

Current Trends in Computing (CTC)
Editors in Chief

• Assoc. Prof. Dr. Burhan SELÇUK (Karabük University, TÜRKİYE)

• Assoc. Prof. Dr. Hakan KUTUCU (Karabük University, TÜRKİYE)

Associate Editors

• Asst. Prof. Dr. Ömer DAKKAK (Karabük University, TÜRKİYE)

• Asst. Prof. Dr. Kürşat Mustafa KARAOĞLAN (Karabük University, TÜRKİYE))

Managing Editors

• Asst. Prof. Dr. Sait DEMİR (Karabük University, TÜRKİYE)

• Asst. Prof. Dr. Ahmet Ziyaeddin BULUM (Karabük sity, TÜRKİYE)

Language Editor

• Asst. Prof. Dr. Kasım ÖZACAR (Karabük University, TÜRKİYE)

Journal Secretary

• Asst. Prof. Dr. Ayşe Nur Altıntaş TANKÜL (Karabük University, TÜRKİYE)

Area Editors

• Prof. Dr. Mehmet Hacıbeyoğlu, (Necmettin Er-
bakan University, TÜRKİYE)

• Assoc. Prof. Dr. Ivan IZONIN, (University of
Birmingham, UNITED KINGDOM)

• Assoc. Prof. Dr. Ivanna Dronyuk, (Jan Dlugosz
University in Czestochowa, POLAND)

• Assoc. Prof. Dr. Nataliia LOTOSHYN-
SKA, (Lviv Polytechnic National University,
UKRAINE)

• Assoc. Prof. Dr. Solomiia Liaskovska
(Kingston University, UNITED KINGDOM)

• Assoc. Prof. Dr. Okan ERKAYMAZ (National
Defense University, TÜRKİYE)

• Assoc. Prof. Dr. Ümit ATİLA (Gazi University,
TÜRKİYE)

• Assoc. Prof. Dr. İlyas ÖZER (Bandırma
Onyedi Eylül UniveAssoc. Prof. rsity,
TÜRKİYE)

• Assoc. Prof. Dr. Kemal AKYOL (Kastamonu
UniversAssoc. Prof. ity, TÜRKİYE)

• Assoc. Prof. Dr. Kemal AKYOL (Kastamonu
University, TÜRKİYEAssoc. Prof.)

• Asst. Prof. Dr. Yousef Feza (Marshall Univer-
sity, UNITED STATES)

• Asst. Prof. Dr. Şadi ŞEHAB (THK University,

I

TÜRKİYE)

• Asst. Prof. Dr. Abdülkadir TAŞDELEN (Ankara
Yıldırım Beyazıt University, TÜRKİYE)

• Asst. Prof. Dr. Erdal ÖZBAY (Fırat University,
TÜRKİYE)

• Asst. Prof. Dr. Ahmet KARADOĞAN (İnönü
University, TÜRKİYE)

• Dr. Ayşe Erdoğan YILDIRIM (Fırat University,
TÜRKİYE)

Advisory Board

• Prof. Dr. İlker TÜRKER (Karabük University,
TÜRKİYE)

• Prof. Dr. Ali KARCI (İnönü University,
TÜRKİYE)

• Prof. Dr. Erkan ÜLKER (Konya Technical Uni-
versity, TÜRKİYE)

• Prof. Dr. Mustafa Servet KIRAN (Konya Tech-
nical University, TÜRKİYE)

• Prof. Dr. İsmail Rakıp KARAŞ (Karabük Uni-

versity, TÜRKİYE)

• Prof. Dr. Oğuz FINDIK (Karabük University,
TÜRKİYE)

• Assoc. Prof. Dr. Olena VYNOKUROVA (Ivan
Franko National University of Lviv, UKRAINE)

• Assoc. Prof. Dr. Khrystyna Myroniuk, (Univer-
sity of Birmingham, UNITED KINGDOM)

• Assoc. Prof. Dr. Mehmet Akif ŞAHMAN, (Uni-
versity of Selçuk, TÜRKİYE)

Scope

Current Trends in Computing (CTC) is an international double-blind peer-reviewed journal. It publishes
original and high-quality unpublished research papers in all computer sciences/engineering areas. CTC al-
lows researchers and academic professors to share their knowledge with other researchers and professors
worldwide.

Contents

• APPLICATION OF AUTOMATED MACHINE LEARNING AND BAGGING TECHNIQUES TO CLAS-
SIFY RICE VARIETIES
Cihan Bayraktar
86-95

• ON THE POLYNOMIAL MULTIPLICATION ALGORITHMS FOR POST-QUANTUM CRYPTOGRAPHY

Ebru Yalcin, Fidan Nuriyeva, Erdem Alkım
96-107

• ENHANCING GREEN COMPUTING THROUGH ENERGY-AWARE TRAINING: AN EARLY STOP-
PING PERSPECTIVE
Abdulkadir Taşdelen
108-139

• CLASSIFICATION OF EEG SPECTROGRAM IMAGES WITH DEEP LEARNING MODELS FOR AL-
COHOLISM DETECTION
Öznur Yildirim, Yahya Cihat Söker, Mehmet Zahid Yıldırım, Emrah Özkaynak
140-149

• THE FINE-GRAINED CLASSIFICATION OF MILITARY AIRCRAFT USING PRE-TRAINED DEEP
LEARNING MODELS AND YOLO11
Hasan Karaca, Nesrin Aydın Atasoy
150-171

II

https://dergipark.org.tr/en/pub/ctc/issue/89963/1526313
https://dergipark.org.tr/en/pub/ctc/issue/89963/1526313
https://dergipark.org.tr/en/pub/ctc/issue/89963/1562363
https://dergipark.org.tr/en/pub/ctc/issue/89963/1562363
https://dergipark.org.tr/en/pub/ctc/issue/89963/1594291
https://dergipark.org.tr/en/pub/ctc/issue/89963/1594291
https://dergipark.org.tr/en/pub/ctc/issue/89963/1596824
https://dergipark.org.tr/en/pub/ctc/issue/89963/1596824
https://dergipark.org.tr/en/pub/ctc/issue/89963/1578917
https://dergipark.org.tr/en/pub/ctc/issue/89963/1578917

• DATASET OF EASY SCREEN P300 SPELLER BRAİN–COMPUTER INTERFACE DESİGN
Abdullah Bilal Aygün, Ahmet Reşit Kavsaoğlu
172-178

Follow this issue and upcoming issues at: https://dergipark.org.tr/en/pub/ctc

III

https://dergipark.org.tr/en/pub/ctc/issue/89963/1606104
https://dergipark.org.tr/en/pub/ctc

Vol: 2, Issue: 2, 2024
Pages:86-95
Received: 1 August 2024
Accepted: 26 August 2024
c⃝ 2024 Karabük University

CURRENT TRENDS IN COMPUTING
https://dergipark.org.tr/en/pub/ctc

RESEARCH ARTICLE
DOI: 10.71074/CTC.1526313

APPLICATION OF AUTOMATED MACHINE LEARNING AND BAGGING TECHNIQUES
TO CLASSIFY RICE VARIETIES

CIHAN BAYRAKTAR1∗

1 Computer Technologies Department, Karabük University, 78050, Karabük, Türkiye

ABSTRACT. Nowadays, the research for digitalization in the agricultural sector recent years has sig-
nificantly increased. In particular, machine learning and artificial intelligence have applications in
agricultural product classification, quality control, and species identification. The fast processing
times, high accuracy levels, and cost-effectiveness offered by digital solutions for quality control and
classification accelerate these studies. Classifying rice species using traditional methods is a process
that requires expertise, is time-consuming, and costly. Errors and differences of opinion due to hu-
man factors constitute essential limitations in this process. In order to eliminate these limitations, this
study proposes a collaborative learning model utilizing Automated Machine Learning and Bagging
techniques for rice species detection and classification. The model uses a dataset from the UCI Irvine
Machine Learning Repository, which contains characteristics specific to the Osmancık and Cam-
meo rice varieties grown in Turkey. The dataset consists of 3810 data points, 2180 of which belong
to Osmancık rice and 1630 to Cammeo rice. During the analysis, MLBox, an Automated Machine
Learning library, was used to determine the optimal algorithm (Light Gradient Boosting Machine
- LGBM) and its hyperparameters. Later, by applying the Bagging technique within the developed
learning model, an accuracy rate of 93.54% was achieved in rice-type classification.

1. INTRODUCTION

Agriculture is a sector of vital importance, especially for countries that are still developing. The
reasons for this importance include ensuring sufficient and safe food supply, contributing to national
income by providing job opportunities to large masses, encouraging the development of industry with
the demand for agricultural inputs, developing exports, and contributing to the general development of
the country. For these reasons, developing and supporting the agricultural sector should be among the
priorities of every country [1]. In summary, a country’s high agricultural productivity increases the
economic welfare level of the country as a whole [2].

According to 2021 statistics, rice is one of the most important basic food products for the world
population, producing more than 1 billion tons worldwide [3]. The criteria applied to detect quality
rice vary according to regions and countries. However, among consumers, physical appearance, taste,

E-mail address: cihanbayraktar@karabuk.edu.tr (∗).
Key words and phrases. Rice Types, Machine Learning, AutoML, Bagging, Classification.

https://dergipark.org.tr/en/pub/ctc
https://doi.org/10.71074/CTC.1526313
https://orcid.org/0000-0003-4321-5485

aroma, smell, and cooking ability generally stand out as factors that are taken into consideration when
determining the quality of rice [4].

In evaluating the quality of rice, the use of machine learning and artificial intelligence techniques
instead of manual methods is increasing thanks to the low time and cost opportunities it provides. Manual
methods at this stage result in long-term errors and high error rates due to human factors. In addition,
the fact that evaluation can only be made by manual methods by experts of the relevant product brings
another limitation. Differences in people’s own opinions also cause differences in evaluation results. For
this reason, the use of automatic systems instead of manual methods can enable more effective results in
the quality evaluation of products [5].

Machine learning algorithms enable complex, high-dimensional data to be analyzed quickly and ac-
curately. Fault detection, fraud detection, and product quality analysis can be given as examples. One
of the main reasons for the widespread use of machine learning algorithms is that they enable the use of
Graphics Processing Unit (GPU) on a large scale. Because GPUs can show much higher performance in
data analysis operations than the Central Processing Unit (CPU) of computers. The development of these
technologies in data analysis gives hope for solving evaluation problems in agricultural products [6].
Among the techniques used in machine learning applications, data analysis with Automated Machine
Learning (AutoML) libraries can significantly impact different segments of agriculture and industry with
the ease of hyperparameter optimization.

In the study conducted by Çınar et al., images of two rice species, Osmancık and Cammeo rice grains
grown and registered in Turkey, were taken and processed, and a dataset was created by making feature
extractions. The results were compared by applying machine learning algorithms and classification tech-
niques to the produced dataset. As a result of the study, they stated that they got the best accuracy rate,
93.02%, from the model produced with the Logistic Regression algorithm [7].

In their previously published study on the dataset used in this study, İlhan et al. created a model with
Deep Neural Networks for the classification of Osmancık and Cammeo rice varieties. As a result of the
study, they reached an accuracy rate of 93.04% with the model prepared with Deep Neural Networks. It
was stated that the model created in the study made successful classification [8].

In a study conducted by Jin et al., data analysis was carried out using deep learning algorithms such as
LeNet, GoogleNet, and ResNet on the seeds imaged with hyperspectral imaging technology to classify
rice seed varieties. As a result of the combination of hyperspectral imaging and deep learning algorithms,
it has been determined that effective models can be produced in distinguishing rice seeds and the ResNet
algorithm shows the best performance with 86.08% [9].

In their study, Jaithavil et al. created transfer learning models with VGG16, InceptionV3 and Mo-
bileNetV2 systems for the classification of paddy seeds and performed data analysis tests. It was an-
nounced that the proposed transfer learning model achieved high accuracy in classifying steel seeds, and
the InceptionV3 model achieved the best result with an accuracy rate of 83.33%. Within the scope of the
study, it was also stated that the MobileNetV2 model reached the same level of accuracy, but the classifi-
cation performance of this model was not considered sufficient as the test loss occurred at 61.95% [10].

In the study conducted by Jumi et al. to classify rice types, the shape, color, and texture characteristics
of rice were extracted using the Invariant Moment, Hue Saturation Value, and Local Dual Axis methods,

87

and a dataset was created. Afterwards, the relevant dataset was analyzed with the k-nearest Neighbor
classification algorithm, and an accuracy rate of 86.22% was obtained. It was stated that the data obtained
within the scope of the study reached a promising result on the subject [11].

Hoang et al. investigated the difference between manual methods and the CNN algorithm that can
be used to classify rice varieties. The VNRICE dataset was used in the study. After testing various
CNN models, they found the best result of 99.04% with the learning model created by the DenseNet
algorithm with 121 layers. In the study, it was stated that the 121-layer DenseNet model showed the
highest performance, as the accuracy result, as well as the memory and resource consumption of the
models, were taken into consideration [12].

In the study conducted by Mrutyunjaya and Harish Kumar, ensemble machine-learning algorithms
were used to classify five different rice varieties with high accuracy. It has been stated that the learning
model, which was created based on machine learning techniques and image processing methods, was
successful in correctly classifying different rice varieties. In the study, the highest average classifica-
tion accuracy among all tested algorithms was achieved by the Extreme Gradient Boosting (XGBoost)
algorithm with 99.60% [13].

Köklü et al. carried out a classification study with deep learning algorithms for Arborio, Basmati,
İpsala, Jasmine, and Karacadağ rice types. In this study, Artificial Neural Networks (ANN), Deep Neural
Networks (DNN), and Conventional Neural Networks (CNN) algorithms were preferred for classification
processes, and the results obtained as a result of the classification were compared. As a result of the
analysis, ANN reached 99.87%, DNN 99.95%, and CNN 100% performance rates. The findings obtained
in the study stated that the learning models used can be successfully applied in the classification of rice
varieties and can help determine seed quality [5].

In this study, the difficulties encountered in the quality classification processes of agricultural products
are discussed based on the classification of Osmancık and Cammeo rice varieties grown in Turkey. The
slowness and high error rates of traditional methods require the use of more effective and accurate tech-
niques in the quality control of agricultural products. In this context, the proposed solution is a learning
model developed using AutoML and Bagging methods. This model aims to increase efficiency in agri-
cultural production processes by classifying rice varieties more quickly and accurately. In the following
sections of the study, detailed information is given about the dataset used, explanations are made regard-
ing the production of the proposed models, and the findings obtained from the analysis of the data are
conveyed.

2. MATERIALS AND METHODS

In this study, in order to make a prediction and classify between Osmancık and Cammeo rice, the
dataset was produced by Çınar and Köklü [7] and donated to the UC Irvine Machine Learning Pool,
where analyses were carried out [14]. In the study conducted by [7], it was stated that the dataset used
was created by transferring the images of 50g Osmancık and Cammeo rice to the computer environment
and determining their properties, with a camera placed on a box that does not receive any external light

88

but has an internal lighting mechanism. In this context, the dataset consists of 3810 lines of data in total.
The attribute definitions determined for the dataset are given in Table 1.

TABLE 1. Dataset attribute definitions

Attribute Name Attribute Definition

Area Number of pixels within the boundaries of a grain of rice
Perimeter The sum of the distances between pixels around the boundaries of the grain of rice

Major Axis Length The longest line that can be drawn on a grain of rice
Minor Maxis Length The shortest line that can be drawn on a grain of rice

Eccentricity The degree of roundness of the ellipse with the same moments as a grain of rice
Convex Area Number of pixels of the smallest convex hull of the area formed by the rice grain

Extend The ratio of the area formed by the rice grain to the bounding box
Class Result tag (Osmancık / Cammeo)

The class label distribution in the dataset was Osmancık 2180 and Cammeo 1630 (Figure 1).

FIGURE 1. Dataset class label distributions.

In the analyses performed on the dataset, a computer with Intel Core i7 9750H CPU, 16 GB RAM
Memory, Nvidia GeForce GTX 1050 3 GB Graphics Card, and Windows 11 operating system was used.
Analyzes were carried out using the Python 3.7 programming language and the Jupyter Notebook editor.

89

FIGURE 2. MLBox Data preprocessing results.

2.1. Data Preprocessing:
Data preprocessing, also called data preparation, is the process of processing raw data and cleaning,

modifying, and rearranging it before analysis. This step often requires formatting, adjustment, and inte-
gration to improve the information contained in the datasets. Data preprocessing is an important step in
preparing data for processing and reducing the possibility of bias, but it can be a laborious task [15].

Preprocessing processes were run on the dataset analyzed in this study before analysis with MLBox,
an AutoML library. In line with the results shown in Figure 2, no missing/erroneous data was found in
the data, and no categorical data type was detected. In addition, in terms of the dataset order, it was seen
that the attributes did not have a quality that would disrupt the order in reaching the result. Therefore, no
attribute extraction was performed. With the current state of the dataset, the analysis process has begun
for the creation and testing of learning models.

2.2. Data Analyses:
AutoML technology was used to determine the most suitable algorithms and hyperparameters before

the bagging process to be used in the classification of Osmancık and Cammeo rice. AutoML is the
preferred technique for performing complex analyses on large datasets. This technique significantly
facilitates the analysis of large-scale data compared to traditional analysis methods [16]. AutoML aims
to enable machine learning applications to produce better results by making it easier for data analysis
experts to easily apply machine learning techniques, as well as to make appropriate hyperparameter
adjustments for data analysis experts [17]. AutoML uses an automatic technique that allows machine
learning algorithms to be configured at an optimal level. For this reason, the prevalence of its use among
researchers continues to increase [18].

90

TABLE 2. LGBM algorithm performance values

Model Precision Sensitivity Specifity F1-Scrore Accuracy

LGBM 0.912 0.925 0.928 0.918 0.927

AutoML technology covers the following processes in terms of data analysis [19]:
• Data Preprocessing: It ensures that the quality of the data is maintained by helping to perform

various cleaning and preparation operations on the datasets before creating the learning models.
• Model Selection: AutoML allows the most appropriate model to be automatically selected ac-

cording to the characteristics of the dataset and the classification method to be applied.
• Hyperparameter Optimization: AutoML technology automatically adjusts hyperparameter op-

tions that will optimize performance and accuracy without the need for manual intervention by
the data analysis researcher.

• Binary, Multi-Class, and Multi-Label Classification: With AutoML tools, they can act in multiple
ways in classification scenarios by creating effective solutions to such classification problems.

Many libraries implement AutoML techniques. Within the scope of this study, data analysis was car-
ried out using the AutoML library named MLBox. MLBox is a library developed to perform distributed
data processing, cleaning, and formatting processes. In order to provide these features, it supports state-
of-the-art machine learning algorithms. In addition to individual algorithms, it can also work with en-
semble learning algorithms such as LightGbm and XgBoost [20]. In addition, it can perform feature
selection processes in an extremely robust manner and apply accurate hyperparameter optimizations in
high-dimensional data structures [21]. MLBox performs data analysis with three basic sub-packages that
work in a determined order. The first of these packages, preprocessing, ensures that the data is read
and preprocessed if necessary. The second package, optimization, enables the application of appropriate
hyperparameter optimizations and the testing processes of the created learning models. The third step,
prediction, carries out the process of predicting the result using the obtained learning models and input
data. The working order of MLBox occurs automatically since it is an AutoML library [22].

3. RESULTS

In our study, in order to achieve the best level of accuracy in classifying rice grains, the appropriate
algorithm and hyperparameters were determined with the MLBox library, and then the detected algorithm
was subjected to the Bagging process with hyperparameters, aiming to increase the performance rate
incorrect predictions.

In the first stage, as a result of the analysis performed with the MLBox library, it was concluded that the
Light Gradient Boosting Machine (LGBM) algorithm was suitable for the dataset with the hyperparame-
ters given in Figure 3. The classification success of the LGBM algorithm on the dataset was determined
as 92.70%, and it was observed that it achieved successful classification. Table 2 gives the performance
values of the LGBM algorithm on the dataset.

91

FIGURE 3. LGBM classification algorithm hyperparameters.

FIGURE 4. Bagging process hyperparameters.

TABLE 3. Performance of the learning model produced with bagging technique

Tests Precision Sensitivity Specifity F1-Scrore Accuracy

Test 1 0.905 0.951 0.925 0.927 0.936
Test 2 0.909 0.949 0.928 0.929 0.937
Test 3 0.916 0.938 0.932 0.927 0.935
Test 4 0.902 0.946 0.923 0.924 0.933
Test 5 0.907 0.938 0.926 0.922 0.931
Test 6 0.909 0.944 0.928 0.927 0.935
Test 7 0.909 0.951 0.928 0.930 0.938
Test 8 0.909 0.951 0.928 0.930 0.938
Test 9 0.902 0.944 0.923 0.923 0.932

Test 10 0.916 0.947 0.933 0.931 0.939
Mean 0.909 0.946 0.927 0.927 0.9354

In the second stage, the Bagging process was applied to the learning model using the LGBM algorithm
and the determined hyperparameters, and the aim was to increase the classification performance rate. The
bagging process was carried out using the hyperparameters shown in Figure 4, and the performance rate
increased as targeted. As a result of the tests carried out using the learning model created with the bagging
method, the correct classification success of the model reached an average level of 93.54% (Table 3). This
result shows that the Bagging technique, one of the ensemble learning methods, has a positive effect on
the model performance.

92

TABLE 4. Performance values of models obtained from different studies

Model Precision Sensitivity Specifity F1-Scrore Accuracy

LR 0.915 0.923 0.937 0.918 0.9302
DNN 0.911 0.925 0.935 0.918 0.9304

Bagging 0.909 0.946 0.927 0.927 0.9354

Analyzes were carried out in different studies on the dataset we used in our study and the results
were written. According to these studies, various classification algorithms were tested with the dataset
by Çınar and Köklü [?] and it was stated that the best accuracy rate was determined as 93.02% with the
Logistic Regression (LR) algorithm. In addition, in a study conducted by İlhan et al. [8], a learning model
was created with Deep Neural Networks (DNN) and it was written that they reached an average accuracy
rate of 93.04%. In our study, an average accuracy rate of 93.54% was achieved in the learning model
created using the Bagging technique, which was carried out after the algorithm and Hyperparameter
determination process with the MLBox library. Table 4 shows the comparison of performance values of
the models obtained in the studies.

The structure of the dataset used in the study and the maintenance data specified in Table 4 stopped
the initiation of the correct feature extraction process for the classification of the analyzed certificates.
The high accuracy rates obtained in the analyses performed indicate these features. It is foreseen that
analyses performed with different machine learning and deep learning techniques will also realize these
developments in the near future. However, the proposed learning model structure can produce better
results than preferring section structures instead of relying on a single model.

4. CONCLUSION

Within the scope of the study, the dataset containing the characteristics of Osmancık and Cammeo
rice types, published as open source in the UCI Irvine Machine Learning Repository, was used. In the
study, to perform analyses on the dataset, the MLBox library, one of the AutoML libraries, was used to
determine the classification algorithm suitable for analysis and the hyperparameters that gave the most
accurate results. At this stage, MLBox suggested the LGBM algorithm as a result, and an accuracy
rate of 92.70% was achieved with the created learning model. In the next stage, the Bagging technique
was applied to the LGBM algorithm to improve the learning model in order to achieve better results.
An average accuracy level of 93.54% was obtained in the analyses made using the new learning model
developed with the bagging technique.

When the performance values obtained in the study were examined, it was concluded that the learning
model created was successful. In addition, a comparison was made with the performance values obtained
in different studies on the same dataset (Table 4). As a result of this comparison, it was observed that all
models had performance values close to each other and made successful classification. It can be said that
the learning model obtained in our study gives slightly better results than the models in other studies.

93

In the future, in line with the results obtained from these studies, it is recommended to create au-
tomation structures for rapid classification of agricultural products and identification of their types. In
this way, it will be possible to control the products produced in the agricultural sector faster and with
minimum errors.

DECLARATIONS

• Contribution Rate Statement: Cihan BAYRAKTAR has conducted this study as a single author.
• Conflict of Interest: The author declares that they have no conflict of interest.
• Data Availability: Data are available at https://doi.org/10.24432/C5MW4Z
• Statement of Support and Acknowledgment: We would like to thank the researchers who car-

ried out the necessary studies to prepare the dataset used in this study and made it available under
the CC BY 4.0 license [7]. The dataset used in the study can be accessed at https://doi.org/10.24432/C5MW4Z.
Additionally, we thank the anonymous referees for their thoughtful comments and suggestions
on the manuscript.

REFERENCES

[1] R. Alamyar, I. Boz, Marketing problems encountered by rice producers and their solutions: A case
study of takhar-afghanistan, ISPEC Journal of Agricultural Sciences 5 (2) (2021) 381–392. doi:10.46291/

ISPECJASVOL5ISS2PP381-392.
[2] E. Veziroglu, I. Pacal, A. Coskuncay, Derin evrişimli sinir ağları kullanılarak pirinç hastalıklarının sınıflandırılması,

Journal of the Institute of Science and Technology 13 (2) (2023) 792–814. doi:10.21597/JIST.1265769.
URL https://dergipark.org.tr/en/pub/jist/issue/77307/126576

[3] Food and Agriculture Organization of the United Nations, FAOSTAT dataset, accessed: 2021 (2021).
URL https://www.fao.org/faostat/en/#data

[4] Z. C. Mutafcilar, Türkiye’de tescilli çeltik çeşitlerinin moleküler karakterizasyonu, Ph.d. thesis, Trakya University
(2018).

[5] M. Koklu, I. Cinar, Y. S. Taspinar, Classification of rice varieties with deep learning methods, Computers and Electronics
in Agriculture 187 (2021) 106285. doi:10.1016/j.compag.2021.106285.

[6] D. I. Patrı́cio, R. Rieder, Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic
review, Computers and Electronics in Agriculture 153 (2018) 69–81. doi:10.1016/j.compag.2018.08.001.

[7] I. Cinar, M. Koklu, Classification of rice varieties using artificial intelligence methods, International Journal of Intelligent
Systems and Applications in Engineering 7 (3) (2019) 188–194. doi:10.18201/IJISAE.2019355381.

[8] U. Ilhan, A. Ilhan, K. Uyar, E. I. Iseri, Classification of osmancik and cammeo rice varieties using deep neu-
ral networks, in: ISMSIT 2021 - 5th International Symposium on Multidisciplinary Studies and Innovative Tech-
nologies, Proceedings, Institute of Electrical and Electronics Engineers Inc., Ankara, Turkey, 2021, pp. 587–590.
doi:10.1109/ISMSIT52890.2021.9604606.

[9] B. Jin, C. Zhang, L. Jia, Q. Tang, L. Gao, G. Zhao, H. Qi, Identification of rice seed varieties based on near-infrared
hyperspectral imaging technology combined with deep learning, ACS Omega 7 (6) (2022) 4735–4749. doi:10.1021/
acsomega.1c04102.

[10] D. Jaithavil, S. Triamlumlerd, M. Pracha, Paddy seed variety classification using transfer learning based on deep learning,
in: Proceedings of the 2022 International Electrical Engineering Congress, iEECON 2022, Institute of Electrical and
Electronics Engineers Inc., Khon Kaen, Thailand, 2022, pp. 1–4. doi:10.1109/IEECON53204.2022.9741677.

94

https://doi.org/10.24432/C5MW4Z
https://doi.org/10.24432/C5MW4Z
https://doi.org/10.46291/ISPECJASVOL5ISS2PP381-392
https://doi.org/10.46291/ISPECJASVOL5ISS2PP381-392
https://dergipark.org.tr/en/pub/jist/issue/77307/126576
https://doi.org/10.21597/JIST.1265769
https://dergipark.org.tr/en/pub/jist/issue/77307/126576
https://www.fao.org/faostat/en/#data
https://www.fao.org/faostat/en/#data
https://doi.org/10.1016/j.compag.2021.106285
https://doi.org/10.1016/j.compag.2018.08.001
https://doi.org/10.18201/IJISAE.2019355381
https://doi.org/10.1109/ISMSIT52890.2021.9604606
https://doi.org/10.1021/acsomega.1c04102
https://doi.org/10.1021/acsomega.1c04102
https://doi.org/10.1109/IEECON53204.2022.9741677

[11] J. Jumi, A. Zaenuddin, T. Mulyono, Identification of rice types based on shape, color and texture using k-nearest neigh-
bors method as classifier, International Journal of Engineering Research Technology 9 (12) (2020). doi:10.17577/
IJERTV9IS120013.

[12] V. T. Hoang, D. P. Van Hoai, T. Surinwarangkoon, H. T. Duong, K. Meethongjan, A comparative study of rice vari-
ety classification based on deep learning and hand-crafted features, ECTI Transactions on Computer and Information
Technology (ECTI-CIT) 14 (1) (2020) 1–10. doi:10.37936/ECTI-CIT.2020141.204170.

[13] M. S. Mrutyunjaya, K. S. Harish Kumar, Non-destructive machine vision system based rice classification using ensem-
ble machine learning algorithms, Recent Advances in Electrical Electronic Engineering (Formerly Recent Patents on
Electrical Electronic Engineering) 16 (jul 2023). doi:10.2174/2352096516666230710144614.

[14] I. Cinar, M. Koklu, Rice (cammeo and osmancik) (2019). doi:10.24432/C5MW4Z.
[15] C. El Morr, M. Jammal, H. Ali-Hassan, W. El-Hallak, Data preprocessing, Springer International Publishing, Cham,

2022, pp. 117–163. doi:10.1007/978-3-031-16990-8_4.
[16] V. Kovalevsky, E. Stankova, N. Zhukova, O. Ogiy, A. Tristanov, Automl framework for labor potential modeling,

in: Advances in Intelligent Systems and Computing, Vol. 13957, Springer, Cham, 2023, pp. 87–98. doi:10.1007/
978-3-031-36808-0_6.

[17] Y. Sun, Q. Song, X. Gui, F. Ma, T. Wang, Automl in the wild: Obstacles, workarounds, and expectations, in: Conference
on Human Factors in Computing Systems - Proceedings, Association for Computing Machinery, Hamburg, Germany,
2023, pp. 1–15. doi:10.1145/3544548.3581082.

[18] C. Wang, Z. Chen, M. Zhou, Automl from software engineering perspective: Landscapes and challenges, in: Proceedings
- 2023 IEEE/ACM 20th International Conference on Mining Software Repositories, MSR 2023, IEEE Inc., Melbourne,
Australia, 2023, pp. 39–51. doi:10.1109/MSR59073.2023.00019.

[19] M. Vinı́cius, C. Aragão, A. Guimarães Afonso, R. C. Ferraz, R. Gonca̧lves Ferreira, S. Gomes Leite, R. G. Ferreira,
A practical evaluation of automl tools for binary, multiclass, and multilabel classification, TechRxiv (oct 2023). doi:
10.36227/TECHRXIV.21792959.V1.

[20] S. Das, U. M. Cakmak, Hands-On Automated Machine Learning: A Beginner’s Guide to Building Automated Machine
Learning Systems Using AutoML and Python, Packt Publishing, Birmingham, UK, 2018.

[21] A. Aronio De Romblay, N. Cherel, M. Maskani, H. Gerard, Mlbox (2017).
[22] S. Ozdemir, S. Orslu, Makine ögrenmesinde yeni bir bakış açısı: Otomatik makine Ögrenmesi (automl), Journal of

Information Systems and Management Research 1 (1) (2019) 23–30.

95

https://doi.org/10.17577/IJERTV9IS120013
https://doi.org/10.17577/IJERTV9IS120013
https://doi.org/10.37936/ECTI-CIT.2020141.204170
https://doi.org/10.2174/2352096516666230710144614
https://doi.org/10.24432/C5MW4Z
https://doi.org/10.1007/978-3-031-16990-8_4
https://doi.org/10.1007/978-3-031-36808-0_6
https://doi.org/10.1007/978-3-031-36808-0_6
https://doi.org/10.1145/3544548.3581082
https://doi.org/10.1109/MSR59073.2023.00019
https://doi.org/10.36227/TECHRXIV.21792959.V1
https://doi.org/10.36227/TECHRXIV.21792959.V1

Vol: 2, Issue: 2, 2024
Pages:96-107
Received: 15 October 2024
Accepted: 13 December 2024
c⃝ 2024 Karabük University

CURRENT TRENDS IN COMPUTING
https://dergipark.org.tr/en/pub/ctc

RESEARCH ARTICLE
DOI: 10.71074/CTC.1562363

ON THE POLYNOMIAL MULTIPLICATION ALGORITHMS FOR POST-QUANTUM
CRYPTOGRAPHY

EBRU YALÇIN1∗ , FIDAN NURIYEVA2,3 AND ERDEM ALKIM2

1 The Graduate School of Natural and Applied Sciences, Department of Computer Science, Dokuz Eylul
University, 35390, Izmir, Türkiye

2 Department of Computer Science, Dokuz Eylul University, 35390, Izmir, Türkiye
3 Institute of Control Systems, The Ministry of Science and Education of the Republic of Azerbaijan,

Baku, Azerbaijan

ABSTRACT. This study explores the multiplication operations carried out on polynomial rings within
lattice-based systems used in post-quantum cryptography. Polynomial rings of high degree are uti-
lized to enhance security in post-quantum cryptography. Since multiplication is the most time-
consuming arithmetic operation on polynomial rings, several algorithms have been suggested to op-
timize newly developed systems by enhancing their efficiency. Typically, these algorithms use the
properties of the chosen polynomial ring to minimize the number of multiplications, however, some
arithmetical tricks can be used to use them for other rings. Therefore, the systems are optimized in
terms of efficiency and cost. In this study, we investigated several multiplication algorithms based
on their complexity and reported the results from the literature for their implementation efficiency.
We have compared those algorithms when they were implemented to perform multiplications on the
same polynomial ring and reported that the ring of the coefficients should be also considered when
comparing the efficiency.

1. INTRODUCTION

In the modern day, as technology advances and becomes more widely utilized, the need to guarantee
the security of systems and networks has become a significant concern due to the possibility of vulner-
abilities such as data breaches and cyber threats. Cryptology safeguards the authenticity and secrecy
of delicate and classified data, shielding it from illegal intrusion. Ongoing research is being conducted
to address emerging challenges in the field of computational difficulties and vulnerabilities in systems,
which have arisen as a result of advancements and contributions to the existing body of knowledge. Due
to advancements in technology and recent research, the introduction of quantum computing has revolu-
tionized the field of science and prompted a reassessment of current cryptography methods.

E-mail address: ebru.yalcin305@gmail.com, fidan.nuriyeva@deu.edu.tr(∗), erdem.alkim@deu.edu.tr.
Key words and phrases. Lattice-based cryptography, Polynomial multiplication algorithms, Number theoretic transform,

Bruun algorithm.

https://dergipark.org.tr/en/pub/ctc
https://doi.org/10.71074/CTC.1562363
https://orcid.org/0009-0000-2074-3280
https://orcid.org/0000-0001-5431-8506
https://orcid.org/0000-0003-4638-2422

Shor’s algorithm is a quantum algorithm that provides a polynomial solution to the discrete loga-
rithm problem, which is used in the current cryptographic protocol [1]. Shor’s algorithm is a significant
technique that utilizes quantum computing principles to perform operations on big integers, namely for
factoring and solving fractional logarithms. These mathematically challenging problems seem to serve as
the foundation for numerous encryption methods. Shor’s algorithm is a prominent method that leverages
the concepts of quantum computing to carry out computations on large integers, namely factoring and
solving fractional logarithms. These mathematically complex difficulties appear to be the basis for many
encryption systems. Shor’s method presents a substantial risk to the security of widely utilized public
key cryptosystems such as RSA and ECC. In 2018, the National Institute of Standards and Technol-
ogy (NIST) in the United States launched a standardization project to tackle these emerging challenges.
Developed specifically to provide a long-term defense against quantum computers, these innovative tech-
niques are based on universally accepted mathematical problems that are difficult for both classical and
quantum technology to solve [2].

Lattice-based systems are the most promising and prominent approach among recently developed sys-
tems. Lattice-based systems are notable due to the elevated complexity of lattice problems, which come
from the challenging nature of mathematical issues. Their characteristics enable lattice-based systems to
offer a resilient encryption mechanism and an effective defense against attacks. Lattice-based systems
perform computations on polynomial rings. The primary benefit of utilizing these systems operating on
polynomial rings lies in their inherent algebraic structure, which enables rapid expression of polynomial
coefficients and proper execution of operations. The efficient storage of polynomial coefficients and the
facilitation of effective operations are made feasible by this structure [3]. While lattice-based systems
offer numerous advantages, polynomial multiplication is a computationally expensive operation. The
computational load of processing the polynomials increases significantly due to the quick increase in
multiplication complexity, which depends on the degree of the polynomials. Novel polynomial multi-
plication algorithms have been suggested to address this issue. These novel multiplication algorithms
employ several techniques to decrease the computational complexity of the point-wise multiplication
process and enhance and optimize overall efficiency.

The primary instances of these multiplication algorithms include the School-Book, Karatsuba, Toom-
Cook, The Number Theoretic Transform (NTT), and Toeplitz Matrix-Vector Multiplication (TMVP)
algorithms. The School-Book algorithm is the most fundamental and commonly used method for poly-
nomial multiplication in literature. This algorithm is implemented by performing a straight multiplication
of two polynomials. Karatsuba is a multiplication algorithm that reduces the total number of multiplica-
tions by employing the divide-and-conquer approach. It accomplishes this by dividing the polynomials
into smaller segments while executing the multiplication. The NTT algorithm is a mathematical transfor-
mation method derived from the Fast Fourier Transform (FFT). It is an enhanced version of the FFT that
has been further developed using number field theory. The NTT algorithm is mostly used for polynomial
multiplication. This study also investigates the TMVP method, which is a specific algorithm that ex-
ploits the Toeplitz matrix structure commonly encountered in lattice-based systems. The Method section
examines a polynomial multiplication algorithm known as the Bruun algorithm [4].

97

These multiplication algorithms are seen to be used on many different schemes today. For example,
Kyber [5], Falcon [6], and Dilithium [7], among the projects that made it to NIST’s standardization com-
petition final in post-quantum cryptography are lattice-based systems. These schemes use polynomial
multiplication extensively in their different stages and aim to ensure efficiency and security. They aim
to speed up polynomial multiplications and reduce the complexity of the operation by using polynomial
multiplication algorithms such as NTT and FFT. In this way, large-degree polynomials can be operated
on, allowing complex calculations to be made. Additionally, these algorithms appear to produce accurate
and reliable results. Due to these features, it appears to reduce the load on the processor and optimize en-
ergy consumption. For lower-power devices and embedded systems, these features are important. Thus,
the schemes used in post-quantum cryptography are expected to work successfully in real-life applica-
tions.

Lattice-based cryptography has become a leading candidate for post-quantum security due to its ro-
bustness and reliance on complex mathematical problems. A critical aspect of these systems is poly-
nomial multiplication, a resource-intensive operation that significantly impacts performance. Efficient
algorithms such as NTT and TMVP play a vital role in optimizing cryptographic schemes like NTRU.
This study focuses on improving polynomial multiplication to enhance the efficiency and practicality of
post-quantum cryptographic systems for real-world applications.

In this study, information is given on polynomial multiplication algorithms used in lattice-based sys-
tems. In section two, firstly, the definition and mathematical representation of the polynomial ring and
the definition of polynomial multiplication are given. In the same section, polynomial multiplication al-
gorithms frequently used in lattice-based systems; NTT algorithm, and TMVP algorithm were examined.
In the Third section, Bruun’s algorithm is introduced. In chapter four, the results are given. Finally, in
chapter five, we conclude our paper.

2. POLYNOMIAL MULTIPLICATION

Polynomial multiplication refers to the process of multiplying two polynomials inside the same poly-
nomial ring. The current scenario can be expressed in the following manner.

Definition 2.1. Let R be an accumulative ring, N ∈ N, and 0 ≤ i < N. Let ai,di,c ∈ R be coefficients.
The polynomials a(x) and d(x) are subjected to the polynomial multiplication operation within the same
polynomial ring, resulting in:

c = a(x) ·d(x) (1)

ck =
k

∑
i=0

aidk−i +
N−1

∑
i=k+1

aidN+k−i = ∑
j+i≡k
(mod N)

aid j (2)

98

The polynomial multiplication operation takes place in the ring R = Zq/(xN −1), and the factors and
product elements become elements of the ring R = Zq/(xN −1). Specifically, if 2x+1 = c1, then 2x+1
serves as a factor and a product element within the ring R = Zq/(xN −1) [8].

Polynomial multiplication is typically carried out on polynomials with high degrees. Multiplication,
which is one of the arithmetic operations carried out on polynomials, requires a greater amount of time
and computational power compared to other operations. Consequently, researchers have conducted in-
vestigations to enhance this circumstance by developing polynomial multiplication algorithms. These
algorithms are implemented on various systems based on specific requirements. Polynomial multiplica-
tion algorithms can be categorized as follows: School-Book, Toom-Cook, Number Theoretic Transform,
Toeplitz Matrix-Vector Product, and Bruun.

The subsequent part delves into a thorough examination of polynomial multiplication algorithms, an-
alyzing each one individually. Explicit formulations and efficient algorithms are provided.

2.1. Number Theoretic Transform:
The Number Theoretic Transform (NTT) is a mathematical technique mostly employed for solving

the factorization issue. Its output is derived from the Fast Fourier Transform. According to [9] it is
also claimed that this is a version of DFT that operates on finite fields rather than complex numbers.
The method originated as an extension of the FFT, although its precise output remains uncertain. Sev-
eral mathematicians and computer scientists made significant contributions to the initial investigations
of NTT. S.S. Winograd introduced a polynomial evaluation procedure utilizing the Chinese remainder
theorem [10] after examining the literature. The investigation led to the invention of NTT, which focuses
on the remaining parts based on prime numbers. Using the findings from conducted studies, an algorithm
was designed that utilizes CRT and modular arithmetic operations to accomplish polynomial multiplica-
tion, incorporating novel features. He enhanced the development of NTT’s applications by incorporating
this algorithm. NTT has achieved its current level of usage through the contributions of fundamental
research areas like FFT and modular arithmetic. These areas have been crucial in developing efficient
algorithms for polynomial multiplication and polynomial factorization.

NTT is a mathematical operation called the fractional Fourier transformation, which is defined on the
ring Rq = Zq/Φm(x). It performs fast calculations on polynomials, hence improving the efficiency of
polynomial multiplication. A polynomial a(x) over the ring Rq, with a degree of n−1, can be represented
as:

a(x) =
n−1

∑
i=0

aixi (3)

The NTT of a polynomial ā(x) of degree n−1 on the ring Rq is represented in polynomial form as:

ā =
n−1

∑
i=0

āixi (4)

99

where the coefficients ā can be defined using the following (2.38):

ā =
n−1

∑
j=0

ā jwi· j (mod q) for i = 0,1,2, . . . ,n−1. (5)

The equation involves a twiddle factor, denoted as ω , which must satisfy the criteria ωn ≡ 1 (mod q),
and ω i ̸= 1 (mod q) for all i < n. The NTT operation is executed by computing this equation for every
value of i ranging from 0 to n−1.

The NTT operation employs a constant known as the twiddle factor, ω ∈ Zq, which represents the
n-th root of unity. The method utilizes a basic n-th root of unity, ω ∈ Zq, which fulfills the requirements
ωn ≡ 1 (mod q), ω i ̸≡ 1 (mod q) for all i < n, and q ≡ 1 (mod n). The inverse Number Theoretic
Transform (INTT) operation follows a similar method, except in the last step, the element ω−1 ∈ Zq is
employed instead of ω . Furthermore, in the mathematical field Zq, while performing the final step of the
Inverse Number Theoretic Transform (INTT) calculation, the resulting coefficients are multiplied by the
inverse of n−1 [11].

2.2. Toeplitz Matrix-Vector Product:
The TMVP algorithm is a highly efficient method for multiplying matrices and vectors, specifically

designed to exploit the distinctive characteristics of Toeplitz matrices. The actual origin and date of the
proposal for TMVP are uncertain, although it is believed that the concept of utilizing Topelitz matrices for
efficient computations is derived from the research conducted by Otto Toeplitz. German mathematicians
specialized in the areas of algebraic and numerical analysis. Toeplitz matrices are square matrices whose
each diagonal has constant values. These matrices possess mathematical properties that make them useful
for efficient calculations [12]. Subsequent works further investigated and elaborated on the concept of
utilizing Toeplitz matrices for polynomial multiplication. Utilizing Toeplitz matrices aids in diminishing
the overall intricacy through the pre-calculation and reuse of certain pieces. Furthermore, when multiple
multiplication operations are required on a single matrix, TMVP executes these operations efficiently by
avoiding redundant calculations, hence greatly enhancing efficiency. Given this circumstance, utilizing
it in polynomial multiplication operations, which are crucial in lattice-based systems prevalent in post-
quantum cryptography, offers several benefits. Toeplitz matrices are commonly employed in various
cryptographic applications, as evidenced by their frequent appearance in the literature [13], [14], [15].

A TMVP (n-dimensional) can be computed by utilizing three TMVPs (n/2-dimensional) in a 2-way
TMVP formula. Denote the half-dimensional divisions of T as T0, T1, and T2, and the half-dimensional
partitions of the vector V as V0 and V1. The calculation of the N-dimensional matrix-vector multiplication
is performed in the following manner:

T ·V =

(
T1 T0
T2 T1

)(
V0
V2

)
=

(
P0 +P1
P0 −P2

)
(6)

and

100

P0 = T1(V0 +V1),

P1 = (T0 −T1)V1,

P2 = (T1 −T2)V0

(7)

The complexity of TMVP2 can be expressed as

MTMVP2(n) = 3M(n/2)+3n−1

based on the operations mentioned above. Furthermore, an n-dimensional Total Mean Value Projection
(TMVP) can be computed by utilizing three n/3-dimensional TMVPs in a 3-way TMVP equation. By
following the same procedure as for TMVP2, we can determine the existence of TMVP3. The complexity
of TMVP3 can be expressed as

MTMVP3(n) = 6M(n/3)+5n−1.

It is evident that when performing polynomial multiplication, various formulas are generated for TMVPs
based on their size and effectiveness. The article [16] provides a more detailed analysis of the process of
developing additional TMVP formulas using the given formulas mentioned above.

2.2.1. Polynomial Multiplication Modulo xn ±1 via TMVP.
In the polynomial multiplication operation, when performed on Z[x]/(xn ± 1), the resulting polyno-

mial Z[x] should be reduced by using xn ±1. TMVP leverages the structure of Toeplitz matrices and the
properties of polynomial multiplication to optimize the operations to be executed. TMVP utilizes poly-
nomial multiplication operations on xn ± 1 to answer a wide range of issues across several disciplines.
The modulo operation is of great importance in the coding and decoding procedures of Error-correcting
codes as it enables the identification and correction of errors. Cryptography employs it in several sys-
tems, including digital signatures and encryption algorithms. It offers a highly effective computational
capability for the systems in which it is employed. Since reduction modulo xn ± 1 is only a addition or
subtraction T2 becomes ±T0, thus equ. 6 and equ. 7 becomes:

T ·V =

(
T1 T0
±T0 T1

)(
V0
V2

)
=

(
P0 +P1
P0 −P2

)
(8)

and
P0 = T1(V0 +V1)

P1 = (T0 −T1)V1

P2 = (T1 ±T0)V0

(9)

101

3. FACTORIZATION OF THE CYCLOTOMIC POLYNOMIAL x2k
+1

The Bruun technique, as described by George Bruun in his 1978 publication, is a Discrete Fourier
Transform algorithm specifically designed for real numbers with a logarithmic basis [17]. These pro-
cesses, which are associated with the traditional complex FFT, allow for the utilization of new FFT
variations that exclusively operate with real coefficients. Additionally, the implementation of new FFT
algorithms involves utilizing only half the number of real multiplications compared to existing FFT meth-
ods.

The Bruun method is the method employed to ascertain the factors of a polynomial that encompasses
all unit roots. This method utilizes the structural characteristics of the unit roots of polynomials to
expedite the computation of polynomial factors. This approach, employed in areas such as number
theory and modular arithmetic, is said to enhance the efficiency of polynomial calculations in post-
quantum cryptography. Bruun’s approach is designed to factorize the roots of a polynomial of degree n.
It achieves this by recursively finding the explicit roots of the polynomial.

The new structure demonstrates a logarithmic reduction in calculation time and achieves process-
ing efficiency by dividing the DFT operations into segments and executing certain parallel operations.
Therefore, it can be stated that intricate discrete Fourier transform (DFT) processes have experienced an
increase in efficiency. In the classical approach of FFT, N/2logN complex multiplication operations are
performed, where two complex numbers are multiplied in each operation. The new method, in contrast
to the old one, was demonstrated to involve the multiplication of a real number and a complex number.

Using Bruun’s algorithm, the same outcome as the classical technique can be achieved by employing
the multiplication of real and complex numbers instead of complex multiplications. It is evident that
the new algorithm has decreased the utilization of intricate multiplication in the classical way by half.
Therefore, it is widely acknowledged that the Bruun algorithm operates with greater speed and efficiency.

This section demonstrates the complete separation of the polynomial x2k
+ 1 on Fp into separable

polynomials. p is a prime number that fulfills the criterion p ≡ 3 (mod 4). Therefore, it is demonstrated
that it is possible to create an irreducible polynomial over Fp with a degree that is a power of 2. Therefore,
it is evident that this approach can be effectively utilized in FFT applications within limited regions.

The following theorem pertains to the situation when p is a prime integer and is entirely irreducible on
Fp, subject to the constraints of p ≡ 3 (mod 4), meaning p ≡−1 (mod 2k+1) [18].

Let p be a prime number that satisfies p ≡ 3 (mod 4). The process of complete factorization of the
polynomial x2k

+1 on the Fp field is investigated. To simplify the problem, it can be seen that the roots
of the polynomial x2k

+1 are actually the primitive x2k
+1-th roots of unity in an expansion field of Fp.

Therefore, the goal is to construct the smallest polynomials on Fp for primitive x2k
+1-th roots of unity

where k is an integer greater than or equal to 1. If we consider that the degree of every i
Let the highest exponent of 2 in p+1 be denoted as 2a. The expression p2 −1, where p is a variable,

represents the maximum power of 2 and is denoted as 2a+1. Assuming α ∈ Fp2 , let’s consider that it has
a degree of 2a+1. It should be noted that the polynomial x2e

+α is irreducible over the field Fp2 for e ≥ 0.
According to this information, the 2e+1-th order cannot be broken down on Fp, and the primitive roots

102

of the 2a+e+1-st order are given as (x2e
+α)(x2e

+α p). The article states that Fp2 = Fp(i), where i is the

square root of -1. Additionally, since f is defined as Fp2 → Fp2 , it is expressed as (1+ x)
p−1

2 [19], [20].
The following formula provides the steps for calculating the square root in Fp2 . The formula applicable

to any second-order α residue in Fp(i) is given as follows.

√
α =

iα
p+1

4 , if α
p−1

2 =−1,(
1+α

p−1
2

) p+1
2

α
p+1

4 , otherwise.
(10)

If k is greater than 0, and the order of the element α is 2k, both
√

α and
√
−α have an order of x2k

+1.
If we define the starting point as i =

√
−1, it becomes evident that the numbers with an exponent of 2k

can be determined using a recursive process. Prior to factoring the polynomial x2k
+ 1, it is essential to

calculate the minimum polynomials of all the elements produced in Fp.

Theorem 3.1. Let H1 = {0}.

Hk =±

{(
u+1

2

) p+1
4
}

for u ∈ Hk−1 (11)

For every value of k from 1 to a−1, the cardinality of Hk is equal to 2k−1,

x2k
+1 = ∏

u∈Hk

(
x2 −2ux+1

)
(12)

For any integer e ≥ 0,

x2k
+1 = ∏

u∈Hk

(
x2e+1

−2ux2e
−1

)
(13)

The aforementioned theorem can be used for additional cyclotomic polynomials; however, it should
be noted that these polynomials are not directly connected to the Bruun paper. Nevertheless, there exists
a connection between them. Bruun’s Algorithm utilizes polynomial factorization to conduct DFT com-
putations. This is analogous to the factorization of cyclotomic polynomials, as both approaches involve
dividing polynomials into smaller components. The relationship between Bruun’s algorithm and cyclo-
tomic polynomials is established by the factorization of polynomials and the utilization of unit roots. This
connection offers enhanced efficiency and rapidity in DFT calculations and polynomial factorizations.

4. RESULTS

The concluding part is organized into three distinct topics. Initially, an analysis was conducted on the
number of multiplications and their complexity, which are determined by specific parameters (n), for
the multiplication operation. This operation is known to be the most time-consuming and costly among
the various operations performed on polynomial rings. The second title provides a general explanation
of the Bruun approach and includes some inferred information. In the last heading provides details on

103

polynomial multiplication methods and discusses their efficiency.

4.1. Multiplication Algorithms:
Below is a table quoted from the article [21], examining the number of multiplications and time com-

plexities in multiplication algorithms depending on certain n parameters. In this table, one of the fre-
quently used polynomial multiplication algorithms; Scool-Book, Karatsuba, Toom-Cook-way, TMVP2,
TMVP3, TMVP4 and NTT algorithms were examined.

TABLE 1. Complexities of multiplication algorithms

No Multiplication Algorithms Complexity

1 School-Book T (n) = 2n2 −2
2 Karatsuba T (n) = 3T (n/2)
3 Toom-Cook-k T (n) = (2k−1)T (n/3)
4 TMVP-2 T (n) = 3T (n/2)+3n−1
5 TMVP-3 T (n) = 6T (n/3)
6 TMVP-4 T (n) = 7T (n/4)+5n−1
7 NTT T (n) = 3

2n logn+n
8 Bruun T (n) = 3

2n logn+n

Using the information in Table 1, some inferences for multiplication algorithms for certain parameters
are given in Table 2 below.

We have chosen a specific parameter set of NTRU, known as ntruhrss701, for the purpose of com-
paring algorithms. In this parameter set, the value of q is 213, n is 701, and f (x) is defined as x701 − 1.
Consequently, the polynomial ring can be represented as Z213[x]/(x701 −1).

To carry out multiplication in the ring Z213[x]/(x701 − 1), TMVP must divide the input polynomials.
Given that n is a prime integer, it is necessary to select a size that is larger than n to perform the multipli-
cation calculation. Since the majority of implementations focus on sizes in the form of a′ = 2k3lt, where
t is less than 16 for optimal performance, we computed the number of recursion steps for the two shortest
possibilities within the chosen polynomial ring.

704
TMVP4−−−−→ 176

TMVP2−−−−→ 88
TMVP2−−−−→ 44

TMVP2−−−−→ 22
TMVP2−−−−→ 11 (14)

720
TMVP4−−−−→ 180

TMVP3−−−−→ 60
TMVP3−−−−→ 20

TMVP2−−−−→ 10 (15)
The T (n′) values in Table 2 were computed based on the complexity provided in Table 1. The number

of cycles reported by [15], [22], and [23] were all measured on the ARM Cortex-M4 Discovery board,
which served as the common target platform. It can be seen that Table 2 below was created using the
parameters 704, 720, 1440, and 1536.

104

Table 2 comprises T (n) values computed based on the time complexity algorithms provided in Table 1.
Upon examination and comparison of the TMVP, NTT, and Toom-Cook multiplication algorithms, it is
evident that NTT-based polynomial multiplication necessitates fewer operations, even for dimensions of
2x. However, it is important to note that NTT does require modular arithmetic operations. In contrast, the
TMVP and Toom-Cook algorithms are capable of operating with two basis powers, eliminating the need
for additional modular reduction following elementary arithmetic operations. While the TMVP algorithm
incorporates polynomial reduction in its multiplication operations, it necessitates fewer operations.

TABLE 2. Multiplication Cycles for TMVP, NTT, and Toom-Cook Algorithms

TMVP NTT Toom-Cook

n′ T (n′) #Cycles T (n′) #Cycles T (n′) #Cycles

704 115331 142252 [24] - - 68607 172882 [22]
720 125519 - - - 52500 -

1440 - - 45360 141000 [23] - -
1536 - - 42240 148000 [23] - -

This study examines various multiplication algorithms utilized to enhance the efficiency of Lattice-
based cryptographic protocols. It provides comparisons of these algorithms based on their theoretical
complexity and current usage in the field. An assessment was conducted based on certain criteria on the
NTRU scheme, which is one of the lattice-based systems that reached the final stage in the standardization
competition hosted by NIST [21].

Lattice-based systems have excelled among the various schemes in the competition set by NIST in
the field of post-quantum cryptography. These systems operate on polynomial rings. To optimize the
efficiency of the systems, several novel polynomial multiplication algorithms have been developed to
minimize the number of multiplication operations required. The algorithms used in this study are Karat-
suba, Toom-Cook, NTT, TMVP, and the Bruun polynomial multiplication algorithm mentioned in the
technique section.

When the research on polynomial multiplication algorithms in the literature is generally examined, it is
seen that various comparisons and evaluations have been made for these algorithms in terms of efficiency,
security, and suitability for different applications. Lattice-based algorithms such as Karatsuba, Toom-
Cook, NTT, and TMVP will be used in post-quantum cryptography. It can be said that it is among the
polynomial multiplication algorithms that are thought to be very important for systems. It is obvious that
the proposed algorithms will bring new features, optimization techniques, and efficiency improvements
to this field.

5. CONCLUSION

In this study, multiplication operations performed in lattice-based systems on polynomial rings in
post-quantum cryptography are examined. It is obvious that the operation that causes the most time

105

and cost among the operations on polynomial rings is the multiplication operation. If the value of the
parameter n is chosen as 701 for the NTRU scheme, it has been shown that the NTT-based polynomial
multiplication algorithm exhibits the highest performance, despite its higher memory usage. TMVP-
based polynomial multiplication algorithms have demonstrated superior memory efficiency compared
to other algorithms, resulting in only a 1% decrease in multiplication operations. Bruun’s algorithm,
another suggested approach, achieves the same outcome as other methods by performing multiplication
operations on complex and real values. As a future work, we plan to compare the implementation of the
Bruun algorithm with NTT for the same polynomial ring.

DECLARATIONS

• Contribution Rate Statement: Ebru Yalcin: writing – original draft, resources, methodology,
conceptualization, Fidan Nuriyeva: writing – review & editing, methodology, Erdem Alkım:
writing – review & editing, methodology.

• Conflict of Interest: The authors have not disclosed any competing interests.
• Data Availability: Data sharing is not applicable to this article as no datasets were generated or

analyzed.
• Statement of Support and Acknowledgment: None.

REFERENCES

[1] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM
Journal on Computing 26 (5) (1997) 1484–1509.

[2] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson,
D. Smith-Tone, Y.-K. Liu, Status report on the first round of the NIST post-quantum cryptography standardization
process, National Institute for Standards and Technology Internal Report 8240, https://doi.org/10.6028/NIST.
IR.8240 (2019).

[3] D. Micciancio, O. Regev, Lattice-based cryptography, in: Post-quantum cryptography, Springer Berlin Heidelberg, 2009,
pp. 147–191.

[4] V. Hwang, A survey of polynomial multiplications for lattice-based cryptosystems, Cryptology ePrint Archive, Paper
2023/1962 (2023).
URL https://eprint.iacr.org/2023/1962

[5] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, D. Stehlé, Crystals-kyber: a cca-secure module-
lattice-based kem, in: 2018 IEEE European Symposium on Security and Privacy (EuroS&P), IEEE, 2018, pp. 353–367.

[6] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé, Crystals–dilithium: Digital signatures from
module lattices, Cryptology ePrint Archive (2018).

[7] P. A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, Z. Zhang, Falcon: Fast-fourier lattice-based
compact signatures over NTRU, Submission to the NIST’s post-quantum cryptography standardization process 36 (5)
(2018) 1–75.

[8] R. T. Moenck, Practical fast polynomial multiplication, in: Proceedings of the third ACM symposium on Symbolic and
algebraic computation, ACM, 1976, pp. 136–148.

[9] D. Harvey, Faster arithmetic for number-theoretic transforms, Journal of Symbolic Computation 60 (2014) 113–119.
[10] S. Winograd, On computing the discrete fourier transform, Mathematics of computation 32 (141) (1978) 175–199.
[11] K. Derya, A. C. Mert, E. Öztürk, E. Savaş, CoHA-NTT: A configurable hardware accelerator for NTT-based polynomial

multiplication, Microprocessors and Microsystems 89 (2022).

106

https://doi.org/10.6028/NIST.IR.8240
https://doi.org/10.6028/NIST.IR.8240
https://eprint.iacr.org/2023/1962
https://eprint.iacr.org/2023/1962

[12] O. Toeplitz, Das algebraische analogon zu einem satze von fejér, Mathematische Zeitschrift 2 (1) (1918) 187–197.
[13] S. Ali, M. Cenk, Faster residue multiplication modulo 521-bit mersenne prime and an application to ECC, IEEE Trans-

actions on Circuits and Systems I: Regular Papers 65 (8) (2018) 2477–2490.
[14] M. A. Hasan, N. Meloni, A. H. Namin, C. Negre, Block recombination approach for subquadratic space complexity

binary field multiplication based on toeplitz matrix-vector product, IEEE Transactions on Computers 61 (2) (2010)
151–163.

[15] I. K. Paksoy, M. Cenk, TMVP-based multiplication for polynomial quotient rings and application to saber on ARM
cortex-M4, cryptology ePrint Archive (2020).

[16] S. Winograd, On multiplication of polynomials modulo a polynomial, SIAM Journal on Computing 9 (2) (1980) 225–
229.

[17] G. Bruun, z-transform DFT filters and FFT’s, IEEE Transactions on Acoustics, Speech, and Signal Processing 26 (1)
(1978) 56–63.

[18] I. F. Blake, S. Gao, R. C. Mullin, Explicit factorization of x2k
+1 over Fp with prime p ≡ 3mod4, Applicable Algebra in

Engineering, Communication and Computing 4 (2) (1993) 89–94.
[19] H. W. Lenstra, Finding isomorphisms between finite fields, Mathematics of Computation 56 (193) (1991) 329–347.
[20] V. Shoup, New algorithms for finding irreducible polynomials over finite fields, Mathematics of computation 54 (189)

(1990) 435–447.
[21] E. Yalçın, F. Nuriyeva, E. Alkım, A comparative study on polynomial multiplication algorithms in context on post-

quantum cryptography, in: DEU International Symposium Series on Graduate Researches-2022 DataScience, DEU,
2022, pp. 1–10.

[22] M. Kannwischer, P. Bissmeyer, S. Schmidt, Optimizing lattice-based cryptography schemes with structured noise, in:
Post-Quantum Cryptography: 5th International Conference, PQCrypto 2019, Fukuoka, Japan, July, Springer, 2019, pp.
81–97.

[23] E. Alkim, V. Hwang, B.-Y. Yang, Multi-parameter support with ntts for ntru and ntru prime on cortex-m4, IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2022 (4) (2022) 349–371.

[24] I. K. Paksoy, M. Cenk, Faster ntru on arm cortex-m4 with tmvp-based multiplication, IEEE Transactions on Circuits and
Systems I: Regular Papers 69 (10) (2022) 4083–4092.

107

Vol: 2, Issue: 2, 2024
Pages:108-139
Received: 01 December 2024
Accepted: 25 December 2024
c⃝ 2024 Karabük University

CURRENT TRENDS IN COMPUTING
https://dergipark.org.tr/en/pub/ctc

RESEARCH ARTICLE
DOI: 10.71074/CTC.1594291

ENHANCING GREEN COMPUTING THROUGH ENERGY-AWARE TRAINING: AN
EARLY STOPPING PERSPECTIVE

ABDULKADIR TAŞDELEN ∗

Department of Software Engineering, Faculty of Engineering and Natural Sciences, Ankara Yıldırım
Beyazıt University, Ankara 06010, Türkiye

ABSTRACT. This study delves into energy-efficient training strategies, emphasizing their alignment
with green computing principles. In particular, it highlights the utility of early stopping mechanisms
in optimizing the training process of deep learning models. Early stopping works by monitoring per-
formance metrics, such as validation accuracy or loss, and halting the training process once these
metrics stabilize or show no improvement over a predefined number of epochs. This approach elim-
inates redundant computations, leading to significant reductions in energy consumption and compu-
tational costs while preserving model accuracy. The research is centered on transfer learning models,
specifically MobileNetV2, InceptionV3, ResNet50V2, and Xception, which are well-regarded for their
versatility and performance in image classification tasks. By systematically varying patience criteria,
the study explores their impact on training duration, model accuracy, and computational efficiency.
Each patience criteria determine how many epochs the training continues without improvement be-
fore stopping, allowing for a nuanced examination of its effects across different architectures. Ad-
ditionally, the Rock Paper Scissors dataset, used for this study, is thoroughly described, including
its structure, size, and pre-processing steps applied. The findings reveal that early stopping not only
streamlines the training process but also aligns well with the broader goals of sustainable artificial
intelligence development. Supported by statistical analyses, such as Kruskal-Wallis H and Conover-
Iman tests, the results demonstrate that early stopping significantly reduces training time without
compromising accuracy. By effectively balancing computational efficiency with performance opti-
mization, this strategy exemplifies how environmentally responsible practices can be integrated into
AI workflows. This study contributes valuable insights into how adopting such techniques can miti-
gate the environmental impact of AI model training, highlighting their importance in the context of
advancing green computing initiatives.

1. INTRODUCTION

The development and application of technology increasingly demand environmentally conscious ap-
proaches, particularly in response to the global challenges of sustainability and energy consumption [1],

E-mail address: abdulkadirtasdelen@aybu.edu.tr (∗).
Key words and phrases. Artificial Intelligence, Green Computing, Green AI, Early Stop Strategy .

https://dergipark.org.tr/en/pub/ctc
https://doi.org/10.71074/CTC.1594291
https://orcid.org/0000-0003-4402-1463

[2]. In this context, green computing emerges as a critical paradigm, aiming to minimize the environ-
mental footprint of computational processes by enhancing energy efficiency and reducing operational
costs. Its applications span diverse areas, including power management, server virtualization, data center
optimization, and energy-efficient resource utilization, significantly influencing fields such as business,
environmental management, and artificial intelligence (AI) [3], [4].

AI, while transformative across numerous industries, presents a considerable environmental challenge
due to its high energy demands. Since the success of AlexNet in the 2012 ImageNet competition [5], the
computational requirements for model training have grown exponentially, leading to substantial energy
consumption [4], [6]. Addressing these challenges necessitates strategies that align AI development with
sustainability goals. Recent advancements in AI training have highlighted the critical role of energy-
efficient strategies. For instance, studies on large-scale language models such as GPT-3 have shown
significant energy demands, emphasizing the necessity of integrating green computing principles into AI
workflows [7]. Among these, early stopping—a technique that halts training once performance metrics
stabilize—has shown promise. Early stopping is a regularization technique used to terminate training
when performance on a validation set ceases to improve. This prevents over-fitting by halting before the
model memorizes training data. By curbing unnecessary computations, early stopping not only enhances
computational efficiency but also embodies the principles of green computing, offering a pathway toward
sustainable AI practices [8].

Another critical aspect of green computing is the efficient management of energy distribution and
usage, as exemplified by smart grid technologies. These systems manage renewable energy sources
more effectively, boosting energy efficiency while reducing greenhouse gas emissions. However, en-
suring reductions in energy costs and CO2 emissions remains a priority. Research in commercial and
institutional buildings demonstrates that human intervention, supported by energy-saving techniques and
information systems, can significantly minimize energy losses. Similarly, sorting tasks based on time
and power requirements exemplifies strategies for reducing power consumption during decision-making
processes [6], [9], [10].

In AI, early stopping stands out as a pivotal approach to mitigating the environmental impact of train-
ing processes. This method halts the training process when performance metrics, such as validation
accuracy, plateau or decline. By reducing computational demands, early stopping directly addresses the
sustainability challenges of AI, balancing computational efficiency with model performance [11], [12].
Such optimization techniques illustrate how green computing principles can be effectively integrated into
AI workflows, fostering a future where technological progress aligns with environmental responsibility.

The increasing demand for energy-efficient solutions in AI underscores the need for interdisciplinary
approaches that prioritize sustainability without sacrificing performance. As global concerns about cli-
mate change and resource scarcity grow, embedding green computing principles into emerging tech-
nologies becomes imperative. Innovations like energy-efficient consensus mechanisms, smart grids, and
energy-aware training strategies enable technological advancements to align with the objectives of sus-
tainable development, ensuring that progress benefits both society and the environment [4], [6], [12], [13].

109

This study specifically investigates the application of early stopping mechanisms in the training of
deep learning models, focusing on their energy efficiency and impact on model performance. Trans-
fer learning architectures—MobileNetV2, InceptionV3, ResNet50V2, and Xception—were selected for
their versatility and strong performance in image classification tasks. These architectures are system-
atically evaluated by varying patience criteria (PC), which define thresholds for halting training in the
absence of performance improvements, facilitating an analysis of training duration, model accuracy, and
computational efficiency [11].

The Rock Paper Scissors dataset [14] serves as the basis for evaluation, with detailed descriptions
of its structure, size, and pre-processing steps ensuring clarity and reproducibility. Statistical analyses,
including Kruskal-Wallis H [15], Mann-Whitney U [16], and Conover-Iman [17] tests, validate the results
rigorously.

The novelty of this work lies in its comparative analysis of multiple deep learning architectures, under-
pinned by statistical rigor. By employing Kruskal-Wallis H and Conover-Iman tests, the study ensures the
reliability and generalizability of its findings. This approach establishes a benchmark for future research
on energy-aware AI methodologies.

Furthermore, this research underscores the interdisciplinary nature of integrating green computing
principles into AI model training. By fostering collaboration across fields such as computer science,
environmental science, and data engineering, it paves the way for innovations that prioritize sustainability
without compromising technological advancements.

2. BACKGROUND

The rising demand for machine learning (ML)-enabled systems has significantly increased energy
consumption across various computational tasks. As ML applications proliferate, their environmental
impact becomes a growing concern. To address this, researchers and practitioners have emphasized green
computing practices, which focus on minimizing energy usage while maintaining model performance
[13].

Xu et al. [12], empirically evaluated the impact of experimental design on the energy efficiency of the
training process by analyzing three different convolutional neural network (CNN) architectures across
two large image classification datasets. The training sessions were assessed using three efficiency met-
rics: CO2 emissions produced, total energy consumed, and the number of floating-point operations
(FLOPs) required. Statistical evidence revealed that carbon emissions and energy consumption are
closely linked to the experimental design of neural network architectures. Furthermore, external fac-
tors, such as the geographical location of cloud-hosted services, also influence the computational impact,
highlighting challenges beyond the researcher’s control. These findings emphasize the importance of in-
corporating energy-efficient strategies into deep learning research to ensure that advancements in model
performance align with sustainable computing practices.

A catalog of green architectural tactics for ML-enabled systems highlights a structured approach to
energy efficiency. These tactics span multiple dimensions, including data-centric methods, algorithm
design, model optimization, model training, deployment, and management. Among these, energy-aware

110

training strategies, such as quantization-aware training, leveraging checkpoints, and designing for mem-
ory constraints, are pivotal in reducing computational overhead during the training phase [8], [13].

Recent studies emphasize the importance of addressing over-parameterization in pre-trained CNN
models to enhance energy efficiency and computational performance. For example, a systematic analysis
of 27 pre-trained models identified EfficientNetB0 as the most energy-efficient candidate for Eimeria
parasite detection, reducing parameter counts by up to 8% through pruning without sacrificing classifica-
tion accuracy. This approach not only saves energy but also demonstrates the potential for holistic model
design, combining multiple species into a single model for improved efficiency [18].

In this context, early stopping emerges as a key energy-aware training method that halts model training
once a predefined performance threshold is met. By preventing unnecessary computations, this approach
not only conserves energy but also accelerates the development cycle of ML models [13]. While early
stopping has been widely studied in the context of energy-aware machine learning, its comparative effects
across diverse transfer learning architectures remain underexplored. This study addresses this gap by
systematically evaluating multiple architectures using a standardized dataset and statistical rigor.

Early exit strategies in deep learning have emerged as an effective approach to balancing model per-
formance and computational efficiency. These strategies allow intermediate predictions within neural
networks, enabling the termination of computations for certain inputs when a confident prediction is
achieved. This approach has been extensively studied across various domains and tasks, including image
classification, machine translation, text ranking, and quality enhancement [11], [19].

Recent studies on early existing, as summarized in [20], highlight the diversity of applications and
metrics employed to evaluate these strategies. For instance, Teerapittayanon et al. [21], [22] applied
early exit strategies to image classification tasks using datasets such as MNIST and CIFAR-10, with base
models like LeNet-5, AlexNet, and ResNet, focusing on metrics like accuracy and latency. Similarly,
Wang et al. [23] and Li et al. [24] investigated the efficiency of early exits in large-scale datasets like
ImageNet, employing models such as ResNet, DenseNet, and MSDNet. Notably, energy consumption
was explicitly considered in several works, such as those by Laskaridis et al. [25] and Wang et al. [23],
underscoring the role of early exits in energy-efficient computing.

By reducing latency, computational complexity, and energy consumption, early exit strategies align
with green computing principles, offering a pathway to sustainable deep learning practices. Integrating
these strategies into model design and training processes could significantly reduce the environmental
footprint of machine learning applications. Future research in this area is expected to expand the scope
of early exits to additional tasks and domains, further advancing the synergy between performance opti-
mization and energy efficiency in deep learning [11].

In line with the objectives outlined in the introduction, this study underscores the necessity of interdis-
ciplinary efforts to integrate green computing principles into the life-cycle of emerging technologies. By
prioritizing energy efficiency and sustainability, we pave the way for innovations that are not only tech-
nically advanced but also environmentally responsible. A key focus of this research is the application of
early stopping strategies within the context of deep learning, specifically exploring how these strategies
influence model performance across various deep learning architectures. By investigating different PC,

111

this study provides a comparative analysis that highlights the impact of early stopping on both training
time and model accuracy.

The primary goal of this study is to explore how early stopping strategies can affect the training pro-
cess of deep learning models, offering a comprehensive analysis of different model architectures and
their performance under varying parameters. While this study does not focus on directly measuring en-
ergy consumption or computational resources, it does provide valuable insights into how early stopping
can influence training time and model performance. By halting training when the performance metrics,
such as validation accuracy or loss, no longer show significant improvement, early stopping reduces
unnecessary epochs, which in turn decreases training time.

Validation loss measures the model’s error on the validation dataset after each training epoch. It serves
as a key indicator of over-fitting, where a rising validation loss suggests that the model is no longer
generalizing well to unseen data. Similarly, validation accuracy measures the proportion of correctly
predicted instances in the validation dataset after each training epoch, providing insight into the model’s
generalization performance. A stagnating or declining validation accuracy, despite improvements in
training accuracy, may suggest over-fitting.

This research examines the relationship between the number of epochs before stopping, the final test
accuracy, and the time taken for training. By analyzing different PC (such as 3, 5, 7, 10, and 15 epochs),
we determine the optimal stopping point for achieving a good balance between model performance and
training duration. The comparative analysis focuses on how these parameters impact the test accuracy
and the training time, ultimately showing that early stopping can be a practical technique to improve the
efficiency of deep learning processes.

Ultimately, this study aims to demonstrate how early stopping can optimize deep learning workflows
by reducing unnecessary training time, allowing researchers and practitioners to achieve efficient models
without over-fitting. By offering a framework for understanding how different PC influence model ac-
curacy and training duration, this research supports the integration of efficiency-oriented strategies into
machine learning practices, contributing to more sustainable development cycles.

3. MATERIALS AND METHODS

3.1. Transfer Learning Methods:
To investigate the impact of early stopping strategies on different model architectures, we utilize

transfer learning with four well-established transfer learning models [26]: MobileNetV2, InceptionV3,
ResNet50V2, and Xception. These pre-trained models are fine-tuned on the Rock Paper Scissors Dataset
[14]. Transfer learning is particularly beneficial for tasks with limited labeled data, as the models have
already learned relevant features from large-scale datasets such as ImageNet. The fine-tuning process
adapts the pre-trained models to the specific classification task, thus accelerating the training process
and potentially enhancing model performance. Each of these models has been selected due to its proven
effectiveness in image classification tasks, providing a diverse range of model architectures to assess the
generalizability and performance of early stopping strategies.

112

FIGURE 1. Early stopping parameter configuration and monitoring across transfer
learning models.

Figure 1 illustrates the experimental setup for evaluating the impact of different PC on four trans-
fer learning models: MobileNetV2, InceptionV3, ResNet50V2, and Xception. The monitored criteria,
including validation loss and validation accuracy, are analyzed to determine the effects of early stop-
ping strategies on key performance metrics: test accuracy, training time, and stopped epoch. The visual
framework emphasizes the systematic evaluation process to identify optimal PC settings for efficient and
effective model training.

3.2. Dataset:
The Rock Paper Scissors Dataset [14] is used for this study and consists of labeled images categorized

into different types. Each category contains 975 images, resulting in a total of 2,925 images. The dataset
is divided into two main subsets: 80% (2,340 images) for the training dataset (70% for training and 10%
for validation), and 20% (585 images) for the test dataset (Figure 2). This division ensures that the model
is trained on a substantial portion of the data, while also leaving a portion for validation and testing to
evaluate its performance on unseen data. Moreover, to account for potential variability and to ensure that

113

FIGURE 2. The distribution of each class.

the models are assessed fairly, 5-fold cross-validation (CV) is employed. CV is a statistical method used
to evaluate a model’s generalization performance by splitting the dataset into complementary subsets for
training and testing. This ensures that the evaluation is robust and not overly dependent on a single split.
This method ensures that each fold of the CV process maintains a proportional distribution of the classes,
providing a more reliable estimate of the model’s generalization ability. In each fold, a different partition
is used for training, validation, and testing, and the process is repeated for each fold, allowing the model
to be trained and tested on all available data [27], [28].

The dataset serves as the basis for evaluation, with detailed descriptions of its structure, size, and
pre-processing steps ensuring clarity and reproducibility. In selecting the dataset, this study aims to ana-
lyze model performance on a medium-scale dataset that allows for efficient experimentation with various
early stopping strategies. The dataset is well-suited for evaluating energy-efficient training techniques,
as it provides a manageable size for computational experiments while maintaining enough complexity
to demonstrate key differences in performance. This choice also facilitates reproducibility and compa-
rability with other studies in the field. Future research will consider larger and more complex datasets,
enabling the examination of early stopping strategies on a broader range of tasks and more demanding
computational settings.

Figure 3 displays samples from different classes of the dataset, which represent the classic game of
Rock, Paper, or Scissors. Each class corresponds to one of the three possible moves in the game: Rock,
Paper, or Scissors. These samples are crucial for training machine learning models, as they help the

114

FIGURE 3. Samples from different classes of the dataset.

algorithm distinguish between the various input categories. The dataset likely includes images or repre-
sentations of each move, enabling the model to learn patterns and make predictions based on the visual
features associated with Rock, Paper, or Scissors.

3.3. Statistical Analysis:
The performance of early stopping strategies is evaluated using several metrics, including classifica-

tion accuracy, training time, and validation loss. To determine whether early stopping strategies lead to
statistically significant differences in performance, a Kruskal-Wallis H test [15] is employed. This non-
parametric test is appropriate for comparing multiple independent groups—such as different PC—across
performance metrics, as it does not assume the data to be normally distributed. If the Kruskal-Wallis H
test yields a significant result, indicating differences in performance across groups, a post-hoc Conover-
Iman Test [17] is conducted. This test is particularly suitable when sample sizes within groups are small,
providing a robust method for pairwise comparisons while controlling for the family-wise error rate. Ad-
ditionally, for pairwise comparisons between groups of PC, the Mann-Whitney U test [16] is utilized.
This test is a non-parametric alternative to the t-test and is applied when comparing two independent
groups, such as specific pairs. It assesses whether the distributions of the two groups differ significantly.
The Mann-Whitney U test provides a complementary approach to the Conover-Iman Test by offering

115

more granular insights into pairwise differences [17]. All statistical tests are conducted with a signifi-
cance level of and a = 0.05. If the p-value from any test is less than 0.05, the null hypothesis is rejected,
indicating statistically significant differences between the groups being compared. This rigorous statisti-
cal approach ensures that the conclusions drawn from the analysis are reliable and valid. By evaluating
the impact of early stopping strategies on model performance through Kruskal-Wallis H, Conover-Iman,
and Mann-Whitney U tests, this study aims to identify optimal training configurations that balance com-
putational efficiency with model accuracy.

3.4. Common Specifications:
The common specifications for the model are outlined in Table 1. CV is employed with a fold size

of 5 to ensure balanced class representation. Data shuffling is enabled with a random state set to 1 for
reproducibility. The base model is configured with an input shape of 96x96, utilizes pre-trained weights
from the ImageNet dataset. and is set as non-trainable. The model architecture includes a dense layer
with 64 units, using the Rectified Linear Unit (ReLU) activation function [29] followed by a dropout
layer with a rate of 0.05 to mitigate over-fitting and improve generalization. The Adam optimizer is used
during compilation, with a learning rate of 0.0001. Training is conducted using a batch size of 32 and
spans a maximum of 50 epochs.

TABLE 1. Common specifications for each transfer learning models

Category Name Value

Monitor Criteria Validation Loss Metric val loss
Validation Accuracy Metric val accuracy

Patience Criteria Stopped Epochs 3, 5, 7, 10, 15

CV
Number of Folds 5
Shuffle True
Random Seed 1

Base Model
Input Shape 96*96
Weights ImageNet
Trainable False

Dense Layer Units 64
Activation Function ReLU

Dropout Layer Dropout Rate 0.50

Compile Optimizer Adam
Learning Rate 0.0001

Model Training Batch Size 32
Number of Epochs 50

116

To improve efficiency and avoid over-fitting, early stopping is applied based on the monitoring cri-
teria (MC). Specifically, the training process monitors validation loss and validation accuracy, stopping
automatically if no improvement is observed across consecutive epochs. The evaluation is performed at
specific checkpoints (epochs 3. 5. 7. 10. and 15), offering insights into model performance at different
stages of training. These configurations aim to balance computational efficiency, model generalization,
and robustness. ensuring reliable results across all folds of the CV process.

4. RESULTS

The performance of four deep learning models—MobileNetV2, InceptionV3, ResNet50V2, and Xcep-
tion—was evaluated based on several key metrics, including training accuracy, training loss, validation
accuracy, validation loss, test accuracy, test loss, and training time. These metrics were averaged over
various early stop criteria, such as val loss and val accuracy, with results reported for different PC. Table
2 summarizes the average performance across these models for each validation criterion.

In general, MobileNetV2 consistently demonstrated high training and test accuracies with relatively
low training and test losses. Similarly, InceptionV3 and ResNet50V2 achieved competitive results, al-
though with some variations in performance depending on the validation criteria. Xception, on the other
hand, showed a robust performance, especially in terms of validation accuracy and test accuracy, though
with higher training and test losses in comparison to the other models. The average training times for all
models were also considered, providing an indication of computational efficiency.

The analysis of model performance (Table 3), grouped by MC and PC, revealed distinct patterns in the
test accuracy, training time, and early stopping behavior for each architecture.

For MobileNetv2, the test accuracy did not show a statistically significant difference (p=0.382, p>0.05),
indicating consistent performance across groups. However, both training time (p=0.000, p<0.05) and the
stopped epoch count (p=0.000, p<0.05) exhibited significant variations, suggesting the model’s sensitiv-
ity to these parameters.

Similarly, InceptionV3 displayed no significant difference in test accuracy (p=0.403, p>0.05), while
training time (p=0.000, p<0.05) and stopped epoch count (p=0.000, p<0.05) were significantly im-
pacted, reflecting comparable trends to MobileNetv2.

For ResNet50V2, test accuracy remained consistent (p=0.269, p<0.05) without notable variation.
However, as observed with the other models, both training time (p=0.000, p<0.05) and stopped epoch
count (p=0.000, p<0.05) varied significantly, reinforcing the importance of these parameters in model
training dynamics.

In contrast, Xception demonstrated a significant difference in test accuracy (p=0.030, p<0.05). indicat-
ing variability in performance across groups. Additionally, training time (p=0.000, p<0.05) and stopped
epoch count (p=0.000, p<0.05) also showed significant variation, further emphasizing the model’s sen-
sitivity to MC and PC.

The Kruskal-Wallis H test results, summarized in Table 4, show the comparison of different monitor
parameters across various deep learning architectures. For most models, including MobileNetV2, Incep-
tionV3, and ResNet50V2, the test results for test accuracy did not show significant differences (p > 0.05),

117

TABLE 2. Average performance metrics for MobileNetV2, InceptionV3,
ResNet50V2, and Xception models

MN MC PC SE TE Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss TT (s)

M
ob

ile
N

et
V

2

val loss 3 9.4 50 0.995 0.028 0.841 0.414 0.984 0.056 25.055
val loss 5 13.4 50 0.998 0.017 0.848 0.414 0.983 0.051 33.112
val loss 7 18 50 0.999 0.011 0.870 0.390 0.986 0.046 42.814
val loss 10 19 50 0.999 0.009 0.863 0.429 0.987 0.049 48.824
val loss 15 25 50 0.999 0.007 0.827 0.518 0.981 0.061 61.902
val acc 3 8.8 50 0.994 0.034 0.831 0.419 0.979 0.068 22.719
val acc 5 11.6 50 0.997 0.021 0.857 0.390 0.986 0.054 32.113
val acc 7 15 50 0.997 0.017 0.863 0.421 0.985 0.064 39.614
val acc 10 18.4 50 0.998 0.011 0.829 0.461 0.980 0.062 48.845
val acc 15 25.2 50 0.999 0.006 0.859 0.440 0.986 0.063 75.320
Original No No 50 1 0.002 0.840 0.580 0.978 0.070 121.674

In
ce

pt
io

nV
3

val loss 3 8.4 50 0.986 0.057 0.758 0.743 0.965 0.125 33.622
val loss 5 17 50 0.996 0.023 0.798 0.720 0.976 0.093 70.758
val loss 7 17.2 50 0.994 0.027 0.814 0.683 0.972 0.117 82.924
val loss 10 30.6 50 0.998 0.010 0.825 0.678 0.982 0.077 182.771
val loss 15 30.6 50 0.998 0.009 0.823 0.726 0.981 0.077 181.658
val acc 3 10.8 50 0.988 0.049 0.814 0.659 0.969 0.128 68.307
val acc 5 19.4 50 0.996 0.017 0.799 0.767 0.979 0.086 125.599
val acc 7 27.8 50 0.999 0.008 0.816 0.735 0.979 0.077 191.087
val acc 10 31.8 50 0.999 0.008 0.857 0.595 0.983 0.075 223.856
val acc 15 36.2 50 0.999 0.005 0.847 0.695 0.982 0.075 256.737
Original No No 50 0.999 0.004 0.835 0.772 0.979 0.0991 416.361

R
es

N
et

50
V

2

val loss 3 17.8 50 0.995 0.025 0.958 0.121 0.993 0.026 139.693
val loss 5 16 50 0.993 0.032 0.918 0.194 0.991 0.044 127.430
val loss 7 26.6 50 0.997 0.018 0.923 0.166 0.993 0.026 197.787
val loss 10 26.2 50 0.997 0.016 0.891 0.232 0.987 0.040 201.758
val loss 15 41.6 50 0.998 0.008 0.934 0.133 0.996 0.019 364.172
val acc 3 11.6 50 0.985 0.053 0.939 0.1401 0.983 0.056 151.258
val acc 5 16.2 50 0.993 0.031 0.939 0.132 0.990 0.037 176.910
val acc 7 19.2 50 0.994 0.028 0.941 0.137 0.991 0.040 238.396
val acc 10 23.4 50 0.997 0.018 0.955 0.106 0.991 0.036 303.144
val acc 15 36.4 50 0.997 0.009 0.919 0.166 0.992 0.025 520.313
Original No No 50 0.999 0.004 0.911 0.209 0.985 0.033 723.026

X
ce

pt
io

n

val loss 3 9.4 50 0.975 0.116 0.691 0.653 0.942 0.184 71.368
val loss 5 15.4 50 0.990 0.065 0.719 0.660 0.958 0.138 118.122
val loss 7 16.4 50 0.990 0.068 0.704 0.663 0.951 0.150 125.397
val loss 10 22.8 50 0.995 0.042 0.719 0.699 0.958 0.137 175.587
val loss 15 28.8 50 0.998 0.025 0.741 0.702 0.965 0.113 233.605
val acc 3 10 50 0.974 0.125 0.701 0.648 0.940 0.218 95.685
val acc 5 16 50 0.988 0.066 0.716 0.664 0.956 0.140 129.949
val acc 7 21.6 50 0.992 0.052 0.698 0.757 0.956 0.159 171.013
val acc 10 26.8 50 0.997 0.029 0.722 0.752 0.963 0.116 219.265
val acc 15 37.4 50 0.998 0.019 0.728 0.823 0.966 0.105 313.890
Original No No 50 0.999 0.010 0.732 0.874 0.965 0.120 429.153

*MN: Transfer Learning Model Name. MC: Monitor Criteria. PC: Patience Criteria. SE: Stopped epoch. TE: Total Number
of Epochs. TT: Training Times in Seconds. Note: All results except TE are mean of each fold. See Appendix A for details.

118

TABLE 3. Summary of each model by groups

Group Name Test Statistic p-value Result

MobileNetV2
Test Accuracy 10.693 0.382 +
Training Time 42.263 0.000 x
Stopped Epoch 40.643 0.000 x

InceptionV3
Test Accuracy 10.434 0.403 +
Training Time 42.982 0.000 x
Stopped Epoch 43.074 0.000 x

ResNet50V2
Test Accuracy 12.251 0.269 +
Training Time 43.426 0.000 x
Stopped Epoch 41.092 0.000 x

Xception
Test Accuracy 19.895 0.030 x
Training Time 41.517 0.000 x
Stopped Epoch 41.719 0.000 x

Note: ”+”: H0 is accepted (p > 0.05), ”x”: H0 is rejected (p < 0.05).

meaning the null hypothesis (H0) was accepted. However, for training time and the number of stopped
epochs, significant differences were observed (p < 0.05), leading to the rejection of the null hypothe-
sis (H0) for those parameters, indicating that early stopping significantly affected these factors. Only
Xception model’s test accuracy did show a significant result (p < 0.05), while other models exhibited
no significant difference in test accuracy. Overall, the results suggest that early stopping strategies had a
noticeable impact on training time and number of epochs, but did not always affect the test accuracy in a
significant way.

The Mann-Whitney U Test was conducted to evaluate the pairwise differences in performance metrics
across four transfer learning architectures: MobileNetV2, ResNet50V2, InceptionV3, and Xception. The
metrics analyzed included test accuracy, training time, and stopped epoch under various early stopping
PC (Table 5).

The test accuracy results across all comparisons yielded p > 0.05, indicating that the null hypothe-
sis (H0) could not be rejected. This signifies that there were no statistically significant differences in
test accuracy between the models across the considered PC. The early stopping strategies employed do
not significantly affect the accuracy of the models. This consistency suggests that the transfer learning
architectures are robust to changes in PC with respect to test accuracy.

For most pairwise comparisons, the p > 0.05, indicating no significant differences in training time
across architectures and PC. At a PC of 7, the comparison involving MobileNetV2 resulted in a p-value =
0.008, which is statistically significant (p < 0.05). This suggests that the training time for MobileNetV2
is significantly different compared to another model for this specific PC. While early stopping does not
generally lead to significant differences in training time, the significant result for MobileNetV2 indicates
that certain architectures may exhibit more sensitivity to specific PC in terms of computational efficiency.

119

TABLE 4. Summary of Kruskal-Wallis Test results for two different MC

MC= val loss MC= val accuracy

Group Name Test Statistic p-value Result Test Statistic p-value Result

MobileNetV2
Test Accuracy 5.515 0.356 + 7.881 0.163 +
Training Time 23.885 0.000 x 24.474 0.000 x
Stopped Epoch 25.137 0.000 x 23.540 0.000 x

InceptionV3
Test Accuracy 6.147 0.292 + 4.715 0.452 +
Training Time 22.925 0.000 x 24.025 0.000 x
Stopped Epoch 23.655 0.000 x 24.159 0.000 x

ResNet50V2
Test Accuracy 8.418 0.135 + 4.632 0.462 +
Training Time 24.561 0.000 x 23.622 0.000 x
Stopped Epoch 23.698 0.000 x 22.883 0.000 x

Xception
Test Accuracy 12.703 0.026 x 8.430 0.134 +
Training Time 25.552 0.000 x 22.533 0.000 x
Stopped Epoch 25.493 0.000 x 22.943 0.000 x

Note: ”+”: H0 is accepted (p > 0.05), ”x”: H0 is rejected (p < 0.05).

For most pairwise comparisons of stopped epochs, the p > 0.05, meaning no significant differences
were observed between the models. At a PC of 3, one comparison yielded a p = 0.020, which is statis-
tically significant (p < 0.05). This indicates a significant difference in the number of epochs at which
training is halted for smaller PC between the models. Early stopping with smaller PC may result in
varying training dynamics across architectures, influencing the point at which training is terminated. The
boxplot (Figure 4) illustrates the test accuracy of the Xception model across various MC and PC. Each
group represents a specific monitoring criterion (e.g. validation loss or validation accuracy) evaluated at
different epochs, as well as a no-monitoring baseline. The mean and median test accuracies are annotated
for each group, providing insights into consistency and performance variations.

The results highlight that the val accuracy 15 and no monitoring No groups achieved the highest me-
dian and mean test accuracies (0.97), while val loss 3 and val accuracy 3 showed comparatively lower
performance, with median values around 0.94. This indicates that MC and the choice of PC significantly
influence the model’s ability to generalize effectively.

Although the test accuracy results for the Xception model suggest that there is a statistically significant
difference between at least one pair of monitoring groups (p < 0.05), further pairwise analysis using the
Conover-Iman test reveals a nuanced interpretation (Table 6). Specifically, while some groups, such
as no strategy vs. val loss 3 (p = 0.046) and val accuracy 3 vs. val accuracy 15 (p = 0.046) show p-
values below the significance threshold of 0.05, these values are very close to the threshold. Additionally,
other comparisons, such as val loss 3 vs. val loss 5 (p = 0.297) and val accuracy 5 vs. val accuracy 7
(p=0.687), yield much higher p-values, indicating no statistically significant difference.

120

TABLE 5. Summary of Mann-Whitney U Test results for pair comparison by moni-
toring strategy

PC Group Name Test Statistic p-value Result Test Statistic p-value Result

3
Test Accuracy 8.5 0.462 + 6 0.206 +
Training Time 10 0.690 + 15 0.690 +
Stopped Epoch 10.5 0.747 + 1 0.020 x

5
Test Accuracy 16 0.523 + 11 0.829 +
Training Time 12 1.000 + 22 0.056 +
Stopped Epoch 9 0.522 + 10.5 0.750 +

7
Test Accuracy 13 1.000 + 8 0.395 +
Training Time 10 0.690 + 16 0.548 +
Stopped Epoch 8.5 0.461 + 5 0.151 +

10
Test Accuracy 4 0.090 + 10 0.671 +
Training Time 12 1.000 + 20 0.151 +
Stopped Epoch 12.5 1.000 + 7.5 0.340 +

15
Test Accuracy 15.5 0.600 + 5 0.134 +
Training Time 15 0.690 + 19 0.222 +
Stopped Epoch 10 0.674 + 8.5 0.462 +

3
Test Accuracy 16 0.530 + 10.5 0.753 +
Training Time 20 0.151 + 14 0.841 +
Stopped Epoch 17 0.421 + 10 0.675 +

5
Test Accuracy 13 1.000 + 16 0.530 +
Training Time 22 0.056 + 17 0.421 +
Stopped Epoch 17 0.402 + 15.5 0.599 +

7
Test Accuracy 14 0.832 + 17.5 0.344 +
Training Time 25 0.008 x 18 0.310 +
Stopped Epoch 22 0.059 + 16.5 0.458 +

10
Test Accuracy 12.5 1.000 + 16 0.530 +
Training Time 17 0.421 + 18 0.310 +
Stopped Epoch 14 0.841 + 16.5 0.463 +

15
Test Accuracy 15.5 0.599 + 14 0.834 +
Training Time 21 0.095 + 21 0.095 +
Stopped Epoch 16 0.530 + 17.5 0.344 +

Note: • MobileNetV2, • ResNet50V2, • InceptionV3, • Xception, PC: Patience Criteria,
”+”: H0 is accepted (p > 0.05), ”x”: H0 is rejected (p < 0.05).

Given these findings, while some differences appear significant at first glance, the proximity of the p-
values to the threshold in certain cases, along with the consistency across most comparisons, suggests that

121

FIGURE 4. Boxplot of test accuracy for different PC with Xception model.

these results may not represent meaningful differences in practical terms. As such, the overall outcomes
can be interpreted as lacking substantial evidence for significant performance differences between the
monitoring strategies. This indicates that the choice of MC might not critically impact the Xception
model’s test accuracy under the conditions evaluated.

5. DISCUSSION

The results from the application of early stopping strategies to various transfer learning models reveal
significant insights into balancing computational efficiency and model performance. In this section, we
interpret the findings, their implications for green computing.

5.1. Impact on Training Time and Computational Efficiency:
Hussein et al. [11] highlighted the critical interplay between early stopping PC and the number of

epochs in deep learning models, demonstrating that higher PC values often require more epochs to
achieve optimal validation accuracy. Conversely, lower PC values can lead to premature stopping and
suboptimal model performance. Importantly, they also noted that prolonged training times do not neces-
sarily enhance validation accuracy, reinforcing the utility of early stopping in mitigating over-fitting and
conserving computational resources. These findings underscore the necessity of carefully calibrating PC

122

TABLE 6. Pairwise comparisons of monitoring strategies for the Xception model Us-
ing Conover-Iman Test

Group Name no
st

ra
te

gy

va
la

cc
3

va
la

cc
ur

ac
y

5

va
la

cc
ur

ac
y

7

va
la

cc
ur

ac
y

10

va
la

cc
ur

ac
y

15

va
ll

os
s

3

va
ll

os
s

5

va
ll

os
s

7

va
ll

os
s

10

va
ll

os
s

15

no strategy
(original no) 1.000 0.049 0.425 0.687 0.690 0.935 0.046 0.383 0.236 0.425 0.991
val accuracy 3 0.049 1.000 0.297 0.140 0.136 0.046 0.934 0.383 0.565 0.297 0.049
val accuracy 5 0.425 0.297 1.000 0.687 0.687 0.383 0.236 0.934 0.687 0.991 0.425
val accuracy 7 0.687 0.140 0.687 1.000 0.991 0.685 0.110 0.685 0.406 0.687 0.687
val accuracy 10 0.690 0.136 0.687 0.991 1.000 0.687 0.110 0.653 0.383 0.687 0.687
val accuracy 15 0.935 0.046 0.383 0.685 0.687 1.000 0.046 0.342 0.202 0.383 0.936
val loss 3 0.046 0.934 0.236 0.110 0.110 0.046 1.000 0.297 0.434 0.236 0.046
val loss 5 0.383 0.383 0.934 0.685 0.653 0.342 0.297 1.000 0.712 0.934 0.383
val loss 7 0.236 0.565 0.687 0.406 0.383 0.202 0.434 0.712 1.000 0.687 0.236
val loss 10 0.425 0.297 0.991 0.687 0.687 0.383 0.236 0.934 0.687 1.000 0.425
val loss 15 0.991 0.049 0.425 0.687 0.687 0.936 0.046 0.383 0.236 0.425 1.000

to achieve a balance between computational efficiency and model performance. Building upon this, our
results further confirm that early stopping consistently reduced training time across all four models (Mo-
bileNetV2, InceptionV3, ResNet50V2, and Xception), with statistically significant reductions observed
in most cases. This demonstrates that early stopping effectively prevents unnecessary computations,
contributing to energy conservation and aligning with the principles of green computing. However, the
sensitivity of training time reduction to PC underscores the importance of carefully tuned parameters. For
instance, shorter PCs drastically reduce epochs but may compromise the achievement of optimal weights
for certain architectures, as evidenced by the significant test accuracy variations observed in Xception.
These findings align with Chen’s [8] assertion that ”Algorithms aimed at early termination of training
or dynamic adjustment of model complexity based on performance can prevent over-computation and
conserve resources.”

5.2. Consistency of Model Accuracy:
The findings underline that early stopping does not significantly degrade test accuracy for most mod-

els. Models like MobileNetV2 and ResNet50V2 exhibited stable performance across varying PCs, reaf-
firming the robustness of these architectures. However, Xception’s test accuracy displayed significant

123

variability, indicating that the model’s performance is more sensitive to the choice of PC and monitor-
ing criteria. These results resonate with Patterson et al.’s perspective that prioritizing metrics beyond
accuracy, such as training efficiency and carbon footprint, could foster innovations in ML algorithms,
systems, and hardware, ultimately advancing both performance consistency and sustainability [7].

5.3. Implications for Green AI:.
The study supports the hypothesis that early stopping strategies contribute to reducing the environmen-

tal impact of AI training. By halting the training process earlier, models consume less energy, thereby
reducing carbon footprints. This aligns with sustainable development goals and emphasizes the role of
energy-efficient practices in AI research.

5.4. Limitations and Challenges:
While the findings are promising, several challenges remain:
Dataset Dependency: The experiments were conducted on the Rock Paper Scissors dataset. The

generalizability of these findings to more complex datasets with higher feature dimensionality requires
further exploration.

Model Sensitivity: The variability in performance for Xception suggests that some architectures might
require additional adaptive mechanisms to ensure consistent accuracy while leveraging early stopping.

Energy Measurement: Although training time reductions imply energy savings, the study does not
provide direct measurements of energy consumption, limiting the precision of conclusions about envi-
ronmental impact.

6. CONCLUSION AND FUTURE STUDIES

The results of this study underscore the effectiveness of early stopping as a practical approach to
enhancing the energy efficiency of deep learning model training. By preventing unnecessary epochs,
early stopping significantly reduces training time and computational resources. The comparative analy-
sis across multiple transfer learning architectures demonstrated consistent performance in accuracy, with
substantial gains in energy savings. These outcomes highlight the role of energy-aware strategies in
addressing the environmental challenges posed by the growing computational demands of artificial in-
telligence. Early stopping represents a straightforward yet impactful optimization that aligns well with
global sustainability objectives, such as the United Nations’ Sustainable Development Goals. This re-
search provides a foundation for integrating such strategies into standard deep learning practices, paving
the way for environmentally responsible AI development. To further advance the insights from this study,
future research could focus on the following areas:

Broader Dataset Evaluation: Expand experiments to include larger and more diverse datasets, ensur-
ing the generalizability of early stopping strategies across various domains and data types.

Direct Energy Measurement: Develop and employ methodologies to directly measure energy con-
sumption during training, enabling a more precise assessment of energy savings.

124

Advanced Early Stopping Criteria: Investigate more sophisticated stopping mechanisms, such as adap-
tive PC thresholds and hybrid criteria combining multiple performance metrics.

Renewable Energy Integration: Evaluate the performance and energy efficiency of early stopping in
data centers powered by renewable energy sources, providing insights into its sustainability impact under
different energy scenarios.

Interdisciplinary Approaches: Collaborate across fields to incorporate principles of green computing
into AI research, exploring synergies with smart grid technologies and sustainable data center designs.

Optimization for Real-Time Systems: Explore early stopping strategies in real-time AI applications,
such as edge computing and Internet of Things (IoT) systems, where energy constraints are critical.

By addressing these areas, future studies could expand the application of energy-aware training strate-
gies and enhance their effectiveness in promoting sustainable computing practices. This will not only
benefit the AI community but also contribute to broader efforts toward reducing the environmental im-
pact of advanced technologies.

DECLARATIONS

• Contribution Rate Statement: Abdulkadir TAŞDELEN has conducted this study as a single
author.

• Conflict of Interest: The author has no affiliation with any organization with a direct or indirect
financial interest in the subject matter discussed in the manuscript.

• Data Availability: The dataset has been properly cited, and a comprehensive analysis is included
in the Appendices.

• Statement of Support and Acknowledgment: None.

REFERENCES

[1] K. I. Ibekwe, A. A. Umoh, Z. Q. S. Nwokediegwu, E. A. Etukudoh, V. I. Ilojianya, A. Adefemi, Energy efficiency
in industrial sectors: A review of technologies and policy measures, Engineering Science & Technology Journal 5 (1)
(2024) 169–184. doi:10.51594/estj.v5i1.742.

[2] A. Tasdelen, M. H. Habaebi, M. R. Islam, Exploring blockchain technologies: Insights into consensus mechanisms,
mining pool dynamics, and energy consumption patterns, in: 2024 9th International Conference on Mechatronics Engi-
neering (ICOM), IEEE, 2024, p. 95–100. doi:10.1109/icom61675.2024.10652588.

[3] V. Bolón-Canedo, L. Morán-Fernández, B. Cancela, A. Alonso-Betanzos, A review of green artificial intelligence: To-
wards a more sustainable future, Neurocomputing 599 (2024) 128096. doi:10.1016/j.neucom.2024.128096.

[4] Z. Vale, L. Gomes, D. Ramos, P. Faria, Green computing: a realistic evaluation of energy consumption for building load
forecasting computation, Journal of Smart Environments and Green Computing 2 (2) (2022) 34–45. doi:10.20517/
jsegc.2022.06.

[5] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, B. C. V. Esesn, A. A. S. Awwal, V. K. Asari,
The history began from alexnet: A comprehensive survey on deep learning approaches (2018). arXiv:1803.01164.
URL https://arxiv.org/abs/1803.01164

[6] Y. Zhou, X. Lin, X. Zhang, M. Wang, G. Jiang, H. Lu, Y. Wu, K. Zhang, Z. Yang, K. Wang, Y. Sui, F. Jia, Z. Tang,
Y. Zhao, H. Zhang, T. Yang, W. Chen, Y. Mao, Y. Li, D. Bao, Y. Li, H. Liao, T. Liu, J. Liu, J. Guo, X. Zhao, Y. WEI,
H. Qian, Q. Liu, X. Wang, W. Kin, Chan, C. Li, Y. Li, S. Yang, J. Yan, C. Mou, S. Han, W. Jin, G. Zhang, X. Zeng, On

125

https://doi.org/10.51594/estj.v5i1.742
https://doi.org/10.1109/icom61675.2024.10652588
https://doi.org/10.1016/j.neucom.2024.128096
https://doi.org/10.20517/jsegc.2022.06
https://doi.org/10.20517/jsegc.2022.06
https://arxiv.org/abs/1803.01164
http://arxiv.org/abs/1803.01164
https://arxiv.org/abs/1803.01164
https://arxiv.org/abs/2311.00447
https://arxiv.org/abs/2311.00447

the opportunities of green computing: A survey (2023). arXiv:2311.00447.
URL https://arxiv.org/abs/2311.00447

[7] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild, D. So, M. Texier, J. Dean, Carbon emissions
and large neural network training (2021). arXiv:2104.10350.
URL https://arxiv.org/abs/2104.10350

[8] X. Chen, Optimization strategies for reducing energy consumption in ai model training, ACS 6 (1) (Mar. 2023).
[9] L. Lannelongue, J. Grealey, M. Inouye, Green algorithms: Quantifying the carbon footprint of computation, Advanced

Science 8 (12) (May 2021). doi:10.1002/advs.202100707.
[10] S. Georgiou, M. Kechagia, T. Sharma, F. Sarro, Y. Zou, Green ai: do deep learning frameworks have different costs?,

in: Proceedings of the 44th International Conference on Software Engineering, ICSE ’22, ACM, 2022, p. 1082–1094.
doi:10.1145/3510003.3510221.

[11] B. M. Hussein, S. M. Shareef, An empirical study on the correlation between early stopping patience and epochs in deep
learning, ITM Web of Conferences 64 (2024) 01003. doi:10.1051/itmconf/20246401003.

[12] Y. Xu, S. Martı́nez-Fernández, M. Martinez, X. Franch, Energy efficiency of training neural network architectures: An
empirical study (Feb. 2023). arXiv:2302.00967.

[13] H. Järvenpää, P. Lago, J. Bogner, G. Lewis, H. Muccini, I. Ozkaya, A synthesis of green architectural tactics for ml-
enabled systems, in: Proceedings of the 46th International Conference on Software Engineering: Software Engineering
in Society, ICSE-SEIS’24, ACM, 2024, p. 130–141. doi:10.1145/3639475.3640111.

[14] L. Maroney, Rock paper scissors classification dataset, https://laurencemoroney.com/datasets.html, accessed:
2024-10-17.

[15] W. H. Kruskal, W. A. Wallis, Use of ranks in one-criterion variance analysis, Journal of the American Statistical Asso-
ciation 47 (260) (1952) 583–621. doi:10.1080/01621459.1952.10483441.

[16] H. B. Mann, D. R. Whitney, On a test of whether one of two random variables is stochastically larger than the other, The
Annals of Mathematical Statistics 18 (1) (1947) 50–60.

[17] W. Conover, R. Iman, Multiple-comparisons procedures. Informal report, 1979. doi:10.2172/6057803.
[18] S. S. Acmali, Y. Ortakci, H. Seker, Green ai-driven concept for the development of cost-effective and energy-efficient

deep learning method: Application in the detection ofeimeriaparasites as a case study, Advanced Intelligent Systems
6 (7) (Jun. 2024). doi:10.1002/aisy.202300644.

[19] D. Reguero, S. Martı́nez-Fernández, R. Verdecchia, Energy-efficient neural network training through runtime layer
freezing, model quantization, and early stopping, Computer Standards & Interfaces 92 (2025) 103906. doi:10.1016/
j.csi.2024.103906.

[20] Y. Matsubara, M. Levorato, F. Restuccia, Split computing and early exiting for deep learning applications: Survey and
research challenges, ACM Computing Surveys 55 (5) (2022) 1–30. doi:10.1145/3527155.

[21] S. Teerapittayanon, B. McDanel, H. Kung, Branchynet: Fast inference via early exiting from deep neural networks, in:
2016 23rd International Conference on Pattern Recognition (ICPR), IEEE, 2016, p. 2464–2469. doi:10.1109/icpr.
2016.7900006.

[22] S. Teerapittayanon, B. McDanel, H. Kung, Distributed deep neural networks over the cloud, the edge and end devices,
in: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), IEEE, 2017, p. 328–339.
doi:10.1109/icdcs.2017.226.

[23] Y. Wang, J. Shen, T.-K. Hu, P. Xu, T. Nguyen, R. Baraniuk, Z. Wang, Y. Lin, Dual dynamic inference: Enabling more
efficient, adaptive, and controllable deep inference, IEEE Journal of Selected Topics in Signal Processing 14 (4) (2020)
623–633. doi:10.1109/jstsp.2020.2979669.

[24] H. Li, H. Zhang, X. Qi, R. Yang, G. Huang, Improved techniques for training adaptive deep networks (2019).
URL https://arxiv.org/abs/1908.06294

126

https://arxiv.org/abs/2311.00447
https://arxiv.org/abs/2311.00447
https://arxiv.org/abs/2311.00447
http://arxiv.org/abs/2311.00447
https://arxiv.org/abs/2311.00447
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350
https://doi.org/10.1002/advs.202100707
https://doi.org/10.1145/3510003.3510221
https://doi.org/10.1051/itmconf/20246401003
http://arxiv.org/abs/2302.00967
https://doi.org/10.1145/3639475.3640111
https://laurencemoroney.com/datasets.html
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.2172/6057803
https://doi.org/10.1002/aisy.202300644
https://doi.org/10.1016/j.csi.2024.103906
https://doi.org/10.1016/j.csi.2024.103906
https://doi.org/10.1145/3527155
https://doi.org/10.1109/icpr.2016.7900006
https://doi.org/10.1109/icpr.2016.7900006
https://doi.org/10.1109/icdcs.2017.226
https://doi.org/10.1109/jstsp.2020.2979669
https://arxiv.org/abs/1908.06294
https://arxiv.org/abs/1908.06294

[25] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, N. D. Lane, Spinn: synergistic progressive inference of neural
networks over device and cloud, in: Proceedings of the 26th Annual International Conference on Mobile Computing and
Networking, MobiCom ’20, ACM, 2020, p. 1–15. doi:10.1145/3372224.3419194.

[26] Keras applications, https://keras.io/api/applications/, accessed: 2024-10-15.
[27] T. Fontanari, T. C. Fróes, M. Recamonde-Mendoza, Cross-validation Strategies for Balanced and Imbalanced Datasets,

Springer International Publishing, 2022, p. 626–640. doi:10.1007/978-3-031-21686-2_43.
[28] D. Berrar, Cross-Validation, Elsevier, 2019, p. 542–545. doi:10.1016/b978-0-12-809633-8.20349-x.
[29] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in: G. Gordon, D. Dunson, M. Dudı́k (Eds.),

Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Vol. 15 of Proceedings
of Machine Learning Research, PMLR, Fort Lauderdale, FL, USA, 2011, pp. 315–323.
URL https://proceedings.mlr.press/v15/glorot11a.html

127

https://doi.org/10.1145/3372224.3419194
https://keras.io/api/applications/
https://doi.org/10.1007/978-3-031-21686-2_43
https://doi.org/10.1016/b978-0-12-809633-8.20349-x
https://proceedings.mlr.press/v15/glorot11a.html
https://proceedings.mlr.press/v15/glorot11a.html

APPENDIX (A)

TABLE A.1. Detailed results for MobileNetV2 with various MC and PC (Appendix A.1)

PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
3 loss 1 10 0.998046 0.02271 0.716724 0.61063 0.97265 0.07408 24.89913
3 loss 2 8 0.989741 0.039663 0.897611 0.407444 0.991453 0.046021 21.42021
3 loss 3 10 0.998046 0.02114 0.829352 0.383397 0.977778 0.058188 31.18301
3 loss 4 12 0.996092 0.0236 0.863481 0.39339 0.984615 0.052646 31.40667
3 loss 5 7 0.994138 0.034424 0.897611 0.27528 0.991453 0.046647 16.36674
5 loss 1 12 0.994626 0.022884 0.836177 0.407061 0.977778 0.061897 40.35201
5 loss 2 13 0.998046 0.017082 0.8157 0.505994 0.991453 0.037977 31.8802
5 loss 3 13 0.998534 0.017046 0.805461 0.482879 0.97265 0.070374 27.50178
5 loss 4 12 0.999023 0.018486 0.887372 0.335181 0.981197 0.054642 30.86905
5 loss 5 17 1 0.011072 0.894198 0.338853 0.989744 0.031267 34.95643
7 loss 1 20 0.999023 0.008709 0.829352 0.448269 0.982906 0.050633 48.03739
7 loss 2 13 0.998534 0.014379 0.853242 0.470612 0.984615 0.048726 29.33452
7 loss 3 15 0.998534 0.013665 0.921502 0.284624 0.984615 0.0479 35.74343
7 loss 4 26 1 0.006078 0.856655 0.471619 0.982906 0.059258 54.84729
7 loss 5 16 0.999023 0.010669 0.887372 0.27569 0.996581 0.025798 46.10693
10 loss 1 18 0.999023 0.009387 0.866894 0.40527 0.982906 0.061318 44.18391
10 loss 2 16 0.999511 0.009909 0.866894 0.479844 0.996581 0.032309 40.4024
10 loss 3 16 1 0.009493 0.846416 0.489362 0.982906 0.068769 48.54023
10 loss 4 22 0.999511 0.007761 0.860068 0.441097 0.981197 0.054182 56.33341
10 loss 5 23 0.999511 0.008148 0.87372 0.329433 0.991453 0.029512 54.65796
15 loss 1 34 1 0.003683 0.836177 0.465539 0.979487 0.054873 90.97743
15 loss 2 23 0.999023 0.006659 0.788396 0.644614 0.991453 0.044725 51.89995
15 loss 3 24 0.999511 0.007204 0.713311 0.718376 0.957265 0.098596 51.59951
15 loss 4 25 0.998046 0.007837 0.918089 0.349919 0.986325 0.04279 69.64649
15 loss 5 19 0.999023 0.00891 0.877133 0.413882 0.989744 0.062436 45.38881
3 accuracy 1 8 0.995115 0.035462 0.812287 0.452551 0.977778 0.075911 19.19615
3 accuracy 2 7 0.991695 0.03949 0.750853 0.558056 0.969231 0.086702 22.83207
3 accuracy 3 8 0.990718 0.044302 0.890785 0.298727 0.986325 0.06379 22.52161
3 accuracy 4 10 0.995603 0.028642 0.883959 0.357354 0.981197 0.063921 23.85584
3 accuracy 5 11 0.996092 0.022401 0.8157 0.428575 0.982906 0.049576 25.19012
5 accuracy 1 9 0.997557 0.02813 0.924915 0.235847 0.989744 0.052855 26.95682
5 accuracy 2 14 0.997069 0.01464 0.897611 0.355202 0.991453 0.031014 35.12124
5 accuracy 3 14 0.999023 0.014261 0.778157 0.556217 0.981197 0.0605 34.65687
5 accuracy 4 9 0.995115 0.028258 0.887372 0.304796 0.984615 0.071368 23.06869
5 accuracy 5 12 0.995603 0.019862 0.798635 0.499943 0.981197 0.054467 40.76033
7 accuracy 1 10 0.995603 0.027834 0.843003 0.472188 0.989744 0.073563 30.75511
7 accuracy 2 10 0.99658 0.025613 0.849829 0.40949 0.988034 0.07837 26.90913
7 accuracy 3 21 0.998534 0.007147 0.880546 0.373008 0.982906 0.051573 47.40013
7 accuracy 4 21 0.999511 0.00838 0.87372 0.394475 0.977778 0.060484 48.73546
7 accuracy 5 13 0.997069 0.016314 0.866894 0.455652 0.986325 0.056186 44.27132
10 accuracy 1 13 0.99658 0.018139 0.808874 0.418347 0.974359 0.100734 39.47001
10 accuracy 2 17 0.997069 0.011614 0.78157 0.638499 0.988034 0.051562 40.93397
10 accuracy 3 25 0.999511 0.00633 0.866894 0.357318 0.981197 0.046204 57.84523
10 accuracy 4 18 0.999511 0.010149 0.83959 0.434623 0.976068 0.061002 41.20016
10 accuracy 5 19 0.999511 0.006501 0.849829 0.45403 0.981197 0.050926 64.77641
15 accuracy 1 40 0.999511 0.002785 0.856655 0.440164 0.981197 0.055093 123.3092
15 accuracy 2 23 1 0.005775 0.822526 0.555798 0.993162 0.035381 66.58583
15 accuracy 3 24 1 0.005983 0.836177 0.522272 0.976068 0.063149 65.34113

(Continued on next page)

128

(Table A.1 Continued from previous page)
PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
15 accuracy 4 17 0.998534 0.009715 0.911263 0.307966 0.988034 0.120658 42.9821
15 accuracy 5 22 0.999511 0.006387 0.870307 0.375544 0.991453 0.04107 78.37715
- no monitoring 1 N/A 1 0.001575 0.880546 0.457774 0.977778 0.075568 148.2634
- no monitoring 2 N/A 1 0.002043 0.771331 0.749586 0.981197 0.048413 117.9772
- no monitoring 3 N/A 1 0.001433 0.822526 0.563311 0.97265 0.091081 113.3214
- no monitoring 4 N/A 1 0.001629 0.866894 0.492891 0.977778 0.079798 114.794
- no monitoring 5 N/A 1 0.001867 0.856655 0.635862 0.982906 0.056227 114.0149

TABLE A.2. Descriptive statistics for MobileNetV2 model performance (Appendix A.2)

MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val loss 3 count 5 5 5 5 5 5 5
val loss 3 mean 0.995 0.028 0.841 0.414 0.984 0.056 25.055
val loss 3 std 0.003 0.008 0.075 0.122 0.008 0.011 6.454
val loss 3 min 0.990 0.021 0.717 0.275 0.973 0.046 16.367
val loss 3 25% 0.994 0.023 0.829 0.383 0.978 0.047 21.420
val loss 3 50% 0.996 0.024 0.863 0.393 0.985 0.053 24.899
val loss 3 75% 0.998 0.034 0.898 0.407 0.991 0.058 31.183
val loss 3 max 0.998 0.040 0.898 0.611 0.991 0.074 31.407
val loss 5 count 5 5 5 5 5 5 5
val loss 5 mean 0.998 0.017 0.848 0.414 0.983 0.051 33.112
val loss 5 std 0.002 0.004 0.041 0.079 0.008 0.016 4.844
val loss 5 min 0.995 0.011 0.805 0.335 0.973 0.031 27.502
val loss 5 25% 0.998 0.017 0.816 0.339 0.978 0.038 30.869
val loss 5 50% 0.999 0.017 0.836 0.407 0.981 0.055 31.880
val loss 5 75% 0.999 0.018 0.887 0.483 0.990 0.062 34.956
val loss 5 max 1.000 0.023 0.894 0.506 0.991 0.070 40.352
val loss 7 count 5 5 5 5 5 5 5
val loss 7 mean 0.999 0.011 0.870 0.390 0.986 0.046 42.814
val loss 7 std 0.001 0.003 0.036 0.101 0.006 0.012 10.181
val loss 7 min 0.999 0.006 0.829 0.276 0.983 0.026 29.335
val loss 7 25% 0.999 0.009 0.853 0.285 0.983 0.048 35.743
val loss 7 50% 0.999 0.011 0.857 0.448 0.985 0.049 46.107
val loss 7 75% 0.999 0.014 0.887 0.471 0.985 0.051 48.037
val loss 7 max 1.000 0.014 0.922 0.472 0.997 0.059 54.847
val loss 10 count 5 5 5 5 5 5 5
val loss 10 mean 1.000 0.009 0.863 0.429 0.987 0.049 48.824
val loss 10 std 0.000 0.001 0.010 0.065 0.007 0.018 6.763
val loss 10 min 0.999 0.008 0.846 0.329 0.981 0.030 40.402
val loss 10 25% 1.000 0.008 0.860 0.405 0.983 0.032 44.184
val loss 10 50% 1.000 0.009 0.867 0.441 0.983 0.054 48.540
val loss 10 75% 1.000 0.009 0.867 0.480 0.991 0.061 54.658
val loss 10 max 1.000 0.010 0.874 0.489 0.997 0.069 56.333
val loss 15 count 5 5 5 5 5 5 5
val loss 15 mean 0.999 0.007 0.827 0.518 0.981 0.061 61.902
val loss 15 std 0.001 0.002 0.080 0.157 0.014 0.023 18.603
val loss 15 min 0.998 0.004 0.713 0.350 0.957 0.043 45.389
val loss 15 25% 0.999 0.007 0.788 0.414 0.979 0.045 51.600
val loss 15 50% 0.999 0.007 0.836 0.466 0.986 0.055 51.900
val loss 15 75% 1.000 0.008 0.877 0.645 0.990 0.062 69.646
val loss 15 max 1.000 0.009 0.918 0.718 0.991 0.099 90.977

129

Table A.2 Continued from previous page
MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val accuracy 3 count 5 5 5 5 5 5 5
val accuracy 3 mean 0.994 0.034 0.831 0.419 0.979 0.068 22.719
val accuracy 3 std 0.002 0.009 0.058 0.099 0.007 0.014 2.228
val accuracy 3 min 0.991 0.022 0.751 0.299 0.969 0.050 19.196
val accuracy 3 25% 0.992 0.029 0.812 0.357 0.978 0.064 22.522
val accuracy 3 50% 0.995 0.035 0.816 0.429 0.981 0.064 22.832
val accuracy 3 75% 0.996 0.039 0.884 0.453 0.983 0.076 23.856
val accuracy 3 max 0.996 0.044 0.891 0.558 0.986 0.087 25.190
val accuracy 5 count 5 5 5 5 5 5 5
val accuracy 5 mean 0.997 0.021 0.857 0.390 0.986 0.054 32.113
val accuracy 5 std 0.002 0.007 0.065 0.134 0.005 0.015 7.048
val accuracy 5 min 0.995 0.014 0.778 0.236 0.981 0.031 23.069
val accuracy 5 25% 0.996 0.015 0.799 0.305 0.981 0.053 26.957
val accuracy 5 50% 0.997 0.020 0.887 0.355 0.985 0.054 34.657
val accuracy 5 75% 0.998 0.028 0.898 0.500 0.990 0.060 35.121
val accuracy 5 max 0.999 0.028 0.925 0.556 0.991 0.071 40.760
val accuracy 7 count 5 5 5 5 5 5 5
val accuracy 7 mean 0.997 0.017 0.863 0.421 0.985 0.064 39.614
val accuracy 7 std 0.002 0.010 0.016 0.042 0.005 0.011 10.067
val accuracy 7 min 0.996 0.007 0.843 0.373 0.978 0.052 26.909
val accuracy 7 25% 0.997 0.008 0.850 0.394 0.983 0.056 30.755
val accuracy 7 50% 0.997 0.016 0.867 0.409 0.986 0.060 44.271
val accuracy 7 75% 0.999 0.026 0.874 0.456 0.988 0.074 47.400
val accuracy 7 max 1.000 0.028 0.881 0.472 0.990 0.078 48.735
val accuracy 10 count 5 5 5 5 5 5 5
val accuracy 10 mean 0.998 0.011 0.829 0.461 0.980 0.062 48.845
val accuracy 10 std 0.001 0.005 0.034 0.106 0.005 0.022 11.659
val accuracy 10 min 0.997 0.006 0.782 0.357 0.974 0.046 39.470
val accuracy 10 25% 0.997 0.007 0.809 0.418 0.976 0.051 40.934
val accuracy 10 50% 1.000 0.010 0.840 0.435 0.981 0.052 41.200
val accuracy 10 75% 1.000 0.012 0.850 0.454 0.981 0.061 57.845
val accuracy 10 max 1.000 0.018 0.867 0.638 0.988 0.101 64.776
val accuracy 15 count 5 5 5 5 5 5 5
val accuracy 15 mean 1.000 0.006 0.859 0.440 0.986 0.063 75.319
val accuracy 15 std 0.001 0.002 0.034 0.102 0.007 0.034 29.723
val accuracy 15 min 0.999 0.003 0.823 0.308 0.976 0.035 42.982
val accuracy 15 25% 1.000 0.006 0.836 0.376 0.981 0.041 65.341
val accuracy 15 50% 1.000 0.006 0.857 0.440 0.988 0.055 66.586
val accuracy 15 75% 1.000 0.006 0.870 0.522 0.991 0.063 78.377
val accuracy 15 max 1.000 0.010 0.911 0.556 0.993 0.121 123.309
no monitoring No count 5 5 5 5 5 5 5
no monitoring No mean 1.000 0.002 0.840 0.580 0.978 0.070 121.674
no monitoring No std 0.000 0.000 0.044 0.117 0.004 0.018 14.970
no monitoring No min 1.000 0.001 0.771 0.458 0.973 0.048 113.321
no monitoring No 25% 1.000 0.002 0.823 0.493 0.978 0.056 114.015
no monitoring No 50% 1.000 0.002 0.857 0.563 0.978 0.076 114.794
no monitoring No 75% 1.000 0.002 0.867 0.636 0.981 0.080 117.977
no monitoring No max 1.000 0.002 0.881 0.750 0.983 0.091 148.263

130

APPENDIX (B)

TABLE B.1. Detailed results for InceptionV3 with various MC and PC (Appendix B.1)

PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
3 loss 1 9 0.983878851 0.063424252 0.788395882 0.691795886 0.962393165 0.137821734 34.0100146
3 loss 2 8 0.989252567 0.040872496 0.733788371 0.860006809 0.979487181 0.088228665 29.8984313
3 loss 3 13 0.994137764 0.030255197 0.825938582 0.536911786 0.974358976 0.092576943 47.7669581
3 loss 4 7 0.986809969 0.060364712 0.679180861 0.84068495 0.960683763 0.123133942 28.6042797
3 loss 5 5 0.974596977 0.090318508 0.761092126 0.78642565 0.948717952 0.182484463 27.8326678
5 loss 1 32 0.999022961 0.00739672 0.853242338 0.577991843 0.984615386 0.070216581 117.0095957
5 loss 2 9 0.988764048 0.043512646 0.709897637 1.017861128 0.960683763 0.128654212 37.7095276
5 loss 3 14 0.997557402 0.02145461 0.726962447 0.860041678 0.970940173 0.120089293 53.3798204
5 loss 4 15 0.996580362 0.021638783 0.815699637 0.625344396 0.982905984 0.062162023 79.2635385
5 loss 5 15 0.997068882 0.019070214 0.883959055 0.518541694 0.982905984 0.08363767 66.42613
7 loss 1 19 0.996091843 0.019235797 0.771331072 0.681577265 0.977777779 0.080463678 78.0538619
7 loss 2 8 0.982901812 0.066090435 0.791808903 0.86845696 0.938461542 0.24873282 36.247579
7 loss 3 15 0.995114803 0.025213875 0.832764506 0.57030046 0.981196582 0.105363898 64.5173208
7 loss 4 15 0.997068882 0.019120131 0.849829376 0.585848749 0.979487181 0.069590084 88.7693096
7 loss 5 29 1 0.005879726 0.825938582 0.708134949 0.982905984 0.080251314 147.0300085
10 loss 1 20 0.997557402 0.015320398 0.788395882 0.742725492 0.979487181 0.077499501 78.6837716
10 loss 2 17 0.995603323 0.016541081 0.713310599 1.11474967 0.969230771 0.117452495 68.8851666
10 loss 3 35 0.99951148 0.005891902 0.829351544 0.576556921 0.981196582 0.094332993 153.3307557
10 loss 4 47 0.99951148 0.004547769 0.883959055 0.550591946 0.988034189 0.03828479 375.8302146
10 loss 5 34 0.999022961 0.005897738 0.91126281 0.403910398 0.98974359 0.057163749 237.1262536
15 loss 1 31 0.999022961 0.008081561 0.866894186 0.523374856 0.981196582 0.068272196 184.3225278
15 loss 2 26 0.999022961 0.010207516 0.761092126 1.104023457 0.976068377 0.084269352 121.4915938
15 loss 3 33 0.99951148 0.006300624 0.825938582 0.654499173 0.981196582 0.093615212 140.6734394
15 loss 4 26 0.994137764 0.017620478 0.781569958 0.797062635 0.974358976 0.081692502 121.4853378
15 loss 5 37 1 0.004083774 0.877133131 0.553094745 0.991452992 0.059600405 340.3184283
3 accuracy 1 17 0.995114803 0.0206411 0.808873713 0.725548565 0.970940173 0.102678411 140.3074823
3 accuracy 2 11 0.992183685 0.034354091 0.76791811 0.876152992 0.976068377 0.092387527 65.2484093
3 accuracy 3 4 0.965315104 0.124897584 0.815699637 0.536990285 0.933333337 0.271629155 25.8223064
3 accuracy 4 12 0.991695166 0.028814746 0.829351544 0.577801764 0.986324787 0.071021616 58.943908
3 accuracy 5 10 0.993649244 0.034925677 0.846416354 0.57682842 0.976068377 0.10173586 51.2127445
5 accuracy 1 20 0.995603323 0.015065268 0.829351544 0.646792293 0.981196582 0.082639068 154.8791887
5 accuracy 2 21 0.996091843 0.014288138 0.713310599 1.207827926 0.979487181 0.074940607 145.3536055
5 accuracy 3 22 0.997068882 0.01275574 0.798634827 0.676660776 0.972649574 0.118803278 137.5336144
5 accuracy 4 24 0.998534441 0.009583861 0.883959055 0.497871906 0.98974359 0.032772083 133.823382
5 accuracy 5 10 0.991206646 0.035472624 0.771331072 0.80417043 0.972649574 0.119832106 56.4036108
7 accuracy 1 28 0.998045921 0.007867916 0.798634827 0.770256519 0.981196582 0.089092769 154.7163437
7 accuracy 2 31 0.998534441 0.006880392 0.771331072 0.958002925 0.974358976 0.072101355 162.4083133
7 accuracy 3 22 0.997557402 0.010819421 0.860068262 0.450244308 0.974358976 0.093822978 190.629765
7 accuracy 4 36 1 0.003621859 0.819112599 0.797214568 0.981196582 0.05228468 278.316256
7 accuracy 5 22 0.99951148 0.009172016 0.829351544 0.701360941 0.986324787 0.077255376 169.3633921
10 accuracy 1 40 1 0.003867939 0.846416354 0.548633695 0.979487181 0.082988761 284.900779
10 accuracy 2 25 0.999022961 0.010678066 0.808873713 0.794085383 0.977777779 0.069033876 173.9952877
10 accuracy 3 39 0.99951148 0.0046171 0.849829376 0.599616289 0.977777779 0.11157576 247.5588835
10 accuracy 4 24 0.998045921 0.010440554 0.873720109 0.534663856 0.98974359 0.043696053 141.4675116
10 accuracy 5 31 0.998045921 0.009225765 0.907849848 0.497515827 0.98974359 0.068952538 271.3575743
15 accuracy 1 28 1 0.005100978 0.832764506 0.671540976 0.977777779 0.089632653 226.8121977
15 accuracy 2 50 1 0.002206131 0.778156996 1.169290781 0.976068377 0.07546217 379.2302903
15 accuracy 3 30 0.998534441 0.007315609 0.863481224 0.531567454 0.982905984 0.089072227 207.6188399

(Continued on next page)

131

(Table B.1 Continued from previous page)
PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
15 accuracy 4 44 1 0.00308408 0.877133131 0.580116212 0.986324787 0.046814781 282.2350076
15 accuracy 5 29 0.998534441 0.009574798 0.883959055 0.522773325 0.988034189 0.071746752 187.7881733
- no monitoring 1 N/A 0.998534441 0.00314847 0.907849848 0.450603038 0.982905984 0.085012116 317.1966538
- no monitoring 2 N/A 0.999022961 0.003437786 0.812286675 1.013028383 0.977777779 0.075830355 344.6338879
- no monitoring 3 N/A 0.99951148 0.003941682 0.78498292 0.774207115 0.976068377 0.136283711 544.4648693
- no monitoring 4 N/A 0.999022961 0.004351126 0.788395882 1.109158397 0.970940173 0.12248259 494.416349
- no monitoring 5 N/A 0.99951148 0.002637709 0.883959055 0.515361607 0.98974359 0.076655284 381.0932598

TABLE B.2. Descriptive statistics for InceptionV3 model performance (Appendix B.2)

MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val loss 3 count 5 5 5 5 5 5 5
val loss 3 mean 0.986 0.057 0.758 0.743 0.965 0.125 33.622
val loss 3 std 0.007 0.023 0.056 0.132 0.012 0.038 8.258
val loss 3 min 0.975 0.030 0.679 0.537 0.949 0.088 27.833
val loss 3 25% 0.984 0.041 0.734 0.692 0.961 0.093 28.604
val loss 3 50% 0.987 0.060 0.761 0.786 0.962 0.123 29.898
val loss 3 75% 0.989 0.063 0.788 0.841 0.974 0.138 34.010
val loss 3 max 0.994 0.090 0.826 0.860 0.979 0.182 47.767
val loss 5 count 5 5 5 5 5 5 5
val loss 5 mean 0.996 0.023 0.798 0.720 0.976 0.093 70.758
val loss 5 std 0.004 0.013 0.077 0.211 0.010 0.030 30.102
val loss 5 min 0.989 0.007 0.710 0.519 0.961 0.062 37.710
val loss 5 25% 0.997 0.019 0.727 0.578 0.971 0.070 53.380
val loss 5 50% 0.997 0.021 0.816 0.625 0.983 0.084 66.426
val loss 5 75% 0.998 0.022 0.853 0.860 0.983 0.120 79.264
val loss 5 max 0.999 0.044 0.884 1.018 0.985 0.129 117.010
val loss 7 count 5 5 5 5 5 5 5
val loss 7 mean 0.994 0.027 0.814 0.683 0.972 0.117 82.924
val loss 7 std 0.007 0.023 0.032 0.120 0.019 0.075 40.881
val loss 7 min 0.983 0.006 0.771 0.570 0.938 0.070 36.248
val loss 7 25% 0.995 0.019 0.792 0.586 0.978 0.080 64.517
val loss 7 50% 0.996 0.019 0.826 0.682 0.979 0.080 78.054
val loss 7 75% 0.997 0.025 0.833 0.708 0.981 0.105 88.769
val loss 7 max 1.000 0.066 0.850 0.868 0.983 0.249 147.030
val loss 10 count 5 5 5 5 5 5 5
val loss 10 mean 0.998 0.010 0.825 0.678 0.982 0.077 182.771
val loss 10 std 0.002 0.006 0.079 0.272 0.008 0.031 127.375
val loss 10 min 0.996 0.005 0.713 0.404 0.969 0.038 68.885
val loss 10 25% 0.998 0.006 0.788 0.551 0.979 0.057 78.684
val loss 10 50% 0.999 0.006 0.829 0.577 0.981 0.077 153.331
val loss 10 75% 1.000 0.015 0.884 0.743 0.988 0.094 237.126
val loss 10 max 1.000 0.017 0.911 1.115 0.990 0.117 375.830
val loss 15 count 5 5 5 5 5 5 5
val loss 15 mean 0.998 0.009 0.823 0.726 0.981 0.077 181.658
val loss 15 std 0.002 0.005 0.051 0.237 0.007 0.013 92.332
val loss 15 min 0.994 0.004 0.761 0.523 0.974 0.060 121.485
val loss 15 25% 0.999 0.006 0.782 0.553 0.976 0.068 121.492
val loss 15 50% 0.999 0.008 0.826 0.654 0.981 0.082 140.673
val loss 15 75% 1.000 0.010 0.867 0.797 0.981 0.084 184.323
val loss 15 max 1.000 0.018 0.877 1.104 0.991 0.094 340.318

132

Table B.2 Continued from previous page
MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val accuracy 3 count 5 5 5 5 5 5 5
val accuracy 3 mean 0.988 0.049 0.814 0.659 0.969 0.128 68.307
val accuracy 3 std 0.013 0.043 0.029 0.141 0.020 0.081 42.948
val accuracy 3 min 0.965 0.021 0.768 0.537 0.933 0.071 25.822
val accuracy 3 25% 0.992 0.029 0.809 0.577 0.971 0.092 51.213
val accuracy 3 50% 0.992 0.034 0.816 0.578 0.976 0.102 58.944
val accuracy 3 75% 0.994 0.035 0.829 0.726 0.976 0.103 65.248
val accuracy 3 max 0.995 0.125 0.846 0.876 0.986 0.272 140.307
val accuracy 5 count 5 5 5 5 5 5 5
val accuracy 5 mean 0.996 0.017 0.799 0.767 0.979 0.086 125.599
val accuracy 5 std 0.003 0.010 0.064 0.270 0.007 0.036 39.515
val accuracy 5 min 0.991 0.010 0.713 0.498 0.973 0.033 56.404
val accuracy 5 25% 0.996 0.013 0.771 0.647 0.973 0.075 133.823
val accuracy 5 50% 0.996 0.014 0.799 0.677 0.979 0.083 137.534
val accuracy 5 75% 0.997 0.015 0.829 0.804 0.981 0.119 145.354
val accuracy 5 max 0.999 0.035 0.884 1.208 0.990 0.120 154.879
val accuracy 7 count 5 5 5 5 5 5 5
val accuracy 7 mean 0.999 0.008 0.816 0.735 0.979 0.077 191.087
val accuracy 7 std 0.001 0.003 0.033 0.185 0.005 0.016 50.563
val accuracy 7 min 0.998 0.004 0.771 0.450 0.974 0.052 154.716
val accuracy 7 25% 0.998 0.007 0.799 0.701 0.974 0.072 162.408
val accuracy 7 50% 0.999 0.008 0.819 0.770 0.981 0.077 169.363
val accuracy 7 75% 1.000 0.009 0.829 0.797 0.981 0.089 190.630
val accuracy 7 max 1.000 0.011 0.860 0.958 0.986 0.094 278.316
val accuracy 10 count 5 5 5 5 5 5 5
val accuracy 10 mean 0.999 0.008 0.857 0.595 0.983 0.075 223.856
val accuracy 10 std 0.001 0.003 0.037 0.117 0.006 0.025 62.886
val accuracy 10 min 0.998 0.004 0.809 0.498 0.978 0.044 141.468
val accuracy 10 25% 0.998 0.005 0.846 0.535 0.978 0.069 173.995
val accuracy 10 50% 0.999 0.009 0.850 0.549 0.979 0.069 247.559
val accuracy 10 75% 1.000 0.010 0.874 0.600 0.990 0.083 271.358
val accuracy 10 max 1.000 0.011 0.908 0.794 0.990 0.112 284.901
val accuracy 15 count 5 5 5 5 5 5 5
val accuracy 15 mean 0.999 0.005 0.847 0.695 0.982 0.075 256.737
val accuracy 15 std 0.001 0.003 0.043 0.272 0.005 0.017 77.001
val accuracy 15 min 0.999 0.002 0.778 0.523 0.976 0.047 187.788
val accuracy 15 25% 0.999 0.003 0.833 0.532 0.978 0.072 207.619
val accuracy 15 50% 1.000 0.005 0.863 0.580 0.983 0.075 226.812
val accuracy 15 75% 1.000 0.007 0.877 0.672 0.986 0.089 282.235
val accuracy 15 max 1.000 0.010 0.884 1.169 0.988 0.090 379.230
no monitoring No count 5 5 5 5 5 5 5
no monitoring No mean 0.999 0.004 0.835 0.772 0.979 0.099 416.361
no monitoring No std 0.000 0.001 0.057 0.292 0.007 0.028 98.394
no monitoring No min 0.999 0.003 0.785 0.451 0.971 0.076 317.197
no monitoring No 25% 0.999 0.003 0.788 0.515 0.976 0.077 344.634
no monitoring No 50% 0.999 0.003 0.812 0.774 0.978 0.085 381.093
no monitoring No 75% 1.000 0.004 0.884 1.013 0.983 0.122 494.416
no monitoring No max 1.000 0.004 0.908 1.109 0.990 0.136 544.465

133

APPENDIX (C)

TABLE C.1. Detailed results for ResNet50V2 with various MC and PC (Appendix C.1)

PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
3 loss 1 18 0.998046 0.02271 0.716724 0.61063 0.97265 0.07408 24.89913
3 loss 2 18 0.989741 0.039663 0.897611 0.407444 0.991453 0.046021 21.42021
3 loss 3 18 0.998046 0.02114 0.829352 0.383397 0.977778 0.058188 31.18301
3 loss 4 20 0.996092 0.0236 0.863481 0.39339 0.984615 0.052646 31.40667
3 loss 5 15 0.994138 0.034424 0.897611 0.27528 0.991453 0.046647 16.36674
5 loss 1 16 0.994626 0.022884 0.836177 0.407061 0.977778 0.061897 40.35201
5 loss 2 16 0.998046 0.017082 0.8157 0.505994 0.991453 0.037977 31.8802
5 loss 3 21 0.998534 0.017046 0.805461 0.482879 0.97265 0.070374 27.50178
5 loss 4 12 0.999023 0.018486 0.887372 0.335181 0.981197 0.054642 30.86905
5 loss 5 15 1 0.011072 0.894198 0.338853 0.989744 0.031267 34.95643
7 loss 1 18 0.999023 0.008709 0.829352 0.448269 0.982906 0.050633 48.03739
7 loss 2 37 0.998534 0.014379 0.853242 0.470612 0.984615 0.048726 29.33452
7 loss 3 19 0.998534 0.013665 0.921502 0.284624 0.984615 0.0479 35.74343
7 loss 4 23 1 0.006078 0.856655 0.471619 0.982906 0.059258 54.84729
7 loss 5 36 0.999023 0.010669 0.887372 0.27569 0.996581 0.025798 46.10693
10 loss 1 27 0.999023 0.009387 0.866894 0.40527 0.982906 0.061318 44.18391
10 loss 2 27 0.999511 0.009909 0.866894 0.479844 0.996581 0.032309 40.4024
10 loss 3 27 1 0.009493 0.846416 0.489362 0.982906 0.068769 48.54023
10 loss 4 18 0.999511 0.007761 0.860068 0.441097 0.981197 0.054182 56.33341
10 loss 5 32 0.999511 0.008148 0.87372 0.329433 0.991453 0.029512 54.65796
15 loss 1 50 1 0.003683 0.836177 0.465539 0.979487 0.054873 90.97743
15 loss 2 48 0.999023 0.006659 0.788396 0.644614 0.991453 0.044725 51.89995
15 loss 3 33 0.999511 0.007204 0.713311 0.718376 0.957265 0.098596 51.59951
15 loss 4 49 0.998046 0.007837 0.918089 0.349919 0.986325 0.04279 69.64649
15 loss 5 28 0.999023 0.00891 0.877133 0.413882 0.989744 0.062436 45.38881
3 accuracy 1 17 0.995115 0.035462 0.812287 0.452551 0.977778 0.075911 19.19615
3 accuracy 2 8 0.991695 0.03949 0.750853 0.558056 0.969231 0.086702 22.83207
3 accuracy 3 9 0.990718 0.044302 0.890785 0.298727 0.986325 0.06379 22.52161
3 accuracy 4 10 0.995603 0.028642 0.883959 0.357354 0.981197 0.063921 23.85584
3 accuracy 5 14 0.996092 0.022401 0.8157 0.428575 0.982906 0.049576 25.19012
5 accuracy 1 16 0.997557 0.02813 0.924915 0.235847 0.989744 0.052855 26.95682
5 accuracy 2 14 0.997069 0.01464 0.897611 0.355202 0.991453 0.031014 35.12124
5 accuracy 3 14 0.999023 0.014261 0.778157 0.556217 0.981197 0.0605 34.65687
5 accuracy 4 25 0.995115 0.028258 0.887372 0.304796 0.984615 0.071368 23.06869
5 accuracy 5 12 0.995603 0.019862 0.798635 0.499943 0.981197 0.054467 40.76033
7 accuracy 1 17 0.995603 0.027834 0.843003 0.472188 0.989744 0.073563 30.75511
7 accuracy 2 20 0.99658 0.025613 0.849829 0.40949 0.988034 0.07837 26.90913
7 accuracy 3 16 0.998534 0.007147 0.880546 0.373008 0.982906 0.051573 47.40013
7 accuracy 4 30 0.999511 0.00838 0.87372 0.394475 0.977778 0.060484 48.73546
7 accuracy 5 13 0.997069 0.016314 0.866894 0.455652 0.986325 0.056186 44.27132
10 accuracy 1 26 0.99658 0.018139 0.808874 0.418347 0.974359 0.100734 39.47001
10 accuracy 2 15 0.997069 0.011614 0.78157 0.638499 0.988034 0.051562 40.93397
10 accuracy 3 18 0.999511 0.00633 0.866894 0.357318 0.981197 0.046204 57.84523
10 accuracy 4 25 0.999511 0.010149 0.83959 0.434623 0.976068 0.061002 41.20016
10 accuracy 5 33 0.999511 0.006501 0.849829 0.45403 0.981197 0.050926 64.77641
15 accuracy 1 50 0.999511 0.002785 0.856655 0.440164 0.981197 0.055093 123.3092
15 accuracy 2 26 1 0.005775 0.822526 0.555798 0.993162 0.035381 66.58583
15 accuracy 3 26 1 0.005983 0.836177 0.522272 0.976068 0.063149 65.34113

(Continued on next page)

134

(Table C.1 Continued from previous page)
PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
15 accuracy 4 45 0.998534 0.009715 0.911263 0.307966 0.988034 0.120658 42.9821
15 accuracy 5 35 0.999511 0.006387 0.870307 0.375544 0.991453 0.04107 78.37715
- no monitoring 1 N/A 1 0.001575 0.880546 0.457774 0.977778 0.075568 148.2634
- no monitoring 2 N/A 1 0.002043 0.771331 0.749586 0.981197 0.048413 117.9772
- no monitoring 3 N/A 1 0.001433 0.822526 0.563311 0.97265 0.091081 113.3214
- no monitoring 4 N/A 1 0.001629 0.866894 0.492891 0.977778 0.079798 114.794
- no monitoring 5 N/A 1 0.001867 0.856655 0.635862 0.982906 0.056227 114.0149

TABLE C.2. Descriptive statistics for ResNet50V2 model performance (Appendix C.2)

MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val loss 3 count 5 5 5 5 5 5 5
val loss 3 mean 0.995 0.026 0.958 0.121 0.994 0.026 139.693
val loss 3 std 0.002 0.005 0.007 0.010 0.004 0.006 14.402
val loss 3 min 0.993 0.017 0.949 0.108 0.988 0.020 126.999
val loss 3 25% 0.994 0.026 0.952 0.117 0.990 0.020 132.744
val loss 3 50% 0.996 0.026 0.959 0.123 0.995 0.023 133.583
val loss 3 75% 0.996 0.029 0.962 0.123 0.997 0.031 141.364
val loss 3 max 0.998 0.030 0.966 0.136 0.998 0.033 163.777
val loss 5 count 5 5 5 5 5 5 5
val loss 5 mean 0.993 0.032 0.918 0.194 0.991 0.044 127.430
val loss 5 std 0.004 0.012 0.034 0.069 0.006 0.018 26.791
val loss 5 min 0.988 0.018 0.884 0.107 0.983 0.029 89.900
val loss 5 25% 0.991 0.024 0.887 0.153 0.986 0.029 112.390
val loss 5 50% 0.995 0.031 0.925 0.183 0.995 0.037 134.345
val loss 5 75% 0.997 0.041 0.928 0.256 0.995 0.060 141.700
val loss 5 max 0.997 0.046 0.966 0.271 0.995 0.066 158.813
val loss 7 count 5 5 5 5 5 5 5
val loss 7 mean 0.997 0.015 0.923 0.166 0.993 0.026 197.787
val loss 7 std 0.002 0.007 0.031 0.046 0.002 0.008 60.948
val loss 7 min 0.996 0.007 0.870 0.131 0.990 0.017 140.188
val loss 7 25% 0.996 0.007 0.922 0.142 0.991 0.021 150.817
val loss 7 50% 0.996 0.017 0.935 0.151 0.993 0.022 173.366
val loss 7 75% 0.999 0.020 0.939 0.162 0.995 0.033 247.801
val loss 7 max 1.000 0.022 0.949 0.246 0.995 0.037 276.762
val loss 10 count 5 5 5 5 5 5 5
val loss 10 mean 0.997 0.016 0.891 0.232 0.987 0.040 201.758
val loss 10 std 0.001 0.006 0.091 0.204 0.017 0.038 38.513
val loss 10 min 0.996 0.010 0.730 0.115 0.957 0.020 142.963
val loss 10 25% 0.996 0.011 0.908 0.127 0.993 0.023 201.046
val loss 10 50% 0.997 0.016 0.932 0.139 0.993 0.025 203.378
val loss 10 75% 0.999 0.018 0.939 0.184 0.995 0.025 210.735
val loss 10 max 0.999 0.024 0.949 0.593 0.997 0.109 250.669
val loss 15 count 5 5 5 5 5 5 5
val loss 15 mean 0.999 0.008 0.934 0.133 0.996 0.019 364.172
val loss 15 std 0.001 0.003 0.025 0.033 0.003 0.008 78.947
val loss 15 min 0.996 0.003 0.894 0.104 0.991 0.013 273.448
val loss 15 25% 0.999 0.006 0.928 0.112 0.995 0.015 287.525
val loss 15 50% 0.999 0.007 0.939 0.121 0.997 0.015 392.789
val loss 15 75% 1.000 0.011 0.949 0.141 0.997 0.016 419.770
val loss 15 max 1.000 0.011 0.959 0.187 1.000 0.034 447.328

135

Table C.2 Continued from previous page
MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val accuracy 3 count 5 5 5 5 5 5 5
val accuracy 3 mean 0.985 0.053 0.939 0.141 0.983 0.056 151.258
val accuracy 3 std 0.009 0.025 0.042 0.062 0.011 0.023 33.598
val accuracy 3 min 0.972 0.027 0.891 0.074 0.974 0.029 120.028
val accuracy 3 25% 0.982 0.034 0.904 0.093 0.976 0.040 133.953
val accuracy 3 50% 0.986 0.053 0.939 0.126 0.976 0.062 139.552
val accuracy 3 75% 0.991 0.065 0.980 0.197 0.990 0.063 155.989
val accuracy 3 max 0.995 0.088 0.983 0.214 0.998 0.088 206.765
val accuracy 5 count 5 5 5 5 5 5 5
val accuracy 5 mean 0.993 0.031 0.939 0.132 0.990 0.037 176.910
val accuracy 5 std 0.003 0.013 0.021 0.043 0.003 0.009 53.507
val accuracy 5 min 0.989 0.012 0.915 0.095 0.986 0.027 142.929
val accuracy 5 25% 0.992 0.031 0.922 0.097 0.988 0.035 146.108
val accuracy 5 50% 0.993 0.031 0.945 0.113 0.990 0.037 147.014
val accuracy 5 75% 0.994 0.035 0.949 0.165 0.991 0.037 179.683
val accuracy 5 max 0.998 0.049 0.966 0.189 0.995 0.050 268.818
val accuracy 7 count 5 5 5 5 5 5 5
val accuracy 7 mean 0.994 0.028 0.941 0.137 0.991 0.040 238.396
val accuracy 7 std 0.004 0.013 0.046 0.084 0.005 0.019 100.550
val accuracy 7 min 0.988 0.012 0.860 0.075 0.986 0.021 162.213
val accuracy 7 25% 0.991 0.019 0.949 0.084 0.986 0.030 190.180
val accuracy 7 50% 0.995 0.028 0.962 0.110 0.991 0.032 193.103
val accuracy 7 75% 0.996 0.034 0.962 0.134 0.991 0.045 234.178
val accuracy 7 max 0.999 0.046 0.969 0.280 0.998 0.071 412.303
val accuracy 10 count 5 5 5 5 5 5 5
val accuracy 10 mean 0.997 0.018 0.955 0.106 0.991 0.036 303.144
val accuracy 10 std 0.002 0.009 0.010 0.021 0.006 0.020 103.501
val accuracy 10 min 0.994 0.010 0.945 0.073 0.981 0.020 185.947
val accuracy 10 25% 0.997 0.013 0.945 0.102 0.991 0.023 217.471
val accuracy 10 50% 0.999 0.015 0.956 0.113 0.991 0.028 315.892
val accuracy 10 75% 0.999 0.020 0.959 0.121 0.993 0.038 356.140
val accuracy 10 max 0.999 0.034 0.969 0.124 0.998 0.069 440.271
val accuracy 15 count 5 5 5 5 5 5 5
val accuracy 15 mean 0.999 0.009 0.919 0.166 0.992 0.025 520.313
val accuracy 15 std 0.002 0.007 0.040 0.071 0.003 0.006 152.293
val accuracy 15 min 0.997 0.002 0.874 0.089 0.988 0.019 356.875
val accuracy 15 25% 0.998 0.005 0.891 0.092 0.991 0.020 384.393
val accuracy 15 50% 0.999 0.007 0.911 0.189 0.991 0.025 514.190
val accuracy 15 75% 1.000 0.015 0.952 0.227 0.993 0.030 651.946
val accuracy 15 max 1.000 0.018 0.969 0.234 0.997 0.033 694.159
no monitoring No count 5 5 5 5 5 5 5
no monitoring No mean 1.000 0.004 0.911 0.209 0.985 0.033 723.026
no monitoring No std 0.000 0.001 0.057 0.147 0.010 0.026 41.621
no monitoring No min 0.999 0.004 0.829 0.102 0.969 0.014 694.063
no monitoring No 25% 1.000 0.004 0.874 0.103 0.985 0.016 705.354
no monitoring No 50% 1.000 0.004 0.942 0.128 0.988 0.021 707.042
no monitoring No 75% 1.000 0.005 0.949 0.271 0.991 0.035 712.132
no monitoring No max 1.000 0.005 0.962 0.440 0.993 0.076 796.537

136

APPENDIX (D)

TABLE D.1. Detailed results for Xception with various MC and PC (Appendix D.1)

PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
3 loss 1 9 0.972642899 0.129837066 0.648464143 0.726279438 0.94700855 0.195763454 64.5046287
3 loss 2 9 0.965803623 0.145221606 0.713310599 0.582341194 0.940170944 0.190947622 66.8170586
3 loss 3 8 0.969711781 0.121941559 0.662116051 0.679573655 0.931623936 0.209745377 62.8957683
3 loss 4 11 0.98534441 0.084378332 0.737201393 0.631100476 0.938461542 0.164128602 86.5575404
3 loss 5 10 0.979482174 0.099705689 0.69624573 0.643902957 0.952136755 0.161598474 76.0659985
5 loss 1 14 0.98583293 0.070808701 0.692832768 0.699655771 0.95726496 0.147542983 108.2439275
5 loss 2 12 0.989252567 0.076574892 0.709897637 0.663573325 0.964102566 0.136994839 91.7473245
5 loss 3 16 0.990229607 0.064519256 0.69624573 0.740498126 0.960683763 0.13576889 122.3358252
5 loss 4 21 0.993649244 0.04727627 0.757679164 0.623574436 0.945299149 0.132990971 162.5682723
5 loss 5 14 0.989741087 0.066146471 0.740614355 0.570958138 0.962393165 0.135764197 105.715716
7 loss 1 19 0.994137764 0.043756392 0.720136523 0.658100367 0.95726496 0.122135416 145.7735281
7 loss 2 12 0.979482174 0.105163231 0.668941975 0.66026026 0.928205132 0.212660953 96.5790529
7 loss 3 17 0.992672205 0.058356903 0.648464143 0.803342044 0.95726496 0.13514547 127.8505467
7 loss 4 15 0.989741087 0.064322673 0.757679164 0.545565844 0.943589747 0.165480867 119.8481848
7 loss 5 19 0.995603323 0.042332146 0.726962447 0.64823091 0.969230771 0.11589212 136.9359018
10 loss 1 23 0.996580362 0.032822847 0.716723561 0.705110371 0.965811968 0.111317508 172.6875957
10 loss 2 25 0.996091843 0.037626501 0.692832768 0.806456029 0.972649574 0.096915461 192.6734316
10 loss 3 16 0.991206646 0.064496234 0.713310599 0.656079113 0.950427353 0.195622265 122.5274311
10 loss 4 33 0.998045921 0.023534197 0.757679164 0.660158396 0.953846157 0.11040625 262.3697482
10 loss 5 17 0.992183685 0.052593071 0.713310599 0.668919325 0.94700855 0.171621963 127.6774122
15 loss 1 29 0.998534441 0.023043793 0.757679164 0.580849946 0.967521369 0.108793311 214.6257377
15 loss 2 23 0.996580362 0.036374774 0.713310599 0.73689121 0.962393165 0.131636575 174.2537773
15 loss 3 32 0.997557402 0.022166649 0.747440279 0.742685497 0.970940173 0.097075753 252.1042346
15 loss 4 30 0.999022961 0.022557253 0.754266202 0.713742137 0.953846157 0.121158503 250.3157561
15 loss 5 30 0.998534441 0.023030076 0.730375409 0.734522462 0.972649574 0.107649416 276.7263841
3 accuracy 1 15 0.993649244 0.061796885 0.69624573 0.670105934 0.962393165 0.130404502 142.4387054
3 accuracy 2 5 0.957498789 0.191257089 0.621160388 0.741892576 0.928205132 0.319094092 50.9358952
3 accuracy 3 7 0.966780663 0.159885839 0.737201393 0.562528431 0.935042739 0.244990811 65.6215291
3 accuracy 4 17 0.994137764 0.045600958 0.774744034 0.577316344 0.952136755 0.127913699 154.4101072
3 accuracy 5 6 0.959941387 0.16798079 0.675767899 0.688473523 0.921367526 0.265415251 65.0164075
5 accuracy 1 16 0.990718126 0.060059696 0.692832768 0.812040746 0.965811968 0.127139732 149.1743443
5 accuracy 2 10 0.975085497 0.113430224 0.651877105 0.691287875 0.931623936 0.21590881 76.2116969
5 accuracy 3 15 0.989741087 0.065249637 0.744027317 0.619207919 0.965811968 0.122518174 123.6166012
5 accuracy 4 22 0.994137764 0.040192954 0.761092126 0.607570052 0.948717952 0.125213459 170.1709438
5 accuracy 5 17 0.991695166 0.052661575 0.730375409 0.589609325 0.969230771 0.109279864 130.5702227
7 accuracy 1 25 0.996091843 0.032614194 0.69624573 0.786663473 0.967521369 0.111560121 190.436003
7 accuracy 2 17 0.991206646 0.05449627 0.682593882 0.746500134 0.969230771 0.112729013 130.1836983
7 accuracy 3 19 0.992672205 0.047206469 0.672354937 0.820098698 0.962393165 0.125569016 162.6656513
7 accuracy 4 9 0.980459213 0.111395694 0.69624573 0.665015817 0.907692313 0.355802476 74.0074007
7 accuracy 5 38 0.999022961 0.015742909 0.740614355 0.766431868 0.970940173 0.089645736 297.7733321
10 accuracy 1 34 0.997557402 0.020063197 0.675767899 0.878209054 0.969230771 0.105710268 277.3612384
10 accuracy 2 31 0.999022961 0.020484067 0.686006844 0.948435187 0.969230771 0.086290933 252.9607732
10 accuracy 3 22 0.995114803 0.037949301 0.737201393 0.683958352 0.958974361 0.119537391 187.3716481
10 accuracy 4 30 0.99951148 0.022190876 0.78498292 0.569951594 0.952136755 0.123341084 241.4252356
10 accuracy 5 17 0.995114803 0.043765735 0.726962447 0.678048849 0.964102566 0.145041451 137.2071482
15 accuracy 1 46 0.998534441 0.010064815 0.720136523 0.874718249 0.974358976 0.100223176 365.9279238
15 accuracy 2 50 0.999022961 0.010573568 0.709897637 0.986595809 0.972649574 0.073904678 388.8055961
15 accuracy 3 29 0.998045921 0.023716006 0.703071654 0.846732259 0.958974361 0.121186987 273.9335451

(Continued on next page)

137

(Table D.1 Continued from previous page)
PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
15 accuracy 4 26 0.997068882 0.028543573 0.76791811 0.628445148 0.952136755 0.132668525 234.2733131
15 accuracy 5 36 0.998534441 0.022074558 0.740614355 0.778797984 0.970940173 0.098766908 306.510873
- no monitoring 1 N/A 0.999022961 0.010553496 0.706484616 0.941983461 0.974358976 0.118602358 439.8904622
- no monitoring 2 N/A 1 0.01098085 0.686006844 1.034381628 0.967521369 0.094622567 437.3137553
- no monitoring 3 N/A 0.99951148 0.010696846 0.75085324 0.825193703 0.962393165 0.125199303 396.7657198
- no monitoring 4 N/A 0.999022961 0.011571754 0.764505148 0.73913306 0.952136755 0.154828563 463.3622841
- no monitoring 5 N/A 0.99951148 0.008148649 0.75085324 0.829228759 0.970940173 0.104553312 408.4304722

TABLE D.2. Descriptive statistics for Xception model Performance (Appendix D.2)

MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val loss 3 count 5 5 5 5 5 5 5
val loss 3 mean 0.975 0.116 0.691 0.653 0.942 0.184 71.368
val loss 3 std 0.008 0.024 0.036 0.054 0.008 0.021 9.904
val loss 3 min 0.966 0.084 0.648 0.582 0.932 0.162 62.896
val loss 3 25% 0.970 0.100 0.662 0.631 0.938 0.164 64.505
val loss 3 50% 0.973 0.122 0.696 0.644 0.940 0.191 66.817
val loss 3 75% 0.979 0.130 0.713 0.680 0.947 0.196 76.066
val loss 3 max 0.985 0.145 0.737 0.726 0.952 0.210 86.558
val loss 5 count v .5 .5 .5 .5 .5 .5
val loss 5 mean 0.990 0.065 0.719 0.660 0.958 0.138 118.122
val loss 5 std 0.003 0.011 0.028 0.066 0.008 0.006 27.112
val loss 5 min 0.986 0.047 0.693 0.571 0.945 0.133 91.747
val loss 5 25% 0.989 0.065 0.696 0.624 0.957 0.136 105.716
val loss 5 50% 0.990 0.066 0.710 0.664 0.961 0.136 108.244
val loss 5 75% 0.990 0.071 0.741 0.700 0.962 0.137 122.336
val loss 5 max 0.994 0.077 0.758 0.740 0.964 0.148 162.568
val loss 7 count 5 5 5 5 5 5 5
val loss 7 mean 0.990 0.063 0.704 0.663 0.951 0.150 125.397
val loss 7 std 0.006 0.025 0.045 0.092 0.016 0.040 18.812
val loss 7 min 0.979 0.042 0.648 0.546 0.928 0.116 96.579
val loss 7 25% 0.990 0.044 0.669 0.648 0.944 0.122 119.848
val loss 7 50% 0.993 0.058 0.720 0.658 0.957 0.135 127.851
val loss 7 75% 0.994 0.064 0.727 0.660 0.957 0.165 136.936
val loss 7 max 0.996 0.105 0.758 0.803 0.969 0.213 145.774
val loss 10 count 5 5 5 5 5 5 5
val loss 10 mean 0.995 0.042 0.719 0.699 0.958 0.137 175.587
val loss 10 std 0.003 0.016 0.024 0.063 0.011 0.044 56.882
val loss 10 min 0.991 0.024 0.693 0.656 0.947 0.097 122.527
val loss 10 25% 0.992 0.033 0.713 0.660 0.950 0.110 127.677
val loss 10 50% 0.996 0.038 0.713 0.669 0.954 0.111 172.688
val loss 10 75% 0.997 0.053 0.717 0.705 0.966 0.172 192.673
val loss 10 max 0.998 0.064 0.758 0.806 0.973 0.196 262.370
val loss 15 count 5 5 5 5 5 5 5
val loss 15 mean 0.998 0.025 0.741 0.702 0.965 0.113 233.605
val loss 15 std 0.001 0.006 0.019 0.068 0.008 0.013 39.886
val loss 15 min 0.997 0.022 0.713 0.581 0.954 0.097 174.254
val loss 15 25% 0.998 0.023 0.730 0.714 0.962 0.108 214.626
val loss 15 50% 0.999 0.023 0.747 0.735 0.968 0.109 250.316
val loss 15 75% 0.999 0.023 0.754 0.737 0.971 0.121 252.104
val loss 15 max 0.999 0.036 0.758 0.743 0.973 0.132 276.726

138

Table D.2 Continued from previous page
MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val accuracy 3 count 5 5 5 5 5 5 5
val accuracy 3 mean 0.974 0.125 0.701 0.648 0.940 0.218 95.685
val accuracy 3 std 0.018 0.067 0.059 0.076 0.017 0.085 48.686
val accuracy 3 min 0.957 0.046 0.621 0.563 0.921 0.128 50.936
val accuracy 3 25% 0.960 0.062 0.676 0.577 0.928 0.130 65.016
val accuracy 3 50% 0.967 0.160 0.696 0.670 0.935 0.245 65.622
val accuracy 3 75% 0.994 0.168 0.737 0.688 0.952 0.265 142.439
val accuracy 3 max 0.994 0.191 0.775 0.742 0.962 0.319 154.410
val accuracy 5 count 5 5 5 5 5 5 5
val accuracy 5 mean 0.988 0.066 0.716 0.664 0.956 0.140 129.949
val accuracy 5 std 0.008 0.028 0.044 0.091 0.016 0.043 35.056
val accuracy 5 min 0.975 0.040 0.652 0.590 0.932 0.109 76.212
val accuracy 5 25% 0.990 0.053 0.693 0.608 0.949 0.123 123.617
val accuracy 5 50% 0.991 0.060 0.730 0.619 0.966 0.125 130.570
val accuracy 5 75% 0.992 0.065 0.744 0.691 0.966 0.127 149.174
val accuracy 5 max 0.994 0.113 0.761 0.812 0.969 0.216 170.171
val accuracy 7 count 5 5 5 5 5 5 5
val accuracy 7 mean 0.992 0.052 0.698 0.757 0.956 0.159 171.013
val accuracy 7 std 0.007 0.036 0.026 0.058 0.027 0.111 83.055
val accuracy 7 min 0.980 0.016 0.672 0.665 0.908 0.090 74.007
val accuracy 7 25% 0.991 0.033 0.683 0.747 0.962 0.112 130.184
val accuracy 7 50% 0.993 0.047 0.696 0.766 0.968 0.113 162.666
val accuracy 7 75% 0.996 0.054 0.696 0.787 0.969 0.126 190.436
val accuracy 7 max 0.999 0.111 0.741 0.820 0.971 0.356 297.773
val accuracy 10 count 5 5 5 5 5 5 5
val accuracy 10 mean 0.997 0.029 0.722 0.752 0.963 0.116 219.265
val accuracy 10 std 0.002 0.011 0.044 0.156 0.007 0.022 56.463
val accuracy 10 min 0.995 0.020 0.676 0.570 0.952 0.086 137.207
val accuracy 10 25% 0.995 0.020 0.686 0.678 0.959 0.106 187.372
val accuracy 10 50% 0.998 0.022 0.727 0.684 0.964 0.120 241.425
val accuracy 10 75% 0.999 0.038 0.737 0.878 0.969 0.123 252.961
val accuracy 10 max 1.000 0.044 0.785 0.948 0.969 0.145 277.361
val accuracy 15 count 5 5 5 5 5 5 5
val accuracy 15 mean 0.998 0.019 0.728 0.823 0.966 0.105 313.890
val accuracy 15 std 0.001 0.008 0.026 0.132 0.010 0.023 63.855
val accuracy 15 min 0.997 0.010 0.703 0.628 0.952 0.074 234.273
val accuracy 15 25% 0.998 0.011 0.710 0.779 0.959 0.099 273.934
val accuracy 15 50% 0.999 0.022 0.720 0.847 0.971 0.100 306.511
val accuracy 15 75% 0.999 0.024 0.741 0.875 0.973 0.121 365.928
val accuracy 15 max 0.999 0.029 0.768 0.987 0.974 0.133 388.806
no monitoring No count 5 5 5 5 5 5 5
no monitoring No mean 0.999 0.010 0.732 0.874 0.965 0.120 429.153
no monitoring No std 0.000 0.001 0.034 0.115 0.009 0.023 26.601
no monitoring No min 0.999 0.008 0.686 0.739 0.952 0.095 396.766
no monitoring No 25% 0.999 0.011 0.706 0.825 0.962 0.105 408.430
no monitoring No 50% 1.000 0.011 0.751 0.829 0.968 0.119 437.314
no monitoring No 75% 1.000 0.011 0.751 0.942 0.971 0.125 439.890
no monitoring No max 1.000 0.012 0.765 1.034 0.974 0.155 463.362

139

Vol: 2, Issue: 2, 2024
Pages:140-149
Received: 05 December 2024
Accepted: 13 January 2025
c⃝ 2024 Karabük University

CURRENT TRENDS IN COMPUTING
Research Article

DOI: https://doi.org/10.71074/CTC.1596824

CLASSIFICATION OF EEG SPECTROGRAM IMAGES WITH DEEP LEARNING
MODELS FOR ALCOHOLISM DETECTION

ÖZNUR YILDIRIM1 , YAHYA CIHAT SÖKER2 MEHMET ZAHID YILDIRIM2∗ AND
EMRAH ÖZKAYNAK2

1 TOBB Technical Sciences Vocational School, Karabük University, 78050, Karabük, Türkiye
2 Computer Engineering Department, Karabük University, 78050, Karabük, Türkiye

ABSTRACT. Electroencephalogram (EEG) signals are time series that play an essential role in un-
derstanding the electrical behavior of the brain. The complex structure of the brain makes the in-
terpretation of EEG signals difficult. In this study, the classification of EEG signals based on image
processing with deep learning is performed differently from traditional methods. Images of EEG
signals obtained for the detection of alcoholism were used to classify healthy and alcohol-addicted
individuals using a Convolutional Neural Network (CNN). Three models have been implemented in
the experiments conducted on the EEG images: Resnet50, Xception, and custom CNN. The findings
demonstrate that Xception achieves the best accuracy with 100% classification success.

1. INTRODUCTION

Electroencephalography (EEG) is a method that records electrical brain activity [1]. This method
provides feedback related to brain activity by detecting time-dependent frequency information [2,3]. Ac-
cording to the data provided, pre-diagnostic systems have been developed for several nervous system
diseases such as epilepsy [4], Alzheimer’s [5], emotion analysis [6] and alcohol addiction [7]. Due to
the complexity and multidimensional structure of EEG signals, plenty of methods have been proposed
to analyze the signals. Fourier and Wavelet Transformations are classical methods that aim to reveal the
spectral features of EEG signals with their frequency-based approaches. These methods have been fre-
quently applied to track the frequency components of EEG signals over time and to detect specific events
in the signals [8, 9]. In addition, feature extraction techniques such as Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA), and Independent Component Analysis (ICA) have been
used to reduce noise in the signal and analyze the significant components [10] . However, these methods
are inadequate, especially in the detection of nonlinear features. In recent years, the preliminary diag-
nosis and classification of nervous system diseases has become much faster and easier, especially with

E-mail address: oznuryildirim@karabuk.edu.tr, yahyacihat@protonmail.ch, m.zahidyildirim@karabuk.edu.tr(∗), eozkaynak@karabuk.edu.tr.
Key words and phrases. Machine learning, Electroencephalography (EEG), Spectrogram, Convolutional neural network

(CNN).

https://dergipark.org.tr/en/pub/ctc
https://doi.org/10.71074/CTC.1596824
https://orcid.org/0009-0001-4892-622X
https://orcid.org/0009-0006-0991-808X
https://orcid.org/0000-0003-2248-3683
https://orcid.org/0000-0003-0312-3519

machine learning-based algorithms applied to large and complex data. In particular, deep learning-based
methods are more successful than traditional methods for complex and difficult-to-analyze data, such
as EEG signals [11]. Deep learning methods applied to EEG signals can be divided into two different
concepts. The first is based on recurrent neural networks (RNN). RNN-based methods such as Long
Short-Term Memory (LSTM) can be used to model temporal dependencies in EEG signals [12,13]. Sec-
ond, CNN-based methods can be used to process EEG signals in image format [14]. CNN models are
deep learning models that can work specifically on images. These models are algorithms that can extract
features from images and classify them at the same time.

In this study, alcoholism detection is performed using images obtained from EEG signals. The time-
dependent frequency features of EEG signals are converted into spectrogram images, and CNN-based
classification is performed. Popular CNN-based algorithms, Resnet50 and Xception models, and a cus-
tom CNN model were applied to the spectrogram images. Among these methods, the Xception model
achieved 100% classification success in detecting alcoholism on spectrogram images in the experimen-
tal studies and gave more successful results compared to other methods. This success in classifying
spectrogram images of EEG signals with the CNN model seems promising for classifying complex and
multidimensional signals with more straightforward methods.

2. METHODS

FIGURE 1. A typical CNN architecture used for EEG analysis [15] .

CNN is a deep-learning algorithm commonly used in image processing. It is able to detect and clas-
sify features in images through the operations performed in its different layers. The input data passes

141

through convolutional, pooling, and fully connected layers, respectively. Figure 1 shows a general CNN
architecture used in EEG signal processing.

The convolutional layer is where various filters are used to extract meaningful features from images.
This layer passes filters over the entire image to extract feature maps. In the pooling layer, dimension
reduction is performed to reduce the computational cost. The fully connected layer passes the extracted
features to a classifier.

The CNN algorithm, with its layered structure, extracts important features from the data without the
need for manual feature selection. It also provides more effective learning by preserving spatial and
temporal features in the data [16] . Many special models of the CNN algorithm have been developed in
accordance with the structure of the data used. ResNet50 and Xception are some of the most popular
ones [17].

ResNet50 and Xception are two deep-learning models usually used for image recognition. The ResNet50
model consists of 50 layers. Each layer provides a transferred copy of its output to the following layer
via unique connections known as “residual connections.” The structure of the ResNet50 model enables
the establishment of deeper networks, which means the learning of the network is faster and more effi-
cient. Xception is a modified version of the Inception model. This model requires less computation and
parameter selection with an unusual technique called “depthwise separable convolution,” which enables
this method to operate faster alongside high performance. Both methods are very efficient and widely
desired, especially in image classification problems [17]. Additionally, a custom CNN model is imple-
mented in this paper. This model consists of three convolutional layers: a pooling layer, a flattening layer,
and a fully connected output layer. The first three layers of the model are 3x3 convolutional layers with
64, 128, and 256 filters. The ReLU activation function is used at the output of each convolutional layer
in Equation 1.

f (x) = max(0,x) (1)

After the third convolution layer, a max pooling layer is added. This layer reduces the size of the feature
maps by selecting the highest values of the image at a given filter size. The max pooling process is
expressed as follows, as given in Equation 2.

P(i, j) = max(S(x,y)) (2)

After the pooling layer, the flattened layer transforms the multidimensional feature maps into a one-
dimensional vector. It then prepares this vector to be transferred to the fully connected layer. The final
layer of the model is a fully connected layer consisting of two neurons. It converts the output of the
model into a value between 0 and 1 using the sigmoid activation function given in Equation 3.

σ(z) =
1

1+ e−z (3)

The binary cross-entropy function is used to optimize the model and calculate the losses. The Adam
optimization algorithm is also used to update the parameters of the model.

142

2.1. Evaluation Metrics.
The complexity matrix is used to evaluate the model performance in detail. The complexity matrix

provides four main components by comparing the true and predicted classes. Precision indicates how
many of the positively classified examples are actually positive, as seen in Equation 4. Recall indicates
how many of the positively classified examples are correctly classified as positive, as seen in Equation 5.
F1-Score is a metric that expresses the balance between Precision and Recall, as seen in Equation 6, and
is calculated with the harmonic mean. Accuracy is the rate of correct classification of all examples, as
seen in Equation 7 [18].

Precision =
T P

T P+FP
(4)

Recall =
T P

T P+FN
(5)

F1−Score = 2∗ Precision∗Recall
Precision+Recall

(6)

Accuracy =
T P+T N

T P+T N +FP+FN
(7)

2.2. K-Fold Cross Validation.
In order to evaluate the performance of the models used in the study more consistently and to minimize

the bias in the dataset, a 4-step (4-fold) K-fold cross validation method was applied. This method consists
of the following steps as shown in Figure 2.

• The dataset is divided into 4 equal subgroups (folds).
• In each iteration, one of these subgroups is used as the test dataset and the rest as the training dataset.
• The model is trained in each iteration and evaluated on the test dataset.
• The evaluation metrics of all iterations are calculated and the average is taken and the overall perfor-

mance of the model is evaluated.
This method is an effective strategy to obtain an overall view of model performance and reduce the

risk of overfitting.

FIGURE 2. K-Fold Cross Validation for k=4.

143

3. EXPERIMENTAL STUDY

In this study, a dataset of EEG spectrogram images created for alcoholism detection was used [19] .
The dataset consists of 7200 one-second images from 12 different brain channels. 5400 images were used
for training, 900 of the remaining 1800 images were used for testing, and 900 were used for validation.
There are equal numbers of alcohol-dependent and normal subjects in the training and test data. Figure
3 shows examples of normal subjects and dependent on alcohol.

FIGURE 3. Spectrogram image of EEG signal. (a) alcoholism (b) normal.

The success of deep learning in image classification has influenced the preference for deep learning
methods in artificial intelligence technologies in recent years. Unlike traditional machine learning meth-
ods, the ability of deep learning methods to extract features directly from images through deep neural
networks has been effective in the preference of deep learning methods in our study. ResNet50, Xcep-
tion, and custom CNN models, which are among the most preferred deep learning models in image
classification, were used.

The hyper parameters given in Table 1 were selected in the training process of the deep learning models
used in the study.

TABLE 1. Hyperparameters used in training the models.

Parameter Parameter Selection

Initial Learning Rate 1
Rho(ρ) 0.95
Epochs 120

Cluster Size 5400

144

Learning rate shows how fast the network parameters are updated. In case of using adaptive optimiza-
tion algorithms, this value is learned automatically during learning and is constantly changing. The con-
stant ρ value is a measure used in updating the parameters in the backpropagation phase of the network.
Epoch number is the number of iterations. Cluster size shows the number of training data processed in a
single step in an epoch during the training phase.

TABLE 2. Classification results of EEG spectrogram images

Algorithm Precision Recall F1-score Accuracy

Resnet50 100% 86% 92% 97%
Xception 100% 100% 100% 100%

Custom CNN 99% 99% 99% 99%

In the results of the experimental study in Table 2, the classification of spectrogram images of EEG
signals with deep learning models had a high success rate. Among the applied models, it is seen that
the Xception model gives the most successful results in the detection of alcoholic individuals. The
successful performance of the Xception model is also seen in the Complexity matrix given in Figure 4,
where it has high sensitivity and accuracy in addiction detection, and there are no false positive or false
negative classification rates. The deep discrimination capacity of the Xception model and the harmonious
optimization of its parameters have been an important factor in the high performance of this model in
classification accuracy.

FIGURE 4. Complexity matrix of the Xception model according to classification re-
sults.

145

The box plot in Figure 5 shows the consistency of the results obtained with the 4-step K-fold method
of the Xception model. The graph shows that the model offers a high and constant success rate in each
fold, thus the generalization ability of the model is quite strong. No anomalies or large variances are
observed in the graph, indicating the stable performance of the model.

FIGURE 5. Box plot of the results of the Xception model.

Table 2 shows that the second most successful model for alcoholism classification is custom CNN. The
Custom CNN model, which is close to the Xception model with 99% success in all metrics, correctly
classified alcoholic individuals at a very high rate. As can be seen in the complexity matrix given in
Figure 6, a performance loss of 1% is due to the fact that it could not classify very few test data correctly
due to not learning some spectral variations sufficiently. This shows that the custom CNN model works
quite effectively for alcoholism detection, but the Xception model outperforms it by a small margin due
to the depth of optimization and parameter adjustments.

The ResNet50 model, another deep learning model used in the study, is seen to be lagging behind
among the compared models, although it yields successful results as seen in Table 2. Although the
ResNet50 model reached 97% in the accuracy rate, it only achieved 86% in the sensitivity metric. This
result shows that the ResNet50 model has difficulty in correctly identifying some dependent individuals in
the classification process and causes missing detections. The success rate of 92% for the F1-Score metric
can be attributed to the relatively low sensitivity. The complexity matrix in Figure 7 shows that this
decrease in the success of the ResNet50 method is due to the classification of non-alcoholic individuals
as alcoholics.

The experimental results show that the Xception model shows the most successful performance among
the deep learning models ResNet50, Xception and custom CNN models applied for classification. The
experimental results also show that the Xception model has the best accuracy and reliability in classifying

146

FIGURE 6. Complexity matrix of the Custom CNN model according to classification
results.

FIGURE 7. Complexity matrix of ResNet50 model according to classification results.

spectrogram images obtained from EEG signals for alcoholism analysis. The parameter optimization of
the Xception model, its in-depth layered structure and its ability to effectively learn the intrinsic properties
of the data have provided superiority over other models in classification success.

147

4. CONCLUSION

This study aims to classify EEG signals for alcoholism detection by converting their time-dependent
frequency features into spectrogram images. It is shown that alcoholism can be successfully classified
with deep learning models. The applied ResNet50, Xception, and custom CNN models achieve 91%,
100%, and 99% classification success, respectively. The Xception model shows superior performance in
classification by achieving 100% sensitivity and 100% F1-score as well as classification accuracy. The
Custom CNN model is close to the Xception model, achieving 99% sensitivity and 99% F1-score. The
ResNet50 model, on the other hand, achieved 97% accuracy, but underperformed with 86% in sensitivity
and 92% in F1-score. These results indicate that the parametric fit and the deep structure of the Xception
model improve the classification performance. The results prove that analyzing spectrogram images of
EEG signals with deep learning algorithms is a powerful tool for the detection of nervous system dis-
eases. In future studies, since the conversion of EEG signals into spectrograms can reveal more details in
the image format, this approach may be potentially useful in the diagnosis of other neurological disorders
and other areas requiring signal analysis.

DECLARATIONS

• Contribution Rate Statement: All authors have contributed equally.
• Conflict of Interest: The authors report no declarations of interest.
• Data Availability: Dataset is available online.
• Statement of Support and Acknowledgment: None.

REFERENCES

[1] H. Berger, Über das elektroenkephalogramm des menschen, Archiv für psychiatrie und nervenkrankheiten 87 (1) (1929)
527–570.

[2] S. Q. O. Omar, C. Tepe, Eeg sinyallerini işlemek için makine öğreniminin kullanıldığı konular üzerine bir inceleme,
Bayburt Üniversitesi Fen Bilimleri Dergisi 5 (1) (2022) 124–137.

[3] G. Zhang, V. Davoodnia, A. Sepas-Moghaddam, Y. Zhang, A. Etemad, Classification of hand movements from eeg using
a deep attention-based lstm network, IEEE Sensors Journal 20 (6) (2019) 3113–3122.

[4] M. Savadkoohi, T. Oladunni, L. Thompson, A machine learning approach to epileptic seizure prediction using electroen-
cephalogram (eeg) signal, Biocybernetics and Biomedical Engineering 40 (3) (2020) 1328–1341.

[5] V. Doma, M. Pirouz, A comparative analysis of machine learning methods for emotion recognition using eeg and pe-
ripheral physiological signals, Journal of Big Data 7 (1) (2020) 18.

[6] D. Pirrone, E. Weitschek, P. Di Paolo, S. De Salvo, M. C. De Cola, Eeg signal processing and supervised machine
learning to early diagnose alzheimer’s disease, Applied sciences 12 (11) (2022) 5413.

[7] L. Farsi, S. Siuly, E. Kabir, H. Wang, Classification of alcoholic eeg signals using a deep learning method, IEEE Sensors
Journal 21 (3) (2020) 3552–3560.

[8] M. M. Shaker, Eeg waves classifier using wavelet transform and fourier transform, brain 2 (3) (2006) 169–174.

148

[9] S. Lekshmi, V. Selvam, M. P. Rajasekaran, Eeg signal classification using principal component analysis and wavelet
transform with neural network, in: 2014 International Conference on Communication and Signal Processing, IEEE,
2014, pp. 687–690.

[10] A. Subasi, M. I. Gursoy, Eeg signal classification using pca, ica, lda and support vector machines, Expert systems with
applications 37 (12) (2010) 8659–8666.

[11] B. Arı, Alkolik ve normal eeg sinyallerinin zaman-alan tanımlayıcı analizi tabanlı otomatik sınıflandırılması, Fırat
Üniversitesi Mühendislik Bilimleri Dergisi 35 (1) 291–300.

[12] B. Adhikari, A. Shrestha, S. Mishra, S. Singh, A. K. Timalsina, Eeg based directional signal classification using rnn
variants, in: 2018 IEEE 3rd International Conference on Computing, Communication and Security (ICCCS), IEEE,
2018, pp. 218–223.

[13] N. Olgun, İ. Türkoğlu, Defining materials using laser signals from long distance via deep learning, Ain Shams Engineer-
ing Journal 13 (3) (2022) 101603.

[14] V. Bajaj, Y. Guo, A. Sengur, S. Siuly, O. F. Alcin, A hybrid method based on time–frequency images for classification
of alcohol and control eeg signals, Neural Computing and Applications 28 (2017) 3717–3723.

[15] S. Rajwal, S. Aggarwal, Convolutional neural network-based eeg signal analysis: A systematic review, Archives of
Computational Methods in Engineering 30 (6) (2023) 3585–3615.

[16] S. Rajwal, S. Aggarwal, Evrişimsel sinir ağı tabanlı eeg sinyal analizi: Sistematik bir İnceleme, Archives of Computa-
tional Methods in Engineering 30 (2023) 3585–3615.

[17] N. Thapliyal, M. Manwal, V. Kukreja, R. Sharma, Artificial intelligence-based resnet50, xception, and vgg16 models for
an efficient detection of lung cancer, in: 2024 5th International Conference for Emerging Technology (INCET), IEEE,
2024, pp. 1–5.

[18] P. Refaeilzadeh, L. Tang, H. Liu, Cross-validation, Encyclopedia of database systems (2009) 532–538.
[19] S. Mohammed, Eeg spectrogram images, accessed: 2024-12-01 (2024).

URL https://www.kaggle.com/datasets/sayeemmohammed/eeg-spectrogram-images

149

https://www.kaggle.com/datasets/sayeemmohammed/eeg-spectrogram-images
https://www.kaggle.com/datasets/sayeemmohammed/eeg-spectrogram-images

Vol: 2, Issue: 2, 2024
Pages:150-171
Received: 04 November 2024
Accepted: 13 January 2025
c⃝ 2024 Karabük University

CURRENT TRENDS IN COMPUTING
Research Article

https://doi.org/10.71074/CTC.1578917

FINE-GRAINED CLASSIFICATION OF MILITARY AIRCRAFT USING PRE-TRAINED
DEEP LEARNING MODELS AND YOLO11

HASAN KARACA1 , NESRIN AYDIN ATASOY2∗

1 The Institute of Graduate Programs, Computer Engineering Department, Karabük University, 78050,
Karabük, Türkiye

2 Computer Engineering Department, Karabük University, 78050, Karabük, Türkiye

ABSTRACT. This research examines the potential of pre-trained deep learning models for the fine-
grained classification of military aircraft, to achieve accurate identification and extraction of unique
tail numbers. The study uses a publicly available dataset comprising 43 classes of military aircraft,
with a total of 24,164 images for training and 6,042 images for testing. The performance of five
distinct pre-trained convolutional neural network (CNN) architectures, including DenseNet121, Mo-
bileNetV2, ResNet50, ResNet101, and VGG19, is evaluated and compared. Furthermore, the paper
examines the effectiveness of the YOLO11 model family for aircraft classification,with the YOLO11x-
cls model achieving the highest accuracy of 95.9, demonstrating its superior performance. particu-
larly emphasizing the YOLO11x-cls model’s superior performance. The study analyses the train-
ing results and confusion matrix of the YOLO11x-cls model, demonstrating its accuracy and ability
to generalize well to unseen data. This work contributes to the advancement of AI-powered image
recognition for military aviation applications, potentially improving data collection, monitoring, and
analysis processes.

1. INTRODUCTION

Aircraft are an important part of military forces when it comes to performing duties related to national
defense and security. In this advanced technological area, Artificial Intelligence (AI) and Optical Char-
acter Recognition (OCR) have combined to provide an unprecedented boost in processing textual infor-
mation, while persistently gaining interest in the art of classifying the aircraft themselves and reading off
their wing numbers. OCR technology, being the process of extraction of written content from the visual
appearance of data to textual form, has undergone a profound change by integrating AI capabilities [1].
Besides the critical role that military aircraft play in national defense, their efficient classification, and
precise identification, including the reading of the wing numbers precisely, is also an essential aspect of

E-mail address: hasankaraca9163@yandex.com , nesrinaydin@karabuk.edu.tr(∗).
Key words and phrases. Fine-Grained Classification, Deep Learning, Convolutional Neural Networks, YOLO11,

ResNet50.

https://dergipark.org.tr/en/pub/ctc
https://doi.org/10.71074/CTC.1578917
https://orcid.org/0000-0002-8101-3860
https://orcid.org/0000-0002-7188-0020

ensuring maximum operational effectiveness. AI and OCR came together to cause a revolution in pro-
cessing textual information and turned out to be important tools for dealing with complications regarding
military aircraft data [2].

This integration has augmented not only the accuracy and speed of OCR but also its application in var-
ious fields such as finance, healthcare, and legal services [3]. Among the innovative techniques is Layout
Agnostic Alignment (LAA) [4], which solves the problem of harmonizing document layouts across dif-
ferent systems using OCRs. Very recently, the integration of OCR and Text-based Visual Question An-
swering has reached a milestone, underlining the exacting integration of both technologies seamlessly.
This includes the design of specific deep neural network models for dedicated tasks like automatic li-
cense plate recognition with BLPnet. Newer efforts like Clip-OCR and Master Object (COME) [5] have
moved the goalposts further in the case of representations for text and images by contrastive learning and
representation learning through multi-modal feature extraction. Moreover, post-correction of the errors
generated by OCR and optimization of document recognition and data extraction [6, 7] have acted to
stress the emerging primacy of AI-based OCR. In particular, the recent innovative research in the unsu-
pervised ranking of name entities from garbled OCR text [8] and OCR-based product classification in
the retail sector [9] has widened the horizon for the spread of OCR applications. Finally, the statistical
learning models built recently for correction of OCR errors are extremely promising in further raising
accuracy and reliability [10].

Another related area in which the recent works have significantly brought about a revolution in image
processing and classification related to aircraft is the damage detection in aircraft engine bore scope
images using deep learning where a new benchmark was established regarding the accuracy of inspection.
The Scattering Characteristics Analysis Network (SCAN) has significantly altered the way the type of
aircraft classification was done in few-shot image settings where high-quality Synthetic Aperture Radar
images are available. Besides, several deep learning approaches have been revealing their encouraging
performance for small aircraft detection. In particular, a modified ResNet-50 architecture applied to the
large-satellite image processing and the Scattering Topology Network-ST-Net significantly reduces the
processing time, thereby improving object recognition in the Synthetic Aperture Radar (SAR) images.
Also, deep learning frameworks have been designed in the case of automatically detecting aircraft in
remotely sensed satellite images to find small objects in a complex scene. On the other hand, machine
learning models using radar data from small unmanned aerial systems have opened ways for scalable
traffic management and safety improvements. One of the recent end-to-end aircraft detection algorithms
outperformed other methods by a margin: [11]. Aircraft classification research has focused on Principle
Component Analysis (PCA) and feature fusion techniques. This has vastly improved the performance
of feature classification. Specific research on identifying aircraft types by Mask R-CNN enables the
accurate identification and classification of aircraft types from high-resolution satellite images: [12].
Comparative studies have finally established the efficacy of deep learning methods for object detection,
further enhancing the accuracy of detection [13].

Deep learning represents a class of machine learning methodologies using neural networks that can
perform complex tasks on vast volumes of data [14]. It employed several robust pre-trained models

151

including ResNet50 [15], ResNet101 [16], ShuffleNet [17], Xception [18], GoogLeNet [19], Inception-
V3 [20], MobileNet-V2 [21], Inception-ResNet-V2 [22] and NASNet-Mobile [23]. These pre-trained
models achieved a lot of success in deep learning and, hence, are considered to show excellent perfor-
mance in several parts of computer vision tasks, object recognition, natural language processing [24],
and other artificial intelligence applications.

Additionly Gao and Wen-jun presented the IDBO-KELM model, which remarkably enhanced the
accuracy of identification of aerodynamic parameters due to the reduction of errors in transonic re-
gions [25], hence proving its potential in precise aircraft performance analysis. Proposed the MPSA-
DenseNet model, a multi-task learning model with attention mechanisms that had achieved high accu-
racy for complex datasets classification tasks [26]. This methodology can also be extended to aerial data
analysis. Also applied the Harris Hawks Optimization algorithm in feature selection to optimize model
efficiency by minimizing feature sets while retaining high predictive accuracy [27]. This is important
for computationally intensive domains in aircraft classification. Further evidence is derived from health
diagnostics applications [28], where Rough Neutrosophic Attribute Reduction was combined with DL-
based techniques to show how deep learning frameworks are really strong in handling big and complex
datasets and improving decision-making processes therein. Collectively, these works present an overview
of the developments around deep learning and machine learning models, emphasizing aspects related to
accuracy, efficiency, and adaptability that make them highly relevant for advanced classification tasks,
including aircraft identification.

2. METHODOLOGY

2.1. Data:
The dataset shown in Figure 1 used in this study was obtained from Kaggle and is named ”Military

Aircraft Detection Dataset” [29]. The dataset consists of 43 classes, containing 24,164 images in the
training set and 6,042 in the test set. Each image belonging to a specific aircraft is stored in a folder with
the name of the corresponding class. Notably, there is no dedicated test dataset; therefore, a separation
has been implemented that allocates twenty percent of the images from each class as test data, while the
remaining eighty percent constitutes the training data.

Table 1 provides a tabular format that has different object categories, presumably aircraft, with numer-
ical values provided in two separate columns labeled as ”Train” and ”Validation.” The tabular structure
represents one format of a dataset to train and then validate types of aircraft through machine learning.

Each row in the table represents a unique category, potentially corresponding to a specific aircraft
model or type. The ”Train” column indicates the number of instances available in the training set for
a given category. The training set serves as the basic data used to instruct the model to recognize and
distinguish between the different categories. Conversely, the ”Validation” column denotes the number of
instances present within the validation set, which serves as a means to assess the model’s accuracy when
confronted with previously unseen data, thereby ensuring its ability to effectively generalize to novel
instances.

152

FIGURE 1. Military aircraft class examples from different angles.

This dataset is to be used in a k-fold cross-validation framework. K-fold cross-validation is a procedure
where the data is divided into a number of K equally sized folds or subsets. Then, the model is going
to be trained on k-1 of these folds, while the remaining fold will be used for its validation. It repeats
K times where each fold acts once as a validation set. This technique enables the testing of the model’s
performance against independent datasets, thus becoming helpful when there is a lack of data resources.

The classes listed above represent some of the known model variants for aircraft models, such as F16,
Rafale, and B52. Numerical values show how many images or data points within a particular category are
available to train and validate the model for gaining knowledge and improving the model classification
capability.

The information in Table 1 clearly elucidates how many training and validation data as shown Figure
2 each class of aircraft has. The composition of the dataset has been rich by applying data augmentation
techniques as per the poor count of instances for some classes of military aircraft. Though there are
classes with more than 890 instances in their training data, some classes have less than 400 instances.

153

TABLE 1. Distribution of aircraft classes

Class Name Train Validation Class Train Validation Class Train Validation
MQ9 561 140 B2 631 158 J20 562 141
JAS39 639 160 C130 611 153 F22 513 129
V22 546 137 YF23 424 106 F16 1339 335

Rafale 662 165 SR71 519 130 Vulcan 299 75
Mig31 554 139 U2 516 130 A400M 366 92
C17 666 167 C2 549 137 B1 500 126

AG600 480 119 F18 890 223 F117 284 71
F14 640 160 B52 645 161 F15 1147 287
F35 741 185 Su57 541 136 E7 146 37

Tornado 599 149 C5 583 145 XB70 137 35
EF2000 351 88 Tu95 500 124 AV8B 345 87

P3 459 115 E2 600 151 Be200 224 56
Tu160 513 129 US2 448 111 A10 550 138

F4 378 95 Su34 540 135 - - -
Mirage2000 585 146 RQ4 236 59 - - -

FIGURE 2. Train and validation number of each class.

2.2. Methods:
These models utilized for military aircraft classification in the current study are DenseNet121, Mo-

bileNetV2, ResNet50, ResNet101, and VGG19. These will be fine-tuned using ImageNet weights, the

154

weights that were developed during pre-training using the weights from the ImageNet dataset as training
data. ImageNet is a dataset that has been trained for several object classification tasks and very frequently
is used to fine-tune pre-trained models.

It has been shown that these models classify military aircraft with high accuracy. The goals of this
study were to evaluate the performance of various deep learning architectures on tasks of military air-
craft classification. Models with different architectures, such as DenseNet121, MobileNetV2, ResNet50,
ResNet101, and VGG19, have been tried out to determine which is best for this particular task.

2.2.1. DenseNet121. Among such famous CNN architectures is DenseNet121, which stands out be-
cause of its dense connectivity pattern. While in a traditional CNN, each layer feeds only its subsequent
layer, DenseNet introduces direct connections from every layer to every other layer in a feed-forward
fashion. The successive reuse of features through the dense connectivity makes it possible for gradients
to propagate efficiently in the network, hence alleviating the vanishing gradient problem of deep net-
works. DenseNet121 explicitly contains 121 layers and is also built by stacking dense blocks composed
of several convolutional layers with batch normalization and ReLU activation, followed by a transition
layer for the purpose of reducing dimensionality. This architecture results in better parameter efficiency
and feature extraction; hence, it is quite suitable for image classification tasks.

2.2.2. MobileNetV2. MobileNetV2 is a light-weight CNN architecture that was proposed targeting mo-
bile and embedded vision applications. It aimed at striking a good balance between model size and
performance. Among the striking features include depthwise separable convolutions, whereby the stan-
dard convolution is split into two separate layers: depthwise convolution and pointwise convolution. This
separation causes a dramatic reduction in the computational cost while keeping the capability of the net-
work for representation intact. MobileNetV2 further uses the concept of an inverted residual with linear
bottlenecks for swiftness. The bottlenecks expand the number of channels, apply depthwise convolution,
and then project the features back to a lower-dimensional space to reduce the computational costs.

2.2.3. ResNet50. ResNet50 is a part of the ResNet family, which initially introduced skip connections or
shortcuts; this allowed the gradients to flow more directly through the network. That helped to mitigate
the vanishing-gradient problem so that very deep networks could be trained. It has 50 layers and is
constructed by a series of residual blocks. Considering the residual block, each of the blocks includes
two convolutional layers with batch normalization and ReLU activation. Each block adds the input to
the output, before passing on the result through the activation function. This enables the network to learn
residual functions—that is, those where the input is close to the output. This architecture enables deeper
networks to be trained, since optimization becomes considerably easier.

2.2.4. ResNet101. ResNet101 is an extension of ResNet50 with 101 layers. It follows the same basic
principles as ResNet50 but with a deeper architecture, which can capture more complex features and
patterns in the data. The additional layers in ResNet101 allow for more refined feature extraction, po-
tentially leading to improved performance on challenging tasks. However, deeper networks also require
more computational resources and may be more prone to overfitting, so careful tuning and regularization
are essential.

155

2.2.5. VGG19. VGG19 is a variant of the VGG (Visual Geometry Group) network, known for its sim-
plicity and effectiveness. It consists of 19 layers and is characterized by its uniform architecture, with
a stack of convolutional layers followed by max-pooling layers, culminating in fully connected layers
for classification. VGG networks are praised for their easy-to-understand architecture and strong perfor-
mance, especially in capturing fine details in images. However, VGG19 is deeper and has more param-
eters than earlier VGG models, which can make it computationally expensive and prone to overfitting,
especially on smaller datasets.

3. EXPERIMENTAL STUDIES

(A) Accuracy Plot (B) Loss Plot

FIGURE 3. DenseNet121 Accuracy and Loss Plots.

3.1. DenseNet121. The Figure 3 displays the training and validation accuracy and loss of a DenseNet121
model over 150 epochs. The training loss rapidly decreases in the first few epochs, from an initial value
of approximately 2.5 to around 1.0 by epoch 10. It then continues to decrease gradually until it reaches a
minimum of around 0.3 at epoch 150. Similarly, the validation loss also decreases in the first few epochs,
from an initial value of around 2.0 to approximately 1.0 by epoch 10. However, after about 50 epochs, the
value starts to increase again and reaches a maximum of approximately 1.8 at epoch 100. Subsequently,
it decreases to around 1.5 at epoch 150. Optimization of the model was conducted utilizing the Adam
optimizer with an initial learning rate of 0.001. The loss function applied was categorical cross-entropy,
a method frequently employed in addressing multi-class classification problems.

3.2. MobileNetV2. Figure 4 shows the training and validation loss of a MobileNetV2 model over 150
epochs is displayed in the graph. Initially, the training loss decreases rapidly and then slows as it reaches a
minimum value of approximately 0.3. The validation loss also drops quickly during the first few epochs
but begins to increase after about 50 epochs, signaling potential overfitting. The provided details also

156

(A) Accuracy Plot (B) Loss Plot

FIGURE 4. MobileNetV2 Accuracy and Loss Plots.

cover training and validation accuracy over the same period. Training accuracy starts at around 0.3 and
quickly rises to about 0.95 by epoch 50. The validation accuracy begins similarly at 0.3 but climbs more
slowly, reaching around 0.85 by epoch 150. The notable gap between training and validation accuracy
suggests that the model is overfitting to the training data, excelling at recognizing training patterns but
struggling to generalize to new data. The model was optimized using the Adam optimizer, initialized
with a learning rate of 0.001. The categorical cross-entropy loss function, commonly used for multiclass
classification tasks, was employed.

(A) Accuracy Plot (B) Loss Plot

FIGURE 5. ResNet50 Accuracy and Loss Plots.

157

3.3. ResNet50. Figure 5 depicts the training and validation accuracy of ResNet50, after it has been
trained for 150 epochs. The accuracy of the training starts at around 0.05 and goes all the way up to
approximately 0.38. That of the validation also starts at approximately 0.05 but increases to around
0.35, though it sometimes fluctuated up and down in that process. Since the gap between training and
validation accuracy is relatively small, overfitting does not happen in this model. This graph represents
the training and verification loss for the ResNet50 model during 150 epochs. The training loss starts
higher at approximately 3.8 and decreases linearly to about 2.4; also, the smooth validation loss starts
from roughly 3.8 and goes down to about 2.4, with fluctuations during most of this training process. The
relatively small difference between the training and verification loss suggests that this is not an overfitting
model.

(A) Accuracy Plot (B) Loss Plot

FIGURE 6. ResNet101 Accuracy and Loss Plots.

3.4. ResNet101. These following graphs represent the accuracy and loss of the ResNet101 model con-
cerning 150 epochs of training and validation in Figure 6. It is crystal clear that the training and validation
accuracy both increase with time; however, the accuracy of training always outpaces that of validation.
This would support the interpretation that the model overfits to the training dataset, learning the patterns
in the training dataset perhaps too well and thereby limiting its eventual performance on new data. In
similar fashion, while the training loss decreases steadily as time progresses, although validation loss is
becoming less regular and skewed higher than training loss. That would mean the model has overfit to
the training data. If improving the model’s generalization ability, some techniques like regularization or
data augmentation could be done.

3.5. VGG19. VGG19 was proposed by Simonyan and Zisserman in 2014 and also follows a deep CNN
model architecture with stacks of convolution layers followed by fully connected layers. It is a very

158

simple yet effective network. VGG19 contains 19 layers, amounting to approximately 143.7 million
parameters, and has achieved state-of-the-art performance for most image classification challenges.

(A) Accuracy Plot (B) Loss Plot

FIGURE 7. VGG19 Accuracy and Loss Plots.

Top graphic describes the accuracy curve, while the bottom graph depicts the loss curve, segregated
for training and validation phases for VGG19 architecture in Figure 7.

It is observed from the accuracy figure that the model first increases in the initial epochs and then
saturates at approximately 90 percent for the training set. Also, the validation accuracy increases, but
it does so at a more gradual pace and stabilizes a little over 80 percent. That’s good because it reflects
appropriate generalization to unseen data.

This is reflected in the loss graph, wherein the training loss drops rapidly within the first few epochs
before it stabilizes. The validation loss does decrease but at a much slower rate compared to the training
loss, and it plateaus at a higher value; this is expected, as the validation set is not used for training.

In Figure 8 confusion matrix indicates that the model correctly classifies most images in the test set,
although there are some misclassifications. There are instances where the model misclassifies images.
For instance, some images of F-16s are misclassified as F-22s. However, this is a common occurrence
with machine learning models. Overall, the results indicate that the VGG19 model can accurately classify
images and generalize well to unseen data, making it a valuable deep learning model.

The confusion matrix reveals significant misclassifications between classes C130 and C17, with 14
occurrences of class C130 being erroneously labeled as C17 and 10 occurrences of class C17 being
incorrectly identified as C130. This finding suggests that the model encounters difficulties in differenti-
ating between these two classes, likely due to their visual similarities. A similar pattern is observed with
classes F15 and F18, where 35 instances of F15 are misclassified as F18. This recurring misclassifica-
tion suggests that these classes also possess visually similar attributes, posing challenges to the model’s
ability to accurately differentiate them.

159

FIGURE 8. Confusion matrix of VGG19.

There is a notable level of misclassification between certain classes, such as F22 and F35, with ob-
served values of 33 and 25, respectively. Though the model has some capacity to distinguish between
these classes, a considerable overlap in their features leads to classification errors. Furthermore, the
model incorrectly identifies Mig31 as Mig29 in 31 instances, illustrating the challenge of differentiat-
ing between similar classes. On the other hand, the model shows low misclassification rates for classes
like A10 and A400M, and Tornado and Tu160, with values close to zero, indicating high accuracy for
these presumably visually distinct classes. To enhance classification accuracy for often misclassified cat-
egories, several strategies can be employed. Increasing the size and diversity of training data for specific
classes, such as C130, C17, F15, and F18, can improve the model’s ability to distinguish among them.
Moreover, employing data augmentation techniques, such as rotating, scaling, and flipping images, can
help in creating a more robust training set.

3.6. YOLO11. The performance of the YOLO11x-cls model is evaluated in comparison with that of
other YOLO11 classifier models, including YOLO11n-cls, YOLO11s-cls, YOLO11m-cls, and YOLO11l-
cls. Table 2 of the paper presents a comprehensive comparison of these models based on key metrics,
including accuracy, precision, recall, and F1-score.

The best performance is exhibited by the YOLO11x-cls model, which reaches class accuracy of 95.9,
precision of 94.1, Recall of 95.6, and an F1-score as high as 94.8. Definitely the best results among all

160

TABLE 2. YOLO11 models metrics

Model Accuracy Precision Recall F1 Params (M)
YOLO11n-cls 0.919 0.900 0.908 0.904 1.6
YOLO11s-cls 0.935 0.918 0.933 0.925 5.5
YOLO11m-cls 0.950 0.937 0.941 0.939 10.4
YOLO11l-cls 0.955 0.936 0.952 0.944 12.9
YOLO11x-cls 0.959 0.941 0.956 0.948 28.4

four variants of YOLO 11. However, they are achieved at the expanse of a dramatic increase compared
to the number of this model’s parameters: 28.4 million, more than that of YOLO11L-cls (12.9M) by
more than two times, and more than that one of YOLO 11n-cls in 17 times (1.6M). The same model,
YOLO11x-cls, can serve as an example illustrative of tradeoffs between model complexity and achieve-
ments.

By comparing these models, YOLO11n-cls outperforms YOLO11scls with a moderate increase in
network parameters, from 1.6M to 5.5M, yielding substantial precision improvement, from 91.9 to 93.5,
and further improving the F1-score from 90.4 up to 92.5. A similar trend presents when going from
YOLO11s-cls to more powerful YOLO11m-cls (increasing parameters to 10.4M), this further increases
the accuracy to the level of 95.0 and F1 up to 93.9. However, this increase diminishes as the scaling factor
increases. Considering YOLO11l-cls for example, it has a very limited increase of +0.4 in accuracy and
+0.4 in F1-score compared to YOLO11x-cls, while the number of parameters increased 2.2 times.

Considering only the YOLO11 family of classifiers, the much larger YOLO11x-cls achieves state-
of-the-art, but the two variants described here, the YOLO11m-cls and YOLO11l-cls, are offering top
performance with considerably fewer parameters and hence may be excellent candidates for a practical
realization. This clearly points towards at least further investigating some methodologies for optimizing
such models—e.g., model pruning, quantization, knowledge distillation—for limited computing power
contexts.

TABLE 3. Military aircraft classification models metrics

AI Model Used Classes Methods Accuracy

Linear SVM [30] 20 CNN, data augmentation 96.8%
Artificial Neural Net-
works [31]

4 Sound signal processing, NN 96.2%

Feedforward NN [32] 4 Image processing, NN 97.0%
Signal Processing AI
[33]

5 Radar signal feature extraction 95.0%

YOLO11x-cls (Pro-
posed)

43 CNN, data augmentation 95.9%

161

FIGURE 9. YOLO11x-cls train metrics.

As can be seen from the table, the YOLO11x-cls model outperforms all other models across all metrics.
It exhibits the highest accuracy (0.959), precision (0.941), recall (0.956), and F1-score (0.948). These
results indicate that the YOLO11x-cls model not only achieves high accuracy in classifying military
aircraft but also demonstrates a remarkable ability to correctly identify positive instances (high recall)
while minimizing false positives (high precision). The superior performance of the YOLO11x-cls model
can be attributed to its larger size and complexity compared to other models. This enables the model to
learn more complex features and patterns from the data, resulting in improved generalization and higher
accuracy.

Figure 9 of the paper shows some training metrics for the YOLO11x-cls model. The focus of the
above graph lies in the training loss and model accuracy over the epochs. It is observed that its training
loss keeps decreasing step by step with growing epochs, a good signal for indicating this model learns
well. More importantly, high training accuracy shows that the model learns from the training data and
generalizes well. This would tend to suggest that the model is learning useful patterns in the training set
and generalizing this by properly classifying military aircraft in the environment.

162

FIGURE 10. Confusion metrics of YOLO11x-cls.

Figure 10 is confusion matrix of the YOLO11x-cls model. From it, insight into the classification
behavior of the model can be viewed. A confusion matrix depicts visually that the model has been able
to classify most of the military aircraft in the test set correctly. It has, however, also revealed some
misclassifications that are not out of the ordinary in any real-world machine learning application. A
closer look into these misclassifications may hold a silver lining in the form of suggestions that could be
obtained regarding the model’s points of failure. For example, it could be very useful to study why some
F-16 images were classified as F-22s with the aim of bringing improvement in the model’s discrimination
capability.

3.7. Training Configuration for YOLO11. YOLO11x classification was trained using the well-defined
set of hyperparameters to have the best performance on the military airforce dataset. Training for 100
epochs, it has early stopping set with 10 epochs of patience to avoid overfitting by stopping when vali-
dation loss stops improving. Batch size 16 balances memory efficiency with gradient stability, and input
image size 224x224 pixels was chosen for a good balance between computational efficiency and retain-
ing enough spatial information. Optimization is guided by an initial learning rate (lr0) = 0.01 that is
gradually decreased according to the learning rate factor (lrf) = 0.01. The momentum parameter is set to
0.937 for accelerated convergence. It stabilizes the gradient update, while weight decay equals 0.0005
and serves as a regularization factor against overfitting. During the first three epochs, the warmup policies

163

are used to smoothly increase the initial learning rate and momentum factor in favor of finding stability
in training. Putting warmup momentum at 0.8 and warm up bias learning rate at 0.1 allows the model’s
bias to somewhat adapt more quickly.

The training regimen incorporates a suite of data augmentation techniques to enhance the robustness
and generalization capacity of the classification model. Color jittering is applied through perturbations
of hue, saturation, and value channels with respective magnitudes of 0.015, 0.7, and 0.4, introducing
variations in image color characteristics. Geometric transformations, including translation up to 10%
of the image dimensions and scaling by a factor up to 50%, are utilised, while rotation, shear, perspec-
tive, and vertical flips are intentionally deactivated. Horizontal flips are applied with a probability of
0.5. Mosaic augmentation, a technique that combines multiple images into a single training sample, is
enabled.Furthermore, RandAugment is employed as an automated augmentation strategy to apply a di-
verse set of transformations. The training configuration is further augmented by the deliberate exclusion
of random erasing (40% probability), cropping of the entire image during training, and the exclusion
of mixup and copy-paste augmentations. These strategies are designed to diversify the training data,
mitigate overfitting, and enhance the model’s capacity for generalization to unseen data.

This work has designed an effective regularization that could balance the loss between the localization
and classification tasks. The threshold for IoU is set to 0.7, and one can rest assured of getting high
accuracy in overlap with the real results during the prediction stage. The box loss weighs 7.5; the classi-
fication loss is weighed at 0.5 while DFL takes 1.5-the loss weighs nicely manages the object detection
and localization. Data augmentation involves a hue, saturation, and value adjustment in order to further
generalize the model on hsv-h 0.015, hsv-s 0.7, and hsv-v is also 0.4. Additionally, the model does not
use dropout, which was set to 0.0, and it is without label smoothing, while relying on weight decay and
data augmentation for regularization. This combination of hyperparameters provides a robust and effi-
cient training process, optimizing model generalization and convergence for the accurate classification
of military aircraft.

3.8. Classification Test on Real Data. These testing results on your deep learning classifier illustrate
that the model works excellent for aircraft type identification when the images are clear, frontal, or in
ideal condition. The top-1 predictions have very high scores: 1.00 for F-16, C-130, and A-10, proving the
strength of the model to pick out unique structural features like the configurations of wings, placement of
engines, and shapes of fuselage. On challenging views of the aircraft, such as the F-22 at 0.59 confidence
with alternative predictions of F-35 at 0.33, the model only shows slight ambiguity. While the classifier is
robust in this matter, it struggles with classes that really do tend to look somewhat similar with the stealth
factors of an aircraft taken into consideration. The meaningful secondary predictions in the top-5 results,
such as F-18 with F-16 and Rafale, reflect the nuanced understanding of aircraft classes developed by the
model but point to areas for improvement. To further improve the performance, more training on datasets
that include diverse angles, lighting conditions, and occlusions would enhance the model’s ability to tell
apart visually similar aircraft.

This efficiency and applicability to real-world performance metrics further validate your classifier. The
11.8 ms/image preprocessing time just shows how well-optimized the pipeline in charge of preparing

164

(a) (b)

(c) (d)

FIGURE 11. Performance evaluation of aircraft classification model: Top-5 predic-
tions and confidence scores across diverse aircraft types [34] with processing metrics
(Preprocess: 11.8 ms, Inference: 266.4 ms) on Dual Intel Xeon CPUs (2.20 GHz).

the inputs before feeding into the model is. This gives a model inference of 266.4ms for the input
shape [(1,3,224,224)] that becomes competitive in efficiency for any deep neural network and a rather
complicated task of aircraft type recognition. Consequentially, the full processing time equals about
278.2 msec per image, as was noticed perfectly streamlined and fast end-to-end pipeline. This level of
performance can be delivered by, but may not be limited to a hardware setup with 2 Intel Xeon CPUs-2.20
GHz since the system has multi-threading at the parallel processing level. Since this model has a very

165

FIGURE 12. OCR output used without image preprocessing aircraft-1.

high degree of confidence in addition with sub-second processing time will perform remarkably in real-
life applications such as in military recognitions, auto surveillance and aircraft recognition systems. With
further refinement, this classifier should be able to differentiate better between visually similar aircraft
and optimize the inference time to perform well in complex and time-critical situations.

3.9. Optical Character Recognition (OCR). The presented image dataset demonstrates the application
of OCR via the EasyOCR library on images of military aircraft tail numbers. An initial assessment shows
that direct OCR application on the original images, which are characterised by varying lighting condi-
tions and potentially low contrast, produces sub-optimal results with low confidence scores or inaccurate
character recognition. This is due to the inherent challenges that OCR systems face when processing
images that lack sharp transitions and distinct features. The presence of noise, blurred text and inconsis-
tent lighting also contributes to the OCR’s struggle to accurately decipher the alphanumeric sequences
that make up the tail numbers. The result is an unacceptable level of recognition, indicating the need for
pre-processing techniques.

The presented image dataset demonstrates the application of OCR via the EasyOCR on images of
military aircraft tail numbers. An initial assessment shows that direct OCR application on the original
images [35], which are characterised by varying lighting conditions and potentially low contrast, pro-
duces sub-optimal results with low confidence scores or inaccurate character recognition. This is due to
the inherent challenges that OCR systems face when processing images that lack sharp transitions and
distinct features. The presence of noise, blurred text and inconsistent lighting also contributes to the
OCR’s struggle to accurately decipher the alphanumeric sequences that make up the tail numbers. The
result is an unacceptable level of recognition, indicating the need for pre-processing techniques.

166

FIGURE 13. OCR result after histogram equalisation aircraft-1.

FIGURE 14. OCR result of the image after histogram equalisation and contrast
boosting process aircraft-1.

To overcome the limitations of direct OCR, a pre-processing step using histogram equalisation is in-
troduced. Histogram equalisation increases the contrast of the image by redistributing pixel intensities,
effectively stretching the dynamic range of grey levels within the image. This adjustment significantly

167

FIGURE 15. OCR output used without image preprocessing aircraft-2.

FIGURE 16. OCR result of the image after histogram equalisation followed by con-
trast boosting aircraft-2.

increases the contrast between the tail number characters and the background, improving the visual dis-
tinction of the text. After histogram equalisation, EasyOCR’s performance shows a marked improve-
ment, providing accurate character recognition with increased confidence scores. This confirms that

168

pre-processing techniques such as histogram equalisation play a key role in optimising the OCR process,
particularly for images with difficult contrast or lighting conditions, and underlines the importance of
pre-processing in text recognition applications.

4. CONCLUSION

This study focuses on the fine-grained classification of military aircraft using deep learning models that
are pre-trained, focusing on uniquely identifying tail numbers correctly. Five CNN architectures were
compared: DenseNet121, MobileNetV2, ResNet50, ResNet101, and VGG19. Whereas all the models
built had a degree of success, the best performing family was the YOLO11 family, with a high accuracy
achieved of 0.959 by YOLO11x-cls. The precision, recall, and F1-score were all superior with this
model; hence, this classifier had great capability in recognizing the aircraft and generalizing to unseen
data. This probably is due to the YOLO11x-cls being bigger in size and more complicated; hence, it can
learn far more complicated features and patterns from data. The consistent decrease in training loss of
the model and the high training accuracy are a witness to how effectively it gets to learn from the training
data and does the right thing in classifying the aircraft correctly. More evidence can be seen with regard
to the performance of the model from the confusion matrix; it performs high in classifying most of the
aircraft in the test set.

In future investigations, the dataset will be greatly expanded to encompass a more diverse range of
aircraft categories. The integration of Optical Character Recognition (OCR) techniques will enable the
automatic extraction of tail numbers from images, thereby improving both the precision and efficiency
of data processing. The research will also evaluate various pre-trained models to determine the most
effective options for this task, potentially enhancing both performance and accuracy. These initiatives
are essential for advancing the core technology and ensuring the solution’s capability to manage a wider
array of aircraft identification cases.

Moreover, the research will explore the adaptation of these models for real-time use cases, like video
surveillance systems. This entails evaluating their performance in real-time scenarios and optimizing
them for ongoing monitoring and swift data processing. The primary objective of this investigation is to
create a highly reliable AI-driven image recognition solution specifically designed for military aviation
purposes. Such advancements are anticipated to greatly enhance processes of data collection, monitoring,
and analysis, ultimately bolstering national defense and security capabilities. The outcomes of these
studies will form the foundation for developing a thorough and efficient system capable of meeting the
stringent requirements of military operations.

DECLARATIONS

• Contribution Rate Statement: Hasan KARACA has conducted the study and wrote the first
draft, Nesrin AYDIN ATASOY has supervised, reviewed and edited the manuscript.

• Conflict of Interest: The authors report no declarations of interest.
• Data Availability: Dataset is available online.
• Statement of Support and Acknowledgment: None.

169

REFERENCES

[1] Mori, S., H. Nishida, and H. Yamada, Optical character recognition. 1999: John Wiley & Sons, Inc.
[2] Mekonnen, I., Automated Aircraft Identification by Machine Vision. 2017.
[3] Tomovic, S., K. Pavlovic, and M. Bajceta, Aligning document layouts extracted with different OCR engines with clus-

tering approach. Egyptian Informatics Journal, 2021. 22(3): p. 329-338.
[4] Kobayashi, Y., et al., Basic research on a handwritten note image recognition system that combines two OCRs. Procedia

Computer Science, 2021. 192: p. 2596-2605.
[5] Zeng, G., et al., Beyond OCR + VQA: Towards end-to-end reading and reasoning for robust and accurate textvqa. Pattern

Recognition, 2023. 138: p. 109337.
[6] Onim, M.S.H., et al., BLPnet: A new DNN model and Bengali OCR engine for Automatic Licence Plate Recognition.

Array, 2022. 15: p. 100244.
[7] Lv, G., et al., COME: Clip-OCR and Master ObjEct for text image captioning. Image and Vision Computing, 2023. 136:

p. 104751.
[8] Imam, N.H., V.G. Vassilakis, and D. Kolovos, OCR post-correction for detecting adversarial text images. Journal of

Information Security and Applications, 2022. 66: p. 103170.
[9] Irimia, C., et al., Official Document Identification and Data Extraction using Templates and OCR. Procedia Computer

Science, 2022. 207: p. 1571-1580.
[10] Dutta, H. and A. Gupta, PNRank: Unsupervised ranking of person name entities from noisy OCR text. Decision Support

Systems, 2022. 152: p. 113662.
[11] Oucheikh, R., T. Pettersson, and T. Löfström, Product verification using OCR classification and Mondrian conformal

prediction. Expert Systems with Applications, 2022. 188: p. 115942.
[12] Mei, J., et al., Statistical learning for OCR error correction. Information Processing & Management, 2018. 54(6): p.

874-887.
[13] Shen, Z., et al. Deep learning based framework for automatic damage detection in aircraft engine borescope inspection.

in 2019 International Conference on Computing, Networking and Communications (ICNC). 2019. IEEE.
[14] Sun, X., et al., SCAN: Scattering characteristics analysis network for few-shot aircraft classification in high-resolution

SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2022. 60: p. 1-17.
[15] Kiyak, E. and G. Unal, Small aircraft detection using deep learning. Aircraft Engineering and Aerospace Technology,

2021. 93(4): p. 671-681.
[16] Khan, S.N., et al. Rapid Aircraft Classification in Satellite Imagery using Fully Convolutional Residual Network. in

2020 International Conference on Emerging Trends in Smart Technologies (ICETST). 2020. IEEE.
[17] Kang, Y., et al., ST-Net: Scattering Topology Network for Aircraft Classification in High-Resolution SAR Images. IEEE

Transactions on Geoscience and Remote Sensing, 2023. 61: p. 1-17.
[18] Hassan, A., et al. A deep learning framework for automatic airplane detection in remote sensing satellite images. in 2019

IEEE Aerospace Conference. 2019. IEEE.
[19] Dolph, C., et al. Aircraft Classification Using RADAR from small Unmanned Aerial Systems for Scalable Traffic Man-

agement Emergency Response Operations. in AIAA AVIATION 2021 FORUM. 2021.
[20] Chen, Z., T. Zhang, and C. Ouyang, End-to-end airplane detection using transfer learning in remote sensing images.

Remote Sensing, 2018. 10(1): p. 139.
[21] Azam, F., et al., Aircraft classification based on PCA and feature fusion techniques in convolutional neural network.

IEEE Access, 2021. 9: p. 161683-161694.
[22] Alshaibani, W., et al., Airplane Type Identification Based on Mask RCNN and Drone Images. arXiv preprint

arXiv:2108.12811, 2021.
[23] Alganci, U., M. Soydas, and E. Sertel, Comparative research on deep learning approaches for airplane detection from

very high-resolution satellite images. Remote sensing, 2020. 12(3): p. 458.

170

[24] LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature, 2015. 521(7553): p. 436-444.
[25] Gao, Z., & Yi, W. (2025). Optimizing projectile aerodynamic parameter identification of kernel extreme learning ma-

chine based on improved Dung Beetle Optimizer algorithm. Measurement, 239, 115473.
[26] Song, T., Nguyen, L. T. H., & Ta, T. V. (2025). MPSA-DenseNet: A novel deep learning model for English accent

classification. Computer Speech & Language, 89, 101676.
[27] Zhang, Y., Liu, R., Wang, X., Chen, H., & Li, C. (2021). Boosted binary Harris hawks optimizer and feature selection.

Engineering with Computers, 37, 3741-3770.
[28] Prakash, N. N., Rajesh, V., Namakhwa, D. L., Pande, S. D., & Ahammad, S. H. (2023). A DenseNet CNN-based liver

lesion prediction and classification for future medical diagnosis. Scientific African, 20, e01629.
[29] Data Statement Dataset is available at https://www.kaggle.com/datasets/a2015003713/

militaryaircraftdetectiondataset

[30] Azam, F., Rizvi, A., Khan, W. Z., Aalsalem, M. Y., Yu, H., Zikria, Y. B. (2021). Aircraft classification based on PCA
and feature fusion techniques in convolutional neural network. IEEE Access, 9, 161683-161694.

[31] Barbarosou, M., Paraskevas, I., Ahmed, A. (2016). Military aircrafts’ classification based on their sound signature.
Aircraft Engineering and Aerospace Technology: An International Journal, 88(1), 66-72.

[32] Karacor, A. G., Torun, E., Abay, R. (2011). Aircraft classification using image processing techniques and artificial neural
networks. International Journal of Pattern Recognition and Artificial Intelligence, 25(08), 1321-1335.

[33] Luo, S., Yu, J., Xi, Y., Liao, X. (2022). Aircraft target detection in remote sensing images based on improved YOLOv5.
IEEE Access, 10, 5184-5192.

[34] Fine-Grained Visual Classification of Aircraft, S. Maji, J. Kannala, E. Rahtu, M. Blaschko, A. Vedaldi, arXiv.org, 2013
[35] https://www.airplanes-online.com/

171

https://www.kaggle.com/datasets/a2015003713/militaryaircraftdetectiondataset
https://www.kaggle.com/datasets/a2015003713/militaryaircraftdetectiondataset
https://www.airplanes-online.com/

Vol: 2, Issue: 2, 2024
Pages:172-178
Received: 24 December 2024
Accepted: 15 January 2025
c⃝ 2024 Karabük University

CURRENT TRENDS IN COMPUTING
Research Article

DOI: 10.71074/CTC.1606104

DATASET OF EASY SCREEN P300 SPELLER BRAINCOMPUTER INTERFACE DESIGN

ABDULLAH BILAL AYGUN1∗ , AHMET RESIT KAVSAOGLU2

1Biomedical Engineering Department, Karabük University, 78050, Karabük, Türkiye

ABSTRACT. A dataset has been created to support advancements in brain-computer interface (BCI)
research, particularly focusing on P300 speller systems and electroencephalography (EEG) signal
analysis. This dataset provides detailed EEG recordings from 30 healthy participants during offline
analysis, online character recognition, and word-writing tasks. A 16-channel Brain Products V-Amp
device was utilized, and data were collected via a 7×7 visual stimulus matrix designed to evoke re-
liable P300 responses, with stimuli presented in randomized sequences. The dataset comprises raw
EEG signals, binary labels, and stimulus timing information structured to facilitate the development
of innovative BCI algorithms and real-time applications. This open-access resource enables novel
approaches to EEG signal classification and supports the design of adaptive P300 speller interfaces,
offering a foundation for advancing assistive technologies and neuroscience research.

1. INTRODUCTION

The P300 speller paradigm represents a prominent approach in brain-computer interface (BCI) re-
search, offering a reliable communication method for individuals with severe motor disabilities. This
study emphasizes providing a detailed dataset derived from electroencephalography (EEG) recordings,
enabling the development and evaluation of novel methodologies and algorithms for BCI applications.
The Brain Products V-Amp 16 Channel EEG system has structured data into three main tasks: offline
analysis, online character recognition, and word-writing experiments. This dataset builds upon earlier
work presented by Aygun and Kavsaoglu (2022) in in [1] and is made openly accessible to encourage
replication efforts and collaborative research. By structuring the dataset with detailed annotations and
compatibility with widely-used analysis platforms such as MATLAB, this resource is intended to support
innovation in BCI system design and signal processing.

2. EXPERIMENTAL DESIGN

EEG data have been collected to address three distinct objectives: offline analysis, online monitoring,
and word-writing tasks. Each session involved a stimulus matrix with 7 rows and 7 columns, where the
stimuli flashed in a randomized order. Each stimulus was presented 15 times, consisting of a 100ms ”on”

E-mail address: abilalaygun@karabuk.edu.tr (∗), kavsaoglu@karabuk.edu.tr.
Key words and phrases. Brain-computer interface (BCI), P300 speller, EEG..

https://dergipark.org.tr/en/pub/ctc
https://doi.org/10.71074/CTC.1606104
https://orcid.org/0000-0002-0162-4419
https://orcid.org/0000-0002-4380-9075

period followed by a 75ms ”off” period. Data were recorded for 700 milliseconds after the initiation
of each flash, resulting in 210 individual stimulus events per session. Each session was treated as an
independent trial.

During the offline analysis phase, EEG data were recorded from 30 participants across 25 sessions
each, except for one participant who completed 24 sessions. Participants were instructed to focus on
different regions of the visual stimulus matrix, as depicted in Figure 1, ensuring that any part of the
matrix could serve as the source of the stimulus. This approach enabled robust and comprehensive data
acquisition for developing a classification model.

FIGURE 1. Focused offline characters in [1].

For the online analysis, EEG data were recorded in a single session for each character recognition task.
In the online analysis, 30 characters were focused on. The online analysis data includes 30 sessions and
the corresponding label data.

In the word-writing application, participants could complete the entire word by matching one of the
characters from E1 to E20 with the corresponding index number of the desired word after detecting the
first character. These characters, as depicted in Figure 2, were displayed in a sequence ranging from 1
to 20 on the side of the interface. This approach enabled participants to write long words by detecting
only two characters. The data were structured accordingly. The data were structured accordingly. Table
1 provides the list of characters that each participant focused on during the task. S1–S30 represents the
numbering of participants. The session numbers are also specified in the table.

Participants engaged in the online sessions by focusing on their desired characters in specific areas of
the stimulus matrix, such as the lower right, lower left, upper right, upper right, upper left, and center
regions.

173

FIGURE 2. These characters, as depicted in Figure 2, were displayed in a sequence
ranging from 1 to 20 on the side of the interface [1].

3. DATASET DESCRIPTION

The dataset is structured into three main categories:
• Offline Data: Includes raw EEG signals, binary labels indicating the presence or absence of P300

responses, and the timing of stimulus flashes.
• Online Characters: Contains single-session data specifically for individual character recognition

experiments.
• Online Words: Comprises multi-session data for word-writing tasks, segmented into trials corre-

sponding to each stimulus presentation.
All data files are provided in ’.mat’ format, ensuring compatibility with MATLAB and various other anal-
ysis platforms. Comprehensive annotations are included with each file to facilitate straightforward data
interpretation and usage. Details of preprocessing steps and file naming conventions are also provided to
enhance transparency.

This application was tested on 30 participants, 11 healthy females, and 19 healthy males, as shown
in Table 2. Among the participants, 11 had mild farsightedness and wore glasses, while the remaining
19 participants had no vision impairments. Based on the information provided by the participants, no
chronic, mental, or psychological disorders were identified.

174

TABLE 1. The table indicates which character was focused on during each session

175

TABLE 2. The characteristics of the participants [1]

Age Height Weight Glasses
Users

Mean 34.47 ± 9.69 172.2 ± 8.75 75.43 ± 17.62 11
Range (18 – 61) (160 – 198) (48 – 137)

The experiments were conducted over 20 days in a quiet environment, involving two individuals at a
time: one participant and one experiment assistant. Visual stimuli were presented to the participants on
a computer screen placed 1 meter away under moderate brightness and daylight conditions. The EEG
device was also connected to the same computer, which displayed the stimuli to record brain signals.
Table 1 provides the characteristics of the participants.

Brain signals were recorded using a Brain Products V-Amp 16 Channel EEG device (V-Amp, Brain
Products GmbH, Gilching, Germany). Electrodes were positioned according to the International 10-20
system, as shown in Figure 2, and signals were recorded from 16 channels. The signals were filtered
using a 1-12 Hz Butterworth band-pass filter and a 50 Hz Notch filter. The EEG data was digitized at 2
kHz and subjected only to filtering, with no further processing applied. The dataset is presented without
downsampling to retain its original resolution.

4. APPLICATIONS AND FUTURE DIRECTIONS

Applications and Future Directions This dataset offers a comprehensive foundation for advancing
brain-computer interface (BCI) technology. Key potential applications include:

• Development of adaptive speller interfaces to enable efficient and user-friendly communication
systems.

• Exploration of novel machine learning algorithms, facilitating innovative approaches to EEG
signal classification.

• Validation of real-time BCI systems to support the development of assistive communication tech-
nologies.

This resource promotes reproducibility, fosters innovation, and facilitates collaboration within the neu-
roscience community by providing open access to a well-annotated and structured dataset. Researchers
are encouraged to leverage the dataset to explore new directions in BCI system design and signal pro-
cessing.

5. LIMITATIONS

While this dataset offers significant potential for advancing BCI research, several limitations should
be considered. The participant pool primarily comprises healthy individuals, limiting its applicability to
clinical populations. Furthermore, environmental conditions, such as lighting and potential distractions
during experiments, were controlled but may still influence the EEG signals. Variability in participant
focus and attention could also introduce noise into the data. Future studies could address these limitations

176

FIGURE 3. The figure illustrates the channels from which the data were recorded [1].

by incorporating clinical participants, expanding the dataset under varied environmental conditions, and
improving signal acquisition protocols.

177

6. CONCLUSION

This dataset serves as a bridge between theoretical research and practical applications in BCI design.
Making this data publicly available aims to promote open science initiatives and stimulate innovations in
assistive technology. Researchers are encouraged to utilize this resource to enhance reproducibility and
foster collaboration within the neuroscience community. Future studies are recommended to build upon
this dataset by exploring novel adaptive algorithms, incorporating clinical populations, and validating
real-time BCI applications in diverse settings.

DECLARATIONS

• Contribution Rate Statement: All authors have contributed equally.
• Conflict of Interest: The author declares no conflict of interest.
• Data Availability: The dataset is hosted on the Zenodo platform to ensure support scientific

development and can be accessed using the link https://doi.org/10.5281/zenodo.13861638. It
is distributed under the Creative Commons Attribution 4.0 license, permitting unrestricted use
provided proper citation is given. Researchers are encouraged to utilize the raw EEG signals,
stimulus timing files, and labels to develop machine learning models or investigate novel brain-
computer interface (BCI) designs. Additional documentation is provided alongside the dataset to
guide users in its application.

• Statement of Support and Acknowledgment: None

REFERENCES

[1] A. B. Aygun, A. R. Kavsaoglu, An innovative P300 speller brain–computer interface design: Easy screen, Biomedical
Signal Processing and Control, Volume 75, 2022, 103593, https://doi.org/10.1016/j.bspc.2022.103593.

178

https://doi.org/10.5281/zenodo.13861638
https://doi.org/10.1016/j.bspc.2022.103593

	1. Introduction
	2. Materials and Methods
	2.1. Data Preprocessing:
	2.2. Data Analyses:

	3. Results
	4. Conclusion
	Declarations
	References
	1. Introduction
	2. Polynomial Multiplication
	2.1. Number Theoretic Transform:
	2.2. Toeplitz Matrix-Vector Product:

	3. Factorization of the Cyclotomic polynomial x2k + 1
	4. Results
	4.1. Multiplication Algorithms:

	5. Conclusion
	Declarations
	References
	1. Introduction
	2. Background
	3. Materials and Methods
	3.1. Transfer Learning Methods:
	3.2. Dataset:
	3.3. Statistical Analysis:
	3.4. Common Specifications:

	4. Results
	5. Discussion
	5.1. Impact on Training Time and Computational Efficiency:
	5.2. Consistency of Model Accuracy:
	5.3. Implications for Green AI:
	5.4. Limitations and Challenges:

	6. Conclusion and Future Studies
	Declarations
	References
	Appendix (A)
	Appendix (B)
	Appendix (C)
	Appendix (D)
	1. Introduction
	2. Methods
	2.1. Evaluation Metrics
	2.2. K-Fold Cross Validation

	3. Experimental Study
	4. Conclusion
	Declarations
	References
	1. Introduction
	2. Methodology
	2.1. Data:
	2.2. Methods:

	3. Experimental Studies
	3.1. DenseNet121
	3.2. MobileNetV2
	3.3. ResNet50
	3.4. ResNet101
	3.5. VGG19
	3.6. YOLO11
	3.7. Training Configuration for YOLO11
	3.8. Classification Test on Real Data
	3.9. Optical Character Recognition (OCR)

	4. Conclusion
	Declarations
	References
	1. Introduction
	2. Experimental Design
	3. Dataset Description
	4. Applications and Future Directions
	5. Limitations
	6. Conclusion
	Declarations
	References

