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Fırat Özsaraç
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Eötvös Loránd University, Hungary

Jie Xiao
Memorial University, Canada

i



Kehe Zhu
State University of New York, USA

Layout & Language Editors

Sadettin Kurşun
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Research Article

Optimizing solutions with competing anisotropic
(p, q)-Laplacian in hemivariational inequalities

DUMITRU MOTREANU AND ABDOLRAHMAN RAZANI*

ABSTRACT. For differential inclusions and hemivariational inequalities driven by anisotropic differential opera-
tors, we establish the existence of generalized variational solutions and weak solutions. The main novelty consists in
allowing that the driving operators might not satisfy any ellipticity condition, which is achieved for the first time in
the anisotropic and nonsmooth context. The approach is based on a finite dimensional approximation process.

Keywords: Differential inclusion, hemivariational inequality, anisotropic p-Laplacian, competing operators, general-
ized variational solution, weak solution.

2020 Mathematics Subject Classification: 35J87, 35J92, 47J30.

1. INTRODUCTION AND STATEMENTS OF MAIN RESULTS

In this paper, we study the following differential inclusion with the Dirichlet boundary con-
dition

(1.1)

{
−∆p⃗u+ µ∆q⃗u ∈ ∂F (u) in Ω,

u = 0 on ∂Ω

on a bounded domain Ω in RN with N ≥ 2 and boundary ∂Ω. Here µ ∈ R is a parameter and we
have p⃗ = {p1, · · · , pN} and q⃗ = {q1, · · · , qN}, where 1 < p1, · · · , pN < ∞, 1 < q1, · · · , qN < ∞,
and qi < pi for all i = 1, · · · , N . The driving operator −∆p⃗ + µ∆q⃗ in (1.1) is formed with the
anisotropic p⃗-Laplacian ∆p⃗ and the anisotropic q⃗-Laplacian ∆p⃗. We recall that the anisotropic
r⃗-Laplacian with r⃗ = (r1, · · · , rN ) is defined as

∆r⃗ :=

N∑
i=1

∂

∂xi

(∣∣∣∣∂(·)∂xi

∣∣∣∣ri−2
)

∂(·)
∂xi

.

In (1.1), we take r⃗ = p⃗ and r⃗ = q⃗. For our purpose, the most relevant case of driving operator
in (1.1) is the competing anisotropic operator −∆p⃗ +∆q⃗ . We assume that

(1.2)
N∑
i=1

1

pi
> 1.

Set
p+ := max{p1, · · · , pN}, p− := min{p1, · · · , pN}, p∗ :=

N∑N
i=1

1
pi

− 1
,
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and further assume

(1.3) p+ < p∗.

In the right-hand side of inclusion (1.1), we have the generalized gradient ∂F of a locally Lip-
schitz function F : R → R (see [9]). The multivalued expression ∂F (u) means that pointwise
∂F (u(x)) is a subset of R for any x ∈ Ω. Without loss of generality, we may suppose that
F (0) = 0. We assume that the following condition is satisfied:

(H) There exist positive constants c0 and c1 with c1 < λ1,p⃗p
− such that

|ξ| ≤ c0 + c1|t|p
−−1

for all t ∈ R and ξ ∈ ∂F (t), where

(1.4) λ1,p⃗ := inf
u∈W 1,−→p

0 (Ω),u ̸=0

N∑
i=1

1

pi

∥∥∥∥ ∂u

∂xi

∥∥∥∥p−

Lpi

∥u∥p
−

Lp−

.

The definition of the generalized gradient ∂F implies that each solution u ∈ W 1,p⃗
0 (Ω) to (1.1)

is a solution of the inequality problem

(1.5) ⟨−∆p⃗u, v⟩+ µ⟨−∆q⃗u, v⟩ ≤
∫
Ω

F ◦(u(x); v(x))dx

for all v ∈ W 1,p⃗
0 (Ω), where F ◦ denotes the generalized directional derivative of the locally Lip-

schitz function F . Problem (1.5) is a hemivariational inequality in the Banach space W 1,p⃗
0 (Ω).

A brief presentation of the space W 1,p⃗
0 (Ω) will be done in Section 2.

We are interested in two types of solutions for inclusion (1.1) and a fortiori for hemivaria-
tional inequality (1.5), namely the weak and generalized variational solutions.

Definition 1.1. A function u ∈ W 1,p⃗
0 (Ω) is called a weak solution to (1.1) if

(1.6) ⟨−∆p⃗u, v⟩+ µ⟨−∆q⃗u, v⟩ =
∫
Ω

z(x)v(x)dx

for all v ∈ W 1,p⃗
0 (Ω), with z ∈ Lp⃗ ′

(Ω) ∈ ∂F (u) a.e. on Ω.

Definition 1.2. A function u ∈ W 1,−→p
0 (Ω) is called a generalized variational solution to inclusion (1.1)

if there exists a sequence {un}∞n=1 ⊂ W 1,−→p
0 (Ω) such that

(a) un ⇀ u in W 1,−→p
0 (Ω) as n → ∞;

(b) −∆p⃗un + µ∆q⃗un − zn ⇀ 0 in W−1,p⃗ ′
(Ω) as n → ∞ with zn ∈ Lp⃗ ′

(Ω) and zn ∈ ∂F (un)
a.e. on Ω;

(c) limn→∞⟨∆p⃗un + µ∆q⃗un, un − u⟩ = 0.

From Definitions 1.1 and 1.2, we see that any weak solution u ∈ W 1,p⃗
0 (Ω) to problem (1.1)

is a generalized variational solution. In order to confirm this, it suffices to take un = u in the
definition of the generalized variational solution. The converse assertion is generally not valid.

Our main results are formulated as follows. Note that the part played by the parameter µ is
fundamental.

Theorem 1.1. Under the stated assumptions, there exists a generalized variational solution to problem
(1.1) for every µ ∈ R. In particular, there exists a solution of the hemivariational inequality (1.5).
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Theorem 1.2. Under the stated assumptions, if µ ≤ 0 then each generalized variational solution to
problem (1.1) is a weak solution. Moreover, if µ ≤ 0, problem (1.1) admits a weak solution which is a
global minimizer of the minimization problem

(1.7) inf
v∈W 1,p⃗

0 (Ω)

[
N∑
i=1

1

pi

∥∥∥∥ ∂v

∂xi

∥∥∥∥pi

Lpi

−
N∑
i=1

µ

qi

∥∥∥∥ ∂v

∂xi

∥∥∥∥qi
Lqi

−
∫
Ω

F (v(x))dx

]
.

The main novelty in our study is the presence of the anisotropic operator −∆p⃗u + µ∆q⃗u in
the nonsmooth problem, which loses the ellipticity when µ > 0. This extends to an anisotropic
nonsmooth setting the use of competing operators considered until now in completely different
situations [12, 15, 16, 17, 19]. We mention that the concept of generalized solution for equations
involving competing operators and convection terms was developed in [11, 14, 15, 16, 23] (see
also [1, 2, 7, 26]). In the present work, we explore the existence of generalized solutions to
hemivariational solutions driven by competing anisotropic operators.

The rest of the paper, has the following structure. In Section 2, we outline the needed
background of anisotropic spaces and operators and provide auxiliary results regarding the
nonsmooth analysis for inclusion (1.1). In Section 3, we present our approach based on finite
dimensional approximate solutions. In Sections 4 and 5, we prove Theorems 1.1 and 1.2, re-
spectively.

2. MATHEMATICAL BACKGROUND AND AUXILIARY RESULTS

The anisotropic Sobolev space W 1,−→p
0 (Ω) is defined as the completion of the set of smooth

functions with compact support C∞
c (Ω) with respect to the norm

∥u∥
W 1,p⃗

0 (Ω)
:=

N∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi

,

where ∥ · ∥Lr is the usual norm of the space Lr(Ω). It is separable and uniformly convex, thus a
reflexive Banach space. The dual of W 1,p⃗

0 (Ω) is denoted W−1,p⃗ ′
(Ω). The following embedding

theorem can be found in [10, Theorem 1].

Theorem 2.3. Assume that conditions (1.2) and (1.3) hold. Then for all r ∈ [1, p∗], there is a continuous
embedding W 1,−→p

0 (Ω) ⊂ Lr(Ω). For r < p∗, the embedding is compact.

From Theorem 2.3, we have the compact embedding

(2.8) W 1,p⃗
0 (Ω) ⊂ Lp−

(Ω).

In particular, by (2.8) we infer that there exists a constant S1 > 0 such that

(2.9) ∥v∥L1 ≤ S1∥v∥W 1,p⃗
0 (Ω)

, ∀v ∈ W 1,p⃗
0 (Ω).

The quantity λ1,p⃗ in (1.4) is finite due to the compact embedding (2.8). Since the space W 1,p⃗
0 (Ω)

is separable, there exists a Galerkin basis for W 1,p⃗
0 (Ω), that is, a sequence of vector subspaces

{Xn}n≥1 of W 1,p⃗
0 (Ω) such that

(i) dim(Xn) < ∞ for all n;
(ii) Xn ⊂ Xn+1 for all n;
(iii) ∪∞

n=1Xn = W 1,p⃗
0 (Ω).

For various aspects involving anisotropic Sobolev spaces, we refer to [3, 4, 5, 10, 13, 18, 20,
23, 24, 21, 22, 25].
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We continue with a brief survey of basic elements of nonsmooth analysis that are needed in
the sequel.

Given a locally Lipschitz function F : X → R on a normed space X , the generalized direc-
tional derivative of F at u ∈ X in the direction v ∈ X is defined as

F ◦(u; v) := lim sup
w→u,t→0+

1

t
(F (w + tv)− F (w)) .

The generalized gradient of F at u ∈ X is the subset of X∗ given by

∂F (u) := {u∗ ∈ X∗ : ⟨u∗, v⟩ ≤ F ◦(u; v) for all v ∈ X} .
A case of major interest for us in connection with the resolution of problem (1.1) is when X = R.
In this case, a relevant realization of the preceding notions is as follows. Let f ∈ L∞

loc(R) and its
primitive F : R → R defined by

F (t) =

∫ t

0

f(s)ds, ∀t ∈ R(2.10)

which is locally Lipschitz. The explicit expression of the generalized gradient ∂F (t) is ∂F (t) =

[f(t), f(t)], where

f(t) = lim
δ→0

ess inf |η−t|<δf(η) and f(t) = lim
δ→0

ess sup|η−t|<δf(η)

for every t ∈ R. With the choice in (2.10), inclusion (1.1) becomes{
−∆p⃗u+ µ∆q⃗u ∈ [f(u), f(u)] in Ω,

u = 0 on ∂Ω

which is important for equations with discontinuous nonlinearities (see [8]).
Now, we return to our general case of a locally Lipschitz function F : R → R satisfying hy-

pothesis (H). It follows from hypothesis (H) that the function F verifies the growth condition

|F (t)| ≤ c0|t|+
c1
p−

|t|p
−
, ∀t ∈ R.(2.11)

Indeed, note that F (0) = 0 and F is differentible almost everywhere due to Rademacher’s
theorem, thus

F (t) =

∫ t

0

F ′(s)ds, ∀t ∈ R.

Since F ′(s) ∈ ∂F (s) for all t ∈ R (refer to [9, p. 32])), it turns out from hypothesis (H) that
(2.11) holds true.

It is straightforward to check that the functional Φ : Lp−
(Ω) → R given by

(2.12) Φ(v) =

∫
Ω

F (v(x))dx, ∀v ∈ Lp−
(Ω)

is Lipschitz continuous on the bounded subsets of Lp−
(Ω), thus locally Lipschitz on Lp−

(Ω).
Therefore the generalized gradient ∂Φ is well defined on Lp−

(Ω).
Using that the domain Ω is bounded, Hölder’s inequality ensures the continuous embedding

W 1,p⃗
0 (Ω) ⊂ W 1,q⃗

0 (Ω) (note that qi < pi for all i = 1, . . . , N ). Then the embedding W 1,p⃗
0 (Ω) ↪→

Lp−
(Ω) in (2.8) allows us to define the functional J : W 1,p⃗

0 (Ω) → R by

(2.13) J(v) =

N∑
i=1

1

pi

∥∥∥∥ ∂v

∂xi

∥∥∥∥pi

Lpi

−
N∑
i=1

µ

qi

∥∥∥∥ ∂v

∂xi

∥∥∥∥qi
Lqi

−
∫
Ω

F (v(x))dx
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for all v ∈ W 1,p⃗
0 (Ω).

Proposition 2.1. Assume that condition (H) holds. The functional J given by (2.13) is locally Lipschitz
on W 1,p⃗

0 (Ω) with the generalized gradient

(2.14) ∂J(v) =

N∑
i=1

∣∣∣∣ ∂v∂xi

∣∣∣∣pi−2
∂v

∂xi
− µ

N∑
i=1

∣∣∣∣ ∂v∂xi

∣∣∣∣qi−2
∂v

∂xi
− ∂Φ(v)

for all v ∈ W 1,p⃗
0 (Ω). Moreover, the functional J is coercive on W 1,p⃗

0 (Ω), which means that

(2.15) lim
∥v∥

W
1,p⃗
0 (Ω)

→∞
J(v) = +∞.

Proof. The first part of the statement is a direct consequence of (2.13) and of what was said
about the functional Φ introduced in (2.12).

We pass to the proof of (2.15). Hypothesis (H) in conjunction with (2.9), (1.4), (2.8), (2.13)
and Hölder’s inequality, leads to

J(v) ≥
N∑
i=1

1

pi

∥∥∥∥ ∂v

∂xi

∥∥∥∥pi

Lpi

−
N∑
i=1

|µ|
qi

∥∥∥∥ ∂v

∂xi

∥∥∥∥qi
Lqi

−
∫
Ω

(
c0|v|+

c1
p−

|v|p
−
)
dx

≥
N∑
i=1

1

pi

∥∥∥∥ ∂v

∂xi

∥∥∥∥pi

Lpi

−
N∑
i=1

|µ|
qi

|Ω|
pi−qi

pi

∥∥∥∥ ∂v

∂xi

∥∥∥∥qi
Lpi

−c0S1

N∑
i=1

∥∥∥∥ ∂v

∂xi

∥∥∥∥
Lpi

−
c1λ

−1
1,p⃗

p−

N∑
i=1

1

pi

∥∥∥∥ ∂v

∂xi

∥∥∥∥p−

Lpi

,

where |Ω| denotes the Lebesgue measure of Ω. As it was assumed that 1 < qi < pi for all
i = 1, · · · , N , and c1 < λ1,p⃗p

−, we arrive at (2.15), so the functional J is coercive. □

3. SEQUENCE OF APPROXIMATE SOLUTIONS

In order to simplify the notation, for any real number r > 1 we denote r′ := r/(r − 1) (the
Hölder conjugate of r), and we can set p⃗ ′ := (p′1, · · · , p′N ) for p⃗ = (p1, · · · , pN ).

As noticed in Section 2, there exists a Galerkin basis {Xn}n≥1 for the space W 1,p⃗
0 (Ω) that

we now fix. We construct approximate solutions to inclusion (1.1) on each finite dimensional
subspace Xn.

Proposition 3.2. Assume that hypothesis (H) holds. Then, for each n, there exist un ∈ Xn and
zn ∈ Lp−′

(Ω) with zn ∈ ∂F (un) almost everywhere on Ω such that

(3.16) J(un) = inf
v∈Xn

J(v)

and

(3.17) ⟨−∆p⃗un, v⟩+ µ⟨−∆q⃗un, v⟩ −
∫
Ω

znvdx = 0

for all v ∈ Xn.

Proof. Proposition 2.1 ensures that the restriction J |Xn of the functional J : W 1,p⃗
0 (Ω) → R to

the finite dimensional subspace Xn is locally Lipschitz and coercive. Therefore there exists
un ∈ Xn satisfying (3.16). We derive from (3.16) the necessary optimality condition

(3.18) 0 ∈ ∂ (J |Xn) (un).
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In view of (2.14), we have that (3.18) results in (3.17). The Aubin-Clarke theorem (see [9, p.
83]) applied to the integral functional Φ on Lp−

(Ω) in (2.12) yields that zn ∈ ∂F (un) almost
everywhere on Ω. This completes the proof. □

Corollary 3.1. Assume that condition (H) holds. Then the sequence {un} ⊂ W 1,p⃗
0 (Ω) constructed in

Proposition 3.2 satisfies

(3.19) lim
n→∞

J(un) = inf
w∈W 1,p⃗

0 (Ω)
J(w).

Proof. Recall that Xn ⊂ Xn+1 for all n. Then (3.16) shows that the sequence {J(un)} is nonin-
creasing, while the proof of Proposition 3.2 provides that is bounded from below. Hence the
limit l := limn→∞ J(un) exists.

Arguing by contradiction, admit that

l > inf
w∈W 1,p⃗

0 (Ω)
J(w).

This amounts to saying that there exists ŵ ∈ W 1,p⃗
0 (Ω) such that J(ŵ) < l. Consequently, there

exists a neighborhood U of ŵ in W 1,p⃗
0 (Ω) such that

(3.20) J(w) < l for all w ∈ U.

Since W 1,p⃗
0 (Ω) = ∪∞

n=1Xn, there exists m such that w̃ ∈ U ∩Xm. Then (3.16) and (3.20) yield

min
v∈Xm

J(v) ≤ J(w̃) < l ≤ min
v∈Xm

J(v).

The obtained contradiction proves (3.19), thus completing the proof. □

We focus on the sequence {un}.

Proposition 3.3. Assume that condition (H) holds. Then the sequence {un} constructed in Proposition
3.2 is bounded in W 1,p⃗

0 (Ω), so there is a constant M1 > 0 such that

(3.21) ∥un∥W 1,p⃗
0 (Ω)

≤ M1 for all n ≥ 1.

Proof. Set v = un in (3.17) (note that un ∈ Xn). Then, as in the proof of Proposition 2.1, we use
zn(x) ∈ ∂F (un(x)) for almost all x ∈ Ω to infer that

N∑
i=1

1

pi

∥∥∥∥∂un

∂xi

∥∥∥∥pi

Lpi

=µ

N∑
i=1

1

qi

∥∥∥∥∂un

∂xi

∥∥∥∥qi
Lqi

+

∫
Ω

znundx

≤
N∑
i=1

|µ|
qi

|Ω|
pi−qi

pi

∥∥∥∥∂un

∂xi

∥∥∥∥qi
Lpi

+ c0S1

N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥
Lpi

+
c1λ

−1
1,p⃗

p−

N∑
i=1

1

pi

∥∥∥∥∂un

∂xi

∥∥∥∥p−

Lpi

.

Since 1 < qi < pi and p− ≤ pi for all i = 1, . . . , N , and c1 < λ1,p⃗p
−, we get the stated result. □

Corollary 3.2. Assume that condition (H) hods. Then for the sequence {un} ⊂ W 1,p⃗
0 (Ω) in Proposi-

tion 3.2 there is a constant M2 > 0 such that

(3.22) ∥ −∆p⃗un + µ∆q⃗un − zn∥W−1,p⃗ ′ (Ω) ≤ M2

for all n, with zn as described in Proposition 3.2.
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Proof. For each v ∈ W 1,−→p
0 (Ω), by Hölder’s inequality, hypothesis (H), (2.9) and (1.4), we find

the estimate

|⟨−∆p⃗un + µ∆q⃗un − zn, v⟩|

=

∣∣∣∣∣
N∑
i=1

∫
Ω

∣∣∣∣∂un

∂xi

∣∣∣∣pi−2
∂un

∂xi

∂v

∂xi
dx+ µ

N∑
i=1

∫
Ω

∣∣∣∣∂un

∂xi

∣∣∣∣qi−2
∂un

∂xi

∂v

∂xi
dx−

∫
Ω

znvdx

∣∣∣∣∣
≤

N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥pi−1

Lpi

∥∥∥∥ ∂v

∂xi

∥∥∥∥
Lpi

+ |µ|
N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥qi−1

Lqi

∥∥∥∥ ∂v

∂xi

∥∥∥∥
Lqi

+

∫
Ω

(c0 + c1|un|p
−−1)|v|dx

≤

(
N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥pi−1

Lpi

+ |µ|
N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥qi−1

Lqi

+ c0S1 + λ
− 1

p−

1,p⃗ ∥un∥p
−−1

Lp−

)
∥v∥

W 1,p⃗
0 (Ω)

.

This entails

∥ −∆p⃗un + µ∆q⃗un − zn∥W−1,p⃗ ′
0 (Ω)

≤
N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥pi−1

Lpi

+ |µ|
N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥qi−1

Lqi

+ c0S1 + λ
− 1

p−

1,p⃗ ∥un∥p
−−1

Lp− .
(3.23)

By (3.23), (3.21) and Theorem 2.3, we obtain the validity of (3.22), which completes the proof.
□

4. PROOF OF THEOREM 1.1

Proposition 3.3 provides the sequence {un} ⊂ W 1,p⃗
0 (Ω) which is bounded in W 1,p⃗

0 (Ω) as
demonstrated in (3.21). Therefore, thanks to the reflexivity of the space W 1,p⃗

0 (Ω), up to a
subsequence it holds un ⇀ u in W 1,p⃗

0 (Ω) for some u ∈ W 1,p⃗
0 (Ω). Corollary 3.2 ensures that

the sequence {−∆p⃗un + µ∆q⃗un − zn} is bounded in W−1,p⃗ ′
(Ω), with zn ∈ Lp−′

(Ω) satis-
fying zn ∈ ∂F (un) almost everywhere on Ω. Then along a relabeled subsequence we have
−∆p⃗un + µ∆q⃗un − zn ⇀ η in W−1,p⃗ ′

(Ω) for some η ∈ W−1,p⃗ ′
(Ω).

We claim that η = 0. In order to prove the claim, let v ∈ ∪∞
n=1Xn, so v ∈ Xm for some m.

Note that for each n ≥ m, we have v ∈ Xn, which enables us to insert v in (3.17). Letting n → ∞
in (3.17) renders ⟨η, v⟩ = 0. Using that ∪∞

n=1Xn is dense W 1,p⃗
0 (Ω), we are able to conclude that

η = 0. Therefore we have

(4.24) −∆p⃗un + µ∆q⃗un − zn ⇀ 0 in W−1,−→p ′
(Ω).

Combining (3.17) and (4.24) results in

(4.25) lim
n→∞

[
⟨−∆p⃗un, un − u⟩+ µ⟨∆q⃗un, un − u⟩ −

∫
Ω

zn(un − u)dx

]
= 0.

We stress that in the above arguments µ ∈ R is arbitrary. We are thus in a position to assert
that u ∈ W 1,p⃗

0 (Ω) is a generalized variational solution to problem (1.1) whose sequence required
in Definition 1.2 is {un}. As noticed before, we deduce that u ∈ W 1,p⃗

0 (Ω) is a solution to the
hemivariational inequality (1.5). The proof of Theorem 1.1 is completed.
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5. PROOF OF THEOREM 1.2

Now we assume that µ ≤ 0. Theorem 1.1 applies producing a generalized weak solution for
problem (1.1).

Let u ∈ W 1,p⃗
0 (Ω) be a generalized weak solution to problem (1.1). According to Definition

1.2, there is a sequence {un} in W 1,p⃗
0 (Ω) satisfying the requirements therein. In particular, it

holds (4.25). The sequence {zn} is bounded in Lp−′
(Ω) due to the Lipschitz continuity of the

functional Φ on the bounded subsets of Lp−
(Ω) (refer to the proof of Proposition 3.2). Moreover,

it is true that un → u in Lp−
(Ω) owing to the compact embedding in Theorem 2.3 for r = p−.

Altogether this gives

lim
n→+∞

∫
Ω

zn(un − u)dx = 0.

Then (4.25) leads to

(5.26) lim
n→∞

⟨−∆p⃗un + µ∆q⃗un, un − u⟩ = 0.

Using that µ ≤ 0 and the monotonicity of the operator −∆q⃗ on W 1,q⃗
0 (Ω), we are able to write

⟨−∆p⃗un, un − u⟩
=⟨−∆p⃗un + µ∆q⃗un, un − u⟩+ µ⟨−∆q⃗un +∆q⃗u, un − u⟩+ µ⟨−∆q⃗u, un − u⟩
≤⟨−∆p⃗un + µ∆q⃗un, un − u⟩+ µ⟨−∆q⃗u, un − u⟩.

By (5.26) and un ⇀ u in W 1,q⃗
0 (Ω), we find that

(5.27) lim sup
n→∞

⟨−∆p⃗un, un − u⟩ ≤ 0.

The monotonicity of the operator −∆p⃗ on W 1,p⃗
0 (Ω) implies

0 ≤
N∑
i=1

∫
Ω

(∣∣∣∣∂un

∂xi

∣∣∣∣pi−2
∂un

∂xi
−
∣∣∣∣ ∂u∂xi

∣∣∣∣pi−2
∂u

∂xi

)(
∂un

∂xi
− ∂u

∂xi

)
dx

= ⟨−∆p⃗un +∆p⃗u, un − u⟩.

By (5.27) and un ⇀ u in W 1,q⃗
0 (Ω), we are entitled to assert that

lim
n→∞

∫
Ω

∣∣∣∣∂un

∂xi

∣∣∣∣pi−2
∂un

∂xi

(
∂un

∂xi
− ∂u

∂xi

)
dx = 0 ∀ i = 1, . . . , N

which yields

lim sup
n→∞

∥∥∥∥∂un

∂xi

∥∥∥∥
Lpi

≤
∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi

∀ i = 1, . . . , N.

Since the space Lpi(Ω) is uniformly convex (see [6]), we infer the strong convergence un → u

in W 1,p⃗
0 (Ω), thus −∆p⃗un → −∆p⃗u in W−1,p⃗ ′

(Ω) and −∆q⃗un → −∆q⃗u in W−1,q⃗ ′
(Ω).

On the other hand, taking into account that un → u in Lp−
(Ω) and zn ∈ ∂Φ(un) ⊂ Lp−′

(Ω),
the sequence {zn} is bounded in Lp−′

(Ω), so along a subsequence zn ⇀ z in Lp−′
(Ω) for some

z ∈ Lp−′
(Ω). From [9], it is known that the generalized gradient ∂Φ is weak*-closed, so we

obtain z ∈ ∂Φ(u). Furthermore, (4.24) ensures

−∆p⃗u+ µ∆q⃗u− z = 0 in W−1,p⃗ ′
(Ω).

Under assumption (H), the Aubin-Clarke theorem (see [9]) can be applied to the functional
Φ : Lp−

(Ω) → R in (2.12) establishing that z(x) ∈ ∂F (u(x)) for almost all x ∈ Ω. Consequently,
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u ∈ W 1,p⃗
0 (Ω) satisfies (1.6), thus it is a weak solution to the inclusion problem (1.1), thereby of

hemivariational inequality (1.5), too.
The last step in the proof concerns to show that u ∈ W 1,p⃗

0 (Ω) solves the global minimization
in (1.7). In view of (2.13), the global minimization in (1.7) reads as u ∈ W 1,p⃗

0 (Ω) is a global
minimizer of the functional J on W 1,p⃗

0 (Ω). On the basis of the strong convergence un → u in
W 1,p⃗

0 (Ω), we are allowed to pass to the limit in (3.19) finding that inf
w∈W 1,p⃗

0 (Ω)
J(w) is achieved at

u ∈ W 1,p⃗
0 (Ω). The proof is complete.
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mappings
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ABSTRACT. This article proposes and analyses a viscosity scheme for an enriched nonexpansive mapping. The
scheme is incorporated with the implicit midpoint rule of stiff differential equations. We deduce some convergence
properties of the scheme and establish that a sequence generated therefrom converges strongly to a fixed point of
an enriched nonexpansive mapping provided such a point exists. Furthermore, we provide some examples of the
implementation of the schemes with respect to certain enriched mappings and show the numerical pattern of the
scheme.

Keywords: Enriched nonexpansive mapping, implicit midpoint rule, fixed point, Hilbert space, viscosity iteration.
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1. INTRODUCTION

The viscosity scheme is among the prominent iterative methods for estimating a fixed point
of a nonlinear mapping through strong convergence under certain feasible control conditions.
This scheme was introduced by Moudafi in [10] based upon the results of [2]. The scheme was
further studied by Xu [24] in the framework of Banach spaces. The scheme uses contraction
mapping to induce a nonexpansive mapping to target a particular fixed point having a unique
property. For a linear space H and a mapping G : H → H, the viscosity scheme generates a
sequence {un} recursively by

un+1 = βnf(un) + (1− βn)G(un), ∀n ≥ 1,

where βn ∈ (0, 1) and f is a contraction mapping (that is,

∥f(u)− f(w)∥ ≤ κ∥u− w∥

for some κ ∈ [0, 1)). It is evident, based on [10, 24], that, if G is a nonexpansive mapping and
{βn} satisfies some suitable condition, then the strong convergence of the scheme {un} to a
fixed point ofG can be achieved, where the limit point solves the variational inequality problem
involving f over the set of fixed points of G. This method is further extended to nonlinear
mappings that are more general than nonexpansive mappings and also to nonlinear spaces. For
further details on the viscosity scheme and related concepts of fixed points, see, for example, [9,
22] and the references therein. In [5], Berinde introduced an enriched nonexpansive mapping
as a generalization of nonexpansive mappings as follows:
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Let
(
H, ∥ · ∥

)
be a normed linear space and a mapping G : H → H is said to be an enriched

(α-enriched) nonexpansive if there exists α ≥ 0 such that

(1.1) ∥α(u− w) +Gu−Gw∥ ≤ (α+ 1)∥u− w∥, ∀u,w ∈ H.

Later on, Berinde in [7] considered G as an α-enriched nonexpansive mapping and established
that a sequence {un} generated by

(1.2) un+1 =

(
1− δn

α+ 1

)
(1− βn)un +

δn
α+ 1

G
(
(1− βn)un

)
, ∀n ≥ 1,

converges strongly to a fixed point of G, where βn, δn ∈ (0, 1) with some control conditions.
The scheme in (1.2) is a modification of the scheme in [27]. For further development concerning
enriched nonexpansive mappings and approximation schemes in this direction even beyond
linear spaces, see, for example, [6, 14, 16, 11, 8, 15, 18] and the references therein.

On the other hand, most real-life phenomena are addressed in the form of mathematical
models that result in differential equations. Some of these differential equations are difficult to
solve analytically. In this regard, engineers seek a numerically generated pattern that exhibits
the structure of the real solutions. Thus the emphasis is on the need for numerical approaches
to solving differential equations. One of these approaches is the implicit midpoint scheme,
which is very promising for handling such differential equations. This scheme is appropriate
mostly for stiff equations and differential algebra equations [3, 4, 21, 20, 19].

For a differential equation of the form{
u′ = g(u),

u(0) = u1,

where g : Rm → Rm is continuous and smooth and the implicit midpoint scheme generates a
sequence {un} by solving

un+1 = un + ηg

(
un + un+1

2

)
, ∀n ≥ 1,(1.3)

where η is known as step size. This idea was extended in [26] to fixed point theory considering
that the state of equilibrium of such differential equation reduces to a fixed point problem.
Thereafter, Alghamdi et al. [1] considered a nonexpansive mapping G : H → H and generate
{un} via the implicit midpoint scheme as

un+1 = (1− βn)un + βnG

(
un + un+1

2

)
, ∀n ≥ 1,(1.4)

where βn ∈ (0, 1) and u1 ∈ H. The authors established that, if {βn} is such that

lim inf
n→∞

βn > 0, βn+1 ≤ ηβn

for some fixed η, then {un} converges weakly to a fixed point of G. In [12], the scheme (1.4) is
modified and analyzed to approximate a fixed point of an α-enriched nonexpansive mapping
in the sense that {un} is updated based on the equation

un+1 =

(
1− 2βn

α (2− βn) + 2

)
un +

2βn
α (2− βn) + 2

G

(
un + un+1

2

)
, ∀n ≥ 1,(1.5)

where βn ∈ (0, 1) for all n ≥ 1. The authors established the weak convergence using a simi-
lar assumption as in [1]. However, the strong convergence result is more desirable in infinite



162 Sani Salisu, Songpon Sriwongsa, Poom Kumam and Yoel Je Cho

dimensional spaces. In [25], Xu et al. addressed this problem for the case when G is a nonex-
pansive mapping by applying the viscosity technique to the scheme (1.4) and using different
control conditions. The authors’ scheme is as follows:

un+1 = (1− βn)f(un) + βnG

(
un + un+1

2

)
, ∀n ≥ 1,(1.6)

where f is a contraction mapping.
The purpose of this work is to incorporate a contraction mapping in persuading the implicit

midpoint scheme for enriched nonexpansive mappings. The proposed scheme is fashioned
after (1.4), (1.5) and (1.6). We establish some convergence properties of the proposed scheme
and show the strong convergence of the sequence generated therefrom to a fixed point of the
mapping that also solves a variational inequality problem. It is worth noting that fixed points
of enriched nonexpansive mappings have applications in many practical problems as they in-
corporate certain Lipschitz mappings with constants greater than 1. Finally, we give some
numerical examples of the Lipschitz mappings and use them to show the explicit reduction of
the scheme and the numerical implementations.

2. PRELIMINARIES

In the sequel, unless otherwise stated, E stands for a nonempty closed convex subset of a
real Hilbert space H. Given a mapping G : E → H, we call a sequence {un} an approximate
fixed point sequence for G if

∥un −Gun∥ → 0 as n→ ∞.

Recall that Hilbert spaces possess Opial’s property, that is, for a sequence {un} ⊂ H that con-
verges weakly to u∗,

lim inf
n→∞

∥un − u∗∥ < lim inf
n→∞

∥un − y∥ , ∀y ∈ H\{u∗}.

Now, we state the demiclosedness principle of an enriched nonexpansive mapping as in [12].

Lemma 2.1. Let G : E → E be an α-enriched nonexpansive mapping. Suppose that {un} is an
approximate fixed point sequence for G and also {un} weakly converges to u∗. Then u∗ is a fixed point
of G.

Some identities involving two points in real Hilbert spaces are very crucial in obtaining our
main results.

Lemma 2.2. Let u,w ∈ H and a ∈ R. Then, we have the following:
(1) ∥u+ w∥2 = ∥u∥2 + ∥w∥2 + 2⟨u,w⟩.
(2) ∥u− w∥2 = ∥u∥2 + ∥w∥2 − 2⟨u,w⟩.
(3) ∥au+ (1− a)w∥2 = a∥u∥2 + (1− a)∥w∥2 − a(1− a)∥u− w∥2.

Lemma 2.3. [23] Let {ℓn} be a sequence of non-negative real numbers such that

ℓn+1 ≤ (1− σn)ℓn + δn, ∀n ≥ 1,

where {σn} ⊆ (0, 1) and {δn} ⊆ R. Suppose that the following conditions are satisfied

(C1)
∞∑

n=1

σn = ∞; (C2) either
∞∑

n=1

|δn| <∞ or lim sup
n→∞

δn
σn

≤ 0.

Then lim
n→∞

ℓn = 0.
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3. VISCOSITY IMPLICIT MIDPOINT SCHEME AND ITS CONVERGENCE

Now, we introduce the main algorithm as follows:

Algorithm 3.1. Initialize u1 ∈ H arbitrary and find un+1 such that

un+1 =
α(1− βn)

α (1 + βn) + 2
un +

2βn(α+ 1)

α (1 + βn) + 2
f (un) +

2(1− βn)

α (1 + βn) + 2
G

(
un + un+1

2

)
,

where βn ∈ (0, 1) for all n ≥ 1, α ≥ 0 and G : H → H is a mapping and f is a contraction mapping
with constant κ.

Remark 3.1. It is worth noting that, for α = 0, Algorithm 3.1 reduces to (1.6). The connection is
evident since (1.1) implies that every nonexpansive mapping is 0-enriched nonexpansive.

Remark 3.2. It is not difficult to obtain from Algorithm 3.1 that un+1 can be rewritten as follows:

(3.7) un+1 =
α(1− βn)

α+ 1

(
un + un+1

2

)
+ βnf (un) +

1− βn
1 + α

G

(
un + un+1

2

)
.

Throughout this manuscript, we denote the fixed point set of a mapping G by F(G) and the
metric projection onto a closed convex set C by PC .

Lemma 3.4. Let G be an α-enriched nonexpansive mapping with F(G) ̸= ∅. Then {un} generated
through Algorithm 3.1 is bounded.

Proof. Let u∗ ∈ F(G) and set wn =
un + un+1

2
. Then it follows from (3.7) and triangle inequal-

ity that

∥un+1 − u∗∥ =

∥∥∥∥α(1− βn)

α+ 1

(
un + un+1

2

)
+ βnf (un) +

1− βn
1 + α

G

(
un + un+1

2

)
− u∗

∥∥∥∥
=

∥∥∥∥(1− βn)

(
α

α+ 1
wn +

1

1 + α
G (wn)− u∗

)
+ βn (f (un)− u∗)

∥∥∥∥
≤ (1− βn)

∥∥∥∥ α

α+ 1
wn +

1

1 + α
G (wn)− u∗

∥∥∥∥+ βn ∥(f (un)− u∗)∥

=
1− βn
α+ 1

∥α (wn − u∗) +G (wn)−G (u∗)∥+ βn ∥f (un)− u∗∥ .

Since G is α-enriched nonexpansive mapping, we have

∥un+1 − u∗∥ ≤ (1− βn) ∥wn − u∗∥+ βn ∥f (un)− u∗∥

= (1− βn)

∥∥∥∥12 (un − u∗) +
1

2
(un+1 − u∗)

∥∥∥∥+ βn ∥f (un)− u∗∥

≤ 1− βn
2

∥un − u∗∥+ 1− βn
2

∥un+1 − u∗∥+ βn ∥f (un)− u∗∥ .

This gives

1 + βn
2

∥un+1 − u∗∥ ≤ 1− βn
2

∥un − u∗∥+ βn ∥f (un)− u∗∥ .
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From the fact that f is contraction mapping with constant κ, we have

1 + βn
2

∥un+1 − u∗∥ ≤ 1− βn
2

∥un − u∗∥+ βn ∥f (un)− f (u∗)∥+ βn ∥f (u∗)− u∗∥

≤ 1− βn
2

∥un − u∗∥+ βnκ ∥un − u∗∥+ βn ∥f (u∗)− u∗∥

=
1− βn + 2βnκ

2
∥un − u∗∥+ βn ∥f (u∗)− u∗∥ .

This implies that

∥un+1 − u∗∥ ≤ 1− βn + 2βnκ

1 + βn
∥un − u∗∥+ 2βn

1 + βn
∥f (u∗)− u∗∥

=

(
1− 2βn(1− κ)

1 + βn

)
∥un − u∗∥+ 2βn(1− κ)

1 + βn

∥f (u∗)− u∗∥
1− κ

≤ max

{
∥un − u∗∥ , ∥f (u∗)− u∗∥

1− κ

}
.

Inductively, we obtain

∥un+1 − u∗∥ ≤ max

{
∥u1 − u∗∥ , ∥f (u∗)− u∗∥

1− κ

}
, ∀ ≥ 1.

This completes the proof. □

Lemma 3.5. Let G be an α-enriched nonexpansive mapping with F(G) ̸= ∅. Suppose that {un} is a
sequence generated through Algorithm 3.1 with {βn} satisfying the following conditions:

(C1) βn → 0 as n→ ∞ (C2)
∞∑

n=1

βn = ∞ (C3)
∞∑

n=1

|βn+1 − βn| <∞.

Then we have the following:

(P1) ∥un+1 − un∥ → 0 as n→ ∞; (P2) ∥un −G (un)∥ → 0 as n→ ∞.

Proof. Set wn =
un + un+1

2
and Gα be the mapping defined by

Gα(u) =
α

α+ 1
u+

1

α+ 1
G(u), ∀u ∈ Dom(G).
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Then Algorithm 3.1 and (3.7) yield that

∥un+1 − un∥ =

∥∥∥∥α(1− βn)

α+ 1
(wn) + βnf (un) +

1− βn
1 + α

G (wn)− un

∥∥∥∥
= ∥βnf (un) + (1− βn)Gα (wn)− un∥
= ∥βnf (un) + (1− βn)Gα (wn)− βn−1f (un−1)− (1− βn−1)Gα (wn−1)∥

=

∥∥∥∥(1− βn) (Gα (wn)−Gα (wn−1)) + (βn − βn−1) (f (un−1)−Gα (wn−1))

+ βn (f (un)− f (un−1))

∥∥∥∥
≤ (1− βn) ∥Gα (wn)−Gα (wn−1)∥+ |βn − βn−1| ∥f (un−1)−Gα (wn−1)∥
+ βn ∥f (un)− f (un−1)∥

=
1− βn
α+ 1

∥α (wn − wn−1) +G (wn)−G (wn−1)∥

+ |βn − βn−1| ∥f (un−1)−Gα (wn−1)∥+ βn ∥f (un)− f (un−1)∥ .

This and the facts that G is an α-enriched nonexpansive mapping and f is a contraction with
constant κ yield

∥un+1 − un∥ ≤ (1− βn) ∥wn − wn−1∥+ |βn − βn−1| ∥f (un−1)−Gα (wn−1)∥
+ βnκ ∥un − un−1∥

=
1− βn

2
∥un+1 − un−1∥+ |βn − βn−1| ∥f (un−1)−Gα (wn−1)∥

+ βnκ ∥un − un−1∥

≤ 1− βn
2

∥un+1 − un∥+
1− βn

2
∥un − un−1∥

+ |βn − βn−1| ∥f (un−1)−Gα (wn−1)∥+ βnκ ∥un − un−1∥

=
1− βn

2
∥un+1 − un∥+

1− βn + 2βnκ

2
∥un − un−1∥

+ |βn − βn−1| ∥f (un−1)−Gα (wn−1)∥

≤ 1− βn
2

∥un+1 − un∥+
1− βn + 2βnκ

2
∥un − un−1∥

+ η |βn − βn−1| ,

where η is a positive number such that η ≥ sup
n≥1

∥f (un−1)−Gα (wn−1)∥. Consequently, we get

1 + βn
2

∥un+1 − un∥ ≤ 1− βn + 2βnκ

2
∥un − un−1∥+ η |βn − βn−1| ,

which resulted to

∥un+1 − un∥ ≤ 1− βn + 2βnκ

1 + βn
∥un − un−1∥+

2η

1 + βn
|βn − βn−1|

=

(
1− 2βn(1− κ)

1 + βn

)
∥un − un−1∥+

2η

1 + βn
|βn − βn−1|

≤
(
1− 2βn(1− κ)

1 + βn

)
∥un − un−1∥+ 2η |βn − βn−1| .
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Thus Lemma 2.3 and the assumptions on {βn} yield the claim (P1). For Claim (P2), we start by
obtaining the following inequalities:

∥un −G (un)∥ = (α+ 1) ∥un −Gα (un)∥

≤ (α+ 1)

(
∥un − un+1∥+ ∥un+1 −Gα (wn)∥+ ∥Gα (wn)−Gα (un)∥

)
= (α+ 1) ∥un − un+1∥+ (α+ 1) ∥un+1 −Gα (wn)∥
+ ∥α (wn − un) +G (wn)−G (un)∥ .

This and the fact that G is an α-enriched nonexpansive mapping yield

∥un −G (un)∥ ≤ (α+ 1) ∥un − un+1∥+ (α+ 1) ∥un+1 −Gα (wn)∥
+ (α+ 1) ∥wn − un∥

=
3

2
(α+ 1) ∥un − un+1∥+ (α+ 1) ∥un+1 −Gα (wn)∥

=
3

2
(α+ 1) ∥un − un+1∥

+ (α+ 1) ∥βnf (un) + (1− βn)Gα (wn)−Gα (wn)∥

=
3

2
(α+ 1) ∥un − un+1∥+ (α+ 1)βn ∥f (un)−Gα (wn)∥

≤ 3

2
(α+ 1) ∥un − un+1∥+ (α+ 1)ηβn.

As n→ +∞, the last inequality and Claim (P1) yield Claim (P2). This completes the proof. □

Theorem 3.2. LetG : E → E be an α-enriched nonexpansive mapping with a fixed point and f : E → E
be a contraction mapping. Suppose that {un} is a sequence generated through Algorithm 3.1 with {βn}
satisfying the following conditions:

(C1) βn → 0 as n→ ∞; (C2)
∞∑

n=1

βn = ∞; (C3)
∞∑

n=1

|βn+1 − βn| <∞.

Then {un} converges strongly to the unique point u∗ ∈ F(G) with a minimal norm.

Proof. Since f is a contraction mapping, PF(G)f is also a contraction. Therefore, by the Banach
contraction mapping, we have u∗ ∈ E such that u∗ = PF(G)f(u

∗). It is worth noting that the
metric projection PF(G) is well-defined since F(G) is nonempty closed and convex. By the
properties of the metric projection, we have

⟨u∗ − f(u∗), u∗ − p⟩ ≤ 0, ∀p ∈ F(G).

The boundedness of {un} yields a subsequence {unk
} that weakly converges to a point uo. By

the demiclosedness property of G and (P2) of Lemma 2.2, we have uo ∈ F(G). Moreover,
without lost of generality, we have

lim sup
n→∞

⟨u∗ − f(u∗), u∗ − un⟩ = lim
k→∞

⟨u∗ − f(u∗), u∗ − unk
⟩.

Consequently, we have

(3.8) lim sup
n→∞

⟨u∗ − f(u∗), u∗ − un⟩ = ⟨u∗ − f(u∗), u∗ − uo⟩ ≤ 0.
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Let wn =
un + un+1

2
. It follows from (3.7) and Lemma 2.2 (2) that

∥un+1 − u∗∥2 =

∥∥∥∥α(1− βn)

α+ 1

(
un + un+1

2

)
+ βnf (un) +

1− βn
1 + α

G

(
un + un+1

2

)
− u∗

∥∥∥∥2
=

∥∥∥∥(1− βn)

(
α

α+ 1
wn +

1

1 + α
G (wn)− u∗

)
+ βn (f (un)− u∗)

∥∥∥∥2
= (1− βn)

2

∥∥∥∥ α

α+ 1
wn +

1

1 + α
G (wn)− u∗

∥∥∥∥2 + β2
n ∥(f (un)− u∗)∥2

+ 2βn(1− βn)

〈
α

α+ 1
wn +

1

1 + α
G (wn)− u∗, f (un)− u∗

〉
=

(
1− βn
α+ 1

)2

∥α (wn − u∗) +G (wn)−G (u∗)∥2 + β2
n ∥(f (un)− u∗)∥2

+ 2βn(1− βn) ⟨Gα (wn)− u∗, f (un)− u∗⟩ .

As a consequence of the immediate inequality, the fact thatG is α-enriched nonexpansive map-
ping, f is a contraction with constant κ, and the Cauchy Schwartz inequality yield that

∥un+1 − u∗∥2 ≤ (1− βn)
2 ∥wn − u∗∥2 + β2

n ∥(f (un)− u∗)∥2

+ 2βn(1− βn) ⟨Gα (wn)− u∗, f (un)− u∗⟩

≤ (1− βn)
2 ∥wn − u∗∥2 + β2

n ∥(f (un)− u∗)∥2

+ 2βn(1− βn) ⟨Gα (wn)− u∗, f (un)− f (u∗)⟩
+ 2βn(1− βn) ⟨Gα (wn)− u∗, f (u∗)− u∗⟩

≤ (1− βn)
2 ∥wn − u∗∥2 + β2

n ∥(f (un)− u∗)∥2

+ 2κβn(1− βn) ∥Gα (wn)−Gα (u∗)∥ ∥un − u∗∥
+ 2βn(1− βn) ⟨Gα (wn)− u∗, f (u∗)− u∗⟩

= (1− βn)
2 ∥wn − u∗∥2 + β2

n ∥(f (un)− u∗)∥2

+
2κβn(1− βn)

α+ 1
∥α (wn − u∗) +G (wn)−G (u∗)∥ ∥un − u∗∥

+ 2βn(1− βn) ⟨Gα (wn)− u∗, f (u∗)− u∗⟩

≤ (1− βn)
2 ∥wn − u∗∥2 + β2

n ∥(f (un)− u∗)∥2

+ 2κβn(1− βn) ∥wn − u∗∥ ∥un − u∗∥
+ 2βn(1− βn) ⟨Gα (wn)− u∗, f (u∗)− u∗⟩ .

Now, setting

θn = ∥un − u∗∥

and

ϕn = β2
n ∥(f (un)− u∗)∥2 + 2βn(1− βn) ⟨Gα (wn)− u∗, f (u∗)− u∗⟩ ,

we get

(1− βn)
2 ∥wn − u∗∥2 + 2κβn(1− βn) ∥wn − u∗∥ θn + ϕn − θ2n+1 ≥ 0.
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Solving this quadratic inequality with respect to ∥wn − u∗∥ yields

∥wn − u∗∥ ≥
−2κβn(1− βn)θn +

√
4κ2β2

n(1− βn)2θ2n − 4 (1− βn)
2 (
ϕn − θ2n+1

)
2 (1− βn)

2

=
−κβnθn +

√
κ2β2

nθ
2
n + θ2n+1 − ϕn

1− βn
.

This implies that

1

2
∥un+1 − u∗∥+ 1

2
∥un − u∗∥ ≥

−κβnθn +
√
κ2β2

nθ
2
n + θ2n+1 − ϕn

1− βn
.

Thus it turns out that

κ2β2
nθ

2
n + θ2n+1 − ϕn ≤

[
1

2
(1− βn) ∥un+1 − u∗∥+ (1 + (2κ− 1)βn)

1

2
∥un − u∗∥

]2
.

Thus, from the fact that 2ab ≤ a2 + b2 for all a, b ∈ R, it follows that

κ2β2
nθ

2
n + θ2n+1 − ϕn ≤ 1

4

[
(1− βn)

2 ∥un+1 − u∗∥2 + (1 + (2κ− 1)βn)
2 ∥un − u∗∥2

]
+

1

2
(1− βn) (1 + (2κ− 1)βn) ∥un+1 − u∗∥ ∥un − u∗∥

≤ 1

4

[
(1− βn)

2 ∥un+1 − u∗∥2 + (1 + (2κ− 1)βn)
2 ∥un − u∗∥2

]
+

1

4
(1− βn) (1 + (2κ− 1)βn) ∥un+1 − u∗∥2

+
1

4
(1− βn) (1 + (2κ− 1)βn) ∥un − u∗∥2 .

By simple calculations, we can rewrite the last inequality as follows:

(3.9) θ2n+1 ≤ ψnθ
2
n + φn,

where

ψn =

1

4
(1 + (2κ− 1)βn)

2
+

1

4
(1− βn) (1 + (2κ− 1)βn)− κ2β2

n

1− 1

4
(1− βn)2 −

1

4
(1− βn) (1 + (2κ− 1)βn)

and

φn =
ϕn

1− 1

4
(1− βn)2 −

1

4
(1− βn) (1 + (2κ− 1)βn)

.

Observe further that

ψn =

1

2
(1 + (2κ− 1)βn) (1− (1− κ)βn)− κ2β2

n

1− 1

2
(1− βn) (1− (1− κ)βn)

and

φn =
ϕn

1− 1

2
(1− βn) (1− (1− κ)βn)

.
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Now, we complete the proof by showing that θn → 0 as n→ ∞. For that, consider a function g
defined by

g(t) =
2(1− κ)− (1− κ)2t+ κ2t

1− 1

2
(1− t)(1− (1− κ)t)

.

It can be observed that

g(t) =
1

t

1− 1

2
(1 + (2κ− 1)t) (1− (1− κ)t)− κ2t2

1− 1

2
(1− t) (1− (1− κ)t)


and

lim
t→0

g(t) = 4(1− κ).

This implies that, for ϵ = 3(1−κ), there exists δ ∈ (0, 1) such that g(t) > ϵ for all t ∈ (0, δ). Thus
we have

(3.10) 1−

1

2
(1 + (2κ− 1)t) (1− (1− κ)t)− κ2t2

1− 1

2
(1− t) (1− (1− κ)t)

> ϵt

for all t ∈ (0, δ). By the assumption that βn → 0 as n → ∞, we can have a natural number N∗

such that βn < δ for all n ≥ N∗. Consequently, it follows from (3.10) that 1 − ψn > ϵβn for all
n ≥ N∗. Thus (3.9) gives

θ2n+1 ≤ (1− ϵβn)θ
2
n + φn ∀ n ≥ N∗.(3.11)

Moreover, we have
ϕn
βn

= βn ∥(f (un)− u∗)∥2 + 2(1− βn) ⟨Gα (wn)− u∗, f (u∗)− u∗⟩

= βn ∥(f (un)− u∗)∥2 + 2(1− βn) ⟨Gα (wn)− un+1, f (u
∗)− u∗⟩

+ ⟨un+1 − u∗, f (u∗)− u∗⟩

= βn ∥(f (un)− u∗)∥2 + 2(1− βn)βn ⟨Gα (wn)− f (un) , f (u
∗)− u∗⟩

+ ⟨un+1 − u∗, f (u∗)− u∗⟩ .

This, (3.8) and the assumption on {βn} yield that

lim sup
n→∞

ϕn
βn

≤ 0.

So, we have

lim sup
n→∞

ψn

βn
≤ 0.

Finally, Lemma 2.3 and (3.11) yield that lim
n→∞

θn = 0. This completes the proof. □

Next, we deduce the following corollary which is the main results of [25]:

Corollary 3.1. Let G : E → E be a nonexpansive mapping with a fixed point and f : E → E be
a contraction mapping. Suppose that {un} is a sequence generated by (1.6) with {βn} satisfying the
following conditions:

(C1) βn → 0 as n→ ∞; (C2)
∞∑

n=1

βn = ∞; (C3)
∞∑

n=1

|βn+1 − βn| <∞.
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Then {un} converges strongly to the unique point u∗ ∈ F(G) with a minimal norm.

Proof. When α = 0, then Algorithm 3.1 reduces to (1.6). Consequently, Theorem 3.2 yields the
proof using the fact that a nonexpansive mapping is 0-enriched nonexpansive. □

Recall that a multivalued mappingM : H → 2H is said to be monotone if, for every u,w ∈ H,
x ∈Mu and y ∈Mw, we have

⟨u− w, x− y⟩ ≥ 0.

Moreover, M is said to be maximal monotone if, for every (u, x) ∈ H,

⟨x− y, u− w⟩ ≥ 0

for every (w, y) ∈ Graph(M) implies x ∈ Mu. It is known that, if M is maximal monotone,
then, for any ξ > 0, the mapping (I + ξM)−1 is single-valued, nonexpansive and

dom
(
(I + ξM)−1

)
= H.

Furthermore, we have

0 ∈Mu∗ ⇐⇒ u ∈ F
(
(I + ξM)−1

)
.

Corollary 3.2. Let M : H → 2H be a maximal monotone. For any ξ > 0 and η ≥ 1, consider
G : H → H defined by

Gu = η(I + ξM)−1u− (η − 1)u, ∀u ∈ H.

Suppose that {un} is a sequence generated by (1.6) with α = η − 1 and {βn} satisfying the following
conditions:

(C1) βn → 0 as n→ ∞; (C2)
∞∑

n=1

βn = ∞; (C3)
∞∑

n=1

|βn+1 − βn| <∞.

Then {un} converges strongly to a zero of M .

Proof. Using the fact that (I + ξM)−1 is nonexpansive, we can deduce that G is an α-enriched
nonexpansive mapping. Indeed, for all u,w ∈ H, we get

∥α(u− w) +Gu−Gw∥ =
∥∥(α+ 1)(I + ξM)−1u− (α+ 1)(I + ξM)−1w

∥∥
= (α+ 1)

∥∥(I + ξM)−1u− (I + ξM)−1w
∥∥

≤ (α+ 1) ∥u− w∥ .

Thus Theorem 3.2 guarantees that {un} converges to a fixed point of G. Let the limit point be
u∗. Then we have

u∗ = Gu∗ ⇐⇒ u∗ = η(I + ξM)−1u∗ − (η − 1)u∗ ⇐⇒ u∗ = (I + ξM)−1u∗.

Consequently, it follows that 0 ∈Mu∗. This completes the proof. □

A particular case of the immediate corollary is the case whenM is equal to the subdifferential
of a convex proper and lower semi-continuous function f : H → R ∪ {∞}. In this regard, we
have the next corollary:

Corollary 3.3. Let f : H → R∪{∞} be a convex proper and lower semi-continuous function. For any
ξ > 0 and η ≥ 1, consider G : H → H defined by

Gu = η(I + ξ∂f)−1u− (η − 1)u, ∀u ∈ H.
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Suppose that {un} is a sequence generated by (1.6) with α = η − 1 and {βn} satisfying the following
conditions:

(C1) βn → 0 as n→ ∞; (C2)
∞∑

n=1

βn = ∞; (C3)
∞∑

n=1

|βn+1 − βn| <∞.

Then {un} converges strongly to a minimizer of f .

Proof. The proof follows from Corollary 3.2 and the fact that

0 ∈ ∂f(u∗) ⇐⇒ f(u∗) ≤ f(u), ∀u ∈ H.

□

4. NUMERICAL ILLUSTRATIONS

This part contains two numerical problems where the underlined mappings are not nonex-
pansive but enriched nonexpansive mappings. The purpose is to show the implementation of
our method with respect to such mappings and to show the impact of the proposed scheme on
handling stiff equations involving enriched nonexpansive mapping.

Example 4.1. Consider H = R endowed with the usual norm and take E =
[
1
2 , 2

]
. Define a mapping

G : E → E by Gu = 1
u , for all u ∈ E . Then G is 3

2 -enriched nonexpansive mapping with 1 as fixed
point but not nonexpansive (see [5]). For this example, we set f : u 7→ u+1

2 . Consequently, Algorithm
3.1 gives

un+1 =
α(1− βn)

α+ 1

(
un + un+1

2

)
+ βn

un + 1

2
+

1− βn
1 + α

(
2

un + un+1

)
.

Solving for un+1, we get

(4.12) un+1 =
τnun − βn −

√
(βn + 2)2u2n + 2βn(βn + 2)un + β2

n + 16cn(2− αcn)

2(αcn − 2)

for all n ≥ 1, where τn = 2− 2αcn − βn and cn =
1− βn
α+ 1

.

To show the numerical patterns of the scheme for this example, we set βn = 1
n+1 and use α as 3/2.

The first few generated values when truncated to six decimal places, are shown in Table 1. In the table,
’IMS Alg’ stands for our proposed implicit midpoint scheme which reduces to (4.12) and ’MKM Alg’
stands for the modified Krasnosel’skiı̆-Mann scheme of Berinde [7] which is stated in (1.2). We note here
that the sequence {δn} is considered as δn = n

2n+2 to meet up with the assumption in [7].
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TABLE 1. Few numerical values of {un}

Case 1 Case 2 Case 3 Case 4

n IMS Alg MKM Alg IMS Alg MKM Alg IMS Alg MKM Alg IMS Alg MKM Alg

1 2 2 1.85 1.85 0.75 0.75 0.5 0.5

2 1.374738 1 1.313463 0.940608 0.927576 0.604167 0.872325 0.625

3 1.107046 0.777778 1.087951 0.756091 0.982499 0.680109 0.970009 0.681111

4 1.024461 0.752976 1.019912 0.746526 0.996253 0.72764 0.993625 0.727846

5 1.004859 0.771613 1.003945 0.769573 0.999269 0.763835 0.998758 0.763896

6 1.000887 0.79504 1.000719 0.79431 0.999867 0.792278 0.999774 0.792299

7 1.000152 0.8162 1.000124 0.815913 0.999977 0.815116 0.999961 0.815124

8 1.000025 0.834232 1.00002 0.834111 0.999996 0.833776 0.999994 0.833779

9 1.000004 0.849452 1.000003 0.849398 0.999999 0.849249 0.999999 0.849251

10 1.000001 0.862341 1 0.862317 1 0.862248 1 0.862249

11 1 0.873338 1 0.873326 1 0.873293 1 0.873294

12 1 0.882797 1 0.882791 1 0.882775 1 0.882775

13 1 0.891001 1 0.890998 1 0.89099 1 0.89099

14 1 0.898172 1 0.898171 1 0.898167 1 0.898167

15 1 0.904487 1 0.904486 1 0.904484 1 0.904484

16 1 0.910085 1 0.910084 1 0.910083 1 0.910083

17 1 0.915077 1 0.915077 1 0.915076 1 0.915076

18 1 0.919555 1 0.919555 1 0.919555 1 0.919555

19 1 0.923592 1 0.923592 1 0.923592 1 0.923592

20 1 0.92725 1 0.92725 1 0.92725 1 0.92725

Remark 4.3. Table 1 shows that based on the Example 4.1, the proposed scheme (IMS Alg) converges
faster than the modified Krasnosel’skiı̆-Mann scheme. Indeed, IMS Alg reaches the fixed point value (1)
in less than ten loops.

Example 4.2. For any ξ > 0, consider the stiff equation
d

dt
y(t) = −ξy(t), y(0) = y1 = β, ∀t ≥ 0.

This represents a model of a lot of physical Phenomena most of which arise through sciences and engi-
neering. This problem has the solution

y(t) = βe−ξt, y(t) → 0 as t→ ∞.

The aim of numerical methods for solving such initial value problems is primarily to exhibit the structure
of the solution. So, in most cases due to the tediousness of establishing an analytical solution of stiff
equations, engineers employ numerical methods to describe the solution. Since our proposed algorithm
is based on the implicit midpoint rule (which is prominent in handling stiff equations), we investigate
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the performance of the proposed scheme in exhibiting the structure of the solution in comparison with
the modified Krasnosel’skiı̆-Mann scheme.

Now, consider G as a mapping such that u 7→ −(ξ + 1)u. Then G is not nonexpansive mapping.
However G is ξ/2-enriched nonexpansive mapping since∥∥∥∥ξ2(u− w) +Gu−Gw

∥∥∥∥ =

∥∥∥∥52(u− w)− (ξ + 1)(u− w)

∥∥∥∥
=

∥∥∥∥(ξ2 − ξ − 1

)
(u− w)

∥∥∥∥
=
ξ + 2

2
∥u− w∥

=

(
ξ

2
+ 1

)
∥u− w∥.

For this example, we take f : u 7→ u

5
and so Algorithm 3.1 gives

un+1 =
α(1− βn)

α+ 1

(
un + un+1

2

)
+
βn
5
un − (ξ + 1)

1− βn
1 + α

(
un + un+1

2

)
.

Solving for un+1 and substituting α = ξ/2, we get

un+1 =
7βn − 5

5(3− βn)
un.

To extract numerically the strsucture of the solution using our proposed scheme and that of (1.2), we
maintain the sequence values of {βn} for the two algorithms as in the Example 4.1 and set β = 1. The
measure of how far the iterate un is from the value of the exact solution βe−ξ(n−1) at each n (up to
n = 20) is shown in Table 2 and Figure 1-6. In the table, the column VIMS represents in absolute value
how far our proposed scheme is from the value of the exact solution. Cases 1-6 similarly show how far is
the iterate (1.2) is to the value of the exact solution when δn (n ∈ N) is set as 1

2 ,
n

2n+2 , n
n+100 , 4

5 , n
5n+3

and 2n
3n+7 , respectively.

5. CONCLUSION REMARKS

In this work, we analyzed the convergence of a viscosity implicit midpoint scheme to a
fixed point of an enriched nonexpansive mapping within the setting of Hilbert spaces. We es-
tablished that the sequence generated by this scheme converges strongly to a particular fixed
point of the underlying mapping. We provided examples where the mappings are not nonex-
pansive but are instead enriched nonexpansive, and we derived the explicit form of the pro-
posed scheme. The numerical results obtained using this scheme are reported, demonstrating
the distance between the iterates of the proposed scheme and those of the exact solution, in
comparison to the well-known modified Krasnosel’skiı̆-Mann scheme by Berinde [7]. Despite
the computational demands, our numerical data shows that, for the example considered, the
proposed scheme achieves a higher degree of numerical stability than the Krasnosel’skiı̆-Mann
scheme of Berinde [7]. Given that geodesically connected spaces can be viewed as nonlinear
analogs of normed linear spaces [17, 13], it would be an interesting direction for future studies
to extend the analyses presented here to such settings.
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tional Science, Research and Innovation Fund (NSRF) Fiscal year 2024 Grant number FRB670073/0164.
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TABLE 2. Few numerical values of
{∣∣un − e−3/2(n−1)

∣∣}
VIMS MKM Alg

n Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

1 0.950213 0.950213 0.950213 0.950213 0.950213 0.950213 0.950213

2 0.131109 0.546823 0.403966 0.266767 0.718252 0.332538 0.375395

3 0.021521 0.380174 0.228247 0.08656 0.664256 0.142341 0.20435

4 0.006226 0.308042 0.161237 0.036165 0.707768 0.075549 0.144595

5 0.001335 0.263439 0.122915 0.015374 0.80004 0.0418 0.112944

6 0.000422 0.235351 0.100118 0.007188 0.943077 0.024625 0.096086

7 0.000104 0.216107 0.08491 0.003459 1.143201 0.014917 0.086329

8 3.31E-05 0.202607 0.074303 0.001744 1.41472 0.009279 0.08094

9 8.96E-06 0.192958 0.06657 0.000905 1.778503 0.005877 0.07841

10 2.82E-06 0.186067 0.060769 0.000485 2.263781 0.003778 0.077983

11 8.09E-07 0.181234 0.056321 0.000266 2.910575 0.002458 0.079242

12 2.53E-07 0.177998 0.052857 0.00015 3.773353 0.001615 0.081977

13 7.55E-08 0.176042 0.050131 8.59E-05 4.926092 0.00107 0.086104

14 2.36E-08 0.175143 0.047975 5.04E-05 6.469265 0.000714 0.091624

15 7.20E-09 0.175143 0.04627 3.01E-05 8.53943 0.000479 0.098605

16 2.26E-09 0.175925 0.044927 1.83E-05 11.32237 0.000323 0.107172

17 7.00E-10 0.177404 0.043883 1.13E-05 15.07112 0.000219 0.117505

18 2.20E-10 0.179516 0.04309 7.13E-06 20.13071 0.000149 0.129837

19 6.90E-11 0.182215 0.04251 4.56E-06 26.97213 0.000102 0.144465

20 2.18E-11 0.185469 0.042115 2.95E-06 36.23898 6.99E-05 0.161749

Moreover, the research was only supported by King Mongkut’s University of Technology Thon-
buri’s Postdoctoral Fellowship.
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FIGURE 1. Numerical stability due to Case 1
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FIGURE 2. Numerical stability due to Case 2
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FIGURE 5. Numerical stability due to Case 5
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ABSTRACT. Here we study the approximation properties of a modified Goodman-Sharma operator recently con-
sidered by Acu and Agrawal in [1]. This operator is linear but not positive. It has the advantage of a higher order
of approximation of functions compared with the Goodman-Sharma operator. We prove direct and strong converse
theorems in terms of a related K-functional.

Keywords: Bernstein-Durrmeyer operator, Goodman-Sharma operator, direct theorem, strong converse theorem, K-
functional.
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1. INTRODUCTION

In 1987, W. Chen and independently T. N. T. Goodman and A. Sharma presented at confer-
ences in China and Bulgaria, respectively a new modification of the classical Bernstein opera-
tors. For n ∈ N and functions f(x) ∈ C[0, 1], they introduce the linear operator (see [5] and
[9, 10]):

(1.1) Un(f, x) = f(0)Pn,0(x) +

n−1∑
k=1

(∫ 1

0

(n− 1)Pn−2,k−1(t)f(t) dt
)
Pn,k(x) + f(1)Pn,n(x),

where

(1.2) Pn,k(x) =

(
n

k

)
xk(1− x)n−k, k = 0, . . . , n.

Operators of this kind were investigated by many authors (see [14], [4], [13], [11], [7, 8], [2], etc.)
and are generally known as genuine Bernstein-Durrmeyer operators. Note that the operators
in (1.1) are actually a limit case of Bernstein type operators with Jacobi weights studied by
Berens and Xu [3]. If we set

un,k(f) =


f(0), k = 0,

(n− 1)
∫ 1

0
Pn−2,k−1(t)f(t) dt, k = 1, . . . , n− 1,

f(1), k = n,

Received: 07.10.2024; Accepted: 06.12.2024; Published Online: 09.12.2024
*Corresponding author: Rumen Uluchev; rumenu@fmi.uni-sofia.bg
DOI: 10.33205/cma.1563047
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the operators defined in (1.1) take the form

Un(f, x) =

n∑
k=0

un,k(f)Pn,k(x) or Unf =

n∑
k=0

un,k(f)Pn,k.

Let us denote, as usual, by
φ(x) = x(1− x)

the weight function which is naturally connected to the second order derivative of the Bernstein
operator. Also, we set

(1.3) D̃f(x) := φ(x)f ′′(x)

and
D̃2f := D̃D̃f, D̃ℓ+1f := D̃D̃ℓf, ℓ = 2, 3 . . . .

Recently, Acu and Agrawal [1] studied a family of Bernstein-Durrmeyer operators, as they
modify Unf by replacing the Bernstein basis polynomials Pn,k with linear combinations of
Bernstein basis polynomials of lower degree with coefficients which are polynomials of ap-
propriate degree. For special choice of the parameters, these operators lack the positivity but
have a higher than O(n−1) order of approximation. For example, Acu and Agrawal considered
operators with O(n−2) and O(n−3) rate of approximation, see [1, Section 3].

The results presented in [1] inspired the authors of the current paper to explore in more
depth the operators explicitly defined by

(1.4) Ũn(f, x) =

n∑
k=0

un,k(f)P̃n,k(x), x ∈ [0, 1],

where

(1.5) P̃n,k(x) = Pn,k(x)−
1

n
D̃Pn,k(x).

By defining an appropriate K-functional, we prove direct and strong converse inequality of
Type B in the terminology of [6].

In order to state our main results, we need some definitions.
Let L∞[0, 1] be the space of all Lebesgue measurable and essentially bounded functions in

[0, 1] and ACloc(0, 1) consists of the functions absolutely continuous in any subinterval [a, b] ⊂
(0, 1). Let us set

W 2(φ)[0, 1] :=
{
g : g, g′ ∈ ACloc(0, 1), D̃g ∈ L∞[0, 1]

}
.

By W 2
0 (φ)[0, 1], we denote the subspace of W 2(φ)[0, 1] of functions g satisfying the additional

boundary conditions
lim

x→0+
D̃g = 0, lim

x→1−
D̃g = 0.

Henceforth, by ∥ · ∥ we mean the uniform norm on the interval [0, 1]. For functions f ∈ C[0, 1]
and t > 0, we define the K-functional

(1.6) K(f, t) := inf
{
∥f − g∥+ t∥D̃2g∥ : g ∈ W 2

0 (φ)[0, 1], D̃g ∈ W 2(φ)[0, 1]
}
.

Here we investigate the error of approximation of functions f ∈ C[0, 1] by the modified Goodman-
Sharma operator (1.4). Our main results read as follows.

Theorem 1.1. If n ∈ N, n ≥ 2, and f ∈ C[0, 1], then∥∥Ũnf − f
∥∥ ≤ (1 +

√
3)K

(
f,

1

n2

)
.
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Theorem 1.2. For every function f ∈ C[0, 1] and n ∈ N, n ≥ 2, there exist constants C,L > 0 such
that

K
(
f,

1

n2

)
≤ C

ℓ2

n2

(∥∥Ũnf − f
∥∥+

∥∥Ũℓf − f)
∥∥).

for all ℓ ≥ Ln.

Remark 1.1. Another way to state Theorem 1.1 and Theorem 1.2 is the following: there exists a natural
number k such that

K
(
f,

1

n2

)
∼

∥∥Ũnf − f
∥∥+

∥∥Ũknf − f
∥∥.

The paper is organized as follows. In Section 1 state of the art is described. Preliminary and
auxiliary results are presented in Section 2. Section 3 includes an estimation of the norm of
the operator Ũn, a Jackson type inequality and a proof of the direct inequality in Theorem 1.1.
The last Section 4 is devoted to a converse result for the modified Goodman-Sharma operator
(1.4). Inequalities of the Voronovskaya type and Bernstein type for Ũn are proved using the
differential operator D̃, defined in (1.3). Theorem 1.2 represents a strong converse inequality
of Type B, according to Ditzian-Ivanov classification in [6]. Complete proof of the converse
theorem is given.

2. PRELIMINARIES AND AUXILIARY RESULTS

By Bnf , n ∈ N, we denote the Bernstein operators determined for functions f ,

Bn(f, x) =

n∑
k=0

f
(k
n

)
Pn,k(x), x ∈ [0, 1],

where Pn,k are the Bernstein basis polynomials (1.2). The Bernstein operator central moments
play important role in many applications and they are defined by

µn,i(x) = Bn

(
(t− x)i, x

)
=

n∑
k=0

(k
n
− x

)i

Pn,k(x), i = 0, 1, . . . .

We summarize some well known useful properties of the Bernstein polynomials. Further on
we assume Pn,k := 0 if k < 0 or k > n.

Proposition 2.1 (see, e.g. [12]). (a) The following identities are valid:

n∑
k=0

kPn,k(x) = nx,

n∑
k=0

(n− k)Pn,k(x) = n(1− x),(2.7)

n∑
k=0

k(k − 1)Pn,k(x) = n(n− 1)x2,(2.8)

n∑
k=0

(n− k)(n− k − 1)Pn,k(x) = n(n− 1)(1− x)2,(2.9)

P ′
n,k(x) = n

[
Pn−1,k−1(x)− Pn−1,k(x)

]
,(2.10)

P ′′
n,k(x) = n(n− 1)

[
Pn−2,k−2(x)− 2Pn−2,k−1(x) + Pn−2,k(x)

]
.(2.11)
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(b) For the low-order moments µn,i(x), we have:

µn,0(x) = Bn

(
(t− x)0, x

)
= 1,

µn,1(x) = Bn

(
(t− x), x

)
= 0,

µn,2(x) = Bn

(
(t− x)2, x

)
=

φ(x)

n
,

µn,3(x) = Bn

(
(t− x)3, x

)
=

(1− 2x)φ(x)

n2
,

µn,4(x) = Bn

(
(t− x)4, x

)
=

3(n− 2)φ2(x)

n3
+

φ(x)

n3
.

The operators Un, Ũn and the differential operator D̃ satisfy interesting properties.

Proposition 2.2. If the operators Un, Ũn and the differential operator D̃ are defined as in (1.1), (1.4)
and (1.3), respectively, then

(a) D̃Unf = UnD̃f for f ∈ W 2
0 (φ)[0, 1];

(b) Ũnf = Un

(
f − 1

n D̃f
)

for f ∈ W 2
0 (φ)[0, 1];

(c) D̃Ũnf = ŨnD̃f for f ∈ W 2
0 (φ)[0, 1];

(d) UnŨnf = ŨnUnf for f ∈ W 2
0 (φ)[0, 1];

(e) ŨmŨnf = ŨnŨmf for f ∈ W 2
0 (φ)[0, 1];

(f) lim
n→∞

Ũnf = f for f ∈ W 2(φ)[0, 1];

(g)
∥∥D̃Unf

∥∥ ≤
∥∥D̃f

∥∥ for f ∈ W 2(φ)[0, 1].

Proof. For the proof of (a), see [14, Lemma 4.2]. We have

Ũnf =

n∑
k=0

un,k(f)P̃n,k

= un,0(f)
(
Pn,0 −

1

n
D̃Pn,0

)
+

n−1∑
k=1

un,k(f)
(
Pn,k − 1

n
D̃Pn,k

)
+ un,n(f)

(
Pn,n − 1

n
D̃Pn,n

)
= un,0(f)Pn,0 +

n−1∑
k=1

un,k(f)Pn,k + un,n(f)Pn,n

− φ

n

(
un,0(f)P

′′
n,0 +

n−1∑
k=1

un,k(f)P
′′
n,k + un,n(f)P

′′
n,n

)
= Unf − 1

n
φ (Unf)

′′
.

Then from (a), we obtain

Ũnf = Unf − 1

n
D̃Unf = Unf − 1

n
UnD̃f = Un

(
f − 1

n
D̃f

)
which proves (b). Now, commutative properties (c) and (d) follow from (b) and (a):

D̃Ũnf = D̃Un

(
f − 1

n
D̃f

)
= Un

(
D̃f − 1

n
D̃D̃f

)
= Ũn(D̃f),

and

UnŨnf = UnUn

(
f − 1

n
D̃f

)
= UnUnf − 1

n
UnUnD̃f = UnUnf − 1

n
UnD̃Unf = ŨnUnf.
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The operators Ũn commute in the sense of (e), since

ŨmŨnf = ŨmUn

(
f − 1

n
D̃f

)
= UmUnf − 1

n
UmUnD̃f − 1

m
D̃UmUnf +

1

mn
UmD̃2Unf

= UmUn

(
f − m+ n

mn
D̃f +

1

mn
D̃2f

)
.

The same expression on the right-hand side we obtain for ŨnŨmf because of properties (a),
(b) and UmUnf = UnUmf . We recall two more properties of the operator Un and function
f ∈ W 2(φ)[0, 1] (see [14, eqs. (4.8), (2.4)]):

∥Unf − f∥ ≤ 1

n

∥∥D̃f
∥∥,(2.12) ∥∥UnD̃f

∥∥ ≤
∥∥D̃f

∥∥.
Therefore

∥Ũnf − f∥ =
∥∥∥Unf − 1

n
UnD̃f − f

∥∥∥ ≤ ∥Unf − f∥+ 1

n

∥∥UnD̃f
∥∥ ≤ 2

n
∥D̃f∥,

hence lim
n→∞

∥Ũnf − f∥ = 0, i.e. the limit (f) holds true.

From the proof of Lemma 4.2 in [14] for every g ∈ W 2(φ)[0, 1], we have

D̃Ung(x) =

n−1∑
k=1

Pn,k(x)

∫ 1

0

(n− 1)Pn−2,k−1(t)D̃g(t) dt,

From the last representation, we obtain

|D̃Ung(x)| ≤
∥∥D̃g

∥∥ n−1∑
k=1

Pn,k(x)

∫ 1

0

(n− 1)Pn−2,k−1(t) dt ≤
∥∥D̃g

∥∥,
which proves (g). □

We now introduce a function that will prove useful in our investigations:

Tn,k(x) := k(k − 1)
1− x

x
− 2k(n− k) + (n− k)(n− k − 1)

x

1− x
(2.13)

= n

[
− 1− 1− 2x

φ(x)

(k
n
− x

)
+

n

φ(x)

(k
n
− x

)2
]
.

Observe that

T ′
n,k(x) = −k(k − 1)

x2
+

(n− k)(n− k − 1)

(1− x)2
,(2.14)

T ′′
n,k(x) =

2k(k − 1)

x3
+

2(n− k)(n− k − 1)

(1− x)3
> 0, x ∈ (0, 1).(2.15)

Proposition 2.3.
(a) The following relation concerning Pn,k, Tn,k and differential operator D̃ holds:

(2.16) D̃Pn,k(x) = Tn,k(x)Pn,k(x).
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(b) If α is an arbitrary real number, then

Φ(α) :=

n∑
k=0

(
α− 1

n
Tn,k(x)

)2

Pn,k(x) = α2 + 2− 2

n
.

Proof. (a) From (2.10), (2.11) and φ(x)Pn,k(x) =
(k+1)(n−k+1)
(n+1)(n+2) Pn+2,k+1(x), it follows that

φ(x)P ′′
n,k(x) = n(n− 1)

[
φ(x)Pn−2,k−2(x)− 2φ(x)Pn−2,k−1(x) + φ(x)Pn−2,k(x)

]
= n(n− 1)

[ (k − 1)(n− k + 1)

n(n− 1)
Pn,k−1(x)− 2

k(n− k)

n(n− 1)
Pn,k(x)

+
(k + 1)(n− k − 1)

n(n− 1)
Pn,k+1(x)

]
= (k − 1)(n− k + 1)Pn,k−1(x)− 2k(n− k)Pn,k(x)

+ (k + 1)(n− k − 1)Pn,k+1(x)

=
[
k(k − 1)

1− x

x
− 2k(n− k) + (n− k)(n− k − 1)

x

1− x

]
Pn,k(x)

= Tn,k(x)Pn,k(x),

i.e. the identity (2.16).
(b) We apply the formulae for the Bernstein operator moments in Proposition 2.1 (b):

Φ(α) =

n∑
k=0

[
α+ 1 +

1− 2x

φ(x)

(k
n
− x

)
− n

φ(x)

(k
n
− x

)2]2
Pn,k(x)

=

n∑
k=0

[
(α+ 1)2 +

(1− 2x)2

φ2(x)

(k
n
− x

)2

+
n2

φ2(x)

(k
n
− x

)4

+
2(α+ 1)(1− 2x)

φ(x)

(k
n
− x

)
− 2(α+ 1)n

φ(x)

(k
n
− x

)2

− 2n(1− 2x)

φ2(x)

(k
n
− x

)3]
Pn,k(x)

= (α+ 1)2µn,0(x) +
(1− 2x)2

φ2(x)
µn,2(x) +

n2

φ2(x)
µn,4(x) +

2(α+ 1)(1− 2x)

φ(x)
µn,1(x)

− 2(α+ 1)n

φ(x)
µn,2(x)−

2n(1− 2x)

φ2(x)
µn,3(x)

= (α+ 1)2 · 1 + (1− 2x)2

φ2(x)

φ(x)

n
+

n2

φ2(x)

(3n− 6)φ2(x) + φ(x)

n3

+
2(α+ 1)(1− 2x)

φ(x)
· 0− 2(α+ 1)n

φ(x)

φ(x)

n
− 2n(1− 2x)

φ2(x)

(1− 2x)φ(x)

n2

= (α+ 1)2 +
1− 4φ(x)

nφ(x)
+

(3n− 6)φ(x) + 1

nφ(x)
− 2(α+ 1)− 2(1− 4φ(x))

nφ(x)

= α2 + 2α+ 1 +
1

nφ(x)
− 4

n
+ 3− 6

n
+

1

nφ(x)
− 2α− 2− 2

nφ(x)
+

8

n

= α2 + 2− 2

n
.

□

Auxiliary technical results will be useful for further estimations.
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Proposition 2.4. If n ∈ N, n ≥ 2, and

λ(n) :=

∞∑
k=n

1

k2(k + 1)
, θ(n) :=

∞∑
k=n

1

k2(k + 1)2
,

then
1

2n2
≤ λ(n) ≤ 1

n2
,(2.17)

θ(n) ≤ 4

9n3
.(2.18)

Proof. Since k
k−1

n−1
n ≤ 1 for k ≥ n, we have for the lower estimate of λ(n)

λ(n) ≥
∞∑

k=n

1

k2(k + 1)
· k

k − 1
· n− 1

n
=

n− 1

n

∞∑
k=n

1

(k − 1)k(k + 1)
=

n− 1

n
· 1

2(n− 1)n
=

1

2n2
.

For the upper estimates of λ(n) and θ(n), we obtain

λ(n) <

∞∑
k=n

1

(k − 1)k(k + 1)
=

1

2n(n− 1)
≤ 1

n2
,

θ(n) <

∞∑
k=n

1

(k − 1)k(k + 1)(k + 2)
=

1

3n(n2 − 1)
≤ 4

9n3
.

□

3. A DIRECT THEOREM

We will first prove the next upper estimate for the norm of the operator Ũn defined in (1.4).

Lemma 3.1. If n ∈ N and f ∈ C[0, 1], then

(3.19)
∥∥Ũnf

∥∥ ≤
√
3 ∥f∥, i.e. ∥Ũn∥ ≤

√
3.

Proof. We have

P̃n,k(x) = Pn,k(x)−
1

n
D̃Pn,k(x) =

(
1− 1

n
Tn,k(x)

)
Pn,k(x).

Then for x ∈ [0, 1],∣∣Ũn(f, x)
∣∣ = ∣∣∣∣∣

n∑
k=0

un,k(f)P̃n,k(x)

∣∣∣∣∣ ≤
n∑

k=0

|un,k(f)|
∣∣P̃n,k(x)

∣∣
≤ ∥f∥

n∑
k=0

∣∣P̃n,k(x)
∣∣ = ∥f∥

n∑
k=0

∣∣∣1− 1

n
Tn,k(x)

∣∣∣Pn,k(x).

Applying Cauchy inequality, we obtain

∣∣Ũn(f, x)
∣∣ ≤ ∥f∥

√√√√ n∑
k=0

(
1− 1

n
Tn,k(x)

)2

Pn,k(x)

√√√√ n∑
k=0

Pn,k(x).

Since
∑n

k=0 Pn,k(x) = 1 identically, by Proposition 2.3 (b) with α = 1, we find∣∣Ũn(f, x)
∣∣ ≤ √

3− 2

n
∥f∥ <

√
3 ∥f∥, x ∈ [0, 1].

Hence, inequality (3.19) follows. □
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In order to prove a direct theorem for the approximation rate for functions f by the operator
Ũnf , we need a Jackson type inequality.

Lemma 3.2. If n ∈ N, f ∈ W 2
0 (φ)[0, 1] and D̃f ∈ W 2(φ)[0, 1], then

(3.20)
∥∥Ũnf − f

∥∥ ≤ 1

n2
∥D̃2f∥.

Proof. Having in mind the relation

Ukf − Uk+1f =
1

k(k + 1)
D̃Uk+1f,

(see [14, Lemma 4.1]) and Proposition 2.1 (a) for f ∈ W 2
0 (φ)[0, 1], we obtain

Ũkf − Ũk+1f = Ukf − 1

k
D̃Ukf − Uk+1f +

1

k + 1
D̃Uk+1f

= Ukf − Uk+1f +
1

k + 1
D̃Uk+1f − 1

k
D̃Ukf

=
(1
k
− 1

k + 1

)
D̃Uk+1f +

1

k + 1
D̃Uk+1f − 1

k
D̃Ukf

= −1

k

(
D̃Ukf − D̃Uk+1f

)
= −1

k

(
UkD̃f − Uk+1D̃f

)
= −1

k
· 1

k(k + 1)
D̃Uk+1D̃f,

i.e.,

(3.21) Ũkf − Ũk+1f = − 1

k2(k + 1)
D̃Uk+1D̃f.

Therefore for every s > n, we have

Ũnf − Ũsf =

s−1∑
k=n

(
Ũkf − Ũk+1f

)
= −

s−1∑
k=n

1

k2(k + 1)
D̃Uk+1D̃f.

Letting s → ∞ and by Proposition 2.2 (a) and (f), we obtain

(3.22) Ũnf − f = −
∞∑

k=n

1

k2(k + 1)
D̃Uk+1D̃f.

Then from Proposition 2.1 (g) for D̃f ∈ W 2(φ)[0, 1]

∥Ũnf − f∥ ≤
∞∑

k=n

1

k2(k + 1)

∥∥D̃Uk+1D̃f
∥∥ ≤

∞∑
k=n

1

k2(k + 1)

∥∥D̃2f
∥∥.

Proposition 2.4, (2.17), yields
∞∑

k=n

1

k2(k + 1)
≤ 1

n2
.

Therefore ∥∥Ũnf − f
∥∥ ≤ 1

n2

∥∥D̃2f
∥∥.

□
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A direct result on the approximation rate of functions f ∈ C[0, 1] by the operators (1.4) in
means of the K-functional (1.6) follows immediately from both lemmas above.

Proof of Theorem 1.1. Let g be arbitrary function, such that g ∈ W 2
0 (φ)[0, 1] and D̃g ∈ W 2(φ)[0, 1].

Then by Lemma 3.1 and Lemma 3.2, we obtain∥∥Ũnf − f
∥∥ ≤

∥∥Ũnf − Ũng
∥∥+

∥∥Ũng − g
∥∥+ ∥g − f∥

≤ (1 +
√
3)∥f − g∥+ 1

n2

∥∥D̃2g
∥∥

≤ (1 +
√
3)
(
∥f − g∥+ 1

n2

∥∥D̃2g
∥∥).

Taking infimum over all functions g with g ∈ W 2
0 (φ)[0, 1] and D̃g ∈ W 2(φ)[0, 1], we obtain∥∥Ũnf − f

∥∥ ≤ (1 +
√
3)K

(
f,

1

n2

)
.

□

4. A STRONG CONVERSE RESULT

First, we will prove a Voronovskaya type result for the operator Ũn.

Lemma 4.3. If λ(n) =
∑∞

k=n
1

k2(k+1) , θ(n) =
∑∞

k=n
1

k2(k+1)2 and f ∈ C[0, 1] is such that f, D̃f ∈
W 2

0 (φ)[0, 1] and D̃3f ∈ L∞[0, 1], then

(4.23)
∥∥Ũnf − f + λ(n)D̃2f

∥∥ ≤ θ(n)
∥∥D̃3f

∥∥.
Proof. We have

Ũnf − f + λ(n)D̃2f = −
∞∑

k=n

Uk+1D̃
2f

k2(k + 1)
+

∞∑
k=n

D̃2f

k2(k + 1)
=

∞∑
k=n

D̃2f − Uk+1D̃
2f

k2(k + 1)
,

see the proof of Lemma 3.2, eq. (3.21). Then

∥∥Ũnf − f + λ(n)D̃2f
∥∥ ≤

∞∑
k=n

1

k2(k + 1)

∥∥D̃2f − Uk+1D̃
2f

∥∥.
Using (2.12) with D̃2f instead of f , we obtain

∥∥Ũnf − f + λ(n)D̃2f
∥∥ ≤

∞∑
k=n

1

k2(k + 1)
· 1

(k + 1)

∥∥D̃D̃2f
∥∥ = θ(n)

∥∥D̃3f
∥∥.

□

We need an inequality of Bernstein type.

Lemma 4.4. Let n ∈ N, n ≥ 2 and f ∈ C[0, 1]. Then the following inequality holds true

(4.24) ∥D̃Ũnf∥ ≤ C̃ n∥f∥,

where C̃ = 6.5 +
√
6.
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Proof. Since ∣∣D̃Ũn(f, x)
∣∣ ≤ n∑

k=0

|un,k(f)|
∣∣D̃P̃n,k(x)

∣∣ ≤ ∥f∥
n∑

k=0

∣∣D̃P̃n,k(x)
∣∣,

it is sufficient to find an upper estimate for the quantity
n∑

k=0

∣∣D̃P̃n,k(x)
∣∣ = n∑

k=0

∣∣φ(x)P̃ ′′
n,k(x)

∣∣.
Remind that, according to (2.16), we have the relation

D̃Pn,k(x) = φ(x)P ′′
n,k(x) = Tn,k(x)Pn,k(x).

Hence

P̃n,k(x) = Pn,k(x)−
1

n
D̃Pn,k(x) =

(
1− 1

n
Tn,k(x)

)
Pn,k(x),

P̃ ′′
n,k(x) =

(
1− 1

n
Tn,k(x)

)′′
Pn,k(x) + 2

(
1− 1

n
Tn,k(x)

)′
P ′
n,k(x) +

(
1− 1

n
Tn,k(x)

)
P ′′
n,k(x).

Then,

D̃P̃n,k(x) = φ(x)P̃ ′′
n,k(x)

= −φ(x)

n
T ′′
n,k(x)Pn,k(x)−

2φ(x)

n
T ′
n,k(x)P

′
n,k(x) +

(
1− 1

n
Tn,k(x)

)
φ(x)P ′′

n,k(x)

= −φ(x)

n
T ′′
n,k(x)Pn,k(x)−

2φ(x)

n
T ′
n,k(x)P

′
n,k(x) +

(
1− 1

n
Tn,k(x)

)
Tn,k(x)Pn,k(x).

Therefore
n∑

k=0

∣∣D̃P̃n,k(x)
∣∣ ≤ an(x) + bn(x) + cn(x),

where

an(x) =
φ(x)

n

n∑
k=0

∣∣T ′′
n,k(x)

∣∣Pn,k(x),

bn(x) =
2φ(x)

n

n∑
k=0

∣∣T ′
n,k(x)P

′
n,k(x)

∣∣,
cn(x) =

n∑
k=0

∣∣∣(1− 1

n
Tn,k(x)

)
Tn,k(x)

∣∣∣Pn,k(x).

1. Estimate for an(x). From (2.15) and (2.8)–(2.9),
n∑

k=0

T ′′
n,k(x)Pn,k(x) =

n∑
k=0

(2k(k − 1)

x3
+

2(n− k)(n− k − 1)

(1− x)3

)
Pn,k(x)

=
2

x3

n∑
k=0

k(k − 1)Pn,k(x) +
2

(1− x)3

n∑
k=0

(n− k)(n− k − 1)Pn,k(x)

=
2

x3
n(n− 1)x2 +

2

(1− x)3
n(n− 1)(1− x)2

=
2n(n− 1)

φ(x)
.
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Having in mind T ′′
n,k(x) > 0 in (2.15), we obtain

(4.25) an(x) =
φ(x)

n

n∑
k=0

T ′′
n,k(x)Pn,k(x) = 2(n− 1).

2. Estimate for bn(x). Observe that
n∑

k=0

∣∣T ′
n,k(x)P

′
n,k(x)

∣∣ = n∑
k=0

∣∣T ′
n,k(1− x)P ′

n,k(1− x)
∣∣,

hence, there is a symmetry of the function bn(x) in x = 1
2 . Therefore, it is sufficient to estimate

bn(x) for x ∈
[
0, 1

2

]
.

We will show that in
[
0, 1

2

]
the function bn(x) has exactly

⌊
n−1
2

⌋
local extrema hk attained

at points in intervals
(
k−1
n , k

n

]
, k = 1, . . . ,

⌊
n−1
2

⌋
, respectively. We will estimate all the local

maxima hk and then an estimate for bn(x) will follow immediately.
(i) First, we prove that

S(x) :=
−2φ(x)

n

n∑
k=0

T ′
n,k(x)P

′
n,k(x) = 4(n− 1).

From (2.10) and (2.14),
n∑

k=0

T ′
n,k(x)P

′
n,k(x) = n

n−1∑
k=0

(
T ′
n,k+1(x)− T ′

n,k(x)
)
Pn−1,k(x).

Since

T ′
n,k+1(x)− T ′

n,k(x)=
(n− k − 1)(n− k − 2)

(1− x)2
− (k + 1)k

x2
+

k(k − 1)

x2
− (n− k)(n− k − 1)

(1− x)2

=−2k

x2
− 2(n− k − 1)

(1− x)2
,

using (2.7) we get
n∑

k=0

T ′
n,k(x)P

′
n,k(x) = −2n

x2

n−1∑
k=0

kPn−1,k(x)−
2n

(1− x)2

n−1∑
k=0

(n− k − 1)Pn−1,k(x)

= −2n

x2
(n− 1)x− 2n

(1− x)2
(n− 1)(1− x)

= −2n(n− 1)

φ(x)
.

Therefore,

(4.26) S(x) =
−2φ(x)

n
· −2n(n− 1)

φ(x)
= 4(n− 1).

(ii) By (2.15), T ′′
n,k(x) > 0, hence −T ′

n,k(x) strictly decreases for x ∈ (0, 1).
For k = 0, 1, we have −T ′

n,k(0
+) < 0, then −T ′

n,k(x) < 0, x ∈ (0, 1), and φ(x)T ′
n,1(x)

has its only zero in [0, 1) at ξ1 = 0.
For k = 2, . . . , n − 2, we have −T ′

n,k(0
+) > 0, and T ′

n,k(x) has a unique simple zero
at

ξk =

√
(k2)√

(k2)+
√
(n−k

2 )
∈
(
k−1
n , k

n

)
.
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For k = n− 1, n, we have −T ′
n,k(x) > 0 for x ∈ (0, 1), and −φ(x)T ′

n,n(x) = 0 only for
ξn = 1 in (0, 1].

(iii) For the Bernstein basis polynomials on (0, 1), we have

P ′
n,0(x) = −n(1− x)n−1 < 0,

P ′
n,k(x) = n

(
n

k

)
xk−1(1− x)n−k−1

(k
n
− x

)
, and P ′

n,k(x) = 0 only if x =
k

n

P ′
n,n(x) = nxn−1 > 0.

(iv) Now, from (ii) and (iii) for x ∈ (0, 1),
−φ(x)T ′

n,0(x)P
′
n,0(x) > 0,

−φ(x)T ′
n,1(x)P

′
n,1(x) > 0 for x ∈

(
ξ1,

1
n

)
=

(
0, 1

n

)
,

−φ(x)T ′
n,k(x)P

′
n,k(x) > 0 for x ∈

(
k−1
n , ξk

)
, k = 2, . . . , ⌊n−1

2 ⌋,
−φ(x)T ′

n,k(x)P
′
n,k(x) < 0 for x ∈

(
ξk,

k
n

)
, k = 2, . . . , ⌊n−1

2 ⌋,
−φ(x)T ′

n,n(x)P
′
n,n(x) > 0.

(v) From the observations in (ii)–(iv), it follows that

−φ(x)T ′
n,k(x)P

′
n,k(x) > 0, k = 0, . . . , n

except

− φ(x)T ′
n,k(x)P

′
n,k(x) < 0, x ∈

(
ξk,

k
n

)
, k = 1, . . . ,

⌊
n−1
2

⌋
,

− φ(x)T ′
n,n−k(x)P

′
n,n−k(x) < 0, x ∈

(
n−k
n , ξn−k

)
, k = 1, . . . ,

⌊
n−1
2

⌋
.

Hence,
n∑

k=0

∣∣∣−2φ(x)T ′
n,k(x)

n
P ′
n,k(x)

∣∣∣ = S(x) = 4(n− 1), x ∈
[
0, 1

2

]
\

⌊n−1
2 ⌋⋃

k=1

(ξk,
k
n ).

Therefore, for k = 1, . . . ,
⌊
n−1
2

⌋
,

(4.27) bn(x) =

4(n− 1), x ∈
[
k−1
n , ξk

]
,

4(n− 1) +
2φ(x)

n

∣∣T ′
n,k(x)P

′
n,k(x)

∣∣, x ∈
[
ξk,

k
n ].

Moreover,

bn(x) = 4(n− 1), x ∈
[
n−2
2n , n+2

2n

]
, n even, and x ∈

[
n−1
2n , n+1

2n

]
, n odd.

(vi) This means that we have to estimate the maxima of the functions

sk(x) :=

∣∣∣∣−2φ(x)T ′
n,k(x)

n
P ′
n,k(x)

∣∣∣∣, x ∈
[
ξk,

k
n

]
, k = 1, . . . ,

⌊
n−1
2

⌋
.

By (iv) for k = 1, we have:

s1(x) =
−2φ(x)T ′

n,1(x)

n
P ′
n,1(x) = 2n(n− 1)(n− 2)x

( 1

n
− x

)
(1− x)n−3.

Since

max
x∈[0,1/n]

x
( 1

n
− x

)
=

1

4n2
and (1− x)n−3 ≤ 1,

we obtain

(4.28) h1 := max
x∈[0,1/n]

s1(x) ≤
2n(n− 1)(n− 2)

4n2
≤ n

2
.
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Let us fix k ∈
{
2, . . . ,

⌊
n−1
2

⌋}
. We estimate the local extremum

hk := max
x∈[ξk,k/n]

sk(x).

According to (iv), we have

sk(x) =
2φ(x)

n
T ′
n,k(x)P

′
n,k(x) =

2φ(x)

n
T ′
n,k(x)

(
n

k

)
xk−1(1− x)n−k−1

(k
n
− x

)
,

i.e.,

(4.29) sk(x) =
2

n
T ′
n,k(x)Pn,k(x)

(k
n
− x

)
.

The function T ′
n,k(x) is strictly increasing in

[
k−1
n , k

n

]
and change sign only at point

ξk =

√
(k2)√

(k2)+
√
(n−k

2 )
. Then, for x ∈

[
ξk,

k
n

]
,

max
x∈[ξk,k/n]

T ′
n,k(x) = T ′

n,k

(
k
n

)
= −k(k − 1)n2

k2
+

(n− k)(n− k − 1)n2

(n− k)2
= n2

(1
k
− 1

n− k

)
.

The function h(x) = 1
x −

1
n−x is decreasing in

(
0, n

2

)
since h′(x) =

(
1
x −

1
n−x )

′ < 0, hence
for k ∈

{
2, . . . ,

⌊
n−1
2

⌋}
(4.30) T ′

n,k(x) ≤ n2
(1
k
− 1

n− k

)
≤ n2

(1
2
− 1

n− 2

)
≤ n2

2
.

Also, k−1
n ≤ ξk ≤ k

n and for x ∈
[
ξk,

k
n

]
, we have k

n − x ≤ 1
n . Since 0 ≤ Pn,k(x) ≤ 1 in

[0, 1], it follows from (4.29) and (4.30) that

hk ≤ 2

n
· n

2

2
· 1
n
≤ 1.

Taking into account (4.28), for n ≥ 2 we have

(4.31) hk ≤ h1 ≤ n

2
, k = 1, . . . ,

⌊n− 1

2

⌋
.

Finally, for bn(x), using (4.27) and (4.31), we obtain the estimate

bn(x) ≤ 4(n− 1) + max
1≤k≤

⌊
n−1
2

⌋hk ≤ 4(n− 1) +
n

2
,

or

(4.32) bn(x) ≤ 4.5n, x ∈ [0, 1].

3. Estimate for cn(x). We apply Cauchy inequality and Proposition 2.3 (b) with α = 0 and
α = 1:

cn(x) =

n∑
k=0

∣∣∣Tn,k(x)
(
1− 1

n
Tn,k(x)

)∣∣∣Pn,k(x)

≤

√√√√ n∑
k=0

T 2
n,k(x)Pn,k(x)

√√√√ n∑
k=0

(
1− 1

n
Tn,k(x)

)2

Pn,k(x)

=
√
Φ(0)n2 ·

√
Φ(1) = n

√
2− 2

n
·
√
3− 2

n
.
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Then,

(4.33) cn(x) ≤
√
6n, x ∈ [0, 1].

From (4.25), (4.32) and (4.33), we obtain
n∑

k=0

∣∣D̃P̃n,k(x)
∣∣ ≤ an(x) + bn(x) + cn(x) ≤ 2(n− 1) + 4.5n+

√
6n ≤

(
6.5 +

√
6
)
n.

Therefore ∥∥D̃Ũnf
∥∥ ≤ C̃n∥f∥, C̃ := 6.5 +

√
6.

□

Now we are ready to prove a strong converse inequality of Type B.

Proof of Theorem 1.2. We follow the approach of Ditzian and Ivanov [6].
Let n ∈ N, n ≥ 2, f ∈ C[0, 1] and λ(n), θ(n) be defined as in Proposition 2.4. From the

Voronovskaya type inequality in Lemma 4.3 for the operator Ũℓ and function Ũ3
nf instead of f ,

we have

λ(ℓ)
∥∥D̃2Ũ3

nf
∥∥ =

∥∥λ(ℓ)D̃2Ũ3
nf

∥∥
=

∥∥ŨℓŨ
3
nf − Ũ3

nf + λ(ℓ)D̃2Ũ3
nf − ŨℓŨ

3
nf + Ũ3

nf
∥∥

≤
∥∥ŨℓŨ

3
nf − Ũ3

nf + λ(ℓ)D̃2Ũ3
nf

∥∥+
∥∥ŨℓŨ

3
nf − Ũ3

nf
∥∥

≤ θ(ℓ)
∥∥D̃3Ũ3

nf
∥∥+

∥∥Ũ3
n

(
Ũℓf − f

)∥∥.
Now, using Lemma 4.4 for the function D̃2Ũ2

nf and in addition Lemma 3.1 repeatedly three
times, we obtain

λ(ℓ)
∥∥D̃2Ũ3

nf
∥∥ ≤ C̃ n θ(ℓ)

∥∥D̃2Ũ2
nf

∥∥+ 3
√
3
∥∥Ũℓf − f

∥∥
= C̃ n θ(ℓ)

∥∥D̃2Ũ2
n(f − Ũnf) + D̃2Ũ3

nf
∥∥+ 3

√
3
∥∥Ũℓf − f

∥∥
≤ C̃ n θ(ℓ)

∥∥D̃2Ũ2
n(f − Ũnf)

∥∥+ C̃ n θ(ℓ)
∥∥D̃2Ũ3

nf
∥∥+ 3

√
3
∥∥Ũℓf − f

∥∥.
Applying the Bernstein type inequality Lemma 4.4 twice for f − Ũnf yields

λ(ℓ)
∥∥D̃2Ũ3

nf
∥∥ ≤ C̃3n3θ(ℓ)

∥∥f − Ũnf
∥∥+ 3

√
3
∥∥Ũℓ − f

∥∥+ C̃ n θ(ℓ)
∥∥D̃2Ũ3

nf
∥∥.

From inequalities (2.17) and (2.18) of Proposition 2.4, we get

1

2ℓ2
∥∥D̃2Ũ3

nf
∥∥ ≤ 4C̃3n3

9ℓ3
∥∥f − Ũnf

∥∥+ 3
√
3
∥∥Ũℓ − f

∥∥+
4C̃n

9ℓ3
∥∥D̃2Ũ3

nf
∥∥.

Let us choose ℓ sufficiently large such that

4C̃n

9ℓ3
≤ 1

4ℓ2
, i.e. ℓ ≥ 16C̃

9
n.

If we set L = 16C̃
9 , for all integers ℓ ≥ Ln we have

1

2ℓ2
∥∥D̃2Ũ3

nf
∥∥ ≤ 4C̃3n3

9ℓ3
∥∥f − Ũnf

∥∥+ 3
√
3
∥∥Ũℓ − f

∥∥+
1

4ℓ2
∥∥D̃2Ũ3

nf
∥∥,

1

4ℓ2
∥∥D̃2Ũ3

nf
∥∥ ≤ 4C̃3n3

9ℓ3
∥∥f − Ũnf

∥∥+ 3
√
3
∥∥Ũℓ − f

∥∥,
1

n2

∥∥D̃2Ũ3
nf

∥∥ ≤ C̃2
∥∥f − Ũnf

∥∥+ 12
√
3
ℓ2

n2

∥∥Ũℓ − f
∥∥.(4.34)
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By using Lemma 3.1,∥∥f − Ũ3
nf

∥∥ ≤
∥∥f − Ũnf

∥∥+
∥∥Ũnf − Ũ2

nf
∥∥+

∥∥Ũ2
nf − Ũ3

nf
∥∥

≤ (1 +
√
3 + (

√
3)2)

∥∥f − Ũnf
∥∥,

and we obtain the inequality

(4.35)
∥∥f − Ũ3

nf
∥∥ ≤ (4 +

√
3)
∥∥f − Ũnf

∥∥.
It remains to complete the estimation of the K-functional. Since Ũ3

nf ∈ W 2
0 (φ)[0, 1], from (4.34)

and (4.35) it follows

K
(
f,

1

n2

)
= inf

{
∥f − g∥+ 1

n2

∥∥D̃2g
∥∥ : g ∈ W 2

0 (φ)[0, 1], D̃g ∈ W 2(φ)[0, 1]
}

≤
∥∥f − Ũ3

nf∥+
1

n2

∥∥D̃2Ũ3
nf

∥∥
≤

(
4 +

√
3 + C̃2

)∥∥Ũnf − f
∥∥+ 12

√
3
ℓ2

n2

∥∥Ũℓf − f
∥∥.

Therefore,

K
(
f,

1

n2

)
≤ C

ℓ2

n2

(∥∥Ũnf − f
∥∥+

∥∥Ũℓf − f)
∥∥)

for all ℓ ≥ Ln, where C = 4 +
√
3 + C̃2 and L = 16C̃

9 , C̃ = 6.5 +
√
6. □
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