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Research Article

Abstract − A subset S of vertices of a graph G with no isolated vertex is called a total
dominating set of G if each vertex of G has at least one neighbor in the set S. The total
domination number γt(G) of a graph G is the minimum value of the size of a total dominating
set of G. A subset M of the edges of a graph G is called a matching if no two edges of M

have a common vertex. The matching number ν(G) of a graph G is the maximum value of
the size of a matching in G. It can be observed that γt(G) ≤ 2ν(G) holds for every graph
G with no isolated vertex. This paper studies the graphs satisfying the equality and proves
that γt(G) = 2ν(G) if and only if every connected component of G is either a triangle or a
star.

Keywords Domination number, matching number, total domination number

Mathematics Subject Classification (2020) 05C69, 05C70

1. Introduction

Graphs have various parameters, such as domination number, total domination number, matching
number, and the minimum size of a maximal matching, denoted by γ, γt, ν, and ν∗, respectively.
Obtaining equalities or inequalities between those parameters and classifying the graphs satisfying a
given equality or inequality are widely studied. For instance, a well-known inequality is γt(G) ≤ 2γ(G).
Characterization of all the graphs G with γt(G) = 2γ(G) is still an open problem. However, the
problem is solved for trees, block graphs, and chordal graphs in [1–3]. Another example of total
domination numbers is that in any connected graph with at least three vertices, the total domination
number is two-thirds of the graph’s order [4]. The family of graphs G satisfying γt(G) = 2|V (G)|

3 is
completely determined in [5].

It is well known that the inequality γ(G) ≤ ν(G) holds for every graph G. However, the inequality
γt(G) ≤ ν(G) is not always true. On the other hand, γt(G) ≤ ν(G) is satisfied whenever G is
a d-regular graph such that d ≥ 3 or a claw-free graph with minimum degree more than two [6].
Furthermore, the inequality is also satisfied for the connected graphs with at least four vertices in
which every vertex is contained in a triangle [7]. Claw-free graphs G with γt(G) = ν(G) and δ(G) ≥ 3
are determined in [8], whereas trees T satisfying γt(T ) ≤ ν(T ) are characterized in [9].

Unlike the inequality γt(G) ≤ ν(G), the inequality γt(G) ≤ 2ν(G) is true for every graph G which
does not contain any isolated vertex. Besides, γt(G) ≤ 2ν∗(G) is always valid since the set of vertices
1selim.bahadir@aybu.edu.tr (Corresponding Author)
1Department of Mathematics, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, Ankara,
Türkiye

https://dergipark.org.tr/en/pub/jnt
https://orcid.org/0000-0003-1533-7194
https://doi.org/10.53570/jnt.1520557


Journal of New Theory 49 (2024) 1-6 / Graphs with Total Domination Number Double of the Matching Number 2

in a maximal matching is a total dominating set. In [10], it is shown that if δ(G) ≥ 3, then γt(G) ≤
2ν∗(G) − δ(G) + 2 and if δ(G) ≤ 2, then γt(G) ≤ 2ν∗(G). In the same paper, a characterization in a
constructive way for the graphs G with γt(G) = 2ν∗(G) and δ(G) ≤ 2 is also provided.

In this paper, we focus on graphs G with γt(G) = 2ν(G). Recall that the inequality γt(G) ≤ 2ν∗(G)
is true when G does not include any isolated vertex. Then, since ν∗(G) ≤ ν(G) always holds, if
γt(G) = 2ν(G), then ν∗(G) = ν(G) which implies that every maximal matching in G has the same
size. A graph whose maximal matchings have the same cardinality is called equimatchable. Therefore,
the set of graphs we focus on is a subfamily of equimatchable graphs. For more about equimatchable
graphs, see [11–15]. Furthermore, we show that if in a graph, the total domination number is equal to
double the matching number, then it is a disjoint union of triangles or stars, that is, every connected
component of a graph G satisfying γt(G) = 2ν(G) is either a triangle or a star.

This paper is organized as follows: Section 2 presents some definitions and notations to be needed for
the following sections. Section 3 provides the main theorem and its proof. The final section presents
a discussion and conclusions.

2. Preliminaries

In this section, we present some basic definitions, notations, and some simple observations which are
frequently used throughout this paper.

A graph G is formed by two sets, namely, V (G) and E(G). Here, V (G) is a nonempty set whose
elements are called vertices, and E(G) is a set consisting of unordered pairs of vertices whose ele-
ments are called edges. Whenever {u, v} ∈ E(G), we say that u and v are adjacent (or neighbors).
Throughout this paper, if u and v are adjacent in G, then we write uv ∈ E(G) and say uv is an edge
in G.

In a graph, the set of all the neighbors of a vertex v is denoted by N(v), and the number of elements
in N(v) is called the degree of the vertex v. In a graph G, the minimum degree is denoted by δ(G).
A vertex in a graph is isolated if it has no neighbors in the graph, i.e., its degree is zero. A vertex is
called a leaf if its degree is one, i.e., it has a unique neighbor in the graph, and a vertex is said to be
a support vertex whenever it is adjacent to a leaf.

A triangle, denoted by C3, is a cycle of length three. A star is a graph in which a central vertex exists
such that every other vertex is adjacent to only this central vertex. Figure 1 illustrates a triangle and
two stars:

0.80.8 11 1.21.2 1.41.4 1.61.6 1.81.8 22 2.22.2 2.42.4 2.62.6 2.82.8 33 3.23.2 3.43.4 3.63.6 3.83.8 44 4.24.2 4.44.4 4.64.6 4.84.8 55 5.25.2 5.45.4 5.65.6 5.85.8 66

0.40.4

0.60.6

0.80.8

11

1.21.2

1.41.4

1.61.6

1.81.8

22

2.22.2

2.42.4

(a) (b) (c)

Figure 1. (a) A triangle, (b) a star with two vertices which is called K2, and (c) a star with six
vertices

A subset S of V (G) is a dominating set of G if each vertex not in S has at least one neighbor belonging
to S. The domination number γ(G) of the graph G is the minimum size of a dominating set of G. If
G has no isolated vertices, then a subset S of V (G) is called a total dominating set of G whenever
each vertex in G has at least one neighbor in S. In other words, S is a total dominating set if and
only if S is a dominating set and the subgraph of G induced by S contains no isolated vertices. The
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total domination number of the graph G with no isolated vertices, denoted by γt(G), is the minimum
cardinality of a total dominating set of G. Notice that by definition, γ(G) ≤ γt(G). Note also that
there is no total dominating set for a graph G with an isolated vertex; hence, the total domination
number is undefined. Therefore, throughout this paper, we only consider graphs without isolated
vertices.

If in a subset M of E(G) no two edges share a common vertex, then M is a matching in G. For a
matching M , the set of all the vertices serving as a vertex of an edge in M is denoted by V (M). A
matching is called maximal whenever it is not properly contained in another matching. The matching
number of the graph G is the maximum size of a matching in G and is denoted by ν(G), α′(G), or
µ(G). Let ν∗(G) denote the minimum cardinality of a maximal matching in G. A matching in G is
maximum if its size is ν(G). Note that a maximum matching is maximal, but a maximal matching is
not necessarily maximum. An example of maximal and maximum matchings is presented in Figure 2.
Moreover, ν∗(G) ≤ ν(G) is always satisfied.

11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5 55 5.55.5 66 6.56.5 77 7.57.5 88

0.50.5

11

1.51.5

22

2.52.5

(a) (b) (c)

Figure 2. (a) A graph, (b) its maximal matching in yellow, and (c) its maximum matching in red

A path between vertices u and v of a graph G is a sequence of edges v1v2, v2v3, · · · , vk−1vk in G for
some k ≥ 2 where v1 = u and vk = v. A graph is called connected if, for every pair of vertices, there
exists a path between them. A connected component of a graph is a connected subgraph that is not
contained in another connected subgraph. A subset of vertices in a graph is called independent if it
has no two adjacent vertices.

Finally, we provide a simple observation frequently used in proofs: Let M be a maximal matching in a
graph G. Then, since M is maximal, there is no edge in the subgraph of G induced by V (G) \ V (M),
that is, V (G) \ V (M) is either empty or an independent set. In other words, N(w) ⊆ V (M) for every
w ∈ V (G) \ V (M). Moreover, let G1, G2, · · · , Gn be all connected components of a graph G. Then,

γt(G) =
n∑

i=1
γt(Gi) and ν(G) =

n∑
i=1

ν(Gi)

As γt(Gi) ≤ 2ν(Gi) is true for every i ∈ {1, 2, · · · , n}, we see that γt(G) = 2ν(G) holds if and only if
γt(Gi) = 2ν(Gi) is valid for every i ∈ {1, 2, · · · , n}. Therefore, characterizing all the connected graphs
G with γt(G) = 2ν(G) is sufficient to solve our main problem.

3. Main Result

In this section, we determine all the graphs G with γt(G) = 2ν(G). Characterizations of such graphs
are presented in the following theorem.

Theorem 3.1. Let G be a graph. Then, γt(G) = 2ν(G) holds if and only if every connected component
of G is a triangle or a star.

Throughout this section, we provide the proof of Theorem 3.1. We first present a lemma, which is
frequently used in the rest of this section.

Lemma 3.2. Let G be a graph with γt(G) = 2ν(G), M be a maximum matching in G, and ab ∈ M .
If a is not a support vertex, then a is the unique neighbor of b among the vertices in V (M).
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Proof. We prove the claim by contradiction. Let S = V (M) \ {a} and assume that b is adjacent to
a vertex c in S. An illustration of G, M , and S is given in Figure 3:

Figure 3. A graph G and a matching M , shown by red edges. The sets S and V (G) \ V (M) consist
of vertices inside the dashed polygonal region and elliptic region, respectively

Recall that for any vertex w in V (G) \ V (M), N(w) ⊆ V (M). Since a is not a support vertex, any
vertex adjacent to a is not a leaf and has a neighbor other than a. Therefore, w has at least one
neighbor in S. Further, it can be observed that any vertex in V (M) has at least one neighbor in S.
Therefore, S is a total dominating set and

γt(G) ≤ |S| = |V (M)| − 1 = 2ν(G) − 1

which contradicts with γt(G) = 2ν(G).

We study the graphs concerning their minimum degrees. We begin with the case when the minimum
degree is more than one.

Proposition 3.3. C3 is the unique connected graph G satisfying γt(G) = 2ν(G) and δ(G) ≥ 2.

Proof. Let G be a connected graph satisfying the conditions γt(G) = 2ν(G) and δ(G) ≥ 2. We first
show that ν(G) = 1. Assume that ν(G) ≥ 2. Let M = {e1, e2, · · · , ek} be a maximum matching where
k = ν(G) ≥ 2. Since the minimum degree in G is at least 2, there is no leaf in G. Therefore, there is
no support vertex in G either. Thus, by Lemma 3.2, any vertex in V (M) has exactly one neighbor in
V (M). In other words, the subgraph of G induced by V (M) is a disjoint union of k edges. Since G is
connected, a vertex w in V (G) \ V (M) must exist such that w has neighbors from different edges in
M . Without loss of generality, suppose that e1 = xy, e2 = zt, and w is adjacent to y and t. Consider
the edge set M ′ = (M \ {xy}) ∪ {yw}. Then, M ′ matches, and because of its size, it is a maximum
matching. However, as w is adjacent to t, we get a contradiction when we apply Lemma 3.2 for M ′,
a = y, and b = w. Consequently, we see that the matching number of G is 1.

Let uv be any edge of G. Then, {uv} is a maximum matching. Hence, since the minimum degree
is two, any vertex different than u and v is a common neighbor of u and v. Thereby, G must have
at least three vertices. If G has three vertices, then G has to be C3 and thus γt(C3) = 2ν(C3) = 2.
Otherwise, let w1 and w2 be two distinct vertices other than u and v. Then, {uw1, vw2} is a matching
which yields ν(G) ≥ 2, a contradiction. Thereby, C3 is the unique (up to isomorphism) connected
graph G with γt(G) = 2ν(G) and δ(G) ≥ 2.

We next analyze the graphs with a minimum degree of one.

Proposition 3.4. Let G be a connected graph with δ(G) = 1. Then, γt(G) = 2ν(G) if and only if G

is a star.
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Proof. Let G be a connected graph satisfying γt(G) = 2ν(G) and δ(G) = 1. First, note that if
G = K2, then it is a star. Suppose that G is not K2. Observe that K2 is the unique connected
graph containing a vertex, a leaf, and a support vertex. Thus, G has no such a vertex. Let M be a
maximum matching in G and uv ∈ M . We first show that at least one of u and v is not a support
vertex. Assume that u and v are support vertices. Then, u is adjacent to a leaf x, and v is adjacent
to a leaf y. By the observation above, {x, y} ∩ {u, v} = ∅. Moreover, since they are leaves, x ̸= y and
none of x and y can be another vertex in V (M). Then, note that (M \ {uv}) ∪ {ux, vy} is matching
whose size is greater than the size of M contradicting with the fact that M is a maximum matching.

Let v1, v2, · · · , vm be all the support vertices in G. For each vi, choose a neighbor leaf ui. Thus,
{u1v1, · · · , umvm} is a matching and can be extended to a maximal matching M . As ν∗(G) = ν(G),
then M is a maximum matching. Since ui cannot be a support vertex, by Lemma 3.2, N(vi)∩V (M) =
{ui} holds for every i ∈ {1, 2, · · · , m}. Suppose that M \ {u1v1, · · · , umvm} is not empty and equal to
{x1y1, · · · , xryr}. By construction none of x1, y1, · · · , xr, and yr is a support vertex and hence, by
Lemma 3.2, N(xi)∩V (M) = {yi} and N(yi)∩V (M) = {xi}, for every i ∈ {1, 2 · · · , r}. Therefore, since
G is connected and V (G)\V (M) is an independent set, there exists a vertex w ∈ V (G)\V (M) such that
w is a common neighbor of a vertex from {u1, v1, · · · , um, vm} and a vertex from {x1, y1, · · · , xr, yr}.
Note that w cannot be adjacent to some ui since ui is a leaf. Without loss of generality, suppose
that w is adjacent to v1 and y1. Then, M ′ = (M \ {u1v1}) ∪ {wv1} is a maximum matching because
of its size. Applying Lemma 3.2 for M ′, a = x1, and b = y1 yields a contradiction. Consequently,
M = {u1v1, · · · , umvm} and {v1, · · · , vm} is an independent set.

We finally show that m = 1. Assume that m ≥ 2. By similar ideas above, there exists a vertex
w ∈ V (G) \ V (M), which is adjacent to at least two of v1, · · · , vm. Without loss of generality, suppose
that v1 and v2 are neighbors of w. Then, M ′ = (M \ {u1v1}) ∪ {wv1} is a maximum matching since
|M ′| = |M | = ν(G). Therefore, as v2 and w are adjacent, we obtain a contradiction by applying
Lemma 3.2 for M ′, a = u2, and b = v2. Thus, m = 1 and every vertex other than v1 is a leaf and
adjacent to v1, which implies that G is a star.

Conversely, if G is a star graph, it is connected, has minimum degree one, and satisfies γt(G) =
2ν(G) = 2.

Finally, combining Propositions 3.3 and 3.4 proves Theorem 3.1.

4. Conclusion

In this paper, we have studied the graphs G whose total domination number attains the upper bound
in the inequality γt(G) ≤ 2ν(G). We have shown that the family of graphs whose each connected
component is a triangle or a star is the set of all the graphs G satisfying γt(G) = 2ν(G). Since
γt(G) = 2ν(G) implies ν∗(G) = ν(G) = γt(G)

2 , we have obtained an extreme condition on the graphs
we study, and hence, probably that is why we have not reached an interesting or large connected graph
that satisfies the equality. A potential research direction is to determine all the graphs G satisfying
2ν(G) − 1 = γt(G) or 2ν(G) − 2 = γt(G). Notice that the method to solve the main theorem does
not work. However, if 2ν(G) − 1 = γt(G), then ν∗(G) = ν(G) since γt(G) ≤ 2ν∗(G) ≤ 2ν(G) and the
values ν∗(G) and ν(G) are integers. Therefore, the class of graphs G with γt(G) = 2ν(G) − 1 is a
subfamily of equimatchable graphs as well, and hence, results on equimatchable graphs can be helpful
to determine all graphs in that class. Another research direction might be to obtain an inequality
involving matching and total domination numbers on various specific graph classes, such as regular,
bipartite, split, and chordal graphs.
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a number system that parameterizes parabolas is worth studying. This paper defines p as a
function of the coordinate y and obtains a number system named parabolic numbers whose
circles are parabolas. These parabolic numbers complete the set of number systems where
circles are conic sections. Finally, this paper discusses the prospect of further research.

Keywords Parabolic numbers, p-complex numbers, coordinate dependence

Mathematics Subject Classification (2020) 15A66, 11H55

1. Introduction

The introduction of complex numbers in the form z = x+iy with i2 = −1 to generalize real numbers has
had many critical applications from the fundamental theorem of algebra to advanced physics, such as
the calculation of Feynman diagrams [1], needed in quantum field theory, and Bohmian interpretation
of quantum mechanics [2] as well as the usual quantum mechanics [3]. Then, a generalization of
complex numbers to p-complex numbers has been studied. For more details, see [4]. For p-complex
numbers, p is defined via i2 = p where p can be negative, positive, or zero. These classes of number
systems are called elliptic, hyperbolic, and dual, respectively. This nomenclature arises because, in
these number systems, the circles, defined by the set of z where |z|2 is constant, correspond to ellipses,
hyperbolas, and two vertical lines. The dual numbers are also called parabolic numbers; however, they
are quite distinct from our novel perspective on parabolic numbers in this study.

Elliptic numbers, to represent elliptical orbits in the central force problem of Newtonian gravity,
have been studied in [5]. The case of hyperbolic orbits, however, has not yet been explored. It is
feasible to extend the framework for elliptic numbers to hyperbolic numbers. What is missing is
a new perspective on parabolic numbers, whose circles would correspond to parabolas. While dual
numbers are also called parabolic, they do not parameterize a parabola, unlike the approach proposed
in this study. Hence, the term is a new perspective. This paper introduces a number system based on
hyperbolic numbers, where p > 0 is treated as a function of the y-coordinate. From the mathematical
point of view, the results of the current study completes the list of number systems where circles are
conic sections. It is hoped that the results provided here interest researchers.
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The study [6] considers lp-complex numbers where the norm of an lp-complex number z is given by
|z|p ≡ (|x|p + |y|p)1/p for a constant and positive number p. Here, for p = 2, it can be observed
that the mentioned number system is the usual complex numbers. However, the number system [6]
cannot parameterize parabolas since the exponent of |x| and |y| are the same, and their coefficients are
positive, namely 1. Moreover, the distributive law does not hold unless p = 2 [6]. The number system
defined in Section 2 named parabolic numbers has distributivity property. This is a clear advantage
for parabolic numbers defined in this study.

Furthermore, in [7], the norm of a vector r ∈ R3 is defined as follows:

|r| ≡ |x|p1

p1
+ |y|p2

p2
+ |z|p3

p3

for positive real numbers p1, p2, and p3. Although this approach has one more dimension, it cannot
describe parabolas. The reason is the same as that of the earlier work: The coefficients of |x|, |y|,
and |z| are positive. If, for instance, p2 is made negative, then one has the correct sign. However, |y|
appears in the denominator with a positive power. Hence, a parabola can still not be parameterized
even though negative pi values are allowed.

The paper’s organization is as follows: Section 2 defines generalized p-complex numbers with a coordi-
nate dependence on p. Section 3 provides details about the properties of parabolic numbers. Section
4 offers a few ideas for applying parabolic numbers. Finally, Section 5 concludes the paper.

2. Generalized p-Complex Numbers

This section briefly mentions p-complex numbers and generalizes it by making p coordinate-dependent.

2.1. p-Complex Numbers

In the literature, p-complex numbers (Cp) are defined via z = x + iy where x, y ∈ R and i2 = p. For
p > 0, these are referred to as hyperbolic numbers; for p < 0, as elliptic numbers; and for p = 0,
as dual numbers. These numbers systems have been named as such because the constant norm of
z, defined via |z|2 = zz∗ = (x + iy)(x − iy) = x2 − py2, corresponds to hyperbola (p > 0), ellipses
(p < 0), and two vertical lines in the last case (p = 0). The concept of squared norm, defined by
|z|2, varies depending on the value of p: 1) It is Lorentzian for p > 0, which means it may assume
any sign or be zero; 2) It is Euclidean for p < 0; and 3) It becomes a pseudo-norm-squared for
p = 0, which is always nonnegative. p-complex numbers and their generalizations are widely studied
in the literature [4, 8–15]. For an introduction to p-complex numbers, [16] may be a good reference.
Additionally, there are hypercomplex numbers, where the non-real unit u satisfies u2 = α + uβ for
some α, β ∈ R [17], a generalization of p-complex numbers. In terms of hypercomplex numbers, [18]
might be a valuable source. However, none of these systems include coordinate-dependent p.

As a direct application, the idea to define i2 = 1, i /∈ R is relevant in Einstein’s special theory of
relativity, where space-time has Lorentzian geometry instead of a Euclidean one. Hyperbolic numbers,
defined as the set of numbers {z = x + iy : x, y ∈ R, i2 = 1, i /∈ R}, can model 2D Minkowski space-
time. Because the norm-square of the distance vector between two points P1 and P2 denoted by
v⃗ = (t, x) in 2D Minkowski space-time is given as |v⃗|2 = t2 − x2 = |t + ix|2 if the norm-square is zero,
then the vector v⃗ is null or light-like; if it is positive, then the vector v⃗ is time-like, and if it is negative,
then the vector v⃗ is space-like. The relation of hyperbolic numbers to the special theory of relativity
is also noted in [15], which cites [19]. The book [20] might also be useful for readers who would like
to learn more about the relation between hyperbolic numbers and the special theory of relativity. On
the contrary, if i ∈ R is assumed, then the definition of a number z in the form z = x + iy = x ± y is
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reduced to a summation or subtraction operation on real numbers and would not, for example, yield
the space-time structure in the special theory of relativity in 2D.

2.2. Coordinate Dependent p Value

When p is constant, the set of p-complex numbers whose norm is constant cannot represent a parabola.
The squared norm of a p-complex number is quadratic in x, y when p ̸= 0, and when p = 0, the unit
circle is not a parabola.

The approach to defining a number system in which a circle is a parabola motivates the coordinate
dependence of p. This topic should be investigated in the general setting where p = p(x, y). However,
the goal of this study is to define parabolic numbers. To this end, i and j are defined by i2 = 1 and
j2 = p = p(y) = 1

α|y| , for α > 0. Hence, j = i√
α|y|

. Here, i, the hyperbolic unit, is a square root of 1
but is not a real number; it is used to express the coordinate dependence of j. The number i will be
useful in expressing a parabolic number in hyperbolic form, especially in the next section.

3. Properties of Parabolic Numbers

In this section, the algebraic operations on parabolic numbers are elaborated. A parabolic number z

is expressed as z = x + jy, where the explicit form of j is utilized to represent z as follows:

z = x + jy = x + i
y√
α|y|

= x + i
σ
√

|y|√
α

where y = sgn(y)|y| and σ = sgn(y). The value σn = sgn(yn) is defined provided y has a subscript.
Here, sgn is the sign function. In the remainder of this section, the following definition is used:

zn ≡ xn + i
σn

√
|yn|√
α

and the symbol j is omitted.

3.1. Addition

The sum of two parabolic numbers is defined as follows:

z1 ⊕ z2 =
(

x1 + i
σ1
√

|y1|√
α

)
⊕
(

x2 + i
σ2
√

|yn|√
α

)

≡ x1 + x2 + i
σ1
√

|y1|√
α

+ i
σ2
√

|y2|√
α

= x3 + i
σ3
√

|y3|√
α

If z3 = z1 ⊕ z2, the following are obtained:

x3 ≡ x1 + x2

and
σ3

√
|y3| ≡ σ1

√
|y1| + σ2

√
|y2|

It can be observed that the addition operation is closed on R2 and commutative and associative.
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3.2. Multiplication

The multiplication of two parabolic numbers is defined as follows:

z1 ⊗ z2 =
(

x1 + i
σ1
√

|y1|√
α

)
⊗
(

x2 + i
σ2
√

|y2|√
α

)

= x1x2 + σ1σ2
α

√
|y1|

√
|y2| + i√

α
(x1σ2

√
|y2| + x2σ1

√
|y1|)

If z3 = z1 ⊗ z2, then the following are obtained:

x3 ≡ x1x2 + σ1σ2
α

√
|y1|

√
|y2| and σ3

√
|y3| ≡ x1σ2

√
|y2| + x2σ1

√
|y1|

It can be observed that the multiplication operation is closed on R2. It is obvious that the multiplica-
tion is commutative; however, more care is needed to show associativity. The expression (z1 ⊗ z2) ⊗ z3

is as follows:
(z1 ⊗ z2) ⊗ z3 = x1x2x3 + 1

α(x1σ2σ3
√

|y2|
√

|y3| + x2σ1σ3
√

|y1|
√

|y3| + x3σ1σ2
√

|y1|
√

|y2|)

+ i√
α

(x1x2σ3
√

|y3| + x1x3σ2
√

|y2| + x2x3σ1
√

|y1|) + i
α3/2 σ1σ2σ3

√
|y1|
√

|y2|
√

|y3|
(3.1)

Using the commutativity of multiplication, (z1 ⊗ z2) ⊗ z3 = z3 ⊗ (z1 ⊗ z2) can be written. When the
indices in (3.1) are mapped via (1, 2, 3) 7→ (2, 3, 1) and it is observed that the expression is invariant,
the associativity of multiplication is proven.

3.3. Complex Conjugation and Division

The complex conjugate of a parabolic number is defined by z∗ ≡ x−iσ
√

|y|/α, for all z = x+iσ
√

|y|/α.
If the norm of z is non-zero, the multiplicative inverse of z is defined as z−1 ≡ z∗

|z|2 , although the norm
may be negative. In other words, if |z| ≠ 0, then 1

z ≡ z∗

|z|2 is defined.

3.4. Distributive Property

The distributive property for three parabolic numbers is the equality z1⊗(z2⊕z3) = (z1⊗z2)⊕(z1⊗z3).
For n ∈ {1, 2, 3}, let zn = xn + i

σn

√
|yn|√
α

. Then, z2 ⊕ z3 is calculated as follows:

z2 ⊕ z3 = (x2 + x3) + i

(
σ2
√

|y2|√
α

+ σ3
√

|y3|√
α

)
Hence,

z1 ⊗ (z2 ⊕ z3) =
(

x1 + i
σ1

√
|y1|√
α

)
⊗
[
(x2 + x3) + i

(
σ2

√
|y2|√
α

+ σ3
√

|y3|√
α

)]
= x1(x2 + x3) + σ1

√
|y1|√
α

(
σ2

√
|y2|√
α

+ σ3
√

|y3|√
α

)
+i

[
x1

(
σ2

√
|y2|√
α

+ σ3
√

|y3|√
α

)
+ (x2 + x3)σ1

√
|y1|√
α

]
= x1x2 + σ1

√
|y1|√
α

σ2
√

|y2|√
α

+ i

(
x1

σ2
√

|y2|√
α

+ x2
σ1

√
|y1|√
α

)
+x1x3 + σ1

√
|y1|√
α

σ3
√

|y3|√
α

+ i

(
x1

σ3
√

|y3|√
α

+ x3
σ1

√
|y1|√
α

)
= (z1 ⊗ z2) ⊕ (z1 ⊗ z3)

This proves the distributive property on parabolic numbers. Therefore, the equality (z2 ⊕ z3) ⊗ z1 =
(z2 ⊗ z1) ⊕ (z3 ⊗ z1) is also valid due to commutativity of the multiplication on parabolic numbers.
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3.5. Euler’s Formula for Parabolic Numbers

In this subsection, Euler’s formula is generalized to parabolic numbers. For the case of p-complex
numbers, see [16]. For a parabolic number z, the expression ez is calculated. If z is written in
hyperbolic representation, then z = x + jy = x + i

σ
√

|y|√
α

is valid. Hence, ez = ex+iβ where β = σ
√

|y|√
α

.
Because the real and imaginary part of x + iβ commutes, we have ez = exeiβ. The expression eiβ is
calculated as follows:

eiβ =
∞∑

n=0

(iβ)n

n! =
∞∑

n=0

β2n

(2n)! + i
∞∑

n=0

β2n+1

(2n + 1)! = cosh(β) + i sinh(β)

Hence, the following is obtained:

ez = ex+jy = ex

[
cosh

(
σ
√

|y|√
α

)
+ i sinh

(
σ
√

|y|√
α

)]
A simplification comes from the fact that σ ∈ {−1, 0, 1}, cosh is an even function and sinh is an odd
function:

ez = ex+jy = ex

[
cosh

(√
|y|√
α

)
+ iσ sinh

(√
|y|√
α

)]
The previous expression is in hyperbolic representation. Its parabolic representation can be obtained,
as well. For that purpose, define a + jb = cosh(β) + i sinh(β). It is observed that a = cosh(β) and
sinh(β) = σb

√
|b|√

α
. When the last equality is solved for b, b = ασb sinh2(β). From the expression

sinh(β) = σb

√
|b|√

α
, σb = σ. Hence,

ejy = cosh(β) + jασ sinh2(β)

= cosh
(

σ
√

|y|√
α

)
+ jασ sinh2

(
σ
√

|y|√
α

)

= cosh
(√

|y|√
α

)
+ jασ sinh2

(√
|y|√
α

)

3.6. Flatness of the Parabolic Number Manifold

Using the norm of |z|2 = x2 − y2

α|y| , for y > 0, (the case y < 0 is straightforward), the metric is defined
via the line element:

ds2 = dx2 − dy2

αy
(3.2)

The line element at a point (x, y) is defined as the infinitesimal distance between the points (x, y) and
(x + dx, y + dy). Hence, the Lorentzian norm-square of the number dx + jdy is evaluated at the point
(x, y). This fact justifies the line element defined in (3.2). When ξ = 2

√
y
α is defined, the line element

can be written as follows:
ds2 = dx2 − dξ2 (3.3)

Thus, the Riemann tensor vanishes, and the manifold of parabolic numbers is trivially flat. Moreover,
the parabolic number set is isomorphic to 2D Minkowski space-time. This is expected since there
is a one-to-one map between parabolic and hyperbolic numbers. To observe this, a map defined by
y 7→ ξ = 2

√
y
α such that y > 0 is one-to-one. The case y < 0 is similar, and for y = 0, define ξ = 0,

where the line element in (3.3) is that of hyperbolic numbers.

If p = p(y) only depends on the y variable, then the line element can be transformed via ds2 =
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dx2 − p(y)dy2 into the form:
ds2 = dx2 − dt2

where t =
∫

dy
√

p(y), which again results in a flat manifold. However, if p = p(x, y), which is not
investigated in this study, then there may be curvature in the manifold, which is not the case for
parabolic numbers. For example, consider the case p(x, y) = sin2(x). Then, the manifold’s Ricci
scalar, the only degree of freedom in 2D, is R = 2. It is another problem whether p(x, y) = sin(x)2

defines a consistent number system. Consequently, the number manifold may be non-flat depending
on p(x, y).

4. A Few Applications

A circle in parabolic numbers is a parabola given by:

|z|2 = x2 − |y|
α

= A

α

where A ∈ R. Hence,
|y| = αx2 − A

For an illustration, see Figure 1 drawn with Mathematica 13.3. From Figure 1, note that when A = 1,
there is no y ∈ R such that |y| = x2 − 1, for |x| < 1. Hence, the domain of the parabola as a function
of x is R − (−1, 1).

-3 -2 -1 1 2 3
x

-10

-5

5

10

y
A = -1

-3 -2 -1 1 2 3
x

-5

5

y
A = 0

-3 -2 -1 1 2 3
x

-5

5

y
A = 1

Figure 1. Some circles in parabolic numbers where α = 1 and A ∈ {−1, 0, 1}

Any parabola can be expressed in this form through rotation, translation, and scaling. In the central
force problem of Newtonian gravity, there are three types of trajectories: 1) Elliptic, 2) Hyperbolic,
and 3) Parabolic. In [5], elliptical complex numbers where p < 0 and p is constant are used to
model elliptic trajectories in the central force problem of Newtonian gravity. The case of hyperbolic
trajectories can be approached using a similar method. Only the hyperbolic numbers where p > 0 are
needed instead of elliptic numbers. However, it has not been studied yet. With the parabolic numbers
introduced in this paper, parabolic trajectories can finally be parameterized. Another application
involves projectile motion. Without air friction, the trajectory of a projectile is a parabola. Moreover,
the trajectory of a charged particle under a constant electric field is also a parabola if the particle has
a velocity component perpendicular to the electric field. An example of this is as follows: Consider
a trajectory such as |z|2 = 0. This results in |y| = αx2 and thus y = −αx2 such that y ≤ 0. The
equations of motion for an electron under constant electric field are:

mẍ = 0 and mÿ = qE

where E > 0 is the electric field and q < 0 is the charge of the electron. When these differential
equations are integrated, the following two results are obtained:

x(t) = v0xt + x0
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and
y(t) = 1

2
qE

m
t2 + v0yt + y0

Using the relation y = −αx2 and by expressing t as a function of x, the value α can be obtained as
follows:

α = −1
2

qE

mv2
0x

where α > 0 since q < 0. This information determines the path’s shape. Similarly, by applying the
initial conditions and using specific values for q, m, and E, the position of an electron as a function
of time can be determined. To illustrate, the values of the initial conditions, along with q, m, and
E, can be chosen such that the numerical value of α equals 1/2 in the corresponding units. Figure
2 drawn with Mathematica 13.3 illustrates the electron’s trajectory under a constant electric field,
which is shown via arrows.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

x

y

Figure 2. Trajectory of an electron under constant electric field where the numerical value of α is 1
2

5. Conclusion

Elliptic numbers parameterize ellipses, and hyperbolic numbers parameterize hyperbola. However,
there has not been a number system that parameterizes parabola. Through the number system
introduced in this paper, parabolic numbers, a type of hyperbolic number where the imaginary unit has
a specific coordinate dependence and is distinct from dual numbers, parabolas can be parameterized.
The paper is the first study in the available literature considering the coordinate dependence of p.
The choices of p = p(x, y) in the more general setting and respective consistency relations are left to
future studies.

A few other ideas that may be considered in future studies can be summarized as follows: 1) Whether a
sign changing and coordinate dependent p can be consistently defined; 2) What would be the curvature
the manifold on which coordinate-dependent p-complex numbers are defined; and 3) Whether it could
be generalized to fours dimensions, such as modifying the quaternion algebra, where p1, p2, and
p3 are coordinate dependent (for more details on generalized quaternions, see [21]). The study [7]
introduces the three-complex numbers system in which p1, p2, and p3 are positive. In this approach,
coordinate-dependent p1, p2, and p3 can also be studied.
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and their key properties. By utilizing the beta matrix function (BMF), we introduce novel
extensions of the Gauss hypergeometric matrix function (GHMF) and Kummer hyperge-
ometric matrix function (KHMF). We delve into their integral representations, recurrence
relations, transformation properties, and differential formulas. Additionally, we investigate
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for the mean, variance, and moment-generating functions. Furthermore, we apply EBMFs to
develop the Appell matrix function (AMF) and Lauricella matrix function (LMF) and their
integral forms.

Keywords Beta matrix function, Gauss and Kummer hypergeometric matrix functions, Appell and Lauricella matrix
functions

Mathematics Subject Classification (2020) 33B15, 33E20

1. Introduction

Special matrix functions are a dynamic and intriguing area [1–14] with significant applications in
mathematics and physics. When these functions are generalized from scalar to matrix arguments,
they offer deeper insights and broaden the scope of their applications. Matrix versions of special func-
tions enhance the utility of their scalar counterparts by extending their relevance to multidimensional
and more complex problems. This generalization plays a crucial role in engineering, physics, statis-
tics, and mathematics fields, providing powerful tools for addressing matrix-related challenges and
advancing theoretical and practical research. Special matrix functions represent a critical extension of
classical special function theory, enabling matrices to be manipulated in ways similar to numbers. This
capability proves particularly valuable in applications of fields such as quantum mechanics, statistical
mechanics, and signal processing, where matrices are frequently encountered.

The extended beta function is a matrix version of the classical beta function, which arises in various
areas of mathematics and physics. Recent studies [1–3, 10, 11, 15] have focused on analyzing the
matrix beta function and exploring its convergence regions, integral representations, and differential
properties. Similarly, the extended Gauss hypergeometric and Kummer hypergeometric functions
are matrix generalizations of their classical counterparts and have been the subject of considerable
study in recent years [1–3, 7, 10, 15, 16]. Building on these foundational works, this paper discusses
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the extended beta matrix functions (EBMFs) and their integral representations, recurrence relations,
transformation formulas, and differential properties. We also research their applications in statistics.
We also define and investigate the integral representations of the extended Appell matrix function
(EAMF) and the extended Lauricella matrix function (ELMF).

2. Preliminaries

Throughout this paper, the vector space of r-square matrices with complex entries is designated Cr×r.
Spectrum is the set of all the eigenvalues of a matrix P ∈ Cr×r and represented by the symbol σ(P).
A matrix P in Cr×r is called a positive stable matrix (PSM) if ℜ(λ) > 0, for all λ ∈ σ(P), where ℜ(z)
represents the real part of a complex number z.

The expression Γ(P) for a PSM P in Cr×r is as follows [11]:

Γ(P) =
∞∫

0

e−ℓℓP−Idℓ

Furthermore, if P + κI is invertible, for all κ ∈ Z+ ∪ {0}, then the reciprocal gamma matrix function
(GMF) is defined as [11]:

Γ−1(P) = P(P + I) · · · (P + (n − 1)I)Γ−1(P + nI), n ≥ 1

If P ∈ Cr×r is a PSM and n ≥ 0 is an integer, then the GMF can also be defined in the form of a
limit as [11]:

Γ(P) = lim
n→∞

(n − 1)!(P)−1
n nP

The Pochhammer symbol [12] for P ∈ Cr×r is defined as:

(P)n =

 I, n = 0

P(P + I)...(P + (n − 1)I), n ≥ 1

Therefore,
(P)n = Γ−1(P)Γ(P + nI), n ≥ 1

If P and Q are PSMs in Cr×r and PQ = QP, then the beta matrix function (BMF) is defined as [11]:

B(P, Q) = Γ(P)Γ(Q)Γ−1(P + Q) =
1∫

0

ℓP−I(1 − ℓ)Q−Idℓ (2.1)

Let P, Q, and H be PSMs in Cr×r and H + κI be invertible, for all κ ∈ Z+ ∪ {0}. Then, the Gauss
hypergeometric matrix function (GHMF) is [12]:

2F1(P, Q; H; z) =
∞∑

n=0
(P)n(Q)n(H)−1

n

zn

n! (2.2)

The series in (2.2) converges absolutely for |z| < 1, and for z = 1 if α(P) + α(Q) < β(H), where
α(P) = max {ℜ(z) | z ∈ σ(P)}, β(P) = min {ℜ(z) | z ∈ σ(P)}, and β(P) = −α(−P).

Furthermore, if QH = HQ and Q, H, and H − Q are PSMs, then for |z| < 1, an integral form of (2.2)
is defined as [12]:

2F1(P, Q; H; z) =

 1∫
0

(1 − zℓ)−PℓQ−I(1 − ℓ)H−Q−Idℓ

× Γ−1(Q)Γ−1(H − Q)Γ(H)

Let P, Q, and A be PSMs and commuting matrices in Cr×r. Then, the EBMF B(P, Q; A) is defined
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by Abdalla and Bakhet [2] as follows:

B(P, Q; A) =
1∫

0

ℓP−I(1 − ℓ)Q−I exp
(

− A
ℓ(1 − ℓ)

)
dℓ

They generalized the GHMF and Kummer hypergeometric matrix function (KHMF) using EBMF.
Let P, Q, H, H − Q, and A be PSMs in Cr×r such that QH = HQ, HA = AH, and QA = AQ. The
extended GHMF (EGHMF) and the extended KHMF (EKHMF) are defined as [1]:

F (A)(P, Q; H; z) =

∑
m≥0

(P)mB(Q + mI, H − Q; A)zm

m!

× Γ(H)Γ−1(Q)Γ−1(H − Q)

and

ΦA(Q; H; z) =

∑
m≥0

B(Q + mI, H − Q; A)zm

m!

× Γ(H)Γ−1(Q)Γ−1(H − Q)

respectively.

Verma et al. [17] have introduced another extension of BMF. Let P, Q, A, and C be PSMs and
commuting matrices in Cr×r. Then, the EBMF B(P, Q; A, C) is defined as [17]:

B(P, Q; A, C) =
1∫

0

ℓP−I(1 − ℓ)Q−I exp
(

−A
ℓ

− C
(1 − ℓ)

)
dℓ (2.3)

Moreover, they introduced EGHMF and EKHMF by (2.3) as follows [17]:

F (A,C)(P, Q; H; z) =

∑
m≥0

(P)mB(Q + mI, H − Q; A, C)zm

m!

× B(Q, (H − Q))−1

and

Φ(A,C)(Q; H; z) =

∑
m≥0

B(Q + mI, H − Q; A, C)zm

m!

× B(Q, (H − Q))−1

respectively.

Inspired and motivated by EBMF, GHMF, and KHMF, we introduce their extensions and discuss these
extensions’ integral representations, differential formulae, recurrence relations, and transformation
formulae.

3. An Extension of EBMF

Let P, Q, A, and C be PSMs and commuting matrices in Cr×r and η, µ ∈ C. Then, we introduce an
extension of EBMF (EOEBMF) Bη,µ(P, Q; A, C) as follows:

Bη,µ(P, Q; A, C) =
1∫

0

ℓP−I(1 − ℓ)Q−I exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
dℓ (3.1)

By applying Schur decomposition [18] and substituting ln ℓ < ℓ and ln(1 − ℓ) < (1 − ℓ), for 0 < ℓ < 1,
respectively, we obtain

B(α(P) + i − κ, α(Q) + j − l; α(A), α(C)) < ∞

Thus, an EOEBMF Bη,µ(P, Q; A, C) exists.
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Theorem 3.1. The EOEBMF satisfies the following integral representations:

Bη,µ(P, Q; A, C) = 2
π/2∫
0

(cos u)2P−I(sin u)2Q−I exp
(
−Asec2ηu − Ccsc2µu

)
du (3.2)

Bη,µ(P, Q; A, C) =
∞∫

0

uP−I(1 + u)−P−Q exp
(
−A(1 + u−1)η − C(1 + u)µ

)
du (3.3)

and

Bη,µ(P, Q; A, C) = 2I−P−Q
1∫

−1

(1 + u)P−I(1 − u)Q−I × exp
(
−2ηA(1 + u)−η − 2µC(1 − u)−µ

)
du (3.4)

Proof. Substituting ℓ = cos2 u into (3.1) yields (3.2) after minor simplifications. Similarly, substi-
tuting ℓ = u

1+u into (3.1) results in (3.3). Finally, replacing ℓ = 1+u
2 in (3.1) provides (3.4).

Remark 3.2. If η = µ = 1 in (3.2), (3.3), and (3.4), respectively, then the result in [17] is obtained.

Theorem 3.3. The EOEBMF satisfies the following properties:

Bη,µ(P, Q + I; A, C) + Bη,µ(P + I, Q; A, C) = Bη,µ(P, Q; A, C) (3.5)

Bη,µ(P, I − Q; A, C) =
∞∑

n=0

(Q)n

n! Bη,µ(P + nI, I; A, C) (3.6)

and
Bη,µ(P, Q; A, C) =

∞∑
n=0

Bη,µ(P + nI, Q + I; A, C) (3.7)

Proof. From (3.1),

Bη,µ(P, Q + I; A, C) + Bη,µ(P + I, Q; A, C) =
1∫
0

[ℓP−I(1 − ℓ)Q] exp
(
− A

ℓη − C
(1−ℓ)µ

)
dℓ

+
1∫
0

[ℓP(1 − ℓ)Q−I ] exp
(
− A

ℓη − C
(1−ℓ)µ

)
dℓ

=
1∫
0

ℓP−I(1 − ℓ)Q−I [(1 − ℓ) + ℓ)] exp
(
− A

ℓη − C
(1−ℓ)µ

)
dℓ

=
1∫
0

ℓP−I(1 − ℓ)Q−I exp
(
− A

ℓη − C
(1−ℓ)µ

)
dℓ

= Bη,µ(P, Q; A, C)

Hence, the proof of (3.5) is done. Moreover,

Bη,µ(P, I − Q; A, C) =
1∫

0

ℓP−I(1 − ℓ)I−Q−I exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
dℓ

By using the relation (1 − ℓ)−Q =
∞∑

n=0

(Q)n

n! ℓn in [12],

Bη,µ(P, I − Q; A, C) =
1∫
0

ℓP−I
∞∑

n=0

(Q)n

n! ℓn exp
(
− A

ℓη − C
(1−ℓ)µ

)
dℓ

=
∞∑

n=0

(Q)n

n!

1∫
0

ℓP+(n−1)I exp
(
− A

tη − C
(1−ℓ)µ

)
dℓ

=
∞∑

n=0

(Q)n

n! Bη,µ(P + nI, I; A, C)
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Thus, the proof of (3.6) is done. Similarly, by substituting its series representation for (1 − ℓ)−I in
(3.1),

Bη,µ(P, Q; A, C) =
1∫

0

(1 − ℓ)Q
∞∑

n=0
ℓP+(n−1)I exp

(
− A

ℓη
− C

(1 − ℓ)µ

)
dℓ

The result (3.7) is obtained by using (3.1) and altering the integration and summation orders.

4. Application of EOEBMF

Many researchers [2,11,17,19,20] have investigated different generalizations and extensions of BMFs,
showcasing their potential applications in various domains. In this section, we analyze an application
of the EOEBMF in (3.1) within the realm of statistics. Specifically, we define the beta distribution
and derive its mean, variance, and moment-generating function using the EOEBMF.

For P, Q, A, and C be commutative PSMs in Cr×r and ℜ(η), ℜ(µ) > 0. Define the beta distribution
as:

u(ℓ) =

 [Bη,µ(P, Q; A, C)]−1ℓP−I(1 − ℓ)Q−I exp
(
− A

ℓη − C
(1−ℓ)µ

)
, 0 < ℓ < 1

0, otherwise
(4.1)

For any matrix R ∈ Cr×r, the moment of a random variable X is as follows:

E
(
XR

)
= Bη,µ(P + R, Q; A, C)[Bη,µ(P, Q; A, C)]−1

If R = I, then the mean of the beta distribution is as follows:

ρ = E
(
XI
)

= Bη,µ(P + I, Q; A, C)[Bη,µ(P, Q; A, C)]−1

Therefore, the variance of the distribution is defined as:

σ2 = E(X2I) −
{

E(XI)
}2

= Bη,µ(P + 2I, Q; A, C[Bη,µ(P, Q; A, C)]−1 −
{
Bη,µ(P + I, Q; A, C)[Bη,µ(P, Q; A, C)]−1}2

Besides, the moment generating matrix function of the distribution in (4.1) is as follows:

M (ℓ) =
∞∑

κ=0

ℓκ

κ!E(XκI) = [Bη,µ(P, Q; A, C)]−1
∞∑

κ=0
Bη,µ(P + κI, Q; A, C)ℓκ

κ!

The cumulative distribution of (4.1) is defined as:

F (x) =
x∫

0

u(ℓ)dℓ = Bx,η,µ(P, Q; A, C)[Bη,µ(P, Q; A, C)]−1

where F (1) = I and Bx,η,µ(P, Q; A, C) is the incomplete BMF defined as:

Bx,η,µ(P, Q; A, C) =
x∫

0

ℓP−I(1 − ℓ)Q−I exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
dℓ

5. Graphical and Numerical Comparison of the Classical and Generalized
Matrix-Variate Beta Distributions

The classical beta distribution involving the BMF in (2.1) is defined as:

u(ℓ) =

 [B(P, Q)]−1ℓP−I(1 − ℓ)Q−I , 0 < ℓ < 1

0, otherwise
(5.1)
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Consider P =
(

2 0.5
0.5 3

)
, Q =

(
3 0.2

0.2 4

)
, A =

(
1 0.1

0.1 2

)
, C =

(
1.5 0.3
0.3 2.5

)
, and η = µ = 2.

In Figure 1, taking P and Q matrices, compute the eigenvalues of P − I and Q − I, and using in (5.1)
to compute and plot the classical beta distribution over the range 0 < ℓ < 1 for 2 × 2 matrices.

Moreover, in Figure 2, taking P, Q, A, and C matrices and η = µ = 2, compute the eigenvalues of
P − I, Q − I, A, and C and using in (4.1) to compute and plot the generalized beta distribution
with parameters A, C, η, and µ. In Figure 3, we compare our generalized beta distribution with the
classical beta distribution in matrices.
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Figure 1. Classical beta distribution for 2 × 2 matrices P and Q
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Figure 2. Generalized beta distribution with parameters A, C, η, and µ
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Figure 3. (a) Classical beta distribution and (b) Generalized beta distribution with exponential
terms

Both distributions are normalized using a simplified approach based on the scalar beta function. In
Figure 1, the distribution is closely related to the scalar classical beta distribution, generalized to
matrix arguments P and Q.

The simpler matrix beta distribution directly relates to random matrix theory, which has applications
in signal processing, wireless communications, and finance. The simpler form is also used for matrix-
variate generalizations of Bayesian analysis or weighting in optimization problems, particularly in
multivariate or matrix-based Bayesian methods. However, the flexibility to model more complex
real-world phenomena is restricted because it lacks additional factors like essential terms.

However, in our result, we provided the additional terms exp
(
− A

ℓη − C
(1−ℓ)µ

)
introduce exponential

decay, which can allow for greater flexibility in fitting data or modeling more complex systems. This
distribution could be used in more advanced Bayesian frameworks where the priors need to account
for additional penalization or constraints, often seen in hierarchical models or models with specific
tail behavior. The exponential terms can capture the behavior that decays rapidly, which is helpful
in stochastic modeling, particularly in systems with non-linear dynamics or time-varying processes.
In areas like financial modeling or signal processing, where matrix-valued variables may represent
volatility or correlation, the exponential decay allows better control over tail risks or sensitivity.
The exponential terms provide much more flexibility in controlling the shape and behavior of the
distribution. This is particularly useful in real-world applications where tail behavior, constraints,
or penalizations are needed. Parameters like A, C, η, and µ offer additional degrees of freedom for
fine-tuning the distribution, making it more adaptable to complex data or phenomena.

6. EGHMF and EKHMF

The main aim of this section is to introduce extensions of GHMF and KHMF. Let P, Q, H, H − Q,
A, and C be positive stable and commuting matrices in Cr×r. Extensions of GHMF and KHMF, i.e.,
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EGHMF and EKHMF, are defined as follows:

F (A,C)
η,µ (P, Q; H, z) =

∑
m≥0

(P)mBη,µ(Q + mI, H − Q; A, C)zm

m!

× B(Q, H − Q)−1 (6.1)

and

Φ(A,C)
η,µ (Q; H; z) =

∑
m≥0

Bη,µ(Q + mI, H − Q; A, C)zm

m!

× B(Q, H − Q)−1 (6.2)

respectively.

Theorem 6.1. For PSMs P, Q, H, H − Q, A, and C in Cr×r, the EGHMF and EKHMF have
following integral representation, respectively.

F (A,C)
η,µ (P, Q; H, z) =

1∫
0

(1−zℓ)−P exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
ℓQ−I(1−ℓ)H−Q−Idℓ×B(Q, H − Q)−1 (6.3)

and

Φ(A,C)
η,µ (Q; H; z) =

 1∫
0

ℓQ−I(1 − ℓ)H−Q−I exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
dℓ

× B(Q, H − Q)−1 (6.4)

Proof. Using (6.1),

F (A,C)
η,µ (P, Q; H, z) =

∑
m≥0

(P)mBη,µ(Q + mI, H − Q; A, C)zm

m!

× B(Q, H − Q)−1

Using (3.1),

F A,C
η,µ (P, Q; H, z) =

∑
m≥0

(Pm)

 1∫
0

ℓQ+(m−1)I(1 − ℓ)(H−Q)−I exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
dℓ

 zm

m!

× B(Q, (H − Q))−1

Moreover, the following matrix identity is valid:

(1 − zℓ)−P =
∞∑

m=0
(P)m

(zℓ)m

m!

Thus,

F (A,C)
η,µ (P, Q; H, z) =

1∫
0

(1 − zℓ)−P exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
ℓQ−I(1 − ℓ)(H−Q)−Idℓ × [B(Q, (H − Q))]−1

Similarly, by (6.2), (6.4) is obtained.

Theorem 6.2. Let A, C, P, Q, H, and H − Q be PSMs in Cr×r such that QH = HQ. Then, the
following differential equations are satisfied by EGHMF and EKHMF, respectively:

dn

dzn
F (A,C)

η,µ (P, Q; H; z) = (P)nF A,C
η,µ (P + nI, Q + nI; H + nI; z)(Q)n(H)−1

n

and
dn

dzn
ΦA,C

η,µ (Q; H; z) = ΦA,C
η,µ (Q + nI; H + nI; z)(Q)n(H)−1

n (6.5)
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Proof. From (6.1),

d
dz F A,C

η,µ (P, Q; H; z) = d
dz

∞∑
n=0

(P)nBη,µ(Q + nI, H − Q; A, C)[B(Q, H − Q)]−1 zn

n!

=
∞∑

n=1
(P)nBη,µ(Q + nI, H − Q; A, C)[B(Q, H − Q)]−1 zn−1

(n−1)!

=
∞∑

n=0
(P)(n+1)Bη,µ(Q + (n + 1)I, H − Q; A, C)[B(Q, H − Q)]−1 zn

n!

= P
∞∑

n=0
(P + I)nBη,µ(Q + (n + 1)I, H − Q; A, C)[B(Q + I, H − Q)]−1 zn

n! (Q)(H)−1

= (P)1F
(A,C)
η,µ (P + I, Q + I; H + I; z)(Q)1(H)−1

1

Repeat this process n times. The differential formula appears as
dn

dzn
F (A,C)

η,µ (P, Q; H; z) = (P)nF (A,C)
η,µ (P + nI, Q + nI; H + nI; z)(Q)n(H)−1

n

Similarly, (6.5) is obtained by (6.2).

7. Transformation Formulae

In this section, we provide the transformation formulae for EGHMF and EKHMF.

Theorem 7.1. Let A, C, P, Q, H, and H − Q be PSMs in Cr×r and QH = HQ. Then, the following
formulae are satisfied by EGHMF:

F (A,C)
η,µ (P, Q; H; z) = (1 − z)−PF (A,C)

µ,η

(
P, H − Q; H; z

(z − 1)

)
(7.1)

F (A,C)
η,µ (P, Q; H; 1 − 1

z
) = zPF (A,C)

µ,η (P, H − Q; H; 1 − z) (7.2)

and
F (A,C)

η,µ (P, Q; H; z

z + 1) = (1 + z)PF (A,C)
µ,η (P, H − Q; H; −z) (7.3)

Proof. In (6.3), if ℓ is changed to (1 − ℓ), then

F
(A,C)
η,µ (P, Q; H; z) =

1∫
0

(1 − z(1 − ℓ))−P exp
(
− A

(1−ℓ)η − C
ℓµ

)
(1 − ℓ)Q−IℓH−Q−Idℓ[B(Q, H − Q)]−1

=
1∫
0

(1 − z + zℓ)−P exp
(
− A

(1−ℓ)η − C
ℓµ

)
(1 − ℓ)Q−IℓH−Q−Idℓ[B(Q, H − Q)]−1

= (1 − z)−P
1∫
0

(1 − zℓ
z−1)−P exp

(
− A

(1−ℓ)η − C
ℓµ

)
(1 − ℓ)Q−IℓH−Q−Idℓ[B(Q, H − Q)]−1

= (1 − z)−PF
(A,C)
µ,η

(
P, H − Q; H; z

z−1

)
To determine (7.2) and (7.3), we replace z in (7.1) with (1 − 1

z ) and z
1+z , respectively.

Setting z = 1 and allowing P to commute with Q and H provides the link between the EGHMF and
EBMF that is shown in (6.1):

F A,C
η,µ (P, Q; H, 1) =

 1∫
0

ℓQ−I(1 − ℓ)H−P−Q−I exp
(

− A
ℓη

− C
(1 − ℓ)µ

)
dℓ

× [B(Q, H − Q)]−1

=B(Q, H − P − Q; A, C)[B(Q, H − Q)]−1

(7.4)

Using (7.4), we can formulate a novel generalization of Kummer’s first theorem.



Journal of New Theory 49 (2024) 16-29 / Certain Results on Extended Beta and Related Functions Using Matrix Arguments 25

Theorem 7.2. Let A, C, Q, H, and H − Q be PSMs in Cr×r such that QH = HQ. Then, Kummer’s
first theorem for new extension is provided as:

Φ(A,C)
η,µ (Q; H; z) = exp(z)Φ(A,C)

η,µ (H − Q; H; −z)

Theorem 7.3. Let A, C, P, Q, H, and H − Q be PSMs in Cr×r such that QH = HQ. Then, EGHMF
and EKHMF satisfy the following recurrence relations:

∆PF (A,C)
η,µ (P, Q; H; z) = zF (A,C)

η,µ (P + I, Q + I; H + I; z)QH−1 (7.5)

d

dz
F (A,C)

η,µ (P, Q; H; z) = P
z

∆PF (A,C)
η,µ (P, Q; H; z) (7.6)

Q∆QΦ(A,C)
η,µ (Q; H + I; z) + H∆HΦ(A,C)

η,µ (Q; H; z) = 0 (7.7)

and
d

dz
Φ(A,C)

η,µ (Q; H; z) = QH−1Φ(A,C)
η,µ (Q; H + I; z) − ∆HΦ(A,C)

η,µ (Q; H; z) (7.8)

where ∆P is the shift operator relative to P.

Proof. By using ∆P as the shift operator about P and the integral representation of the EGHMF
(6.1),

∆PF (A,C)
η,µ (P, Q; H; z) = F (A,C)

η,µ (P + I, Q; H; z) − F (A,C)
η,µ (P, Q; H; z)

=
( 1∫

0
(1 − zℓ)−P−I(1 − (1 − zℓ)) exp

(
− A

ℓη − C
(1−ℓ)µ

)
ℓQ−I(1 − ℓ)H−Q−Idℓ

)
× [B(Q, H − Q)]−1

Therefore,

∆PF (A,C)
η,µ (P, Q; H; z) = z

( 1∫
0

(1 − zℓ)−P−I exp
(

− A
ℓη − C

(1−ℓ)µ

)
ℓQ(1 − ℓ)H−Q−Idℓ

)
× [B(Q, H − Q)]−1 (7.9)

We can see from (6.1) that

F
(A,C)
η,µ (P + I, Q + I; H + I; z) =

( 1∫
0

(1 − zℓ)−P−I(1 − (1 − zℓ)) exp
(

− A
ℓ − C

(1−ℓ)

)
ℓQ−I(1 − ℓ)H−Q−Idℓ

)
×[B(Q + I, H − Q)]−1

(7.10)

From (7.9) and (7.10),

∆PF (A,C)
η,µ (P, Q; H; z) = zF (A,C)

η,µ (P + I, Q + I; H + I; z)QH−1

Another differential recurrence relation can be found using the EGHMF’s differentiation formula, as
illustrated in (7.6). The results in (7.7) and (7.8) can be obtained by using the same steps as the proof
in (7.5) and (7.6).

8. EAMF and ELMF

This section extends the Appell matrix function (AMF) and Lauricella matrix function (LMF) to
three variables. Specifically, we present the extended forms of the AMF, i.e., F

(η,µ)
1 (P, Q, Q′; H; z, w)

and F
(η,µ)
2 (P, Q, Q′; H, H′; z, w), and the LMF with three variables, F

3(η,µ)
D (P, Q, Q′, Q′′; H; z, w; v).

These extensions are formulated using the new EBMF [7, 16, 21]. Additionally, we provide integral
representations for these extended hypergeometric matrix functions.

Let P, Q, Q′, H, H − P, A, and C be PSMs in Cr×r such that P, H, A, and C commutes, HQ = QH,
and HQ′ = Q′H. Then, we define an extension of EAMF as:

F
(η,µ)
1 (P, Q, Q′; H; z, w; A, C) = Γ

(
H

P, H − P

) ∑
m,n≥0

Bη,µ(P+(m+n)I, H − P; A, C)(Q)m(Q′)n
zmwn

m!n!
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where

Γ
(

H
P, H − P

)
= Γ(H)Γ−1(P)Γ−1(H − P)

Let P, Q, Q′, H, H′, H − Q, H′ − Q′, A, and C in Cr×r be commutative PSMs such that Q, Q′, H, H′,
A, and C commutes. We define the new extended Appell hypergeometric matrix function (EAHMF)
F

(η,µ)
2 (P, Q, Q′; H, H′; z, w; A, C) as:

F (η,µ)
2 (P, Q, Q′; H, H′; z, w; A, C) =

∑
m,n≥0

(P)m+nBη,µ(Q + mI, H − Q; A, C)Bη,µ(Q′ + nI, H′ − Q′; A, C) zmwn

m!n!

×Γ
(

H, H′

Q, Q′, H − Q, H′ − Q′

) (8.1)

Suppose P, Q, Q′, Q′′, H, H − P, A, and C be PSMs in Cr×r such that P, H, and A commutes
with each other, HQ = QH, and HQ′ = Q′H. Then, we define the extension of the new Lauricella
hypergeometric matrix functions (LHMF) defined as:

F
3(η,µ)
D,A,C (P, Q, Q′, Q′′; H, ; z, w; v) = Γ

(
H

P, H − P

) ∑
m,n,p≥0

Bη,µ(P + (m + n + p)I, H − P; A, C)(Q)m(Q′)n(Q′′)p
zmwnvp

m!n!p! (8.2)

We focus on identifying the integral representations of the three variable extensions of the AMF and
the LMF. We start by representing the integral of F

(η,µ)
1 (P, Q, Q′; H; z, w; A, C) determined in the

following theorem.

Theorem 8.1. Let P, Q, Q′, H, H − P, A, and C be PSMs in Cr×r such that P, H, A, and C commutes
with each other, HQ = QH, and HQ′ = Q′H. Then, the EAMF F

(η,µ)
1 (P, Q, Q′; H; z, w; A, C) can be

presented in the integral form as:

F
(η,µ)
1 (P, Q, Q′; H; z, w; A, C) = Γ

(
H

P, H − P

)(
1∫
0

uP−I(1 − u)H−P−I(1 − zu)−Q(1 − wu)−Q′

× exp
(
− A

uη − −C
(1−u)µ

)
du
) (8.3)

Proof. Using (3.1) in the EAMF F η,µ
1 (P, Q, Q′; H; z, w; A, C),

F
(η,µ)
1 (P, Q, Q′; H; z, w; A, C) = Γ

(
H

P, H − P

) ∑
m,n≥0

( 1∫
0

uP−I(1 − u)H−P−I exp
(

− A
uη − −C

(1−u)µ

)
×(Q)m(Q′)n

(zu)m(wu)n

m!n! du
) (8.4)

By the method discussed by Dwivedi and Sahai [21], the equality

(1 − z)−P =
∞∑

n=0
(P)n

zn

n! (8.5)

and (8.4),

F
(η,µ)
1 (P, Q, Q′; H; z, w; A, C) = Γ

(
H

P, H − P

)(
1∫
0

uP−I(1 − u)H−P−I exp
(
− A

uη − −C
(1−u)µ

)
×(1 − zu)−Q(1 − wu)−Q′

du
)

Remark 8.2. After replacing the values µ = η = 1 in (8.3), the results described in [17] are obtained.

Theorem 8.3. Let P, Q, Q′, H, H′, H − Q, H′ − Q′, A, and C be PSMs in Cr×r such that Q, Q′, H,
H′, A, and C commutes with each other. Then, the EAMF F η,µ

2 (P, Q, Q′; H, H′; z, w; A, C) defined in
(8.1) has the following integral representation:
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F
(η,µ)
2 (P, Q, Q′; H, H′; z, w; A, C) =

( 1∫
0

1∫
0

(1 − zu − wv)−PuQ−I(1 − u)H−Q−IvQ′−I(1 − v)H′−Q′−I

× exp
(

− A
uη − C

(1−u)µ − A
vη − C

(1−v)µ

)
dudv

)
Γ
(

H, H′

Q, Q′, H − Q, H′ − Q′

) (8.6)

Proof. Using (3.1) and (8.1),

F
(η,µ)
2 (P, Q, Q′; H, H′; z, w; A, C) =

∑
m,n≥0

( 1∫
0

1∫
0

(P)m+n
(zu)m(wv)n

m!n! uQ−I(1 − u)H−Q−IvQ′−I(1 − v)H′−Q′−I

× exp
(

− A
uη − C

(1−u)µ − A
vη − C

(1−v)µ

)
dudv

)
Γ
(

H, H′

Q, Q′, H − Q, H′ − Q′

) (8.7)

by the interchanging summation and integral in (8.7) via the dominated convergence theorem. More-
over, the following summation formula [22] is valid:∑

n≥0
f(N)(z + w)N

N ! =
∑

m,n≥0
f(m + n)zmwn

m!n!

Thus,

F
(η,µ)
2 (P, Q, Q′; H, H′; z, w; A, C) =

(
1∫

0

1∫
0

∑
N≥0

(P)N
(zu+wv)N

N ! uQ−I(1 − u)H−Q−IvQ′−I(1 − v)H′−Q′−I

× exp
(

− A
uη − C

(1−u)µ − A
vη − C

(1−v)µ

)
dudv

)
Γ
(

H, H′

Q, Q′, H − Q, H′ − Q′

) (8.8)

Using (8.5) and (8.8), (8.6) is obtained.

Theorem 8.4. Suppose P, Q, Q′, Q′′, H, H − P, A, and C be PSMs in Cr×r such that P, H,
and A commutes with each other, HQ = QH, HQ′ = Q′H, and HQ′′ = Q′′H. Then, the ELMF
F

3(η,µ)
D,A,C (P, Q, Q′, Q′′; H, ; z, w; v) in (8.2) provides the following integral representation:

F
3(η,µ)
D,A,C (P, Q, Q′, Q′′; H, ; z, w; v) = Γ

(
H

P, H − P

)(
1∫
0

uP−I(1 − u)H−P−I exp
(
− A

uη − C
(1−u)µ

)
×(1 − zu)−Q(1 − wu)−Q′(1 − vu)−Q′′

du
) (8.9)

Proof. From (3.1) and (8.2),

F
3(η,µ)
D,A,C (P, Q, Q′, Q′′; H, ; z, w; v) = Γ

(
H

P, H − P

) ∑
m,n,p≥0

(
1∫
0

uP−I(1 − u)H−P−I exp
(
− A

uη − C
(1−u)µ

)
×(Q)m(Q′)n(Q′′)p

(uz)m(uw)n(uv)p

m!n!p! du
)

By (8.5) and continuing in the same process as in Theorem 8.1, (8.9) is obtained.

9. Conclusion

In conclusion, the findings presented in this paper introduce new results that can potentially extend
other special matrix functions. We have developed an extension of the BMF and investigated the
GHMF and KHMF, exploring their key relationships and properties. Additionally, we extended the
AMF and LMF and derived their integral representations using the beta matrix function. We also
highlighted significant statistical applications of the EBMF. These generalized matrix functions have
wide-ranging applications, including quantum mechanics, describing the time evolution of quantum
systems, multivariate statistics, modeling multivariate distributions and hypothesis testing, control
theory, analyzing the stability and response of dynamic systems, and mathematical physics, solving
systems of differential equations with matrix arguments. The results from this study open several
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promising avenues for future research. Potential directions include extending other special matrix
functions, such as the Whittaker, Wright, and Fox-H matrix functions, as well as Jacobi and Laguerre
matrix polynomials. Researchers could also explore special integral transforms of these extended
matrix functions, including the Euler-Beta, Laplace, and k-transforms. With its exponential terms,
the generalized beta distribution provides additional flexibility and could be useful in machine learning,
especially in regularization and Bayesian frameworks. Researchers could explore using matrix-variate
beta distributions in deep learning models for regularization, uncertainty quantification, and matrix-
variate variational autoencoders.
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1. Introduction

The determinant is a scalar value corresponding to a square matrix and is denoted by |A|, D(A), det A,
or det(A). Besides, it is a function that maps from square matrix spaces to complex numbers. The
determinant has many uses in mathematics. For instance, it determines whether a square matrix is
invertible, is used to solve a system of linear equations, helps to find the inverse of a matrix, is used to
solve some boundary value problems, etc. The determinant of a square matrix can be calculated using
Laplace expansion. In particular, the determinant of a matrix of dimension 3 × 3 can be calculated
by the Sarrus rule. Calculating determinants becomes more difficult for square matrices of dimension
4 × 4 and larger. For more information about factorization and calculation of determinants of large
block matrices, see [1–14]. Sometimes calculating a determinant is easier if there are many zeros in
the entries of the considered matrix. For instance, it is easier to calculate the determinants of the
following matrices B and C by hand than the determinant of the following matrix D.

B =


3 0 3 7
0 −2 0 0
5 2 0 13
0 0 5 −8

 , C =


1 65 3 7
0 −2 4 −8
0 0 9 18
0 0 0 −8

 , and D =


5 5 −7 7
8 12 −8 2
5 −2 9 1
1 −1 3 −1


The more zeros, the easier it is to calculate the determinant. Indeed, the determinant of C is the easiest
since C is an upper triangular matrix. The determinant of an upper or lower triangular square matrix
is the product of the main diagonal entries. A similar calculation is provided for upper triangular
block matrices. Let E be an upper triangular square block matrix as follows:
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E =


E11 E12 · · · E1m

0 E22 · · · E2m

...
... . . . ...

0 0 · · · Emm


where 0 denotes the zero matrix. Then, |E| =

n∏
i=1

|Eii|.

Simply having many zeros does not make it easy to calculate a determinant. Both matrices B and C

have six zeros. However, since matrix C is upper triangular, it is easier to calculate its determinant.
That is, the location or arrangement of the zeros is also essential.

This paper considers a different arrangement of zeros in a square matrix. It presents the following
type of square block matrices of dimension nm×nm whose components are upper triangular matrices
of dimension n × n:

A =



A11 A12 · · · A1m

A21 A22 · · · A2m

...
... . . . ...

Am1 Am2 · · · Amm


nm×nm

where

Aij =



an(i−1)+1,n(j−1)+1 an(i−1)+1,n(j−1)+2 · · · an(i−1)+1,n(j−1)+n

0 an(i−1)+2,n(j−1)+2 · · · an(i−1)+2,n(j−1)+n

...
... . . . ...

0 0 · · · an(i−1)+n,n(j−1)+n


n×n

(1.1)

Firstly, we show that the determinant of A depends only on the diagonal entries of the matrices Aij .
Secondly, we construct a factorization of the matrix A when all the sub-matrices Aij are diagonal
matrices and obtain a formula for the determinant of A. Finally, we consider the eigenvalues, adjoint,
and inverse of the matrix A.

For instance, if we take n = m = 2, then the matrix A turns into

A =



a1,1 a1,2 a1,3 a1,4

0 a2,2 0 a2,4

a3,1 a3,2 a3,3 a3,4

0 a4,2 0 a4,4


and we show that the following equality is valid

|A| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 a1,4

0 a2,2 0 a2,4

a3,1 a3,2 a3,3 a3,4

0 a4,2 0 a4,4

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣ a1,1 a1,3

a3,1 a3,3

∣∣∣∣∣∣
∣∣∣∣∣∣ a2,2 a2,4

a4,2 a4,4

∣∣∣∣∣∣
In this paper, we consider only the upper triangular matrices since a lower triangular matrix is the
transpose of an upper triangular matrix.
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2. Main Results

In this section, we delve into the detailed process of reducing the determinant of block matrices whose
submatrices are triangular. This reduction is crucial for simplifying the determinant calculation of
such complex matrices. We begin by analyzing the specific structure of these matrices and demonstrate
how the arrangement of zeros in both the submatrices and the block matrix itself plays a fundamental
role. The results presented here provide a framework for factorization and determinant computation,
which will be elaborated upon in the following subsections. Our approach aims to significantly reduce
the computational complexity of these calculations, offering a more efficient pathway for handling
large-scale block matrices.

2.1. Reduction of Determinant

Consider the matrix of dimension nm × nm as follows:

A =


A11 A12 · · · A1m

A21 A22 · · · A2m

...
... . . . ...

Am1 Am2 · · · Amm


where the submatrices Aij of dimension n × n are given by the following

Aij =



an(i−1)+1,n(j−1)+1 an(i−1)+1,n(j−1)+2 · · · an(i−1)+1,n(j−1)+n

0 an(i−1)+2,n(j−1)+2 · · · an(i−1)+2,n(j−1)+n

...
... . . . ...

0 0 · · · an(i−1)+n,n(j−1)+n


More precisely,

A =



a1,1 · · · a1,n a1,n+1 · · · a1,2n · · · a1,n(m−1)+1 · · · a1,nm

0 · · · a2,n 0 · · · a2,2n · · · 0 · · · a2,nm

0 · · · a3,n 0 · · · a3,2n · · · 0 · · · a3,nm

... . . . ...
... . . . ... · · ·

... . . . ...

0 · · · an,n 0 · · · an,2n · · · 0 · · · an,nm

an+1,1 · · · an+1,n an+1,n+1 · · · an+1,2n · · · an+1,n(m−1)+1 · · · an+1,nm

0 · · · an+2,n 0 · · · an+2,2n · · · 0 · · · an+2,nm

0 · · · an+3,n 0 · · · an+3,2n · · · 0 · · · an+3,nm

... . . . ...
... . . . ... · · ·

... . . . ...

0 · · · a2n,n 0 · · · a2n,2n · · · 0 · · · a2n,nm

...
...

...
...

...
...

...
...

...
...

an(m−1)+1,1 · · · an(m−1)+1,n an(m−1)+1,n+1 · · · an(m−1)+1,2n · · · an(m−1)+1,n(m−1)+1 · · · an(m−1)+1,nm

0 · · · an(m−1)+2,n 0 · · · an(m−1)+2,2n · · · 0 · · · an(m−1)+2,nm

0 · · · an(m−1)+3,n 0 · · · an(m−1)+3,2n · · · 0 · · · an(m−1)+3,nm

... . . . ...
... . . . ... · · ·

... . . . ...

0 · · · anm,n 0 · · · anm,2n · · · 0 · · · anm,nm



(2.1)
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Let fn : Z+ → {1, 2, . . . , n} be a function defined by

fn (k) =
{

k (mod n), k ∤ m

n, k | m

If we denote the number fn (k) by k, then the following notation is true for a matrix A = (ai,j)nm×nm

of dimension nm × nm:
i > j ⇒ ai,j = 0 (2.2)

Theorem 2.1. Let Anm×nm be a matrix satisfying (2.2) and ai0,j0 be an entry of the matrix A with
i0 < j0. Then, any product including the number ai0,j0 of the following determinant formula is zero:

|A| =
∑

σ∈Snm

sgn (σ) a1,σ(1)a2,σ(2) . . . an,σ(n)

Proof. Let σ in Snm be a permutation with σ (i0) = j0. Then, σnm! = e where e is the identity
function in Snm, i.e., e (i) = i, for all 1 ≤ i ≤ nm. Assume that σk (i0) ≤ σk+1 (i0), for all k ∈ Z+

with 1 ≤ k < (nm)!. Then,

i0 = e (i0) = σnm! (i0) ≥ σnm!−1 (i0) ≥ σnm!−2 (i0) ≥ · · · ≥ σ (i0) = j0

This contradicts the assumption i0 < j0, i.e., there exists a number k0 such that the relations 1 ≤
k0 < (nm)! and σk0 (i0) > σk0+1 (i0) hold. If σk0 (i0) is denoted by α0, then α0 > σ (α0) since
σ (α0) = σ

(
σk0 (i0)

)
= σk0+1 (i0). By (2.2), aα0,σ(α0) = 0. Consequently,

a1,σ(1) . . . ai0,σ(i0) . . . aσ0,σ(σ0) . . . an,σ(n) = 0

Corollary 2.2. Let Anm×nm be a matrix satisfying the condition (2.2). Then, the determinant of A

depends only on the entries ai,j with i = j, i.e., the determinant depends only on the entries on the
main diagonal in the submatrices Aij of A in (1.1). The entries ai,j with i < j in the submatrices
Aij do not affect the determinant. Therefore, when calculating the determinant of matrix A, for
convenience, the entries ai,j with i < j can be taken as 0. Consequently, the determinant of a matrix
A as in (2.1) and the determinant of the following matrix are equal:

Ã =



a1,1 · · · 0 a1,n+1 · · · 0 · · · a1,n(m−1)+1 · · · 0

0 · · · 0 0 · · · 0 · · · 0 · · · 0
... . . . ...

... . . . ... · · ·
... . . . ...

0 · · · an,n 0 · · · an,2n · · · 0 · · · an,nm

an+1,1 · · · 0 an+1,n+1 · · · 0 · · · an+1,n(m−1)+1 · · · 0

0 · · · 0 0 · · · 0 · · · 0 · · · 0
... . . . ...

... . . . ... · · ·
... . . . ...

0 · · · a2n,n 0 · · · a2n,2n · · · 0 · · · a2n,nm

...
...

...
...

...
...

...
...

...
...

an(m−1)+1,1 · · · 0 an(m−1)+1,n+1 · · · 0 · · · an(m−1)+1,n(m−1)+1 · · · 0

0 · · · 0 0 · · · 0 · · · 0 · · · 0
... . . . ...

... . . . ... · · ·
... . . . ...

0 · · · anm,n 0 · · · anm,2n · · · 0 · · · anm,nm



(2.3)
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2.2. Factorization

We provide in this section a method for a factorization of the matrix Ã in (2.3). Note that Ã can
be taken as an arbitrary matrix of dimension nm × nm with the condition i ̸= j ⇒ ai,j = 0. A
factorization method for matrix Ã is as follows:

Ã = Ã1Ã2 · · · Ãn (2.4)

where

Ã1 =



a1,1 0 · · · 0 a1,n+1 0 · · · 0 · · · a1,n(m−1)+1 0 · · · 0

0 1 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
...

... . . . ...
...

... . . . ... · · ·
...

... . . . ...
0 0 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0

an+1,1 0 · · · 0 an+1,n+1 0 · · · 0 · · · an+1,n(m−1)+1 0 · · · 0

0 0 · · · 0 0 1 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
...

... . . . ...
...

... . . . ... · · ·
...

... . . . ...
0 0 · · · 0 0 0 · · · 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

an(m−1)+1,1 0 · · · 0 an(m−1)+1,n+1 0 · · · 0 · · · an(m−1)+1,n(m−1)+1 0 · · · 0

0 0 · · · 0 0 0 · · · 0 · · · 0 1 · · · 0

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
...

... . . . ...
...

... . . . ... · · ·
...

... . . . ...
0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 1



Ã2 =



1 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

0 a2,2 · · · 0 0 a2,n+2 · · · 0 · · · 0 a2,n(m−1)+2 · · · 0

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
...

... . . . ...
...

... . . . ... · · ·
...

... . . . ...
0 0 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 1 0 · · · 0 · · · 0 0 · · · 0

0 an+2,2 · · · 0 0 an+2,n+2 · · · 0 · · · 0 an+2,n(m−1)+2 · · · 0

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
...

... . . . ...
...

... . . . ... · · ·
...

... . . . ...
0 0 · · · 0 0 0 · · · 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · 1 0 · · · 0

0 an(m−1)+2,2 · · · 0 0 an(m−1)+2,n+2 · · · 0 · · · 0 an(m−1)+2,n(m−1)+2 · · · 0

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
...

... . . . ...
...

... . . . ... · · ·
...

... . . . ...
0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 1


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...

Ãn =



1 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
...

... . . . ...
...

... . . . ... · · ·
...

... . . . ...

0 0 · · · an,n 0 0 · · · an,2n · · · 0 0 · · · an,nm

0 0 · · · 0 1 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 0 1 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
...

... . . . ...
...

... . . . ... · · ·
...

... . . . ...

0 0 · · · a2n,n 0 0 · · · a2n,2n · · · 0 0 · · · a2n,nm

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 · · · 0 0 0 · · · 0 · · · 1 0 · · · 0

0 0 · · · 0 0 0 · · · 0 · · · 0 1 · · · 0

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
...

... . . . ...
...

... . . . ... · · ·
...

... . . . ...

0 0 · · · anm,n 0 0 · · · anm,2n · · · 0 0 · · · anm,nm


(2.4) can be observed by matrix multiplication.

2.3. Determinant Formula

We have proved that the determinant of A and the determinant of Ã are equal in Corollary 2.2. We
have factored the matrix Ã in the former section. In this section, we give a formula for the determinant
of the matrix A by calculating the determinants of the factors of the matrix Ã.

Theorem 2.3. Consider a block matrix A whose submatrices are triangular as in (2.1). Then, the
following determinant formula is valid:

|A| =
n∏

k=1

∣∣∣∣∣∣∣∣∣∣∣

ak,k ak,n+k · · · ak,n(m−1)+k

an+k,k an+k,n+k · · · an+k,n(m−1)+k
...

... . . . ...
an(m−1)+k,k an(m−1)+k,n+k · · · an(m−1)+k,n(m−1)+k

∣∣∣∣∣∣∣∣∣∣∣
(2.5)

Proof. Consider the matrices Ã1, Ã2, . . . , Ãn in (2.4). Hence,

|A| =
∣∣∣Ã1

∣∣∣ ∣∣∣Ã2
∣∣∣ . . .

∣∣∣Ãn

∣∣∣
The determinant of the matrix Ã1 is calculated as follows: If we expand the determinant along the
2nd, 3rd, ..., nth rows, respectively, then
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∣∣∣Ã1
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 0 · · · 0 a1,n+1 0 · · · 0 · · · a1,n(m−1)+1 0 · · · 0
0 1 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
...

... . . . ...
...

... . . . ... · · ·
...

... . . . ...
0 0 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0

an+1,1 0 · · · 0 an+1,n+1 0 · · · 0 · · · an+1,n(m−1)+1 0 · · · 0
0 0 · · · 0 0 1 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
...

... . . . ...
...

... . . . ... · · ·
...

... . . . ...
0 0 · · · 0 0 0 · · · 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

an(m−1)+1,1 0 · · · 0 an(m−1)+1,n+1 0 · · · 0 · · · an(m−1)+1,n(m−1)+1 0 · · · 0
0 0 · · · 0 0 0 · · · 0 · · · 0 1 · · · 0
0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
...

... . . . ...
...

... . . . ... · · ·
...

... . . . ...
0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,n+1 0 · · · 0 · · · a1,n(m−1)+1 0 · · · 0
an+1,1 an+1,n+1 0 · · · 0 · · · an+1,n(m−1)+1 0 · · · 0

0 0 1 · · · 0 · · · 0 0 · · · 0
0 0 0 · · · 0 · · · 0 0 · · · 0
...

...
... . . . ... · · ·

...
... . . . ...

0 0 0 · · · 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
an(m−1)+1,1 an(m−1)+1,n+1 0 · · · 0 · · · an(m−1)+1,n(m−1)+1 0 · · · 0

0 0 0 · · · 0 · · · 0 1 · · · 0
0 0 0 · · · 0 · · · 0 0 · · · 0
...

...
... . . . ... · · ·

...
... . . . ...

0 0 0 · · · 0 · · · 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We expand the last determinant along the 3rd, 4th, ..., (n + 1)th rows, respectively:

∣∣∣Ã1
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,n+1 a1,2n+1 0 · · · 0 · · · a1,n(m−1)+1 0 · · · 0
an+1,1 an+1,n+1 an+1,2n+1 0 · · · 0 · · · an+1,n(m−1)+1 0 · · · 0
a2n+1,1 a2n+1,n+1 a2n+1,2n+1 0 · · · 0 · · · a2n+1,n(m−1)+1 0 · · · 0

0 0 0 1 · · · 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 · · · 0 0 · · · 0
...

...
...

... . . . ... · · ·
...

... . . . ...
0 0 0 0 · · · 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

an(m−1)+1,1 an(m−1)+1,n+1 an(m−1)+1,2n+1 0 · · · 0 · · · an(m−1)+1,n(m−1)+1 0 · · · 0
0 0 0 0 · · · 0 · · · 0 1 · · · 0
0 0 0 0 · · · 0 · · · 0 0 · · · 0
...

...
...

... . . . ... · · ·
...

... . . . ...
0 0 0 0 · · · 1 · · · 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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If we continue this procedure, then

∣∣∣Ã1
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,n+1 · · · a1,n(m−1)+1
an+1,1 an+1,n+1 · · · an+1,n(m−1)+1

...
... . . . ...

an(m−1)+1,1 an(m−1)+1,n+1 · · · an(m−1)+1,n(m−1)+1

∣∣∣∣∣∣∣∣∣∣∣
Similarly,

∣∣∣Ãk

∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

ak,k ak,n+k · · · ak,n(m−1)+k

an+k,k an+k,n+k · · · an+k,n(m−1)+k
...

... . . . ...
an(m−1)+k,k an(m−1)+k,n+k · · · an(m−1)+k,n(m−1)+k

∣∣∣∣∣∣∣∣∣∣∣
We denote the matrix of dimension m × m on the right-hand side of the above relation by

Ã∗
k =


ak,k ak,n+k · · · ak,n(m−1)+k

an+k,k an+k,n+k · · · an+k,n(m−1)+k
...

... . . . ...
an(m−1)+k,k an(m−1)+k,n+k · · · an(m−1)+k,n(m−1)+k

 (2.6)

Theorem 2.3 shows that the determinants of the matrices Ãk and Ã∗
k are equal.

Corollary 2.4. The matrix A of dimension nm × nm in (2.1) is invertible if and only if the matrix
Ã∗

k, for all 1 ≤ k ≤ n, of dimension m × m is invertible.

Example 2.5. Calculate the determinant of the matrices

1 −19 32 −1 13 21
0 −1 −7 0 −2 12
0 0 2 0 0 3

−2 22 −24 3 5 −9
0 2 17 0 −1 −23
0 0 −1 0 0 3


and



3 20 −1 12 2 52
0 1 0 −1 0 5
3 25 −3 32 1 78
0 1 0 1 0 −1

−1 9 5 74 6 10
0 1 0 −2 0 2


By Theorem 2.3,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −19 32 −1 13 21
0 −1 −7 0 −2 12
0 0 2 0 0 3

−2 22 −24 3 5 −9
0 2 17 0 −1 −23
0 0 −1 0 0 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣∣ 1 −1

−2 3

∣∣∣∣∣
∣∣∣∣∣ −1 −2

2 −1

∣∣∣∣∣
∣∣∣∣∣ 2 3

−1 3

∣∣∣∣∣ = 45

and ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 20 −1 12 2 52
0 1 0 −1 0 5
3 25 −3 32 1 78
0 1 0 1 0 −1

−1 9 5 74 6 10
0 1 0 −2 0 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
3 −1 2
3 −3 1

−1 5 6

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1 −1 5
1 1 −1
1 −2 2

∣∣∣∣∣∣∣∣ = 312
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2.4. Wronskian of the Trigonometric System

In this section, we calculate the trigonometric system cos p1x, sin p1x, cos p2x, sin p2x, · · · , cos pmx,
and sin pmx where p1, p2, · · · , pm are arbitrary real constants. These 2m functions are the fundamental
solutions of the differential equation of order 2m corresponding to the characteristic equation(

t2 + p2
1

) (
t2 + p2

2

)
· · ·
(
t2 + p2

m

)
= 0

This polynomial contains no odd terms. Therefore, the Wronskian of any fundamental solutions of
the corresponding differential equation is a constant, see [15]. Then, the Wronskian can be calculated
at point 0:

W = W [cos p1x, sin p1x, cos p2x, sin p2x, . . . , cos pmx, sin pmx]

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cos p1x sin p1x · · · cos pmx sin pmx

−p1 sin p1x p1 cos p1x · · · −pm sin pmx pm cos pmx

−p2
1 cos p1x −p2

1 sin p1x · · · −p2
m cos pmx −p2

m sin pmx

p3
1 sin p1x −p3

1 cos p1x · · · p3
m sin pmx −p3

m cos pmx
...

... . . . ...
...

(−1)m−1 p2m−2
1 cos p1x (−1)m−1 p2m−2

1 sin p1x · · · (−1)m−1 p2m−2
m cos pmx (−1)m−1 p2m−2

m sin pmx

(−1)m p2m−1
1 sin p1x (−1)m−1 p2m−1

1 cos p1x · · · (−1)m p2m−1
m sin pmx (−1)m−1 p2m−1

m cos pmx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cos 0 sin 0 · · · cos 0 sin 0
−p1 sin 0 p1 cos 0 · · · −pm sin 0 pm cos 0
−p2

1 cos 0 −p2
1 sin 0 · · · −p2

m cos 0 −p2
m sin 0

p3
1 sin 0 −p3

1 cos 0 · · · p3
m sin 0 −p3

m cos 0
...

... . . . ...
...

(−1)m−1 p2m−2
1 cos 0 (−1)m−1 p2m−2

1 sin 0 · · · (−1)m−1 p2m−2
m cos 0 (−1)m−1 p2m−2

m sin 0
(−1)m p2m−1

1 sin 0 (−1)m−1 p2m−1
1 cos 0 · · · (−1)m p2m−1

m sin 0 (−1)m−1 p2m−1
m cos 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 · · · 1 0
0 p1 0 p2 · · · 0 pm

−p2
1 0 −p2

2 0 · · · −p2
m 0

0 −p3
1 0 −p3

2 · · · 0 −p3
m

...
...

...
... . . . ...

...
(−1)m−1 p2m−2

1 0 (−1)m−1 p2m−2
2 0 · · · (−1)m−1 p2m−2

m 0
0 (−1)m−1 p2m−1

1 0 (−1)m−1 p2m−1
2 · · · 0 (−1)m−1 p2m−1

m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The last determinant can be calculated by (2.5). It splits two factors:

W =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

−p2
1 −p2

2 · · · −p2
m

...
... . . . ...

(−1)m−1 p2m−2
1 (−1)m−1 p2m−2

2 · · · (−1)m−1 p2m−2
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 p2 · · · pm

−p3
1 −p3

2 · · · −p3
m

...
... . . . ...

(−1)m−1 p2m−1
1 (−1)m−1 p2m−1

2 · · · (−1)m−1 p2m−1
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(

m∏
k=1

pk

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

−p2
1 −p2

2 · · · −p2
m

...
... . . . ...

(−1)m−1 p2m−2
1 (−1)m−1 p2m−2

2 · · · (−1)m−1 p2m−2
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2
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=
(

m∏
k=1

pk

)
∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
p2

1 p2
2 · · · p2

m
...

... . . . ...
p2m−2

1 p2m−2
2 · · · p2m−2

m

∣∣∣∣∣∣∣∣∣∣∣

2

The last determinant is the Vandermonde determinant of the numbers p2
1, p2

2, · · · , p2
m and it is calcu-

lated by multiplying the differences between them (for more details, see [16]). Then, the Wronskian
of the trigonometric system takes the following form:

W =
(

m∏
k=1

pk

) ∏
1≤i<j≤m

(
p2

j − p2
i

)2

Thanks to the Theorem 2.3, the proof of the last Wronskian formula is much shorter and simpler than
that in [17], provided by Kaya.

Corollary 2.6. The necessary and sufficient conditions for the linear independence of trigonometric
system cos p1x, sin p1x, cos p2x, sin p2x, · · · , cos pmx, and sin pmx are the following:

i. pk ̸= 0, for all k ∈ 1, m

ii. pi ̸= pj and pi ̸= −pj , for all i ̸= j

Corollary 2.7. The Wronskian of the particular trigonometric system cos x, sin x, cos 2x, sin 2x, · · · ,
cos mx, and sin mx is

m!

 ∏
1≤i<j≤m

(
j2 − i2

)2

2.5. Some Properties of Block Matrices Whose Submatrices are Triangular

This section provides some properties of block matrices whose submatrices are triangular, such as
sum, product, adjoint, inverse, and eigenvalues.

Theorem 2.8. The sum and product of two matrices of type (2.1) are also of type (2.1). Besides,
the adjoint matrix of a matrix of type (2.1) is also of type (2.1).

Proof. The first part of the theorem can be easily proved. Therefore, we prove the second part of
the theorem. It is sufficient that the cofactor of an entry ai0,j0 with i0 < j0 is equal to 0. According
to Corollary 2.2, the determinant of a matrix as in (2.1) is independent of the variable ai0,j0 with
i0 < j0. Then, the derivative of the determinant of a matrix as in (2.1) concerning ai0,j0 is 0. On the
other hand, Jacobi’s formula [18] for the matrix analysis says that the cofactor of an entry in a square
matrix depending on the variables ai0,j0 is the derivative of the determinant of the matrix according
to the considered entry. Then, the cofactors of the entries ai0,j0 with i0 < j0 are equal to 0.

Corollary 2.9. If a matrix as in (2.1) has an inverse, then the inverse is also of type (2.1).

The proof is obtained from the equality:

A−1 = 1
|A|

adj(A)

Theorem 2.10. Let λ be a complex number. Then, λ is an eigenvalue of a matrix A as in (2.1) if
and only if there exists a number k ∈ 1, n such that λ is an eigenvalue of the matrix Ã∗

k in (2.6).

Proof. λ is an eigenvalue of the matrix A if and only if the following relation holds:
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|A − λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 − λ · · · a1,n a1,n+1 · · · a1,2n · · · a1,n(m−1)+1 · · · a1,nm

0 · · · a2,n 0 · · · a2,2n · · · 0 · · · a2,nm

0 · · · a3,n 0 · · · a3,2n · · · 0 · · · a3,nm

... . . . ...
... . . . ... · · ·

... . . . ...
0 · · · an,n − λ 0 · · · an,2n · · · 0 · · · an,nm

an+1,1 · · · an+1,n an+1,n+1 − λ · · · an+1,2n · · · an+1,n(m−1)+1 · · · an+1,nm

0 · · · an+2,n 0 · · · an+2,2n · · · 0 · · · an+2,nm

0 · · · an+3,n 0 · · · an+3,2n · · · 0 · · · an+3,nm

... . . . ...
... . . . ... · · ·

... . . . ...
0 · · · a2n,n 0 · · · a2n,2n − λ · · · 0 · · · a2n,nm

...
...

...
...

...
...

...
...

...
...

an(m−1)+1,1 · · · an(m−1)+1,n an(m−1)+1,n+1 · · · an(m−1)+1,2n · · · an(m−1)+1,n(m−1)+1 − λ · · · an(m−1)+1,nm

0 · · · an(m−1)+2,n 0 · · · an(m−1)+2,2n · · · 0 · · · an(m−1)+2,nm

0 · · · an(m−1)+3,n 0 · · · an(m−1)+3,2n · · · 0 · · · an(m−1)+3,nm
... . . . ...

... . . . ... · · ·
... . . . ...

0 · · · anm,n 0 · · · anm,2n · · · 0 · · · anm,nm − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

By (2.5), the last relation can be rewritten as follows:

|A − λI| =
n∏

k=1

∣∣∣∣∣∣∣∣∣∣∣

ak,k − λ ak,n+k · · · ak,n(m−1)+k

an+k,k an+k,n+k − λ · · · an+k,n(m−1)+k
...

... . . . ...
an(m−1)+k,k an(m−1)+k,n+k · · · an(m−1)+k,n(m−1)+k − λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

3. Conclusion

This paper proves that the determinant of a large-scale block matrix whose submatrices are triangular
does not need to be computed using classical and computational methods. The determinant of such
matrices is equal to the product of the determinants of their special submatrices. This method greatly
reduces the computational effort involved in calculating the determinant.

While the results presented in this paper significantly simplify the calculation of determinants for
block matrices with triangular submatrices, several promising directions remain for future research.
One area of potential exploration is the extension of these methods to non-triangular block matrices
or matrices with more complex structural patterns. Additionally, investigating the applications of
these findings in other branches of linear algebra, such as in solving systems of linear equations or
in eigenvalue analysis, could provide further insights. Researchers may also consider applying these
techniques to real-world problems in physics, engineering, or data science, where large-scale matrix
computations are essential. Finally, developing more advanced computational tools and algorithms
that leverage the factorization methods discussed here could contribute to faster and more efficient
determinant calculations in large matrices.
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1. Introduction

A ruled surface is one of the special surfaces represented by moving a straight line continuously along
a space curve called the base curve. More explicitly, a surface M in R3 is called a ruled surface if
it admits a parameterization Φ(σ,γ) : I × J → M which consists of a collection of a one-parameter
family of straight lines indexed by u in the form of Φ(σ,γ) (s, u) = σ(s) + uγ(s) where s ∈ I and
u ∈ J such that I and J are open intervals in R [1]. Here, σ and γ are smooth mappings defined
from the interval I to R3. Moreover, σ is the base curve or directrix, and the non-null curve γ is
the director curve. The straight lines u → σ(s) + uγ(s) are the rulings. Ruled surfaces have many
important applications in various fields of science and technology, such as computer-aided geometric
design (CAGD), architectural designing, manufacturing technology, and robotics [2–4]. In recent years,
there has been intensive research on ruled surfaces in various spaces, including Euclidean, Lorentzian,
and Minkowski spaces [5–7], where important properties and characterizations are presented. In [8],
two developable ruled surfaces have been introduced using the principal normal indicatrix of a regular
space as a base curve for both surfaces and the tangent indicatrix and the binormal indicatrix as the
director curves. Afterward, [9] has extended the work of [8] by providing the condition for a minimal
locus for the related surfaces.

In [10], a moving frame of a Legendre curve in the unit tangent bundle has been introduced, and a
pair of smooth functions of a Legendre curve, analogous to the curvature of a regular plane curve, has
been defined. The existence and uniqueness of Legendre curves have been proved. Legendre curves
on the unit tangent bundle have been provided in [11] using rotation-minimizing (RM) vector fields.
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Besides, [12] has demonstrated that any Legendre curve in TS2 corresponds to a developable ruled
surface. For recent studies on Legendre curves, we refer to [13,14]. In [15], a ruled surface’s mean and
Gaussian curvatures are expressed in terms of its striction and director curves.

The remainder of the present study is organized as follows: Section 2 presents fundamental concepts
and properties to be used in the following sections. Section 3 introduces two main results: Theorem
3.1 and Theorem 3.2. In Theorem 3.1, we calculate the mean and Gaussian curvature of a ruled
surface, generating a Legendre curve together with the director curve, whose base curve differs from
those in [15]. Hence, the results obtained in [15] are simplified. In Theorem 3.2, we investigate
the conditions under which Legendre curves on ruled surfaces are classified as minimal loci. Section 4
obtains the criteria for these curves to be minimal loci on B-scroll ruled surfaces by taking the directive
curve as a binormal vector, as provided in Theorem 4.1. Moreover, in Theorem 4.3, we obtain the
minimality condition for the developable ruled surface with a special choice of the base curve. Section 5
provides some computational examples of minimal curves. The final section is dedicated to conclusions
and final remarks.

2. Preliminaries

This section presents some basic concepts of the theory of surfaces in R3 to be needed to prove our
main results. For a detailed discussion on the related subjects, see [1, 16].

Let Φ(s, u) be a regular surface with the first and second fundamental forms

Eds2 + 2Fdsdu + Gdu2 and Lds2 + 2Mdsdu + Ndu2

respectively. Traditionally, the mean and Gaussian curvatures of the surface are provided in the
following form:

H = LG − 2MF + NE

2 (EG − F 2) and K = LN − M2

EG − F 2

where E, F , and G and L, M , and N are the coefficients of the first and second fundamental forms,
respectively. In [15], for a ruled surface Φ (s, u) = σ(s) + uγ(s), the mean curvature is presented in
the following form:

H = ⟨σ′′ + uγ′′, σ′ × γ + u (γ′ × γ)⟩ − 2 ⟨σ′, γ⟩ ⟨γ′, σ′ × γ⟩
2 (EG − F 2)

3
2

(2.1)

where σ(s) is a striction curve on the surface. Moreover, the Gauss curvature is formulated as follows:

K = − ⟨γ′, σ′ × γ⟩2(
∥σ′ × γ∥2 + u2 ∥γ′∥2

) (
∥σ′∥2 + u2 ∥γ′∥2 − ⟨σ′, γ⟩2

) (2.2)

A minimal locus of a ruled surface is defined as follows:

Definition 2.1. Let Φ(s, u) = σ(s) + uγ(s) be a ruled surface. If the mean curvature of the surface
Φ(s, u) along the curve X(s) = σ(s) + u(s)γ(s) is zero, then the curve X(s) is called the minimal
curve on Φ(s, u).

Legendre curves can be provided by the following definition:

Definition 2.2. The smooth curve Γ(s) = (α(s), v(s)) : I ⊂ R → M is called a Legendre curve in M
if ⟨α′(s), v(s)⟩ = 0.

It can be observed that ⟨α(s), v(s)⟩ = 0 for a smooth curve Γ(s) = (α(s), v(s)) in M. Thus, we can
define a new frame using the unit vector η = α(s) × v(s) where the symbol × denotes the usual vector
product in R3 [11]. It is obvious that



Journal of New Theory 49 (2024) 43-52 / Minimal Curves on Ruled Surfaces Generated by Legendre Curves 45

⟨α(s), η(s)⟩ = ⟨v(s), η(s)⟩ = 0

Hence, the following Frenet frame {α(s), v(s), η(s)} along α(s) is obtained as follows:
η′(s)
α′(s)
v′(s)

 =


0 m(s) n(s)

−m(s) 0 l(s)
−n(s) −l(s) 0




η(s)
α(s)
v(s)

 (2.3)

where
l(s) =

〈
α′(s), v (s)

〉
, m(s) = −

〈
α′(s), η(s)

〉
, and n(s) = −

〈
v′(s), η(s)

〉
Here, the elements of the set {l, m, n} are called the curvature functions of Γ.

If l(s) = 0, then the curve Γ(s) = (α(s), v(s)) is Legendre in M with the curvature functions (m, n).
Then, the Frenet frame provided in (2.3) for the Legendre condition can be provided by

η′(s)
α′(s)
v′(s)

 =


0 m(s) n(s)

−m(s) 0 0
−n(s) 0 0




η(s)
α(s)
v(s)


For the Legendre curve (T (s), B(s)), the definition of B-scroll is as follows:

Definition 2.3. Let {T, N, B} be the Frenet frame of the unit speed curve σ : I → E3. The ruled
surface formed by the binormal vector B along the curve σ is called the binormal scroll (briefly B-
scroll). Here, the curve σ is called the base curve of the B-scroll, and the binormal vector B is called
its director curve. The parametric equation of B-scroll is written as follows: Φ (s, u) = σ(s) + uB(s).

The notion of B-scroll surfaces has been introduced in [17]. The B-scroll’s first and second fundamental
forms with Cartan framed null directrix in the Minkowskian 3-space are investigated in [18]. B-scrolls
in 3-dimensional Lorentzian space L3 are studied in [19].

3. The Legendre Curves and Minimal Curves on Ruled Surface

In this study, we consider a ruled surface

Φ (s, u) =
∫

λ(s)α(s)ds + uv(s)

where (α(s), v(s)) is a smooth Legendre curve. We present the mean curvature of this surface in the
following theorem.

Theorem 3.1. Let (α(s), v(s)) be a Legendre curve. For the Frenet frame {α(s), v(s), η(s)} along
α(s), the mean and Gauss curvatures of the ruled surface Φ (s, u) =

∫
λ(s)α(s)ds+uv(s) are as follows,

respectively:

H = −n2(s)m(s)u2 + (λ′(s)n(s) − λ(s)n′(s)) u − m(s)λ2(s)
2 (λ2(s) + u2n2)

3
2

(3.1)

and
K = − λ2n2

(λ2 + u2n2)2

Proof. Consider
σ(s) =

∫
λ(s)α(s)ds, γ(s) = v(s)

By the formula in (2.1), the following equalities hold.〈
σ′(s), γ(s)

〉
= ⟨λ(s)α(s), v(s)⟩ = 0 (3.2)



Journal of New Theory 49 (2024) 43-52 / Minimal Curves on Ruled Surfaces Generated by Legendre Curves 46

〈
σ′(s), γ′ (s)

〉
=

〈
λ(s)α (s) , v′(s)

〉
= ⟨λ(s)α(s), −n(s)η (s)⟩ = 0 (3.3)

σ′′(s) + uγ′′ (s) = −
(
m(s)λ(s) + un′(s)

)
η(s) +

(
λ′(s) − un(s)m (s)

)
α(s) − un2(s)v (s) (3.4)

and
σ′(s) × γ(s) + u

(
γ′(s) × γ(s)

)
= λ(s)η(s) + un(s)α(s) (3.5)

Moreover, we need to compute the first fundamental forms of the surface Φ(s, u) to evaluate the mean
curvature H. By the equality Φ (s, u) = σ (s) + uγ(s), Φs = σ′(s) + uγ′(s) and Φu = γ(s). Therefore,

E = ∥Φs∥2 = ∥σ′ (s) + uγ′(s)∥2

= ⟨σ′(s) + uγ′ (s) , σ′(s) + uγ′ (s)⟩

= ∥σ′∥2 + u2 ∥γ′∥2 + 2u ⟨σ′, γ′⟩

By using (3.3), the equality E = ∥σ′∥2 + u2 ∥γ′∥2 is obtained. Besides, G = ∥Φu∥2 = ∥γ∥2 = 1.
Similarly,

F = ⟨Φs, Φu⟩ =
〈
σ′(s) + uγ′(s), γ (s)

〉
=

〈
σ′(s), γ(s)

〉
+ u

〈
γ′(s), γ(s)

〉
Since ∥γ∥ = 1, i.e., ⟨γ, γ⟩ = 1, then ⟨γ′, γ⟩ = 0 which implies F = ⟨σ′(s), γ(s)⟩. Moreover,

EG − F 2 =
∥∥σ′∥∥2 + u2 ∥∥γ′∥∥2 −

(〈
σ′(s), γ(s)

〉)2 = λ2 + u2n2

Using (3.2), (3.4), and (3.5) in (2.1),

H = −n2(s)m(s)u2 + (λ′(s)n(s) − λ(s)n′(s)) u − m(s)λ2(s)
2 (λ2(s) + u2n2)

3
2

In addition, we have the following equalities to evaluate equality (2.2):〈
γ′, σ′ × γ

〉
= ⟨−nη, λη⟩ = −λn (3.6)∥∥σ′ × γ

∥∥2 + u2 ∥∥γ′∥∥2 = ∥λη∥2 + u2 ∥−nη∥2 = λ2 + u2n2 (3.7)

and ∥∥σ′∥∥2 + u2 ∥∥γ′∥∥2 −
〈
σ′, γ

〉2 = ∥λα∥2 + u2 ∥−nη∥2 = λ2 + u2n2 (3.8)

If we substitute (3.6)-(3.8) into (2.2), then K = − λ2n2

(λ2+u2n2)2 .

In the following theorem, we provide the necessary condition for a curve to be minimal on the surface
Φ(s, u).

Theorem 3.2. Let (α(s), v(s)) be a smooth Legendre curve. Then, the curve β(s) =
∫

λ(s)α(s)ds +
u1,2v(s) is minimal on the ruled surface Φ(s, u) =

∫
λ(s)α(s)ds + uv(s) where

u1,2 =
λ′n − λn′ ±

√
(λ′n − λn′)2 − (4mnλ)2

2mn2

Proof. From (3.1), the condition for the curve β (s) to be a minimal curve on the surface Φ(s, u) is
as follows:

n2(s)m(s)u2 +
(
λ(s)n′(s) − λ′(s)n (s)

)
u + m(s)λ2(s) = 0 (3.9)

Solution of this second-order equation is

u1,2 =
λ′n − λn′ ±

√
(λ′n − λn′)2 − (4mnλ)2

2mn2

which completes the proof.

As a special case for u = λ(s), we provide the following proposition:
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Proposition 3.3. Let (α(s), v(s)) be a smooth Legendre curve. Then, the curve β(s) is minimal on
the ruled surface Φ(s, u) =

∫
λ(s)α(s)ds + uv(s) where

u = e

∫ (
1 + n2(s)

)
m(s) + n′(s)

n(s) ds

Proof. By (3.9), if u = λ(s), then the following equation holds:

λ′(s)n(s) + λ(s)
(
−m(s) − n′(s) − n2(s)m(s)

)
= 0

The solution of the equation is

λ(s) = e

∫ (
1 + n2(s)

)
m(s) + n′(s)

n(s) ds

Thus, for u = λ(s), the curve β (s) =
∫

λ(s)α(s)ds + uv (s) is minimal on the ruled surface Φ(s, u).

Specifically taking α(s) = T (s) and v (s) = B(s), we get the following proposition.

Proposition 3.4. Let α : I ⊂ R → R3 be a smooth Legendre curve with frame apparatus {T, N, B, κ, τ}.
Then, the curve β(s) =

∫
λ(s)α(s)ds + uv(s) is minimal on a ruled surface Φ (s, u) =

∫
λ(s)T (s)ds +

uB(s) where
u = λ(s) = e

∫
1

τ(s) (−κ(s)τ2(s)−κ(s)+τ ′(s))ds

Proof. After the necessary calculations, then the following equalities are obtained:

σ′′(s) + u′′(s) =
(
λ′(s) + uκ(s)τ(s)

)
T (s) +

(
λ(s)κ(s) − uτ ′(s)

)
N(s) − uτ2(s)B(s)

and
σ′(s) × γ(s) + u

(
γ′(s) × γ(s)

)
= −uτ(s)T (s) − λ(s)N (s)

Hence, the condition of the minimal curve on the ruled surface Φ(s, u) is equivalent to the following
equation:

−uτ(s)λ′(s) − u2κ(s)τ2(s) − λ2(s)κ(s) + λ(s)uτ ′(s) = 0

For u = λ(s),
−uτ(s)λ′(s) − u2κ(s)τ2(s) − λ2(s)κ(s) + λ(s)uτ ′(s) = 0

−λ(s)λ′(s)τ(s) − λ2(s)κ(s)τ2(s) − λ2(s)κ(s) + λ2(s)τ ′(s) = 0

−λ′(s)τ(s) + λ (s)
(
−κ(s)τ2(s) − κ(s) + τ ′(s)

)
= 0 (3.10)

After the integration of both sides of (3.10),∫
λ′(s)
λ(s) ds =

∫ 1
τ(s)

(
−κ(s)τ2(s) − κ(s) + τ ′(s)

)
ds

which yields
λ(s) = e

∫
1

τ(s) (−κ(s)τ2(s)−κ(s)+τ ′(s))ds

Hence, for u = λ(s), the curve β(s) is minimal on the ruled surface Φ (s, u).

In particular, if λ(s) = 1, then we obtain a B-scroll ruled surface.

4. Minimal Curves on B-scroll Surfaces

In the following theorem, we investigate the condition that a curve is a minimal curve on the B-scroll
surface.
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Theorem 4.1. Let α : I ⊂ R → R3 be a smooth Legendre curve with frame apparatus {T, N, B, κ, τ}
and consider the B-scroll surface

Φ (s, u) =
∫

T (s)ds + uB(s) = α(s) + uB(s)

If σ(s) = α(s) and γ(s) = B(s), then the curves β(s) = α(s) + u1,2B(s) are minimal on the B-scroll
ruled surface Φ (s, u) such that

u1,2 = τ ′(s) ±
√

τ2 (s) − 4κ2(s)τ2(s)
2κ(s)τ2(s)

Proof. If the equalities

σ′′(s) + uγ′′ (s) = uκ(s)τ(s)T (s) +
(
κ(s) − uτ ′(s)

)
N(s) − uτ2(s)B(s)

and
σ′(s) × γ(s) + u

(
γ′(s) × γ(s)

)
= −uτ(s)T (s) − N(s)

are used in (2.1), then the following relation is obtained as a minimality condition:

−κ(s)τ2(s)u2 + τ ′(s)u − κ = 0 (4.1)

The solution of (4.1) is obtained as follows:

u1,2 = τ ′(s) ±
√

τ2 (s) − 4κ2(s)τ2(s)
2κ(s)τ2(s)

Therefore the curves β(s) = α(s) + u1,2B(s) are minimals on B-scroll surface. Here, if τ is arbitrary
constant and κ = 1

2, then u1 = u2 = τ ′(s)
τ2(s) .

Hence, we have the following proposition.

Proposition 4.2. Let α ⊂ E3 be a Salkowski curve with arbitrary τ and κ = 1
2. Then, the curve

β(s) = α(s) + τ ′(s)
τ2(s)B(s) are minimal on the B-scroll surface.

We present a theorem for a developable ruled surface whose base curves are minimal.

Theorem 4.3. Let γ(s) be a unit speed curve. Then, the mean curvature of the developable ruled
surface

Φ (s, u) =
∫

f(s)γ(s)ds + uγ(s) (4.2)

along its base curve, the striction curve for u = 0 is zero.

Proof. Consider the following Frenet frame {γ, T, S} along γ(s):
γ′

T ′

S′

 =


0 m(s) 0

−m(s) 0 n(s)
0 −m(s) 0




γ

T

S


Then,

σ′(s) = f(s)γ(s), σ′′(s) = f ′(s)γ(s) + f(s)m(s)T (s)

γ′(s) = m(s)T (s), γ′′(s) = −m2γ(s) + m′(s)T (s) + m(s)n(s)S(s)

and
σ′(s) × γ(s) = 0, γ′(s) × γ(s) = −m (s) S(s)
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If we substitute these equalities into formula (2.1), then the following minimality condition is obtained:〈
f ′(s)γ + f(s)m(s)T + u(−m2γ(s) + m′(s)T + m(s)n(s)S), −um(s)S

〉
= ⟨m(s)n(s)S(s), −um(s)S(s)⟩

= −u2m2(s)n(s)

= 0

Hence, the condition is a minimal curve on the surface Φ(s, u) in the following form: u = 0, m ̸= 0,
and n ̸= 0.

By using Theorem 4.3, we provide two examples for the surfaces in [8], minimal along the striction
curve:

Example 4.4. Let γ : I ⊂ R → R3 be a unit speed curve with frame apparatus {T, N, B, κ, τ}. By
(4.2), if γ(s) = N(s) and f(s) = k(s), then the following ruled surface is obtained:

Φ (s, u) = T (s) + uN(s) (4.3)

The striction curve T (s) is minimal on the ruled surface (4.3) for u = 0.

Example 4.5. Let γ : I ⊂ R → R3 be a unit speed curve with frame apparatus {T, N, B, κ, τ}. By
(4.2), if γ(s) = N(s) and f(s) = −τ(s), the ruled surface Φ (s, u) = B(s) + uN(s) is obtained. Thus,
the base curve B(s) is minimal on this surface.

5. Some Computational Examples

This section provides two computational examples to illustrate the obtained results.

Example 5.1. Let α : I ⊂ R → R3 be a smooth curve defined by α(s) = (cos s, sin s, s). Then, the
tangent and binormal vector fields of α are as follows, respectively:

T (s) = (− sin s, cos s, 1) and B(s) = 1√
2

(sin s, − cos s, 1)

with the curvature κ = 1
2 and the torsion τ = 1

2. The curve Γ(s) = (T (s), B(s)) is Legendre in the

ruled surface Φ (s, u) =
∫

λT (s)ds + uB(s). If λ(s) = e
∫

1
τ(s) (−κ(s)τ2(s)−κ(s)+τ ′(s))ds = e− 5

4 s, then the
ruled surface Φ (s, u) =

∫
e− 5

4 s(− sin s, cos s, 1) + u 1√
2(sin s, − cos s, 1) is obtained (see Figure 1).

Figure 1. Ruled surface Φ(T,B)
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Moreover, the curve

β(s) = e− 5
4 s

(16
41 cos s +

(20
41 + 1√

2

)
sin s, −

(20
41 + 1√

2

)
cos s + 16

41 sin s,

(
−4

5 + 1√
2

))
is the minimal in the ruled surface Φ (s, u) (see Figure 2).

Figure 2. Minimal curve β(s) in the red color on the ruled surface Φ (s, u)

Example 5.2. Consider the smooth curve γ : I ⊂ R → R3 defined by γ(s) = 1√
2(− cos s, − sin s, 1)

and the unit vector v(s) = 1√
2

(cos s, sin s, 0). Then, Γ(s) = (γ(s), v(s)) is a Legendre curve and the

following Frenet frame {α(s), v(s), η(s)} along γ(s) is obtained:


η′(s)
α′(s)
v′(s)

 =


0 1√

2
− 1√

2
− 1√

2
0 0

1√
2

0 0




η(s)
α(s)
v(s)


Hence, the ruled surface

Φ (s, u) = γ(s)+uv(s) = − 1√
2

e− 3
2 s

(
− 6

13 cos s + 4
13 sin s, − 6

13 sin s − 4
13 cos s,

2
3

)
+ u√

2
(cos s, sin s, 0)

is obtained (see Figure 3).

Figure 3. Ruled surface Φ (s, u)
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Then, the curve

β(s) = − 1√
2

e− 3
2 s

(
−19

13 cos s + 4
13 sin s, −19

13 sin s − 4
13 cos s,

2
3

)
is minimal in Φ (s, u) (see Figure 4).

Figure 4. β(s) in the red color on the ruled surface Φ (s, u)

6. Conclusion

In this paper, we consider the ruled surfaces generated by Legendre curves and obtain the condition
that these curves are minimal on them. We also study Legendre curves on B-scroll surfaces and
provide the condition that a curve is minimal on these surfaces. Finally, we offer some computational
examples and graphs of the related minimal curves on the ruled surfaces.

In [20], the relation between two Darboux frames of the standard curve c(s) relatively to φ and Ψ
was presented. It was proved that the ruled surface is minimal along its base curve if and only if the
base curve is a geodesic curve on the regular surface. In this context, new results can be obtained
for the ruled surfaces generated by Legendre curves considered in this paper. Furthermore, similar
characterizations can be explored in Minkowskian and Lorentzian spaces.
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[19] H. Balgetir, M. Bektaş, M. Ergüt, On the B-scrolls in the 3-dimensional Lorentzian space L3,
Kragujevac Journal of Mathematics 27 (2005) 163–174.

[20] S. Ouarab, A. O. Chahdi, M. Izid, Ruled surface generated by a curve lying on a regular surface
and its characterizations, Journal for Geometry and Graphics 24 (2) (2020) 257–267.



New Theory
Journal of

ISSN: 2149-1402 

49 (2024) 53-61

Journal of New Theory

https://dergipark.org.tr/en/pub/jnt

Open Access

ISSN: 2149-1402 

Editor-in-Chief

Naim Çağman

www.dergipark.org.tr/en/pub/jnt

Number 49 Year 2024

New Theory
Journal of

Domination Scattering Number in Graphs

Burak Kaval1 ID , Alpay Kırlangıç2 ID
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Abstract − Scattering number measures the stability of a graph by determining how well
vertices are spread throughout the graph. However, it may not always be distinctive for
different graphs, especially when comparing the same scattering numbers. In this study, we
aim to provide a more nuanced and sensitive measure of stability for graphs by introducing
domination scattering numbers, a new measure of graph stability. This parameter likely
captures additional structural characteristics or dynamics within the graph that contribute
to its stability or resilience. Moreover, we investigate the domination scattering numbers of
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1. Introduction

Network stability depends on nodes (processing) and links (communications or transport). Whenever
a link or node is lost, the effectiveness of the network decreases. Communication networks should be
stable during initial disruptions and future reconstructions. A network’s stability can be measured
by its cost of disruption. Analyzing the stability of a network against disruption is crucial in various
fields like telecommunications, transportation, and ecology. Here are some fundamental concepts to
consider [1–3]:

i. The number of non-functioning nodes in a network depends on several factors, such as the nature
of the disruption. It is important to determine the number of these nodes.

ii. By analyzing how many groups still have mutual communication after a network outage, the
network’s topology needs to be evaluated.

iii. In terms of difficulty, connecting a network that has been disrupted varies widely based on factors
such as the scale of the disruption, the nature of the network, available resources, and expertise.

Modeling a communication network as a graph is a common and effective approach to analyzing its
stability and behavior. In this graph model, the following concepts are involved:

i. Vertices (Nodes): Each node in the graph represents a distinct entity within the communication
network. These entities could be devices, e.g., computers, routers, or smartphones, communication
endpoints, such as users or servers, or any other relevant network component.
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ii. Edges (Links): Each edge in the graph represents a communication link or connection between two
nodes. These links could be physical connections, e.g., cables or wireless, or logical connections, such
as virtual circuits or network paths.

By representing the considered network as a graph, various graph theory concepts and algorithms
can be applied to analyze its properties, connectivity, and stability. We have some graph theoretical
parameters to obtain the stability of communication networks, e.g., connectivity, integrity, toughness,
and scattering number [1, 4–7, 11]. Edge versions of these graph parameters are also defined. The
scattering number is handy for measuring the stability of a graph. However, it does not provide good
results for some families of graphs, and the edge scattering number does not yield satisfactory results
for certain graphs. In other words, these parameters are not distinctive between some families of
graphs. This paper investigates a new parameter for stability, considering this situation.

If scattering numbers and dominance are thought together, then when a small group of decision-makers
has effective communication links with each other, dominance in graphs can provide a valuable model
for deciding what to do [12]. In essence, removing a minimum dominating set like X can trigger a
cascade of adverse effects, culminating in chaos within the network. It highlights the critical role played
by centralized decision-makers and effective communication channels in maintaining organizational
stability and functionality [12]. The motivation of this paper is to choose the dominating set of
a graph instead of the set X when calculating the scattering number. By this choice, this paper
introduces a new graph parameter.

2. Preliminaries

Throughout this paper, we use the notation w(G) to denote the order of the most significant compo-
nent. We provide some basic definitions to be needed in the following sections.

Definition 2.1. [7] The scattering number of a noncomplete connected graph G is defined by

sc(G) = max {w(G − X) − |X| : X ⊂ V (G) and w(G − X) ≥ 2}

where the notation |X| represents the cardinality of X. Moreover, a set X ⊂ V (G) is called a scatter-
set of G if sc(G) = w(G − X) − |X|.

Some results for this parameter are provided as follows:

Theorem 2.2. [3] If G is a noncomplete connected graph of order n, then

2η(G) − n ≤ sc(G) ≤ η(G) − κ(G)

where η(G) and κ(G) are independence number and connectivity number of the graph G, respectively.

We then present the cartesian product of two graphs.

Definition 2.3. [6, 13] Let G and H be two graphs, VG and VH be the sets of vertices of G and
H, respectively, V = VG × VH , and m, n ∈ V such that m = (m1, m2) and n = (n1, n2). Then, the
cartesian product of G and H, denoted by G×H, is defined by vertices in V that m and n are adjacent
in G × H if and only if m1 = n1 and the vertices m2 and n2 in VH are adjacent in H or m2 = n2 and
the vertices m1 and n1 in VG are adjacent in G.

Theorem 2.4. [14] Let m ≥ 2 and n ≥ 2. Then,

sc (K1,m × Pn) =

 m − 1, n is even

m − 2, n is odd
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For more information about scattering numbers, refer to [3, 7, 11, 14–17]. The edge version of the
scattering number has been defined by Aslan [18].

Definition 2.5. [18,19] The edge scattering number of a noncomplete connected graph G is defined
by

es(G) = max {w(G − X) − |X| : X ⊆ E(G) and w(G − X) ≥ 2}

where the notation |X| represents the cardinality of X. Moreover, a set X ⊆ E(G) is called an edge
scatter set (es-set) of G if es(G) = w(G − X) − |X|.

Some results for the edge scattering number are provided as follows:

Theorem 2.6. [18] The edge-scattering number of the cycle graph Cn is 0. Moreover, the edge-
scattering number of the complete bipartite graph Km,n is 2 − m where 2 ≤ m ≤ n.

Theorem 2.7. [18] If n ≥ 3 is a positive integer, then es (K2 × Pn) = 0. If n ≥ 4 is a positive integer,
then es (K2 × Cn) = −1.

We mention another important concept of stability.

Definition 2.8. [12] A nonempty subset X ⊂ V (G) is called a dominating set of G if every vertex
not in X is adjacent to at least one vertex in X. A dominating set is called minimal if none of its
proper subsets is a dominating set. The minimum cardinality of all the dominating graph sets G is
called the domination number of the graph and is denoted by γ(G).

Any subset of vertices of a graph G is a dominating set. In other words, the subset that gives the
scattering number can be a dominating set. The motivation of this paper is to use the dominating set
when investigating the stability measurement.

3. Domination Scattering Number of a Graph

In this section, we first define a new parameter as stability measurement.

Definition 3.1. The domination scattering number of a noncomplete graph G is

ds(G) = max{w(G − X) − |X| : w(G − X) ≥ 2 and X is a dominating set}

where the notation |X| represents the cardinality of X. Moreover, a set X ⊂ V (G) is called a
domination scatter set (ds-set) of G if ds(G) = w(G − X) − |X|.

We provide an example showing that this parameter is more distinctive than the scattering and edge
scattering numbers. In other words, the stability parameter we define offers better results than other
parameters for some graph families.

Consider the graphs G1, G2, and G3, each having the same number of vertices. A pertinent question
arises: “Can the relevance of the domination scattering number as a measure of stability in graphs
be evaluated by analyzing its properties and effectiveness in distinguishing graphs based on their
structural flexibility and variations in dominance?” In other words, are G1, G2, and G3 distinguished
by the domination scattering number?

We can find many examples of graphs that suggest that ds(G) is a suitable measure of stability in
that it can distinguish between graphs. Consider Figure 1 as an example.



Journal of New Theory 49 (2024) 53-61 / Domination Scattering Number in Graphs 56

Figure 1. Graphs G1, G2, and G3, each having the same number of vertices

The scattering number, edge scattering number, and domination scattering number of graphs in Figure
1 are calculated and listed in Table 1.

Table 1. Scattering, edge scattering, and domination scattering numbers of graphs in Figure 1
sc(G) es(G) ds(G)

G1 2 1 1
G2 0 0 0
G3 2 0 2

It can be observed from Table 1 that sc(G1) = sc(G3) = 2. Therefore, scattering numbers do not
distinguish between graphs G1 and G3. Since ds(G1) ̸= ds(G3), the domination scattering number
distinguishes between graphs G1 and G3. We can also say the same for the graphs G2 and G3. Table 1
shows es(G2) = es(G3) = 0. Therefore, edge-scattering numbers do not distinguish between graphs G2

and G3. However, since ds(G2) ̸= ds(G3), we say that the domination scattering number distinguishes
between graphs G2 and G3.

Consequently, the new parameter defined in this study is more distinctive for these graphs than others.
In other words, the graph parameter we defined is a suitable indicator of its stability. Therefore, we
investigate which graphs the parameter we defined is better for. We provide the domination scattering
number of several graphs.

3.1. Domination Scattering Number of Some Graphs

In this subsection, we provide the results obtained by the new parameter. Firstly, we start with the
path graph Pn.

Theorem 3.2. Let n ∈ Z+ and n ≥ 5. Then, ds(Pn) = 1.

Figure 2. Path graph Pn

Proof. Let X be a dominating set of Pn and V (Pn) = {v1, v2, v3, · · · , vn} (see Figure 2). From [20],
since γ(Pn)=⌈n

3 ⌉, we have there different cases:

Case 1: Let n ≡ 0 (mod 3). If we remove |X| ≥ n
3 vertices, then w(Pn − X) ≤ n

3 + 1. Therefore,

ds(Pn) = max{w(Pn − X) − |X|} ≤ max
{

n

3 + 1 − n

3

}
≤ 1
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If we choose X∗ = {v2, v5, v8, · · · , vn−1} such that |X∗| = n
3 and w(Pn − X) = n

3 + 1, then

ds(Pn) = 1 (3.1)

Case 2: Let n ≡ 1 (mod 3). By removing |X| ≥ ⌈n
3 ⌉ vertices, we have w(Pn − X) ≤ ⌈n

3 ⌉ + 1.
Therefore,

ds(Pn) ≤ max
{⌈

n

3

⌉
+ 1 −

⌈
n

3

⌉}
≤ 1

If we choose X∗ = {v2, v5, v8, · · · , vn−5}∪{vn−3, vn−1} such that |X∗| = ⌈n
3 ⌉ and w(Pn −X) = ⌈n

3 ⌉+1,
then

ds(Pn) = 1 (3.2)

Case 3: Let n ≡ 2 (mod 3). If |X| ≥ ⌈n
3 ⌉ vertices are removed, then w(Pn −X) ≤ ⌈n

3 ⌉+1. Therefore,

ds(Pn) ≤ max
{⌈

n

3

⌉
+ 1 −

⌈
n

3

⌉}
≤ 1

Let X∗ = {v2, v5, v8, · · · , vn−3} ∪ {vn−1} be a vertex cut. Then, |X∗| = ⌈n
3 ⌉ and w(Pn − X) = ⌈n

3 ⌉ + 1.
Hence,

ds(Pn) = 1 (3.3)

From (3.1)-(3.3), ds(Pn) = 1.

Theorem 3.3. Let n ∈ Z+ and n ≥ 4. Then, ds(Cn) = 0.

Figure 3. Cycle graph Cn

Proof. Let X be a dominating set of Cn and V (Cn) = {v1, v2, v3, · · · , vn} (see Figure 3). From [20],
since γ(Cn)=⌊n+2

3 ⌋, we have three different cases:

Case 1: Let n ≡ 0 (mod 3). If |X| ≥ ⌊n+2
3 ⌋ vertices are removed, then w(Cn − X) = ⌊n+2

3 ⌋ and

ds(Cn) ≤ max
{⌊

n + 2
3

⌋
−

⌊
n + 2

3

⌋}
≤ 0

Hence, if we choose X∗ = {v2, v5, v8, ..., vn−1}, then |X∗| = ⌊n+2
3 ⌋ and w(Cn − X) = ⌊n+2

3 ⌋. Hence,

ds(Cn) = 0 (3.4)

Case 2: Let n ≡ 1 (mod 3). If |X| ≥ n+2
3 vertices are removed, then w(Cn − X) ≤ n+2

3 . Therefore,

ds(Cn) ≤ max
{

n + 2
3 − n + 2

3

}
≤ 0

Let X∗ = {v2, v5, v8, ..., vn−2} ∪ {vn} be a vertex cut. By the choice of |X∗|, we obtain |X∗| = n+2
3

and w(Cn − X) = n+2
3 . Then,

ds(Cn) = 0 (3.5)
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Case 3: Let n ≡ 2 (mod 3). By removing |X| ≥ ⌊n+2
3 ⌋ vertices, we have w(Cn − X) ≤ ⌊n+2

3 ⌋. Then,

ds(Cn) ≤ max
{⌊

n + 2
3

⌋
−

⌊
n + 2

3

⌋}
≤ 0

If we choose X∗ = {v2, v5, v8, ..., vn−3} ∪ {vn−1} or X∗ = {v2, v5, v8, ..., vn−3} ∪ {vn} as a vertex cut,
then |X∗| = ⌊n+2

3 ⌋ and w(Cn − X∗)=⌊n+2
3 ⌋. Then,

ds(Cn) = 0 (3.6)

From (3.4)-(3.6), ds(Cn) = 0.

Theorem 3.4. If n∈ Z+ and n ≥ 2, then ds(K1,n) = n − 1.

Proof. Let X be a dominating set of K1,n and v be a vertex with maximum degree. If we remove
|X| ≥1 vertices, then w(K1,n − X) ≤ n. Then,

ds(K1,n) ≤ max{n − 1} ≤ n − 1

If we choose X∗ = {v} such that |X∗| = 1 and w(K1,n − X∗) = n, then ds(K1,n) = n − 1.

Theorem 3.5. If n, m ∈ Z+ and n ≥ m, then ds(Km,n) = n − m.

Figure 4. Complete bipartite graph Km,n

Proof. Let X be a dominating set of Km,n and V (Km,n) = {v1, v2, v3, · · · , vm+n−1, vm+n} (see Figure
4). From [16], since γ(Km,n) = 2 and w(Km,n − X) > 1, then |X| must be at least m. If we remove
|X| ≥ m vertices, then w(Km,n − X) ≤ n. Therefore,

ds(Km,n) ≤ max{n − m} ≤ n − m

If we take X∗ = {v1, v2, v3, ..., vm}, then w(Km,n − X∗) = n. Hence, ds(Km,n) = n − m.

3.2. Cartesian Product and Domination Scattering Number

In this subsection, we provide the ds(Pn × C3) value.

Theorem 3.6. If n ∈ Z+ and n ≥ 4, then

ds(Pn × C3) =

 1 − 2n
3 , n ≡ 0 (mod 3)

⌈n
3 ⌉ − n, otherwise

Figure 5. Graph Pn × C3
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Proof. Let X be a dominating set and V (Pn × C3) = {v1, v2, v3, ..., v3n−1, v3n} (see Figure 5). From
[21], since

γ(Pn × C3) =

 ⌈3n
4 ⌉ + 1, n ≡ 0 (mod 4)

⌈3n
4 ⌉, otherwise

then |X| must be at least ⌈3n
4 ⌉. Then, we consider two different cases:

Case 1: Let n ≡ 0 (mod 3). If we remove |X| = ⌈3n
4 ⌉ vertices, then w((Pn × C3) − X) = 1. If we

remove |X| = ⌈3n
4 ⌉ + k vertices such that k ∈ Z+ and |X| < n, then w((Pn × C3) − X) ≤ 1 + k. Thus,

ds(Pn × C3) ≤ max
{

1 + k −
(⌈3n

4

⌉
+ k

)}
≤ 1 −

⌈3n

4

⌉
(3.7)

If we remove |X| ≥ n vertices, then w((Pn × C3) − X) ≤ n
3 + 1. Thus,

ds(Pn × C3) ≤ max
{

n

3 + 1 − n

}
≤ 1 − 2n

3 (3.8)

Since 1 −
⌈

3n
4

⌉
≤ 1 − 2n

3 , for all n ≥ 4, then ds(Pn × C3) ≤ 1 − 2n
3 from (3.7) and (3.8).

Hence, if we choose

X∗ = {v2, v5, v8, ..., vn−1} ∪ {vn+2, vn+5, vn+8, ..., v2n−1} ∪ {v2n+2, v2n+5, v2n+8, ..., v3n−1}

then |X∗| = n and w((Pn × C3) − X∗) = n
3 + 1. Then,

ds(Pn × C3) = 1 − 2n

3 (3.9)

Case 2: Let n ≡ 1 (mod 3) or n ≡ 2 (mod 3). If we remove |X| = ⌈3n
4 ⌉ vertices, then w((Pn × C3) −

X) = 1. If we remove |X| = ⌈3n
4 ⌉+k vertices such that k ∈ Z+ and |X| < n, then w((Pn ×C3)−X) ≤

1 + k. Thus,
ds(Pn × C3) ≤ max

{
1 + k −

(⌈3n

4

⌉
+ k

)}
≤ 1 −

⌈3n

4

⌉
(3.10)

If we remove |X| ≥ n vertices, then w((Pn × C3) − X) ≤ ⌈n
3 ⌉. Therefore,

ds(Pn × C3) ≤ max
{⌈

n

3

⌉
− n

}
≤

⌈
n

3

⌉
− n (3.11)

Since 1 − ⌈3n
4 ⌉ ≤ ⌈n

3 ⌉ − n, for all n ≥ 4, then ds(Pn × C3) ≤ ⌈n
3 ⌉ − n from (3.10) and (3.11).

If we choose

X∗ = {v2, v5, v8, ..., vn−2} ∪ {vn+2, vn+5, vn+8, ..., v2n−2} ∪ {v2n+2, v2n+5, v2n+8, ..., v3n−2} ∪ {v2n}

while n ≡ 1 (mod 3) and then |X∗| = n and w((Pn × C3) − X∗) = ⌈n
3 ⌉. Therefore,

ds(Pn × C3) =
⌈

n

3

⌉
− n (3.12)

If we choose

X∗∗ = {v2, v5, v8, ..., vn−3}∪{vn+2, vn+5, vn+8, ..., v2n−3}∪{v2n+2, v2n+5, v2n+8, ..., v3n−3}∪{vn−1, v2n}

while n ≡ 2 (mod 3), then |X∗∗| = n and w((Pn × C3) − X∗∗) = ⌈n
3 ⌉. Hence,

ds(Pn × C3) =
⌈

n

3

⌉
− n (3.13)

By (3.9), (3.12), and (3.13), the results are obtained.
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4. Conclusion

The vulnerability of a communication network measures the network’s resistance to the disruption of
its operation after the failure of specific processors or communication links. Network designers aim to
design networks with less vulnerability or more reliability. In other words, network designers care about
network stability. For this reason, the vulnerability values of graphs (networks) are investigated by
modeling networks with graphs. In this study, first of all, it was observed that the scattering and edge
scattering numbers among the vulnerability measurements in graphs were insufficient to distinguish
some graph families. Afterward, a new parameter was defined to distinguish these graph families,
called the domination scattering number. The vertices removed from the graph in this parameter
are also components of any dominant cluster in the graph. In this article, the domination scattering
number for basic graphs is calculated. The domination scattering number of the graph Pn × C3 is
also provided. In future research, the primary objective can be to obtain graphs corresponding to
real-life networks using graph operations, such as the graph Pn × C3. Subsequently, the aim can be to
calculate the domination scattering numbers of these graphs. However, an essential question warrants
investigation: Can the domination scattering number of a graph be calculated in polynomial time?
Moreover, the following questions are anticipated that obtaining answers to these questions will benefit
network designers:

i. Which graph family has the smallest or largest domination scattering number?

ii. What are the relationships between the domination scattering number and other graph parameters?

iii. What are the values of the domination scattering numbers for a graph’s total, line, and middle
graphs?
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[2] Z. N. Berberler, A. Aytaç, Node and link vulnerability in complete multipartite networks, Inter-
national Journal of Foundations of Computer Science 35 (4) (2024) 375–385.

[3] S. Zhang, Z. Wang, Scattering number in graphs, Networks 37 (2001) 102–106.

[4] W. Chen, S. Renqian, Q. Ren, X. Li, Tight toughness, isolated toughness and binding number
bounds for the path-cycle factors, International Journal of Computer Mathematics: Computer
Systems Theory 8 (4) (2023) 235–241.



Journal of New Theory 49 (2024) 53-61 / Domination Scattering Number in Graphs 61

[5] H. Chen, J. Li, l-connectivity, integrity, tenacity, toughness and eigenvalues of graphs, Bulletin
of the Malaysian Mathematical Sciences Society 45 (6) (2022) 3307–3320.

[6] F. Harary, Graph theory, CRC Press, Boca Raton, 2018.

[7] H. A. Jung, On a class of posets and the corresponding comparability graphs, Journal of Combi-
natorial Theory Series B 24 (2) (1978) 125–133.
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Abstract − This paper characterizes the semigroup ideal Ln
R(I) of a ring R, where I is an

ideal of R, defined by L0
R(I) = I and Ln

R(I) = {a ∈ R | aRa ⊆ Ln−1
R (I)}, for all n ∈ Z+,

the set of all the positive integers. Moreover, it studies the basic properties of the set Ln
R(I)

and defines n-prime ideals, n-semiprime ideals, n-prime rings, and n-semiprime rings. This
study also investigates relationships between the sets LR(I) and Ln

R(I) and exemplifies some
of the related properties. It obtains the main results concerning prime rings and prime ideals
by the properties of the set Ln

R(I).
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1. Introduction

Prime and semiprime ideals are essential classes of rings, especially in noncommutative rings. There-
fore, many studies have been conducted on rings’ prime ideals and semiprime ideals [1–4]. Addition-
ally, numerous generalizations of these structures have been proposed by the concepts of prime and
semiprime ideals [4–10]. Moreover, many studies have been undertaken on prime ideals in Noetherian
rings [11–15]. Besides, prime ideals play a significant role in the theory of associative algebras [16,17].
In [18], the concept of the source of the semiprimeness of a ring R expressed by SR has been explored
through semiprime ideals, leading to the definition of new structures: The |SR|-reduced rings, the
|SR|-domains, and the |SR|-division rings. Further, several properties of these structures have been
investigated. Furthermore, Karalarlıoğlu Camcı [19] has introduced the structures of |SR|-semiprime
and |SR|-prime rings using the set SR and analyzed the relationships between these two types of rings.
The author has also researched the necessary and sufficient conditions for a ring R to be isomorphic
to the subdirect sum of some of the |SR|-prime rings of R and obtained a generalization related to
the relationship between the prime radical β(R) of R and SR. In addition, Karalarlıoğlu Camcı [19]
has suggested the set LR(A) = {a ∈ R : aRa ⊆ A}, where A is a non-empty subset of a ring R,
and considered some of its basic properties, presented examples to enhance understanding of the set
LR(A), and investigated the relations between the sets LR(A) and SR.

This study defines the set Ln
R(I), a generalization of the set LR(I) such that I is an ideal of a ring

R, analyzes its properties, and exemplifies some of them. Moreover, this generalization proposes the
definitions of n-prime ideals, n-semiprime ideals, n-prime rings, and n-semiprime rings, along with
theorems and results derived from these novel notions.
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2. Preliminaries

The current section provides the following basic definitions and some properties in [18–22].

Definition 2.1. Let R be a multiplicative semigroup, I ̸= ∅, and I ⊆ R. If ar, ra ∈ I, for all a ∈ I

and for all r ∈ R, then I is called a semigroup ideal of R.

Across this study, if R is a ring, then its multiplicative semigroup concerning the second operation of
the ring R is considered for the concepts related to semigroup ideals.

Definition 2.2. Let R be a ring and I be a semigroup ideal of R. If aRb ⊆ I implies a ∈ I or b ∈ I,
then I is called a semigroup prime ideal of R.

Definition 2.3. Let R be a ring and I be an ideal of R. If aRb ⊆ I implies a ∈ I or b ∈ I, then I is
called a prime ideal of R.

Definition 2.4. Let R be a ring and I be a semigroup ideal of R. If aRa ⊆ I implies a ∈ I, then I

is called a semigroup semiprime ideal of R.

Definition 2.5. Let R be a ring and I be an ideal of R. If aRa ⊆ I implies a ∈ I, then I is called a
semiprime ideal of R.

Definition 2.6. Let R be a ring, A ̸= ∅, and A ⊆ R. Then, the set SR(A) = {a ∈ R : aAa = (0)} is
called the source of semiprimeness of A in R. If A = R, then SR will be used instead of SR(R).

Definition 2.7. Let R be a ring. If, for all a ∈ R, aRa ⊆ SR implies a ∈ SR, then R is called an
|SR|-semiprime ring, and if, for all a, b ∈ R, aRb ⊆ SR implies a ∈ SR or b ∈ SR, then R is called an
|SR|-prime ring.

Proposition 2.8. Let R be a ring. Then, the following properties hold:

i. If I is a semigroup right (left) ideal of R, then I ⊆ LR(I).

ii. If I is a semigroup right (left) ideal of R, then LR(I) is a semigroup right (left) ideal of R.

iii. If I is a semigroup right (left) ideal of R, then SR ⊆ LR(I).

iv. If I is an ideal of R and π : R → R/I is a natural epimorphism defined by π(r) = r + I, then
π(LR(I)) = SR/I and π−1(SR/I) = LR(I).

v. For an ideal I of R, I is a semiprime ideal if and only if I = LR(I).

3. Main Results

Let R be a ring and I be an ideal of R. In [19], the set LR(I) is defined as follows:

LR(I) = {a ∈ R : aRa ⊆ I}

Motivated by this set, the following is introduced:

L0
R (I) = I and Ln

R (I) =
{

a ∈ R : aRa ⊆ Ln−1
R (I)

}
, for all n ∈ Z+

where Z+ is the set of all the positive integers. Moreover, L1
R (I) is denoted by LR (I). Then,

LR (0) = {a ∈ R : aRa ⊆ (0)} and Ln
R (0) =

{
a ∈ R : aRa ⊆ Ln−1

R (0)
}

Consider the set
SGR = {I ⊆ R : I is a semigroup ideal of R}
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From Proposition 2.8, the set LR(I) = {a ∈ R : aRa ⊆ I} is a semigroup ideal of R. Therefore,
LR(I) ∈ SGR. As a consequence,

LR : SGR → SGR, LR(I) = {a ∈ R : aRa ⊆ I}

can be constructed. Finally, it is operationalizing as

Ln
R(I) = LR

(
Ln−1

R (I)
)

=
{

a ∈ R : aRa ⊆ Ln−1
R (I)

}
for all n ∈ Z+. Thus, it is noticeable from the induction that

Lm
R (Ln

R(I)) = Lm+n
R (I)

for all n, m ∈ N, the set of all the nonnegative integers.

Definition 3.1. Let I be an ideal of a ring R. Then, I is called an n-prime ideal if Ln
R (I) is a

semigroup prime ideal of R.

Definition 3.2. Let I be an ideal of a ring R. Then, I is called an n-semiprime ideal if Ln
R (I) is a

semigroup semiprime ideal of R.

Definition 3.3. Let R be a ring. Then, R is called an n-prime ring if Ln
R (0) is a semigroup prime

ideal of R.

Definition 3.4. Let R be a ring. Then, R is called an n-semiprime ring if Ln
R (0) is a semigroup

semiprime ideal of R.

Lemma 3.5. Let R be a ring. If P is a prime ideal of R, then P is an n-prime ideal of R.

Proof. Let R be a ring and P be a prime ideal of R. Since LR(P ) = P , Ln
R(P ) = P . Therefore,

Ln
R(P ) is a prime ideal of R. Thus, P is an n-prime ideal of R.

Lemma 3.6. Let R be a ring. If P is a semiprime ideal of R, then P is an n-semiprime ideal of R.

The proof is carried out similarly to the proof of Lemma 3.5.

Example 3.7. Consider the ring Z8 = {0, 1, 2, 3, 4, 5, 6, 7}. Then, I = {0, 4} is an ideal of Z8. Thus,
the set

LZ8(I) = {a ∈ Z8 : aZ8a ⊆ I} = {0, 2, 4, 6}

is a semiprime ideal of Z8. Thus, I is a 1-semiprime ideal of Z8 but not a semiprime ideal of Z8.

Theorem 3.8. Let R be a ring, P be an ideal of R, and A be a semigroup ideal of R such that P ⊆ A.
Then, A/P is a semigroup ideal of the ring R/P .

Proof. Since it follows the fact that A/P ̸= {0 + P}, then

A/P = {a + P : a ∈ A} ⊆ R/P

Therefore,
(a + P )(r + P ) = ar + P ∈ A/P

and
(r + P )(a + P ) = ra + P ∈ A/P

for all a ∈ A and for all r ∈ R.

Theorem 3.9. Let R be a ring, I be an ideal of R, and π : R → R/I be a natural epimorphism
defined by π(r) = r + I. Then, for all n ∈ N,

π−1
(
Ln

R/I (0)
)

= Ln
R (I)
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Proof. For n = 0,
π−1

(
L0

R/I (0)
)

= π−1 (0) = Ker π = I = L0
R(I)

Let x ∈ π−1(LR/I(0)), for n = 1. Then, π(x) = x+I ∈ (LR/I(0)). It follows that (x+I)(r+I)(x+I) =
(0 + I), for all r ∈ R. Therefore, xRx ⊆ I, for all r ∈ R, because xrx ∈ I, for all r ∈ R. Hence,
x ∈ LR(I). Furthermore, if x ∈ LR(I), then xRx ⊆ I. Since xrx ∈ I, for all r ∈ R, the equality
(x+I)(r +I)(x+I) = (0+I) holds. This requires π(x) = x+I ∈ (LR/I(0)). Thus, x ∈ π−1(LR/I(0)).
Hence, π−1(LR/I(0)) = LR(I).

Assume that
π−1

(
Ln

R/I (0)
)

= Ln
R (I)

for an arbitrary n ∈ N. Let x ∈ π−1(Ln+1
R/I (0)). Then, π(x) ∈ (Ln+1

R/I (0)). Namely, π(x)π(r)π(x) ∈
(Ln

R/I(0)). Since π is an epimorphism, π(xrx) ∈ (Ln
R/I(0)), for all r ∈ R. Consequently, xrx ∈

π−1(Ln
R/I(0)) = Ln

R(I), for all r ∈ R. Thus, xRx ⊆ Ln
R(I) and hence x ∈ Ln+1

R (I). The converse is
similar. Consequently, Ln+1

R (I) = π−1(Ln+1
R/I (0)).

Lemma 3.10. Let R be a ring, I and P be two ideals of R, and P ⊆ I. Then, Ln
R(I)/P = Ln

R/P (I/P ),
for all n ∈ N.

Proof. The proof is straightforward for n = 0.

Let n = 1. Since I is an ideal of R, xr, rx ∈ I, for all x ∈ I and for all r ∈ R. Thus, xrx ∈ I

and x ∈ LR(I). Hence, I ⊆ LR(I). Moreover, let x + P ∈ LR(I)/P . Therefore, x ∈ LR(I).
Thereby, xRx ⊆ I. In this way, xRx + P ⊆ I/P . Herewith, (x + P )(r + P )(x + P ) ∈ I/P . Thus,
x + P ∈ LR/P (I/P ). As a result, LR(I)/P ⊆ LR/P (I/P ). The converse is similar. Consequently,
LR(I)/P = LR/P (I/P ).

Suppose that for an arbitrary n ∈ N,

Ln
R(I)/P = Ln

R/P (I/P )

Further, let y + P ∈ Ln+1
R (I)/P . Thus, y ∈ Ln+1

R (I). Hence, yRy ⊆ Ln
R(I). Thereby, yRy + P ⊆

Ln
R(I)/P = Ln

R/P (I/P ). Therefore, (y + P )(r + P )(y + P ) ∈ Ln
R/P (I/P ), for all r ∈ R. In this way,

y + P ∈ Ln+1
R/P (I/P ). The converse is similar. In conclusion, Ln+1

R (I)/P = Ln+1
R/P (I/P ).

From the aforesaid definitions and theorems, the following significant Theorem is provided.

Theorem 3.11. Let R be a ring and P be an ideal of R. Then, P is an n-prime ideal of R if and
only if R/P is an n-prime ring.

Proof. Let R be a ring and P be an ideal of R.

⇒: Assume that P is an n-prime ideal of R. Then, Ln
R(P ) is a semigroup prime ideal of R from

Definition 3.1. Thus, R/P is an n-prime ring from Definition 3.3.

⇐: Let R/P is an n-prime ring. Then, Ln
R/P (0) is a semigroup prime ideal of R/P . From Lemma

3.10, Ln
R/P (P/P ) = Ln

R(P )/P . Let xRy ⊆ Ln
R(P ), for all x, y ∈ R. Then, xry ∈ Ln

R(P ), for all
r ∈ R. Hence, since (xry) + P ∈ Ln

R(P )/P , (x + P )(R/P )(y + P ) ⊆ Ln
R(P )/P = Ln

R/P (P/P ).
Since Ln

R/P (P/P ) is a semigroup prime ideal of R/P , x + P ∈ Ln
R/P (P/P ) = Ln

R(P )/P or y + P ∈
Ln

R/P (P/P ) = Ln
R(P )/P . Namely, x ∈ Ln

R(P ) or y ∈ Ln
R(P ). Thence, Ln

R(P ) is a semigroup prime
ideal of R. Consequently, P is an n-prime ideal of R.

Lemma 3.12. Let R and S be two rings, φ : R → S be an epimorphism, and I be an ideal of R.
Then, Ln

S(φ(I)) = φ(Ln
R(I)), for all n ∈ N.
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Proof. Let R and S be two rings, φ : R → S be an epimorphism, and I be an ideal of R. Since
φ(I) = φ(I), then L0

S(φ(I)) = φ(L0
R(I)), for n = 0. Moreover, let y ∈ φ(LR(I)). Then, y = φ(x) and

x ∈ LR(I). Thus, ysy = φ(x)φ(r)φ(x) = φ(xrx), for all r ∈ R and for all s ∈ S. Hence, ySy ⊆ φ(I).
Thereby, y ∈ LS(φ(I)). The other inclusion is similarly proved. Consequently, LS(φ(I)) = φ(LR(I)).

Assume that Ln
S(φ(I)) = φ(Ln

R(I)), for an arbitrary n ∈ N. If y ∈ φ(Ln+1
R (I)), then y = φ(x)

and x ∈ Ln+1
R (I). Thus, ysy = φ(x)φ(r)φ(x) = φ(xrx), for all r ∈ R and for all s ∈ S. Hence,

ySy ⊆ Ln
S(φ(I)). Thereby, y ∈ Ln+1

S (φ(I)). Similarly, Ln+1
S (φ(I)) ⊆ φ(Ln+1

R (I)). Consequently,
Ln+1

S (φ(I)) = φ(Ln+1
R (I)).

Theorem 3.13. Let R and S be two rings and φ : R → S be an epimorphism. If Ker φ ⊆ P is an
n-prime ideal of R, then φ (P ) is an n-prime ideal of S.

Proof. Let Ker φ ⊆ P be an n-prime ideal of R. Then, φ (P ) is an ideal of S. Since P is an n-prime
ideal of R, Ln

R(P ) is a semigroup prime ideal of R. Therefore, φ(Ln
R(P )) is also a semigroup ideal of S.

Let a, b ∈ S. Then, there exist x, y ∈ R such that aSb = φ(x)φ(R)φ(y). Thus, φ(xRy) ⊆ φ(Ln
R(P )).

Hence, φ(xry) = φ(p) such that p ∈ Ln
R(P ). Thereby, xry − p ∈ Ker φ ⊆ P . Herewith, xry = p + k

such that k ∈ P and p ∈ Ln
R(P ). In this way, xry ∈ Ln

R(P ). Since Ln
R(P ) is a semigroup prime

ideal of R, x ∈ Ln
R(P ) or y ∈ Ln

R(P ). Therefore, a = φ(x) ∈ φ(Ln
R(P )) or b = φ(y) ∈ φ(Ln

R(P )).
Consequently, φ(Ln

R(P )) is a prime ideal of S. From Lemma 3.12, since φ(Ln
R(P )) = Ln

R(φ(P )),
Ln

R(φ(P )) is a semigroup prime ideal of S. Thus, φ(P ) is an n-prime ideal of S.

Theorem 3.14. Let R and S be two rings and φ : R → S be an epimorphism. Then, for an ideal I

of S,
φ−1(LS (I)) = LR

(
φ−1 (I)

)
Proof. Let R and S be two rings, φ : R → S be an epimorphism, and I be an ideal of S. For all
x ∈ φ−1(LS (I)),

φ (x) Sφ (x) = φ (x) φ (R) φ (x) = φ (xRx) ⊆ I

and
xRx ⊆ φ−1 (φ (xRx)) ⊆ φ−1 (I)

Therefore, x ∈ LR

(
φ−1 (I)

)
and φ−1(LS (I)) ⊆ LR

(
φ−1 (I)

)
. Moreover, xRx ⊆ φ−1 (I), for all

x ∈ LR

(
φ−1 (I)

)
. Thus,

φ (xRx) = φ (x) φ (R) φ (x) ⊆ φ
(
φ−1 (I)

)
⊆ I

As a result, φ (x) ∈ LS (I) and x ∈ φ−1(LS (I)). Namely, LR

(
φ−1 (I)

)
⊆ φ−1(LS (I)).

Theorem 3.15. Let R and S be two rings and φ : R → S be an epimorphism. Then, for an ideal I

of S,
φ−1(Ln

S (I)) = Ln
R

(
φ−1 (I)

)
, for all n ∈ N

Proof. Using Theorem 3.14 and the induction method, the following result is obtained:

φ−1(Ln
S (I)) = Ln

R

(
φ−1 (I)

)
, for all n ∈ N

Theorem 3.16. Let R be a ring and I be a semigroup ideal of R. Thus, for all n ∈ N,

Ln
R(I) ⊆ Ln+1

R (I)

Proof. Since Ln
R(I) is a semigroup ideal of R, aRa ⊆ Ln

R(I), for all a ∈ Ln
R(I). Hence, a ∈ Ln+1

R (I).
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Corollary 3.17. Let R be a ring and I be a semigroup ideal of R. Then,

I ⊆ LR(I) ⊆ L2
R(I) ⊆ · · · ⊆ Ln

R(I) ⊆ Ln+1
R (I) ⊆ · · ·

4. Conclusion

This study attempts to generalize the set LR(I), expressed by Ln
R(I) such that I is an ideal of a

ring R. In this paper, the basic properties of this set are also provided. Furthermore, adopting this
generalization, it explores the definitions of n-prime ideals, n-semiprime ideals, n-prime rings, and
n-semiprime rings and their properties. Moreover, the relations of this set under epimorphism are
mentioned. Future studies could extend these results to different rings, utilizing the generalization of
the set LR(I), thereby contributing significantly to ring theory. Furthermore, this generalization paves
the way for additional extensions, leading to the introduction of new definitions and the development
of novel results. In addition, by utilizing the set Ln

R(I), researchers can define the n-prime radicals,
serving as a generalization of the prime radicals of a ring R.
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[10] S. Koc, Ü. Tekir, G. Ulucak, On strongly quasi primary ideals, Bulletin of the Korean Mathemat-
ical Society 56 (3) (2019) 729–743.

[11] D. D. Anderson, T. Dumitrescu, S-Noetherian rings, Communications in Algebra 30 (9) (2002)
4407–4416.

[12] A. Badawi, On 2-absorbing ideals of commutative rings, Bulletin of the Australian Mathematical
Society 75 (3) (2007) 417–429.
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1. Introduction

The study of curve theory has long been a central topic in differential geometry research [1–4]. One
intriguing aspect of this field is exploring specific curve types, such as adjoint curves, defined as the
integral of the binormal vector of a curve α(s), parameterized by s, as mentioned in [5]. Adjoint
curves have found applications in various fields, including number theory, coding theory, and algebraic
geometry [6–9].

A regular curve is characterized by its curvature κ and torsion τ , which uniquely determine the curve at
every point, as stated by the fundamental theorem of regular curves. However, the curvature function
may vanish at certain points for analytical curves, introducing discontinuities in the principal normal
and binormal vectors. This discontinuity makes the curvature function non-differentiable at those
points, leading to ambiguities in the Frenet frame due to the vanishing curvature.

To address these challenges, Hord [10] and Sasai [11] introduced an alternative orthogonal frame to
handle such points effectively. Sasai [12] further developed a modified orthogonal frame (MOF) for
unit-speed analytic curves, offering a simple and practical solution. In this approach, the Frenet
vectors are scaled by the curvature function κ, resulting in a new formulation that extends the Frenet
derivative equations. This MOF has facilitated research on various frames and ruled surfaces in different
spaces [13–19].
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In this paper, we focus on specific ruled surfaces whose base curves are adjoint curves of a considered
curve α. The director curves of these surfaces are defined by the tangent, normal, and binormal vectors
associated with the MOF in E3, following the approach in [7]. We also provide several theorems and
proofs related to these surfaces. Finally, we exemplify some of these special ruled surfaces to visualize.

2. Preliminaries

This section presents some basic notions to be needed in the following section. Throughout this paper,
let ψ(s, v) be a surface in Euclidean 3-space. The unit normal vector field U(s, v) of the surface ψ(s, v)
is obtained by

U = ψs × ψv
∥ψs × ψv∥

where ψs = ∂ψ
∂s and ψv = ∂ψ

∂v are the partial derivatives of the surface ψ(s, v) with respect to the
parameter s and v, respectively. The first fundamental form I of the surface ψ(s, v) is as follows:

I = g11ds
2 + 2g12dsdv + g22dv

2

where g11 = ⟨ψs, ψs⟩, g12 = ⟨ψs, ψv⟩, and g22 = ⟨ψv, ψv⟩. Moreover, the second fundamental form of
the surface ψ(s, v) is defined as follows:

II = h11ds
2 + 2h12dsdv + h22dv

2

where h11 = ⟨ψss, U⟩, h12 = ⟨ψsv, U⟩, and h22 = ⟨ψvv, U⟩. The Gaussian curvature K and the mean
curvature H of the surface ψ(s, v) are as follows:

K = h11h22 − h2
12

g11g22 − g2
12

and H = h11g22 − 2g12h12 + g11h22
2
(
g11g22 − g2

12
) (2.1)

Theorem 2.1. [20] On a surface, asymptotic curves are defined as curves along which the normal
curvature is zero. This is equivalent to the condition that the second fundamental form vanishes:

II = h11ds
2 + 2h12dsdv + h22dv

2 = 0

where h11, h12, and h22 are the coefficients of the second fundamental form.

Theorem 2.2. [20] For a curve to be geodesic, its geodesic curvature

kg = ∇γ̇ γ̇ = 0

where ∇γ̇ γ̇ is the covariant derivative of the tangent vector γ̇ along itself.

Definition 2.3. [5] Let α be a unit speed curve in E3 with τ ̸= 0. Then, the adjoint curve of α is
defined by

β(s) =
∫ s

s0
Bα(s)ds

where Bα is the binormal vector of the curve α.

We express the relations between the MOF {T,N,B} and the classical Frenet frame {t, n, b} by

T = t, N = κn, and B = κb (2.2)

where κ ̸= 0 is the curvature of the curve. The MOF {T,N,B} satisfies the following equalities:

< T, T >= 1, < N,N >=< B,B >= κ2, and < T,N >=< T,B >=< N,B >= 0

Here, the notation <,> represents the inner product. Using the definitions of T , N , and B and (2.2),
the following equalities hold:
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
T ′(s)
N ′(s)
B′(s)

 =


0 1 0

−κ2 κ′

κ
τ

0 −τ κ′

κ



T (s)
N(s)
B(s)

 (2.3)

and

τ = τ(s) = det(α′, α′′, α′′′)
κ2

is the torsion of α. Moreover, κ2 and τ are analytic. In [1], the differentiation formula for the MOF is
denoted by (2.3).

Theorem 2.4. [7] If α is a unit speed curve and β is the adjoint curve of α such that {Tα, Nα, Bα}
and {Tβ, Nβ, Bβ} are the Frenet vectors and {κα, τα} and {κβ, τβ} are curvature and torsion of α and
β, respectively, then

Tβ = Bα, Nβ = −Nα, Bβ = Tα, κβ = τα, and τβ = κα

Theorem 2.5. [7] If α is a unit speed regular in E3 and β is the adjoint curve of α according to the
MOF with curvature such that {Tα, Nα, Bα} and {Tβ, Nβ, Bβ} are the MOF and {κα, τα} and {κβ, τβ}
are the curvature and torsion of α and β, respectively, then

Tβ =
( 1
κα

)
Bα, Nβ = −

(
τα
κ2
α

)
Nα, Bβ =

(
τα
κα

)
Tα, κβ = τα

κα
, and τβ = 1

3. Some Special Ruled Surfaces According to the MOF

This section investigates ruled surfaces according to the MOF in E3. It generates new special ruled
surfaces to change the base curve with α and its adjoint curve β. Additionally, this section changes the
director vectors of these surfaces concerning the MOF vectors T , N , and B.

3.1. Tangent Ruled Surface with the Base Curve α

Concerning the MOF, the parameterization of the tangent ruled surface is as follows:

ψ1(s, v) = α(s) + vTα(s) (3.1)

where α is the base curve. If we take the derivatives with respect to the parameter s and v of the
tangent ruled surface ψ1(s, v), respectively, then

ψ1s = Tα + vNα, ψ1v = Tα,

ψ1ss = κ2
αTα +

(
1 + v

κ′
α

κα

)
Nα + vταBα, ψ1sv = Nα, and ψ1vv = 0

(3.2)

Therefore, g11 = 1 + v2κ2
α, g12 = 1, and g22 = 1 and thus g11g22 − g2

12 = v2κ2
α ̸= 0 where g11, g12, and

g22 are the coefficients of the first fundamental form of the tangent ruled surface ψ1(s, v). The unit
normal vector field U1 of the tangent ruled surface ψ1(s, v) is provided by

U1 = − 1
κα
Bα (3.3)

Moreover, the coefficients of the second fundamental form as follows: h11 = −vτακα, h12 = 0, and
h22 = 0. Using (2.1), the Gaussian and mean curvatures of the tangent ruled surface ψ1(s, v) are
obtained as
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K = 0 and H = −τα
2vκα

(3.4)

Theorem 3.1. Let ψ1(s, v) be a tangent ruled surface with the MOF in E3. Then, the tangent ruled
surface ψ1(s, v) is developable.

The proof can be readily observed from (3.4).

Theorem 3.2. Let ψ1(s, v) be a tangent ruled surface with the MOF in E3. Then, ψ1(s, v) cannot be
minimal.

The proof can be readily observed from (3.4) by τα ̸= 0.

Theorem 3.3. Let ψ1(s, v) be a tangent ruled surface according to the MOF in E3. Then, the
following hold:

i. s-parameter curves of the tangent ruled surface ψ1(s, v) cannot be asymptotic.

ii. v-parameter curves of the tangent ruled surface ψ1(s, v) are asymptotic.

Proof. By the definition of asymptotic curves, ⟨ψ1ss, U⟩ = 0 and ⟨ψ1vv, U⟩ = 0.

i. The proof is obvious since h11 ̸= 0.

ii. Since h22 = 0, v-parameter curves of the ψ1(s, v) are asymptotic.

Theorem 3.4. Let ψ1(s, v) be a tangent ruled surface with the MOF in E3. Then,

i. s-parameter curves of ψ1(s, v) cannot be geodesic.

ii. v-parameter curves of ψ1(s, v) are geodesic.

Proof. From the definition of geodesic curves, it must be ψ1ss × U = 0 and ψ1vv × U1 = 0 for the s
and v parameter curves.

i. According to (3.2) and (3.3),

ψ1ss × U = −κα
(

1 + v
κ′
α

κ′

)
Tα − vκαNα

Since Tα and Nα are linearly independent, ψ1ss × U = 0 if and only if κα = 0. However, as κα ≠ 0,
ψ1(s, v) cannot be a geodesic curve.

ii. From (3.2) and (3.3), ψ1vv × U1 = 0. Thus, v-parameter curves are geodesic curves.

3.2. Tangent Ruled Surface with the Base Curve β

Concerning the MOF, the parameterization of the tangent ruled surface with the adjoint curve β is as
follows:

ψ2(s, v) = β(s) + vTβ(s) (3.5)

If we take the derivatives with respect to parameter s and v of the tangent ruled surface ψ2(s, v),
respectively, then

ψ2s = −v τα

κα
Nα +Bα, ψ2v = 1

κα
Bα, ψ2ss = vτακαTα +

(
−τα − v

τ ′
α

κα

)
Nα +

(
κ′

α

κα
− v

τ2
α

κ2
α

)
Bα,

ψ2ss = vτακαTα +
(

−τα − v
τ ′

α

κα

)
Nα +

(
κ′

α

κα
− v

τ2
α

κ2
α

)
Bα, ψ2sv = − τα

κα
Nα, and ψ2vv = 0

(3.6)
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Hence,

g11 = κ2
α + v2τ2

α, g12 = κα, and g22 = 1, and thus g11g22 − g2
12 = v2κ2

α ̸= 0 (3.7)

The unit normal vector field U2 of the tangent ruled surface ψ2(s, v) is provided by U2 = −Tα. The
coefficients of the second fundamental form are as follows: h11 = −vτακα, h12 = 0, and h22 = 0. Using
(2.1), the Gaussian and mean curvatures of the tangent ruled surface ψ2(s, v) are obtained as follows:
K = 0 and H = −κα

2vτα
.

Theorem 3.5. Let ψ2(s, v) be a tangent ruled surface with the MOF in Euclidean 3-space. Then,
ψ2(s, v) is a flat surface.

Theorem 3.6. Let ψ2(s, v) be a tangent ruled surface with the MOF in Euclidean 3-space. Then,
ψ2(s, v) cannot be minimal.

Proof. Since κα ̸= 0, the tangent ruled surface ψ2(s, v) cannot be minimal.

Theorem 3.7. Let ψ2(s, v) be a tangent ruled surface with the MOF in E3. Then,

i. s-parameter curves of the tangent ruled surface ψ2(s, v) cannot be asymtotic.

ii. v-parameter curves of the tangent ruled surface ψ2(s, v) are asymptotic curves.

Proof. From the definition of asymptotic curves, ⟨ψ2ss, U⟩ = 0 and ⟨ψ2vv, U⟩ = 0.

i. The proof is obvious since h11 ̸= 0

ii. Since h22 = 0, v-parameter curves of the ψ2(s, v) are asymptotic.

Theorem 3.8. Let ψ2(s, v) be a tangent ruled surface with the MOF in E3. Then,

i. s-parameter curves of ψ2(s, v) cannot be geodesic.

ii. v-parameter curves of ψ2(s, v) are geodesic.

Proof. From the definition of geodesic curves ψ2ss × U2 = 0 and ψ2vv × U2 = 0 must be provided for
the s and v parameter curves.

i. According to (3.6) and (3.7),

ψ2ss × U2 = −
(
κ′
α

κα
− v

τ2
α

κ2
α

)
Nα +

(
−v τ

′
α

κα
− τα

)
Bα

Since Nα and Bα are linearly independent, ψ2ss × U2 = 0 if and only if κα is a constant and τα = 0.
However, because τα ̸= 0, ψ2(s, v) cannot be a geodesic curve.

ii. From (3.6) and (3.7), ψ2vv × U2 = 0. Hence, v-parameter curves are geodesic curves.

3.3. Normal Ruled Surface with the Base Curve α

Concerning the MOF, the parameterization of the normal ruled surface is as follows:

ψ3(s, v) = α(s) + vNα(s) (3.8)

where α is the base curve. If we take the derivatives with respect to parameter s and v of the normal
ruled surface ψ3(s, v), respectively, then
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

ψ3s =
(
1 − vκ2

α

)
Tα + v

κ′
α

κα
Nα + vταBα, ψ3v = Nα,

ψ3ss = (−3vκ′
ακα)Tα +

(
1 − v

(
κ2
α + τ2

α

)
+ v

κ′′
α

κα

)
Nα + v

(
τ ′
α + 2τα

κ′
α

κα

)
Bα,

ψ3sv = −κ2
αTα + κ′

α

κα
Nα + ταBα, and ψ3vv = 0

(3.9)

Thereby, g11 = 1 − 2vκ2
α + v2κ2

α

(
κ2
α + τ2

α

)
+ v2κ′

α
2, g12 = vκ′

ακα, and g22 = κ2
α, and thus g11g22 − g2

12 =
κ2
α

((
1 − vκ2

α

)2 + (vκατα)2
)

̸= 0. The unit normal vector field U3 of the normal ruled surface ψ3(s, v)
is provided by

U3 = 1√
(1 − vκ2

α)2 + (vκατα)2

(
−vκαταTα +

(
1 − vκ2

α

)
κα

Bα

)
(3.10)

and the coefficients of the second fundamental form are obtained as:

h11 = v√
(1 − vκ2

α)2 + (vκατα)2

(
vκ2

α

(
τακ

′
α − κατ

′
α

)
+
(
2κ′

ατα + τ ′
ακα

))

h12 = τακα√
(1 − vκ2

α)2 + (vκατα)2

and h22 = 0. From (2.1), the Gaussian and mean curvatures are as follows, respectively:

K = − τ2
α(

(1 − vκ2
α)2 + (vκατα)2

)2 and H = vκα
(
καvτακ

′
α − vκ2

ατ
′
α + τ ′

α

)
2
(
(1 − vκ2

α)2 + (vκατα)2
) 3

2
(3.11)

Theorem 3.9. Let ψ3(s, v) be a ruled surface in Euclidean 3-space. Then, ψ3(s, v) is not a flat surface.

Proof. Since τα ̸= 0, ψ3(s, v) cannot be flat.

Theorem 3.10. Let ψ3(s, v) be a normal ruled surface with the MOF in Euclidean 3-space. If the
curve α is a cylindirical helix, then ψ3(s, v) is minimal.

The proof is directly obtained from (3.11).

Theorem 3.11. Let ψ3(s, v) be a normal ruled surface with the MOF in E3. Then,

i. s-parameter curves of ψ3(s, v) are asymptotic curves if and only if the curvatures κα and τα of the
curve α are constant.

ii. v-parameter curves of the ψ3(s, v) are asymptotic curves.

Proof. From the definition of asymptotic curves, ⟨ψ3ss, U3⟩ = 0 and ⟨ψ3vv, U3⟩ = 0.

i. From (3.9) and (3.10),

h11 = v√
(1 − vκ2

α)2 + (vκατα)2

(
vκ2

α

(
τακ

′
α − κατ

′
α

)
+
(
2κ′

ατα + τ ′
ακα

))
= 0

Thus,
vκ2

α

(
τακ

′
α − κατ

′
α

)
+
(
2κ′

ατα + τ ′
ακα

)
= 0

since the curvatures κα and τα of the curve α are constant.

ii. Since h22 = 0, v-parameter curves of the ψ3(s, v) are asymptotic.

Theorem 3.12. Let ψ3(s, v) be a ruled surface with the MOF in E3. Then,
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i. s-parameter curves of ψ3(s, v) cannot be geodesic.

ii. v-parameter curves of ψ3(s, v) are geodesic.

Proof. From the definition of geodesic curves, ψ3ss × U3 = 0 and ψ3vv × U3 = 0 for the s and v

parameter.

i. According to (3.9) and (3.10),

ψ3ss × U3 =
(
κα − vκ3

α +
(
1 − vκ2

α

) (
vκ′′

α − vκα
(
κ2
α + τ2

α

)))
Tα

+
(
3κ′

αv − 3κ2
ακ

′
αv

2 − 2v2κ′
ατ

2
α − v2τατ

′
ακα

)
Nα

+
(
vτακα − v2τακα

(
κ2
α + τ2

α

)
+ v2κ′′

ατα
)
Bα

Since Tα, Nα, and Bα are linearly independent, ψ3ss ×U = 0 if and only if κα is a constant and τα = 0.
However, as τα ̸= 0, ψ3(s, v) cannot be a geodesic curve.

ii. From (3.9) and (3.10), ψ3vv × U = 0. Therefore, v-parameter curves are geodesic.

3.4. Normal Surfaces with the Adjoint Curve β

Concerning the MOF, the parameterization of the normal ruled surface is as follows:

ψ4(s, v) = β(s) + vNβ(s) (3.12)

where β is the base curve. If we take the derivatives with respect to the parameter s and v of the
normal ruled surface ψ4(s, v), then

ψ4s = ταTα + v

(
κ′
ατα
κ3
α

− τ ′
α

κ2
α

)
Nα +

(
1 − v

τ2
α

κ2
α

)
Bα

ψ4v = − τα
κ2
α

Nα

ψ4ss = v

(
2τ ′
α − vτα

κ′
α

κα

)
Tα +

(
κ′
α

κα
+ v

(
4κ

′
ατ

2
α

κ3
α

− 5τατ
′
α

κ2
α

))
Bα

+
(
v

(
τα + κ′′

ατα
κ3
α

− τ ′′
α

κ2
α

+ κ′
ατα
κ3
α

− 2κ
′
α

2τα
κ4
α

+ κ′
ατ

′
α

κ3
α

+ τ3
α

κ2
α

)
− τα

)
Nα

ψ4sv = ταTα +
(
κ′
ατα
κ3
α

− τ ′
α

κ2
α

)
Nα − τ2

α

κ2
α

Bα

ψ4vv = 0

(3.13)

Hence, g11 = v2
(
τ2
α + κ′

α
2τ2
α

κ4
α

− 2κ
′
ατατ

′
α

κ3
α

+ τ ′
α

2

κ2
α

+ τ4
α

κ2
α

)
+ κ2

α − 2vτ2
α, g12 = vτα

κ2
α

(
τ ′
α − κ′

ατα
κα

)
, and

g22 = τ2
α

κ2
α

and thus g11g22 − g2
12 = τ2

α

κ4
α

((
κ2
α − vτ2

α

)2 + (vτακα)2
)

≠ 0. Moreover, the unit normal vector
field U4 is provided by

U4 = 1√
(κ2
α − vτ2

α)2 + (vτακα)2

((
κ2
α − vτ2

α

)
Tα − vταBα

)
(3.14)

and the coefficients of the second fundamental form are obtained as:

h11 = 1√
(κ2
α − vτ2

α)2 + (vτακα)2

(
5v

2κ′
ατ

3
α

κα
− 7v2τ2τ ′

α + κακ
′
αταv (1 − v) + 2vκ2

ατ
′
α

)
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h12 = τακ
2
α√

(κ2
α − vτ2

α)2 + (vτακα)2

and h22 = 0. By (2.1), the Gaussian and mean curvatures are provided as follows:

K = − κ8
α(

(κ2
α − vτ2

α)2 + (vτακα)2
)2

and
H = κα

2τ2
α

(
v2τ2

α

(
5κ′

ατ
3
α − 7κατ ′

α

)
+ κ′

αταvκ
2
α

(
1 − v2 + 2τ2

α

)
+ 2vτ ′

ακ
3
α

(
1 − τ2

α

))
(
(κ2
α − vτ2

α)2 + (vτακα)2
) 3

2
(3.15)

Theorem 3.13. Let ψ4(s, v) be a normal ruled surface with the MOF in Euclidean 3-space. Then,
ψ4(s, v) is not a flat surface.

Proof. Since κα ̸= 0, ψ4(s, v) cannot be flat.

Theorem 3.14. Let ψ4(s, v) be a normal ruled surface in Euclidean 3-space. If the curve α is a
cylindrical helix, then ψ4(s, v) is minimal.

Proof. Let the curve α be a cylindrical helix. Then, κα and τα are constant. By (3.15),

v2τ2
α

(
5κ′

ατ
3
α − 7κατ ′

α

)
+ κ′

αταvκ
2
α

(
1 − v2 + 2τ2

α

)
+ 2vτ ′

ακ
3
α

(
1 − τ2

α

)
= 0

Since κ′
α = 0 and τ ′

α = 0, H = 0. Therefore, ψ4(s, v) is minimal.

Theorem 3.15. Let ψ4(s, v) be a normal ruled surface with the MOF in E3. Then,

i. s-parameter curves of ψ4(s, v) are asymptotic curves if and only if the curvatures κα, τα of the curve
α are constant, κα

τα
= 5v

1 − v
, or κα

τα
= 7v

2 .

ii. v-parameter curves of the ψ4(s, v) are asymptotic curves.

Proof. From the definition of asymptotic curves, ⟨ψ4ss, U⟩ = 0 and ⟨ψ4vv, U⟩ = 0.

i. From (3.13) and (3.14), h11 = 0. Thus,(
5v

2κ′
ατ

3
α

κα
− 7v2τ2τ ′

α + κακ
′
αταv(1 − v) + 2vκ2

ατ
′
α

)
= 0

since the curvatures κα and τα of the curve α are constant.

ii. Since h22 = 0, v-parameter curves of the ψ4(s, v) are asymptotic.

Theorem 3.16. Let ψ4(s, v) be a normal ruled surface with the MOF in E3. Then,

i. s-parameter curves of ψ4(s, v) cannot be geodesic.

ii. v-parameter curves of ψ4(s, v) are geodesic.

The proof is similar to the previous theorem about the normal ruled surface ψ3(s, v).

3.5. Binormal Ruled Surface with the Curve α

Concerning the MOF, the parameterization of the binormal ruled surface is as follows:

ψ5(s, v) = α(s) + vBα(s) (3.16)
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where the base curve α. If we take the derivatives with respect to parameter s and v of the binormal ruled

surface ψ5(s, v), then ψ5s = Tα−vταNα+vκ
′
α

κα
Bα, ψ5v = Bα, ψ5ss = κ2

αvTα+
(

1 − vτ ′
α − 2vτα

κ′
α

κα

)
Nα+

v

(
−τ2

α + κ′′
α

κα

)
Bα, ψ5sv = −ταNα + κ′

α

κα
Bα, and ψ5vv = 0. Hence, g11 = 1 + v2

(
κ′
α

2 + τ2
ακ

2
α

)
, g12 =

vκ′
ακα, and g22 = κ2

α and thus g11g22 − g2
12 = κ2

α

(
1 + (vκατα)2

)
≠ 0. Moreover, the unit normal vector

field is provided by
U5 = 1√

1 + (vκατα)2

(
−vκαταTα − 1

κα
Nα

)

and the coefficients of the second fundamental form are obtained as:

h11 = 1√
1 + (vκατα)2

(
v
(
κατ

′
α + 2τακ′

α − κ3
αvτα

)
− κα

)
h12 = τακα√

1 + (vκατα)2

and h22 = 0. From (2.1), the Gaussian and mean curvatures are as follows, respectively:

K = − τ2
α

(1 + (vκατα))2 and H = v
(
κατ

′
α − κ3

αvτα
)

− κα

2
(
1 + (vκατα)2

) 3
2

(3.17)

Theorem 3.17. Let ψ5(s, v) be a binormal ruled surface with the MOF in Euclidean 3-space. Then,
ψ5(s, v) is not a flat surface.

Proof. Since τα ̸= 0, ψ5(s, v) cannot be flat.

Theorem 3.18. Let ψ5(s, v) be a ruled surface in Euclidean 3-space. If the curve α is a cylindrical
helix, then ψ5(s, v) is minimal

The result is directly obtained from (3.17).

Theorem 3.19. Let ψ5(s, v) be a ruled surface in E3 with the MOF. Then,

i. s-parameter curves of ψ5(s, v) are asymptotic curves if and only if the curvatures κα and τα of the
curve α are constant and τα = 1

v2κ2
α

.

ii. v-parameter curves of ψ5(s, v) are asymptotic curves.

The proof is similar to Theorem 3.11.

Theorem 3.20. Let ψ5(s, v) be a ruled surface with the MOF in E3. Then,

i. s-parameter curves of ψ5(s, v) cannot be geodesic.

ii. v-parameter curves of ψ5(s, v) are geodesic.

The proof is similar to Theorem 3.12.

3.6. Binormal Ruled Surface with the Adjoint Curve β

Concerning the MOF, the parameterization of the binormal ruled surface is as follows:

ψ6(s, v) = β(s) + vBβ(s) (3.18)

where the base curve is the adjoint curve β. If we take the derivatives with respect to the parameter

s and v of the binormal ruled surface ψ6(s, v), then ψ6s = v

(
τ ′
α

κα
− κ′

ατα
κ2
α

)
Tα + v

τα
κα
Nα + Bα and
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ψ6v = τα
κα
Tα and thus

ψ6ss = v

(
τ ′′
α

κα
− 2κ

′
ατ

′
α

κ2
α

− κ′′
ατα
κ2
α

+ 2κ
′
α

2τα
κ3
α

− κατα

)
Tα

+
(

−τα + v

(
2 τ

′
α

κα
− κ′

ατα
κ2
α

))
Nα +

(
κ′
α

κα
+ v

τ2
α

κα

)
Bα

ψ6sv = ταTα +
(
κ′
ατα
κ3
α

− τ ′
α

κ2
α

)
Nα − τ2

α

κ2
α

Bα

and ψ6vv = 0 Hence, g11 = κ2
α + v2

(
τ2
α +

(
τα
κα

)′2
)

, g12 = vτα
κα

(
τα
κα

)′
, and g22 = τ2

α

κ2
α

and thus

g11g22 − g2
12 = τ2

α

κ2
α

(
κ2
α + v2τ2

α

)
̸= 0. Moreover, the unit normal vector field U6 is provided by

U6 = 1√
κ2
α + v2τ2

α

(
Nα − τα

κα
vBα

)
and the coefficients of the second fundamental form are obtained as:

h11 = 1√
κ2
α + v2τ2

α

(
−τα

(
κ2
α + v2τ2

α

)
+ 2v

(
κατ

′
α − κ′

ατα
))

h12 = τακα√
κ2
α + v2τ2

α

and h22 = 0. By (2.1), the Gaussian and mean curvatures are as follows:

K = − κ4
α

(κ2
α + v2τ2

α)2 and H = − τα√
κ2
α + v2τ2

α

(3.19)

Theorem 3.21. Let ψ6(s, v) be a binormal ruled surface according to the MOF in Euclidean 3-space.
Then, ψ6(s, v) is not a flat surface.

Proof. Since κα ̸= 0, ψ6(s, v) cannot be flat.

Theorem 3.22. Let ψ6(s, v) be a ruled surface in Euclidean 3-space. Then, ψ6(s, v) cannot be minimal.

The result is obtained directly from 3.19.

Theorem 3.23. Let ψ6(s, v) be a ruled surface with the MOF in E3. Then,

i. s-parameter curves of ψ6(s, v) cannot be asymptotic curves.

ii. v-parameter curves of ψ6(s, v) are asymptotic curves.

The proof is similar to Theorem 3.11.

Theorem 3.24. Let ψ6(s, v) be a ruled surface in E3 with the MOF. Then,

i. s-parameter curves of ψ6(s, v) cannot be geodesic.

ii. v-parameter curves of ψ6(s, v) are geodesic.

The proof is similar to Theorem 3.12.

Example 3.25. Consider the curve α and and the adjoint curve β are provided by the following
parametric equations, respectively:

α(s) =
(

cos
(√

7s
4

)
, sin

(√
7s
4

)
,
3s
4

)
and β(s) =

(
−3

√
7

16 cos
(√

7
4 s

)
,−3

√
7

16 sin
(√

7
4 s

)
,−7

√
7

64 s

)
According to the curves α and β, the graphs of some ruled surfaces are as in Figures 1-6.
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(a) Tangent ruled surface ψ1(s, v) (b) v−parameter curves of ψ1(s, v)
Figure 1. Graph of the tangent ruled surface ψ1(s, v) in (3.1) whose director curve is α with the MOF

(a) Tangent ruled surface ψ2(s, v) (b) v−parameter curves of ψ2(s, v)
Figure 2. Graph of the tangent ruled surface ψ2(s, v) in (3.5) whose director curve is β with the MOF

(a) Normal ruled surface ψ3(s, v) (b) v−parameter curves of ψ3(s, v)
Figure 3. Graph of the normal ruled surface ψ3(s, v) in (3.8) whose the director curve is α with the
MOF
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(a) Normal ruled surface ψ4(s, v) (b) v−parameter curves of ψ4(s, v)
Figure 4. Graph of the tangent ruled surface ψ4(s, v) in (3.12) whose director curve is β with the
MOF

(a) Binormal ruled surface ψ5(s, v) (b) v−parameter curves of ψ5(s, v)
Figure 5. Graph of the binormal ruled surface ψ5(s, v) in (3.16) whose the director curve is α with
the MOF

(a) binormal ruled surface ψ6(s, v) (b) v−parameter curves of ψ6(s, v)
Figure 6. Graph of the binormal ruled surface ψ6(s, v) in (3.18) whose director curve is β with the
MOF

4. Results

We calculated the Gaussian curvature K and the mean curvature H of some special ruled surfaces
generated by the curve α and its adjoint curve β according to the MOF in E3. While the tangent
ruled surfaces are flat, the normal and binormal ruled surfaces are not flat. Even if the frame of the
tangent ruled surface changes, its state of being minimal does not change, so it cannot be minimal.
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We found a minimal condition for the normal and binormal ruled surfaces. Additionally, we searched
s-parameter and v-parameter curves of some special ruled surfaces. Hence, we got some conditions for
the s-parameter curves of some special ruled surfaces to be asymptotic and the v-parameter curves of
some special ruled surfaces to be geodesic.

5. Conclusion

This study utilized the MOF to investigate the curvature characteristics and minimality of certain
ruled surfaces based on a base curve and its adjoint in Euclidean 3-space. It was determined that
tangent-ruled surfaces are flat, while normal and binormal surfaces are not. Additionally, only specific
conditions allow for minimality in normal and binormal ruled surfaces. Future studies could explore
applying these findings to different classes of ruled surfaces or extending the approach to non-Euclidean
spaces. Further research may also analyze the potential applications of these geometric properties
in advanced modeling, which could provide insights into mathematical physics and computer-aided
geometric design.
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[14] N. Yüksel, B. Saltık, On inextensible ruled surfaces generated via a curve derived from a curve
with constant torsion, AIMS Mathematics 8 (5) (2023) 11312–11324.

[15] A. T. Ali, H. S. A. Aziz, A. H. Sorour, Ruled surfaces generated by some special curves in Euclidean
3-Space, Journal of the Egyptian Mathematical Society 21 (3) (2013) 285–294.
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Abstract − Statistical convergence, defined in terms of the natural density of positive
integers, has been studied in many different spaces, such as intuitionistic fuzzy metric spaces,
partial metric spaces, and L-fuzzy normed spaces. The main goal of this study is to define
statistical convergence in L-fuzzy metric spaces (L-FMSs), one of the essential tools for
modeling uncertainty in everyday life. Furthermore, this paper introduces the concept of
statistical Cauchy sequences and investigates its relation with statistical convergence. Then,
it defines statistically complete L-FMSs and analyzes some of their basic properties. Finally,
the paper inquires the need for further research.
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1. Introduction

Zadeh [1] put forward the concept of fuzzy sets, which have been used in many fields, such as decision-
making, artificial intelligence, weather forecasting, and probability theory, and can model problems
involving uncertainty. One of the applications of these fields is fuzzy metric spaces, presented by
Kramosil and Michalek [2] and Kaleva and Seikkala [3]. George and Veeramani [4] reformulated it
with the help of triangular norms since this space is not Hausdorff. Gregori et al. [5] investigated
convergence in fuzzy metric spaces. Atanassov [6] introduced the concept of intuitionistic fuzzy sets,
a generalization of fuzzy sets. Later, Park [7] defined intuitionistic fuzzy metric spaces using fuzzy
metric spaces as derived from George and Veremaani and proved some known results, such as Baire’s
theorem and the uniform limit theorem in the mentioned space. L-fuzzy metric spaces (L-FMSs)
based on specific logical algebraic structures have been characterized by Saadati et al. [8] as a natural
generalization of intuitionistic fuzzy metric spaces. Saadati [9] studied L-fuzzy topological spaces and
proved that L-FMSs have many properties, such as being a normal, separable, and metrizable space.
Many researchers have generalized the classical concepts of topology and functional analysis to fuzzy
metric spaces. L-FMSs provided a more general framework for generalizing the classical concepts to
a fuzzy setting. Motivated by this fact, in this present study, we propose statistical convergence in
L-FMSs.

In 1951, the concept of statistical convergence was introduced by Fast [10] and Steinhaus [11] as
a generalization of the classical convergence. This concept is dependent on the theory of natural
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densities [12]. The concept of statistical convergence was further analyzed by the authors, such as
Salat [13], Fridy [14], Connor [15], and Mursaalen and Edely [16], along with many fields, such as
summability theory [17], operator theory [18], and approximation theory [19]. In 2020, Li et al. [20]
investigated the notion of statistical convergence in fuzzy metric spaces, Savaş [21] researched statistical
convergence of double sequences, and Varol [22] defined statistical convergence in intuitionistic fuzzy
metric spaces. In 2023, Özcan et al. [23, 24] researched statistical convergence of double sequences and
λ-statistical convergence in these spaces, respectively.

The remainder of the present paper is organized as follows: In Section 2, we present some basic
definitions and properties to be needed in the following section. In Section 3, we analyze statistical
convergence in L-FMSs and then study the statistical Cauchy sequences for complete metric spaces.
Furthermore, we research the relationship between these notions and obtain some results and findings.
Finally, we argue that they are essential for future study in this space.

2. Preliminaries

This section presents some basic notions and properties to be required for the following sections.
Throughout this study, the notations N and R represent the set of all positive integers and the set of
all real numbers, respectively.

Definition 2.1. [11] A sequence (ξk) is referred to as statistically convergent to ξ, denoted by
st-lim ξk = ξ, if, for any ε > 0,

lim
n→∞

1
n

|{k ≤ n : |ξk − ξ| ≥ ε}| = 0

where the notation | | represents the cardinality of a set.

Definition 2.2. [12] The natural density of a set A ⊆ N, denoted by δ(A), is defined by

δ(A) := lim
n→∞

|{k ≤ n : k ∈ A}|
n

where the notation | | represents the cardinality of a set.

Definition 2.3. Let L be a lattice equipped with a partial order ⪯L. Then, (L, ⪯L) is referred to as a
complete lattice if sup S ∈ L and inf S ∈ L, for all subsets S of L.

Across this study, L represents the pair (L, ⪯L). Moreover, the notations 1L and 0L denote supL and
inf L, respectively.

Definition 2.4. [1, 25] Let L be a complete lattice, E be a non-empty universal set, and µ : E → L
be a mapping. Then, the mapping µ is called an L-fuzzy set on E, which for all e ∈ E, µ(e) specifies
the grade of belonging of e to the L-fuzzy set µ.

Lemma 2.5. [27] The partially ordered set (L∗ ⪯L∗) defined by

L∗ = {(α, β) : α, β ∈ [0, 1] and α + β ≤ 1} and (α, β) ⪯L∗ (γ, ω) ⇔ α ≤ γ and β ≥ ω

is a complete lattice.

A triangular norm T : [0, 1]2 → [0, 1] on the complete lattice ([0, 1], ≤) is a function that is commutative,
increasing, and associative and satisfies the condition T (1, α) = α, for all α ∈ [0, 1]. Using a complete
lattice L, this concept have been generalized as follows:

Definition 2.6. [27] Let L be a complete lattice and φ : L × L → L be a function. Then, φ is called
a triangular norm (t-norm) on L if the following are satisfied: For all α, β, γ, ω ∈ L,

i. φ(β, α) = φ(α, β)
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ii. φ(α, φ(β, γ)) = φ(φ(α, β), γ)

iii. φ (α, 1L) = φ (1L, α) = α

iv. If γ ⪯L ω and α ⪯L β, then φ(α, γ) ⪯L φ(β, ω)

Definition 2.7. [27] Let L be a complete lattice. Then, the function N : L → L is called a negator
on L if it satisfies the following conditions:

i. N is a decreasing function

ii. N (1L) = 0L and N (0L) = 1L

In addition, N is referred to as an involutive negator if it provides the condition N (N (α)) = α, for all
α ∈ L.

One of the well-known examples of involutive negators is the function N : [0, 1] → [0, 1] defined by
N (α) = 1 − α where ([0, 1], ≤) is a complete lattice.

Definition 2.8. [8] Let X be a non-empty set and φ be a continuous t-norm on L. An L-fuzzy
metric is a mapping µ : X2 × (0, ∞) → L satisfying the following conditions: For all t, s > 0 and for all
α, β, γ ∈ X,

i. µ(α, β, t) ≻L 0L

ii. µ(α, β, t) = 1L if and only if α = β

iii. µ(α, β, t) = µ(β, α, t)

iv. φ(µ(α, β, t), µ(β, γ, s)) ⪯L µ(α, γ, t + s)

v. µαβ : (0, ∞) → L is continuous

Moreover, the triple (X, µ, φ) is called an L-fuzzy metric space (L-FMS).

Definition 2.9. [8] Let N be a negator on L, the triple (X, µ, φ) be an L-FMS, α ∈ X, ε ∈ L−{0L, 1L},
and t > 0. Then, the set

B(α, N (ε), t) := {β ∈ X : µ(α, β, t) ≻L N (ε)}

is called the open ball with centre α and radius N (ε).

Example 2.10. [8] Let (X, d) be a metric space, µ be an L-fuzzy set on X2 × (0, ∞) defined by

µ(ξ, η, t) = htn

htn + md(ξ, η)
where h, n, m > 0, and φ be a continuous t-norm described by φ(α, β) = αβ, for all α, β ∈ L. Then,
the function µ satisfies the conditions in Definition 2.8. Thus, (X, µ, φ) is an L-FMS.

Definition 2.11. [8] Let (ξk) be a sequence in an L-FMS (X, µ, φ).

i. (ξk) is called convergence to ξ ∈ X, denoted by ξn
L−→ ξ, if, for all ε ∈ L − {0L} and t > 0, there

exists a kε ∈ N such that for all k ≥ kε, µ(ξk, ξ, t) ≻L N (ε).

ii. (ξk) is called a Cauchy sequence in (X, µ, φ), if, for all ε ∈ L− {0L} and t > 0, there exists a kε ∈ N
such that for all k, n ≥ kε, µ(ξk, ξn, t) ≻L N (ε).

iii. (X, µ, φ) is complete if and only if every Cauchy sequence in (X, µ, φ) is convergent.

Note 2.12. Let φ be a continuous t-norm on L and N be an involutive negator on L. Then, for all
ε ∈ L − {0L, 1L}, there exists an α ∈ L − {0L, 1L} such that φ(N (α), N (α)) ≻L N (ε).
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3. Statistical Convergence in L-Fuzzy Metric Spaces

This section analyzes relations between statistical convergence and classical convergence in L-FMSs.
In addition, it presents a characterization of statistical convergence with subsequences.

Definition 3.1. Let (ξk) be sequence in an L-FMS (X, µ, φ). Then, (ξk) is referred to as statistical
convergent to ξ ∈ X, denoted by ξk

stL−−→ ξ, if, for all ε ∈ L − {0L} and t > 0,

δ ({k ∈ N : µ(ξk, ξ, t) ⊁L N (ε)}) = 0

Here, the element ξ is called a statistical limit point of the sequence (ξk).

Example 3.2. Let µ be an L-fuzzy set on R2 × (0, ∞) and φ be a continuous t-norm on L defined by

µ(ξ, η, t) = t

t + |ξ − η|
and φ(α, β) = αβ

Then, (R, µ, φ) is L-FMS. Consider the sequence (ξk) defined by

ξk =
{

5, ∃n ∈ N ∋ k = n2

0, otherwise

and the set
A = {k ∈ N : µ(ξk, 0, t) ⊁L N (ε)}

for all ε ∈ L− {0L} and t > 0. Then, (ξk) is statistical convergent to 0 as δ(A) = 0, for all ε ∈ L− {0L}
and t > 0.

Lemma 3.3. Let (X, µ, φ) be an L-FMS. Then, for all ε ∈ L−{0L} and t > 0, the following conditions
are equivalent:

i. δ ({k ∈ N : µ(ξk, ξ, t) ⊁L N (ε)}) = 0

ii. δ ({k ∈ N : µ(ξk, ξ, t) ≻L N (ε)}) = 1

The proof can be readily observed from Definition 3.1 and density properties.

Theorem 3.4. Let (ξk) be a sequence in a L-FMS (X, µ, φ). If (ξk) is statistical convergent, then its
statistical limit point is unique.

Proof. Let ξk
stL−−→ ℓ1 and ξk

stL−−→ ℓ2. From Note 2.12, for all r ∈ L − {0L, 1L}, there exists an
ε ∈ L − {0L, 1L} such that φ (N (ε), N (ε)) ≻L N (r). Assume that

ℓ3 ∈ B

(
ℓ1, N (ε), t

2

)
∩ B

(
ℓ2, N (ε), t

2

)
Then,

µ(ℓ1, ℓ2, t) ⪰L φ
(
µ

(
ℓ1, ℓ3, t

2
)

, µ
(
ℓ2, ℓ3, t

2
))

⪰L φ (N (ε), N (ε))

≻L N (r)

which is a contradiction. Thus,

B

(
ℓ1, N (ε), t

2

)
∩ B

(
ℓ2, N (ε), t

2

)
= ∅

Hence,
B

(
ℓ2, N (ε), t

2

)
⊆

{
ℓ3 ∈ X : µ

(
ℓ1, ℓ3,

t

2

)
⊁L N (ε)

}



Journal of New Theory 49 (2024) 83-91 / Statistical Convergence in L-Fuzzy Metric Spaces 87

Then, {
k ∈ N : µ

(
ξk, ℓ2,

t

2

)
≻L N (ε)

}
⊆

{
k ∈ N : µ

(
ξk, ℓ1,

t

2

)
⊁L N (ε)

}
Since

1 = δ

({
k ∈ N : µ

(
ξk, ℓ2,

t

2

)
≻L N (ε)

})
≤ δ

({
k ∈ N : µ

(
ξk, ℓ1,

t

2

)
⊁L N (ε)

})
= 0

a contradiction occurs. Consequently, ℓ1 = ℓ2.

Theorem 3.5. Let (ξk) be a sequence in an L-FMS (X, µ, φ) and ξ ∈ X. If (ξk) convergent to ξ, then
(ξk) is statistically convergent to ξ.

Proof. Let (ξk) is convergent to ξ ∈ X. Then, there exists a kε ∈ N such that µ(ξk, ξ, t) ≻L N (ε), for
all k > kε, ε ∈ L − {0L}, and t > 0. Therefore, there are just a finite number of terms in the set

A = {k ∈ N : µ(ξk, ξ, t) ⊁L N (ε)}

Since the property of natural density “finite subsets of natural numbers has density zero”, δ(A) = 0.
Therefore, (ξk) is statistical convergent to ξ.

The converse of the Theorem 3.5 is not always true (see Example 3.6).

Example 3.6. Consider the L-FMS in Example 3.2 and the sequence (ξk) defined as follows:

ξk =
{

9, ∃n ∈ N ∋ k = n2

6, otherwise

It can be observed that (ξk) is not convergent to 6 but statistical convergent to 6 because

δ({k ∈ N : µ(ξk, 6, t) ⊁L N (ε)}) = 0

Theorem 3.7. Let (ξk) be a sequence in an L-FMS (X, µ, φ). Then, ξk
stL−−→ ξ if and only if ξkj

L−→ ξ

such that δ(A) = 1 where A = {kj : j ∈ N}.

Proof. Assume that ξk
stL−−→ ξ. Let

Sj(q) =
{

N, j = 1
{k ∈ N : µ(ξk, ξ, q) ≻L N (wj)}, j ≥ 2

for all q > 0 and j ∈ N. Thus, Sj+1(q) ⊂ Sj(q), for all q > 0 and j ∈ N. Since (ξk) is statistical
convergent to ξ, then

δ(Sj(q)) = 1 (3.1)

Let t1 ∈ S1(q). Since δ(S2(q)) = 1, then there is a number t2 ∈ S2(q) such that t2 > t1 and
1
n

∣∣ {k ≤ n : µ(ξk, ξ, q) ≻L N (w2)}
∣∣ >

1
2

for all n ≥ t2. By (3.1), δ(S3(q)) = 1. Thus, there exists a t3 ∈ S3(q) such that t3 > t2 and
1
n

∣∣ {k ≤ n : µ(ξk, ξ, q) ≻L N (w3)}
∣∣ >

2
3

for all n ≥ t3 and the procedure is continued similarly. Then, by induction, we can construct a sequence
of increasing indexes of positive integers (tj) such that tj ∈ Sj(q). Besides,

1
n

∣∣ {k ≤ n : µ(ξk, ξ, q) ≻L N (wj)}
∣∣ >

j − 1
j

(3.2)

for all n ≥ tj and j ∈ N. Moreover, (wj) is a decreasing sequence in L − {0L} such that N (wj) → 1L.
Suppose that
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S := {k ≤ n : 1 < k < t1} ∪

 ⋃
j∈N

{k ∈ Sj(q) : tj ≤ k < tj+1}


Since Sj+1(q) ⊂ Sj(q) and due to (3.2), S = {kj : j ∈ N}. Let k > t2. Then, there exists a j ∈ N such
that tj ≤ k < tj+1. Hence,

|{k ≤ n : k ∈ S}|
n

≥ |{k ≤ n : k ∈ Sj(q)}|
n

= |{k ≤ n : µ(ξk, ξ, q) ≻L N (wj)}|
n

>
j − 1

j

for all n ≥ tj . As n, j → ∞,

lim
n→∞

|{k ≤ n : k ∈ S}|
n

= 1

i.e., δ(S) = 1. Let w ∈ L − {0L} and j ∈ N such that w ≻L wj . Such a number j always exists since
wj → 0L. Let k ≥ tj and k ∈ S. Then, according to the definition of S, a number t ≥ j exists such that
tj ≤ km < tj+1 and km ∈ Sj(q). Thus, for all w ∈ L − {0L} and for all km ≥ tj such that km ∈ Sj(q),

µ(ξkm , ξ, t) ≻L N (wj) ≻L N (w)

Consequently, the sequence (ξkj
) is convergent to ξ in the L-FMS.

Conversely, suppose that the subsequence (ξkj
) is convergent to ξ in the L-FMS such that δ(A) = 1

where A = {kj : j ∈ N}. Then, there exists n0 ∈ N such that µ(ξkj
, ξ, q) ≻L N (ε), for all kj ≥ n0.

Therefore, T = {kj ∈ A : µ(ξkj
, ξ, q) ⊁L N (ε)} is a finite set, which implies that δ(T ) = 0. Since

δ(A) = 1, δ({kj ∈ A : µ(ξkj
, ξ, q) ≻L N (ε)}) = 1. Because

{kj ∈ A : µ(ξkj
, ξ, q) ≻L N (ε)} ⊆ {k ∈ N : µ(ξk, ξ, q) ≻L N (ε)}

then
δ({k ∈ N : µ(ξk, ξ, q) ≻L N (ε)}) = 1

Consequently, the sequence (ξk) is statistical convergent to ξ in the L-FMS.

4. Completeness in L-Fuzzy Metric Spaces

This section defines statistical Cauchy sequences in an L-FMS and complete L-FMSs by them. Then,
it provides the crucial relations.

Definition 4.1. Let (ξk) be sequence in an L-FMS (X, µ, φ). Then, (ξk) is referred to as a statistically
Cauchy sequence if, for all ε ∈ L − {0L} and t > 0, there exists an n ∈ N such that

δ ({k ∈ N : µ (ξk, ξn, t) ⊁L N (ε)}) = 0

Proposition 4.2. Every Cauchy sequence in an L-FMS (X, µ, φ) is a statistical Cauchy sequence.
However, the converse is not always true.

The proof is similar to the proof of Theorem 3.5.

Theorem 4.3. Let (ξk) be a sequence in an L-FMS (X, µ, φ). Then, the following conditions are
equivalent:

i. (ξk) is a statistical Cauchy sequence in (X, µ, φ)

ii.
(
ξkj

)
is a Cauchy sequence in (X, µ, φ) such that δ(A) = 1 where A = {kj : j ∈ N}
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The proof is similar to the proof of Theorem 3.7.

Theorem 4.4. Let (ξk) be a sequence in an L-FMS (X, µ, φ). If (ξk) is statistically convergent, then
(ξk) is a statistically Cauchy sequence in (X, µ, φ).

Proof. Let ξk
stL−−→ ξ. From Note 2.12, for all r ∈ L − {0L, 1L}, there exists an ε ∈ L − {0L, 1L}

such that φ (N (ε), N (ε)) ≻L N (r). Since δ ({k ∈ N : µ (ξk, ξ,t) ⊁L N (ε)}) = 0,
(
ξkj

)
is convergent to

ξ from Theorem 3.7. Hence, there exists a kj0 ∈ {kj : j ∈ N} such that µ
(
ξkj

, ξ, t
2

)
⊁L N (ε), for all

kj ≥ kj0 . Then,

µ
(
ξk, ξkj0

, t
)

⪰L φ

(
µ

(
ξk, ξ,

t

2

)
, µ

(
ξ, ξkj0

,
t

2

))
⪰L φ(N (ε), N (ε)) ≻L N (r)

Thus, δ({k ∈ N : µ
(
ξk, ξkj0

, t
)
⊁L N (r)}) = 0. Consequently, (ξk) is a statistically Cauchy sequence in

(X, µ, φ).

Definition 4.5. Let (X, µ, φ) be an L-FMS. If every statistical Cauchy sequence in (X, µ, φ) is statistical
convergent, then (X, µ, φ) is referred to as a statistically complete L-FMS.

Theorem 4.6. Let (X, µ, φ) be an L-FMS. If (X, µ, φ) is a statistically complete L-FMS, then it is a
complete L-FMS.

Proof. Let (ξk) be a Cauchy sequence in L-FMS (X, µ, φ). From Note 2.12, for all r ∈ L − {0L, 1L},
there exists an ε ∈ L − {0L, 1L} such that φ (N (ε), N (ε)) ≻L N (r). Thus, there exists a K0 ∈ N such
that

µ

(
ξk, ξn,

t

2

)
≻L N (ε)

for all k, n ≥ K0. Since Proposition 4.2, it can be observed that (ξk) is a statistical Cauchy sequence
in (X, µ, φ). Since (X, µ, φ) is a statistically complete L-FSM, (ξk) is statistical convergence to a ξ ∈ X.
Therefore, by Theorem 3.7, there exists a subsequence (ξkj

) of (ξk) such that ξkj
→ ξ. Hence, there

exists a kj0 ∈ {kj : j ∈ X} with kj0 ≥ K0 such that

µ

(
ξkj

, ξ,
t

2

)
≻L N (ε)

for all kj ≥ kj0 . Therefore,

µ(ξk, ξ, t) ⪰L φ
(
µ

(
ξk, ξkj

, t
2

)
, µ

(
ξkj

, ξ, t
2

))
⪰L φ(N (ε), N (ε))

≻L N (r)

for all k ≥ kj0 ≥ K0. Therefore, (ξk) is convergent to ξ. Consequently, (X, µ, φ) is complete.

5. Conclusion

We were motivated to write this paper in light of Fast, Steinhaus, Zadeh, and the articles that followed
these studies. In this paper, we introduced statistical convergence in L-FMSs, a generalization of
convergence in L-FMSs, a mathematical tool for modeling uncertainty, and investigated the relations
of essential notions. Then, we proposed the statistical Cauchy sequences and the concept of complete
metric spaces with their help. Through this paper, our most significant target is stimulating authors’
motivation in this critical space. In future studies, concepts such as ideal convergence, lacunary ideal
convergence, and the other generalizations of statistical convergence can be analyzed in the space in
question. Besides, with the help of this study, the relationship between statistical convergence and
summability theory can be discussed.
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[24] A. Özcan, G. Karabacak, A. Or, λ-statistical convergence in intuitionistic fuzzy metric spaces, in F.
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