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Abstract 

The demand for lightweight, high-performance aerospace and automotive components is growing, prompting 
interest in utilizing abundant materials like magnesium and its alloys and composites. However, pure magnesium's 
reactivity and mechanical weaknesses hinder its use in demanding engineering applications. To address this, 
magnesium is often reinforced with nanoparticles, leading to the development of magnesium matrix composites 
with improved mechanical properties. This paper systematically investigates the effects of kaolin on 
microstructure, hardness, and density for magnesium composites through the use of powder metallurgy.  Results 
indicate that increasing kaolin content generally enhances density and hardness. These findings contribute to the 
understanding of kaolin-reinforced magnesium composites and their potential for improved mechanical properties 
in various applications. 

Keywords: Kaolin, Mg composites, hardness, microstructure and density measurement 

1. Introduction 
 

There exists a growing need for lightweight and economical aerospace and automotive 
components showing superior performance. This increases the rising interest in leveraging 
naturally abundant materials. Specifically, magnesium and its alloys are contemporary 
lightweight materials. They find extensive applications across diverse industrial sectors, 
ranging from aerospace and automotive to biomedical [1]. On the other hand, pure magnesium's 
high reactivity and weak mechanical properties make it unsuitable for demanding engineering 
applications. To address this, magnesium is commonly reinforced with nanoparticles [2-6].  
Researchers have concentrated their efforts on developing magnesium matrix composites with 
various reinforcements. These composites are designed to augment the overall performance of 
the material by integrating reinforcements into the magnesium matrix.  

A wide array of reinforcement components, including Al2O3 [7], B4C [8], SiC [9], WC [10], 
TiC [11], TiB2 [12], carbon nanotubes (CNT) [13, 14], and graphene nanoplatelets (GNPs) [15], 
have been extensively employed in the fabrication of magnesium matrix composites. The 
integration of these reinforcements enhances mechanical properties such as tensile strength, 
hardness, and wear resistance, thereby broadening the potential applications of magnesium 
composites. Researchers endeavor to strike a delicate balance between desired properties and 
the specific requirements of diverse sectors through meticulous selection and optimization of 
the reinforcement elements [16-19]. Anbuchezhiyan et al. [20] studied TiC reinforced 
magnesium nanocomposites by varying its weight percentage (3%, 6% and 9%) using powder 
metallurgy for marine applications. As the percentage of reinforcement rises, the compressive 
strength and hardness of magnesium nanocomposites increase. This enhancement occurs as a 
result of integrating stiffer and stronger reinforcements into the matrix alloy. Raja et al. [21] 
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conducted a study of mechanical and microstructural properties of graphene reinforced 
magnesium composite. Results showed that the incorporation of graphene nanoplatelets (GNPs) 
has led to slight alterations in the crystallographic texture and grain size of the magnesium alloy. 
Additionally, there has been a remarkable increase in tensile strength, hardness, and impact 
strength, Ponappa et al. [22] focused on Y2O3 reinforced Mg composites. Scanning electron 
micrographs revealed a uniform distribution of Y2O3 particles within the magnesium and 
magnesium alloy matrix. Furthermore, macro and microhardness tests demonstrated a 
noticeable increase in hardness corresponding to the augmented amount of Y2O3 reinforcement. 

Kaolin can be used as reinforcing particles. For instance; Zaimi et al. [23] studied Sn-Ag-Cu 
reinforced with kaolin with different weight percentages. In their study, the addition of 1.0 wt.% 
kaolin was determined to be the optimal value for enhancing the performance of the Sn-3.0Ag-
0.5Cu solder. Furthermore, the incorporation of kaolin decreases the formation area of β-Sn 
while simultaneously increasing the eutectic area with fine intermetallic particles. Additionally, 
kaolin additions lead to a reduction in the undercooling value of the Sn-3.0Ag-0.5Cu solder. 
Ogunrinola et al. [24] conducted another study where they successfully produced aluminum 
metal matrix composites reinforced with silica and kaolin through the process of stir casting. 
The composites reinforced with kaolin exhibit higher hardness compared to those reinforced 
with silica sand. This difference is attributed to the higher molecular weight of kaolin. 

In this paper, the microstructure evaluation, hardness, density of kaolin reinforced mg 
composites were studied employing powder metallurgy routine. To the best our knowledge, this 
is first time study. However, pure magnesium's reactivity and mechanical weaknesses hinder 
its use in demanding engineering applications. To address this, magnesium was reinforced with 
kaolin. 
 
2. Materials and Methods 

In the fabrication of kaolin reinforced magnesium composites, magnesium and kaolin were 
sourced from Nanografi, and ZAG Chemistry. 10 g of samples were weighted. 3, 5, 7 and 10 
weight percentages of kaolin were chosen. Then, the powders were combined in a beaker and 
mixed thoroughly using a magnetic stirrer for thirty minutes. The magnetic stirrer was set to 
800 rpm. After achieving a homogeneous distribution, the powder samples were cold pressed 
in a steel die at 98 MPa to form bulk samples. 
 
3. Results and Discussion 

To produce kaolin-reinforced Mg composites, kaolin were utilized at the weight percentages of 
3%, 5%, 7% and 10%. Using the Archimedean principle, the densities of these materials were 
determined. Figure 1 illustrates the measured densities of the composites at varying kaolin 
weight percentages. As the kaolin content increases, the densities of the composites tend to rise. 
This outcome is anticipated, given that the density of kaolin (2.6 g/cm³) exceeds that of 
magnesium (1.738 g/cm³). However, it's notable that the composite reinforced with 7% kaolin 
exhibits a lower density compared to the one reinforced with 3% kaolin. This could be attributed 
to agglomerations within the structure. This leads to increased internal voids, thereby 
compromising the composite's density. Consequently, this weakens the overall strength of the 
density of the composite. Similar observations have been reported in studies involving various 
types of reinforcement particles [14, 25, 26].   
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Fig. 1 The density measurements of the given kaolin weight percentages. 

 
The metallographic procedures involving sanding and polishing were applied. Sanding was 
performed using 1000 and 2000 mesh sanders to refine the material surfaces. Subsequently, the 
specimens underwent polishing with 6µ diamond suspension, followed by 3µ diamond 
suspension to attain a polished finish of higher quality. To assess the hardness of the 
investigated composites, measurements were conducted using an AOB Vickers Microhardness 
tester with a load of 0.3 kgf and a dwell time of 10 seconds. Each sample underwent ten 
indentations, and the average hardness values were recorded. Fig. 2 illustrates the Vickers 
hardness values of the composites. The highest hardness value was observed in the composite 
with a 10% weight percentage of kaolin. Furthermore, an increase in the kaolin content 
correlates with an increase in hardness. However, there is a decrease in hardness observed at 
the 7% weight percentage of kaolin when compared to the other composites. These findings are 
consistent with density measurements. 
 

               
             Fig. 2 The vickers hardness measurements of the given weight percentages of kaolin 
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Fig. 3 displays optical images of the given structures. Within these structures, metallographic 
spots are visible, indicative of contamination. Upon closer examination, some kaolin particles 
are observed at the Mg/Mg interfaces or within Mg/MgO, while others are enveloped within 
the Mg particles. Another notable feature is that the grain size of pure Mg is notably smaller 
compared to that of other composites. Additionally, MgO oxide particles are present in the 
structures. These dispersed oxide particles are expected to contribute to the reinforcement of 
the composites to some extent. 

  
                                       0%                                    3% 

  
                                           5%                                            7% 

 

 
10% 

Fig. 3 Optical İmage view of the given composites 
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4. Conclusion 

This study aimed to fabricate magnesium composites reinforced with kaolin through a powder 
metallurgy process. Magnesium was selected as the matrix material, with kaolin serving as the 
reinforcing component. The main goal was to analyze how different ratios of kaolin affect the 
properties of the resulting metal matrix composites. 
 
It's worth noting that the composite reinforced with 7% kaolin demonstrates a lower density in 
comparison to the counterpart reinforced with 3% kaolin. This phenomenon could be attributed 
to agglomerations within the structure, resulting in increased internal voids and consequently 
compromising the composite's density. As a result, this weakening effect extends to the overall 
strength of the composite.  
 
The composite containing 10% kaolin by weight exhibited the highest hardness value. 
Additionally, there was a direct correlation between kaolin content and hardness, with an 
increase in kaolin concentration resulting in higher hardness values. However, a decrease in 
hardness was noted at the 7% kaolin weight percentage compared to the other composites. 
These observations align with the findings from density measurement 
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Abstract 

This paper presents a case study focused on the deterministic and probabilistic structural assessments of a cracked 
reinforced concrete (RC) slab and evaluation using in-situ load testing. The case study explores the practical application 
of in-situ load testing as a diagnostic tool for evaluating the condition of the slab and determining its ultimate load-
carrying capacity in the presence of cracks, and service loads are used to verify its serviceability. Through 
comprehensive analysis and interpretation of test results, this study aims to provide valuable insights into the structural 
performance of cracked reinforced concrete slabs and inform effective repair and rehabilitation strategies. The building 
under examination is a G+4 reinforced concrete structure constructed using ready mix concrete transported to the 
construction site. Upon inspecting the slab, which had a total thickness of 170 mm, numerous deeply mapped cracks 
were evident, visible from the slab's surface and extending through its entire depth. Structural analysis indicated that 
the design included sufficient reinforcement and that the loads acting upon the slab were not expected to induce the 
cracking. Factors such as poor construction practices, potential issues with the cement used, and excessive evaporation 
may have contributed to the occurrence of these cracks, necessitating repairs. A full-scale in-situ load test was performed 
following ACI 318-08 testing procedures and results show that the slab under investigation is reasonably safe against 
serviceability and strength requirements with “no evidence” of failure. 

Keywords: Structural assessment, RC slab, cracks, in-situ load test, load-carrying capacity 

1. Introduction 

Reinforced concrete slabs may develop cracks due to various factors such as loading conditions, 
shrinkage, temperature variations, and material deterioration. Assessing the condition of cracked 
RC slabs is crucial for ensuring structural safety, durability, and serviceability [1]. The occurrence 
of excessive evaporation from the concrete mix in the plastic stage is a factor that could lead to 
shrinkage in the concrete matrix. Such excessive loss of water may result in related plastic shrinkage 
cracks [2]. Concrete surface starts to dry on direct sun exposure and as a general rule at evaporation 
rates greater than 1.0 kg/m2 and immediate protection/covering becomes necessary. However, 
drying may occur at much lesser rates of evaporation depending on the concrete mix ratio [3]. The 
other reason of cracks in concrete is drying shrinkage that results from the loss/evaporation of water 
from the concrete after hardening stage [2]. These types of cracks are known to penetrate full depths 
of structural members. 

Cracks which affect the structural integrity of RC structures need to be treated. For such purposes, 
different retrofitting and/ or strengthening techniques were experimentally tested using cement 
grout, epoxy injection, ferrocement layer, carbon fiber strip and section enlargement. Results 
showed that all repair techniques are found to be able to enhance the structural capacity of cracked 
concrete slabs where section enlargement gives 130% higher ultimate load capacities compared to 
the control slab [4]. 
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Fig. 1. Estimation of rate of evaporation [3]  

Ensuring the structural integrity of existing structural slabs with limited material data and various 
defects, such as multiple cracks, poses a significant challenge. In-situ load testing has emerged as a 
valuable verification technique for addressing this challenge [5–9]. The study conducted by Saleem, 
Abbas, and Nehdi demonstrates that a straightforward approach involving distributed in-situ loading 
using cement bags, in conjunction with finite element modeling, can offer reliable insights into 
appraising such existing structures. These findings hold promise for assisting practitioners in 
effectively managing a substantial portfolio of RC slabs affected by construction defects, thereby 
facilitating the process of condition rating. Once the condition of cracked RC slabs is assessed, 
appropriate rehabilitation and strengthening strategies can be implemented to restore or enhance 
their structural integrity. Common repairing techniques may include crack injection, fiber reinforced 
polymers (FRP) strengthening, steel plate bonding, and external post-tensioning [7].  

A static and dynamic analysis of an industrial hall with a reinforced concrete slab was conducted to 
assess the capacity of the cracked slab. The slab exhibited lots of cracks, with a maximum crack 
width of 1.6 mm, penetrating to depths ranging from 30 to 125 mm. The analysis results indicated 
that the slab's capacity remained safe, provided the service load is limited to a lower permissible 
limit of 4 kN/m² [6]. 

A five-story concrete building that was partially burned was evaluated using a non-destructive load 
test. According to the test results, the affected portions need retrofitting to restore the original design 
load carrying capacity of the as the structure's has a reduced strength [10]. Moreover, a load test was 
conducted on a garage structure and it was determined that the structure was adequate [11,12]. For 
several reasons, including determining the impact of construction and design defects and omissions, 
in-situ load testing is important. For the structures considered in the load test, finite-element 
technique models were developed to facilitate the design of the load test. The field observations were 
confirmed by the computational simulations [13]. 

In situ load testing of RC slabs in parking garage structures was performed using both cyclic and 24-
hour load test approaches. Cyclic loading was applied to the structural members in a quasi-static 
manner over at least six loading and unloading cycles at regular intervals. Both methods produced 
the same result: two identical RC slabs failed to meet the acceptance criteria [11]. These findings 
suggest that conducting a 24-hour load test is a practical approach for in situ testing of existing RC 
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slabs. Similarly, in situ load tests were conducted on RC and prestressed concrete (PC) slabs, with 
measurements taken for deflection and crack width. The results were compared against the limits 
specified in ACI 318 and ACI 437 standards. The paper also presented the evaluation criteria and 
findings from two field projects: one involving a post-tensioned concrete slab with structural 
deficiencies due to tendon and mild reinforcement misplacement, and another concerning a floor 
bay of a two-way RC slab showing cracks in both the positive and negative moment regions. The 
testing revealed that, in some cases, the ACI 437 requirements were not met [8]. 

Several studies have attempted in situ load testing on RC slabs. Among them, W.J. Gold and A. 
Nanni conducted an in situ load test by varying the load magnitude, applying cyclic loads over a 
short period to address the lack of having accepted standardized design and construction 
specifications for new structural repairs. The test results demonstrated that the performance of the 
strengthening system using bonded carbon fiber-reinforced polymer (CFRP) sheets was found 
effective [14]. 

Different codes and standards provide the minimum magnitude of loads to be used for load test in 
buildings. As per the requirement of ACI 318-08, the intensity of the load to be applied to the slab 
is specified that the total test load including dead load already in place shall not be less than the 
magnitude given in Eq. (1) and the load shall be applied in not less than four approximately equal 
increments [15].  
 

𝐿𝐼#$% ≥ 0.85(𝛾-𝐷 + 𝛾0𝐿) (1) 

where LImin  is the minimum load intensity (kN/m2), D, L are dead and live load effects, respectively 
(kN/m2) , γ3 and  γ4 are dead and live load factors, respectively. 

The maximum deflection of the slab during test load shall satisfy one of the following conditions 
given in Eqs. (2) and (3) [15]. 
 

∆#67		≤ 	
𝐿:;

20,200ℎ (2) 

 

∆?,#67	≤
	∆#67
4  (3) 

where Dmax is the measured maximum deflection (mm),  L1 is the shorter span for two-way slab 
systems (mm),  h is the overall thickness of member (mm) and Dr,max is the measured residual 
deflection (mm) 

In this study, evaluation of an RC slab is made analytically and by in-situ load testing. After a year 
of construction, a field test is carried out on a RC floor slab to confirm the findings of the design 
review and probabilistic assessment, thereby ensuring its safety. The results show that the slab is 
reasonably safe against serviceability and strength requirements, even with cracks. 

2. Methodology 

The structure under investigation in this research comprises five floors, encompassing the ground 
level and four stories above it. At the time of examination, construction had progressed up to the 
third story. During the construction process, cracks were observed within two days in the newly cast 
slabs on the third story, prompting a halt in work. This pause was necessary to assess the safety and 
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viability of continuing construction and future occupation of the building. Decisions regarding 
whether the structure could support further construction and future occupation or if partial or 
complete demolition and reconstruction were required hinged on this evaluation.  

The verification includes strength and durability aspects. This is to assess whether the deflection 
requirement of the slab is exceeded or not. Moreover, load carrying capacity of the slab was assessed. 
Deterministic and reliability-based assessment of the structure are carried out to evaluate the safety 
of the structure. For the load test, the most defective slab with maximum span dimensions is selected 
as the panel is critical (2nd floor slab between Axis 1-2 and Axis A-B). Fig. 2 presents the floor plan 
of the building, indicating the locations of the observed cracks. 
 

 
Fig. 2. Typical floor plan of the building 

2.1 Construction Information 

Materials used for the construction, actual dimensions of the slab, reports on the proportions and 
properties of the concrete mixtures are checked following ACI 437 standard [16]. Moreover, for the 
purpose of this study, to get the actual material strengths, tests are performed. The reinforcement 
steel bar utilized for the work was having a yield strength of 420 MPa and the concrete's average 
compressive strength of the core was recorded at 24.9 MPa, 26.8 MPa and 29.6MPa sampled at three 
different deliveries. The thickness (170mm) and dimension of the slab (center to center spacing of 
7m´5.5m) are measured at site. Review of the original design was made in accordance with ES-EN 
1992-2015 design code [17]. From the inspection report, it was verified that reinforcing bars are 
placed as per the original design. 

2.2 Equipment and Instruments 

Test equipment from the Construction Materials and Structures Laboratory of Addis Ababa Institute 
of Technology (AAiT) were mobilized. The tools, equipment and instrumentation used for the field 
test include; Schmidt hammer, core drilling machine, data logger - for digital data acquisition - 500 
data points per second, transducers - measurement of vertical displacement (digital), crack scale to 
measure crack widths, UPS - power storage and power extension cables. The field test is designed 
to assess the performance of the selected slab and solely targeted on the strength, stiffness, and 
geometry aspects. In the investigation three tests are carried out; hammer test, core test (compressive 
strength of concrete) and in-situ load test. 

 

Panel under 
investigation 
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2.2.1 Test set-up 

For the test setup, the slab to be investigated was first selected, with existing cracks, damages, or 
deformations documented. Instrumentation such as displacement transducers (LVDTs) was installed 
to measure deflections at the mid point and crack width scale was used to measure cracks. Before 
loading began, initial measurements of deflections, crack widths, and the slab’s condition were taken 
for comparison throughout the testing process. The loading test was conducted using the setup 
presented in Fig. 3. 
 

  

 

 

 
(a) (b) 

Fig. 3. Set-up for loading test (a) slab deflection measurement and (b) data logger 

2.2.2 Load intensity 

As the slab was already in place (weight of existing slab is 4.25kN/m2), the superimposed dead load 
to be applied during the test was determined to be the finishing and design live loads. For the load 
test, additional dead load of 2.96kN/m2; i.e., weights of cement screed (0.8kN/m2), floor finish 
(0.21kN/m2), ceiling plaster (0.45kN/m2) and partition walls (1.5kN/m2), and a live load of 3.0kN/m2 
are considered, resulting in a test load of 6.06kN/m2. In this study, a test load of 8.0kN/m2 was 
applied to the slab; i.e., 5 layers of cement bags, each weighing 1.60kPa (40qtl with an effective 
loaded area of 5.75´4.35m2). The slab has a total dead load of 7.21kN/m2, which includes the weight 
of the concrete (4.25kN/m2) and additional dead loads of 2.96kN/m2. The minimum test load 
required by ACI 318-08 based on Eqn. (1) becomes 12.13kN/m2, taking into account gD of 1.35 and 
gL of 1.5 as the slab was designed following ES-EN 1992-2015 [17]. Therefore, the load requirement 
of ACI 318-08 is satisfied, i.e., the total load intensity applied in the slab, including its weight 
(12.25kN/m2 =8.0+4.25) was not less than the minimum requirement of 12.13kN/m2. 

2.2.3 Loading steps and measurements 

During the test, the behavior of load-deflection response of the slab was checked at each loading 
step. The test load was applied incrementally in five layers as recommended by ACI 318 [15] up to 
the maximum load intensity of 8.0kN/m2 and deflection is measured using LVDT [16]. In addition 
to the deflection measurements, any possible cracks formation, opening/closure of flexural cracks 
were tested and taken after each load increment to monitor the slab's response. The test continued 
until the slab showed signs of failure, which could include excessive deflection, significant crack 
widening, material distress (such as spalling or crushing), or instability in the form of a rapid increase 
in deflection without a corresponding increase in load. Fig. 4 shows a loaded RC slab with cement 
bags. Finally, the loads are removed immediately after all response measurements (deflection and 
crack widths) are made. In each loading and testing steps, safety provisions are properly followed. 
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(a) (b) 

Fig. 4. Surface loads used for loading test a) three layers b) five layers 

3. Results and Discussion  

3.1 Crack Formation 

Fig. 5 presents the cracks seen on top surface of the deck; they are found to be of random pattern 
and distributed in the panel fully indicating a non-structural cause i.e., contraction of the paste. The 
site observations showed that the concrete has been leaking water through the cracks indicating crack 
opening running deep to the depth of the slab. To confirm this, two core samples were taken at 
locations where cracks were visible on the surface. The core samples verified that the cracks 
observed on the top surface extended to the depth of the slab, as illustrated in Fig. 6. For the cracked 
slab under investigation, a maximum crack width of 0.6mm has been measured. 
 

 

 

 
Fig. 5. Cracks observed at deck top surface Fig. 6. Core samples reaching the full depth 

of the slab 

Fig. 7 below shows plastic settlement cracks which run along the directions of top restraints. By 
their nature settlement cracks are known to occur primarily while the concrete is plastic and bleed 
water is still rising and covering the surface. They tend to roughly follow restraining elements such 
as reinforcement bars (see Fig. 8) or change in depth of members. To avoid formation of such cracks 
it is recommended to use mixes with lower bleeding characteristics and increase the ratio of cover 
depth. Bleed of concrete may result from excessive water to cement ratio (greater than 0.50) or 
excessive water reducer dosage that causes free water to rise to the top surface. It is also suggested 
that the finishers wait to proceed until the water evaporates or re-trowel the surface to close the 
settlement crack openings while the concrete is still plastic. 
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Fig. 7. Plastic settlement cracks  Fig. 8. Settlement cracking concept [18] 

Estimation of the water evaporation from the slab surface per area can be made by taking the weather 
information presented in Table 1 and from the chart presented in Fig. 1. Nevertheless, it is worth 
noting that the data presented may not be exactly represent the site situation. Data as reported by the 
National Metrological Data and Climatology Directorate is presented in Table 1  [19]. 
 

Table 1. Weather data of Addis Ababa during the concrete casting dates 

Date 
Maximum 

temperature 
(°C) 

Minimum 
temperature 

(°C) 

Rainfall 
(mm) 

Wind 
speed 
(m/s) 

22 25.7 13.0 0 0.54 
23 25.5 11.2 0 0.41 

 

3.1.1 Possible causes of cracks 

From the information collected, the concrete slabs on the 2nd floor were casted on February 22 and 
23, 2021 and multiple cracks were noticed within 24 hours. These cracks are most likely caused by 
one or a combination of the following reasons: 

i. The concrete was casted in February 2021, when the temperature and humidity were 25.5°C 
and 44%, respectively (which is the maximum temperature and minimum relative humidity 
in the year 2021). This would have resulted in early aged slab cracking due to rapid and 
excessive evaporation of water from the concrete. 

ii. Poor cement quality which can also cause a volumetric shrinkage in the produced concrete. 
However, this cannot be verified without conducting a chemical composition test and 
physical tests on the cement. No sample of the utilized cement was availed to test its quality 
neither did the investigators find a report on its quality by the suppliers. 

iii. Problem in mix proportion of concrete: chemical composition and fineness content of 
cement, excessive use of water to cement ratio, large size of course aggregates and presence 
of excessive fine aggregates are major causes for early-stage shrinkage cracking. As per the 
mix design data provided by the contractor, the concrete mix used in this project is in good 
agreement with the design. However, test results for the constituent materials used for the 
construction of the slabs were not provided and could not be verified. The reported mix 
design followed for making C-25 concrete is presented in Table 2. 
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Table 2. Reported concrete mix design 

Weight 
(kg/m3) 

Water Cement 
(OPC 42.5 N) 

Fine 
aggregate 

Coarse aggregate (max. size) Retarding 
Admixture 10 mm  20 mm  

147 335 693 236 767 0.6 

The specific materials used in making the concrete were said to have been fully utilized, 
making it impossible to extract samples for additional laboratory investigations. 

iv. The contractor may not have used the proper slab curing procedure. As a result of this, 
excessive evaporation of water from the concrete was accelerated and hence the section has 
cracked. Rapid drying of the surface of the concrete due to high temperature caused the slab 
to shrink and crack. Further drying shrinkage resulted a full-depth cracking of the concrete 
slab which propagated to the slab soffit.  

3.1.2 Investigation of curing condition 

Beam and column curing involved the application of water sprinkling, while wet burlap was used to 
cover the slabs. However, based on site observations the assurance of consistent burlap saturation 
through intermittent sprinkling was lacking. Inadequate moisture distribution caused by inconsistent 
burlap saturation could have resulted in non-uniform curing of the concrete. This non-uniform curing 
possibly contributed to differential shrinkage and stress within the concrete, which in turn increased 
the likelihood of cracks forming. Moreover, insufficient moisture during curing likely caused the 
surface of the concrete to dry out too quickly, leading to surface cracks. 

3.1.3 Core strength 

The strength of the core was made in accordance with testing procedures of ACI 214.4R-03 [20] and 
the results showed that the cylindrical strength of the samples complies with the design strength of 
concrete.  

3.2 Performance Assessment of RC Slab 

Structural performance assessment can be carried out using a deterministic or probabilistic approach. 
A deterministic analysis is a conservative method of assessment that determines whether or not the 
structure is safe by taking mean values of all variables with the appropriate factors mentioned in the 
codes [21–23]. On the other hand, a reliability-based analysis of structures is challenging as there 
are lack of design information and uncertainties in random variables [21,23,24]. 

3.2.1 Deterministic analysis 

In this section, design review and performance assessment process of the slab under investigation is 
made deterministically. First, the design was checked using an Extended Three-Dimensional 
Analysis of Building System (ETABS V21.1.0 [25]) software and the results are compared with the 
actual drawings used in the construction. The summary of design review output is shown in Fig. 9 
and the results are summarized in Table 3.  
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(a) 

 

 
(b) 

 

  
(c) (d) 

Fig. 9. Rebar intensity (mm2/m) (a) bottom, x- direction (b) bottom, y-direction 
(c) top, x- direction and (d) top, y-direction 

 
Table 3. Review of reinforcements in slab 

Description Reinforcement areas (mm2/m) 
Support Span (field) 

As,required (mm2/m) 506.94 411.55 348.10 340.30 
As,provided (mm2/m) 628.15 628.15 650.10 417.25 

 

As shown in Table 3, the actual reinforcements provided in the construction of the 2nd floor slab 
satisfy the requirement and are adequate. Moreover, material properties used in the construction are 
in line with the design values. The section capacity for the defective slab was carried out using a 
finite element tool, SHELL-2000 (Reinforced Concrete Sectional Analysis using the Modified 
Compression Field Theory). The geometric and material characteristics are taken from design data 
and field test results. Fig. 10 below shows the geometric and material properties of the defective 
slab. The section is analyzed for its moment capacity for both in the x- and y- directions. The output 
of the software is shown in Fig. 11. In the analysis, as the concrete was cracked at its early stage, 
shrinkage and temperature strains are also considered. The evaluation of the RC slab's flexural 
capacity is summarized in Table 4, where it is evident that the capacity to demand ratio is greater 
than one, indicating that the slab has no substantial structural deterioration and has enough resistance 
to flexural action as indicated in ACI 562 [26]. 
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Table 4. Assessment of flexural capacity of RC slab 
Moment (kN-m/m)  Mxf Myf 

Design moment, demand (1) 17.60 12.90 
Section capacity (Software output) 25.77 19.33 
Design capacity, (multiplied by 0.9) (2) 23.19 17.40 
Capacity to demand ratio (2)/(1) 1.32 1.35 

 

 

(a) 
 

 

 

 
(b) 

Fig. 10. (a) Geometric properties and (b) Material properties for concrete and steel 
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Fig. 11. Analysis Output 

3.2.2 Reliability analysis 

A reliability analysis of the cracked slab under investigation is done by considering different 
variations in material properties (especially compressive strength of concrete and yield strength of 
reinforcing bars), concrete overlay (floor finish), live loads and etc. Furthermore, as construction 
errors affect section capacity, errors in its section dimensions are considered which accounts the 
defects in construction caused by lack of skilled manpower and quality of formworks [27]. In a 
general case, the probability of failure Pf  is defined by the limit state function, g(x) < 0 and it is 
given in Eq. (4) [28]: 
 

Pf = P (g(x) < 0) (4) 

where Pf  is the probability of failure, g(x) is the limit state function, design margin = R(x)-S(x), R(x) 
is the resistance of the section and S(x) is effect of loads. Since bending resistance has a lognormal 
(LN) distribution and load effects have normal (N) distributions [29], the reliability index of the 
structure is estimated using Rackwitz and Flessler expressions given in Eqs. (5) and (6), respectively 
[30]. 
 

𝛽 =
𝜇D E1 − 𝑘

IJ
KJ
L M1 − 𝑙𝑛 E1 − 𝑘 IJ

KJ
LP − 𝜇Q

RS	𝜇D E1 − 𝑘
IJ
KJ
L EIJ

KJ
LT

;

+ 𝜎V;	
 

(5) 

 
𝑘 = (𝑅XY − 𝑟∗)/𝜎DY (6) 

where β is the reliability index, 𝜇𝑅, s𝑅 are mean and standard deviation of the resistance, respectively, 
𝜇𝑠, s𝑆 are mean and standard deviation of total-load effect, respectively, R̀a,σca  are mean and standard 
deviation for the resistance of the approximating normal distributions (equivalent normal 
parameters), respectively, k is a multiplication factor of the standard deviation,  and r* is a design 
point on the failure boundary. 
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Table 5. Statistical distribution of random variables 

No. Random variables Mean 
values 

CoV 
(%) 

Std. 
dev. Distribution References 

1 Yield strength for flexural 
reinforcement steel, fy (MPa) 420 5 21 LN [21,27,29,32] 

2 Cylindrical compressive strength 
of concrete, f’c (MPa) 27 10 2.7 LN [29,32] 

3 Longitudinal bars x-direction, Asx 
(mm2/m) 650 2 13 N [29] 

4 Longitudinal bars y-direction, Asy 
(mm2/m) 417 2 8.3 N [29] 

5 Live load 1.00 25 0.25 N [23,29,32] 
6 Permanent loads (finishing and 

partition loads) 1.00 10 0.10 N [23,29] 
7 Analysis Variable for DL and LL; 

Avdl and Avll 1.00 5 0.05 LN [29,33] 
8 Resistance factor, f 0.90 10 0.09 N [29] 
9 Model uncertainty for the 

resistance and load effects, NR  1.00 4.6 0.046 LN [29] 
10 Slab thickness, ts (mm) 170 0.5 0.85 N [29,32] 
11 Concrete cover, c (mm) 15 10 1.50 N [23] 

The statistical variations of random variables considered in this study is shown in Table 5. Their 
statistical distributions are obtained from literatures, standards, codes and manuals [21,23,27,29,31–
33]. 

To determine the number of possible combinations of random variables, Latin Hypercube Sampling 
(LHS) method is used. LHS method is selected as it permits a limited number of simulations with 
acceptable level of accuracy [21]. The number of possible combinations is computed using Eq. (7) 
[34,35].  
 

𝑛 = 2d (7) 

where n is the number of possible combinations (runs), k is the number of input variables, and it is 
a power of 2; (k = 2m) and m is an integer. 

Table 4 considers 11 input variables (k) where m varies from 3 to 4, resulting in k values of 8 and 
16. The possible combinations of random variables should not be less than 28=256 [34]. This satisfies 
the minimum number of samples required by [36], which specifies that the sample size must be at 
least four times the number of input random variables (in this study, it is 44 = 4´11) if the correlation 
algorithm is used. Hence, in this study, using a built-in LHS design function in MATLAB with mean 
and standard deviation criterion, LHS of 11 factors (random variables) in 256 combinations is 
generated [37] and some of which are shown in Table 6. The data is filtered from erroneous 
combinations using the concept of constrained LHS [38,39], i.e., for instance, the flexural resistance 
factor (strength reduction factor, f) as specified in [15] does not exceed one. 
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Table 6. LHS of 11 factors in 256 runs 

runs  
Random variables (factors) 

f'c fy NR Asx Asy LLf DLf Avll f ts c 
1 26.25 426.15 1.02 638.93 412.70 0.88 0.99 1.05 0.83 169.69 12.67 
2 24.06 398.27 0.93 635.41 417.69 0.81 0.91 0.99 0.87 169.09 11.84 
3 24.30 427.23 1.01 647.91 406.34 1.17 1.10 1.02 0.95 168.87 11.50 
4 29.95 380.31 1.00 638.18 413.88 0.95 1.08 0.98 0.94 169.83 14.29 
. 
. 
. 

256 23.62 382.14 0.96 633.31 416.02 0.97 1.05 0.89 0.90 170.60 

 . 
. 
. 

16.21 

The probabilistic assessment results in terms of design margin for bending moment in x- and y- 
directions are computed and the corresponding probabilistic distribution graphs are presented in Fig. 
12. The reliability indexes of the slab under investigation for bending moments in x- and y- directions 
are computed using Eqn. (5) and they are found to be 5.52 (βMx) and 4.17 (βMy), respectively. Thus, 
the safety index of the slab structure becomes 4.17 with a probability of failure of 10-6 [21]. The slab 
is found to fulfill the minimum requirements for ultimate limit states with medium consequence of 
failure (office and public buildings), with a reliability index limit of 3.8 (for a 50-year return period) 
[21,40]. Furthermore, it satisfies the minimum target reliability index requirement of 2.5 for a slab 
element subjected to bending [41]. 
 

 

Fig. 12. Probabilistic distribution of design margin for moment 

3.3 Verification of capacity of slab by load test 

3.3.1 Load deflection results 

Time-history and record of mid-span deflection of RC slab due to external surface loads are shown 
in Figs. 13 and 14, respectively. From Fig. 14, under the action of various loading steps, it is observed 
that the load-displacement relationship is linear and no opening or closure of cracks have been 
noticed. As there was no nonlinear load-deflection was observed at each loading step, the slab was 
loaded up to the maximum load (8kN/m2). As can be observed from the deflection curve of the RC 
slab, the structure’s deflection due to additional dead and live loads (6.06kN/m2) was found to be 
6.81mm. The deflection of the slab for 5 layers of surface load was measured as 8.68 mm.  

The maximum deflection of the slab, computed from Eqn. (2) becomes 8.89 mm [15]. In all cases, 
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the deflection limit is not exceeded making the slab is reasonably safe against serviceability and 
strength requirements. The result showed that the slab is verified to be safe as it achieved to resist 
the desired load of 8 kN/m2. Furthermore, it was observed that, the residual deflection of the beam 
after removal of the test loads was measured as 0.71mm. This is one-third of the residual deflection 
limit (=2.23mm), which was computed using Eqn. (3). It shows that there was “no evidence of 
failure” as more than 90% of the deflection of the slab was recovered [15]. As a result, even with 
cracks, the structure's strength is satisfactory. 
 

  

Fig. 13. Time-history of deflection Fig 14. Mid-point deflection under surface 
loads 

3.3.2 Crack widths 

During the load test, it was observed that the behavior of the cracks remains unchanged and no 
further movement of cracks was visualized (no opening and closure of cracks: stabilized cracks). 
Thus, the cracks are classified as non-structural cracks and there will not be durability issues of the 
structure, if they are properly treated. 

4. Conclusions 

Even if the RC slab under investigation has many cracks, “no evidence” of failure was observed. 
The adequacy of the slab was verified using numerical analysis and a full-scale load test. Hence, the 
defective reinforced concrete slab is safe against stiffness and strength limits. An overlay with the 
intended thickness indicated in the original drawing is to be constructed by placing mortar over a 
cracked concrete surface, and ACI 224R [42] application procedures should be followed. Alternate 
suitable filler materials should also be used before applying finishing materials to the cracked slab 
and the cracks should not be left untreated. 

The findings of this study provide critical insights into the structural performance of damaged slabs 
under real-world conditions. By assessing the slab's ability to carry loads in a damaged state, this 
research highlights the impact of cracks and other imperfections on structural integrity, and helps 
establish whether repairs or reinforcements are needed to maintain safety and functionality. The 
results can also influence design guidelines for dealing with pre-existing damage in concrete 
structures, suggesting that certain levels of damage may still allow the structure to meet safety 
standards. This research offers a valuable tool for civil engineers, structural inspectors, and facility 
managers who are responsible for assessing the condition of aging or damaged structures. In-situ 
load testing can be applied to buildings, bridges, and other critical infrastructure to determine 
whether they can continue to be used safely without costly, large-scale interventions. This method 
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can also be used to validate the effectiveness of repairs or retrofitting by comparing pre- and post-
repair load-carrying capacity. It’s particularly useful in situations where visual inspections or non-
destructive testing alone are not sufficient to assess the true condition of the slab. 

The study advances the understanding of how in-situ load testing can be applied in practical settings, 
especially in scenarios involving damaged or cracked slabs. It contributes to the body of knowledge 
by demonstrating how this method can be used not only to evaluate structural capacity but also to 
monitor the progression of damage under load. Additionally, it offers a framework for using 
numerical simulations alongside experimental data to provide more comprehensive evaluations of 
concrete structures. The research also underscores the importance of developing tailored guidelines 
for in-situ load testing in damaged conditions, potentially influencing future building codes and 
standards. Future research is recommended to focus on the influence of loading conditions and the 
long-term monitoring and performance evaluation of cracked RC slabs. 
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Abstract 

In this study, the displacements of cantilever beams for various slenderness ratios under point load are analyzed 
using Timoshenko and Bernoulli-Euler beam theories. The variation of the slenderness ratio is achieved only by 
changing the beam length. The results from these theories are compared with those from SolidWorks, which is 
considered a reliable simulation software. With this comparison, the % difference rates between the simulation 
and theoretical results are determined. This study explains under which conditions the Timoshenko and Bernoulli-
Euler beam theories should be applied and evaluates the accuracy of the simulation software. Detailed research 
is carried out to examine its compatibility with these two theories. Some numerical results are presented to 
demonstrate their validity and sensitivity.  

Keywords: Beam bending, Timoshenko beam theory, Bernoulli-Euler beam theory, SolidWorks. 

1. Introduction 

Beams are one of the bar elements frequently used in civil engineering and building design. 
Beams, which are one-dimensional structural elements, are generally in vertical and horizontal 
positions and are exposed to loads in the direction of the bar axis and perpendicular to the bar 
axis. To give examples of places where they are used, we can give some examples such as 
buildings and bridges. However, it is possible to see objects modeled as beams in many parts 
of life. For example, the working principle of the atomic force microscope (AFM) can be given 
as an example of a cantilever beam (see Fig. 1).  

 
Fig. 1. The schematic view of an AFM’s cantilever scanning a sample. a) 3D view of the 

AFM. b) 2D view of the cantilever [1]. 
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The behavior of these elements under loads is of great importance for the safety, durability, and 
design of structures.  Being able to analyze these behaviors accurately is essential for beams to 
be designed both safely and efficiently. Significant studies have been carried out on this subject 
from the past to present. The oldest known study among these studies was carried out by 
Leonhard Euler in 1744 [2]. In this study, Euler examined the displacements and buckling of 
beams and used algebra of variation to obtain these equations. Over the following years, this 
study became the pioneer of many studies to follow. Detailed information about these and the 
historical development of elastic stability can be found in the book “Theory of Elastic Stability” 
by Timoshenko and Gere [3]. There is also a study on the mechanics of materials by Gere and 
Timoshenko, which includes the theory of bending and displacement of beams [4]. Apart from 
these studies, quite extensive studies have been carried out. For example, Wang et al. [5] 
provide definitive solutions for buckling analysis of structural elements and aims to solve 
common problems in engineering structures by analytical methods. Zienkiewicz et al. [6] made 
a comprehensive resource on the finite element method (FEM), and this resource discusses the 
basic principles and applications of FEM in detail and explains how this method can be used to 
solve engineering and scientific problems. Bazant [7] addressed a comprehensive book that 
covers the basic principles of stability analysis, explaining in detail the various theories used to 
study the stability of structural members. Ghali et al. [8] is a comprehensive resource that 
combines classical and matrix methods used in structural analysis. Cook et al. [9] 
comprehensively explained the basic principles, mathematical foundations, and use of FEM in 
engineering practices and show how to use the finite element method in solving engineering 
problems [9]. While Akgöz et al. [10, 11] explained how to use Bernoulli-Euler beam model in 
the bending analysis of single-walled carbon nanotubes, in another study they presented a 
discrete singular convolution method for calculating the deflection analysis of beams resting on 
elastic foundations. Van Vinh et al. [12] investigated the static bending and buckling behaviors 
of bi-directional functionally graded (BFG) plates with porosity. Yaylacı et al. [13] carried out 
a numerical investigation on the vibration and buckling of functionally graded material (FGM) 
beam containing edge crack using FEM and multilayer perceptron (MLP) [13]. Azizi et al. [14] 
conducted a study to find deflection of a beam using finite element method based on Bernoulli-
Euler and Timoshenko beam theories. Oladejo et al. [15] compared the results of deflection 
analysis of cantilever beam with COMSOL program to show its accuracy. Chaphalkar et al. 
[16] described the experimental apparatus and the associated theory which allows to obtain the 
natural frequencies and modes of vibration of a cantilever beam. Also, all the frequency values 
are analyzed with the numerical approach method by using ANSYS finite element package has 
been used. Hodzic [17] described the bending of cantilever beam and its analysis using finite 
element method. He compares the results obtained for boundary conditions with the results 
obtained from ANSYS simulation program. Raj et al. [18] conducted a study on modelling, 
simulation and analysis of cantilever beams by using ANSYS & MATLAB and theoretically 
by FEM for the evaluation of natural frequency and mode shape. Quang et al. [19] analyzed a 
three-span continuous beam using FEM and ANSYS via GUI method and APDL parameters. 
Ho et al. [20] compared the experimental results on deflection values of aluminum beam with 
the results calculated by FEM. SolidWorks 3D CAD software is used to build the beam model 
and perform finite element analysis. Samal et al. [21] investigated the deflection and stress 
distribution in a long, slender cantilever beam of uniform rectangular cross section made of 
linear elastic material properties that are homogeneous and isotropic. Finite element analysis of 
the beam was done considering various types of elements under different loading conditions in 
ANSYS 14.5. Balart Gimeno et al. [22-24] conducted some studies using the finite element 
method and the SolidWorks program. Onimowo [25] investigated the deflection and bending 
stress in a cantilever beam having a uniform rectangular cross section with a point load using a 
3D Finite Element (FE) model. The results are validated using Bernoulli-Euler’s elastic curve 
theory equations. Ya et al. [26] calculated the deflection of a cantilever beam was simulated 
under the action of uniformly distributed load. Then, compared the results obtained from the 
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simulation with the results of Artificial Neural Networks (ANN). Talebi Rostami et al. [27] 
analyzed a Timoshenko beam with snowflake cross-section for different boundary conditions 
and variable properties. The equation of motion was solved with FEM and compared with the 
SolidWorks simulation. Gao [28] carried out deflection analysis of beams with the help of 
COMSOL program according to the finite element method and compared it with the results 
obtained from Timoshenko and Bernoulli-Euler beam theory. Onwubolu [29] presented to be 
an important resource for today's studies with his book on the use of SolidWorks. 

As mentioned above, many studies have been carried out on this subject to date, since the 
concept of displacement has a decisive role in the design of structural elements exposed to 
loads. In this study, Bernoulli-Euler and Timoshenko beam theories will be compared for beams 
with different slenderness ratios that change as the cross-section changes along the beam length. 
Then, these results will be compared with SolidWorks, one of the simulation programs widely 
used in engineering design. 

Bernoulli-Euler beam theory is one of the best-known and most used theories in engineering. 
This theory was developed by Jakob Bernoulli and Leonhard Euler in the 18th century. This 
beam theory is also known as thin beam theory or engineering beam theory. In Bernoulli-Euler 
beam theory, collapse and load-carrying behaviors are calculated. There are some assumptions 
in Bernoulli-Euler beam theory. In the approach of the Bernoulli-Euler beam theory, each beam 
section is perpendicular to the beam axis in case of bending. Bernoulli-Euler beam theory is 
independent of y-axis [30]. Therefore, the stresses in y-axis are neglected and the beam is 
assumed to have a straight axis. Due to these assumptions, Bernoulli-Euler beam theory is a 
simple beam theory to solve and use. Due to these negligible values, applying Bernoulli-Euler 
to beams with a high slenderness ratio will give us more accurate options. Because shear 
deformation and moment of inertia effects are less effective in beams with a high slenderness 
ratio. 

Timoshenko beam theory was presented by Stephen Timoshenko in the early 20th century [31]. 
This beam theory has been one of the most widely used beam theories since it was presented. 
This is because, in addition to Bernoulli-Euler beam theory, it also uses values of shear 
deformation and moment of inertia due to shear force. Therefore, Timoshenko beam theory can 
be considered as an advanced version of the Bernoulli-Euler beam theory. Due to the shear 
deformation and moment of inertia values taken into calculation in the Timoshenko beam 
theory, it is expected that the Timoshenko beam theory will always give more accurate results 
than the Bernoulli-Euler beam theory. The deformed shapes of these two beam models are 
depicted in Fig. 2. 

 
Fig. 2. Comparison of Timoshenko and Bernoulli-Euler beam deformations 
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Fig. 3. Cantilever beam with rectangular cross-section 

A schematic configuration of a cantilever beam with length L, height h, and width b is shown 
in Fig. 3. Timoshenko beam theory is also known as first-order shear deformation beam theory 
because it gives better results in such thick beams compared to Bernoulli-Euler beam theory. 
So, Bernoulli-Euler and Timoshenko beam theories are the two main approaches used in the 
deformation analysis of beams and have their advantages and disadvantages. Bernoulli-Euler 
beam theory is widely preferred because of its simplicity of solution and its realistic results on 
long beams. However, Bernoulli-Euler beam theory cannot provide sufficient accuracy for short 
and thick beams because it neglects shear deformation and moment of inertia. Although the 
Timoshenko beam theory involves a more complex mathematical solution, it gives more 
accurate results with the values of shear deformation and moment of inertia included in the 
calculation. Comparing the performances of these two theories on beams with different 
slenderness ratios is important to determine which theory is more suitable for engineering and 
structural design. Comparison of these two beam theories with the analysis and simulation 
software widely used in today's engineering applications will help us to see the compatibility 
between the theories and the software packages. 

In this study, SolidWorks is chosen as the software to compare the theories. SolidWorks is a 
widely used software in engineering design. SolidWorks can perform detailed analysis of beams 
with complex geometries and load conditions using FEM. The simulation tools offered by 
SolidWorks provide the opportunity to analyze the behavior of beams under static and dynamic 
loads in detail. This study aims to examine how compatible SolidWorks simulations are with 
the theoretical results obtained with Bernoulli-Euler and Timoshenko beam theories. 
Particularly, which theory is more appropriate to use in displacement analyses of beams with 
different slenderness ratios, by comparing these theories with SolidWorks results, the validity 
and accuracy of the theories in practical applications will be tested. The results of the study will 
be a guide to providing more effective and reliable solutions in beam design.  
 
2. Theory and Formulation 
 
As shown in Fig.4, when a point load (P) of 1000 N is applied to a homogeneous cross-section 
cantilever beam with constant material properties from its non-fixed end, the displacement 
value according to Bernoulli-Euler beam theory can be expressed as follows: 
From the moment-curvature relationship, we know that: 
 

−𝐸𝐼
𝑑%𝑤
𝑑𝑥%

= 	𝑀(𝑥)	 (1)	 
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where E is the modulus of elasticity, I is the moment of inertia, and M(x) is the bending moment 
at a distance x, and .

/0
.1/

 is the curvature of the beam. The bending moment at a distance x from 
the free end is given by, 𝑀(𝑥) = 	−𝑃𝑥. 
 

 
Fig. 4. Homogeneous, cantilever beam modeled in SolidWorks. 

 

𝐸𝐼
𝑑%𝑤
𝑑𝑥%

= 	−𝑀(𝑥) = 𝑃𝑥	 (2)	 

 
𝑑%𝑤
𝑑𝑥%

= 	
𝑃
𝐸𝐼
𝑥	 (3)	 

 
Now, double integrating the above equation yields, 
 

𝑑𝑤
𝑑𝑥

= 	
𝑃
𝐸𝐼
5𝑥	𝑑𝑥 	 (4) 

 
𝑑𝑤
𝑑𝑥

= 	
𝑃
2𝐸𝐼

	𝑥% +	𝐶9	 (5) 
 

𝑤 =	5;
𝑃
2𝐸𝐼 𝑥

% +	𝐶9<𝑑𝑥 	 (6) 

 

𝑤 =	
𝑃𝑥>

6𝐸𝐼
+	𝐶9𝑥 +	𝐶%	 (7) 

 
Putting the boundary condition as 𝑤 = 0 and .0

.1
= 0 at 𝑥 = 𝐿, the integral constants are 

determined as 
 

 𝐶9 = 	−	
BC/

%DE
 , 𝐶% = 	

BCF

>DE
     (8) 

 
So, deflection at any point at distance x from the free end is given by, 
 

𝑤(𝑥) = 	
𝑃𝑥>

6𝐸𝐼
−	
𝑃𝐿%

2𝐸𝐼
𝑥 +	

𝑃𝐿>

3𝐸𝐼
	 (9) 
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The deflection at the free end of the rectangular cantilever beam is 
 

𝑤(0) = 	
𝑃𝐿>

3𝐸𝐼
	 (10) 

 
and the moment of inertia is 

𝐼 = 	
𝑏ℎ>

12
	 (11) 

 
It can be defined as: Again, for a homogeneous cross-section cantilever beam with constant 
material properties, the displacement value according to Timoshenko beam theory can be 
expressed as follows: 
 
Let us assume that the clamped end is at	𝑥 = 𝐿	and the free end is at 𝑥 = 0. If a point load P is 
applied to the free end in the positive y direction, a free-body diagram of the beam gives us 
 

−𝑃𝑥 −	𝑀(𝑥) = 0	 → 	𝑀(𝑥) = 	−𝑃𝑥	 (12) 
  

𝑃 + 	𝑄(𝑥) = 0	 → 	𝑄(𝑥) = 	−𝑃	 (13) 
 
Therefore, from the expressions for the bending moment and shear force, we have 
 

𝑃𝑥 = 𝐸𝐼
𝑑𝜑
𝑑𝑥 	𝑎𝑛𝑑,−𝑃 = 𝑘𝐴𝐺	 ;−𝜑 +	

𝑑𝑤
𝑑𝑥< .

(14) 

 
where 𝑘 is the shear correction factor, G is the shear modulus, A is the cross-sectional area, and 
𝜑 is the angle of rotation of the cross-section. Integration of the first equation, and application 
of the boundary condition 𝜑 = 0 at 𝑥 = 𝐿, leads to 
 

𝜑(𝑥) = 	−
𝑃
2𝐸𝐼 	

(𝐿% − 𝑥%). (15) 
 
The second equation can then be written as 
 

𝑑𝑤
𝑑𝑥

= 	−
𝑃
𝑘𝐴𝐺

−	
𝑃
2𝐸𝐼

	(𝐿% − 𝑥%). (16) 
 
Integration and application of the boundary condition 𝑤 = 0 at 𝑥 = 𝐿 gives 
 

𝑤(𝑥) = 	
𝑃	(𝐿 − 𝑥)
𝑘𝐴𝐺

−	
𝑃𝑥
2𝐸𝐼

	T𝐿% −	
𝑥%

3
U +	

𝑃𝐿>

3𝐸𝐼
	 (17) 

 
The deflection at the free end of the cantilever beam is 
 

𝑤(0) = 	
𝑃𝐿
𝑘𝐴𝐺

+	
𝑃𝐿>

3𝐸𝐼
	 (18) 

 
Since all these variables will change with the material we choose and the dimensions of the 
beam, we need to give the properties and dimensions of the material we choose: 
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Table 1. The values used in this study for an aluminum (5052-O) homogeneous cantilever beam 
Variable Symbol Value Unit 

Singular Load P 1000 N 
Length L 250,500,…,5000 cm 
Height h 50 cm 
Width b 50 cm 

Cross-Section Area A bh cm2 
Moment of Inertia I bh3/12 cm4 
Young's Modulus E 7000000 N/cm2 

Poisson’s Ratio v 0.33 - 
Shear Correction Factor k 5/6 - 

Shear Modulus G E/(2+2v) N/cm2 

As can be seen in Table 1, these values are repeated each time by increasing the length by 250 
cm to provide different slenderness ratios. 

3. Results and Discussion 

In this section, the displacement behavior of homogeneous cross-section beams with variable 
slenderness ratios under load is examined within the framework of slenderness ratios. Results 
are given for the cases where one end of the beam is fixed and the other end is free. Firstly, a 
comparison was made with the SolidWorks simulation program to prove the validity and 
sensitivity of the solution methods used. The Solidworks simulation program separated this 
cantilever beam into a certain number of finite elements as seen in Fig. 5.   

In Table 2, the maximum displacement values of homogeneous cantilever beams are compared 
with the SolidWorks simulation of Timoshenko and Bernoulli-Euler beam theories for various 
slenderness ratios. When the results are examined (examining the analysis result screen in Fig. 
6. may also give an idea.), it can be said that the results obtained in this study are in excellent 
agreement with the other results. 

 

Fig. 5. Separation of the beam into finite elements. 
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Fig. 6. Analysis result screen 
 

Table 2. Comparison of beam theories with SolidWorks on the maximum displacements (cm) 
with respect to various slenderness ratios 

Slenderness Ratio (L/h) Bernoulli-Euler Timoshenko SolidWorks 
5 0,001428571 0,001474171 0,001475231 
10 0,011428571 0,011519771 0,011521892 
15 0,038571429 0,038708229 0,038711405 
20 0,091428571 0,091610971 0,091615212 
30 0,308571429 0,308845029 0,308851331 
40 0,731428571 0,731793371 0,731801891 
50 1,428571429 1,429027429 1,429038048 
60 2,468571429 2,469118629 2,469130993 
70 3,920000000 3,920638400 3,920653152 
80 5,851428571 5,852158171 5,852175236 
90 8,331428571 8,332249371 8,332266808 
100 11,428571430 11,42948343 11,42950439 

 
Table 3. Comparison of % differences in maximum displacements with respect to various 

slenderness ratios 
Slenderness Ratio 

(L/h) 
Bernoulli-Euler –Timoshenko % 

Difference 
Timoshenko – SolidWorks % 

Difference 
5 3,093263044 1,234213101 
10 0,791682375 0,523117832 
15 0,353413228 0,465995258 
20 0,199102790 0,399235343 
30 0,088588119 0,297550460 
40 0,049850137 0,243612856 
50 0,031909814 0,266442410 
60 0,022161754 0,181457275 
70 0,016283062 0,145875785 
80 0,012467195 0,138543153 
90 0,009850881 0,127191497 
100 0,007979363 0,108483805 
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Table 4. Number of Nodes - Number of Elements Comparison of SolidWorks Analyses 
Slenderness Ratio 

(L/h) 
Number of 

Nodes 
Number of 
Elements 

5 25 23 
10 39 37 
15 50 48 
20 60 58 
30 79 77 
40 95 93 
50 110 108 
60 124 122 
70 137 135 
80 149 147 
90 161 159 
100 173 171 

The % differences between the displacement values of a homogeneous cantilever beam for 
different slenderness ratios are tabulated in Table 3 and plotted in Fig. 7. It can be observed that 
the % difference of Bernoulli-Euler beam theory gradually decreases as the slenderness ratio 
value increases. Timoshenko beam theory, on the other hand, despite its low % difference, has 
a % difference value that decreases even more as the slenderness ratio increases. 

 

 
Fig. 7. Comparison of % differences 

Fig. 8. and Table 4 show the Number of Nodes - Number of Elements. As can be seen here, the 
relationship between Number of Nodes - Number of Elements has a constant increase. 
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Fig. 8. Comparison of Number of Nodes - Number of Elements 

 

4. Conclusions 

In this study, the displacement behavior of cantilever beams with homogeneous cross-sections 
and various slenderness ratios subjected to point load was examined. The results obtained using 
Bernoulli-Euler and Timoshenko beam theories are compared with the results obtained from 
the simulation program SolidWorks. While it has been observed that the Timoshenko beam 
theory produces results very close to the simulation program values and the % difference 
decreases as the slenderness ratio increases, it has also been observed that the Bernoulli-Euler 
beam theory obtains results very close to reality as the slenderness ratio increases. With this 
inference, Timoshenko beam theory produces results very close to reality in beams with low 
slenderness ratio, while Bernoulli-Euler produces results very close to reality and very close to 
the results obtained from Timoshenko beam theory in beams with high slenderness ratio. In 
other words, it has been concluded that the effect of shear deformation and moment of inertia 
values, which are effective in Timoshenko beam theory, on the displacement value decreases 
as the slenderness ratio increases. Moreover, if we compare all the data we obtained, we see 
that SolidWorks gives us results very close to the theoretical solution. For this reason, when it 
is not possible to make a theoretical solution, when larger and more complex problems need to 
be solved in a shorter time, very good results can be obtained with SolidWorks. Since 
SolidWorks makes a solution based on FEM, no matter how large or complex the systems are, 
good results can be obtained as long as proper modeling is done. In addition, when the results 
obtained in this article are interpreted properly, correct inferences can be made at the 
nanomechanics and can be used to give ideas in studies to be carried out at the nanomechanics. 
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Abstract 

Organic Rankine Cycles (ORCs) are identified as one of the most promising technologies for generating electricity 
from low-grade heat sources. Unlike conventional Rankine cycles, ORCs operate at lower temperatures and 
pressures. This allows them to utilize organic fluids or refrigerants as the working fluid instead of water, which is 
better suited for high-pressure and high-temperature applications. The performance and design of an ORC system 
are heavily dependent on the chosen working fluid. Therefore, selecting the right working fluid is crucial for a 
specific application, such as solar thermal, geothermal, or waste heat recovery. This study analyzed the 
performance of ORCs using four different working fluids: R-134a, R-245fa, R417A, and R422D. The researchers 
investigated how variations in condensation and evaporation temperatures affect thermal efficiency, mass flow 
rate, pump power, and turbine pressure ratio. The Engineering Equation Solver (EES) program was used for 
analyses. The results demonstrated that condensation and evaporation temperatures significantly influence system 
performance. The study found that ORC systems using R417A and R422D exhibited higher efficiencies compared 
to the other working fluids analyzed. Additionally, these fluids required lower mass flow rates per unit of power 
generation compared to the other fluids. 

Keywords: Organic Rankine Systems, Working fluids, Performance. 

1. Introduction 

As human society advances, we confront a growing energy crisis and environmental challenges 
due to our energy consumption. Fortunately, a solution exists: utilizing medium-low grade 
thermal energy. This includes recovering waste heat and employing renewable and sustainable 
energy sources. The Organic Rankine Cycle (ORC) has emerged as a popular and promising 
technology for harnessing this abundant, yet often underutilized, energy source [1-4].  

Several review papers on Organic Rankine Cycles (ORCs) have emerged in recent years. Park 
et al. focused on performance of experimental ORC, analyzing and reporting key data on 
prototypes, developed systems, and current trends [5]. Focusing on waste heat recovery, 
Tartière and Astolfi analyzed the evolution of the ORC market and its diverse applications. 
Additionally, they explored the technology's future prospects and potential for market growth 
[6]. Pethurajan et al. conducted a bibliographic review on selecting turbines for ORCs and their 
applications in topping or bottoming cycles [7]. Additionally, Haghighi et al. and Ahmadi et al. 
presented bibliographic reviews on geothermal ORCs. Both studies focused on analyzing basic 
ORCs, ORCs with recuperators, and regenerative ORCs for electricity generation [8,9]. 
Haghighi et al. primarily concentrated on modeling and optimizing ORCs using various 
working fluids, reporting energy and exergy efficiency values [9]. Ahmadi et al. carried out a 
comprehensive analysis focusing on economic factors like levelized cost of electricity and 
electricity production cost. Their study also included a comparative analysis of these factors 
with conventional power generation systems, expanding their findings [8]. Finally, Wieland et 
al. discussed recent advancements and future market perspectives for ORCs. While these 
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reviews cover diverse topics, they primarily center on basic ORC systems. Several studies have 
focused on identifying optimal working fluids for ORCs from a thermodynamic perspective 
[10]. Zhang et al. investigated 57 fluids by analyzing their saturated vapor curves. They 
categorized the fluids into wet, dry, and isentropic classifications. Their research showed that 
the area of the triangle formed by the critical point and the saturated conditions at the turning 
point has a significant impact on performance of system. Notably, R123 fluids exhibited the 
best performance among the studied fluids [11]. A new method for finding the best working 
fluids for low temperature ORC applications is described by Györke et al. and Imre et al. The 
method uses a relationship between a specific property of the working fluid in its saturated 
vapour state to identify optimal fluids for low-temperature ORCs [12,13]. Blondel et al. 
investigated zeotropic mixtures as potential working fluids of ORCs. They suggested new, 
semi-empirical heat transfer correlations for both evaporator and condenser processes. 
Additionally, they evaluated how heat source characteristics (low and high temperatures) affect 
cycle performance. Interestingly, their findings suggest that zeotropic mixtures with low 
temperature glide values may not offer significant performance advantages compared to pure 
fluids [14]. Yang et al. investigated the connection between critical temperatures and boiling 
temperatures for a wide range of over 250 potential working fluids in ORCs. The relationship 
between critical temperature and maximum net power remained significant even with variations 
in reduced boiling temperature, specifically within the temperature range of 150 °C to 200 °C 
[15]. A method to directly link specific properties of working fluids to the overall performance 
of an ORC system by Fan et al. was developed [16]. Zhang and Li investigated the behavior of 
"super-dry" working fluids in regenerative ORC systems designed for medium and low 
temperature heat sources [17]. Bahrami et al. reviewed low GWP working fluids for ORC 
applications. Their study explored methodologies for selecting working fluids and considered 
alternative options such as hydrocarbons, hydrofluorochemicals, and even mixtures [18]. 

In this study, the effect of condensation and evaporation temperatures on performance of the 
system operating with 4 different working fluids accepted to be used in ORC systems in the 
literature was investigated. There are many studies on ORC systems. In this study, unlike the 
literature, comparative thermodynamic analysis of R134a, R417A, R422D (isentropic) and 
R245fa (dry) working fluids were performed.  Thermodynamic analysis was performed using 
the EES program. 

2. ORC System Description  

A basic ORC system comprises four fundamental components: a condenser, an evaporator, an 
expander, and a pump. Figure 1 shows the basic configuration of an ORC system. As shown, 
the liquid is pumped to a higher-pressure state (2) from a saturated condition (1) by the pump 
prior to entering the evaporator. In the evaporator, heat is introduced, resulting in the 
evaporation of the liquid (3). Subsequently, the working fluid expands in the expander (4), 
thereby generating power as its pressure decreases. Subsequently, the fluid enters the 
condenser, where it undergoes a phase transition back into a liquid state (1), thereby completing 
the cycle. This ORC system is sometimes called a single-stage ORC due to its use as the single 
evaporator [19].  
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Fig.1. Schematic diagram of basic an ORC system 

3. Working Fluid Selection 

The selection of a working fluid for an ORC system is crucial. The type of fluid directly affects 
the cycle's operating parameters and overall efficiency. The shape of a working fluid's 
saturation vapor curve is a critical property for ORC systems. This characteristic significantly 
impacts the fluid's suitability, the cycle's overall efficiency, and even the configuration of 
equipment needed within the power generation system [20,21].  The temperature-entropy (T–
s) diagram typically shows three categories of vapor saturation curves (Fig. 2). These categories 
are: 

• Dry fluid: The curve has positive slopes. 
• Wet fluid: The curve has negative slopes. 
• Isentropic fluid: The curve has slopes approaching positive infinity. 

Because the saturation vapor curve for a wet fluid has a negative slope, the turbine's outlet 
stream typically contains a significant amount of saturated liquid. The presence of liquid inside 
the turbine can damage the turbine blades and also reduce the turbine isentropic efficiency. The 
amount of vapor remaining in the turbine outlet (dryness fraction) needs to be above 85%. To 
achieve this dryness requirement with a wet working fluid entering the turbine, superheating is 
necessary. However, superheating comes with drawbacks. Heat transfer in the vapor phase has 
a lower coefficient, which significantly increases the required heat transfer area and 
consequently raises the cost of the superheater. Additionally, superheaters can introduce other 
operational challenges. Fortunately, 'isentropic' and 'dry' fluids eliminate the need for 
superheating altogether. This avoids the potential damage caused by liquid droplets impacting 
the turbine blades. Since superheating is not required, there's no need for the additional 
equipment associated with it. Therefore, 'dry' or 'isentropic' working fluids are better suited for 
ORC systems [21]. Therefore, dry (R245fa) and isentropic (R134a, R417A, and R422D) 
working fluids are selected in this study. Table 1 provides information on working fluid 
properties and selection criteria. 
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Fig. 2. Diagrams T–s for different fluids (a) wet,(b) isentropic and (c) dry [20]. 
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Table 1. Working fluid properties and selection criteria [22]. 

Refr. 
Critical 
temp. 
(oC) 

Critical 
pressure  
(MPa) 

Normal 
boiling 
point  
(oC) 

Ozone 
depleting 
potential 
(ODP) 

Global 
warming 
potential 
(GWP) 

Safety 
level 

(Ashrae) 

Heat 
source 
temp. 
(oC) 

Remarks 

R134a 101.06 4.0592 -26.3 0.06 1430 A1 80.848 

Due to its negative 
boiling point, 
R134a is an 
appropriate 
isentropic working 
fluid for small 
systems. 

R417A 87.04 4.036 - 0.0 2346 A1 69.632 
It is accepted that 
R417A is a 
zeotropic fluid 

R422D 79.56 3.903 - 0.0 2729 A1 63.648 
It is accepted that 
R422A is a 
zeotropic fluid 

R245fa 154.05 3.640 15.0 0.0 1030 B1 123.24 

R245fa is a dry 
working fluid. With 
due consideration 
of the relevant 
environmental 
parameters, it is 
therefore deemed to 
be acceptable. 

4. Research Method 

Thermodynamic analysis of the ORC system is based on applying the mass and energy 
equations for each process, as shown in Figure 1. The thermodynamic analysis was carried out 
using the Engineering Equation Solver (EES). The ORC system consists of four main 
components: condenser, pump, evaporator, and turbine, which are steady-state flow devices. 
Therefore, the four processes that make up the ORC can be treated as a steady flow process, 
and these processes can be analyzed using the relevant thermodynamic equilibrium and 
equations expressed as [23,24]: 
 
 (𝑄#$ − 𝑄&'() + +𝑊- −𝑊(. = 𝑚1(ℎ&'( − ℎ#$) (1) 

The processes of evaporator and condenser do not any input of work and the pump and turbine 
can be regarded as isentropic. Therefore, the relationship between the input and output energies 
for each of these components can be expressed as follows: 

a) The power required for the pumping of the condensed liquid working fluid to the intake side 
of the boiler is calculated using the following equation: 
 
 𝑊- =

34(567	59)
h:

 (2) 

b) In a boiler, heat is introduced to the liquid working fluid, resulting in a phase change to a 
gaseous state. Using the following formula, the boiler's necessary calorific value is determined: 
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 𝑄#$ = 𝑚1(ℎ; −	ℎ<) (3) 

c) The turbine power is produced by the expansion of the working fluid from a high-pressure 
state to a condensing state in gaseous form; the output power is determined by the following 
equation: 
 
 𝑊( = 𝑚1h((ℎ= −	ℎ>) (4) 

d) For the condenser, a specific quantity of heat is released into the environmental air. This heat 
released can be calculated using the following equation: 
 
 𝑄&'( = 𝑚1(ℎ? −	ℎ@) (5) 

The following formula is used to calculate thermal efficiency, which is usually used to assess 
the effectiveness of ORC systems: 
 

 h(5 =
ABCD
EFG

= +AD7A:.
EFG

 (6) 

The parameters and assumptions presented in Table 2 have been selected on the basis of the 
operational ranges of ORC systems that have been employed as small-scale power plants. 

Table 2. Parameters and assumptions used in research 

Parameter Unit Value 

Turbine output power kW 60 

Turbine inlet temperature oC 77; 75; 72; 69; 66; 63 

Condensing temperature oC 28; 31; 34; 37; 40; 43 

Turbine isentropic efficiency  0.82 

Pump isentropic efficiency  0.73 

5. Result and Discussion 

The mass flow rate, pumping power consumption, turbine pressure ratio and thermal efficiency 
of the ORCs for four fluids have been calculated for a range of evaporator temperature, as seen 
in the Figures 3-6. Fig. 3 gives the effect of evaporation temperature on the mass flow rate of 
the working fluids in the ORC system with the condensation temperature held constant at 34 
oC. It can be seen that increasing the evaporation temperature results in a decrease in the mass 
flow rate of the working fluids in the system. The mass flow rate of R422D and R417A are 
lower than R134a and R245fa. 
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Fig. 3. Effect of evaporation temperature on mass flow rate of working fluid at Tcondensing=34oC 

Fig. 4 presents the effect of evaporation temperature on the pumping power consumption of the 
working fluids in the ORC system with the condensation temperature held constant at 34 oC. 
The pumping power with increasing the evaporation temperature in the system decrease for 
R134a and R245fa. However, in the ORC system operating with R422D and R417A fluids, it 
was observed that the pumping power increased with increasing evaporator temperature.  The 
pumping power to circulate R134a is much greater than the other three working fluids.  

 

 
Fig. 4 Effect of evaporating temperature on pumping power consumption at Tcondensing =34oC 

Fig. 5 shows the turbine pressure ratio against the evaporating temperature for four different 
working fluids. The turbine pressure ratio of all four refrigerants increases as the evaporating 
temperature increases. The ORC system using R245fa has a higher turbine pressure ratio of 
40% compared to the other three working fluids.  
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Fig.5 Effect of evaporation temperature on pressure ratio in turbine at Tcondensing =34oC 

Fig. 6 shows that the thermal efficiency of working fluids decreases as the evaporating 
temperature increases.  R422D and R417A is the most efficient fluids at all evaporating 
temperatures, followed by R134a and R245fa.  

 

 
Fig. 6. Effect of evaporation temperature on system thermal efficiency at Tcondensing=34oC 

Fig. 7 gives the mass flow rate of four different refrigerants (R134a, R245fa, R417A, and 
R422D) as a function of condensing temperature at 72oC evaporation temperature. The mass 
flow rate increases as the condensing temperature increases for all four refrigerants. R245fa has 
the highest mass flow rate, followed by R134a, R422D, and R417A.  
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Fig. 7. Effect of the condensation temperature on the mass flow rate of the working fluid at 

Tevaporating=72oC 

As can be seen Fig. 8, as the condensation temperature increases, the pumping power required 
will also increase. Although the mass flow rate of R245fa is higher than that of R134a, the 
pumping power used to circulate R245fa in the ORC system is % 53 lower than that of R134a. 
The pumping power to R134a is much greater than the other three working fluids. 
 

 
Fig. 8. Effect of condensing temperature on pumping power consumption at Tevaporating=72oC 

Fig. 9 shows that the turbine pressure ratio decreases as the condenser temperature increases. 
This is because the turbine pressure ratio is a measure of the turbine efficiency, and the 
efficiency of the turbine decreases as the condenser temperature increases. The ORC system 
using R245fa has a higher turbine pressure ratio of compared to the other three working fluids. 
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Fig. 9. Effect of condensation temperature on pressure ratio in turbine at Tevaporating=72oC 

Fig. 10 presents the relationship between the condensing temperature and the efficiency of four 
different refrigerants. The efficiency of all four fluids decreases as the condensing temperature 
increases. However, the thermal efficiency varies depending on the working fluid. R422D and 
R417A have the highest thermal efficiency, followed by R134a and R245fa. 

 

 
Fig. 10. Effect of condensation temperature on system thermal efficiency at Tevaporating=72oC 

6. Conclusions 

This study examines the possible future use of isentropic (R134a, R422D and R417A) and dry 
(R245fa) acceptable working fluids in ORC systems. The study found that ORC systems using 
R417A and R422D exhibited higher efficiencies compared to the other working fluids analyzed. 
Since evaluating the optimal performance for each working fluid individually can be 
challenging, a common approach involves simulating the cycle using a thermodynamic model. 
This allows for a direct comparison of four working fluids against R422D and R417A. The 
study revealed that thermal efficiency rises with increasing evaporator temperature but falls as 
condenser temperature increases. Notably, this research identified R422D and R417A as 
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working fluids that deliver significantly improved efficiencies across a range of operating 
conditions compared to other organic Rankine cycle (ORC) fluids. 
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