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TÜRKİYE
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Abstract

The cell is the basic structure and process unit that carries all the living characteristics
of a living thing and has the ability to survive on its own under suitable conditions. The
relationship of cell size with nutrient absorption and nutrient consumption in the cell
membrane has been examined with the current model using the theory of differential
equations in classical analysis. During these examinations, the cell considered was assumed
to be spherical. In fact, the shapes of cells vary depending on their functional properties.
Many have long appendages, cylindrical parts or branch-like structures. However, in this
study, a simple global cell will be discussed, leaving all these complex situations aside.
In the current model, the relationship between the change in the radius of the cell and
the nutrient absorption and consumption in the cell membrane is detailed using classical
differential equations. The answer to the question for which cell size is the consumption
rate exactly balanced with the absorption rate was found in classical analysis. The current
model consists of first-order differential equations. In this model, the dependent variables
are the radius of the cell and the mass of the cell. The classical solutions of these models
will be examined, the size of the cell and the cell membrane relationship will be examined,
and details will be given with numerical examples. However, in order to consider this
biological phenomenon from different perspectives and compare the results, the relevant
event will be modeled using multiplicative analysis, one of the Non-Newtonian analyses.
The new models will be solved using multiplicative analysis techniques, and the results will
be compared with classical analysis. With this new model, it is planned to clarify the results
obtained in the classical case, to reveal more clearly the relationship between the size of the
cell and nutrient absorption and consumption in the cell membrane, and to obtain important
results.

1. Introduction

A spherical cell absorbs nutrients at a rate proportional to its surface area S, but consumes nutrients at a rate proportional to its volume V
(Figure 1.1). Some constants and their equivalents that will appear in the cell model to be established are as follows.
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Figure 1.1: Arbitrary Spherical Cell

A: Net absorption rate of nutrients per unit time,
C: Net rate of consumption of nutrients per unit time,
V : Volume of the cell,
S: Surface area of the cell,
r: Radius of the cell,
In this study, the change of four cell models radii with respect to time was analyzed in classical and multiplicative analyses and each case
was numerically examined and comparisons were made. To establish model, following assumptions are considered [1–10].
1. The cell is roughly spherical.
2. The cell absorbs oxygen and nutrients from its surface. The larger the surface area S, the faster the overall absorption rate. The rate of
absorption of nutrients (or oxygen) is assumed to be proportional to the surface area of the cell.
3. The rate at which nutrients are consumed (i.e. depleted) in metabolism is proportional to the volume V of the cell. The larger the volume,
the more nutrients are needed to keep the cell alive.
Now let’s restate the assumptions mathematically. According to second assumption, the absorption rate A is proportional to S. This means:

A = k1S,

where k1 is proportional constant. Since absorbance and surface area are positive quantities, only positive values of the proportionality
constant are significant, so k1 must be positive (This is consistent with multiplicative analysis). The value of this constant depends on its
properties, such as the permeability of the cell membrane or how many pores it contains to allow the passage of nutrients. By using a general
constant called a parameter to represent this proportionality constant, the model is kept general enough to apply to many different cell types.
According to third assumption, the rate of food consumption, C is proportional to V :

C = k2V,

where k2 is positive proportional constant. k2 depends on cell metabolism, that is, how fast it consumes nutrients while performing its
activities. According to first assumption, the cell is spherical, so

S = 4πr2, V =
4
3

πr3,

where S is surface area and V is its volume. Putting these rationales together gives the following relationships between nutrient absorption A,
consumption C, and cell radius r:

A(r) = (4πk1)r2,

C(r) =

(
4
3

πk2

)
r3.

These equations will contribute to seeing how nutrient balance depends on cell size. Here, functions A and C are second and third degree
polynomial functions, respectively, depending on the radius of the cell. Nutrient balance depends on the radius of a cell. First, the answer to
the question of whether nutrient absorption or nutrient consumption is more effective for small, medium or large cells will be sought [11].
The problem expressed in the following classical case is the problem on which we base our study and make comparisons.

Motivation question: For what cell size is the consumption rate exactly balanced by the absorption rate? What ratio (consumption or
absorption) dominates for small or large cells?
If the consumption rate for the cell is in equilibrium with the absorption rate, it yields

A(r) =C(r).

Then,

(4πk1)r2 =

(
4
3

πk2

)
r3.
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r = 0 is trivial solution of this equation. This is not biologically meaningful anyway. Non-trivial solutions are required for this study. From
the above relation, we get

r =
3k1

k2
,

where r 6= 0. This means that the rates of absorption and consumption are equal for cells of this size. For small r values, C(r) dominates.
Thus, absorption dominates for smaller cells, while consumption dominates for larger cells. From here, cells larger than the critical size
r = 3k1

k2
cannot meet the nutrient demand and the cell dies because consumption cannot meet nutrient absorption [1–8].

Using the simple geometric argument above, it can be concluded that cell size has strong effects on its ability to absorb nutrients or oxygen
fast enough to feed itself. If a cell absorbs nutrients faster than the food consumed (A >C), some of the excess nutrients accumulate and this
accumulation of nutrient mass can be converted into cell mass. This can cause growth (increase in cell mass).
Conversely, if the rate of consumption exceeds the rate of absorption of nutrients, C > A, the cell has a metabolic “fuel” shortage and
must convert some of its own mass into energy reserves that can power its metabolism, resulting in a loss of cell mass. We can track such
changes in cell mass using a simple “equilibrium equation” using differential equations in classical analysis. The equilibrium equation is the
difference between the rate of change of cell mass (A) incoming nutrient (mass) ratio (C);

dm
dt

= A−C, (1.1)

Each term in this equation must have the same units of nutrient mass per unit time. A is a depletion rate that contributes positively to mass
gain, while C is a depletion rate that negatively contributes to mass gain. This is already the basic logic in the creation of the model. If we
consider the expressions

A = k1S, C = k2V, m = pV

in (1.1), we get

d(pV )

dt
= k1S− k2V, (1.2)

where S is surface area, V is volume and p is density of the cell. The above equation is quite general and does not depend on the cell shape.
Let us now consider the special case of a cell being spherical. Eq. (1.1) will be converted into an equation showing the variation of the cell
radius with time where

S = 4πr2, V = 4/3πr3.

By (1.2) and after some adjustments and implementation of chain rule, we get

dr
dt

=
1
p

(
k1−

k2

3
r
)
. (1.3)

With an explanation of how the cell mass changes, a result estimate of the rate of change of the cell radius is reached. This was done using
classical analysis methods. The resulting equation is a differential equation that tells us about a growing cell. This model will be used as a
tool to understand how it predicts the dynamics of cells with different initial sizes. The differential equation (1.3) is a linear differential
equation. The general solution of this equation is given below as a preliminary conclusion for the study. Eq. (1.3) will be solved in the
classical case by the method of variation of parameters. If this equation is adapted to the solution and some adjustments are made, we get

r(t) =
3k1

k2
+ ke−

k2t
3p , (1.4)

where k is an arbitrary constant. Using this solution, the variation of the radius of the cell with time can be obtained for different times [1].
Some considerations will be made on two problems involving stomach and blood cells.
Let’s express some information about stomach cell, which we will examine on the first example.

Example 1.1 (Stomach Cell-Usual Case, [1–8]). The stomach is a muscular, expandable digestive system organ. A healthy stomach cell
radius value is approximately between 10−30µm and the cell density is p = 1.04gr/(cm)3 . Based on this information, let’s analyze the
cell radius variation for classical model. Let’s fix the cell radius at r(t) = 20µm. If we consider the initial condition r(0) = 20µm in general
solution (1.4), we get

r(t) =
3k1

k2
+

(
20− 3k1

k2

)
e−

k2t
3(1,06) ,

and

k1

k2
∼= 6.6.

This value is the equilibrium state. Now let’s observe the change in the cell by changing this ratio. Since r(0) = 20 for k1
k2
∼= 6.6, it can be

said that the balance situation continues. Now let’s observe the state of the cell for different values of the ratio by changing the variable t for
k2 = 10 in Table 1.1.
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k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
6,6 20 19.8081 19.8003 19.8000 19.800 . . . 19.800
6,5 20 19.5081 19.5003 19.5000 19.5000 . . . 19.5000
6,4 20 19.2081 19.2003 19.2000 19.2000 . . . 19.2000
6,3 20 18.9081 18.9003 18.9000 18.9000 . . . 18.9000
6,2 20 18.6081 18.6003 18.6000 18.6000 . . . 18.6000
6,1 20 18.3081 18.3003 18.3000 18.3000 . . . 18.3000
6,0 20 18.0081 18.0003 18.0000 18.0000 . . . 18.0000

Table 1.1: Change of stomach cell radius over time according to the change

In equilibrium, it can be easily seen that

r(5) = r(6) = r(7) = r(8) = r(9) = 19.800.

As can be seen in this example, for k1
k2

= 6.6, there is a 1% decrease, which is the most stable condition. For k1
k2

= 6.3− 6.4, there is a

4−5.5% decrease, which is within normal limits. For k1
k2

= 6.0−6.1, there is a 8.5−10% decrease, which is the condition that should be
monitored.

Example 1.2 (Blood Cell-Usual Case, [1–8]). Eristocytes, or red blood cells, are the main oxygen-carrying components of blood. Red
blood cells are small (3.5µm), round cells shaped in cross section as two concave discs. Let’s examine the cell radius situation in general
solution (1.4) according to these values. Dense of a blood cell is p = 1,10gr/cm3 . The equilibrium state for this cell is

k1

k2
= 1.17,

for

r(t) =
3k1

k2
+

(
3.5− 3k1

k2

)
e−

k2t
3p ,

where r(0) = 3.5 for k2 = 10. Now let’s observe the change in the blood cell by changing this ratio for p = 1,10gr/cm3 by Table 1.2.

k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
1.17 3.5000 3.5096 3.5112 3.5116 3.5117 . . . 3.5117
1,16 3.5000 3.4796 3.4812 3.4816 3.4817 . . . 3.4817
1,15 3.5000 3.4496 3.4512 3.4516 3.4517 . . . 3.4517
1,14 3.5000 3.4196 3.4212 3.4216 3.4217 . . . 3.4217
1,13 3.5000 3.3896 3.3912 3.3916 3.3917 . . . 3.3917
1,12 3.5000 3.3596 3.3612 3.3616 3.3617 . . . 3.3617
1,11 3.5000 3.3296 3.3312 3.3316 3.3317 . . . 3.3317

Table 1.2: Change of blood cell radius over time according to the change

In equilibrium, it can be easily seen that

r(5) = r(6) = r(7) = r(8) = r(9) = 3.5117.

As can be seen in this example, for k1
k2

> 1.17 the cell expands and for k1
k2

< 1.17 the cell shrinks. The changes are gradual and controlled
and the final values are within physiological limits. The main changes occur in the first 3 hours. After the 4th hour, complete stability occurs.

Example 1.3 (Brain Cell-Usual Case, [1–8] ). The brain cell is known as a neuron. The average radius of a healthy brain cell is r(t) = 10µm
and its density is p = 1.03gr/cm3 . The equilibrium state for this cell is

k1

k2
= 3.3,

for

r(t) =
3k1

k2
+(10− 3k1

k2
)e−

k2t
3p ,

where r(0) = 10 for k2 = 10. Now let’s observe the change in the blood cell by changing this ratio for p = 1,03gr/cm3 by Table 1.3.

k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
3.3 10.0000 9.9039 9.9004 9.9001 9.9000 . . . 9.9000
3.2 10.0000 9.6039 9.6004 9.6001 9.6000 . . . 9.6000
3.1 10.0000 9.3039 9.3004 9.3001 9.3000 . . . 9.3000
3.0 10.0000 9.0039 9.004 9.0001 9.0000 . . . 9.0000
2.9 10.0000 8.7039 8.7004 8.7001 8.7000 . . . 8.7000
2.8 10.0000 8.4039 8.4004 8.4001 8.4000 . . . 8.4000
2.7 10.0000 8.1039 8.1004 8.1001 8.1000 . . . 8.1000

Table 1.3: Change of brain cell radius over time according to the change
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In equilibrium, it can be easily seen that

r(5) = r(6) = r(7) = r(8) = r(9) = 9.9000.

As can be seen in this example, for k1/k2 ≥ 3.2, there is less than 4% change in size and normal neuronal function is preserved. For
3.0≤ k1/k2 < 3.1, there is a 7−10% change in size and functional changes may occur. For k1/k2 ≤ 2.9, there is a 13% change in size and
neuronal function is at risk.

Example 1.4 (Liver Cell-Usual Case, [1–8] ). Liver cells (hepatocytes) are the basic functional units of the liver. They are large cells with a
polygonal shape, usually 25 micrometers in diameter. Their density is approximately p = 1,09gr/cm3 . These cells perform vital functions
such as protein synthesis, detoxification of toxins, bile production, and glycogen storage. The equilibrium state for this cell is

k1

k2
= 8.3,

for

r(t) =
3k1

k2
+

(
25− 3k1

k2

)
e−

k2t
3p

where r(0) = 25 for k2 = 10. Now let’s observe the change in the blood cell by changing this ratio for p = 1,09gr/cm3 by Table 1.4.

k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
8.3 25.0000 24.3752 24.0282 23.8162 23.6799 . . . 23.4270
8.2 25.0000 24.0752 23.7282 23.5162 23.3799 . . . 23.1270
8.1 25.0000 23.7752 23.4282 23.2162 23.0799 . . . 22.8270
8.0 25.0000 23.4752 23.1282 22.9162 22.7799 . . . 22.5270
7.9 25.0000 23.1752 22.8282 22.6162 22.4799 . . . 22.2270
7.8 25.0000 22.8752 22.5282 22.3162 22.1799 . . . 21.9270
7.7 25.0000 22.5752 22.2282 21.0162 21.8799 . . . 21.6270

Table 1.4: Change of liver cell radius over time according to the change

In equilibrium, it can be easily seen that

r(5) = 23.5901,r(6) = 23.5294,r(7) = 23.4881,r(8) = 23.4599,r(9) = 23.4405.

As can be seen in this example, for k1/k2 ≥ 8.1, there is less than 8% change in size and normal hepatocyte function is preserved. For
7.9≤ k1/k2 ≤ 8.0, there is a 9-10% change in size and regular monitoring is required. For k1/k2 ≤ 7.8, there is a risk because there is more
than 12% change in size and close monitoring is required.

Remark 1.5. There is no particular reason to examine only the stomach, blood, brain and liver cells here. The changes of four cells radii in
both classical and multiplicative analysis will be examined.
In the next section, we will examine the cell radius models on multiplicative analysis. For this reason, it would be useful to explain the
multiplicative analysis in general terms in this section.
The classical analysis most commonly used today was founded by Gottfried Leibnitz and Isaac Newton in the second half of the 17th century.
Since the basic operation in this analysis is addition, it is called additive (classical) analysis or Newtonian analysis. Many new types of
analysis have emerged as a result of the ideas of establishing new analysis with different arithmetic operations based on classical analysis.
An example of these analyzes is multiplicative analysis. This type of analysis is generally called non-Newtonian analysis in the literature.
The first example of studies carried out with different arithmetic operations can be given as Volterra type analysis defined by Vito Volterra in
1887. Since this new approach is based on multiplication, it is called multiplicative analysis. The first study for Volterra type analysis was
conducted by Volterra and Hostinsky in 1938 [9]. In the period from 1967 to 1970, Michael Grossman and Robert Katz gave definitions of a
new type of derivative and integral, transferring the roles of subtraction and addition operations to division and multiplication operations,
thus introducing a new calculus called multiplicative analysis [10, 11].
Multiplicative analysis is a field of study that can be easily used in solving many scientific problems and provides great advantages. As a
result of the researches on the subject, it is seen that some problems encountered in applied sciences can be complicated to express with
classical analysis. The multiplicative analysis facilitates the solution of these problems and offers a different perspective in the mathematical
modeling of these problems. In this direction, multiplicative analysis emerged as an alternative to classical analysis. Many important studies
have been carried out in different fields related to multiplicative analysis [12–16].

Definition 1.6. Let f : A→ R+ be a positive function for all x on A⊆ R. The multiplicative derivative of f is defined by [17]

f ∗(x) = lim
h→0

(
f (x+h)

f (x)

) 1
h

.

Theorem 1.7. A positive function f is multiplicatively differentiable at x if and only if it is usual differentiable at that point [18]. There is a
relationship between derivative in classical sense and derivative in multiplicative sense as [19],

f ∗(x) = e
f ′(x)
f (x) .
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Definition 1.8 ( [19]). F : (a,b)→ R is called multiplicative anti-derivative of f : (a,b)→ R where F∗(x) = f (x) for each x ∈ (a,b).
Following presentation is used for this concept. ∫

f (x)dx = F(x).

Remark 1.9 ( [20]). If f is positive and continuous on [a,b], it is integrable in multiplicative sense and∫ b

a
f (t)dx = e

∫ b
a ln( f (t))dt .

Definition 1.10 ( [20]). An n− th order multiplicative differential equation is defined by

f (t,y,y∗,y(∗∗), . . . ,y(∗(n−1)),y(∗n)(t)) = 1, (t,y) ∈ R×R+

for a positive function f .

2. Radius Analysis for Some Cells in Multiplicative Calculus

In this section, it is thought that original results will be obtained regarding the change of cell size due to different definitions of derivative,
integral and differential equations in multiplicative analysis. These solutions will then be evaluated with mathematical and numerical
examples. The differential equation discussed in the article proposal will be established in multiplicative analysis and will be solved using
multiplicative analysis techniques. Multiplicative analysis has a very strong literature and different application areas [9–20].
In the classical case, the equation (1.4) discussed in the first section can be written as follows in multiplicative analysis;

r∗(t)r
k2
3p = e

k1
p . (2.1)

This multiplicative equation will be solved using the method of indefinite exponents in multiplicative analysis. According to this method, the
homogeneous solution of the equation is

rh = ec1e
−k2t

3p
,

where

r+
k2

3p
= 0 → r =− k2

3p
.

Let rp(t) = eA be particular solution. If multiplicative derivative is taken for rp(t) to find the constant A and substituted in Eq. (2.1), we get

r∗r
k2
3p = e

k2
p → A =

3k1

k2
.

Then, the general solution of (2.1) is

r(t) = ec1e
−k2t

3p
e

3k1
k2 ,

where r = rhrp.
Now, let’s examine the change in the radii of the stomach, blood, brain and liver cells using this solution in multiplicative analysis.

Example 2.1 (Stomach Cell-Multiplicative Case). Let r(0) = 20µm and p = 1,04gr/cm3 for a stomach cell. We will analyse the change of
radius for a stomach cell in multiplicative analysis by using the following general solution;

r(t) = ec1e
−k2t

3p
e

3k1
k2 .

If this solution is used, the equilibrium ratio for stomach cell is obtained as;

k1

k2
= 0.99,

for r(0) = 20. Here, calculations will be made for particular selections of k1 = 99 and k2 = 100 in Table 2.1.

k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
0.99 20.000 19.9967 19.9967 19.9967 19.9967 . . . 19.9967
0.89 20.000 19.1967 19.1867 19.1867 19.1867 . . . 19.1867
0.79 20.000 18.3967 18.3767 18.3767 18.3767 . . . 18.3767
0.69 20.000 17.5967 17.5667 17.5667 17.5667 . . . 17.5667
0.59 20.000 16.7967 16.7567 16.7567 16.7567 . . . 16.7567
0.49 20.000 15.9967 15.9467 15.9467 15.9467 . . . 15.9467
0.39 20.000 15.1967 15.1367 15.1367 15.1367 . . . 15.1367

Table 2.1: Change of stomach cell radius over time according to the change in multiplicative case
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In equilibrium, it can be easily seen that

r(5) = r(6) = r(7) = r(8) = r(9) = 19.9967

According to the results obtained in the multiplicative model, There is a decrease in the first 2 hours, and a constant value is reached
after the 2nd hour. There is a different balance status for each k1/k2 value. Health Status Assessment: k1/k2 > 0.89 is a safe status,
0.69≤ k1/k2 ≤ 0.89 is a monitoring status, and k1/k2 < 0.69 is a risk status. The classical model is in normal physiological adaptation,
while the multiplicative model may be an acute stress response. The classical model is in a safer range, while the multiplicative model shows
riskier changes. These two models may represent the response of the stomach cell to different conditions (normal adaptation vs. severe
stress).

Example 2.2 (Blood Cell-Multiplicative Case). Let r(0) = 3.5µm and p = 1.10gr/cm3 for a blood cell. Again, we will examine cell radius
change for blood cell using the solution (2.1) in the multiplicative case. If this solution is used, the equilibrium ratio for the cell is obtained
as;

k1

k2
= 0.41,

for r(0) = 3.5. Here the calculations will be made for particular selections of k1 = 41 and k2 = 100. in Table 2.2.

k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
0.41 3.5000 3.4984 3.4984 3.4984 3.4984 . . . 3.4984
0.36 3.5000 3.3484 3.3484 3.3484 3.3484 . . . 3.3484
0.31 3.5000 3.1984 3.1984 3.1984 3.1984 . . . 3.1984
0.26 3.5000 3.0484 3.0484 3.0484 3.0484 . . . 3.0484
0.21 3.5000 2.8984 2.8984 2.8984 2.8984 . . . 2.8984
0.16 3.5000 2.7484 2.7484 2.7484 2.7484 . . . 2.7484
0.11 3.5000 2.5984 2.5984 2.5984 2.5984 . . . 2.5984

Table 2.2: Change of blood cell radius over time according to the change in multiplicative case

In equilibrium, it can be easily seen that

r(5) = r(6) = r(7) = r(8) = r(9) = 3.4984.

Similarly, in this example, for k1/k2 ≥ 0.36, there is less than 5% change in size and normal erythrocyte function is preserved. For
0.26≤ k1/k2 < 0.36, there is a 10-15% change in size and oxygen carrying capacity may be affected. For k1/k2 < 0.26, there is a change in
size of more than 15%, in which case there is a risk of Hemolysis and cell function is seriously compromised.
The classical model represents normal adaptation, while the multiplicative model represents the acute stress response. The classical model
appears more physiological, while the multiplicative model represents pathological conditions. These two models may represent the response
of erythrocytes to different conditions (normal vs. extreme stress).

Example 2.3 (Brain Cell-Multiplicative Case). Let r(0) = 10 and p = 1.03gr/cm3 for a brain cell. Again, we will examine the cell radius
change for the brain cell using solution (2.1) in the multiplicative case. If this solution is used, the equilibrium ratio brain the cell is obtained
as;

k1

k2
= 0.76,

for r(0) = 10. Here the calculations will be made for particular selections of k1 = 76 and k2 = 100 in Table 2.3.

k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
0.76 10.0000 9.9984 9.9984 9.9984 9.9984 . . . 9.9984
0.66 10.0000 9.4984 9.4984 9.4984 9.4984 . . . 9.4984
0.56 10.0000 8.9984 8.9984 8.9984 8.9984 . . . 8.9984
0.46 10.0000 8.4984 8.4984 8.4984 8.4984 . . . 8.4984
0.36 10.0000 7.9984 7.9984 7.9984 7.9984 . . . 7.9984
0.26 10.0000 7.4984 7.4984 7.4984 7.4984 . . . 7.4984
0.16 10.0000 6.9984 6.9984 6.9984 6.9984 . . . 6.9984

Table 2.3: Change of brain cell radius over time according to the change in multiplicative case

In equilibrium, it can be easily seen that

r(5) = r(6) = r(7) = r(8) = r(9) = 9.9984.

In this example, for k1/k2 > 0.66 there is minimal dimensional change and normal neuronal function is present. For 0.46≤ k1/k2 ≤ 0.66
there is moderate change and neuroprotective treatment may be required. For k1/k2 < 0.46 there is significant dimensional change and
intensive neuroprotective treatment may be required.
There are following differences between brain cells model in classical analysis and multiplicative analysis. Multiplicative model shows
more dramatic changes, while classical model appears more physiological. Both models reach stable end states. The multiplicative model
responds faster.
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Example 2.4 (Liver Cell-Multiplicative Case). Let r(0) = 25 and p = 1.09gr/cm3 for a liver cell. Again, we will examine the cell radius
change for the liver cell using solution (2.1) in the multiplicative case. If this solution is used, the equilibrium ratio for the cell is obtained as;

k1

k2
= 1.07,

for r(0) = 25. Here the calculations will be made for particular selections of k1 = 107 and k2 = 100 in Table 2.4.

k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
1.07 25.0000 24.9984 24.9984 24.9984 24.9984 . . . 24.9984
0.97 25.0000 23.9984 23.9984 23.9984 23.9984 . . . 23.9984
0.87 25.0000 22.9984 22.9984 22.9984 22.9984 . . . 22.9984
0.77 25.0000 21.9984 21.9984 21.9984 21.9984 . . . 21.9984
0.67 25.0000 20.9984 20.9984 20.9984 20.9984 . . . 20.9984
0.57 25.0000 19.9984 19.9984 19.9984 19.9984 . . . 19.9984
0.47 25.0000 18.9984 18.9984 18.9984 18.9984 . . . 18.9984

Table 2.4: Change of liver cell radius over time according to the change in multiplicative case

In equilibrium, it can be easily seen that

r(5) = r(6) = r(7) = r(8) = r(9) = 24.9984.

In this example, for k1/k2 = 1.07, there is a 0.006% change, which is the ideal situation. For k1/k2 = 0.97−0.87, a 4-8% reduction is
within normal limits. For k1/k2 = 0.77−0.67, a 12-16% reduction is the situation that should be monitored. For k1/k2 = 0.57−0.47, there
is a 20-24% reduction, which is a risk situation. Hepatoprotective treatment is required.
There are following differences between liver cells model in classical analysis and multiplicative analysis. In the classical case, the rate of
change is slow and continuous, while in multiplicative analysis it is fast and one-time. While in the classical case there is a stability in the
form of an asymptotic approach, in the multiplicative case there is an instantaneous stability.

3. Conclusion

In this study, four types of cells (Stomach, Blood, Brain, Liver) were considered and the change in the radii of the cells was examined
by establishing the classical model in multiplicative analysis. In the classical and multiplicative case, the change in the radius of the cell
membrane as time passes has been examined. In the multiplicative case, changes occur faster than in the classical case and the cells are in a
more difficult situation than in the classical case.
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Abstract

This paper investigates the existence of solutions and the controllability for three distinct
types of fractional-order delay differential equations, aiming to establish sufficient condi-
tions for both existence and uniqueness while demonstrating controllability. Beginning
with a fractional-order delayed system containing a nonzero control function, we apply the
Banach fixed-point theorem to show that this system has a unique solution and satisfies the
controllability property. Extending our analysis, we introduce an integral function with a
delay term on the right-hand-side of the system, forming a more complex integro-fractional
delay system. With a Lipschitz condition imposed on this newly introduced function, we
establish the existence and uniqueness of solution, as well as the controllability of this
system. In the final system, an integro-fractional hybrid model, an additional delayed
function is embedded within the Caputo derivative operator, introducing distinct analytical
challenges. Despite these complexities, we use the Banach fixed-point theorem and certain
assumptions to demonstrate that the systems are controllable. Our approach is distinctive
in incorporating delay functions on both sides of the related systems, which we support
with theoretical results and illustrative examples. The paper outlines the fundamentals of
fractional calculus, specifies the necessary assumptions, and uses fixed-point criteria to
establish controllability with the existence of a solution, providing a clear framework for
analyzing fractional-order control systems with delay functions.

1. Introduction

Control theory, a branch of applied mathematics, deals with the key theoretical and practical aspects of designing and analysing control
systems. These systems can be viewed as dynamical systems in which the rules of behaviour are determined by parameters called control
functions. As in structures such as dynamical systems on manifolds, Lie groups and semigroups [1, 2], the question of controllability is
also essential for fractional systems [3–6]. Recently, fractional-order differential equations have been increasingly recognised for their
applications in physics, engineering and finance, and for their ability to model real-world problems. Unlike classical integer-order differential
equations, they offer a more general approach [7–10]. However, similar to classical differential equations, there is no universal method to
solve them explicitly, making existence and uniqueness theorems an important topic of discussion [11–14].
The controllability of fractional differential equations has been the subject of extensive study by numerous authors. In [15], M. Benchohra
examined the sufficient conditions of controllability property by using semi-group theory. N.I. Mahmudov et al. addressed the controllability
of semilinear integro-differential systems in Hilbert spaces, while V. Vijayakumar et al. provided results for these type of systems using
resolvent operators [16, 17]. Moreover, M.M. Raja et al. obtain some results with the help of sectorial operators and Bohnenblust–Karlin’s
fixed point theorem [18]. Subsequently, many authors also explored fractional systems with delays, incorporating delay terms to make
the models more applicable to real-life problems. Recently, K.S. Nisar et al. employed degree theory to analyze the controllability of
delayed impulsive fractional integro-differential equations through numerical computations [19], while another study by Nisar et al. utilized
integrated resolvent operator theory with Lipschitz conditions to demonstrate the existence and uniqueness of solutions for this type equations
with nonlocal conditions and finite delay functions [20]. To emphasize the importance of the theory, it is worthy of note that there are studies
on various spaces and different types of fractional type differential equations. In [21], K. Kavitha et al. proposed existence results for
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Sobolev-type Hilfer fractional integro-differential systems with infinite delay, and in [22], K. Kavitha et al. investigated the controllability of
Hilfer fractional neutral Volterra-Fredholm delay integro-differential systems by using Dhage’s fixed point theorem. In obtaining results
related to controllability and existence/uniqueness of solutions, the use of tools such as fixed point theories like Banach, Schauder and
Krasnoselskii, and Gronwall type inequalities, fractional calculus analysis and even topological degree theory is frequently seen, which
shows how important and broad the field the theory studied is. For further details, we refer the reader to the papers [3–6] with [14–25] and
the references therein.
The primary aim of this paper is to establish the existence and uniqueness of solutions for some fractional-order delay differential equations
and to demonstrate that these systems possess the controllability property using a clear and more understandable way. For this we first
consider the following fractional-order delayed system with the continuous function f from [0,T ]×R2 to R:

cDκ
ρ(ς) = f (ς ,ρ(ς),ρ(g(ς)))−Bu(ς), ς ∈ [0,T ] (1.1)

ρ(ς) = ϖ(ς), ς ∈ [−τ,0]. (1.2)

where our initial condition ϖ ∈C([−τ,0],R), delayed term g ∈C([0,T ], [−τ,T ]) satisfying g(ς)≤ ς , and control function u(·) is given in
L2([0,T ],U) with admissible control functions space U , B is a bounded linear operator and cDκ is the fractional derivative of order 0 < κ < 1
w.r.t. Caputo. The case where the control function in the system (1.1)-(1.2) is zero is discussed in [14], where a Lipschitz condition is
imposed on the right-hand side with respect to the second and third variables to ensure the existence of a solution. In this study, we extend
this by treating the nonzero control function, introducing some hypotheses based only on the control function and some hypotheses related
to it. We then show, just using the Banach fixed-point theorem, that the system (1.1)-(1.2) satisfies both the existence and uniqueness of
solution as well as the controllability property. We then add an integral function with delay function to the right hand side of the system
(1.1)-(1.2), and we get the following integro-fractional-order delayed system:

cDκ
ρ(ς) = f (ς ,ρ(ς),ρ(g(ς)))−Bu(ς)+F

(
ς ,ρ(ς),

∫
ς

0
ζ (ς ,s,ρ(g(s)))

)
ds, ς ∈ [0,T ] (1.3)

ρ(ς) = ϖ(ς), ς ∈ [−τ,0]. (1.4)

Since the system (1.3)-(1.4) is more complex than the initial system, we demonstrate the existence and uniqueness of the solution, as well as
the controllability property, using the Banach fixed-point theorem and the Lipschitz condition related to the newly added function on the
right-hand side, along with the hypotheses established in the first system. Next, we consider the system of and integro-fractional-order hybrid
delayed system, defined as follows, which is obtained when another function involving delay function is added to the Caputo derivative
operator in the system (1.3)-(1.4):

cDκ

(
ρ(ς)+ξ (ς ,v(g(ς)))

)
= f (ς ,ρ(ς),ρ(g(ς)))−Bu(ς)+F

(
ς ,ρ(ς),

∫
ς

0
ζ (ς ,s,ρ(g(s)))

)
ds, ς ∈ [0,T ] (1.5)

ρ(ς) = ϖ(ς), ς ∈ [−τ,0]. (1.6)

Here, in addition to the conditions of the previous system, we also impose the Lipschitz condition on the function within the Caputo derivative
operator. This allows us to establish the existence and uniqueness of solutions for this system and to verify the controllability property
by Banach fixed-point theorem. Unlike most studies focusing on these type of systems, we introduce delay functions in the functions on
both the right and left sides for related systems. This addition of delay functions brings a new perspective to the problem, making our
approach distinctive and challenging. The paper is organized as follows: Section 2 provides an introduction to the Caputo fractional-order
derivative and discusses the concept of controllability. Here we outline the fundamental properties of the Caputo fractional-order derivative,
the relevant inequalities and the main assumptions. In the Section 3, we explore the controllability of the systems and establish the existence
and uniqueness of solutions for our problems. By converting the problems into well-defined fixed point statements, we prove our results
relying mainly on Lipschitz conditions and the contraction mapping theorem. Finally, in Section 4 we illustrate our results with examples.

2. Preliminaries

This section introduces the notations, definitions and basic concepts employed in the all of the paper.

Definition 2.1 ( [26, 27]). Let κ > 0 be a number and Γ(·) be the Gamma function. Assume that ς is any real number in the interval [0,T ].

(1) The Riemann–Liouville integral for the function ρ is defined as follows w.r.t. the order κ

Iκ
ρ(ς) =

1
Γ(κ)

∫
ς

0
(ς − s)κ−1

ρ(s)ds. (2.1)

(2) The Caputo derivative for the function ρ is defined as follows w.r.t. the order κ

Dκ
ρ(ς) =

1
Γ(n−κ)

∫
ς

0
(ς − s)n−κ−1

ρ
(n)(s)ds,

where n = [κ]+1 and [κ] denotes the integer part of κ .

Before presenting our main assumptions, we give the definition of the concept of controllability given in [28], adapted to the differential
equation of interest.

Definition 2.2. The fractional control system (1.1)-(1.2) is called to be controllable on the given interval if for every points ρ0,ρ1 ∈ C there
exists a control function u ∈ L2([0,T ],U) such that the solution ρ(·) of (1.1)-(1.2) satisfies ρ(0) = ρ0 and ρ(ς) = ρ1. The same definition
applies to systems (1.3)-(1.4) and (1.5)-(1.6).
Note that throughout this paper all operations on continuous function spaces are conducted using the standard uniform convergence norm.
Otherwise, it will be specified.
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Let us now state the hypotheses we will use in the proofs of our results:

(C1) Assume that there exists L > 0. Let the following inequality hold for all ρi,ρ i ∈ R (i = 1,2) and ς ∈ [0,T ]

| f (ς ,ρ1,ρ1)− f (ς ,ρ2,ρ2)| ≤ L(|ρ1−ρ2|+ |ρ1−ρ2|) .

(C2) Suppose that X be a linear operator from L2([0,T ],U) to R defined as follows

X u :=
1

Γ(κ)

∫
ς

0
(ς − s)κ−1Bu(s)ds.

Then, we see that it induces an inverse operator X
−1 which is bounded and defined on the coset space L2([0,T ],U)/kerX , and there

is a constant K > 0 satisfying
∣∣BX

−1∣∣≤ K.

Remark 2.3 ( [29]). We give the sketch for the construction of X
−1 as follows. Let us think a Banach space M and let J be a closed interval

of R. Now take into account of the coset sapce Y = L2[J,U ]/ker(X ). Since ker(X ) is closed, Y is a Banach space w.r.t. the following norm

‖[u]‖Y = inf
u∈[u]
‖u‖L2[J,U ] = inf

X û=0
‖u+ û‖L2[J,U ]

where [u] are classes of equivalence for u. Define X : Y →M by X [u] = X u for all u ∈ [u]. Then we have that X is one-to-one and

‖X [u]‖M ≤ ‖X ‖ . ‖[u]‖Y.

Moreover, V := R(X ) (i.e. range of X ) is a Banach space with the following norm

‖v‖V =
∥∥∥X −1v

∥∥∥
Y
.

To see this, note that this norm is equivalent to the graph norm on the domain of X
−1, i.e., we have that D

(
X
−1
)
= R(X ). On the other

hand X is bounded, and since D(X ) = Y is closed, X
−1 must be closed. Then we get that R(X ) =V is a Banach space with respect to

the above norm. Also, we get the following relation

‖X u‖V =
∥∥∥X −1

X u
∥∥∥

Y
=
∥∥∥X −1

X [u]
∥∥∥= ‖[u]‖= inf

u∈[u]
‖u‖ ≤ ‖u‖.

Since the space L2[J,U ] is reflexive and the set ker(X ) is closed (weakly sense), the infimum value mentioned above has been attained.
Hence, for any v ∈V , there exists a control u ∈ L2[J,U ] such that u = X

−1v.

3. Controllability Results

In this section, we present the controllability results for the systems (1.1)-(1.2), (1.3)-(1.4) and (1.5)-(1.6). For the sake of simplicity, the
space C([−τ,T ],R) will be referred to as C for short in this and the following sections.

Theorem 3.1. If the assumptions (C1)-(C2) are satisfied, then the control system (1.1)-(1.2) is controllable provided that

Λ1 := L
( T κ

Γ(κ +1)
+K

T 2κ

Γ(κ +1)2

)
<

1
2
.

Proof. First we reconsider the our problem (1.1)-(1.2) as a fixed point problem. Then we make a detailed analysis of the following operator

F : C → C

defined by

Fρ(ς) =

{
ϖ(ς), ς ∈ [−τ,0]

ϖ(0)+
∫ ς

0
(ς−s)κ−1

Γ(κ)
f (s,ρ(s),ρ(g(s))ds−

∫ ς

0
(ς−s)κ−1

Γ(κ)
Bu(s)ds, ς ∈ [0,T ].

Now, using a suitable control function u, our goal is to identify a unique fixed point of F . If any ρ(ς) and ρ(ς) satisfy Fρ(ς) = Fρ(ς)
for ς ∈ [−τ,0], then this equality is extended to ς ∈ [0,T ]. In addition, let us choose the control function u as follows:

u(ς) = X
−1
(

ρ0−ρ1 +
∫

ς

0

(ς − s)κ−1

Γ(κ)
f (s,ρ(s),ρ(g(s))ds

)
for all ρ0,ρ1 ∈ R.
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Now, using this control, let us determine the fixed point of the operator F .∣∣Fρ(ς)−Fρ(ς)
∣∣
≤ 1

Γ(κ)

∫
ς

0
(ς − s)κ−1∣∣ f (s,ρ(s),ρ(g(s)))− f (s,ρ(s),ρ(g(s)))

∣∣ds

+
1

Γ(κ)

∫
ς

0
(ς − s)κ−1(Bu(s)−Bu(s)

)
ds

≤ L
Γ(κ)

∫
ς

0
(ς − s)κ−1( |ρ(s)−ρ(s)|+ |ρ(g(s))−ρ(g(s))|

)
ds

+
1

Γ(κ)

∫
ς

0
(ς − s)κ−1

[
BX

−1
(
(
∫

ς

0

(ς − s)κ−1

Γ(κ)
( f (s,ρ(s),ρ(g(s))− f (s,ρ(s),ρ(g(s)))ds)))

)]
≤ 2L

T κ

Γ(κ +1)

∣∣ρ−ρ
∣∣+ 1

Γ(κ)

∫
ς

0
(ς − s)κ−1∣∣BX

−1∣∣∫ ς

0

(ς − s)κ−1

Γ(κ)

∣∣( f (s,ρ(s),ρ(g(s))− f (s,ρ(s),ρ(g(s)))
∣∣ds

≤ 2L
T κ

Γ(κ +1)

∣∣ρ−ρ
∣∣+2KL

T 2κ

Γ(κ +1)2

∣∣ρ−ρ
∣∣

≤
[
2L
( T κ

Γ(κ +1)
+K

T 2κ

Γ(κ +1)2

)]∣∣ρ−ρ
∣∣.

Since Λ1 <
1
2 , then there exists a fixed point ρ(·) of the operator F w.r.t. the control function u by the Banach Contraction Principle. Thus

this fixed point is the solution of the systems (1.1)-(1.2). Also,these control systems is controllable since (i) (Fρ)(ς) = ϖ(ς) = ρ(ς) on
[−τ,0] and (ii) (Fρ)(ς) = ρ(ς) with (Fρ)(T ) = ρ(T ) = ρ1 on [0,τ]. Thus, it is concluded that the our systems is controllable on the
whole interval [−τ,T ].

Theorem 3.2. Let the assumptions (C1)-(C2) be satisfied. Suppose that

(C3) The function ζ : ∆×R→ R is continuous and there is a constant H > 0 such that

|ζ (ς ,s,ρ)−ζ (ς ,s,ρ)| ≤ H |ρ−ρ| .

(C4) The function F : [0,T ]×R×R→ R is continuous and there is a constant P > 0 such that

|F(s,ρ1,ρ1)−F(s,ρ2,ρ2)| ≤ P(|ρ1−ρ2|+ |ρ1−ρ2|) .

for all ρi,ρ i ∈ R (i = 1,2) and ς ,s ∈ [0,T ]. Also we denote here that ∆ := {(ς ,s) : 0 ≤ s ≤ ς ≤ T} and H ρ(ς) =
∫ ς

0 ζ (ς ,s,ρ(s))ds for
brevity.

Then the control system (1.3)-(1.4) is controllable provided that

Λ2 := Λ1 +P(1+H)
T κ

Γ(κ +1)
< 1.

Proof. By analogy, we need to make the problem (1.3)-(1.4) into a fixed point problem. In the next step we shall analyse the operator

Ψ : C → C

defined by

Ψρ(ς) =

{
ϖ(ς), ς ∈ [−τ,0]

ϖ(0)+
∫ ς

0
(ς−s)κ−1

Γ(κ)
f (s,ρ(s),ρ(g(s))ds−

∫ ς

0
(ς−s)κ−1

Γ(κ)
Bu(s)ds+

∫ ς

0
(ς−s)κ−1

Γ(κ)
F
(

s,ρ(s),H ρ(g(s))
)

ds, ς ∈ [0,T ]

Similar to what was done above, we find the fixed point of the operator Ψ via a suitable control function u. If any ρ(ς),ρ(ς) satisfying
Ψρ(ς) = Ψρ(ς) for ς ∈ [−τ,0], then we take it in the interval [0,T ]. Now let us determine the control function as follow:

u(ς) = X
−1
(

ρ0−ρ1 +
∫

ς

0

(ς − s)κ−1

Γ(κ)
f (s,ρ(s),ρ(g(s))ds

)
−
∫

ς

0

(ς − s)κ−1

Γ(κ)
F
(

s,ρ(s),H ρ(g(s))
)

ds for all ρ0,ρ1 ∈ R.

Next we show that the operator Ψ has a fixed point with the following steps:∣∣Ψρ(ς)−Ψρ(ς)
∣∣ ≤ 1

Γ(κ)

∫
ς

0
(ς − s)κ−1∣∣ f (s,ρ(s),ρ(g(s)))− f (s,ρ(s),ρ(g(s)))

∣∣ds

+
1

Γ(κ)

∫
ς

0
(ς − s)κ−1(Bu(s)−Bu(s)

)
ds

+
1

Γ(κ)

∫
ς

0
(ς − s)κ−1

[
F
(

s,ρ(s),H ρ(g(s))
)
−F

(
s,ρ(s),H ρ(g(s))

)]
ds

≤ Λ1 +
1

Γ(κ)

∫
ς

0
(ς − s)κ−1

∣∣∣F(s,ρ(s),H ρ(g(s))
)
−F

(
s,ρ(s),H ρ(g(s))

)∣∣∣ds

≤ Λ1 +P
∣∣ρ−ρ

∣∣ 1
Γ(κ)

∫
ς

0
(ς − s)κ−1ds+PH

∣∣ρ−ρ
∣∣ 1
Γ(κ)

∫
ς

0
(ς − s)κ−1ds

≤
[

Λ1 +P(1+H)
T κ

Γ(κ +1)︸ ︷︷ ︸
Λ2

]∣∣ρ−ρ
∣∣.
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Since Λ2 < 1, then there exists a fixed point ρ(·) of the operator Ψ w.r.t. the control function u by the Banach Contraction Principle. Therefore,
this fixed point serves as the solution to the systems (1.3)-(1.4). Also,these control systems is controllable since (i) (Ψρ)(ς) = ϖ(ς) = ρ(ς)
on [−τ,0] and (ii) (Ψρ)(ς) = ρ(ς) with (Ψρ)(T ) = ρ(T ) = ρ1 on [0,τ]. Hence, we conclude that the systems is controllable on the interval
[−τ,T ]. Thus the proof is complete.

Theorem 3.3. Let the assumptions (C1)-(C4) be satisfied. Suppose that the function ξ : [0,T ]×R→R is continuous and there is a constant
δ > 0 such that

|ξ (ς ,ρ(ς))−ξ (ς ,ρ(ς))| ≤ δ |ρ−ρ| .

Then the control system (1.5)-(1.6) is controllable provided that

Λ3 := (δ +M)

(
KT κ

Γ(κ +1)
+1
)
< 1

where the constant M = T κ

Γ(κ+1) (2L+P(1+HT )).

Proof. Analogously,let us turn the problem (1.5)-(1.6) into a fixed point problem.

Θ : C → C

defined by

Θρ(ς) =


ϖ(ς), ς ∈ [−τ,0]

ϖ(0)+ξ (0,ρ0)−ξ (ς ,ρ(g(ς)))+
∫ ς

0
(ς−s)κ−1

Γ(κ)
f (s,ρ(s),ρ(g(s))ds

−
∫ ς

0
(ς−s)κ−1

Γ(κ)
Bu(s)ds+

∫ ς

0
(ς−s)κ−1

Γ(κ)
F
(

s,ρ(s),H ρ(g(s))
)

ds, ς ∈ [0,T ]

Analogously, let us begin with the steps above. If any ρ(ς),ρ(ς) satisfying Θρ(ς) = Θρ(ς) for ς ∈ [−τ,0], then we take ς ∈ [0,T ]. Now
let us determine the control function as follow:

u(ς) = X
−1
(

ρ0−ρ1 +ξ (0,ρ0)−ξ (ς ,ρ(g(ς)))+
∫

ς

0

(ς − s)κ−1

Γ(κ)
f (s,ρ(s),ρ(g(s))ds

)
−

∫
ς

0

(ς − s)κ−1

Γ(κ)
F
(

s,ρ(s),H ρ(g(s))
)

ds for all ρ0,ρ1 ∈ R.

Next we show that the operator Θ has a fixed point:∣∣Θρ(ς)−Θρ(ς)
∣∣ ≤ ∣∣ξ (ς ,ρ(g(ς)))−ξ (ς ,ρ(g(ς)))

∣∣
≤ 1

Γ(κ)

∫
ς

0
(ς − s)κ−1∣∣ f (s,ρ(s),ρ(g(s)))− f (s,ρ(s),ρ(g(s)))

∣∣ds

+
1

Γ(κ)

∫
ς

0
(ς − s)κ−1(Bu(s)−Bu(s)

)
ds

+
1

Γ(κ)

∫
ς

0
(ς − s)κ−1

[
F
(

s,ρ(s),H ρ(g(s))
)
−F

(
s,ρ(s),H ρ(g(s))

)]
ds

≤ δ
∣∣ρ−ρ

∣∣+2L
T κ

Γ(κ +1)

∣∣ρ−ρ
∣∣

+
KT κ

Γ(κ +1)

[
δ +

T κ

Γ(κ +1)
(
2L+P(1+HT )

)]∣∣ρ−ρ
∣∣

+
T κ

Γ(κ +1)
P(1+HT )

∣∣ρ−ρ
∣∣= (δ +M)

(
KT κ

Γ(κ +1)
+1
)

Since Λ3 < 1, then there exists a fixed point ρ(·) of the operator Θ w.r.t. the control function u by the Banach Contraction Principle.
Consequently, this fixed point gives the solution to the systems (1.5)-(1.6). Also, these control systems is controllable since (i) (Θρ)(ς) =
ϖ(ς) = ρ(ς) on [−τ,0] and (ii) (Θρ)(ς) = ρ(ς) with (Θρ)(T ) = ρ(T ) = ρ1 on [0,τ]. Hence, we conclude that the systems is controllable
on the entire interval [−τ,T ]. Thus the proof is complete.

4. Examples

Example 4.1. Let us examine the fractional-order differential equation below:cD
1
2 ρ(ς) =

∣∣ρ(ς)∣∣
8+8
∣∣ρ(ς)∣∣ + cosρ(ς 2)

8 −u(ς) ς ∈ [0,1]

ρ(ς) = ς ς ∈ [−1,0].
(4.1)

Let f (ς ,ρ,ρ) =

∣∣ρ∣∣
8+8
∣∣ρ∣∣ + cosρ

8 and g(ς) = ς2. It is obtained that

∣∣ f (ς ,ρ1,ρ1)− f (ς ,ρ2,ρ2,)
∣∣≤ 1

8

(∣∣ρ1−ρ2
∣∣+ ∣∣ρ1−ρ2

∣∣)
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for all ρi,ρ i ∈ R where i = 1,2 with ς ∈ [0,1] and u is a control function. Now, assume that the operator X : L2([0,T ],U)→ R defined by

X u :=
1

Γ( 1
2 )

∫
ς

0
(ς − s)−

1
2 Bu(s)ds.

induces a bounded inverse operator X
−1 on the coset L2([0,T ],U)/kerX . Choose K < 2 in such a way Λ1 <

1
2 . Indeed,

Λ1 =
1
8

(
1

Γ( 1
2 +1)

+K
1

Γ( 1
2 +1)2

)
<

1
2
⇐⇒ Λ1 =

(
1

Γ( 1
2 +1)

+K
1

Γ( 1
2 +1)2

)
< 4 ⇐⇒ K < 2,2552

where Γ( 1
2 +1)≈ 0,8862. Since the all required conditions of Theorem 3.1 are satisfied, then we obtain that the problem (4.1) is controllable.

Example 4.2. Now, let us think the following integro-fractional order differential equation:
cD

1
2 ρ(ς) =

sinρ(ς)
10 +

ρ(ς−1)
10 −u(ς)+

e−ς

∣∣ρ(ς)∣∣
(2+e−ς )(1+

∣∣ρ(ς)∣∣)
+ 1

3
∫ ς

0 e
−1
3 ρ(g(s))ds ς ∈ [0,1]

ρ(ς) = eς ς ∈ [−1,0].

(4.2)

Let f (ς ,ρ,ρ) = 1
10
(

sinρ +ρ
)
, g(ς) = ς −1 and F

(
ς ,ρ,H ρ

)
=

e−ς

∣∣ρ(ς)∣∣
(2+e−ς )(1+

∣∣ρ(ς)∣∣) +H ρ where H ρ(ς) = 1
3
∫ ς

0 e
−1
3 ρ(s)ds. It is hold that

| f (ς ,ρ1,ρ)− f (ς ,ρ2,ρ)| ≤
1

10

(∣∣ρ1−ρ2
∣∣+ ∣∣ρ1−ρ2

∣∣)
∣∣H ρ−H ρ

∣∣ ≤ 1
3

∣∣ρ−ρ
∣∣

∣∣F(ς ,ρ,H ρ)−F(ς ,ρ,H ρ)
∣∣ ≤ 1

3
(
∣∣ρ−ρ

∣∣+ ∣∣H ρ−H ρ
∣∣).

for all ρi,ρ ∈ R where i = 1,2 with ς ∈ [0,1] and u is a control function. Therefore, H = 1
3 , P = 1

3 . Using similar calculations above we
have that Λ1 = 0,240161 and find that Λ2 = 0,741663 < 1. Since the remaining conditions of Theorem 3.2 are satisfied, then we obtain that
the problem (4.2) is controllable.

Conclusion

In this paper we have established the existence and uniqueness of solutions for several fractional-order delay differential equations, while
demonstrating their controllability properties. We began by analysing a fractional-order delay control system with a nonzero control function,
and successfully applied the Banach fixed point theorem to show that the solution exists and is unique. Meanwhile, in Theorem 3.1, we have
shown that the system is controllable using the function detailed in Remark 2.3. We then introduced an additional function involving integral
part on the right-handside with delay function, which led to a more complex integro-fractional-order delayed system. Here we imposed a
Lipschitz condition on the new function to verify the existence and uniqueness of solutions and the controllability property in Theorem 3.2.
In addition, we extended our work to an integro-fractional-order hybrid delayed system by incorporating another delayed function into
the Caputo derivative operator. This presented different challenges, particularly in formulating appropriate conditions for our analyses in
Theorem 3.3. Despite these difficulties, our new approach, which included the introduction of delay functions on both the right and left sides
of the equations, provides a uncomplicated perspective on control systems in fractional calculus and enhances the understanding of their
dynamics. The use of Banach fixed point theory as the basis for the proofs of these theorems emphasizes the simplicity and clarity of our
method and makes it applicable to different types of control systems.

Article Information

Acknowledgements: The author would like to express his sincere thanks to the editor and the reviewers for their helpful comments and
suggestions.

Author’s contributions: The article has a single author. The author has read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright statement: The author owns the copyright of their work published in the journal and his work is published under the CC BY-NC
4.0 license.

Supporting/Supporting organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical approval and participant consent: It is declared that during the preparation process of this study, scientific and ethical principles
were followed and all the studies benefited from are stated in the bibliography.

Plagiarism statement: This article was scanned by the plagiarism program.



Journal of Mathematical Sciences and Modelling 127

References

[1] A. Da Silva, Controllability of linear systems on solvable Lie groups, SIAM J. Control Optim., 54 (2016), 372–390.
[2] E. Kizil, Control Homotopy of Trajectories, J. Dyn. Control Syst., 77 (2021), 683–692.
[3] A. Ali, S. Khalid, G. Rahmat, G. Ali, K. S. Nisar, B. Alshahrani, Controllability and Ulam–Hyers stability of fractional order linear systems with

variable coefficients, Alex. Eng. J., 61(8) (2022), 6071-6076.
[4] A. Shukla, R. Patel, Controllability results for fractional semilinear delay control systems, J. Appl. Math. Comput., 65 (2021), 861–875.
[5] B. Radhakrishnan, K. Balachandran, P. Anukokila, Controllability results for fractional integrodifferential systems in Banach spaces, Int. J. Comput. Sci.

Math., 5(2) (2014), 184-97.
[6] PS. Kumar, K. Balachandran, N. Annapoorani, Controllability of nonlinear fractional Langevin delay systems, Nonlinear Anal. Model. Control, 23(3)

(2018), 321-340.
[7] H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.Q. Chen, A new collection of real world applications of fractional calculus in science and engineering,

Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213-231.
[8] G.Z. Voyiadjis, W. Sumelka, Brain modelling in the framework of anisotropic hyperelasticity with time fractional damage evolution governed by the

Caputo-Almeida fractional derivative, J. Mech. Behav. Biomed., 89 (2019), 209-216.
[9] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

[10] V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, 2010.
[11] T.A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett., 11(1) (1998), 85-88.
[12] T.A. Burton, A note on existence and uniqueness for integral equations with sum of two operators: progressive contractions, Fixed Point Theory, 20(1)

(2019), 107-113.
[13] T.A. Burton, I.K. Purnaras, Global existence and uniqueness of solutions of integral equations with delay: progressive contractions, Electron. J. Qual.

Theory Differ. Equ., 49 (2017), 1-6.
[14] F. Develi, O. Duman, Existence and stability analysis of solution for fractional delay differential equations, Filomat, 37 (2023), 1869–1878.
[15] M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Differ. Equ., 8 (2009), 1–14.
[16] N.I. Mahmudov, R. Murugesu, C. Ravichandran, V. Vijayakumar, Approximate controllability results for fractional semilinear integro-differential

inclusions in Hilbert spaces, Results Math., 71 (2017), 45-61.
[17] V. Vijayakumar, K.S. Nisar, D. Chalishajar, A. Shukla, M. Malik, A. Alsaadi, S.F. Aldosary, A note on approximate controllability of fractional

semilinear integrodifferential control systems via resolvent operators, Fractal and Fractional, 6(2) (2022), 1-14.
[18] M.M. Raja, V. Vijayakumar, A. Shukla, K.S. Nisar, H.M. Baskonus, On the approximate controllability results for fractional integrodifferential systems

of order 1¡ r¡ 2 with sectorial operators, J. Comput. Appl. Math.J. Comput. Appl. Math., 415 (2022), 114492.
[19] K.S. Nisar, K. Muthuselvan, A new effective technique of nonlocal controllability criteria for state delay with impulsive fractional integro-differential

equation, Results Appl. Math, 21 (2024), 100437.
[20] K.S. Nisar, K. Munusamy, C. Ravichandran, Results on existence of solutions in nonlocal partial functional integrodifferential equations with finite

delay in nondense domain, Alex. Eng. J., 73 (2023), 377-384.
[21] K. Kavitha, K.S. Nisar, A. Shukla, V. Vijayakumar, S. Rezapour, A discussion concerning the existence results for the Sobolev-type Hilfer fractional

delay integro-differential systems, Adv. Differ. Equ., 2021, 1-18.
[22] K. Kavitha, V. Vijayakumar, K.S. Nisar, On the approximate controllability of non-densely defined Sobolev-type nonlocal Hilfer fractional neutral

Volterra-Fredholm delay integro-differential system, Alex. Eng. J., 69 (2023), 57-65.
[23] A. Shukla, V. Vijayakumar, K.S. Nisar, A new exploration on the existence and approximate controllability for fractional semilinear impulsive control

systems of order r ∈ (1,2), Chaos, Solitons and Fractals, 154 ( 2022), 111615.
[24] K. Muthuvel, K. Kaliraj, K.S. Nisar, V. Vijayakumar, Relative controllability for Ψ-Caputo fractional delay control system, Results Control Optim., 16

(2024), 100475.
[25] G. Jothilakshmi, B. Sundaravadivoo, K.S. Nisar, S. Alsaeed, Impulsive fractional integro-delay differential equation-controllability through delayed

Mittag-Leffler function perturbation, Int. J. Dyn. Contr., 12(11) (2024), 4178-4187.
[26] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
[27] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006.
[28] D.Y. Khusainov, G.V. Shuklin, Relative controllability in systems with pure delay, Int. J. Appl. Mech., 41 (2005), 210-221.
[29] M.D. Quinn, N. Carmichael, An approach to nonlinear control problem using fixed point methods, degree theory and pseudo-inverses, Numer. Funct.

Anal. Optim., 7 (1984), 197–219.



Journal of Mathematical Sciences and Modelling, 7(3) (2024) 128-145
Research Article

Journal of Mathematical Sciences and Modelling
Journal Homepage: www.dergipark.gov.tr/jmsm

ISSN: 2636-8692
DOI: https://doi.org/10.33187/jmsm.1587499

Medical Waste Management Based on an Interval-Valued
Fermatean Fuzzy Decision-Making Method

Murat Kirişci
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Abstract

Due to its infectious and hazardous nature, medical waste poses risks to people and the
environment. For patients to receive medical attention and recover in a safe environment,
waste must be disposed of correctly. Improper medical waste disposal poses a severe risk
to society, which can accelerate the development of various pandemics and epidemics. In
this case, medical waste disposal should be handled appropriately. This study presents an
integrated multi-criteria decision-making method consisting of entropy, the Pivot Pairwise
Relative Criteria Importance Assessment, and Measurement of Alternatives and Ranking
according to Compromise Solution methods based on an interval-valued Fermatean fuzzy
set. This method can guarantee high safety and security for health practitioners and society
through effective modeling and ranking of risks associated with medical waste disposal. Five
alternatives and eight criteria were determined. According to the results, incineration is the
most suitable disposal process for medical waste. The performance was then assessed and
validated using a sensitivity analysis. A sensitivity analysis has been conducted across the
range of values for the α parameter. It was examined whether the rankings of the alternatives
changed when the α values in the integrated weight determination model for sensitivity
analysis were altered. When the different α values were reviewed with the selected α value
in the application example, it was seen that incineration was the first alternative. In addition,
the study’s findings and their consequences for lawmakers, businesspeople, technologists,
and practitioners are examined. In the future, these stakeholders can concentrate on these
deficiencies and provide long-term remedies.

1. Introduction

Concerns over the health of people and animals are legitimate, given the world’s population growth and the rise in pandemic diseases.
One of these issues is the appropriate disposal of the enormous volumes of medical waste (MW) produced by hospitals, labs, and other
healthcare facilities. Managing the MW generated by their operations is among the most significant issues facing healthcare facilities
worldwide [1]. Inappropriately disposing of hazardous goods, such as used needles and personal protective equipment, is risky because MW
is communicable. Several pandemic infections can spread more quickly when MW is not managed correctly, which is a severe worry for the
general public. The problem of how to dispose of MW in this situation needs careful consideration [2].

MW impacts the environment, the general public, employees, and patients. Selecting a technique for disposing of MW is among the most
crucial decisions healthcare institutions must make. This situation is a complicated problem with multiple competing requirements and
options. Nevertheless, decision specialists could feel uncertain about themselves when assessing these possibilities. Further, one of the
biggest challenges that healthcare organizations confront globally is managing the MW that their activities generate. The improper disposal
of hazardous waste poses a significant risk to society and can hasten the spread of several pandemic illnesses. The problem of deciding
how to get rid of MW needs to be given serious thought right away. Because a MW method selection problem has several criteria and
options, it can be classified as a multi-criteria decision-making(MCDM) problem. However, specialists assessing these issues are limited to
linguistically assessing the qualitative criteria. Fuzzy logic addresses the ambiguity in these verbal formulations, while MCDM approaches
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allow for converting these evaluations into a numerical format. This research offers novel fuzzy MCDM approaches for evaluating MW
disposal options. This method includes the interval-valued Fermatean Fuzzy Set(IVFFS)-defined entropy, PIPCERIA(the PIvot Pairwise
RElative Criteria Importance Assessment), and MARCOS(the Measurement of Alternatives and Ranking based on COmpromise Solution)
methods. In the MCDM process, attribute weights play a vital role. In this study, IVFFS-entropy and IVFFS-PIPCERIA methods will be
used to calculate objective and subjective weights, and IVFFS-MARCOS methods will be used to rank the alternatives.

1.1. Motivation

Pythagorean Fuzzy sets(PFS) introduced by Yager [3] are more efficient in modeling problems with incomplete information than intuitionistic
fuzzy sets(IFS), which is due to the flexibility given in the case of PFSs that the sum of squares of membership and non-membership degrees
of any element in the PFSs must be less than or equal to 1. The efficiency obtained using PFSs was further improved by utilizing FFSs
introduced by Senapati and Yager [4]. In a practical scenario, many real-life problems involve incomplete and vague information. These
problems can be modeled better using FFSs than PFSs. However, it may only be possible to give precise Fermatean fuzzy values for some
problems with incomplete information in real-life problems.

The IVFF environment-based DM model can reveal obscure information more flexibly and in detail due to its broad scope of application.
Therefore, the DM model within the IVFF context demands more attention. The main advantage of IVFFS is that it can be used to model the
problem with incomplete and vague information much better than IVPFSs. For example, let us assume that a decision expert (DE) defines
the membership value (support) of an alternative as [0.58,0.66] and DE defines the non-membership value of an alternative as [0.69,0.78].
Here, the sum of squares of an upper bound of the membership value (0.663) and an upper bound of the non-membership value (0.783)
is greater than 1, the given value is neither IVIFS nor IVPFS. However, they can be considered IVFFS since 0.663 +0.783 ≤ 1. Hence,
the IVFFSs are more capable of modeling problems with incomplete and imprecise information than the IVIFSs and IVPFSs. The main
advantage of IVFFS is that it can be used to model the problem with incomplete and vague information much better than IVPFSs. Studies in
the literature show that the IVFFS structure is a more flexible and superior way of modeling the vagueness and imprecision of complex
MCDM problems. Experts can use the proposed methodology to assign a two-point interval from a predetermined linguistic scale. The
interval values are then converted into IVFFNs, which describe the confirmed and undetermined sections of the assessment in lower and
upper approximations. The defined structure of IVFFS offers vast opportunities for uncertainty assessment in MW management. It is very
easy to determine with the help of IVFFNs what the main criteria are to choose the most suitable MW method with uncertain information.
Again, finding the essential criteria in MW disposal evaluation, selecting the most appropriate method for a sustainable world, and ranking
the methods can be quickly done with IVFFNs.

1.2. Literature

In human cognitive and DM activities, quantifying the degrees of membership (M ) and non-membership degree(N ) in a single numeric
value is only partially justifiable or technically sound. The usage of interval numbers might be involved when there is a need to provide
information as intervals instead of single-valued numbers. Instead, it is convenient for the decision-expert(DE) to employ intervals to express
his/her preference for M and N . In some real DM problems, it may be difficult for DEs to precisely quantify their opinions with a crisp
number due to insufficient information. Still, they can be represented by an interval number within [0,1]. Therefore, it is essential to present
the idea of IVFFSs, which permit the M and N to a given set to have an interval value.

The M ’s ambiguity and vagueness were illustrated using [5] ’s concept of an FS. Atanassov’s intuitionistic FS (IFS) [6] links an element’s
N to an item, providing a more comprehensive explanation of assessment data. Kirisci [7] has defined the concept of Fibonacci statistical
convergence on intuitionistic fuzzy normed space. Yager [3], [8] developed the Pythagorean FS(PFS) idea to broaden the range of M and N
so that M 2 +N 2 ≤ 1 in response to the IFS vulnerability previously described. Because of this, PFS offers professionals more evaluation
opportunities to express their opinions on various objectives. The complexity of the DM framework increases the difficulties specialists
have in producing reliable evaluation data. IFS and PFS have been developed to overcome the ambiguity and vagueness brought on by the
intricate subjectivity of human cognition. By adding the cubic sum of M and N , the FFS was the first to broaden the reach of information
assertions. As a result, FFS handles ambiguous choice problems more effectively and practically than IFS and PFS. Senapati and Yager [9]
initiated the FFS. Senapati and Yager [4], [10] were the first to give the basic features of FFS.

Ejegwa and Onyeke [11] proposed a three-way approach by adding the degree of hesitation to the correlation coefficients related to IFS.
Ejegwa et al. [12] modified the distance operators between IFSs belonging to Szmidt and Kacprzyk. Theorems related to the modified
distance operators are proven. To overcome the shortcomings of the distance and similarity measurements given in PFSs, Ejegwa et al.
[13] gave new measurements with more reliable performance. In the article by Ejegwa et al. [14], a three-way approach to calculating
the correlation coefficients between PFSs is proposed using the concepts of variance and covariance. Ejegwa et al. [15] established an
FF-composite relation based on a max-average rule to enhance the viability of FFSs in machine learning via a soft computing approach.
An innovative Spearman’s type FF correlation coefficient method is built to enhance trustworthy insecurity assessment by Ejegwa et al.
[16]. Garg et al. [17] have established general aggregation operators, based on Yager’s t-norm and t-conorm, to cumulate the FF data in
decision-making environments. In [18], a hybrid MCDM based on IVFF was proposed for risk analysis related to autonomous vehicle
driving systems. Kirisci [19] defined new correlation coefficients based on the Fermatean hesitant fuzzy elements and interval-valued
Fermatean hesitant fuzzy elements. The least common multiple expansion was used in the newly defined correlation coefficients. In [20], a
three-way method for computing the correlation coefficients between FFSs has been given using the notions of variance and covariance. New
distance and cosine similarity measures amongst FFSs have been defined [21]. A method was established to construct similarity measures
between FFSs based on the cosine similarity and Euclidean distance measures. In [22], a new correlation coefficient and weighted correlation
coefficient formularization to evaluate the affair between two FFSs have been proposed. In [23], an extended version of the ELECTRE-I
model called the FF ELECTRE-I method for multi-criteria group decision-making with FF human assessments has been presented. Kirisci
[24] defined the Fermatean hesitant fuzzy set and gave aggregation operations based on the Fermatean hesitant fuzzy set. The interval-valued
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Fermatean fuzzy linguistic Kernel Principal Component Analysis model has been given in [25]. The definition of FF soft sets and some
properties were introduced [26]. Furthermore, the Fermatean fuzzy soft entropy and the formulas for standard distance measures, such as
Hamming and Euclidean distance, were defined [26]. Riaz et al [27] Fermatean developed fuzzy prioritized weighted average and geometric
operators. A new model for group decision-making methods in which experts’ preferences can be expressed as incomplete FF-preference
relations has been presented [28]. A multi-criteria decision-making strategy to evaluate the risk probabilities of autonomous vehicle driving
systems by combining the AHP technique with interval-valued FFSs has been proposed in [29]. First, the interval-valued IFS was described
in [30]. It represented the M and N by the closed subinterval of the interval [0,1]. The interval-valued PFS (IVPFS), whose M and N are
represented by an interval number, was further proposed by [31]. Several operations and relations of IVPFS are also examined. Jeevaraj
defined the IVFFS [32].

PIPRECIA is a subjective weighting model, and MARCOS is a ranking model. Objective and subjective criterion weighting models are
the two models found in the literature. The contrast intensity of each criterion and conflicts between criteria are used in this approach to
describe the objective relevance of the criteria. A relatively new weight-determining tool that avoids the drawbacks of the SWARA tool
while retaining its advantages is the PIPRECIA ([33]). The PIPRECIA model’s main advantage is that it allows criteria to be evaluated
without being sorted by significance rating. Stevic et al. [34] provided an extension of PIPRECIA under FSs and used it to identify the
SWOT matrix’s components. Demir et al. [35] used the fuzzy SWARA for prioritizing and ranking the criteria in the wind farm installation
and used fuzzy MARCOS to determine the most suitable location for the wind farm. Stevic et al. [36] invented the MARCOS, a tool for DM.
Combining the ideal and anti-ideal solutions is the foundation for its development. Additionally, the alternatives’ utility is measured, and their
rank is then determined by computing various utility functions depending on the value of the alternative utilities. Demir et al. [37] reviewed
the studies conducted on MARCOS between 2020 and 2024. Mishra et al. [38] gave an integrated MCDM with PF-fairly operator-based
entropy, PIPRECIA, and MARCOS methods to solve the sustainable circular supplier selection problem. Farit et al. [39] prepared a hybrid
q-step orthopair fuzzy-based methodology including CRITIC and EDAS and proposed this method as a sustainable approach for smart
waste management of road freight vehicles. In [40], new cosine and distance measures were defined with cubic m-polar fuzzy sets, and an
application was carried out for a sustainable solid waste treatment and recycling approach.

1.3. Necessity

MW produced by healthcare facilities has the potential to endanger patients, staff, the environment, and the general public. One of the most
essential choices that healthcare organizations have to make is how to dispose of MW, and there are several conflicting factors and options to
consider. On the other hand, when assessing these options, decision experts could be somewhat unsure. Municipal authorities in developing
countries need help in selecting appropriate MW disposal strategies. This process can be framed as an MCDM problem involving tangible
and intangible criteria.

The following research topics are intended to be addressed by the hybrid framework established by this study:

i. Which factors must be considered when choosing waste disposal techniques in the healthcare sector?

ii. How can the existing methodologies derive the significance weights of the established evaluation criteria?

iii. How effective is it to rank healthcare waste disposal options using the IVFF-MARCOS method while objectively determining the criteria
weights using the IVFF-entropy and IVFF-PIPCERIA approaches?

iv. Which approach is best for eliminating medical waste in general?

v. How do the suggested approaches fare in scenarios involving the distribution of decision expert weights and other criteria?

vi. Compared to other well-known MCDM techniques, how consistent are the results?

1.4. Originality

MW impacts the environment, the general public, employees, and patients. Selecting a technique for disposing of MW is among the most
crucial decisions healthcare institutions must make. This is a complicated problem with multiple competing requirements and options.
Nevertheless, decision specialists could feel uncertain about themselves when assessing these possibilities. This research offers novel fuzzy
MCDM approaches for evaluating MW disposal options. This method includes the IVFFS-defined entropy, PIPCERIA, and MARCOS
methods. One of the biggest challenges that healthcare organizations confront globally is managing the MW that their activities generate.
The improper disposal of hazardous waste poses a significant risk to society and can hasten the spread of several pandemic illnesses. The
problem of deciding how to get rid of MW needs to be given serious thought right away. Because a MW method selection problem has
several criteria and options, it can be classified as an MCDM problem. However, specialists assessing these issues are limited to linguistically
assessing the qualitative criteria. Fuzzy logic addresses the ambiguity in these verbal formulations, while MCDM approaches allow for
converting these evaluations into a numerical format.

1.5. Research gap

This study uses MCDM techniques based on IVFFLs to rank MW disposal techniques, simulate the associated uncertainty, and optimize
their advantages. One urgent issue that the recommended methodology addresses is the planning of MW disposal.
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The methodology developed for this work goals to fill in the following research gaps that we identify:

(i) Which criteria will be used to assess the effectiveness of the methods to be used in the MW disposal planning?

(ii) Is utilizing IVFFLs the most effective way to eliminate MW?

(iii) In comparison to other well-known MCDM approaches, how consistent are the results?

(iv) What are the primary and secondary requirements required to evaluate the risk of disposing of MW?

(v) Considering the variables considered, which criterion depends on which?

(vi) Which criteria can be critical in the risk assessment by proving their criticality inside the constructed system?

(vii) What are the best practices for eliminating MW?

(viii) What findings can be made based on the relevant analysis and application that have been completed?

1.6. Contribution

The methodological component of the work states that a strategy based on IVFFLs has been developed to rank the possibilities for disposing
of MW. An MCDM issue has been examined in a risk assessment of MW disposal. Furthermore, comparative analyses are performed to
confirm the accuracy of the recommended decisions and procedures. The application part also makes it clear that the danger issue surrounding
the disposal of MW was solely given technical considerations based on assessments of earlier research publications. It is more challenging
for safety specialists to take preventive measures later since they must allow the social setting. Therefore, potential issues could arise.

The main contributions:

1. Using the MCDM framework model, which integrates IVFF-entropy, -PIPCERIA, and -MARCOS methodologies, ensures high safety
and security for healthcare practitioners and society by effectively modeling and ranking the hazards associated with MW disposal. Using
the proposed methodology, the DEs can identify a range of two scale points from the preset language scale. Once the interval data have
been translated into IVFFNs, the confirmed and indeterminate components of the evaluation are further described in lower and higher
approximation, respectively.

2. Each alternative’s criterion separately assesses the risks associated with MW disposal plans.

3. A comparative study is offered to determine how well the suggested model ranks MW disposal methods.

4. In-depth ramifications are provided based on the findings.

2. Preliminaries

Definition 2.1 ([9]). Let Ë be the universal set. The FFS is defined as the set A = {(x,µA(x),υA(x)) : x ∈ Ë}, where with 0≤ µ3
A +υ3

A ≤ 1
and µA,υA ∈ [0,1]. The hesitation degree has been shown with θA = (1−µ3

A +υ3
A)

1/3.

Definition 2.2 ([32]). Let Ï [0,1] show the set of all closed subintervals of the unit interval. The IVFFS is defined as A = {(x,µA(x),υA(x)) :
x ∈ Ë}, where µA(x),υA(x) ∈ Ï [0,1] with 0 < supx(µA(x))3 + supx(υA(x))3 ≤ 1.

The set A =
{
(x, [µ−A (x),µ+

A (x)], [υ−A (x),υ+
A (x)]) : x ∈ Ë

}
, is also defined as IVFFS. Here, 0 ≤ (µ+

A (x))3 + (υ+
A (x))3 ≤ 1 and θA =

[θ−A ,θ+
A ] = [(1− (µ−A )3 +(υ−A )3)1/3,(1− (µ+

A )3 +(υ+
A )3)1/3].

Definition 2.3 ([32]). For IVFFSs A = ([µ−A (x),µ+
A (x)], [υ−A (x),υ+

A (x)]),
A1 = ([µ−A1(x),µ

+
A1(x)], [υ

−
A1(x),υ

+
A1(x)]), A2 = ([µ−A2(x),µ

+
A2(x)], [υ

−
A2(x),υ

+
A2(x)]),

• A1∪A2 =
(
[max(µ−A1,µ

−
A2),max(µ+

A1,µ
+
A2)], [min(υ−A1,υ

−
A2),min(υ+

A1,υ
+
A2)]

)
• A1∩A2 =

(
[min(µ−A1,µ

−
A2),min(µ+

A1,µ
+
A2)], [max(υ−A1,υ

−
A2),max(υ+

A1,υ
+
A2)]

)
• Ac = ([υ−A ,υ+

A ], [µ−A ,µ+
A ])

• A1⊕A2 =

([
3
√

(µ−A1(x))
3 +(µ−A2(x))

3− (µ−A1(x))
3.(µ−A2(x))

3,

3
√

(µ+
A1(x))

3 +(µ+
A2(x))

3− (µ+
A1(x))

3.(µ+
A2(x))

3
]
,
[
υ
−
A1υ

−
A2,υ

+
A1υ

+
A2
])

• A1⊗A2 =

([
µ
−
A1µ

−
A2,µ

+
A1µ

+
A2
]
,
[

3
√

(υ−A1(x))
3 +(υ−A2(x))

3− (υ−A1(x))
3.((υ−A2)(x))

3,

3
√

(υ+
A1(x))

3 +(υ+
A2(x))

3− (υ+
A1(x))

3.(υ+
A2(x))

3
])
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• λA =

([
3
√

1−
(
1− (µ−A )3

)λ
,

3
√

1−
(
1− (µ+

A )3
)λ

]
,
[
(υ−A )λ ,(υ+

A )λ

])
• Aλ =

([
(µ−A )λ ,(µ+

A )λ

]
,

[
3
√

1−
(
1− (υ−A )3

)λ
,

3
√

1−
(
1− (υ+

A )3
)λ

])
Definition 2.4 ([41]). For the IVFFS A = ([µ−A (x),µ+

A (x)], [υ−A (x),υ+
A (x)]),

SC(A) =
1
2

(
[(µ−A (x))3 +(µ+

A (x))3]− [(υ−A (x))3 +(υ+
A (x))3]

)
AC(A) =

1
2

(
[(µ−A (x))3 +(µ+

A (x))3]+ [(υ−A (x))3 +(υ+
A (x))3]

)
SC(A) =

1
2
(SC(A)+1)

are called score, accuracy, and normalized score functions, respectively, where SC(A) ∈ [−1,1], AC(A) ∈ [0,1], and SC(A) ∈ [0,1].

3. Fairly Aggregation Operators for IVFFSs

The fair aggregation operators for FFNs have been defined by [42]. The fair aggregation operators on interval-valued PFSs are presented by
[43]. Based on these two studies, fair aggregation operators based on IVFFSs will be defined, and their basic properties will be examined.

For IVFFSs A1 = ([(µ−A1),(µ
+
A1)], [(υ

−
A1),(υ

+
A1)]), A2 = ([(µ−A2),(µ

+
A2)], [(υ

−
A2),(υ

+
A2)]), the fairly operations are defined on FFNs [42], which

as

A1×A2 =

{[
3

√√√√( (µ−A1)
3(µ−A2)

3

(µ−A1)
3(µ−A2)

3 +(υ−A1)
3(υ−A2)

3

)
×
(
1−
(
1− (µ−A1)

3− (υ−A1)
3
)(

1− (µ−A2)
3− (υ−A2)

3
))
,

3

√√√√( (µ+
A1)

3(µ+
A2)

3

(µ+
A1)

3(µ+
A2)

3 +(υ+
A1)

3(υ+
A2)

3

)
×
(
1−
(
1− (µ+

A1)
3− (υ+

A1)
3
)(

1− (µ+
A2)

3− (υ+
A2)

3
))]

,

[
3

√√√√( (υ−A1)
3(υ−A2)

3

(µ−A1)
3(µ−A2)

3 +(υ−A1)
3(υ−A2)

3

)
×
(
1−
(
1− (µ−A1)

3− (υ−A1)
3
)(

1− (µ−A2)
3− (υ−A2)

3
))
,

3

√√√√( (υ+
A1)

3(υ+
A2)

3

(µ+
A1)

3(µ+
A2)

3 +(υ+
A1)

3(υ+
A2)

3

)
×
(
1−
(
1− (µ+

A1)
3− (υ+

A1)
3
)(

1− (µ+
A2)

3− (υ+
A2)

3
))]}

λ ∗Ai =

{[
3

√√√√( (µ−Ai)
3λ

(µ−Ai)
3λ +(υ−Ai)

3λ

)
×
(

1−
(
1− (µ−Ai)

3− (υ−Ai)
3
)λ
)
,

3

√√√√( (µ+
Ai)

3λ

(µ+
Ai)

3λ +(υ+
Ai)

3λ

)
×
(

1−
(
1− (µ+

Ai)
3− (υ+

Ai)
3
)λ
)]

,

[
3

√√√√( (υ−Ai)
3λ

(υ−Ai)
3λ +(υ−Ai)

3λ

)
×
(

1−
(
1− (µ−Ai)

3− (υ−Ai)
3
)λ
)
,

3

√√√√( (υ+
Ai)

3λ

(υ+
Ai)

3λ +(υ+
Ai)

3λ

)
×
(

1−
(
1− (µ+

Ai)
3− (υ+

Ai)
3
)λ
)]}

, λ > 0

Proposition 3.1. Take two IVFFSs A1 = ([(µ−A1),(µ
+
A1)], [(υ

−
A1),(υ

+
A1)]), A2 = ([(µ−A2),(µ

+
A2)], [(υ

−
A2),(υ

+
A2)]). For λ > 0, if µA1 = υA1 and

µA2 = υA2 ,then

i. µA1⊗A2 = υA1⊗A2 ,
ii. µλ∗A1

= υλ∗A1
.

Proof. (i.) If µA1 = υA1 and µA2 = υA2 ,then
µA1⊗A2
υA1⊗A2

= 1 and µA1⊗A2 = υA1⊗A2 .
(ii.) Using the (i.), µλ∗A1

= υλ∗A1
is obtained.

Proposition 3.2. For any two IVFFSs A1 = ([(µ−A1),(µ
+
A1)], [(υ

−
A1),(υ

+
A1)]), A2 = ([(µ−A2),(µ

+
A2)], [(υ

−
A2),(υ

+
A2)]) and λ ,λ1,λ2 > 0,

i. A1⊗A2 = A2⊗A1,
ii. λ (A1⊗A2) = (λ ∗A1)⊗ (λ ∗A1),

iii. (λ1 +λ2)∗Ai = (λ1 ∗Ai)⊗ (λ2 ∗Ai).
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Definition 3.3. Consider a set of IVFFNs Ai = ([(µ−Ai),(µ
+
Ai)], [(υ

−
Ai),(υ

+
Ai)]) and let ωi be a weight of Ai. Then, the IVFF fairly weighted

aggregation operator is given by

IV FFWF(A1,A2, · · · ,An) = (ω1 ∗A1)⊗ (ω2 ∗A2)⊗·· ·(ωn ∗An).

Theorem 3.4. The aggregation with the IVFFWF operator is an IVFFN and presented by

IV FFWF(A1,A2, · · · ,An) =

{[
3

√√√√ ∏
n
i=1(µ

−
i )3ωi

∏
n
i=1(µ

−
i )3ωi +∏

n
i=1(υ

−
i )3ωi

×

(
1−

n

∏
i=1

(
1− (µ−i )3− (µ−i )3

)ωi

)
, (3.1)

3

√√√√ ∏
n
i=1(µ

+
i )3ωi

∏
n
i=1(µ

+
i )3ωi +∏

n
i=1(υ

+
i )3ωi

×

(
1−

n

∏
i=1

(
1− (µ+

i )3− (µ+
i )3
)ωi

)]
,

[
3

√√√√ ∏
n
i=1(υ

−
i )3ωi

∏
n
i=1(µ

−
i )3ωi +∏

n
i=1(υ

−
i )3ωi

×

(
1−

n

∏
i=1

(
1− (µ−i )3− (µ−i )3

)ωi

)
,

3

√√√√ ∏
n
i=1(υ

+
i )3ωi

∏
n
i=1(µ

+
i )3ωi +∏

n
i=1(υ

+
i )3ωi

×

(
1−

n

∏
i=1

(
1− (µ+

i )3− (µ+
i )3
)ωi

)]}
.

Proof. To prove this theorem, the Mathematical Induction Principle will be used.

For n = 2, Equation 3.1 becomes IV FFWF(A1,A2) = (ω1 ∗A1)⊗ (ω2 ∗A2). Then,

IV FFWF(A1,A2) =

{[
3

√√√√ ∏
2
i=1(µ

−
i )3ωi

∏
2
i=1(µ

−
i )3ωi +∏

2
i=1(υ

−
i )3ωi

×

(
1−

2

∏
i=1

(
1− (µ−i )3− (µ−i )3

)ωi

)
,

3

√√√√ ∏
2
i=1(µ

+
i )3ωi

∏
2
i=1(µ

+
i )3ωi +∏

2
i=1(υ

+
i )3ωi

×

(
1−

2

∏
i=1

(
1− (µ+

i )3− (µ+
i )3
)ωi

)]
,

[
3

√√√√ ∏
2
i=1(υ

−
i )3ωi

∏
2
i=1(µ

−
i )3ωi +∏

2
i=1(υ

−
i )3ωi

×

(
1−

2

∏
i=1

(
1− (µ−i )3− (µ−i )3

)ωi

)
,

3

√√√√ ∏
2
i=1(υ

+
i )3ωi

∏
2
i=1(µ

+
i )3ωi +∏

2
i=1(υ

+
i )3ωi

×

(
1−

2

∏
i=1

(
1− (µ+

i )3− (µ+
i )3
)ωi

)]}
.

That is Equation 3.1 holds for n = 2. Now, let Equation 3.1 hold for n = k. Then, it will be shown that Equation 3.1 is valid for n = k+1:

IV FFWF(A1,A2, · · · ,An,An+1) =

{[
3

√√√√ ∏
n
i=1(µ

−
i )3ωi

∏
n
i=1(µ

−
i )3ωi +∏

n
i=1(υ

−
i )3ωi

×

(
1−

n

∏
i=1

(
1− (µ−i )3− (µ−i )3

)ωi

)
,

3

√√√√ ∏
n
i=1(µ

+
i )3ωi

∏
n
i=1(µ

+
i )3ωi +∏

n
i=1(υ

+
i )3ωi

×

(
1−

n

∏
i=1

(
1− (µ+

i )3− (µ+
i )3
)ωi

)]
,

[
3

√√√√ ∏
n
i=1(υ

−
i )3ωi

∏
n
i=1(µ

−
i )3ωi +∏

n
i=1(υ

−
i )3ωi

×

(
1−

n

∏
i=1

(
1− (µ−i )3− (µ−i )3

)ωi

)
,

3

√√√√ ∏
n
i=1(υ

+
i )3ωi

∏
n
i=1(µ

+
i )3ωi +∏

n
i=1(υ

+
i )3ωi

×

(
1−

n

∏
i=1

(
1− (µ+

i )3− (µ+
i )3
)ωi

)]}

⊗ 3

√√√√ (µ−k+1)
3ωk+1

(µ−k+1)
3ωk+1 +(υ−k+1)

3ωk+1
×
(

1−
(
1− (µ−k+1)

3− (µ−k+1)
3
)ωk+1

)
,

3

√√√√ (µ+
k+1)

3ωk+1

(µ+
k+1)

3ωk+1 +(υ+
k+1)

3ωk+1
×
(

1−
(
1− (µ+

k+1)
3− (µ+

k+1)
3
)ωk+1

)]
,

[
3

√√√√ (υ−k+1)
3ωk+1

(µ−k+1)
3ωk+1 +(υ−k+1)

3ωk+1
×
(

1−
(
1− (µ−k+1)

3− (µ−k+1)
3
)ωk+1

)
,

3

√√√√ (υ+
k+1)

3ωk+1

(µ+
k+1)

3ωk+1 +(υ+
k+1)

3ωk+1
×
(

1−
(
1− (µ+

k+1)
3− (µ+

k+1)
3
)ωk+1

)]}
.

Using Definition 3.3, it is seen that Equation 3.1 is valid for n = k+1. That is, Equation 3.1 is true for all n.
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Definition 3.5. Consider a set of IVFFNs Ai = ([(µ−Ai),(µ
+
Ai)], [(υ

−
Ai),(υ

+
Ai)]) and let ωi be a weight of Ai. Let (σ(1),σ(2), · · · ,σ(n)) be

signify permutation of (1,2, · · · ,n) with Aσ(i−1) ≥ Aσ(i). Then, the IVFF fairly ordered weighted aggregation operator is given by

IV FFOWF(A1,A2, · · · ,An) = (ω1 ∗Fσ(1))⊗ (ω2 ∗Fσ(2))⊗·· ·(ωn ∗Aσ(n)).

Theorem 3.6. The aggregation with the IVFFOWFF operator is an IVFFN and presented by

IV FFOWF(A1,A2, · · · ,An) =

{[
3

√√√√ ∏
n
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−
σ(i))

3ωi

∏
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∏
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3
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)
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3
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n
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+
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∏
n
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+
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3ωi +∏
n
i=1(υ

+
σ(i))
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×

(
1−

n

∏
i=1

(
1− (µ+

σ(i))
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3
)ωi
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,
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n
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−
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−
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−
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∏
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3

√√√√ ∏
n
i=1(υ

+
σ(i))

3ωi

∏
n
i=1(µ

+
σ(i))

3ωi +∏
n
i=1(υ

+
σ(i))

3ωi
×

(
1−

n

∏
i=1

(
1− (µ+

σ(i))
3− (µ+

σ(i))
3
)ωi

)]}
.

Proof. It can be proven in a similar way to Theorem 3.4.

Using Theorems 3.4 and 3.6, the following properties can be given:

Idempotency: If all IVFFNs Ai = ([(µ−Ai),(µ
+
Ai)], [(υ

−
Ai),(υ

+
Ai)]) are identical, i.e., Ai = A, then IV FFWF(A1,A2, · · · ,An) = A and

IV FFWF(A1,A2, · · · ,An) = A.

Boundedness: For a set of IVFFNs Ai = ([(µ−Ai),(µ
+
Ai)], [(υ

−
Ai),(υ

+
Ai)]), let A− = ([mini(µ

−
Ai),mini(µ

+
Ai)], [maxi(υ

−
Ai),maxi(υ

+
Ai)]) and A+ =

([maxi(µ
−
Ai),maxi(µ

+
Ai)], [mini(υ

−
Ai),mini(υ

+
Ai)]). Then

A− ≤ IV FFWF(A1,A2, · · · ,An)≤ A+,

A− ≤ IV FFOWF(A1,A2, · · · ,An)≤ A+.

Monotonicity: Consider Ai = ([(µ−Ai),(µ
+
Ai)], [(υ

−
Ai),(υ

+
Ai)]) and Ai∗ = ([(µ−Ai)∗,(µ

+
Ai)∗], [(υ

−
Ai)∗,(υ

+
Ai)]∗) be collections of IVFFNs. If

(µ−Ai)∗ ≤ (µ−Ai), (µ
+
Ai)∗ ≤ (µ+

Ai), (υ
−
Ai)∗ ≥ (υ−Ai) and (υ+

Ai)∗ ≥ (υ+
Ai), then

IV FFWF(A1∗,A2∗, · · · ,An∗)≤ IV FFWF(A1,A2, · · · ,An),

IV FFOWF(A1∗,A2∗, · · · ,An∗)≤ IV FFOWF(A1,A2, · · · ,An).

4. IVFF-entropy Measure

Peng and Li [44] have given IVPFS-similarity measures, -distance measures, and -entropy. Kirisci [26] has presented a definition of the FF
soft entropy and also acquired the formulae for standard distance measures such as Hamming and Euclidean distance. Based on Kirisci [26]
entropy measure for FFSS we develop new entropy measure for IVFFS.

Definition 4.1. Let A and B be two IVFFSs. A real-valued function E : IV FFS(Ë)→ [0,1] is called an entropy for IVFFSs with the following
properties:

Ent1. 0≤ E(A)≤ 1,
Ent2. E(A) = 0 if and only if A is a crisp set,
Ent3. E(A) = 1 if and only if (µ−Ai)(xi) = (υ−Ai)(xi), (µ+

Ai)(xi) = (υ+
Ai)(xi) for each xi ∈ Ë,

Ent4. E(A) = E(Ac),
Ent5. E(A)≤ E(B) if and only if

– If (µ−Ai)(xi)≤ (υ−Ai)(xi), (µ+
Ai)(xi)≤ (υ+

Ai)(xi), then A⊆ B,
– If (µ−Ai)(xi)≥ (υ−Ai)(xi), (µ+

Ai)(xi)≥ (υ+
Ai)(xi), then A⊇ B.

Theorem 4.2. The entropy measure is given as

Et(A) = 1− t

√√√√ 1
2n

n

∑
i=1

(∣∣∣∣((µ−Ai)(xi))3− ((υ−Ai)(xi))3
∣∣∣∣t + ∣∣∣∣((µ+

Ai)(xi))3− ((υ+
Ai)(xi))3

∣∣∣∣t
)
. (4.1)

Proof. It must be shown that Et(A) satisfies the conditions in Definition 4.1. It is straightforward to show axioms [Ent1.]− [Ent4.]. To save
space, let’s prove only axiom [Ent5.].
1. If (µ−Ai)(xi)≤ (υ−Ai)(xi), (µ+

Ai)(xi)≤ (υ+
Ai)(xi), then A⊆ B: We have,

(µ−Ai)(xi)≤ µ
−
Bi(xi)≤ υ

−
Bi(xi)≤ (υ−Ai)(xi),

(µ+
Ai)(xi)≤ µ

+
Bi(xi)≤ υ

+
Bi(xi)≤ (υ+

Ai)(xi).
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Figure 5.1: Flowchart of method

Therefore, ∣∣∣∣((µ−Ai)(xi))
3− ((υ−Ai)(xi))

3
∣∣∣∣≥ ∣∣∣∣(µ−Bi(xi))

3− (υ−Bi(xi))
3
∣∣∣∣,∣∣∣∣((µ+

Ai)(xi))
3− ((υ+

Ai)(xi))
3
∣∣∣∣≥ ∣∣∣∣(µ+

Bi(xi))
3− (υ+

Bi(xi))
3
∣∣∣∣.

Thus,

1− t

√√√√ 1
2n

n

∑
i=1

(∣∣∣∣((µ−Ai)(xi))3− ((υ−Ai)(xi))3
∣∣∣∣t + ∣∣∣∣((µ+

Ai)(xi))3− ((υ+
Ai)(xi))3

∣∣∣∣t
)

≤ 1− t

√√√√ 1
2n

n

∑
i=1

(∣∣∣∣(µ−Bi(xi))3− (υ−Bi(xi))3
∣∣∣∣t + ∣∣∣∣(µ+

Bi(xi))3− (υ+
Bi(xi))3

∣∣∣∣t
)
.

So, Et(A)≤ Et(B).

2. If (µ−Ai)(xi)≥ (υ−Ai)(xi), (µ+
Ai)(xi)≥ (υ+

Ai)(xi), then A⊇B: Similarly, It can be shown that Et(A)≤Et(B) is the same for this condition.

5. Proposed Method

When there are several alternative outcomes of a particular event, but their likelihood is unknown, this is known as uncertainty. As a result,
the DM must comprehend uncertainty. It takes time and effort to comprehend the likelihood that events will occur in reality. Consequently,
there is uncertainty at every stage of the DM process. A solid basis for logical reasoning with vague and imperfect data is provided by fuzzy
logic theory. Thanks to fuzzy logic theory, computers can understand human language and apply human knowledge. At this point, it starts
employing symbols instead of numerical expressions. Fuzzy sets (FS) are symbolic expressions of this type. FSs are known to include choice
variables, such as probability states. FSs are generated when each alternative is assigned an objective membership degree (M ) instead of the
corresponding probability values.

This study proposes an integrated approach to treating the MCDM problems under IVFFSs by integrating the IVFF-entropy, -PIPRECIA,
and -MARCOS tools. The core principles of IVFFSs and the corresponding MCDM techniques have been described independently utilizing
pseudo representations (Figure 5.1).

Using the newly created IVFF-entropy and suggested IVPF fairly WFA operator, we provide a hybrid integrated IVFF-entropy-PIPRECIA-
MARCOS model. Here, the criteria weights are estimated using the entropy-PIPRECIA model, which is discussed in the context of IVFFS.
At the same time, the integrated IVFF-MARCOS model is used to determine the options’ rank.
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Consider the DEs set U = {U1,U2, · · · ,Ut} to choice the appropriate option among a set of options S = {S1,S2, · · · ,Sm} over th criterion
set D = {D1,D2, · · · ,Dn}. Suppose that the M = (µi j)m×n be a linguistic decision matrix (DEMA) for DEs. Therefore, convert it into an
FF-DEMA using linguistic scales.

In order to find the weight of DEs, the significance ratings of DEs are primarily defined by linguistic values and then expressed in the form of
FFNs. Let Fs = ([µFsL ,µFsU ], [υFsL ,υFsU ]) be a IVFFN of sth DE. Hence, the expression for finding the weight is given by

ϑs =
1
2

(
1
2
(
(µ−Fs)

3 +(µ+
Fs)

3− (υ−Fs)
3− (υ+

Fs)
3)+1

∑
t
s=1
[ 1

2
(
(µ−Fs)

3 +(µ+
Fs)

3− (υ−Fs)
3− (υ+

Fs)
3
)
+1
] + s−SC(s)+1

∑
t
s=1
(
s−SC(s)+1

)) (5.1)

where ϑs ≥ 0 and ∑
t
s=1 ϑs = 1.

The steps of our proposed method shown in Figure 5.1 are given below:

Entropy assesses the aspirational information by the substance of confirmed information. The entropy could estimate the vague information.
The information entropy can adjust the course of DM because existent contrasts among plentiful details can measure it and clarify the internal
information for DEs. A novel entropy approach for calculating the objective weights is presented in Theorem 4.2.

Determine objective weight of each criterion with IVFF-entropy:

For an information entropy E j =
1
m

∑
m
i=1 Ei j j = 1,2, · · · ,n of criteria, then the objective weights

ω
O
j =

1−E j

∑
n
j=1(1−E j)

. (5.2)

where Ei j signifies the entropy and given in Equation 4.1.

We use the IVFF-PIPRECIA model for subjective weights. In this approach, first, the appropriate assessment criteria are considered, and
their expected significance using the FF-score function rating is found.

Step 1: Starting with the second criterion, DMs evaluate the criteria in order to obtain the relative importance of the criteria, given as

s j =


1+[SC(U j)−SC(U j−1)] , if U j >U j−1,

1 , if U j =U j−1,
1− [SC(U j−1)−SC(U j)] , if U j <U j−1,

(5.3)

where U j and U j−1 symbolize the significance rating of the criterion jth and ( j−1)th criterion, respectively.

Step 2: Based on relative significance, compute the coefficient by

K j =

{
1 , if j = 1,

2− s j , if j > 1. (5.4)

Step 3: Determine the initial weight by

Q j =

{
1 , if j = 1,

Q j−1
K j

, if j > 1.

Step 4: Obtain the subjective weight of jth criterion by

ω
s
j =

Q j

∑
n
j=1 Q j

, ∀ j.

Step 5: An integrated weight-determining model is presented as

ω j = αω
O
j +(1−α)ωs

j (5.5)

to get the benefits of objective and subjective weighting models, where j = 1,2, · · · ,n and α ∈ [0,1] represents the strategic coefficient to
assess the changes of criterion weights.

The FF-MARCOS method is given, which describes the association between options and the ideal and negative-ideal alternatives on
IVFF-information.

Step 6: Normalized the aggregated FF-DEMA by

Ni j =

{
([µ−i jF ,µ

+
i jF ], [υ

−
i jF ,υ

+
i jF ]) , for benefit-type criteria,

([υ−i jF ,υ
+
i jF ], [µ

−
i jF ,µ

+
i jF ]) , for cost-type criteria.
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Step 7: Computing positive ideal solutions and negative ideal solutions by

N+
j = max

i
Ni j and N−j = min

i
Ni j.

Step 8: Find the weighted normalized IVFF-DEMA using the Equation 3.1.

Step 9: Obtain the weighted sum of each option using score function by

Si =
n

∑
j=1

(SC)(Ni j), (5.6)

where (SC)(Ni j) signifies the score values of each element of the weighted normalized IVFF-DEMA.

Step 10: Computing the utility degree with the following equations:

U−i =
Si

SPIS
and U+

i =
Si

SNIS
,

where SPIS and SNIS signify the sum of score degrees of weighted values N+
j and N−j .

Step 11: For f (U+
i ) =

U−i
U−i +U+

i
and f (U−i ) =

U+
i

U−i +U+
i

, the final values of utility functions by

f (Ui) =
U+

i +U−i
1+ 1− f (U+

i )

f (U+
i )

+
1− f (U−i )

f (U−i )

. (5.7)

Step 12: Rank the options according to the Equation 5.7. The appropriate choice is the maximum values obtained from Equation 5.7.

6. Results

6.1. Problem design

In the healthcare industry, waste management is essential. Waste handlers, the public, and medical professionals risk getting sick, suffering
negative consequences, getting hurt, or contaminating the environment when MW is not properly managed. To reduce the adverse health
effects of destructive behaviors, like exposure to infectious germs and toxic substances, managing MW requires greater attention and
commitment. For progress to be universal, long-lasting, and sustainable, government assistance and effort are needed [45]. Because MW
infects other animals with infectious diseases, it affects the ecology. Hospital employees risk infection from these MWs, which could harm
their health. Along with other essential components and workable solutions, planning for MW management is an important issue that needs
to be addressed. Figure 5.1 depicts the MW disposal selection problem in an MCDM architecture.

Incineration is a common disposal technique in underdeveloped countries due to its ease of use, safety, and practicality [46]. More important
than 800 degrees Celsius is the temperature at the incinerator’s exit. Most organic materials can be burned at this high temperature,
eliminating pathogens and converting them to inorganic dust. After incineration, solid waste can be cut by 85−90% [47]. Burning MWs
other than radioactive and explosive wastes is an option. Several facilities offer waste processing, incineration, and flue gas purification
as additional services for hospital trash combustion. Pyrolysis vaporization, plasma, and rotary kiln incinerators are examples of standard
incineration technologies [48].

Chemical disinfection has several uses, and it has been used for a long time. Hospital trash is frequently crushed using mechanical and
chemical methods. Chemical disinfectants are frequently mixed with crushed hospital trash and left to sit correctly. Pathogenic bacteria
are either killed or put to sleep by disinfection. Organic substances decompose. Because of their low effective concentration, rapid action,
homogeneity, and broad sterilizing spectrum, chemical disinfectants effectively eliminate bacteria and germs [49]. Because they are colorless,
tasteless, safe, odorless, and readily soluble in water, chemicals like calcium hypochlorite, sodium hypochlorite, and chlorine dioxide are
frequently used. Additionally, they have little toxicity, are resistant to both physical and chemical agents, and, once disinfected, pose no
concern. When hospital waste volumes are minimal, chemical disinfection methods can be considered.

Encapsulation renders trash immobile by encasing trash in a solid matrix [50]. The nuclear industry’s preferred approach to handling low-
and intermediate-level radioactive waste has long been encapsulation in cement or its composites. Before disposing of waste in landfills
or geological locations, medical sciences enclose it in polyethylene or iron barrels partially filled with inert fillers such as plastic foam,
bituminous sand, lime, cement mortar, or clay. This stops sharp things (including scalpels, hypodermic needles, and breakable culture
dishes), chemicals, pharmaceutical residues, and incinerator waste from contacting people or the environment.

When burned waste is disposed of, it releases phthalates and other heavy metals like lead, cadmium, and tin into the environment in addition
to the dioxin produced during incineration. MW is separated from ordinary municipal solid waste before burning. In addition to being
environmentally harmful, burning MW is more costly than disposing of it in a landfill. An alternative to incineration is landfill disposal.
However, it is illegal to dispose of biohazardous waste. Particularly in developing nations, MW is routinely dumped in landfills. In a landfill
cell, this mechanism isolates MW. To prevent ingress or escape, lime should be placed in MW, and the surrounding area walled off. There are
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Figure 6.1: Alternatives

Figure 6.2: Criteria

several things to remember when getting rid of sharp waste. Building a dedicated landfill for MW is advised to properly dispose of hazardous
MW and separate it from other forms of waste due to growing public and environmental awareness. During the COVID-19 pandemic, there
were severe problems with how to get rid of dangerous medical supplies that affected people left behind.

Microwave technology is a low-temperature, steam-based thermal technique that disinfects with steam and wet heat. Neither water nor steam
is used in dry heat treatments. Some use infrared heaters, forced convection, or heated air circulation to heat their waste. Therefore, reverse
polymerization occurs in microwave technology at temperatures between 177 and 540 degrees Celsius. High-energy microwaves break down
organic molecules. Internal energy is increased when molecules’ bonds vibrate or rub against one another due to electromagnetic waves,
which have a wavelength of one millimeter to one meter and a frequency of 300–3000 MHz. In a N2 atmosphere, oxygen cannot burn, unlike
high-temperature disinfection. Disinfection lowers energy and temperature, preventing heat loss and environmental contamination because it
leaves behind a harmless residue.

Alternatives to the application are Figure 6.1: S1 Incineration, S2 Encapsulation, S3 Landfill, S4 Electromagnetic wave sterilization, S5
Disinfection with chemicals.

Criteria and their explanations are Figure 6.2: D1 Waste residuals, D2 Infrastructure requirement, D3 Annual operating cost, D4 Treatment
system capacity, D5 Reliability, D6 Health effects, D7 Treatment efficiency, D8 Human resource requirement. Of these criteria, D2 and D3
are cost, and the other criteria are benefits.

6.2. Computation

Table 6.1 shows linguistic terms and their corresponding IVFFNs.

Linguistic Terms µL µU υL υU
Certainly High Importance(CH) 0.95 1 0 0
Very High Importance(VH) 0.8 0.9 0.1 0.2
High Importance(H) 0.7 0.8 0.2 0.3
Slightly More Importance(SM) 0.6 0.65 0.35 0.4
Equally Importance(E) 0.5 0.5 0.5 0.5
Slightly Less Importance(SL) 0.35 0.4 0.6 0.65
Low Importance(L) 0.2 0.3 0.7 0.8
Very Low Importance(VL) 0.1 0.2 0.8 0.9
Certainly Low Importance(CL) 0 0 0.95 1

Table 6.1: Scale Values according to IVFF

Step 1: Consider the alternative set Si (1,2,3,4,5), the criteria set D j ( j = 1,2, · · · ,8), and the DEs set U = {U1,U2,U3}.

Step 2: The linguistic variables of the DEs’ weights are given as U1 =CH, U2 =V H, U3 = H. The IVFFNs related to the linguistic variables
are represented in Table 6.1. This information calculates the DEs’ weights using Equation 5.1, and ω = {0.38,0.32,0.30} is obtained.

Step 3: Create the aggregated IVFF-DEMA with Definition 3.3 (Tables 6.2, 6.3).

The IVFF-entropy and IVFF-PIPRECIA model will be used to find the criteria weights. The criteria’ objective weights are computed using
Equation 5.2. Then, we have ωO

1 = 0.093, ωO
2 = 0.123, ωO

3 = 0.147, ωO
4 = 0.105, ωO

5 = 0.1, ωO
6 = 0.187, ωO

7 = 0.105, ωO
8 = 0.14.
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S1 §2 S3 S4 S5
D1 (H, H, E) (SM, E, H) (E, SL, VL) (H, SM, E) (SL, E, SM)
D2 (H, SL, SM) (E, VH, H) (SL, SM, H) (H, E, SM) (L, L, E)
D3 (SL, E, SM) (SL, E, H) (H, VH, H) (VH, H, VH) (H, SL, SM)
D4 (SL, E, H) (SL, SM, VH) (VH, E, H) (SL, SL, VH) (SL, E, H)
D5 (SM, E, E) (SM, SL, E) (SL, SM, H) (SL, H, H) (E, SL, VL)
D6 (CH, H, SM) (SL, SM, L) (VL, SM, L) (VH, H, E) (SM, E, H)
D7 (H, SM, E) (SL, SM, L) (L, VL, L) (E, SM, E) (H, SL, SM)
D8 (SL, E, H) (H, VH, VH) (E, H, VH) (SL, E, H) (E, SM, E)

Table 6.2: IVFFNs of linguistic values given by DEs

S1 S2 S3 S4 S5
D1 [(0.67, 0.73), (0.3, 0.4)] [(0.63, 0.68), (0.35, 0.42)] [(0.3, 0.4), (0.7, 0.76)] [(0.63, 0.68), (0.35, 0.42)] [(0.5, 0.57), (0.59, 0.67)]
D2 [(0.61, 0.67), (0.4, 0.5)] [(0.72, 0.8), (0.23, 0.35)] [(0.61, 0.67), (0.4, 0.5)] [(0.63, 0.68), (0.35, 0.42)] [(0.29, 0.38), (0.67, 0.74)]
D3 [(0.5, 0.54), (0.5, 0.54)] [(0.58, 0.62), (0.45, 0.5)] [(0.74, 0.84), (0.16, 0.27)] [(0.77, 0.88), (0.1, 0.23)] [(0.61, 0.67), (0.4, 0.5)]
D4 [(0.58, 0.62), (0.45, 0.5)] [(0.61, 0.67), (0.4, 0.5)] [(0.72, 0.68), (0.24, 0.35)] [(0.63, 0.68), (0.35, 0.42)] [(0.58, 0.62), (0.45, 0.5)]
D5 [(0.54, 0.56), (0.45, 0.48)] [(0.5, 0.547), (0.5, 0.54)] [(0.61, 0.67), (0.4, 0.5)] [(0.66, 0.73), (0.34, 0.45)] [(0.3, 0.37), (0.64, 0.71)]
D6 [(0.84, 1.0), (0.0, 0.0)] [(0.61, 0.67), (0.4, 0.5)] [(0.61, 0.28), (0.4, 0.71)] [(0.71, 0.67), (0.27, 0.38)] [(0.63, 0.68), (0.35, 0.42)]
D7 [(0.65, 0.71), (0.32, 0.43)] [(0.61, 0.67), (0.4, 0.5)] [(0.16, 0.26), (0.74, 0.84)] [(0.54, 0.56), (0.45, 0.47)] [(0.61, 0.67), (0.4, 0.5)]
D8 [(0.61, 0.67), (0.4, 0.5)] [(0.77, 0.88), (0.1, 0.23)] [(0.72, 0.8), (0.23, 0.35)] [(0.58, 0.62), (0.45, 0.5)] [(0.54, 0.56), (0.45, 0.47)]

Table 6.3: Aggregated DEMA

The subjective weight of the criteria will be obtained using the IVFF-PIPRECIA model. Equations (5.3)–(5.5) were used for the subjective
weights, and the results were shown in Tables 6.4, 6.5.

U1 U2 U3 aggregated values crisp values
D1 E H E [(0.61, 0.64), (0.39, 0.46)] 0.583
D2 SM SM H [(0.64, 0.71), (0.3, 0.37)] 0.636
D3 SL E SL [(0.4, 0.44), (0.58, 0.61)] 0.432
D4 SM SM E [(0.58, 0.61), (0.4, 0.44)] 0.568
D5 L SL E [(0.35, 0.42), (0.63, 0.68)] 0.388
D6 H VH VH [(0.77, 0.88), (0.13, 0.23)] 0.752
D7 E SM VH [(0.7, 0.76), (0.29 0.39)] 0.674
D8 H SM SL [(0.6, 0.67), (0.4, 0.48)] 0.586

Table 6.4: Significance ratings of criteria

Crisp degrees s j κ j Q j ωS
j

D1 0.583 - 1.000 1.000 0.12
D2 0.636 1.053 0.947 1.056 0.12
D3 0.432 0.796 1.204 0.877 0.1
D4 0.568 1.136 0.864 1.015 0.116
D5 0.388 0.820 1.180 0.860 0.1
D6 0.752 1.364 0.636 1.352 0.16
D7 0.674 0.922 1.078 1.254 0.15
D8 0.586 0.912 1.088 1.153 0.134

Table 6.5: The weight of different criteria using IVFF-PIPRECIA

Further, the combined weight of each criterion based on IVFF-entropy and IVFF-PIPRECIA model is evaluated for α = 0.5, then
ω j = {0.093,0.1215,0.1235,0.1105,0.1,0.1735,0.1275,0.137}. Since the criteria D2 and D3 difficulties are non-beneficial, and the rest
are of beneficial criteria, the aggregated IVFF-DEMA is transformed into a normalized aggregated IVFF-DEMA Table 6.6. Positive and
negative ideal solutions are as follows:

N+
j =

(
[(0.67,0.73),(0.3,0.4)], [(0.72,0.8),(0.23,0.35)], [(0.77,0.88),(0.1,0.23)], [(0.72,0.68),(0.24,0.35)],

[(0.66,0.73),(0.34,0.45)], [(0.84,1.0),(0.0,0.0)], [(0.65,0.71),(0.32,0.43)], [(0.77,0.88),(0.1,0.23)]
)

N−j =
(
[(0.3,0.4),(0.7,0.76)], [(0.61,0.67),(0.4,0.5)], [(0.5,0.54),(0.5,0.54)], [(0.58,0.62),(0.45,0.5)],

[(0.5,0.547),(0.5,0.54)], [(0.61,0.28),(0.4,0.71)], [(0.16,0.26),(0.74,0.84)], [(0.58,0.62),(0.45,0.5)]
)
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The weighted normalized aggregated DEMA is created( Table 6.7) with Definition 3.3, Theorem 3.4 and Table 6.6. Using N+
j ,N

−
j and

Table 6.7, the IVFF-score degree of each option, N+
j , and N−j are determined and shown in Table 6.8. Using the Equation 5.6 and utility

function values(Table 6.9), the prioritization of options is S1 > S4 > S5 > S3 > S2, and S1 is the best choice.

S1 §2 S3 S4 S5
D1 [(0.67, 0.73), (0.3, 0.4)] [(0.63, 0.68), (0.35, 0.42)] [(0.3, 0.4), (0.7, 0.76)] [(0.63, 0.68), (0.35, 0.42)] [(0.5, 0.57), (0.59, 0.67)]
D2 [(0.4, 0.5), (0.61, 0.67)] [(0.23, 0.35), (0.72, 0.8)] [(0.4, 0.5), (0.61, 0.67)] [(0.35, 0.42), (0.63, 0.68)] [(0.67, 0.74), (0.29, 0.38)]
D3 [(0.5, 0.54), (0.5, 0.54)] [(0.45, 0.5), (0.58, 0.62)] [(0.16, 0.27), (0.74, 0.84)] [(0.1, 0.23), (0.77, 0.88)] [(0.4, 0.5), (0.61, 0.67)]
D4 [(0.58, 0.62), (0.45, 0.5)] [(0.61, 0.67), (0.4, 0.5)] [(0.72, 0.68), (0.24, 0.35)] [(0.63, 0.68), (0.35, 0.42)] [(0.58, 0.62), (0.45, 0.5)]
D5 [(0.54, 0.56), (0.45, 0.48)] [(0.5, 0.547), (0.5, 0.54)] [(0.61, 0.67), (0.4, 0.5)] [(0.66, 0.73), (0.34, 0.45)] [(0.3, 0.37), (0.64, 0.71)]
D6 [(0.84, 1.0), (0.0, 0.0)] [(0.61, 0.67), (0.4, 0.5)] [(0.61, 0.28), (0.4, 0.71)] [(0.71, 0.67), (0.27, 0.38)] [(0.63, 0.68), (0.35, 0.42)]
D7 [(0.65, 0.71), (0.32, 0.43)] [(0.61, 0.67), (0.4, 0.5)] [(0.16, 0.26), (0.74, 0.84)] [(0.54, 0.56), (0.45, 0.47)] [(0.61, 0.67), (0.4, 0.5)]
D8 [(0.61, 0.67), (0.4, 0.5)] [(0.77, 0.88), (0.1, 0.23)] [(0.72, 0.8), (0.23, 0.35)] [(0.58, 0.62), (0.45, 0.5)] [(0.54, 0.56), (0.45, 0.47)]

Table 6.6: Normalized DEMA

S1 §2 S3 S4 S5
D1 [(0.16, 0.23), (0.77, 0.81)] [(0.19, 0.25), (0.75, 0.80)] [(0.66, 0.72), (0.25, 0.27)] [(0.19, 0.25), (0.75, 0.80)] [(0.31, 0.40), (0.88, 0.96)]
D2 [(0.20, 0.25), (0.80, 0.87)] [(0.23, 0.29), (0.65, 0.74)] [(0.20, 0.25), (0.80, 0.87)] [(0.19, 0.25), (0.75, 0.80)] [(0.16, 0.23), (0.77, 0.81)]
D3 [(0.31, 0.39), (0.73, 0.84)] [(0.91, 0.93), (0.81, 0.87)] [(0.24, 0.36), (0.66, 0.70)] [(0.29, 0.42), (0.57, 0.65)] [(0.20, 0.25), (0.80, 0.87)]
D4 [(0.79, 0.86), (0.77, 0.73)] [(0.20, 0.25), (0.80, 0.87)] [(0.23, 0.29), (0.65, 0.74)] [(0.19, 0.23), (0.75, 0.80)] [(0.79, 0.86), (0.77, 0.73)]
D5 [(0.89, 0.92), (0.77, 0.72)] [(0.31, 0.88), (0.73, 0.84)] [(0.20, 0.25), (0.80, 0.87)] [(0.18, 0.23), (0.76, 0.80)] [(0.66, 0.72), (0.25, 0.27)]
D6 [(0.36, 0.43), (0.0, 0.0)] [(0.20, 0.35), (0.80, 0.87)] [(0.20, 0.69), (0.80, 0.95)] [(0.22, 0.25), (0.84, 0.81)] [(0.19, 0.25), (0.75, 0.80)]
D7 [(0.18, 0.22), (0.77, 0.80)] [(0.20, 0.25), (0.80, 0.87)] [(0.98, 0.91), (0.27, 0.32)] [(0.39, 0.40), (0.81, 0.87)] [(0.20, 0.25), (0.80, 0.87)]
D8 [(0.20, 0.25), (0.80, 0.87)] [(0.29, 0.42), (0.57, 0.65)] [(0.23, 0.29), (0.65, 0.74)] [(0.79, 0.86), (0.77, 0.73)] [(0.89, 0.92), (0.77, 0.72)]

Table 6.7: Weighted Normalized Aggregated DEMA

S1 S2 S3 S4 S5 N+
j N−j

D1 0.26 0.27 0.66 0.27 0.13 0.65 0.33
D2 0.21 0.34 0.21 0.27 0.26 0.71 0.58
D3 0.28 0.6 0.36 0.22 0.22 0.78 0.50
D4 0.57 0.24 0.34 0.27 0.43 0.66 0.55
D5 0.66 0.43 0.24 0.26 0.66 0.64 0.5
D6 0.53 0.22 0.24 0.27 0.27 0.9 0.46
D7 0.26 0.21 0.91 0.17 0.22 0.63 0.26
D8 0.21 0.22 0.34 0.57 0.34 0.78 0.55

Table 6.8: Score Values

U−i U+
i f (Ui) Ranking

S1 0.738 1.104 0.581 1
S2 0.460 0.687 0.217 5
S3 0.487 704 0.388 4
S4 0.523 0.782 0.412 2
S5 0.513 0.767 0.404 3

Table 6.9: Utility Degrees and Utility Functions

Hence, the priority order of MW technique alternatives is found as S1 > S4 > S5 > S3 > S2 and S1 is the most desirable alternative. As
a result, the final ranking of the options is obtained. Based on the ranking, Incineration is the best MW approach. It is followed by
electromagnetic wave sterilization, chemical disinfection, and landfilling. Encapsulation gets the last position.

7. Discussion

The issue of health care has gained much attention in the modern world. It must be taken out and disposed of appropriately. There are
numerous options for getting rid of waste. Here, a scenario-based multi-objective mathematical model was presented to design a viable MW
chain. There are two benefits to this study. First, by employing a quantitative approach that considers ambiguities and uncertainties, this
study can ascertain the causal linkages between these components. Second, we determine which seven are the most important by measuring
the causal linkages between each element. These important components most significantly impact the entire factor system. Enhancing these
important determinants significantly raises the MW management system’s sustainability.

Consequently, it was decided that incineration was the most crucial factor. Handling MW properly safeguards patients, healthcare providers,
and staff. It is essential for public health, safety, and the environment. For effective waste management, MW must be handled, stored,
transported, processed, and disposed of properly. One crucial component of environmental sustainability is the handling of MW disposal.
Healthcare waste is becoming increasingly abundant daily; hence, proper disposal is required. MW can be disposed of in various ways, with
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Figure 7.1: Sensitivity Analysis

incineration being one of the methods.

The results show that incinerator technology ranks higher than Electromagnetic Wave Sterilization, which indicates the current scenario.
Incineration is one of the best options for disposing of medical waste since it requires less land, has a higher treatment capacity, costs less to
transport garbage, and improves waste-to-energy operations [2]. This rating also aligns with the findings of [51] and [2], which indicate that
electromagnetic wave sterilization disposal techniques—ranked second and third, respectively—are very successful because they produce
non-hazardous residues and emit fewer pollutants than other approaches.

The presented hybrid IVFF model is proficient in producing stable and, simultaneously, flexible prioritization in variation in parameters. The
results obtained showed that the developed approach could effectively address the concerns of healthcare professionals regarding the choice
of the MW method in IVFFSs.

7.1. Sensitivity:

A sensitivity analysis has been conducted across the range of values for the α parameter. We systematically investigate how the parameters
affect health practitioners’ and society’s high safety and security through effective modeling and ranking of risks associated with medical
waste disposal. A range of α values were considered in the sensitivity study. This evaluation is discussed to convey how well the recently
developed framework functions. DEs can assess how sensitive the introduced model is to changes by adjusting the α parameter. The best
alternative, S1, is the same for every parameter value, as indicated by the sensitivity analysis results in Table 7.1 and Figure 7.1. Therefore,
MW treatment problem analysis depends on and is sensitive to α values. Thus, the proposed model has sufficient stability over various
parameter values. Figure 7.1 shows that an alternate S1 holds the first rank, and an alternate S2 holds the last for every α . For α = 0.3,0.6,0.8;
S3, S4 and S5 have different rankings. However, it is also seen that the results obtained for α = 0.0,0.1,0.2,0.4,0.7,0.9,1.0 are the same as
for α = 0.5. The view Figure 7.1 demonstrates how changing the parameter degrees will improve the suggested framework’s durability.

α = 0.0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0
S1 0.560 0.562 0.568 0.570 0.575 0.581 0.583 0.585 0.590 0.594 0.596
S2 0.243 0.239 0.235 0.227 0.225 0.217 0,215 0.210 0.207 0.204 0.202
S3 0.388 0.390 0.396 0.404 0.405 0.388 0.415 0.383 0.390 0.424 0.428
S4 0.426 0.421 0.420 0.416 0.414 0.412 0.399 0.419 0.380 0.385 0.381
S5 0.403 0.410 0.408 0.401 0.412 0.404 0.385 0.397 0.421 0.371 0.366

Table 7.1: Sensitivity Analysis

7.2. Comparative analysis

MCDM is the process of choosing and assessing options from a small or large pool according to pertinent factors. An extensive range of
alternatives are evaluated using various criteria as part of MCDM. The goal of applying MCDM techniques to these kinds of challenges is to
assist DMs in identifying the best and most desirable solution. Thus, researchers have introduced numerous MCDM techniques. In this
section, we tried two MCDM approaches in the FFS environment. The suggested methods’ validity and accuracy have been validated by
contrasting them with established techniques.

A comparative analysis with IVFF-WASPAS [41], IVFF-SWARA [52], Pythagorean fuzzy entropy-SWARA-WASPAS [53], and spherical
fuzzy CRITIC-WASPAS [2] will be conducted to confirm the robustness of the suggested technique.

• In [41], (IVFF-WASPAS) IVFFS was defined, and its basic features were examined. A new MCDM method with the WASPAS has
been proposed by giving aggregation operators based on IVFFS.
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• In [52], (IVFF-SWARA) a new technique is proposed to solve MCDM problems with SWARA and ARAS techniques based on
IVFFSs.

• In [53], (Pythagorean fuzzy entropy-SWARA-WASPAS) a new MCDM technique is presented by combining entropy, SWARA, and
WASPAS techniques under PFSs.

• In [2], (CRITIC-WASPAS) a new spherical fuzzy-type MCDM method using CRITIC and WASPAS approaches has been used to
evaluate HW disposal alternatives.

The comparison approaches’ computations were done with the same decision matrices and sub-criteria weights. The comparisons have led to
Table 7.2 results. Table 7.2 illustrates the differences between the compared approaches. Incineration was the first alternative in all applicable
methodologies (S1). The outputs of the approach proposed in this study are similar to those of the IVFF-WASPAS method, IVFF-SWARA
method, Pythagorean fuzzy entropy-SWARA-WASPAS, and spherical fuzzy CRITIC-WASPAS, with a few minor variations. The proposed
ways help tackle MCGDM concerns more practically and wisely since they use IVFFs instead of traditional methodology to evaluate criteria
and alternatives.

There may be variations in the results obtained when using different MCDM methods to solve a given problem. It makes perfect sense to
have various outcomes because different procedures have different methodological consequences and goals ( Table 7.2). It is evident from the
findings that there have also been modest adjustments, which is quite understandable given the unique characteristics of each decision-making
process. FFS can deliver precise and adaptable outcomes because of their structure and distinct membership levels. Consequently, the
analysis verifies that the suggested approach’s outcomes are accurate.

Method S1 S2 S3 S4 S5
IVFF-WASPAS [41] 1 1 5 3 6
IVFF-SWARA [52] 1 1 4 5 9
Pythagorean fuzzy entropy-SWARA-WASPAS [53] 1 1 5 3 7
Spherical fuzzy CRITIC-WASPAS [2] 1 1 3 6 8

Table 7.2: Ranking comparison

7.3. Superiority of suggested method

The FFS is the result of combining the FS, IFS, and PFS. PFS is determined by total squares equal to or less than one and member and
nonmember satisfaction levels. Seldom does the DE provide a particular feature to the M and N so that the sum of the squares is more than
1. The PFS is, therefore, unable to appropriately handle this occurrence. One of the most comprehensive techniques for circumventing this
constraint is FFS, which can manage inconsistent and partially unknown data, both common in real-world scenarios.

The current and sensitivity analyses suggest that the offered strategy’s results overlap with the accessible approaches. The main advantage of
the proposed approach over easily accessible DM solutions is that it contains additional information and addresses data uncertainty by taking
M and N of criteria into consideration features. Information regarding the item can be studied more accurately and objectively. It is also a
valuable tool in the DM process when dealing with inaccurate and imprecise data. As a result, the rationale for assigning a score value to one
parameter does not affect the other values, resulting in the predicted information loss.

On the contrary, our proposed technique does not result in significant information loss. The desired methodology has an advantage over
present methods in that it detects the level of discrimination and similarity between data, preventing judgments made for incorrect reasons.
Merging incorrect and ambiguous information can aid with the DM process.

8. Implications

Medical waste is becoming a significant environmental concern due to the negative consequences of its unplanned disposal. Healthcare
and medical facilities must be aware of the harmful consequences of medical waste and take necessary action to address it. This study
provides a strategy to assist health workers in determining which waste disposal alternatives to maintain, given the critical need to dispose of
medical waste and the treatment processes that are now available. The study has the following implications for healthcare management: The
methods for analyzing MW disposal choices provide a rapid and reliable way to analyze potential alternatives. This could be very useful
for practitioners and administrators in the healthcare industry. Healthcare facilities can handle the problem of selecting a waste disposal
strategy by utilizing the helpful and straightforward methods offered. Within this framework, the proposed approaches offer a reliable and
expedient way to preliminary evaluate medical waste disposal options. Since it prioritizes practical waste disposal options based on the
essential components and resources accessible to that hospital unit, this helps healthcare administrators and practitioners.

This study advances our theoretical and practical knowledge of medical waste disposal planning. Medical waste is a significant source of
environmental and health issues. Adopting medical devices, particularly by individuals and healthcare workers, has also increased medical
waste. Globally, managing medical waste presents formidable obstacles, irrespective of a robust infrastructure. As a result, the study’s
findings offer a theoretical viewpoint on the issue of medical waste and its handling. This study’s risk analysis links the key obstacles and
intricacy of sustainable medical waste disposal planning. Academics can gain from the research’s findings in two ways: (1) It offers guidance
on managing medical waste disposal planning wisely. (2) The findings have the potential to inspire several ideas and investments while also
helping to resolve the difficulties associated with disposing of medical waste. The current study evaluates produced medical waste based on
multiple parameters, which aids in the rating and classifying disposal methods. In other words, this study will help identify the best and
worst disposal methods, ensuring that medical waste—which poses a risk—is disposed of in the most suitable way possible. Governments



Journal of Mathematical Sciences and Modelling 143

must plan for the proper approach to dispose of medical waste in order to protect public health and minimize costs. Theoretical implications
include

• suggestions on how to evolve the IVFFLS strategy,
• insights into using other methodologies for treating medical waste disposal,
• a detailed understanding of the research methods used.

An MCDM strategy was determined by considering aggregation operators and score-accuracy functions based on IVFFLS, so it offered a
substantial contribution to the literature and shed light on medical waste disposal planning in a new context. Another practical application
that combines the advantages of fuzzy and interval-valued techniques is the application of the IVFFLS approach. When evaluations are
presented in linguistic values, fuzzy logic is used instead of typical numerical ratings to improve comprehension and interpretation. This
kind of integration has been discussed in several studies in the literature on waste management, and several recommendations have been
made for overcoming challenges and minimizing restrictions. This study’s methodology offers a framework to generate outcomes that
function in concert by taking more practical and accurate measures than earlier methods. The suggested framework helps businesses and
regulators identify the significant obstacles that could arise while implementing an effective medical waste disposal planning system. The
article primarily adds to the body of knowledge regarding identifying and analyzing obstacles to the implementation of the medical waste
disposal system to address sustainability issues.

The following describes the theoretical and methodological consequences of the study: With the right mathematical software, the suggested
approaches’ adaptable structures allow them to be expanded to address any new DM challenge. All preference variables in the criterion are
recorded based on the alternative assessment matrix. On the other hand, the score-accuracy functions of the proposed methods enable option
ranking. This technique is dynamic and adaptable and may be applied to various DM situations since the user selects the parameter value
based on the type of problem.

It is necessary to take into account the administrative consequences of incinerator technology. Investing much money in equipment and
infrastructure is necessary to implement incineration as a medical waste disposal option. As a result, it is critical to thoroughly evaluate
the operational aspects of incineration, including the cost of equipment and maintenance and the availability of adequate facilities. While
pretending to be an incinerator for medical waste may come with a hefty initial cost, it can also yield long-term financial gains. The regulatory
agency responsible for waste management and the environment must approve the implementation of incineration. In order to prevent fines or
legal problems, the relevant permits must be obtained. Stakeholder participation, including local communities and government institutions,
is necessary for implementing incineration. It is imperative to furnish these stakeholders with pertinent details regarding incineration’s
advantages and possible hazards, along with any safety and environmental preservation measures. Employees and other stakeholders will
need to receive training and instruction in order to implement incineration. This covers the safe use of incinerator machinery as well as
instruction on the advantages and restrictions of the technology. The incineration process can be continuously improved to make it more
effective and efficient, but these advancements must be closely monitored. Therefore, it is critical to frequently assess and appraise the
incineration process and pinpoint areas for improvement.

The study’s conclusions have several significant ramifications for practitioners, academics, and policymakers in addition to its theoretical
contribution. The research findings can support the conceptual premise that may aid sustainability and environmental managers in com-
prehending the significance of an efficient medical waste disposal system in emerging economies. This can help ensure sustainability and
human well-being, identify the main obstacles to adoption, shape strategic decisions for successful medical waste disposal implementation,
and maximize the financial value of efficient medical waste disposal practices in tangible and intangible forms. This study highlights the
significance of efficient medical waste disposal in achieving operational excellence and sustainable development. The study’s conclusions
imply that, in order to maintain sustainability, medical waste disposal procedures must be implemented by the government and regulatory
bodies. Therefore, the government and regulatory bodies must oversee sufficient resources to properly administer the system and actively
participate in implementing medical waste disposal programs.

To evaluate from the perspective of Public Health, hospitals are responsible for the waste they produce. They must ensure that handling,
treating, and disposing of that waste will not harm public health or the environment.

9. Conclusion

Preserving health, healing patients, and preserving lives are all achieved through healthcare operations. However, they also produce
waste, 20% of which poses a danger of injury, infection, or exposure to chemicals or radiation. Waste management from health services
is a complicated process. Even though hazardous medical waste poses risks, how to manage it is generally well-known and covered in
manuals and other literature. Improper waste management can endanger patients, their families, medical waste workers, and the surrounding
community. Furthermore, improper handling or disposal of such trash may contaminate or pollute the environment. This study uses the
novel MCDM method for medical waste disposal planning to suggest solutions for the health system, human health, and environmental
protection. To prioritize MW disposal methods, model the related uncertainty, and maximize their benefits, this work employs MCDM
techniques based on IVFFLs. The planning of MW disposal is one pressing issue addressed by the suggested methodology. For this, a new
decision-making methodology has been created. Therefore, the IVFF-entropy, IVFF-PIPCERIA combined IVFF-MARCOS procedures have
been created. A unique fuzzy decision-making technique utilizing the entropy, PIPCERIA, and MARCOS approaches within the IVFF
environment was given to evaluate the study framework. In assessing and determining the weights, it is crucial to use the DEs’ role to
calculate each difficulty’s weight. As a result, each DE was asked to rank the significance of the MW treatment problem.
There are still several concerns with this study. First, there is a distinction between uncertainty and danger. Rather than favoring ambiguity,
the main focus of this study is the effects of risk selection. Given that predicting the potential for an MW disposal service and its technology
might be complicated, risk aversion is a crucial kind of uncertainty aversion. This study operationalized risk preference using prospect
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theory. However, a more thorough assessment is required to detect potential problems with MW disposal. As a result, it could not identify
the benefit and loss domains associated with MW disposal. Future studies should focus on merging specific MW disposal risk indicators
with broad risk preference criteria.

Beyond the benefits of the proposed IVFF-based technique, its application in specific DM circumstances is restricted by its inability to
evaluate the available options thoroughly. Building IVFFSs is easier when there are a lot of criteria and alternatives. To address these
limitations, we would like to deepen our research in the following areas in our future work:

• Remanufacturing issues are less broadly applicable than the proposed solution. We aim to extend its application reach to include more
intricate real-world disease management (DM) scenarios, including commercial, construction management, and medical.

• Extending the scope of outranking-based interval rough set theory methods—such as VIKOR, ELECTRE, DEMATEL, ANP, FMEA,
BWM, and others—is another long-term objective.

• We aim to determine how various MCDM methods can be applied to the IVFF values.
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[18] M. Kirişci, Interval-valued fermatean fuzzy based risk assessment for self-driving vehicles, Applied Soft Computing, 152 (2024), 111265.
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[28] N. Şimşek, M. Kirişci, Incomplete Fermatean Fuzzy Preference Relations and Group Decision Making, Topol. Algebra Appl., 11(1) (2023), 20220125.
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Abstract

This examination analyzes the integrable dynamics of induced curves by utilizing the
complex-coupled Kuralay system (CCKS). The significance of the coupled complex Kuralay
equation lies in its role as an essential model that contributes to the understanding of intricate
physical and mathematical concepts, making it a valuable tool in scientific research and
applications. The soliton solutions originating from the Kuralay equations are believed
to encapsulate cutting-edge research in various essential domains such as optical fibers,
nonlinear optics, and ferromagnetic materials. Analytical procedures are operated to derive
traveling wave solutions for this model, given that the Cauchy problem cannot be resolved
using the inverse scattering transform. This study uses the generalized Riccati equation
mapping (GREM) method to search for analytical solutions. This method observes single
and combined wave solutions in the shock, complex solitary shock, shock singular, and
periodic singular forms. Rational solutions also emerged during the derivation. In addition
to the analytical results, numerical simulations of the solutions are presented to enhance
comprehension of the dynamic features of the solutions generated. The study’s conclusions
could provide insightful information about how to solve other nonlinear partial differential
equations (NLPDEs). The soliton solutions found in this work provide valuable information
on the complex nonlinear problem under investigation. These results provide a foundation
for further investigation, making the solutions helpful, manageable, and trustworthy for
the future development of intricate nonlinear issues. This study’s methodology is reliable,
robust, effective, and applicable to various NLPDEs. The Maple software application is
used to verify the correctness of all obtained solutions.

1. Introduction

Partial differential equations (PDEs) play a crucial role in mathematical modeling by serving as a critical mechanism for analyzing and
understanding the dynamics of intricate systems across various fields, including physics, engineering, economics, and other disciplines.
PDEs offer a robust framework for predicting and interpreting the behavior of diverse phenomena, effectively capturing intricate relationships
between variables and their rates of change. These equations elucidate the temporal and spatial evolution of functions with multiple variables.
NLPDEs hold significance across various disciplines, such as mathematics, science, and engineering. Contemporary research has unveiled a
diverse range of complex nonlinear models, prompting the development of sophisticated mathematical methodologies by numerous scholars
to derive exact solutions. Consequently, the exploration of nonlinear phenomena has garnered considerable attention among academics. The
construction of soliton structures is progressively gaining importance due to its relevance in multiple scientific domains [1–5].
Furthermore, an emerging application of NLPDEs lies in investigating soliton waves. Soliton waves, characterized by localized wave
packets that maintain their shape and velocity as they propagate, are the subject of study in various nonlinear physical models researchers
employ to elucidate and forecast their dynamics. Consequently, the significance of soliton waves is progressively growing across diverse
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disciplines, including nonlinear optics, optical fibers, and ferromagnetic materials. Recent advancements in understanding soliton waves
are comprehensively examined in the literature reference [6–10]. Researchers can advance their knowledge and explore novel applications
by enhancing their comprehension of soliton waves. Alongside the advantages of utilizing NLPDEs, numerous methodologies have been
devised to address the difficulty of accurately determining analytical solutions for NLPDEs. Recently, there has been a growing interest
among scholars in investigating the exact solutions of NLPDEs, particularly concerning nonlinear physical phenomena. Nonlinear critical
approaches have been introduced and employed by many physicists and mathematicians, such as the Hirota bilinear method [11], the Painlevé
analysis [12], the Bäcklund transformation [13], Lie symmetry analysis and conservation laws [14]. Some more techniques can be found in
the literature [15–20].
The Kuralay equation is a mathematical model that has been the subject of a thorough examination by scholars in integrable systems and
nonlinear dynamics. Its origins are not attributed to a singular discoverer but have emerged through research endeavors and mathematical
inquiries, solidifying its significance as a foundational model in scientific exploration. The Kuralay equation is utilized across diverse
disciplines in contemporary scientific studies, notably in analyzing ferromagnetic materials and wave propagation phenomena. This
mathematical framework investigates the generation and movement of solitary wave solutions, enhancing comprehension of intricate physical
phenomena. Moreover, the Kuralay equation is crucial in examining the integrable dynamics of spatial curves and geometric flows, offering
valuable insights into the interactions among curves, multilayer spin systems, and the vector nonlinear Schrödinger equation. The coupled
complex Kuralay equation is fundamental in contemporary scientific disciplines because of its integrability and practical implications. This
mathematical framework plays a crucial role in examining diverse phenomena and has been subject to thorough investigation for its capacity
to depict intricate systems precisely. Scholars have concentrated on deducing exact solutions, examining optical solitons, and delving into
innovative soliton solutions through computational modeling techniques centered on the Kuralay equation [21–27].
The primary aim of this study is to utilize the GREM technique on CCKS to investigate novel soliton solutions. For this purpose, we discuss
some previous work and our newly obtained results. Researchers have explored various solutions to the complex nonlinear Kuralay-IIA
model operating methods, such as the Hirota bilinear procedure [22], simple equation and Paul-Painlevé approaches [23], generalized
Kudryashov scheme, extended Sinh Gordon equation expansion scheme, expα -function scheme [24], new auxiliary equation scheme [25],
modified F-expansion, and new extended auxiliary equation techniques [26]. In this study, we have considered the GREM method. The
GREM method is a valuable tool to get the exact solitary wave solutions and control theory, particularly for linear time-invariant systems.
Compared to other methods, this method is highly convenient and easy to implement, offers a wide range of solutions, and works efficiently.
The paper is structured as follows: Section 2 presents the mathematical analysis of the model under consideration. Section 3 describes the
offered method. Analytical solutions for the model are discussed in Section 4. Section 5 presents a graphical discussion and Section 6
explains the conclusions.

2. Analytical Analysis of the Complex-Coupled Kuralay System (CCKS)

Consider the CCKS as [27]: 
iΦt −Φxt − τΦ = 0,
iΩt +Ωxt + τΦ = 0,
τx +2R2(ΩΦ)t = 0,

in which Φ(x, t) is complex function with a complex conjugate as Φ∗(x, t). Subsequent, τ represents the potential real function, and they
depend on the independent spatial and temporal variables x and t, respectively.
By assuming that R = 1, Ω = εΦ∗, where ε =±1, the above system of differential equation will become:{

iΦt −Φxt − τΦ = 0,
τx−2ε(|Φ|2)t = 0.

(2.1)

Now, the following complex traveling wave transformation is applied to the complex system of PDEs Eq. (2.1)

Φ(x, t) = ϒ(ξ )× exp(i(αx+β t + γ)), τ(x, t) = Ψ(ξ )× exp(i(αx+β t + γ)), ξ = sx+ vt, (2.2)

where, 
Φt = (vϒ′+ ıβϒ)× exp(i(αx+β t + γ)),

Φx = (sϒ′+ ıαϒ)× exp(i(αx+β t + γ)),

Φxt = (vsϒ′′+ ıβ sϒ′+ ivαϒ′+ ıαβϒ)× exp(i(αx+β t + γ)),

(2.3)

and α,β ,γ,s, and v are real numbers. The Eq. (2.2) along with Eq. (2.3) is plugging into Eq. (2.1) and gets,{
i(vϒ′+ iβϒ)− (vsϒ′′+ iβ sϒ′+ ivαϒ′−αβϒ)−Ψϒ = 0,
sΨ′−4vεϒϒ′ = 0,

(2.4)

integrating the second part of Eq. (2.4), we attain

Ψ =
2εvϒ2

s
− v1

s
. (2.5)

The Eq. (2.5) is putting into the first part of Eq. (2.4):

i(vϒ
′+ iβϒ)− (vsϒ

′′+ iβ sϒ
′+ ivαϒ

′−αβϒ)−
(

2εvϒ2

s
−σ

)
= 0, (2.6)
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where σ = v1
s .

The real part and imaginary part of Eq. (2.6) are give as, respectively,

ϒ
′′+

(β (1−α)−σ)

vs
ϒ+

2ε

s2 ϒ
3 = 0, (2.7)

(v−β s− vα)ϒ′ = 0. (2.8)

The imaginary part Eq. (2.8) implies

s =
v(α−1)

β
. (2.9)

The value of s Eq. (2.9) is substituting into Eq. (2.7), and get a nonlinear ordinary differential equation (NLODE)

ϒ
′′+

β (β (1−α)−σ)

v2(α−1)
ϒ+

2β 2ε

v2(α−1)2 ϒ
3 = 0. (2.10)

3. GREM Method

This section will present the GREM method [28–30].
Consider the following NLPDE:

Z(Φ(x, t),Φx(x, t),Φt(x, t),Φxx(x, t),Φxt(x, t),Φtt(x, t), . . .) = 0, (3.1)

in which Z is generally a polynomial function of its argument, and the subscripts of the dependent variable denote the partial derivatives.
By using the Eq. (2.2), Eq. (3.1) can be transformed to an NLODE:

W (ϒ,ϒ′,ϒ′′, . . .) = 0. (3.2)

Suppose that the solution of Eq. (3.2) is in the polynomial form

ϒ =
p

∑
j=0

A jΛ
j(ξ ), Ap 6= 0, (3.3)

in which A j(0≤ j ≤ p) are arbitrary constants that are determine later, and p is a positive integer that is obtained by the help of the balancing
principle in Eq. (3.2). In Eq. (3.3), the function Λ(ξ ) satisfies the generalized Riccati equation is provided as follows:

Λ(ξ )′ = θ0 +θ1Λ(ξ )+θ2Λ(ξ )2, θ2 6= 0, (3.4)

in which θ0, θ1, and θ2 are all real constants. Substituting the Eq. (3.3) with Eq. (3.4) into the regarding NLODE and removing all the
coefficients of Λ j(ξ ) will obtain a system of algebraic equations. Solving the algebraic equations, with the known solutions of Eq. (3.3), one
can easily obtain the solutions to the Eq. (3.1). We can obtain the following twenty seven solutions to Eq. (3.2) such as:
Set 1: For ∆ = θ 2

1 −4θ0θ2 > 0, and θ1θ2 6= 0 (or θ0θ2 6= 0), the solutions of Eq. (3.4) are

Λ1(ξ ) = − 1
2θ2

(
θ1 +

√
∆ tanh

(√
∆

2
ξ

))
, (3.5)

Λ2(ξ ) = − 1
2θ2

(
θ1 +

√
∆coth

(√
∆

2
ξ

))
, (3.6)

Λ3(ξ ) = − 1
2θ2

(
θ1 +

√
∆

(
tanh

(√
∆ξ

)
± isech

(√
∆ξ

)))
, (3.7)

Λ4(ξ ) = − 1
2θ2

(
θ1 +

√
∆

(
coth

(√
∆ξ

)
± csch

(√
∆ξ

)))
, (3.8)

Λ5(ξ ) = − 1
4θ2

(
2θ1 +

√
∆

(
tanh

(√
∆

4
ξ

)
+ coth

(√
∆

4
ξ

)))
, (3.9)

Λ6(ξ ) =
1

2θ2

−θ1 +

√
∆(P2 +Q2)−P

√
∆cosh

(√
∆ξ

)
Psinh

(√
∆ξ

)
+Q

 , (3.10)

Λ7(ξ ) =
1

2θ2

−θ1−

√
∆(P2 +Q2)+P

√
∆cosh

(√
∆ξ

)
Psinh

(√
∆ξ

)
+Q

 , (3.11)
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in which P and Q are two non-zero real constants and satisfies P2−Q2 > 0.

Λ8(ξ ) =
2θ0 cosh

(√
∆

2 ξ

)
√

∆sinh
(√

∆

2 ξ

)
−θ1 cosh

(√
∆

2 ξ

) , (3.12)

Λ9(ξ ) = −
2θ0 sinh

(√
∆

2 ξ

)
θ1 sinh

(√
∆

2 ξ

)
−
√

∆cosh
(√

∆

2 ξ

) , (3.13)

Λ10(ξ ) =
2θ0 cosh

(√
∆ξ

)
√

∆sinh
(√

∆ξ

)
−θ1 cosh

(√
∆ξ

)
± i
√

∆

, (3.14)

Λ11(ξ ) =
2θ0 sinh

(√
∆ξ

)
√

∆cosh
(√

∆ξ

)
−θ1 sinh

(√
∆ξ

)
±
√

∆

, (3.15)

Λ12(ξ ) =
4θ0 sinh

(√
∆

4 ξ

)
cosh

(√
∆

4 ξ

)
2
√

∆cosh
(√

∆

4 ξ

)2
−2θ1 sinh

(√
∆

4 ξ

)
cosh

(√
∆

4 ξ

)
−
√

∆

. (3.16)

Set 2: For ∆ = θ 2
1 −4θ0θ2 < 0, and θ1θ2 6= 0 (or θ0θ2 6= 0), the solutions of Eq. (3.4) are

Λ13(ξ ) =
1

2θ2

(
−θ1 +

√
−∆ tan

(√
−∆

2
ξ

))
, (3.17)

Λ14(ξ ) = − 1
2θ2

(
θ1 +

√
−∆cot

(√
−∆

2
ξ

))
, (3.18)

Λ15(ξ ) =
1

2θ2

(
−θ1 +

√
−∆

(
tan
(√
−∆ξ

)
± sec

(√
−∆ξ

)))
, (3.19)

Λ16(ξ ) = − 1
2θ2

(
θ1 +

√
−∆

(
cot
(√
−∆ξ

)
± csc

(√
−∆ξ

)))
, (3.20)

Λ17(ξ ) =
1

4θ2

(
−2θ1 +

√
−∆

(
tan
(√
−∆

4
ξ

)
− cot

(√
−∆

4
ξ

)))
, (3.21)

Λ18(ξ ) =
1

2θ2

(
−θ1 +

±
√

∆(−P2 +Q2)∓P
√
−∆cos

(√
−∆ξ

)
Psin

(√
−∆ξ

)
+Q

)
, (3.22)

in which P and Q are two non-zero real constants and satisfies P2−Q2 > 0.

Λ19(ξ ) = −
2θ0 cos

(√
−∆

2 ξ

)
√
−∆sin

(√
−∆

2 ξ

)
+θ1 cos

(√
−∆

2 ξ

) , (3.23)

Λ20(ξ ) =
2θ0 sin

(√
−∆

2 ξ

)
√
−∆cos

(√
−∆

2 ξ

)
−θ1 sin

(√
−∆

2 ξ

) , (3.24)

Λ21(ξ ) = −
2θ0 cos

(√
−∆ξ

)
√
−∆sin

(√
−∆ξ

)
+θ1 cos

(√
−∆ξ

)
±
√
−∆

, (3.25)

Λ22(ξ ) = −
2θ0 sin

(√
−∆ξ

)
√
−∆cos

(√
−∆ξ

)
+θ1 sin

(√
−∆ξ

)
±
√
−∆

, (3.26)

Λ23(ξ ) =
4θ0 sin

(√
−∆

4 ξ

)
cos
(√
−∆

4 ξ

)
2
√
−∆cos

(√
−∆

4 ξ

)2
−2θ1 sin

(√
−∆

4 ξ

)
cos
(√
−∆

4 ξ

)
−
√
−∆

. (3.27)

Set 3: For θ0 = 0, and θ1θ2 6= 0, the solutions of Eq. (3.4) are

Λ24(ξ ) = − θ1ζ0

θ2 (ζ0 + cosh(θ1ξ )− sinh(θ1ξ ))
, (3.28)

Λ25(ξ ) = − θ1 (cosh(θ1ξ )− sinh(θ1ξ ))

θ2 (ζ0 + cosh(θ1ξ )− sinh(θ1ξ ))
, (3.29)

Λ26(ξ ) = − θ1 (cosh(θ1ξ )+ sinh(θ1ξ ))

θ2 (ζ0 + cosh(θ1ξ )+ sinh(θ1ξ ))
, (3.30)
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in which ζ0 is any arbitrary constant.
Set 4: For θ0 6= 0, and θ1 = θ2 = 0, the solutions of Eq. (3.4) are

Λ27(ξ ) =−
1

θ0ξ + c1
, (3.31)

in which c1 is an arbitrary constant.

4. Solving the CCKS Using the Recommended Method

In this part, we explore the analytical solutions of the CCKS by applying the GREM technique. Balancing Φ′′ with Φ3, we get p = 1. From
Eq. (3.3), the solution is presumed as

ϒ = K0 +K1Λ, K1 6= 0. (4.1)

Putting Eq. (4.1) along with Eq. (3.4) into Eq. (2.10), and setting the coefficient of Λ j(ξ ) to be zero, which gives a system of algebraic
equations. After solving the system of equations, we get the solutions are as follows:

K0 =∓
θ1vσ

ε(−4v2θ0θ2 + v2θ 2
1 +2β 2)×

√
− 1

ε

, K1 =±
2θ2vσ

√
− 1

ε

(−4v2θ0θ2 + v2θ 2
1 +2β 2)

,

α =
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2 . (4.2)

By putting constant values Eq. (4.2) along with Eq. (3.5)-Eq. (3.16) in the Eq. (4.1), and by using the wave transformation Eq. (2.2), we get
the solutions as follows:

Φ1(x, t) = −
σv
√

∆ tanh
(√

∆

2 (sx+ vt)
)

ε(4v2θ0θ2− v2θ 2
1 −2β 2)×

√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ2(x, t) = −
σv
√

∆coth
(√

∆

2 (sx+ vt)
)

ε(4v2θ0θ2− v2θ 2
1 −2β 2)×

√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ3(x, t) = −
σv
√

∆

(
tanh

(√
∆(sx+ vt)

)
+ isech

(√
∆(sx+ vt)

))
ε(4v2θ0θ2− v2θ 2

1 −2β 2)×
√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ4(x, t) = −
σv
√

∆

(
coth

(√
∆(sx+ vt)

)
+ csch

(√
∆(sx+ vt)

))
ε(4v2θ0θ2− v2θ 2

1 −2β 2)×
√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ5(x, t) = −
σv
√

∆

(
tanh

(√
∆

4 (sx+ vt)
)
+ coth

(√
∆

4 (sx+ vt)
))

2ε(4v2θ0θ2− v2θ 2
1 −2β 2)×

√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,
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Φ6(x, t) = −
σv
(

P
√

∆cosh
(√

∆(sx+ vt)
)
−
√
−(−∆)(P2 +Q2)

)
ε(4v2θ0θ2− v2θ 2

1 −2β 2)(Psinh
(√

∆(sx+ vt)
)
+Q)×

√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ7(x, t) = −
σv
√
−(−∆)(P2 +Q2)+P

√
∆cosh

(√
∆(sx+ vt)

)
ε(4v2θ0θ2− v2θ 2

1 −2β 2)(Psinh
(√

∆(sx+ vt)
)
+Q)×

√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ8(x, t) = −

σv

 4θ2θ0 cosh
(√

∆

2 (sx+ vt)
)

−θ 2
1 cosh

(√
∆

2 (sx+ vt)
)
+θ1 sinh

(√
∆

2 (sx+ vt)
)√

∆


ε(4v2θ0θ2− v2θ 2

1 −2β 2)

 θ1 cosh
(√

∆

2 (sx+ vt)
)

−
√

∆sinh
(√

∆

2 (sx+ vt)
) ×√− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ9(x, t) = −

σv

 4θ2θ0 sinh
(√

∆

2 (sx+ vt)
)
−θ 2

1 sinh
(√

∆

2 (sx+ vt)
)

+θ1 cosh
(√

∆

2 (sx+ vt)
)√

∆


ε(4v2θ0θ2− v2θ 2

1 −2β 2)

 θ1 sinh
(√

∆

2 (sx+ vt)
)

−
√

∆cosh
(√

∆

2 (sx+ vt)
) ×√− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ10(x, t) =

σv

 4θ2θ0 cosh
(√

∆(sx+ vt)
)
+
√

∆θ1 sinh
(√

∆(sx+ vt)
)

+i
√

∆θ1− cosh
(√

∆(sx+ vt)
)

θ 2
1


ε(4v2θ0θ2− v2θ 2

1 −2β 2)

 √
∆sinh

(√
∆(sx+ vt)

)
−θ1 cosh

(√
∆

2 (sx+ vt)
)
+ i
√

∆

×√− 1
ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ11(x, t) = −

σv

 4θ2θ0 sinh
(√

∆(sx+ vt)
)
−θ 2

1 sinh
(√

∆(sx+ vt)
)

+
√

∆θ1 cosh
(√

∆(sx+ vt)
)
+
√

∆θ1


ε(4v2θ0θ2− v2θ 2

1 −2β 2)

 θ1 sinh
(√

∆(sx+ vt)
)

−
√

∆cosh
(√

∆(sx+ vt)ξ
)
−
√

∆

×√− 1
ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ12(x, t) = −

σv


8θ2θ0 sinh

(√
∆

4 (sx+ vt)
)

cosh
(√

∆

4 (sx+ vt)
)

+2θ1
√

∆cosh
(√

∆

4 (sx+ vt)
)2

−2θ 2
1 sinh

(√
∆

4 (sx+ vt)
)

cosh
(√

∆

4 (sx+ vt)
)
−
√

∆θ1


ε(4v2θ0θ2− v2θ 2

1 −2β 2)

 2θ1 sinh
(√

∆

4 (sx+ vt)
)

cosh
(√

∆

4 (sx+ vt)
)

−2
√

∆cosh
(√

∆

4 (sx+ vt)
)2

+
√

∆

×√− 1
ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
.
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By putting constant values Eq. (4.2) along with Eq. (3.17)- Eq. (3.27) in the Eq. (4.1), and by using the wave transformation Eq. (2.2), we
obtain the solutions as follows:

Φ13(x, t) =
σv
√
−∆ tan

(√
−∆

2 (sx+ vt)
)

ε(4v2θ0θ2− v2θ 2
1 −2β 2)×

√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ14(x, t) = −
σv
√
−∆cot

(√
−∆

2 (sx+ vt)
)

ε(4v2θ0θ2− v2θ 2
1 −2β 2)×

√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ15(x, t) =
σv
√
−∆
(
tan
(√
−∆(sx+ vt)

)
+ sec

(√
−∆(sx+ vt)

))
ε(4v2θ0θ2− v2θ 2

1 −2β 2)×
√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ16(x, t) = −
σv
√
−∆
(
cot
(√
−∆(sx+ vt)

)
+ csc

(√
−∆(sx+ vt)

))
ε(4v2θ0θ2− v2θ 2

1 −2β 2)×
√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ17(x, t) =
σv
√
−∆

(
tan
(√
−∆

4 (sx+ vt)
)
− cot

(√
−∆

4 (sx+ vt)
))

2ε(4v2θ0θ2− v2θ 2
1 −2β 2)×

√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ18(x, t) =
σv
(√

(−∆)(P−Q)(P+Q)−P
√
−∆cos

(√
−∆(sx+ vt)

))
ε(4v2θ0θ2− v2θ 2

1 −2β 2)(Psin
(√
−∆(sx+ vt)

)
+Q)×

√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ19(x, t) = −

σv

 4θ2θ0 cos
(√
−∆

2 (sx+ vt)
)
−θ 2

1 cos
(√
−∆

2 (sx+ vt)
)

−θ1 sin
(√
−∆

2 (sx+ vt)
)√
−∆


ε(4v2θ0θ2− v2θ 2

1 −2β 2)

 √−∆sin
(√
−∆

2 (sx+ vt)
)

+θ1 cos
(√
−∆

2 (sx+ vt)
) ×√− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ20(x, t) = −

σv

 4θ2θ0 sin
(√
−∆

2 (sx+ vt)
)

−θ 2
1 sin

(√
−∆

2 (sx+ vt)
)
+θ1 cos

(√
−∆

2 ξ

)√
−∆


ε(4v2θ0θ2− v2θ 2

1 −2β 2)

 θ1 sin
(√
−∆

2 (sx+ vt)
)

−
√
−∆cos

(√
−∆

2 (sx+ vt)
) ×√− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,
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Φ21(x, t) = −
σv
(

4θ2θ0 cos
(√
−∆(sx+ vt)

)
−θ 2

1 cos
(√
−∆(sx+ vt)

)
−θ1 sin

(√
−∆(sx+ vt)

)√
−∆−θ1

√
−∆

)
ε(4v2θ0θ2− v2θ 2

1 −2β 2)

( √
−∆sin

(√
−∆(sx+ vt)

)
+θ1 cos

(√
−∆(sx+ vt)

)
+
√
−∆

)
×
√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ22(x, t) = −
σv
(

4θ2θ0 sin
(√
−∆(sx+ vt)

)
−θ 2

1 sin
(√
−∆(sx+ vt)

)
−θ1 cos

(√
−∆(sx+ vt)

)√
−∆−θ1

√
−∆

)
ε(4v2θ0θ2− v2θ 2

1 −2β 2)

( √
−∆cos

(√
−∆(sx+ vt)

)
+θ1 sin

(√
−∆(sx+ vt)

)
+
√
−∆

)
×
√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ23(x, t) = −

σv

 8θ2θ0 sin
(√
−∆

4 (sx+ vt)
)

cos
(√
−∆

4 (sx+ vt)
)
+2θ1

√
−∆cos

(√
−∆

4 (sx+ vt)
)2

−2θ 2
1 sin

(√
−∆

4 (sx+ vt)
)

cos
(√
−∆

4 (sx+ vt)
)
−θ1
√
−∆


ε(4v2θ0θ2− v2θ 2

1 −2β 2)

 2θ1 sin
(√
−∆

4 (sx+ vt)
)

cos
(√
−∆

4 (sx+ vt)
)

−2
√
−∆cos

(√
−∆

4 (sx+ vt)
)2

+
√
−∆

×√− 1
ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
.

By putting constant values Eq. (4.2) along with Eq. (3.28)- Eq. (3.30) in the Eq. (4.1), and by using the wave transformation Eq. (2.2), we
reach the solutions as follows:

Φ24(x, t) =

σvθ1

(
−ζ0 + cosh(θ1(sx+ vt))
−sinh(θ1(sx+ vt))

)
ε(4v2θ0θ2− v2θ 2

1 −2β 2)

(
ζ0 + cosh(θ1(sx+ vt))
−sinh(θ1(sx+ vt))

)
×
√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ25(x, t) = −
σvθ1

(
cosh(θ1(sx+ vt))

−sinh(θ1(sx+ vt))−ζ0

)
ε(4v2θ0θ2− v2θ 2

1 −2β 2)

(
ζ0 + cosh(θ1(sx+ vt))
−sinh(θ1(sx+ vt))

)
×
√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
,

Φ26(x, t) = −
σvθ1

(
cosh(θ1(sx+ vt))

+sinh(θ1(sx+ vt))−ζ0

)
ε(4v2θ0θ2− v2θ 2

1 −2β 2)

(
ζ0 + cosh(θ1(sx+ vt))
+sinh(θ1(sx+ vt))

)
×
√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
.

By putting constant values Eq. (4.2) along with Eq. (3.31) in the Eq. (4.1), and by using the wave transformation Eq. (2.2), we attain the
solution as follows:

Φ27(x, t) =
σv(θ0θ1(sx+ vt)+ c1θ1−2θ2)

ε(4v2θ0θ2− v2θ 2
1 −2β 2)((sx+ vt)θ0 + c1)×

√
− 1

ε

×exp

(
i

((
−4v2θ0θ2 + v2θ 2

1 +2β 2−2βσ

−4v2θ0θ2 + v2θ 2
1 +2β 2

)
x+β t + γ

))
.
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5. Graphical Discussion

In this section, we discuss the graphical behavior of the solutions successfully obtained using the GREM method for the CCKS.

Figure 1. The 3d, contour, and density plots for the solution |Φ1(x, t)|.

Figure 2. The 3d, contour, and density plots for the solution |Φ2(x, t)|.

Figure 3. The 3d, contour, and density plots for the solution |Φ4(x, t)|.

Figure 4. The 3d, contour, and density plots for the solution |Φ6(x, t)|.
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Figure 5. The 3d, contour, and density plots for the solution |Φ24(x, t)|.

Fig.1. The diagram of |Φ1(x, t)| when v = 2, β = 1, s = 2, σ = 3, ε = 1, θ0 = 1, θ1 = 3, θ2 = 2, γ = 3, ξ = sx+ vt.

Fig.2. The diagram of |Φ2(x, t)| when v = 2, β = 1, s = 2, σ = 3, ε = 1, θ0 = 1, θ1 = 3, θ2 = 2, γ = 3, ξ = sx+ vt.

Fig.3. The diagram of |Φ4(x, t)| when v = 2, β = 1, s = 2, σ = 3, ε = 1, θ0 = 1, θ1 = 3, θ2 = 2, γ = 3, ξ = sx+ vt.

Fig.4. The diagram of |Φ6(x, t)| when v = 2, β = 1, s = 2, σ = 3, ε = 1, θ0 = 1, θ1 = 3, θ2 = 2, γ = 3, P = 2, Q =−1, ξ = sx+ vt.

Fig.5. The diagram of |Φ24(x, t)| when v = 2, β = 1, s = 2, σ = 3, ε = 1, θ0 = 0, θ1 = 2, θ2 = 3, γ = 3, ζ0 = 2, ξ = sx+ vt.

6. Conclusion

This examination focused on analyzing the CCKS, which is employed in diverse areas like ferromagnetic materials, nonlinear optics, and
optical fibers. The CCKS is significant as it is a crucial model that enhances the understanding of complex physical and mathematical
concepts, making it a valuable tool for scientific research and applications. The GREM approach was operated to scrutinize analytical
solutions to the considered equation. It is a powerful analytical technique for solving various differential equations, particularly nonlinear
ones. Following the application of the method, shock, complex solitary shock, shock singular, and periodic singular wave solutions were
seen for both single and mixed wave solutions. The derivation also leads to reasonable solutions. 3D, contour and density graphs were
plotted by choosing suitable parameter values via Mathematica to visualize the graphical representation of the acquired soliton solutions.
These solutions we obtained using the GREM method can be extended to the analytical examination of various other types of NLPDEs in
fields such as mathematical physics, plasma physics, applied sciences, nonlinear dynamics, and engineering. The accuracy of the results was
verified by utilizing Maple to substitute the solutions back into the initial equation.

Article Information

Acknowledgements: The author would like to express his sincere thanks to the editor and the anonymous reviewers for their helpful
comments and suggestions.

Copyright statement: Author owns the copyright of his work published in the journal and his work is published under the CC BY-NC 4.0
license.

Supporting/Supporting organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical approval and participant consent: It is declared that during the preparation process of this study, scientific and ethical principles
were followed and all the studies benefited from are stated in the bibliography.

Plagiarism statement: This article was scanned by the plagiarism program.

References
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Abstract

In this study, an iterative approximation is proposed by using the reproducing kernel method
(RKM) for the nonlinear advection equation. To apply the iterative RKM, specific reproduc-
ing kernel spaces are defined and their kernel functions are presented. The proposed method
requires homogenising the initial or boundary conditions of the problem under considera-
tion. After homogenising the initial condition of the advection equation, a linear operator
selection is made, and then the approximate solution is constructed using orthonormal basis
functions in serial form. Convergence analysis of the approximate solution is demonstrated
through the lemma and theorem. Numerical outcomes are provided in the form of graphics
and tables to show the efficiency and accuracy of the presented method.

1. Introduction

In this paper, an iterative reproducing kernel approximation is presented for obtaining a serial solution of the nonlinear advection equation as
follows [1]:

yκ (ζ ,κ)+ y(ζ ,κ)yζ (ζ ,κ) = f (ζ ,κ), (1.1)

0≤ ζ ≤ 1,0≤ κ ≤ 1,

y(ζ ,0) = h(ζ ). (1.2)

Here, f (ζ ,κ) is a continuous function.

In environmental sciences, advection is transporting chemical or biological material by bulk motion. The advection equation has significant
importance in meteorology and oceanography [2]. Various analytical and numerical methods have been proposed in the literature to obtain
solutions to the advection equation. For instance, Khan and Wu proposed the homotopy perturbation transform method for the advection
equation in [3], the Fourier series method is applied by Sanugi and Evans in [4], Wazwaz employed the Adomian decomposition method for
the advection equation in [5], the finite difference method is presented by Molenkamp in [6], the Laplace decomposition method is employed
in [7]. Nisar et al. [8] suggested a numerical technique for the nonlinear advection equation using the Padé approximation. The explicit finite
difference scheme is used to obtain a numerical solution of the advection diffusion equation by Ara et al. [9]. Cosgun and Sari [10] employed
the reversed fixed point iteration for advection-diffusion processes. The homotopy analaysis method is implemented for the fractional
advection equation by Alkan [11]. Mirza et al. [12] proposed an analytical solution to the fractional advection diffusion equation. Mirzaee et
al. [13] suggested the finite difference and spline approximation for stochastic the advection-diffusion equation with fractional order.
The origin of the reproducing kernel method goes back to Zaremba’s researches at the beginning of last century. He focused on boundary
value problems with Dirichlet conditions in [14]. This concept is improved as theoretically in [15] and [16]. Also, some specific reproducing
kernel spaces that have trigonometric and polynomial kernels are presented in [17]. The reproducing kernel method is applied to many
model problems. For instance, Bagley-Torvik and Painlevé equations [18], fractional order systems [19], Fredholm integro-differential
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Cite as “O. Saldır, Numerical solution of nonlinear advection equation using reproducing kernel method, J. Math. Sci. Model., 7(3) (2024),
157-167”
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equations [20], integro-differential equations with Fredholm operator [21], eighth order boundary value problems [22], fractional Riccati
differential equations [23], sine-Gordon equation [24], nonlinear system of PDEs [25], fractional advection-dispersion equation [26], time
fractional telegraph equation [27], nonlinear hyperbolic telegraph equation [28], reaction-diffusion equations [29], time fractional partial
integro-differential equations [30], class of fractional partial differential equation [31], time fractional Tricomi and Keldysh equations [32],
and so on [33]-[38].
This paper is arranged as follows: Section 2 presents some specific reproducing kernel spaces and basic definitions. Section 3 provides a
detailed explanation of the linear operator selection and the construction of the approximate solution for the nonlinear advection equation. In
Section 4, a theorem and lemma show the convergence of the constructed approximate solution. In Section 5, the proposed method is tested
on two equations, and the numerical outcomes are presented with tables and graphs to demonstrate the effectiveness of the method. Section 6
gives a brief conclusion.

Symbols and nomenclature
Notation Meaning
κ Time variable
ζ Space variable
W (2,2)

2 Special Hilbert space
∆ [0,1]× [0,1]
T(t,x)(ζ ,κ) Reproducing kernel function
AC Absolutely continuous
L Linear operator
CC Completely continuous
ω(ζ ,κ) Exact solution
ωn(ζ ,κ) Approximate solution
C Complex numbers
L2[0,1] Squared integrable Lebesgue space in [0,1]

2. Preliminaries

This section introduces the special one- and two-variable Hilbert spaces used in the construction of the approximate solution and the
reproducing kernel functions of these spaces.

Definition 2.1. Let Θ 6= /0 an abstract set, H be a Hilbert space and B is defined as B : Θ×Θ→ C.

i.B(.,r) ∈ H, ∀r ∈Θ,

ii.〈µ(.),B(.,r)〉= µ(r) ∀r ∈Θ, ∀µ ∈ H.

If the above conditions are satisfied, then B and H are called reproducing kernel function and reproducing kernel Hilbert space, respectively.

Before the construction of the representation solution, some specific reproducing kernel spaces and their kernel functions will be given to
solve the advection equation. The procedure for obtaining the reproducing kernels can be found in [36].

W1
2[0,1] Hilbert space

W 1
2 [0,1] = {τ(ζ ) | τ is AC function, τ

′ ∈ L2[0,1]}.

The inner product, norm and kernel function for the space W 1
2 [0, 1] are given as follows.

1. The inner product:

〈τ (ζ ) ,ω (ζ )〉W 1
2
= τ (0)ω (0)+

1∫
0

τ
′ (ζ )ω

′ (ζ )dζ .

2. The norm:

‖τ‖2
W 1

2
= 〈τ,τ〉W 1

2
, τ,ω ∈W 1

2 [0, 1] .

3. The kernel function:

R{1}t (ζ ) =

{
1+ζ , ζ ≤ t,
1+ t, t > ζ .

W2
2[0,1] Hilbert space

W 2
2 [0, 1] = {τ(ζ )|τ, τ

′are AC functions,τ ′′ ∈ L2[0,1]}

The inner product, norm and kernel function for the space W 2
2 [0, 1] are given as follows.

1. The inner product:

〈τ (ζ ) ,ω (ζ )〉W 2
2
= τ (0)ω (0)+ τ

′ (0)ω
′ (0)+

1∫
0

τ
′′ (ζ )ω

′′ (ζ )dζ .
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2. The norm:

‖τ‖2
W 2

2
= 〈τ,τ〉W 2

2
, ω,τ ∈W 2

2 [0, 1] .

3. The kernel function:

R{2}t (ζ ) =

{
1+ζ t + 1

2 tζ 2− 1
6 ζ 3, ζ ≤ t,

1− 1
6 t3 + 1

2 ζ t2 + tζ , ζ > t.

In a similar manner to the above, namely under same inner product and norm, the following closed subspace of W 2
2 [0, 1] can be defined as

W 2
2 [0,1] = {τ(ζ )|τ,τ

′
are AC functions,τ

′′
∈ L2[0,1],τ(0) = 0},

and its kernel function is

R{2}x (κ) =

{
κx+ 1

2 xκ2− 1
6 κ3, κ ≤ x,

− 1
6 x3 + 1

2 κx2 + xκ, κ > x.

W(2,2)
2 (∆) Hilbert space

Let be ∆ = [0,1]× [0,1]. W (2,2)
2 (∆) should be defined for obtain representation solution of model problem (1.1) subject to initial condition

(1.2).

W (2,2)
2 (∆) = {ω(ζ ,κ)| ∂ 2ω

∂ζ ∂κ
is completely continuous in ∆ ,

∂ 4ω

∂ζ 2∂κ2 ∈ L2(∆),ω(ζ ,0) = 0}.

The inner product and norm for the space W (2,2)
2 (∆) are given as follows.

1. The inner product :

〈ω(ζ ,κ),u(ζ ,κ)〉
W (2,2)

2
=

1

∑
i=0

1∫
0

[
∂ 2

∂κ2
∂ i

∂ζ i ω(0,κ)
∂ 2

∂κ2
∂ i

∂ζ i u(0,κ)]dκ +
1

∑
j=0
〈 ∂ j

∂κ j ω(ζ ,0),
∂ j

∂κ j u(ζ ,0)〉W 2
2

+

1∫
0

1∫
0

[
∂ 2

∂ζ 2
∂ 2

∂κ2 ω(ζ ,κ)
∂ 2

∂ζ 2
∂ 2

∂κ2 u(ζ ,κ)]dζ dκ, ω,u ∈W (2,2)
2 (∆).

2. The norm:

‖ω‖2
W (2,2)

2
= 〈ω,ω〉

W (2,2)
2

, ω ∈W (2,2)
2 (∆).

The following basic theorem of reproducing kernel theory shows that the kernel function of W (2,2)
2 (∆) is derived as multiplying of kernel

functions of W 2
2 [0,1] for ζ and κ variables.

Theorem 2.2. [36] Let T(t,x)(ζ ,κ) be a kernel function of W (2,2)
2 (∆). So, it can be written that

T(t,x)(ζ ,κ) = R{2}t (ζ )R{2}x (κ),

where R{2}t (ζ ) and R{2}x (κ) are reproducing kernel functions of W 2
2 [0,1]. For any ω(ζ ,κ) ∈W (2,2)

2 (∆)

ω(t,x) = 〈ω(ζ ,κ),T(t,x)(ζ ,κ)〉W (2,2)
2

and

T(ζ ,κ)(t,x) = T(t,x)(ζ ,κ).

W(1,1)
2 (∆) Hilbert space

W (1,1)
2 (∆) = {ω(ζ ,κ)| ω is CC function in ∆ ,

∂ 2ω

∂ζ ∂κ
∈ L2(∆)}.

The inner product, norm and kernel function for the space W (1,1)
2 (∆) are given as follows.

1. The inner product:

〈ω(ζ ,κ),u(ζ ,κ)〉
W (1,1)

2
=

1∫
0

[
∂

∂κ
ω(0,κ)

∂

∂κ
u(0,κ)]dκ + 〈ω(ζ ,0),u(ζ ,0)〉W 1

2

+

1∫
0

1∫
0

[
∂

∂ζ

∂

∂κ
ω(ζ ,κ)

∂

∂ζ

∂

∂κ
u(ζ ,κ)]dζ dκ, ω,u ∈W (1,1)

2 (∆).

2. The norm:

‖ω‖2
W (1,1)

2
= 〈ω,ω〉

W (1,1)
2

, ω ∈W (1,1)
2 (∆).

3. The kernel function:

T̃(t,x)(ζ ,κ) = R{1}t (ζ )R{1}x (κ).
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3. Iterative Solution for Eqs. (1)-(2) in Space W (2,2)
2 (∆)

This section will explain how to construct an iterative solution for the nonlinear advection equation and provide the necessary theoretical
information. First, the initial condition of Eq. (1.1) is homogenised, and then the linear operator selection is made. After the homogenisation
process, the selection of the linear operator L is as follows:

L : W (2,2)
2 (∆)→W (1,1)

2 (∆),

Lω(ζ ,κ) = ωκ (ζ ,κ)+h(ζ )ωζ (ζ ,κ)+h
′
(ζ )ω(ζ ,κ). (3.1)

The Eq. (3.1) can be expressed as: {
Lω (ζ ,κ) = F(ζ ,κ,ω(ζ ,κ),ωζ (ζ ,κ)), ζ ,κ ∈ [0, 1] ,

ω(ζ ,0) = 0.
(3.2)

Here, F(ζ ,κ,ω(ζ ,κ),ωζ (ζ ,κ)) = f (ζ ,κ)−h
′
(ζ )h(ζ )−ω(ζ ,κ)ωζ (ζ ,κ).

If {(ζi,κi)}∞
i=1 is a countable dense subset in ∆ , then Ψi(ζ ,κ) is defined as:

Ψi(ζ ,κ) = L(t,x)T(t,x)(ζ ,κ)|(t,x)=(ζi,κi)

= { ∂

∂x
T(t,x)(ζ ,κ)+h(t)

∂

∂ t
T(t,x)(ζ ,κ)+h

′
(t)T(t,x)(ζ ,κ)}|(t,x)=(ζi,κi)

=
∂

∂κ
T(ζi,κi)(ζ ,κ)+h(ζi)

∂

∂ t
T(ζi,κi)(ζ ,κ)+h

′
(ζi)T(ζi,κi)(ζ ,κ). (3.3)

The following theorem shows that Ψi(ζ ,κ) is completely continuous and linear operator L is bounded.

Theorem 3.1. Ψi(ζ ,κ) ∈W (2,2)
2 (∆), i = 1,2, ...

Proof. The following conditions should be provide to prove this theorem.
1. ∂ 4Ψi(ζ ,κ)

∂ζ 2∂κ2 ∈ L2(∆)

2. ∂ 2Ψi(ζ ,κ)
∂ζ ∂κ

is completely continuous function
3. Ψi(ζ ,κ) satisfies the initial condition.
One can show that any elements of W (2,2)

2 (∆) satisfies the above conditions 1-3.
Now, from the kernel function property, the following equation can be written

∂
5
tζ 2κ2 T(t,x)(ζ ,κ) = ∂

3
tζ 2 R{2}t (ζ )∂ 2

κ2 R{2}x (κ).

The ∂ 3
tζ 2 R{2}t (ζ ) and ∂ 2

κ2 R{2}x (κ) functions are bounded in [0,1] due to their continuity in [0,1]. Therefore, the following inequality can be
expressed:

|∂ 5
tζ 2κ2 T(t,x)(ζ ,κ)| ≤M1.

The following inequalities can be written by the same way of above:

|∂ 5
xζ 2κ2 T(t,x)(ζ ,κ)| ≤M2,

|∂ 4
ζ 2κ2 T(t,x)(ζ ,κ)| ≤M3.

Here, M1,M2 and M3 are positive constants. From (3.3),

|∂
4Ψi(ζ ,κ)

∂ζ 2∂κ2 | ≤ |M2 +h(ζi)M1 +h
′
(ζi)M3|

≤ M2 + |h(ζi)|M1 + |h
′
(ζi)|M3.

Therefore, ∂ 4Ψi(ζ ,κ)
∂ζ 2∂κ2 ∈ L2(∆). Noting that ∆ is closed, thus, ∂ 2Ψi(ζ ,κ)

∂ζ ∂κ
is completely continuous in ∆ . And also, Ψi(ζ ,κ) satisfies the initial

condition because T(t,x)(ζ ,0) = 0. Thus Ψi(ζ ,κ) ∈W (2,2)
2 (∆).

Theorem 3.2. {Ψi(ζ ,κ)}∞
i=1 is a complete system of W (2,2)

2 (∆), for i = 1,2, ....

Proof. We have

Ψi(ζ ,κ) = (L∗Φi)(ζ ,κ) = 〈(L∗Φi)(t,x),T(ζ ,κ)(t,x)〉W (2,2)
2

= 〈Φi(t,x),L(t,x)T(ζ ,κ)(t,x)〉W (1,1)
2

= L(t,x)T(ζ ,κ)(t,x)|(t,x)=(ζi,κi)

= L(t,x)T(t,x)(ζ ,κ)|(t,x)=(ζi,κi).
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Clearly, Ψi(ζ ,κ) ∈W (2,2)
2 (∆), for each fixed ω(ζ ,κ) ∈W (2,2)

2 (∆), if 〈ω(ζ ,κ),Ψi(ζ ,κ)〉W (2,2)
2

= 0.
Namely,

〈ω(ζ ,κ),(L∗Φi)(ζ ,κ)〉W (2,2)
2

= 〈Lω(ζ ,κ),Φi(ζ ,κ)〉W (1,1)
2

= (Lω)(ζi,κi) = 0, i = 1,2, ... (3.4)

(Lω)(ζ ,κ) = 0 since {(ζi,κi)}∞
i=1 is dense in ∆ . When the inverse operator L−1 is used in Eq.(3.4), it can be clearly seen that ω = 0.

The orthonormal system {Ψi(ζ ,κ)}∞
i=1 can be attained by the Gram-Schmidt orthogonalization of {Ψi(ζ ,κ)}∞

i=1 as

Ψi(ζ ,κ) =
i

∑
k=1

βikΨk(ζ ,κ).

The orthogonalization process is given by formula as follow:

β11 =
1
‖Ψ1‖

, βik =
1

dik
, βi j =−

1
dik

i−1

∑
k= j

cikβk j for j < i,

and also

dik =

√√√√‖Ψi‖2−
i−1

∑
k=1

c2
ik, cik = 〈Ψi,Ψk〉W (2,2)

2
.

Theorem 3.3. Let {(ζi,κi)}∞
i=1 be dense in ∆ , then the iterative solution of Eq. (3.2) is

ω(ζ ,κ) =
∞

∑
i=1

i

∑
k=1

βikF(ζk,κk,ω(ζk,κk),∂ζ ω(ζk,κk))Ψi(ζ ,κ). (3.5)

Proof.{Ψi(ζ ,κ)}∞
i=1 is a complete system of W (2,2)

2 (∆). Therefore, it can be written

ω(ζ ,κ) =
∞

∑
i=1
〈ω(ζ ,κ),Ψi(ζ ,κ〉W (2,2)

2
Ψi(ζ ,κ) =

∞

∑
i=1

i

∑
k=1

βik〈ω(ζ ,κ),Ψk(ζ ,κ)〉W (2,2)
2

Ψi(ζ ,κ)

=
∞

∑
i=1

i

∑
k=1

βik〈ω(ζ ,κ),L∗Φk(ζ ,κ)〉W (2,2)
2

Ψi(ζ ,κ) =
∞

∑
i=1

i

∑
k=1

βik〈Lω(ζ ,κ),Φk(ζ ,κ)〉W (1,1)
2

Ψi(ζ ,κ)

=
∞

∑
i=1

i

∑
k=1

βik〈Lω(ζ ,κ), T̃(ζk ,κk)(ζ ,κ)〉W (1,1)
2

Ψi(ζ ,κ) =
∞

∑
i=1

i

∑
k=1

βikLω(ζk,κk)Ψi(ζ ,κ)

=
∞

∑
i=1

i

∑
k=1

βikF(ζk,κk,ω(ζk,κk),∂ζ ω(ζk,κk))Ψi(ζ ,κ). (3.6)

The proof is completed.
When finite n-terms are taken in Eq.(3.6), the approximate solution ωn(ζ ,κ) is expressed as follows:

ωn(ζ ,κ) =
n

∑
i=1

i

∑
k=1

βikF(ζk,κk,ω(ζk,κk),∂ζ ω(ζk,κk))Ψi(ζ ,κ).

The convergence of approximate solution will be presented in the next section.

4. Convergence Analysis

Here, it will be shown that the iterative approximate solution is uniformly convergent. Taking Ai as:

Ai =
i

∑
k=1

βikF(ζk,κk,ω(ζk,κk),∂ζ ω(ζk,κk)),

then Eq.(3.5) can be written as

(ζ ,κ) =
∞

∑
i=1

AiΨi(ζ ,κ).

Now from the initial conditions of Eq. (3.2), if taking (ζ1,κ1) = 0, ω(ζ1,κ1) can be calculated. When ω0(ζ1,κ1) = ω(ζ1,κ1) is taked, then
the n-term approximation of ω(ζ ,κ) can be given as follow:

ωn(ζ ,κ) =
n

∑
i=1

BiΨi(ζ ,κ), (4.1)

here

Bi =
i

∑
k=1

βikF(ζk,κk,ωk−1(ζk,κk),∂ζ ωk−1(ζk,κk)). (4.2)

Now, the uniform convergence of the approximate solution ωn(ζ ,κ) will be shown. Therefore the following lemma should be given.
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Lemma 4.1. If F(ζ ,κ,ω(ζ ,κ),ωζ (ζ ,κ)) is continuous and ωn→ ω̂ for (ζn,κn)→ (t,x), then

F(ζn,κn,ωn−1(ζn,κn),∂ζ ωn−1(ζn,κn))→ F(t,x, ω̂(t,x),∂ζ ω̂(t,x)).

Proof. Since

|ωn−1(ζn,κn)− ω̂(t,x)| = |ωn−1(ζn,κn)−ωn−1(t,x)+ωn−1(t,x)− ω̂(t,x)|
≤ |ωn−1(ζn,κn)−ωn−1(t,x)|+ |ωn−1(t,x)− ω̂(t,x)|.

By using the reproducing kernel feature, it can be said that

ωn−1(ζn,κn) = 〈ωn−1(ζ ,κ),T(ζn,κn)(ζ ,κ)〉W (2,2)
2

, ωn−1(t,x) = 〈ωn−1(ζ ,κ),T(t,x)(ζ ,κ)〉W (2,2)
2

.

It follows that

|ωn−1(ζn,κn)−ωn−1(t,x)|= |〈ωn−1(ζ ,κ),T(ζn,κn)(ζ ,κ)−T(t,x)(ζ ,κ)〉|.

It is known that there exists a constant M from the convergence of ωn−1(ζ ,κ), such that

‖ωn−1(ζ ,κ)‖W (2,2)
2
≤M‖ω̂(t,x)‖

W (2,2)
2

, as n≥M.

Also, it can be proven that

‖T(ζn,κn)(ζ ,κ)−T(t,x)(ζ ,κ)‖W (2,2)
2
→ 0, for n→ ∞

by using Theorem 2.2. So,

ωn−1(ζn,κn)→ ω̂(t,x), as (ζn,κn)→ (t,x).

Similarly, the following expression can be written

∂ζ ωn−1(ζn,κn)→ ∂ζ ω̂(t,x), as (ζn,κn)→ (t,x).

Therefore,

F(ζn,κn,ωn−1(ζn,κn),∂ζ ωn−1(ζn,κn))→ F(t,x, ω̂(t,x),∂ζ ω̂(t,x)).

So, the proof is completed.

Theorem 4.2. Let {(ζi,κi)}∞
i=1 be dense in ∆ . Assume that ‖ωn‖ is a bounded, and the Eq. (4.1) has a unique solution. Then, ωn(ζ ,κ)→

ω(ζ ,κ) and

ω(ζ ,κ) =
∞

∑
i=1

BiΨi(ζ ,κ).

Proof. It will be shown that the convergence of ωn(ζ ,κ). From the Eq. (4.1), it can be easily seen that

ωn+1(ζ ,κ) = ωn(ζ ,κ)+Bn+1Ψn+1(ζ ,κ).

By using of {Ψi}∞
i=1, the following equation can be written:

‖ωn+1‖2 = ‖ωn‖2 +B2
n+1 =

n+1

∑
i=1

B2
i . (4.3)

Therefore, from Eq. (4.3), it can be seen that ‖ωn+1‖ > ‖ωn‖. By the using boundedness of ‖ωn‖, it can be easily seen that ‖ωn‖ is
convergent. And also there exists a constant c such that

∞

∑
i=1

B2
i = c. (4.4)

So, Eq. (4.4) shows that {Bi}∞
i=1 ∈ l2. If m > n, then

‖ωm−ωn‖2 = ‖ωm−ωm−1 +ωm−1−ωm−2 + · · ·+ωn+1−ωn‖2

= ‖ωm−ωm−1‖2 +‖ωm−1−ωm−2‖2 + · · ·+‖ωn+1−ωn‖2.

On account of

‖ωm−ωm−1‖2 = B2
m,

consequently

‖ωm−ωn‖2 =
m

∑
l=n+1

B2
l → 0, as n→ ∞.
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From the completeness of W (2,2)
2 (∆), it can be expressed that ωn→ ω̂ as n→ ∞. Now, it will be shown that ω̂ is the solution of Eq. (3.2).

Taking limits in Eq. (4.1) we get

ω̂(ζ ,κ) =
∞

∑
i=1

BiΨi(ζ ,κ).

Note that

(Lω̂)(ζ ,κ) =
∞

∑
i=1

BiLΨi(ζ ,κ),

(Lω̂)(ζl ,κl) =
∞

∑
i=1

BiLΨi(ζl ,κl) =
∞

∑
i=1

Bi〈LΨi(ζ ,κ),Φl(ζ ,κ)〉W (1,1)
2

=
∞

∑
i=1

Bi〈Ψi(ζ ,κ),L∗Φl(ζ ,κ)〉W (2,2)
2

=
∞

∑
i=1

Bi〈Ψi(ζ ,κ),Ψl(ζ ,κ)〉W (2,2)
2

.

Therefore,

i

∑
l=1

βil(Lω̂)(ζl ,κl) =
∞

∑
i=1

Bi〈Ψi(ζ ,κ),
i

∑
l=1

βilΨl(ζ ,κ)〉W (2,2)
2

=
∞

∑
i=1

Bi〈Ψi(ζ ,κ),Ψl(ζ ,κ)〉W (2,2)
2

= Bl .

From Eq. (4.2), we have

Lω̂(ζl ,κl) = F(ζl ,κl ,ωl−1(ζl ,κl),∂ζ ωl−1(ζl ,κl)).

Since {(ζi,κi)}∞
i=1 is dense in ∆ , there exists a subsequence {(ζn j ,κn j )}∞

j=1 such that (ζn j ,κn j )→ (t,x), for each (t,x) ∈ ∆ , ( j→ ∞). It can
be expressed that

Lω̂(ζn j ,κn j ) = F(ζn j ,κn j ,ωn j−1(ζn j ,κn j ),∂ζ ωn j−1(ζn j ,κn j )).

Using Lemma 4.1 and the continuity of F , it can be written that

(Lω̂)(t,x) = F(t,x, ω̂(t,x),∂ζ ω̂(t,x)), for j→ ∞. (4.5)

The Eq. (4.5) demonstrates that ω̂(ζ ,κ) provides Eq. (3.2). The proof is completed.

5. Numerical Outcomes

In this section, the iterative reproducing kernel method is tested on two nonlinear advection equations. When calculating numerical results,
ζi =

i
q , i = 0,1, . . . ,q, κi =

i
p , i = 0,1, . . . , p and n = q× p are selected. The numerical results obtained for different values of p and q are

shown in tables and graphs. Also, the algorithm process of the method is presented as follows.

5.1. Algorithm of method

The iterative RKM process is presented as follow:

Step 1. Choose iteration number as n = q× p discrete point in the [0,1]× [0,1].
Step 2. Enter Ψi(ζ ,κ) = L(t,x)T(t,x)(ζ ,κ)|(t,x)=(ζi,κi).
Step 3. Attain βik orthogonalization coefficients.

Step 4. For i = 1,2, ...,n, set Ψi(ζ ,κ) =
i
∑

k=1
βikΨk(ζ ,κ).

Step 5. Enter initial approximation ω0(ζi,κi).

Step 6. For i = 1,2, ...,n, evaluate Bi =
i
∑

k=1
βikF(ζk,κk,ωk−1(ζk,κk),∂ζ ωk−1(ζk,κk)).

Step 7. For i = 1,2, ...,n, evaluate ωi(ζ ,κ) =
i
∑

k=1
BkΨk(ζk,κk).

5.2. Examples

Example 5.1. The following nonlinear advection equation is considered:

yκ (ζ ,κ)+ y(ζ ,κ)yζ (ζ ,κ) = f (ζ ,κ), ζ ,κ ∈ [0,1]. (5.1)

The exact solution of Eq. (5.1) is

y(ζ ,κ) = ζ
2(κ +2),
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and the initial condition of problem is

y(ζ ,0) = 2ζ
2.

After the homogenisation of initial condition, Eq.(5.1) turns into the following form:

ωκ (ζ ,κ)+2ζ
2
ωζ (ζ ,κ)+4ζ ω(ζ ,κ)+ω(ζ ,κ)ωζ (ζ ,κ)+8ζ

3 = f (ζ ,κ). (5.2)

The initial condition of Eq.(5.2) is

ω(ζ ,0) = 0,

and the exact solution of Eq.(5.2) is

ω(ζ ,κ) = ζ
2
κ.

In Eq.(5.2),

f (ζ ,κ) = 2κ
2
ζ

3 +8κζ
3 +8ζ

3 +ζ
2.

The absolute error values are computed for n = 225 in Table 5.1 and n = 400 in Table 5.2. The graphics of approximate solution, absolute
error and exact solution are presented in Figure 1 for n = 400 (q = p = 20).

ζ/κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 6.96×10−6 4.26×10−6 6.39×10−6 8.48×10−6 1.02×10−5 1.14×10−5 1.21×10−5 1.71×10−5 5.42×10−5

0.2 1.30×10−5 6.77×10−6 9.18×10−6 1.09×10−5 1.19×10−5 1.05×10−5 7.08×10−6 1.48×10−5 1.03×10−4

0.3 1.90×10−5 7.81×10−6 1.03×10−5 1.08×10−5 1.05×10−5 5.78×10−6 3.51×10−6 4.59×10−6 1.42×10−4

0.4 2.48×10−5 8.25×10−6 1.19×10−5 1.15×10−5 1.03×10−5 2.90×10−6 1.16×10−5 2.95×10−6 1.84×10−4

0.5 3.05×10−5 7.68×10−6 1.32×10−5 1.23×10−5 1.03×10−5 4.60×10−7 1.91×10−5 9.59×10−6 2.26×10−4

0.6 3.60×10−5 6.03×10−6 1.42×10−5 1.30×10−5 1.02×10−5 2.08×10−6 2.65×10−5 1.61×10−5 2.69×10−4

0.7 4.13×10−5 3.18×10−6 1.45×10−5 1.33×10−5 9.83×10−6 4.95×10−6 3.43×10−5 2.29×10−5 3.12×10−4

0.8 4.62×10−5 6.95×10−7 1.42×10−5 1.34×10−5 9.36×10−6 7.82×10−6 4.20×10−5 2.97×10−5 3.54×10−4

0.9 5.07×10−5 5.55×10−6 1.32×10−5 1.32×10−5 8.87×10−6 1.06×10−5 4.96×10−5 3.63×10−5 3.97×10−4

Table 5.1: The absolute error values of Example 5.1 for p = 15 and q = 15.

ζ/κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 7.56×10−7 1.72×10−6 2.45×10−6 3.23×10−6 4.03×10−6 4.51×10−6 4.07×10−6 4.88×10−6 1.85×10−5

0.2 1.59×10−6 3.06×10−6 3.52×10−6 4.13×10−6 4.80×10−6 4.55×10−6 1.44×10−6 6.04×10−7 3.15×10−5

0.3 1.93×10−6 4.09×10−6 4.04×10−6 4.37×10−6 4.90×10−6 3.98×10−6 1.95×10−6 5.13×10−6 4.18×10−5

0.4 1.85×10−6 5.02×10−6 4.39×10−6 4.47×10−6 4.99×10−6 3.56×10−6 5.03×10−6 1.05×10−5 5.23×10−5

0.5 1.38×10−6 5.83×10−6 4.65×10−6 4.46×10−6 5.04×10−6 3.19×10−6 7.95×10−6 1.56×10−5 6.32×10−5

0.6 5.51×10−7 6.48×10−6 4.82×10−6 4.33×10−6 5.00×10−6 2.79×10−6 1.08×10−5 2.06×10−5 7.42×10−5

0.7 6.02×10−7 6.90×10−6 4.93×10−6 4.10×10−6 4.87×10−6 2.33×10−6 1.37×10−5 2.55×10−5 8.52×10−5

0.8 2.04×10−6 7.06×10−6 4.99×10−6 3.78×10−6 4.64×10−6 1.78×10−6 1.67×10−5 3.06×10−5 9.62×10−5

0.9 3.71×10−6 6.89×10−6 4.99×10−6 3.40×10−6 4.32×10−6 1.16×10−6 1.97×10−5 3.56×10−5 1.07×10−4

Table 5.2: The absolute error values of Example 5.1 for p = 20 and q = 20.

Figure 5.1: The graphs of the absolute error, approximate solution and exact solution for p = 20 and q = 20 in Example 5.1.
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Example 5.2. The following nonlinear advection equation is considered:

yκ (ζ ,κ)+ y(ζ ,κ)yζ (ζ ,κ) = f (ζ ,κ), 0≤ ζ ,κ ≤ 1. (5.3)

The exact solution of problem is

y(ζ ,κ) = ζ (
κ2

2
+1),

and the initial condition of problem is

y(ζ ,0) = ζ .

After the homogenisation of initial condition, Eq.(5.3) turns into the following form:

ωκ (ζ ,κ)+ζ ωζ (ζ ,κ)+ω(ζ ,κ)+ωζ (ζ ,κ)ω(ζ ,κ)+ζ = f (ζ ,κ). (5.4)

The initial condition of Eq. (5.4) is

ω(ζ ,0) = 0,

and the exact solution of Eq. (5.4) is

ω(ζ ,κ) = ζ
κ2

2
.

In Eq. (5.4),

f (ζ ,κ) = κζ +κ
2
ζ +

1
4

ζ κ
4 +ζ .

The absolute error values are computed for n = 225 in Table 5.3 and n = 400 in Table 5.4. The graphics of approximate solution, absolute
error and exact solution are presented in Figure 2 for n = 400 (q = p = 20).

ζ/κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 6.03×10−6 2.73×10−6 3.36×10−6 4.54×10−6 5.75×10−6 6.91×10−6 8.06×10−6 9.21×10−6 1.03×10−5

0.2 1.16×10−5 6.49×10−6 6.72×10−6 8.93×10−6 1.14×10−5 1.38×10−5 1.61×10−5 1.84×10−5 2.07×10−5

0.3 1.65×10−5 1.15×10−5 1.05×10−5 1.35×10−5 1.74×10−5 2.12×10−5 2.48×10−5 2.83×10−5 3.18×10−5

0.4 2.01×10−5 1.79×10−5 1.49×10−5 1.81×10−5 2.34×10−5 2.87×10−5 3.37×10−5 3.85×10−5 4.32×10−5

0.5 2.20×10−5 2.57×10−5 2.06×10−5 2.35×10−5 3.02×10−5 3.71×10−5 4.37×10−5 5.00×10−5 5.62×10−5

0.6 2.16×10−5 3.45×10−5 2.75×10−5 2.96×10−5 3.73×10−5 4.59×10−5 5.43×10−5 6.22×10−5 7.00×10−5

0.7 1.84×10−5 4.47×10−5 3.66×10−5 3.76×10−5 4.61×10−5 5.66×10−5 6.70×10−5 7.70×10−5 8.67×10−5

0.8 1.14×10−5 5.54×10−5 4.76×10−5 4.75×10−5 5.65×10−5 6.87×10−5 8.13×10−5 9.35×10−5 1.05×10−4

0.9 2.59×10−7 6.69×10−5 6.15×10−5 6.08×10−5 7.06×10−5 8.46×10−5 9.97×10−5 1.14×10−4 1.29×10−4

Table 5.3: The absolute error values of Example 5.2 for p = 15 and q = 15.

ζ/κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 9.78×10−7 1.26×10−6 1.82×10−6 2.47×10−6 3.10×10−6 3.72×10−6 4.33×10−6 4.95×10−6 5.57×10−6

0.2 2.52×10−6 2.71×10−6 3.61×10−6 4.99×10−6 6.29×10−6 7.54×10−6 8.78×10−6 1.00×10−5 1.12×10−5

0.3 4.42×10−6 4.51×10−6 5.41×10−6 7.57×10−6 9.60×10−6 1.15×10−5 1.34×10−5 1.53×10−5 1.72×10−5

0.4 6.41×10−6 6.83×10−6 7.27×10−6 1.02×10−5 1.30×10−5 1.57×10−5 1.83×10−5 2.09×10−5 2.35×10−5

0.5 8.24×10−6 9.85×10−6 9.36×10−6 1.30×10−5 1.68×10−5 2.03×10−5 2.36×10−5 2.70×10−5 3.03×10−5

0.6 9.60×10−6 1.37×10−5 1.18×10−5 1.61×10−5 2.09×10−5 2.53×10−5 2.95×10−5 3.37×10−5 3.79×10−5

0.7 1.01×10−5 1.84×10−5 1.51×10−5 1.97×10−5 2.56×10−5 3.11×10−5 3.63×10−5 4.41×10−5 4.67×10−5

0.8 9.45×10−6 2.41×10−5 1.94×10−5 2.41×10−5 3.11×10−5 3.79×10−5 4.44×10−5 5.07×10−5 5.71×10−5

0.9 7.12×10−6 3.08×10−5 2.52×10−5 2.99×10−5 3.78×10−5 4.60×10−5 5.41×10−5 6.19×10−5 6.97×10−5

Table 5.4: The absolute error values of Example 5.2 for p = 20 and q = 20.

6. Conclusion

In this study, a numerical approach is proposed for the nonlinear advection equation. This approach is based on the reproducing kernel
function obtained from special Hilbert spaces and the selection of a linear operator. The approximate solution is constructed by the basis
function obtained by applying the reproducing kernel function to the selected linear operator. The convergence analysis of the proposed
approach is given in detail. To demonstrate the validity of the method, the RKM is applied to two different nonlinear advection equations.
The obtained results verify the effectiveness of the method. It is thought that the proposed method will contribute to the literature. The
proposed method can be applied to integral differential equations with nonhomogeneous initial or boundary conditions by improving it.
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Figure 5.2: The graphs of the absolute error, approximate solution and exact solution for p = 20 and q = 20 in Example 5.2.
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