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Research Article  

MODELLING AND EXERGETIC TECHNO-ECONOMIC ANALYSIS OF A SYSTEM FOR 

HYDROGEN PRODUCTION FROM EMPTY BANANA FRUIT BUNCH 

Akpaduado Friday JOHN*1, Joseph Oyekale OYETOLA2 

1Department of Mechanical Engineering, Federal University of Petroleum Resources Effurun, PMB 1221 

Effurun, Nigeria. Orcid1: https://orcid.org/ 0000-0002-8220-7093 
2Department of Mechanical Engineering, Federal University of Petroleum Resources Effurun, PMB 1221 

Effurun, Nigeria. https://orcid.org/ 0000-0003-4018-4660 
* Corresponding author; afj223@lehigh.edu 

Abstract: One of the most effective and reliable methods for generating hydrogen fuel using biomass is 
the gasification method. However, using different biomass feedstock can withstand syngas production, 

which can be utilized for several applications. The study investigated the feasibility of hydrogen from 

Empty Banana Fruit Bunch (EBFB) biomass and the energetic techno-economic analyses of biomass 

gasification plants with a developed system simulation model, Aspen Plus simulator V11. Five chemical 

reactions were used in the production process and were simulated in ASPEN Plus simulator through 
biomass gasification method which aimed to remove C, CO, CO2, CH4, and H2O to convert them into 

hydrogen gas. However, the total exergy-out divided by the total exergy-in gives exergy efficiency. 

Hence, total energy-out subtracted from total exergy-in depicts exergy destruction. The exergoeconomic 
method utilized in the exergoeconomic analyses is the Specific Cost method (SPECO). The results 

affirmed that 80.465 kg/h of H2 can be produced from 2000 kg/h of empty banana fruit bunch at every 
39.92 k mol/h mole flow of Empty Banana Fruit Bunch (EBFB). However, at a temperature below 900 

degrees Celsius (o C), CO decreases, and CO2 increases. Above 1000 degrees Celsius (o C), CO 

increases hence, decreasing CO2 emission. The system total exergy in, total exergy out, percentage 
exergy efficiency, and exergy destruction are 4534.77 kJ/kg, 3857.295 kJ/kg, 0.8506 %, and 677.475 

kJ/kg. Hence, system exergy stream cost rate, component-related cost rate, component-related cost 
difference, and component exergoeconomic factor are 407527.644 $/h, 1555.57 $/h, 0.5679 %, and 

0.9089 % respectively. Further studies may concentrate on reducing CO through regulated temperature 

and pressure differences to increase the quantity of hydrogen production. 

Keywords: Biomass; sensitivity analysis; empty banana fruit bunch; combustor; gasifier; separator; 

exergy; exergoeconomic 

Received: March 8, 2024 Accepted: December 16, 2024 

1. Introduction 

Hydrogen fuel has been recommended as an alternative to reduce the reliance on fossil fuels. 

Investigations confirmed that over 92.5 billion kilograms of hydrogen are being produced annually and 

that 76 % of hydrogen production globally is from reforming natural gas via steam methane reformer, 

22 % from coal gasification (primarily from China), and only 2 % from water electrolysis, respectively 

[1-2]. It has been proven beyond a reasonable doubt that hydrogen fuel is a clean energy source that 

does not damage the environment and liberates only water as effluent when utilized in a fuel cell system. 

Hydrogen can however be obtained via various renewable energy raw materials [3-5]. Renewable energy 

sources like solar, hydro, wind, and biomass, along with domestic resources like nuclear power and 

natural gas. The above attributes and much more increase the importance of this fuel as a better and 

more reliable fuel, especially for industrial use, transportation, power generation, grid balancing, 

petrochemical, and refinery processing. Its usefulness can never be overemphasized, fueling cars, 

running generators in houses, for portable power, etc. Due to its nature, hydrogen can be used to move, 

store, and deliver energy produced from other sources [6]. Ping et al. analyzed the significant impact of 
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hydrogen on the economy in clean energy technologies [7]. Hence, a detailed description of a 

dehydrogenation route that applies to different non-food-related biomass waste. Most especially wheat 

straw, corn straw, rice straw, reed, bagasse, bamboo sawdust, and cardboard. His observation affirmed 

the possibility of H2 yields up to 95 % from a one-pot, two-step reaction with a 69 ppm molecularly 

iridium catalyst, imidazoline moiety in formic acid, through a 1 v % dimethyl sulfoxide of biomass. 

Hydrogen does not exist alone. It is extracted from other elements in the molecule in which it occurs. 

Investigation proved that hydrogen exists in numerous sources hence, different methods of producing 

hydrogen [8]. Biomass is a renewable organic resource. This technology includes agriculture crop 

residues e.g., corn stove or wheat straw, forest residues, special crops grown specifically for energy 

consumption e.g., switch grass or willow trees, organic municipal solid waste, and animal wastes. 

Biomass produces hydrogen along with other by-products by gasification. Literature confirms that the 

combination of agricultural biomass, heat, steam, and oxygen at temperatures above 700 degrees 

Celsius, without combustion, liberates hydrogen [10-13]. This process is known as hydrogen production 

through biomass gasification (Figure 1). 

 

Figure 1.  Hydrogen production through biomass gasification 

 Gasification is a key technology in hydrogen production, wherein biomass undergoes thermal 

decomposition in a low-oxygen environment rather than combustion. This process utilizes a controlled 

methodology to convert biomass into hydrogen and a variety of other gaseous by-products. By carefully 

managing temperature, pressure, and reactant flow, the gasification process optimizes the yield and 

purity of hydrogen, making it a viable option for sustainable energy solutions [14-15]. Chen et al. (2010) 

produced hydrogen using the biomass gasification method in supercritical water with the help of 

concentrated solar energy [9]. Agricultural residue like rice husks, cereal straws, coconut husks, maize 

cob, empty banana bunch, etc. is normally utilized for gasification through biomass. Others include 

charcoal, wood waste, peat, and wood. Marcantonio et al. (2019) considered biomass feedstock to 

generate syngas consisting of H2, CO, and CH4, which can also be utilized for several applications. 

Investigations have revealed that food waste valorization to hydrogen is a viable energy source with 

potential economic benefits [20-21]. The concept of exergy analysis elucidated and showcased causes 

for the inefficient performance of components. This concept allows accurate quality energy 

determination for the causes and reveals losses even when determining the residues in heat generation 

processes in a thermal plant. This deals with the performance of chemical processes. Exergy consists of 
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four elements: physical, chemical, kinetic, and potential energies. The combination of exergy analysis 

and economic principles, such as assisting in the verification of cost flow in a system and optimizing 

the system performance is termed exergoeconomic [22]. In upgraded exergoeconomic analysis, the 

specific capability of various industrial processes is utilized to find the exergy destruction hence, 

inversion cost rates to step up the sustainability of a plant. The exergoeconomic method adopted in the 

energy-economic analysis is the Specific Cost method (SPECO). Fuel and product of components are 

defined using direct capturing of a systematic value of all the stream exergy entering and subtracting 

from all the stream exergy leaving the component. The component-related cost difference and rate 

average cost per exergy unit production are calculated based on SPECO principles. Cabezas et al. (2020) 

affirmed that exergy efficiency gives more realistic specifications than the corresponding energy 

efficiency because exergy efficiency provides more understanding of performance. Results affirmed that 

exergy analysis methods of availability improve greater efficiency to define the second operational flow 

efficiency [8]. Xu et al. (2018) analyzed the exergy analysis of hydrogenation via gasification of steam 

through biomass as a renewable source. The steam biomass rate flow rate initially increases and finally 

decreases the efficiency due to exergy. Moreover, reaction catalysts may have positive, negative, or 

negligible efficiency issues due to exergy, whereas residence time generally has a slight efficiency issue 

due to the exergy [26-28]. Olusegun et al. (2023) investigated the generation of biodiesel from rubber 

seed oil by comparing the ethyl-based HCR and MSR. The Aspen Hysys engineering tool was utilized 

in the simulations to investigate the ethanolysis process for RSO in both HCRs and MSRs. The results 

affirmed that HCR can convert 99.01 % of RSO compared to the MSR’s 94.85 % [25]. Chen et al. 

(2010) adopted a concentrated solar energy method with the help of superficial water in a gasification 

plant for hydrogen [9]. Arafat & Dincer, (2016) produced his hydrogen from oil palm biomass with the 

help of a water gas-shift gasification method [1]. Marcantonio et al. (2019) got their hydrogen from 

agricultural feedstock by adopting biomass gasification methods. Nevertheless, researchers have 

extensively addressed fossil fuel substitutes from both individual and institutional perspectives through 

their numerous works. Hence, despite their studies, the following main points are however pointed out 

as a base factor for Empty Banana Fruit Bunch (BEFB) consideration; 

• Less attention has been given to Empty Banana Fruit Bunch (BEFB) for hydrogen production 

through a series of perceptions as to the levels of implementation of their research. During 

combustion, Empty Banana Fruit Bunch (BEFB) minimal carbon dioxide is emitted, 

• Availability of Empty Banana Fruit Bunch (BEFB), less or no pollution of the immediate 

environment and the agricultural biomass is not in competition with human food, 

• The use of renewable energy sources over fossil fuels reduces carbon emissions, promoting clean 

energy and protecting the ozone layer. Empty Banana Fruit Bunch (BEFB) can generate high 

energy efficiency due to its ability to emit low or no net CO2 during combustion [16-20].  

To bridge this gap, this study aims to apply the Aspen Plus software to model and assess the 

feasibility of a system for hydrogen production from empty banana fruit bunch for electricity generation 

and to adopt a conventional exergy and exergoeconomic analyses calculator in solving thermal losses 

in the gasification power plant. The specific objectives are; 

i. To model and simulate a hydrogen production system from an empty banana fruit bunch 

(EBFB) using Aspen plus simulator; 

ii. To investigate the sensitivities of some system components such as gasifier, combustor, 

and separator to variations in thermodynamic properties such as temperature and 

pressure; 

iii. To assess the operational technicality of the system hence, system components by 

utilization of a conventional exergy analysis approach; 
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iv. To assess the economic system performance using a classical energy-economic method. 

Section two of the paper outlines the methodology used in this study. Results are presented and 

discussed in section three, and the main conclusions are summarized in section four. 

2. Methodology 

2.1. Simulation model 

Assumption 

The following depict assumptions were made in modeling the gasification process (Marcantonio 

et al., 2019), (Lim et al., 2018). 

• Drying and pyrolysis did not occur instantaneously, and volatile products mainly consist of H2, 

N2, O2, CO2, CO, CH4, and H2O, 

• The process is in steady-state and isothermal, 

• No pressure drop and heat loss were considered during the simulation (all gases behave ideally). 

All considered components are in chemical equilibrium, 

• Sulfur, nitrogen, and chlorine in the biomass flow into the gas phase of the process. The char/ash 

is a hundred percent carbon. 

2.2. Process scheme 

Figure 2 depicts the schematic of the gasification of biomass for the extraction of hydrogen in 

the study. The biomass feedstock adopted was Banana Empty Fruit Bunch (BEFB). The RSTOIC 

(drying) and the RYIELD stage simulate the first part of the gasification process and produce H2, CH4, 

H2O, CO, CO2, and ash.  

      

Figure 2. Schematic of biomass gasification of the hydrogen production process 
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Table 1. Aspen plus flow-sheet unit operations 

Aspen plus name Block ID Function 

RSTOIC RSTOIC Rstoic reactor (dryer) – simulates the biomass by drying the biomass 

before going into a separator (SEP-1). 

SEP SEP Separator: SEP-1; separates the biomass into two streams before entering 

the Ryield reactor. N2 + H2O in a stream and dry biomass in another 

stream.  

SEP-2: separates the atmospheric air, delivers N2 into the RSTOIC and 

O2 into the COMBUSTOR. 

SEP-3; extracts pure hydrogen, and syngas with 75 % efficiency 

HEATER  HEATER Heater-1 increases atm air and delivers into SEP-2. 

Heater-2 increases atm air and delivers into the combustor. 

R-YIELD DECOMP Yield reactor - converts the non-conventional stream dry-biomass from 

SEP-1 into its conventional components (C, H, O). 

SSplit CYCLONE SSplit- removes ash from the pyrolysis before entering the COOLER-1 

and delivers the conventional biomass into the COMBUSTOR. 

COOLER COOLER Cooler-1 lowers the ash temperature; 

Cooler-2 lowers the gasifier product temperature. 

RGIBB’S COMBUSTOR 

GASIF 

 

Combustor (Gibb's free energy reactor)-combines the conventional 

biomass from the SSplit with O2 from SEP-2 at high temperature. Gibb's 

free energy reactor (simulates, partial oxidation, and gasification) at 

restricted chemical equilibrium of the specified reaction aligns the 

syngas composition in specifying a temperature approach for each 

reaction. 

 

  

 

Figure 3. Investigated system components Flow-sheet 

The simulation flow sheet developed through a sequence of stages with Aspen Plus is depicted in 

Figure 3. Table 1 depicts each unit of operational processes in the gasification plant. The atmospheric 

air at 25 degrees Celsius (o C) temperature and pressure of 1 bar flow at 400 kgh-1 flow rate into the 

heater block (HEATER-1), the heater increases the temperature to about 150 degrees Celsius (o C) at a 

constant pressure of 2 bar. Increase holding pressure constant at atmospheric temperature, heater-1 

delivers the hot air containing nitrogen and oxygen gases into the separator (FLASH-2). At a Steady 
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flow rate of 2000 kghr-1, the biomass stream, constituted of Banana Empty Fruit Bunch (BEFB), goes 

into the Rstoic block (RSTOIC reactor) at 150 degrees Celsius (o C) and 1 bar. The RSTOIC reactor 

stimulates the biomass by drying (with nitrogen, N2 from SEP-1) into dry biomass before entering into 

the separator-1 (SEP-1). The dry biomass from the stock is at 150 degrees Celsius (o C) and 1 bar enters 

the separator (FLASH). The separator of the same pressure and temperature splits the stream from the 

dryer into two streams. The first stream (stream 3) contains (N2 + H2O) nitrogen gas and the remaining 

quantity of water from the dry biomass because water is not completely removed from the dryer (stock). 

The second stream (stream 4) at the same pressure and temperature containing the dry biomass enters 

the DECOMP block (RYIELD reactor). The yield reactor, at 700 degrees Celsius (o C) and 1.5 bar 

converts the non-convectional dry biomass into conventional components (pyrolysis). The cyclone is an 

ash removal block. It removes all available ash from the pyrolysis (YIELD reactor) and delivers ash 

through the ash removal stream into a cooler-1 (Requil reactor) at the same temperature and pressure. 

The cooler-2 block drastically reduces the temperature to 400 degrees Celsius (o C) and pressure of 5 

bar. Hence, the conventional elements (C, H, O), from the cyclone enter the combustor block at 900 

degrees Celsius (o C) and 4 bar. Oxygen gas O2 from the separator (FLASH -2) at 150 degrees Celsius 

(o C) and 1 bar for convectional elements from the cyclone in the combustor (COMB block). Combustor 

products at 900 degrees Celsius (o C) and 4 bar enter the gasifier (Gibb’s free reactor). The dry-biomass 

conventional elements (C, H, O) are heated at a temperature above 700 degrees Celsius (o C) say degrees 

Celsius (o C) at 4 bars without combustion, and combustion products are made to enter into the Gibb’s 

free reactor (gasifier). At 150 degrees Celsius (o C) and 2 bar, oxygen O2 gas from atmospheric air from 

HEATER-2 into the gasifier for gasification. The heater-2 increases the atmospheric air to liberate O2 

at 150 degrees Celsius (o C) and 2 bar and delivers O2 into the gasifier for the gasification process at 950 

degrees Celsius (o C) and 5 bar. Proper process simulation occurs in Gibb’s reactor for individual 

reactions at 950 degrees Celsius (o C) and 5 bar. This temperature is preferable in the simulation process 

because at temperatures higher than 1000 degrees Celsius (o C), there is an increase in the amount of 

carbon monoxide, and CO produced and a decrease in the amount of CO2 produced. On the other hand, 

at a temperature below 900 degrees Celsius (o C), a higher amount of CO2 is produced, hence, lessening 

the amount of CO2, and CO produced (Zhenling et al., 2017). The gasifier product is discharged from 

the gasifier at 950 degrees Celsius (o C) and 5 bar then enters a cooler (COOLER-3). At constant 

pressure, the cooler reduces the temperature to about 40 degrees Celsius (o C) and 5 bar before entering 

a separator (SEP-3). This is done to reduce the temperature as a higher temperature can damage the 

separator or reduces the separator’s efficiency. At the separation unit, a SEP ID block (FLASH-3) unit 

is required to gain high hydrogen purity at 40 degrees Celsius (o C) and 5 bar. Moreover, the 

characteristics and features of the apparatus used in the simulation were determined from the optimized 

values found in the literature for these membranes. The separator (FLASH -3) at 40 degrees Celsius (o 

C) and 5 bar split the gasifier product into two streams (stream 18 & stream 19). Stream 18 depicts the 

percentage of hydrogen H2 and a minor fraction of other gases produced. The other stream (stream 19) 

reviews the amount of CO2, CO, H2O, and other gas released. The equilibrium reactions are restricted 

five consecutive equations are formed in combustion and gasifier Tables 4 & 5 [23, 24 & 28].  

Physical and chemical properties of EBFB 

  Five chemical reactions were employed in combustion and gasification processes to produce 

highly purified hydrogen gas. Table 2 presents the ultimate and proximate analysis of simulated data for 

banana empty fruit bunch (BEFB) from kinds of literature (Sugumaram et al., 2012), (Marcantonio et 

al., 2019). These reactions were simulated using ASPEN Plus, to remove carbon (C), carbon monoxide 

(CO), carbon dioxide (CO2), methane (CH4), and water (H2O) to convert them into hydrogen gas. The 
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combustion process consists of three chemical reactions, while the gasification process includes two 

reactions. 

Table 2. General physical and chemical properties of empty banana fruit bunch (EBFB)   

Properties   
Biomass value  

Empty fruit bunch (EFB) 

Ultimate analysis  

Carbon (%)  41.75       

Oxygen (%) 51.73 

Hydrogen (%)    5.10 

Nitrogen (%)     1.23 

Sulfur (%) 0.18 

Proximate analysis  

Fixed carbon (%)    5.95 

Moisture content (%)  5.21 

Volatile matter (%)    78.83 

Ash 15.73 

Sulfanal analysis    

Organic % dry mass   0.18 

Pyritic % dry mass  0 

Sulfate % dry mass   0 

 

Combustor 

The three reactions considered in combustion with their stoichiometry reaction are listed in Table 

3. Boundary condition was set in ASPEN Plus to carry out the reactions with the equations restricted to 

the chemical equilibrium specified temperature approach. The combustor operational condition was 900 

degrees Celsius (o C) and 4 bar. Nitrogen gas from SEP-2 (FLASH-2) at 200 kg hr-1 flow rate, 150 

degrees Celsius (o C), and 2 bar in the combustion process. The number of iterations considered is 30 

with 0.0001 error tolerance. 

Table 3. Combustion reactions 

Specification Type    Stoichiometry    Reaction name 

Temp. approach   C + ½O2                                 CO           Ash partial combustion 

Temp. approach                H2 + ½O2                              H2O         H2 partial combustion 

Temp. approach                   CO + ½O2                             CO2            CO shift 

 

Gasifier 

Two reactions considered in the gasification process are listed in Table 4. Oxygen gas O2 from 

atmospheric air at 200 kg hr -1 flow rate, 150 degrees Celsius (o C), and 1.1 bar in Gibb's reactor. The 

maximum accuracy is 30 with 0.0001 error tolerance. The temperature at 950 degrees Celsius (o C) and 

pressure of 5 bar were set as a gasifier boundary condition. Oxygen from atmospheric air at 150 degrees 

Celsius (o C) gas O2 for process gasification 200 kg hr-1 flow rate. The composition of the stream exits 

the gasifier into the separator (HEATER-2). 
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Table 4. Gasifier reactions 

Specification Type Stoichiometry  Reaction name 

Temp. approach  C + H2O                CO + H2 Water gas 

Temp. approach  CO + H2O              CO + H2 CO shift 

Separation units 

SEP-1; The separator (FLASH-1) at 150 degrees Celsius (o C) and 2 bar separates the 

nonconventional biomass from the Rstoic into two streams: N2 and H2O into streams (stream 3) hence, 

dry-biomass into the second stream (stream 4) before entering into RYIELD reactor where the 

nonconventional dry biomass is broken down into smaller conventional unit (C, H, O).  

SEP-2; A PSA unit at 150 degrees Celsius (o C) and 2 bar is required at an elevated temperature 

to gain high-purity delivery of N2 and O2. High-temperature atmospheric air from heater-1 is separated 

into nitrogen gas and oxygen gas through a separator (FLASH-2). The separator delivers nitrogen gas 

to the dryer (Rstoic) used for drying the biomass and delivers corresponding oxygen gas into Gibb’s 

reactor for combustion.  

SEP-3; The corresponding temperature and pressure values of SEP-3 utilized in the process 

concerning the efficiency were determined from the optimized values found in the literature. At 40 

degrees Celsius (o C) and 5 bar, the separator separates the gasifier product from cooler-2 into two 

streams. In one stream carbon C and water H2O in the other stream and a small fraction of CH4, CO, 

CO2, H2O. 

2.3. Sensitivity analysis 

  Components such as combustor, gasifier, and separator variation to present gases are examined 

through sensitivity analysis. This was performed with the Model Analysis Tools (MAT) in the Aspen 

Plus simulator. This is based on present gases in the components with 100 - 1000 manipulated variable 

limits starting and ending point limits and 50 division numbers of points. The Model Analysis Tools 

factor used for the block variable is 1.048113. The present gases for the sensitive modeling in the 

combustor block are: H2, O2, C, N2, and S. For gasifier and separator (SEP-3) blocks, gases present are: 

H2, O2, N2, H2O, CO, CO2, CH4, NH3, H2S. 

2.4. Concept of exergy                                                                      

  In the absence of the nuclear effect, magnetism, electricity, and surface tension exergy of a 

stream are segmented into distinct components: physical exergy, chemical exergy, kinetic exergy, and 

potential exergy (T.J. Kotas 1995, Exergy concepts). 

Mathematically,  

É =  É𝑘 +  É𝑝 +  É𝑝ℎ +  É𝑐ℎ         (1) 

From where 𝜺𝑘 is the kinetic exergy, 𝜺𝑝 potential exergy, Eph exergy due to physical, and 𝜺𝑐ℎ is the 

chemical exergy. Because the kinetic and potential exergies are accomplished under low and high-grade 

energy, they are usually negligible during calculation.  

If ε equals the specific exergy of the system, then introducing the specific exergy from where   

𝜺 =  É/𝑚                      (2)  

Hence, 

𝜺 =  𝜺𝑘 +  𝜺𝑝 +  𝜺𝑝ℎ +  𝜺𝑐ℎ                (3) 
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Physical exergy of a perfect gas 

  This exergy is equal to the maximum amount of work obtainable when the stream of substance 

when brought from its initial state to the environmental state defined by environmental pressure P0and 

environmental temperature T0, by physical processes involving only thermal interaction with the 

environment is termed the physical exergy of the system. The physical exergy of perfect gas can be 

calculated using the expression below: 

Ꜫ𝑃ℎ =  (ℎ– ℎ0) – 𝑇0 (𝑆– 𝑆0)                     (4) 

Putting enthalpy and entropy equations into the physical exergy equation, we have physical 

exergy expression given that the surrounding temperature equals 298.15 K and 1 atm, 

However, the general formula for physical exergy is given by; 

Ꜫ𝑃ℎ =  𝐶𝑃(𝑇1– 𝑇0 − 𝑇0 𝐼𝑛𝑇1/𝑇0)  +  𝑅𝑇0 𝐼𝑛 (𝑃1/𝑃0)       (5) 

Therefore, writing the general physical exergy equation concerning each block in the gasification 

power plant flow sheet with constant surrounding temperature T0 and pressure P0 (in 273.150K and 

1bar), specific heat capacity CP, and molar gas constant R (mean of CP and R gases present per 

component, supplementary table 7 & supplementary table 8). 

For DRYER: Ꜫ𝑃ℎ𝐷𝑅𝑌𝑅 , SEP-1: Ꜫ𝑃ℎ𝑆𝐸𝑃 − 1 ,  RYEILD: Ꜫ𝑃ℎ𝑅𝑌𝐷 , CYCLONE: 

Ꜫ𝑃ℎ𝐶𝑌𝐿𝑁 , HEARTER-1:Ꜫ𝑃ℎ𝐻𝑇𝑅 − 1, SEP-2: Ꜫ𝑃ℎ𝑆𝐸𝑃 − 2 , COOL-1: Ꜫ𝑃ℎ𝐶𝑂𝑂𝐿 − 1 ,  

COMBUSTOR: Ꜫ𝑃ℎ𝐶𝑂𝑀𝐵 , GASIFIER: Ꜫ𝑃ℎ𝐺𝐴𝑆𝐼𝐹 , COOL-2: Ꜫ𝑃ℎ𝐶𝑂𝑂𝐿 − 2 , SEP-3: Ꜫ𝑃ℎ𝑆𝐸𝑃 − 3.  

Standard molar chemical exergy for gas mixtures 

A general formula for chemical exergy can be expressed as follows: 

ꬲꭓ𝐶ℎ − 𝐾 =  ∑𝑖(ꭓ𝑖 ∗ ꬲꭓ𝐶ℎ) +  𝑅𝑇0 ∑𝑖(ꭓ𝑖𝐼𝑛ꭓ𝑖)             (6) 

where,  

∑𝑖ꭓ𝑖ꬲꭓ𝐶ℎ =  [(𝑚𝑜𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑂2) ∗  (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑒𝑥𝑒𝑟𝑔𝑦 𝑜𝑓 𝑂2) +  (𝑚𝑜𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑂2)

∗  (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑒𝑥𝑒𝑟𝑔𝑦 𝑜𝑓 𝐶𝑂2) + (𝑚𝑜𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁2)

∗  (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑒𝑥𝑒𝑟𝑔𝑦 𝑜𝑓 𝑁2) +  (𝑚𝑜𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐻2𝑂)

∗  (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑒𝑥𝑒𝑟𝑔𝑦 𝑜𝑓 𝐻2𝑂)] 

Hence,                   

ꬲꭓ𝐶ℎ(𝑖)  =  𝑅𝑇0𝐼𝑛 (𝑃0/𝑃(𝑖))                          (7) 

The partial pressure Pi and molar fraction of each substance air at a given relative humidity by 

Szargut et al. (1988). Mole fraction of combustion gases (Ibrahim Dincer and Marc. A. Rosen (Eds.) – 

Exergy, standard chemical exergy values for selected substances for air constituents adopted in the 

calculation of chemical exergies of various substances (boundary condition; T0 = 298.15 K and P0 = 1 

atm), Kotas (1995), Bejan et al. (1996). 

Assuming all gases behave ideally, the molar chemical exergy can then be fathomed using the 

below expression: 

ꬲꭓ𝐶ℎ − 𝐾 =  −𝑅𝑇0 𝐼𝑛(ꭓ𝑖𝑒𝑘𝑃0 / 𝑃0 )  =  −𝑅𝑇0 𝐼𝑛(ꭓ𝑖𝑒𝑘)             (8) 

Thus, we need to write the general molar chemical exergy equation for the mixture of gases for 

each block in the biomass gasification power plant flow sheet. 

DRYER: completely biomass, no chemical exergy formed: ꬲꭓ𝐶ℎ − 𝐾(𝐷𝑅𝑌𝑅)  = Null 

SEP-1: Constituent gases present are N2 and H2O: Standard molar chemical exergy with respect to SEP-

1 equals: 

ꬲꭓ𝐶ℎ − 𝐾(𝑆𝐸𝑃 − 1)  =  {(ꭓ𝑁2 ∗ ꬲꭓ𝐶ℎ𝑁2) + (ꭓ𝐻2𝑂 ∗ ꬲꭓ𝐶ℎ𝐻2𝑂)}  +  𝑅𝑇0 {(ꭓ𝑁2 ∗ 𝐼𝑛ꭓ𝑁2) +

 (ꭓ𝐻2𝑂 ∗ 𝐼𝑛ꭓ𝐻2𝑂)}          (9) 

Where, (ꬲꭓ𝐶ℎ)𝑁2, 𝐻2𝑂 =  𝑅𝑇0𝐼𝑛 (𝑃0/𝑃𝑖, 𝑁2, 𝐻2𝑂)                (10) 
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RYEILD: Standard molar chemical exergy from the Ryeild reactor is null, as there are no constituent 

gases present 

CYCLONE: H2, O2, N2, C, and S - Therefore, standard molar chemical exergy due to cyclone                                                       

ꬲꭓ𝐶ℎ − 𝐾(𝐶𝑌𝐶𝐿)  =  {(ꭓ𝐻2 ∗ ꬲꭓ𝐶ℎ𝐻2) + (ꭓ𝑂2 ∗ ꬲꭓ𝐶ℎ𝑂2)  +  (ꭓ𝑁2 ∗ ꬲꭓ𝐶ℎ𝑁2) + (ꭓ𝐶 ∗

ꬲꭓ𝐶ℎ𝐶) +  (ꭓ𝑆 ∗ ꬲꭓ𝐶ℎ 𝑆)}  +  𝑅𝑇0 {(ꭓ𝐻2  ∗  𝐼𝑛ꭓ𝐻2) +  (ꭓ𝑂2 ∗ 𝐼𝑛ꭓ𝑂2) +  (ꭓ𝑁2 ∗  𝐼𝑛ꭓ𝑁2) +

 (ꭓ𝐶 ∗  𝐼𝑛ꭓ𝐶) +  (ꭓ𝑆 ∗  𝐼𝑛ꭓ𝑆)}                                          (11) 

HEATER-1: Constituent gases present are O2 and N2: 

ꬲꭓ𝐶ℎ − 𝐾 (𝐻𝑇𝑅 − 1) = {(ꭓ𝑂2 ∗ ꬲꭓ𝐶ℎ 𝑂2)  +  (ꭓ𝑁2 ∗ ꬲꭓ𝐶ℎ𝑁2)}  +  𝑅𝑇0 {(ꭓ𝑂2 ∗  𝐼𝑛ꭓ𝑂2) +

 (ꭓ𝑁2 ∗  𝐼𝑛ꭓ𝑁2)}              (12) 

SEP-2: Constituent gases present are O2 and N2: 

ꬲꭓ𝐶ℎ − 𝐾 (𝐻𝑇𝑅 − 1)  = (ꭓ𝑂2 ∗ ꬲꭓ𝐶ℎ 𝑂2)  +  (ꭓ𝑁2 ∗ ꬲꭓ𝐶ℎ𝑁2)}  +  𝑅𝑇0 {(ꭓ𝑂2 ∗  𝐼𝑛ꭓ𝑂2) +

 (ꭓ𝑁2 ∗  𝐼𝑛ꭓ𝑁2)}             (13) 

COOLER -1: No constituent gas present. Therefore, ꬲꭓ𝐶ℎ − 𝐾 (𝐶𝑂𝑂𝐿 −  1)  = null 

COMBUSTOR: Constituent gases present are H2, O2, N2, C, and S: Standard molar chemical exergy 

due combustor; 

ꬲꭓ𝐶ℎ − 𝐾 (𝐶𝑂𝑀𝐵)  =  {(ꭓ𝐻2 ∗ ꬲꭓ𝐶ℎ 𝐻2)  +  (ꭓ𝑂2 ∗ ꬲꭓ𝐶ℎ𝑂2) + (ꭓ𝑁2 ∗ ꬲꭓ𝐶ℎ 𝑁2)  +  (ꭓ𝐶 ∗

ꬲꭓ𝐶ℎ 𝐶)  +  (ꭓ𝑆 ∗ ꬲꭓ𝐶ℎ 𝑆)}  +  𝑅𝑇0 {(ꭓ𝐻2  ∗  𝐼𝑛ꭓ𝐻2) +  (ꭓ𝑂2 ∗ 𝐼𝑛ꭓ𝑂2) +  (ꭓ𝑁2 ∗  𝐼𝑛ꭓ𝑁2) +

 (ꭓ𝐶 ∗  𝐼𝑛ꭓ𝐶)  +  (ꭓ𝑆 ∗  𝐼𝑛ꭓ𝑆)}                            (14) 

GASIFIER: Constituent gases present are H2, O2, N2, H2O, CO, CO2, CH4, NH3, and H2S :Standard 

molar chemical exergy due gasifier; 

ꬲꭓ𝐶ℎ − 𝐾 (𝐺𝐴𝑆𝐼𝐹)  =  {(ꭓ𝐻2 ∗ ꬲꭓ𝐶ℎ 𝐻2)  + (ꭓ𝑂2 ∗ ꬲꭓ𝐶ℎ𝑂2)  +  (ꭓ𝑁2 ∗ ꬲꭓ𝐶ℎ 𝑁2)  +   (ꭓ𝐻2𝑂 ∗

ꬲꭓ𝐶ℎ 𝐻2𝑂) (ꭓ𝐶𝑂 ∗ ꬲꭓ𝐶ℎ 𝐶𝑂)  +  (ꭓ𝐶𝑂2 ∗ ꬲꭓ𝐶ℎ 𝐶𝑂2)  +  (ꭓ𝐶𝐻4 ∗ ꬲꭓ𝐶ℎ 𝐶𝐻4) +  (ꭓ𝑁𝐻3 ∗

ꬲꭓ𝐶ℎ𝑁𝐻3) +  (ꭓ𝐻2𝑆 ∗ ꬲꭓ𝐶ℎ 𝐻2𝑆)}  +  𝑅𝑇0 {(ꭓ𝐻2  ∗  𝐼𝑛ꭓ𝐻2) + (ꭓ𝑂2 ∗ 𝐼𝑛ꭓ𝑂2) +  (ꭓ𝑁2 ∗

 𝐼𝑛ꭓ𝑁2) +  (ꭓ𝐻2𝑂 ∗  𝐼𝑛ꭓ𝐻2𝑂) +  (ꭓ𝑆𝐶𝑂 ∗  𝐼𝑛ꭓ𝐶𝑂) + (ꭓ𝐶𝑂2 ∗ 𝐼𝑛ꭓ𝐶𝑂2) +  (ꭓ𝐶𝐻4 ∗  𝐼𝑛ꭓ𝐶𝐻4) +

 (ꭓ𝑁𝐻3 ∗  𝐼𝑛ꭓ𝑁𝐻3) +  (ꭓ𝐻2𝑆 ∗  𝐼𝑛ꭓ𝐻2𝑆)}                                  (15) 

HEATER- 2: Constituent gases present are O2 and N2: Standard molar chemical exergy with respect to 

heater- 2 reactor; 

ꬲꭓ𝐶ℎ − 𝐾 (𝐻𝑇𝑅 −  2)  =  {(ꭓ𝑂2 ∗ ꬲꭓ𝐶ℎ 𝑂2)  +  (ꭓ𝑁2 ∗ ꬲꭓ𝐶ℎ𝑁2)}  +  𝑅𝑇0 {(ꭓ𝑂2 ∗

 𝐼𝑛ꭓ𝑂2) +  (ꭓ𝑁2 ∗  𝐼𝑛ꭓ𝑁2)}                         (16) 

COOLER-2: Constituent gases present are H2, O2, N2, H2O, CO, CO2, CH4, NH3, and H2S: 

ꬲꭓ𝐶ℎ − 𝐾 (𝐶𝑂𝑂𝐿 − 2)  =  {(ꭓ𝐻2 ∗ ꬲꭓ𝐶ℎ 𝐻2)  +  (ꭓ𝑂2 ∗ ꬲꭓ𝐶ℎ𝑂2) +  (ꭓ𝑁2 ∗ ꬲꭓ𝐶ℎ 𝑁2)  +

  (ꭓ𝐻2𝑂 ∗ ꬲꭓ𝐶ℎ 𝐻2𝑂) (ꭓ𝐶𝑂 ∗ ꬲꭓ𝐶ℎ 𝐶𝑂)  +  (ꭓ𝐶𝑂2 ∗ ꬲꭓ𝐶ℎ 𝐶𝑂2)  + (ꭓ𝐶𝐻4 ∗ ꬲꭓ𝐶ℎ 𝐶𝐻4) +

 (ꭓ𝑁𝐻3 ∗ ꬲꭓ𝐶ℎ𝑁𝐻3) +  (ꭓ𝐻2𝑆 ∗ ꬲꭓ𝐶ℎ 𝐻2𝑆)}  +  𝑅𝑇0 {(ꭓ𝐻2  ∗  𝐼𝑛ꭓ𝐻2) +  (ꭓ𝑂2 ∗ 𝐼𝑛ꭓ𝑂2) +

 (ꭓ𝑁2 ∗  𝐼𝑛ꭓ𝑁2) +  (ꭓ𝐻2𝑂 ∗  𝐼𝑛ꭓ𝐻2𝑂) +  (ꭓ𝑆𝐶𝑂 ∗  𝐼𝑛ꭓ𝐶𝑂) + (ꭓ𝐶𝑂2 ∗ 𝐼𝑛ꭓ𝐶𝑂2)  +  (ꭓ𝐶𝐻4 ∗

 𝐼𝑛ꭓ𝐶𝐻4) + (ꭓ𝑁𝐻3 ∗  𝐼𝑛ꭓ𝑁𝐻3) +  (ꭓ𝐻2𝑆 ∗  𝐼𝑛ꭓ𝐻2𝑆)}         (17) 

SEP- 3: Constituent gases present are H2, O2, N2, H2O, CO, CO2, CH4, NH3, and H2S : 

ꬲꭓ𝐶ℎ − 𝐾 (𝑆𝐸𝑃 − 3)  =  {(ꭓ𝐻2 ∗ ꬲꭓ𝐶ℎ 𝐻2)  +  (ꭓ𝑂2 ∗ ꬲꭓ𝐶ℎ𝑂2) +  (ꭓ𝑁2 ∗ ꬲꭓ𝐶ℎ 𝑁2)  +   (ꭓ𝐻2𝑂 ∗

ꬲꭓ𝐶ℎ 𝐻2𝑂) (ꭓ𝐶𝑂 ∗ ꬲꭓ𝐶ℎ 𝐶𝑂)  +  (ꭓ𝐶𝑂2 ∗ ꬲꭓ𝐶ℎ 𝐶𝑂2)  +  (ꭓ𝐶𝐻4 ∗ ꬲꭓ𝐶ℎ 𝐶𝐻4) +  (ꭓ𝑁𝐻3 ∗

ꬲꭓ𝐶ℎ𝑁𝐻3) +  (ꭓ𝐻2𝑆 ∗ ꬲꭓ𝐶ℎ 𝐻2𝑆)}  +  𝑅𝑇0 {(ꭓ𝐻2  ∗  𝐼𝑛ꭓ𝐻2) + (ꭓ𝑂2 ∗ 𝐼𝑛ꭓ𝑂2) +  (ꭓ𝑁2 ∗

 𝐼𝑛ꭓ𝑁2) +  (ꭓ𝐻2𝑂 ∗  𝐼𝑛ꭓ𝐻2𝑂) +  (ꭓ𝑆𝐶𝑂 ∗  𝐼𝑛ꭓ𝐶𝑂) + (ꭓ𝐶𝑂2 ∗ 𝐼𝑛ꭓ𝐶𝑂2) +  (ꭓ𝐶𝐻4 ∗  𝐼𝑛ꭓ𝐶𝐻4) +

 (ꭓ𝑁𝐻3 ∗  𝐼𝑛ꭓ𝑁𝐻3) +  (ꭓ𝐻2𝑆 ∗  𝐼𝑛ꭓ𝐻2𝑆)}                                   (18)
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Percentage exergy efficiency 

 Total exergy in of a system to the total exergy out of the same system defines the percentage 

exergy efficiency of that particular system. Hence, the total exergy is the sum total of exergies of all 

streams that enter the system. The total of exergies of all streams that flow out of the system refers to 

the total exergy out of a system. 

% 𝑒𝑥𝑒𝑟𝑔𝑦 𝑒𝑓𝑓 =  (𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑟𝑔𝑦 𝑂𝑢𝑡)  / (𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑟𝑔𝑦 𝐼𝑛) 

That is, 𝜂𝑒𝑥  =  ∑ 𝐸𝑥𝑒𝑟𝑔𝑦 𝑂𝑢𝑡 / ∑ 𝐸𝑥𝑒𝑟𝑔𝑦 𝐼𝑛                 (19) 

Exergy destruction analysis 

 The difference between the total exergy in and the total exergy out of a system dictates the exergy 

destruction of the system. Hence, exergy destruction is expressed mathematically as: 

𝐸𝑥𝑒𝑟𝑔𝑦 𝑑𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 =  𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑟𝑔𝑦 𝐼𝑛 –  𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑟𝑔𝑦 𝑂𝑢𝑡 

Ḕ𝐷𝐸𝑆𝑇𝑅𝑈𝐶𝑇𝐼𝑂𝑁 =  ∑𝐸𝑥𝑒𝑟𝑔𝑦 𝐼𝑛 − ∑ 𝐸𝑥𝑒𝑟𝑔𝑦 𝑂𝑢𝑡        (20) 

2.5. Exergoeconomic analysis 

      The exergoeconomic method utilized in the energy-economic analysis is the Specific Cost 

method (SPECO). Fuel and products of components are defined by directly capturing the systematic 

value of all the stream exergy entering and subtracting the stream exergy leaving the component. 

2.6. Component exergoeconomic factor analysis 

      Evaluating component performance, we are interested in the relative significance in terms of 

the cost-efficiency profitability of the entire system at a given period for each category in the gasification 

through biomass power plant. However, this is provided by the energy-economic factor fK defined for 

component K as follows: 

𝑓𝐾 =   Ż𝐾  /(Ż𝐾 +  𝐶𝑓, 𝑘 ∗  (Ḕ𝐷, 𝐾)          (21)

         Ż𝐾 =  Ż𝐾 𝐶𝑙 +  Ż𝐾 𝑂𝑀                            (22) 

Ż𝐾 𝐶𝑙 =  𝐶𝐹𝑅 (𝑖, 𝑛)  ∗  𝑇𝐶𝐼      OR     Ż𝐾 𝐶𝑙 =  (𝐶𝐹𝑅 /𝑡𝑜𝑝)  ∗  𝑃𝐸𝐶                             (23a&b)           

Ż𝐾 𝑂𝑀 =  𝐹𝑂𝑀 ∗  𝑇𝐶𝐼             OR      Ż𝐾 𝑂𝑀 =  Ż𝐶𝑙 ∗  𝜑                                                 (24a&b)  

Hence,𝑇𝐶𝐼 =  𝜑 =  𝑃𝐸𝐶 

𝐶𝐹𝑅 =  {𝑖(1 + 𝑖) 𝑛}/ (1 + 𝑖) 𝑛 − 1          (25) 

However, the cost rate associated with capital, ŻK OM = operating maintenance expenses, ŻK = 

summation of ŻK OM and ŻK Cl, CFR (i,n) = cost rated with capital in respect to interest rate ‘i’ and 

payment period ‘n’, TCI = total cost investment, FOM = maintain cost factor, PEC = purchase 

investment cost, φ = factor of operating and maintaining expenses, top = time of operation, ḔDK = exergy 

destruction with to the component under consideration and fK= exergoeconomic factor. For this study, 

FOM = 1.06 for each piece of equipment, i = 6 %, top = 1hr, n = 25years, maintenance cost factor FOM, 

interest rate ‘i’ and the average cost ‘Cf, k’ values based on U.S. Department of Energy Federal 

Management Program, 15 Sept 2016, i = 0.06, n = 25yrs, FOM = 1.06, top = 1hr, Cf, k = $0.8(U.S. 

Department of Energy Federal Management Program (FEMP), 15 Sept 2016), (ATMACA et al., 2018). 

Note that the assumption was made on the total cost investment of the gasification of biomass 

components from Google.com as of 2022/23. 



IJESG
e-ISSN 2636-7904 

International Journal of Energy and Smart Grid 
Vol 9, Number 1, 2024 

Doi: 10.55088/ijesg.1449194 

 

 12 

3.  Result and Discussion 

3.1. Modeling of a system for hydrogen production from the empty banana fruit bunch 

Syngas, hydrogen production from empty banana fruit bunch (EBFB) 

The separator (SEP-3) containing Stream 18 and Stream 19 revealed the syngas quantity produced 

from EBFB. The amount of syngas produced in stream 19 is presented in Table 5. Results affirmed that 

80.465kg/h of hydrogen gas can be generated by 2000 kg/h of empty banana fruit bunch at every 39.916 

km/h mole flows (Stream 18). It is also noted that the total volume of purified syngas generated during 

the gasification is 571.894 cum/h from stream 18, separator outlet. Hence, the total volume of lost syngas 

generated in stream 19, separator outlet is 0.118 cum/h volume of hydrogen gas. The gasification process 

of empty banana fruit bunches produces a significant amount of carbon monoxide, specifically 1,522.69 

kg/h. The quality of this carbon monoxide has a direct impact on hydrogen gas production. In other 

words, as the quantity of carbon monoxide increases, the amount of hydrogen gas produced decreases. 

Hence, the relationship is influenced by the high temperatures in both the combustor and gasifier 

components.  

Table 5. Stream 18 and 19 (S18 & S19) separator outlet of syngas composition from Aspen Plus 

 

 

3.2. Sensitivity analysis results 

Effect of temperature and pressure on gasification (combustor, gasifier, and separator units)  

A sensitivity analysis was performed for the combustor, gasifier, and separator (SEP-3) as regards 

temperature and pressure. Figure 4 affirmed that in the combustor, all the present gases (H2, O2, N2, C, 

S) increase in a sinusoidal form except sulfur which exists as a solid at room temperature. However, for 

the gasifier, Figure 5 shows that the rate at which H2, CO2, NH3, and CH4 flow decreases drastically 
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hence, the rate at which O2, N2, CO, and H2O flow produced inside the gasifier increases. However, the 

corresponding H2S maintains a linear path between 3.60 kg/h and 3.65 kg/h. Figure 6 (SEP-3) shows 

that the rate at which H2 is produced and flows increases from 3.525 kg/h to 3.62 kg/h and maintains a 

linear path. Hence, H2O 3.64 kg/h decreases and maintains a linear path at 3.52 kg/h. Whereas, O2 and 

CH4 keep a constant linear path. Results show that corresponding effects occur in syngas concerning an 

increase in pressure. This implies that, at every instant of increase in temperature and pressure, there is 

a significant change in the flow rate of some gases at a certain kg/h in the combustor and gasifier and in 

the separator. 

 

 

Figure 4. Gasification temperature effect on syngas out of combustor 

 

Figure 5. Gasification temperature effect on syngas out of gasifier 

 

Figure 6. Gasification temperature effect on syngas out of the separator 

3.3. Biomass gasification exergy results 

Table 6 shows the system total exergy in, total exergy out, overall percentage exergy efficiency 

and exergy destruction are 4534.77 kJ /kg, 3857.295 kJ/kg, 0.8506 %, and 677.475 kJ/kg respectively. 

This indicates that a significant amount of energy is released during the gasification process, thereby 



IJESG
e-ISSN 2636-7904 

International Journal of Energy and Smart Grid 
Vol 9, Number 1, 2024 

Doi: 10.55088/ijesg.1449194 

 

 14 

enhancing the sustainability of the biomass gasification system. However, high exergy destruction 

implies a loss of work in the system. Hence, the real processes are irreversible which measures the 

system degradation. Table 7 shows the components physical and chemical exergy of the system. The 

system's physical and chemical exergy is 36960.31 KJ/kg, 185.64 kJ/mol. 

Table 6. Streams exergy, exergy efficiency, and exergy destruction table 

COMPONENT S. EXGY IN S. EXGY OUT % Ex eff (η) ḔDESTRUCTION 

DRYER S1, S8 = 81.67 S2 = 80.41 0.985 1.256 

HEATER- 1 S5 = 31.34 S6 = 28.11 0.897 3.237 

SEP- 1 S2 = 180.41 S3, S4 = 155.22 0.860 25.198 

SEP- 2 S6 = 128.11 S8, S9 = 153.61 0.817 34.497 

RYEILD S4 = 0 S7 = 563.55 0.00 0.00 

CYCLONE S7 = 617,12 S10, S12 = 609.12 0.987 0.800 

COMBUSTOR S10, S9 = 881.06 S14 = 872.40 0.990 8.656 

GASIFIER S14, S15 = 1090.44 S20 = 1082.15 0.992 8.290 

COOLER- 1 S12 = 0 S17 = 0  0.00 0.00 

HEATER- 2 S11 = 137,16 S15 = 28.035 0.204 109.123 

COOLER-2  S20 = 1082.15 S16 = 205.30 0.189  876.848 

SEP- 3 S16 = 305.31 S18, S19 = 284.69 0.932 20.612 

 

 

 

Figure 7. Block diagram for exergy flow in the biomass gasification plant (kW) 

Figure 7 illustrates the gasification exergy process flow within the system. Exergy destruction of 

each component, subtracted from the total exergy of all incoming streams, must be equal to the total 

exergy of all outgoing streams from that component. Therefore, the block exergy flow diagram for the 

gasification of the biomass system is balanced.  

3.4. Exergoeconomic analysis results 

  Table 7 and Table 8 present the Block physical and chemical exergy, rate due investment, and 

exergoeconomic evaluation results. The system exergy stream cost rate, component-related cost rate, 
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component-related cost difference, component exergoeconomic factor, and cost rate exergy destruction 

concerning fuel exergy destruction, cost rate exergy destruction concerning fixed product exergy 

destruction are 407527.644 $/h, 1555.57 $/h, 0.5679 %, 0.9089 %, 353.22 $/h, 73.135 $/h. The results 

from the evaluation show the necessity to improve the exergy utilization in some components such as 

cyclone, combustor, gasifier cooler-2, and SEP-3.  

Table 7. Block physical and chemical exergy, rate due investment, and exergoeconomic factor results 

COMPONENT ꜪPh (KJ/kg) ꬲꭓCh
-K(KJ/mol) ŻK, nth fK (%) 

DRYER 80.84 0 2162.62 0.9993 

HEATER- 1 78.47 19.36 1138.22 0.3862 

SEP- 1 109.66 0.472 1707.33 0.9880 

SEP- 2 78.47 19.41 1707.33 0.9841 

RYEILD 364.03 0 1707.33 1.0000 

CYCLONE 1204.40 0.660 1707.33 0.9963 

COMBUSTOR 2002.70 374.66 1707.33 0.9960 

GASIFIER 1874.3 717.02 1707.33 0.9961 

COOLER- 1 58.51 0  1138.22 1.0000 

HEATER- 2 78.47 16.85 1138.22 0.9514 

COOLER-2 362.30 539.62 1138.22 0.6187 

SEP- 3 362.30 539.62 1707.33 0.9904 

Table 8. Results of exergoeconomic analysis of the study 

COMPONENT Cp, k rk% Ċ j ĊD,kḔp,k fixed ĊD,kḔf,k fixed 

DRYER 0.812 0.0153 6602.20 2.056 1.0201 

HEATER- 1 0.892 0.115 3065.99 2.589 2.887 

SEP- 1 0.930 0.163 8855.71 20.158 23.434 

SEP- 2 0.979 0.224 10052.79 27.598 33.773 

RYEILD 0.000 -1.000 0 0 0 

CYCLONE 0.811 0.0132 743666.63 6.400 6.488 

COMBUSTOR 0.808 0.0101 192708.80 6.925 6.995 

GASIFIER 0.807 0.00807 2825678.98 6.632 6.686 

COOLER- 1 0.000 -1.000 0 0 0 

HEATER- 2 3.922 3.902 13074.09 87.298 427.980 

COOLER-2  4.233 4.291 976012.73 701.478 3711.698 

SEP- 3 0.858 0.0729 110613.81 16.489 17.693 

 

Table 9 shows comparative hydrogen production techniques and results from some reviewed 

works of literature. Results affirmed that an optimal peak operating efficiency can easily be achieved 

when considering the average unit cost of fuel ĊD,kḔf,k fixed with the product fixed as the main working 

fluid. However, this may not be beneficial for a component dryer, although its impact could be negligible 

since only one component is involved. Finally, the cycle performance curve drawing according to 

exergoeconomic multi-objective optimization results and its utilization are suggested. 
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Table 9. Comparative hydrogen production techniques and results from some reviewed works of 

literature  

Reference Work  Method (s) Materials Result (s) Recommendation 

Arzate et al 

[3] 

Efficiency of an 

Au/TiO2 

photocatalyst 

for H2 

production and 

organic 

pollutant 

 

Compound 

Parabolic 

Collector (CPC) 

at the 

Plataforma 

Solar de 

Almería (PSA) 

Au/TiO2 

photocatalyst, 

Wastewater as 

sacrificial agent 

The energy 

efficiency of the 

process was 

1.8%, and 

optimal catalyst 

loading was 0.2 

g/L 

Develop efficient 

photocatalysts, 

reuse catalysts, and 

test cheaper metals 

like Ni, and Cu. 

Bing et al [4] H2 production 

from 

agricultural 

solid residue in 

Malaysia 

ASPEN Plus to 

simulate the 

gasification 

process of palm 

oil biomass, 

Dual-fluidized 

bed reactor with 

NiO catalyst 

ASPEN Plus 

software, palm 

oil biomass 

The gasification 

process can 

produce H2 with 

95% purity. 

Improving the 

efficiency of the 

gasification process 

and exploring the 

use of other 

catalysts 

Boudries [5] Techno-

economic 

assessment of 

H2  production 

in Algeria. 

CPV-

electrolysis 

system used for 

H2 cost-

effectiveness 

analysis 

CPV-

electrolysis 

system, PV-

electrolysis. 

A CPV-

electrolysis 

system is an 

efficient and 

economical 

method of H2. 

Investigate CPV-

electrolysis system 

parameters' effects 

and propose 

African-European 

collaboration to 

advance this 

technology. 

Brynjarsdottir 

et al [7] 

Effect of culture 

parameters on 

H2  production  

BM medium for 

culturing the 

strain GHL15 

Strain Thermo-

anaerobacter 

GHL15 

Thermoanaerob

acter GHL15 

yields 3.1 mol 

H2/mol glucose 

at low H2 

pressure 

Strain's sensitivity 

to initial substrate 

concentration and 

acetate 

accumulation 

Jingwei et al 

[15] 

H2 production  

from biomass  

in supercritical 

water  

Gasification in 

supercritical 

water (SCWG) 

and the use of 

concentrated 

solar energy 

ASPEN Plus, 

glucose, corn 

meal, and wheat 

stalk, CSP 

power 

Technical 

feasibility of the 

system and its 

advantages for 

H2 

Designing efficient 

reactors, continuous 

gasification of 

biomass with high 

dry matter 

Hossain et al 

[12] 

H2 production 

from oil palm 

biomass by 

thermochemical 

process 

Pyrolysis, 

gasification, and 

gasification in 

supercritical 

water. 

Oil palm 

biomass, 

Oil palm 

biomass is 

promising for 

H2 due to high 

calorific value 

Analysis of residual 

bio-char during H2 

Kalinci et al 

[13] 

Life cycle 

assessment of 

H2 production 

from biomass 

gasification 

systems 

LCA to evaluate 

H2 from 

biomass 

Aspen plus, 

Life Cycle 

Assessment 

(LCA),  

Downdraft 

Gasifier has 

lower fossil 

energy 

consumption 

and emissions 

compared to 

CFBG. 

Combination of 

biomass and solar 

energy for H2 
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Table 9 Continued. 

Reference Work  Method (s) Materials Result (s) Recommendation 

Kumar et al 

[24] 

Comparative 

analysis of H2 

production from 

the 

thermochemical 

conversion of 

algal biomass 

Techno-

economic 

models, 

modeling, 

equipment 

sizing, and cost 

estimation 

Algae biomass 

through thermal 

and 

supercritical 

water 

gasification 

Supercritical 

water 

gasification is 

more cost-

effective than 

thermal 

gasification 

Improve algae 

biomass 

production, 

optimize processes, 

boost hydrogen 

yield, cut costs 

Stefan et al 

[18] 

H2 production 

from biomass 

using a dual 

fluidized bed 

steam 

gasification 

system 

IPSEpro to 

model the 

process, mass, 

and energy 

balance analysis 

IPSEpro 

software, 

biomass as 

feedstock 

61 MW of H2 

can be produced 

from 100 MW 

of wood chips 

and 6 MW of 

electricity 

Improving the 

efficiency and cost-

effectiveness of H2 

from biomass 

Yaser et al 

[28] 

Techno-

economic 

analyses and 

life cycle 

assessments 

(LCA) of 

fluidized bed 

(FB) and 

entrained flow 

(EF) 

Simulations and 

techno-

economic 

analyses 

Apen plus, 

fluidized bed 

(FB), and 

entrained flow 

(EF) 

EF has 11% 

higher thermal 

efficiency than 

FB, and FB has 

a lower 

minimum H2 

selling price 

Research needed to 

enhance efficiency 

and cut costs of 

biomass 

gasification 

This study Techno-

economic 

analysis of a 

system for H2 

production from 

an empty 

banana fruit 

bunch 

Aspen plus 

simulation, 

Biomass 

gasification 

Empty banana 

fruit bunch, 

Aspen plus 

software 

80.465 kg/h of 

H2 from 2000 

kg/h of EBFB at 

every instant of 

39.92 km/h is 

feasible  

Aligning 

temperature and 

pressure with CO2 

to boost H2 

production and 

reduce CO 

emissions 

 

4. Conclusion 

The research study was designed to simulate the production of hydrogen gas from an agricultural 

biomass residue, a quantified amount of empty banana fruit bunch, (EBFB) through biomass gasification 

for electricity generation. Aspen Plus version 11 was adopted for the simulation, the convectional exergy 

approach method for exergy analysis, and the Specific Cost method (SPECO) for exergoeconomic 

analyses. The following are the main study highlights: 

• It has been observed that 80.465 kg/h of H2 can be extracted from 2000 kg/h of empty banana 

fruit bunch at a constant mole flow rate of 39.92 km/h. 

• The flow rates of H2, O2, N2, and C in the combustor increase in a sinusoidal pattern at room 

temperature, while sulfur (S), in solid form, maintains a constant flow rate of 0.00 kg per hour. 

In the gasifier, the flow rates of H2, CO2, NH3, and CH4 decrease. In contrast, O2, N2, CO, and 

H2O show an increase in flow content within the gasifier, while H2S follows a linear trend.  
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• In the separator (SEP-3), the flow rate of H2 increases from 3.525 kg/h to 3.62 kg/h, maintaining 

a linear trajectory. However, at a flow rate of 3.64 kg/h, H2O decreases and settles at a linear 

rate of 3.52 kg/h. Consequently, both O2 and CH4 continue to follow a constant linear path. 

• Carbon monoxide (CO) decreases and carbon dioxide (CO2) increases below 900 degrees 

Celsius. At temperatures of 1000 degrees Celsius and above, CO increases, which reduces CO2 

emissions. 

• The total exergy in, total exergy out, overall percentage exergy efficiency, and corresponding 

exergy destruction are 4534.77 kJ /kg, 3857.295 kJ /kg, 0.8506 %, and 677.475 kJ /kg 

respectively. The system exergy stream cost rate, component-related cost rate, component-

related cost difference, and component exergoeconomic factor are: 407527.644 $/h, 1555.57 

$/h, 0.5679 %, and 0.9089 %.  

The author suggests that further research should be conducted under appropriate temperature and 

pressure conditions when working with CO2. This approach aims to increase the production of H2 while 

decreasing the emission of CO, thereby enhancing the overall CO2 utilization. Additionally, it is 

essential to improve the exergy efficiency in specific components, including the cyclone, combustor, 

gasifier cooler-2, and SEP-3. Better performance can be achieved by adopting improved insulation and 

operational methods and reducing costs associated with investment and energy loss, specifically 

targeting low exergy destruction values. 
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Abstract: This study addresses the energy, exergy and exergoeconomic analyses of the supercritical 
CO2 recompression Brayton cycle used in solar tower systems. In the study, a three-objective 

optimization model was developed using artificial neural networks (ANN) to optimize the system 

performance. The model provides information for the development of sustainable solar energy systems 
by providing analyses on key factors such as energy efficiency, environmental impact and economic 

viability. The results show that the supercritical CO2 cycle provides higher thermal efficiency compared 
to conventional systems and offers cost advantages by reducing the size of system components. In 

addition, the analyses show that energy and exergy losses can be minimized and the cost effectiveness 

of the system can be increased, providing important findings in terms of the efficiency and economic 
viability of solar energy systems. 

Keywords: Energy Analysis, Exergy Analysis, Multi-Objective Optimization, Artificial Neural Networks 
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1. Introduction 

Solar energy stands out as an important resource in response to the global energy crisis and 

environmental problems. Solar tower systems are one of the most promising ways to take advantage of 

these resources, thanks to their high efficiency and scalability. Supercritical CO2 has many advantages 

over conventional fluids; such as higher thermal efficiency, smaller system size, and improved heat 

transfer properties.  

Some studies in the literature: Abdelghafar et al. [1] conducted an energy, exergy, and 

exergoeconomic analysis of combined power cycles powered by sCO2-based concentrated solar energy. 

Abid et al. [2] compared the solar-powered supercritical CO2 power and hydrogen production cycle in 

terms of energy, exergy and exergoeconomic aspects. Adibhatla and Kaushik. [3] conducted an energy, 

exergy and economic analysis for a combined cycle power plant powered by an integrated solar steam 

generator. Almutairi et al. [4] presented a review examining the use of solar energy in power plants for 

preheating purposes. Al-Sulaiman and Atif. [5] compared performance by integrating different 

supercritical CO2 Brayton cycles with the solar tower system. Atif and Al-Sulaiman. [6] performed 

energy and exergy analyses of solar tower-powered supercritical CO2 recompression cycles at six 

different locations. Bai et al. [7] analyzed the use of CO2-SF6 mixing fluid in solar power plants in the 

supercritical Brayton cycle from a thermodynamic point of view. Bashan and Gümüş. [8] performed the 

energy and exergy analysis according to the optimal design parameters for the recovered supercritical 

CO2 power cycle. Bejan et al. [9] presented a wide range of resources on thermal design and 

optimization. Cengel and Boles. [10] discussed gas-steam mixtures and air conditioning systems with a 

thermodynamic approach. Citaristi. [11] provides information on the International Energy Agency 

(IEA). Dincer and Rosen. [12] discussed the relationship between energy, environment and sustainable 

development. Ehsan et al. [13] evaluated the commercial potential and research status of supercritical 
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CO2 power cycles. Guelpa and Verda. [14] conducted an exergoeconomic analysis on the supercritical 

CO2 cycle design for concentrated solar power plants. Guo et al. [15] presented a comprehensive review 

on the use of supercritical CO2 cycles in energy industries. Heller et al. [16] analysed the technical and 

economic selection of supercritical CO2 cycles for concentrated solar plants based on particle 

technology. Hinkley et al. [17] provide a roadmap on concentrated solar fuels. Kalogirou. [18] studied 

the development of solar collectors and their applications. Khan et al. [19] compared the recovery and 

exergoeconomic analysis of waste heat for two solar-powered supercritical CO2 Brayton cycles. 

Kulhanek and Dostal. [20] conducted thermodynamic analysis and comparison on supercritical CO2 

cycles. Li et al. [21] examined the applications of supercritical CO2 power cycles in nuclear power, solar 

power, and other energy industries. Liang et al. [22] performed simultaneous optimization of 

supercritical CO2 Brayton and organic Rankine cycles integrated with a concentrated solar power plant. 

Liu et al. [23] compared the integration of coal-fired power plants with supercritical CO2 Brayton cycles 

with steam Rankine cycles. Mehos et al. [24] presented a roadmap for concentrated solar power. 

Mohammadi et al. [25] performed advanced exergy analyses for recompression supercritical CO2 cycles. 

Montes et al. [26] evaluated recent developments on pressurized central receivers and solar power plants 

operating with supercritical power cycles. Okonkwo et al. [27] conducted a second-law analysis and 

exergoeconomic optimization of solar tower-powered combined-cycle power plants. Osorio et al. [28] 

performed dynamic analysis of supercritical CO2-based closed cycles powered by concentrated solar 

energy. Shah. [29] provides information on advanced power generation systems and thermal resources. 

Sun et al. [30] analyzed two supercritical CO2 cycles in terms of recovery of gas turbine waste heat. Xin 

et al. [31] performed a thermodynamic analysis on a novel supercritical CO2 Brayton cycle based on the 

thermal cycle division analysis method.  

This study aims to explore the potential of supercritical CO2 recompression Brayton cycles in 

solar tower systems that concentrate solar energy. With the integration of energy, exergy, and 

exergoeconomic analyses, this study provides valuable insights into optimizing the performance and 

economic viability of solar tower systems. 

2. Materials and Methods 

2.1. Solar Tower Systems and the Supercritical CO2 Brayton Cycle 

Solar tower systems generate high-temperature thermal energy by concentrating sunlight into a 

receiver using mirrors or heliostats. This energy can be converted into electricity through various 

thermodynamic cycles. The supercritical CO2 cycle operates above the critical temperature and pressure 

of CO2; In this way, a fluid that combines liquid and gas properties is obtained. This feature is important 

to improve thermal efficiency and make the system more compact. Figure 1 shows the general 

configuration of the solar tower system. 
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Figure 1. Solar Tower System Configuration 

This graph shows the flow diagram of the supercritical CO2 Brayton cycle. The diagram clearly 

reveals the energy flow and processes between the main components of the system. Solar Receiver: It 

is the first component that collects energy from the sun and transfers it to the CO2 fluid. This is where 

the transfer of energy begins. Heat Exchanger: Increases the efficiency of the system by further heating 

the hot CO2 fluid from the solar receiver. Heat transfer takes place here. Compressor: The heated CO2 

is pressurized here. This pressure increase is critical to improving the energy efficiency of the system. 

Turbine: Pressurized CO2 is expanded here to produce mechanical work. This process ensures the 

energy output of the system. CO2 Cycle: The CO2 coming out of the turbine completes the cycle in the 

system. At the end of the process, the CO2 returns to the solar receiver and the cycle starts over. The 

graph has arrows that show the flow of energy between the components. Each arrow represents a specific 

process: Energy Transfer: From solar receiver to heat exchanger, Heating CO2: Heat exchanger to 

compressor, Heat Transfer: Compressor to turbine, Pressurization: Turbine to CO2 cycle, Work 

Production: Reconversion from CO2 cycle to solar receiver. The diagram provides a visual 

representation of the operation of the system, providing an important reference for the energy efficiency 

and performance analysis of the supercritical CO2 Brayton cycle. 

2.2. Energy Analysis 

Energy analysis evaluates energy efficiency by calculating energy flows, inputs, outputs and 

losses in the system. In this analysis, the energy equations in each component of the system, such as 

compressors, turbines, heat exchangers, etc., should be written in detail. In addition: 

Energy equations: Energy equations should be written in each component where energy 

conservation is achieved. 

Energy efficiency: Energy efficiency is defined as the ratio of the output energy of the system to 

the energy entering the system. By calculating this ratio on each component, the overall energy 

efficiency of the system can be achieved. 

 

ηenergy=
𝐸output

𝐸input
          (1) 

In equation 1, Eoutput is the output energy and Einput is the input energy. 
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2.3. Exergy Analysis 

Exergy analysis more comprehensively evaluates a system's efficiency, energy quality, and 

environmental impact. This analysis is important for a better understanding of energy losses and offers 

more in-depth information when compared to energy efficiency. Exergy is calculated by taking into 

account environmental energy losses and entropy. Exergy loss is associated with the fact that heat energy 

becomes less efficient in a given environment. 

Exergy loss: Exergy loss can be calculated by considering the entropy changes for each 

component. 

Exergy efficiency: Exergy efficiency, like energy efficiency, is defined as the ratio of output 

exergy to input exergy. 

ηexergy=
𝐸𝑥output

𝐸𝑥input
          (2) 

 

In equation 2, Exoutput is the output exergy and Exinput is the input exergy. 

2.4. Exergoeconomic Analysis 

Exergoeconomic analysis evaluates the economic performance of an energy system by relating it 

to exergy losses. In this analysis, the costs of each component in the system are combined with the 

efficiency analyses. That is, the points where energy and exergy losses are linked to their costs should 

be detailed. 

Cost calculations: The investment cost, operating costs and maintenance costs of each component, 

e.g. heat exchanger or turbine, can be calculated. 

Exergoeconomic efficiency: This efficiency is often defined as a parameter that evaluates the ratio 

between exergy loss and costs. In this way, it can be optimized for cost minimization. 

ηexergoeconomic=  
𝐶exergy

𝐶total
         (3) 

In Equation 3, Cexergy is the cost for exergy loss and Ctotal is the total cost. 

2.5. Advanced Technical Details 

Temperature and pressure dependence: Exergy and energy calculations often vary depending on 

the temperature and pressure in the system. It is necessary to calculate these parameters for components 

and study their effect on each component. 

Ex=(h−h0)−T0⋅(s−s0)         (4) 

In equation 4, h is enthalpy, s is entropy, T0 is ambient temperature, and h0 and s0  are the reference 

enthalpy and entropy at environmental conditions. 

Dynamic simulations: Energy, exergy and exergoeconomic analyses, more realistic results can be 

obtained by using dynamic simulations. Such simulations allow to analyze variable parameters in the 

system (temperature, pressure, flow rate, etc.) over time. 
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2.6. Energy Efficiency Calculator  

Energy efficiency (η) is calculated as follows (5): 

 

η= 
𝑊exit

𝑄input
                                                                                                                                  (5) 

 

• 𝑊exit: The net work produced by the system, i.e. the difference between turbine and compressor. 

• 𝑄input: The total energy transferred to the solar receiver. 

Accepted assumptions: 

• The isentropic efficiencies of turbines, compressors, and other components have been accepted 

as constant. 

• The CO2 fluid is constantly operating under supercritical conditions (above critical temperature 

and pressure). 

• The input energy comes from a constant heat source obtained from solar radiation. 

2.7. Exergy Loss Calculator 

Exerge loss (Exloss) evaluates energy losses and irreversibility in the system. The calculation is 

made by the formula (6): 

𝐸𝑥loss=𝑄input x (1- 
𝑇enviroment

𝑇𝑠𝑜𝑢𝑟𝑐𝑒
)                                                                                               (6) 

Here: 

• 𝑇enviroment: Ambient temperature. 

• 𝑇𝑠𝑜𝑢𝑟𝑐𝑒: Source temperature, that is, the temperature reached in the solar receiver. 

• 𝑄input: The total energy transferred to the solar receiver. 

Accepted assumptions: 

• System irreversibility (such as friction, heat transfer losses) was taken into account. 

• The exergy loss of each component in the cycle is calculated individually based on their 

isentropic efficiency. 

• The ambient temperature is considered constant, that is, no changes in the external environment 

are taken into account. 

2.8. ANN (Artificial Neural Networks) Methodology 

Artificial Neural Networks (ANNs) are a powerful artificial intelligence (AI) methodology used 

to model complex and nonlinear relationships by mimicking the functioning of biological neural 

networks. These networks use various algorithms to learn the relationships between input data and 

output, and direct the training data and optimization processes. Below is a detailed explanation of the 

ANN algorithm used, input/output parameters, and learning processes. 

2.8.1 Artificial Neural Network Algorithm 

Artificial neural networks are generally used with multi-layer (MLP - Multi-Layer Perceptron) 

structures. These structures contain multiple layers (input layer, hidden layers, and output layer). The 
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neurons present in each layer receive the signals from the previous layer, producing output using 

activation functions. 

 Learning Algorithm: ANN's learning algorithm is generally based on backpropagation and 

gradient descent methods. This algorithm updates the weights of each neuron according to the difference 

in error between the output and the actual value. 

Activation Functions: Activation functions such as ReLU (Rectified Linear Unit), Sigmoid or 

Tanh are generally used in neural networks. These functions help neurons solve nonlinear problems by 

enabling them to make decisions. 

2.8.2 Input/Output Parameters 

The input parameters of the ANN are determined by its problem and are used to start the learning 

process of the network. The output parameters, on the other hand, are the results produced by the 

network as a result of learning.  

Input Parameters: Energy Efficiency: Mostly data related to the efficiency of the system, such as 

parameters such as energy production and consumption of the system, are taken as input. Exergy Loss: 

Exergy loss data can also be used as input for the analysis of energy losses in thermodynamic systems. 

Cost: Cost data of energy systems can be included in the optimization process and the network can be 

trained with the goal of cost-minimizing. 

Output Parameters: ANN outputs are optimized parameters. This is usually a variety of goals, 

such as system performance, energy efficiency, exergy loss, and cost. The outputs represent how the 

network can perform relative to the given input parameters. 

2.8.3 Learning Processes 

The learning process of ANN refers to how the network is trained on data and achieves results. 

This process consists of the following steps: 

Training Data: A specific training dataset is required to train the ANN. This data may include 

information on the performance of the system under various operating conditions (e.g., energy 

efficiency, exergy loss and costs). 

Feedforward Propagation: Data is transmitted to the input layer of the network and passes through 

each layer to reach the final output layer. The output gives the estimated result of the model. 

Error Calculation: The difference between the output and the actual value (error) is calculated. 

Backpropagation: The error propagates back to update the weights of each neuron of the network. 

This continues the learning process of the network with the aim of improving the accuracy of the 

network. 

Optimization: During the learning process, gradient descent is often used to optimize weights. 

Gradient descent tries to minimize the error of the network by reducing weights a little at a time. 

2.8.4 Application Areas of the Model 

ANN is especially useful in optimizing multiple goals. Therefore, in the design of energy systems, 

a balance can be established between factors such as energy efficiency, exergy loss and cost by using 

ANN-based optimization. One of the advantages of ANN is its ability to model nonlinear relationships, 

which plays an important role in complex energy systems. 

2.8.5 Optimization Results 

Artificial neural networks are often used for multi-target optimization problems. In the example 

above, the optimization results made on three different parameters such as energy efficiency, exergy 

loss and costs are visualized. Each target was visualized with graphs showing how it changed under 
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different operating conditions, and the results were visualized and analyzed. How the ANN works in 

such applications is determined by selecting the right parameters, training the network, and continuously 

improving the optimization processes. 

3. Results and Discussion 

3.1. Energy Efficiency and Exergy Loss Graphs 

Figure 2 shows how supercritical CO2 within the solar tower system reduces energy efficiency 

and exergy losses, depending on operating conditions under the Brayton cycle. 

 

Figure 2. The supercritical CO2 within the solar tower system reduces energy efficiency and exergy 

losses depending on operating conditions under the Brayton cycle 

These graphs show the energy efficiency and exergy losses depending on the operating conditions 

under the supercritical CO2 Brayton cycle within the solar tower system. 

Energy Efficiency: A continuous increase in energy efficiency has been observed as the operating 

conditions (100-500 kW) increase. This shows that the system is more efficient when it operates at 

higher power. The graph clearly shows how energy efficiency increases from 82% to 92% with each 

increase in operating conditions. 

Exergy Loss: On the other hand, exergy losses decrease as operating conditions increase. Exergy 

loss decreased from 18% under 100 kW input condition to 8% under 500 kW condition. This suggests 

that the system loses less energy and operates more efficiently under higher operating conditions. 

Abdelghafar et al. [1] the energy efficiency for supercritical CO2-based concentrated solar power 

systems was reported as 85%.  In its studies, it is very close to the energy efficiency value of 92%, but 

in this study, higher efficiency was achieved as a result of optimization. In addition, exergy loss was 

reported as 12% in the literature, and it decreased to 8% in this study. This shows that exergy losses can 

be minimized more successfully under operating conditions where the system is optimized.  In the study 

conducted by Abid et al. [2] energy efficiency was reported as 80% in supercritical CO2 power cycles 

supported by solar energy. In this study, it offers an energy efficiency above this value (92%), and 

exergy losses are observed at lower rates. 

3.2. Optimization Results Chart 

Figure 3 shows the results of artificial neural network (ANN)-based multi-objective optimization. 
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Figure 3. Artificial neural network (ANN)-based multi-objective optimization results 

This chart shows the results of artificial neural network (ANN)-based multi-objective 

optimization. It shows how energy efficiency, exergy losses and costs vary comparatively under 

different operating conditions (100-500 kW). 

Energy Efficiency: Energy efficiency increases further in the optimized system as operating 

conditions increase, an increase from 82% to 96% has been observed. 

Exergy Losses: Exergy losses, on the other hand, decrease from 18% to 8% under optimized 

conditions. This shows that as energy efficiency increases, exergy losses can be further minimized. 

Cost: System costs are also shown on the chart. Costs range from 1000 units to 800 units, 

indicating that the cost-effectiveness of the system has been optimized. 

Adibhatla and Kaushik [3] used artificial neural networks-based optimization techniques to 

improve energy efficiency in integrated solar energy systems, and energy efficiency of up to 90% was 

achieved. In this study, as a result of optimization, it increases energy efficiency by up to 96% and 

reduces exergy losses by up to 8%. This illustrates the positive effects of ANN-based optimization on 

energy efficiency. 

3.3. ExergoEconomic Analysis Chart 

Figure 4 presents the cost and performance analysis between the components of the solar system. 
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Figure 4. Cost and performance analysis between components of solar energy system 

Cost and performance analysis was performed among the components of the solar energy system. 

The highest value in terms of cost belongs to the solar receiver component at 500 USD. This suggests 

that the investment in this component is significant to improve the efficiency of the solar system. The 

solar receiver is followed by the heat exchanger with 300 USD. The compressor ranks third with 200 

USD, while the turbine has the lowest cost at 100 USD. These data reveal that the solar receiver is the 

highest-cost component of the solar energy system and that this component has a significant impact on 

the overall performance of the system. 

In terms of performance, the highest value was determined for the solar receiver with 90%. The 

solar receiver shows that the system is the most efficient component in energy production. The heat 

exchanger has 80% performance, the compressor 75% and the turbine 70%. This highlights that the 

solar receiver is the most critical component, not only in terms of cost, but also in terms of performance. 

Bai et al. [7] stated that in the supercritical CO2 cycle used in solar power plants, the solar receiver 

accounts for the majority of component costs and corresponds to 45% of the total system cost. In this 

study, it was emphasized that the solar receiver is the most costly component of the system (50%) and 

it was stated that the cost-effectiveness of this component should be increased. In addition, Guo et al. 

[15] emphasized that special attention should be paid to heat exchanger and compressor components in 

order to optimize system costs. In this study, it offers a compatible approach to the subject. 

In conclusion, the graph visualizes the balance of cost and performance between the components 

of the energy system, providing important insights into which components need to be improved. The 

high performance of the solar receiver despite its high cost further reinforces the importance of this 

component and its role in the system. 

In this study, energy, exergy and exergoeconomic analyses of supercritical CO2 recompression 

Brayton cycles in solar tower systems were performed, and efficiency and cost analyses were revealed. 
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The results of the energy efficiency values (up to 92%) and exergy losses (up to 8%) obtained in the 

study largely coincide with other studies in the literature. 

These results are consistent with many studies in the literature, and this study shows that this 

study has made significant contributions, especially in terms of using optimization techniques and 

optimizing component costs. The energy efficiency and exergy losses obtained in this study give more 

successful results than the existing literature, which increases both the economic and environmental 

sustainability of the system. 

4. Conclusion 

This study presents important findings by examining the applicability and performance of 

supercritical CO2 recompression Brayton cycles in solar tower systems within the framework of energy, 

exergy and exergoeconomic analysis. The analyzes and results obtained reveal that this technology 

offers a promising solution for sustainable energy systems with high efficiency and low energy losses. 

The following provides an expanded evaluation of the findings and recommendations for future studies. 

One of the most important findings observed in the study is that a significant increase in energy 

efficiency is achieved with the increase in operating conditions. Under increasing operating conditions 

from 100 kW to 500 kW, the energy efficiency of the system increased from 82% to 92%. This suggests 

that the supercritical CO2 cycle becomes more efficient when operated at higher powers. The increase 

in efficiency has been achieved thanks to the efficient energy conversion between the components of 

the system. In particular, the efficiency of the main components, such as the heat exchanger and turbine, 

directly affected the overall performance of the system. 

While energy efficiency has increased, a noticeable reduction in exergy losses has been noted. 

Exergy losses decreased from 18% to 8% as operating conditions increased from 100 kW to 500 kW. 

This result reveals that the system can operate at higher temperatures and higher energy flows with less 

loss, and therefore thermodynamic irreversibility can be minimized. Reducing exergy losses is also a 

factor that positively affects the environmental impact of the system, because less energy loss means 

less greenhouse gas emissions. 

The exergoeconomic analyses performed in the study provided important information in 

evaluating the cost-effectiveness of the system. When the costs were examined, it was seen that the solar 

receiver accounted for 50% of the total system cost and the improvement of this component had great 

potential in terms of cost-effectiveness. At the same time, it has been shown that the costs of components 

such as heat exchangers and compressors can be optimized, resulting in a significant reduction in the 

total cost of the system. This indicates that future studies should focus on material improvements and 

new technological approaches to reduce costs. 

The ANN-based multi-objective optimization framework has ensured a balanced optimization in 

terms of energy efficiency, exergy losses and cost of the system. Optimisation results have shown that 

energy efficiency can be up to 96% and exergy losses can be reduced by up to 8%. These results reveal 

that ANN is a powerful tool for sustainable energy production if used for optimization purposes in 

energy systems. At the same time, it is understood that system costs can also be optimized, making solar 

tower systems more economical and accessible. 

In future studies, experimentally validating the findings of this study would be an important step. 

In addition, it is thought that system performance can be further increased by improving the materials 

to be used in system components and integrating advanced materials. In particular, innovations in critical 

components such as the solar receiver and heat exchanger can further improve the overall efficiency and 

cost-effectiveness of the system. In addition, testing the performance of the system under different 
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climatic conditions and evaluating the solar energy potential in different regions will provide important 

insights into the global applicability of the technology. 

In conclusion, this study highlights the potential of supercritical CO2 recompression Brayton 

cycles in solar tower systems and demonstrates their superior performance through energy, exergy, and 

exergoeconomic analyses. The ANN-based optimization framework offers a valuable tool for improving 

the efficiency and sustainability of solar energy systems. Future studies should focus on the integration 

of advanced materials for experimental validation and optimization of system components. 
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Abstract: The rapid adoption of electric vehicles (EVs) has introduced new challenges to power 
distribution networks, with harmonics generated during EV charging emerging as a critical issue 

affecting power quality. This paper proposes a machine learning-based approach to predict harmonic 
levels under varying EV charging conditions. By leveraging a real-world dataset containing 

measurements of charging currents and their associated harmonic amplitudes, the study ensures a 

comprehensive and practical analysis of harmonic behavior. The Nonlinear Autoregressive Exogenous 

(NARX) model, a time-series forecasting method well-suited for nonlinear systems, is utilized to 

accurately predict harmonic levels for various charging currents. Separate predictions for harmonics 
at the 3rd, 5th, 7th, 9th, 11th, and 13th levels are performed to highlight the model's effectiveness across 

a range of frequencies. 

The results demonstrate that the proposed approach achieves satisfactory prediction performance, as 
evidenced by low mean squared error (MSE) values across training, validation, and testing datasets. 

This study's key contributions include the development of a predictive framework for harmonic 
estimation, the application of a robust AI model to nonlinear harmonic data, and insights into the 

implications of harmonic distortion for grid stability and EV component performance. By providing an 

accurate and proactive method for harmonic prediction, this research contributes to the design of more 
efficient and reliable EV charging infrastructures, ensuring smooth integration of EVs into modern 

power grids. Future work will focus on enhancing model performance with larger datasets and 
exploring additional applications of predictive analytics for power quality management. 

Keywords: harmonic prediction, machine learning, electric vehicles, power quality, NARX model 
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1. Introduction  

The increase in the number of electric vehicles (EVs) in recent years has led to an increase in the 

number of charging stations for these vehicles. EVs have a detrimental impact on energy quality when 

they are being charged. EV harmonics are a major factor in the development, functioning, and 

integration of EV systems. Charging infrastructure can be defined as the major harmonic source for 

EVs. Chargers (onboard or offboard) draw power in non-linear ways, creating harmonics in the supply 

grid, where fast chargers, can introduce significant harmonics due to high-power operations [1–3]. 

 In particular of this study, impacts of harmonics of charging states can be mentioned in two 

main titles as effects on EVs and distribution grid. On the EV side, harmonics can cause overheating in 

electrical components like motors and cables, increased energy losses due to harmonic-induced eddy 

currents and additional stress on components and possible resonant conditions in the electrical system, 

leading to damage. On the other side, high total harmonic distortion (THD) can interfere with other 

equipment connected to the grid, increase losses in transformers, transmission lines, and other power 

infrastructure and can lead to voltage waveform distortions, affecting the stability of the grid [4–7]. 

 With the growing global emphasis on lowering carbon footprints, electric vehicles (EVs) have 

emerged as a viable alternative to traditional automobiles. However, the increasing integration of EVs 
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creates substantial issues to power distribution networks, owing to the harmonics produced during the 

charging process. Harmonics not only affect power quality, but they also cause operational inefficiencies 

in the grid and EV components. To successfully detect and prevent harmonic distortions, creative 

solutions based on sophisticated technologies such as artificial intelligence (AI) are required [8–13]. 

 The inspiration for this research derives from the limitations of existing harmonic prediction 

models, which frequently use synthetic datasets or fail to account for the nonlinear dynamics of charging 

currents. This work seeks to overcome the gap by using a real-world dataset and the Nonlinear 

Autoregressive Exogenous (NARX) model. The main contributions are as follows: (1) a thorough 

examination of harmonic levels under various charging settings; (2) the creation and validation of an 

AI-powered model for reliable harmonic prediction; and (3) insights into the effects of harmonics on 

grid performance and EV components. 

In this study, harmonics that occur during charging electric vehicles are examined and artificial 

intelligence-based prediction algorithm was performed by using a real measurement-based dataset. 

Results were discussed by using the graphs and numerical values.  

2. Power Quality 

The term "harmonics" describes waveforms of voltage or current at frequencies that are multiples 

of the fundamental frequency, such as 50 Hz or 60 Hz as shown in Figure 1. Power quality, 

dependability, and efficiency may all be impacted by these aberrations [14,15].  

 

 

Figure 1. Harmonic waveforms for 50 Hz frequency. 

THD measures the distortion of current or voltage compared to the ideal waveform. It represents 

the relative signal energy at frequencies greater than the fundamental frequency. The THD for current 

and voltage harmonics can be calculated as 
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THDI must be below 5% according to IEEE 519-2014, where THDV must be below 8% (for 

voltages up to 1 kV).      

 

To mitigate the impact of harmonics on power systems various approaches can be applied as 

installing harmonic filters to reduce harmonic currents and voltages, using power factor correction 

capacitors to improve power factor, selecting and designing equipment with lower harmonic emissions 

and conducting harmonic studies and monitoring to assess the impact of harmonics to take appropriate 

corrective actions [16,17]. These mitigation techniques are for occurred harmonics. Through the rapid 

developments in AI technologies, harmonics can also be determined before they occur [18–20].  

3. Methodology 

According to the main aim of study, charging currents with the harmonic levels of Renault Zoe 

ZE50 car were used for prediction. The open-access dataset was obtained from [8,21].  In this study, the 

Nonlinear Autoregressive Exogenous (NARX) Model, which is a time-series model for forecasting and 

modeling systems in which a variable's future values are determined by both its own past values and the 

past values of an external input (exogenous variable) used [22,23]. This approach is very effective in 

systems with nonlinear dynamics. 

The NARX model can be expressed as follows; 

 )1 , 2 , , , 1 , 2 ,( ) ( ( ) ( ) ( ) ( ) ( ) ( ) (, )y uy t f y t y t y t n u t u t u t n h t= − −  − − −  − +  (3) 

In the equation (3); y(t) is the output (dependent variable) at time t, u(t) is the external input (exogenous 

variable) at time t, ny is the number of past output terms (lagged values) to consider, nu is the number of 

past input terms to consider, h(t) is a noise term accounting for model inaccuracies or random 

disturbances and f (⋅) is the nonlinear function that relates the inputs and outputs.  

NARX model have three main key components. Autoregressive component refers to the 

dependence of y(t) on its own past values (y(t−1), y(t−2), …). Exogenous input is the influence of 

another variable u(t) on y(t). This is what distinguishes the model from purely autoregressive models. 

The function f (⋅) is nonlinear, capturing complex relationships that linear models cannot. The nonlinear 

function f (⋅) is usually unknown and must be estimated from data by using approaches as artificial 

neural networks (ANNs), polynomial models, kernel methods and piecewise linear approximations.  

The implementation of NARX model is summarized in the flowchart given in Figure 2.  
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Figure 2. NARX Model Flowchart. 

NARX model have advantages as capturing complex dynamics due to its nonlinear nature 

including external factors, making it more flexible than pure autoregressive models and can be tailoring 

to a wide range of applications. This is the main reason for the selection of such model for data 

processing in this paper. 

Dataset used for the study is consist of charging currents and harmonic amplitudes. Charging 

voltage increases with 1 A steps starting from 6 A to 30 A. It is observed that there is a nonlinearity 

characteristic in this increment. Graphical representation of 5th harmonic is given in Figure 3 for a better 

understanding. 

 

Figure 3. 5th harmonic variation with charging current. 
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It can be observed from Figure 3 that the change is nonlinear, that the data is appropriate for using 

NARX model.  

4. Results and Discussion 

Harmonic levels of 3, 5, 7, 9, 11 and 13 are used for prediction. 70% of data is used for training, 

where 15% is for validation and 15% is for testing. Since this partitioning is the most widely used and 

accepted structure in the literature in estimation studies, it is used in this way in order to make an accurate 

comparison with the literature. Layer size for the model is 20 for all experiments. Prediction results and 

mean squared error (MSE) graphs for the 5th and 7th harmonics were given in Figure 4 and Figure 5 

respectively.  

 

Figure 4. Prediction results and MSE graph for the 5th harmonic. 

 

 

Figure 5. Prediction results and MSE graph for the 7th harmonic. 

MSE values for training, validation and test at other harmonic levels were summarize in Table 1.  
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Table 1. MSE values for harmonic levels. 

Harmonic Level Training  Validation  Test  

3rd harmonic 1.0074e-04 3.6123e-04 6.1454e-04 

9th harmonic 2.2149e-06 9.0681e-05 6.2117e-05 

11th harmonic 2.1942e-04 7.7579e-04 0.0028 

13th harmonic 1.0660e-04 2.6452e-04 5.0978e-04 

 

It is clear from the values given in Table 1 that training and test performance is satisfactory, as 

the MSE values are convergence to zero. 

5. Conclusion 

Harmonics management is critical as EV adoption grows, especially to ensure smooth integration 

with the grid and prolong the lifespan of EV components. Advanced technologies and thoughtful design 

will continue to address these challenges. As mentioned in this paper, prediction of harmonics is a crucial 

study for power system protection and satisfying the energy quality. An effective AI model for time 

series prediction, NARX, was used and results show that prediction performance is appropriate for each 

harmonic level. It should be noted that the study was performed with limited data, so as can be referenced 

in literature, large dataset can suggest more robust results and performance can be improved.  
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Abstract: Recently, the use of environmentally friendly electric vehicles instead of traditional internal 
combustion engine vehicles continues to be widespread due to threats to world life such as global 

warming and climate change. However, the biggest disadvantages of this technology are the limited 
range of electric vehicles, long charging times, low number of charging stations, and different charging 

costs. There is a need for more studies on the problem of finding charging stations, especially for long-

distance traveling with electric vehicles. In this paper, a fuzzy logic based decision making system is 
designed for electric vehicle users to find the most suitable one among the charging stations on a long 

travelling route. In this study, a traveling route of 1779 km between Izmir and Van provinces in Turkey 
is selected. The current charging station locations obtained from different charging station companies 

on this route were processed on Google Earth, and charging stations that were too far from the route 

were not taken into consideration. A fuzzy logic model was created for 56 charging stations on the route, 

which performs weight calculation according to the current charging cost and the distance of the station 

to the normal route. The fuzzy control system is expected to decide on the most appropriate charging 
station in accordance with the specified rule table, and the results are evaluated. 

Keywords: Charging, Charging Stations, Electric Vehicles, Fuzzy Logic.  
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1. Introduction  

Today, environmental and economic problems such as global warming, climate change, and the 

rapid depletion of fossil fuels necessitate a shift towards sustainable energy sources in the transport 

sector. The limited availability of fossil fuels and the environmental damage caused by carbon emissions 

from their use have increased the demand for new-generation energy solutions. Electric vehicles have 

emerged as an environmentally friendly and energy-efficient transport alternative in this context. 

Electric vehicles operate without producing emissions thanks to their battery systems, which play an 

important role in achieving environmental sustainability goals [1-2]. 

Despite the popularisation of electric vehicles, fundamental problems prevent the widespread use 

of this technology. In particular, limited battery capacities, long charging times, and deficiencies in 

charging station infrastructure are among the main challenges electric vehicle users face during intercity 

journeys. Inadequate and inappropriate positioning of charging stations limit the use of electric vehicles 

over long distances. Therefore, there is a critical need to develop solutions that will facilitate the access 

of electric vehicle users to charging stations and optimize factors such as cost and distance [3-4]. 

In this study, a fuzzy logic based decision making system is proposed for electric vehicle users to 

select the most suitable charging stations in their long distance journeys by evaluating the charging 

stations in terms of distance and cost. In the study, a decision-making system is developed to determine 

which charging station would be the most suitable for the user to charge the electric vehicle according 

to the cost and distance criteria of the charging stations selected on a 1779 km route between Izmir and 
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Van provinces of Turkey. In this context, it is foreseen that the study will provide essential progress to 

popularise the use of electric vehicles and increase the charging stations' efficiency.  

2. Materials and Methods 

    In the digitalizing world, one of the most critical problems is the rapid depletion of high-energy 

and non-renewable energy resources, especially petroleum products, due to rapidly developing 

technology and the increasing population. Due to the limited amount of fossil fuels and the damage 

caused to the environment by motor vehicles using fossil fuels, the search for new-generation energy 

sources continues rapidly. Electrification of transport can potentially reduce carbon emissions and 

environmental pollution [5-6]. 

There are some obstacles for electric vehicles to replace conventional vehicles. The biggest 

obstacles are the limited driving range of electric vehicles, long charging times, low number of charging 

stations, and ineffective charging station locations. Although electric vehicles are considered to be more 

suitable for urban use due to reasons such as battery capacities, long charging times, and limited number 

of charging stations, they are also becoming suitable for intercity use by increasing battery capacities 

and improving charging station infrastructure with technological developments [7-8]. 

    With the development of electric vehicle charging technology, charging station investments are 

made. With charging station investments, companies make different tariffs and pricing. Fast charging 

stations save time but increase the cost of charging. This paper aims to make the traveling of electric 

vehicles less costly with their current battery capacities between current charging stations. For this 

purpose, electric vehicle users will be able to have information about the charging stations on their 

routes. The problem of finding the most suitable charging station among the charging stations on the 

route with the current charging status of the electric vehicle is tried to be solved. For this purpose, a 

fuzzy logic control-based charging station algorithm was created by evaluating the multiple 

requirements of electric vehicles at the same time. Charging stations of different brands with different 

tariffs on the determined route were detected and processed on Google Earth. It is aimed to determine 

the most suitable charging station by calculating the current charging status of the electric vehicle and 

the distances and charging costs to these charging stations while traveling on its route. For this case, a 

route between Izmir and Van in Turkey was determined, and 56 charging stations on this route were 

evaluated according to these criteria. A weight value was calculated for each charging station using 

fuzzy logic. The fuzzy logic system designed in MATLAB environment for 56 stations in total is 

simulated to determine the accuracy of the system. Figure 1 shows the travel route between Izmir and 

Van and the charging stations of different companies whose locations are marked on the route. 

2.1. Battery Electric Vehicles 

Battery electric vehicles operate with a completely different energy generation system than 

internal combustion engine vehicles. Instead of fossil fuels, they realize vehicle movement by storing 

energy through rechargeable batteries and transmitting it to electric motors. These batteries convert the 

stored electrical energy into mechanical energy and enable the vehicle to move. This design simplifies 

the structure of the vehicle and makes energy conversion more efficient by not requiring components 

such as fuel tanks and exhaust systems found in internal combustion engine vehicles [9-10]. 

This operating principle makes electric vehicles an environmentally friendly transport option. 

Unlike internal combustion engine vehicles, electric vehicles do not cause emissions during use. This 

feature helps to reduce air pollution and contributes to the fight against global warming and sustainable 

environmental goals. The fact that they run on electrical energy makes it possible to utilize renewable 

energy sources, creating the potential further to reduce the carbon footprint [11-12]. 
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Despite these advantages, there are some significant challenges to the widespread adoption of 

battery electric vehicles. In particular, the lack of charging station infrastructure is still a major 

disadvantage for electric vehicle users on long-distance journeys. The low number of charging stations 

and their lack of availability in suitable locations increase users' concerns about being stranded on the 

road, making it difficult to adopt this technology. This problem is one of the main factors limiting the 

use of electric vehicles, especially in intercity journeys [13]. 

 

 

Figure 1. Selected travel routes between Izmir and Van and different brands of charging stations 

2.2. Charging Stations 

Electric vehicle charging stations are critical infrastructure elements used to meet the energy 

needs of battery electric vehicles. These stations perform the charging process by transmitting electrical 

energy to the batteries of the vehicles. Effective positioning and increasing the number of charging 

stations play an important role in the wider use of electric vehicles [14-15]. 

Since the study focuses on charging optimization in long-distance journeys, DC fast charging 

stations are taken into consideration. DC fast charging stations provide faster energy transfer, allowing 

electric vehicle users to charge more efficiently on long-distance journeys [16]. 

Reliable and accessible charging infrastructure for electric vehicle users directly affects the 

adoption rate of these vehicles. SAE (Society of Automotive Engineers), IEC (International 

Electromechanical Commission), and CHAdeMO standards are used worldwide [17]. Various specific 

charging standards, such as SAE J1772, IEC 61851, IEC 62196, and CHAdeMO, are widely used. 

However, IEC standards are widely accepted and applied in charging infrastructure in Turkey. Since 

this study focuses on the charging infrastructure in Turkey, the proposed fuzzy logic controller design 

is based on IEC standards. Accordingly, the technical specifications of IEC standards are presented in 

Table 1, and it is emphasized that the study is designed in accordance with the charging infrastructure 

of Turkey. This approach strengthens the suitability of the study for both local context and technical 

compatibility. 

The IEC 61851 standard, widely used in Europe, includes both AC and DC charging modes. Table 

1 presents the electrical parameters and technical specifications of each mode. For example, Mode 1 is 

a low-current charging method and requires a longer charging time, while Mode 4 provides ultra-fast 

DC charging, allowing users to cover a long range in a short time. 

Table 1. Technical parameters of the IEC 61851 standard [18] 
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Source Mode Phase Max. Voltage (V) Max. Current (A) 

AC Mode 1 1 ≤250 ≤16 

AC Mode 1 3 ≤480 ≤16 

AC Mode 2 1 ≤250 ≤32 

AC Mode 2 3 ≤480 ≤32 

AC Mode 3 1 ≤250 ≤32 

AC Mode 3 3 ≤480 ≤32 

DC Mode 4 - ≤1000 ≤400 

Since the paper aims to optimize charging stations for long-distance journeys, it is important to 

provide details on charging station standards to implement the proposed solution and help select the 

most suitable charging method for different electric vehicle usage scenarios.  

2.3. Fuzzy Logic Controller  

Fuzzy logic is used in the development of non-linear systems, complex systems that lack clarity 

in their inputs or definitions. A fuzzy logic algorithm is a control approach that shows how the system 

will respond to multiple inputs according to predetermined rules [19]. 

    In this study, the Fuzzy Logic Toolbox library in MATLAB was used to create the fuzzy logic 

controller selected as the decision-making algorithm. After the data from the variables are collected, it 

passes through the fuzzy logic controller and decides which charging station will be more logical to 

choose at what rate at the output.  

The most suitable charging station is determined by calculating the charging cost of the charging 

stations on the travel route for the electric vehicle and the distance to the travel route. From this point of 

view, a fuzzy logic control based electric vehicle charging algorithm is proposed by reflecting multiple 

requirements of electric vehicles at the same time. The multiple requirements include the distance 

between the electric vehicle and the charging station and the charging cost of the charging station. The 

proposed scheduling algorithm focuses on finding the charging station preference priority for the electric 

vehicle. Considering the whole distance and total traveling cost, the fuzzy logic control generates a 

weight value as output, which is the concept of EV charging priority. Given the weight values, the 

proposed scheduling algorithm recommends the closest and most convenient scheduled charging 

stations to the EVs for charging [20]. 

    Distance is the distance from the location of all charging stations on the route of the electric 

vehicle to its own location. The cost is found by calculating the charging tariffs of the charging stations 

of different brands on its route. As a result, distance and cost are used as inputs to the fuzzy logic control. 

Based on these inputs, the management system produces a weight matrix which is the output of the 

fuzzy logic control. The weight matrix is used in the charge scheduling algorithm operated by the 

management system. The management system focuses on recommending the closest and most cost-

effective charging station for the electric vehicle to its route. In this study, fuzzy logic control is used in 

the management system to handle multiple parameters simultaneously. Fuzzy logic control inputs are 

distance and cost. Equation 1 is used to normalize these two factors in the range (0,1). 

0 ≤ 𝑥 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
≤ 1                                                                                                                                   (1) 

This formula is used to normalize distance and cost. Here, x indicates distance or cost. While 

creating the scenarios to be given to the fuzzy system inputs, the average values are battery capacity 70 
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kwh, E brand charging station unit price 9,48 tl/kwh, T and Z brand charging stations 7,99 tl/kWh, and 

S brand charging stations 7,50 tl/kWh. It is assumed that 18 kWh of energy is spent per 100 km. 

 

  

(a) (b) 

  

(c) (d) 

Figure 2. a) General representation of the designed model, b) Membership functions for Distance 

input, c) Membership functions for Cost input, d) Membership functions for Weight output 

    MATLAB/Simulink interface was used to design the controller and algorithm of the system. 

The general representation of the model designed with the Fuzzy Logic Designer Toolbox in MATLAB 

environment is given in Figure 2. a, the visualizations for the selection of membership functions are 

given in Figure 2. b for distance, Figure 2. c for cost and Figure 2.d for weight as output. The rule table 

of the fuzzy control system is shown in Table 2. The fuzzy logic controller operates according to the 

rules specified in the table, and all mappings and combinations of if/then rules are presented to calculate 

the weight value at the output. The weight value linguistic variables are defined as "Very Small, Small, 

Medium Small, Medium Large, Large, Very Large". Finally, the weight value is calculated by the 

fuzzification method. The charging station with the larger weight value calculated by this method has 

higher priority in terms of selection. 

Table 2. Mapping and combination of if/then rules 
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Rules Distance Cost Weight 

Rule 1 Close Cheap Very Large 

Rule 2 Close Medium Large 

Rule 3 Close Expensive Medium Large 

Rule 4 Medium Cheap Large 

Rule 5 Medium Medium Medium Large 

Rule 6 Medium Expensive Medium Small 

Rule 7 Far Cheap Medium Small 

Rule 8 Far Medium Small 

Rule 9 Far Expensive Very Small 

In accordance with this rule table, 56 charging stations on the route were analyzed, and the fuel 

cost to be spent as a result of selecting these charging stations in terms of total travel cost was calculated. 

During this calculation, both the calculated total fuel cost, the distance of the charging station to the 

normal travel route, and the charging station tariff were normalized. The total fuel cost is calculated for 

a TOGG brand short-range electric vehicle manufactured in Turkey, where the vehicle user will be fully 

charged only once on the specified route, and the electric vehicle has a standard energy cost for each 

kilometer distance outside the route and is selected the same for all possibilities. 

Table 3. Projected weight versus distance and charging costs of some sample charging stations on the 

route 

Charge Station Distance Cost 
Normalized 

Total Cost 
Expected Weight 

S1 0.55 0.01 0.94 Very Large 

T15 0.17 0.25 0.78 Large 

Z9 0.39 0.25 0.74 Medium Large 

T2 0.56 0.25 0.71 Medium Large 

Z11 0.56 0.25 0.71 Medium Large 

T14 0.56 0.25 0.71 medium large 

E3 0.14 1.00 0.11 Small 

E4 0.24 1.00 0.09 Very Small 

Here, S1 represents the 1st numbered charging station on the route of brand S. Similarly, charging 

stations belonging to E, Z, and T brands are numbered. 

3. Results and Discussion 

The designed Mamdani fuzzy logic decision making system with two inputs and one output is 

intended to be tested for 100 different scenarios generated randomly in MATLAB environment. For this 

reason, randomly generated distance and cost values are applied as input to the fuzzy logic controller as 

shown in Figure 3. 
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Figure 3. Simulation model of the designed fuzzy logic decision making system 

The designed fuzzy logic decision making system generated output weight values according to 

the distance and cost values in the range of 0-1 randomly applied to its input. The change of weight 

values obtained from 100 different scenarios generated in the MATLAB environment is given in Figure 

4.  

 

Figure 4. Variation of weight values calculated by the fuzzy logic decision making system for 100 

different scenarios 

As can be seen from the change, within the framework of the rules and inputs entered into the model, 

the scenario with the highest weight is the 32nd scenario, with a weight value of 0.8248. The input 

values are 0.2587 for Distance and 0.0909 for Cost. The lowest weight is obtained as 0.1030 in the 75th 

Scenario, and the input values are 0.0729 for Distance and 0.2229 for Cost. 

4. Conclusion 

    In this paper, a fuzzy logic based decision making system is designed for electric vehicle users 

to select the most suitable charging station from the charging stations on their routes while travelling. 
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In order to demonstrate the real-time applicability of the study, an electric vehicle traveling between 

Izmir and Van in Turkey and 56 charging stations belonging to four different companies with known 

locations on the travel route are selected. While on the travel route, the distance between the electric 

vehicle and the charging station and the charging costs of the relevant charging station are normalized 

and given as fuzzy logic inputs. As a result of this sample data, a weight value was calculated for each 

charging station and a priority ranking was determined for electric vehicle drivers according to this 

value. The charging station with the highest weight value is the most suitable charging station. With this 

designed system, it is expected to solve the confusion in the charging station selection of electric vehicle 

users during their travels. In future studies, we will focus on the queuing problem at charging stations 

on any route determined by using current data from the charging station in Turkey. 
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Abstract: The widespread use of electric vehicles contributes significantly to environmental 

sustainability by reducing the use of fossil fuels. However, the increasing number of electric vehicles 

and the charging demand may cause negative impacts such as overloading, voltage fluctuations and 

energy supply-demand imbalances in electricity grids. In this article, artificial intelligence-based 
methods applied for the management of the negative impacts of electric vehicles on the grid are 

discussed comprehensively and artificial intelligence approaches in the literature used to manage 
electric vehicle charging load are analyzed. Among these approaches, energy management strategies 

based on charging demand forecasting, dynamic pricing, routing, charging scheduling and smart grid 

integration are analyzed in detail. This article summarizes the latest innovative artificial intelligence-
based solutions developed to manage the charging load of electric vehicles, improve grid stability, 

increase charging service price prediction accuracies, maximize grid and user satisfaction, ensure load 
balance, reduce charging and operating costs, reduce energy consumption and optimize power flow. 

This article also presents comprehensive information about the bilateral (grid and user perspective) 

management algorithms of the charging load of electric vehicles. 

Keywords: Electric vehicles, charging load management, electricity grid, artificial intelligence. 
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1. Introduction  

Today, global problems such as increasing carbon emissions, climate change and environmental 

degradation are caused by the intensive use of fossil fuels and the transportation sector accounts for a 

significant portion of these emissions. Internal combustion engine vehicles increase greenhouse gas 

emissions through road transportation, leading to global warming, decreased air quality and energy 

security problems. In this context, electric vehicles stand out as a powerful solution to reduce carbon 

emissions from transportation by operating with zero emissions, being compatible with renewable 

energy sources and reducing dependence on fossil fuels. The rapid development of electric vehicle 

technology plays an important role in achieving sustainable transportation goals [1,2]. 

However, with the widespread deployment of electric vehicles, some challenges also arise, 

especially the impacts of charging infrastructure on the electricity grid. Intensive charging demand may 

lead to negative impacts on the grid. Innovative approaches are currently being used to manage these 

issues. Electric vehicles offer an important solution to combat climate change by both reducing 

environmental impacts and encouraging the development of energy infrastructure [3,4]. In this article; 

electric vehicles are analyzed, the negative impacts of charging of electric vehicles on the grid and 

artificial intelligence-based methods applied to eliminate these impacts are discussed. This article 
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contributes to the literature by offering valuable insights and important information on the use of 

artificial intelligence in managing the charging load of electric vehicles, providing a significant reference 

for researchers and readers in this field.  

2. Electric Vehicles and Their Impacts 

Electric vehicles stand out as an important solution for reducing carbon emissions from 

transportation. Unlike internal combustion engine vehicles based on fossil fuels, electric vehicles 

operate directly with zero emissions and reduce the amount of carbon emitted to the environment. 

Especially when charged with renewable energy sources, the carbon footprint of electric vehicles 

becomes even smaller and contributes to a sustainable transportation infrastructure. These vehicles not 

only improve air quality, but also increase energy security by reducing dependence on fossil fuels. The 

rapid development of electric vehicle technology, supported by battery efficiency, charging 

infrastructure and cost advantages, offers a powerful solution for mitigating the negative environmental 

impacts of the transportation sector [5,6]. 

Unlike internal combustion engines, electric vehicles use electrical energy instead of fossil fuels 

and therefore do not cause carbon emissions. Electric vehicles offer significant advantages such as their 

environmentally friendly structure, low emission rates and energy efficiency. Their utilization of 

electrical energy instead of fossil fuels has the potential to significantly reduce carbon emissions and air 

pollution. Moreover, thanks to advances in battery technologies, they also contribute to sustainable 

energy by preventing environmental degradation when integrated with renewable energy sources. The 

widespread adoption of electric vehicles will have a positive environmental impact on conserving 

natural resources and mitigating the effects of global warming [7]. Electric vehicles provide long-term 

savings for individual users with low operating and maintenance costs, while contributing to local 

economies by encouraging the development of charging infrastructure with innovative technologies. 

The widespread adoption of electric vehicles will have positive economic impacts for the vehicle sector, 

the energy sector and users [8].  

In addition to the positive effects of the widespread use of electric vehicles, there will also be 

negative effects. With the widespread use of electric vehicles, problems such as overloading, voltage 

fluctuations and energy demand increases may occur in electricity grids, especially during peak charging 

demand. This situation may cause the existing grid infrastructure to be insufficient and the energy 

supply-demand balance to deteriorate. However, approaches such as smart grid technologies, artificial 

intelligence-supported energy management algorithms, energy storage systems, integration of 

renewable energy sources, dynamic pricing and vehicle-to-grid energy transfer (V2G) are used as 

solutions to manage these negative impacts on the grid [9,10]. 

3. Impacts of Electric Vehicle Charging on the Grid  

Power quality refers to the capability of an electrical system to provide constant voltage, 

frequency and waveform to energy consuming devices. In cases where power quality is poor, the 

performance of electrical devices may be reduced and even damaged. Power quality problems in 

networks are usually caused by voltage fluctuations, harmonic distortions and sudden load changes. 

These problems both cause disruption in the energy consumption of end users and adversely affect the 

overall efficiency of energy systems [11].  

Power quality problems are among the main technical challenges that affect the stability of energy 

systems and cause problems for both individual and industrial users. Among these problems, voltage 

fluctuations, harmonic distortions, phase shifts and deviations in the grid frequency stand out. Voltage 
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fluctuations occur as a result of sudden addition or removal of load to the grid and may prevent the 

proper operation of electronic devices. Harmonic distortions are caused by nonlinear loads and cause 

serious distortions in the energy waveform and reduce energy efficiency. Phase shifts are imbalances 

between phases during energy transmission and cause synchronization problems in energy systems. In 

addition, the imbalance between increasing demand and supply in the grid may trigger frequency 

deviations and create instability in energy systems. Power quality problems may cause disruptions in 

energy distribution and high costs while shortening the life of devices [12-14]. 

The proliferation of electric vehicles may create new problems affecting power quality due to the 

increase in energy demand and variable load profiles. In particular, charging multiple electric vehicles 

at the same time may lead to voltage drops and imbalances in the grid. This causes overloading on power 

distribution lines, pushing the limits of the existing infrastructure. Furthermore, the non-linear nature of 

electric vehicle chargers increases harmonic distortion, which causes distortion of the energy waveform. 

Sudden energy withdrawals during the charging process may create deviations in the grid frequency and 

disturb the energy supply-demand balance. These effects not only undermine the stability of energy 

systems, but may also lead to longer charging times and increased costs for electric vehicle users. The 

intensive charging requirements of electric vehicles challenge the capacity of the existing grid 

infrastructure to manage power quality issues. Smart grid technologies and innovative energy 

management systems are of great importance to solve these problems effectively [15,16]. 

4. Managing the Impact of Electric Vehicle Charging Load on the Grid with Artificial 

Intelligence Based Algorithms 

The proliferation of electric vehicles creates various challenges in terms of energy demand and 

grid stability. In order to overcome these challenges and manage the grid effectively, artificial 

intelligence-based algorithms have become an important solution tool in recent years. These algorithms 

are used in various fields such as optimizing energy consumption, ensuring load balance of charging 

stations, managing dynamic pricing strategies and maintaining the energy supply-demand balance 

effectively [17,18]. 

There are several advantages of performing electric vehicle charging management with artificial 

intelligence algorithms. These algorithms play a critical role in understanding energy consumption 

algorithms and impacts on the grid by analyzing large amounts of data. Variables such as charging times 

of electric vehicles, load density on the grid, energy prices and production levels of renewable energy 

sources may be analyzed in real time with artificial intelligence algorithms. These analyses enable the 

implementation of optimized energy management strategies to minimize imbalances on the grid [19,20].  

There are many artificial intelligence-based management algorithms used to manage the effects 

of electric vehicle charging on the grid. Demand forecasting and load balancing forecasts energy demand 

and balances the load between charging stations. Charging timing optimization directs users to charge 

during low demand hours. Charging management based on battery status (SoC) priorities vehicles with 

low battery levels. V2G integration feeds energy from vehicle batteries back to the grid. Charging station 

layout optimization ensures stations are strategically located. Renewable energy integration plans the 

charging of vehicles with renewable energy sources. Multi-agent decision-making optimizes energy 

management by enabling cooperation between charging stations. Real-time traffic and charging status 

monitoring directs vehicles to the most appropriate charging stations. All of these methods are actively 

used. However, some of these methods are prominent in the literature. In this paper, studies on managing 

electric vehicle charging load with dynamic pricing, charging demand forecasting, routing, charging 

scheduling and smart grid strategies are analyzed. 



IJESG
e-ISSN 2636-7904 

International Journal of Energy and Smart Grid 
Vol 9, Number 1, 2024 

Doi: 10.55088/ijesg.1598117 

 

 54 

In [21], a machine learning-based approach is developed to predict the charging behavior of 

electric vehicles and manage charging loads. Charging data, weather, traffic and local event information 

are combined to predict charging time and energy consumption. The algorithms used included Random 

Forest (RF), Support Vector Machine (SVM), XGBoost and Artificial Neural Networks (ANN). This 

article specifically aimed to improve the accuracy of charging time and energy consumption prediction 

and optimize the charging load. This study also aims to reduce the impacts on the grid by balancing the 

charging loads according to the predicted data. 

In [22], an energy management system is developed to predict the charging demand of hybrid 

electric vehicles (HEVs) in microgrids based on renewable energy sources and to reduce the impact of 

this demand on the grid. HEV charging demand is estimated using Support Vector Regression (SVR) 

and charging scheduling is optimized based on these estimates. Charging strategies are divided into two 

as "coordinated charging" and "smart charging". Dragonfly Algorithm is used for optimization and the 

method is tested on IEEE microgrid test system. The results showed a 2.5% reduction in grid operating 

costs. 

In [23], a two-layer deep learning model is developed to manage the charging load of electric 

vehicles and reduce fluctuations on the grid. The model aims to optimize pricing and charging strategies 

of electric vehicle users. In the first layer, charging decisions are solved by Deep Reinforcement 

Learning (DRL) and in the second layer, charging station selection is solved by Deep Q-Learning 

(DQL). The model also aims to both reduce charging costs and increase grid stability by directing 

charging tariffs to electric vehicle users. 

In [24], a charging navigation strategy is developed to manage the charging load of electric 

vehicles. The strategy aims to optimize the routing of electric vehicles to charging stations taking into 

account empty load rates and dynamic electricity prices. With the "four networks and four flows" model, 

an integration between the energy network, traffic network and information network are achieved. By 

analyzing dynamic electricity pricing and empty load rates, the optimal charging time and station for 

vehicles is proposed. This method reduces the peak and trough difference on the network by providing 

an even distribution of charging loads. 

In [25], an energy consumption model is developed to minimize the energy consumption of 

electric vehicles and a DRL and Transformer based network is used to optimize this model. The model 

takes into account vehicle dynamics, path information and charging losses when optimizing the routes 

of electric vehicles to reduce energy consumption. This method provides more effective results by 

focusing on minimizing energy consumption instead of traditional distance minimization. This article 

presents a solution to balance the load on the grid and manage energy consumption through the 

integration of charging stations and the planning of electric vehicle routes. 

In [26], a Safe Reinforcement Learning (SRL) method is developed to solve the dynamic and 

stochastic routing problem for electric commercial vehicles. In this article, routing strategies are 

developed considering the uncertainties in energy consumption and customer demands. The model is 

formulated as a Markov Decision Process and aims to minimize energy consumption while reducing the 

risk of battery depletion. Through Monte Carlo simulations, dynamic customer demands and energy 

consumption probability distributions are estimated to plan routing and charging stops. 

In [27], a deep learning framework is developed to optimize the charging times of electric vehicles 

and manage their load on the grid. The behavior of CopulaGAN electric vehicle charging sessions is 

modelled. An AutoRegressive eXogenous Neural Network (ARXNN) is used for price prediction. Grey 

Wolf Optimization is used for the optimization of charging and discharging times. This method aims to 

meet the needs of both electric vehicle users and grid operators in order to reduce charging costs and 

balance charging loads. 
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In [28], a charging scheduling method based on the Soft Actor-Critic (SAC) algorithm is 

developed to efficiently manage electric vehicle charging demands in a distribution network. This 

method aims to minimize costs and improve grid stability by effectively managing electric vehicle 

charging loads while considering the randomness in renewable energy generation, electricity prices, and 

electric vehicle charging demands. 

In [29], a Twin-Delayed Deep Deterministic Policy Gradient (TDDPG) based reinforcement 

learning controller is developed to optimize active and reactive power control in three-phase grid-

connected in-vehicle chargers to manage the impact of electric vehicle charging load on the grid. The 

system aims to manage grid-to-vehicle (G2V) and V2G bidirectional power flows. This improves the 

stability of the grid while ensuring precise tracking of active and reactive power references. This article 

presents a smart energy management platform to manage the charging loads of electric vehicles and 

mitigate their impact on the grid. 

In [30], a Multi-Agent Reinforcement Learning (MARL) method is developed to manage the 

charging load of electric vehicles and balance their energy demands on the grid. The proposed method 

is based on a centralized training and decentralized execution framework to simultaneously optimize 

energy purchasing strategies and energy distribution strategies. Electric vehicle flow is predicted by a 

Long Short-Term Memory (LSTM)-based neural network, while energy purchasing strategies are 

determined by the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) method. Furthermore, 

an online heuristic routing (OHD) method is proposed for energy distribution. 

In [31], a machine learning-based system is proposed to manage the charging load of electric 

vehicles while considering the impacts on the distribution grid. The system integrates conventional 

charging, fast charging, and V2G technologies to optimize grid performance. Charging station routing 

and speed selection are performed using LSTM networks, which successfully minimize load variance, 

power losses, and voltage fluctuations. Additionally, user charging costs are reduced by leveraging V2G 

technology, allowing energy feedback to the grid during peak hours. Various machine learning 

algorithms, including Decision Trees (DT), RF, SVM, K-Nearest Neighbors (KNN) and Deep Neural 

Networks (DNN) are evaluated with LSTM emerging as the most accurate and robust method. The 

proposed system provides a reliable, data-driven solution for grid stability and user satisfaction by 

optimizing energy distribution and reducing overload risks. 

Artificial intelligence-based approaches are becoming increasingly important in energy 

management to mitigate the adverse effects of electric vehicles on electricity grid. As demonstrated in 

various studies [21-31], these methods offer innovative solutions in fields such as balancing charging 

loads, optimizing pricing strategies and enhancing grid integration. In addressing issues like load 

intensity and grid instability during electric vehicle charging processes, artificial intelligence-supported 

algorithms facilitate decision-making processes and deliver valuable outcomes for both users and grid 

operators. This article emphasizes the opportunities presented by artificial intelligence in the 

development of charging load management strategies, providing a significant contribution to the 

creation of more flexible and sustainable solutions in the future. 
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Table 1. Studies in the literature. 

Reference 
Management 

Strategy 
AI Method Aims 

Application 

Field 

[21] Charging demand 
RF, SVM, XGBoost, 

ANN 

Balancing charging loads, 

improve forecasting accuracy 
Charging stations 

[22] Charging demand SVR 
Ensure grid load balance, 

reduce operating costs  

Microgrid 

(Renewable 

energy and HEV 

integration) 

[23] Pricing and routing DRL, DQL 
Enhance grid stability, lower 

charging costs 

Charging stations 

and users 

[24] Pricing and routing 
Dynamic pricing, 

Graph theory 

Balancing charging loads, 

reduce traffic congestion 

Traffic and grid 

integration 

[25] Routing 
Transformer based 

DRL 

Enhance grid stability, 

reduce energy consumption  
Vehicle routing 

[26] Routing SRL 
Enhance grid reliability, 

reduce energy consumption 
Vehicle routing 

[27] Scheduling 
CopulaGAN, 

ARXNN 

Ensure grid balance, lower 

charging costs 
Parking lots 

[28] Scheduling SAC 
Enhance grid stability, 

reduce costs 

Distribution 

network 

[29] Smart Grid 
Twin-Delayed 

DDPG 

Improve grid stability, 

optimise power flow 

Smart grid (V2G 

and G2V 

integration) 

[30] Smart Grid 
MARL (MADDPG, 

LSTM) 

Ensure grid balance, enhance 

user satisfaction 

Smart grid 

(Charging station 

network) 

[31] V2G 
LSTM, DT, RF, 

SVM, KNN, DNN 

Flattening the load curve, 

reducing power losses, 

minimizing voltage 

fluctuations 

Charging stations 

and distribution 

grids 
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5. Conclusions 

The widespread adoption of electric vehicles is recognized as an important step towards reducing 

carbon emissions in the transportation sector and eliminating fossil fuel dependency. However, the 

intense charging demand created by this transformation on the energy infrastructure may lead to 

problems that threaten grid stability. To mitigate the negative impacts of electric vehicles on the grid 

and to optimize energy management, artificial intelligence-based solutions are becoming prominent. 

This paper provides a comprehensive review of artificial intelligence approaches for electric vehicle 

charging management. Methods such as charging demand forecasting, dynamic pricing, charging 

scheduling and smart grid integration stand out as effective algorithms to balance charging loads, 

optimize costs and increase grid stability. Artificial intelligence-based solutions have demonstrated 

significant success in effectively managing the charging load of electric vehicles, enhancing grid 

stability, and optimizing energy costs. 

In the future, integrating these methods with renewable energy sources and supporting them with 

energy storage technologies will provide higher efficiency and flexibility in energy management. In 

addition, multiple systems and hybrid artificial intelligence models that enable real-time management 

of all components on the grid stand out as promising areas for both academic research and industrial 

applications. In conclusion, the adaptation of artificial intelligence-based methods is a critical strategy 

to manage the impacts of electric vehicles on energy infrastructure and the grid and to create a more 

sustainable transportation system. Future studies should focus on the broader applications and 

applicability of these methods. 
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Abstract: Regular inspection of energy transmission lines plays a critical role to ensure the safety of 
energy infrastructures and minimise failure risks. While traditional inspection methods have limitations 

such as high cost, long duration and hazardous working conditions, unmanned aerial vehicles (UAVs) 
are emerging as an innovative alternative in this field. This paper provides a comprehensive review of 

the use of UAVs in the inspection of power transmission lines, focusing on the sensor technologies, 

artificial intelligence (AI) algorithms and field applications. The integration of LiDAR, thermal camera 

and multispectral sensors into UAVs offers many advantages such as three-dimensional modelling of 

power lines, detection of thermal anomalies and assessment of environmental risks. In addition, deep 
learning and reinforcement learning algorithms have been observed to improve the performance of 

UAVs by accelerating data processing and improving autonomous navigation. In this study, different 

approaches and case studies in the literature are analysed in detail, and the strengths and limitations 
of UAV-based inspection systems are comparatively evaluated. Accordingly, environmental challenges, 

sensor integration and legal regulations stand out as the main obstacles faced by these technologies in 
field applications. However, it is emphasised that significant improvements in data processing processes 

can be achieved with the integration of 5G technology and edge computing systems. This study not only 

evaluates the current status of UAVs in the inspection of energy infrastructures, but also provides 
recommendations for future research. More widespread adoption of UAV-based inspection systems will 

contribute to a more reliable, efficient and sustainable management of the energy sector. 

Keywords: Energy transmission line inspection, Unmanned aerial vehicles, Artificial intelligence 

assisted systems, Lidar and Sensor Technologies  
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1. Introduction  

Regular maintenance and inspection of power transmission lines is critical to meet the growing 

energy demand of modern societies. Traditional inspection methods are often carried out by ground 

crews or helicopter-assisted inspections, which can be both costly and dangerous. Challenges such as 

mountainous regions, dense vegetation and extreme weather conditions limit the effectiveness of these 

methods and make reliable monitoring of energy transmission lines difficult. In this context, UAVs have 

emerged as an innovative and effective solution for the inspection of power transmission lines [1,2]. 

UAVs, especially multi-rotor models, provide detailed monitoring of transmission lines at close 

range, thanks to their ability to move around power transmission towers with high precision and to 

perform stationary inspections. These vehicles are equipped with optical and thermal cameras capable 

of providing high resolution data. In Aydın et al.'s study, it was shown that the optical cameras of UAVs 

can detect minor damages on power transmission towers and this makes significant contributions to 

preventive maintenance processes [3]. In addition, thermal cameras are often used as an effective tool 

for detecting invisible overheating or deterioration of insulators [2,4]. 

Rapid advances in UAV technology, combined with AI algorithms, have enabled these systems 

to become more autonomous and efficient. In Chen and Lee's study, it was shown that deep learning-
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based algorithms are used for UAVs to adapt to environmental conditions and these algorithms can 

classify structural anomalies in real time [5]. In particular, algorithms such as YOLO and R-CNN are 

used to automatically detect anomalies such as insulator damages, line sagging and structural 

deterioration, which are commonly encountered in power transmission lines [1,4]. 

In Zhang et al.'s study, it was reported that new route planning algorithms developed for UAVs 

optimise the inspection processes of power transmission lines and enable these processes to be 

completed in a shorter time [6]. These algorithms make it easier for UAVs to cope with challenges such 

as dense vegetation or complex environmental conditions. In addition, Rezwan et al. integrated UAVs 

with multispectral sensors to analyse environmental risk factors. Multispectral sensors allow a detailed 

assessment of environmental conditions and have been used to analyse the impact of vegetation on 

power transmission lines [7]. 

Finally, Lekidis et al. detailed how UAVs can be integrated with different sensor systems and the 

contributions of these integrations to the inspection processes of energy transmission lines. In the study, 

it was shown that the combined use of LiDAR, thermal cameras and optical sensors provides a more 

comprehensive assessment of the condition of power lines [8]. These technologies make it possible to 

manage energy infrastructure more reliably and reduce operational costs. 

This review aims to comprehensively evaluate the innovative solutions, existing methods and 

challenges that UAVs offer in the inspection of energy transmission lines. Commonalities, differences 

and future research opportunities in the existing literature will be discussed, and how UAV-based 

inspections can contribute to more efficient and safe management of energy infrastructures. In this paper, 

technological developments and applications for the inspection of energy transmission lines with UAVs 

are discussed in detail. 

In this paper, technological developments and applications for the inspection of energy 

transmission lines with UAVs are discussed in detail. Section 2 covers the technological infrastructure 

of UAV-based inspections, sensor systems and AI algorithms. Chapter 3 analyses the practical 

applications and case studies of UAVs on power transmission lines and evaluates the success stories and 

shortcomings in this field. Section 4 discusses the challenges faced by these technologies and provides 

recommendations for future research. The final section summarises the overall conclusions of the study 

and highlights future research directions. 

2. Technological Landscape of UAV-Based Inspections 

Regular maintenance and inspection of energy transmission lines is critical to ensure the 

continuity of energy supply and prevent failures. Traditional methods have serious limitations such as 

high cost, long inspection times and hazardous working conditions. Therefore, UAVs have emerged as 

an important alternative for the inspection of energy transmission lines. With their advanced sensor 

systems, AI-supported analysis tools and autonomous flight capabilities, UAVs provide reliable 

inspection of power lines. The integration of technologies such as LiDAR, thermal imaging and 

multispectral sensors into UAVs allows precise assessment of the condition of the lines [1,9]. 

LiDAR sensors create three-dimensional models of power transmission lines and analyse their 

geometric structure in detail. This technology is used as an effective tool for detecting mechanical 

deformations in the lines as well as environmental threats, especially risks caused by vegetation. The 

study by Lekidis et al. demonstrated how LiDAR-based sensors and AI algorithms can be combined in 

the inspection of power lines. In the study, the data collected by the UAVs were processed in real time 

via edge computing nodes and a significant speed and accuracy in fault detection was achieved. Figure 

1 details the data collection, analysis and fault reporting stages of UAVs and clearly shows the 

applications of these processes on power transmission lines [4]. 
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Figure 1. Methodology architecture 

Artificial intelligence plays a central role in analysing the data collected in the inspection 

processes of power transmission lines and in the development of autonomous control systems. Deep 

learning algorithms such as YOLO and R-CNN can automatically detect damage to insulators, line 

sagging and other structural anomalies, minimising human intervention in the process. By integrating 

AI algorithms with 5G technology, Lekidis et al.'s study enabled the data collected by UAVs to be 

analysed with low latency and transmitted instantly to maintenance teams. Such systems have not only 

accelerated inspection processes, but also increased reliability [4]. 

Besides, other sensor technologies such as thermal cameras and multispectral sensors are widely 

used to detect different problems in power lines. Thermal cameras are an effective tool for detecting 

thermal anomalies such as overheating, while multispectral sensors are used to analyse environmental 

conditions and assess potential threats from vegetation [2,9]. The use of these sensors in combination 

with LiDAR enables more comprehensive monitoring of power lines. For example, the proximity of 

vegetation to power lines and whether it poses a potential threat can be easily analysed with multispectral 

data. 

Autonomous control systems also offer an important innovation in the inspection of power lines. 

Rezwan et al. used deep reinforcement learning algorithms to enable UAVs to move reliably in complex 

environmental conditions. These systems have increased the effectiveness of UAVs in processes such 

as obstacle avoidance, route optimisation and mission planning [2]. Especially in large-scale energy 

infrastructures, faster and more efficient inspection processes have been realised thanks to such 

autonomous systems. 

These technological developments are important tools that increase the effectiveness of UAVs in 

the inspection of energy transmission lines. Figure 1 visualises the overall operation of UAV-based 

energy inspection systems, detailing how these processes are integrated, how the collected data is 

processed and how the results are analysed. This figure clarifies the central role that UAVs play in both 

the collection and processing processes and can be used as a visual support for the explanations in this 

section [4]. 
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3. Practical Applications and Case Studies 

Regular inspection of energy transmission lines plays a vital role in ensuring the safety of energy 

infrastructure and preventing outages. The costly, time-consuming and dangerous nature of traditional 

inspection methods has made the use of UAVs more attractive in this field. Equipping UAVs with 

different sensor systems and AI-supported analysis tools provides a more precise and effective 

inspection of energy transmission lines. Several studies evaluating the practical applications of these 

vehicles detail the operational benefits and technical contributions of UAVs [10–12]. 

Wang et al. demonstrated the successful inspection of power transmission lines with UAVs 

equipped with optical cameras. In this study, deep learning based image processing algorithms were 

used to detect structural deformations and insulator damages in power towers. This method eliminated 

manual analysis processes and provided faster and more reliable results [13,14]. Similarly, the 

integration of thermal cameras with UAVs has been effective in detecting failures due to overheating. 

Thermal cameras have made significant contributions to preventive maintenance processes by detecting 

thermal anomalies that cannot be detected by the human eye [15,16]. 

The use of LiDAR sensors in the inspection of power transmission lines has made it possible to 

create three-dimensional models of the lines and to analyse environmental impacts in detail. In the study 

by Azevedo et al. it was reported that LiDAR-based systems detail the geometric structure of power 

lines and predict the risks arising from vegetation. This study reveals that LiDAR sensors offer a more 

comprehensive analysis when integrated with other sensors [17,18]. Studies using multispectral sensors 

in conjunction with LiDAR have also enabled a broader analysis of environmental factors and the 

condition of power lines [19,20]. 

The use of multiple UAV systems in energy inspection allows large areas to be inspected 

simultaneously. Rezwan et al. developed a system in which multiple UAVs inspect power transmission 

lines simultaneously and task assignment processes are optimised with Ant Colony Optimisation (ACO) 

algorithm. This approach significantly reduced inspection times and increased operational efficiency in 

large-scale energy infrastructures [21,22]. 

In Lekidis et al.'s study, a system was designed to analyse power lines in real time with the 

integration of AI-supported algorithms and 5G technology. In the study, the data collected by UAVs 

were processed by edge computing nodes and fault detection processes were accelerated [4]. 

These studies of practical applications demonstrate the multifaceted benefits of UAVs in the 

inspection of energy transmission lines. Both the integration of sensor technologies and the use of 

multiple UAV systems play a critical role in improving the security of energy infrastructures and 

reducing operational costs. 

4. Challenges and Future Research Opportunities 

Although the use of UAVs in the inspection of energy transmission lines offers significant 

advantages, these technologies face various operational and technical challenges. Environmental 

conditions, data processing limitations and legal regulations are among the main factors limiting the 

effectiveness of UAV-based systems in field applications. To overcome these challenges and make these 

systems more efficient, future research should focus on developing AI algorithms, improving sensor 

integration and data security. 

One of the biggest challenges in field applications of UAVs is the harsh environmental conditions. 

Dense vegetation, complex terrain and adverse weather conditions can directly affect the flight safety 

and data collection efficiency of UAVs. Rezwan et al. analysed the effects of wind and other weather 

conditions on UAV performance and developed reinforcement learning-based algorithms to deal with 
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such environmental factors. These algorithms have improved the reliability of UAVs in obstacle 

avoidance, route optimisation and autonomous navigation processes [21,22]. However, the coordination 

of multiple UAV systems in complex geographical areas poses a significant challenge. It is emphasised 

that task assignment algorithms should be further developed for the simultaneous operation of multiple 

UAVs [11,20]. 

One of the most striking technical challenges is the integration of sensor technologies and data 

processing. The combination of LiDAR, thermal camera and multispectral sensors provides a powerful 

infrastructure for detailed analysis of power transmission lines. However, real-time processing of the 

data collected from these sensors requires improvements in data fusion and analysis algorithms. In 

Azevedo et al. highlighted the limitations of integrating LiDAR and thermal sensors to make sense of 

the data and developed algorithms to optimise these processes. Such improvements can enable faster 

and more reliable processing of large data sets [17,18]. 

Another important obstacle to the widespread adoption of UAV-based energy control systems is 

the legal regulations. Lekidis et al. pointed out that flight restrictions in different countries limit the field 

applications of UAV-based systems. The study suggested that the development of autonomous control 

systems compatible with legal regulations could be an effective method to overcome these limitations 

[4]. In addition, data security and privacy are among the important issues that need to be resolved for 

the use of UAVs in energy infrastructures. Protecting the collected data and providing access only to 

authorised persons is a critical requirement for the wide-scale applicability of these systems [14,19]. 

To overcome these challenges, future research should focus on sensor and AI integration of UAVs. 

In particular, the use of edge computing and 5G technologies can make real-time analysis processes 

more efficient by reducing data processing times. The development of autonomous control systems that 

can operate reliably in different geographical conditions will improve the operational performance of 

UAVs, as proposed by Rezwan et al [21,22]. In addition, modelling environmental factors with 

simulations and incorporating these models into route planning processes can provide significant 

improvements in field applications [11,20]. 

In conclusion, although the challenges faced by UAV-based energy control systems limit the 

potential of these technologies in field applications, innovative research in areas such as AI, sensor 

integration and data security show promise to overcome these problems. Future studies will contribute 

to the wider adoption of these technologies and more efficient and secure management of energy 

infrastructures. 

5. Conclusions and Recommendations 

This study comprehensively analyzed the advancements and challenges of UAVs in inspecting 

power transmission lines. The review highlighted key technological innovations, practical 

implementations, and areas requiring further research. The following conclusions synthesize the 

findings and emphasize actionable insights for improving UAV-based systems while addressing the 

suggestions provided by the reviewers. 

 

The integration of advanced sensor technologies such as LiDAR, thermal cameras, and 

multispectral sensors has significantly enhanced the capabilities of UAVs in detecting structural 

anomalies, environmental risks, and thermal irregularities. As summarized in Table 1, LiDAR enables 

the creation of detailed three-dimensional models of power lines and surrounding vegetation, which is 

essential for precise risk assessments. Similarly, thermal and multispectral sensors complement these 

capabilities by improving fault detection and environmental monitoring. These sensor technologies 

provide a robust foundation for addressing the diverse requirements of power line inspections. 
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Table 1. Comparison o f Publications on UAV-Based Transmission Line Inspection by Features 

Publications Year 
Sensor 

Technologies 
Algorithms Challenges 

Innovations and 

Contributions 

[1] 2021 LiDAR 
Deep Learning-based 

PointNet 
Dataset scarcity Workflow efficiency 

[2] 2022 - -A*, PSO, ACO Energy, obstacles Federated learning 

[3] 2017 Binocular Cameras 
Ratio Detection, 

Hough Transform 

Noise in edge 

detection 

Real-time power line 

distance 

measurement 

[4] 2022 

LiDAR, 

multispectral 

sensors, thermal 

cameras 

R-CNN, Fast R-

CNN 

GPS instability, data 

latency, high 

accident rate 

5G network slicing, 

edge computing, AI-

assisted fault 

detection 

[5] 2019 
Laser rangefinder, 

cameras 
PID controllers 

High wind speeds, 

vegetation 

interference 

Autonomous 

inspection workflow 

for energy assets 

[6] 2024 

Multispectral 

cameras, thermal 

imaging 

A* Algorithm, R-

CNN 

Signal loss, data 

processing speed 

Real-time data 

transmission, remote 

control efficiency 

[7] 2024 - BACOHBA, HBA 
Multi-wind field task 

assignment 

Multi-UAV 

optimization 

[8] 2024 - FGATS 

Multi-depot task 

assignment, UAV 

recharging, grouping 

optimization 

İmproved large-scale 

UAV assignment 

efficiency 

[9] 2019 LiDAR PL2DM 

Real-time processing 

with large data 

volume 

Developed PL2DM 

for real-time 

segmentation and 

modeling of power 

lines 

[10] 2020 Cameras 
Feature Extraction, 

Clustering 
Noise in detection 

Automatic power 

pylon detection 

[11] 2020 
Cameras, 4G 

communication 

AdaBoost, K-Means 

Clustering 

Noise interference, 

real-time image 

processing 

High-accuracy defect 

detection, automated 

image analysis 

[12] 2020 Optical Camera 
Multi-source 

Information Fusion 

GPS and Directional 

Data Limitation 

Accurate Tower 

Detection 

[13] 2022 

LiDAR, Ultraviolet 

Imagers, HD 

Cameras 

Improved Median 

Filtering 
Image Quality Issues 

Enhanced Fault 

Detection in Power 

Lines 

 

 

 

 

 

Table 1 Continued. 
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Publications Year Sensor 

Technologies 

Algorithms Challenges Innovations and 

Contributions 

[14] 2023 Cameras, LiDAR Image Recognition, 

Path Planning 

Manual operation 

reliance 

Autonomous UAV 

inspection system 

[15] 2022 LiDAR Deep Separation 

Convolution, 

YOLOv3 

Visual positioning 

lag 

Improved UAV 

spatial positioning 

accuracy 

[16] 2023 Satellite Internet, 

FANET 

Multi-agent 

Reinforcement 

Learning, Q-

Learning 

Communication 

stability, battery 

energy consumption 

Spatiotemporal 

routing strategy for 

UAVs 

[17] 2019 Thermal infrared 

camera, LiDAR 

Path planning 

algorithms 

Navigation precision 

issues 

Autonomous 

powerline inspection 

system with multiple 

sensor integration 

[18] 2024 LiDAR Monte Carlo 

simulation 

Wind conditions Semi-autonomous 

landing 

[19] 2023 Electromagnetic 

Field Sensors 

- Electromagnetic 

interference, 

collision risks 

Insights into safe 

UAV operation 

distances 

[20] 2024 BeiDou RTK, UAV 

cameras 

YOLOv4, LSD 

algorithm 

EM interference, 

weather impact 

Accurate tilt 

detection, real-time 

monitoring 

[21] 2023 Ultrasonic sensors, 

monocular cameras 

Deep Deterministic 

Policy Gradient 

Long training times, 

slow convergence 

Integrated artificial 

potential field to 

speed training 

[22] 2024 Cameras, LiDAR, 

GPS 

Multi-source data 

fusion 

Complex 

environments 

Improved obstacle 

detection accuracy 

 

Artificial intelligence-driven algorithms, including YOLO, R-CNN, and reinforcement learning 

methods, have transformed UAV-based inspections. These algorithms automate fault detection, 

optimize flight paths, and accelerate data analysis processes, reducing reliance on human intervention. 

The integration of edge computing and 5G technologies, as highlighted in Table 1, has further enhanced 

real-time data processing, enabling faster and more accurate fault identification. These advancements 

underscore the potential for UAV systems to achieve greater autonomy and efficiency in operational 

settings. 

Despite these technological advancements, several challenges persist. Environmental conditions, 

such as adverse weather and complex terrains, continue to hinder UAV performance. As noted in Table 

1, studies addressing these challenges often propose reinforcement learning algorithms and robust UAV 

designs to improve reliability. Additionally, legal and regulatory barriers pose significant obstacles to 

widespread UAV deployment. Variations in regulations across regions create uncertainty, while data 

security and privacy concerns further complicate the adoption of UAV-based systems for energy 

infrastructure inspections. 

A comparative analysis of existing approaches reveals both the strengths and limitations of current 

systems. Multi-sensor setups that combine LiDAR, thermal cameras, and multispectral sensors, as 

described in several studies within Table 1, offer superior fault detection capabilities but also highlight 

the need for improved data fusion algorithms. Similarly, multi-UAV systems optimized with swarm 
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intelligence methods such as Ant Colony Optimization (ACO) demonstrate potential in reducing 

inspection times, though their scalability in large-scale operations remains a challenge. These findings 

indicate that while progress has been made, further research is necessary to overcome the identified 

technical and operational limitations. 

Building on these insights, future research should focus on enhancing the efficiency and 

applicability of UAV-based systems. Artificial intelligence algorithms such as YOLO and R-CNN 

should be further refined to handle complex environmental conditions and process larger datasets in real 

time. Advances in sensor integration are also critical, with efforts directed toward developing more 

precise and reliable systems that combine LiDAR, thermal imaging, and multispectral data streams. 

Moreover, designing UAV systems capable of operating across diverse geographical conditions would 

significantly enhance their versatility, especially in regions with challenging terrains or extreme weather 

conditions. 

Expanding the application scope of UAV technologies to other industries, such as agriculture and 

disaster management, represents another promising research avenue. Lessons learned from energy 

infrastructure inspections can inform the development of UAV-based solutions for monitoring crop 

health, assessing post-disaster damage, and managing other critical infrastructures. The comparative 

data presented in Table 1 can serve as a reference point for identifying transferable technologies and 

methods. 

Additionally, recommendations for future research should include exploring the potential of 

multi-UAV systems in large-scale operations. Algorithms like ACO and Particle Swarm Optimization 

(PSO), as detailed in Table 1, should be further developed to optimize task allocation, route planning, 

and resource management. These efforts could significantly reduce operational costs and inspection 

times while increasing the scalability of UAV-based solutions. 

In conclusion, UAV-based inspection systems offer significant advantages over traditional 

methods, including improved precision, cost efficiency, and operational flexibility. However, realizing 

their full potential will require addressing the existing challenges through continued innovation. By 

integrating advanced sensor technologies, refining AI algorithms, and expanding the application scope 

of UAV systems, researchers and practitioners can unlock new possibilities for energy infrastructure 

management and beyond. This study provides a comprehensive roadmap for advancing UAV 

technologies, supported by the comparative insights detailed in Table 1, and emphasizes the importance 

of interdisciplinary collaboration in achieving these goals. 
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