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Nonlinear Dynamics Induced by Coil Heat in the PMDC
Motor and Control
Arnaud Ngonting Topy ID ∗ α,1, Justin Roger Mboupda Pone ID ∗,2, Alex Stephane Kemnang Tsafack ID α,3 and Andre Cheukem ID ∗,4

∗Research Unit of Automation and Applied Computers (RU-AIA), Electrical Engineering Department of UIT-FV, University of Dschang, P.O. Box: 134,
Bandjoun, Cameroon, αResearch Unit of Condensed Matter of Electronics and signal Processing (RU-MACETS). Department of Physics, Faculty of Sciences,
University of Dschang, P.O. Box 67, Dschang, Cameroon.

ABSTRACT In this paper, the interesting dynamics of chaos induced by the effect of the variation of internal
average heat during operation in the DC motor control by the full bridge drive are analyzed. By using simple
powerful tools of analyzing nonlinear dynamical systems like phase portraits, time traces and frequency
spectrum in the MATLAB-SIMULINK environment, we showed that under certain conditions, the PMDC motor
develops different behaviors as periodic limit cycles, and chaotic attractors, when the motor drive different
form of external load torque and the windings resistance variation. This paper presents the first studies on
the variation of the average heat of the motor and the amplitude of the triangular load torque to produce the
strange phenomena like chaos as far as our knowledge go. A chaos control of the unstable regime is proposed
to stabilize the PMDC motor in a desire regime. This contribution is very important in industry because some
unexplained dynamical behaviors of the DC motor driven by a full bridge now can be avoided.

KEYWORDS

PMDC motor
Triangular load
torque
Windings coil heat
Phase portraits
Periodic oscilla-
tions
Torus
Chaos
Chaos control

INTRODUCTION

The electric motor (EM) is the most used actuator in industry (Yu
et al. 2011; Dalcalı 2018) . The electromotive force (EMF) powers
most of the electro-mechanical actuators in the industry. In these
systems the torque is created by using the Laplace laws. Among
various type of these EM actuators, there is the permanent magnet
DC electrical motors that are sufficiently used in industry today
due to its linear torque characteristics, adjustable speed simplicity
of control less noise operation and longer durability (Klein and
Kenyon 1984; Arat 2018; Gieras 2009). Generally, The actuator
in this contribution is a type of DC motor that uses a permanent
magnet (PM) to create the electromotive force (EMF) useful for its
operation(Öztürk 2020; Pillay and Krishnan 1989). This electrome-
chanical actuator is useful in applications like automotive indus-
trial robots, production automated system, agriculture, aerospace
just to name some sample contributions (Liao et al. 1995).

Manuscript received: 18 April 2024,
Revised: 2 August 2024,
Accepted: 13 September 2024.
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In order to fulfill their industrial requirements, a bridge con-
trolled is widely used in this purpose. In PMDC electrical motor
drive, power transistors provide nonlinearity in the overall system
due to their on/off state (Parsa and Toliyat 2005). Some nonlin-
ear dynamical contributions have been intensively studied and
have proven to exhibit stable, regular, oscillation behaviors and
chaos (Öztürk 2020). Some studies show that nonlinear system
can entered chaos regime via complex behavior while one or two
parameters are varied (Poliashenko and Aidun 1995; Ayan and
Kurt 2018). Some simple condition to entering chaos in systems in-
cluding few fundamental electrical drive systems are described by
(Chau and Wang 2011) .These chaos regimes are usually unwanted
because they could be harmful to the industrial application (Tahir
et al. 2017). Among these parameters are the load the DC source,
the control speed, the duty ratio, or the parameter of the feedback
control system .

Okafor et al. (2010b) reported the multistability of P-1 and P-3
attracting sets and fractal basin boundaries in dc drives controlling
a PMDC motor by using a 4 quadrants DC/DC converter circuit.
Using the well-known Filippov condition, the stability nature of
P-1 and P-3 attractors was computed to explain the presence of
the competing limit cycles. His contribution aimed to prevent the
occurrence of this behavior by adding a controller that extend the
parameter range for safe limit cycle operation. Öztürk (2020) shows
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by using MATLAB/Simulink model, that under chaotic load the
asynchronous machine develops chaos. As far as concerned the
chaotic effect in the motor, we note that other authors described
the behaviors of dynamics and control of chaos in the IFOC of 3-Φ
IM. They show simple criterion for the motor to develops periodic
and chaotic behavior (Tsafack et al. 2020). Okafor et al. (2010a,
2015) analyzed and controlled period cascade to chaos in DC/DC
converter employing a full-bridge using Filippov’s algorithm. The
authors showed that the monodromy matrix and its eigenvalues
could be computed by the periodic orbit stability analyses. The
previous result can be modified by the appropriate computation
of the saltation matrix of the system. Hence, they designed a
controller to stabilize the behavior to period-l operation of the
PMDC motor.

Abdullah et al. (2016) and Tahir et al. (2017) suppressed the
chaos regime by using the sliding mode control method. Recently,
Moustafa et al. (2021) study the Floquet theory to control the sys-
tem, they experienced oscillations when varying the load torque
without qualitative variation of the dynamics. The control the
speed of the driven load and obtained strong stability of the system.
Tsafack et al. (2020) suppressed chaos by applying a self-feedback
controller in 3phases IFOC IM. In other hand, it is well known that
different losses (friction, Joule effect, copper losses. . . ) contributed
to motor heat increasing and reduce the motor efficiency, (speed,
torque . . . ) resulting in a thermal aging process and eventually
destroy the motor. Therefore, reducing thermal effect and increas-
ing motor cooling systems result to the longevity and reliability
of the EM (Bonnett 2001). Some good standing papers have fo-
cused on the thermal effects on the torque speed performance of a
Brushless Direct Current Motor (BLDCM) (Fussell 1993). Another
contribution analyzed the transient thermal network model that
could be used to predict some sensitivity of the model towards
design variables (Junak et al. 2008; Minghui and Weiguo 2010).

In summary of the previous contributions and as far as out
knowledge goes, no contribution has been interested on windings
currents heat consequences behavior on the nonlinear effect of
the PMDC motor that could explained some industrial chaotic
behavior of the driven process. This paper tries to bridge this
gap. We observed that till now, no-contribution has focused on
the influence of the thermal behavior of the rotor resistance to the
dynamic behavior of the PMDC motor: we set this as the main
objective of this paper. The chaotic behavior due to effect of the
internal heat in the motor when the motor drive different type of
load torque is proposed and some interesting dynamics like limit
cycles, torus, chaos due to the heat or resistance or the variation
of inductance are shown. These results are encouraging because
some unexplained dynamical behaviors of the DC motor driven
by a full bridge now can be explained and avoided (Pisarchik and
Feudel 2014).

The main highlights of this contributions are as follows:

• The variation of the amplitude value of a triangle load is
investigated and showed some chaotic regime in the PMDC
Motor.

• We discovered that the thermal heat on the winding’s resis-
tance induced interesting nonlinear behaviors like limit cycles,
period doubling route to chaos, torus, and chaotic attractors.

• We showed the existence of the nonlinear dynamics induced
by the heat on the magnet field not yet explained.

• A chaos control of the unstable regime due to these novel
dynamics is proposed to stabilize the PMDC motor in a desire
regime.

The outline of this article is as follows: the next section 2 intro-
duces the description of mathematical model of PMDC motor. In
section 3, the dynamical behaviors of the motor induced by the
load torque are presented. The section 4 highlights the effect of the
winding resistance variation due to heat with different variation.
The section 5 exhibits the control of the chaos using the load in the
PMDC motor. Finally, the section 6 concludes this paper.

MATHEMATICAL MODEL OF THE PMDC DRIVE

The mathematical model of the PMDC motor driven by a full
bridge converter is well documented (Okafor et al. 2010b; Okafor
2013; Abdullah et al. 2016) and the schematic diagram is recalled
in Figure (1).

Figure 1 The PMDC driven by a full bridge converter.

The system is built by connecting the power converter bridge,
a control electronic and permanent magnet DC motor. After a
long-term running, the system in Figure (1) toggled between 2
subsystems in accordance with the state of the output of the second
operational amplifier A2 used in switched mode. In the Figure
(1), V represent the supply voltage T1 , T2, T3, and T4 are the
semiconductor controlled rectifier, (SCR) L is the inductance, R is
the resistance, i(t) is the current, E is the voltage across the motor,
Vramp(t) is the sawtooth signal, ω(t) is the speed of the motor, Vref
represents the value of the reference speed of the motor, Vcomp(t)
is the difference between the reference speed and the actual speed
developed by the motor; PWM signal Pulse Width Modulated
voltage.

Operational amplifier Switch A2 is high
The differential equations governing the evolution of the current
and the speed of the motor are given in equations (1).

dw(t)
dt =

Te − TL − bw(t)
J

di(t)
dt =

−Ri(t)− Eb − Vin
L

(1)

where we have

Te = kti(t), Eb = kew(t) (2)
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After replacing the equation (2) in equations (1), we have the equa-
tions (3).


dw(t)

dt =
kti(t)− TL − bw(t)

J
di(t)

dt =
−Ri(t)− kew(t) + Vin

L

(3)

Note that i(t) is the current absorbed by the motor, w(t) is the
motor output speed, R is the sum of resistance of the armature
and the field coil inductances. L L is the sum of the armature
and field coil inductances, ke and ktare the back electromotive
force (EMF) constant and the torque constant, respectively; b is
the friction coefficient, J is the moment of inertia; TL is the load
torque. In this sub-part of the work, the system settings are chosen
as follows:R = 7.2Ω, L = 0.0917H , TL = 0.2Nm , T = 10ms , ke =
kt = 0, 1236N.m/A2 , J = 7, 046e−4kg.m2 , b = 4e−4Nm.rads.s
, VL = 0V , Vu = 8V and wre f = 100rad/s the expression of
Vcom(t) = A1(w(t)− wre f ) (Abdullah et al. 2016).

Operational amplifier Switch A2 is low

In this subsection, the switch is off the generator signal is equal to
zero (Vin = 0V). Equations. (3) becomes equations (4) as shown
as follows.


dw(t)

dt =
kti(t)− TL − bw(t)

J
di(t)

dt =
−Ri(t)− kew(t)

L

(4)

The parameters values of equations (4) are the same as in section 1.
This is the model that will be used throughout the paper.

DYNAMICAL BEHAVIORS ON LOAD VARIATION OF PMDC
OPERATION

This section is devoted to the numerical study of the PMDC motor
in normal operation driving an external load and a triangular load.

Chaos behavior induced by an external load torque

The investigation of the external load torque effect of the general
behavior of the PMDC motor is given as follows:

Firstly, when the motor drives the constant load torque (the nor-
mal driving) the behavior of the system dynamics quality changes
as TL varies. The system in Figure (1) is run in Matlab-Simulink
for a long time and the transient phase is omitted. The current i(t)
and the output speed ω(t) are recorded and plotted in Figure (2).
The Figure (2) shows the different dynamics observed. We consid-
ered that the general parameter of the motor is unchanged. We
recalled the parameters values: R = 50Ω; J = 0, 000010388kgm2;
b = 0, 00025N.m.s; Kt = 1, 8N.m/A; L = 1, 2mH;The external load
torque is varied between 0 to 5N.m.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

Figure 2 Phase portraits (i) of different dynamical behaviors
of the PMDC motor driven by a full bridge converter and the
corresponding Power Spectral Density (PSD) of the speed (ω(t))
(ii) under variation of the amplitude of the external linearT . The
values of T are given as (a) T = 0, 00001N.m period-1; (b) T =
0, 0125N.m periodic bursting; (c) T = 0, 5N.m periodic bursting;
(d) T = 1, 95N.m chaotic motion. The rest of the parameters
of the system are the ones of Figure (1). The Figure (2) shows
that the behavior of the motor changes from the period limit
cycle, to periodic bursting, to chaotic behaviors. The PSD plots
highlighted the different kinds of the observed attractors.
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Effect of the amplitude variation of the triangular T

In the industry, some load applied to the PMDC motor are non-
constant, but varies continuously. To mimic this type of load, we
introduced here a triangular load. The triangular signal is periodic
linear in pieces and continuous, it contains odd harmonics. It can
be seen as the absolute value of the saw-tooth signal and for a

period of time as follows. x (t) = 2
∣∣∣ t

a −
[

t
a +

1
2

]∣∣∣. In this case, we

used the signal equation as: x (t) = A ∗ [sawtooth(2.π.50.t, 1/2)] .
available in Matlab-Simulink. The triangular load torque and the
corresponding PSD graph are shown in Figure (3).

(a) (b)

Figure 3 Triangular waveform T (a); and the corresponding PSD
(b). The amplitude Ttri=1N.m; and the frequency is F = 50Hz.
Sub-harmonics are visible. A = 1.

The effects of the amplitude variation of the triangular external
load torque are investigated in this sub-section. For this purpose,
the system in Figure (1) is run in Matlab-Simulink with load torque
T replaced by the triangular one Tri(t) for a long time and only
the steady state data are recorded. The parameters of the motor
are given as: R = 50Ω; J = 0, 000010388kgm2; b = 0, 00025N.m.s;
Kt = 1, 8N.m/A; L = 1, 2mH;T = 2N.m; We plotted different
current i(t) and speed ω(t) recorded as in sub-section 3.1 to de-
scribe the situation. The variation of T highlights some unobserved
streaking dynamical phenomena.

In the light of Figure (4), it is easy to see that when the total
load torque driving by the PMDC motor have a triangle form, the
motor develops different behavior like periodic, torus and chaos
behaviors.

Dynamical behaviors induced by the windings heat during PMDC
operation

In the industry the load driven by the system (1) transforms electri-
cal energy into mechanical energy for the manufacturing process.
Energy laws states that this transformation cannot occurred with-
out loss of energy. In this paper we focused on the Joule energy
effects dissipated by the winding’s coils heat due to current flowing
in these elements.

VARIATION OF THE WINDING’S COIL RESISTANCE OF THE
PMDC MOTOR

When the motor drive different type of load torques, the gen-
eral temperature of the systems increases, and some parameters
are affected such as resistance and reactance winding coil of the
motor. The general equation of the resistance as function of the

temperature is give as R = R0

(
1 + A (θ − θ0) + B(θ − θ0)

2 + ....
)

(a(i)) (a(ii))

(b(i)) (b(ii))

(c(i)) (c(ii))

Figure 4 Phase portraits (i) and the corresponding PSD (ii) de-
scribing the dynamics of the system under variation of the am-
plitude of the external triangular load torque A. The values of
A for each case are given as: (a(i)) A = 0, 00001N.m, period-1;
(b(i)) A = 0, 025N.m, torus; (c(i)) : A = 5N.m, chaos the initial
condition are (i(0) = 0, 01; ω(0) = 0, 01).
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(Malvino 1993) and the simplified form of this equation can be
deduced as:

R = R0(1 + αθ) (5)

.
Where R0 is a value of the resistance when θ = θ0 , A et B are the

thermal coefficients depending of the type of the motor resistance
coil used. In the case the temperature is varying between 0◦C to
100◦C and when the reference temperature is equal to zero, the
thermal coefficient is replaced by the average thermal coefficient α.

Using equation (5), we replaced the resistor R in equations
(1) and we derived the new equations of system in Figure (1),
depending on the internal heat of the motor give in equations (6)
and (7) as follows:

dω(t)
dt = (Kt i(t)−TL−bω(t))

J

di(t)
dt = (−i(t)R0(1+αθ)−Keω(t)+Vin)

L

(6)

when A2 is in the high and
dω(t)

dt = (Kt i(t)−TL−bω(t))
J

di(t)
dt = (−i(t)R0(1+αθ)−Keω(t))

L

(7)

When the A2 output is low.
By defining the state vector X(t) = [x1(t), x2(t)]

t =

[ω(t), i(t)]t,The DC drive + full bridge can be expressed in stan-
dard form as in Equation. (8).


.

X = AonX(t) + Von
.

X = Ao f f X(t) + Vo f f
; whereX(t) =

 x1(t)

x2(t)

 =

 ω(t)

i(t)


(8)

Aon = Ao f f = A =

 −b
J

kt
J

−ke
L

−R0(1+αθ)
L

 ;

Von =

 −TL
J

Vin
L

 ; Vo f f =

 −TL
J

0


(9)

Where the system parameters are the same as in section 1.

Chaos behavior induced by the resistance variation
The system (1) is used in Matlab-Simulink with the resistor as in
equation (5) and the motor is powered by the inverter that drives
a linear load. The curves in the following Figures are obtained by
varying the total resistance of the machine as a function of temper-
ature. It is noted that in an electric motor driving a load torque,
the energy is dissipated by thermal effect in the form J = RI2

This dissipation of heat acts at the level of the different resistances
of the motor windings coil due to the modification of tempera-
ture according to law of equation (5). (the resistance at an initial
temperature which is the ambient temperature in our case it is
37◦ C) We remarked that this variation of the temperature in an
electric motor driving a load can be at the origin of strange phe-
nomena such as periodic limit cycles, torus and chaos as illustrated
in section 3. Noted that the general form of the total impedance
of the motor is give as: Z = R + jX where R is the total resistance

and X is the total inductive part. In this special case we suppose
firstly that the total reactance of the motor is unchanged and the
total resistance of the motor is varied by the different degree of
the temperature when the system drive the linear load torque as
shown in equation (5) assuming that the parameters of the mo-
tor in this study is given as: L = 1, 2mH; J = 0, 000010388kgm2;
b = 0, 00025N.m.s; Kt = 1, 8N.m/A;T = 2N.m; and R vary be-
tween 1, 2Ωto3000Ω. After long-term running of system (1) in the
MATLAB-Simulink, we obtained some phase portraits showing
different form of attractors of dynamical the behaviors of the motor
in the plane (w(t), i(t)) in the Figure (5).

(a(i)) (a(ii))

(b(i)) (b(ii))

(c(i)) (c(ii))

(d(i)) (d(ii))

Figure 5 Phase portraits describing the different behaviors of
the motor and the corresponding PSD when the resistance R is
varied between 1.2Ω to 3000Ω due to heat: (a(i)) R = 135Ω
;(a(ii)) ; R = 100Ω :(b(i)) R = 50Ω ; (b(ii)) R = 30Ω; (c(i)) R =
10Ω ; (c(ii)) R = 1, 2Ω; (d(i)) PSD for R = 1, 2Ω ; (d(ii)) PSD for
R = 100Ω the initial conditions are: (i(0) = 0, 01; ω(0) = 0, 01);

In the light of the curves in Figure (5), the reader can see that
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when the DC motor + full bridge drives some external load torque,
their internal temperature changes and affects the global resistance
of the system and induced some interesting dynamics like period
limit cycles and chaotic attractors. These interesting behaviors
are found in many physical systems but not yet observed in this
system caused by windings coil heat. This contribution falls in the
second criteria of publishing novel contribution of chaotic system
(Sprott 2011) and important to shared.

Chaos behavior induced by the reactance variation
In this section, we set the resistance constant to R = 100Ω (no
longer influenced by the coil heat) and then varying the reactance
L. For the simplicity of this paper the phenomena causing the vari-
ation of Lis not illustrated. The permanent magnet is a magnetic
material (strong) is characterised by the large hysteresis cycle the
variation of the reducing induction as a function of the tempera-
ture is governed by the following equation; This equation is valid
in a certain temperature range. In this equation is the remnant
induction at temperature T ,Br0 is the induction at temperature T0
and β is the temperature coefficient. It should be noted that this
coefficient is negative, which is why the induction decreases when
the temperature increases The greater this coefficient (in absolute
value), the greater the drop in induction B.

Br = Br0 (1 + β (T − T0))
(10)

where B = L = Xw in this case we have:
dω(t)

dt = (Kt i(t)−TL−bω(t))
J

di(t)
dt = (−i(t)R0−Keω(t)+Vin)

L(1+αθ)

(11)

when the A2 output is hiegh, and
dω(t)

dt = (Kt i(t)−TL−bω(t))
J

di(t)
dt = (−i(t)R0−Keω(t))

L(1+αθ)

(12)

when the A2 output is low. By defining the state vector X(t) =

[x1(t), x2(t)]
t = [ω(t), i(t)]t. the DC drive + full bridge can be

expressed in matrix form as given in equation (13)
.

X = AonX(t) + Von
.

X = Ao f f X(t) + Vo f f

whereX(t) =

 x1(t)

x2(t)

 =

 ω(t)

i(t)


(13)

Aon = Ao f f = A =

 −b
J

kt
J

−ke
L(1+αθ)

−R0
L(1+αθ)

 ;

Von =

 −TL
J

Vin
L(1+αθ)

 ; Vo f f =

 −TL
J

0

 ;

(14)

The phase portraits describing the different behaviors of the
motor when the inductance varied are given in the Figure (6) .

(a(i)) (a(ii))

(b(i)) (b(ii))

(c(i)) (c(ii))

(d(i)) (d(ii))

(e(i))

Figure 6 phase portraits in plane (w(t), i(t)) and the PSD de-
scribing the different behaviors of the motor when the induc-
tance value L is varied between 0, 042mH to 10, 2mH (a(i))
L = 0, 042mH period-1,(a(ii)) L = 0, 085mH period-2, (b(i))
L = 0, 5mH period-8, (b(ii)) L = 0, 7mH period-16,(c(i))
L = 0, 85mH period-32, (c(ii)) L = 1, 952395mH chaos
PSD of speed Ω(t) (d(i)) L = 1, 952395mH chaos and (d(ii))
L = 0, 085mH periodic,(e(i)) the time series of the speed
w(t),the initials conditions are (i(0) = 0, 01; ω(0) = 0, 01; and
the rest of parameters are R = 100Ω; J = 0, 000010388kgm2;
b = 0, 00025N.m.s; Kt = 1, 8N.m/A;T = 2N.m; .
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In the light of Figure (6), it is easy to see that when the in-
ductance value changes, some interesting dynamics occur in the
system (1) such as limit cycle, torus and chaos.

CHAOS SUPPRESSION IN THE PMDC MOTOR

This section is focus on the chaos suppression in the studied sys-
tem. Note that in the literature, different type of controllers to
suppressed chaos have been presented. For example, the time
delay controller, sliding mode controller, indirect field controller
and so on; a new control structure for applications such as electric
traction without mechanical sensors studied is the Direct Torque
Control. This technique has many advantages over classic oriented
flow vector control (FOC) structure. Indeed, while this typically
requires three control loops, a PWM current generator and coordi-
nate transformations, DTC requires only one pair of comparators
to hysteresis to perform dynamic flow and torque control. The
objective of this part of work is the study the effect of this controller
in electric drive.

The Direct Torque Control (DTC, or DTFC) method from ap-
pointment The Anglo-Saxon "Direct Torque (and Flux) Control"
was developed in 1985 by Takahashi and Depenbrock especially
for asynchronous machines (Chergui et al. 2020) In this technique,
it is no longer needed to use the position of the rotor to choose
the voltage vector, this particularity defines DTC as a well-suited
method for the Mechanical sensorless control of AC machines. The
DTC control of an asynchronous machine is based on the direct
determination of the Control sequences applied to switches in a
voltage inverter from the calculated values of the stator flux and
the torque . (Toufouti et al. 2007) So the state of the switches is
linked directly to the evolution of the electromagnetic state of the
motor. Direct torque control of the machine provides a satisfactory
solution robustness problems encountered in conventional control
technology based on the orientation of the rotor flow.

On the other hand, DTC, is as simple, interesting given its
simplicity; in particular, by the fact that it does not requires no real-
time speed measurement or complex modulation control Pulse
Width (PWM) close to the inverter. Under certain condition, the
motor drive exhibit chaotic phenomena and the chaos suppression
from the system is to be forcing the system from chaos regime
to periodic oscillation. In this situation, we use the gain of the
different between electromagnetic torque produced by the motor
and the resistive external torque. The block diagram described the
form of the controller apply in this system in our cases is shown in
the Figure (7).

Figure 7 Block diagram of the PMDC drive with a controller
parameter

The general form of the mechanical equation of the motor is
giving by apply the second low of newton as follows:

j dw
dt + f w = Tem − Tr

(15)

where j being the inertia moment of the motor, Tem is the elec-
tromagnetic torque produced by the motor, f is the coefficient
viscous of friction, Tr is the external torque . we chose the load
torque equation as: T = Tem − Tr in our case; we use the gain
of the different between the load torque to force the system from
chaotic regime to the periodic oscillations. The equation describ-
ing this situation is given as T = g(Tem − Tr) where g is the gain.
From Matlab-Simulink environment when the system (1) is ran for
long times, the controlled parameter varying here between 0 to
1.5 .We realized that when g = [0.0001; 0.05] the system is under
control; the special case is when g = 0.0025 after 0.398s the total
load torque is equal to zero and the behavior of the motor changes
from chaotic to periodic regime. the time series in the Figure (8)
bellow describes the situation where in Figure (8(b)) the chaos is
suppressed and the system is periodic.

(a(i)) (a(i))

(b(i)) (b(i))

(c)

Figure 8 Phase portrait of chaotic behavior a(i) and the time
series of the electromagnetic torque +with external torque super-
imposed g = 1.02 Periodic phase portrait after tuning parameter
g b(i) and the corresponding time traces of Tem and Tr superim-
posed (ci) is the error between the too different load torque when
the gain g is g = 0.00025. the initials conditions of the system are
(i(0) = 0, 01; w(0) = 0, 01) .
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In the light of Figure (8), it is easy to see that the proposed
controller is effective and therefore, the system is forced to exit
from chaotic regime and settle in the periodic oscillations after
some small time of 0.395s.

CONCLUSION

In this paper the full bridge converter driving the PMDC motor
with load is analysed under particular situation where the tem-
perature affects the resistance of the inductive windings of the
engine. We used simple power full tool of analysing nonlinear dy-
namical systems like phase portrait, time traces and power density
spectrum diagram. In Matlab-Simulink environment, numerical
simulations of the PMDC motor show that under certain condi-
tions of the temperature of the internal resistance and of some
value of the inductance and the value of the amplitude of triangu-
lar and linear load torque, the PMDC motor and the full bridge
drive under investigation shows periodic limit cycle and chaotic
attractors. A chaos control of the unstable regime is proposed
to stabilize the PMDC motor in a desire periodic regime. These
results mean that the variation of the average internal temperature
and the variation of the amplitude of different load torque influ-
ence the general behavior of the motor drive. These results would
have industrial application of the PMDC motor driven by a full
bridge converter because the application is widely used.

Funding
This research received no specific grant from any funding agency
in the public or in the private.

Authors’ contributions
A.N.T and J.R.M.P. developed the theoretical formalism. A.N.T
and A.S.K.T contributed to sample preparation. A.N.T and A.C
planned and carried out the simulations. A.N.T and A.S.K.T. con-
tributed to the interpretation of the results. J.R.M.P. and A.N.T took
the lead in writing the manuscript. All authors provided critical
feedback and helped shape the research, analysis and manuscript.

Acknowledgments
The authors would like to thank Prof Sifeu Takougang for carefully
reading the manuscript.

Data availability statement
The data generated during this study will be made available at
reasonable request.

Conflicts of interest
The authors declare that they have no conflict interest regarding
the publication of this paper.

LITERATURE CITED

Abdullah, M. A., F. R. Tahir, and K. M. Abdul-Hassan, 2016 Sliding
mode control-based chaos stabilization in pm dc motor drive.
Iraqi Journal for Electrical & Electronic Engineering 12.

Arat, H. T., 2018 Numerical comparison of different electric motors
(im and pm) effects on a hybrid electric vehicle. Avrupa Bilim
ve Teknoloji Dergisi pp. 378–387.
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Detection of Two-Phase Slug Flow Film Thickness by
Ultrasonic Reflection
Lalu Febrian Wiranata ID ∗,α,1, Narendra Kurnia Putra ID ∗,2 and Deddy Kurniadi ID ∗,3
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ABSTRACT This study aims to detect and analyze slug flow film thickness in two-phase flow, providing detailed
structural flow information. The ultrasonic or Doppler reflection method is employed to identify slug flow and
detect detailed thickness. Additionally, electrical resistance tomography is used to image and confirm the
presence of slug flow. A high-speed camera records the slug flow’s shape in real-time, validating its existence.
The ultrasonic reflection method offers high accuracy, with a measurement error rate of less than 1% based
on experimental results. The study uses a homogeneous block calibration method to measure slug flow
thickness. Graphical results reveal apparent differences between the slug flow regime, inner pipe wall, and
outer pipe wall, with the first echo of slug flow being easily observable. The accuracy of results is attributed to
the combination of field programmable gate array instruments and measurement methods, showcasing the
study’s novel approach. This research introduces a new perspective or novelty on slug flow in multiphase flow
studies, highlighting an innovative method for detecting film thickness.

KEYWORDS

Slug flow film
thickness
Ultrasonic reflec-
tion
Velocity flow
Electrical resis-
tance tomography
Two-phase flow

INTRODUCTION

Slug flow is a common phenomenon in closed pipes, occurring in
two-phase flow where liquid and gas phases mix, impacting the
custody transfer or the efficiency of chemical reactions. Where, the
slug flow pattern is a multiphase flow condition in a pipe system
when the liquid phase and gas phase flow together in the form
of slugs (bars or large oval bubbles), which are not homogeneous
and can be accompanied by tiny bubbles. Usually slug flow occurs
in piping systems that are arranged horizontally or vertically. To
better understand the characteristics of slug flow conditions that
often occur, several slug flow conditions are shown in (Falcone
et al. 2010; Zhai et al. 2021), where slug flow can be categorized into
several types of flow, namely plug, low-aerated, high-aerated to
pseudo slug flow. This condition indicates that the slug combines
flow rates with large and several tiny bubbles. The slug flow
category is also shown in (Zhai et al. 2023), which maps the gas-
liquid flow pattern in horizontal pipe conditions.
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One of the main detrimental impacts of flow rate is increased
pressure loss in a pipe or flow system. This is caused by the interac-
tion between the liquid and gas phases, which produces turbulence
in the flow. A slug moving faster than the average flow can cause
a significant pressure drop in the system. Additionally, slug flow
can impact the flow capacity of the system, where fluctuating flow
velocities and changes in the flow profile can cause variations in
the flow capacity acceptable to the system. In systems susceptible
to slug flow, flow fluctuations can cause problems in unstable op-
erations (Villarreal et al. 2006). This may affect system reliability
and operational security. For example, in the oil and gas industry,
slug flow can cause problems such as pipe erosion, vibration and
risk of equipment failure (Al-Safran 2009).

There are also influences in phase separation applications, such
as in oil and gas phase separators. Slug flow can also affect phase
separation efficiency. This can result in a less effective phase mix-
ture, requiring unique designs or controls to overcome this prob-
lem. To overcome the impact of slug flow, various control strate-
gies, and technologies can be used, including better pipe design,
the use of phase separators, the use of slug-dampening devices,
and the use of advanced measurement technology. Understanding
flow characteristics and slug flow modeling is also important to
manage their impacts effectively. This is the primary motivation
for developing a thickness of slug flow detection system, where
the characteristics of slug flow must be understood to provide
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essential data for detecting flow transition patterns.
In the development of slug flow detection, Doppler ultrasonic

technology was chosen for its ability to provide detailed and pre-
cise information about slug flow characteristics. Doppler can detect
changes in the frequency of sound waves caused by the movement
of slug flow within a fluid, enabling measurements of velocity,
spatial distribution, and other characteristics of multiphase flows.
Its advantages include compatibility with various fluid types, in-
cluding gases and liquids, and the provision of high-resolution
data. Consequently, the application of Doppler in this study en-
hances our understanding of flow properties and establishes a
robust foundation for identifying gas-liquid flow regimes. Numer-
ous academic references explore the flow characteristics related
to Doppler signals. For example, Nnabuife et al. (2019) employed
an ultrasonic Doppler sensor and a machine learning approach to
predict gas-liquid flow regimes.

Wang et al. (2019) focused on detecting the spatial and tem-
poral distribution of liquid velocity in horizontal gas-liquid flow,
proposing a bubble flow identification method based on the maxi-
mum speed and maximum velocity difference ratio. Additionally,
Nnabuife et al. (2020) utilized a deep artificial neural network to
identify gas-liquid flow regimes in an S-shaped pipe, using fea-
tures extracted from Doppler signals. Weiling et al. (2021) analyzed
the Doppler spectrum via a continuous wave ultrasonic Doppler
sensor, with some extracted statistical features being input into
a multi-class SVM classification model to classify five oil-water
flow patterns in horizontal pipes. Recent advancements have also
been made in measuring velocity vector profiles using ultrasonic
methods (Hitomi et al. 2021; Obayashi et al. 2008; Tiwari and Murai
2021; Zhang et al. 2022). Furthermore, Lin and Hanratty (1987);
Shimomoto et al. (2021) presents a method for detecting slug flow
in gas-liquid mixtures using pressure sensors, which effectively
distinguishes between slugs and pseudo-slugs.

The method’s key strengths include a practical experimental
approach and simple technology, achieving high detection rates
for intermittent slug flow. However, it faces challenges such as
scalability issues, complex data analysis, double detection in in-
termittent flows, and reduced accuracy for continuous slug flow
in simulations. Overall, while Doppler ultrasonic technology pro-
vides significant advantages in detecting slug flow through its
high-resolution data and versatility across various fluid types, it
also encounters challenges, including the need for advanced al-
gorithms for complex data interpretation, scalability concerns in
larger systems, issues with double detection in intermittent flows,
lower accuracy in continuous slug flows in real-time industrial
applications.

This study presents a new perspective method for measuring
film thickness in gas-liquid slug flow using an Ultrasonic Doppler
or Ultrasonic Reflection (UR) system, with the UR method demon-
strating superiority detail in detecting slug flow structures. In
contrast to the research conducted by Zhai et al. (2021, 2023), which
primarily showcased the cut-off signal form without providing
detailed signal representations during slug flow or bubble detec-
tion, resulting in suboptimal numerical graph presentations, this
research approach emphasizes a more comprehensive detailed
analysis of slug flow thickness signal.

The technique employed is based on homogeneous calibration
block measurements. This system utilizes a Field-Programmable
Gate Array (FPGA) for data acquisition from the ultrasonic trans-
ducer. The FPGA offers a relatively high sampling rate of 64 MSPS
(Mega-Samples Per Second) for each data loop process, allowing
for detailed information retrieval from the ultrasonic transducer.

Additionally, we incorporate Electrical Resistance Tomography
(ERT) as an imaging system to visualize the presence of two distinct
phases in slug flow. For ERT, we employ an ARM-type microcon-
troller, which achieves a superior and more stable sampling rate
compared to other types, delivering a sampling rate of 2.4 MSPS
for each data collection session. The results indicate a commend-
able level of accuracy, with the UR method effectively detecting
the thickness of slug flow. Moreover, it was observed that the
flow velocity, derived from the combination of ERT and UR mea-
surements, significantly influences the composition of slug flow,
particularly its thickness.

In addition, the following parts of this article are organized as
follows. Section 2 explains the primary ERT-UR sensor’s method,
working principle, and corresponding to the detection slug flow
film-thickness method. Section 3 is related to measurement sys-
tems and data acquisition, where the combination of FPGA instru-
ments and measurement methods has great potential to be applied
and is one of the novelty or new perspectives in this study. Apart
from that, there is also an ERT system that functions as confirma-
tion of the existence of different phases. Section 4 shows the results
of the experimental verification and validation of the system used,
where in this study, the first echo is very easy to observe. This can
also be a problem-solving limitation, as detecting the first echo in
the slug flow takes a lot of work. Therefore, measuring film thick-
ness in a gas-liquid becomes easy to explore. Section 5 contains
the conclusions of the study obtained.

MATERIAL AND METHODS

This section focuses on the basic concept of ultrasonic reflection or
ultrasonic Doppler to collect surface (inner pipe wall) distance data
to the ultrasonic transducer. Apart from that, fd can also calculate
the velocity of liquid and gas flow. The expected result that we
want to know is the time of flight between the transmitter of ultra-
sonic waves and the time of receiver ultrasonic waves. However, in
some situations, such as the presence of slug flow at the flow rate,
it is challenging to find the desired information, thus the process of
searching and identifying first echoes must be carefully observed.
The next concept is the image reconstruction process using the
ERT technique, and the main ERT aim is to identify essential dif-
ferences between two different phases. However, of course, the
ERT technique is not accurate enough to consistently determine
the size and position of the slug flow, therefore in this study, ERT
is only used to detect differences in images of the two objects and
the average two-phase fluid velocity flow rate to ensure that it can
support strengthening the presence of slugs in the fluid flow rate.

Principle of Ultrasonic Reflection or Ultrasonic Doppler
This section explains the basic concepts used to find ToF due to slug
flow in the pipe cross-section. As seen in Figure 1, f0 is the received
frequency, fd is the shift frequency, θ is a degree of transducer
position in the pipe (Falcone et al. 2010; Zhang et al. 2022). For the
cwater value, it is 1497 m/s (Bao et al. 2022). Apart from that, there
is also h, which is the position or depth of the echo pulse from
the first echo detection in slug flow conditions, where ∆t is the
time difference between the transmitter and receiver, which can be
stated that the value of f is proportional to the inverse of t.

fd = fr − f0 =
2UR
cos θ

f0 (1)

UR =
fdcwater

2 f0 cos θ
(2)
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Figure 1 Principle of transduser ultrasonic reflection.

To find the average of flow velocity UR, Equation (3) is used,
where A is the pipe cross-sectional area, R is the pipe radius, and
y is the pipe diameter (Liu et al. 2018a).

UR =

∫ 2R
0 UR(y) · 2

√
y(2R − y) dy

A
(3)

Meanwhile, to find the distance between the position of the
transducer and the pipe, it is used Equation (4) (Zhai et al. 2021).

h =
∆t · cwater

2
(4)

Principle of Electrical Resistance Tomography Detection
Electrical resistance tomography (ERT) is an imaging technique
that focuses on measuring the electrical resistance of an object or
medium. The basic principle of this method is to measure the
difference in resistance in a specific material or liquid, which has
different characteristics from different resistance values. It can be
done by exciting an AC electric current into the electrode to mea-
sure the characteristic value with a different electrode at another
position. As shown in Figure 2, there are two ways to excite current
into the vessel, and both of these methods are good for obtaining
different signals from objects in the vessel. However, on this study,
Figure 2(b) utilized opposite paired excitation because the electric
current will generally pass through the container, allowing for the
effective detection of the characteristics of non-uniform objects.

Opposite pair excitation method could be weak if the container
is large enough. The distance between positive AC electric current
and negative AC electric current will hamper the excitation current.
In this study, the circle’s diameter in the trial was relatively small,
allowing the current to cross the object ideally. In other words,
every method has its shortcomings and weaknesses. Therefore, it
can be concluded that the advantage of the opposite pair method
is that the sensitivity is quite good, provided that the distance
between the sending and receiving electrodes is not too far, or it
can be searched manually by moving objects on the vessel, where
the graphic results will show a more sensitive response in any
change in the movement of the object being measured.

Figure 2 (a) adjacent pair excitation, (b) opposite pair excitation

Figure 3 explains the basic concept of ERT in reconstructing
images, which initially come from several number value frames
and then convert them into images with particular objects. For
the first step, the AC electric current source is excited by rotating
the 16 electrodes used, where the AC Boundary data takes the
excitation data obtained 13 times with 16 measurements. Thus, we
obtain 208 measurement limits for each resulting data frame. Next,
the data is obtained to be used in the calculation values boundary.
The data obtained is then searched for the potential distribution
value with certain field boundaries, where the objective value
is calculated and compared with the measurement data. If it is
deemed to have met the appropriate threshold limit, then the
image can be displayed. However, the iteration still needs to be
increased. In that case, it is necessary to repeat the calculation of the
resistance distribution values by carrying out updated calculations
(conductivity updates) in the reconstruction equation (Liu et al.
2018b). In general, to solve the ERT problem, an approach using
a forward problem is used (see Figure 3, finite element section),
which aims to produce a mathematical model and can connect the
distribution of resistance in the object with voltage measurements
on the electrodes, where the model of the forward method in ERT
is derived from the equation Maxwell which is written in Equation
5 (Liu et al. 2018b).

∇ · σ(x)∇u(x) = 0, x ∈ Ω (5)

With value, ∇· shows the divergence value, and ∇ is the gra-
dient value, Ω ∈ Rn is the data distribution in a specific domain
(the region of interest). The conductivity value σ(x) and electrical
potential u(x) depend on the domain where the x value is located.
In simple terms, governing equations for the forward model can
function to describe the relationship between the distribution of
electrical resistance in an object and the measurement of voltage
produced by electrodes placed around the object. Next, it is as-
sumed that the current (I) is injected at the electrode with a specific
domain boundary, which is written as ∂Ω in Equation (6) and
Equation (7). ∫

El

σ
∂u(x)

∂n
dS = I1, l = 1, 2, . . . , L (6)

σ
∂u(x)

∂n
= 0, on ∂Ω \

L⋃
l=1

El (7)

Equation (6) can be said to be the integral of the electrode with
current flow (integral of current density), where El is the field at
the l-th electrode, I1 is the current injected into El , L is the total
number of electrodes, n is the outward normal vector, and dS is the
surface of the element. Equation (7) is expressed as the equation
for absence of current between one electrode and another, thus Ul
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can be expressed as the l-th electrode potential, written in Equation
(8).

u = Ul on El , l = 1, 2, . . . , L (8)

However, in some cases, Equation (8) fails to calculate due to
the double layer, as well as the high resistance contact between the
electrode surface and the surface of specimen, which is the con-
ductor in container. This concept in electrochemistry can prevent
the transfer of electrical energy, which is modeled as the electrode
resistance/impedance z1. As a result, Equation (9) is obtained
(Demidenko et al. 2011):

u + z1σ
∂u(x)

∂n
= Ul on El , l = 1, 2, . . . , L (9)

Finally, the charge conservation equation is expressed in Equa-
tion (10) and Equation (11) for the ERT potential (Somersalo et al.
1992):

L

∑
l=1

Il = 0 (10)

L

∑
l=1

Ul = 0 (11)

Equation (10) and Equation (11) are chosen as the design equa-
tions of the ERT because each induced current corresponds closely
to the magnitude and direction of the opposite sign, enabling Equa-
tion (10) and Equation (11) to calculate the average current value
without being induced by the proximity of electrode pair.

The Gauss-Newton method in the ERT case is used to estimate
the inverse non-linear value, with the main aim of minimizing the
value of objective function J(σ), written in Equation (12) (Ruan
2016):

J(σ) = ∥Ul,meas − F(σ)∥2
2 (12)

where Ul,meas is the potential electrical measurement vector
value and F is the forward problem, which relates to the distribu-
tion vector of voltage values in an unknown area. The measured
and calculated potential values are compared with the difference
value (ε), written in Equation (13):

Ul = Ul,meas + ε (13)

This is based on the frequent occurrence of ill-posed problems,
which needs to be explicitly addressed using Tikhonov regular-
ization (Graham 2007). To minimize the ERT function, it is nec-
essary to add several basic conductivity constants (σ0) as prior
information or obtained from direct measurements. The resistance
distribution calculation function can then be written as Equation
(14), where λ is the hyperparameter value (Brinckerhoff 2018).

Jλ(σk+1) = ∥Ul,meas − F(σk)∥2
2 + λ∥σk − σ0∥2

2 (14)

In addition, there is a parameter for updating the conductiv-
ity value, related to the conductivity update (σk+1), written in
Equation (15):

σk+1 = σk + ∆σ (15)

To calculate the value of ∆σ, Equation (16) is used, which in-
volves the Jacobian matrix calculation, discussed in more detail in
(Brinckerhoff, 2018) :

∆σ = (JT J + λ2 I)−1 JT(Ul,meas − F(σ)) (16)

MEASUREMENT SYSTEM

FPGA and ERT system
This section explains the primary system used to generate transmit-
ter/receiver signals from ultrasonic waves, where the ultrasonic
transducer type uses Sonatest with a central frequency of 10 MHz,
which is embedded in the bottom wall of the pipe to ensure that
it forms an angle of 900. As seen in Figure 4, the pipe is attached
to the wall, which aims to ensure that the transducer surface is in
direct contact with two phases (liquid and air), thereby enabling
maximum detection of the time of flight (ToF). This system uses
a lattice iCE40HX4K FPGA type with 8Mb RAM. The working
principle is that the FPGA sends high and low signals in a few
microseconds to the MOSFET to open it to activate the DC-to-DC
boost converter. Next, the boost converter or pulser generating the
ultrasonic transducer generator will be active.

In the boost converter (NMT0572SC), there are 3 outputs 24
V, 48V, and 72 V, which have a low power consumption of 3W,
and in the experiment, 48V was used to generate pulses from
the ultrasonic transducer. The 48V voltage is sufficient to supply
or generate the crystal in the transducer, and the amplitude can
be adjusted under programming conditions using Python Code.
Previously, the VHDL programming was communicated via FTDI
is used to read the FPGA port, allowing the output to be directly
converted into graphics.

The next step is data processing, carried out by the MCP4881,
which is a component of time gain compensation (TGC), where
TGC aims to compensate for the decrease in the amplitude of the
ultrasonic signal, which occurs along with increasing depth when
the signal propagates through different tissues or structures. The
analog signal is then converted using the ADC100065 and pro-
cessed briefly into a signal of a certain amplitude with a resulting
sample rate of 128 MSPS each time the FPGA processes the data.
The signal processed data is then sent via FTDI to USB, which
in this case will be compensated into graphics. In this case, the
ADC provides a 10-bit resolution, which is sufficient to analyze
the output signal.

Figure 5(a) explains the configuration of the ERT system to
detect the presence of slug flow or phase differences in closed
flow pipes. The primary system used for control is an STM32
ARM microcontroller chip with a 32-bit Cortex CPU and 2.4 MSPS
ADC, which provides a level of accuracy and precision that is
reliable enough to execute DAC control, where the DAC is used
to control mux/demux. In this case, an additional relay aims to
separate the VCCS (voltage to control current) excitation because
of the ability of the mux (multiplexer), which cannot pass AC
current. The data is then received by the 12-bit RMS ADC by the
demux (demultiplexer) in the form of different potential values
for each electrode installed. It can be seen in Figure 5(b) that the
composition form of the current excitation is colored blue while
the potential difference receiver is colored green. For speed, the
frequency used in executing the RMS ADC is activated at 108 MHz
to ensure the data obtained can be executed quickly and accurately.

System configuration of flow measurement
Figure 6 explains the system configuration used, where the trans-
ducer is a Sonatest 10-MHz, the pipe has a diameter of 1.5 inches,
a length of 2 meters, and a height of 1 meter. This system is em-
bedded with a 3-unit detection system, namely ERT as the initial
detection of two different phases, an ultrasonic transducer, and a
high-speed camera with a resolution of 1080 × 2400 pixels and 960
frames per second, which aims to capture real-time images of the
slug flow.
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Figure 3 Data reconstruction image profile

Figure 4 FPGA for ultrasonic reflection system.
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Figure 5 (a) ERT measurement system, (b) Measuring pipe tube (Wiranata et al., 2023).

Figure 6 . Configuration System of Ultrasonic Reflection.
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Figure 7 ERT dual plane.

Figure 8 (a) Block homogen 6 holes, (b) Block calibration.

Figure 9 Block homogen measurement.

■ Table 1 Parameter measurement

Parameter Values

Excitation Current AC 2 mA

Excitation Frequency 50 kHz

Electrode Number 8 Received & 8 Excitation

Data Speed Acquisition 10 frames/s

UR

Diameter Transducer 0.5 inch

Excitation Frequency 10 MHz

ADC Sampling Rate FPGA 64 MSPS

Excitation Voltage 48 V

Figure 7 explains how to obtain the velocity flow in a closed
flow pipe using ERT, where Dp is the distance between planes I
and II, and τ is the cross-sectional correlation between plane I and
plane II. In Equation (18), VCR is the average flow rate using dual
ERT, with VCR(n) being the plane section (plane I or plane II).

VCR(n) = ∑
i,j

(Vij − Vij0)

Vij0
(17)

VCR = lim
T→∞

(
1
T

∫ T

0
VCR1(λ)VCR2(λ + τ) dt

)
(18)

Placing the distance between plane I and plane II is very im-
portant for cross-correlation velocity measurement. If the distance
is too far, the flow characteristics are challenging to detect, and
one or two times the length of the pipe diameter is used (Deng
et al. 2001). Table 1 explains several parameter values used in this
research.

RESULT AND DISCUSSION

This section explains the results obtained from the experiment as
a first step and as proof to find out the slug flow thickness and
become a new perception in measuring the thickness of slug flow
or become a novelty in this research, where the slug flow thickness
measurement technique is adopted from the block homogeneous
measurement process. The process starts from hollowing out a
homogeneous block into 6 parts (see Figure 8(a)). Then, try mea-
suring the width or thickness of the hole using ultrasonic waves
transducer, as seen in Figure 8 technique used in the hole width
search process. Meanwhile, the equation used refers to Equation
(4) with csteel 5920 m/s. The next step, namely looking for the
presence of slug flow in the closed pipe cross-section, is the pri-
mary motivation for this research. Apart from that, there are also
image results from photos using a high-speed camera to record the
exact structure of the slug flow, and there are also imaging results
from ERT as a comparison for detecting the presence of different
particles in the slug flow.
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Figure 10 Percentage error between reference and measurement (a) 0.7346%. (b) 0.53066%. (c) 0.89116%. (d) 0.71103%. (e) 0.86957%. (f)
0.35891%.

Figure 11 Flow regime identification.

Figure 12 UR Slug flow thickness detection and identification.
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Figure 13 Velocity Flow (a) 0.73 m/s. (b) 0.76 m/s. (c) 0.95 m/s. (d) 0.98 m/s. (d) 1.18 m/s. (e) 1.2 m/s.

Figure 14 Film thickness of slug flow vs UR Velocity Flow.
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Figure 15 Film thickness of slug flow vs ERT-UR Velocity Flow.

Validation method for measuring ultrasonic slug flow thickness
The use of homogeneous block calibration is a way to calibrate
ultrasonic transducers to determine the level of error and accuracy
produced by ultrasonic waves (ultrasonic transducers) to measure
the thickness of objects using the ToF method, especially for the
Sonatest immersible transducer type used. As seen in Figure 8. (b)
The transducer is first tested on a homogeneous block calibration
standard using Krautkremer EN12223. In the second step, the
ultrasonic transducer was tested on a homogeneous block in which
various holes were made at several points, the image of which is
shown in Figure 8 (a), where the percentage error obtained by the
measurement compared to the reference is no more than 1%.

To find the thickness from Figure 8(a), Equation (19) is used to
determine the percentage error with Equation (20) when compared
with the reference length in centimeters (Lrefmeas ) which is the ref-
erence length from direct measurements using a digital clipper.
Following Figure 9 is a detail of the measurement process.

Lmeas1 = (Lmeas2 − Lmeas0 )− (Lmeas2 − Lrefmeas ) (19)

%Error =
(Lmeas1 − Lrefmeas1

)

Lrefmeas1

× 100 (20)

Figure 10 is a graph of test results from UR, where Figure 10
(a) to (f) represent the hole shape thickness in Figure 8(a) hole
from 1 to 6. It can be seen in Figure 10 (d) and (e) that the error
value is almost close to 1%. This occurs because the hole in the
homogeneous block is quite far from the sensor, and there are other
holes or measuring points close to other neighbor holes, which is
the nature of the transducer ultrasonics have a spreading beam.
Besides, the further the sound waves propagate, the bigger the
beam. However, the results will be more reliable if the holes in

Figure 8 (a) are reversed when measuring the hole width. This
occurs because other holes do not interfere with the measuring
point.

Result of Slug Flow Thickness Detection

This section will explain the method or process of flow regime
detection, where the essential information is obtained using the
ToF method. As seen in Figure 11, ToF is the primary key to the
information obtained, where the UR method can detect heteroge-
neous and homogeneous presence from two different phases. At
the same time, ERT is only able to detect heterogeneously. This is
because ERT generally calculates the average flow velocity along
the pipe cross-section. Meanwhile, calculating the thickness of
slug flow using the ToF method can immediately be the primary
reference. Thus, the final result obtained is in identifying and de-
tecting slug flow thickness and flow rate in the pipe cross-section,
which can be done using the UR method or with ERT-UR for a
combination of speed and slug flow thickness.

Figure 12(a) explains the shape of the slug flow illustration in
general, which often occurs in closed pipe cross-sections. That
is then continued with Figure 12(b), which explains the process
of identifying and determining the thickness of slug flow in pipe
cross-sections. The difference between slug flow, inner pipe wall,
and outer pipe wall is visible, as a result the measurements of
the slug flow’s thickness can be done quickly without looking for
the threshold hold of the signal obtained. In general, to detect
the thickness of the threshold slug flow, it takes time to identify
it, especially if there is a lot of noise specifically. In several other
studies, we have to look for the first echo or the location where
the slug flow occurs, which takes longer compared to the concept
in this study. This is the motivation and novelty of this research,
namely information on the existence of slug flow, which is entirely
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valid. This was obtained because the transducer used had a very
high frequency, namely 10 MHz, which is rarely used to test the
presence of slug flow in closed pipes. Apart from that, there is
assistance from FPGA, which can process graphics significantly.
In addition, the thickness of slug flow is difficult to identify in the
first echo because there is phase mixing between water and air,
making ToF characteristics challenging to observe. This, of course,
requires accuracy to find the thickness of slug flow, but because of
the accuracy of the transducer and FPGA from the system, the slug
flow can be detected quite well, where the differences between
each condition can be known. In addition, during the measure-
ment process, not all flow conditions have slug flow because the
characteristics of slug flow tend to change in pipe conditions that
do not comply with standards. In this study, it was deliberately ar-
ranged to avoid following the rules for placing ultrasonic sensors,
such as the conditions at 10xD and 5xD or other restrictions for
placing sensors. This becomes a challenge due to conditions in the
field, which cannot guarantee 100% laminar flow. However, if the
flow is not symmetrical, it can still be detected well. Moreover, the
graphic characteristics between the pipe wall and slug flow in ul-
trasonic transducers are very different, as seen in Figure 12, which
is the characteristic shape of slug flow. In contrast, the specific
characteristics of bubble flow will be explained in the following
study.

Figure 13 explains the results of the combination of a high-
speed camera and the imaging process using ERT seen in Figure
13 (a) – (f); there are variations in speed, where ERT is generally
able to identify or detect the presence of two different phases with
a yellow contrast light indicates high resistance while dark blue
indicates low resistance. Or it can be stated that the bright yellow
color contains the air fraction while the blue contains the water
fraction, but due to spatial resolution problems, ERT is not good at
imaging the shape of the slug flow in detail. Figure 13 also shows
the forms of slug flow, which often occur in the trial dimension,
to ensure that the general structure of slug flow can be depicted
during the data collection process. If observed and compared with
the reference, in this study, the form of slug flow observed was a
low-aerated slug flow type, where the main profile contained a
slug surrounded by a small amount of bubble flow.

Figure 14 explains the results obtained from the experiment
between the number of sample film thickness of slug flow and
the velocity flow results from UR. It can be seen that the trend
of the ultrasonic flowmeter is increasing because, in this case, the
speed of water and air is increased slowly, where, in this case,
the experiment can only be carried out by increasing both speeds
simultaneously, aiming to see an increase in the same volume
in each condition. In the beginning, the thickness of the film
increased slightly even though it was found in a reasonably small
range because the type of pipe had a diameter that was not too
large. Then, it tends to stabilize at 0.345 cm. This proves that, in
general, the slug flow thickness is difficult to know verifiable in
the configurations tested in this research.

It can be seen in Figure 15 that the speed is slightly less linear
between the addition of the flow rate and the process of measuring
the flow rate using the ERT-UR method. This is because ERT
has a sensitivity that is not as good as UR but has the potential
to measure the average heterogeneous flow regime signal, where
there is a slight pattern following the structure of the film thickness.
This happens because the flow rate and void fraction of the fluid
flow rate in heterogeneous conditions strongly influence slug flow.
In detail, the concepts of fraction void and flow velocity will be
presented in future research.

CONCLUSION

This study uses a combination of UR and ERT methods to detect
the presence of slug flow or two different phases, where the config-
uration uses a 1.5-inch diameter pipe. The concept of measuring
the thickness of a homogeneous block is adopted in the UR method
to measure the thickness of slug flow. With the help of a trans-
ducer and FPGA, the location and thickness of the slug flow can be
detected consistently. In addition, the UR method can monitor the
appearance of homogenous and heterogeneous differences in slug
flow conditions, making this method optimal for use in two-phase
states. Following are some summaries obtained:

• The slug flow measurement technique is adopted from the
block-homogeneous measurement process with error less than
1%.

• It can be stated that the bright yellow color contains the water
fraction while the blue water fraction is in the ERT results,
but due to spatial resolution problems, ERT is not good at
imaging in detail the shape of the slug flow

• A high-speed camera is used to record the shape of the slug
flow through images definitively, and the results of the ERT
imaging technique are used to compare and detect the pres-
ence of different particles in the slug flow.

• If observed and compared with the reference (Zhai et al. 2021),
in this study, the form of slug flow observed is a low-aerated
slug flow type, where the main profile contains a slug sur-
rounded by a small distribution amount of bubble flow.

• From the results of the combination of the ERT-UR method, it
was found that ERT has a sensitivity that is not as good as UR
but has the potential to measure the average heterogeneous
flow regime signal, where a slight pattern can be seen follow-
ing the structure of the film thickness. This happens because
the flow rate, velocity, and void fraction of the fluid flow rate
in heterogeneous conditions strongly influence slug flow.

• A new approach is introduced to determine liquid film thick-
ness by utilizing the instantaneous velocity profile. The liquid
film thickness can be reliably measured by identifying the size
of slug flow.

• The FPGA system developed is capable of delivering signifi-
cant results due to the accuracy and reliability of the system’s
design.

• In general, the main results show that ERT is used to depict
the fundamental structure of the velocity profile, while UR
is applied to measure the velocity and provide detailed mea-
surements of the slug flow film thickness.

Finally, this study presents a new perspective method to detect
multi-scale slug flow structures, where the speed and thickness of
slug flow can influence each other or vice versa. Besides, seeing
the consistency of slug flow can also be the basis for modelling
and developing flow transition models. Moreover, the UR method
is the most suitable method for determining the thickness of slug
flow. It is more economical because it only requires one type
of transducer, making it very prospective for use in slug flow
conditions. Additionally, by knowing the liquid film thickness of
the slug, the void fraction development process better becomes
where the composition of different phases can be learned such that
it can be implemented across various industrial sectors, including
the upstream oil and gas industry, pharmacy industry, freshwater
distribution or freshwater management, metering systems, and
custody transfer for volumetric systems.
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ABSTRACT The chaotic systems are among the most important areas that have increased in popularity and are
actively used in several fields. One of the most essential components in chaotic systems is the chaotic oscillator which
generates chaotic signals. IQ-Math and floating point number systems are preferred number standards. In this study, the
Modified Chua chaotic oscillator has been designed to work on FPGA chips using fixed point and floating point number
representations, and both system version performances are compared. Euler numeric algorithm has been used to design
the Modified Chua chaotic oscillator. In the first section of the study, the Modified Chua chaotic system based on fixed
point has been composed the model in the Matlab Simulink and converted to VHDL with the help of Matlab HDL Coder
Toolbox. In the second section of the study, the Modified Chua chaotic oscillator has been designed with VHDL based on
floating point. Modified Chua chaotic oscillators which are composed with two different number standards have been tested
using Xilinx ISE Design Tools in VHDL. Modified Chua chaotic oscillators which have two different number standards and
designed, are synthesized for Virtex-6 on ML605 FPGA development board using Xilinx ISE Design Tools 14.2 program.
The values that are achieved from the process of synthesizing and the process of maximum operating frequency have
been presented. As a result, the study has found that fixed-point representation achieved a maximum operating frequency
of 50.242 MHz, while the floating-point representation achieved 273.631 MHz.

KEYWORDS

Chaotic oscilla-
tors
Euler algorithm
FPGA chips
VHDL

INTRODUCTION

Nonlinear systems are structures where space nonlinearity and lin-
earity exist only within certain limits. Behaviors that seem simple
or trivial in a nonlinear system can lead to unpredictable changes
and results. Chaotic systems are among the most actively used
and researched areas within this broad spectrum. In recent years,
chaotic systems have played an important role in solving increas-
ing security problems worldwide. Economic and technological
developments have led to an increase in the speed and capacity of
information, which has, in turn, caused security problems. While
massive amounts of information are transmitted without loss, each
piece of information needs to be stored and encrypted according
to the area in which it is used. In this context, the use of chaotic
systems and the renewed focus on these systems created by chaotic
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fluctuations present promising approaches for solving these prob-
lems. Chaotic systems do not work as periodical systems, so the
next results cannot be predicted (Litvinenko 2017a). Chaotic sys-
tems produce new values at each step, giving different results from
previous values and generating unique subsequent values from
earlier values. Chaotic systems are actively used in such areas
as cybersecurity (Amir Anees 2018), voice and image processing
(Fatih Özkaynak 2013; Mohamed L. Barakat 2013; Gabr 2023), opti-
mization algorithms (Erkan Tanyıldızı 2017), the defense industry
(Vasyuta et al. 2019), biomedical applications (Zhengxing Huang
2014), and mechatronics (Jorge Pomares 2014).

A study conducted by Linsheng Zhang et al. developed an
automated system that transitions from a floating-point number
system to a fixed-point number system based on Extreme Value
Theory (Linsheng Zhang 2009). Babajans et al. achieved synchro-
nization between two chaotic systems using the Vilnius chaotic
oscillator, with results shared by researchers (Ruslans Babajans
2020). Litvinenko’s research thesis illustrates the usage of gen-
erated chaotic systems such as logistic map, Bernoulli map, and
tent map for DS-CDMA (Direct-Sequence Code Division Multiple
Access) systems (Litvinenko 2017b). In another study, Litvinenko
et al. proposed Chaos Shift Keying (CSK) based on the Modified
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Chua chaotic system, achieving synchronization between a trans-
mitter and two receivers for data transmission (Litvinenko and A.
2019). Additional work by M. K. Gabr implemented an encryption
and decryption system that employs the Chua circuit as one of the
chaos generators (Gabr 2023). Arpaci’s thesis introduced video
encryption and decryption systems using a Modified Chua chaotic
circuit for enhanced data transmission security (Arpaci 2019).

The daily pace of humanity has increased with the develop-
ment of technology. When comparing the last decade’s techno-
logical acceleration with that of the last 20 years, even though the
time span is only twice as long, technological development has
more than doubled. One important technology for meeting ever-
growing humanity’s needs, whether in academia or industry, is the
FPGA (Field Programmable Gate Array). Nowadays, the active
use of FPGA chips is crucial for digital system design. FPGA chips,
which allow fast prototyping, parallel signal processing, and high
working frequency capabilities in a whole-circuit structure, are pre-
ferred in resourceful signal processing tasks, such as chaotic system
applications. FPGA chips have been extensively used in signal pro-
cessing and real-time applications that require high performance
with high processing power due to their significant advantages
such as pipelined processing, low cost, re-programmability, and
high throughput. FPGA chips are actively used in both academia
and industry in fuzzy logic (Fatih Karataş 2020), image processing
(Koyuncu 2022; Taşdemir 2020), biomedical systems (Fatih Karataş
2021), artificial neural networks (Murat Alcin 2016), and communi-
cation systems (Filips Capligins 2021).

FPGA, ASIC (Application Specific Integrated Circuit), and DSP
(Digital Signal Processor) chips are preferred structures due to their
high-frequency parallelism and special capabilities. These chips
are generally differentiated from each other based on their pro-
duction purpose and cost. While FPGA chips stand out with their
re-programmability and flexibility, ASICs are more cost-effective
than FPGA and DSP chips when produced in large quantities, but
they do not have re-programmability features. As a result, they
are industrially preferred over other chips. DSP chips excel in
signal processing for more specialized areas such as image and
sound processing. In one study, a stable modified fourth-order
autonomous Chua chaotic system was developed using the Vir-
tex 6 FPGA chip, achieving a frequency of 180.180 MHz with the
RK4 (Fourth-order Runge-Kutta) numerical integration algorithm
based on 32-bit IQ-Math floating-point numbers (Fei Yu 2020). In
another study, Capligins et al. programmed an FPGA chip using
a Modified Chua chaos generator for high-security networks and
wireless communication methods (Filips Capligins 2021).

In this study, unlike classical number base studies, the perfor-
mance analysis of two number bases has been performed. To
ensure fair conditions and make the performance analysis more
efficient, the comparison was made with a single-type chaotic
system produced with two different number bases. A Modified
Chua chaotic system was generated with both fixed-point and
floating-point number bases. This approach reduces the impact
of external factors when analyzing performance and equalizes
conditions between both representations. This study provides an
analysis of the importance of the materials to be used when design-
ing a chaotic oscillator and how these materials should be selected,
such as memory, experience, and cost requirements. Conversely, it
provides guidance on how to produce the most effective chaotic
oscillator with readily available materials.

The chip statistics, including comparison results with different
studies related to Xilinx (AMD) and Altera (Intel) FPGA chips,
are given in Table 1. This table includes critical parameters, such

as maximum operating frequencies and numerical methods re-
garding fixed-point and floating-point number systems based on
Lu-Chen, Lorenz, Liu, Chen, Chua; the Modified Chua used in this
article, and CO and HO from the literature.

As a result of the study, the fixed point number-based chaotic
oscillator provides less memory usage than the results that shared
in the literature, while the floating point number-based oscillator
provides clearer and more accurate results. These results explain
the importance of chaotic oscillators considering the importance
of past and present communication systems. In the second part
of the study, general information about fixed and floating point
number systems, Modified Chua chaotic oscillator and FPGA-
based Modified Chua chaotic system is given. In the Third Section,
32-bit fixed point and floating point-based Modified Chua chaotic
oscillator unit designs on FPGA chip and chip statistics obtained
from the designs are presented. In the last section, the results
obtained from the studies are evaluated.

MATERIAL AND METHODS

In this section, general information is given about technical struc-
tures in which used in the system at FPGA chip, chaotic systems,
fixed and floating point number systems.

Fixed and Floating Number Systems and Modified Chua Chaotic
Oscillator
The whole universe is moved with frequency domain. In this di-
rection frequency and signal processing methods form the basis
of each electronically systems. Digital signal processing meth-
ods move with two essential number bases as fixed point bases
and floating point bases. These number systems thought storing
methods and transmission methods of computer-based data. The
floating point number system represents the large scale according
to a fixed point. This situation not only represents to maximum
and minimum range of number value but also the width of the
range of decimal values is also represented. While floating point
number system using more resources on the chips, the fixed point
number system was seen more economical.

The mathematical function of the Modified Chua chaotic system
is represented by the system of differential equations (1), where p1,
p2, p3, p4 are the four state variables and σ, γ, θ, c, d are the system
coefficients.

dp1
dt

= −g(p1, p3)(p1 − p3)− p2,

dp2
dt

= p1 + γp2,

dp3
dt

= θ (g(p1, p3)(p1 − p3)− p4) ,

dp4
dt

= σp3.

(1)

g(p1, p3) is a nonlinear function with the parameters c and d, as
defined in Equation (2).

g(p1, p3) = c(p1 − p3 − d)(p1 − p3) > d(p1 − p3) ≤ d (2)

The Forward Euler method is one of the most important numer-
ical analysis techniques. It is commonly used for the numerical
analysis of differential equations, which are employed to model
changing variables in dynamic systems, such as chaotic systems.
The essential principle of the Forward Euler method involves up-
dating system variables regularly. This step-by-step process pre-
dicts changes in the system variables between discrete time steps.
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■ Table 1 Floating and fixed point-based chaotic oscillators on FPGA in literature

Study Chaotic Generator Max. Operating Fre-
quency (MHz)

Numerical Method Platform Number System

Fei Yu (2020) Modified Chua 180.180 RK4 Xilinx ZYNQ-
XC7Z020

32-bit Floating Point

Murat Tuna (2019) Lu-Chen 464.688 Heun Xilinx Virtex-6 32-bit Floating Point

Mohamed Salah Az-
zaz (2013)

Lorenz 38.86 Euler Xilinx Virtex-2 32-bit Floating Point

Mohammed F. Tolba
(2017)

Liu 137.561 Fractional order Xilinx Virtex-5 Fixed Point

Sadoudi Said (2009) Chen 22.850 RK4 Xilinx Virtex-2 32-bit Floating Point

Luciana De Micco
(2011)

Lorenz 3.676 - 125 RK4 Altera Cyclone-III 32-bit Floating Point

Akif Akgul (2015) Lorenz 373.134 RK4 Xilinx ISE and Lab-
view Simulator

32-bit Floating Point

E. Tlelo-Cuautle
(2015)

Chua 70.943, 69.500,
58.648, 48.209

RK4 / Forward Euler Xilinx Spartan-3 Fixed Point

Omar Guillén-
Fernández (2021)

CO1, CO2, CO3,
HO4, HO5

90.88, 102.75, 58.55,
79.77, 82.7

Forward Euler Altera Cyclone-IV Fixed Point

Present Modified Chua 273.631 - 50.242 Forward Euler Xilinx Virtex-6 Floating Point and
Fixed Point

The Forward Euler method can be expressed with a simple equa-
tion:

yn+1 = yn + h · f (tn, yn) (3)
Different initial conditions and system parameter values can be

used for the Modified Chua system to exhibit the desired nonlinear
dynamic behavior. The initial conditions and parameters used in
this study for the implementation of the Modified Chua chaotic
system are provided in Table 2.

■ Table 2 Initial Conditions and System Parameters of the
Modified Chua Chaotic System

Initial Conditions Parameters

p1 p2 p3 p4 σ γ θ c d

0.1415 -2.073 -0.252 0.829 0.5 10 1.5 3 1

The Modified Chua chaotic system has been modeled numer-
ically using the Euler algorithm. Figure 1 shows the phase por-
traits of the system state variables. Figure 2 shows the time series
of the system state variables. For the mathematical calculations
of the Modified Chua chaotic oscillator, the step size of the al-
gorithm is chosen as h = 0.005. For k = 0, the initial values
are set to P1(k) = 0.1415, P2(k) = −2.073, P3(k) = −0.252, and
P4(k) = 0.829. The system parameters are considered as σ = 0.5,
γ = 10, and θ = 1.5.

(a) (b)

(c) (d)

(e)

Figure 1 The phase portraits of the Modified Chua chaotic sys-
tem state variables: (a) p1-p2, (b) p1-p3, (c) p2-p3, (d) p3-p4, (e)
p1-p2-p3.
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Figure 2 The time series of the Modified Chua chaotic system
state variables for P1, P2, P3, and P4.

FPGA-Based Modified Chua Chaotic System
FPGA chips are widely used for low power consumption, re-
programmability, fast prototyping, and parallel signal processing
capabilities in academic and industrial fields. FPGA chips are
designed with languages such as VHDL, Verilog, and System C.
Compared to specially designed graphics cards, supercomputers,
and parallel computers, these chips are low-cost and easier to ac-
cess. Chaotic systems are one of the very sensitive areas in digital
signal processing. This sensitivity and the high energy consump-
tion caused by it can be mitigated with the parallel processing and
low power consumption capabilities of FPGA chips.

Figure 3 shows the parts of a basic FPGA chip. A basic FPGA
chip consists of three main components: Configurable Logic Block
(CLB), Input-Output Blocks (IOBs), and interconnections. Accord-
ing to the digital circuit designed by the user, the logic blocks and
the connections between them are configured. The CLB provides
functional elements for the logic circuit that the user wants to cre-
ate. The IOB provides an interface between the internal signal lines
of the chip and the pins of the chip. Interconnections are used for
configuring the connections between the CLB and IOB.

Figure 3 The parts of a basic FPGA chip: Configurable Logic
Block (CLB), Input-Output Blocks (IOBs), and interconnections.

Chaotic systems exhibit complex behavior without any partic-
ular order or predictability. They are dynamical systems that can
be expressed in terms of nonlinear equations and can respond to
small changes over time. One of the most important things is that
tiny changes at initial conditions can have enormous effects over
time. Because of these effects, chaotic systems need not only mem-
ory space but also parallelism to calculate fast on generating new

values. Therefore FPGA chips are generally preferred for chaotic
systems. The Chua circuit is an electrical circuit using passive
elements such as resistors, capacitors, and active elements such as
diodes, transistors, and amplifiers. This circuit is a system that can
exhibit chaotic behavior under certain conditions.

FPGA-BASED CHAOTIC SYSTEMS

In this section, the structure of the Modified Chua chaotic oscillator
is described using both floating-point and fixed-point bases. The
32-bit IEEE-754-1985 single-precision standard is used for floating-
point number representation, while the 16I-16Q format is used for
IQ-Math with fixed-point numbers.

Fixed Point Based Modified Chua Chaotic Oscillator Unit on FPGA
Fixed-point implementation for fractional calculus in FPGA is the
most straightforward approach since it uses a predefined number
of bits for all of the signal nets. From the perspective of FPGA,
the system works with binary numbers without knowing about
fraction points; it is implemented in the initial design stage and
therefore does not require any additional resources for calculation
processing, unlike floating-point format. In the present work,
32 bits are used, from which 1 bit is reserved for the sign, 15
bits for representing integer values, and 16 bits for representing
fractional values. This way, such a format can represent numbers
from −215 = −32768 to (215 − 2−16) = 32767.99998474121 with
precision equal to 2−16 = 1.52587890625 × 10−5. The integer part
has a large reserve for further processing needs, while the fractional
part, which limits the absolute maximum number of chaos discrete
values, provides acceptably high precision values for the obtained
chaos to exhibit itself.

To implement the continuous chaotic system in a digital sys-
tem, the ordinary differential equations need to be solved using
some discrete integration method. In this work, the forward Euler
method is used for fixed-point Modified Chua chaos generator im-
plementation, with a time step of 1/1024. Other methods (such as
4th order Runge-Kutta) may provide more accurate results in some
cases but are more complex to implement and require more hard-
ware resources. Since with the chosen integration time step and
method, the solutions of the chaos system’s differential equations
always converge, this approach is feasible for practical use in ex-
perimental studies. The Matlab Simulink model of the fixed-point
based Modified Chua oscillator is shown in Figure 4.

Figure 4 Matlab Simulink model of the fixed-point based Modi-
fied Chua chaotic oscillator.
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The Modified Chua chaotic oscillator has been designed in
Matlab Simulink, and the design has been verified to work as
expected. After this step, the VHDL code was generated using the
Matlab HDL Coder Toolbox. In this study, the fixed-point number
standard was used for converting the model in Matlab Simulink
into VHDL language. A testbench was designed and tested using
Xilinx ISE Design Tools to verify the design. The test results of the
fixed-point based Modified Chua chaotic oscillator are shown in
Figure 5.

Figure 5 Modified Chua chaotic oscillator test results based on
fixed point obtained from Xilinx ISE Design Tools.

Figure 6 shows the top-level block diagram of the fixed-point
implementation of the Modified Chua chaotic oscillator unit. This
unit has three inputs: a 1-bit clk, a 1-bit clk_enable, and a 1-bit reset.
It also has five outputs: 32-bit P1_out, P2_out, P3_out, P4_out, and
a 1-bit ce_out. When the clk signal has a rising edge, the system
is activated and generates new values. The chaotic signal values
are output through P1_out, P2_out, P3_out, and P4_out, and the
system’s functionality is verified by monitoring the output of the
ce_out signal. The schematic for the second-level blocks is not
presented due to its complexity and overly detailed nature.

Figure 6 Top-level block diagram of the fixed-point based Modi-
fied Chua chaotic oscillator unit on FPGA.

The VIRTEX-6 ML605 FPGA evaluation board (Device:
XC6VLX240T, Package: FF1156, Speed: -1) was used for the im-
plementation. The maximum operating frequency for the design
was 50.242 MHz. FPGA utilization statistics and the maximum fre-
quency for the fixed-point implementation of the Modified Chua
chaotic oscillator unit are presented in Table 3.

A testbench was written in VHDL language to analyze the
results generated by the fixed-point based Modified Chua chaotic
oscillator for the P1, P2, P3, and P4 signals. The design was run in
the Xilinx ISE Design Suite, and 4,000 values for each signal were
saved in a .txt file. The related values were converted to real values
to generate the time series graph. The time series of the Modified
Chua chaotic oscillator for P1, P2, P3, and P4 signals are shown in
Figure 7.

Floating Point Based Modified Chua Chaotic Oscillator Unit on
FPGA
In this section, the discretized model of the Modified Chua chaotic
system is obtained using the Euler numerical differential equation

Figure 7 Time series of the fixed-point based Modified Chua
chaotic system for P1, P2, P3, and P4 signals on FPGA.

solution method. Next, the related chaotic system is designed
using VHDL and Xilinx ISE Design Tools. After the design process,
the chaotic system is tested with a testbench written in VHDL
and using Xilinx ISE Design Tools to verify the Floating Point
based Modified Chua Chaotic Oscillator unit. The chip statistics
for the Floating Point based Modified Chua Chaotic Oscillator unit
are presented. The top-level block diagram of the floating-point
based Modified Chua Chaotic Oscillator Unit on FPGA is shown
in Figure 8.

The top-level block diagram includes a 1-bit clk, Reset, and Start
signals as inputs, and 32-bit P1_out, P2_out, P3_out, P4_out, and a
1-bit Result_Ready signal as outputs.

Figure 8 Top-level block diagram of the floating-point based
Modified Chua Chaotic Oscillator Unit on FPGA.

Figure 9 shows the second-level block diagram of the floating-
point based Modified_Chua_Euler unit. This includes x4mux and
Modified_Chua_Euler units in the second-level design. The x4mux
unit has inputs grouped as 32-bit 2X4. The first four groups repre-
sent the initial conditions required for starting operation. When
the Modified_Chua_Euler unit begins generating results, the second
four groups send all data either to the system output as P1_out,
P2_out, P3_out, P4_out or to the x4mux unit as the next initial con-
ditions. The shys signal is used as a control process. When the
value of shys is ’0’, the x4mux unit sends initial conditions to the
Modified_Chua_Euler unit. If the value of shys is ’1’, the x4mux unit
sends the generated values to the Modified_Chua_Euler unit.

The third-level block schematic for the floating-point based
Modified Chua Chaotic Oscillator unit is shown in Figure 10. The
design includes IP-Core units, a modified_Chua_core unit, and a filter
unit for multiplication and addition operations in 32-bit floating-
point standards. The Modified_Chua_core unit and the Chua chaotic
system are implemented in VHDL for FPGA realization. The
filter unit is created to prevent unintended consequences of the
Chua_Chaotic_Oscillator unit.
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■ Table 3 FPGA utilization statistics of the fixed-point based Modified Chua Chaotic Oscillator Unit

Number of Slice
Registers

Number of Slice
LUTs

Number of Oc-
cupied Slices

Number of
DSP48E1s

Number of IOBs Maximum Clock
Frequency
(MHz)

Used 128 642 158 8 132

Utilization (%) 1 1 1 1 22 50.242

Available 301,440 150,720 37,680 768 600

Figure 9 Second-level block diagram of the floating-point based
Modified Chua Chaotic Oscillator Unit on FPGA.

Figure 10 Third-level block diagram of the floating-point based
Modified Chua Chaotic Oscillator Unit on FPGA.

The simulation results of the floating-point based Modified Chua
Chaotic Oscillator unit are shown in Figure 11. The designed unit
sends signals to the outputs (P1_out, P2_out, P3_out, and P4_out)
on every 69th clock pulse. While the Chua_Chaotic_Oscillator unit
is generating results, the Result_Ready signal is set to ’1’; otherwise,
it remains ’0’.

Figure 11 Simulation results of the floating-point based Modified
Chua Chaotic Oscillator unit on FPGA.

FPGA utilization statistics and the maximum frequency have
been presented for the realization of the floating-point based Mod-
ified Chua Chaotic Oscillator unit in FPGA. The VIRTEX-6 ML605
(Device: XC6VLX240T, Package: FF1156, Speed: -1) evaluation
board was used for realization, achieving a maximum frequency
of 273.631 MHz. The results are shown in Table 4.

A testbench was written in VHDL language to analyze the re-
sults generated by the floating-point based Modified Chua chaotic
oscillator for the P1, P2, P3, and P4 signals. The design was run in
the Xilinx ISE Design Suite, and 4,000 values for each signal were
saved in a .txt file. The related values were converted to real values
to generate the time series graph. The time series of the Modified
Chua chaotic oscillator for P1, P2, P3, and P4 signals are shown in
Figure 12.

Figure 12 Time series of the floating-point based Modified Chua
chaotic oscillator for P1, P2, P3, and P4 signals on FPGA.
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■ Table 4 FPGA utilization statistics of the floating-point based Modified Chua Chaotic Oscillator Unit

Number of Slice
Registers

Number of Slice
LUTs

Number of Oc-
cupied Slices

Number of
DSP48E1s

Number of
IOBs

Maximum
Clock Fre-
quency (MHz)

Used 6,827 6,395 2,325 9 132

Utilization (%) 2 4 6 1 22 273.631

Available 301,440 150,720 37,680 768 600

CONCLUSION

In this study, the Modified Chua chaotic system has been designed
using the 32-bit IQ-Math number system and the 32-bit IEEE-754-
1985 standard for implementation on FPGA chips. The Modified
Chua chaotic oscillator based on the floating-point number system
was designed using VHDL, while the fixed-point version was
modeled in Matlab Simulink and then converted to VHDL using
the Matlab HDL Coder Toolbox. Both designs of the Modified
Chua chaotic oscillators were tested using a testbench composed
in VHDL, and the successful simulation results were presented in
this study.

The two designs of the Modified Chua chaotic oscillators were
synthesized with the Xilinx ISE Design Tools 14.2 for the Virtex-6
chip on the ML605 FPGA development board. The fixed-point
based Modified Chua chaotic system achieved a maximum fre-
quency of 50.242 MHz, while the floating-point based version
achieved a maximum frequency of 273.631 MHz. Although the
floating-point design provided a higher maximum frequency, the
fixed-point design was more favorable in terms of resource utiliza-
tion.

With the findings presented in this study, a high-speed ran-
dom number generator can be developed using the floating-point
based Chua chaotic oscillator. Furthermore, a low-cost, customized
FPGA-based chaotic random number generator can be imple-
mented using the fixed-point based Chua chaotic oscillator. It
has been demonstrated that the Modified Chua chaotic oscillators
based on both floating and fixed-point number systems can be used
safely in secure communication and cryptographic applications.
In future studies, a random number generator may be developed
for secure communication and cryptographic applications using
FPGA-based Modified Chua chaotic oscillators designed with both
number systems.
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ABSTRACT In this manuscript, we establish hybrid function projective synchronization of a new hyperchaotic
system using an adaptive control technique with unknown system parameters. In order to prevent either from
deriving from participants in the single hyperchaotic financial system, identical master and slave systems are
chosen. We design an adaptive controller to achieve global chaos synchronization between these master and
slave systems. The synchronization results are based on adaptive control theory and Lyapunov stability theory.
Additionally, we outline the basic dynamic characteristics of both hyperchaotic financial systems. Numerical
simulations performed in Matlab validate our results excellently.
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INTRODUCTION

In nonlinear science, chaotic dynamics is an interesting area of
research that has been a lot of exploration in current decades.
Chaotic events have an impact on a wide range of domains, includ-
ing secure communication, computer science, quantum physics,
biological systems, chemical systems, power converters, electrical
engineering, psychology, and so on (Chen and G.ed. 1999) .Com-
plex dynamics with unique characteristics, like topological mixing,
dense periodic orbits, unusual attractors, broad Fourier transform
spectra, limited and fractal motion qualities in phase space, and
great sensitivity to beginning circumstances, are characteristics
of a hyperchaotic system (Farivar,F. and Teshnehlab 2012). L. M.
Pecora and Carroll (1990) established the master-slave idea for
synchronization of chaotic systems in 1990.

Given the extensive practical applications of chaotic dynamical
systems in the fields mentioned above, numerous theoretical and
experimental studies have been conducted on controlling chaos
and achieving synchronization (Abd-Elouahab and Wang 2010;
Chen, L. and Wu 2011). To be more precise, synchronization of
nonlinear dynamical systems allows for a deeper comprehension
of collective dynamical behaviour in systems that are physical,
chemical, biological, and other. Numerous mathematical, physi-
cal, sociological, physiological, and biological systems have been
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2akhan12@jmi.ac.in
3khursheed.alam@sharda.ac.in (Corresponding author).

shown to exhibit synchronous behaviour (Koronovskii, A.A. and
Hramov 2013).

Many techniques for controlling and synchronizing, have been
designed comparable and non-identical chaotic systems have been
developed in an effort to improve ways for chaos management
and synchronization. Such methods include backstepping control
(Li, S.Y. and Chiu 2012), adaptive control ( Khan, A. and Shikha.
2017), linear feedback (Ma, M. and Cai 2012), optimal control (Li,
Y. and Li 2013),(Cai, G. and Fang 2013) active control (Kareem, S.O.
and Njah 2012), active sliding control ( Khan, A. and Prasad 2016),
passive control ( Motallebzadeh, F. and Cherati 2012), and so on.
To derive the controller in these published works, one has to be
aware of the values of the system’s parameters.

Nevertheless, these factors are frequently unknown in real-
world scenarios. Subsequently deriving an adaptive controller,
therefore, is an important problem for the control and synchro-
nization of hyperchaotic financial systems with unknown system
parameters ( Vaidyanathan, S. 2015). For the purpose of synchroniz-
ing hyperchaotic financial systems, a number of synchronization
techniques have been developed such as complete synchroniza-
tion (CS) ( Chen, H. and Guo 2021), generalized synchronization
(GS) (Zheng, Z. and Hu 2000), projective synchronization (PS),
and hybrid synchronization (HS) (Wu, X. and Li 2012). Due to its
ability to achieve speedier communication with its proportional
features There are now two positive Lyapunov exponents (LE) that
point to hyperchaotic behaviour. This dissipative hyperchaotic
system’s mathematical characteristics are shown both theoretically
and statistically, including Lyapunov exponents (Al-Azzawi, S and
Hasan 2024).
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In order to have a thorough understanding of the dynamics of
the suggested system, we have examined Hamilton energy and
competitive modes at various parameter values. One of the sim-
plest concepts for gaining a deeper knowledge of the dynamics or
stability of a chaotic system is Hamilton energy. Research reveals
that if one can totally control the energy flow in a chaotic system,
one can successfully manage its stability. By handling the Hamil-
ton energy, they can do this. The significance of the Hamilton
energy for the formation of nonlinear oscillations has been exam-
ined in recent research on chaotic systems (Khan, A. and ALi 2024)
projective synchronization has garnered substantial attention and
has been thoroughly explored among the numerous types of chaos
synchronization (Li., Z. and Xu 2004).

The synchronization of the master and slave systems up to a
scaling factor is the defining feature of projective synchronization.
Chen and Li have considered the function projective synchroniza-
tion (FPS), a unique synchronization approach (Chen, Y. and Li
2007) . As opposed to projective synchronization, function pro-
jective synchronization (FPS) allows synchronization between the
response and drive systems up to a certain scaling function rather
than a constant. Projective synchronization (PS) or complete syn-
chronization (CS), respectively, can be achieved by choosing the
scaling function to be either a constant or unity. Thus, a more inclu-
sive definition of projective synchronization is function projective
synchronization. Function projective synchronization is very help-
ful for safe communications because of the unpredictable nature
of the scaling function, which can further improve communication
security.

In more general terms, though, not every element in the vec-
tor can synchronize to the required scaling function. All of the
vector’s scaling functions differ in hybrid function projective syn-
chronization (HFPS) (Ojo, K.S.. and Omeike 2014) which increase
complexity and fortifies secure communication even more. The
primary benefit of employing the adaptive control technique is
that it enables controllers to accomplish drive and response sys-
tem synchronization without requiring knowledge of parameter
values. This method effectively synchronizes the systems with
less information needed. The active control technique is used
to create synchronization and anti-synchronization between the
drive and response systems. Controller design requires parame-
ter values. These days, secure communication is a major concern.
Hybrid function projective synchronization (HFPS), as previously
mentioned, increases controller complexity and makes it more dif-
ficult for hackers to interpret communications. This combination
enhances secure communication.

Additionally, most reported research on hybrid function pro-
jective synchronization achieve synchronization between two hy-
perchaotic financial systems that are both part of the unified hy-
perchaotic financial system. Inspired by the above discussion,
in this work, we address the HFPS via adaptive control. Com-
plete synchronization (CS), projective synchronization (PS), anti-
synchronization (AS), and hybrid projective synchronization (HPS)
are the subcases of hybrid function projective synchronization.

This manuscript organized as: The problem of statements for
the hyperchaotic financial system’s synchronization are covered in
Section 2. In section 3 A description of the hyperchaotic financial
system’s basic dynamical features is given. Section 4 is succeeded
by the hyperchaotic financial system’s hybrid function projective
synchronization (HFPS) via adaptive control. A numerical simula-
tions and discussions Section 5. Finally, conclusion is delivered in
Section 6.

PROBLEM STATEMENT FOR SYNCHRONIZATION OF
CHAOTIC SYSTEM

Assume that a hyperchaotic financial system with a state vector is
a driving system.
Xm ∈ Rn and P ∈ Rn×n is system matrix given by

Ẋm = PXm + f (Xm) (1)

Where f (Xm) : Rn → Rn is the system’s nonlinear part. An-
other highly hyperchaotic financial system can be thought of as a
slave system with a state vector. The system matrix Ys ∈ Rn and
Q ∈ Rn×n with controller is provided by P

Ẏs = QYs + g (Ys) + σ (Xm, Ys) (2)

Where g (Ys) : Rn → Rn is nonlinear part of the slave system and
σ is the adaptive controller added in slave system for synchroniza-
tion of the systems (1) and (2).

For hybrid function projective synchronization, the error e ∈ Rn

between states Xm and Ys is defined as:

e = Ys − A(t)Xm (3)

Where A(t) = diag (η1(t), η2(t), . . . . . . ., ηn(t)) is the diagonal
matrix and ηi(t) : Rn → R(i = 1, 2, . . . . . . , n) are functions that are
bounded and continuously differentiable, ηi(t) ̸= 0∀t.

From (1) and (3) error dynamics as:

ė = QYs + g (Ys) + σ (Xm, Ys)− PXm − f (Xm) (4)

Therefore, for hybrid function projective synchronization,
the goal is to determine the controller σ (Xm, Ys), so that
limt→∞ ∥e(t)∥ = 0, ∀e ∈ Rn.

Remark 1: If A(t) = diag (η1(t), η2(t), . . . . . . . . . , ηn(t)) where
ηi(t) ∈ R are constants, then hybrid function projective synchro-
nization simplifies to hybrid projective synchronization. Further-
more, when all ηi(t) are identical, the problem reduces to projective
synchronization.

FUNDAMENTAL DYNAMICAL PROPERTIES OF THE SYS-
TEM

Consider the novel financial system:

ẋ1 = x3
2 + (x2 − a) x1 + x4

ẋ2 = 1 − bx2 − x1
2 (5)

ẋ3 = −x1x2 − cx3

ẋ4 = −0.05x1x3
2 − dx4

Where the interest rate (x1), investment demand (x2), price
index (x3), and average profit margins (x4) are the four state
variables for which the system specifies the temporal evolution.
Differentiation with respect to time t is indicated by the dot and
a ≥ 0 the saving amount, b ≥ 0 the cost per investment, c ≥ 0 is
the elasticity, and d ≥ 0 is positive systems parameter.

The values of the parameters a = 0.9, b = 0.2, c = 1.5
and d = 0.17 the Lyapunov exponents are λ1 = 1.1605,λ2 =
0.6589,λ3 = −0.7145 and λ4 = −2.0642 as shown in Fig 1.
∑4

λ=1 λi = −0.9593 ≤ 0. The considered system is hyperchaotic
based on our calculation of the Lyapunov exponent for the sys-
tem witnessing the two positive Lyapunov exponents. Here two
Lyapunov exponents are positive and two are negative, positive
Lyapunov exponents shows that system 5 is hyperchaotic.
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Figure 1 Lyapunov exponents of the 5 hyperchaotic financial system

Lyapunov exponent spectrum

In a dynamical system, the rate at which infinitesimally close paths
separate is quantified by the Lyapunov exponent spectrum. The av-
erage exponential rate of divergence or convergence in particular
directions inside the system’s phase space is represented by each of
the exponents that make up this representation. When neighbour-
ing trajectories diverge, a positive Lyapunov exponent suggests
chaotic activity; conversely, a negative one suggests convergence
to a stable point or periodic orbit. Zero exponents frequently imply
neutral stability, as in the case of a conservative system’s trajectory.
The complete range of Lyapunov exponents sheds light on the
general stability of the system as well as the characteristics of its
attractors.

Bifurcation analysis

Bifurcation analysis as parameter a increases from 0.5 to 2, the sys-
tem transitions from stable behavior to hyperchaotic oscillations
in the interest rate x. For values of parameter b ranging from 0.1 to
0.5, the system exhibits very large fluctuations in the steady state
of x reaching magnitudes on the order 1012 suggesting instability
in the system. As parameter c increases from 1 to 2, the system
shows hperchaotic behavior initially, but the fluctuations in x re-
duce as c increases. Parameter d, ranging from 0.1 to 0.3, leads to
hyperchaotic behaviour for the most of its range , with multiple
steady-state value of x. The systems remains hyperchaotic.

Dissipation

The divergence of the system 5 is

∇V =
˙(

∂x
∂x

)
+

˙(
∂y
∂y

)
+

˙(
∂z
∂z

)
+

˙(
∂w
∂w

)
= −a − b − c − d = −(a + b + c + d) < 0.

Since a, b, c, d ≥ 0, the dynamical system (3.1) is a dissipative
system, and

V̇(t) = e−(a+b+c+d).

This indicates that as t increases, each volume carrying the
trajectory of this dynamical system (3.1) shrinks to zero at an
exponential rate of −(a+ b+ c+ d). Hence, the asymptotic motion
settles onto an attractor of the new dynamical system (3.1), thereby
limiting all of the orbits of the system to a certain subset with zero
volume. (Wu, X. and Li 2012).

Figure 2 Lyapunov exponent spectrum of the new system 5 and
L1 represented largest lyapunov exponent in all cases. (a) rep-
resented versus parameter a, (b) represented versus parameter
b, (c) represented versus parameter c, (d) represented versus pa-
rameter d
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Figure 3 Phase portraits of 5 hyperchaotic financial system (a) in
x-y-z space, (b) in the x-y-w space, (c) projection on the y-z plane,
and (d) projection on x-z plane

Equilibrium and Stability
The equilibrium of system 5 can be obtained by solving equations:

x2
3 + (x2 − a)x1 + x4 = 0

1 − bx2 − x2
1 = 0

−x1x2 − cx3 = 0

−0.05x1x2
3 − dx4 = 0

system 5 has a trivial equilibrium points E0 = (0, 0, 0, 0) and two
nontrivial equilibrium points E1 = (0.9, 0.7,−0.4,−0.05), and
E2 = (2.6, 5,−9.06,−3.53). Therefore, E0 is stable and E1 and
E2 are unstable equilibrium points.

HYBRID FUNCTION PROJECTIVE SYNCHRONIZATION OF
HYPERCHAOTIC FINANCIAL SYSTEM VIA ADAPTIVE CON-
TROL

Our aim is to achieve hybrid function projective synchronization
between master and slave hyperchaotic systems using the method
of adaptive control. Is that regard, we consider the master and
slave system, follows:

ẋ1 = x3
2 + (x2 − a) x1 + x4

ẋ2 = 1 − bx2 − x1
2 (6)

ẋ3 = −x1x2 − cx3

ẋ4 = −0.05x1x3
2 − dx4

Where x1, x2, x3 and x4 are typical profit margins, price index,
investment demand, and interest rate. and a, b, c and d are pos-
itive parameters. The above system 6 has already been seen as
hyperchaotic for the specified values of parameterise.

The slave system is described as:

ẏ1 = y2
3 + (y2 − a) y1 + y4 + u1

ẏ2 = 1 − by2 − y2
1 + u2 (7)

ẏ3 = −y1y2 − cy3 + u3

ẏ4 = −0.05y1y2
3 − dy4 + u4

Where y1, y2, y3 and y4 are typical profit margins, price index,
investment demand, and interest rate. and a, b, c and d are positive
parameters and u1, u2, u3 and u4 , continuously differentiable, non-
zero scaling functions. The error dynamics is expressed as the
derivative of 8 is

ei = yi − ηixi, where i = 1, 2, 3, 4 (8)

and η′
is(i = 1, 2, 3, 4) are bounded, continuously differentiable,

non-zero scaling functions. The error states’ time derivative of 8 is

ėl = ẏi − η̇l(t)xi − ηi(t)ẋl (9)

Using 6 ,7 and 9 we obtain

ė1 = y2
3 +(y2 − a) y1 + y4 +u1 − η̇1(t)x1 − η1(t)

(
x2

3 + (x2 − a) x1 + x4

)
ė2 = 1 − by2 − y2

1 + u2 − η̇2(t)x2 − η2(t)
(

1 − bx2 − x2
1

)
(10)

ė3 = −y1y2 − cy3 + u3 − η̇3(t)x3 − η3(t) (−x1x2 − cx3)

ė4 = −0.05y1y2
3 − dy4 + u4 − η̇4(t)x4 − η4(t)

(
−0.05x1x2

3 − dx4

)
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Figure 4 Bifurcation for Parameter a, Chaotic Behaviour with Increasing Parameter a . Bifurcation for Parameter b, Extreme Oscillations and
Instability with Parameter b. Bifurcation for Parameter c, Transition to Stability with Increasing Parameter c. Bifurcation for Parameter d, Chaotic
Dynamics with Varying Parameter d

To achieve HFPS between master and slave hyperchaotic fi-
nancial systems with uncertain parameters and arbitrary initial
conditions, we need to design appropriate controllers ui(t)(i =
1, 2, 3, 4) and a parameter update rule. In this way, the unknown
parameters will be estimated simultaneously with the assurance
that the error dynamical system 10 is asymptotically stable at the
origin, and HFPS between the slave system 7 and the master sys-
tem 6 will be achieved. As a result, for the error dynamical system
10, the synchronization problem is transformed into a stability
challenge.
The controller are designed as follows:

u1 = −y3
2 − y2y1 + η̇1(t)x1 + η1(t)x1 + η1(t)x2x1 + âe1 + η1(t)x4 − k1e1

u2 = −1 + y1
2 + η̇2(t)x2 + η2(t)− n2(t)x1

2 + b̂e2 − k2e2 (11)

u3 = y1y2 + η̇3(t)x3 − η3(t)x1x2 + ĉe3 − k3e3

u4 = 0.05y1y3
2 + η̇4(t)x4 − η4(t)0.05x1x3

2 + d̂e4 − k4e4

and the following is how the parameter updating rules are
made:

˙̂a = − (y1 − η1(t)x1) e1 − k5ea

˙̂b = − (y2 − η2(t)x2) e2 − k6eb (12)
˙̂c = − (y3 − η3(t)x3) e3 − k7ec

˙̂d = − (y4 − η4(t)x4) e4 − k8ed

Where the control gain ki > 0(i = 1, 2, . . . , 8), â, b̂, ĉ, and d̂
are the parameters for the estimated variable that are unknown.
ea = â − a, eb = b̂ − b, ec = ĉ − c, and ed = d̂ − d are corresponding
parameter errors. We select the Lyapunov function that satisfies
the requirements of Lyapunov stability theory for the parameter
update methods designed above. That will demonstrate the sta-
bility of the faulty dynamical system and the achievement of the
necessary synchronization. However, we select the subsequent
Lyapunov function candidate for the error system 10:

V(t) =
1
2

(
e1

2 + e2
2 + e3

2 + e4
2 + ea

2 + eb
2 + ec

2 + ed
2
)

(13)

Undoubtedly, V(t) > 0. Along the trajectories of the error
system 10, the time derivative of V(t) equals

V̇(t) = e1 ė1 + e2 ė2 + e3 ė3 + e4 ė4 + ea ėa + eb ėb + ec ėc + ed ėd

V̇(t) = e1

(
y2

3 + (y2 − a) y1 + y4 + u1 − η̇1(t)x1 − η1(t)
(

x2
3+

(x2 − a) x1 + x4)) + e2

(
1 − by2 − y1

2 + u2 − η̇2(t)x2−

η2(t)
(

1 − bx2 − x1
2
))

+ e3 (−y1y2 − cy3 + u3 − η̇3(t)x3−

η3(t) (−x1x2 − cx3)) + e4

(
−0.05y1y3

2 − dy4 + u4 − η̇4(t)x4−

η4(t)
(
−0.05x1x3

2 − dx4

))
+ ea ėa + eb ėb + ec ėc + ed ėd (14)

Using 11, 12 and 14, we obtain

V̇(t) = e1 (ea (y1 − η1(t)x1))− k1e1
2 + e2 (eb (y2 − η2(t)x2))− k2e2

2

+e3 (ec (y3 − η3(t)x3))− k3e3
2 + e4 (ed (y4 − η4(t)x4))− k4e4

2

+ea (− (y1 − η1(t)x1) e1 − k5ea) + eb (− (y2 − η2(t)x2) e2 − k6eb)

+ec (− (y3 − η3(t)x3) e3 − k7ec)+ ed (− (y4 − η4(t)x4) e4 − k8ed)

= −k1e1
2 − k2e2

2 − k3e3
2 − k4e4

2 − k5ea
2 − k6eb

2 − k7ec
2 − k8ed

2

= eKe < 0

Where e = (e1, e2, e3, e4, ea, eb, ec, ed) and K =
diag (k1, k2, k3, k4, k5, k6, k7, k8).
Based on the Lyapunov stability theory, the error vector e
asymptotically converges to zero, meaning that limt→∞ ∥e(t)∥ = 0.
since V̇(t) < 0 It also suggests that the unknown parameters
are approximated simultaneously the hybrid function projective
synchronization of the master and slave systems is both globally
and asymptotically synchronized.
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NUMERICAL SIMULATIONS

To demonstrate the viability and validity of the proposed syn-
chronization technique, numerical simulations are carried out.
The selected parameter of the hyperchaotic financial system as
a = 0.9, b = 0.2, c = 1.5, and d = 0.17. The initial condition
of master and slave system are chosen as x(0) = (3, 1,−2,−3)
and y(0) = (5, 3,−6,−3). The scaling functions η1 = sin(t), η2 =
0.5 cos(t), η3 = 1 + sin(t), and η4 = cos(0.1t) are chosen at ran-
dom. It is assumed that the control gains are ki = 0.11∀i =
1, 2, . . . , 8. and Figs. 5 and 6 display the outcomes of the simu-
lation. Figure 4 illustrates how the error dynamics approach zero
as t approaches infinity. As seen in Figure3 exhibit that values of
the unknown parameters also tend to â → a, b̂ → b, ĉ → c, d̂ → d
Consequently, the intended hybrid function projective synchro-
nization between the slave and master systems is achieved.

Figure 5 The estimated value of the parameters that are unknown
â, b̂, ĉ and d̂ as hybrid function projection synchronization occurs

Figure 6 Error in synchronization between the slave and master
system states

CONCLUSION

By including more terms and increasing one more variable, aver-
age profit margins x4, based on the chaotic system described in
(Wu, X. and Li 2012) is achieved. Both theoretical and numerical
analyses are performed on a few fundamental dynamical features,
including the Lyapunov exponent spectrum, bifurcations, equi-
libria, and hyperchaotic dynamical behaviours. This manuscript
successfully demonstrates hybrid function projective synchroniza-
tion (HFPS) of a novel hyperchaotic system utilizing an adaptive
control technique, even in the presence of unknown system param-
eters. The chosen master and slave systems are carefully selected
to ensure that they are distinct from any members of the unified
chaotic financial system. An adaptive controller is meticulously de-
signed to ensure global chaos synchronization between the master
and slave systems. The synchronization is carefully proven using
Lyapunov stability theory and adaptive control theory, ensuring
theoretical soundness. Additionally, the manuscript provides a
detailed analysis of the fundamental dynamical properties of the
hyperchaotic financial systems. The effectiveness and accuracy
of the proposed synchronization strategy are further confirmed
through numerical simulations conducted in MATLAB, validating
the theoretical findings and demonstrating practical applicability.
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ABSTRACT
This research examines the use of kernel estimation and FindDistribution methods in Mathematica

software to analyze the ratio of taxpayer audits to total taxpayers, focusing on two large populations: one with
approximately 80,000 audits per 100,000 taxpayers and the other with 4.5 million audits per 6 million taxpayers.
Comparing the maximum statistics, the study shows that a larger number of taxpayers leads to more audits.
The dataset also includes a weighted average for audits and taxpayers with a maximum of around 75,000
and 4 million respectively. These numerical values have been determined using the simulation carried out
after modeling the real data sets of the total number of taxpayers and their audits from the years 2012 to
2023. These results show that different taxpayer populations require the targeted audit strategies and highlight
the importance of the statistical models with corresponding estimation method to better understand complex
distributions and improve tax audit processes.
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INTRODUCTION

Kernel density estimation (KDE) has been widely used in various
fields, including income distribution analysis (Papatheodorou et al.
2004), poverty assessment (Minoiu and Reddy 2008), and popu-
lation variance estimation (Hanif and Shahzad 2019). However,
its application to grouped data has been found to introduce biases
in poverty estimates (Minoiu and Reddy 2008). To address this, a
method that combines auxiliary information with a kernel estimate
has been proposed (Kuk 1993). Furthermore, a bipartite recursive
algorithm based on KDE has been developed for measuring the
scale of a given income population (Chen and Wang 2011).

KDE stands as a versatile tool widely deployed across diverse
fields, ranging from income distribution analysis to poverty assess-
ment and population variance estimation. Papatheodorou et al.
(2004) underscores its efficacy in unveiling nuanced disparities
within income distributions across different European countries,
shedding light on the ramifications of income polarization and con-
centration. However, Minoiu and Reddy (2008) brings attention to
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the inherent biases introduced when KDE is applied to grouped
data, particularly in poverty estimation, urging for caution in pa-
rameter selection. Addressing this concern, Kuk (1993) proposes a
method amalgamating auxiliary information with kernel estima-
tion to mitigate such biases, while Chen and Wang (2011) devises
a bipartite recursive algorithm grounded in KDE for gauging the
scale of specific income populations. This confluence of research
highlights the promise KDE holds in estimating taxpayer num-
bers and scrutinizing taxpayer audit. Nevertheless, the discourse
underscores the imperative of meticulous consideration of data
characteristics and parameter choices to ensure robust and reliable
estimations. A merge between a parametric model used for distri-
bution of error term in the polynomial regression model and the
polynomial movement on the data set as time series is studied by
(Çankaya and Aydın 2024).

In Turkiye, the tax audit process is managed by the Presidency
of the Tax Audit Board under the Ministry of Treasury and Finance.
An important element of tax audit is expressed by the term "tax
inspection" as it is understood in the activity reports of the Pres-
idency. Article 134 of the Tax Procedure Act states that the main
objective of tax inspection is to investigate and ensure the correct-
ness of tax payments. Accordingly, tax inspectors check whether
taxpayers have fulfilled their tax obligations in accordance with
the legislation and whether they have correctly determined the
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actual tax base. Tax inspection is not limited to the detection of tax
evasion, but also includes the purpose of informing taxpayers of
their tax obligations and verifying the elements of their tax returns.

A range of studies have explored the distribution of taxpayers
and taxpayer audit. Chamberlain and Prante (2007); Piketty et al.
(2018); Serikova et al. (2020) both highlight the progressive nature
of the U.S. tax system, with the former emphasizing the impact
of government spending on this progressive. Johns and Slemrod
(2010); Davidson and Duclos (1997) delve into the distributional
consequences of income tax noncompliance and the statistical
inference for measuring the incidence of taxes and transfers, re-
spectively. Ruggles and O’Higgins (1981); Piketty et al. (2017) both
examine the distributive impact of government expenditures, with
the latter focusing on the distribution of national income. Chotika-
panich (2008); Perese (2015) provide methodological approaches
for estimating income distributions and analyze the distribution
of household income and federal taxes, respectively. Tax audit
outcomes can lead to considerable adjustments in how companies
recognize and value tax benefits, ultimately affecting their financial
statements and tax strategies (Brushwood et al. 2018; Cowx and
Vernon 2023).

The organization of the paper is given in the following order:
The first section is for the introductory knowledges from literature.
The second section gives real data. The method and objective are
represented by third section. The forthcoming sections provide the
statistical evaluations and their numerical results. The last section
is divided into section for the conclusion.

DATA ON TAXPAYERS IN TURKIYE

Within the scope of the study, the data were obtained from the
annual reports published on the official website of the Presidency
of the Tax Audit Board. The reports covering the period between
2012 and 2023 contain informations which are total number of
taxpayers and taxpayer audit.

■ Table 1 Taxpayers and their Audit by Years (VDK 2023)

Year Total number of taxpayers Taxpayer audit

2012 2,422,975 46,845

2013 2,460,281 71,352

2014 2,472,658 55,284

2015 2,527,084 58,676

2016 2,541,016 49,817

2017 2,636,370 44,182

2018 2,727,208 44,376

2019 2,813,452 40,763

2020 3,004,329 47,597

2021 3,221,084 54,065

2022 3,443,964 77,610

2023 3,621,478 60,242

Table 1 presents the total number of taxpayers and the number
of taxpayers audited for certain years. In general, the table shows

that the number of taxpayers increases each year and that the
number of taxpayer audit generally shows an increasing trend.
This may imply that tax controls cannot be applied to all taxpayers
due to the limited resources of the tax administration or other
priorities. In particular, there can be a significant decrease in the
numbers of audit in years 2013-2014, 2015-2016, 2018-2019 and
2022-2023. There is an increase in trending of taxpayer audit from
years 2012-2013 and 2021-2022. These numbers may indicate that
the tax administration’s strategies or resources have changed or
that it has turned to other ways of administrative process of tax
management system.

The continuous increase in the total number of taxpayers may
reflect the expansion of the tax system or the fact that more people
are becoming taxpayers as the economy grows. However, low
numbers of audit may indicate that tax compliance is not at the
desired level or that the tax administration is not using its audit
resources effectively. The next section provides the modeling of
data sets in Table 1 and the artificial data sets generated from the
estimated functions determined by modeling.

METHOD AND OBJECTIVE

Kernel Estimation Method
One of the key advantages of the kernel mixture distribution is its
ability to fit complex and multimodal data distributions. Unlike
traditional parametric models, which make assumptions about
the underlying data distribution, the kernel mixture distribution
is non-parametric, meaning that it can adapt to the shape and
structure of the data without imposing strict constraints, that is, it
is data-adaptive and so the smoothness property will guarantee to
fit data set well. This flexibility makes it particularly suitable for
analyzing data sets with different patterns and characteristics.

It also provides a versatile framework for a variety of statistical
tasks, including kernel mixture distribution, density estimation,
clustering, and anomaly detection. By adjusting parameters such
as the bandwidth of the kernels and the number of components
in the mixture, analysts can fine-tune the distribution to capture
different aspects of the data and achieve the desired level of granu-
larity (Wand and Jones 1994).

In cases where the sample size is small, it is considered prudent
to use applied techniques and artificial datasets to avoid bad effects.
It should be noted, however, that for the smoothing technique, the
alternative smoothing function can also be tried to obtain a possi-
bly more accurate modeling; the figures will be close to the results
already obtained, since the number of replications is increased
to generate the artificial data. In addition, the parametric model
proposed provides a comparison between the parametric function
and the smoothing function. The results of the proposed distribu-
tion show that the smooth function is able to perform an accurate
fit compared to the trimodal normal distribution as a parametric
model (Vila et al. 2024b).

Various techniques and measures are used in data analysis to
overcome the difficulties of working with small sample sizes. The
use of artificial datasets can be very useful in such cases, allowing
the creation of additional data points to supplement the original
sample. This can help to correct for irregularities or gaps in the
data and increase the robustness of the analysis. In addition, the
use of smoothing techniques can improve the modelling process
by reducing noise and highlighting important patterns in the data.
Exploring alternative smoothing functions can further improve the
modelling process and potentially lead to more accurate results.
The comparison between parametric models and smooth functions,
as proposed by Vila et al. (2024b), sheds light on the effectiveness
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of different modelling approaches. The smooth function appears
to outperform the parametric model, especially when compared to
the tri-modal normal distribution.

Kernel estimation as a non-parametric method is a statistical
method used to estimate the probability density function, f (x),
of a random variable based on a sample of data. It uses kernel
functions to set a smoothness in order to fit the data and create
estimates for the parameters such as location, scale, etc. of the
underlying distribution.

Given a data sample, x1, x2, . . . , xn, the kernel density estimate
of the function f (x) at a point x is calculated as:

f (x) =
1

nh

n

∑
i=1

K
(

x − xi
h

)
(1)

• f (x) is the estimated density at point x for the function f (x).
• n is the number of data points in the sample.
• h is the bandwidth parameter, which controls the width of the

kernel.
• K(·) is the kernel function, a smooth, symmetric function cen-

tered around zero. Common choices for the kernel function
include the Gaussian, Epanechnikov, and uniform kernels.
The choice of kernel affects the shape of the estimated density
(Wand and Jones 1994; Wolfram 2003).

In Mathematica, the KernelMixtureDistribution function is
used to create a kernel mixture model for density estimation. By
default, KernelMixtureDistribution uses a Gaussian (normal)
kernel for the estimation (Wand and Jones 1994; Wolfram 2003).
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Figure 1 Kernel functions

Since the kernel functions used in Mathematica are very close
to each other, the mixture form of the normal distribution was
preferred due to the number of pages and the complexity of the
results in the Figures at this paper. On the other hand, Gaussian
(normal) kernel have an ability to fit the data where take the values
at the interval [−2, 2] when compared with other kernel functions
such as Epanechnikov, Triangular, Biweight, etc. In addition, the
function FindDistribution is also used to be able to perform a
precise evaluation while getting the weights from differences of
cumulative distribution function (see codes in Appendix).

Robust Estimations for Location and Scale Parameters

Robust statistics and kernel estimation share the goal of dealing
with non-standard data distributions and mitigating the effects
of outliers. Robust statistics focuses on developing methods that
are resistant to outliers and deviations from standard assumptions.
Robust estimators, such as the median or trimmed mean, are less
affected by extreme values than traditional estimators such as the
mean (Maronna et al. 2019).

Kernel estimation, often used in non-parametric density es-
timation, involves smoothing the data using a kernel function
to estimate the underlying probability density function. This ap-
proach provides flexibility in modelling complex data distributions
without assuming a specific parametric form. However, kernel
estimation can be sensitive to outliers, leading to biased estimates,
especially in regions of sparse data (Wand and Jones 1994).

The connection between robust statistics and kernel estimation
lies in their complementary roles in dealing with challenging data
scenarios. While kernel estimation provides flexibility and adapt-
ability in modelling diverse data distributions, robust statistical
techniques provide stability and resistance to outliers. By com-
bining the principles of robust statistics with kernel estimation,
researchers can develop methods that are both flexible and robust,
enabling more reliable inference and analysis in the presence of
non-standard data distributions and outliers.

The log-likelihood form of location and scale family is used to
obtain the weighted mean and the weighted variance. The mean is
given by

weightedMean(w) =
∑n

i=1 (Sort(ND(w))i · weights(w)i)

∑n
i=1 weights(w)i

(2)

• ND(w): Function that returns the numerical data derived
from w.

• weights(w): Function that returns the weights corresponding
to the elements of ND(w).

• Sort(ND(w)): Sorted version of ND(w) in ascending order.

The square root of the weighted variance is defined as weighted
standard deviation given by the following form:

weightedStD(w) =

√
1
n

n

∑
i=1

weights(w)i (Sort(ND(w))i − weightedMean(w))2 (3)

• ND(w): Function that returns the numerical data derived
from w.

• weights(w): Function that returns the weights corresponding
to the elements of ND(w).

• Sort(ND(w)): Sorted version of ND(w) in ascending order.
• weightedMean(w): Weighted mean of w, as defined previ-

ously.
• n: Length of ND(w).

The theory of robust statistics is based on weights from the
assumed or the chosen function (Maronna et al. 2019). In our case,
the weights come from two separate functions. One is the kernel es-
timator and the other is the FindDistribution function included
with Mathematica software 12.0.0.0. The FindDistribution is
a powerful tool for fitting a probabilistic model to a given dataset.
Implemented in version 12.0.0.0, this function automatically iden-
tifies the most appropriate distribution from a set of candidate
distributions using the statistical goodness-of-fit tests. It allows
users to quickly determine the underlying statistical properties of
their data, simplifying the statistical modelling (Wolfram 2003).
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Kernel Mixture and Find Distributions in Mathematica

In Mathematica, the functions KernelMixtureDistribution and
FindDistribution can be used to estimate a distribution based on
a data sample and a chosen kernel function.

The syntaxes for the function are:

1 KernelMixtureDistribution[data,Automatic,"SemiCircle"]

2 FindDistribution[data]

• ’data’ is the input data sample.
• ’Automatic’ allows Mathematica to automatically select an

appropriate bandwidth.
• ’"SemiCircle"’ specifies the semi-circle kernel function, which

may be useful for specific types of data.
• The function FindDistribution returns the name or symbolic

representation of the distribution that best fits the data. It can
handle a wide range of distribution families, including but
not limited to normal, uniform, exponential, gamma, beta,
and many others.

The ‘KernelMixtureDistribution‘ function returns a nonpara-
metric distribution that can be used for further analysis. Consider-
ation of factors such as numerical optimization and manufacturing
process is crucial to ensure the validity and reliability of the results.
The numerical values obtained from Figures 2-13 are likely to rep-
resent the results of these optimization processes and can give an
idea of the performance of the modeling techniques automatically
performed by the functions in Mathematica 12.0.0.0. By follow-
ing these steps, you will have a comprehensive understanding of
the characteristics of your synthetic datasets and be able to analyze
their statistical properties effectively (Wolfram 2003).

Algorithmic Schema in Order

1 Transfer data set into the case where the unit interval is set:
If your original data is not in the unit interval (i.e., the range
[0, 1]), you’ll need to scale it to fit within this range. The
number of taxpayer audit is proportioned to the total number
of taxpayers, thus obtaining data will be in the unit interval. If
the randomly generated ratio values from estimated density,
f (x), are multiplied by the total number of taxpayers, then
the number of taxpayer audit is obtained. If the number of
taxpayers is divided by the randomly generated ratio values
from estimated density, f (x), the total number of taxpayers is
obtained.

2 Model the unit interval data set:
Once your data is in the unit interval, you
can model it using a kernel estimation
method. Since using Mathematica, the function,
‘SK=KernelMixtureDistribution[x,Automatic,"SemiCircle"]‘,
could be used to create a smooth kernel density estimate of
your data. Using the model generated in the previous step,
generate a synthetic dataset with the same characteristics as
your original data.

3 Generate artificial data set with sample size n = 12:
’RandomVariate[SK,n=12]’; Use the ‘RandomVariate‘ function
in Mathematica to generate random samples from your esti-
mated density, f (x).

4 Once you have generated one synthetic dataset, replicate this
process 10,000 times by using ‘SK‘. For each iteration, generate
a new synthetic dataset. Multiplication by total taxpayers with
generated ratio values gives the taxpayer audit and division
of taxpayer audit with ratio values gives the total number of
taxpayers (see also step 1).

5 Provide statistics: Once you have your 10,000 synthetic
datasets, calculate statistics such as the first moment (mean),
scale estimate (standard deviation), minimum, maximum, 1th,
25th, 75th and 99th percentiles for each dataset. You can also
use functions like first moment and scale estimated from the
estimated density, ’Min’, ’Max’, ’Quantiles (1%, 25%, 75% and
99%)’, etc., in Mathematica to evaluate these statistics sum-
marizing the general representation of the generated data set
from estimated density.

When the smooth function from kernel method is used, the corre-
sponding statistics such as first moment, scale estimate, etc. are
calculated. Therefore, these statistics are more accurate due to
the precise fitting performed with the smooth function. Since the
artificial data set is replicated with a sample size of n = 12, the
minimum and maximum values are selected for each set. The
same process is done for the data sets at the 1th, 25th, 75th and
99th percentiles so that we can observe the behavior of the data
set at these percentiles as probability values indicating what the
values generated for these percentiles are. In other words, we can
see the overall picture of the data generated for these values. Note
that the computational and methodological processes are also used
by references (Vila et al. 2024b; Özen and Çankaya 2023; Aydın and
Çankaya 2024).

STATISTICAL EVALUATIONS

The kernel smoothing method in Mathematica is capable of per-
forming a fitting on the data set. Further, since the assumed non-
parametric density in this software is used to generate artificial
data sets, we have a well-defined computational schema for evalu-
ating various statistics and properties of your synthetic datasets.
To summarize:

1 Empirical First Moment and Scale Estimate from Data Gener-
ated SK:
These statistics are computed using built-in functions in
Mathematica (′Moment[data, 1]′ and ′Sqrt[Moment[data, 2]−
Moment[data, 1]2]′) and are considered more accurate due to
the precise fitting performed by the smooth function.

2 Minimum and Maximum Values:
For each replicated artificial dataset, the minimum and maxi-
mum values are chosen. This provides insight into the range
of values generated by the model.

3 Quantiles at 1th, 25th, 75th and 99th Percentiles:
Similarly, for each replicated artificial dataset, the values at 1th,
25th, 75th and 99th percentiles are determined. This provides
a picture of the overall distribution of the generated data and
allows the behavior of the dataset around these quantities
to be observed. It should also be noted that this calculation
scheme is used with references (Vila et al. 2024b; Özen and
Çankaya 2023; Aydın and Çankaya 2024), which shows its
validity and suitability in practice. By following this scheme,
you can effectively analyze the characteristics and behavior of
your synthetic datasets and help your optimization process.

4 Weighted Statistics for Location Scale Parameters:
The weighted mean and the weighted standard deviation
based on the differences of cumulative distribution function
from kernel smooth (KS) and FindDistribution (FD) are calcu-
lated.

The statistical evaluations are detailed quantitatively in the follow-
ing section ’Numerical Results’. This section presents the empirical
findings, providing a comprehensive analysis of the data and their
implications for the study.

CHAOS Theory and Applications 267



NUMERICAL RESULTS OF STATISTICAL EVALUATIONS

The generation of accurate simulated data can have a significant im-
pact on various stakeholders, including policymakers, researchers,
and industry professionals. These stakeholders rely on the quality
and precision of the data to make fully informed decisions. While
the simulated data are confidential, it is important to thoroughly
and fully document the methods and approaches used to generate
them. This documentation allows for reproducibility and valida-
tion of the outputs of simulation by other researchers or analysts
in the field.

Each of Figures 2-13 shows summary statistics from the arti-
ficially generated data set for the sample size n = 12, replicated
10,000 times. There are two types of Figures. One of them rep-
resents the statistical values for taxpayer audit given by Figs. 2
- 5. The second one represents the statistical values for taxpayer
given by Figs. 6 - 9. Further, note that we focus on the maximum
values of the generated data set for the sake of the fact that the
future probable prediction can also be evaluated and suggested
as well. In such case, the maximum, 1%, 25%, 75% and 99% as
order statistics for taxpayer audit and taxpayer are an open issue
which should be studied intensively. We prefer to omit the topic
about order statistics and Figures 2-13 give the general appearance,
as mentioned above. Consequently, the numerical results can be
the values shown in Figures 2-13, taking into account the numer-
ical optimization and generation procedure from the estimated
density, f (x) estimated by using two estimation method which
are non-parametric being kernel smooth and parametric being
FindDistribution. The simulated data are therefore considered
confidential as they are the best possible match to the observed
data.

Figures 2a-2b and 6a-6b show the empirical first moment on
average from the measure of central tendency and the scale esti-
mate from the measure of dispersion. Figures 3 and 7 represent
the minimum and maximum values of the data at a sample size
of n = 12. Figures 4-5 and 8-9 represent the simulated data for
n = 12 at 1%, 25%, 75% and 99% cut-offs, respectively.

When comparing Figures 3b and 7b for maximum of the artifi-
cial numbers from taxpayers audit and taxpayers, respectively, the
more taxpayers lead to have detection of the more taxpayer audit,
as expected.
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Figure 2 The simulated data for statistics of the taxpayer audit
within years 2012-2023

Figures 10-13 show the robust estimates replicated at 10,000
times for location and scale parameters. When Figure 10a is com-
pared with Figure 11a, the results show that the values of weighted
mean from FD tends to take lower values, which shows that the
chosen function for fitting data set affects the results we will get,
because the function chosen plays role in determining the weights
for the robust estimation. In addition, the scale estimate given
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Figure 3 The simulated data for minimum and maximum of the
taxpayer audit within years 2012-2023
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Figure 4 The simulated data for quartiles at 1% & 99% of the
taxpayer audit within years 2012-2023
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Figure 5 The simulated data for quartiles at 25% & 75% of the
taxpayer audit within years 2012-2023
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Figure 6 The simulated data for statistics of the taxpayers within
years 2012-2023

by Figure 2b have values which are bigger than that of values in
Figure 10b. The same situation for taxpayers at Figures 6b and 12b
is observed. Figures 10-11 represent the case where the numbers
of taxpayer audit are around. Figures 12-13 represent the case
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Figure 7 The simulated data for minimum and maximum of the
taxpayers within years 2012-2023
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Figure 8 The simulated data for quartiles at 1% & 99% of the
taxpayers within years 2012-2023
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Figure 9 The simulated data for quartiles at 25% & 75% of the
taxpayers within years 2012-2023
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Figure 10 The weighted forms of location and scale estimates
from Smooth Kernel, n = 12 for the taxpayer audit

where the numbers of taxpayer are around.
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Figure 13 The weighted forms of location and scale estimates
from Find Distribution, n = 12 for the taxpayers

Number of Taxpayers at per square Kilometer of Turkiye
To find the number of taxpayers per square kilometre, you must
first find the total number of taxpayers in a given area, and then
divide that number by the total area of that area, measured in
square kilometre. This calculation will give you the density of
taxpayers, which indicates how many taxpayers live or are based
in each square kilometre of the area in question.

Considering the maximum value in the simulated data from
kernel estimation method, there are approximately 6 million tax-
payers from Figure 7b. Turkiye, with a population of 85.8 million,
is in the taxpayer’s role at a rate of 6/85.8 = 0.06993.

Since there are 110 people per square kilometre in Turkey,
110 · 0.06993 = 7.69, approximately 8 out of 110 people per square
kilometre will be identified as taxpayers if they are evenly dis-
tributed across the regions of Turkey (Wolfram 2003). This measure
is essential for understanding the distribution of taxpayers across
the country, which can help in effective policy making, resource
allocation and economic planning.
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CONCLUSION

The study has highlighted the importance of using sophisticated
statistical methods to accurately model these complex, multimodal
data distributions which can be modeled by using the kernel esti-
mation methods which provide robust and versatile framework
for statistical analysis. They can handle complex/multimodal data
distributions such as the ratio values between the taxpayer audit
and its total numbers. Firstly, the kernel estimation method has
been used. After that, the FindDistribution function included
with Mathematica software 12.0.0.0 is used to model the gener-
ated data artificially from SK=KernelMixtureDistribution with
RandomVariate[SK, n=12].

The values of ratio give an advantage for us to fit the data set
well. In addition, the total taxpayers and the taxpayer audit can
be calculated from the values of ratio. When the results for the
maximum number of taxable persons and taxpayers are compared,
the more taxable persons lead to the detection of the more taxpayer
audit, as expected. According to the maximum statistic of the
simulated data, the total numbers of taxpayers can go up to 6
million, which can occur in the near future. The taxpayer audit
will be around 120,000 from maximum statistics. The simulation
results for the taxpayer audit have shown that there are two blocks
for the numbers which are 80,000 and 100,000. The values around
100,000 are few when compared with that of 80,000, which shows
that the audit on the taxpayers is commented as two populations
and some precautions for tax audit can be necessary when the
maximum statistics are taken into account.

In the same way, when observing the number of taxpayers,
there can be two populations which are 4.5 million and 6 million.
Additional statistics, including the weighted means for taxpayer
audits and overall taxpayer population, which are approximately
75,000 and 4 million respectively, are also provided to summarize
general characteristics of the data set. As a result, more taxpayers
should be surveyed. Further, by improving our understanding
of these populations; policymakers and tax authorities can imple-
ment more effective policies to optimize tax audit processes and
ensure fair tax compliance among different taxpayer groups. Our
ability for modeling, estimating and understanding the number
of taxpayers and its audit form with precision and confidence in-
tervals will continue to improve with the continued research and
improvements in this area.

APPENDIX

The Mathematica codes for computation and statistical evalua-
tions
Mathematica, developed by Wolfram Research, is a comprehen-
sive computational software system widely used in various fields
of science, engineering, mathematics and computing. It features
a high-level programming language, powerful computational ca-
pabilities, and a wide range of built-in functions, making it an
indispensable tool for research, education, and industrial applica-
tions.

The codes were used to model the proportional data using the
kernel mixture distribution in Mathematica 12.0.0.0 software.

For[w=1, w <= rep, w++,

(* Fitting via Smooth Kernel Method *)

SK[w]=KernelMixtureDistribution[x, Automatic, "SemiCircle"];

(* Vector for scaling the generated random numbers *)

vec={data};

(* Generate random numbers based on the kernel

distribution and scale them by vec *)

ND[w]=RandomVariate[SK[w], 12] * vec;

(* Calculate the CDF of the kernel distribution for

sorted ND[w] *)

CDFSK[w]=CDF[KernelMixtureDistribution[ND[w]],Sort[ND[w]]];

(* Calculate the CDF of a fitted distribution for

sorted ND[w] *)

CDFFD[w]=CDF[FindDistribution[ND[w]],Sort[ND[w]]];

(* Calculate weights based on the differences in the CDF

for the kernel distribution *)

weights1SK[w]=Differences[CDFSK[w]];

(* Calculate the remaining weight to ensure the weights

sum to 1 *)

weights2SK[w]=1 - Total[weights1SK[w]];

(* Combine the weights and ensure they sum up to 1 *)

weightsSK[w]=Join[weights1SK[w], {weights2SK[w]}];

(* Calculate weights based on the differences in the CDF

for the fitted distribution *)

weights1FD[w]=Differences[CDFFD[w]];

(* Calculate the remaining weight to ensure the weights

sum to 1 *)

weights2FD[w]=1 - Total[weights1FD[w]];

(* Combine the weights and ensure they

sum up to 1 *)

weightsFD[w]=Join[weights1FD[w], {weights2FD[w]}];

(* Calculate various statistics for ND[w] *)

sta1[w]:=Moment[ND[w], 1]; (* First moment (mean) *)

ta1=Table[sta1[w], {w, rep}];

sta2[w]:=Mean[ND[w]]; (* Mean *)

ta2=Table[sta2[w], {w, rep}];

sta3[w]:=Median[ND[w]]; (* Median *)

ta3=Table[sta3[w], {w, rep}];

(* Standard deviation based on moments *)

sta4[w]:=Sqrt[Moment[ND[w], 2] - Moment[ND[w], 1]^2];

ta4=Table[sta4[w], {w, rep}];

(* Standard deviation *)

sta5[w]:=StandardDeviation[ND[w]];

ta5=Table[sta5[w], {w, rep}];

(* Median absolute deviation from the median *)

sta6[w]:=Median[Abs[ND[w] - Median[ND[w]]]];

ta6=Table[sta6[w], {w, rep}];

(* Median absolute deviation from the mean *)

sta61[w]:=Median[Abs[ND[w] - sta1[w]]];

ta61=Table[sta61[w], {w, rep}];

(* Mean absolute deviation from the mean *)
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sta62[w]:=Mean[Abs[ND[w] - sta1[w]]];

ta62=Table[sta62[w], {w, rep}];

(* Minimum value *)

sta7[w]:=Min[ND[w]];

ta7=Table[sta7[w], {w, rep}];

(* Maximum value *)

sta8[w]:=Max[ND[w]];

ta8=Table[sta8[w], {w, rep}];

(* Calculate various quantiles *)

(* 1st percentile *)

staquan1[w]:=Quantile[ND[w], 0.01];

taga1=Table[staquan1[w], {w, rep}];

(* 25th percentile *)

staquan2[w]:=Quantile[ND[w], 0.25];

taga2=Table[staquan2[w], {w, rep}];

(* 50th percentile / median *)

staquan3[w]:=Quantile[ND[w], 0.5];

taga3=Table[staquan3[w], {w, rep}];

(* 75th percentile *)

staquan4[w]:=Quantile[ND[w], 0.75];

taga4=Table[staquan4[w], {w, rep}];

(* 99th percentile *)

staquan5[w]:=Quantile[ND[w], 0.99];

taga5=Table[staquan5[w], {w, rep}];

(* Calculate the weighted mean based on

the smooth kernel (SK) distribution weights *)

weightedMeanSK[w]:=

Total[Sort[ND[w]] * weightsSK[w]]

/

Total[weightsSK[w]];

taWeMeSK=Table[weightedMeanSK[w], {w, rep}];

(* Calculate the weighted standard deviation

based on the smooth kernel distribution weights *)

weightedStDSK[w]:=

Sqrt[Total[weightsSK[w]*(Sort[ND[w]]-weightedMeanSK[w])^2]

/

Length[ND[w]]];

taWeSDSK=Table[weightedStDSK[w], {w, rep}];

(* Calculate the weighted mean based

on the fitted distribution (FD) weights *)

weightedMeanFD[w]:=

Total[Sort[ND[w]] * weightsFD[w]]

/

Total[weightsFD[w]];

taWeMeFD=Table[weightedMeanFD[w], {w, rep}];

(* Calculate the weighted standard deviation

based on the fitted distribution weights *)

weightedStDFD[w]:=

Sqrt[Total[weightsFD[w]*(Sort[ND[w]]-weightedMeanFD[w])^2]

/

Length[ND[w]]];

taWeSDFD=Table[weightedStDFD[w], {w, rep}];

]
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A New 6D Two-wing Hyperhaotic System: Dynamical
Analysis, Circuit Design, and Sinchronization
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ABSTRACT This paper introduces a novel 6D dynamic system derived from modified 3D Lorenz equations of
the second type using state feedback control. While the original 3D equations are formally simpler than the
classical Lorentz equations, they produce topologically more complex attractors with a two-winged butterfly
structure. The proposed system contains the fewest terms compared to existing literature. These terms
comprise two cross-product nonlinearities, two piecewise linear functions, six linear terms, and one constant.
The new 6D hyperchaotic system exhibits a rich array of dynamic characteristics, including hidden attractors
and dissipative behavior. A thorough dynamic analysis of this system was performed. In particular, bifurcation
diagrams were constructed, Lyapunov exponents and dimensions were calculated, and multistability and offset
boosting control were analyzed to understand the systems behavior further. An electronic circuit of the 6D
hyperchaotic two-winged butterfly system was developed in the Multisim computer environment. The designed
electronic circuit showed excellent agreement with the simulation results of the new 6D dynamic system.
Synchronization of two identical 6D hyperchaotic systems was achieved using the active control method.

KEYWORDS

Two-wing attrac-
tors
Chaotic behavior
Multistability
Offset boosting
control
Circuit implemen-
tation
Active control
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INTRODUCTION

Since Lorenz’s discovery of a three-dimensional (3D) chaotic sys-
tem (Lorenz 1963), chaos researchers have increasingly focused
on studying dynamic systems with dimensions higher than three.
This trend is driven by several reasons. Firstly, many physical
phenomena cannot be adequately modeled by three-dimensional
systems. Higher-dimensional systems can capture the more com-
plex behaviors and interactions observed in fields such as hydro-
dynamic turbulence theory (Bohr et al. 1998), climate modeling
(Soldatenko et al. 2021), and neurodynamics (Yin et al. 2022). An-
other reason is that higher-dimensional complex systems are often
employed in cryptographic applications due to their increased
unpredictability and difficulty in being reverse-engineered. This
makes them ideal for secure communications and information
encryption (Ramakrishnan 2018).

Numerous 4D hyperchaotic systems have been thoroughly doc-
umented in the literature. These include Lorenz’s hyperchaotic

Manuscript received: 9 July 2024,
Revised: 31 October 2024,
Accepted: 9 November 2024.

1michaelkopp0165@gmail.com
2 inna.samuilika@rtu.lv (Corresponding author).

system (Jia 2007), Chen’s hyperchaotic system (Chen et al. 2006),
Liu’s hyperchaotic system (Li 2009), the hyperchaotic Wang sys-
tem (Wang and Chen 2008), the hyperchaotic Newton-Leipnik
system (Ghosh and Bhattacharya 2010), and the hyperchaotic
Vaidyanathan system (Vaidyanathan 2013). When constructing
new hyperchaotic models, it is essential to consider several factors:
the presence of multiple positive Lyapunov exponents, maintain-
ing the smallest number of terms to meet the simplicity criteria
established by researcher Sprott, and achieving the highest Kaplan-
Yorke dimension.

Moreover, noteworthy among the issues in chaos theory are
those of chaos control and synchronization. Chaos control for
practical systems has been the subject of extensive research. The
master, or drive system, and the slave, or response system, are
two systems whose synchronization is the subject of the chaos
synchronization problem. Control laws are created to address this
issue by ensuring that, asymptotically over time, the output of the
slave system tracks the output of the master system. Numerous
techniques have been proposed, including active control (Jung
et al. 2019; Bhat and Shikha 2019), adaptive control (Zhang et al.
2020; Tohidi et al. 2020; Vaidyanathan et al. 2014; Vaidyanathan
and Volos 2015), backstepping control (Chu and Hu 2016), sliding
mode control (Rajagopal et al. 2017a,b; Yousefpour et al. 2020), and
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■ Table 1 List of recently cited 6D dynamical systems.

Reference Total terms Number nonlinear terms Nature system

Benkouider et al. (2020) 17 2 Dissipative

Sabaghian et al. (2020) 15 2 Dissipative

Yang et al. (2020) 14 3 Dissipative

Al-Azzawi and Al-Obeidi (2021) 17 2 Dissipative

Aziz and Al-Azzawi (2022) 13 3 Dissipative

Al-Talib and Al-Azzawi (2022) 12 4 Dissipative

Al-Obeidi and Al-Azzawi (2022) 17 3 Dissipative

Michael Kopp and Andrii Kopp
(2022)

17 2 Dissipative

Al-Talib and Al-Azzawi (2023a) 12 4 Dissipative

Al-Azzawi and Al-Obeidi (2023) 17 3 Dissipative

Kopp et al. (2023) 21 4 Dissipative

Khattar et al. (2024) 12 4 Dissipative

This work 11 2 Dissipative

so on. Recently, a passive control method has also been pre-
sented in the literature. In paper (Adıyaman et al. 2020), a passive
control method was presented to stabilize a new 4D hyperchaotic
system at zero equilibrium and synchronize two identical new 4D
hyperchaotic systems with different initial conditions. In another
paper (Emiroglu et al. 2022), a passive control method was de-
scribed to stabilize and suppress chaos in a chaotic system. These
control techniques can also be used to achieve different types of
real chaos synchronization.

Recently, there has been a trend towards constructing hyper-
chaotic models with higher dimensions, such as 5D models with
three positive Lyapunov exponents (Hu 2009; Yang and Chen 2013;
Al-Azzawi and Hasan 2023), 6D models with four positive Lya-
punov exponents (Al-Talib and Al-Azzawi 2023b), and 7D models
with five positive Lyapunov exponents (Yang et al. 2018). Com-
pared to standard 3D and 4D models, these higher-dimensional
chaotic models exhibit greater unpredictability and complexity.
As can be seen from Table 1, most 6D dynamical systems (Benk-
ouider et al. 2020; Yang et al. 2020; Al-Azzawi and Al-Obeidi 2021;
Al-Obeidi and Al-Azzawi 2022; Kopp et al. 2023) consist of 12 or
more terms with dissipative nature, and no simple dissipative 6D
hyperchaotic system consisting of only 11 terms has been found.
In addition, the proposed 6D system has a simple structure, con-
taining only two control parameters. This motivated us to search
for a new hyperchaotic system that contains the smallest number
of terms.

This manuscript consists of the following sections. The In-
troduction provides a brief overview of the current state of the
problem. Section 2 gives the derivation of the new 6D hyperchaotic
dynamic system using state feedback control. In Section 3, we ex-
amine the dynamic characteristics of the new 6D nonlinear system

by analyzing the fixed points, constructing bifurcation diagrams,
and determining the spectrum and Lyapunov dimension. This sec-
tion also delves into multistability and offset boosting control for
the new system. Section 4 is dedicated to developing an electronic
circuit for a hyperchaotic chaos generator using the Multisim en-
vironment. The circuit’s operation was tested, and the simulation
results were compared with those obtained in the Mathematica
environment. Finally, in Section 5, we extend our focus to the
numerical analysis of synchronization between two identical 6D
hyperchaotic systems. We utilized the active control method (see,
for example, (Jung et al. 2019; Bhat and Shikha 2019)) to achieve
synchronization. The Conclusions section presents the main results
obtained in this article.

DERIVATION OF A NEW 6D HYPERCHAOTIC DYNAMIC
SYSTEM

In this section, we outline a method to derive a new six-
dimensional (6D) dynamical system from a modified Lorenz sys-
tem (Elwakil et al. 2002) of the following form:



dx1
dt

= a(−x1 + x2)

dx2
dt

= −x3sgn(x1)

dx3
dt

= |x1| − 1

(1)

Here |x| is the absolute value function, signum function sgn(x) of
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Figure 1 Plots depict two-wing butterfly attractors of system (1)
in phase planes x1x3, x2x3, and x1x2, respectively.

a real number x is a piecewise function which is defined as follows:

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

(2)

Figure 1 shows typical two-wing butterfly attractors in different
phase planes for system (1) with a = 0.6 and initial conditions
x1(0) = x2(0) = x3(0) = 1. The corresponding Lyapunov expo-
nents are:

LE1 = 0.191212, LE2 ≈ 0, LE3 = −0.799337, (3)

and the corresponding Kaplan-Yorke (or Lyapunov) dimension
DKY = 2.239. By incorporating a state variable x4 into the first
equation of system (1) with a feedback strategy, we derive a four-
dimensional (4D) dynamic system:

dx1
dt

= a(−x1 + x2) + x4

dx2
dt

= −x3sgn(x1)

dx3
dt

= |x1| − 1

dx4
dt

= −bx1

(4)

Here b is the new control parameter. Using a coupling strategy
by adding state variables x5 and x6, a six-dimensional (6D) hyper-
chaotic model is constructed, described as follows:

dx1
dt

= a(−x1 + x2) + x4

dx2
dt

= −x3sgn(x1)

dx3
dt

= −1 + |x1|

dx4
dt

= −bx1

dx5
dt

= −x5 + x1x4

dx6
dt

= −x6 + x1x3

(5)

The resulting new 6D model of the dynamic system contains only
11 terms, which is one less than in recent paper (Al-Talib and Al-
Azzawi 2023b). In addition to the linear terms, system (5) includes
two nonlinearities (x1x4, x1x3) and two functions: sgn(x1) and
|x1|. In this paper, we found that system (5) is hyperchaotic when
the system parameters take the values a = 0.77 and b = 0.45. For
these parameter values and initial conditions (ICs)

x1(0) = x2(0) = x3(0) = x4(0) = x5(0) = x6(0) = 1, (6)

Figure 2 Temporal diagrams for variables x1, x2, x3, x4, x5, x6.

all Lyapunov exponents of the new system (5) were calculated in
the following form:

LE1 = 0.13238, LE2 = 0.01280, LE3 = 0.00580 ≈ 0,

LE4 = −0.88594, LE5 = −1.01495, LE6 = −1.02017. (7)

It is also of interest to obtain time series data for the new 6D
dynamic system (5) with ICs (6). In the context of dynamic systems,
time series data reflects the behavior or evolution of a system over
time. Time series analysis can be used to study the state variables of
the new model xi (i = (1, 2, 3, 4, 5, 6)) over time, as shown in Figure
2. Here, the random nature of the dependence of the variables xi
on time t is clearly visible.

Next, we start the dynamic analysis of the recently introduced
systems (5).

DYNAMICAL ANALYSIS

In this section, we explore some fundamental dynamic properties
of the new proposed 6D system.

Symmetry and dissipativity of the system
It is easy to verify that system (5) satisfies the following coordinate
transformation T:

T : (x1, x2, x3, x4, x5, x6) → (−x1,−x2, x3,−x4, x5,−x6).

This means that each trajectory is symmetrical about x3 and x5
axises, and the system (5) is invariant for a given transformation T.

The divergence of the vector field Φ(ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẋ6) of the
system (5) can be calculated as:

divΦ =
∂ẋ1
∂x1

+
∂ẋ2
∂x2

+
∂ẋ3
∂x3

+
∂ẋ4
∂x4

+
∂ẋ5
∂x5

+
∂ẋ6
∂x6

= −(a + 2) < 0,

ẋi ≡
dxi
dt

, i = (1, 2, 3, 4, 5, 6). (8)
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■ Table 2 Lyapunov exponents for different values of the parameter a.

a Lyapunov Exponents
(LE1, LE2, LE3, LE4, LE5, LE6)

Signs Behavior

0.005 0.0340,-0.0048,-0.0025,-
0.0147,-1.00094,-1.0159

(0,-,-,-,-,-) Periodic

0.15 0.0199,-0.0016,-0.0897,-
0.0680,-1.0020,-1.0083

(0,-,-,-,-,-) Periodic

0.3 0.0913,0.0020,-0.0017,-0.3713,-
1.0116,-1.0086

(+,0,0,-,-,-) Chaotic 2-torus

0.6 0.1484,0.0111,0.0076,-0.7418,-
1.0150,-1.0103

(+,+,0,-,-,-) Hyperchaotic

0.75 0.1367,0.0014,-0.0005,-0.8653,-
1.0074,-1.0148

(+,0,0,-,-,-) Chaotic 2-torus

0.77 0.1323,0.0127,0.0058,-0.8859,-
1.0149,-1.0201

(+,+,0,-,-,-) Hyperchaotic

1.5 0.0085,-0.0155,-0.0235,-
0.9894,-1.0088,-1.4712

(0,-,-,-,-,-) Periodic

Figure 3 Bifurcation diagrams for x1, x3 components of the sys-
tem (5).

Figure 4 Lyapunov exponents for system (5).

According to Liouville’s theorem, the phase volume V changes
over time as follows:

dV
dt

=
∫

...
∫

divΦdx1dx2dx3dx4dx5dx6 = (−(a + 2))V(t). (9)

In this case, the phase volume exponentially diminishes to zero
as time t approaches infinity: V(t) = V(0) exp((−(a + 2)t). As
a result, system (5) is dissipative, allowing for the emergence of
attracting sets, or attractors.

Equilibrium points
The equilibrium states of a dynamic system (5) are found from the
left-hand sides of the equations by setting ẋ1 = ẋ2 = ẋ3 = ẋ4 =
ẋ5 = ẋ6 = 0: 

0 = a(−x̃1 + x̃2) + x̃4

0 = −x̃3sgn(x̃1)

0 = −1 + |x̃1|
0 = −bx̃1

0 = −x̃5 + x̃1 x̃4

0 = −x̃6 + x̃1 x̃3

(10)

Solving the equations (10) under the assumption that a and b are
non-zero parameters results in x1 = 0 from the fourth equation.
Substituting this value into the third equation produces a contra-
diction −1 = 0, indicating the absence of equilibrium points in the
system. Consequently, all attractors generated by system (5) are
considered hidden attractors.

Bifurcation diagrams, analysis of Lyapunov exponents and di-
mension
Bifurcation diagrams represent changes in state variables of non-
linear dynamic systems graphically. They provide insights into
qualitative changes as control parameters are adjusted. We use
Mathematica software to solve the equations outlined in (5) with
the initial conditions from (6). In our analysis, we control the pa-
rameter a in the system (5), while keeping the parameter b fixed
at b = 0.45. Figure 3 displays bifurcation diagrams for the x1
and x3 components of the system (5) as a varies within the inter-
val a ∈ [0, 2]. These diagrams help identify stable regions and
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regular behaviors (represented by individual points) within the
system. They can also indicate areas where the system exhibits
periodic or quasi-periodic behavior. Each branch in the diagram
may correspond to different periodic orbits, reflecting various vi-
bration modes. Additionally, bifurcation diagrams can illustrate
period-doubling bifurcations as the parameter a changes. These
bifurcations represent a sequence in which the system transitions
from one periodic state to a period-doubling state, which can con-
tinue and may ultimately lead to chaotic behavior. As shown in the
bifurcation diagram in Figure 3, there are two branches of regular
oscillations: a lower (left) branch and an upper (right) branch. The
left periodic attractor undergoes a period-doubling bifurcation,
and a similar bifurcation occurs for the right attractor at the same
value of a. In other words, the left and right attractors are mirror
images of each other.

As is known, Lyapunov exponents (LEs) are an important crite-
rion for describing the behavior and stability of dynamic systems.
LEs characterize the rate of divergence or convergence of neigh-
boring trajectories in a dynamic system. A dynamic system is
assumed to be unstable or exhibit chaotic behavior when the LE
is positive, and a negative exponent indicates a tendency toward
stable equilibrium. Thus, by examining the sign of the LEs, one can
classify the system’s behavior as regular, quasi-regular (2-torus,
3-torus), chaotic, or hyperchaotic. The number of Lyapunov expo-
nents corresponds to the dimensionality of the dynamical system.
In the case of our system (5), there are six such indicators. Fol-
lowing the methodology (Binous and Zakia 2008), we computed
LEs for specific values of parameter a at fixed parameter b = 0.45
and ICs (6). Lyapunov exponents offer deep insights into how the
system’s dynamic behavior evolves with changes in the param-
eter a. According to Table 2, the dynamical behaviors of system
(5) can be categorized into the following groups based on the
Lyapunov exponents. In the future, we will be interested in the
hyperchaotic behavior of the system (5) for the parameter value
a = 0.77. In this case, the sum of all six Lyapunov exponents is
L1 + L2 + L3 + L4 + L5 + L6 = −2.77 < 0. This suggests that sys-
tem (5) exhibits dissipative behavior (see, for example, (Kozlovska
et al. 2024)). It is easy to verify that a hyperchaotic system (5) at
parameters a = 0.77, b = 0.45 satisfies the condition (Singh and
Roy 2016):

6

∑
i=1

LEi = divΦ = −2.77. (11)

Figure 4 illustrates the dynamics of the Lyapunov exponents ().
One of the most frequently used characteristics in the numer-

ical modeling of dynamic systems is the Lyapunov dimension,
proposed by Kaplan and Yorke (Frederickson et al. 1983). The
Lyapunov dimension helps to identify the fractal dimension of a
chaotic system, which is a measure of the complexity and entan-
glement of the system’s attractor. Higher Lyapunov dimensions
typically indicate more complex systems. For convenience, let us
present the spectrum of the Lyapunov exponents in descending
order: LE1 > LE2 > LE3 > LE4 > LE5 > LE6 and calculate

the Lyapunov Kaplan-Yorki dimension according to the following
formula:

DKY = ξ +
1

|LEξ+1|

ξ

∑
i=1

LEi = 3 +
0.1509
0.8859

≈ 3.17, (12)

where ξ is determined from the conditions

ξ

∑
i=1

LEi > 0 ⇒
3

∑
i=1

LEi = 0.1509,
ξ+1

∑
i=1

LEi = −0.735 < 0.

Figure 5 Hidden attractors of the new 6D rescaled system (13) in
different planes.

Figure 6 Plots demonstrating the multistability of two attractors
in different phase planes with two different ICs given in Table 3.

Here ξ is the number of first non-negative exponents Lyapunov in
the spectrum. From (12), it is evident that the Lyapunov dimen-
sion is fractal, indicating that the trajectories of system (5) exhibit
complex behavior.

Visualizing phase portraits in the rescaled 6D dynamic system

As mentioned in the previous subsection, the dynamic system (5)
can display hyperchaotic behavior. This makes the visual analysis
of phase portraits for hyperchaotic attractors especially insightful.
It is easy to see from Figure 2 that the temporal diagrams for the
variables x1, x2, x3, x4, x5, and x6 exhibit an aperiodic structure,
a defining feature of chaotic systems. Implementing the hyper-
chaotic system (5) in an electronic circuit presents challenges, as the
dynamic variables x2, x4, and x5 exceed the operational amplifiers’
power supply limits. To address this, we scale the variables in the
system () by setting x2 = 30X2, x4 = 30X4, and x5 = 40X5, while
keeping x1 = X1, x3 = X3, and x6 = X6. This transformation
results in the modified form of the hyperchaotic system (5) and ICs
(6) in the following form:
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■ Table 3 Multistability of the system (13) with fixed parameters a=0.77, b=0.45 and various ICs.

Figure planes Initial Conditions Color Sign of LEs

X3X1

(
1, 1

30 , 1, 1
30 , 1

40 , 1
)

red (+,+,0,-,-,-) hyperchaotic

X3X1

(
−1,− 1

30 , 1,− 1
30 ,− 1

40 , 1
)

blue (+,+,0,-,-,-) hyperchaotic

X3X6

(
1, 1

30 , 1, 1
30 , 1

40 , 1
)

red (+,+,0,-,-,-) hyperchaotic

X3X6

(
5.2,− 1

3 , 3.5, 1
30 ,− 1

40 , 1
)

blue (+,+,0,-,-,-) hyperchaotic

X1X6

(
1, 1

30 , 1, 1
30 , 1

40 , 1
)

red (+,+,0,-,-,-) hyperchaotic

X1X6

(
−5.2,− 1

3 , 3.5,− 1
30 , 1

40 , 1
)

blue (+,+,0,-,-,-) hyperchaotic

Figure 7 Signal X6 and phase portrait in the plane X3X6 for dif-
ferent values of the offset boosting controller k: k = 0 (blue),
k = 5 (green), k = −5 (red).



dX1
dt

= a(−X1 + 30X2) + 30X4

dX2
dt

= −X3
30

sgn(X1)

dX3
dt

= −1 + |X1|

dX4
dt

= − b
30

X1

dX5
dt

= −X5 +
3
4

X1X4

dX6
dt

= −X6 + X1X3

(13)

X1(0) = 1, X2(0) = 1/30, X3(0) = 1, X4(0) = 1/30,

X5(0) = 1/40, X6(0) = 1 . (14)

Systems (5) and (13) are equivalent, as the linear transformation
adjusts the variables without affecting the intrinsic properties of
the nonlinear system. Figure 5 illustrates the solutions of the trans-
formed equations (13) given the initial conditions () and parameter
values a = 0.77, b = 0.45. The phase portraits show hidden at-
tractors in the different planes. Notably, the dynamic range of the
variables x2, x4, x5 is considerably reduced compared to Figure 2.
This reduction facilitates the practical implementation of electronic
circuits using operational amplifiers, which operate within the
typical voltage limits of -15V to +15V.

Multistability and offset boosting control
Dynamic systems, as mathematical constructs used to describe
complex phenomena across various scientific fields, can possess

Figure 8 Circuit modules implemented based on a system of
equations (13): a) X̃1, b) X̃2, c) X̃3, d) X̃4, e) X̃5, f) X̃6.

multiple attractors. These attractors, which may be points, cycles,
tori, or more complex chaotic structures, represent distinct states
of the system. The specific attractor to which a system converges
depends on its initial conditions, meaning small changes in these
conditions can lead to different long-term behaviors. This leads
to the concept of multistability, where several attractors coexist
within the same set of system parameters.

In this subsection, we examine the multistability property of
system (5), demonstrating how different attractors can coexist
under the same system parameters when initial conditions are
varied. Table 3 provides data for two attractors obtained by solving
system (13) with identical control parameters a = 0.77, b = 0.45 but
different initial conditions. Figure 6 clearly illustrates the behavior
of these two attractors based on the data from Table 3.

Offset boosting control has numerous applications in hyper-
chaotic systems. This method allows for flexible shifting of the
attractor in a specific direction by introducing an offset, which
holds significant engineering application value (Wen et al. 2021).
Note that the state variable X6 appears only in the sixth equation
of the proposed system, making it easy to control. Consequently,
the X6 variable can be increased by introducing a k offset boosting
controller, replacing X6 with X6 + k. The sixth differential equation
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Figure 9 Schematic diagrams for the implementation of func-
tions: a) signum sgn(·); b) absolute value | · |.

Figure 10 Chaotic phase trajectories of a electronic circuit (Fig. 8)
displayed in Multisim oscilloscopes: a) X̃1X̃2, b) X̃1X̃3, c) X̃1X̃4,
d) X̃1X̃5, e) X̃1X̃6, f) X̃2X̃3, g) X̃2X̃5, h) X̃3X̃6, i) X̃6X̃5.

of system (13) can then be rewritten as follows:

dX6
dt

= −(X6 + k) + X1X3. (15)

Figure 7 depicts several positions of hyperchaotic attractors
boosted with different k values in the X3X6 plane. As shown on
the left side of Figure 7, adjusting the bias gain control k converts
the signal X6 from bipolar to unipolar. For a positive value of k, the
attractors are shifted in the negative direction, while for a negative
value of k, the attractors are shifted in the positive direction.

CIRCUIT IMPLEMENTATION

For the practical implementation of the proposed new 6D hyper-
chaotic system (5) (or (13)), circuit modeling must be performed
using Multisim software. According to Kirchhoff’s law for electri-
cal circuits, we can write the electrical analogue of the system (13)

Figure 11 Synchronization error behavior for 6D hyperchaotic
drive and response systems.

as follows: 

C1
dU1
dτ

= − U1
R11

+
U2
R12

+
U4
R13

C2
dU2
dτ

= −U3sgn(U1)

R21K

C3
dU3
dτ

=
|U1|
R31

− Ṽb
R32

C4
dU4
dτ

= − U1
R41

C5
dU5
dτ

=
U1U4
R51K

− U5
R52

C6
dU6
dτ

=
U1U3
R61K

− U6
R62

(16)

where Ṽb is a stable DC voltage source to implement the constant
(=1) in a system (5), Rij are resistors (i, j) = 1, 2, 3, 4, 5, 6, Ui(τ) are
voltage values, Ci are capacitors, and K is a scaling coefficient for
the multiplier. We choose the normalized resistor as R0 = 100kΩ
and the normalized capacitor as C0 = 1nF. Then the time constant
is equal to t0 = R0C0 = 10−4s. We rescale the state variables of the
system (16) as follows U1 = U0X̃1, U2 = U0X̃2, U3 = U0X̃3, U4 =

U0X̃4, U5 = U0X̃5, U6 = U0X̃6, K = U0K
′
, and τ = t0t. Next, we

can write equations (16) in a dimensionless form. By substituting
R0, C1 = C2 = C3 = C4 = C5 = C6 = C0, and K

′
= 10 into (16)

and comparing numerical values before the output voltages of the
system (13), we get the value of resistors:

dX̃1
dt

= −100k
R1

X̃1 +
100k
R2

X̃2 +
100k
R3

X̃4

dX̃2
dt

= − 100k
R4 · 10

X̃3sgn(X̃1)

dX̃3
dt

=
100k
R5

|X̃1| −
100k
R6

Vb

dX̃4
dt

= −100k
R7

X̃1

dX̃5
dt

=
100k

R9 · 10
X̃1X̃4 −

100k
R8

X̃5

dX̃6
dt

=
100k

R11 · 10
X̃1X̃3 −

100k
R10

X̃6

(17)

where

R1 = 129.87kΩ, R2 = 4.329kΩ, R3 = 3.333kΩ, R4 = 300kΩ,

R5 = R6 = 100kΩ, R7 = 6.666MΩ, R8 = 100kΩ,
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Figure 12 Synchronization of the states for 6D hyperchaotic
drive and response systems.

R9 = 13.33kΩ, R10 = 100kΩ, R11 = 10kΩ.

Figure 8 presents analog circuit modules for the equations of sys-
tem (17), which consists of standard components such as resistors
(R), capacitors (C), diodes D1,D2 (1N4001), multipliers M1-M3
(AD633), operational amplifiers A1-A23 (TL084ACN), and a sup-
ply voltage of ±15V. The constant 1 is implemented using a con-
stant voltage source Vb = 1V. In the modules shown in Figures
8b and 8c, we used standard electronic circuits that simulate the
signum sgn(·) (see, for example, (Yu et al. 2008)) and absolute
value | · | functions (Sedra and Smith 1998), which are presented
in Figure 9. Figure 10 presents the simulation results from Mul-
tisim of an electronic circuit, displaying hyperchaotic attractors
of system (17) in various planes. These results align with those
from the Mathematica simulation shown in Figure 5, confirming
the feasibility of the proposed circuit.

ACTIVE CONTROL SYNCHRONIZATION

Certainly, after developing a new chaotic oscillator based on 6D
nonlinear dynamic equations, it is crucial to investigate the syn-
chronization capabilities of this system to ensure its practical appli-
cability. In this section, we examine the active control synchroniza-
tion of two identical 6D hyperchaotic systems. System (13) was
chosen as the drive system, while the response system is described
as follows: 

dY1
dt

= a(−Y1 + 30Y2) + 30Y4 + u1

dY2
dt

= −Y3
30

sgn(Y1) + u2

dY3
dt

= −1 + |Y1|+ u3

dY4
dt

= − b
30

Y1 + u4

dY5
dt

= −Y5 +
3
4

Y1Y4 + u5

dY6
dt

= −Y6 + Y1Y3 + u6

(18)

where Y1, Y2, Y3, Y4, Y5, Y6 are the states and u1, u2, u3, u4, u5, u6, u7
are active controllers that we will define later. Our objective is to
synchronize the signals of both the drive and response systems,
even when their initial conditions differ. The state errors are de-
fined as ei(t) = Yi(t)− Xi(t), for (i = 1, 2, 3, 4, 5, 6). By subtracting

Figure 13 Time evolution of the synchronization errors with
controllers deactivated (t < 520s) and activated (t > 520s).

the drive system (13) from the response system (18), we obtain the
error system as follows:

ė1 = a(−e1 + 30e2) + 30e4 + u1

ė2 = − 1
30 (Y3sgn(Y1)− X3sgn(X1)) + u2

ė3 = |Y1| − |X1|+ u3

ė4 = − b
30 e1 + u4

ė5 = 3
4 (Y1Y4 − X1X4)− e5 + u5

ė6 = (Y1Y3 − X1X3)− e6 + u6

(19)

Next, we define active control functions aimed at producing an
asymptotically stable error system, thereby achieving synchroniza-
tion of the novel 6D hyperchaotic systems. The selected active
control functions are detailed below:

u1 = −e1 + ae1 − 30ae2 − 30e4

u2 = −e2 +
1
30 (Y3sgn(Y1)− X3sgn(X1))

u3 = −e3 − (|Y1| − |X1|)

u4 = −e4 +
b

30 e1

u5 = − 3
4 (Y1Y4 − X1X4)

u6 = −(Y1Y3 − X1X3)

(20)

Then, the dynamic equations of the error system are as follows:

ė1 = −e1

ė2 = −e2

ė3 = −e3

ė4 = −e4

ė5 = −e5

ė6 = −e6

(21)

Upon applying the proposed active control functions (20), the error
system transforms into a linear form. For convenience, we express
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this in matrix form as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ė1

ė2

ė3

ė4

ė5

ė6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1

ė2

e3

e4

e5

e6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(22)

It can be easily verified that all eigenvalues of the state matrix (22)
are negative. Therefore, according to the Routh-Hurwitz criterion,
the error system is stable, ensuring synchronization between the
drive system (13) and the response system (18).

Numerical simulation
The nonlinear equations (13) and (18) were solved using the 4th-5th
order Runge-Kutta-Fehlberg (rkf45) method in the Maple comput-
ing environment with the fixed parameters a = 0.77, b = 0.45. The
drive system (13) was initialized with the following conditions:

X1(0) =
1

10
, X2(0) =

7
60

, X3(0) =
1
2

, X4(0) =
1
5

,

X5(0) =
1
5

, X6(0) =
1
10

, (23)

and the response system was initialized with:

Y1(0) =
3
2

, Y2(0) =
1
2

, Y3(0) =
3
2

, Y4(0) =
5
6

,

Y5(0) =
3
8

, Y6(0) =
3
2

. (24)

Figure 11 illustrates the error curves resulting from the synchro-
nization between the drive and response systems, showcasing the
exponential convergence of synchronization errors ei to zero over
time. In Figure 12, the behavior of each state in both the drive and
response systems is depicted, demonstrating the convergence of
trajectories within a short time and indicating synchronization in
these hyperchaotic systems.

For a clear representation of synchronization using the active
control method, we select the following initial conditions for the
drive system (13) and response system (18):

X1(0) = 1. X2(0) =
1

30
, X3(0) = 1, X4(0) =

1
30

,

X5(0) =
1

40
, X6(0) = 1,

Y1(0) =
7
2

, Y2(0) = − 7
60

, Y3(0) =
7
2

, Y4(0) =
7

60
,

Y5(0) =
7
80

, Y6(0) =
7
2

. (25)

Ensure that the active controllers are switched on at t = 520 sec-
onds. The results depicted in Figure 13 indicate that the error
system states exhibit chaotic behavior over time when the active
controllers are deactivated (at t < 520 s), suggesting a lack of syn-
chronization. At t ≥ 520 s, the controllers are activated, and we
can see that the synchronization error states quickly converge to
zero.

Thus, simulation findings demonstrate the ability of the ac-
tive controllers (20) to synchronize two identical 6D hyperchaotic
systems starting from various initial conditions.

CONCLUSION

This work obtained a new 6D dynamic system with the smallest
number of terms (only 11) compared to the existing 6D dynamic
systems in the literature (see Tab. 1). It was found that the new
dynamic system has no equilibrium points, which may lead to the
formation of hidden attractors. For specific values of the system
parameters, a hyperchaos regime was discovered, for which all
Lyapunov exponents and the Kaplan-York dimension were calcu-
lated. The presence of two positive Lyapunov exponents indicates
the complexity of the new 6D dynamic system. In addition, exten-
sive studies of the dynamic properties of the system were carried
out, including bifurcation diagrams, phase portraits, Lyapunov ex-
ponents, multistability, and offset boosting control. The electronic
circuit of the proposed 6D system was designed using the Multi-
sim 14 software. The results of the electronic circuit simulation are
consistent with those obtained in the Mathematica environment.
Finally, the synchronization between the two identical new 6D
hyperchaotic systems was achieved by developing appropriate
active controllers. The new system has promising applications in
the field of encryption and decryption of information signals.
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A New Data Coding Algorithm for Secure
Communication of Image
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ABSTRACT This paper proposes a new entropy-sensitive based data coding algorithm for the secure communication of
image information between transceiver systems. The proposed algorithm utilizes chaos theory and the image information
content of the reference image to create sensitivity on the decoding side for a high level of secrecy. It successfully recovers
secret images at the receiver’s side using secret code series derived from both the secret and reference images, instead
of direct transmission of secret image. The image information can be retrieved only through the same reference image,
the same system parameters and identical code series using the proper decoding technique at the receiver. Quantitative
results indicate that the average coding time for 128x128 images is approximately 0.27 seconds, while the extraction time
averages 0.19 seconds, yielding impressive rates of 0.487 Mbps and 0.677 Mbps, respectively. Moreover, according to
qualitative results, even a single-bit change in the reference image leads to a complete inability to decode the secret image,
highlighting the robustness and security of the algorithm. Experimental results on various images show that the proposed
algorithm is reliable, fast and effective in securing confidential image information.
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Data coding
Image entropy

INTRODUCTION

Today, with the rapid development of data communication tech-
niques and network technologies, many multimedia data have
been transmitted and shared over open networks such as internet.
Most of this information transmitted or shared over public net-
works need to be protected privately. Cryptography is a common
approach used for the protection of data security by making the
original message to unintelligible form (Sharma et al. 2022; Gu-
runathan and Rajagopalan 2020). However, one of the greatest
challenges in cryptography is the secure generation, distribution
and storage of the keys used in encryption and decryption pro-
cesses (Rana et al. 2023). Cryptography has no ability to protect
against vulnerabilities and threats resulting from poor design of
systems, protocols and algorithms. Strongly encrypted, authen-
tic and digitally signed information can sometimes be difficult to
access, even for an authorized user. Moreover, creating suitable
secret keys that meet sufficient security conditions is not easy in
terms of circuit complexity, resource and time costs (Rana et al.
2023; Abba et al. 2024).

Another approach that can be used in secure communication
is steganography. In steganography the message is hidden into
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another medium in a way that cannot be noticed by eavesdropper
during communication (Jaradat et al. 2021; Mishra and Bhanodiya
2015). One of the major disadvantages of steganography is that
there is a large overhead for hiding a very small amount of in-
formation. It provides communication secrecy with limited data
capacity. Digital multimedia data such as images, audio and video
are used as the cover medium where confidential information can
be hidden (Pradhan et al. 2018). Among them, image files are very
ideal as cover media due to the having large amount of redundant
space (Ogras 2019). Image data hiding techniques can be classified
into two important types: Spatial domain and Transform domain.
Spatial domain techniques deal with image pixels and all of them
directly replace some bits in pixel values while hiding the data
(Hussain and Hussain 2013). Most commonly used technique in
spatial domain is Least-Significant-Bit (LSB) embedding in which
the secret message inside an image by replacing least significant
bit of cover image with the bits of message to be hidden (Abba
et al. 2024). For instance, LSB technique embeds a secret message
into the cover image with one bit, so the modified pixel value is
increased or decreased by 1 according to the used algorithm.

However, even if there is a tinny change in pixel values, total
difference can be easily detected statistically with known analysis
methods without much effort and so the secret information can be
easily revealed. Another popular spatial domain method used in
image steganography is the pixel value differencing (PVD) tech-
nique in which secret data is embedded into a cover image depend-
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ing on pixel neighbourhood differences. Some studies (Hosam and
Ben Halima 2016; Swain 2018a,b) based on PVD methods are pro-
posed in image steganography. However, both techniques are not
strong against some steganographic attacks as PVD can be detected
by pixel difference histogram analysis.

A good data hiding algorithms aims at two important purposes:
Payload capacity and imperceptibility. Payload capacity means the
maximum amount of secret information that can be hidden inside
a cover medium (Jaradat et al. 2021). Imperceptibility refers the
visual quality of a stego image. After hiding secret message into a
cover medium such as an image, the visual quality will decrease
compared to cover image that results a slight distortion on the
stego image. This distortion should be at an unnoticeable level;
otherwise the risk of confidential information being detected will
increase (Huang and Wang 2020). If zero distortion occurs as a
result of such data coding process, then this will be interpreted
as maximum imperceptibility, hence no analysis methods can be
applied to detect secret information.

Many existing studies in the field of secure image commu-
nication rely heavily on traditional cryptographic techniques or
steganographic methods that often introduce additional complexi-
ties, such as encryption algorithms or compression schemes. These
approaches can lead to increased processing times and power con-
sumption, making them less suitable for real-time applications.
In contrast, chaotic systems have gained substantial interest in
secure communication due to their inherent unpredictability, sen-
sitivity to initial conditions and complex dynamic behavior (Liu
et al. 2022). In such systems, slight changes in initial parameters
can lead to significantly different outcomes, a characteristic often
described as the "butterfly effect" (Bonny and Al Nassan 2024).
This sensitivity makes chaotic systems an ideal tool for secure data
transmission, as even a minor deviation in transmission parame-
ters can prevent unauthorized decoding attempts, which is a key
strength of chaos-based communication systems in ensuring high
security. These systems are also advantageous for real-time appli-
cations due to their computational efficiency, relying on simple
mathematical operations compared to traditional security methods
(Khan and Waseem 2024). This enables fast encoding and decod-
ing, supporting secure, high-speed image transmission without
requiring heavy computational resources. The proposed algorithm
demonstrates this efficiency with low coding and decoding times,
making it suitable for real-time image transmission.

The application of chaos theory in secure communication ben-
efits from the complex, non-linear behavior of chaotic systems to
create robust encoding mechanisms, particularly for applications
involving image data (Zhang and Liu 2023). For instance, chaotic
maps such as the Logistic, Henon, and Tent maps are widely used
due to their simplicity and effectiveness in generating high-entropy
sequences. These maps can efficiently scramble image data, en-
suring that the encrypted data appears random to unauthorized
observers. Because chaotic maps require only a few key parameters
to function, they simplify key management in encryption systems,
reducing the complexity associated with traditional secret key dis-
tribution. Unlike traditional encryption methods, chaotic systems
do not depend on large keys for security; instead, they use a set of
initial parameters and iterative processes to generate unpredictable
sequences. This property makes chaos-based encryption systems
less susceptible to brute-force attacks and highly efficient in terms
of computational resources (Khan and Waseem 2024). For image
data in particular, chaos theory provides distinct advantages, as
the encoding process can utilize the image’s inherent complexity
(entropy), making the encoded message directly tied to the image

data. In this study, the entropy of a reference image is used along
with chaos-based coding, which provides a higher level of secu-
rity, as both the reference image and chaotic map parameters are
essential for decoding. On the other hand, chaotic systems also
present certain challenges in secure communication applications.
One concern is the accurate reproduction of chaotic sequences at
the decoding end, which requires that both the sender and receiver
systems be perfectly synchronized (Liu et al. 2022). Any mismatch
in parameters could cause the chaotic system to diverge, leading
to decoding errors. Additionally, chaotic systems can sometimes
exhibit periodic behavior, especially if the system parameter is not
properly selected, which may compromise their unpredictability.

This paper introduces a new entropy-sensitive data coding
algorithm that addresses these shortcomings by using a unique
combination of chaos theory and reference image entropy with-
out altering the reference image. The main contributions of this
research include:

• The proposed method enhances security by requiring the
correct reference image and codes for recovering secret images,
which makes unauthorized access difficult.

• The high sensitivity of the system to even very small changes
prevents successful decoding.

• The algorithm minimizes processing times, making it suitable
for real-time applications while maintaining the integrity of
the reference image and ensuring robustness against detection
methods.

The structure of the paper is as follows: first, the definition of
chaos and the chaotic map utilized in the algorithm are introduced.
Next, the proposed coding and decoding algorithms are described
in detail. Then, experimental results, including the running time
of the coding and decoding processes, along with evaluation com-
parisons of the proposed algorithm, are given. Finally, the paper
concludes with a summary of findings.

CHAOS

Chaos means a state of total confusion with disorder (Ahmad and
Shin 2021). All systems that contain chaos exhibit extreme sensi-
tivity to initial condition and control parameters (Ozkaynak 2020;
Effah-Poku et al. 2018). Although chaotic systems have determinis-
tic structure, their long-term behavior cannot be predicted (Umoh
and Wudil 2016). Hence, these properties can be used to transform
obvious events into an irregular and unpredictable form in some
engineering fields such as cryptography (Roy et al. 2021; Gafsi et al.
2020; Irsan and Antoro 2019) and secure communication (Sharafi
et al. 2021; Kumar and Raghava 2019; Ismail et al. 2020; Oğraş
and Türk 2013). In this paper, the well-known chaotic Logistic
map (LM) is used to generate secret key for the proposed coding
algorithm.

Logistic map
LM is a simple but frequently used system for generating pseudo-
random sequences. It has a simple iterative structure having a
dynamical equation as in Equation 1:

xn+1 = r · xn · (1 − xn) (1)

where r refers to the control parameter of the map defined in (0,4].
If the r is between 3.57 and 4, then the map behaves chaotically,
exhibiting chaotic properties such as non-periodicity and sensi-
tivity to initial conditions. In this case, the output is distributed
randomly within the range from 0 to 1. As a result, the LM can
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produce unpredictable series like a key generator, which can be
used in fields of subjects where the randomness is needed. For
instance, the output generated from the LM with x0 = 0.1234 and
r = 3.9999 after 500 iterations is shown in Figure 1.

Figure 1 The output of chaotic LM

PROPOSED CODING ALGORITHM

Generating secret key and coding process
In this study, no data containing of the secret image information

is sent directly to the receiver. Instead, unlike the cryptographic
approach, secret image is mixed with a series of codes obtained
from the reference image and the LM system through the proposed
coding algorithm. The reference image in here is an arbitrary pub-
lic image with which the secret image will be associated randomly.
The secret image is a target image that will be decoded at the
receiver side by being sensitively related to the reference image
along with the secret code series. The coding process is carried
out by associating the secret image with the secret codes using
the reference image. The general block scheme of the proposed
algorithm is shown in Figure 2

Figure 2 Block diagram of a proposed scheme

The algorithm uses a series of high-precision secret codes to
decode the secret image. In addition to the parameters of the LM
system, the reference image also affects the secret key over its
entropy value as in Equation 2.

x′0 = (x0 + Entropy(reference_img)) mod 1 (2)

x0 and x′0 indicate the first and actual initial values of the LM,
respectively. The equation introduces a perturbation to the initial
value of the LM using the entropy of an image. Since entropy
measures the amount of information or randomness in an image,
this introduces variability based on the content of the image. The
result is that x′0 will be slightly different from x0 depending on the
image characteristics. The use of the modulus operation ensures
that x′0 remains within the range [0, 1]. This is crucial for LM, which
typically require initial values in this interval. It is well known that
chaotic systems are extremely sensitive to initial values. As a result
of such an approach, the generated key series will be depended
on the first initial value of the LM system and the entropy of

the reference image with high sensitivity. This sensitivity on the
coding side will also be reflected on the decoding side, which will
play a major role in correctly decoding the encoded secret image
information. Binary series are generated from the LM by using a
simple mathematical transformation given in Equation 3.

bn =

1 if xn ≥ 0.5

0 otherwise
(3)

A simple bit is obtained for each corresponding of xn value. Notice
that, the orders of the generated series are completely dependent
on the initial condition and control parameter of the LM. Then,
bitstreams of reference image are mixed with the generated binary
series according to the bitstreams of the secret image. The whole
processes for the generation of the secret codes are explained in
detail as follows:

Step 1) A secret image to be coded has the same size with the
reference image selected and then it is converted to serial bitstream
format.

Step 2) According to the values in the serial bitstream, XOR
(Exclusively-OR) or XNOR (not XOR) operations are performed
up to the length of the bitstream for 1 and 0, respectively.

Step 3) Chaotic binary series are generated by the LM with a
chosen control parameter, initial condition and the entropy value
from the reference image.

Step 4) Reference image is reshaped to the length of size and
then converted to serial bitstream like secret image.

Step 5) According to the bitstreams value of the secret image, if
‘1’ occurs, XOR operation is performed with chaotic series and the
bitstreams of the reference image. Otherwise, XNOR operation is
performed.

Step 6) Step 5 is continued by considering all of the bitstream
values for the secret image. Finally, the output represents modified
chaotic series that will be used as secret codes in the proposed
algorithm.

Schematic diagram for generating secret code is shown in the
Figure 3. In the algorithm, size of the secret image is same as the
reference image which results maximum payload capacity indeed.
Block diagram of the coding process is shown in Figure 4.

Decoding process
On the receiver side, a secret image can be recovered with

the same reference image, identical secret key and correct system
parameters of the LM. If there is a slight change in any one of them,
the secret image will not be decoded correctly, even 1-bit change
occurs in the reference image. Block diagram for the decoding
process is shown in Figure 5.

All system parameters of the LM must be unknown except the
receiving side. Keeping these values secret plays an important
key role in integrity for decoding the secret image. In addition,
the secret codes must be transmitted through a channel to the
receiving side knowing which reference image is associated with
the secret image. As a result, the secret image can be correctly
decoded through the inverse algorithm of the proposed scheme.
Schematic diagram of the inverse algorithm for decoding process
is shown in the Figure 6.
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Figure 3 Schematic diagram for the generating secret code

Figure 4 Block diagram of the coding process

Figure 5 Block diagram of the decoding process

Figure 6 Schematic diagram of the inverse algorithm
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EXPERIMENTAL RESULTS

Twelve grey test images are used to evaluate the performance of
the proposed coding algorithm. The properties of the images are
listed in Table 1, and some are shown in Figure 7.

To evaluate the performance of the proposed algorithm, suffi-
cient number of simulation is performed with various test images
by using Matlab software. The visual analysis results, as well as the
running speed and decoding rate of the algorithm, are calculated
using an Intel Core i3 2.13 GHz processor with 4 GB of RAM.

Figure 7 Some test images used in the proposed algorithm (a)
Peppers (b) Liberty (c) Baboon (d) Landscape (e) Moon (f) Frog

Sensitivity analysis
In the proposed scheme, changing the entropy value of the

reference image directly affects the initial value of the LM which
results significant change in secret codes due to the chaos effect.
Therefore, exactly the same reference image must be used in the
receiver side to decode the secret image. The reference image
is associated with the secret image at bit-level by using Bitwise
operations and that correlation can only be appeared with the same
secret key used at the receiver side. Furthermore, the secret image
can only be detected under exactly the same reference image due

to the entropy sensitivity of the algorithm. If a different reference
image is used in the receiver side, then the secret image should not
be decoded correctly. For this case, a test image of “Frog.jpg” is
used as secret image and “Moon.jpg” image is used as reference
image in the proposed algorithm. LM parameters are selected as
r = 4 and x0 = 0.12345 . Then, on the receiver side, the secret
image is tried to be decoded with the same LM parameters but
using “Landscape.jpg” as reference image. The visual result is
shown in Figure 8. According to the results, the secret image
can only be decoded correctly for the associated correct reference
image. If there is even a 1-bit pixel change in the correct reference
image, the secret image should not still be decoded correctly. The
secret “Frog” image is tried to be decoded by making only 1-bit
change in the middle pixel of the correct reference image in Figure
8(c). In other words, the middle pixel value of 121 is changed
to 122 in correct “Moon” image. The analysis result is shown in
Figure 9.

Figure 8 Reference image sensitivity analysis (a) Incorrect refer-
ence image (b) Incorrectly decoded image (c) Correct reference
image (d) Correctly decoded image

In this analysis, the entropy of the correct reference image is
5.35447619; for the other one is 5.35447489 where 1-bit change
is made in the middle pixel value. The results of the reference
image sensitivity analyses show that the proposed algorithm is
highly sensitive to the reference image even with only a single pixel
change on it. In security manner, the proposed algorithm should
also be sensitive to the system parameters of r and x0. For this
analysis, “Baboon” image is used as a secret image and “Liberty”
image is used as a reference image. “Baboon” and “Liberty” images
are used in the proposed algorithm for the parameters of r = 4
and x0 = 0.12345. On the receiving side, a tinny change of 10−6 is
applied to the one of the parameters while other remains same, and
performs the inverse algorithm of the proposed scheme to decode
secret image. The results are shown in Figure 10. According to the
results, the proposed algorithm is highly sensitive to the all system
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■ Table 1 Entropy values of different test images

Size Name Purpose of usage Entropy

128x128 Flowers Secret 7.44118

128x128 Frog Reference 6.92897

256x256 Cameraman Reference 7.10514

256x256 Frog Secret 6.96951

256x256 Moon Reference 5.35447

256x256 Baboon Secret 7.22002

256x256 Landscape Reference 7.34015

512x512 Baboon Secret 7.18316

512x512 Liberty Reference 7.49462

512x512 Peppers Reference 7.59386

1024x1024 Cat Secret 7.20682

1024x1024 Airplane Reference 7.20493

Figure 9 Entropy sensitivity analysis (a) Correct reference image
(b) Correct decoded image (c) Similar reference image with only
1-bit change in the middle pixel value (d) Incorrectly decoded
image

parameters which enhance the security of the secret image.

Figure 10 Parameters sensitivity analysis (a) Reference image
coding with r = 4 and x0 = 0.12345 (b) Incorrect decoded image
using with r = 4 and x0 = 0.123451 (c) Incorrect decoded image
using with r = 3.999999 and x0 = 0.12345 (d) Correct decoded
image with r = 4 and x0 = 0.12345
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Entropy attack analysis
The entropy of an image measures the level of randomness or

information content in that image, and is calculated as in Equation
4.

H = −
L−1

∑
i=0

p(i) log2(p(i)) (4)

where H is the entropy value, L is the total number of levels in an
image and p(i) is the probability of the i-th level. In the proposed
algorithm, the entropy value is utilized to directly modify the
initial value of the LM, thereby affecting the generation of the
chaotic binary sequence. However, it is important to note that
even if the entropy values are the same, the pixel-level distribution
and arrangement of bits within the image may still differ, which
might still affect the encoding and decoding process. Moreover,
the entropy value alone does not guarantee that the images are
identical in terms of their content or structure and even slight
differences in their pixel values can lead to variations in the
generated secret codes. To perform an entropy attack analysis,
the proposed algorithm uses two different images with the same
entropy values. The Arnold Cat Map (ACM) method is then
applied to permute a reference test image, generating a scrambled
image with identical entropy. ACM is a method used in image
processing to scramble the pixel positions of an image (Bhardwaj
and Bhagat 2018). It is a transformation technique, as defined in
Equation 5, which rearranges the pixel locations while preserving
the image’s overall properties, such as entropy and pixel values.x′

y′

 =

1 1

1 2


x

y

 mod N (5)

(x, y) and (x′, y′) represent the original coordinates of a pixel
and the new coordinates after the transformation, respectively. N
denotes the size of the image. For the entropy analysis, the test
image of ‘cameraman.jpg’ with entropy value 7.10514 is chosen
as reference image to be used for the secure transmission of ‘ba-
boon.jpg’ image in the proposed scheme. During the decoding
process of the secret image on the receiver side, the scrambled
image obtained by applying the ACM method to the ‘cameraman’
image just one iteration is used. This leads to no change in entropy,
and the visual results are shown in Figure 11.

The correlation coefficient between the reference image and
the scrambled image is found to be 0.0529, while the correlation
coefficient between the secret image and the decoded image is
calculated as -0.0337. According to the entropy results, the secret
image can only be decoded correctly if the exact same reference
image, secret key and system parameters are used. The decoding
process is highly sensitive to the reference image’s entropy; even if
a different image has the same entropy value, incorrect decoding
may still occur because the actual pixel values can differ. This
result verifies the sensitivity of the proposed algorithm to both the
entropy and the precise structure of the reference image.

Differential analysis
NPCR (Number of Pixels Change Rate) and UACI (Unified

Average Changing Intensity) are two metrics used to evaluate the
differential analyses for the sensitivity of particular algorithms,
especially in the context of image encryption (Louzzani et al. 2021).
They are defined in Equations 6 and 7.

NPCR =

(Nchanged

Ntotal

)
× 100 (6)

Figure 11 Entropy attack analysis (a) Secret image (b) Reference
image (c) Scrambled image (d) Incorrectly decoded secret image

Nchanged is the number of pixels that differ between the original
and decoded image after a small change is made to the reference
image. Ntotal is the total number of pixels in the secret image. A
higher NPCR value, ideally close 100% indicates better sensitiv-
ity of the coding algorithm (Alawida 2023). UACI measures the
average change intensity of the pixels. It gives an indication of
how much the output changes with a small change in the input
(Haridas et al. 2024).

UACI =

(
1

Ntotal

Ntotal

∑
i=1

|C1(i)− C2(i)|
255

)
× 100 (7)

C1(i) and C2(i) are the pixel values of the original and decoded
images, respectively. A higher UACI values, typically around 33%,
indicates that the algorithm has strong sensitivity to changes in the
input image. The theoretical values for NPCR and UACI are 99.60%
and 33.46%, respectively (Jin et al. 2024). Random test images of
different sizes are chosen to calculate the correlation coefficients,
NPCR and UACI values for the proposed coding algorithm. First,
all the secret test images are used to perform differential analy-
ses with a key through the algorithm. Then, the pixel value in
the middle of each reference image is incremented by one. After-
wards, the modified reference image is applied to the receiver to
decode the secret image using the same system parameters. The
corresponding results are listed in Table 2.

The results show that both NPCR and UACI values are very
close to their ideal values, suggesting that the proposed algorithm
is highly sensitive to the reference image. Moreover, the correlation
coefficient is very close to 0, which means there is no relationship
at all between the original and decoded images.

290 | Hidayet Oğraş CHAOS Theory and Applications



■ Table 2 Differential analysis of the proposed coding algorithm

Size Secret Image Cover Image NPCR (%) UACI (%) Correlation Coeffi-
cient

128x128 Flowers Frog 99.6459 32.4016 -0.004564

256x256 Baboon Landscape 99.5986 29.5655 0.006156

512x512 Goldhill Liberty 99.6208 31.6547 0.000108

1024x1024 Cat Airplane 99.6023 30.5923 -0.001699

■ Table 3 Speed analyses of the proposed algorithm

Size of secret image Average Coding time
(sec)

Average Decoding time
(sec)

Coding Rate (Mbps) Decoding Rate (Mbps)

128x128 0.2691 0.1934 0.487 0.677

256x256 0.9380 0.7422 0.558 0.706

512x512 3.8149 2.3508 0.549 0.892

1024x1024 16.3716 10.4283 0.512 0.804

Speed analysis
In order to evaluate the running speed of the coding and decod-

ing processes, 20 test images with different sizes are used in the
proposed algorithm. Then average coding and decoding rates are
calculated by using Matlab R2015a software. The average running
time for the results can be found in Table 3.

Comparison with related works
The proposed coding algorithm can be considered as an al-

ternative approach to steganographic algorithms. Generally, in
steganographic algorithms, confidential information is hidden by
manipulating the cover image in time or frequency domain. The
coding process performed here is the modification of the random-
like chaotic series against the secret image through bitwise oper-
ations. It is known that a secure cryptographic algorithm is ex-
tremely sensitive to system parameters. In the proposed algorithm,
whole system sensitivity is achieved by affecting the initial value
of the chaotic system by the information content of the reference
image.The proposed scheme is compared with the closely related
works of (Elshoush et al. 2021) and (Bai et al. 2017) in the field of
zero image steganography. Table 4 summarizes the comparison of
proposed scheme with the related works. This study (Elshoush et al.
2021), has proposed a zero distortion steganographic method that
uses ASCII code matching for the character of secret message in a
cover image without changing image size and pixel values. Here,
only the positions of the secret message are noted in a mapping
table. In extraction process, the ASCII codes of the secret messages
are provided from the positions arrays in the cover image.

All related works of (Elshoush et al. 2021), (Bai et al. 2017) and
(Bilal et al. 2013), include additional operations such as encryp-
tion, compression or mathematical transformation to increase the
security of secret data. However, these processes should take com-
plex structure, high power consumption and can increase time
duration of hiding and extracting processes. The proposed scheme
uses grayscale images for simpler implementation and efficient

processing, particularly where color is unnecessary. Unlike meth-
ods that depend on color images, which increase complexity and
computational demands, this approach omits encryption while
maintaining security through chaos theory and inherent sensitiv-
ity. This ensures significant output changes from minor input
variations, protecting secret images from unauthorized access. By
avoiding encryption-related overhead, the scheme achieves high
confidentiality, making it ideal for applications where speed and
simplicity are essential. For instance, in (Elshoush et al. 2021), the
secret message size with 2000 Bytes takes 9.5 seconds in “Cat1”
image with a size of 200x200. For the proposed scheme, average
time of different secret test images with 128x128 in size (16384
Bytes) takes about 0.27 seconds for coding process.

Evaluation of the proposed algorithm
The imperceptibility of a steganographic algorithm is the most

important feature to consider. The ability of unnoticed as a first
requirement is closely related to the strength of the steganographic
algorithm. In the proposed algorithm, payload capacity is same
as the volume of the reference image. Reference image can be
thought as a cover image in this study. Therefore, larger volume
of reference image means more payload capacity. Secret message
should not leave a trace on the cover medium; otherwise it can be
detected by steganalysis methods. The proposed algorithm makes
no any change to the reference image and brings zero distortion,
so it has a perfect imperceptibility and robustness. The evaluation
of the proposed algorithm is given in Table 5.
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■ Table 4 Comparison of other references

Criteria Proposed scheme Elshoush et al. Bai et al. Bilal et al.

Usage of RGB Compo-
nent

Grayscale (8 bits) All RGB (24 bits) All RGB (24 bits) Grayscale (8 bits)

Domain Spatial Spatial Frequency Spatial and Frequency

Hiding Data Type Image Message Message Image

Extracting Process Bit by bit Byte by byte DCT Transform DCT transform

Compression No Yes (Huffman algorithm) No Yes (Hash function)

Encryption No Yes (AES-128) Yes (AES) Yes (RSA)

Usage of positions No Yes No No

Invisibility No change No change No change Change

Usage of key Yes No No No

Precision sensitivity Yes No - Yes

■ Table 5 Evaluation of the proposed algorithm

Criteria Evaluation

Invisibility No change in reference image

Payload Capacity As the volume of the reference image

Robustness against statistical attacks Very high (zero distortion)

Independent of file format Any format readable by Matlab

Unsuspicious files Very high as no change in image

CONCLUSION

This paper introduces a new data coding algorithm designed to
enhance the security of image communication through the inno-
vative application of chaos theory. A key feature of this algorithm
is its ability to recover secret images using only a reference image,
specific system parameters and identical code series, rather than re-
lying on direct transmission of secret data. This approach not only
improves security but also minimizes the risk of unauthorized
access to confidential information. Furthermore, the algorithm
demonstrates remarkable robustness and security, exhibiting ex-
treme sensitivity to changes in the reference image. Even minor
alterations, such as a single-bit change, can lead to complete fail-
ure in decoding the secret image. This resilience is supported by
metrics like NPCR and UACI, confirming the algorithm’s strong
defences against potential attacks. Theoretical and experimental
results verify that the proposed algorithm is very efficient and
usable, demonstrating its capability to securely transmit image
data while maintaining rapid processing speeds and high levels
of confidentiality. It is part of the future plans to design similar
coding algorithms for different types of multimedia data and to
use them in practical applications.
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