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Abstract 

The integration of digital technologies into healthcare systems within municipalities has elicited a 

transformative change in health service delivery. This paper explores the importance of the 

digitalization of health services in municipalities and represents the most important services by 

employing fuzzy methods.  The research evaluates the importance of digital transformation of 

several health services in municipalities by examining existing literature and employing a 

combination of qualitative and quantitative methods, including the Pythagorean Fuzzy CRITIC 

(PF-CRITIC) and Interval-Valued Pythagorean Fuzzy WASPAS (IVPF-WASPAS) methods. Key 

findings highlight that mobile health services and medical center services are the two most 

important municipal health activities regarding digital transformation. Additionally, we employed 

sensitivity analysis to assess the stability and reliability of the methods, thereby conducting a 

detailed analysis of the decision-making process. Through evidence-based strategies, 

municipalities can harness the power of digitalization to develop patient-centered, efficient, and 

responsive healthcare services. Therefore, this study contributes to a more inclusive approach to 

digitalization in healthcare, aiming to obtain the opinions of individuals who have experience with 

health activities in municipalities. 

Keywords: healthcare services, municipalities, fuzzy, digitalization 

 

1. Introduction 

The convergence of digital technologies and healthcare has significantly transformed the 
delivery of health services in municipalities in recent years. This transition towards 
digitalization represents a transformative journey, promising enhanced efficiency, 
accessibility, and quality of healthcare provision. The integration of digital tools into 
health services, from electronic health records to telemedicine platforms and mobile 
health applications, holds immense potential to revolutionize the access, delivery, and 
experience of care for both patients and providers. 

The emergence of digitalization faces both opportunities and challenges within the 
healthcare workforce. While digital technologies have the potential to streamline 
workflows, improve communication, and empower healthcare professionals, there is an 
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obvious doubt about digital health solutions in the workforce. Addressing the concerns 
surrounding digital literacy, privacy, and data security is crucial to foster a culture of 
acceptance and readiness for digital transformation within the healthcare sector. 

The digitalization of healthcare services in municipalities represents a comprehensive 
transformation that includes the integration of digital technologies and information 
systems into various aspects of healthcare. This paradigm shift varies from the 
digitization of medical records to include telemedicine platforms, mobile health 
applications, wearable devices, remote monitoring systems, and advanced analytics. 
Digitalization aims to improve communication between healthcare providers and 
individuals, improve access to care, optimize resource allocation, and improve health 
outcomes by streamlining processes. Accordingly, municipalities' adoption of 
digitalization offers the potential to improve healthcare services, making them more 
patient-focused, efficient, and responsive to the evolving needs of society. 

This research has a combination of qualitative and quantitative approaches. The first 
phase comprises a literature review to synthesize existing knowledge for understanding 
the impact of digitalization on health services within municipalities. Subsequently, we 
employ the Pythagorean Fuzzy CRITIC (PF-CRITIC) method and the Interval-Valued 
Pythagorean Fuzzy WASPAS (IVPF-WASPAS) method to analyze data and evaluate 
the various aspects of digitalization in health service delivery.  This integrated approach 
aims to provide insights for decision-making and technology development to improve 
health services by evaluating the digital transformation's impact on various health 
services in municipalities. Additionally, we used sensitivity analysis to evaluate the 
reliability of the model. 

In light of these considerations, this research endeavors to explore the multifaceted 
impact of digitalization on health services within municipalities. Accordingly, by focusing 
on the needs and experiences of society, this paper aims to contribute to a more inclusive 
approach to digitalization in healthcare. 

2. Literature Review 

The digitalization of healthcare services in municipalities is a growing subject, focusing 
particularly on the impact of digitalization on public service delivery for socially 
disadvantaged individuals. Buchert et al. [1] emphasize the lack of empirical research 
examining the effects of digitalization on public health and social welfare services from 
the perspective of socially disadvantaged individuals and emphasize the need for more 
comprehensive studies in this field. So, Schou & Pors [2] discuss the shift towards self-
service solutions in welfare services due to digitalization, which places the responsibility 
on citizens to actively seek services previously managed by professionals, raising 
concerns about the potential exclusion of disadvantaged individuals. 

In the public sector domain, Lloyd & Payne [3] address the use of digitalization as a cost-
effective method for delivering better care quality and more client-focused services, 
reflecting the ongoing efforts to leverage digitalization for improved public health 
services. Additionally, Collington [4] highlights the emergence of public sector 
digitalization strategies with the goal of improving services and enhancing efficiency, 
indicating a broader trend towards digital transformation in public service delivery. 

The impact of digitalization on health care professionals and citizens is also a significant 
area of concern. Tiainen et al. [5] point out that digitalization poses challenges not only 
for health care and social welfare professionals but also for citizens, highlighting the need 
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for comprehensive strategies to address the implications of digitalization in these sectors. 
Moreover, Baumgartner et al. [6] note a questioning attitude towards digital health among 
medical students, indicating the importance of addressing perceptions and preparedness 
for digitalization in the health care sector. 

The literature on the digitalization of health services in municipalities is extensive and 
diverse, covering various aspects of digital transformation in healthcare, public health, 
and social welfare services. Gopal et al. [7] address the importance of digital 
transformation in healthcare, highlighting the integration of technologies like the Internet 
of Things, advanced analytics, Machine Learning, and Artificial Intelligence as key 
components to address challenges in healthcare. Scarano & Colfer [8] discuss the review 
of automated possibilities in linking active labor market policies to digitalization, 
considering the potential impact on employment and public services. Holm et al. [9] 
provide insights into the allocation of home care services by municipalities in Norway, 
indicating potential equity issues in the allocation system. Moreover, Collington [4] 
examines how digitization affects the capacity reduction of the public sector, 
emphasizing the need for more study on how governments might use technological 
advancement for the benefit of their population while keeping themselves functional 
during the process. 

These studies provide a comprehensive overview of the multiple impacts of digitalization 
on health services in municipalities, addressing technological integration, service 
allocation, ethical considerations, and the broader implications for public sector capacity. 

The implications of digitalization in the health services of municipalities have significant 
effects on various aspects of service delivery. Buchert et al. [1] highlight the 
reinforcement of social exclusion through the digitalization of public health and social 
welfare services, particularly for disadvantaged individuals. This underscores the need 
for comprehensive strategies to address the potential negative impact of digitalization on 
vulnerable populations. Additionally, Schou & Pors [2] emphasize the qualitative study 
of exclusion in digitalized welfare, shedding light on the impact of digitalization on welfare 
institutions and professional practices, particularly in the context of disadvantaged 
individuals. These findings underscore the complex interplay between digitalization, 
public sector capacity, and citizen welfare, emphasizing the need for careful 
consideration of the implications of digitalization in health services. 

Additionally, Holm et al. [9] provide insights into the allocation of home care services by 
municipalities, indicating potential fairness issues in the allocation system. This 
highlights the need for equitable and transparent digitalized processes for service 
allocation to ensure fair access to health services. Furthermore, Shava & Vyas-
Doorgapersad [10] highlight the need for comprehensive digital infrastructure to support 
effective service delivery, pointing out that municipalities are unable to foster digital 
innovations to improve public service delivery due to a lack of digital skills, infrastructure, 
accessibility, and connectivity. 

The integration of qualitative and quantitative methods in studying the impact of 
digitalization on health services is well-supported by existing literature. O'cathain [24] 
used a mixed methods approach to evaluate the impact of health information systems in 
UK. Their use of both qualitative interviews and quantitative data analysis provided a 
comprehensive understanding of the system's effectiveness, similar to our approach.  

Moreover, the application of multi-criteria decision-making (MCDM) methods, such as 
PF-CRITIC and IVPF-WASPAS, has been validated in various fields, including health 
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services. Haktanir and Kahraman [25] utilized the CRITIC method to assess the 
performance of healthcare providers, and Wang et al. [26] applied PF-CRITIC method to 
select suppliers, while Gedikli and Cayir Ervural [27] applied the IVPF-WASPAS method 
to prioritize COVID-19 vaccine alternatives. These studies demonstrate the robustness 
and applicability of these methods, supporting our choice of methodology for evaluating 
digitalization impacts.  

The literature underscores the need for more empirical research on the effects of 
digitalization on public health and social welfare services. There is also a growing focus 
on the challenges and implications of digitalization for health care professionals and 
citizens, highlighting the need for comprehensive strategies to address the impact of 
digitalization on health services in municipalities. 

3. Preliminaries 

3.1. Pythagorean Fuzzy Sets 

Yager [11] proposed Pythagorean Fuzzy Sets (PFS) based on the logic of Intuitionistic 
Fuzzy Sets (IFS), which was developed by Atanassov [11], in 2013. In IFS, the sum of 
the degrees of membership (μ) and non-membership (υ) of an element in a set is in the 
range [0,1]. In the PFS, however, the sum of the squares of the degrees of membership 
and non-membership of an element cannot exceed 1. The PFS, as an extension of the 
IFS, allow experts to make evaluations on a wider scale [12] [13] 

For example, a decision maker may determine the membership degree of an alternative 
to be √3/2 and the non-membership degree to be 1/2. In this case, since the sum of the 
membership and non-membership degrees exceeds 1, the use of IFS is not appropriate. 

However, since the condition 0 ≤ (
√3

2
)2 + (

1

2
)2 ≤ 1 is satisfied, PFS can be used. In this 

regard, instead of asking decision makers to adjust their decisions to fit within the limits 
of IFS, PFS can be used. It is claimed that PFS have more capability than IFS in modeling 
uncertainty for decision-making problems [13]. 

 

Figure 1.  Comparison of PFS and IFS [12] 

The comparison between IFS and PFS is provided in Figure 1. According to this figure, 
it is observed that PFS encompass IFS. PFS differ from IFS in that PFS allow the sum 
of membership and non-membership degrees to exceed 1, but the sum of their squares 
cannot exceed 1 [12]. 
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Definition: Let X be the universal set and 𝑃 be the Pythagorean fuzzy set object of this 
universal set. P object is defined as seen in Equation (1) [14]: 

                                        𝑃 = {< 𝑥, 𝑃 (μ𝑝(𝑥), 𝑣𝑝(𝑥)) > | 𝑥 ∈ X}                                              (1)  

Here, μp(x): X  ↦ [0,1] represents the membership degree, and vp(x): X  ↦ [0,1] 

represents the non-membership degree. 

The sum of the squares of the membership and non-membership degrees of an element 
𝑥 in the universal set 𝑋, belonging to the subset 𝑃, as seen in Equation (2), does not 
exceed 1 [14]. 

                                                   0 ≤ μ𝑝(𝑥)2 + 𝑣𝑝(𝑥)2 ≤ 1                                                (2) 

3.1.1. Interval-Valued Pythagorean Fuzzy Sets 

Peng and Yang [15] expressed fuzzy sets as Interval-Valued. Accordingly, membership 
and non-membership degrees are defined within lower and upper bound intervals. These 
sets are named as Interval-Valued Pythagorean Fuzzy Sets (IVPFS). 

An Interval-Valued Pythagorean Fuzzy Set p̃ in the universe X is defined as follows: if x 
is an element, μ represents the membership degree, υ represents the non-membership 
degree, and L and U represent the lower and upper bounds of these degrees, 
respectively, as shown in Equation (3). The sum of the squares of membership and non-
membership degrees does not exceed 1, as illustrated in Equation (4) [15] [16]. 

                            �̃� = {(𝑥, [ 𝜇�̃�
𝐿(𝑥), 𝜇�̃�

𝑈(𝑥)], [ 𝜐�̃�
𝐿(𝑥), 𝜐�̃�

𝑈(𝑥)]); 𝑥 ∈ 𝑋}                                 (3) 

                                               0 ≤ (𝜇�̃�(𝑥))
2

+ (𝜐�̃�(𝑥))
2

≤ 1                                         (4) 

4. Methodology 

4.1. The Pythagorean Fuzzy CRITIC (PF-CRITIC) Method  

The Pythagorean Fuzzy CRITIC (PF-CRITIC) method, introduced into the literature by 
Peng, Zhang, and Luo in 2020 [17], is an adaptation of the classical CRITIC method to 
the Pythagorean fuzzy numbers. The process flow diagram of the PF-CRITIC method is 
modeled in Figure 2. 
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Figure 2.  The Process Flow Diagram of the PF-CRITIC Method 
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The steps of the PF-CRITIC method are presented below [18]:  

Step 1: Formation of the Decision Matrix: We construct the initial decision matrix 
according to Equation (5), where m denotes the number of candidate alternatives and n 
represents the number of evaluation criteria. Here, for i∈{1, 2,…,m} and j∈{1,2,…,n}), 
X_ij signifies the performance of the i-th alternative with respect to the j-th criterion. 

                                       𝑋 = [𝑥𝑖𝑗]
𝑚𝑥𝑛

= [

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑚1 ⋯ 𝑥𝑚𝑛

]                                             (5)    

Step 2: Calculation of Uncertainty Degree: The uncertainty degree of each fuzzy value, 

denoted as pij(μij, υij), representing the Pythagorean fuzzy value of the i-th alternative 

with respect to the j-th criterion, is calculated using Equation (6). 

   ∏ = √1 − 𝜇𝑖𝑗
2 − 𝜐𝑖𝑗

2 ,𝑖𝑗  (𝑖 = 1,2, … , 𝑚; 𝑗 = 1,2, … , 𝑛) 𝑎𝑛𝑑 0 ≤ (𝜇𝑖𝑗)
2

+ (𝜐𝑖𝑗)
2

≤ 1             (6)   

Step 3: Calculation of Score Functions for Each Pythagorean Fuzzy Value: For a score 

matrix R = (rij)mxn
, the score functions for each fuzzy value are calculated as shown in 

Equation (7). 

               𝑟𝑖𝑗 = 𝜇𝑖𝑗
2 − 𝜐𝑖𝑗

2 − 𝑙𝑛(1 + ∏𝑖𝑗
2 ),    (𝑖 = 1,2, … , 𝑚;  𝑗 = 1,2, … , 𝑛)                            (7) 

Step 4: Normalization Process (Conversion of the Score Matrix R to an Orthonormal 
Pythagorean Fuzzy Matrix): The transformation process, resulting in the matrix R′ =

(r′ij)mxn
, is conducted using Equation (8) for benefit criteria and Equation (9) for cost 

criteria. 

For benefit criteria; 𝑟′𝑖𝑗 =
𝑟𝑖𝑗−𝑟𝑗

−

𝑟𝑗
+−𝑟𝑗

−     𝑟𝑗
− = 𝑚𝑖𝑛𝑖𝑟𝑖𝑗 𝑣𝑒 𝑟𝑗

+ = 𝑚𝑎𝑥𝑖𝑟𝑖𝑗                                 (8) 

For cost criteria; 𝑟′𝑖𝑗 =
𝑟𝑗

+−𝑟𝑖𝑗

𝑟𝑗
+−𝑟𝑗

−    𝑟𝑗
− = 𝑚𝑖𝑛𝑖𝑟𝑖𝑗 𝑣𝑒 𝑟𝑗

+ = 𝑚𝑎𝑥𝑖𝑟𝑖𝑗                                      (9) 

Step 5: Calculation of Criterion Standard Deviations: The standard deviation calculation 
is determined using Equation (10). 

                            𝜎𝑗 = √∑ (𝑟′𝑖𝑗−�̅�𝑗)
2𝑚

𝑖=1

𝑚
      Here �̅�𝑗 =

∑ 𝑟′𝑖𝑗
𝑚
𝑖=1

𝑚
                                             (10) 

Step 6: Determination of Inter-Criteria Correlation: The correlation value between the j-
th criterion and the k-th criterion is calculated using Equation (11). 

                    𝑝𝑗𝑘 =
∑ (𝑟′𝑖𝑗−�̅�𝑗)(𝑟′𝑖𝑘−�̅�𝑘)𝑚

𝑖=1

√∑ (𝑟′𝑖𝑗−�̅�𝑗)
2

∑ (𝑟′𝑖𝑘−�̅�𝑘)2𝑚
𝑖=1

𝑚
𝑖=1

   (𝑘, 𝑗 = 1,2, … , 𝑛)                                    (11) 

Step 7: Calculation of Information Amount for Each Criterion: The calculation of the 
information amount is performed using Equation (12). 

                              𝐶𝑗 = 𝜎𝑗 ∑ (1 − 𝑝𝑗𝑘)𝑛
𝑘=1   (𝑘, 𝑗 = 1,2, … , 𝑛)                                         (12) 
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The larger the value of Cj in Equation (12), the more information a specific criterion 
contains. Therefore, the weight of this evaluation criterion is greater than the weights of 
other criteria. 

Step 8: Determination of Criterion Weights: Criterion weights are determined using 
Equation (13). 

                                     𝑤𝑗 =
𝐶𝑗

∑ 𝐶𝑗
𝑛
𝑗=1

    (𝑗 = 1,2, … , 𝑛)                                                    (13) 

4.2. Interval-Valued Pythagorean Fuzzy WASPAS (IVPF-WASPAS) Method 

Turskis, Zavadskas, and their colleagues integrated fuzzy logic with the WASPAS 
method for construction site selection, introducing the fuzzy WASPAS method to the 
literature in 2015 [19]. 

The Interval-Valued Pythagorean Fuzzy WASPAS (IVPF-WASPAS) method, introduced 
to the literature by Ilbahar and Kahraman in 2018, resulted from the adaptation of 
Pythagorean fuzzy numbers to the classical WASPAS method [20]. They [20] evaluated 
the performance of retail stores in their study. The process flow diagram of the IVPF-
WASPAS method is modeled in Figure 3. 
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Figure 3. Process Flow Diagram of the IVPF-WASPAS Method 
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In the IVPF-WASPAS method, the implementation steps are as follows [18]: 

Step 1: Formation of the Combined Decision Matrix: Decision-makers gather opinions 
about alternatives using linguistic expressions. These expressions are converted into 
Pythagorean fuzzy numbers. The arithmetic mean (IVPFWA) of matrices composed of 
Pythagorean fuzzy numbers from each expert is calculated using Equation (14), resulting 

in the creation of the combined decision matrix �̃�𝑖𝑗. Here,𝑤𝑖 represents the weight of the 

criterion. 

𝐼𝑉𝑃𝐹𝑊𝐴(�̃�1, �̃�2, … , �̃�𝑛) = ([∑ 𝑤𝑖𝜇𝑖
𝐿𝑛

𝑖=1 , ∑ 𝑤𝑖𝜇𝑖
𝑈𝑛

𝑖=1 ], [∑ 𝑤𝑖𝜐𝑖
𝐿𝑛

𝑖=1 , ∑ 𝑤𝑖𝜐𝑖
𝑈𝑛

𝑖=1 ])                  (14)                             

Step 2: Obtaining the Normalized Decision Matrix in the Form of Pythagorean Fuzzy 
Numbers: The defuzzification formula in Equation (15) defuzzifies the values in the 
resulting combined decision matrix. The "𝑝" value in Equation (15) is an intermediate 
variable that clarifies the Pythagorean fuzzy number. This formula makes the 
calculations necessary for the defuzzification process and reduces the uncertainties in 
the decision matrix. If the criterion is benefit-based after the defuzzification process, 

Equation (16); If it is cost based, Equation (17) is used. Equation (18) is 1 𝑚𝑎𝑥𝑖𝑝𝑖𝑗
⁄ ; for 

benefit-based criteria; for cost-based criteria, it is applied for all values in the combined 

decision matrix using 𝑚𝑖𝑛𝑖𝑝𝑖𝑗  .Thus, the normalized decision matrix (�̿�𝑖𝑗) is obtained. 

 

                    𝑝 =
𝜇𝐿+𝜇𝑈+√1−(𝜐𝐿)2+√1−(𝜐𝑈)2+𝜇𝐿𝜇𝑈−√√1−(𝜐𝐿)2√1−(𝜐𝑈)2

4
                                  (15)                             

                                For benefit criteria; �̿�𝑖𝑗 =
�̃�𝑖𝑗

𝑚𝑎𝑥𝑖𝑝𝑖𝑗
                                               (16)                             

                                    For cost criteria;  �̿�𝑖𝑗 =
min𝑖.𝑝𝑖𝑗

�̃�𝑖𝑗
                                                 (17)                                                       

            λ�̃� = ([√1 − (1 − (𝜇𝐿)2)λ , √1 − (1 − (𝜇𝑈)2)λ] , [(𝜐𝐿)λ, (𝜐𝑈)λ])                       (18)     

Equation (18) facilitates the transformation of Pythagorean fuzzy numbers using a 
specific λ coefficient. The λ coefficient is a parameter used during the defuzzification of 
Pythagorean fuzzy numbers. This transformation reduces uncertainty among the 
numbers and provides the necessary adjustment for normalization. Equations (16) and 
(17) then utilize these transformed values to normalize the decision matrix according to 
benefit and cost criteria. This process aims to make Pythagorean fuzzy numbers 
comparable and consistent within the decision-making framework.      

In summary, the values of the combined decision matrix are defuzzified using Equation 

15. Subsequently, Equation 16 is applied for benefit-based criteria using 1 𝑚𝑎𝑥𝑖𝑝𝑖𝑗
⁄ , and 

Equation 17 is used for cost-based criteria employing 𝑚𝑖𝑛𝑖𝑝𝑖𝑗. During this process, the 

𝑝𝑖𝑗 values represent previously defuzzified values. The λ values specified in Equation 18 

are based on 1 𝑚𝑎𝑥𝑖𝑝𝑖𝑗
⁄  and 𝑚𝑖𝑛𝑖𝑝𝑖𝑗. 𝜇𝐿, 𝜇𝑈, 𝜐𝐿, and 𝜐𝑈 denote the Pythagorean fuzzy 

number values in the combined decision matrix. These computational steps ensure the 
comparability and normalization of values in decision-making processes involving 
Pythagorean fuzzy numbers.                                     
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Step 3: Conversion of Linguistic Evaluations for Criteria into Pythagorean Fuzzy 
Numbers: The linguistic expressions regarding the importance levels of criteria provided 
by decision-makers are transformed into Pythagorean fuzzy numbers. 

Step 4: Obtaining the Pythagorean Fuzzy Weighted Sum Values of Alternatives: The 
weighted sum matrix, which is the first part of the WASPAS method, is obtained through 
Equation (19). Here, 𝑤𝑗 represents the weight of the criterion. 

                                               �̃�𝑖
(1)

= ∑ �̿�𝑖𝑗
𝑛
𝑗=1 . 𝑤𝑗                                                        (19) 

Before Equation (19) can be applied, the values in the normalized decision matrix must 
first be multiplied by the criterion weights through Equation (20). These values are then 
summed with each other in Equation (21) to obtain the Pythagorean fuzzy weighted sum 
values of alternatives. 

𝑝1 ⊗ 𝑝2 = ([𝜇1
𝐿𝜇2

𝐿 , 𝜇1
𝑈𝜇2

𝑈], [√(𝜐1
𝐿)2 + (𝜐2

𝐿)2 − (𝜐1
𝐿)2(𝜐2

𝐿)2, √(𝜐1
𝑈)2 + (𝜐2

𝑈)2 − (𝜐1
𝑈)2(𝜐2

𝑈)2])          (20)          

𝑝1 ⊕ 𝑝1 = ([√(𝜇1
𝐿)2 + (𝜇2

𝐿)2 − (𝜇1
𝐿)2(𝜇2

𝐿)2, √(𝜇1
𝑈)2 + (𝜇2

𝑈)2 − (𝜇1
𝑈)2(𝜇2

𝑈)2] , [𝜐1
𝐿𝜐2

𝐿 , 𝜐1
𝑈𝜐2

𝑈])         (21) 

Step 5: Obtaining the Pythagorean Fuzzy Weighted Product Values of Alternatives: The 
weighted product matrix of the WASPAS method is obtained using Equation (22). Before 
Equation (22) can be applied, Equation (23) is first applied to the values in the normalized 
decision matrix and the criterion weights. Then, by multiplying these values with each 
other in Equation (20), the Pythagorean fuzzy weighted product values of alternatives 
are obtained. 

                                              �̃�𝑖
(2)

= ∏ (�̿�𝑖𝑗)
𝑤𝑗𝑛

𝑗=1                                                         (22) 

         𝑝λ = ([(𝜇𝐿)λ, (𝜇𝑈)λ], [√1 − (1 − (𝜐𝐿)2)λ, √1 − (1 − (𝜐𝑈)2)λ])                            (23)      

Step 6: Determination of the Total Relative Importance Values of Alternatives: The 
Pythagorean fuzzy weighted sum and weighted product values are normalized using 
Equation (15). According to the WASPAS method, the weighted sum values and 
weighted product values of alternatives are integrated through Equation (24). Thus, the 
total relative importance value (𝑄𝑖) of alternatives is obtained, providing a single value 
for decision-making. Subsequently, the obtained values are weighted and summed using 
the λ coefficient. The λ coefficient represents the importance levels assigned to two 
values and should take a value between 0 and 1. 

           𝑄𝑖 = λ𝑄𝑖
(1)

+ (1 − λ)𝑄𝑖
(2)

=  λ ∑ �̅�𝑖𝑗 . 𝑤𝑗 + (1 − λ)𝑛
𝑗=1 ∏ (�̅�𝑖𝑗)𝑤𝑗𝑛

𝑗=1                        (24)    

Step 7: Determination of Alternative Rankings: Alternatives are ranked based on their 
total relative importance values. The alternative with the highest total relative importance 
value is preferred. 
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5. Case Study 

The study employed Fuzzy Multi-Criteria Decision Making (FMCDM) methods, 
specifically utilizing PF-CRITIC for criteria weighting and IVPF-WASPAS for 
simultaneous alternative ranking. Three decision-makers assessed the following 
alternatives: "Home Healthcare Services", "Medical Centers", "Psychological Counseling 
Centers", "Elderly Services", "Healthy Nutrition Support" and "Mobile Healthcare 
Services". 

Five criteria were established to evaluate the digitization of healthcare services: 
"Urgency and Importance Level", "Social Needs and Demands", "Accessibility and 
Inclusivity", "Efficiency and Cost Effectiveness" and "Technological Infrastructure and 
Capabilities". 

Some criteria considered in the decision-making process are benefit-oriented depending 
on the problem's nature, while others may focus on cost. Decision-makers aim to 
maximize benefit-oriented criteria and minimize cost-oriented ones. 

The reason these criteria—"Urgency and Importance Level," "Social Needs and 

Demands", "Accessibility and Inclusivity", "Efficiency and Cost Effectiveness" and 

"Technological Infrastructure and Capabilities"—are benefit-oriented is due to the high 

demand from decision-makers in achieving their objectives. Essentially, decision-makers 

perceive these criteria as representing positive attributes and seek to maximize their 

value. 

5.1 The Implementation of the PF-CRITIC Method 

Step 1: Table 1 displays the Pythagorean Fuzzy values utilized for weighting the criteria 
in the PF-CRITIC method. 

Table 1. The Nine-Point Pythagorean Fuzzy Linguistic Variables Scale Used to 
Evaluate Alternatives in Terms of Criteria [23] 

Language Terms The Corresponding Pythagorean Fuzzy Number (𝒖. 𝒗) 

Extremely Low (EL) (0.10,0.99) 

Very Little (VL) (0.10,0.97) 

Little (L) (0.25,0.92) 

Middle Little (ML) (0.40,0.87) 

Middle (M) (0.50,0.80) 

Middle High (MH) (0.60,0.71) 

Big (B) (0.70,0.60) 

Very Tall (VT) (0.80,0.44) 

Tremendously High (TH) (0.10,0.00) 

Utilizing Equation (5), Tables 2, 3, and 4 present the fuzzy decision matrices created 
for each decision-maker. 
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Table 2. Fuzzy Decision Matrix for Decision Maker-1  

 Criteria 

Alternatives 
Urgency and 
Importance 

Level 

Social Needs 
and Demands 

Accessibility 
and 

Inclusivity 

Efficiency and 
Cost Effectiveness 

Technological 
Infrastructure and 

Capabilities 

Home Health 
Services 

M B B B MH 

Medical Centers B TH VT B VT 

Psychological 
Counseling 
Centers 

MH B VT VT MH 

Elderly Services MH B B B M 

Healthy Nutrition 
Support 

M M B VT B 

Mobile Health 
Services 

VT VT TH TH TH 

Table 3. Fuzzy Decision Matrix for Decision Maker-2 

 Criteria 

Alternatives 
Urgency and 
Importance 

Level 

Social Needs 
and Demands 

Accessibility 
and 

Inclusivity 

Efficiency and 
Cost Effectiveness 

Technological 
Infrastructure and 

Capabilities 

Home Health 
Services 

L B VL M VL 

Medical Centers M ML VT ML L 

Psychological 
Counseling 
Centers 

M B VL VT L 

Elderly Services M VT L MH M 

Healthy 
Nutrition 
Support 

MH B MH B ML 

Mobile Health 
Services 

B MH EL VT TH 

Table 4. Fuzzy Decision Matrix for Decision Maker-3 

 Criteria 

Alternatives 
Urgency and 
Importance 

Level 

Social Needs 
and Demands 

Accessibility 
and 

Inclusivity 

Efficiency and 
Cost Effectiveness 

Technological 
Infrastructure and 

Capabilities 

Home Health 
Services 

EL ML M VL TH 

Medical Centers EL VT MH ML M 

Psychological 
Counseling 
Centers 

EL VL B EL ML 

Elderly Services EL B VT VT MH 

Healthy 
Nutrition 
Support 

EL MH EL B VT 

Mobile Health 
Services 

VL M ML MH B 

In Table 5, the Pythagorean fuzzy number versions of the linguistic terms used in the 
fuzzy decision matrix for decision maker-1 in Table 2 have been presented. Similar 
procedures were applied for decision maker-2 and decision maker-3 using Tables 3 and 
4 respectively. 
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Table 5. The Pythagorean Fuzzy Number Counterparts of The Fuzzy Decision Matrix 
for Decision Maker-1  

 Criteria 

Alternatives 
Urgency and 
Importance 

Level 

Social Needs 
and 

Demands 

Accessibility 
and 

Inclusivity 

Efficiency and 
Cost 

Effectiveness 

Technological 
Infrastructure 

and Capabilities 

Home Health Services 0.5 0.8 0.7 0.6 0.7 0.6 0.7 0.6 0.6 0.71 

Medical Centers 0.7 0.6 0.1 0 0.8 0.44 0.7 0.6 0.8 0.44 

Psychological Counseling 
Centers 0.6 0.71 0.7 0.6 0.8 0.44 0.8 0.44 0.6 0.71 

Elderly Services 0.6 0.71 0.7 0.6 0.7 0.6 0.7 0.6 0.5 0.8 

Healthy Nutrition Support 0.5 0.8 0.5 0.8 0.7 0.6 0.8 0.44 0.7 0.6 

Mobile Health Services 0.8 0.44 0.8 0.44 0.1 0 0.1 0 0.1 0 

Step 2: The uncertainty degree of each Pythagorean fuzzy value has been calculated 
using Equation (6). The uncertainty matrix calculated for decision maker-1 is presented 
in Table 6. Similar procedures have been applied for decision makers 2 and 3 as well. 

Table 6. Uncertainty Matrix for Decision Maker-1 

 Criteria 

Alternatives 
Urgency and 
Importance 

Level 

Social Needs 
and Demands 

Accessibility 
and 

Inclusivity 

Efficiency and 
Cost Effectiveness 

Technological 
Infrastructure and 

Capabilities 

Home Health 
Services 0.332 0.387 0.387 0.387 0.369 

Medical Centers 0.387 0.995 0.408 0.387 0.408 

Psychological 
Counseling 
Centers 

0.369 0.387 0.408 0.408 0.369 

Elderly Services 0.369 0.387 0.387 0.387 0.332 

Healthy Nutrition 
Support 

0.332 0.332 0.387 0.408 0.387 

Mobile Health 
Services 

0.408 0.408 0.995 0.995 0.995 

Step 3: The score function of each Pythagorean fuzzy value has been found using 
Equation (7). The score matrix for decision maker-1 is presented in Table 7. Similar 
procedures have been applied for decision makers 2 and 3 as well. 

Table 7. Score Matrix for Decision Maker-1  

 Criteria 

Alternatives 
Urgency and 
Importance 

Level 

Social Needs 
and Demands 

Accessibility 
and 

Inclusivity 

Efficiency and 
Cost Effectiveness 

Technological 
Infrastructure and 

Capabilities 

Home Health 
Services 

-0.494 -0.010 -0.010 -0.010 -0.272 

Medical Centers -0.010 -0.678 0.292 -0.010 0.292 

Psychological 
Counseling 
Centers 

-0.272 -0.010 0.292 0.292 -0.272 

Elderly Services -0.272 -0.010 -0.010 -0.010 -0.494 

Healthy Nutrition 
Support 

-0.494 -0.494 -0.010 0.292 -0.010 

Mobile Health 
Services 

0.292 0.292 -0.678 -0.678 -0.678 

Maximum 0.292 0.292 0.292 0.292 0.292 

Minimum -0.494 -0.678 -0.678 -0.678 -0.678 
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Step 4: The score matrix has been transformed into an orthonormal Pythagorean fuzzy 
matrix for the benefit-oriented criteria using Equation (8). The orthonormal Pythagorean 
fuzzy matrix (normalization matrix) for decision maker-1 is presented in Table 8. Similar 
procedures have been applied for decision makers 2 and 3 as well. 

Table 8. Orthonormal Pythagorean Fuzzy Matrix for Decision Maker-1 (Normalization 
matrix) 

 Criteria 

Alternatives 
Urgency and 
Importance 

Level 

Social Needs 
and Demands 

Accessibility 
and 

Inclusivity 

Efficiency and 
Cost Effectiveness 

Technological 
Infrastructure and 

Capabilities 

Home Health 
Services 

0.000 0.689 0.689 0.689 0.419 

Medical Centers 0.616 0.000 1.000 0.689 1.000 

Psychological 
Counseling 
Centers 

0.283 0.689 1.000 1.000 0.419 

Elderly Services 0.283 0.689 0.689 0.689 0.189 

Healthy Nutrition 
Support 

0.000 0.189 0.689 1.000 0.689 

Mobile Health 
Services 

1.000 1.000 0.000 0.000 0.000 

Step 5: According to the values in Table 8, the standard deviations of the criteria for 
decision maker-1 are determined using Equation (10). In Table 9, the standard deviation 
values for decision maker-1 were calculated using the "STDEV ()" function in Excel. 
Similar procedures have been applied for decision makers 2 and 3 as well. 

Table 9. The Standard Deviation Values of The Criteria for Decision Maker-1  

Criteria 
Urgency and Importance 

Level 
Social Needs 
and Demands 

Accessibility 
and 

Inclusivity 

Efficiency and Cost 
Effectiveness 

Technological 
Infrastructure 

and 
Capabilities 

σ 0.353 0.340 0.334 0.334 0.324 

Step 6: The correlation value between criteria is calculated using Equation (11). To apply 
Equation (11), the correlation matrix for decision maker-1 was created using the 
"CORREL ()" function in Excel, and it is presented in Table 10. Similar procedures have 
been applied for decision makers 2 and 3 as well. 

Table 10. Correlation Matrix for Decision Maker-1 

Criteria 
Urgency and 

Importance Level 
Social Needs 
and Demands 

Accessibility 
and 

Inclusivity 

Efficiency and Cost 
Effectiveness 

Technological 
Infrastructure 

and 
Capabilities 

Urgency and 
Importance 
Level 

1.000 0.287 -0.545 -0.817 -0.291 

ocial Needs and 
Demands 

0.287 1.000 -0.645 -0.558 -0.961 

Accessibility 
and Inclusivity 

-0.545 -0.645 1.000 0.855 0.726 

Efficiency and 
Cost 
Effectiveness 

-0.817 -0.558 0.855 1.000 0.577 

Technological 
Infrastructure 
and Capabilities 

-0.291 -0.961 0.726 0.577 1.000 
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Step 7: The amount of information provided by each criterion (useful information value) 
is calculated using Equation (12). The information amount of the criteria for decision 
maker-1 is presented in Table 11. Similar procedures have been applied for decision 
makers 2 and 3 as well. 

Table 11. Information Value of Criteria for Decision Maker-1 

Criteria 
Urgency and Importance 

Level 
Social Needs 
and Demands 

Accessibility 
and 

Inclusivity 

Efficiency and Cost 
Effectiveness 

Technological 
Infrastructure 

and 
Capabilities 

c 1.892 1.997 1.204 1.315 1.281 

Step 8: The weights of the criteria for each decision-maker are calculated using Equation 
(13). The weights of the criteria for decision maker-1 have been presented in Table 12 
using Equation (13). Similar procedures have been applied for decision makers 2 and 3 
as well. 

Table 12. Weights of Criteria for Decision Maker-1  

Criteria 
Urgency and Importance 

Level 
Social Needs 
and Demands 

Accessibility 
and 

Inclusivity 

Efficiency and Cost 
Effectiveness 

Technological 
Infrastructure 

and 
Capabilities 

w 0.246 0.260 0.157 0.171 0.167 

Prioritization 2 1 5 3 4 

Upon examining the results obtained from the PF-CRITIC method: 

For decision maker-1, the importance ranking of criteria is as follows: "Social Needs and 
Demands" > "Urgency and Importance Level" > "Efficiency and Cost Effectiveness" > 
"Technological Infrastructure and Capabilities" > "Accessibility and Inclusivity". 

For decision maker-2, the importance ranking of criteria is as follows: "Accessibility and 
Inclusivity" > "Social Needs and Demands" > "Efficiency and Cost Effectiveness" > 
"Technological Infrastructure and Capabilities" > "Urgency and Importance Level". 

For decision maker-3, the importance ranking of criteria is as follows: "Accessibility and 
Inclusivity" > "Urgency and Importance Level" > "Technological Infrastructure and 
Capabilities" > "Social Needs and Demands" > "Efficiency and Cost Effectiveness". 

As observed, for decision maker-2 and decision maker-3, the "Accessibility and 
Inclusivity" criterion is the most important factor, while for decision maker-1, this criterion 
is determined as the least prioritized factor. For decision maker-1 and decision maker-3, 
the second priority factor is "Urgency and Importance Level", whereas for decision 
maker-2, this criterion is determined as the least prioritized factor. For decision maker-1 
and decision maker-2, the third priority factor is "Efficiency and Cost Effectiveness", while 
for decision maker-3, this criterion is determined as the least prioritized factor. For 
decision maker-1 and decision maker-2, the fourth priority factor is "Technological 
Infrastructure and Capabilities". 
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5.2 The Implementation of the IVPF-WASPAS Method 

Step 1: The comparison scale used in linguistic evaluations about alternatives in the 
IVPF-WASPAS method is provided in Table 13. 

Table 13. Comparison Scale for Evaluating Alternatives [17] 

Linguistic Terms 
IVPF Numbers 

𝝁𝑳 𝝁𝑼 𝝊𝑳 𝝊𝑼 

CCI Extremely good 0.8 0.9 0.1 0.2 

CI Very good 0.7 0.8 0.2 0.3 

I Good 0.6 0.7 0.3 0.4 

O Fair 0.5 0.6 0.3 0.5 

K Poor 0.3 0.4 0.6 0.7 

CK Very poor 0.2 0.3 0.7 0.8 

CCK Extremely poor 0.1 0.2 0.8 0.9 

Decision maker-1, decision maker-2, and decision maker-3 provided their opinions 
regarding the alternatives using linguistic expressions. Tables 14, 15, and 16 present the 
relevant information for each decision maker, respectively. 

Table 14. Linguistic Terms Used by Decision Maker-1 to Rank The Importance of 
Alternatives 

 Criteria 

Alternatives 
Urgency and 
Importance 

Level 

Social Needs 
and 

Demands 

Accessibility 
and 

Inclusivity 

Efficiency and 
Cost 

Effectiveness 

Technological 
Infrastructure 

and Capabilities 

Home Health Services I CI CCI CI CCI 

Medical Centers CI CCI CI CI CCI 

Psychological Counseling 
Centers 

I I CI O I 

Elderly Services CI CI I O CI 

Healthy Nutrition Support I O CI O I 

Mobile Health Services CCI CI CCI CCI CCI 

Table 15. Linguistic Terms Used by Decision Maker-2 to Rank the Importance of 
Alternatives  

 Criteria 

Alternatives 
Urgency and 
Importance 

Level 

Social Needs 
and 

Demands 

Accessibility 
and 

Inclusivity 

Efficiency and 
Cost 

Effectiveness 

Technological 
Infrastructure 

and Capabilities 

Home Health Services CI I O K CK 

Medical Centers CCI CCI CI CCK O 

Psychological Counseling 
Centers 

O I CI I CK 

Elderly Services CI CI CI O CK 

Healthy Nutrition Support O O O CI I 

Mobile Health Services CCI CI CCI CCI CCI 
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Table 16. Linguistic Terms Used by Decision Maker-3 to Rank the Importance of 
Alternatives 

 Criteria 

Alternatives 
Urgency and 
Importance 

Level 

Social Needs 
and 

Demands 

Accessibility 
and 

Inclusivity 

Efficiency and 
Cost 

Effectiveness 

Technological 
Infrastructure 

and Capabilities 

Home Health Services CCK CI CK CCI CI 

Medical Centers CK CCI CCI CI CK 

Psychological Counseling 
Centers 

CI K CK CK CCI 

Elderly Services CI CK CCI CCI CI 

Healthy Nutrition Support CK CI CI CK CCK 

Mobile Health Services CK I CK CI K 

The linguistic expressions in Tables 14, 15 and 16 should be converted into Pythagorean 
fuzzy numbers. The linguistic expressions' Pythagorean fuzzy counterparts for decision 
maker-1 are presented in Table 17. Table 18 presents the combined decision matrix 

values �̃�𝑖𝑗  for decision makers using Equation (14). 

Table 17. Pythagorean Fuzzy Number Equivalents of Linguistic Expressions for 
Decision Maker-1 

Criteria 
Urgency and 

Importance Level 
Social Needs and 

Demands 
Accessibility and 

Inclusivity 
Efficiency and Cost 

Effectiveness 

Technological 
Infrastructure and 

Capabilities 

Alternatives 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 

Home Health 
Services 

0.6 0.7 0.3 0.4 0.7 0.8 0.2 0.3 0.8 0.9 0.1 0.2 0.7 0.8 0.2 0.3 0.8 0.9 0.1 0.2 

Medical 
Centers 

0.7 0.8 0.2 0.3 0.8 0.9 0.1 0.2 0.7 0.8 0.2 0.3 0.7 0.8 0.2 0.3 0.8 0.9 0.1 0.2 

Psychological 
Counseling 
Centers 

0.6 0.7 0.3 0.4 0.6 0.7 0.3 0.4 0.7 0.8 0.2 0.3 0.5 0.6 0.3 0.5 0.6 0.7 0.3 0.4 

Elderly 
Services 

0.7 0.8 0.2 0.3 0.7 0.8 0.2 0.3 0.6 0.7 0.3 0.4 0.5 0.6 0.3 0.5 0.7 0.8 0.2 0.3 

Healthy 
Nutrition 
Support 

0.6 0.7 0.3 0.4 0.5 0.6 0.3 0.5 0.7 0.8 0.2 0.3 0.5 0.6 0.3 0.5 0.6 0.7 0.3 0.4 

Mobile Health 
Services 

0.8 0.9 0.1 0.2 0.7 0.8 0.2 0.3 0.8 0.9 0.1 0.2 0.8 0.9 0.1 0.2 0.8 0.9 0.1 0.2 
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Table 18. Combined Decision Matrix 

Criteria 
Urgency and 

Importance Level 
Social Needs and 

Demands 
Accessibility and 

Inclusivity 
Efficiency and Cost 

Effectiveness 

Technological 
Infrastructure and 

Capabilities 

Alternatives 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 

Home Health 
Services 0

.2
6
9
 

0
.3

3
1
 

0
.2

9
0
 

0
.3

5
2
 

 

0
.4

2
2
 

0
.4

8
5
 

0
.1

4
6
 

0
.2

0
9
 

0
.3

3
3
 

0
.4

0
6
 

0
.2

8
8
 

0
.3

9
2
 

0
.3

0
2
 

0
.3

5
5
 

0
.1

6
9
 

0
.2

2
1
 

0
.2

9
3
 

0
.3

4
3
 

0
.1

5
7
 

0
.2

0
7
 

Medical 
Centers 0

.3
3
1
 

0
.3

9
3
 

0
.2

2
8
 

0
.2

9
0
 

0
.5

0
5
 

0
.5

6
8
 

0
.0

6
3
 

0
.1

2
6
 

0
.5

3
3
 

0
.6

0
6
 

0
.1

2
0
 

0
.1

9
2
 

0
.2

4
7
 

0
.3

0
0
 

0
.2

2
4
 

0
.2

7
6
 

0
.2

4
4
 

0
.2

9
4
 

0
.1

9
1
 

0
.2

5
6
 

Psychological 
Counseling 
Centers 0

.3
8
2
 

0
.4

4
4
 

0
.1

6
3
 

0
.2

3
9
 

0
.3

2
7
 

0
.3

9
0
 

0
.2

4
1
 

0
.3

0
4
 

0
.3

8
1
 

0
.4

5
3
 

0
.2

7
2
 

0
.3

4
5
 

0
.2

3
6
 

0
.2

8
8
 

0
.2

1
9
 

0
.2

8
8
 

0
.2

7
8
 

0
.3

2
8
 

0
.1

7
2
 

0
.2

2
2
 

Elderly 
Services 0

.4
3
4

 

0
.4

9
6

 

0
.1

2
4

 

0
.1

8
6

 

0
.3

5
6

 

0
.4

1
9

 

0
.2

1
2

 

0
.2

7
5

 

0
.5

1
7

 

0
.5

9
0

 

0
.1

3
5

 

0
.2

0
8

 

0
.3

0
8

 

0
.3

6
0

 

0
.1

2
6

 

0
.2

1
6

 

0
.2

7
6

 

0
.3

2
6

 

0
.1

7
3

 

0
.2

2
3

 

Healthy 
Nutrition 
Support 0

.2
6
4
 

0
.3

2
6
 

0
.2

8
0
 

0
.3

5
6
 

0
.3

5
0
 

0
.4

1
3
 

0
.1

7
2
 

0
.2

8
1
 

0
.4

4
5
 

0
.5

1
7
 

0
.1

7
7
 

0
.2

8
1
 

0
.2

5
5
 

0
.3

0
8
 

0
.1

9
9
 

0
.2

6
8
 

0
.2

0
7
 

0
.2

5
7
 

0
.2

4
3
 

0
.2

9
3
 

Mobile Health 
Services 0

.3
5
5
 

0
.4

1
7
 

0
.2

0
3
 

0
.2

6
5
 

0
.4

2
4
 

0
.4

8
8
 

0
.1

4
3
 

0
.2

0
6
 

0
.4

2
8
 

0
.5

0
1
 

0
.2

2
5
 

0
.2

9
7
 

0
.4

0
4
 

0
.4

5
6
 

0
.0

6
8
 

0
.1

2
0
 

0
.3

0
7
 

0
.3

5
7
 

0
.1

4
3
 

0
.1

9
3
 

Step 2: The formula that provides Equation (15) defused the values in the integrated 
decision matrix. After the defuzzification process, Equation (16) was used since all 
criteria are utility-based. The defuzzified values obtained are presented in Table 19. 

Equation (18) was applied to all values 1
𝑚𝑎𝑥𝑖�̃�𝑖𝑗

⁄  in the combined decision matrix for 

benefit-based criteria. Thus, we obtained the normalized decision matrix (�̿�𝑖𝑗)  for 

decision makers, which is presented in Table 20. 

Table 19. Defuzzified Values 

Alternatives 
Urgency and Importance 

Level 

Social 
Needs and 
Demands 

Accessibility 
and Inclusivity 

Efficiency and Cost 
Effectiveness 

Technological 
Infrastructure 

and 
Capabilities 

Home Health Services 0.409 0.524 0.453 0.436 0.430 

Medical Centers 0.455 0.589 0.612 0.397 0.396 

Psychological 
Counseling Centers 

0.493 0.452 0.489 0.390 0.419 

Elderly Services 0.533 0.473 0.599 0.441 0.418 

Healthy Nutrition 
Support 

0.406 0.470 0.541 0.403 0.370 

Mobile Health Services 0.473 0.526 0.527 0.510 0.440 

1/Maximum 1.875 1.699 1.633 1.962 2.275 
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Table 20. Normalized Decision Matrix in Pythagorean Fuzzy Numbers  

Criteria 
Urgency and 

Importance Level 
Social Needs and 

Demands 
Accessibility and 

Inclusivity 
Efficiency and Cost 

Effectiveness 

Technological 
Infrastructure and 

Capabilities 

Alternatives 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 

Home Health 
Services 0

.3
6
2
 

0
.4

4
2
 

0
.0

9
8
 

0
.1

4
1
 

0
.5

3
2
 

0
.6

0
5
 

0
.0

3
8
 

0
.0

7
0
 

0
.4

1
9
 

0
.5

0
5
 

0
.1

3
1
 

0
.2

1
6
 

0
.4

1
4
 

0
.4

8
2
 

0
.0

3
1
 

0
.0

5
2
 

0
.4

3
0
 

0
.4

9
8
 

0
.0

1
5
 

0
.0

2
8
 

Medical 
Centers 0

.4
4
2
 

0
.5

1
9
 

0
.0

6
2
 

0
.0

9
8
 

0
.6

2
7
 

0
.6

9
6
 

0
.0

0
9
 

0
.0

3
0
 

0
.6

4
9
 

0
.7

2
5
 

0
.0

3
1
 

0
.0

6
8
 

0
.3

4
1
 

0
.4

1
1
 

0
.0

5
3
 

0
.0

8
0
 

0
.3

6
1
 

0
.4

3
1
 

0
.0

2
3
 

0
.0

4
5
 

Psychological 
Counseling 
Centers 0

.5
0
6
 

0
.5

8
1
 

0
.0

3
3
 

0
.0

6
8
 

0
.4

1
8
 

0
.4

9
5
 

0
.0

8
9
 

0
.1

3
2
 

0
.4

7
5
 

0
.5

6
0
 

0
.1

1
9
 

0
.1

7
5
 

0
.3

2
6
 

0
.3

9
5
 

0
.0

5
1
 

0
.0

8
7
 

0
.4

0
9
 

0
.4

7
8
 

0
.0

1
8
 

0
.0

3
2
 

Elderly 
Services 0

.5
6
9
 

0
.6

4
1
 

0
.0

2
0
 

0
.0

4
3
 

0
.4

5
3
 

0
.5

2
9
 

0
.0

7
2
 

0
.1

1
1
 

0
.6

3
2
 

0
.7

0
9
 

0
.0

3
8
 

0
.0

7
7
 

0
.4

2
1
 

0
.4

8
9
 

0
.0

1
7
 

0
.0

4
9
 

0
.4

0
7
 

0
.4

7
5
 

0
.0

1
9
 

0
.0

3
3
 

Healthy 
Nutrition 
Support 0

.3
5
6
 

0
.4

3
6
 

0
.0

9
2
 

0
.1

4
4
 

0
.4

4
6
 

0
.5

2
2
 

0
.0

5
0
 

0
.1

1
6
 

0
.5

5
0
 

0
.6

3
1
 

0
.0

5
9
 

0
.1

2
5
 

0
.3

5
2
 

0
.4

2
1
 

0
.0

4
2
 

0
.0

7
6
 

0
.3

0
8
 

0
.3

7
9
 

0
.0

4
0
 

0
.0

6
1
 

Mobile Health 
Services 0

.4
7
3
 

0
.5

4
9
 

0
.0

5
0
 

0
.0

8
3
 

0
.5

3
5
 

0
.6

0
8
 

0
.0

3
7
 

0
.0

6
8
 

0
.5

3
0
 

0
.6

1
3
 

0
.0

8
7
 

0
.1

3
8
 

0
.5

4
3
 

0
.6

0
6
 

0
.0

0
5
 

0
.0

1
6
 

0
.4

4
9
 

0
.5

1
6
 

0
.0

1
2
 

0
.0

2
4
 

Step 3: Utilizing the comparison scale in Table 21, the joint linguistic assessments of 
decision makers regarding the importance levels of the criteria are presented in Table 
22. The combined criterion weights for decision makers, expressed as Pythagorean 
fuzzy numbers, are provided in Table 23. 

Table 21. Linguistic Terms for Rating the Importance of Criteria [21] 

Linguistic Terms 𝝁𝑳 𝝁𝑼 𝝊𝑳 𝝊𝑼 

Very important (VI) 0.70 0.90 0.06 0.26 

Important (I) 0.54 0.74 0.22 0.42 

Medium (M) 0.38 0.58 0.38 0.58 

Unimportant (U) 0.22 0.42 0.54 0.74 

Very unimportant (VU) 0.06 0.26 0.70 0.90 

Table 22. Linguistic Terms Used by Decision Makers to Rate the Importance of Criteria 

Criteria Linguistic Terms 

Urgency and Importance Level I 

Social Needs and Demands I 

Accessibility and Inclusivity M 

Efficiency and Cost Effectiveness I 

Technological Infrastructure and Capabilities VI 
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Table 23. Criterion Weights in The Form of Pythagorean Numbers 

Criteria     
Urgency and Importance 
Level 

0.54 0.74 0.22 0.42 

Social Needs and 
Demands 

0.54 0.74 0.22 0.42 

Accessibility and 
Inclusivity 

0.38 0.58 0.38 0.58 

Efficiency and Cost 
Effectiveness 

0.54 0.74 0.22 0.42 

Technological 
Infrastructure and 
Capabilities 

0.7 0.9 0.06 0.26 

Step 4: The values in the normalized decision matrix have been multiplied by the criteria 
weights using Equation (20). Table 24 provides the resulting weighted normalized 
decision matrix for the weighted total value. Subsequently, we obtained the Pythagorean 
fuzzy weighted total values of the alternatives by summing these values using Equation 
(21), as shown in Table 25. 

Table 24. Weighted Normalized Decision Matrix for Weighted Total Value 

Criteria 
Urgency and 

Importance Level 
Social Needs and 

Demands 
Accessibility and 

Inclusivity 
Efficiency and Cost 

Effectiveness 

Technological 
Infrastructure and 

Capabilities 

Alternatives μL μU υL υU μL μU υL υU μL μU υL υU μL μU υL υU μL μU υL υU 

Home Health 
Services 0

.1
9
5
 

0
.3

2
7
 

0
.2

4
0
 

0
.4

3
9
 

0
.2

8
7
 

0
.4

4
7
 

0
.2

2
3
 

0
.4

2
5
 

0
.1

5
9
 

0
.2

9
3
 

0
.3

9
9
 

0
.6

0
6
 

0
.2

2
4
 

0
.3

5
6
 

0
.2

2
2
 

0
.4

2
3
 

0
.3

0
1
 

0
.4

4
8
 

0
.0

6
2
 

0
.2

6
1
 

Medical 
Centers 0

.2
3
9
 

0
.3

8
4
 

0
.2

2
8
 

0
.4

2
9
 

0
.3

3
9
 

0
.5

1
5
 

0
.2

2
0
 

0
.4

2
1
 

0
.2

4
7
 

0
.4

2
1
 

0
.3

8
1
 

0
.5

8
3
 

0
.1

8
4
 

0
.3

0
4
 

0
.2

2
6
 

0
.4

2
6
 

0
.2

5
3
 

0
.3

8
8
 

0
.0

6
4
 

0
.2

6
4
 

Psychological 
Counseling 
Centers 0

.2
7
3

 

0
.4

3
0

 

0
.2

2
2

 

0
.4

2
5

 

0
.2

2
6

 

0
.3

6
6

 

0
.2

3
6

 

0
.4

3
7

 

0
.1

8
1

 

0
.3

2
5

 

0
.3

9
6

 

0
.5

9
7

 

0
.1

7
6

 

0
.2

9
2

 

0
.2

2
5

 

0
.4

2
7

 

0
.2

8
6

 

0
.4

3
0

 

0
.0

6
3

 

0
.2

6
2

 

Elderly 
Services 0

.3
0
7
 

0
.4

7
5
 

0
.2

2
1
 

0
.4

2
2
 

0
.2

4
5
 

0
.3

9
1
 

0
.2

3
1
 

0
.4

3
2
 

0
.2

4
0
 

0
.4

1
1
 

0
.3

8
2
 

0
.5

8
3
 

0
.2

2
8
 

0
.3

6
2
 

0
.2

2
1
 

0
.4

2
2
 

0
.2

8
5
 

0
.4

2
8
 

0
.0

6
3
 

0
.2

6
2
 

Healthy 
Nutrition 
Support 0

.1
9
2
 

0
.3

2
3
 

0
.2

3
8
 

0
.4

4
0
 

0
.2

4
1
 

0
.3

8
6
 

0
.2

2
5
 

0
.4

3
3
 

0
.2

0
9
 

0
.3

6
6
 

0
.3

8
4
 

0
.5

8
9
 

0
.1

9
0
 

0
.3

1
2
 

0
.2

2
4
 

0
.4

2
6
 

0
.2

1
5
 

0
.3

4
1
 

0
.0

7
2
 

0
.2

6
7
 

Mobile Health 
Services 0

.2
5
5
 

0
.4

0
6
 

0
.2

2
5
 

0
.4

2
7
 

0
.2

8
9
 

0
.4

5
0
 

0
.2

2
3
 

0
.4

2
5
 

0
.2

0
2
 

0
.3

5
5
 

0
.3

8
8
 

0
.5

9
1
 

0
.2

9
3
 

0
.4

4
8
 

0
.2

2
0
 

0
.4

2
0
 

0
.3

1
4
 

0
.4

6
4
 

0
.0

6
1
 

0
.2

6
1
 

Table 25. Pythagorean Fuzzy Weighted Total Values of The Alternatives 

Alternatives 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 

Home Health Services 0.535 0.849 0.000 0.012 

Medical Centers 0.575 0.912 0.000 0.012 

Psychological Counseling Centers 0.521 0.833 0.000 0.012 

Elderly Services 0.587 0.928 0.000 0.012 

Healthy Nutrition Support 0.470 0.775 0.000 0.013 

Mobile Health Services 0.611 0.954 0.000 0.012 

Step 5: Equation (23) calculated the weighted normalized decision matrix using the 
values from the normalized decision matrix and the criterion weights. Table 26 displays 
the resulting weighted normalized decision matrix for the weighted product value. 
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Subsequently, Table 27 presents the Pythagorean fuzzy weighted product values of the 
alternatives obtained by multiplying these values together through Equation (20). 

Table 26. Weighted Normalized Decision Matrix for The Weighted Product Value 

Criteria 
Urgency and 

Importance Level 
Social Needs and 

Demands 
Accessibility and 

Inclusivity 
Efficiency and Cost 

Effectiveness 

Technological 
Infrastructure and 

Capabilities 

Alternatives 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 

Home Health 
Services 0

.5
7
8
 

0
.5

4
6
 

0
.0

4
6
 

0
.0

9
2
 

0
.7

1
1
 

0
.6

8
9
 

0
.0

1
8
 

0
.0

4
5
 

0
.7

1
8
 

0
.6

7
3
 

0
.0

8
1
 

0
.1

6
6
 

0
.6

2
1
 

0
.5

8
2
 

0
.0

1
4
 

0
.0

3
4
 

0
.5

5
4
 

0
.5

3
4
 

0
.0

0
4
 

0
.0

1
4
 

Medical 
Centers 0

.6
4
3
 

0
.6

1
6
 

0
.0

2
9
 

0
.0

6
4
 

0
.7

7
7
 

0
.7

6
4
 

0
.0

0
4
 

0
.0

1
9
 

0
.8

4
8
 

0
.8

3
0
 

0
.0

1
9
 

0
.0

5
2
 

0
.5

6
0
 

0
.5

1
8
 

0
.0

2
5
 

0
.0

5
2
 

0
.4

9
0
 

0
.4

6
9
 

0
.0

0
6
 

0
.0

2
3
 

Psychological 
Counseling 
Centers 0

.6
9
2
 

0
.6

6
9
 

0
.0

1
6
 

0
.0

4
4
 

0
.6

2
5
 

0
.5

9
4
 

0
.0

4
2
 

0
.0

8
6
 

0
.7

5
4
 

0
.7

1
4
 

0
.0

7
4
 

0
.1

3
4
 

0
.5

4
6
 

0
.5

0
3
 

0
.0

2
4
 

0
.0

5
6
 

0
.5

3
5
 

0
.5

1
5
 

0
.0

0
4
 

0
.0

1
7
 

Elderly 
Services 0

.7
3
8
 

0
.7

2
0
 

0
.0

0
9
 

0
.0

2
8
 

0
.6

5
2
 

0
.6

2
4
 

0
.0

3
4
 

0
.0

7
2
 

0
.8

4
0
 

0
.8

1
9
 

0
.0

2
4
 

0
.0

5
9
 

0
.6

2
7
 

0
.5

8
9
 

0
.0

0
8
 

0
.0

3
2
 

0
.5

3
3
 

0
.5

1
2
 

0
.0

0
5
 

0
.0

1
7
 

Healthy 
Nutrition 
Support 0

.5
7
3
 

0
.5

4
1
 

0
.0

4
3
 

0
.0

9
4
 

0
.6

4
7
 

0
.6

1
8
 

0
.0

2
4
 

0
.0

7
5
 

0
.7

9
7
 

0
.7

6
6
 

0
.0

3
6
 

0
.0

9
6
 

0
.5

6
9
 

0
.5

2
7
 

0
.0

2
0
 

0
.0

4
9
 

0
.4

3
8
 

0
.4

1
8
 

0
.0

1
0
 

0
.0

3
1
 

Mobile Health 
Services 0

.6
6
7
 

0
.6

4
2
 

0
.0

2
4
 

0
.0

5
4
 

0
.7

1
4
 

0
.6

9
2
 

0
.0

1
7
 

0
.0

4
4
 

0
.7

8
6
 

0
.7

5
3
 

0
.0

5
4
 

0
.1

0
5
 

0
.7

1
9
 

0
.6

9
0
 

0
.0

0
2
 

0
.0

1
0
 

0
.5

7
1
 

0
.5

5
1
 

0
.0

0
3
 

0
.0

1
2
 

Table 27.  Pythagorean Fuzzy Weighted Product Values of Alternatives  

Alternatives 𝜇𝐿 𝜇𝑈 𝜐𝐿 𝜐𝑈 

Home Health Services 
0.101 0.079 0.096 0.198 

Medical Centers 
0.116 0.095 0.044 0.101 

Psychological Counseling Centers 
0.095 0.073 0.089 0.175 

Elderly Services 
0.135 0.111 0.043 0.104 

Healthy Nutrition Support 
0.074 0.056 0.065 0.164 

Mobile Health Services 
0.154 0.127 0.061 0.127 

Step 6: Equation (15) defuzzifies the Pythagorean fuzzy weighted sum and the 
Pythagorean fuzzy weighted product. Table 28 presents the defuzzified weighted sum 
values, and Table 29 shows the defuzzified weighted product values. According to the 
WASPAS method, Equation (24) integrates the weighted sum values of the alternatives 
with the weighted product values, and Table 30 presents the total relative importance 
values of the alternatives. A λ coefficient value of 0.5 is assigned at this stage. 

Table 28. Defuzzified Weighted Sum Values  

Alternatives Weighted Sum Value 

Home Health Services 0.710 

Medical Centers 0.753 

Psychological Counseling Centers 0.697 

Elderly Services 0.765 

Healthy Nutrition Support 0.653 

Mobile Health Services 0.787 
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Table 29. Defuzzified Weighted Product Values  

Alternatives Weighted Product Value 

Home Health Services 0.294 

Medical Centers 0.305 

Psychological Counseling Centers 0.291 

Elderly Services 0.314 

Healthy Nutrition Support 0.282 

Mobile Health Services 0.324 

 Table 30. Total Relative Importance Values of Alternatives  

Alternatives Total Relative Importance Value Ranking 

Home Health Services 0.502 4 

Medical Centers 0.529 3 

Psychological Counseling Centers 0.494 5 

Elderly Services 0.540 2 

Healthy Nutrition Support 0.467 6 

Mobile Health Services 0.556 1 

Step 7: The alternatives have been ranked considering their total relative importance 
values. The alternative with the highest total relative importance value is considered the 
most suitable candidate. The rankings of digitalization alternatives for decision makers 
are presented in Figure 4. 

 

Figure 4. The Rankings of Digitalization Alternatives 

Upon examining Figure 4, the importance ranking of alternatives for decision makers is 
as follows: "Mobile Health Services" > "Elderly Services" > "Medical Centers" > "Home 
Health Services" > "Psychological Counseling Centers" > "Healthy Nutrition Support". 
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5.3. The Implementation of the Sensitivity Analysis 

To test the validity of the proposed integrated model, a comprehensive sensitivity 
analysis examined the impact of variations in different criteria weights on the ranking 
results. This analysis involved creating 50 scenarios to analyze how modifications in 
criterion weights affected the new ranking of alternatives. Each scenario adjusted the 
weight of a specific criterion by 10%, while the weights of the remaining criteria were 
adjusted to maintain a total sum of 1, as recommended by Görçün et al. [22]. The new 
weight values for each criterion were calculated using Equations (25), (26), and (27) 
respectively. 

                               𝑤𝑛𝑣
1 = 𝑤𝑝𝑣

1 − (𝑤𝑝𝑣
1 . ϛ𝑣)                                                             (25) 

 

                              𝑤𝑟𝑓𝑣
2 =

(𝑤𝑝𝑣
1 −𝑤𝑛𝑣

1 )

𝑛−1
+ 𝑤𝑝𝑣

2                                                              (26) 

 

                                  𝑤𝑛𝑣
1 + ∑ 𝑤𝑟𝑓𝑣

2 = 1                                                              (27) 

In Equation (25), 𝑤𝑝𝑣
1 , denotes the original value of the criterion to be reduced in weight; 

ϛ𝑣 represents the degree of change in percentage terms (10%, 20%...100%); and 𝑤𝑛𝑣
1  

signifies the new value of the modified weight of the factor. In Equation (26), 𝑤𝑝𝑣
2  

symbolizes the original value of the remaining criterion; n denotes the number of criteria; 

and 𝑤𝑟𝑓𝑣
2  represents the new value of the remaining criterion. Equation (27) expresses 

the constraint that the sum of the modified criterion weights must equal 1.  

Within the study's scope, we systematically reduced the weights of each factor obtained 
from the PF-CRITIC method by 10% increments until each factor's weight reached 0, 
while ensuring the total weight sum of all factors remained at 1. For instance, starting 
with the "Urgency and Importance Level" criterion, we decreased its weight from 100% 
to 0% in increments of 10%, redistributing the reduced weight among the remaining 
criteria. This procedure was applied to each criterion, maintaining the constraint that the 
cumulative weight equals 1. Subsequently, we iterated the IVPF-WASPAS method using 
these adjusted criterion weights. The impact of these weight adjustments on the ranking 
performance of alternatives for each decision maker is depicted in Figures 5, 6 and 7 
respectively. 
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Figure 5. Effects Of Changes in Criterion Weights on The Ranking Performance of 
Alternatives for Decision Maker-1 

Examining Figure 5 reveals the following results: 

Reducing the weight of the "Urgency and Importance Level" criterion by 90% and 100% 
causes the "Mobile Health Services" alternative, initially in the first position, to fall to the 
second position. 

Conversely, the "Medical Centers" alternative, which is initially in the second position, 
rises to the first position when the weight of the "Urgency and Importance Level" criterion 
is reduced by 90% and 100%. 

The rankings of the "Home Health Services" in the third position, "Elderly Services" in 
the fourth position, and "Psychological Counseling Centers" in the fifth position remain 
unchanged regardless of any variations in criterion weights. 
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The "Healthy Nutrition Support" alternative, which is initially in the sixth position, moves 
to the fifth position when the weight of the "Social Needs and Demands" criterion is 
reduced by 100%. 

 
 

Figure 6. Effects Of Changes in Criterion Weights On The Ranking Performance Of 
Alternatives For Decision Maker-2 

Examining Figure 6 reveals the following results: 

The rankings of the alternatives "Mobile Health Services" in the first position, "Medical 
Centers" in the second position and "Elderly Services" in the third position did not change 
with any variation in criterion weights. 

Reducing the "Accessibility and Inclusivity" criterion weight by 70% moves the 
"Psychological Counseling Centers" alternative from the fourth to the fifth position, and 
reducing this criterion weight by 80%, 90%, and 100% moves it to the sixth position. 
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The "Healthy Nutrition Support" alternative, which is in the fifth position, moved to the 
sixth position when the criterion weight of "Accessibility and Inclusivity" was reduced by 
10%, 20%, 30%, 40%, 50%, 60% and 70%, as well as when the criterion weight of 
"Efficiency and Cost Effectiveness" was reduced by 10%, 20%, 30%, 40%, 50%, 60%, 
70%, 80%, 90% and 100%, and when the criterion weight of "Technological 
Infrastructure and Capabilities" was reduced by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 
80%, 90% and 100%. 

The "Home Health Services" alternative, which is in the sixth position, moved to the fifth 
position when the criterion weight of "Accessibility and Inclusivity" was reduced by 10%, 
20%, 30%, 40%, 50% and 60%, and when the criterion weight of "Efficiency and Cost 
Effectiveness" was reduced by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 
100%, and when the criterion weight of "Technological Infrastructure and Capabilities" 
was reduced by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%; it moved 
to the fourth position when the criterion weight of "Accessibility and Inclusivity" was 
reduced by 70%, 80%, 90% and 100%. 

Figure 7. Effects of Changes in Criterion Weights on The Ranking Performance of 
Alternatives for Decision Maker-3 
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Examining Figure 7 reveals the following results: 

The "Elderly Services" alternative, which was ranked first, dropped to the second position 
when the "Urgency and Importance Level" criterion weight was reduced by 60%, 70%, 
80%, 90% and 100%. 

The "Medical Centers" alternative, which was ranked second, rose to the first position 
when the "Urgency and Importance Level" criterion weight was reduced by 60%, 70%, 
80% and 90%; dropped to the third position when the "Accessibility and Inclusivity" 
criterion weight was reduced by 40%, 50%, 60% and 70%; and further dropped to the 
fourth position when the "Accessibility and Inclusivity" criterion weight was reduced by 
80%, 90% and 100%. 

The "Healthy Nutrition Support" alternative, which was ranked third, dropped to the fourth 
position when the "Social Needs and Demands" criterion weight was reduced by 20%, 
30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%, and when the "Accessibility and 
Inclusivity" criterion weight was reduced by 10%, 20% and 30%; dropped to the fifth 
position when the "Accessibility and Inclusivity" criterion weight was reduced by 40%, 
50% and 60%; and further dropped to the sixth position when the "Accessibility and 
Inclusivity" criterion weight was reduced by 70%, 80%, 90% and 100%. 

The "Psychological Counseling Centers" alternative, which was ranked fourth, dropped 
to the fifth position when the "Urgency and Importance Level" criterion weight was 
reduced by 40%, 50% and 60%; further dropped to the sixth position when the "Urgency 
and Importance Level" criterion weight was reduced by 70%, 80%, 90% and 100%; rose 
to the third position when the "Social Needs and Demands" criterion weight was reduced 
by 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%, and when the "Accessibility 
and Inclusivity" criterion weight was reduced by 10%, 20% and 30%; and further rose to 
the second position when the "Accessibility and Inclusivity" criterion weight was reduced 
by 40%, 50%, 60%, 70%, 80%, 90% and 100%. 

The "Home Health Services" alternative, which was ranked fifth, rose to the fourth 
position when the "Urgency and Importance Level" criterion weight was reduced by 40%, 
50%, 60%, 70%, 80%, 90% and 100%, and when the "Accessibility and Inclusivity" 
criterion weight was reduced by 40%, 50%, 60% and 70%; and further rose to the third 
position when the "Accessibility and Inclusivity" criterion weight was reduced by 80%, 
90% and 100%. 

The "Mobile Health Services" alternative, which was ranked sixth, rose to the fifth 
position when the "Urgency and Importance Level" criterion weight was reduced by 70%, 
80%, 90% and 100%, and when the "Accessibility and Inclusivity" criterion weight was 
reduced by 70%, 80%, 90% and 100%. 

Overall evaluation of the sensitivity analysis results shows minor changes in the 
preference rankings of alternatives due to modifications in criterion weights, indicating 
that these changes do not significantly alter the general outcomes. Despite modifications 
in criterion weights, the results obtained demonstrate that the proposed integrated 
approach is a robust, accurate, realistic, and reasonable technique that yields strong 
outcomes. 
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6. Conclusion and Discussion 

In this research, three decision-makers evaluated six alternatives within the 
framework of five criteria: "Urgency and Importance Level", "Social Needs and 
Demands", "Accessibility and Inclusivity", "Efficiency and Cost Effectiveness" and 
"Technological Infrastructure and Capabilities". The PF-CRITIC method 
determined the weights of the selection criteria. Subsequently, we inputted the 
obtained criterion weights into the IVPF-WASPAS method to rank the 
alternatives. The conducted study demonstrated the feasibility of the proposed 
framework. 

The decision-making process involved aggregating different criteria or 
preferences to make an overall assessment. According to the PF-CRITIC 
method, decision maker-1 prioritized "Social Needs and Demands" as the most 
important criterion, while decision makers 2 and 3 prioritized "Accessibility and 
Inclusivity". In contrast, the IVPF-WASPAS method identified "Mobile Health 
Services" as the most important alternative in the shared importance ranking, with 
"Healthy Nutrition Support" deemed the least important. 

We conducted a comprehensive sensitivity analysis based on variations in 
criterion weights to test the validity of the proposed integrated model. The results 
indicate that the proposed integrated approach is a robust, accurate, reasonable, 
and realistic technique that yields strong outcomes. 

We believe that the integrated method used in the study contributes by providing 
practitioners with a methodological framework, thereby offering comprehensive 
insights into the study and its methods, which can guide researchers intending to 
undertake similar studies. The proposed hybrid approach can also be applied to 
solve decision-making problems encountered in various fields. The presented 
framework can serve as an exemplary model and lay the groundwork for future 
research. Below, we delineate the limitations of the study. 

To obtain reasonable and realistic results, researchers should carefully select 
experts. In the coming years, those conducting research in this field may benefit 
from collaborating with highly knowledgeable, experienced, and authoritative 
experts, as demonstrated in the study. Moreover, while selecting the correct and 
appropriate criteria is crucial, relying solely on a literature review may not suffice 
for determining these criteria. Therefore, conducting fieldwork in collaboration 
with experts, as practiced in this study, can help define suitable selection criteria. 

Future research could employ the methodology used in this document to address 
issues through diverse evaluations using various FMCDM methods. Additionally, 
expanding the number of experts in the decision-making group can enhance the 
robustness of outcomes. 
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Abstract 

Understanding emotions in any written text is considered a hot topic for many researchers in the 

field of text mining, especially with the large contribution of users over the web 2.0 and with the 

growth of the different social media platforms. In this study, we analysed emotions in Turkish text 

and studied the sentiment within each document using sentiment analysis techniques. Sentiment 

analysis is the process of identifying and evaluating the emotional states contained in texts. This 

study aimed to investigate the effect and accuracy rate of sentiment analysis in Turkish texts. 

Sentiment analysis is an important field of research that helps to obtain important data in many 

areas, such as marketing, social media analysis, and customer feedback. A comprehensive data 

set consisting of Turkish tweets from Kaggle was used, and the emotional states of the texts were 

labelled. This data set consists of a variety of tweets with different topics and emotional tones. 

Using natural language processing techniques and machine learning algorithms, the data set was 

processed, and the model was trained. Within the scope of the study, different root extraction 

methods and a vector space model were used. In addition, machine learning algorithms such as 

Naive Bayes, Random Forest, Decision Tree, Gradient Boosting, Bernoulli Naive Bayes, Logistic 

Regression, K-Neighbours-Classifier, and Support Vector Classifier were applied to evaluate 

accuracy. This study aims to emphasize the importance of sentiment analysis in Turkish texts, 

examine the impact of the methods used, and form a basis for future studies. 

Keywords: sentiment analysis, Turkish text, machine learning, Turkish tweet  

 

1. Introduction 

Social media platforms and Web 2.0 allowed people to share their experience and to 
express their feedback about many products/services that they received, the huge size 
of the written text on the Web 2.0 is considered a hot research topic for many researchers 
who focus on text mining in order to analyse emotions in any written text is considered a 
hot topic for many researchers in the field of text mining. Social media tools such as 
Twitter and Facebook have an important role to play as big data sources in the process 
of extracting information from any text. The most important reason for this is that the text 
data produced by these applications is increasing significantly day by day. Sentiment 
Analysis (SA) has emerged as a field in which natural language processing, machine 
learning, and linguistic methods are used to understand the emotional tone of texts and 
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identify emotional trends or moods in the text. SA can be applied in many areas, such 
as social media analytics, customer feedback, marketing strategies, product reviews, 
and survey responses. For example, a company may try to understand customer 
satisfaction and perception by analysing tweets about their brand or products on social 
media platforms. Similarly, a movie studio can gauge the overall emotional response of 
movies by analysing the comments that viewers share about the movies on social media. 
It is of great importance to analyse the big data, which has emerged with the increase in 
the use of the internet and social media, which has become widespread today, and to 
transform it into meaningful information. SA is the process of systematically examining 
the data containing opinions in a text and determining the emotion category and emotion 
polarity of the text. SA approaches are frequently used not only in linguistics, but also in 
many different fields such as financial markets, marketing, and social media analysis, 
Tokcaer [1]. In SA studies, it is questioned and analysed whether the texts have positive, 
negative, or neutral content. According to the results of this analysis, the attitude of 
individuals or a certain group about the subject related to the study is determined. In this 
respect, SA can guide businesses on issues such as preliminary market research for a 
new product to be launched, how a decision to be taken for a community will receive a 
positive or negative reaction, and whether people who will watch the movie decide to 
watch the movie according to previous comments. However, the large amount of data 
from which a positive or negative opinion can be obtained makes it difficult to make this 
analysis by examining it one by one. Therefore, sentiment analysis has become one of 
the most important and studied topics in the fields of text mining and machine learning, 
Kaynar et al. [2]. Danisman and Alpkocak [3] used different machine learning algorithms 
such as Vector Space Model, Naïve Bayes, and SVM classifiers to compare between 
the performances using the ISEAR data set that contains 5 classes of emotions: anger, 
disgust, fear, joy, and sadness. The training set is enriched with WordNet Affect and 
WPARD (Wisconsin Perceptual Attribute Rating Database) data sources, Medler et al. 
[4]. Stop word removal and root removal operations were applied, and the term frequency 
– inverse document frequency (TF-IDF) method was chosen as feature weighting. 
According to the results obtained, an overall classification accuracy of 70.2% was 
achieved. There are many studies on sentiment analysis on text data sources, especially 
in English. Sentiment analysis generally uses two basic approaches: the rule-based 
approach and the machine learning-based approach, Alpkoçak et al. [5]. Rule-based 
approaches use predefined rules that include certain emotional words or phrases that 
indicate a particular emotion. Machine learning-based approaches, on the other hand, 
use large data sets to automatically learn how emotional expressions relate to specific 
emotions and create classification models. Identifying and classifying emotional 
expressions in Turkish tweets is an important issue among text classification problems. 
Social media platforms, which are easily accessible platforms, provide remarkable 
resources to get feedback from target audiences, but it is impossible to analyse these 
feedbacks with human labour. Therefore, automated sentiment analysis tools are 
essential for companies' customer service to be able to capture complaints and/or 
positive feedback at the right time. Processing by computer allows this data to be used 
in the market, Türkmenoğlu [6].  

Studies such as Kozareva et al. [7], Mohammad [8], and Chaffar and Inkpen [9] have 
carried out important contributions on sentiment analysis. In the Turkish language, there 
are limited number of studies on the subject of sentiment analysis, Boynukalın [10]. In 
the Turkish language, there are many to be done because of the lack of studies dealing 
with SA different aspects and subdomains. The Turkish language is known as a sticky 
language. With the use of derived suffixes, the root of a word can be transformed into a 
completely different type of word, for example, from a noun to a verb. These derivatives 
can be applied consecutively more than once. Since each derived suffix has the potential 
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to change the meaning of a word, each derived suffix must be examined separately to 
obtain the true meaning of a word. Previous studies have often focused on official data 
sources, such as newspaper headlines and surveys. Recently, however, research on 
informal data sources such as instant messaging, blog posts, and Twitter has become 
popular. Twitter is a social micro-blogging service that allows users to publish and read 
messages in real time, and these messages are called "tweets". People share their 
thoughts, daily life events, and feelings on Twitter. Although there are many micro-
blogging platforms, Twitter is the most popular. The large volume of user-generated 
content makes Twitter a suitable space for sentiment analysis. The similarity of the 
tweets also makes them effectively actionable for sentiment detection tasks. Boynukalın 
[10] used a translation of the ISEAR data set and a manually marked data set to classify 
the Turkish texts. Apart from emotion classes, the determination of emotion levels was 
also attempted. Different combinations of n-gram features were used. A weighted log 
probability algorithm was used to score the features and identify the most important ones. 
Kaya et al. [11] applied supervised classification algorithms for the sentiment classes 
positive and negative in Turkish news columns. With the exception of SVM, Maximum 
Entropy, and Naïve Bayes classifiers, the character-based n-gram language model was 
used. This language model uses characters instead of words as a unit. Their idea is that 
statistical methods may not yield promising results due to the fact that Turkish is a 
morphologically rich language.  

In this study, we analysed emotions in Turkish text and studied the sentiment within each 
document using Sentiment Analysis (SA) techniques. This article aims to show the 
different methods and approaches that can be used to evaluate sentiment analysis and 
classify emotional expressions in Turkish texts. This study was carried out in order to 
evaluate the effectiveness of existing methods and algorithms for sentiment analysis in 
Turkish and to propose new approaches to obtain better results for sentiment analysis in 
Turkish texts. In this study, a ready-made Turkish tweet data set downloaded from the 
Kaggle platform was used. The data set consists of Turkish tweets shared by different 
topics and users. The distribution of classes in the used data set was not balanced. For 
imbalanced data sets, some classification algorithms may perform better; for example, 
Decision Trees, Random Forests, or Gradient Boosting models have been used in this 
data set because they can work well in unbalanced data sets. We also split our data set 
into training and testing data, making it available for training and testing our machine 
learning models. After performing the data preprocessing steps, we used the processed 
data for building the ML models, testing them, and evaluating them one by one.  

After carrying out the needed preprocessing steps, a classification model was developed 
to conduct sentiment analysis using various machine learning algorithms. These 
algorithms include popular methods such as Support Vector Machines (SVM), Decision 
Trees (DT), and Random forests (RF), in addition to, Logistic Regression (LR), K-nearest 
Neighbours (KNN), and Gradient Boosting (GB). The developed models were used to 
classify emotional expressions in Turkish tweets as positive, negative, or neutral. During 
the training process, the data set was split, and the performance of the models was 
evaluated using the five-fold cross-validation method. Performance metrics such as 
accuracy rates and confusion matrices were calculated, and the results were analysed. 
In addition, the in-class performance values of the model were calculated. 

2. Literature review 

In recent years, many studies have been carried out on sentiment analysis in Turkish 
texts. Especially considering that most of the social media data language used in Turkey 
is expressed using Turkish language, that leads to the increase of the importance of 
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sentiment analysis in Turkish texts. In many studies, various approaches have been 
adopted to detect and classify emotional expressions in Turkish texts by using different 
methods such as machine learning algorithms, natural language processing techniques, 
and deep learning models. The researchers evaluated the results obtained using 
performance metrics such as accuracy, precision, recall and F1 score, and proposed 
new methods and improvements to increase the success of sentiment analysis in Turkish 
texts.  

There are many studies on SA, especially in English, on text data sources. Researchers 
such as Kozareva et al. [7], Mohammad [8] and Chaffar and Inkpen [9] have done 
important studies on this subject. In Turkish, there are fewer studies on the subject of 
SA, Boynukalın [10]. In the Turkish language, more work has been done on Natural 
Language Processing (NLP) rather than sentiment analysis because NLP field is more 
developed. Danisman and Alpkocak [3] compared the performances of Vector Space 
Model, Naïve Bayes and SVM classifiers using ISEAR dataset for 5 emotion classes: 
anger, disgust, fear, joy, and sadness. The training set is enriched with WordNet Affect 
and WPARD (Wisconsin Perceptual Attribute Rating Database) data sources, Medler et 
al. [4]. Stop word removal and root removal operations were applied, and the TF-IDF 
method was chosen as feature weighting. According to the results obtained, an overall 
classification accuracy of 70.2% was achieved. 

The Turkish language is known as a sticky language. Using derived suffixes, the root of 
a word can be transformed into a completely different type of word, for example, from a 
noun to a verb. These derivations can be applied sequentially more than once, Oflazer 
[12]. Since each derived suffix has the potential to change the meaning of the word, each 
derived suffix must be examined separately to get the true meaning of a word. Previous 
research has often focused on official data sources such as newspaper headlines and 
surveys. Recently, however, research on informal data sources such as instant 
messaging, Neviarouskaya [13], blog posts, Wang [14] and Twitter, Mohammad [8] has 
become popular. Twitter is a social micro-blogging service that allows users to post and 
read messages in real time, and these messages are called "tweets". People share their 
thoughts, daily life events and feelings on Twitter. Although there are many micro-
blogging platforms, Twitter is the most popular. The sheer volume of user-generated 
content makes Twitter a viable space for sentiment analysis. The similarity of tweets also 
makes them effectively workable for emotion detection tasks. Boynukalın [10] used a 
translation of the ISEAR dataset and a manually marked dataset to classify Turkish texts. 
Apart from emotion classes, determination of emotion levels was also attempted. 
Different combinations of n-gram features were used.  

Kaya et al. [11] applied supervised classification algorithms for positive and negative 
emotion classes in Turkish news columns. Except for SVM, Maximum Entropy\, and 
Naïve Bayes classifiers, the character-based n-gram Language Model was used. This 
language model uses characters instead of words as units. Their thoughts are that 
statistical methods may not yield promising results because Turkish is a morphologically 
rich language. Erogul [15] created a dataset from a Turkish movie review site. Reviews 
were labelled by their authors with positive, negative, or neutral icons. In the generated 
dataset, an emotionally labelled data item was created by using the text and symbol of 
the review together. A polarity dataset was created from another movie review site, which 
includes the ratings given to the movies by the users. Combinations of n-grams and POS 
information for the classification task were used for morphological analysis using the 
Zemberek tool. For the polarity labelled dataset, scores were estimated using regression 
and single comparison techniques. 
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3. Methodology 

We used Python with the data set downloaded from Kaggle to detect and evaluate 
different ML algorithms. In this study, various ML algorithms have been adopted to detect 
and classify emotional expressions in Turkish texts after applying the data pre-
processing steps. We evaluated the results obtained using performance metrics such as 
accuracy, precision, recall, and F1 score, and proposed new methods and improvements 
to increase the success of sentiment analysis in Turkish texts.  

3.1. Data Collection and Pre-Processing 

In this study, we used a Turkish tweet data set from the Kaggle platform to perform 
sentiment analysis in Turkish texts. The data set consists of a variety of tweets with 
different topics and emotional tones. We obtained this data set, which included a total of 
4201 tweets, and labelled the emotional states. 

In the data pre-processing phase, we removed unnecessary characters, special 
symbols, and punctuation marks from the texts. In addition, we converted the texts to 
lowercase and performed stemming by using Turkish language processing libraries. 
Thus, we brought it to a simpler format without affecting the meaning of the texts and 
purified it from unnecessary information. Stemming is a text processing technique used 
in Natural Language Processing (NLP) and Computer Language Processing (CLP). 
Basically, it aims to extract word roots, or the basic form of the word. This is used to 
identify similarity between different variations or trends of a word and make text analysis 
or information extraction easier and more effective. 

3.2. Text Representation 

In order for the texts to be processed with ML algorithms, text must be converted to a 
vector format. There are three different ways that can help in text representations; bag 
of words (BOW), n-grams, and Term Frequency-Inverse Document Frequency (TF-IDF). 
In the bag of words, each word in a document will be added to a bag without any 
repetition and without keeping the sequence of words existence in the document. A 
matrix of 1Xn in which n represents the number of words in the bag will be used with a 
word frequency; words with higher occurrences show that they are more common in the 
document. One drawback of BOW that words in stop words list are included in the bag 
without removing them, and they have the highest frequencies, which will affect the 
vectors negatively. Another drawback of BOW is that it can’t perform well when you have 
similar documents with small changes. In the n- gram method, the grams (words) will be 
treated as 2- gram or commonly called bigram, so the model will check the frequency of 
words in a document as pairs. N-gram can keep the relationship between the 
consecutive words better than BOW but because of data sparsity n-gram can fail in 
building a good model specially with there is low frequencies of the n-grams. 

For the aforementioned drawbacks of both BOW and n-grams, we applied text 
representation methods such as TF-IDF to provide vector representation of Turkish texts. 
In particular, by obtaining TF-IDF word vectors, we aimed to better capture the meaning 
and emotional content in the texts. TF-IDF is a text mining technique used in NLP 
applications such as text mining, text classification, and information extraction. TF-IDF 
is used to determine the importance of a term within a given document and to compare 
the importance of those terms within a given collection of documents. The main purpose 
of TF-IDF is to determine the weight and importance of terms between textual 
documents. TF-IDF increases the applicability of text mining algorithms. 
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We applied the TF-IDF technique to the processed text after the pre-processing phase 
and used it as a feature extraction method to convert text documents into numerical data. 
Term frequency is calculated by finding the number of occurrences of each term (word) 
in a document, then it will be multiplied by the inverse document frequency, which 
represents how common a word is in the corpus.  

3.3. Machine Learning Algorithms 

After completing the data pre-processing and text representation steps, we performed 
SA by using different machine learning algorithms in the training and evaluation 
processes. Within the scope of our experiments, we evaluated popular classification 
algorithms such as Random Forest (RF), Logistic Regression (LG), K-Nearest 
Neighbours (KNN), Bernoulli Naive Bayes (BNB), Decision Tree (DT), and Support 
Vector Classifier (SVC). 

Random Forest (RF): RF is an algorithm that produces and classifies multiple decision 
trees by training each one on a different observation sample. The algorithm creates a 
decision tree for each sample, and the estimated value result of each decision tree is 
formed. Voting is performed for each value formed as a result of the prediction. 
Observation is assigned to the class with the most votes.  

Logistic Regression (LR): LR is a supervised ML classification algorithm that aims to 
predict the probability that an instance belongs to a given class or not. Then the data 
point will be assigned to the class with the highest probability. 

K-Nearest Neighbours (KNN) Classifier: KNN classifier classifies using similar 
samples around labelled data points, KNN is based on deciding the class of the data 
point depending on the class that is nearest neighbours of the vector. K here represents 
how many neighbour points we are going to check. The distance will be calculated 
between the data point of that we want to assign its class and the K nearest points.  

Bernoulli Naive Bayes (BNB) Classifier: NB classifier is a probability-based 
classification algorithm based on Bayes' theorem that makes use of Bayes Theorem 
during the training phase.  

Gradient Boosting (GB): is a famous boosting algorithm using ensemble learning 
methods that enhance the results of training model sequentially that each model will 
enhance the previous one. 

Decision Tree (DT): DT is one of the tree-based learning algorithms. It is a tree structure 
that performs classification by dividing the data set according to its characteristics.   

Support Vector Classifier (SVC): SVC classifier classify with the supervised learning 
method. It is considered as a powerful classification method that attempts to find a 
hyperplane with a maximum margin between different classes. It aims to have this line 
at the maximum distance for the points of both classes.  

3.4. Model Performance and Evaluation 

We performed model training and evaluation for each algorithm with the five-fold cross-
validation method. Thus, we have increased the reliability of model performance and 
prevented problems such as overfitting. Using confusion matrix, we evaluated number 
of evaluation metrics such as accuracy, precision, recall and F1 score. By comparing our 
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results, we tried to identify the most effective and successful algorithms. Using these 
methods, we aim to achieve successful results in SA in Turkish texts. We apply these 
methods to understand the effectiveness of different ML algorithms in SA and to classify 
emotional content in Turkish texts more accurately and effectively. 

4. Experiments and Results 

In this study, we evaluated different ML algorithms to perform SA in Turkish texts, and 
the results we obtained were quite remarkable. Experiments conducted on various 
tweets in our data set provided important insights into the effectiveness and accuracy 
rates of the algorithms used for SA.  

 

Figure 1.  Calculation of Sentiment Values of the Data 

The code in Figure1 uses a vectorizer to convert text data from a data set into features 
and calculates sentiment values using these features. It then adds the calculated 
sentiment values to the df data set and then prints the first 10 observations of the data 
set and the "Sentiment" column on the screen. 

 

Figure 2. Sentiment Values of the Data Containing the Word ‘turizm’ 
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The code in Figure 2 selects tweets that contain the word tourism; the number of tweets 
that contain the word ‘turizm’ is 840, calculates the sentiment values of those tweets, 
adds these values to the tourism tweets sub data set, and finally displays the tourism 
tweets and sentiment values. The experiments that have been included in the study are 
applied to the sub data set of size 840. 

The confusion matrix allows us to evaluate the performance of the classification model 
in more detail. However, based solely on the results of this matrix, it is difficult to 
determine with certainty how good the performance of the model is. The confusion matrix 
can be used to understand how the model performs in certain classes, but it needs to be 
considered in conjunction with other performance metrics in order to fully evaluate 
performance. To evaluate the confusion matrices in more details, we calculated the 
performance metrics of each class, such as precision, recall, and F1 score. We can also 
evaluate these metrics on a class-by-class basis to understand the performance 
differences between classes.  

According to the results of the experiments shown in Table1, Logistic Regression (LR) 
and Support Vector Classifier (SVC) were found to have the highest accuracy rates of 
SA in Turkish texts (0.62). Random Forest (RF) and Bernoulli Naïve Bayes (BNB) 
accuracies are almost similar to Logistic Regression (LR) and Support Vector Classifier 
(SVC) with accuracy rate of 0.61. However, the K-Nearest Neighbours (KNN) algorithm 
achieved a slightly lower accuracy rate with 0.48 compared to other methods. To be able 
to decide which algorithm(s) work better than the others, a confusion matrix analysis was 
performed for all experiments. Table2 shows the confusion matrices for RF, LR, KNN, 
BNB, GB, DT, and SVC respectively. The confusion matrix here is a multi-class model 
of size 3X3, Negative class, Positive class, and Neutral class. Using the confusion matrix 
for each experiment we calculated Accuracy, Precision, Recall, and F1-score evaluation 
metrics for each class as shown in Table 3.  From Table 3 we can see that the best 
achieved result is for BNB’s Neutral class with 0.75 accuracy rate followed by GB’s 
Neutral class with 0.74 accuracy rate. For the Positive class, the best achieved accuracy 
is for SVC with 0.74 followed by LR with 0.71. For the Negative class, LR and DT have 
the highest accuracy rate with 0.54 and 0.45, respectively.  

F1- scores measures the harmonic mean of the Precision and Recall, Table3 shows that 
the F1-score for Positive mood class is higher than the F1-score for both the Negative 
and the Neutral classes for all experiments except KNN. The best achieved F1-score is 
for BNB’s Positive class with 0.72, followed by SVC’s Positive class with 0.71.  

Table 1. Summary Table 

Experiments Accuracy Precision Recall F1 score 

Random Forest (RF) 0.61 0.62 0.61 0.61 
Logistic Regression (LR) 0.62 0.62 0.62 0.62 
K-nearest Neighbors (KNN) 0.48 0.48 0.48 0.48 
Bernoulli Naïve Bayes (BNB) 0.61 0.62 0.61 0.61 
Gradient Boosting (GB) 0.55 0.58 0.55 0.53 
Decision Tree (DT) 0.57 0.57 0.57 0.57 
Support Vector Classifier (SVC) 0.62 0.63 0.62 0.61 
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Table 2. Confusion Matrix for All Experiments 

Experiment Negative Positive Neutral 

Random Forest (RF)    
    Negative 101 32 98 
    Positive 25 204 83 
    Neutral 43 39 215 
    
Logistic Regression (LR)    
    Negative 125 44 62 
    Positive 44 218 50 
    Neutral 67 49 181 
    
K-nearest Neighbors (KNN)    
    Negative 92 68 71 
    Positive 61 150 101 
    Neutral 66 65 166 
    
Bernoulli Naïve Bayes (BNB)    
    Negative 81 31 119 
    Positive 29 215 68 
    Neutral 36 37 224 
    
Gradient Boosting (GB)    
    Negative 62 31 138 
    Positive 16 179 117 
    Neutral 27 49 221 
    
Decision Tree (DT)    
    Negative 105 38 88 
    Positive 44 202 66 
    Neutral 58 65 174 
    
Support Vector Classifier (SVC)    
    Negative 87 46 98 
    Positive 22 231 59 
    Neutral 27 59 211 

 

5. Discussion and Conclusion 

In this study, we conducted a series of experiments using different ML algorithms and 
text features for sentiment analysis. Table 1 represents a summary of our experiments 
and shows that Logistic Regression (LR) and Support Vector Classifier (SVC) have the 
highest F1 score with 0.62 followed by Random Forest (RF) and Bernoulli Naïve Bayes 
(BNB) with 0.61 F1 score. Table3 represents Accuracy, Precision, Recall, and F1 score 
performance metrics for each class separately; Positive class, Negative class, and 
Neutral class for the algorithms conducted in the study. Table3 shows that the best 
achieved F1 score result is for BNB algorithm for the positive class with 0.72 followed by 
SVC with 0.71 for the positive mood as well. Positive class’s lowest F1 score is for KNN 
with 0.50 followed by GB with 0.63. For the Negative class, the best achieved F1 score 
was for LR with 0.54 followed by RF with 0.51, and the lowest performance was for GB 
with 0.37 F1 score followed by KNN with 0.41. For the Neutral class, the highest F1 score 
was for SVC and BNB with 0.64 followed by RF with 0.62, and the lowest F1 score was 
for KNN with 0.52 followed by DT with 0.56. SVC, BNB, and DT worked better with the 
Positive mood tweets, while LR worked better with the Negative mood tweets, BNB, GB, 
and SVC worked better for the Neutral mood tweets.  

To discuss the experiments in detail, we firstly used the RF algorithm; this algorithm 
classifies text data by combining many decision trees after converting them into vector 
space. From Table 3, we observed that the RF model has one of the lowest accuracies 
in the study for the Negative class with 0.34. However, it achieved one of the highest 
accuracies as show in Table1 and achieved a moderate performance for the Positive 
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class with 0.53 and Neutral class with 0.45 as shown in Table3. This can be attributed to 
the class imbalance in the data set and the differences in the characteristics of different 
classes. For example, in the confusion matrix in Table2, the RF model, Positive class 
(204) appears to have a moderate level compared with other algorithms. However, we 
can see that there are also incorrect predictions for Negative class and Neutral class as 
well. 

Table 3. Performance Metrics for Negative, Positive, and Neutral Classes 

Experiment Accuracy Precision Recall F1 score 

Random Forest (RF) 
    Negative Class 
    Positive Class 
    Neutral Class 
 

 
0.34 
0.53 
0.45 

 
0.60 
0.74 
0.54 

 
0.44 
0.65 
0.72 
 

 
0.51 
0.70 
0.62 

Logistic Regression (LR) 
    Negative Class 
    Positive Class 
    Neutral Class 
 

 
0.54 
0.70 
0.61 

 
0.53 
0.70 
0.62 

 
0.54 
0.70 
0.61 

 
0.54 
0.70 
0.61 
 

K-nearest Neighbors (KNN) 
    Negative Class 
    Positive Class 
    Neutral Class 
 

 
0.40 
0.48 
0.56 

 
0.42 
0.53 
0.49 

 
0.40 
0.48 
0.56 

 
0.41 
0.50 
0.52 

Bernoulli Naïve Bayes (BNB) 
    Negative Class 
    Positive Class 
    Neutral Class 
 

 
0.35 
0.69 
0.75 

 
0.56 
0.76 
0.55 

 
0.35 
0.69 
0.75 

 
0.43 
0.72 
0.64 

Gradient Boosting (GB) 
    Negative Class 
    Positive Class 
    Neutral Class 
 

 
0.27 
0.57 
0.74 

 
0.59 
0.69 
0.46 

 
0.27 
0.57 
0.74 

 
0.37 
0.63 
0.57 

Decision Tree (DT) 
    Negative Class 
    Positive Class 
    Neutral Class 
 

 
0.45 
0.65 
0.59 

 
0.51 
0.66 
0.53 

 
0.45 
0.65 
0.59 

 
0.48 
0.66 
0.56 

Support Vector Classifier (SVC) 
    Negative Class 
    Positive Class 
    Neutral Class 

 
0.38 
0.74 
0.71 

 
0.64 
0.69 
0.57 

 
0.38 
0.74 
0.71 

 
0.47 
0.71 
0.64 

     

 

Next, we used the LR algorithm. This algorithm classifies text data with a linear model. 
The best achieved accuracy among all experiments goes for this algorithm with 0.62 
shared with SVC (Table1). From the detailed analysis for each class shown in Table3, 
we observed that the LR model has the second highest accuracy for the Positive class 
with 0.70, and the second highest accuracy also for the negative class with 0.54, and the 
fourth highest accuracy for the Neutral class with 0.61. From the statistics, we can see 
that this algorithm works better with classes that carry emotions; this may be due to the 
class distribution and the fact that the model has a linear classification capability.  

We also tried the KNN algorithm. This algorithm classifies a new data point based on the 
majority of its closest neighbours. In our experimental results, we observed that the KNN 
model has lower accuracy values for all classes compared with the first other algorithms. 
The accuracy value for the positive class is not only considered to be the lowest with 
0.50, but it is also far away from the next one, which is 0.63. This may be due to the fact 
that the KNN algorithm is sensitive to class balance and similarities of text data.  
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We continued in evaluated the sentiment analysis task using BNB, GB, DT, and SVM 
machine learning algorithms in our experiments. We observed that each algorithm 
yielded different performance results for different classes as shown in Table3. Algorithms 
such as RF, SVC, RF, and BNB, all achieved reasonable accuracy rates in the test data 
set. In particular, the LR models have emerged as an effective option to achieve a high 
level of success in sentiment analysis. KNN, on the other hand, was the model with the 
lowest accuracy rate. Some algorithms showed a sensitivity to certain classes compared 
with the other two classes; SVC showed a sensitivity toward Negative class of 0.38 
compared with 0.74 and 0.71 for the positive and neutral classes, respectively and BG 
showed the same sensitivity with 0.27 for the negative class vs. 0.57 and 0.74 for the 
positive and neutral classes. However, accuracy alone may not be enough to fully 
understand the performance of a model. In some cases, factors such as class imbalance 
must be considered. That's why it's important to evaluate along with other metrics. For 
example, if the classes are unbalanced and the majority of correctly classified samples 
belong to the majority class, the accuracy rate can be misleading. In this case, other 
metrics such as precision, recall, or F1 score must also be taken into account.  

Confusion matrix analysis (Table3) for KNN shows that 0.48 of Positive moods and 0.40 
of Negative moods were correctly classified. The GB algorithm, on the other hand, shows 
that 0.57 of Positive moods and 0.27 of Negative moods were correctly classified. As a 
result, it was found that deep learning-based algorithms such as LR and RF were the 
most effective options in sentiment analysis in Turkish texts. However, traditional 
algorithms such as SVC also has a reasonable accuracy rate and may be preferable, 
especially for fast classification. KNN and GB, on the other hand, are alternatives that 
can be used in some cases and can be used for a comparison purposes. Our findings 
make an important contribution to future studies aimed at identifying the most appropriate 
algorithms for sentiment analysis in Turkish texts and to better understand emotional 
content. Confusion matrix analysis also helped us to evaluate the emotion classification 
performance of the algorithms in more detail for each mood. 

Another important aspect that might be taken in consideration in understanding the result 
properly is the characteristics of the data set, and the nature of the algorithms; further 
work and optimization can be done to improve performance. The results we obtained in 
the sentiment analysis were quite satisfactory. In the classification task performed on the 
different machine learning algorithms used in the analysis, it was observed that all 
models performed at acceptable levels except KNN.  

As a result, the accuracy rate alone allows us to make an assessment based on a model, 
but other factors and metrics must also be considered. However, there are also some 
challenges encountered in the sentiment analysis process. For example, some data 
points may show ambiguity due to multiple interpretations of certain emotional 
expressions. These uncertainties can create difficulty in accurate classification and 
increase the likelihood of errors in results. For example, situations where positive 
emotional expressions are more common than negative expressions. This can make it 
difficult to accurately classify the model's bias due to imbalance and underrepresented 
classes. In addition, language features such as variability in language, idioms, puns, and 
irony can also affect correct classification. 

It is important to experiment with feature engineering strategies to increase accuracy. In 
addition, the accuracy rate should be evaluated depending on the requirements of our 
data set and the purpose of our analysis. When similar literature related to the field of 
Sentiment Analysis is examined, it is seen that the first study was conducted by Pang et 
al. [16], and movie reviews in the Internet Movie Database archive were used as a data 



118                                                                                                                                                                    H. Avvad and E. Ereren 

set. In their study, they created the vector space models required for classification by 
using feature extraction methods such as unigram, bigram, Part of Speech (POS) on the 
relevant data set. Tokcaer [2] performed the classification process using machine 
learning algorithms such as Naive Bayes, Maximum Entropy and SVM on the data set 
obtained as a result of vector space models. As a result of the findings, the best result in 
the classification of sentiment analysis was obtained by the SVM machine learning 
method with an accuracy rate of 82.9% on the unigram data set. In addition, O’Connor 
et al. [17] applied sentiment analysis to comments on twitter and health-related forums 
to investigate patients' negative thoughts about the side effects of medications. In 
practice, the machine learning-based ADRMine method, which uses conditional random 
fields, was used to extract the concepts in the field of medicine, which were also put 
forward by them. 6279 and 1784 comments from the health site DailyStrength and 
Twitter were used as a data set. When the results were examined, it was observed that 
the ADRMine method gave a higher success rate than SVM and MetaMap methods, 
which are classifiers used in the field of health, with 82.1%.  

As a conclusion, a 62% accuracy rate is not a sufficient metric to evaluate the success 
of an analysis. Further studies can be done to better understand and improve the 
analysis results. To improve any model, it's important to experiment with different 
algorithms, further review the data set, and evaluate other performance metrics. A 62% 
accuracy rate can be a starting point, but it's important to evaluate other factors to better 
understand and refine your analysis and model. A 62% accuracy rate is an acceptable 
result based on the purpose of our analysis and the context.   

As a result, our experiments have shown that machine learning models can be used 
effectively in the field of sentiment analysis. These models provide a valuable tool for 
classifying text data and understanding emotional content. However, it is important to 
consider challenges such as ambiguities and language characteristics. In the future, we 
aim to obtain more precise results with experiments and model improvements with larger 
and more diverse data sets. Negation is one of the most important concepts that affects 
the accuracy of the model, in this study “I liked” and “I don’t like” are both classified as 
positive sentiment while after using negation the second sentence “I don’t like” should 
be classified part of the negative class. Another enhancement that is suggested for future 
work is to use lemmatization instead of stemming in the text preprocessing step, 
stemming sometimes is harsh and affect the sentiment of the word, so using 
lemmatization may lead to enhancement in the model performance. 

For future work also, studying SA in Turkish data sets from Twitter and compare it with 
data sets from other domain will be interesting for the reason that writing reviews for 
hotels, hospitals, restaurants, etc is different than writing tweets. Tweets are normally 
shorter and classifying them has its own challenge, while reviews are more detailed and 
contains direct content related to certain good/service and the goal behind writing the 
review is either to give the opinion or might be used as a complain. Alawi and Bozkurt  
[18] and Cam et al. [19] focused on data sets from Twitter, while Inan [20] and Alzoubi 
et al. [21] focused on data sets from reviews.  In Alawi and Bozkurt [18], the conventional 
machine learning model SVM achieved an accuracy of 0.8805 and an F1-Score of 
0.8348, and in Cam et al. [19], SVM and Multilayer Perceptron classifier achieved 0.89 
and 0.88 accuracy rates. In Inan [20], the logistic regression method was the most 
successful classification algorithm, with an accuracy rate of 0.92, and in Alzoubi et al.  
[21] the best achieved accuracy in traditional techniques was 78% accuracy for the 
Support Vector Machine. Comparing SA classification techniques for data sets collected 
from Twitter with other data sets resources might give some insights for research in the 
domain. 



Sentiment Analysis in Turkish Tweets Using Different Machine Learning Algorithms                                                                 119 

  Artificial Intelligence Theory and Applications, Vol. 4, No. 2 

References 

[1] Tokcaer, S. (2021). Türkçe metinlerde duygu analizi. Yaşar University E-Dergisi, 16(63), 1514-1534. 

 

[2] Kaynar, O., Görmez, Y., Yıldız, M., & Albayrak, A. (2016, September). Makine öğrenmesi yöntemleri ile 
Duygu Analizi. In International Artificial Intelligence and Data Processing Symposium (IDAP'16) (Vol. 
17, No. 18, pp. 17-18). 

 

[3] Danisman, T., & Alpkocak, A. (2008, April). Feeler: Emotion classification of text using vector space 
model. In AISB 2008 convention communication, interaction and social intelligence (Vol. 1, p. 53). T.  

 

[4] Medler, D. A., Arnoldussen, A., Binder, J.R., & Seidenberg, M.S. (2005). The Wisconsin Perceptual 
Attribute Ratings Database. http://www.neuro.mcw.edu/ratings/ 

 

[5] Alpkoçak, A., Tocoglu, M. A., Çelikten, A., & Aygün, İ. (2019). Türkçe metinlerde duygu analizi için farklı 
makine öğrenmesi yöntemlerinin karşılaştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen 
ve Mühendislik Dergisi, 21(63), 719-725.  

 

[6] Türkmenoğlu, C. (2016). Türkçe metinlerde duygu analizi (Doctoral dissertation, Fen Bilimleri 
Enstitüsü). 

 

[7] Kozareva, Z., Navarro, B., Vázquez, S., & Montoyo, A. (2007, June). UA-ZBSA: a headline emotion 
classification through web information. In Proceedings of the Fourth International Workshop on 
Semantic Evaluations (SemEval-2007) (pp. 334-337). 

 

[8] Mohammad, S. (2012, June). Portable features for classifying emotional text. In Proceedings of the 
2012 Conference of the North American Chapter of the Association for Computational Linguistics: 
Human Language Technologies (pp. 587-591).  

 

[9] Chaffar, S., & Inkpen, D. (2011). Using a heterogeneous dataset for emotion analysis in text. 
In Advances in Artificial Intelligence: 24th Canadian Conference on Artificial Intelligence, Canadian AI 
2011, St. John’s, Canada, May 25-27, 2011. Proceedings 24 (pp. 62-67). Springer Berlin Heidelberg.  

 

[10] Boynukalın, Z. (2012). Emotion analysis of Turkish texts by using machine learning methods (Master's 
thesis, Middle East Technical University). 

 

[11] Kaya, M., Fidan, G., & Toroslu, I. H. (2012, December). Sentiment analysis of Turkish political news. 
In 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent 
Technology (Vol. 1, pp. 174-180). IEEE.  

 

[12] Oflazer, K. (1994). Two-level description of Turkish morphology. Literary and linguistic computing, 9(2), 
137-148.  

 

[13] Neviarouskaya, A., Prendinger, H., & Ishizuka, M. (2007, January). Analysis of affect expressed through 
the evolving language of online communication. In Proceedings of the 12th international conference on 
Intelligent user interfaces (pp. 278-281). 

 

[14] Wang, W., Chen, L., Thirunarayan, K., & Sheth, A. P. (2012, September). Harnessing twitter" big data" 
for automatic emotion identification. In 2012 International Conference on Privacy, Security, Risk and 
Trust and 2012 International Confernece on Social Computing (pp. 587-592). IEEE.  

 

[15] U. Erogul. Sentiment analysis in Turkish. Master’s thesis, Middle East Technical University, 2009. 
 

[16] Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine 
learning techniques. arXiv preprint cs/0205070. 

 

[17] O’Connor, K., Pimpalkhute, P., Nikfarjam, A., Ginn, R., Smith, K. L., & Gonzalez, G. (2014). 
Pharmacovigilance on twitter? Mining tweets for adverse drug reactions. In AMIA annual symposium 
proceedings (Vol. 2014, p. 924). American Medical Informatics Association. 

 

[18] Alawi, A. B., & Bozkurt, F. (2024). A hybrid machine learning model for sentiment analysis and 
satisfaction assessment with Turkish universities using Twitter data. Decision Analytics Journal, 11, 
100473. 

 

[19] Cam, H., Cam, A. V., Demirel, U., & Ahmed, S. (2024). Sentiment analysis of financial Twitter posts on 
Twitter with the machine learning classifiers. Heliyon, 10(1). 

 

http://www.neuro.mcw.edu/ratings/


120                                                                                                                                                                    H. Avvad and E. Ereren 

[20] İnan, H. E. Comparison of Machine Learning Algorithms for Classification of Hotel Reviews: Sentiment 
Analysis of TripAdvisor Reviews. GSI Journals Serie A: Advancements in Tourism Recreation and 
Sports Sciences, 7(1), 111-122. 

 

[21] Alzoubi, Y. I., Topcu, A. E., & Erkaya, A. E. (2023). Machine learning-based text classification 
comparison: Turkish language context. Applied Sciences, 13(16), 9428.  



 RESEARCH ARTICLE 

Deep Learning Models for the Detection and 
Classification of COVID-19 and Associated Lung 
Diseases Using X-Ray Images 
 
Osman Dikmen 

a †         

a 
Department of Electric-Electronics, Düzce University, Düzce, Türkiye 

† 
osmandikmen@duzce.edu.tr 

RECEIVED SEPTEMBER 17, 2024 

ACCEPTED  SEPTEMBER 24, 2024 

CITATION  Dikmen. O. (2024). Deep learning models for the detection and classification of COVID-19 and associated lung 
diseases using X-ray images. Artificial Intelligence Theory and Applications, 4(2), 121-142. 

 

Abstract 

The COVID-19 pandemic has introduced exceptional challenges to healthcare systems 

worldwide, underscoring the urgent need for swift and precise diagnostic solutions. In this 

research, we investigate the performance of various deep learning models, including VGG19, 

ResNet18, and a ResNet18-based U-Net, as well as a custom Convolutional Neural Network 

(CNN) developed in MATLAB, for the classification and segmentation of lung X-ray images. The 

dataset includes X-ray images from individuals diagnosed with COVID-19, viral pneumonia, lung 

opacity, and healthy individuals. The dataset was divided into 80% for training and 20% for testing, 

with data augmentation techniques implemented to enhance the model's effectiveness. The 

VGG19 model, utilizing transfer learning, demonstrated strong diagnostic capabilities, achieving 

high accuracy rates for COVID-19, lung opacity, healthy lungs, and viral pneumonia classification, 

with a test accuracy of 97.5%. ResNet18 was employed for both classification and as part of a 

hybrid model incorporating a U-Net-inspired decoder for lung disease segmentation. The 

ResNet18 model achieved competitive accuracy and loss metrics, while the ResNet18-based U-

Net model excelled in image segmentation tasks, demonstrating its potential in biomedical image 

analysis. Additionally, a customized CNN model was developed using MATLAB for the 

classification of the four lung conditions. This model produced visual outputs, including training-

validation loss/accuracy graphs and confusion matrices. Our results indicate that deep learning 

models, especially when combined with transfer learning and customized architectures, offer a 

powerful approach to diagnosing COVID-19 and related lung conditions. Future work will focus 

on refining these models with larger datasets and further experimentation to enhance diagnostic 

performance across diverse clinical settings. 

Keywords: COVID-19, deep learning, medical image classification, x-ray imaging, 

convolutional neural networks 

 

1. Introduction 

The COVID-19 pandemic emerged as a result of the Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2) virus, which triggered a profound global health 

emergency. Initially identified in the city of Wuhan in late 2019, the disease swiftly 
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evolved into a global health crisis. COVID-19 presents a diverse array of clinical 

symptoms, ranging from mild to severe respiratory distress. Swift and precise diagnosis 

for this illness is essential for controlling its spread and determining appropriate treatment 

strategies [1]. 

The virus rapidly spread from Wuhan, reaching numerous countries around the globe. 

Its impact was notably felt in major regions, including North America, parts of South Asia, 

South America, Western Europe, and Eastern Europe In March 2020, the World Health 

Organization (WHO) in a formal manner announced COVID-19 as a pandemic, 

designating it as a worldwide health emergency [1]. During this time, billions of people 

were required to remain indoors, and many countries enforced lockdowns. By May 19, 

2022, there had been approximately 525,080,438 confirmed cases of COVID-19 across 

more than 219 countries, with 484,920,117 recoveries and 6,294,856 fatalities reported 

[1]. 

Diagnosing COVID-19 usually involves several methods: Serology (Antibody) for 

detecting antibodies, Genetic Real-Time Reverse Transcription Polymerase Chain 

Reaction (RT-PCR) for genetic material analysis, and Antigen testing [2]. RT-PCR is 

widely regarded as the gold standard for detecting the coronavirus, delivering reliable 

results, especially during the initial phases of the infection [3], [4]. Nonetheless, this 

method has several drawbacks, including issues with false sampling, accessibility, 

specificity, cost, and extended turnaround times [5]. Additionally, many countries 

struggle with providing sufficient RT-PCR test kits. 

The antibody test detects the presence of IgG and/or IgM antibodies through samples 

obtained from blood, serum, or plasma [6]. This test is designed to reveal whether an 

individual has been previously infected and how their immune system responded, but it 

cannot confirm a current infection. Antibodies typically begin to form between one to 

three weeks following the onset of symptoms [7]. This method is also costly and requires 

significant time. 

The antigen test attempts to detect the presence of coronavirus infection by collecting 

samples from nasal swabs. It is less time-consuming and relatively inexpensive 

compared to other tests [8]. Given these limitations, there is a growing need to explore 

different diagnostic methods which are both accurate and accessible. 

Medical imaging, including X-rays and Computed Tomography (CT), has proven 

essential in the rapid detection of lung abnormalities associated with COVID-19. X-rays, 

in particular, are widely accessible and commonly used in clinical settings. Recent 

advancements in deep learning have further enhanced the utility of medical imaging for 

disease diagnosis. Convolutional Neural Networks (CNNs), an essential element of deep 

learning, have shown remarkable accuracy in analyzing medical images. However, it 

may miss active infections when compared to RT-PCR tests. 

Although RT-PCR testing is crucial among traditional diagnostic approaches, the 

demand for quick and precise alternative methods is growing due to the lengthy duration 

required for these tests, the need for laboratory facilities, and occasional false-negative 

results. In this regard, medical imaging techniques become essential. Imaging 

techniques, including X-rays, are valued for their swift accessibility and extensive 
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application in clinical practice. Similarly, Computed Tomography (CT) imaging is 

preferred for its expedited and comprehensive diagnostic capabilities. 

In this study, we explore several deep learning models for the classification and 

segmentation of lung diseases, including COVID-19. The VGG19 architecture, renowned 

for its deep and wide network, is employed through transfer learning to classify X-ray 

images of COVID-19, lung opacity, viral pneumonia, and healthy lungs. Additionally, a 

ResNet18-based encoder is combined with a U-Net-inspired decoder to leverage both 

effective feature extraction and high-resolution segmentation for lung disease analysis. 

Furthermore, a customized Convolutional Neural Network (CNN) model was developed 

in MATLAB to classify the four lung conditions, offering a tailored approach to disease 

detection 

Through these models, we aim to address the growing need for quick, precise, and 

accessible diagnostic tools for COVID-19 and related lung diseases. Our work 

demonstrates the capability of deep learning techniques in revolutionizing medical 

diagnostics, offering both high accuracy and clinical applicability in a time of global health 

crisis. 

2. Related Studies 

Various deep learning architectures have been introduced to diagnose COVID-19. In 

Nayak et al. [9], the researchers presented a compact CNN approach called LW-

CORONet. This method incorporates convolutional layers, pooling layers, two fully 

connected (FC) layers, and a rectified linear unit (ReLU) activation function. With its five 

learnable layers, this architecture aids in extracting crucial features from CXR images.  

Gupta and Bajaj [10] created a robust model for automatically detecting COVID-19 by 

utilizing deep learning (DL) techniques and chest CT scans. They incorporated two pre-

trained DL models, DarkNet19 and MobileNetV2, alongside a lightweight DL approach, 

using publicly available CT scan visual data for concerning automated recognition of 

COVID-19.  

A novel technique has been proposed to advance the classification and screening of 

COVID-19 patients through chest X-ray (CXR) imaging. This approach integrates 

cutting-edge deep learning models with refined image analysis methods, aiming to 

significantly boost diagnostic precision and speed. The method described combines 

standard data augmentation strategies with generative adversarial networks (GANs) to 

address data limitations. Additionally, it incorporates various filter banks, including Gabor 

filters, Sobel filters, and the Laplacian of Gaussian (LoG), to achieve more 

comprehensive feature extraction [11]. 

Basu et al. [12] showcased a deep learning approach designed to ascertain the presence 

of COVID-19 through the assessment of chest X-ray images. This solution utilizes a 

model pre-trained on a small chest X-ray dataset and domain extension transfer learning. 

Specifically focusing on identifying cases of COVID-19, this method identifies the specific 

segments analyzed in classification using Gradient Class Activation Map, thus ensuring 

transparency in the detection process. The authors reported an overall accuracy rate of 
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90.1%. However, the proposed system can detect COVID-19 based on a restricted 

dataset. 

Conversely, the ResNet-101 CNN model utilized by Azemin et al. [13] is notable within 

deep learning strategies. This approach utilized a vast number of images in the pre-

training phase to extract crucial features, subsequently re-training the model to identify 

anomalies in chest X-ray images. Despite these efforts, the method achieved a reported 

accuracy rate of only 71.9%. 

In another study, the MobileNetV2 deep learning model and k-nearest neighbor (k-NN) 

algorithm were used to detect brain tumors from MRI images, achieving an accuracy rate 

of 96.44% [14]. 

For lung cancer detection using CT images, a Convolutional Neural Network (CNN) 

model was outlined, demonstrating superior performance, achieving a high accuracy rate 

and fewer layers compared to existing deep learning models [15]. 

To tackle two distinct multi-class classification challenges, the Xception transfer learning 

method was employed. The first challenge involved distinguishing among control cases, 

COVID-19, and various forms of pneumonia, including viral and bacterial types. The 

second challenge focused on differentiating between control cases, COVID-19, and 

pneumonia overall. An undersampling technique was implemented to mitigate dataset 

imbalance by randomly removing samples from the more numerous classes. The dataset 

comprised 290 chest X-ray images for COVID-19, 310 for control cases, 330 for bacterial 

pneumonia, and 327 for viral pneumonia. The study reported an accuracy of 89% for 

classifying all four conditions and 94% for distinguishing between the three categories. 

For the dataset focusing on three categories, the accuracy was noted as 90% [16]. 

X-ray imaging is commonly employed to investigate conditions such as fractures, bone 

misalignments, pneumonia, and tumors. This method has a long history of use, providing 

a rapid assessment of the lungs and proving beneficial for identifying infections, including 

COVID-19 [17], [18].  

X-rays can produce images showing lung damage, such as pneumonia brought about 

by the SARS-CoV-2 virus [19]. Due to their speed and low cost, X-rays can help prioritize 

patients in areas where the healthcare system is strained or access to complex 

technologies is limited. Furthermore, portable X-ray devices, which are easily 

transportable with ease to the needed location, are available [19].  

CT scans, on the other hand, use X-ray principles to examine soft tissues in the body 

and are ideal for providing detailed images of organs and soft tissues [20]. Moreover, as 

they use less radiation, X-rays are faster, less harmful, and more economical than CT 

scans [21].  

Narin et al. [17] introduced a method for the automatic uncovering of  COVID-19 through 

the use of chest X-rays and convolutional neural networks (CNNs). Similarly, 

Apostolopoulos et al. [18] developed an automatic detection system for COVID-19, which 

involved analyzing and classifying three different categories: COVID-19, typical 

pneumonia, and normal conditions.  
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Transfer learning involves utilizing models that have been previously trained on one task 

to enhance performance on a new, related task on large and diverse datasets are re-

trained on smaller and specific datasets. Using this technique, the model is able to learn 

faster and more accurately, particularly in fields with limited datasets like medical 

imaging. The VGG19 model holds significant importance in deep learning research. With 

its deep and wide layer architecture, VGG19 can classify complex images successfully. 

Therefore, in this study, the VGG19 model was used to identify a total of 2117 COVID-

19 and related lung images. 

3. Model Architecture and Methodology 

This section outlines the methods and design of three different models used to classify 
COVID-19 and other lung diseases: the VGG19-based classifier model, the ResNet18-
based encoder with a U-Net inspired decoder, and the MATLAB-based customized CNN 
model. Each model has been developed and evaluated on the dataset that consists of 
chest X-ray images across four categories: COVID-19, Normal, Lung Opacity, and Viral 
Pneumonia. 

3.1. VGG19-Based Classifier Model 

3.1.1 Model Architecture and Transfer Learning 

The VGG19 model was employed for classifying the four classes (COVID-19, Normal, 
Lung Opacity, Viral Pneumonia). It leveraged transfer learning, with pre-trained weights 
on the ImageNet dataset. For classification purposes, the final layers of VGG19 were 
fine-tuned to accommodate four output classes. This enabled the model to adapt quickly 
by utilizing the generalized features learned from large-scale datasets. 

3.1.2 Dataset and Preprocessing 

The dataset utilized in this study includes chest X-ray images from COVID-19 patients, 
those with viral pneumonia, and healthy individuals, sourced from multiple databases. 
These images are available at: 
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database.  

A series of preprocessing steps were undertaken to process and prepare the data for 
the training phase. The dataset consists of 21,165 chest X-ray images, which were 
classified into four categories:  

• COVID-19: 3,616 images 

• Normal: 10,192 images 

• Lung Opacity: 6,012 images 

• Viral Pneumonia: 1,345 images 

Table 1. Organization of the Data Set. 

Class Training Set Test Set 

COVID-19 2893 723 

Viral Pneumonia 1076 269 

Healthy 8154 2038 

Lung Opacity 4810 1202 

Total 16933 4232 

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
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As shown in Figure 1, the dataset captures a wide variety of cases across different lung 
conditions. The dataset was split into 80% for training (16,932 images) and 20% for 
testing (4,233 images). All images were resized to 224x224 pixels to meet the input size 
requirements of the VGG19 model. Pixel values were normalized to the range of 0-1 for 
consistency in model processing. 

  

Figure 1. Example images utilized in the experimental analysis of this study. 

3.1.3 Data Augmentation 

To reduce overfitting and improve the model’s ability to generalize, several data 
augmentation strategies were employed: Horizontal flipping, Random rotation, Zooming 
and shifting, Brightness adjustments. These augmentations allowed the model to 
become more invariant to orientation and lighting changes, improving its real-world 
applicability. 

3.1.4 Training Process 

The VGG19 model was optimized with the Adam algorithm, configured with a learning 
rate of 0.0001 to enhance its training efficiency. The training process was monitored with 
early stopping to prevent overfitting, and the model with the best validation accuracy was 
saved. Transfer learning enabled faster convergence by leveraging pre-trained weights. 
An evaluation was conducted on the model's performance using accuracy, precision, 
specificity, and F1 score metrics. These metrics were calculated using the following 
equations: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 
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Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3) 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4) 

Where 𝑇𝑃 is true positives, 𝑇𝑁 is true negatives, 𝐹𝑃 is false positives and 𝐹𝑁 is false 
negatives. 

3.2. ResNet18-Based Encoder and U-Net Inspired Decoder Model 

3.2.1 Encoder Architecture (ResNet18) 

The encoder component of this model is based on ResNet18, a residual network that 
uses residual connections to facilitate learning in deep networks. The network begins 
with a 7x7 convolutional layer, followed by several 3x3 convolutional blocks and max-
pooling layers. Residual connections ensure the gradient flows effectively through the 
network, improving convergence. To mitigate the learning difficulties in deep networks, 
residual connections are utilized. The residual block is defined as 

Y = F(X) + X (5) 

where X is the input and F is the learned transformation.  

To reduce feature dimensions, max pooling is applied: 

Xpool=MaxPool(X,kernel size=2)                                                                                      (6) 

3.2.2 Decoder Architecture (U-Net) 

The decoder is inspired by the U-Net architecture, which is well-suited for segmentation 
tasks. The decoder uses transpose convolutional layers to upsample the feature maps 
to their original dimensions. These upsampled features are further refined by dual 
convolutional layers, and the final output is generated through a convolutional layer that 
produces a segmentation map of the lung regions, essential for differentiating between 
COVID-19 and other lung diseases. These layers upsample the feature maps to the 
original dimensions. Mathematically, this operation is represented as; 

Xup=ConvTranspose2d(Xin,Wtrans,stride=2) (7) 

These layers refine the upsampled features for detailed segmentation: 

Xout=Conv2d(Xup,Wconv,kernel size=3) (8) 
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This produces the final segmentation map: 

Yseg=Conv2d(Xact,Wconv,kernel size=1)                                                                                  (9) 

3.2.3 Training Process 

The ResNet18 encoder and U-Net decoder model was trained to perform lung image 
segmentation. The model was optimized using the Adam optimizer, with careful tuning 
of the learning rate. The model was evaluated on its ability to identify lung regions 
affected by COVID-19 and other lung conditions, improving the overall diagnostic 
accuracy for the dataset. The loss function used is Binary Cross Entropy with Logits, 
defined as [22]: 

𝐿𝑜𝑠𝑠 = −
1

𝑁
∑[𝑦𝑖 log �̂�𝑖 + (1 − 𝑦𝑖) log(1 − �̂�𝑖)]

𝑁

𝑖=1

 (10) 

where �̂�𝑖 represents the model's prediction, 𝑦𝑖 denotes the true label, and N represents 
the total number of samples. 

The model is trained using the Adam optimization algorithm, which updates weights 
according to: 

W𝑡+1 = W𝑡 − 𝜂. ∇𝐿𝑜𝑠𝑠(W𝑡) (11) 

 
where 𝜂 is the learning rate, W𝑡 denotes the model weights, and . ∇𝐿𝑜𝑠𝑠(W𝑡) represents 
the gradient of the loss function.  

3.3. Matlab-Based Customized CNN Model 

3.3.1 Model Architecture 

A customized CNN model was designed using Matlab for the classification task. The 
input to the model consists of RGB images of size 256x256x3, and the architecture 
includes: 

Input Layer: The model accepts RGB images of size 256x256x3. 

Convolutional Layers: The initial convolutional layer has 32 filters with a 3x3 kernel 
size. This layer is succeeded by batch normalization and ReLU activation layers, which 

are employed to improve the effectiveness of feature extraction. 

Outputi=ReLU(Conv(Input,Filtersi,Stridei)+Biasi                                                           (12) 

Here, Conv denotes the convolution operation, ReLU is the activation function, and 
Outputi  is the output feature map. 

Max Pooling Layer: Reduces spatial dimensions to increase computational efficiency. 
Max pooling is typically performed with 2×22 \times 22×2 filter sizes. 
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Fully Connected Layers: Enhance the learning capacity of the model and support the 
extraction of high-level features. The final layer includes a softmax activation function 
that provides output for four classes. 

Softmax(𝑧) =
𝑒𝑥𝑝(𝑧𝑖)

∑ 𝑒𝑥𝑝(𝑧𝑗)𝑗
                                                          (13) 

 

Here, 𝑧  denotes the output of the classification layer and Softmax is the activation 

function. 

3.3.2 Dataset and Data Augmentation 

To prepare the images for the model, several preprocessing techniques were applied. 
“imageDatastore” was used to split the labeled images into training and testing sets. Data 
augmentation was performed to enhance the model's generalization capability: 

Rotation: Images are rotated at different angles to enable the model to identify and 
interpret images from various perspectives. 

Horizontal and Vertical Flipping: Images are flipped both horizontally and vertically to aid 
the model in learning and recognizing symmetric patterns. 

Zooming and Shifting: Images are zoomed and shifted to allow the model to learn objects 
at different scales.  

3.3.3 Training and Evaluation 

The model was trained using the “trainNetwork” function with the “adam” optimization 
algorithm. Training involved calculating loss and accuracy using the following equations:  

Loss Function: 
 

Loss = − ∑ 𝑦𝑖 log �̂�𝑖𝑖                                                           (14) 

Where 𝑦𝑖 are the true labels and �̂�𝑖 denotes the predicted probabilities.  

Accuracy Calculation: 

Accuracy =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠
                                                          (15) 

Loss and accuracy graphs, as well as confusion matrices, were presented. The loss and 
accuracy graphs illustrate the learning process of the model, while the confusion 
matrices detail the classification performance and the rates of correct and incorrect 
classifications for each class. 

4. Experimental Results 

The experimental results for the three models—VGG19-based classifier, ResNet18-
based encoder with U-Net inspired decoder, and the Customized Convolutional Neural 
Network (CNN)—are presented in this section. These results evaluate the performance 
of each model across the dataset. VGG19 focusing on key metrics such as accuracy, 
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precision, specificity, F1 score, and loss during both the training and testing phases. 
Additionally, confusion matrices and visualizations of accuracy and loss curves are 
presented to demonstrate the models' learning patterns and generalization capabilities. 

4.1 VGG19-Based Classifier Model 

4.1.1 Performance Metrics 

The evaluation of the VGG19 model's performance was conducted using essential 
metrics such as accuracy, precision, specificity, and the F1 score. Table 2 offers a 
detailed overview of how the model performed for each class. 

Table 2. VGG19 Model Performance Metrics. 
 

Method Precision (%) Specificity (%) F1 Score (%) Accuracy (%) 

COVID-19 98 98 98 97.5 

Lung Opacity 95 91 93 91.02 

Healthy 94 97 96 97.3 

Viral Pneumonia 98 96 97 96.2 

The COVID-19 class achieved the highest performance across most metrics, 
demonstrating the model’s effectiveness at distinguishing COVID-19 from other lung 
conditions. 

4.1.2 Accuracy and Loss Curves 

The training process for the VGG19 model is depicted in Figure 2 and Figure 3: 

  
Figure 2. Training and Validation Accuracy Graph. 

Figure 2 shows the accuracy progression over the training phase, where the training 
accuracy consistently increases, while validation accuracy stabilizes after reaching a 
peak. 
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Figure 3. Training and validation loss graph. 

Figure 3 illustrates the reduction in loss during training, with the training loss decreasing 
steadily, and validation loss stabilizing after a certain point. This suggests that the model 
has learned effectively and is able to generalize well to unseen data. 

4.1.3 Confusion matrix 

Figure 4 presents the confusion matrix, which provides insights into the classification 
performance for each class. The matrix shows high counts of true positives (TP) and true 
negatives (TN) across all classes, indicating strong model performance. The minimal 
instances of false positives (FP) and false negatives (FN) underscore the model’s 
reliability in accurately distinguishing between COVID-19, lung opacity, healthy 
individuals, and viral pneumonia cases. 
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Figure 4. Confusion matrix. 

The suggested approach for diagnosing COVID-19 demonstrates superior performance 
compared to other methods. 

Table 4. Evaluating the Proposed COVID-19 Diagnostic Method Against Alternative 
Approaches. 

 
Study Type of Images Number of Cases Method Used Accuracy (%) 

[18] X-ray 224 COVID-19 

700 Pneumonia 

504 Normal 

Transfer 

learning+VGG19 

93.48 

[23] X-ray 1300 COVID-19 

1300 Pneumonia 

1300 Normal 

DTL+VGG-19 92.92 

 

[24] X-ray 219 COVID-19 

1300 Pneumonia 

1300 Normal 

BND+VGG-19 95.48 

[25] CT 219 COVID-19 

224 Pneumonia 

758 Normal 

ResNet+Location 

Attention 

86.07 

[26] X-ray / CT 1493 COVID-19 

2780 Pneumonia 

1538 Normal 

Inception Resnet V2 92.18 

[27] X-ray 2210 COVID-19 

2340 Pneumonia 

1480 Normal 

CXRVN 93.07 
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[28] X-ray 305 COVID-19 

305 Pneumonia 

305 Normal 

CovXNet 89.6 

[29] CT 777 COVID-19 

505 Pneumonia 

708 Normal 

ARENET 93.00 

[30] X-ray 260 COVID-19 

300 Pneumonia 

300 Normal 

Transfer learning 

+VGG19 

89.30 

This Study X-ray 3616 COVID-19 

1345 Pneumonia 

10192 Normal 

6012 Lung Opacity 

Transfer learning 

+VGG19 

96.00 

4.2 ResNet18-Based Encoder and U-Net Inspired Decoder Model 

4.2.1 Performance Evaluation 

The ResNet18-based encoder with a U-Net inspired decoder was designed for lung 
segmentation and feature extraction from the X-ray images. The performance of the 
model was analyzed using both accuracy and loss metrics during training and validation. 

The training and validation loss curves show that the model's training loss decreases 
consistently, while validation loss remains stable after a certain point, suggesting good 
generalization. Likewise, the accuracy curves show that training accuracy steadily 
improves with each epoch, and validation accuracy reaches a plateau, demonstrating 
that the model is not overfitting. 

4.2.2 Segmentation Performance 

The ResNet18-U-Net model was specifically evaluated for its capacity to identify and 
segment lung areas impacted by different conditions such as COVID-19 and viral 
pneumonia. The model attained strong performance in segmenting lung opacity and viral 
pneumonia areas, supporting its application in biomedical imaging. 

The ResNet18 and ResNet18-Based Encoder with U-Net Inspired Decoder models were 
evaluated based on their training and validation accuracy, as well as their training and 
validation loss. The graphs below depict the models' performance during training. The 
training and validation accuracy graphs illustrate how the models progressively improved 
their accuracy over time, demonstrating their ability to learn effectively from the data. 
Likewise, the training and validation loss graphs show a consistent reduction in loss, 
indicating that both models successfully minimized errors during training while 
maintaining stable performance on the validation set. These results highlight the models' 
capability for generalization and effective learning throughout the training process. 
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Figure 5. Training and validation accuracy graph for ResNet18. 

 
Figure 6. Training and validation loss graph for ResNet18. 

 
Figure 7. Training and validation accuracy graph for ResNet18-Based Encoder with U-

Net Inspired Decoder. 
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Figure 8. Training and validation loss graph for ResNet18-Based Encoder with U-Net 

Inspired Decoder. 

4.3 Customized Convolutional Neural Network (CNN) Model (Matlab) 

4.3.1 Model Performance 

The customized CNN model developed in MATLAB was evaluated based on accuracy, 
with the model achieving an overall accuracy of 85.56% on the test set. The training 
process involved 2,645 iterations across 5 epochs, with each epoch consisting of 529 
iterations. This setup illustrates the model’s ability to accurately differentiate among 
COVID-19, normal, lung opacity, and viral pneumonia cases. 

4.3.2 Accuracy and Loss Graphs 

During the training process, the model's loss steadily decreased, indicating successful 
learning. The accuracy chart illustrates that the model attained high performance on both 
the training and validation datasets, demonstrating minimal signs of overfitting. The 
graphs depicting Training and Validation Accuracy and Loss are presented below, 
offering a visual summary of the model's performance across the training phase.  

 
Figure 9. Accuracy vs. Iteration for Matlab. 
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This figure displays the model's accuracy throughout the training process. The x-axis 
represents the number of iterations, while the y-axis illustrates the accuracy achieved by 
the model at each iteration. The graph presents how the model's accuracy evolves as 
training progresses, showing the improvements made with each iteration and helping to 
assess the overall effectiveness of the training process. The plot highlights both the 
training accuracy and the validation accuracy, enabling a comparison of the model’s 
performance on training data versus unseen validation data. 

 

 
Figure 10. Loss vs. Iteration for Matlab. 

 

This figure shows the model's loss during training. The x-axis signifies the number of 
iterations, while the y-axis reflects the loss value recorded for the model at each iteration. 
This plot helps visualize how the loss decreases as the model learns and improves over 
time. By comparing the loss values across iterations, we can evaluate the convergence 
of the model and the effectiveness of the training. The graph typically displays both the 
training loss and the validation loss, providing a clear view of how well the model is 
generalizing to unseen data as training progresses. 

4.3.3 Confusion Matrix 

The confusion matrix for the customized CNN model illustrates the performance of the 
model in classifying the four lung conditions: COVID-19, Normal, Lung Opacity, and Viral 
Pneumonia. The matrix offers a detailed account of the predictions, categorizing them 
into true positives (TP), true negatives (TN), false positives (FP), and false negatives 
(FN) for each class. Each cell in the matrix reflects the number of predictions made by 
the model for a particular class compared to the actual class. 

The diagonal elements represent the correct predictions for each class, showing high 
precision and recall rates across all classes. This indicates the model’s effectiveness in 
accurately distinguishing between different lung conditions. The off-diagonal elements 
represent misclassifications, providing insights into the types of errors the model makes. 
By analyzing these errors, we can assess areas for improvement and understand how 
well the model generalizes to various conditions. 

This detailed confusion matrix is crucial for evaluating the model's overall classification 
performance and for identifying any biases or specific challenges the model may face in 
distinguishing between certain classes. The confusion matrix is shown in Figure 11. 
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Figure 11. Confusion Matrix for Customized CNN Model (MATLAB). 

4.4 Overall Comparison and Discussion 

The performance of each model was compared, revealing unique strengths depending 
on the task: 

• The VGG19-based model excelled in classification tasks, particularly in 

identifying COVID-19 cases with a precision of 98%. 

• The ResNet18-based encoder with a U-Net decoder performed well in 

segmenting lung regions affected by various conditions, making it suitable for 

segmentation tasks. 

• The customized CNN model achieved strong classification results, benefiting 

from various data augmentation techniques. 

The VGG19-based model's superior performance in classifying COVID-19 can be 
attributed to its transfer learning strategy, while the ResNet18-U-Net architecture was 
optimized for biomedical image segmentation, excelling at feature extraction. The 
customized CNN model in Matlab offered flexibility in classification, achieving robust 
results across all metrics. 

5. Discussion and Future Work 

5.1. Discussion 

This study explored the application of deep learning models, including VGG19, 
ResNet18-based encoder with a U-Net inspired decoder, and a Customized CNN model 
in the classification and segmentation of COVID-19 and related lung diseases using 
medical imaging. The performance of each model demonstrates the effectiveness of 
deep learning techniques in medical diagnostics, but also highlights certain challenges 
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and opportunities for improvement. Below, we present a more detailed discussion of the 
models' limitations and the challenges faced during development. 

VGG19 Model 

The VGG19 model achieved high validity in classifying COVID-19 and other lung 
conditions, demonstrating the potential of transfer learning in medical imaging. Its 
success is largely due to the ability to leverage pre-trained layers to capture complex 
features. However, a significant limitation observed was the model’s tendency to overfit 
on the training data, which can be attributed to the restricted diversity of the dataset. This 
overfitting suggests that the model's generalization ability could be compromised when 
applied to unseen data. Additionally, VGG19’s computational complexity can hinder real-
time or large-scale deployment in clinical settings. Increasing the dataset size, especially 
by including more diverse samples, and enhancing data augmentation techniques (e.g., 
brightness adjustment, rotation, scaling) would help mitigate this issue. Furthermore, 
regularization techniques like L2 regularization, dropout, and batch normalization will 
prevent overfitting and improve generalization. 

ResNet18-Based Encoder with U-Net Inspired Decoder 

The ResNet18-based encoder with U-Net inspired decoder was highly effective for 
biomedical image segmentation tasks, particularly when identifying lung regions affected 
by diseases like COVID-19 and viral pneumonia. The combination of ResNet18 for 
feature extraction and U-Net for segmentation enhanced the model’s ability to precisely 
capture both global and local structures within the images. However, a notable challenge 
was the model’s high computational cost, which makes it less suitable for scenarios with 
limited resources or where real-time predictions are needed. To improve its applicability, 
future work should focus on optimizing computational efficiency and validating the model 
on additional biomedical datasets to ensure robustness across a broader range of 
medical conditions. Testing it on more complex or unseen medical images would further 
enhance its real-world performance. 

Customized CNN Model (Matlab) 

The Customized CNN model developed in Matlab also delivered promising results, but 
its limitations were more evident when compared to the transfer learning-based 
architectures. While the customized CNN performed well in classification tasks, the 
absence of pre-trained layers, as used in VGG19 and ResNet18, limits its capacity to 
generalize across more complex datasets. Additionally, the analysis of the training-
validation accuracy/loss graphs and confusion matrices revealed areas for further 
optimization, particularly in the management of class imbalances and feature extraction. 
Improving the model’s architecture and experimenting with deeper convolutional layers 
could lead to enhanced performance. Moreover, the model could benefit from more 
advanced data augmentation and regularization techniques to improve robustness 
across various datasets. 

Overall, these deep learning models underscore the potential for AI-driven diagnostics 
in medical imaging. However, it is critical to address the challenges of generalization, 
overfitting, and computational cost to maximize the models' clinical applicability. 

5.2. Challenges in Model Development 

In the process of model development, several key challenges were identified:  
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1. Dataset Limitations: The relatively small and less diverse dataset posed 
challenges for generalization. Class imbalance was particularly noticeable, which 
could skew the model's performance toward overrepresented classes, such as 
healthy individuals or common lung diseases like pneumonia. More 
comprehensive datasets and synthetic data generation techniques would help 
improve performance on underrepresented classes like COVID-19. 

2. Overfitting Issues: Overfitting, especially in the VGG19 model, was a significant 
concern. While data augmentation helped, more sophisticated techniques, such 
as adversarial training or contrastive learning, could offer more robust solutions. 
Additionally, cross-validation strategies were employed to better estimate the 
model's true performance, but further work is needed to explore how different 
regularization and early stopping mechanisms can be combined for optimal 
results. 

3. Computational Constraints: The high computational cost of training deep 
learning models, especially for U-Net-inspired architectures, required the use of 
advanced hardware. Reducing the model's footprint via model pruning or 
quantization techniques could enhance its usability in real-time clinical 
environments. 

5.3. Future Work 

Based on the challenges and findings of this study, several directions for future research 
are proposed to enhance model performance and reliability: 

VGG19 Model 

Future research should prioritize expanding the dataset to improve the model’s 
generalizability. This could involve curating a larger set of X-ray images from a wider 
demographic and geographical spectrum to ensure that the model can handle more 
diverse cases. Additionally, exploring alternative deep learning architectures such as 
InceptionNet or EfficientNet could yield improvements in both accuracy and 
computational efficiency. Further development of data augmentation techniques that 
target underrepresented classes could also significantly enhance the model's 
performance in real-world clinical settings. Finally, additional regularization methods 
(e.g., label smoothing, dropout) and ensemble learning approaches should be tested to 
further prevent overfitting. 

ResNet18-Based Encoder with U-Net Inspired Decoder 

For the ResNet18-based U-Net model, future research should focus on optimizing the 
model's computational efficiency for real-time use. This could involve implementing 
model compression techniques like distillation or pruning to reduce resource 
consumption without sacrificing performance. Furthermore, applying the model to other 
types of medical imaging (e.g., CT scans, MRI) could validate its versatility across 
different domains of medical diagnostics. Collaborating with medical professionals to 
create user-friendly interfaces that allow for practical, real-time use of these models in 
clinical environments would be another beneficial step. 

Customized CNN Model (Matlab) 

Future work on the Customized CNN should focus on exploring more complex 
architectures, such as deeper networks or hybrid models that combine CNNs with 
attention mechanisms to improve feature detection and classification. Additionally, 
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improving the model's generalization by testing on larger datasets and applying more 
aggressive regularization techniques (e.g., early stopping, weight decay) will help 
address overfitting. Lastly, comparing the model against newer architectures could offer 
insights into further performance improvements. 

In conclusion, this research highlights the potential of deep learning models in the field 
of medical imaging, particularly for diagnosing COVID-19 and associated lung diseases. 
While promising, these models still face limitations, particularly in terms of generalization, 
computational efficiency, and handling diverse clinical data. Addressing these 
challenges through larger datasets, more robust architectures, and computational 
optimizations will be crucial in refining these models for real-world use. 

6. Conclusion 

This study explored the application of various deep learning models, including VGG19, 
a ResNet18-based encoder with a U-Net inspired decoder, and a Customized CNN 
model, for the classification and segmentation of COVID-19 and related lung diseases 
using chest X-rays and biomedical images. The results from all three models 
demonstrate the significant potential of deep learning in medical imaging, particularly for 
tasks that require rapid and accurate diagnoses, such as COVID-19 detection. 

The VGG19 model achieved high accuracy, precision, specificity, and F1 score, proving 
that transfer learning and data augmentation techniques are effective for medical image 
classification. Its success underscores the potential of deep learning models to assist in 
clinical settings, particularly for urgent health conditions where timely diagnosis is critical. 
Despite these achievements, future work should focus on expanding datasets and 
exploring alternative architectures to further improve the model’s performance and 
generalization ability. 

Similarly, the ResNet18-based encoder and U-Net inspired decoder demonstrated its 
effectiveness in biomedical image segmentation tasks, outperforming traditional 
methods. This model's success in segmenting lung diseases highlights its potential 
application in diverse medical imaging tasks. Future research should focus on testing the 
model on a broader range of biomedical datasets, optimizing its computational efficiency, 
and developing user-friendly interfaces for real-world clinical deployment. 

The Customized CNN model, developed using Matlab, also delivered promising results 
in classifying lung diseases, achieving high accuracy and demonstrating its suitability for 
clinical applications. However, future efforts should involve testing the model with larger 
and more diverse datasets, and exploring advanced data augmentation and 
regularization techniques to further enhance its performance. 

In conclusion, the findings of this study emphasize the practical benefits and potential of 
deep learning models in medical image analysis and diagnostics. With continued 
research focused on optimizing model architectures, expanding datasets, and improving 
generalization, these models can play a pivotal role in improving the quality of healthcare 
by enabling faster, more accurate, and reliable diagnoses in real-world clinical 
environments.  
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Abstract 

Over the past few decades, the significance of computer and information security has grown 

exponentially, driven by the escalating frequency and sophistication of cyber threats. Despite the 

rapid advancements in both intrusion techniques and security technologies, many organizations 

continue to rely on outdated cybersecurity strategies, leaving them vulnerable to increasingly 

complex cyberattacks. Conventional defenses, such as basic firewalls and signature-based 

detection systems, are often insufficient against modern attackers who use advanced methods, 

including zero-day exploits and polymorphic malware, to evade detection. Government web 

servers, which house vast amounts of sensitive citizen data, are especially attractive targets for 

malicious actors. In response to these evolving threats, the deployment of an Intrusion Detection 

System (IDS) has become a critical component in securing network infrastructures, providing an 

essential layer of defense against unauthorized access and data breaches. This study explores 

the efficacy of six distinct machine learning-based classification methods; Random Forest, 

Gradient Boosting, XGBoost, CatBoost, Logistic Regression, and LightGBM each selected for its 

particular strengths in handling complex, high-dimensional data. These algorithms were applied 

to a comprehensive dataset to detect malicious activities, with a focus on achieving high accuracy 

and robustness in classification performance. Remarkably, all six models demonstrated 

substantial effectiveness, achieving accuracy rates as high as 0.98 and AUC values reaching 

1.00, underscoring their potential in enhancing IDS capabilities. The results highlight the 

importance of leveraging advanced machine learning techniques in bolstering cybersecurity 

defenses, particularly in critical domains like government data protection, where precision and 

reliability are paramount.  

Keywords: network intrusion, classification, cyber security, machine learning 

 

1. Introduction 

Computer and information security has become an increasingly significant issue over the 
past decades. While intrusion techniques and security protections have advanced 
rapidly, many organizations continue to rely on outdated cybersecurity measures. These 
traditional defences are often inadequate against modern cyberattacks, which use 
sophisticated methods to bypass them. Government web servers, which store sensitive 
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information about citizens, are particularly attractive targets for hackers [1].  Today, an 
Intrusion Detection System (IDS) is an essential defence mechanism critical for 
safeguarding important networks against intrusions [2]. IDSs can be categorized into two 
types: anomaly-based and signature-based. Anomaly-based IDSs operate by creating a 
model of normal system behaviour and identifying any deviations from this baseline. In 
contrast, signature-based IDSs rely on a database of known attack signatures to 
recognize malicious activities [3]. In the commercial sector, signature-based IDSs are 
commonly employed. However, anomaly-based IDSs have the advantage of being able 
to detect previously unknown attacks. Despite this, anomaly-based IDSs typically suffer 
from low detection rates and high false positive rates. To improve the detection of new 
attacks, adaptive and efficient Machine Learning (ML) and Deep Learning (DL) 
algorithms are frequently utilized [4]. 

2. Related Work 

Two recent public datasets, CICIDS2017 [5] and CSE-CIC-IDS2018 [6], are now 
available and include normal traffic as well as contemporary attack scenarios such as 
Heartbleed, Brute-force, Botnet, and Denial of Service (DoS). Although these datasets 
are accessible to the public, there has been limited use of them for evaluating, testing, 
and fine-tuning real-time IDS deployments. 

Atefinia and Ahmadi [1] propose a multi-architectural modular deep neural network 
model aimed at enhancing anomaly-based intrusion detection systems by reducing the 
false-positive rate. This model includes a feed-forward module, a stack of restricted 
Boltzmann machine modules, and two recurrent modules, with their output weights 
combined in an aggregator module to make the final decision. Experiments using the 
CSE-CIC-IDS2018 dataset show significant improvements in detecting specific network 
attacks, achieving up to 100% accuracy for certain network-level attacks compared to 
existing methods. The models developed in this study can be effectively used in IDS to 
generate alerts or prevent new attacks. This deep neural network model offers a 
promising solution to the limitations of traditional signature-based intrusion detection 
systems by utilizing machine learning techniques to detect network attacks without 
relying solely on predefined signatures. In Basnet et al. [7] deep learning algorithms have 
demonstrated significant potential in network intrusion detection, as evidenced. 
Researchers assessed the effectiveness of several state-of-the-art deep learning 
frameworks, including Keras, TensorFlow, Theano, fast.ai, and PyTorch, in identifying 
and classifying network intrusion traffic. Using the CSE-CIC-IDS2018 dataset to evaluate 
these frameworks, fast.ai, a PyTorch wrapper, achieved the highest accuracy, 
approximately 99%, with low false positive and false negative rates in detecting and 
classifying various types of network intrusions. This high level of accuracy underscores 
the potential of deep learning frameworks in effectively identifying and categorizing 
network attacks. The results strongly support the effectiveness and utility of deep 
learning frameworks in network intrusion detection, emphasizing the importance of 
leveraging these techniques to enhance cybersecurity measures and effectively combat 
evolving cyber threats. Another paper evaluated two traditional training algorithms for 
Hidden Markov Models (HMM), Baum Welch (BW) and Viterbi Training (VT), using three 
standard initialization techniques: uniform, random, and count-based. The performance 
of the HMM was analysed based on detecting all states (AS), the current state (CS), and 
the next state (NS) given an observation sequence. The count-based initialization 
technique outperformed the uniform and random techniques in detecting AS and CS, 
achieving about 97.5% and 97.0% accuracy for AS prediction using BW and VT, 
respectively. For CS detection, the performance was similar to AS detection, with a slight 
decrease of about 0.2%. Predicting NS had an accuracy of around 65% for both uniform 
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and random initialization techniques with BW and VT. The study found no significant 
improvement with increasing the window sample size, and the training techniques can 
be practically implemented by connecting the output of an IDS or a database storing 
alerts to an HMM [4]. In the other study explored the inter-dataset generalization of 
supervised machine learning methods for intrusion detection, aiming to differentiate 
between benign and various types of malicious network traffic. Classification 
benchmarks were established using two labelled datasets, CIC-IDS2017 and CSE-CIC-
IDS2018, which include attack classes such as DoS, DDoS, infiltration, and botnet. 
Twelve supervised learning algorithms from different families were compared. The 
research revealed that high generalization within a dataset does not necessarily translate 
to high generalization across different datasets, especially for attack types like DoS/SSL 
and botnet. The trained models failed to maintain high classification performance when 
tested on new but related samples without additional training. These findings challenge 
the assumption that strong intra-dataset performance guarantees strong inter-dataset 
performance. Further investigation is needed to understand the limitations and develop 
solutions to enhance inter-dataset generalization in supervised ML-based intrusion 
detection systems [8]. Another paper presented a comparative analysis of deep learning 
methods for intrusion detection, specifically examining deep discriminative models and 
generative unsupervised models. Seven different deep learning techniques were 
evaluated: recurrent neural networks (RNNs), deep neural networks (DNNs), restricted 
Boltzmann machines (RBMs), deep belief networks (DBNs), convolutional neural 
networks (CNNs), deep Boltzmann machines (DBMs), and deep autoencoders. The 
evaluation was conducted using two novel datasets, CSE-CIC-IDS2018 and Bot-IoT, 
and was based on three primary performance metrics: false alarm rate, accuracy, and 
detection rate. The goal of the study was to assess the effectiveness of these deep 
learning models in various intrusion detection scenarios, offering insights into their 
performance for both binary and multiclass classification tasks. The findings are crucial 
for advancing cybersecurity measures by employing sophisticated deep learning 
techniques, thereby enhancing the accuracy and efficacy of intrusion detection systems 
in identifying cyber threats. Deep autoencoders exhibited the highest accuracy on both 
the CSE-CIC-IDS2018 and Bot-IoT datasets, with accuracy rates of 97.372 and 98.394, 
respectively. These results were achieved using a configuration of 100 hidden nodes 
and a learning rate of 0.5 [9]. Fitni and Ramli employed ensemble learning, which 
combined logistic regression, decision trees, and gradient boosting, to increase the 
performance of intrusion detection systems This method harnessed the strengths of each 
classifier to enhance detection accuracy, minimize false alarms, and improve the 
identification of unknown attacks. Feature selection techniques were used to pinpoint the 
most critical data features for intrusion detection. Using Spearman’s rank correlation 
coefficient, 23 out of 80 features were selected, enhancing the model's efficiency by 
concentrating on the most informative features. The proposed model achieved high 
performance on the CSE-CIC-IDS2018 dataset, attaining an accuracy of 98.8%, 
precision of 98.8%, recall of 97.1%, and an F1 score of 97.9%. These results underscore 
the effectiveness of ensemble learning and feature selection in improving anomaly-
based intrusion detection systems, significantly enhancing detection capabilities, 
reducing false alarms, and bolstering overall network security within organizational 
information systems [10]. Kanimozhi and Jacob proposed a system which applies AI to 
the CSE-CIC-IDS2018 dataset and achieves outstanding performance metrics: 99.97% 
accuracy, an average area under the ROC curve of 0.999, and a low false positive rate 
of 0.001. These results highlight the system's high accuracy and precision in detecting 
botnet attacks. Its effectiveness in identifying botnet attacks underscores its potential to 
improve security in financial sectors and banking services, where such threats are 
particularly serious. This demonstrates the practical importance and applicability of AI-
based intrusion detection systems in protecting critical systems and data. Additionally, 
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the system's scalability allows for deployment across multiple machines, making it 
suitable for various applications such as network traffic analysis, cyber-physical system 
traffic data analysis, and real-time network traffic monitoring. This versatility enhances 
its relevance and utility in diverse cybersecurity contexts [11]. In another study, six 
machine learning models were implemented using the CSE-CIC-IDS2018 dataset. Data 
sampling techniques, such as the Synthetic Minority Oversampling Technique (SMOTE), 
were applied to increase the representation of minority classes and enhance detection 
rates for less common intrusions. The experimental results indicated that the 
implemented models achieved a high level of accuracy compared to recent studies. 
Using a sampled dataset led to an increase in the average accuracy of the models by 
between 4.01% and 30.59% [12]. 

3. Materials and Methods 

3.1. Dataset 

The CSE-CIC-IDS2018 dataset contains network traffic data from various services and 
protocols, predominantly HTTPS and HTTP, along with others like SMTP, POP3, IMAP, 
SSH, and FTP. It includes numerous attack scenarios. The final dataset encompasses 
seven distinct attack scenarios: brute-force attacks, Heartbleed exploitation, botnet 
activity, DoS (Denial of Service), DDoS (Distributed Denial of Service), web-based 
attacks, and internal network infiltration. The attacking infrastructure is composed of 50 
machines, while the targeted organization includes five departments, comprising 420 
computers and 30 servers. The network traffic from this dataset was processed using 
the CICFlowMeter-V3 tool, extracting 80 features for training, such as the number of 
packets per second, specific TCP flag packet counts, and the standard deviation of 
packet sizes in a session [6]. 

3.2. Preprocessing 

In the data set one file includes 84 features and this file was not processed because files 
with an equal number of features were processed in this study. Then, the intrusions 
within the CIC-IDS2018 training dataset were categorized into two traffic types: benign 
and attack. To streamline the experiments and ensure clarity, any data points containing 
Infinity or NaN values were excluded from the dataset, which also helped improve the 
quality of the input data for the models. In cases where text data was present, it was 
converted to float to ensure uniformity in the dataset and to facilitate the mathematical 
operations needed for machine learning models. Timestamps, which did not contribute 
significantly to the feature space, were removed from the dataset to avoid any potential 
bias in time-based patterns. Following this, the dataset underwent a normalization 
process using the StandardScaler technique. This approach scales the data such that it 
has a mean of 0 and a standard deviation of 1, which is often critical for models that are 
sensitive to the scale of features. Normalization helps ensure that features with varying 
ranges do not disproportionately influence the model's learning process, resulting in a 
more balanced and accurate performance. The pre-processed dataset was then split into 
training and validation sets in an 80-20 ratio, with 80% of the data allocated for training 
and 20% reserved for validation. The training set was employed to fit the machine 
learning models, while the validation set was used to evaluate the final model 
performance, ensuring that the models could generalize well to unseen data. To address 
the issue of class imbalance, an under-sampling technique was applied to the training 
set. This process involved reducing the number of samples in the majority class, which 
in this case was the benign traffic data, to match or closely match the minority class, 
representing the attack traffic. By randomly removing excess samples from the majority 
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class, a more balanced dataset was created, which helped the models avoid overfitting 
to the dominant class and improved their ability to detect intrusions in the minority class. 
This step was crucial for enhancing model accuracy, particularly in imbalanced data 
scenarios where the majority class can overwhelm the learning algorithm. 

3.3. Evaluation metrics 

Various metrics are commonly used to assess and compare the performance of machine 
learning classifiers. The proposed model was evaluated using the following performance 
metrics. 
Accuracy: Measures the percentage of correctly classified samples out of the total 
number of samples. The formula is: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 
Recall (Sensitivity): The ratio of correctly classified samples of a specific category (X) to 
the total samples of that category, indicating the system’s effectiveness in detecting 
anomalies. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 
Precision: Represents the ratio of correctly predicted positive observations to the total 
predicted positives. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 
F1 Score: The harmonic mean of precision and recall, accounting for both false positives 
and false negatives. 
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 
where TP, FP, TN, and FN represent true positives, false positives, true negatives, and 
false negatives, respectively. 
 
3.4. Classification 

In this study, six different classification methods: random forest, gradient boosting, 
XGBoost, CatBoost, logistic regression, and LightGBM were implemented. Each of these 
methods was chosen for its unique strengths. Random forest reduces overfitting and 
handles noisy data well by constructing multiple decision trees. Gradient boosting 
incrementally improves performance by correcting errors from weak learners. XGBoost, 
an optimized version of GBM, offers faster performance and handles large datasets 
effectively. CatBoost excels with categorical data and requires less preprocessing. 
Logistic regression provides a simple yet powerful approach for linear relationships and 
is easily interpretable. LightGBM is optimized for large datasets and delivers high-speed 
performance with low memory usage. By using these diverse methods, it is aimed to 
explore various model structures and approaches to achieve optimal classification 
performance based on the dataset's characteristics. In the classification, the system 
being used is equipped with 64 GB of memory and is powered by two Intel(R) Xeon(R) 
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Silver 4114 CPUs, each running at 2.20 GHz. The server model is an HP Z6 G4, and it 
features an NVIDIA GeForce RTX 3090 Ti graphics card. The operating system is 
Windows 10 Pro for Workstations, and Python 3 is the language being used within the 
Jupyter Notebook framework. 

4. Results and Discussion 

While the results of used classification algorithm are analysed, three important visuals 
are used which are confusion matrix, ROC (Receiver Operating Characteristic) curve 
and learning curve. The ROC curve, learning curve, and confusion matrix are essential 
tools for evaluating classification models. The ROC curve plots the true positive rate 
(sensitivity) against the false positive rate, helping to assess a model’s performance 
across different thresholds and its ability to distinguish between classes. The area under 
the ROC curve (AUC) is a key metric, where a higher value indicates better performance. 
The learning curve shows how a model’s accuracy or error rate changes with varying 
amounts of training data, offering insights into whether the model is underfitting or 
overfitting and how it improves as it learns from more data. Finally, the confusion matrix 
provides a detailed breakdown of the model's predictions, showing true positives, true 
negatives, false positives, and false negatives, enabling a more granular understanding 
of classification accuracy and potential misclassifications. Together, these tools give a 

comprehensive view of a model's effectiveness, training behaviour, and areas for 
improvement. 
 

 

RF precision     recall f1-
score 

Support 

0 0.97 0.95 0.96 434183 

1 0.98 0.99 0.99 1222666 

accuracy   0.98 1656849 

macro 
avg        

0.97 0.97 0.97 1656849 

weighted 
avg        

0.98 0.98 0.98 1656849 

 

 
 

Figure 1. Random Forest classification report 
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The performance of the machine learning algorithms used in this study is illustrated in 

Figures 1-6. Based on these results, it is evident that all six techniques demonstrate 

exceptional performance on the given dataset, highlighting their suitability for network 

intrusion detection tasks. XGBoost, LightGBM, and CatBoost emerge as the top-

performing models, achieving an impressive accuracy rate of 0.98 and an AUC score of 

1.00, signifying near-perfect classification capabilities. These results suggest that these 

gradient-boosting-based methods are highly effective at distinguishing between normal 

and malicious network traffic, likely due to their advanced handling of complex 

interactions and non-linear relationships within the data. 

Similarly, the Gradient Boosting and Random Forest algorithms also achieve strong 

performance, reaching an accuracy rate of 0.98 and an AUC value of 0.99. While slightly 

below the top-performing models, these results still demonstrate robust classification 

abilities, confirming their reliability in identifying potential intrusions. The success of these 

ensemble methods may be attributed to their ability to reduce overfitting and enhance 

model generalization by combining the predictions of multiple trees. 
 

GB precision     recall f1-
score 

support 

0 0.97 0.94 0.96 434183 

1 0.98 0.99 0.98 1222666 

accuracy   0.98 1656849 

macro 
avg        

0.98 0.97 0.97 1656849 

weighted 
avg        

0.98 0.98 0.98 1656849 

 

 
 

Figure 2. Gradient Boosting classification report 
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XGBoost precision     recall f1-
score 

support 

0 0.98 0.95 0.97 434183 

1 0.98 0.99 0.99 1222666 

accuracy   0.98 1656849 

macro 
avg        

0.98 0.97 0.98 1656849 

weighted 
avg        

0.98 0.98 0.98 1656849 

 

 
 

Figure 3. XGBoost classification report 
 

LightGBM precision     recall f1-
score 

support 

0 0.99 0.95 0.97 434183 

1 0.98 1.00 0.99 1222666 

accuracy   0.98 1656849 

macro avg        0.98 0.97 0.98 1656849 

weighted 
avg        

0.98 0.98 0.98 1656849 
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Figure 4. LightGBM classification report 
 

CatBoost precision     recall f1-
score 

support 

0 0.98 0.96 0.97 434183 

1 0.98 0.99 0.99 1222666 

accuracy   0.98 1656849 

macro 
avg        

0.98 0.97 0.98 1656849 

weighted 
avg        

0.98 0.98 0.98 1656849 

 

  
Figure 5. CatBoost classification report 

In contrast, Logistic Regression, while comparatively less successful than the ensemble-

based techniques, still delivers commendable results, with an accuracy of 0.92 and an 

AUC score of 0.97. Although it does not match the performance of the tree-based 

models, these results indicate that Logistic Regression remains a viable option for 

intrusion detection, particularly in scenarios where interpretability and simplicity are 

prioritized. Its lower performance could be due to its linear nature, which may limit its 

ability to capture more complex relationships in the data compared to non-linear models 

like gradient boosting or random forests. 

In summary, while all the algorithms show strong performance, the results suggest that 

gradient-boosting-based methods, particularly XGBoost, LightGBM, and CatBoost, offer 

superior accuracy and AUC values, making them ideal for network intrusion detection. 

The relatively lower performance of Logistic Regression, although still effective, 

highlights the importance of algorithm selection based on the complexity and nature of 

the dataset. In conclusion, while all the algorithms demonstrate solid performance, 

gradient-boosting-based methods, specifically XGBoost, LightGBM, and CatBoost, 

stand out by providing the highest accuracy, making them particularly well-suited for 

network intrusion detection tasks. Although Logistic Regression performs adequately, its 

comparatively lower results emphasize the significance of choosing the right algorithm 

based on the dataset's complexity and characteristics. 
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LR precision     recall f1-
score 

support 

0 0.80 0.93 0.86 434183 

1 0.98 0.92 0.95 1222666 

accuracy   0.92 1656849 

macro 
avg        

0.89 0.93 0.91 1656849 

weighted 
avg        

0.93 0.92 0.92 1656849 

 

 
 

Figure 6. Logistic Regression classification report 

During the classification process 5-fold cross validation was applied in order to evaluate 

the performance and generalization ability of machine learning models. The results are 

shown in figure 7. K-fold cross-validation bar chart provides a comparative visual 

representation of how well different classification algorithms performed on the dataset. 

The model with the longest bar was the most successful in classifying data consistently 

across all folds, while the algorithms with shorter bars were less accurate or consistent. 

This visual helps identify the strongest classification model, with attention to the 

differences in performance. 

 

Figure 7. 5-fold cross validation result 
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5. Conclusion and Future Work 

In this study, six different machine learning methods which are Random Forest, Gradient 

Boosting, XGBoost, CatBoost, Logistic Regression, and LightGBM are applied for 

detecting intrusions in network traffic, each demonstrating considerable potential in 

enhancing IDS. Our experimental results underscore the effectiveness of these 

algorithms, particularly when paired with appropriate preprocessing techniques. By 

reducing false positives for certain types of intrusions and achieving an accuracy rate of 

up to 98%, these methods offer promising alternatives to conventional detection 

systems. The performance we observed is not only competitive but also exceeds the 

benchmarks reported in much of the existing literature, highlighting the significance of 

integrating machine learning approaches for network security. 

Despite the success of these models, there remain numerous opportunities for future 

research. One key direction would be to further refine feature extraction techniques to 

more accurately capture the characteristics of network traffic, particularly for anomaly-

based intrusion detection systems. The integration of advanced feature engineering, or 

the use of deep learning-based automatic feature extraction, could potentially uncover 

hidden patterns in network data, further improving detection accuracy and reducing false 

alarms. Moreover, different types of datasets, including real-world network traffic from 

varied domains, could be explored using the methodology outlined in this research. This 

would provide a broader understanding of how these algorithms generalize across 

diverse environments and attack scenarios. 

Another promising area for future work is the exploration of hybrid models that combine 

the strengths of multiple machine learning techniques, or the development of ensemble 

methods tailored specifically to network intrusion detection. Additionally, the impact of 

real-time data processing and online learning could be investigated to assess how well 

these models perform in dynamic environments where network conditions change 

frequently. Finally, further investigation into model interpretability and the ability to 

explain detection decisions will be crucial for fostering trust in machine learning-driven 

IDS systems, especially in high-stakes domains like government, healthcare, and 

financial networks. 

By continuing to build upon the findings of this study, future research has the potential to 

significantly advance the capabilities of IDS systems, leading to more robust and 

adaptive network security solutions capable of defending against increasingly 

sophisticated cyber threats. 
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Abstract

According to the World Health Organization (WHO), lung cancer is the primary cause of cancer-
related deaths worldwide and is known to have the highest mortality rate among both men and
women. Early and accurate detection of lung cancer can lead to better treatments and outcomes.
Different methods can be used to diagnose a complex and uncertain disease, such as lung cancer,
and fuzzy logic is one of these methods. The challenge of diagnosing lung cancer nodules,
coupled with the high mortality rate of lung cancer, underscores the significance of using fuzzy
logic. Fuzzy logic offers a problem-solving approach that relies on logical rules and if-then
statements, incorporating human experience. There are many studies in the literature on the
diagnosis of lung cancer with fuzzy logic approaches, and it is important to examine these studies
to provide a general framework on this subject. Therefore, this systematic review aims to
synthesize and evaluate the current evidence on the application of fuzzy logic methods in lung
cancer prediction and diagnosis, and thus can provide a guide to researchers and decision makers
who want to work in this field. The study followed the PRISMA guidelines for systematic reviews,
ensuring a structured and transparent approach to the research process. Scopus, Web of Science
(WoS), PubMed, and IEEE Explore databases were searched to find relevant studies, and
appropriate studies were carefully reviewed. The inclusion and exclusion criteria were clearly
defined, and the analysis process was performed independently. Out of 222 initially identified
studies, 51 met the inclusion criteria and were analyzed in depth. The most commonly used fuzzy
logic methods were Fuzzy Rule-Based Systems, Fuzzy C-Means Clustering, and Fuzzy Inference
Systems. Studies reported accuracy rates ranging from 85% to 98% in lung cancer prediction and
diagnosis. Hybrid models combining fuzzy logic with other machine learning techniques showed
particularly promising results. Fuzzy logic methods demonstrate significant potential in improving
the accuracy of lung cancer prediction and diagnosis. However, further research is needed to
standardize approaches and validate these methods in large-scale clinical settings. The
integration of fuzzy logic with other artificial intelligence techniques presents a promising direction
for future developments in lung cancer diagnostics.

Keywords: fuzzy logic, lung cancer, prediction, diagnosis, systematic review

1. Introduction

Cancer is on the rise worldwide due to environmental factors, nutritional conditions, and 
genetic factors and has become the leading cause of death due to inadequate treatment 
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and diagnosis. The WHO states that cancer is one of the leading causes of death 
worldwide, and recent data on cancer mortality rates show that lung cancer is the most 
common cause of death among cancer types with 2.48 million cases worldwide               
(Figure 1) [1]. Lung cancer remains a major global health problem, causing morbidity and 
mortality worldwide. Early and accurate detection is crucial for improving patient 
outcomes and survival rates [2]. This pressing need has driven researchers and 
healthcare professionals to explore innovative approaches in diagnostic technologies [3].

Figure 1. Recorded incidents of different types of cancer worldwide [4]

In the quest for more effective diagnostic tools, artificial intelligence (AI) has emerged as 
a game-changing technology. Recent studies showed that AI algorithms could
outperform human experts in certain medical image diagnosis tasks, including lung 
diseases [5]. Among the various AI approaches, fuzzy logic stands out for its ability to 
handle uncertainty and imprecision - characteristics inherent in medical diagnosis. Fuzzy 
logic is a mathematical logic that attempts to solve problems with explicit, imprecise, or 
approximate reasoning [6]. It is based on fuzzy set theory, which is an extension of 
classical set theory [7]. It provides a way to obtain a precise result based on uncertain, 
ambiguous, imprecise, noisy, or incomplete input information [8] and has gained great 
importance in disease prediction due to its ability to handle uncertainties and ambiguity 
in medical data. Fuzzy logic has been widely applied in medical diagnosis, particularly in 
lung cancer and related conditions, demonstrating its efficacy in improving the diagnostic
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efficiency of tumor markers [9], enhancing the detection of disease progression in small 
cell lung cancer patients [10], and even extending to the diagnosis of other respiratory 
diseases such as pneumonia through expert systems [11]. Overall, fuzzy logic, with its 
capacity to mimic human reasoning and handle ambiguous data, offers a promising 
avenue for enhancing lung cancer detection and prediction [12].

Compared with other AI tools, such as Neural Networks and Support Vector Machines 
(see table 1), fuzzy logic offers unique advantages in handling the uncertainties inherent 
in medical diagnosis. Its ability to provide interpretable results is particularly valuable in 
clinical settings where transparency in decision-making is crucial [13].

The challenge of diagnosing lung cancer nodules, coupled with the high mortality rate of 
lung cancer, underscores the significance of using advanced methods like fuzzy logic 
[14]. Fuzzy logic offers a problem-solving approach that relies on logical rules and if-then 
statements, incorporating human experience and expertise [16]. This makes it particularly 
suited for medical applications where expert knowledge plays a crucial role [9].

Table 1. Comparison of Fuzzy Logic Method with other AI tools

Taking into consideration the aforementioned, studies on fuzzy logic are important in 
diagnosing lung cancer. After a preliminary literature review, the authors identified 
research papers that deal with the diagnosis of lung cancer using fuzzy logic methods; 
systematic reviews that deal with disease (general) diagnosis or healthcare with fuzzy 
logic methods, or, modern approaches used in the detection of lung cancer [16][17][18]. 
However, no systematic review study has been found that brings together studies on 
fuzzy logic methods in the diagnosis of lung cancer. In this way, this study constitutes an
original one, which examines scholarly work on the specific topic and provides an 
overview of the literature. 

The primary aim of this study is to review the literature on lung cancer diagnosis using 
fuzzy logic methods. Through this systematic review, we seek to accomplish several 
objectives:

To provide researchers and field experts with a comprehensive overview of relevant 
literature in this domain.
To present research results, findings, and recommendations in a clear and accessible 
manner.
To offer a valuable resource for both researchers and practitioners involved in the 
diagnosis and treatment of lung cancer.

By achieving these goals, we aim to facilitate advancements in the application of fuzzy 
logic to lung cancer diagnosis and treatment.

Technique Strengths Limitations

Fuzzy Logic
Handles uncertainty well

Mimics human reasoning

Interpretable results

Can be complex for large rule sets

Requires expert knowledge for initial 
setup

Neural Networks
Powerful pattern recognition

Can handle large datasets

Adaptive learning

"Black box" nature

Requires large training datasets

Less interpretable

Support Vector Machines
Effective in high-dimensional spaces

Versatile through kernel trick

Less intuitive

Can be computationally intensive
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The primary aim of this study is to comprehensively review the literature on lung cancer 
diagnosis using fuzzy logic methods. Specifically, this systematic review seeks to achieve 
the following objectives:

To provide researchers and field experts with a concise overview of relevant literature 
in the application of fuzzy logic to lung cancer diagnosis.
To present research results, findings, and recommendations in an accessible 
manner, serving as a valuable resource for both researchers and practitioners.
To synthesize information on fuzzy logic methods used in the diagnosis and treatment 
of lung cancer, offering insights into current practices and future directions.

By collecting and analyzing fuzzy logic methods from various sources, this review aims 
to offer a broad perspective on the existing literature in this field. Ultimately, it seeks to 
facilitate advancements in lung cancer diagnosis by consolidating current knowledge and 
identifying areas for future research.

In this context, the research question of the study is: What is the role of fuzzy logic 
methods in early detection and prediction of lung cancer, and which fuzzy logic methods
are used in this context?

Within the framework of research question, findings from various studies were 
synthesized, and the effectiveness and potential limitations of fuzzy logic applications in 
the context of lung cancer prediction were evaluated. Through the synthesis of existing 
knowledge, the authors aimed at identifying trends, difficulties, and future directions in 
the use of fuzzy logic methods to improve the accuracy and credibility of lung cancer 
prediction models. By exploring the intricacies of fuzzy logic-based lung cancer 
prediction, this review contributes to the ongoing discourse on the use of computational 
intelligence in healthcare. By critically examining the existing literature, the goal is to 
provide information that can guide future research efforts and, as a result, stimulate 
advances in the field of lung cancer prediction and contribute to improved patient 
outcomes.

The structure of the study is as followed: Section 2 presents a short review of related 
studies on soft computing methods in medical diagnosis and their critical analysis. 
Section 3 includes the methodology part for this systematic review. Section 4 presents 
the results of the research. Finally, section 5 concludes this study with conclusions, future 
research and limitations.

2. Literature Review

The application of soft computing methods in medical diagnosis, particularly in lung 
cancer prediction and diagnosis, has been a subject of significant research interest. This 
section provides a critical analysis of key studies in this field, highlighting the strengths 
and weaknesses of fuzzy logic methods compared to other soft computing approaches 
such as neural networks and genetic algorithms.

Fuzzy logic, a cornerstone of soft computing, has demonstrated its efficacy in lung cancer 
diagnosis. Schneider et al. [9] showed that fuzzy logic-based tumor-marker profiles could 
improve sensitivity in lung cancer diagnosis from 70% to 90%. This highlights fuzzy logic's 
ability to handle the imprecision inherent in medical data effectively.
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[16] conducted a comprehensive review of fuzzy logic methods in disease diagnosis. 
While not specific to lung cancer, their study underscored fuzzy logic's strength in 
managing uncertainty in medical data, a crucial factor in cancer diagnosis.

The potential of neural networks, another key soft computing technique, in lung cancer 
diagnosis was evident in the meta-analysis by Liu et al. [19]. They found that AI methods, 
including neural networks, demonstrated high diagnostic accuracy in lung cancer, with a 
pooled sensitivity of 0.87 and specificity of 0.83.

Genetic algorithms, while less prominently used in direct lung cancer diagnosis, have 
shown potential in optimizing other soft computing methods. Daliri [20] presented a hybrid 
system combining genetic algorithms with fuzzy extreme learning machines for lung 
cancer diagnosis. This study demonstrated how genetic algorithms could optimize the 
parameters of fuzzy systems, enhancing overall performance.

The power of combining soft computing methods was evident in the study by Lin and 
Yang [21]. They introduced a Fusion-Based Convolutional Fuzzy Neural Network (F-
CFNN) for lung cancer classification, achieving 97% accuracy on a large dataset of 
22,489 CT images. This hybrid approach leveraged the pattern recognition strengths of 
neural networks and the interpretability of fuzzy logic, showcasing the synergistic 
potential of soft computing techniques.

Thomas et al. [22], in their systematic review, further supported the efficacy of fuzzy 
models in medical diagnosis, including cancer detection. Their findings reinforced the 
consistent high accuracy of fuzzy logic across various medical diagnostic applications.

While not specific to lung cancer, studies by Wagner et al. [23] and Jan et al. [24]
highlighted the broader application of soft computing methods in oncology, including 
surgical decision support and early diagnosis of other cancers like pancreatic cancer. 
These studies underscore the versatility and potential of soft computing techniques in the 
broader field of cancer diagnosis and treatment.

The aforementioned studies can provide a comprehensive overview of the current state 
of soft computing methods in lung cancer diagnosis. Thus, Table 2 presents a 
comparative analysis of fuzzy logic, neural networks, genetic algorithms, and hybrid 
approaches, highlighting their respective strengths, limitations, and key studies in the 
field.

Table 2. Comparison of Soft Computing Methods in Lung Cancer Diagnosis

Method Strengths Limitations
Key 
Studies

Fuzzy Logic
well

interpretable results
nuanced problems

fuzzy rule set design

[9]
[16]
[22]

Neural Networks

pattern recognition
-based 

diagnosis
interpretability

Prone to overfitting

[19]

Genetic Algorithms

parameter optimization

soft computing methods
[20]
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Method Strengths Limitations
Key 
Studies

Hybrid Methods (e.g., Fuzzy 
Neural Networks)

computing approaches

some interpretability

individual methods

implementation
computational 

resources

optimal hybridization

[21]

Literature review revealed the need for a systematic review and the focus on fuzzy logic 
method within the framework of lung diagnosis:

While Ahmadi et al. [16] and Thomas et al. [22] provided broad reviews of fuzzy logic 
in medical diagnosis, there is a lack of comprehensive reviews specifically focusing 
on fuzzy logic applications in lung cancer diagnosis.
Lung cancer diagnosis inherently involves dealing with uncertain and imprecise data. 
Fuzzy logic's strength in handling such uncertainty, as demonstrated by Schneider et 
al. [9], makes it particularly suitable for this domain. 
Unlike "black box" methods such as some neural network approaches, fuzzy logic 
provides interpretable results. This interpretability is crucial in medical applications 
where understanding the reasoning behind a diagnosis is essential for clinician trust 
and patient communication. 
Fuzzy logic allows for the direct incorporation of expert knowledge into the system. 
This is particularly valuable in the medical field where expert opinions play a 
significant role alongside data-driven insights.
While some AI methods require large datasets for training, fuzzy logic has shown 
effectiveness even with smaller datasets. This is advantageous in medical research 
where large, standardized datasets may not always be available.
The success of hybrid methods like the one used by Lin et al. [21] suggests that fuzzy 
logic can be effectively combined with other soft computing techniques to leverage 
the strengths of multiple approaches.
The broader success of fuzzy logic in various medical diagnostic applications, as 
shown by Thomas et al. [22] indicates its potential for further development in lung 
cancer diagnosis specifically.
Lung cancer diagnosis often involves complex, interrelated factors. Fuzzy logic's 
ability to handle complex rule sets makes it well-suited to capture these intricate 
relationships.

This review aims to address these gaps by providing a comprehensive analysis of fuzzy 
logic methods in lung cancer prediction and diagnosis, highlighting their unique strengths 
and potential for integration with other soft computing methods. The novelty of fuzzy logic 
in this domain lies in its ability to handle medical uncertainties in an interpretable manner, 
a crucial factor in clinical decision-making processes.

3. Methodology

This research was prepared according to the systematic review method and the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) technique used 
as a guide for systematic review. The PRISMA flowchart is an essential tool for 
conducting systematic reviews and meta-analyses. It provides a structured approach for 
documenting the selection process of studies, ensuring transparency and reproducibility 
in the research. The aim is to improve the accuracy and precision of such inquiries by 
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giving originators a checklist to guarantee a through disclosure. The use of the PRISMA 
flowchart is recommended in various fields, including psychology, medicine, biology, and 
education [25]. Adherence to PRISMA rules is associated with improved quality of 
detailing in efficient audits [26]. An effective review strategy was applied to this research, 
and the articles included in the research were recovered from the database using the 
PRISMA strategy. The research utilized popular databases, including Scopus, Web of 
Science, and PubMed, renowned for their extensive coverage and relevance in the 
healthcare domain. The keywords used to search the databases are given in Table 1 and 
the inclusion and exclusion criteria are given in Table 2.

In the inclusion process of the studies included in the study, firstly, keywords suitable for 
the research question were searched from the databases related to the studies, and after 
the studies were eliminated in accordance with the inclusion and exclusion criteria, the 
remaining studies were exported and the titles and abstracts of the studies were first 
examined. Studies whose titles and abstracts were not appropriate for the research 
questions were also eliminated and the full text of the remaining studies was examined. 
From the studies whose full text was examined, the studies that were appropriate for the 
research question were selected and finally, the studies to be included in the systematic 
review process were decided.

3.1. Search keywords for databases

The queries for the keywords used in the database search are given in Table 3. The 
search queries were meticulously crafted by experimenting with different combinations to 
optimize search results based on the databases' structures.

Table 3. Search keywords

Scopus Web of Science Pubmed IEEE Xplore

(TITLE-ABS-
KEY (fuzzy) AND TITL
E-ABS-KEY ( lung 

OR lung 
cancer 

OR lung 
cancer 

AND TITL
E-ABS-
KEY (predicting OR pr
ediction))

fuzzy (Title) and

cancer 
(Title) or fuzzy (Abstra

ct) and

cancer 
(Abstract) and predicti

ng or prediction (Abstract)

TI 

AB fuzzy AND AB 

(predicting or 
prediction)

3.2. Refinement of initial results (inclusion and exclusion criteria)

The articles retrieved from the database searches underwent screening based on specific 
inclusion and exclusion criteria to ensure relevance to the study. To work with current 
data, articles between 2019 and 2024 and in English were included in the study. On the 
other hand, papers, books and book chapters and review type publications were not 
included in the study. Articles from the PubMed database were not included in the study 
because they were considerably older than 2019. Similarly, articles accessed from the 
Web of Science database were also eliminated based on date and publication type. Many 
of the articles included in the study were obtained from the Scopus database.
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Table 4. Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria

Language: English, 
Article

Review articles, Book, Book 
section, Dublicate studies, Thesis, 
Conference Paper, Retracted 
Publication, Conference Review, 
Article in press

3.3. Validity and Reliability

The validity of the research method was confirmed through a thorough keyword selection 
process and database search during the literature review. In addition, filtering criteria 
appropriate to the objectives of the study were created, and the validity of the research 
was strengthened by analyzing the articles that met these requirements. The research's 
reliability was supported by its reproducibility, prior preliminary review, and consistent
results from independent researchers, demonstrating its credibility.

4. Results and Discussion

This section presents the findings resulting from the systematic review conducted to 
address the research questions. The articles retrieved from the search were screened 
based on predefined inclusion and exclusion criteria and specific database filtering 
methods. This information is given in the Identity section of the PRISMA flow chat in 
Figure 2. The abstracts of the remaining 86 articles were examined, and the articles to 
be read in full text were decided, and the number of articles was reduced to 55. This 
information is shown in the Screening section. After reviewing the full text of 55 articles, 
the final selection for inclusion in the study was made based on the predetermined 
criteria. Finally, this information is given in the Included section, and the full text of 49
articles was examined in the study.

4.1. Observations on Datasets

The studies in the table also vary in terms of datasets and sample sizes used for lung 
cancer diagnosis. While some studies conduct comprehensive analyses on large 
datasets, others focus on smaller and more specific sample groups. This variability 
influences the scope of each study and the generalizability of the findings. For instance, 
some studies leverage CT scans, X-ray images, and gene expression data to evaluate 
the effectiveness of various diagnostic and classification methods. Additionally, the 
findings from these studies highlight the continuous development of methods used in lung 
cancer diagnosis. Each study is designed to address a specific problem or optimize a 
particular approach, contributing to the overall knowledge base in lung cancer diagnosis. 
It is observed that recent studies employ more advanced methods and sophisticated 
models compared to earlier ones, leading to higher accuracy rates and more reliable 
results in lung cancer diagnosis.

In this part of the research, information about the data sets of the studies included in the 
systematic review is given.

LIDC-IDRI (Lung Image Database Consortium and Image Database Resource 
Initiative) is a consortium dataset for early detection of lung nodules and cancer 
diagnosis. It focuses on the identification of lung nodules of different sizes and types 
using CT scans. Since this dataset contains various features such as the size, shape, 
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and density of lung nodules, it allows fuzzy logic algorithms to manage these 
uncertainties. The ambiguous boundaries of the nodules provide a suitable space for 
fuzzy logic to better define the boundaries [27].

SPIE-AAPM Lung CT Challenge Dataset and LIDC-IDRI Lung Imaging Research 
Dataset; Organized by the American Association for Medical Physics (AAPM) and SPIE, 
this dataset aims to use computed tomography (CT) images for lung cancer detection 
[28]. This dataset helps fuzzy logic algorithms to improve classification and prediction 
accuracy because of the uncertainties between different cancer stages, nodule sizes and 
cancer types in a wide variety of CT images. The dataset also provides an ideal testbed 
for diagnosing cancer at different stages. 

Records removed before screening:

Duplicate records removed (Wos-
Scopus:42 (PubMed (16), Scopus (27), 
IEEE (3)
Review article: WoS:1, Scopus: 3
Conference review:  Scopus:16
Book Chapter: WoS:1 Scopus:1
Book: Scopus:1
Not English: WoS:1, Scopus:1
Retracted publication: WoS:1, 
Scopus:1
Conference paper: WoS:21, Scopus: 
21 IEEE:17
Article in press: Pubmed:1, Scopus:3

Records screened

WoS (n) = 67
Scopus (n) = 18 
Pubmed (n) = 1 
IEEE (n) = 0

Figure 2. PRISMA flow diagram [72]

Records identified from:

Databases (n = 222)
Scopus: 92
Web of Science: 92
Pubmed: 18
IEEE: 20

Records excluded

WoS (n) = 24 (survival rate, surgery, air 
pollution, unretrievable studies)
Scopus (n) = 7 (irrelevant, about med)

Reports assessed for 
eligibility

WoS (n) = 43
Scopus (n) = 11
Pubmed (n) = 1

Reports excluded (n=6)

Studies included in review
(n = 49 )

Identification of studies via databases and registers
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COVID-19 Detection X-Ray Dataset and Lung Cancer Dataset; The purpose of this 
dataset shared on Kaggle is to investigate the differences between COVID-19 detection 
and lung cancer. This dataset, which includes X-ray images, contributes to the diagnosis 
of various lung diseases. X-ray images can have ambiguities due to low resolution and 
noise. These ambiguities can be processed with fuzzy logic algorithms to achieve better 
classification results. Moreover, similar symptoms of diseases and similarities in images 
require fuzzy logic to reduce uncertainties in decision making [27].

Lung Cancer Gene Expression Dataset: This dataset, obtained from the UCI Machine 
Learning Repository, is used to analyze gene expression profiles of lung cancer. It is 
used in lung cancer diagnosis based on genetic analysis. Gene expression data includes 
analysis of genes expressed at different levels in each individual patient. This data set 
shows a large variability that needs to be managed with fuzzy logic, as genetic data 
contains uncertainties. Given that small changes in gene expression data can have major 
clinical consequences, fuzzy logic allows for precise handling of these variables [29].

IQ-OTH/NCCD Dataset; This dataset contains CT images and clinical data for the 
diagnosis of lung cancer and is specifically used for the accurate detection of nodules. 
Managing uncertainties in CT images can be supported by fuzzy logic algorithms for 
accurate classification of nodules [30].

TCIA is an open access archive that collects and shares various imaging data related to 
cancer. It aims to provide researchers with large-scale imaging data and contribute to 
innovative studies based on medical image analysis [31]. The complexity and diversity of 
images allows for managing uncertainties and making more precise classifications with 
fuzzy logic.

Open datasets published by the global burden of disease; This open dataset 
published by the Global Burden of Disease (GBD) study is a comprehensive database 
on the burden of disease and health problems worldwide. It includes global health 
statistics for various diseases, such as lung cancer, and is provided to researchers for 
use in public health analysis. Fuzzy logic techniques can be applied to manage 
uncertainties and incompleteness in the data for public health analyses. The uncertain 
and complex nature of the data makes fuzzy logic approaches valuable in health services 
planning and policy making [32].

Random Sample of NIH Chest X-ray Dataset; created by the NIH to diagnose lung 
diseases. X-ray images are used to classify lung cancer as well as other respiratory 
diseases. Fuzzy logic techniques can be used to correctly classify ambiguous areas in 
X-ray images. Factors such as image quality and noise can be managed with fuzzy logic 
algorithms [33].

CIA Datasets Cancer Imaging Archive; are a set of datasets containing imaging data 
for cancer. These datasets are based on various imaging modalities (CT, MRI, PET 
scans, etc.) used in cancer diagnosis and treatment. These datasets contain medical 
imaging data on many types of cancer, especially lung cancer. CIA datasets are suitable 
for modeling uncertainties and variability in imaging data. In imaging diseases such as 
lung cancer, fuzzy logic allows for more accurate diagnoses and classifications by 
managing uncertainties [34].
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The ILD (Interstitial Lung Disease) dataset contains CT scan images for interstitial lung 
diseases. This dataset is specifically used to analyze and classify changes in lung 
tissues. It is suitable for fuzzy logic algorithms in terms of fuzzy boundaries and 
uncertainty management. It allows accurate classification of interstitial lung diseases, 
which may have similar image characteristics to lung cancer [28]. 

The dataset provided by the Lung Cancer Alliance is a database for the diagnosis and 
treatment of lung cancer. Fuzzy logic can be used to model uncertainties in genetic and 
clinical data related to the disease. This dataset can be analyzed with fuzzy logic 
methods, especially to distinguish between different types of cancer. On the other hand, 
the limited number of rare cases may make it difficult to generalize the modeling [35].

The Kentridge Biomedical Repository is a database of gene expression data used in 
cancer research. This dataset was developed to be used in the diagnosis and 
classification of various types of cancer, including lung cancer. The genetic data it 
contains enables the application of classification algorithms in cancer research. It can be 
said that this dataset, which contains high-dimensional gene expression data, is very 
suitable for fuzzy logic models. It is especially used to manage uncertainties in the 
relationships between genes and to eliminate unnecessary genes. Fuzzy logic-based 
approaches improve the classification accuracy of small differences in gene expression. 
The large size of the data and the high dimensionality of genetic data can increase 
processing and storage costs [36].
 
Microarray gene expression datasets are used to analyze gene expression data on a 
large scale and diagnose diseases, especially cancer. These datasets are also frequently 
used in lung cancer diagnosis and enable disease identification at the gene level. These 
data sets are collected by various laboratories and research centers. Microarray datasets 
contain large variability and uncertainty in gene expression data. This makes fuzzy logic 
models particularly suitable for classifying genetic variations and small changes in 
expression levels. Fuzzy logic plays a critical role in managing these uncertainties and 
ensuring accurate classification [37].

The UCI Machine Learning Repository is a large archive of datasets collected for 
testing with various machine learning algorithms. This dataset for lung cancer diagnosis 
contains 32 samples and 3 different pathological types of lung cancer. There are 56 
features for each sample. Although this dataset contains a limited number of samples, it 
has enabled fuzzy logic algorithms to achieve high success even with small samples. 
Fuzzy logic rules can be effective in classifying the fuzzy boundaries of different cancer 
types. However, since the dataset has a small sample size, its generalization ability is 
limited. Missing data points can make the analysis more complex, so the missing features 
were filled by averaging [20]. These datasets are united by common problems such as 
large dataset sizes, which increase storage and processing demands, and variability in 
data quality, which can affect model accuracy. Furthermore, the scarcity of data on rare 
cancer cases is a barrier to generalizing the findings. Nevertheless, these datasets are 
vital for early detection of lung cancer, improving patient outcomes and informing public 
health strategies. Furthermore, integrating fuzzy logic into the analysis of these datasets 
can help remove inherent uncertainties in medical data, improve classification accuracy 
and support the development of clinical decision support systems. This can contribute to 
better diagnostic processes, more personalized treatments, and improved public health 
policies.
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4.2. Findings on Employed Methods

In this part, information is given about the articles that have been included in the research 
after the systematic review. Appendix-1 lists the years, aims, results, and fuzzy logic 
methods of the research included in the systematic review. In addition, details regarding 
the diagnosis of lung cancer are also given according to the studies performed. 
Therefore, researchers who review this article and want to examine lung cancer diagnosis 
using the fuzzy logic method can get an idea by looking at this table.

The systematic review presented in the table encompasses 49 different studies focusing 
on the integration of fuzzy logic and deep learning approaches in the diagnosis and 
treatment of lung cancer. Each study addresses unique methods developed for specific 
purposes and their outcomes, contributing to the existing approaches in lung cancer 
diagnosis and treatment. A significant portion of the studies in the table utilize fuzzy logic 
systems and hybrid methods to manage uncertainties and improve accuracy in complex 
problems like lung cancer diagnosis and classification. Overall, the studies emphasize 
the effectiveness of fuzzy logic systems, particularly in handling data with inherent 
uncertainties. Complex medical problems, such as lung cancer diagnosis and 
classification, often involve uncertainties and variabilities that traditional algorithms 
struggle to manage. Therefore, the frequent use of fuzzy logic-based approaches in these 
studies highlights the importance of such methods in dealing with uncertainties in medical 
data. Techniques such as fuzzy rule-based systems, fuzzy clustering methods, and fuzzy 
inference systems (FIS) are commonly employed in these studies to manage 
uncertainties in medical imaging, disease classification, and decision-making processes.

The table also reveals a widespread use of hybrid models. These hybrid approaches 
integrate fuzzy logic systems with deep learning, optimization techniques, and other 
artificial intelligence methods to achieve higher accuracy and more robust outcomes. For 
example, in some studies, fuzzy logic systems are combined with convolutional neural 
networks or other clustering methods to improve the accuracy of lung cancer diagnosis 
and classification. These hybrid approaches play a crucial role in improving the precision 
of complex medical diagnoses like lung cancer, where traditional methods may fall short.

Built upon the overview of studies presented in Table 5, the following table provides a 
comprehensive comparison of these fuzzy logic methods, offering researchers and 
clinicians a clearer understanding of their relative merits and challenges. By examining 
the strengths and limitations of each approach, we can gain valuable insights into their 
effectiveness and potential applications in clinical settings. 

Tablo 5. Comparative analysis of fuzzy logic methods used in lung cancer diagnosis

Method Pros Cons
Example 
Studies

Fuzzy Rule-Based 
Systems (FRBS)

- Highly interpretable
- Can incorporate expert 
knowledge
- Flexible and adaptable to 
various input types

- Limited performance compared to complex 
ML models
- Time-consuming rule base design
- Struggles with high-dimensional data

[26], [38]
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Method Pros Cons
Example 
Studies

Fuzzy C-Means Clustering 
(FCM)

- Effective for image 
segmentation
- Allows partial membership
- Faster than hierarchical 
clustering

- Sensitive to initial conditions- Requires 
pre-specified cluster number
- Struggles with imbalanced datasets

[31], [39]

Fuzzy Inference Systems 
(FIS)

- Handles complex, non-linear 
relationships
- Combines interpretability with 
adaptivity
- Effective for classification and 
regression

- Complex to design and tune
- Computationally intensive for large 
datasets
- Decreasing interpretability with complexity

[32], [40]

Adaptive Neuro-Fuzzy 
Inference Systems 
(ANFIS)

- Combines neural network 
learning with fuzzy 
interpretability
- Automatically adjusts 
membership functions
- Effective for complex, non-
linear problems

- Computationally intensive- Risk of 
overfitting- Complex models can be hard to 
interpret

[41], [42]

Hybrid Fuzzy-Based 
Approaches

- Leverages strengths of 
multiple techniques
- Higher accuracy than 
individual fuzzy methods
- Handles diverse data types 
and complex patterns

- Increased model complexity
- Extensive hyperparameter tuning
- Risk of overfitting with limited data

[21], [20]

Fuzzy-Enhanced Deep 
Learning Models

- Combines deep learning with 
fuzzy uncertainty handling
- State-of-the-art performance 
on complex tasks
- Handles large-scale, high-
dimensional data

- Requires significant computational 
resources
- Less interpretable than traditional fuzzy 
systems
- May require large datasets for optimal 
performance

[28], [43]

Having examined the general characteristics, strengths, and limitations of various fuzzy 
logic methods applied in lung cancer diagnosis, the study provides then specific 
implementations of these methods that have demonstrated superior performance in our 
reviewed. These top-performing approaches, which include specialized applications of 
fuzzy-enhanced deep learning models, hybrid fuzzy-based approaches, and advanced 
fuzzy inference systems, offer unique advantages in addressing the challenges of lung 
cancer diagnosis. This analysis gives insights into their practical implications and clinical 
relevance, revealing their potential impact on real-world lung cancer diagnostics (see 
table 6).

Tablo 6. Comparative Analysis of Top-Performing Fuzzy Logic Approaches in Lung 
Cancer Diagnosis

Approach
Performance 

Metrics
Key Strengths Practical Implications Clinical Relevance

Fusion-Based Convolutional 
Fuzzy Neural Network (F-
CFNN) [21]

Accuracy: 
97.2%
Precision: 
96.8%
Recall: 97.5%
F1 Score: 
97.1%

- High accuracy-
Handles complex 
image data
- Combines 
strengths of CNN 
and fuzzy logic

- Scalable to large 
datasets
- Requires significant 
computational 
resources
- Potential for real-time 
application with 
optimized hardware

- Excellent for early 
detection
- High accuracy in 
distinguishing malignant 
from benign nodules
- Adaptable to diverse 
patient demographics

Fuzzy K-Nearest Neighbor 
(FKNN) with Enhanced 
Manta Ray Foraging 
Optimization [38]

Accuracy: 
95.8%
Sensitivity: 
94.3%
Specificity: 
97.2%
AUC: 0.982

- Robust to noise in 
data
- Effective handling 
of uncertainty
- Improved 
optimization through 
EMRFO

- Moderate 
computational 
requirements
- Easily interpretable 
results

- Suitable for risk 
stratification
- Effective in cases with 
ambiguous imaging 
results
- Adaptable to different 
types of medical data
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Approach
Performance 

Metrics
Key Strengths Practical Implications Clinical Relevance

- Potential for 
integration with existing 
medical systems

Deep Fuzzy SegNet [43]

Accuracy: 
98.6%
Dice 
Coefficient: 
0.945
Jaccard Index: 
0.896

- Excellent 
segmentation 
performance
- Handles complex 
lung structures
- Integrates deep 
learning with fuzzy 
logic

- Requires specialized 
hardware for optimal 
performance
- Potential for 
automated analysis in 
clinical workflows
- Scalable to large-scale 
screening programs

- High precision in nodule 
detection
- Assists in treatment 
planning through 
accurate segmentation
- Potential for tracking 
tumor changes over time

Fuzzy Soft Expert System 
[44]

Accuracy: 
93.5%
Sensitivity: 
92.1%
Specificity: 
94.8%

- Incorporates 
expert knowledge
- Handles 
uncertainty in 
clinical data
- Highly 
interpretable results

- Low computational 
requirements
- Easy integration with 
existing clinical decision 
support systems
- Adaptable to new 
expert knowledge

- Effective for initial risk 
assessment
- Aids in personalized 
treatment planning
- Suitable for diverse 
clinical settings, including 
resource-limited areas

The F-CFNN and Deep Fuzzy SegNet approaches demonstrate the highest overall 
accuracy, particularly in image-based diagnosis. The FKNN with EMRFO shows 
excellent balance between sensitivity and specificity, making it robust for general 
screening purposes. The Fuzzy Soft Expert System, while having slightly lower accuracy, 
offers high interpretability which is crucial in clinical settings.

Strengths and Limitations

The reviewed fuzzy logic approaches demonstrate diverse strengths and limitations in 
lung cancer diagnosis. F-CFNN [21] and Deep Fuzzy SegNet [43] stand out for their 
exceptional ability to process and analyze complex image data, making them particularly 
effective for interpreting medical imaging results. However, these sophisticated models 
come with the drawback of requiring substantial computational resources, which may limit 
their accessibility in some clinical settings. In contrast, FKNN with EMRFO [38] offers a 
compelling middle ground, striking a balance between high performance and 
interpretability. This balance makes it a versatile option suitable for a wide range of 
clinical applications, from initial screening to more detailed diagnostic processes. The 
Fuzzy Soft Expert System [44], while perhaps less adept at handling complex image 
analysis tasks, shines in its capacity to incorporate expert knowledge directly into the 
diagnostic process. Its high interpretability is a significant advantage, particularly in 
scenarios where clear explanation of the diagnostic reasoning is crucial for patient care 
and clinical decision-making.

Practical Implications

The practical implementation of these fuzzy logic approaches varies considerably based 
on their computational requirements and the clinical context. F-CFNN [21] and Deep 
Fuzzy SegNet [43], with their advanced capabilities in image analysis, are ideally suited 
for deployment in large hospitals or specialized imaging centers equipped with robust 
computational infrastructure. These settings can leverage the full potential of these 
models to enhance diagnostic accuracy in complex cases. FKNN with EMRFO [38],
thanks to its more moderate computational demands, presents an attractive option for 
integration into existing clinical workflows across a broader range of healthcare facilities. 
Its balance of performance and resource requirements makes it a practical choice for 
many medical institutions looking to enhance their diagnostic capabilities without 
overhauling their entire technological infrastructure. The Fuzzy Soft Expert System [44]
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with its minimal computational needs and high interpretability, emerges as an excellent 
candidate for use in primary care settings or as a first-line screening tool. Its ability to 
provide clear, understandable results makes it particularly valuable in contexts where 
immediate interpretation and explanation of results to patients is necessary.

Clinical Relevance

From a clinical perspective, all the examined fuzzy logic methods demonstrate significant 
promise in the critical area of early lung cancer detection, a factor that is paramount in 
improving overall patient outcomes. The advanced image analysis capabilities of F-
CFNN [21] and Deep Fuzzy SegNet [43] render them particularly effective in the crucial 
task of distinguishing between malignant and benign nodules. This high level of 
discrimination can play a vital role in reducing the number of unnecessary biopsies, 
thereby minimizing patient stress and healthcare costs. FKNN with EMRFO [38] and the 
Fuzzy Soft Expert System [44] offer a different but equally important clinical advantage: 
their flexibility in handling various types of clinical data. This adaptability makes them 
valuable across a wide spectrum of clinical scenarios, from initial patient screening to 
ongoing monitoring of high-risk individuals. Their ability to integrate diverse data types 
allows for a more comprehensive approach to lung cancer diagnosis, potentially 
capturing subtle indicators that might be missed by more narrowly focused diagnostic 
tools.

The field of fuzzy logic in lung cancer diagnosis presents several promising avenues for 
future research and development. One key direction is the integration of these fuzzy logic 
approaches with other AI technologies, such as natural language processing for
analyzing clinical notes, which could significantly enhance their diagnostic capabilities 
[27]. This integration could allow for a more comprehensive analysis of patient data, 
incorporating both structured and unstructured information. Additionally, the development 
of lightweight versions of more complex models like F-CFNN [21] and Deep Fuzzy 
SegNet [43] could broaden their applicability in resource-limited settings, making 
advanced diagnostic tools more accessible to a wider range of healthcare facilities. This 
democratization of technology could have far-reaching implications for early lung cancer 
detection globally. Furthermore, continued research into improving the interpretability of 
complex fuzzy-deep learning hybrid models is crucial. Enhancing the explainability of 
these sophisticated systems could increase their acceptance in clinical practice [13],
addressing one of the key challenges in the adoption of AI in healthcare.

In conclusion, this systematic review underscores the significant role that fuzzy logic and 
artificial intelligence-based methods play in lung cancer diagnosis and classification. The 
variety of techniques and approaches used in these studies demonstrates the unique 
advantages and challenges associated with each method, while the general trend points 
towards the development of more integrated and hybrid solutions. These hybrid 
approaches are proving to be effective tools in managing uncertainties and achieving 
more accurate results in the diagnosis of complex diseases like lung cancer. As these 
models become more transparent and their decision-making processes more 
understandable to clinicians, their integration into routine clinical workflows is likely to 
accelerate, potentially leading to improved patient outcomes through more accurate and 
timely diagnoses. Future research is likely to focus on further developing these hybrid 
methods and expanding their application areas. In this context, the studies presented in 
this review serve as a valuable resource highlighting the potential of fuzzy logic and 
artificial intelligence techniques in lung cancer diagnosis and treatment. The continued 
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evolution of these technologies promises to significantly enhance our ability to detect, 
diagnose, and ultimately improve outcomes for patients with lung cancer.

5. Conclusion and Future Research

In conclusion, this systematic review has provided a comprehensive overview of the role 
of fuzzy logic methods in the diagnosis and prediction of lung cancer. Fuzzy logic has 
proven to be a valuable tool in managing the uncertainties inherent in medical data, 
making it particularly effective in the complex and often ambiguous process of diagnosing 
lung cancer. The studies reviewed demonstrated the effectiveness of various fuzzy logic 
methods, including Fuzzy Rule-Based Systems, Fuzzy Clustering, and Fuzzy Inference 
Systems, in improving the accuracy and reliability of lung cancer diagnosis. The 
integration of fuzzy logic with other computational techniques, such as Artificial Neural 
Networks (ANN), Convolutional Neural Networks (CNN), and genetic algorithms, has led 
to the development of hybrid models that further enhance diagnostic accuracy. These 
hybrid approaches leverage the strengths of each method, resulting in more robust and 
reliable diagnostic tools.

5.1. Limitations

Despite the promising results, the review also highlighted several important limitations. A 
significant concern is the issue of sample size and generalizability. Many studies in this 
review used relatively small sample sizes, which limits the generalizability of their results. 
For instance, Khalil et al. [44] used only 45 patients in their study, while Daliri [20] used 
just 32 samples. Such small sample sizes may not adequately represent the diverse 
population of lung cancer patients, potentially leading to overfitting and reduced 
performance when applied to larger, more diverse datasets.

Another notable limitation is the lack of extensive clinical validation. While many studies 
demonstrated high accuracy in controlled settings, the performance of these fuzzy logic-
based models in real-world clinical environments, where data may be noisier and more 
variable, remains largely untested. This gap between research findings and clinical 
application needs to be addressed to ensure the practical utility of these methods.

The variability in datasets used across studies poses another challenge. The studies 
reviewed used a wide variety of datasets, making direct comparisons between methods 
challenging. Some studies used publicly available datasets, while others used proprietary 
or locally collected data, further complicating the assessment of generalizability.

There is also a noticeable focus on image-based diagnosis, particularly using CT scans, 
in the majority of the studies. This leaves a gap in research related to non-image-based 
diagnostic methods, such as genetic and metabolomic data analysis, which could provide 
valuable complementary information for lung cancer diagnosis and prediction.

Lastly, while fuzzy logic is generally more interpretable than "black box" machine learning 
models, some of the more complex hybrid models may still pose interpretability 
challenges for clinicians. Balancing model complexity and interpretability remains an
ongoing challenge in the field.

5.2. Future Research Directions

To address these limitations and further advance the field, several promising avenues for 
future research emerge. Large-scale clinical validation studies should be a priority. Future 
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research should focus on validating promising fuzzy logic-based models on large, diverse 
patient populations in clinical settings. For example, a multi-center study could be 
conducted to test the performance of the Fusion-Based Convolutional Fuzzy Neural 
Network (F-CFNN) proposed by Lin et al. [21] on a dataset of 10,000+ patients from 
various demographic backgrounds.

The development of standardized benchmark datasets for lung cancer diagnosis would 
enable more direct comparisons between different fuzzy logic approaches. Researchers 
could collaborate with organizations like The Cancer Imaging Archive (TCIA) to create 
and maintain such datasets, fostering more comparable and reproducible research in the 
field.

Integration of multi-modal data presents another exciting direction for future studies. 
Researchers should explore the integration of multiple data types, combining imaging 
data with genetic, metabolomic, and clinical data. For instance, a hybrid model could be 
developed that combines the image analysis capabilities of the Deep Fuzzy SegNet [43]
with gene expression analysis using Fuzzy Min-Max Neural Networks [45]. This multi-
modal approach could provide a more comprehensive and accurate diagnostic tool.

Improving the explainability of fuzzy logic models, especially for complex hybrid systems, 
should be a priority. Future research could focus on creating visualization tools that 
explain the decision-making process of fuzzy logic systems in a way that is intuitive for 
clinicians. This would not only increase the trust in these systems but also potentially 
provide new insights into the diagnostic process.

Longitudinal studies represent another important area for future research. Most current 
research focuses on single time-point diagnosis. Future studies should explore the use 
of fuzzy logic in predicting lung cancer progression over time, potentially integrating with 
electronic health records for continuous monitoring. This could lead to more personalized 
and adaptive treatment strategies.

The application of fuzzy logic in personalized medicine for lung cancer treatment is a 
promising avenue. Research into how fuzzy logic can be applied to personalize treatment 
plans based on individual patient characteristics and tumor profiles could lead to more 
effective and tailored therapeutic approaches.

Investigating transfer learning with fuzzy logic models could significantly advance the 
field. Research into how fuzzy logic models trained on one type of cancer or medical 
condition can be adapted for lung cancer diagnosis could lead to more robust and 
generalizable models, potentially addressing the issue of limited dataset sizes in some 
studies.

Finally, as healthcare moves towards more distributed systems, research into how fuzzy 
logic models can be optimized for edge computing devices could enable real-time, point-
of-care lung cancer risk assessment. This could potentially lead to earlier detection and 
intervention, particularly in resource-limited settings.

By addressing these research directions, the field can move towards more robust, 
clinically validated, and widely applicable fuzzy logic-based systems for lung cancer 
diagnosis and prediction. This could ultimately lead to earlier detection, more 
personalized treatment plans, and improved patient outcomes, marking a significant 
advancement in the fight against lung cancer.
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Appendix 
 

Appendix-1. Features of included studies 

No Research 
Title 

Fuzzy Logic 
Techniques 
 

Sample 
Size 

Hybrid or Nonhybrid Fuzzy Using 
Aim 

Methodological 
Focus 

Limits in Research Performance Metrics 

1 Majumder 
et al., 2024 
[26] 

 

Fuzzy Rule-Based 
Systems 
Fuzzy C-Means 
Clustering 
Fuzzy Inference 
Systems (FIS): 
Adaptive Neuro-
Fuzzy Inference 
Systems (ANFIS): 

1142 CT 
scan  

Non-
hybrid 

Mitscherlich 
function-
based fuzzy 
ranking 
approach 

Assess the 
uncertainty 

Image 
Classification 

Data limitations: does not fully 
represent real world cases. 
model complexity,  
potential for overfitting: dataset is 
small. 
No medical confirmation 

Accuracy: 
Q-OTHNCCD dataset: 
99.54% 
LIDC-IDRI dataset: 
95.75% 
Precision: 99.62% 
Recall: 98.61% 
F1-Score: 99.10% 

2 Lin et al., 
2024 [28] 

Fuzzy Neural 
Networks 
Taguchi Methods 
Adversarial 
Learning 

SPIE-
AAPM 
dataset 
(22.489) 
and  
 
LIDC-IDRI 
(16.471) 

Hybrid 
 

Fuzzy neural 
classifier 
(FNC) + 
convolutional 
neural 
network 
(CNN) 
 

Classification 
(handling 
uncertainty) 
 
 

Image 
Classification 

Data limitations: dataset samples 
have little samples 
Method limitations 
No medical confirmation 

AL-TCFNC 
Accuracy: 88.69% 
Specificity: 90.00% 
F1-Score: 89.02% 
 
These results are taken 
from the reported data 
based on metrics such as 
accuracy, sensitivity, 
specificity, and F1-score of 
the classification 
experiments performed by 
the model on SPIE-AAPM 
and LIDC-IDRI datasets. 
 

3 Kumar et 
al., 2024 
[27] 

Fuzzy Logic 
Controllers 
Fuzzy Inference 
Systems 
Adaptive Fuzzy 
Systems 

COVID-19 
Detection 
X-Ray  
and 
Lung 
Cancer 
(284 
instances) 
 

Non-
hybrid 

Fuzzy 
TOPSIS 

Multi-criteria 
decision-
making 
(MCDM) to 
handle 
uncertainty and 
imprecision 
associated with 
decision-
making 
processes. 
 

Data Security & 
Disease 
Prediction 

Data limitations: dataset samples 
have little samples 
 
Method Limitations: The 
performance of the proposed 
DKCNN-AK model was only tested 
on these datasets. 
 
No medical confirmation 

Accuracy: 98% 
Sensitivity: 97% (for lung 
cancer) 
Specificity: 97% 
Response Time: 60 
seconds 
Network Capacity: 100 
kbps 
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No Research 
Title 

Fuzzy Logic 
Techniques 
 

Sample 
Size 

Hybrid or Nonhybrid Fuzzy Using 
Aim 

Methodological 
Focus 

Limits in Research Performance Metrics 

4 Ramkumar 
et al., 2024 
[46] 

Fuzzy Clustering 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems 

126 
patients 

Non-
Hybrid 

Fuzzy Clipped 
Inference 
System 
(FCIS) 

It helps in 
accurately 
detecting nodal 
metastasis 
(Nmet) and 
non-nodal 
metastasis 
(Non-Nmet) 
 

Image 
Classification 

Data limitations: dataset samples 
have little samples 
 
Method Limitations: Although the 
proposed Deep Volcanic Residual 
U-Net (DVR U-Net) model 
provides high accuracy, it has only 
been tested on specific datasets 
and its applicability for more 
diverse clinical scenarios is 
uncertain 
 
No medical confirmation 
 
 
 

Accuracy: 99.6% 
(LIDC/IDRI), 98.6% (dual-
energy CT data set) 
Sensitivity: 99.6% 
(LIDC/IDRI), 97.9% (dual-
energy CT data set) 
Specificity: 98.6% 
(LIDC/IDRI), 99.5% (dual-
energy CT data set) 
 
 

5 Zakaria et 
al., 2024 
[41] 

Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 
Fuzzy Clustering 
Adaptive Neuro-
Fuzzy Inference 
Systems (ANFIS) 
 

124 lung 
cancer 
patients 

Non- 
hybrid 

Fuzzy linear 
regression 

Managing 
uncertainty  

Risk Prediction Data limitations: - 
 
Method Limitations:  - 
 
No medical confirmation 
 
 

 
 
 
 
 
 

6 Xing et al., 
2024 [38] 

Fuzzy K-Nearest 
Neighbor (K-NN): 
Fuzzy Clustering: 
Fuzzy Inference 
Systems (FIS): 

156 
patients 

Hybrid Fuzzy K-
Nearest 
Neighbor 
(FKNN) + 
Enhanced 
Manta Ray 
Foraging 
Optimization 
(ECMRFO) 

Classification 
(improve the 
classification 
accuracy), 
managing 
uncertainty 

Image 
Classification 

Data limitations: The dataset used 
in the study is limited to 156 
patients. This dataset has not 
been tested in larger and different 
clinical scenarios.  
 
Method Limitations: The model 
was only tested on a specific 
dataset and not tested with other 
imaging techniques or data sets. 
 
No medical confirmation 
 

Accuracy: 99.38 % 
Sensitivity: 100% 
Specificity: 98.89% 
F1-Score: 99.33% 
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No Research 
Title 

Fuzzy Logic 
Techniques 
 

Sample 
Size 

Hybrid or Nonhybrid Fuzzy Using 
Aim 

Methodological 
Focus 

Limits in Research Performance Metrics 

6 Xing et al., 
2024 [38] 

Fuzzy K-Nearest 
Neighbor (K-NN): 
Fuzzy Clustering: 
Fuzzy Inference 
Systems (FIS): 

156 
patients 

Hybrid Fuzzy K-
Nearest 
Neighbor 
(FKNN) + 
Enhanced 
Manta Ray 
Foraging 
Optimization 
(ECMRFO) 

Classification 
(improve the 
classification 
accuracy), 
managing 
uncertainty 

Image 
Classification 

Data limitations: The dataset used 
in the study is limited to 156 
patients. This dataset has not 
been tested in larger and different 
clinical scenarios.  
 
Method Limitations: The model 
was only tested on a specific 
dataset and not tested with other 
imaging techniques or data sets. 
 
No medical confirmation 
 
 

Accuracy: 99.38 % 
Sensitivity: 100% 
Specificity: 98.89% 
F1-Score: 99.33% 
 

7 

 

Zakaria et 
al., 2023 
[47] 

Fuzzy Linear 
Regression 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 

165 lung 
cancer 
patients 

Non-
hybrid 

Handle 
uncertainty in 
predicting 
high-risk 
symptoms of 
lung cancer 
  

Fuzzy linear 
regression. 

Risk Prediction Data limitations: The dataset used 
in the study is limited to 124 
samples. 
 
Method Limitations: The model 
has not been tested on different 
datasets and clinical scenarios. It 
is also limited in the detection of 
early-stage lung cancer Symptoms 
 
No medical confirmation and since 
the dataset consist of advanced 
lung cancer cases, there are 
deficiencies in early-stage 
detection 
 

Mean Square Error (MSE): 
1.455 (H=0.0) 
Root Mean Square Error 
(RMSE): 1.206 (H=0.0) 
Highest Risk Symptoms: 
Hemoptysis (14.5494) and 
chest pain (10.6765) were 
found to be the highest 
risk symptoms 
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No Research 
Title 

Fuzzy Logic 
Techniques 
 

Sample 
Size 

Hybrid or Nonhybrid Fuzzy Using 
Aim 

Methodological 
Focus 

Limits in Research Performance Metrics 

8 Nan et al., 
2023 [48] 

Fuzzy Attention 
Mechanism 
Fuzzy Rule-Based 
Systems 
Fuzzy Clustering 
Fuzzy Inference 
Systems (FIS) 

130 cases 
 
 

Hybrid Reduce 
uncertainty 

Fuzzy logic 
with Neural 
network  

Image 
Segmentation 

Data limitations: The small size of 
the data sets may limit the 
generalizability of the model. 
Method Limitations: The 
generalizability of the model 
across multiple disease states 
(fibrosis and COVID-19) is limited 
 
No medical confirmation 
 

IoU (Intersection over 
Union): 87.38% (BAS 
data), 92.22% (COVID-19 
data), 82.69% (Fibrosis 
data) 
Precision: 91.87% (BAS 
data), 94.31% (COVID-19 
data), 89.04% (Fibrosis 
data) 
Detected Branch Ratio 
(DBR): 89.01% (BAS 
data), 90.18% (COVID-19 
data), 73.44% (Fibrosis 
data) 
Detected Length Ratio 
(DLR): 92.71% (BAS 
data), 93.30% (COVID-19 
data), 78.98% (Fibrosis 
data) 
 
 

9 Singh & 
Susan, 
2023 [45] 

 

 
Fuzzy Min-Max 
Neural Networks 
(FMMNN): 
Enhanced 
FMMNN: 
Fuzzy Rule-Based 
Systems: 

203 
samples 

Hybrid General Fuzzy 
min-max 
(GFMM) and 
Enhanced 
Fuzzy min-
max (EFMM) 
neural 
networks 
 

Classification 
(classifying 
lung cancer 
subtypes) 
and managing 
uncertainty 

Gene 
Expression 
Analysis 

Data limitations: The dataset used 
in the study is limited to 203 
samples. Imbalance in the data 
set can also affect the 
classification results. 
 
Method Limitations: It was 
observed that EFMM was not 
effective in small sample sizes. 
 
No medical confirmation 

Accuracy: 98.04% 
(Validation), 94.06% 
(Cross-validation). 
Cross-validation Accuracy: 
94.06 
EFMM Accuracy: 90.2% 
(Validation), 93.07% 
(Cross-validation) 
Execution Time: 4.57 
seconds (GFMM) 



Prediction of Lung Cancer with Fuzzy Logic Methods: A Systematic Review                                                                                                                                                                                                    179 

  Artificial Intelligence Theory and Applications, Vol. 4, No. 2 

No Research 
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Fuzzy Logic 
Techniques 
 

Sample 
Size 

Hybrid or Nonhybrid Fuzzy Using 
Aim 

Methodological 
Focus 

Limits in Research Performance Metrics 

10 Chang, 
2023 [13] 

Fuzzy Evaluation 
Systems: 
Fuzzy Inference 
Systems (FIS): 
Fuzzy Rule-Based 
Systems: 

22,489 
lung 
cancer CT 
images  

Non-
hybrid 

Fuzzy 
evaluation 
approach 

Handle 
uncertainty 
 
 
 
 
 
 
 

Image 
Classification 

Data limitations: The dataset may 
limit the generalizability of the 
model to other clinical scenarios 
as it focuses only on a specific 
type of cancer 
 
Method Limitations: The 
performance of the model on other 
imaging techniques and multi-
class classification problems has 
not been evaluated. This limits its 
success in more complex 
scenarios. 
 
No medical confirmation 
 
 

Accuracy: 99.19% 
(optimized LeNet-5 CNN) 
Sensitivity: 99.80% 
Specificity: 98.60% 
RPI (Recognition 
Performance Index): 
1.0496 (indicates 
superiority of the 
optimized model) 

11 Navaneeth
akrishnan 
et al., 2023 
[43] 

Fuzzy SegNet 
Fuzzy Clustering 
Fuzzy Inference 
Systems (FIS) 
Optimized Deep 
Learning 

1018 Lung 
CT Scan 

Hybrid Fuzzy C-
Means 
clustering and 
a Deep Fuzzy 
SegNet 
 
 
 

Clustering Image 
Segmentation 

Data limitations: Limited number of 
chest CT images 
 
 
Method Limitations: It is unclear 
how the model will perform on 
different datasets and other cancer 
types. 
 
No medical confirmation 
 

Accuracy: 92.43 
Sensitivity: 94.21 
Specificity: 89.15 

12 Gugulothu 
& Balaji, 
2023 [49] 

LLXcepNN 
Classifier 
Fuzzy Rule-Based 
Systems 
Fuzzy Clustering 
Fuzzy Inference 
Systems (FIS) 

1010 
patients 

 
 

Hybrid 
 

Geodesic 
Fuzzy C-
Means 
Clustering 
(GFCM) + 
Deep 
Learning 
models 

Classification Image 
Classification 

Data limitations: The dataset is 
limited to low-resolution lung 
tomography images. 
 
Method Limitations: The 
LLXcepNN model has not been 
tested for applicability in different 
clinical scenarios and more 
complex cases. 
 
No medical confirmation 
 

Accuracy: 96.89 % 
Sensitivity: 95.98 % 
Specificity: 96.78 % 
Error Rate: 3.12 % 
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No Research 
Title 

Fuzzy Logic 
Techniques 
 

Sample 
Size 

Hybrid or Nonhybrid Fuzzy Using 
Aim 

Methodological 
Focus 

Limits in Research Performance Metrics 

13 Nagaraja & 
Chennupati
, 2023 [50] 

Adaptive 
Segmentation: 
Fuzzy Rule-Based 
Systems: 
Heuristic-Aided 
Ensemble 
Learning: 
Fuzzy Inference 
Systems (FIS) 
 
 

2000 CT 
images 

Hybrid Adaptive fuzzy 
clustering + 
Improved 
Harris Hawks 
Optimization 
(IHHO) 
algorithm 

Classification 
and managing 
uncertainties 

Image 
Classification 

Data limitations: - 
 
Method Limitations:  - 
 
No medical confirmation 
 

  
 
 
 

- 

14 Lin & Yang, 
2023 [21] 

 

Convolutional 
Fuzzy Neural 
Network (F-
CFNN) 

22.489 
Lung 
Cancer CT 
İmages 
 
 

Hybrid 
 
 

Fuzzy logic 
and deep 
learning 

Classification 
and managing 
uncertainties 
 
 

Image 
Classification 

Data limitations: The SPIE-AAPM 
dataset contains a limited number 
of images and has not been tested 
in different populations. 
 
Method Limitations: The Taguchi-
based F-CFNN model was 
optimized only on this data set. 
 
No medical confirmation 
 
 

Accuracy: 99.98 % 
Sensitivity: 100% 
Specificity: 99.96% 

15 Albert 
Jerome et 
al., 2023 
[39] 

 

 

Fuzzy bean-based 
classifier for 
medical image 
classification and 
a classifier 
optimized using 
fuzzy texture 
segmentation 
rules for image 
segmentation. 
Coactive adaptive 
neuro-fuzzy 
interference 
system classifier 
(CAFIS)  
 

455 
patients 

Hybrid Coactive 
Adaptive 
Neuro-Fuzzy 
Inference 
System 
(CAFIS) + 
Recurrent 
Convolutional 
Neural 
Network 
(RCNN) 

Classification Image 
Classification 

Data limitations: LIDC-IDRI and 
tested on a limited clinical dataset. 
 
Method Limitations: WSBTI 
segmentation algorithm and 
RCNN classifiers were tested only 
on specific datasets 
 
No medical confirmation 
 
 
 

 
 
 
 
 
 
Accuracy: 97.6% (RCNN) 
Sensitivity: 97.0% (CAFIS) 
Specificity: 97.6% (RCNN) 
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Fuzzy Logic 
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Hybrid or Nonhybrid Fuzzy Using 
Aim 

Methodological 
Focus 

Limits in Research Performance Metrics 

16 Shalin et 
al., 2022 
[29] 

Fuzzy Inference 
Systems (FIS) 
Fuzzy Rule-Based 
Systems 
Fuzzy Clustering 

12.533 
gene 
expression 

Non-
Hybrid 

Feature 
Variance 
Based Fuzzy 
Classifier 
(FVFC) 
 

Classification Gene 
Expression 
Analysis 

Data limitations: Human 
GeneAtlas dataset contains limited 
gene Expression 
 
No medical confirmation 
 

Accuracy: 92.27% 
Precision: 0.8971% 
Recall: 0.8838% 

17 Geng et al., 
2022 [52] 

Fuzzy Inference 
Systems (FIS) 
Fuzzy Rule-Based 
Systems 
Fuzzy Clustering 

82 
patients 

Non-
Hybrid 

Fuzzy 
enhancement 
algorithm 

Enhance image 
contrast 

Image 
Classification 

Data limitations: The dataset used 
is limited to a limited group of 
patients and a specific hospital. 
 
Method Limitations: The method 
used in the model is optimized 
only with certain parameters and 
does not include different datasets 
or genetic variables 
 
No medical confirmation 
 
 

Accuracy: 95.1% 
Sensitivity: 90.9% 
Specificity: 100% 

18 Wu et al., 
2022 [32] 

 

Fuzzy Inference 
System 
Fuzzy Rule-Based 
Systems: 
Fuzzy Clustering: 

1097 
observatio
ns 

Non-
Hybrid 

Fuzzy 
inference 
modeling 
(FIM) 

Classification 
and managing 
uncertainties 
 

Epidemiological 
Analysis 

Data limitations: The dataset was 
analyzed based only on specific 
risk factors and limited 
geographical areas, which limits its 
general validity. 
 
Method Limitations:  The 
performance of the modeling 
methods has not been tested on 
larger datasets that can be 
generalized. 
 
No medical confirmation 
 

Random Forest Model: 
96.17% accuracy rate was 
achieved 
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No Research 
Title 

Fuzzy Logic 
Techniques 
 

Sample 
Size 

Hybrid or Nonhybrid Fuzzy Using 
Aim 

Methodological 
Focus 

Limits in Research Performance Metrics 

19 

 

Sinthia et 
al., 2022 
[31] 

Fuzzy Butterfly 
Optimization 
Algorithm: 
Fuzzy Rule-Based 
Systems: 
Fuzzy Inference 
Systems (FIS): 

47 
participant
s 

Hybrid Fuzzy 
Butterfly 
Optimization 
Algorithm 
(FBOA) + 
Faster RCNN 

Classification in 
decision 
making process 

Image 
Classification 

Data limitations: Limited sample 
size and therefore limited 
generalizability and applicability of 
the model to larger patient 
populations 
 
Method Limitations: Although the 
proposed RCNN and fuzzy 
butterfly optimization algorithm 
provides high accuracy, the 
training process and 
computational costs of the model 
are high. Moreover, the algorithm 
has not been tested with different 
datasets. 
 
No medical confirmation 
 

Accuracy: 97% 
Sensitivity: 98% 
F1-Score: 99% 

20 Prasad et 
al., 2022 
[53] 

Fuzzy K-Means 
Clustering 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 
 
 
 
 
 
 
 
 

1018 
cases  

Hybrid Fuzzy K-
means 
clustering with 
deep learning 
techniques 

Classification Image 
Classification 

Data limitations: It was performed 
with a limited dataset and the 
performance of the model on 
different populations and clinical 
scenarios is uncertain 
 
Method Limitations:  K-means 
clustering and deep learning 
methods are optimized only on a 
specific dataset 
 
No medical confirmation 

Accuracy: 96% 
Sensitivity: 99 
Specificity: 100% 
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Methodological 
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Limits in Research Performance Metrics 

21 Zhang et 
al., 2022 
[39] 

 

Fuzzy C-Means 
Clustering 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 
 
 
 

65 cases Non-
hybrid 

Fuzzy C-
Means (FCM) 
clustering 
algorithm 

Classification Image 
Classification 

Data limitations: It Limited sample 
(65) may limit the generalizability 
of the model to large patient 
populations 
 
Method Limitations:  The Fuzzy C-
Means clustering algorithm has 
only been tested on a specific 
dataset and has not been 
validated with other datasets 
 
No medical confirmation 
 
 

Accuracy: 77.8% 
Specificity: 75.0% 
 
 
 

22 Jassim & 
Jaber, 2022 
[30] 

Fuzzy Decision-
Making 
Techniques 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 

IQ-
OTH/NCC
D lung 
cancer 
(1097 
samples) 

Hybrid Fuzzy 
Multicriteria 
Decision 
Making + Deep 
Learning 
Techniques 

Classification Data Imbalance 
Handling 

Data limitations: The study was 
performed with a limited number of 
lung cancer images, 
 
Method Limitations:  The proposed 
deep learning model was tested 
with certain limited data sets 
 
No medical confirmation 
 
 

Accuracy: 99.27% 
Sensitivity: 99.33% 
Specificity: 99% 

23 Geetha & 
Joseph, 
2022 [33] 

Fuzzy Inference 
Systems (FIS) 
Fuzzy Rule-Based 
Systems 
Fuzzy Clustering 

5,606 X-
ray 
images 
(used %5) 

Hybrid Enriched 
Auto-Seed 
Fuzzy Means 
Morphological 
Clustering 
(EASFMC) + 
Modified 
Butterfly 
Optimization 
Algorithm 
(MBOA) 
 

Classification Image 
Classification 

Data limitations: Limited to NIH 
Chest X-ray dataset 
 
Method Limitations:  The model is 
only tested on this dataset 
 
No medical confirmation 
 

Accuracy: 98.45% 
Sensitivity: 95% 
F1-Score: 98.85% 
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Fuzzy Logic 
Techniques 
 

Sample 
Size 

Hybrid or Nonhybrid Fuzzy Using 
Aim 

Methodological 
Focus 

Limits in Research Performance Metrics 

24 Dev et al., 
2022 [34] 

Fuzzy Semantic 
Segmentation 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 

150 lung 
cancer 
patient 
records 

Hybrid Fuzzy 
Semantic 
Segmentation 
technique + 
Convolutional 
Neural 
Networks 
(CNNs) 
 

Classification 
and managing 
uncertainties  
 
 
 

Image 
Classification 

Data limitations: Data consists of a 
limited number of images 
 
Method Limitations:  The proposed 
fuzzy logic and DNN based 
methods are tested only on 
specific data sets, 
 
No medical confirmation 
 
 
 

Accuracy: 91.42 % 
Sensitivity: 90.38 % 
Specificity: 82.41 % 
 

25 Thamilselva
n, 2022 [54] 

Fuzzy Inference 
Systems (FIS) 
Fuzzy Rule-Based 
Systems 
Fuzzy Clustering 

- Hybrid Enhanced K-
Nearest 
Neighbor 
(EKNN) and 
Advanced 
Classification 
and 
Regression 
Tree (ACART) 

Managing 
Uncertainties 

Risk Prediction Data limitations: The study was 
conducted using a limited dataset, 
 
Method Limitations:  Although the 
algorithms used offer high 
accuracy, they have not been 
tested with other datasets and the 
optimization of the algorithms 
could not be evaluated in different 
clinical scenarios 
 
No medical confirmation 
 
 

Accuracy: 97% (KNN), 
98.3% (ACART) 

26 Nivedita et 
al., 2021 
[55] 

Fuzzy 
Mathematical 
Inference System: 
 
Fuzzy Rule-Based 
Systems: 
 
Fuzzy Inference 
Systems (FIS): 

- 
 
 
 
 

Non-
hybrid 

Mamdani 
Fuzzy 
Inference 
System 
 

Managing 
uncertainties 

Lung Cancer 
Diagnosis 
 
 
 
 
 
 
 
 

Data limitations: Limited to data 
from a specific hospital and a 
limited number of patients 
 
Method Limitations: The fuzzy 
inference system only works with 
specific symptoms and does not 
consider other possible cancer 
symptoms 
 
No medical confirmation 
 

The model was tested 
using MATLAB and was 
able to correctly classify 
different degrees of 
symptoms, but the exact 
performance metrics are 
not specified in the paper. 
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27 Lavanya et 
al., 2021 
[56] 

Firefly Algorithm 
Fuzzy C-Means 
Segmentation 
Fuzzy Inference 
Systems (FIS) 
Fuzzy Rule-Based 
Systems 

- 
 
 
 
 
 
 

Hybrid Firefly 
Algorithm 
Fuzzy C-
Means (FA-
FCM) 
Segmentation 
+ Support 
Vector 
Machine 
(SVM) 
 
 

Classification 
and managing 
uncertainties 
 

Image 
Classification 

Data limitations: - 
 
Method Limitations:  - 
 
No medical confirmation 
 
 

 
 
 
 
 
 

28 Priyadharsh
ini & 
Zoraida, 
2021 [57] 

Bat-Inspired 
Metaheuristic 
Algorithms 
Fuzzy Inference 
Systems (FIS) 
Fuzzy Rule-Based 
Systems 

1018 
cases  

Non-
Hybrid 

Fuzzy C-
means (FCM) 

Classification Image 
Classification 

Data limitations: Limited to the 
LIDC-IDRI dataset 
 
Method Limitations:  The 
segmentation and classification 
processes using the Fuzzy C-
Means algorithm and BAT 
optimization were optimized only 
on this data set 
 
No medical confirmation 
 
 

Accuracy: 97.43 
 
 

29 Deepa & 
Suganthi, 
2020 [58] 

Fuzzy Shape 
Representation 
 
Kernel-Induced 
Random Forest 
Classifier 
 
Fuzzy Rule-Based 
Systems 

1018 CT 
scan 
images 

Hybrid Fuzzy logic + 
kernel-
induced 
random forest 
classifiers 

Managing 
uncertainties 

Image 
Classification 

Data limitations: Limited to the 
LIDC-IDRI dataset. 
 
Method Limitations:  The fuzzy 
shape representation and kernel-
induced random forest classifier 
were tested on this dataset only 
 
No medical confirmation 
 

Accuracy: 94% 
Sensitivity (Recall): 91.2% 
Specificity: 92.4% 
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Focus 
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30 Zhao et al., 
2020 [59] 

 

Fuzzy C-Means 
Clustering 
Deep Belief 
Networks (DBN) 
Fuzzy Rule-Based 
Systems 

1018 
cases lung 
CT images 

Hybrid Deep Belief 
Networks 
(DBN) + 
Fuzzy C-
Means 
clustering 

Clustering Clustering Data limitations: The datasets are 
from a limited population and have 
not been tested in broader or 
different clinical scenarios 
 
Method Limitations:  The 
methodology used was tested only 
on specific data sets. 
 
No medical confirmation 
 
 

Accuracy: 99.19% 
Sensitivity: 99.80% 
Specificity: 98.60% 

31 Khalil et al., 
2020 [44] 

Fuzzy Soft Sets 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 

45 
Patients 
 

Non-
hybrid 

Fuzzy Soft 
Expert System 

Managing 
uncertainties 

Risk Prediction Data limitations: The study used a 
dataset of only 45 test patients, 
which may not fully represent a 
diverse population of lung cancer 
patients. 
 
Method Limitations:  The proposed 
fuzzy soft expert system is based 
on complex fuzzy logic, which may 
require further validation in larger 
datasets and real-world clinical 
settings. 
 
No medical confirmation 
 
 

Accuracy: 100% on test 
data for lung cancer 
prediction 

32 Yazdani et 
al., 2020 
[60] 

 

 

Bounded Fuzzy 
Possibilistic 
Method 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 

231 
Samples 

Non-
hybrid 

Bounded 
Fuzzy 
Possibilistic 
Method 
(BFPM) 

Managing 
uncertainties 

Metabolomics 
Analysis 

Data limitations: Limited to the 
dataset 
 
Method Limitations:  The Bounded 
Fuzzy Probability Method (BFPM) 
requires high computational 
resources, which may limit its 
practical application in real-time 
environments. 
 
No medical confirmation 
 

Accuracy: Significant 
differences were found 
between serum samples 
of healthy individuals and 
serum samples of lung 
cancer patients, providing 
insight for early detection 
and diagnosis. 
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33 Liao et al., 
2019 [61] 

 

Hesitant Fuzzy 
Information 
Double 
Normalization-
Based Multi-
Aggregation 
(DNMA) 
Fuzzy Rule-Based 
Systems 
 

- Hybrid DNMA method 
+ the fuzzy 
Delphi method 
+ hesitant 
fuzzy 
information 

 

Managing 
uncertainties 

Early Detection 
 

Data limitations: Limited to the 
samples 
 
Method Limitations: The extended 
method was optimized only with 
specific measures and was not 
tested with other datasets, 
 
No medical confirmation 
 
 

Accuracy: 92.43% 
Sensitivity: 94.21% 
Specificity: 89.15% 

34 Moitra and 
Mandal, 
2019 [62] 

 

Fuzzy rough 
nearest neighbour 
method. Fuzzy 
Rule-Based 
Systems.               
Fuzzy Inference 
Systems (FIS) 

 

211 
Patients 

Hybrid Fuzzy logic + 
rough set 
theory and the 
nearest 
neighbor 
approach 

Classification 
and managing 
uncertainties 
 

Classification Data limitations: Limited to the 
samples 
 
Method Limitations: Fuzzy Rough 
Nearest Neighbor cleaning has 
high programming cost due to its 
complexity compared to other 
temperatures. 
 
No medical confirmation 
 
 

Accuracy : 95% 
Sensitivity (Recall) : 93% 
F-measure: 93% 

35 Reddy and 
Reddy, 
2019 [63] 

 

Frequency Ratio 
Fuzzy C-Means 
(FRFCM) 
Fuzzy C-Means 
(FCM) 
Kernelized Fuzzy 
C-Means (KFCM) 
Spatially Adaptive 
Fuzzy C-Means 
(SAFCM) 
Fuzzy Local 
Information C-
Means (FLICM) 
 

- Hybrid Fuzzy logic + 
Neural 
Networks 
 
 
 

Classification 
and Managing 
uncertainties 

Image 
Classification 

Data limitations: Limited number 
and types of CT images 
 
Method Limitations: Neural 
networks and fuzzy logic methods 
used in the study were tested only 
on specific data sets 
 
No medical confirmation 

Accuracy: 96.67% 
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36 Palani & 
Venkatalak
shmi, 2019 
[64] 

 

Fuzzy C-Means 
Clustering 
algorithm  

 

 

113 lung 
images 

Hybrid  Fuzzy C-
Means 
Clustering + 
temporal 
features + 
Association 
Rule Mining 
(ARM) + 
Decision Tree 
(DT) 
classifiers, 
and 
Convolutional 
Neural 
Networks 
(CNN) 
 
 
 
 
 

Classification 
and prediction 

Prediction Model Data limitations: Data sets are 
limited and have not been tested 
on larger, diverse populations 
 
Method Limitations: The proposed 
IoT-based forecasting model has 
been evaluated with limited tests 
and specific datasets. It has not 
been tested in more complex 
scenarios. 
 
No medical confirmation 

Accuracy: 99.54% 
Sensitivity: 85% 
Specificity: 85% 

37 Hussain et 
al., 2019 
[35] 

Refined Fuzzy 
Entropy Methods 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 

76 
patients 
(945 
images) 

 
Non-
hybrid 

Refined Fuzzy 
Entropy 
Multiscale 
Fuzzy Entropy 
and Refined 
Composite 
Multiscale 
Fuzzy Entropy 
– just fuzzy 
techniques 

Managing 
uncertainties 

 
Image Feature 
Extraction 

 
Data limitations: small sample size 
 
Method Limitations: The 
complexity of extracting features 
such as texture, morphological 
and elliptical Fourier descriptors 
limits the generalizability of the 
results across various datasets. 
 
No medical confirmation 
 
 
 
 
 
 
 
 
 
 

Using different entropy 
measurements (P values 
as low as 1.95E-50 for 
tissue features), high 
statistical significance was 
achieved in differentiating 
NSCLC from SCLC. 
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38 Arunkumar 
et al., 2019 
[65] 

Fuzzy Rough Sets 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 

Leukemia
:72  
Central 
Nervous 
System:6
0  
Lung 
cancer:18
1  
Ovarian 
cancer:25
3  

Hybrid Fuzzy rough 
set theory + 
customized 
fuzzy 
triangular 
norm operator 
for feature 
selection 
 
 

Improving 
classification 
accuracy, 
enhancing the 
prediction of 
cancer types 

Cancer 
Prediction 

Data limitations: The study is 
based on microarray gene 
expression data and the datasets 
contain a limited number of 
samples. This may limit the 
generalizability of the model 
across different data sets and real-
world applications 
 
Method Limitations: The proposed 
fuzzy rough clustering algorithm 
was tested only on specific data 
sets. 
 
No medical confirmation 
 
 

Accuracy (CA): 98.11% 
(for lung cancer dataset) 
Precision: 98.1 
F1-Score: 98.7 

39 Manikandan 
& Bharathi, 
2017 [42] 

Hybrid Neuro-
Fuzzy System 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 

217 
samples 
(167 lung 
cancer 
patients, 
50 normal 
patients)  

Hybrid Fuzzy logic 
and Neural 
Networks 

Managing 
uncertainty 

Lung Cancer 
Staging 

Data limitations: Limited sample 
size therefore the results cannot 
be generalized to a wider 
population 
 
Method Limitations: The proposed 
neural network and fuzzy logic 
system are tested on a specific 
dataset, which limits the 
performance of the model on other 
datasets. 
 
No medical confirmation 
 
 

Accuracy: 97.7% 
Sensitivity: 100% 
Specificity: 80% 

40 Yilmaz et 
al., 2016 
[66] 

 

Fuzzy Risk 
Assessment 
Models 
Fuzzy Inference 
Systems (FIS) 
Fuzzy Rule-Based 
Systems 

1536 
samples 

Hybrid Fuzzy logic 
and Neural 
Networks 

Managing 
uncertainty 

Risk Analysis Data limitations: The study is 
limited to lung cancer data from 
1536 people. 
 
Method Limitations: The proposed 
model is optimized only with a 
specific data set 
 
No medical confirmation 
 

Accuracy: 94.64 
Sensitivity: 96.69% (for 
stress model) 
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41 Manikanda
n & 
Bharathi, 
2016 [67] 

Fuzzy Auto-Seed 
Cluster Means 
SVM Classifier, 
Fuzzy Rule-Based  
Systems 

106 
samples 

Hybrid Fuzzy 
clustering with 
a Support 
Vector 
Machine 
(SVM) 

 
Clustering 

Image 
Classification 

Data limitations: Limited patient 
data 
 
Method Limitations: The fuzzy 
automatic seed clusters 
morphological segmentation 
algorithm used was tested only 
with specific datasets and was not 
validated on different datasets 
 
No medical confirmation 
 
 
 

Accuracy: 94% 
Sensitivity: 100% 
Specificity: 93% 

42 Sakthivel et 
al., 2016 
[68] 

 

 
Intelligent Fuzzy 
C-Means 
Clustering 
SVM Classifier 
Fuzzy Rule-Based 
Systems 

400 lung 
CT images 

Hybrid Intelligent 
Fuzzy C-
Means (IFCM) 
+ Support 
Vector 
Machine 
(SVM) 

Managing 
uncertainty 

Image 
Classification 

Data limitations: Limited number of 
CT images 
 
Method Limitations: The proposed 
fuzzy C-means algorithm was 
tested only on this dataset. 
 
No medical confirmation 
 
 
 

Accuracy: 97.6% 
Sensitivity: 98% 
Specificity: 97% 

43 Ghosh & 
De, 2016 
[69] 

 

Fuzzy Correlated 
Association 
Mining 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 

Lung 
cancer; 
86  
Colon 
cancer;18  
Breast 
cancer;4 
tumor  
Sarcoma; 
39  
Leukemia
; 43 tumor 
 
  
 

Non- 
hybrid 

Fuzzy 
Correlated 
Association 
Mining 
(FCAM) 
 

Managing 
uncertainties 
and  
Association 
mining 

Gene 
Association 
Mining 

Data limitations: - 
 
Method Limitations: - 
 
No medical confirmation 
 

- 
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44 Daliri, 2012 
[20] 

 

Fuzzy Extreme 
Learning 
Machines 
(FELMs) 
Genetic Algorithm 
Fuzzy Rule-Based 
Systems 

32 
Samples 

Hybrid Genetic 
Algorithm for 
feature 
selection and 
a Fuzzy 
Extreme 
Learning 
Machine  

Classification Cancer 
Diagnosis 

Data limitations: Limited patient 
data 
 
Method Limitations: The proposed 
genetic algorithm and fuzzy logic 
based learning machine are 
optimized on specific datasets and 
not tested on other datasets 
 
No medical confirmation 
 
 

Accuracy: 98.85% 

45 Polat and 
Günes, 
2008 [37] 

 

Fuzzy Weighting 
Pre-Processing 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 

32 
Samples 

Non-
hybrid 

Fuzzy 
membership 
functions 

Improve the 
performance of 
the Artificial 
Immune 
Recognition 
System (AIRS) 
classifier 

Cancer 
Diagnosis 

Data limitations: Limited dataset 
 
Method Limitations: The proposed 
algorithm has only been tested on 
a specific dataset 
 
No medical confirmation 
 
 

Accuracy: 100% (with 
PCA, Fuzzy Weighing, 
AIRS) 

46 Phillips et 
al., 2007 
[70] 

Fuzzy Inference 
Systems (FIS) 
Fuzzy Rule-Based 
Systems 
Fuzzy Clustering 
 

193 
subjects 
211 
controls 

Non-
hybrid 

Fuzz logic 
model 

Enhance the 
prediction 
accuracy of 
lung cancer 

Biomarker 
Analysis 

Data limitations: - 
 
Method Limitations: - 
 
No medical confirmation 
 
 

- 

“ Turna et al., 
2005 [71] 

Fuzzy Inference 
Systems (FIS) 
Fuzzy Rule-Based 
Systems 
Fuzzy Clustering 

91 
patients 

Non-
hybrid 

Fuzzy logic 
model 

Predict the risk 
of 
complications 
after lung 
resection 
surgery 
 

Risk Prediction Data limitations: Limited dataset 
 
Method Limitations: The proposed 
fuzzy logic system was built using 
a limited number of parameters. Its 
validity for different clinical 
scenarios has not been tested. 
 
No medical confirmation 
 

Sensitivity: 76% 
Accuracy: 83% 
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48 Schneider 
et al., 2003 
[10] 

Fuzzy Logic-
Based Tumor 
Marker Profiles 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 
 

33 lung 
cancer 
patient 

Non-
hybrid 

Fuzzy logic 
rule-based 
system 

Improve the 
sensitivity of 
detecting tumor 

Cancer 
Progression 
Analysis 

Data limitations: - 
 
Method Limitations:  - 
 
No medical confirmation 
 

- 

 

49 

 

Schneider 
et al., 2002 
[9] 

 
 
Fuzzy Logic-
Based Tumor-
Marker Profiles 
Fuzzy Rule-Based 
Systems 
Fuzzy Inference 
Systems (FIS) 

 
 
 
175 lung 
cancer 
patients 

 
 
 
 
Non-
hybrid 

 
 
 
 
Fuzzy logic 
system 

 
 
 
Enhance the 
diagnostic 
sensitivity of 
tumor markers 
for lung cancer 

 
 
 
Cancer 
Detection 

 
 
 
Data limitations: Limited dataset 
 
Method Limitations: The proposed 
fuzzy logic-based model was 
tested only in specific conditions 
and was not optimized for different 
patient groups or disease stages 
 
No medical confirmation 
 

 
 
 
 
 
Accuracy: 92% 
Sensitivity: 92% 

  


