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INTRODUCTION
Primary aromatic amine compounds are used in the synthesis 
of diazonium compounds. Several different methods can be 
applied for the synthesis of aromatic diazonium compounds. 
The selection of the method to be applied is influenced by the 
solubility or basic character of primary amines. Additionally, a 
strong acidic environment is preferred during the reaction to 
prevent the formation of by-products (such as triazines, etc.)1. 
Due to the azo chromophore group in their structure, 
diazonium compounds are colorful compounds and are 
mostly referred to as azo dyes. In fact, azo dyes constitute 
the largest class of synthetic dyes. The incorporation of a 
heterocyclic component in the diazo or coupling moiety 
of dyes positively affects their fastness properties. Some 
research suggests that azo dyes modified with heterocyclic 
structures exhibit bioactive properties2-4. In the literature, 
many different azo dyes containing various heterocyclic 
structures have been reported, such as thiophene5, pyrazole6, 
thiazole7, pyrimidine8, coumarin9, indole10, barbituric acid11, etc. 
It has been reported that, in addition to their beneficial uses 
in various fields12-14, azo compounds containing heterocyclic 
components exhibit toxicological and mutagenic properties, 
posing a risk to health15. 

Thiophene-based azo dyes, with a history spanning 
approximately 70 years, have been obtained in a wide 
range of colors with the presence of various chromophore 
groups16. Studies have shown that the durability properties of 
thiophene-based azo dyes are superior to many carbocyclic 
azo dyes. The observed changes with the addition of 
different substituents to the thiophene skeleton have been 
quite valuable for understanding the structure-activity 
relationship17. 

When we examine studies on thiophene-based azo 
compounds, we realize their potential applications in 
various fields such as heat- and light-resistant dyes18-21, 
diverse biological activities22-24, solar cells and non-linear 
optics25-26, corrosion inhibitors27-28, and more. Therefore, 
in this study, we synthesized two new azo compounds by 
diazotizing 2-aminothiophene derivatives and coupling 
them with 2-indanone and 1,3-indandione compounds. In the 
further stages of our research, the applications of the newly 
synthesized azo compounds will be investigated, with a 
priority given to their biological activities, and their evaluation 
as useful products will be ensured.

MATERIAL AND METHODS
For the determination of melting points, a capillary tube 
was used, and the Gallenkamp apparatus (without any 
adjustments) was employed. Infrared spectra (4000-400 
cm-1) were acquired utilizing a Thermo Nicolet 6700 FT-IR 
spectrometer equipped with Attenuated Total Reflectance. 
For nuclear magnetic resonance spectra, the Bruker AVANCE 
III instrument (400 MHz for 1H-NMR; 100 MHz for 13C-NMR) 
and TMS as an internal standard were used. All reagents 
(Sigma-Aldrich) employed without additional purification.

2.1 Synthesis of amine compounds (1,2).
2-amino-4,7-dihydro-5H-spiro[benzo[b]thiophene-6,2’-[1,3]
dioxolane]-3-carbonitrile (1) and methyl 2-amino-4,7-
dihydro-5H-spiro[benzo[b]thiophene-6,2’-[1,3]dioxolane]-
3-carboxylate (2) were synthesized based on the method 
outlined in the literature29-34. In this reaction, malononitrile 
(0.66 g, 0.01 mol) was used for compound 1, while 
methylcyanoacetate (1.00 g, 0.01 mol) for compound 2. 
Additionally, 1,4-dioxaspiro[4.5]decan-8-one, sulfur and 
morpholine were added in equimolar amounts. The reaction 
mixture was stirred at room temperature in absolute ethanol 
(15 ml). Due to the exothermic nature of the reaction, the 
temperature increased to 50°C. The reaction ended after 72 
hours with the formation of a thick precipitate. The product 
formed after pouring the reaction mixture into water was 
collected by filtration. It was then purified by recrystallization 
(via EtOH) (Scheme 1).

O

O
NCCH2-R, [S]

Ethanol, morpholine
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O

O

1. R : CN     2. 
R : COOCH3
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R
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Scheme 1. Synthesis demonstration of amine compounds (1: 2-amino-
4,7-dihydro-5H-spiro[benzo[b]thiophene-6,2’-[1,3]dioxolane]-3-
carbonitrile; 2: methyl 2-amino-4,7-dihydro-5H-spiro[benzo[b]
thiophene-6,2’-[1,3]dioxolane]-3-carboxlate).

2.2 Diazotization procedure
While dry NaNO2 (0.138g, 0.002 mol) was added gradually to 
concentrated H2SO4 (1.1 ml), the reaction temperature rose to 
65°C. Then, it was cooled to around 5°C, and with continuous 
stirring, CH3COOH (20 ml) was added dropwise. Throughout 
this process, care was taken to ensure that the temperature 
did not exceed 15°C. Then, the reaction mixture (0-5°C) was 
added dropwise with compound 1 (0.472 g, 0.002 mol) or 
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compound 2 (0.538 g, 0.002 mol) and continued to stir at 
same temperature for 2 h, thereby ensuring the formation of 
diazonium salt. The excess nitric acid was removed from the 
solution using urea. Diazonium salt solutions can only remain 
stable for short periods and at low temperatures. Therefore, 
immediate coupling reaction should be ensured following the 
synthesis. The reaction scheme for this experimental stage is 
illustrated in Scheme 2.

2.3 Coupling procedure
For coupling solution, 2-indanone (0.266 g, 0.002 mol) (or 
1,3-indandione (0.292 g, 0.002)) was dissolved in a mixture 
containing CH3COOH (10 ml), H2O (5 ml) and CH3COONa 
(5 g). The temperature was lowered by an ice-bath and 
then was slowly dripped in to the diazonium solution with 
vigorous stirring. The pH was modified using an aqueous 
10% CH3COONa. The reaction was terminated after 2 h, and 
the temperature was allowed reach to ambient temperature. 
The crude coupling product was separated and purified by 
recrystallization (DMF-water)35 (Scheme 2). 

The physical and spectral data of obtained compounds were 
shown in Table 1.

Additional, the spectrum graphics of compounds (S1-S12) are 
given in Supplementary
Material.
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Scheme 2. Synthesis demontstration of diazonium compounds (3-
6).

Table1. Physical and spectral data of diazonium compounds (3-6)

Compound number,
Yield, Color,

m.p. (°C)

FT-IR
(ῡ, cm-1)

1H-NMR
(λ, ppm)

13C-APT
(λ, ppm)

3
68%

Yellow
250-252

3257 (N-H)
3085 (Ar-H)

2962-2895 (Aliph. C-H)
2221 (C≡N)
1662 (C=O)

9.65 (s, 1H, NH)
 7.98-7.94 (d, 1H, J= 7.40, Hz, Ar-H)

7.52 (d, 1H, Ar-H)
 7.47-7.43 (m, j= 7.40 Hz, 2H, Ar-H)

4.09 (s, 4H, CH2)
 3.79 (s, 2H, CH2)
 2.91 (s, 2H, CH2)

 2.87-2.84 (t, 2H, j= 6.38 Hz, CH2)
 2.01-1.98 (t, 2H, J= 6.38 Hz, CH2)

Pozitive amplitude : 161.96, 147.50, 
131.41, 127.89, 126.06, 113.69, 107.50, 

94.47, 64.80, 34.29, 30.58, 23.14  
Negative amplitude : 132.84, 132.06, 

129.77, 129.77

4
60%

Dark yellow
204-205

3177 (N-H)
 3082 (Ar-H)

 2987-2903 (aliph. C-H) 1676 and 
1658 (2 C=O)

12.34 (s, 1H, NH)
 7.86 (t, 1H, Ar-H)

7.58-7.48 (m, 3H, Ar-H)
 4.06 (s, 4H, CH2)
 3.94 (s, 3H, CH3)
3.76 (s, 2H, CH2)

3.06-3.02 (t, 2H, J= 6.38 Hz, CH2)
2.93 (s, 2H, CH2)

 1.99-1.96 (t, 2H, J=6.38 Hz, CH2)

Pozitive amplitude : 166.81, 163.81, 
148.30, 134.01, 131.60, 130.13, 125.01, 
112.24, 108.41, 64.84, 38.83, 35.01, 
31.72, 25.23 Negative amplitude : 

132.76, 131.12, 126.99, 51.44

5
55%

Pale brown
238-240

3201 (N-H)
3084 (Ar-H)

2962-2899 (aliph. C-H)
2212 (C≡N)

 1679 and 1621 (2C=O)

12.39 (s, 1H, NH)
8.27-8.22 (t, 1H, J= 7.20 Hz, Ar-H)
7.94-7.89 (t, 1H, J= 7.20 Hz, Ar-H)

7.84-7.75 (dt, 2H, Ar-H)
3.99 (s, 4H, CH2)
2.83 (s, 2H, CH2)
2.64 (t, 2H, CH2)
1.87 (t, 2H, CH2)

Pozitive amplitude: 165.60, 148.00, 
146.80, 131.06, 130,11, 125.70, 113.76, 
107.46, 94.09, 63.70, 33.60, 30.31, 

22.31.
 Negative amplitude : 134.64, 131.35, 

129.27, 124.19

6
58%

Brown
125-127

3349 (N-H)
3082 (Ar-H)

2960-2878 (aliph. C-H)
1716, 1667 and 1615 (3C=O).

11.93 (s, 1H, NH)
7.82 (t, 1H, Ar-H)

7.49-7.38 (m, 3H, Ar-H)
4.06 (s, 4H, CH2)
3.86 (s, 3H, CH3)

3.05-3.02 (t, 2H, J= 6.42 Hz, CH2)
2.87 (s, 2H, CH2)

1.98-1.95 (t, 2H, J=6.42 Hz, CH2)

Pozitive amplitude: 166.99, 162.90, 
148.29, 133.68, 131.72, 124.36, 130.20, 

111.93, 107.85, 38.75, 35.09, 31.98, 
25.23.

 Negative amplitude : 132.12,130.01, 
127.63

3    2-((2-oxo-2,3-dihydro-1H-inden-1-yl)diazenyl)-4,7-dihydro-5H-spiro[benzo[b]thiophene-6,2’-[1,3]dioxolane]-3-carbonitrile
4   Methyl 2-((2-oxo-2,3-dihydro-1H-inden-1-yl)diazenyl)-4,7-dihydro-5H-spiro[benzo[b]thiophene-6,2’-[1,3]dioxolane]-3-carboxylate
5    2-((1,3-dioxo-2,3-dihydro-1H-inden-2-yl)diazenyl)-4,7-dihydro-5H-spiro[benzo[b] thiophene-6,2’-[1,3]dioxolane]-3-carbonitrile
6    Methyl 2-((1,3-dioxo-2,3-dihydro-1H-inden-2-yl)diazenyl)-4,7-dihydro-5H-spiro[benzo[b] thiophene-6,2’-[1,3]dioxolane]-3-carboxylate
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Scheme 3. Tautomeric form of diazo compounds.

CONCLUSION

Amine compounds were synthesized by the Gewald’s 
method, based on the ketone compounds 1,4-dioxaspiro[4.5]
decan-8-one. The preparation of diazonium compounds 
of amino thiophene compounds differs considerably from 
aniline-derived compounds. For this reason, it is necessary 
to be extremely careful when preparing diazonium salts of 
these compounds. Synthesis of compounds with high yields 
is possible when the relevant literature is followed. It was 
observed that the compounds obtained as a result of the 
interlocking of 1 and 2 amine compounds with 2-indanone 
and 1,3-indandione preferred the hydrazo form due to the low 
area of the NH groups (Scheme 3). 

The fact that the NH peak in the docked compounds is at (3-
6), 9.65, 12.34, 12.39, 11.93 ppm, respectively, indicates that the 
compounds are in the form of hydrazo. The aromatic peaks of 
the compounds were detected in the range of 7.98-7.43 ppm 
for compound no. 3, and in the range of 7.86-7.48 ppm for 
compound no. 4, in the range of 8.27-7.75 ppm for compound 
no. 5, in the range of 7.82-7.38 ppm for compound no. 6. 
The CH2 group between the two oxygens of the compounds 
was observed as a singlet of 4.09, 4.06, 3.99 and 4.06 ppm, 
respectively. Additionally, the CH3 group belonging to the 
ester group was observed 3.94 ppm for substance 4 and 3.86 
ppm for substance 6. It was observed that the CH2 group, 
which was not hydrogen in its neighbor in the aliphatic ring 
structure, was divided into triplets at (3-6), 3.79 ppm, 2.93 
ppm, 2.83 ppm, 2.87 ppm, respectively, and the neighboring 
CH2 groups were split into triplets at 2.86 ppm, 3.04 ppm, 2.64 
ppm, 3.02 ppm, and the other CH2 group was at 1.99 ppm, 1.98 
ppm, 1.87 ppm, 1.97 ppm. 

The compounds are present in the hydrazo tautomer on the 
13C-APT NMR spectrum.

In the 13C-APT NMR spectrum of the compounds, it was 
observed that the carbon peaks of the non-hydrogen C and 
CH2 groups with two hydrogen atoms on them came out at 
positive amplitude. Carbons in the indanone ring and with 
hydrogen atom on it have been observed in the spectrum 
13C-APT at negative amplitude and in the range of 134.64 to 
124.19 ppm.
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OVERVIEW 
The multi-step process of drug research and development 
includes clinical testing, manufacturing approval, and drug 
discovery. It is costly, time-consuming, complex, and has a 
high attrition rate (Waring M.J. et al. 2015). Clinical trial drug 
attrition results in a significant loss of resources (Fleming 
N. 2018). Chemical and biological scientists have faced a 
significant problem over the past 20 years: creating effective 
and sophisticated systems for the targeted administration 
of therapeutic substances with maximum efficiency and 
minimal danger (Lipinski CF., 2019). Another obstacle in 
the process of designing and developing new drugs is the 
expense and duration involved in creating novel therapeutic 
agents (Hamet P., Tremblay J., 2017). Researchers all over the 
world have resorted to computational techniques like virtual 
screening (VS) and molecular docking, also referred to as 
traditional approaches, to try and minimize these difficulties 
and barriers; however, these methods have also introduced 
problems like inaccuracy and inefficiency (Hassanzadeh 
P. et al., 2019). Long and intricate processes like target 
identification and validation, therapeutic screening, lead 
compound optimization, preclinical and clinical trials, and 
manufacturing applications are all part of the drug research 
and design process. The process of identifying the medication 
that works best to treat a condition is further complicated by 
all these procedures. Consequently, controlling process speed 
and cost is the largest issue facing pharmaceutical businesses 
(Zhang L. et al., 2017). By providing straightforward, scientific 
solutions to all of these issues, artificial intelligence shortens 
the process’s time and expense (Jordan A.M., 2018).  

Machine intelligence, another name for artificial intelligence, 
is the capacity of computer systems to learn from inputs or 
past data. When a machine simulates cognitive behavior 
linked to learning and problem-solving in the human 
brain, it is said to be artificial intelligence (Goel AK, Davies 
J (2019) Artificial intelligence. In: Cambridge Handbook 
of Intelligence. Cambridge). The fields of logic, statistics, 
cognitive psychology, decision theory, cybernetics, computer 
engineering, neuroscience, and linguistics are the foundations 
of artificial intelligence (AI). A better understanding of AI will 
help to mitigate its negative effects on worker safety, health, 
and welfare as well as its opportunities and challenges for the 
future of work (Russell S.J.; Norvig, P., 2016). 

1.THE EMERGENCE OF ARTIFICIAL INTELLIGENCE 
Robotics is widely acknowledged as the source of artificial 

intelligence. The Czech word “robota,” which means “robot,” 
was originally used in the science fiction drama “Rossum’s 
Universal Robots” by author Karel Capek in 1921. The term 
“robot” was made famous by Isaac Asimov in the middle of 
the 20th century while compiling a collection of contemporary 
science fiction short stories. But the earliest record of a 
humanoid automaton dates back to the third century in China, 
when Yan Shi, a mechanical expert, gave the Zhou Emperor 
Mu a handcrafted, humanoid mechanical figure composed of 
wood, leather, and synthetic materials (Hamet P, Tremblay J., 
2017). Al-Jazari, a Muslim philosopher from the Golden Age, 
invented a humanoid robot that could strike cymbals in the 
12th century. Leonardo da Vinci studied human anatomy in 
great detail throughout the Renaissance in order to construct 
his humanoid robot. Only in the 1950s were his 1495 sketches 
unearthed. Driven by pulleys and wires, Leonardo’s robot was 
a knight-like device that could sit, stand, swing its arms, and 
move its head and jaw. 

From Charles Babbage, who created the first mechanical 
computer in 1850, to the question “can machines think?” in 
1950, computer scientists and science fiction authors were 
captivated by the notion of machine intelligence comparable 
to human intelligence. Alan Turing proposed a machine 
intelligence test in 1950. This test, often known as the Turing 
test, assesses a machine’s capacity for intelligent behavior 
that is on par with or identical to that of a human. If “a 
human interrogator, after some written questions have been 
posted, cannot tell whether the written answers come from 
a human or a machine,” then the computer passes the test. 
In order to pass the Turing test, a computer needs to be able 
to recognize speech, store information from what it hears or 
knows (knowledge representation), utilize that information to 
answer questions and make inferences (automatic reasoning), 
and recognize new patterns in order to adapt to changing 
conditions (ML).  The computer will meet the requirements 
of the so-called Total Turing test if it is equipped with two 
more capabilities: computer vision and physical interaction. 
The primary focuses of AI research and development at the 
moment are represented by these six capabilities (Howard J., 
2019). 

When Arthur L. Samuel created an IBM checkers software 
in 1952, he popularized the phrase “machine learning.” “The 
science and engineering of making intelligent machines” is 
how John McCarthy defined artificial intelligence (AI) when 
he first used the word in 1955. He had a significant impact on 
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AI’s early development. He and his colleagues created the 
field of artificial intelligence during a 1956 conference held 
at Dartmouth College. This event gave rise to the term that 
became a new field of study spanning multiple disciplines 
and served as the conceptual foundation for all ensuing 
computer-related research and development projects 
(Hamet P., Tremblay J., 2017). Frank Rosenblatt created the 
perceptron in 1957 with the purpose of recognizing images 
(Rosenblatt F., 1957). The continuous back-propagation 
model was created by Henry J. Kelley in 1960, and Stuart 
Dreyfus created a more straightforward version in 1962 based 
solely on the chain rule (Kelley H.J., 2012; Dreyfus S., 1962). 
The first functional deep learning networks were created in 
1965 by Ivakhnenko and Lapa (Gupta R., et al., 2021). Around 
1980, Kunihiko Fukushima created the first convolutional 
neural network (CNN), which was modeled after the structure 
of an animal’s visual cortex (Fukushima K., 1988). 

1.1. SYSTEMATIC LEARNING 
Machine learning (ML) is a subfield of artificial intelligence that 
allows computers to learn from data. It has become popular 
for using computers to make predictions, acquire cognitive 
insights, and assist in decision-making (Jordan M.I., Mitchell 
T.M., 2015). ML is a break from earlier artificial intelligence 
techniques, which worked by hand-coding a full set of logic 
rules into software in an effort to foresee every scenario 
that could arise. With machine learning (ML), computers 
can use cutting-edge software techniques to extract their 
own rules (Haugeland J. Artificial Intelligence: The Very Idea. 
Cambridge).   

1.1.2. GUIDED EXPERIENCE  
Using a training dataset that has been precisely labeled by 
a human expert, supervised learning looks for patterns and 
makes predictions (Maini V. et al., 2019). A radiographic 
data image classification algorithm can learn the correct 
relationship between an input image (X-ray, for example) 
and an output label (lung cancer) using a supervised learning 
training dataset. It can then use this relationship to classify 
unlabeled images that the computer has never seen before 
(Choy G. et al., 2018).   

1.1.3.UNSUPERVISED LEARNING 
There is no usage of a preset training dataset. The learning 
algorithm receives unlabeled data; without human assistance, 
it then finds the data’s hidden structure and groups the data 
into clusters (Hinton G., Sejnowski T.J., 1999; James G. et al., 
2017).   

1.1.4.SEMI-SUPERVISED LEARNING  
It’s a machine learning technique for better comprehending a 
dataset’s structure. Currently, a variety of industry sectors are 
producing large volumes of unlabeled data from text, audio, 
and images (Chapelle O. et al., 2006).

1.1.5. LEARNING REINFORCEMENT  
Reinforcement learning is a type of computer experimentation 
that is derived from basic learning theory in psychology. It is a 
training approach that is based on rewarding good behaviors 
and penalizing undesired ones (Thorndike E., 1932, Varian H., 

2019). With reinforcement learning, a machine may be taught 
the right answers by applying incentives and penalties in the 
same way that humans learn by making mistakes (Sutton 
RS, Barto AG., 2018). Reinforcement learning can be utilized 
in conjunction with neural networks to train a robot to grasp 
objects it has never seen before or to operate autonomous 
vehicles (Knight W., 2017). 

1.1.6. DEEP NEURAL NETWORKS 
Neural networks that are fully connected and have several 
hidden layers. There are several nonlinear processing units 
in each hidden layer. DNNs use several neurons in numerous 
layers to automatically extract features at hierarchical levels 
(D’Souza S., et al., 2020). 

1.1.7.DEEP LEARNING 
According to Goodfellow, Bengio, and Courville (2016), deep 
learning is a subtype of neural networks that recognizes 
patterns using many processing layers of coupled neurons 
between input and output layers. In the areas of speech 
recognition, image identification, and natural language 
understanding, deep learning algorithms have made great 
progress (Krizhevsky A., et al, 2012; Hinton G., et al, 2012; 
Hirschberg J., et al, 2015).  

2.GENERAL USAGE AREAS OF ARTIFICIAL INTELLIGENCE 
2.1. ELECTRONIC DEVICES 
Functional sensors are not as valuable as advanced or smart 
sensors. To monitor various parameters, these smart sensors 
can be surgically implanted in the body, fastened to safety 
gear, or fastened to any item (Nag A., et al., 2017; Howard 
J., 2019).  The Internet of Things (IoT) can be created by 
connecting any product or device with integrated sensors to 
the internet and other similar devices (Chui M., et al., 2010).  
Applications of artificial intelligence are being brought into 
a wide range of industries, including banking, insurance, 
criminal justice, healthcare, and national security (West D.M., 
Allen J.R., 2018). Cutting-edge sensor systems can “sense” 
their surroundings using deep learning models, much like 
how humans perceive sound and vision (Howard J., 2019). 

2.2.ROBOTIC DEVICES 
“Cloud robotics” allows one AI-enabled robotic device to 
upload its learning experience to all other robots that are 
linked. (B. Kehoe and others, 2015). All cloud-connected 
robotic devices can be updated to use the new procedure 
when a robot’s output reveals a safer way to complete a task 
at work. Robotics can learn more effectively through universal 
robotic upgradability in a cloud-connected network than 
through human learning, which is individually dependant 
(Pratt G.A., 2015). 

2.3.DECISION SUPPORT SYSTEMS 
A multipurpose informative tool with AI support can be used 
to extract information from data for applications involving 
decisionmaking (Howard J., 2019). Utilizing data already 
recorded in management information systems, technologies 
are being used to support business decisions as a result of 
the notion that computers should support decision makers 
(Bonini C.P., 1963; Pervan G., Willcocks L., 2005). Many industry 
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sectors, particularly the medical field, use ML-enabled DSSs 
for decision-making (Kononenko I., 2001; Topol E., 2019). 
Clinical DSSs are marketed as having the ability to increase 
diagnostic accuracy and assist physicians in understanding 
the intricate relationships between clinical variable scores. 
The healthcare industry generates large amounts of data, 
which make them ideal learning inputs for ML-enabled DSSs 
(Ehteshami Bejnordi B., et al., 2017; Obermeyer Z, Emanuel 
E.J., 2016; Phillips-Wren G., 2012). Several studies that have 
used ML-enabled DSSs to date include: 
Lung cancer screening (Ardila D., et al., 2019), 
Detection of pulmonary tuberculosis (Lakhani P., Sundaram 
B., 2017), 
Determination of diabetic retinopathy (Gulsen V., et al., 2016; 
Kanagasingam Y., et al., 2018), 
Skin cancer diagnosis (Esteva A., et al., 2017), 
Anticancer medication response prediction in precision 
oncology therapy (Azuaje F., 2019; Tan M., 2016), 
Progress has been made in areas such using retinal pictures 
to predict cardiovascular risk factors (Poplin R., et al., 2018). 

Transforming research findings into clinical advancements 
is still a difficult undertaking, despite the early research 
accomplishments using machine learning to huge medical 
datasets holding significant potential in enhancing the quality 
of healthcare (Deo R.C., 2015). For instance, an AI-enabled 
ML image classifier for melanoma skin cancer that is trained 
solely on fair skin types will reinforce current health disparities 
rather than serve as a means of eradicating them (Adamson 
A.S., Smith A., 2018). 

3.DRUG DISCOVERY PROCESS AND ARTIFICIAL 
INTELLIGENCE 
3.1. PROCESS OF DRUGS DISCOVERY 
3.1.1.DISEASE MODELLING AND TARGET IDENTIFICATION 

The success rate of drug development is greatly impacted 
by disease modeling and target identification, which is 
a crucial initial phase in the drug discovery process (Pun 
F.W., et al., 2023). Furthermore, target identification helps 
researchers understand the mode of action of unknown 
medications, which makes it a critical step in the discovery 
and development of new drugs (Schenone M., et al., 2013). 
Researchers can more effectively tailor a medication for a 
specific ailment or disease by identifying the molecular target 
of that medication (McFedries A., et al., 2013; Hughes J.P., et 
al., 2010). To maximize medication selectivity and minimize 
possible adverse effects, target identification is also crucial 
(Schenone M., et al., 2013; Hughes J.P., et al., 2010).  

A molecule must be “druggable” in order to have even the 
remotest chance of being a target for medication. The field of 
drug development is shifting toward the application of novel 
design principles to molecules, connecting them to difficult 
biological targets for novel medications of the future or 
novel approaches to dosage modification. The conventional 
pharmaceutical industry concentrates on creating tiny 
compounds that are orally bioavailable and have specific 
objectives (Sarkar C., et al., 2023).
 
 

Figure 1. Artificial Intelligence’s role in medication discovery. Various 
steps of drug discovery, including as drug design, chemical synthesis, 
drug reuse, drug screening, drug interaction prediction, optimization, 
data analysis, and modeling, can benefit from the application of 
artificial intelligence.  

Millions of molecules may be present in datasets used by 
pharmaceutical companies for medication research, but 
conventional machine learning techniques may not be able 
to handle this volume of data. Though computational models 
based on the quantitative structure-activity relationship 
(QSAR) can rapidly predict a large number of compounds 
or basic physicochemical parameters like logP (partition 
coefficient), they are not very good at predicting complex 
biological properties. Additionally, QSAR-based models 
have issues with experimental data error and insufficient 
experimental validation on training sets. In order to address 
these issues, new AI techniques like deep learning (DL) and 
associated modeling investigations can be used for large data 
modeling and analysis-based safety and efficacy evaluations 
of pharmaceutical compounds (Paul D., et al., 2021). 

3.1.2. DRUG SCREENING WITH ARTIFICIAL INTELLIGENCE 
3.1.2.1. PHYSICAL AND CHEMICAL PROPERTIES 
PREDICTION 
When developing a new drug, physicochemical characteristics 
like solubility, intrinsic permeability, degree of ionization, and 
partition coefficient (logP) should be taken into account 
as they have an indirect impact on the pharmacokinetic 
characteristics of the drug and its target receptor family 
(Zang Q., et al., 2017). A variety of AI-based instruments 
are available for physicochemical property prediction. For 
instance, ML trains the program using massive data sets 
produced during prior chemical optimization (Yang X., et al., 
2019).  Drug design algorithms use chemical descriptors, such 
as coordinates of 3D atoms, electron density surrounding the 
molecule, and SMILES sequences, to produce appropriate 
molecules via DNN and subsequently predict their attributes 
(Baringhaus K.H., Hessler G., 2018).  

3.1.2.2. THE BIOACTIVITY PREDICTION 
Drug molecules’ ability to generate a therapeutic response 
is contingent upon their affinity for the target protein or 
receptor; those that do not exhibit any interaction with the 
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targeted protein will not be effective. Toxic interactions 
between produced medication molecules and undesirable 
proteins or receptors can also occur in certain situations. As 
a result, drug-target interaction prediction greatly depends 
on drug target binding affinity (DTBA). AI-based techniques 
can calculate a drug’s binding affinity by considering the 
characteristics or similarities between the drug and its target. 
While similarity-based interactions consider the similarity 
between the drug and the target and presume that similar 
drugs will interact with the same targets, feature-based 
interactions identify the chemical moieties of the drug and 
the target to determine feature vectors (Öztürk H., et al., 
2018). 

To predict drug-target interactions, a variety of techniques, 
such as machine learning and deep learning, have been 
employed. To determine DTBA, machine learning (ML) 
techniques like Kronecker regularized least squares (KronRLS) 
assess how similar medicines and protein molecules are. 
Similarly, SimBoost took into account both feature-based and 
similarity-based interactions while predicting DTBA using 
regression trees (Öztürk H., et al., 2018). 

3.1.2.3. TOXICITY PREDICTION 
Any pharmacological molecule’s predicted toxicity can be 
utilized as a guide to prevent harmful consequences, and cell-
based in vitro experiments are frequently employed as pilot 
research. The expense of drug discovery rises when research 
on animals are carried out to ascertain a compound’s toxicity 
right after. Cutting-edge AI-based methods either predict a 
compound’s toxicity based on input features or search for 
commonalities between compounds. By identifying static 
and dynamic properties like molecular weight and Van der 
Waals volume within the chemical descriptors of molecules, 
an ML algorithm named DeepTox outperformed all other 
methods. It was also able to predict a molecule’s toxicity with 
high efficiency using 2500 predefined toxicophore properties 
(Mayr A., et al., 2016). 

3.2. DESIGN OF DRUG MOLECULES WITH ARTIFICIAL 
INTELLIGENCE 
The necessity of developing novel medications is underscored 
by the advent of pandemics and epidemics, as well as the 
growth of grave illnesses like cancer and heart disease. 
Target selection, validation, high-throughput screening, 
animal studies, safety and efficacy protocols, clinical trials, 
and regulatory approval are all necessary steps in the often 
multi-step process of drug discovery (Vamathevan J., et al., 
2019). Certain phases of this process, like finding new targets, 
assessing drug-target interactions, researching disease 
mechanisms, and enhancing small-molecule drug design and 
optimization, can benefit from the application of artificial 
intelligence-based techniques (Jeon J., et al., 2014; Katsila 
T., et al., 2016; Lee L., et al., 2019; Nicolaou C.A., Brown N., 
2013; Vamathevan J., et al., 2019). These techniques can also 
be applied to the investigation of pharmacological efficacy, 
response, and resistance as well as the identification and 
development of prognostic biomarkers (Qureshi R., et al., 
2022). 

3.2.1. IDENTIFICATION OF THE TARGET IN DRUG 
DISCOVERY 
Target identification is the process of finding molecules 
(typically proteins) that have the ability to change a disease 
state. Numerous data sources, such as gene expression 
profiles, protein-protein interaction networks, genomic, and 
proteomic data, can be evaluated using machine learning 
(ML) methods to find possible targets that may be involved in 
disease pathways (Sliwoski G., et al., 2014). 

Determining the cause of the illness and the target is the 
first stage in defining a target (Lv B. M., et al., 2014). Tree-
based approaches, GNNs, and graphs can be used to 
determine the causal links between genes and diseases. It 
was also suggested to identify genes linked to druggable 
morbidity using a decision tree-based meta-classifier that 
was trained on a network topology that included protein-
protein, metabolic and transcription relationships, tissue 
expression of proteins, and subcellular localization (Qureshi 
R., et al., 2023). Key characteristics from the decision tree 
included regulation by several transcription factors, centrality 
in metabolic pathways, and extracellular placement. Based 
on characteristics including protein-protein interaction, 
gene expression, DNA copy number, and the presence of 
mutations, ML-based techniques categorized proteins as 
therapeutic targets or non-targets for particular diseases like 
lung, pancreatic, and ovarian cancer (Jeon J., et al., 2014). 

3.2.2. PREDICTION OF TARGET PROTEİN STRUCTURE 
The development of the disease involves many proteins, 
some of which are overexpressed. Predicting the target 
protein structure while creating a therapeutic molecule is 
therefore crucial for the selective targeting of disease. By 
anticipating the 3D protein structure as the design aligns with 
the target protein region’s chemical environment, artificial 
intelligence can support structurebased drug discovery by 
assisting in the prediction of a compound’s effect on the 
target as well as safety concerns prior to synthesis (Wann 
F., Zeng J.M., 2016). In order to predict the 3D target protein 
structure, AlphaFold, an artificial intelligence tool based on 
DNNs, was used to analyze the angles of peptide bonds and 
the distances between adjacent amino acids. It demonstrated 
excellent results, correctly predicting 25 out of 43 structures 
(Paul D., et al., 2021). 

3.2.3. DRUG-PROTEIN INTERACTION PREDICTION 
The effectiveness of therapy is greatly dependent on 
drug-protein interactions. Understanding drug efficacy, 
permitting the bait and switch of medications, and avoiding 
polypharmacology all depend on the ability to predict how 
a drug will interact with a receptor or protein. Different AI 
techniques have improved therapeutic efficacy by accurately 
predicting ligand-protein interactions (Wann F., Zeng J.M., 
2016).  

Because AI can anticipate drug-target interactions, it can 
also be used in Phase II clinical trials to assist minimize 
polypharmacology and reuse current medications (Mak K.K., 
Pichika M.R., 2019). This also lowers costs because it is more 
expensive to relaunch a current drug than to introduce a 
brand-new medicinal entity (Paul D., et al., 2021). The potential 
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for polypharmacology—a drug molecule’s propensity to bind 
with many receptors and cause off-target adverse effects—
can also be predicted by drug-protein interactions (Li X., 
et al., 2017). By using polypharmacology logic to design 
novel molecules, artificial intelligence can contribute to the 
production of safer pharmaceutical molecules (Reddy A.S., 
Zhang S., 2014). 

4. ARTIFICIAL INTELLIGENCE ALGORITHMS USED IN 
DRUG DISCOVERY PROCESS 
4.1. MACHINE LEARNING (ML) ALGORITHIMS 
Supervised and unsupervised learning are the two primary 
categories of machine learning algorithms. Unsupervised 
learning detects patterns in a set of instances, frequently 
without labels for the instances, and the data is frequently 
transformed to a lower dimension to recognize patterns 
in high dimensional data using unsupervised learning 
algorithms before recognizing patterns. Supervised learning 
learns by training instances with known labels to determine 
the labels for new instances. Not only is unsupervised learning 
more effective in a low-dimensional space, but dimensionality 
reduction also makes the recognized model easier to 
understand. Semi-experienced and reinforcement learning 
can be created by combining supervised and unsupervised 
learning; both functions can be used to different types of data 
(Rifaioglu A.S., et al., 2019).  

ML algorithms are utilized in the drug development process 
to create a variety of models that forecast the chemical, 
physical, and biological characteristics of substances (Patel 
L., et al., 2020). All phases of the drug discovery process, 
including identifying novel drug uses, forecasting drug-
protein interactions, determining drug efficacy, supplying 
safety biomarkers, and maximizing molecular bioactivity, 
can benefit from the application of machine learning (ML) 
algorithms (Patel L. et al., 2020). 

Figure 2. Commonly used ML algorithms.

RANDOM FOREST (RF) 
RF is a popular method that is specifically made for big 
datasets with plenty of characteristics. It makes things easier 
by eliminating outliers ( Outliers are values that deviate 
significantly from the general trend in the data. They need 
to be taken into account because they can mislead the ML 
model, affect its accuracy and cause poor performance. 
Random forest performs better when predicting variables 
like the Human Development Index (HDI) when techniques 
like winsorizing and random oversampling are used to handle 
outliers and imbalanced data (Notodiputro K.A., Sartono B., 
Zubedi F., 2022)) and categorizes and identifies datasets 
according to the relative features that are classified for a 
certain algorithm. In addition to being trained for accessibility 
using a variety of huge inputs, variables, and data gathering 

from numerous databases, it is helpful in a variety of contexts, 
including referring to missing data, working with outliers 
(For instance, the random forest method can be requested to 
choose the most valuable characteristic out of x attributes. 
If desired, this information can then be utilized in another 
desired model), and predicting features for classification 
(Breiman L., 2001). Many independent decision trees make up 
the mathematical process that underpins RF as a whole; each 
tree determines a forecast, and the tree with the greatest 
number of votes is deemed optimal (Sarica A., et al., 2017). By 
combining numerous predictions instead of concentrating on 
just one, multiple decision trees reduce individual errors (Patel 
L. et al., 2020). Regression, classifiers, and feature selection 
are the three main uses of RFs in drug discovery. Accelerating 
the training process, employing fewer parameters, loading 
missing data, and merging nonparametric data can be 
added to the list of primary factors that go along with RF in 
drug development (Cano G., et al., 2017). Multivariate RFs 
are experts in reducing error by calculating different error 
estimation methods inside the system. By feeding in data 
with combinations of genetic and epigenetic characteristics, 
the computational framework enables the framework to 
predict the mean and confidence interval of medication 
reactions. This is a crucial characteristic needed to analyze 
any medication that will be used in clinical trials (Rahman R., 
et al., 2017). 

NAİVE BAYESİAN (NB) 
A subset of supervised learning techniques known as NB 
algorithms is now a vital tool for classification in predictive 
modeling. Depending on the input features, factor correlation, 
and dimensionality of the data, standard NB algorithms can 
be one of the most effective methods for classifying dataset 
features. These methods increase the accuracy of retrieved 
datasets, which frequently come from large, mixed sources 
(Bielza C., Larrañaga P., 2014; Gilboa E., et al., 2013; Kim S.B., 
et al., 2006; Ratanamahatana C., Gunopulos D., 2010; Sun H., 
2005). 

SUPPORT VECTOR MACHINE (SVM) 
SVMs are supervised learning algorithms that are used in the 
drug discovery process to derive a hyperplane and divide 
classes of compounds according to a feature selector. It 
creates an endless number of hyperplanes by taking use 
of commonalities across classes. It trains on linear data by 
projecting classes of chemicals into chemical feature space, 
based on features that are chosen. A hyperplane used to 
categorize data points by establishing decision boundaries is 
an ideal hyperplane that is obtained by eliminating the largest 
margin between classes in N (number of features) dimensional 
space (Heikamp K., Bajorath J., 2013). SVM’s capacity to 
differentiate between active and inactive compounds and 
rank compounds in each database makes it a crucial tool for 
drug discovery. Regression models are essential for figuring 
out how a medicine and ligand interact since they make 
predictions by running a query against databases. Multiple 
situations can be associated with SVM when multiple active 
compounds of interest are screened against a single protein. 
SVM classification’s primary focus is on binary class prediction, 
which includes a subset that can differentiate between active 
and inactive chemicals and substances (Patel L. et al., 2020).  
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SVM is especially made to incorporate ligands and target 
proteins as an essential part of modeling drug-target 
interaction (Heikamp and Bajorath, 2013). It can rate 
compounds from various databases according to their 
likelihood of being active for any computational screening 
in the drug discovery process. By training the algorithm with 
different descriptors for feature selectors, such as target 
protein and 2D fingerprints, the procedure can be altered. 
Depending on which way a chemical is positioned relative to 
the hyperplane, a negative or positive class label is created, 
resulting in a ranking of compounds from most selective to 
least selective (Wassermann A.M., et al., 2010; Hinselmann 
G., et al., 2011). For non-linear data, kernel functions are 
employed to optimize outcomes. According to Patel L. et al. 
(2020), kernel functions plot data in a higher dimensional 
space that allows for class classification. 

4.2. DL ALGORITHMS AND ARTIFICIAL NEURAL 
NETWORKS 
The goal of artificial neural networks (ANNs) is to simulate 
how neurons behave in the natural world. Several artificial 
neurons arranged in ordered layers make up a common 
artificial neural network architecture (Yang X., et al., 2019). Its 
most basic configuration comprises of three layers of neurons 
that communicate with one another, just like the human 
brain does. Data input occurs on the first layer, information 
processing occurs on the hidden layer, and output is the last 
layer. When every node in one layer of a feed-forward network 
is connected to every other layer, the neurons in an artificial 
neural network (ANN) are said to be dense or fully connected. 
Only these types of networks are referred to as multilayer 
perceptrons (MLPs; multiple hidden layers), dense neural 
networks, or complete neural networks. Stated otherwise, 
a network is deeper the more hidden levels it contains.  
The depth of the model is determined by the length of the 
chain connecting the many functions that make up these 
networks. This idea gives rise to the term “deep learning,” 
which describes learning systems with several information 
processing layers that may simulate high-level abstractions in 
data (Lavecchia A., 2019). 

In practically every scientific and technological discipline, 
deep learning algorithms are acknowledged as one of the most 
advanced areas of development and research. DL algorithms 
have made it possible for computer models to learn how to 
represent multidimensional data through abstraction and 
have helped ML algorithms overcome a number of obstacles 
(Patel L. et al., 2020).  

DL algorithms are now the standard approach for lead 
molecule, target, and drug activity prediction in the drug 
discovery process. Neural network systems, which are used to 
construct systems capable of complicated data recognition, 
interpretation, and production, are frequently the foundation 
of deep learning. Deep neural networks (DNNs), recurrent 
neural networks (RNNs), and convolutional neural networks 
(CNNs) are the primary subsets of neural networks that are 
being utilized in drug discovery (Dana D. et al., 2018; Korotcov 
A., et al., 2017; Ekins S., 2016). 

 

Figure 3. Commonly used DL algorithms.  

DEEP NEURAL NETWORKS (DNN) 
From the input layer to the hidden layer and finally to the 
output layer, DNNs operate on a single path data stream. 
Typically, supervised learning algorithms that have been 
trained are used to identify the outputs. A DNN may be trained 
to accomplish complicated tasks using guided reinforcement 
learning and supervised learning techniques. While a 
predictive DNN can forecast the chemical characteristics 
of novel compounds, a generative DNN may create new 
chemical compounds from preexisting libraries and training 
sets (D’Souza S., et al., 2020; Baskin I.I., et al., 2016).  The 
correlation between these substances’ chemical structure 
and activity is ascertained by the utilization of QSAR models. 
One of the most sophisticated applications of deep learning 
(DL)-based artificial intelligence (AI) in drug discovery 
and development today is QSAR analysis, which gives 
scientists access to two-dimensional chemical structures and 
physicochemical characteristics that are associated with a 
molecule’s activity. Additional research into the geometric 
structure influencing ligand-target interactions has been 
made possible by 3D-QSAR (Chen R., et al., 2018; Ghasemi F., 
et al., 2018). 

RECIPIENT NEURAL NETWORKS (RNN) 
Sequence prediction was the original purpose of RNN 
creation. These networks only accept an input stream 
with varying lengths (Askr R., et al., 2023). Self-iterative or 
feedback connections between neurons in various levels 
are what distinguish them. such loops in a network, they 
feature feedback components to reuse internal information 
and function especially well with sequential data, such text, 
phrases, and protein sequence data. To get around the 
challenges of storing long-term data, they are additionally 
outfitted with an internal memory.  

The chemical synthesis and characterisation phase becomes 
significant after the initial work on target discovery has been 
finished and a more effective technique for target-molecule 
interaction has been created. The majority of algorithms for 
new drug design and discovery use the descriptive simplified 
molecular input line input system (SMILES) nomenclature, 
which is a crucial aspect at this time. The lengthy short-
term memory subset of the RNN type has evolved into a 
dependable, standardized technique for constructing novel 
chemical structures. When it comes to utilizing neurons 
connected to the same hidden layer to create an inputoutput 
processing loop, RNNs are far more beneficial algorithms 
than DNNs and feed-forward neural networks (Patel L. et al., 
2020). 

CONVOLUTIONARY NEURAL NETWORKS (CNN) 
Developed to handle growing levels of complexity as well as 
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data preparation and aggregation, CNNs are a high-potential 
type of artificial neural network (ANN) that receives inputs, 
weights some of the inputs, and then enhances the ability to 
distinguish data (Yamashita R. et al., 2018). A convolutional 
layer with parameters made up of a collection of filters, or 
kernels, is what distinguishes convolutional neural networks 
(CNNs) from other types of neural networks. CNNs are 
designed to resemble the receptive field of the human visual 
cortex, where neurons react to stimuli. Local filters are what 
these cells do throughout the input space.  

CNNs may process data in four steps and are among the most 
versatile algorithms for handling both image and non-image 
data (Askr H., et al., 2023):  

Figure 4. Stages of processing CNNs.  

This idea of a network may make it easier to retrieve pertinent 
visual data in smaller, more manageable pieces. Neurons in a 
CNN are in charge of the preceding layer’s group of neurons 
(Askr H., et al., 2023).  

Four steps are involved in building the CNN when the input 
data is integrated into the convolutional model (Askr H., et 
al., 2023): 

Convolution: Using the given data, a feature map is created 
and then put through an objective. 

Maximum Pooling: Based on the supplied modifications, this 
aids CNN in identifying an image. 

Flattening: At this point, the data is standardized for CNN’s 
analysis. 

Complete Linking: The process of generating a model’s loss 
function is frequently referred to as the “hidden layer”. 
Image recognition, image analysis, video analysis, picture 
segmentation (splitting an image into regions with distinct 
features), and natural language processing (NLP) are among 
the tasks performed by CNNs (Chauhan et al. 2018; Tajbakhsh 
et al. 2016; Mohamed et al. 2020).  

CNNs are among the most useful tools in the drug 
development process for target and lead identification and 
characterisation, protein-ligand scoring, and in silico target-
lead interaction screening. Furthermore, CNNs have been 
utilized in the development of motility models that depict 

how cancer cells respond to various forms of therapy (Dana 
D., et al., 2018; Mencattini A., et al. 2020; Ragoza M., et al. 
2017; Rathi P.C., et al. 2020; Reher R., et al., 2020). 

5. In Silico APPROACH 
These days, with the aid of modern computers and information 
technology, the procedures involved in medication 
development, optimization, and discovery have changed due 
to the rapid evolution of technology. In the biomedical field, 
the optimization process from hit detection and hit to routing 
has been facilitated and accelerated by the use of computer-
aided or in silico design utilizing computational tools (Ekins 
S., et al., 2009). 

To find hit and lead compounds, the drug discovery industry 
often employs one of two models: the phenotype- or 
target-based method. These vary in ways that help identify 
therapeutic targets and choose or optimize small molecules 
(Dodd F.S., 2005; Swinney D.C. and Anthony J., 2011). The 
phrase “therapeutic target” refers to the location of the 
substance’s binding that will facilitate the substance’s 
biological activity (Andrade E.L. et al., 2016). 

The phenotype screening strategy, also known as advanced 
or classical pharmacology, uses better disease-relevant tests 
(such as isolated tissue or animal models of the disease, 
cell-based phenotypic analysis) to identify drugs based on 
their physiological effects. Through the interaction of several 
targets (receptors, transcription factors, enzymes, etc.) of 
a previously undisclosed target, this strategy may lead to 
the identification of a molecule that modifies the illness 
phenotype (Dodd F.S., 2005; Swinney D.C., 2012). 

The two broad categories of approaches utilized in computer-
aided drug design (CADD) are ligand-based and structure-
based. Structure-based CADD is recommended when the 
target protein’s structure is known, particularly for soluble 
proteins that crystallize readily. In the event that target 
structure information is lacking, ligand-based CADD is 
utilized by building predictive, quantitative structure-activity 
relationship (QSAR) models and using the knowledge of 
known active and inactive compounds through chemical 
similarity searches (Kapetanovic I.M., 2008; Katsila T., et al., 
2016). Drug productivity, speed, and costeffectiveness can all 
be rationalized and enhanced by using ligand- and structure-
based steps in the discovery process, such as compound 
generation by virtual screening, predicting the binding free 
energy between a ligand and a receptor, and optimizing high 
affinities (Sliwoski G., et al., 2014). 

5.1. TARGET IDENTIFICATION AND VALIDATION FOR 
THERAPEUTICS  
In target-based drug development, targets are found through 
a range of molecular techniques and instruments, such as the 
evaluation of the genome and proteins (proteomics) linked 
to a disease in humans. Targets related to human pathology 
can be found by utilizing a variety of molecular techniques, 
including RNA interference, zinc finger proteins, antisense 
oligonucleotides, tissue and cell microarrays, nucleic acid 
microarrays, and protein microarrays (Terstappen G.C., et al., 
2007; Wang S., et al., 2004).  The target is identified first in the 
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phenotypic-based approach, which observes the substance’s 
activity beforehand. 

Reverse convolution is another term for the target 
identification procedure in this method. Chemical proteomics-
based methods (affinity chromatography, activity-based 
protein profiling, label-free techniques), expression cloning 
methods, in silico methods, and others can be used to identify 
targets (Terstappen G.C., et al., 2007; Lee J., Bogyo M., 2013). 
Validation of the treatment target is necessary after 
identification. Here, the objective is to determine whether 
altering the therapeutic target will result in a believable 
biological response. To this end, validation methods include 
altering the target in disease-affected humans as well as 
using whole animal models and in vitro tools (Hughes J.P., et 
al., 2010; Terstappen G.C., Reggiani A., 2001). 

Three categories comprise the most commonly recognized 
standards for target validation in drug discovery (Andrade 
E.L., 2016):
1-Expression of the target protein or mRNA in appropriate cell 
types, animal models, or patient target tissues 
2-Target modulation produces the intended functional effect 
in cell systems. 
3-Prove that the target is responsible for the disease 
phenotype in patients or animal models. 

Typically, in vivo or in vitro experiments are used to get 
the first steps of therapeutic target validation. These are 
then followed by the use of immunohistochemistry or in 
situ hybridization techniques to express messenger RNA or 
proteins in human samples, respectively. Though the first 
method that springs to mind is protein characterization, this 
approach may be hampered by the absence of particular 
antibodies directed against a particular target; additionally, 
target validation is rarely, if ever, thought to be achieved 
solely by the target protein’s association with diseased or 
target tissue (Lindsay M.A., 2003). It’s also necessary for the 
target to have functional significance to disease modification. 
Using small molecule inhibitors, antisense oligonucleotides, 
and siRNA, target validation can also be studied in transgenic 
and gene knockout animals; however, it should be noted that 
animal models frequently do not exhibit the exact disease 
phenotype or share the same pathophysiology as observed 
in patients. Targets frequently result in differing tissue 
expression and distribution in animal models than in human 
models. Moreover, pathogenic pathways in humans can have 
a distinct mechanism of action and differ evolutionarily from 
those in animal models. It is best to confirm a target using at 
least two distinct methods before moving on to the rigorous 
clinical stage of drug development in order to prevent all of 
these issues (Andrade E.L., 2016). 

Like the more widely used biological phrases in vivo and 
in vitro, the term “in silico” refers to investigations carried 
out by computers. It explains how data is utilized to build 
computational models or simulations that can be used to 
forecast outcomes, put forth theories, and eventually result 
in new medical discoveries or advancements in therapy. The 
benefits of in silico investigations are their low cost, quick 
implementation, and capacity to minimize animal exploitation. 

This technique has been employed as a means of expediting 
the identification of promising novel therapeutics. Toxicology 
and pharmacokinetic research, as well as the investigation 
of structure-activity connections, are all included in the 
construction of in silico drug prototypes (Ekins S., et al., 
2009). To effectively direct the development of new drugs 
through the execution of in vitro and in vivo research, in silico 
studies are crucial. 

Homology modeling in the context of in silico 
pharmacodynamics is predicated on amino acid sequence 
homology, which offers details on structural and functional 
similarities. Therapeutic target structures are mapped using 
this technique, which also covers the three-dimensional 
structure of the targets (Ekins S., et al., 2009). 

Molecular docking, which predicts the bioactive conformation 
of a small molecule at the binding site of a macromolecule, is 
another technique frequently employed for pharmacodynamic 
evaluation. This approach determines the relevant binding 
affinity after providing a good approximation of the predicted 
shape and fit of the ligand in the protein cavity (Lengauer T., 
Rarey M., 1996). 

Via the use of three-dimensional macromolecular data on 
the topological arrangement of biological information as a 
prerequisite for detailed information, ligand-based virtual 
screening is based on virtual screening. Target-based 
virtual screening, which is based on receptor structure, 
selects compounds for biochemical or biological testing by 
analyzing vast compound databases using molecular docking 
techniques to establish an ideal chemical and biological space 
(Andrade E.L., 2016). 

5.3. COMPUTER AIDED DRUG DESIGN (CADD) 
Using a variety of computer tools, CADD integrates 
computational chemistry, molecular modeling, molecular 
design, and rational drug design to find and create a 
therapeutic development lead (Muegge et al., 2017). CADD 
employs two distinct methodologies, namely structure-based 
drug design (SBDD) and ligand-based drug design (LBDD), 
contingent upon the accessibility of three-dimensional 
protein or ligand structures (Vemula D., et al., 2023).  

Structure-Based Drug Design (SBDD): Characterizing the 
binding site cavity and having access to the therapeutic 
target protein’s three-dimensional structure are the two 
primary components of structure-based drug design (Kawato 
et al., 2015). SBDD has surfaced as a potential method in the 
pharmaceutical sector for ligand generation and optimization 
(Gurung et al., 2021; Jorgensen W.L., 2004; Park H., et al., 
2012). 

Ligand-Based Drug Design (LBDD): This approach is 
employed in situations where three-dimensional receptor data 
is unavailable. Understanding the chemicals that attach to the 
desired biological target is the foundation of the technique. 
By using a known ligand as a target, LBDD techniques 
establish a structure-activity relationship (SAR) between 
the ligand’s activities and physicochemical characteristics. 
This information can be used to guide the creation of novel 
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medications with increased activity or to improve currently 
available ones (Yu and MacKerell, 2017). 

6. ARTIFICIAL INTELLIGENCE IN DRUG DOSAGE FORM 
DESIGN 
For biological compartments in the human body system to 
comprehend the impact of drug delivery, physicochemical 
barriers are essential. Depending on the route of 
administration, one of the most crucial parameters for 
keeping an eye on a successful drug delivery system is the 
penetration rate. For instance, after entering the stomach, 
the medication taken orally needs to pass through the 
intestinal or gastric epithelium. This step is crucial for the 
drug’s continued bloodstream dissemination. The process 
of delivery involves moving the medication through the 
bloodstream to a specified tissue or site (Bhhatarai B., et 
al., 2019; Chavda V.P., 2019; Siepmann J., Siepmann F., 2012; 
Das P.J., et al., 2016; Colombo S., 2020). The way a medicine 
interacts with biological components greatly affects how the 
drug behaves in the body at the end. The drug’s molecular 
characteristics control the process up to the final state. 
Drugs can either actively or passively aid in their penetration. 
Drug distribution is predicted via computational analysis 
using in silico models, which are based on the molecular 
characteristics of the drug. Passive permeation is ineffective 
for small, physiologically active compounds and necessitates 
a specific delivery method. Membrane transport drives the 
process of active permeation, which is dependent on intricate 
biological interactions. The pharmacokinetic properties 
of the drug delivery system can be studied with the aid of 
numerous specific parameters employed in this intricate 
process. Research units can be better understood and multi-
layered data can be thoroughly analyzed thanks to artificial 
intelligence. In order to discover the best outcomes with 
parameter evaluation, the model to be applied methodically 
is based on a number of criteria, including simulation, scoring, 
and refinement at each stage of the inquiry. Moreover, AI is 
used to investigate how a drug delivery method affects the 
drug’s pharmacokinetics in order to improve data prediction 
for continuous improvement, precise comprehension of 
the medication’s interaction with biology, and efficient 
comprehension of toxicity and distribution. AI gathers data 
from many sources and creates indicators according to the 
chosen drug delivery system’s performance. The efficacy of 
treatment is contingent upon the precision with which AI 
selects drug delivery devices. The goal of artificial intelligence 
is to apply current treatments to newly discovered diseases. 
It is helpful in the drug discovery process in addition to the 
drug reuse approach. Formulation, pharmacokinetics, and 
medication development are influenced by the needs of the 
patient and the condition of the illness (Vora K.L., et al., 2023).
 
7. ARTIFICIAL INTELLIGENCE IN MEDICINE DISTRIBUTION  
7.1. ARTIFICIAL INTELLIGENCE TO DEVELOP ORAL 
SOLID DOSAGE FORM 
Since solid dosage forms are the most convenient to use and 
promote disease compliance, individuals choose to take them 
in the form of tablets, granules, and powdered medications 
(Jiang J. et al., 2022). In the pharmaceutical industry, tablets 
are one of the most popular formats. Preparing tablets for use 

entails a number of aspects. The formulator has established 
these characteristics to fulfill the unique demands of the 
target patient population. A variety of excipients are put into 
tablets to manage the intended product outcome, such as 
tablet disintegration, dissolution, and drug release. Artificial 
intelligence can be used to forecast drug release in the setting 
of systemic drug administration and assist in examining 
the desirable relevant aspects of improved medication 
formulations. For the purpose of developing solid dosage 
forms, artificial neural networks and their subfields, such as 
neural networks and genetic algorithms, are used to improve 
comprehension of inputs and outputs. Genetic algorithms 
are employed to forecast outcomes from the usage of input 
parameters, however artificial neural networks offer superior 
prediction skills for solid dosage forms (Galata D.L. et al., 
2021, Ghourichay M.P. et al., 2021; Navya K. et al., 2022). 

7.1.1. Drug Release Prediction Through Formulations  
The release of drugs from oral solid dosage forms advances 
our knowledge of important material characteristics and 
processing variables. Compression parameters, such as the 
pressure applied to regulate tablet hardness, the geometric 
orientation of the tablets, and drug loading properties, are 
factors that influence drug release.  In the formulation of 
drugs, artificial intelligence is used to predict drug release. As a 
result, only a small number of runs are needed to optimize the 
batch, which further reduces labor and expenses during the 
manufacturing and pilot batch scale-up processes. Artificial 
intelligence can also be used to predict drug release profiles 
and dissolution profiles, as well as investigate disintegration 
time to effectively select the best batch for subsequent scale-
up (Vora K.L. et al., 2023). 

7.1.2.Applications of Artificial Intelligence for Formulation 
of Tablet Defects 
Tablet photos are analyzed using artificial intelligence 
algorithms and computer vision techniques, which makes 
it possible to automatically and effectively detect flaws 
like cracks, discolorations, or variations in size and shape. 
The method gains a high degree of accuracy by accurately 
classifying and identifying various sorts of errors through 
the training of AI models on massive datasets of annotated 
photos. The interior structure of tablets has been studied using 
conventional techniques like Xray computed tomography, 
however these techniques still take time and interfere with the 
need for quick tablet production. To find tablet flaws, deep 
learning and X-ray tomography are combined. Not only does 
this AI-powered detection increase problem identification 
speed and accuracy, but it also minimizes human mistake 
and subjective judgment by reducing the need for manual 
inspection. AI systems’ real-time monitoring capabilities 
allow for the prompt identification of flaws, which allows for 
prompt response and can stop faulty tablets from being sold. 
In the end, incorporating AI into tablet defect detection raises 
productivity and enhances product quality while guaranteeing 
the security and effectiveness of pharmaceuticals (Vora K.L. 
et al., 2023). 

7.1.3.Artificial Intelligence for Prediction of 
Physicochemical Stability 
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AI can predict the stability of oral formulations by analyzing 
and interpreting large datasets containing drug properties, 
formulation parameters, and environmental conditions. AI 
models can assess factors like drug degradation, interactions 
with excipients, and environmental influences on formulation 
stability. These capabilities are achieved by utilizing machine 
learning algorithms and computational models. With 
the use of AI’s predictive skills, researchers may improve 
formulation designs, spot any stability problems early in 
the development process, and make wise decisions that will 
extend the shelf life and effectiveness of oral dosage forms. 
Artificial intelligence (AI) integration in stability prediction 
leads to more economical and effective drug development 
procedures, which in turn provides patients with safe and 
effective medications (Vora K.L. et al., 2023). 

7.1.4. Contribution of Artificial Intelligence to Dissolution 
Rate Predictions 
The term “dissolution rate” describes how quickly a medicine 
dissolves in a biological fluid. The drug’s bioavailability 
and therapeutic efficacy are determined by this feature. 
Because artificial intelligence models can identify important 
physicochemical properties and molecular characteristics 
that influence the dissolution process through the analysis 
of large amounts of experimental data, they have greatly 
aided in the optimization of drug formulations and dosage 
forms and helped predict dissolution rates. These models 
achieve great prediction accuracy by using machine learning 
algorithms to identify intricate patterns and correlations 
between drug characteristics and dissolution rates. Artificial 
intelligence offers valuable insights into the dissolving 
behavior of various drug formulations. These insights can 
be utilized to build more efficient drug delivery systems 
and pick the best formulation techniques for enhanced drug 
absorption and solubility. Scientists now have useful tools 
to expedite medication development, improve formulation 
techniques, and ultimately enhance patient outcomes thanks 
to artificial intelligence’s help for dissolution rate prediction 
advancements (Mukhamediev R.L. et al., 2022). 

CONCLUSION AND DISCUSSION 
Technology known as artificial intelligence has been 
incorporated into pharmaceutical R&D to expedite and 
lower the cost of the medication development and discovery 
processes. Owing to the advancement of machine learning 
theory and the synthesis of pharmacological data, artificial 
intelligence technology now functions as a potent data 
mining instrument in several drug design domains, including 
activity prediction, virtual screening, QSAR analysis, and in 
silico assessment of absorption, distribution, metabolism, 
excretion, and toxicity (ADME/T) properties (Çelik İ.N. et 
al. 2021). It can forecast proteomes, genomes, and patient-
specific dosage formulations in addition to enhancing 
currently available medications. The development of novel 
compounds with target binding qualities that improve 
therapeutic efficacy and decrease adverse effects is made 
possible by systems created in partnership with scientists 
and artificial intelligence specialists. In order to improve 
compliance, AI-enabled systems will continuously gather 
data from wearables, sensors, and remote patient monitoring. 
They will also use genetic profiles, biomarkers, and electronic 

health records to identify eligible patients, lower the cost of 
trials, and expedite approval. However, this presents ethical 
questions regarding patient consent. It has a number of 
benefits over conventional experimental techniques, including 
lower clinical trial attrition rates, fewer animal studies due 
to less frequent use of in vivo assays, process and expense 
control, and labor cost savings. Artificial intelligence (AI) is 
at the core of cutting-edge technologies because it has the 
unmatched ability to find novel candidate therapies that can 
be swiftly made available for clinical trials and, if authorized, 
integrated into healthcare. Accordingly, AI has promise for 
the creation of new medications and the repurposing of those 
already in use to treat human diseases, particularly those 
that are emerging like Coronavirus Disease 2019 (COVID-19) 
(Zhou Y., et al. 2016). Despite all of these benefits, artificial 
intelligence is still viewed as a mystery because it cannot 
be explained. Features are not well defined throughout the 
training phase, and the network designer might not know 
what is being looked at in the intermediate steps or why the 
model has reached a certain conclusion. Because of this, a lot 
of work has been done to speed up the drug discovery process 
and integrate AI tools into the system. However, before the 
full potential of AI in drug discovery and development can be 
realized, more successful applications of these tools will be 
needed (Chan H.C.S., et al. 2019). 
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INTRODUCTION
German chemist Hugo Schiff synthesized Schiff bases in 1869[1].  
Schiff bases are compounds obtained by condensing carbonyl 
groups of aldehydes or ketones with imine or azomethine groups 
under certain reaction conditions of primary amines (Figure 1)[2].  
Schiff base reactions are highly efficient and easy reactions.  
Schiff bases are prone to form complexes by reacting with 
almost all metals thanks to the nitrogen atom in the imine group, 
phenoxyl hydrogen in the structure, sulfur atom in the thiol 
group, and electron-donating atoms of carboxyl groups [3-7].

Figure 1. General scheme of Schiff base synthesis

Although there are many aldehyde and amine compounds, the 
stability of Schiff bases obtained from the reaction of these 
aldehyde compounds is different [8].  For the synthesized Schiff 
base ligands to be stable, the presence of a substituted group 
adjacent to the azomethine group and a second substitutable 
hydroxyl group increases the stability of the ligand[9].  For 
Schiff bases to show the best ligand properties, substituted 
groups such as -OH, -NH2, -SH, and -OCH3 should be attached 
to the imine group in the ortho state.  Due to the structural and 
biological properties of Schiff bases, they were first studied in 
coordination chemistry with metal complexes by Pfeiffer in 
1933 [10,11,12].

The structure of the complex formed by the ligand with metals 
is shaped by the metal salt, the mole ratio of the ligand and 
the metal salt, and the structure of the molecules. The stability 
of complexes formed by metals with multivalent ligands 
increases[13]. It is stated that the stability of Schiff bases is 
due to the Lewis base property due to the unshared electron 
pair on the nitrogen atom in the imine group, which forms stable 

compounds by coordinated covalent bonding with metal salts. 
Schiff bases are generally shown as RCH=N-Ar. R in the formula 
is aryl alkyl or alkyl substituents.

Schiff bases and the metal complexes they form have many 
uses. Metal complexes are pigment dyestuffs in textile dyeing 
since they show dyestuff properties. Depending on the structure 
of the groups in the benzene ring in the structure of Schiff 
bases, ligands showing inhibition properties are also used as 
inhibitors [14,15]. Schiff base ligands have roles in oxidizing 
biologically active molecules such as free oxygen, ascorbic acid, 
catechol, and amino acids by forming coordination compounds 
with metals[16,17]. Metal complexes of ligand compounds 
containing heterocyclic thio semicarbazides are used in health 
treatment due to their antitumor, bacterial, and antiviral 
properties[17]. In addition, it is known that platinum complexes 
show antitumoural activity and nitro and halo derivatives show 
both antimicrobial and antitumoural activity[18,19,20]. In studies 
with oxo-vanadium(IV) and oxo-vanadium(V) complexes of 
Schiff base ligands, it was observed that the compounds were 
particularly influential on plant pathogens Agrobacterium 
Tumefaciens and Helminthosporium Oryzae [21]. It is also known 
that ninhydrin and glycine derivative Schiff base metal (Co(II), 
Ni(II), Zn(II)) complexes are effective on Escherichia coli, Proteus 
Mirabilis, Staphylococcus Aureus and Streptococcus faecalis 
[22]. Ferrocene-based metal (II) Schiff base complexes were 
synthesized from ferrocenyl chalcone in a solvent-free medium 
and found antibacterial properties [23,24].

The complexes formed by Schiff bases with cadmium metal 
are important due to the special properties and application 
potential they provide in various fields. Here are some highlights 
of these complexes:

Catalytic Activity: Schiff base-cadmium complexes can be used 
as catalysts in organic synthesis. These complexes show high 
activity, especially in reactions such as oxidation, hydrogenation, 
and C-C bond formation [26].

Photophysical and Photochemical Properties: These complexes 
can be used in optoelectronic devices, photovoltaic cells, and 
light-emitting diodes (LEDs). Cadmium complexes can exhibit 
unique properties in light absorption and emission [27].
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Therapeutic Applications: Some Schiff base-cadmium 
complexes are being investigated in the biomedical field as 
anticancer, antibacterial, and antifungal agents. The biological 
activity of these complexes allows their use in treating certain 
diseases [28].

Supermolecular Chemistry: Schiff bases and cadmium can 
create supermolecular structures and materials. Such structures 
are essential in molecular recognition, sensors, and materials 
science [29].

Real-World Environmental Applications: The use of cadmium-
containing Schiff base complexes for the removal of heavy metal 
ions and environmental pollution is not just theoretical. These 
complexes hold the potential to revolutionize water treatment 
processes, making a tangible impact on our environment [30].

Coordination Chemistry and Structural Diversity: The complex 
structures of Schiff base and cadmium show diversity in 
coordination chemistry and form the basis for synthesizing 
new complexes. The structural properties of these complexes 
open the door to new research in chemistry and materials 
science [31].

For these reasons, the complexes formed by Schiff bases with 
cadmium metal play an essential role in academic research and 
industrial applications.

Figure 2.  The data of studies with Schiff Bases between 1988 
and 2022 [32]

MATERIALS AND METHODS                                    
Materials: The chemicals o-vanillin, 3-amino-4-hydroxy 
benzene sulphonic acid, and 2-amino-4,5-dimethoxy benzoic 
acid were used as starting material in the synthesis of Schiff 
base ligand and metal salt (Cd(NO3)2) used in the synthesis 
of the metal complex. Sigma-Aldrich, ethyl alcohol, acetic 
acid, and methanol solvents used were supplied by Merck.  
The UV lamp, CAMAG Muttenz-Schweiz 29200, and melting 
point apparatus, Büchi SMP 20, were used to elucidate the 
melting points of the synthesized ligands [7]. Infrared spectra 
were taken from 400 to 4000 cm-1 using a Thermo Scientific 
Nicolet 6700 FTIR spectrometer. 1H and 13C NMR spectra of 
the synthesized Schiff bases (3,5) were obtained with a liquid 
Bruker 400MHz AV model NMR spectrometer with a 400 MHz 
operating frequency. The obtained metal complexes (6,7) 

were thermally analyzed using the TA Instruments brand and 
the Q600 SDT (Simultaneous DSC/DTA/TGA) model device. 
The percentage of elements in the complexes’ structures was 
determined by the Leco brand Truspec Micro Elemental Device.

Metods: In a 100 mL reaction flask, the aldehyde compound was 
dissolved in 30 mL ethyl alcohol. Then, the amine compound 
was added at a molar ratio 1:1. The mixture was stirred until 
completely dissolved. While the reaction mixture was stirred 
under a cooler, 1-2 drops of acetic acid were added to the 
reaction flask to maintain the pH around 4-5. The reaction 
mixture was stirred under a cooler for 12 hours, and after 
precipitation with water, the solid fraction was obtained by 
filtration. The solid portion was dried, and FTIR spectroscopy 
was used to determine whether the reaction occurred [2,7,8].
Schiff base was added to a 100 mL reaction flask and 30 mL 
of methanol solvent was added to dissolve the Schiff base. 
Cd(NO3)2 metal nitrate salt was dissolved in ethanol solvent in 
a beaker and added to the reaction flask. The reaction mixture 
was stirred under reflux for 12 hours, and after precipitation with 
water, the solid was filtered and purified by washing in methanol 
solvent to obtain cadmium complexes [7,8,10].

SYNTHESIS AND ANALYSIS OF SCHIFF BASE
4-hydroxy-3-((2-hydroxy-3-methoxybenzylidene)amino)
benzenesulfonic acid (3)

4- hydroxy-3-((2-hydroxy-3-methoxybenzylidene)amino)
benzenesulfonic acid (3) ligand was synthesized from the 
reaction of o-vanillin (1) (0.5g, 3.3 mmol) with 3-amino-4-
hydroxybenzenesulfonic acid (2) (0.6g, 3.3 mmol) (Scheme 1).

3: Orange solid. E.N: 284.1oC, Yield: 0.6 g (% 56.6); IR (KBr): ν 
= 3665, 3250 (O-H), ν = 3159, 3100, 3068 (C-Harom), ν = 2933, 
2846 (C-H), 1644 (HC=N), 1610 (C=C), 1233 (C-O); 1H-NMR (400 
MHz, CDCl3): δ = 7.68,7.57, 7.48, 7.40, 7.32, 7.26, 7.14, 6.92  (m, 6H, 
CHarom), 9.09 (s, 1H, N=CHimin), 9.73 (s, 1H, S-OH), 10.28, 10.86 (s, 
2H, Cfenil-OH), 3.86 (s, 3H, -OCH3); 13C-NMR (100 MHz, CDCl3):  
δ = 162.15 (C=NH), 152.09, 151.17, 148.82, 140.66, 127.33, 124.93, 
122.96, 119.67 (Carom), 56.55 (OCH3).

(E)-2-((2-hydroxy-3-methoxybenzylidene)amino)-4,5-
dimethoxybenzoic acid (5)

(E)-2-((2-hydroxy-3-methoxybenzylidene)amino)-4,5-
dimethoxybenzoic acid (5) ligand was synthesized from the 
reaction of o-vanillin (1) (0.5g, 3.3 mmol) with 2-amino-4,5-
dimethoxybenzoic acid (4) (0.65g, 3.3 mmol) (Scheme 1).

5: Yellow solid. E.N: 218.2oC.Yield: 0.95g (% 88). IR (KBr): ν = 
3542, 3136 (O-H), ν = 3074, 3008 (C-Harom), ν = 2985, 2943, 
2901 (C-H), 1687 (C=O), 1604 (HC=N), 1513 (C=C), 1215 (C-O);  
1H-NMR (400 MHz, CDCl3): δ = 10.28 (s, 1H, COOH), 8.92  (s, 1H, 
-NCHimin), 7.46, 7.20, 7.07, 6.87 (m, 4H, CHphenyl), 3.91, 3.87, 3.80 
(m, 9H, -OCH3); 13C-NMR (100 MHz, CDCl3): δ = 167.49 (COOH), 
162.06 (HC=N), 153.06, 150.98, 148.53, 142.38, 124.01, 120.59, 
119.99, 115.76, 99.52 (Carom), 56.55 (OCH3).
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SYNTHESIS AND ANALYSIS OF CD(II) METAL COMPLEXES
bis(4-hydroxy-3-((2-hydroxy-3- methoxybenzylidene)amino)
benzenesulfonato
-κO,κN,κO’)cadmium(II) monoethanol (6)

Bis(4-hidroksi-3-((2-hidroksi-3-metoksibenziliden)amino)
benzensulfonato-κO,κN,κO’)cadmium (II) mono ethanol (6) 
complex was synthesized from the reaction of 4-hydroxy-3-
((2-hydroxy-3-methoxy benzylidene)amino)benzenesulfonic 
acid (3) (1g, 3.1 mmol) ligand and Cd(NO3)2 (2) (0.95 g, 3.1 
mmol) salt (Scheme 2).

6 : Orange solid. E.N: 372oC. Yield: 0.52g (% 20). IR (KBr): ν 
= 3542, 3136 (O-H), ν = 3074, 3008 (C-Harom), ν = 2985, 2943, 
2901 (C-H), 1636 (HC=N), 1494 (C=C), 1220 (C-O). 
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Scheme 2. Synthesis of bis(4-hydroxy-3-((2-hydroxy-3-
methoxybenzylidene)amino)benzenesulfonato-κO,κN,κO’)cadmium 
(II) monoethanol (6) complex

bis(2-((2-hydroxy-3-methoxybenzylidene)amino)-4,5-
dimethoxybenzoato-κO,κN,κO’)cadmium(II) monoethanol (7)

bis(2-((2-hydroxy-3-methoxybenzylidene)amino)-4,5-
dimethoxybenzoato-κO,κN,κO’) cadmium (II) monoethanol 
(7)  complex was synthesized from the reaction of 4(E)-2-((2-
hidroksi-3-metoksibenziliden)amino)-4,5-dimetoksibenzoik 
acit (5)  (1 g, 3.1 mmol) ligand and Cd(NO3)2 (2) (0.96g, 3.1 
mmol) salt (Scheme 3).

7 : Red solid. E.N: 219-202oC Yield: 0.56g (% 22). IR (KBr): ν 
= 3669, 3313 (O-H), ν = 3059, 3007 (C-Harom), ν = 2964, 2937, 
2835 (C-H), 1628 (C=O), 1543 (HC=N), 1362 (C=C), 1268 (C-O).
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(7) complex

Elemental Analysis of Cd(II) Metal Cation-Centred 
Complexes
According to the results of elemental analysis of metal-
centered complexes formed by 4-hydroxy-3-((2-hydroxy-
3-methoxybenzylidene)amino)benzenesulfonic acid (3) 
and (E)-2-((2-hydroxy-3-methoxybenzylidene)amino)-4,5-
dimethoxybenzoic acid (5) ligands with Cd(II) metal cation, the 
theoretical and experimental results of C, H, N, S data support 
each other. Although elemental analysis alone is insufficient, it 
was determined that complexes were obtained when supported 
by other analyses.  Table 1 shows the results of the analyses.

Table 1. Elemental analysis data of Cd(II) metal cation-centred complexes

Complex Molecule
C (%) H (%) N (%) S (%)

Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc.

(6)C30H30CdN2O13S2 45.12 44.87 4.48 3.77 3.40 3.49 8.08 7.98

(7) C36H38CdN2O13 52.79 52.01 5.43 4.68 3.50 3.42 - -

Thermal Analysis of Cd(II) Metal Cation Centred 
Complexes
Thermal analysis curves (TGA/DTA/DrTG) of the coordination 
compounds of Shiff base ligands with Cd(II) metal cations 
as center atoms are given in Figure 3. All data on the 
thermal decomposition steps and decomposition products 
generated from the thermal analysis curves are summarised 
in Table 2. The complex (I) with 4-hydroxy-3-((2-hydroxy-3-
methoxybenzylidene)amino)benzenesulfonic acid (3) ligand has 
five degradation steps, while the complex (II) containing (E)-
2-((2-hydroxy-3-methoxybenzylidene)amino)-4,5-dimethoxy 
benzoic acid (5) ligand was found to degrade in four steps.

It is suggested that ethyl alcohol, used as the synthesis solution 
in the synthesis of the complexes, binds to the structures by 
hydrogen bonds and settles outside the coordination sphere. 
The bonding of ethyl alcohol to the outside of the coordination 
sphere by hydrogen bonding occurs due to the formation of 
hydrogen bonds, steric hindrances, solvent interactions, and 
electron density distribution. These interactions affect the 
behavior and stability of Shiff base complexes in solution.

Ethyl alcohol can form hydrogen bonds through the hydrogen 
atom in the -OH group. This hydrogen bond interacts with 
the appropriate electron pair donors near the Shiff base 
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complex. These bonds usually form outside the coordination 
sphere because ethyl alcohol is a solvent that does not bind 
directly to the coordination center [33-34]. Our suggestion is 
supported by the fact that the weight losses observed in the 
first decomposition steps of both complexes (43-120ᵒC and 
37-125ᵒC, respectively) are consistent with the theoretical and 
experimental weight losses of ethyl alcohol (For structure 6, 
exp.: 5.02%; theo. 5.73% and For structure 7, exp.: 5.10%; theo. 
5.62%). The subsequent degradation steps for both structures 
include data on the thermal degradation of the organic ligands 
(Table 2).

The conclusion that CdO remains in the reaction vessel as 
the final residual product of the thermal decomposition of 
complex six at 881ᵒC is also in agreement with the theoretical 
and experimental weight losses (exp.: 16.96%; theo.: 15.99%). 
Similarly, the conclusion that CdO oxide remained as the final 
decomposition product as a result of the thermal decomposition 
of complex seven at 912ᵒC was inferred from the agreement 
between the theoretical and experimental weight losses of 
the final decomposition product (exp.: 16.58%; theo.: 15.68%). 
The data that the final decomposition products were CdO 
were also supported by powder XRD patterns. A difference 
of approximately 1% was observed between the theoretical 
and experimental weight losses of both final decomposition 
products. This was attributed to the lack of sufficient oxygen in 
the structures during thermal degradation in an inert nitrogen 
atmosphere and to the fact that the carbon residue of the 
organic ligand could not complete combustion, and some of 
it was deposited on the metal oxide residues in the form of 
carbonized carbon. The black color of the final decomposition 
products, which were expected to be white, also supports this 
interpretation. 

Figure 3. Thermal curves of Cd(II) metal cation-centered Schiff base 
complexes.

RESULT AND DISCUSSION
The characteristic structures of the synthesized Schiff base 
ligands were elucidated by Infrared Spectroscopy and 1H and 
13C-NMR spectra. Ligands with an imine group were obtained 
from the reaction of aldehyde compounds with a carbonyl 
group in Schiff bases and primary amines in the essential 
medium. The absorption stretching band of the imine group 
of 4-hydroxy-3-((2-hydroxy-3-methoxybenzylidene)amino)
benzenesulfonic acid (3) ligand was detected at 1644 cm-1 in 
infrared spectroscopy, while the stretching band of (E)-2-((2-
hydroxy-3-methoxybenzylidene)amino)-4,5-dimethoxybenzoic 
acid (5) ligand was detected at 1604 cm-1. In addition, in the 
1H-NMR spectrum, the chemical shift of the imine group proton 
of 4-hydroxy-3-((2-hydroxy-3-methoxybenzylidene)amino)
benzenesulfonic acid (3) was detected at 9.09 ppm and the 
chemical shift of E)-2-((2-hydroxy-3-methoxybenzylidene)
amino)-4,5-dimethoxy benzoic acid (5) at 8.92 ppm. The 
occurrence of imine groups in different regions between the 
two ligands is due to the different electron affinity of the sulfonyl 
and carbonyl groups in the structure of the ligands. The carbonyl 
group is generally more electronegative than the sulfonyl group 
because the difference in electronegativity between carbon and 
oxygen is slightly higher than that between sulfur and oxygen. 
Therefore, the imine group of the ligand with the sulfonyl group 
shows a chemical shift in the lower field. The ligand 4-hydroxy-
3-((2-hydroxy-3-methoxybenzylidene)amino)benzenesulfonic 
acid (3) is orange in color and has a higher melting point than E)-
2-((2-hydroxy-3-methoxybenzylidene)amino)-4,5-dimethoxy 
benzoic acid (5) containing a carbonyl group. Since compounds 
with a sulfonyl group have higher polarity, the sulfonyl group 
gives the compounds a high dipole moment. Increasing the 
dipole-dipole interactions between the molecules can raise 
the melting point. In addition, hydrogen bonds also increase 
the melting point thanks to groups that can form hydrogen 
bonds in the compound. The melting point of 4-hydroxy-3-
((2-hydroxy-3-methoxybenzylidene)amino)benzenesulfonic 
acid (3) is 284ᵒC, while the melting point of E)-2-((2-hydroxy-
3-methoxybenzylidene)amino)-4,5-dimethoxybenzoic acid (5) 
is 218ᵒC.  When the physical properties of Cd(II) metal cation 
complexes are examined, metal complex six is orange colored, 
and metal complex seven is red colored. As in the ligands, 
the melting point of metal complex six is 372ᵒC due to the 
presence of a sulfonyl group in its structure. In contrast, the 
melting temperature of complex seven is lower at 219ᵒC due 

Tablo 2. Thermal decomposition data of Cd(II) metal cation-centered Schiff base complexes.

Compounds Temp. range 
(˚C)

DTAmax  
(˚C)

Removing 
group 

Mass Loss (%) Remaining 
Product (%) Colour

Exp. Theo. Exp. Theo.

(6)  [Cd(C14H12NO6S)2](C2H5OH) white

C30H30CdN2O13S2 1 43-12 106 C2H5OH 5.02 5.73

803,1 g/mol 2 310-384 365 2CH3 4.08 3.74

3 385-441 393;424 2C7H4O 26.07 25.93

4 442-550 501;532 2SO2 16.28 15.96

5 552-885 644;680;785;875 C6H5O;C6H5;2NO2 31.59 32.65 16.96 15.99 CdO black

(7)  [Cd(C17H16NO6)2](C2H5OH) pale-white

C36H38CdN2O13 1 37-125 46;91 C2H5OH 5.10 5.62

819,11 g/mol 2 169-317 238;302 6CH3O 23.22 22.72

3 319-575 364;488 2C7H2O 23.96 24.92

4 576-780 618;699;733 C7H5;NO2;NO 31.14 31.04 16.58 15.68 CdO black
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to the presence of a carbonyl group in its structure and the 
absence of a sulfonyl group. Considering the thermal stability, 
the thermal stability of compound six is higher as complex 
six starts to decompose at 43ᵒC while complex seven starts 
to decompose at 37ᵒC. Experimental and theoretical data of 
C, H, and O ratios in elemental analyses support the structural 
characterization of the metal complexes. 

The magnetic susceptibility of cadmium metal is shallow and 
negative, indicating that it is a diamagnetic material. Since 
the diamagnetic property of cadmium means that magnetic 
fields weakly repel it, the magnetic susceptibilities of the two 
metal complexes obtained were not examined. In the literature, 
magnetic susceptibility analysis of coordination compounds 
made with Mn2+, Co2+, Ni2+, Cu2+, and Zn2+ metal cations is 
carried out due to their high magnetic susceptibility, but not 
in coordination compounds formed with Cd+2 cation.

The nitrogen atom of the imine group in metal complexes has 
four bonds. Four bonding of the nitrogen atom in the imine 
group in metal complexes of Schiff bases can reduce nitrogen’s 
stability by reducing its electron density, but this may vary 
depending on the complex’s overall geometric and electronic 
properties. Metal-ligand interactions and ligand field effects are 
important factors determining the effect of nitrogen quadruple 
bonding on stability. The nitrogen atom usually forms three 
bonds, each carrying one free electron pair. The formation of 
a fourth bond requires nitrogen to use this free electron pair, 
which can affect nitrogen’s electron density and, hence, stability. 
The formation of a fourth bond can cause the formal charge 
of nitrogen to become positive, reducing the electron density 
and lowering stability [35,36].

Schiff bases containing a sulfonyl group are generally more 
stable and chemically resistant. However, Schiff bases containing 
carboxy groups are more differentiated by specific reactions 
and complex formation capabilities. Schiff bases containing 
carboxy groups are primarily used in analytical chemistry and 
complex formation processes. In contrast, those containing 
sulfonyl groups are generally more stable, which is a difference 
in finding a wide range of applications. 

CONCLUSION
Schiff base syntheses and coordination compounds formed 
with metals have different properties and application areas, 
which increases the importance of Schiff bases. Although there 
are many coordination compounds made with Mn2+, Co2+, Ni2+, 
Cu2+, and Zn2+  metal cations in the literature, it is an essential 
study in terms of introducing new coordination compounds to 
the literature with the new Schiff bases obtained and forming 
a complex with Cd+2. 

When Schiff base ligands are combined with cadmium(II) salt, 
such as cadmium nitrate, the nitrogen of the azomethine group 
forms a coordinative bond with the cadmium ion, binding to 
organic compounds. The stability and high coordination of these 
complexes are further enhanced if the Schiff base contains 
additional donor atoms, such as -OH or another nitrogen atom, 
which also bind to the cadmium ion. This robust bonding pattern 
instills confidence in the potential of these Schiff bases in 
forming stable and highly coordinated complexes. 
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INTRODUCTION
Acesulfame, potassium acesulfame, a white, odorless, organic 
and synthetic salt, is a widely used but not metabolizable 
sweetener in many foods and beverages [1]. In terms of 
coordination chemistry, acesulfame ligand stands out as a 
very useful electron donor in the synthesis of inorganic and 
organometallic molecules [2]. Acesulfame, an oxathiazinone 
dioxide compound, is systematically named 6-methyl-1,2,3-
oxothiazine-4(3H)-one-2,2-dioxide [3]. In addition to its 
industrial use, acesulfame attracts attention as an interesting 
ligand in metal complexes with its biological importance and 
good coordination properties. Discovered by German chemist 
Karl Clauss in 1967, acesulfame has been studied in fields such as 
biochemistry, food chemistry, inorganic chemistry, bioinorganic 
chemistry, analytical chemistry and pharmaceutical chemistry. 
Its best-known compound is the potassium salt potassium 
acesulfame (Ace-K) with a similar analogue, 5,6-dimethyl-
1,2,3-oxathiazin-4(3H)-one-2,2-dioxide (Figure 1(a)) [4]. It was 
developed by Karl Clauss and Harald Jensen after the accidental 
discovery of acesulfame. In the field of inorganic chemistry, the 
first metal complexes of acesulfame were synthesized in 2005 
[5,6]. In the following years, coordination compounds of the 
acesulfame ligand, especially those containing transition metal 
cations, were frequently studied [our articles]. Acesulfame is 
a functional ligand because it has multiple electron-donating 
groups, such as imine nitrogen, carbonyl oxygen, sulfonyl 
oxygen, or ring oxygen, on various metal atoms. Although 
complex structures with transition metal cations are available in 
the literature [2,3,5,6-12], studies on main group metal cations 
are quite limited [13-16]. Coordination compounds with earth 
metals are almost absent. In addition, complexes of some rare 
earth elements using acesulfame ligand as the electron-donating 
terminal group have been synthesized and structural studies 
have been carried out [17-19].

Nicotinamide (or niacinamide) is the amide form of nicotinic 
acid, or niacin, also known as vitamin B3. Nicotinamide is 
also called niacinamide, niacin, nicotine acid amide, vitamin 
PP. Although nicotinamide and nicotinic acid are identical 
vitamins, their pharmacological effects are very different from 
each other. Nicotinamide, which has the chemical formula 
C6H6N2O (Figure 1(b)), has a molecular weight of 122.12 g/
mol and a melting point of 128-131°C. The IUPAC name of the 

compound is 3-pyridine carboxamide. It is a vitamin needed 
by humans for the production of hydrochloric acid, which 
is necessary for digestion, as well as for the metabolism of 
proteins, fats and carbohydrates. While its solubility in water 
is 100 g/100 ml at 20ºC, its solubility in ethanol is 666 g/100 
ml. Moreover, it dissolves very slowly in ether and is insoluble 
in oils. Nicotinamide is a colorless, crystalline substance with a 
characteristic odor and taste. Since nicotinamide has a pyridine 
ring, it gives the same reactions specific to the pyridine ring 
[20]. It was realized approximately 40 years later that this 
compound, obtained as a result of the oxidation of nicotine, 
an alkaloid of tobacco, was a very important vitamin in 1887. 
The physical and chemical properties of nicotinic acid and 
nicotinamide, which have the same vitamin value, have been 
known for a long time [21].

The closed formula of the N,N-diethylnicotinamide compound 
is C10H14N2O and its molecular weight is 178.12 g/mol. The IUPAC 
name of the compound is 3-pyridine diethylcarboxamide. This 
compound, generally called N,N-diethylnicotinamide, also has 
trade names such as cordiamine and nicetamide. Although it has 
good solubility in water, it is insoluble in oils and ether. Figure 
1(c) below shows the structure of N,N-diethylnicotinamide. 
Like nicotinamide, N,N-diethylnicotinamide is a colorless, 
crystalline substance with a unique odor and taste, and gives 
pyridine reactions due to its pyridine ring. There are many 
studies in the literature showing that nicotinamide and N,N-
diethylnicotinamide acts as an electron donor to pyridine 
nitrogen [22-26]
              

Figure 1. Molecular structures of the ligands of acesulfame anion (a), 
nicotinamide (b) and N,N-diethylnicotinamide (c).

Mixed ligand complexes containing earth metals (Al3+ and In3+), 
which have not been studied in the literature, and acesulfame-
nicotinamide or N,N-diethylnicotinamide were synthesized. 
The structures of the collected complexes were tried to be 
characterized by FT-IR spectroscopy, elemental analysis, thermal 
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analysis (TG-DTG and DTA) and mass spectroscopy techniques.

MATERYAL METOD
Synthesis
The synthesis reagents, ClO4¯ salts of Al3+ and In3+ metal 
cations, potassium acesulfame, nicotinamide and N,N-
diethylnicotinamide ligands were obtained from Sigma-Aldrich. 
Pure water and absolute ethanol mixtures (50%:50%) were 
used as reaction media. For the synthesis, firstly, 1 mmol of 
potassium acesulfame was dissolved in 50 ml of distilled 
water in a beaker, and then 3 mmol of Al3+ and 3 mmol of 
In3+ were added to perchlorate salt to react. In the reaction, 
1:3 (metal:acesulfame) ratio was taken as basis according to 
charge balance (Scheme 1). With the ethyl alcohol added 
to the reaction vessel, the potassium perchlorate salt was 
completely separated from the solution and precipitated. The 
potassium perchlorate salt precipitate was removed from the 
total solution by filtration. Care was taken to thoroughly wash 
the white potassium perchlorate precipitate with distilled water 
to prevent substance loss. 2 mmol of nicotinamide and N,N-
diethylnicotinamide ligands solutions formed in ethyl alcohol 
were added separately to the acesulfame solutions of Al3+ and 
In3+ metal cations (Scheme 2).

The resulting final reaction solution was stirred on a magnetic 
stirrer for approximately 4 hours at 60 ºC. Afterwards, the 
crystals that precipitated in approximately 3-5 weeks at room 
temperature with the lid closed were collected by filtration. The 
crystals were washed with pure water and dried in a vacuum 
oven at room temperature for analysis.
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Elemental Analysis
Elemental analysis results of metal-acesulfame-nicotinamide / 
N,N-diethylnicotinamide mixed ligand coordination compounds 
using Al3+ and In3+ earth metal cations as electron acceptors are 
summarized in Table 1. The colors of the complex molecules 
were determined as pale/off-white, as expected, depending 
on the electronic configurations of the central atoms in the 3+ 
oxidation state. Since the “d” orbitals of metal cations are filled, 
electronic transitions that cause color formation are prohibited. 
For this reason, color formation is not observed. However, slight 
impurity colors can be detected due to electronic transitions 
caused by charge transfer from the ligand to the metal. The 
agreement of experimental and theoretical results obtained 
from elemental analysis supports the molecule formulations 
proposed by us.

Infrared (FT-IR) Spectroscopy Studies
According to the FTIR spectra (Figure 2) recorded in the range 
of 4000 cm-1 – 400 cm-1, it was found that -OH stretching 
bands originating from H2O molecules appeared in the regions 
of approximately 3650 cm-1-2850 cm-1 in all structures. While 
N-H stretches originating from nicotinamide were detected 
in the 3521 cm-1 and 3517 cm-1 bands in structures only I and 
II, the absence of any stretch peak belonging to this group in 
structures III and IV is evidence of the ionized coordination 
of the acidic N-H group in the ring of acesulfame ligands in 
all structures. The bending peaks of the N-H bonding of the 
amide group were also observed at 1586 cm-1 and 1588 cm-1 

Table 1. Chemical composition data of for mixed-ligand metal-acesulfame-nicotinamide and N,N-diethylnicotinamide complexes

Complex M.A. 
(g/mol) Yield

Content (%)
exp. (theo.) Colour

Decomp 
Temp.
(°C)C H N S

[Al(C6H6N2O)2 (C4H4NO4S)2](C4H4NO4S).2H2O
C24H28AlN7O16S3        (I) 793.68 85 36.12

(36.32)
3.87

(3.56)
12.21

(12.35)
12.39

(12.12) White 77

[In(C6H6N2O)2 (C4H4NO4S)2](C4H4NO4S).H2O
C24H26InN7O15S3        (II) 863.50 83 33.07

(33.38)
3.67

(3.03)
11.55

(11.35)
11.41

(11.14)
pale-
white 88

[Al(C10H14N2O)2(C4H4NO4S)2 (H2O)2](C4H4NO4S)
C32H44AlN7O16S3       (III) 905.90 72 42.88

(42.43)
4.67

(4.90)
10.96

(10.82)
10.87

(10.62) White 135

[In(C10H14N2O)2(C4H4NO4S)2(H2O)2](C4H4NO4S)
C32H44InN7O16S3        (IV) 993.74 70 39.75

(38.68)
4.63

(4.46)
9.98

(9.87)
9.47

(9.68)
pale-
white 141



Kundakçı H, Köse D.A.

32 Hitit Journal of Science • Volume 1 • Number 1

for complexes I and II, respectively. The presence of  ν(C-N-C)

ace stretching peaks for acesulfame and pyridinic ν(C-N-C)

pyrd group observed in all structures support the existence of 
ligands in coordination compounds as in the proposed structural 
formulas. The fact that the numerical difference between the 
symmetric and asymmetric stretching vibrations of the -SO2 
groups is compatible with the difference in the potassium 
salt of acesulfame is evidence that coordination does not 
occur through this group. The most important evidence of 
the molecular formulations we propose is the presence of 
binding peaks in which the ligands coordinate with metal 
cations. Accordingly, ν(M-N)ace stresses are 649 cm-1-620 cm-1, 
ν(M-N)pyrd stresses are 673 cm-1-648 cm-1, ν(M-O)ace stresses 
(only in structures I and II) 507 cm-1-509 cm-1 and finally ν(M-O)

aqua stresses (only in structures III and IV) were detected in the 
545 cm-1- 543 cm-1 regions, respectively. Data on binding peaks 
showing the characteristic binding properties of all structures 
are summarized in Table 2.

Figure 2. FTIR spectra of mixed-ligand metal-acesulfame-nicotinamide 
and N,N-diethylnicotinamide complexes

Table 2. Important infrared peak data for mixed-ligand metal-
acesulfame-nicotinamide and N,N-diethylnicotinamide complexes

Groups (I) (II) (III) (IV)

ν(OH)H2O 3650-2850 3650-3150 3550-3150 3600-3050

νger(N–H) 3521 3517 - -

ν(=C–H) 3372 3370 3406 3401

ν(C=O)ace 1655 1654 1652 1650

νeğ(N–H) 1586 1588 - -

ν(C=C) 1540 1540 1554 1549

ν(C-N-C)ace 1357 1357 1363 1364

ν(C-N-C)pyrd 1393 1393 1394 1394

νas(SO2)/
νs(SO2)

1314/1162 1314/1165 1319/1173 1321/1175

νas-s 152 149 146 146

ν(ring) 1061-834 1060-833 1090-840 1093-842

νs(CNS)/
νas(CNS)ace

1323/935 1321/934 1309/938 1310/938

ν(C-N) 1013-735 1014-734 1014-723 1016-721

ν(M-N)ace 649 649 620 621

ν(M-N)pyrd 673 673 645 648

ν(M-O)aqua - - 545 543

ν(M-O)ace 507 509 - -

Thermal Analysis Studies
Thermal analysis curves recorded in an inert nitrogen atmosphere 
in the temperature range of 25-1000 ºC are shown in Figure 3. The 
synthesized four different mixed ligand coordination compounds 
were classified as nicotinamide and N,N-diethylnicotinamide 
(III and IV) according to their secondary ligands. While the 
degradation characteristics of Al3+ (I) and In3+ (II) complexes 
containing nicotinamide are similar to each other, it has been 
determined that the degradation characteristics of Al3+ (III) 
and In3+ (IV) complexes containing N,N-diethylnicotinamide 
ligand are also similar. The decomposition of complexes I and II 
begins with the dehydration of the hydrate waters present in the 
structures. In complex I containing two hydrated waters, primary 
decomposition occurs with an experimental weight loss of 4.80% 
(theoretically 4.54%) in the temperature range of 48-101 ºC. In 
Structure II, the removal of hydrated water with a weight loss 
of 2.29% experimentally (2.09% theoretically) occurred in the 
temperature range of 68-140 ºC. In the secondary degradation 
step, the organic ligands for both structures begin to decompose. 
While the SO2 groups of the three acesulfame ligands present in 
complex II are separated (142-241 ºC), the nicotinamide ligands 
in structure I are degraded. For structure I, the removal of SO2 
groups took place in the temperature region of 290-386 ºC. For 
structure I, the degradation of organic derivatives occurs via 
nicotinamide, while for structure II, this occurs via acesulfame 
ligands. The internal compatibility of the experimental and 
theoretical weight losses of the organic derivatives proposed 
for the degradation steps of organic ligands for both complexes 
supports the proposed degradation products (Table 3). While 
complex I completes its decomposition in six steps, structure 
II transforms into its oxide in five steps. The decompositions of 
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coordination compounds with N,N-diethylnicotinamide ligands 
(III and IV) are characteristically more similar to each other. 
While both complexes decompose in four steps, the first step 
indicates the removal of two ligand water and one SO2 group 
each located in the coordination spheres. In complexes that 
become dehydrated, it is recommended to separate one SO2 
group as a secondary step. The third degradation step of both 
structures is interpreted as the step in which the acesulfame 
ligands are completely disintegrated and removed from the 
reaction environment, and the consistency of experimental 
and theoretical weight losses supports this claim (Table 3). The 
last degradation steps of the structures were attributed to the 
degradation of N,N-diethylnicotinamide ligands. The proposed 
final decomposition products of all complexes were thought to 
be oxides of the relevant metal cations, and the experimental 
and theoretical weight losses found also support the existence 
of metal oxides. It has been determined that the experimental 
weight losses of the final residue products are approximately 
1% higher than the theoretical weight losses. The reason for this 
has been shown to be that during thermal decomposition in 
an inert nitrogen atmosphere, complete combustion does not 
occur due to the lack of sufficient oxygen in the environment, 
and some carbonized coal residue accumulates on the surface of 

the metal oxides. The fact that metal oxides, which are expected 
to be white in color, are collected in black color is also evidence 
supporting our suggestion. Detailed degradation properties of 
all complexes are summarized in Table 3.

Figure 3. Thermal decomposition curves (TG/DTA) of Al3+ and In3+ 
mixed ligand complexes with acesulfama-nicotinamide and N,N-
diethylnicotinamide.

Table 3. Thermal analysis data of Al3+ and In3+ mixed ligand complexes with acesulfama-nicotinamide and N,N-diethylnicotinamide.

Compounds Temp. range 
(˚C)

DTAmax  
(˚C)

Removing
group

Mass Loss (%) Remaining 
Product (%) Decomp. 

Product Colour
Exp. Theo. Exp. Theo.

[Al(C6H6N2O)2(C4H4NO4S)2](C4H4NO4S).2H2O white

C24H28AlN7O16S3 1 48-101 79 2H2O 4.80 4.54

793,69 g/mol 2 102-193 147 2CH2NO 10.97 11.09

3 194-288 235 2C5H5N 19.12 19.65

4 290-386 336 3SO2 24.62 24.22

5 388-940 611;771;916 3C4H4NO;3/2O 33.77 34.18 5.79 6.43 1/2Al2O3 black

[In(C6H6N2O)2(C4H4NO4S)2](C4H4NO4S).H2O pale-white

C24H26InN7O15S3 1 68-140 130 H2O 2.29 2.09

863,51 g/mol  2 142-201 183 3SO2 22.62 22.26

3 202-343 221; 295 2C6H6N2O 28.24 28.29

4 344-481 430 3CO 9.86 9.73

5 482-512 491 C2H3  8.95 9.38

6 513-931 607;739;871 CHN;3/2O 11.77 12.27 15.12 16.08 1/2In2O3 black

[Al(C10H14N2O)2(C4H4NO4S)2(H2O)2](C4H4NO4S) white

C32H44AlN7O16S3 1 103-198 190 2H2O;SO2 10.82 11.05

905,90 g/mol 2 200-231 218 SO2 6.52 7.07

3 232-306 285 3C4H4NO2;SO2 38.92 39.55

4 308-903 401;512;596;810 2C10H14N2;
2C10H14N2O1/2 

36.89 36.69 6.85 5.63 1/2Al2O3 black

[In(C10H14N2O)2(C4H4NO4S)2(H2O)2](C4H4NO4S) pale-white

C32H44InN7O16S3 1 110-196 185 2H2O;SO2 9.81 10.07

993,74 g/mol 2 198-241 214 SO2 6.78 6.45

3 242-302 281 3C4H4NO2;SO2 37.05 36.06

4 305-897 -426;615;680;-731 C10H14N2; C10H-

14N2O1/2

31.51 33.35 14.85 13.97 1/2In2O3 black
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Ultraviolet-Visible Spectroscopy Studies
The UV-Vis spectra recorded in the 200-900 nm range of the 
structures of the mixed ligand complexes containing synthesized 
metal-acesulfame-nicotinamide / N,N-diethylnicotinamide are 
as follows. When the recorded solid-state UV-VIS spectroscopic 
curves of metal ions with group IIIA 3+ cationic charge valence 
were examined, no significant peak was observed in the 750-
400 nm range, which corresponds to the band transition regions 
of the metals. Since the “d” orbitals of earth elements, which 
undergo splitting under UV light in the 3+ cationic oxidation 
state, do not undergo any splitting, the “d-d” transitions seen 
in transition metals are not observed. The most obvious result 
of this effect is the colors of the synthesized complexes, and 
the color of all complexes is either colorless or close to pale 
white. When the spectra of all metal complexes are examined, 
it is assumed that the high intensity but numerically evaluable 
peaks (M-L) occurring in the 300-200 nm region may belong 
to electron transitions from the metal to the ligands.

Figure 4. Solid State UV-Vis spectra of Al3+ and In3+ mixed ligand 
complexes with acesulfama-nicotinamide and N,N-diethylnicotinamide.

Mass Spectroscopy (GC-MS) Studies
When the thermal analysis curves of metal-acesulfame-
nicotinamide and metal-acesulfame-N,N-diethylnicotinamide 
mixed ligand complexes are examined, it is seen that the 
degradation of the complexes is similar. Decomposition begins 
with deaquatation and continues with the formation of SO2 
by acesulfamate ligands. Similar results are seen when the 
mass spectra of these complexes are examined. There are 
also peaks resulting from the removal of nicotinamide and 
N,N-diethylnicotinamide ligands from mixed ligand complexes. 
Although multiphase distortions are generally observed in the 
mass spectra, the most prominent peaks in the spectra have 
been tried to be explained. The mass spectra of complexes 
I and II are given in Figures 5 and 6. Peaks whose m/z ratio 
corresponds to the removal of acesulfamate ions are seen at 
161.22 and 161.02 m/z, respectively. The peaks corresponding 

to the removal of nicotinamide ions were detected at m/z 
121.01- 121.20, respectively. Formulations that can be attributed 
to possible degradation products of the breakdown of the 
complexes, taking into account the molecular ion peaks, are 
shown in Figures 7 and 8.

Figure 5. Mass spectrum pattern of complex I.

Figure 6. Mass spectrum pattern of complex II.
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Figure 7. Possible molecular ion formulations and degradation 
schematics of the degradation products of complex I.

Figure 8. Possible molecular ion formulations and degradation schematics 
of the degradation products of complex II.

Figures 9 and 10 show the mass spectra of complexes III and 
IV, respectively. Peaks whose m/z ratio corresponds to the 
removal of acesulfamate ions are seen at 161.22 and 161.12 m/z, 
respectively. The peaks corresponding to the removal of N,N-
diethylnicotinamide ions appeared at 177.24 and 177.17 m/z, 
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respectively. Formulations that can be attributed to possible 
degradation products of the breakdown of the complexes, 
taking into account the molecular ion peaks, are also shown 
in Figures 11 and 12.

Figure 9. Mass spectrum pattern of complex III.

Figure 10. Mass spectrum pattern of complex IV.

Figure 11. Possible molecular ion formulations and degradation patterns 
of the degradation products of the complex III. 
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Figure 12. Possible molecular ion formulations and degradation pattern 
of the degradation products of the complex IV.

CONCLUSIONS
In this thesis, new complexes of group 3A Al3+ and In3+ 
metals with acesulfame-nicotinamide and acesulfame-N,N-
diethylnicotinamide mixed ligands were synthesized for the 
first time. The structures of these synthesized complexes 
were elucidated by elemental analysis, infrared spectroscopy, 
thermogravimetric analysis, solid ultraviolet-visible region 
spectroscopy, mass analysis and melting point determination 
methods. According to the results of the elemental analysis of 

the complexes, it was determined that the metal:ligand1:ligand2 
ratios in mixed ligand complexes were 1:3:2. While hydrate 
waters are located outside the coordination sphere in complexes 
I and II, it has been suggested that there may be two ligand 
waters each inside the coordination sphere in structures III and 
IV. In all structures, it is predicted that two monoanionically 
acesulfame ligands are involved in coordination, while one 
of each is located outside the coordination sphere to ensure 
charge balance. For this reason, we can say that all complexes 
are cationic salt-like structures. It has been claimed that the 
coordination of metal cations is six and the geometries of 
the structures may also be decomposed octahedral. It was 
determined by infrared analysis that the neutral ligands 
nicotinamide and N,N-diethylnicotinamide molecules bind 
to the metal cation through the nitrogen atom of pyridine. 
While it has been suggested that acesulfame ligands provide 
monoanionic-bidentate coordination in complexes I and II, 
acesulfame ligand is in monoanionic-monodentate coordination 
in structures III and IV. Proposed explicit structural formulas 
for metal-acesulfame-nicotinamide and metal-acesulfame-
N,N-diethylnicotinamide mixed ligand complexes are shown 
in Figure 13(a) and (b).
       

Figure 13. Molecular structure formulations of acesulfame-nicotinamide 
and N,N-diethylnicotinamide mixed ligand complexes of Al3+ and In3+ 
metal cations.
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INTRODUCTION
In recent years, research on carbon-based nanomaterials has 
been increasing exponentially. These nanomaterials offer a 
wide range of application due to their large surface areas, 
exceptional optical properties, high electrical and thermal 
conductivities, and outstanding mechanical properties. 
These properties enable the successful use of carbon-based 
nanomaterials in solar energy systems, flexible electronics 
production, molecular recognition applications, as well as 
in areas such as bio-imaging, biosensing, super-resolution 
imaging and nanoscale temperature sensing.(1)

Carbon, with an atomic number of six, has an average atomic 
mass of 12 amu (2). As one of the most abundant elements on 
Earth, carbon is a key component in many macromolecules 
vital for life, including sugars, proteins, and DNA (3). Pure 
carbon exists in several forms, such as allotropes including 
diamonds and graphite, which come from variations in the 
arrangement of carbon atoms (2)(3). Amorphous allotropes 
of carbon include coal, lampblack, and charcoal (3)(4). 
CNMs encompass a variety of carbon forms as shown in 
Figure 1. These include sp2 carbon nanomaterials (like 
graphene, carbon nanotubes, fullerene), amorphous carbon 
nanoparticles (like carbon dots, ultrafine carbon particles and 
carbon nanoparticles), and nanodiamonds (3).

Figure 1. Structures of various types of carbon-based nanomaterials.

Carbon nanotubes (CNTs) possess cylindrical tubular 
structures with a nanometer diameter, formed by rolling 
graphene sheets (5). These are classified into two basic types. 
One of them is single-walled carbon nanotubes (SWCNTs) 
and the other is multi-walled carbon nanotubes (MWCNTs). 

SWCNTs are formed from a single layer of a graphene sheet, 
whereas MWCNTs comprise several concentric layers of 
graphene (6). 

Fullerene is named after architect Buckminster Fuller, who 
in the 1960s constructed a cagelike lightweight dome made 
of carbon atoms. These molecules consist only of carbon 
atoms arranged in various shapes like hollow, tube, sphere, or 
ellipsoid, in which carbon atoms interconnect in pentagonal 
and hexagonal rings (2).

Graphene, the main structure of graphite, is one of the most 
researched CNMs (7)(8)(9). This material consists of two-
dimensional, single, or few sheets of sp2 arranged carbon 
atoms (7). Graphene serves as the structural precursor to 
various carbon allotropes including carbon nanorings, carbon 
nanotubes, carbon fibers, graphite, and graphyne (8)(9).

Carbon dots (CDs) are carbon nanoparticles, which are found 
in spherical-like shape and in a size less than 10 nm. CDs 
show tunable and efficient photoluminescence properties. 
Furthermore, they are cost-effective and environmentally-
friendly type of nanomaterials (10).

Diamond is a metastable allotrope of carbon with an 
unstable face-centered cubic crystal structure. It is known 
for its exceptional hardness and thermal conductivity. 
Nanodiamonds (ND) were first made in 1963 by detonating an 
oxygen-deficient trinitrotoluene and hexogen composition. 
They consist of a diamond core covered an amorphous carbon 
shell.  The average size of NDs is 4-5 nm, which allows for their 
existence in colloidal suspensions (2)(11)(12). 

BIOMEDICAL APPLICATION OF CARBON-BASED 
NANOMATERIALS
Biosensors identify disease biomarkers, enabling diagnosis 
and monitoring. Biomarkers are key molecules like proteins, 
hormones, glucose, and others, found in body (3). CNMs are 
widely employed in biosensing due to their conductivity, 
catalytic activity, and biocompatibility. Various carbon-
based nanomaterials, including CNTs, graphene oxide (GO), 
and fullerene, are utilized for optical and electrochemical 
biosensor development (13).

The rising prevalence of cancer worldwide imposes significant 
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Abstract 
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emotional, physical and financial burdens on individuals and 
families. Therefore, it’s crucial to develop new technologies 
that effectively treat cancer (14). Barahuie et. al. synthesized 
GO to investigate its potential use as a nanocarrier for 
chlorogenic acid (CA) known as one of the active anticancer 
agents. The study confirmed the successful conjugation of CA 
onto GO through π–π interaction and hydrogen bonding. The 
CA loading in the nanohybrid was around 13.1%. The release 
profiles exhibited favorable, sustained, and pH-dependent 
release of CA from the CA-GO nanocomposite. This aligned 
well with the pseudo-second order kinetic model. Additionally, 
the designed anticancer nanohybrid proved to be thermally 
more stable than its counterpart (15). Recent research has 
highlighted the potential of quasi-freestanding bilayer 
epitaxial graphene for detecting SARS-CoV-2 in body fluids 
or exhaled breath, offering rapid, cost-effective, and efficient 
alternatives to conventional detection methods (16). Gene 
therapy holds significant promise as a therapeutic approach for 
treating a wide range of diseases. Wu et. al. have synthesized 
a new multifunctional theranostic folate conjugated-reducible 
polyethyleneimine-carbon nanodots/small interference RNA 
(fc-rPEI-Cdots/siRNA) nanoagent. The fc-rPEI-Cdots act as 
a siRNA carrier, releasing siRNA in a reducing environment, 
with enhanced accumulation in lung cancer cells. Viability of 
H460 treated with the fc-rPEI-Cdots/ pooled siRNA complex 
for three days is reduced to nearly 30%. Furthermore, clear 
inhibition of cyclin B1 and epidermal growth factor receptor 
(EGPR) expression was determined. Hence, this novel 
nanoagent has potential for targeted lung cancer treatment 
(17). Monitoring cholesterol levels is clinically significant, and 
both enzymatic and nonenzymatic methods are employed for 
this purpose. Multiwalled carbon nanoparticle electrodes in a 
metal-carbon-polymer nanocomposite functionalized with 
cholesterol oxidase enzymes were utilized as an enzymatic 
method with good selectivity, sensitivity and reproducibility 
(18). Glucose monitoring is integral in diabetes diagnosis 
and management. CNMs, including nanotubes, graphene, 
and graphene dots, modified with glucose oxidase exhibit 
high sensitivity and selectivity in glucose detection. These 
nanosensors have been evaluated for interference from 
substances like acetaminophen, uric acid, and ascorbic acid 
(19). 

TOXICITY ASSESSMENTS 
CNMs have gained significant importance in various fields, 
including biomedicine, due to their unique properties 
such as high conductivity, structural diversity, and ease of 
functionalization. However, the increasing use of CNMs has 
also raised concerns about their potential toxicity and impact 
on human health and the environment. The toxicity assessment 
of CNMs is crucial for their safe application in biomedicine. 
Key findings from toxicity studies suggest that the toxicity of 
CNMs depends on their physicochemical properties like size, 
shape, surface area, and metal impurities (20)(21). The most 
common methods used to assess the toxicity of carbon-based 
nanomaterials in biomedicine include in-vitro cell culture 
assays, physicochemical characterization, flow cytometry, 
comprehensive toxicological studies (20) (21)(22) (23) (24).

Garriga et. al. studied the in-vitro toxicity of carbon nanotubes 
(CNT), graphene oxide (GO), carbon nanoplatelets (CNP), 

carbon nanohorns (CNH), nanodiamonds (ND) and reduced 
graphene oxide (RGO) on human breast adenocarcinoma 
(MCF-7) cells and human epithelial colorectal adenocarcinoma 
(Caco-2) cells, after 24 h and 72 h incubation. After the CNMs 
treatment, the cell viability shown by toxicity assessments is 
in the order: CNP < CNH < RGO < CNT < GO < ND. The fast-
dividing Caco-2 cells were more effected from the CNMs 
treatment. The lowest toxicity was exhibited by ND and GO 
because of the functional groups with oxygen on the surface 
of nanomaterials. Researchers of the study emphasized that 
the long-term toxicity assessments remain an important 
requirement (23).

When MWCNTs are inhaled, alveolar macrophages and 
pulmonary alveolar epithelium are activated. This may result 
in a pro-inflammatory response or even chronic pathology. 
Sweeney et. al investigated the bioreactivity of MWCNT 
length by utilizing primary human alveolar type-II epithelial 
cells (ATII) and alveolar macrophages (AMs) as well as a 
human alveolar type-I-like epithelial cell line (TT1) to find 
the role that the length of MWCNTs plays in pulmonary 
toxicity.  Bioreactivity caused by MWCNTs of different lengths 
(MWCNT 0.6 μm, MWCNT-3 μm and MWCNT-20 μm) resulted 
in negative effects. TT1 and ATII epithelial cells exhibited 
higher reactivity when exposed to shorter MWCNTs. This 
phenomenon was observed even at very low concentrations. 
Long MWCNTs exhibited high reactivity with alveolar 
macrophages. It also caused a high rate of cell death. For this 
reason, it has been reported that inhalation of MWCNTs will 
cause serious health problems (25).

Montes-Fonseca et. al studied the cytotoxicity of functionalized 
carbon nanotubes dependent on the functionalization grade. 
They functionalized CNTs with different concentration of 
46 kDa surface protein, P46, (6 mg/L, 0.6 mg/L, 0,006 
mg/L). Then they investigated toxic effect CNTs with various 
functionalization grade on J774A macrophages. The study 
revealed that CNTs functionalized with high concentration 
of P46 were more toxic to J774 macrophages than CNTs 
functionalized with low concentration of P46 (26). 

Hiraku et al exposed RAW 264.7 macrophages and A549 lung 
epithelial cells to carbon black (CB) with primary diameters 
of 56 nm (CB56) and 95 nm (CB95). They comparatively 
investigated whether these nanomaterials could form 
8-nitroguanine on DNA. Both nanomaterials induced the 
formation of 8-nitroG in the nucleus of the cells examined. 
Flow cytometry showed that CBs with a diameter of 95 nm 
generated higher amounts of reactive oxygen species in RAW 
264.7 cells and caused more 8-nitroguanine formation than 
CBs with a diameter of 56 nm. As a result of the research, it 
was revealed that DNA damage may occur in lung epithelial 
cells exposed to CBs and that these CNMs may contribute to 
carcinogenesis (27). 

Jiang at. al. revealed in their article published in 2020 the 
results of the study on the toxic effects of 6 SWCNT samples 
with different lengths, functional groups and electronic 
structures. Quantitative toxicogenomic assay endpoint 
protein expression level index (PELI) examination revealed 
that short SWCNTs (0.5–2 μm) caused a higher toxicity and 
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oxidative stress than long SWCNT (5–30 μm). Carboxylated 
SWCNTs caused higher genotoxicity, protein damage, 
chemical stress, and overall toxicity than hydroxylated 
SWCNTs. While semiconductor SWCNTs exhibited almost 
no toxicity, metallic SWCNTs showed more toxic behavior. 
In conclusion, these materials exhibited molecular toxicity 
dependent on their physicochemical properties (28).

Adamson et. al. investigated cellular uptake, cell viability, 
mitochondrial membrane potential, and macrophage 
responses in graphene nanoplates-exposed mice. Different 
exposure times (1, 3 and 6 hours) and different graphene 
nanoplate (GNP) concentrations (0, 25, 50 or 100 μg/
ml) were used in the study. They also evaluated the effect 
of CD36 on responses to GNPs. This study revealed that 
GNPs increased mitochondrial potential and were easily 
internalized by macrophages. However, by blocking CD36 
using an antibody, internalization of GNPs by macrophages 
was reduced. The study revealed that exposure time and GNP 
concentration affected macrophage responses in different 
ways. Additionally, data explaining the metabolic pathways 
disrupted due to exposure and the role of CD36 in GNP-
macrophage interaction were obtained (29).

CONCLUSION
Carbon-based nanomaterials and their hybrid 
nanocomposites exhibit excellent properties, making them 
useful across various fields. New products containing carbon-
based nanomaterials emerge every year. Therefore, the 
society is increasingly interested in their reliability. Scientists 
use various in vivo and in vitro methods to investigate the 
toxic effects of carbon-based nanomaterials and try to reveal 
their toxic effects related to their various properties. However, 
these studies lack of a standard methodology which leads to 
confusion the scientific community. Toxicity tests developed 
in accordance with internationally accepted proficiency 
standards should be used as soon as possible. These tests 
should consider factors like the physicochemical properties 
of the CNMs, environmental interferences, nano-bio 
interactions, and the type and concentration of the solution 
for easy evaluation.
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