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Düzce-Türkiye

eevrenkara@duzce.edu.tr

Managing Editors

Mahmut Akyiğit
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On Absolute Tribonacci Series Spaces and Some
Matrix Operators

Fadime Gökçe

Abstract
In this article, the absolute Tribonacci space |Tθ|q is introduced as the domain of the Tribonacci matrix
on `q. First, certain algebraic and topological structures such as BK−space, isomorphism, duals, and
Schauder basis are studied. Then, some characterizations of compact and matrix operators on this space
are given their norms, and Hausdorff measures of noncompactness are determined.

Keywords: Absolute summability, Compact operator, Hausdorff measure of noncompactness, Matrix transformations,
Tribonacci matrix

AMS Subject Classification (2020): 40C05; 46B45; 40F05; 46A45

1. Introduction
By ω, `∞, c, `q (q > 1) and `, we stand for the set of all sequences of complex numbers, the sequence space of

all bounded, convergent sequences and also for the spaces of all q-absolutely convergent series and absolutely
convergent series, respectively. Also, throughout the paper, the abbreviations HM and HMN will be used instead of
"Hausdorff measure" and "Hausdorff measure of noncompactness" for brevity and N = {0, 1, 2, 3, ...}. Let Λ = (λnv)
be an arbitrary infinite matrix of complex components and U , V be two subspaces of ω. If the series

Λn(u) =

∞∑
v=0

λnvuv,

converges for all n ∈ N, then, we define the Λ-transform of the sequence u = (uv) by Λ(u) = (Λn(u)). Also, it is said
that Λ defines a matrix transformation from the space U into the space V , and denote it by Λ ∈ (U, V ) or Λ : U → V
if Λu = (Λn(u)) ∈ V for every u ∈ U . On the other hand, the α−, β−, γ− duals of U are defined by

Uα =

{
ε ∈ ω : ∀u ∈ U,

∑
n

|εnun| <∞

}
,
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2 F. Gökçe

Uβ =

{
ε ∈ ω : ∀u ∈ U, (

n∑
i=0

εnun) ∈ c

}
,

Uγ =

{
ε ∈ ω : ∀u ∈ U, (

n∑
i=0

εnun) ∈ `∞

}
respectively, and the domain of the matrix Λ in U is defined by

UΛ = {u = (un) ∈ ω : Λ(u) ∈ U} . (1.1)

Further, if U is a complete normed space with continuous coordinates rm : U → C described by rm(u) = um for
each m ∈ N, then it is said that U is a BK-space. If there exists unique sequence of coefficients (uk) such that, for
each u ∈ U , ∥∥∥∥∥u−

p∑
k=0

ukbk

∥∥∥∥∥→ 0, p→∞

then, the sequence (bk) is called the Schauder basis for U , and it can be written u =
∞∑
k=0

ukbk.

Assume that 1 ≤ q < ∞ and θ = (θn) is a sequence of positive terms and also take
∑
uv as an infinite series

with its nth partial sum sn. Then, the series
∑
uv is said to be summable |Λ, θn|q , q ≥ 1, if

∞∑
n=0

θq−1
n |∆Λn(s)|q <∞,

where ∆Λn(s) = Λn(s)− Λn−1(s), Λ−1(s) = 0 (see [1]).
It is clear that this method includes a good number of well known methods for special selections. We refer to

reader [2–6]. Recently, the literature of summability theory has expanded in many respects, with many studies
using both the summability methods and the absolute summability methods (see [7–19]).

On the other hand, Tribonacci numbers are the sequence of integers identified by the third order recurrence
relation with initial conditions t0 = 1, t1 = 1, t2 = 2,

tj = tj−1 + tj−2 + tj−3

t−j = 0, j ≥ 1

[20]. So, some of the first Tribonacci numbers can be written as follows:

1, 1, 2, 4, 7, 13, 24, 44, ...

Besides, Tribonacci numbers have the following useful properties:

m∑
j=0

tj =
tm+2 + tm − 1

2
,m ≥ 0,

m∑
j=0

t2j =
t2m+1 + t2m − 1

2
,m ≥ 0,

lim
m→∞

tm
tm+1

= 0.54368901...

Tribonacci matrix T = (tmj) has recently been defined by Yaying and Hazarika [19] as follows:

tmj =

{
2tj

tm+2+tm−1 , 0 ≤ j ≤ m
0, j > m

where tm be the mth Tribonacci number for all m ∈ N.
Throughout the whole paper, q∗ is the conjugate of q, i.e., 1/q + 1/q∗ = 1 for q > 1, and 1/q∗ = 0 for q = 1.
Now, let remind certain lemmas which are used in the proof of our theorems.
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Lemma 1.1. [21] Λ ∈ (`q, `) iff

‖Λ‖(`q,`) = sup
S∈T


∞∑
k=0

∣∣∣∣∣
∞∑
n∈S

λnk

∣∣∣∣∣
q∗


1/q∗

.

where 1 < q <∞ and T is defined as the collection of all the finite subsets of N.

While Lemma 1.1 introduces a condition that is very difficult to implement in applications, the following lemma,
which gives the equivalent condition, will be more useful in a lot of cases.

Lemma 1.2. [22] Λ ∈ (`q, `) iff

‖Λ‖
′

(`q,`)
=


∞∑
k=0

( ∞∑
n=0

|λnk|

)q∗
1/q∗

<∞,

where 1 < q <∞. Moreover since
‖Λ‖(`q,`) ≤ ‖Λ‖

′

(`q,`)
≤ 4 ‖Λ‖(`q,`) ,

there exists 1 ≤ η ≤ 4 such that ‖Λ‖
′

(`q,`)
= η ‖Λ‖(`q,`).

Lemma 1.3. [23] Λ ∈ (`, `q) iff

‖Λ‖(`,`q) = sup
k

{ ∞∑
n=0

|λnk|q
} 1
q

,

where 1 ≤ q <∞.

Lemma 1.4. [21]

1. Λ ∈ (`, c)⇔
(i) lim

n
λnk exists for k ≥ 0,

(ii) sup
n,k
|λnk| <∞,

2. Λ ∈ (`, `∞)⇔ (ii) holds,

3. If 1 < q <∞,Λ ∈ (`q, c)⇔
(i) holds,

(iii) sup
n

∞∑
k=0

|λnk|q
∗
<∞,

4. If 1 < q <∞,Λ ∈ (`q, `∞)⇔ (iii) holds.

Let (U, d) be a metric space and B,P ⊂ U . For every p ∈ P , if there exists an b ∈ B such that d(p, b) < ε then,
B is called an ε-net of P ; if B is finite, then the ε-net B of P is called a finite ε-net of P . Assume that U and V are
Banach spaces. If domain of a linear operator S is all of U and, for every bounded sequence (un) in U , the sequence
(S(un)) has a convergent subsequence in V , then the operator S : U → V is called compact. C(U, V ) determines
the class of all such operators. Assume that Q defines a bounded subset of U . The HMN of Q is described by the
number

χ (Q) = inf {ε > 0 : Q has a finite ε− net in U} ,

where χ is the HMN.

Lemma 1.5. [24] Assume that Q is a bounded subset of the normed space U where U = `q for 1 ≤ q < ∞ or U = c0. If
Rn : U → U is the operator defined by Rn(u) = (u0, u1, ...un, 0, 0, ...) for all u ∈ U , then

χ (Q) = lim
r→∞

(
sup
U∈Q
‖(I −Rr) (u)‖

)
.
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Assume that U , V are Banach spaces; χ1 χ2 are the HM on these spaces, respectively and S : U → V is a linear
operator. If S(Q) ⊂ V is a bounded set and there exists a positive constant ζ such that χ2 (S(Q)) ≤ ζχ1 (S(Q))
for all bounded subset Q ⊂ U , then the linear operator S : U → V is called (χ1, χ2)- bounded. If an operator S is
(χ1, χ2)- bounded, then the number

‖S‖(χ1,χ2) = inf {ζ > 0 : χ2 (S(Q)) ≤ ζχ1 (S(Q)) for all bounded set Q ⊂ U}

is called the (χ1, χ2)-measure noncompactness of S. Specifically, if χ1 = χ2 = χ then we get ‖S‖(χ,χ) = ‖S‖χ .

Lemma 1.6. [25] Assume that U , V are Banach spaces, S ∈ B(U, V ) and Su = {u ∈ U : ‖u‖ ≤ 1} is the unit sphere in U .
Then,

‖S‖χ = χ (S (Su))

and
S ∈ C(U, V )⇔ ‖S‖χ = 0.

Lemma 1.7. [26] Assume that U is a normed sequence space, T = (tnv) is an infinite triangle, χT and χ denote the HMN on
MUT and MU , the collections of all bounded sets in UT and U , respectively. Then, for all Q ∈MUT ,

χT (Q) = χ(T (Q)).

The main purpose of the paper is to establish the space |Tθ|q combining Tribonacci matrix given by Yaying and
Hazarika [19] and the concept of absolute summability. After the introduction of the space, some inclusion relations
are expressed, the α−, β−, γ− duals and basis of the space are constructed, and also characterizing certain matrix
operators related to the space, their norms and HMN are determined.

2. Absolute Tribonacci space |Tθ|q
In this part of the paper, firstly, the absolute Tribonacci space |Tθ|q is introduced and then, some inclusion

relations, algebraic and topological structures of the space are investigated.
If we choose the Tribonacci matrix instead of Λ in (1.1), then the summabilty method |Λ, θn|q is reduced to the

absolute Tribonacci summability. To put it more clearly, take (sn) which is a sequence of partial sum of
∑
uv. So,

we have
Λn(s) =

n∑
j=0

tnjsj =
n∑
v=0

uv
n∑
j=v

tnj =
n∑
v=0

uv
n∑
j=v

2tj
tn+2+tn−1

and so, with a few calculations, we get

∆Λn(s) =
n∑
j=0

uj
n∑
k=j

2tk
tn+2+tn−1 −

n−1∑
j=0

uj
n−1∑
k=j

2tk
tn+1+tn−1−1

= 2tn
tn+2+tn−1un +

n−1∑
j=0

uj

(
2tn

tn+2+tn−1 + ∆σn
n−1∑
k=j

2tk

)
=

n∑
j=0

φnjuj

where
σn =

1

tn+2 + tn − 1
,

φnj =


2tn

tn+2+tn−1 , j = n

2tn
tn+2+tn−1 + ∆σn

n−1∑
k=j

2tk, 0 ≤ j ≤ n− 1

0, j > n.

Now, we are ready to present the absolute Tribonacci space:

|Tθ|q =

u ∈ ω :

∞∑
n=0

θq−1
n

∣∣∣∣∣∣
n∑
j=0

φnjuj

∣∣∣∣∣∣
q

<∞

 .
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Besides, it is seen immediately that

(F (q) ◦ T̃ )n(u) = θ1/q∗

n (T̃n(u)− T̃n−1(u))

where

t̃nj =

 σn
n∑
v=j

2tv, 0 ≤ j ≤ n

0, j > n,
(2.1)

f
(q)
nj =


θ

1/q∗

n , j = n

−θ1/q∗

n , j = n− 1
0, j 6= n, n− 1.

(2.2)

Taking into account the matrices T̃ = (t̃nk) and F (q) = (f
(q)
nk ) and the notation of domain, the space may be

written that
|Tθ|q = (`q)F (q)◦T̃ .

Also, it is known that there exists a unique inverse matrix which also is a triangle for every triangle matrix [27]. So,
the matrices T̃ and F (q) have unique inverse matrices T̃−1 = (t̃−1

nk ) and (F̃ (q))−1 = ((f̃
(q)
nk )−1) given by

t̃−1
nk =


1

2σntn
, k = n

− 1
2σn−1tn

− 1
2σn−1tn−1

, k = n− 1
1

2σn−2tn−1
, k = n− 2

0, k > n

(2.3)

(f̃
(q)
nk )−1 =

{
θ
−1/q∗

k , 0 ≤ k ≤ n
0, k > n

(2.4)

respectively.

Now, to explain a relation between the natural norm of the spaces `q and the norm of |Tθ|q, we express the
following theorem.

Theorem 2.1. |Tθ|q is BK-space with respect to the norm

‖u‖|Tθ|q =
∥∥∥F (q) ◦ T̃ (u)

∥∥∥
`q
,

where 1 ≤ q <∞.

Proof. Let 1 ≤ q <∞. It is known that `q is a BK-space. Also, since F (q) ◦ T̃ is a triangle, it is obtained immediately
from Theorem 4.3.2 in [27], |Tθ|q = (`q)F (q)◦T̃ is a BK-space.

Theorem 2.2. The sequence b(i) = (b
(i)
n ) is a Schauder basis for the space |Tθ|q where

b(i)n =


θ
−1/q∗

i

(
1

2σntn
− 1

2σn−1tn
− 1

2σn−1tn−1
− 1

2σn−2tn−1

)
, i ≤ n− 2

θ
−1/q∗

i

(
1

2σntn
− 1

2σn−1tn
− 1

2σn−1tn−1

)
, i = n− 1

θ
−1/q∗

i
1

2σntn
, i = n

0, i > n

1 ≤ q <∞.

Proof. Let remind that (e(i)) is the Schauder basis of `q. So, it is obtained from Theorem 2.3 in [28] that b(i) =

(T̃−1
n ((F (q))−1(e(i)))) is a Schauder basis of the absolute space |Tθ|q .

Theorem 2.3. Let 1 ≤ q ≤ s <∞. If there exists a constant C > 0 such that θn ≤ C for all n ∈ N, then |Tθ|q ⊂ |Tθ|s .
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Proof. Take u ∈ |Tθ|q . Since `q ⊂ `s, then

(
θ

1
q∗
n

n∑
j=0

φnjuj

)
∈ `s and also, since θn ≤ C for all n ∈ N,

C
s
q∗−

s
s∗

∣∣∣∣∣∣θ 1
s∗
n

n∑
j=0

φnjuj

∣∣∣∣∣∣
s

≤

∣∣∣∣∣∣θ1/q∗

n

n∑
j=0

φnjuj

∣∣∣∣∣∣
s

where q∗ and s∗ are the conjugate of q and s, respectively. Hence, we get that u ∈ |Tθ|s. This concludes the proof.

Theorem 2.4. The space |Tθ|q is isomorphic to the space `q i.e., |Tθ|q ∼= `q where 1 ≤ q <∞.

Proof. To prove the theorem, it should be shown that there exists a linear bijection between the spaces |Tθ|q and
`q where 1 ≤ q < ∞. Taking into account the transformations T̃ : |Tθ|q → (`q)F (q) , F (q) : (`q)F (q) → `q and the
matrices corresponding to them given in (2.1) and (2.2). Since the matrices F (q) and T̃ are triangles, it is obvious
that T̃ and F (q) are linear bijections and also the composite function F (q) ◦ T̃ is a linear bijective operator. Moreover,

‖u‖|Tθ|q =
∥∥∥F (q) ◦ T̃ (u)

∥∥∥
q
,

i.e., the norm is preserved and so the proof is concluded.

We define

D1 =

ε ∈ ω : θ−1/k∗

v

∞∑
j=v+2

εj

(
1

2tj
∆(

1

σj
)− 1

2tj−1
∆(

1

σj−1
)

)
exist for all v

 ,

D2 =

{
ε ∈ ω : sup

m

(
1
θm

∣∣∣ εm
2σmtm

∣∣∣q∗ + 1
θm−1

|ξm−1|q
∗

+
m−2∑
v=0

1
θv

∣∣∣∣∣ξv +
m∑

j=v+2

εj

(
1

2tj
∆( 1

σj
)− 1

2tj−1
∆( 1

σj−1
)
)∣∣∣∣∣
q∗
 <∞

 ,

D3 =

ε ∈ ω : sup
m,v


∣∣∣∣ εm
σmtm

∣∣∣∣+ |ξm−1|+

∣∣∣∣∣∣ξv +

m∑
j=v+2

εj

(
1

2tj
∆(

1

σj
)− 1

2tj−1
∆(

1

σj−1
)

)∣∣∣∣∣∣
 <∞

 ,

D4 =

{
ε ∈ ω :

∞∑
v=0

1
θv

(
∞∑

j=v+2

∣∣∣εj ( 1
2tj

∆( 1
σj

)− 1
2tj−1

∆( 1
σj−1

)
)∣∣∣ +

∣∣∣ εv+1

2σv+1tv+1
− εv+1

2σvtv+1
− εv+1

2σvtv

∣∣∣
+

∣∣∣ εv
2σvtv

∣∣∣)q∗ <∞} ,
D5 =

{
ε ∈ ω : sup

v

{
∞∑

j=v+2

∣∣∣εj ( 1
2tj

∆( 1
σj

)− 1
2tj−1

∆( 1
σj−1

)
)∣∣∣ +

∣∣∣ εv+1

2σv+1tv+1
− εv+1

2σvtv+1
− εv+1

2σvtv

∣∣∣
+

∣∣∣ εv
2σvtv

∣∣∣} <∞} ,
ξv =

εv
2σvtv

+
εv+1

2σv+1tv+1
− εv+1

2σvtv+1
− εv+1

2σvtv
.

Similarly, when λjv is used instead of εv in above equation, the notation ξ(j)
v will be used instead of ξv .

Theorem 2.5. Let θ = (θn) be a sequence of positive numbers and 1 < q <∞. Then,

(i) {|Tθ|}α = D5,
{
|Tθ|q

}α
= D4,

(ii) {|Tθ|}β = D1 ∩D3,
{
|Tθ|q

}β
= D1 ∩D2,

(iii) {|Tθ|}γ = D3,
{
|Tθ|q

}γ
= D2.
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Proof. We give the proof of (ii).

(ii) It’s known that ε ∈
{
|Tθ|q

}β
iff (

m∑
j=0

εjuj) ∈ c for all u ∈ |Tθ|q . By the inverse transformations of T̃ , F (q), we

get

m∑
j=0

εjuj =
m∑
j=0

εj

(
yj

2σjtj
− yj−1

2σj−1tj
− yj−1

2σj−1tj−1
− yj−2

2σj−2tj−1

)

=
m∑
v=0

m∑
j=v

θ−1/q∗
v εj
2σjtj

zv −
m−1∑
v=0

m∑
j=v+1

θ−1/q∗
v εj
2σj−1tj

zv −
m−1∑
v=0

m∑
j=v+1

θ−1/q∗
v εj

2σj−1tj−1
zv +

m−2∑
v=0

m∑
j=v+2

θ−1/q∗
v εj

2σj−2tj−1
zv

=
θ−1/q∗
m εm
2σmtm

zm + θ
−1/q∗

m−1

(
εm−1

2σm−1tm−1
+ εm

2σmtm
− εm

2σm−1tm
− εm

2σm−1tm−1

)
zm−1

+
m−2∑
v=0

θ
−1/q∗

v

(
ξv +

m∑
j=v+2

εj

(
1

2tj
∆( 1

σj
)− 1

2tj−1
∆( 1

σj−1
)
))

zv

=
m∑
v=0

dmvzv (y = T̃ (u), z = F (q)(y))

where D = (dmv) is defined by

dmv =


θ
−1/q∗

v

(
ξv +

m∑
j=v+2

εj

(
1

2tj
∆( 1

σj
)− 1

2tj−1
∆( 1

σj−1
)
))

, 0 ≤ v ≤ m− 2

θ
−1/q∗

m−1 ξm−1, v = m− 1
θ−1/q∗
m εm
2σmtm

, v = m

0, v > m.

Therefore, ε ∈
{
|Tθ|q

}β
⇔ D ∈ (`q, c). Now, applying Lemma 1.4 to the matrix D, it is obtained that

{
|Tθ|q

}β
=

D1 ∩D2, which concludes the proof.
The proofs of other parts can be similarly verified, so there is no need for this.

3. Matrix transformations
In this part of the paper, certain characterizations of matrix and compact operators on the absolute Tribonacci

space |Tθ|q are investigated and also their norms and HMN are computed.

Theorem 3.1. Let 1 ≤ q < ∞, Λ = (λnj) be an infinite matrix of complex components for each n, j ∈ N and identify the
matrix H(n) =

(
h

(n)
mv

)
by

h(n)
mv =


ξ

(n)
v +

m∑
j=v+2

λnj

(
1

2tj
∆( 1

σj
)− 1

2tj−1
∆( 1

σj−1
)
)
, 0 ≤ v ≤ m− 2

ξ
(n)
m−1, v = m− 1
λnm

2σmtm
, v = m

0, v > m.

Moreover, let H̄ = (h̄nv) be a matrix whose terms is given by h̄nv = lim
m
h

(n)
mv and H̃ = F (q) ◦ T̃ ◦ H̄ . Then, Λ ∈

(
|Tθ| , |Tθ|q

)
if and only if

∞∑
j=v+2

λnj

(
1

2tj
∆(

1

σj
)− 1

2tj−1
∆(

1

σj−1
)

)
exists for all v (3.1)

sup
m,v


∣∣∣∣ λnm2σmtm

∣∣∣∣+
∣∣∣ξ(n)
m−1

∣∣∣+

∣∣∣∣∣∣ξ(n)
v +

m∑
j=v+2

(
1

2tj
∆(

1

σj
)− 1

2tj−1
∆(

1

σj−1
)

)
λnj

∣∣∣∣∣∣
 <∞, (3.2)
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sup
v

∞∑
n=0

∣∣∣h̃nv∣∣∣q <∞. (3.3)

If Λ ∈
(
|Tθ| , |Tθ|q

)
, then Λ is a bounded linear operator,

‖Λ‖(|Tθ|,|Tθ|q) =
∥∥∥H̃∥∥∥

(l,lq)
,

and

‖Λ‖χ = lim
v→∞

{
sup
r

( ∞∑
n=v+1

∣∣∣h̃nr∣∣∣)q}
1
q

.

Proof. Λ ∈
(
|Tθ| , |Tθ|q

)
equals to (λnv)

∞
v=0 ∈ {|Tθ|}

β and Λ(u) ∈ |Tθ|q for all u ∈ |Tθ|. It is easy to see from

Theorem 2.5 that (λnv)
∞
v=0 ∈ {|Tθ|}

β if and only if the conditions (3.1) and (3.2) hold. In addition to this, if a matrix

S = (snv) ∈ (`, c), then the series Sn(u) =
∞∑
v=0

snvuv is uniformly convergent in n, because, the remaining term of

the series is uniformly tending to zero in n, since∣∣∣∣∣
∞∑
v=p

snvuv

∣∣∣∣∣ ≤ sup
v
|snv|

∞∑
v=p

|uv | → 0 (p→∞) .

So we get

lim
n
Sn (u) =

∞∑
v=0

lim
n
snvuv. (3.4)

Considering (2.3), (2.4) and (3.4) we get immediately

Λn(u) = lim
m

m∑
k=0

λnkuk = lim
m

m∑
r=0

h
(n)
mrzr =

∞∑
r=0

h̄nrzr.

Moreover, according to Theorem 2.4, since there exists a linear isomorphism between |Tθ|q , `q for 1 ≤ q <∞, it is

written that Λ(u) ∈ |Tθ|q for all u ∈ |Tθ| iff H̄ ∈
(
`, |Tθ|q

)
, or equivalently, since |Tθ|q = (`q)F (q)◦T̃ , H̃ ∈ (`, `q). Here,

the terms of matrix Ĥ and H̃ can be stated as

ĥnr =

n∑
v=0

t̃nvh̄vr =

n∑
v=0

σn

n∑
j=v

2tj h̄vr,

h̃nr = θ1/q∗

r

(
ĥnr − ĥn−1,r

)
, n ≥ 1 and h̃0r = h̄0r.

So, if we apply Lemma 1.3 to the matrix H̃ , then, we get immediately the condition (3.3), and this concludes the
first part of the proof.

Also, if Λ ∈
(
|Tθ| , |Tθ|q

)
, then, since the spaces |Tθ|q and |Tθ| are BK-spaces, Λ determines a bounded operator.

For the determination of the operator norm of Λ, take into account the isomorphisms T : |Tθ|q → (`q)F (q) , F (q) :

(`q)F (q) → `q defined as in Theorem 2.4. Then, it can be seen easily that Λ = T̃−1 ◦
(
F (q)

)−1 ◦ H̃ ◦ F (1) ◦ T and so,

‖Λ‖(|Tθ|,|Tθ|q) = sup
u6=0

‖Λ(u)‖|Tθ|q
‖u‖|Tθ|

= sup
u6=0

∥∥∥T̃−1◦(F (q))
−1◦H̃◦F (1)◦T̃ (u)

∥∥∥
|Tθ|q

‖u‖|Tθ|

= sup
z 6=0

‖H̃(z)‖
`q

‖z‖`
=
∥∥∥H̃∥∥∥

(`,`q)
(z = F (1) ◦ T̃ (u)).
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Finally, let Q be a unique ball in |Tθ|. Since F (q) ◦ T̃ ◦ ΛQ = H̃ ◦ F (1) ◦ T̃Q, it is written that

‖Λ‖χ = χ(ΛQ) = χ
(
F (q) ◦ T̃ ◦ ΛQ

)
= χ

(
H̃ ◦ F (1) ◦ T̃Q

)

= lim
v→∞

(
sup

z∈F (1)(T̃ (Q))

∥∥∥(I −Rv)
(
H̃(z)

)∥∥∥)

= lim
v→∞

{
sup
r

( ∞∑
n=v+1

∣∣∣h̃nr∣∣∣)q} 1
q

.

This completes the proof.
The compact operators in this class are characterized by Theorem 3.1 and Lemma 1.6. Corollary 3.1 gives us the

condition:

Corollary 3.1. Under the hypothesis of Theorem 3.1

Λ ∈
(
|Tθ| , |Tθ|q

)
is compact⇔ lim

v→∞

{
sup
r

( ∞∑
n=v+1

∣∣∣h̃nr∣∣∣)q} 1
q

= 0.

Theorem 3.2. Let 1 < q <∞, λ = (λnj) be an infinite matrix of complex components for each n, j ∈ N and H(n) =
(
h

(n)
mv

)
be as in Theorem 3.1. Also, describe Ē = (ēnv) by ēnv = lim

m
θ
−1/q∗

v h
(n)
mv and Ẽ = F (1) ◦ T̃ ◦ Ē. Then, Λ ∈

(
|Tθ|q , |Tθ|

)
if

and only if
∞∑

j=r+2

λnj

(
1

2tj
∆(

1

σj
)− 1

2tj−1
∆(

1

σj−1
)

)
exist for all r,

sup
m

 1

θm

∣∣∣∣ λnm2σmtm

∣∣∣∣q∗ +
1

θm−1

∣∣∣ξ(m−1)
n

∣∣∣q∗ +

m−2∑
v=0

1

θv

∣∣∣∣∣∣ξ(v)
n +

m∑
j=v+2

λnj

m∑
v=r+2

(
1

2tj
∆(

1

σj
)− 1

2tj−1
∆(

1

σj−1
)

)∣∣∣∣∣∣
q∗
 <∞,

∞∑
r=0

( ∞∑
n=0

|ẽnr|

)q∗
<∞.

Moreover, if Λ ∈
(
|Tθ|q , |Tθ|

)
, then Λ is a bounded linear operator,

‖Λ‖(|Tθ|q,|Tθ|) =
∥∥∥Ẽ∥∥∥

(`q,`)

and

‖Λ‖χ =
1

η
lim
v→∞


∞∑
r=0

( ∞∑
n=v+1

|ẽnr|

)q∗
1
q∗

where 1 ≤ η ≤ 4.

Corollary 3.2 gives us the characterization of compact operators with together Lemma 1.6 and Theorem 3.2.

Corollary 3.2. Under the conditions of Theorem 3.2

Λ ∈ C
(
|Tθ|q , |Tθ|

)
⇔ 1

η
lim
v→∞


∞∑
r=0

( ∞∑
n=v+1

|ẽnr|

)q∗
1
q∗

= 0.
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4. Conclusion
Recently, in addition to the studies on sequence spaces obtained as the domain of some special matrices

and matrix transformations related to them, new sequence spaces obtained by using the concept of absolute
summability method have been introduced in the literature. In this study, the absolute Tribonacci space |Tθ|q has
been introduced as the domain of the Tribonacci matrix on lq . Then, some algebraic and topological structure have
been studied, certain characterizations of compact and matrix operators on these spaces with their norms and
Hausdorff meausures of noncompactness have been given. A different perspective has been generated by including
the Tribonacci sequence, which is an interesting number sequence, in the subject.
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An Application to Fuss-Catalan Numbers
Cemal Çiçek

Abstract
In this paper, it was investigated how many different ways an m-rung stairs can be climbed within certain
rules. It was observed that the climbing numbers of the stairs have relations with the Catalan numbers.
The combinatorics problem discussed in this article is different from the ones done so far and is related not
only to Catalan numbers but also to some Fuss-Catalan numbers. Some results were obtained regarding
the climbing numbers. It was observed that with the initial ascent being fixed, the climbing numbers of
stairs with m,m + 1,m + 2,m + 3, ... rungs, where m > 1 is an integer, are related to respectively the
some Fuss-Catalan numbers.

Keywords: Catalan Numbers, Climbing, Fuss-Catalan Numbers, Lattice Path, Stairs

AMS Subject Classification (2020): 05C38; 06B20

1. Introduction
Catalan numbers appear in many combinatorics problems [1–5]. Applications of these numbers are used in some

engineering fields and health sciences [3, 4, 6]. In this study, it was examined the combinatorics problem of how
many different ways an m-rung stairs can be climbed within certain rules. The rules that should be applied while
ascent and descending the stairs are as following. The first is that no matter how many rungs we move up, our
descent should be at least one rung above the beginning of the previous ascent. The second is no matter how many
rungs we move down, our ascent should be at least one rung above the beginning of the previous descent. Our last
rule is that when the number of rungs on the stairs is more than 1, the first move should be at least 2 rungs up. It
was observed that with the initial ascent being fixed, the climbing numbers of stairs with m,m+ 1,m+ 2,m+ 3, ...
rungs, where m > 1 is an integer, are related to respectively the Fuss-Catalan numbers.

Definition 1.1. ([7, 8]) The generalized Fuss-Catalan numbers are integer sequence defined by

Fi (j, k) =
k

ij + k

(
ij + k

j

)
, k ≥ 1, j ≥ 1, i ≥ 2. (1.1)
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Specially, if we take i = 2, k = 1 in the formula (1.1), we have Catalan numbers Cn [3, 5, 6, 9, 10] as follows

F2 (j, 1) =
1

2j + 1

(
2j + 1

j

)
=

1

j + 1

(
2j

j

)
= Cj . (1.2)

The Generalized Fuss-Catalan numbers are also called Raney numbers [8, 11, 12].

2. Problem statement and solution
The problem is to find the number of different climbings of an m-rung stairs within certain rules.

Notation 2.1. Let pq be the representation of the ascent of a stairs from the p-th rung to the q-th rung.

Notation 2.2. Let pqrs be the representation of the ascent of a stairs from the p-th rung to the q-th rung, the descent
from the q-th rung to the r-th rung, and finally the ascent from the r-th to the s-th step.

Let’s start with some numerical examples.

Example 2.1. Let’s find the number of different climbing of a 1-rung stairs.

Solution. The number of climbs is 1.

Figure 1. Climbing on a 1-rung stairs

Example 2.2. Let’s find the number of different climbing of a 2-rung stairs.

Solution. The number of climbs is 1.

Figure 2. Climbing on a 2-rung stairs

Example 2.3. Let’s find the number of different climbing of a 3-rung stairs.

Solution. The number of climbs is 2.

Figure 3. Climbing on a 3-rung stairs

The first one goes up from the 0-th rung to the 2-nd rung. Then go down from the 2-nd rung to the 1-st rung. So,
the first climbing 0213 is completed by climbing from the 1-st rung to the 3-rd rung.

The second one 03 is completed by climbing from the 0th rung to the 3-rd rung.
In this case, according to the rules of the problem, there is no other climbing position.

Example 2.4. Let’s find the number of different climbing of one 4-rung stairs.

Solution. The number of climbs is 5.

021324, 0214, 0314, 0324, 04.

Let’s show two particular climbs with figures, the others can be done similarly.
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Figure 4. Two of the five climbings on a 4-rung stairs

Example 2.5. Let’s find the number of different climbing of one 5-rung stairs.

Solution. The number of climbs is 14.

02132435, 021325, 021425, 021435, 0215,

031425, 031435, 0315, 032435, 0325,

0415, 0425, 0435,

05.

Let’s show two particular climbs with figures, the others can be done similarly.

Figure 5. Two of the fourteen climbings on a 5-rung stairs

Example 2.6. Let’s find the number of different climbing of a 6-rung stairs using the number of climbing of one
5-rung stairs.

Solution. Let’s write the climbings of a 6-rung stairs starting at 13 and a 5-rung stairs starting at 02, respectively.

13 → 13243546, 132436, 132536, 132546, 1326

02 → 02132435, 021325, 021425, 021435, 0215

Note that here the number of different climbings starting with 13 in a 6-rung stairs and the number of climbings
starting with 02 in a 5-rung stairs are equal to each other. Because in both cases, after the start the number of rungs
remaining to the top of the stairs are equal. This result can be used also for other situations. We can see all the
situations in the Table 1 below.

Starting Position of
5-Rung Stairs

# of climbing
of 5-Rung
Stairs

# of climbing
of 6-Rung
Stairs

Starting Position of
6-Rung Stairs

02 5 5 0213

03 5
5 0214

5 0314

04 3

3 0215

3 0315

3 0415
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05 1

1 0216

1 0316

1 0416

13 2 2 0324

14 2
2 0325

2 0425

15 1
1 0326

1 0426

24 1 1 0435

25 1
1 0436

1 0536

05 1 1 0516

15 1 1 0526

35 1 1 0546

1 06

42 Total

Table 1. Obtaining the number of climbing of a 6-rung stairs by using the number of climbing of a 5-rung stairs

Therefore the number of different climbings of a 6-rung stairs is 42.

Remark 2.1. In general, the number of different climbings of a stairs with m-rungs starting from pq is equal to the
number of different climbings of a stairs with (m+ 1)- rungs starting from (p+ 1)q + 1.

Similarly, the number of different climbings of a 7-step stairs can be found using the number of different
climbings of a 6-step stairs. By continuing like this, the number of different climbings up to a 13-step stairs was
found and shown in the Table 2 below. Using the Table 2 we can write the following results.

Number of Rungs of the Stairs

Beginings 2 3 4 5 6 7 8 9 10 11 12 13

02 1 1 2 5 14 42 132 429 1430 4862 16796 58786

03 0 1 2 5 14 42 132 429 1430 4862 16796 58786

04 0 0 1 3 9 28 90 297 1001 3432 11934 41990

05 0 0 0 1 4 14 48 165 572 2002 7072 25194

06 0 0 0 0 1 5 20 75 275 1001 3640 13260

07 0 0 0 0 0 1 6 27 110 429 1638 6188

08 0 0 0 0 0 0 1 7 35 154 637 2548

09 0 0 0 0 0 0 0 1 8 44 208 910

010 0 0 0 0 0 0 0 0 1 9 54 273

011 0 0 0 0 0 0 0 0 0 1 10 65

Total 1 2 5 14 42 132 429 1430 4862 16796 58786 208012
Table 2. All climbing numbers from 2-rung stairs to 13-rung stairs
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Notation 2.3. Let N(m, 0n) denotes the number of different climbs of a m-rung stairs with 0n ascents.

For example, from the Table 2 it can be seen that N(8, 06) = 20, N(12, 07) = 1638.
Generally, denote by N(m, kn) the number of different climbs of a m-rungs stairs starting with kn. Note that for
m,n positive integers,

N(m, 0n) =

 1, n = m

0, n > m

Corollary 2.1. For m positive integers, m ≥ 3, N(m, 0m− 1) = m− 2.

Proof.
0m− 11m, 0m− 12m, 0m− 13m, ..., 0m− 1(m− 2)m︸ ︷︷ ︸

(m−2) terms

Corollary 2.2. For m, (m ≥ 4) positive integers, N(m, 0m− 2) = (m−2)(m−1)
2 − 1.

Proof.
0m− 21m− 12m, 0m− 21m− 13m, ..., 0m− 21m− 1(m− 2)m, 0m− 21m︸ ︷︷ ︸

(m−2) terms

0m− 22m− 13m, 0m− 22m− 14m, ..., 0m− 22m− 1(m− 2)m, 0m− 22m︸ ︷︷ ︸
(m−3) terms

0m− 23m− 14m, 0m− 23m− 15m, ..., 0m− 23m− 1(m− 2)m, 0m− 23m︸ ︷︷ ︸
(m−4) terms

...........................

0m− 2(m− 3)m− 1(m− 2)m, 0m− 2(m− 3)m− 1(m− 1)m, 0m− 2(m− 2)m︸ ︷︷ ︸
3 terms

0m− 2(m− 3)m− 1(m− 2)m, 0m− 2(m− 3)m︸ ︷︷ ︸
2 terms

Therefore,
N(m, 0m− 2) = (m− 2) + (m− 3) + (m− 4) + ...+ 3 + 2 = (m−2)(m−1)

2 − 1.

Corollary 2.3. For m positive integers, m ≥ 3, N(m, 02) = N(m, 03).

Proof. Since m ≥ 3, the movements starting with 03 and 02 are as follows:

(i) Movements starting with 03 are in the form of 0314 . . . , 0315 . . . , 0316 . . . , . . . , 031m− 1 . . . , 031m . . . and
0324 . . . , 0325 . . . , 0326 . . . , . . . , 032m− 1 . . . , 032m . . .

(ii) Movements starting with 02 are in the form of 021324 . . . , 021325 . . . , 021326 . . . , . . . , 02132m− 1 . . . ,

02132m . . . and 0214 . . . , 0215 . . . , 0216 . . . , . . . , 021m− 1 . . . , 021m . . . .

Comparing (i) and (ii), it is not difficult to see that N(m, 0314) = N(m, 0214), N(m, 0315) = N(m, 0215), . . . and
N(m, 0324) = N(m, 021324), N(m, 0325) = N(m, 021325), . . . .
Therefore we obtain

N(m, 03) =N(m, 0314) +N(m, 0315) + . . . +N(m, 031m− 1) +N(m, 031m)

+N(m, 0324) +N(m, 0325) + . . . +N(m, 032m− 1) +N(m, 032m)

=N(m, 0214) +N(m, 0215) + . . . +N(m, 021m− 1) +N(m, 021m)

+N(m, 021324) +N(m, 021325) + . . . +N(m, 02132m− 1) +N(m, 02132m)

=N(m, 02)

Hence the equality N(m, 02) = N(m, 03) is valid for all m ≥ 3.
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Corollary 2.4. The number of possible climbings of a stairs with m-rungs is equal to the number of climbings of a
stairs with (m+ 1)-rungs starting from 02.

Proof. It is sufficient to show the equality N(m+1, 02) = N(m, 02)+N(m, 03)+ . . . +N(m, 0m− 1)+N(m, 0m).
Using Remark 2.1, we have

N(m+ 1, 02) =N(m+ 1, 0213) +N(m+ 1, 0214) + . . . +N(m+ 1, 021m) +N(m+ 1, 021m+ 1)

+N(m+ 1, 13) +N(m+ 1, 14) + . . . +N(m+ 1, 1m) +N(m+ 1, 1m+ 1)

=N(m, 02) +N(m, 03) + . . . +N(m, 0m− 1) +N(m, 0m).

Hence N(m+ 1, 02) = N(m, 02) +N(m, 03) + . . . +N(m, 0m− 1) +N(m, 0m).

Corollary 2.5. Let m,n be positive integers with m ≥ 6, n ≥ 3, then the equality

N(m− 1, 0n− 1) +N(m, 0n+ 1) = N(m, 0n)

holds.

Proof. Firstly, let’s write number of the climbs of a stairs with m-rungs starting at 0n:

N(m, 0n) =N(m, 0n1n+ 12n+ 2) +N(m, 0n1n+ 12n+ 3) + . . . +N(m, 0n1n+ 12m)

+N(m, 0n1n+ 13n+ 2) +N(m, 0n1n+ 13n+ 3) + . . . +N(m, 0n1n+ 13m)

+ . . .

+N(m, 0n1n+ 1nn+ 2) +N(m, 0n1n+ 1nn+ 3) + . . . +N(m, 0n1n+ 1nm)

+N(m, 0n1n+ 2) +N(m, 0n1n+ 3) + . . . +N(m, 0n1m)

+N(m, 0n2n+ 1) +N(m, 0n2n+ 2) + . . . +N(m, 0n2m)

+N(m, 0n3n+ 1) +N(m, 0n3n+ 2) + . . . +N(m, 0n3m)

+ . . .

+N(m, 0n(n− 1)n+ 1) +N(m, 0n(n− 1)n+ 2) + . . . +N(m, 0n(n− 1)m).

Secondly, let’s write number of the climbs of a stairs with m-rungs starting at 0n+ 1:

N(m, 0n+ 1) =N(m, 0n+ 11n+ 2) +N(m, 0n+ 11n+ 3) + . . . +N(m, 0n+ 11m)

+N(m, 0n+ 12n+ 2) +N(m, 0n+ 12n+ 3) + . . . +N(m, 0n+ 12m)

+N(m, 0n+ 13n+ 2) +N(m, 0n+ 13n+ 3) + . . . +N(m, 0n+ 13m)

+ . . .

+N(m, 0n+ 1nn+ 2) +N(m, 0n+ 1nn+ 3) + . . . +N(m, 0n+ 1nm).

Finally, let’s write number of the climbs of a stairs with (m− 1)-rungs starting at 0n− 1:

N(m− 1, 0n− 1) =N(m− 1, 0n− 11n) +N(m− 1, 0n− 11n+ 1) + . . . +N(m− 1, 0n− 11m− 1)

+N(m− 1, 0n− 12n) +N(m− 1, 0n− 12n+ 1) + . . . +N(m− 1, 0n− 12m− 1)

+N(m− 1, 0n− 13n) +N(m− 1, 0n− 13n+ 1) + . . . +N(m− 1, 0n− 13m− 1)

+ . . .

+N(m− 1, 0n− 1(n− 2)n) +N(m− 1, 0n− 1(n− 2)n+ 1) + . . .

+N(m− 1, 0n− 1(n− 2)m− 1).
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Since

N(m, 0n1n+ 12n+ k) = N(m, 0n+ 12n+ k), for k = 2, 3, . . . , (m− n),

N(m, 0n1n+ 13n+ k) = N(m, 0n+ 13n+ k), for k = 2, 3, . . . , (m− n),

...................

N(m, 0n1n+ 1nn+ k) = N(m, 0n+ 1nn+ k), for k = 2, 3, . . . , (m− n),

N(m, 0n1n+ k) = N(m, 0n+ 11n+ k), for k = 2, 3, . . . , (m− n),

N(m, 0n2n+ 1 + k) = N(m− 1, 0n− 11n+ k), for k = 0, 1, . . . , (m− n− 1),

N(m, 0n3n+ 1 + k) = N(m− 1, 0n− 12n+ k), for k = 0, 1, . . . , (m− n− 1),

....................

N(m, 0n(n− 1)n+ 1 + k) = N(m− 1, 0n− 1(n− 2)n+ k), for k = 0, 1, . . . , (m− n− 1),

then we have

N(m, 0n) =N(m, 0n1n+ 12n+ k) +N(m, 0n1n+ 12n+ 3) + . . . +N(m, 0n1n+ 12m)

+N(m, 0n1n+ 13n+ 2) +N(m, 0n1n+ 13n+ 3) + . . . +N(m, 0n1n+ 13m)

+ . . .

+N(m, 0n1n+ 1nn+ 2) +N(m, 0n1n+ 1nn+ 3) + . . . +N(m, 0n1n+ 1nm)

+N(m, 0n1n+ 2) +N(m, 0n1n+ 3) + . . . +N(m, 0n1m)

+N(m, 0n2n+ 1) +N(m, 0n2n+ 2) + . . . +N(m, 0n2m)

+N(m, 0n3n+ 1) +N(m, 0n3n+ 2) + . . . +N(m, 0n3m)

+ . . .

+N(m, 0n(n− 1)n+ 1) +N(m, 0n(n− 1)n+ 2) + . . . +N(m, 0n(n− 1)m)

=N(m, 0n+ 12n+ 2) +N(m, 0n+ 12n+ 3) + . . . +N(m, 0n+ 12m)

+N(m, 0n+ 13n+ 2) +N(m, 0n+ 13n+ 3) + . . . +N(m, 0n+ 13m)

+ . . .

+N(m, 0n+ 1nn+ 2) +N(m, 0n+ 1nn+ 3) + . . . +N(m, 0n+ 1nm)

+N(m, 0n+ 11n+ 2) +N(m, 0n+ 11n+ 3) + . . . +N(m, 0n+ 11m)

+N(m− 1, 0n− 11n) +N(m− 1, 0n− 11n+ 1) + . . . +N(m− 1, 0n− 11m− 1)

+N(m− 1, 0n− 12n) +N(m− 1, 0n− 12n+ 1) + . . . +N(m− 1, 0n− 12m− 1)

+ . . .

+N(m− 1, 0n− 1(n− 2)n) +N(m− 1, 0n− 1(n− 2)n+ 1) + . . . +N(m− 1, 0n− 1(n− 2)m− 1)

=
{
N(m, 0n+ 11n+ 2) +N(m, 0n+ 11n+ 3) + . . . +N(m, 0n+ 11m)

+N(m, 0n+ 12n+ 2) +N(m, 0n+ 12n+ 3) + . . . +N(m, 0n+ 12m)

+N(m, 0n+ 13n+ 2) +N(m, 0n+ 13n+ 3) + . . . +N(m, 0n+ 13m)

+ . . .

+N(m, 0n+ 1nn+ 2) +N(m, 0n+ 1nn+ 3) + . . . +N(m, 0n+ 1nm)
}

+
{
N(m− 1, 0n− 11n) +N(m− 1, 0n− 11n+ 1) + . . . +N(m− 1, 0n− 11m− 1)

+N(m− 1, 0n− 12n) +N(m− 1, 0n− 12n+ 1) + . . . +N(m− 1, 0n− 12m− 1)

+ . . .
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+N(m− 1, 0n− 1(n− 2)n) +N(m− 1, 0n− 1(n− 2)n+ 1) + . . . +N(m− 1, 0n− 1(n− 2)m− 1)
}

=N(m, 0n+ 1) +N(m− 1, 0n− 1)

Therefore the equality N(m− 1, 0n− 1) +N(m, 0n+ 1) = N(m, 0n) holds for m ≥ 6, n ≥ 3.

3. Relation of the problem to some Fuss-Catalan numbers

Formula (1.2) in Definition 1.1 gives the sequence of Catalan numbers
(Cj)j≥0 =

(
1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .

)
, which is the sequence

(
N(m, 02)

)
m≥2

in the Table 2.
If we take now i = 2, k = 2 in the formula (1.1), we have

F2(j, 2) =
1

j + 1

(
2j + 2

j

)
, (3.1)

which are the Catalan numbers (Cj+1)j≥0 =
(
1, 2, 5, 14, 42, 132, 429, 1430, . . .

)
.

The sequence (Cj+1)j≥0 is the sequence
(
N(m, 03)

)
m≥3

in the Table 2.
If we take now i = 2, k = 3 in the formula (1.1), we obtain

F2(j, 3) =
3

2j + 3

(
2j + 3

j

)
, (3.2)

so the sequence
(
F2(j, 3)

)
j≥0

=
(
1, 3, 9, 28, 90, 297, 1001, . . .

)
is the sequence

(
N(m, 04)

)
m≥4

in the Table 2.
If we take now i = 2, k = 4 in the formula (1.1), we get

F2(j, 4) =
2

j + 2

(
2j + 4

j

)
, (3.3)

that means
(
F2(j, 4)

)
j≥0

=
(
1, 4, 14, 48, 165, 572, 2002, . . .

)
which is the sequence

(
N(m, 05)

)
m≥5

in the Table 2
and so on.
Generally, the sequence

(
F2(j, k)

)
j≥0

is equal to the sequence
(
N(m, 0k + 1)

)
m≥k+1

, k ≥ 1, in the Table 2,

i.e.
(
F2(j, k)

)
j≥0

=
(
N(m, 0k + 1)

)
m≥k+1

, k ≥ 1.

4. Conclusion
In this study, we give an application of Fuss-Catalan numbers and Catalan numbers. This application was

formulated with a problem. By solving this problem some formulas related to Fuss-Catalan numbers are proved.
According to that, other applications related to Fuss-Catalan numbers can be done in future studies. We believe that
other formulas will be obtained with the help of this problem we presented.
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New Asymptotic Properties for Solutions of Fractional
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Abstract
In this note, we consider new asymptotic stability properties for solutions of several fractional delay
neutral differential equations of a certain type. To obtain the desired properties, we use Lyapunov’s
direct method, which has a wide range of applications. Finally, we draw the reader’s attention to some
examples supporting the obtained asymptotic stability properties and their plots under different initial
conditions. With this note, we extend and improve some results previously considered in the relevant
literature.
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equation, Variable delay
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1. Introduction
The subject of fractional calculus, which began with an exchange of information between two famous scientists,

L’ Hospital and Leibnitz, at the end of the 17th century, has spread widely in the scientific world and attracted the
attention of many scientists. Control theory, model of neurons in biology, fluid mechanics, viscoelasticity, meteorol-
ogy, biology, communication etc. fractional calculus modeled with differential equations in fields still maintains
its currency today. This subject, which has become an important area of mathematics, physics, medicine, biology
and engineering, is highly developed in terms of numerical and analytical solutions for mathematical nonlinear
dynamic modeling. For this reason, this subject, which has become the focus of attention of the international
academic community, has been addressed by many researchers and many studies published on this subject have
taken their place in the relevant literature. We recommend that interested researchers examine the studies referred
to in the bibliography and the sources in these studies.

Neutral delay differential equations, which have a wide range of applications in various fields such as applied
mathematics, physics, engineering and ecology, are expressed as equations that include delays in both state variables
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and their time-dependent derivatives. Due to these wide areas of application, many studies have been conducted
on these equations that have attracted the attention of scientists. We recommend that readers who want to learn this
information in a broader context and learn the advantages of considering these equations in more detail examine
the references in our study and the references included in them.

In 2014, Aguila-Camacho et al [1] presented a new lemma for the Caputo fractional derivative of a quadratic
function, which allows the use of classic quadratic Lyapunov functions in many stability analyses of fractional
order systems. Alkhazzan et al [2] investigated a new class of nonlinear fractional stochastic differential equations
with fractional integrals and discussed existence, uniqueness, continuity of solutions and Ulam-Hyers stability
with the help of Banach contraction theorem. Altun, investigated the asymptotic stability of Riemann-Liouville
fractional neutral systems with variable delays by using the Lyapunov-Krasovskii functional in [3]. Altun and Tunç
[4] discussed the asymptotic stability of a nonlinear fractional-order system with multiple variable delays. The
authors proved a new result on the subject by means of Lyapunov-Krasovskii functional. Diethelm [5] introduced
the Caputo derivative, which is close to the Riemann-Liouville derivative with different definitions of fractional
derivatives. Graef et al [6] investigated Stability of nonlinear system of fractional-order volterra integro delay
differential equations with Caputo fractional derivative. The authors of [6] proved some sufficient conditions for
the stability of the zero solution of these equations with the help of Lyapunov and Razumikhin methods and gave
explanatory examples of these conditions. Hristova and Tunç, obtained some new conditions for the stability of the
solutions of the nonlinear Caputo fractional derivative and limited delay volterra integro-differential equations with
the help of Lyapunov method in [7]. Kilbas et al [8] made an important contribution to the literature with a valuable
work on the theory and applications of fractional differential equations. Krol, investigated the asymptotic properties
of d-dimensional linear fractional differential equations with time delay in [9]. The author presented some necessary
and sufficient conditions by using the inverse method. He also supported his work with two examples. Liu et
al [10] discussed stability analysis of fractional nonlinear differential systems with Riemann-liouville derivative.
The authors presented several sufficient conditions on asymptotic stability of fractional nonlinear systems. They
supported their work with some examples. Moulai-Khatir discussed the asymptotic properties of some neutral
delay differential equations, including the Riemann-Liouville fractional derivative by means of Lyapunov functions
in [11]. He also supported his work with two examples. Podlubny [12] provided a valuable resource to the relevant
literature in order to provide an overview of the solution methods of fractional differential equations and their
applications. Tunç and Tunç proved some qualitative results of Caputo proportional integro differential equations
[13] and volterra integro differential equations [14]. Stability analysis was performed on delayed bidirectional
associative memory neural networks by Yang and Zhang [15] and on singular systems by Yiğit et al [16]. Yiğit and
Tunç [17] proved the asymptotical stability of zero solution of a nonlinear fractional neutral system with unbounded
delay by using Lyapunov-Krasovskii functionals. They also supported theır work with two examples. Some similar
results were also obtained on the stability of certain type equations and systems by Yiğit [18], [19] and Zhang et al
[20].

In this note, inspired by the above discussions and motivated by the paper of Kilbas et al [8], Moulai-Khatir
[11] and Yiğit [18] and the references in these papers, we study the new asymptotic properties for solutions of
fractional delay neutral differential equations. We use Lyapunov’s direct method, which is widely used in practice,
to obtain the properties we seek. By constructing new Lyapunov functions, we obtain three new asymptotic stability
properties for three different equations. We draw the readers’ attention to three examples that show the practical
applicability of these properties we obtained theoretically, with their annotated solutions and graphs.

The next flow of our note is as follows. The second Section contains some definitions and lemmas. In the third
Section, asymptotic stability conditions are obtained for some neutral delay differential equations. In the fourth
Section, some application examples are given to show the applicability of the obtained conditions. The fifth Section
is the conclusion section.

2. Preliminaries

We now present some definitions and lemmas to be used in the processes or applications for sufficient criteria to
be obtained in the details of the our work.
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Definition 2.1. [8] The Riemann-Liouville fractional derivative and integral of order α for a function x(t) are
defined as

t0D
α
t x(t) =

1

Γ(n− α)

dn

dtn

∫ t

t0

(t− s)n−α−1x(s)ds, (2.1)

0 ≤ n− 1 ≤ α < n, n ∈ Z+,

t0D
−α
t x(t) =

1

Γ(α)

∫ t

t0

(t− s)α−1x(s)ds, α > 0, t > t0,

where Γ denotes the Gamma function and is defined as

Γ(α) =

∫ +∞

0

sα−1e−sds.

Lemma 2.1. [11] If β > α > 0 and x(t) is integrable, then

t0D
α
t (t0D

−β
t x(t)) =t0 D

α−β
t x(t) (2.2)

is satisfied.

Lemma 2.2. Assume that x(t) ∈ R be a continuous and differentiable function. If the derivative of x(t) is integrable, then the
following relationship is satisfied as:

0.5t0D
α
t x

2(t) ≤ x(t)t0D
α
t x(t),∀α ∈ (0, 1). (2.3)

Proof. To claim inequality (2.3) is equivalent to prove only that

x(t)t0D
α
t x(t)− 0.5t0D

α
t x

2(t) ≥ 0,∀α ∈ (0, 1). (2.4)

According to Newton-Leibnitz formula, we have

x(t) = x(t0) +

∫ t

t0

x′(s)ds = x(t0) +t0 D
−1
t x(t). (2.5)

Substituting (2.5) into (2.1) and applying (2.2), we have

t0D
α
t x(t) =t0 D

α
t x(t0) +t0 D

α−1
t x(t)

=
1

Γ(1− α)
[
x(t0)

(t− t0)α
+

∫ t

t0

(t− s)−αx′(s)ds].

From here, we get

x(t)t0D
α
t x(t) =

1

Γ(1− α)
[
x(t)x(t0)

(t− t0)α
+

∫ t

t0

(t− s)−αx(t)x′(s)ds].

Also, a similar calculation shows that

0.5t0D
α
t x

2(t) =
1

Γ(1− α)
[
x2(t0)

2(t− t0)α
+

∫ t

t0

(t− s)−αx(s)x′(s)ds].

Therefore, inequality (2.4) can be rewritten as

1

Γ(1− α)
[
x(t)x(t0)− 1

2x
2(t0)

(t− t0)α
+

∫ t

t0

(t− s)−α(x(t)− x(s))x′(s)ds] ≥ 0. (2.6)

Let us integrate by parts the second term of inequality (2.6), then we have∫ t

t0

(t− s)−α(x(t)− x(s))x′(s)ds =
(x(t)− x(t0))2

2(t− t0)α
+
α

2

∫ t

t0

(x(t)− x(s))2

(t− s)α+1
ds.

Therefore, inequality (2.6) is reduced to the following form

1

Γ(1− α)
[

x2(t)

2(t− t0)α
+
α

2

∫ t

t0

(x(t)− x(s))2

(t− s)α+1
ds] ≥ 0. (2.7)

This result shows that inequality (2.7) is clearly true. This completes the proof of Lemma 2.2.
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3. Analysis of asymptotic stability conditions for fractional neutral equations

In this section, we will establish asymptotic stability criteria for some neutral equations with mixed delays. For
this, we will use the Lyapunov’s direct method and some inequalities. We will also give a brief evaluation of the
equations we have examined at the end of this section.

Now, we describe a new fractional neutral differential equation with constant and variable delays as:

t0D
α
t [x(t) + ax(t− σ1) + bx(t− σ2)] = −c(t)f(x(t))− d(t)g(x(t− τ1(t)))

−e(t)h(x(t− τ2(t)))− u(t)

∫ t

t−δ1
x(s)ds− s(t)

∫ t

t−δ2
x(s)ds, (3.1)

t0D
−(1−α)
t x(t) = ϑ(t), t ∈ [−ρ, 0], ρ > 0, ρ ∈ R,

for α ∈ (0, 1) and for all t ≥ t0 + ρ, where c(t), d(t), e(t), u(t), s(t), f(x(t)), g(x(t)) and h(x(t)) are continuous
functions in their respective arguments, with a+ b < 1 and f(0) = g(0) = h(0) = 0. The time variable delays τ1(t)
and τ2(t) are continuous and differentiable functions and satisfying

0 ≤ τ1(t) ≤ τk and τ ′1(t) ≤ τK ,
0 ≤ τ2(t) ≤ τn and τ ′2(t) ≤ τN ,

where τk, τn, σ1, σ2, δ1 and δ2 are real positive numbers and ϑ ∈ C([−ρ, 0];R) with ρ = max{τk, τn, σ1, σ2, δ1, δ2}.
Moreover, we assume that f ′(x(t)), g′(x(t)) and h′(x(t)) are exist and continuous.

Now, we describe the operator N by:

N(t) = x(t) + ax(t− σ1) + bx(t− σ2),

then the equation (3.1) can be rewritten as in the form below:

t0D
α
t N(t) =− c(t)f(x(t))− d(t)g(x(t− τ1(t)))

−e(t)h(x(t− τ2(t)))− u(t)

∫ t

t−δ1
x(s)ds− s(t)

∫ t

t−δ2
x(s)ds, (3.2)

t0D
−(1−α)
t x(t) = υ(t), t ∈ [−ρ, 0], ρ > 0, ρ ∈ R,

Before going into the details of our study, let us assume that the following sufficient criteria are met.

A. Assumptions

(A1) We assume that there exist positive numbers cj , dj , ej , uj , sj , fj , gj and hj , (j = 1, 2) and ∀x ∈ R−{0}, such
that

i) c1 ≤ c(t) ≤ c2, d1 ≤ d(t) ≤ d2, e1 ≤ e(t) ≤ e2, u1 ≤ u(t) ≤ u2, s1 ≤ s(t) ≤ s2

ii) |f ′(x)| ≤ f2, f(x)x ≥ f1

iii) |g′(x)| ≤ g2, g(x)x ≥ g1

iv) |h′(x)| ≤ h2, h(x)x ≥ h1

v) 2c1f1 > χ

where

χ = d2 + e2 + u2 + s2 + (c2f
2
2 + c2 + d2 + e2 + u2 + s2)(a+ b) + (

d2g
2
2

1− τK
+

e2h
2
2

1− τN
+ δ1u2 + δ2s2)(1 + a+ b).

Theorem 3.1. We suppose that the assumptions (A1) are met, then the zero solution of fractional neutral differential equation
(3.1) is asymptotically stable.
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Proof. Let us choose a new suitable Lyapunov function that can clearly be seen to be positive definite by

V (t) = 0.5t0D
α−1
t N2(t) + µ1

∫ t

t−σ1

x2(s)ds+ µ2

∫ t

t−σ2

x2(s)ds

+ λ1

∫ t

t−τ1(t)
x2(s)ds+ λ2

∫ t

t−τ2(t)
x2(s)ds

+ η1

∫ 0

−δ1

∫ t

t+s

x2(θ)dθds+ η2

∫ 0

−δ2

∫ t

t+s

x2(θ)dθds,

where µ1, µ2, λ1, λ2, η1 and η2 are positive numbers.

In light of the fact that Lemma 2.1 and Lemma 2.2, by the time-derivative of V (t) on the solution of equation
(3.2), we can write the inequality given by

V ′(t) ≤ N(t)t0D
α
t N(t) + µ1x

2(t)− µ1x
2(t− σ1) + µ2x

2(t)− µ2x
2(t− σ2) + λ1x

2(t)− λ1(1− τ ′1(t))x2(t− τ1(t))

+ λ2x
2(t)− λ2(1− τ ′2(t))x2(t− τ2(t))

+ δ1η1x
2(t)− η1

∫ t

t−δ1
x2(s)ds+ δ2η2x

2(t)− η2
∫ t

t−δ2
x2(s)ds

≤ (µ1 + µ2 + λ1 + λ2 + δ1η1 + δ2η2)x2(t)− µ1x
2(t− σ1)

− µ2x
2(t− σ2)− λ1(1− τK)x2(t− τ1(t))− λ2(1− τN )x2(t− τ2(t))

− η1

∫ t

t−δ1
x2(s)ds− η2

∫ t

t−δ2
x2(s)ds− c(t)f(x(t))x(t)

− d(t)g(x(t− τ1(t)))x(t)− e(t)h(x(t− τ2(t)))x(t)

− u(t)

∫ t

t−δ1
x(s)dsx(t)− s(t)

∫ t

t−δ2
x(s)dsx(t)− ac(t)f(x(t))x(t− σ1)

− ad(t)g(x(t− τ1(t)))x(t− σ1)− ae(t)h(x(t− τ2(t)))x(t− σ1)

− au(t)

∫ t

t−δ1
x(s)dsx(t− σ1)− as(t)

∫ t

t−δ2
x(s)dsx(t− σ1)

− bc(t)f(x(t))x(t− σ2)− bd(t)g(x(t− τ1(t)))x(t− σ2)

− be(t)h(x(t− τ2(t)))x(t− σ2)− bu(t)

∫ t

t−δ1
x(s)dsx(t− σ2)

− bs(t)

∫ t

t−δ2
x(s)dsx(t− σ2).

With the help of the inequality 2|$ν| ≤ $2 + ν2 and the assumptions given in (A1), the following result is reached:

V ′(t) ≤ 1

2
(−2c1f1 + d2 + e2 + c2f

2
2 (a+ b) + 2µ1 + 2µ2 + 2λ1 + 2λ2 + 2δ1η1 + 2δ2η2 + u2 + s2)x2(t)

+
1

2
(−2µ1 + a(c2 + d2 + e2 + u2 + s2))x2(t− σ1)

+
1

2
(−2µ2 + b(c2 + d2 + e2 + u2 + s2))x2(t− σ2)

+
1

2
(−2λ1(1− τK) + d2g

2
2(1 + a+ b))x2(t− τ1(t))

+
1

2
(−2λ2(1− τN ) + e2h

2
2(1 + a+ b))x2(t− τ2(t))

+
1

2
(−2η1 + u2(1 + a+ b))

∫ t

t−δ1
x2(s)ds

+
1

2
(−2η2 + s2(1 + a+ b))

∫ t

t−δ2
x2(s)ds.
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Let

2µ1 = a(c2 + d2 + e2 + u2 + s2), 2µ2 = b(c2 + d2 + e2 + u2 + s2),

2λ1 =
d2g

2
2(1 + a+ b)

(1− τK)
, 2λ2 =

e2h
2
2(1 + a+ b)

(1− τN )
,

2η1 = u2(1 + a+ b), 2η2 = s2(1 + a+ b).

From here, we can deduce

V ′(t) ≤ 1

2
[(−2c1f1 + d2 + e2 + u2 + s2

+ (a+ b)(c2f
2
2 + c2 + d2 + e2 + u2 + s2)

+ (1 + a+ b)(
d2g

2
2

1− τK
+

e2h
2
2

1− τN
+ δ1u2 + δ2s2]x2(t).

Therefore, we have

V ′(t) ≤ −m0x
2(t),

where

m0 = 2c1f1 − χ > 0.

with

χ = d2 + e2 + u2 + s2 + (c2f
2
2 + c2 + d2 + e2 + u2 + s2)(a+ b)

+ (
d2g

2
2

1− τK
+

e2h
2
2

1− τN
+ δ1u2 + δ2s2)(1 + a+ b).

From here, we can deduce that the zero solution of fractional neutral differential equation (3.1) is asymptotically
stable. This completes the proof.

Moreover, if the integral terms given in system (3.1) are taken to be zero then the following neutral mixed delay
equation is obtained. We define the neutral mixed delay equation as:

t0D
α
t [x(t) + ax(t− σ1) + bx(t− σ2)] = −c(t)f(x(t))− d(t)g(x(t− τ1(t)))− e(t)h(x(t− τ2(t))), (3.3)

t0D
−(1−α)
t x(t) = ϑ(t), t ∈ [−ρ, 0],ρ > 0, ρ ∈ R,

for α ∈ (0, 1) and for all t ≥ t0 + ρ, where c(t), d(t), e(t), f(x(t)), g(x(t)) and h(x(t)) are continuous functions in
their respective arguments, with a+ b < 1 and f(0) = g(0) = h(0) = 0. The time variable delays τ1(t) and τ2(t) are
continuous and differentiable functions and satisfying

0 ≤ τ1(t) ≤ τk and τ ′1(t) ≤ τK ,
0 ≤ τ2(t) ≤ τn and τ ′2(t) ≤ τN ,

where τk, τn, σ1 and σ2 are real positive numbers and ϑ ∈ C([−ρ, 0];R) with ρ = max{τk, τn, σ1, σ2}. Moreover, we
assume that f ′(x(t)), g′(x(t)) and h′(x(t)) are exist and continuous.

For simplicity, we describe the operator N by:

N(t) = x(t) + ax(t− σ1) + bx(t− σ2),

then the equation (3.3) can be rewritten as in the form below:

t0D
α
t N(t) = −c(t)f(x(t))− d(t)g(x(t− τ1(t)))− e(t)h(x(t− τ2(t))). (3.4)

Before going into the details of proof of Theorem 3.2, let us assume that the following sufficient criteria are met.

B. Assumptions

(B1) We assume that there exist positive numbers cj , dj , ej , fj , gj and hj , (j = 1, 2) and ∀x ∈ R− {0}, such that
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i) c1 ≤ c(t) ≤ c2, d1 ≤ d(t) ≤ d2, e1 ≤ e(t) ≤ e2

ii) |f ′(x)| ≤ f2, f(x)x ≥ f1

iii) |g′(x)| ≤ g2, g(x)x ≥ g1

iv) |h′(x)| ≤ h2, h(x)x ≥ h1

v) 2c1f1 > χ

where

χ = d2 + e2 + (c2f
2
2 + c2 + d2 + e2)(a+ b) + (

d2g
2
2

1− τK
+

e2h
2
2

1− τN
)(1 + a+ b).

Theorem 3.2. We suppose that the assumptions (B1) are met, then the zero solution of fractional neutral differential equation
(3.3) is asymptotically stable.

Proof. Let us choose a new suitable Lyapunov function that can clearly be seen to be positive definite by

V (t) = 0.5t0D
α−1
t N2(t) + µ1

∫ t

t−σ1

x2(s)ds+ µ2

∫ t

t−σ2

x2(s)ds

+ λ1

∫ t

t−τ1(t)
x2(s)ds+ λ2

∫ t

t−τ2(t)
x2(s)ds,

where µ1, µ2, λ1 and λ2 are positive numbers.

In light of the fact that Lemma 2.1 and Lemma 2.2, by the time-derivative of V (t) on the solution of equation
(3.4), we can write the inequality given by

V ′(t) ≤ N(t)t0D
α
t N(t) + µ1x

2(t)− µ1x
2(t− σ1) + µ2x

2(t)

− µ2x
2(t− σ2) + λ1x

2(t)− λ1(1− τ ′1(t))x2(t− τ1(t))

+ λ2x
2(t)− λ2(1− τ ′2(t))x2(t− τ2(t))

≤ (µ1 + µ2 + λ1 + λ2)x2(t)− µ1x
2(t− σ1)

− µ2x
2(t− σ2)− λ1(1− τK)x2(t− τ1(t))− λ2(1− τN )x2(t− τ2(t))

− c(t)f(x(t))x(t)− d(t)g(x(t− τ1(t)))x(t)− e(t)h(x(t− τ2(t)))x(t)

− ac(t)f(x(t))x(t− σ1)− ad(t)g(x(t− τ1(t)))x(t− σ1)

− ae(t)h(x(t− τ2(t)))x(t− σ1)− bc(t)f(x(t))x(t− σ2)

− bd(t)g(x(t− τ1(t)))x(t− σ2)− be(t)h(x(t− τ2(t)))x(t− σ2).

With the help of the inequality 2|$ν| ≤ $2 + ν2 and the assumptions given in (B1), the following result is reached:

V ′(t) ≤ 1

2
(−2c1f1 + d2 + e2 + c2f

2
2 (a+ b) + 2µ1 + 2µ2 + 2λ1 + 2λ2)x2(t)

+
1

2
(−2µ1 + a(c2 + d2 + e2))x2(t− σ1)

+
1

2
(−2µ2 + b(c2 + d2 + e2))x2(t− σ2)

+
1

2
(−2λ1(1− τK) + d2g

2
2(1 + a+ b))x2(t− τ1(t))

+
1

2
(−2λ2(1− τN ) + e2h

2
2(1 + a+ b))x2(t− τ2(t)).

Let

2µ1 = a(c2 + d2 + e2), 2µ2 = b(c2 + d2 + e2),

2λ1 =
d2g

2
2(1 + a+ b)

(1− τK)
, 2λ2 =

e2h
2
2(1 + a+ b)

(1− τN )
.
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From here, we can deduce

V ′(t) ≤ 1

2
[(−2c1f1 + d2 + e2 + (a+ b)(c2f

2
2 + c2 + d2 + e2) + (1 + a+ b)(

d2g
2
2

1− τK
+

e2h
2
2

1− τN
]x2(t).

Therefore, we have

V ′(t) ≤ −m1x
2(t),

where

m1 = 2c1f1 − χ > 0.

with

χ = d2 + e2 + (c2f
2
2 + c2 + d2 + e2)(a+ b) + (

d2g
2
2

1− τK
+

e2h
2
2

1− τN
)(1 + a+ b).

From here, we can deduce that the zero solution of fractional neutral differential equation (3.3) is asymptotically
stable. This completes the proof.

Further, we define the following fractional neutral equation (3.3) with

e(t)h(x(t− τ2(t))) = 0, τ1(t) = τ(t)

and

ax(t− σ1) + bx(t− σ2) = ax(t− σ),

t0D
α
t [x(t) + ax(t− σ)] = −c(t)f(x(t))− d(t)g(x(t− τ(t))), (3.5)

t0D
−(1−α)
t x(t) = ϑ(t), t ∈ [−ρ, 0],ρ > 0, ρ ∈ R,

for α ∈ (0, 1) and for all t ≥ t0 + ρ, where c(t), d(t), f(x(t)) and g(x(t)) are continuous functions in their respective
arguments, with a < 1 and f(0) = g(0) = 0. The time variable delay τ(t) is continuous and differentiable function
and satisfying

0 ≤ τ(t) ≤ τk and τ ′(t) ≤ τK ,

where τk and σ are real positive numbers and ϑ ∈ C([−ρ, 0];R) with ρ = max{τk, σ}. Moreover, we assume that
f ′(x(t)) and g′(x(t)) are exist and continuous.

For simplicity, we describe the operator M by:

M(t) = x(t) + ax(t− σ),

then the equation (3.5) can be rewritten as in the form below:

t0D
α
t M(t) = −c(t)f(x(t))− d(t)g(x(t− τ(t))). (3.6)

Before going into the details of proof of Theorem 3.3, let us assume that the following sufficient criteria are met.

C. Assumptions

(C1) We assume that there exist positive numbers cj , dj , fj and gj , (j = 1, 2) and ∀x ∈ R− {0}, such that

i) c1 ≤ c(t) ≤ c2, d1 ≤ d(t) ≤ d2

ii) |f ′(x)| ≤ f2, f(x)x ≥ f1

iii) |g′(x)| ≤ g2, g(x)x ≥ g1

iv) 2c1f1 > d2 + a(c2f
2
2 + c2 + d2) +

d2g
2
2(1+a)

1−τK
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Theorem 3.3. We suppose that the assumptions (C1) are met, then the zero solution of fractional neutral differential equation
(3.5) is asymptotically stable.

Proof. Let us choose a new suitable Lyapunov function that can clearly be seen to be positive definite by

V (t) = 0.5t0D
α−1
t M2(t) + µ

∫ t

t−σ
x2(s)ds+ λ

∫ t

t−τ(t)
x2(s)ds,

where µ and λ are positive numbers.

In light of the fact that Lemma 2.1 and Lemma 2.2, by the time-derivative of V (t) on the solution of equation
(3.6), we can write the inequality given by

V ′(t) ≤ M(t)t0D
α
t M(t) + µx2(t)− µx2(t− σ)

+ λx2(t)− λ(1− τ ′1(t))x2(t− τ(t))

≤ (µ+ λ)x2(t)− µx2(t− σ)− λ(1− τK)x2(t− τ(t))

− c(t)f(x(t))x(t)− d(t)g(x(t− τ(t)))x(t)

− ac(t)f(x(t))x(t− σ)− ad(t)g(x(t− τ(t)))x(t− σ).

With the help of the inequality 2|$ν| ≤ $2 + ν2 and the assumptions given in (C1), the following result is
reached:

V ′(t) ≤ 1

2
(−2c1f1 + d2 + ac2f

2
2 + 2µ+ 2λ)x2(t)

+
1

2
(−2µ+ a(c2 + d2))x2(t− σ)

+
1

2
(−2λ(1− τK) + d2g

2
2(1 + a))x2(t− τ(t)).

Let

2µ =a(c2 + d2),

2λ =
d2g

2
2(1 + a)

(1− τK)
.

From here, we can deduce

V ′(t) ≤ 1

2
[(−2c1f1 + d2 + a(c2f

2
2 + c2 + d2) +

d2g
2
2(1 + a)

1− τK
]x2(t).

Therefore, we have
V ′(t) ≤ −m2x

2(t),

where

m2 = 2c1f1 − d2 − a(c2f
2
2 + c2 + d2)− d2g

2
2(1 + a)

1− τK
> 0.

From here, we can deduce that the zero solution of fractional neutral differential equation (3.5) is asymptotically
stable. This completes the proof.

Remark 3.1. If τ(t) = r is taken, then the equation (3.5) we discussed turns into equation (1) discussed in article [11].
Similarly, if bx(t− σ2) = 0,

d(t)g(x(t− τ1(t))) + e(t)h(x(t− τ2(t))) = b(t)f(x(t− r))

and

u(t)
∫ t
t−δ1 x(s)ds+ s(t)

∫ t
t−δ2 x(s)ds = e(t)

∫ t
t−δ x(s)ds,

then the equation (3.1) we discussed turns into equation (2) discussed in article [11]. It is clear from here that
the sufficient conditions we obtained include the conditions obtained in the article [11]. In addition, it should be
noted that some delay terms in our study are variable dependent. This shows that our article is more general.
Furthermore, in the Numerical applications section, i.e. in the next section examples that embody the sufficient
conditions we have obtained theoretically and images of different initial conditions will be included.
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4. Numerical applications

In this section, we will give examples and explanatory solutions showing that the sufficient conditions we have
obtained for asymptotic stability are applicable in practice. We will also include graphs showing that asymptotic
stability is achieved at different initial conditions with the help of MATLAB-Simulink.

Example 4.1. Let us define the following fractional delay differential equation, which is the special case of fractional
neutral differential equation (3.1).

t0D
α
t [x(t) + ax(t− σ1) + bx(t− σ2)] = −c(t)f(x(t))− d(t)g(x(t− τ1(t)))

−e(t)h(x(t− τ2(t)))− u(t)

∫ t

t−δ1
x(s)ds− s(t)

∫ t

t−δ2
x(s)ds. (4.1)

The values in this equation are as follows,

c1 = 8 ≤ c(t) = 8 +
1

5 + t2
≤ 8.2 = c2,

d1 = 0.2 ≤ d(t) = 0.2 +
2

5 + t2
≤ 0.6 = d2,

e1 = 0.3 ≤ e(t) = 0.3 +
1

2 + t2
≤ 0.8 = e2,

u1 = 0.4 ≤ u(t) = 0.4 +
1

10 + t2
≤ 0.5 = u2,

s1 = 0.6 ≤ s(t) = 0.6 +
1

5 + t2
≤ 0.8 = s2,

a =
1

100
< 1, b =

3

100
< 1, a+ b =

1

25
< 1, α ∈ (0, 1),

0 ≤ τ1(t) = 0.15sin2t ≤ 0.15 = τk, τ
′
1(t) = 0.15sin2t ≤ 0.15 = τK ,

0 ≤ τ2(t) = 0.2sin2t ≤ 0.2 = τn, τ
′
2(t) = 0.2sin2t ≤ 0.2 = τN ,

f(x) = 0.4x+
x

10 + |x|
, g(x) = x+

2x

10 + |x|
, h(x) = 0.7x+

2x

10 + |x|
.

It is clear that f(0) = g(0) = h(0) = 0. Additionally, ∀x ∈ R, 0 ≤ 2
10+|x| ≤ 1, we can deduce

∀x ∈ R− {0}, f(x)

x
≥ 0.4 = f1,

g(x)

x
≥ 1 = g1,

h(x)

x
≥ 0.7 = h1.

Furthermore, we can get

|f ′(x)| = |0.4 +
10

(10 + |x|)2
| ≤ 0.5 = f2,

|g′(x)| = |1 +
20

(10 + |x|)2
| ≤ 1.2 = g2,

|h′(x)| = |0.7 +
20

(10 + |x|)2
| ≤ 0.9 = h2,

With the help of a simple mathematical calculation, the following conclusion is reached.

−2c1f1 + d2 + e2 + u2 + s2 + (c2f
2
2 + c2 + d2 + e2 + u2 + s2)(a+ b)

+ (
d2g

2
2

1− τK
+

e2h
2
2

1− τN
+ δ1u2 + δ2s2)(1 + a+ b) = −0.91.

From the solutions explained above, it can be seen that all criteria of Theorem 3.1. are met. Thus, the zero solution
of fractional neutral differential equation (4.1) is asymptotically stable. Also, the graph showing the orbital behavior
of the fractional neutral differential equation (4.1) is as follows.
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Figure 1. Orbital behavior of the fractional neutral differential equation (4.1).

Example 4.2. Let us define the following fractional delay differential equation, which is the special case of fractional
neutral differential equation (3.3).

t0D
α
t [x(t) + ax(t− σ1) + bx(t− σ2)] = −c(t)f(x(t))− d(t)g(x(t− τ1(t)))− e(t)h(x(t− τ2(t))). (4.2)

The values in this equation are as follows,

c1 = 6 ≤ c(t) = 6 +
1

5 + t2
≤ 6.2 = c2,

d1 = 0.3 ≤ d(t) = 0.3 +
3

10 + t2
≤ 0.6 = d2,

e1 = 0.5 ≤ e(t) = 0.5 +
3

10 + t2
≤ 0.8 = e2,

a =
1

100
< 1, b =

3

100
< 1, a+ b =

1

25
< 1, α ∈ (0, 1),

0 ≤ τ1(t) = 0.15sin2t ≤ 0.15 = τk, τ
′
1(t) = 0.15sin2t ≤ 0.15 = τK ,

0 ≤ τ2(t) = 0.2sin2t ≤ 0.2 = τn, τ
′
2(t) = 0.2sin2t ≤ 0.2 = τN ,

f(x) = 0.4x+
x

10 + |x|
, g(x) = 0.9x+

4x

10 + |x|
, h(x) = 0.7x+

2x

10 + |x|
.

It is clear that f(0) = g(0) = h(0) = 0. Additionally, ∀x ∈ R, 0 ≤ 4
10+|x| ≤ 1, we can deduce

∀x ∈ R− {0}, f(x)

x
≥ 0.4 = f1,

g(x)

x
≥ 0.9 = g1,

h(x)

x
≥ 0.7 = h1.

Furthermore, we can get

|f ′(x)| = |0.4 +
10

(10 + |x|)2
| ≤ 0.5 = f2,

|g′(x)| = |0.9 +
40

(10 + |x|)2
| ≤ 1.3 = g2,

|h′(x)| = |0.7 +
20

(10 + |x|)2
| ≤ 0.9 = h2,

With the help of a simple mathematical calculation, the following conclusion is reached.

−2c1f1 + d2 + e2 + (c2f
2
2 + c2 + d2 + e2)(a+ b) + (

d2g
2
2

1− τK
+

e2h
2
2

1− τN
)(1 + a+ b) = −0.95.
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From the solutions explained above, it can be seen that all criteria of Theorem 3.2 are met. Thus, the zero solution of
fractional neutral differential equation (4.2) is asymptotically stable. Also, the graph showing the orbital behavior
of the fractional neutral differential equation (4.2) is as follows.

Figure 2. Orbital behavior of the fractional neutral differential equation (4.2).

Example 4.3. Let us define the following fractional delay differential equation, which is the special case of fractional
neutral differential equation (3.5).

t0D
α
t [x(t) + ax(t− σ)] = −c(t)f(x(t))− d(t)g(x(t− τ(t))). (4.3)

The values in this equation are as follows,

c1 = 1 ≤ c(t) = 1 +
2

5 + t2
≤ 1.4 = c2, a =

1

50
< 1, α ∈ (0, 1),

d1 = 0.2 ≤ d(t) = 0.2 +
3

10 + t2
≤ 0.5 = d2,

0 ≤ τ(t) = 0.15sin2t ≤ 0.15 = τk, τ
′(t) = 0.15sin2t ≤ 0.15 = τK ,

f(x) = 0.8x+
4x

10 + |x|
, g(x) = 0.6x+

4x

10 + |x|
.

It is clear that f(0) = g(0) = 0. Additionally, ∀x ∈ R, 0 ≤ 4
10+|x| ≤ 1, we can deduce

∀x ∈ R− {0}, f(x)

x
≥ 0.8 = f1,

g(x)

x
≥ 0.6 = g1.

Furthermore, we can get

|f ′(x)| = |0.8 +
40

(10 + |x|)2
| ≤ 1.2 = f2,

|g′(x)| = |0.6 +
40

(10 + |x|)2
| ≤ 1 = g2,

With the help of a simple mathematical calculation, the following conclusion is reached.

−2c1f1 + d2 + a(c2f
2
2 + c2 + d2) +

d2g
2
2(1 + a)

1− τK
= −0.42.

From the solutions explained above, it can be seen that all criteria of Theorem 3.3 are met. Thus, the zero solution of
fractional neutral differential equation (4.3) is asymptotically stable. Also, the graph showing the orbital behavior
of the fractional neutral differential equation (4.3) is as follows.
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Figure 3. Orbital behavior of the fractional neutral differential equation (4.3).

Remark 4.1. When the solutions of the examples (examples 4.1, 4.2 and 4.3) given in this section are examined, the
conditions that ensure stability of the zero solution of the equations discussed in a certain time interval and under
different initial conditions can be easily seen. Graphs (figures 1, 2, 3) expressing these stability states are shown for
different initial conditions.

In addition, it can be easily seen that the results of this study are more general when compared to the results of
similar studies in the literature, especially the study we based on [11]. In this study, the time delay was taken as
constant and examples showing the practical applicability of theoretical results were not supported by graphics.
However, some delay terms of the equations in our study were taken as variable dependent and our examples
showing the practical applicability of theoretical results were supported with graphs.

5. Conclusion
In this note, we have investigated the asymptotic stability of some fractional delay neutral differential equations

of a certain type by applying three different Lyapunov functions. Also, we have obtained a new lemma of Riemann-
Liouville derivative order of quadratic function. Based on the Lyapunov functions, some sufficient asymptotic
stability conditions for these fractional delay neutral differential equations have been proved. Compared to the
stability criteria in the relevant literature, our criteria are simple and applicable. To demonstrate the effectiveness of
these criteria, we have given some examples with simulations (Figure1, Figure 2 and Figure 3). Theoretical findings,
complemented by examples and graphical representations, provide meaningful insights into the orbital behavior
of these equations. As a result, the obtained conditions extend and improve some criteria found in the relevant
literature.
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Abstract
In this article, we introduce generalized ζ− conformable fractional integrals on co-ordinated functions
and for the functions of two variables. Additionally, we derive a new Hermite-Hadamard inequality by
utilizing the generalized Riemann-Liouville integrals, utilizing the generalized ζ−conformable integral
definition. Furthermore, we demonstrate some implications of the Hermite-Hadamard inequality and
definitions introduced in this study. Consequently, we state and prove several related inequalities.
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1. Introduction
Convex functions are a subject of extensive scientific research. One of the most outstanding inequality for convex

functions was discovered by Hadamard in 1893. Additionally, many studies have focused on convex functions and
the Hermite-Hadamard-type integral inequalities related to convex functions. Sarıkaya et al. define the general
convex functions as the following inequality for f : [ρ, λ] ⊂ R → R on [ρ, λ] in [1].

f (θφ (τ) + (1− θ)φ (ϕ)) ≤ θf (φ (τ)) + (1− θ) f (φ (ϕ)) . (1.1)

Moreover, Cristescu defined and proved the Hermite-Hadamard-type integral inequality for general φ−convex
functions in [2]. Then,

f

(
φ (ρ) + φ (λ)

2

)
≤ 1

φ (ρ)− φ (λ)

∫ φ(λ)

φ(ρ)

f (z) dz ≤ f (φ (ρ)) + f (φ (s))

2
. (1.2)
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If f is a concave function, the inequality is reversed. This inequality is significant in fractional integrals and
derivatives. There are many studies on the Hermite-Hadamard inequality in the literature (see, e.g., [3–5]).

Set et al. introduce φ−convex functions on co-ordinates, and they demonstrate their properties. Moreover, they
obtain Hadamard type inequalities via φ−convex function on co-ordinates in [6]. We should give the following
basic definition and basic theorem to use later.

Definition 1.1. [6] Let ∆ := [τ, ϕ]× [θ, µ] ⊆ [0,∞)× [0,∞) , τ < ϕ and θ < µ. If f : ∆ → R is said to be φ−convex
on ∆ for every two points (λ, u) , (λ, v) , (y, u) , (y, v) ∈ ∆ and ρ, s ∈ [0, 1]. Then, we get

f (ρφ1 (λ) + (1− ρ)φ1 (y) , sφ2 (u) + (1− s)φ2 (v))
≤ ρsf (φ1 (λ) , φ2 (u)) + ρ (1− s) f (φ1 (λ) , φ2 (v))
+ (1− ρ) sf (φ1 (y) , φ2 (u)) + (1− ρ) (1− s) f (φ1 (y) , φ2 (v)) ,

(1.3)

for φi : [τ, ϕ] → [θ, µ] , i = 1, 2 be a continuous function. A function f : ∆ → R is φ−convex function on ∆ is called
co-ordinated φ−convex on ∆ if the partial mappings fφ2 : [τ, ϕ] → R, fφ2 (u) = f (u, φ2) and fφ1 : [θ, µ] → R,
fφ1 (v) = f (φ1, v) are φ−convex for all τ ≤ φ2 ≤ ϕ and θ ≤ φ1 ≤ µ.

Theorem 1.1. [6] If f : ∆ = [τ, ϕ] × [θ, µ] ⊂ R2 → R is φ−convex on the co-ordinates on ∆ with f ∈ L [∆] , Then, we
obtain

f
(

φ(τ)+φ(ϕ)
2 , φ(θ)+φ(µ)

2

)
≤ 1

(φ(ϕ)−φ(τ))(φ(µ)−φ(θ))

∫ φ(ϕ)

φ(τ)

∫ φ(µ)

φ(θ)
f (ρ, s) dsdρ

≤ f(φ(τ),φ(θ))+f(φ(τ),φ(µ))+f(φ(ϕ),φ(θ))+f(φ(ϕ),φ(µ))
4 .

(1.4)

Furthermore, we demonstrate that the generalized ζ−conformable fractional integration operator α
σJ

β
τ+ is

well-defined on Xp
ϱ (τ, ϕ) for p > ϱ. We can write the following definition and theorem.

Definition 1.2. [7, 8] Let ζ (λ) be an increasing and positive monotone function on [0,∞). Furthermore, if we
consider ζ

′
(λ) is continuous on [0,∞) and ζ (0) = 0, the space Xp

ζ (0,∞) is the following form for (1 ≤ p < ∞) ,

∥f∥Xp
ζ
=

(∫ ∞

0

|f (t)|p ζ
′
(λ) dt

) 1
p

< ∞ (1.5)

and if we choose p = ∞,

∥f∥X∞
ζ

= ess sup
1≤t<∞

[
f (t) ζ

′
(λ)

]
. (1.6)

Additionally, If we take ζ(λ) = λ (1 ≤ p < ∞) the space Xp
ζ (0,∞), we have the Lp[0,∞)−space. Moreover, if

we take ζ(λ) = λσ+1

σ+1 (1 ≤ p < ∞, σ ≥ 0) the space Xp
ζ (0,∞), we have the Lp,σ[0,∞)−space.

Definition 1.3. Let f ∈ Xζ(0,∞), ζ be an increasing and positive monotone function on [0,∞) and also derivative
ζ ′ be continuous on [0,∞) and ζ (0) = 0. The left and right generalized conformable fractional integrals of order
β ∈ C, R (β) ≥ 0 and α > 0,

α
ζ J

β
τ+f (λ) = 1

Γ(β)

∫ λ

τ

[
(ζ(λ)−ζ(τ))α−(ζ(ρ)−ζ(τ))α

α

]β−1
ζ
′
(ρ)f(ρ)dρ

(ζ(ρ)−ζ(τ))1−α
(1.7)

and
α
ζ J

β
ϕ−f (λ) = 1

Γ(β)

∫ ϕ

λ

[
(ζ(ϕ)−ζ(λ))α−(ζ(ϕ)−ζ(ρ))α

α

]β−1
ζ
′
(ρ)f(ρ)dρ

(ζ(ϕ)−ζ(ρ))1−α , (1.8)

respectively.

Bozkurt et al. showed conformable derivatives and conformable integrals for the functions of two variables in
[9]. Based on this article, we define the following the definition.
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Definition 1.4. Let f ∈ Xζ ([τ, ϕ]× [θ, µ]) and α1 ̸= 0, α2 ̸= 0, β, γ ∈ C, Re (β) > 0, Re (γ) > 0. Meanwhile, ζ be an
increasing and positive monotone function on [0,∞) and also derivative ζ ′ be continuous on [0,∞) and ζ (0) = 0.
Then, we have the generalized ζ−conformable integrals of order β, γ of f (ρ, s),

α1,α2

ζ Jβ,γ
τ+,θ+

= 1
Γ(γ)Γ(β)

∫ λ

τ

∫ y

θ

[
(ζ(λ)−ζ(τ))α1−(ζ(ρ)−ζ(τ))α1

α1

]β−1 [
(ζ(y)−ζ(θ))α2−(ζ(s)−ζ(θ))α2

α2

]γ−1

× ζ
′
(ρ)

(ζ(ρ)−ζ(τ))1−α1
. ζ

′
(s)

(ζ(s)−ζ(θ))1−α2
f (ρ, s) dsdρ,

(1.9)

α1,α2

ζ Jβ,γ
ϕ−,θ+

= 1
Γ(γ)Γ(β)

∫ ϕ

λ

∫ y

θ

[
(ζ(ϕ)−ζ(λ))α1−(ζ(ϕ)−ζ(ρ))α1

α1

]β−1 [
(ζ(y)−ζ(θ))α2−(ζ(s)−ζ(θ))α2

α2

]γ−1

× ζ
′
(ρ)

(ζ(ϕ)−ζ(ρ))1−α1
. ζ

′
(s)

(ζ(s)−ζ(θ))1−α2
f (ρ, s) dsdρ,

(1.10)

α1,α2

ζ Jβ,γ
τ+,µ−

= 1
Γ(γ)Γ(β)

∫ λ

τ

∫ µ

y

[
(ζ(λ)−ζ(τ))α1−(ζ(ρ)−ζ(τ))α1

α1

]β−1 [
(ζ(µ)−ζ(y))α2−(ζ(µ)−ζ(s))α2

α2

]γ−1

× ζ
′
(ρ)

(ζ(ρ)−ζ(τ))1−α1
. ζ

′
(s)

(ζ(µ)−ζ(s))1−α2
f (ρ, s) dsdρ,

(1.11)

and
α1,α2

ζ Jβ,γ
ϕ−,µ−

= 1
Γ(γ)Γ(β)

∫ ϕ

λ

∫ µ

y

[
(ζ(ϕ)−ζ(λ))α1−(ζ(ϕ)−ζ(ρ))α1

α1

]β−1 [
(ζ(µ)−ζ(y))α2−(ζ(µ)−ζ(s))α2

α2

]γ−1

× ζ
′
(ρ)

(ζ(ϕ)−ζ(ρ))1−α1
. ζ

′
(s)

(ζ(µ)−ζ(s))1−α2
f (ρ, s) dsdρ.

(1.12)

Remark 1.1. In here, when we get ζ (λ) = λσ+1

(σ+1)
1
α

in Definition 4, then we can write equations as follows,

α1,α2
σ Jβ,γ

τ+,θ+

= 1
Γ(γ)Γ(β)

∫ λ

τ

∫ y

θ

[
(λσ+1−τσ+1)

α1−(ρσ+1−τσ+1)
α1

α1(σ+1)

]β−1 [
(yσ+1−θσ+1)

α2−(sσ+1−θσ+1)
α2

α2(σ+1)

]γ−1

× ρσ

(ρσ+1−τσ+1)1−α1
. sσ

(sσ+1−θσ+1)1−α2
f (ρ, s) dsdρ,

(1.13)

α1,α2
σ Jβ,γ

ϕ−,θ+

= 1
Γ(γ)Γ(β)

∫ ϕ

λ

∫ y

θ

[
(ϕσ+1−λσ+1)

α1−(ϕσ+1−ρσ+1)
α1

α1(σ+1)

]β−1 [
(yσ+1−θσ+1)

α2−(sσ+1−θσ+1)
α2

α2(σ+1)

]γ−1

× ρσ

(ϕσ+1−ρσ+1)1−α1
. sσ

(sσ+1−θσ+1)1−α2
f (ρ, s) dsdρ,

(1.14)

α1,α2
σ Jβ,γ

τ+,µ−

= 1
Γ(γ)Γ(β)

∫ λ

τ

∫ µ

y

[
(λσ+1−τσ+1)

α1−(ρσ+1−τσ+1)
α1

α1(σ+1)

]β−1 [
(µσ+1−yσ+1)

α2−(µσ+1−sσ+1)
α2

α2(σ+1)

]γ−1

× ρσ

(ρσ+1−τσ+1)1−α1
. sσ

(µσ+1−sσ+1)1−α2
f (ρ, s) dsdρ,

(1.15)

and
α1,α2
σ Jβ,γ

ϕ−,µ−

= 1
Γ(γ)Γ(β)

∫ ϕ

λ

∫ µ

y

[
(ϕσ+1−λσ+1)

α1−(ϕσ+1−ρσ+1)
α1

α1(σ+1)

]β−1 [
(µσ+1−yσ+1)

α2−(µσ+1−sσ+1)
α2

α2(σ+1)

]γ−1

× ρσ

(ϕσ+1−ρσ+1)1−α1
. sσ

(µσ+1−sσ+1)1−α2
f (ρ, s) dsdρ.

(1.16)

Remark 1.2. If we take ζ (λ) = λ in Definition 3, then we have the following equations in [9]

α1,α2Jβ,γ
τ+,θ+ = 1

Γ(γ)Γ(β)

∫ λ

τ

∫ y

θ

[
(λ−τ)α1−(ρ−τ)α1

α1

]β−1 [
(y−θ)α2−(s−θ)α2

α2

]γ−1

× 1
(ρ−τ)1−α1

. 1
(s−θ)1−α2

f (ρ, s) dsdρ,
(1.17)
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α1,α2Jβ,γ
ϕ−,θ+ = 1

Γ(γ)Γ(β)

∫ ϕ

λ

∫ y

θ

[
(ϕ−λ)α1−(ϕ−ρ)α1

α1

]β−1 [
(y−θ)α2−(s−θ)

α2

α2

]γ−1

× 1
(ϕ−ρ)1−α1

. 1
(s−θ)1−α2

f (ρ, s) dsdρ,
(1.18)

α1,α2Jβ,γ
τ+,µ− = 1

Γ(γ)Γ(β)

∫ λ

τ

∫ µ

y

[
(λ−τ)α1−(ρ−τ)α1

α1

]β−1 [
(µ−y)α2−(µ−s)α2

α2

]γ−1

× 1
(ρ−τ)1−α1

. 1
(µ−s)1−α2

f (ρ, s) dsdρ,
(1.19)

and
α1,α2Jβ,γ

ϕ−,µ− = 1
Γ(γ)Γ(β)

∫ ϕ

λ

∫ µ

y

[
(ϕ−λ)α1−(ϕ−ρ)α1

α1

]β−1 [
(µ−y)α2−(µ−s)α2

α2

]γ−1

× 1
(ϕ−ρ)1−α1

. 1
(µ−s)1−α2

f (ρ, s) dsdρ.
(1.20)

Remark 1.3. [10] If we take ζ (λ) = λ, α1 = 1 and α2 = 1 in Definition 3, then we get

α1,α2Jβ,γ
τ+,θ+ =

1

Γ (γ) Γ (β)

∫ λ

τ

∫ y

θ

(λ− ρ)
β−1

(y − s)
γ−1

f (ρ, s) dsdρ, (1.21)

α1,α2Jβ,γ
ϕ−,θ+ =

1

Γ (γ) Γ (β)

∫ ϕ

λ

∫ y

θ

(ρ− λ)
β−1

(y − s)
γ−1

f (ρ, s) dsdρ, (1.22)

α1,α2Jβ,γ
τ+,µ− =

1

Γ (γ) Γ (β)

∫ λ

τ

∫ µ

y

(λ− ρ)
β−1

(s− y)
γ−1

f (ρ, s) dsdρ, (1.23)

and
α1,α2Jβ,γ

ϕ−,µ− =
1

Γ (γ) Γ (β)

∫ ϕ

λ

∫ µ

y

(ρ− λ)
β−1

(s− y)
γ−1

f (ρ, s) dsdρ. (1.24)

Kiriş et al. studied Hermite-Hadamard inequalities for co-ordinated convex function via generalized conformable
fractional integrals in [11]. Moreover, Çiriş and et al. defined generalized σ−conformable integrals by co-ordinated
functions [12]. In addition, considering Definition 4, we can obtain Definition 5.

Definition 1.5. Let f ∈ Xζ ([τ, ϕ]× [θ, µ]) and α1 ̸= 0, α2 ̸= 0, β, γ ∈ C, Re (β) > 0, Re (β) > 0. Now, ζ be an
increasing and positive monotone function on [0,∞) and also derivative ζ ′ be continuous on [0,∞) and ζ (0) = 0.
In here, (

α1

ζ Jβ
τ+f

)(
λ, θ+µ

2

)
= 1

Γ(β)

∫ λ

τ

[
(ζ(λ)−ζ(τ))α1−(ζ(ρ)−ζ(τ))α1

α1

]β−1 f(ρ, θ+µ
2 )ζ

′
(ρ)dρ

(ζ(ρ)−ζ(τ))1−α1
, λ > τ,

(1.25)

(
α1

ζ Jβ
ϕ−f

)(
λ, θ+µ

2

)
= 1

Γ(β)

∫ ϕ

λ

[
(ζ(ϕ)−ζ(λ))α1−(ζ(ϕ)−ζ(ρ))α1

α1

]β−1 f(ρ, θ+µ
2 )ζ

′
(ρ)dρ

(ζ(ϕ)−ζ(ρ))1−α1
, λ < ϕ,

(1.26)

(
α2

ζ Jγ
θ+f

)(
τ+ϕ
2 , y

)
= 1

Γ(γ)

∫ y

θ

[
(ζ(y)−ζ(θ))α2−(ζ(s)−ζ(θ))α2

α2

]γ−1 f( τ+ϕ
2 ,s)ζ

′
(s)ds

(ζ(s)−ζ(θ))1−α2
, y > θ,

(1.27)

and (
α2

ζ Jγ
µ−f

)(
τ+ϕ
2 , y

)
= 1

Γ(γ)

∫ µ

y

[
(ζ(µ)−ζ(y))α2−(ζ(µ)−ζ(s))α2

α2

]γ−1 f( τ+ϕ
2 ,s)ζ

′
(s)ds

(ζ(µ)−ζ(s))1−α2
, y < µ,

(1.28)

we have equations.

Remark 1.4. If we take ζ (λ) = λσ+1

(σ+1)
1
α

in Definition 5, then we can write as the following,

(
α1
σ Jβ

τ+f
)(

λ, θ+µ
2

)
= 1

Γ(β)

∫ λ

τ

[
(λσ+1−τσ+1)

α1−(ρσ+1−τσ+1)
α1

α1(σ+1)

]β−1
ρσf(ρ, θ+µ

2 )dρ
(ρσ+1−τσ+1)1−α1

, λ > τ,
(1.29)
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(
α1
σ Jβ

ϕ−f
)(

λ, θ+µ
2

)
= 1

Γ(β)

∫ ϕ

λ

[
(ϕσ+1−λσ+1)

α−(ϕσ+1−ρσ+1)
α1

α1(σ+1)

]β−1
ρσf(ρ, θ+µ

2 )dρ
(ϕσ+1−ρσ+1)1−α1

, λ < ϕ,
(1.30)

(
α2
σ Jγ

θ+f
) (

τ+ϕ
2 , y

)
= 1

Γ(γ)

∫ y

θ

[
(yσ+1−θσ+1)

α2−(sσ+1−θσ+1)
α2

α2(σ+1)

]γ−1
sσf( τ+ϕ

2 ,s)ds
(sσ+1−θσ+1)1−α2

, y > θ,
(1.31)

and (
α2
σ Jγ

µ−f
)(

τ+ϕ
2 , y

)
= 1

Γ(γ)

∫ µ

y

[
(µσ+1−yσ+1)

α2−(µσ+1−sσ+1)
α2

α2(σ+1)

]γ−1
sσf( τ+ϕ

2 ,s)ds
(µσ+1−sσ+1)1−α2

, y < µ.
(1.32)

Remark 1.5. [11] If we get ζ (λ) = λ in Definition 4, then we obtain(
α1Jβ

τ+f
)(

λ, θ+µ
2

)
= 1

Γ(β)

∫ λ

τ

[
(λ−τ)α1−(ρ−τ)α1

α1

]β−1 f(ρ, θ+µ
2 )dρ

(ρ−τ)1−α1
, λ > τ,(

α1Jβ
ϕ−f

)(
λ, θ+µ

2

)
= 1

Γ(β)

∫ ϕ

λ

[
(ϕ−λ)α1−(ϕ−ρ)α1

α1

]β−1 f(ρ, θ+µ
2 )dρ

(ϕ−ρ)1−α1
, λ < ϕ,(

α2Jγ
θ+f

) (
τ+ϕ
2 , y

)
= 1

Γ(γ)

∫ y

θ

[
(y−θ)α2−(s−θ)α2

α2

]γ−1 f( τ+ϕ
2 ,s)ds

(s−θ)1−σ , y > θ,(
α2Jγ

µ−f
)(

τ+ϕ
2 , y

)
= 1

Γ(γ)

∫ µ

y

[
(µ−y)α2−(µ−s)α2

α2

]γ−1 f( τ+ϕ
2 ,s)ds

(µ−s)1−σ , y < µ.

(1.33)

In this study, we will examine Hermite-Hadamard inequalities for co-ordinated convex mappings by means of
the generalized ζ−conformable fractional integral operator. In addition, we are going to prove several important
Theorems utilizing the Hermite-Hadamard inequality for generalized ζ−conformable fractional integrals and by
means of definitions which we define.

2. Hermite-Hadamard inequality

In this section, we will derive Hermite-Hadamard inequality for generalized ζ−conformable fractional integrals.

Theorem 2.1. Let f ∈ Xζ ([τ, ϕ]) and f is φ−convex function. ζ be an increasing and positive monotone function on [0,∞)
and also derivative ζ ′ be continuous on [0,∞) and ζ (0) = 0. We obtain the inequalities as follows utilizing the generalized
ζ−conformable fractional integrals for R (β) > 0 and α1 ∈ (0, 1] ,

f
(

ζ(τ)+ζ(ϕ)
2

)
≤ 2α1β−1.Γ(β+1)αβ

1

(ζ(ϕ)−ζ(τ))α1β .[(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α2 )β]

×
[
α1

ζ Jβ

(w1)
+f (w2) +

α1

ζ Jβ

(w4)
−f (w3)

]
≤ f(ζ(τ))+f(ζ(ϕ))

2 .

(2.1)

In here, we have
ζ (τ) + ζ (ϕ)

2
− ζ (1) (ζ (ϕ)− ζ (τ))

2
= w1,

ζ (τ) + ζ (ϕ)

2
− ζ (0) (ζ (ϕ)− ζ (τ))

2
= w2,

ζ (τ) + ζ (ϕ)

2
+

ζ (0) (ζ (ϕ)− ζ (τ))

2
= w3

and
ζ (τ) + ζ (ϕ)

2
+

ζ (1) (ζ (ϕ)− ζ (τ))

2
= w4.
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Proof. By definition of φ−convex function, we get

f
(

ζ(τ)+ζ(ϕ)
2

)
= f

[
1
2

(
1+ζ(ρ)

2 ζ (τ) + 1−ζ(ρ)
2 ζ (ϕ)

)
+ 1

2

(
1−ζ(ρ)

2 ζ (τ) + 1+ζ(ρ)
2 ζ (ϕ)

)]
≤ 1

2

[
f
(

1+ζ(ρ)
2 ζ (τ) + 1−ζ(ρ)

2 ζ (ϕ)
)
+ f

(
1−ζ(ρ)

2 ζ (τ) + 1+ζ(ρ)
2 ζ (ϕ)

)]
≤ f(ζ(τ))+f(ζ(ϕ))

2 .

Here, we can write
f
(

ζ(τ)+ζ(ϕ)
2

)
≤ 1

2

[
f
(

1+ζ(ρ)
2 ζ (τ) + 1−ζ(ρ)

2 ζ (ϕ)
)

+f
(

1−ζ(ρ)
2 ζ (τ) + 1+ζ(ρ)

2 ζ (ϕ)
)]

≤ f(ζ(τ))+f(ζ(ϕ))
2 .

(2.2)

Moreover, if we multiply
(

1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)

(1−ζ(ρ))1−α1
both of inequalities in (2.2) and we integrate from 0 to 1,

then we acquire

f
(

ζ(τ)+ζ(ϕ)
2

) ∫ 1

0

(
1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)dρ

(1−ζ(ρ))1−α1

≤ 1
2

[∫ 1

0
f
(

1+ζ(ρ)
2 ζ (τ) + 1−ζ(ρ)

2 ζ (ϕ)
)(

1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)dρ

(1−ζ(ρ))1−α1

+
∫ 1

0
f
(

1−ζ(ρ)
2 ζ (τ) + 1+ζ(ρ)

2 ζ (ϕ)
)(

1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)dρ

(1−ζ(ρ))1−α1

]
≤ f(ζ(τ))+f(ζ(ϕ))

2

∫ 1

0

(
1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)dρ

(1−ζ(ρ))1−α1
.

(2.3)

Furthermore, we get I1 as the following,

I1 =
∫ 1

0
f
(

1+ζ(ρ)
2 ζ (τ) + 1−ζ(ρ)

2 ζ (ϕ)
)(

1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)dρ

(1−ζ(ρ))1−α1
.

By changing the variable with,
1+ζ(ρ)

2 ζ (τ) + 1−ζ(ρ)
2 ζ (ϕ) = ζ (u) , (2.4)

we have

I1 =
∫ w2

w1

(
1−( 2

ζ(ϕ)−ζ(τ) )
α1 (ζ(u)−ζ(τ))α1

α1

)β−1 (
2

ζ(ϕ)−ζ(τ)

)α1 f(ζ(u))ζ
′
(u)du

(ζ(u)−ζ(τ))1−α1

= 2α1β

(ζ(ϕ)−ζ(τ))α1β

∫ w2

w1

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(u)−ζ(τ))α1

α1

)β−1
f(ζ(u))ζ

′
(u)du

(ζ(u)−ζ(τ))1−α1

= 2α1βΓ(β)

(ζ(ϕ)−ζ(τ))α1β .
α1

ζ Jβ

w+
1

f (w2) .

At the same way, if we take I2 as the following,

I2 =
∫ 1

0
f
(

1−ζ(ρ)
2 ζ (τ) + 1+ζ(ρ)

2 ζ (ϕ)
)(

1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)dρ

(1−ζ(ρ))1−α1
,

By changing the variable with,
1−ζ(ρ)

2 ζ (τ) + 1+ζ(ρ)
2 ζ (ϕ) = ζ (u) , (2.5)

we can write

I2 =
∫ w4

w3

(
1−( 2

ζ(ϕ)−ζ(τ) )
α1 (ζ(ϕ)−ζ(u))α1

α1

)β−1 (
2

ζ(ϕ)−ζ(τ)

)α1 f(ζ(u))ζ
′
(u)du

(ζ(ϕ)−ζ(u))1−α1

= 2α1β

(ζ(ϕ)−ζ(τ))α1β

∫ w4

w3

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(ϕ)−ζ(u))α1

α1

)β−1
f(ζ(u))ζ

′
(u)du

(ζ(ϕ)−ζ(u))1−α1

= 2α1βΓ(β)

(ζ(ϕ)−ζ(τ))α1β .
α1

ζ Jβ

w−
4

f (w3) .

Additionally, if we get I3 as the following, then we obtain

I3 =
∫ 1

0

(
1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)dρ

(1−ζ(ρ))1−α1

= 1

βαβ
1

[
(1− (1− ζ (1))

α1)
β − (1− (1− ζ (0))

α1)
β
]
.
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If we use I1, I2 and I3 in (2.3) then, we have

f
(

ζ(τ)+ζ(ϕ)
2

)
≤ 2α1β−1.Γ(β+1)αβ

1

(ζ(ϕ)−ζ(τ))α1β .[(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β]

×
[
α1

ζ Jβ

(w1)
+f (w2) +

α1

ζ Jβ

(w4)
−f (w3)

]
≤ f(ζ(τ))+f(ζ(ϕ))

2 .

The proof is completed.

If we take ζ (λ) = λ in Theorem 2, then we obtain

f
(

τ+ϕ
2

)
≤ 2α1β−1.Γ(β+1)αβ

1

(ϕ−τ)α1β

[
α1Jβ

τ+f
(

τ+ϕ
2

)
+α1 Jβ

ϕ−f
(

τ+ϕ
2

)]
≤ f(τ)+f(ϕ)

2 ,

which is proved in [13].

Theorem 2.2. Let f ∈ Xζ ([τ, ϕ]× [θ, µ]) and f is a ζ−conformable co-ordinated φ−convex function. Moreover, ζ be
an increasing and positive monotone function on [0,∞) and also derivative ζ ′ be continuous on [0,∞) and ζ (0) = 0.
Additionally, we have for α1 ̸= 0, α2 ̸= 0, β, γ ∈ C, Re (β) > 0, Re (γ) > 0,

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
×
(

(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β

αβ
1β

)(
(1−(1−ζ(1))α2 )γ−(1−(1−ζ(0))α2 )γ

αγ
2γ

)
≤ 1

4

[
2α1β2α2γΓ(β)Γ(γ)

(ζ(ϕ)−ζ(τ))α1β(ζ(µ)−ζ(θ))α2γ

(
α1,α2

ζ Jβ,γ

w+
1 ,q+1

f
)
(w2, q2)

+ 2α1β2α2γΓ(β)Γ(γ)

(ζ(ϕ)−ζ(τ))α1β(ζ(θ)−ζ(µ))α2γ

(
α1,α2

ζ Jβ,γ

w+
1 ,q−4

f
)
(w2, q3)

+ 2α1β2α2γΓ(β)Γ(γ)

(ζ(ϕ)−ζ(τ))α1β(ζ(θ)−ζ(µ))α2γ

(
α1,α2

ζ Jβ,γ

w−
4 ,q+1

f
)
(w3, q2)

+ 2α1β2α2γΓ(β)Γ(γ)

(ζ(ϕ)−ζ(τ))α1β(ζ(θ)−ζ(µ))α2γ

(
α1,α2

ζ Jβ,γ

w−
4 ,q−4

f
)
(w3, q3)

]
≤ f(ζ(τ),ζ(θ))+f(ζ(τ),ζ(µ))+f(ζ(ϕ),ζ(θ))+f(ζ(ϕ),ζ(µ))

4

×
(

(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β

αβ
1β

)(
(1−(1−ζ(1))α2 )γ−(1−(1−ζ(0))α2 )γ

αγ
2γ

)
.

(2.6)

In here, we write

w1 = ζ(τ)+ζ(ϕ)
2 − ζ(1)(ζ(ϕ)−ζ(τ))

2 , q1 = ζ(θ)+ζ(µ)
2 − ζ(1)(ζ(µ)−ζ(θ))

2

w2 = ζ(τ)+ζ(ϕ)
2 − ζ(0)(ζ(ϕ)−ζ(τ))

2 , q2 = ζ(θ)+ζ(µ)
2 − ζ(0)(ζ(µ)−ζ(θ))

2

w3 = ζ(τ)+ζ(ϕ)
2 + ζ(0)(ζ(ϕ)−ζ(τ))

2 , q3 = ζ(θ)+ζ(µ)
2 + ζ(0)(ζ(µ)−ζ(θ))

2

w4 = ζ(τ)+ζ(ϕ)
2 + ζ(1)(ζ(ϕ)−ζ(τ))

2 , q4 = ζ(θ)+ζ(µ)
2 + ζ(1)(ζ(µ)−ζ(θ))

2 .

Proof. We can write the equality

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
= f

[
1
4

(
1+ζ(ρ)

2 ζ (τ) + 1−ζ(ρ)
2 ζ (ϕ) , 1+ζ(s)

2 ζ (θ) + 1−ζ(s)
2 ζ (µ)

)
+ 1

4

(
1+ζ(ρ)

2 ζ (τ) + 1−ζ(ρ)
2 ζ (ϕ) , 1−ζ(s)

2 ζ (θ) + 1+ζ(s)
2 ζ (µ)

)
+ 1

4

(
1−ζ(ρ)

2 ζ (τ) + 1+ζ(ρ)
2 ζ (ϕ) , 1+ζ(s)

2 ζ (θ) + 1−ζ(s)
2 ζ (µ)

)
+ 1

4

(
1−ζ(ρ)

2 ζ (τ) + 1+ζ(ρ)
2 ζ (ϕ) , 1−ζ(s)

2 ζ (θ) + 1+ζ(s)
2 ζ (µ)

)]
.
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By Definition 1, we have

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
≤ 1

4

[
f
(

1+ζ(ρ)
2 ζ (τ) + 1−ζ(ρ)

2 ζ (ϕ) , 1+ζ(s)
2 ζ (θ) + 1−ζ(s)

2 ζ (µ)
)

+f
(

1+ζ(ρ)
2 ζ (τ) + 1−ζ(ρ)

2 ζ (ϕ) , 1−ζ(s)
2 ζ (θ) + 1+ζ(s)

2 ζ (µ)
)

+f
(

1−ζ(ρ)
2 ζ (τ) + 1+ζ(ρ)

2 ζ (ϕ) , 1+ζ(s)
2 ζ (θ) + 1−ζ(s)

2 ζ (µ)
)

+f
(

1−ζ(ρ)
2 ζ (τ) + 1+ζ(ρ)

2 ζ (ϕ) , 1−ζ(s)
2 ζ (θ) + 1+ζ(s)

2 ζ (µ)
)]

≤ f(ζ(τ),ζ(θ))+f(ζ(τ),ζ(µ))+f(ζ(ϕ),ζ(θ))+f(ζ(ϕ),ζ(µ))
4 .

(2.7)

If we multiply by
(

1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)

(1−ζ(ρ))1−α1

(
1−(1−ζ(s))α2

α2

)γ−1
ζ
′
(s)

(1−ζ(s))1−α2
both of the inequalities in (2.7)

and integrating [0, 1]× [0, 1] with respect to s and ρ, then we obtain

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
×
∫ 1

0

∫ 1

0

(
1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)

(1−ζ(ρ))1−α1

(
1−(1−ζ(s))α2

α2

)γ−1
ζ
′
(s)dsdρ

(1−ζ(s))1−α2

≤ 1
4

[∫ 1

0

∫ 1

0

(
1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)

(1−ζ(ρ))1−α1

(
1−(1−ζ(s))α2

α2

)β−1
ζ
′
(s)dsdρ

(1−ζ(s))1−α2

×f
(

1+ζ(ρ)
2 ζ (τ) + 1−ζ(ρ)

2 ζ (ϕ) , 1+ζ(s)
2 ζ (θ) + 1−ζ(s)

2 ζ (µ)
)

+

(∫ 1

0

∫ 1

0

(
1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)

(1−ζ(ρ))1−α1

(
1−(1−ζ(s))α2

α2

)γ−1
ζ
′
(s)dsdρ

(1−ζ(s))1−α2

)
×f

(
1+ζ(ρ)

2 ζ (τ) + 1−ζ(ρ)
2 ζ (ϕ) , 1−ζ(s)

2 ζ (θ) + 1+ζ(s)
2 ζ (µ)

)
+

(∫ 1

0

∫ 1

0

(
1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)

(1−ζ(ρ))1−α1

(
1−(1−ζ(s))α2

α2

)γ−1
ζ
′
(s)dsdρ

(1−ζ(s))1−α2

)
×f

(
1−ζ(ρ)

2 ζ (τ) + 1+ζ(ρ)
2 ζ (ϕ) , 1+ζ(s)

2 ζ (θ) + 1−ζ(s)
2 ζ (µ)

)
+

(∫ 1

0

∫ 1

0

(
1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)

(1−ζ(ρ))1−α1

(
1−(1−ζ(s))α2

α2

)γ−1
ζ
′
(s)dsdρ

(1−ζ(s))1−α2

)
×f

(
1−ζ(ρ)

2 ζ (τ) + 1+ζ(ρ)
2 ζ (ϕ) , 1−ζ(s)

2 ζ (θ) + 1+ζ(s)
2 ζ (µ)

)]
≤ f(ζ(τ),ζ(θ))+f(ζ(τ),ζ(µ))+f(ζ(ϕ),ζ(θ))+f(ζ(ϕ),ζ(µ))

4

×
(∫ 1

0

∫ 1

0

(
1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)

(1−ζ(ρ))1−α1

(
1−(1−ζ(s))α2

α2

)γ−1
ζ
′
(s)dsdρ

(1−ζ(s))1−α2

)
.

(2.8)

By changing variables,
1+ζ(ρ)

2 ζ (τ) + 1−ζ(ρ)
2 ζ (ϕ) = ζ (u) ,

1+ζ(s)
2 ζ (θ) + 1−ζ(s)

2 ζ (µ) = ζ (v)

(2.9)

we have ∫ 1

0

∫ 1

0

(
1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)

(1−ζ(ρ))1−α1

(
1−(1−ζ(s))α2

α2

)γ−1
ζ
′
(s)dsdρ

(1−ζ(s))1−α2

×f
(

1+ζ(ρ)
2 ζ (τ) + 1−ζ(ρ)

2 ζ (ϕ) , 1+ζ(s)
2 ζ (θ) + 1−ζ(s)

2 ζ (µ)
)

=
∫ w2

w1

∫ q2
q1

(
1−( 2(ζ(u)−ζ(τ))

ζ(ϕ)−ζ(τ) )
α1

α1

)β−1 (
1−( 2(ζ(v)−ζ(θ))

ζ(µ)−ζ(θ) )
α2

α2

)γ−1

×
(

2α1 (ζ(u)−ζ(τ))α1−1

(ζ(ϕ)−ζ(τ))α1

)(
2α2 (ζ(v)−ζ(θ))α2

(ζ(µ)−ζ(θ))α2

)
ζ

′
(u) ζ

′
(v) f (ζ (u) , ζ (v)) dudv

=
(

2
ζ(ϕ)−ζ(τ)

)α1β (
2

ζ(µ)−ζ(θ)

)α2γ ∫ w2

w1

∫ q2
q1

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(u)−ζ(τ))α1

α1

)β−1

×
(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(v)−ζ(θ))α2

α2

)γ−1
f(ζ(u),ζ(v))ζ

′
(u)ζ

′
(v)dudv

(ζ(ϕ)−ζ(τ))1−α1 (ζ(µ)−ζ(θ))1−α2

= 2α1β2α2γΓ(β)Γ(γ)

(ζ(ϕ)−ζ(τ))α1β(ζ(µ)−ζ(θ))α2γ

(
α1,α2

ζ Jβ,γ

w+
1 ,q+1

f
)
(w2, q2) .

(2.10)
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In the same way, we have

∫ 1

0

∫ 1

0

(
1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)

(1−ζ(ρ))1−α1

(
1−(1−ζ(s))α2

α2

)γ−1
ζ
′
(s)dsdρ

(1−ζ(s))1−α2

×f
(

1+ζ(ρ)
2 ζ (τ) + 1−ζ(ρ)

2 ζ (ϕ) , 1−ζ(s)
2 ζ (θ) + 1+ζ(s)

2 ζ (µ)
)

= 2α1β2α2γΓ(β)Γ(γ)

(ζ(ϕ)−ζ(τ))α1β(ζ(µ)−ζ(θ))α2γ

(
α1,α2

ζ Jβ,γ

w+
1 ,q−4

f
)
(w2, q3) ,

(2.11)

∫ 1

0

∫ 1

0

(
1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)

(1−ζ(ρ))1−α1

(
1−(1−ζ(s))α2

α2

)γ−1
ζ
′
(s)dsdρ

(1−ζ(s))1−α2

×f
(

1−ζ(ρ)
2 ζ (τ) + 1+ζ(ρ)

2 ζ (ϕ) , 1+ζ(s)
2 ζ (θ) + 1−ζ(s)

2 ζ (µ)
)

= 2α1β2α2γΓ(β)Γ(γ)

(ζ(ϕ)−ζ(τ))α1β(ζ(µ)−ζ(θ))α2γ

(
α1,α2

ζ Jβ,γ

w−
4 ,q+1

f
)
(w3, q2)

(2.12)

and ∫ 1

0

∫ 1

0

(
1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)

(1−ζ(ρ))1−α1

(
1−(1−ζ(s))α2

α2

)γ−1
ζ
′
(s)dsdρ

(1−ζ(s))1−α2

×f
(

1−ζ(ρ)
2 ζ (τ) + 1+ζ(ρ)

2 ζ (ϕ) , 1−ζ(s)
2 ζ (θ) + 1+ζ(s)

2 ζ (µ)
)

= 2α1β2α2γΓ(β)Γ(γ)

(ζ(ϕ)−ζ(τ))α1β(ζ(µ)−ζ(θ))α2γ

(
α1,α2

ζ Jβ,γ

w−
4 ,q−4

f
)
(w3, q3) .

(2.13)

By simple calculations, we have

∫ 1

0

∫ 1

0

(
1−(1−ζ(ρ))α1

α1

)β−1
ζ
′
(ρ)

(1−ζ(ρ))1−α1

(
1−(1−ζ(s))α2

α2

)γ−1
ζ
′
(s)dsdρ

(1−ζ(s))1−α2

=
(

(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β

αβ
1β

)(
(1−(1−ζ(1))α2 )γ−(1−(1−ζ(0))α2 )γ

αγ
2γ

)
.

(2.14)

By using (2.10)-(2.14) in (2.8), we obtain

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
×
(

(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β

αβ
1β

)(
(1−(1−ζ(1))α2 )γ−(1−(1−ζ(0))α2 )γ

αγ
2γ

)
≤ 1

4

[
2α1β2α2γΓ(β)Γ(γ)

(ζ(ϕ)−ζ(τ))α1β(ζ(µ)−ζ(θ))α2γ

(
α1,α2

ζ Jβ,γ

w+
1 ,q+1

f
)
(w2, q2)

+ 2α1β2α2γΓ(β)Γ(γ)

(ζ(ϕ)−ζ(τ))α1β(ζ(µ)−ζ(θ))α2γ

(
α1,α2

ζ Jβ,γ

w+
1 ,q−4

f
)
(w2, q3)

+ 2α1β2α2γΓ(β)Γ(γ)

(ζ(ϕ)−ζ(τ))α1β(ζ(µ)−ζ(θ))α2γ

(
α1,α2

ζ Jβ,γ

w−
4 ,q+1

f
)
(w3, q2)

+ 2α1β2α2γΓ(β)Γ(γ)

(ζ(ϕ)−ζ(τ))α1β(ζ(µ)−ζ(θ))α2γ

(
α1,α2

ζ Jβ,γ

w−
4 ,q−4

f
)
(w3, q3)

≤ f(ζ(τ),ζ(θ))+f(ζ(τ),ζ(µ))+f(ζ(ϕ),ζ(θ))+f(ζ(ϕ),ζ(µ))
4

×
(

(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β

αβ
1β

)(
(1−(1−ζ(1))α2 )γ−(1−(1−ζ(0))α2 )γ

αγ
2γ

)
.

The proof is completed.

Remark 2.1. [11] If ζ (λ) = λ in Theorem 3, we obtain

f
(

τ+ϕ
2 , θ+µ

2

)(
1

αβ
1α

γ
2βγ

)
≤ ( 2

α1β−12α2γ−1Γ(β)Γ(γ)

(ϕ−τ)α1β(µ−θ)α2γ

×
[(

α1,α2Jβ,γ
τ+,θ+f

)(
τ+ϕ
2 , θ+µ

2

)
+

(
α1,α2Jβ,γ

τ+,µ−f
)(

τ+ϕ
2 , θ+µ

2

)
+
(
α1,α2Jβ,γ

ϕ−,θ+f
)(

τ+ϕ
2 , θ+µ

2

)
+
(
α1,α2Jβ,γ

ϕ−,µ−f
)(

τ+ϕ
2 , θ+µ

2

)]
≤ f(τ,θ)+f(τ,µ)+f(ϕ,θ)+f(ϕ,µ)

4

(
1

αβ
1α

γ
2βγ

)
.
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Remark 2.2. By choosing ζ (λ) = λ, α1 = 1 and α2 = 1 in Theorem 3, we have

f
(

τ+ϕ
2 , θ+µ

2

)
≤ 2β−12γ−1Γ(β+1)Γ(γ+1)

(ϕ−τ)β(µ−θ)γ

×
[(

1,1
ζ Jβ,γ

τ+,θ+f
)(

τ+ϕ
2 , θ+µ

2

)
+

(
1,1
ζ Jβ,γ

τ+,µ−f
)(

τ+ϕ
2 , θ+µ

2

)
+
(
1,1
ζ Jβ,γ

ϕ−,θ+f
)(

τ+ϕ
2 , θ+µ

2

)
+

(
1,1
ζ Jβ,γ

ϕ−,µ−f
)(

τ+ϕ
2 , θ+µ

2

)]
≤ f(τ,θ)+f(τ,µ)+f(ϕ,θ)+f(ϕ,µ)

4 .

Remark 2.3. By choosing ζ (λ) = λ, α1 = 1, α2 = 1, β = 1 and γ = 1 in Theorem 3, we have

f
(

τ+ϕ
2 , θ+µ

2

)
≤ 1

(ϕ−τ)(µ−θ)

∫ θ

τ

∫ µ

θ
f (t, s) dsdt

≤ f(τ,θ)+f(τ,µ)+f(ϕ,θ)+f(ϕ,µ)
4 .

Theorem 2.3. Let f : ∆ = [τ, ϕ] × [θ, µ] ⊂ R2 → R for 0 ≤ τ < ϕ and 0 ≤ θ < µ. Furthermore, f is ζ−conformable
co-ordinated φ−convex function and f ∈ Xζ (∆) . ζ be an increasing and positive monotone function on [0,∞) and also
derivative ζ ′ be continuous on [0,∞) and ζ (0) = 0. We can obtain as the following inequality for α1 ̸= 0, α2 ̸= 0, β, γ ∈ C,
Re (β) > 0, Re (γ) > 0,

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
≤ 2α1β−2Γ(β+1)αβ

1

(ζ(ϕ)−ζ(τ))α1β[(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β]

×
[
α1

ζ Jβ

w+
1

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
+α1

ζ Jβ

w−
4

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)]
+

2α2γ−2Γ(γ+1)αγ
2

(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α2 )γ−(1−(1−ζ(0))α2 )γ ]

×
[
α2

ζ Jγ

q+1
f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
+α2

ζ Jγ

q−4
f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)]
≤ 2α2γ−1.2α1β−1.Γ(γ+1)Γ(β+1)αγ

2α
β
1

(ζ(ϕ)−ζ(τ))α1β(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β]

×
[
α1,α2

ζ Jβ,γ

w+
1 ,q+1

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
+α1,α2

ζ Jβ,γ

w+
1 ,q−4

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)]
+

2α2γ−1.2α1β−1.Γ(γ+1)Γ(β+1)αγ
2α

β
1

(ζ(ϕ)−ζ(τ))α1β(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β]

×
[
α1,α2

ζ Jγ,β

w−
4 ,q+1

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
+α1,α2

ζ Jγ,β

w4−,q−4
f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)]
≤ 2α1β−3Γ(β+1)αβ

1

(ζ(ϕ)−ζ(τ))α1β

[
α1

ζ Jβ

w+
1

f
(

ζ(τ)+ζ(ϕ)
2 , q1

)
+α1

ζ Jβ

w+
1

f
(

ζ(τ)+ζ(ϕ)
2 , q4

)
+α1

ζ Jβ

w−
4

f
(

ζ(τ)+ζ(ϕ)
2 , q1

)
+α1

ζ Jβ

w−
4

f
(

ζ(τ)+ζ(ϕ)
2 , q4

)]
+

2α2γ−3Γ(γ+1)αγ
2

(ζ(µ)−ζ(θ))α2γ

[
α2

ζ Jγ

q+1
f
(
w1,

ζ(θ)+ζ(µ)
2

)
+α2

ζ Jγ

q+1
f
(
w4,

ζ(θ)+ζ(µ)
2

)
+α2

ζ Jγ

q−4
f
(
w1,

ζ(θ)+ζ(µ)
2

)
+α2

ζ Jγ

q−4
f
(
w4,

ζ(θ)+ζ(µ)
2

)]
≤ f(ζ(τ),ζ(θ))+f(ζ(τ),ζ(µ))+f(ζ(ϕ),ζ(θ))+f(ζ(ϕ),ζ(µ))

4 .

Here, we have
w1 = ζ(τ)+ζ(ϕ)

2 − ζ(1)(ζ(ϕ)−ζ(τ))
2 , q1 = ζ(θ)+ζ(µ)

2 − ζ(1)(ζ(µ)−ζ(θ))
2

w2 = ζ(τ)+ζ(ϕ)
2 − ζ(0)(ζ(ϕ)−ζ(τ))

2 , q2 = ζ(θ)+ζ(µ)
2 − ζ(0)(ζ(µ)−ζ(θ))

2

w3 = ζ(τ)+ζ(ϕ)
2 + ζ(0)(ζ(ϕ)−ζ(τ))

2 , q3 = ζ(θ)+ζ(µ)
2 + ζ(0)(ζ(µ)−ζ(θ))

2

w4 = ζ(τ)+ζ(ϕ)
2 + ζ(1)(ζ(ϕ)−ζ(τ))

2 , q4 = ζ(θ)+ζ(µ)
2 + ζ(1)(ζ(µ)−ζ(θ))

2 .

Proof. If f : ∆ → R is co-ordinated φ−convex function and also gζ(λ) : [q1, q4] → R, gζ(λ) (ζ (ρ)) = f (ζ (λ) , ζ (ρ)) is
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φ−convex on [q1, q4] for all w1 ≤ ζ(λ) ≤ w4, then, we obtain by utilizing Theorem 2,

gζ(λ)

(
ζ(θ)+ζ(µ)

2

)
≤ 2α2γ−1Γ(γ+1)αγ

2

(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α2 )γ−(1−(1−ζ(0))α2 )γ ]

×
[
α2

ζ Jγ

q+1
gζ(λ) (q2) +

α2

ζ Jγ

q−4
gζ(λ) (q3)

]
≤ gζ(λ)ζ(θ)+gζ(λ)ζ(µ)

2 .

Here, we can write

f
(
ζ (λ) , ζ(θ)+ζ(µ)

2

)
≤ 2α2γ−1γαγ

2

(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α2 )γ−(1−(1−ζ(0))α2 )γ ]

×

[∫ q2
q1

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(ρ)−ζ(θ))α2

α2

)γ−1
f(ζ(λ),ζ(ρ))ζ

′
(ρ)dρ

(ζ(ρ)−ζ(θ))1−α2

+
∫ q4
q3

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(µ)−ζ(ρ))α2

α2

)γ−1
f(ζ(λ),ζ(ρ))ζ

′
(ρ)dρ

(ζ(µ)−ζ(ρ))1−α2

]
≤ f(ζ(λ),ζ(θ))+f(ζ(λ),ζ(µ))

2 .

(2.15)

If we multiply both sides of (2.15) by

2α1β−1βαβ
1

(ζ(ϕ)−ζ(τ))α1β

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(λ)−ζ(τ))α1

α1

)β−1
ζ
′
(λ)

(ζ(λ)−ζ(τ))1−α1
,

and if we integrate with respect to λ on [w1, w2], then we get

2α1β−1βαβ
1

(ζ(ϕ)−ζ(τ))α1β

∫ w2

w1

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(λ)−ζ(τ))α1

α1

)β−1
f(ζ(λ), ζ(θ)+ζ(µ)

2 )ζ
′
(λ)dλ

(ζ(λ)−ζ(τ))1−α1

≤ 2α2γ−1.2α1β−1.αγ
2α

β
1 .γβ

(ζ(ϕ)−ζ(τ))α1β .(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α2 )γ−(1−(1−ζ(0))α2 )γ ]

×

[[∫ w2

w1

∫ q2
q1

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(λ)−ζ(τ))α1

α1

)β−1 (
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(ρ)−ζ(θ))α2

α2

)γ−1

× f(ζ(λ),ζ(ρ))ζ
′
(λ)ζ

′
(ρ)dρdλ

(ζ(λ)−ζ(τ))1−α1 (ζ(ρ)−ζ(θ))1−α2

]
+

[∫ w2

w1

∫ q4
q3

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(λ)−ζ(τ))α1

α1

)β−1 (
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(µ)−ζ(ρ))α2

α2

)γ−1

× f(ζ(λ),ζ(ρ))ζ
′
(λ)ζ

′
(ρ)dρdλ

(ζ(λ)−ζ(τ))1−α1 (ζ(µ)−ζ(ρ))1−α2

]]
≤ 2α1β−2βαβ

1

(ζ(ϕ)−ζ(τ))α1β

[∫ w2

w1

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(λ)−ζ(τ))α1

α1

)β−1
f(ζ(λ),ζ(θ))ζ

′
(λ)dλ

(ζ(λ)−ζ(τ))1−α1

+
∫ w2

w1

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(λ)−ζ(τ))α1

α1

)β−1
f(ζ(λ),ζ(µ))ζ

′
(λ)dλ

(ζ(λ)−ζ(τ))1−α1

]
.

(2.16)

Similarly, if we multiply both sides of (2.15) by

2α1β−1βαβ
1

(ζ(ϕ)−ζ(τ))α1β

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(ϕ)−ζ(λ))α1

α1

)β−1
ζ
′
(λ)

(ζ(ϕ)−ζ(λ))1−α1
,
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and if we integrate with respect to λ on [w3, w4], then we can have

2α1β−1βαβ
1

(ζ(ϕ)−ζ(τ))α1β

∫ w4

w3

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(ϕ)−ζ(λ))α1

α1

)β−1
f(ζ(λ), ζ(θ)+ζ(µ)

2 )ζ
′
(λ)dλ

(ζ(ϕ)−ζ(λ))1−α1

≤ 2α2γ−1.2α1β−1.αγ
2α

β
1 .γβ

(ζ(ϕ)−ζ(τ))α1β .(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β]

×

[[∫ w4

w3

∫ q2
q1

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(ϕ)−ζ(λ))α1

α1

)β−1 (
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(ρ)−ζ(θ))α2

α2

)γ−1

× f(ζ(λ),ζ(ρ))ζ
′
(λ)ζ

′
(ρ)dρdλ

(ζ(ϕ)−ζ(λ))1−α1 (ζ(ρ)−ζ(θ))1−α2

]
+

∫ w4

w3

∫ q4
q3

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(ϕ)−ζ(λ))α1

α1

)β−1 (
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(µ)−ζ(ρ))α2

α2

)γ−1
]

× f(ζ(λ),ζ(ρ))ζ
′
(λ)ζ

′
(ρ)dρdλ

(ζ(ϕ)−ζ(λ))1−α1 (ζ(µ)−ζ(ρ))1−α2

]]
≤ 2α1β−2βαβ

1

(ζ(ϕ)−ζ(τ))α1β

[∫ w4

w3

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(ϕ)−ζ(λ))α1

α1

)β−1
f(ζ(λ),ζ(θ))ζ

′
(λ)dλ

(ζ(ϕ)−ζ(λ))1−α1

+
∫ w4

w3

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(ϕ)−ζ(λ))α1

α1

)β−1
f(ζ(λ),ζ(µ))ζ

′
(λ)dλ

(ζ(ϕ)−ζ(λ))1−α1

]
.

(2.17)

If f is co-ordinated φ−convex function, then gζ(ρ) : [w1, w4] → R, gζ(ρ) (ζ (λ)) = f (ζ (λ) , ζ (ρ)) is φ−convex
function, then, by Theorem 2, we get

gζ(ρ)

(
ζ(τ)+ζ(ϕ)

2

)
≤ 2α1β−1Γ(β+1)αβ

1

(ζ(ϕ)−ζ(τ))α1β[(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β]

×
[
α1

ζ Jβ

w+
1

gζ(ρ) (w2) +
α1

ζ Jβ

w−
4

gζ(ρ) (w3)
]

≤ gζ(ρ)ζ(τ)+gζ(ρ)ζ(ϕ)

2 .

Here, we can write,

f
(

ζ(τ)+ζ(ϕ)
2 , ζ (ρ)

)
≤ 2α1β−1βαβ

1

(ζ(ϕ)−ζ(τ))α1β[(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β]

×

[∫ w2

w1

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(λ)−ζ(τ))α1

α1

)β−1
f(ζ(λ),ζ(ρ))ζ

′
(λ)dλ

(ζ(λ)−ζ(τ))1−α1

+
∫ w4

w3

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(ϕ)−ζ(λ))α1

α1

)β−1
f(ζ(λ),ζ(ρ))ζ

′
(λ)dλ

(ζ(ϕ)−ζ(λ))1−α1

]
≤ f(ζ(τ),ζ(ρ))+f(ζ(ϕ),ζ(ρ))

2 .

(2.18)

Moreover, by multiplying both side of (2.18) by

2α2γ−1γαγ
2

(ζ(µ)−ζ(θ))α2γ

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(ρ)−ζ(θ))α2

α2

)γ−1
ζ
′
(ρ)

(ζ(ρ)−ζ(θ))1−α2
,
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and by integrating with respect to ρ on [q1, q2] , then we obtain

2α2γ−1γαγ
2

(ζ(µ)−ζ(θ))α2γ

∫ q2
q1

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(ρ)−ζ(θ))α2

α2

)γ−1
f( ζ(τ)+ζ(ϕ)

2 ,ζ(ρ))ζ
′
(ρ)dρ

(ζ(ρ)−ζ(θ))1−α2

≤ 2α2γ−1.2α1β−1.αγ
2α

β
1 .γβ

(ζ(ϕ)−ζ(τ))α1β .(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β]

×

[[∫ q2
q1

∫ w2

w1

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(ρ)−ζ(θ))α2

α2

)γ−1 (
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(λ)−ζ(τ))α1

α1

)β−1

× f(ζ(λ),ζ(ρ))ζ
′
(λ)ζ

′
(ρ)dλdρ

(ζ(ρ)−ζ(θ))1−α2 (ζ(λ)−ζ(τ))1−α1

]
+

[∫ q2
q1

∫ w4

w3

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(ρ)−ζ(θ))α2

α2

)γ−1 (
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(ϕ)−ζ(λ))α1

α1

)β−1

× f(ζ(λ),ζ(ρ))ζ
′
(λ)ζ

′
(ρ)dλdρ

(ζ(ρ)−ζ(θ))1−α2 (ζ(ϕ)−ζ(λ))1−α1

]]
≤ 2α2γ−2γαγ

2

(ζ(µ)−ζ(θ))α2γ

[∫ q2
q1

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(ρ)−ζ(θ))α2

α2

)γ−1
f(ζ(τ),ζ(ρ))ζ

′
(ρ)dρ

(ζ(ρ)−ζ(θ))1−α2

+
∫ q2
q1

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(ρ)−ζ(θ))α2

α2

)γ−1
f(ζ(ϕ),ζ(ρ))ζ

′
(ρ)dρ

(ζ(ρ)−ζ(θ))1−α2

]
.

(2.19)

Furthermore, if we multiply both sides of (2.18) by

2α2γ−1γαγ
2

(ζ(µ)−ζ(θ))α2γ

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(µ)−ζ(ρ))α2

α2

)γ−1
ζ
′
(ρ)

(ζ(µ)−ζ(ρ))1−α2
,

and if we integrate with respect to ρ on [q3, q4] , then we get

2α2γ−1γαγ
2

(ζ(µ)−ζ(θ))α2γ

∫ q4
q3

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(µ)−ζ(ρ))α2

α2

)γ−1
f( ζ(τ)+ζ(ϕ)

2 ,ζ(ρ))ζ
′
(ρ)dρ

(ζ(µ)−ζ(ρ))1−α2

≤ 2α2γ−1.2α1β−1.αγ
2α

β
1 .γβ

(ζ(ϕ)−ζ(τ))α1β .(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β]

×

[[∫ q4
q3

∫ w2

w1

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(µ)−ζ(ρ))α2

α2

)γ−1 (
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(λ)−ζ(τ))α1

α1

)β−1

× f(ζ(λ),ζ(ρ))ζ
′
(λ)ζ

′
(ρ)dλdρ

(ζ(λ)−ζ(τ))1−α1 (ζ(µ)−ζ(ρ))1−α2

]
+

[∫ q4
q3

∫ w4

w3

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(µ)−ζ(ρ))α2

α2

)γ−1 (
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(ϕ)−ζ(λ))α1

α1

)β−1

× f(ζ(λ),ζ(ρ))ζ
′
(λ)ζ

′
(ρ)dλdρ

(ζ(ϕ)−ζ(λ))1−α1 (ζ(µ)−ζ(ρ))1−α2

]]
≤ 2α2γ−2γαγ

2

(ζ(µ)−ζ(θ))α2γ

[∫ q4
q3

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(µ)−ζ(ρ))α2

α2

)γ−1
f(ζ(τ),ζ(ρ))ζ

′
(ρ)dρ

(ζ(µ)−ζ(ρ))1−α1

+
∫ q4
q3

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(µ)−ζ(ρ))α2

α2

)γ−1
f(ζ(ϕ),ζ(ρ))ζ

′
(ρ)dρ

(ζ(µ)−ζ(ρ))1−α2

]
.

(2.20)
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In here, if we add the inequalities (2.16)-(2.20) and divide by 2, then we have

2α1β−2Γ(β+1)αβ
1

(ζ(ϕ)−ζ(τ))α1β

[
α1

ζ Jβ

w+
1

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
+α1

ζ Jβ

w−
4

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)]
+

2α2γ−2Γ(γ+1)αγ
2

(ζ(µ)−ζ(θ))α2γ

[
α2

ζ Jγ

q+1
f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
+α2

ζ Jγ

q−4
f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)]
≤ 2α2γ−1.2α1β−1.Γ(γ+1)Γ(β+1)αγ

2α
β
1

(ζ(ϕ)−ζ(τ))α1β .(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α2 )γ−(1−(1−ζ(0))α2 )γ ]

×
[
α1,α2

ζ Jβ,γ

w+
1 ,q+1

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
+α1,α2

ζ Jβ,γ

w−
4 ,q−4

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)]
+

2α2γ−1.2α1β−1.Γ(γ+1)Γ(β+1)αγ
2α

β
1

(ζ(ϕ)−ζ(τ))α1β .(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β]

×
[
α1,α2

ζ Jβ,γ

w+
1 ,q+1

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
+α1,α2

ζ Jβ,γ

w4−,q−4
f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)]
≤ 2α1β−3Γ(β+1)αβ

1

(ζ(ϕ)−ζ(τ))α1β

[
α1

ζ Jβ

w+
1

f
(

ζ(τ)+ζ(ϕ)
2 , q1

)
+α1

ζ Jβ

w+
1

f
(

ζ(τ)+ζ(ϕ)
2 , q4

)
+α1

ζ Jβ

w−
4

f
(

ζ(τ)+ζ(ϕ)
2 , q1

)
+α1

ζ Jβ

w−
4

f
(

ζ(τ)+ζ(ϕ)
2 , q4

)]
+

2α2γ−3Γ(γ+1)αγ
2

(ζ(µ)−ζ(θ))α2γ

[
α2

ζ Jγ

q+1
f
(
w1,

ζ(θ)+ζ(µ)
2

)
+α2

ζ Jγ

q+1
f
(
w4,

ζ(θ)+ζ(µ)
2

)
+α2

ζ Jγ

q−4
f
(
w1,

ζ(θ)+ζ(µ)
2

)
+α2

ζ Jγ

q−4
f
(
w4,

ζ(θ)+ζ(µ)
2

)]
.

(2.21)

We give some results for special circumstances, if we get ζ (λ) = ζ(τ)+ζ(ϕ)
2 on the left side of the (2.15) inequality,

then we obtain,

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
≤ 2α2γ−1γαγ

2

(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α2 )γ−(1−(1−ζ(0))α2 )γ ]

×

[∫ q2
q1

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(ρ)−ζ(θ))α2

α2

)γ−1
f(ζ(λ), ζ(θ)+ζ(µ)

2 )ζ
′
(ρ)dρ

(ζ(ρ)−ζ(θ))1−α2

+
∫ q4
q3

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(µ)−ζ(ρ))α2

α2

)γ−1
f(ζ(λ), ζ(θ)+ζ(µ)

2 )ζ
′
(ρ)dρ

(ζ(µ)−ζ(ρ))1−α2

]
.

(2.22)

Similarly, if we take ζ (ρ) = ζ(θ)+ζ(µ)
2 on the left side of the (2.18) inequality, then we get,

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
≤ 2α1β−1βαβ

1

(ζ(ϕ)−ζ(τ))α1β[(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β]

×

[∫ w2

w1

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(λ)−ζ(τ))α1

α1

)β−1
f( ζ(τ)+ζ(ϕ)

2 ,ζ(ρ))ζ
′
(λ)dλ

(ζ(λ)−ζ(τ))1−α1

+
∫ w4

w3

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(ϕ)−ζ(λ))α1

α1

)β−1
f( ζ(τ)+ζ(ϕ)

2 ,ζ(ρ))ζ
′
(λ)dλ

(ζ(ϕ)−ζ(λ))1−α1

]
.

(2.23)

If we do the necessary calculations for (2.22) and (2.23), we can obtain
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f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
≤ 2α1β−2Γ(β+1)αβ

1

(ζ(ϕ)−ζ(τ))α1β[(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β]

×
[
α1

ζ Jβ

w+
1

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
+α1

ζ Jβ

w−
4

f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)]
+

2α2γ−2Γ(γ+1)αγ
2

(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α2 )γ−(1−(1−ζ(0))α2 )γ ]

×
[
α2

ζ Jγ

q+1
f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)
+α2

ζ Jγ

q−4
f
(

ζ(τ)+ζ(ϕ)
2 , ζ(θ)+ζ(µ)

2

)]
.

(2.24)

The inequality in (2.24)is the first inequality of Theorem 4.
Finally, if we get ζ (ρ) = ζ (θ) on the right-hand side of the (2.18) which we get by using the second inequality in

(2.1), then we obtain
2α1β−1βαβ

1

(ζ(ϕ)−ζ(τ))α1β[(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β]

×

[∫ w2

w1

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(λ)−ζ(τ))α1

α1

)β−1
f(ζ(λ),ζ(θ))ζ

′
(λ)dλ

(ζ(λ)−ζ(τ))1−α1

+
∫ w4

w3

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(ϕ)−ζ(λ))α1

α1

)β−1
f(ζ(λ),ζ(θ))ζ

′
(λ)dλ

(ζ(ϕ)−ζ(λ))1−α1

]
≤ f(ζ(τ),ζ(θ))+f(ζ(ϕ),ζ(θ))

2 .

(2.25)

In same way, if we take ζ (ρ) = ζ (µ) in (2.18), then we can write

2α1β−1βαβ
1

(ζ(ϕ)−ζ(τ))α1β[(1−(1−ζ(1))α1 )β−(1−(1−ζ(0))α1 )β]

×

[∫ w2

w1

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(λ)−ζ(τ))α1

α1

)β−1
f(ζ(λ),ζ(µ))ζ

′
(λ)dλ

(ζ(λ)−ζ(τ))1−α1

+
∫ w4

w3

(
( ζ(ϕ)−ζ(τ)

2 )
α1−(ζ(ϕ)−ζ(λ))α1

α1

)β−1
f(ζ(λ),ζ(µ))ζ

′
(λ)dλ

(ζ(ϕ)−ζ(λ))1−α1

]
≤ f(ζ(τ),ζ(µ))+f(ζ(ϕ),ζ(µ))

2 .

(2.26)

In a similar way, if we take ζ (λ) = ζ (τ) on the right-hand side of the (2.15) inequality, then we have

2α2γ−1γαγ
2

(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α2 )γ−(1−(1−ζ(0))α2 )γ ]

×

[∫ q2
q1

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(ρ)−ζ(θ))α2

α2

)β−1
f(ζ(τ),ζ(ρ))ζ

′
(ρ)dρ

(ζ(ρ)−ζ(θ))1−α2

+
∫ q4
q3

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(µ)−ζ(ρ))α2

α2

)β−1
f(ζ(τ),ζ(ρ))ζ

′
(ρ)dρ

(ζ(µ)−ζ(ρ))1−α2

]
≤ f(ζ(τ),ζ(θ))+f(ζ(τ),ζ(µ))

2 .

(2.27)

Moreover, if we take ζ (λ) = ζ (ϕ) in (2.15), then we get

2α2γ−1γαγ
2

(ζ(µ)−ζ(θ))α2γ [(1−(1−ζ(1))α2 )γ−(1−(1−ζ(0))α2 )γ ]

×

[∫ q2
q1

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(ρ)−ζ(θ))α2

α2

)γ−1
f(ζ(ϕ),ζ(ρ))ζ

′
(ρ)dρ

(ζ(ρ)−ζ(θ))1−α2

+
∫ q4
q3

(
( ζ(µ)−ζ(θ)

2 )
α2−(ζ(µ)−ζ(ρ))α2

α2

)γ−1
f(ζ(ϕ),ζ(ρ))ζ

′
(ρ)dρ

(ζ(µ)−ζ(ρ))1−α2

]
≤ f(ζ(ϕ),ζ(θ))+f(ζ(ϕ),ζ(µ))

2 .

(2.28)

When we make the necessary calculations for (2.25), (2.26), (2.27) and (2.28), then we obtain the 4th inequality of
Theorem 4.
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Corollary 2.1. [11] If ζ (λ) = λ in Theorem 4, we acquire,

f
(

τ+ϕ
2 , θ+µ

2

)
≤ 2α1β−2Γ(β+1)αβ

1

(ϕ−τ)α1β

[
α1Jβ

τ+f
(

τ+ϕ
2 , θ+µ

2

)
+α1 Jβ

ϕ−f
(

τ+ϕ
2 , θ+µ

2

)]
+

2α2γ−2Γ(γ+1)αγ
2

(µ−θ)α2γ

[
α2Jγ

θ+f
(

τ+ϕ
2 , θ+µ

2

)
+α2 Jγ

µ−f
(

τ+ϕ
2 , θ+µ

2

)]
≤ 2α2γ−1.2α1β−1.Γ(γ+1)Γ(β+1)αγ

2α
β
1

(ϕ−τ)α1β .(µ−θ)α2γ

×
[
α1,α2Jβ,γ

τ+,θ+f
(

τ+ϕ
2 , θ+µ

2

)
+α1,α2 Jβ,γ

τ+,µ−f
(

τ+ϕ
2 , θ+µ

2

)]
(2.29)

+
2α2γ−1.2α1β−1.Γ(γ+1)Γ(β+1)αγ

2α
β
1

(ϕ−τ)α1β .(µ−θ)α2γ

×
[
α1,α2Jβ,γ

ϕ−,θ+f
(

τ+ϕ
2 , θ+µ

2

)
+α1,α2 Jβ,γ

ϕ−,µ−f
(

τ+ϕ
2 , θ+µ

2

)]
≤ 2α1β−3Γ(β+1)αβ

1

(ϕ−τ)α1β

[
α1Jβ

τ+f
(

τ+ϕ
2 , θ

)
+α1 Jβ

τ+f
(

τ+ϕ
2 , µ

)
+α1Jβ

ϕ−f
(

τ+ϕ
2 , θ

)
+α1 Jβ

ϕ−f
(

τ+ϕ
2 , µ

)]
+

2α2γ−3Γ(γ+1)αγ
2

(µ−θ)α2γ

[
α2Jγ

θ+f
(
τ, θ+µ

2

)
+α2 Jγ

θ+f
(
ϕ, θ+µ

2

)
+α2Jγ

µ−f
(
τ, θ+µ

2

)
+α2 Jγ

µ−f
(
ϕ, θ+µ

2

)]
≤ f(τ,θ)+f(τ,µ)+f(ϕ,θ)+f(ϕ,µ)

4 .

(2.30)

Corollary 2.2. By choosing ζ (λ) = λ, α1 = 1 and α2 = 1 in Theorem 4, we write as the following inequality for
Riemann-Liouville fractional integrals

f
(

τ+ϕ
2 , θ+µ

2

)
≤ 2β−2Γ(β+1)

(ϕ−τ)β

[
1Jβ

τ+f
(

τ+ϕ
2 , θ+µ

2

)
+1 Jβ

ϕ−f
(

τ+ϕ
2 , θ+µ

2

)]
+ 2γ−2Γ(γ+1)

(µ−θ)γ

[
1Jβ

θ+f
(

τ+ϕ
2 , θ+µ

2

)
+1 Jβ

µ−f
(

τ+ϕ
2 , θ+µ

2

)]
≤ 2γ−1.2β−1.Γ(γ+1)Γ(β+1)

(ϕ−τ)β .(µ−θ)γ

[
1,1Jβ,γ

τ+,θ+f
(

τ+ϕ
2 , θ+µ

2

)
+1,1 Jβ,γ

τ+,µ−f
(

τ+ϕ
2 , θ+µ

2

)]
+ 2γ−1.2β−1.Γ(γ+1)Γ(β+1)

(ϕ−τ)β .(µ−θ)γ

[
1,1Jβ,γ

ϕ−,θ+f
(

τ+ϕ
2 , θ+µ

2

)
+1,1 Jβ,γ

ϕ−,µ−f
(

τ+ϕ
2 , θ+µ

2

)]
≤ 2β−3Γ(β+1)

(ϕ−τ)β

[
1Jβ

τ+f
(

τ+ϕ
2 , θ

)
+1 Jβ

τ+f
(

τ+ϕ
2 , µ

)
+1Jβ

ϕ−f
(

τ+ϕ
2 , θ

)
+1 Jβ

ϕ−f
(

τ+ϕ
2 , µ

)]
+ 2γ−3Γ(γ+1)

(µ−θ)γ

[
1Jγ

θ+f
(
τ, θ+µ

2

)
+1 Jγ

θ+f
(
ϕ, θ+µ

2

)
+1Jγ

µ−f
(
τ, θ+µ

2

)
+1 Jγ

µ−f
(
ϕ, θ+µ

2

)]
≤ f(τ,θ)+f(τ,µ)+f(ϕ,θ)+f(ϕ,µ)

4 .

(2.31)

Corollary 2.3. By choosing ζ (λ) = λ, β = 1, γ = 1, α1 = 1 and α2 = 1 in Theorem 4, we write as the following inequality
for Riemann-Liouville fractional integrals

f
(

τ+ϕ
2 , θ+µ

2

)
≤ 1

2(ϕ−τ)

[∫ ϕ

τ
f
(
t, θ+µ

2

)
dt
]
+ 1

2(µ−θ)

[∫ µ

ϕ
f
(

τ+ϕ
2 , s

)
ds
]

≤ 1
(ϕ−τ).(µ−θ)

[∫ θ

τ

∫ µ

θ
f (t, s) dsdt

]
≤ 1

4(ϕ−τ)

[
1J1

τ+f
(

τ+ϕ
2 , θ

)
+1 J1

τ+f
(

τ+ϕ
2 , µ

)
+1J1

ϕ−f
(

τ+ϕ
2 , θ

)
+1 J1

ϕ−f
(

τ+ϕ
2 , µ

)]
+ 1

4(µ−θ)

[
1J1

θ+f
(
τ, θ+µ

2

)
+1 J1

θ+f
(
ϕ, θ+µ

2

)
+1J1

µ−f
(
τ, θ+µ

2

)
+1 J1

µ−f
(
ϕ, θ+µ

2

)]
≤ f(τ,θ)+f(τ,µ)+f(ϕ,θ)+f(ϕ,µ)

4 .

(2.32)
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3. Conclusion
There are many studies on Hermite-Hadamard inequalities and fractional integrals [14–20]. In this study, we

derive the Hermite-Hadamard inequality for generalized ζ−conformable fractional integrals. Moreover, we derive
two distinct definitions for these integrals: one for functions with two variables and another for co-ordinated
functions. Expanding on these definitions, we highlight several significant findings and illustrate their implications
and applications. Furthermore, we discuss important consequences within the broader mathematical context.
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[1] Sarikaya, M. Z., Büyükeken, M., Kiriş, M. E.: On some generalized integral inequalities for φ−convex functions.
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Enhancing Generalized Interpolative Contraction
Through Simulation Functions

Ekber Girgin

Abstract
In the present manuscript, we elucidate a comprehensive framework for the generalized interpolative
α−(ψ,φ)Z−contractive mapping, thereby extending the foundational theoretical constructs to augment its
utility within the domain of advanced mathematical analysis. The investigation encompasses a meticulous
examination of fixed point results within the context of non-Archimedean modular metric spaces, which
are characterized by their distinctive structural properties that diverge from those of conventional metric
spaces. Moreover, we apply the results attained to substantiate the existence and uniqueness of solutions
pertaining to nonlinear Fredholm integral equations. This aspect of our inquiry underscores the practical
implications of our theoretical advancements and provides a rigorous framework for the resolution of
complex integral equations through the principles of established contractive mappings.

Keywords: Admissible mappings, Fredholm integral equations, Interpolative contractions, Simulation functions
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1. Introduction
This study designates the symbol N to represent the set of all positive natural numbers. Additionally, the sets of

positive and non-negative real numbers are represented by R+ and R+
0 , respectively.

The simulation function, introduced by Khojasteh et al. [1], has emerged as an invaluable innovative control
function in metric spaces. Its application in defining a ζ−contraction has not only facilitated the proof of pivotal
fixed point theorems but also marks a noteworthy advancement in the discipline. Following this groundbreaking
work, numerous researchers have expanded and refined this concept across various abstract spaces, as evidenced in
[2–6] and [7].

Recently, Karapınar [8] made significant advancements in the field of fixed point theory by modifying the
classical concept of Kannan contractions. He introduced an interpolative Kannan contraction, which was designed
to enhance the convergence rate of operators toward a unique fixed point. This innovation aimed to refine the
existing understanding of how operators behave in mathematical spaces. However, subsequent work by Karapınar
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and Agarwal [9] revealed a critical flaw in the assumptions laid out in Karapınar’s initial paper. They presented a
counter-example that highlighted the problematic assumption that the fixed point must be unique. Their findings
showed that it is possible for fixed points to exist without uniqueness, thereby challenging the validity of this
central premise in the original theory. Following this important correction, the researchers provided a revised
framework that better accommodates situations where fixed points are not unique. This development opened
the door to further exploration and prompted the investigation of various results related to different types of
interpolative mappings. Consequently, a plethora of results for both single-valued and multivalued mappings have
been established across diverse abstract spaces [10–13].

There is extensive interest in metric fixed point theory due to its compelling structural properties and broad
applications across various fields, including mathematics, computer science, and economics. Within this theoretical
framework, the Banach contraction mapping theorem, first introduced by Banach in 1922, occupies a pivotal
position owing to its foundational significance and versatility. This seminal work provided a robust method for
establishing the existence and uniqueness of fixed points in complete metric spaces, laying the groundwork for
countless subsequent research efforts aimed at expanding and refining the understanding of this profound mapping.

The Banach contraction mapping theorem has not only deepened theoretical insights but also inspired practical
applications, from solving differential equations to optimization problems. Over the years, the development of
this field has witnessed a notable emergence of innovative structures concerning generalized metric spaces. These
generalized spaces relax some of the traditional constraints, allowing for a broader class of mappings and facilitating
the exploration of fixed point theorems within varied contexts [14–19].

Among the significant advancements in this domain is the introduction of the modular metric space. This
new structure, which incorporates a modular function to define distance and convergence, offers a more flexible
approach to analyzing fixed points and contracts. Its unique properties enable researchers to address more complex
problems that may not fit within the confines of classical metric spaces. Consequently, modular metric spaces
serve as a fertile ground for further theoretical exploration and practical application, potentially leading to new
discoveries in fixed point theory and beyond.

In 2010, Chistyakov [20, 21] made a significant advancement by establishing the concept of a modular metric
space. This innovative framework not only extends the traditional metric space but also integrates the principles of
modular linear space, paving the way for newfound research opportunities and applications in mathematical theory.

Let X be a nonempty set and Λ : (0,∞) × X × X → [0,∞] be a function. For the sake of brevity, we will de-
note the relationship as follows:

Λχ (ι, ȷ) = Λ (χ, ι, ȷ)

for all χ > 0 and ι, ȷ ∈ X.

Definition 1.1. [20] Let X be nonempty set and Λ : (0,∞)× X× X → [0,∞] be a function satisfying the subsequent
circumstances:

(Λ1) ι = ȷ if and only if Λχ (ι, ȷ) = 0 for all χ > 0 and and ι, ȷ ∈ X;

(Λ2) Λχ (ι, ȷ) = Λχ (ȷ, ι) for all χ > 0 and ι, ȷ ∈ X;

(Λ3) Λχ+n (ι, ȷ) ≤ Λχ (ι, z) + Λn (z, ȷ) for all χ, n > 0 and ι, ȷ, z ∈ X.

Then, Λ is called modular metric in X, and so Λχ is modular metric space. If the condition (Λ1) is replaced by

(Λ4) Λχ (ι, ι) = 0 for all χ > 0 and ι ∈ X,

then Λ is referred to as a pseudomodular metric on X. A modular metric Λ defined on X is termed regular if it
satisfies a weaker formulation of the condition denoted as (Λ1).

(Λ5) ι = ȷ if and only if Λχ (ι, ȷ) = 0 for some χ > 0.

Moreover, Λ is called convex if for χ, n > 0 and ι, ȷ, z ∈ X, the inequality holds:

(Λ6) Λχ+n (ι, ȷ) ≤ χ
χ+nΛχ (ι, z) + n

χ+nΛn (z, ȷ) .

If we replace (Λ3) by

(Λ7) Λmax{χ,n} (ι, ȷ) ≤ Λχ (ι, z) + Λn (z, ȷ)
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for all χ, n > 0 and ι, ȷ, z ∈ XΛ. Thus, we assert that XΛ represents non-Archimedean modular metric space.

Definition 1.2. [20] Let XΛ be a modular metric space, S be a subset of XΛ and (ιn)n∈N be a sequence in XΛ. Then,

(i) A sequence (ιn)κ∈N is called Λ−convergent to ι ∈ XΛ if and only if Λχ (ιn, ι) → 0 as n→ ∞ for all χ > 0, ι is
said to be the Λ−limit of (ιn).

(ii) A sequence (ιn)κ∈N is called Λ−Cauchy if Λχ (ιn, ιp) → 0, as p, n→ ∞ for all χ > 0.

(iii) A subset S is called Λ−closed if the Λ−limit of Λ−convergent sequence of S always belongs to S.

(iv) A subset S is called Λ−complete if any Λ−Cauchy sequence in S is Λ−convergent to a point of S.

(v) A subset S is called Λ−bounded if for all χ > 0, we have

δΛ (S) = sup {Λχ (ι, ȷ) ; ι, ȷ ∈ S} <∞.

Definition 1.3. [20] Let XΛ be a modular metric space and
∐

: XΛ → XΛ be a mapping. It is said that
∐

is a
Λ−continuous when Λχ (ιn, ι) → 0 ⇒ Λχ (

∐
ιn,

∐
ι) → 0, as n→ ∞.

In recent years, the field of fixed point theory in modular metric spaces has witnessed significant developments
and applications [22–25].

Khan et.al. [26] introduce the concept of altering distance function as follows.

Definition 1.4. [26] A continuous function φ : [0,∞) → [0,∞) is called an altering distance function if it is
non-decreasing and φ (r) = 0 if and only if r = 0.

It is obvious that φ (r) ≥ 0, for all r ≥ 0. We denote Φ, the set of all altering distance functions.

Definition 1.5. [27] A function ψ : [0,∞) → [0,∞) is said to be a comparison function if it is monotonically
increasing and ψn (t) → 0 as n→ ∞ for all t > 0.

If ψ is comparison function, then ψ(t) < t for all t > 0 and ψ(0) = 0. The symbol Ψ denotes the set of all
comparison functions.

Let X be a nonempty set and α : X × X → R. We collect the following concepts which are necessary for our
subsequent discussion.

Definition 1.6. [28] A mapping
∐

: X → X is said to be a α−admissible if

(α1) α (ι, ȷ) ≥ 1 implies α (
∐
ι,
∐
ȷ) ≥ 1, for all ι, ȷ ∈ X.

Definition 1.7. [29] A mapping
∐

: X → X is called triangular α−admissible if it satisfies (α1) and

(α2) α (ι, z) ≥ 1 and α (z, ȷ) ≥ 1 imply α (ι, ȷ) ≥ 1 for all ι, ȷ, z ∈ X.

In light of the aforementioned considerations, this study aims to integrate concepts such as interpolative
contraction, simulation functions, admissible mappings, and modified distance functions to establish novel fixed
point theorems within non-Archimedean modular metric spaces. Furthermore, we provide a comprehensive
illustration demonstrating both the existence and uniqueness of a solution for a nonlinear Fredholm integral
equation.

2. Main results
Definition 2.1. Let XΛ be a non-Archimedean modular metric space and

∐
: XΛ → XΛ be a given mapping. It is

said that
∐

is a generalized interpolative α − (ψ,φ)Z−contractive mapping if there exist α : XΛ × XΛ → [0,∞),
ψ ∈ Ψ, φ ∈ Φ and ζ ∈ Z and µ1, µ2 ∈ (0, 1) such that φ (t) > ψ (t) , t > 0 and µ1 + µ2 < 1 providing the subsequent
inequality

ζ (α (i, j)φ (Λχ(
∐
i,
∐
j)) , ψ (Ξ(i, j))) ≥ 0,

Ξ (i, j) = Λχ(i, j)
µ1 .Λχ(i,

∐
i)µ2 .Λχ(j,

∐
j)1−µ1−µ2

(2.1)

for all i, j ∈ XΛ.
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Theorem 2.1. Let XΛ be a complete non-Archimedean modular metric space. Let
∐

be a generalized interpolative α −
(ψ,φ)Z−contractive mapping satisfying the following conditions:

(i)
∐

is a triangular α−admissible mapping,

(ii) there exists i0 ∈ XΛ such that α (i0,
∐
i0) ≥ 1,

(iii)
∐

is a continuous mapping.

Then,
∐

admits a fixed point in XΛ.

Proof. Let i0 ∈ XΛ such that α (i0,
∐
i0) ≥ 1. Construct the sequence {iκ} in XΛ by iκ+1 =

∐
iκ, for all κ ∈ N. If

iκ+1 = iκ, for some κ ∈ N, then i∗ = iκ is a fixed point for
∐

and the proof completed. Hence, we presume that
iκ+1 ̸= iκ, for all κ ∈ N. Due to the fact that

∐
is triangular α− admissible, we have:

α (i0, i1) = α
(
i0,

∐
i0

)
≥ 1 ⇒ α

(∐
i0,

∐
i1

)
= α

(
i1,

∐
i2

)
≥ 1.

By induction, we get
α (iκ, iκ+1) ≥ 1, (2.2)

for all κ ∈ N. Regarding (2.1), we derive that

0 ≤ ζ (α (iκ−1, iκ)φ (Λχ (
∐
iκ−1,

∐
iκ)) , ψ (Ξ (iκ−1, iκ)))

= ζ (α (iκ−1, iκ)φ (Λχ (iκ, iκ+1)) , ψ (Ξ (iκ−1, iκ)))

< ψ (Ξ (iκ−1, iκ))− α (iκ−1, iκ)φ (Λχ (iκ, iκ+1)) ,

(2.3)

where
Ξ (iκ−1, iκ) = Λχ(iκ−1, iκ)

µ1 .Λχ(iκ−1,
∐
iκ−1)

µ2 .Λχ(iκ,
∐
iκ)

1−µ1−µ2

= Λχ(iκ−1, iκ)
µ1 .Λχ(iκ−1, iκ)

µ2 .Λχ(iκ, iκ+1)
1−µ1−µ2 .

Consequently, we arrive at

φ (Λχ (iκ, iκ+1)) ≤ α (iκ−1, iκ)φ (Λχ (iκ, iκ+1))

< ψ (Ξ (iκ−1, iκ))

= ψ
(
Λχ(iκ−1, iκ)

µ1 .Λχ(iκ−1, iκ)
µ2 .Λχ(iκ, iκ+1)

1−µ1−µ2

)
.

(2.4)

Suppose that Λχ (iκ−1, iκ) < Λχ (iκ, iκ+1) for all κ ∈ N, then from (2.4), we obtain

φ (Λχ (iκ, iκ+1)) ≤ ψ (Λχ (iκ, iκ+1)) < φ (Λχ (iκ, iκ+1)) ,

which causes a contradiction. Accordingly, we obtain

Λχ (iκ, iκ+1) ≤ Λχ (iκ−1, iκ) , (2.5)

for all κ ∈ N. Hence, {Λχ (iκ, iκ+1)} is a monotone decreasing sequence of positive real numbers and bounded
below by zero. So, there exists r ≥ 0 such that lim

n→∞
Λχ (iκ, iκ+1) = r. We claim that r > 0, otherwise from (2.3), (2.4)

together with (2.5) we procure

0 ≤ ζ (α (iκ−1, iκ)φ (Λχ (
∐
iκ−1,

∐
iκ)) , ψ (Ξ (iκ−1, iκ)))

= ζ (α (iκ−1, iκ)φ (Λχ (iκ, iκ+1)) , ψ (Ξ (iκ−1, iκ)))

< ψ (Ξ (iκ−1, iκ))− α (iκ−1, iκ)φ (Λχ (iκ, iκ+1)) .

(2.6)
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Consequently, we achieve
φ (Λχ (iκ, iκ+1)) ≤ α (iκ−1, iκ)φ (Λχ (iκ, iκ+1))

≤ ψ (Ξ (iκ−1, iκ))

≤ φ (Ξ (iκ−1, iκ))

≤ φ (Λχ (iκ−1, iκ)) .

(2.7)

Taking the limit as n→ ∞ in (2.7), we attain

lim
n→∞

α (iκ−1, iκ)φ (Λχ (iκ, iκ+1)) = lim
n→∞

ψ (Ξ (iκ−1, iκ)) = φ (r) . (2.8)

Setting sn = α (iκ−1, iκ)φ (Λχ (iκ, iκ+1)) , tn = ψ (Ξ (iκ−1, iκ)) in (2.3), then by the property of simulation function
and (2.8), it is yielded that

0 ≤ lim sup
n→∞

ζ (α (iκ−1, iκ)φ (Λχ (iκ, iκ+1)) , ψ (Ξ (iκ−1, iκ))) < 0.

This is a contradiction and thus we have lim
n→∞

Λχ (iκ, iκ+1) = 0.

Now, we show that {iκ} is a Λ−Cauchy sequence. Suppose that, there exist ε > 0, for which one can find two
sequences {mρ} and {κρ} , for all ρ ≥ 1 with imρ > iκρ ≥ ρ such that Λχ

(
iκρ , imρ

)
≥ ε. Further, we assume that

mρ is the smallest number greater than κρ, then Λχ

(
iκρ
, imρ−1

)
< ε. By triangular inequality of non-Archimedean

quasi modular metric space, we gain

ε ≤ Λχ

(
iκρ
, imρ

)
= Λmax{χ,χ}

(
iκρ
, imρ

)
≤ Λχ

(
iκρ
, imρ−1

)
+ Λχ

(
imρ−1, imρ

)
< ε+ Λχ

(
imρ−1, imρ

)
.

Taking the limit as ρ→ ∞, we get
lim
ρ→∞

Λχ

(
iκρ
, imρ

)
= ε. (2.9)

Again by triangular inequality of non-Archimedean quasi modular metric space, we have

Λχ

(
iκρ
, imρ

)
= Λmax{χ,χ}

(
iκρ
, imρ

)
≤ Λχ

(
iκρ
, iκρ+1

)
+ Λχ

(
iκρ+1, imρ

)
= Λχ

(
iκρ
, iκρ+1

)
+ Λmax{χ,χ}

(
iκρ+1, imρ

)
≤ Λχ

(
iκρ
, iκρ+1

)
+ Λχ

(
iκρ+1, imρ+1

)
+ Λχ

(
imρ+1, imρ

)
.

(2.10)

Also, we get
Λχ

(
iκρ+1, imρ+1

)
= Λmax{χ,χ}

(
iκρ+1, imρ+1

)
≤ Λχ

(
iκρ+1, iκρ

)
+ Λχ

(
iκρ
, imρ+1

)
= Λχ

(
iκρ+1, iκρ

)
+ Λmax{χ,χ}

(
iκρ
, imρ+1

)
≤ Λχ

(
iκρ+1, iκρ

)
+ Λχ

(
iκρ
, imρ

)
+ Λχ

(
imρ

, imρ+1

)
.

(2.11)

Combining the expressions (2.10) and (2.11) and taking the limit as ρ→ ∞ together with (2.9), we attain

lim
ρ→∞

Λχ

(
iκρ+1, imρ+1

)
= ε. (2.12)

As
∐

is a triangular α−admissible mapping, we obtain α
(
iκρ
, imρ

)
≥ 1, for all numbers mρ, κρ such that

mρ > κρ, where ρ ≥ 1. From (2.1), we get
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0 ≤ ζ
(
α
(
iκρ , imρ

)
φ
(
Λχ

(∐
iκρ ,

∐
imρ

))
, ψ

(
Ξ
(
iκρ , imρ

)))
= ζ

(
α
(
iκρ
, imρ

)
φ
(
Λχ

(
iκρ+1, imρ+1

))
, ψ

(
Ξ
(
iκρ
, imρ

)))
< ψ

(
Ξ
(
iκρ
, imρ

))
− α

(
iκρ
, imρ

)
φ
(
Λχ

(
iκρ+1, imρ+1

))
.

Consequently, it can be inferred that

φ
(
Λχ

(
iκρ+1, imρ+1

))
≤ α

(
iκρ
, imρ

)
φ
(
Λχ

(
iκρ+1, imρ+1

))
≤ ψ

(
Ξ
(
iκρ
, imρ

))
≤ φ

(
Ξ
(
iκρ
, imρ

))
,

where
Ξ
(
iκρ
, imρ

)
= Λχ

(
iκρ
, imρ

)µ1
.Λχ

(
iκρ
,
∐
iκρ

)µ2
.Λχ

(
imρ

,
∐
imρ

)1−µ1−µ2

= Λχ

(
iκρ , imρ

)µ1
.Λχ

(
iκρ , iκρ+1

)µ2
.Λχ

(
imρ , imρ+1

)1−µ1−µ2
.

Taking the limit as ρ→ ∞ with (2.9), (2.10), (2.11) and (2.12), we have

0 ≤ φ (ε) < φ (0) = 0 iff ε = 0.

This situation presents a contradiction, thereby establishing that the sequence {iκ} qualifies as a Cauchy sequence.
Since XΛ is complete non-Archimedean modular metric space, there exists i∗ ∈ XΛ such that iκ → i∗ as κ → ∞.
Based on the continuity of

∐
, it can be deduced that the sequence defined by iκ+1 =

∐
iκ →

∐
i∗ as κ → ∞. By

virtue of the uniqueness of limits, we conclude that, i∗ =
∐
i∗, that is, i∗ is a fixed point of

∐
.

In the subsequent theorem, it is possible to dispense with the continuity of
∐

by introducing an alternative
condition.

Theorem 2.2. Let XΛ be a complete non-Archimedean modular metric space and
∐

be a generalized interpolative α −
(ψ,φ)Z−contractive mapping satisfying the following conditions:

(i)
∐

is a triangular α−admissible mapping,

(ii) there exists i0 ∈ XΛ such that α (i0,
∐
i0) ≥ 1,

(iii) If {iκ} is a sequence in XΛ such that α (iκ, iκ+1) ≥ 1 for all κ and iκ → i ∈ SΛ as κ→ ∞, then α (iκ, i) ≥ 1 for all
κ.

Then,
∐

admits a fixed point in XΛ.

Proof. In light of the proof of Theorem 2.1, we can conclude that {iκ} is a Cauchy sequence. Then, i∗ ∈ XΛ exits
such that iκρ

→ i∗ as ρ→ ∞. From (2.2) and the hypothesis (iii), we have

α
(
iκρ , i

∗) ≥ 1, (2.13)

for all ρ. From (2.1) and (2.13), we get

0 ≤ ζ
(
α
(
iκρ
, i∗

)
φ
(
Λχ

(∐
iκρ
,
∐
i∗
))
, ψ

(
Ξ
(
iκρ
, i∗

)))
= ζ

(
α
(
iκρ
, i∗

)
φ
(
Λχ

(
iκρ+1,

∐
i∗
))
, ψ

(
Ξ
(
iκρ
, i∗

)))
< ψ

(
Ξ
(
iκρ
, i∗

))
− α

(
iκρ
, i∗

)
φ
(
Λχ

(
iκρ+1,

∐
i∗
)) (2.14)

which is equivalent to
φ
(
Λχ

(
iκρ+1,

∐
i∗
))

≤ α
(
iκρ
, i∗

)
φ
(
Λχ

(
iκρ+1,

∐
i∗
))

< ψ
(
Ξ
(
iκρ
, i∗

))
< φ

(
Ξ
(
iκρ
, i∗

))
,

(2.15)
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where
Ξ
(
iκρ
, i∗

)
= Λχ

(
iκρ
, i∗

)µ1
.Λχ

(
iκρ
,
∐
iκρ

)µ2
.Λχ(i

∗,
∐
i∗)

1−µ1−µ2

= Λχ

(
iκρ
, i∗

)µ1
.Λχ

(
iκρ
, iκρ+1

)µ2
.Λχ(i

∗,
∐
i∗)

1−µ1−µ2 .

(2.16)

Now letting ρ → ∞, from the property of φ, we get φ (Λχ (i∗,
∐
i∗)) = 0 implying Λχ (i∗,

∐
i∗) = 0. This can be

concluded that i∗ is a fixed point of
∐
.

We suggest the following hypotheses for the uniqueness of the fixed point of
∐

.

(U) For all i, j ∈ Fix {
∐
} , we get α (i, j) ≥ 1.

Theorem 2.3. Adding the condition (U) to the hypotheses of the Theorem 2.1 (resp. Theorem 2.2), we attain the uniqueness of
the fixed point of

∐
.

Proof. We assume that j∗ is an another fixed point of
∐

, that is, Λχ (i∗, j∗) ̸= 0. From the condition (U), we get
α (i∗, j∗) ≥ 1. Owing to

∐
is a generalized interpolative α− (ψ,φ)Z−contractive mapping, we derive that

0 ≤ ζ (α (i∗, j∗)φ (Λχ (
∐
i∗,

∐
j∗)) , ψ (Ξ (i∗, j∗)))

= ζ (α (i∗, j∗)φ (Λχ (i∗, j∗)) , ψ (Ξ (i∗, j∗)))

< ψ (Ξ (i∗, j∗))− α (i∗, j∗)φ (Λχ (i∗, j∗)) ,

(2.17)

which is equivalent to
φ (Λχ (i∗, j∗)) ≤ α (i∗, j∗)φ (Λχ (i∗, j∗))

< ψ (Ξ (i∗, j∗))

< φ (Ξ (i∗, j∗)) ,

(2.18)

where
Ξ (i∗, j∗) = Λχ(i

∗, j∗)
µ1 .Λχ

(
i∗,

∐
i∗
)µ2

.Λχ

(
j∗,

∐
j∗
)1−µ1−µ2

= 0. (2.19)

This results in a contradiction. Hence,
∐

has a unique fixed point in XΛ.

Example 2.1. Let XΛ = R, Λχ(i, j) = 1
χ |i− j|, for all i, j ∈ XΛ, χ > 0 and

∐
i = i

2 . Presume the mapping
α : XΛ × XΛ → [0,∞) is defined by

α (i, j) =

{
1, i, j ∈ [0, 1]
0, otherwise.

Consider the mapping as ζ (t, s) = s− t, thus we get

α (i, j)φ
(
Λχ(

∐
i,
∐

j)
)
≤ ψ (Ξ(i, j)) . (2.20)

Also, if we take φ (t) = t
5 , ψ (t) = t

3 , µ1 = 1
2 , µ2 = 1

3 , χ = 3 and (i, j) ∈ [0, 1], then we demonstrate as in the figure
below that the left side of inequality is less than or equal to the right side. Thus, all the hypotheses of Theorem 2.1
are satisfied, and 0 is a unique fixed point of

∐
.

Figure 1. 3D representation of the inequality (2.20).
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Corollary 2.1. Consider XΛ to be a complete non-Archimedean modular metric space. Presume
∐

be a self mapping on XΛ

satisfying the following conditions:

(i)
∐

is a triangular α−admissible mapping,

(ii) there exists i0 ∈ XΛ such that α (i0,
∐
i0) ≥ 1,

(iii)
∐

is a continuous mapping,

(iv) if there exist α : XΛ × XΛ → [0,∞), ψ ∈ Ψ, φ ∈ Φ and µ1, µ2 ∈ (0, 1) such that φ (t) > ψ (t) , t > 0 and
µ1 + µ2 < 1 satisfying the inequality

α (i, j)φ
(
Λχ(

∐
i,
∐

j)
)
≤ ψ (Ξ(i, j)) (2.21)

for all i, j ∈ XΛ.

Then,
∐

admits a unique fixed point in XΛ.

Corollary 2.2. Let
∐

be a self-mapping on a complete non-Archimedean modular metric space XΛ. If there exist ψ ∈ Ψ and
µ1, µ2 ∈ (0, 1) such that φ (t) > ψ (t) , t > 0 and µ1 + µ2 < 1 satisfying the inequality

Λχ(
∐

i,
∐

j) ≤ ψ (Ξ(i, j)) (2.22)

for all i, j ∈ XΛ. Then,
∐

admits a unique fixed point in XΛ.

3. An application to a nonlinear Fredholm integral equation

In this part, we investigate the nonlinear Fredholm integral equation in the setting of a non-Archimedean
modular metric space. Let X = C[τ, υ] be a set of all real continuous function on [τ, υ] with a non-Archimedean
modular metric Λχ (γ, δ) = 1

χ |γ − δ| = 1
χmaxt∈[τ,υ] |γ − δ| , for all γ, δ ∈ C[τ, υ] and χ ∈ (0, 1). Then XΛ is a

non-Archimedean modular metric space. Now, we consider the nonlinear Fredholm integral equation

ι (a) = u (a) +
1

υ − τ

υ∫
τ

K (a, b, ι (b))db, (3.1)

where a, b ∈ [τ, υ]. Assume that K : [τ, υ] × [τ, υ] × X → R and u : [τ, υ] → R continuous where u(a) is a given
function in X.

Theorem 3.1. Suppose XΛ be a complete non-Archimedean modular metric space with

Λχ (γ, δ) =
1

χ
|γ − δ| = 1

χ
max
t∈[τ,υ]

|γ − δ| ,

for all γ, δ ∈ C[τ, υ], χ ∈ (0, 1) and
∐

: XΛ → XΛ be an operator defined by

∐
ι (a) = u (a) +

1

υ − τ

υ∫
τ

K (a, b, ι (b))db. (3.2)

If there exist ℘ ∈ [0, 1) , µ1, µ2 ∈ (0, 1) with µ1 + µ2 < 1 such that for all ι, ȷ ∈ XΛ, a, b ∈ [τ, υ] satisfying the following
inequality

|K (a, b, ι (a))−K (a, b, ȷ (a))| ≤ ℘Ξ (ι (a) , ȷ (a)) ,

Ξ (ι (a) , ȷ (a)) = |ι (a)− ȷ (a)|µ1 .|ι (a)−
∐
ι (a)|µ2 .|ȷ (a)−

∐
ȷ (a)|1−µ1−µ2 .

(3.3)

Then, the integral equation (3.1) has a unique solution in XΛ.
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Proof. From (3.1) and (3.2), we have

|
∐
ι (a)−

∐
ȷ (a)| ≤ 1

|υ−τ |

∣∣∣∣ υ∫
τ

K (a, b, ι (a)) db−
υ∫
τ

K (a, b, ȷ (a)) db

∣∣∣∣
≤ 1

|υ−τ |

υ∫
τ

|K (a, b, ι (a))−K (a, b, ȷ (a))| db

≤ ℘
|υ−τ |

υ∫
τ

Ξ (ι (a) , ȷ (a)) db

≤ ℘
|υ−τ |

υ∫
τ

|ι (a)− ȷ (a)|µ1 .|ι (a)−
∐
ι (a)|µ2 .|ȷ (a)−

∐
ȷ (a)|1−µ1−µ2db.

(3.4)

Taking maximum on both sides for all a ∈ [τ, υ], we get

Λχ (
∐
ι,
∐
ȷ) = 1

χ max
a∈[0,1]

|
∐
ι (a)−

∐
ȷ (a)|

≤ ℘
|υ−τ | max

a∈[τ,υ]

υ∫
τ

1
χ |ι (a)− ȷ (a)|µ1 . 1χ |ι (a)−

∐
ι (a)|µ2 . 1χ |ȷ (a)−

∐
ȷ (a)|1−µ1−µ2db

≤ ℘
|υ−τ | max

a∈[τ,υ]

[
1
χ |ι (a)− ȷ (a)|µ1 . 1χ |ι (a)−

∐
ι (a)|µ2 . 1χ |ȷ (a)−

∐
ȷ (a)|1−µ1−µ2

] υ∫
τ

db

= ℘
[
Λχ(ι, ȷ)

µ1 .Λχ(ι,
∐
ι)

µ2 .Λχ(ȷ,
∐
ȷ)

1−µ1−µ2

]
= ℘Ξ (ι, ȷ) .

(3.5)

Thus, all the conditions of Corollary 2.2 are satisfied by setting ψ (t) = ℘t for all t > 0, where ℘ ∈ [0, 1) and hence
the integral equation (3.2) has a unique solution in XΛ.
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