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Risk Assessment for Breast Cancer with Integrated Group

Decision-Making Method

Murat Kirişci *
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İstanbul, Türkiye
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Abstract: The most prevalent invasive malignancy in women is breast cancer. The second most common

cause of cancer deaths in women, behind lung cancer, is breast cancer. It begins with developing a tiny

tumor or mass and spreads from breast cells, primarily in the milk ducts (ductal carcinoma) or glands

(lobular carcinoma). Every woman needs to be aware of her risk of developing breast cancer to be proactive

about risk reduction measures and for better care of the disease, even though the causes of breast cancer

are not fully known. Numerous variables that can either raise or decrease the likelihood of acquiring breast

cancer have been identified by independent investigations. By looking at these risk factors, it is feasible

to determine a woman’s estimated risk of acquiring a malignant breast illness. Fermatean fuzzy sets can

adequately describe the uncertain data for determining breast cancer risk. The cumulative prospect theory

is used to build the traditional Tomada de Decisão Iterativa Multicritério (TODIM) approach, which can be

used to reflect the psychological behavior of the decision-maker. The Fermatean fuzzy cumulative prospect

theory-TODIM approach is proposed in this paper to handle the problem of group decision-making. Using

the entropy weight method with Fermatean fuzzy sets to obtain attribute weight information simultaneously

improves rationality. This article applies the mentioned method to the risk assessment of breast cancer.

It illustrates the risk assessment model based on the proposed method, concentrating on hot topics in

contemporary culture.

Keywords: Breast cancer, Fermatean fuzzy environment, cumulative prospect theory, TODIM, group

decision-making.

1. Introduction

Women of all ages are susceptible to breast cancer, which is a highly diverse disease. The breast

comprises many tissues, including dense and fatty tissue that includes milk glands, lobes, and

lobules. Breast cancer occurs when breast cells multiply uncontrollably, leading to tumor formation.
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Breast cancer is said to be metastatic if it spreads to other organs. There are two basic varieties

of breast cancer: non-invasive breast cancer, which stays in the lobular part of the breasts, and

invasive breast cancer, which spreads to nearby tissues or distant organs. In 2020, there were 2.3

million new instances of breast cancer in women and 685.000 deaths globally, according to the WHO

data. For more targeted medicine and treatment, early prognosis prediction is therefore essential.

Breast cancer is difficult to anticipate and treat since it is a complicated disease with a wide range of

clinical outcomes. For instance, medical personnel face challenges with manual interpretation due

to the high dimensionality of multimodal data. Therefore, the creation of computational algorithms

becomes essential for precisely forecasting the prognosis of breast cancer. The importance of these

methods in clinical decision-making is highlighted by the fact that these algorithms can help doctors

choose the best course of action for their patients.

Artificial intelligence, cognitive science, psychology, philosophy, and other academic disci-

plines are all interested in how people reason and form opinions in practical situations. Various

mathematical and statistical models usually describe these processes; decision-making (DM) be-

comes essential. Behavior management chooses which behavior patterns an individual or organi-

zation should use to accomplish a specific goal. Research indicates that while many decisions in

daily life can be made without conscious thought, more thought and effort are needed to make

complex and important decisions. In discrete situations with well-defined and limited options,

multi-attribute decision-making, or MCDM, is employed. MCDM problems have a limited num-

ber of possible solutions. MCDM techniques are frequently used in decision-making processes like

ranking, comparing, and selecting options. These methods are typically chosen because they en-

able quick DM without requiring intricate mathematical computations or sophisticated package

software. The MCDM approach can only accomplish one objective. The goal is to solve the choice

dilemma most cost-effectively and beneficially possible.

When there are several alternative outcomes of a particular event, but their likelihood is

unknown, this is known as uncertainty. As a result, the DM must comprehend uncertainty. It takes

time and effort to comprehend the likelihood that events will occur in reality. Consequently, there

is uncertainty at every stage of the DM process. A strong basis for logical reasoning with vague

and imperfect data is provided by fuzzy logic theory. Thanks to fuzzy logic theory, computers

can understand human language and apply human knowledge. At this point, it starts employing

symbols instead of numerical expressions. Fuzzy sets (FS) are symbolic expressions of this type.

FSs are known to include choice variables, such as probability states.

1.1. Research Motivation

Quantifying the degrees of membership (M) and non-membership (N ) in a single numerical

number is only partially justified or technically sound in human cognitive and decision-making

2
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activities. When information must be provided as intervals rather than single-valued numbers,

interval numbers may be used. The decision-maker can more easily convey his or her preference

for M and N using intervals. Because of a lack of information, decision-makers may find it

challenging to express their thoughts accurately with an exact number in specific real-world DM

challenges. In Intuitionistic fuzzy set (IFS) theory, the N is defined in addition to the M , whereas

FS theory is designed only to reveal the M defined in the range. Pythagorean fuzzy sets (PFS),

which Yager proposed [34] and in certain instances developed as an extension of IFSs since IFSs

cannot adequately convey uncertainty PFSs employ the notion that the sum of the squares of M

and N are less than or equal to 1 for circumstances when decision-making is impossible when M

and N are added together. The Fermatean fuzzy set FFS is ascribed to Senapati and Yager [34].

The property is “the sum of the cubes of M and N are less than or equal to 1”attained by the

M and N in the FFS.

The TODIM method ranks the alternatives in the MCDM problem. The TODIM method

is a method used to make decisions under risky conditions. The form of the value function in

the method is similar to the loss and gain function of the prospect theory. This function reflects

the behavioral characteristics of decision-makers, such as risk aversion, and shows the degree of

dominance of alternatives over each other. The global value function combines the gains and losses

according to all decision criteria and allows the ranking of alternatives. The TODIM technique

is a method that allows the use of qualitative data expressed with linguistic variables along with

quantitative data.

The main advantage of the TODIM method compared to other behavioral decision tech-

niques is that it considers the behavioral characteristics of DMs with limited rationality. The

method includes gains and losses relative to the reference point in case of uncertainty, thus making

DMs more sensitive to losses. In the case of decision-making based on full rationality, DMs only

aim to maximize utility. In contrast, in the TODIM technique, DMs maximize total utility by

considering losses. Therefore, the TODIM method can be considered a behavioral decision-making

method based on partial rationality.

The primary finding of cumulative prospect theory (CPT) (and its precursor, prospect

theory) is that people typically consider potential outcomes about a specific reference point,

which is frequently the status quo rather than the ultimate status. We refer to this phenomenon

as the framing effect. Additionally, their risk attitudes toward gains (i.e., outcomes above the

reference point) and losses (i.e., outcomes below the reference point) differ, and they are typically

more concerned with prospective losses than with potential profits (loss aversion). Lastly, people

undervalue “average”events while overvalue extraordinary ones. Prospect Theory, which holds

that people outweigh unexpected events regardless of their relative outcomes, is contrasted with

3
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the last statement.

1.2. Literature

Globally, breast cancer (BC) is the most common invasive cancer in women. After lung cancer,

breast cancer is the second leading cause of death for women. It starts with the formation of a

small tumor or mass and is brought on by breast cells, particularly those in the glands (lobular

carcinoma) or milk ducts (ductal carcinoma) [38]. The border of a benign (non-cancerous) tumor

is smooth and distinct. There may be irregularly bordered or hypothesized cancerous (malignant)

lumps [31]. Even if the exact causes of BC are unknown, every woman should be aware of her

risk of contracting the illness so that she can take proactive steps to reduce her risk and treat it

successfully. Numerous factors that either increase or decrease the risk of getting breast cancer

have been identified by independent studies [39–42]. It is possible to estimate a woman’s predicted

probability of developing malignant breast disease by evaluating these risk factors.

An annual breast cancer screening utilizing digital mammography is recommended for all

women over the age of 40 to spot worrisome lesions early. Digital mammograms do not accurately

indicate the post-screening risk of developing a malignant breast disease in those diagnosed with

normal or benign findings, even though they are believed to be effective in detecting suspicious

breast masses and lesions and grading the findings on a zero to six scale by BI-RADS [43] guide-

lines. Certain women should be treated separately by patients with lower risk factors since they

may have genetic predispositions or other BC risk factors that put them in the high-risk category.

In order to help women become more BC-conscious, it is imperative to create an integrated BC risk

assessment model that incorporates the results of the initial screening study with the individual’s

demographic risk factors. This would make it possible for high-risk women to ask their doctors for

sensible guidance on the best follow-up plan, increasing the likelihood that malignant tumors will

be discovered early.

Zadeh’s [35] concept of an FS highlighted the ambiguity and absurdity of a M . Atanassov

[2] then discovers the IFS, which could provide more detailed evaluation information by linking an

item to a component’s N . However, because of their significant limitations in giving preference

information, IFSs are designed to make it difficult for judgment specialists to make the proper

assessments. Along with the M , IFS also specifies the N . IFS theory states that M and N fall

within the [0,1] range.

Imprecision must be taken into consideration in any DM procedure. Numerous methods

and instruments have been put forth to address the unclear environment of collective DM. One

of the most recent methods for dealing with uncertainty is FFS [23]. These sets provide a wider

range of applications than the FS [35] extensions, the IFS [2], and the PFS [33]. Recently, FFs
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have inspired many studies [1, 5, 6, 10, 14, 24–26].

Problems in the real world are often very complicated. Complexity can be attributed to

ambiguities, randomness, or limited understanding brought on by a lack of data or poor quality of

information. Most tasks require identifying the variables in the problem statement using linguistic

language. More precise forecasts and advantageous solutions will result from an understanding of

decision-makers knowledge of confusing facts. Zadeh’s [35] FS idea is a key component of fuzzy

modeling, a mathematical approach that describes uncertainty in human systems. It is indis-

putable that FS theory cannot individually determine the satisfaction or dissatisfaction of human

judgment, even though the study of partial membership required a significant divergence from

conventional reasoning. Atanassov [2] created the intuitionistic fuzzy set (IFS) theory to overcome

this limitation. Numerous academics in a range of optimization-related domains have since used

IFSs. IFS is not designed to handle scenarios when the sum of M and N for some alternatives is

more than one. To get around this restriction, Yager [33], [34] developed Pythagorean fuzzy sets

(PFSs), which loosen it up so that the only condition at each option evaluation is that M and N

sum of squares is less than 1. Senapati and Yager [23, 24] developed the FFS concept in response to

the limitations imposed by PFSs. FFS theory was proposed by Senapati and Yager [23, 24] in re-

sponse to the limitations imposed by IFSs and PFSs. TheM andM cubic sum in an FFS must be

less than or equal to 1. In addition, FFS-related applications are depicted in [5, 6, 8, 18, 24, 25, 27].

TheM ’s ambiguity and vagueness were illustrated using [35]’s concept of an FS. Atanassov’s

intuitionistic FS (IFS) [2] links an element’s N to an item, providing a more comprehensive expla-

nation of assessment data. Yager [33, 34] developed the Pythagorean FS(PFS) idea to broaden the

range of M and N so that M2+N 2 ≤ 1 in response to the IFS vulnerability previously described.

Because of this, PFS offers professionals more evaluation opportunities to express their opinions

on various objectives. The complexity of the DM framework increases the difficulties specialists

have in producing reliable evaluation data. The development of IFS and PFS has addressed the

ambiguity and vagueness caused by the complex subjectivity of human cognition. The FFS was

the first to expand the scope of information assertions by adding the cubic sum of M and N .

Therefore, FFS manages ambiguous choice situations more efficiently and practically than IFS

and PFS. Senapati and Yager started the FFS [23]. The fundamental characteristics of FFS were

initially provided by Senapati and Yager [24, 25].

Garg et al. [5] have established general aggregation operators, based on Yager’s t-norm and

t-conorm, to cumulate the FF data in decision-making environments. In [17], a hybrid MCDM

based on IVFF was proposed for risk analysis related to autonomous vehicle driving systems.

Kirisci [8] defined new correlation coefficients based on the Fermatean hesitant fuzzy elements and

5
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interval-valued Fermatean hesitant fuzzy elements. The least common multiple expansion was

used in the newly defined correlation coefficients. In [12], a three-way method for computing the

correlation coefficients between FFSs has been given using the notions of variance and covariance.

New distance and cosine similarity measures amongst FFSs have been defined [10]. A method

was established to construct similarity measures between FFSs based on the cosine similarity and

Euclidean distance measures. In [11], a new correlation coefficient and weighted correlation coef-

ficient formularization have been proposed to evaluate the affair between two FFSs. In [14], an

extended version of the ELECTRE-I model called the FF ELECTRE-I method for multi-criteria
group decision-making with FF human assessments has been presented. Kirisci [15] defined the

Fermatean hesitant fuzzy set and gave aggregation operations based on the Fermatean hesitant

fuzzy set. The interval-valued Fermatean fuzzy linguistic Kernel Principal Component Analysis

model has been given in [16]. The definition of FF soft sets and some properties were introduced [9].

Furthermore, the Fermatean fuzzy soft entropy and the formulas for standard distance measures,

such as Hamming and Euclidean distance, were defined [9]. A new model for group decision-making

methods in which experts’ preferences can be expressed as incomplete FF-preference relations has

been presented [27]. A multi-criteria decision-making strategy to evaluate the risk probabilities of

autonomous vehicle driving systems by combining the AHP technique with interval-valued FFSs

has been proposed in [28]. First, the interval-valued IFS was described in [3]. It represented the

M and N by the closed subinterval of the interval [0,1]. The interval-valued PFS (IVPFS), whose

M and N are represented by an interval number, was further proposed by [29]. Several operations

and relations of IVPFS are also examined. Jeevaraj defined the IVFFS [6].

Gomes and Lima [7] provide the traditional TODIM approach for the first time due to

the complexity of the decision environment. The TODIM approach is always used to evaluate

some MADM conditions while considering the DMs confidence level to deliver a more equitable

solution under risk. As a result, while the TODIM technique is an excellent MADM method, it has

limitations; it does not have to provide an adequate mechanism for generating attribute weights

and needs a comprehensive approach. As a result, Tian et al. [20] improved on the traditional

TODIM technique. They used it with the CPT to change the weighting of attributes to make

more reasonable decisions in practice. On the other hand, the risk assessment of science and

technology projects could be considered a classic MAGDM issue. Some research is similar. Tüysüz

and Kahraman [21] found the fuzzy analytic hierarchy process (AHP) to help analyze the risk of

an information technology project. Kumar et al. [22] studied the risks of software projects and

developed a new blended MCDM technique based on fuzzy DEMATEL, FMCDM, and TODIM

knowledge. Suresh and Dillibabu [32] were also looking for a better model for software project

evaluation and developed a framework for fuzzy DEMATEL, ANFIS MCDM, and IF-TODIM. Zhao

6
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et al. [36] proposed a CPT-TODIM method based on intuitionistic fuzzy sets for the MAGDM

problem and used the CRITIC method to obtain the weight information of the attributes. In

[37], the new CPT-TODIM approach based on PFSs has been implemented. Liao et al. [19]

introduced the extended TODIM with CPT for probabilistic hesitant fuzzy multiple attributes

group decision-making.

1.3. Necessity

The FFSs could effectively depict the imprecise or vague information of risk assessment issues of

breast cancer. In light of this, the primary goal of this work is to offer a technique for evalu-

ating breast cancer risk. To consider the limited rationality of physicians’ thinking, we expand

this unique TODIM method based on the CPT to the FFSs in this paper. We also use FFSs to

transmit experts’ appraisals of each alternative for each attribute. This combination has potential

applications in related circumstances, which can strengthen and resupply the research. As a result,

applying this research topic to MCDM for risk evaluation issues is intriguing.

Since the information description of breast cancer pre-diagnosis lays a solid foundation for

later disease diagnosis, the current paper mainly focuses on the imprecision and incompleteness

that existed in the problem modeling procedure.

A selectable method is required to reflect the psychological behaviors of physicians, and due

to this requirement, the classical TODIM method based on cumulative prospect theory (CPT-

TODIM) will be created.

To increase rationality, the weight information of the attributes will be obtained.

1.4. Originality

The literature has identified numerous hazards that can either increase or lower the chance of
developing breast cancer. It is possible to evaluate a woman’s likelihood of developing a malignant

breast disease by examining these risk factors. Bridging the gap between FFSs and CPT-TODIM

and investigating efficient models and ways with the aid of FFS CPT-TODIM in deficient informa-

tion systems is essential, given that FFSs are expected to be a fundamental tool for breast cancer

risks. This serves as the main driving force for the research in the paper.

1.5. Contribution

The following significant contributions can be eventually specified:

(1) FFS CPT-TODIM processes uncertain information in modeling breast cancer risks.

(2) The FFS CPT-TODIM method can more comprehensively address the bounded rationality of

physicians regarding breast cancer risks.

7
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(3) A comprehensive FF MCDM approach is constructed via FF CPT-TODIM. By using FFSs,

physicians’ evaluation of each alternative for each attribute can be captured more robustly.

2. Preliminaries

U , the initial universe set, will be used throughout the article.

For αP ∶ U → [0,1] and βP ∶ U → [0,1] , the FFS P is shown by P = {(u,αP (u), βP (u)) ∶

u ∈ U} , where the inequality 0 ≤ α3
P (u) + β3

P (u) ≤ 1 [23] is valid.

It is defined as γP (u) = 3
√
1 − (α3

P (u) + β3
P (u)) degree of indeterminacy of u to P .

Take three FFSs P = {αP , βP } , P1 = {αP1 , βP1} and P2 = {αP2 , βP2} . Then, some

operations as follows [23]:

i. P1 ∩ P2 = min{αP1 , αP2},max{βP1 , βP2} ,

ii. P1 ∪ P2 = maxαP1 , αP2 ,minβP1 , βP2 ,

iii. P t = βP , αP ,

iv. P1 ⊞ P2 = ( 3

√
α3
P1
+ α3

P2
− α3

P1
α3
P2
, βP1βP2) ,

v. P1 ⊠ P2 = (α3
P1
α3
P2
, 3

√
β3
P1
+ β3

P2
− β3

P1
β3
P2
) ,

vi. αP = ( 3
√
1 − (1 − α3

P )λ, αα
P ) , λ > 0,

vii. Pλ = (α3
P1
, 3
√
1 − (1 − β3

P )λ) , λ > 0.

Let P = {αP , βP } be an FFN, then the score and accuracy functions of P are defined as:

SC(P ) = 1 + α3
P − β3

P

2
,

AC(P ) = α3
P + β3

P

where SC(P ) ∈ [−1,1] and AC(P ) ∈ [0,1] .

For any two FFNs P1 = {αP1 , βP1} and P2 = {αP2 , βP2} ,

(K1) If SC(P1) < SC(P2) , then P1 < P2 ,

(K2) If SC(P1) = SC(P2) , then

(A) If AC(P1) < AC(P2) , then P1 < P2 ,

(B) If AC(P1) = AC(P2) , then P1 ∼ P2 .

8
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Let Pi = {αPi , βPi} , (i = 1,⋯, n) be a collection of FFNs and ω = (ω1,⋯, ωn)T be the

weight vector of Pi . Then, the Fermatean fuzzy weighted average (FFWA) operator is a mapping

FFWA ∶ Pn Ð→ P , where

FFWA(P1,⋯, Pn) = (
n

∑
i=1
ωiαi,

n

∑
i=1
ωiβi) .

3. CPT-TODIM based on FFSs

First, we will give the TODIM method based on CPT [20]. As follows, there is a decision matrix

C , in which the schemes and attributes are provided by decision-makers:

C = (cij)m×n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 ⋯ c1j ⋯ c1n
c21 c22 ⋯ c2j ⋯ c2n
⋮ ⋮ ⋱ ⋮
ci1 ci2 ⋯ cij ⋯ cin
⋮ ⋮ ⋱ ⋮

cm1 cm2 ⋯ cmj ⋯ cmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

The weighting vector of attributes is represented by ϖ = (ϖ1,⋯,ϖn)T , which satisfies

ϖj ≥ 0 and ∑n
j=1ϖj = 1.

Step 1: Figure out the modified weights Θ∗ikj(ϖj) based on the original weighting vector

of attributes and the weighting function by

Θikj(ϖj) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

((ϖj)λ
(ϖj)λ+(1−ϖj)λ)1/λ , cij ≥ ckj

((ϖj)µ
(ϖj)µ+(1−ϖj)µ)1/µ , cij < ckj ,

(2)

Θ∗ikj(ϖj) =
Θikj(ϖj)

max{Θikj(ϖl) ∶ l ∈ n}
j ∈ n, ∀(i, k), (3)

where λ,µ are the parameters, which are used to describe the curvature of the weighting function.

Step 2: The relative predominance ∆j(Sm, Sk) of scheme Sm compared with Sk in the

attribute Aj can be computed by

∆j(Sm, Sk) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Θ∗ikj(ϖj).(cij−ckj)ζ

∑n
j=1 Θ∗

ikj
(ϖj) , cij > ckj

0 , cij = ckj
−δ ⋅ (∑

n
j=1 Θ∗ikj(ϖj)).(cij−ckj)η

Θ∗
ikj
(ϖj) , cij < ckj ,

(4)

where δ, ζ, η are the parameters.

Step 3: Equation (5) is applied to calculate the overall predominance Υ(Sm) of scheme

Sm :
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Υ(Sm) =
m

∑
k=1

n

∑
j=1

∆j(Sm, Sk). (5)

Step 4: Acquire the standard overall predominance

Ω(Sm) =
Υ(Sm) −minm(Υ(Sm))

maxm(Υ(Sm)) −minm(Υ(Sm))
. (6)

Step 5: Rank the standard overall predominance Ω(Sm) to get the best scheme that has

the biggest Ω(Sm) value.

Based on the above knowledge, a new model will be established to answer the multiple

attribute group decision-making issue with Fermatean fuzzy information. There are three col-

lections of information, which are named the set of alternatives S = {S1,⋯, Sm} , the set of at-

tributes A = {A1,⋯,An} and the set of decision makers J = {J1,⋯, Jp} . Through building the

relation between the alternative and attribute, we can get the Fermatean fuzzy decision matrix

Rz = (rzij)m×n = (αz
ij , β

z
ij)m×n provided by the decision maker Jz , where r

z
ij as well as αz

ij respec-

tively, indicate the membership degree and the non-membership degree about the alternative Sm

keeping in line with the attribute Aj and satisfy αz
ij , β

z
ij ∈ [0,1] and (αz

ij)3, (βz
ij)3 ≤ 1. Further-

more, the weighting vector of attribute ϖ = (ϖ1,⋯,ϖn)T and ϱ = (ϱ1,⋯, ϱn)T is the weighting

vector of decision makers.

Algortihm of CPT-TODIM based on FFSs:

Stage 1: Process and Integrate the Information from Independent Decision Makers

1. Take advantage of Equation (7) to ensure the unification of all of the attributes:

Mz = (mz
ij)m×n,

mz
ij = (ϕzij , ψz

ij) = {
azij = (αz

ij , β
z
ij) ,Ajis a positive attribute

(mz
ij)c = (βz

ij , α
z
ij) ,Ajis a negative attribute.

(7)

2. The Fermatean fuzzy power weighted averaging (FFPWA) operator makes the integration

of Fermatean fuzzy decision matrices deriving from independent decision-makers come true. The

specific process of calculation refers to Equations (8) - (11):

10
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d(mz
ij ,m

t
ij) =

3

√
(ϕzij − ϕtij)3 + (ψz

ij − ψt
ij)3√

2
(8)

sup(mz
ij ,m

t
ij) = 1 − d(mz

ij ,m
t
ij) (9)

X(mz
ij) =

s

∑
t=1,t≠z

φtsup(mz
ij ,m

t
ij), z = 1,2,⋯, s (10)

gij = FFPWAφ(m1
ij ,⋯,ms

ij) =
⊞sz=1 (φz(1 +X(mz

ij)mz
ij)

∑s
z=1 φz(X(mz

ij))
(11)

=
⎛
⎝

3

¿
ÁÁÀ1 −

s

∏
z=1
(1 − (ϕzij)3)

φz(1+X(mz
ij))/∑s

z=1 φz(X(mz
ij)),

s

∏
z=1
((ψz

ij)3)
φz(1+X(mz

ij))
s

∑
z=1

φz(X(mz
ij))
⎞
⎠

Stage 2: Acquire the Attribute Weights based on Existing Information

3. To get the original weighting vector of attributes ϖ , all related equations are sequentially

listed: For j, h = 1,2,⋯, n ,

Λjh = ∑m
i=1 (SC(gij) − 1

m ∑
m
i=1 SC(gij)) . (SC(gih) − 1

m ∑
m
i=1 SC(gih))√

∑m
i=1 (SC(gij) − 1

m ∑
m
i=1 SC(gij))

2
. (SC(gih) − 1

m ∑
m
i=1 SC(gih))

, (12)

Γj =

¿
ÁÁÀ 1

m − 1
m

∑
i=1
(SC(gij) −

1

m

m

∑
i=1
SC(gij))

2

, (13)

ϖj = Γj .∑n
h=1(1 −Λjh)
∑n

j=1
(Γj .

n

∑
h=1
(1 −Λjh)) . (14)

4. Utilize the weighting function shown in Equations (15) and (16) to calculate the modified

weights:

Θikj(ϖj) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(ϖj)λ
((ϖj)λ+(1−ϖj)λ)1/λ , gij ≥ gkj ,

(ϖj)µ
((ϖj)µ+(1−ϖj)µ)1/µ , gij < gkj ,

(15)

Θ∗ikj(ϖj) =
Θikj(ϖj)

max{Θikj(ϖl) ∶ l ∈ n}
j ∈ n, ∀(i, k), (16)

where λ,µ are the parameters, which are used to describe the curvature of the weighting function.
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Stage 3: Carry Through Pairwise Comparison for Any Alternative and Acquire the Even-

tual Standard of Ordering

5. Determine the relative predominance of alternative Sm compared with Sk underneath

the attribute Aj :

dikj =
3
√
(δij − ϑij)3 + (δij − ϑij)3√

2
, (17)

∆j(Sm, Sk) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Θ∗ikj(ϖj).(dikj)ζ

∑n
j=1 Θ∗

ikj
(ϖj) , gij > gkj

0 , gij = gkj
−δ ⋅ ∑

n
j=1 Θ∗ikj(ϖij)
Θ∗

ikj
(ϖj) ⋅ (dikj)η , cij < ckj ,

(18)

where δ, ζ, η are the parameters.

6. Determine the overall predominance Υ(Sm) and the standard overall predominance

Ω(Sm) of the alternative Sm over all others in according to Equations (19) and (20):

Υ(Sm) =
m

∑
k=1

n

∑
j=1

∆j(Sm, Sk), (19)

Ω(Sm) =
Υ(Sm) −minm(Υ(Sm))

maxm(Υ(Sm)) −minm(Υ(Sm))
. (20)

7. Rank the standard overall predominance Υ(Sm) and the bigger value of the standard

overall predominance means the more excellent alternative.

4. Risk Analysis of Breast Cancer

Everyone wants to know how to lower their breast cancer risk. Although doctors do not know what

causes breast cancer, they know there are factors linked to a higher-than-average risk of developing

the disease. Some factors associated with increased breast cancer risk — being a woman, age, and

genetics, for example — cannot be changed. Other factors — lack of exercise, smoking cigarettes,

and eating certain foods — can be altered by lifestyle choices.

By choosing the healthiest lifestyle options, one can empower oneself and keep the risk of

breast cancer as low as possible. If a factor cannot be changed (such as your genetics), you can

learn about protective steps to help keep your risk as low as possible. We will classify a given

individual’s BC risk level into three different grades: S1 -Normal, S2 -Benign, and S3 -Malignant.

The 14 main influencing personal risk factors related to the three main risk factors affecting BC

12
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Figure 1: Demographic risk factors of breast cancer [30]

Table 1: Group decision matrix

A11 A12 A13 A14 B11 B22 C31 ⋯

S1 (0.6321, 0.4610) (0.6357, 0.2744) (0.3310, 0.5863) (0.6485, 0.3762) (0.8945, 0.2376) (0.8637, 0.2551) (0.7581, 0.3548) ⋯

S2 (0.8577, 0.1646) (0.7378, 0.2819) (0.6974, 0.2119) (0.6994, 0.3712) (0.6513, 0.2487) (0.3514, 0.6879) (0.1542, 0.5897) ⋯

S3 (0.4620, 0.3766) (0.4925, 0.4526) (0.5971, 0.2637) (0.7038, 0.3100) (0.6347, 0.4465) (0.6405, 0.3542) (0.5330, 0.4112) ⋯

C35 C36 C37 C38

S1 (0.6485, 0.2998) (0.8214, 0.1258) (0.2471, 0.7902) (0.2416, 0.6548)
S2 (0.6669, 0.3125) (0.3126, 0.4121) (0.3146, 0.3251) (0.4011, 0.6175)
S3 (0.7301, 0.2694) (0.3082, 0.6812) (0.3677, 0.5807) (0.2103, 0.8899)

are shown in Figure 1 [30].

BC risk assessment could be regarded as a classical MCDM issue. Based on the above steps,

in the following, we intend to apply the proposed FF-CPT TODIM method in this paper to the

risk assessment of BC.

1. Uniform the positive and negative attributes by applying Equation (7) and concentrate

a group decision matrix Q by utilizing Equations (8)-(11). The final results are shown in Table 1.

2. Take advantage of Equations (12)-(14) to obtain the original weighting vector of at-

tributes.

3. Utilize the weighting function shown in Equations (15) and (16) to calculate the modified

weights (Take λ = 0.61 and µ = 0.69).

4. Determine the relative predominance of alternative Sm compared with Sk underneath

the attribute Aj according to Equations (17) and (18) (Take δ = 0.91, ζ = 0.88, and η = 2.25).

The original risk weights are denoted by Table 2. Modified weights tables for 14 risk criteria are

not shown in the study as they would take up too much space.

5. Calculate the overall predominance and the standard overall predominance of the alterna-

tive Sm over all others according to Equations (19) and (20). The results are: Υ(S1) = −16.6326,

13
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Table 2: The original risks weight

A11 A12 A13 A14 B11 B22 C31 C32 C33 C34 C35 C36 C37 C38

ϖ 0.078 0.062 0.084 0.065 0.075 0.096 0.063 0.087 0.070 0.067 0.065 0.056 0.074 0.058

Υ(S2) = −0.1402, Υ(S3) = −13.3205, Ω(S1) = 0.2843, Ω(S2) = 0.3927, Ω(S3) = 0.4585.

6. Rank the standard overall predominance Ω(S3) has biggest value that means the S3

emerges as the most risky case.

5. Discussion

5.1. Comparative Analysis:

In this section, the proposed method is compared with the previously given IF CPT-TODIM [36],

PF CPT-TODIM [37] and PHFS CPT-TODIM [19] methods. Table 3 presents the findings of

a comparison between the suggested approach and established techniques. It was also seen from

the rankings that the results obtained by the new method overlapped with the methods given,

especially by PFS and PHFS. However, it was seen that S1 was the third option in all methods.

Table 3: Ranking comparison

Method S1 S2 S3

IF CPT-TODIM [37] 3 1 2
PF CPT-TODIM [36] 3 2 1
PHFS CPT-TODIM [19] 3 2 1
Proposed Method 3 2 1

5.2. Superiority of Suggested Method

The FS, IFS, and PFS are combined to create the FFS. Total squares that are equal to or less

than one, as well as member and nonmember satisfaction levels, are used to calculate PFS. The

decision-maker rarely gives the M and N a specific attribute that would make the squares total

greater than 1. As a result, the PFS cannot deal with this situation effectively. FFS, which can

handle inconsistent and partially unknown data -both prevalent in real-world scenarios- is one of

the most complete methods for getting over this restriction.

The results of the suggested strategy overlap with those of the available methods, according

to the current and sensitivity assessments. The primary benefit of the suggested method over

readily available DM solutions is that it incorporates extra data and tackles data uncertainty by

accounting for aspects like M and N of criteria. The item’s information may be examined more

precisely and impartially. In the DM process, it is also a valuable tool for handling imprecise and

erroneous data. As a result, the predicted information loss occurs since the reasoning for giving
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one parameter a score value has no bearing on the other values.

Conversely, there is no discernible loss of information with our suggested method. The

intended methodology has an advantage over current approaches in that it can identify the degree

of similarity and differentiation across data, avoiding incorrectly motivated judgments. The DM

process can be aided by combining unclear and inaccurate information.

5.3. Limitations

This study still raises several issues. First, risk and uncertainty are not the same thing. This study

primarily concerns the consequences of risk selection rather than promoting ambiguity. Given the

complexity of evaluating women’s potential for BC, risk aversion is crucial to uncertainty avoid-

ance. Prospect theory was used in this work to operationalize risk choice. However, in order to

identify possible hazards with BC, a more comprehensive evaluation could be necessary. Future re-

search should concentrate on combining general risk choice criteria with particular BC risk markers.

Beyond the advantages of the suggested FF-based technique, its incapacity to fully assess

the available possibilities limits its use in particular DM situations. When there are several criteria

and options, creating FFSs is simpler. In order to overcome these constraints, we hope further to

investigate the following topics in our upcoming work:

� The scope of the application can be expanded to include scenarios that can be obtained with

different data.

� Extending the scope of outranking-based interval rough set theory methods -such as VIKOR,

ELECTRE, DEMATEL, ANP, FMEA, BWM, and others- is another long-term objective.

� We aim to determine how various MCDM methods can be applied to the FF values.

Despite identifying and listing risks and sub-risks to BC, this article may need to locate and

include further risks. Subjective weighting values were taken into consideration while applying the

assessments. The results are, therefore, predicated on subjective weighting data.

6. Conclusion

The TODIM approach is always used to examine some MCDM circumstances by considering the

DMs confidence level to provide a more reasonable option under risk. As a result, the TODIM

method is an ideal MCDM method. However, it has limits. It is not required to give a suitable

method for determining attribute weights, nor is it required to present a comprehensive method-

ology. FFS has emerged as a powerful extension of the FS that enables several degrees of truth

connected with each preference information to express ambiguity and vagueness effectively. This

article examines the difficulties of MCDM with FFSs. We propose the FF-CPT-TODIM tech-

nique, which exceptionally illustrates the actual state of mind for decision-makers based on the
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corresponding knowledge of FFSs and the classical TODIM method. In addition, an example of

breast cancer risk assessment is shown to validate the applicability of the FF-CPT-TODIM method

in handling MCDM problems.

As a result of the evaluation made by following the steps of the algorithm, it was seen that

S3 -Malignant came first among the risks related to breast cancer. The parameter values may

change the calculated result in the fourth section and there is no doubt that we need to select the

perfect parameters to address the problem we are studying. The responsibility of this paper is not

to analyze the parameters but to establish a brilliant PF-CPT-TODIM method for MCDM issues.

In future studies, breast cancer risks can be evaluated using different risk analysis methods. Again,

risk assessment can be done using different sets.
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[21] Tüysüz F., Kahraman C., Project risk evaluation using a fuzzy analytic hierarchy process: An appli-

cation to information technology projects, International Journal of Intelligent Systems, 21(6), 559-584,

2006.

[22] Kumar A., Samuel O., Li X., Abdel-Basset M., Wang H., Towards an efficient risk assessment in

software projects–fuzzy reinforcement paradigm, Computers and Electrical Engineering, 71, 833-846,

2018.

[23] Senapati T., Yager R.R., Fermatean fuzzy sets, Journal of Ambient Intelligence and Humanized

Computing, 11, 663-674, 2020.

[24] Senapati T., Yager R.R., Some new operations over Fermatean fuzzy numbers and application of

Fermatean fuzzy WPM in multiple criteria decision making, Informatica, 30(2), 391-412, 2019.

[25] Senapati T., Yager R.R., Fermatean fuzzy weighted averaging/geometric operators and its application

in multi-criteria decision-making methods, Engineering Applications of Artificial Intelligence, 85, 112-

121, 2019.

[26] Shahzadi G., Akram M., Group decision-making for the selection of an antivirus mask under Fer-

matean fuzzy soft information, Journal of Intelligent and Fuzzy Systems, 40(1), 1401-1416, 2021.
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Abstract: The classic Jacobsthal numbers were generalized to k sequences of the generalized order-

k Jacobsthal numbers and then have been studied by several authors. In this paper, we explain that

all of these studies used an incorrect version of order-k Jacobsthal numbers for reasons and give the

correct definition of order-k Jacobsthal numbers. Further, we introduce the compatible generalized order-

k Jacobsthal-Lucas numbers with the generalized order-k Jacobsthal numbers. Next, we give some

properties of order-k Jacobsthal numbers and order-k Jacobsthal-Lucas numbers, including generating

matrix, generalized Binet’s formula, and elementary matrix identities. Further, we investigate specific

examples for our results and give special identities, i.e., sum formula and interrelationships between these
sequences.

Keywords: Generalized order-k sequence, Jacobsthal sequence, trace of matrix, Binet’s formula, Jacobsthal-

Lucas sequence.

1. Introduction

In modern science and daily mathematical practices, a great number of researchers have investi-

gated many integer sequences and their generalizations for a long time, e.g., Fibonacci numbers or

Lucas p -numbers. There are many papers and monographs devoted to the subject in the current

literature. For example, the readers can read the references in [13, 20]. The main framework of

the paper is carved out from the usual Pell and Jacobsthal numbers.

This paper deals with the well-known Jacobsthal {Jn}∞n=0 and Jacobsthal-Lucas {jn}∞n=0
sequences, which are defined recursively as

J0 = 0, J1 = 1 and Jn+1 = Jn + 2Jn−1 for n ⩾ 2 (1)

and
j0 = 2, j1 = 1 and jn+1 = jn + 2jn−1 for n ⩾ 2, (2)
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respectively. It should be noted that, in [10], Horadam investigated extensively and attracted

attention to the mentioned sequences. These can be given in the following ways, named Binet’s

formulas:

Jn =
2n − (−1)n

3
(3)

and

jn = 2n + (−1)n, (4)

respectively. In addition, the author of [10] presented some properties for these sequences as

follows:
jnJn = J2n, (5)

jn = Jn+1 + 2Jn−1, (6)

Jn+1Jn−1 − Jn2 = (−1)n2n−1, (7)

and

n

∑
i=1

ji =
jn+2 − 5

2
. (8)

In [11, 12], Koken and Bozkurt showed that the terms of the mentioned sequences can also

be obtained via a generating matrix as follows:

Fn = [ Jn+1 2Jn
Jn 2Jn−1

] and En =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3n [ Jn+1 2Jn
Jn 2Jn−1

] if n even

3n−1 [ jn+1 2jn
jn 2jn−1

] if n odd

, (9)

where F = [ 1 2
1 0

] and E = [ 5 2
1 4

] . It should be noted that the following interesting property

is satisfied:

tr (Fn) = Jn+1 + 2Jn−1, (10)

which is the right-hand side of Equation (6). Here, tr (.) denotes the trace of an n -square matrix.

Using Equation (1), we get

tr (Fn) = Jn + 4Jn−1. (11)

Today, there are many systematic investigations regarding the Jacobsthal and Jacobsthal-Lucas

sequences. The references given in [4, 5] can be read in this scope.

It should be noted that the main field of studies regarding the second-order sequences is to

consider obtaining their generalized versions. These processes were made in various ways. Some of

them can be summarized as follows. The second-order sequence can be defined with more general

initial conditions, e.g., Horadam [8]; the coefficients of sequence can be chosen from more general
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Table 1: Some values of the generalized order-4 Jacobsthal numbers

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J3
n 1 2 4 9 20 44 97 214 472 1041 2296 5064 11169 24634 54332

J3
−n 0 1 0 -2 1 4 -4 -7 12 10 -31 -8 72 -15 -152

J4
n 1 1 3 6 14 30 67 147 325 716 1580 3484 7685 16949 37383

J4
−n 0 0 1 -1 -1 2 2 6 -1 13 -3 -28 20 52 -67

terms, e.g., Horadam [9]; each term of the sequence can be defined as a linear combination of the

preceding arbitrary two terms e.g. Stakhov [16]; each term is a linear combination of k preceding

terms with k initial conditions, e.g., Miles [15]; or the Binet’s formula of the sequence can be

considered in the general form, e.g., Stakhov and Rozin [17]. There are also many papers as in the

references [1–3, 7, 18, 19] devoted to the subject.

In particular, we would like to mention a paper herein. In [21], Yilmaz and Bozkurt presented

a new generalization of the second-order Jacobsthal numbers, inspired by Miles [15], as follows:

J i
n = J i

n−1 + 2J i
n−2 +⋯ + J i

n−k+1 + J i
n−k (12)

for n > 0 and 1 ⩽ i ⩽ k , with initial terms

J i
n = {

1, if i + n = 1
0, otherwise

for 1 − k ⩽ n ⩽ 0, (13)

where J i
n is the nth term of the ith sequence. Clearly, when k = 2 and i = 1, this definition reduces

to the the famous Jacobsthal sequence. The mentioned paper also displays some properties of the

sequence, generalized Binet’s formula and summation formula.

However, based on some reasons, we think that this definition, unfortunately, is not proper,

namely not a generalization of the Jacobsthal numbers. It does not satisfy many chronic and genetic

identities of the Jacobsthal sequence. For example, considering the definition in Equation (12) and

initial conditions in (13), the terms of the generalized sequence with the negative subscripts are

also an integer. But, as known from the results of Daşdemir [6], the terms with negative subscripts

should not be integers. Moreover, one positive – one negative, consecutively, order of terms with

negative subscripts is also not provided. Besides, there are also many issues similar to these

situations. For a concrete example, letting i = 3 or i = 4 and k = 4, we can, thus, obtain the terms

with negative subscripts of the generalized order-4 Jacobsthal numbers as in Table 1.

Based on the justification briefly explained above, in this paper, we give the true definition

for generalization of the usual Jacobsthal sequence, i.e., generalized order-k Jacobsthal sequence,

and then summarize elementary properties, including the generating matrix and generalized Binet’s

formula. One of the most important highlights of this study is that k -sequences of the generalized

order-k Jacobsthal-Lucas sequence are defined. To do this, we will make use of the miscellaneous
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properties of matrices. Further, for this new definition, appropriate initial conditions that are of

two different forms are also given. In particular, it is stated that the same integer sequences are

obtained in both cases but the order of the sequences is permutationally changed.

2. On the Generalized Order-k Jacobsthal Numbers

In this section, we present the results regarding the generalized order-k Jacobsthal numbers. Note

that since all the conclusions can be proved easily by using the known ways in the current literature,

we will omit the proof processes in order not to bore the readers. For this purpose, the following

definition is the starting point of the paper.

Definition 2.1 k sequences of the generalized order-k Jacobsthal numbers are defined as

J i
n = J i

n−1 + J i
n−2 +⋯ + J i

n−k+1 + 2J i
n−k (14)

for n > 0 and 1 ⩽ i ⩽ k , with initial terms

J i
n = {

1, if i + n = 1
0, otherwise

for 1 − k ⩽ n ⩽ 0, (15)

where J i
n is the n th term of the i th sequence.

For the case where i = 1 and k = 2, our definition is reduced directly to the usual Jacobsthal

numbers, i.e., J1
n = Jn , and when i = k = 2, it is reduced to two times of the Jacobsthal numbers,

namely J2
n = 2Jn . In particular, the sequence Jk

n is called the generalized k -Jacobsthal numbers

in the case of i = k . By the way, Table 2 displays some values of the generalized order-k Jacobsthal

numbers, including the related initial conditions.

After this point, we will summarize the results regarding the generalized order-k Jacobsthal

numbers. Let us define the following matrices:

Ak =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 ⋯ 1 2
1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and J∼k,n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1
n J2

n ⋯ Jk−1
n Jk

n

J1
n−1 J2

n−1 ⋯ Jk−1
n−1 Jk

n−1
⋮ ⋮ ⋱ ⋮ ⋮

J1
n−k−2 J2

n−k−2 ⋯ Jk−1
n−k−2 Jk

n−k−2
J1
n−k−1 J2

n−k−1 ⋯ Jk−1
n−k−1 Jk

n−k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

It is clear from Definition 2.1 that J∼k,n = AkJ
∼
k,n−1 . Expanding the right-hand side of this

equation yields the following theorem.

Theorem 2.2 The matrix equation

J∼k,n =Ak
n (17)

holds for a positive integer n .
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Table 2: Some values of the generalized order-k Jacobsthal numbers

k = 2 k = 3 k = 4
n/i 1 2 1 2 3 1 2 3 4

-7 − 21
64

43
64

− 9
32

23
32

− 9
32

− 1
16

− 1
16

− 1
16

15
16

-6 11
32

− 21
32

7
16

− 9
16

− 9
16

− 1
8

− 1
8

7
8
− 1

8
-5 − 5

6
11
16

− 1
8

− 1
8

7
8

− 1
4

3
4

− 1
4
− 1

4
-4 3

8
− 5

8
− 1

4
3
4

− 1
4

1
2

− 1
2

− 1
2
− 1

2
-3 − 1

4
3
4

1
2

− 1
2

− 1
2

0 0 0 1
-2 1

2
− 1

2
0 0 1 0 0 1 0

-1 0 1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0 0 0
1 1 2 1 1 2 1 1 1 2
2 3 2 2 3 2 2 2 3 2
3 5 6 5 4 4 4 5 4 4
4 11 10 9 9 10 9 8 8 8
5 21 22 18 19 18 17 17 17 18
6 43 42 37 36 36 34 34 35 34
7 85 86 73 73 74 68 69 68 68

k = 5 k = 6
n/i 1 2 3 4 5 1 2 3 4 5 6

-7 − 1
8
− 1

8
7
8
− 1

8
− 1

8
− 1

4
3
4
− 1

4
− 1

4
− 1

4
− 1

4
-6 − 1

4
3
4
− 1

4
− 1

4
− 1

4
1
2
− 1

2
− 1

2
− 1

2
− 1

2
− 1

2
-5 1

2
− 1

2
− 1

2
− 1

2
− 1

2
0 0 0 0 0 1

-4 0 0 0 0 1 0 0 0 0 1 0
-3 0 0 0 1 0 0 0 0 1 0 0
-2 0 0 1 0 0 0 0 1 0 0 0
-1 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0
1 1 1 1 1 2 1 1 1 1 1 1
2 2 2 2 3 2 2 2 2 2 3 2
3 4 4 5 4 4 4 4 4 5 4 4
4 8 9 8 8 8 8 8 9 8 8 8
5 16 16 16 16 16 16 17 16 16 16 16
6 33 33 33 33 34 33 32 32 32 32 32
7 66 66 66 67 66 65 65 65 65 65 66
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Next, the following results are satisfied.

Corollary 2.3 Let n be any positive integer. Then, we have

det (J∼k,n) = {
2n, if k is odd
(−2)n, if k is even

. (18)

Lemma 2.4 For a positive integer n , we have

J i
n = J1

n−1 + J i+1
n−1 and 2J1

n+1 = Jk
n . (19)

Theorem 2.2 says us that J∼k,n is a generating matrix for the generalized order-k Jacobsthal

numbers. This means that readers have a powerful tool for discovering their new identities. For

instance, by taking the multiplication identities of matrices into account, we can write

J∼k,n+m = J∼k,nJ∼k,m = J∼k,mJ∼k,n. (20)

We can, therefore, write the following strange result as an example.

Theorem 2.5 Let n and m be any positive integers. Then,

J i
n+m =

k

∑
j=1

Jj
nJ

i
m−j+1. (21)

Letting also

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ⋯ 0
1
0
0
⋮
0 Ak

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Tn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ⋯ 0
Sn

Sn−1
⋮

Sn−k+1 J∼k,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)

where Sn =
n−1
∑
i=0

J1
i . Moreover, using the fact that J1

n = 1
2
Jk
n+1 yields Sn = 1

2

n

∑
i=0

Jk
i and Sn =

J1
n−1+Sn−1 . Herein, according to all these explanations and since S−i = 0 for 1 ≤ i ≤ k and T1 = J ,

we can write

Tn+1 = TnJ = Tn−1J2 = . . . = T1J
n−1 = Jn.

In this case, computing the right-hand side of the equation Tn = T1Tn−1 , we can write

Sn = 1 + Sn−1 + 2Sn−2 = 1 + Sn − J1
n−1 + 2 (Sn−1 − J1

n−2)

= 1 + Sn − J1
n−1 + 2 (Sn − J1

n−1 − J1
n−2)

and the following result can be given.
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Theorem 2.6 Let n be an positive integer. Then, we have

Sn =
1

2
(3J1

n−1 + 2J1
n−2 − 1) . (23)

It should be noted that for k = 2, the summation in Equation (23) is reduced to the famous formula

of the usual Jacobsthal numbers as

n−1
∑
i=1

Ji =
Jn+1 − 1

2
.

It should be noted that Equation (14) is actually the k-order linear homogeneous difference

equation, with constant coefficients, in the form of

xn = xn−1 + xn−2 +⋯ + xn−k+1 + 2xn−k.

We can then explore a solution to the last equation as xn = λn , where λ is an unknown constant

to be determined. On the substitution of this linear solution into our difference equation, we can,

therefore, write

λn − λn−1 − λn−2 −⋯ − λn−k+1 − 2λn−k = 0
or equally

(λ − 2) (λn−1 + λn−2 +⋯ + λ + 1) = 0.

Therefore, our characteristic equation has the distinct roots such as λ1 = 2 and λj = e
2πij
k for

j = 2,3,⋯, k , which are the eigenvalues of the matrix Ak . Let V be Vandermonde matrix as

follows:

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
k−1 λ2

k−1 ⋯ λk
k−1

λ1
k−2 λ2

k−2 ⋯ λk
k−2

⋮ ⋮ ⋱ ⋮
λ1 λ2 ⋯ λk

1 1 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Also, we consider the vector

bk
i = [ λ1

n+k−i λ2
n+k−i . . . λk

n+k−i ]T .

Also, Vj
(i) be k -square matrix obtained from V by replacing the jth column of V with bk

i .

Then, we have the generalized Binet’s formula for the generalized order-k Jacobsthal numbers in

the following theorem.

Theorem 2.7 Let J i
n be the nth term of ith Jacobsthal sequence for 1 ≤ i ≤ k . Then, we have

Jj
n−i+1 =

det (Vj
(i))

det (V) .
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We now focus on the generating functions for the generalized order-k Jacobsthal numbers.

Fur this purpose, introduce the function

Gi
k (x) =

∞
∑
v=0

Jv
ixv = J0i + J1ix + J2ix2 +⋯ + Jkixk +⋯.

In contrast to the current literature, in our definition, the superscript i is arbitrary over its possible

values, not fixed. In this case, the following important result can be given.

Theorem 2.8 The generating functions for k sequences of the generalized order-k Jacobsthal

numbers are

Gi
k (x) =

J0
i + x(

k+n−1
Σ∗
v=0

xv)J i
n

1 − x − x2 − x3 −⋯ − xk−1 − 2xk
, (24)

where 1−k ⩽ n ⩽ −1 and the asterisk in summation denotes a protocol such that only the last term

of the finite series is multiplied by 2.

Proof Summing Gi
k (x) , −xGi

k (x) , −x2Gi
k (x) , ⋯ , −xk−1Gi

k (x) , −2xkGi
k (x) up, we can

write

(1 − x − x2 − x3 −⋯ − xk−1 − 2xk)Gi
k (x) = J0i + (J1i − J0i)x + (J2i − J1i − J0i)x2

+ (J3i − J2i − J1i − J0i)x3 +⋯ + (Jk−1i − Jk−2i − Jk−3i − J0i)xk−1

or in other situation,

(1 − x − x2 − x3 −⋯ − xk−1 − 2xk)Gi
k (x) = J0i + (J i

−1 +⋯ + J i
−k+2 + 2J i

−k+1)x

+ (J i
−1 +⋯ + J i

−k+3 + 2J i
−k+2)x2 + (J i

−1 +⋯ + J i
−k+4 + 2J i

−k+3)x3 +⋯ + 2J i
−1x

k−1.

The coefficients of the last equation only consists of the initial conditions. Hence, the result follows.
◻

As an example, when i = 3 and k = 7, the generating function for the third sequence of the

generalized order-7 Jacobsthal numbers is found as follows:

G3
7 (x) =

x (1 + x + x2 + x3 + 2x4)
1 − x − x2 − x3 − x4 − x5 − x6 − 2x7

.

In addition, for the cases i = 1, k = 2 and i = k = 2, Equation (24) takes the shape

G1
2 (x) =

1

1 − x − 2x2
and G2

2 (x) =
x

1 − x − 2x2
,

respectively. In particular the second equation is in the well-known form.
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3. On the Generalized Order-k Jacobsthal-Lucas Sequence

In this section, we consider the generalized order-k Jacobsthal-Lucas numbers. For this purpose,

two special cases will be handled.

3.1. Constructing Generalized Jacobsthal-Lucas Sequences by Employing Trace Op-

erator

As remembered, Equations (10) and (11) present a wonderful link between the Jacobsthal and

Jacobsthal-Lucas numbers as follows:

jn = tr (Fn) = Jn + 4Jn−1 = Jn + 2 (2Jn−1) .

We can, therefore, use this idea to construct higher-ordered Jacobsthal-Lucas numbers. For this

purpose, we, firstly, introduce tri-Jacobsthal numbers of third-order recurrence relation

J3
0 = 0, J3

1 = 0, J3
2 = 1 and J3

n+1 = J3
n + J3

n−1 + 2J3
n−2 for n ⩾ 0

and their generating matrix is

F3 =
⎡⎢⎢⎢⎢⎢⎣

1 1 2
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦
.

Note that these definitions can be obtained by simple vector-matrix operations. On the basis of

the induction method, one can prove

F3
n =
⎡⎢⎢⎢⎢⎢⎣

1 1 2
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦

n

=
⎡⎢⎢⎢⎢⎢⎣

J3
n+2 J3

n+1 + 2J3
n 2J3

n+1
J3
n+1 J3

n + 2J3
n−1 2J3

n

J3
n J3

n−1 + 2J3
n−2 2J3

n−1

⎤⎥⎥⎥⎥⎥⎦
.

As a result, we get

tr (F3
n) = J3

n+2 + J3
n + 2J3

n−1 + 2J3
n−1 = J3

n+1 + 2J3
n + 6J3

n−1 = J3
n+1 + 2J3

n + 2 (3J3
n−1) .

After a similar process, one can write

tr (F4
n) = J4

n+2 + 2J4
n+1 + 3J4

n + 2 (4J4
n−1)

and

tr (F5
n) = J4

n+3 + 2J4
n+2 + 3J4

n+1 + 4J4
n + 2 (5J4

n−1) .

This process regularly continues as above with minor changes for increasing values of order.

Hence, we can write this observation in a more general form as in the following.

Corollary 3.1 Let Jk
n be a generalized Jacobsthal numbers of order-k in Definition 2.1. Then,

the generalized Jacobsthal-Lucas numbers {jkn}
∞
n=0 of order-k satisfies the interrelationship

jkn = Jk
n+k−2 + 2Jk

n+k−3 + 3Jk
n+k−4 +⋯ + (k − 2)Jk

n−3 + (k − 1)Jk
n−2 + 2kJk

n−1.
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[h!]

Table 3: Some values of the generalized order-2, order-3 and order-4 Jacobsthal-Lucas numbers

k = 2 k = 3 k = 4
n i = 1 2 1 2 3 1 2 3 4
−3 − 7

8
1
8

9
8

49
8

−2 − 3
4

1
4

17
4
− 3

4
1
4

21
4
− 7

4
−1 − 1

2
5
2
− 1

2
7
2
− 3

2
− 1

2
9
2
− 5

2
− 3

2
0 2 −1 3 −2 −1 4 −3 −2 −1
1 1 4 1 2 6 1 2 3 8
2 5 2 3 7 2 3 4 9 2
3 7 10 10 5 6 7 12 5 6
4 17 14 15 16 20 19 12 13 14
5 31 34 31 35 30 31 32 33 38

It should be noted that Corollary 3.1 is a general result. One can obtain the generalized

Jacobsthal-Lucas numbers from the equation

jn = Jn+k−2 + 2Jn+k−3 + 3Jn+k−4 +⋯ + (k − 2)Jn−3 + (k − 1)Jn−2 + 2kJn−1.

These numbers satisfy the recurrence relation

jn = jn−1 + jn−2 + jn−3 + jn−4 + . . . + 2jn−k

with the initial conditions j0 = k and for 1 ≤ i < k , j−k+i = 2−k+i − 1.

Now, we obtain some terms of generalized order-k Jacobsthal-Lucas numbers. The easiest

way of this purpose is to use the matrix Ak in Equation (16) with the matrix

Mk = [1,2,3,⋯, k − 1,2k].

Then, for any integer n , nth terms of the generalized order-k Jacobsthal-Lucas numbers can be

found with the equation

[j1n, j2n, j3n,⋯, jkn] =Mk ×An−1
k . (25)

Using Equation (25), we can give some values of generalized order-k Jacobsthal-Lucas numbers

which are given in the Table ??.

Let us define the following matrices to use matrix methods for the generalized order–k

Jacobsthal-Lucas numbers

Bk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k 1 − k 2 − k 3 − k 4 − k ⋯ −1
2−1 − 1 2−1 + k 2−1 − k + 1 2−1 − k + 2 2−1 − k + 3 ⋯ 2−1 − 2
2−2 − 1 2−2 2−2 + k + 1 2−2 − k + 2 2−2 − k + 3 ⋯ 2−2 − 2
2−3 − 1 2−3 2−3 + 1 2−3 + k + 2 2−2 − k + 3 ⋯ 2−3 − 2
2−4 − 1 2−4 2−4 + 1 2−4 + 2 ⋱ ⋯ ⋮
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

2−k − 1 21−k ⋯ ⋯ 21−k + 3 ⋯ 21−k + 2k − 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)
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and

j∼k,n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j1n J2
n ⋯ jk−1n jkn

j1n−1 j2n−1 ⋯ jk−1n−1 jkn−1
⋮ ⋮ ⋱ ⋮ ⋮

j1n−k−2 j2n−k−2 ⋯ jk−1n−k−2 jkn−k−2
j1n−k−1 j2n−k−1 ⋯ jk−1n−k−1 jkn−k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

It is easy to prove the following theorem.

Theorem 3.2 The matrix equation

j∼k,n = Bk ×An
k (28)

holds for a positive integer n .

This preparation leads us to the definition of the generalized order–k Jacobsthal-Lucas

numbers as follows.

Definition 3.3 The k -sequences of the generalized order–k Jacobsthal-Lucas numbers (KSOKJ −L)

for n > k and 1 ⩽ i ⩽ k are defined as

jin = jin−1 + jin−2 + jin−3 + jin−4 + . . . + 2jin−k

with initial conditions

jik,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

k, if (i, n) = (1,0)
−1 − k + i, if n = 0
2n + i − 2, if 2 − k ⩽ i + n ⩽ 0
2n + i + k − 2, if i + n = 1, i > 1
2n + i − k − 2, if i + n ⩾ 2 and n ≠ 0

,

We can find generating function and Binet’s formula for the generalized order–k Jacobsthal-

Lucas numbers via Theorem 3.2 similar to the generalized order–k Jacobsthal numbers mentioned

above. But we don’t give these calculations since these repetitions may be tedious for the readers.

3.2. Constructing Generalized Jacobsthal-Lucas Sequences by Derivative of Core Poly-

nomial

Another method to obtain the generalized order–k Jacobsthal-Lucas numbers is to use core

polynomial. Let’s define P (x, t1, t2,⋯, tk) = xk − t1xk−1 − t2xk−2 − ⋯ − tk , where t1, t2,⋯, tk are

constants. So, its derivative is P ′(x, t1, t2,⋯, tk) = kxk−1 − t1(k − 1)xk−2 − ⋯ − tk−1 . It is obvious

that if we take t1 = t2 = ⋯ = tk−1 = 1 and tk = 2, this polynomial reduces to the characteristic

equation of order–k Jacobsthal and Jacobsthal-Lucas numbers. We define the following matrix

Ck =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
2 1 1 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (29)
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Then we can obtain the initial conditions of the generalized order–k Jacobsthal-Lucas numbers by

using the equation (see [14] for details)

j′k,0 = −Ck
−k+1 − 2Ck

−k+2 − 3Ck
−k+3 −⋯ + kCk

0. (30)

For example, if we take k = 3, then we have

C3 =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
2 1 1

⎤⎥⎥⎥⎥⎥⎦
(31)

and Equation (30) gives

j′3,0 =
⎡⎢⎢⎢⎢⎢⎣

17
4

1
4
− 3

4
− 3

2
7
2
− 1

2
−1 −2 3

⎤⎥⎥⎥⎥⎥⎦
. (32)

If we take k = 4, Equation (30) gives

j′4,0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

49
8

9
8

1
8
− 7

8
− 7

4
21
4

1
4
− 3

4
− 3

2
− 5

2
9
2
− 1

2
−1 −2 −3 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

Examining Equations (32) and (33) with Table 3, it is clear that matrices j∼k,0 and j′k,0 give

same sequences in different order. Namely, let σ be the permutation ( 1 2 3 ⋯ k
k k − 1 k − 2 ⋯ 1

) ∈

Sk . Then nth column of the matrix j∼k,0 is the σ(n)−th column of the matrix j′k,0 .

Finally, we are ready to define another form of generalized order–k Jacobsthal-Lucas num-

bers by using the matrix j′k,0 .

Definition 3.4 The k− sequences of the generalized order-k Jacobsthal-Lucas numbers satisfy the

following recurrence relation for n > k and 1 ⩽ i ⩽ k

jin = jin−1 + jin−2 + jin−3 + jin−4 +⋯⋯⋯⋯+ 2jin−k

with initial conditions for 1 − k ≤ i ≤ 0

jik,n =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2n − i − 1, if i − n < k
2n + 2k − i − 1, if i − n = k
2n + k − i − 1, if i − n > k

.

Example 3.5 For k = 8 and i = 5 , Definition 3.3 gives the following sequence

{j58,n}∞n=−7 = {
385

128
,
193

64
,
97

32
,−39

8
,−19

4
,−9

2
,−4,5,7,11,27,27,59,123,251,515,⋯} .

The same sequence can be obtained by taking k = 8 and i = 4 in Definition 3.4.
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4. Conclusions

Due to an upward trend and scientific importance in mathematics and other branches, the inte-

ger sequences and their generalizations become indispensable to exploring wide usage areas and

applications of the sequences under consideration. As the authors, while reviewing the current

literature, we have caught our attention that the definition given for k−sequences of the gener-

alized order-k Jacobsthal numbers is incorrect based on several reasons. To address this issue,

at first, we presented the correct definition for the mentioned generalization. Unfortunately, our

definition overrides all the results of the papers produced within the scope of the study by Yilmaz

and Bozkurt [21]. Then, after the presentation of the definition, some fundamental identities of

the generalization under consideration were performed, e.g., generating matrix, generating func-

tions, and summation formula. Following, we took how to generalize the usual Jacobsthal-Lucas

sequence in the framework of our new definition regarding the generalized Jacobsthal numbers into

account. Instead of ordinary approaches in the literature, we developed combinatorial modeling to

generalize the Jacobsthal-Lucas sequence to k−sequences of the generalized order-k numbers and

gave two new definitions for that aim. Both definitions satisfy the following recurrence relation

jin = jin−1 + jin−2 + jin−3 + jin−4 + . . . + 2jin−k (for n > k and 1 ⩽ i ⩽ k),

where two different initial conditions

jik,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

k, if (i, n) = (1,0)
−1 − k + i, if n = 0
2n + i − 2, if 2 − k ⩽ i + n ⩽ 0
2n + i + k − 2, if i + n = 1, i > 1
2n + i − k − 2, if i + n ⩾ 2 and n ≠ 0

and

jik,n =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2n − i − 1, if i − n < k
2n + 2k − i − 1, if i − n = k
2n + k − i − 1, if i − n > k

.

It should be noted that both definitions are, in fact, the permutationally same. Namely, ith

sequence in the one generalization implies (k − i + 1) -th sequence in the other one.

Another remarkable relation is the following relation between k−sequences of the generalized

order-k Jacobsthal and Jacobsthal-Lucas numbers

jkn = Jk
n+k−2 + 2Jk

n+k−3 + 3Jk
n+k−4 +⋯ + (k − 2)Jk

n−3 + (k − 1)Jk
n−2 + 2kJk

n−1.

As a concluding remark, we imply that the novelties of this study also provide researchers

with many potential research opportunities.
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Abstract: In general terms, integral operators play a very important role as a useful mathematical

tool in order to reach the desired results and make different inferences by analyzing the relevant issues

in mathematics and applied sciences. It is important to understand the conditions under which integral

operators map certain analytic functions to starlike and convex functions and effectively characterizing

and using them is of great importance for studies in this field. In present article, some integral operators

preserving class S are examined from a different perspective and the relevant inequalities and equations

for their univalence are determined and solved.

Keywords: Analytic function, convex function, normalized function, starlike function, univalent function.

1. Introduction

As the interaction of analysis and geometry, geometric function theory is a very interesting sub-

brunch of complex analysis. Perhaps the important reason for this interest is the image sets of

complex functions to which certain conditions (such as being analytic, being normalized, being

univalent, and being defined in the unit disc) exhibit very interesting geometric characterizations.

In this sense, geometric function theory aims, in principle, to analysis the analytic properties of

analytic functions depending on the geometric properties of their image sets. Moreover, geometric

function theory also aims to classify functions with certain properties given above according to

the common geometric characterizations exhibited by image sets (such as convex, starlike, close-

to-convex, etc.). The arguments used in doing this are depends on Riemann mapping theorem in

1851 [16]. It is well known that, under certain conditions, the Riemann mapping theorem guar-

antees the existence of an analytic function that conformal maps a simply connected region of

the complex plane to the open unit disc ∣z∣ < 1, z ∈ C (hereafter represented with U ). In more

mathematical terms, where D ⊂ C is a simply connected region with more than one boundary
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points, for any z0 ∈ D there is a single function f that satisfies the conditions f(z0) > 0 and

f ′(z0) > 0 and conformally maps D to U . Unfortunately, the Riemann mapping theorem in its

current form creates a complicated situation for classifying analytic functions. The complicated

situation is that it is very difficult or even impossible to classify the analytic functions defined on

different domains according to the common geometric characterizations exhibited by the image

sets. The complicated situation expressed was eliminated when Paul Koebe one of the intellectual

scientists working in this field, took the open unit disc U as the domain in 1907, without losing

generality. This idea is, in a sense, the inverse of Riemann’s mapping theorem. Now, analytic

functions with domains U can be classified [5, 6, 9].

As you may remember from the basic complex analysis information, if derivative

f ′(z) = lim
∆→0

f(z +∆z) − f(z)
∆z

(1)

exists for each z ∈ D , the function f(z) is said to be analytic in the set D ∈ C . Let us denote

by H class formed by all complex functions thet are analytic in U . In addition, as a subclass of

the class H , let’s denote with A the class consisting of all functions in the class H that satify the

conditions f(0) = 0 and f ′(0) = 1, known as normalized conditions. Notice that the functions of

class A consist of normalized analytic functions in U . In addition to all these, if the condition of

being one-to-one (that is, for all z1, z2 ∈ U , f(z1) = f(z2) implies z1 = z2(A.W. Goodman, 1983))

[7, 9] is imposed as a new condition on the functions in class A is formed, which is denotes by S .

In studies conducted in this field, a function that s both analytic and one-to-one in U is called a

univalent function. Note that univalent implies being both analytic and one-to-one in U . In the

finall analysis, under the conditions given above, naturally any function f(z) in the class S has a

Taylor expansion given by

w = f(z) = z +
∞
∑
n=2

anz
n = z + a2z2 + . . . + anzn + . . . , z ∈ U [9]. (2)

As stated above, geometric function theory focuses on the concept of univalence and an-

alyticity. Riemann Mapping Theorem plays an important role in unifying both concepts. This

combination interprets the geometric characterizations of sets of images in order to classify func-

tions. It is well known that, S∗ and C are the two usual subclasses of class S of starlike and

convex functions, which geometric characterizations of image sets satisfy the inequalities

R(zf
′(z)

f(z) ) > 0 (3)

and

R(1 + zf ′′(z)
f ′(z) ) > 0, (4)
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respectively [11, 17]. Therefore, these two classes can be given analytically as follows:

S∗ =
⎧⎪⎪⎨⎪⎪⎩
f(z) ∈ A ∶R(zf

′(z)
f(z) ) > 0, z ∈ U

⎫⎪⎪⎬⎪⎪⎭
(5)

and

C = {f(z) ∈ A ∶R(1 + zf ′′(z)
f ′(z) ) > 0, z ∈ U}, (6)

respectively. For a better understanding of the study, the geometric definitions of starlike and

convex functions can be given as follows, respectively.

Definition 1.1 A domain D ⊂ C is called starlike with respect to an interior point w0 if the line

segment connecting point w to any interior point of D lies entirely within D . In this case, a

function f(z) is called starlike with respect to the interior point w0 if it maps the open unit disc

U to a region that is starlike with respect to w0 [7].

It is very important to know that in studies conducted in this field, starlike function

expression (i.e., elements of class S∗ ) are referred to functions that are starlike according to

the origin (i.e., w0 = 0).

Definition 1.2 If the line segment connecting for every different pairs of points w1 and w2 of a

region D ⊂ C lies entirely in D , D is called a convex region. In this case, f is called a convex

function if the function f maps the open unit disc U to a convex region [7].

Another well-known subclass of class S is the class of close-to-convex functions [8].

Definition 1.3 A function f ∈ A is said to be close-to-convex in an open unit disc U if there is

a function g in U such that

R(f
′(z)

g′(z) ) > 0, z ∈ U . (7)

The class of close-to-convex functions is usually denoted by K .

If f = g is taken in (7), it can be easily seen that a function that is convex in U is close to convex.

Similarly, it can be easily obtained that each starlike function is close to convex. For this, it will

be sufficient to take a starlike function h(z) = zg′(z) , z ∈ U .

Geometric function theory deals mostly with the study of the properties of functions be-

longing to class S . As mentioned before, such functions were studied by Paul Koebe in 1907. In

this sense, the function given by the

k(z) = z

(1 − z)2 = z + 2z
2 + 3z3 + ⋅ ⋅ ⋅ = z +

∞
∑
z=2

nzn (8)

36



Alaattin Akyar / FCMS

was first introduced by Koebe and is named after him, since this function is in class S , it means that

this function is analytic, normalized, and univalent in U which is simple to proven [8]. Firstly, the

Koebe function k(z) is analytic because it is complex differentiable at every point z ∈ U . Secondly,

the Koebe function k(z) is normalized as it satisfies the normalization conditions k(0) = 0 and

k′(0) = 1 in U , where k′(z) = 1 +
∞
∑
z=2

n2zn−1 . On the other hand, if the necessary algebraic

operations are performed, z1 = z2 is obtained when for all z1, z2 ∈ U , k(z1) = k(z2) . As a result,

the Koebe function k(z) is univalent since it is analytic and one-to-one in U . In geometric sense,

under its properties, k(z) Koebe function maps the open unit disk U conformally (i.e., preserves

angles and orientation) on to the complex plane C excluding the slit along the negative real axis

from −∞ to −1/4. The existence of the Koebe function, which is vital in the analysis of class S ,

naturally caused researchers to ask themselves different questions. In this sense, perhaps the most

important problem that has attracted the attention of researchers and whose solution has been

bothering them for a while is whether there is a relationship between the geometric feature of the

image of a function belonging to the S class and the coefficients of the corresponding power series.

Many researchers have struggled with this issue, known as the problem (or conjecture) of finding

an upper bound for the coefficients of functions in the class S . In 1916, Bieberbach stated and

proved that a2 , the second coefficient of f functions in class S , is bounded by 2 (that is, ∣a2∣ ≤ 2)

and that equality within inequality is valid only for the Koebe function k(z) . He extended this

further in his paper by assuming that all coefficients an of functions in class S are not larger than

n with respect to their positions. Today, this conjectur is known as the Bieberbach conjecture [2].

Conjecture 1.4 (Bieberbach Conjecture) All coefficients an of functions f in class S satisfy the

inequality ∣an∣ ≤ n for each n ≥ 2 .

This conjecture attracted a lot of attention because it remained unsolved for a long time.

However, the methodological proof was made by Louis de Branges in 1984. In 1907, using

Bieberbach conjecture ∣a2∣ ≤ 2 for n = 2, Koebe concluded that every function in class S contains

{w ∶ ∣w∣ ≤ 1/4} of the image set. Here again, equality within inequality is valid only for the Koebe

function k(z) . The geometric result obtained by Koebe, also which is a reference for many other

important results, is today known as the Koebe’s 1/4 Theorem or the Koebe-Bieberbach Theorem

[6].

Theorem 1.5 (Koebe’s 1/4 Theorem or Koebe-Bieberbach Theorem) The image of each function

f in class S covers the disk {w ∶ ∣w∣ ≤ 1/4} with center at the origin w = f(0) = 0 and radius 1/4 .

Koebe’s 1/4 theorem, which is valid only for functions in S class, also guarantees the
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existence of the f−1 inverse of a function f in class S , given by f−1(f(z)) = z (z ∈ U) , where

f−1(w) = w − (a2)w2 + (2a22 − a3)w3 − (5a32 − 5a2a3 + a4)w4 + . . . .

In 1921, after the two important results given above, the Bieberbach conjecture for starlike

ranges fo functions in class S∗ was proven by Rolf Nevanlinna [11].

Theorem 1.6 The power series coefficients of a function f in class S∗ satisfy the inequality

∣an∣ ≤ n for n = 2,3, . . . . Similarly, equality within inequality is valid only for the Koebe function

k(z) .

Corollary 1.7 The power series coefficients of a function f in class C satisfy the inequality ∣an∣ ≤

1 for n = 2,3, . . . . Equality within inequality is valid only for the Koebe function f(z) = z(1−z)−2 .

Theorem 1.8 The image of each function f in class C covers the disk {w ∶ ∣w∣ ≤ 1/2} with center

at the origin w = f(0) = 0 and radius 1/2 .

At this stage, several important conclusions obtained from the given preliminary information

are presented. In the light of the information given so far, naturally we can write C ⊂ S∗ ⊂ S ⊂ A ⊂H

according to the subset relationship in the sets. If f is in class S then any function composed

of scaling, translating, and/or rotating f is also in class S . Then k(z) Koebe function can be

written as the composed of

w0 =
1 + z
1 − z , w1 = z2 and w2 =

1

4
[z − 1].

That is,

k(z) = (w2 ○w1 ○w0) (z) =
1

4

⎡⎢⎢⎢⎢⎣
(1 + z
1 − z )

2

− 1
⎤⎥⎥⎥⎥⎦
.

According to the given composition operation, the graph of the k(z) Koebe function can be easily

drawn.

From previous section, we know that the image of Koebe function is the whole plane minus

the part of the negative real axis from 1/4 to negative infinity. This situation can be easily seen

from Figure 1. Thus, it is clear that Koebe function is starlike with respect to origin and not
convex.

Furthermore, in 1915, Alexander showed the existence of a very useful relationship between

class S and class C [1, 10].

Theorem 1.9 (Alexander’s Theorem) Let f(z) be a function in class S . Then, f ∈ C if and only

if zf ′(z) ∈ S∗ . So, if f(z) ∈ S∗ , then

g(z) = ∫
z

0

f(z)
z

dz (9)
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Figure 1: Image of open unit disc U under Koebe transform

is a convex function.

Notice that the Alexander integral operator maps functions from in class S∗ to the class

C of convex functions. This creative theorem, which is not difficult to prove, also accelerated the

use of integral operators in geometric function theory. Some well-known integral operators in this

sense are given below [3, 15].

� Alexander operator, 1915

g(z) = ∫
z

0

f(t)
t

dt. (10)

� Kim-Merkes operator (also atributed to Causey), 1963, α complex number

g(z) = ∫
z

0
(f(t)

t
)
α

dt. (11)

� Libera operator, 1965

g(z) = 2

z
∫

z

0
f(t)dt. (12)

� Bernardi operator, 1969, α complex number

g(z) = 1 + α
zα
∫

z

0
f(t)tα−1dt. (13)

� Pfaltzgraff operator, 1975, α complex number

g(z) = ∫
z

0
(f ′(t))αdt. (14)
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Since 1907, many mathematicians have worked on integral operators that preserve class S .

In this sense, some important results can be found in [3, 12, 15]. The main purpose of these works

is to determine the values of α which the functions

g(z) = ∫
z

0
(f(t)

t
)
α

and g(z) = ∫
z

0
(f ′(t))α dt (15)

when f(z) function in class S defined by certain conditions related to univalence. Also, the

theorems given below can be found in [4, 13, 14, 18, 19].

Theorem 1.10 If f(z) ∈ S is close-to-convex, then

g(z) = ∫
z

0
(f ′(t))α dt (16)

in class S for α ∈ [0,1] .

Theorem 1.11 If f(z) ∈ S is close-to-convex, then

g(z) = ∫
z

0
(f(t)

t
)
α

dt (17)

then g(z) in class S for α ∈ [0,1] .

Theorem 1.12 If f(z) ∈ S and

g(z) = ∫
z

0
(f(t)

t
)
α

dt, (18)

in class S for 0 ≤ α ≤ (
√
1025 − 25) /100 .

Lemma 1.13 Let f(z) ∈ A . If f(z) satisfies

R(1 + zf ′′(z)
f ′(z) ) > −

1

2
(z ∈ U), (19)

then f(z) is in class S .

2. Main Results

Theorem 2.1 Let the function f(z) given by (2) be a function in class C , and

g(z) = ∫
z

0
(f(t)

t
)
α

dt. (20)

Then, g(z) ∉ S for α ∈ [0,3/2] but for α0 < α , there exists a function f(z) ∈ C , where α0

is the smallest positive root of the α(α + 1)(α + 2) = 96 .
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Proof It is follows from (20) that

1 + zg′′(z)
g′(z) = 1 +

z

⎧⎪⎪⎨⎪⎪⎩
α ( f(z)

z
)
α−1
[ zf

′(z)−f(z)
z2 ]

⎫⎪⎪⎬⎪⎪⎭
( f(z)

z
)
α

= 1 + α( z

f(z)) [
zf ′(z) − f(z)

z2
]

= 1 + αzf ′(z)
f(z) − α,

1 +R(zg
′′(z)

g′(z) ) = 1 − α − αR(
zf ′′(z)
f ′(z) ) > 1 − α ≥ −0.5.

Thus, from Lemma 1.13, g(z) ∈ S is obtained for α ∈ [0,1.5] . On the other hand, if we let

f(z) = z/(1 − z) and g(z) ∈ S , then we obtain

g′(z) = (
z

1−z
z
)
α

= 1

(1 − z)α

= 1 + αz + α(α + 1)
2!

z2 + α(α + 1)(α + 2)
3!

z3 + . . . .

Thus,

∣α∣ < 4,
RRRRRRRRRRR

α(α + 1)
2!

RRRRRRRRRRR
< 9 and

RRRRRRRRRRR

α(α + 1)(α + 2)
3!

RRRRRRRRRRR
< 16 (21)

are obtained from the Conjecture 1.4. At this stage, with a simple algebraic calculation, the positive

real number root of the second degree equation α2 +α−18 = 0 obtained as −1+
√
73

2
. Letting α0 be

a positive real number, we must have the following inequqlity from (21):

0 < α ≤ α0 <
−1 +

√
73

2
< 4,

where α0 is smallest positive real number root the equation(that is,α0 = 3.65165 ) α(α + 1)(α +

2) − 96 = 0. This result ends the proof of Theorem 2.1. ◻

Theorem 2.2 Let the function f(z) given by (2) be a function in class S∗ , and

g(z) = ∫
z

0
(f(t)

t
)
α

dt. (22)
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Then, g(z) ∈ S for α ∈ [0,3] but for α0 < α , there exists a function f(z) ∈ S∗ such that

g(z) ∉ S , where α0 is the smallest positive root of the α(α + 1)(α + 2) = 96 .

Proof When the same method as applied in the proof of Theorem 2.1 is applied,

1 + zg′′(z)
g′(z) = 1 +

z

⎧⎪⎪⎨⎪⎪⎩
α ( f(z)

z
)
α−1
[ zf

′(z)−f(z)
z2 ]

⎫⎪⎪⎬⎪⎪⎭
( f(z)

z
)
α

= 1 + α( z

f(z)) [
zf ′(z) − f(z)

z2
]

= 1 + αzf ′(z)
f(z) − α,

1 +R(zg
′′(z)

g′(z) ) = 1 − α − αR(
zf ′′(z)
f ′(z) ) > 1 − α ≥ −0.5,

R(zg
′′(z)

g′(z) ) > 0.5

is obtained for α ∈ [0,3] . Letting f(z) = z(1 − z)−2 and g(z) ∈ S , then we have

g′(z) = (f(z)
z
)
α

= 1 + 2αz + 2α(2α + 1)
2!

z2 + 2α(2α + 1)(2α + 2)
3!

z3 + . . . .

Thus,

∣2α∣ < 4,
RRRRRRRRRRR

2α(2α + 1)
2!

RRRRRRRRRRR
< 9 and

RRRRRRRRRRR

2α(2α + 1)(2α + 2)
3!

RRRRRRRRRRR
< 16 (23)

are obtained from the Conjecture 1.4. At this stage, with a simple algebraic calculation, the positive

real number root of the second degree equation 2α2 +α−9 = 0 obtained as −1+
√
73

2
. Letting α0 be

a positive real number, we must have the following inequqlity from (23):

0 < α ≤ α0 <
−1 +

√
73

2
< 4,

where α0 is smallest positive real number root the equation (that is, α0 = 3.15717) α(2α+ 1)(α+

1) − 96 = 0. This result ends the proof of Theorem 2.2. ◻

Theorem 2.3 Let the function f(z) given by (2) be a function in class C , and

g(z) = ∫
z

0
(f(t)

t
)
α

dt. (24)
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Then, g(z) ∈ S for α ∈ [0,1.5] but for α0 < α , there exists a function f(z) ∈ C such that g(z) ∉ S ,

where α0 is the smallest positive root of the α2 + α − 18 = 0 .

Proof If algebraic operations similar to those in Theorem 2.1 and Theorem 2.2 are performed,

1 +R(zg
′′(z)

g′(z) ) = 1 − α + αR(
zf ′′(z)
f ′(z) ) > 1 − α ≥ −0.5

obtained for α ∈ [0,1.5] . Letting f(z) = z(1 − z)−2 and g(z) ∈ S , then we have

g′(z) = (f(z)
z
)
α

= 1 + αz + α(α + 1)
2!

z2 + α(α + 1)(α + 2)
3!

z3 + . . . .

Thus,

∣α∣ < 4,
RRRRRRRRRRR

α(α + 1)
2!

RRRRRRRRRRR
< 9 and

RRRRRRRRRRR

α(α + 1)(α + 2)
3!

RRRRRRRRRRR
< 16 (25)

are obtained from the Conjecture 1.4. At this stage, with a simple algebraic calculation, the positive

real number root of the second degree equation α2 +α−18 = 0 obtained as −1+
√
73

2
. Letting α0 be

a positive real number, we must have the following inequqlity from (25):

0 < α ≤ α0 <
−1 +

√
73

2
< 4,

where α0 is smallest positive real number root the equation (that is, α0 = 3.65165) α(α + 1)(α +

1) − 96 = 0. This result ends the proof of Theorem 2.3. ◻

Theorem 2.4 Let the function f(z) given by (2) be a function in class S∗ , and

g(z) = ∫
z

0
(f ′(t))α dt. (26)

Then, g(z) ∈ S for α ∈ [0,1.5] but for α0 < α , there exists a function f(z) ∈ C such that g(z) ∉ S ,

where α0 is the smallest positive root of the α2 + α − 18 = 0 .
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Proof

1 + zg′′(z)
g′(z) = 1 +

z

⎧⎪⎪⎨⎪⎪⎩
α ( f(z)

z
)
α−1
[ zf

′(z)−f(z)
z2 ]

⎫⎪⎪⎬⎪⎪⎭
( f(z)

z
)
α

= 1 + α( z

f(z)) [
zf ′(z) − f(z)

z2
]

= 1 + αzf ′(z)
f(z) − α,

1 +R(zg
′′(z)

g′(z) ) = 1 − α − αR(
zf ′′(z)
f ′(z) ) > 1 − α ≥ −0.5,

R(zg
′′(z)

g′(z) ) > 0.5

is obtained for α ∈ [0,3] . Letting f(z) = z(1 − z)−2 and g(z) ∈ S , then we have

g′(z) = (f(z)
z
)
α

= 1 + 2αz + 2α(2α + 1)
2!

z2 + 2α(2α + 1)(2α + 2)
3!

z3 + . . . .

Thus,

∣2α∣ < 4,
RRRRRRRRRRR

2α(2α + 1)
2!

RRRRRRRRRRR
< 9 and

RRRRRRRRRRR

2α(2α + 1)(2α + 2)
3!

RRRRRRRRRRR
< 16 (27)

are obtained from the Conjecture 1.4. At this stage, with a simple algebraic calculation, the positive

real number root of the second degree equation 2α2 +α−9 = 0 obtained as −1+
√
73

2
. Letting α0 be

a positive real number, we must have the following inequqlity from (27):

0 < α ≤ α0 <
−1 +

√
73

2
< 4,

where α0 is smallest positive real number root the equation (that is, α0 = 3.15717) α(2α+ 1)(α+

1) − 96 = 0. This result ends the proof of Theorem 2.4. ◻

3. Conclusion

The meaning of the derivative of a function w = f(z) defined in the complex plane at a point given

by (1) is different from its meaning in real analysis. In real analysis, the derivative of a function

given by y = f(x) is a measure of the ratio of the change in the independent variable x to the

change in the dependent variable y of the function. As you may remember, this measure represents
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physical information such as flux, velocity or slope at a point. However, in complex variable

functions, the main priority is whether or not there is a derivative. The existence of the derivative

provides information about the analytical and geometric properties of the complex function. Does

the existence of a derivative of a complex valued function f at a point z0 mean that point z0 is

an interior point of the region, where the function is defined? Or is it a border point? It varies

depending on what happened. To avoid this confusion, all analytic functions are defined on an open

subset of the complex plane, that is, a region. In this case, differentiability in the complex sense

refers to the limitation, size and shape of the image regions of the analytical functions w = f(z) as

geometric characterizations. These concepts are very important for classifying analytical functions.

Integral and integral operators are very useful and of great importance in geometric function

theory, especially in single-valued function theory. In this sense, it has been demonstrated through

wonderful studies that the integral operators introduced help in the analytical classification of

univalent functions. In the presented article, various inequalities and equations were obtained in

addition to the existing studies.
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Abstract: Let Vn ∶= {(h1, h2, . . . , hn) ∶ hi ∈ {0,1},1 ≤ i ≤ n} − {(0)} be a set of integer vectors. We

enumerate lattice paths that only uses vectors in Vn . Unlike most lattice path enumeration problems, the

number of dimensions isn’t fixed and the vector set is dependent on the dimension. This requires us to

follow a different approach in explicitly expressing the number of lattice paths from origin to any point in

n -dimensional space. We notice that a special case of this problem corresponds to Fubini numbers, which

count the number of weak orderings of a set consisting of n elements. Then, we find the recursive relation

of this sequence. Finally, we develop an algorithm that can be used to find the number of paths between

any two points that do not touch the lattice points in R . The crucial part of our algorithm is that it

doesn’t rely on finding all paths and checking each path for usage of restricted points.

Keywords: Lattice paths, forbidden paths, binary paths, enumeration in n dimensions.

1. Introduction

In the literature, lattice path is defined as; one of the shortest paths from one point to another

in a model that consists of horizontal and vertical paths that intersect each other perpendicularly.

Various researches have been carried out on the “lattice path” for many years. These studies gained

momentum, especially after the 19th century and the most comprehensive studies on the subject

have been made in recent years. We refer the reader [5] for a history of lattice path enumeration.

A Hamiltonian path is a path that visits each vertex of a graph exactly once.

A Hamiltonian loop is a loop that visits each vertex exactly once. A graph containing a

Hamilton cycle is also called a Hamiltonian graph. Determining whether such paths and loops

exist in graphs is called the Hamiltonian path problem. In the study of E. Goodman and T.V.

Narayana in 1969 [3], lattice paths were examined by including cross-steps. In 1976, B.R. Handa

and S.G. Mohanty [4] conducted studies on lattice paths in high dimensions. Similarly, in a 1982
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article by A. Itai, C.H. Papadimitriou, and J.L. Szwarcfiter [6], the applications of Hamiltonian

paths, cycles, and graphs in grid graphs were examined.

The Delannoy number refers to the paths used in mathematics to get from the south-west

corner of a grid to the northeast corner in just simple steps (north, east and north-east). Most of

Delannoy’s work between 1886 and 1898 solved different mathematical problems using a chessboard.

C. Krattenhaler and S.G. Mohanty [8], C. Krattenhaler [7], G. Mohanty [9] has done many studies

on lattice paths. J.M. Autebert, M. Latapy and S.R. Schwer [1] brought their work “The lattice of

Delannoy paths” to the literature in English and French. Later in 2003, J.M. Autebert and S.R.

Schwer [2] expanded this concept (Delannoy path) to n-dimensional space and defined it over a

particular type of alphabet (S-Alphabet) in their study called “On Generalized Delannoy Paths”.

We enumerate lattice paths in an n -dimensional space for a fixed set of vectors Vn ∶=

{(h1, h2, . . . , hn) ∶ hi ∈ {0,1},1 ≤ i ≤ n} − {(0)} . In [10, 11] lattice paths are studied in n -

dimensions. Our goal is to find a formula that gives the number of paths from the origin to the

point (l1, l2, . . . , ln) using only the vectors in Vn for n ≥ 2. We usually refer to these vectors as

steps. Figure 1 gives concrete examples of such lattice paths in 2 and 3-dimensional spaces. For

example, when n = 2 we get the set of steps V2 = {(1,0), (0,1), (1,1)} which has been studied

many times.

x

z

y

Figure 1: Left: A lattice path terminating at (3,2) - Right: A lattice path terminating at (2,2,2)
consisting of vectors (1,0,0) , (0,1,1) and (1,1,1)

The formula we found is

2n−1
∑
j=1

∞
∑
rj=0

(∑2n−1
b=1 rb)!

∏2n−1
c=1 rc!

n

∏
i=1
⌊x−[(∑

n−1
k=1 ∑

min(k,i−1)
p=max(0,k+i−n) fn(i,k,p))+ri−li]

2

⌋ (1)

with

fn(i, k, p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
(n−i
k−p)

v=1 rS+v, if i = p + 1

∑i−p−1
z=1 ∑mz−1−1

mz=i−p−z (∑
(n−i
k−p)

v=1 r
S+[∑i−p−1

t=1 (n−mt
k−gt )]+v

) , if i ≠ p + 1
,

S = ∑k
s=1 (ns) , m0 = i , g0 = p , gt = gt−1 −mt−1 +mt + 1 and x > 1.
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First, we want to note that n is the number of dimensions in our space. This formula finds

all possible paths (including the ones that do not terminate at the desired point) in n -dimensional

space, then chooses the ones that terminate at the desired point (l1, l2, . . . , ln) .

2. Finding All Paths in n-Dimensional Space

There are 2n − 1 steps in Vn . Each aj with 1 ≤ j ≤ 2n − 1 represents a different step in Vn . rj is

the number of aj steps used in a path. A bundle of steps is an unordered group of steps that do

not have to be different. Given all values of rj for 1 ≤ j ≤ 2n − 1, we can form exactly one bundle

of steps. For example for n = 2 and (r1, r2, r3) = (3,1,0) , we get the bundle (a1, a1, a1, a3) .

Lemma 2.1 The number of all possible paths in n-dimensional space can be found with

2n−1
∑
j=1

∞
∑
rj=0

(∑2n−1
b=1 rb)!

∏2n−1
c=1 rc!

. (2)

Proof All possible bundle of steps comes from the sums ∑2n−1
j=1 ∑∞rj=0 . For a given bundle of

steps,
(∑2n−1

b=1 rb)!
∏2n−1

c=1 rc!
finds all possible permutations of that bundle. ◻

3. Finding Paths That Terminate at the Desired Point

In this section, we find a formula that determines whether a path terminates at the desired point

or not. Determining the terminal point of a path is the same as determining the terminal point

of the bundle that the path was created. It follows because all arrangements of a bundle of steps

terminate at the same point. The following part of our formula

n

∏
i=1
⌊e−[(∑

n−1
k=1 ∑

min(k,i−1)
p=max(0,k+i−n) fn(i,k,p))+ri−li]

2

⌋

finds the distance traveled on all axes for a given bundle and multiplies (2) by 1 if the terminal

point is the desired point, multiplies by 0 if not.

3.1. Arranging the Steps

We systematically assign vectors to the notations of the form aj . First, we establish another

notation for steps. Let (h1, h2, . . . , hn) be a step in Vn . We write db to the notation of that step

for every hb = 1 with 1 ≤ b ≤ n and we have u < y for . . . dudy . . . . For example, the step (1,0,0,1)

is given by the notation d1d4 . This notation tells which axes the steps move on.

Note that the notation d1d4 represents (1,0,0,1) only if n = 4. For example, d1d4

represents (1,0,0,1,0) for n = 5.
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The length of a step is the number of axes that step moves on (also the number of 1’s in the

vector (h1, h2, . . . , hn) and the number of db terms in the notation of that step). We start sorting

the steps by their length. The length of the steps ascends from 1 to n .

Lemma 3.1 The notations aj with ∑k
s=1 (ns) ≤ j ≤ ∑

k+1
s=1 (ns) represents steps with length of k + 1 .

Proof It is easy to see that there are (n
k
) steps with length of k . The number of all steps with

a length smaller than k + 1 is ∑k
s=1 (ns) . In our system of arranging steps, these steps that have

length smaller than k + 1 comes before (by comes before, we mean y < u for ay being a step with

length less than k + 1 and au being a step with a length of k + 1) those with a length of k + 1. ◻

Now we turn our attention to arranging steps of a fixed length. The arrangement of steps is

very similar to an alphabetical arrangement. Assume db denotes the b-th letter in the alphabet.

For example, d1 denotes a , d2 denotes b , d3 denotes c and so on. We transform the notations

consisting of db ’s to words. For example, d1d3d4d8 transforms into acdh. Next we do the classic

alphabetical arrangement. The arrangement of steps for n = 4 is shown below:

a1 = d1 a5 = d1d2 a11 = d1d2d3 a15 = d1d2d3d4

a2 = d2 a6 = d1d3 a12 = d1d2d4

a3 = d3 a7 = d1d4 a13 = d1d3d4

a4 = d4 a8 = d2d3 a14 = d2d3d4

a9 = d2d4

a10 = d3d4

3.2. Distance Traveled on one Axis

We need to determine the distance traveled on a specific axis for a given bundle of steps. We call

this axis the observed axis and represent it with di . We want to find all steps that have di in its

notation. We can show such steps with

p+1

³¹¹¹¹·¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k+1

. . . di

k-p

³·µ. . . . (3)

As shown in the notation, k + 1 is the length of the steps and p is the number of db terms

that are written before the observed axis. This tells that there are k − p db terms written after

the observed axis.

Lemma 3.2 (i) The valid interval for i is 1 ≤ i ≤ n .
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(ii) The valid interval for k is 0 ≤ k ≤ n − 1 .

(iii) The valid interval for p is max(0, k + i − n) ≤ p ≤min(k, i − 1) .

Proof

(i) There are n axes in the n -dimensional space.

(ii) The minimum length of a step is 1 and the maximum length of a step is n . Hence,

0 ≤ k ≤ n − 1.

(iii) There are i−1 choices of axes before the observed axis and we choose p of them. Hence

p ≤ i− 1. There can be only k more terms other than the observed axis, since the length of a step

is k + 1. Hence, we get p ≤ k . It is easy to see that it is necessary to choose the smaller one of

i − 1 and k for the maximum valid value of p .

There are n− i choices of axes after the observed axis and we choose k − p of them. Hence,

we get p ≤ k + i − n . On the other hand, we know p ≥ 0. It is easy to see that it is necessary to

choose the greater one of these values for the minimum valid value of p .

◻

Lemma 3.3 Let the part before the observed axis be fixed, more specifically D . Let aq+1 be the

step Ddidi+1di+2 . . . di+k−p−1di+k−p . Then, all aj steps with q + 1 ≤ j ≤ j + (n−i
k−p) travel on the i-th

axis.

Proof For a fixed part before the observed axis, there are (n−i
k−p) steps. There are n − i possible

axes that can be written after the observed axis and we choose k − p of them.

Next, we show that all of these steps are consecutive. Because of the alphabetical arrange-

ment that we made, the observed axis and the part before it does not change until we go through

all different (n−i
k−p) combinations for the part after the observed axis. ◻

Lemma 3.4 All different subsets of {1,2,3, . . . , i − 2, i − 1} with i − p − 1 elements are the sets

{m1,m2,m3, . . . ,mz−1,mz} with 1 ≤ z ≤ i − p − 1 , mz−1 − 1 ≥mz ≥ i − p − z , m0 = i and mz ∈ N .

Proof Consider all subsets of {1,2,3, . . . , i− 2, i− 1} that consists of i− p− 1 elements. Arrange

each set in descending order. Let mz be the z -th element from left of a subset, we get 1 ≤ z ≤ i−p−1

and mz−1 − 1 ≥ mz . Next we show that mz ≥ i − p − z . There are i − p − z − 1 elements to the

right of mz which are all smaller than mz . This implies that mz ≥ i − p − z . Lastly we show that

m0 = i . We know i − 1 ≥m1 as m1 is the greatest number in a subset. Thus, m0 = i . ◻

We find all steps that travel on i -th axis for fixed values of i , k and p . We denote the

function that finds the coefficients of all such steps in n -dimensional space by fn(i, k, p) . Fn(i, k, p)

denotes the function that finds all steps with given i , k and p values. Note that if we find all
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such steps we can find the distance traveled by simply changing each aj term with rj . We say

that all steps with given i , k and p values whose parts before the observed axis are the same are

a section. For example, when observing d3 in 6-dimensional space, d1d3d4 , d1d3d5 and d1d3d6 is

a section.

Theorem 3.5

Fn(i, k, p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
(n−i
k−p)

v=1 aS+v, if i = p + 1

∑i−p−1
z=1 ∑mz−1−1

mz=i−p−z (∑
(n−i
k−p)

v=1 a
S+[∑i−p−1

t=1 (n−mt
k−gt )]+v

) , if i ≠ p + 1
(4)

with S = ∑k
s=1 (ns) , m0 = i , g0 = p and gt = gt−1 −mt−1 +mt + 1 .

Proof We first proof the case i = p + 1. Every step with such i and p values can be denoted by

d1d2 . . . di−1di . . . . Because of the alphabetical arrangement, these steps precedes those of the same

length. By Lemma 3.3, these steps are consecutive. All steps with a length smaller than k + 1 is

S = ∑k
s=1 (ns) and there are (n−i

k−p) steps because we choose k − p axes out of n − i axis for the part

after the observed axis.

Next we proof the case i ≠ p+ 1. In the case i = p+ 1, we had to use all db with b < i in the

notation of a step. But for the case i ≠ p+ 1 there is some db that is not used in the notation of a

step. Out of i − 1 axes we choose not to use i − p − 1 of them. mt terms represent these unused

axes. For example, if (m1,m2) = (3,1) , d3 and d1 are not used in the notation of a step. Notice

that for a fixed set of unused axes, all steps form a section. The number of steps in a section is

(n−i
k−p) .

We split all steps with given i , k and p values into sections and for each section, we find the

number of steps before that section. ∑i−p−1
z=1 ∑mz−1−1

mz=i−p−z generates mt sets that forms the sections.

Consider not using dmi−p−1 but using all db with b < mi−p−1 . If dmi−p−1 is observed, the

part before it will be fixed. Lemma 3.3 implies that if dmi−p−1 is not used, then we must have gone

through all different combinations for the part after it. There are mi−p−1 − 1 axes before dmi−p−1 ,

thus there are (n−mi−p−1
k−gi−p−1 ) different combinations for the part after dmi−p−1 with gi−p−1 =mi−p−1−1.

Because steps of the form d1d2 . . . dmip−1−1dmip−1 precedes those of the same length, there are

S + (n−mmi−p−1
k−gi−p−1

) steps before the ones that do not use dmi−p−1 . Note that first mi−p−1 −1 terms are

fixed to d1d2 . . . dmi−p−1−1 and we denote this by D .

After that, consider not using dmi−p−2 but using all db with mi−p−1 < b <mi−p−2 . mi−p−2 −

mi−p−1 − 1 axes gets fixed after D . If dmi−p−2 is observed, there are (n−mmi−p−2
k−gi−p−2

) with gi−p−2 =

gi−p−1 +mi−p−2 −mi−p−1 − 1 different combinations for the part after it. There are S + (n−mi−p−1
k−gi−p−1 )+
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(n−mi−p−2
k−gi−p−2 ) steps before the ones that do not use dmi−p−1 and dmi−p−2 . The same idea applies to all

other mt terms and we get gt = gt−1−mt−1+mt+1. If this equation is summed up for 1 ≤ t ≤ i−p−1,

we get gi−p−1 = g0 −m0 +mi−p−1 + i − p − 1 which implies g0 = p . ◻

Example 3.6 Let n = 4 . The arrangement of these steps is made in Section 3. We can see that

F4(3,1,1) = (a6, a8) since F4(3,1,1) is the steps with a length of 2 and 1 db term before d3 in

4-dimensional space. Plugging the values into ( (4)) we get

F4(3,1,1) =
1

∑
z=1

mz−1−1
∑

mz=2−z

⎛
⎜
⎝

(1
0
)

∑
v=1

a
S+[∑1

t=1 (
4−mt
1−gt )]+v

⎞
⎟
⎠

with S = 4 , m0 = 3 and g0 = 1 . We further simplify,

F4(3,1,1) =
2

∑
m1=1

a(4+(4−m1
1−g1 )+1)

.

1. m1 = 1 , g1 = 0 . We get a8 . 2. m1 = 2 , g1 = 1 . We get a6 .

Example 3.7 Let n = 5 . The arrangement of these steps is

a1 = d1 a6 = d1d2 a16 = d1d2d3 a26 = d1d2d3d4 a31 = d1d2d3d4d5

a2 = d2 a7 = d1d3 a17 = d1d2d4 a27 = d1d2d3d5

a3 = d3 a8 = d1d4 a18 = d1d2d5 a28 = d1d2d4d5

a4 = d4 a9 = d1d5 a19 = d1d3d4 a29 = d1d3d4d5

a5 = d5 a10 = d2d3 a20 = d1d3d5 a30 = d2d3d4d5

a11 = d2d4 a21 = d1d4d5

a12 = d2d5 a22 = d2d3d4

a13 = d3d4 a23 = d2d3d5

a14 = d3d5 a24 = d2d4d5

a15 = d4d5 a25 = d3d4d5

Now, we show that F5(3,2,1) = (a21, a24, a25) . Notice that even though a24 and a25 are consecu-

tive, they do not form a section. Simplifying (4) gives

F5(4,2,1) =
2

∑
z=1

mz−1−1
∑

mz=3−z
a
15+[∑2

t=1 (
5−mt
2−gt )]+1

=
3

∑
m1=2

m1−1
∑

m2=1
a
15+[∑2

t=1 (
5−mt
2−gt )]+1

.

1. m1 = 2 , m2 = 1 , g1 = 0 , g2 = 0 . a(15+(32)+(
4
2
)+1) = a25 .
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2. m1 = 3 ,

(a) m2 = 1 , g1 = 1 , g2 = 0 . a(15+(21)+(
4
2
)+1) = a24 .

(b) m2 = 2 , g1 = 1 , g2 = 1 . a(15+(21)+(
3
1
)+1) = a22 .

Corollary 3.8 The distance traveled on i-th axis is

n−1
∑
k=1

min(k,i−1)
∑

p=max(0,k+i−n)
fn(i, k, p). (5)

4. The Results

Let

K(α) =
⎧⎪⎪⎨⎪⎪⎩

1, if α = 0
0, if α ≠ 0

. (6)

We combine this function above with our results. ∑n−1
k=1 ∑

min(k,i−1)
p=max(0,k+i−n) fn(i, k, p) − li is the dif-

ference between the distance traveled and the distance wanted to travel on the i-th axis. We

write α = ∑n−1
k=1 ∑

min(k,i−1)
p=max(0,k+i−n) fn(i, k, p)− li in (6). For a given bundle, we multiply all results for

1 ≤ i ≤ n . If the terminal point for that bundle is the desired point, the result will be 1.

Corollary 4.1 In n-dimensional space, the number of paths from origin to (l1, l2, . . . , ln) using

only vectors in Vn ∶= {(h1, h2, . . . , hn) ∶ hi ∈ {0,1},1 ≤ i ≤ n} is

2n−1
∑
j=1

∞
∑
rj=0

(∑2n−1
b=1 rb)!

∏2n−1
c=1 rc!

n

∏
i=1

K
⎛
⎝
⎛
⎝
n−1
∑
k=1

min(k,i−1)
∑

p=max(0,k+i−n)
fn(i, k, p)

⎞
⎠
+ ri − li

⎞
⎠

with

fn(i, k, p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
(n−i
k−p)

v=1 rS+v, if i = p + 1

∑i−p−1
z=1 ∑mz−1−1

mz=i−p−z (∑
(n−i
k−p)

v=1 r
S+[∑i−p−1

t=1 (n−mt
k−gt )]+v

) , if i ≠ p + 1
,

S = ∑k
s=1 (ns) , m0 = i , g0 = p , gt = gt−1 −mt−1 +mt + 1 and x > 1 .

This formula can be generalized to counting the number of paths between any two lattice

points in n -dimensional space.

Corollary 4.2 In n-dimensional space, the number of paths from (e1, e2, . . . , en) to (l1, l2, . . . , ln)

using only vectors in Vn ∶= {(h1, h2, . . . , hn) ∶ hi ∈ {0,1},1 ≤ i ≤ n} is

2n−1
∑
j=1

∞
∑
rj=0

(∑2n−1
b=1 rb)!

∏2n−1
c=1 rc!

n

∏
i=1
⌊x−[(∑

n−1
k=1 ∑

min(k,i−1)
p=max(0,k+i−n) fn(i,k,p))+ri−(li−ei)]

2

⌋
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with

fn(i, k, p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
(n−i
k−p)

v=1 rS+v, if i = p + 1

∑i−p−1
z=1 ∑mz−1−1

mz=i−p−z (∑
(n−i
k−p)

v=1 r
S+[∑i−p−1

t=1 (n−mt
k−gt )]+v

) , if i ≠ p + 1
,

S = ∑k
s=1 (ns) , m0 = i , g0 = p , gt = gt−1 −mt−1 +mt + 1 and x > 1 .

We calculate the number of paths from origin to (l1, l2, . . . , ln) = (1,1, . . . ,1) for 1 ≤ n ≤ 6

and we get the sequence 1, 3, 13, 75, 541, 4683. This sequence is OEIS sequence A000670, also

called Fubini numbers. The formula for the n -th number in this sequence is an = ∑n
i=1 (ni)an−i .

Corollary 4.3 Let L(n) be the number of lattice paths from origin to (l1, l2, . . . , ln) = (1,1, . . . ,1)

using steps in Vn . Then,

L(n) =
n

∑
i=1
(n
i
)an−i. (7)

Thus, we calculate the number of paths from origin to (l1, l2, . . . , ln) = (2,2, . . . ,2) for

1 ≤ n ≤ 5. We get the numbers 1, 13, 409, 23917 and 2244361 which appears as OEIS sequence

A055203.

1
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Figure 2: The number of paths from origin to (l1, l2,3) using steps in V3 for l1 + l2 ≤ 7

The numbers in Figure 2 was generated using Python.

55



Alper Vural and Cemil Karaçam / FCMS

5. Recursive Relation

Theorem 5.1 Let L(p) be the number of lattice paths from origin to p using steps in Vn . The

recursive relation in this sequence is

L(l1, l2, . . . , ln) =
n−1
∑
m=2

n

∑
b=2

1

∑
vb=0

1

∑
v1=1

n

∑
b=2

L(l1 − v1, l2 − v2, . . . , ln − vn). (8)

Proof From (l1 − v1, l2 − v2, . . . , ln − vn) with vi ∈ {0,1} for all i , there is only 1 way of directly

(without touching any other lattice points besides the one we want to reach) reaching (l1, l2, . . . , ln) .

If any vi ∉ {0,1} , there will be no way of directly reaching (l1, l2, . . . , ln) . Summing up the values

of L(l1 − v1, l2 − v2, . . . , ln − vn) gives us the number of path to (l1, l2, . . . , ln) . But the case where

vi = 0 for all i is the point at which we are finding the recursive relation. Every time we fix one of

vi to 1 to solve this. ◻

In fact, the recursive relation in Theorem 5.1 can be generalized for any set of vectors.

Corollary 5.2 Let K be a set of vectors and L(l1, l2, . . . , ln) be the number the number of lattice

paths from origin to (l1, l2, . . . , ln) . Then the recursive relation in this sequence is

∑L(l1 − v1, l2 − v2, . . . , ln − vn)

for vi ∈ v and v ∈K .

6. An Algorithm for Lattice Paths with Restricted Points

We developed an algorithm that finds the number of paths from origin to any point without

touching the points in R .

Lemma 6.1 Consider a set of lattice points. There is either one or no arrangements of these

points such that i-th coordinate of a point is greater than or equal to the i-th coordinates of

previous points for all i .

Proof Consider two different lattice points p1 = (b1, b2, . . . , bm) and p2 = (c1, c2, . . . , cm) . It is

easy to see that there is either 1 or 0 arrangement such that bj ≤ cj for 1 ≤ j ≤ m or cj ≤ bj

for 1 ≤ j ≤ m . This means that 2 different points are not interchangable. If there is such an

arrangement for a set of lattice points, it will be the only such arrangement. ◻

Corollary 6.2 Let L(p, p′) denote the number of lattice paths from p to p′ (without restrictions).

The number of paths from p to p′ that do not touch the lattice points in R can be computed by the

following algorithm.
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1. Let rm be an m-element subset of R .

2. For pi ∈ rm , calculate the quantity (−1)nL(p, p1)L(p1, p2) . . . L(pm, p′) for all permutations

of rm . There can not be more than one nonzero value and if there is one, note it down.

3. Do this for all subsets of R .

4. The sum of the results is the number of paths from p to p′ that do not touch the points in

R .

Proof L(p, p1)L(p1, p2) . . . L(pm, p′) gives the number of paths from p to p′ that touch the

points (p1, p2, . . . , pm) in the given order. By Lemma 6, if there is such permutation, there will be

only one. We multiply by (−1)n because of the inclusion exclusion principle. ◻

The efficiency of our algorithm lies on the fact that it doesn’t compute all paths and check

whether each path is using one of the restricted points or not. It utilizes the inclusion exclusion

principle to avoid computing all paths.

7. Conclusion

A formula counting the number of paths from origin to the point (l1, l2, . . . , ln) using steps in Vn

has been found. The recursive relation between these numbers has been found and it has been
observed that the technique used to find this recursive relation applies to general sets of vectors.

The formula found can be generalized to find the number of paths between two lattice points. It

has been observed that the numbers L(1,1, . . . ,1) correspond to Fubini numbers which are the

number of arrangements of n competitors. Lastly, an algorithm for lattice paths with restricted

lattice points has been given.
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1 Akdeniz University, Faculty of Science, Department of Mathematics
Antalya, Türkiye, gamzeyildirim@akdeniz.edu.tr

2 Gebze Technical University, Faculty of Basic Science, Department of Mathematics
Kocaeli, Türkiye

3 Bartın University, Faculty of Science, Department of Mathematics
Bartın, Türkiye

Received: 19 April 2024 Accepted: 18 December 2024

Abstract: In this paper, a Clique collocation method is presented to numerically solve the third-order

multisingular (MS) functional differential equation. This method convert this equation to a system of the

algebraic equations via the collocation points and the matrix relations. Also, the error estimation technique

is constituted for the third-order multisingular (MS) functional differential equation. Applications of the

Clique collocation method and the error estimation technique are made for three examples. In addition,

the comparison is made with another method in the literature. The obtained results are tabulated and

visualized to demonstrate the effectiveness of the presented method. Applications of the method and

graphics are made by using MATLAB. According to the applications, it is observed that the results have

quite decent errors.

Keywords: Clique polynomials, collocation method, error estimation, functional differential equations,

singular differential equations.

1. Introduction

Recently, studies on functional differential equations with singular points have been of great

importance for researchers. Functional differential equations are used in many applications such

as electrodynamics [12], models based on chemical kinetics [31], models of population growth [26],

infection models of HIV-1 [27], models of tumor growth [37], B-virus infection hepatitis models

[15] and many more [5, 8, 23, 33, 36]. Differential equations with singular points have been used

in some important application areas such as oscillating magnetic fields [11], study of thermal

explosions model [1], models of the stellar structure [38] and study of the model of isothermal gas

spheres [7]. Many researchers have solved functional differential equations using many methods
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such as one-step implicit methods [3], Taylor polynomial method [35], homotopy analysis method

[4], variational iteration method [10], Laguerre matrix method [42], a matrix-collocation method by

using Müntz-Legendre polynomials [39], two novel memory-based root-finding approaches [30] and

an iterative method [13]. In addition, singularly perturbed differential equations have been solved

using many methods such as spline finite difference method [24], the finite difference methods

[16, 22], the seventh order numerical method [9], B-spline collocation method [20, 21], Bessel

collocation method [40] and Laguerre method [41]. Besides, an approach has been presented to

study the existence, uniqueness and stability of the solutions of nonlinear differential equations with

infinite delay [6]. The collocation methods are one of the methods that obtain effective results to

calculate numerical solutions of differential equations. In the literature, the collocation method

has been used to obtain approximate solutions of many differential equations such as the singular-

perturbation problem [20], general linear differential-difference equations with variable coefficients

[34], the generalized pantograph equations with linear functional argument [35] etc. [29, 40–42].

The clique polynomials were first introduced in [18] and associated with graph theory. Nevertheless,

there are many studies in the literature on the numerical solutions of many differential equations

using Clique polynomials [2, 14, 17, 19, 25, 28, 43]. Effective results are obtained from these

studies. But there is no study in literature yet on the solutions of the third-order multisingular

(MS) functional differential equations using Clique polynomials. Hence, the approximate solution

of this equation is investigated based on Clique polynomials in this paper.

In this study, we consider the model based on the third-order multisingular (MS) functional

differential equations with initial conditions [32]

{
u
′′′

(s + θ1) +
β1

s
u
′′

(s + θ2) +
β2

s2
u
′

(s + θ3) + s u(s + θ4) = α(s),

u(0) = k1, u
′

(0) = k2, u
′′

(0) = k3.
(1)

Here, the parameters β1, β2, θi (i = 1,2,3,4) , kj (j = 1,2,3) are the real constant values and α(s)

is the continuous function.

Our aim is to obtain the approximate solution of (1) in form of the Clique polynomials

uN(s) =
N

∑
n=0

anCn(s), (2)

where N > 0 is chosen to be any positive integer. Here, an and Cn(s) are, respectively, the

unknown coefficients and Clique polynomials described by [19]

Cn(s) =
n

∑
k=0
(
n

k
)sk. (3)

The recursive formulation of the Clique polynomials is
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Cn+1(s) = (1 + s)Cn(s), C0(s) = 1, C1(s) = s + 1. (4)

Let’s summarize rest of this paper as follows: The fundamental matrix relations are presented

in Section 2. The Clique collocation method is presented in Section 3. The error estimation method

is given in Section 4. In Section 5, the applications of the method are made. Also, a comparison

is made with another method in the literature. Thus, the obtained results are interpreted. The

results of the paper are summarized in Section 6.

2. Fundamental Matrix Relations

Let’s start this section by writing the Clique polynomials in matrix form

CN(s) = SN(s)MN , (5)

where CN(s) = [ C0(s) C1(s) ⋯ CN(s) ] , SN(s) = [ 1 s s2 ⋯ sN ] ,

MN =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
0
0
) (

1
0
) (

2
0
) ⋯ (

N
0
)

0 (
1
1
) (

2
1
) ⋯ (

N
1
)

0 0 (
2
2
) ⋯ (

N
2
)

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ (
N
N
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Secondly, we can express the approximate solutions (2) as

uN(s) =CN(s)AN , (6)

where CN(s) = [ C0(s) C1(s) ⋯ CN(s) ] and AN = [ a0 a1 ⋯ aN ]
T
.

Using relation (5) in (6), we get

uN(s) = SN(s)MNAN . (7)

By taking the derivative of (7), we have

u
′

N(s) = SN(s)PNMNAN , (8)

where

PN =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 ⋯ 0 0
0 0 2 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ N 0
0 0 0 ⋯ 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Similarly, the second and the third derivative of (7) becomes

u
′′

N(s) = SN(s)(PN)
2MNAN (9)
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and

u
′′′

N(s) = SN(s)(PN)
3MNAN . (10)

By writing s→ s + θ4 in (7), we obtain the relation

uN(s + θ4) = SN(s + θ4)MNAN

or since SN(s + θ4) = SN(s)DN(θ4) , we can also write it as

uN(s + θ4) = SN(s)DN(θ4)MNAN , (11)

where

DN(θ4) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
0
0
)(θ4)

0 (
1
0
)(θ4)

1 ⋯ (
N
0
)(θ4)

N

0 (
1
1
)(θ4)

0 ⋯ (
N
1
)(θ4)

N−1

⋮ ⋮ ⋱ ⋮

0 0 ⋯ (
N
N
)(θ4)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Similarly, substituting s → s + θ3 , s → s + θ2 and s → s + θ1 , respectively, into (8), (9) and

(10), we have

u
′

N(s + θ3) = SN(s)DN(θ3)PNMNAN , (12)

u
′′

N(s + θ2) = SN(s)DN(θ2)(PN)
2MNAN (13)

and

u
′′′

N(s + θ1) = SN(s)DN(θ1)(PN)
3MNAN , (14)

where

DN (θ3) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
0
0
)(θ3)

0
(
1
0
)(θ3)

1
⋯ (

N
0
)(θ3)

N

0 (
1
1
)(θ3)

0
⋯ (

N
1
)(θ3)

N−1

⋮ ⋮ ⋱ ⋮

0 0 ⋯ (
N
N
)(θ3)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, DN (θ2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
0
0
)(θ2)

0
(
1
0
)(θ2)

1
⋯ (

N
0
)(θ2)

N

0 (
1
1
)(θ2)

0
⋯ (

N
1
)(θ2)

N−1

⋮ ⋮ ⋱ ⋮

0 0 ⋯ (
N
N
)(θ2)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

DN(θ1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
0
0
)(θ1)

0 (
1
0
)(θ1)

1 ⋯ (
N
0
)(θ1)

N

0 (
1
1
)(θ1)

0 ⋯ (
N
1
)(θ1)

N−1

⋮ ⋮ ⋱ ⋮

0 0 ⋯ (
N
N
)(θ1)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Finally in this section, by writing s→ 0 in (7), (8) and (9), we have, respectively

uN(0) = SN(0)MNAN , (15)

u
′

N(0) = SN(0)PNMNAN (16)

and

u
′′

N(0) = SN(0)(PN)
2MNAN . (17)
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3. Clique Collocation Method

Firstly, we write the relations (11) - (14) instead of (1) and so we have

SN(s)DN(θ1)(PN)
3MNAN +

β1

s
SN(s)DN(θ2)(PN)

2MNAN +
β2

s2
SN(s)DN(θ3)PNMNAN

+s SN(s)DN(θ4)MNAN = α(s).

(18)

Secondly, we obtain

SN(s0)DN(θ1)(PN)
3MNAN +

β1

s0
SN(s0)DN(θ2)(PN)

2MNAN +
β2

(s0)2SN(s0)DN(θ3)PNMNAN + s0SN(s0)DN(θ4)MNAN = α(s0)

SN(s1)DN(θ1)(PN)
3MNAN +

β1

s1
SN(s1)DN(θ2)(PN)

2MNAN +
β2

(s1)2SN(s1)DN(θ3)PNMNAN + s1SN(s1)DN(θ4)MNAN = α(s1)

⋮

SN(sN)DN(θ1)(PN)
3MNAN +

β1

sN
SN(sN)DN(θ2)(PN)

2MNAN +
β2

(sN )2SN(sN)DN(θ3)PNMNAN + sNSN(sN)DN(θ4)MNAN = α(sN)

(19)

by using the collocation points defined as

si = a +
b − a

N
i, i = 0,1, . . . ,N (20)

in the range [a, b] , where a is a sufficiently small positive number in the range 0 < a < 1.

Sytem (19) can also be written, briefly, as

WAN =G, (21)

where

W = (SDN(θ1)(PN)
3
+E1SDN(θ2)(PN)

2
+E2SDN(θ3)PN +E3SDN(θ4))MN ,

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α(s0)
α(s1)
⋮

α(sN)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, S =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

SN(s0)
SN(s1)
⋮

SN(sN)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, E1 = diag (
β1

si
) , E2 = diag (

β2

(si)2
) , E3 = diag (si) .

As the next step, we write system (15)-(17) instead of any 3 rows of system (21). Thus, we

get

SN(s0)DN(θ1)(PN)
3MNAN +

β1

s0
SN(s0)DN(θ2)(PN)

2MNAN +
β2

(s0)2SN(s0)DN(θ3)PNMNAN + s0SN(s0)DN(θ4)MNAN = α(s0)

SN(s1)DN(θ1)(PN)
3MNAN +

β1

s1
SN(s1)DN(θ2)(PN)

2MNAN +
β2

(s1)2SN(s1)DN(θ3)PNMNAN + s1SN(s1)DN(θ4)MNAN = α(s1)

⋮

SN(sN−3)DN(θ1)(PN)
3MNAN +

β1

sN−3
SN(sN−3)DN(θ2)(PN)

2MNAN +
β2

(sN−3)2SN(sN−3)DN(θ3)PNMNAN + sN−3SN(sN−3)DN(θ4)MNAN = α(sN−3)
SN(0)MNAN = k1

SN(0)PNMNAN = k2
SN(0)(PN)

2MNAN = k3.

(22)

Let’s note that we select the last 3 rows in the system (22). Finally, we solve the obtained

new system and so we calculate the unknown Clique coefficients matrix AN . Hence, we achieve

the Clique polynomial solutions uN(s) by putting the obtained matrix AN into (6).
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4. Error Estimation Technique

Let’s start this section by defining residual function as

RN(s) = L[uN(s)] − α(s). (23)

Since the Clique polynomial solutions satisfy problem (1), we get

{
u
′′′

N(s + θ1) +
β1

s
u
′′

N(s + θ2) +
β2

s2
u
′

N(s + θ3) + s uN(s + θ4) = α(s),

uN(0) = k1, u
′

N(0) = k2, u
′′

N(0) = k3.
(24)

Secondly, we subtract (24) from (1) and so we gain the error problem

{
e
′′′

N(s + θ1) +
β1

s
e
′′

N(s + θ2) +
β2

s2
e
′

N(s + θ3) + s eN(s + θ4) = −RN(s),

eN(0) = 0, e
′

N(0) = 0, e
′′

N(0) = 0.
(25)

Here, u(s) , uN(s) and eN(s) denote, respectively, the exact solution, the Clique polynomial

solution and the actual error function. Also, let’s note that eN(s) = u(s) − uN(s) .

Finally, we solve the system (25) according to Clique collocation method in previous section

and thus we gain the estimated error function

eN,M(s) =
M

∑
n=0

a∗nCn(s), (26)

where a∗n is the unknown coefficients. The error estimation method is important. Because we can

calculate the made error if the exact solution of the problem is not known.

5. Applications

In this section, the applications of methods in previous sections are made using MATLAB.

Example 5.1 Firstly, we consider the model based on the the third-order multisingular (MS)

functional differential equations with initial conditions [32] given as

{
u
′′′

(s − 1) + 1
s
u
′′

(s + 1) + 2
s2
u
′

(s + 2) + su(s) = es−1 + 1
s
es+1 + 2

s2
es+2 + ses,

u(0) = 1, u
′

(0) = 1, u
′′

(0) = 1.
(27)

Our aim is to obtain Clique polynomial solutions for N = 3 as:

u3(s) =
3

∑
i=0

aiCi(s), (28)

or

u3(s) = S3(s)M3A3, (29)
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where S3(s) = [ 1 s s2 s3 ] , A3 = [ a0 a1 a2 a3 ]
T
and M3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

If we use the relation (20), we write the collocation points for a = 0.01, b = 1 as s0 =
1

100
, s1 =

17
50
, s2 =

67
100

, s3 = 1. Hence, if we utilize the system (21), then we get

WA =G, (30)

where

W = (SD3(−1)(P3)
3 +E1SD3(1)(P3)

2 +E2SD3(2)P3 +E3SD3(0))M3,

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

es0−1 + 1
s0
es0+1 + 2

s20
es0+2 + s0es0

es1−1 + 1
s1
es1+1 + 2

s21
es1+2 + s1es1

es2−1 + 1
s2
es2+1 + 2

s22
es2+2 + s2es2

es3−1 + 1
s3
es3+1 + 2

s23
es3+2 + s3es3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, S =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S3(s0)
S3(s1)
S3(s2)
S3(s3)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, P3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

D3(−1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 1 −1
0 1 −2 3
0 0 1 −3
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D3(1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D3(2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 4 8
0 1 4 12
0 0 1 6
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

D3(0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, E1 = diag (
1

si
) , E2 = diag (

2

(si)2
) , E3 = diag (si) .

Figure 1 (a) shows the exact solution and the approximate solutions for N = 4 and N = 5.

Also, this figure compares these solutions with the solutions of differential transform method (DM)

[32] for N = 4 and N = 6. Figure 1 (b) shows these functions more closely. Accordingly, the closest

result to the exact solution is obtained with our method. In addition, the values of these functions

at some s points are compared with the solutions of DM [32] in Table 1.

Figure 2 (a) compares the actual absolute errors of Example 5.1 with the errors of DM [32]

for N = 4 and N = 5. Accordingly, the results of DM [32] for N = 4 and N = 6 are the same. The

result obtained with our method with N = 4 is better than these results.

The best result is obtained when N = 5 is chosen in our method. In other words, with our

method, a more suitable result is obtained with a smaller N value. Figure 2 (b) visualizes the

actual absolute errors of Example 5.1 for N = 4 and N = 5 and the estimated absolute errors of

Example 5.1 for (N,M) = (4,5) and (N,M) = (5,6) . This shows that the actual and estimated

absolute error for N = 4 and (N,M) = (4,5) overlap. Also, it can be concluded that the actual
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Figure 1: Comparison of solutions of Example 5.1 with DM [32]
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and estimated absolute error for N = 5 and (N,M) = (5,6) are very close. Moreover, it can be

seen from figures that the error decreases as N increases.

Example 5.2 Our second model is [32]

{
u
′′′

(s − 1) + 1
s
u
′′

(s + 1) + 2
s2
u
′

(s + 2) + su(s) = s5 + 45s + 48 + 108
s
+ 64

s2
,

u(0) = 1, u
′

(0) = 0, u
′′

(0) = 0.
(31)

The exact solution of this problem is 1+s4 . Our aim is to obtain Clique polynomial solutions

for N = 4 as:

u4(s) =
4

∑
i=0

aiCi(s), (32)

or

u4(s) = S4(s)M4A4. (33)

Utilizing the system (21), we get

WA =G, (34)

where

W = (SD4(−1)(P4)
3
+E1SD4(1)(P4)

2
+E2SD4(2)P4 +E4SD4(0))M4,

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s50 + 45s0 + 48 +
108
s0
+ 64

s20
s51 + 45s1 + 48 +

108
s1
+ 64

s21
s52 + 45s2 + 48 +

108
s2
+ 64

s22
s53 + 45s3 + 48 +

108
s3
+ 64

s23
s54 + 45s4 + 48 +

108
s4
+ 64

s24

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By writing s→ 0 in (7), (8) and (9), we have, respectively

u4(0) = S4(0)M4A4, (35)

u
′

4(0) = S4(0)P4M4A4 (36)

and

u
′

4(0) = S4(0)(P4)
2M4A4, (37)

where S4(0) = [ 1 0 0 0 0 ] .

Finally, the approximate solution is obtained 1+s4 by solving the system (34) with conditions

(35), (36) and (37). This is the exact solution.
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Figure 2: Comparison of absolute errors of Example 5.1 with DM [32]
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Example 5.3 Finally, we perform the model based on the the third-order multisingular (MS)

functional differential equations with initial conditions [32]

{
u
′′′

(s − 1) + 1
s
u
′′

(s + 1) + 2
s2
u
′

(s + 2) + su(s) = s4 + s + 18 + 30
s
+ 24

s2
,

u(0) = 1, u
′

(0) = 0, u
′′

(0) = 0.
(38)

The exact solution of this problem is 1+s3 . Our aim is to obtain Clique polynomial solutions

for N = 3 as:

u3(s) =
3

∑
i=0

aiCi(s), (39)

or

u3(s) = S3(s)M3A3. (40)

Utilizing the system (21), we obtain

WA =G, (41)

where

W = (SD3(−1)(P3)
3
+E1SD3(1)(P3)

2
+E2SD3(2)P3 +E3SD3(0))M3,

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s40 + s0 + 48 +
30
s0
+ 24

s20
s41 + s1 + 48 +

30
s1
+ 24

s21
s42 + s2 + 48 +

30
s2
+ 24

s22
s43 + s3 + 48 +

30
s3
+ 24

s23

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By writing s→ 0 in (7), (8) and (9), we have, respectively

u3(0) = S3(0)M3A3, (42)

u
′

3(0) = S3(0)P3M3A3 (43)

and

u
′

3(0) = S3(0)(P3)
2M3A3, (44)

where S3(0) = [ 1 0 0 0 ] .

Finally, the approximate solution is obtained 1+s4 by solving the system (41) with conditions

(42), (43) and (44). This is the exact solution.

6. Conclusions

In this paper, we investigate the approximate solution of the third-order multisingular (MS)

functional differential equation via Clique collocation method. In addition to method, we constitute

error estimation technique for the problem. Also, we make applications of the Clique collocation
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method and the error estimation technique for three examples by using MATLAB. Accordingly,

we obtain the exact solution in Example 5.2 and Example 5.3. This result demonstrates the

advantage of our method. In addition, we compare the results with differential transform method

(DM) [32] for Example 5.1. Accordingly, the best result is obtained when N = 5 is chosen in our

method. In other words, with our method, a more suitable result is obtained with a smaller N

value. According to our method, the error decreases as N increases. Moreover, the estimated

errors are close to the actual errors, which shows the importance of the error estimation technique.

From all numerical results, we conclude that the presented method is efficient and reliable. The

presented method can be improved for nonlinear multisingular functional differential equations or

multisingular functional differential equations of fractional-order.
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1. Introduction

The quaternionic algebra H is a well-known setting of modern mathematics, together with the real

algebra R and the complex algebra C ; since the bibliography on quaternions is huge we cite only the

very first paper [8] of Sir William Rowan Hamilton. This algebraic structure was designed with

the geometric goal of serving as a helpful tool for modelling the rotations of three-dimensional

Euclidean space from the very beginning. The projections and involutions are expressed with

quaternions in [1]. We note also that recently the applications of quaternions in the differential

geometry are surveyed in [7].

The purpose of the present work is to use the product of H into another framework namely

the set of lines of the Euclidean plane. The choice of the identification of a line with a quaternion

is based on some previous papers of the author. We point out also that in order to obtain a

suitable quaternionic product we introduce a technical condition in our Definition 2.1. These

considerations yields a projective way to manage this product and we consider that the potential

areas of applications are the incidence geometry [9].

This new product is discussed especially from the point of view of examples. In addition to

squares we study some concrete examples by giving also numerical details.
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2. The Quaternionic Product of Two Distinguished Lines

Fix the set of all lines L ∶= {d ∶ ax + by + c = 0;a2 + b2 > 0} in the Euclidean plane E2 ∶= (R2, ⟨⋅, ⋅⟩) .

The aim of this work is to introduce a product (inspired by quaternions) in L and hence the

starting point of this paper is the identification of the given line

d = d(a, b, c) ∈ R3
∖ {(0,0, c) ∶ c ∈ R}

with the quaternion:

q(d) ∶= k̄ + aī + bj̄ + c = (c, a, b,1) ∈ R4. (1)

The quaternion q(d) is pure imaginary if and only if the origin O(0,0) ∈ d . We point out

that although there are alternative ways to associate a quaternion to a given line, we choose

the expression (1) according to our previous studies, namely (in the chronological order) [2, 4, 5].

From the real algebra structure H of the quaternions ([6, p. 89]), it follows a product of

two lines:

d1 ⊙q d2 ∶= q
−1
(q(d1) ⋅ q(d2)). (2)

With the given parameters (ai, bi, ci), i = 1,2, we derive immediately:

q(d1) ⋅ q(d2) = (a1b2 − a2b1 + c1 + c2)k̄ + (b1 − b2 + a1c2 + a2c1)̄i + (a2 − a1 + b1c2 + b2c1)j̄+

+(c1c2 − 1 − a1a2 − b1b2) =∶Dk̄ +Aī +Bj̄ +C (3)

and due to the expression of the coefficient of k̄ in (1), we need a special condition for our approach.

Definition 2.1 The given pair of lines dr = (ar, br, cr) , r = 1,2 , is called q-distinguished if:

D(d1, d2) ∶= a1b2 − a2b1 + c1 + c2 =
a1 a2
b1 b2

+ c1 + c2 ≠ 0. (4)

Example 2.2 i) For a fixed line d(a, b, c) we have the square:

q(d) ⋅ q(d) = 2ck̄ + 2ac̄i + 2bcj̄ + (c2 − 1 − a2 − b2). (5)

If c ≠ 0 , then the technical condition (4) is satisfied and then the pair (d, d) is q-distinguished.

Also, q(d) ∈ R4 is a purely imaginary quaternion only for c± = ±
√
a2 + b2 + 1 with c− < −1 and

c+ > 1 .

ii) Let d1 and d2 be concurrent lines in O . Then, (4) means that their normals N1 =

(a1, b1) , N2 = (a2, b2) are linear independent vectors, i.e., the lines are different.
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Let now L2(q) be the set of q-distinguished pairs of lines. Working in a projective manner

it follows a quaternionic product in L2(q) :

d1 ⊙q d2 ∶= d(
A

D
,
B

D
,
C

D
) (6)

supposing again that A2 + B2 > 0. It is worth to point out the combination of Euclidean and

projective geometry of our approach; hence, d1 ⊙q d2 is also the line d(A,B,C) .

An important tool of the quaternionic theory is that of conjugate, which for our quaternion

(1) means:

q(d) ∶= −k̄ − aī − bj̄ + c = (c,−a,−b,−1) = −q(a, b,−c) (7)

and our projective way of thinking allows the identification: q(a, b, c) = q(a, b,−c) . The pair of

parallel lines (d(a, b, c), d(a, b,−c)) is not q-distinguished. The real part C of the quaternion (5)

is the Euclidean inner product ⟨⋅, ⋅⟩ in R4 of the vectors q(d1) and q(d2) .

3. Concrete Examples

In the following we study this new product introduced in (6) through three large examples.

Example 3.1 Revisiting the Example 2.2 (i) (recall that c ≠ 0), we have immediately the square

of a line d for which O ∉ d (recall that RP1 is the moduli space of lines that contain the origin):

d2⊙q
∶ ax + by +

c2 − a2 − b2 − 1

2c
= 0→ d2⊙q

≠ d, d2⊙q
∥ d. (8)

The expression above suggests as remarkable example the case of right triangle, △ ∶ c2 = a2 + b2 ,

which gives the associated lines:

{
d(△,+) ∶ ax + by +

√
a2 + b2 = 0, a > 0, b > 0,

(d(△,+))2⊙q
∶ ax + by − 1

2
√
a2+b2 = 0.

(9)

A particular case of the right triangle △ is provided by the case when (a, b, c) is a Pytha-

gorean triple and hence we know its parametrization ([3]):

a ∶= β2
− α2, b ∶= 2αβ, c ∶= α2

+ β2, 0 < α < β ∈ N∗. (10)

It follows the lines:

{
d(Pythagorean) ∶ (β2 − α2)x + 2αβy + (α2 + β2) = 0,
(d(Pythagorean))2⊙q

∶ (β2 − α2)x + 2αβy − 1
2(α2+β2) = 0.

(11)
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For a concrete example we choose the minimal pair α = 1 < β = 2 giving the minimal Pythagorean

triple (a = 3, b = 4, c = 5) with the associated lines:

d(minimal) ∶ 3x + 4y + 5 = 0, (d(minimal))2⊙q
∶ 3x + 4y −

1

10
= 0. (12)

This last situation suggests the general case:

dt ∶ (cos t)x + (sin t)y + 1 = 0, t ∈ R→ (dt)2⊙q
∶ (cos t)x + (sin t)y −

1

2
= 0. (13)

Recall that for a given C2 periodic and convex function p = p(t) = p(t+ 2π) the convex envelope of

the family of lines:

dp(t) ∶ (cos t)x + (sin t)y = p(t)

is the oval C parametrized by:

C ∶ (x(t), y(t)) = (p(t) cos t − p′(t) sin t, p(t) sin t + p′(t) cos t). (14)

Therefore, the oval generated by the family (dt)
2
⊙q

is the Euclidean circle centered in O and of

radius R = 1
2
. Remark also, that the scalar part of the line in the equation (8) suggests the real

function:

c ∈ (0,+∞)→ f(c) ∶=
c2 − a2 − b2 − 1

2c

which have as oblique asymptotic the line y = 1
2
x .

Example 3.2 In this example, we will perform the quaternionic product of two different q-

distinguished lines. The coordinates lines are so (conform the second Example 2.2) and then we

have:

Ox⊙q Oy ∶ x + y − 1 = 0, Oy ⊙q Ox ∶ x + y + 1 = 0 (15)

and hence, generally speaking, the quaternionic product does not preserve the orthogonality nor

the concurrency and is not commutative; we have only Re(q(d1) ⋅ q(d2)) = Re(q(d2) ⋅ q(d1))

i.e., C(d1, d2) = C(d2, d1) . In fact, if both lines contains the origin, i.e., c1 = c2 = 0 , then

D(d1, d2) = −D(d2, d1) and d1⊙q d2 ∥ d2⊙q d1 . The bisectrices of the axes are also q-distinguished

and their products are vertical lines:

B1 ∶ x − y = 0, B2 ∶ x + y = 0→ B1 ⊙q B2 ∶ x −
1

2
= 0, B2 ⊙q B1 ∶ x +

1

2
= 0. (16)

Hence, the quaternionic product does not preserve the concurrence of the given lines.
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Example 3.3 Let three distinct points Mi(αi, βi) , i = 1,2,3 and d1 the line M0M1 respectively

d2 the line M0M2 . Since for d1 the coefficients are:

a1 = β0 − β1, b1 = α1 − α0, c1 = α0β1 − α1β0 (17)

and similar relations hold for d2 the condition (4) reads:

D(d1, d2) = α1β2 − α2β1 + 2(α0β1 − α1β0) ≠ 0. (18)

Since the translations are Euclidean isometries let us suppose that M0 is O and then D(d1, d2)

reduces to the scalar part c of the line M1M2 ; in the proper triangle M0M1M2 the vertex M0

does not belong to M1M2 and therefore (4) holds. We study now the possibility to introduce the

notion of quaternionic triangle as one in which M0M1 ⊙q M0M2 is exactly M1M2 . But, if we

write explicitly this equality as the equalities of ratios:

β1 − β2

α1 − α2
=
α2 − α1

β1 − β2
=

α1β2 − α2β1

−1 − α1α2 − β1β2
(19)

already the first equality yields the impossible α1 − α2 = 0 = β1 − β2 . This fact can be probably

explained by the complex nature of ī and j̄ .

4. Conclusions

In this paper, we study the geometry of 2D Euclidean lines through an algebraic operation inspired

by the product of quaternions. Some features of this new product are discussed directly on

examples.
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Abstract: In this work, almost contact B-metric manifolds and almost complex manifolds with Norden

metric are considered. Almost complex manifolds with a Norden metric are obtained by the product of

almost contact B-metric manifolds with R , where almost complex structure and metric on the product
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1. Introduction

Differentiable manifolds having special tensors are an object of interest in differential geometry.

There are several studies on this area, for example, see [2, 4–8, 10, 11, 13–16, 19–21]. Differ-

ential manifolds having special tensor structure have been classified by considering the covariant

derivative of their tensor structure [2, 4–8, 10, 11, 13, 21].

Manifolds with B-metric have been studied in the last 30 years by various researchers

[7, 9, 10, 16, 20]. Recently, many differential geometers and theoretical physicists have been

investigating Ricci solitons and η -Ricci solitons on manifolds with special structures, such as

almost contact metric manifolds, almost paracontact metric manifolds, manifolds with B-metric,

Norden manifolds, etc. [1, 3, 12, 17, 18]. In this investigations, classes of almost contact B-metric

manifolds and almost complex manifolds with a Norden metric also gain importance.

In this study, we obtain an infinite number of Kaehlerian manifolds with a Norden metric

in Theorem 3.3 and complex manifolds with a Norden metric (the class W1⊕W2 ) in Thoerem 3.5.

In particular, we consider the classification of almost contact manifolds with B-metric and almost

complex manifolds with a Norden metric given by [6, 7], respectively. We generalize the metric and
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the complex structure on the product manifold given in [9] by considering two functions. In [9],

Sasaki-like manifolds which are subclasses of F4 of almost contact B-metric manifolds are studied.

In this work, almost complex Norden metric manifolds are obtained from almost contact manifolds

with B-metric M with product of R and an almost complex structure and a metric are defined

on the product manifold M × R depending on two functions σ and µ which are functions of t .

Some relations between classes of almost complex manifolds with a Norden metric and the classes

F4 and F5 of almost contact manifolds with B-metric are obtained.

2. Preliminaries

First, we introduce almost contact B-metric manifolds. A manifold M with odd dimension has an

almost contact structure (φ, ξ, η) , if it admits a vector field ξ , a map φ , and a 1-form η satisifying

the following relations:

η(ξ) = 1, φ2
= −I + η ⊗ ξ. (1)

Here I is identity map. From (1),

φ(ξ) = 0, η ○ φ = 0 (2)

follow. In addition to an almost contact structure (φ, ξ, η) , if there is a metric tensor g satisfying

g(φ(a), φ(b)) = −g(a, b) + η(a)η(b) (3)

for all vector fields a, b , then M is said to be an almost contact manifold with B-metric. The

Equation (3) yields

g(a, ξ) = η(a), g (φ(a), b) = g (a,φ(b)) . (4)

Assume ∇ is the Levi-Civita covariant derivative of g . We denote

Γ(a, b, c) = g ((∇aφ) b, c) . (5)

Γ has the following properties:

Γ(a, b, c) = Γ(a, c, b),
Γ(a,φ(b), φ(c)) = Γ(a, b, c) − η(b)Γ(a, ξ, c) − η(c)Γ(a, b, ξ),

Γ(a, ξ, ξ) = 0
(6)

for all a, b, c vector fields. The 1-forms θ , θ∗ and ω related with Γ are introduced as

θ(a) = gijΓ(fi, fj , a), θ∗(a) = gijΓ(fi, φ(fj), a), ω(a) = Γ(ξ, ξ, a). (7)

Here {f1,⋯, f2n, ξ} is a local frame, the inverse matrix of (gij) is denoted by (gij) and a ∈ χ(M)

[7].

Using properties (6), the space of Levi-Civita connections of the endomorphism φ are defined
as
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F = {Γ ∈ ⊗0
3 ∶ Γ(a, b, c) = Γ(a, c, b)

= Γ(a,φ(b), φ(c)) + η(b)Γ(a, ξ, c) + η(c)Γ(a, b, ξ)} .

The space F is decomposed as

F = F1 ⊕⋯⊕F11.

The subspaces Fi are invariant and orthogonal with respect to the action of G × I , where

G = GL(n,C)∩O(n,n) , i.e., G is the group of real matrices (
A B
−B A

) which belong to O(n,n) ,

A and B are n × n matrices [7].

Any almost contact manifold with B-metric belongs to a subclass Fi1 ⊕⋯⊕Fik for 1 ≤ i1 ≤

⋯ ≤ ik ≤ 11 of F . The defining rules of classes we use are [7]:

F4 ∶ Γ(a, b, c) = −
θ(ξ)

2n
(η(b)g(φ(a), φ(c)) + η(c)g(φ(a), φ(b))) , (8)

F5 ∶ Γ(a, b, c) = −
θ∗(ξ)
2n
(η(b)g(φ(a), c) + η(c)g(φ(a), b)) . (9)

An even-dimensional semi-Riemannian manifold N having an almost complex structure J

and a semi-Riemannian metric h such that h(J(a), J(b)) = −h(a, b) is called an almost complex

manifold with a Norden metric. G = GL(n,C) ∩ O(n,n) is the structure group of N , where

GL(n,C) ∩O(n,n) is the group of real matrices

(
A B
−B A

)

which are in O(n,n) (A and B are n × n matrices) [6].

Almost complex manifolds with Norden metric are classified by considering the Levi-Civita

connection ∇J of J . The following notation is used

Υ(a, b, c) ∶= h ((∇aJ) b, c) .

Υ satisfies

Υ(a, b, c) = Υ(a, c, b) and Υ(a, J(b), J(c)) = Υ(a, b, c).

The 1-form Θ related with Υ is given by

Θ(a) = hijΥ(fi, fj , a) (10)

83
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for all a ∈ χ(N) , where {f1, f2,⋯, f2n} is a local frame on N and (hij
) is the inverse matrix of

h . The tensor Υ belongs to the space

W = {Υ ∈ ⊗0
3 ∶ Υ(a, b, c) = Υ(a, c, b) = Υ(a, J(b), J(c))} ,

which splits into a direct sum of three subspaces Wi , i = 1,2,3 [5]. Defining relations of almost

complex manifolds with a Norden metric are:

1. Kaehlerian Norden metric manifolds: Υ(a, b, c) = 0 for all a, b, c ∈ χ(N) .

2. Class W1 (Conformally Kaehlerian manifolds with a Norden metric):

Υ(a, b, c) =
1

2n
(h(a, b)Θ(c) + h(a, c)Θ(b) (11)

+h(a, J(b))Θ(J(c)) + h(a, J(c))Θ(J(b))) .

3. Class W2 (Special complex manifolds with a Norden metric):

Υ(a, b, J(c)) +Υ(b, c, J(a)) +Υ(c, a, J(b)) = 0, (12)

Θ = 0. (13)

4. Class W3 (Quasi-Kaehlerian manifolds with a Norden metric):

Υ(a, b, c) +Υ(b, c, a) +Υ(c, a, b) = 0. (14)

5. Class W1 ⊕W2 (Complex manifolds with a Norden metric):

Υ(a, b, J(c)) +Υ(b, c, J(a)) +Υ(c, a, J(b)) = 0.

6. Class W1 ⊕W3 :

Υ(a, b, c) +Υ(b, c, a) +Υ(c, a, b) =
1

n
(h(a, b)Θ(c) + h(a, c)Θ(b) (15)

+ h(b, c)Θ(a) + h(a, J(b))Θ(J(c))

+ h(b, J(c))Θ(J(a)) + h(c, J(a))Θ(J(b)))

7. Class W2 ⊕W3 (Semi-Kaehlerian manifolds with a Norden metric):

Θ = 0.

8. Class W1 ⊕W2 ⊕W3 (No relation):

Any Υ ∈W can be written as Υ = Υ1 +Υ2 +Υ3 ∈W , where Υi ∈Wi . The projections Υi

are given below [6]:

Υ1(a, b, c) =
1

2n
(h(a, b)Θ(c) + h(a, c)Θ(b) (16)

+h(a, J(b))Θ(J(c)) + h(a, J(c))Θ(J(b))) ,
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Υ2(a, b, c) = −
1

2n
(h(a, b)Θ(c) + h(a, c)Θ(b) (17)

+h(a, J(b))Θ(J(c)) + h(a, J(c))Θ(J(b)))

+
1

4
(2Υ(a, b, c) +Υ(b, c, a) +Υ(c, a, b)

−Υ(J(b), c, J(a)) +Υ(J(c), a, J(b))) ,

Υ3(a, b, c) =
1

4
(2Υ(a, b, c) −Υ(b, c, a) −Υ(c, a, b) (18)

+Υ(J(b), c, J(a)) −Υ(J(c), a, J(b))) .

3. Almost Complex Manifolds with Norden Metric from Almost Contact Manifolds

with B-Metric

Let (M,φ, ξ, η, g) be an almost contact manifold with B-metric, dimM = 2n+1. Consider a vector

field (a,α d
dt
) on M ×R , where a is a vector field on M , t is the coordinate of R and α is a C∞

function on M ×R . On M ×R we define an almost complex structure with a Norden metric (J̃ , h̃)

with respect to the functions σ and µ on M ×R , where σ and µ depend only on t as

J̃ (a,α
d

dt
) ∶= (φ(a) − αe−(σ+µ)ξ, e(σ+µ)η(a)

d

dt
) , (19)

h̃((a,α
d

dt
) ,(b, β

d

dt
)) ∶= e2σg (a, b) + e2σ(e2µ − 1)η(a)η(b) − αβ. (20)

In this study, we use the notation a, b, c for vector fields on M . In addition, we use A,B,C

to denote vector fields on M such that A,B,C ∈Kerη .

Using the Kozsul formula, we evaluate the components of Levi-Civita covariant derivative

∇̃ of h̃ which are different than zero as

h̃(∇̃AB,C) = e2σg(∇AB,C),

h̃(∇̃AB, ξ) = e2σg(∇AB, ξ) − e2σ(e2µ − 1)dη(A,B),

h̃(∇̃AB,
d

dt
) = −e2σ

dσ

dt
g(A,B),

h̃(∇̃Aξ,C) = e2σg(∇Aξ,C) + e
2σ
(e2µ − 1)dη(A,C),

h̃(∇̃A
d
dt
,C) = e2σ

dσ

dt
g(A,C),

h̃(∇̃ξB,C) = e2σg(∇ξB,C) + e2σ(e2µ − 1)dη(B,C),

h̃(∇̃ξB, ξ) = e2(σ+µ)g(∇ξB, ξ),

h̃(∇̃ξξ,C) = e2(σ+µ)g(∇ξξ,C),

h̃(∇̃ξξ,
d

dt
) = −e2(σ+µ)(

dσ

dt
+
dµ

dt
),

h̃(∇̃ξ
d
dt
, ξ) = e2(σ+µ)(

dσ

dt
+
dµ

dt
),

h̃(∇̃ d
dt
B,C) = e2σ

dσ

dt
g(B,C),

h̃(∇̃ d
dt
ξ, ξ) = e2(σ+µ)(

dσ

dt
+
dµ

dt
).
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Then, we write down the non-zero components of ∇̃J̃ as

h̃((∇̃AJ̃)(B),C) = e
2σg((∇Aφ)(B),C), (21)

h̃((∇̃AJ̃)(B), ξ) = e2σ (g(∇Aφ(B), ξ) + e
σ+µ dσ

dt
g(A,B) (22)

−(e2µ − 1)dη(A,φ(B))) ,

h̃((∇̃AJ̃)(B),
d

dt
) = −e2σ

dσ

dt
g(A,φ(B)) + eσ−µg(∇AB, ξ) (23)

−eσ−µ(e2µ − 1)dη(A,B),

h̃((∇̃AJ̃)(ξ),C) = e3σ+µ
dσ

dt
g(A,C) − e2σg(∇Aξ,φ(C)) (24)

−e2σ(e2µ − 1)dη(A,φ(C)),

h̃((∇̃AJ̃)(
d

dt
),C) = −eσ−µg(∇Aξ,C) − e

σ−µ
(e2µ − 1)dη(A,C) (25)

−e2σ
dσ

dt
g(A,φ(C)),

h̃((∇̃ξJ̃)(B),C) = e2σg((∇ξφ)(B),C)
+e2σ(e2µ − 1) (dη(φ(B),C) − dη(B,φ(C))) ,

(26)

h̃((∇̃ξJ̃)(B), ξ) = e2(σ+µ)g(∇ξφ(B), ξ), (27)

h̃((∇̃ξJ̃)(B),
d

dt
) = eσ+µg(∇ξB, ξ), (28)

h̃((∇̃ξJ̃)(ξ),C) = e2(σ+µ)g(∇ξξ,φ(C)), (29)

h̃((∇̃ξJ̃)(
d

dt
),C) = −eσ+µg(∇ξξ,C), (30)

h̃((∇̃ξJ̃)(ξ), ξ) = 2e3(σ+µ) (
dσ

dt
+
dµ

dt
) , (31)

h̃((∇̃ξJ̃) (
d

dt
) ,

d

dt
) = 2eσ+µ (

dσ

dt
+
dµ

dt
) , (32)

h̃((∇̃ d
dt
J̃)(ξ),

d

dt
) = eσ+µ (

dσ

dt
+
dµ

dt
) , (33)

h̃((∇̃ d
dt
J̃)(

d

dt
), ξ) = −eσ+µ (

dσ

dt
+
dµ

dt
) . (34)

Then, we have the Theorem 3.1.
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Theorem 3.1 ∇̃J̃ = 0 if and only if relations below are satisfied

Γ(A,B,C) = Γ(ξ, ξ,C) = 0, (35)

dσ

dt
+
dµ

dt
= 0, (36)

Γ(ξ,B,C) = 0, (37)

Γ(A,B, ξ) = −eσ+µ
dσ

dt
g(A,B) (38)

for all A,B,C ∈Kerη .

Proof Let ∇̃J̃ = 0. From Equations (21), (27)-(34), we get Equations (35), (36) and ∇̃ξξ = 0.

Also, from Equation (25), we obtain

g (∇Aξ,C) = − (e
2µ
− 1)dη(A,C) − eσ+µ

dσ

dt
g(A,φ(C)). (39)

Then, Equation (39) implies dη = 0. In addition, from Equation (26), we obtain β(ξ,B,C) = 0.

Also, Equation (22) gives the relation (38). The converse of proof is clear. ◻

Now, we state Theorem 3.2 which is used to prove Theorem 3.3.

Theorem 3.2 Assume (M,φ, ξ, η, g) is an almost contact manifold with B-metric. The followings

are equivalent:

(i) (M,φ, ξ, η, g) satisfies the Equations (35), (37) and (38).

(ii) (M,φ, ξ, η, g) satisfies

Γ(a, b, c) = eσ+µ
dσ

dt
(η(b)g(φ(a), φ(c)) + η(c)g(φ(a), φ(b))) (40)

for all a, b, c ∈ χ(M) .

Proof Let (M,φ, ξ, η, g) satisfy (35), (37) and (38). Take

a = a − η(a)ξ + η(a)ξ = A + η(a)ξ, A = a − η(a)ξ
b = b − η(b)ξ + η(b)ξ = B + η(b)ξ, B = b − η(b)ξ
c = c − η(c)ξ + η(c)ξ = C + η(c)ξ, C = c − η(c)ξ,

where A,B,C ∈Kerη . Then, we obtain

Γ(a, b, c) = Γ (A + η(a)ξ,B + η(b)ξ,C + η(c)ξ)
= Γ(A,B,C) + η(c)Γ(A,B, ξ) + η(b)Γ(B,C, ξ)

η(a)Γ(ξ,B,C) + η(a)η(c)Γ(ξ, ξ,B) + η(a)η(b)Γ(ξ, ξ,C)
= η(c)Γ(A,B, ξ) + η(b)Γ(A,C, ξ)

= −eσ+µ dσ
dt
(η(c)g(A,B) + η(b)g(A,C))

= eσ+µ dσ
dt
(η(c)g(φ(a), φ(b)) + η(b)g(φ(a), φ(c))) .

(41)
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Nülifer Özdemir and Elanur Eren / FCMS

The proof of converse is trivial. ◻

Consider the defining relation of F4 of almost contact manifold with B-metric

Γ(a, b, c) = −
θ(ξ)

2n
(η(b)g(φ(a), φ(c)) + η(c)g(φ(a), φ(b))) .

Choose functions σ and µ so that

−
θ(ξ)

2n
= eσ+µ

dσ

dt
. (42)

Then, M is in F4 . However, the Equation (42) has a solution if θ(ξ) is a constant real number.

Consequently, the Theorem 3.3 is stated.

Theorem 3.3 Let (M,φ, ξ, η, g) be an almost contact manifold with B-metric. (M × R, J̃ , h̃) is

Kaehlerian manifold with Norden metric iff the manifold M is of the class F4 , θ(ξ) is a real

number and following equalities are satisfied

eσ+µ
dσ

dt
= −

θ(ξ)

2n
,

dσ

dt
+
dµ

dt
= 0. (43)

Proof If M ×R is a Kaehlerian Norden metric manifold, from Theorem 3.1, we have Equations

(35) - (38). Also from Theorem 3.2, we get the Equation (40). If functions σ and µ are chosen to

satisfy

eσ+µ
dσ

dt
= −

θ(ξ)

2n
,

then M is of the class F4 since θ(ξ) is constant.

On the contrary, if M is of the class F4 , θ(ξ) is constant and Equation (43) holds, then we

have

σ(t) + µ(t) = c, c ∈ R.

In addition, the differential equation eσ+µ dσ
dt
= −

θ(ξ)
2n

has the solutions

σ(t) = −
θ(ξ)

2n
e−ct + c1, µ(t) = c +

θ(ξ)

2n
e−ct − c1, c1 ∈ R. (44)

If σ and µ are chosen as in (44), then (M ×R, J̃ , h̃) is in trivial class. In fact, we obtain an infinite

number of Kaehlerian manifolds with a Norden metric depending on c and c1 . ◻

Example 3.4 Assume G is a five dimensional Lie group, take a basis {x0, x1, x2, x3, x4} of left-

invariant vector fields such that the non-zero Lie brackets are

[x0, x1] = λx2 + x3 + µx4, [x0, x2] = −λx1 − µx3 + x4,
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[x0, x3] = −x1 − µx2 + λx4, [x0, x4] = µx1 − x2 − λx3,

where λ and µ are constants. Let g be the metric satisfying

g(x0, x0) = g(x1, x1) = g(x2, x2) = 1, g(x3, x3) = g(x4, x4) = −1,

g(xi, xj) = 0, i, j ∈ {0,1,⋯,4}, i ≠ j.

If we take ξ = x0 , φ(x1) = x3 and φ(x2) = x4 , then (ξ, η,φ, g) is an almost contact structure

with B-metric, where η is dual 1-form of x0 . From the Kozsul formula, we evaluate the non-zero

Levi-Civita covariant derivative as

∇x0x1 = λx2 + µx4, ∇x0x2 = −λx1 − µx3,

∇x0x3 = −µx2 + λx4, ∇x0x4 = µx1 − λx3,

λx1x0 = −x3, λx2x0 = −x4, λx3x0 = x1, λx4x0 = x2,

λx1x3 = λx2x4 = λx3x1 = λx4x2 = −x0.

(G,φ, ξ, η, g) is of class F4 with θ(ξ) = −2n [9]. If we take σ(t) = e−ct + c1 , µ(t) = c − e−ct − c1 ,

where c and c1 are arbitrary real numbers, then G × R is a Kaehlerian manifold with a Norden

metric.

Let {f1,⋯, fn, φ(f1),⋯, φ(fn), ξ} be an orthonormal frame on open set U of M such that

g(fi, fi) = 1, g(φ(fi), φ(fi)) = −1, g(ξ, ξ) = 1, 1 ≤ i ≤ n,

g(fi, fj) = g(φ(fi), φ(fj)) = g(fi, φ(fj)) = 0 for i ≠ j, 1 ≤ i, j ≤ n.

Then,

{(e−σf1,0) , (e−σf2,0) ,⋯, (e−σfn,0) , (e−σφ(f1),0) ,⋯, (e−σφ(fn),0) , (e−(σ+µ)ξ,0) ,(0,
d

dt
)}

is an orthonormal frame of h̃ on the open subset U ×R of M ×R . By using this frame, Θ̃ (a,α d
dt
)

is obtained by direct calculation:

Θ̃(a,α
d

dt
) = θ(a) − αe−(σ+µ)θ∗(ξ) + 2neσ+µη(a)

dσ

dt
(45)

+3eσ+µ (
dσ

dt
+
dµ

dt
)η(a) + g (∇ξξ,φ(a)) .

Let M be in F5 . We investigate the class of M ×R .

89
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Theorem 3.5 If (M,φ, ξ, η, g) is in F5 and dσ
dt
+

dµ
dt
= 0 , then (M ×R, J̃ , h̃) belongs to W1⊕W2 .

Proof Since M is in F5 , Equation (9) is satisfied. In the class F5 , we have

∇aξ = −
θ∗(ξ)
2n

φ2
(a), dη = 0.

In addition, since dσ
dt
+

dµ
dt
= 0, the only components of Levi-Civita covariant derivative of J̃ which

do not vanish are

g̃ ((∇̃AJ)(B), ξ) = −e2σ (
θ∗(ξ)
2n

g(A,φ(B)) − eσ+µ
dσ

dt
g(A,B)) ,

g̃ ((∇̃AJ)(B),
d

dt
) = −e2σ (

dσ

dt
g(A,φ(B)) + e−(σ+µ)

θ∗(ξ)
2n

g(A,B)) ,

g̃ ((∇̃AJ)(ξ),C) = e2σ (eσ+µ
dσ

dt
g(A,C) −

θ∗(ξ)
2n

g(A,φ(C))) ,

g̃ ((∇̃AJ) (
d

dt
) ,C) = −e2σ (e−(σ+µ)

θ∗(ξ)
2n

g(A,C) +
dσ

dt
g(A,φ(C))) .

Also, by direct calculation we have

Θ̃(a,α
d

dt
) = −αe−(σ+µ)θ∗(ξ) + 2neσ+µη(a)

dσ

dt
. (46)

In addition, since

Υ1 ((0,
d

dt
) , (ξ,0) , (ξ,0)) =

1

n
eσ+µθ∗(ξ) ≠ 0 (47)

and

Υ2 ((0,
d

dt
) , (ξ,0) , (ξ,0)) = −

1

n
eσ+µθ∗(ξ) ≠ 0, (48)

the projections α1, α2 are non-zero. By direct calculation

Υ3 ((a,α
d

dt
) ,(b, β

d

dt
) ,(c, γ

d

dt
)) = 0. (49)

Hence, M ×R is of the class W1 ⊕W2 . ◻

Example 3.6 Let R2n+2
= {(a1,⋯, an+1, b1,⋯, bn+1) ∶ ai, bi ∈ R} . Consider the canonical complex

structure

J (
∂

∂ai
) =

∂

∂bi
, J (

∂

∂bi
) = −

∂

∂ai
, 1 ≤ i ≤ n + 1
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and

g(u,u) = −δijxixj + δijyiyj ,

where u = xi
∂

∂ai
+ yi

∂
∂bi

. Identify the point p = (a1,⋯, an+1, b1,⋯, bn+1) in R2n+2 with its position

vector P . Let M be the hypersurface of R2n+2 determined by

M = {P ∈ R2n+2
∶ g(P,J(P )) = 0, g(P,P ) > 0} .

Define vector field ξ as

ξ = −
1

cosh t
P,

where t ∈ (−π/2, π/2) . For any vector field u , we can define φ with regard to the unique decompo-

sition

J(u) = φ(u) +
1

cosh t
η(u)J(P ).

(M,φ, ξ, η, g) is in F5 [7]. From the Theorem 3.5, by choosing the functions σ and µ to satisfy

dσ
dt
+

dµ
dt
= 0 , M ×R is of the class W1 ⊕W2 .
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