studied the qualitative behavior of the solutions of the difference equation

xn+1 = axn + bx2
n

cxn +d xn−1
, n ∈N0, (1.11)

where a,b,c and d , are positive real numbers and the initial conditions x−1 and x0 are positive real numbers.

There are some difference equations as equations in (1.6)-(1.11) in literature (see [32–35]).

In [36], the authors generalized the equation (1.5) to the following two-dimensional system

xn = ayn−k +
d yn−k xn−(k+l )

bxn−(k+l ) + c yn−l
, yn =αxn−k +

δxn−k yn−(k+l )

βyn−(k+l ) +γxn−l
,n ∈N0, (1.12)

where k and l are positive integers, the initial conditions x−i , y−i , i = 1,k + l and the parameters a, b, c, d ,

α, β, γ, δ are real numbers. They showed that system (1.12) can be solved in closed form.

A natural question is if equation (1.6) generalizes to a two-dimensional system of difference equations. Here,

we give a positive answer. We expand equation (1.6) to the following two-dimensional system of difference

equations

un =α1vn−2 + δ1vn−2un−4

β1un−4 +γ1vn−6
, vn =α2un−2 + δ2un−2vn−4

β2vn−4 +γ2un−6
,n ∈N0, (1.13)

where the initial values u−l , v−l , for l = 1,6, are positive real numbers and the parameters αp , βp , γp and

δp , for p ∈ {1,2}, are positive real numbers.

Our aim to show that system (1.13) is solvable in explicit form. Also, we investigate the periodicity of the

solutions depending on special cases of the parameters. Additionally, we gain the solutions for the case

α1 =α2 =β1 =β2 = γ1 = γ2 = δ1 = δ2 = 1 by using Fibonacci sequence.

We give the following very well-known definition which used in this paper.

Definition 1.1. [37] (Periodicity) A sequence (xn)∞n=−k is said to be eventually periodic with period p if there

exists n0 ≥−k such that xn+p = xn for all n ≥ n0. If n0 =−k then the sequence (xn)∞n=−k is said to be periodic

with period p.
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2. Explicit Solutions of System (1.13)

The system (1.13) can be written in the following form

un

vn−2
=

(
α1β1 +δ1

) un−4
vn−6

+α1γ1

β1
un−4
vn−6

+γ1
,

vn

un−2
=

(
α2β2 +δ2

) vn−4
un−6

+α2γ2

β2
vn−4
un−6

+γ2
, n ∈N0.

By employing the change of variables

xn = un

vn−2
, yn = vn

un−2
, n ≥−4, (2.1)

system (1.13) is transformed into the following system

xn =
(
α1β1 +δ1

)
xn−4 +α1γ1

β1xn−4 +γ1
, yn =

(
α2β2 +δ2

)
yn−4 +α2γ2

β2 yn−4 +γ2
, n ∈N0. (2.2)

We consider the following equation

zn =
(
αβ+δ

)
zn−4 +αγ

βzn−4 +γ
, n ∈N0, (2.3)

instead of equations in (2.2). If we apply decomposition of indices n → 4(m +1)+ i ,

i =−4,−1, m ≥−1, in equation (2.3), then it can be written the following equation

z(i )
m+1 =

(
αβ+δ

)
z(i )

m +αγ

βz(i )
m +γ

, (2.4)

where z(i )
m = z4m+i , i =−4,−1, m ∈N0,

From equation (1.4), the general solutions of the equations in (2.4) as follows

z(i )
m =

−δγz(i )
0 sm−1 +

((
αβ+δ

)
z(i )

0 +αγ
)

sm(
βz(i )

0 −αβ−δ
)

sm + sm+1

, m ∈N, (2.5)

for i =−4,−1, where sequence of (sm)m∈N0
is satisfying

sm+1 −
(
αβ+δ+γ

)
sm +δγsm−1 = 0, m ∈N. (2.6)

From equation (2.5), the solutions of equations in (2.2) are expressed as

x4m+i =
−δ1γ1xi sm−1 +

((
α1β1 +δ1

)
xi +α1γ1

)
sm(

β1xi −α1β1 −δ1
)

sm + sm+1
, m ∈N0, (2.7)

y4m+i =
−δ2γ2 yi sm−1 +

((
α2β2 +δ2

)
yi +α2γ2

)
sm(

β2 yi −α2β2 −δ2
)

sm + sm+1
, m ∈N0, (2.8)

for i =−4.−1.

From (2.1) , we have

un = xn vn−2 = xn yn−2un−4, vn = ynun−2 = yn xn−2vn−4, n ≥−2. (2.9)
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From system (2.9), we obtain

u4m+ j = x4m+ j y4m+ j−2u4(m−1)+ j , m ∈N0,

v4m+ j = y4m+ j x4m+ j−2v4(m−1)+ j , m ∈N0, (2.10)

for j =−2,1.

From system (2.10), we get

u4m+ j = u j−4

m∏
p=0

x4p+ j y4p+ j−2, m ∈N0,

v4m+ j = v j−4

m∏
p=0

y4p+ j x4p+ j−2, m ∈N0, (2.11)

for j =−2,1.

By putting formulas (2.7) and (2.8) back into system (2.11), we gain

u4m−2 = u−6

m∏
p=0

(
−δ1γ1u−2sp−1 +

((
α1β1 +δ1

)
u−2 +α1γ1v−4

)
sp(

β1u−2 −
(
α1β1 +δ1

)
v−4

)
sp + v−4sp+1

)

×
(
−δ2γ2v−4sp−1 +

((
α2β2 +δ2

)
v−4 +α2γ2u−6

)
sp(

β2v−4 −
(
α2β2 +δ2

)
u−6

)
sp +u−6sp+1

)
, (2.12)

v4m−2 = v−6

m∏
p=0

(
−δ2γ2v−2sp−1 +

((
α2β2 +δ2

)
v−2 +α2γ2u−4

)
sp(

β2v−2 −
(
α2β2 +δ2

)
u−4

)
sp +u−4sp+1

)

×
(
−δ1γ1u−4sp−1 +

((
α1β1 +δ1

)
u−4 +α1γ1v−6

)
sp(

β1u−4 −
(
α1β1 +δ1

)
v−6

)
sp + v−6sp+1

)
, (2.13)

u4m−1 = u−5

m∏
p=0

(
−δ1γ1u−1sp−1 +

((
α1β1 +δ1

)
u−1 +α1γ1v−3

)
sp(

β1u−1 −
(
α1β1 +δ1

)
v−3

)
sp + v−3sp+1

)

×
(
−δ2γ2v−3sp−1 +

((
α2β2 +δ2

)
v−3 +α2γ2u−5

)
sp(

β2v−3 −
(
α2β2 +δ2

)
u−5

)
sp +u−5sp+1

)
, (2.14)

v4m−1 = v−5

m∏
p=0

(
−δ2γ2v−1sp−1 +

((
α2β2 +δ2

)
v−1 +α2γ2u−3

)
sp(

β2v−1 −
(
α2β2 +δ2

)
u−3

)
sp +u−3sp+1

)

×
(
−δ1γ1u−3sp−1 +

((
α1β1 +δ1

)
u−3 +α1γ1v−5

)
sp(

β1u−3 −
(
α1β1 +δ1

)
v−5

)
sp + v−5sp+1

)
, (2.15)
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u4m = u−4

m∏
p=0

(
−δ1γ1u−4sp + ((

α1β1 +δ1
)

u−4 +α1γ1v−6
)

sp+1(
β1u−4 −

(
α1β1 +δ1

)
v−6

)
sp+1 + v−6sp+2

)

×
(
−δ2γ2v−2sp−1 +

((
α2β2 +δ2

)
v−2 +α2γ2u−4

)
sp(

β2v−2 −
(
α2β2 +δ2

)
u−4

)
sp +u−4sp+1

)
, (2.16)

v4m = v−4

m∏
p=0

(
−δ2γ2v−4sp + ((

α2β2 +δ2
)

v−4 +α2γ2u−6
)

sp+1(
β2v−4 −

(
α2β2 +δ2

)
u−6

)
sp+1 +u−6sp+2

)

×
(
−δ1γ1u−2sp−1 +

((
α1β1 +δ1

)
u−2 +α1γ1v−4

)
sp(

β1u−2 −
(
α1β1 +δ1

)
v−4

)
sp + v−4sp+1

)
, (2.17)

u4m+1 = u−3

m∏
p=0

(
−δ1γ1u−3sp + ((

α1β1 +δ1
)

u−3 +α1γ1v−5
)

sp+1(
β1u−3 −

(
α1β1 +δ1

)
v−5

)
sp+1 + v−5sp+2

)

×
(
−δ2γ2v−1sp−1 +

((
α2β2 +δ2

)
v−1 +α2γ2u−3

)
sp(

β2v−1 −
(
α2β2 +δ2

)
u−3

)
sp +u−3sp+1

)
, (2.18)

v4m+1 = v−3

m∏
p=0

(
−δ2γ2v−3sp + ((

α2β2 +δ2
)

v−3 +α2γ2u−5
)

sp+1(
β2v−3 −

(
α2β2 +δ2

)
u−5

)
sp+1 +u−5sp+2

)

×
(
−δ1γ1u−1sp−1 +

((
α1β1 +δ1

)
u−1 +α1γ1v−3

)
sp(

β1u−1 −
(
α1β1 +δ1

)
v−3

)
sp + v−3sp+1

)
, (2.19)

for m ∈N0.

3. Periodicity

We obtain the periodicity of the solutions of the system (1.13) depending on the parameters are equal either

1 or −1 in this section.

Theorem 3.1. Suppose that αp , βp , γp , δp , for p ∈ {1,2} and the initial values u−l , v−l , for l = 1,6 are non-

zero real numbers. Then, the following statements hold.

a) If α1 = 1, α2 = 1, β1 = 1, β2 = 1, γ1 = −1, γ2 = −1, δ1 = −1, δ1 = −1, the solutions of the system (1.13)

are periodic with period 12.

b) If α1 = 1, α2 = 1, β1 =−1, β2 =−1, γ1 = 1, γ2 = 1, δ1 = 1, δ1 = 1, the solutions of the system (1.13) are

periodic with period 12.

c) If α1 =−1, α2 =−1, β1 = 1, β2 = 1, γ1 = 1, γ2 = 1, δ1 = 1, δ1 = 1, the solutions of the system (1.13) are

periodic with period 12.

d) If α1 = −1, α2 = −1, β1 = −1, β2 = −1, γ1 = −1, γ2 = −1, δ1 = −1, δ1 = −1, the solutions of the system

(1.13) are periodic with period 12.

Proof.

a) If α1 = 1, α2 = 1, β1 = 1, β2 = 1, γ1 = −1, γ2 = −1, δ1 = −1, δ1 = −1, system (1.13) turns into the
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following system

un = vn−2 − vn−2un−4

un−4 − vn−6
, vn = un−2 − un−2vn−4

vn−4 −un−6
, n ∈N0. (3.1)

From (2.7) and (2.8), we have

x4m+i = −xi sm−1 − sm

xi sm + sm+1
, (3.2)

y4m+i = −yi sm−1 − sm

yi sm + sm+1
, (3.3)

where m ∈N0 and i =−4,−1.

From (2.6), we obtain

sm+1 + sm + sm−1 = 0,

where s0 = 0 and s1 = 1.

From this, we get

s3t+b = b, (3.4)

for t ∈N0 and b =−1,1.

From (2.1), we have

u12m+ j =x12m+ j y12m+ j−2x12m+ j−4 y12m+ j−6

×x12m+ j−8 y12m+ j−10u12(m−1)+ j ,

v12m+ j =y12m+ j x12m+ j−2 y12m+ j−4x12m+ j−6

×y12m+ j−8x12m+ j−10v12(m−1)+ j , (3.5)

where m ∈N0 and j = 6,17.

From system (3.5), we obtain

u12m+ j = u j−12

m∏
p=0

x12p+ j y12p+ j−2x12p+ j−4 y12p+ j−6

×x12p+ j−8 y12p+ j−10, (3.6)

v12m+ j = v j−12

m∏
p=0

y12p+ j x12p+ j−2 y12p+ j−4x12p+ j−6

×y12p+ j−8x12p+ j−10, (3.7)

where m ∈N0 and j = 6,17.

By using (3.2), (3.3) and (3.4) into (3.6) and (3.7), we get

u12m+ j = u j−12, v12m+ j = v j−12,

where m ∈N0 and j = 6,17.

b) If α1 = 1, α2 = 1, β1 = −1, β2 = −1, γ1 = 1, γ2 = 1, δ1 = 1, δ1 = 1, system (1.13) turns into the system

(3.1). Then, it can be proven like (a).

c) If α1 =−1, α2 =−1, β1 = 1, β2 = 1, γ1 = 1, γ2 = 1, δ1 = 1, δ1 = 1, system (1.13) turns into the following
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system

un =−vn−2 + vn−2un−4

un−4 + vn−6
, vn =−un−2 + un−2vn−4

vn−4 +un−6
, n ∈N0. (3.8)

From (2.7) and (2.8), we obtain

x4m+i = −xi sm−1 − sm

xi sm + sm+1
, (3.9)

y4m+i = −yi sm−1 − sm

yi sm + sm+1
, (3.10)

where m ∈N0 and i =−4,−1.

We obtain, from (2.6),

sm+1 − sm + sm−1 = 0,

where s0 = 0 and s1 = 1.

From this, we get

s6t+3r+q =


0, if 3r +q ∈ {0,3},

1, if 3r +q ∈ {1,2},

−1, if 3r +q ∈ {4,5},

(3.11)

for t ∈N0, r ∈ {0,1} and q = 0,2.

From (2.1), we have

u12m+ j =x12m+ j y12m+ j−2x12m+ j−4 y12m+ j−6

×x12m+ j−8 y12m+ j−10u12(m−1)+ j ,

v12m+ j =y12m+ j x12m+ j−2 y12m+ j−4x12m+ j−6

×y12m+ j−8x12m+ j−10v12(m−1)+ j , (3.12)

where m ∈N0 and j = 6,17.

From system (3.12), we obtain

u12m+ j =u j−12

m∏
p=0

x12p+ j y12p+ j−2x12p+ j−4 y12p+ j−6

×x12p+ j−8 y12p+ j−10, (3.13)

v12m+ j =v j−12

m∏
p=0

y12p+ j x12p+ j−2 y12p+ j−4x12p+ j−6

×y12p+ j−8x12p+ j−10, (3.14)

where m ∈N0 and j = 6,17.

By using (3.9)-(3.11) into (3.13) and (3.14), we get

u12m+ j = u j−12, v12m+ j = v j−12,

where m ∈N0 and j = 6,17.

d) If α1 =−1, α2 =−1, β1 =−1, β2 =−1, γ1 =−1, γ2 =−1, δ1 =−1, δ1 =−1, system (1.13) turns into the
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system (3.8). Then, it can be proven like (c).

4. An Application

We obtain the solutions of the system (1.13) with α1 =α2 = β1 = β2 = γ1 = γ2 = δ1 = δ2 = 1. In this case, we

have the following system

un = vn−2 + vn−2un−4

un−4 + vn−6
, vn = un−2 + un−2vn−4

vn−4 +un−6
, n ∈N0. (4.1)

From (2.6), we obtain

sm+1 −3sm + sm−1 = 0, m ∈N, (4.2)

where s0 = 0, s1 = 1.

Binet Formula for (4.2) is

sm =
(

3+p5
2

)m −
(

3−p5
2

)m

(
3+p5

2

)
−

(
3−p5

2

) , m ∈N0. (4.3)

Note that (
1∓p

5

2

)2

= 3∓p
5

2
. (4.4)

Using (4.4) in (4.3), we have

sm =
(

1+p5
2

)2m −
(

1−p5
2

)2m

(
1+p5

2

)2 −
(

1−p5
2

)2 = F2m , m ∈N0. (4.5)

Using (4.5) into (2.12)-(2.19), we get

u4m−2 =u−6

m∏
p=0

(
u−2F2p+1 + v−4F2p

)(
v−4F2p+1 +u−6F2p

)(
v−4F2p−1 +u−2F2p

)(
u−6F2p−1 + v−4F2p

) , (4.6)

v4m−2 =v−6

m∏
p=0

(
v−2F2p+1 +u−4F2p

)(
u−4F2p+1 + v−6F2p

)(
u−4F2p−1 + v−2F2p

)(
v−6F2p−1 +u−4F2p

) , (4.7)

u4m−1 =u−5

m∏
p=0

(
u−1F2p+1 + v−3F2p

)(
v−3F2p+1 +u−5F2p

)(
v−3F2p−1 +u−1F2p

)(
u−5F2p−1 + v−3F2p

) , (4.8)

v4m−1 =v−5

m∏
p=0

(
v−1F2p+1 +u−3F2p

)(
u−3F2p+1 + v−5F2p

)(
u−3F2p−1 + v−1F2p

)(
v−5F2p−1 +u−3F2p

) , (4.9)

u4m =u−4

m∏
p=0

(
u−4F2p+3 + v−6F2p+2

)(
v−2F2p+1 +u−4F2p

)(
v−6F2p+1 +u−4F2p+2

)(
u−4F2p−1 + v−2F2p

) , (4.10)

v4m =v−4

m∏
p=0

(
v−4F2p+3 +u−6F2p+2

)(
u−2F2p+1 + v−4F2p

)(
u−6F2p+1 + v−4F2p+2

)(
v−4F2p−1 +u−2F2p

) , (4.11)



Ömer Aktaş et al. / IKJM / 6(2) (2024) 1-12 10

u4m+1 =u−3

m∏
p=0

(
u−3F2p+3 + v−5F2p+2

)(
v−1F2p+1 +u−3F2p

)(
v−5F2p+1 +u−3F2p+2

)(
u−3F2p−1 + v−1F2p

) , (4.12)

v4m+1 =v−3

m∏
p=0

(
v−3F2p+3 +u−5F2p+2

)(
u−1F2p+1 + v−3F2p

)(
u−5F2p+1 + v−3F2p+2

)(
v−3F2p−1 +u−1F2p

) , (4.13)

for m ∈N0.

5. Conclusion

In this paper, we have obtained the solutions of two-dimensional system of difference equations in explicit

form by using convenient transformation. In addition, we have investigated the periodic solutions of afore-

mentioned system of difference equations when the parameters are equal to 1 or equal to −1. Finally, an

application was given to show that the solutions of the mentioned system are related to Fibanacci numbers

when all parameters are equal to 1.
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[6] M. Gümüş, R. Abo-Zeid, Qualitative study of a third order rational system of difference equations, Math-

ematica Moravica, 25(1), (2021) 81–97.
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[22] S. Stević, Representation of solutions of bilinear difference equations in terms of generalized fibonacci

sequences, Electronic Journal of Qualitative Theory of Differential Equation, 2014(67), (2014) 1–15.

[23] D. T. Tollu, Y. Yazlik, N. Taskara, On a solvable nonlinear difference equation of higher order, Turkish

Journal of Mathematics, 42, (2018) 1765–1778.

[24] M. B. Almatrafi, Exact solution and stability of sixth order difference equations, Electronic Journal of

Mathematical Analysis and Applications, 10(1), (2022) 209–225.

[25] R. P. Agarwal, E. M. Elsayed, On the solution of fourth-order rational recursive sequence, Advanced Stud-

ies in Contemporary Mathematics, 20(4), (2010) 525–545.

[26] H. S. Alayachi, M. S. M. Noorani, A. Q. Khan, M. B. Almatrafi, Analytic solutions and stability of sixth

order difference equations, Mathematical Problems in Engineering, Article ID 1230979, (2020) 1–12.

[27] M. M. El-Dessoky, E. M. Elabbasy, A. Asiri, Dynamics and solutions of a fifth-order nonlinear difference
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Abstract − In this paper, we mainly investigate the qualitative and quantitative behavior of the

solutions of a discrete system of difference equations

xn+1 = xn−1

yn−1
, yn+1 = xn−1

axn−1 +byn−1
, n = 0,1, . . . ,

where a, b and the initial values x−1, x0, y−1, y0 are non-zero real numbers. For a ∈ R+ − {1}, we

show any admissible solution {(xn , yn )}∞n=−1 is either entirely located in a certain quadrant of the

plane or there exists a natural number N > 0 (we calculate its value) such that {(xn , yn )}∞n=N is

located. Besides, some numerical simulations with graphs are given in the article to emphasize the

efficiency of our theoretical results.
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1. Introduction

In case of interruption of events developing over time, mathematical models are established with difference

equations using discrete variables. In this way, difference equations have an important place in research

on real-life problems, especially in fields such as economics, medicine, chemistry and biology. In addition

to its importance in practice, difference equations are also used in theoretical research, that is, to obtain

solutions of differential equations, delayed differential equations, and fractional differential equations. It is

very difficult most of the time to obtain solutions to rational difference equations. Additionally, there is no

general technique to obtain or qualitatively investigate solutions. For this reason, the study of non-linear

difference equations of order greater than one is truly remarkable and every qualified study in this field is

valuable.

Difference equations have a very old history. However, its research has progressed rapidly, especially in the

last thirty years. Research in this field can be carried out under three headings: quantitative, qualitative

and numerical. Quantitative research is carried out by determining the analytical solutions of the equation,

qualitative research is carried out by examining the behavior of the solutions of the equation, and numeri-

cal research is carried out by determining the approximate values of the solution of the equation by various
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methods.

Therefore, this paper can be viewed as both a qualitative and quantitative investigation of a system of dif-

ference equations. Now let’s give a detailed background of the system we discuss in this article:

In [29], the authors studied the global dynamics of the system

xn+1 = β1xn

A1 + yn
, yn+1 = β2xn +γ2 yn

xn + yn
, n = 0,1, . . . ,

where the parameters γ2, A1,β1,β2 are positive numbers and the initial conditions x0 and y0 are arbitrary

nonnegative numbers such that x0 + y0 > 0.

Camouzis et al. [10], studied the global behavior of the system of difference equations

xn+1 = α1 +γ1 yn

xn
, yn+1 = β2xn +γ2 yn

B2xn +C2 yn
, n = 0,1, . . . , (1.1)

with nonnegative parameters and positive initial conditions. They studied the boundedness character of

the system (1.1) in its special cases.

In [9], Camouzis et al. conjectured that:

Every positive solution of the system

xn+1 = yn

xn
, yn+1 = γ2 yn

A2 +B2xn + yn
, n = 0,1, . . . ,

with nonnegative parameters and positive initial conditions, converges to a finite limit.

Bekker et al. [8] confirmed that conjecture.

In [28], Kudlak et al. studied the existence of unbounded solutions of the system of difference equations

xn+1 = xn

yn
, yn+1 = xn +γn yn , n = 0,1, . . . ,

where 0 < γn < 1 and the initial values are positive real numbers.

There is an increasing interest in the applications of difference and systems of difference equations in vari-

ous fields. Even if a difference equation appears very plain and simple, its solutions can exhibit very complex

behavior. In this paper, we study the global behavior of the admissible solutions of the system of difference

equations

xn+1 = xn−1

yn−1
, yn+1 = xn−1

axn−1 +byn−1
, n = 0,1, . . . , (1.2)

where a, b, and the initial values x−1, x0, y−1, y0 are nonzero real numbers.

We shall study here, the behavior of the solutions of system (1.2) using their closed form. Other relevant

qualitative and quantitative theories of difference equations can be obtained in references ([1]-[7], [12],

[15], [16], [22], [26], [30], [32]-[34] and the references therein). For more on discrete systems of difference

equations that are solved in closed form in references (see [11], [13], [14], [17]-[21], [23]-[25], [31], [35]-[38]).

2. Linearized Stability and Solution of the System (1.2)

In this section, we investigate the local asymptotic behavior of the equilibrium point of the system (1.2) and

derive its solution.

It is clear that the system (1.2) has no equilibrium points when a = 1 and it has a unique equilibrium point
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( b
1−a ,1) when a ̸= 1. To study the linearized stability of the unique equilibrium point of the system (1.2), we

consider the transformation

F


xn

xn−1

yn

yn−1

=


xn−1
yn−1

xn
xn−1

axn−1+byn−1

yn

 .

The linearized system associated with the system (1.2) about an equilibrium point (x̄, ȳ) is

Zn+1 = JF (x̄, ȳ)Zn , n = 0,1, ...,

where

Zn =


xn

xn−1

yn

yn−1

 and JF (x̄, ȳ) =


0 1

ȳ 0 − x̄
ȳ2

1 0 0 0

0 bȳ3

x̄2 0 −bȳ2

x̄

0 0 1 0

 .

For more results on the stability of difference equations, see [27].

Theorem 2.1. Assume that a ̸= 1. Then the equilibrium point ( b
1−a ,1) of the system (1.2) is

1. locally asymptotically stable if |a| < 1,

2. unstable (saddle point) if |a| > 1.

Proof.

The Jacobian matrix about the equilibrium point ( b
1−a ,1) becomes

JF

(
b

1−a
,1

)
=


0 1 0 − b

1−a

1 0 0 0

0 (1−a)2

b 0 −(1−a)

0 0 1 0

 . (2.1)

It is enough to see that the eigenvalues of the matrix (2.1) are 0,0,
p|a|,−p|a|, and the result follows.

Now, returning to the system (1.2), we can write

un+1 = aun−1 +b, n = 0,1, ..., (2.2)

where

un = xn

yn
, with u−1 = x−1

y−1
, and u0 = x0

y0
.

Solving (2.2), we obtain the following:

1. If a ̸= 1, then

xn =
 a

n−1
2 α1+b
1−a ,n = 1,3, ...,

a
n
2 −1α2+b

1−a ,n = 2,4, ...,
(2.3)
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and

yn =


a

n−1
2 α1+b

a
n+1

2 α1+b
,n = 1,3, ...,

a
n
2 α2+b

a
n
2 α2+b

,n = 2,4, ...,
(2.4)

where αi = x−2+i
y−2+i

(1−a)−b, i = 1,2.

2. If a = 1, then

xn =
{

β1 +b( n−1
2 ) ,n = 1,3, ...,

β2 +b( n
2 −1) ,n = 2,4, ...,

(2.5)

and

yn =


β1+b( n−1

2 )

β1+b( n+1
2 )

,n = 1,3, ...,
β2+b( n

2 −1)
β2+b( n

2 ) ,n = 2,4, ...,
(2.6)

where βi = x−2+i
y−2+i

, i = 1,2.

The forbidden set for the system (1.2) depends on the value of a. For the system (1.2) we have the following:

• If a ̸= 1, then the forbidden set of the system (1.2) is

F1 =
∞⋃

m=0
{(x, y) ∈R2 : y =−am

b
x}.

• If a = 1, then the forbidden set of the system (1.2) is

F2 =
∞⋃

m=1
{(x, y) ∈R2 : y =− 1

bm
x}.

From now on, we assume that all solutions are admissible, that is for any solution {(xn , yn)}∞n=−1 of the sys-

tem (1.2), the initial points (x−i , y−i ) ∉ F1 if a ̸= 1 or (x−i , y−i ) ∉ F2 if a = 1, i = 0,1.

Theorem 2.2. Assume that |a| < 1. Then the equilibrium point ( b
1−a ,1) of the system (1.2) is globally asymp-

totically stable.

Proof.

Using formulas (2.3) and (2.4), we have

(xn , yn) → (
b

1−a
,1), as n →∞. (2.7)

That is, the equilibrium point ( b
1−a ,1) of the system (1.2) is a global attractor.

Using Theorem (2.1)(1), the proof follows.

We give the following result without proof as a consequence of the solution form of the system (1.2).

Theorem 2.3. Assume that a ̸= 1. The following statements are true:

1. If a > 1, then the solution {(xn , yn)}∞n=−1 is unbounded, namely:

{(x2n+1, y2n+1)}∞n=−1 → (−∞ . sg n(α1),
1

a
), as n →∞,
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and

{(x2n+2, y2n+2)}∞n=−1 → (−∞ . sg n(α2),
1

a
), as n →∞.

2. If a = 1, then the solution {(xn , yn)}∞n=−1 is unbounded, namely:

{(xn , yn)}∞n=−1 → (∞ . sg n(b),1) as n →∞.

Theorem 2.4. Assume that a ̸= 1. Then the set I = {(x, y) ∈ R2 : (a −1)x +by = 0} is an invariant set for the

system (1.2).

Proof.

Let {(xn , yn)}∞n=−1 be a solution of the system (1.2) such that (x−i , y−i ) ∈ I , i = 0,1. Then

x1 = x−1

y−1
= b

1−a
and y1 = x−1

ax−1 +by−1
= 1.

This implies that (x1, y1) ∈ I . Similarly, we can show that (x2, y2) ∈ I . Assume that (xt , yt ) ∈ I , −1 ≤ t ≤ n0 −1

for a certain n0 ∈N. Then

xn0 =
xn0−1

yn0−1
= b

1−a
and yn0 =

xn0−1

axn0−1 +byn0−1
= 1.

This implies that (xn0 , yn0 ) ∈ I and the proof is completed.

3. Behaviors of Solutions of the System (1.2)

This section is devoted to study the behaviors of the admissible solutions of the system (1.2). During this

section, assume that a ∈R+− {1} and consider the real-valued functions

f (x) = axα+b, g (x) = axα+b

ax+1α+b
.

For αb < 0, denote l1 = ln(− b
α

)
ln a .

We shall introduce the following two Lemmas to be used in the subsequent results.

Lemma 3.1. For the function f (x), the following statements are true:

1. When αb > 0, then f (x) > 0 ( f (x) < 0) if α> 0 (α< 0).

2. When αb < 0, we have the following:

(a) If α> 0, then we have the following:

i. If 0 < a < 1, then f (x) < 0 for all x > 0 (x > l1) when − b
α ∈]1,∞[ (− b

α ∈]0,1[).

ii. If a > 1, then f (x) > 0 for all x > 0 (x > l1) when − b
α ∈]0,1[ (− b

α ∈]1,∞[).

(b) If α< 0, then we have the following:

i. If 0 < a < 1, then f (x) > 0 for all x > 0 (x > l1) when − b
α ∈]1,∞[ (− b

α ∈]0,1[).

ii. If a > 1, then f (x) < 0 for all x > 0 (x > l1) when − b
α ∈]0,1[ (− b

α ∈]1,∞[).

Proof.
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1. The proof is clear and will be omitted.

2. Assume that αb < 0.

(a) When α> 0, we have the following:

i. If 0 < a < 1, then for− b
α ∈]1,∞[ we have f (x) <α+b < 0 for all x > 0. Otherwise, if− b

α ∈]0,1[,

then

f (x) < f (
ln( −b

α
)

ln a ) = a
ln( −b

α )
ln a α+b = 0 for all x > l1.

ii. If a > 1, then for − b
α ∈]0,1[ we have f (x) > α+b > 0 for all x > 0. Otherwise, if − b

α ∈]1,∞[,

then

f (x) > f (
ln( −b

α
)

ln a ) = a
ln( −b

α )
ln a α+b = 0 for all x > l1.

(b) When α< 0, we have the following:

i. If 0 < a < 1, then for − b
α ∈]1,∞[ we have f (x) > 0 for all x > 0. Otherwise, if − b

α ∈]0,1[, then

f (x) > f (
ln( −b

α
)

ln a ) = a
ln( −b

α )
ln a α+b = 0.

ii. If a > 1, then for − b
α ∈]0,1[ we have f (x) < 0 for all x > 0. Otherwise, if − b

α ∈]1,∞[, then

f (x) < f (
ln( −b

α
)

ln a ) = a
ln( −b

α )
ln a α+b = 0 for all x > l1.

Lemma 3.2. For the function g (x), the following statements are true:

1. When αb > 0, then g (x) > 0 for all x > 0.

2. When αb < 0, we have the following:

(a) If 0 < a < 1, then either g (x) > 0 for all x > 0 when − b
α ∈]1,∞[ or g (x) > 0 for all x > l1 when

− b
α ∈]0,1[.

(b) If a > 1, then either g (x) > 0 for all x > 0 when− b
α ∈]0,1[ or g (x) > 0 for all x > l1 when− b

α ∈]1,∞[.

Proof.

1. The proof is clear and will be omitted.

2. Assume that αb < 0.

(a) When α> 0 and b < 0, we get αa +b <α+b.

If − b
α ∈]1,∞[, then g (x) > α+b

αa+b = g (0) for all x > 0.

Otherwise, there exists l1 = ln( −b
α

)
ln a > 0, g (x) > g (l1) = al

1α+b
al1+1α+b

= 0, for all x > l1.

Now, when α< 0 and b > 0, we get α+b <αa +b.

If − b
α ∈]1,∞[, then g (x) > α+b

αa+b = g (0) for all x > 0.

Otherwise, there exists l1 = ln( −b
α

)
ln a > 0, g (x) > g (l1) = al

1α+b
al1+1α+b

= 0, for all x > l1.

(b) The proof is similar to that of (2a) and is omitted.

Consider the sets:

D+ = {(x, y) ∈R2 :
x

y
> b

1−a
},

D− = {(x, y) ∈R2 :
x

y
< b

1−a
, }

where a ̸= 1, b is a nonzero real number and let (⌈.⌉ denote the ceiling function.
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3.1. Case 0 < a < 1.

Theorem 3.3. Assume for i = 1,2 that either (x−2+i , y−2+i ) ∈ D+ with b > 0 or (x−2+i , y−2+i ) ∈ D− with b < 0

(respectively). Then except (possibly) for the initial conditions, the solution {(xn , yn)}∞n=−1 is located either

in the 1st quadrant or the 2nd quadrant (respectively).

Proof.

When (x−2+i , y−2+i ) ∈ D+, i = 1,2, we get α1 > 0 and α2 > 0.

Using formulas (2.3) and (2.4), we get

sg n(x2m+i ) = sg n(
amαi +b

1−a
) = 1, i = 1,2.

Similarly,

sg n(y2m+i ) = sg n

(
amαi +b

am+1αi +b

)
= 1, i = 1,2.

Then we conclude (using Lemma (3.1) (1) and Lemma (3.2) (1)) that, except (possibly) for the initial condi-

tions, the solution {(xn , yn)}∞n=−1 is located in the 1st quadrant.

When (x−i , y−i ) ∈ D− with b < 0 for i = 1,2, the proof is similar and is omitted.

Theorem 3.4. Assume for i = 1,2 that either (x−2+i , y−2+i ) ∈ D− with b > 0 or (x−2+i , y−2+i ) ∈ D+ with b < 0

(respectively). Then the following statements are true:

1. If − b
α1

,− b
α2

∈]1,∞[, then except (possibly) for the initial conditions, the solution {(xn , yn)}∞n=−1 is lo-

cated either in the 1st quadrant or the 2nd quadrant (respectively).

2. If − b
α1

,− b
α2

∈]0,1[, then there exists a positive integer n0 such that {(xn , yn)}∞n=n0
is located either in the

1st quadrant or the 2nd quadrant (respectively).

Proof.

We shall prove only when (x−2+i , y−2+i ) ∈ D− with b > 0, i = 1,2. For the other case, the proof is similar

and will be omitted.

Assume that (x−2+i , y−2+i ) ∈ D−, i = 1,2. Then αi < 0, i = 1,2.

1. If − b
α1

,− b
α2

∈]1,∞[, then using Lemma (3.1) (2b) and Lemma (3.2) (2a), we get

sg n(x2m+i ) = sg n(
amαi +b

1−a
) = 1, i = 1,2, m = 0,1, ...,

and

sg n(y2m+i ) = sg n

(
amαi +b

am+1αi +b

)
= 1, i = 1,2 m = 0,1, ....

Therefore, except (possibly) for the initial conditions, the solution {(xn , yn)}∞n=−1 is located in the 1st

quadrant.

2. If − b
α1

,− b
α2

∈]0,1[, then using Lemma (3.1) (2b) and Lemma (3.2) (2a), we conclude that there exists a

positive integer ⌈ ln(− b
αi

)

ln a ⌉ such that

sg n(x2m+i ) = sg n(
amαi +b

1−a
) = 1, m ≥ ⌈

ln(− b
αi

)

ln a
⌉, i = 1,2,
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and

sg n(y2m+i ) = sg n

(
amαi +b

am+1αi +b

)
= 1, m ≥ ⌈

ln(− b
αi

)

ln a
⌉, i = 1,2.

Now, we claim that

sg n(xn) = 1, n ≥ n0,

where

n0 = max{2⌈
ln(− b

α1
)

ln a
⌉+1,2⌈

ln(− b
α2

)

ln a
⌉+2}−1.

To prove the claim, let n′
0 := max{2⌈ ln(− b

α1
)

ln a ⌉+1,2⌈ ln(− b
α2

)

ln a ⌉+2}. We have three cases to consider:

• If α1 =α2 :=α, then n′
0 = 2⌈ ln(− b

α
)

ln a ⌉+2.

But

sg n(xn) = 1,n = 2⌈ ln(− b
α )

ln a
⌉+1.

Then

sg n(xn) = 1, n ≥ n′
0 −1 = n0.

• If α1 <α2, then ⌈ ln(− b
α1

)

ln a ⌉ > ⌈ ln(− b
α2

)

ln a ⌉.

It follows that

n′
0 −1 = 2⌈

ln(− b
α1

)

ln a
⌉ ≥ 2⌈

ln(− b
α2

)

ln a
⌉+2.

Therefore,

sg n(xn) = 1, n ≥ n′
0 −1 = n0.

• If α1 >α2, then ⌈ ln(− b
α1

)

ln a ⌉ < ⌈ ln(− b
α2

)

ln a ⌉.

It follows that

n′
0 −1 = 2⌈

ln(− b
α2

)

ln a
⌉+1 ≥ 2⌈

ln(− b
α1

)

ln a
⌉+3.

Therefore,

sg n(xn) = 1, n ≥ n′
0 −1 = n0.

The claim is proved.

Therefore, for n ≥ n0 = max{2⌈ ln(− b
α1

)

ln a ⌉+1,2⌈ ln(− b
α2

)

ln a ⌉+2}−1, (xn , yn) is located in the 1st quadrant.

Theorem 3.5. Assume that (x−1, y−1) ∈ D+ and (x0, y0) ∈ D−. Then the following statements are true:

1. If b > 0, then either the solution {(xn , yn)}∞n=−1 (except (possibly) for the initial conditions) is located

in the 1st quadrant when − b
α2

∈]1,∞[ or there exists a positive integer n2 such that {(xn , yn)}∞n=n2
is

located in the 1st quadrant when − b
α2

∈]0,1[.

2. If b < 0, then either the solution {(xn , yn)}∞n=−1 (except (possibly) for the initial conditions) is located

in the 2nd quadrant when − b
α1

∈]1,∞[ or there exists a positive integer n1 such that {(xn , yn)}∞n=n1
is

located in the 2nd quadrant when − b
α1

∈]0,1[.

Proof.
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1. Assume that b > 0 and let − b
α2

∈]1,∞[. Then α1b > 0 and α2b < 0. Using Lemma (3.1) and Lemma

(3.2), we get

sg n(x2m+i ) = sg n(
amαi +b

1−a
) = 1, i = 1,2, m = 0,1, ...,

and

sg n(y2m+i ) = sg n

(
amαi +b

am+1αi +b

)
= 1, i = 1,2 m = 0,1, ....

Therefore, we have except (possibly) for the initial conditions, the solution {(xn , yn)}∞n=−1 is located in

the 1st quadrant.

Otherwise, if − b
α2

∈]0,1[, then there exists a positive integer m2 := ⌈ ln(− b
α2

)

ln a ⌉ such that

sg n(x2m+2) = sg n(
amα2 +b

1−a
) = 1, m ≥ m2,

and

sg n(y2m+2) = sg n

(
amα2 +b

am+1α2 +b

)
= 1, m ≥ m2.

Then {(xn , yn)}∞n=n2
is located in the 1st quadrant, where n2 = 2m2 +1.

Note that:

sg n(x2m2+1) = 1 and sg n(y2m2+1) = 1.

2. When b < 0, the proof is similar and is omitted.

Note: In Theorem (3.5), we have n1 = ⌈ ln(− b
α1

)

ln a ⌉ and n2 = ⌈ ln(− b
α2

)

ln a ⌉+1.

Theorem 3.6. Assume that (x−1, y−1) ∈ D− and (x0, y0) ∈ D+.

1. If b > 0, then either the solution {(xn , yn)}∞n=−1 (except (possibly) for the initial conditions) is located

in the 1st quadrant when − b
α1

∈]1,∞[ or {(xn , yn)}∞n=n1
is located in the 1st quadrant when − b

α1
∈]0,1[.

2. If b < 0, then either the solution {(xn , yn)}∞n=−1 (except (possibly) for the initial conditions) is located in

the 2nd quadrant when − b
α2

∈]1,∞[ or {(xn , yn)}∞n=n2
is located in the 2nd quadrant when − b

α2
∈]0,1[.

Proof.

The proof is similar to that of Theorem (3.5) and is omitted. Note: In Theorem (3.6), the values of n1

and n2 are:

n1 = 2⌈
ln(− b

α1
)

ln a
⌉ and n2 = ⌈

ln(− b
α2

)

ln a
⌉+1.

To illustrate Theorem (3.3) and Theorem (3.5), we give the following numerical examples:

Example (1) Assume that a = 0.8,b = −0.4 and the initial values are (x−1, y−1) = (3,−1), (x0, y0) = (−7,0.2)

((x−2+i , y−2+i ) ∈ D−, i = 1,2). Then except (possibly) for the initial values, the solution {(xn , yn)}∞n=−1 is

located in the 2nd quadrant.

Here α1 =−0.2, α2 =−6.6.
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The values of the first 30 terms (including the initial values) of the solution are:

(3,−1), (−7,0.2), (−3,1.07143), (−35,1.23239), (−2.8,1.06061), (−28.4,1.22837),

(−2.64,1.05096), (−23.12,1.22354), (−2.512,1.0425), (−18.896,1.21778), (−2.4096,

1.03519), (−15.5168,1.21098), (−2.32768,1.02897), (−12.8134,1.20305), (−2.26214,

1.02373), (−10.6508,1.19395), (−2.20972,1.01935), (−8.9206,1.18366), (−2.16777,

1.01572), (−7.53648,1.17223), (−2.13422,1.01274), (−6.42919,1.1598), (−2.10737,

1.0103), (−5.54335,1.14658), (−2.0859,1.0083), (−4.83468,1.13284),

(−2.06872,1.00669), (−4.26774,1.11891), (−2.05498,1.00538), (−3.81419,

1.10513), (−2.04398,1.00432), (−3.45136,1.09183).

(See figure 1 ).

10 20 30 40

-30

-20

-10

0

Figure 1. xn+1 = xn−1
yn−1

, yn+1 = xn−1
0.8xn−1−0.4yn−1

Example (2) Assume that a = 0.5,b = 2 and the initial values are (x−1, y−1) = (3,0.5), (x0, y0) = (26,−0.2)

((x−1, y−1) ∈ D+, (x0, y0) ∈ D−). Then for n ≥ 13, (xn , yn) is located in the 1st quadrant.

Here n2 = 2⌈ ln(− b
α2

)

ln a ⌉+1 = 13, where
ln(− b

α2
)

ln a = 2
67 ∈]0,1], α2 =−67.

The values of the first 30 terms (including the initial values) of the solution are:

(3,0.5), (26,−0.2), (6,1.2), (−130,2.06349), (5,1.11111), (−63,2.13559),

(4.5,1.05882), (−29.5,2.31373), (4.25,1.0303), (−12.75,2.91429), (4.125,1.01538),

(−4.375,23.3333), (4.0625,1.00775), (−0.1875,−0.0983607), (4.03125,1.00389),

(1.90625,0.645503), (4.01563,1.00195), (2.95312,0.849438), (4.00781,1.00098),

(3.47656,0.92999), (4.00391,1.00049), (3.73828,0.966179), (4.00195,1.00024),

(3.86914,0.983371), (4.00098,1.00012), (3.93457,0.991754), (4.00049,1.00006),

(3.96729,0.995894), (4.00024,1.00003), (3.98364,0.997951).

Clear that xn > 0 and yn > 0, n ≥ 13. (See figure 2).
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Figure 2. xn+1 = xn−1
yn−1

, yn+1 = xn−1
0.5xn−1+2yn−1

3.2. Case a > 1.

Theorem 3.7. Assume for i = 1,2 that (x−2+i , y−2+i ) ∈ D+. Then we have the following:

1. If b > 0, then either the solution {(xn , yn)}∞n=−1 (except (possibly) for the initial conditions) is located in

the 1st quadrant when − b
αi

∈]0,1[, i = 1,2 or there exists a positive integer n0 such that {(xn , yn)}∞n=n0

is located in the 1st quadrant when − b
αi

∈]1,∞[, i = 1,2.

2. If b < 0, then except for the initial conditions, the solution {(xn , yn)}∞n=−1 is located in the 1st quadrant.

Proof.

When (x−2+i , y−2+i ) ∈ D+ for i = 1,2, we get αi < 0 for i = 1,2.

1. If b > 0, thenαi b < 0, i = 1,2. Using Lemma (3.1) and Lemma (3.2), we conclude that except (possibly)

for the initial conditions, the solution {(xn , yn)}∞n=−1 is located in the 1st quadrant when max{− b
α1

,− b
α2

} <
1. When min{− b

α1
,− b

α2
} > 1, there exist two positive integers m1 and m2 such that the subsequences

{(x2m+1, y2m+1)}∞n=m1
and {(x2m+2, y2m+2)}∞n=m2

are located in the 1st quadrant, where m1 = ⌈ ln(− b
α1

)

ln a ⌉
and m2 = ⌈ ln(− b

α2
)

ln a ⌉. Therefore, we conclude that {(xn , yn)}∞n=n0
is located in the 1st quadrant, where

n0 = max{2⌈ ln(− b
α1

)

ln a ⌉+1,2⌈ ln(− b
α2

)

ln a ⌉+2}−1.

2. When b < 0, the proof is a direct consequence of applying Lemma (3.1) (1) and Lemma (3.2) (1).

Theorem 3.8. Assume for i = 1,2 that (x−2+i , y−2+i ) ∈ D−. Then we have the following:

1. If b > 0, then except (possibly) for the initial conditions, the solution {(xn , yn)}∞n=−1 is located in the

2nd quadrant.

2. If b < 0, then either the solution {(xn , yn)}∞n=−1 (except (possibly) for the initial conditions) is located

in the 2nd quadrant when − b
αi

∈]0,1[, i = 1,2 or {(xn , yn)}∞n=n0
is located in the 2nd quadrant when

− b
αi

∈]1,∞[, i = 1,2.

Proof.

The proof is similar to that of Theorem (3.7) and is omitted. To illustrate Theorem (3.8), we give the follow-
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ing numerical example:

Example (3) Assume that a = 1.2,b =−3 and the initial values are (x−1, y−1) = (−2.7,−0.3), (x0, y0) = (12.1,1.1)

((x−2+i , y−2+i ) ∈ D−, i = 1,2). Then for n ≥ 17, (xn , yn) is located in the 2nd quadrant.

Here n0 = max{2⌈ ln(− b
α1

)

ln a ⌉+1,2⌈ ln(− b
α2

)

ln a ⌉+2}−1 = 17, where ⌈ ln(− b
α1

)

ln a ⌉ = 6 and ⌈ ln(− b
α2

)

ln a ⌉ = 8.

The values of the first 30 terms (including the initial values) of the solution are:

(−2.7,−0.3), (12.1,1.1), (9,1.15385), (11,1.07843), (7.8,1.22642), (10.2,1.1039),

(6.36,1.37306), (9.24,1.14243), (4.632,1.81051), (8.088,1.20616), (2.5584,36.5068),

(6.7056,1.3287), (0.07008,−0.0240337), (5.04672,1.65138), (−2.9159,0.448664),

(3.05606,4.5799), (−6.49908,0.601828), (0.667277,−0.303409), (−10.7989,0.676679),

(−2.19927,0.390002), (−15.9587,0.720469), (−5.63912,0.577368), (−22.1504,0.748818),

(−9.76695,0.6635), (−29.5805,0.768393), (−14.7203,0.712352), (−38.4966,0.782516),

(−20.6644,0.743396), (−49.1959,0.793034), (−27.7973,0.76457), (−62.0351,0.801051),

(−36.3567,0.779718).

Clear that xn < 0 and yn > 0, n ≥ 17. (See figure 3).

Theorem 3.9. Assume that (x−1, y−1) ∈ D− and (x0, y0) ∈ D+. Then we have the following:

1. If b > 0, then except for the initial conditions we have, the subsequence {(x2m+1, y2m+1)}∞m=−1 is lo-

cated in the 2nd quadrant and either the subsequence {(x2m+2, y2m+2)}∞m=−1 is located in the 1st quad-

rant when − b
α2

∈]0,1[, or the subsequence {(x2m+2, y2m+2)}∞m=m2
is located in the 1st quadrant when

− b
α2

∈]1,∞[.

2. If b < 0, then except for the initial conditions we have, the subsequence {(x2m+2, y2m+2)}∞m=−1 is lo-

cated in the 1st quadrant and either the subsequence {(x2m+1, y2m+1)}∞m=−1 is located in the 2nd quad-

rant when − b
α1

∈]0,1[, or the subsequence {(x2m+1, y2m+1)}∞m=m1
is located in the 2nd quadrant when

− b
α1

∈]1,∞[.

Proof.

Assume that (x−1, y−1) ∈ D− and (x0, y0) ∈ D+. Then α1 > 0 and α2 < 0.

1. When b > 0, then α1b > 0 and α2b < 0. Using Lemmas (3.1) (1) and (3.2) (1), we conclude that except

(possibly) for the initial conditions we have, the subsequence {(x2m+1, y2m+1)}∞m=−1 is located in the

2nd quadrant.

If − b
α2

∈]0,1[, then using Lemmas (3.1) (2b) and (3.2) (2b), we conclude that except (possibly) for the

initial conditions we have, the subsequence {(x2m+2, y2m+2)}∞m=−1 is located in the 1st quadrant.

Otherwise, if − b
α2

∈]1,∞[, then the subsequence {(x2m+2, y2m+2)}∞m=m2
is located in the 1st quadrant.

2. The proof is similar to (1) and is omitted.

Theorem 3.10. Assume that (x−1, y−1) ∈ D+ and (x0, y0) ∈ D−.
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Figure 3. xn+1 = xn−1
yn−1

, yn+1 = xn−1
1.2xn−1−3yn−1

1. If b > 0, then except (possibly) for the initial conditions we have, the subsequence {(x2m+2, y2m+2)}∞m=−1

is located in the 2nd quadrant and either the subsequence {(x2m+1, y2m+1)}∞m=−1 is located in the 1st

quadrant when − b
α1

∈]0,1[, or the subsequence {(x2m+1, y2m+1)}∞m=m1
is located in the 1st quadrant

when − b
α1

∈]1,∞[.

2. If b < 0, then except (possibly) for the initial conditions we have, the subsequence {(x2m+1, y2m+1)}∞m=−1

is located in the 1st quadrant and either the subsequence {(x2m+2, y2m+2)}∞m=−1 is located in the 2nd

quadrant when − b
α2

∈]0,1[, or the subsequence {(x2m+2, y2m+2)}∞m=m2
is located in the 2nd quadrant

when − b
α2

∈]1,∞[.

Proof.

The proof is similar to that of Theorem (3.9) and is omitted. To illustrate Theorem (3.10), we give the

following numerical example:

Example (4) Assume that a = 1.5,b = 1 and the initial values are (x−1, y−1) = (3.9,−2), (x0, y0) = (−1.5,0.5)

((x−1, y−1) ∈ D+, (x0, y0) ∈ D−). Then the solution {(xn , yn}∞n=−1 has the property that:

Except (possibly) for the initial values, {(x2m+2, y2m+2}∞m=−1 is located in the 2nd quadrant and {(x2m+1, y2m+1}∞m=10

is located in the 1st quadrant.

Here m1 = ⌈ ln(− b
α1

)

ln a ⌉ = 10, where x−1
y−1

=−1.95 and x0
y0

=−3, − b
α1

= 40 ∈]1,∞[

The values of the first 30 terms (including the initial values) of the solution are:
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(3.9,−2), (−1.5,0.5), (−1.95,1.01299), (−3.,0.857143), (−1.925,1.01987), (−3.5,

0.823529), (−1.8875,1.03072), (−4.25,0.790698), (−1.83125,1.0483), (−5.375,

0.761062), (−1.74687,1.07811), (−7.0625,0.736156), (−1.62031,1.13271), (−9.59375,

0.716453), (−1.43047,1.24855), (−13.3906,0.701596), (−1.1457,1.59446), (−19.0859,

0.690796), (−0.718555,9.23212), (−27.6289,0.683151), (−0.077832,−0.0881199),

(−40.4434,0.67784), (0.883252,0.379913), (−59.665,0.6742), (2.32488,0.5181),

(−88.4976,0.671727), (4.48732,0.580433), (−131.746,0.670057), (7.73098,0.613742),

(−196.62,0.668935), (12.5965,0.633157), (−293.929,0.668182).

(See figure 4).

10 20 30 40

-2000

-1500

-1000

-500

0

Figure 4. xn+1 = xn−1
yn−1

, yn+1 = xn−1
1.5xn−1+yn−1

Discussions and Conclusions

In this paper, we studied the admissible solutions of the non-linear discrete system of difference equations

xn+1 = xn−1

yn−1
, yn+1 = xn−1

axn−1 +byn−1
, n = 0,1, . . . ,

where a, b and the initial values x−1, x0, y−1, y0 are non-zero real numbers. We discussed the linearized

and global stability to the steady state ( b
1−a ,1) when a ̸= 1 as well as introducing the forbidden sets. For

a ∈R+−{1}, we showed any admissible solution {(xn , yn)}∞n=−1 is either entirely located in a certain quadrant

of the plane or there exists a natural number N > 0 (we calculated its value) such that {(xn , yn)}∞n=N is located.

We conjecture that the same results can be obtained for the discrete system

xn+1 = xn−k

yn−k
, yn+1 = xn−k

axn−k +byn−k
, n = 0,1, . . . ,



Mehmet Gümüş et al. / IKJM / 6(2) (2024) 13-29 27

where a, b are non-zero real numbers and the initial points (x−i , y−i ), where i = 0,1, ...,k are non-zero real

numbers.
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Mehmet Gümüş et al. / IKJM / 6(2) (2024) 13-29 28

β2xn+γ2 yn

B2xn+C2 yn
, Inter. J. Pure Appl. Math., 53(1) (2009), 21−36.

[11] E. Camouzis, M.R.S. KulenovicÂ´, G. Ladas and O. Merino, Rational systems in the plane, J. Difference

Equ. Appl., 15(3), (2009), 303−323.

[12] E. Camouzis and G. Ladas, Dynamics of Third Order Rational Difference Equations: With Open Prob-

lems and Conjectures, Chapman & Hall/CRC, Boca Raton, 2008.

[13] Q. Din, T.F. Ibrahim and A.Q. Khan, Behavior of a competitive system of second-order difference equa-

tions, Sci. World J., Volume 2014, Article ID 283982, 9 pages.

[14] E.M. Elsayed, Solution for systems of difference equations of rational form of order two, Comput. Appl.

Math., 33(3) (2014), 751−765.

[15] M. Folly-Gbetoula and D. Nyirenda, Lie Symmetry Analysis and Explicit Formulas for Solutions of some

Third-order Difference Equations, Quaest. Math., 42 (2019), 907−917.

[16] M. Folly-Gbetoula and D. Nyirenda, On some sixth-order rational recursive sequences, J. Comput. Anal.

Appl., 27 (2019), 1057−1069.
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[29] M.R.S. Kulenović, Senada Kalabušić and Esmir Pilav, Basins of Attraction of Certain Linear Fractional

Systems of Difference Equations in the Plane, Inter. J. Difference Equ., 9(2) (2014), 207−222.
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Abstract − In this paper, we study the system of third-order difference equations

xn+1 = a + a1

yn
+ a2

yn−1
+ a3

yn−2
, yn+1 = b + b1

xn
+ b2

xn−1
+ b3

xn−2
, n ∈N0,

where the parameters a, ai , b, bi (i = 1,2,3) and the initial values x− j , y− j ( j = 0,1,2) are positive

real numbers. We first prove a general convergence theorem. By applying this convergence theo-

rem to the system, we show that positive equilibrium is a global attractor. We also study the local

asymptotic stability of the equilibrium and show that it is globally asymptotically stable. Finally, we

study the invariant set of solutions.

Subject Classification (2020): 39A10, 39A20, 39A30.

1. Introduction

Difference equations have been studied with great interest for the last thirty years. Determining the quali-

tative behavior of solutions, which is very important in applications, forms the basis of these studies. Dif-

ference equations have become a significant topic in mathematics and other disciplines because they can

be discrete analogs of differential equations or mathematical models of phenomena. For some examples

of discrete analogs of differential equations, see [1]. For some mathematical models, see [8]. In our opin-

ion, this fact is the basis of the intense interest mentioned above. But whatever the reason, some classes

of difference equations are being studied for the development of the theory of difference equations, even

though they are not any mathematical models. The main idea, of course, is to discover new classes of dif-

ference equations and to develop new techniques and methods for determining the qualitative behavior of

solutions of difference equations.

Since many mathematical models are nonlinear, nonlinear difference equations are studied quite frequently.

Rational difference equations, as a subclass of nonlinear difference equations, are also frequently encoun-

tered in the literature. Below, we list some old and new studies that we encounter in the literature on the

rational difference equations that we think are related to our research.
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In [6], DeVault et al. conducted a boundedness study on positive solutions of the second-order difference

equation

xn+1 = A

xp
n

+ B

xq
n−1

, n ∈N0,

where p, q , A, B , and the initial values are positive real numbers.

In [7], DeVault et al. showed that every positive solution of the third-order equation

xn+1 = A

xn
+ 1

xn−2
, n ∈N0,

where A ∈ (0,∞), converges to a two-periodic solution of the equation.

In [28], Philos et al. studied the attractivity of the unique positive equilibrium of the higher-order equation

xn+1 = a +
m∑

k=1

bk

xn−k
, n ∈N0,

where a and bk (k = 1,2, . . . ,m) are nonnegative real parameters with B =
m∑

k=1
bk > 0.

In [9], El-Metwally et al. established a global convergence result and applied it to the higher-order equation

xn+1 =
m∑

i=0

Ai

xn−2i
, n ∈N0,

where Ai (i = 1,2, . . . ,m) are nonnegative and the initial values are positive. They showed that every positive

solution of the equation converges to a two-periodic solution.

In [10], El-Metwally et al. established a global convergence result and applied it to the higher-order equation

xn+1 =
k−1∑
i=0

Ai

xn−i
, n ∈N0,

where Ai (i = 0,1, . . . ,k − 1) are nonnegative with A =
k−1∑
i=1

Ai > 0, and the initial values are positive. They

showed that every positive solution of the equation converges to a p−periodic solution.

The study of two-dimensional systems, which are generally symmetric, of difference equations is a process

initiated by Papaschinopoulos and Schinas in the late nineties. See, e.g. [22–26, 29]. Their work encour-

aged other authors, especially in the area of mathematics, to work on such systems. In the 2000s, studies

on nonlinear rational difference equations and their systems gathered speed, and a rich literature emerged.

Although this speed is not at the initial level, new studies are being published, especially on difference equa-

tion systems.

Fuzzy difference equations, which are a type of difference equation that is by definition particularly related

to symmetric systems, also began to be studied during this process. For example, in [27], Papaschinopoulos

and Papadopoulos considered the fuzzy difference equation

xn+1 = A+ B

xn
, n ∈N0, (1.1)

where A, B , x0 are fuzzy numbers. Due to the nature of fuzzy difference equations, to study the solutions of
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Eq.(1.1), they were interested in the system of classical difference equations

yn+1 =α+ β

zn
, zn+1 = γ+ δ

yn
, n ∈N0,

which is a special case of the system stated in the abstract of this paper.

In [13], in line with [27], Hatir et al. investigated the behavior of the positive solutions of the fuzzy difference

equation

xn+1 = A+ B

xn−1
, n ∈N0, (1.2)

where the parameters A, B , and the initial values x−1, x0 are fuzzy numbers. Naturally, to study the positive

solutions of Eq.(1.1), they discussed the positive solutions of the system of classical difference equations

yn+1 =α+ β

zn−1
, zn+1 = γ+ δ

yn−1
, n ∈N0,

which is another special case of the system in the abstract. For similar studies on fuzzy difference equations,

see references [34, 35]. Apart from these, many systems of difference equations have been studied. For some

examples, see [2, 3, 5, 11, 12, 14–18, 21, 30–33, 36, 37].

In this work, we define the system of difference equations

xn+1 = a + a1

yn
+ a2

yn−1
+ a3

yn−2
, yn+1 = b + b1

xn
+ b2

xn−1
+ b3

xn−2
, n ∈N0, (1.3)

where the parameters a, ai , b, bi (i = 1,2,3) and the initial values x− j , y− j ( j = 0,1,2) are positive real

numbers. We investigate the qualitative behavior of positive solutions of system (1.3). More specifically,

we establish a global convergence result and apply it to (1.3) to study the global stability of the positive

equilibrium.

For the methods followed in our study, the references [4, 19, 20] can be consulted.

2. Main Results

In this section, the main results of the paper are given and proven. This section is divided into two subsec-

tions.

2.1. A result of convergence

The following theorem states a general convergence result and enables us to prove that the unique positive

equilibrium of (1.3) is the global attractor.

Theorem 2.1. Let [α,β] and [γ,δ] be intervals of positive real numbers and assume that h1 : [γ,δ]k+1 → [α,β]

and h2 : [α,β]k+1 → [γ,δ] are continuous functions satisfying the following properties:

(a) Both h1(y1, y2, . . . , yk+1) and h2(x1, x2, . . . , xk+1) are decreasing in all of the arguments.

(b) If (m1, M1,m2, M2) ∈ [α,β]2 × [γ,δ]2 is a solution of the system

m1 = h1 (M2, M2, . . . , M2) , M1 = h1 (m2,m2, . . . ,m2) , (2.1)

m2 = h2 (M1, M1, . . . , M1) , M2 = h2 (m1,m1, . . . ,m1) ,
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then m1 = M1 and m2 = M2. Then the system

xn+1 = h1(yn , yn−1, . . . , yn−k )

yn+1 = h2(xn , xn−1, . . . , xn−k )

}
, n ∈N0, (2.2)

has a unique positive equilibrium (x, y) ∈ [α,β]×[γ,δ] and its every positive solution converges to this equi-

librium.

Proof.

Let

m0
1 :=α, M 0

1 :=β, m0
2 := γ, M 0

2 := δ

and

mi+1
1 : = h1(M i

2, M i
2, . . . , M i

2), M i+1
1 := h1(mi

2,mi
2, . . . ,mi

2),

mi+1
2 : = h2(M i

1, M i
1, . . . , M i

1), M i+1
2 := h2(mi

1,mi
1, . . . ,mi

1).

For each i = 0,1, . . ., we have

α ≤ h1(δ,δ, . . . ,δ) ≤ h1(γ,γ, . . . ,γ) ≤β,

γ ≤ h2(β,β, . . . ,β) ≤ h2(α,α, . . . ,α) ≤ δ

and so,

m0
1 = α≤ h1(M 0

2 , M 0
2 , . . . , M 0

2 ) = m1
1 ≤ h1(m0

2,m0
2, . . . ,m0

2) = M 1
1 ≤β= M 0

1 ,

m0
2 = γ≤ h2(M 0

1 , M 0
1 , . . . , M 0

1 ) = m1
2 ≤ h2(m0

1,m0
1, . . . ,m0

1) = M 1
2 ≤ δ= M 0

2 .

Moreover, we have

m1
1 = h1(M 0

2 , M 0
2 , . . . , M 0

2 )

≤ h1(M 1
2 , M 1

2 , . . . , M 1
2 )

= m2
1

≤ h1(m1
2,m1

2, . . . ,m1
2)

= M 2
1

≤ h1(m0
2,m0

2, . . . ,m0
2)

= M 1
1 ,
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and

m1
2 = h2(M 0

1 , M 0
1 , . . . , M 0

1 )

≤ h2(M 1
1 , M 1

1 , . . . , M 1
1 )

= m2
2

≤ h2(m1
1,m1

1, . . . ,m1
1)

= M 2
2

≤ h2(m0
1,m0

1, . . . ,m0
1)

= M 1
2 .

By induction, one can see for i = 0,1, . . . , that

α = m0
1 ≤ m1

1 ≤ ·· · ≤ mi−1
1 ≤ mi

1 ≤ M i
1 ≤ M i−1

1 ≤ ·· · ≤ M 1
1 ≤ M 0

1 =β,

γ = m0
2 ≤ m1

2 ≤ ·· · ≤ mi−1
2 ≤ mi

2 ≤ M i
2 ≤ M i−1

2 ≤ ·· · ≤ M 1
2 ≤ M 0

2 = δ.

It follows that the sequences (mi
1)i and (mi

2)i (resp. (M i
1)i and (M i

2)i ) are increasing (resp. decreasing) and

also bounded, and therefore they are convergent sequences. Then we can assume that

m1 = lim
i→+∞

mi
1, M1 = lim

i→+∞
M i

1, m2 = lim
i→+∞

mi
2, M2 = lim

i→+∞
M i

2.

Then,

α≤ m1 ≤ M1 ≤β, γ≤ m2 ≤ M2 ≤ δ.

By taking limits in the equalities

mi+1
1 = h1(M i

2, M i
2, . . . , M i

2), M i+1
1 = h1(mi

2,mi
2, . . . ,mi

2),

mi+1
2 = h2(M i

1, M i
1, . . . , M i

1), M i+1
2 = h2(mi

1,mi
1, . . . ,mi

1),

and using that h1 and h2 are continuous, we obtain system (2.1). So, from (b), it follows that m1 = M1 and

m2 = M2. It can be concluded from the hypothesis that

m0
1 =α≤ xn ≤β= M 0

1 , m0
2 = γ≤ yn ≤ δ= M 0

2 , n = 1,2, . . . .

Therefore, we obtain

m1
1 = h1(M 0

2 , M 0
2 , . . . , M 0

2 ) ≤ h1(yn , yn−1, . . . , yn−2) = xn+1 ≤ h1(m0
2,m0

2, . . . ,m0
2) = M 1

1 ,

m1
2 = h2(M 0

1 , M 0
1 , . . . , M 0

1 ) ≤ h2(xn , xn−1, . . . , xn−2) = yn+1 ≤ h2(m0
1,m0

1, . . . ,m0
1) = M 1

2 ,

for n = 2,3, . . ., and

m2
1 = h1(M 1

2 , M 1
2 , . . . , M 1

2 ) ≤ h1(yn , yn−1, . . . , yn−2) = xn+1 ≤ h1(m1
2,m1

2, . . . ,m1
2) = M 2

1 ,

m2
2 = h2(M 1

1 , M 1
1 , . . . , M 1

1 ) ≤ h2(xn , xn−1, . . . , xn−2) = yn+1 ≤ h2(m1
1,m1

1, . . . ,m1
1) = M 2

2 .
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for n = 4,5, . . ., and

m3
1 = h1(M 2

2 , M 2
2 , . . . , M 2

2 ) ≤ h1(yn , yn−1, . . . , yn−2) = xn+1 ≤ h1(m2
2,m2

2, . . . ,m2
2) = M 3

1 ,

m3
2 = h2(M 2

1 , M 2
1 , . . . , M 2

1 ) ≤ h2(xn , xn−1, . . . , xn−2) = yn+1 ≤ h2(m2
1,m2

1, . . . ,m2
1) = M 3

2

for n = 6,7, . . .. Moreover, by induction, it follows for i = 0,1, . . ., that

mi
1 ≤ xn ≤ M i

1, mi
2 ≤ yn ≤ M i

2, n ≥ 2i +1.

It is obvious that i →+∞ implies n →+∞. Also, since m1 = M1 and m2 = M2, we obtain

lim
n→+∞xn = M1, lim

n→+∞ yn = M2.

Moreover, in this case, since system (2.1) reduces to

M1 = h1(M2, M2, . . . , M2), M2 = h2(M1, M1, . . . , M1),

we obtain

M1 = x, M2 = y .

Therefore, the proof is completed.

2.2. Dynamics of system (1.3)

We here begin our study on system (1.3). For the sake of simplicity, let a1 +a2 +a3 =α and b1 +b2 +b3 =β.

The equilibrium points of system (1.3) correspond to the solutions of the system

x = a + α

y
, y = b + β

x
, (2.3)

from which it follows that

x = β−α−ab ±p
∆

2b
,

y = α−β−ab ±p
∆

2a
,

where

∆ = (α−β−ab)2 +4abα

= (β−α−ab)2 +4abβ

> 0.

Hence, system (1.3) possesses the positive equilibrium point

(
x, y

)= (
β−α−ab +p

∆

2b
,
α−β−ab +p

∆

2a

)
.
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Theorem 2.2. The equilibrium
(
x, y

)
of system (1.3) is locally asymptotically stable.

Proof.

Let

f : = a + a1

yn
+ a2

yn−1
+ a3

yn−2
,

f1 : = xn ,

f2 : = xn−1,

g : = b + b1

xn
+ b2

xn−1
+ b3

xn−2
,

g1 : = yn ,

g2 : = yn−1.

Then, we can define a map T : (0,∞)6 −→ (0,∞)6 and the system corresponding to T as follows:

Wn+1 = T (Wn) , (2.4)

where Wn = (
xn , xn−1, xn−2, yn , yn−1, yn−2

)t , (t states the transpose operation)

T



xn

xn−1

xn−2

yn

yn−1

yn−2


=



a + a1
yn

+ a2
yn−1

+ a3
yn−2

xn

xn−1

b + b1
xn

+ b2
xn−1

+ b3
xn−2

yn

yn−1


.

In this case, the equilibrium of (2.4) is E = (
x, x, x, y , y , y

)t . For i = 0,1,2, we obtain

∂ f

∂xn−i
|E = 0,

∂ f

∂yn−i
|E =−ai+1

y2 ,

∂ f1

∂xn
|E = 1,

∂ f1

∂xn−1
|E = ∂ f1

∂xn−2
|E = 0,

∂ f1

∂yn−i
|E = 0,

∂ f2

∂xn
|E = 0,

∂ f2

∂xn−1
|E = 1,

∂ f2

∂xn−2
|E = 0,

∂ f2

∂yn−i
|E = 0,

∂g

∂xn−i
|E = −bi+1

x2 ,
∂g

∂yn−i
|E = 0,

∂g1

∂xn−i
|E = 0,

∂g1

∂yn
|E = 1,

∂g1

∂yn−1
|E = ∂g1

∂yn−2
|E = 0,

∂g1

∂xn−i
|E = 0,

∂g1

∂yn
|E = 0,

∂g1

∂yn−1
|E = 1,

∂g1

∂yn−2
|E = 0.
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By these partial derivatives, one can obtain the Jacobian of the map T evaluated at E as follows:

JT (E) =



0 0 0 − a1

y2 − a2

y2 − a3

y2

1 0 0 0 0 0

0 1 0 0 0 0

−b1

x2 −b2

x2 −b3

x2 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


.

The matrix JF (E) has the characteristic polynomial

P (λ) = λ6 − a1b1λ
4 + (a1b2 +a2b1)λ3 + (a1b3 +a2b2 +a3b1)λ2 + (a2b3 +a3b2)λ+a3b3

x2 y2

= λ6 −
(
a1λ

2 +a2λ+a3
)(

b1λ
2 +b2λ+b3

)
x2 y2 .

We need to ensure that all roots of P are less than 1 in absolute value. For this, let

Φ (λ) =λ6

and

Ψ (λ) =−
(
a1λ

2 +a2λ+a3
)(

b1λ
2 +b2λ+b3

)
x2 y2 .

It is easily seen that every root ofΦ satisfies the condition |λ| < 1. That is, those are all less than 1 in absolute

value. So, if we assume

|Ψ (λ)| ≤ (a1 +a2 +a3) (b1 +b2 +b3)

x2 y2 < 1 = |Φ (λ)| , ∀λ ∈C, |λ| = 1,

then every root of P will satisfy the condition |λ| < 1 according to Rouché’s theorem. After some arrange-

ments, we get the inequality

αβ< x2 y2. (2.5)

From (2.3), we obtain

x y = ab + bα

y
+ aβ

x
+ αβ

x y
⇔ x2 y2 = abx y +bαx +aβy +αβ,

and therefore

x2 y2 −αβ= abx y +bαx +aβy > 0,

which shows that the inequality in (2.5) is always satisfied. This completes the proof.

Theorem 2.3. Every positive solution of (1.3) is bounded.

Proof.

Let
{
(xn , yn)

}∞
n=−2 be a positive solution of (1.3). Then, we obtain from (1.3) that

xn ≥ a > 0, yn ≥ b > 0 (2.6)
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for all n ∈N. That is, xn and yn are bounded from below. Also, it follows from system (1.3) and (2.6) that

xn+1 = a + a1

yn
+ a2

yn−1
+ a3

yn−2
≤ a + α

b
<∞,

yn+1 = b + b1

xn
+ b2

xn−1
+ b3

xn−2
≤ b + β

a
<∞

for all n ∈N. That is, xn and yn are bounded from above. This completes the proof.

Theorem 2.4. The positive equilibrium (x, y) of system (1.3) is globally asymptotically stable.

Proof.

Theoretically, for the equilibrium (x, y) to be globally asymptotically stable, it must be locally asymptoti-

cally stable. See [19]. But we have already proven this in Theorem 2.2. Then, we only need to show that

(x, y) is the global attractor of the positive solutions. That is, we will show that

lim
n→∞xn = x̄ and lim

n→∞yn = y .

To do this, we apply Theorem 2.1 to (1.3). We know from Theorem 2.3 that xn and yn are bounded for all

n ≥ 1. Then, it follows that a ≤ m1 := lim
n→∞ inf xn ≤ lim

n→∞sup xn := M1 ≤ a + α
b and b ≤ m2 := lim

n→∞ inf yn ≤
lim

n→∞sup yn := M2 ≤ b + β
a . It suffices to show that m1 = M1 and m2 = M2.

Consider the system

M1 = a + a1

m2
+ a2

m2
+ a3

m2
, (2.7)

m1 = a + a1

M2
+ a2

M2
+ a3

M2
, (2.8)

M2 = b + b1

m1
+ b2

m1
+ b3

m1
, (2.9)

m2 = b + b1

M1
+ b2

M1
+ b3

M1
. (2.10)

Then, from (2.7) and (2.10), it follows that

bM 2
1 +

(
β−α−ab

)
M1 −aβ = 0, (2.11)

bm2
1 +

(
β−α−ab

)
m1 −aβ = 0, (2.12)

from (2.8) and (2.9), it follows that

aM 2
2 +

(
α−β−ab

)
M2 −bα = 0, (2.13)

am2
2 +

(
α−β−ab

)
m2 −bα = 0. (2.14)

Note that (2.11) and (2.12) are equations that have the same solutions. Also, since

(
β−α−ab

)2 +4abβ> 0, −a

b
β< 0,

(2.11) and (2.12) have simple real roots such that one is positive and another is negative. Therefore, the

positive solutions of them are the same, and so we have M1 = m1. Similarly, (2.13) and (2.14) are equations



Durhasan Turgut Tollu et al. / IKJM / 6(2) (2024) 30-44 39

that have the same solutions, and since

(
α−β−ab

)2 +4abα> 0, −b

a
α< 0,

(2.13) and (2.14) have simple real roots such that one is positive and another is negative. Therefore, the

positive solutions of them are the same, and so we have M2 = m2. Consequently, by Theorem 2.1, (x, y) is a

global attractor and thus globally asymptotically stable.The proof is complete.

According to Theorem 2.3, for all n ∈N, the inequalities a ≤ xn ≤ a + α
b and b ≤ yn ≤ b + β

a exist. That is, the

positive solutions of system (1.3) are bounded. However, depending on the subset that initial conditions are

found, the solutions in question can be always found in this subset. Such subsets are called invariant sets.

In the next theorem, the invariant sets of system (1.3) are examined.

Theorem 2.5. The following statements are true:

(a)
[
a, x

]×[
y ,b + β

a

]
is an invariant set of system (1.3).

(b)
[
x, a + α

b

]× [
b, y

]
is an invariant set of system (1.3).

Proof.

Let the functions

ĥ1
(
x
)= a + α

b + β

x

−x, ĥ2
(
y
)= b + β

a + α
y

− y

be defined, taking into account the system in (2.3). In this case, we can see that

ĥ1 (a) = a + α

b + β
a

−a = α

b + β
a

> 0,

ĥ1

(
a + α

b

)
= a + α

b + β

a+ α
b

−a − α

b

= α

b + bβ
ab+α

− α

b

= α

b

(
1

1+ β
ab+α

−1

)
< 0,

and

ĥ2 (b) = b + β

a + α
b

−b = β

a + α
b

> 0,

ĥ2

(
b + β

a

)
= b + β

a + α

b+ β

a

−b − β

a

= β

a + aα
ab+β

− β

a

= β

a

(
1

1+ α
ab+β

−1

)
< 0.
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Hence, we obtain (
x, y

) ∈ [
a, a + α

b

]
×

[
b,b + β

a

]
.

(a) Assume that
(
x− j , y− j

) ∈ [
a, x

]×[
y ,b + β

a

]
for j = 0,1,2. Then, from system (1.3), we have

a ≤ x1 = a + a1

y0
+ a2

y−1
+ a3

y−2
≤ a + a1

y
+ a2

y
+ a3

y
= x,

b + β

a
≥ y1 = b + b1

x0
+ b2

x−1
+ b3

x−2
≥ b + b1

x
+ b2

x
+ b3

x
= y ,

a ≤ x2 = a + a1

y1
+ a2

y0
+ a3

y−1
≤ a + a1

y
+ a2

y
+ a3

y
= x,

b + β

a
≥ y2 = b + b1

x1
+ b2

x0
+ b3

x−1
≥ b + b1

x
+ b2

x
+ b3

x
= y ,

...

In this case, by induction, one can see that
(
xn , yn

) ∈ [
a, x

]×[
y ,b + β

a

]
for n ≥−2.

(b) Assume that
(
x− j , y− j

) ∈ [
x, a + α

b

]× [
b, y

]
for j = 0,1,2. Then, from system (1.3), we have

a + α

b
≥ x1 = a + a1

y0
+ a2

y−1
+ a3

y−2
≥ a + a1

y
+ a2

y
+ a3

y
= x,

b ≤ y1 = b + b1

x0
+ b2

x−1
+ b3

x−2
≤ b + b1

x
+ b2

x
+ b3

x
= y ,

a + α

b
≥ x2 = a + a1

y1
+ a2

y0
+ a3

y−1
≥ a + a1

y
+ a2

y
+ a3

y
= x,

b ≤ y2 = b + b1

x1
+ b2

x0
+ b3

x−1
≤ b + b1

x
+ b2

x
+ b3

x
= y ,

...

In this case, by induction, one can see that
(
xn , yn

) ∈ [
x, a + α

b

]× [
b, y

]
for n ≥−2.

3. Numerical Simulation

This section aims to verify the theoretical results obtained in Section 2 using some specific values of the

parameters and the initial values x−2 := 5.21, x−1 := 2.55, x0 := 3.75, y−2 := 2.13, y−1 := 4.86, y0 := 5.50. The

solutions will be represented by drawings of numerical values.

Example 3.1. Let a := 2.9, a1 := 1.2, a2 := 1.55, a3 := 4.1, b := 3.1, b1 := 1.1, b2 := 1.40, b3 := 3.9. Then the

solution of system (1.3) becomes as in Figure 1.

Example 3.2. Let a := 2.99, a1 := 5.2, a2 := 2.55, a3 := 0.5, b := 0.01, b1 := 6.1, b2 := 15.4, b3 := 0.3. Then the

solution of system (1.3) becomes as in Figure 2.

Example 3.3. Let a := 0.50, a1 := 1.21, a2 := 6.05, a3 := 14.51, b := 0.80, b1 := 0.17, b2 := 12.42, b3 := 2.35.

Then the solution of system (1.3) becomes as in Figure 3.
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Figure 1. For a := 2.9, a1 := 1.2, a2 := 1.55, a3 := 4.1, b := 3.1, b1 := 1.1, b2 := 1.40, b3 := 3.9, the solution of
system (1.3).

Figure 2. For a := 2.99, a1 := 5.2, a2 := 2.55, a3 := 0.5, b := 0.01, b1 := 6.1, b2 := 15.4, b3 := 0.3, the solution of
system (1.3).

Figure 3. For a := 2.99, a1 := 5.2, a2 := 2.55, a3 := 0.5, b := 0.01, b1 := 6.1, b2 := 15.4, b3 := 0.3, the solution of
system (1.3).
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4. Conclusion

In this study, the local and global stability of the positive equilibrium of the system

xn+1 = a + a1

yn
+ a2

yn−1
+ a3

yn−2
, yn+1 = b + b1

xn
+ b2

xn−1
+ b3

xn−2
, n ∈N0,

where a, ai , b, bi (i = 1,2,3) and x− j , y− j ( j = 0,1,2) are positive and real, was investigated. It was concluded

that for all positive values of all parameters seen in the system, positive solutions converge to the unique

positive equilibrium. Also, it was handled invariant sets to better understand the behavior of the solutions.

Finally, the theoretical results were confirmed numerically and illustrated with visuals.

Although the system is a third-order system, it can be expanded to a higher order and similar research can

be conducted. One option would be to increase the rational terms. In such a case, the system may be

xn+1 = a +
k∑

s=1

as

yn−s+1
, yn+1 = b +

k∑
s=1

bs

xn−s+1
, n ∈N0,

with positive parameters and positive initial values. Note that this system is a generalization of the above

and reduces to it for k = 3.
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Abstract − In this study, the rational system

xn+1 = α1 +β1 yn−1

a1 +b1 yn
, yn+1 = α2 +β2xn−1

a2 +b2xn
, n ∈N0,

where αi , βi , ai , bi , (i = 1,2), and x− j , y− j , ( j = 0,1), are positive real numbers, is defined and its

qualitative behavior is discussed. The system in question is a two-dimensional extension of an old

difference equation in the literature. The results obtained generalize the results in the literature on

the equation in question.

Subject Classification (2020): 39A20, 39A23, 39A30.

1. Introduction

Difference equations have occurred in many scientific areas such as biology, physics, engineering, and eco-

nomics. Particularly, rational difference equations and their systems have great importance in applications.

See [4, 11, 23, 24]. As a natural consequence of this, it is very worthy to examine the qualitative analy-

ses of such equations and their systems. Over the past two decades, many studies have been published

on the qualitative behavior of difference equations and systems. For example, see [1–3, 5, 6, 8–10, 12–

15, 21, 22, 25, 29, 30, 32, 34, 36, 38, 40–42, 44] and therein references. Below, we present a prototype, among

others, that caught our attention, along with its two extensions. Gibbons et al. [16] analyzed the bound-

edness, the oscillatory and periodicity, and the global stability of the nonnegative solutions of the rational

difference equation

xn+1 = α+βxn−1

γ+xn
, n ∈N0, (1.1)

where the parameters α, β and γ are nonnegative and real. Din et al. [8] investigated the boundedness, the

local and global stability, the periodicity, and the rate of convergence of positive solutions of the system of

difference equations

xn+1 = α1 +β1xn−1

a1 +b1 yn
, yn+1 = α2 +β2 yn−1

a2 +b2xn
, n ∈N0, (1.2)
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where αi , βi , ai , bi , (i = 1,2), and x− j , y− j , ( j = 0,1), are positive real numbers. Din [10] investigated the

boundedness, the local and global stability behavior, the periodicity, and the rate of convergence of positive

solutions of the system of rational difference equations

xn+1 = α1 +β1 yn−1

a1 +b1xn
, yn+1 = α2 +β2xn−1

a2 +b2 yn
, n ∈N0, (1.3)

where αi , βi , ai , bi , (i = 1,2), and x− j , y− j , ( j = 0,1), are positive real numbers.

Studies on the qualitative behavior of the difference equations and systems still continue actively. For recent

studies, see, for example [7, 17–20, 26–28, 32, 33, 35, 37, 39, 43] and therein references.

The systems in (1.2) and (1.3) are two-dimensional symmetric extensions of (1.1). Apart from these, there is

another two-dimensional symmetric extension of (1.1). In this paper, we define the aforementioned exten-

sion of (1.1). That is, we define the rational system

xn+1 = α1 +β1 yn−1

a1 +b1 yn
, yn+1 = α2 +β2xn−1

a2 +b2xn
, (1.4)

where αi , βi , ai , bi , (i = 1,2) are positive real parameters, and x− j , y− j , ( j = 0,1) are positive real initial

conditions, and discuss qualitative behavior of its solutions. More concretely, we investigate existence of a

unique positive equilibrium, local and global stability of the equilibrium, rate of convergence of a solution

converging to the equilibrium, existence of unbounded solutions and the periodicity of solutions.

2. Preliminaries

Assume that I , J are some intervals of real numbers and

f1 : I 2 × J 2 → I , f2 : I 2 × J 2 → J

are continuously differentiable functions. Then, for every set of initial conditions x−1, x0 ∈ I and y−1, y0 ∈ J ,

the system of difference equations

xn+1 = f1
(
xn , xn−1, yn , yn−1

)
, yn+1 = f2

(
xn , xn−1, yn , yn−1

)
, n ∈N0, (2.1)

has a unique solution denoted by
{
(xn , yn)

}∞
n=−1. An equilibrium point of system (2.1) is a point

(
x, y

) ∈ I × J

that satisfies

x = f1
(
x, x, y , y

)
, y = f2

(
x, x, y , y

)
.

For stability analysis, we use some key results of the multivariable calculus. Hence we transform system

(2.1) into the vector system

Xn+1 = F (Xn) , n ∈N0, (2.2)

where Xn = (
xn , yn , xn−1, yn−1

)T , F is a vector map such that F : I 2 × J 2 → I 2 × J 2 and

F


xn

yn

xn−1

yn−1

=


f1

(
xn , yn , xn−1, yn−1

)
f2

(
xn , yn , xn−1, yn−1

)
xn

yn

 .



Durhasan Turgut Tollu et al. / IKJM / 6(2) (2024) 45-62 47

It is obvious that if an equilibrium point of system (2.1) is
(
x, y

)
, then the corresponding equilibrium point

of system (2.2) is the point X = (
x, y , x, y

)T .

By ∥·∥, we denote any convenient vector norm and the corresponding matrix norm. Also, X0 ∈ I×J×I×J is an

initial condition of the vector system (2.2) corresponding to the initial conditions x−1, x0 ∈ I and y−1, y0 ∈ J

of system (2.1).

Definition 2.1. [23] Let X be an equilibrium of system (2.2). Then,

i) The equilibrium X is called stable if for any ϵ > 0 there exists δ > 0 such that
∥∥∥X0 −X

∥∥∥ < δ implies∥∥∥Xn −X
∥∥∥< ϵ, for all n ≥ 0. Otherwise, the equilibrium point X is called unstable.

ii) The equilibrium X is called locally asymptotically stable if it is stable and there exists γ> 0 such that∥∥∥X0 −X
∥∥∥< γ and Xn → X as n →∞.

iii) The equilibrium X is called a global attractor if Xn → X as n →∞.

iv) The equilibrium X is called globally asymptotically stable if it is both locally asymptotically stable and

global attractor.

The linearized system of (2.2) about the equilibrium X is of the form

Zn+1 = JF Zn , n ∈N0, (2.3)

where JF is the Jacobian of the map F at the equilibrium X . The characteristic polynomial of (2.3) at the

equilibrium X is

P (λ) = a0λ
4 +a1λ

3 +a2λ
2 +a3λ+a4, (2.4)

with real coefficients and a0 > 0.

Theorem 2.2. [23] Let X be any equilibrium of (2.2). If all eigenvalues of JF at X lie in the open unit disk

|λ| < 1, then the equilibrium point X is local asymptotically stable. If one of the eigenvalues has a modulus

greater than one, then the equilibrium point X is unstable.

The next results deal with the rate of convergence for a solution converging to an equilibrium of a system of

difference equations. See [11, 31] for more details.

Consider the system of difference equations

Xn+1 = (A+Bn) Xn , n ∈N0, (2.5)

where Xn is an m−dimensional vector, A ∈ C m×m is a constant matrix, and B : Z+ → C m×m is a matrix

function satisfying

∥Bn∥→ 0 (2.6)

as n →∞.

Theorem 2.3 (Perron’s First Theorem). Suppose that condition (2.6) holds. If Xn is a solution of (2.5), then

either Xn = 0 for all large n or

ρ = lim
n→∞

∥Xn+1∥
∥Xn∥

(2.7)
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exists and is equal to the modulus of one of the eigenvalues of matrix A.

Theorem 2.4 (Perron’s Second Theorem). Suppose that condition (2.6) holds. If Xn is a solution of (2.5),

then either Xn = 0 for all large n or

ρ = lim
n→∞ (∥Xn∥)1/n (2.8)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

The following lemma is the second part of Lemma 3.1 in [30].

Lemma 2.5. Let f : R+×R+ → R+, g : R+×R+ → R+ be continuous functions and a1, b1, a2, b2 be positive

numbers such that a1 < b1, a2 < b2. Suppose that

f : [a2,b2]× [a2,b2] → [a1,b1], g : [a1,b1]× [a1,b1] → [a2,b2].

In addition, assume that f (u, v) is a decreasing (resp. increasing) function with respect to u (resp. v) for

every v (resp. u) and g (z, w) is a decreasing (resp. increasing) function with respect to z (resp. w) for every

w (resp. z). Finally suppose that if the real numbers m, M , r , R satisfy the system

M = f (r,R), m = f (R,r ), R = g (m, M), r = g (M ,m)

then m = M and r = R. Then the system of difference equations

xn+1 = f (yn , yn−1), yn+1 = g (xn , xn−1), n ∈N0, (2.9)

has a unique positive equilibrium (x, y) and every positive solution
{
(xn , yn)

}∞
n=−1 of the system (2.9) which

satisfies

xn0 ∈ [a1,b1], xn0+1 ∈ [a1,b1], yn0 ∈ [a2,b2], yn0+1 ∈ [a2,b2], n0 ∈N

tends to the unique positive equilibrium of (2.9).

3. Main results

In this section, we express and prove our main results on the system of difference equations (1.4).

3.1. Boundedness and persistence of the system

In this subsection, the boundedness and the persistence of (1.4) are investigated. The following theorem

states the result obtained.

Theorem 3.1. If β1β2 < a1a2, then every solution of the system of difference equations (1.4) is bounded and

persist.

Proof.

From (1.4), we have the following system of difference inequalities

xn+1 ≤ α1

a1
+ β1

a1
yn−1, yn+1 ≤ α2

a2
+ β2

a2
xn−1, n ∈N0. (3.1)
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We pay regard to the system of nonhomogeneous linear difference equations

un+1 = α1

a1
+ β1

a1
vn−1, vn+1 = α2

a2
+ β2

a2
un−1, n ∈N0, (3.2)

with u−1 = x−1, u0 = x0, v−1 = y−1 and v0 = y0. System (3.2) yields the following independent equatios

un+1 = α1

a1
+ β1

a1

α2

a2
+ β1

a1

β2

a2
un−3, n ≥ 2, (3.3)

and

vn+1 = α2

a2
+ β2

a2

α1

a1
+ β1

a1

β2

a2
vn−3, n ≥ 2. (3.4)

The general solutions of (3.3) and (3.4) are given by

un = α1a2 +α2β1

a1a2 −β1β2
+ c1

(
4

√
β1

a1

β2

a2

)n

+c2

(
− 4

√
β1

a1

β2

a2

)n

+ c3

(
−i 4

√
β1

a1

β2

a2

)n

+ c4

(
i 4

√
β1

a1

β2

a2

)n

(3.5)

and

vn = α2a1 +α1β2

a1a2 −β1β2
+ c5

(
4

√
β1

a1

β2

a2

)n

+c6

(
− 4

√
β1

a1

β2

a2

)n

+ c7

(
−i 4

√
β1

a1

β2

a2

)n

+ c8

(
i 4

√
β1

a1

β2

a2

)n

, (3.6)

where cs , (s = 1,2, ...,8), are arbitrary constants and i is the imaginary unit. From (3.5) and (3.6), it follows

that if β1β2 < a1a2, then there exist the limits

lim
n→∞un = α1a2 +α2β1

a1a2 −β1β2
(3.7)

and

lim
n→∞vn = α2a1 +α1β2

a1a2 −β1β2
, (3.8)

and so the sequences {un} and {vn} are bounded. Also, since u−1 = x−1, u0 = x0, v−1 = y−1 and v0 = y0, by

comparison method, we find xn ≤ un and yn ≤ vn , and so

xn ≤ α1a2 +α2β1

a1a2 −β1β2
=U1 (3.9)

and

yn ≤ α2a1 +α1β2

a1a2 −β1β2
=U2. (3.10)

Therefore, the sequences {xn} and {yn} are also bounded. On the other hand, from (1.4), (3.9) and (3.10), it

follows that

xn+1 ≥ α1

a1 +b1 yn
≥ α1

a1 +b1
a1α2+α1β2

a1a2−β1β2

= α1
(
a1a2 −β1β2

)
a1(a1a2 −β1β2)+b1

(
a1α2 +α1β2

) = L1 (3.11)
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and

yn+1 ≥ α2

a2 +b2xn
≥ a2

a2 +b2
α1a2+β1α2

a1a2−β1β2

= α2
(
a1a2 −β1β2

)
a2

(
a1a2 −β1β2

)+b2
(
α1a2 +β1α2

) = L2. (3.12)

Consequently, from (3.9), (3.10), (3.11) and (3.12), for n ≥ 1, we have

L1 ≤ xn ≤U1, L2 ≤ yn ≤U2 (3.13)

which means that {xn} and {yn} are bounded and persist. The proof is completed.

Theorem 3.2. If β1β2 < a1a2, then the set [L1,U1]× [L2,U2] is invariant set of (1.4).

Proof.

Let
{
(xn , yn)

}∞
n=−1 be an arbitrary positive solution of (1.4). If β1β2 < a1a2, then the bounds L1, U1, L2 and

U2 exist. Also, let x−1, x0 ∈ [L1,U1] and y−1, y0 ∈ [L2,U2]. Then, from (1.4), we have

x1 = α1 +β1 y−1

a1 +b1 y0
≤ α1 +β1U2

a1
=U1, y1 = α2 +β2x−1

a2 +b2x0
≤ α2 +β2U1

a2
=U2,

x2 = α1 +β1 y0

a1 +b1 y1
≤ α1 +β1U2

a1
=U1, y2 = α2 +β2x0

a2 +b2x1
≤ α2 +β2U1

a2
=U2,

x3 = α1 +β1 y1

a1 +b1 y2
≤ α1 +β1U2

a1
=U1, y3 = α2 +β2x1

a2 +b2x2
≤ α2 +β2U1

a2
=U2,

...

and

x1 = α1 +β1 y−1

a1 +b1 y0
≥ α1

a1 +b1U2
= L1, y1 = α2 +β2x−1

a2 +b2x0
≥ α2

a2 +b2U1
= L2,

x2 = α1 +β1 y0

a1 +b1 y1
≥ α1

a1 +b1U2
= L1, y2 = α2 +β2x0

a2 +b2x1
≥ α2

a2 +b2U1
= L2,

x3 = α1 +β1 y1

a1 +b1 y2
≥ α1

a1 +b1U2
= L1, y3 = α2 +β2x1

a2 +b2x2
≥ α2

a2 +b2U1
= L2,

...

Considering inductively, it can be easily shown that xn ∈ [L1,U1] and yn ∈ [L2,U2] for n ≥−1. So the proof is

completed.

3.2. Stability analysis

In this subsection, the existence of the unique positive equilibrium of (1.4) and local asymptotic stability

and global asymptotic stability of the equilibrium are investigated.

Lemma 3.3. System (1.4) possesses a unique positive equilibrium point. If β1β2 < a1a2, then the equilib-

rium point is in the set [L1,U1]× [L2,U2].

Proof.
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For the equilibrium points of (1.4) we consider the system

x = α1 +β1 y

a1 +b1 y
, y = α2 +β2x

a2 +b2x
. (3.14)

From (3.14) we have the independent quadratic equations

D1x2 + (C1 −B1)x − A1 = 0, D2 y2 + (C2 −B2)y − A2 = 0, (3.15)

where

A1 = α1a2 +β1α2,

B1 = α1b2 +β1β2,

C1 = a1a2 +b1α2,

D1 = a1b2 +b1β2,

A2 = a1α2 +α1β2,

B2 = α2b1 +β1β2,

C2 = a1a2 +b2α1,

D2 = a2b1 +b2β1.

Hence, from (3.15), we have

∆x = (C1 −B1)2 +4A1D1 > 0, ∆y = (C2 −B2)2 +4A2D2 > 0

which implies that they have two real simple roots. Also, since −A1/D1 < 0 and −A2/D2 < 0, both equations

in (3.15) have one negative and one positive root. Therefore there exists the unique positive equilibrium

point of (1.4).

Consider the inequalities

x ≤ α1 +β1 y

a1
, y ≤ α2 +β2x

a2
,

which is obtained from (3.14). Using these two inequalities within each other we get the following inequal-

ities

x ≤ α1

a1
+ β1

a1
y ≤ α1

a1
+ β1

a1

α2

a2
+ β1

a1

β2

a2
x,

y ≤ α2

a2
+ β2

a2
x ≤ α2

a2
+ β2

a2

α1

a1
+ β2

a2

β1

a1
y .

If β1β2 < a1a2, from the last inequalities, it follows that

x ≤ α1a2 +α2β1

a1a2 −β1β2
=U1, y ≤ α2a1 +α1β2

a1a2 −β1β2
=U2.
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Moreover, from (3.14) and the inequalities x ≤U1, y ≤U2, we obtain the inequalities

x ≥ α1

a1 +b1 y
≥ α1

a1 +b1U2
= L1, y ≥ α2

a2 +b2x
≥ α2

a2 +b2U1
= L2.

Thus, for the aforementioned equilibrium point, we have
(
x, y

) ∈ [L1,U1]× [L2,U2]. So the proof is com-

pleted.

Theorem 3.4. If β1β2 < a1a2, then the unique positive equilibrium of system (1.4) is locally asymptotically

stable.

Proof.

We know from Lemma 3.3 that (1.4) has the unique positive equilibrium
(
x, y

)
. In this case, the vector

system corresponding to (1.4) also has the equilibrium point X = (
x, y , x, y

)T . The aforementioned vector

system is given by the vector map

F


xn

yn

xn−1

yn−1

=


α1+β1 yn−1

a1+b1 yn
α2+β2xn−1

a2+b2xn

xn

yn


The linearized system of the vector system about X = (

x, y , x, y
)T is the system

Zn+1 = JF (X )Zn , (3.16)

where the vector Zn is

Zn =


zn

zn−1

zn−2

zn−3


and JF at X is

JF (X ) =


0 − b1x

a1+b1 y 0 β1

a1+b1 y

− b2 y
a2+b2x 0 β2

a2+b2x 0

1 0 0 0

0 1 0 0

 . (3.17)

The characteristic polynomial of (3.16) at X is

P (λ) =λ4 − b1b2x y(
a2 +b2x

)(
a1 +b1 y

)λ2 + b1β2x +β1b2 y(
a2 +b2x

)(
a1 +b1 y

)λ− β1β2(
a2 +b2x

)(
a1 +b1 y

)
or

P (λ) =λ4 −
(
β1 −b1xλ

)(
β2 −b2 yλ

)(
a1 +b1 y

)(
a2 +b2x

) . (3.18)

Let us consider the polynomial equation P (λ) = 0. Obviously, since β1β2 ̸= 0, λ ̸= 0. In this case, it can be

seen from (3.18) that there are two cases to consider.
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(i) If β1 < b1xλ and β2 < b2 yλ, then we have

λ4 =
(
β1 −b1xλ

)(
β2 −b2 yλ

)(
a1 +b1 y

)(
a2 +b2x

) < b1xλb2 yλ(
a1 +b1 y

)(
a2 +b2x

) < b1xλb2 yλ

b1 yb2x
=λ2

from which it follows that |λ| < 1.

(ii) If β1 > b1xλ and β2 > b2 yλ, then we have

λ4 =
(
β1 −b1xλ

)(
β2 −b2 yλ

)(
a1 +b1 y

)(
a2 +b2x

) < β1β2(
a1 +b1 y

)(
a2 +b2x

) < β1β2

a1a2
.

Hence if β1β2 < a1a2, then we obtain that |λ| < 1. Therefore the proof is completed.

Theorem 3.5. If β1β2 < a1a2, then the unique positive equilibrium point of (1.4) is a global attractor.

Proof.

We will use Lemma 2.5 to prove the theorem. Let
{
(xn , yn)

}∞
n=−1 be any solution of system (1.4). We know

that if the inequality β1β2 < a1a2 is satisfied, then
{
(xn , yn)

}∞
n=−1 is bounded and persist. Suppose that

f (u, v) = α1 +β1v

a1 +b1u
, g

(
x, y

)= α2 +β2 y

a2 +b2x
.

Then we have

fu (u, v) =−
(
α1 +β1v

)
b1

(a1 +ub1)2 < 0, fv (u, v) = β1

a1 +ub1
> 0

for (u, v) ∈ (L2,U2)× (L2,U2) and

gx
(
x, y

)=−
(
α2 +β2 y

)
b2

(a2 +xb2)2 < 0, g y
(
x, y

)= β2

a2 +xb2
> 0

for
(
x, y

) ∈ (L1,U1)× (L1,U1). Therefore, the function f (u, v) is decreasing with respect to u for every v ∈
(L2,U2) and it is increasing with respect to v for every u ∈ (L2,U2), and also the function g (x, y) is decreasing

with respect to x for every y ∈ (L1,U1) and it is increasing with respect to y for every x ∈ (L1,U1).

Let

limsup
n→∞

xn = M1, liminf
n→∞ xn = m1, limsup

n→∞
yn = M2, liminf

n→∞ yn = m2.

In this case we can define the system

M1 = α1 +β1M2

a1 +b1m2
, m1 = α1 +β1m2

a1 +b1M2
, M2 = α2 +β2M1

a2 +b2m1
, m2 = α2 +β2m1

a2 +b2M1
. (3.19)

From (3.19), we have

a1M1 +b1M1m2 =α1 +β1M2, a1m1 +b1m1M2 =α1 +β1m2, (3.20)

a2M2 +b2M2m1 =α2 +β2M1, a2m2 +b2m2M1 =α2 +β2m1. (3.21)
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Furthermore, from (3.20) and (3.21), we have

a1 (M1 −m1)+b1 (M1m2 −m1M2) =β1 (M2 −m2) (3.22)

and

a2 (M2 −m2)+b2 (m1M2 −M1m2) =β2 (M1 −m1) , (3.23)

respectively. If M1 = m1, then it is seen from (3.22) that m2 = M2. On the other hand, if m2 = M2, then it

is seen from (3.23) that M1 = m1. Therefore, we will just show that M2 = m2. After some operations, the

equalities (3.22) and (3.23) yield the equality(
a1

b1
− β2

b2

)
(M1 −m1)+

(
a2

b2
− β1

b1

)
(M2 −m2) = 0. (3.24)

We rewrite (3.24) as

M1 −m1 =
a2
b2

− β1

b1

a1
b1

− β2

b2

(m2 −M2) . (3.25)

If β1β2 < a1a2, then (3.2) becomes

M1 −m1 = a2

β2
(M2 −m2) .

Using this result in (3.23), we obtain

m1M2 −M1m2 = 0.

Using the last two results in (3.22), we obtain

(
a1a2 −β1β2

)
(M2 −m2) = 0

which implies that M2 = m2. So the proof is completed. In order to verify the theoretical result we obtained

in Theorem 3.5, a special case obtained by giving some values to the parameters and initial conditions of

system (1.4) is given in the example below.

Example 3.6. If α1 = 1, β1 = 13.1, a1 = 7, b1 = 3, α2 = 12, β2 = 3.5, a2 = 8.2, b2 = 1, then (1.4) becomes

xn+1 = 1+12.1yn−1

7+3yn
, yn+1 = 12+3.5xn−1

6+xn
. (3.26)

The unique positive equilibrium of (3.26) is (2.364109242,1.919175757). Plot of the corresponding solution

to x−1 = 5.4, x0 = 9.5, y−1 = 7 and y0 = 1.7 is given by Figure 1 and Figure 2.

According to the item iv) of Definition 2.1, we give the next result from Theorem 3.4 and Theorem 3.5.

Theorem 3.7. If β1β2 < a1a2, then the unique positive equilibrium point of (1.4) is globally asymptotically

stable.

3.3. Rate of convergence of solutions

In this subsection, the rate of convergence of a solution converging to the unique positive equilibrium of

(1.4) is studied.



Durhasan Turgut Tollu et al. / IKJM / 6(2) (2024) 45-62 55

Figure 1. Plot of (xn) converging to x Figure 2. Plot of (yn) converging to y

Let
{
(xn , yn)

}∞
n=−1 be any solution of (1.4) such that

lim
n→∞xn = x and lim

n→∞ yn = y , (3.27)

where x ∈ [L1,U1] and y ∈ [L2,U2]. From (1.4), we have

xn+1 −x = α1 +β1 yn−1

a1 +b1 yn
− α1 +β1 y

a1 +b1 y

= −b1
(
α1 +β1 y

)
(a1 +b1 yn)

(
a1 +b1 y

) (
yn − y

)+ β1
(
a1 +b1 y

)
(a1 +b1 yn)

(
a1 +b1 y

) (
yn−1 − y

)
or after some operations and by using (3.14)

xn+1 −x = −b1x(
a1 +b1 yn

) (
yn − y

)+ β1(
a1 +b1 yn

) (
yn−1 − y

)
. (3.28)

Similarly, from (1.4), we have

yn+1 − y = α2+β2xn−1

a2 +b2xn
− α2 +β2x

a2 +b2x

= −b2(α2 +β2x)

(a2 +b2xn)
(
a2 +b2x

) (
xn −x

)+ β2
(
a2 +b2x

)
(a2 +b2xn)

(
a2 +b2x

) (
xn−1 −x

)
and so, by (3.14),

yn+1 − y = −b2 y

(a2 +b2xn)

(
xn −x

)+ β2

(a2 +b2xn)

(
xn−1 −x

)
. (3.29)

If the error terms e1
n = xn −−

x, e2
n = yn − −

y , then we can write the system of the error terms as follows

e1
n+1 = ane2

n +bne2
n−1,

e2
n+1 = cne1

n +dne1
n−1,
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where

an = −b1x

a1 +b1 yn
, bn = β1

a1 +b1 yn
, cn = −b2 y

a2 +b2xn
, dn = β2

a2 +b2xn
. (3.30)

From (3.30), we obtain the limits

lim
n→∞an = −b1x

a1 +b1 y
, (3.31)

lim
n→∞bn = β1

a1 +b1 y
, (3.32)

lim
n→∞cn = −b2 y

a2 +b2x
, (3.33)

lim
n→∞dn = β2

a2 +b2x
. (3.34)

Consequently, from (3.31)-(3.34), we have the following system


e1

n+1

e2
n+1

e1
n

e2
n

=



0
−b1x

a1 +b1 y
0

β1

a1 +b1 y
−b2 y

a2 +b2x
0

β2

a2 +b2x
0

1 0 0 0

0 1 0 0




e1

n

e2
n

e1
n−1

e2
n−1

 , (3.35)

which resembles the linearized system of (1.4) about the equilibrium X . In this case, one can obtain from

Theorem 2.3 and Theorem 2.4 the following results.

Theorem 3.8. Let
{
(xn , yn)

}∞
n=−1 be any positive solution of (1.4) satisfying (3.27). Then, the error vector(

e1
n ,e2

n ,e1
n−1,e2

n−1

)T
of the solution

{
(xn , yn)

}∞
n=−1 of (1.4) satisfies the asymptotic relations

lim
n→∞ (||en ||)

1
n = ∣∣λ1,2,3,4 JF

(
x, y

)∣∣
and

lim
n→∞

||en+1||
||en ||

= ∣∣λ1,2,3,4 JF
(
x, y

)∣∣ ,

where the values λ1,2,3,4 are the eigenvalues of the Jacobian JF (x, y) .

3.4. Existence of unbounded solutions

In this subsection, the existence of unbounded solutions of (1.4) is proven.

Theorem 3.9. If β1β2 > a1a2, then every positive solution of (1.4) is unbounded.

Proof.

From (1.4) we have the system of difference inequalities

xn+1 = α1 +β1 yn−1

a1 +b1 yn
≥ α1 +β1 yn−1

a1 +b1U2
, (3.36)
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and

yn+1 = α2 +β2xn−1

a2 +b2xn
≥ α2 +β2xn−1

a2 +b2U1
, (3.37)

where U1 and U2 are given by (3.9) and (3.10), respectively. Now we can consider the system of nonhomo-

geneous linear equations

wn+1 = c2 +d2zn−1, zn+1 = c1 +d1wn−1, n ∈N0, (3.38)

where

c1 = α1

a1 +b1U2
, d1 = β1

a1 +b1U2
, c2 = α2

a2 +b2U1
, d2 = β2

a2 +b2U1

and w−1 = x−1, w0 = x0, z−1 = y−1, z0 = y0. The general solution of (3.38) is given by the formulas

wn = c2 + c1d2

1−d1d2
+k1

(
4
√

d1d2

)n +k2

(
−

√
d1d2

)n +k3

(
−i 4

√
d1d2

)n +k4

(
i 4
√

d1d2

)n
(3.39)

and

zn = c1 + c2d1

1−d1d2
+k5

(
4
√

d1d2

)n +k6

(
−

√
d1d2

)n +k7

(
−i 4

√
d1d2

)n +k8

(
i 4
√

d1d2

)n
, (3.40)

where ks , (s = 1,2, ...,8) are arbitrary constants and i is the imaginary unit. It is easy to see from (3.39) and

(3.40) that if d1d2 > 1, that is,

β1β2 > (a1 +b1U2) (a2 +b2U1) > a1a2

then the sequences (wn) and (zn) are unbounded. Therefore, since w−1 = x−1, w0 = x0, z−1 = y−1 and

z0 = y0, by comparison method, we have the inequalities xn ≥ wn , yn ≥ zn . Hence the sequences {xn} and

{yn} are unbounded. The proof is completed.

Example 3.10. If α1 = 1, β1 = 12.1, a1 = 3.6, b1 = 3, α2 = 12, β2 = 3.5, a2 = 6, b2 = 1, then (1.4) becomes

xn+1 = 1+12.1yn−1

3.6+3yn
, yn+1 = 12+3.5xn−1

6+xn
. (3.41)

The unique positive equilibrium of (3.41) is (2.808100791,2.478213327) and unstable. Plot of the corre-

sponding solution to x−1 = 5.4, x0 = 9.5, y−1 = 7 and y0 = 1.7 is given by Figure 3 and Figure 4.

3.5. Period two solutions

In this subsection, the existence of two-periodic solutions of (1.4) is investigated. The next result states the

existence of such solutions.

Theorem 3.11. If a1a2 =β1β2, then the system of difference equations (1.4) has two-periodic solutions.

Proof.

Let a two-periodic solution of (1.4) be

..., (p1, q1), (p2, q2), (p1, q1), (p2, q2), ..., (3.42)
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Figure 3. Plot of unbounded (xn) Figure 4. Plot of unbounded (yn)

where p1, p2, q1, q2 are positive real numbers such that p1 ̸= p2 ve q1 ̸= q2. Then, from (1.4) and (3.42), we

have the system

p1 = α1 +β1q1

a1 +b1q2
, p2 = α1 +β1q2

a1 +b1q1
, q1 = α2 +β2p1

a2 +b2p2
, q2 = α2 +β2p2

a2 +b2p1
,

from which it follows that

a1p1 +b1p1q2 =α1 +β1q1, a1p2 +b1p2q1 =α1 +β1q2 (3.43)

and

a2q1 +b2q1p2 =α2 +β2p1, a2q2 +b2q2p1 =α2 +β2p2. (3.44)

After some basic operations, from (3.43) and (3.44), we get the equalities

a1
(
p1 −p2

)+b1
(
p1q2 −p2q1

)=β1
(
q1 −q2

)
and

a2
(
q1 −q2

)+b2
(
q1p2 −q2p1

)=β2
(
p1 −p2

)
.

The last equalities yield

(a1b2 −b1β2)(p1 −p2)+ (a2b1 −b2β1)(q1 −q2) = 0. (3.45)

It is obvious from (3.45) and the assumptions p1 ̸= p2 and q1 ̸= q2 that if

a1b2 −b1β2 = 0 and a2b1 −b2β1 = 0, (3.46)

then system (1.4) has two-periodic solutions. Note that (3.46) is equivalent to the desired equality a1a2 =
β1β2. So the proof is completed.
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Example 3.12. If α1 = 3, β1 = 6, a1 = 12, b1 = 9, α2 = 2, β2 = 4, a2 = 2, b2 = 3, then system (1.4) becomes

xn+1 = 3+6yn−1

12+9yn
, yn+1 = 2+4xn−1

2+3xn
. (3.47)

The unique positive equilibrium point of (3.47) is (0.4413911092,1.132782218) and it is unstable. Also, the

solution converges a two-periodic solution of the system. Plot of the corresponding solution with x−1 = 3,

x0 = 2, y−1 = 1.3 and y0 = 7 is given by Figure 5 and Figure 6.

Figure 5. (xn) converging to a two-periodic so-
lution

Figure 6. (yn) converging to a two-periodic so-
lution

4. Conclusion

In this study, the qualitative behavior of the positive solutions of (1.4) was investigated. The results obtained

are summarized below.

1. If β1β2 < a1a2, then the solutions of the system are bounded and persist. In addition, the unique

positive equilibrium of the system is globally asymptotically stable.

2. If β1β2 = a1a2, then the system has two-periodic solutions.

3. If β1β2 > a1a2, then the system has unbounded solutions.

Availability of data and materials Not applicable.
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[32] A. F. Şahinkaya, İ. Yalçınkaya and D. T. Tollu, A solvable system of nonlinear difference equations, Ikonion

Journal of Mathematics, 2(1) (2020), 10-20.

[33] T. H. Thai and V. V. Khuong, Stability analysis of a system of second-order difference equations, Mathe-

matical Methods in the Applied Sciences, 39(13) (2016), 3691-3700.

[34] D. T. Tollu, Y. Yazlik and N. Taskara, On global behavior of a system of nonlinear difference equations of

order two, Advanced Studies in Contemporary Mathematics, 27(3) (2017), 373-383.

[35] D. T. Tollu and I. Yalcinkaya, Global behavior of a three-dimensional system of difference equations of or-

der three, Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statis-



Durhasan Turgut Tollu et al. / IKJM / 6(2) (2024) 45-62 62

tics, 68(1) (2019), 1-16.
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