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Abstract

The aim of the study is to obtain new binomial transforms for the k−Narayana sequence. The first
of these is the binomial transform, which is its normal form, and in the first step, after finding the
recurrence relation of this new binomial transform, the generating function and Binet formula were
obtained. Finally, Pascal’s triangle was calculated. In the rest of the article, k−binomial transform
was performed for the k−Narayana sequence and the recurrence relation, generating function, Binet
formula and Pascal’s triangle were examined for the new sequence obtained. Then, by performing
the falling binomial transform and the rising binomial transform, the features listed above were
found again for these sequences.

1. Introduction

Some special sequences of numbers such as Fibonacci, Lucas, Horadam and Narayana have been of great interest to the
scientific world in recent years. Generalizations of these number sequences in various ways abound in the literature, in
particular you can look at [1]. One of the most popular transforms is the binomial transform and it is sufficiently available in
the literature.
Authors [2] presented the k−Fibonacci sequence also the same authors for this sequences of numbers [3] introduced different
binomial transforms, such as falling and rising binomial transforms. Binomial transforms and properties of k−Lucas sequences
are presented in [4]. Spivey and Steil [5] gave various binomial transforms. In [6], they obtained some applications for the
generalized (s, t) matrix sequences. In [7], authors obtained binomial transforms of Padovan and Perrin numbers from the third
order.
The person who discovered the Narayana sequence is Narayana, an Indian mathematician, and is as follows

Nm = Nm−1 +Nm−3 with m≥ 3 (1.1)

where

N0 = 0, N1 = 1, N2 = 1,

see [8]. The first few terms are 0,1,1,1,2,3,4,6,9,13,19,28,41,60, · · · .
The characteric equation of (1.1) is :

Ψ
3−Ψ

2−1 = 0,
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and roots of the characteristic equation are :

Ψ1 =
1
3

(
3

√
1
2
(29−3

√
93+ 3

√
1
2
(3
√

93+29)+1

)
,

Ψ2 =
1
3
− 1

3
(1− i

√
3) 3

√
1
2
(29−3

√
93− 1

6
(1+ i

√
3) 3

√
1
2
(3
√

93+29),

Ψ3 =
1
3
− 1

3
(1+ i

√
3) 3

√
1
2
(29−3

√
93− 1

6
(1− i

√
3) 3

√
1
2
(3
√

93+29).

Hence, the Narayana sequence can be obtained by Binet’s formula:

Nm =
Ψ2

1
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Generating function found for Narayana equation is:

1
1−Ψ−Ψ3 =

∞

∑
n=0

Nm+1Ψ
n
1 , for n≥ 1, n ∈ Z.

Narayana sequence which has attracted the attention of more mathematicians in recent years and its generalizations. Some of
them are as follows:
Some basic properties of Fibonacci-Narayana numbers are proved in [9]. Bilgici in [10], defined a generalized order k
Fibonacci-Narayana sequence and by using this generalization and some matrix properties, established some identities related
to Fibonacci-Narayana numbers. Soykan studied on Narayana sequence in [11]. Ramirez and Sirvent in [12], introduced the
k−Narayana sequence and found the identities between these numbers.
For any nonzero integer number k , k−Narayana sequence is defined by the following recurrence relation:

Nk,m = kNm−1 +Nm−3 with m≥ 3 (1.2)

where

Nk,0 = 0, Nk,1 = 1, Nk,2 = k,

see [12]. The first few terms are 0,1,k,k2,k3 +1,k4 +2k,k5 +3k2,k6 +4k3 +1,k7 +5k4 +3k · · · .
The characteric equation of (1.2) is :

λ
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and the roots of characteristic equation are :
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where µ = 1+i
√

3
2 is the primitive cube root of unity.

The generating function of the k−Narayana sequence is

1
1− kλ −λ 3 .

Therefore the k−Narayana sequence can be obtained by Binet’s formula:

Nk,n =
λ

n+1
1

(λ1−λ2)(λ1−λ3)
+

λ
n+1
2

(λ2−λ1)(λ2−λ3)
+

λ
n+1
3

(λ3−λ1)(λ3−λ2)
, n≥ 0.

Other recent research ([13],[14],[15]) has also investigated various binomial transforms for various special sequences. These
transforms are valuable because they bring a new approach. For details on the binomial transform, see ([16],[17]).
The focus of this paper is to apply binomial transforms and its generalization (like k−binomial transform, rising transform
and falling transform) to the k−Narayana sequence. In addition to these, the recurrence relation, Binet’s formula, generating
function, Pascal triangle and matrix representation of related transforms were derived.
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2. Binomial transform of k−Narayana sequences

The binomial transform of k−Narayana sequence
{

Nk,n
}

n∈N is shown as
{

bk,n
}

n∈N where bk,n is dedicated by

bk,n =
n

∑
i=0

(
n
i

)
Nk,i.

To find the recurrence relation of
{

bk,n
}

, we first need a Lemma.

Lemma 2.1. Let n is a positive integer greater than 1, then
{

bk,n
}

contents the next equation
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n

∑
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(
n
i

)
(Nk,i +Nk,i+1).

Proof. We have,
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If we bear in mind summation feature of binomial numbers
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The next theorem presents recurrence relation for
{

bk,n
}

.

Theorem 2.2. The recurrence relation obtained for
{

bk,n
}

is as follows:

bk,n+3 = (k+3)bk,n+2− (2k+3)bk,n+1 +(k+2)bk,n (2.1)

where bk,0 = 0,bk,1 = 1, and bk,2 = k+2.

Proof. To find the coefficients in (2.1)

bk,n+3 = A1bk,n+2 +A2bk,n+1 +A3bk,n.

If we take n = 0,1 and 2, we have the system

bk,3 = A1bk,2 +A2bk,1 +A3bk,0 = k2 +3k+3

bk,4 = A1bk,3 +A2bk,2 +A3bk,1 = k3 +4k2 +6k+5

bk,5 = A1bk,4 +A2bk,3 +A3bk,2 = k4 +5k3 +10k2 +12k+10.

By Cramer rule for the system, we get

A1 = k+3, A2 =−2k−3, and A3 = k+2.

So which is completed the proof .
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The characteristic equation of sequences bk,n in (2.1) is

α
3− (k+3)α2 +(2k+3)α− (k+2) = 0,

whose solutions are
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3
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2
+
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2
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3
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∆
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3

,
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+

1
4
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√
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Next we derive the Binet formula for
{

bk,n
}

.

Theorem 2.3. The Binet formula for the k−Narayana sequence is as follows:

bk,n =
p1αn

1
(α1−α2)(α1−α3)

+
p2αn

2
(α2−α1)(α2−α3)

+
p3αn

3
(α3−α1)(α2−α3)

where

p1 = bk,2− (α2 +α3)bk,1 +α2α3bk,0 = k+2− (α2 +α3),

p2 = bk,2− (α1 +α3)bk,1 +α1α3bk,0 = k+2− (α1 +α3),

p3 = bk,2− (α1 +α2)bk,1 +α1α2bk,0 = k+2− (α1 +α2).

Proof. To obtain Binet formula let us write

bk,n = B1α
n
1 +B2α

n
2 +B3α

n
3

If we take n = 0,1 and 2, we have the system

bk,0 = B1 +B2 +B3 = 0
bk,1 = B1α1 +B2α2 +B3α3 = 1

bk,2 = B1α
2
1 +B2α

2
2 +B3α

2
3 = k+2

By Cramer rule for the system, we get

B1 =
bk,2− (α2 +α3)bk,1 +α2α3bk,0

(α1−α2)(α1−α3)

B2 =
bk,2− (α1 +α3)bk,1 +α1α3bk,0

(α2−α1)(α2−α3)

B2 =
bk,2− (α1 +α2)bk,1 +α1α2bk,0

(α3−α1)(α2−α3)

So which is completed the proof .

Now let’s obtain the generating function for the k−Narayana binomial transform.

Theorem 2.4. The generating function of
{

bk,n
}

is:

bk(x) =
(1− kx−3x+2kx2 +3x2)bk,0 +(x− kx2−3x2)bk,1 + x2bk,2

1− (k+3)x− (2k+3)x2− (k+2)x3 .
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Proof. We have, bk(x) = bk,0 +bk,1x+bk,2x2 +bk,3x3 + · · ·+bk,nxn + · · · . After doing simple operations we obtain

bk(x) = bk,0 +bk,1x+bk,2x2 +bk,3x3 + · · ·
−(k+3)xbk(x) = −bk,0(k+3)x−bk,1(k+3)x2−bk,3(k+3)x3 + · · ·
−(2k+3)x2bk(x) = −bk,0(2k+3)x2−bk,1(2k+3)x3−bk,3(2k+3)x4 + · · ·
−(k+2)x3bk(x) = −bk,0(k+2)x3−bk,1(k+2)x4−bk,3(k+2)x5 + · · · .

From these equations and (2.1), we get

[
1− (k+3)x− (2k+3)x2− (k+2)x3]bk(x) = (1− kx−3x+2kx2 +3x2)bk,0 +(x− kx2−3x2)bk,1 + x2bk,2.

So the generating function for the binomial transform of the k−Narayana sequence is

bk(x) =
(1− kx−3x+2kx2 +3x2)bk,0 +(x− kx2−3x2)bk,1 + x2bk,2

1− (k+3)x− (2k+3)x2− (k+2)x3 .

Let’s give a new triangle
{

bk,n
}

for each k to help with the next rules:

1. The part forming the left corner of the triangle consists of the elements of k− Narayana numbers,
2. When we take any number and think that it is chosen outside the left diagonal, it is considered to be the sum of the

number to the left of this number and also the number above its diagonal on the left side.
3. On the right diagonal is

{
bk,n
}

.

The next triangle is an example of the 1−Narayana sequence:

0
1 1

1 2 3
1 2 4 7

2 3 5 9 16

Figure 1: 1−Narayana sequence

3. The k−Binomial transform of the k−Narayana sequence

The k−binomial transform of the k−Narayana sequence
{

Nk,n
}

n∈N is denoted by
{

wk,n
}

n∈N where

wk,n =
n

∑
i=0

(
n
i

)
knNk,i.

Lemma 3.1. Let n is an integer greater than and equal to 1, and k−binomial transform of k−Narayana sequence satisfies the
following relation

wk,n+1 =
n

∑
i=0

(
n
i

)
kn+1(Nk,i +Nk,i+1).

Proof. We know that

wk,n =
n

∑
i=0

(
n
i

)
Nk,i.
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If we take n+1 instead of n and consider the binomial properties then we have

wk,n+1 =
n+1

∑
i=0

(
n+1

i

)
Nk,i

= kn+1Nk,0 +
n+1

∑
i=1

(
n+1

i

)
kn+1Nk,i

= kn+1Nk,0 +
n+1

∑
i=1

(
n
i

)(
n

i−1

)
kn+1Nk,i

= kn+1Nk,0 +
n+1

∑
i=1

(
n
i

)
Nk,i +

n+1

∑
i=1

(
n

i−1

)
Nk,i

= kn+1Nk,0 +
n

∑
i=1

(
n
i

)
kn+1Nk,i +

n

∑
i=1

(
n
i

)
kn+1Nk,i+1

so we get

wk,n =
n

∑
i=0

(
n
i

)
kn+1(Nk,i +Nk,i+1).

The next theorem will provides the recurrence relation for
{

wk,n
}

.

Theorem 3.2. The recurrence relation obtained for
{

wk,n
}

is as follows:

wk,n+3 = (k2 +3k)wk,n+2− (2k3 +3k2)wk,n+1 +(k4 +2k3)wk,n. (3.1)

Proof. From the recurrence relation of the corresponding transform, there is a general solution as follows

wk,n+3 =C1wk,n+2 +C2wk,n+1 +C3wk,n.

If n = 0,1 and 2, the following system is obtained

wk,3 = C1wk,2 +C2wk,1 +C3wk,0 = k5 +3k4 +3k3

wk,4 = C1wk,3 +C2wk,2 +C3wk,1 = k7 +4k6 +6k5 +5k4

wk,5 = C1wk,4 +C2wk,3 +C3wk,2 = k9 +5k8 +10k7 +12k6 +10k5

By Cramer rule for the system, we get

C1 = k2 +3k, C2 =−2k3−3k2, and C3 = k4 +2k3.

so that the evidence is completed.

The characteristic equation of sequences wk,n in (3.1) is

β
3− (k2 +3k)β 2 +(2k3 +3k2)β − (k4 +2k3) = 0,

whose solutions are β1, β2, and β3.
Now we construct the Binet formula for

{
wk,n

}
.

Theorem 3.3. Whichever term of
{

wk,n
}

can be computed using the Binet formula. It is indicated by

wk,n =
q1β n

1
(β1−β2)(β1−β3)

+
q2β n

2
(β2−β1)(β2−β3)

+
q3β n

3
(β3−β1)(β2−β3)

where

q1 = wk,2− (β2 +β3)wk,1 +β2β3wk,0 = k
[
k2 +2k− (β2 +β3)

]

q2 = wk,2− (β1 +β3)wk,1 +β1β3wk,0 = k
[
k2 +2k− (β1 +β3)

]

q3 = wk,2− (β1 +β2)wk,1 +β1β2wk,0 = k
[
k2 +2k− (β1 +β2)

]



Fundamental Journal of Mathematics and Applications 143

0
1 2

2 6 16
4 12 36 104

9 26 76 224 656

Figure 2: 2−Narayana sequence

Proof. To obtain Binet formula let us write

wk,n = D1α
n
1 +D2α

n
2 +D3α

n
3

If we take n = 0,1and 2, we have the system

wk,0 = D1 +D2 +D3 = 0
wk,1 = D1β1 +D2β2 +D3β3 = k

wk,2 = D1β
2
1 +D2β

2
2 +D3β

2
3 = k3 +2k2

By Cramer rule for the system, we get

D1 =
wk,2− (β2 +β3)wk,1 +β2β3wk,0

(β1−β2)(β1−β3)
,

D2 =
wk,2− (β1 +β3)wk,1 +β1β3wk,0

(β2−β1)(β2−β3)
,

D2 =
wk,2− (β1 +β2)wk,1 +β1β2wk,0

(β3−β1)(β2−β3)
.

So which is completed the proof .

Theorem 3.4. The generating function of
{

wk,n
}

is:

wk(x) =
(1− k2x−3kx+2k3x2 +3k2x2)wk,0 +(x− k2x2−3kx2)wk,1 + x2wk,2

1− k2x−3kx+2k3x2 +3k2x2− k4x3−2k3x3 .

Proof. We have wk(x) = wk,0 +wk,1x+wk,2x2 +wk,3x3 · · ·+wk,nxn + · · ·
Then, if multiplication is done −(k2 +3k)x, (2k3 +3k2)x2, and −(k4 +2k3)x3 , we obtain

wk(x) = wk,0 +wk,1x+wk,2x2 +wk,3x3 + · · ·
−(k2 +3k)xwk(x) = −wk,0(k2 +3k)x−wk,1(k2 +3k)x2−wk,3(k2 +3k)x3 + · · ·

(2k3 +3k2)x2wk(x) = wk,0(2k3 +3k2)x2 +wk,1(2k3 +3k2)x3 +wk,3(2k3 +3k2)x4 + · · ·
−(k4 +2k3)x3wk(x) = −wk,0(k4 +2k3)x3−wk,1(k4 +2k3)x4−wk,3(k4 +2k3)x5 + · · ·

from these equations and (3.1), we get

[
1− k2x−3kx+2k3x2 +3k2x2− k4x3−2k3x3]wk(x) = (1−k2x−3kx+2k3x2+3k2x2)wk,0+(x−k2x2−3kx2)wk,1+x2wk,2

and so the generating function for the k−binomial transform of the k−Narayana sequence is

wk(x) =
(1− k2x−3kx+2k3x2 +3k2x2)wk,0 +(x− k2x2−3kx2)wk,1 + x2wk,2

1− k2x−3kx+2k3x2 +3k2x2− k4x3−2k3x3 .

Now, we present a new triangle of the k−binomial transform of the k−Narayana sequence for each k. The next triangle is an
example of the 2−Narayana sequence:
Since the proofs in this section are similar to the proof steps in the previous section, the theorems are given without proofs.
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4. The rising k−binomial transform of the k−Narayana sequence

The rising k−binomial transform of the k−Narayana sequence
{

Nk,n
}

n∈N is denoted by
{

rk,n
}

n∈N where

rk,n =
n

∑
i=0

(
n
i

)
kiNk,i.

Theorem 4.1. The recurrence relation obtained for
{

rk,n
}

is as follows:

rk,n+3 = (k2 +3)rk,n+2− (2k2 +3)rk,n+1 +(k3 + k2 +1)rk,n. (4.1)

The characteristic equation of
{

bk,n
}

in (4.1) is

γ
3− (k2 +3)γ2 +(2k2 +3)γ− (k3 + k2 +1) = 0,

whose solutions are γ1, γ2, and γ3.
Next we derive the Binet formula for the rising k−binomial transform of the k−Narayana sequence.

Theorem 4.2. Whichever term of
{

rk,n
}

can be computed using the Binet formula. It is indicated by

rk,n =
u1γn

1
(γ1− γ2)(γ1− γ3)

+
u2γn

2
(γ2− γ1)(γ2− γ3)

+
u3γn

3
(γ3− γ1)(γ2− γ3)

where

u1 = k3− γ2k− γ3k+2k

u2 = k3− γ1k− γ3k+2k

u3 = k3− γ1k− γ2k+2k

Theorem 4.3. The generating function of
{

rk,n
}

is:

rk(x) =
(1− kx2−3+2k2x2 +3x2)rk,0 +(1− k2x2−3x2)rk,1 + x2rk,2

1− kx2−3+2k2x2 +3x2− k3x3− k2x3− x3 .

Now, we present a new triangle of
{

rk,n
}

for each k. The next triangle is an example of the 2−Narayana sequence:

0
1 2

2 5 12
4 10 25 62

9 22 54 133 328

Figure 3: 2−Narayana sequence and its rising 2−binomial transform

5. The falling k−Binomial transform of the k−Narayana sequence

The falling k−binomial transform of the k−Narayana sequence
{

Nk,n
}

n∈N is denoted by
{

fk,n
}

n∈N where

fk,n =
n

∑
i=0

(
n
i

)
kn−iNk,i.

Theorem 5.1. The recurrence relation obtained for
{

fk,n
}

is as follows:

fk,n+3 = 4k fk,n+2−5k2 fk,n+1 +(2k3 +1) fk,n. (5.1)

The characteristic equation of sequences
{

bk,n
}

in (5.1) is

θ
3−4kθ

2 +5k2
θ − (2k3 +1) = 0,

whose solutions are θ1, θ2, and θ3.
Next we derive the Binet formula for

{
fk,n
}

.
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Theorem 5.2. Whichever term of
{

fk,n
}

can be computed using the Binet formula. It is indicated by

fk,n =
t1θ n

1
(θ1−θ2)(θ1−θ3)

+
t2θ n

2
(θ2−θ1)(θ2−θ3)

+
t3θ n

3
(θ3−θ1)(θ2−θ3)

where

t1 = 3k−θ2−θ3

t2 = 3k−θ1−θ3

t3 = 3k−θ1−θ2

Theorem 5.3. The generating function of
{

fk,n
}

is:

fk(x) =
(1−4kx+5k2x2) fk,0 +(x−4kx2) fk,1 + x2 fk,2

1−4kx+5k2x2−2k3x3− x3 .

Now, we present a new triangle of
{

fk,n
}

for each k. For example following triangle is for 2−Narayana sequence and its
falling 2−binomial transform

0
1 1

2 4 6
4 8 16 28

9 17 33 65 121

Figure 4: 2−Narayana sequence and its falling 2−binomial transform
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Abstract

This study explores the behaviour of power-law fluids over decelerating rotating disks. The disk’s
angular velocity decreases inversely with time, and the unsteady governing equations modeling
this flow yield similarity transformations that depend on the nondimensional parameter α̂ = α

Ω0
.

These transformations, introduced here for the first time in the literature, allow for a comprehensive
analysis of the fluid dynamics for shear-thinning fluids within the range 0.5 < n≤ 1.

We examine the no-slip boundary condition alongside the dimensionless unsteadiness parameter,
which quantifies the initial deceleration or acceleration of the disk. We present velocity profiles and
the viscosity function for various values of α̂ . The boundary layer problem, formulated through
dimensionless momentum and continuity equations derived via similarity transformations, is solved
using the bvp4c function in MATLAB. This numerical method, employing the 4th-order Runge-
Kutta algorithm, provides approximate solutions for the U , V , and W velocity profiles and the µ

viscosity function, considering different deceleration parameters and the power-law index n.

Our findings contribute novel insights into the fluid dynamics of power-law fluids in decelerating
rotational systems, offering potential applications in industrial and engineering processes where
such conditions are prevalent.

1. Introduction

The study of boundary layer analysis on rotating disks has been a topic of significant interest in fluid dynamics research.
This area was first explored by Theodore von Karman [1], who established the foundational equations for steady boundary
layer flow. The von Kármán boundary layer flow is part of a broader family of flow types characterized by the differential
rotation rate between a solid disk and an incompressible fluid rotating above it as a rigid body. This family of flows is known
as BEK system flows [2]. The groundbreaking experimental analysis using the china-clay technique conducted by Gregory
and Stuart [3] revealed a notable similarity between the von Kármán rotating-disk flow and flows over swept wings. This
work demonstrated that despite the apparent differences between these two flow configurations, they exhibit comparable flow
patterns and boundary layer characteristics. This discovery prompted the investigation of rotating disk flow as a prototypical
case for both empirical and theoretical research.

The von Kármán rotating-disk flow has indeed become a fundamental model for analyzing the transition from laminar to
turbulent flow in three-dimensional boundary layers. This model has been widely applied across various scenarios involving
rotating disks due to its simplicity and the rich insights it provides into flow behaviour.

Malik’s pioneering numerical study [4], together with Lingwood’s investigations [5, 6, 7] and more recent contributions
like Appelquist’s theoretical work [8], have greatly advanced our understanding of steady flows over smooth rotating disks.
These theoretical studies have explored various aspects of the flow, including the stability of laminar boundary layers and the
mechanisms leading to turbulence, thereby advancing our knowledge of the transition processes in such flows.

Studies on rotating flows with rough disks have also significantly advanced the understanding of boundary layer dynamics.
Notably, research by Harris et al. [9] investigated the effects of surface roughness on the flow characteristics over rotating disks,
revealing how roughness influences the transition to turbulence and changes the base flow profiles. Cooper and Carpenter

≫≫≫ Received: 30-07-2024 ≫≫≫ Revised: 17-09-2024 ≫≫≫ Accepted: 20-09-2024 ≫≫≫ Online: 27-09-2024 ≫≫≫ Published: 30-09-2024
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[10] further explored these effects, focusing on theoretical aspects of how rough surfaces modify boundary layer behaviour.
Additionally, Cooper et al. [11] examined the impact of various types of surface roughness on rotating disk flows, contributing
to a broader understanding of how surface imperfections affect flow transition and turbulence. Further insights are provided
by studies such as those by Alveroglu and Christian [12, 13], which offer valuable perspectives on the complex interactions
between surface roughness and rotating flow dynamics.

Although the studies mentioned above primarily focus on Newtonian fluids, significant progress has been made in extending
the von Kármán boundary layer flow analysis to non-Newtonian fluids. Mitschka [14] was pivotal in this extension, utilizing a
boundary layer approximation to explore how non-Newtonian behaviours influence the flow characteristics around rotating
disks. This work marked a significant shift from classical Newtonian models, offering new insights into the behaviour of fluids
with complex viscosity profiles. After that, both Mitschka and Ulbrecht [15] as well as Andersson et al. [16] and Hussain
et al. [17] contributed valuable numerical solutions for the basic flow in the context of shear-thickening and shear-thinning
fluids. Mitschka and Ulbrecht focused on the numerical analysis of shear-thinning and shear-thickening fluids, which exhibit
an increase in viscosity with increasing shear rate, while Andersson et al. examined highly shear-thickening fluids. Their
work has provided a deeper understanding of how these non-Newtonian properties affect the flow dynamics around rotating
disks, revealing differences in boundary layer behaviour and flow transition characteristics compared to Newtonian fluids.
These studies have expanded the applicability of von Kármán’s work, making it relevant for a broader range of industrial and
scientific applications where non-Newtonian fluids are present. However, Denier and Hewit [18] investigated the problem for
both shear-thinning and shear-thickening fluids and showed that there are some fundamental issues regarding the application of
power-law models in the boundary layer context. More recently, instability analysis examined in the boundary layer of rotating
disks for shear-thinning fluids [19, 20, 21]. Using a sixth-order linear stability equation system, they found that increasing
shear thinning stabilizes type I and type II modes in the flow. The results are consistent with established asymptotic estimates
and provide new insights into the critical Reynolds number and growth rate. In [22], power-law fluids was conducted by
Abdulameer et al., investigating the effect of shear-thinning fluids on convective type I and type II instability modes was
analyzed using the Chebyshev polynomial method. Further, Alqarni et al. [23] have demonstrated, the local linear convective
instability of boundary-layer flows over rough rotating disks using the Carreau model, a different type of non-Newtonian flow,
by determining steady-flow profiles. It has been also shown by Lingwood and Henrik Alfredsson [24] that the rotating disk
boundary layer itself exhibits a large number of complex instability behaviours that are not yet fully understood.

In addition to these studies, the decelerated rotating disk case investigated viscous flow and emphasised the relationship
between fluid stresses and velocities [25, 26]. Further, Turkyılmazoglu et al. [27] focused on the heat transfer characteristics
in nanofluid MHD flow across a decelerated rotating disk with uniform suction, and also the impact of uniform suction and
magnetohydrodynamics on several nanofluids, such as silver, alumina, and copper, were studied Rahman et al. [28] over a
decelerated rotating disk. Additionally, Fang and Tao [29] studied the laminar unsteady flow across a stretchy decelerated
rotating disk. These works contributed to the growing body of knowledge on how velocity changes affect fluid behaviour on
decelerating rotating disks.

In particular, the similarity transformations of non-Newtonian fluids and the related velocity profiles and viscosity functions
are discussed, focusing on the shear-thinning states and the dimensionless unsteadiness parameter of these fluids. This
way, the similarity transformations for power-law fluids are obtained on a decelerating rotating disk and solved numerically
using MATLAB’s bvp4c function. This function’s numerical approach relies on a finite difference code that implements the
three-stage Lobatto IIIa formula, equivalent to an implicit Runge-Kutta formula with a continuous interpolant [30].

This research examines a non-Newtonian fluid with non-constant viscosity contained in a container and rotates non-uniformly
with an angular velocity that varies with time (t) in an inertial frame. The equation of motion for a fluid element about a
reference frame may be found using the conservation of momentum concept. The mathematical description of rotating fluids
may be done using a variety of reference frames. Adopting a reference frame whose axes are fixed in a fluid-filled container is
physically and mathematically natural for many geophysical problems, such as atmospheric dynamics. This is often referred to
as a rotating frame, mantle frame, or body frame so that the bounding surface of the container is constant and there are only
minor deviations from rigid body rotation [31].

2. Formulation

We consider the steady incompressible power-law fluid reviews that geometry is an infinite rotating plane, stating at z∗ = 0
and also we use the symbol ∗ to indicate the dimensional parameter. However, since we use the assumption that the disk is
decelerating, we consider the inertial frame. The plane rotates with a angular velocity Ω∗D = Ω0(1−αt∗)−1, decelerating
around z∗ = 0. The continuity and Navier-Stokes equations can be considered as

∇∇∇ ·uuu∗ = 0 (2.1)
∂uuu∗

∂ t∗
+uuu∗ ·∇uuu∗+2ΩΩΩ

∗
DDD×uuu∗+ rrr×

(
∂ΩΩΩDDD

∂ t∗

)
=− 1

ρ∗
∇p∗+

1
ρ∗

∇∇∇ · τττ∗. (2.2)

Here U∗, V ∗, W ∗ are the steady velocity components in cylindrical polar coordinates, rrr = (r∗,θ ,z∗) is the position vector, t∗ is
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the time and ΩΩΩ
∗
D = (0,0,Ω∗D) is the vector form of the angular velocity of the disk that describes the disk just rotates about the

z∗ axis with angular velocity Ω∗D. Moreover, ρ∗ is the fluid density and p∗ is the pressure. The stress tensor τττ∗ for generalised
Newtonian models, is defined by

τττ
∗ = µ

∗
γ̇
∗ with µ

∗ = µ
∗ (γ̇∗)

where γ̇γγ
∗ = ∇∇∇uuu∗+(∇∇∇uuu∗)T is the rate-of-strain tensor and µ∗ (γ̇∗) is the non-Newtonian viscosity. The magnitude of the

symmetric rate-of-strain tensor is given by

γ̇
∗ =

√
γ̇γγ
∗ : γ̇γγ

∗

2
.

The Navier Stokes Equations written for incompressible fluids together with the inertial frame for the reference whose axes
rotate in a container filled with fluid are as follows,

1
r∗

∂ (r∗U∗0 )
∂ r∗

+
1
r∗

∂V ∗0
∂θ

+
∂W ∗0
∂ z∗

= 0 (2.3)

∂U∗0
∂ t∗

+U∗0
∂U∗0
∂ r∗

+
V ∗0
r∗

∂U∗0
∂θ

+W ∗0
∂U∗0
∂ z∗
− (V ∗0 + r∗Ω∗)2

r∗
=

1
ρ∗

∂

∂ z∗

(
µ
∗ ∂U∗0

∂ z∗

)
, (2.4)

∂V ∗0
∂ t∗

+U∗0
∂V ∗0
∂ r∗

+
V ∗0
r∗

∂V ∗0
∂θ

+W ∗0
∂V ∗0
∂ z∗

+
U∗0 Ṽ ∗0

r∗
+2Ω

∗U∗0 + r∗
∂Ω∗

∂ t∗
=

1
ρ∗

∂

∂ z∗

(
µ
∗ ∂V ∗0

∂ z∗

)
, (2.5)

∂W ∗0
∂ t∗

+U∗0
∂W ∗0
∂ r∗

+
V ∗0
r∗

∂W ∗0
∂θ

+W ∗0
∂W ∗0
∂ z∗

=− 1
ρ∗

∂P∗1
∂ z∗

+
1

ρ∗r∗
∂

∂ r∗

(
µ
∗r∗

∂U∗0
∂ z∗

)
+

1
ρ∗r∗

∂

∂θ

(
µ
∗ ∂V ∗0

∂ z∗

)
+

2
ρ∗

∂

∂ z∗

(
µ
∗ ∂W ∗0

∂ z∗

)
. (2.6)

Here U∗0 , ,V ∗0 , W ∗0 are the leading order velocity components and P∗1 is the leading order pressure term. The rate-of-strain
tensor γ̇∗ can be written to be

γ̇
∗ =

√
II
2

=

{
2

[(
∂U∗

∂ r∗

)2

+

(
1
r∗

∂V ∗

∂θ
+

U∗

r∗

)2

+

(
∂W ∗

∂ z∗

)2
]

(2.7)

+

[
r∗

∂

∂ r∗

(
V ∗

r∗

)
+

1
r∗

∂U∗

∂θ

]2

+

(
∂U∗

∂ z∗
+

∂W ∗

∂ r∗

)2

+

(
∂V ∗

∂ z∗
+

1
r∗

∂W ∗

∂θ

)2
}1/2

where
II = ∑

i
∑

j
γ̇
∗2
i j = γ̇

∗2
r∗r∗ + γ̇

∗2
θθ + γ̇

∗2
z∗z∗ +2

(
γ̇
∗2
r∗θ + γ̇

∗2
r∗z∗ + γ̇

∗2
θz∗
)
.

To determine the unsteady mean flow relative to the disk, we offer the generalization of the standard Newtonian similarity
solution. So, we consider the following transformations,

U∗0 =U(η)r∗Ω∗D, V ∗0 =V (η)r∗Ω∗D, W ∗0 =W (η)χ∗, P∗1 = ρ
∗
χ
∗2 , (2.8)

where

χ
∗ =

[
ν∗

r∗1−n
(Ω0(1−αt∗)−1)1−2n

]1/(n+1)

.

Here U , V , W are the dimensionless radial, azimuthal and axial base flow velocities, respectively. Additionally, P is the
pressure and ν∗ = m∗

ρ∗ is the kinematic viscosity. The dimensionless similarity coordinate that can be also named as boundary
layer thickness is

η =
r∗

1−n
n+1 z∗

L∗2/(n+1) , where L∗ =

√
ν∗

(Ω0(1−αt∗)−1)2−n .

These similarity variables account for the time-dependent variation of boundary layer thickness and represent the first instance
of such an introduction for power-law fluids in the literature.
Consequently, the similarity equations for the governing boundary layer equations of a decelerated power-law fluid, represented
by equations (2.1) and (2.2), are derived for the first time as follows:

2U +
1−n
1+n

ηU ′+W ′ = 0
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α̂

(
U− n−2

n+1
ηU ′

)
+U2 +

(
η

1−n
n+1

U +W
)

U ′− (V +1)2− (µU ′)′ = 0,

α̂

(
V − n−2

n+1
ηV ′+1

)
+V ′

(
η

1−n
n+1

U +W
)
+2U (V +1)− (µV ′)′ = 0, (2.9)

α̂

(
2n−1
n+1

W +
2−n
n+1

ηW ′
)
+

1−n
n+1

[
U
(
ηW ′−V

)
+2µU ′

]
+2µ

′U +P′+WW ′− (µW ′)′ = 0.

where the primes denote differentiation with respect to η and the viscosity function is

µ =
[
U ′2 +V ′2

] n−1
2 .

Owing to (2.9) the non-dimensional boundary conditions are

U(0) =V (0) =W (0) = 0,U(η → ∞)→ 0 and V (η → ∞)→−1. (2.10)

To obtain the flow profiles U , V and W , the dimensionless mean flow equations (2.9) valid for the power-law are expressed as a
system of first order ordinary differential equations. This system of equations is written as five coupled first order equations in
terms of the new five dependent variables ψn(n = 1,2, ...,5), which are defined as follows:

ψ1 =U, ψ2 =U ′, ψ3 =V, ψ4 =V ′, ψ5 =W. (2.11)

Using the first order equations defined by (2.11), the transformed system of first order ordinary differential equations with
no-slip boundary conditions for power-law fluids is obtained as follows:

ψ
′
1 = ψ2

ψ
′
2 =

(ψ2
2 +nψ2

4 ) f −ψ2ψ4(n−1)g
nµ(ψ2

2 +ψ2
4 )

ψ
′
3 = ψ4 (2.12)

ψ
′
4 =

(nψ2
2 +ψ2

4 )g−ψ2ψ4(n−1) f
nµ(ψ2

2 +ψ2
4 )

ψ
′
5 =−2ψ1−

1−n
1+n

ηψ2.

The nondimensional boundary conditions are

ψ1(0) = ψ3(0) = ψ(0) = 0
ψ1(∞)→ 0, ψ3(∞)→−1. (2.13)

Also in (2.12), f and g are given below

f = α̂(u− (n−2)/(n+1)ηψ2)+ψ
2
1 − (ψ3 +1)2 +(ψ5 + ψ̂ψ1)ψ2,

g = α̂(ψ3− (n−2)/(n+1)ηψ4 +1)+2ψ1(ψ3 +1)+(ψ5 + ψ̂ψ1)ψ4,

with ψ̂ = (1−n)/(1+n)η . These equations simplify to the Newtonian case when n = 1, aligning with established literature.
Although these equations are applicable to both shear-thickening (n > 1) and shear-thinning (n < 1) fluids, Denier and
Hewitt [18] demonstrated that bounded solutions of (2.9) subject to (2.10) exist only for shear-thinning fluids with n > 0.5.
Consequently, Griffits et al. [19, 22] investigated power-law indexed flows within the range 0.5 < n≤ 1 for a steady rotating
flow. In line with their work, this study also focuses on shear-thinning fluids with 0.5 < n≤ 1 in the context of a decelerated
rotating disk.

3. Results and Discussion

The obtained similarity equations (2.9) were solved approximately in MATLAB using the bvp4c function in accordance with
the boundary conditions given in (2.10) and the following velocity profiles were obtained. Hussain et al. [17] expanded
the range of α̂ to −100, building upon earlier work by Watson and Wang [25], who established that a disk can only have a
momentum layer if it is decelerating, i.e., when α̂ < 0. Rahman et al. [28] later provided numerical solutions for eight different
values of α̂ in the interval 0≤−α̂ ≤ 20. Here, by choosing 0.5 < n≤ 1, we observe that the flow is non-Newtonian and we
observe the changes due to the unsteadiness parameter 0≤−α̂ ≤ 8. The unsteadiness parameter was truncated at α̂ =−8
because of the discrepancies in the results obtained due to the deceleration of the rotating disk.

Before performing the calculations, the numerical scheme needed to be validated using a comparison methodology. Table 2
presents a comparison with the results of [25, 29] the classical Newtonian fluid case. The compared data are in good agreement,
which not only validates the code but also demonstrates the accuracy and reliability of the numerical scheme.
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n = 0.6 n = 0.7

α̂ U ′(0) V ′(0) W (∞) U ′(0) V ′(0) W (∞)

0 0.5 −0.6770 −1.3046 0.5015 −0.6530 −1.1967

−0.5 0.5416 −0.4858 −0.8241 0.5638 −0.4676 −0.8391

−2 0.5011 −0.0785 −0.3312 0.6433 −0.0050 −0.4438

−5 0.3515 −0.2152 −0.0948 0.6637 0.6416 −0.1846

−8 0.2783 −0.3293 −0.0430 0.6191 1.0941 −0.0989

n = 0.8 n = 0.9

α̂ U ′(0) V ′(0) W (∞) U ′(0) V ′(0) W (∞)

0 0.5039 −0.6362 −1.0773 0.5069 −0.6243 −0.9688

−0.5 0.5826 −0.4523 −0.8436 0.5992 −0.4394 −0.8469

−2 0.7633 0.0610 −0.5660 0.8583 0.1141 −0.6923

−5 1.0053 1.0296 −0.3399 1.3165 1.2624 −0.5516

−8 1.1075 1.9083 −0.2331 1.6824 2.4214 −0.4715

n = 1

α̂ U ′(0) V ′(0) W (∞)

0 0.5102 −0.6159 −0.8845

−0.5 0.6143 −0.4284 −0.8510

−2 0.9315 0.1550 −0.8193

−5 1.5628 1.3609 −0.8012

−8 2.1873 2.5887 −0.7941

Table 1: Table of boundary values for U,V and W

n = 1

α̂ =−0.5 [25] [29] Present

U ′(0) 0.614283 0.6143 0.6143

V ′(0) -0.428406 -0.4284 -0.4284

W (∞) 0.4255 -0.8510

α̂ =−2 [25] [29] Present

U ′(0) 0.931507 0.9315 0.9315

V ′(0) 0.154981 0.1550 0.1550

W (∞) 0.4096 -0.8193

α̂ =−5 [25] [29] Present

U ′(0) 1.562797 1.5627 1.5628

V ′(0) 1.360850 1.3609 1.3609

W (∞) 0.4006 -0.8012

Table 2: Comparison of U ′(0), V ′(0) and W (∞) obtained for various α̂ variables with the results of [25] and [29] the classical Newtonian
fluid case.

The power-law shear-thinning flow profiles calculated for the decelerating disk are illustrated in Figures 1, 2, and 3. They
reveal that all those profiles decay to their corresponding far field values as decelarating parameter decreases. Figure 1 reveals
a notable decrease in the boundary layer thickness as the instability parameter −α̂ increases. This decrease becomes more
pronounced with increasing −α̂ , ultimately leading to a significant reduction in the boundary layer thickness. Additionally, the
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maximum value of the radial jet also decreases as −α̂ grows in magnitude. Also, as deceleration increases, the location of the
maximum value of the radial jet shifts closer to the disk surface. Despite these changes in boundary layer thickness and radial
jet strength, the inflectional shape of the flow profile remains preserved, indicating stability in the overall flow structure.
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Figure 1: Radial velocity profiles for power-law flow for 0.5 < n≤ 1 versus η . The boundary layer thickness η axis has been truncated at
20.

The effect of non-zero α̂ on the azimuthal profile is presented in Figure 2. For each value of the shear-thickening parameter n,
the figure demonstrates that the transition of the profile to the boundary value at the far field becomes more rapid as the disk’s
deceleration increases. This observation is consistent with the decrease in boundary layer thickness noted previously.

Figure 3 shows the axial velocity profile for various values of the shear-thickening parameter n. The figure illustrates that an
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increased deceleration rate leads to a significant reduction in the magnitude of the axial jet, hence reduce the amount of the
fluid entering the boundary layer. Furthermore, the decrease in the magnitude of the axial flow becomes more pronounced as
the shear-thickening parameter n decreases.
For small unsteadiness parameter values, the fluid ahead of the disk rotates slower than the disk. This phenomenon may be a
consequence of the rapid decelerated rotation of the disk, while the inertia of the neighbouring fluid layer allows the fluid to
sustain its more significant angular momentum for a long time. Also, as shown in Figures 1, 2, 3 the results are consistent
with the boundary layer analysis for a disk rotating at constant velocity (α̂ = 0). This involves approximate solutions that are
directly identical to the result for constant angular velocity rotation of the disk and whose velocity profiles are equivalent to
those obtained for flows with known power-law indexes [19].
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Figure 2: Azimuthal velocity profiles for power-law flow for 0.5 < n≤ 1 versus η . The boundary layer thickness η axis has been truncated
at 20.
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Figure 3: Axial velocity profiles for power-law flow for 0.5 < n≤ 1 versus η . The boundary layer thickness η axis has been truncated at 20.

Finally, viscosity profiles for the numerical results obtained are given in Figure 4. As the angular velocity of the disk slows
down with time, the viscous effects of the flow on the wall surface increase, the numerical data obtained when the power-law
index n = 0.6 show a decrease by almost half as n increases.
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Figure 4: µ versus η for n = 0.6,0.7,0.8.

4. Conclusion

This study investigates power-law fluids over decelerating rotating disks, with the disk’s angular velocity inversely proportional
to time. By deriving similarity transformations, we explored the flow characteristics dependent on the nondimensional
unsteadiness parameter α̂ . For 0.5 < n≤ 1, we analyzed the no-slip condition and the dimensionless unsteadiness parameter,
detailing the velocity profiles and viscosity function with respect to deceleration parameters α̂ = 0,−0.5,−2,−5,−8. The
findings revealed that an increased decelerating parameter results in a thinner boundary layer and a reduction in the maximum
value of the U profile. It also causes a decrease in the amount of axial flow towards the boundary layer, which is consistent
with the observed reduction in boundary layer thickness. Additionally, it was observed that the inflectional profile of mean
flow components does not change notably with varying deceleration rates. These findings provide valuable insights into the
behaviour of non-Newtonian fluids over decelerating rotating disks, with applications in engineering and industrial processes.
The study demonstrates the effectiveness of numerical methods in solving complex fluid dynamics problems, contributing to
advancements in the field.

For future work, this study can be extended to include other non-Newtonian fluid models, such as the Bingham and Carreau
models, which could offer a more comprehensive understanding of fluid behaviours in different scenarios. Additionally,
exploring cases with rough rotating disks could provide insights into how surface texture influences flow dynamics. Finally, it
would be valuable to investigate other flow scenarios within the BEK system for non-Newtonian cases. Exploring these different
flow configurations could further enhance our understanding of non-Newtonian fluid dynamics and contribute additional
insights to the field. Incorporating these elements could enhance the applicability and relevance of our findings. We anticipate
that our results will serve as a useful foundation for these extended studies, contributing valuable data and insights to the field.

Declarations

Acknowledgements: The authors are grateful to the anonymous referee for helpful suggestions to improve the paper.

Author’s Contributions: Conceptualization, S.A and B.A.; methodology S.A. and B.A.; validation, S.A. and B.A. investiga-



156 Fundamental Journal of Mathematics and Applications

tion, S.A. and B.A.; resources, S.A. and B.A.; data curation, S.A.; writing—original draft preparation, S.A; writing—review
and editing, S.A. and B.A.; supervision, B.A. All authors have read and agreed to the published version of the manuscript.

Conflict of Interest Disclosure: The authors declare no conflict of interest.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the
CC BY-NC 4.0 license.

Supporting/Supporting Organizations: This research received no external funding.

Ethical Approval and Participant Consent: This article does not contain any studies with human or animal subjects. It is
declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies
benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of Data and Materials: Data sharing not applicable.

Use of AI tools: The author declares that he has not used Artificial Intelligence (AI) tools in the creation of this article.

ORCID
Serkan Ayan https://orcid.org/0000-0003-3041-2324
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[11] A.J. Cooper, J.H. Harris, S.J. Garrett, M. Özkan and P.J. Thomas, The effect of anisotropic and isotropic roughness on the convective stability

of the rotating disk boundary layer, Phys. Fluids, 27(1) (2015). [CrossRef] [Web of Science]
[12] B. Alveroglu, A. Segalini and S.J. Garrett, The effect of surface roughness on the convective instability of the BEK family of boundary-layer

flows, Eur. J. Mech. B Fluids, 56 (2016), 178-187. [CrossRef] [Scopus] [Web of Science]
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Abstract

In this paper, we introduce the Pell-Lucas and the symmetric Pell-Lucas matrices. The study
delves into the linear algebra aspects of these matrices, analyzing their mathematical properties and
relationships. We construct decompositions for both the Pell-Lucas matrix and its inverse matrix.
We present the Cholesky factorization of the symmetric Pell-Lucas matrices. Furthermore, we
derive some valuable identities and bounds for the eigenvalues of these symmetric matrices through
the application of majorization notation.

1. Introduction

Numerous researchers in the disciplines of calculus, applied mathematics, and linear algebra, as well as other branches of
mathematics, have been interested in the Fibonacci and Lucas numbers. There are also other relationships that are written and
new number sequences, such as Pell and Pell-Lucas number sequences, are derived that are similar to the recurring relationships
of the Fibonacci and Lucas number sequences. The Pell numbers Pn and the Pell-Lucas numbers Qn are defined by

Pn+1 = 2Pn +Pn−1, f or n≥ 1,

where P0 = 0 and P1 = 1, and

Qn+1 = 2Qn +Qn−1, f or n≥ 1,

where Q0 = 2 and Q1 = 2, respectively. In addition, we present several identities associated with the Pell-Lucas numbers and
relationship between the Pell numbers and the Pell-Lucas numbers for k ∈ N.

Qk +Qk+1 = 4Pk+1, (1.1)
Qk +Qk+2 = 8Pk+1, (1.2)

Q2
1 +Q2

2 + · · ·+Q2
k =

QkQk+1−4
2

. (1.3)

We refer to [1, 2, 3] for further information on the Pell and the Pell-Lucas numbers.

Mn denotes the set of all n×n matrices. If any matrix P ∈Mn may be written as P = RRT or P = RT R, where R ∈Mn is a
lower triangular matrix with diagonal entries that are not negative, then this factorization is known as a Cholesky factorization.
Moreover, this factorization is unique if R is nonsingular.

A matrix S ∈Mn of the form

S =




S11 0 · · · 0
0 S22 · · · 0
...

...
. . .

...
0 0 · · · Snn




≫≫≫ Received: 13-12-2023 ≫≫≫ Revised: 10-07-2024 ≫≫≫ Accepted: 02-09-2024 ≫≫≫ Online: 30-09-2024 ≫≫≫ Published: 30-09-2024
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in which Sii ∈ Mni , i = 1,2, . . . ,k, and ∑
k
i=1 ni = n, is called block diagonal. This matrix is frequently described as S =

S11⊕S22⊕·· ·⊕Snn.

Many issues resulting from linear recurrence relations can be resolved using matrix methods, which are a significant instrument
(see, for example, [4]). Before we go on to matrix factorization, we need to first grasp Cholesky factorization of the Pascal
matrix (see, for example, [5]). Furthermore, factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices
were presented by Lee et al. in [6]. The authors [7] discussed linear algebra of the k-Fibonacci and the symmetric k-Fibonacci
matrix. In addition to [7], a factorization of the Pascal matrix are provided in [8]. Zhang [9] also researched the Pascal matrix
and its generalization. Irmak and Köme [10] investigated the factorizations of the Lucas and the symmetric Lucas matrix. In
[11], factorizations and inverse factorizations of generalized k-Fibonacci matrices were proposed. The authors [12] discussed
the decomposition of Jacobsthal matrix and Jacobsthal-Lucas symmetric matrix, along with the inverses of these matrices. Kılıç
and Taşcı [13] gave the factorizations and eigenvalues of Pell and symmetric Pell matrices. Furthermore, for the eigenvalues of
the symmetric Pell matrix, they provided some relations and boundaries. Motivated by this paper, we define a new matrix as
follows. Then, in this paper we consider the factorizations and eigenvalues of Pell-Lucas and symmetric Pell-Lucas matrices.

Definition 1.1. Let i, j = 1,2, . . . ,n. Then, we define the Pell-Lucas matrix such that

An = [ai j] =

{
Qi− j+1 , i− j+1 > 0
0 , i− j+1≤ 0

.

Example 1.2. For n = 6 in Definition 1.1, then we have

A6 =




2 0 0 0 0 0
6 2 0 0 0 0

14 6 2 0 0 0
34 14 6 2 0 0
82 34 14 6 2 0
198 82 34 14 6 2



,

and the first column of A6 is the vector (2,6,14,34,82,198)T . As a result, the matrix An reveals a variety of interesting facts.

2. Factorizations

This section discusses the creation and factorization of our Pell-Lucas matrix of order n using the (0,1,2)-matrix, which is
defined as a matrix whose elements are all either 0, 1 or 2. Let In represents the order n identity matrix. Further, we define the
n×n matrices Ln, An and Xk by

L0 =




1 0 0
2 1 0
1 0 1


 , L−1 =




1 0 0
0 1 0
0 2 1


 ,

and Lk = L0⊕ Ik, k = 1,2, . . ., An = [1]⊕An−1, X1 = In, X2 = In−3⊕L−1, for 3 ≤ k < n, Xk = In−k⊕Lk−3, and Xn = Ln−3.
Then we reach the following lemma.

Lemma 2.1. For k ≥ 3, we have Ak ·Lk−3 = Ak.

Proof. For k = 3, we have A3 ·L0 = A3. Let k > 3. By using the familiar Pell-Lucas sequences, and matrix product definition,
we get the following conclusion.

For i, j = 1,2, . . . ,n, we define a matrix

Γn = [γi j] =





2, i = j
2, i = j+1
0, otherwise

. (2.1)

Also we can give the inverse of matrix Γn as follows:

Γ
−1
n = [γi j] =




(−1)i− j 1

2
, i≥ j

0, otherwise
. (2.2)

We can obtain the following theorem by using Lemma 2.1 and equation (2.1).

Theorem 2.2. The Xk’s and Γn can factor the Pell-Lucas matrix An in the following way:

An = X1X2 · · ·XnΓn = ΓnX1X2 · · ·Xn.
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Now we give the factorization of A6 in Example 1.2.

Example 2.3. From Theorem 2.2, for n = 6, we have

A6 = X1X2X3X4X5X6Γ6

= I6 (I3⊕L−1)(I3⊕L0)(I2⊕L1)(I1⊕L2)L3Γ6

=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



·




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 2 1



·




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 2 1 0
0 0 0 1 0 1



·




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 2 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1




·




1 0 0 0 0 0
0 1 0 0 0 0
0 2 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



·




1 0 0 0 0 0
2 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



·




2 0 0 0 0 0
2 2 0 0 0 0
0 2 2 0 0 0
0 0 2 2 0 0
0 0 0 2 2 0
0 0 0 0 2 2



.

Now, we give another factorization of An. For i, j = 1,2, . . . ,n, we define a matrix

Vn = [vi j] =





Qi , j = 1 ,

1 , i = j ,
0 , otherwise

, i.e, Vn =




Q1 0 · · · 0
Q2 1 · · · 0
...

...
. . .

...
Qn 0 · · · 1


 .

An elementary calculation leads to the next theorem.

Theorem 2.4. For n≥ 1, An =Vn(I1⊕Vn−1)(I2⊕Vn−2) · · ·(In−1⊕V1).

The inverse of the Pell-Lucas matrix An is easily found. We know that

L−1
0 =




1 0 0
−2 1 0
−1 0 1


 , L−1

−1 =




1 0 0
0 1 0
0 −2 1


 , and L−1

k = L−1
0 ⊕ Ik.

For k = 1,2, . . . ,n, we define Yk = X−1
k . Then Y1 = X−1

1 = In,

Y2 = X−1
2 = In−3⊕L−1

−1 = In−2⊕
[

1 0
−2 1

]
, and Yn = L−1

n−3. Also we can derive

V−1
n =




Q1/4 0 0 · · · 0
−Q2/2 1 0 · · · 0
−Q3/2 0 1 · · · 0

...
...

...
. . .

...
−Qn/2 0 0 · · · 1



, and (Ik⊕Vn−k)

−1 = Ik⊕V−1
n−k.

Utilizing Theorem 2.2 and Theorem 2.4, we derive the subsequent corollary.

Corollary 2.5. The inverse of the Pell-Lucas matrix A−1
n can be factored by the Yk’s and Γ−1

n as follows:

A−1
n = Γ

−1
n YnYn−1 . . .Y2Y1 = YnYn−1 . . .Y2Y1Γ

−1
n

= (In−1V1)
−1 · · ·(I2⊕Vn−2)

−1(I1⊕Vn−1)
−1V−1

n

By Corollary 2.5, we get

A−1
n = [αi j] =





1/2 , i = j
−3/2 , i− j = 1
(−1)i− j , i− j ≥ 2
0, otherwise

. (2.3)
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Example 2.6. By (2.3), the inverse of A6 in Example 1.2 is

A−1
6 =




1/2 0 0 0 0 0
−3/2 1/2 0 0 0 0

1 −3/2 1/2 0 0 0
−1 1 −3/2 1/2 0 0
1 −1 1 −3/2 1/2 0
−1 1 −1 1 −3/2 1/2



.

Definition 2.7. For i, j = 1,2, . . . ,n, we define the symmetric Pell-Lucas matrix such that

Bn = [bi j] = [b ji] =





∑
i
k=1 Q2

k , i = j

bi, j−2 +2bi, j−1 +4, i+1 = j

bi, j−2 +2bi, j−1, i+1 < j

,

where b1,0 = 4.

So we get

b1 j = b j1 = 2Q j, f or j ≥ 1 (2.4)
b2 j = b j2 = 8Pj+1, f or j ≥ 2. (2.5)

Example 2.8. For n = 6 in Definition 2.7, then we get

B6 =




4 12 28 68 164 396
12 40 96 232 560 1352
28 96 236 572 1380 3332
68 232 572 1392 3360 8112

164 560 1380 3360 8116 19596
396 1352 3332 8112 19596 47320



.

According to the Definition 2.7, the following lemma is derived.

Lemma 2.9. For j ≥ 3, we get b3, j = Pj−3 (8P4 +4)+Pj−2

(
Q3Q4−4

2

)
.

Proof. From (1.3), we know that b3,3 = Q2
1 +Q2

2 +Q2
3 =

Q3Q4−4
2

. On the other hand, since P0 = 0, and P1 = 1, then we

have b3,3 =
Q3Q4−4

2
= P0 (8P4 +4)+P1

(
Q3Q4−4

2

)
. By induction, the proof is completed.

We know that b3,1 = b1,3 = 2Q3 and b3,2 = b2,3 = 8P4 by (2.4) and (2.5). In addition, we get that b4,1 = b1,4, b4,2 = b2,4, and
b4,3 = b3,4. By induction, the following lemma is reaced.

Lemma 2.10. For j ≥ 4, we have b4, j = Pj−4 (8P4 +4+Q3Q4)+Pj−3

(
Q4Q5−4

2

)
.

By using Lemmas 2.9 and 2.10, we can derive b5,1,b5,2,b5,3, and b5,4. From these conclusions and Definition 2.7, we reach
the following lemma.

Lemma 2.11. For j ≥ 5, we get

b5, j = Pj−5 (8P4 +4+Q3Q4 +Q4Q5)+Pj−4

(
Q5Q6−4

2

)
.

Proof. From (1.3), and Definition 2.7, since b5,5 = Q2
1+Q2

2+Q2
3+Q2

4+Q2
5 =

Q5Q6−4
2

, by induction, the proof is completed.

Utilizing Definition 2.7, Lemmas 2.9, 2.10 and 2.11, we arrive at the following lemma through induction on the variable i.

Lemma 2.12. For j ≥ i≥ 6, we have

bi, j = Pj−i

(
8P4 +4+

i

∑
k=4

Qk−1Qk

)
+Pj−i+1

(
QiQi+1−4

2

)
.
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We can easily obtain the following corollary by using Pell numbers and Pell-Lucas numbers.

Corollary 2.13. For the symmetric Pell-Lucas matrix Bn, we get

Bn = [bi j] =





1
2

Qi+ j+1−
1
2

Q j−i+1+(−1)i+1 +(−1)i+1 2Pj−i, i≤ j

1
2

Qi+ j+1−
1
2

Qi− j+1+(−1) j+1 +(−1) j+1 2Pi− j, i > j

.

Lemma 2.14. Let i, j ∈ Z+ and i≥ 3. Then we have

i−2

∑
k=1

(−1)i−2−k bk, j−
3
2

bi−1, j +
1
2

bi, j =

{
Q j−i+1, i≤ j
0, i > j

. (2.6)

Proof. Assume that i≤ j. Now, we prove the theorem by the induction method on i. Let i = 3. From Corollary 2.13, we can
derive

b1, j−
3
2

b2, j +
1
2

b3, j =

(
1
2

Q j+2−
1
2

Q j+1 +2Pj−1

)
+

(
−3

4
Q j+3 +

3
4

Q j−2 +3Pj−2

)
+

(
1
4

Q j+4−
1
4

Q j−1 +Pj−3

)

= Q j−2.

Suppose that the hypothesis is true for i. For i+1, by using equations (1.1), (1.2) and Corollary 2.13, we find

i−1

∑
k=1

(−1)i−1−k bk, j−
3
2

bi, j +
1
2

bi+1, j = bi−1, j−
i−2

∑
k=1

(−1)i−2−k bk, j−
3
2

bi, j +
1
2

bi+1, j

= bi−1, j +

(
−3

2
bi−1, j +

1
2

bi, j−Q j−i+1

)
− 3

2
bi, j +

1
2

bi+1, j

= −1
2

bi−1, j−bi, j +
1
2

bi+1, j−Q j−i+1

=

(
−1

4
Qi+ j +

1
4

Q j−i+2+(−1)i − (−1)i Pj−i+1

)

+

(
−1

2
Qi+ j+1 +

1
2

Q j−i+1+(−1)i+1 +(−1)i 2Pj−i

)

+

(
1
4

Qi+ j+2−
1
4

Q j−i+(−1)i +(−1)i Pj−i−1

)
−Q j−i+1

=
1
4
(
−Qi+ j−2Qi+ j+1 +Qi+ j+2

)
+

1
4

(
Q j−i+2+(−1)i +2Q j−i+1+(−1)i+1 −Q j−i+(−1)i

)

+(−1)i (−Pj−i+1 +2Pj−i +Pj−i−1
)
−Q j−i+1

=
1
4

(
2Q j−i+1+(−1)i +2Q j−i+1+(−1)i+1

)
−Q j−i+1

= 4Pj−i+1−Q j−i+1

= Q j−i +Q j−i+1−Q j−i+1

= Q j−i.

The proof for i > j can be completed in a similar way.

Theorem 2.15. For n ∈ Z+, we have YnYn−1 . . .Y2Y1Γ−1
n Bn = AT

n and the Cholesky factorization of Bn is given by Bn = AnAT
n .

Proof. By Corollary 2.5, YnYn−1 . . .Y2Y1Γ−1
n = A−1

n . So, if we get A−1
n Bn = AT

n , then the theorem holds. Let A−1
n Bn = [ci j]. So,

from (1.1), (2.3), (2.4), (2.5) and Lemma 2.14, we find the following:
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A−1
n Bn = [ci j] =





1
2

b1 j, i = 1

−3
2

b11 +
1
2

b21, i = 2, j = 1

−3
2

b1 j +
1
2

b2 j, i = 2, j ≥ 2

∑
i−2
k=1 (−1)i−2−k bk, j−

3
2

bi−1, j +
1
2

bi, j, i≥ 3

=





Q j, i = 1

−3Q1 +Q2, i = 2, j = 1

−3Q j +4Pj+1, i = 2, j ≥ 2

∑
i−2
k=1 (−1)i−2−k bk, j−

3
2

bi−1, j +
1
2

bi, j, i≥ 3

=





Q j, i = 1

0, i = 2, j = 1

Q j−1, i = 2, j ≥ 2

Q j−i+1, i≥ 3, i≤ j

0, i≥ 3, i > j

=





Q j−i+1, i≤ j

0, i > j

= AT
n .

Hence, the Cholesky factorization of Bn is given by Bn = AnAT
n .

Now we give the Cholesky factorization of B6 by using A6 in Example 1.2.

Example 2.16. By Theorem 2.15, since the Cholesky factorization of B6 is A6AT
6 , then we get

B6 =




4 12 28 68 164 396
12 40 96 232 560 1352
28 96 236 572 1380 3332
68 232 572 1392 3360 8112

164 560 1380 3360 8116 19596
396 1352 3332 8112 19596 47320



=




2 0 0 0 0 0
6 2 0 0 0 0

14 6 2 0 0 0
34 14 6 2 0 0
82 34 14 6 2 0
198 82 34 14 6 2



·




2 6 14 34 82 198
0 2 6 14 34 82
0 0 2 6 14 34
0 0 0 2 6 14
0 0 0 0 2 6
0 0 0 0 0 2



.
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Moreover, since B−1
n =

(
AT

n
)−1 A−1

n , we obtain

B−1
n = [βi j] = [β ji] =





2(n+1− i)+1
2

, i = j < n

1
4
, i = j = n

−4(n− i)+1
4

, i+1 = j < n

−3
4
, i+1 = j = n

(−1) j−i (n+1− j) , i+1 < j < n

(−1) j−i

2
, i+1 < j = n

. (2.7)

Example 2.17. By (2.7), the inverse of B6 in Example 2.8 is

B−1
6 =




13/2 −21/4 4 −3 2 −1/2

−21/4 11/2 −17/4 3 −2 1/2

4 −17/4 9/2 −13/4 2 −1/2

−3 3 −13/4 7/2 −9/4 1/2

2 −2 2 −9/4 5/2 −3/4

−1/2 1/2 −1/2 1/2 −3/4 1/4




.

From Theorem 2.15, we get the following corollary.

Corollary 2.18. For n ∈ Z+, we get

Qn+1Qn +QnQn−1 + · · ·+Q2Q1 =





(Qn+1)
2

2
−2, i f n is even

(Qn+1)
2

2
−6, i f n is odd

.

3. Eigenvalues of the symmetric Pell-Lucas matrix Bn

In this section, we consider the eigenvalues of the symmetric Pell-Lucas matrix Bn.

Let W = {r = (r1,r2, . . . ,rn) ∈ Rn : r1 ≥ r2 ≥ ·· · ≥ rn}. For r,s ∈W , r ≺ s if ∑
t
i=1 ri ≤ ∑

t
i=1 si, t = 1,2, . . . ,n− 1, and if

t = n, then equality holds.It is stated that s majorizes r or that r is majorized by s when r ≺ s. The condition for majorization
can be written as follows: for r,s ∈W , r ≺ s if ∑

t
i=0 rn−i ≥ ∑

t
i=0 sn−i, t = 0,1, . . . ,n−2, and if t = n−1, then equality holds.

The following is an exciting simple fact:

(r,r, . . . ,r)≺ (r1,r2, . . . ,rn) , where r =
∑

n
i=1 ri

n
.

We refer to [14] and [15] for more information about majorizations.

An n× n matrix D = [di j] is doubly stochastic if di j ≥ 0 for i, j = 1,2, . . . ,n, ∑
n
i=1 di j = 1, j = 1,2, . . . ,n, and ∑

n
j=1 di j = 1,

i = 1,2, . . . ,n. Hardy et al. [16] show that there must exist a doubly stochastic matrix D such that r=sD. This is the necessary
and sufficient condition for r ≺ s.

It is a well-known fact that the eigenvalues and the main diagonal components of a real symmetric matrix are both real
numbers. The concept of majorization provides the precise link between the main diagonal components and the eigenvalues.
The diagonal components symmetric matrix majorize the vector of eigenvalues of the matrix.
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By Definition 1.1, we have det (An) = 2n. Also by Theorem 2.15, since Bn = AnAT
n , we have det (Bn) = 22n. Let λ1,λ2, . . . ,λn

be the eigenvalues of Bn. Since Bn = AnAT
n and ∑

k
i=1 Q2

i =
Qk+1Qk

2
−2 by (1.3), the eigenvalues of Bn are all positive and

(
Qn+1Qn

2
−2,

QnQn−1

2
−2, . . . ,

Q2Q1

2
−2
)
≺ (λ1,λ2, . . . ,λn) . (3.1)

In [17], we arrive at the combinatorial property

Qn =
b n

2c
∑

m=0

n
n−m

(
n−m

m

)
2n−2m, f or n 6= 0. (3.2)

Hence, we obtain the following corollaries.

Corollary 3.1. Let λ1,λ2, . . . ,λn be the eigenvalues of Bn. Then we have

λ1 +λ2 + · · ·+λn =





(
∑
b n+1

2 c
m=0

n+1
n−m+1

(
n−m+1

m

)
2n−2m+1

)2

4
−2n−1, i f n is even

(
∑
b n+1

2 c
m=0

n+1
n−m+1

(
n−m+1

m

)
2n−2m+1

)2

4
−2n−3, i f n is odd

.

Proof. From (3.1), and Corollary 2.18, we find

λ1 +λ2 + · · ·+λn =
Qn+1Qn +QnQn−1 + · · ·+Q2Q1

2
−2n

=





(Qn+1)
2

4
−2n−1, i f n is even

(Qn+1)
2

4
−2n−3, i f n is odd

.

By (3.2), the proof is completed.

Corollary 3.2. If n is an even number, then we have

4nλn ≤



b n+1

2 c
∑

m=0

n+1
n−m+1

(
n−m+1

m

)
2n−2m+1




2

−8n−4≤ 4nλ1.

If n is an odd number, then we have

4nλn ≤



b n+1

2 c
∑

m=0

n+1
n−m+1

(
n−m+1

m

)
2n−2m+1




2

−8n−12≤ 4nλ1.

Proof. Let Sn = λ1 +λ2 + · · ·+λn. Since
(

Sn

n
,

Sn

n
, . . . ,

Sn

n

)
≺ (λ1,λ2, . . . ,λn) , (3.3)

we have λn ≤ Sn
n ≤ λ1. Then by Corollary 3.1, the proof is completed.

From (2.7), we have
(

2n+1
2

,
2n−1

2
, . . . ,

7
2
,

5
2
,

1
4

)
≺
(

1
λn

,
1

λn−1
,

1
λn−2

, . . . ,
1
λ3

,
1
λ2

,
1
λ1

)
. (3.4)

Therefore, there exists a doubly stochastic matrix H = [hi j] such that

(
2n+1

2
,

2n−1
2

, . . . ,
7
2
,

5
2
,

1
4

)
=

(
1
λn

,
1

λn−1
, . . . ,

1
λ3

,
1
λ2

,
1
λ1

)



h11 h12 · · · h1n
h21 h22 · · · h2n

...
...

. . .
...

hn1 hn2 · · · hnn


 .

That is, we find 1
λn

h1n +
1

λn−1
h2n + · · ·+ 1

λ1
hnn =

1
4 and h1n +h2n + · · ·+hnn = 1.
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Lemma 3.3. For all i = 1,2, . . . ,n, we get hn−(i−1),n ≤ λi
n−1 .

Proof. Assume that hn−(i−1),n >
λi

n−1 . So

h1n +h2n + · · ·+hnn >
λ1

n−1
+

λ2

n−1
+ · · ·+ λn

n−1

=
1

n−1
(λ1 +λ2 + · · ·+λn) .

Since h1n +h2n + · · ·+hnn = 1 and ∑
n
i=1 λi ≥ n, this yields a contradiction, then hn−(i−1),n ≤ λi

n−1 .

For k ∈ Z+, we define

Tk =
k

∑
i=1

1
λi

(3.5)

=
2k+1

2
+

2k−1
2

+
2k−3

2
+ · · ·+ 7

2
+

5
2
+

1
4

=
2k2 +4k−5

4
.

Hence we obtain
(

Tn

n
,

Tn

n
, . . . ,

Tn

n
,

Tn

n

)
≺
(

1
λn

,
1

λn−1
, . . . ,

1
λ2

,
1
λ1

)
.

Theorem 3.4. Let 2≤ n ∈ Z+,Sn = λ1 +λ2 + · · ·+λn and Un =
1

n−1

(
Sn−

n
Tn

)
. Then we have

(
n
Tn

,Un,Un, . . . ,Un

)
≺ (λ1,λ2, . . . ,λn) .

.

Proof. For i, j = 1,2, . . . ,n, we define an n×n matrix

Gn = [gi j] =




g11 g12 g12 · · · g12
g21 g22 g22 · · · g22

...
...

...
...

...
gn1 gn2 gn2 · · · gn2


 , (3.6)

where for i = 1,2, . . . ,n, gi1 =
1

Tnλi
and gi2 =

1−gi1

n−1
.

From (3.5) and (3.6), for i = 1,2, . . . ,n, we have

g11 +g21 + · · ·+gn1 =
1

Tnλ1
+

1
Tnλ2

+ · · ·+ 1
Tnλn

= 1,

g12 +g22 + · · ·+gn2 =
1−g11

n−1
+

1−g21

n−1
+ · · ·+ 1−gn1

n−1
= 1,

gi1 +(n−1)gi2 = gi1 +(n−1)
1−gi1

n−1
= 1,

where gi1 ≥ 0 and gi2 ≥ 0. Then, Gn is a doubly stochastic matrix. Also, we get

λ1g11 +λ2g21 + · · ·+λngn1 = λ1
1

Tnλ1
+λ2

1
Tnλ2

+ · · ·+λn
1

Tnλn
=

n
Tn

,

λ1g12 +λ2g22 + · · ·+λngn2 = λ1

(
1−g11

n−1

)
+λ2

(
1−g21

n−1

)
+λn

(
1−gn1

n−1

)
=Un.

Therefore, we have
(

n
Tn

,Un,Un, . . . ,Un

)
= (λ1,λ2, . . . ,λn)Gn,

and so, we obtain
(

n
Tn

,Un,Un, . . . ,Un

)
≺ (λ1,λ2, . . . ,λn) .



Fundamental Journal of Mathematics and Applications 167

Lemma 3.5. For k = 2,3, . . . ,n, we get

λk ≥
1
Tk
,

where Tk =
2k2+4k−5

4 .

Proof. By using (3.4), for k ≥ 2, we have

1
λ1

+
1
λ2

+
1
λ3

+ · · ·+ 1
λk−1

+
1
λk
≤ 1

4
+

5
2
+

7
2
+ · · ·+ 2k−1

2
+

2k+1
2

= Tk

Therefore, we have

1
λk

≤ Tk−
(

1
λ1

+
1
λ2

+
1
λ3

+ · · ·+ 1
λk−1

)
≤ Tk,

and so, the proof is completed.

Theorem 3.6. Let 2≤ n ∈ Z+,Sn = λ1 +λ2 + · · ·+λn and Un =
1

n−1

(
Sn−

n
Tn

)
. Then for k ≤ n−2, we have

λ1 ≤ 22n
n

∏
i=2

Ti,

λn−k ≤ (k+1)Un−
k−1

∑
i=0

1
Tn−i

.

Proof. By Theorem 2.15, we know that det (Bn) = 22n = λ1λ2 · · ·λn. By Lemma 3.5, we get

22n = λ1λ2 · · ·λn ≥ λ1

n

∏
i=2

1
Ti
,

and so, we obtain λ1 ≤ 22n
∏

n
i=2 Ti. By Theorem 3.4, for k ≤ n−2, we have

λn +λn−1 + · · ·+λn−(k−1)+λn−k ≤ (k+1)Un,

and so, by Lemma 3.5, we get

λn−k ≤ (k+1)Un−
(
λn +λn−1 + · · ·+λn−(k−1)

)

≤ (k+1)Un−
k−1

∑
i=0

1
Tn−i

.

Then the proof is completed.

By applying Theorem 3.4 and Lemma 3.5, we can readily derive the subsequent corollary.

Corollary 3.7. Let 2≤ n ∈ Z+ and k ≤ n−2. Then we have

n
Tn
≤ λ1 ≤ 22n

n

∏
i=2

Ti,

1
Tn−k

≤ λn−k ≤ (k+1)Un−
k−1

∑
i=0

1
Tn−i

,

1
Tn
≤ λn ≤Un.

4. Conclusions

In this article, we introduce the Pell-Lucas An and the symmetric Pell-Lucas Bn matrices. We consider the linear algebra
of these matrices. Firstly, we construct two different factorizations of Pell-Lucas matrices by the new matrix Γn. We find
the inverse of the Pell-Lucas matrix A−1

n , and present the factorization of A−1
n . Then, we derive the components [bi j] of the

Pell-Lucas matrix Bn, and construct the Cholesky factorization of Bn. This factorization is AnAT
n . We determine the inverse of

the symmetric Pell-Lucas matrix B−1
n . We give some interesting relations which include the eigenvalues of Pell-Lucas matrices.

Moreover, we obtain the lower and upper boundaries for the eigenvalues of Bn by majorizations.
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Abstract

The family of power-divergence (PD) test statistic contains many well-known test statistics used in
the analysis of the contingency tables under the independence model. In this work, we compare the
various test statistics for the independence model. The type-I and type-II errors of the test statistics
are obtained and compared via simulation study considering the different degree of freedoms and
sample sizes. According to the simulation results, we recommend the PD(0.4) test statistic for
the small sample size based on its power and type-I error rates. Two applications are given to
demonstrate the usefulness of the PD(0.4) test statistic over the chi-square test statistic contingency
tables.

1. Introduction

The chi-square test was developed by [1] to evaluate the association or difference between categorical variables. The chi-square
test is commonly used in social and medical sciences to test the dependence structures of the levels of the categorical variables.
The results of the chi-square test are misinterpreted by the researchers because of the lack of statistical knowledge [2]. Besides,
the application of the chi-square test is very problematic for the small sample sizes which is ignored in many researches. It is
well-known that the test statistic of the chi-square test follows the χ2 distribution. However, the asymptotic approximation
is only valid for the non-sparse contingency tables and large sample sizes. Working with the less observations than needed
reduces the power of the test. Therefore, to obtain the higher power value, one should work with required sample size based on
the dimension of the contingency table [3, 4]. The determination of the sample size is done based on four inputs: type-I error,
type-II error or power, effect size and degree of freedom (df). The type-I and type-II errors are the pre-determined inputs [5].

When the contingency tables have large number of cells, the frequencies of each cell may be very small or has zero frequencies.
So, the contingency tables with large numbers of row and column variables yields the less observations in the cells. In this
case, these contingency tables are called as sparse contingency tables [6]. The sparse contingency tables occur when the the
values of 0 and 1 in many cells of the contingency table and the total number of cells are higher than the sample size [7, 8].
Besides, the sparseness index (SI) is useful to determine the sparse contingency tables. The SI is defined as

SI =
n

RC
,

where n is the sample size R is the number of rows and C is the number of columns in the contingency tables.

There are various studies in the literature for the comparison of goodness-of-fit test statistics in small samples. [9] performed
a study to find a clear answer about what is the minimum value of the expected frequency and sample size to achieve the
reasonable approximation to the χ2 distribution. [10] implemented a simulation study to compare the χ2, G2 and [11] test
statistic for 13 contingency tables. [10] found that the χ2 and Cressie and Read statistics can be used for smaller sample
sizes than suggested by [9]. Several rule of thumb were suggested by researchers for χ2 approximation of the Pearson and
likelihood ratio test statistics. [9] suggested that minimum cell expectation should be higher than 5t5/t where t5 is the number
of cells where the expected frequency is smaller than 5 and t is the total number of cells of the corresponding contingency
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table. [12] suggested that the sample size should be higher than 4 or 5 times t. [13] showed that the χ2 statistic is much more
appropriate than G2 statistic for the small sample size. Recently, [14] performed a comprehensive simulation study to asses the
small sample accuracy of the seven members of the power-divergence statistics for testing both independence and homogeneity
in contingency tables. The results of the study of [14] showed that G2 statistic rejects the null hypothesis too often in both
sparse and non-sparse contingency tables. They suggested the non-asymptotic variant of χ2 statistic removes the deficiency of
the Pearson χ2 statistic for sparse contingency tables. [15] investigated the determination of the power divergence parameter
under quasi-independence model. More recently, [16] studied the asymptotic properties of T 2 test statistic under the symmetry
model and concluded that the approximation of the T 2 test statistic to χ2 distribution is only valid for very large sample sizes.
While the chi-square approach gives healthy results in tables with a degree of freedom greater than 1 and a maximum of 20 %
of the expected frequencies below 5, this approach is weak in the sparse contingency table [7].

A general class of the test statistics was proposed by [11] and called as power-divergence (PD) family of statistics. The PD
statistics contains Pearson’s χ2, likelihood ratio statistic G2, Freeman-Tukey’s T 2, modified likelihood ratio statistics GM2 and
Neyman’s modified χ2 as its sub-models. Note that these test statistics follow χ2 distribution [12, 17, 18]. This study compares
the members of the PD test statistic using the different values of the parameter λ based on the independence model. The type-I
and power values of the test statistics are compared with simulation studies for different dimensions of the contingency tables.
The goal of the simulation study is to find the most powerful test statistic for the independence model considering the sample
sizes, type-I and type-II errors.

The other sections of the study is designed as follows. Firstly, the independence model is given in Section 2. The PD family
of statistics is given in Section 3. The comparison of the test statistics via simulation studies is presented in Section 4. The
recommended test statistic and Freeman-Halton (FH) test statistic is compared in Section 5. The power comparison of the most
powerful test statistic and χ2 test statistic based on the real datasets is given in Section 6. The future work and conclusions of
the presented study are given in Section 7.

2. Independence model

In the analysis of contingency tables, either ”row and column variables are independent of each other” or ”the constant levels
of one of the variables do not differ between the other variable levels” are tested according to the researcher’s purpose. The
total chi-square of the calculations for the entire R×C table is divided into row, column and relationship components as follows

χ
2
T = χ

2
R +χ

2
C +χ

2
RC. (2.1)

In two dimensional tables, the independence hypothesis is expressed with (2.2)

H0 : pi j = pi.p. j, i = 1,2,3, ...,R; j = 1,2,3, ...,C. (2.2)

The probability density function for the observed frequencies (ni j) is as follows

P
(

ni j
∣∣ pi j,n

)
=

n!
∏
i, j

ni j!
∏
i, j

pi j
ni j . (2.3)

Substituting pi j = pi.p. j in (2.3), we have

P
(

ni j
∣∣ pi j,n

)
=

n!
∏
i, j

ni j!
∏
i, j

pi j
ni j =

n!
∏
i, j

ni j!
∏

i
pi.

ni. ∏
j

p. jn. j

(2.4)

=

n!∏
i, j

pi.
ni.

∏
i

ni.!

n!∏
i, j

p. jn. j

∏
j

n. j!

∏
i

ni.!∏
j

n. j!

n!∏
i, j

ni j!
(2.5)

Equality of ni j = npi j + ei j is written instead of n in (2.5). When the natural logarithm is taken using the Stirling series
expansion in (2.5), the three terms on the right side of the equation (2.5) follows approximately the chi-square distribution (see
[19].

X2
T =

R

∑
i=1

C

∑
j=1

(ni j−npi.p. j)
2

npi.p. j
. (2.6)

The quantity in (2.6) follows the chi-square distribution with (RC-1) degrees of freedom. The first part on the right side of the
equation is given by
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X2
R = ∑

i

(ni.−npi.)
2

npi.
, (2.7)

which follows the chi-square distribution with R-1 df. The second part is given by

X2
C = ∑

j

(n. j−np. j)
2

np. j
,

which follows the chi-square distribution with C-1 df. The third part is the test statistic calculated for the independence
hypothesis which is given by

X2
RC = ∑

i
∑

j

(ni j−ni.n. j/n)2

ni.n. j/n
.

The df can be extracted using the relation given in (2.1). So, the df of the independence model is (R−1)(C−1). The likelihood
estimates of expected values ei j under independence model is ei j = ni.n. j/n.

3. Power-divergence family

The PD family of statistics, PD(λ ), is given by

PD(λ ) =
2

λ (λ +1)

R

∑
i=1

C

∑
j=1

ni j

[(
ni j

ei j

)λ

−1

]
, (3.1)

where i = 1,2,3, ...,R, j = 1,2,3, ...,C and λ ∈ ℜ. When the λ = 0 and λ = −1, the equation (3.1) is not valid. So, the
limiting cases of (3.1) for λ = 0 and λ =−1 are given as follows

lim
λ→0

2
λ (λ +1)

R

∑
i=1

C

∑
j=1

ni j

[(
ni j

ei j

)λ

−1

]
= 2

R

∑
i=1

C

∑
j=1

ni j

[
ln
(

ni j

ei j

)]
,

lim
λ→−1

2
λ (λ +1)

R

∑
i=1

C

∑
j=1

ni j

[(
ni j

ei j

)λ

−1

]
= 2

R

∑
i=1

C

∑
j=1

ei j

[
ln
(

ei j

ni j

)]
,

respectively. As given in Section 1, the PD family of statistics contains various known test statistics as its sub-models.

• PD(1) reduces the Pearson’s χ2 test statistics

• PD(0) reduces the likelihood ratio G2 test statistics

• PD(-1/2) reduces the Freeman Tukey’s T 2 test statistics

• PD(2/3) reduces the Cressie Read test statistic C2

4. Simulation studies

Simulation studies are performed to evaluate the performance of the test statistics for the independence model. The multinomial
distribution is used to generate contingency tables. The below probability matrices are used to obtain type-I errors of the test
statistics. The probability matrices are generated by assuming that null hypothesis, H0 is true.

3x3 contingency table 3x4 contingency table 3x5 contingency table

0.10 0.06 0.04 0.03 0.03 0.02 0.02 0.03 0.03 0.09 0.06 0.09
0.15 0.09 0.06 0.06 0.06 0.04 0.04 0.02 0.02 0.06 0.04 0.06
0.25 0.15 0.10 0.21 0.21 0.14 0.14 0.05 0.05 0.15 0.10 0.15

Table 1: Probability matrices used to detect type-I errors for R = 3 and C = 3,4,5
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4x4 contingency table 4x5 contingency table

0.02 0.03 0.01 0.04 0.02 0.02 0.06 0.04 0.06
0.04 0.06 0.02 0.08 0.03 0.03 0.09 0.06 0.09
0.06 0.09 0.03 0.12 0.03 0.03 0.09 0.06 0.09
0.08 0.12 0.04 0.16 0.02 0.02 0.06 0.04 0.06

Table 2: Probability matrices used to detect type-I errors for R = 4 and C = 4,5

5x5 contingency table

0.01 0.01 0.03 0.02 0.03
0.01 0.01 0.03 0.02 0.03
0.03 0.03 0.09 0.06 0.09
0.02 0.02 0.06 0.04 0.06
0.03 0.03 0.09 0.06 0.09

Table 3: Probability matrix used to detect type-I errors for R = 5 and C = 5

Also, the below matrices are used to obtain power of the test statistics.

3x3 contingency table 3x4 contingency table 3x5 contingency table

0.03 0.11 0.06 0.01 0.04 0.01 0.04 0.09 0.01 0.04 0.12 0.04
0.2 0.03 0.07 0.09 0.03 0.07 0.01 0.07 0.04 0.03 0.01 0.05

0.15 0.22 0.13 0.15 0.3 0.05 0.2 0.1 0.12 0.15 0.05 0.08

Table 4: Probability matrices used to detect powers for R = 3 and C = 3,4,5

4x4 contingency table 4x5 contingency table

0.05 0.01 0.03 0.01 0.1 0.05 0.01 0.02 0.02
0.01 0.02 0.1 0.07 0.1 0.1 0.05 0.03 0.02
0.1 0.02 0.08 0.1 0.1 0.1 0.05 0.03 0.02

0.15 0.04 0.1 0.11 0.1 0.05 0.01 0.01 0.03

Table 5: Probability matrices used to detect powers for R = 4 and C = 4,5

5x5 contingency table

0.015 0.015 0.04 0.01 0.02
0.02 0.02 0.015 0.03 0.015
0.02 0.04 0.07 0.09 0.08
0.03 0.04 0.03 0.07 0.03
0.04 0.06 0.06 0.09 0.05

Table 6: Probability matrix used to detect powers for R = 5 and C = 5

These probability matrices are generated by assuming that the alternative hypothesis, H1 is true. The row and column marginal
probabilities are degenerated to create the departure from the independence model. The significance level α is determined as
0.05. The interpretation of the simulation results are done based on the 0.06 value. The test statistics having the type-I error
above the 0.06 value are considered as inappropriate. The simulation replication is determined as N = 10,000.

Table 7 shows the effect sizes of the contingency tables used for the power calculation. Note that the effect sizes of the
contingency tables used for the type-I error is zero. As reported in Table 7, the small and moderate effect sizes are used to
compare the power values of the test statistics.
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Effect size Dimension

3x3 3x4 3x5 4x4 4x5 5x5

w 0.4341 0.3328 0.4691 0.3328 0.2564 0.2642

Table 7: The effect sizes of the contingency tables used for the power calculation.

4.1. Type-I error

Figure 1 displays the simulation results for the 3x3 contingency table. We also consider the sparseness index to analyze the
behaviours of the test statistics for the small sample sizes. When the indicator SI is below 5 value, we call this contingency
table as sparse table. So, the contingency table is called as sparse table if the number of observations is below 45 for the R = 3
and C = 3. This value is plotted in the figures vertically. According to the findings in Figure 1, we evaluate the convergence of
the test statistics to χ2 distribution. From Figure 1, we observe that T 2, G2, PD(0.1), PD(0.2) and PD(0.3) are above the 0.06
value which is evidence that these test statistics do not converge to χ2 distribution. When the sample size is above 150, all test
statistics work well, except T 2.

Figure 1: Type-I errors of the test statistics for R=3 and C=3.

Figure 2 displays the simulation results for the 3x4 contingency table. From these results, the T 2, G2, PD(0.1), PD(0.2) and
PD(0.3) test statistics do not converge the χ2 distribution for both sparse and non-sparse contingency tables. The vertical
line represents the sample size for the sparseness index which is 60. Additionally, the convergence of the G2 statistic to χ2

distribution needs high sample sizes for R = 3 and C = 4 contingency tables. The C2 performs better than the G2 statistic. All
test statistics converge to the χ2 distribution when the sample size is higher than 150, except T 2 statistic.

Figure 2: Type-I errors for R=3 and C=4.
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Figure 3 displays the simulation results for the 3x5 contingency table. Again, the same test statistics fail to converge the χ2

distribution. Here, the vertical line is 75 for the sample size of sparseness index. The G2 needs higher sample sizes to converge
to χ2 distribution for R = 3 and C = 5.

Figure 3: Type-I errors for R=3 and C=5.

The interpretation of the results of the 4x4, 4x5 and 5x5 contingency tables are similar to the previous simulation results. The
results of these contingency tables are plotted in Figure 4. The vertical lines of the figures are 80, 120 and 125, respectively.
From these figures, we conclude the convergence of the G2 to χ2 distribution is not valid for the small sample sizes.

The below findings are observed based on the simulation results of the test statistics for type-I errors.

• The convergence of the G2 statistic to χ2 distribution is very problematic for small sample sizes (see [20])

• The C2 statistic performs better than G2 statistic.

• The convergence of the T 2 statistic to χ2 distribution is only valid for the large sample sizes and it cannot be used for
any small sample size.

• The dimension of the contingency table effects the convergence of the statistics.

• More sample size is needed for the high dimensional contingency tables.

So, end of the simulation study for the type-I errors of the test statistics, we eliminate the T 2, G2, PD(0.1), PD(0.2) and
PD(0.3) statistics since they do not converge well to χ2 distribution. In the second step, we compare the power results of the
test statistics converges well to χ2 distribution.

Additionally, we compare the p-values of the test statistics for R=3, C=3 and n = 50. Let FX be the distribution of the test
statistic X under the null hypothesis. If FT is continious, the p-value is distributed as U(0,1) [21]. The distribution of the
p-values for test statistics are evaluated via Kolmogorov-Smirnov (KS) test. The histograms of the p-values of the test statistics
with the p-values of KS test are displayed in Figure 5. From these figures, it is clear that the distribution of the p-values of the
T 2, G2, PD(0.1), PD(0.2) and PD(0.3) test statistics do not follow the U(0,1) distribution since their p-values are lower than
0.05. It is evidence that these test statistics do not perform well for small sample sizes.
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Figure 4: Type-I errors for (top-left) R=4 and C=4, (top-right) R=4 and C=5 and (bottom) R=5 and C=5

The below findings are observed based on the simulation results of the test statistics for type-I errors.

• The convergence of the G2 statistic to χ2 distribution is very problematic for small sample sizes (see [20])

• The C2 statistic performs better than G2 statistic.

• The convergence of the T 2 statistic to χ2 distribution is only valid for the large sample sizes and it cannot be used for
any small sample size.

• The dimension of the contingency table effects the convergence of the statistics.

• More sample size is needed for the high dimensional contingency tables.

So, end of the simulation study for the type-I errors of the test statistics, we eliminate the T 2, G2, PD(0.1), PD(0.2) and
PD(0.3) statistics since they do not converge well to χ2 distribution. In the second step, we compare the power results of the
test statistics converges well to χ2 distribution.

Additionally, we compare the p-values of the test statistics for R=3, C=3 and n = 50. Let FX be the distribution of the test
statistic X under the null hypothesis. If FT is continious, the p-value is distributed as U(0,1) [21]. The distribution of the
p-values for test statistics are evaluated via Kolmogorov-Smirnov (KS) test. The histograms of the p-values of the test statistics
with the p-values of KS test are displayed in Figure 5. From these figures, it is clear that the distribution of the p-values of the
T 2, G2, PD(0.1), PD(0.2) and PD(0.3) test statistics do not follow the U(0,1) distribution since their p-values are lower than
0.05. It is evidence that these test statistics do not perform well for small sample sizes.
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Figure 5: The distribution of p-values for the test statistics under R=3 and C=3 and n = 50

4.2. Power of test

Now, we examine the power results of each test statistics which are the members of the power-divergence family. The
contingency tables are generated using the probability matrices given in Section 4.1. According to the results of the type-I
errors of the test statistics, T 2, G2, PD(0.1), PD(0.2) and PD(0.3) do not converge the χ2 distribution. Although the power of
test results are reported for all test statistics, T 2, G2, PD(0.1), PD(0.2) and PD(0.3) are not considered in evaluation of the
power results.

Figure 6 displays the power results of the test statistics for 3x3 contingency table. As seen from these Figure, T 2 has the
highest power value among others. However, since it does not converge the χ2 distribution, its power result is not meaningful.
Similarly, the power results of the G2, PD(0.1), PD(0.2) and PD(0.3) statistics are also not meaningful. After eliminating
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these test statistics, the most powerful test statistics is PD(0.4) for 3x3 contingency table. Vertical lines of the Figure 6 shows
the minimum required sample size to achieve the 0.80 and 0.90 power values. The minimum sample size is 60 for the power
0.80 and minimum sample size is 75 for the power 0.90.

Figure 6: Power results under R=3 and C=3.

Figure 7 displays the power results of the test statistics for 3x4 contingency tables. These results are also in favour of the
PD(0.4) test statistics. The minimum sample size for the powers 0.80 and 0.90 are 65 and 80, respectively.

Figure 7: Power results under R=3 and C=4.

Similarly, Figure 8 displays the power results of the test statistics for 3x5 contingency table. The most powerful test statistic is
PD(0.4). As in previous results, the PD(0.4) test statistics has the highest power among others. The minimum sample size for
the powers 0.80 and 0.90 are 70 and 90, respectively.
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Figure 8: Power results under R=3 and C=5.

Figure 9 displays the power results of the test statistics for 4x4 contingency table. PD(0.4) is again the most powerful test
statistic among others. From these results, we conclude that the minimum required sample size is 130 to achieve at least 0.80
power and required sample size is 150 to achieve at least 0.90 power.

Figure 9: Power results under R=4 and C=4.

Figure 10 displays the power results of the test statistics for 4x5 contingency table. Results show that PD(0.4) has the highest
power. According to the vertical lines, the required sample size is 160 for the power 0.80 and 195 for the power 0.90.
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Figure 10: Power results under R=4 and C=5.

In a similar vein, Figure 11 displays the power results of the test statistics for 5x5 contingency table. Again, PD(0.4) has the
highest value of the power results. The required sample size is 280 for the power 0.80 and 350 for the power 0.90. As seen
from these results, once the dimension of the contingency table increases, the required sample size increases to reach higher
power values.

Figure 11: Power results under R=5 and C=5.

Table 8 shows the minimum required sample sizes for the contingency tables to reach the minimum 0.80 and 0.90 power values.
As seen these results, the required sample size is an increasing function of the dimension of the contingency table. Therefore,
higher dimension needs more sample size. The determined effect sizes for each table dimension are reported in Table 7.

Table dimensions Power

0.8 0.9

3x3 60 75
3x4 65 80
3x5 70 90
4x4 130 150
4x5 160 195
5x5 280 350

Table 8: Minimum required sample sizes for the powers 0.8 and 0.9

As given in Section 1, the sample size is function of type-I error, power, df and effect size (see, Section 5). The powers are
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calculated by considering the different values of the effect size, df and sample sizes for the fixed type-I error 0.05. The results
are given in Table 9. From these results, it is seen that when the effect size is low, the required sample size should be large to
obtain the high power. Also, when the df is high, the sample size should be large to obtain the high power. Under these results,
if Table 8 is revisited, the sample sizes given in this table are determined based on the high effect sizes.

Sample size (df=4) w=0.05 w=0.15 w=0.30 w=0.50 Sample size (df=6) w=0.05 w=0.15 w=0.30 w=0.50

50 0.056 0.113 0.358 0.820 50 0.055 0.100 0.303 0.758
100 0.063 0.189 0.663 0.989 100 0.060 0.161 0.589 0.980
150 0.069 0.272 0.852 1.000 150 0.065 0.229 0.796 0.999
200 0.076 0.358 0.943 1.000 200 0.071 0.303 0.911 1.000
250 0.083 0.443 0.980 1.000 250 0.076 0.378 0.965 1.000
500 0.121 0.773 1.000 1.000 500 0.106 0.705 1.000 1.000

Sample size (df=8) w=0.05 w=0.15 w=0.30 w=0.50 Sample size (df=9) w=0.05 w=0.15 w=0.30 w=0.50

50 0.054 0.092 0.267 0.706 50 0.054 0.089 0.253 0.683
100 0.058 0.143 0.534 0.968 100 0.058 0.137 0.510 0.962
150 0.063 0.202 0.747 0.998 150 0.062 0.192 0.725 0.998
200 0.067 0.267 0.879 1.000 200 0.066 0.253 0.863 1.000
250 0.072 0.334 0.948 1.000 250 0.070 0.317 0.939 1.000
500 0.097 0.650 1.000 1.000 500 0.094 0.626 1.000 1.000

Table 9: The calculated powers for the different values of the effect size, df and sample sizes

5. Comparison of PD(0.4) and Fisher-Freeman-Halton exact test statistics

It is well-known that the Fisher exact test is used for R=2 and C=2 contingency tables when more than 20% of cells have
expected frequencies less than 5. However, when the table dimension is larger than 2×2, the FH test is used [22]. In this
section, we compare the empirical type-I error rates of the PD(0.4) and the FH test statistics based on the simulation study.
The same probability matrices given in Section 4 are used. The type-I errors of the PD(0.4) and FH test statistics are reported
graphically in Figures 12, 13 and 14. As seen from these figures, it is observed that the PD(0.4) and FH produce similar results
in terms of their type-I error rates. Both test statistics can be used for sparse and non-sparse contingency tables. The obtained
type-I errors of the PD(0.4) and FH test statistics are below the desired value, 0.05. Also, the empirical power values of the
PD(0.4) and FH test statistics are reported in Figures 15, 16 and 17. PD(0.4) and FH test statistics produce similar results for
their power values, as in type-I error rates.

Figure 12: Type-I errors of the PD(0.4) and FH test for R=3 and C=3(left) and R=3 and C=4 (right)
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Figure 13: Type-I errors of the PD(0.4) and FH test for R=3 and C=5(left) and R=4 and C=4 (right)

Figure 14: Type-I errors of the PD(0.4) and FH test for R=4 and C=5(left) and R=5 and C=5 (right)

Figure 15: Power values of the PD(0.4) and FH test for R=3 and C=3(left) and R=3 and C=4 (right)
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Figure 16: Power values of the PD(0.4) and FH test for R=3 and C=5(left) and R=4 and C=4 (right)

Figure 17: Power values of the PD(0.4) and FH test for R=4 and C=5(left) and R=5 and C=5 (right)

6. Power comparison of the PD(0.4) and χ2 test statistics via real data application

The sample size determination is an important step of any field work. Before collecting the data, the researcher should know
how many observations is needed to reach the desired power value. The sample size is a function of three parameters. These
are effect size, type-I error and power to detect H1 hypothesis.

Let PD(0.4)c be the calculated value of the PD(0.4) test statistic which is calculated by

PD(0.4)c =
2

0.4(0.4+1)

R

∑
i=1

C

∑
j=1

[(
ni j

ei j

)0.4

−1

]
,

where ni j and ei j are the observed and expected frequencies, respectively . When the null hypothesis (H0) is true, the test
statistic is distributed as χ2 distribution with (R−1)(C−1) df. The null hypothesis is rejected when PD(0.4)c > χ2

(R−1)(C−1),α
where α is the significance level which is called as type-I error. When the null hypothesis is not true, the distribution of
PD(0.4)c follows the non-central χ2 distribution with non-centrality parameter λ and df (R−1)(C−1). The non-centrality
parameter λ is a function of n and effect size w. We have the following equation to calculate the parameter λ (see [3])

λ = nw2. (6.1)

The effect size is calculated by w =
√

PD(0.4)c
/

n. So, replacing w in (6.1), we have λ = PD(0.4)c. So, the power of the
PD(0.4)c test statistic can be obtained by
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Power = 1−Pr
(

χ
2
(R−1)(C−1),λ (PD(0.4)c)< χ

2
(R−1)(C−1),α

)
. (6.2)

The power of the χ2 test statistic can be easily computed by changing the PD(0.4)c in (6.2) with the test statistic value of the
χ2. In the remaining part of these section, we analyze two data sets to compare the PD(0.4) with χ2 test statistics. Note that
the calculated power values in the remaining part of this section are empirical powers.

6.1. Pneumonia data

To compare the power value of the PD(0.4) and χ2 test statistics, we use the data set on the vaccination program for the
pneumonia patients. The data can be found in the work of [23]. Also, the data set is given in Table 10. Here, the research
question is that Does the vaccine protect the individuals from the pneumococcal pneumonia disease?.

Health outcome Unvaccinated Vaccinated

Sick with pneumococcal
pneumonia 23 5

Sick with non-pneumococcal
pneumonia 8 10

No pneumonia 61 77

Table 10: The data set for vaccination program

The data is analyzed using the PD(0.4) and χ2 test statistics. Obtained results are given in Table 11. The significance level α is
selected 0.05 for both test statistics. According to the Table 11, both of the test statistics reject the null hypothesis. However,
the power value of the PD(0.4) test statistic is higher than the χ2 test statistic. So, we recommend the usage of the PD(0.4) test
statistic to obtain higher power value than those of the χ2 test statistic.

Test statistics Value df p-value Power

χ2 13.649 2 0.001 0.921
PD(0.4) 14.095 2 < 0.001 0.930

Table 11: Results of the test statistics for the pneumonia data

6.2. Epidemiological data

The second data is on the obesity risk of children based on their race. The data set can be found in [24]. Here, the research
question is that Does the obesity risk differ by the race?. To answer this question, we analyze the data set given in Table 12
with PD(0.4) and χ2 test statistics.

Risk Black White Others

At risk 185 140 90
Not at risk 80 17 23

Table 12: Epidemiological data for the children

The obtained results are given in Table 13. Based on the results in Table 13, since the power of PD(0.4) is higher than the χ2,
we recommend the PD(0.4) test statistic to analyze the current data set.

Test statistics Value df p-value Power

χ2 21.595 2 < 0.001 0.991
PD(0.4) 22.386 2 < 0.001 0.992

Table 13: Results of the test statistics for the epidemiological data

7. Conclusion

We compare the various members of the PD family as well as different values of λ using the extensive simulation study
based on the different settings such as dimensions of the contingency tables, type-I error, sample sizes and powers. When the
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parameter λ = 0.4, the test statistic reaches the maximum value of the power. Also, we compare the PD(0.4) test statistic with
χ2 test statistics based on the power values. Two applications to the real datasets show that PD(0.4) provides higher powers
than the χ2 test statistic. As a future work, we plan to develop the web-tool to calculate the required sample size and displays
the results of the PD(0.4) test statistic.
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Abstract

In the current paper, we investigate the following new class of system of difference equations

un+1 = f−1
(

g(vn−1)
A1 f (un−2)+B1g(vn−4)

C1 f (un−2)+D1g(vn−4)

)
,

vn+1 =g−1
(

f (un−1)
A2g(vn−2)+B2 f (un−4)

C2g(vn−2)+D2 f (un−4)

)
, n ∈ N0,

where the initial conditions u−p, v−p, for p = 0,4 are real numbers, the parameters Ar, Br, Cr, Dr,
for r ∈ {1,2} are real numbers, A2

r +B2
r 6= 0 6= C2

r +D2
r , for r ∈ {1,2}, f and g are continuous

and strictly monotone functions, f (R) = R, g(R) = R, f (0) = 0, g(0) = 0. In addition, we solve
aforementioned general two dimensional system of difference equations of fifth-order in explicit
form. Moreover, we obtain the solutions of mentioned system according to whether the parameters
being zeros or not. Finally, we present an interesting application.

1. Introduction

The notation of N, N0, Z, R, stand for the set of natural, non-negative integer, integer and real number, respectively. If
γ,δ ∈ Z, γ ≤ δ the notation β = γ,δ means {β ∈ Z : γ ≤ β ≤ δ}.
Difference equations emerge from mathematical models of physical events, numerical solutions of differential equations or
generation functions. There has been an intense interest in nonlinear difference equations. Some mathematicians are interested
in nonlinear difference equations in these days in [1], [2], [3], [4], [5]. In addition, systems of difference equations are studied
by some authors in [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21].

One of the interesting difference equations is

wn+2 = Φwn+1 +Ψwn, n ∈ N0, (1.1)

where the initial values w0, w1 and the parameters Φ and Ψ are real numbers. Equation (1.1) is solved by De Moivre in [22].

The solution of (1.1) is given by

wn =
(w1−λ2w0)λ n

1 − (w1−λ1w0)λ n
2

λ1−λ2
, n ∈ N0, (1.2)

when Ψ 6= 0 and Φ2 +4Ψ 6= 0,

wn = ((w1−λ1w0)n+λ1w0)λ
n−1
1 , n ∈ N0, (1.3)

≫≫≫ Received: 30-05-2024 ≫≫≫ Revised: 17-07-2024 ≫≫≫ Accepted: 30-07-2024 ≫≫≫ Online: 30-09-2024 ≫≫≫ Published: 30-09-2024
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when Ψ 6= 0 and Φ2 +4Ψ = 0, where λ1 and λ2 are the roots of the polynomial P(λ ) = λ 2−Φλ −Ψ = 0. Also, the roots of

characteristic equation are λ1,2 =
Φ±
√

Φ2+4Ψ

2 .

Another well-known difference equation, that is Riccati difference equation, is given by

wn+1 =
αwn +β

γwn +δ
, n ∈ N0, (1.4)

for γ 6= 0, αδ 6= βγ , where the initial condition w0 and the parameters α , β , γ , δ are real numbers. Equation (1.4) is reduced
to equation (1.1) by using the convenient transformation.

There are general forms of the difference equations reduced to equation (1.4) by changing variables in literature. For example,
the following difference equation

wn+1 = αwn−k +
δwn−kwn−k−l

βxn−k−l + γxn−l
, n ∈ N0, (1.5)

where k, l are fixed natural numbers, the parameters α , β , γ , δ and the initial conditions w−i, i = 1,k+ l are real numbers and
β 2 + γ2 6= 0, is solved in [23].

Some authors solved special cases of equation (1.5) in [24], [25], [26], [27], [28]. A different form of equation (1.5) continued
to be studied in the literature [29], [30], [31].

In an earlier paper, Elsayed et al., deal with the following difference equation

un+1 = γ0un−1 +
γ1un−1un−4

γ2un−4 + γ3un−2
, n ∈ N0, (1.6)

where the initial values u−p, for p = 0,4 are arbitrary positive real numbers and the coefficients γl , for l = 0,3 are real numbers
in [32].

Recently, Stević et al., investigate the following difference equations

xn+1 = Φ
−1
(

Φ(xn−1)
αΦ(xn−2)+βΦ(xn−4)

γΦ(xn−2)+δΦ(xn−4)

)
, n ∈ N0, (1.7)

where the initial values x−p, for p = 0,4 and the parameters α , β , γ and δ are real numbers in [33]. Note that, the different
form of equation (1.6) is equation (1.7).

Equations (1.7) can be expand in various ways. For instance, increasing order, adding periodic coefficients, expanding the
dimensional, etc.

In this paper, we are interested in the following general two dimensional form of equation (1.7)

un+1 = f−1
(

g(vn−1)
A1 f (un−2)+B1g(vn−4)

C1 f (un−2)+D1g(vn−4)

)
,

(1.8)

vn+1 = g−1
(

f (un−1)
A2g(vn−2)+B2 f (un−4)

C2g(vn−2)+D2 f (un−4)

)
, n ∈ N0,

where the initial conditions u−p, v−p, for p = 0,4 are real numbers, the parameters Ar, Br, Cr, Dr, for r ∈ {1,2}, are real
numbers, A2

r +B2
r 6= 0 6=C2

r +D2
r , for r ∈ {1,2}, f and g are continuous and strictly monotone functions, f (R) =R, g(R) =R,

f (0) = 0, g(0) = 0. We obtain the solutions of system (1.8) in explicit form according to states of parameters by changing the
variable. In addition, we present an application, which indicates that some conclusions in [32] are not correct.

2. Explicit-form solutions of system (1.8)

In this section, we investigate the solutions of system (1.8) in explicit-form.

Theorem 2.1. Assume that Ar, Br, Cr, Dr ∈ R, for r ∈ {1,2}, A2
1 +B2

1 6= 0 6=C2
1 +D2

1, A2
2 +B2

2 6= 0 6=C2
2 +D2

2, f and g are
continuous and strictly monotone functions, f (R) =R, g(R) =R, f (0) = 0, g(0) = 0. So, the general system (1.8) is solvable
in explicit-form.
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Proof. If at least one of the initial values u−p = 0 or v−p = 0, for p = 0,4, then the solution of system (1.8) is not defined.
Moreover, assume that un0 = 0 for some n0 ∈ N0. Then from system (1.8) we have vn0+2 = 0. These facts along with (1.8)
imply that vn0+5 is not defined. Similarly, suppose that vn0 = 0 for some n0 ∈ N0. Then from system (1.8) we have un0+2 = 0.
These facts along with (1.8) imply that un0+5 is not defined. Hence, for every well-defined solution of system (1.8), we have

unvn 6= 0, n≥−4. (2.1)

From (2.1) and the conditions of the theorem we have

f (un) 6= 0, g(vn) 6= 0, n≥−4.

Now, we examine the solutions of system (1.8) for two cases:

Case 1: First, suppose that A1D1−B1C1 6= 0, A2D2−B2C2 6= 0 and C1 6= 0 6=C2. Let

xn =
f (un)

g(vn−2)
, yn =

g(vn)

f (un−2)
, n≥−2. (2.2)

From (1.8) and monotonicity of f and g, we obtain

f (un+1) = g(vn−1)
A1 f (un−2)+B1g(vn−4)

C1 f (un−2)+D1g(vn−4)
,

(2.3)

g(vn+1) = f (un−1)
A2g(vn−2)+B2 f (un−4)

C2g(vn−2)+D2 f (un−4)
, n ∈ N0.

By using the change of variables (2.2) in (2.3) we get

xn+1 =
A1xn−2 +B1

C1xn−2 +D1
, yn+1 =

A2yn−2 +B2

C2yn−2 +D2
, n ∈ N0. (2.4)

Let

k( j)
m = x3m+ j, l( j)

m = y3m+ j, m ∈ N0, j ∈ {−2,−1,0}. (2.5)

Then from (2.4) and (2.5) we obtain

k( j)
m+1 =

A1k( j)
m +B1

C1k( j)
m +D1

, l( j)
m+1 =

A2l( j)
m +B2

C2l( j)
m +D2

, (2.6)

for m ∈ N0, j ∈ {−2,−1,0}. The equations in (2.6) are named Riccati type difference equations in literature.

Let

k( j)
m =

z( j)
m+1

z( j)
m

+ p j, l( j)
m =

t( j)
m+1

t( j)
m

+h j, m ∈ N0, j ∈ {−2,−1,0}, (2.7)

for some p j,h j ∈ R, j ∈ {−2,−1,0}.
From (2.6) and (2.7) we have

(
z( j)

m+2

z( j)
m+1

+ p j

)(
C1

z( j)
m+1

z( j)
m

+C1 p j +D1

)
−
(

A1
z( j)

m+1

z( j)
m

+A1 p j +B1

)
= 0,

(
t( j)
m+2

t( j)
m+1

+h j

)(
C2

t( j)
m+1

t( j)
m

+C2h j +D2

)
−
(

A2
t( j)
m+1

t( j)
m

+A2h j +B2

)
= 0,
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for some m ∈ N0, j ∈ {−2,−1,0}.
Let

p j =−
D1

C1
, h j =−

D2

C2
, j ∈ {−2,−1,0}.

Then, we get

C2
1z( j)

m+2−C1 (A1 +D1)z( j)
m+1 +(A1D1−B1C1)z( j)

m = 0,
(2.8)

C2
2t( j)

m+2−C2 (A2 +D2) t( j)
m+1 +(A2D2−B2C2) t( j)

m = 0,

for m ∈ N0, j ∈ {−2,−1,0}.
Assume that ∆1 := (A1 +D1)

2−4(A1D1−B1C1) 6= 0, ∆2 := (A2 +D2)
2−4(A2D2−B2C2) 6= 0. Then by employing formula

(1.2), we have

z( j)
m =

(
z( j)

1 −λ2z( j)
0

)
λ m

1 −
(

z( j)
1 −λ1z( j)

0

)
λ m

2

λ1−λ2
,

(2.9)

t( j)
m =

(
t( j)
1 − λ̂2t( j)

0

)
λ̂ m

1 −
(

t( j)
1 − λ̂1t( j)

0

)
λ̂ m

2

λ̂1− λ̂2
,

for m ∈ N0, j ∈ {−2,−1,0}, where λ1,2 =
(A1+D1)±

√
∆1

2C1
, λ̂1,2 =

(A2+D2)±
√

∆2
2C2

. Equations in (2.9) are the general solutions to
equations in (2.8).

By using (2.9) in (2.7), we obtain

k( j)
m =

(
z( j)

1 −λ2z( j)
0

)
λ

m+1
1 −

(
z( j)

1 −λ1z( j)
0

)
λ

m+1
2(

z( j)
1 −λ2z( j)

0

)
λ m

1 −
(

z( j)
1 −λ1z( j)

0

)
λ m

2

− D1

C1

=

(
k( j)

0 + D1
C1
−λ2

)
λ

m+1
1 −

(
k( j)

0 + D1
C1
−λ1

)
λ

m+1
2(

k( j)
0 + D1

C1
−λ2

)
λ m

1 −
(

k( j)
0 + D1

C1
−λ1

)
λ m

2

− D1

C1
,

l( j)
m =

(
t( j)
1 − λ̂2t( j)

0

)
λ̂

m+1
1 −

(
t( j)
1 − λ̂1t( j)

0

)
λ̂

m+1
2(

t( j)
1 − λ̂2t( j)

0

)
λ̂ m

1 −
(

t( j)
1 − λ̂1t( j)

0

)
λ̂ m

2

− D2

C2

=

(
l( j)
0 + D2

C2
− λ̂2

)
λ̂

m+1
1 −

(
l( j)
0 + D2

C2
− λ̂1

)
λ̂

m+1
2(

l( j)
0 + D2

C2
− λ̂2

)
λ̂ m

1 −
(

l( j)
0 + D2

C2
− λ̂1

)
λ̂ m

2

− D2

C2
,

for m ∈ N0, j ∈ {−2,−1,0}, from the last equalities with (2.5) we have

x3m+ j =

(
x j +

D1
C1
−λ2

)
λ

m+1
1 −

(
x j +

D1
C1
−λ1

)
λ

m+1
2(

x j +
D1
C1
−λ2

)
λ m

1 −
(

x j +
D1
C1
−λ1

)
λ m

2

− D1

C1
,

(2.10)

y3m+ j =

(
y j +

D2
C2
− λ̂2

)
λ̂

m+1
1 −

(
y j +

D2
C2
− λ̂1

)
λ̂

m+1
2(

y j +
D2
C2
− λ̂2

)
λ̂ m

1 −
(

y j +
D2
C2
− λ̂1

)
λ̂ m

2

− D2

C2
,

for m ∈ N0, j ∈ {−2,−1,0}.
From (2.2), we get
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f (un) = xng(vn−2) = xnyn−2 f (un−4) = xnyn−2xn−4g(vn−6) = xnyn−2xn−4yn−6 f (un−8)

= xnyn−2xn−4yn−6xn−8g(vn−10) = xnyn−2xn−4yn−6xn−8yn−10 f (un−12) , n≥ 8, (2.11)
g(vn) = yn f (un−2) = ynxn−2g(vn−4) = ynxn−2yn−4 f (un−6) = ynxn−2yn−4xn−6g(vn−8)

= ynxn−2yn−4xn−6yn−8 f (un−10) = ynxn−2yn−4xn−6yn−8xn−10g(vn−12) ,n≥ 8.

From (2.11), we have

f (u12m+i) = x12m+iy12m+i−2x12m+i−4y12m+i−6x12m+i−8y12m+i−10 f
(
u12(m−1)+i

)
,

(2.12)
g(v12m+i) = y12m+ix12m+i−2y12m+i−4x12m+i−6y12m+i−8x12m+i−10g

(
v12(m−1)+i

)
,

for m ∈ N0, i = 8,19. Multiplying the equalities which are obtained from (2.12), from 0 to m, it follows that

f (u12m+3s+p) = f (u3s+p−12)
m

∏
r=0

(
x12r+3s+py12r+3s+p−2x12r+3s+p−4y12r+3s+p−6x12r+3s+p−8y12r+3s+p−10

)
,

(2.13)

g(v12m+3s+p) = g(v3s+p−12)
m

∏
r=0

(
y12r+3s+px12r+3s+p−2y12r+3s+p−4x12r+3s+p−6y12r+3s+p−8x12r+3s+p−10

)
,

for m ∈ N0, s = 3,6, p =−1,1. From (2.13), we obtain

f (u12m+3s+p) = f (u3s+p−12)
m

∏
r=0

(
x

3
(

4r+s+b p+2
3 c
)
+p−3b p+2

3 c
y3(4r+s+b p

3 c)+p−2−3b p
3 c

×x
3
(

4r+s+b p−2
3 c
)
+p+2+3b p−2

3 c
y

3
(

4r+s−1+b p−1
3 c
)
+p−3−3b p−1

3 c

×x
3
(

4r+s−1+b p−3
3 c
)
+p−5−3b p−3

3 c
y

3
(

4r+s−1+b p−5
3 c
)
+p−7−3b p−5

3 c

)
, (2.14)

g(v12m+3s+p) = g(v3s+p−12)
m

∏
r=0

(
y

3
(

4r+s+b p+2
3 c
)
+p−3b p+2

3 c
x3(4r+s+b p

3 c)+p−2−3b p
3 c

×y
3
(

4r+s+b p−2
3 c
)
+p+2+3b p−2

3 c
x

3
(

4r+s−1+b p−1
3 c
)
+p−3−3b p−1

3 c

×y
3
(

4r+s−1+b p−3
3 c
)
+p−5−3b p−3

3 c
x

3
(

4r+s−1+b p−5
3 c
)
+p−7−3b p−5

3 c

)
,

for m ∈ N0, s = 3,6, p =−1,1. By substituting the equations in (2.10) into (2.14) and by using equations in (2.2), we have

u12m+3s+p

= f−1
[

f (u3s+p−12)

×
m

∏
r=0

(







f
(

u
p−3b p+2

3 c

)

g
(

v
p−3b p+2

3 c−2

) + D1
C1
−λ2


λ

4r+s+b p+2
3 c+1

1 −




f
(

u
p−3b p+2

3 c

)

g
(

v
p−3b p+2

3 c−2

) + D1
C1
−λ1


λ

4r+s+b p+2
3 c+1

2




f
(

u
p−3b p+2

3 c

)

g
(

v
p−3b p+2

3 c−2

) + D1
C1
−λ2


λ

4r+s+b p+2
3 c

1 −




f
(

u
p−3b p+2

3 c

)

g
(

v
p−3b p+2

3 c−2

) + D1
C1
−λ1


λ

4r+s+b p+2
3 c

2

− D1

C1




×







g
(

vp−2−3b p
3 c

)

f
(

up−4−3b p
3 c

) + D2
C2
− λ̂2


 λ̂

4r+s+b p
3 c+1

1 −




g
(

vp−2−3b p
3 c

)

f
(

up−4−3b p
3 c

) + D2
C2
− λ̂1


 λ̂

4r+s+b p
3 c+1

2




g
(

vp−2−3b p
3 c

)

f
(

up−4−3b p
3 c

) + D2
C2
− λ̂2


 λ̂

4r+s+b p
3 c

1 −




g
(

vp−2−3b p
3 c

)

f
(

up−4−3b p
3 c

) + D2
C2
− λ̂1


 λ̂

4r+s+b p
3 c

2

− D2

C2



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×







f
(

u
p+2+3b p−2

3 c

)

g
(

v
p+3b p−2

3 c

) + D1
C1
−λ2


λ

4r+s+b p−2
3 c+1

1 −




f
(

u
p+2+3b p−2

3 c

)

g
(

v
p+3b p−2

3 c

) + D1
C1
−λ1


λ

4r+s+b p−2
3 c+1

2




f
(

u
p+2+3b p−2

3 c

)

g
(

v
p+3b p−2

3 c

) + D1
C1
−λ2


λ

4r+s+b p−2
3 c

1 −




f
(

u
p+2+3b p−2

3 c

)

g
(

v
p+3b p−2

3 c

) + D1
C1
−λ1


λ

4r+s+b p−2
3 c

2

− D1

C1




(2.15)

×







g
(

v
p−3−3b p−1

3 c

)

f
(

u
p−5−3b p−1

3 c

) + D2
C2
− λ̂2


 λ̂

4r+s+b p−1
3 c

1 −




g
(

v
p−3−3b p−1

3 c

)

f
(

u
p−5−3b p−1

3 c

) + D2
C2
− λ̂1


 λ̂

4r+s+b p−1
3 c

2




g
(

v
p−3−3b p−1

3 c

)

f
(

u
p−5−3b p−1

3 c

) + D2
C2
− λ̂2


 λ̂

4r+s+b p−1
3 c−1

1 −




g
(

v
p−3−3b p−1

3 c

)

f
(

u
p−5−3b p−1

3 c

) + D2
C2
− λ̂1


 λ̂

4r+s+b p−1
3 c−1

2

− D2

C2




×







f
(

u
p−5−3b p−3

3 c

)

g
(

v
p−7−3b p−3

3 c

) + D1
C1
−λ2


λ

4r+s+b p−3
3 c

1 −




f
(

u
p−5−3b p−3

3 c

)

g
(

v
p−7−3b p−3

3 c

) + D1
C1
−λ1


λ

4r+s+b p−3
3 c

2




f
(

u
p−5−3b p−3

3 c

)

g
(

v
p−7−3b p−3

3 c

) + D1
C1
−λ2


λ

4r+s+b p−3
3 c−1

1 −




f
(

u
p−5−3b p−3

3 c

)

g
(

v
p−7−3b p−3

3 c

) + D1
C1
−λ1


λ

4r+s+b p−3
3 c−1

2

− D1

C1




×







g
(

v
p−7−3b p−5

3 c

)

f
(

u
p−9−3b p−5

3 c

) + D2
C2
− λ̂2


 λ̂

4r+s+b p−5
3 c

1 −




g
(

v
p−7−3b p−5

3 c

)

f
(

u
p−9−3b p−5

3 c

) + D2
C2
− λ̂1


 λ̂

4r+s+b p−5
3 c

2




g
(

v
p−7−3b p−5

3 c

)

f
(

u
p−9−3b p−5

3 c

) + D2
C2
− λ̂2


 λ̂

4r+s+b p−5
3 c−1

1 −




g
(

v
p−7−3b p−5

3 c

)

f
(

u
p−9−3b p−5

3 c

) + D2
C2
− λ̂1


 λ̂

4r+s+b p−5
3 c−1

2

− D2

C2




)]
,

v12m+3s+p = g−1
[

g(v3s+p−12)

×
m

∏
r=0

(







g
(

v
p−3b p+2

3 c

)

f
(

u
p−3b p+2

3 c−2

) + D2
C2
− λ̂2


 λ̂

4r+s+b p+2
3 c+1

1 −




g
(

v
p−3b p+2

3 c

)

f
(

u
p−3b p+2

3 c−2

) + D2
C2
− λ̂1


 λ̂

4r+s+b p+2
3 c+1

2




g
(

v
p−3b p+2

3 c

)

f
(

u
p−3b p+2

3 c−2

) + D2
C2
− λ̂2


 λ̂

4r+s+b p+2
3 c

1 −




g
(

v
p−3b p+2

3 c

)

f
(

u
p−3b p+2

3 c−2

) + D2
C2
− λ̂1


 λ̂

4r+s+b p+2
3 c

2

− D2

C2




×







f
(

up−2−3b p
3 c

)

g
(

vp−4−3b p
3 c

) + D1
C1
−λ2


λ

4r+s+b p
3 c+1

1 −




f
(

up−2−3b p
3 c

)

g
(

vp−4−3b p
3 c

) + D1
C1
−λ1


λ

4r+s+b p
3 c+1

2




f
(

up−2−3b p
3 c

)

g
(

vp−4−3b p
3 c

) + D1
C1
−λ2


λ

4r+s+b p
3 c

1 −




f
(

up−2−3b p
3 c

)

g
(

vp−4−3b p
3 c

) + D1
C1
−λ1


λ

4r+s+b p
3 c

2

− D1

C1




×







g
(

v
p+2+3b p−2

3 c

)

f
(

u
p+3b p−2

3 c

) + D2
C2
− λ̂2


 λ̂

4r+s+b p−2
3 c+1

1 −




g
(

v
p+2+3b p−2

3 c

)

f
(

u
p+3b p−2

3 c

) + D2
C2
− λ̂1


 λ̂

4r+s+b p−2
3 c+1

2




g
(

v
p+2+3b p−2

3 c

)

f
(

u
p+3b p−2

3 c

) + D2
C2
− λ̂2


 λ̂

4r+s+b p−2
3 c

1 −




g
(

v
p+2+3b p−2

3 c

)

f
(

u
p+3b p−2

3 c

) + D2
C2
− λ̂1


 λ̂

4r+s+b p−2
3 c

2

− D2

C2




(2.16)

×







f
(

u
p−3−3b p−1

3 c

)

g
(

v
p−5−3b p−1

3 c

) + D1
C1
−λ2


λ

4r+s+b p−1
3 c

1 −




f
(

u
p−3−3b p−1

3 c

)

g
(

v
p−5−3b p−1

3 c

) + D1
C1
−λ1


λ

4r+s+b p−1
3 c

2




f
(

u
p−3−3b p−1

3 c

)

g
(

v
p−5−3b p−1

3 c

) + D1
C1
−λ2


λ

4r+s+b p−1
3 c−1

1 −




f
(

u
p−3−3b p−1

3 c

)

g
(

v
p−5−3b p−1

3 c

) + D1
C1
−λ1


λ

4r+s+b p−1
3 c−1

2

− D1

C1



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×







g
(

v
p−5−3b p−3

3 c

)

f
(

u
p−7−3b p−3

3 c

) + D2
C2
− λ̂2


 λ̂

4r+s+b p−3
3 c

1 −




g
(

v
p−5−3b p−3

3 c

)

f
(

u
p−7−3b p−3

3 c

) + D2
C2
− λ̂1


 λ̂

4r+s+b p−3
3 c

2




g
(

v
p−5−3b p−3

3 c

)

f
(

u
p−7−3b p−3

3 c

) + D2
C2
− λ̂2


 λ̂

4r+s+b p−3
3 c−1

1 −




g
(

v
p−5−3b p−3

3 c

)

f
(

u
p−7−3b p−3

3 c

) + D2
C2
− λ̂1


 λ̂

4r+s+b p−3
3 c−1

2

− D2

C2




×







f
(

u
p−7−3b p−5

3 c

)

g
(

v
p−9−3b p−5

3 c

) + D1
C1
−λ2


λ

4r+s+b p−5
3 c

1 −




f
(

u
p−7−3b p−5

3 c

)

g
(

v
p−9−3b p−5

3 c

) + D1
C1
−λ1


λ

4r+s+b p−5
3 c

2




f
(

u
p−7−3b p−5

3 c

)

g
(

v
p−9−3b p−5

3 c

) + D1
C1
−λ2


λ

4r+s+b p−5
3 c−1

1 −




f
(

u
p−7−3b p−5

3 c

)

g
(

v
p−9−3b p−5

3 c

) + D1
C1
−λ1


λ

4r+s+b p−5
3 c−1

2

− D1

C1




)]
,

for m ∈ N0, s = 3,6, p =−1,1. The formulas in (2.15) and (2.16) are the solutions of system (1.8) if ∆1 6= 0 6= ∆2.
Assume that ∆1 = (A1 +D1)

2−4(A1D1−B1C1) = 0 and ∆2 = (A2 +D2)
2−4(A2D2−B2C2) = 0. So, by employing formula

(1.3), we obtain

z( j)
m =

((
z( j)

1 −λ1z( j)
0

)
m+λ1z( j)

0

)
λ

m−1
1 ,

(2.17)

t( j)
m =

((
t( j)
1 − λ̂1t( j)

0

)
m+ λ̂1t( j)

0

)
λ̂

m−1
1 ,

for m ∈ N0, j ∈ {−2,−1,0}, where

λ1 =
A1 +D1

2C1
6= 0, λ̂1 =

A2 +D2

2C2
6= 0.

Note that equations in (2.17) are the solutions to the system (2.8) if ∆1 = 0 = ∆2. From (2.7) and (2.17), we get

k( j)
m =

((
z( j)

1 −λ1z( j)
0

)
(m+1)+λ1z( j)

0

)
λ1

(
z( j)

1 −λ1z( j)
0

)
m+λ1z( j)

0

− D1

C1

=

((
k( j)

0 + D1
C1
−λ1

)
(m+1)+λ1

)
λ1

(
k( j)

0 + D1
C1
−λ1

)
m+λ1

− D1

C1
, (2.18)

l( j)
m =

((
t( j)
1 − λ̂1t( j)

0

)
(m+1)+ λ̂1t( j)

0

)
λ̂1

(
t( j)
1 − λ̂1t( j)

0

)
m+ λ̂1t( j)

0

− D2

C2

=

((
l( j)
0 + D2

C2
− λ̂1

)
(m+1)+ λ̂1

)
λ̂1

(
l( j)
0 + D2

C2
− λ̂1

)
m+ λ̂1

− D2

C2
,

for m ∈ N0, j ∈ {−2,−1,0}. By using (2.5) in (2.18), we obtain

x3m+ j =

((
x j +

D1
C1
−λ1

)
(m+1)+λ1

)
λ1

(
x j +

D1
C1
−λ1

)
m+λ1

− D1

C1
,

y3m+ j =

((
y j +

D2
C2
− λ̂1

)
(m+1)+ λ̂1

)
λ̂1

(
y j +

D2
C2
− λ̂1

)
m+ λ̂1

− D2

C2
,

for m ∈ N0, j ∈ {−2,−1,0}. From (2.14), we have
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u12m+3s+p = f−1
[

f (u3s+p−12)×
m

∏
r=0

(









f
(

u
p−3b p+2

3 c

)

g
(

v
p−3b p+2

3 c−2

) + D1
C1
−λ1



(

4r+ s+ b p+2
3 c+1

)
+λ1


λ1




f
(

u
p−3b p+2

3 c

)

g
(

v
p−3b p+2

3 c−2

) + D1
C1
−λ1



(

4r+ s+ b p+2
3 c
)
+λ1

− D1

C1




×









g
(

vp−2−3b p
3 c

)

f
(

up−4−3b p
3 c

) + D2
C2
− λ̂1


(4r+ s+ b p

3 c+1
)
+ λ̂1


 λ̂1




g
(

vp−2−3b p
3 c

)

f
(

up−4−3b p
3 c

) + D2
C2
− λ̂1


(4r+ s+ b p

3 c
)
+ λ̂1

− D2

C2




×









f
(

u
p+2+3b p−2

3 c

)

g
(

v
p+3b p−2

3 c

) + D1
C1
−λ1



(

4r+ s+ b p−2
3 c+1

)
+λ1


λ1




f
(

u
p+2+3b p−2

3 c

)

g
(

v
p+3b p−2

3 c

) + D1
C1
−λ1



(

4r+ s+ b p−2
3 c
)
+λ1

− D1

C1




(2.19)

×









g
(

v
p−3−3b p−1

3 c

)

f
(

u
p−5−3b p−1

3 c

) + D2
C2
− λ̂1



(

4r+ s+ b p−1
3 c
)
+ λ̂1


 λ̂1




g
(

v
p−3−3b p−1

3 c

)

f
(

u
p−5−3b p−1

3 c

) + D2
C2
− λ̂1



(

4r+ s+ b p−1
3 c−1

)
+ λ̂1

− D2

C2




×









f
(

u
p−5−3b p−3

3 c

)

g
(

v
p−7−3b p−3

3 c

) + D1
C1
−λ1



(

4r+ s+ b p−3
3 c
)
+λ1


λ1




f
(

u
p−5−3b p−3

3 c

)

g
(

v
p−7−3b p−3

3 c

) + D1
C1
−λ1



(

4r+ s+ b p−3
3 c−1

)
+λ1

− D1

C1




×









g
(

v
p−7−3b p−5

3 c

)

f
(

u
p−9−3b p−5

3 c

) + D2
C2
− λ̂1



(

4r+ s+ b p−5
3 c
)
+ λ̂1


 λ̂1




g
(

v
p−7−3b p−5

3 c

)

f
(

u
p−9−3b p−5

3 c

) + D2
C2
− λ̂1



(

4r+ s+ b p−5
3 c−1

)
+ λ̂1

− D2

C2




)]
,

v12m+3s+p = g−1
[

g(v3s+p−12)

×
m

∏
r=0

(









g
(

v
p−3b p+2

3 c

)

f
(

u
p−3b p+2

3 c−2

) + D2
C2
− λ̂1



(

4r+ s+ b p+2
3 c+1

)
+ λ̂1


 λ̂1




g
(

v
p−3b p+2

3 c

)

f
(

u
p−3b p+2

3 c−2

) + D2
C2
− λ̂1



(

4r+ s+ b p+2
3 c
)
+ λ̂1

− D2

C2




×









f
(

up−2−3b p
3 c

)

g
(

vp−4−3b p
3 c

) + D1
C1
−λ1


(4r+ s+ b p

3 c+1
)
+λ1


λ1




f
(

up−2−3b p
3 c

)

g
(

vp−4−3b p
3 c

) + D1
C1
−λ1


(4r+ s+ b p

3 c
)
+λ1

− D1

C1



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×









g
(

v
p+2+3b p−2

3 c

)

f
(

u
p+3b p−2

3 c

) + D2
C2
− λ̂1



(

4r+ s+ b p−2
3 c+1

)
+ λ̂1


 λ̂1




g
(

v
p+2+3b p−2

3 c

)

f
(

u
p+3b p−2

3 c

) + D2
C2
− λ̂1



(

4r+ s+ b p−2
3 c
)
+ λ̂1

− D2

C2




(2.20)

×









f
(

u
p−3−3b p−1

3 c

)

g
(

v
p−5−3b p−1

3 c

) + D1
C1
−λ1



(

4r+ s+ b p−1
3 c
)
+λ1


λ1




f
(

u
p−3−3b p−1

3 c

)

g
(

v
p−5−3b p−1

3 c

) + D1
C1
−λ1



(

4r+ s+ b p−1
3 c−1

)
+λ1

− D1

C1




×









g
(

v
p−5−3b p−3

3 c

)

f
(

u
p−7−3b p−3

3 c

) + D2
C2
− λ̂1



(

4r+ s+ b p−3
3 c
)
+ λ̂1


 λ̂1




g
(

v
p−5−3b p−3

3 c

)

f
(

u
p−7−3b p−3

3 c

) + D2
C2
− λ̂1



(

4r+ s+ b p−3
3 c−1

)
+ λ̂1

− D2

C2




×









f
(

u
p−7−3b p−5

3 c

)

g
(

v
p−9−3b p−5

3 c

) + D1
C1
−λ1



(

4r+ s+ b p−5
3 c
)
+λ1


λ1




f
(

u
p−7−3b p−5

3 c

)

g
(

v
p−9−3b p−5

3 c

) + D1
C1
−λ1



(

4r+ s+ b p−5
3 c−1

)
+λ1

− D1

C1




)]
,

for m ∈ N0, s = 3,6, p =−1,1, if ∆1 = 0 = ∆2.
Now assume that C1 = 0 =C2, D1 6= 0 6= D2. In this case, equations in (2.4) turn into

xn+1 =
A1

D1
xn−2 +

B1

D1
, yn+1 =

A2

D2
yn−2 +

B2

D2
, n ∈ N0.

Thus,

k( j)
m+1 =

A1

D1
k( j)

m +
B1

D1
, l( j)

m+1 =
A2

D2
l( j)
m +

B2

D2
, m ∈ N0, j ∈ {−2,−1,0}. (2.21)

If A1 = D1 and A2 = D2 then from (2.21), we have

k( j)
m =

B1

D1
m+ k( j)

0 , l( j)
m =

B2

D2
m+ l( j)

0 , m ∈ N0, j ∈ {−2,−1,0},

so

x3m+ j =
B1

D1
m+ x j, y3m+ j =

B2

D2
m+ y j, m ∈ N0, j ∈ {−2,−1,0}. (2.22)

From (2.2), (2.14) and (2.22), we get

u12m+3s+p = f−1
[

f (u3s+p−12) (2.23)

×
m

∏
r=0

(
B1

D1

(
4r+ s+ b p+2

3
c
)
+

f
(

up−3b p+2
3 c

)

g
(

vp−3b p+2
3 c−2

)


×


B2

D2

(
4r+ s+ b p

3
c
)
+

g
(

vp−2−3b p
3 c
)

f
(

up−4−3b p
3 c
)




×


B1

D1

(
4r+ s+ b p−2

3
c
)
+

f
(

up+2+3b p−2
3 c

)

g
(

vp+3b p−2
3 c

)


×


B2

D2

(
4r+ s+ b p−1

3
c−1

)
+

g
(

vp−3−3b p−1
3 c

)

f
(

up−5−3b p−1
3 c

)



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×


B1

D1

(
4r+ s+ b p−3

3
c−1

)
+

f
(

up−5−3b p−3
3 c

)

g
(

vp−7−3b p−3
3 c

)


×


B2

D2

(
4r+ s+ b p−5

3
c−1

)
+

g
(

vp−7−3b p−5
3 c

)

f
(

up−9−3b p−5
3 c

)



)]

,

v12m+3s+p = g−1
[

g(v3s+p−12)×
m

∏
r=0

(
B2

D2

(
4r+ s+ b p+2

3
c
)
+

g
(

vp−3b p+2
3 c

)

f
(

up−3b p+2
3 c−2

)




×


B1

D1

(
4r+ s+ b p

3
c
)
+

f
(

up−2−3b p
3 c
)

g
(

vp−4−3b p
3 c
)




×


B2

D2

(
4r+ s+ b p−2

3
c
)
+

g
(

vp+2+3b p−2
3 c

)

f
(

up+3b p−2
3 c

)


×


B1

D1

(
4r+ s+ b p−1

3
c−1

)
+

f
(

up−3−3b p−1
3 c

)

g
(

vp−5−3b p−1
3 c

)


 (2.24)

×


B2

D2

(
4r+ s+ b p−3

3
c−1

)
+

g
(

vp−5−3b p−3
3 c

)

f
(

up−7−3b p−3
3 c

)


×


B1

D1

(
4r+ s+ b p−5

3
c−1

)
+

f
(

up−7−3b p−5
3 c

)

g
(

vp−9−3b p−5
3 c

)



)]

,

for m ∈ N0, s = 3,6, p =−1,1. Hence, the formulas in (2.24) and (2.24) are solutions of system (1.8) in this case.
Suppose that A1 6= D1 and A2 6= D2. By using (2.21), we get

k( j)
m =

(
A1

D1

)m

k( j)
0 +

B1

A1−D1

((
A1

D1

)m

−1
)
,

l( j)
m =

(
A2

D2

)m

l( j)
0 +

B2

A2−D2

((
A2

D2

)m

−1
)
,

for m ∈ N0, j ∈ {−2,−1,0}. That is,

x3m+ j =

(
A1

D1

)m(
x j +

B1

A1−D1

)
− B1

A1−D1
,

y3m+ j =

(
A2

D2

)m(
y j +

B2

A2−D2

)
− B2

A2−D2
, (2.25)

for m ∈ N0, j ∈ {−2,−1,0}. From (2.2), (2.14) and (2.25), we get

u12m+3s+p = f−1
[

f (u3s+p−12)×
m

∏
r=0

(

(

A1

D1

)4r+s+b p+2
3 c



f
(

up−3b p+2
3 c

)

g
(

vp−3b p+2
3 c−2

) +
B1

A1−D1


− B1

A1−D1




×



(

A2

D2

)4r+s+b p
3 c



g
(

vp−2−3b p
3 c
)

f
(

up−4−3b p
3 c
) +

B2

A2−D2


− B2

A2−D2




×



(

A1

D1

)4r+s+b p−2
3 c



f
(

up+2+3b p−2
3 c

)

g
(

vp+3b p−2
3 c

) +
B1

A1−D1


− B1

A1−D1




×



(

A2

D2

)4r+s+b p−1
3 c−1




g
(

vp−3−3b p−1
3 c

)

f
(

up−5−3b p−1
3 c

) +
B2

A2−D2


− B2

A2−D2


 (2.26)

×



(

A1

D1

)4r+s+b p−3
3 c−1




f
(

up−5−3b p−3
3 c

)

g
(

vp−7−3b p−3
3 c

) +
B1

A1−D1


− B1

A1−D1




×



(

A2

D2

)4r+s+b p−5
3 c−1




g
(

vp−7−3b p−5
3 c

)

f
(

up−9−3b p−5
3 c

) +
B2

A2−D2


− B2

A2−D2



)]

,
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v12m+3s+p = g−1
[

g(v3s+p−12)×
m

∏
r=0

(

(

A2

D2

)4r+s+b p+2
3 c



g
(

vp−3b p+2
3 c

)

f
(

up−3b p+2
3 c−2

) +
B2

A2−D2


− B2

A2−D2




×



(

A1

D1

)4r+s+b p
3 c



f
(

up−2−3b p
3 c
)

g
(

vp−4−3b p
3 c
) +

B1

A1−D1


− B1

A1−D1




×



(

A2

D2

)4r+s+b p−2
3 c



g
(

vp+2+3b p−2
3 c

)

f
(

up+3b p−2
3 c

) +
B2

A2−D2


− B2

A2−D2




×



(

A1

D1

)4r+s+b p−1
3 c−1




f
(

up−3−3b p−1
3 c

)

g
(

vp−5−3b p−1
3 c

) +
B1

A1−D1


− B1

A1−D1


 (2.27)

×



(

A2

D2

)4r+s+b p−3
3 c−1




g
(

vp−5−3b p−3
3 c

)

f
(

up−7−3b p−3
3 c

) +
B2

A2−D2


− B2

A2−D2




×



(

A1

D1

)4r+s+b p−5
3 c−1




f
(

up−7−3b p−5
3 c

)

g
(

vp−9−3b p−5
3 c

) +
B1

A1−D1


− B1

A1−D1



)]

,

for m ∈ N0, s = 3,6, p =−1,1. Then, the solutions of system (1.8) are given by the equations in (2.26) and (2.27) in this case.
Case 2: Assume that A1D1 = B1C1, A2D2 = B2C2. If A1 = 0 and B1 6= 0. Then C1 = 0 and D1 6= 0. If A2 = 0 and B2 6= 0.
Then C2 = 0 and D2 6= 0. From system (1.8), we have

un+1 = f−1
(

B1

D1
g(vn−1)

)
, vn+1 = g−1

(
B2

D2
f (un−1)

)
, n ∈ N0. (2.28)

From (2.28) we easily get

un = f−1
(

B1B2

D1D2
f (un−4)

)
, vn = g−1

(
B1B2

D1D2
g(vn−4)

)
, n≥ 3. (2.29)

By using (2.29), we obtain

u4m+i = f−1

((
B1B2

D1D2

)m+1

f (ui−4)

)
, v4m+i = g−1

((
B1B2

D1D2

)m+1

g(vi−4)

)
, (2.30)

m ∈ N0, i = 3,6.
If A1 6= 0 and B1 = 0. Then D1 = 0 from which it follows that C1 6= 0. If A2 6= 0 and B2 = 0. Then D2 = 0 from which it
follows that C2 6= 0. From system (1.8), we get

un+1 = f−1
(

A1

C1
g(vn−1)

)
, vn+1 = g−1

(
A2

C2
f (un−1)

)
, n ∈ N0. (2.31)

From (2.31) we easily get

un = f−1
(

A1A2

C1C2
f (un−4)

)
, vn = g−1

(
A1A2

C1C2
g(vn−4)

)
,n≥ 1. (2.32)

By using (2.32), we obtain

u4m+i = f−1

((
A1A2

C1C2

)m+1

f (ui−4)

)
, v4m+i = g−1

((
A1A2

C1C2

)m+1

g(vi−4)

)
, (2.33)
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m ∈ N0, i = 3,6.
If D1 = 0 so C1 6= 0. This means B1 = 0, A1 6= 0. If D2 = 0 so C2 6= 0. This means B2 = 0, A2 6= 0. Then we have system
(2.31). Moreover, the equalities in (2.33) are solutions of system (2.31).
Assume that C1 = 0 so D1 6= 0. This means A1 = 0, B1 6= 0. Suppose that C2 = 0 so D2 6= 0. This means A2 = 0, B2 6= 0. So,
we obtain system (2.28). In addition, equalities in (2.30) are solutions of system (2.28).
Suppose that A1B1C1D1 6= 0 and A2B2C2D2 6= 0. It means A1 = B1C1

D1
and A2 = B2C2

D2
. Moreover, we have system (2.28).

Similarly, it means B1 =
A1D1

C1
and B2 =

A2D2
C2

.

3. An application

In this section, we give an application for system (1.8).

Remark 3.1. If f = g, A1 = A2, B1 = B2, C1 = C2, D1 = D2, u−p = v−p, p = 0,4, then, the system (1.8) turns into the
following equation

un+1 = f−1
(

f (un−1)
A1 f (un−2)+B1 f (un−4)

C1 f (un−2)+D1 f (un−4)

)
, n ∈ N0. (3.1)

Behavior of solutions to equation (1.6) is mentioned in [32]. But somethings are not correct in [32].
Equation (1.6) can be expressed as

un+1 = un−1
γ0γ3un−2 +(γ0γ2 + γ1)un−4

γ2un−4 + γ3un−2
, n ∈ N0. (3.2)

Firstly, the authors of [32] studied to obtain the equilibrium point of equation (1.6). Then, using a great deal calculations, they
found u = 0. If

(1− γ0)(γ2 + γ3) 6= γ1,

an unique equilibrium point of equation (1.6) is u = 0.
Suppose that an equilibrium point of equation (1.6) is u. So we get the following equation

u = γ0u+
γ1u2

(γ2 + γ3)u
. (3.3)

From (3.3), we see that it must be

(γ2 + γ3) 6= 0 and u 6= 0.

This exterminates the probability u = 0.
Suppose that u 6= 0. Moreover, equation (3.3) means

u
(

1− γ0−
γ1

γ2 + γ3

)
= 0,

so we have

1− γ0−
γ1

γ2 + γ3
= 0. (3.4)

From equation (3.4), the equilibrium point of the difference equation is u 6= 0. It implies that the idea in [32] Theorem 3, under
the condition, zero equilibrium point of equation (1.6) is local asymptotic stable is not corect, because it is not an equilibrium
point at all.
In addition, Theorem 4 in [32] is expressed as:

Theorem 3.2. If γ2 (1− γ0) 6= γ1, then the unique equilibrium point of Equation (1.6) is globally asymptotically stable.

The particular case of equation (3.1) is equation (3.2) with

f (x) = x, A1 = γ0γ3, B1 = γ0γ2 + γ1, C1 = γ2, D1 = γ3.
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Example 3.3. Keep in mind the equation (1.6) with

γ0 = γ1 = γ2 = γ3 = 1,

and then we get the following equation

un+1 = un−1
un−2 +2un−4

un−2 +un−4
, n ∈ N0. (3.5)

Equation (3.5) is derived from equation (3.1) with f (x) = x and x ∈ R,

A1 =C1 = D1 = 1, B1 = 2. (3.6)

By using (3.6) the first equation in (2.8), we get

p1 (λ ) = λ
2−2λ −1,

and its roots are

λ1 = 1+
√

2 and λ2 = 1−
√

2.

Then, we obtain

γ2 (1− γ0)− γ1 =−1 6= 0,

the restriction γ2 (1− γ0) 6= γ1 in Theorem 3.2 is valid.
By using the parameters A1,B1,C1,D1 are as in (3.6) and (2.15)-(2.16), where f (x) = x and x ∈ R, we have

u12m+3s+p = u3s+p−12

×
m

∏
r=0

(



(
u

p−3b p+2
3 c

u
p−3b p+2

3 c−2
+1−λ2

)
λ

4r+s+b p+2
3 c+1

1 −
(

u
p−3b p+2

3 c
u

p−3b p+2
3 c−2

+1−λ1

)
λ

4r+s+b p+2
3 c+1

2

(
u

p−3b p+2
3 c

u
p−3b p+2

3 c−2
+1−λ2

)
λ

4r+s+b p+2
3 c

1 −
(

u
p−3b p+2

3 c
u

p−3b p+2
3 c−2

+1−λ1

)
λ

4r+s+b p+2
3 c

2

−1




×




(
up−2−3b p

3 c
up−4−3b p

3 c
+1−λ2

)
λ

4r+s+b p
3 c+1

1 −
(

up−2−3b p
3 c

up−4−3b p
3 c

+1−λ1

)
λ

4r+s+b p
3 c+1

2
(

up−2−3b p
3 c

up−4−3b p
3 c

+1−λ2

)
λ

4r+s+b p
3 c

1 −
(

up−2−3b p
3 c

up−4−3b p
3 c

+1−λ1

)
λ

4r+s+b p
3 c

2

−1




×




(
u

p+2+3b p−2
3 c

u
p+3b p−2

3 c
+1−λ2

)
λ

4r+s+b p−2
3 c+1

1 −
(

u
p+2+3b p−2

3 c
u

p+3b p−2
3 c

+1−λ1

)
λ

4r+s+b p−2
3 c+1

2

(
u

p+2+3b p−2
3 c

u
p+3b p−2

3 c
+1−λ2

)
λ

4r+s+b p−2
3 c

1 −
(

u
p+2+3b p−2

3 c
u

p+3b p−2
3 c

+1−λ1

)
λ

4r+s+b p−2
3 c

2

−1




(3.7)

×




(
u

p−3−3b p−1
3 c

u
p−5−3b p−1

3 c
+1−λ2

)
λ

4r+s+b p−1
3 c

1 −
(

u
p−3−3b p−1

3 c
u

p−5−3b p−1
3 c

+1−λ1

)
λ

4r+s+b p−1
3 c

2

(
u

p−3−3b p−1
3 c

u
p−5−3b p−1

3 c
+1−λ2

)
λ

4r+s+b p−1
3 c−1

1 −
(

u
p−3−3b p−1

3 c
u

p−5−3b p−1
3 c

+1−λ1

)
λ

4r+s+b p−1
3 c−1

2

−1




×




(
u

p−5−3b p−3
3 c

u
p−7−3b p−3

3 c
+1−λ2

)
λ

4r+s+b p−3
3 c

1 −
(

u
p−5−3b p−3

3 c
u

p−7−3b p−3
3 c

+1−λ1

)
λ

4r+s+b p−3
3 c

2

(
u

p−5−3b p−3
3 c

u
p−7−3b p−3

3 c
+1−λ2

)
λ

4r+s+b p−3
3 c−1

1 −
(

u
p−5−3b p−3

3 c
u

p−7−3b p−3
3 c

+1−λ1

)
λ

4r+s+b p−3
3 c−1

2

−1



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×




(
u

p−7−3b p−5
3 c

u
p−9−3b p−5

3 c
+1−λ2

)
λ

4r+s+b p−5
3 c

1 −
(

u
p−7−3b p−5

3 c
u

p−9−3b p−5
3 c

+1−λ1

)
λ

4r+s+b p−5
3 c

2

(
u

p−7−3b p−5
3 c

u
p−9−3b p−5

3 c
+1−λ2

)
λ

4r+s+b p−5
3 c−1

1 −
(

u
p−7−3b p−5

3 c
u

p−9−3b p−5
3 c

+1−λ1

)
λ

4r+s+b p−5
3 c−1

2

−1




)
,

for m ∈ N0, s = 3,6, p =−1,1.
Note that

lim
m→∞




(
u

p−3b p+2
3 c

u
p−3b p+2

3 c−2
+1−λ2

)
λ

4r+s+b p+2
3 c+1

1 −
(

u
p−3b p+2

3 c
u

p−3b p+2
3 c−2

+1−λ1

)
λ

4r+s+b p+2
3 c+1

2

(
u

p−3b p+2
3 c

u
p−3b p+2

3 c−2
+1−λ2

)
λ

4r+s+b p+2
3 c

1 −
(

u
p−3b p+2

3 c
u

p−3b p+2
3 c−2

+1−λ1

)
λ

4r+s+b p+2
3 c

2

−1




= lim
m→∞




(
up−2−3b p

3 c
up−4−3b p

3 c
+1−λ2

)
λ

4r+s+b p
3 c+1

1 −
(

up−2−3b p
3 c

up−4−3b p
3 c

+1−λ1

)
λ

4r+s+b p
3 c+1

2
(

up−2−3b p
3 c

up−4−3b p
3 c

+1−λ2

)
λ

4r+s+b p
3 c

1 −
(

up−2−3b p
3 c

up−4−3b p
3 c

+1−λ1

)
λ

4r+s+b p
3 c

2

−1




= lim
m→∞




(
u

p+2+3b p−2
3 c

u
p+3b p−2

3 c
+1−λ2

)
λ

4r+s+b p−2
3 c+1

1 −
(

u
p+2+3b p−2

3 c
u

p+3b p−2
3 c

+1−λ1

)
λ

4r+s+b p−2
3 c+1

2

(
u

p+2+3b p−2
3 c

u
p+3b p−2

3 c
+1−λ2

)
λ

4r+s+b p−2
3 c

1 −
(

u
p+2+3b p−2

3 c
u

p+3b p−2
3 c

+1−λ1

)
λ

4r+s+b p−2
3 c

2

−1




= lim
m→∞




(
u

p−3−3b p−1
3 c

u
p−5−3b p−1

3 c
+1−λ2

)
λ

4r+s+b p−1
3 c

1 −
(

u
p−3−3b p−1

3 c
u

p−5−3b p−1
3 c

+1−λ1

)
λ

4r+s+b p−1
3 c

2

(
u

p−3−3b p−1
3 c

u
p−5−3b p−1

3 c
+1−λ2

)
λ

4r+s+b p−1
3 c−1

1 −
(

u
p−3−3b p−1

3 c
u

p−5−3b p−1
3 c

+1−λ1

)
λ

4r+s+b p−1
3 c−1

2

−1




= lim
m→∞




(
u

p−5−3b p−3
3 c

u
p−7−3b p−3

3 c
+1−λ2

)
λ

4r+s+b p−3
3 c

1 −
(

u
p−5−3b p−3

3 c
u

p−7−3b p−3
3 c

+1−λ1

)
λ

4r+s+b p−3
3 c

2

(
u

p−5−3b p−3
3 c

u
p−7−3b p−3

3 c
+1−λ2

)
λ

4r+s+b p−3
3 c−1

1 −
(

u
p−5−3b p−3

3 c
u

p−7−3b p−3
3 c

+1−λ1

)
λ

4r+s+b p−3
3 c−1

2

−1




= lim
m→∞




(
u

p−7−3b p−5
3 c

u
p−9−3b p−5

3 c
+1−λ2

)
λ

4r+s+b p−5
3 c

1 −
(

u
p−7−3b p−5

3 c
u

p−9−3b p−5
3 c

+1−λ1

)
λ

4r+s+b p−5
3 c

2

(
u

p−7−3b p−5
3 c

u
p−9−3b p−5

3 c
+1−λ2

)
λ

4r+s+b p−5
3 c−1

1 −
(

u
p−7−3b p−5

3 c
u

p−9−3b p−5
3 c

+1−λ1

)
λ

4r+s+b p−5
3 c−1

2

−1




= λ1−1 =
√

2 > 1,

when

up−3b p+2
3 c

up−3b p+2
3 c−2

6= λ2−1 =−
√

2, 6=
up−2−3b p

3 c
up−4−3b p

3 c
,

up+2+3b p−2
3 c

up+3b p−2
3 c

6= λ2−1 =−
√

2, 6=
up−3−3b p−1

3 c
up−5−3b p−1

3 c
, p =−1,1. (3.8)

up−5−3b p−3
3 c

up−7−3b p−3
3 c
6= λ2−1 =−

√
2, 6=

up−7−3b p−5
3 c

up−9−3b p−5
3 c

,

By selecting positive initial conditions providing (3.8) and using equations in (3.7), we obtain

lim
m→∞

um = ∞.

Now, we give numerical example to support the last equation.
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Example 3.4. Consider the equation (3.5) with the initial values u−4 = 0.195, u−3 = 0.1, u−2 = 2.4, u−1 = 3, u0 = 7.62, the
solution is given as in Figure (1).

0 20 40 60 80 100
0

5.0×107

1.0×108
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2.0×108

n

u[
n]

Figure 1: Plots of un

Then, the solution is not convergent. It is a counterexample to the claim in Theorem 3.2 (Theorem 4 in [32]).

4. Conclusion

In this study, we have solved the following general two dimensional system of difference equations

un+1 = f−1
(

g(vn−1)
A1 f (un−2)+B1g(vn−4)

C1 f (un−2)+D1g(vn−4)

)
,vn+1 = g−1

(
f (un−1)

A2g(vn−2)+B2 f (un−4)

C2g(vn−2)+D2 f (un−4)

)
, n ∈ N0,

where the parameters A j, B j, C j, D j, for j ∈ {1,2} are real numbers, the initial values u−k, v−k, for k = 0,4 are real numbers,
f and g are continuous and strictly monotone functions, f (R) = R, g(R) = R, f (0) = 0, g(0) = 0. The following particular
cases are considered:

1. if A1D1 6= B1C1 and A2D2 6= B2C2

(a) if C1 6= 0, C2 6= 0,

i. if (A1 +D1)
2−4(A1D1−B1C1) 6= 0, (A2 +D2)

2−4(A2D2−B2C2) 6= 0, then the general solutions of system
(1.8) is given by formulas in (2.15) and (2.16).

ii. if (A1 +D1)
2−4(A1D1−B1C1) = 0, (A2 +D2)

2−4(A2D2−B2C2) = 0, then the general solutions of system
(1.8) is given by formulas in (2.19) and (2.20).

(b) if C1 = 0, C2 = 0,

i. if A1 = D1, A2 = D2, then the general solutions of system (1.8) is given by formulas in (2.24) and (2.24).

ii. if A1 6= D1, A2 6= D2, then the general solutions of system (1.8) is given by formulas in (2.26) and (2.27).

2. if A1D1 = B1C1, A2D2 = B2C2,

(a) if A1 = 0, A2 = 0, then the general solutions of system (1.8) is given by formulas in (2.30).

(b) if A1 6= 0, A2 6= 0, then the general solutions of system (1.8) is given by formulas in (2.33).

(c) if D1 = 0, D2 = 0, then the general solutions of system (1.8) is given by formulas in (2.33).

(d) if D1 6= 0, D2 6= 0, then the general solutions of system (1.8) is given by formulas in (2.30).
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(e) if A1B1C1D1 6= 0, A2B2C2D2 6= 0.

i. if A1 =
B1C1
D1

, A2 =
B2C2
D2

, then the general solutions of system (1.8) is given by formulas in (2.30).

ii. if B1 =
A1D1

C1
, B2 =

A2D2
C2

, then the general solutions of system (1.8) is given by formulas in (2.33).

In addition, an application is given.
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