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Abdulaziz Daş, Bilal Altay 212-219

5 Solitons on Nearly Cosymplectic Manifold Exhibitting Schouten Van Kampen Connection
Pushpa Bora, Jaya Upreti, Shankar Kumar 220-228

iv



Communications in Advanced Mathematical Sciences
Vol. 7, No. 4, 178-186, 2024

Research Article
e-ISSN: 2651-4001

https://doi.org/10.33434/cams.1549815

Energy Dissipation in Hilbert Envelopes on Motion
Waveforms Detected in Vibrating Dynamical
Systems: An Axiomatic Approach
James F. Peters1*, Tharaka U. Liyanage2

Abstract
This paper introduces an axiomatic approach in the theory of energy dissipation in Hilbert envelopes on motion
waveforms emanating from various vibrating dynamical systems. A Hilbert envelope is a curve tangent to peak
points on a motion waveform. The basic approach is to compare non-modulated vs. modulated waveforms in
measuring energy loss during the vibratory motion m(t) at time t of a moving object such as a walker, runner, biker
or the action of any spring system recorded in a video. Modulation of m(t) is achieved by using Mersenne primes
to adjust the frequency ω in the Fourier transform m(t)e± j2πωt on motion waveform m(t), where the frequency ω

is a Mersenne prime. Expenditure of energy Em(t) by a system is measured in terms of the area bounded by the
motion m(t) waveform at time t. Energy dissipation is measured in terms of the difference between modulated
and non-modulated m(t).
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1. Introduction
Dynamical system vibrations appear as varying oscillations in motion waveforms [1, 2]. The focus in this paper is on

the detection of energy dissipation that commonly occurs in vibrating dynamical systems. For a motion waveform m(t) at
time t, the measure of motion dissipated energy is a mapping Ediss : R×R→ R defined in terms of the difference between
non-modulated energy Enmod(t) and modulated energy Emod(t), i.e.,

Ediss(Enmod(t),Emod(t)) = |Enmod(t)−Emod(t)|
= |non-modulated Em(t)−modulated Em(t)|

at time t of a vibratory dynamical system. In this work, two forms of motion waveform energy are considered, namely,
non-modulated (non-smoothing) m(t) and modulated (smoothing) m(t) that results from the product of m(t) and the exponential
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e± j2πωt introduced by Euler [3]. A formidable source of waveform energy measurement results from the Fourier transform
m(t)e± j2πωt [4](see, e.g., [5]).

A non-modulated form of waveform energy Em(t) is associated with the planar area bounded by motion curve beginning at
instant t0 and ending instant t1, namely, Em(t) =

∫ t1
t0 |m(t)|2 dt. In other words, system energy is identified with system waveform

area, instead of the more usual energy graph [6]. Modulated system energy is measured using Emod(t) =
∫ t1

t0

∣∣m(t)e± j2πωt
∣∣2 dt.

An application of the proposed approach in measuring energy dissipation is given in terms of the Hilbert envelope on the
peak points on waveforms derived from the up-and-down movements of the up-and-down movements of a walker, runner
or biker recorded in a sequence of video frames. An important finding in this paper is the effective use of Mersenne primes
to adjust the frequency ω of the Euler exponential to achieve waveform modulation with minimal energy dissipation (in the
uniform waveform case (see Conjecture 1.i). This usage of Mersenne primes [7] of the form 2p−1(p, a prime) in modulating
motion waveforms first appeared in [8]. We prove that waveform energy is a characteristic, which maps to the complex plane
(See Theorem 2.10. This result extends the waveform energy results in [9], [10]) as well as in [11, 12, 13].

Symbol Meaning
2A Collection of subsets of a nonempty set A

Ai ∈ 2A Subset Ai that is a member of 2A

C Complex plane
t Clock tick

e jωt cos(ωt)+ jsin(ωt) [3]
M Mersenne prime
ω Waveform Oscillation Frequency

Em(t) Energy of motion waveform m(t)
Ediss Energy dissipation

ϕt : 2A→ C ϕ maps 2A to complex plane C at time t
ϕt(Ai ∈ 2A) ∈ C Characteristic of ϕ(Ai ∈ 2A) ∈ C at time t.

Table 1.1. Principal Symbols Used in this Paper

2. Preliminaries
Highly oscillatory, non-periodic waveforms provide a portrait of vibrating systems behavior. Energy dissipation (decay) is a

common characteristic of every vibrating dynamical system. Included in this paper is an axiomatic basis for measuring this
characteristic of dynamical systems. A characteristic is a mapping ϕt : Ai→ C, which maps a subsystem Ai in a system A to a
point in the complex plane C.

Figure 2.1. Morse instants clock

Definition 2.1. (System)
A system A is a collection of interconnected components (subsystems Ai ∈ 2A) with input-output relationships.
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Definition 2.2. (Dynamical System)
A dynamical system is a time-constrained, changing physical system.

Definition 2.3. (Dynamical System Output Waveform)
The output of a dynamical system is a time-constrained sequence of discrete values.

It has been observed that the theory of dynamical systems is a major mathematical discipline closely aligned with many
areas of mathematics [14]. Energy dissipation is considered in many contexts such as heating, liquid (viscosity) and water-wave
scattering. In this work, the focus is on energy decay represented by the difference between the energy of non-smooth
(non-modulated) and smooth (modulated) motion waveforms. A motion waveform is a graphical portrait of the radiation
emitted by moving system (e.g., walker, runner, biker) with oscillatory output.

Axiom 1. (Instants Clock)
Every system has its own instants clock, which is a cyclic mechanism that is a simple closed curve with an instant hand with
one end of the instant hand at the centroid of the cycle and the other end tangent to a curve point indicating an elapsed time in
the motion of a vibrating system. A clock tick occurs at every instant that a system changes its state.

Remark 2.4. (What Euler tells us about time)
On an instants clock, every reading t ∈ (C), a point t = a+ jb,a,b ∈ R in the complex plane. For example, t0.25 = 0.25+ j0 = 0.25
in Fig. 2.1. The Morse instants clock is also called a homographic clock [15], since the tip of an instant clock t-hand moves on
the circumference of a circle, where t is a complex number [15]. For t at the tip of a vector with radius r = 1, angle θ and
a = cosθ ,b = sinθ in the complex plane, then

t = a+ jb = cosθ + jsinθ = e jθ .

An instant of time viewed as an exponential is inspired by Euler [3].

Example 2.5. A sample Morse instants clock is shown in Fig. 2.1. The clock hand points to the elapsed time in the interval
(t0.25 ≤ t ≤ t0.25) in milliseconds (ms) after a system has begun vibrating. The clock face is a polyhedral surface in a Morse-
Smale surface in a convex polyhedron in 3D Euclidean space. A Morse-Smale polyhedron is an example of a mechanical
shape descriptor ideally suited as clock model because of its underlying piecewise smooth geometry. This form of an instants
clock has been chosen to emphasize that the elapsed time tk is a real number in an instants interval [t0, tk] ∈ C2 in which
tk is indeterminate. From a planar perspective, the proximity of sets of instants clock times is related to results given for
computational proximity in the digital plane [16]. In this example, the instant hand is pointing to an elapsed time between t0.25
ms and t0.50 ms.

Definition 2.6. (Clocked Characteristic of a subsystem)
The clocked characteristic of a subsystem Ai of a system A at time ϕt(Ai) is a mapping ϕt : Ai ∈ 2A→ C defined by ϕt(Ai) =
a+b j ∈ C,a,b ∈ R, j =

√
(−1),ϕt(Ai) ∈ C.

Axiom 2. (Subsystem Motion Characteristic)
Let Ai ∈ 2A (subsystem Ai in the collection of subsystems 2A in system A) that emits changing radiation due to system movements
(motion) and let t be a clock tick. The motion characteristic of subsystem motion Ai ∈ 2A is a mapping mt : Ai→ C defined by

mt(Ai) = a+b j ∈ C,a,b ∈ R, j =
√
(−1), t ∈ R.

i.e., a subsystem Ai motion characteristic of a system A is a mapping mt(Ai ∈ 2A) ∈ C at time t.

Remark 2.7. For the motion characteristic, we write dm(t) when it is understood that motion is on a subset Ai ∈ 2A in a
dynamical system A. Axiom 2 is consistent with the view [17] of the characteristic vector field, represented here with a planer
characteristic vector field ξ of a dynamical system with points p(x,y, t) ∈ ξ that has positive complex characteristic coordinates
at clock tick (time) t such that
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Figure 2.2. Sample spring system waveforms

ϕt(Ai ∈ 2A) = p ∈ ξ = (a− jb) ∂ξ

∂x +(a− jb) ∂ξ

∂y +(a− jb) ∂ξ

∂ t ,a,b ∈ R.

The 1-1 correspondence between every point p having coordinates in the Euclidean plane and points in the complex plane
is lucidly introduced by D. Hilbert and S. Cohn-Vossen [18, §38, 263-265]. For an introduction to characteristic groups,
see [19],[20],[21].

Example 2.8. Spring system vibration
A pair of sample sinusoidal waveforms emitted by an expanding and contracting spring system is shown in Fig. 2.2.

Vibrating system waveform m(t) modulation (smoothing) is achieved by adjusting the frequency ω in an Euler exponential
e± j2πωt , which is used in oscillatory waveform curve smoothing. It has been found that Mersenne primes provide an effective
means an effective means of adjusting the frequency ω . It has been observed by G.W. Hill [22] that Mersenne primes
Mp = 2p−1 = 3,7,31, ... for prime p = 2,3,5, ... are useful in estimating variability as well as in estimating average values in
sequences of discrete values.

Axiom 3. (Waveform Energy)
A measure of dynamical system energy is the area of a finite planar region bounded by system waveform m(t) curve at time t,
defined by

Em(t) =
∫ t1

t0 |m(t)|2 dt.

Lemma 2.9. Dynamical system energy is time-constrained and is always limited.

Proof. Let Em be the energy of a dynamical system, defined in Axiom 3. From Axiom 3, system energy always occurs in a
bounded temporal interval [t0, t1]. Hence, Em is time constrained. From Axiom 1, the length of a system waveform is finite,
since, from Axiom 3, system duration is finite. From Axiom 3, system energy is derived from the area of a finite, bounded
region. Consequently, system energy is always finite.

Theorem 2.10. If X is a dynamical system with waveform m(t) at time t and which changes with every clock tick, then observe
1o System waveform characteristic values are in the complex plane.
2o System energy varies with every clock tick.
3o System radiation characteristics are finite.
4o All system characteristics map to the complex plane.
5o Waveform energy decay is a characteristic, which maps to C.

Proof.

1o From Def. 2.6, a system characteristic is a mapping from a subsystem to the complex plane at time t, From Axiom 2, every
waveform motion characteristic m(t) ∈ C at time t, which is the desired result.
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2o From Lemma 2.9, system energy is time-constrained and always occurs in a bounded temporal interval. From Axiom 1,
there is a new clock tick at every instant in time t ms. From Axiom 3, system energy varies with every clock tick.

3o From Axiom 1, all system radiation characteristics are finite, since system duration is finite.
4o From Axiom 2, every system A characteristic is a mapping from a subsystem Ai ∈ 2A to the complex plane, which is the

desired result.
5o From the proof of step 4, the desired result follows.

Figure 2.3. Hilbert envelope on modulated vibration waveform.

To obtain an approximation of system energy, a system waveform is represented by a continuous curve defined by a Hilbert
envelope [23] tangent to waveform peak points, forming what known as Hilbert lobes.

A Hilbert envelope (denoted by Henv) is a curve that is tangent to the peak points on a waveform [24, §18.4, p. 132].
A Hilbert envelope lobe (denoted by Henvlobe) is a tiny bounded planar region attached to single waveform peak point on a
waveform envelope, defined by

Henv =
√

m(t)2 +(−m(t))2 [23]

The energy represented by a lobe Henvlobe area of a tiny planar region attached to an oscillatory motion waveform m(t) is defined
by

Henvlobe =
∫ b

a
|m(t)|2 dt

It is lobe area that provides a measure of the energy represented by a waveform segment.

The modulated vibration waveform m(t) in Fig. 2.3 varies with lower peak points than the original motion waveform,
depending on the choice of Mersenne prime frequency. To minimize energy loss due to modulation, a Mersenne prime is
chosen for the frequency ω in an Euler exponential in m(t)e± jωt to obtain
result.1o Modulated system waveform m(t) is smoother for a particular Mersenne prime frequency (i.e., the waveform

oscillations are more uniform).
result.2o Modulated system energy loss is minimal, for a particular Mersenne prime frequency.

3. Application: Modulating System Waveform with Minimal Energy Dissipation
In this section, we illustrate how Mersenne primes can be used effectively to obtain the following results:

M→ ω-1o Usage of a M-prime as the frequency in the Euler exponential in
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m(t)e± jωMt

reduces motion m(t) waveform motion energy.
M→ ω-2o Energy dissipation varies in modulated vs. non-modulated waveforms for different choices of frequency M in

e± jωMt , depending on whether a waveform has uniformly or non-uniformly varying cycles around the origin.

Figure 3.1. 3 forms of m(t)e jωt

Conjecture 1. The choice of a Mersenne prime M ≤ 31 will always result in lower motion waveform peak values using M as
the frequency in the Euler exponential to achieve waveform modulation and minimal energy dissipation.

There are two cases to consider: [Partial Picture Proof]

Case(i) Assume m(t) waveform uniformly fluctuates and frequency ω = M = 1 results in the lowest energy loss

Proof. Partial picture proof: Recall that e jωt = cosωt + jsinωt, where m(t)e jωt forces the oscillation in a motion
waveform to increase. Let m(t) = sinc(t), introduced in 1822 by Fourier [4]. Then m(t) oscillates uniformly on either
side of the origin (see sample plot of sinct in Fig. 3.1). The area of m(t) =

∫ k
−k sinc(t)e jωtdt,ω ≥ 1 is always less

than the area
∫ k
−k sinc(t)dt. That is, e jωt partitions each m(t) cycle into regions with smaller areas whose total area is

less than the total area
∫ k
−k sinc(t)dt. With ω = M = 1, the modulated waveform energy is closest to non-modulated

waveform energy, which is the desired result.

Case(ii) Let m(t) be a non-uniform waveform. We make the unproved claim that the choice of ω = M, varies, i.e., M is not
always 1.

Example 3.1. Sample Energy Dissipation: Non-uniform waveform Case
Let m(t) = sinct, with cycles that vary uniformly relative to the origin. This is the case in Fig. 3.1. The result for 3 choices of
M ∈ {1,3,7} are shown in the plots in Fig. 3.1. This leads to the following energy dissipation levels:

Em(t) = 0.9028 non-modulated waveform energy

Em(t)e jt = 0.1503 M = 1,modulated waveform energy loss

Em(t)e j3t = 0.3371 M = 3,modulated waveform energy loss

Em(t)e j7t = 0.8954 M = 7,modulated waveform energy loss

Em(t)e j31t = 0.9021 M = 31,modulated waveform energy loss

The ω = M = 31 case is not shown in Fig. 3.1.
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Figure 3.2. Energy Analysis for M = 1 of Walker: Comparison of Non-Modulated and Modulated Motion Signals of Frame =
60

Evidence of the correctness of our Conjecture for the non-uniform waveform case in the choice of the Mersenne prime to
achieve minimal energy dissipation can be seen in the following two examples.

Example 3.2. Sample Energy Dissipation for a walker waveform
A sample collection of non-modulated and modulated waveforms for a walker for M = 1 is shown in Fig. 3.2. In Table 2, M = 1
for the exponential frequency of a modulated waveform results in the lowest energy dissipation.

However, if consider the choice of M for the modulation frequency for a biker, this choice differs from the choice of M = 1
in Example 3.2.

M Non-Modulated Energy Modulated Energy Energy Dissipation
(Ex) (Em) Percentage

1 1.2359 0.9709 21.44%
3 1.2359 0.9222 25.38%
7 1.2359 0.9559 22.65%

31 1.2359 0.9166 25.83%
Table 3.1. Energy Dissipation for Walking

M Non-Modulated Energy Modulated Energy Energy Dissipation
(Ex) (Em) Percentage

1 0.9635 0.6317 34.43%
3 0.9635 0.6729 30.16%
7 0.9635 0.6561 31.90%

31 0.9635 0.6396 33.61%
Table 3.2. Energy Dissipation for Biking
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Figure 3.3. Energy Analysis for M = 3 of Biker: Comparison of Non-Modulated and Modulated Motion Signals of Frame = 60

Example 3.3. Sample Energy Dissipation for a biker waveform
A sample collection of non-modulated and modulated waveforms for a biker for M = 3 is shown in Fig. 3.3. In Table 3, M = 3
for the exponential frequency of a modulated waveform results in the lowest energy dissipation.

4. Conclusion
This paper focuses on the frequency characteristic in modulating dynamical system waveforms. The appropriate choice

of Mersenne prime M as the frequency ω for the Euler exponential e jωt → e jMt is considered in modulating a dynamical
system waveform to obtain a smoother waveform and achieve minimal energy dissipation. It has been found that M = 1 is
the best choice for waveforms whose cycles vary uniformly about the origin. Choice of M ∈ {1,3,7,31} for the non-uniform
waveforms varies, depending on how extreme the lack of self-similarity present in waveforms that vary in a chaotic fashion on
either side of the origin. The appropriate choice of M in modulating a non-uniform waveform is an open problem.
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1. Introduction
Fractional calculus has been recognized to be a useful tool for modeling many processes in economics, physics, and

engineering. Since fractional derivatives (FDs) are a useful tool for characterizing memory and inherited qualities of various
materials and processes, fractional-order models have actually been shown to be more applicable for a number of real-world
scenarios than integer-order models. Applications where this theory is useful include material theory, transport processes,
wave propagation, signal theory, economics, control theory and mechanics,. For more detail (see [1]-[5] and the references
therein).That is the primary benefit of fractional differential equations (FDEs) over standard integer-order models. Basic
difficulties include fractional derivatives, including Riemann-Liouville [2], Caputo [3], Hilfer [4], and Hadamard [6].

In recent years, there has been a lot of interest in FDEs, particularly boundary value issues for nonlinear FDEs, which
may be used to represent and describe non-homogeneous physical processes that occur in their form. Almeida introduced
the f-Caputo derivative in [2] to study FDEs in general. This is different type of FD seen in the literature. We may derive
numerous well-known FDs for certain choices of f, such as the Caputo and Caputo-Hadamard FDs, which depend on a kernel.
This technique also appears logical when seen through a variety of applications. Using a carefully selected ”trial” function f,
the f-Caputo FDs provides some control over approximating the phenomena under research. Zhang [7] used various fixed
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point theorems to illustrate the existence and uniqueness of outcomes for nonlinear fractional existences (P.V.Bs) using Caputo
type FDs. Researchers have found unique solutions to boundary value issues for FDEs (see [8]-[13]) and other references). The
importance of fractional boundary value concerns originates from the fact that they cover a wide range of dynamical systems as
examples.

On the other hand, introduced the stability problem of functional equation solutions (of group homomorphisms) in a
presentation at Wisconsin University in 1940 [14]. Hyers [15] provided the first answer to the topic in Banach spaces in 1941.
Ulam-type stability has piqued the curiosity of numerous academics since then. Researchers became attracted to the study of
stability for FDEs due to the extensive extension of the fractional calculus for more detail (see [12], [15]-[17]).

Several approaches to study FDEs have been proposed in the literature recently, based on multi-valued mappings and
boundary value problems. For instance, authors [18] focused on the Caputo fractional differential inclusions with boundary
conditions in a more general case, for convex-compact mappings providing critical conditions for existence and uniqueness.
Based on this, Mohammadi et al. [19] studied the existence of solutions of phi-Caputo fractional differential inclusions by
using Multi-Valued Contractions.. This method provides further evidence of the role played by contraction principles in solving
non-linear inclusions.

Moreover, Kayvanloo et al. New topological techniques were introduced in [20] to prove the existence of a solution for
solvability in infinite systems of Caputo-Hadamard fractional differential equations. Additionally, in [21] Mohammadi et al.
provided the significance of weak Wardowski mappings and elucidates our understanding of generalized g-Caputo fractional
inclusions.

Benchohra, Hamani and Ntouyas in [8] investigated the existence of solutions of the following existence for Caputo FDEs.

CDð
+0y(t) = f (t,y(t)), x ∈ [0,T ], 0 < ð≤ 1,

with boundary condition

ay(0)+by(T ) = c,

where CDð
+0 is the Caputo derivative with 0 < ð < T , a,b are real constant such that a+ b 6= 0, and f : [0,T ]×R→ R is a

continuous function.
In [22] researcher examined the existence and uniqueness of solutions for the following f-Caputo FDEs with boundary

conditions.{
CDβ ,f(x)

0+ u(x) = f (x,u(x)), x ∈ [0,T ],
u(0) = u′(0) = 0, u(T ) = uT .

Here CDβ ,f(x)
0+ is the f-Caputo derivative with 2 < β < 3, T > 0 , u ∈ C1[0,1], and f : [0,1]×R→ R is a continuous

function.
Motivated by the works above, in this paper, we study the existence, uniqueness and stability of solutions for the following
f-Caputo FDEs of arbitrary order with fractional boundary conditions shown below:

CDð,f
0+ u(x) = f (x,u(x)), x ∈ J = [1,T ], (1.1)

with the boundary condition{
u(0) = Ω1,

Au(0)+Bu(T ) = Ω2,
(1.2)

where A,B.Ω1 and Ω2 are constant, and CDð,f
0+ , is f-Caputo FDs of order 1 < ð≤ 2 with f : J×R→R, is continuous function.
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2. Preliminaries
In this section, we give some notations and definitions.

Definition 2.1. (f-Riemann-Liouville fractional integral) [23].
Let ð> 0, f ∈ L1(J,R), and f ∈Cn(J,R) such that f′(ℑ)> 0 for all x ∈ J. The f-Riemann-Liouville fractional integral at
order ð of the function f is given by by

Ið0+ f (x) :=
1

Γ(ð)

∫ x

0+
[f(x)−f(ℑ)]ð−1 f (ℑ)f′(ℑ)dℑ, (2.1)

Remark 2.2. Note that if f(x) = x and f(x) = log(x), then the equation (2.1) is reduced to the Riemann-Liouville and
Hadamard fractional integrals, respectively.

Definition 2.3. (f-Caputo fractional derivative)[23].
Let ð> 0, f ∈ L1(J,R), and f ∈Cn(J,R) such that f′(ℑ)> 0 for all x ∈ J. The f-Caputo FDs at order ð of the function f is
given by

CD
ð,f
0+ f (x) :=

1
Γ(n−ð)

∫ x

0+
[f(x)−f(ℑ)]n−ð−1f′(ℑ)δ [n]dℑ, (2.2)

where n−1 < ð< n ,n = [a]+1, δ [n](ℑ) = ( 1
f′(ℑ)

d
dℑ

)n f (ℑ), and [ð] denotes the integer part of the real number ð, and Γ is
the gamma function.

Remark 2.4. Note that if f(x) = x and f(x) = log(x), then the equation (2.2) is reduced to the Caputo and Caputo-Hadamard
FDs, respectively.

Remark 2.5. If ð ∈]0,1[ then, we have

CD
ð,f
0+ f (x) = I1−ð,f

0+

(
f ′(x)
f′(x)

)
=

1
Γ(ð)

∫ x

0+
[f(x)−f(ℑ)]ð−1 f ′(ℑ)dℑ.

Definition 2.6. (Ulam-Hyers stable) [24].
The equation (1.1) is called Ulam-Hyers stable if there ∃ a constant q > 0 such that for each ε > 0, when u ∈C(J,R) is any
solution of the inequality

|CDð,f(x)
1+ u(x)− f (x,u(x))| ≤ ε, x ∈ J, (2.3)

then there ∃ another solution w ∈C(J,R) of the equation (1.1) satisfied

|u(x)−w(x)| ≤ qε, x ∈ J.

Definition 2.7. [24] The equation (1.1) is said to be Ulam-Hyers-Rassias stable with respect to ρ ∈C(J,R) and b > 0 is any
constant such that for each ε > 0 and for each solution u ∈C(J,R) of the inequality

|CDð,f(x)
1+ u(x)− f (x,u(x))| ≤ ερ(x), x ∈ J,

then there ∃ a solution w ∈C(J,R) of the equation (1.1) satisfied

|u(x)−w(x)| ≤ bερ(x), x ∈ J.

Proposition 2.8. Let ð> 0. If f ∈Cn(J,R), then we have

1) CDð,f
0+ Ið,f0+ f (x) = f (x)

2) Ið,f0+
CDð,f

0+ f (x) = f (x)−∑
n−1
r=0

f [r]f (0)
r! (f(x)−f(0)r

3) Ið,f0+ is linear and bounded from (J,R) to (J,R).
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Theorem 2.9. (The Banach Fixed Point Theorem)
Let J ⊂ R, be a closed, not necessarily bounded, interval and H : J→ R a function with H(J)⊂ J and which satisfies for a
fixed k, 0≤ k < 1,then the inequality

|H(x)−H(y)| ≤ k|x− y|

for all x,y ∈ J. Then there ∃ exactly one fixed point of H, i.e. a ξ ∈ J, with

H(ξ ) = ξ .

In order to state Sadovskii’s theorem, we define the following concepts.

Definition 2.10. Let Q be a bounded set in metric space (X ,d). The Kuratowski measure of non compactness, µ(Q), is defined
as:

µ(Q) = inf{ε : Qcovered by f initely many sets such that the diameter o f each set is≤ ε}.

Definition 2.11. Let θ : Ω(θ) ⊆ X → X be a bounded and continuous operator on a Banach space X. Then θ is called
a condensing map if µ(θ(w)) < µ(w) for all bounded sets w ⊂ Ω(θ), where µ denotes the Kuratowski measure of non
compactness.

Lemma 2.12. The map P1 +P2 is a k-set contraction with 0≤ k < 1, and thence also condensing, if

1. P1,P2 : Ω⊆ Ξ→ Ξ are operators on the Banach space Ξ,

2. P1 is k-contractive, that is ||P1x−P1y|| ≤ k||x− y|| for all x,y ∈Ω and fixed k ∈ [0,1)

3. P2 is compact

Lemma 2.13. (Sadovskii’s fixed point theorem)
Assume that w be a convex, bounded and closed subset of a Banach space Ξ, and let θ : w→ w be a condensing map. Then θ

has a fixed point.

Lemma 2.14. For any u(x) ∈C(J,R), n−1 < ð≤ n, then the existence (1.1)-(1.2) has a solution

u(x) =Ω1 +Ω3 [f(x)−f(0)]− [f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

where Ω3 =
(Ω2−(A+B)Ω1)
B[f(T )−f(0)] and f(T ) 6= f(0).

Proof. Applying the f-fractional integral of order ð from 1 to x on both sides of f-Caputo FDEs in (1.1) Which can be
rewritten as follows:

u(x) = c0 + c1 [f(x)−f(0)]+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ,

Now, we will apply the boundary conditions(1.2) to find c0 and c1,

u(x) = Ω1 + c1 [f(x)−f(0)]+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ.

To find c1.

u(T ) = Ω1 + cn−1 [f(T )−f(0)]+
∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ,

Au(0)+Bu(T ) = AΩ1 +BΩ1 +Bcn−1 [f(T )−f(0)]+B
∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ,
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cn−1 =
Ω2− (A+B)Ω1

B [f(T )−f(0)]
− 1

[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ,

u(x) =Ω1 +[f(x)−f(0)]
(Ω2− (A+B)Ω1)

B [f(T )−f(0)]
− [f(x)−f(0)]

[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ,

and this complete the poof.

3. Main Results
In the sequel, we denote by ζ :=C(J,R) the Banach space of all continuous functions equipped with the norm

‖u‖= sup{|u(x)| ;x ∈ J}.

To prove the main results, we need the following assumptions:
(H1) There ∃ a constant L > 0, such that

∣∣ f (x,u(x))∣∣≤ L|u|, for all x ∈ J and all u ∈ R
(H2) There ∃ a constant k1 > 0, such that

∣∣ f (x,u(x))− f x,w(x))
∣∣≤ k1|u−w|. For all x ∈ J and all u,w ∈ R.

3.1 Existence the result for problem (1.1)
Here we apply Sadovskii’s fixed point to derive the existence result for the problem (1.1)

Theorem 3.1. Assume f : J×R→ R is continuous and satisfies (H1)-(H2). Then the existence (1.1)-(1.2) has at least one
solution in J.

Proof. We define the integer r, let Hr = {u ∈ ζ : ||u|| ≤ r} be a closed bounded and convex subset of ζ , where r is a fixed
constant. It is sufficient to show that Φ has a fixed point. We define an operator Φ : ζ → ζ in a similar way in light of Lemma
2.12.:

Φ(u(x)) = Ω1 +Ω3 [f(x)−f(0)]− [f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

for all x ∈ J. We also define the operators Φ1,Φ2 : ζ → ζ by

Φ1(u(x)) = Ω1 +
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ,

and

Φ2(u(x)) = Ω3 [f(x)−f(0)]− [f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

and note that,
Φ(u(x)) = Φ1(u(x))+Φ2(u(x)) f or all x ∈ J.

If the sum of operators Φ1 +Φ2 has a fixed point, then follows that operator Φ also has one. To demonstrate that Φ1 +Φ2 has
a fixed point, the operators Φ1 and Φ2 shall be proved to meet the hypothesis of Lemma 2.13. This will be accomplished in
numerous steps.

Step 1: ΦHr ⊂ Hr Let us select

r1 ≥ |Ω1 +Ω3 [f(T )−f(0)] |+ |2 [f(T )−f(0)]ð

Γ(ð+1)
L|
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|(Φu)(x)|=
∣∣∣∣Ω1 +Ω3 [f(x)−f(0)]− [f(x)−f(0)]

[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

∣∣∣∣,
≤Ω1 +Ω3 [f(T )−f(0)]+

2 [f(T )−f(0)]ð

Γ(ð+1)
L||u||< r1.

For all u ∈ Hr, which implies that ΦHr ⊂ Hr.
Step 2: Φ2 is compact. Consider that the operator Φ2 is uniformly limited in view of step 1. Let t1, t2 ∈ J, where t1 < t2 and
u ∈ Hr. Then we acquire.

|(Φ2u)(x1)− (Φ2u)(x2)|=
∣∣∣∣Ω3 (f(x1)−f(0))− [f(x)−f(0)]

[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

−Ω3 [f(x)−f(0)]+
[f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

∣∣∣∣,
≤Ω3 (f(x1)−f(x2))−

(f(x1)−f(x2))

[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ,

|(Φ2u)(x1)− (Φ2u)(x2)| ≤ |Ω3 (f(x1)−f(x2)) |+ |
(f(x1)−f(x2))

[f(T )−f(0)]
[f(T )−f(0)]ð

Γ(ð+1)
|L||u||

which is independent of u and tends to zero as x2→ x1. Thus, Φ2 is equicontinuous. Hence, by the Arzelá-Ascoli theorem,
Φ2(Hr) is a relatively compact set.
Step 3: Φ1 is k-contractive. Let u1,u2 ∈ Hr. Then, we have

||(Φ1u1)(x)− (Φ1u2)(x)||=
∣∣∣∣∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
( f (ℑ,u1(ℑ)− f (ℑ,u2(ℑ))dℑ

∣∣∣∣,
≤ [f(T )−f(0)]ð

Γ(ð+1)
k1||u1−u2||,

set λ = [f(T )−f(0)]ð
Γ(ð+1) k1 then we obtain

||(Φ1u1)(x)− (Φ1u2)(x)|| ≤ λ ||u1−u2||.

Since λ < 1 Then, Φ1 is a contractive mapping.
Step 4: φ is compressing. Lemma 2.12 states that Φ : Hr→Hr, with Φ = Φ1 +Φ2, is a condensing map on Hr due to Φ1 being
continuous, a u-contraction, and Φ2 compact. Using Lemma 2.13, we may conclude that the operator Φ has a fixed point. As a
result, the boundary value problem (1.1)-(1.2) has at least one solution on J.

3.2 Uniqueness the result for problem (1.1)
Now we apply Banach’s contraction mapping principle to prove existence and uniqueness of solutions for problems

(1.1)-(1.2)

Theorem 3.2. Assume f : J×R→ R is continuous and satisfies (H1)-(H2). Let η = supx∈[1,T ] f (x,0), if

|2 [f(T )−f(0)]ð

Γ(ð+1)
|< 1.

Then the existence (1.1)-(1.2) has a unique solution.
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Proof. Define the operator Θ : ζ → ζ as the following

(Θu)(x) =Ω1 +Ω3 [f(x)−f(0)]− [f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ,

We have to show that Θ has a fixed point on Gr which it is solution of the existence (1.1)-(1.2). Firstly we show that ΘHr ⊂Θ,
The operator Θ is bounded set into the bounded sets in ζ . For any r > 0, then for each x ∈ J = [1,T ]. Then, we have

|(Θu)(x)|=
∣∣∣∣∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
( f (ℑ,u(ℑ))− f (ℑ,0)+ f (ℑ,0))dℑ

− [f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
( f (ℑ,u(ℑ))− f (ℑ,0)+ f (ℑ,0))dℑ

∣∣∣∣,
≤
∣∣∣∣∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
( f (ℑ,u(ℑ))− f (x,0)+ f (x,0))dℑ

∣∣∣∣
+

∣∣∣∣ [f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
( f (ℑ,u(ℑ))− f (x,0)+ f (x,0))dℑ

∣∣∣∣,
≤
∣∣∣∣∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
dℑ

∣∣∣∣(k1 +η)+

∣∣∣∣ [f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
dℑ

∣∣∣∣(k1 +η),

≤ | [f(T )−f(0)]ð

Γ(ð+1)
|(k1 +η)+ | [f(T )−f(0)]ð

Γ(ð+1)
|(k1 +η),

≤ |2 [f(T )−f(0)]ð

Γ(ð+1)
|(k1 +η).

Now, let u,u1 ∈ ζ and for each x ∈ J. We need to prove that Θ is contraction mapping.

|(Θu)(x)− (Θu1)(x)|=
∣∣∣∣∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
( f (ℑ,u(ℑ))− f (ℑ,u1(ℑ))dℑ

− [f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
( f (ℑ,u(ℑ))− f (ℑ,u1(ℑ))dℑ

∣∣∣∣,
≤
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
dℑk1||u−u1||+

∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−2

Γ(ð−1)
dℑk1||u−u1||,

≤ |2 [f(T )−f(0)]ð

Γ(ð+1)
|k1||u−u1||.

If | 2[f(T )−f(0)]
ð

Γ(ð+1) |< 1. Then, Θ is a contraction mapping. Therefore, by using The Banach contraction mapping, Θ has a
unique Fixed point which is a unique solution of the existence (1.1)-(1.2).

4. Stability Theorems

In this section, we study stability of our result.
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4.1 Ulam-Hyers stability
Theorem 4.1. Assume that the assumptions (H2) is hold. Then the fractional differential equation (1.1) with the boundary
condition (1.2) is Ulam-Hyers stable.

Proof. let w ∈C(J,R) be a solution of the inequality (2.3) i.e,

|CDð,f(x)
0+ w(x)− f (x,w(x))| ≤ ε, x ∈ J. (4.1)

If we defined u ∈C(J,R) the unique solution of the existence (1.1)-(1.2)
When u and w being continuous functions on J. From lemma 2.14 we obtain

u(x) =Ω1 +Ω3 [f(x)−f(0)]− [f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

we will take the integration of (4.1) and we obtain

|w(x)−Ω1 +Ω3 [f(x)−f(0)]− [f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,w(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,w(ℑ))dℑ| ≤ ε [f(x)−f(0)]ð

Γ(ð+1)
,

on the other hand we have∣∣∣∣w(x)−u(x)
∣∣∣∣=∣∣∣∣w(x)−Ω1 +Ω3 [f(x)−f(0)]− [f(x)−f(0)]

[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

∣∣∣∣,
∣∣∣∣w(x)−u(x)

∣∣∣∣=∣∣∣∣w(x)−Ω1 +Ω3 [f(x)−f(0)]− [f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,w(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,w(ℑ))dℑ+

[f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,w(ℑ))dℑ

−
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,w(ℑ))dℑ− [f(x)−f(0)]

[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

∣∣∣∣,
≤ ε [f(x)−f(0)]ð

Γ(ð+1)
+

[f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
| f (ℑ,w(ℑ))− f (ℑ,u(ℑ))|dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
| f (ℑ,w(ℑ))− f (ℑ,u(ℑ))|dℑ,

|w(x)−u(x)| ≤ ε [f(x)−f(0)]ð

Γ(ð+1)
+

[f(T )−f(0)]ð

Γ(ð+1)
k1|w(x)−u(x)|

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
| f (ℑ,w(ℑ))− f (ℑ,u(ℑ))|dℑ,
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Let γ1 =
[f(T )−f(0)]ð

Γ(ð+1) k1 then, we obtain

|w(x)−u(x)| ≤ ε [f(x)−f(0)]ð

Γ(ð+1)(1− γ1)
+

1
1− γ1

∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
| f (ℑ,w(ℑ))− f (ℑ,u(ℑ))|dℑ,

|w(x)−u(x)| ≤ ε [f(x)−f(0)]ð

Γ(ð+1)(1− γ1)
e
[f(T )−f(0)]ð
Γ(ð+1)(1−γ1)

|w(x)−u(x)|
,

|w(x)−u(x)| ≤ εCh.

Where Ch =
[f(x)−f(0)]ð
Γ(ð+1)(1−γ1)

e
[f(T )−f(0)]ð
Γ(ð+1)(1−γ1)

|w(x)−u(x)|
. Hence, the solution of (1.1)-(1.2) ) is Ulam-Hyers stable.

4.2 Ulam-Hyers-Rassias stability
Theorem 4.2. Suppose that the assumptions (H2)-(H2) are satisfied.
(H3) The function ρ ∈C(J,R) is increasing and there ∃ Λρ > 0, such that, for each x ∈ J we have

Iðρ(t)< Λρ ρ(x).

Then, the fractional differential equation (1.1) with the boundary condition (1.2) is Ulam-Hyers-Rassias stable with respect
to ρ .

Proof. let w ∈C(J,R) be a solution of the inequality (2.3) i.e,

|CDð,f(x)
0+ w(x)− f (x,w(x))| ≤ ερ(x), x ∈ J. (4.2)

If we defined u ∈C(J,R) the unique solution of the existence (1.1)-(1.2)
When u and w being continuous functions on J. From Lemma 2.14 we obtain

u(x) =Ω1 +Ω3 [f(x)−f(0)]− [f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

we will take the integration of (4.2) and we obtain

|w(x)−Ω1 +Ω3 [f(x)−f(0)]− [f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,w(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,w(ℑ))dℑ| ≤ εΛρ ρ(x),

on the other hand we have∣∣∣∣w(x)−u(x)
∣∣∣∣= ∣∣∣∣w(x)−Ω1 +Ω3 [f(x)−f(0)]− [f(x)−f(0)]

[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

∣∣∣∣,
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∣∣∣∣w(x)−u(x)
∣∣∣∣= ∣∣∣∣w(x)−Ω1 +Ω3 [f(x)−f(0)]− [f(x)−f(0)]

[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,w(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,w(ℑ))dℑ+

[f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,w(ℑ))dℑ

−
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,w(ℑ))dℑ− [f(x)−f(0)]

[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
f (ℑ,u(ℑ))dℑ

∣∣∣∣,
≤ εΛρ ρ(x)+

[f(x)−f(0)]
[f(T )−f(0)]

∫ T

0
f′(ℑ)

[f(T )−f(ℑ)]ð−1

Γ(ð)
| f (ℑ,w(ℑ))− f (ℑ,u(ℑ))|dℑ

+
∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
| f (ℑ,w(ℑ))− f (ℑ,u(ℑ))|dℑ,

|w(x)−u(x)| ≤ εΛρ ρ(x)+
[f(T )−f(0)]ð

Γ(ð+1)
k1|w(x)−u(x)|+

∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
| f (ℑ,w(ℑ))− f (ℑ,u(ℑ))|dℑ.

Let γ1 =
[f(T )−f(0)]ð

Γ(ð+1) k1 then, we obtain

|w(x)−u(x)| ≤
εΛρ ρ(x)
(1− γ1)

+
1

1− γ1

∫ x

0
f′(ℑ)

[f(x)−f(ℑ)]ð−1

Γ(ð)
| f (ℑ,w(ℑ))− f (ℑ,u(ℑ))|dℑ,

|w(x)−u(x)| ≤
εΛρ ρ(x)

1− γ1
e
[f(T )−f(0)]ð
Γ(ð+1)(1−γ1)

|w(x)−u(x)|
,

|w(x)−u(x)| ≤ εCh.

Here Ch =
εΛρ ρ(x)

1−γ1
e
[f(T )−f(0)]ð
Γ(ð+1)(1−γ1)

|w(x)−u(x)|
hold, this show that the solution of the existence (1.1)-(1.2) is Ulam-Hyers-Rassias

stable

5. Examples
Example 5.1. Take the following existence

CDð,
√

x
0+ u(x) =

√
2− x

10+ ex
|u(x)|

1+ |u(x)|
, (5.1)

with the boundary condition{
u(0) = 3,
2u(0)+3u(1) = 2.

(5.2)

where ð= 3
2 ,f(x) =

√
x and f (x,u(x)) =

√
2−x

10+ex
|u(x)|

1+|u(x)|
To prove Banach contraction mapping, let x ∈ J and u,v ∈ R
| f (x,u1)− f (x,u2)|=

√
2−x

10+ex |u1−u2|,
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We need to show that | 2[f(T )−f(0)]
ð

Γ(ð+1) |k1|< 1 Then, the result become

|(Θu)(x)− (Θv(t)|= |
√

2− x
10+ ex

|u(x)|
1+ |u(x)|

−
√

2− x
10+ ex

|v(x)|
1+ |v(x)|

|,

|(Θu)(x)− (Θv(t)| ≤ |
√

2− x
10+ ex ||

|u(x)|
1+ |u(x)|

− |v(x)|
1+ |v(x)|

|,

≤ |
√

2
11
|| u(x)− v(x)
(1+ |u(x)|)(1+ v(x))

|,

|(Θu)(x)− (Θv(t)| ≤ |
√

2
11
||u(x)− v(x)|.

Thus, the assumption (H2) holds true with k1 =
√

2
11 . Moreover, we have

|2 [f(T )−f(0)]ð

Γ(ð+1)
|k1|= |

2(
√

1−
√

0)
3
2

Γ( 5
2 )

√
2

11
|= 0.19342 < 1.

Finally, all the conditions of Theorem 3.2 are satisfied, thus the B.V.P (5.1)-(5.2) has a unique solution on [0,1].

6. Conclusion
In this paper, we examined the solutions for nonlinear FDEs with boundary conditions using the parameter of f-Caputo

derivative. The Sadovskii fixed point theorem and Banach contraction principle ensure the existence and uniqueness of solutions
to nonlinear problems. Additionally, the stability of Ulam-Hyers and Ulam-Hyers-Rassias solutions for the above issues is
investigated. Finally, we provide an example to show the coherence of the theoretical conclusions. In the future, one can expand
the provided fractional boundary value issue to more FDs, such as the Hilfer-Hadamard FDs and Caputo-Fabrizio FDs.
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1. Introduction
Let p, q, and r be coprime positive integers greater than 1 and let us consider exponential Diophantine equation

px +qy = rz

with x,y,z ∈ N. In 1956, Sierpiński demonstrated that by reformulating the Pythagorean theorem with exponential expressions
as variables, the exponential Diophantine equation 3x +4y = 5z has a unique solution, (x,y,z) = (2,2,2) [1]. Subsequently,
Jeśmanowicz extended this idea to general Pythagorean triples, proposing that for positive integers a, b, and c satisfying the
exponential Diophantine equation, the only solution remains (2,2,2) [2].
In 1994, Terai extended this framework by considering the equation px +qy = rz for positive integers p,q,r with p,q,r ≥ 2.
He conjectured that while multiple solutions may exist for some triples (p,q,r), only a few specific sets of such triples yield
exceptions [3]. This conjecture has been verified for numerous specific cases, including particular forms of Diophantine
equations

(ar2 +1)x +(br2−1)y = (cr)z. (1.1)

In this study, the following exponential Diophantine equation equation is examined

(8r2 +1)x +(r2−1)y = (3r)z. (1.2)
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It is important to observe that equation (1.2) serves as a special case of equation (1.1), where the condition a+b = c2 is fulfilled.
This research was initiated based on Terai’s conjecture. Expanding on this conjecture, various specific cases of equation (1.1)
have been examined, resulting in the validation of Terai’s conjecture in these instances.

• [4] (4r2 +1)p +(5r2−1)q = (3r)t

• [5] (r2 +1)p +(yr2−1)q = (zr)t , 1+ y = z2

• [6] (12r2 +1)p +(13r2−1)q = (5r)t

• [7] (xr2 +1)p +(yr2−1)q = (zr)t , z|r

• [8] (xr2 +1)p +(yr2−1)q = (zr)t , r =±1 (mod z)

• [9] (18r2 +1)p +(7r2−1)q = (5r)t

• [10] ((x+1)r2 +1)p +(xr2−1)q = (zr)t , 2x+1 = z2

• [11] (3xr2−1)p +(x(x−3)r2 +1)q = (xr)t

• [12] (4r2 +1)p +(21r2−1)q = (5r)t

• [13] (5xr2−1)p +(x(x−5)r2 +1)q = (xr)t

• [14] (3r2 +1)p +(yr2−1)q = (zr)t

• [15] (4r2 +1)p +(45r2−1)q = (7r)t

• [16] (6r2 +1)p +(3r2−1)q = (3r)t

• [17] (x(x− l)r2 +1)p +(xlr2−1)q = (xr)t

• [18] (44r2 +1)p +(5r2−1)q = (7r)t

• [19] (9r2 +1)p +(16r2−1)q = (5r)t

For the Diophantine equations related to Recurrence sequences see [20], [21] and [22]. The exponential Diophantine equation
(1.2), where r denotes a positive integer, is analyzed, and the following theorem is established.

Theorem 1.1. Let r be a positive integer. The equation (1.2) possesses a single positive integer solution (x,y,z) = (1,1,2) for
any r > 1.

The theorem’s proof relies on two approaches. The initial method, leveraging [23, 24], enables the derivation of additional
potential solutions for the Diophantine equations M2 +WN2 = qK and aM2 +bN2 = qK from established solutions, subject to
certain conditions [25, 26]. The second method draws upon an earlier rendition of the Primitive Divisor Theorem attributed to
Zsigmondy [27].

2. Preliminaries
Consider a positive integer W . The notation h(−4W ) denotes the class number of positive binary quadratic forms with

discriminant −4W .

Lemma 2.1. ([28], Theorems 11.4.3, 12.10.1 and 12.14.3])

h(−4W )<
4
π

√
W log(2e

√
W ).

Let W,W1,W2,q be positive integers such that min{W,W1,W2}> 1, gcd(W1,W2) = 1,
2 6 |q and gcd(W,q) = gcd(W1,W2,q) = 1.
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Lemma 2.2. [23] Given fixed relatively prime positive integers W and q, with W > 1 and q being an odd integer, the equation
is considered

M2 +WN2 = qK ,

where M,N,K∈ Z, K > 0 and gcd(M,N) = 1, has solutions (M,N,K) then any solution to the aforementioned equation can be
represented as follows

M+N
√
−W = λ1(M1 +λ2N1

√
−W )t , K = K1t λ1,λ2 ∈ {±1}

M1,N1,K1 are positive integers satisfying M2
1 +WN2

1 = qK1 , gcd(M1,N1) = 1 and h(−4W )≡ 0 (mod K1) .

Lemma 2.3. [23] Consider relatively prime positive integers W1 and W2, both greater than 1. Let (M,N,K) denote a fixed
solution of the equation

W1M2 +W2N2 = qK . (2.1)

Given that K > 0, gcd(M,N) = 1, 2 - q and M,N,K ∈ Z, there also exists a unique positive integer s such that

s =W1αM+W2βN, 0 < t < q

where α and β are integers such that βM−αN = 1 [[23], Lemma 1]. The positive integer s is referred to as the characteristic
number of the specific solution (M,N,K) and is denoted by < M,N,K >. When < M,N,K >= s, it implies that W1M ≡−sN
(mod q) [[23], Lemma 6]. Let (M0,N0,K0) be a solution to (2.1) with < M0,N0,K0 >= s0. Therefore, the set of all solutions
(M,N,K) with < M,N,K >≡±s0 (mod q) is termed a solution class of (2.1), expressed as S(s0).

Lemma 2.4. [23] For each solution class S(s0) of (2.1), a unique solution exists (M1,N1,K1) ∈ S(s0) such that M1 and N1
are positive, and K1 ≥ K for all solutions (M,N,K) ∈ S(s0), where K spans all possible solutions. This particular solution
(M1,N1,K1) is referred to as the least solution of S(s0). If (M,N,K) is a solution in the set S(s0) then

K = K1t, 2 - t, t ∈ N,

M
√

W1 +N
√

W2 = λ1
(
M1
√

W1 +λ2N1
√
−W2

)t
, λ1,λ2 ∈ {1,−1}.

Lemma 2.5. [24] Let (M1,N1,K1) be the least solution of S(s0). If (2.1) has a solution (M,N,K) ∈ S(s0) satisfying M > 0
and N = 1, then N1 = 1. Additionally, if (M,K) 6= (M1,K1), in that case, at least one of the following conditions is satisfied

(i) W1M2
1 = 1

4 (q
K1 ±1), W1 =

1
4 (3qK1 ±1)

(M,K) = (M1|W1M2
1 −3W2|,3K1)

(ii) W1K2
1 = 1

4 F3a+3ε , W2 =
1
4 L3a, qK1 = F3a+ε

(M,K) = (M1|W 2
1 M4

1 −10W1W2M2
1 +5W 2

2 |, 5K1)

where a is a positive integer, ε ∈ {1,−1}, and Fn is the n-th Fibonacci number in which each number is the sum of the two
preceding ones.

Let γ and θ be algebraic integers. A Lucas pair refers to a pair (γ,θ) such that γ +θ and γθ are non-zero relatively prime
integers, and γ

θ
is not a root of unity. For any given pair (γ,θ) forming a Lucas pair, the resulting sequences of Lucas numbers

are given by

Ln(γ,θ) =
γn−θ n

γ−θ
, n = 0,1,2, . . .

It’s worth noting that primitive divisors of Ln(γ,θ) are prime numbers p for which p|Ln(γ,θ) and p - (γ,θ)2L1(γ,θ) . . .Ln−1(γ,θ).
For any Lucas sequence Ln(γ,θ) determined by a finite set of parameters (n,γ,θ), if n≥ 5 and n 6= 6, it is guaranteed that the
sequence has always a primitive divisor.
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Lemma 2.6. [25] If n > 30, then Ln(γ,θ) is guaranteed to have a primitive divisor.

Lemma 2.7. [26] For 4 < n ≤ 30 and n 6= 6, aside from equivalence, Ln(γ,θ) contains a primitive divisor, except for the
following pairs of parameters (k, l):

• (1,−15),(1,−11),(1,−7),(1,5),(2,−40),(12,−76) or (12,−1364)
if n = 5,

• (1,−19) or (1,−7) i f n = 7,

• (1,−7) or (2,−24) i f n = 8,

• (2,−8),(5,−47) or (5,−3) i f n = 10,

• (1,−19),(1,−15),(1,−11),(1,−7),(1,−5) or (2,−56) if n = 12,

• (1,−7) i f n = 13,18 or 30.
where (γ,θ) = ( k+

√
l

2 , k−
√

l
2 ).

Lemma 2.8. [9] If a,b,c and r > 1 are positive integers satisfying a+b = c2, and (x,y,z)≥ 0 is a solution to the exponential
Diophantine equation

(ar2 +1)x +(br2−1)y = (cr)z,

where x is the larger of the two values {x,y}, In this case, the following inequalities are satisfied

2−
log
(

c2

a

)
log(cr)

x < z≤ 2x.

On the other hand, if y is the larger value, then

2−
log
(

c2r2

br2−1

)
log(cr)

y < z≤ 2y.

In particular, when M = max{x,y}> 1, it follows that

2−
log
(

c2

min{a,b− 1
r2 }

)
log(cr)

M < z < 2M.

This offers a more precise description of the range of z based on M and the specified parameters.

Proposition 2.9. [27] Consider C and D be relatively prime integers with C > D≥ 1. Let {an}n≥1 be the sequence defined as

an =Cn +Dn.

If n > 1, then an has a prime factor not dividing a1a2a3 · · ·an−1, whenever (C,D,n) 6= (2,3,1).
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3. Proof of Theorem 1.1
3.1 The case 2|r

This section demonstrates that Theorem 1.1 is valid under the condition 2 | r.

Lemma 3.1. If 2|r, then (x,y,z) = (1,1,2) constitutes the sole positive integer solution of the equation (1.2).

Proof. For z ≤ 2, it is evident that (x,y,z) = (1,1,2) is the unique solution to equation (1.2). Thus, the assumption z ≥ 3 is
made. Considering equation (1.2) modulo r2, the relation 1+(−1)y ≡ 0 (mod r2) holds, implying that y must be odd, given
that r2 > 2. Further, reducing equation (1.2) modulo r3, the following is obtained

1+8r2x+(−1)+ r2y≡ 0 (mod r3),

8x+ y≡ 0 (mod r),

which results in a contradiction, since y is odd and r is even. Therefore, it is concluded that equation (1.2) has no positive
integer solutions for z≥ 3. Consequently, the only positive integer solution to equation (1.2) when r is even is (1,1,2). The
case where r is odd will now be considered.

3.2 The case 2 - r where r ≡ 0 (mod 3)
This section demonstrates that Theorem 1.1 is valid under the condition 2 - r where r ≡ 0 (mod 3).

Proof. Let (x,y,z) be any solution to equation (1.2). It is clear that (x,y,z) = (1,1,2) constitutes a solution of (1.2). For r > 1,
examining equation (1.2) modulo r2, it can be concluded, similar to the earlier scenario, that y must be odd. The investigation
then continues by splitting into two cases depending on the parity of x. First, let us assume x is odd. Next, the focus turns to the
Diophantine equation

(8r2 +1)M2 +(r2−1)N2 = (3r)K , K > 0 and M,N,K ∈ Z. (3.1)

Since (x,y,z) represents any solution of equation (1.2), it follows from Lemma 2.3 that

(M,N,K) =
(
(8r2 +1)

x−1
2 ,(r2−1)

y−1
2 ,z

)
(3.2)

is a solution of equation (3.1). Let s = 〈(8r2 +1)
x−1

2 ,(r2−1)
y−1

2 ,z〉 be the characteristic number corresponding to the solution
given in (3.2). From the congruence

(8r2 +1)
x+1

2 ≡−s(r2−1)
y−1

2 (mod 3r),

it follows that s≡±1 (mod 3r).
It is noteworthy that (M1,N1,K1) = (1,1,2) also satisfies equation (3.1), and let s0 = 〈1,1,2〉 denote the characteristic

number of this solution. Hence, the following holds

8r2 +1≡−s0 (mod 3r) (3.3)

s0 ≡−1 (mod 3r)

Thus, it is observed by the equation (3.3) s≡±s0 (mod 3r), indicating that the solutions (M1,N1,K1) = (1,1,2) and the one
given in (3.2) belong to the same solution class S(s0) of equation (3.1). Furthermore, (M,N,K) = (1,1,2) is clearly the least
solution within S(s0). Therefore, applying Lemma 2.4, it follows that

z = 2t, 2 - t, t ∈ N,

(8r2 +1)
x−1

2
√

8r2 +1+(r2−1)
y−1

2
√

1− r2 = λ1

(√
8r2 +1+λ2

√
1− r2

)t
. (3.4)

By expanding the right-hand side of equation (3.4) and equating the coefficients of
√

1− r2, the following result is obtained

(r2−1)
y−1

2 = λ1λ2

t−1
2

∑
i=0

(
t

2i+1

)
(8r2 +1)

t−1
2 −i(r2−1)i (3.5)
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At this point, it is asserted that y = 1. Suppose y > 1. From equation (3.5), it can be deduced that

0≡ λ1λ2t · (8r2 +1)
t−1

2 (mod (r2−1))

0≡ λ1λ2t ·9
t−1

2 (mod (r2−1)).

This leads to a contradiction, as 2 - t · 9 t−1
2 and 2 | (r2− 1). Therefore, it is concluded that y = 1, and consequently N =

(r2− 1)
y−1

2 = 1. The two conditions in Lemma 2.5 will now be verified. Given that (M1,N1,K1) = (1,1,2) represents the
smallest solution of S(s0), Lemma 2.5 implies that either

8r2 +1 =
1
4
((3r)2±1)

or

F3a+ε = (3r)2

where ε =±1. The first equation leads to

4(8r2 +1) = (32r2±1),

resulting in 4≡±1 (mod r2), which is not possible. Moreover, since the only square Fibonacci number greater than 1 is
F12 = 122 [29], the second condition implies 3r = 12, which is also impossible due to the parity of r. Consequently, by Lemma
2.5, it follows that (M,K) = ((8r2 +1)

t−1
2 ,z) = (M1,K1) = (1,2). Thus, equation (1.2) has no positive integer solutions other

than (x,y,z) = (1,1,2) when x is odd.
Next, the case when 2|x is considered. From equation (1.2), the Diophantine equation

M2 +(r2−1)N2 = (3r)K , gcd(M,N) = 1, K > 0,

admits the solution

(M,N,K) =
(
(8r2 +1)

x
2 ,(r2−1)

y−1
2 ,z

)
.

Hence, by Lemma 2.2, it is concluded that

z = K1t, t ∈ N

(8r2 +1)
x
2 +(r2−1)

y−1
2
√

1− r2 = λ1(M1 +λ2N1

√
1− r2)t (3.6)

where λ1,2 ∈ {−1,1} and M1,N1,K1 are positive integers satisfying

M2
1 +(r2−1)N2

1 = (3r)K1 , gcd(M1,N1) = 1 (3.7)

h(−4(r2−1))≡ 0 (mod K1). (3.8)

Suppose that 2|t and let

M2 +N2

√
1− r2 = (M1 +λ2N1

√
1− r2)

t
2 . (3.9)

By taking the norm of both sides of equation (3.8) in the field Q(
√

1− r2) and applying equation (3.7), the following result is
obtained

M2
2 +(r2−1)N2

2 = (3r)
K1t

2 = (3r)
z
2 . (3.10)
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By substituting equation (3.9) into equation (3.6), the result is obtained as follows

(8r2 +1)
x
2 +(r2−1)

y−1
2
√

1− r2 = λ1(M2 +N2

√
1− r2)2

and therefore it follows that

(8r2 +1)
x
2 = λ1(M2

2 −N2
2 (r

2−1)), (3.11)

(r2−1)
y−1

2 = 2λ1M2N2. (3.12)

Since gcd(8r2+1,r2−1) = 1, it follows from equations (3.11) and (3.12) that |M2|= 1. Thus, |N2|= 1
2 (r

2−1)
y−1

2 . Substituting
|M2| and |N2| into equation (3.10), the result is

1+
1
4
(r2−1)y = (3r)

z
2

which leads to

3≡ 0 (mod r2).

This presents a contradiction, leading to the conclusion that 2 - t. Define

γ = M1 +N1

√
1− r2, θ = M1−N1

√
1− r2.

By taking the complex conjugate of equation (3.6), the following relation is obtained

(r2−1)
y−1

2 = N1

∣∣∣∣γ t −θ t

γ−θ

∣∣∣∣= N1|Lt(γ,θ)|. (3.13)

By equation (3.7), it holds that γ + θ = 2M1, γ − θ = 2N1
√

1− r2, and γθ = (3r)K1 . Since gcd(M1,N1) = 1, the integers
γ +θ = 2M1 and γθ = (3r)K1 are also relatively prime, as implied by equation (3.7), and γ

θ
6=±1, with γ and θ being units in

the ring of algebraic integers of Q(
√

1− r2). Consequently, Lt(γ,θ) forms a Lucas sequence.
From equation (3.13), it is evident that the Lucas numbers Lt(γ,θ) lack primitive divisors. By applying Lemma 2.6 and

Lemma 2.7, it is concluded that t ≤ 30. Furthermore, if 4 < t ≤ 30 and t 6= 6, the parameters (k, l) = (2M1,4N2
1 (1− r2)) must

match one of the parameter sets listed in Lemma 2.7. However, none of these sets align with the given parameters. Therefore, it
follows that t ≤ 3.

The case t = 3 will be shown to be impossible. Assuming t = 3, the right-hand side of equation (3.6) is expanded, and by
equating the coefficients on both sides, it is determined that

(8r2 +1)
x
2 = λ1M1(M2

1 −3(r2−1)N2
1 ) (3.14)

(r2−1)
y−1

2 = λ1λ2N1(3M2
1 − (r2−1)N2

1 ). (3.15)

From equation (3.7), it is evident that gcd(3M1,r2−1) = 1. Thus, from equation (3.15), the relation 3M2
1 − (r2−1)N2

1 =±1
holds. In fact, upon considering this equation modulo 3, it can be observed that only the positive sign is feasible, and the
following equation is obtained

3M2
1 − (r2−1)N2

1 = 1. (3.16)

Thus, it follows that

|N1|= (r2−1)
y−1

2 . (3.17)

By substituting equation (3.17) into equation (3.14), the following result is obtained

(8r2 +1)
x
2 = λ1M1(M2

1 −3(r2−1)y) (3.18)
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By considering equations (3.16) and (3.17) modulo 3r, it follows that 3M2
1 − (r2−1)y ≡ 0 (mod 3r), which implies M1 ≡ 1

(mod r). Substituting this result into equation (3.18) yields

(8r2 +1)
x
2 = λ1M1(M2

1 −3(r2−1)y)

leading to

1≡ 0 (mod r)

which is evidently a contradiction. Therefore, the only possibility remaining is t = 1. Consequently, z = W1t = K1, and
according to equation (3.8), it is established that K1 ≤ −4(r2−1). Utilizing the upper bound provided by Lemma 2.1, the
following result is obtained

z <
4
π

√
r2−1 log (2e

√
r2−1). (3.19)

Assume z= 3. In this case, at least one of x or y must be greater than 1. If x≥ 2, it follows that (3r)3 > (8r2+1)x ≥ (8r2+1)2 >
82r4, leading to 33 > 82r, which implies 64 > 27, resulting in a contradiction. Similarly, if (3r)3 > (r2−1)2 +(8r2 +1), this
also results in a contradiction. Thus, it can be concluded that z≥ 4. Examining equation (1.2) modulo r4 leads to

(8r2 +1)x +(r2−1)y ≡ 0 (mod r4)

and hence

8x+ y≡ 0 (mod r2)

r2 ≤ 8x+ y. (3.20)

The application of the logarithm function facilitates the straightforward derivation of the inequalities x < z and y < 1.06z.
Consequently, from inequality (3.20), it follows that r2 < 9.06z. Therefore, from the derived inequality

r2 < 9.06z < 9.06 · 4
π

√
r2−1log(2e

√
r2−1),

it can be concluded that r ≤ 63. Furthermore, by consulting Lemma 2.8, the following upper bounds for x and y can be
established

1.94x <

(
2−

log
( 9

8

)
log(9)

)
x <

(
2−

log
( 9

8

)
log(3r)

)
x < z≤ 2x (3.21)

0.95y <
(

2− log(10)
log(9)

)
y <

2−
log
(

10r2−10
r2−1

)
log(9)

y <

2−
log
(

9r2

r2−1

)
log(3r)

y < z≤ 2y. (3.22)

Based on equations (3.21) and (3.22), it can be concluded that equation (1.2) has no solutions in positive integers for z≤ 6.
Assuming z > 6, the analysis of equation (1.2) proceeds by considering it modulo r4, r6, and r8.

1. Modulo r4: By considering equation (1.2) modulo r4, the following congruence is obtained

8r2x+ r2y≡ 0 (mod r4).

In other words,

8x+ y≡ 0 (mod r2). (3.23)

2. Modulo r6: Taking equation (1.2) modulo r6, the following congruence is obtained

8r2x+82r4 x(x−1)
2

+ r2y− r4 y(y−1)
2

≡ 0 (mod r6).
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Simplifying,

8x+82r2 x(x−1)
2

+ y− r2 y(y−1)
2

≡ 0 (mod r4). (3.24)

3. Modulo r8: Finally, taking equation (1.2) modulo r8, the following congruence is obtained

8r2x+82r4 x(x−1)
2

+83r6 x(x−1)(x−2)
6

+ r2y− r4 y(y−1)
2

+ r6 y(y−1)(y−2)
6

≡ 0 (mod r8).

Simplifying,

8x+82r2 x(x−1)
2

+83r4 x(x−1)(x−2)
6

+ y− r4 y(y−1)
2

+ r4 y(y−1)(y−2)
6

≡ 0 (mod r6).

(3.25)

In summary, equations (3.23), (3.24), and (3.25) represent the congruence conditions derived from equation (1.2) modulo
r2, r4, and r6, respectively. Utilizing equation (3.19) alongside the conditions x,y < z, and the congruences (3.23), (3.24), and
(3.25), a brief computer program was developed using Maple to investigate all potential solutions of equation (1.2) within the
range 3 ≤ r ≤ 63. The results show that there are no positive integer solutions (r,x,y,z) to equation (1.2) when z ≥ 3. This
concludes the proof.

3.3 The case r - 2 where r ≡±1 (mod 3)
This section demonstrates that Theorem 1.1 is valid under the condition r - 2 where r ≡±1 (mod 3).

Lemma 3.2. If r is a positive odd integer such that r ≡ ±1 (mod 3), then equation (1.2) admits sole the positive integer
solution (x,y,z) = (1,1,2).

Proof. Let k1 and k2 be positive integers, and consider the case where r ≡±1 (mod 3). In this context, equation (1.2) can be
reformulated as follows

8r2 +1 = 3k1A, (8r2 +1)x = 3k1xAx (3.26)

r2−1 = 3k2B, (r2−1)y = 3k2yBy (3.27)

where A,B 6≡ 0 (mod 3). Then the equation (1.2) becomes

3k1xAx +3k2yBy = (3r)z. (3.28)

Firstly, let’s consider k1x > k2y, then equation (3.28) can be written as

3k2y(3k1x−k2yAx +By) = 3zrz

this implies that

k2y = z (3.29)

then equation (1.2) becomes

(8r2 +1)x = ((3r)k2)y− (r2−1)y.

Apply Proposition 2.9 , y = 1 is found. When y = 1 equation (3.27) turns into,

(r2−1)y = 3k2yBy = 3k2B. (3.30)

And substituting (3.29) into (3.30) with y = 1

r2 = 3zB+1. (3.31)
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If z ≤ 2, then (x,y,z) = (1,1,2) is evidently the sole solution of equation (1.2). Therefore, let’s assume z = 3. Equation
(1.2) becomes (8r2 + 1)x + r2− 1 = (3r)3. x ≥ 2 gives (3r)3 > (8r2 + 1)x ≥ (8r2 + 1)2 > 82r4, and hence 33 > 82r > 64,
a contradiction. Also it seen that y = 1 and x = 1, the equation (1.2) turns into 8r2 + 1+ r2− 1 = (3r)3 also leads us a
contradiction under the condition r ≡±1 (mod 3). Now, consider the scenario in which z≥ 4. Upon taking equation (1.2)
modulo r4, it becomes evident that y = 1 as a result of Proposition 2.9 [27]. Consequently, the following congruence is
established.

8r2x+ r2 ≡ 0 (mod r4).

This implies that

8x+1≡ 0 (mod r2)

r2 ≤ 8x+1. (3.32)

Substituting (3.31) into inequality (3.32), the following inequality is obtained.

3zB≤ 8x. (3.33)

Also x is bounded as x < z. So (3.33) turns into (3.34)

3zB≤ 8x < 8z

3zB≤ 8z. (3.34)

Consequently, it is evident that no positive integer z can satisfy the condition z≥ 4. Similarly, upon conducting a comparable
analysis in the context where k2y > k1x, it becomes clear that no positive integer z can satisfy z≥ 3.

Finally, consider the scenario where k1x = k2y. By summing equations (3.26) and (3.27), the following relation is
established.

9r2 = 3k1A+3k2B. (3.35)

An examination of this equation will proceed based on the various cases concerning the positive integers k1 and k2.

3.3.1 k1 = 2 and k2 ≥ 3
In the scenario where k1 = 2, it is evident that k2 must be even, given that y is odd. From equation (3.35), the following

relationship can be established

2x = k2y.

This implies the existence of a positive integer k3 such that 2k3 = k2. Substituting this into the aforementioned equation
yields x = k3y. Consequently, equation (1.2) can be expressed as

((8r2 +1)k3)y +(r2−1)y = (3r)z.

Applying Proposition 2.9, it follows that y = 1. Therefore, it is concluded that no solutions exist for x > 2.
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3.3.2 k1 ≥ 3 and k2 = 2
It can be expressed that

k1

k2
=

y
x

where k1x = k2y.Notably, since gcd(x,y) = 1, if there exists an odd prime p ≥ 1 such that p | x and p | y, then, by
Zsigmondy’s Theorem, no solutions for x and y would exist. As a result, it follows that x = 2 and k2 = 2, with y being an odd
integer. Consequently, one can derive

y = k1 ≥ 3 and x = k2 = 2.

Thus, equation (3.28) transforms into

3k1xAx +3k2yBy = (3r)z.

This further simplifies to:

32y(A2 +By) = (3r)z.

If 3 - (A2 +By), it follows that 2y = z. Hence, equation (1.2) can be rewritten as

(8r2 +1)x = ((3r)2)y− (r2−1)y.

Applying Zsigmondy’s Proposition, it is concluded that y = 1, which leads to a contradiction. Thus, it can be stated that no
positive integer solutions exist for x and y, and therefore, z≤ 2.
Assuming 3 | (A2 +By), equations (3.26) and (3.27) can be expressed as

r2−1 = 3k2B = 9B,

8r2 +1 = 3k1A.

Adding these two equations results in

9r2 = 3k1 +9B.

Taking the equation modulo 3, it follows that

1≡ B (mod 3).

Consequently, it becomes evident that no positive integer A can satisfy the condition
3 | (A2 +By). This concludes the proof.

4. Conclusion
This study investigates equation (1.1) with the parameters (a,b,c) = (8,1,3), identifying the unique solution (x,y,z) =

(1,1,2) for r > 1. The findings provide additional evidence supporting Terai’s Conjecture. The objective is to advance the
understanding of such equations and contribute to the development of a generalized form.
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1. Background, Preliminaries and Notations
Let w be the linear space of all complex or real valued sequences with the topology τw of coordinatwise convergence. A

linear subspace of w is called a sequence space. A sequence space λ with a locally convex topology τ is a K-space if the
inclusion map: (λ ,τ)→ (w,τw) is continuous. If τ is complete metrizable and locally convex, (λ ,τ) is called FK-space. An
FK-space whose topology is normable is called a BK-space. The basic properties of FK(BK-)-spaces may be found in [1, 2].

By `∞, c, c0 and `p, we denote the spaces of all bounded, convergent, null and absolutely p-summable complex sequences,
respectively, where 1≤ p < ∞. The spaces `∞, c and c0 are BK-space endowed with the sup norm ‖x‖∞ = supk∈N |xk|, and `p

(1≤ p < ∞) is a BK-space with the norm ‖x‖p =
(

∑
∞
k=0 |xk|p

)1/p, where N= {0,1,2,3, . . .}.
Let X and Y be two sequence spaces, and A = (ank) be an infinite matrix of complex numbers ank, where k,n ∈ N. Then,

we say that A defines a matrix transformation from X into Y and we denote it by writing A : X → Y, if for every sequence
x = (xk) ∈ X the A-transform Ax = {(Ax)n} of x is in Y , where

(Ax)n =
∞

∑
k=0

ankxk for each n ∈ N. (1.1)

By (X : Y ), we denote the class of all matrices A such that A : X → Y . Thus, A ∈ (X : Y ) if and only if the series on the right
side of (1.1) converges for each n ∈ N and every x ∈ X , and we have Ax ∈ Y for all x ∈ X . Also, we write An = (ank)k∈N for the
sequence in the nth row of A.

The domain XA of an infinite matrix A in a sequence space X is defined by

XA :=
{

x = (xk) ∈ w : Ax ∈ X
}

(1.2)



On Some New Rhaly Sequence Spaces and Rhaly Sections in BK-Space — 213/219

which is a sequence space. Depending on the choice of the matrix A, XA may include or be included by the original space
X . Indeed if we choose A = ∆, the backward difference matrix, then c∆ ⊃ c (bv = (`1)∆ ⊃ `1) but in the case A = ∆−1 = S,
the summation matrix, cS = cs ⊂ c (bs = (`∞)S ⊂ `∞), where both of two inclusions are strict. However, if we define
X = c0⊕ span{z} with z = {(−1)k}, i.e., x ∈ X if and only if x = s+αz for some s ∈ c0 and some α ∈ C, and consider
the matrix A with the rows An defined by An = (−1)nen for all n ∈ N, we have Ae = z ∈ X but Az = e /∈ X which gives that
z ∈ X \XA and e ∈ XA \X where ek is a sequence whose only nonzero term is 1 in kth place for each k ∈ N. That is to say that
the sequence spaces XA and X are overlap but neither contains the other. In the literature, there are many studies on the matrix
domain, see for instance [3]-[19].

The continuous dual of a normed space X is defined as the space of all bounded linear functionals on X and denoted by X ′.
If A is triangle, that is ank = 0 if k > n and ann 6= 0 , and X is a sequence space, then f ∈ X ′A if and only if f = g◦A, g ∈ X ′.

Let (X ,P) be a locally convex space. A set S⊂ X is called fundamental if the span of S is dense in X . The useful results
concerning with the fundamental set which are applications of Hahn-Banach Theorem as follows:

Corollary 1.1. (i) S⊂ X is fundamental if and only if f (S) = 0 implies f = 0 for each f ∈ X ′.
(ii) Let S1 and S2 be non-empty subsets of X. The inclusion S1 ⊂ span{S2} holds if and only if f (S2) = 0 implies f (S1) = 0 for
each f ∈ X ′.

For the sequence spaces X ,Y and Z, the multiplier space XY (or M(X ,Y )) is defined by

XY = {a = (ak) ∈ w : ∀x ∈ X ,x ·a = (xkak) ∈ Y},

and XY Z = (XY )Z . The β -, γ- and f -duals Xβ ,X γ and X f of a sequence space X are defined by

Xβ := Xcs =

{
a = (ak) ∈ w :

(
n

∑
k=0

akxk

)
n∈N

∈ c for all x = (xk) ∈ X

}
,

X γ := Xbs =

{
a = (ak) ∈ w :

(
n

∑
k=0

akxk

)
n∈N

∈ `∞ for all x = (xk) ∈ X

}
,

and

X f :=
{

a = (ak) ∈ w : ∃ f ∈ X ′,a = ( f (ek))
}

respectively.

Lemma 1.2. [2] Let X be an FK space containing φ = span{ek}, and let Y and Z any sequence spaces. Then, the following
assertions hold.

(i) If φ ⊂ Y ⊂ Z then φ ⊂ XY ⊂ XZ ,
(ii) if X ⊂ Y then XZ ⊃ Y Z and X f ⊃ Y f

(iii) X ⊂ XYY

(iv) XY = XYYY

(v) Xβ ⊂ X γ ⊂ X f

(vi) X f = (φ) f

Zeller in [20] introduced the theory of FK-spaces and investigated the properties of sectional convergence in [21]. Sectional
boundedness in BK-spaces was studied by Sargent [22]. Given a BK-space X ⊃ φ , we denote the nth section of a sequence
x ∈ X by x[n] = ∑

n
k=0 xkek, and we say that x has

AK-property when limn→∞ ‖x− x[n]‖X = 0,
AB-property when supn∈N ‖x[n]‖X < ∞,

AD-property when x ∈ φ (closure of φ ⊂ X),
SAK-property when limn→∞ | f (x)− f (x[n])|= 0 for all f ∈ X ′,

FAK-property when ( f (x[n]) ∈ c for all f ∈ X ′.

If one of these properties holds for every x ∈ X , then we say that the space X has that property. It is trivial that AK implies AB
and AD. For example, the spaces c0, cs and `p are AK and c, bs and `∞ are AB but not AD-spaces, where 1≤ p < ∞.

The distinguished subsets of summability domains and arbitrary FK spaces have been studied by Wilansky [2], Bennett
[23], and several others [24]-[38].
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We denote by U the set of all real sequences u = (uk) such that uk 6= 0 for all k ∈N. For a sequence u = (uk) ∈ U, the Rhaly
(or Terraced) matrix Ru = (rnk(u)) is defined by

rnk(u) =
{

un , k ≤ n
0 , k > n

for all n,k ∈ N.
For the special case un =

1
n+1 for all n ∈ N, the Rhaly matrix Ru reduces to the Cesàro matrix of order 1. For more details

on this topic, see [39, 40].
In this paper, we introduce the new sequence spaces c0(Ru),c(Ru) and `∞(Ru), which are the domains of the Rhaly matrix

Ru in the spaces c0,c, and `∞, respectively, and study some of their properties. We also define sectional subspaces related to the
Rhaly matrix in an FK space and investigate their relationships, identities and duals.

2. The Sequence Spaces c0(Ru), c(Ru) and `∞(Ru)

In the present section, we introduce the sequence spaces c0(Ru), c(Ru)) and `∞(Ru) as the domain of the matrix Ru in the
classical sequence spaces c0, c and `∞, respectively and examine some properties of these spaces.

Throughout the study, y = (yn) will be the Ru-transform of a sequence x = (xk); that is,

yn = (Rux)n = un

n

∑
k=0

xk (2.1)

for all n ∈ N. Since the matrix Ru is a triangle, it has an inverse. Multiplying the equality (2.1) with 1/un, we have

1
un

yn =
n

∑
k=0

xk (2.2)

for all n ∈ N. Therefore, by using the relation (2.2) we see that

xn =
1
un

yn−
1

un−1
yn−1 (2.3)

holds for all n ∈ N, where y−1 = 0.
Now, by the equation (2.3) we have the following lemma:

Lemma 2.1. The matrix Ru is invertible and its inverse (Ru)
−1 = (r−1

nk (u)) defined for all k,n ∈ N by

r−1
nk (u) =

 (−1)n−k 1
un

, n−1≤ k ≤ n,

0 , 0≤ k < n−1 or k > n.

Let us introduce the sequence spaces c0(Ru), c(Ru) and `∞(Ru) as the set of all sequences whose Ru-transforms are in the
classical spaces c0, c and `∞, respectively; that is

c0(Ru) :=

{
x = (xk) ∈ w : lim

n→∞
un

n

∑
k=0

xk = 0

}
,

c(Ru) :=

{
x = (xk) ∈ w : ∃α ∈ C 3 lim

n→∞
un

n

∑
k=0

xk = α

}
,

`∞(Ru) :=

{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣un

n

∑
k=0

xk

∣∣∣∣∣< ∞

}
.

With the notation of (1.2), the spaces c0(Ru), c(Ru) and `∞(Ru) can be redefined, as follows:

c0(Ru) = (c0)Ru , c(Ru) = (c)Ru and `∞(Ru) = (`∞)Ru .

It is known from [1]-[3] and [5, 16] that if T is a triangle, then the domain XT of T in a normed sequence space X is normed
with ‖x‖XT = ‖T x‖X , and is linearly norm isomorphic to X and XT has a basis if and only if X has a basis.

As a direct consequence of these facts, we have:
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Corollary 2.2. Let Z ∈ {c0,c, `∞}. Then, the following statements hold:

(a) The space Z(Ru) is a BK-space endowed with the norm

‖x‖Z(Ru) = sup
n∈N

∣∣∣∣∣un

n

∑
k=0

xk

∣∣∣∣∣ .
(b) The spaces Z(Ru) is linearly norm isomorphic to the space Z.

Corollary 2.3. Define the sequence b(k)(u) =
(
b(k)n (u)

)
n∈N by

b(k)n (u) :=

 (−1)n−k 1
un

, k ≤ n≤ k+1

0 , n < k or n > k+1

for all k,n ∈ N. Then, the following statements hold:

(a) The sequence b(k)(u) is a basis for the spaces c0(Ru) and every sequence x ∈ c0(Ru) has a unique representation of the
form x = ∑

∞
k=0(Rux)kb(k)(u).

(b) The set
{

ẽ,b(k)(u)
}

is a basis for the space c(Ru) and every sequence x ∈ c(Ru) has a unique representation of the form

x = lẽ+∑
∞
k=0
[
(Rux)k− l

]
b(k)(u), where ẽ =

( 1
uk
− 1

uk−1

)
for all k ∈ N and (Rux)k→ l, as k→ ∞.

(c) The space `∞(Ru) does not have a basis.

Since the inclusions c0 ⊂ c⊂ `∞ hold strictly, we have:

Theorem 2.4. The inclusions c0(Ru)⊂ c(Ru)⊂ `∞(Ru) hold strictly.

Lemma 2.5. Let X and Y be sequence spaces, and let A and B be triangle matrices. Then, the inclusion XA ⊂ YB holds if and
only if the matrix BA−1 belongs to (X ,Y ).

Proof. Suppose that XA ⊂ YB. Then, every t ∈ XA is in YB. By the definitions YB and XA, we have Bt ∈ Y and x = At ∈ X . Since
A is a triangle matrix, it is invertible. From the equality x = At, we can obtain t = A−1x. Hence, for each x ∈ X the sequence
BA−1x is in Y . This shows that BA−1 ∈ (X ,Y ).

Conversely,suppose that BA−1 ∈ (X ,Y ). Take any sequence t ∈ XA. By the definition of XA, we have At ∈ X . Since
BA−1 ∈ (X ,Y ), for At ∈ X , we have BA−1(At) ∈ Y , and thus Bt ∈ Y . Therefore, t ∈ YB. This shows that the inclusion XA ⊂ YB
holds.

By using matrix transformations and Lemma 2.5, we can easily prove that:

Theorem 2.6. The following assertions hold.
(a) If (kuk) ∈ `∞ then c0 ⊂ c0(Ru) and `∞ ⊂ `∞(Ru) strictly holds.
(b) If (kuk) ∈ c then c⊂ c(Ru) strictly holds.
(c) If (kuk) ∈ c0 then `∞ ⊂ c0(Ru) holds.
(d) If ( 1

uk
− 1

uk−1
) ∈ `∞ then the inclusion c0(Ru)⊂ c0 and `∞(Ru)⊂ `∞ hold.

(e) If ( 1
uk
− 1

uk−1
) ∈ c then the inclusion c(Ru)⊂ c holds.

We shall begin with quoting the lemma due to Stieglitz and Tietz [41] which is needed in proving Theorem 2.8.

Lemma 2.7. Let A = (ank) be an infinite matrix. Then the following statements hold:
(a) A ∈ (c0, `∞) = (c, `∞) = (`∞, `∞) if and only if

sup
n∈N

∑
k
|ank|< ∞. (2.4)

(b) A ∈ (c0 : c) if and only if (2.4) and

lim
n→∞

ank = αk(k ∈ N), (2.5)
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(c) A ∈ (c : c) if and only if (2.4), (2.5) and

lim
n→∞

∑
k

ank = α.

(d) A ∈ (`∞ : c) if and only if (2.4), and

lim
n→∞

∑
k
|ank|= ∑

k
| lim

n→∞
ank|

By [3, Theorem 3.1], we have:

Theorem 2.8. For a sequence u = (uk) ∈ U, let us define the sets A1(u), A2(u) and A3(u), as follows:

A1(u) :=
{

a = (ak) ∈ w :
(

ak−ak+1

uk

)
∈ `1

}
,

A2(u) :=
{

a = (ak) ∈ w :
(

ak

uk

)
∈ `∞

}
,

A3(u) :=
{

a = (ak) ∈ w :
(

ak

uk

)
∈ c
}
,

A4(u) :=
{

a = (ak) ∈ w :
(

ak

uk

)
∈ c0

}
.

Then, the following statements hold:

(i) [c0(Ru)]
β = A1∩A2, [c(Ru)]

β = A1∩A3, [`∞(Ru)]
β = A1∩A4.

(ii) [c0(Ru)]
γ = [c(Ru)]

γ = [`∞(Ru)]
γ = A1∩A2.

Proof. For a = (an) ∈ w and x = (xn) ∈ X(Ru), we obtain

n

∑
k=0

akxk =
n

∑
k=0

ak

[
k

∑
j=k−1

(−1)k− j

uk
y j

]

=
n−1

∑
k=0

(
ak−ak+1

uk

)
yk +

an

un
yn (2.6)

= (Duy)n

for all n ∈ N, where Du = (dnk(u)) is defined by

dnk(u) =


ak−ak+1

uk
, k < n,

an

un
, k = n,

0 , k > n

The equation (2.6) implies that ax = (anxn) ∈ cs whenever x ∈ X(Ru) if and only if Duy ∈ c whenever y ∈ X . Therefore, we
conclude that a ∈ [X(Ru)]

β if and only if Du ∈ (X : c).
(i) To show that [c0(Ru)]

β = A1∩A2, let us take X = c0. It follows that Du ∈ (c0 : c), which means the conditions (2.4) and
(2.5) of Lemma 2.7 (b) are satisfied by the matrix Du. Thus, a = (ak) ∈ A1∩A2. Therefore, we have:

[c0(Aru)]β = A1∩A2.

By using the conditions of Lemma 2.7(c) and (d), the equalities [c(Ru)]
β = A1∩A3, [`∞(Ru)]

β = A1∩A4 can be proved
similarly.

(ii) This is similar to the proof of Part (i) of the present theorem by using Lemma 2.7(a). To avoid the repetition of the
similar statements, we omit the details.
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3. Some Rhaly Subspaces of FK spaces
In this section, using sectional properties we define some new subspaces of a BK-space and give some relations between

these spaces and duals.
Given a BK-space X ⊃ φ , we define the nth Rhaly section of a sequence x ∈ X as r[n]x = un ∑

n
k=0 xkek.

Definition 3.1. Let X be a BK space contaning φ . Then, a sequence x = (xk) ∈ X has the following properties:

rK when limn→∞ ‖x− r[n]x ‖X = 0,
rB when supn∈N ‖r

[n]
x ‖X < ∞,

SrK when limn→∞ | f (x)− f (r[n]x )|= 0 for all f ∈ X ′,
FrK when ( f (r[n]x ) ∈ c for all f ∈ X ′.

In connection to Definition 3.1, we can define the following distinguished subset of X;

XRS = {x ∈ X : x has rK in X},

= {x ∈ X : x = lim
n

un

n

∑
k=1

k

∑
i=1

xiei}

XRW = {x ∈ X : x has SrK in X},

= {x ∈ X : ∀ f ∈ X ′, f (x) = lim
n

un

n

∑
k=1

k

∑
i=1

xi f (ei)}

XRF+ = {x ∈ w : x has FrK in X},

= {x ∈ w :

(
un

n

∑
k=1

x(k)
)

is weakly Cauchy in X}

= {x ∈ X : ∀ f ∈ X ′,(un f (en)) ∈ (c(Ru))S},
XRB+ = {x ∈ w : x has rB in X},

= {x ∈ w :

(
un

n

∑
k=1

x(k)
)

is bounded in X}

= {x ∈ X : ∀ f ∈ X ′,(un f (en)) ∈ (`∞(Ru))S},

and

XRF = XRF+ ∩X and XRB = XRB+ ∩X ,

where the matrix S = (snk) is defined as

snk =

{
1 , k ≤ n,
0 , k > n .

By definitions of XRS, XRW , XRF+ and XRB+ we have:

Theorem 3.2. Let X be an FK-space containing φ . Then the following inclusions hold.

φ ⊂ XRS ⊂ XRW ⊂ XRF ⊂ XRB ⊂ X

Theorem 3.3. Let X be an FK-space containing φ . Then XRW ⊂ φ .

Proof. Let f ∈ X ′ with φ ⊂ Kern f . Since for every x ∈ X and n ∈N, zn =
(

an ∑
n
k=1 x(k)

)
∈ φ , then f (zn) = 0. This shows that

XRW ⊂ Kern f . By Corollary 1.1 (ii), we obtain the inclusion XRW ⊂ φ .

By definition of XRF+ (XRB+), z ∈ XRF+(XRB+) if and only if z · y ∈ (c(Ru))S((`∞(Ru))S) for each y ∈ X f , we have the
following theorems.

Theorem 3.4. Let X be an FK-space containing φ . Then XRF = (X f )(c(Ru))S .

Theorem 3.5. Let X be an FK-space containing φ . Then XRB = (X f )(`∞(Ru))S
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In the study of FK-spaces, understanding the relationships between different sequence spaces and their properties is crucial.
In this context, we investigate the inclusions and equalities among subspaces defined by various properties of sequences. The
following results explore these relationships, focusing on the inclusion properties of different sequence spaces associated with
the properties rK, SrK, FrK and rB when the inclusion X ⊂ Y holds for FK-spaces X and Y . These results shed light on the
structure of these spaces and the behavior of the sequence spaces under certain conditions.

Theorem 3.6. If X ⊂ Y then Xλ ⊂ Yλ for λ ∈ {RS,RW,RB+,RF+,RB,RF}.

Proof. For λ = RS(RW ), the continuity(weak continuity) of inclusion map i : X → Y gives the desired result.
Let λ ∈ {RB+,RF+}. The results follows from Theorem 3.4, 3.5 and Lemma 1.2(ii).

Theorem 3.7. If φ ⊂ Y ⊂ X, then YRB+ = XRB+ and YRF+ = XRF+ .

Proof. By Theorem 3.6 we have
φ RB+ ⊂ YRB+ ⊂ XRB+ .

By Theorem 3.5 and Lemma 1.2(vi) the first and the last are equal.

Theorem 3.8. Let X be an FK-space containing φ and X ⊂ XRB. Then XRS = XRW = φ .

Proof. Since the sequence of functions ( fn) defined by fn : X → X , fn(x) = x− un ∑
n
k=1 x(k) is pointwise bounded, hence

equicontinuous by (7.0.2) of [2]. Since fn→ 0 on φ then also fn→ 0 on φ by (7.0.3) of [2]. This is the desired conclusion.
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[6] Ç. A. Bektaş, M. Et, R. Çolak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl., 292

(2004), 423–432.
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[11] M. İlkhan, N. Şimşek, E. E. Kara, A new regular infinite matrix defined by Jordan totient function and its matrix domain in

`p, Math. Methods Appl. Sci., 44(9) (2021), 7622–7633.
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1. Introduction
The Schouten Van Kampen connection is one of the most significant connections having the property of an affine connection

[1]-[4]. The contact metric manifolds and solitons on these manifolds with respect to Schouten van Kampen connection are
studied by several authors [3]-[7]. Nearly cosymplectic structures were introduced by Blair [8] and first appeared essentially as
the hypersurface of nearly Kahler manifolds. A nearly cosymplectic manifold is defined as an almost contact metric manifold
with a normality condition having closed 1-form η and 2-form F [9]. Various geometrical properties of a Nearly cosymplectic
manifold was investigated by Endo [2].

Hamilton introduced the idea of the Ricci flow to find out the canonical metric over a smooth manifold [10, 11]. By the
introduction of Ricci flow it is easy to study manifolds with positive curvature. Perelman proved the Poincare conjecture using
Ricci flow [12, 13]. The term Ricci soliton refers to the limit of the solutions of the Ricci flow. In general, an almost ricci
soliton is a simplification of an Einstien metric. For a complete vector field Y on a Riemannian manifold M of dimension n, a
Riemannian metric g on M is termed a nearly Ricci soliton if it satisfies

LY g+2S+2αg = 0, (1.1)

where α is a smooth function, S stands for the Ricci tensor, and L is the Lie derivative. A metric g that satisfies (1.1) is referred
to as a Ricci soliton if α is a constant. If α > 0, α = 0, or α < 0, then a Ricci soliton is expanding, steady, or shrinking,
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respectively. The concept of η-Ricci soliton was introduced by Cho and Kimura [9]. An almost η-Ricci soliton is a Riemannian
manifold M with Riemannian metric g if for a smooth vector field Y such that,

LY g+2S+2αg+2βη⊗η = 0, (1.2)

for both the smooth functions, α and β .
If both α and β are constant, the metric g is referred as a η-Ricci soliton. A Ricci soliton has constant curvature for a

compact manifold of dimension two or three [2, 14].
Hamilton [11] proposed the idea of Yamabe flow. A vector field Y that is static on a Riemannian manifold M generates the
Yamabe solitons, which are self-similar outcomes of the Yamabe flow and are transformed by a family of diffeomorphisms with
one parameter. On a Riemannian manifold (M, g), a triplet (g, Y, γ) is said to be a nearly Yamabe soliton if [10]

1
2

LY g = (r− γ) (1.3)

where γ is a smooth function and r is the scalar curvature of manifold (M,g). When γ remains constant, the almost Yamabe
soliton transforms into a Yamabe soliton. If γ > 0, γ = 0, and γ < 0, respectively, then a Yamabe soliton is expanding, steady, or
shrinking. Yamabe and Ricci soliton coincide for the manifold of dimension 2 but they have distinct behaviors for the manifolds
of dimensions greater than 2. Furthermore, Nearly Yamabe solitons always represent Einstein manifolds. And, the Riemannian
metric g becomes a Yamabe metric if the Riemannian manifold M has constant scalar curvature [4].

In this study, we investigate several forms of Ricci and Yamabe solitons over NC manifold of dimension n with an SVK
connection. Section 2 gives a brief description of the NC manifold and SVK connection. Section 3 introduces the SVK
connection on the NC manifold and establishes the formulas for curvature tensor, Ricci tensor, Ricci operator, and scalar
curvature. In Section 4, we investigate the Ricci solitons for an NC manifold with an SVK connection. The final section
investigates Yamabe solitons on an n-dimensional NC manifold with SVK connection.

2. Preliminaries
Consider an (2n+1) dimensional almost contact manifold with structure (M, φ , ξ , η , g), where ξ is the vector field, η is a

1-form, g is the Riemannian Metric, and φ is a (1,1) tensor field. The following prerequisites are satisfied by this (φ , ξ , η , g)
structure [9].

φξ = 0,η(φX) = 0,η(ξ ) = 1,

φ
2X =−X +η(X)ξ ,η(X) = g(X ,ξ ). (2.1)

Let g be compatible i.e.

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ). (2.2)

As φ is a skew-symmetric operator with g, as per the definition above, η is a contact form, i.e., η ∧ (dη)n 6= 0 everywhere on
M, and the bilinear form F = g(X, φY) defines a 2-form [15].

An almost contact metric manifold with (M, φ , ξ , η , g) is said to be a Nearly Cosymplectic manifold if

(5X φ)Y +(5Y φ)X = 0,

for each vector field X, Y. It is clear that this condition is the same as (5X φ)X = 0.
The Reeb vector field ξ is defined for nearly cosymplectic manifolds is killing if it fulfills the requirements5ξ ξ = 0 and

5ξ η = 0.
Moreover, the type (1,1) tensor field H defined by [9]

5X ξ = HX (2.3)

is anti-commutative with φ and skew-symmetric. Additionally, H providing

Hξ = 0,η(HX) = 0,

TraceH = 0,
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φH =−Hφ ,g(HX ,Y ) = g(X ,HY ).

These formulae also hold [15]-[18]

g((5Xφ )Y,HZ) = η(Y )g(H2X ,φZ)−η(X)g(H2Y,φZ),

(5X H)Y = g(H2X ,Y )ξ −η(Y )H2X ,

TraceH2 = a(constant), (2.4)

R(Y,Z)ξ = η(Y )H2Z−η(Z)H2Y,

S(X ,Y ) =−λg(X ,Y ),

QX =−λX ,

S(X,ξ ) = λη(X), (2.5)

where λ : M(manifold)→ R(real number) is a function.

S(φY,Z) = S(Y,φZ),

φQ = Qφ ,

S(φY,φZ) = S(Y,Z)+η(Y )η(Z)(TraceH2).

A contact metric structure (η , g) on M is η-Einstein if

S(X ,Y ) = ag(X ,Y )+bη(X)η(Y ),

where a and b are constants. If b = 0, then the manifold M is an Einstein manifold [7].
A quasi-Einstein manifold is defined as one whose Ricci tensor S of type (0,2) is not identically zero and meets the condition

[19]

S(X ,Y ) = ag(X ,Y )+bη(X)η(Y ), (2.6)

for all vector fields X ,Y , where a,b are scalars, b 6= 0, and η is a non-zero 1-form.
In the tangent bundle TM of M, there are two naturally determined distributions, U = Ker η and V = Span ξ , such that TM

= U⊕V, U ∩ V= 0 and U⊥V. For this decomposition the SVK connection can be defined over a nearly contact metric structure.
Concerning the Levi-Civita Connection5, the Schouten Van Kampen Connection 5̃ on a nearly contact metric manifold is

defined by [20]

5̃XY =5XY −η(Y )5X ξ +(5X η)(Y )ξ . (2.7)

3. Curvature Properties of NC Manifold concerning SVK Connection 5̃

Let M̃ be an NC manifold, then using (2.1), (2.3) and (2.6), in (2.7) we have

5̃XY =5XY −η(Y )HX−g(Y,HX)ξ . (3.1)

Moreover,

5̃X ξ = 0. (3.2)

If R and R̃ are curvature tensors with respect to5 and 5̃, then

R(X ,Y )Z =5X5Y Z−5Y 5X Z−5[X ,Y ]Z, (3.3)
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and

R̃(X ,Y )Z = 5̃X5̃Y Z−5̃Y 5̃X Z−5̃[X ,Y ]Z. (3.4)

By using (2.1), (2.4), (3.1), (3.2), (3.3) in (3.4), we have

R̃(X ,Y )Z = R(X ,Y )Z +g(Z,HX)HY −g(Z,HY )HX−Xη(Z)+η(X)η(Z)ξ

− η(Y )g(Z,X)ξ +Y η(Z)−η(Y )η(Z)ξ +η(X)g(Z,Y )ξ .

Using the above equation, the Ricci tensor of NC Manifold with SVK connection can be obtained as

S̃(Y,Z) = S(Y,Z)− (n−1)η(Z). (3.5)

The Ricci operator Q̃ for NC Manifolds with respect to the connection 5̃ is given by

S̃(Y,Z) = g(Q̃Y,Z). (3.6)

From equations (3.5) and (3.6), we have

Q̃Y = QY − (n−1)ξ .

The scalar curvature with respect to the connection 5̃ is given by

r̃ = r− (n−1). (3.7)

4. Ricci Soliton Types on an n-dimensional NC Manifold with SVK Connection

In this section, we explore types of Ricci soliton kinds on NC manifold M having SVK connection 5̃.
A SVK connection 5̃ in an NC manifold M̃, is said to be metric if (5̃g) = 0 torsion tensor T̃ 6= 0, where T̃ is torsion tensor

with respect to 5̃.
With the help of equation (3.1), we can easily find the value

(L̃Y g)(X ,Z) = g(5XY,Z)+g(X ,5ZY ) = (LY g)(X ,Z), (4.1)

where L and L̃ are Lie derivatives on NC manifold with respect to Levi-Civita connection5 and SVK connection 5̃ respectively.
Now, for an n-dimensional NC manifold M̃ with an SVK connection 5̃, the almost Ricci soliton is given by

L̃Y g+2S̃+2αg = 0. (4.2)

Using (4.1) and (4.2), we get

g(5XY,Z)+g(X ,5ZY )+2S̃(X ,Y )+2αg(X ,Y ) = 0.

Therefore,

2S̃(X ,Y ) =−g(5XY,Z)−g(X ,5ZY )−2αg(X ,Y ).

By substituting Y = ξ in previous equation and using (2.2) and (2.3), we have

S̃(X ,Z) =−αg(X ,Z). (4.3)

In view of (3.5) we can write above equation as

S(X ,Z) =−(n−1)η(X)η(Z)−g(Z,φX)traceφ −αg(X ,Z).

Conversely, consider that an n-dimensional NC manifold M̃ with respect to SVK connection 5̃ is an Einstein manifold. For Y
= ξ , we have

S̃(X ,Z) =−λg(X ,Z)
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and

(L̃ξ g)(X ,Z) = 0,

where λ is a constant.
Using the above results, we can easily find the value of

(L̃ξ g)(X ,Z)+2S̃(X ,Z)+2αg(X ,Z) = 2(α−λ )g(X ,Z). (4.4)

Therefore, it is evident from (4.4) that if α−λ = 0, then the manifold M̃ admits a Ricci soliton. Thus, we make the following
statement:

Theorem 4.1. An n-dimensional NC manifold M̃ admits a Ricci soliton with respect to SVK connection 5̃ iff M̃ is an Einstein
manifold with respect to SVK connection 5̃.

Corollary 4.2. A Ricci Soliton on NC manifold with SVK connection is Einstien Manifold.

Proof. Put X = ξ in (4.2), we have

(L̃ξ g)(X ,Z)+2S̃(X ,Z)+2αg(X ,Z) = 0.

Using (4.1),

(L̃ξ g)(X ,Z) = 0.

Thus

S̃(X ,Z) =−αg(X ,Z). (4.5)

Using (4.5) and (3.6), we have

S(X ,Z) =−(n−1)η(X)−αg(X ,Z).

Hence the theorem.

Theorem 4.3. The scalar curvature for an n-dimensional NC manifold M̃ with SVK connection having an almost Ricci soliton,
is r̃ = -αn.

Proof. In view of (4.3), we have

r̃ =−αn.

Hence the theorem.

Theorem 4.4. An n-dimensional NC manifold M̃ with SVK connection will be an Einstien manifold if M̃ with SVK connection
enabling a η-Ricci soliton.

Proof. Currently, based on (1.2), the η-Ricci soliton on an NCM of dimension n with SVK connection is given by

(L̃Y g)(X ,Z)+2S̃(X ,Z)+2αg(X ,Z)+2β (η⊗η)(X ,Z) = 0. (4.6)

From (4.1) and (4.6), we have

g(5XY,Z)+g(X ,5ZY )+2S̃(X ,Z)+2αg(X ,Z)+2βη(X)η(Z) = 0. (4.7)

Putting the values from (2.2) and (2.3) in (4.7), we get

S̃(X ,Z) =−αg(X ,Z)−βη(X)η(Z). (4.8)

Hence the theorem.

Corollary 4.5. If an η-Ricci soliton on an NC manifold M̃ with SVK connection is defined, then (M̃, g) is Quasi Einstien.
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Proof. Using (1.2), (4.8) and (4.9), we can easily find the required result.

Theorem 4.6. A SVK connection on an NC manifold M̃ admitting Ricci soliton is invariant iff it satisfies

g(Y,HX)η(Z)+g(Y,HZ)η(X)+2(n−1)η(Z) = 0.

Proof. Using (3.1), (4.1), (4.2), we get

(L̃Y g)(X ,Z) = (LY g)(X ,Y )−g(Y,HX)η(Z)−g(Y,HZ)η(Y ). (4.9)

By putting the values from (3.6) and (4.9) in (4.2), we obtain

g(Y,HX)η(Z)+g(Y,HZ)η(Y )+2(n−1)η(Z) = 0, (4.10)

hence the theorem.

Theorem 4.7. A Ricci soliton on NC maniold M̃ with SVK connection is steady if λ = (n-1), shrinking if λ < (n-1) and
expanding if λ > (n-1).

Proof. Using (3.5), (2.5) and (4.3), we have the required result.

5. Yamabe Soliton on NC Manifold with SVK Connection

The almost Yamabe soliton on an n-dimensional NC manifold M̃ with an SVK connection is studied within this segment.
We now examine an n-dimensional NC manifold that allows the SVK connection to deal with an almost Yamabe soliton, as

described in (1.3). Hence, we have

1
2
(L̃Y g)(X ,Z) = (r̃− γ)g(X ,Z). (5.1)

Using (3.7), (4.1) and (5.1), we have

1
2
(LY g)(X ,Z) = (r−n+1− γ)g(X ,Z). (5.2)

The subsequent theorem may thus be stated from (5.2).

Theorem 5.1. If n = 1, then an almost Yamabe soliton (M,Y,γ ,g) on an n-dimensional NC manifold M̃ is invariant concerning
SVK connection.

According to (5.1) and (4.1), we have

1
2
(g(5XY,Z)+g(X ,5ZY ))(X ,Z) = (r̃− γ)g(X ,Z).

If we put Y = ξ in the above equation, we obtain

1
2
(g(5X ξ ,Z)+g(X ,5Zξ ))(X ,Z) = (r̃− γ)g(X ,Z). (5.3)

In view of (2.2) and (2.3), from (5.3), we have

r̃ = γ.

Thus, we may deduce the conclusion as mentioned below:

Theorem 5.2. If an n-dimensional NC manifold M̃ with an SVK connection, admits an almost Yamabe soliton then the scalar
curvature r̃ of M̃ is equal to γ iff Y and ξ are pairwise collinear in TM.
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6. Example

Let us consider a 3-dimensional manifold M̃ = {(x,y,z) ∈ R3}, where (x, y, z) represent the standard coordinates in R3.
Suppose

τ1 = ez2 ∂

∂x
,τ2 = ez2 ∂

∂y
,τ3 =

∂

∂ z
,

are linearly independent vector fields of M̃. Then

[τ1,τ2] = 0, [τ2,τ3] =−2zτ2, [τ1,τ3] =−2zτ1.

If g represent the Riemannian metric, then we have

g(τ1,τ1) = g(τ2,τ2) = g(τ3,τ3) = 1,

g(τ1,τ2) = g(τ2,τ3) = g(τ1,τ3) = 0.

Let η be the 1-form defined by η(X) = g(X, τ3), ∀ X ∈ M̃, and let φ be the (1,1) tensor field defined by

φ(τ1) = τ2, φ(τ2) =−τ1, φ(τ3) = 0.

Using the above relations, following results holds:

φ
2X =−X +η(X)ξ ,

η(τ3) = 1,

and

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ),

where ξ = τ3 and X ,Y is arbitrary vector field on M̃. Hence M̃ fulfills all the condition for an NC manifold.
Using the Koszul formula, we get

5τ1τ1 = 2zτ3, 5τ2τ1 = 0, 5τ3τ1 = 0,

5τ1τ2 = 0, 5τ2τ2 = 2zτ3, 5τ3τ2 = 0,

5τ1τ3 =−2zτ1, 5τ2τ3 =−2zτ2, 5τ3τ3 = 0,

and

5̃τ1
τ1 = 2zτ3, 5̃τ2

τ1 = τ3, 5̃τ3
τ1 = 0,

5̃τ1
τ2 =−τ3, 5̃τ2

τ2 = 2zτ3, 5̃τ3
τ2 = 0,

5̃τ1
τ3 =−2zτ1− τ2, 5̃τ2

τ3 =−2zτ2 + τ1, 5̃τ3
τ3 = 0.

We can easily deduce the following identities using above results.

R̃(τ1,τ2)τ3 = 8zτ3;

R̃(τ2,τ3)τ3 = (2−4z2)τ2 +2zτ1;

R̃(τ1,τ2)τ2 =−4z2
τ1−4zτ2 + τ1;

R̃(τ1,τ2)τ1 =−4zτ1− τ2 +4z2
τ2;

R̃(τ2,τ3)τ2 = (−2+4z2)τ3;

R̃(τ2,τ3)τ1 = 2zτ3;

R̃(τ1,τ3)τ2 =−2zτ3;

R̃(τ1,τ3)τ3 = (2−4z2)τ1−2zτ2;
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R̃(τ1,τ3)τ1 = (−2+4z2)τ3;

and

S̃(τ1,τ1) = S̃(τ2,τ2) = 3−8z2, S̃(τ3,τ3) = 4−8z2.

Hence r̃ = 10 - 24z2. Let

V = (x+ y)e−z2
z1 +(−x+ y)e−z2

z2

and

∑
3
i=1(L̃V g)(τi,τi) = 4.

Now, we put X = Y = τi in (4.2), summing over i = 1,2,3 and using above results, we get α = 8z2 - 4, also using (4.10), we
obtain
Case I: for z2 = 1

2 ,the Ricci soliton is steady.
Case II: for z2 6= 1

2 ,the Ricci soliton is shrinking.

7. Conclusion
The study provides new insights beyond the usual Levi-Civita framework and highlights the versatility of the SVK

connection as a tool for studying geometric structures with torsion. These contributions enhance the way for further research in
theoretical physics and mathematics while also improving our understanding of solitons in NC manifolds.
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