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Keywords Abstract — In the present paper, the solutions of the following system of difference equations
Di .
ifference  equations ~ 81 Vn—21n_4 ~ Sotin_2Un4
Up=Q1Up2+———————, Ip=aUp2+ ———, NEN),
systems, Prupn-a+y1vn-6 B2vn-a+y2un-g

Fibonacci number, L —
where the initial values u_;, v_j, for I = 1,6 and the parameters ap, Bp, Yp, Op, for p € {1,2} are

Solution, . . -, . .

non-zero real numbers, are investigated. In addition, the solutions of the aforementioned system
Periodicity, of difference equations are presented by utilizing the Fibonacci sequence when the parameters are
Explicit Solutions

equal to 1. Finally, the periodic solutions according to some special cases of the parameters are
obtained.

Subject Classification (2020): 39A10, 39A20, 39A23.

1. Introduction and Preliminaries

Difference equations are one of the important topics of applied mathematics. Therefore, some mathemati-
cians have studied in this field [1-20]. Some difference equations occur as the recurrence relation of a num-

ber sequence. For example, Fibonacci sequence {F,}’ is identified by
Fn+1=Fn+Fn—1, neN, (1.1)

with the initial conditions Fy = 0 and F; =1 in [21]. Binet’s formula for equation (1.1) is

A" — B"
Fp=——7— neNy, 1.2
n A_B 0 ( )

1+2\/g’ B = 1%@ Equation (1.2) is a solution of equation (1.1) and the general term Fibonacci

where A =
sequence. In addition, there are some types of nonlinear difference equations for which their general solu-

tions can be found. One of them is Riccati difference equation, which is in the following form:

€z, +0

—, neNp, (1.3)
(zp+n

2n+l =
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for { #0, en—{0 # 0, where the parameters ¢, 0, {,n and the initial condition zy are real numbers. The general
solution of equation (1.3) can be written as follows

- 20 (00 —€n) sp-1+ (€20 +0) sp
" ((z0—€) Sp+ Sp+1

, neN, (1.4)
where the sequence (s) e, 18 satisfying
sn+1—(€+m) s, — (00 —€n)sp-1=0, neN,

where sp =0, s; = 1, in [22].

The following higher-order difference equation,

O Xpn—kXn—(k+1
Xn=0Xp_j+ n-kZn-(k+h , ne€Np, (1.5)

BXp—(k+1) +YXn—1

where k and [ are fixed natural numbers, the initial conditions x_;, j = 1,k + [ and the parameters a, S, ¥,
0 are real numbers, was solved by the authors in [23]. In addition, the case k = 2, [ = 4 in equation (1.5),
it was obtained the exact solutions and investigated equilibria, local stability and global attractivity in [24].
Similarly, the authors of [25] studied the behavior of the solutions of the difference equation which was

obtained by taking k =1, [ = 3 in equation (1.5).

There are some difference equations that are similar in shape to the difference equation in (1.5). But, they
are not particular cases of equation (1.5). For example, in [26], the authors explored the qualitative behavior

of the solutions of the following difference equations:

+*Byn-1¥Yn-3
=Ay, 1+ ——————— neNp, 1.6
Yn+1 Yn-1 Cyn3tDyna 0 (1.6)
where the initial conditions y_g, for k = 0,5, are arbitrary positive real numbers and the parameters A, B, C

and D are positive real numbers.

Similarly, the authors studied the behaviour of the rational difference equation

Bynyn-3

——neNp, 1.7
AYn-4+Byn-3

Yns1=Qynt+
where the initial conditions y_g, for k = 0,4, are positive real numbers and the parameters a, 8, A and B are

real numbers, in [27].

In addition, in [28], Almatrafi and Alzubaidi studied the local and global stability, periodicity and solutions
of the following rational difference equations
buy_i1u,-
Uns1 = Qliy 1+ —2 e, (1.8)
Cup-s—dUn—g
where the parameters a,b,c and d are positive real numbers and the initial values u_y, for k = 0,6, are non-

zero real numbers.
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Moreover, the authors of [29] studied the behavior of the difference equation

bxyxn-1

Xp+l = aXy + , neNp, (1.9)

CXp1+dxu_o
where the initial conditions x_g, for k = 0,2 are arbitrary positive real numbers and the parameters a,b,c
and d are positive constants. In [30], Elsayed and Al-Rakhami investigated some of the qualitative behavior
of the rational difference equation

ﬁ\yn—ijn—s

v =a¥, o+ ——————, neNp, 1.10
n+l n-2 TR LT 0 ( )

where the parameters a, 8, Y and 0 are arbitrary positive real numbers.

Further, in [31] Elsayed studied the qualitative behavior of the solutions of the difference equation

bx?
Xpt1=aXp+ ————, neENp, (1.11)

CxXp+dxn_1

where a,b,c and d, are positive real numbers and the initial conditions x_; and xq are positive real numbers.
There are some difference equations as equations in (1.6)-(1.11) in literature (see [32-35]).
In [36], the authors generalized the equation (1.5) to the following two-dimensional system

AYn—kXn—(k+1) OXn—kYn-(k+D)

yVn=QXp_k+ ,n €N, (1.12)
bxy_(k+1) + Cyn-i " " BYn-k+D +YXn-1

Xpn=aYn-k+

where k and [ are positive integers, the initial conditions x_;, y_;, i = 1, k + [ and the parameters a, b, c, d,

a, B, v, 6 are real numbers. They showed that system (1.12) can be solved in closed form.

Anatural question is if equation (1.6) generalizes to a two-dimensional system of difference equations. Here,
we give a positive answer. We expand equation (1.6) to the following two-dimensional system of difference

equations
O01Vn—2Un—4 OoUp-2Vpn-4
,Un=QxUp—2 + ,I’ZEN(), (1.13)
Brun-4+Y1Vn-6 BaVn-4+Y2un-s

Up=aq1Vp-2+

where the initial values u_;, v_;, for [ = 1,6, are positive real numbers and the parameters aj, ,, yp and

& p, for p € {1,2}, are positive real numbers.
Our aim to show that system (1.13) is solvable in explicit form. Also, we investigate the periodicity of the

solutions depending on special cases of the parameters. Additionally, we gain the solutions for the case

a;=ay=p1=P2=y1=72=01 =062 =1 byusing Fibonacci sequence.

We give the following very well-known definition which used in this paper.
Definition 1.1. [37] (Periodicity) A sequence (xn)‘:lo:_ K is said to be eventually periodic with period p if there
exists ng = —k such that x,, = x,, for all n = ny. If ng = —k then the sequence (xn)"’f:_k is said to be periodic

with period p.
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2. Explicit Solutions of System (1.13)

The system (1.13) can be written in the following form

u, (afr+o1) i +ayr oy, (a2fe+82) i +azye N
= R = , n € Np.
Vn-2 Bri=t+11 Un-2 Boi=t + 2
By employing the change of variables
u v
Xn=—"=, Yn=——, nz-4 2.1)
Up-2 Up-2
system (1.13) is transformed into the following system
X, = (11 +61) Xp—a + @171 = (a2B2+62) yn-a+ azYz’ neNo. 2.2)
P1Xp-a+1 B2yn-a+72
We consider the following equation
af+0)zp_s+a
B o) LT R G, 2.3)
Bzn-a+y
instead of equations in (2.2). If we apply decomposition of indices n — 4 (m +1) + i,
i=-4,-1, m= -1, in equation (2.3), then it can be written the following equation
o (aB+06)z) + ay )
Zm+1 = ) (2.4)
Bzm +v
where zﬁ,"l) =Zym+i, 1=-4,—-1, meNy,
From equation (1.4), the general solutions of the equations in (2.4) as follows
o =0yz st + ((aﬁ +8) 2 + a)/) Sm
z0 = o . meN, (2.5)
(,BZO’ —af- 5) Sm+ Sm+1
for i = —4, -1, where sequence of (s;) e, is satisfying
Sm+1— (AB+8+7Y) Sm+8ySm-1=0, meN. (2.6)
From equation (2.5), the solutions of equations in (2.2) are expressed as
—-01Y1XiSm-1+ ((a1B1+01) xi + s
iy = 1Y1%iSm-1+ ((@1 1 +61) xi + a1y1) m me N, 2.7

(ﬁlxi —-a1p1 —51) Sm+ Sm+1

) iSm—-1+ ((a +00)y;i+a s
Vamei = 2Y2YiSm—1+ ((@2B2+62) yi + azy2) m e, 2.8

(B2yi — az2f2—62) Sm+ Sm+1

fori=-4.-1.

From (2.1) , we have

Up = XpUp-2 = XpYn-2Un-4, Vn = YnlUpn-2 = YnXp-2VUn-4, N=-2. 2.9)



Omer Aktag et al. / IKIM / 6(2) (2024) 1-12

From system (2.9), we obtain

Ugm+j = Xam+jYam+j—2Uam-1+j, M ENp,

Vam+j = Yam+jXam+j-2Vam-1+j, M ENp,

for j=-2,1.

From system (2.10), we get

m
Usme+j = Uj—s | | Xap+jYap+j-2, mENy,
p=0

m
Vam+j = Vj-4 H Yap+jXap+j-2, MENp,
p=0

for j=-2,1.
By putting formulas (2.7) and (2.8) back into system (2.11), we gain

o= e ﬁ (—61)/1 U_pSp-1+ ((@1f1+61) u—2+ ary1v-4) sp)
p=0 (Bru—z— (a1 f1+61) v_a) Sp + V-4aSp41
§ (—62)/2 v_aSp-1+ ((a2B2+82) v_s+ a2y2u_g) sp)
(Bov-s—(a2f2+82) u_g) sp + U-6Sp+1 ’
b= b l’_"[ (—62y2 v_2Sp—1+ ((@2B2+82) v_z + a2y2u_4) sp)
(Bav—z— (a2B2+82) u_s) Sp+ U_4Sp41
§ (—517/1 U_gSp—1+ ((@1f1+61) u—s+ary1v-g) sp)
(Bru—s— (@11 +61) v-6) sp+ V-65p+1 ’

a1 = s ﬁ (—517’1 u_15p-1+ ((@1f1+61) uy +“1Y1V—3)Sp)
(Bru—1— (a1 f1+61) v_3) sp+ V_3Sp41
. (—62)/2 v_3Sp-1+ ((a2B2+82) v_3 + a2y2u_5) sp)
(Bov—s — (a2f2+82) u_s) sp + U-55p+1 '
b = l’_"[ (—62y2 v_1Sp—1+ ((@2B2 +82) v_1 + azy2u_3) sp)
(Bav—1— (a2B2+82) u_3) sp+u_35p+1
y (—517/1 u-3sp—1+ ((@1f1+61) u—s+aryiv-s) Sp)
(Bru—s — (@11 +61) v=5) Sp + V_5Sp+1 ’

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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Y = U ﬁ —01y1U-aSp + (@11 +61) —g + @1Y1V_6) Sps1
e (Bru—s—(@1B1+61) V=6) Sp+1+ V=6Sp+2

p=0
. (—62y2 v_oSp-1+ ((a2f2+062) v_p + a2y2u_4) sp) 216
(Bov—2— (@22 +82) t—4) Sp + U_4Sp+1 ’ '
I l’_"[ (—62)/2 v_4Sp + ((@2B2+02) v_s + a2y2u_g) Sp+1 )
p=0 (Bov-s— (a2B2+82) u_g) Sp+1 + U-6Sp+2
y (—517’1 U_pSp-1+ ((1f1+61) u—2 + a1y1v-4) Sp) 2.17)
(Bru—z—(a1B1+61) v-a) Sp+ V_4Sps1 , '
o =t lnj[ (_5”,1 u_3sp+((a1f1+61) u-3+ary1v_s) sp+1)
p=0 (Bru—s—(a1f1+61) v_s) Sp+1tV_58p12
§ (—627/2 v_1Sp-1+ ((a2f2+62) v_1 + azy2u-3) sp) 218
(Bov—1 — (a2B2+82) u_3) sp+u_3sp41 ’ '
Vi = Vs 1’—”[ (—527’2 v_3Sp + (@22 +82) v_3 + azy2u_s) Sp+1)
p=o\  (B2v-z—(a2f2+082)u_s5)Sps1+ U 5542
y (—51Y1M—1Sp—1 +((apr+61)u_r +ary: V—s)sp) 2.19)
(ﬁlu—l - (alﬁl +51) l/—3) Sp+V-_3Sp+1 , '
for m e Ny.
3. Periodicity

We obtain the periodicity of the solutions of the system (1.13) depending on the parameters are equal either

1 or —1 in this section.

Theorem 3.1. Suppose that ay, p, vp, 5p, for p € {1,2} and the initial values u_;, v_;, for [ = 1,6 are non-

zero real numbers. Then, the following statements hold.

a) Ifaj=1La,=1,61=1,862=1,7v1=-1,y2=-1, 8, = -1, §; = —1, the solutions of the system (1.13)

are periodic with period 12.

b) Ifa;=1,a,=1,61=-1,62=-1,y1=1,72=1,61 =1, §; =1, the solutions of the system (1.13) are
periodic with period 12.

o fay=-1,a2=-1,61=1,62=1,7v1=1,72=1,8; =1, §; = 1, the solutions of the system (1.13) are
periodic with period 12.

d far=-1,a=-1,1=-1,6=-1,y1=-1,y, =-1,8; = -1, §; = —1, the solutions of the system
(1.13) are periodic with period 12.

Proof.

a) Ifar=1a,=1,6=10=179=-1,79=-1, 6, = -1, 61 = -1, system (1.13) turns into the
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following system
Un—2Un-4 Up—2VUn—4

Up=Upp————— Up=Up2——————, NEN).

Upn—4—VUn-6 Un—4— Up-6
From (2.7) and (2.8), we have

—XiSm-1—"Sm

Xam+i =~
XiSm t Sm+1

_ " YViSm-1—Sm

Yam+i=———————>
YViSmt Sm+1

where meNgand i = —4,-1.
From (2.6), we obtain

Sm+1+Sm+Sm-1=0,

where sp =0 and s; = 1.
From this, we get
S3t+b = b)

forteNgand b=-1,1.

From (2.1), we have

U2m+j =X12m+jY12m+j-2X12m+j-4Y12m+j—6
XX12m+j-8Y12m+j-10 U12(m—-1)+j,
Vigm+j =Y12m+jX12m+j-2Y12m+j—-4X12m+j-6

XY12m+j-8X12m+j-10V12(m-1)+j,

where m e Ny and j =6,17.

From system (3.5), we obtain

m
U2m+j = Uj-12 H X12p+jY12p+j-2X12p+j-4)Y12p+j-6
p=0

XX12p+j-8Y12p+j-10)
m
Vigm+j=Vj-12 H Yi2p+jX12p+j-2Yi2p+j-4X12p+j-6
p=0

XY12p+j-8X12p+j-10,

where m e Ny and j =6,17.
By using (3.2), (3.3) and (3.4) into (3.6) and (3.7), we get

Uigm+j = Uj-12, Vizm+j = Vj-12,

where meNpand j =6,17.

(3.1

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7

b) Ifa;=1,a2=1,61=-1,6=-1,71=1,72=1,61 =1, §; =1, system (1.13) turns into the system

(3.1). Then, it can be proven like (a).

o Ifar=-1,a,=-1,61=1,62=1,y1=1,72=1,0; =1, 6; =1, system (1.13) turns into the following
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system
Un—2Up-4 Up-—2VUn—4
——, Up=—Up2+———, neNj. (3.8)

un = _Vn—z + j]
Up-4+Vn-s Un-4t Un-6

From (2.7) and (2.8), we obtain

—XiSm-1—"Sm

Xgmyi = ———, (3.9)
XiSm + Sm+1
—¥YiSm-1—3S

Vi = —om=179m (3.10)
YiSmt Sm+1

where meNgand i = —4,-1.
We obtain, from (2.6),

Sm+1—Sm+Sm-1=0,

where sp =0 and s; = 1.
From this, we get

0, if3r + g €1{0,3},
S6t+3r+qg =4 1, if3r+qef{1,2}, (3.11)
-1, if3r+gef4,5},

for te Ng, r €{0,1} andq:(),_Z.

From (2.1), we have

Uizm+j =X12m+jY12m+j-2X12m+j-4Y12m+j-6
XX12m+j-8Y12m+j—-10 U12(m—1)+j>»
Vizm+j =Y12m+jX12m+j-2Y12m+j-4X12m+j—6

XY12m+j-8X12m+j-10V12(m-1)+j> (3.12)

where m e Ny and j =6,17.

From system (3.12), we obtain

m
Ui2m+j =Uj-12 H X12p+jY12p+j-2X12p+j-4Y12p+j—6
p=0
XX12p+j-8Y12p+j-10, (3.13)
m
Vigm+j =Vj-12 H Yizp+jXi2p+j-2Y12p+j-4X12p+j-6
p=0

XY12p+j-8X12p+j—10) (3.14)

where m € Ny and j =6,17.
By using (3.9)-(3.11) into (3.13) and (3.14), we get

Um+j = Uj-12, Vizm+j = Vj-12,

where meNpand j=6,17.

d fay=-1,a=-1,=-1,62=-1,y1=-1,y2=-1,01 = -1, 8, = -1, system (1.13) turns into the
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system (3.8). Then, it can be proven like (c).

4. An Application

We obtain the solutions of the system (1.13) with a; = a2 = 1 = B2 =1 =72 = 61 = 62 = 1. In this case, we

have the following system

Up-—2Upn—4 Up-—2Vp—4
Uy = vn_2+%, vy = un_2+#, n € Np. 4.1)
Un-4+VUn—t Up—4+ Un-6
From (2.6), we obtain
Sm+1—3Sm+Sm-1=0, meN, (4.2)

where sp =0, s =1.

Binet Formula for (4.2) is

2
= , € Np. 4.
ey
2 2
Note that
2
17V5|" 375 @
2 2 ‘
Using (4.4) in (4.3), we have
(1+\/§)2m_ (1_\/5 2m
2 2
Sy = =F , meNp. (4.5)
2 2
Using (4.5) into (2.12)-(2.19), we get
y y ﬁ (U—2Fops1+ V-aFop) (V_sFops1 + u_gFop) 4.6)
4m—-2 =U-g , .
" p=0 (v_aFop-1+ u_2Fsp) (u-6F2p-1+ V-4F2p)
) ) ﬁ (v_2Fop+1 + u—aFop) (u-aFops1 + v_6F2p) “7)
4m—-2 =V—6 , )
" p=0 (U-4F2p 1+ V_2Fsp) (v_6F2p-1+ U_4Fop)
y y ﬁ (u—1Fops1 + v_3Fsp) (v-3F2p41 + U_5F2)) 4.8)
4m—1 =U-5 , .
" p=0 (v_3Fop-1+ u_1Fap) (u-5F2p-1+ v_3F2))
) ) 1’—”[ (vo1Fops1 + u—3Fop) (U—3Fops1 + V_5F2p) 4.9)
4m—-1=V-5 , )
" p=0 (u_ngp_l + U_lep) (U_5F2p_1 + u_ngp)
5 u 1’—”[ (t-4Fopi3+ v_6Faps2) (V-2Fops1 + U_4F2p) (4.10)
4m =U—4 , )
" p=0 (V-6Fops1+ U_4Fopi2) (U_sFop 1+ V_2Fop)
R l'—”[ (v_aFops+3+ u_cFopi2) (U—2Fops1 + V_4F2p) @11)
m —V— b .
p=0 (U—6F2p+1+ V-4F2ps2) (V-4Fop_1+ u_oFop)



Omer Aktag et al. / IKIM / 6(2) (2024) 1-12 10

et =t ﬁ (u=3F2p+3+ V_5Fops2) (Vo1 Fops1 + u—BFZp)y (4.12)
p=0 (V-5Fops1+ U _3F2p.2) (u3Fop 1+ v_1F2p)

Vaml = V-3 1’—”[ (v_3Fopss + u—sFapi2) (U1 Fops1 + V—3F2p)’ 4.13)
p=0 (t-5F2p11+ V_3F2p12) (V-3F2p-1+ u_1Fap)

for m € Ny.
5. Conclusion

In this paper, we have obtained the solutions of two-dimensional system of difference equations in explicit
form by using convenient transformation. In addition, we have investigated the periodic solutions of afore-
mentioned system of difference equations when the parameters are equal to 1 or equal to —1. Finally, an
application was given to show that the solutions of the mentioned system are related to Fibanacci numbers

when all parameters are equal to 1.
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1. Introduction

In case of interruption of events developing over time, mathematical models are established with difference
equations using discrete variables. In this way, difference equations have an important place in research
on real-life problems, especially in fields such as economics, medicine, chemistry and biology. In addition
to its importance in practice, difference equations are also used in theoretical research, that is, to obtain
solutions of differential equations, delayed differential equations, and fractional differential equations. It is
very difficult most of the time to obtain solutions to rational difference equations. Additionally, there is no
general technique to obtain or qualitatively investigate solutions. For this reason, the study of non-linear
difference equations of order greater than one is truly remarkable and every qualified study in this field is
valuable.

Difference equations have a very old history. However, its research has progressed rapidly, especially in the
last thirty years. Research in this field can be carried out under three headings: quantitative, qualitative
and numerical. Quantitative research is carried out by determining the analytical solutions of the equation,
qualitative research is carried out by examining the behavior of the solutions of the equation, and numeri-

cal research is carried out by determining the approximate values of the solution of the equation by various
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methods.

Therefore, this paper can be viewed as both a qualitative and quantitative investigation of a system of dif-
ference equations. Now let’s give a detailed background of the system we discuss in this article:

In [29], the authors studied the global dynamics of the system

Brxn _ Boxn+y2yn

= » — n:(),l,...,
A1+ yn Vil Xn+Yn

where the parameters 3, Aj, B1, B2 are positive numbers and the initial conditions x and y, are arbitrary
nonnegative numbers such that xo + yp > 0.
Camouzis et al. [10], studied the global behavior of the system of difference equations

a1 +Y1Yn _ BaXn+7Y2Yn

Xn+1 = y Yn+1 =

, n=0,1,..., (1.1)

with nonnegative parameters and positive initial conditions. They studied the boundedness character of
the system (1.1) in its special cases.
In [9], Camouzis et al. conjectured that:

Every positive solution of the system

Xn+1 = &, Yn+1= Yeyn

—, n=0,1,...,
Xn A2+ngn+yn

with nonnegative parameters and positive initial conditions, converges to a finite limit.

Bekker et al. [8] confirmed that conjecture.

In [28], Kudlak et al. studied the existence of unbounded solutions of the system of difference equations
Xn

Xp+1=—) Yn+1=Xn+¥YnYn, n=0,1,...,
n

where 0 <y, <1 and the initial values are positive real numbers.
There is an increasing interest in the applications of difference and systems of difference equations in vari-
ous fields. Even if a difference equation appears very plain and simple, its solutions can exhibit very complex
behavior. In this paper, we study the global behavior of the admissible solutions of the system of difference
equations

Xn-1 Xn—-1

Xn+1 = y Ynel=m——————,
Yn-1 axp—1+byn

n=0,1,..., (1.2)

where a, b, and the initial values x_, xo, y-1, o are nonzero real numbers.

We shall study here, the behavior of the solutions of system (1.2) using their closed form. Other relevant
qualitative and quantitative theories of difference equations can be obtained in references ([1]-[7], [12],
[15], [16], [22], [26], [30], [32]-[34] and the references therein). For more on discrete systems of difference
equations that are solved in closed form in references (see [11], [13], [14], [17]-[21], [23]-[25], [31], [35]-[38]).

2. Linearized Stability and Solution of the System (1.2)

In this section, we investigate the local asymptotic behavior of the equilibrium point of the system (1.2) and
derive its solution.

It is clear that the system (1.2) has no equilibrium points when a = 1 and it has a unique equilibrium point
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(%, 1) when a # 1. To study the linearized stability of the unique equilibrium point of the system (1.2), we

consider the transformation

Xn-1
xn ynfl
Xn—-1 Xn
F = .
n-1
.Vn uxrz—l"'b)’n—l
Yn-1 Yn

The linearized system associated with the system (1.2) about an equilibrium point (X, y) is

Zn1=Jr(X,)Zy, n=0,1,...,

where -
Xn 0 % 0 —)_/i

Xn-1 o 1 0 O 0
Zn = " and ]F(x;J/) = bJ—/S bJ—,Z

Yn-1 0o 0 1 0

For more results on the stability of difference equations, see [27].

Theorem 2.1. Assume that a # 1. Then the equilibrium point (%, 1) of the system (1.2) is

1. locally asymptotically stable if |a| < 1,

2. unstable (saddle point) if |a| > 1.

Proof.
b

The Jacobian matrix about the equilibrium point ( =D becomes

b
l1-a
0
-1-a
0

(2.1)

(1-a?

o O = O
o
_ o o O

It is enough to see that the eigenvalues of the matrix (2.1) are 0,0, v/|al, —v/|al, and the result follows.

Now, returning to the system (1.2), we can write
Ups1=alUu_1+b, n=01,.., (2.2)

where

Xn . X-1 X0
Up,=—, withu_1=— and yp = —.
Yn V-1 Yo

Solving (2.2), we obtain the following:

1. If a#1, then

azatb =13,
23)

L]
a2 ar+b
?az ,I’l:2,4,..



Mehmet Giimiis et al. / IKIM / 6(2) (2024) 13-29 16

and
nT_l +b
% ,n:1,3,...,
Yn=4 @ ar+h (2.4)
azas+b n=24,..,
a2 ax+b

where a; = %(l—a)—b, i=1,2.

2. Ifa=1, then
+b(%L) n=1,3,..,
X, = B1+b(552) -
B2+b(5-1) ,n=2,4,..,
and 1
Br1+b(%5) _
_ ] pi+b"h =13
Yn= n? (2.6)
Ba+b(3-D) o4
ﬁz+—b(g) yn==2,4,...,

L= X245
where §; Yo L 1,2.

The forbidden set for the system (1.2) depends on the value of a. For the system (1.2) we have the following:

» If a # 1, then the forbidden set of the system (1.2) is

F=UJ{xyeRr :y:—7x}.
m=0
e If a=1, then the forbidden set of the system (1.2) is
= JVER  y=——x}.
P mL:JI{(x ) y bmx}

From now on, we assume that all solutions are admissible, that is for any solution {(xy, yn)}9>_, of the sys-
tem (1.2), the initial points (x_;, y_;)) ¢ Fyifa#1or (x_;,y-;)) ¢ F,ifa=1,i=0,1.

Theorem 2.2. Assume that |a| < 1. Then the equilibrium point (%, 1) of the system (1.2) is globally asymp-
totically stable.

Proof.
Using formulas (2.3) and (2.4), we have

b
(Xn, Yn) — (E’ 1), as n — oo. 2.7

That is, the equilibrium point (%, 1) of the system (1.2) is a global attractor.
Using Theorem (2.1)(1), the proof follows.

We give the following result without proof as a consequence of the solution form of the system (1.2).

Theorem 2.3. Assume that a # 1. The following statements are true:

1. If a > 1, then the solution {(xy, y»)}9._, is unbounded, namely:

1
{(X2n+1, Y2ns1)}5e_ — (o0 sgn(ay), E)’ as n — oo,
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and

1
{(X2n+2, Yons2)5e_g — (00 sgn(ay), E)’ as n — oo.

2. If a =1, then the solution {(x,, y»)}52 _, is unbounded, namely:

{2, YIS — (00. sgn(b),1) as n — oo.

Theorem 2.4. Assume that a # 1. Then the set I = {(x,y) € R?: (a— 1)x + by = 0} is an invariant set for the
system (1.2).

Proof.
Let {(x,, yn)}‘,’lo:_1 be a solution of the system (1.2) such that (x_;, y_;) € I, i =0,1. Then
X_1 b X1

= —= d :—:1.
1 y-1 l—aan n ax_1+by_;

This implies that (x;, y1) € I. Similarly, we can show that (xy, y») € I. Assume that (x;,y;) €I, -1<t<ny-1

for a certain ng € N. Then

b d
Xpy=——=——and yp,= ————
" Yn-1 l-a " axp,—1 + bYny-1

This implies that (x,, y»,) € I and the proof is completed.

3. Behaviors of Solutions of the System (1.2)

This section is devoted to study the behaviors of the admissible solutions of the system (1.2). During this
section, assume that a € R, — {1} and consider the real-valued functions

a*a+b
f(.X') = axa+b, g(X) = m

1n(—§)
Ina °
We shall introduce the following two Lemmas to be used in the subsequent results.

For ab <0, denote [; =

Lemma 3.1. For the function f(x), the following statements are true:

1. When ab > 0, then f(x) >0 (f(x) <0) ifa>0 (a <0).
2. When ab < 0, we have the following:

(@) If a > 0, then we have the following:
i. If0<a<1,then f(x) <0forall x>0 (x> [;) when —g €]1,00[ (—g €]0,1D.
ii. Ifa>1, then f(x) >0 forall x>0 (x> [;) when —g €]0,1][ (—g €]1,00]).

(b) If a <0, then we have the following:

i. If0<a<1,then f(x) >0forall x>0 (x> [;) when —g €]1,00] (—g €]0,1)).

ii. Ifa>1, then f(x) <0forall x>0 (x> [;) when —g €]0,1[ (—g €]1,00[).

Proof.
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1. The proofis clear and will be omitted.
2. Assume that ab <0.

(a) When a > 0, we have the following:
i fo<ax<l, thenfor—g €]1,00[ we have f(x) < a+b <0 for all x > 0. Otherwise, if—g €]0,1[,
then
In(=2) InC
fx) <f(ﬁ) a Ta a+b O0forall x> [;.
ii. If a> 1, then for _E €]0,1[ we have f(x) > a + b > 0 for all x > 0. Otherwise, if —g €]1, 00|,
then
In(=~ a
fx)> f( ln[:z )y = e ‘@ +b=0forall x> L.

n-

(b) When a < 0, we have the following:
i. If0< a<1, then for —Q €]1,00[ we have f(x) > 0 for all x > 0. Otherwise, if —g €]0,1[, then
ln( In(Z~ b

fX)> f% )_a Ta a+b 0.

ii. Ifa>1, then for —2 E]O 1[ we have f(x) <0 for all x > 0. Otherwise, if —g €]1,00], then

In(=2) "

f) < f( lnjl )=a e a+b=0forall x> [;.

Lemma 3.2. For the function g(x), the following statements are true:
1. When ab >0, then g(x) > 0 for all x > 0.
2. When ab < 0, we have the following:

(@) If 0 < a < 1, then either g(x) > 0 for all x > 0 when —g €]1,00[ or g(x) > 0 for all x > I; when
~Lejo, 1L,

(b) Ifa> 1, then either g(x) > 0 for all x > 0 when —g €]0,1[or g(x) > O forall x > [, when —g €]1,00].

Proof.

1. The proof is clear and will be omitted.
2. Assume that ab <0.

(a) Whena>0and b<0,wegetaa+b<a+b.

If—Q €]1,00], then g(x) > a“a++bb = g(0) for all x > 0.
=by
Otherwise, there exists [; = ll;a >0,8(x)>gll) = % =0, forall x> ;.

Now, whena <0and b>0,wegeta+b<aa+b.

If -2 €]1, 00, then g(x) > &L =gOforallx>0.
. . In(=? b
Otherwise, there exists [; = I;n‘;) >0,8(x)>gll) = % =0, forall x> I;.

(b) The proofis similar to that of (2a) and is omitted.

B + {(-x) ) € HE . > })

D_={(x,y)eR?: —<L}
y 1l-a

where a # 1, b is a nonzero real number and let ([.] denote the ceiling function.
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3.1.CaselO<a<]l.

Theorem 3.3. Assume for i = 1,2 that either (x_p4;, y_2+i) € Dy with b> 0 or (x_24i, y-2+i) € D_ with b <0
(respectively). Then except (possibly) for the initial conditions, the solution {(x,, y,)}> e, 1s located either

in the 1%* quadrant or the 2" quadrant (respectively).

Proof.
When (x_24;,y-2+i) € D4, 1=1,2, we get a; >0and a > 0.
Using formulas (2.3) and (2.4), we get

aa;+b

sgn(xom+i) = sgn(ﬁ) =1,i=1,2.

Similarly,
aa;+b

—|=1,i=1,2.
am+1a,~+b)

sgn(yom+i) = sgn(

Then we conclude (using Lemma (3.1) (1) and Lemma (3.2) (1)) that, except (possibly) for the initial condi-
tions, the solution {(x,, y»)};._, is located in the 1% quadrant.

When (x_;, y—;) € D_ with b < 0 for i = 1,2, the proof is similar and is omitted.

Theorem 3.4. Assume for i = 1,2 that either (x_p+;, y_2+;) € D_ with b >0 or (x_24;, y-2+i) € Dy with b< 0

(respectively). Then the following statements are true:

1. If _0%’ - €]1 oo, then except (possibly) for the initial conditions, the solution {(xn,yn)} _ s lo-

cated elther in the 1% quadrant or the 2" quadrant (respectively).

2. If-2% -2 e]O 1[, then there exists a positive integer ng such that {(x,, y,)}5~,, islocated either in the

n=ny

quadrant or the 2" quadrant (respectively).

Proof.
We shall prove only when (x_3+;, y_2+;) € D_ with b > 0, i = 1,2. For the other case, the proof is similar
and will be omitted.

Assume that (x_247,y-2+;) € D_,i=1,2. Then @; <0,i=1,2.
1. If =2, -2 €]1,00], then using Lemma (3.1) (2b) and Lemma (3.2) (2a), we get

aa;+b
sgn(xXom+i) = sgn(l—) =1,i=12 m=0,1,.

and
aa;+b

—|=1,i=1,2m=0,1,....
am+lai+b)

sgn(Yom+i) = sgn(

Therefore, except (possibly) for the initial conditions, the solution {(x,, y,)}5%_; is located in the 1°
quadrant.

2. If —E, —A €]0,1[, then using Lemma (3.1) (2b) and Lemma (3.2) (2a), we conclude that there exists a
b

In(—
positive integer [——= ] such that

aa;+b ln(—o%) _
sgnomei) = sgn(————)=L m=[——=1,i=12,
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and

ama;+b ln(—c%)

Sgn(Yom+i) = sgn m =1, m=][ o 1,i=1,2

Now, we claim that

sgn(xy) =1, n=ny,
where ) Y

In(—-2%) In(—2

no = max2[———1+1,2[—=-1+2} - 1.
na

b ) h

To prove the claim, let ”o = max{2[ L1+1, 2[ ln 7 ] + 2}. We have three cases to consider:

. Ifalzagzza,thenno 2[ ln“ ]+2
But )
n(-,)
22741,

sgn(xy)=1,n=2[

Then

sgn(x,) =1, n=ny—1=ny.

In(-2-) In(-2)
e Ifa; <ap, then [ 1> [ 2
It follows that
In(-£) In(-£)
-1=2 =>2f +2
1 Ina
Therefore,

sgn(xpy) =1, n=ny—1=ny.

In-2)  In(-2)
e Ifa; > ap, then [T <[22
It follows that b b
n(—--) In(—-%)
np—1=2[—21+122[—7+3,
a a
Therefore,

sgn(xpy) =1, n=ny—1=ny.

The claim is proved.
n(--2) _L)

+1,2[

Therefore, for n = ng = max{2[ 1+2} =1, (xp, yn) is located in the 1% quadrant.

Ina lna

Theorem 3.5. Assume that (x_;, y-1) € D, and (xo, yo) € D—. Then the following statements are true:

1. If b > 0, then either the solutlon {(xp, y,,)}n__1 (except (possibly) for the initial conditions) is located
in the 1% quadrant when —-~ e]l oo[ or there exists a positive integer n, such that {(xp, yn)}5%,, is

located in the 1% quadrant When —a—z €]0,1].

2. If b <0, then either the solution {(xp, yn)}°° _; (except (possibly) for the initial conditions) is located

in the 2" quadrant when — 2 €]1 oo[ or there exists a positive integer n; such that {(x,, y,)}5%,,. is

n=m

located in the 2”4 quadrant when _a_l €]0,11.

Proof.
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1. Assume that b > 0 and let —0% €]1,00[. Then a1b >0 and a»b < 0. Using Lemma (3.1) and Lemma

(3.2), we get
aa;+b .
sgn(xzm+i) = Sg”(ﬁ) =1i=12, m=0,1,..,
and
sgn( i)=S5 n( amai+b)—1i—12m—01
SnlYom+i) = S§ a’"+1a,~+b =11=1, =0,1,....

Therefore, we have except (possibly) for the initial conditions, the solution {(x,, y»)};~_, is located in

the 1%/ quadrant.
b

1n(—,7)
Otherwise, if —0% €]0, 1[, then there exists a positive integer m, := [Taz] such that

aar+b
Sgn(Xome2) = Sg"(ﬁ) =1, m=my,

and
aar+b

_ | = >
am+1a2+b) L mzm.

sgn(Yam+2) = sgn(

Then {(xp, yn)}5=,, is located in the 1% quadrant, where ny = 2mjy + 1.
Note that:

sgn(xam,+1) =1 and sgn(yam,+1) = 1.

2. When b <0, the proof is similar and is omitted.

In(-2) In(-2)
Note: In Theorem (3.5), we have n; = v andnp = [ 2

1+1.

Ina

Theorem 3.6. Assume that (x_;, y—1) € D_ and (xg, o) € D+.

1. If b > 0, then either the solution {(x,, y»)};._, (except (possibly) for the initial conditions) is located

in the 1°" quadrant when —0% €]1,00][ or {(xn,yn)}‘,’f:n1 is located in the 1% quadrant when —0% €]0,1[.

2. 1f b <0, then either the solution {(xy, y»)}5. _, (except (possibly) for the initial conditions) is located in

the 274 quadrant when —a% €]1,00[ or {(xpn, yn)}5Lp, is located in the ond quadrant when —0% €]0,11[.

Proof.
The proof is similar to that of Theorem (3.5) and is omitted. Note: In Theorem (3.6), the values of n;

and n, are:
In(-2) In(-2)
N Vand np = [ %2
Ina

To illustrate Theorem (3.3) and Theorem (3.5), we give the following numerical examples:

n =2[ 1+1.

Example (1) Assume that a = 0.8, b = —0.4 and the initial values are (x_1, y-1) = (3,-1), (x0, yo) = (=7,0.2)
((x-2+i,¥—2+i) € D—, i = 1,2). Then except (possibly) for the initial values, the solution {(x,, y»)}9._; is
located in the 2""¢ quadrant.

Here a; = -0.2, ay = —6.6.
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The values of the first 30 terms (including the initial values) of the solution are:

(3,-1), (-7,0.2), (-3,1.07143), (-35,1.23239), (-2.8,1.06061), (—28.4,1.22837),
(—2.64,1.05096), (—23.12,1.22354), (-2.512,1.0425), (—18.896,1.21778), (—2.4096,
1.03519), (-15.5168,1.21098), (—2.32768,1.02897), (—12.8134,1.20305), (—2.26214,
1.02373), (—10.6508,1.19395), (—2.20972,1.01935), (—8.9206,1.18366), (—2.16777,
1.01572), (—7.53648,1.17223), (—2.13422,1.01274), (—6.42919,1.1598), (-2.10737,
1.0103), (—5.54335,1.14658), (—2.0859,1.0083), (—4.83468,1.13284),
(-2.06872,1.00669), (—4.26774,1.11891), (—2.05498,1.00538), (—3.81419,
1.10513), (-2.04398,1.00432), (—3.45136,1.09183).

(See figure 1).

—20L

I I L L
10 20 30 40

. _ Xn-1 = Xn-1
Flgul'e 1. Tn+1 = Yn-1 ! J’n+1 0~8xn—1_0~4.Vn—1

22

Example (2) Assume that a = 0.5,b = 2 and the initial values are (x_1,y-1) = (3,0.5), (x0, o) = (26,—0.2)

((x=1,y-1) € D4, (x9, y0) € D_). Then for n = 13, (x5, y,) is located in the 1% quadrant.

In(-3) n-%)
Here np =21 lna2 1+1=13, where lna2 =57 €]0,1], ap = —67.

The values of the first 30 terms (including the initial values) of the solution are:

(3,0.5), (26,-0.2), (6,1.2), (-130,2.06349), (5,1.11111), (-63,2.13559),
(4.5,1.05882), (—29.5,2.31373), (4.25,1.0303), (—12.75,2.91429), (4.125,1.01538),
(—4.375,23.3333), (4.0625,1.00775), (—0.1875,-0.0983607), (4.03125,1.00389),
(1.90625,0.645503), (4.01563,1.00195), (2.95312,0.849438), (4.00781,1.00098),
(3.47656,0.92999), (4.00391,1.00049), (3.73828,0.966179), (4.00195,1.00024),
(3.86914,0.983371), (4.00098,1.00012), (3.93457,0.991754), (4.00049,1.00006),
(3.96729,0.995894), (4.00024,1.00003), (3.98364,0.997951).

Clear that x,, > 0 and y, >0, n = 13. (See figure 2).



Mehmet Giimiis et al. / IKIM / 6(2) (2024) 13-29 23

-100 -

I I L I
10 20 30 40
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Figure 2. x;,.1 = Yo Yl = 5Enoa i

3.2.Casea>1.

Theorem 3.7. Assume for i = 1,2 that (x_2+;, y-2+i) € D+. Then we have the following:

1. If b > 0, then either the solution {(x;, yn)};":_1 (except (possibly) for the initial conditions) is located in

the 1% quadrant when —C% €]0,1[, i = 1,2 or there exists a positive integer g such that {(x,, yn)}5Z,,

is located in the 1°¢ quadrant when —g €]1l,00[,i=1,2.

2. If b <0, then except for the initial conditions, the solution {(x;, yn)}‘,’f:_1 is located in the 1%¢ quadrant.

Proof.

When (x_24,y-2+;) € Dy fori=1,2, wegeta; <0fori=1,2.

1. If b>0,thena;b<0,i=1,2. Using Lemma (3.1) and Lemma (3.2), we conclude that except (possibly)

for the initial conditions, the solution {(x,, y,)}5> _; islocated in the 1 quadrant when max{— 0%, - a—bz} <

1. When rnin{—o%, —a%} > 1, there exist two positive integers m; and m; such that the subsequences
In(-2)
ay

Ina 1

{(2m+1s Yoma DI, and (X242, Y2m+2)}5% m, are located in the 1°¢ quadrant, where m; = [
(-

and mp = [TZZL Therefore, we conclude that {(x,, yn)}35%,, is located in the 1! quadrant, where

In(--2) In(--2

a ag)
ny = max{2f lna‘ 1 +1,2[Taz] +2}-1.

2. When b <0, the proofis a direct consequence of applying Lemma (3.1) (1) and Lemma (3.2) (1).

Theorem 3.8. Assume for i = 1,2 that (x_2+;, y-2+i) € D_. Then we have the following:

1. If b > 0, then except (possibly) for the initial conditions, the solution {(x,, yn)}»‘,’l":_1 is located in the

274 quadrant.

2. 1f b <0, then either the solution {(xy, yn)}._, (except (possibly) for the initial conditions) is located
in the 274 quadrant when —0% €]0,1[, i =1,2 or {(x,,,yn)}(,’f’:n0 is located in the 24 quadrant when

b -
s €]l,o00[,i=1,2.

Proof.

The proofis similar to that of Theorem (3.7) and is omitted. To illustrate Theorem (3.8), we give the follow-
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ing numerical example:

Example (3) Assume that a = 1.2, b = —3 and the initial values are (x_1, y—1) = (-2.7,-0.3), (xo, yo) = (12.1,1.1)

((x—2+i,y-2+i) € D_, i =1,2). Then for n = 17, (x5, y») is located in the ond quadrant.

In(=3>) In(-32) In(-2) In(-2)
1+1,2[ 1+2}-1=17, where [—-] =6and [——2-1=8.

Ina
The values of the first 30 terms (including the initial values) of the solution are:

Here ng = max{2[

Ina

(-2.7,-0.3), (12.1,1.1), (9,1.15385), (11,1.07843), (7.8,1.22642), (10.2,1.1039),
(6.36,1.37306), (9.24,1.14243), (4.632,1.81051), (8.088,1.20616), (2.5584,36.5068),
(6.7056,1.3287), (0.07008,—-0.0240337), (5.04672,1.65138), (—2.9159,0.448664),
(3.05606,4.5799), (—6.49908,0.601828), (0.667277,—-0.303409), (—10.7989,0.676679),
(=2.19927,0.390002), (—15.9587,0.720469), (—-5.63912,0.577368), (—22.1504,0.748818),
(—9.76695,0.6635), (—29.5805,0.768393), (—14.7203,0.712352), (—38.4966,0.782516),
(—20.6644,0.743396), (—49.1959,0.793034), (-27.7973,0.76457), (-62.0351,0.801051),
(—36.3567,0.779718).

Clear that x,, <0 and y, >0, n=17. (See figure 3).

Theorem 3.9. Assume that (x_;, y_1) € D_ and (xo, o) € D+. Then we have the following:

1. If b > 0, then except for the initial conditions we have, the subsequence {(x2m+1, Y2m+1)}5,-_; is lo-
cated in the 2"4 quadrant and either the subsequence {(x2/n+2, Y2m+2)}5y__, islocated in the 1°  quad-
rant when —0% €]0,1], or the subsequence {(XZm+2;y2m+2)}or,?:m2 is located in the 1°! quadrant when

—ai; €]1,00l.

2. 1f b < 0, then except for the initial conditions we have, the subsequence {(x2m+2, Y2m+2)}5,-_; is lo-
cated in the 1% quadrant and either the subsequence {(x2/,+1, Y2m+1}5,-_, islocated in the 2" quad-

rant when —ail €]0, 1[, or the subsequence {(x2/,+1, V2m+1)} is located in the 2”4 quadrant when

o0
m=m,

_0% €]1,00].

Proof.

Assume that (x_1,y-1) € D_ and (xp, yo) € D+. Then a; >0 and a, < 0.

1. When b > 0, then a1b >0 and a»b < 0. Using Lemmas (3.1) (1) and (3.2) (1), we conclude that except
(possibly) for the initial conditions we have, the subsequence {(x2/n+1, Y2m+1)}},-_; is located in the
2"4 quadrant.

If —a% €]0,1[, then using Lemmas (3.1) (2b) and (3.2) (2b), we conclude that except (possibly) for the
initial conditions we have, the subsequence {(x2,+2, yzm+2)}°n‘;}1 is located in the 1! quadrant.

Otherwise, if —0% €]1,00[, then the subsequence {(xX2,,+2, Y2m+2)} is located in the 1%/ quadrant.

[e.0]
m=my

2. The proofis similar to (1) and is omitted.

Theorem 3.10. Assume that (x_;, y-1) € D4 and (xp, yo) € D_.
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1. If b > 0, then except (possibly) for the initial conditions we have, the subsequence {(x2/,+2, 2 m+2)}°n‘l’:_1
is located in the 2”4 quadrant and either the subsequence {(x2m+1, Y2m+1)15,__, is located in the 1° 4

quadrant when —0% €]0,1[, or the subsequence {(me+1,J/2m+1)}on‘,’z:ml is located in the 1% quadrant

b
when —ar €]1,00]l.

[e.e]

2. 1f b <0, then except (possibly) for the initial conditions we have, the subsequence {(x2/m+1, Y2m+1)},-_;

is located in the 1°" quadrant and either the subsequence {(X2m+2, Yom+2)}op=_; is located in the ond
quadrant when —a% €]0, 1[, or the subsequence {(x2,,,+2, y2m+2)}~‘,’n°:m2 is located in the 274 quadrant

b
when % €]1,00]l.

Proof.
The proof is similar to that of Theorem (3.9) and is omitted. To illustrate Theorem (3.10), we give the

following numerical example:

Example (4) Assume that a = 1.5, b = 1 and the initial values are (x_;, y-1) = (3.9,-2), (xo, o) = (~1.5,0.5)
((x=1,y-1) € D4, (xp, o) € D_). Then the solution {(x,, y,}°> _, has the property that:

n=-1

2nd [ ¢]

Except (possibly) for the initial values, {(x2;+2, V2 m+2}°r3:_ | islocated in the quadrant and {(X2m-+1, Y2m+1} =10

is located in the 1°/ quadrant.
b
-1

Here m —[ln( 91 =10, where =L = -1.95and 2 = -3, -2 =40 €]1,00[
ere my = Ina - Y v : Yo Yy T »O0

The values of the first 30 terms (including the initial values) of the solution are:
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(3.9,-2), (-1.5,0.5), (-1.95,1.01299), (-3.,0.857143), (-1.925,1.01987), (-3.5,
0.823529), (—1.8875,1.03072), (—4.25,0.790698), (—1.83125,1.0483), (-5.375,
0.761062), (—1.74687,1.07811), (-7.0625,0.736156), (—-1.62031,1.13271), (—=9.59375,
0.716453), (—1.43047,1.24855), (—13.3906,0.701596), (—1.1457,1.59446), (—19.0859,
0.690796), (—0.718555,9.23212), (-27.6289,0.683151), (—0.077832,—-0.0881199),
(—40.4434,0.67784), (0.883252,0.379913), (—59.665,0.6742), (2.32488,0.5181),
(—88.4976,0.671727), (4.48732,0.580433), (—-131.746,0.670057), (7.73098,0.613742),
(=196.62,0.668935), (12.5965,0.633157), (—293.929,0.668182).

(See figure 4).
[ T T T T T T

0 , -— S . , , N N 1 | l i
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-1000 |- -

-1500 |- -
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Figure 4. x;41 = T Vn+1 = T

Discussions and Conclusions

In this paper, we studied the admissible solutions of the non-linear discrete system of difference equations

X _ Xp-1 y _ Xn—-1
n+l — ’ n+l——__ 57
Vn-1 axp-1+byn_1

n=01,...,

where a, b and the initial values x_1, xg, y-1, yo are non-zero real numbers. We discussed the linearized
and global stability to the steady state (%, 1) when a # 1 as well as introducing the forbidden sets. For
a € Ry — {1}, we showed any admissible solution {(x, yn)};’lo:_l is either entirely located in a certain quadrant
of the plane or there exists a natural number N > 0 (we calculated its value) such that {(x,, y»)})" ; is located.
We conjecture that the same results can be obtained for the discrete system

Xn—k Xn—k

Xn+1 = ’ J’n+1 En e —
VYn-k axp—k+byn—k

, n=0,1,...,
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where a, b are non-zero real numbers and the initial points (x_;, y—;), where i =0, 1, ..., k are non-zero real

numbers.
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rem to the system, we show that positive equilibrium is a global attractor. We also study the local
asymptotic stability of the equilibrium and show that it is globally asymptotically stable. Finally, we

study the invariant set of solutions.
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1. Introduction

Difference equations have been studied with great interest for the last thirty years. Determining the quali-
tative behavior of solutions, which is very important in applications, forms the basis of these studies. Dif-
ference equations have become a significant topic in mathematics and other disciplines because they can
be discrete analogs of differential equations or mathematical models of phenomena. For some examples
of discrete analogs of differential equations, see [1]. For some mathematical models, see [8]. In our opin-
ion, this fact is the basis of the intense interest mentioned above. But whatever the reason, some classes
of difference equations are being studied for the development of the theory of difference equations, even
though they are not any mathematical models. The main idea, of course, is to discover new classes of dif-
ference equations and to develop new techniques and methods for determining the qualitative behavior of

solutions of difference equations.

Since many mathematical models are nonlinear, nonlinear difference equations are studied quite frequently.
Rational difference equations, as a subclass of nonlinear difference equations, are also frequently encoun-
tered in the literature. Below, we list some old and new studies that we encounter in the literature on the

rational difference equations that we think are related to our research.
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In [6], DeVault et al. conducted a boundedness study on positive solutions of the second-order difference

equation
A B
Xn+1=—p+——» NENp,
Xp X,

where p, g, A, B, and the initial values are positive real numbers.

In [7], DeVault et al. showed that every positive solution of the third-order equation

A 1
Xpy1=—+ , neNy,
Xn  Xn-2

where A € (0,00), converges to a two-periodic solution of the equation.

In [28], Philos et al. studied the attractivity of the unique positive equilibrium of the higher-order equation

Xns1=a+ ) , neNy,
k=1 %Xn-k

m
where a and by (k =1,2,...,m) are nonnegative real parameters with B= Y by >0.
k=1

In [9], El-Metwally et al. established a global convergence result and applied it to the higher-order equation

Xn+l = Z ’ ne NO»
i=0 Xn-2i

where A; (i =1,2,..., m) are nonnegative and the initial values are positive. They showed that every positive

solution of the equation converges to a two-periodic solution.

In [10], El-Metwally et al. established a global convergence result and applied it to the higher-order equation

k-1

Aj
Xn+1 = Z , neNy,
i=0 Xn—i

where A; (i =0,1,...,k—1) are nonnegative with A = kil A; > 0, and the initial values are positive. They
showed that every positive solution of the equation conlv:elrges to a p—periodic solution.

The study of two-dimensional systems, which are generally symmetric, of difference equations is a process
initiated by Papaschinopoulos and Schinas in the late nineties. See, e.g. [22-26, 29]. Their work encour-
aged other authors, especially in the area of mathematics, to work on such systems. In the 2000s, studies
on nonlinear rational difference equations and their systems gathered speed, and a rich literature emerged.
Although this speed is not at the initial level, new studies are being published, especially on difference equa-

tion systems.

Fuzzy difference equations, which are a type of difference equation that is by definition particularly related
to symmetric systems, also began to be studied during this process. For example, in [27], Papaschinopoulos

and Papadopoulos considered the fuzzy difference equation

B
Xp1=A+—, neNp, (1.1)
Xn

where A, B, x( are fuzzy numbers. Due to the nature of fuzzy difference equations, to study the solutions of
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Eq.(1.1), they were interested in the system of classical difference equations
+ + 0 eN
Ynr1=a+—, Zyp1=Y+—, N 0,
<n Yn
which is a special case of the system stated in the abstract of this paper.

In [13], in line with [27], Hatir et al. investigated the behavior of the positive solutions of the fuzzy difference

equation

B
Xp+1=A+ , neNp, (1.2)
Xn-1

where the parameters A, B, and the initial values x_;, xo are fuzzy numbers. Naturally, to study the positive

solutions of Eq.(1.1), they discussed the positive solutions of the system of classical difference equations

B 0
J/n+1:05+ » Zn+1:Y+ ) I’ZENO,
Zn-1 Yn-1
which is another special case of the system in the abstract. For similar studies on fuzzy difference equations,
see references [34, 35]. Apart from these, many systems of difference equations have been studied. For some
examples, see [2, 3, 5,11, 12, 14-18, 21, 30-33, 36, 37].

In this work, we define the system of difference equations

a) ay as bl b2 b3
Xpr1=a+—+ + , Yn+1=b+—+ + , neNy, (1.3)
Yn  Yn-1 Yn-2 Xn  Xp-1 Xp-2

where the parameters a, a;, b, b; (i = 1,2,3) and the initial values x_;, y_; ( j = 0,1,2) are positive real
numbers. We investigate the qualitative behavior of positive solutions of system (1.3). More specifically,
we establish a global convergence result and apply it to (1.3) to study the global stability of the positive

equilibrium.

For the methods followed in our study, the references [4, 19, 20] can be consulted.
2. Main Results

In this section, the main results of the paper are given and proven. This section is divided into two subsec-

tions.
2.1.Aresult of convergence

The following theorem states a general convergence result and enables us to prove that the unique positive

equilibrium of (1.3) is the global attractor.

Theorem 2.1. Let [a, ] and [y, 8] be intervals of positive real numbers and assume that ; : [y, 81! — [a, B]

and hy : [a, B] k+1 _, [y, 6] are continuous functions satisfying the following properties:
(a) Both hy(y1,¥2,---, Yk+1) and ha(x1, X2,. .., Xk+1) are decreasing in all of the arguments.

(b) If (my, My, my, M>) € [a, ﬁ]z x [y, 812 is a solution of the system

hy (Mo, My, ...,M), My =h;(my,my,...,my), 2.1)

m

hy (M, My,...,M1), Mz=hy(mi,my,...,mi),

my
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then m; = M; and my = M. Then the system

= Vs Vel er Vi
Xni1 =MV Yn-tseees Yn i) } neNe, (2.2)

Yn+1 = ho (Xpy Xn—1,- o> Xn—k)

has a unique positive equilibrium (%, y) € [a, B] x [y, 8] and its every positive solution converges to this equi-

librium.
Proof.
Let
0._ 0._ 0._ 0._
md=a, M):=p, mSi=y, MY:=5
and
i+l . _ I ppl i ARFE }, m i
my : —hl(MZ;MZ»---rMZ)r Ml '_hl(mZ’mz""’mz)’
méﬂ : :hZ(M{)M{)-.-yM{)? Mé+1:=h2(mi’mi""’mi).

Foreachi=0,1,..., we have

a < b,6,....0)<h(y,y,....y) < B,
Y = hBpB....0<hlaa,..,a)<d
and so,
m) = as<h(My,M),...,M)=mj] <hy(m,m),....m) =M, <p=M,
my = y<hyM)MY,... . MY)=m) <hy(m®,m?,.... mY)y=M, <6=M.

Moreover, we have

mi = hy(MJ,M),...,M?)
< My, M,,...,M,)
= m?

1 1 1
< hl(mz,mz,...,mz)

= M?
0 .0 0
< hi(my,my,...,my)

1
= M},
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and
my = hy(M,MY,...,M?)
< ho(M},M},...,M})
= m

1 1 1
< hg(ml,ml,...,ml)

= M?
00 0
<= hy(my,my,...,my)
= M.
By induction, one can see for i =0, 1,..., that
a = msm<-smitsmlisM <M <. <M <M =8,
— 0 1 i-1 i i i-1 1 0_
Y = mysmy<--+<m, =my<M,<M, <---<M,<M,=56.

It follows that the sequences (m{)i and (mé)i (resp. (M{)i and (Mé)i) are increasing (resp. decreasing) and

also bounded, and therefore they are convergent sequences. Then we can assume that

my= lim m{, M;= lim M|, my= lim mj,, M= lim M.
i—+o00 i—+o0 i—+o0 i—+00

Then,

asm <M <, ysmysM,<é.

By taking limits in the equalities

i+1 i i i i+1 i i i
mi M (M, ML, M), M= hy(mb,mi,..., mb),

i+1 i i i i+1 i i i
mi ho(ME ML, MDY, M= hy(mi,mi,..., m),

and using that h; and h» are continuous, we obtain system (2.1). So, from (b), it follows that m; = M; and

my = M>. It can be concluded from the hypothesis that
m?:asxnsﬁ:M‘f, mg:ysyns6=Mg, n=12,....

Therefore, we obtain

mi By (M3, My,...,M9) < hy (Y, Yn—1,+++» Yn2) = Xn+1 < h1 (M3, m3,...,m3) = My,

1 0 0 0 0 0 0 1
my hZ(M , M ’-~-rM1) = hZ(xn;xn—lw-nxn—Z) =Vn+1 = hZ(mlyml’“-ym]) :Mg’

forn=2,3,...,,and

m% hl(leerlv---»le) = hl()’m}’n—l»---;)’n—z) :xn+1 = hl(méym;;---;m;) :MZ)

2 1 1 1 1 1 1 2
m, hz(Ml,Ml,...,Ml) < ha(Xp, Xp-1,...,Xn-2) =Vn+l = hz(ml,ml,---,ml) :Mz-
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forn=4,5,..., and

3

m] hl(Merz,---»Mzz) = hl()’m}’n—b---:)’n—z) :x}’l+1 = hl(mgymgy---;mg) :M3)

3
my

hZ(M%rM%,---erz) = hZ(xn!xnflr---yxn*Z) = J/n+1 = hZ(m%) m%)---rm%) = Mg
for n=6,7,.... Moreover, by induction, it follows for i =0, 1,.. ., that
m{sxnsM{, mésynsti, n=2i+1.
It is obvious that i — +oo implies n — +o00. Also, since m; = M; and my = M,, we obtain
lim x,=M;, lim y,= M.
n—+oo n—+oo
Moreover, in this case, since system (2.1) reduces to

My = hi(Ma, My,...,M>), M= hy(M;,M,..., M),

we obtain

Therefore, the proofis completed.
2.2.Dynamics of system (1.3)

We here begin our study on system (1.3). For the sake of simplicity, let a; + a» + a3 = @ and by + by + by = B.

The equilibrium points of system (1.3) correspond to the solutions of the system

T=a+Z y=b+b 2.3)
y X
from which it follows that
= B-a—-ab+VA
- 2b '
_ a-pB-ab+VA
yo= 2a ’
where
A = (a—ﬁ—ab)2+4aba
= (B-a-ab)?+4abp
> 0.

Hence, system (1.3) possesses the positive equilibrium point

(%7) = B-a—-ab+VA a-pB—ab+VA
)= 2b ’ 2a '
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Theorem 2.2. The equilibrium (X, ) of system (1.3) is locally asymptotically stable.

Proof.
Let

a ap as
+

o =a+—+ ,
! Yn VYn-1 Yn-2
fl . = xny
L =xp,
b1 by bs
g : =b+—+ + ,
Xn  Xp-1 Xp-2
gl : = J/ny
8  =Yn-1.

Then, we can defineamap T: (0,00)® — (0,00)% and the system corresponding to T as follows:
Whi1 =T (Wp), (2.4)

where W,, = (xn, Xn-1,Xn-2,Yn> Yn-1, yn—2)t; (¢ states the transpose operation)

o ay as
Xn a+ yn + J/nfl ynfz
Xn-1 Xn
Xn-2 Xn-1
T - b+ h + & + ﬂ
yn Xn Xn-1 Xn-2
Yn-1 Yn
Yn-2 Yn-1

of _ of _ Qi+l
|E - 0) |E - =
0fi 0fi oh 0fi
= 1’ = :0’ _— :O,
o, |E 3 |E PI |E P |E
af> 0f> af2 af2
= 0, =1, =0, ——I|g=0,
o, | 3 |E F |E P |E
%8 g = bin %8 lE=0
0xXp—; fz ' a.Vn—i '
0g1 0g1 0g1 01
| = 0, _l :]-7 | = | :07
0xp—i £ 0Yn £ 0Yn-1 E 0Yn-2 E
0 0 0 0
By = 0 28p=0 —Sl|p=1, B | =0

0xp-i 0¥n 0yn-1 0Yn-2
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By these partial derivatives, one can obtain the Jacobian of the map T evaluated at E as follows:

L S

1 0 0 0 0 0

0 1 0 0 0 0
Ir®=

-= -3 -3 0 0 0

.X'Z .X'Z x2

0 0 0 1 0 0

0 0 0 0 1 0

The matrix Jr (E) has the characteristic polynomial

/16 _ a1b1/14 + (a1 by + azbl)/l?’ + (a1 b3 + ax by + a3b1))12 + (azbs + asby) A + azbs
—2-—2
Xy

((11/12 + azﬁ + (Z3) (bl/lz + bgA + bg)

E2 yZ

P

A8 —

We need to ensure that all roots of P are less than 1 in absolute value. For this, let
) =28

and
((llﬁz + agﬂ, + (13) (b1/12 + bzﬂ + bg)

XZ?Z

YA =-

It is easily seen that every root of @ satisfies the condition |A| < 1. That is, those are all less than 1 in absolute

value. So, if we assume

(ay + ap + as) (bl + bg + bg)

Y272

¥ ()] = <l=|PW)I, VAeC, |A=1,

then every root of P will satisfy the condition |A] < 1 according to Rouché’s theorem. After some arrange-

ments, we get the inequality
af < X°y°. (2.5)

From (2.3), we obtain

ba  af  ap

Ty=ab+ — 27 = abxy + bax + afy+ap,
Xy=a 7xﬁ@xy abxy+bax+afy+ap

and therefore
X2y? — ap = abXy + bax + afiy >0,

which shows that the inequality in (2.5) is always satisfied. This completes the proof.

Theorem 2.3. Every positive solution of (1.3) is bounded.

Proof.
Let {(xn, yn)} .. _, be a positive solution of (1.3). Then, we obtain from (1.3) that

xp=za>0, y,zb>0 (2.6)
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for all n € N. That is, x, and y, are bounded from below. Also, it follows from system (1.3) and (2.6) that

a) ay as a
Xpi1 = a+—+ + <a+-— <oo,
Yn  Yn-1 Yn-2 b
by b bs
Yn+1 = b+—+—+—§b+é<oo
Xn Xn-1 Xp-2 a

for all n € N. That is, x, and y;, are bounded from above. This completes the proof.

Theorem 2.4. The positive equilibrium (¥, y) of system (1.3) is globally asymptotically stable.

Proof.
Theoretically, for the equilibrium (%, ) to be globally asymptotically stable, it must be locally asymptoti-
cally stable. See [19]. But we have already proven this in Theorem 2.2. Then, we only need to show that
(x,7y) is the global attractor of the positive solutions. That is, we will show that

lim x, =% and lim y, =7.

n—oo n—oo
To do this, we apply Theorem 2.1 to (1.3). We know from Theorem 2.3 that x, and y, are bounded for all
n = 1. Then, it follows that a < m; := lim infx, < lim supx, := M) < a+% and b < mp := lim infy, <

n—oo n—oo n—oo

Jim supyp,:=M><b+ g It suffices to show that m; = M; and my = M>.
— 00

Consider the system

a az as
M, = a+—+—+—, @7

mo no mo

a ap as

m = a+—+—+—, (2.8)
M, M, M
b b b
M, = b+—+—2+2, 2.9)
ny ny ny
b b b
my = bt — 424 2 (2.10)
M, M, M
Then, from (2.7) and (2.10), it follows that
bM? +(f—a—ab)My—af = O, (2.11)
bm?+(B-a-ab)m—af = 0, (2.12)
from (2.8) and (2.9), it follows that
aMs +(a—pB-ab)My—ba = 0, (2.13)
am§+(a—ﬁ—ab) my—ba = 0. (2.14)

Note that (2.11) and (2.12) are equations that have the same solutions. Also, since
2 a
(B—a—ab)” +4abp >0, _Eﬁ<0’

(2.11) and (2.12) have simple real roots such that one is positive and another is negative. Therefore, the

positive solutions of them are the same, and so we have M; = m;. Similarly, (2.13) and (2.14) are equations
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that have the same solutions, and since
2 b
(¢ = p-ab)” +4aba >0, ——a<O0,
a

(2.13) and (2.14) have simple real roots such that one is positive and another is negative. Therefore, the
positive solutions of them are the same, and so we have M, = m,. Consequently, by Theorem 2.1, (x,y) is a

global attractor and thus globally asymptotically stable.The proofis complete.

According to Theorem 2.3, for all n € N, the inequalities a < x, < a+ % andb<sy,<b+ g exist. That is, the
positive solutions of system (1.3) are bounded. However, depending on the subset that initial conditions are
found, the solutions in question can be always found in this subset. Such subsets are called invariant sets.

In the next theorem, the invariant sets of system (1.3) are examined.
Theorem 2.5. The following statements are true:
1 [= g1 . . .
(@) [a,x] x [ V,b+ E] is an invariant set of system (1.3).
(b) [X,a+ %] x [b, ] is an invariant set of system (1.3).

Proof.

Let the functions

o~ g _
-% h(y)=b+ =7
b+§ at+s

be defined, taking into account the system in (2.3). In this case, we can see that

—~ a a
hi(a) = a+ ﬁ—a: ﬁ>0’
b+E b+5
~ a a a
hila+—| = a+ -a——
( b) b+ fg b
b
B a a
= o5
b+ab+a b
= -
b 1+ab+a
< 0,
and
hy(b) = b+ ﬁa_b: ﬁa>0,
d+E 6l+z
f08) = be Lot
a a 7 a
_ _h P
a+aﬁﬁ a
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Hence, we obtain

p

b,b+ —
a

X

(x,7) € [a, a+%

¥, b+ g] for j =0,1,2. Then, from system (1.3), we have

(a) Assume that (x_j,y—;) € [a,X] x

a ay as ay ay as

a = x1:a+—1+—+—5a+:+:+T:f,
Yo V-1 Y2 Yy Oy ¥
b b b b1 by b
b+é > y1:b+—l+_2+_32b+rl+:2+:3:y’
a Xo X-1 X2 X x X
a s x=a+— 2, B +@ @ @:y,
yi Yo Y- vy Yy Y
by b b by b b
A AN S L R L
a Xo  X-1 X X X

?,b+§] for n=-2.

In this case, by induction, one can see that (x,, y,) € [a,X] %

(b) Assume that (x_j,y-;) € [X,a+ %] x [b,y] for j =0,1,2. Then, from system (1.3), we have

a a) ay as a) ay as
a+— = x=a+—+—+—=a+—+—+— =X,
b Yo Y1 V-2 y v Y

by by b3 by by bz _

b < y1=b+—+—+—5b+:+r+r=y,
X0 X-1 X_2 X X X

a a a; as a a as _

a+— =z x»=at+—+—*F—2z2ad+—+—+—=—=X,
b Yo Y- vy ¥y ¥

bl bZ b3 b1 bg b3 —

b = yp=b+—+—+—<b+—+=+==7,
X1 Xo X-1 X X X

In this case, by induction, one can see that (x,, y,) € [X,a+ ] x [b,y] for n = -2.

3. Numerical Simulation

This section aims to verify the theoretical results obtained in Section 2 using some specific values of the
parameters and the initial values x_, :=5.21, x_; := 2.55, xp :=3.75, y_» :=2.13, y_; := 4.86, yp :=5.50. The
solutions will be represented by drawings of numerical values.

Example 3.1. Let a:=2.9, a; := 1.2, ap :=1.55, ag :=4.1, b:=3.1, by := 1.1, by := 1.40, b3 := 3.9. Then the
solution of system (1.3) becomes as in Figure 1.

Example 3.2. Let a:=2.99, a; :=5.2, ap :=2.55, as := 0.5, b:=0.01, by :=6.1, by :=15.4, b3 :=0.3. Then the
solution of system (1.3) becomes as in Figure 2.

Example 3.3. Let a := 0.50, a; := 1.21, ay := 6.05, as := 14.51, b := 0.80, by := 0.17, by := 12.42, b3 := 2.35.

Then the solution of system (1.3) becomes as in Figure 3.
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x(n) — — y(n)]

—_——— ——_—— e —

30

Figure 1. For a:=2.9, a; :=1.2, ap :=1.55, az :=4.1, b:=3.1, by := 1.1, by := 1.40, b3 := 3.9, the solution of
system (1.3).

x(n) — — y(n)
1
7.5-5\\
7-5\
]
BN
ssd
EERNPNS
N
4.5—:\/_)<—f ____________________________
' 10 ' 20 ' ' ' '

Figure 2. For a:=2.99, a; :=5.2, ay :=2.55, a3 := 0.5, b:=0.01, b; :=6.1, by := 15.4, b3 := 0.3, the solution of
system (1.3).

x(n) — — y(n)

AV
1YY \
a4 VN

—

~

T T T T
10 20 30

Figure 3. For a:=2.99, a; :=5.2, ay :=2.55, a3 := 0.5, b:=0.01, b; :=6.1, by :=15.4, b3 := 0.3, the solution of
system (1.3).
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4. Conclusion

In this study, the local and global stability of the positive equilibrium of the system

a) ap as by by b3
Xpy1=a+—+ + , VYnel=b+—+ + , neNp,
Yn Yn-1 Yn-2 Xn Xp-1 Xp-2

where a, a;, b, b; (i =1,2,3)and x_;, y-; (j =0,1,2) are positive and real, was investigated. It was concluded
that for all positive values of all parameters seen in the system, positive solutions converge to the unique
positive equilibrium. Also, it was handled invariant sets to better understand the behavior of the solutions.

Finally, the theoretical results were confirmed numerically and illustrated with visuals.

Although the system is a third-order system, it can be expanded to a higher order and similar research can
be conducted. One option would be to increase the rational terms. In such a case, the system may be
ko g, k

b
Xns1=a+ )y , Yne1=b+ ) , neNy,
=1 YVn-s+1 s=1 Xn—s+1

with positive parameters and positive initial values. Note that this system is a generalization of the above

and reduces to it for k = 3.
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1.Introduction

Difference equations have occurred in many scientific areas such as biology, physics, engineering, and eco-
nomics. Particularly, rational difference equations and their systems have great importance in applications.
See [4, 11, 23, 24]. As a natural consequence of this, it is very worthy to examine the qualitative analy-
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on the qualitative behavior of difference equations and systems. For example, see [1-3, 5, 6, 8-10, 12—
15, 21, 22, 25, 29, 30, 32, 34, 36, 38, 40-42, 44] and therein references. Below, we present a prototype, among
others, that caught our attention, along with its two extensions. Gibbons et al. [16] analyzed the bound-
edness, the oscillatory and periodicity, and the global stability of the nonnegative solutions of the rational
difference equation

Xpa1 = % n €Ny, (1.1)
where the parameters «a, § and y are nonnegative and real. Din et al. [8] investigated the boundedness, the
local and global stability, the periodicity, and the rate of convergence of positive solutions of the system of

difference equations
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where a;, i, a;, b;, (i =1,2), and x_j, y-j,» (j =0,1), are positive real numbers. Din [10] investigated the
boundedness, the local and global stability behavior, the periodicity, and the rate of convergence of positive

solutions of the system of rational difference equations

_ a1+ P1ynn _ a2+ Paxna

Xn+1 = ) 1= » ne NO} (13)
nr a + l’)l Xn nr ap + bgyn

where a;, B;, a;, b;, (i =1,2), and X-j, y-j, (j =0,1), are positive real numbers.

Studies on the qualitative behavior of the difference equations and systems still continue actively. For recent
studies, see, for example [7, 17-20, 26-28, 32, 33, 35, 37, 39, 43] and therein references.

The systems in (1.2) and (1.3) are two-dimensional symmetric extensions of (1.1). Apart from these, there is
another two-dimensional symmetric extension of (1.1). In this paper, we define the aforementioned exten-

sion of (1.1). That is, we define the rational system

a1+ P1Yn1 _ 2+ Paxp

Xn+1 = » n+1 ) (1.4)
a +b1yn a2+b2xn

where a;, B;, a;, b;, (i = 1,2) are positive real parameters, and x_;, y-;, (j = 0,1) are positive real initial
conditions, and discuss qualitative behavior of its solutions. More concretely, we investigate existence of a
unique positive equilibrium, local and global stability of the equilibrium, rate of convergence of a solution

converging to the equilibrium, existence of unbounded solutions and the periodicity of solutions.
2. Preliminaries

Assume that I, J are some intervals of real numbers and
A:PxPP—1, fr:Px]?P—]

are continuously differentiable functions. Then, for every set of initial conditions x_;,xp € I and y_1, yo € J,

the system of difference equations

Xne1 = fi (X Xn-1, Y Y1), Yna1 = fo (X Xn-1, Yo ¥n-1),  mEN, 2.1)

o0
n=-1°

has a unique solution denoted by {(x,, y»)} An equilibrium point of system (2.1) is a point (X,y) € I x J

that satisfies
x:fl (Y)%»y)?)) 7:f2 (f,f»?,y)'
For stability analysis, we use some key results of the multivariable calculus. Hence we transform system

(2.1) into the vector system
Xn+1=F(Xn), neNy, 2.2)

where X, = (xn,yn,xn_l,yn_l)T, F is a vector map such that F: I? x J> — I? x J> and

Xn Fi (% Yn» Xn=1, Yn-1)
F Vn _ I (xn,yn»xn—l,yn—l)
xn_l x”

Yn-1 Yn
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It is obvious that if an equilibrium point of system (2.1) is (X,¥), then the corresponding equilibrium point

of system (2.2) is the point X = (¥,7,%,7) T

By ||-Il, we denote any convenient vector norm and the corresponding matrix norm. Also, Xg € Ix JxIx Jisan
initial condition of the vector system (2.2) corresponding to the initial conditions x_;,xp € I and y_;,y0 € J

of system (2.1).
Definition 2.1. [23] Let X be an equilibrium of system (2.2). Then,

i) The equilibrium X is called stable if for any € > 0 there exists § > 0 such that “X() —X” < 6 implies

“Xn —Y” <e¢, for all n = 0. Otherwise, the equilibrium point X is called unstable.

ii) The equilibrium X is called locally asymptotically stable if it is stable and there exists y > 0 such that
“XO—X” <7yand X, — X as n — oo.

iii) The equilibrium X is called a global attractor if X;, — X as n— oo.

iv) The equilibrium X is called globally asymptotically stable if it is both locally asymptotically stable and

global attractor.

The linearized system of (2.2) about the equilibrium X is of the form
Zp+1=JrZn, neNy, (2.3)

where J is the Jacobian of the map F at the equilibrium X. The characteristic polynomial of (2.3) at the
equilibrium X is
PV = apA* + a1 A3 + ap A% + az A + ay, (2.4)

with real coefficients and ag > 0.

Theorem 2.2. [23] Let X be any equilibrium of (2.2). If all eigenvalues of Jr at X lie in the open unit disk
|A| < 1, then the equilibrium point X is local asymptotically stable. If one of the eigenvalues has a modulus

greater than one, then the equilibrium point X is unstable.

The next results deal with the rate of convergence for a solution converging to an equilibrium of a system of

difference equations. See [11, 31] for more details.

Consider the system of difference equations
Xn+1 = (A+Bn) Xn, neNO) (2.5)

where X, is an m—dimensional vector, A € C™*™ is a constant matrix, and B : Z* — C™*™ is a matrix
function satisfying
Bl —0 (2.6)

as 71 — oQ.

Theorem 2.3 (Perron’s First Theorem). Suppose that condition (2.6) holds. If X}, is a solution of (2.5), then

either X, =0 for all large n or

| X1
p=lim ———
n—oo || Xpll

(2.7)
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exists and is equal to the modulus of one of the eigenvalues of matrix A.

Theorem 2.4 (Perron’s Second Theorem). Suppose that condition (2.6) holds. If Xj, is a solution of (2.5),
then either X,, = 0 for all large n or
p = lim (1X,I)"'" (2.8)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

The following lemma is the second part of Lemma 3.1 in [30].

Lemma 2.5. Let f:R* x R* — R*, g:R* x R* — R* be continuous functions and a;, by, az, b, be positive

numbers such that a; < b1, a < b,. Suppose that
f: [a27 bZ] X [aZr bZ] - [al’bl]’ 8: [aI) bl] X [al» bl] - [02,b2]~

In addition, assume that f(u, v) is a decreasing (resp. increasing) function with respect to u (resp. v) for
every v (resp. u) and g(z, w) is a decreasing (resp. increasing) function with respect to z (resp. w) for every

w (resp. z). Finally suppose that if the real numbers m, M, r, R satisfy the system
M=fnR), m=f(Rr), R=gmM), r=gMm)
then m = M and r = R. Then the system of difference equations

Xn+l = f()’nvyn—l)y Yn+1=8(Xn, Xn-1), neN, (2.9

has a unique positive equilibrium (x, ) and every positive solution {(xn, yn)}(:lo:_1 of the system (2.9) which

satisfies
Xno € lay, b1l,  Xpor1 €lay, b1l,  yYny € laz, b2],  Yny+1 € laz,b2], noeN

tends to the unique positive equilibrium of (2.9).

3.Main results

In this section, we express and prove our main results on the system of difference equations (1.4).
3.1. Boundedness and persistence of the system

In this subsection, the boundedness and the persistence of (1.4) are investigated. The following theorem

states the result obtained.

Theorem 3.1. If 8, B2 < a; ay, then every solution of the system of difference equations (1.4) is bounded and

persist.

Proof.
From (1.4), we have the following system of difference inequalities
a B2

b1 as
Xni1 S —+—Yn-1, Ynt1S —+—Xp1, NENp. (3.1)
a a a ap
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We pay regard to the system of nonhomogeneous linear difference equations

a; P a P
Ups1=—+—Up-1, Ups1=—+—Up_1, NEN), (3.2)

a a a ap

with u_; = x_1, ug = xg, v—1 = y—1 and vy = yp. System (3.2) yields the following independent equatios

a a
a ayax dad) a

n-3, n= 2r (33)

and

a a
=2 Pra Pipe
a dazay dad)a

w3, N=2. (3.4)

The general solutions of (3.3) and (3.4) are given by

a1t axf i/ P1 B2 !
YT aia - pips +CI(V @ ﬂ2)
+CZ(_,4/EQ) +c3(—i,4/ﬁ@) +c4(i\4/ﬁ@) (3.5)
a ax a, a ay ap

_ mart+aif 4| B1 B2 ’
oz alaz—ﬁ1ﬁ2+cs( a ﬂz)
+ca(—\4/&&) +C7(—i\4/&&) +Cs(i\4/ﬁ&) ) (3.6)
a ap a a a1 az

where cg, (s = 1,2,...,8), are arbitrary constants and i is the imaginary unit. From (3.5) and (3.6), it follows

and

that if B, B2 < a; ap, then there exist the limits

_a1ap+azf

lim y,= ——— (3.7)
n—co " ajar— 1B
and
ara, +a
lim v, = M, (3.8)
n—oo ayaz — 152

and so the sequences {u,} and {v,} are bounded. Also, since u_; = x_1, ug = xo, V-1 = y-1 and vy = yp, by

comparison method, we find x, < u, and y, < v, and so

L dide+ azfr

< =U, (3.9)
ayaz — P12 !
and 5
aza; +ai1P2
<—==U,. (3.10)
a az — P12 2

Therefore, the sequences {x,} and {y,} are also bounded. On the other hand, from (1.4), (3.9) and (3.10), it
follows that

a a ay (ayaz —
oy = 1 > 1 _ 1 (ara2 - B12) -1 3.11)
a1+b1yn al"‘bl% dl(dldz—ﬁlﬁz)-i-bl (a1a2+a1,62)
12— P12
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and
¥ - (0%] - az _ az (01612—,51/32) - L
n+l = = = = L.
ax+ byxy, a2+b2% a (alaz—ﬁ1ﬁ2)+b2 (0!1612+ﬁ16¥2)

Consequently, from (3.9), (3.10), (3.11) and (3.12), for n = 1, we have

Ly<x,<U, LZSynSUg

which means that {x,} and {y,} are bounded and persist. The proof is completed.

Theorem 3.2. If 3§, < aj ay, then the set [Ly, Uj] x [Ly, Us] is invariant set of (1.4).

Proof.

50

(3.12)

(3.13)

Let {(xn,yn)}(;lo:_1 be an arbitrary positive solution of (1.4). If 8,8, < a; ay, then the bounds L, U;, L, and

U, exist. Also, let x_1, xp € [L1, U1] and y—_1, yp € [L, Uz]. Then, from (1.4), we have

art+piy1 _aa+pils _ _@+fox1 _ a2+ Bl

X = = =U; 1 < =U;
ay +b1y0 ay Y a2+b2x0 a ’
_ at+fiy _ar+pilz _ax+faxo _ ax+foUr
X2 = < =U, )= = = Uy,
ay+ by a a + byxy a
. aitpin a1+ prls _axtfox1 _ax+foly
X3 = = =U, y3= = = Uz,
ay+byys a as + by xo a
and
P atpiyr @ S, yi= artfox-1 @ 1
1 = = =1 1= = =L
a1+b1y0 (11+b1U2 ’ a2+b2x0 d2+b2U1 ’
v = a1+,31J/0> ai “L, _062'*‘[32160> as -1
2 = = =1 2 = = =1Ly
a1+b1y1 a1+b1Ug ’ a2+b2x1 a2+b2U1 ’
ar+pin a) az + Pox; as
X3 = = =L, y3= = Ly,

a1+b1y2 a +b1U2 612+b2)€2 B a2+b2U1 B

Considering inductively, it can be easily shown that x, € [L1, U1] and y,, € [L2, U>] for n = —1. So the proof is

completed.

3.2. Stability analysis

In this subsection, the existence of the unique positive equilibrium of (1.4) and local asymptotic stability

and global asymptotic stability of the equilibrium are investigated.

Lemma 3.3. System (1.4) possesses a unique positive equilibrium point. If §; 8, < a; ay, then the equilib-

rium point is in the set [Ly, U;] x [Ly, Ua].

Proof.
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For the equilibrium points of (1.4) we consider the system

ay+p1y ay+ fox

X=—7-—"7, y= —. 3.14
a+byy y a +byx ( )

From (3.14) we have the independent quadratic equations
D1X* +(C1 - B)X— A1 =0, Dy7* +(Ca—B2)y— Az =0, (3.15)

where

A1 = aiax+praz,
B = aib2+f1f2,
Ci = aatbhas,
Dy = aib2+b1f2,
Ay = amax+aif,
By = azbi+p1f2,
C = aa+ba,
D, = aybi+bps.

Hence, from (3.15), we have
Az=(C—B)*+4A1D1 >0, Ay=(Cy—By)*+44;D,>0

which implies that they have two real simple roots. Also, since —A;/D; <0 and —A,/D; <0, both equations
in (3.15) have one negative and one positive root. Therefore there exists the unique positive equilibrium
point of (1.4).

Consider the inequalities B _
fsal_i_ﬁly, ?S a2+ﬁ2xy
a1 ay
which is obtained from (3.14). Using these two inequalities within each other we get the following inequal-

ities

a _ o« a _
a g o fraz pipeg
a a a ayax da)ap
a a a
—2+@§S—2+@—1+&&_.
a ap a; dza aza;

X

IA

IA

y
If 81 B2 < a1 ay, from the last inequalities, it follows that

_ a1azx+axpr _ aza;t+ai1Pp:
XS—ﬁZUl, <—ﬁ—

< _
ayaz — 162 a az — P12
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Moreover, from (3.14) and the inequalities x < Uj, y < U,, we obtain the inequalities

ay a) — az az
—= =L, y=
6l1+b1y Cll+b1U2

x= L.

> =
- a +byx - a + b, U
Thus, for the aforementioned equilibrium point, we have (x,y) € [L1, U;] x [Lp, Uz]. So the proof is com-

pleted.

Theorem 3.4. If 5, f» < a; ay, then the unique positive equilibrium of system (1.4) is locally asymptotically
stable.

Proof.
We know from Lemma 3.3 that (1.4) has the unique positive equilibrium (%,y). In this case, the vector

system corresponding to (1.4) also has the equilibrium point X = (x,7.% 7)T. The aforementioned vector

system is given by the vector map

X a1+f1Yn-1

n 6l1+b1yn

y A2+ LfoXn1

F n — a2+b2xn
Xn-1 Xn
Yn-1 Yn

The linearized system of the vector system about X = (x,7.%,7) Tis the system

Zni1=Jr(X) Zn, (3.16)
where the vector Z,, is
<n
Zp—
Zn — n-1
Zn-2
Zn-3
and Jr at X is
bix B
0 B (llJrlbly 0 a1 +by
— byy 0 B2
Jr(X)=| (@thx ar+byX . (3.17)
1 0 0 0
0 1 0 0

The characteristic polynomial of (3.16) at Xis

P = 24— b1 boXy 12, DiBeX+Briboy P1B2
(dz + bgf) (a1 + bly) (612 + bzf) (dl + bly) (612 + bgf) (a1 + bly)

or

(B1— b1xA) (B2 — bayA)

PA) =A%~ — -
((11 + bly) ((12 + ng)

(3.18)

Let us consider the polynomial equation P(A1) = 0. Obviously, since ;2 # 0, A # 0. In this case, it can be

seen from (3.18) that there are two cases to consider.
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(@) If B1 < b1 xA and B2 < by A, then we have

Pr-biTN) (fo-17A) __ Di¥AbYA _DiXABYA _ o,

14 — ( ~e)
(611 + b]?) (612 + bgf) (a1 + bly) (az + bzf) blyng

from which it follows that |A]| < 1.

(i) If B1 > by1xA and B2 > b,y A, then we have

24— (B1— b1XA) (B2 — boyA) < B1B2 < ﬁlﬁz.
(a1 +b1Y) (a2 +b2X) (a1 +b51Y) (a2 + beX)  araz
Hence if 81 B2 < a; a», then we obtain that |A| < 1. Therefore the proofis completed.
Theorem 3.5. If 3§, < a; ay, then the unique positive equilibrium point of (1.4) is a global attractor.
Proof.

We will use Lemma 2.5 to prove the theorem. Let {(x, yn)}?f:_1 be any solution of system (1.4). We know

that if the inequality ;82 < a; a, is satisfied, then {(x, yn)}(:loz_1 is bounded and persist. Suppose that

fu V):Oél+,310 ( ):az“‘ﬁzy

a1+b1u' a2+b2x'
Then we have
(a1 +pB1v) by b1
) - 5 07 ) i —— O
Julto V) (aq + ub1)2 < fol,v) a) + ub; >
for (u,v) € (Lp,Us) x (Ly, Us) and
(az+B2y) b2 B
y) = P22 ) ,y)=——=—>0
8x (x y) (ap + xb2)2 8y (x y) az + xby

for (x,y) € (L1,Uy) x (L1, Uy). Therefore, the function f(u, v) is decreasing with respect to u for every v €
(L2, U») and it is increasing with respect to v for every u € (L, U>), and also the function g(x, y) is decreasing

with respect to x for every y € (L, U;) and it is increasing with respect to y for every x € (L1, Uy).

Let

limsupx, = M;, liminfx,=m;, limsupy,=M,, liminfy, =m,.
n—o0 n—oo n—o0 n—oo

In this case we can define the system

_at+piM, _atpimy _ Q2+ foM _ @t fom (3.19)
a1+b1m2’ ! 611+b1M2’ 2 612+b2m1’ 2 a2+b2M1' '
From (3.19), we have
a1M1+b1M1m2:a1+,61M2, a1m1+b1m1M2:a1+,61m2, (3.20)

a2M2+b2M2m1 =(Xz+ﬁ2M1, a2m2+b2m2M1 :a2+,62m1. (3.21)
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Furthermore, from (3.20) and (3.21), we have
ay (M, —my) + by (Mymy — my M) = 51 (M2 — myp) (3.22)

and
ay (Mo — my) + by (my My — Mymy) = B (M — my), (3.23)

respectively. If M; = m, then it is seen from (3.22) that m, = M». On the other hand, if my, = M>, then it
is seen from (3.23) that M; = m;. Therefore, we will just show that M, = m,. After some operations, the

equalities (3.22) and (3.23) yield the equality

ar  Po az ﬁl)
— — = (M, — +|—=—-—1(M> — =0. 3.24
(bl bz)( 1o (bz by (Mz = ma) 329
We rewrite (3.24) as
a _ B
My —my =2y — M), (3.25)
a _p
b " b

If B1 B2 < a1 ay, then (3.2) becomes
a
My—my = —Z(Mz—mz)-
B2

Using this result in (3.23), we obtain
m1M2 - Mli’)’lg =0.

Using the last two results in (3.22), we obtain
(ar1a2 - B1B2) (Mz—mp) =0

which implies that M, = m,. So the proofis completed. In order to verify the theoretical result we obtained
in Theorem 3.5, a special case obtained by giving some values to the parameters and initial conditions of

system (1.4) is given in the example below.

Example3.6. Ifa; =1, 5, =13.1,a, =7, b1 =3, a2 =12, B, =3.5, a» = 8.2, by = 1, then (1.4) becomes

1+12.1y,1 _ 12+3.5x,-1

Xntl=—F5 5. JYn+1= 6+ x
n

(3.26)
7+3yn

The unique positive equilibrium of (3.26) is (2.364109242,1.919175757). Plot of the corresponding solution
to x_1 =5.4, xg =9.5, y_1 =7 and yp = 1.7 is given by Figure 1 and Figure 2.

According to the item iv) of Definition 2.1, we give the next result from Theorem 3.4 and Theorem 3.5.

Theorem 3.7. If 8, 5> < a; ay, then the unique positive equilibrium point of (1.4) is globally asymptotically
stable.

3.3. Rate of convergence of solutions

In this subsection, the rate of convergence of a solution converging to the unique positive equilibrium of

(1.4) is studied.



Durhasan Turgut Tollu et al. / IKJM / 6(2) (2024) 45-62 55

7
9-
8 6
7.
5.
A6
‘QS_ ‘g4
4-
3.
3-
2-
2-
0 50 100 150 200 0 50 100 150 200
n n
Figure 1. Plot of (x,;) converging to x Figure 2. Plot of (y,) converging to y
Let {(xp, yn)},.._; be any solution of (1.4) such that
lim x,=x and lim y,=7, (3.27)
n—oo n—oo
where x € [L1,U;] and y € [Ly, U»]. From (1.4), we have
—_mthiyn1 at+piy
Xn+1 —X = - =
a+biyn  ar+byy
—by (a1 + 1Y) — b1 (a1 + b1y) _
(a1 + b1yy) (a1 + b1y) (a1 + b1yy) (a1 + b1Y)
or after some operations and by using (3.14)
_ -bix _ B1 _
Xpr1—X=——"——\Vn—YV)+ ————\Vn-1—7). (3.28)
T o) ) gy Ve Y
Similarly, from (1.4), we have
—_afoxp-1 @2+ foX
Ynvr1— Y= - =
a2+b2xn a2+b2x
-b + a + byx
_ 2 (a2 + f2X) (- + B2 (az + byX) e
(ag + ngn) (dz + ng) (ap + ngn) (ag + bzx)
and so, by (3.14),
_ -byy _ _
Va1 =T = ——2Y (R Py, 7). (3.29)

= Xp—X)+ —————
(a2 +baxy) " (az + baxp)

If the error terms el, = x,, — x, €2 = y,, — y, then we can write the system of the error terms as follows

1 _ 2 2
e,.1 = aney,+bye,_;,

2 _ 1 1
e,.1 =cne,+dye,_;,
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where

gL _hix P __~by g - P
" a1+—b1yn’ " a1+—b1yn' " a2+—b2xn’ " a2+—b2xn'

From (3.30), we obtain the limits

. -b1x
lim a, = ———,
n—oo a1+-b1y

. p
lim bn =,
n—oo d14-b1y

. —-byy
lim ¢, = —y_,
n—oo a24—b2x

. 2
lun_dn::——li——:.
n—oo az +byx

Consequently, from (3.31)-(3.34), we have the following system

-bix b1
n+1 ay+byy ay+byy n
2 -byy 2
en || =2 L_ 0 ey
1 - a2+-b2x a2+-b2x 1
e, e,_
1 0 0 0
e2 e?
" 0 1 0 0 n-

56

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

which resembles the linearized system of (1.4) about the equilibrium X. In this case, one can obtain from

Theorem 2.3 and Theorem 2.4 the following results.

Theorem 3.8. Let {(xy, y,,)}flo:_1 be any positive solution of (1.4) satisfying (3.27). Then, the error vector

1,2 ,1 2
(en’en’en—l’en—l

Tim (lleall)” = [A125,40r (%7)|

and
llens1ll

n—oo |lepl|

=|A1,2,34F (%.7)]
where the values A, 7 3 4 are the eigenvalues of the Jacobian Jr(x,7) .

3.4. Existence of unbounded solutions

In this subsection, the existence of unbounded solutions of (1.4) is proven.

Theorem 3.9. If 5, > > a; ay, then every positive solution of (1.4) is unbounded.

Proof.

From (1.4) we have the system of difference inequalities

a1+ Piyn-1 a1+ Biyn
a14—b1yn - a14-b1Lb ’

Xn+l1 =

)T of the solution {(xy, yn)}(:lo:_1 of (1.4) satisfies the asymptotic relations

(3.36)
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and

A+ BoXp_1 Qo+ Boxy—
Vet = 2+ Baxn 1, Q2 P2xn y (3.37)
a2+b2xn dg-i—bgUl

where U; and U, are given by (3.9) and (3.10), respectively. Now we can consider the system of nonhomo-

geneous linear equations
Wpy1 = C2+dozZp-1, Zp+1=C1+diwp-1, neNp, (3.38)

where

a) B1 ap B2

Cl=—"—F 1= C2 = d2=—
6l1+b1U2, d1+b1U2, dg-i-bgUl, 6lg+b2U1

and w_; = x_1, Wy = Xo, 2—1 = y-1, %0 = Yo. The general solution of (3.38) is given by the formulas
=L (V) sk (V) sk (V) k() 3:39)
and

where ks, (s =1,2,...,8) are arbitrary constants and i is the imaginary unit. It is easy to see from (3.39) and
(3.40) that if d;d» > 1, that is,

P1B2 > (a1 + b1U>) (ax + baUy) > arap

then the sequences (w;) and (z;) are unbounded. Therefore, since w_; = x_;, wy = xg, 2-1 = y-1 and
Zo = Yo, by comparison method, we have the inequalities x, = w,, y, = z,. Hence the sequences {x,} and

{yn} are unbounded. The proof is completed.

Example 3.10. If oy =1, 1 =12.1, a; =3.6, by =3, a2 =12, B, =3.5, a, =6, bp =1, then (1.4) becomes

1+12.1y,-1 _ 12+3.5x,—1

Xn+l= (o 0 Yn+l = 6+ x
n

(3.41)
3.6+3y,

The unique positive equilibrium of (3.41) is (2.808100791,2.478213327) and unstable. Plot of the corre-
sponding solution to x_; =5.4, xo = 9.5, y_; =7 and yp = 1.7 is given by Figure 3 and Figure 4.

3.5. Period two solutions

In this subsection, the existence of two-periodic solutions of (1.4) is investigated. The next result states the

existence of such solutions.

Theorem 3.11. If a; a, = B B2, then the system of difference equations (1.4) has two-periodic solutions.

Proof.

Let a two-periodic solution of (1.4) be

eeey (pl» Ch), (PZ’ (h), (ply ql)r (Pz, CIZ), ceey (3-42)
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Figure 4. Plot of unbounded (y;)

where p1, p2, g1, g» are positive real numbers such that p; # p, ve g1 # g2. Then, from (1.4) and (3.42), we

have the system

_art+fiq _a1+piqe

ar+b1go a +byrqr

from which it follows that
aip1+bip1g2 = a1+ prq1,

and

axqr +baqi1p2 = az + Popi,

_atfopr Q2+ foap2

ax +bapa az + bapy

After some basic operations, from (3.43) and (3.44), we get the equalities

ay (p1—p2)+ b1 (p1g2 - p2a1) = Br (41 — 42)

and

az (q1— q2) + b2 (q1p2 — G2p1) = B2 (P1— p2).

The last equalities yield

(a1by — b1 B2)(p1 — p2) + (a2b1 — b281)(q1 — q2) = 0.

It is obvious from (3.45) and the assumptions p; # p» and q; # g» thatif

aibo—b1f2=0 and axb; —b2f1 =0,

aip2+bipagr = a1+ P1ge (3.43)
ax g2+ baq2p1 = az + Papo. (3.44)
(3.45)
(3.46)

then system (1.4) has two-periodic solutions. Note that (3.46) is equivalent to the desired equality a;a, =

B1B2. So the proofis completed.
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Example 3.12. If @y =3, §1 =6, a1 =12, b1 =9, a2 =2, B2 =4, a =2, bp = 3, then system (1.4) becomes

3+6y,— 2+4x,_
¢, Vi1 = —”1' (3.47)
12+9yy, 2+3x,

Xn+1 =

The unique positive equilibrium point of (3.47) is (0.4413911092,1.132782218) and it is unstable. Also, the
solution converges a two-periodic solution of the system. Plot of the corresponding solution with x_; =3,

Xp =2, y-1 = 1.3 and yp = 7 is given by Figure 5 and Figure 6.

3 71
2.5 61
5 4
2-
- _4
N =
= 1.51 =
3
1
2
0.5
1
0 20 40 60 80 100 0 20 40 60 80 100
n n
Figure 5. (x;) converging to a two-periodic so- Figure 6. (y;) converging to a two-periodic so-
lution lution
4. Conclusion

In this study, the qualitative behavior of the positive solutions of (1.4) was investigated. The results obtained

are summarized below.

1. If 8182 < ayay, then the solutions of the system are bounded and persist. In addition, the unique

positive equilibrium of the system is globally asymptotically stable.
2. If B1 B2 = a1 az, then the system has two-periodic solutions.

3. If B1 B2 > ay ay, then the system has unbounded solutions.

Availability of data and materials Not applicable.
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