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Abstract. In this research, by using the principle of quantum calculus, we introduce a
modified fractional derivative operator T ξ,𭟋

q,ς of the analytic functions in the open unit disc
♢ = {ς : ς ∈ C, |ς| < 1}. The operator T ξ,𭟋

q,ς can then be used to introduce a new subclass of
analytic functionsD

⊕
(ϑ, 𭟋, d, ξ, γ; q). We present the necessary conditions for functions

belonging to the subclass D
⊕

(ϑ, 𭟋, d, ξ, γ; q). Furthermore, we discuss a growth and
distortion bounds, the convolution condition, and the radii of starlikeness. In addition,
we present neighbourhoods problems involving the q-analogue of a modified Tremblay
operator for functions in the introduced classD

⊕
(ϑ, 𭟋, d, ξ, γ; q).

1. Introduction

Let ♢ = {ς : ς ∈ C, |ς| < 1} denote the open unit disc and A the class of functions ℏ(ς)
of the form

ℏ(ς) = ς +
∞∑
κ=2

aκςκ, (ς ∈ ♢) (1.1)

that are analytic in the open unit disc ♢. Furthermore, let S be the subset of A consisting
of one-to-one (univalent) functions in ♢.

The convolution of functions ℏ as in (1.1) and the function

y(ς) = ς +
∞∑
κ=2

γκς
κ,

is defined by:

(ℏ ∗ y)(ς) = ℏ(ς) ∗ y(ς) = ς +
∞∑
κ=2

aκγκςκ.
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The fractional q-calculus is an extension of ordinary fractional calculus, and it has become
increasingly popular in recent decades due to its wide range of applications in various fields
of science and engineering, particularly mathematics ([12], [20]). The concept of frac-
tional q-calculus was introduced by Al-Salam and Verma [4], Al-Salam [5], and Agrawal
[1]. They also explored some basic properties of fractional q-derivatives. In addition,
Isogawa et al. [14] investigated some fundamental properties of fractional q-derivatives.
Several problems involving fractional q-calculus operators have recently been recognized
([2, 15, 16, 17, 21, 24, 25]). In 2011, Garg and Chanchlani [13] defined a q-analog of
Saigo’s fractional integrals. Two authors, Exton [10] and Gasper [11], have written books
about q-calculus.

The following are the notations and definitions again for main terms in q-calculus, which
may be found in Gasper and Rahman [11] and Purohit and Rania [18], as follows:

1) The q-shifted factorial (ϑ, q)κ is defined for ϑ ∈ C and 0 < q < 1 by:

(ϑ; q)κ = (qϑ; q)κ =


κ−1∏
ı=0

(1 − ϑqı) , κ > 0

∞∏
ı=0

(1 − ϑqı) , κ→ ∞.

(1.2)

Equivalently,

(ϑ; q)κ =
Γq(ϑ + κ)(1 − q)κ

Γq(ϑ)
, (1.3)

where the q-gamma function (see for example Gasper and Rahman [11]), is given
by

Γq(ϑ) =
(q, q)∞

(qϑ, q)∞(1 − q)ϑ−1 , ϑ , 0,−1,−2, . . . . (1.4)

2) [?] For 0 < q < 1. The q-derivative, also known as the q-difference operator, of a
function ℏ is defined by

∂qℏ(ς) =



ℏ(ς)−ℏ(qς)
ς−qς

, if ς , 0,

ℏ′(0), if ς = 0,

ℏ′(ς), if q→ 1−, ς , 0.

. (1.5)

3) The q-Jackson’s integral of a function ℏ is defined by:∫ ς

0
ℏ(ג)∂qג = ς (1 − q)

∞∑
κ=0

q
κℏ(qκς),

provided that the series converges.

In 2010, Purhot and Yadav [18] introduced fractional integral operator and fractional de-
rivative operator by
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Definition 1.1. [18] The fractional integral operator Iϑq,ςℏ(ς), which operates on a function
ℏ(ς) of order ϑ (ϑ > 0), is defined as follows:

Iϑq,ςℏ(ς) =
1
Γq(ϑ)

∫ ς

0
(ς − τq)ϑ−1ℏ(τ)∂qτ,

Here, ℏ(ς) is an analytic function in a simply-connected region of the ς-plane that in-
cludes the origin.

Definition 1.2. [18] The fractional derivative operator Dϑ
q,ςℏ(ς) of a function ℏ(ς) of order

ϑ (0 ≤ ϑ < 1) is defined as

Dϑ
q,ςℏ(ς) = ∂qIϑq,ςℏ(ς) =

1
Γq(1 − ϑ)

∂q

∫ ς

0
(ς − τq)ϑ−1ℏ(τ)∂q τ.

Definition 1.3. [18](Extended Fractional q-Derivative Operator) Under the hypotheses of
Definition 2, the fractional q-derivative for a function f (ς) of order ϑ is defined by

Dϑ
q,ςℏ(ς) = Dm

q,ςIm−ϑ
q,ς ℏ(ς), (m − 1 ≤ ϑ < m), m ∈ N0 = N ∪ {0}.

By virtue of Definitions 1.1, 1.2 and 1.3, we have

Iϑq,ςς
κ =

Γq(κ + 1)
Γq(κ + ϑ + 1)

ςκ+ϑ, (κ ∈ N, ϑ > 0),

and

Dϑ
q,ςς
κ =

Γq(κ + 1)
Γq(κ − ϑ + 1)

ςκ−ϑ, (κ ∈ N, 0 ≤ ϑ < 1).

Now, let us define the q-analogue of the Tremblay operator. The modified q-Tremblay
operator ofor analytic functions in the complex domain is then given by:

Definition 1.4. For 0 < γ ≤ 1, 0 < ξ ≤ 1, 0 ≤ ξ − γ < 1, ξ ≥ γ and ℏ ∈ A. The q-analouge
of Tremblay derivative operator can be defined by

Ψ
ξ,γ
q,ςℏ(ς) =

Γq(γ)
Γq(ξ)

ς1−γDξ−γ
q,ς (ςξ−1ℏ(ς)).

Definition 1.5. Let ℏ ∈ A, the q-analouge of modified Tremblay operator denoted by
T
ξ,γ
q,ς : A → A and defined as

T
ξ,γ
q,ς ℏ(ς) =

[γ]q
[ξ]q
Ψ
ξ,γ
q,ςℏ(ς)

=
Γq(γ + 1)
Γq(ξ + 1)

ς1−γDξ−γ
q,ς (ςξ−1ℏ(ς))

= ς +

∞∑
κ=2

Γq(γ + 1)Γq(κ + ξ)
Γq(ξ + 1)Γq(κ + γ)

aκςκ,

where 0 < γ ≤ 1, 0 < ξ ≤ 1, 0 ≤ ξ − γ < 1 and ξ ≥ γ.

Remark. We can conclude that, when we choose the parameters q, ξ and γ, the operator
T
ξ,γ
q,ς can lead to other operators results. Examples are presented for further illustration.

1) For ξ = 1 and γ = 1 − ϑ, we get the operator Ωϑq,ς studied by Purohit and Rania
[18].

2) For q → 1−, then T ξ,γ
q,ς ℏ(ς) = T ξ,γ

ς f the modified Tremblay operator studied by
Esa et.al [8].
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3) For ξ = 1, γ = 1 and q → 1− we get the Tremblay operator T ξ,γ
ς f syudied by

Tremblay [23].

Various authors, such as Alb Lupas, and Oros [3], Purohit and Rania [17], Atshan et al.
[6], Seoudy and Aouf [22], Frasin and Darus [9], Ramadan and Darus [19], Elhaddad and
Darus [7], and others, have conducted studies on different subfamilies of normalized ana-
lytic functions. These publications have introduced a novel subclass D

⊕
(ϑ, 𭟋, d, ξ, γ; q)

ofA. This subclass incorporates the operator T ξ,γ
q,ς ℏ(ς) and is represented as follows:

Definition 1.6. The class of functionsD
⊕

(ϑ, 𭟋, d, ξ, γ; q) is denoted by ℏ ∈ A and satis-
fies the inequality: ∣∣∣∣∣∣∣∣1d

 ς∂q
(
T
ξ,γ
q,ς ℏ(ς)

)
+ ϑς2∂2

q

(
T
ξ,γ
q,ς ℏ(ς)

)
(1 − ϑ)(T ξ,γ

q,ς ℏ(ς) + ϑς∂q
(
T
ξ,γ
q,ς ℏ(ς)

) − 1


∣∣∣∣∣∣∣∣ < 𭟋, (1.6)

where ς ∈ ♢, d ∈ C \ {0}, 0 < 𭟋 ≤ 1, 0 ≤ ϑ ≤ 1, 0 < γ ≤ 1, 0 < ξ ≤ 1, 0 ≤ ξ − γ < 1, and
ξ ≥ γ.

2. Main Results

This section examines the conditions that must be met for equation (1.6) to yield the
function ℏ in the class D

⊕
(ϑ, 𭟋, d, ξ, γ; q). It also highlights the significance of these

criteria for functions in this class. Furthermore, it presents growth and distortion bounds,
q-raddi of stralikness of order λ (0 ≤ λ < 1), and the neighborhood problems for the
class D

⊕
(ϑ, 𭟋, d, ξ, γ; q). The necessary and sufficient conditions for functions ℏ ∈

D
⊕

(ϑ, 𭟋, d, ξ, γ; q) are first discussed in our theorem.

Theorem 2.1. Let the function ℏ as is in (1.1) belong to the class D
⊕

(ϑ, 𭟋, d, ξ, γ; q) if
and only if the following inequality holds:

∞∑
κ=2

Γq(γ + 1)Γq(κ + ξ)
Γq(ξ + 1)Γq(κ + γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q (1 + ϑ𭟋|d|)

)
+ 𭟋|d|

)
|aκ| ≤ 𭟋|d|. (2.1)

Proof. Suppose ℏ belongs to the setA and that inequality (2.1) is satisfied. Consequently,
we arrive at the following expression:∣∣∣∣∣∣∣∣

ς∂q
(
T
ξ,γ
q,ς ℏ(ς)

)
+ ϑς2∂2

q

(
T
ξ,γ
q,ς ℏ(ς)

)
(1 − ϑ)

(
T
ξ,γ
q,ς ℏ(ς)

)
+ ϑς∂q

(
T
ξ,γ
q,ς ℏ(ς)

) − 1

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ς +
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ) [κ]qaκς

κ+

ϑ

(
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ) [κ]q[κ − 1]qaκςκ

)
(1 − ϑ)

(
ς +

∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ) aκς

κ

)
+

ϑ

(
ς +

∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ) [κ]qaκς

κ

)
− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ) [κ − 1]q

(
q + ϑ([κ]q − q)

)
aκςκ

ς +
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ)

(
1 + qϑ[κ − 1]q

)
aκςκ

∣∣∣∣∣∣∣∣∣∣∣



48 ABDULLAH ALSOBOH AND SECOND AUTHOR

≤

∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ) [κ − 1]q

(
q + ϑ([κ]q − q)

)
|aκ||ς|κ−1

1 −
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ)

(
1 + qϑ[κ − 1]q

)
|aκ||ς|κ−1

< 𭟋|d|.

When we consider values of ς on the real axis and let ς → 1−, we obtain
∞∑
κ=2

Γq(γ + 1)Γq(κ + ξ)
Γq(ξ + 1)Γq(κ + γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q (1 + ϑ𭟋|d|)

)
+ 𭟋|d|

)
|aκ| < 𭟋|d|. (2.2)

Conversely, suppose ℏ ∈ D
⊕

(ϑ, 𭟋, d, ξ, γ; q), we obtain the following inequality∣∣∣∣∣∣∣∣1d
 ς∂q

(
T
ξ,γ
q,ς ℏ(ς)

)
+ ϑς2∂2

q

(
T
ξ,γ
q,ς ℏ(ς)

)
(1 − ϑ)(T ξ,γ

q,ς ℏ(ς) + ϑς∂q
(
T
ξ,γ
q,ς ℏ(ς)

) − 1


∣∣∣∣∣∣∣∣ > −𭟋, (2.3)

ℜe

 ς∂q
(
T
ξ,γ
q,ς ℏ(ς)

)
+ ϑς2∂2

q

(
T
ξ,γ
q,ς ℏ(ς)

)
(1 − ϑ)

(
T
ξ,γ
q,ς ℏ(ς)

)
+ ϑς∂q

(
T
ξ,γ
q,ς ℏ(ς)

) − 1 + 𭟋|d|

 > 0

This need to complete

ℜe

ς +
∑∞
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ) [κ]q

(
1 + ϑ[κ − 1]q

)
aκςκ

ς +
∑∞
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ)

(
1 + ϑq[κ − 1]q

)
aκςκ

− 1 + 𭟋|d|

 > 0

or

ℜe


𭟋|d|ς +

∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q (1 + ϑ𭟋|d|)

)
+ 𭟋|d|

)
aκςκ

ς +
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ)

(
1 + ϑq[κ − 1]q

)
aκςκ

 > 0.

The inequality can be expressed as follows, taking into account the real part of the expres-
sion −eiθ: ℜe

{
−eiθ

}
≥ |eiθ| = −1.

𭟋|d|r −
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q (1 + ϑ𭟋|d|)

)
+ 𭟋|d|

)
aκrκ

r −
∞∑
κ=2

Γq(γ+1)Γq(κ+ξ)
Γq(ξ+1)Γq(κ+γ)

(
1 + ϑq[κ − 1]q

)
aκrκ

> 0.

By employing the mean value theorem for the limit as r approaches 1−, we derive the
inequality 2.1. Thus, we have concluded the proof of Theorem 2.1. □

Corollary 2.2. Assuming that the function ℏ is of the form (1.1) and belongs to the class
D

⊕
(ϑ, 𭟋, d, ξ, γ; q), then the following inequality can be expresse

|aκ| ≤
𭟋|d|Γq(ξ + 1)Γq(κ + γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q

(
1 + ϑ𭟋|d|

))
+ 𭟋|d|

)
Γq(γ + 1)Γq(κ + ξ)

, (2.4)

for κ ≥ 2.

The following result will provide bounds on the growth and distortion of functions in
the classD

⊕
(ϑ, 𭟋, d, ξ, γ; q).
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Theorem 2.3. The following inequalities hold true for any function ℏ in the classD
⊕

(ϑ, 𭟋, d, ξ, γ; q)
when |ς| = r < 1:

r −
𭟋|d|(1 + γ)r2

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) ≤ |ℏ(ς)| ≤ r +
𭟋|d|(1 + γ)r2

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) , (2.5)

and

1 −
𭟋|d|(1 + q)(1 + γ)r

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) ≤ |∂qℏ(ς)| ≤ 1 +
𭟋|d|(1 + q)(1 + γ)r

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) . (2.6)

These inequalities are sharp by the function

ℏ(ς) = ς +
𭟋|d|(1 + γ)

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

)ς2.

Proof. Given ℏ ∈ D
⊕

(ϑ, 𭟋, d, ξ, γ; q) from (2.1) and since

Γq(γ + 1)Γq(κ + ξ)
Γq(ξ + 1)Γq(κ + γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q

(
1 + ϑ𭟋|d|

))
+ 𭟋|d|

)
is increasing and positive for κ ≥ 2, then we have

1 + ξ
1 + γ

(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) ∞∑
κ=2

aκ ≤

Γq(γ + 1)Γq(κ + ξ)
Γq(ξ + 1)Γq(κ + γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q

(
1 + ϑ𭟋|d|

))
+ 𭟋|d|

) ∞∑
κ=2

aκ

≤ 𭟋|d|,

which is equivalent to,
∞∑
κ=2

aκ ≤
𭟋|d|(1 + γ)

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) . (2.7)

We can acquire this through the utilization of the properties of the modulus function

|ℏ(ς)| =

∣∣∣∣∣∣∣ς +
∞∑
κ=2

aκςκ
∣∣∣∣∣∣∣

≤ |ς| +

∞∑
κ=2

|aκ||ς|κ

≤ r + r2
∞∑
κ=2

|aκ|

≤ r +
𭟋|d|(1 + γ)r2

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) , by (2.7).

and

|ℏ(ς)| =

∣∣∣∣∣∣∣ς +
∞∑
κ=2

aκςκ
∣∣∣∣∣∣∣ ≥ |ς| −

∞∑
κ=2

|aκ||ς|κ

≥ r − r2
∞∑
κ=2

|aκ| ≥ r −
𭟋|d|(1 + γ)r2

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) , by (2.7).
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Now, by applying the Jackson’s derivative of (1.5) with respect to ς, we get:

|∂qℏ(ς)| =

∣∣∣∣∣∣∣1 +
∞∑
κ=2

[κ]qaκςκ−1

∣∣∣∣∣∣∣ ≤ 1 +
∞∑
κ=2

[κ]q|aκ||ς|κ

≤ r + [2]qr2
∞∑

s=2

|aκ| ≤ r +
𭟋|d|(1 + q)(1 + γ)

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) r2.

In other hand,

|∂qℏ(ς)| =

∣∣∣∣∣∣∣1 +
∞∑
κ=2

[κ]qaκςκ−1

∣∣∣∣∣∣∣ ≥ 1 −
∞∑
κ=2

[κ]q|aκ||ς|κ

≥ r − [2]qr2
∞∑
κ=2

|aκ| ≥ r −
𭟋|d|(1 + q)(1 + γ)

(1 + ξ)
(
ϑ + q + qϑ𭟋|d| + 𭟋|d|

) r2.

□

The neighbourhoods problems of the classD
⊕

(ϑ, 𭟋, d, ξ, γ; q) will now be determined.

Definition 2.1. Let ℏ ∈ A and σ > 0. We define the (m, σ, q)-neighbourhood of ℏ as
follows:

Nσ,q(ℏ) =

g ∈ A : g(ς) = ς +
∞∑
κ=2

bκςκ and
∞∑
κ=2

[κ]q|aκ − bκ| ≤ σ

 . (2.8)

In particular, for the identity functions e(ς) = z, we have

Nσ,q(e) =

g ∈ A : g(ς) = ς +
∞∑
κ=2

bκςκ and
∞∑
κ=2

[κ]q|bκ| ≤ σ

 . (2.9)

Definition 2.2. A function ℏ ∈ A belong to the classDν
⊕

(ϑ, 𭟋, d, ξ, γ; q) if there exists a
function £ ∈ D

⊕
(ϑ, 𭟋, d, ξ, γ; q) such that∣∣∣∣∣ℏ(ς)

£(ς)
− 1

∣∣∣∣∣ ≤ 1 − ν, 0 ≤ ψ < 1, (ς ∈ ♢). (2.10)

Theorem 2.4. f £ ∈ D
⊕

(ϑ, 𭟋, d, ξ, γ; q) and

ν = 1 −
[1 + ξ]q

((
ϑ + q + qϑ𭟋|d|

)
+ 𭟋|d|

)
[1 + ξ]q

((
ϑ + q + qϑ𭟋|d|

)
+ 𭟋|d|

)
− 𭟋|d|[1 + γ]q

,

then
Nσ,q(£) ⊆ Dν

⊕
(ϑ, 𭟋, d, ξ, γ; q).

Proof. Let ℏ ∈ Nσ,q(£), we find from (2.8) that
∞∑
κ=2

[κ]q|aκ − bκ| ≤ σ,

which implies the coefficient inequality
∞∑
κ=2

|aκ − bκ| ≤
σ

1 + q
.
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Since £ ∈ D
⊕

(ϑ, 𭟋, d, ξ, γ; q), and Using relation (2.1) of Theorem ??, we have

Γq(γ + 1)Γq(2 + ξ)
Γq(ξ + 1)Γq(2 + γ)

((
ϑ + q + qϑ𭟋|d|

)
+ 𭟋|d|

) ∞∑
κ=2

|bκ|

≤

∞∑
κ=2

Γq(γ + 1)Γq(κ + ξ)
Γq(ξ + 1)Γq(κ + γ)

(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q

(
1 + ϑ𭟋|d|

))
+ 𭟋|d|

)
|bκ| ≤ 𭟋|d|,

for (κ ≥ 2), which implies
∞∑
κ=2

|bκ| ≤
𭟋|d|[1 + γ]q

[1 + ξ]q
((
ϑ + q + qϑ𭟋|d|

)
+ 𭟋|d|

) , (2.11)

and so ∣∣∣∣∣ℏ(ς)
£(ς)

− 1
∣∣∣∣∣ <

∑∞
κ=2 |aκ − bκ|

1 −
∑∞
κ=2 bκ

≤
σ

1 + q
.

 [1 + ξ]q
((
ϑ + q + qϑ𭟋|d|

)
+ 𭟋|d|

)
[1 + ξ]q

((
ϑ + q + qϑ𭟋|d|

)
+ 𭟋|d|

)
− 𭟋|d|[1 + γ]q


= 1 − ν.

Thus, for given ν and by Definition 2.1, we have ℏ ∈ Dν
⊕

(ϑ, 𭟋, d, ξ, γ; q).

Finally, we establish the radii of starlikeness of order λ for functions in the classDλ
⊕

(ϑ, 𭟋, d, ξ, γ; q).
□

Theorem 2.5. Let ℏ ∈ A from the class Dλ
⊕

(ϑ, 𭟋, d, ξ, γ; q). The function ℏ univalent
starlike of order λ, 0 ≤ λ < 1 and |ς| < r0, where

r0 = inf
k

 (1 − λ)Γq(γ + 1)Γq(κ + ξ)
(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q

(
1 + ϑ𭟋|d|

))
+ 𭟋|d|

)
𭟋|d|([2]q − λ)Γq(ξ + 1)Γq(κ + γ)


1

n−1

. (2.12)

Proof. We show that∣∣∣∣∣ς∂q(ℏ(ς))
ℏ(ς)

− 1
∣∣∣∣∣ ≤ 1 − λ, (|ς| < r0).

Considering that

∣∣∣∣∣ς∂q(ℏ(ς))
ℏ(ς)

− 1
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
∞∑
κ=2

([κ]q − 1)aκςκ−1

1 +
∞∑
κ=2

aκςκ−1

∣∣∣∣∣∣∣∣∣∣∣ ≤
∞∑
κ=2

([κ]q − 1)aκ|ς|κ−1

1 −
∞∑
κ=2

aκ|ς|κ−1
,

to prove the theorem, we must show that
∞∑
κ=2

([κ]q − 1)aκ|ς|κ−1

1 −
∞∑
κ=2

aκ|ς|κ−1
≤ 1 − λ,

which equivalent to
∞∑
κ=2

([κ]q − λ)aκ|ς|κ−1 ≤ 1 − λ,



52 ABDULLAH ALSOBOH AND SECOND AUTHOR

and applying Theorem ??, we have

|ς| ≤

 (1 − λ)Γq(γ + 1)Γq(κ + ξ)
(
[κ − 1]q

(
ϑ
(
[κ]q − q

)
+ q

(
1 + ϑ𭟋|d|

))
+ 𭟋|d|

)
𭟋|d|([2]q − λ)Γq(ξ + 1)Γq(κ + γ)


1
κ−1

.

Hence, the proof is complete. □

3. Conclusion

In this article, we introduce a new class of normalized analytic functions called
D

⊕
(ϑ, 𭟋, d, ξ, γ; q), which is associated with the modified q-Tremblay operator on the

open unit disk ♢. We investigate the necessary conditions for functions belonging to the
subclass D

⊕
(ϑ, 𭟋, d, ξ, γ; q), as well as the growth and distortion bounds, the convolu-

tion condition, the radii of starlikeness, and the neighborhood problems involving the q-
analogue of a modified Tremblay operator for functions in this class.

Our results extend and generalize some of the known results in the literature on analytic
functions. We believe that our findings will have useful applications in various areas of
mathematics, such as complex analysis, geometric function theory, and applied mathemat-
ics.

In summary, this article contributes to the ongoing research in the field of complex anal-
ysis by providing a more profound understanding of the theory and applications of analytic
functions. The results obtained in this article have the potential for future generalization
through the utilization of post-quantum calculus and other q-analogues of the fractional
derivative operator. Additionally, further research may be conducted to explore additional
subclasses and their respective properties.
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Abstract. In this study, after explaining the process that makes the study necessary in the
introduction and giving the necessary definitons in the preliminaries, in the third section,
some types of open set that were previously defined in general topology and various non-
standard topological spaces are presented and the relationships between them are explained
with the help of a diagram. Then, the concept of neutrosophic af-open set is defined and
its relations with other open set types are examined and their properties are investigated in
neutrosophic topology. In the following sections, the concept of af-open set is generalized
and different types of continuities are introduced using these new concepts of open set, and
the connections between them are illustrated with examples and diagrams.

1. Introduction

The concept of open set has always been one of the indispensable characters of the world
of topology. This concept has been divided into many different types in itself as a result of
the constant change of social life and the constant change of people’s needs. For example,
M. H. Alqahtani [4, 5] presented the concepts of F-open set and C-open set in 2023. Later,
new ones continued to be added to these open set varieties. These open set types provided
scientists with the opportunity to re-approach many concepts from different perspectives
that had been previously introduced in topology and to examine their properties in general
topology and some other non-standard topologies as in [6, 7, 8, 9, 17, 18]. Furthermore,
these open set variants led to the introduction of many types of functions, mappings and
continuities as in [13, 21, 22, 25].
Smarandache’s introduction of the concept of neutrosophic set in [27] created facilities to
make contributions to some other disiplicines as in [10, 11, 12, 14, 16, 19, 20, 24, 28] and
allowed the introduction of different non-standard topological spaces. Like uncultivated
fields, these new non-standard topological spaces enabled scientists to give products to
the world of science unlike anything done until then as in [1, 2, 3, 23]. In this study,
we aimed to join these scientists by introducing the concept of neutrosophic af-open set.
Also, topological properties of af-interior, af-closure operators are presented by using the
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concept of neutrosophic af-open sets. Moreover, the notions of neutrosophic af-continuous
functions and some other continuity types are introduced and the connections between
them are illustrated with diagrams.

2. Preliminaries

In this section, we present the basic definitions related to neutrosophic set theory.

Definition 2.1. [27] A neutrosophic set A on the universe set X is defined as:

A = {⟨x,TA (x) , IA (x) , FA (x)⟩ : x ∈ X} ,

where T , I, F : X →
]
−0, 1+

[
and −0 ≤ TA (x) + IA (x) + FA (x) ≤ 3+.

Scientifically, membership functions, indeterminacy functions and non-membership func-
tions of a neutrosophic set take value from real standart or nonstandart subsets of

]
−0, 1+

[
.

However, these subsets are sometimes inconvenient to be used in real life applications such
as economical and engineering problems. On account of this fact, we consider the neutro-
sophic sets, whose membership function, indeterminacy functions and non-membership
functions take values from subsets of [0, 1].

Definition 2.2. [15] Let X be a nonempty set. If r, t, s are real standard or non standard
subsets of

]
−0, 1+

[
then the neutrosophic set xr,t,s is called a neutrosophic point in X given

by

xr,t,s(xp) =
{ (r, t, s), if x = xp

(0, 0, 1), if x , xp

For xp ∈X, it is called the support of xr,t,s, where r denotes the degree of membership value,
t denotes the degree of indeterminacy and s is the degree of non-membership value of xr,t,s.

Definition 2.3. [26] Let A be a neutrosophic set over the universe set X. The complement
of A is denoted by Ac and is defined by:

Ac =
{〈

x, FF̃(e)(x), 1 − IF̃(e)(x),TF̃(e)(x)
〉

: x ∈ X
}
.

It is obvious that [Ac]c = A.

Definition 2.4. [26] Let A and B be two neutrosophic sets over the universe set X. A is
said to be a neutrosophic subset of B if TA(x) ≤ TB(x), IA(x) ≤ IB(x), FA(x) ≥ FB(x), every
xinX. It is denoted by A ⊆ B. A is said to be neutrosophic equal to B if A ⊆ B and B ⊆ A.
It is denoted by A = B.

Definition 2.5. [26] Let F1 and F2 be two neutrosophic sets over the universe set X. Then
their union is denoted by F1 ∪ F2 = F3 is defined by:

F3 = {⟨x,TF3 (x), IF3 (x), FF3 (x) : x ∈ X⟩},

where

TF3(x) = max{TF1(x),TF2 (x)},

IF3(x) = max{IF1(x), IF2 (x)},

FF3(x) = min{FF1(x), FF2 (x)}.

Definition 2.6. [26] Let F1 and F2 be two neutrosophic sets over the universe set X. Then
their intersection is denoted by F1 ∩ F2 = F4 is defined by:

F4 = {⟨x,TF4 (x), IF4 (x), FF4 (x) : x ∈ X⟩},
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where

TF4(x) = min{TF1(x),TF2 (x)},

IF4(x) = min{IF1(x), IF2 (x)},

FF4(x) = max{FF1(x), FF2 (x)}.

Definition 2.7. [26] A neutrosophic set F over the universe set X is said to be a null
neutrosophic set if TF(x) = 0, IF(x) = 0, FF(x) = 1, every x ∈ X. It is denoted by 0X .

Definition 2.8. [26] A neutrosophic set F over the universe set X is said to be an absolute
neutrosophic set if TF(x) = 1, IF(x) = 1, FF(x) = 0, every x ∈ X. It is denoted by 1X .

Clearly 0c
X = 1X and 1c

X = 0X .

Definition 2.9. [26] Let NS (X) be the family of all neutrosophic sets over the universe the
set X and τ ⊂ NS (X). Then τ is said to be a neutrosophic topology on X if:

1) 0X and 1X belong to τ;
2) The union of any number of neutrosophic sets in τ belongs to τ;
3) The intersection of a finite number of neutrosophic sets in τ belongs to τ.

Then (X, τ) is said to be a neutrosophic topological space over X. Each member of τ is
said to be a neutrosophic open set [26].

Definition 2.10. [21] Let (X, τ) be a neutrosophic topological space over X and F be a
neutrosophic set over X. Then F is said to be a neutrosophic closed set iff its complement
is a neutrosophic open set.

Definition 2.11. [1] A neutrosophic point xr,t,s is said to be neutrosophic quasi-coincident
(neutrosophic q-coincident, for short) with F, denoted by xr,t,s q F if and only if xr,t,s ⊈ Fc.
If xr,t,s is not neutrosophic quasi-coincident with F, we denote by xr,t,s q̃ F.

Definition 2.12. [1] A neutrosophic set F in a neutrosophic topological space (X, τ) is said
to be a neutrosophic q-neighborhood of a neutrosophic point xr,t,s if and only if there exists
a neutrosophic open set G such that
xr,t,s q G ⊂ F.

Definition 2.13. [1]) A neutrosophic set G is said to be neutrosophic quasi-coincident
(neutrosophic q-coincident, for short) with F, denoted by G q F if and only if G ⊈ Fc. If G
is not neutrosophic quasi-coincident with F, we denote by G q̃ F.

Definition 2.14. [3] A neutrosophic point xr,t,s is said to be a neutrosophic interior point
of a neutrosophic set F if and only if there exists a neutrosophic open q-neighborhood G
of xr,t,s such that G ⊂ F. The union of all neutrosophic interior points of F is called the
neutrosophic interior of F and denoted by F◦.

Definition 2.15. [1] A neutrosophic point xr,t,s is said to be a neurosophic cluster point
of a neutrosophic set F if and only if every neutrosophic open q-neighborhood G of xr,t,s

is q-coincident with F. The union of all neutrosophic cluster points of F is called the
neutrosophic closure of F and denoted by F.

Definition 2.16. [1] Let f be a function from X to Y. Let B be a neutrosophic set in Y with
members hip function TB(y), indeterminacy function IB(y) and non-membership function
FB(y). Then, the inverse image of B under f , written as f −1(B), is a neutrosophic subset of
X whose membership function, indeterminacy function and non-membership function are
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defined as T f −1(B)(x) = TB( f (x)), I f −1(B)(x) = IB( f (x)) and F f −1(B)(x) = FB( f (x)) for all x
in X, respectively.
Conversely, let A be a neutrosophic set in X with membership function TA(x), indetermi-
nacy function IA(x) and non-membership function FA(x). The image of A under f , written
as f (A), is a neutrosophic subset of Y whose membership function, indeterminacy function
and non-membership function are defined as

T f (A)(y) =
{ supz∈ f −1(y){TA(z)}, i f f −1(y) is not empty,

0, i f f −1(y) is empty,

I f (A)(y) =
{ supz∈ f −1(y){IA(z)}, i f f −1(y) is not empty,

0, i f f −1(y) is empty,

F f (A)(y) =
{ supz∈ f −1(y){FA(z)}, i f f −1(y) is not empty,

0, i f f −1(y) is empty,

for all y in Y, where f −1(y) = {x : f (x) = y}, respectively.

3. Neutrosophic af-open sets

This section provides some new definitions that form the cornerstones of the sections
that follow.

Definition 3.1. A neutrosophic set F in a neutrosophic topological space (X, τ) is said to
be

a) Neutrosophic semiopen, if F ⊆ F◦,
b) Neutrosophic preopen, F ⊆ (F)◦,

c) Neutrosophic β-open, F ⊆ (F)◦,
d) Neutrosophic α-open, if F ⊆ ((F◦))◦.

By Definition 17, the following diagram is obtained:
neutrosophic open→ neutrosophic α − open→ neutrosophic pre − open

↓ ↓

neutrosophic semi − open→ neutrosophic β − open

Diagram I

Definition 3.2. If, F be a neutrosophic set in neutrosophic topological space (X, τ) then,
F s =

⋂
{F : F ⊆ A, Aisneutrosophicsemiclosed} (resp. F◦s =

⋃
{F : F ⊆ A, Aisneutrosophicsemiopen})

is called a neutrosophic semiclosure of F (resp. neutrosophic semi-interior of F).

Definition 3.3. If, F be a neutrosophic set in neutrosophic topological space (X, τ) then,
F p =

⋂
{F : F ⊆ A, Aisneutrosophicpreclosed} (resp. F◦p =

⋃
{F : F ⊆ A, Aisneutrosophicpreopen})

is called a neutrosophic preclosure of F (resp. neutrosophic pre interior of F).

Definition 3.4. If, F be a neutrosophic set in neutrosophic topological space (X, τ) then,
Fβ =

⋂
{F : F ⊆ A, Aisneutrosophicβclosed} (resp. F◦s =

⋃
{F : F ⊆ A, Aisneutrosophicβopen})

is called a neutrosophic β closure of F (resp. neutrosophic β interior of F).

Definition 3.5. If, F be a neutrosophic set in neutrosophic topological space (X, τ) then,
Fα =

⋂
{F : F ⊆ A, Aisneutrosophicαclosed} (resp. F◦α =

⋃
{F : F ⊆ A, Aisneutrosophicαopen})

is called a neutrosophic α closure of F (resp. neutrosophic α interior of F).
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Definition 3.6. Let (X, τ) be a neutrosophic topological space. A neutrosophic set λ is
a f -open set if λ ⊆ (λ ∪ µ)◦ for every µ is neutrosophic open set such that 0X , µ , 1X .
The complement of the neutrosophic a f -open set is called neutrosophic a f -closed. We
denote the family of all neutrosophic a f -open (resp. neutrosophic a f -closed) sets of a
neutrosophic topological spece (X, τ) by Na f O(X, τ)(resp. Na fC(X, τ)).

Problem 3.1. Let (X, τ) be a neutrosophic topological space. In Definition 22, for every
µ ∈ τ such that 0X , µ , 1X , can we obtain a new type of neutrosophic af-open sets by
taking the neutrosophic closure of µ instead of µ?

Theorem 3.2. Every neutrosophic open set in a neutrosophic topological space (X, τ) is
neutrosophic a f -open set.

Proof. Let (X, τ) be any neutrosophic topological space and let λ ⊆ X be any neutrosophic
open set. Therefore, λ = λ◦ ⊆ (λ ∪ µ)◦ is neutrosophic open set such that 0X , µ ,
1X . Thus, λis neutrosophic a f -open set. Then for the collection of Na f O(X, τ), τ ⊆
Na f O(X, τ). □

Remark. The converse of Theorem 3.2. is not always true as shown by the following
example.

Example 3.1. Let (X, τ) be a neutrosophic topological space, with X = {a, b, c}, τ =
{0X , λ, 1X}, where λ, µ are two neutrosophic sets defined as λ = {⟨a, 0.5, 0.5, 0.5⟩,
⟨b, 0.7, 0.7, 0.3⟩, ⟨c, 0.9, 0.9, 0.1⟩} and µ = {⟨a, 0.4, 0.4, 0.6⟩, ⟨b, 0.3, 0.3, 0.7⟩, ⟨c, 0.9, 0.9, 0.1⟩}.
Then, µ ∈ Na f O(X, τ), and but the set µ is not neutrosophic open.

Theorem 3.3. Let (X, τ) be any neutrosophic topological space and λ, µ be two neutro-
sophic a f -open sets. Then, the following properties are hold:

(1) λ ∩ µ is neutrosophic a f -open set.
(2) λ ∪ µ is neutrosophic a f -open set.

Proof. (1) Let λ and µ be two neutrosophic a f -open sets. Then from Definition 3.6, λ ⊆
(λ ∪ β)◦ and µ ⊆ (µ ∪ β)◦ for every β is neutrosophic open set and 0X , β , 1X . Then,
λ ∩ µ ⊆ (λ ∪ β)◦ ∩ (µ ∪ β)◦ = ((λ ∪ β) ∩ (µ ∪ β))◦ ⊆ ((λ ∩ µ) ∪ β)◦.
(2) Let λ and µ be two neutrosophic a f -open sets. Then from Definition 3.6, λ ⊆ (λ ∪ β)◦

and µ ⊆ (µ ∪ β)◦ for every β is neutrosophic open set and 0X , β , 1X . Then, λ ∪ µ ⊆
(λ ∪ β)◦ ∪ (µ ∪ β)◦ = ((λ ∪ β) ∪ (µ ∪ β))◦ ⊆ ((λ ∪ µ) ∪ β)◦. □

Proposition 3.4. Let (X, τ) be any neutrosophic topological space. If, for every α ∈ ∆,
λα ∈ Na f O(X, τ), then

⋃
α∈∆ λα ∈ Na f O(X, τ).

Proof. Let λα ∈ Na f O(X, τ) for every α ∈ ∆. Then, λα ⊆
⋃
α∈∆ λα, for every α ∈ ∆. For

any β is neutrosophic open (0X , β , 1X) and each α ∈ ∆, we get λα ⊆ (λα ∪ β)◦ ⊆
((
⋃
α∈∆ λα) ∪ β)◦. Hence we have

⋃
α∈∆ λα ⊆ ((

⋃
α∈∆ λα) ∪ β)◦. Therefore

⋃
α∈∆ λα ∈

Na f O(X, τ). □

Theorem 3.5. Let (X, τ) be any neutrosophic topological space and τNa f O = {λ : λ ∈
Na f O(X, τ)}. Then is τNa f O a neutrosophic topology such that τ ⊆ τNa f O.

Proof. According to Theorem 3.2, we have τ ⊆ τNa f O. We show that τNa f O is a neutro-
sophic topology.

(1) It is clear that 0X , 1X ∈ τNa f O.
(2) and (3) are seen that from Theorem 3.3 and Proposition 3.4.

□
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4. Generalizations of Neutrosophic af-open sets

Definition 4.1. A subset λ of a neutrosophic topological space (X, τ) is said to be
(i) neutrosophic a fα − open if λ ⊆ (λ ∪ µ)◦α, for every µ is neutrosophic
open and 0X , µ , 1X ,
(ii) neutrosophic a f p − open if λ ⊆ (λ ∪ µ)◦p, for every µ is neutrosophic
open and 0X , µ , 1X ,
(iii) neutrosophic a f s − open if λ ⊆ (λ ∪ µ)◦s , for every µ is neutrosophic
open and 0X , µ , 1X ,
(iv) neutrosophic a fβ − open if λ ⊆ (λ ∪ µ)◦β, for every µ is neutrosophic
open and 0X , µ , 1X .

The complement of a neutrosophic afα-open (resp. neutrosophic afp-open, neutro-
sophic afs-open, neutrosophic afβ-open) set is said to be neutrosophic afα-closed (resp.
neutrosophic afp-closed, neutrosophic afs-closed, neutrosophic afβ-closed). The family of
all f neutrosophic afα-open (neutrosophic afα-closed) (resp. neutrosophic afp-open (neu-
trosophic afp-closed), neutrosophic afs-open (neutrosophic afs-closed), neutrosophic afβ-
open (neutrosophic afβ-closed)) sets in a neutrosophic topological space (X, τ) is denoted
by Na fαO(X, τ)(Na fαC(X, τ))(resp.Na f PO(X, τ)
(Na f PC(X, τ)),Na f S O(X, τ)(Na f S C(X, τ)),Na fβO(X, τ)(Na fβC(X, τ))).

From Definition 4.1, we have the following diagram:
neutrosophic open
↓

neutrosophic a f − open→ neutrosophic a fα − open→ neutrosophic a f p − open
↓ ↓

neutrosophic a f s − open→ neutrosophic a fβ − open

Diagram II

Problem 4.1. In the above definition, for every µ ∈ τ such that 0X , µ , 1X , can a new
types of neutrosophic af-open set be given by taking the neutrosophic closure of µ instead
of µ?

Remark. The inverses of the requirements in the diagram above may not always be true.

Example 4.1. It can be seen from Example 3.1 that not every neutrosophic af-open set is
a neutrosophic open set.

Example 4.2. Let (X, τ) be a neutrosophic topological space, with X = {a, b, c}, τ =
{0X , λ, 1X}, where λ, µ are two neutrosophic sets defined as λ = {⟨a, 0.2, 0.2, 0.8⟩,
⟨b, 0.7, 0.7, 0.3⟩, ⟨c, 0.4, 0.4, 0.6⟩} and µ = {⟨a, 0.7, 0.7, 0.3⟩, ⟨b, 0.9, 0.9, 0.1⟩, ⟨c, 0.1, 0.1, 0.9⟩}.
Then, µ ∈ Na fαO(X, τ), and but the set µ is not neutrosophic af-open.

Example 4.3. Let (X, τ) be a neutrosophic topological space, with X = {a, b, c}, τ =
{0X , µ, 1X}, where λ, µ are two neutrosophic sets defined as λ = {⟨a, 0.2, 0.2, 0.8⟩,
⟨b, 0.3, 0.3, 0.7⟩, ⟨c, 0.7, 0.7, 0.3⟩} and µ = {⟨a, 0.1, 0.1, 0.9⟩, ⟨b, 0.2, 0.2, 0.8⟩, ⟨c, 0.2, 0.2, 0.8⟩}.
Then, λ ∈ Na f S O(X, τ), and but the set λ is neither neutrosophic afα-open nor neutro-
sophic afp-open.

Example 4.4. Let (X, τ) be a neutrosophic topological space, with X = {a, b, c}, τ =
{0X , µ, 1X}, where λ, µ are two neutrosophic sets defined as λ = {⟨a, 0.3, 0.3, 0.7⟩,
⟨b, 0.8, 0.8, 0.2⟩, ⟨c, 0.7, 0.7, 0.3⟩} and µ = {⟨a, 0.1, 0.1, 0.9⟩, ⟨b, 0.3, 0.3, 0.7⟩, ⟨c, 0.4, 0.4, 0.6⟩}.
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Then, λ ∈ Na f PO(X, τ), and but the set λ is neither neutrosophic afα-open nor neutro-
sophic afs-open.

Remark. From Example 4.3 and Example 4.4, neutrosophic afp-open sets and neutro-
sophic afs-open sets are independent of each other.

Example 4.5. Let (X, τ) be a neutrosophic topological space, with X = {a, b, c}, τ =
{0X , λ, 1X}, where λ, µ are two neutrosophic sets defined as λ = {⟨a, 0.1, 0.1, 0.9⟩,
⟨b, 0.3, 0.3, 0.7⟩, ⟨c, 0.1, 0.1, 0.9⟩} and µ = {⟨a, 0.3, 0.3, 0.7⟩, ⟨b, 0.5, 0.5, 0.5⟩, ⟨c, 0.7, 0.7, 0.3⟩}.
Then, µ ∈ Na fβO(X, τ), and but the set µ is not neutrosophic afp-open.

Example 4.6. Let (X, τ) be a neutrosophic topological space, with X = {a, b, c}, τ =
{0X , λ, 1X}, where λ, µ are two neutrosophic sets defined as λ = {⟨a, 0.2, 0.2, 0.8⟩,
⟨b, 0.8, 0.8, 0.2⟩, ⟨c, 0.5, 0.5, 0.5⟩} and µ = {⟨a, 0.6, 0.6, 0.4⟩, ⟨b, 0.5, 0.5, 0.5⟩, ⟨c, 0.4, 0.4, 0.6⟩}.
Then, µ ∈ Na fβO(X, τ), and but the set µ is not neutrosophic afs-open.

5. Neutrosophic af-interior and neutrosophic af-closure operators

Definition 5.1. Let (X, τ) be a neutrosophic topological space and λ a neutrosophic sub-
set of X. The neutrosophic af-interior, λ◦a f , is defined as follows : λ◦a f =

⋃
{µ : µ ∈

Na f O(X, τ), µ ⊆ λ}.

Theorem 5.1. Let (X, τ) be a neutrosophic topological space and λ, µ neutrosophic subsets
of X. Then the following statements are hold:

(1) λ◦a f is neutrosophic af-open set,
(2) λ◦a f ⊆ λ,
(3) λ◦a f is the largest neutrosophic af-open subset contained in the set λ,
(4) (λ◦a f )

◦
a f = λ

◦
a f ,

(5) If λ ⊆ µ, λ◦a f ⊆ µ
◦
a f ,

(6) λ◦a f ∪ µ
◦
a f ⊆ (λ ∪ µ)◦a f ,

(7) λ◦a f ∩ µ
◦
a f = (λ ∩ µ)◦a f .

Proof. 1) λ◦a f is neutrosophic af-open set. Indeed, the union of neutrosophic af-open sets
belonging to the neutrosophic topological space τ is neutrosophic af-open from the Propo-
sition 3.4.
2) It is clear from Definition 5.1.
3) Let’s assume the opposite, that is, a neutrosophic af-open set β that is larger than the
set λ◦a f that the set λ contains. That is, λ◦a f ⊆ βλ. On the other hand, for every µ ⊆ λ
neutrosophic af-open set from Definition 5.1, µ ⊆ λ◦a f . If we take µ = β specifically, we
find β ⊆ λ◦a f . Then β = λ◦a f is obtained. Thus, the neutrosophic set λ◦a f is the largest
neutrosophic af-open subset contained in the set lambda.
4) Let β = λ◦a f . By (2) and Definition 5.1, β = β◦a f . Then, λ◦a f = (λ◦a f )

◦
a f .

5) Since λ ⊆ µ and λ◦a f ⊆ λ, λ
◦
a f ⊆ µ. By (2), µ◦a f ⊆ µ. From (3), since µ◦a f is the

largest neutrosophic open set contained in µ neutrosophic sets, λ◦a f ⊆ µ
◦
a f ⊆ µ. In that case

λ◦a f ⊆ µ
◦
a f .

6) λ ⊆ λ ∪ µ and µ ⊆ λ ∪ µ always hold. From (5), λ◦a f ⊆ (λ ∪ µ)◦a f and µ◦a f ⊆ (λ ∪ µ)◦a f ,
respectively. Therefore, λ◦a f ∪ µ

◦
a f ⊆ (λ ∪ µ)◦a f .

7) It is always hold that λ ∩ µ ⊆ λ and λ ∩ µ ⊆ µ. From (5), we obtain (λ ∩ µ)◦a f ⊆ λ
◦
a f and

(λ∩µ)◦a f ⊆ µ
◦
a f , respectively. Hence, (λ∩µ)◦a f ⊆ λ

◦
a f ∩µ

◦
a f . On the other hand, λ◦a f ⊆ λ and

µ◦a f ⊆ µ. From here λ◦a f ∩ µ
◦
a f ⊆ λ ∩ µ. Since λ◦a f ∩ µ

◦
a f are neutrosophic af-open sets and
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(λ∩µ)◦a f is the largest neutrosophic af-open set contained in the λ∩µ neutrosophic set, we
have λ◦a f ∩ µ

◦
a f ⊆ (λ ∩ µ)◦a f ⊆ λ ∩ µ. Thus, λ◦a f ∩ µ

◦
a f = (λ ∩ µ)◦a f . □

Theorem 5.2. Let (X, τ) be a neutrosophic topological space and and a neutrosophic sub-
set λ of X. Then, λ neutrosophic set to be af-open set if and only if, λ◦a f = λ.

Proof. ⇒ Let λ be a neutrosophic af-open set. From Theorem 5.1 (2), λ◦a f ⊆ λ. On the
other hand, since λ is a neutrosophic af-open set, λ ⊆ λ and by Definition 5.1, λ ⊆ λ◦a f . In
that case λ = λ◦a f .
⇐ According to the hypothesis, let’s take λ = λ◦a f . Since λ◦a f is a neutrosophic af-open set
and λ = λ◦a f , so λ is a neutrosophic af-open set. □

Lemma 5.3. For 1X and 0X neutrosophic af-open sets, then (1X)◦a f = 1X and (0X)◦a f = 0X .

Definition 5.2. Let (X, τ) be a neutrosophic topological space and a neutrosophic subset λ
of X. The neutrosophic af-closure of λ, λa f , is defined as follows : λa f =

⋂
{β : λ ⊆ β, β ∈

Na fC(X, τ)}.

Theorem 5.4. Let (X, τ) be a neutrosophic topological space and λ, µ neutrosophic subsets
of X. Then the following statements are hold:

(1) λa f is neutrosophic af-closed set,
(2) λ ⊆ λa f ,
(3) λa f is the smallest neutrosophic af-closed set containing λ,

(4) (λa f )a f = λa f ,

(5) If λ ⊆ µ, λa f ⊆ µa f ,
(6) (λ ∩ µ)a f ⊆ λa f ∩ µa f ,
(7) (λ ∪ µ)a f = λa f ∪ µa f ,
(8) (1X)a f = 1X and (0X)a f = 0X .

Theorem 5.5. Let λ be any neutrosophic set in a neutrosophic topological space (X, τ).
Then, (λc)a f = (λ◦a f )

c and (λc)◦a f = (λa f )c.

Proof. We see that a neutrosophic af-open set β ⊆ λ is precisely the complement of a neu-
trosophic af-closed set ν = βc ⊇ λc. Thus
(λ)◦a f =

⋃
{νc : ν is neutrosophic a f − closed and ν ⊇ λc}

=
⋂

({ν : ν is neutrosophic a f − closed and ν ⊇ λc})c

= ((λc)a f )c

whence
(λc)a f = (λ◦a f )

c.

Next let β be any neutrosophic af-open set. Then for a neutrosophic af-closed set µ ⊇ λ,
β = µc ⊆ λc. λa f =

⋂
{βc : β is neutrosophic a f − open and β ⊆ λc}

=
⋃

({β : β is neutrosophic a f − open and β ⊆ λc})c

= ((λc)◦a f )
c.

As a result
(λc)◦a f = (λa f )c. □

Definition 5.3. Let β be a neutrosophic set in a neutrosophic topological space (X, τ) and
xr,t,s is a neutrosophic point of X. β is called:
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(i) af-neighbourhood of xr,t,s, if there exista a neutrosophic af-open set µ
such that xr,t,s ∈ µ ⊆ β.
(ii) af-q-neighbourhood of xr,t,s if there exista a neutrosophic af-open set
µ such that xr,t,s ∈ qµ ⊆ β.

Theorem 5.6. A neutrosophic set β is neutrosophic af-open set if and only if, for each
neutrosophic point xr,t,s ∈ β, β is a af-neighbourhood of xr,t,s.

Proof. Straightforward. □

Definition 5.4. Let (X, τ) be the neutrosophic topological space, λ be a neutrosophic set
in (X, τ) and xr,t,s be a neutrosophic point. If, every af-q-neighborhood of xr,t,s is quasi-
coincident with λ, then xr,t,s is said to be a af-cluster point of λ.

Theorem 5.7. Let β be a neutrosophic set and xr,t,s a neutrosophic point in a neutrosophic
topological space (X, τ). Then, xr,t,s ∈ βa f if and only if, every af-q-neighbourhood of xr,t,s

is quasi-coincident with β.

6. Neutrosophic af-continous functions

Definition 6.1. A function f : (X, τ) → (Y, σ) is said to be neutrosophic af-continuous, if,
for each λ ∈ σ, f −1(λ) is neutrosophic af-open in (X, τ).

Theorem 6.1. Every neutrosophic continuous function is neutrosophic af-continuous.

Proof. By Theorem 3.2, every neutrosophic open set is neutrosophic af-open and the proof
is obvious. □

Example 6.1. Let (X, τ), (Y, σ) be a neutrosophic topological spaces, with X = {a, b},
Y = {0.1, 0.4}, τ = {0X , µ, 1X}, σ = {0Y , β, 1Y }, where β, µ are two neutrosophic sets defined
as µ = {⟨a, 0.3, 0.3, 0.7⟩, ⟨b, 0.7, 0.7, 0.3⟩} and β = {⟨0.1, 0.2, 0.2, 0.8⟩,
⟨0.4, 0.2, 0.2, 0.8⟩} in neutrosophic topological spaces (X, τ), (Y, σ), respectively. Then, a
function f : (X, τ) → (Y, σ) defined as f (a)=0.1, f (b)=0.4 is neutrosophic af-continuous
but not neutrosophic continuous.

Definition 6.2. A function f : (X, τ)→ (Y, σ) is said to be neutrosophica fα − continuous
(resp. neutrosophic afp-continuous, neutrosophic afs-continuous, neutrosophic afβ-continuous)
if for each λ ∈ σ, f −1(λ) is neutrosophic afα-open (resp. neutrosophic afp-open, neutro-
sophic afs-open, neutrosophic afβ-open) in (X, τ).

By Definitions 6.1 and 6.2, the following implications hold:

neutrosophic − cont
↓

neutrosophic a f − cont → neutrosophic a fα − cont → neutrosophic a f p − cont
↓ ↓

neutrosophic a f s − cont →
neutrosophic a fβ − cont

Diagram III

Remark. None of the implications in Diagram III is reversible as shown by examples
stated below.

Example 6.2. It can be seen from Example 6.1 that not every neutrosophic af-continuous
function is a neutrosophic continuous.
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Example 6.3. Let (X, τ), (Y, σ) be a neutrosophic topological spaces, with X = {a, b},
Y = {0.2, 0.5}, τ = {0X , λ, 1X}, σ = {0Y , β, 1Y }, where λ, β are two neutrosophic sets defined
as λ = {⟨a, 0.7, 0.7, 0.3⟩, ⟨b, 0.4, 0.4, 0.6⟩} and β = {⟨0.2, 0.9, 0.9, 0.1⟩,
⟨0.5, 0.1, 0.1, 0.9⟩} in neutrosophic topological spaces (X, τ), (Y, σ), respectively. Then, a
function f : (X, τ) → (Y, σ) defined by f (a)=0.2, f (b)=0.5 neutrosophic afα-continuous
but not neutrosophic af-continuous.

Example 6.4. Let (X, τ), (Y, σ) be a neutrosophic topological spaces, with X = {a, b},
Y = {0.1, 0.4}, τ = {0X , µ, 1X}, σ = {0Y , β, 1Y }, where µ, β are two neutrosophic sets defined
as µ = {⟨a, 0.2, 0.2, 0.8⟩, ⟨b, 0.2, 0.2, 0.8⟩} and β = {⟨0.1, 0.3, 0.3, 0.7⟩,
⟨0.4, 0.7, 0.7, 0.3⟩} in neutrosophic topological spaces (X, τ), (Y, σ), respectively. Then,
a function f : (X, τ) → (Y, σ) defined as f (a)=0.1 and f (b)=0.4 is neutrosophic afs-
continuous but neither neutrosophic afα-continuous nor neutrosophic afp-continuous.

Example 6.5. Let (X, τ), (Y, σ) be a neutrosophic topological spaces, with X = {a, b, c},
Y = {0.1, 0.3, 0.5}, τ = {0X , µ, 1X}, σ = {0Y , β, 1Y }, where µ, β are two neutrosophic sets
defined as µ = {⟨a, 0.2, 0.2, 0.8⟩, ⟨b, 0.4, 0.4, 0.6⟩, ⟨c, 0.5, 0.5, 0.5⟩} and
β = {⟨0.1, 0.4, 0.4, 0.6⟩, ⟨0.3, 0.9, 0.9, 0.1⟩, ⟨0.5, 0.8, 0.8, 0.2⟩}
in neutrosophic topological spaces (X, τ), (Y, σ), respectively. Then, a function f : (X, τ)→
(Y, σ) defined as f (a)=0.1, f (b)=0.3 and f (c)=0.5 is neutrosophic afp-continuous but nei-
ther neutrosophic afα-continuous nor neutrosophic afs-continuous.

Example 6.6. Let (X, τ), (Y, σ) be a neutrosophic topological spaces, with X = {a, b, c},
Y = {0.2, 0.5, 0.6}, τ = {0X , λ, 1X}, σ = {0Y , β, 1Y }, where λ, β are two neutrosophic sets
defined as λ = {⟨a, 0.1, 0.1, 0.9⟩, ⟨b, 0.4, 0.4, 0.6⟩, ⟨c, 0.1, 0.1, 0.9⟩} and
β = {⟨0.2, 0.3, 0.3, 0.7⟩, ⟨0.5, 0.5, 0.5, 0.5⟩, ⟨0.6, 0.8, 0.8, 0.2⟩}
in neutrosophic topological spaces (X, τ), (Y, σ), respectively. Then, a function f : (X, τ)→
(Y, σ) defined as f (a)=0.2, f (b)=0.5 and f (c)=0.6 is neutrosophic afβ-continuous but not
neutrosophic afp-continuous.

Example 6.7. Let (X, τ), (Y, σ) be a neutrosophic topological spaces, with X = {a, b, c},
Y = {0.3, 0.5, 0.7}, τ = {0X , λ, 1X}, σ = {0Y , β, 1Y }, where λ, β are two neutrosophic sets
defined as λ = {⟨a, 0.2, 0.2, 0.8⟩, ⟨b, 0.8, 0.8, 0.2⟩, ⟨c, 0.5, 0.5, 0.5⟩} and
β = {⟨0.3, 0.6, 0.6, 0.4⟩, ⟨0.5, 0.5, 0.5, 0.5⟩, ⟨0.7, 0.4, 0.4, 0.6⟩}
in neutrosophic topological spaces (X, τ), (Y, σ), respectively. Then, a function f : (X, τ)→
(Y, σ) defined as f (a)=0.3, f (b)=0.5 and f (c)=0.7 is neutrosophic afβ-continuous but not
neutrosophic afs-continuous.

Corollary 6.2. A function f : (X, τ) → (Y, σ) is neutrosophic af-continuous if and only if,
f : (X, τ)→ (Y, σ) is neutrosophic continuous.

Proof. This is an immediate consequence of Theorem 3.5. □

Theorem 6.3. A function f : (X, τ) → (Y, σ) is neutrosophic af-continuous and g :
(Y, σ) → (Z, η) is neutrosophic continuous, then go f : (X, τ) → (Z, η) is neutrosophic
af-continuous.

Proof. It is clear. □

By using neutrosophic af-neighborhood, neutrosophic af-open sets, neutrosophic af-
closed sets, neutrosophic af-interior and neutrosophic af-closure, we obtain characteriza-
tions of neutrosophic af-continuous functions.
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Lemma 6.4. Let (X, τ) be a neutrosophic topological space. A neutrosophic subset µ is
neutrosophic af-closed if and only if (µ ∩ β) ⊆ µ for every neutrosophic closed set β of X
such that 0X , β , 1X .

Proof. µ is neutrosophic af-closed if and only if µc is neutrosophic af-open. By Definition
3.6, µc ⊆ (µc ∪ α)◦ for every α ∈ τ such that 0X , α , 1X .
This is equivalent to ((µc ∪ α)◦)c ⊆ µ. Now, we have ((µc ∪ α)◦)c = ((µc ∪ α)c) = (µ ∩ αc).
Therefore, we obtain (µ ∩ β) ⊆ µ for every neutrosophic closed set β of X such that 0X ,
α , 1X . □

Theorem 6.5. For a function f : (X, τ)→ (Y, σ), the following properties are equivalent:

(1) f is neutrosophic af-continuous;
(2) For each point xr,t,s ∈ X and each neutrosophic open set µ ∈ Y con-
taining f (xr,t,s), there exists α ∈ Na f O(X) such that x ∈ α, f (α) ⊆ µ;
(3) For each point xr,t,s ∈ X and each neutrosophic open set µ of Y con-
taining f (xr,t,s), there exists a neutrosophic af-neighorhood λ of xr,t,s such
that f (λ) ⊆ µ;
(4) The inverse image of each neutrosophic closed set in Y is neutrosophic
af-closed;
(5) For each neutrosophic closed set µ of Y, ( f −1(µ) ∩ β) ⊆ f −1(µ) for
every closed set in X such that 0X , β , 1X;

(6) For each neutrosophic subset µ of Y, ( f −1((µ)) ∩ β) ⊆ f −1((µ)) for ev-
ery neutrosophic closed set β in X such that 0X , β , 1X;
(7) For each neutrosophic subset λ of X, f ((λ ∩ β)) ⊆ ( f (λ)) for every
neutrosophic closed set β in X such that 0X , β , 1X;
(8) For each neutrosophic subset µ of Y, ( f −1(µ))a f ⊆ f −1((µ));
(9) For each neutrosophic subset µ of Y, f −1((µ)◦) ⊆ ( f −1(µ))◦a f .

Proof. (1)⇒ (2): Let xr,t,s ∈ X and µ be any neutrosophic open set of Y containing f (xr,t,s).
Set α = f −1(µ), then by Definition 5.4, α is a neutrosophic af-open set containing xr,t,s and
f (α) ⊆ µ.
(2)⇒ (3): Every neutrosophic af-open set containing xr,t,s is a neutrosophic af-neighborhood
of xr,t,s and the proof is obvious.
(3) ⇒ (1): Let µ be any neutrosophic open set in Y . For each xr,t,s ∈ f −1(µ), f (xr,t,s) ∈ µ ∈
σ. By (3) there exists a neutrosophic af- neighborhood ν of xr,t,s such that f (ν) ⊆ µ; hence
xr,t,s ∈ ν ⊆ f −1(µ). There exists αxr,t,s ∈ Na f O(X) such that xr,t,s ∈ αxr,t,s ⊆ ν ⊆ f −1(µ).
Hence f −1(µ) =

⋃
{αxr,t,s : xr,t,s ∈ f −1(µ)} ∈ Na f O(X). This shows that f is neutrosophic

af-continuous.
(1)⇒ (4)⇒ (5)⇒ (1): By Lemma 6.4, the proof is obvious.
(5) ⇒ (6): For each neutrosophic subset µ of Y , (µ) is neutrosophic closed in Y and the
proof is obvious.
(6) ⇒ (7): Let λ be any neutrosophic subset of X. Set µ = f (λ), then by (6) (λ ∩ β) ⊆

( f −1(( f (λ))) ∩ β) ⊆ f −1(( f (λ))) for every neutrosophic closed set β in X such that 0X ,

β , 1X . Therefore, we obtain for each neutrosophic subset λ of X, f ((λ ∩ β)) ⊆ ( f (λ)) for
every neutrosophic closed set β in X such that 0X , β , 1X .
(7)⇒ (1): Let µ be any open set of Y . Then µc is neutrosophic closed in Y . Set α = f −1(µc),
then by (7) f (( f −1(µc) ∩ β)) ⊆ ( f ( f −1(µc)))) = µc for every neutrosophic closed set β in X
such that 0X , β , 1X . Therefore, we have
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( f −1(µc) ∩ β)
⊆ f −1( f (( f −1(µc) ∩ β))
⊆ f −1(µc) = ( f −1(µ))c.

Therefore, f −1(µ) ⊆ (( f −1(µc) ∩ β))c

= (( f −1(µc) ∩ β)c)◦

= ( f −1(µ) ∪ βc)◦

= ( f −1(µ) ∪ α)◦

for every neutrosophic open set α of X such that 0X , β , 1X .
(4) ⇒ (8): Let µ be any neutrosophic subset of Y . By (4) f −1(µ) is neutrosophic af-closed
in X and
f −1(µ) ⊆ f −1(µ). Therefore, ( f −1(µ))a f ⊆ f −1(µ).
(8)⇒ (9): Let µ be any neutrosophic subset of Y . Then,
f −1(µ◦) = f −1((µc)c)
=( f −1(µc))c ⊆ ((( f −1(µ))c)a f )

c

= ( f −1(µ))◦a f

(9)⇒ (1): Let µ be any neutrosophic open set of Y . By (9), f −1(µ) ⊆ ( f −1(µ))◦a f ⊆ f −1(µ).
Therefore, we have ( f −1(µ))◦a f = f −1(µ) and hence f is neutrosophic af-continuous. □

Definition 6.3. A function f : (X, τ)→ (Y, σ) is said to be neutrosophic af-irresolute if for
each neutrosophic af-open set µ in (Y, σ), f −1(µ) is neutrosophic af-open in (X, τ).

Theorem 6.6. If a function f : (X, τ) → (Y, σ) is neutrosophic af-irresolute, then f is
neutrosophic af-continuous.

The converse of Theorem 6.6 is not always true as shown by the following example.

Example 6.8. Let (X, τ), (Y, σ) be a neutrosophic topological spaces, with X = {a, b, c},
Y = {0.1, 0.7, 0.5}, τ = {0X , λ, 1X}, σ = {0Y , β, 1Y }, where λ, β are two neutrosophic sets
defined as λ = {⟨a, 0.3, 0.3, 0.7⟩, ⟨b, 0.2, 0.2, 0.8⟩, ⟨c, 0.5, 0.5, 0.5⟩} and
β = {⟨0.1, 0.3, 0.3, 0.7⟩, ⟨0.7, 0.2, 0.2, 0.8⟩, ⟨0.5, 0.5, 0.5, 0.5⟩}
in neutrosophic topological spaces (X, τ), (Y, σ), respectively. Then, a function f : (X, τ)→
(Y, σ) defined as f (a)=0.1, f (b)=0.7 and f (c)=0.5 is neutrosophic af-continuous but not
neutrosophic af-irresolute.

Definition 6.4. A function f : (X, τ) → (Y, σ) is said to be neutrosophic a f − open (resp.
neutrosophic a fα−open, neutrosophic a f p−open, neutrosophic a f s−open, neutrosophic
a fβ − open), if f(λ) is neutrosophic af-open (resp. neutrosophic afα-open, neutrosophic
afp-open, neutrosophic afs-open, neutrosophic afβ-open) in (Y, σ) for every neutrosophic
open set λ in (X, τ).

Proposition 6.7. Every neutrosophic open function is neutrosophic af-open.

Proof. It is obvious. □

Remark. As can be seen from Example 3.1, the converse of Proposition 6.7 may not always
be true.

Theorem 6.8. A function f : (X, τ)→ (Y, σ) is neutrosophic af-open if and only if for each
neutrosophic subset µ in (Y, σ) each neutrosophic closed set β in (X, τ) containing f −1(µ),
there exists a neutrosophic af-closed set ν in (Y, σ) containing µ such that f −1(ν) ⊆ β.
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Proof. Necessity. Let ν = ( f (βc))c. Since f −1(µ) ⊆ β, we have f (βc) ⊆ µc. Since f
is neutrosophic af-open, then ν is neutrosophic af-closed and f −1(ν) = ( f −1( f (βc)))c ⊆

(βc)c = β Sufficieny. Let α be any neutrosophic open set in (X, τ) and µ = ( f (α))c. Then,
f −1(µ) = ( f −1( f (U)))c ⊆ αc and αc is neutrosophic closed. By the hypothesis, there exists
a neutrosophic af-closed set ν in (Y, σ) containing µ such that f −1(ν) ⊆ αc. Then, we have
ν ⊆ ( f (α))c. Therefore, we obtain ( f (α))c ⊆ ν ⊆ ( f (α))c and f (α) is neutrosophic af-open
in (Y, σ). This shows that f is neutrosophic af-open. □

Proposition 6.9. A function f : (X, τ) → (Y, σ) is neutrosophic open and g : (Y, σ) →
(Z, η) is neutrosophic af-open, then go f : (X, τ)→ (Z, η) is neutrosophic af-open.

7. Conclusion

Our main aim when starting this study was to offer a new alternative to the open set types
that were previously introduced in mathematics and formed the basis of many studies. In
the preliminaries section of our study, some definitions that are necessary to introduce
this new open set type and that we have used in our previous studies are included. In the
third subheading, we redefined some open set types that have been used for a long time in
topological spaces from a new perspective, and after illustrating the relationship between
these open set types with the help of a diagram, we introduced the new open set type. By
examining the properties of this new type of open set that we have introduced, we tried
to eliminate the question marks that may arise in the minds of scientists who will conduct
future research, with the help of examples, which we hope will inspire our study. In the
fourth subheading of our study, we introduced open set types, which we can call sub-types
of our new open set type, and after examining their properties and giving examples of these
properties, we illustraed the relationship between them with the help of a diagram. In the
fifth subheading, we introduced different interior and closure operators and neighborhood
types with these operators with the help of our new set types. In the sixth subheading,
which is the last subheading of our study, we examined new types of continuity.
Our expectation is that this study will pave the way for new research in topology and other
sub-branches of mathematics. In addition, one of our primary goals is to help create new
works that will contribute to human life in different branches of science.
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[22] O. Mucuk, and H. Çakalli, On G-Compactness of Topological Groups with Operations, Filomat 36(20)
(2022), 7113-7121.

[23] T.Y. Ozturk, Some Structures on Neutrosophic Topological Spaces, Appl. Math. Nonlinear Sci. 6((1)
(2021), 467-478.

[24] S. Pramanik, and S.N. Chackrabarti, A study on problems of construction workers in West Bengal based
on neutrosophic cognitive maps, Int. J. Innov. Res. Sci. Eng. Tech. 2(11) (2013), 6387-6394.

[25] H. Sahin, M. Aslantas, and A.A. Nasir, Some Extended Results for Multivalued F-Contraction Mappings,
Axioms 12(2) (2023).

[26] A.A. Salama, and S.A. Alblowi, Neutrosophic set and neutrosophic topological spaces, IOSR J. Math. 3
(2012), 31-35.

[27] F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math.
24 (2005), 287-297.

[28] W.B.V. Kandasamy, and F. Smarandache, Analysis of Social aspects of Migrant laborers living with
HIV/AIDS using Fuzzy Theory and Neutrosophic Cognitive Maps, Xiquan, Phoenix, (2004).

Ahu Acikgoz,
Department ofMathematics, Balikesir University, 10145 Balikesir, Turkey, 0000-0003-1468-8240

Email address: ahuacikgoz@gmail.com

Ferhat Esenbel.
Department ofMathematics, Balikesir University, 10145 Balikesir, Turkey, 0000-0001-5581-3621

Email address: fesenbel@gmail.com



Proceedings of InternationalMathematical Sciences
ISSN: 2717-6355, URL: https://dergipark.org.tr/tr/pub/pims
Volume 6 Issue 2 (2024), Pages 68-76.
Doi: https://doi.org/10.47086/pims.1577951

SOME BEST PROXIMITY POINT RESULTS ON b-METRIC SPACES WITH
AN APPLICATION

MUSTAFA ASLANTAS*, AND HAKAN SAHIN**
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Abstract. In this paper, we introduce the concept of ϑ-p-proximal contraction mapping
on b-metric spaces. Then, we obtain some best proximity results for these mappings. Also,
an example to support the validity and superiority of our result has been given. Lastly, for
the existence of solutions of nonlinear fractional differential equations of Caputo type we
provide an application.

1. Introduction

In nonlinear analysis, game theory, approximation theory, differential equations, and
control systems, fixed point theory is a crucial tool for resolving a variety of issues. As
a result, numerous authors have enhanced fixed point theory. The Banach contraction
principle [4], which is considered as the foundation of fixed point theory on metric spaces,
was presented in this context. Let (Π, η) be a complete metric space and κ : Π → Π be
a contraction mapping, then κ has a unique fixed point. The existence and uniqueness of
fixed points in this field have been showed by numerous results [7, 11, 12]. Lately, Popescu
[17] extended Banach contraction by introducing a new type of contractive condition called
p-contraction. Let (Π, η) be a metric space and κ : Π → Π be a mapping. If there exists a
ϱ in [0, 1) such that

η(κř, κ ŝ) ≤ ϱ[η(ř, ŝ) + |η(ř, κř) − η(ŝ, κ ŝ)|]
for all ř, ŝ ∈ Π, then κ is said to be a p-contraction mapping. Then, Popescu [17] proved
that every p-contraction on a complete metric space has a unique fixed point.

Taking into account nonself mappings κ : A → B where A, B are nonempty subsets of
a metric space (Π, η), the fixed point theory has recently been improved. A solution to the
equation κř = ř cannot exist if the intersection of A and B is empty. Then, it is natural to
search if there is a point ř in A such that η(ř, κř) = η(A, B) which is called a best proximity
point of κ [6]. Numerous authors have written about this subject due to the fact that each
best proximity point turns into a fixed point in the case of A = B = Π [2, 5, 13, 14, 15].

The relevant basic definitions and symbols of best proximity point theory are now re-
stated.
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Let (Π, η) be a metric space and ∅ , A, B ⊆ Π. We will use the subsets of A and B,
respectively:

A0 = {ŝ ∈ A : η(ŝ, ř) = η(A, B) for some ř ∈ B}
and

B0 = {ř ∈ B : η(ŝ, ř) = η(A, B) for some ŝ ∈ A}
where η(A, B) = inf{η(ŝ, ř) : ŝ ∈ A and ř ∈ B}.

Definition 1.1. [5] Let (Π, η) be a metric space and A, B be nonempty subsets of Π. A
mapping κ : A → B is said to be proximal contraction, if there exists a real number
ϱ ∈ [0, 1) such that

η(ŵ1, κř1) = η(A, B)
η(ŵ2, κř2) = η(A, B)

}
⇒ η(ŵ1, ŵ2) ≤ ϱη(ř1, ř2)

for all ŵ1, ŵ2,ř1,ř2 ∈ A.

Definition 1.2. [9] Let (Π, η) be a metric space and ∅ , A, B ⊆ Π. Assume that ϑ : A×A→
[0,∞) is a function and κ : A → B is a mapping. If the following condition holds, we say
that κ is ϑ-proximal admissible

ϑ(ř0, ř1) ≥ 1
η(ř1, κř0) = η(A, B)
η(ř2, κř1) = η(A, B)

 =⇒ ϑ(ř1, ř2) ≥ 1

for all ř0, ř1, ř2 ∈ A.

On the other hand, Czerwik [8, 10] established an extansion of the famous principle in a
different approach than the results found in the literature by introducing a pleasant concept
of a b-metric.

Definition 1.3. [10] Let Π be a non-empty set and η : Π × Π → [0,∞) be a function
satisfying for all ŝ, ř, z ∈ Π,

b1) ŝ = řif and only if η(ŝ, ř) = 0,
b2) η(ŝ, ř) = η(ř, ŝ),
b3) η(ŝ, z) ≤ s[η(ŝ, ř) + η(ř, z)] where s ≥ 1.

Then, η is called a b-metric on Π with coefficient s. Also, (Π, η) is said to be a b-metric
space.

Each metric space is obviously a b-metric space. The opposite might not be right,
though. In fact, letΠ = R and η : Π×Π→ [0,∞) be a function defined by η(ŝ, ř) = (ŝ − ř)2

for all ŝ, ř ∈ Π. Then (Π, η) is a b-metric space with the coefficient s = 2. Choose ŝ = 7,
ř = 4 and z = 5, then

η(7, 4) = 9 > 5 = η(7, 5) + η(5, 4).
Hence, it is not a metric space.

Let (Π, η) be a b-metric space with the coefficient s ≥ 1. Let {řn} be sequence in Π and
ŝ ∈ Π. Then, the sequence {řn} converges to ŝ with respect to τη if and only if

lim
n→∞

η(řn, ř) = 0.

The sequence {řn} is called a Cauchy sequence if for all ε > 0 there is n0 ∈ N satisfying
η(řn, řm) < ε for all m, n ≥ n0. (Π, η) is called a complete b-metric space if each Cauchy
sequence converges to ř ∈ Π with respect to τη.

Any b-metric might not be continuous, in contrast to the regular metric. The following
definition, which is crucial to our primary findings, helps us get beyond this drawback.
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Definition 1.4. [3] Let (Π, η) be a b-metric space with the coefficient s ≥ 1 and ∅ , A, B ⊆
Π with A0 , ∅. The pair (A, B) holds the property (MC) if for every sequences {řn} in A0,
{ŝn} in B0 and ř ∈ A, ŝ ∈ B, we have

lim
n→∞

η(řn, ř) = lim
n→∞

η(ŝn, ŝ) = 0 =⇒ lim
n→∞

η(řn, ŝn) = η(ř, ŝ).

Now, we recall the following definition.

Definition 1.5. [3]Let (Π, η) be a b-metric space with the coefficient s ≥ 1. If each se-
quence {ŝn} in B such that η(ř, B) ≤ limn→∞ η(ř, ŝn) ≤ sη(ř, B) for some ř ∈ A has a
convergent subsequence in B, then B is called an s-approximately compact with respect to
A.

In this paper, we obtain some best proximity results on b-metric spaces by introducing
the concept of ϑ-p-proximal contraction mapping. Also, we give an example to support
the validity and superiority of our results. Finally, an application to an existence of the
solution of nonlinear fractional differential equations for Caputo type is given.

2. Main Results

We begin this section with the following definition.

Definition 2.1. Let (Π, η) be a b-metric space with s ≥ 1, A, B ⊆ Π with A0 , ∅. Assume
that ϑ : A×A→ [0,∞) is a function and κ : A→ B is a mapping. If there exist ϱ ∈

[
0, 1

2s−1

)
such that

η(ŵ, κř) = η(A, B)

η(v, κ ŝ) = η(A, B)

ϑ(ř, ŝ)η(ŵ, v) ≤ ϱ {η(ř, ŝ) + |η(ř, ŵ) − η(ŝ, v)|}

for all ř, ŝ, ŵ, v ∈ A, then we say κ is an ϑ-p-contraction mapping.

Now, we give an important condition for our main result.
(H) If {řn} ⊆ A0 is a sequence satisfying ϑ (řn, řn+1) ≥ 1 and řn → ř ∈ A, then there is

a subsequence
{
řnk

}
of {řn} satisfying ϑ

(
řnk , ř

)
≥ 1 for all k ∈ N.

Theorem 2.1. Let (Π, η) be a complete b-metric space with s ≥ 1, A, B ⊆ Π with A0 , ∅.
Assume that the following conditions hold:

i) the condition (H) holds and κ : A→ B is ϑ-p-proximal contraction mapping with
κ(A0) ⊆ B0,

ii) κ is an ϑ-proximal admissible,
iii) the pair (A, B) satisfies the property (MC),
iv) there are ř0,ř1 ∈ A0 such that η(ř1, κř0) = η(A, B) and ϑ(ř0, ř1) ≥ 1,
v) B is an s-approximately compact with respect to A.

Then, κ has a best proximity point ř∗ in A.If for another best proximity point ŝ∗ ∈ A,
ϑ (ř∗, ŝ∗) ≥ 1, then ř∗ = ŝ∗.

Proof. From the condition (iv), there are ř0, ř1 ∈ A0 such that η(ř1, κř0) = η(A, B) and
ϑ(ř0, ř1) ≥ 1. Since κř1 ∈ κ(A0) ⊆ B0, there exists ř2 ∈ A0 such that

η(ř2, κř1) = η(A, B).

Since κ is an ϑ-proximal admissible, we get ϑ(ř1, ř2) ≥ 1. Similarly, since κř2 ∈ κ(A0) ⊆
B0, there exists ř3 ∈ A0 such that

η(ř3, κř2) = η(A, B).
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Since κ is an ϑ-proximal admissible, we get ϑ(ř2, ř3) ≥ 1. Repeating this process, we can
construct a sequence {řn} in A such that

η(řn+1, κřn) = η(A, B) and ϑ(řn, řn+1) ≥ 1 (2.1)

for all n ≥ 1. Then, we have

η(řn, řn+1) ≤ ϑ(řn, řn+1)η(řn, řn+1)
≤ ϱ {η(řn−1, řn) + |η(řn−1, řn) − η(řn, řn+1)|}

Suppose that there exists n0 ∈ N such that η(řn0−1, řn0 ) ≤ η(řn0 , řn0+1), then we have

η(řn0 , řn0+1) ≤ ϑ(řn0 , řn0+1)η(řn0 , řn0+1)

≤ ϱ
{
η(řn0−1, řn0 ) +

∣∣∣η(řn0−1, řn0 ) − η(řn0 , řn0+1)
∣∣∣}

= ϱ
{
η(řn0−1, řn0 ) + η(řn0 , řn0+1) − η(řn0−1, řn0 )

}
= ϱη(řn0 , řn0+1)
< η(řn0 , řn0+1).

This is a contradiction. Then, we assume that η(řn, řn+1) < η(řn−1, řn) for all n ≥ 1. There-
fore, we get

η(řn, řn+1) ≤ ϑ(řn, řn+1)η(řn, řn+1)
≤ ϱ {η(řn−1, řn) + η(řn, řn−1) − η(řn, řn+1)}
= 2ϱη(řn−1, řn) − ϱη(řn, řn+1)

and so,

η(řn, řn+1) ≤
(

2ϱ
ϱ + 1

)
η(řn−1, řn)

for all n ≥ 1. Using the last inequality, we have

η(řn, řn+1) ≤

(
2ϱ
ϱ + 1

)
η(řn−1, řn)

≤

(
2ϱ
ϱ + 1

)2

η(řn−2, řn−1)

...

≤

(
2ϱ
ϱ + 1

)n

η(ř0, ř1)

for all n ∈ N. Now, assume n ∈ N and p ∈ N. Then, we have

η(řn, řn+p) ≤ sη(řn, řn+1) + s2η(řn+1, řn+2) + ... + spη(řn+p−1, řn+p)

≤
1

sn−1


(

2ϱs
ϱ+1

)n
η(ř0, ř1) +

(
2ϱs
ϱ+1

)n+1
η(ř0, ř1) + · · ·

+
(

2ϱs
ϱ+1

)n+p−1
η(ř0, ř1)


=

(
2ϱs
ϱ + 1

)n
1 +

2ϱs
ϱ + 1

+ · · · +

(
2ϱs
ϱ + 1

)p−1
 η(ř0, ř1)

≤

(
2ϱs
ϱ+1

)n

1 − 2ϱs
ϱ+1

η(ř0, ř1).
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Thus, {řn} is a Cauchy sequence in A. Since (Π, η) is a complete b-metric space and A is a
closed subset of Π, there exists a ř∗ ∈ A such that řn → ř∗. Moreover, we have

η(ř∗, B) ≤ η(ř∗, κřn)
≤ sη(ř∗, řn+1) + sη(řn+1, κřn)
= sη(ř∗, řn+1) + sη(A, B)
≤ sη(ř∗, řn+1) + sη(ř∗, B).

Therefore, we get

η(ř∗, B) ≤ lim
n→∞

η(ř∗, κřn) ≤ sη(ř∗, B).

Since B is s-approximately compact with respect to A, there exists a subsequence {κřnk } of
{κřn} such that κřnk → ŝ∗ ∈ B as k → ∞. Therefore by taking k → ∞ in η(řnk+1, κřnk ) =
η(A, B), since the pair (A, B) satisfies the property (MC), we have η(ř∗, ŝ∗) = η(A, B), and
so ř∗ ∈ A0. Also, since κř∗ ∈ κ(A0) ⊆ B0, there exists z ∈ A0 such that

η(z, κř∗) = η(A, B). (2.2)

On the other hand, using the condition (H) we can say that there exists a subsequence{
řnr

}
of {řn} such that ϑ

(
řnr , ř

∗
)
≥ 1 for all r ∈ N. Also, since κ is an ϑ-proximal admissible

mapping, we have ϑ
(
řnr+1, z

)
≥ 1 for all r ∈ N. Now, from (2.1), (2.2) and the condition of

ϑ-p-proximal contraction, we obtain

η(řnr+1, z) ≤ ϑ(řnr+1, z)η(řnr+1, z)

≤ ϱ
(
η(řnr , ř

∗) +
∣∣∣η(řnr , řnr+1) − η(ř∗, z)

∣∣∣)
for all r ∈ N. Thus, taking limit as r → ∞ we have

η(ř∗, z) ≤ ϱη(ř∗, z),

which gives ř∗ = z. From (2.2), the point ř∗ is best proximity point of the mapping κ. Now,
assume that ř∗ and ŝ∗ are different best proximity points of κ in A and ϑ (ř∗, ŝ∗) ≥ 1. Then,
we get

η(ř∗, κř∗) = η(A, B)

and
η(ŝ∗, κ ŝ∗) = η(A, B).

Since the mapping κ is ϑ-p-proximal contraction, we have

η(ř∗, ŝ∗) ≤ ϑ (ř∗, ŝ∗) η(ř∗, ŝ∗)
≤ ϱ (η(ř∗, ŝ∗) + |η(ř∗, ř∗) − η(ŝ∗, ŝ∗)|)

= ϱη(ř∗, ŝ∗)

which gives ř∗ = ŝ∗. This is contradiction. Hence, κ has only one best proximity point. □

Example 2.1. Let Π = R2 and η : Π × Π→ R be a function defined by

η((ř1, ř2), (ŝ1, ŝ2)) = max{ř1, ŝ1} + (ř2 − ŝ2)2

for all (ř1, ř2), (ŝ1, ŝ2) ∈ Π. Then, (Π, η) is a b-metric space with coefficient s = 2. Now,
consider the sets A = [0, 1] × {0} and B = [0, 1] × {1}. We get η(A, B) = 1, A is closed,
A0 = {(0, 0)} and B0 = {(0, 1)}. Also, it can be seen that B is an s-approximately compact
with respect to A and the pair (A, B) satisfies the property (MC). Define a function ϑ :
A × A→ [0,∞) and a mapping κ : A→ B as
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ϑ(ř, ŝ) =


1 , ř, ŝ ∈ A0

0 , otherwise
and

κ(ř1, 0) =
(

ř1

2
, 1

)
,

respectively. Then, we can choose ř0 = (0, 0) = ř1 ∈ A0 such that η(ř1, κř0) = η(A, B)
and ϑ(ř0, ř1) ≥ 1, and so the condition (iv) hold. Also, it is clear that κ : A → B is an
ϑ-proximal admissible and ϑ-p-proximal contraction mapping with κ(A0) ⊆ B0. Hence,
all hypotheses of Theorem 2.1 are satisfied, and so there is a unique best proximity point
ř = (0, 0) of κ.

If we take A = B = Π in Theorem 2.1, then we obtain the following fixed point result.

Corollary 2.2. Let (Π, η) be a complete b-metric space with the coefficient s ≥ 1 and
κ : Π→ Π be a continuous mapping. If the following conditions hold,

i) for all ŝ, ř ∈ Π, it is satisfied

ϑ(ř, ŝ)η(κř, κ ŝ) ≤ ϱ {η(ř, ŝ) + |η(ř, κř) − η(ŝ, κ ŝ)|} ,

ii) If {řn} ⊆ Π is a sequence such that ϑ (řn, řn+1) ≥ 1 and řn → ř ∈ Π, then there
exists a subsequence

{
řnk

}
of {řn} such that ϑ

(
řnk , ř

)
≥ 1 for all k ∈ N.

iii) κ is an ϑ-admissible,
iv) there is ř0 ∈ Π such that ϑ (ř0, κř0) ≥ 1,

then, κ has a fixed point ř∗ in Π.If for another fixed point ŝ∗ ∈ Π, ϑ (ř∗, ŝ∗) ≥ 1, then
ř∗ = ŝ∗.

If we take s = 1 in Corollary 2.2, then we obtain the following fixed point result.

Corollary 2.3. Let (Π, η) be a complete metric space and κ : Π→ Π be a mapping. If the
following conditions hold,

i) for all ŝ, ř ∈ Π, it is satisfied

ϑ(ř, ŝ)η(κř, κ ŝ) ≤ ϱ {η(ř, ŝ) + |η(ř, κř) − η(ŝ, κ ŝ)|} , (2.3)

ii) If {řn} ⊆ Π is a sequence such that ϑ (řn, řn+1) ≥ 1 and řn → ř ∈ Π, then there
exists a subsequence

{
řnk

}
of {řn} such that ϑ

(
řnk , ř

)
≥ 1 for all k ∈ N.

iii) κ is an ϑ-admissible,
iv) there is ř0 ∈ Π such that ϑ (ř0, κř0) ≥ 1,

then, κ has a fixed point ř∗ in Π. If for another fixed point ŝ∗ ∈ Π, ϑ (ř∗, ŝ∗) ≥ 1, then
ř∗ = ŝ∗.

3. Application

For nonlinear fractional differential equations of Caputo type, we provide adequate re-
quirements for their existence and uniqueness in this section. For a continuous function
g : [0,∞)→ R of order α > 0, the Caputo derivative is defined as

C Dα(g(γ)) =
1

Γ(n − α)

∫ γ

0
(γ − s)n−α−1g(n)(s)ds, α > 0, n − 1 < α < n

where Γ is the gamma function and n is an integer.
The following nonlinear fractional differential equation of Caputo type

C Dα(g(γ)) = f (γ, ř(γ)) (3.1)
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with integral boundary conditions

ř(0) = 0 and ř(1) =
∫ θ

0
ř(ŵ)dŵ

where 1 < α ≤ 2, 0 < θ < 1, ř ∈ C[0, 1] which is the space of all continuous real-valued
functions defined on [0, 1] and f : [0, 1] × R → R is a continuous function. Since f is a
continuous, the equation (3.1) is equivalent to the following integral equation [1, 16]:

ř(γ) =
1
Γ(α)

∫ γ

0
(γ − ŵ)α−1 f (ŵ, ř(ŵ))dŵ

−
2γ

(2 − θ2)Γ(α)

∫ 1

0
(1 − ŵ)α−1 f (ŵ, ř(ŵ))dŵ

+
2γ

(2 − θ2)Γ(α)

∫ θ

0

(∫ ŵ

0
(ŵ − r)α−1 f (r, ř(r))dr

)
dŵ. (3.2)

Theorem 3.1. Let χ : R × R→ R be a function. Suppose the following conditions hold:

i) the mapping κ : C[0, 1]→ C[0, 1]

κř(γ) =
1
Γ(α)

∫ γ

0
(γ − ŵ)α−1 f (ŵ, ř(ŵ))dŵ

−
2γ

(2 − θ2)Γ(α)

∫ 1

0
(1 − ŵ)α−1 f (ŵ, ř(ŵ))dŵ

+
2γ

(2 − θ2)Γ(α)

∫ θ

0

(∫ ŵ

0
(ŵ − r)α−1 f (r, ř(r))dr

)
dŵ

for all ř ∈ C[0, 1] and γ ∈ [0, 1], is a continuous mapping where 1 < α ≤ 2, 0 <
θ < 1.

ii) there exists ř0 ∈ C[0, 1] such that χ (ř0 (γ) , κř0 (γ)) ≥ 0 for all γ ∈ [0, 1] .
iii) if for each γ ∈ [0, 1] and ř, ŝ ∈ C [0, 1], χ (ř (γ) , ŝ (γ)) ≥ 0, then χ (κř (γ) , κ ŝ (γ)) ≥

0.
iv) for each sequence {řn} ⊆ C [0, 1] such that for all γ ∈ [0, 1], {řn (γ)} converges

to ř (γ) for some ř ∈ C[0, 1] and χ (řn (γ) , řn+1 (γ)) ≥ 0 for all n ≥ 1, then there
exists a subsequence

{
řnk

}
of {řn} such that χ

(
řnk (γ) , ř (γ)

)
≥ 0 for all γ ∈ [0, 1]

and k ≥ 1.
v) there exists q in [0, 1) such that

| f (ŵ, ř(ŵ)) − f (ŵ, ŝ(ŵ))| ≤
Γ(α + 1)

5

{
ϱ
(
|ř(ŵ) − ŝ(ŵ)|2

)
+ N(ř, κ)

} 1
2

where ϱ ∈ [0, 1) and N(ř, κ) =
∣∣∣supŵ∈[0,1] |ř(ŵ) − κř(ŵ)|2 − supŵ∈[0,1] |ŝ(ŵ) − κ ŝ(ŵ)|2

∣∣∣.
Then, the problem (3.1) has a unique solution.

Proof. Let Π = C[0, 1] and η : Π × Π→ [0,∞) a function defined by

η(ŵ, v) = sup
γ∈[0,1]

|ŵ(γ) − v(γ)|2

for all γ ∈ [0, 1] and ŵ, v ∈ Π. Hence, (Π, η) is a complete b-metric space with s = 2. We
shall show that κ satisfies the inequality (2.3). Let’s take ř, ŝ ∈ Π with χ (ř (γ) , ŝ (γ)) ≥ 0
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for all γ ∈ [0, 1].Then, we have

|κř(γ) − κ ŝ(γ)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
Γ(α)

∫ γ

0 (γ − ŵ)α−1 f (ŵ, ř(ŵ))dŵ

−
2γ

(2−θ2)Γ(α)

∫ 1
0 (1 − ŵ)α−1 f (ŵ, ř(ŵ))dŵ

+
2γ

(2−θ2)Γ(α)

∫ θ

0

(∫ ŵ
0 (ŵ − r)α−1 f (r, ř(r))dr

)
dŵ

− 1
Γ(α)

∫ γ

0 (γ − ŵ)α−1 f (ŵ, ŝ(ŵ))dŵ

+
2γ

(2−θ2)Γ(α)

∫ 1
0 (1 − ŵ)α−1 f (ŵ, ŝ(ŵ))dŵ

−
2γ

(2−θ2)Γ(α)

∫ θ

0

(∫ ŵ
0 (ŵ − r)α−1 f (r, ŝ(r))dr

)
dŵ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤

1
Γ(α)

{∫ γ

0
|γ − ŵ|α−1 (| f (ŵ, ř(ŵ)) − f (ŵ, ŝ(ŵ))|) dŵ

}
+

2γ
(2 − θ2)Γ(α)

{∫ 1

0
(1 − ŵ)α−1 (| f (ŵ, ř(ŵ)) − f (ŵ, ŝ(ŵ))|) dŵ

}
+

2γ
(2 − θ2)Γ(α)

{∫ θ

0

(∫ ŵ

0
|ŵ − r|α−1 (| f (r, ř(r)) − f (r, ŝ(r))|) dr

)
dŵ

}

≤

∫ γ

0

 |γ−ŵ|α−1

Γ(α)
Γ(α+1)

5

×
{
ϱ
(
|ř(ŵ) − ŝ(ŵ)|2 + N(ř, κ)

) } 1
2

 dŵ

+
2γ

(2 − θ2)

∫ 1

0

 (1−ŵ)α−1

Γ(α)
Γ(α+1)

5

×
{
ϱ
(
|ř(ŵ) − ŝ(ŵ)|2 + N(ř, κ)

) } 1
2

 dŵ

+
2γ

(2 − θ2)

∫ θ

0

∫ ŵ

0

 |ŵ−r|α−1

Γ(α)
Γ(α+1)

5

×
{
ϱ
(
|ř(ŵ) − ŝ(ŵ)|2 + N(ř, κ)

) } 1
2

 dr

 dŵ

≤
Γ(α + 1)

5
{ϱ (η(ř, ŝ) + |η(ř, κř) − η(ŝ, κ ŝ)|)}

1
2

× sup
γ∈[0,1]

{
1

Γ(α + 1)
+

2γ
(2 − θ2)

(
1

Γ(α + 1)
+

1
Γ(α + 1)

)}
≤ {ϱ (η(ř, ŝ) + |η(ř, κř) − η(ŝ, κ ŝ)|)}

1
2

which implies that
η(κř, κ ŝ) ≤ ϱ (η(ř, ŝ) + |η(ř, κř) − η(ŝ, κ ŝ)|) (3.3)

ř, ŝ ∈ Π with χ (ř (γ) , ŝ (γ)) ≥ 0 for all γ ∈ [0, 1]. Now, consider the mapping α : Π×Π→
[0,∞) defined by

α(ř, ŝ) =


1 , χ (ř (γ) , ŝ (γ)) ≥ 0 for all γ ∈ [0, 1]

0 , otherwise
.

Then, the inequality (3.3) is satisfied for all ř, ŝ ∈ Πwith α(ř, ŝ) ≥ 1, that is, for all ř, ŝ ∈ Π,

α(ř, ŝ)η(κř, κ ŝ) ≤ ϱ (η(ř, ŝ) + |η(ř, κř) − η(ŝ, κ ŝ)|)

is satisfied. Also, from (iii), the mapping κ is α-admissible mapping. Using the conditions
(ii) and (iv) we say that all conditions of Corollary 2.3 are met, and so κ has a fixed point.
Therefore, there is a solution to the nonlinear fractional differential equation of Caputo
type (3.1) □
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Abstract. This paper presents a mathematics-informed approach to neural operator de-
sign, building upon the theoretical framework established in our prior work [1]. By inte-
grating rigorous mathematical analysis with practical design strategies, we aim to enhance
the stability, convergence, generalization, and computational efficiency of neural operators.
We revisit key theoretical insights, including stability in high dimensions, exponential con-
vergence, and universality of neural operators. Based on these insights, we provide detailed
design recommendations, each supported by mathematical proofs and citations. Our con-
tributions offer a systematic methodology for developing next-gen neural operators with
improved performance and reliability.

1. Introduction

Neural operators have changed the way we approach problems involving mappings
between infinite-dimensional function spaces, particularly in solving partial differential
equations (PDEs) [2, 3, 4]. By extending the capabilities of neural networks from finite-
dimensional data to function spaces, architectures such as the Fourier Neural Operator
(FNO) and Deep Operator Network (DeepONet) have demonstrated significant success in
approximating solution operators with significantly reduced computational costs.

In our prior work [1], we developed a mathematical framework for analyzing neural op-
erators, proving their stability, convergence properties, and capacity for universal approxi-
mation between function spaces. We also established probabilistic bounds on generaliza-
tion error, linking it to sample size and network capacity. Building upon this foundation,
the primary objective of this paper is to translate these theoretical insights into actionable
design recommendations for neural operators. By doing so, we aim to bridge the gap be-
tween theory and practice, suggesting better neural operator architectures and saving time
in design.

The remainder of the paper is organized as follows. In Section 2, we reinstate the
theoretical results from the prior paper [1], including the definitions of neural operators and
the key theorems related to the behaviors of neural operators. In Section 3, we present our
detailed design recommendations, illustrating how each recommendation enhances neural
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operator performance. Finally, Appendix A contains the full proofs of all the theorems,
lemmas, and propositions presented in this paper.

2. Theoretical Framework Reminder

In this section, we provide a concise summary of the key theoretical results established
in our previous work [1]. These results form the foundation upon which we build our
design recommendations for neural operators.

2.1. Stability in High-Dimensional PDEs.

Theorem 2.1 (Stability of Neural Operators in High-Dimensional PDEs). LetGθ : Hs(D)→
Ht(D) be a neural operator parameterized by θ, mapping between Sobolev spaces over a
domain D ⊂ Rd. Suppose Gθ satisfies a Lipschitz continuity condition:

∥Gθ(u) − Gθ(v)∥Ht(D) ≤ L∥u − v∥Hs(D)

for all u, v ∈ Hs(D) and some Lipschitz constant L > 0. Then, for any u ∈ Hs(D), the
neural operator produces stable approximations in high-dimensional D:

∥Gθ(u)∥Ht(D) ≤ L∥u∥Hs(D) +C,

where C = ∥Gθ(0)∥Ht(D) is a constant depending on θ and the domain D.

2.2. Exponential Convergence.

Theorem 2.2 (Exponential Convergence of Neural Operator Approximations). Let Gθ be
a contraction mapping on Ht(D) with contraction constant 0 < q < 1. Then, for any
u ∈ Ht(D), the iterated application Gn

θ(u) converges exponentially to the fixed point u∗ of
Gθ:

∥Gn
θ(u) − u∗∥Ht(D) ≤ qn∥u − u∗∥Ht(D).

2.3. Universality and Generalization.

Theorem 2.3 (Universality of Neural Operators for PDE Solvers). Let T : Hs(D) →
Ht(D) be a continuous operator. Then, for any ϵ > 0, there exists a neural operator Gθ
such that:

∥Gθ(u) − T (u)∥Ht(D) ≤ ϵ,

for all u in a compact subset of Hs(D).

Theorem 2.4 (Generalization Error of Neural Operators). Let Gθ be a neural operator
trained on N samples {(ui,T (ui))} drawn i.i.d. from a distribution D. Suppose Gθ has
Lipschitz constant L with respect to θ, and the loss function ℓ is Lipschitz and bounded.
Then, with probability at least 1 − δ, the generalization error satisfies:

Eu∼D[ℓ(Gθ(u),T (u))] ≤
1
N

N∑
i=1

ℓ(Gθ(ui),T (ui)) + L

√
ln(1/δ)

2N
.

3. Design Recommendations for Neural Operators

Based on the theoretical insights from the previous section, we propose several design
recommendations to enhance neural operator performance. Each recommendation is sup-
ported by detailed theorems, lemmas, and proofs, either directly or in Appendix A, to
examine their impacts.
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3.1. Design Neural Operators as Contraction Mappings. Ensuring that the neural oper-
ator Gθ satisfies the contraction property guarantees stability and exponential convergence.
By designing Gθ as a contraction mapping, we leverage the Banach Fixed Point Theorem
[5] to ensure the existence and uniqueness of a fixed point, as well as exponential conver-
gence to that fixed point. This approach enhances both the stability and efficiency of the
neural operator when approximating solutions to partial differential equations (PDEs).

To ensure that Gθ is a contraction mapping, we must design the neural network compo-
nents to satisfy certain Lipschitz conditions. Specifically, we have the following theorem:

Theorem 3.1 (Lipschitz Condition for Neural Networks). Suppose each layer of the neural
operator Gθ is Lipschitz continuous with Lipschitz constant Li, and the activation functions
are Lipschitz continuous with Lipschitz constant Lσ. Then the overall Lipschitz constant L
of Gθ satisfies:

L ≤

 N∏
i=1

Li

 LN
σ ,

where N is the number of layers.

Proof. See Appendix A.1. □

By constraining the spectral norm of each weight matrix Wi to be less than or equal to
q1/N , where q ∈ (0, 1) is the desired contraction constant, and choosing activation functions
with Lipschitz constant Lσ ≤ 1, we can ensure thatGθ becomes a contraction mapping with
contraction constant L ≤ q. This is formalized in the following corollary:

Corollary 3.2 (Ensuring Contraction via Spectral Normalization). By constraining ∥Wi∥ ≤

q1/N and choosing Lσ ≤ 1, the overall Lipschitz constant satisfies L ≤ q, ensuring that Gθ
is a contraction mapping with contraction constant q.

Proof. See Appendix A.1. □

Designing Gθ as a contraction mapping enhances stability by ensuring that small per-
turbations in the input lead to proportionally smaller changes in the output. Specifically,
we have:

Lemma 3.3 (Stability of Contraction Mappings). A contraction mapping Gθ on a metric
space (X, ∥ · ∥) satisfies:

∥Gθ(u + δu) − Gθ(u)∥ ≤ q∥δu∥,
where δu is a small perturbation in the input.

Proof. We aim to show that if Gθ is a contraction mapping on a metric space (X, ∥ · ∥)
with contraction constant q ∈ [0, 1), then for any u ∈ X and any perturbation δu ∈ X, the
following inequality holds:

∥Gθ(u + δu) − Gθ(u)∥ ≤ q∥δu∥.

We start by defining the contraction mapping. A mapping Gθ : X → X is called a
contraction mapping if there exists a constant q ∈ [0, 1) such that for all x, y ∈ X,

∥Gθ(x) − Gθ(y)∥ ≤ q∥x − y∥.

Let u ∈ X be any point in the metric space, and let δu ∈ X be a perturbation. We
consider the images of u and u + δu under the mapping Gθ.

Applying the contraction property to x = u + δu and y = u, we have:

∥Gθ(u + δu) − Gθ(u)∥ ≤ q∥(u + δu) − u∥ = q∥δu∥.
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This inequality directly shows that the change in the output ofGθ due to the perturbation
δu is at most q times the magnitude of the perturbation. Since q < 1, the mapping Gθ
attenuates the effect of the perturbation.

So far, the lemma demonstrates that Gθ is Lipschitz continuous with Lipschitz constant
q:

∥Gθ(u + δu) − Gθ(u)∥ ≤ q∥δu∥.

This property implies stability with respect to input perturbations, meaning that small
changes in the input u result in proportionally smaller changes in the output Gθ(u). This
is crucial for ensuring that errors or uncertainties in the input do not amplify through the
mapping, which is particularly important in iterative methods and numerical computations.

□

Moreover, the exponential convergence to the fixed point reduces computational effort
by potentially decreasing the number of iterations or layers required to achieve a desired
level of accuracy.

Theorem 3.4 (Reduction in Iterations Needed for Convergence). Let ϵ > 0 be the desired
accuracy. The number of iterations n required to achieve ∥Gn

θ(u) − u∗∥ ≤ ϵ is bounded by:

n ≥
ln

(
∥u−u∗∥
ϵ

)
ln

(
1
q

) .

Proof. We aim to determine a bound on the number of iterations n required for the iterated
mapping Gn

θ(u) to approximate the fixed point u∗ within a desired accuracy ϵ > 0, i.e.,

∥Gn
θ(u) − u∗∥ ≤ ϵ.

Recall that a contraction mapping Gθ on a complete metric space (X, ∥ · ∥) has a unique
fixed point u∗ ∈ X satisfying Gθ(u∗) = u∗. Moreover, the sequence {Gn

θ(u)}∞n=0, where Gn
θ

denotes the n-fold composition of Gθ, converges to u∗ for any initial point u ∈ X.
The contraction property ensures that:

∥Gθ(u) − Gθ(v)∥ ≤ q∥u − v∥, for all u, v ∈ X,

where q ∈ [0, 1) is the contraction constant.
We first establish the rate at which the iterates Gn

θ(u) converge to u∗. Using the contrac-
tion property repeatedly, we have:

∥Gn
θ(u) − u∗∥ = ∥Gn

θ(u) − Gn
θ(u
∗)∥

≤ q∥Gn−1
θ (u) − u∗∥

≤ q2∥Gn−2
θ (u) − u∗∥

...

≤ qn∥u − u∗∥.

To achieve the desired accuracy ϵ, we require:

∥Gn
θ(u) − u∗∥ ≤ qn∥u − u∗∥ ≤ ϵ.

Rewriting the inequality:

qn ≤
ϵ

∥u − u∗∥
.
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Taking the natural logarithm on both sides:

ln qn ≤ ln
(

ϵ

∥u − u∗∥

)
.

Simplifying:
n ln q ≤ ln ϵ − ln ∥u − u∗∥.

Since ln q < 0 (because 0 ≤ q < 1), we multiply both sides by −1 (which reverses the
inequality direction):

−n ln q ≥ ln ∥u − u∗∥ − ln ϵ.

Recognizing that − ln q = ln
(

1
q

)
, we have:

n ln
(

1
q

)
≥ ln

(
∥u − u∗∥

ϵ

)
.

Solving for n, we obtain:

n ≥
ln

(
∥u−u∗∥
ϵ

)
ln

(
1
q

) .

Generally, this inequality provides a lower bound on the number of iterations n required
to achieve an approximation error less than or equal to ϵ. The bound depends logarithmi-
cally on the ratio ∥u−u∗∥

ϵ
and inversely on ln

(
1
q

)
. A smaller contraction constant q (i.e., closer

to zero) results in a larger denominator, thus reducing the required number of iterations n.
□

This shows that a smaller contraction constant q leads to fewer iterations needed for
convergence.

3.2. Integrate Multi-Scale Representations. Combining global (Fourier) and local (wavelet)
representations allows the neural operator to capture features at multiple scales, enhancing
its ability to approximate complex functions with varying spatial frequencies.

Employing both Fourier and wavelet transforms enables efficient representation of func-
tions with features spanning various spatial frequencies [6]. This multi-scale approach
aligns with the clustering behavior in function space and enhances the operator’s capacity
to approximate complex solution mappings.

We formalize this with the following theorem:

Theorem 3.5 (Approximation Using Combined Bases). Any function f ∈ L2(D) can be
approximated arbitrarily well using a finite combination of Fourier and wavelet basis func-
tions.

Proof. See Appendix A.2. □

Implementing spectral convolution layers utilizing the Fast Fourier Transform (FFT) for
global feature extraction [3], and incorporating wavelet transform layers to capture local
irregularities and singularities [7], allows for efficient computation.

Lemma 3.6 (Efficient Computation with Multi-Scale Layers). The integration of Fourier
and wavelet layers allows for efficient computation by leveraging the FFT and Discrete
Wavelet Transform (DWT), both of which have computational complexity O(N log N).

Proof. See Appendix A.2. □
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Integrating multi-scale representations enhances the neural operator’s ability to model
functions with sharp transitions or localized features, leading to improved approximation
accuracy.

Theorem 3.7 (Improved Approximation Error with Multi-Scale Representations). Let f ∈
L2(D) be a function with both smooth and localized features. A neural operator employing
multi-scale representations can approximate f with an error ϵ that decreases exponentially
with the number of basis functions used.

Proof. See Appendix A.2. □

This demonstrates that multi-scale representations can achieve lower approximation er-
rors more efficiently than single-scale methods.

3.3. Ensure Universal Approximation Capability. Increasing the network capacity ap-
propriately ensures sufficient depth and width for approximating complex operators. The
Universal Approximation Theorem for operators indicates that a neural operator with suffi-
cient capacity can approximate any continuous operator to arbitrary precision on compact
subsets of the input space [8, 4].

By increasing the depth and width of the neural network, we enhance its capacity to
approximate complex functions. Specifically, we have:

Theorem 3.8 (Capacity Growth with Network Size). The expressive capacity of a neural
network grows exponentially with depth and polynomially with width [9].

Proof. See Appendix A.3. □

Using activation functions capable of representing complex mappings, such as ReLU or
Tanh, facilitates universal approximation [10].

Enhancing the network’s capacity allows the neural operator to approximate more com-
plex solution mappings with higher precision. However, increasing capacity improves ap-
proximation accuracy but also increases the risk of overfitting. Regularization techniques
must be employed to mitigate this risk.

Lemma 3.9 (Trade-off Between Capacity and Overfitting). While increasing capacity im-
proves approximation accuracy, it also increases the risk of overfitting. Regularization
techniques must be employed to mitigate this risk.

Proof. See Appendix A.3. □

Balancing network capacity with appropriate regularization leads to better performance.

3.4. Enhance Generalization through Regularization. Applying regularization tech-
niques such as weight decay, dropout, or spectral normalization controls the complexity
of the neural operator and prevents overfitting.

Regularization techniques constrain the effective capacity of the neural operator, miti-
gating overfitting and improving generalization to unseen data [11].

Implement weight decay by adding a penalty term to the loss function:

Ltotal = Ldata + λ
∑

i

∥Wi∥
2
F , (3.1)

where Ldata is the original loss, λ is the regularization parameter, and ∥Wi∥F is the Frobe-
nius norm of weight matrix Wi.
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Theorem 3.10 (Effectiveness of Weight Decay). Weight decay reduces the effective ca-
pacity of the neural network by penalizing large weights, which helps prevent overfitting
[12].

Proof. See Appendix A.4. □

Apply dropout by randomly setting a fraction of the neurons’ outputs to zero during
training [13].

Lemma 3.11 (Dropout Prevents Co-adaptation). Dropout reduces overfitting by preventing
neurons from co-adapting on training data, leading to more robust features.

Proof. See Appendix A.4. □

Additionally, apply spectral normalization to limit the spectral norm of weight matrices,
ensuring controlled Lipschitz constants [14].

Regularization techniques lead to reduced overfitting, enhancing the neural operator’s
performance on unseen data.

Theorem 3.12 (Improved Generalization with Regularization). Regularized neural oper-
ators exhibit lower generalization error bounds compared to unregularized models.

Proof. Follows from standard results in statistical learning theory [15]. □

Controlling the Lipschitz constant via spectral normalization also contributes to stabil-
ity.

3.5. Optimize Computational Efficiency. Implementing spectral methods and paralleliza-
tion reduces computational complexity and exploits hardware capabilities. Efficient com-
putational methods allow the neural operator to handle larger problem sizes and higher-
dimensional PDEs without incurring prohibitive computational costs.

Ensure that the neural operator architecture is compatible with GPU acceleration and
distributed computing frameworks. Under ideal conditions, parallel computing can achieve
a speedup proportional to the number of processing units, up to the limits imposed by
Amdahl’s Law.

Theorem 3.13 (Speedup with Parallel Computing). Under ideal conditions, the speedup
S achievable by parallel computing is:

S = N,

where N is the number of processors, assuming perfect parallelization.

Proof. See Appendix A.5. □

However, Amdahl’s Law imposes a limit due to the serial portion of the code.

Lemma 3.14 (Amdahl’s Law). The maximum speedup S achievable by parallelization is:

S =
1

(1 − P) + P
N

,

where P is the fraction of the program that can be parallelized, and N is the number of
processors.

Proof. See Appendix A.5. □
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Implement spectral convolution layers using FFT algorithms, which are highly opti-
mized for parallel execution [17].

Optimizing computational efficiency enables the neural operator to scale to larger datasets,
higher resolutions, and more complex PDEs.

Theorem 3.15 (Feasibility of High-Dimensional Problems). Efficient computational im-
plementations make it feasible to apply neural operators to high-dimensional problems
that were previously intractable due to computational limitations.

Proof. See Appendix A.5. □

4. Conclusion

So far, we have translated theoretical insights into practical design recommendations for
neural operators, each supported by rigorous mathematical proofs and relevant citations.
By using contraction mappings, multi-scale representations, sufficient network capacity,
regularization, and computational optimizations, we enhance the stability, convergence,
generalization, and efficiency of neural operators.

Looking forward, future work should include exploring adaptive architectures that dy-
namically adjust their structure based on input complexity, incorporating probabilistic
methods to quantify prediction uncertainty, and integrating neural operators with classi-
cal numerical methods to achieve enhanced performance.

Acknowledgments. We want to thank Google Research for providing support and men-
torships for student Vu-Anh Le, as well as the Mathematics and Computer Science Depart-
ment at Beloit College.

Appendix A: Proofs of Theorems and Lemmas

In this appendix, we provide detailed proofs of the theorems and lemmas referenced in
the main text.

Appendix A.1. Proofs for Section 3.1: Design Neural Operators as Contraction
Mappings

A.1.1. Proof of Theorem 3.1 (Lipschitz Condition for Neural Networks).

Proof. We aim to show that the overall Lipschitz constant L of the neural operator Gθ,
composed of N layers and activation functions, satisfies:

L ≤

 N∏
i=1

Li

 LN
σ ,

where each layer fi has a Lipschitz constant Li, and the activation functionσ has a Lipschitz
constant Lσ.

We begin by representing the neural operator Gθ as a composition of affine transforma-
tions (layers) and activation functions. Specifically, for an input u, we have:

Gθ(u) = fN ◦ σ ◦ fN−1 ◦ σ ◦ · · · ◦ σ ◦ f1(u).

Each layer fi is defined as an affine transformation:

fi(x) = Wix + bi,

where Wi is the weight matrix and bi is the bias vector for layer i.
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An affine transformation fi is Lipschitz continuous with Lipschitz constant Li = ∥Wi∥,
where ∥Wi∥ denotes the induced matrix norm (operator norm) of Wi. For any x, y ∈ Rn, we
have:

∥ fi(x) − fi(y)∥ = ∥Wix + bi − (Wiy + bi)∥ = ∥Wi(x − y)∥ ≤ ∥Wi∥ · ∥x − y∥.

This inequality shows that the Lipschitz constant of fi is ∥Wi∥. The operator norm ∥Wi∥

can be explicitly calculated or bounded. For example, if Wi is a matrix, its operator norm
induced by the Euclidean norm is the largest singular value of Wi.

In addition, the activation function σ : R → R is assumed to be Lipschitz continuous
with Lipschitz constant Lσ. Common activation functions satisfy this property. For exam-
ple, the ReLU activation function (σ(x) = max(0, x)) has Lσ = 1; the Sigmoid function

(σ(x) =
1

1 + e−x ) has Lσ =
1
4

; and the Tanh function (σ(x) = tanh(x)) has Lσ = 1.
For any x, y ∈ R, we have:

|σ(x) − σ(y)| ≤ Lσ|x − y|.

When extending to vector inputs, since activation functions are applied element-wise, the
Lipschitz constant remains the same:

∥σ(x) − σ(y)∥ ≤ Lσ∥x − y∥.

It is a fundamental property that the composition of two Lipschitz continuous functions
is Lipschitz continuous, with the Lipschitz constant of the composition being at most the
product of the individual Lipschitz constants. Specifically, let f : X → Y and g : Y →
Z be Lipschitz continuous functions with constants L f and Lg, respectively. Then, the
composition h = g ◦ f is Lipschitz continuous with Lipschitz constant Lh ≤ LgL f . For a
proof of this property, see standard analysis texts such as Rudin [18].

We now apply this property recursively to the layers and activation functions of the
neural operator.

Starting with x0 = u, the output after the first layer and activation function is:

x1 = σ( f1(x0)).

By applying the composition property, the Lipschitz constant from x0 to x1 is:

L(1)
1 = LσL1.

Similarly, for the subsequent layers (i = 2 to N), we have:

xi = σ( fi(xi−1)),

with Lipschitz constant from xi−1 to xi given by:

L(i)
i = LσLi.

The Lipschitz constant from the input u to the output xN is then the product of the
individual Lipschitz constants:

Ltotal =

N∏
i=1

L(i)
i =

 N∏
i=1

LσLi

 = LN
σ

 N∏
i=1

Li

 .
Therefore, the overall Lipschitz constant L of the neural operator Gθ satisfies:

L ≤ LN
σ

 N∏
i=1

Li

 .
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This result shows that the neural operator is Lipschitz continuous, and its Lipschitz constant
depends on the product of the Lipschitz constants of the layers and activation functions.

To control the Lipschitz constant of the layers, one can apply spectral normalization
[14], which scales the weight matrices so that their spectral norms are bounded. This helps
in ensuring that the neural operator is a contraction mapping if desired. The choice of
activation function also affects the overall Lipschitz constant. Using activation functions
with smaller Lipschitz constants can aid in controlling the Lipschitz constant of the entire
network.

Moreover, increasing the depth N of the network can lead to an exponential increase in
the Lipschitz constant due to the term LN

σ . Care must be taken to balance depth with the
desired Lipschitz properties. For discussions on the impact of depth on Lipschitz constants,
see Bartlett et al. (2017) [19].

Thus, we have shown that the neural operator Gθ is Lipschitz continuous with Lipschitz
constant bounded by L ≤

(∏N
i=1 Li

)
LN
σ . □

A.1.2. Proof of Corollary 3.2 (Ensuring Contraction via Spectral Normalization).

Proof. We aim to show that by constraining the spectral norm of each weight matrix Wi

such that ∥Wi∥ ≤ q1/N and choosing the activation function σ with Lipschitz constant
Lσ ≤ 1, the overall Lipschitz constant L of the neural operator Gθ satisfies L ≤ q. This
ensures that Gθ is a contraction mapping with contraction constant q.

From Theorem 3.1, we know that the overall Lipschitz constant of the neural operator
is bounded by:

L ≤ LN
σ

 N∏
i=1

Li

 ,
where Li = ∥Wi∥ is the Lipschitz constant of layer i. By constraining the spectral norm of
each weight matrix to ∥Wi∥ ≤ q1/N , it follows that:

Li ≤ q1/N .

Substituting this into the expression for L, we obtain:

L ≤ LN
σ

 N∏
i=1

q1/N

 = LN
σ

(
q1/N

)N
= LN

σq.

Since we have chosen Lσ ≤ 1, it follows that LN
σ ≤ 1. Therefore:

L ≤ q.

This result shows that the neural operator Gθ has a Lipschitz constant bounded by q, en-
suring it is a contraction mapping.

By ensuring the spectral norms of the weight matrices are appropriately bounded, we
control the Lipschitz constants of the layers. Spectral normalization [14] is a technique
that rescales the weight matrices to have a desired spectral norm, effectively controlling the
Lipschitz constant of each layer. This is crucial for ensuring the overall network satisfies
the contraction condition.

Choosing an activation function with Lipschitz constant Lσ ≤ 1 is also essential. Com-
mon activation functions like ReLU (Lσ = 1) and Tanh (Lσ = 1) satisfy this condition.
Functions like the Sigmoid have Lσ = 1

4 , which also meets the requirement.
Ensuring that the neural operator is a contraction mapping allows us to invoke the Ba-

nach Fixed Point Theorem [5], guaranteeing the existence and uniqueness of fixed points
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and the convergence of iterative processes. This is particularly important in the context of
solving equations and iterative methods within neural networks.

Thus, by constraining the spectral norms of the weight matrices and choosing suitable
activation functions, we ensure that Gθ is a contraction mapping with contraction constant
q.

□

Appendix A.2. Proofs for Section 3.2: IntegrateMulti-Scale Representations

A.2.1. Proof of Theorem 3.5 (Approximation Using Combined Bases).

Proof. We aim to demonstrate that any function f ∈ L2(D) can be approximated arbitrarily
well using a finite combination of Fourier and wavelet basis functions.

Firstly, recall that the set of complex exponentials {eikx}k∈Z forms an orthonormal basis
for L2 functions defined on a compact domain with periodic boundary conditions. This is
the foundation of Fourier series, which effectively capture the global behavior of functions
[20].

Wavelet bases, constructed from dilations and translations of a mother wavelet ψ(x),
provide an orthonormal basis for L2(R) and are adept at representing local features due to
their time-frequency localization [6]. They allow for multiresolution analysis, capturing
both coarse and fine details of a function.

By combining these bases, we leverage the strengths of both global and local represen-
tations. Specifically, for a function f ∈ L2(D), we can express it as:

f (x) =
∑
k∈Z

ckeikx +
∑
j∈Z

∑
m∈Z

d j,mψ j,m(x),

where ψ j,m(x) = 2 j/2ψ(2 jx −m) are the wavelet functions at scale j and position m, and ck,
d j,m are the Fourier and wavelet coefficients, respectively.

In practice, we approximate f (x) using finite sums:

fN(x) =
K∑

k=−K

ckeikx +

J∑
j=J0

M j∑
m=0

d j,mψ j,m(x),

where K, J, and M j are finite truncation limits.
The approximation error is given by:

∥ f − fN∥L2(D) =

∥∥∥∥∥∥∥∥
∑
|k|>K

ckeikx +
∑
j>J

∑
m

d j,mψ j,m(x)

∥∥∥∥∥∥∥∥
L2(D)

.

As both the Fourier series and wavelet series converge in L2(D), increasing K and J allows
the approximation error to be made arbitrarily small.

For functions with smooth global behavior and localized irregularities, the Fourier basis
efficiently captures the global smooth components, while the wavelet basis captures local
features and discontinuities [21]. This combined approach often leads to faster conver-
gence and better approximation with fewer terms than using either basis alone.

Therefore, any function f ∈ L2(D) can be approximated arbitrarily well by a finite
combination of Fourier and wavelet basis functions, as the sum of two complete bases is
still complete in L2(D).

□
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A.2.2. Proof of Lemma 3.6 (Efficient Computation with Multi-Scale Layers).

Proof. We aim to show that integrating Fourier and wavelet transforms into neural network
layers allows for efficient computation with computational complexity O(N log N), where
N is the number of data points.

Consider a discrete signal x = [x0, x1, . . . , xN−1] ∈ RN . The Discrete Fourier Transform
(DFT) of x is defined as:

Xk =

N−1∑
n=0

xne−i2πkn/N , k = 0, 1, . . . ,N − 1.

Computing the DFT directly requires O(N2) operations due to the nested summations.
The Fast Fourier Transform (FFT) algorithm reduces this complexity to O(N log N) by

recursively decomposing the DFT into smaller DFTs and exploiting symmetries in the
complex exponentials [17].

In neural networks, convolution operations are essential. The convolution of two dis-
crete signals x and h is defined as:

(y)n = (x ∗ h)n =

N−1∑
m=0

xmh(n−m) mod N .

Computing this convolution directly has a complexity of O(N2).
However, the Convolution Theorem states that convolution in the time domain corre-

sponds to pointwise multiplication in the frequency domain:

F {x ∗ h} = F {x} · F {h},

where F {·} denotes the Fourier Transform, and · represents element-wise multiplication.
Therefore, we can compute the convolution efficiently by:

(1) Computing F {x} and F {h} using the FFT, each requiring O(N log N) operations.
(2) Performing element-wise multiplication: Yk = Xk · Hk, which requires O(N) oper-

ations.
(3) Computing the inverse FFT of Yk to obtain yn, requiring O(N log N) operations.

The total computational complexity is O(N log N).
In neural networks, spectral convolution layers utilize this approach to perform convolu-

tion operations efficiently [3]. By transforming inputs and filters to the frequency domain,
convolutions become element-wise multiplications, significantly reducing computational
cost.

The Discrete Wavelet Transform (DWT) also provides a time-frequency representation
of a signal, capturing both location and scale information. For a signal x, the DWT de-
composes it into approximation coefficients a j[n] and detail coefficients d j[n] at different
scales j.

At each level j, the approximation coefficients are computed by convolution with a
scaling filter (low-pass filter) h[n], followed by downsampling:

a j[n] =
∑

k

a j−1[k] h[2n − k].

The detail coefficients are computed using a wavelet filter (high-pass filter) g[n]:

d j[n] =
∑

k

a j−1[k] g[2n − k].
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Here, a j−1[k] are the approximation coefficients from the previous level, and the downsam-
pling by 2 reduces the number of samples by half at each level.

The overall computational complexity for computing all levels of the DWT is O(N), as
the amount of computation halves at each subsequent level [22].

In neural networks, wavelet transform layers can be integrated to capture features at
multiple scales efficiently. By applying the DWT within the network, we can extract local-
ized features with reduced computational cost.

By integrating both the FFT and DWT into neural network layers, we achieve efficient
computation for both global and local feature extraction.

• FFT-based Convolution: Allows for efficient computation of convolutional lay-
ers with complexity O(N log N).
• DWT-based Feature Extraction: Provides multiresolution analysis with com-

plexity O(N).
When combined, the overall computational complexity remains O(N log N), dominated

by the FFT operations.
In general, integrating these efficient algorithms enables neural operators to handle high-

dimensional inputs and large datasets without prohibitive computational costs. This is es-
sential for practical applications involving partial differential equations and other complex
systems where computational efficiency is critical.

Therefore, by utilizing the computational efficiencies of the FFT and DWT within neural
network architectures, we can perform the necessary operations in neural operators with
O(N log N) complexity or better, enabling scalable and efficient computation.

□

A.2.3. Proof of Theorem 3.7 (Improved Approximation Error with Multi-Scale Rep-
resentations).

Proof. We aim to demonstrate that for a function f ∈ L2(D) with both smooth and localized
features, a neural operator employing multi-scale representations can approximate f with
an error ϵ that decreases exponentially with the number of basis functions used.

Consider approximating f using a finite combination of Fourier and wavelet basis func-
tions:

fN(x) =
K∑

k=−K

ckeikx +

J∑
j=J0

M j∑
m=0

d j,mψ j,m(x),

where:
• ck are the Fourier coefficients given by ck =

1
2π

∫
D f (x)e−ikx dx.

• ψ j,m(x) are wavelet basis functions at scale j and translation m.
• d j,m are the wavelet coefficients given by d j,m =

∫
D f (x)ψ j,m(x) dx.

The approximation error in the L2 norm is given as:

ϵ2 = ∥ f − fN∥
2
L2(D) =

∫
D
| f (x) − fN(x)|2 dx.

Expanding this, we have:

ϵ2 =

∥∥∥∥∥∥∥∥
∑
|k|>K

ckeikx +
∑
j>J

∑
m

d j,mψ j,m(x)

∥∥∥∥∥∥∥∥
2

L2(D)

.
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By Parseval’s identity, the squared L2 norm of a function equals the sum of the squares of
its coefficients:

ϵ2 =
∑
|k|>K

|ck |
2 +

∑
j>J

∑
m

|d j,m|
2.

Now, the decay of the Fourier coefficients |ck | is directly related to the smoothness of
f . If f is s times continuously differentiable over D, then by standard results in Fourier
analysis [23]:

|ck | ≤
C
|k|s

,

for some constant C > 0. This implies that the tail of the Fourier series (coefficients with
|k| > K) decreases rapidly with K, and the error from truncating the Fourier series decreases
as: ∑

|k|>K

|ck |
2 ≤ C′K−(2s−1),

where C′ is another constant depending on f .
Similarly, the decay of wavelet coefficients |d j,m| depends on the regularity of f . For

functions in the Besov space Bs
p,q, wavelet coefficients satisfy [6, 24]:

|d j,m| ≤ C2− j(s+ 1
2−

1
p ),

where s is the smoothness parameter, and p, q relate to the integrability and summability
of the coefficients.

The sum of the squared wavelet coefficients for scales j > J is then bounded by:∑
j>J

∑
m

|d j,m|
2 ≤ C′′2−2J(s− 1

2 ),

with C′′ depending on f and the wavelet basis.
Combining these decay estimates, the total approximation error is bounded by:

ϵ2 ≤ C′K−(2s−1) +C′′2−2J(s− 1
2 ).

By selecting K and J such that:

K = K0Nα, 2J = J0Nβ,

for some α, β > 0, and constants K0, J0, we can make ϵ decrease exponentially with N, the
total number of basis functions used.

To optimize the approximation, we balance the contributions of the Fourier and wavelet
terms. For functions that are smooth overall but have localized irregularities, the Fourier
coefficients decay rapidly except near discontinuities, where wavelet coefficients capture
the localized features efficiently.

By choosing α and β appropriately, we ensure that both terms in the error bound de-
crease at similar rates, minimizing the total error. This balancing act leverages the strengths
of both bases.

In the context of neural operators, incorporating multi-scale representations allows
the network to approximate functions with both global smoothness and local irregulari-
ties effectively. The neural network learns to represent f using a combination of global
(Fourier) and local (wavelet) features.

The exponential decay in approximation error implies that the number of neurons (or
parameters) required to achieve a desired accuracy ϵ grows only logarithmically with 1/ϵ.
This is a significant improvement over methods that do not exploit multi-scale structures.

Conclusion
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Therefore, the multi-scale representation enhances the approximation capabilities of
the neural operator, achieving an approximation error ϵ that decreases exponentially with
the number of basis functions used. This approach aligns with the principles of sparse
representation and compressed sensing [25], where functions are represented using a small
number of significant coefficients.

□

Appendix A.3. Proofs for Section 3.3: Ensure Universal Approximation Capability

A.3.1. Proof of Theorem 3.8 (Capacity Growth with Network Size).

Proof. We aim to demonstrate that for a feedforward neural network using ReLU activation
functions, the number of linear regions represented by the network grows exponentially
with the depth of the network and polynomially with its width.

A ReLU activation function σ(x) = max(0, x) introduces piecewise linearity into the
network. Each neuron with a ReLU activation divides its input space into two regions: one
where the neuron is active (x > 0) and one where it is inactive (x ≤ 0). The combination
of these regions across all neurons leads to a partitioning of the input space into linear
regions, within which the neural network behaves as a linear function.

Consider a feedforward ReLU network with L layers. Let nl denote the number of
neurons in layer l, for l = 1, 2, . . . , L. The input dimension is n0. The total number of
neurons is N =

∑L
l=1 nl.

Montúfar et al. [26] have shown that the maximal number of linear regions R that such
a network can represent satisfies:

R ≥
L∏

l=1

(
nl

nl − nl−1

)nl−1

.

When all layers have the same width n (i.e., nl = n for all l) and n ≥ n0, this simplifies to:

R ≥
(

n
n − n0

)n0 ( n
n − n

)(L−1)n
.

Since n − n = 0, the expression becomes undefined. To address this, we consider the more
accurate lower bound provided by Serra et al. [27], which refines the estimate of linear
regions:

R ≥ 2
∑L

l=1 nl .

This indicates that the number of linear regions grows exponentially with the total number
of neurons in the network.

Alternatively, Montúfar et al. [26] provide a simpler lower bound for fully connected
networks with ReLU activations:

R ≥
(

n
n0

)n0

n(L−1)n0 .

This expression shows that R grows exponentially with the depth L and polynomially with
the width n.

Let’s take an example calculation. For a network where n = n0 (constant width equal to
input dimension), the lower bound simplifies to:

R ≥ n(L−1)n0 .

Since n = n0, we have:
R ≥ n(L−1)n0

0 =
(
nn0

0

)L−1
.
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This clearly demonstrates exponential growth with respect to the depth L.
With regard to the implications for expressive capacity, The exponential growth of the

number of linear regions with depth implies that deeper networks can represent more com-
plex functions by partitioning the input space into a greater number of linear regions. Each
region corresponds to a different linear function, and the network’s overall function is
piecewise linear.

Raghu et al. [9] analyzed the trajectory length through the network as a measure of
expressivity and found that depth contributes exponentially to expressivity measures, while
width contributes polynomially.

Therefore, we conclude that the expressive capacity of ReLU neural networks grows
exponentially with the network’s depth and polynomially with its width, as evidenced by
the number of linear regions they can represent. This result supports the assertion that
deeper networks have greater expressive power.

□

A.3.2. Proof of Lemma 3.9 (Trade-off Between Capacity and Overfitting).

Proof. We aim to demonstrate that increasing the capacity of a neural network can lead to
overfitting, highlighting the trade-off between model complexity and generalization ability.

Let H denote the hypothesis space of functions that the neural network can represent.
Increasing the network’s capacity expands H , allowing the model to approximate more
complex functions. Specifically, a higher-capacity network can achieve a smaller empirical
risk (training error) Remp by fitting the training data more precisely.

However, the true risk (generalization error) R depends on how well the model per-
forms on unseen data. According to the bias-variance decomposition [28], the expected
generalization error can be expressed as:

ED[R] = Bias2 + Variance + σ2,

where:
• Bias measures the error due to simplifying assumptions made by the model;
• Variance measures the sensitivity of the model to fluctuations in the training set;
• σ2 is the irreducible error inherent in the data.

As the capacity of the network increases, the bias tends to decrease because the model
can fit the training data more closely. However, the variance tends to increase because
the model becomes more sensitive to small fluctuations or noise in the training data. This
increased variance can lead to overfitting, where the model captures noise and irrelevant
patterns, resulting in a decrease in generalization performance.

Overfitting is characterized by a situation where:

Remp ↓, R ↑,

meaning that while the training error decreases, the validation or test error increases.
To prevent overfitting, regularization techniques are employed to constrain the com-

plexity of the hypothesis space H . Regularization can be introduced by adding a penalty
term Ω(θ) to the loss function L(θ), leading to the regularized loss:

Lreg(θ) = L(θ) + λΩ(θ),

where θ represents the network parameters, and λ > 0 controls the strength of the regular-
ization.

Common regularization methods include:
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(1) Weight Decay (L2 Regularization): Penalizes large weights by setting Ω(θ) =
1
2 ∥θ∥

2
2.

(2) L1 Regularization: Encourages sparsity by setting Ω(θ) = ∥θ∥1.
(3) Dropout: Randomly sets a fraction of activations to zero during training to prevent

co-adaptation [13].
By constraining H , regularization reduces variance at the expense of a slight increase

in bias, ultimately improving the generalization error R.
Therefore, there exists a trade-off between model capacity and overfitting: increasing

capacity enhances the ability to fit complex functions but may lead to overfitting if not
properly regularized. Effective regularization techniques are essential to balance this trade-
off and achieve optimal generalization performance [11].

□

Appendix A.4. Proofs for Section 3.4: Enhance Generalization through Regularization

A.4.1. Proof of Theorem 3.10 (Effectiveness of Weight Decay).

Proof. We aim to show that weight decay (L2 regularization) effectively reduces overfitting
by penalizing large weights, thereby constraining the model complexity and improving
generalization.

Consider a neural network with parameters (weights) θ. The standard loss function L(θ)
measures the discrepancy between the network’s predictions and the training data. Weight
decay modifies the loss function by adding a regularization term:

Lreg(θ) = L(θ) + λ
1
2
∥θ∥22,

where ∥θ∥22 =
∑

i θ
2
i is the squared L2 norm of the weights, and λ > 0 is the regularization

coefficient.
The gradient of the regularized loss with respect to the weights is:

∇θLreg(θ) = ∇θL(θ) + λθ.

During training with gradient descent, the weight update rule becomes:

θ(t+1) = θ(t) − η
(
∇θL(θ(t)) + λθ(t)

)
,

where η is the learning rate.
The term λθ(t) acts as a force that drives the weights toward zero. This discourages the

model from assigning excessive importance to any particular feature, effectively reducing
the complexity of the model.

By penalizing large weights, weight decay reduces the variance component of the gener-
alization error. According to the bias-variance decomposition, the expected generalization
error can be written as:

ED[R] = Bias2 + Variance + σ2.

Weight decay increases the bias slightly due to the added constraint but decreases the vari-
ance more significantly, leading to a net reduction in generalization error.

Moreover, in linear models, weight decay corresponds to Ridge Regression [29], where
the regularization term stabilizes the inversion of ill-conditioned matrices, leading to more
robust solutions.

Therefore, weight decay effectively prevents overfitting by constraining the magnitude
of the weights, promoting simpler models that generalize better to unseen data [12].

□
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A.4.2. Proof of Lemma 3.11 (Dropout Prevents Co-adaptation).

Proof. We aim to demonstrate that dropout regularization reduces overfitting by preventing
co-adaptation of neurons and encouraging the network to learn robust feature representa-
tions.

During training, dropout randomly deactivates a fraction p of the neurons in each layer.
For a neuron with activation hi, the modified activation h̃i during training is:

h̃i = hi · ζi,

where ζi is a Bernoulli random variable:

ζi =

1, with probability q = 1 − p,
0, with probability p.

This random deactivation forces the network to learn redundancies because any neuron
could be dropped out at any time. As a result, neurons cannot rely on specific other neurons
being present and must learn features that are useful in conjunction with many different
subsets of other neurons.

By preventing co-adaptation, where neurons adjust to rely on outputs from specific other
neurons, dropout reduces the risk of overfitting. The network becomes less sensitive to the
noise and variations in the training data, improving generalization to unseen data [13].

At test time, to compensate for the dropped activations during training, the weights are
scaled by a factor of q (or equivalently, activations are multiplied by q):

htest
i = qhi.

This ensures that the expected output of each neuron remains the same between training
and testing:

E[h̃i] = qhi.

Therefore, dropout effectively prevents co-adaptation by encouraging neurons to learn
individually useful features, reducing overfitting and enhancing the robustness of the net-
work’s predictions.

□

Appendix A.5. Proofs for Section 3.5: Optimize Computational Efficiency

A.5.1. Proof of Theorem 3.13 (Speedup with Parallel Computing).

Proof. We aim to show that parallel computing can provide a speedup in computation time
for parallelizable tasks but that the overall speedup is limited by the serial portion of the
computation, as described by Amdahl’s Law.

Let:
• T1 be the total execution time on a single processor;
• TN be the total execution time using N processors;
• P be the fraction of the program that can be parallelized (0 ≤ P ≤ 1);

• S be the speedup achieved: S =
T1

TN
.

The single-processor execution time is:

T1 = Tserial + Tparallel,

where Tserial and Tparallel are the times spent on serial and parallelizable portions, respec-
tively.
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When using N processors, the parallel portion ideally scales perfectly, so its execution
time becomes Tparallel/N. The total execution time on N processors is:

TN = Tserial +
Tparallel

N
.

Substituting Tserial = (1 − P)T1 and Tparallel = PT1, we have:

TN = (1 − P)T1 +
PT1

N
.

Therefore, the speedup S is:

S =
T1

TN
=

T1

(1 − P)T1 +
PT1

N

=
1

(1 − P) +
P
N

.

As N → ∞, the speedup approaches its theoretical maximum:

S max = lim
N→∞

S =
1

1 − P
.

This demonstrates that the speedup is limited by the serial portion of the code. Even with
an infinite number of processors, the execution time cannot be reduced below (1 − P)T1.

Thus, while parallel computing significantly reduces computation time for paralleliz-
able tasks, Amdahl’s Law shows that the overall speedup is constrained by the fraction of
the code that must be executed serially [30].

□

A.5.2. Proof of Lemma 3.14 (Amdahl’s Law).

Proof. We aim to derive Amdahl’s Law, which quantifies the theoretical speedup in latency
of the execution of a task when a portion of it is parallelized.

Let:
• T1 be the execution time on a single processor;
• TN be the execution time on N processors;
• P be the fraction of the execution time that is parallelizable.

The execution time on N processors is:

TN = Tserial + T ′parallel,

where:
Tserial = (1 − P)T1,

T ′parallel =
PT1

N
.

Therefore:
TN = (1 − P)T1 +

PT1

N
.

The speedup S is given by:

S =
T1

TN
=

T1

(1 − P)T1 +
PT1

N

=
1

(1 − P) +
P
N

.

This equation represents Amdahl’s Law, showing how the speedup S depends on the
number of processors N and the parallelizable fraction P. It illustrates that as N increases,
the speedup asymptotically approaches 1/(1−P), emphasizing the diminishing returns due
to the serial portion of the computation.
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Therefore, Amdahl’s Law captures the fundamental limitation of parallel computing:
the speedup is constrained by the serial fraction of the task, regardless of the number of
processors [30].

□

A.5.3. Proof of Theorem 3.15 (Feasibility of High-Dimensional Problems).

Proof. We aim to demonstrate that optimizing computational efficiency through spec-
tral methods and parallel computing enables neural operators to effectively handle high-
dimensional problems.

Let Ω ⊂ Rd be a d-dimensional domain, and let u : Ω → R be a function of interest.
Traditional numerical methods for solving partial differential equations (PDEs), such as fi-
nite difference or finite element methods, require discretizing each dimension into n points.
This results in a total of N = nd grid points. Operations like matrix-vector multiplication
or convolution over this grid have computational complexities that scale at least linearly
with N, and often worse, leading to O(N2) operations for certain tasks.

The exponential growth of N with respect to the dimension d is known as the ”curse of
dimensionality.” It renders computations infeasible for large d using traditional methods.

Spectral methods, such as the Fourier Transform, provide an alternative by transforming
differential operators into algebraic ones in the frequency domain. The d-dimensional
Discrete Fourier Transform (DFT) of a function u sampled on a regular grid is defined as:

ûk =
∑
n∈Zd

n

une−i2π k·n
n , k ∈ Zd

n,

where Zn = {0, 1, . . . , n − 1}, and n and k are d-dimensional index vectors.
Computing the DFT directly requires O(N2) operations. However, the Fast Fourier

Transform (FFT) algorithm reduces this to O(N log N) by exploiting symmetries and re-
dundancies in the computation [17].

In neural operators, convolution operations are essential. Consider the convolution of
two functions u, v : Ω→ R:

(w)(x) = (u ∗ v)(x) =
∫
Ω

u(y)v(x − y) dy.

Computing this convolution directly requires O(N2) operations due to the nested summa-
tions over all grid points.

Applying the Convolution Theorem, the Fourier Transform converts convolution into
pointwise multiplication:

ŵk = ûk · v̂k.

This reduces the convolution computation to:
(1) Compute ûk and v̂k using the FFT: O(N log N) operations each;
(2) Perform pointwise multiplication: O(N) operations;
(3) Compute the inverse FFT to obtain w(x): O(N log N) operations.

The total computational complexity becomes O(N log N), a significant reduction from
O(N2).

In high-dimensional problems, many functions of interest exhibit sparsity or low-rank
structures in the spectral domain. If ûk is sparse, meaning that significant energy is con-
centrated in a subset K ⊂ Zd

n with |K| = s ≪ N, we can approximate u using:

u(x) ≈
∑
k∈K

ûkei2π k·x
n .
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Computations then involve s significant coefficients instead of N, reducing complexity to
O(s log N).

We now consider the FFT algorithm. We regard that this algorithm is highly paral-
lelizable. In a parallel computing environment with P processors, we can divide the data
equally among processors. Each processor performs FFT computations on its subset of
data:

Tcompute = O

(
N log(N/P)

P

)
.

Communication between processors is required to combine results, but for large N, the
computation time dominates, and communication overhead can be minimized with efficient
algorithms and network architectures [31].

Assuming ideal parallel efficiency, the total computational complexity per processor is
reduced to approximately O

(
N log N

P

)
.

We now consider the behaviors of neural Operators in High Dimensions. Neural op-
erators, such as the Fourier Neural Operator [3], leverage spectral convolutions to learn
mappings between function spaces. By representing integral kernel operations in the fre-
quency domain, neural operators can efficiently handle high-dimensional inputs.

Consider a neural operator layer defined as:

(unext)(x) = σ
(
Wu(x) + F −1 (R · F [u]) (x)

)
,

where:
• W is a linear transformation;
• σ is a nonlinear activation function;
• F and F −1 denote the Fourier and inverse Fourier transforms, respectively;
• R is a learned filter in the frequency domain.

Computing this layer involves FFTs and pointwise operations, all of which have computa-
tional complexities that scale as O(N log N) and are amenable to parallelization.

By combining spectral methods that reduce per-processor computational complexity to
O(N log N) and parallel computing that reduces wall-clock time by distributing computa-
tions across P processors, the overall computational effort becomes manageable even in
high-dimensional settings.

Therefore, optimizing computational efficiency through spectral methods and parallel
computing enables neural operators to handle high-dimensional problems effectively, mit-
igating the curse of dimensionality and making practical solutions feasible for complex,
real-world applications.

□
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Abstract. The orthogonal polynomial basis functions are used to solve different math-
ematical problems, especially for optimal control and many other engineering problems,
which attract many researchers to work on. In this study, the modified Pell polynomi-
als (MPPs) are presented and their new properties are investigated to be used for solution
approximation of optimal control problems. Some formulas for MPPs are derived by ma-
trices. A new exact formula expressing the derivatives of MPPs explicitly of any degree
is constructed. The main advantage of the presented formulas is that the new properties
of MPPs greatly simplify the original problems and the result will lead to easy calculation
of the coefficients of expansion, it also increases the accuracy and reduces the computa-
tional time. A new computational method along with the MPPs is proposed to solve one of
the optimal control problems. Numerical results are included to demonstrate the validity
of this new technique. It shows an important improvement in error approximation when
the polynomial degree is increased. The contribution in this work is based on the idea of
the approximate algorithm in terms of MPPs and their new properties to treat the optimal
control problem numerically with less number of terms and unknown parameters with a
satisfactory accuracy.

1. Introduction

Recently, there has been increased interest among scientists and engineers to use or-
thogonal polynomial basis functions along with approximate solutions to solve different
problems. The main advantage of such a technique is the ability to reduce a complicated
problem to another simple one [1, 2, 3, 4]. The authors of [5] extended using orthogonal
polynomials to solve problems in the calculus of variation numerically. They applied the
generalized Vieta- Pell polynomials for numerical treatment of variation calculus problems
while improved Chebyshev polynomials were applied in [6] for solving optimal control
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problems. Furthermore; Boubaker polynomials [7, 8] and Hermite functions [9] were uti-
lized to solve approximately optimal control problems and fractional calculus of variation
respectively.

Stabilizing nonlinear chaotic and dynamical systems represents the main core for con-
trolling such systems [10, 11, 12, 13, 14]. The modified Pell polynomial particularly can be
used to perform such stabilization. The utilization of this modified polynomial by offering
good computational efficiency and high accuracy follows the same scenario in solving the
control problem.

The motivation in this work deals with the new application of a modified Pell poly-
nomial for numerical solutions of an optimal control problem. The study of numerical
solutions of special classes in optimal control has provided an interesting field for
mathematical sciences researchers. For some work concerned with both Vieta-Pell and
Vieta Pell Lucas polynomial basis functions can be found in [15, 16].

Motivated by the above presentation, we are interested in suggesting a new iterative
algorithm to solve optimal control problems numerically together with modified Pell basis
functions to parameterize the state variables. We aim to obtain the accuracy and efficiency
simultaneously. Hence the first goal of this work is to introduce MPP with some important
properties and then use it to perform the parameterization of state variables in order to
solve some problems in optimal control.The work in this article is organized as follows:
modified Pell polynomials definition is presented first in section 2. Their new properties
are also included in section 2. The new contribution of the modified Pell polynomials
is discussed in section 3 to solve a special application in optimal control problems. The
conclusion is listed in section 4.

2. Definition ofModified Pell Polynomials

The following modified Pell basis polynomials are obtained
The modified Pell basis polynomials of degree n are defined by:

qn(x) =
n
2

⌊n/2⌋∑
r=0

(n − r − 1)!
(n − 2r)!r!

(2x)n−2r (1.1)

with special values
qn(1) = qn(−1) for even n and qn(1) = −qn(−1) for odd n
Define Ψ(x) =

[
q0(x) q1(x) . . . qn(x)

]T
, where one can get:

Ψ(x) = ATn(x). (1.2)

The matrix A is a lower triangular matrix of order (n + 1) × (n + 1). The element of A
can be listed as below:

A =



1 0 0 · · · 0
0 1 0 · · · 0
1 0 2 · · · 0
0 3 0 4 0
1 0 8 0 8
...
...
...
...
...


, (1.3)
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and

ai j =


1, if j = 1,

2ai−1, j−1 + ai−2, j,, if j ≥ i, i is odd, i, j = 2, 3, · · ·
0, j > i.

(1.4)

and the vector Tn(x) of dimension (n + 1) × 1 is defined by:

Tn(x) =
[

1 x x2 . . . xn
]T

(1.5)

2.1 Function Approximation. A function u(x) as is square integrable in [−1, 1], It can be
expanded in terms of modified Pell basis as below:

u(x) =
n∑

i=0

aiqi(x) = aT q(x) (1.6)

where
aT =

[
a0 a1 . . . an

]
, then a = Q−1⟨u(x), q(x)⟩, then the matrix Q of order n × n is

called a dual matrix which is derived later.

2.2 Some properties of Modified Pell Sequence: Theorem 1. For n ≥ 1, the following
formulas can be obtained
(i)
∑n

i=1 qi(x) = 1
2x
[
qn+1(x) + qn(x) − (q1(x) + q0(x))

]
,

(ii)
∑n

i=1 q2i(x) = 1
2x (q2n+1(x) + q1(x)),

(iii)
∑n

i=1 q2i+1(x) = 1
2x (q2n(x) + q0(x)).

Proof. The mathematical induction is suggested to prove (i)
Take n = 1, then q1(x) = x = 1/2x

[
2x2 + 1 + x − x − 1

]
.

Let the result in (i) be valid for n = k, then

k∑
i=1

qi(x) =
1
2x
[
qk+1(x) + qk(x) − (q1(x) + q0(x))

]
or 2

k+1∑
i=1

qi(x) = qk+1(x) + qk(x) − (q1(x) + q0(x)) + 2xqk+1(x)

Apply the recursive relation related with modified Pell polynomials to obtain
qn+1(x) = 2xqn(x) + qn−1(x),
Therefore; 2

∑k+1
i=1 qi(x) = qk+2(x) + qk+1(x) − (q1(x) + q0(x))

or
∑k+1

i=1 qi(x) = 1
2x
[
qk+2(x) + qk+1(x) − (q1(x) + q0(x))

]
This is the same result in Eq.(1.6).
Note that the identities (ii) and (iii) are a direct result of i.

2.3 Dual Operational Matrix of Modified Pell Polynomials. This section illustrates the
building of a modified Pell dual operational matrix. The cross-product integration of two
modified Pell basis vectors is taken as below

Q =
∫ 1

−1

〈
ATn(x), (ATn(x))T

〉
dx

= A
∫ 1

−1

(
Tn(x)Tn(x)T

)
dx = AHAT

The matrix A is defined in Eq.(1.3) and the matrix H is given for the particular case with
n = 3 as below
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H =


∫ 1
−1 q0(x)q0(x)dx

∫ 1
−1 q0(x)q1(x)dx

∫ 1
−1 q0(x)q2(x)dx∫ 1

−1 q1(x)q0(x)dx
∫ 1
−1 q1(x)q1(x)dx

∫ 1
−1 q1(x)q2(x)dx∫ 1

−1 q2(x)q0(x)dx
∫ 1
−1 q2(x)q1(x)dx

∫ 1
−1 q2(x)q2(x)dx


Hence

H =

 2 0 10
3

0 2
3 0

10
3 0 94

15


In general, the element of the constant matrix hi j can be determined as follows

Hi j =

{ ∑⌊ j/2⌋
r=0 2 j−2r−1 ( j−r−1)!

( j−2r+1)!r! , if |i − j|is even
0, otherwise.

2.4 Derivative for Modified Pell Polynomials Matrix: consider the vectorΨ(x) in Eq.(1.2)
can be written in matrix form as follows
Ψ(x) = AT (x)
One can get
Ψ̇(x) = AṪn(x)
where Ṫn(x) =

[
0 1 2x . . . nxn−1

]T
, this equation can be reformulated as:

Ṫn(x) = A1Tn(x)
Then
Ψ̇(x) = AA1Tn(x),

where: A1 =



0 0 . . . 0
1 0 . . . 0
0 2 . . . 0
...
...
. . .

...
0 0 . . . n





1
x
x2

...
xn−1


.

and A is given in Eq.(1.3).

2.5 Operational Matrix of Integration for Modified Pell Polynomials. Let M be an
operational matrix of integration of order (n + 1) × (n + 1), then∫ x

−1
q(t)dt = MX

where

M =



1 1 0 0 0 0
−1
2 0 1

2 0 0 0
5
3 1 0 2

3 0 0
−10

4 0 3
2 0 1 0

79 1 0 8
3 0 8

5
...
...
...
...
...
...


and X =

[
x x2 . . . xn+1

]T
.

This can be evaluated below
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mi j = i


∑[i/2⌋

r=0
(i−r−1)!2i−2r−1

r!(i−2r)!(i−2r+1) , j = 1, even i∑ii/2⌋
r=0

(i−r−1)!2i−2r−1

r!(i−2r)!(i−2r+1) , j = 1, odd i
1
i

(
mi−1, j + 2mi−1, j−1

)
, j > 1

2.6. Initial and Final Values. Lemma 1. Let σ1 = n
∑⌊n/2⌋

r=0
1

n−r

(
n−r

r

)
2n−2r−1,

Then

qn(1) = σ1, and qn(−1) =
{
σ1, if n even
−σ1, if n odd

Lemma 2. We have qn+1(−1) (qn(1) − qn(−1)) , 0,
If n is even, then
q2n+1(−1)q2n(1) − q2n+1(1)q2n(−1) = σ1 · (−σ1) · σ1 = −2σ1

2 , 0.
If n is odd, then

q2(n+1)(−1)q2n+1(1) − q2(n+1)(1)q2n+1(−1) = σ1 · σ1 − (−σ1 · σ1) = 2σ2
1 , 0

3. Application ofModified Pell Polynomial in optimal control

Consider the following optimal control problem which describes many important oscil-
lating phenomena in some dynamic [12, 13, 14, 15, 16], engineering and physical systems
J =

∫ 0
−τ

1
2 u2(t)dt, governed by the following system ẍ(t) + σẋ(t) + ω2x(t)+ ∈ x3(t) =

f cos(αt) − u(t),−τ ≤ t ≤ 0,
where τ is known, σ ≥ 0, is the viscous damping coefficient, f and α are the amplitude ω
is the stiffness parameter, and frequency of the external input, respectively.

The initial and boundary conditions can be given as follows:

x(−τ) = α, x(0) = 0, ẋ(−τ) = β, ẋ(0) = 0
To obtain the optimal performance index J(·), the following steps are suggested:

In order to use Modified Pell polynomials, the transformation τ = 1
2τ(t − 1) is used to

obtain the following restated optimal control problem

J =
τ

2

∫ 1

−1

1
2

u2(t)dt (1.7)

governed by the following system

ẍ(t) =
1
2
τ2
[
−σẋ(t) − ω2x(t)− ∈ x3(t) + f cos(αt) − u(t)

]
, t ∈ [−1, 1] (1.8)

The initial and boundary conditions can be given as follows:

x(−1) = α, x(1) = 0, ẋ(−1) = β, ẋ(1) = 0 (1.9)
To illustrate the present method for obtaining the optimal performance index J(·), the

following steps are suggested:
Step 1. Assume that the approximate solution of the state variables x(t) in terms of

MPPs that satisfy the conditions given in Eq.(1.9) below:
x1(t) = a0q0(t) + a1q1(t) + a2q2(t) + a3q3(t) + a4q4(t)
It is worth mentioning that the function x1(t) is chosen to satisfy the conditions in Eq.(1.9).
Therefore, the following equations are obtained:
a0 + a1 + 3a2 + 7a3 + 17a4 = 0
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a0 − a1 + 3a2 − 7a3 + 17a4 = α
a1 + 4a2 + 15a3 + 48a4 = 0
a1 − 4a2 + 15a3 − 48a4 = β
Step 2. Eliminate the unknown a0, a1, a2 and a3 to get
a0 =

1
2

[(
α + 3

4β
)
− 33.5a4

]
, a1 =

1
2 (−2α − β), a2 =

1
8 (−β − 96a4),

a3 =
1

14 (α + β)
As a result x1(t) = 1

2

[(
α + 3

4β
)
− 33.5a4

]
q0(t) + 1

2 (−2α − β)q1(t)

+
1
8

(−β − 96a4) q2(t) +
1
14

(α + β)q3(t) + a4q4(t)

and then obtain the first approximation to u(t) using Eq.(1.8)

u1(t) = f
(
x1(t), ẍ1(t)

)
Step 3. Obtain J as a function of the unknown a4 by determining

J1 (a4) =
∫ 1

−1
F (u1(t)) dt

Step4. Minimize J1 (a∗) is the solution to the problem in Eq’s.(1.7-1.9).
Step 5. Calculate x1(t) and u1(t) from a∗ approximately. The procedure is repeated until an
acceptable accuracy is obtained.

Note that the approximate solution in the n step is given by
xn(t) = xn−1(t) +

∑n+1
i=n−1 aiqi(t),

with

an−1 =
qn+1(−1)qn+2(1) − qn+1(1)qn+2(−1)

qn(−1)qn+1(1) − qn(1)qn+1(−1)
an+1

an =
qn(−1)qn+2(1) − qn(1)qn+2(−1)
qn(1)qn+1(−1) − qn(−1)qn+1(1)

an+1

The optimal control problem in Eq’s.(1.7-1.9) is solved with the following choice of
numerical values of parameters in a certain standard case: ω = 1, σ = 1, ∈= 1, f = 0, τ =
2, α = 0.5, β = −0.5. Figures 1-5 illustrate the values of the state and the control for differ-
ent values of n while the relative absolute errors are plotted in Figure 6.

Figure 1. The approximate x(t) and u(t) with n = 5.
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Figure 2. The approximate state x(t) and u(t) with n = 6.

Figure 3. The approximate x(t) and u(t) with n = 7.

Figure 4. The approximate state x(t) with different n.

The relative errors of the optimal cost functional J for n = 5, 6, 7 are respectively
00008106925, 0.00000017319, 0.00000001325.
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Figure 5. The approximate control u(t)

Figure 6. The Relative Errors of J with different n.

4. Conclusion

This paper proposed the modified Pell polynomial method for the optimal control prob-
lem. The new modified parameterization technique has been investigated for the approxi-
mate solution based on MPPs, which was our one important highlight. Numerical results
are provided to prove the effectiveness of the suggested method. The obtained results show
that as the order of the modified Pell polynomial increases the error in the approximate so-
lution will be decreased and exactly close to the exactly one with satisfactory decimal
places. This is the main modification of the approach and this small contribution to the
assumption of iterative method in terms of MPPs results when obtaining the approximate
solution with the minimum number of MPPs terms and satisfactory accuracy.
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