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General Hardy-type operators on local generalized Morrey
spaces

TAT-LEUNG YEE AND KWOK-PUN HO*

ABSTRACT. This paper extends the mapping properties of the general Hardy-type operators to local generalized
Morrey spaces built on ball quasi-Banach function spaces. As applications of the main result, we establish the two
weight norm inequalities of the Hardy operators to the local generalized Morrey spaces, the mapping properties of
the Riemann-Liouville integrals on local generalized Morrey spaces built on rearrangement-invariant quasi-Banach
function spaces, the Hardy inequalities on the local generalized Morrey spaces with variable exponents.

Keywords: General Hardy-type operator, Hardy inequality, Riemann-Liouville integrals, local generalized Morrey
spaces, ball Banach function spaces, rearrangement-invariant, variable exponents.
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This paper extends the mapping properties of the general Hardy-type operators to the local
generalized Morrey spaces built on ball quasi-Banach function spaces.

The general Hardy-type operators [25, Definition 2.5] include a number of important op-
erators in analysis. The most important example is the Hardy operator. It also includes the
Riemann-Liouville integrals. The mapping properties of the general Hardy-type operators on
Lebesgue spaces and extensions of Lebesgue spaces were investigated in [1, 2, 4, 11, 12, 15, 16,
25, 26, 29, 31, 34, 35, 36, 37].

The local generalized Morrey spaces are extensions of the Lebesgue spaces and Morrey
spaces [28, 33]. The local generalized Morrey spaces are members of the ball quasi-Banach
function spaces introduced in [32]. A number of results from the harmonic analysis, such as
the mapping properties of the singular integral operators, the fractional integral operators,
the maximal Carleson operators, the geometric maximal functions, the minimal functions and
the spherical maximal functions had been extended to the local generalized Morrey spaces
[5, 6, 7, 8, 9, 13, 14, 19, 20, 30, 38, 40].

It motivates us to investigate the mapping properties of the general Hardy-type operators on
the local generalized Morrey spaces. We find that whenever a given general Hardy-type oper-
ator is bounded on a ball quasi-Banach function space, it can be extended to be a bounded op-
erator on the local generalized Morrey space built on this ball quasi-Banach function space. As
applications of this main result, we extend the mapping properties of the general Hardy-type
operators with Oinarov kernel on the weighted local generalized Morrey spaces, the Riemann-
Liouville integral on the local generalized Morrey spaces built on rearrangement-invariant
quasi-Banach function spaces. We also obtain the Hardy-type inequalities on the local gen-
eralized Morrey spaces with variable exponents.
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This paper is organized as follows. The definition of the general Hardy-type operator is
given in Section 1. This section also contains the mapping properties of the general Hardy-type
operators on weighted Lebesgue spaces. The main result is given in Section 2. The definitions
of the ball quasi-Banach function spaces and its corresponding local generalized Morrey spaces
are also presented in Section 2. The applications of the main result on the weighted local gen-
eralized Morrey spaces, the local generalized Morrey spaces built on rearrangement-invariant
quasi-Banach function spaces and the local generalized Morrey spaces with variable exponents
are given in Section 3.

1. PRELIMINARIES AND DEFINITIONS

Let M denote the class of Lebesgue measurable functions on (0,∞). For any Lebesgue
measurable set E on (0,∞), the Lebesgue measure of E is denoted by |E|. Define I0 = {(0, r) :
r > 0} and I = {(s, r) : r > s ≥ 0}.

Let p ∈ (0,∞) and v : (0,∞) → [0,∞), the weighted Lebesgue space Lp(v) consists of all
Lebesgue measurable functions f satisfying

∥f∥Lp(v) =

(∫ ∞

0

|f(x)|pv(x)dx
) 1

p

< ∞.

Let k : (0,∞) × (0,∞) → R be a Lebesgue measurable function satisfying k(x, y) ≥ 0 when
0 < y < x. The general Hardy-type operator with kernel k is defined as

Kf(x) =

∫ x

0

k(x, y)f(y)dy, x ∈ (0,∞),

see [25, Definition 2.5].
When k(x, y) ≡ 1, K is the Hardy operator Hf(x) =

∫ x

0
f(t)dt. When α ∈ [0,∞) and

k(x, y) = 1
Γ(α) (x−y)α−1, K is the Riemann-Liouville operator Rαf(x) =

1
Γ(α)

∫ x

0
(x−y)α−1f(y)dy,

see [2, 37].

Definition 1.1. Let k : (0,∞) × (0,∞) → (0,∞) be a Lebesgue measurable function. We say that k
is an Oinarov kernel if it satisfies

(1) k(x, y) ≥ 0 when 0 < y < x,
(2) k is non-decreasing in x or non-increasing in y,
(3) there is a constant D > 0 such that for any 0 < z < y < x,

D−1(k(x, y) + k(y, z)) ≤ k(x, z) ≤ D(k(x, y) + k(y, z)).

The reader is referred to [25, Example 2.7] for the examples of the Oinarov kernels.
We now recall some well known boundedness results for the general Hardy-type operators

with Oinarov kernels in the following. For any s ∈ [0,∞), we write

Ksf(x) =

∫ x

0

k(x, y)sf(y)dy, K̃sf(y) =

∫ ∞

y

k(x, y)sf(x)dx.

We have the following result for the boundedness of general Hardy-type operators on the
weighted Lebesgue space.
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Theorem 1.1. Let 1 < p ≤ q < ∞, u, v : (0,∞) → [0,∞) and k : (0,∞) × (0,∞) → R be an
Oinarov kernel. If K, u and v satisfy

sup
t>0

(K̃qu)
1/q(K0v

1−p′
)1/p

′
(t) < ∞(1.1)

sup
t>0

(K̃0u)
1/q(t)(Kp′v1−p′

)1/p
′
(t) < ∞,(1.2)

then there is a constant C > 0 such that for any f ∈ Lp(v)

∥Kf∥Lq(u) ≤ C∥f∥Lp(v).

For the proof of the above result, the reader is referred to [25, Theorem 2.10]. We have the
following results from [25, Theorem 2.15].

Theorem 1.2. Let 1 < q < p < ∞ and 1
r = 1

q − 1
p . If k is an Oinarov kernel and(∫ ∞

0

(
K̃qu)

1/q(t)(K0v
1−p′

)1/q
′
(t)

)r

v1−p′
(t)dt

) 1
r

< ∞,(1.3) (∫ ∞

0

(
(K̃0u)

1/p(t)(Kp′v1−p′
)1/p

′
(t)

)r

u(t)dt

) 1
r

< ∞,(1.4)

then there is a constant C > 0 such that for any f ∈ Lp(v)

∥Kf∥Lq(u) ≤ C∥f∥Lp(v).

The above theorems also give the results in [26] where K(x, y) = ϕ(y/x) and ϕ : (0, 1) →
(0,∞) is a Lebesgue measurable function. When k(x, y) = g(x − y) for some Lebesgue mea-
surable function g : (0,∞) → (0,∞), the above theorems extend the results in [36]. For the
mapping properties of the general Hardy-type operators on weighted Herz spaces, the reader
is referred to [24].

2. MAIN RESULTS

The main result of this paper is established in this section. We obtain the mapping properties
of the general Hardy-type operators on the local generalized Morrey spaces built on ball quasi-
Banach function spaces. Notice that the main result given in this section applies to a general
kernel k, not necessary restricted to the Oinarov kernel.

We begin with the definition of the ball quasi-Banach function spaces introduced in [32].

Definition 2.2. A quasi-Banach space X ⊂ M is a ball quasi-Banach function space if it satisfies
(1) there is a constant C > 0 such that for any f, g ∈ X , ∥f + g∥X ≤ C(∥f∥X + ∥g∥X),
(2) ∥f∥X = 0 if and only if f = 0 a.e. on (0,∞),
(3) 0 ≤ g ≤ f and f ∈ X implies g ∈ X and ∥g∥X ≤ ∥f∥X ,
(4) fn ↑ f and f ∈ X implies ∥fn∥X ↑ ∥f∥X ,
(5) for any E ∈ I , we have χE ∈ X .

Whenever ∥ · ∥X satisfies (1)-(3) and

(2.5) χE ∈ M, |E| < ∞ ⇒ χE ∈ X,

X is called as a quasi-Banach function space.
Whenever ∥ · ∥X is a norm and for any E ∈ I , we have a constant C > 0 such that for any f ∈ X ,

we have
∫
E
|f(x)|dx < ∞, X is a ball Banach function space.
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The family of the ball quasi-Banach function spaces includes a number of well known func-
tion spaces. The weighted Lebesgue spaces, the rearrangement-invariant quasi-Banach func-
tion spaces and the Lebesgue spaces with variable exponents are members of the ball quasi-
Banach function spaces.

We now give the definition of the local generalized Morrey spaces built on ball quasi-Banach
function spaces.

Definition 2.3. Let X be a ball quasi-Banach function space and ω : (0,∞) → (0,∞). The local
generalized Morrey space LMX

ω consists of all f ∈ M satisfying

∥f∥LMX
ω

= sup
r>0

1

ω(r)
∥χ(0,r)f∥X < ∞.

Whenever X is the Lebesgue space Lp, p ∈ (1,∞), LMX
ω becomes the classical local gener-

alized Morrey space.
The following results identify the conditions that ensure that LMX

ω is a ball quasi-Banach
function space.

Proposition 2.1. Let X be a ball quasi-Banach function space and ω : (0,∞) → (0,∞). If ω and X
satisfy

1 ≤ Cω(r), r ∈ (1,∞),(2.6)

∥χ(0,r)∥X ≤ Cω(r), r ∈ (0, 1)(2.7)

for some C > 0, then LMX
ω is a ball quasi-Banach function space.

Proof. It is easy to see that LMX
ω satisfies Items (1)-(3) in Definition 2.2. To obtain Item (4) of

Definition 2.2, it suffices to show that for any s > 0, we have χ(0,s) ∈ LMX
ω .

When r ∈ (1,∞), (2.6) guarantees that

1

ω(r)
∥χ(0,r)χ(0,s)∥X ≤ 1

ω(r)
∥χ(0,s)∥X ≤ C∥χ(0,s)∥X .

When r ∈ (0, 1), (2.7) yields

1

ω(r)
∥χ(0,r)χ(0,s)∥X ≤ 1

ω(r)
∥χ(0,r)∥X ≤ C.

The above inequalities assure that

sup
r>0

1

ω(r)
∥χ(0,r)χ(0,s)∥X ≤ C + C∥χ(0,s)∥X

and, hence, χ(0,r) ∈ LMX
ω . □

We also have the following result with the range for r replaced by ∥χ(0,r)∥X .

Proposition 2.2. Let X be a ball quasi-Banach function space and ω : (0,∞) → (0,∞). If ω and X
satisfy

1 ≤ Cω(r), 1 < ∥χ(0,r)∥X ,(2.8)

∥χ(0,r)∥X ≤ Cω(r), 1 ≥ ∥χ(0,r)∥X(2.9)

for some C > 0, then LMX
ω is a ball quasi-Banach function space.
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Proof. It suffices to show that for any s > 0, we have χ(0,s) ∈ LMX
ω .

When r satisfies 1 ≤ ∥χ(0,r)∥X , (2.8) guarantees that

1

ω(r)
∥χ(0,r)χ(0,s)∥X ≤ 1

ω(r)
∥χ(0,s)∥X ≤ C∥χ(0,s)∥X .

When r satisfies 1 ≥ ∥χ(0,r)∥X , (2.9) yields

1

ω(r)
∥χ(0,r)χ(0,s)∥X ≤ 1

ω(r)
∥χ(0,r)∥X ≤ C.

The above inequalities assure that

sup
r>0

1

ω(r)
∥χ(0,r)χ(0,s)∥X ≤ C + C∥χ(0,s)∥X

and, hence, χ(0,r) ∈ LMX
ω . □

We write (X,ω) ∈ N if LMX
ω is nontrivial. The above propositions assure that (X,ω) ∈ N

whenever X and ω satisfy (2.6)-(2.7) or (2.8)-(2.9).
We now present the main result, the mapping properties of the general Hardy-type opera-

tors on the local generalized Morrey space LMX
ω .

Theorem 2.3. Let X and Y be ball quasi-Banach function spaces and ω : (0,∞) → (0,∞). Let
k : (0,∞)× (0,∞) → R be a Lebesgue measurable function satisfying k(x, y) ≥ 0 when 0 < y < x. If
(X,ω) ∈ N and there is a constant C > 0 such that for any f ∈ X

∥Kf∥Y ≤ C∥f∥X ,

then for any f ∈ LMX
ω

(2.10) ∥Kf∥LMY
ω

≤ C∥f∥LMX
ω
.

Proof. Let r > 0 and f ∈ LMX
ω . When x > r, we have

(2.11) χ(0,r)(x)(K|f |)(x) = 0 ≤
∫ x

0

χ(0,r)(y)k(x, y)|f(y)|dy.

When x ∈ (0, r], we have

(2.12) χ(0,r)(x)(K|f |)(x) =
∫ x

0

k(x, y)|f(y)|dy =

∫ x

0

χ(0,r)(y)k(x, y)|f(y)|dy

because for any y ∈ (0, x), we have y ∈ (0, r). Hence, χ(0,r)(y) = 1.
Consequently, (2.11) and (2.12) give

(2.13) χ(0,r)(x)(K|f |)(x) ≤
∫ x

0

χ(0,r)(y)k(x, y)|f(y)|dy = K(χ(0,r)|f |)(x).

By applying the quasi-norm ∥ · ∥Y on both sides of (2.13), item (2) of Definition 2.2 yields

∥χ(0,r)K|f |∥Y ≤ ∥K(χ(0,r)|f |)∥Y .

The boundedness of K : X → Y and |Kf | ≤ K|f | guarantee that

∥χ(0,r)Kf∥Y ≤ C∥χ(0,r)f∥X .

By multiplying 1
ω(r) on both sides of the above inequality, we obtain

1

ω(r)
∥χ(0,r)Kf∥Y ≤ C

1

ω(r)
∥χ(0,r)f∥X ≤ C∥f∥LMX

ω
.
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Finally, by taking the supremum over r > 0, we have

∥Kf∥LMY
ω

= sup
r>0

1

ω(r)
∥χ(0,r)Kf∥Y ≤ C∥f∥LMX

ω
.

□

The condition (X,ω) ∈ N ensures that (2.10) is meaningful. In addition, the above result
asserts that

∥K∥LMX
ω →LMY

ω
≤ ∥K∥X→Y ,

where ∥K∥LMX
ω →LMY

ω
and ∥K∥X→Y are the operator norms of K : LMX

ω → LMY
ω and K :

X → Y , respectively.
Furthermore, the above result does not assume that k is an Oinarov kernel.

3. APPLICATIONS

We give applications for Theorem 2.3 on some concrete function spaces and general Hardy-
type operators in this section. We study the general Hardy-type operators with Oinarov kernel
on the weighted local generalized Morrey spaces, the Riemann-Liouville integral on the local
generalized Morrey spaces built on rearrangement-invariant quasi-Banach function spaces. We
also establish the Hardy-type inequalities on the local generalized Morrey spaces with variable
exponents.

3.1. Weighted local generalized Morrey spaces. We extend the mapping properties of the
general Hardy-type operators with Oinarov kernel on weighted local generalized Morrey spaces
in this section.

Definition 3.4. Let p ∈ (0,∞), v be a locally integrable function and ω : (0,∞) → (0,∞) be
a Lebesgue measurable function. The weighted local generalized Morrey space LMp

v,ω consists of all
f ∈ M satisfying

∥f∥LMp
v,ω

= sup
r>0

1

ω(r)
∥χ(0,r)f∥Lp(v) < ∞.

Proposition 3.3. Let p ∈ (0,∞), v be a locally integrable function and ω : (0,∞) → (0,∞) be a
Lebesgue measurable function. If ω satisfies (2.6) and(∫ r

0

v(x)dx

) 1
p

≤ Cω(r), r ∈ (0, 1)(3.14)

for some C > 0, then LMp
v,ω is a ball quasi-Banach function space.

Proof. As v is a local integrable function, for any E ∈ I ,
∫
I
v(x)dx < ∞, we see that Lp(v) is a

ball quasi-Banach function space. According to Proposition 2.1, as ω satisfies (2.6) and (3.14),
LMp

v,ω is also a ball quasi-Banach function space. □

Proposition 3.3 guarantees that when v and ω satisfy (2.6) and (3.14), the weighted local
generalized Morrey space LMp

v,ω is nontrivial.

In particular, if θ ∈ (0, 1) and ωθ(r) =
(∫ r

0
v(x)dx

) θ
p , then (3.14) is fulfilled and LMp

v,ωθ
is a

ball quasi-Banach function space.
Theorems 1.1, 1.2 and 2.3 give the mapping properties of the general Hardy-type operators

on the weighted local generalized Morrey spaces.

Theorem 3.4. Let p, q ∈ (1,∞), u, v : (0,∞) → [0,∞) be locally integrable functions, ω : (0,∞) →
(0,∞) satisfy (2.6) and (3.14) and k be a Oinarov kernel.
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(1) If p ≤ q and K, u and v satisfy (1.1) and (1.2), then there is a constant C > 0 such that for any
f ∈ LMp

v,ω, we have
∥Kf∥LMq

u,ω
≤ C∥f∥LMp

v,ω
.

(2) If q ≤ p, 1
r = 1

q −
1
p and K, u and v satisfy (1.3) and (1.4), then there is a constant C > 0 such

that for any f ∈ LMp
v,ω , we have

∥Kf∥LMq
u,ω

≤ C∥f∥LMp
v,ω

.

We now apply the above theorem to establish the mapping properties of the Hardy operator
H on the weighted local generalized Morrey spaces. Recall that

H̃f(x) =

∫ ∞

x

f(y)dy.

Theorem 3.5. Let p, q ∈ (1,∞), u, v : (0,∞) → [0,∞) be locally integrable functions and ω :
(0,∞) → (0,∞) satisfy (2.6) and (3.14).

(1) If p ≤ q and

(3.15) sup
t>0

(∫ ∞

t

u(y)dy

) 1
q
(∫ t

0

v(y)1−p′
dy

) 1
p′

< ∞,

then there is a constant C > 0 such that for any f ∈ LMp
v,ω , we have

∥Hf∥LMq
u,ω

≤ C∥f∥LMp
v,ω

.

(2) If q ≤ p, 1
r = 1

q − 1
p and(∫ ∞

0

(
H̃u)1/q(t)(Hv1−p′

)1/q
′
(t)

)r

v1−p′
(t)dt

) 1
r

< ∞,(3.16) (∫ ∞

0

(
(H̃u)1/p(t)(Hv1−p′

)1/p
′
(t)

)r

u(t)dt

) 1
r

< ∞,(3.17)

then there is a constant C > 0 such that for any f ∈ LMp
v,ω , we have

∥Hf∥LMq
u,ω

≤ C∥f∥LMp
v,ω

.

The above results are extensions of the two weight norm inequalities of the Hardy operator
to the local generalized Morrey spaces.

We consider the case q ∈ (0, 1) in the following. We first recall the mapping properties of H
on the weighted Lebesgue spaces from [35, Theorem 1 (3)].

Theorem 3.6. Let 0 < q < 1 < p < ∞ and u, v : (0,∞) → (0,∞) be Lebesgue measurable functions.
If u, v satisfy

(3.18)
∫ ∞

0

(∫ t

0

(u(y))1−p′
dy

) r
p′
(∫ ∞

t

v(y)dy

) r
p

dt < ∞,

where 1
r = 1

q − 1
p , then(∫ ∞

0

|Hf(t)|qv(t)dt
) 1

q

≤ C

(∫ ∞

0

|f(t)|pu(t)dt
) 1

p

.

We now have the mapping properties of operator H on the weighted local generalized Mor-
rey spaces.
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Theorem 3.7. Let 0 < q < 1 < p < ∞ and u, v, ω : (0,∞) → (0,∞) be Lebesgue measurable
functions. If u, v satisfy (3.18) and ω satisfies (2.6) and (3.14), then there is a constant C > 0 such that
for any f ∈ LMp

u,ω

(3.19) ∥Hf∥Lq
v,ω

≤ C∥f∥LMp
u,ω

.

Proof. As Hf(x) =
∫ x

0
f(y)dy, H is a general Hardy operator with kernel k(x, y) ≡ 1. The

preceding theorem asserts that H : Lp(u) → Lq(v) is bounded. Moreover, (Lp, ω) ∈ N because
Proposition 3.3 assures that LMp

u,ω is a ball quasi-Banach function space. Thus, Theorem 2.3
yields (3.19). □

The above result shows that our main result also applies to local generalized Morrey spaces
built on quasi-Banach function space X .

3.2. Local generalized Morrey spaces built on rearrangement-invariant quasi-Banach func-
tion spaces. In this section, we apply Theorem 2.3 to establish the mapping properties of the
Riemann-Liouville integral on the local generalized Morrey spaces built on rearrangement-
invariant quasi-Banach function spaces.

We first recall some notations for defining of the rearrangement-invariant quasi-Banach
function spaces. For any f ∈ M and s > 0, write

df (s) = |{x ∈ (0,∞) : |f(x)| > s}|

and
f∗(t) = inf{s > 0 : df (s) ≤ t}, t > 0.

We recall the definition of rearrangement-invariant quasi-Banach function space (r.i.q.B.f.s.)
from [17, Definition 2.1].

Definition 3.5. A quasi-Banach function space X is said to be a r.i.q.B.f.s. if there exists a quasi-norm
ρX satisfying Items (1)-(3) of Definition 2.2 and (2.5) such that for any f ∈ X , we have

∥f∥X = ρX(f∗).

Next, we recall the definition of the Boyd indices. For any s ≥ 0 and f ∈ M(0,∞), define
(Dsf)(t) = f(st), t ∈ (0,∞). Let ∥Ds∥X→X be the operator norm of Ds on X . We recall the
definition of Boyd indices for r.i.q.B.f.s. from [27].

Definition 3.6. Let X be a r.i.q.B.f.s. Define the lower Boyd index of X , pX , and the upper Boyd index
of X , qX , by

pX = sup{p > 0 : ∃C > 0 such that ∀ 0 ≤ s < 1, ∥Ds∥X→X ≤ Cs−1/p},

qX = inf{q > 0 : ∃C > 0 such that ∀ 1 ≤ s, ∥Ds∥X→X ≤ Cs−1/q},

respectively.

It is easy to see that the Boyd indices for the Lebesgue space Lp, 0 < p < ∞ is 1
p .

Proposition 3.4. Let X be a r.i.q.B.f.s. and ω : (0,∞) → (0,∞) be a Lebesgue measurable function. If
ω satisfies (2.6) and there exists a q > qX and C > 0 such that

(3.20) r
1
q < Cω(r), r ∈ (0, 1),

then LMX
ω is a ball quasi-Banach function space.
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Proof. As D1/rχ(0,1)(t) = χ(0,1)(t/r) = χ(0,r)(t), for any r ∈ (0, 1), we find that for any q > qX ,
we have a constant C > 0 such that

∥χ(0,r)∥X = ∥D1/rχ(0,1)∥X ≤ Cr1/q.

The above inequality and (3.20) guarantee that (2.7) is satisfied. Therefore, Proposition 2.1
asserts that LMX

ω is a ball quasi-Banach function space. □

We need the following function space for the studies of the Riemann-Liouville integral.

Definition 3.7. Let α ≥ 0 and X be a r.i.q.B.f.s. Xα consists of all f ∈ M satisfying

∥f∥Xα
= ρX(t−αf∗(t)) < ∞.

For instance, when X = Lp, Xα is the Lorentz spaces L
p

1−pα ,α, see [17, p.901]. Moreover, Xα

has been used in [17, 18] for the studies of the mapping properties of the convolution operators,
the Fourier integral operators and the k-plane transform on r.i.q.B.f.s.

We have the following result from [17, Proposition 3.1].

Proposition 3.5. Let α > 0 and X be a r.i.q.B.f.s. If 0 < pX ≤ qX < 1
α , then Xα is a r.i.q.B.f.s.

Theorem 3.8. Let α > 0, ω : (0,∞) → (0,∞) be a Lebesgue measurable function and X be a r.i.q.B.f.s.
If 0 < pX ≤ qX < 1

α and ω satisfies (2.6) and (3.20) for some q > qX , then there is a constant C > 0

such that for any f ∈ LMX
ω

∥Rαf∥LMXα
ω

≤ C∥f∥LMX
ω
.

Proof. It is well known that for any p ∈ (1, 1
α ), RαL

p → Lq is bounded where 1
q = 1

p − α.
By applying [18, Theorem 4.1], we find that Rα : X → Xα is bounded. Consequently, as
Riemann-Liouville integral is a member of general Hardy-type operator, Theorem 2.3 yields
the boundedness of Rα : LMX

ω → LMXα
ω . □

The above result is new even for the local generalized Morrey space LMp
ω . Notice that we

have the following inequality

|Rαf(x)| ≤
∫ ∞

0

|f(y)|
|x− y|1−α

dy = (Iα|f |)(x), x ∈ (0,∞),

where Iα is the fractional integral operator on (0,∞). Therefore, by using the idea in [21,
Theorem 3.1], we can obtain the mapping properties Iα and hence, the mapping properties
of Rα on LMX

ω . While by using the idea in [21, Theorem 3.1], we need to impose a stronger
condition on ω, a condition similar to [21, (2.10)].

We now give another concrete example for Theorem 3.8. A function Φ : [0,+∞] → [0,+∞] is
a Young function if there exists an increasing and left-continuous function ϕ satisfying ϕ(0) = 0
and that ϕ is neither identically zero nor identically infinite such that

Φ(s) =

∫ s

0

ϕ(u)du, s ≥ 0.

Let ϕ be a Young function. The Orlicz space LΦ consists of all Lebesgue measurable functions
f satisfying

∥f∥LΦ = inf

{
λ > 0 :

∫ ∞

0

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
< ∞.

Let α ∈ R and Φ be a Young function. The Lorentz-Orlicz space LΦ,α consists of all Lebesgue
measurable functions f satisfying

∥f∥LΦ,α = inf

{
λ > 0 :

∫ ∞

0

Φ(t−α/nf∗(t)/λ)dt ≤ 1

}
< ∞.



10 Tat-Leung Yee and Kwok-Pun Ho

In view of [3, Chapter 4, Theorem 8.18], the Boyd indices of LΦ are given by

pLΦ
= lim

t→∞

log t

log g(t)
, and qLΦ

= lim
t→0+

log t

log g(t)
,

where

g(t) = lim sup
s→∞

Φ−1(s)

Φ−1(s/t)
.

Theorem 3.8 yields the following mapping properties of the Riemann-Liouville integral on the
local Orlicz-Morrey space MLΦ

ω .

Corollary 3.1. Let α > 0, ω : (0,∞) → (0,∞) be a Lebesgue measurable function and Φ be a Young
function. If 0 < pLΦ

≤ qLΦ
< 1

α and ω satisfies (2.6) and (3.20) for some q > qLΦ
, then there is a

constant C > 0 such that for any f ∈ LMX
ω

∥Rαf∥
LM

LΦ,α
ω

≤ C∥f∥
LM

LΦ
ω

.

For the studies of boundedness of the Calderón-Zygmund operators, the nonlinear com-
mutators of the Calderón-Zygmund operators, the oscillatory singular integral operators, the
singular integral operators with rough kernels and the Marcinkiewicz integrals on the local
Orlicz-Morrey spaces on the local Orlicz-Morrey spaces, the reader is referred to [39].

3.3. Local generalized Morrey spaces with variable exponents. In this section, we extend the
Hardy-type inequalities in [12] to the local generalized Morrey spaces with variable exponent.
Notice that the kernel for the operators studied in this section is not necessarily an Oinarov
kernel. Thus, the results in this section give examples for the use of Theorem 2.3 is not restricted
to the general Hardy-type operators with Oinarov kernels.

We begin with the definition of the Lebesgue space with variable exponent.

Definition 3.8. Let p(·) : (0,∞) → [1,∞) be a Lebesgue measurable function. The Lebesgue space
with variable exponent Lp(·) consists of all f ∈ M satisfying

∥f∥Lp(·) = inf

{
λ > 0 :

∫ ∞

0

∣∣∣∣f(x)λ

∣∣∣∣p(x) dx ≤ 1

}
< ∞.

For any Lebesgue measurable function p(·) : (0,∞) → (0,∞), define

p− = inf
x∈(0,∞)

p(x) and p+ = sup
x∈(0,∞)

p(x).

For any Lebesgue measurable function p(·) : (0,∞) → (0,∞), we write p(·) ∈ M0,∞ if there
exists a constant C > 0 such that

(1) 0 ≤ p− ≤ p+ < ∞,
(2) the limit limx→0 p(x) exists, p(0) = limx→0 p(x) and

|p(x)− p(0)| ≤ C

− lnx
, ∀x ∈ (0, 1/2],

(3) the limit limx→∞ p(x) = p∞ exists and

|p(x)− p∞| ≤ C

lnx
∀x ∈ [2,∞).
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We write p(·) ∈ P0,∞ if p(·) ∈ M0,∞ and p− ≥ 1.
We have the following result from [12, Theorems 3.1, 3.3 and Remark 3.2]. To simplify the

presentation of the results in the following, for any a ∈ R and Lebesgue measurable functions
α(·) and µ(·) on (0,∞), we write

Hα(·)f(x) = xα(x)−1

∫ x

0

f(y)

yα(y)
dy

Ha
µ(·)f(x) = xa+µ(x)−1

∫ x

0

f(y)

ya
dy,

respectively.

Theorem 3.9. Let p(·) ∈ P0,∞ and α(·) be a bounded function on (0,∞) such that the limit limx→∞ α(x) =
α∞ exists and satisfies

α(0) < 1− 1

p(0)
, α∞ < 1− 1

p∞
(3.21)

|α(x)− α(0)| ≤ C

| lnx|
, ∀x ∈ (0, 1/2],(3.22)

|α(x)− α∞| ≤ C

lnx
, ∀x ∈ (2,∞)(3.23)

for some C > 0, then there exists a constant D > 0 such that for any f ∈ Lp(·), we have

∥Hα(·)f∥Lp(·) ≤ D∥f∥Lp(·) .

Theorem 3.10. Let a ∈ R, p(·), µ(·) : (0,∞) → [1,∞) be Lebesgue measurable functions. If

(3.24) a < min

{
1− 1

p(0)
, 1− 1

p∞

}
,

p(·) ∈ P0,∞, µ(·) ∈ M0,∞,

(3.25) 0 ≤ µ(0) <
1

p(0)
and 0 ≤ µ∞ <

1

p∞
,

then for any q(·) ∈ P0,∞ satisfying

(3.26)
1

q(0)
=

1

p(0)
− µ(0) and

1

q∞
=

1

p∞
− µ∞,

we have a constant D > 0 such that for any f ∈ Lp(·)

∥Ha
µ(·)f∥Lq(·) ≤ D∥f∥Lp(·)

The above results are generalizations of the Hardy inequalities to the Lebesgue spaces with
variable exponents. For the proofs of the above theorems, the reader is referred to [12, Sections
5 and 6].

Notice that the kernels of the operators Hα(·) and Ha
µ(·) are

K1(x, y) =
xα(x)−1

yα(y)
and K2(x, y) =

xa+µ(x)−1

ya
,

respectively. In general, they are not non-decreasing in x nor non-increasing in y, therefore,
they do not satisfy Item (1) of Definition 1.1.

Even though the operators Hα(·) and Ha
µ(·) were not covered by the results in Theorems 1.1

and 1.2, our main result, Theorem 2.3 also yields the mapping properties of these operators on
the local generalized Morrey spaces with variable exponents.
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Definition 3.9. Let p(·) : (0,∞) → [1,∞) be a Lebesgue measurable function. The local generalized
Morrey space with variable exponent LMp(·)

ω consists of all f ∈ M satisfying

∥f∥
LM

p(·)
ω

= sup
r>0

1

ω(r)
∥χ(0,r)f∥Lp(·) < ∞.

When ω ≡ 1, LMp(·)
ω becomes the Lebesgue space with variable exponent Lp(·). Moreover,

the local generalized Morrey spaces with variable exponents are extensions of the local gener-
alized Morrey spaces.

For the mapping properties of the fractional integral operators, the maximal Carleson oper-
ator, the spherical maximal functions, the geometric maximal functions and the minimal func-
tions on the local generalized Morrey spaces with variable exponent and the Hardy local gen-
eralized Morrey spaces with variable exponents, the reader is referred to [19, 22, 23, 38, 40].

Let p(·) ∈ P0,∞. Whenever ω satisfies

1 ≤ Cω(r), ∥χ(0,r)∥Lp(·) > 1,(3.27)

r
1

p+ ≤ Cω(r), 1 ≥ ∥χ(0,r)∥Lp(·)(3.28)

for some C > 0, Proposition 2.2 and [10, Corollary 2.23] guarantee that LMX
ω is a ball quasi-

Banach function space.
We now present the boundedness of Hα(·) on the local generalized Morrey spaces with vari-

able exponents in the following.

Theorem 3.11. Let p(·) ∈ P0,∞, ω : (0,∞) → (0,∞) be Lebesgue measurable function and α(·) be a
bounded function. Suppose that ω satisfies (3.27) and (3.28). If α(·) satisfies (3.21), (3.22) and (3.23),
then there is a constant C > 0 such that for any f ∈ LM

p(·)
ω

∥Hα(·)f∥
LM

p(·)
ω

≤ C∥f∥
LM

p(·)
ω

.

The above result is a consequence of Theorems 2.3 and 3.9.
Next, we have the mapping properties of Ha

µ(·) in the local generalized Morrey spaces with
variable exponents. The following theorem is guaranteed by Theorems 2.3 and 3.10.

Theorem 3.12. Let a ∈ R, p(·) ∈ P0,∞, µ(·) ∈ M0,∞ and ω(·) : (0,∞) → (0,∞) be Lebesgue
measurable functions. If a, p(·), µ(·) and ω(·) satisfy (3.24), (3.25), (3.27) and (3.28), then for any
q(·) ∈ P0,∞ satisfying (3.26), there is a constant C > 0 such that for any f ∈ LM

p(·)
ω

∥Ha
µ(·)f∥LM

q(·)
ω

≤ C∥f∥
LM

p(·)
ω

.

Theorems 3.11 and 3.12 are extensions of [12, Theorems 3.1 and 3.3] from the Lebesgue
spaces with variable exponents to the local generalized Morrey spaces with variable exponents.

We now give some concrete examples on ω such that (3.27) and (3.28) are fulfilled. For any
θ ∈ (0, 1

p+
), define ωθ(r) = rθ. In view of [10, Corollary 2.23], we have limr→∞ ∥χ(0,r)∥Lp(·) =

∞, therefore, ωθ fulfills (3.27). Moreover, as p+ < ∞, [10, Theorems 2.58 and 2.62] assure that
∥ · ∥Lp(·) is an absolutely continuous norm. Thus, limr→0 ∥χ(0,r)∥Lp(·) = 0. Consequently, (3.28)
is fulfilled.

Whenever p(·) satisfies the conditions in Theorem 3.11, Hα(·) is bounded on LM
p(·)
ωθ . Simi-

larly, whenever a, p(·), q(·) and µ(·) satisfy the conditions in Theorem 3.12, Ha
µ(·) : LM

p(·)
ωθ →

LM
q(·)
ωθ is bounded.
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1. INTRODUCTION

The main theme of this work is the “multidimensional quadratic-phase Fourier transform”,
which is introduced here for the first time, generalising the well-known (one-dimensional)
quadratic-phase Fourier transform [2, 3]. This last quadratic-phase Fourier transform has
proved to be an integral operator with substantial virtues in the field of applications, showing
great potential in terms of the flexibility of the possibilities for choosing its five free parameters.
This can be seen in several recent publications, such as [1, 7, 11, 13, 14, 15, 16, 17, 18, 19] (among
many other papers). Now, with the current introduction of the multidimensional quadratic-
phase Fourier transform, where the roles of these parameters are now various matrices, it is
expected that this new operator will also be well received and used, especially in the field of
applications (even outside the discipline of Mathematics).

To better understand the structure of the proposed multidimensional quadratic-phase Fourier
transform, we will deduce some of its fundamental properties, exhibit some of its relationships
with other existing transforms and operators, and then derive some uncertainty principles as-
sociated with such new multidimensional quadratic-phase Fourier transform.

On this last point, it should be noted that in the scientific community in general, of all sci-
entific disciplines, the most famous notion of uncertainty principles is related to Quantum Me-
chanics and directly associated to the fact that Heisenberg concluded that “the position and the
momentum of an electron in an atom cannot be both determined explicitly, but only probabilis-
tically under a certain uncertainty”. Already in the Harmonic Analysis and Signal Processing
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community, the classic Heisenberg uncertainty principle for the Fourier transform is that the
product of the duration and bandwidth of a signal f(x) has a lower bound (which depends
on the square of the L2-norm of f ). This inequality has been explored in various contexts and
for various integral transforms other than the Fourier transform, becoming commonly known
as the Heisenberg-Pauli-Weyl [9, 10, 20, 21] uncertainty principle. Another uncertainty prin-
ciple that we will consider here is called Donoho-Stark and involves different concepts and
quantities, based in particular on the so-called ϵ-concentration and on the measures of certain
subsets.

This article is organised as follows. Section 2 is devoted to the introduction of the multidi-
mensional quadratic-phase Fourier transform and the deduction of its fundamental properties
(such as a Riemann-Lebesgue lemma, a Plancherel type theorem, an inversion formula and
a Hausdorff-Young inequality), which are also useful tools in the following sections. In sec-
tion 3, we obtain sufficient conditions to guarantee an uncertainty principle of the Heisenberg-
Pauli-Weyl type, in a framework of Lp(Rn) spaces (with 1 ≤ p ≤ 2), for the multidimensional
quadratic-phase Fourier transform. In the last section, we will study various structural inequal-
ities related to the multidimensional quadratic-phase Fourier transform, which will culminate
in obtaining Lp(Rn) type Donoho-Stark uncertainty principles (in a first subsection for p = 2
and then, in a second subsection, for any integrability exponent p between 1 and 2).

2. THE MULTIDIMENSIONAL QUADRATIC-PHASE FOURIER TRANSFORM

In this section, we will introduce the multidimensional quadratic-phase Fourier transform
and deduce some of its fundamental properties.

As briefly mentioned in the previous section, our main motivation in this work has to do
with the introduction of a new integral transform that conveniently generalises several well-
known integral transforms. In this sense, our goal was to be able to generalise the Fourier
transform, the fractional Fourier transform, the linear canonical transform, the offset linear
canonical transform and the quadratic-phase Fourier transform to a multidimensional context,
and to make this generalisation as global as possible using as few restrictions as possible. These
restrictions are essentially related to the concern that the new transform continues to have good
elementary and useful properties so that it has great potential for applicability (particularly in
the fields of engineering and applied physics). So, in addition to the purely mathematical as-
pect of obtaining a new “object” that generalises various other existing mathematical concepts,
care was also taken to frame the new definition with elements that would allow us to ver-
ify the existence of interesting and crucial properties that would enhance the use of this new
mathematical tool in various contexts of applicability.

In particular, let us recall that the well-known linear canonical transform of a given function
f is defined by

L{a,b,c,d}f(x) =
1√
2πib

∫
R
e

i
2b (ay

2−2yx+dx2)f(y)dy

for b ̸= 0, and by
√
d e

i
2 cdx

2

f(d x), if b = 0. The four real parameters a, b, c and d are restricted
to ad − bc = 1 and so only three parameters are free, thus transforming the linear canonical
transform into a three-parameter integral transform. Initially, this was proposed independently
for reasons deeply associated with the canonical transforms of paraxial optics [5] and quantum
mechanics [12]. In fact, as is now well-known, the discovery and development of the theory of
linear canonical transforms in the early 1970s was motivated by independent work on two quite
different physical models: paraxial optics and nuclear physics. In the first case, the integral
kernel of the linear canonical transform was written as a descriptor of the propagation of light
in the paraxial regime by Stuart A. Collins Jr. [5] and, in the second case, the linear canonical
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transform was identified by Marcos Moshinsky and Christiane Quesne [12] as a powerful tool
while they were working on certain problems on the alpha clustering and decay of radioactive
nuclei.

In addition, there is also a very natural generalisation of the linear canonical transform it-
self, called the offset linear canonical transform (OLCT) (or “special affine Fourier transform”),
which has additional flexibility by additionally presenting a time-shifted and frequency-modu-
lated. Indeed, having in mind a set of six real parameters a, b, c, d, τ, η ∈ R, such that ad−bc = 1,
it is usual to denote A = (a, b, c, d, τ, η), and for a function f (e.g. in L2(R)), the OLCT of f is
defined by

OAf(x) =

∫
R
f(y)KA(y, x) dy,

with

KA(y, x) =
1√
i2π|b|

ei
dτ2

2b ei[
a
2by

2+ 1
b y(τ−x)− 1

bx(dτ−bη)+ d
2bx

2],

if b ̸= 0, and by
√
dei

cd
2 (x−τ)2+iηxf [d(x− τ)] if b = 0 (i.e., in the case of b = 0, the OLCT is simply

a chirp multiplication operator). This generalisation has revealed a wide range of important
applications, particularly in the area of signal processing and the modelling of optical systems.
Naturally, this wide applicability is closely linked to the flexibility of the OLCT and its wide
range of generalisations of other integral transforms, such as the Fourier transform and the
fractional Fourier transform, the Fresnel transform, the shifted fractional Fourier transform
and the linear canonical transform itself.

Moreover, for parameters a, b, c, d, e ∈ R (with b ̸= 0), and the quadratic-phase function

Q(a,b,c,d,e)(x, y) := ax2 + bxy + cy2 + dx+ ey,(2.1)

in [2] it was introduced the so-called quadratic-phase Fourier transform Q given by

(Qf)(x) :=
1√
2π

∫
R
f(y) eiQ(a,b,c,d,e)(x,y) dy,(2.2)

where f ∈ L1(R) or f ∈ L2(R). Thus, we may observe that when a = c = d = e = 0 and b = ±1,
Q is simply the Fourier and inverse Fourier integral transforms, respectively. Moreover, when
d = e = 0, the kernel generated by (2.1) includes the kernel of the linear canonical transform
as well as of the one of the fractional Fourier transform (up to the choice of some constant
factors that do not change the properties of corresponding integral operators). Given the above
definitions, it is also clear that the quadratic-phase Fourier transform encompasses the OLCT
as a particular case.

It is in this framework that we propose to introduce a generalisation of the quadratic-phase
Fourier transform (2.2) to the n-dimensional setting, thus performing several generations of the
aforementioned integral transforms at once. To this end, the central idea of the proposed def-
inition was to consider the most appropriate possible replacement of the real parameters that
appear in the quadratic-phase function (cf. (2.1)) of the kernel of the quadratic-phase Fourier
transform by matrices (with real entries) and to take sufficient care to ensure that these matrices
were arranged appropriately (given the non-commutativity of their multiplication) and that, as
a result, fundamental properties of this new integral operator could be demonstrated.

It is therefore in this context and expectation that we propose the following definition of the
multidimensional quadratic-phase Fourier transform.
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Definition 2.1. Let A, B, C, D and E be n × n matrices with B being symmetric and det(B) ̸= 0.
The multidimensional quadratic-phase Fourier transform (MQFT) of f ∈ L1(Rn) is defined by

[QM (f)] (x) :=

∫
Rn

f(y)KQ
M (x, y) dy,

where
KQ

M (x, y) := Ω(B,n)eiQ(A−E)(x,y)

with Ω(B,n) :=
(

i
2π

)n/2
(det(B))1/2, Q(A−E)(x, y) := xTAx+xTBy+yTCy+

#»
1Dx+

#»
1Ey, and

#»
1 := (1, 1, . . . , 1), and where the symbol T is denoting the transpose operator.

Remark 2.1. As previously announced this is a generalisation, for the multidimensional case, of several
other operators (or integral transforms), as it is the case of the “Quadratic-Phase Fourier Transform”
introduced in [2] (and also related with the framework of [3]).

Remark 2.2. The just introduced multidimensional quadratic-phase Fourier transform is also a gener-
alisation of several other multidimensional integral transforms. Namely:

(i) for A = C = D = E = 0 and B = I , we recover the multidimensional Fourier transform;
(ii) for D = E = 0,

A = C =
1

2
diag(cot(α1), cot(α2), . . . , cot(αn))

and
B = −diag(csc(α1), csc(α2), . . . , csc(αn)),

with αp ̸= kπ, for all k ∈ N0 and p = 1, . . . , n, we obtain the multidimensional fractional
Fourier transform;

(iii) considering the multidimensional LCT (MLCT) defined in [4] and the corresponding matrix

M =

[
G H
I J

]
,

we obtain this transform, through the MQFT, considering D = E = 0 and

A =
JH−1

2
,

B =−H−T ,

C =
H−1G

2
,

with A,C being symmetric matrices. In this way, the matrix M (that characterises the MLCT),
in terms of the matrices that appear in the kernel of the MQFT, is given by

M =

[
−2B−TC −B−T

B − 4AB−TCT −2AB−T

]
,

being this M a symplectic matrix (under the present conditions).

Moreover, note that we can rewrite the MQFT in terms of the Fourier transform F , some
variable transformations and also certain chirp functions, in the form

(2.3) [QM (f)] (x) = in/2(det(B))1/2ei(x
TAx+

#»
1Dx)

[
F(f(y)ei(y

TCy+
#»
1Ey))

]
(BTx),

where

(Ff) (x) =

(
1√
2π

)n ∫
Rn

f(y)eix
T y dy.
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In this work, we will often use the usual Lp(Rn) norms (for p ∈ [1,∞]) and denote them by
∥ · ∥Lp(Rn).

Lemma 2.1 (Riemann-Lebesgue Lemma for the MQFT). QM is a bounded linear operator from
L1(Rn) into C0(Rn). Namely, if f ∈ L1(Rn), then QM (f) ∈ C0(Rn) and

∥QM (f)∥L∞(Rn) ≤
|det(B)|1/2

(2π)n/2
∥f∥L1(Rn).

Proof. Using the identity (2.3), and the Riemann-Lebesgue Lemma for the Fourier transform,
we see that QM (f) ∈ C0(Rn), provided f ∈ L1(Rn). Moreover, from the definition of QM , we
have

∥QM (f)∥L∞(Rn) = sup
x∈Rn

∣∣∣∣ in/2(det(B))1/2

(2π)n/2

∫
Rn

eiQ(A−E)(x,y)f(y) dy

∣∣∣∣
≤ sup

x∈Rn

|det(B)|1/2

(2π)n/2

∫
Rn

∣∣∣eiQ(A−E)(x,y)
∣∣∣ |f(y)| dy

=
|det(B)|1/2

(2π)n/2
∥f∥L1(Rn).

□

We will continue with a result that shows the invertibility of the MQFT and presents a for-
mula for its inverse.

Theorem 2.1. If f ∈ L1(Rn) and QM (f) ∈ L1(Rn) ∩ C0(Rn), then

(2.4) f(x) =

∫
Rn

KQ
M (y, x)[QM (f)](y) dy

for almost every x ∈ Rn, where

(2.5) KQ
M (y, x) := Ω(B,n)e−iQ(A−E)(y,x).

Proof. Using a substitution of variable in (2.3) allows us to rewrite the QM in the form
(2.6)
[QM (f)] (x) = in/2(det(B))−1/2ei(x

TAx+
#»
1Dx)

[
F(f(B−1y)ei((B

−1y)TC(B−1y)+
#»
1E(B−1y)))

]
(x).

We shall make use of the operators τB and Mg , given by

(τBf) (x) := f(Bx)

and
(Mgf) (x) := g(x)f(x)

for the matrix B (and its inverse), and any function g, respectively.
So, from (2.6), we can write

(2.7) [QM (f)] (x) = [Mcew1 F τB−1 Mew2 (f)] (x),

with

c :=in/2(det(B))−1/2;

w1(x) :=i(xTAx+
#»
1Dx);

w2(x) :=i(xTCx+
#»
1Ex).
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It is clear that all the operators used in the right-hand side of (2.7) are invertible in the present
framework, and therefore, from (2.7), we have[

Q−1
M (f)

]
(x) =

[
Me−w2 τB F−1 Mc−1e−w1 (f)

]
(x),

and so (2.4) is obtained. □

Lemma 2.2 (Plancherel type Lemma for the MQFT). If f ∈ L2(Rn), then

(2.8) ∥QM (f)∥L2(Rn) =
1

(2π)n/2
∥f∥L2(Rn).

Proof. Using (2.3) and having in mind the Plancherel theorem for the Fourier transform, we
have

∥QM (f)∥L2(Rn) =
∣∣∣∣∣∣in/2(det(B))1/2ei(x

TAx+
#»
1Dx)

[
F(f(y)ei(y

TCy+
#»
1Ey))

]
(BTx)

∣∣∣∣∣∣
L2(Rn)

=|det(B)|1/2|det(B)|−1/2 1

(2π)n/2
∥f∥L2(Rn)

=
1

(2π)n/2
∥f∥L2(Rn).

□

Remark 2.3. It is clear from the identity (2.8) that, although the MQFT defined here is not uni-
tary (in L2(Rn)), a small modification of the definition, taking into account a different constant,
can compensate for the constant now obtained in the identity (2.8), transforming it into the
constant one. From this perspective, it is easy to redefine the MQFT (using a different constant)
to make it a unitary operator.

We recall that for 1 < p < 2, we have

Lp(Rn) ⊂ L1(Rn) + L2(Rn) = {f1 + f2 : f1 ∈ L1(Rn), f2 ∈ L2(Rn)}.

Thus, a possible way to interpret the definition of QM in Lp(Rn), for 1 < p < 2, is to consider
f ∈ Lp(Rn) such that f = f1 + f2, with f1 ∈ L1(Rn), f2 ∈ L2(Rn), and then read off the MQFT
of f in the form QM (f) = QM (f1) +QM (f2).

For the reader’s benefit, let us now briefly recall the statement of Riesz-Thorin Interpolation
Theorem that we will use in the next proof.

Theorem 2.2 (Riesz-Thorin Interpolation Theorem; cf., e.g., [8]). Let (X,µ) and (Y, ν) be measure
spaces and 1 ≤ p0, p1, q0, q1 ≤ ∞ (and the measure ν on Y is also required to be semifinite when
q0 = q1 = ∞).

If T : (Lp0(X,µ) + Lp1(X,µ)) → (Lq0(Y, ν) + Lq1(Y, ν)) is a linear operator such that

∥Tf∥Lq0 (Y,ν) ≤ M0∥f∥Lp0 (X,µ), ∥Tg∥Lq1 (Y,ν) ≤ M1∥g∥Lp1 (X,µ)

for all f ∈ Lp0(X,µ) and g ∈ Lp1(X,µ), and we consider the interpolated exponents

1

pθ
=

1− θ

p0
+

θ

p1
,

1

qθ
=

1− θ

q0
+

θ

q1

for some θ ∈ [0, 1], then T : Lpθ (X,µ) → Lqθ (Y, ν) is bounded and

∥Tg∥Lqθ (Y,ν) ≤ M1−θ
0 Mθ

1 ∥g∥Lpθ (X,µ)

for all f ∈ Lpθ (X,µ).
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Theorem 2.3 (Hausdorff-Young Inequality for QM ). Let 1 ≤ p ≤ 2 and take p′ as the conjugate
exponent of p (meaning that p′ ≥ 2 and 1

p + 1
p′ = 1). If f ∈ Lp(Rn) then QM (f) ∈ Lp′

(Rn) and

∥QM (f)∥Lp′ (Rn) ≤
|det(B)|1/p−1/2

(2π)n/2
∥f∥Lp(Rn).

Proof. We recall that from Lemma 2.2 we already know that for p = 2 it holds

(2.9) ∥QM (f)∥L2(Rn) =
1

(2π)n/2
∥f∥L2(Rn), f ∈ L2(Rn),

and from Lemma 2.1, for p = 1, we have

(2.10) ∥QM (f)∥L∞(Rn) ≤
|det(B)|1/2

(2π)n/2
∥f∥L1(Rn), f ∈ L1(Rn).

Thus, using the Riesz-Thorin Interpolation Theorem, we obtain that QM (f) : Lp(Rn) → Lp′
(Rn)

is a bounded operator for p ∈ [1, 2] (with p′ being the conjugate exponent of p). In addition, the
interpolation exponent θ must satisfy

θ

1
+

1− θ

2
=

1

p
.

Thus, θ = 2
p − 1 and so, again from (2.9) and (2.10), it follows

∥QM (f)∥Lp′ (Rn) ≤
|det(B)|θ/2

(2π)n/2
∥f∥Lp(Rn), f ∈ Lp(Rn).

□

3. HEISENBERG-PAULI-WEYL UNCERTAINTY PRINCIPLE

In this section, we present a Lp-type Heisenberg-Pauli-Weyl uncertainty principle associated
with the MQFT.

Theorem 3.4. If 1 ≤ p ≤ 2, f ∈ L2(Rn), yf ∈ Lp(Rn), xQM (f) ∈ Lp(Rn), then

(3.11) ∥yf∥Lp(Rn)∥xQM (f)∥Lp(Rn) ≥
|det(B)|1/2−1/p

σmax(B)

n∥f∥L2(Rn)

2
,

where σmax(B) is the maximum singular value of the matrix B. Moreover, the equality holds if and
only if p = 2, λmax(BBT ) = λmin(BBT ) (where λ(BBT ) represents an eigenvalue of the matrix
BBT ) and f(y)ei(y

TCy+
#»
1Ey) is a Gaussian function.

Proof. From (2.3), we know that

[QM (f)] (x) = in/2(det(B))1/2ei(x
TAx+

#»
1Dx)

[
F(f(y)ei(y

TCy+
#»
1Ey))

]
(BTx).

Moreover, ∥yf∥Lp(Rn) = ∥yf(y)ei(yTCy+
#»
1Ey)∥Lp(Rn) and

∥(BTx) [QM (f)] (x)∥Lp(Rn)

=
∣∣∣∣∣∣(BTx)in/2(det(B))1/2ei(x

TAx+
#»
1Dx)

[
F(f(y)ei(y

TCy+
#»
1Ey))

]
(BTx)

∣∣∣∣∣∣
Lp(Rn)

= |det(B)|1/2
∣∣∣∣∣∣(BTx)

[
F(f(y)ei(y

TCy+
#»
1Ey))

]
(BTx)

∣∣∣∣∣∣
Lp(Rn)

= |det(B)|1/2−1/p
∣∣∣∣∣∣x [F(f(y)ei(y

TCy+
#»
1Ey))

]
(x)
∣∣∣∣∣∣
Lp(Rn)

.



22 Luís Pinheiro Castro and Rita Correia Guerra

If f ∈ L2(Rn), then f(y)ei(y
TCy+

#»
1Ey) ∈ L2(Rn). Using the Heisenberg-Pauli-Weyl uncertainty

principle for the multidimensional Fourier transform (cf. Lemma 5 of [4]), we have

∥yf(y)∥Lp(Rn)∥(BTx) [QM (f)] (x)∥Lp(Rn)

= |det(B)|1/2−1/p∥yf(y)ei(y
TCy+

#»
1Ey)∥Lp(Rn)

∣∣∣∣∣∣x [F(f(y)ei(y
TCy+

#»
1Ey))

]
(x)
∣∣∣∣∣∣
Lp(Rn)

≥ |det(B)|1/2−1/pn∥f∥L2(Rn)

2
.(3.12)

Additionally, |BTx|2 = xTBBTx. We note that the matrix BBT is a real and symmetric matrix,
so there exists an orthogonal matrix U such that

UT (BBT )U = diag[λ1, λ2, . . . , λn],

where λ1, λ2, . . . , λn are eigenvalues of BBT .
We also have that

(3.13) |BTx|2 = xTBBTx ≤ λmax(BBT )xTUIUTx = λmax(BBT )|x|2.

Therefore,

|BTx|p ≤
[
λmax(BBT )

]p/2 |x|p.
So, considering also now (3.12), it follows[

λmax(BBT )
]1/2∥yf(y)∥Lp(Rn)∥x [QM (f)] (x)∥Lp(Rn)

≥∥yf(y)∥Lp(Rn)∥(BTx) [QM (f)] (x)∥Lp(Rn)

≥ |det(B)|1/2−1/pn∥f∥L2(Rn)

2
.(3.14)

As λmax(BBT ) = σ2
max(B), then the inequality can be rewritten as

(3.15) ∥yf(y)∥Lp(Rn)∥x [QM (f)] (x)∥Lp(Rn) ≥
|det(B)|1/2−1/p

σmax(B)

n∥f∥L2(Rn)

2
.

From (3.13), we have that |BTx|2 = λmax(BBT )|x|2 if and only if

(3.16) λmax(BBT ) = λmin(BBT ) = σ2
max(B) = σ2

min(B) = σ2(B).

According to Lemma 5 of [4] (and also [6], for the unidimensional case), the equality in (3.14)
is attained if and only if p = 2 and f(y)ei(y

TCy+
#»
1Ey) is a Gaussian function, that is,

f(y)ei(y
TCy+

#»
1Ey) = cek|y|

2

,

where c is a constant and k < 0. So, we have

∥yf∥Lp(Rn)∥xQM (f)∥Lp(Rn) =
1

σmax(B)

n∥f∥L2(Rn)

2

if and only if B satisfies (3.16) and f(y)ei(y
TCy+

#»
1Ey) = cek|y|

2

. □

4. DONOHO-STARK UNCERTAINTY PRINCIPLES

In this section, we study the Donoho-Stark uncertainty principles of type Lp. In a first sub-
section, we will do so in the most standard framework of p = 2, and then, in a second subsec-
tion, we will consider the case of p between 1 and 2.
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4.1. L2-type Donoho-Stark uncertainty principles. We start by defining two operators on
L2(Rn):

PΛf = χΛf

and

QΓf = Q−1
M [χΓQM (f)] ,

where Λ and Γ are measurable sets on Rn, and χΓ denotes the characteristic function on Γ.

Definition 4.2. (i) Let Λ be a measurable set on Rn, 0 < εΛ < 1 and f ∈ L2(Rn). f is called
εΛ-concentrated on Λ if

∥PΛcf∥L2(Rn) ≤ εΛ∥f∥L2(Rn).

(ii) Let Γ be a measurable set on Rn, 0 < εΓ < 1 and f ∈ L2(Rn). QM (f) is said to be εΓ-
concentrated on Γ if

∥QΓcf∥L2(Rn) ≤ εΓ∥f∥L2(Rn).

We will make use of the usual operator norms of PΛ, QΓ : L2(Rn) → L2(Rn) defined by

∥PΛ∥ := sup
f∈L2(Rn)

∥PΛf∥L2(Rn)

∥f∥L2(Rn)

and

∥QΓ∥ := sup
f∈L2(Rn)

∥QΓf∥L2(Rn)

∥f∥L2(Rn)
,

respectively.
In addition, we will also use the Hilbert-Schmidt norm of operators L : L2(Rn) → L2(Rn)

of the form (Lf)(x) =
∫
Rn f(y)K(x, y) dy, where f ∈ L2(Rn) and K(x, y) ∈ L2(Rn × Rn). We

recall that the Hilbert-Schmidt norm of L is given by

∥L∥HS :=

(∫
Rn

∫
Rn

|K(x, y)|2dydx
)1/2

.

Lemma 4.3. Let Λ and Γ be two measurable sets of Rn such that 0 < |Λ|, |Γ| < ∞. Then,

∥QΓPΛ∥HS = (2π)n/2|Ω(B,n)||Λ|1/2|Γ|1/2.

Proof. From the definitions of PΛ and QΓ, we have

[QΓPΛf ](t) =Q−1
M [χΓQM (χΛf)](t)

=

∫
Γ

∫
Rn

(χΛf)(y)KQ
M (x, y)KQ

M (x, t)dydx

=

∫
Rn

(χΛf)(y)

∫
Γ

KQ
M (x, y)KQ

M (x, t)dydx

=

∫
Rn

f(y)χΛ(y)K(t, y)dy,
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with ht(x) := K(t, y) =
∫
Rn χΓ(t)KQ

M (x, y)KQ
M (x, t)dx. Let us now compute

[QM (χΛht)](x1) =

∫
Rn

χΛ(y)KQ
M (x1, y)

(∫
Rn

χΓ(t)KQ
M (x, y)KQ

M (x, t)dx

)
dy

=

∫
Rn

χΛ(y)

(∫
Rn

χΓ(t)KQ
M (x, y)KQ

M (x, t)dx

)
KQ

M (x1, y) dy

=QM [χΛ(Q−1
M (χΓKQ

M ))(t)](x1)

=χΛ(t)χΓ(x1)KQ
M (x1, t).

Note that χΛ(λ)ht(λ) ∈ L2(Rn). Using the last identity and the Plancherel Theorem, we
have

∥QΓPΛ∥2HS =

∫
Rn

∫
Rn

|χΛ(y)K(t, y)|2 dydt

=

∫
Rn

∫
Rn

|χΛ(y)ht(y)|2 dydt

=(2π)n
∫
Rn

∫
Rn

|[QM (χΛht)](x)|2 dxdt

=(2π)n
∫
Rn

∫
Rn

|χΛ(t)χΓ(x)KQ
M (x, t)|2 dxdt

=(2π)n|Ω(B,n)|2|Λ||Γ|.

So, ∥QΓPΛ∥HS = (2π)n/2|Ω(B,n)||Λ|1/2|Γ|1/2. □

The next Lemma gives a relation between ∥PΛQΓ∥HS and ∥QΓPΛ∥HS .

Lemma 4.4. Let Λ and Γ be subsets of Rn with finite (nonzero) measure. Then,

∥PΛQΓ∥HS = ∥QΓPΛ∥HS .

Proof. Let K(t, y) =
∫
Γ
KQ

M (x, y)KQ
M (x, t)dx. We have that K(t, y) = K(y, t) ∈ L2(Rn) with

respect to y. Let f ∈ L2(Rn) and g ∈ C∞
c (Rn). Then, we have∣∣∣∣∫

Γ

[QM (f)](x)KQ
M (x, t)dx−

∫
Rn

f(y)K(t, y) dy

∣∣∣∣
=

∣∣∣∣∫
Γ

[QM (f − g)](x)KQ
M (x, t)dx+

∫
Γ

[QM (g)](x)KQ
M (x, t)dx−

∫
Rn

f(y)K(t, y) dy

∣∣∣∣
≤
∣∣∣∣∫

Rn

[QM (f − g)](x)χΓ(x)KQ
M (x, t)dx

∣∣∣∣+ ∣∣∣∣∫
Γ

[QM (g)](x)KQ
M (x, t)dx−

∫
Rn

f(y)K(t, y) dy

∣∣∣∣
=

∣∣∣∣∫
Rn

[QM (f − g)](x)χΓ(x)KQ
M (x, t)dx

∣∣∣∣+ ∣∣∣∣∫
Γ

g(y)K(t, y)dy −
∫
Rn

f(y)K(t, y) dy

∣∣∣∣
≤|Γ|1/2|Ω(B,n)|∥QM (f − g)∥L2(Rn) +

∣∣∣∣∫
Γ

(f − g)(y)K(t, y)dy

∣∣∣∣
≤ 1

(2π)n/2
|Γ|1/2|Ω(B,n)|∥f − g∥L2(Rn) + ∥f − g∥L2(Rn)∥K(t, y)∥L2(Rn)

<cε
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for a constant c and an arbitrarily small positive ε. So, this allows us to conclude that

[PΛQΓf ](t) =χΛQ−1
M [χΓQM (f)](t)

=χΛ(t)

∫
Γ

[QM (f)](x)KQ
M (x, t)dx

=χΛ(t)

∫
Rn

f(y)K(t, y) dy.

Now, the last information together with the Plancherel Theorem give us

∥PΛQΓ∥2HS =

∫
Rn

χΛ(t)

∫
Rn

|K(t, y)|2 dydt

=

∫
Rn

χΛ(t)

∫
Rn

|ht(y)|2 dydt

=(2π)n
∫
Rn

χΛ(t)

∫
Rn

|QM (ht)(x)|2 dxdt

=(2π)n
∫
Rn

χΛ(t)

∫
Rn

|χΓ(x)KQ(x, t)|2 dxdt

=(2π)n|Ω(B,n)|2|Λ||Γ|.

Therefore, ∥PΛQΓ∥HS = (2π)n/2|Ω(B,n)||Λ|1/2|Γ|1/2. □

Corollary 4.1. Suppose that f , Λ and Γ satisfy the conditions of Lemmas 4.3 and 4.4. Then,

(i) ∥QΓPΛ∥ ≤ ∥QΓPΛ∥HS = (2π)n/2|Ω(B,n)||Λ|1/2|Γ|1/2,
(ii) ∥PΛQΓ∥ ≤ ∥PΛQΓ∥HS = (2π)n/2|Ω(B,n)||Λ|1/2|Γ|1/2.

This corollary follows directly from the definitions of ∥ · ∥ and ∥ · ∥HS and Lemmas 4.3 and
4.4.

Theorem 4.5. Let Λ and Γ be two measurable sets of Rn such that 0 < |Λ|, |Γ| < ∞, f ∈ L2(Rn) and
ε1 + ε2 < 1. If f is εΛ-concentrated on Λ and QM (f) is εΓ-concentrated on Γ, then

(4.17) |Λ||Γ| ≥ 1

(2π)n

(
1− εΛ − εΓ
|Ω(B,n)|

)2

.

Proof. By Lemma 2.2, we have that ∥QΓf∥L2(Rn) ≤ (2π)n/2∥QM (f)∥L2(Rn) = ∥f∥L2(Rn) and so

(4.18) ∥QΓ∥ = sup
f∈L2(Rn)

∥QΓf∥L2(Rn)

∥f∥L2(Rn)
≤ 1.

Now, we consider

∥f −QΓPΛf∥L2(Rn) =∥f −QΓf +QΓf −QΓPΛf∥L2(Rn)

≤∥f −QΓf∥L2(Rn) + ∥QΓf −QΓPΛf∥L2(Rn).

Since QM (f) is εΓ-concentrated on Γ, we have that ∥f − QΓf∥L2(Rn) ≤ εΓ∥f∥L2(Rn). On the
other hand, using (4.18), we have

∥QΓf −QΓPΛf∥L2(Rn) ≤ ∥QΓ∥∥f − PΛf∥L2(Rn) ≤ ∥f − PΛf∥L2(Rn) ≤ εΛ∥f∥L2(Rn),

since f is εΛ-concentrated on Λ.
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In this way, we have ∥f −QΓPΛf∥L2(Rn) ≤ (εΓ + εΛ)∥f∥L2(Rn), which gives that

∥QΓPΛ∥ ≥
∥QΓPΛf∥L2(Rn)

∥f∥L2(Rn)

≥
∥f∥L2(Rn) − ∥f −QΓPΛf∥L2(Rn)

∥f∥L2(Rn)

≥1− εΓ − εΛ

(where we have used the inequality

∥f∥L2(Rn) = ∥f −QΓPΛf +QΓPΛf∥L2(Rn) ≤ ∥f −QΓPΛf∥L2(Rn) + ∥QΓPΛf∥L2(Rn)).

By Corollary 4.1, we obtain (2π)n/2|Ω(B,n)||Γ|1/2|Λ|1/2 ≥ 1 − εΓ − εΛ, that is equivalent to
(4.17). □

Theorem 4.6. Let Λ,Γ ⊆ Rn be two measurable sets such that 0 < |Λ|, |Γ| < ∞, and f ∈ L2(Rn).
Let εΛ, εΓ > 0 be such that ε2Λ + ε2Γ < 1. If f is εΛ-concentrated on Λ and QM (f) is εΓ-concentrated
on Γ, then

|Λ||Γ| ≥ 1

(2π)n

(
1−

√
ε2Λ + ε2Γ

|Ω(B,n)|

)2

.

Proof. We have
I = PΛ + PΛc = PΛQΓ + PΛQΓc + PΛc ,

where I is the identity operator. From this identity, we obtain

∥f − PΛQΓf∥2L2(Rn) = ∥PΛQΓcf + PΛcf∥2L2(Rn).

From the orthogonality between PΛ and PΛc , we have

∥f − PΛQΓf∥2L2(Rn) = ∥PΛQΓcf + PΛcf∥2L2(Rn) ≤ ∥QΓcf∥2L2(Rn) + ∥PΛcf∥2L2(Rn).

This implies that

∥f − PΛQΓf∥L2(Rn) ≤
(
∥PΛcf∥2L2(Rn) + ∥QΓcf∥2L2(Rn)

)1/2
≤
(
ε2Λ∥f∥2L2(Rn) + ε2Γ∥f∥2L2(Rn)

)1/2
≤
(
ε2Λ + ε2Γ

)1/2 ∥f∥L2(Rn).

On the other hand, we have

∥f − PΛQΓf∥L2(Rn) ≥∥f∥L2(Rn) − ∥PΛQΓf∥L2(Rn)

≥∥f∥L2(Rn) − ∥PΛQΓ∥∥f∥L2(Rn)

=(1− ∥PΛQΓ∥) ∥f∥L2(Rn).

Consequently, we have

(1− ∥PΛQΓ∥) ∥f∥L2(Rn) ≤ ∥f − PΛQΓf∥L2(Rn) ≤
(
ε2Λ + ε2Γ

)1/2 ∥f∥L2(Rn).

Corollary 4.1 gives us that ∥PΛQΓ∥ ≤ (2π)n/2|Ω(B,n)||Λ|1/2|Γ|1/2. Hence,(
1− (2π)n/2|Ω(B,n)||Λ|1/2|Γ|1/2

)
∥f∥L2(Rn) ≤ (1− ∥PΛQΓ∥) ∥f∥L2(Rn)

≤
(
ε2Λ + ε2Γ

)1/2 ∥f∥L2(Rn),
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i.e.,

(2π)n/2|Ω(B,n)||Λ|1/2|Γ|1/2 ≥ 1−
√

ε2Λ + ε2Γ,

and so,

|Λ||Γ| ≥

(
1−

√
ε2Λ + ε2Γ

(2π)n/2|Ω(B,n)|

)2

.

□

4.2. Lp-type Donoho-Stark uncertainty principles, with 1 ≤ p ≤ 2. In this subsection we will
study certain Donoho-Stark uncertainty principles in the context of Lp(Rn) spaces, for which,
as preparatory results, we will obtain new inequalities that can also be compared, in a certain
sense, with the Hausdorff-Young inequality already obtained for QM in the previous section.
Those inequalities will also involve the essential supports (“ess supp ”) of f ∈ Lp(Rn) and its
MQFT.

Proposition 4.1. If f ∈ L1(Rn) ∩ Lp(Rn), 1 ≤ p ≤ 2, then

∥QM (f)∥Lp′ (Rn) ≤
|det(B)|1/2

(2π)n/2
∥f∥Lp(Rn)|ess supp f |1/p

′
|ess suppQM (f)|1/p

′
,

where 1
p + 1

p′ = 1.

Proof. By the Riemann-Lebesgue Lemma and Hölder’s inequality, we have

∥QM (f)∥Lp′ (Rn) ≤∥QM (f)∥L∞(Rn)|ess suppQM (f)|1/p
′

≤|det(B)|1/2

(2π)n/2
∥f∥L1(Rn)|ess suppQM (f)|1/p

′

≤|det(B)|1/2

(2π)n/2
∥f∥Lp(Rn)|ess supp f |1/p

′
|ess suppQM (f)|1/p

′
.

□

Proposition 4.2. If f ∈ L2(Rn) ∩ Lp(Rn), 1 ≤ p ≤ 2, with p′ being such that 1/p+ 1/p′ = 1, then
(4.19)

∥QM (f)∥L2(Rn) ≤
|det(B)|1/p−1/2

(2π)n/2
∥f∥L2(Rn)|ess supp f |(2−p)/2p|ess suppQM (f)|(p

′−2)/2p′
.

Proof. By the Hausdorff-Young inequality and generalised Hölder’s inequality, we obtain

∥QM (f)∥L2(Rn) ≤∥QM (f)∥Lp′ (Rn)|ess suppQM (f)|(p
′−2)/2p′

≤|det(B)|1/p−1/2

(2π)n/2
∥f∥Lp(Rn)|ess suppQM (f)|(p

′−2)/2p′

≤|det(B)|1/p−1/2

(2π)n/2
∥f∥L2(Rn)|ess supp f |(2−p)/2p|ess suppQM (f)|(p

′−2)/2p′
.

□

Corollary 4.2. If f ∈ L2(Rn) ∩ Lp(Rn), 1 ≤ p ≤ 2, then

|ess suppQM (f)|(p
′−2)/2p′

≥ |det(B)|1/2−1/p|ess supp f |(p−2)/2p,

where p′ is the conjugate exponent of p.
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Proof. We only have to consider the Plancherel Theorem for the MQFT, together with (4.19), to
obtain

|det(B)|1/p−1/2|ess supp f |(2−p)/2p|ess suppQM (f)|(p
′−2)/2p′

≥ 1.

□

Lemma 4.5. Let Λ,Γ be two measurable subsets of Rn such that 0 < |Λ|, |Γ| < ∞ and f ∈ L1(Rn) ∩
Lp(Rn), 1 ≤ p ≤ 2, with 1/p+ 1/p′ = 1. Then,

(i) ∥QM (QΓf)∥Lp′ (Rn) ≤
| det(B)|1/p−1/2

(2π)n/2 ∥f∥Lp(Rn);

(ii) ∥QM (QΓPΛf)∥Lp′ (Rn) ≤ |Ω(B,n)||Λ|1/p′ |Γ|1/p′∥f∥Lp(Rn).

Proof. By the Hausdorff-Young inequality for QM , we have

(i)

∥QM (QΓf)∥Lp′ (Rn) =

(∫
Γ

|[QM (f)](x)|p
′
dx

)1/p′

≤∥QM (f)∥Lp′ (Rn)

≤|det(B)|1/p−1/2

(2π)n/2
∥f∥Lp(Rn);

(ii)

∥QM (QΓPΛf)∥Lp′ (Rn) =

(∫
Γ

|[QM (PΛf)](x)|p
′
dx

)1/p′

=

(∫
Γ

∣∣∣∣∫
Λ

f(y)KQ
M (x, y) dy

∣∣∣∣p′

dx

)1/p′

.

In addition, it holds∣∣∣∣∫
Λ

f(y)KQ
M (x, y) dy

∣∣∣∣ ≤(∫
Λ

|f(y)|p dx
)1/p(∫

Λ

|KQ
M (x, y)|p

′
dy

)1/p′

≤∥f∥Lp(Rn)|Λ|1/p
′
|Ω(B,n)|.

So,

∥QM (QΓPΛf)∥Lp′ (Rn) ≤
(∫

Γ

∥f∥p
′

Lp(Rn)|Λ| dx
)1/p′

|Ω(B,n)|

=∥f∥Lp(Rn)|Λ|1/p
′
|Γ|1/p

′
|Ω(B,n)|.

□

Definition 4.3. (i) f ∈ Lp(Rn) is said to be εΛ-concentrated on Λ in Lp-norm if

∥PΛc∥Lp(Rn) = ∥f − PΛf∥Lp(Rn) ≤ εΛ∥f∥Lp(Rn).

(ii) QM (f) is is called εΓ-concentrated on Γ in Lp-norm if

∥QM (QΓcf)∥Lp(Rn) = ∥QM (f)−QM (QΓf)∥Lp(Rn) ≤ εΓ∥QM (f)∥Lp(Rn).
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Theorem 4.7. Let Λ,Γ be two measurable subsets of Rn such that 0 < |Λ|, |Γ| < ∞, and f ∈ L1(Rn)∩
Lp(Rn), 1 ≤ p ≤ 2. If f is εΛ-concentrated on Λ in Lp-norm and QM (f) is εΓ-concentrated on Γ in
Lp′

-norm, and 1/p+ 1/p′ = 1, then

∥QM (f)∥Lp′ (Rn) ≤

 | det(B)|1/p−1/2

(2π)n/2 εΛ + |Ω(B,n)||Λ|1−1/p|Γ|1−1/p

1− εΓ

 ∥f∥Lp(Rn).

Proof. Consider

∥QM (f)∥Lp′ (Rn) =∥QM (f)−QM (QΓPΛf) +QM (QΓPΛf)∥Lp′ (Rn)

≤∥QM (QΓPΛf)∥Lp′ (Rn) + ∥QM (f)−QM (QΓf)∥Lp′ (Rn)

+∥QM (QΓf)−QM (QΓPΛf)∥Lp′ (Rn)

≤∥QM (QΓPΛf)∥Lp′ (Rn) + εΓ∥QM (f)∥Lp′ (Rn) + ∥QM [QΓ(f − PΛf)]∥Lp′ (Rn).

By (i) in Lemma 4.5 and the fact that f is εΛ-concentrated on Λ in the Lp norm, we have

∥QM [QΓ(f − PΛf)]∥Lp′ (Rn) ≤
|det(B)|1/p−1/2

(2π)n/2
∥f − PΛf∥Lp(Rn) ≤

|det(B)|1/p−1/2

(2π)n/2
εΛ∥f∥Lp(Rn).

By (ii) in Lemma 4.5, we obtain

∥QM (QΓPΛf)∥Lp′ (Rn) ≤ |Ω(B,n)||Λ|1/p
′
|Γ|1/p

′
∥f∥Lp(Rn).

Consequently,

∥QM (f)∥Lp′ (Rn) ≤
|det(B)|1/p−1/2

(2π)n/2
εΛ∥f∥Lp(Rn) + εΓ∥QM (f)∥Lp′ (Rn)

+ |Ω(B,n)||Λ|1−1/p|Γ|1−1/p∥f∥Lp(Rn),

which implies that

(1− εΓ)∥QM (f)∥Lp′ (Rn) ≤
(
|det(B)|1/p−1/2

(2π)n/2
εΛ + |Ω(B,n)||Λ|1−1/p|Γ|1−1/p

)
∥f∥Lp(Rn)

and so,

∥QM (f)∥Lp′ (Rn) ≤

 | det(B)|1/p−1/2

(2π)n/2 εΛ + |Ω(B,n)||Λ|1−1/p|Γ|1−1/p

1− εΓ

 ∥f∥Lp(Rn).

□

Theorem 4.8. Let Λ,Γ be two measurable subsets of Rn such that 0 < |Λ|, |Γ| < ∞, and f ∈ L1(Rn)∩
Lp(Rn), 1 ≤ p ≤ 2. If f is εΛ-concentrated on Λ in L1-norm and QM (f) is εΓ-concentrated on Γ in
Lp′

-norm, with 1/p+ 1/p′ = 1, then

∥QM (f)∥Lp′ (Rn) ≤
|Γ|1/p′ |Λ|1/p′ |det(B)|1/2

(1− εΓ)(1− εΛ)(2π)n/2
∥f∥Lp(Rn).

Proof. We have

∥QM (f)∥Lp′ (Rn) ≤∥QM (f)−QM (QΓf)∥Lp′ (Rn) + ∥QM (QΓf)∥Lp′ (Rn)

≤εΓ∥QM (f)∥Lp′ (Rn) +

(∫
Γ

|[QM (f)](x)|p
′
dx

)1/p′

≤εΓ∥QM (f)∥Lp′ (Rn) + |Γ|1/p
′
∥QM (f)∥L∞(Rn).
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So, recalling that 0 < εΓ < 1, we have

∥QM (f)∥Lp′ (Rn) ≤
|Γ|1/p′

1− εΓ
∥QM (f)∥L∞(Rn)

and, by the Riemann-Lebesgue Lemma for the MQFT, it follows

∥QM (f)∥Lp′ (Rn) ≤
|Γ|1/p′ |det(B)|1/2

(1− εΓ)(2π)n/2
∥f∥L1(Rn).

Since f is εΛ-concentrated on Λ in L1-norm, we obtain

∥f∥L1(Rn) ≤∥PΛcf∥L1(Rn) + ∥PΛf∥L1(Rn)

≤εΛ∥f∥L1(Rn) +

∫
Λ

|f(x)| dx

≤εΛ∥f∥L1(Rn) + |Λ|1/p
′
∥f∥Lp(Rn),

by Hölder’s inequality. This is equivalent to

∥f∥L1(Rn) ≤
|Λ|1/p′

1− εΛ
∥f∥Lp(Rn).

So, we obtain

∥QM (f)∥Lp′ (Rn) ≤
|Γ|1/p′ |Λ|1/p′ |det(B)|1/2

(1− εΓ)(1− εΛ)(2π)n/2
∥f∥Lp(Rn).

□

Remark 4.4. If p = p′ = 2, the previous theorem reduces to the classical case

|Γ|1/2|Λ|1/2 ≥ (1− εΓ)(1− εΛ)

|det(B)|1/2
.

Theorem 4.9. Let Λ,Γ be two measurable subsets of Rn such that 0 < |Λ|, |Γ| < ∞, and f ∈ L1(Rn)∩
Lq(Rn) ∩ Lp(Rn), 1 < q < p < 2. If f is εΛ-concentrated on Λ in Lq-norm and QM (f) is εΓ-
concentrated on Γ in Lp′

-norm, with 1/p+ 1/p′ = 1, then

∥QM (f)∥Lp′ (Rn) ≤
(|Γ||Λ|)1/q−1/p|det(B)|1/p−1/2

(2π)n/2(1− εΓ)(1− εΛ)
∥f∥Lp(Rn).

Proof. Since QM (f) is εΓ-concentrated on Γ in Lp′
-norm, we have

∥QM (f)∥Lp′ (Rn) =∥QM (f)−QM (QΓf) +QM (QΓf)∥Lp′ (Rn)

≤∥QM (f)−QM (QΓf)∥Lp′ (Rn) +

(∫
Γ

|[QM (f)](x)|p
′
dx

)1/p′

≤εΓ∥QM (f)∥Lp′ (Rn) + |Γ|1/p
′−1/q′∥QM (f)∥Lq′ (Rn)

≤εΓ∥QM (f)∥Lp′ (Rn) + |Γ|1/q−1/p |det(B)|1/p−1/2

(2π)n/2
∥f∥Lq(Rn),

by the Hausdorff-Young inequality with 1/q + 1/q′ = 1. So, since 0 < εΓ < 1, we have

∥QM (f)∥Lp′ (Rn) ≤
|Γ|1/q−1/p|det(B)|1/p−1/2

(2π)n/2(1− εΓ)
∥f∥Lq(Rn).

Since

∥f∥Lq(Rn) ≤ ∥f − PΛf∥Lq(Rn) + ∥PΛf∥Lq(Rn) ≤ εΛ∥f∥Lq(Rn) + |Λ|1/q−1/p∥f∥Lp(Rn),
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we have

∥f∥Lq(Rn) ≤
|Λ|1/q−1/p

1− εΛ
∥f∥Lp(Rn).

Consequently,

∥QM (f)∥Lp′ (Rn) ≤
|Γ|1/q−1/p|det(B)|1/p−1/2

(2π)n/2(1− εΓ)
· |Λ|

1/q−1/p

1− εΛ
∥f∥Lp(Rn).

□

Let us now prepare to culminate with the last significant result, which will have to do with
an uncertainty principle associated with bandlimited functions, in relation to a certain class of
functions, invariant under QΓ, which we will now formalise. For 1 ≤ p ≤ 2 we shall consider
Bp
QΓ
(Rn) := {h ∈ L1(Rn) ∩ Lp(Rn) : QΓh = h}.

If f ∈ Lp(Rn) satisfies

∥f − h∥Lp(Rn) ≤ εΓ∥f∥Lp(Rn)

for some h ∈ Bp
QΓ
(Rn), then f is said to be εΓ-bandlimited on Γ in Lp-norm.

Lemma 4.6. Let Λ,Γ be two measurable subsets of Rn such that 0 < |Λ|, |Γ| < ∞. If h ∈ Bp
QΓ
(Rn),

1 ≤ p ≤ 2, then

∥PΛh∥Lp(Rn) ≤
(|Γ||Λ|)1/p|det(B)|1/p

(2π)n
∥h∥Lp(Rn).

Proof. By the Hölder inequality, the Hausdorff-Young inequality and the definition of the Bp
QΓ
(Rn)

space, we have

∥QM (h)∥L1(Rn) =∥QM (QΓh)∥L1(Rn)

=∥χΓQM (h)∥L1(Rn)

≤|Γ|1/p∥QM (h)∥Lp′ (Rn)

≤|Γ|1/p |det(B)|1/p−1/2

(2π)n/2
∥h∥Lp(Rn)

and

∥QM (h)∥L2(Rn) =∥QM (QΓh)∥L2(Rn)

=∥χΓQM (h)∥L2(Rn)

≤|Γ|1/2−1/p′
∥QM (h)∥Lp′ (Rn)

≤|Γ|1/p−1/2 |det(B)|1/p−1/2

(2π)n/2
∥h∥Lp(Rn),

which implies that QM (h) ∈ L1(Rn) ∩ L2(Rn). Therefore, we have

h(t) = (QΓh)(t) = Q−1
M [χΓQM (h)](t) =

∫
Γ

[QM (h)](x)KQ
M (x, t) dx.
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Hence,

|h(t)| ≤
∫
Γ

|[QM (h)](x)||KQ
M (x, t)| dx

=
|det(B)|1/2

(2π)n/2

∫
Γ

|[QM (h)](x)| dx

≤|det(B)|1/2

(2π)n/2
|Γ|1/p∥QM (h)∥Lp′ (Rn)

≤|det(B)|1/p

(2π)n
|Γ|1/p∥h∥Lp(Rn).

Consequently,

∥PΛh∥Lp(Rn) ≤
(|Γ||Λ|)1/p|det(B)|1/p

(2π)n
∥h∥Lp(Rn).

□

Theorem 4.10. Let Λ,Γ be two measurable subsets of Rn such that 0 < |Λ|, |Γ| < ∞, and f ∈
L1(Rn) ∩ Lq(Rn) ∩ Lp(Rn), 1 < q ≤ p < 2. If f is εΛ-concentrated on Λ in Lq-norm and εΓ-
bandlimited on Γ in Lp-norm, then

∥f∥Lq(Rn) ≤
(
εΓ|Λ|1/q−1/p

1− εΛ
+

|Γ|1/p|Λ|1/q|det(B)|1/p(1 + εΓ)

(2π)n(1− εΛ)

)
∥f∥Lp(Rn).

Proof. Since f is εΛ-concentrated on Λ in Lq-norm, we obtain

∥f∥Lq(Rn) ≤∥f − PΛf∥Lq(Rn) + ∥PΛf∥Lq(Rn)

≤εΛ∥f∥Lq(Rn) + |Λ|1/q−1/p∥PΛf∥Lp(Rn),

which implies

(4.20) ∥f∥Lq(Rn) ≤
|Λ|1/q−1/p

1− εΛ
∥PΛf∥Lp(Rn).

As f is εΓ-bandlimited on Γ in Lp-norm and by the previous lemma, there exists a function
h ∈ Bp(Γ) such that

∥PΛf∥Lp(Rn) ≤∥PΛ(f − h)∥Lp(Rn) + ∥PΛh∥Lp(Rn)

≤∥f − h∥Lp(Rn) + ∥PΛh∥Lp(Rn)

≤εΓ∥f∥Lp(Rn) +
(|Γ||Λ|)1/p|det(B)|1/p

(2π)n
∥h∥Lp(Rn).

Since
∥h∥Lp(Rn) − ∥f∥Lp(Rn) ≤ ∥h− f∥Lp(Rn) ≤ εΓ∥f∥Lp(Rn),

we have that
∥h∥Lp(Rn) ≤ (1 + εΓ)∥f∥Lp(Rn).

So,

∥PΛf∥Lp(Rn) ≤
(
εΓ +

(|Γ||Λ|)1/p|det(B)|1/p(1 + εΓ)

(2π)n

)
∥f∥Lp(Rn).

Consequently, recalling (4.20), we have

∥f∥Lq(Rn) ≤
(
εΓ|Λ|1/q−1/p

1− εΛ
+

|Γ|1/p|Λ|1/q|det(B)|1/p(1 + εΓ)

(2π)n(1− εΛ)

)
∥f∥Lp(Rn).
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□

If p = q, then the last result allows us to directly write the following corollary.

Corollary 4.3. Let Λ,Γ be two measurable subsets of Rn such that 0 < |Λ|, |Γ| < ∞, and f ∈
L1(Rn) ∩ Lp(Rn), 1 ≤ p ≤ 2. If f is εΛ-concentrated on Λ and εΓ-bandlimited on Γ in Lp-norm, then

|Γ||Λ| ≥ (1− εΛ − εΓ)
p(2π)np

|det(B)|(1 + εΓ)p
.
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The injective hull of ideals of weighted holomorphic mappings

ANTONIO JIMÉNEZ-VARGAS* AND MARÍA ISABEL RAMÍREZ

ABSTRACT. We study the injectivity of normed ideals of weighted holomorphic mappings. To be more precise,
the concept of injective hull of normed weighted holomorphic ideals is introduced and characterized in terms of a
domination property. The injective hulls of those ideals – generated by the procedures of composition and dual – are
described and these descriptions are applied to some examples of such ideals. A characterization of the closed injective
hull of an operator ideal in terms of an Ehrling-type inequality – due to Jarchow and Pelczyński– is established for
weighted holomorphic mappings.

Keywords: Weighted holomorphic mapping, injective hull, domination theorem, operator ideal, Ehrling inequality.
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1. INTRODUCTION

Influenced by the concept of operator ideals (see the book [23] by Pietsch), the notion of
ideals of weighted holomorphic mappings was introduced in [10], although also the ideals of
bounded holomorphic mappings were analysed in [11]. In [10], the composition procedure to
generate weighted holomorphic ideals was studied and some examples of such ideals were
presented.

Our aim in this paper is to address the injective procedure in the context of weighted holo-
morphic mappings. In the linear setting, the concept of injective hull of an operator ideal
was dealt by Pietsch [23], although some ingredients already appeared in the paper [24] by
Stephani.

Given an open subset U of a complex Banach space E, a weight v on U is a (strictly) positive
continuous function. For any complex Banach space F , let H(U,F ) be the space of all holomor-
phic mappings from U into F . The space of weighted holomorphic mappings, H∞

v (U,F ), is the
Banach space of all mappings f ∈ H(U,F ) so that

∥f∥v := sup {v(x) ∥f(x)∥ : x ∈ U} < ∞,

under the weighted supremum norm ∥·∥v . We will write H∞
v (U) instead of H∞

v (U,C). About
the theory of weighted holomorphic mappings, the interested reader can consult the papers [3]
by Bierstedt and Summers, [5, 6] by Bonet, Domanski and Lindström, and [16] by Gupta and
Baweja. See also the recent survey [4] by Bonet on these function spaces, and the references
therein.

By definition, the injective hull of a normed weighted holomorphic ideal [IH∞
v , ∥ · ∥IH∞

v ]

is the smallest injective normed weighted holomorphic ideal containing IH∞
v . In Subsection

2.1, we establish the existence of this injective hull. As an immediate consequence, a normed
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weighted holomorphic ideal is injective if and only if it coincides with its injective hull. In
Subsection 2.2, a characterization of the injective hull of a normed weighted holomorphic ideal
is stated by means of a domination property, and it is applied to describe the injectivity of
a normed weighted holomorphic ideal in a form similar to those obtained in the linear and
polynomial versions [8, 9].

Using the linearization of weighted holomorphic mappings, we describe in Subsection 2.3
the injective hull of composition ideals of weighted holomorphic mappings and apply this
description to establish the injectivity of the normed weighted holomorphic ideals generated
by composition with some distinguished classes of bounded linear operators such as finite-
rank, compact, weakly compact, separable, Rosenthal and Asplund operators.

In Subsection 2.4, the concept of dual weighted holomorphic ideal of an operator ideal I is
introduced and showed that it coincides with the weighted holomorphic ideal generated by
composition with the dual operator ideal Idual. Moreover, we study the injectivity of such dual
weighted holomorphic ideals as well as the dual weighted holomorphic ideals of the ideals
of p-compact and Cohen strongly p-summing operators for any p ∈ (1,∞). Subsection 2.5
presents a weighted holomorphic variant of a characterization –due to Jarchow and Pelczyński
[17]– of the closed injective hull of an operator ideal by means of an Ehrling-type inequality
[13].

It should be noted that different authors have studied these questions for ideals of func-
tions in both linear settings (for classical p-compact operators [14], (p, q)-compact operators
[18], weakly p-nuclear operators [19] and multilinear mappings [20]) as well as in non-linear
contexts (for holomorphic mappings [15], polynomials [9] and Lipschitz operators [1, 2, 25, 26],
among others.

2. RESULTS

We will present the results of this paper in various subsections. From now on, unless other-
wise stated, E will denote a complex Banach space, U an open subset of E, v a weight on U ,
and F a complex Banach space. Our notation is standard. L(E,F ) denotes the Banach space
of all bounded linear operators from E into F , equipped with the operator canonical norm. E∗

and BE represent the dual space and the closed unit ball of E, respectively. Given a set A ⊆ E,
lin(A) and aco(A) stand for the norm closed linear hull and the norm closed absolutely convex
hull of A in E.

2.1. The injective hull of ideals of weighted holomorphic mappings. In light of Definition
2.4 in [10], a normed (Banach) ideal of weighted holomorphic mappings – or, in short, a normed
(Banach) weighted holomorphic ideal – is an assignment [IH∞

v , ∥·∥IH∞
v ] which associates every

pair (U,F ), – where E is a complex Banach space, U is an open subset of E and F is a complex
Banach space – to both a set IH∞

v (U,F ) ⊆ H∞
v (U,F ) and a function ∥ · ∥IH∞

v : IH∞
v (U,F ) → R

satisfying
(P1) (IH∞

v (U,F ), ∥·∥IH∞
v ) is a normed (Banach) space and ∥f∥v ≤ ∥f∥IH∞

v if f ∈ IH∞
v (U,F ),

(P2) Given h ∈ H∞
v (U) and y ∈ F , the map h · y : x ∈ U 7→ h(x)y ∈ F is in IH∞

v (U,F ) with
∥h · y∥IH∞

v = ∥h∥v||y||,
(P3) The ideal property: if V is an open subset of E such that V ⊆ U , h ∈ H(V,U) with

cv(h) := sup
x∈V

v(x)

v(h(x))
< ∞,

f ∈ IH∞
v (U,F ) and T ∈ L(F,G), where G is a complex Banach space, then T ◦ f ◦ h ∈

IH∞
v (V,G) with ∥T ◦ f ◦ h∥IH∞

v ≤ ∥T∥ ∥f∥IH∞
v cv(h).
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According to Sections 4.6 and 8.4 in [23], an operator ideal I is said to be injective if for each
Banach space G and each isometric linear embedding ι : F → G, an operator T ∈ L(E,F ) be-
longs to I(E,F ) whenever ι ◦ T ∈ I(E,G). A normed operator ideal [I, ∥·∥I ] is called injective
if, in addition, ∥T∥I = ∥ι ◦ T∥I . The adaptation of this notion to the weighted holomorphic
setting is as follows.

A normed weighted holomorphic ideal [IH∞
v , ∥·∥IH∞

v ] is called:
(I) injective if for any map f ∈ H∞

v (U,F ), any complex Banach space G and any into
linear isometry ι : F → G, one has f ∈ IH∞

v (U,F ) with ∥f∥H∞
v

= ∥ι ◦ f∥H∞
v

whenever
ι ◦ f ∈ IH∞

v (U,G).

Given normed weighted holomorphic ideals [IH∞
v , ∥·∥IH∞

v ] and [JH∞
v , ∥·∥JH∞

v ], the relation

[IH∞
v , ∥·∥IH∞

v ] ≤ [JH∞
v , ∥·∥JH∞

v ]

means that for any complex Banach space E, any open set U ⊆ E and any complex Banach
space F , one has IH∞

v (U,F ) ⊆ JH∞
v (U,F ) with ∥f∥JH∞

v ≤ ∥f∥IH∞
v for f ∈ IH∞

v (U,F ).
Motivated by the linear and polynomial versions (see [17, Proposition 19.2.2] and [9, Propo-

sition 2.3]), we next address the existence of the injective hull of a normed weighted holomor-
phic ideal. Recall that the unique smallest injective operator ideal Iinj that contains an operator
ideal I is called the injective hull of I and described as the set

Iinj(E,F ) = {T ∈ L(E,F ) : ιF ◦ T ∈ I(E, ℓ∞(BY ∗)} ,

where ιF : F → ℓ∞(BF∗) is the canonical isometric linear embedding defined by

⟨ιF (y), y∗⟩ = y∗(y) (y∗ ∈ BF∗ , y ∈ F ).

Taking ∥T∥Iinj = ∥ιF ◦ T∥I for T ∈ Iinj(E,F ), [Iinj , ∥·∥Iinj ] is a normed (Banach) operator
ideal whenever [I, ∥·∥I ] is so.

We now present the closely related concept in the setting of weighted holomorphic maps.

Proposition 2.1. Let [IH∞
v , ∥ · ∥IH∞

v ] be a normed (Banach) weighted holomorphic ideal. Then there
exists a unique smallest normed (Banach) injective weighted holomorphic ideal [(IH∞

v )inj , ∥·∥(IH∞
v )inj ]

such that
[IH∞

v , ∥·∥IH∞
v ] ≤ [(IH∞

v )inj , ∥·∥(IH∞
v )inj ].

In fact, for any complex Banach space F , we have

(IH∞
v )inj(U,F ) =

{
f ∈ H∞

v (U,F ) : ιF ◦ f ∈ IH∞
v (U, ℓ∞(BF∗)

}
,

where ιF : F → ℓ∞(BF∗) is the canonical isometric linear embedding, and

∥f∥(IH∞
v )inj = ∥ιF ◦ f∥IH∞

v (f ∈ (IH∞
v )inj(U,F )).

The normed (Banach) ideal [(IH∞
v )inj , ∥·∥(IH∞

v )inj ]) is called the injective hull of [IH∞
v , ∥ · ∥IH∞

v ].

Proof. Defining the set (IH∞
v )inj(U,F ) and the function ∥·∥(IH∞

v )inj : (IH∞
v )inj(U,F ) → R+

0

as above, we first show that [(IH∞
v )inj , ∥·∥(IH∞

v )inj ] is an injective normed (Banach) weighted
holomorphic ideal.

(P1) Given f ∈ (IH∞
v )inj(U,F ), for all x ∈ U , we have

v(x) ∥f(x)∥ = v(x) ∥ιF (f(x))∥ ≤ ∥ιF ◦ f∥v ≤ ∥ιF ◦ f∥IH∞
v = ∥f∥(IH∞

v )inj ,
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and thus ∥f∥v ≤ ∥f∥(IH∞
v )inj . Hence f = 0 whenever ∥f∥(IH∞

v )inj = 0. It is readily to prove
that (IH∞

v )inj(U,F ) is a linear subspace of H∞
v (U,F ) on which ∥·∥H∞

v
is absolutely homoge-

neous and satisfies the triangle inequality.

(P2) Given h ∈ H∞
v (U) and y ∈ F , we have ιF ◦ (h · y) = h · ιF (y) ∈ IH∞

v (U, ℓ∞(BF∗)) and
therefore h · y ∈ (IH∞

v )inj(U,F ) with

∥h · y∥(IH∞
v )inj = ∥ιF ◦ (h · y)∥IH∞

v = ∥h · ιF (y)∥IH∞
v = ∥h∥v ∥ιF (y)∥ = ∥h∥v ∥y∥ .

(P3) Let V ⊆ E be an open set such that V ⊆ U , h ∈ H(V,U) with

cv(h) := sup
x∈V

v(x)

v(h(x))
< ∞,

f ∈ IH∞
v (U,F ) and T ∈ L(F,G), where G is a complex Banach space. Clearly, ιF ◦ f ∈

IH∞
v (U, ℓ∞(BF∗)). Since ιF is an into linear isometry, there exists S ∈ L(ℓ∞(BF∗), ℓ∞(BG∗))

such that S ◦ ιF = ιG ◦T and ∥S∥ = ∥ιG ◦ T∥ by the metric extension property of ℓ∞(BF∗) (see,
for example, [23, Proposition C.3.2.1]). From ιG◦(T ◦f ◦h) = S◦(ιF ◦f)◦h ∈ IH∞

v (U, ℓ∞(BG∗)),
we infer that T ◦ f ◦ h ∈ (IH∞

v )inj(U,G) with

∥T ◦ f ◦ h∥(IH∞
v )inj = ∥ιG ◦ T ◦ f ◦ h∥IH∞

v = ∥S ◦ ιF ◦ f ◦ h∥IH∞
v

≤ ∥S∥ ∥ιF ◦ f∥IH∞
v cv(h) = ∥ιG ◦ T∥ ∥f∥(IH∞

v )inj cv(h)

≤ ∥T∥ ∥f∥(IH∞
v )inj cv(h)

(I) Let f ∈ H∞
v (U,F ) so that ι ◦ f ∈ (IH∞

v )inj(U,G) for any into linear isometry ι : F → G.
The metric extension property of ℓ∞(BF∗) provides a P ∈ L(ℓ∞(BG∗), ℓ∞(BF∗)) so that
P ◦ ιG ◦ ι = ιF and ∥P∥ = ∥ιF ∥ = 1. The conditions ιG ◦ ι ◦ f ∈ IH∞

v (U, ℓ∞(BG∗)) and
ιF ◦ f = P ◦ ιG ◦ ι ◦ f imply ιF ◦ f ∈ IH∞

v (U, ℓ∞(BF∗)), and so f ∈ (IH∞
v )inj(U,F ) with

∥f∥(IH∞
v )inj = ∥ιF ◦ f∥IH∞

v = ∥P ◦ ιG ◦ ι ◦ f∥IH∞
v

≤ ∥P∥ ∥ιG ◦ ι ◦ f∥IH∞
v = ∥ι ◦ f∥(IH∞

v )inj ≤ ∥f∥(IH∞
v )inj .

On a hand, the ideal property of [IH∞
v , ∥·∥IH∞

v ] yields

[IH∞
v , ∥·∥IH∞

v ] ≤ [(IH∞
v )inj , ∥·∥(IH∞

v )inj ].

On the other hand, suppose [JH∞
v , ∥·∥JH∞

v ] is an injective normed weighted holomorphic
ideal so that [IH∞

v , ∥·∥IH∞
v ] ≤ [JH∞

v , ∥·∥JH∞
v ]. If f ∈ (IH∞

v )inj(U,F ), one has that ιF ◦ f ∈
IH∞

v (U, ℓ∞(BF∗)) ⊆ JH∞
v (U, ℓ∞(BF∗)), hence f ∈ JH∞

v (U,F ) with ∥f∥JH∞
v = ∥ιF ◦ f∥JH∞

v

by the injectivity of JH∞
v , and so ∥f∥JH∞

v = ∥ιF ◦ f∥JH∞
v ≤ ∥ιF ◦ f∥IH∞

v = ∥f∥(IH∞
v )inj . The

uniqueness of [(IH∞
v )inj , ∥·∥(IH∞

v )inj ] follows easily and this completes the proof. □

Based on the linear and polynomial variants in [17, Proposition 19.2.2] and [9, Corollary
2.4], respectively, the injectivity of a normed weighted holomorphic ideal is characterized by
the coincidence with its injective hull.

Corollary 2.1. Let [IH∞
v , ∥ · ∥IH∞

v ] be a normed weighted holomorphic ideal. The following are equiv-
alent:

(1) [IH∞
v , ∥ · ∥IH∞

v ] is injective.
(2) [IH∞

v , ∥ · ∥IH∞
v ] = [(IH∞

v )inj , ∥·∥(IH∞
v )inj ].
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□

Influenced by the hull procedure for the family of normed operator ideals – introduced by
Pietsch in [23, Section 8.1] –, we obtain that the correspondence IH∞

v 7→ (IH∞
v )inj is a hull

procedure in the weighted holomorphic setting.

Proposition 2.2. If [IH∞
v , ∥ · ∥IH∞

v ] and [JH∞
v , ∥ · ∥JH∞

v ] are normed (Banach) weighted holomorphic
ideals, then:

(1) [(IH∞
v )inj , ∥ · ∥(IH∞

v )inj ] is a normed (Banach) weighted holomorphic ideal,
(2) [(IH∞

v )inj , ∥·∥(IH∞
v )inj ] ≤ [(JH∞

v )inj , ∥·∥(JH∞
v )inj ] if [IH∞

v , ∥·∥IH∞
v ] ≤ [JH∞

v , ∥·∥JH∞
v ],

(3) [((IH∞
v )inj)inj , ∥ · ∥((IH∞

v )inj)inj ] = [(IH∞
v )inj , ∥ · ∥(IH∞

v )inj ],
(4) [IH∞

v , ∥ · ∥IH∞
v ] ≤ [(IH∞

v )inj , ∥ · ∥(IH∞
v )inj ].

Proof. (i) and (iv) are deduced from Proposition 2.1, (iii) from Corollary 2.1, and (ii) follows
as in the last part of the proof of Proposition 2.1. □

2.2. The domination property. The injective hull of a normed weighted holomorphic ideal
can be characterized by the following domination property. This result is based on both the
linear and polynomial versions stated respectively in [8, Lemma 3.1] and [9, Theorem 3.4].

Theorem 2.1. Let [IH∞
v , ∥·∥IH∞

v ] be a normed weighted holomorphic ideal, let F be a complex Banach
space and let f ∈ H∞

v (U,F ). The following assertions are equivalent:

(1) f belongs to (IH∞
v )inj(U,F ).

(2) There exists a complex normed space G and a mapping g ∈ IH∞
v (U,G) such that∥∥∥∥∥

n∑
i=1

λiv(xi)f(xi)

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

i=1

λiv(xi)g(xi)

∥∥∥∥∥
for all n ∈ N, λ1, . . . , λn ∈ C and x1, . . . , xn ∈ U .

In this case, ∥f∥(IH∞
v )inj = inf {∥g∥IH∞

v }, where the infimum is taken over all spaces G and all
mappings g ∈ IH∞

v (U,G) as in (ii), and this infimum is attained.

Proof. (i) ⇒ (ii): Suppose that f ∈ (IH∞
v )inj(U,F ). Take G = ℓ∞(BF∗) and g = ιF ◦ f . Clearly,

g ∈ IH∞
v (U,G) with ∥g∥IH∞

v = ∥ιF ◦ f∥IH∞
v = ∥f∥(IH∞

v )inj . Set n ∈ N, λ1, . . . , λn ∈ C and
x1, . . . , xn ∈ U . An application of Hahn–Banach Theorem yields∥∥∥∥∥

n∑
i=1

λiv(xi)f(xi)

∥∥∥∥∥ = sup
y∗∈BF∗

∣∣∣∣∣
〈

n∑
i=1

λiv(xi)f(xi), y
∗

〉∣∣∣∣∣ = sup
y∗∈BF∗

∣∣∣∣∣
n∑

i=1

λiv(xi)y
∗(f(xi))

∣∣∣∣∣
= sup

y∗∈BF∗

∣∣∣∣∣
n∑

i=1

λiv(xi) ⟨ιF (f(xi)), y
∗⟩

∣∣∣∣∣ = sup
y∗∈BF∗

∣∣∣∣∣
n∑

i=1

λiv(xi) ⟨g(xi), y
∗⟩

∣∣∣∣∣
= sup

y∗∈BF∗

∣∣∣∣∣
〈

n∑
i=1

λiv(xi)g(xi), y
∗

〉∣∣∣∣∣ =
∥∥∥∥∥

n∑
i=1

λiv(xi)g(xi)

∥∥∥∥∥ .
(ii) ⇒ (i): Let G and g be as in (ii). Take G0 = lin(g(U)) ⊆ G and T0 : G0 → F given by

T0

(
n∑

i=1

λiv(xi)g(xi)

)
=

n∑
i=1

λiv(xi)f(xi)
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for all n ∈ N, λ1, . . . , λn ∈ C and x1, . . . , xn ∈ U . Note that T0 is well defined since

n∑
i=1

λiv(xi)g(xi) =

m∑
j=1

αjv(xj)g(xj) ⇒

∣∣∣∣∣∣
n∑

i=1

λiv(xi)g(xi)−
m∑
j=1

αjv(xj)g(xj)

∣∣∣∣∣∣ = 0

⇒

∣∣∣∣∣∣
n∑

i=1

λiv(xi)f(xi)−
m∑
j=1

αjv(xj)f(xj)

∣∣∣∣∣∣ = 0

⇒
n∑

i=1

λiv(xi)f(xi) =

m∑
j=1

αjv(xj)f(xj),

by using the inequality in (ii). The linearity of T0 is clear, and since∥∥∥∥∥T0

(
n∑

i=1

λiv(xi)g(xi)

)∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

λiv(xi)f(xi)

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

i=1

λiv(xi)g(xi)

∥∥∥∥∥
for all n ∈ N, λ1, . . . , λn ∈ C and x1, . . . , xn ∈ U , we deduce that T0 is continuous with ∥T0∥ ≤ 1.
There exists a unique operator T ∈ L(G0, F ) such that T |G0 = T0 and ∥T∥ = ∥T0∥. If ι : G0 → G
is the inclusion operator, the metric extension property of ℓ∞(BG∗) yields an operator S ∈
L(G, ℓ∞(BF∗)) so that ιF ◦ T = S ◦ ι and ∥S∥ = ∥ιF ◦ T∥. Since

(T ◦ g)(x) = T (g(x)) = T0(g(x)) = f(x)

for all x ∈ U , we have T ◦g = f , and thus ιF ◦f = ιF ◦T ◦g = S◦ι◦g = S◦g. Since g ∈ IH∞
v (U,G),

the ideal property of IH∞
v shows that ιF ◦ f ∈ IH∞

v (U, ℓ∞(BF∗)), that is, f ∈ (IH∞
v )inj(U,F )

with
∥f∥(IH∞

v )inj = ∥ιF ◦ f∥IH∞
v ≤ ∥S∥ ∥g∥IH∞

v ≤ ∥g∥IH∞
v .

Taking the infimum over all G’s and g’s as in (ii) yields that ∥f∥(IH∞
v )inj ≤ inf{∥g∥IH∞

v }. □

The combination of Corollary 2.1 and Theorem 2.1 immediately provides the next character-
ization of the injectivity of a normed weighted holomorphic ideal, that can be compared with
its linear version [8, Lemma 3.1] and its polynomial version [9, Theorem 3.4].

Corollary 2.2. Let [IH∞
v , ∥·∥IH∞

v ] be a normed weighted holomorphic ideal. Then [IH∞
v , ∥·∥IH∞

v ]
is injective if, and only if, given complex Banach spaces F,G and mappings f ∈ H∞

v (U,F ), g ∈
IH∞

v (U,G) such that ∥∥∥∥∥
n∑

i=1

λiv(xi)f(xi)

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

i=1

λiv(xi)g(xi)

∥∥∥∥∥
for all n ∈ N, λ1, . . . , λn ∈ C and x1, . . . , xn ∈ U , then f ∈ IH∞

v (U,F ) and ∥f∥IH∞
v = inf {∥g∥IH∞

v },
where the infimum is taken over all complex Banach spaces G and all such mappings g. □

2.3. The injective hull of composition ideals of weighted holomorphic mappings. Accord-
ing to [10, Definition 2.5], given a normed operator ideal [I, ∥·∥I ], a map f ∈ H(U,F ) belongs
to the composition ideal I ◦ H∞

v (U,F ) if there exist a complex Banach space G, an operator
T ∈ I(G,F ) and a map g ∈ H∞

v (U,G) such that f = T ◦ g. For any f ∈ I ◦ H∞
v (U,F ), define

∥f∥I◦H∞
v

= inf {∥T∥I ∥g∥v} ,

where the infimum is extended over all such factorizations of f . By [10, Proposition 2.6], we
have that [I ◦ H∞

v , ∥·∥I◦H∞
v
] is a normed weighted holomorphic ideal.
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We now describe the injective hull of this ideal [I ◦ H∞
v , ∥·∥I◦H∞

v
]. Our approach requires

some preliminaries about the linearization of weighted holomorphic maps. Following [3, 16],
G∞
v (U) is the space of all linear functionals on H∞

v (U) whose restriction to BH∞
v (U) is continu-

ous for the compact-open topology. The following result collects the properties of G∞
v (U) that

we will need later.

Theorem 2.2. [3, 7, 16, 21] Let U be an open set of a complex Banach space E and v be a weight on U .
(1) G∞

v (U) is a closed subspace of H∞
v (U)∗, and the evaluation mapping Jv : H∞

v (U) → G∞
v (U)∗,

given by Jv(f)(ϕ) = ϕ(f) for ϕ ∈ G∞
v (U) and f ∈ H∞

v (U), is an isometric isomorphism.
(2) For each x ∈ U , the evaluation functional δx : H∞

v (U) → C, defined by δx(f) = f(x) for
f ∈ H∞

v (U), is in G∞
v (U).

(3) The mapping ∆v : U → G∞
v (U) given by ∆v(x) = δx is in H∞

v (U,G∞
v (U)) with ∥∆v∥v ≤ 1.

(4) BG∞
v (U) = aco(AtG∞

v (U)) ⊆ H∞
v (U)∗ and G∞

v (U) = lin(AtG∞
v (U)) ⊆ H∞

v (U)∗, where
AtG∞

v (U) = {v(x)δx : x ∈ U}.
(5) For each ϕ ∈ lin(AtG∞

v (U)), we have

∥ϕ∥ = inf

{
n∑

i=1

|λi| : ϕ =

n∑
i=1

λiv(xi)δxi

}
.

(6) For every complex Banach space F and every mapping f ∈ H∞
v (U,F ), there exists a unique

operator Tf ∈ L(G∞
v (U), F ) such that Tf ◦∆v = f . Furthermore, ∥Tf∥ = ∥f∥v .

(7) For each f ∈ H∞
v (U,F ), the mapping f t : F ∗ → H∞

v (U), defined by f t(y∗) = y∗ ◦ f for all
y∗ ∈ F ∗, is in L(F ∗,H∞

v (U)) with ||f t|| = ∥f∥v and f t = J−1
v ◦ (Tf )

∗, where (Tf )
∗ : F ∗ →

G∞
v (U)∗ is the adjoint operator of Tf . □

For v = 1U , where 1U (x) = 1 for all x ∈ U , it is usual to write H∞(U,F ) (the Banach space
of all bounded holomorphic mappings from U into F , under the supremum norm) instead
of H∞

v (U,F ), H∞(U) rather than H∞(U,C) and, following Mujica’s notation in [21], G∞(U)
instead of G∞

v (U).

Proposition 2.3. Let [I, ∥·∥I ] be an operator ideal. Then

[(I ◦ H∞
v )inj , ∥ · ∥(I◦H∞

v )inj ] = [Iinj ◦ H∞
v , ∥ · ∥Iinj◦H∞

v
].

In particular, the weighted holomorphic ideal [Iinj ◦ H∞
v , ∥ · ∥Iinj◦H∞

v
] is injective.

Proof. Let F be a complex Banach space and f ∈ (I ◦ H∞
v )inj(U,F ). Hence ιF ◦ f ∈ I ◦

H∞
v (U, ℓ∞(BF∗)), and so ιF ◦ f = T ◦ g for some complex Banach space G, an operator T ∈

I(G, ℓ∞(BF∗)) and a map g ∈ H∞
v (U,G). By Theorem 2.2, we can find two operators Tf ∈

L(G∞
v (U), F ) and Tg ∈ L(G∞

v (U), G) with ∥Tf∥ = ∥f∥v and ∥Tg∥ = ∥g∥ such that Tf ◦∆v = f

and Tg ◦∆v = g. Since G∞
v (U) = lin(∆v(U)) ⊆ H∞

v (U)∗ and

ιF ◦ Tf ◦∆v = ιF ◦ f = T ◦ g = T ◦ Tg ◦∆v,

it follows that ιF ◦Tf = T◦Tg , and thus ιF ◦Tf ∈ I(G∞
v (U), ℓ∞(BF∗)), that is, Tf ∈ Iinj(G∞

v (U), F ).
Hence f = Tf ◦∆v ∈ Iinj ◦ H∞

v (U,F ). Moreover,

∥f∥Iinj◦H∞
v

≤ ∥Tf∥Iinj ∥∆v∥ ≤ ∥Tf∥Iinj = ∥ιF ◦ Tf∥I ≤ ∥T∥I ∥Tg∥ = ∥T∥I ∥g∥v,

and passing to the infimum over all the factorizations of ιF ◦ f yields

∥f∥Iinj◦H∞
v

≤ ∥ιF ◦ f∥I◦H∞
v

= ∥f∥(I◦H∞
v )inj .
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Conversely, let f ∈ Iinj ◦ H∞
v (U,F ). Hence f = T ◦ g for some complex Banach space G,

T ∈ Iinj(G,F ) and g ∈ H∞
v (U,G). Therefore ιF ◦ f = (ιF ◦ T ) ◦ g ∈ I ◦ H∞

v (U, ℓ∞(BF∗), and
thus f ∈ (I ◦ H∞

v )inj(U,F ) with

∥f∥(I◦H∞
v )inj = ∥ιF ◦ f∥I◦H∞

v
= ∥ιF ◦ T ◦ g∥I◦H∞

v
≤ ∥ιF ◦ T∥I ∥g∥v = ∥T∥Iinj ∥g∥v.

Taking the infimum over all the factorizations of f , we conclude that

∥f∥(I◦H∞
v )inj ≤ ∥f∥Iinj◦H∞

v
.

□

From Proposition 2.3 and Corollary 2.1, we deduce the following.

Corollary 2.3. Let [I, ∥·∥I ] be an injective normed operator ideal. Then [I ◦ H∞
v , ∥·∥I◦H∞

v
] is an

injective weighted holomorphic ideal. □

For I = F ,F ,K,W,S,R,AS and Banach spaces E,F , we will denote by I(E,F ) the lin-
ear space of all finite-rank (approximable, compact, weakly compact, separable, Rosenthal, As-
plund) bounded linear operators from E to F , respectively. The components I(E,F ), equipped
with the operator canonical norm ∥·∥, generate a normed operator ideal (see [23]). For a map
f ∈ H(U,F ), the v-range of f is the set

(vf)(U) = {v(x)f(x) : x ∈ U} ⊆ F.

Note that f belongs to H∞
v (U,F ) if and only if (vf)(U) is a norm-bounded subset of F . This

motivates the following concepts.

Definition 2.1. Let U be an open set of a complex Banach space E, let v be a weight on U and let F be
a complex Banach space.

A mapping f ∈ H∞
v (U,F ) is said to be v-compact (resp., v-weakly compact, v-separable, v-Rosenthal,

v-Asplund) if (vf)(U) is a relatively compact (resp., relatively weakly compact, separable, Rosenthal,
Asplund) subset of F .

A mapping f ∈ H∞
v (U,F ) is said to have finite dimensional v-rank if (vf)(U) is a finite dimensional

subspace of F , and f is said to be v-approximable if it is the limit in the v-norm of a sequence of finite
v-rank weighted holomorphic mappings of H∞

v (U,F ).
For I = F ,F ,K,W,S,R,AS, H∞

vI(U,F ) stand for the linear space of all finite v-rank (resp.,
v-approximable, v-compact, v-weakly compact, v-separable, v-Rosenthal, v-Asplund) weighted holo-
morphic mappings from U into F .

The same proofs of Theorem 2.9 and Corollary 2.10 in [10] yield the following two results.

Theorem 2.3. Let f ∈ H∞
v (U,F ) and I = F ,F ,K,W,S,R,AS. For the normed operator ideal

[I, ∥·∥I ], the following are equivalent:
(1) f belongs to H∞

vI(U,F ).
(2) Tf belongs to I(G∞

v (U), F ).
In this case, ∥f∥v = ∥Tf∥I . Furthermore, the correspondence f 7→ Tf is an isometric isomorphism from
(H∞

vI(U,F ), ∥·∥v) onto (I(G∞
v (U), F ), ∥·∥I). □

Corollary 2.4. [H∞
vI , ∥·∥v] = [I ◦ H∞

v , ∥·∥I◦H∞
v
] for I = F ,F ,K,W,S,R,AS. As a consequence,

(1) [H∞
vI , ∥·∥v] is a Banach weighted holomorphic ideal for I = F ,K,W,S,R,AS,

(2) [H∞
vF , ∥·∥v] is a normed weighted holomorphic ideal.

□

We are in a position to establish the injectivity of these ideals.
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Corollary 2.5. For I = F ,K,W,S,R,AS, the weighted holomorphic ideal [H∞
vI , ∥ · ∥v] is injective.

Proof. Applying Corollary 2.4 for the first and fourth equalities, Proposition 2.3 for the second,
and [15] for the third, one has

[(H∞
vI)

inj , (∥ · ∥v)inj ] = [(I ◦ H∞
v )inj , ∥ · ∥(I◦H∞

v )inj ] = [Iinj ◦ H∞
v , ∥ · ∥Iinj◦H∞

v
]

= [I ◦ H∞
v , ∥ · ∥I◦H∞

v
] = [H∞

vI , ∥ · ∥v].

□

We now identify the injective hull of the ideal H∞
vF .

Corollary 2.6. [(H∞
vF )

inj , (∥ · ∥v)inj ] = [H∞
vK, ∥ · ∥v].

Proof. As in the preceding proof, one now has

[(H∞
vF )

inj , (∥ · ∥v)inj ] = [(F ◦ H∞
v )inj , ∥ · ∥(F◦H∞

v )inj ] = [(F)inj ◦ H∞
v , ∥ · ∥(F)inj◦H∞

v
]

= [K ◦ H∞
v , ∥ · ∥K◦H∞

v
] = [H∞

vK, ∥ · ∥v]

by Corollary 2.4 for the first and fourth equalities, Proposition 2.3 for the second, and the equal-
ity [(F)inj , ∥·∥inj ] = [K, ∥·∥] by [23, Proposition 4.6.13] for the third. □

2.4. The injective hull of dual ideals of weighted holomorphic mappings. Following [23,
Section 4.4], given a normed operator ideal [I, ∥·∥I ], the components

Idual(E,F ) := {T ∈ L(E,F ) : T ∗ ∈ I(F ∗, E∗)}

for any normed spaces E and F , endowed with the norm

∥T∥Idual = ∥T ∗∥I (T ∈ Idual(E,F )),

define a normed operator ideal, [Idual, ∥·∥Id ], called dual ideal of I. Moreover, [I, ∥·∥I ] is
said to be symmetric and completely symmetric if [I, ∥·∥I ] ≤ [Idual, ∥·∥Idual ] and [I, ∥·∥I ] =
[Idual, ∥·∥Idual ], respectively.

Based on the notion of transpose of a weighted holomorphic map (see Theorem 2.2), we
introduce the concept of dual weighted holomorphic ideal of an operator ideal I.

Definition 2.2. Let I be an operator ideal. For any open subset U of a complex Banach space E, any
weight v on U and any complex Banach space F , we define

IH∞
v -dual(U,F ) = {f ∈ H∞

v (U,F ) : f t ∈ I(F ∗,H∞
v (U))}

If [I, ∥·∥I ] is a normed operator ideal, we set

∥f∥IH∞
v -dual = ∥f t∥I (f ∈ IH∞

v -dual(U,F )).

We now show that [IH∞
v -dual, ∥ · ∥IH∞

v -dual ] is in fact a normed weighted holomorphic ideal.

Theorem 2.4. Let I be an operator ideal. The following statements about a mapping f ∈ H∞
v (U,F )

are equivalent:

(1) f belongs to IH∞
v -dual(U,F ).

(2) f belongs to Idual ◦ H∞
v (U,F ).

If in addition (I, ∥·∥I) is a normed operator ideal, then

∥f∥IH∞
v -dual = ∥f∥Idual◦H∞

v
(f ∈ IH∞

v -dual(U,F )).
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Proof. (i) ⇒ (ii): Let f ∈ IH∞
v -dual(U,F ). Then f t ∈ I(F ∗,H∞

v (U)). By Theorem 2.2, we
can take Tf ∈ L(G∞

v (U), F ) such that Tf ◦ ∆v = f and also (Tf )
∗ = Jv ◦ f t. Hence (Tf )

∗ ∈
I(F ∗,G∞

v (U)∗) and therefore Tf ∈ Idual(G∞
v (U), F ). Thus, by [10, Theorem 2.7] we have f ∈

Idual ◦ H∞
v (U,F ) with ∥f∥Idual◦H∞

v
= ∥Tf∥Idual . Further,

∥f∥Idual◦H∞
v

= ∥Tf∥Idual = ∥(Tf )
∗∥I = ∥Jv ◦ f t∥I ≤ ∥Jv∥∥f t∥I = ∥f∥IH∞

v -dual .

(ii) ⇒ (i): Let f ∈ Idual ◦ H∞
v (U,F ). Then there are a complex Banach space G, a map g ∈

H∞
v (U,G) and an operator T ∈ Idual(G,F ) such that f = T ◦ g. Given y∗ ∈ F ∗, we have

f t(y∗) = (T ◦ g)t(y∗) = y∗ ◦ (T ◦ g) = (y∗ ◦ T ) ◦ g = T ∗(y∗) ◦ g = gt(T ∗(y∗)) = (gt ◦ T ∗)(y∗),

and thus f t = gt ◦ T ∗. Since T ∗ ∈ I(F ∗, G∗) and gt ∈ L(G∗,H∞
v (U)), we obtain that f t ∈

I(F ∗,H∞
v (U)). Hence f ∈ IH∞

v -dual(U,F ), and since

∥f∥IH∞
v -dual =

∥∥f t
∥∥
I =

∥∥gt ◦ T ∗∥∥
I ≤

∥∥gt∥∥ ∥T ∗∥I = ∥g∥v ∥T∥Idual ,

by taking the infimum over all representations T ◦ g of f gives ∥f∥IH∞
v -dual ≤ ∥f∥Idual◦H∞

v
. □

Theorem 2.4 enables us to include the following description of the dual weighted holomor-
phic ideal of a completely symmetric normed operator ideal.

Corollary 2.7. [IH∞
v -dual, ∥·∥IH∞

v -dual ] = [I ◦ H∞
v , ∥·∥I◦H∞

v
] whenever [I, ∥·∥I ] is a completely sym-

metric normed operator ideal. □

The operator ideal I = F ,F ,K,W is completely symmetric by [23, Proposition 4.4.7]. Then
Corollaries 2.7 and 2.4 give us the following identifications.

Corollary 2.8. [IH∞
v -dual, ∥·∥IH∞

v -dual ] = [H∞
vI , ∥·∥v] for I = F ,F ,K,W . □

On the injectivity property, we can now establish the following.

Corollary 2.9. If [I, ∥·∥I ] is a completely symmetric injective normed operator ideal, then the weighted
holomorphic ideal [IH∞

v -dual, ∥·∥IH∞
v -dual ] is injective.

Proof. Applying Theorem 2.4, Proposition 2.3 and the properties of [I, ∥·∥I ], we have

[(IH∞
v -dual)inj , ∥·∥(IH∞

v -dual)inj ] = [(Idual ◦ H∞
v )inj , ∥·∥(Idual◦H∞

v )inj ]

= [(Idual)inj ◦ H∞
v , ∥·∥(Idual)inj◦H∞

v
]

= [Iinj ◦ H∞
v , ∥·∥Iinj◦H∞

v
] = [I ◦ H∞

v , ∥·∥I◦H∞
v
]

= [Idual ◦ H∞
v , ∥·∥Idual◦H∞

v
] = [IH∞

v -dual, ∥·∥IH∞
v -dual ],

and the result follows from Corollary 2.1. □

Now, we describe the dual weighted holomorphic ideals of both the ideal Kp of p-compact
operators [22] and the ideal Dp of Cohen strongly p-summing operators [12]. As usual, Np

denotes the ideal of p-nuclear operators, Ip the ideal of p-integral operators, and Πp the ideal
of absolutely p-summing operators (see [23]).

Corollary 2.10. Let I and J be Banach operator ideals such that Idual = J inj . Then IH∞
v -dual =

(J ◦ H∞
v )inj . As a consequence, KH∞

v -dual
p = (Np ◦ H∞

v )inj and DH∞
v -dual

p = (Ip∗ ◦ H∞
v )inj for any

p ∈ (1,∞), where p∗ denotes the Hölder conjugate index of p.
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Proof. The combination of Theorem 2.4 and Proposition 2.3 gives

IH∞
v -dual = Idual ◦ H∞

v = J inj ◦ H∞
v = (J ◦ H∞

v )inj .

This equality yields the consequence in view that Kdual
p = N inj

p by [22, Theorem 6], and Ddual
p =

Πp∗ = Iinj
p∗ by [12] and [22, Theorem 2.9.7]. □

2.5. The closed injective hull of ideals of weighted holomorphic mappings. According to
[23, Section 4.2.1], given an operator ideal I and Banach spaces E and F , an operator T ∈
L(E,F ) is in the closure of I(E,F ) in (L(E,F ), ∥·∥), denoted by I(E,F ), if there exists a se-
quence (Tn) in I(E,F ) such that limn→∞ ∥Tn − T∥ = 0. In this way, the components I(E,F )

define an operator ideal I. This concept motivates the following in the setting of weighted
holomorphic maps.

Definition 2.3. Let U be an open set of a complex Banach space E, let v be a weight on U and let F
be a complex Banach space. Given a weighted holomorphic ideal IH∞

v , a map f ∈ H∞
v (U,F ) is said to

belong to the closure of IH∞
v (U,F ) in (H∞

v (U,F ), ∥ · ∥v), and it is denoted by f ∈ IH∞
v (U,F ), if there

exists a sequence (fn) in IH∞
v (U,F ) such that limn→∞ ∥fn − f∥v = 0.

It is easy to prove the following result.

Proposition 2.4. Let IH∞
v be a weighted holomorphic ideal. Then IH∞

v is a weighted holomorphic ideal
containing IH∞

v , and it is called the closure of IH∞
v . We say that IH∞

v is closed if IH∞
v = IH∞

v , and
we call closed injective hull of IH∞

v – denoted by (IH∞
v )inj – to the injective hull of the ideal IH∞

v . □

The closed injective hull of a weighted holomorphic ideal of composition type admits the
following description.

Proposition 2.5. Let [I, ∥·∥I ] be an operator ideal. Then

[(I ◦ H∞
v )inj , ∥ · ∥(I◦H∞

v )inj ] = [(I)inj ◦ H∞
v , ∥ · ∥(I)inj◦H∞

v
].

In particular, the weighted holomorphic ideal [(I)inj ◦ H∞
v , ∥ · ∥(I)inj◦H∞

v
] is injective.

Proof. We claim that I◦H∞
v (U,F ) = I ◦ H∞

v (U,F ). Indeed, note first that I◦H∞
v (U,F ) is closed:

let f ∈ H∞
v (U,F ) and assume that (fn) is a sequence in I ◦ H∞

v (U,F ) such that ∥fn − f∥v → 0

as n → ∞; since Tfn ∈ I(G∞
v (U), F ) by Theorem 2.3 and ∥Tfn − Tf∥ = ∥fn − f∥v for all n ∈ N

by Theorem 2.2, we have that Tf ∈ I(G∞
v (U), F ), and thus f ∈ I ◦H∞

v (U,F ) again by Theorem
2.3.

Now, from I ◦ H∞
v (U,F ) ⊆ I ◦ H∞

v (U,F ), we infer that I ◦ H∞
v (U,F ) ⊆ I ◦ H∞

v (U,F ).
For the converse, take f ∈ I ◦ H∞

v (U,F ); hence T = T ◦ g for some complex Banach space
G, T ∈ I(G,F ) and g ∈ H∞

v (U,G); thus we can find a sequence (Tn) in I(G,F ) such that
∥Tn − T∥ → 0 as n → ∞, and since ∥Tn ◦ g − T ◦ g∥v = ∥(Tn − T ) ◦ g∥v ≤ ∥Tn − T∥ ∥g∥v for all
n ∈ N, we deduce that f ∈ I ◦ H∞

v (U,F ), and this proves our claim. Now, using Proposition
2.3, we conclude that

[(I)inj ◦ H∞
v , ∥ · ∥(I)inj◦H∞

v
] = [(I ◦ H∞

v )inj , ∥·∥(I◦H∞
v )inj ] = [(I ◦ H∞

v )inj , ∥ · ∥(I◦H∞
v )inj ].

□

In terms of an Ehrling-type inequality [13], Jarchow and Pelczyński characterized the closed
injective hull of a Banach operator ideal in [17, Theorem 20.7.3]. We now present a variant of
this result for weighted holomorphic maps.

Theorem 2.5. For a weighted holomorphic ideal IH∞
v and f ∈ H∞

v (U,F ), the following are equivalent:
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(1) f belongs to (IH∞
v )inj(U,F ).

(2) For each ε > 0, there are a complex normed space Gε and a mapping gε ∈ IH∞
v (U,Gε) such

that ∥∥∥∥∥
n∑

i=1

λiv(xi)f(xi)

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

i=1

λiv(xi)gε(xi)

∥∥∥∥∥+ ε

n∑
i=1

|λi|

for all n ∈ N, λ1, . . . , λn ∈ C and x1, . . . , xn ∈ U .

Proof. (i) ⇒ (ii): Let f ∈ (IH∞
v )inj(U,F ) and ε > 0. Hence ιF ◦ f ∈ IH∞

v (U, ℓ∞(BF∗)) and
so we can find a map gε ∈ IH∞

v (U, ℓ∞(BF∗)) such that ∥ιF ◦ f − gε∥v < ε. For any n ∈ N,
λ1, . . . , λn ∈ C and x1, . . . , xn ∈ U , we obtain∥∥∥∥∥

n∑
i=1

λiv(xi)(ιF (f(xi))− gε(xi))

∥∥∥∥∥ ≤
n∑

i=1

|λi| v(xi) ∥(ιF ◦ f − gε)(xi)∥

≤
n∑

i=1

|λi| ∥ιF ◦ f − gε∥v ≤ ε

n∑
i=1

|λi| ,

and therefore∥∥∥∥∥
n∑

i=1

λiv(xi)f(xi)

∥∥∥∥∥ =

∥∥∥∥∥ιF
(

n∑
i=1

λiv(xi)f(xi)

)∥∥∥∥∥
≤

∥∥∥∥∥
n∑

i=1

λiv(xi)gε(xi)

∥∥∥∥∥+
∥∥∥∥∥

n∑
i=1

λiv(xi)(ιF (f(xi))− gε(xi))

∥∥∥∥∥
≤

∥∥∥∥∥
n∑

i=1

λiv(xi)gε(xi)

∥∥∥∥∥+ ε

n∑
i=1

|λi| .

(ii) ⇒ (i): Let ε > 0 and ϕ =
∑n

i=1 λiv(xi)δxi
∈ lin(AtG∞

v (U)). By (ii), we have a complex
normed space Gε and a map gε ∈ IH∞

v (U,Gε) satisfying that

∥Tf (ϕ)∥ =

∥∥∥∥∥
n∑

i=1

λiv(xi)Tf (δxi)

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

λiv(xi)f(xi)

∥∥∥∥∥
≤

∥∥∥∥∥
n∑

i=1

λiv(xi)gε(xi)

∥∥∥∥∥+ ε

n∑
i=1

|λi|

=

∥∥∥∥∥
n∑

i=1

λiv(xi)Tgε(δxi)

∥∥∥∥∥+ ε

n∑
i=1

|λi|

= ∥Tgε(ϕ)∥+ ε

n∑
i=1

|λi| ,

and taking the infimum over all the representations of ϕ, Theorem 2.2 gives

∥Tf (ϕ)∥ ≤ ∥Tgε(ϕ)∥+ ε ∥ϕ∥ .
Consider the Banach space Fε = Gε ⊕ℓ1 G∞

v (U) and define the map Rε : G∞
v (U) → Fε by

Rε(ϕ) = (Tgε(ϕ), εϕ). Clearly, Rε is an injective continuous linear operator with ∥Rε∥ ≤ ∥gε∥v+
ε. By the inequality above, the map Sε : Rε(G∞

v (U)) → F given by Sε(Rε(ϕ)) = Tf (ϕ) is well
defined. Clearly, Sε is linear and since

∥Sε(Rε(ϕ))∥ = ∥Tf (ϕ)∥ ≤ ∥Tgε(ϕ)∥+ ε ∥ϕ∥ = ∥(Tgε(ϕ), εϕ)∥ = ∥Rε(ϕ)∥
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for all ϕ ∈ G∞
v (U), it is continuous with ∥Sε∥ ≤ 1. By the metric extension property of ℓ∞(BF∗),

there exists an operator Tε ∈ L(Fε, ℓ∞(BF∗)) such that ιF ◦Sε = Tε|Rε(G∞
v (U)) and ∥Tε∥ = ∥Sε∥.

U G∞
v (U)

Rε(G∞
v (U))

F ℓ∞(BF∗)

Gε Fε

∆v

Rε

Tf

gε

Sε

ιF

p1

Tε

Rεp2

Define now the maps hε, kε : U → ℓ∞(BF∗) by hε(x) = Tε(gε(x), 0) and kε(x) = Tε(0, ε∆v(x))

for all x ∈ U . On a hand, hε = Tε ◦ p1 ◦ gε ∈ IH∞
v (U, ℓ∞(BF∗)), where p1 : Gε → Fε is the

linear continuous map defined by p1(y) = (y, 0), and, on the other hand, kε = Tε ◦ p2 ◦ ε∆v ∈
H∞

v (U, ℓ∞(BF∗)), where p2 : G∞
v (U) → Fε comes given by p2(ϕ) = (0, ϕ), with ∥kε∥v ≤ ε since

v(x) ∥kε(x)∥ = v(x) ∥(Tε ◦ p2 ◦ ε∆v)(x)∥ ≤ v(x) ∥Tε∥ ε ∥∆v(x)∥ ≤ ε ∥Tε∥ ≤ ε

for all x ∈ U . We have

(hε + kε)(x) = Tε(gε(x), 0) + Tε(0, ε∆v(x)) = Tε(Tgε(δx), εδx)

= (Tε ◦Rε)(δx) = (ιF ◦ Sε ◦Rε)(δx)

= (ιF ◦ Tf )(δx) = (ιF ◦ f)(x)

for all x ∈ U , and thus hε + kε = ιF ◦ f . Hence ∥ιF ◦ f − hε∥v = ∥kε∥v ≤ ε, that is, ιF ◦ f ∈
IH∞

v (U, ℓ∞(BF∗)) and thus f ∈ (IH∞
v )inj(U,F ). □

In the case that the weighted holomorphic ideal IH∞
v is equipped with a Banach ideal norm,

Theorem 2.5 admits the following improvement.

Corollary 2.11. Let [IH∞
v , ∥·∥IH∞

v ] be a Banach weighted holomorphic ideal and let f ∈ H∞
v (U,F ).

The following are equivalent:

(1) f belongs to (IH∞
v )inj(U,F ).

(2) There exists a complex Banach space G, a mapping g ∈ IH∞
v (U,G) and a function N : R+ →

R+ such that∥∥∥∥∥
n∑

i=1

λiv(xi)f(xi)

∥∥∥∥∥ ≤ N(ε)

∥∥∥∥∥
n∑

i=1

λiv(xi)g(xi)

∥∥∥∥∥+ ε

n∑
i=1

|λi|

for all n ∈ N, λ1, . . . , λn ∈ C, x1, . . . , xn ∈ U , and ε > 0.

Proof. In view of Theorem 2.5, all we need to show is (i) ⇒ (ii). Let f ∈ (IH∞
v )inj(U,F ).

By Theorem 2.5, for each m ∈ N, there are a complex Banach space Gm and a map gm ∈
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IH∞
v (U,Gm) such that∥∥∥∥∥

n∑
i=1

λiv(xi)f(xi)

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

i=1

λiv(xi)gm(xi)

∥∥∥∥∥+ 1

2m

n∑
i=1

|λi|

for all n ∈ N, λ1, . . . , λn ∈ C and x1, . . . , xn ∈ U . Take the Banach space G = (⊕m∈NGm)ℓ1 and,
for each m ∈ N, the canonical inclusion Im : Gm → G. Then Im ◦ gm ∈ IH∞

v (U,G), and because
of

m∑
k=1

∥Ik ◦ gk∥IH∞
v

2k ∥gk∥IH∞
v

≤
m∑

k=1

∥Ik∥ ∥gk∥IH∞
v

2k ∥gk∥IH∞
v

≤
m∑

k=1

1

2k
≤ 1

for all m ∈ N, the series
∑

m≥1(Im ◦ gm)/2m ∥gm∥IH∞
v converges in (IH∞

v (U,G), ∥·∥IH∞
v ) to

the weighted holomorphic map g =
∑∞

m=1(Im ◦ gm)/2m ∥gm∥IH∞
v ∈ IH∞

v (U,G). Using the
inequality above, we deduce∥∥∥∥∥

n∑
i=1

λiv(xi)f(xi)

∥∥∥∥∥ ≤ 2m ∥gm∥IH∞
v

∥∥∥∥∥
n∑

i=1

λiv(xi)

2m ∥gm∥IH∞
v

gm(xi)

∥∥∥∥∥+ 1

2m

n∑
i=1

|λi|

≤ 2m ∥gm∥IH∞
v

∞∑
m=1

∥∥∥∥∥
n∑

i=1

λiv(xi)

2m ∥gm∥IH∞
v

gm(xi)

∥∥∥∥∥+ 1

2m

n∑
i=1

|λi|

= 2m ∥gm∥IH∞
v

∥∥∥∥∥
n∑

i=1

λiv(xi)g(xi)

∥∥∥∥∥+ 1

2m

n∑
i=1

|λi|

for all n ∈ N, λ1, . . . , λn ∈ C, x1, . . . , xn ∈ U and m ∈ N. Finally, this inequality yields the
inequality in the statement defining N : R+ → R+ by

N(ε) =

 2 ∥g1∥IH∞
v if ε > 1,

2m ∥gm∥IH∞
v if 2−m < ε ≤ 2−m+1, m ∈ N.

□
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