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Abstract : Heart failure (HF) is marked by a diminished capacity of the heart to effectively pump
blood. Traditionally, the electrocardiogram (ECG) has served as a non-invasive diagnostic tool, gauging the
heart’s electrical activity and rhythm. Recent advancements have leveraged machine learning (ML) and deep
learning (DL) techniques to automate the identification and classification of HF types from ECG data. This
study introduces a novel deep learning architecture, blending the efficacy of a convolutional neural network
(CNN) for feature extraction with an eXtreme Gradient Boosting (XGBoost) layer for final classification.
The first CNN model operates on ECG segments in the time domain, while the second CNN processes the
ContinuousWavelet Transform (CWT) of the same segments. This composite model offers superior automatic
HF detection, particularly with 2-second ECG fragments, by capturing intricate features from both time and
frequency domains. Training and testing utilize datasets from theMIT-BIH, BIDMC, and PTBDiagnostic ECG
databases. Through 10-fold cross-validation, the proposed approach attains remarkable accuracy, sensitivity,
and F1-score, all surpassing 99.9%. This modality represents a significant stride in DL applications for ECG
diagnosis, holding promise for enhanced clinical utility.

Keywords : Convolutional neural network, deep learning, electrocardiogram, eXtreme Gradient Boosting,
heart failure.

1 Introduction
Heart failure (HF) is characterized by a diminished capacity of the heart to pump blood [1]. This condition commonly arises
from reduced left ventricular function and structural or functional defects within the myocardium, impeding either ventricular
filling or blood ejection. Factors such as increased hemodynamic overload and ischemia-related dysfunction also contribute
significantly to HF pathogenesis. Furthermore, HF stands as a principal cause of morbidity and mortality [2]. For decades, the
electrocardiogram (ECG) has served as a pivotal non-invasive diagnostic tool for assessing the heart’s electrical and rhythmic
activity [3]. Its sensitivity to detecting HF renders it indispensable for predictive monitoring. However, cardiologists face a
significant challenge in swiftly and accurately interpreting ECG signals, especially during prolonged monitoring sessions [4].
To surmount this challenge, various clinical decision support systems (CDSS) have emerged over the past decade, ranging from
rudimentary rules-based systems to sophisticated algorithms rooted in machine learning (ML) and deep learning (DL) [5]–[7].
ML algorithms are primarily categorized into supervised, unsupervised, and reinforcement learning, depending on how they
are initialized and trained [8]. Unsupervised learning leverages unlabeled datasets, while supervised learning relies on labeled
data, where training samples and datasets are pre-classified and categorized. The Convolutional Neural Network (CNN), a type
of deep learning neural network, is employed to classify data. Within a CNN, deep features are extracted from input images
using convolution and pooling, computational load is reduced through downsampling, and final predictions are generated by
fully connected layers [9]. Recent endeavors have focused on utilizing ML and DL methodologies to automatically identify and
classify different types of HF from ECG data [10]–[12].
Asyali [13] explored the discriminatory power of nine commonly used long-term HRV measures, aiming to develop Bayesian
classifiers. Sensitivity and specificity rates of 81.8% and 98.1% were achieved, respectively, depending on all normal-to-normal
beat intervals’ standard deviations. Jin et al. [14] proposed a wearable, cell phone-based platform capable of continuous real-
time monitoring and recording of ECG data to immediately recognize abnormal cardiovascular disease (CVD) conditions. Their
approach integrates an adaptive artificial neural network (ANN)-based hybrid strategy, combining patient-specific training
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methods with established medical database training techniques. The results demonstrated 99% accuracy in detecting normal
heartbeats and 92% accuracy in identifying premature ventricular contractions (PVCs). Chen et al. [15] utilized RR interval
segments and sparse auto-encoders (SAE) to detect heart failure (HF), achieving an accuracy of 72.44%, a sensitivity of 50.93%,
and a specificity of 80.93%. Masetic et al. [16] presented a method involving auto-regressive parish feature extraction and
subsequent classification, resulting in 100% accuracy, sensitivity, and specificity in detecting HF. Liu and Kim [17] proposed
employing Long Short-Term Memory (LSTM) and Symbolic Aggregate approximation (SAX) for categorizing heart disease
using ECG signals, achieving 98.4% accuracy. Wang et al. [18] integrated a CNN module and LSTM network for HF detection,
obtaining 86.42% accuracy, 74.91% sensitivity, and 91.21% specificity. Acharya et al. [18] categorized ECG signals using an
11-layer CNN, achieving 99.99% accuracy, 98.87% sensitivity, and 99.01% specificity. Cheng et al. [19] combined a 24-layer
DCNN with Bidirectional LSTM for hierarchical and time-sensitive feature mining in ECG data, achieving an F1 score of 89%
and an accuracy of 89.3% with 10-fold cross-validation. Padmavathi et al. [20] introduced an 11-layer CNN for HF detection,
with a specificity rate of 79.30%, sensitivity of 81%, and accuracy of 80.10%. Lih et al. [21] developed a 16-layer CNN-LSTM
design, achieving 97.89% specificity, 99.3% sensitivity, and 98.5% accuracy. Zhang et al. [22] enhanced the DenseNet model for
HF detection using 2-second ECG fragments, achieving 89.38% sensitivity, 99.50% specificity, and 94.97% accuracy. Kusuma
and Jothi [23] identified congestive heart failure (CHF) using an automated diagnosis system based on LSTM architecture
and Deep CNN, achieving 99.52% accuracy. Botros et al. [24] proposed a CNN with a Support Vector Machine (SVM) layer
and an integrated classification layer, achieving over 99% accuracy, sensitivity, and specificity with blindfold cross-validation.
Rawi et al. [25] introduced a CNN with eXtreme Gradient Boosting (XGBoost) feature extraction, achieving 99.38% accuracy
and 98.36% F1-score. Wang et al. [26] suggested a continuous wavelet transform (CWT) and CNN-based automatic ECG
classification method, achieving 67.47% sensitivity, 68.76% F1-score, and 98.74% accuracy overall. Mogili and Narsimha [27]
proposed a hybrid model combining a CNN for automatic ECG feature extraction with XGBoost for arrhythmia classification.
Tested on theMIT-BIHArrhythmia database, the model achieved an accuracy of 99.84% for 11 arrhythmia types and 99.69% for
5 AAMI standard classes, demonstrating its robustness with high sensitivity and specificity. Premalatha and Bai [28] developed
a deep CNN-based model to classify cardiac dysrhythmia using oversampled datasets to address class imbalance. Coupled with
XGBoost for structured prediction, their approach was validated on a real-time IoT dataset of elderly heart patients, achieving
a recall of 100%, an F1-score of 94.8%, a precision of 98%, and an accuracy of 98%, outperforming traditional classifiers
like decision trees, random forests, and SVM. Khan et al. [29] employed the MIT-BIH ARR dataset and a 1-D ResNet model,
achieving an impressive accuracy of 98.63%. However, they noted that the performance of the F class still requires improvement.
Al-Jibreen et al. [30] utilized the MIT-BIH Arrhythmia dataset for signal segmentation and classification using cosine wavelet
transforms and a lightweight CNN with depth-wise separable convolution. Their approach achieved a classification accuracy
of 99.28% for normal beats and 93.81% for abnormal beats. Majhi and Kashyap [31] proposed tree-based classifiers, Random
Forest (RF) and XGBoost, for heart disease detection using three major ECG datasets: Physionet Challenge 2016, PASCAL
Challenge, and MIT-BIH. Pre-processing techniques like filtering and denoising were applied, followed by feature extraction
using DWT, IDWT, and EWT. SHAP analysis identified critical features impacting model predictions. Their results showed
EWT with XGB achieving superior AUCs of 97.44% and 98.25% on the Physionet and MIT-BIH datasets, respectively,
outperforming other feature-model combinations.
The synthesis of existing literature underscores the pivotal role of robust models and effective feature extraction in creating
comprehensive feature extraction and classification systems. Recent studies have highlighted the efficacy of deep neural
networks in interpreting ECG signals within both the time and time-frequency domains. However, challenges persist, particularly
concerning the low sensitivity observed when employing CWT as input for CNNs.
In response to these challenges, this paper proposes a novel deep learning model that capitalizes on the strengths of CNNs for
feature extraction and leverages the XGBoost classifier for end-of-model classification. The proposed model integrates two
CNNs: the first processes ECG segments in the time domain, while the second operates on the CWT of the same segments. By
combining features extracted from both temporal and spectral ECG data, the proposed model achieves enhanced accuracy in
automatic HF detection using 2-second ECG fragments. The evaluation of the proposed model utilizes three prominent ECG
databases—MIT-BIH, BIDMC, and PTB Diagnostic—for both training and testing purposes. The paper meticulously outlines
the methodologies and materials employed, detailing the database descriptions, preprocessing procedures, and the proposed
approach’s implementation. Additionally, the results and discussion section thoroughly analyze the obtained outcomes using
various performance metrics, providing valuable insights into the model’s efficacy and potential areas for improvement.

2 Materials and Methods
2.1 Databases Description
Three ECG databases sourced from literature were utilized in this study:

1) BIDMCDatabase [32]: This database comprises ECG signals from 15 patients diagnosed with Congestive Heart Failure
(CHF). The patients include 11 men and 4 women aged between 54 and 63 years. The signals were sampled at a
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frequency of fs = 250Hz.
2) MIT-BIH Database [33]: This dataset consists of ECG signals from 18 healthy individuals exhibiting Normal Sinus

Rhythm (NSR). The cohort includes 13 women aged between 20 and 50 years and 5 men aged between 26 and 45 years.
The signals were recorded using ambulatory Holter and ECG recorders, with a sampling frequency of fs = 360Hz. Each
segment of the signals spans approximately 20 hours and has a resolution of 250 points.

3) Physionet PTB Diagnostic ECG Database [34]: This database comprises 549 recordings obtained from 290 individuals
aged between 17 and 87 years. Each recording contains 15 signals measured simultaneously. The sampling frequency
for each signal is fs = 1000Hz, and they are represented with a 16-bit resolution ranging around ±16.384 mV.

2.2 Pre-Processing
To maintain uniformity in sampling frequency across all ECG indicators, the recordings from the BIDMC database undergo
initial down-sampling to 250 Hz. Subsequently, an ordinary filter with a 20-millisecond window is applied to smooth the signals.
These ECG signals are then partitioned into small labeled segments, each sized 2 seconds, for subsequent processing with the
CNN model. In total, the dataset comprises 500,000 segments, with half belonging to the HF group and the other half to the
healthy (good) group. The overall properties are summarized in Table 1

2.3 Proposed Approach
The suggested approach is depicted in Fig. 1. The methodology begins with loading the combined dataset and subsequently
implementing the requisite pre-processing steps. The deep learning model comprises two CNNmodels—one for processing the
raw ECG signal and the other for its CWT profile. The proposed DL model synergizes the effectiveness of CNNs as feature
extraction tools with the XGBoost layer for classification at the model’s conclusion. Each component of the proposed model is
elaborated in the following subsections. The pseudo-code of proposed approach is provided in Algorithm 1.

2.4 Continuous Wavelet Transform (CWT)
In order to improve feature extraction for efficient use of CNN model, the ECG signal can be transformed to the time-frequency
domain because it is made up of various frequency components. The most widely used time-frequency research tool is CWT,
which decomposes a signal over the course of time by using different wavelet functions. CWT develops and inherits the short-
ECJSE Volume 12, 2025 3
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Figure 1: Proposed DL approach for ECG diagnosis

Table 1: Attribute definitions of datasets before and after pre-processing.
Dataset Original Attributes Pre-Processing Steps Attributes After Pre-Processing

BIDMC [32]
- 15 patients with CHF
- 11 men, 4 women
- Sampling frequency: 250 Hz

- Signals partitioned into
2-second segments
- Smoothing with 20 ms filter

- Down-sampled to 250 Hz
- 2-second segments
- 250 points/segment

MIT-BIH [33]
- 18 healthy individuals with NSR
- 13 women, 5 men
- Sampling frequency: 360 Hz

- Down-sampling to 250 Hz
- Signals segmented into
2-second windows

- Down-sampled to 250 Hz
- 2-second segments
- 250 points/segment

Physionet PTB [34]

- 290 individuals, 549 recordings
- Sampling frequency: 1000 Hz
- 15 signals/recording
- Resolution: ±16.384 mV

- Down-sampling to 250 Hz
- Signals segmented into
2-second windows

- Down-sampled to 250 Hz
- 2-second segments
- 250 points/segment

Combined Dataset - - Total: 500,000 segments (balanced)

time Fourier transform’s (STFT) localization concept. The CWT of x(t) signal is computed using Eq. 1 [26]:

Where the wavelet function is ϕ(t), the translation parameter is b, and the scale parameter is a. To convert the scale into
frequency, Eq. 2 is implemented where Fc is the mother wavelet’s center frequency and fs is the sampling frequency of signal
x(t). The wave coefficients of the signal at various scales are obtained by using various CWT scale factors. A 2D scalogram of
an ECG signal in the time-frequency site can be created using these wave coefficients.

2.5 Deep Feature Extraction Using CNN
In this study, two CNN models [32-34] are proposed for deep feature extraction, each consisting of three convolutional layers
and one pooling layer. Given the focus on ECG segments within both the time and time-frequency domains, two separate CNN
models are employed—one for processing ECG segments in the time domain and the other for segments represented in CWT
form. Each CNN model receives a 2-second ECG segment comprising 250 points. Both CNN models share the same structural
configuration, detailed as follows:

1) The first convolutional layer (CL) utilizes five 1x14 filters with a stride of 1.
2) The subsequent CL employs three 9x9 filters, also with a stride of 1.
3) The convolution stage produces three feature maps by combining various filters with the 250-point ECG signal.
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4) Following the convolution stage, the max-pooling layer reduces the dimensions of the feature maps. It employs a pool
size of two and a stride of four, enhancing the model’s resilience to changes in feature position.

5) Subsequently, another CL is applied with ten filters of size 1x9 and a stride of 1.
6) After multiple convolutional and pooling layers, deep features are extracted by passing the pooled feature maps through

additional convolutional layers followed by pooling operations. This process continues until the desired depth or feature
richness is achieved.

7) Finally, the outputs of the final pooling layers from different CNN models are combined into a row of deep features.
This combination can be achieved by concatenating or averaging the feature vectors obtained from each model.

2.6 XGBoost Classifier
XGBoost is a potent regression-and-classification technique [35]. Based on the gradient improving framework, XGBoost
continuously enhances learner performance and efficiency by adding new decision trees to fit a value with leftover multiple
iterations. In contrast to Friedman’s curve boosting [36], XGBoost approximates the loss function using a Taylor expansion.
The model also has better tradeoff bias and variance and typically uses fewer decision trees to achieve higher accuracy. A
second-order Taylor expansion is carried out on the square loss function in XGboost, a more potent version of the Gradient
Boosting Decision Tree (GBDT) algorithm, to improve accuracy. The following is the main definition of XGBoost [37]:

First and second-order gradient statistics for the loss function are shown here as gi and hi. The sample numbers are
represented by n. The regression tree functions at the t-th iteration are represented by ft (xi). The number of leaves on a tree is
represented by t. L2 average of leaf scores is represented by w2j. Based on the model’s complexity, the regularization term ω(ft)
effectively avoids overfitting. To increase the algorithm’s statement and learning speed, XGboost uses shrinking and column
subsampling techniques.

2.7 Performance Metrics
Since the proposed approach is dedicated to classifying ECH into healthy or HF cases, the performance of the method is
measured using the formula of accuracy (Eq. 5), sensitivity (Eq. 6) and F1-score (Eq. 7). Where True Positive (TP) refers
to the number of correctly classified data as HF indicating the actual HF case; False Positive (FP): The number of incorrectly
categorized data as HF that is not indicative of the correct case; True Negative (TN): The number of data classified as healthy
case and indicating that actual healthy case; False Negative (FN): The number of data classified as healthy not where the actual
one is HF.

3 Results and Discussion
The rigorous evaluation of the proposed model necessitated a meticulous approach to dataset partitioning and model assessment.
Firstly, the entire dataset was stratified into three distinct subsets: the training set, employed for training the CNN model; the
validation set, utilized for fine-tuning hyperparameters; and the testing set, crucial for evaluating the ultimate performance of
the model. In order to ensure the robustness and reliability of the implemented approach, 75% of the 2-second healthy segments,
alongside an equivalent proportion of 75% of HF segments, were randomly selected for inclusion in the training and validation
ECJSE Volume 12, 2025 5
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Figure 2: Training performance of CNN model.

sets. Subsequently, the validation and testing sets were constructed from the remaining data through a randomized selection
process. Furthermore, to mitigate potential biases and ensure an equitable distribution of data across training and validation
folds, the dataset was stratified into equal-sized folds. This stratification facilitated the proportional representation of each class
within every fold, as necessitated by the principles of stratified cross-validation. In each iteration of the training process, one-
fold was designated for validation while the remaining folds were utilized for model training. This iterative approach enabled
comprehensive model evaluation across different subsets of the data, ensuring robustness and generalizability. Specifically, a 10-
fold stratified cross-validation methodology was adopted in this study to systematically assess the performance of the proposed
model. The training process of the CNN model, depicted in Figure 2, showcases the progression of model performance over
epochs. Notably, the optimal performance metrics were attained after 30 epochs of training, indicating the convergence of the
model towards an optimal solution. This meticulous methodology not only enhances the rigor of our experimental design but
also underscores the reliability and validity of the reported findings.
As delineated in Table 2, the CNN-XGBoost hybrid model demonstrated superior performance across multiple evaluation
metrics. Specifically, the hybrid model achieved an average accuracy of 99.95%, an average sensitivity of 99.96%, and an
F1-score of 99.94%. Conversely, when utilizing the CNN as an independent classifier, the average accuracy, average sensitivity,
and F1-score were notably lower, standing at 97.43%, 97.12%, and 92.22%, respectively.

Table 2: Ten-fold performance metrics (average ± standard deviation) of the CNN model.
Classifier Accuracy (%) Sensitivity (%) F1-score (%)
Direct CNN classifier 97.43± 1.53 97.12± 1.65 92.22± 1.61
CNN-XGBoost (proposed method) 99.95± 0.32 99.96± 0.33 99.94± 0.34

The reduced standard deviation observed in the CNN-XGBoost model compared to the direct CNN model across all
assessment metrics, as depicted in Table 2, is indicative of greater consistency in performance. Specifically, the lower standard
deviations of 1.53 for accuracy and 1.65 for sensitivity in the direct CNN models contrast with the notably diminished standard
deviations of 0.32 and 0.33, respectively, in the CNN-XGBoost model. This disparity in standard deviations underscores the
CNN-XGBoost model’s heightened stability and robustness in classification tasks. The diminished variability suggests that
the performance metrics of the CNN-XGBoost model exhibit closer proximity to the average performance across multiple
evaluations, thereby implying a more reliable and consistent classification outcome. In comparing the performance of the
proposed CNN-based classification techniques against existing methods, a comprehensive analysis reveals their efficacy in
medical diagnostics in Table 3. Zhang et al. [22] utilized a DenseNet model trained on a combination of BIDMC, MIT-BIH, and
PTB datasets, achieving an accuracy of 94.97% and a sensitivity of 89.38%. Despite using a deep network architecture, their
model’s performance is limited, likely due to insufficient feature extraction capabilities or imbalanced training data. Wang et
al. [26] incorporated CWT with CNN for feature extraction and achieved an accuracy of 98.74%, though sensitivity remained
significantly low at 67.47%. The proposed approach overcomes these limitations by combining raw ECG signals and their
transformed CWT profiles, ensuring comprehensive feature extraction and improved model generalization. Botros et al. [24]
proposed an SVM layer integrated with a CNNmodel, achieving over 99% accuracy and sensitivity on theMIT-BIH and BIDMC
datasets.While their results are competitive, the lack of reported F1-scores limits a full evaluation of themodel’s balance between
precision and recall. Khan et al. [29] applied a 1-D ResNet model on the MIT-BIH dataset, achieving 98.63% accuracy and
92.41% sensitivity. However, the performance plateaued without additional enhancements like ensemble strategies or advanced
feature extraction techniques. The work of Rawi et al. [25] is particularly noteworthy, as it combines CNN and XGBoost for
classification using the MIT-BIH and PTB datasets. Their model achieved an accuracy of 99.38%, a sensitivity of 98.37%, and
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an F1 score of 99.11%, demonstrating the effectiveness of combining CNN-based feature extraction with XGBoost for robust
classification. However, the novelty of the proposed method lies in its dual CNN architecture, where features are extracted not
only from raw ECG signals but also from their corresponding CWT profiles. This dual representation enhances the richness
of the extracted features, enabling the XGBoost classifier to achieve superior discriminative performance. By leveraging this
enhanced feature set, the proposed approach achieves a remarkable accuracy of 99.95%, a sensitivity of 99.96%, and an F1 score
of 99.96%, outperforming Rawi et al.’s results across all evaluation metrics. In comparison to Mogili and Narsimha [27], who
also employed a CNN-XGBoost hybridmodel on theMIT-BIH dataset with an accuracy of 99.84% and sensitivity of 92.61%, the
proposed method demonstrates clear improvements. The significantly higher sensitivity and F1-score of the proposed approach
are attributed to the multi-representation strategy and careful preprocessing, which unify datasets from BIDMC, MIT-BIH, and
PTB. This integration creates a more diverse and balanced training set, further enhancing model generalization. Premalatha
and Bai [28] proposed a CNN-XGBoost model with oversampling techniques to address class imbalance issues in a real-time
IoT elderly patient dataset. Their model achieved 98% accuracy and a recall (sensitivity) of 100%. However, oversampling
can introduce biases and overfitting risks, as indicated by their relatively lower F1-score of 94.8%. In contrast, the proposed
method maintains a balanced performance without relying on oversampling techniques, achieving higher precision, recall, and
F1-score simultaneously. Al-Jibreen et al. [30] presented a lightweight CNNmodel with separable convolution on the MIT-BIH
Arrhythmia dataset, achieving modest results with an accuracy of 93.64% and a notably low F1-score of 53%, highlighting its
limitations in handling class imbalances and complex features.

Table 3: Comparison of related work with the proposed approach.
Ref. Method Dataset Accuracy Sensitivity F1-score
[22] DenseNet model BIDMC+ MIT-BIH+ PTB 94.97% 89.38% -
[26] CWT and CNN model MIT-BIH 98.74% 67.47% 68.76%
[24] SVM layer with CNN model MIT-BIH+ BIDMC > 99% > 99% -
[25] CNN with XGBoost MIT-BIH+ PTB 99.38% 98.37% 99.11%
[27] CNN with XGBoost MIT-BIH 99.84% 92.61% 95.99%
[28] CNN-XGBoost model with oversampling IoT Elderly Dataset 98% 100% 94.8%
[29] 1-D ResNet model MIT-BIH 98.63% 92.41% 92.63%
[30] Lightweight CNN with separable convolution MIT-BIH Arrhythmia 93.64% 93.8% 53%
[31] XGB Explainer with EWT features MIT-BIH 98.14% 98.14% 98.10%

Proposed method CNN-XGBoost model BIDMC+ MIT-BIH+ PTB 99.95% 99.96% 99.96%

However, this study is limited in certain respects and it is important to acknowledge them. To begin with, our investigation
scope has been confined by the lack of datasets in literature which limits the size and heterogeneity of the dataset that was
employed for classification purposes. Secondly, we have used only two categories of ECG signals: normal and HF (abnormal)
samples when classifying them. This dichotomous categorization framework may not be able to capture the subtleties involved
in finer classifications of ECG diagnoses as a result undermining the generalizability of our proposed approach.
In future, further research efforts need to broaden these limitations through examining data consisting more diverse kinds
regarding ECG abnormalities and subclasses. Moreover, such inclusion of different datasets from different sources will enable
us to better model and thus understand what really happens in the ECG signals on a patient or population level. Also, broadening
this classification system so as to accommodate fine specifications within various classes among other ECG subcategories would
bring about an improved insight towards heart health and disease process.

4 Conclusion
The paper introduces a novel deep learning model that combines the efficacy of CNNs for feature extraction with XGBoost for
classification, aiming to enhance automatic detection of HF using 2-second ECG fragments. The model consists of two CNNs:
one processing ECG segments in the time domain and the other processing the CWT of the same ECG segment. By leveraging
CNNs to extract deep features from both time and frequency domains, the proposed model achieves more accurate HF detection.
To evaluate the model’s performance, datasets from the MIT-BIH, BIDMC, and PTB Diagnostic ECG databases are utilized for
training and testing. Results demonstrate that the proposed CNN-XGBoost model significantly outperforms using CNN alone as
an independent classifier. Specifically, the CNN-XGBoost model achieves an impressive average accuracy of 99.95%, average
sensitivity of 99.96%, and F1-score of 99.94%. In contrast, the direct utilization of CNN yields lower performance metrics, with
an average accuracy of 97.43%, average sensitivity of 97.12%, and F1-score of 92.22%. Overall, the proposed model represents
a promising advancement in the field of deep learning for ECG diagnosis. By combining CNNs with XGBoost, it offers a
robust and accurate approach to HF detection, demonstrating its potential to enhance clinical decision-making and patient care
in cardiac health.
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Abstract : In this study, the statistical analysis of wind energy density andwind speed distribution parameters
in Bingol province was examined using hourly wind speed data measured by the General Directorate of
Meteorology between 2014 and 2017. Weibull distribution was used for statistical modeling and k and c
parameters were calculated for 10 m and 30 m height. According to statistical criteria, in the wind data analysis
of Bingol province, it was determined that the months with the highest potential in terms of mean wind speed
and wind power densities are March, April and May. In the months when mean wind speeds are the highest,
the dominant wind direction is south. As a result, it is concluded that the average monthly and annual power
densities in Bingol province are about 100 W/m2. It is determined that the wind potential of the region can
be used for small scale off-grid wind applications. The fact that the average speed is mostly higher than 4 m/s
for a 30 m hub height has shown that electrical energy generation from wind energy is promising.

Keywords : Renewable energy; Wind Characteristic; Wind Energy Potential; Weibull Distribution; Wind
frequency distribution

1 Introduction
In general, winds that occur because of temperature changes in the atmosphere start with the density difference or pressure
variations of the points of equal height [1]. The winds formed because of these effects can be used as an alternative energy
source to fossil fuels. Generating electricity using wind energy which is undoubtedly the cleanest among energy resources,
provides environmental, social, and economic advantages [2]. The need to research alternative energy sources has arisen with
the population and energy consumption in the world. Therefore, many scientific studies have been conducted on wind energy
and wind characteristics in recent years [3]–[7]. In addition, wind characteristics are needed to investigate the effects of winds
on structures. As a result of the use of fossil fuels which are the most used energy source for increasing energy consumption
in today’s world, carbon dioxide and greenhouse gases are released, which causes global warming by trapping the heat in
the atmosphere. Therefore, the utilization of renewable energy resources has come into prominence. The potential shortages
in traditional resources can be compensated by using abundant renewable resources such as wind, solar and biomass energy.
Wind energy is a clean energy source, it does not cause environmental pollution and CO2 emission. Today, wind energy is
used at increasing rates day by day, although it is not at a level to close the energy gap, which is still needed and becomes
a bigger problem day by day. It has been observed in many studies that regional wind energy potentials have been tried to
be determined [8]–[13]. First of all, the wind characteristics of the region were revealed to determine the compatibility of the
study area regions with wind energy generation. In a site where a wind power plant is planned to be established, the wind
characteristics of that region should be analyzed to benefit from the wind energy potential at the maximum level and in the
most efficient way. The uncontrollable nature of the wind in unstable fluctuation can lead to various problems in terms of its
use as an energy source. Before deciding the wind energy potential of a region, it is necessary to determine wind characteristics
such as observed frequency distributions of wind speed, wind energy density, prevailing direction of wind speed, and seasonal
changes of wind [14]. Besides, wind data should be analyzed since it is not available to generate energy from every wind speed.
To analyze the wind energy potential of any region, hourly wind speed and direction information must be measured for at least
one year in the region, and wind measurements are generally made in the range of 10-30 meters [15]. The change in wind
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speed is characterized by a probability distribution function [4]. In the studies, the wind speed frequency distribution is shown
using various probability density functions such as log-normal function, gamma function, beta function, Rayleigh and Weibull
distributions [5], [16], [17]. On the other hand, the two-parameter Weibull distribution and one parameter Rayleigh distribution
are methods used to represent the wind distribution of many regions of the world [11], [18]–[20]. Since Rayleigh distribution
is single parameter, it is less flexible than two-parameter Weibull; however, its parameters are easier to calculate. The Weibull
distribution is preferred as the Rayleigh distribution is a special case of the distribution [21]. It can be said that the most suitable
probability distribution for wind speeds is the Weibull distribution [3], [4], [22]–[24]. The versatile two-parameter Weibull
distribution is widely used to fit the measured wind speed probability distribution. When considering the annual average wind
speeds on land and sea, Turkey has more wind power potential compared to many European countries [25]. By determining the
average wind speeds and wind power densities in regions with high wind energy potential, companies that will invest in this
sector will be encouraged. The purpose of this study is to reveal the wind resource potential of Bingol located in eastern Turkey
and to make a preliminary study to determine whether wind energy can be obtained from the region and the areas where this
energy can be used. By determining the parameters (k and c) of Weibull distribution, it was ensured that wind characteristics of
Bingol were revealed. For this purpose, hourly measured 4-year (2014-2017) wind speeds obtained from a meteorological wind
station in Bingol were evaluated within the scope of the study.

2 Data and Methods
2.1 Data
Time series of hourly wind speed datameasured fromBingol Airport station for the period between 2014 and 2017were provided
by Turkish State Meteorological Service. All wind measurements were obtained at an anemometer height of 10 m above ground
level. The altitude of the airport in Bingol province located in eastern Turkey is 1063 meters. In addition to analyzing the 4-year
wind speed data with the distribution form stated below, the dominant wind directions have been determined using wind roses.

2.2 Probability Distribution Model
Correct determination of the probability distribution of wind speed is a prominent factor in evaluating the wind energy potential
in a region. If wind is measured over a year, it is generally seen that very strong winds are seldom, moderate, and strong winds
are more likely to occur. In order to determine the wind energy potential, it is necessary to know the distribution of wind speeds
at a given site. There are many methods to determine wind speed distributions. In the literature, the Weibull distribution is
generally used in the statistical analysis of wind data. Wind distribution for a site is determined either by measuring or by
Weibull distribution at different points and heights based on measurements. Many methods such as the method of moments,
maximum likelihood estimation (MLE) and least squares are used to determine the Weibull distribution. However, it was stated
that the MLE is the most effective method in determining the parameters of the Weibull distribution function [13], [26]–[28].
The probability density function expression of the Weibull distribution is as in Equation (1) and has two parameters. Where k
represents the shape parameter and c represents the scale parameter. To determine these parameters, wind speed measurements
made at short intervals are required be spread over a long time.

f (v) =
k
c

(v
c

)k−1

exp

(
−
(v
c

)k)
(1)

Actually, the scale parameter c indicates howwindy a considered wind position is, while the shape parameter k indicates how
much the wind distribution peaks [18]. The Weibull distribution can be characterized by the cumulative distribution function
F(v) given in Equation (2). As well v represents the wind speed; the parameters k and c in this equation are the same as those
in the probability density function. The Weibull cumulative distribution function gives the probability that the wind speed will
occur less than or equal to a certain value of v.
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In this study, MLE method was used to determine the k and c parameters. The k parameter of the Weibull distribution is
determined iteratively as in the following equation.
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Once k parameter is calculated, c parameter is decided with the following equation.
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(4)

10 ECJSE Volume 12, 2025



Wind Energy Potential of Bingol

Table 1: Land-cover classes, Hellman coefficient (µ) values [29]
Terrain Hellmann coefficient (α)

Lake, ocean and smooth hard ground 0.10
Foot high grass on level ground 0.15
Tall crops, hedges, and shrubs 0.20

Wooded country with many trees 0.25
Small town with some trees and shrubs 0.30

City area with tall buildings 0.40

The mean wind power density is used to determine the wind energy potential of a particular site. The mean power density
per unit area for the Weibull distribution is expressed in Equation (5). Here ρ is the density of the air (1.05kg/m3 for the given
site), Γ is the gamma function.

PDw =
1

2
ρc3Γ

(
1 +

3

k

)
(5)

Following the Weibull distribution, Equations 6 and 7 are used in calculating the average wind speed and standard deviation
of the wind speed, respectively. Standard deviation is a statistical measure that shows the spread of the most used data for
quantitative scaled numbers relative to the mean. The low values of the standard deviation indicate that the data tends to be very
close to the mean, thus it reveals the distribution of wind speed values.
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)
(6)
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Generally, the wind speed measurements are carried out at a height of 10 m from the earth’s surface. The hub’s height must
be at least 30 m above the ground to obtain the energy from the wind turbines. Thus, it is necessary to estimate wind speeds at
higher elevations using wind speed data from lower elevations. Wind speed data measured at a certain height can be transferred
to various heights using Equation (8).

V = Vref

(
H
Href

)µ

(8)

The symbols used in this Equation are defined as follows:
V : Wind speed at the desired height (m/s),
Vref : Wind speed at reference altitude (m/s),
H : Desired height (m),
Href : Reference height (m),
µ : Hellmann coefficient.

Hellmann coefficient (µ) values are given in Table 1 for different terrains.

3 Analysis Results and Discussion
In this study, 2014-2017 wind speed data for Bingol, Turkey were analyzed using the Weibull distribution. After deciding
on Weibull parameters, mean wind speed, standard deviation and mean power density values were calculated. The wind
characteristics of Bingol province were tried to be revealed by evaluating the prevailing wind directions and wind speed data
according to months and years and the results obtained were examined under the headings below.

3.1 Statistical Distributions
Using the Weibull distribution, k and c parameters were determined, and mean wind speed and standard deviation values
were calculated according to the relevant equations (Table 2). In Table 2; SD defines Standart Deviation, W defines Weibull
Distribution. It is seen in Table 2 that Weibull k parameter varies between 1.40 and 2.59, while c parameter varies between
2.25 and 5.34 at 10 m height. At 30 m, the k parameter does not change, but the c parameter varies between 2.74 m/s and 6.51
m/s. As a result of the examination of monthly wind speeds, it was determined that the highest mean wind speeds occurred
in March, April and May at 10 m height. Based on 4-year wind speeds, the months with the highest k parameter are July and
August at 10 m height. In addition, the c parameter reached its highest value inMarch, April, May, June, July, and August. When
wind speeds for 30 m height are evaluated, the highest mean wind speed, standard deviation, and the k and c parameters were
realized in similar months at 10 m height. It has been observed that wind speeds, standard deviation and c parameter increase
with increasing height. The lowest mean wind speeds were obtained in the winter months (November, December, January and
ECJSE Volume 12, 2025 11
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Table 2: Monthly mean wind speeds, standard deviations, and Weibull parameters for 10 m and 30 m
Year Month Mean WS (m/s) (10m) SD (m/s) (10m) W k (10m) W c (10m) Mean WS (m/s) (30m) SD (m/s) (30m) W k (30m) W c (30m)
2014 Jan 1.99 1.06 2.01 2.25 2.43 1.29 2.01 2.74
2014 Feb 3.85 3.00 1.40 4.22 4.68 3.65 1.40 5.14
2014 Mar 4.56 2.18 2.14 5.15 5.55 2.66 2.14 6.27
2014 Apr 3.59 2.20 1.73 4.02 4.37 2.68 1.73 4.90
2014 May 3.04 2.06 1.66 3.40 3.71 2.51 1.66 4.15
2014 Jun 3.34 1.82 2.03 3.77 4.07 2.22 2.03 4.59
2014 July 3.47 1.90 2.07 3.92 4.23 2.31 2.07 4.78
2014 Aug 3.26 2.20 1.80 3.67 3.98 2.68 1.80 4.47
2014 Sept 3.39 1.97 1.92 3.82 4.13 2.40 1.92 4.65
2014 Oct 2.78 2.01 1.66 3.11 3.38 2.45 1.66 3.79
2014 Nov 2.25 1.38 1.77 2.53 2.74 1.69 1.77 3.08
2014 Dec 2.41 1.23 2.09 2.72 2.94 1.50 2.09 3.31
2015 Jan 2.75 2.14 1.47 3.04 3.35 2.61 1.47 3.70
2015 Feb 2.94 1.70 1.70 3.29 3.58 2.07 1.70 4.01
2015 Mar 3.78 2.24 1.87 4.26 4.60 2.73 1.87 5.19
2015 April 4.17 2.02 2.12 4.71 5.09 2.46 2.12 5.74
2015 May 3.95 1.98 2.01 4.45 4.81 2.42 2.01 5.43
2015 Jun 4.41 2.03 2.33 4.98 5.38 2.47 2.33 6.07
2015 July 4.14 2.04 2.08 4.67 5.04 2.48 2.08 5.69
2015 Aug 4.00 1.87 2.28 4.52 4.88 2.28 2.28 5.51
2015 Sep 3.78 1.99 2.02 4.27 4.61 2.43 2.02 5.20
2015 Oct 2.97 1.36 2.35 3.36 3.62 1.66 2.35 4.09
2015 Nov 2.98 1.56 2.04 3.37 3.63 1.90 2.04 4.10
2015 Dec 2.81 1.81 1.69 3.15 3.43 2.21 1.69 3.84
2016 Jan 2.29 1.06 1.87 2.58 2.79 1.29 1.87 3.14
2016 Feb 2.32 1.23 1.96 2.61 2.82 1.50 1.96 3.19
2016 Mar 4.07 2.55 1.77 4.58 4.97 3.10 1.77 5.58
2016 Apr 4.20 2.01 2.14 4.74 5.12 2.45 2.14 5.78
2016 May 4.62 2.50 1.97 5.21 5.63 3.05 1.97 6.35
2016 June 4.62 1.81 2.43 5.21 5.63 2.21 2.43 6.35
2016 July 4.21 1.58 2.51 4.75 5.13 1.93 2.51 5.78
2016 Aug 3.53 1.32 2.17 3.98 4.30 1.61 2.17 4.85
2016 Sep 4.08 1.94 2.14 4.60 4.97 2.36 2.14 5.61
2016 Oct 3.18 1.87 1.93 3.59 3.88 2.28 1.93 4.37
2016 Nov 3.59 2.80 1.45 3.96 4.38 3.41 1.45 4.82
2016 Dec 2.55 1.74 1.66 2.85 3.11 2.12 1.66 3.48
2017 Jan 2.81 2.05 1.51 3.11 3.42 2.50 1.51 3.80
2017 Feb 3.19 2.25 1.56 3.55 3.89 2.74 1.56 4.33
2017 Mar 3.92 2.23 1.69 4.39 4.77 2.72 1.69 5.35
2017 Apr 4.70 2.47 2.01 5.31 5.73 3.01 2.01 6.47
2017 May 4.73 2.24 2.29 5.34 5.76 2.73 2.29 6.51
2017 Jun 4.13 1.90 2.34 4.67 5.04 2.31 2.34 5.69
2017 July 4.07 1.96 2.20 4.60 4.96 2.39 2.20 5.60
2017 Aug 4.39 1.84 2.59 4.95 5.35 2.25 2.59 6.03
2017 Sep 3.46 1.84 2.02 3.91 4.22 2.24 2.02 4.76
2017 Oc 3.99 2.09 2.01 4.50 4.86 2.55 2.01 5.48
2017 Nov 2.25 1.34 1.85 2.54 2.74 1.63 1.85 3.09
2017 Dec 2.23 1.30 1.83 2.51 2.71 1.59 1.83 3.06

Table 3: Annual mean wind speeds, standard deviations and Weibull parameters for 10 m and 30 m
Year Mean WS (m/s) (10 m) SD (10 m) W k (10 m) W c (10 m) Mean WS (m/s) (30 m) SD (30 m) W k (30 m) W c (30 m)
2014 3.13 1.92 1.68 3.51 3.82 2.34 1.68 4.27
2015 3.61 1.99 1.88 4.07 4.40 2.43 1.88 4.96
2016 3.77 2.05 1.91 4.25 4.59 2.50 1.91 5.18
2017 3.72 2.14 1.80 4.19 4.54 2.61 1.80 5.10

All data 3.59 2.05 1.81 4.03 4.37 2.50 1.81 4.91

February). Considering the 4-year wind data, the highest mean wind speed was realized in May 2017 with 5.76 m/s at 30 m
height. However, the lowest mean wind speed was recorded in January 2014 with 2.43 m/s at 30 m height.

It is seen from Table 3 the yearly mean wind speeds range from 3.13 m/s to 3.77 m/s at 10 m height. (In Table 2; SD defines
Standart Deviation, W definesWeibull Distribution.) In addition to this, the average of the standard deviation from 2014 to 2017
is 2.05. At 30 m height, the mean wind speed reaches 4.37 m/s over a period of 4 years. These results show that at higher hub
height, the higher the wind speed, standard deviation and scale parameters are obtained. It was also determined that the shape
parameter has lower values than the scale parameter at different hub heights. The averages of the k and c parameters required
to calculate the energy generated from the wind over a 4-year period are respectively 1.81 and 4.03 for 10 m height, 1.81 and
4.91 for 30 m height, respectively.

The wind speed probability density function obtained by the Weibull distribution of wind speeds on an annual basis using
the MLE method is given in Figures 3-7. As the hub heights increase, the peaks of the Weibull distribution decrease in all years
12 ECJSE Volume 12, 2025
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Figure 1: 2014 wind speed profile; a) 10m, b) 30m

Figure 2: 2015 wind speed profile; a) 10m, b) 30m

and spread towards increasing speed. It can also be said for the determined wind speed ranges, the distributions of wind speeds
and Weibull distribution coincide. From the figures, wind speeds are generally between 0 and 4 m/s for 10 m hub height. When
the height of 30 m is reached, it has been determined that the frequency of wind dispersion is maintained up to 6 m/s. When
all wind speed data are considered at 10 m hub height, it has been determined that the most wind data is around 2 m/s and
corresponds to approximately 40% of the data. For a height of 30 m, it was found that this value was around 3 m/s and showed
a distribution of approximately 35%.

3.2 Wind Roses
Monthly and annual wind rose charts help explain the variation in wind direction each month and year as shown in the figures
below. The monthly wind rose charts obtained from 10 m height in Figure 6 demonstrate that most wind flows from the South
during the spring months when average wind speeds are the highest. When all wind data from 2014 to 2017 are examined-again,
most of the winds flow from the South (about %14) (Figure 7). Simply, it can be concluded that the prevailing wind direction
in the study area is south. It is observed that the winds are generally flowing from the south in the spring, which is the windy
season, and that there is no uniform distribution in the other months. Wind roses were generated withWRPlot Software. WRPlot
software provides a visual representation of how the wind direction changes in certain periods.

Figure 3: 2016 wind speed profile; a) 10m, b) 30m
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Figure 4: 2017 wind speed profile; a) 10m, b) 30m

Figure 5: 2014 to 2017 wind speed profile; a) 10m, b) 30m

3.3 Wind Power Density
Calculating wind power density(PD) is an important step in evaluating wind energy potential. The annual values of the Weibull
power density(PD) are given in Table 4. In this study, wind power density values are evaluated for 30 m. According to the
Weibull distribution, the highest wind power density was achieved as 105.04 W/m2 in 2017 and the lowest power density as
68.22 W/m2 in 2014. In Bingol province, the average wind power density was approximately 90W/m2 in a period of 4 years.

3.4 Evaluation of Wind Data
In Figure 8, the mean wind speeds and wind power densities of Bingol province by months are shown. In the Bingol region,
the highest wind power density and mean power speeds is observed in the spring months, while the lowest is observed in the
winter months. Generally, both mean wind speeds and wind power densities are high in the spring months. Mean wind speeds
in March, April, May, and June are about 5 m/s at 30 m height. The lowest monthly mean wind speeds were obtained in January
and February for 10 m and 30 m altitude, respectively, 2.5 m/s and 3.0 m/s. The average wind power density is around 135W/m2

in March and April. Accordingly, it can be said that spring months have higher energy potential than other months in terms of
average wind speed and wind power density. However, in addition to the mean wind speeds and wind power densities, the data
distribution is also important in wind energy. International standards have classified the energy that wind turbines can generate
over wind speed (m/s) and power density (W/m2) [30]. Considering the monthly and annual wind power densities and mean
wind speeds the energy potential of region is in Class 1 (Tables 4 and 5) (Fig 8). As a result of these data it was found that wind
potential of the region can be used for low-capacity wind turbines in rural and small communities.

The cumulative distribution function shows the ratio of the wind speed when it is below a certain wind speed. The cumulative
distribution function can also be used to predict the wind is within a certain speed range [31]. Figure 9 shows the cumulative
percentages of monthly wind speeds. The cumulative distribution function in Figure 9 shows that approximately 90% of the
wind speed recorded in March, April, May and June is below 8.5 m/s in December and January, and below 4.5 m/s.
In order to determine the wind energy potential of a region, it is necessary to determine the wind speed distribution [32], [33].
Figure 10 shows wind speed Weibull distributions and cumulative probability distributions derived from the measured hourly
time-series data of Bingol (2014 to 2017). The cumulative distribution shows that approximately 90% of the wind speed recorded

Table 4: Annual PDw based on Weibull distribution at 30 m height
Years 2014 2015 2016 2017

PDw (W/m2) 68.22 91.02 101.87 105.04
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Figure 6: Monthly wind roses 2014 to 2017
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Figure 7: Average Wind rose 2014 to 2017

Table 5: Annual PDw based on Weibull distribution at 30 m height
Wind Power Class m/s(10m) W/m2(10m) m/s(30m) W/m2(30m)

1 0-4.4 0-100 0-5.1 0-160
2 4.4-5.1 100-150 5.1-5.9 160-240
3 5.1-5.6 150-200 5.9-6.5 240-320
4 5.6-6.0 200-250 6.5-7.0 320-400
5 6.0-6.4 250-300 7.0-7.4 400-480
6 6.4-7.0 300-400 7.4-8.2 480-640
7 > 7.0 >400 8.2-11 640-1600

Figure 8: Monthly average wind speeds and PDw

Figure 9: 2014 to 2017 cumulative distribution at 30 m height (hourly average)
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Figure 10: Wind speed Weibull distributions and cumulative probability distributions, derived from the measured hourly
time-series data of Bingol (2014 to 2017)

in 2014 to 2017 is below 6.5 m/s. When 4-year wind data were examined, it was determined that approximately 35% of the
Weibull distribution was composed of 2.5 m/s wind speed.
To promote renewable energy, examining only the wind energy potential of a region may be insufficient. For this reason,
renewable energy studies carried out in a region should be evaluated together in a comprehensive manner [34], [35]. It may
be useful to make a solar energy potential assessment for Bingöl province in the future.

4 Conclusion
In this paper, hourly long-term wind speed data of Bingöl province between 2014 and 2017 were analyzed statistically.
Probability density distributions are derived from long-term wind speed data and distribution parameters are defined. The
dominant wind directions and energy potential of the region were determined, and the data obtained are given below.

• In this study, where the wind characteristics of Bingol province were examined with the Weibull distribution, when all
wind data were taken into consideration, it was determined that the shape parameter (k) and scale parameter (c) were
1.81 and 4.03 for 10 m height, 1.81 and 4.91 for 30 m respectively.

• Mean wind speeds from 2014 to 2017 were 3.59 m/s and 4.37 m/s for 10 m and 30 m height, respectively.
• Mean wind speeds reached their highest value with about 5.0 m/s in March, April, May and June. The lowest wind

speeds were in the winter months.
• In the spring months when average wind speeds are the highest, the prevailing wind direction is south
• These results show that the potential of generating electricity from wind in general is low in Bingol. As a result, it has

been concluded that since the average monthly and annual power densities in Bingol province are 100 W/m2, it is not
possible to directly support the electrical grid by wind energy systems, and it can be used particularly for electrical
applications that do not require low power density in rural areas. The fact that the average speed is mostly higher than
4 m/s for 30 m hub height has shown that electrical energy generation from wind energy is promising. However, this
study can help to encourage the use of small-scale wind energy projects in Bingol, especially in applications that require
electricity, such as the use of internet infrastructure, traffic signs, street lighting, charging stations and irrigation in the
rural areas.

• It also shows that the hub heights of the wind turbines to be installed should be as high as possible.
• It is recommended to take long-term measurements at different heights in different regions to make a better decision

about the wind characteristics and wind energy potential of the province.
• In this way, the average wind speeds and wind power densities in regions with high wind energy potential will be

determined and companies that will invest in this sector will be encouraged.
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Abstract : In today’s world, explosions frequently occur in terrorist bombings, industrial and manufacturing
sectors, and daily life. The blast waves generated by explosions subject structures and the human body to
significant blast loads. These blast loads can cause deadly structural collapses, and serious injuries or fatal
outcomes can occur in various parts of the human body, such as the brain, lungs, heart, auditory system,
eyes, abdominal region and musculoskeletal system due to the impact of the blast load. This article initially
discusses the blast wave and its characteristics (peak pressure and duration) as well as the parameters of the
blast wave, which have been related to injuries occurring in the major organs of the human body. Subsequently,
the effects of blast loading have been quantitatively documented under the headings of blast injuries, types
and mechanisms of blast injuries, and the effects of explosions on the human body, correlating the severity of
injuries with nearly all major systems of the human body. As a result, various injury scaling criteria have been
carefully compiled to determine thresholds for major organ injuries, and ultimately, limit blast pressure values
for different parts of the human body (lung, ear and head) have been proposed.

Keywords : Blast Injury, Blast Wave, Explosion, Injury Criteria, Injury Scaling

1 Introduction
Explosions occur when a liquid or solid substance instantaneously transitions to the gas phase, generating energy in the form
of sound, heat, light, and pressure. These explosions can result in blast injuries or fatalities. Such injuries are generally caused
by the detonation of high-order or low-order explosives. Examples of high-order explosives include C-4, Semtex, dynamite,
ammonium nitrate, and trinitrotoluene, whereas low-order explosives include Molotov cocktails, pipe bombs and gunpowder.
High-order explosives generate supersonic explosions that can move at speeds of up to 8000 meters per second and bringing
about pressures up to 30000 times the atmospheric pressure [1]. As the name suggests, low-order explosives have less destructive
power compared to high-order explosives but can cause severe explosions when combined with secondary agents (such as metal
fragments, nails etc.).

The explosion effects data presented in the UFC 3-340-02 [2] guide largely pertain to the blast pressures of open spherical
TNT explosives. Those data can be potentially extended to contain other explosive materials by associating the ’effective
explosive weight’ of these materials to the explosive energy of an equivalent weight of TNT. In addition to energy output,
other factors can influence the equivalence of the material compared to TNT. These factors contain the shape of the material
(round, flat, square etc.), the quantity of explosive substance, whether the explosion occurs in an open or enclosed space, and
the pressure range considered (close, medium, or long distances). For blast-resistant design, the effects of the energy output of
an explosive material of a particular shape compared to that of similarly shaped TNT can be indicated as a function of the blast
heat of various materials as follows [2]:

WE =
H d
EXP

H d
TNT

WEXP (1)

where H d
EXP : heat of detonation of explosive in question , H d

TNT : heat of detonation of TNT, WEXP : weight of the explosive in
question ,WE : effective charge weight . In conclusion, the characteristics of blast waves resulting from condensed high-energy
explosives are apparently similar to those produced by TNT, and the blast parameters of other explosives can be determined
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using explosives that have blast effects similar to those of spherical TNT. This is referred to as the TNT equivalent of explosives.
Generally, the equivalent factor is utilized in relative comparisons, and the data is obtained by comparing the air blast data of
different high-energy explosives. Table 6 in explosion physics part of theWang and Jiang’s book provides a list of TNT equivalent
factors for computing impulse and overpressure for the explosion of various explosives in an infinite air environment [3]:

1.1 Blast Wave
The pressure or blast wave generated by the sudden release of energy into the atmosphere is one of the most crucial aspects
in blast-resistant design. The shape and magnitude of the blast wave, propagating outward in all directions from the explosion
source at sonic or supersonic speeds, depend on the nature of the energy release and the distance from the epicenter of the
explosion (standoff distance). The blast wave has two distinct characteristic types, namely shock waves and pressure waves,
and their typical pressure-time curves are shown in Figure 1 below [4]:

Figure 1: Characteristic types of blast wave: shock wave (left) and pressure wave (right) [4]

Examining the blast pressure-time curve of the shock wave reveals that this wave initially peaks instantaneously at a value above
the ambient atmospheric conditions, and then gradually falls to the ambient pressure level with highly damped oscillations.
Consequently, it can be stated that the positive phase of the blast wave is followed by a negative phase pressure wave. Looking
at the blast pressure-time curve of the pressure wave, it can be observed that the pressure increases over time to reach a peak
value, followed by a decrease in pressure over time. It is necessary to define the fundamental parameters of the blast wave as
components of the blast load on building elements. These are defined as the maximum pressure for the positive phase, Pso, the
duration of the positive phase, td , and the associated positive impulse, Io; and for the negative phase; the maximum pressure,
P−
so, the duration of the negative phase, td−, and the associated negative impulse, Io− [4]. The areas under the pressure-time

curves represent the impulse value of the explosion.

Io =
∫
P(t)dt (2)

For a triangular wave : Io = 0.50Psotd , For a half-sine wave : Io = 0.64Psotd . For an exponentially decaying shock wave :
Io = cPsotd , Here, P(t) represents the function of the variation of overpressure with time, Pso : the maximum lateral overpressure
value, td : the duration of the positive phase, c : value ranging between 0.2 and 0.5 depending on Pso. In addition, the blast waves
resulting from explosions exhibit very high strain rates in the range of 102 to 105 s−1. The high and sudden loading rate is critical
as it changes the expected damage mechanisms for various structural elements and the dynamic mechanical properties of the
target structures, as well as being of paramount importance for human injuries. Figure 2 illustrates the ranges within which
strain rates vary for different types of loading conditions [5].

Figure 2: Variation of strain rate for different types of loading [5]

Also, the impulse and peak pressure values on the structure changewith the standoff distance, R (distance from the explosive).
For a spherical TNT explosions, the positive phase pressures, durations, impulses and other parameters of this shock environment
vary with the scaled distance (Figure 3) [2].
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Figure 3: Positive phase shock wave parameters for a spherical TNT explosion in free-air at sea level [2]

1.1.1 Blast Wave Parameters
In addition to themaximum overpressure, impulse and duration, other blast wave parameters that may be involved in determining
the blast loads for a structure include [6]:

• Peak reflected pressure, Pr
• Peak dynamic (blast wind) pressure, qo
• Shock front velocity, U
• Blast wave length, Lw

Typically, these secondary parameters can be computed using the primary blast wave parameters as explained below.
Peak Reflected Pressure, Pr
When a blast wave from an open-air explosion strikes a surface, it reflects. As a result of this reflection, the surface is subjected
to a pressure much higher than the incident lateral pressure. The magnitude of the reflected pressure is determined as an
amplification of the incident pressure:

Pr = Cr Pso (3)

whereCr : coefficient of reflection. The coefficient of reflection bases on the incidence angle of the wave relative to the reflecting
surface, the type of the blast wave and the peak overpressure. The curves in Figure 4 and Figure 5 present the coefficient of
reflection (Cr ) for peak overpressures up to approximately five times the atmospheric pressure and for shock and pressure waves
at incidence angles ranging from 0° to 90° [6].
For maximum overpressure values up to 138 kPa (20 psi), which is the range expected in most air explosions, Newmark indicates
a simple formulation for the reflection coefficient of a blast wave at normal 0° incidence :

Cr = Pr/Pso ≈ 2 + 0.05Pso(Pso : [psi]) (4)
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Figure 4: Determination of the reflection coefficient for shock wave [6]

Figure 5: Determination of the reflection coefficient for pressure wave [6]

Cr = Pr/Pso ≈ 2 + 0.0073Pso(Pso : [kPa]) (5)

The dimensions of the reflecting surface can change the duration of the reflected pressure.
Peak Dynamic (Blast Wind) Pressure, qo.
As the blast wave propagates through the atmosphere, the blast wind pressure, caused by the movement of air due to the blast
wave, depends on the velocity of air particles, i.e., the maximum overpressure of the blast wave. To calculate this blast effect,
data have been provided by Baker and UFC 3-340-02. Under normal atmospheric conditions, the maximum dynamic pressure
can be obtained using Newmark’s empirical formulation [6]:

qo = 2.5P2
so/(7Po + Pso) ≈ 0.022P2

so[psi] (6)

qo = 2.5P2
so/(7Po + Pso) ≈ 0.0032P2

so[kPa] (7)

where Po denotes the atmospheric pressure of the environment. The net dynamic pressure on a structure is the product of
the dynamic pressure and a drag coefficient, Cd . Depending on the orientation and shape of the obstructing surface, the drag
coefficient alters. For a rectangular building, the coefficient of drag can be used as −0.4 for the side and rear walls, as well as
roof and +1.0 for the front wall [6].
Shock Front Velocity, U
As the blast waves resulting from a free-field explosion propagate through the medium, they travel at or above the speed of
sound. For TNT explosives that release high energy, graphs of scaled distance against shock front velocity are provided in UFC
3-340-02 guide. However, similar graphs are not available for the propagation of pressure waves. For design intentions, it may be
accepted that a pressure wave moves at the same speed as a shock wave. For standard atmospheric conditions and low-pressure
ranges, the pressure / shock front velocities in air can be obtained utilizing the following equations provided by Newmark [6].

U ≈ 1130(1 + 0.058Pso)0.5(ft/s) (8)
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U ≈ 345(1 + 0.0083Pso)0.5(m/s) (9)

Blast Wavelength, Lw
At any given time, the propagating blast wave extends over a restricted radial distance as the pressure / shock front moves
outward. The pressure is greatest at the front and decreases towards the ambient pressure along the length of the blast wave,
denoted as Lw. The length of the blast wave in the low-pressure range, can be approximately calculated as follows [6]:

LW ≈ Utd(m) (10)

2 Blast Injury
After discussing the explosion, blast wave, and its characteristics and parameters, this section examines blast injury types and
mechanisms, the effects of the blast wave on structures and various parts of the human body, such as the brain, lungs, heart,
auditory system, eyes, abdominal region, and musculoskeletal system. Section will end with the injury scaling part.
Typical pressure wave forms for a simple open (free) field explosion and a confined explosion are given in Figure 6. When
examining the pressure-time histories, it can be observed that a blast wave in a closed area creates an environment with high
pressures for extended periods, allowing more energy transfer to the victim. This increased energy transfer can enhance the
lethality of the explosion [7].

Figure 6: Pressure waveform of a simple open / free field explosion (a) and a closed field explosion (b) [7]

Figure 7: Typical pressure – impulse curve [8]

Also, Figure 7 presents a typical pressure-impulse (P-I) diagram. The pressure-impulse diagram is used to determine specific
damage levels by combining the explosion pressures and impulses applied to a specific structural element. As seen in the diagram
(Figure 7), Region I indicates severe structural damage, while Region II shows no damage or minor damage [8]. In this context,
in recent years, significant efforts have been made to develop blast-resistant reinforced concrete structures for military buildings
in regions frequently affected by terrorist attacks and wars [9].

2.1 Blast Injury Types and Mechanisms
Blast injuries alter significantly from other types of injuries in aspects such as injury mechanisms, conditions causing the injury,
treatment, and on-site conditions. Therefore, epidemiological features and the injury characteristics of blast injuries are also
distinct from those of other injury types.
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During a blast injury, both the indirect and direct effects of the blast wave impact the body, making the injured tissues and
organs, injury processes and mechanisms quite complex. This complexity is further exacerbated by the varying environment
and conditions where the injury occurs. Thus, blast injuries are characterized by features not seen in other types of injuries.
Generally, the characteristics of blast injuries can be listed as [3]:

• The dynamic pressure, overpressure and negative pressure of a blast wave can lead to injury either individually or in
combination, acting both indirectly and directly. Therefore, complicated injuries are seen in explosions and blast injuries.

• While blast injuries can harm any tissue or part of the body, most blast injuries influence target, specific organs due to
the characteristics of the shock wave and the medium of propagation.

• Although minor external injuries may be visible on the human body, serious internal injuries may also occur
simultaneously.

• Finally, the rapid worsening of the injury is another characteristic of blast injuries.

Table 1 summarizes common types of blast injuries for different parts of the human body, such as the head, neck-spine, thorax,
abdomen, upper extremity, and lower extremity [7].

Table 1: Common types of blast injuries [6]
Parts of the Human body

Head Neck - Spine Thorax Abdomen Upper Extremities Lower Extremities

Fractured skull
(brain exposed)

Excessive
mobility
/ fractured

spine

Excessive
bruising

Penetrating
foreign body

Fractured upper /
forearm

Fractured Tibia /

Fibular / Femur

Fractured maxilla /
mandible

Paravertebral
haematoma

Penetrating foreign
body Laceration

Disruption at
shoulder / elbow /

wrist
Foot injury

Disrupted brain tissue
Deep thermal

burns Lacerations Thermal burns Hand injury
Disrupted / Fractured

Pelvis

İntracranial bleeds
Foreign body-

neck
Haemothorax /
pneumothorax Splenic rupture

Penetrating metallic /
glass foreign body

Penetrating metallic
foreign body

Descalping / Laceration Laceration Lung contusions Renal injury
Traumatic
amputation

Traumatic
amputation

Tympanic membrane
rupture

Fractured
/ Disrupted ribs Laceration Laceration

Deep thermal burns
Deep thermal

burns Degloving Degloving

Eviscerated eye Inhalation injury
Deep thermal

burns
Deep thermal

burns
Orbital injury

Bruising

Table 2 shows that blast injuries are classified as primary, secondary, tertiary, quaternary, and quinary, and the types of injuries
with high occurrences for these injury mechanisms can be observed [1].

2.2 Review for the Effects of Explosion on the Human Body
Explosions cause damage to numerous components by their nature. Considering the impact load generated during an explosion,
the effects of this impulse on structures and the human body are currently being investigated. Different outcomes can occur
depending on the explosive types, the presence of shrapnel, the direction of the blast wave, and the effects of quaternary injuries.

Table 3 summarizes the injury criteria recommended by the NATO HFM-148 task group for different body regions, the injury
threshold values according to these criteria, and the corresponding anthropomorphic test devices (crash test dummies) [10].
The anthropomorphic test device (ATD), commonly known as a crash test dummy, is a highly precise testing tool utilized to
measure human injury potential in vehicle collisions. Crash test dummies simulate human responses to deflections, impacts,
forces, accelerations and moments of inertia during a collision. Here, the relevant crash test dummy types are the Hybrid III 50th
Male, the ES-2re and MIL-Lx. The Hybrid III male model is the most commonly utilized crash test dummy. The MIL-Lx, lower
leg is attached to a standard Hybrid III ATD. Figure 8 shows the corresponding ATDs with example figures [11]. In addition, in
spherical air blasts occurring at various distances, the blast wave parameters showing combinations of positive phase durations
and peak overpressure are plotted as a series of curves collected according to the respective explosive masses, and are overlapped
with estimated primary blast injury (PBI) criteria in Figure 9 [12]. For 100g and 10kg explosives, the curves are plotted with
matching stand-off distances to the explosive at specific intervals. When examining the equivalent TNT explosive masses for the
actual blast scenarios, the 10kg and 100g explosive masses approximately serve as explosions of improvised explosive devices
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Table 2: Blast Injury Mechanisms [1]
Primary Secondary Tertiary Quaternary Quinary

Mechanism

Definition
High-order
explosives :

-Impact of over
pressurization wave
on body surfaces.

High and low
order explosives:
- Due to flying
debris, bomb
fragments,

other projectiles.

High-order explosions:
- Due to individuals
being thrown by blast
winds or structural

collapse

Any explosion-related injury,
illness, or disease not due to
primary, secondary, or tertiary

mechanisms:
- Includes exacerbations and

complications of
pre-existing illnesses.

Hyperinflammatory
behavior, unrelated to
their injury complex
and severity of trauma

High Yield -
Injuries

-Blast lung
-TM rupture
-Globe rupture

-Abdominal hemorrhage

-Soft tissue injury
-Globe

penetration
-Wound

contamination

"Flying people injury"
-Bony fracture

-Traumatic amputation
-Closed and open
brain injuries

-Burns
-Crush injury

-Inhalation injury

-Prolonged shock and
hypotension

Table 3: Injury assessment reference values and associated ATD for evaluating injury risk for different body regions
according to NATO [9]

Body Region Injury Criteria Metric Pass / Fail Level ATD

Head
Head injury
criterion HIC15 250

H3 veya ES-2re +
MIL-Lx

Neck

Axial compression force Fz- 4.0 kN @0 ms / 1.1 kN > 30 ms ES-2re + MIL-Lx

Axial tension force Fz+
3.3 kN @0 ms / 2.8 kN @35 ms /

1.1 kN > 60 ms ES-2re + MIL-Lx

Shear force Fx / Fy
3.1 kN @0 ms / 1.5 kN @25-35 ms /

1.1 kN > 45 ms ES-2re + MIL-Lx

Bending moment
(flexion) Mocy+ 190 Nm ES-2re + MIL-Lx

Bending moment
(extension) Mocy- 96 Nm ES-2re + MIL-Lx

Axial tension force Fz+ 1.8 kN ES-2re + MIL-Lx
Shoulder Compression force Fy 1.4 kN ES-2re + MIL-Lx

Thorax (ribs)
(upper/middle/lower) Rib deflection criterion RDClateral 28 mm ES-2re + MIL-Lx

Thorax
Thoracic compression

criterion TCCfrontal 30 mm H3 + MIL-Lx

Thorax Viscous criterion VCfrontal 0.70 m/s H3 + MIL-Lx
Thorax Viscous criterion VClateral 0.58 m/s ES-2re + MIL-Lx

Abdomen
(front/middle/rear)

Abdominal peak
force Ftotal 1.8 kN ES-2re + MIL-Lx

Spine Dynamic response index DRIz 17.7
H3 veya ES-2re +

MIL-Lx

Pelvis
Maximum pubic

force Fy 2.6 kN ES-2re + MIL-Lx

Upper legs Axial compression force Fz- 6.9 kN
H3 veya ES-2re +

MIL-Lx

Lower legs Axial compression force Fz- 2.6 kN
H3 veya ES-2re +

MIL-Lx
Internal organs

Lungs
Chest wall velocity

predictor CWVP 3.6 m/s
H3 veya ES-2re +

MIL-Lx

and anti-personnel landmines, respectively.
As a result, the following sections will provide information about the responses and injuries of different parts of the human body
due to explosions.
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Figure 8: ATD types : a) H3 50th Male, b) ES-2re, c) MIL-Lx legform [11]

Figure 9: Analysis of PBI criteria based on blast wave parameters resulting from spherical air blasts at different stand-off
distances [12]

2.2.1 Head
Traumatic brain injury (TBI) or head trauma is a type of injury resulting from the effect of kinetic energy from the primary
blast wave on the brain. Typically, blunt force can complicate the injury in addition to the blast wave. The explosion can further
affect the brain through the penetrating effects of secondary injuries or closed head injuries caused by tertiary injuries [13].
Common examples of secondary blast injuries include facial laceration and bodily injuries caused by glass shards. At this point,
it is important to note that the properties of the interlayer material in glass significantly affect the structural performance of glass
against impact. The full performance of glass is determined by parameters such as the type of glass, its thickness, the type and
speed of impact, and boundary conditions [14].
TBIs are generally categorized as primary and secondary injury phases. The primary phase involves direct damage from the
transmit of blast load to the intracranial contents while the secondary injury phase involves a series of molecular mechanisms that
begin at themoment of impact and continue over hours or days [15]. This phase is multifactorial, involving delayed physiological
events in response to the first injury.
The Glasgow Coma Scale (GCS) can be utilized to assess whether a brain injury resulting from a blast is mild, moderate, or
severe. Table 4 provides information on the criteria and scoring system of the Glasgow Coma Scale [16]. A score of 13-15
indicates minor brain injury, a score of 9-12 indicates moderate brain injury, and a score of 3-8 indicates severe brain injury.
Dizziness, headache, memory loss, seizures, numbness, weakness, and difficulty concentrating are the additional signs and
symptoms of TBI [17].

2.2.2 Auditory System
The auditory system is typically influenced by the primary blast wave. The tympanic membrane (TM) can simply stretch due
to the differential pressure and can rupture at pressures (<0.5 atm) much lower than those required to harm other organs [18].
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Table 4: Glasgow Coma Scale (GCS) criteria and scoring system [14]
GLASGOW COMA SCALE (GCS)

Response Scale Score

Eye Opening
Response

Eyes open spontaneously 4 Points
Eyes open to verbal command, speech, or shout 3 Points

Eyes open to pain (not applied to face) 2 Points
No eye opening 1 Point

Verbal
Response

Oriented 5 Points
Confused conversation, but able to answer questions 4 Points

Inappropriate responses, words discernible 3 Points
Incomprehensible sounds or speech 2 Points

No verbal response 1 Point

Motor
Response

Obeys commands for movement 6 Points
Purposeful movement to painful stimulus 5 Points

Withdraws from pain 4 Points
Abnormal (spastic) flexion, decorticate posture 3 Points
Extensor (rigid) response, decerebrate posture 2 Points

No motor response 1 Point
Minor Brain Injury = 13 -15 points; Moderate Brain Injury = 9-12 points;

Severe Brain Injury = 3-8 points

All patients subjected to an explosion shall be investigated about tinnitus and hearing loss during the initial trauma assessment.
To avoid further auditory damage, reducing noise exposure is crucial for long-term recovery.
Most individuals with eardrum injuries who are hemodynamically stable, have no signs on chest radiography, and are followed
up by otolaryngology, and who show no findings of blast injury or additional symptoms after a 4-6 hours observation period,
recover without intervention. However, about 30% of these individuals progress some degree of permanent loss of hearing [19],
[20].

A diagram showing the threshold levels for eardrum rupture and hearing loss due to different blast pressure values is provided
in Figure 10 as specified in UFC 3-340-02 (2008) [2]. The graph indicates that 50% of human eardrums exposed to blast pressure
rupture at 15 psi, while the threshold pressure for eardrum rupture is 5 psi. It is also observed that temporary hearing loss occurs
at lower pressure levels than those causing eardrum rupture [2].

2.2.3 Lung
The lungs can sustain severe damage and potentially fatal outcomes from the primary blast wave due to the significant differences
in density throughout the organ. Primary blast lung injury (PBLI) is more likely to happen in closed environments where high-
grade explosives are used, which prolongs the duration of the blast wave, or when the victim is close to the blast. The occurence
of PBLI in those who die directly at the blast site may be quite high, ranging from 13% to 47% [21].
Lung injury caused by the primary blast wave contains pulmonary contusions, intrapulmonary hemorrhage, and tearing of the
alveolar capillaries. The immediate result of this energy distribution can manifest as respiratory distress, pneumothorax, hypoxia
and hemothorax. In addition, there is potential for sudden air embolism from the tearing of alveolar capillaries, which can very
quickly result in cardiac arrest or cardiogenic shock. The level of lung damage is related to the degree of absorbed energy
from the primary blast wave. Patients can show inadequate oxygenation in the tissues (hypoxia), shortness of breath (dyspnea)
and/or increasing cough. Tachycardia (a heart rate over 100 beats per minute), reduced breath sounds and rhonchi may also be
present. Also, secondary blast lung damage from debris or flying shrapnel can be more evident during the examination, given
the indications of blunt trauma to the thorax or the existence of a penetrating wound.

Depending on available data, survival threshold curves for lung injuries from the response to short-term (3–5 ms) rapidly
rising pressures (shock wave) are provided in Figure 11 as specified in UFC 3-340-02 (2008). The graph uses Wh (1lb =
0.454kg) to denote human weight. According to the graph, the threshold pressure for lung hemorrhage is 30–40 psi, severe
lung hemorrhage is 80 psi and above, and the fatality threshold for lung damage is approximately 100 to 120 psi [2]. The
mentioned pressure values are maximum effective pressures, meaning the incident (incoming) pressure should be considered as
the largest of the incoming pressure, incoming pressure plus dynamic pressure, or the reflected pressure. Table 5 summarizes
the limit pressure values for different types of injuries. Additionally, since survival probability is mass-dependent, the survival
probabilities for infants, children, and adults will differ. The recommended weights are 11 lb (≈ 5kg) for infants, 55 lb (≈ 25kg)
for small children, 121 lb (≈ 55kg) for adult women, and 154 lb (≈ 70kg) for adult men [2].

2.2.4 Eye
The eye, with its heterogeneous density, is remarkably impressionable to trauma. Consequently, the organ is easily affected
by damage from both the primary blast wave and secondary blast injury. These injuries are relatively typical in the patient
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Figure 10: Human ear damage due to blast pressure [2]

Table 5: Effects of short-term (3-5 ms) rapidly rising air blasts on the human body [2]
Critical Organ or Event Maximum Effective Pressure (psi)

Eardrum Rupture
Threshold 5
50 percent 15

Lung Damage
Threshold 30 - 40
50 percent 80 and above

Lethality
Threshold 100 - 120
50 percent 130 - 180

Near 100 percent 200 - 250

population although they are exceptionally deadly,. The most common blast-related eye injuries contain injuries from both
intraocular foreign bodies and superficial, corneal abrasions and eyelid injuries [22]. Secondary blast injuries from flying debris
account for the majority of eye injuries in blast patients, including superficial foreign body injuries, conjunctivitis, corneal
abrasions and eyelid lacerations. However, the primary blast wave can also cause iris tears, globe rupture, and inflammation-
related optic nerve injuries (retrobulbar hematoma) [23].

2.2.5 Cardiac
Although the heart and major blood vessels do not include gas, they can be injured by the kinetic forces and pressure
of explosions. Blast-related cardiac injuries present with pathology and content similar to blunt cardiac trauma, containing
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Figure 11: Threshold curves for survival in lung injury, Wh = Weight of human being (lbs) [2]

myocardial contusion, tamponade (fluid accumulation in the pericardial sac), free/septal wall rupture, valve injury, papillary
muscle rupture and aortic injuries. When blast-induced cardiac dysfunction is suspected, reducing positive pressure ventilation
and providing inotropic support is advised instead of aggressive fluid administration due to the high probability of identical lung
injury [24].

2.2.6 Abdomen

The gastrointestinal (GI) system is sensitive to injury from the primary blast wave due to its gas-containing components and
heterogeneous density. Although rare among blast survivors, primary blast wave-induced injuries to the intestines can result in
perforation, hemorrhage, ischemia and infarction. A huge level of energy transmition from the primary blast wave is needed for
these injuries, and they are typically seen in those close to the explosion [24].
Literature indicates that injuries to the GI tract (large intestine, small intestine, stomach) account for 48% of abdominal injuries in
blast victims [25]. The gas including sections of the GI tract are the most defenseless to the primary blast effect, but solid organs
can also be damaged. GI injury is also more common in underwater explosions due to the medium’s capability to transmit
pressure and apply higher forces. Damages to solid organs such as the spleen, kidneys and liver are mainly linked with the
patient’s proximity to the source of the primary blast wave and high-grade primary blast waves [25].
Abdominal symptoms can be developed by patients up to 14 days after exposure to a blast [26]. Therefore, monitoring of
symptoms and repeated evaluation are crucial for diagnosing gastrointestinal damage [13].
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2.2.7 Musculoskeletal System
Blast injuries usually affect the musculoskeletal system. In a group of 101 blast victims, 57% had extremity injuries. Among
these, 75.2% had at least one fracture, and over 90% had open fractures [27]. The closer the blast victim is to the epicenter
of the explosion, the more likely they are to have multiple fractures, and more serious open fractures are affiliated with higher
mortality [27]. For patients with serious extremity hemorrhage, tourniquet application is essential. For individuals with indication
of traumatic injury, plain radiographs of the effected region shall be acquired after initial stabilization. Other injuries of extremity
can be splinted after initial stabilization.

2.3 Injury Scaling
An injury scale is a method used to assign severity score or a numerical assessment to traumatic injuries. The most commonly
utilized injury scale is the Abbreviated Injury Scale (AIS), developed by the American Association for Automotive Medicine
(AAAM) and it first published in 1971.

2.3.1 Abbreviated Injury Score (AIS)
The Abbreviated Injury Scale (AIS) is a method of injury scaling that assigns a severity rating from 1 to 6 to distinct anatomical
injuries. Table 6 supplies the AIS definitions and examples for spine and head injuries. An essential restriction of the AIS is that
it does not represent the potential outcome for the entire individual and examines each injury in isolation [28].

Table 6: Abbreviated Injury Scale (AIS) scores and example injury types for two body parts [10]
AIS Severity Head Spine
0 None —– —–

1 Minor Headache or dizziness
Acute strain

(No fracture or dislocation)

2 Moderate
Unconsciousness less than 1 hour ;

Linear fracture
Minor fracture without
any cord involvement

3 Serious
Unconscious 1 to 6 hours ;

Depressed fracture
Ruptured disc with
nerve root damage

4 Severe
Unconscious 6 to 24 hours ;

Open fracture
Incomplete cervical
cord syndrome

5 Critical
Unconscious more than 24 hours ;

Large hematoma
C4 or below cervical

complete cord syndrome

6
Maximum Injury

(virtually nonsurvivable) Crush of skull
C3 or above cervical

complete cord syndrome

2.3.2 Injury Severity Score (ISS)
The Injury Severity Score (ISS) that was developed in 1974 is a technique used to characterize trauma patients with multiple
injuries and is commonly used in trauma literature due to its connection with the AIS. The ISS depend on the AIS, which
explains the severity of injuries in distinct body parts [29].

ISS = (A)2 + (B)2 + (C)2 (11)

Values A, B, and C in Equation 11 represent the scores of the three most severely injured body parts according to the Abbreviated
Injury Scale. A represents the face, neck and head; B represents abdomen and the thorax; and C represents the extremities.
Considering that the maximum AIS score for each region is 5, the ISS ranges from 0 to 75. However, if any of the three values
is 6, the ISS is automatically set to 75 because an AIS score of 6 represents an injury that is not survivable. Table 7 describes
the injury severity levels, definitions, and examples of possible injuries for different value ranges of the Injury Severity Score
[30].

2.3.3 Dynamic Response Index (DRI)
The Dynamic Response Index (DRI) indicates the peak dynamic pressure of the spinal column and is computed by modeling the
human body as an analog, lumped mass-parametric mechanical system consisting of a mass, damper and spring. The DRI model
evaluates the human body response to temporary acceleration-time profiles. Potential spinal injuries for positive z-acceleration
environments in ejection seats could be predicted effectively by using the DRI. The threshold acceleration values for DRI are
provided in Table 8 [28].
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Table 7: Injury based damage level definitions (ISS) [12]

ISS Range
Proposed Hazard

Level Injury Description Example of Injuries

ISS ≥ 25
High
Injury Fatal / Severe Injury

Multiple very serious injuries
Primarily fatalities

10 < ISS < 25
Medium
Injury

Serious Life
Threatening Injury

Very severe lacerations with
significant blood loss

Severe open bone fractures
Crush injuries
Skull fractures

5 < ISS ≤ 10
Low
Injury

Hospitalization Required,
Not Immediately Life Threatening

Bone fractures
Large numbers of lacerations
Artery or tendon lacerations

Concussions

1 < ISS ≤ 5 Very Low Injury
Medical Aid Necessary,

But No Hospitalization Required

Lacerations to face and body
from glass fragments

Cuts or abrasions to eye
Contusions and abrasions

0 ≤ ISS ≤ 1
Minimal
Injury

No Medical Aid
Required

No injury
Minor bruises and cuts

Small foreign object in eyes
Hearing loss

Table 8: Dynamic Response (DR) limits [10]

DR Level
Acceleration Direction (occupant’s inertial response)
x y z

DRx < 0 DRx > 0 DRy < 0 DRy > 0 DRz < 0 DRz > 0
Low -28 35 -14 14 -13.4 15.2

Moderate -35 40 -17 17 -16.5 18
High risk -46 46 -22 22 -20.4 22.4

2.3.4 Head Injury Criterion (HIC)
The Head Injury Criterion (HIC) is an evaluation of the possibility of head injury resulting from an impact. This variable is
normally obtained from the acceleration-time history at the center of gravity of a dummy’s head when exposed to impact forces.

HIC = max

[
(t2 − t1)

(
1

(t2 − t1)

[∫ t2

t1
a(τ)dτ

])2.5
]

(12)

The acceleration-time history, α(t), calculated at the center of mass of the dummy’s head, is used analytically to compute the
HIC as the square root of the sum of the squares of the acceleration-time histories in the x, y, and z directions over a 15 ms time
interval, as given in Equation 13 [31]:

a(t) =
√

(ax2(t)) + (ay2(t)) + (az2(t)) (13)

In the HIC formulation, t1 represents the starting time, and ∆t = t2–t1 represents the maximum time interval over which the
acceleration is calculated. With the condition 0 ≤ t1 ≤ t2 ≤ T , it is indicated that t1 and the maximum time interval, ∆t can
initially be selected arbitrarily. Additionally, some simplified model assumptions are explained as follows [31]:

• The time interval t2–t1 should be ≤ 36ms. According to experience, larger deceleration times do not boost the risk of
injury.

• The highest acceleration values should last 3 ms. This requirement arises from measurement method reasons and is
sustained by the acceptance that shorter decelerations don’t have any impact on the brain.

The head injury criterion consist of four distinct injury criteria [31]:

• Head Injury Criterion [HIC] : Skull fracture from blunt object impacts and brain injury.
• Blunt Object Skull Fracture Injury Criterion [kN] : Skull fracture resulting from blunt object impacts.
• Facial Injury Criterion [kN/mm] : Injury resulting from blunt object impacts and facial fracture.
• Facial Laceration Criterion : Facial laceration.

The levels related to the head injury criterion, the corresponding Abbreviated Injury Scale (AIS) values, and the associated
descriptions of head injury or consciousness level are provided in Table 9 [31].
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Table 9: Consciousness levels associated with Head Injury Criteria [31]
Head Injury Criteria AIS Code Level of Brain Concussion and Head Injury

135 - 519 1 Headache or dizziness
520 - 899 2 Unconscious less than 1 hour - Linear fracture
900 - 1254 3 Unconscious 1 - 6 hours - Depressed fracture
1255 - 1574 4 Unconscious 6 - 24 hours - Open fracture
1575 - 1859 5 Unconscious greater than 24 hours - Large hematoma
> 1860 6 Non-survivable

Table 10: Head Injury Criterion (HIC) tolerance levels [31]
Injury Criteria Tolerance Levels

Criterion Units
Level 0 Level 1 Level 2 Level 3 Level 4
No Injury
Egress

Minor Injury
Egress

Major Injury
Egress Assisted

Severe Injury
Medical Assistance

Potentially
Non-survivable

HIC - Brain injury
(in all head impacts) HIC (15 ms)

<150
(No concussion)

<150
(No concussion)

150 - 500
(Mild concussion)

500 - 1800
(Severe concussion)

>1800
(Life threatening coma)

HIC - Skull fracture
(flat impacts) HIC (15 ms)

<500
(No fracture)

<500
(No fracture)

500 - 900
(Minor fracture)

900 - 1800
(Major fracture)

>1800
(Life threatening coma)

Blunt object skull
fracture kN

<0.02
(No fracture)

<2.2
(No fracture)

2.2 - 5.5
(Minor depressed fracture)

>5.5
(Major depressed fracture)

>5.5
(Life threatening)

Facial injury kN/mm
<0.02

(Very minor injury)
0.02 - 0.045

(Minor facial injury)
0.045 - 0.0825

(Major facial injury)
>0.0825

(Severe facial injury)
>0.0825

(Life threatening)

Facial laceration
Cuts to chamois
leather thin layer 0 0 Moderate Major N/A

Also, Table 10 provides the tolerance levels and associated descriptions for different types of head injury criteria [31].
Tables 9 and 10 are used to evaluate the injuries sustained by the dummy in numerical analyses.

The probabilities of different severity levels of head injury for a given head injury criterion score are shown in Figure 12.
The graph indicates that a HIC score of around 2500 corresponds to a 85% fatality rate and a 95% likelihood of critical head
injury [31].

Figure 12: Probabilities of different severity levels of head injury for HIC scores [31]

2.3.5 Neck Injury Criterion

The Neck Injury Criterion (NIC), introduced by the National Highway Traffic Safety Administration (NHTSA), integrates the
impacts of moments and forces calculated at the occipital condyle and is a excelling estimator of cranio-cervical injuries. The
NIC consider NTF (tension-flexion), NTE (tension-extension), NCF (compression-flexion) and NCE (compression-extension).
Federal Motor Vehicle Safety Standard (FMVSS) 208 needs that none of the four Nij values surpass 1.4 at any point. The
generalized Nij is given by the following equation [28]:

Nij =
Fz
Fzc

+
My

Myc
(14)
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where Fz is the axial force for the upper neck (N), Fzc is the critical axial force (N), My is the moment around the occipital
condyle (Nm), Myc is the critical moment around the occipital condyle (Nm).

2.3.6 Lumbar Load Criterion
The lumbar load criterion specifies that the highest compressive force calculated between the lumbar spine and pelvis of a test
dummy during a crash impact, where the vertical axis of the spine is parallel to the predominant impact vector, should not exceed
6672 N [28]. Additionally, the compressive force should not surpass 3800 N over a 30 ms time interval [28]. This is one of the
most commonly utilized criteria in crash tests and vertical impact. Lastly, severe compression or severance of the spinal cord
can result in death or paralysis.

2.3.7 Chest Criteria
The Chest Injury Criterion specifies that the maximum resultant acceleration measured by a triaxial accelerometer in the upper
thorax should not exceed 60g for more than 3 ms [28]. In addition, chest deflection determined by a chest potentiometer behind
the sternum should be less than 7.62 cm for the Hybrid III dummy [28].

2.3.8 Femur Force Criterion
The Femur Force Criterion indicates that the axial compressive force carried along each upper leg shall not be bigger than
a certain value. Impulse loads that are larger than this limit may result in the total fracture of the femur bone and cause the
severance of main arteries, leading to excessive bleeding. Different studies specify distinct values for the permissible highest
axial compressive force. It is indicated by the Wayne State University that the permissible maximum value is 10,000 N [28].
The U.S. Department of the Army declares that the axial compressive force should not exceed 7562 N over a 10 ms time interval
and should not exceed 9074 N at any moment [28].
In real dummies, load cells are put in the dummy’s leg and are calibrated to measure the compressive force in the femur.

2.4 Proposed Injury Criteria
Based on numerous studies in the existing literature, when threshold values related to blast pressure for human injuries in
spherical air blasts are reviewed and compiled [2], [3], [7], [12], [28], [31], the limit blast pressure values for different parts of
the human body for various positive phase duration ranges are proposed as shown in Table 11.

Table 11: Limit blast pressure values for different parts of the human body and corresponding blast positive phase duration ranges
Positive Phase

Duration
td (ms)

Criteria Lung Ear Head-Brain

td ≤ 10
Peak

Pressure
(kPa)

55 : Threshold
150 : 1% Lethality
200 : 50% Lethality
300 : 99% Lethality

35 : Threshold
100 : 50% Ear Drum

Rupture
200 : 100% Ear Drum

Rupture

150 : 50% Mild Brain
Hemorrhage Risk

270 : 50% Moderate Brain
Hemorrhage
Apnea Risk

400 : 50% Primary Blast
Brain Fatality

10 < td ≤ 50
Peak

Pressure
(kPa)

42 : Threshold
110 : 1% Lethality
160 : 50% Lethality
220 : 99% Lethality

35 : Threshold
100 : 50% Ear Drum

Rupture
200 : 100% Ear Drum

Rupture

150 : 50% Mild Brain
Hemorrhage Risk

50 < td < 200
Peak

Pressure
(kPa)

28 : Threshold
90 : 1% Lethality

125 : 50% Lethality
185 : 99% Lethality

35 : Threshold
100 : 50% Ear Drum

Rupture
200 : 100% Ear Drum

Rupture

150 : 50% Mild Brain
Hemorrhage Risk

3 Conclusion
In this paper, the focus is on the blast wave, blast wave parameters, blast injuries, types and mechanisms of blast injuries, the
effects of explosions on the human body, and injury scaling and criteria. It is observed that for a blast with a positive phase
duration up to 10 ms, the threshold blast pressure for lung injury is 55 kPa, whereas for the ear it is 35 kPa. At a blast pressure
of 150 kPa, the probability of death due to lung injury is 1%, while there is a 50% risk of experiencing a mild brain hemorrhage.
At 200 kPa, the probability of death due to lung injury is 50%, and there is a 100% likelihood of eardrum rupture. At a threshold
of 300 kPa, there is a 99% likelihood of death due to lung injury. Additionally, the threshold for a 50% chance of moderate brain
hemorrhage is 270 kPa, whereas at a threshold of 400 kPa, primary blast-induced brain fatalities are expected. Finally, a blast
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pressure range of 690-825 kPa is considered the threshold range for blast-induced death, with values between 895-1240 kPa
indicating a 50% chance of death, and values in the 1380-1725 kPa range indicating an almost 100% likelihood of blast-induced
death [2].
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Abstract : Plant diseases pose a significant threat to the quality and quantity of agricultural production, with
leaf diseases being particularly detrimental to plant growth and yield. In the near future, ensuring access to
affordable and safe foodwill become one of themost pressing global challenges. As a result, the early detection
of plant diseases is crucial for both economic stability and food security. Detecting and monitoring diseases in
mango leaves, however, is a complex task when relying solely on visual inspection. This study seeks to address
this challenge by utilizing image processing and deep learning techniques to detect mango leaf diseases. We
extracted deep features from mango leaf images using several prominent architectures, including Darknet19,
Xception, SqueezeNet, MobileNetv2, DenseNet201, GoogLeNet, ResNet18, VGG16, and AlexNet. These
features were then classified using machine learning algorithms such as decision tree, linear discriminant
analysis, naive Bayes, support vector machine, k-nearest neighbors, and ensemble classifiers. Our findings
demonstrate an improvement over existing results in the literature, with detailed experimental results presented
within the article.

Keywords : Deep Feature Extraction, Mango Leaf Disease, Transfer Learning, Deep Learning.

1 Introduction
Agricultural products are one of the most effective ways of feeding the world’s growing population. Protecting plants from
disease and detecting disease at an early stage are key to producing high-quality agricultural food. Many factors, such as climate
change, are increasing the incidence of plant diseases. Each year, around 40% of the world’s food crops are destroyed by pests
and diseases. Minimising plant diseases is also important to ensure global food security [1], Plant diseases, weeds and pests
are responsible for low crop yields. Known as the "king of fruits", the mango is one of the most important fruit crops grown
in various countries around the world. The mango plant is one of the leading agricultural products and plays an important
role in the economies of some Asian countries. Millions of people depend on mango cultivation for their livelihoods [2]. Plant
diseases are one of the major constraints to the growth of mango plants. The major diseases are anthracnose, bacterial blossom
blight, golmachi, moricha disease, shuttling, bacterial black spot, apical bud necrosis, red rust, lichen, powdery mildew, root
rot, dumping off and ganoderma root rot. Powdery mildew and anthracnose are the two diseases that cause the most damage to
mango trees [3].

In recent years, with the rapid development of deep learning technologies, people have begun to experiment with various
artificial intelligence (AI) methods for plant disease detection. Traditional machine vision algorithms need to consider the
task and prior knowledge when selecting the right features. These features often include the colour, shape and texture of the
image. The manual design is the basis of the feature extractors. This process is tedious and challenging. In addition, the feature
extractors are not able to generalise. On the other hand, deep learning techniques can modify the weight parameters and create a
suitable feature extractor. The process is quite convenient and effective. In addition, feature extractors have greater generalisation
capabilities and can successfully overcome the drawbacks of traditional image processing techniques [4]. As technological
methods such as machine learning, deep learning, and image processing are applied in the field of agriculture, yield loss will
decrease and production will increase [5]. In this study, features were extracted frommango leaves using deep feature extraction
and disease classification was performed on mango leaves using different machine learning algorithms.

In this paper, deep feature extraction and various machine learning algorithms were used to detect mango leaf diseases.
Previous studies have demonstrated the effectiveness of deep learning and image processing techniques in the field of disease
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detection. Among these studies, Manoharan et al. [6] divided mango leaf images, consisting of a total of 440 images, into
two classes, sick and healthy, and classified them with AlexNet, VGG16, and the method they suggested. They achieved a
classification accuracy of 61% with AlexNet, 62% with VGG16, and 98% with the model they suggested. In their study, Mia et
al. [3] classified the features extracted frommango leaf images using neural networks and support vectormachines (SVMs). They
classified 4 diseased mango leaf varieties and 1 healthy mango leaf variety with 80% accuracy. Saleem et al. [7] proposed a new
segmentation approach to segment diseased parts by considering vein patterns in mango leaves. For this purpose, they performed
canonical correlation analysis (CCA)-based feature extraction. These authors classified these features with cubic SVM and
obtained a classification accuracy of 95.5%. Rao et al. [1] classified grape leaves and mango leaves in the PlantVillage dataset
with AlexNet, the pre-trained CNN model. These models achieved classification accuracies of 99% and 89%, respectively. By
using Faster R-CNN,Merchant et al. [8] detected the stems and leaves of mango plants with 74% accuracy. Amobile application
has been developed for this purpose. Venkatesh et al. [9] developed a network named V2IncepNet based on the VGGNet model
to detect anthracnose disease on mango leaf images, and they achieved 92% classification accuracy with this network. Kumar et
al. [10] classified anthracnose disease in mango leaves by deep learning. They proposed a new CNN architecture and achieved
96.16% classification accuracy with this proposed network. Singh et al. [11] classified a dataset consisting of 1070 mango leaf
images with a multilayer convolution neural network (MCNN) and compared them with PSO, SVM, and RBFNN, which they
used as other classifiers. These authors achieved 97% accuracy with MCNN and obtained better results than the others. Arya et
al. [12] applied CNN and AlexNet to mango and potato leaf images consisting of 4004 images. They obtained a classification
accuracy of 90.85% with the CNN and 98.33% with the AlexNet. Pham et al. [13] studied a dataset consisting of 450 mango
leaf images. This dataset included anthracnose, Gall Medge, powdery mildew, and healthy classes. They classified the leaf
images by feature selection with AlexNet, VGG16 ResNet50, and ANN. The best result was obtained from the ANN (89.41%).
Trang et al. [14] studied a dataset consisting of 394 mango leaf images and anthracnose, gall midge, powdery mildew, and
healthy classes. They classified this dataset with InceptionV3, AlexNet, MobilnetV2, and their proposed residual network.
They obtained the most successful classification with their own proposed residual network. With this model, they achieved
88.46% classification accuracy. Mohona et al. [15] analyzed a dataset consisting of corn, grape, mango, and pepper plant leaves
with VGG16, VGG19, GoogLeNet, and the network model they proposed. They achieved the most successful results with their
proposed network model. Tumang et al. [16]first performed contract enhancement, to determine pests and diseases on mango
leaves and subsequently performed image segmentation via K-means. The authors extracted gray level and GLCM features
and classified them with Multi SVM. They achieved 85% classification accuracy. Rajbongshi et al. [17] used a dataset of 1500
mango leaf images in their study. This dataset included anthracnose, gall machi, healthy leaf, powdery mildew, and red rust
classes. DenseNet201, InceptionResNetV2, InceptionV3, ResNet50, ResNet152V2, and Xception transfer learning techniques
from pre-trained networks were applied to this dataset. They achieved 98% classification accuracy with DensNet201. Gulavnai
and Patil (2019) applied the transfer learning models ResNet18, ResNet34, and ResNet50 to a dataset consisting of mango leaf
images in their study. These leaf images contained the following diseases: powdery mildew, anthracnose, red rust, and Golich.
With this dataset consisting of a total of 8853 images, the best classification accuracy was obtained with ResNet50 (91.50%).
Ahmed et al. [18] created a dataset of 4000 mango leaf images. This dataset contains 1800 manually captured images and 2200
augmented images in the following classes: bacterial canker, cutting weevil, dieback, gall midge, powdery mildew, sooty mold,
and healthy. The authors achieved 87% precision in their classification with CNN, 79% precision with ResNet50, and 91%
precision with CNN-SVM.

In this study, deep learning and machine learning techniques were used for early detection of mango leaf diseases. Deep
features were extracted from mango leaf images using various deep learning models (Darknet19, Xception, SqueezeNet,
MobileNetv2, DenseNet201, GoogLeNet, ResNet18, VGG16 and AlexNet) and these features were classified using decision
tree, linear discriminant analysis, naive bayes, support vector machines, k-nearest neighbour and ensemble classifiers. As a
result of the experimental studies, the existing results in the literature have been improved and detailed results are presented in
this paper.

2 Materials and Method
2.1 Dataset
The mangoleafbd dataset was used in this study [19]. There are 4000 images of mango leaves in this dataset. A total of 1800
plants were obtained by photographing different leaves. The remaining 2200 images were prepared by zooming and rotating
where necessary. There are seven disease classes of mango leaves and one healthy leaf class in this dataset. These diseases
include anthracnose, bacterial canker, cutting weevil, dieback, gall midge, powdery mildew and sooty mould. The images have
a size of 240x320 pixels and are three-channel (RGB) coloured in JPG format. There are 500 images in each category. The
photos were taken with a mobile phone camera. Details of the dataset are given in Table 1.

The dataset includes 500 images for each of the mango leaf disease classes, with conditions such as anthracnose,
bacterial canker, cutting weevil damage, die-back, powdery mildew, and sooty mold. Anthracnose, caused by Colletotrichum
gloeosporioides, manifests as black spots on leaves, affecting young branches and reducing fruit production. Bacterial canker,
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Table 1: Classes in the mangoleafbd dataset.
Label Class Number of Images
1 Anthracnose 500
2 Bacterial Canker 500
3 Cutting Weevil 500
4 Die Back 500
5 Gall Midge 500
6 Powdery Mildew 500
7 Sooty Mould 500
8 Healty 500

from Xanthomonas axonopodis, appears as yellow to brown spots with a white halo. Cutting weevil damage is represented by
insect-eaten leaves. Die-back, due to Liaiodiplodia theobromae, impacts leaves, flowers, and fruits. Powdery mildew, caused by
Oidium mangiferae, produces a white fungus layer, leading to leaf yellowing and death in severe cases. Sooty mold, associated
with insect feeding, blocks sunlight and hinders photosynthesis [18], [20]. Sample images in the data set used in the study are
given in Figure 1.

Figure 1: Data samples from the dataset used in this study

2.2 Proposed Method

In this paper, we present deep convolutional neural networks (CNNs) and machine learning classifiers for mango leaf disease
detection. In this method, 9 powerful pre-trained deep architectures based on a transfer learning approach such as DenseNet201,
AlexNet, VGG16 and ResNet18 are used. These architectures are used to extract deep features from mango leaf images. These
deep features are then fed into six machine learning classifier methods, such as decision tree, SVM and KNN, and the training
process is carried out. A general representation of the developed system is shown in Figure 2.

Figure 2: Summary of proposed methods in this study

As shown in Figure 2, extensive experimental studies based on pre-trained deep models and classifiers have been carried
out for mango leaf disease detection. The theoretical background of these algorithms is given in the subheadings below.
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2.3 Deep Learning and Pretrained CNN Models
Hinton proposed a new approach to artificial neural networks in the article he published with his studies. This approach is called
the deep convolution neural network. Convolutional neural networks are known as multilayer neural networks. Important studies
have been carried out with these neural network systems, and high-performance results have been obtained. Deep convolutional
neural networks have achieved important success by increasing these achievements to higher levels [21]. With the training of
deep learning models, especially convolutional networks, on large datasets such as ImageNet, very successful models have been
developed. Training such models on relatively small datasets quickly causes the model to diverge or overfit. Therefore, the use
of such models with pre-trained weight parameters on big data can produce successful test results on data of similar content and
small size. Pretrainedmodels with fine-tuning are frequently used for solving image processing problems [22], [23]. In this study,
the pre-trained models Darknet19, Xception, SqueezeNet, MobileNetV2, DenseNet201, GoogLeNet, ResNet18, VGG16, and
AlexNet were used. Features are extracted by using the weight parameters of these pre-trained models, and then classification
is performed with various methods consisting of comprehensive classification methods. The feature extractor layers and feature
sizes of the deep learning models used in the current study are given in Table 2.

Table 2: Feature extractor layers of the pre-trained CNN models used in this study
Pretrained Deep Models Feature Extractor Layer Feature Count Image Size
DarkNet19 avg1 1000 256x256
AlexNet fc6 4096 227x227
Xception predictions 1000 299x299
SqueezeNet pool10 1000 227x227
MobileNetv2 Logits 1000 224x224
DenseNet201 fc1000 1000 224x224
GoogLeNet loss3-classifier 1000 224x224
ResNet18 fc1000 100 224x224
VGG16 fc6 4096 224x224

The deep learning architectures listed in Table 2 are known for their high performance in object classification. Among
them, MobileNetV1 [24]. is a model developed by Google in 2017 for mobile devices with low computational power, which
significantly reduces network complexity and model size by using deeply separable convolutions. MobileNetV2 improves on
this structure and provides more efficient performance. Another model, the Xception network [25], is based on InceptionV3
and performs more efficient operations on multidimensional data by treating the convolutional layers as separate operations.
ResNet [26] overcomes the ’vanishing gradient’ problem by adding residual blocks and provides better learning by preventing
information loss in the deeper layers of the network. DenseNet [27] is a model that facilitates network training by connecting
each layer to all subsequent layers and optimises loss of function in multi-layer networks. VGG16 [28] is a model developed
by Simonyan and Zisserman in 2014 that includes 5 block convolutional layers of 3x3 size and was successful in the ImageNet
Visual Recognition Competition. SqueezeNet [29] is an architecture developed in 2016 with the aim of achieving AlexNet-level
accuracy with fewer parameters, reducing the computational load of the network by using efficient layers and enabling it to
work fast. Finally, AlexNet [21] is a model developed by Krizhevsky, Sutskever and Hinton in 2012, which won the ImageNet
competition and gained worldwide recognition for deep learning. AlexNet is considered one of the models that started the deep
learning revolution with its sequential convolution and fusion layers.

2.4 Classifiers
In this study, various machine learning classifiers, including decision trees, linear discriminant analysis (LDA), naive Bayes,
support vector machines (SVM), k-nearest neighbors (KNN), and ensemble methods, are employed to classify the deep features
extracted from specific layers of pre-trained deep learning models. These classification techniques can be summarized as
follows:

• Decision Tree: Decision trees are structured similarly to real trees, consisting of roots, branches and leaves. The process
begins at the root node, where the data set is progressively divided into smaller subsets based on specific feature values,
creating branches. Each internal node represents a decision or condition, while the final nodes, known as leaves, represent
the class labels or results. The classification process involves twomain stages: the training (learning) phase and the testing
phase. During the training phase, the model is built by examining the training data and generating classification rules
based on patterns in the data. These rules are used to build the decision tree. In the classification phase, test data is
applied to the model to verify its accuracy in predicting the correct classes by following the decision paths established
in the learning phase [30] .

• Linear Discriminant Analysis (LDA): Dimensionality reduction is one of the most widely used techniques in machine
learning applications and its main purpose is to reduce the dimensionality of the feature space by removing redundant
features. LDA, one of the most commonly used methods in this process, optimises class separation by maximising the
ratio of between-class variance to within-class variance. By transforming the data into a lower dimensional space, this
technique performs the projection of features in a way that provides the highest separation between classes [31].
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Table 3: Parameters of the classifiers used in this study
Decision Tree

Preset Max. number of splits Split Criterion
Fine Tree 100 Gini’s diversity index

Medium Tree 20 Gini’s diversity index
Coarse Tree 4 Gini’s diversity index

SVM
Kernel Function Kernel Scale Box constraint level Multicalss method

Linear Automatic 1 One-vs-One
Quadratic Automatic 1 One-vs-One
Cubic Automatic 1 One-vs-One

Gaussian 32 1 One-vs-One
Gaussian 100 1 One-vs-One

KNN
Preset Number of neighbors Distance metric Distance weight
Fine 1 Euclidean Equal

Medium 10 Euclidean Equal
Coarse 10 Euclidean Equal
Cosine 10 Cosine Equal
Cubic 10 Minkowski Equal

Weighted 10 Euclidean Squared Inverse
Ensemble

Preset Ensemble method Learner Type Max. number of splits Subspace dimensions
Boosted Trees AdaBoost Decision tree 20 -
Bagged Trees Bag Decision tree 3199 -
Subspace Disc. Subspace Discriminant - 500
Subspace KNN Subspace Nearest neigh. - 500

• Naive Bayes: The Naive Bayes classifier is an algorithm commonly used in supervised learning and is widely used in
areas such as data mining, machine learning and sentiment analysis. It uses Bayes’ theorem to estimate the probability
that a feature belongs to a particular class. Naive Bayes assumes that the features in the classification are independent
of each other and performs class prediction by calculating the probability of each feature independently of the others.
Simple probability calculations are used to estimate the probability of events occurring [32].

• Support Vector Machine (SVM): Support Vector Machines are a powerful classification method that works by creating
an n-dimensional hyperplane that optimally separates the data into two classes. SVMs use a sigmoid kernel function
and a two-layer feed-forward neural network, and are closely related to artificial neural networks. The interesting aspect
of SVMs is that they use structural risk minimisation rather than the traditional empirical risk minimisation based on
minimising the mean of the error squares. SVMs can be used in regression and classification tasks and have the ability
to solve non-linear cases with kernel functions [33].

• K-Nearest Neighbours (KNN): KNN is a simple and adaptive multi-class classifier based on neighbourhood. The
parameter ’k’ indicates how many nearest neighbours should be considered when determining the class of a new sample.
Small values of k can make the classification more sensitive to noise, while large values of k become computationally
expensive. When k=1, a new sample is classified by nearest neighbour. When k>1, the classification can be influenced
by more than one neighbor [34].

• Ensemble Classifier: Ensemble learning techniques, which combine the results of several algorithms, outperform
individual algorithms. By combining the votes of different classifiers, it makes more accurate predictions based on
features derived from different data projections. The first examples of ensemble learning date back to the early part of
the last century, and this method often produces stronger results by combining weak classifiers [35].
The hyperparameters for the classifier algorithms used in the present study are given in Table 3.

2.5 Performance Metrics
In this study, accuracy, derived from the confusion matrix, is used as the primary metric to evaluate performance. The confusion
matrix is a widely used tool in classification tasks and consists of a table with rows and columns representing the predicted
and actual classes. Each cell in the matrix contains values corresponding to the number of correctly or incorrectly classified
instances. Additional performance metrics such as accuracy, precision, recall and F1 score can also be calculated from the
confusion matrix.

The confusion matrix contains four essential parameters: true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN). True positives (TP) are the number of correctly predicted positive cases, while true negatives (TN) are
the number of correctly predicted negative cases. False positives (FP) are the number of negative cases incorrectly predicted as
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positive, and false negatives (FN) are the number of positive cases incorrectly predicted as negative. The accuracy formula is
given below.

Accuracy =
TP+ TN

TP+ TN + FN + FP
(1)

3 Results and Discussion
The experiments were performed using a computer with an Intel Core i7-10875H-2.30 GHz CPU, 32 GB of RAM, and an
NVIDIA GeForce RTX 2080 super. In addition, we used 10-fold cross-validation to calculate the performance of the proposed
model in all the experimental studies.

In the experimental phase, the first step was to evaluate the performance of different pre-trained deep learning models using
a transfer learning approach. The results of these evaluations are shown in Figure 4. The transfer learning method used in this
study involved modifying the original deep learning architectures by replacing the last three layers with four newly designed
layers: fully connected, softmax and classification layers. This adjustment allowed the models to better adapt to the specific
dataset used for mango leaf disease detection. The experimental setup included key deep learning hyperparameters, with each
model trained for 50 epochs, a batch size of 8, and using the Adam optimizer. The choice of Adam was driven by its ability to
adjust learning rates for different parameters, ensuring faster convergence and improved performance. This configuration was
designed to optimize the balance between computational efficiency and model accuracy, allowing effective fine-tuning of the
pre-trained models on the new dataset.

Figure 3: Accuracy scores of pre-trained deep models based on transfer learning approach

As shown in Figure 3, the highest accuracy was achieved with the DenseNet201 and VGG16 architectures, both reaching
an impressive 99.1%. In contrast, the GoogLeNet architecture produced the lowest accuracy of the models evaluated. However,
the remaining deep learning models showed strong performance, with accuracy scores ranging from around 98% to 99%,
highlighting their overall effectiveness in the classification task.

In the second phase of the experimental study, pre-trained deep learning models were used as feature extractors. The deep
features from the mango leaf images were extracted using each of the pre-trained architectures. These extracted features were
then used to train different machine learning classifier algorithms. First, the performance of the decision tree classifier was
evaluated using the parameters outlined in Table 3, and the corresponding results are presented in Table 4.

As shown in Table 4, the highest accuracy of 87.9% was achieved by combining the fine kernel-based decision tree with
the Darknet19 model. In addition, the medium tree classifier gave the best performance when combined with the ResNet18
model. In contrast, the coarse tree classifier showed significantly lower accuracy compared to the other approaches, indicating
relatively poor performance.

The performance results were then calculated using the parameters given in Table 3 based on the SVM classifier and are
shown in Table 5.

As shown in Table 5, the highest accuracy achieved was 99.8%, resulting from several combinations of deep learning models,
including Quadratic SVM-DenseNet201, Quadratic SVM-ResNet18, Quadratic SVM-VGG16, Cubic SVM-DenseNet201 and
Cubic SVM-VGG16. In addition, five different kernel-based SVM classifiers consistently produced an average accuracy of 99%
or higher.
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Table 4: The accuracy scores% based on the combination of a deep feature extractor and a decision tree classifier
Tree

Fine Medium Coarse
DarkNet19 87.9 81.5 48.4
Xception 86.5 72.4 45.2
Squeezenet 86.1 73.2 46.7
Mobilenetv2 76.9 73.2 42
Densenet201 87.8 79.9 47.9
GoogleNet 82.1 71.9 45.3
Resnet18 87.5 82.4 46.7
Vgg16 86 76.3 45.1
AlexNet 81.7 75.8 45.6

Table 5: The accuracy scores% based on the combination of the deep feature extractor and SVM classifier
SVM

Linear Quadratic Cubic Medium Gaussian Coarse Gaussian
DarkNet19 99.3 99.7 99.6 99.5 98.6
Xception 98.7 99.4 99.3 98.9 97.7
Squeezenet 99.2 99.4 99.5 98.8 98
Mobilenetv2 99.5 99.7 99.7 99.4 98.9
Densenet201 99.6 99.8 99.8 99.5 98.9
GoogleNet 98.2 98.7 98.9 98.2 96.7
Resnet18 99.6 99.8 99.7 99.4 98.9
Vgg16 99.7 99.8 99.8 99.5 98.9
AlexNet 99 99.4 99.4 99 97.7

The performance results using the k-nearest neighbours (KNN) classifier were then evaluated using the parameters given in
Table 3, with the results summarised in Table 6.

As shown in Table 5, the highest acc98uracy achieved was 99.8%, resulting from several combinations of deep
learning models, including Quadratic SVM-DenseNet201, Quadratic SVM-ResNet18, Quadratic SVM-VGG16, Cubic SVM-
DenseNet201 and Cubic SVM-VGG16. In addition, five different kernel-based SVM classifiers consistently produced an
average accuracy of 99% or higher.

The performance results using the k-nearest neighbours (KNN) classifier were then evaluated using the parameters given in
Table 3, with the results summarised in Table 6.

As shown in Table 7, the highest accuracy, 100%, was achieved by combining the ensemble subspace discriminant classifier
with the DenseNet201 model. In addition, all other pre-trained deep models also showed strong performance when using the
ensemble subspace discriminant classifier, achieving accuracies of 99%. Furthermore, the ensemble subspace KNN classifier
outperformed both the boosted trees and bagged trees methods.

Table 6: The accuracy scores% based on the combination of the deep feature extractor and KNN classifier
KNN

Fine Medium Coarse Cosine Cubic Weighted
DarkNet19 99 97.3 91.5 97.5 97.3 97.7
Xception 98.7 97.1 91.9 98 97.3 97.7
Squeezenet 98.2 97.1 90.3 95.9 97 97.4
Mobilenetv2 99.1 98.3 94.2 98.4 98.3 98.6
Densenet201 99.2 98.4 92.2 98.5 98.2 98.7
GoogleNet 96.9 95.3 89.5 95.5 95.4 96
Resnet18 99.1 98 94.8 98.3 98.1 98.3
Vgg16 98.9 96.6 88.1 97.7 96.5 97.2
AlexNet 96.9 93.8 84.8 94.9 93.8 95

Table 7: The accuracy scores% based on the combination of a deep feature extractor and an ensemble classifier
Ensemble

Boosted Trees Bagged Trees Subspace Discriminant Subspace KNN
DarkNet19 88.4 95.9 99.8 99
Xception 91.6 94.8 99.2 98.9
Squeezenet 89.7 94.9 99.6 98.2
Mobilenetv2 89.1 95 99.6 98.2
Densenet201 91.6 96.5 100 99.2
GoogleNet 83.9 93.7 99 96.7
Resnet18 92.1 95.9 99.9 99
Vgg16 92.8 96.2 99.7 99
AlexNet 90.4 93.2 99.2 96.8
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Table 8: The accuracy scores% based on the combination of a deep feature extractor and machine learning classifiers
Ensemble Classifier Models Accuracy Comparison

MODELS Transfer Learning Linear KNN Decision Tree SVM Ensemble
Approach Discriminant (Fine) (Fine) (Quadratic) Subspace Discriminant

DarkNet19 98.7 99.8 99 87.9 99.7 99.8
Xception 98.2 99.4 98.7 86.5 99.4 99.8
Squeezenet 98.5 99.7 98.2 86.1 99.4 99.6
Mobilenetv2 98.9 99.7 99.1 76.9 99.7 99.6
Densenet201 99.1 100 99.2 87.8 99.8 100
GoogleNet 97.4 99.1 96.9 82.1 98.7 99
Resnet18 98.8 99.8 99.1 87.5 99.8 99.7
Vgg16 99.1 99.8 98.9 86 99.8 99.7
AlexNet 98.4 99.2 96.9 81.7 99.4 99.2

Finally, Table 8 provides a comprehensive comparison of the results of the deep learning models using the transfer learning
approach and the deep feature extraction approach combined with different machine learning classifiers.

As shown in Table 8, the best performing classifiers on average were the Linear Discriminant Analysis (LDA) and the
Ensemble Subspace Discriminant methods. When combined with the DenseNet201 model, these classifiers achieved perfect
accuracy of 100%. In addition, DenseNet201 proved to be the best deep feature extractor overall. In comparison, the other deep
learning models using the transfer learning approach delivered lower performance than the models where deep feature extraction
was paired with machine learning classifiers.

4 Conclusion
In this paper, the features extracted by deep feature extraction from the data of seven diseased plants and one healthy class
of mango plant leaves were classified by different machine learning algorithms and the results were compared. In this study,
both features were extracted by deep learning and these extracted features were classified by seven different classifiers. We
extracted deep features from the fully connected layers of these deep models (DarkNet19, Xception, SqueezeNet, MobenetV2,
DenseNet201, GoogLeNet and ResNet18). The features obtained were classified by decision tree, linear discriminant, naive
Bayes, support vector machine, k-nearest neighbour, ensemble and MLP methods. Several of the classifiers were tested with
different kernels. Fine, medium and coarse kernels are used for the decision tree, and linear, quadratic, cubic, fine Gaussian,
medium Gaussian and coarse Gaussian kernels are used for the SVMMs. Fine, medium, coarse, cosine, cubic and weighted
kernels were used for k-nearest neighbours. For ensembles, boosted trees, bagged trees, subspace discriminants, subspace KNNs
and rusboosted tree kernels were used. In future studies, different approaches and analyses can be applied to this dataset. This
study provides insight into the evaluation of architectures run on this particular dataset, the possibility of automatic diagnosis of
mango leaf diseases, and performance parameters. This study has made a unique contribution to the literature by applying the
proposed methodology to a mango leaf image dataset. The methodology fulfilled the task of automatically diagnosing mango
leaf diseases with an accuracy rate of more than 99%.
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Abstract : This study presents a quality estimation method for photovoltaic cells in solar panels using
advanced machine learning techniques, including traditional methods and convolutional neural networks
(CNNs). Photovoltaic cells, which are primarily composed of crystalline silicon, are of critical importance for
the conversion of sunlight into electrical energy. The efficiency of these cells directly affects the performance
and lifespan of solar panels. The study’s objective is to assess the electroluminescence values of cells using
the HALM device, which is capable of measuring the key parameters that determine cell quality. To enhance
the performance of the CNN model, hyperparameter tuning and optimization techniques were employed
to improve the accuracy of visual evaluation and classification. The proposed method offers significant
advantages, including the optimization of the cell production process, a reduction in costs, and an improvement
in operational efficiency through the minimization of discrepancies between human and machine decisions.
Furthermore, this approach facilitates real-time monitoring and dynamic management of production processes
by integrating machine learning models with production line databases. The findings indicate the potential
of artificial intelligence to enhance the detection and classification of cell defects, thereby supporting more
efficient and high-quality solar panel production. The study underscores the importance of AI-driven methods
in advancing production technologies and improving the sustainability of solar energy systems.

Keywords : Artificial Intelligence, Machine Learning, Solar Energy, Pv-Photovoltaics, Energy Quality.

1 Introduction
The global and national focus on green energy has intensified significantly, with the goal of achieving sustainable energy
solutions by 2050. In this context, various installations and production investments have been initiated, with solar energy
emerging as a cornerstone of these efforts. As of the first quarter of 2024, solar energy capacity in Turkey reached an impressive
12, 000MW , showcasing the rapid development and prioritization of this sector. Concurrently, industrial investments have also
increased, with a particular focus on advancing cell and panel technologies, which play a critical role in enhancing energy
efficiency in the sector.

With the growing population and advancing technological infrastructure, meeting the increasing energy demands of
households has become essential for ensuring a comfortable lifestyle. Additionally, cumulative energy consumption rates have
surged due to the parallel growth of production facility investments. The installation of photovoltaic (PV) electricity generation
plants has become crucial in addressing these energy demands. Solar energy production involves a multi-stage process that
ensures energy reaches end-users efficiently. This process includes the following four key stages: Silicon production: Silicon, the
fundamental material for solar panels, is derived from sand or quartz through metallurgical and chemical purification methods.
High-purity silicon is essential for the subsequent production stages. Ingot production: Using the Czochralski method, high-
purity silicon is transformed into large cylindrical crystals with a head and tail. Alternatively, polycrystalline ingots are produced
by cooling molten silicon in a crucible. Wafer production: The ingots are processed by cutting their head and tail sections using
specialized machinery. The remaining cylinder is shaped into a rectangular prism. The edges are trimmed, and the surface is
smoothed through chamfering to eliminate cutting marks. Thin slices, approximately as thick as a hair strand, are then cut
using diamond wire. From a single ingot measuring 700˘800mmin length, approximately 3,000 wafers can be produced. Cell
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production: Wafers undergo doping with phosphorus or boron to create a p-n junction, enabling them to generate electricity
when exposed to light. An anti-reflective coating is applied to minimize light reflection and maximize light absorption. Metal
contacts are added to the front and back surfaces to collect electrical current. The cells are then soldered, coated with various
chemicals, and baked to complete the manufacturing process. Following this, the cells are tested using the Halm machine to
evaluate their efficiency and parameters. Based on these evaluations, the cells are categorized, labeled, and prepared for module
production.
Module production: n this final stage, the cells are arranged in series and parallel configurations on glass substrates. Soldering
connects the cells, and a holding material is applied to bind the cells and glass together. The module is laminated to enhance
durability. After undergoing quality testing, the modules are labeled and equipped with a frame and j-box cabling, transforming
them into ready-to-package solar panels. This study focuses on the application of machine learning in the Halm machine, a
critical component in evaluating solar cells during production. By leveraging machine learning algorithms, the system can
classify and predict outcomes without requiring explicit programming or manual operator intervention. This approach addresses
the challenges of employee turnover, which often leads to disruptions in quality control processes. Machine learning ensures
consistency and minimizes errors in interpreting machine data, enabling proactive evaluation and reducing reliance on human
intervention. The study employed Decision Trees, Random Forests, K-Nearest Neighbors (KNN), and Linear Regression as
primary methods. Balanced data was utilized to ensure reliable outcomes, as each solar cell has defined quality parameters. For
instance, unread barcodes are reprocessed without compromising existing data integrity or stability.
The Halm machine is an IV measurement system designed to inspect and classify bifacial solar panel cells on production lines.
It features three distinct flash boxes equipped with advanced lighting systems. Initially, the back of the cell is illuminated
with 1, 000W/m2 of irradiation. In the subsequent stage, the cell is adapted to outdoor lighting conditions by simultaneously
flashing the front and back of the cell, with the front receiving 1, 000W/m2and the back 200W/m2. Integrating machine
learning algorithms into solar energy production processes offers significant advantages, including improved accuracy, reduced
dependency on human expertise, and enhanced efficiency in quality control. By implementing technologies such as the Halm
machine, the solar energy sector can achieve greater productivity and contribute more effectively to sustainable energy goals.
These advancements underscore the importance of combining technological innovation with renewable energy investments to
meet the growing global energy demand.
Figure 1 illustrates the irradiance ranges and time intervals used in the Cell IV Measurement System for evaluating bifacial
solar cells. The system employs three distinct measurement conditions: rear STC, outdoor illumination condition, and front
STC. Initially, the rear of the cell is exposed to 200W/m2to 1, 000W/m2of irradiance for 30 milliseconds, simulating standard
rear-side test conditions. Following this, the bifacial condition is tested under outdoor illumination with simultaneous exposure
of the front and rear sides for the next 30 milliseconds, where the rear side receives 200W/m2, and the front side is exposed
to 1, 000W/m2. Finally, the front STC is measured for the remaining 30 milliseconds, focusing solely on the front side with
1, 000W/m2 of irradiance. This time-segmented approach ensures comprehensive evaluation of the cell’s performance under
varying irradiance and directional conditions, providing critical data for classification and efficiency analysis.
Measurement’s work integrated with PV Control software and hardware in a control cabinet. The cell measurement system

Figure 1: Cell IV Measurement System Ranges

was specially developed for industrial and light industrial use. Advanced hysteresis feature is used here. This is especially
designed to be able to classify the next era of innovative cell technologies.Figure 2 depicts the HALM device, a state-of-the-
art IV measurement system used for the evaluation and classification of bifacial solar cells in production lines. This device is
equipped with advanced hardware and software components, including high-precision measurement units and integrated flash
boxes, enabling detailed analysis of electrical parameters and efficiency. The HALM system features a user-friendly interface, as
shown on the accompanying monitor, which facilitates real-time monitoring and data visualization. Its modular design ensures
scalability and adaptability for various production environments, making it a critical tool in quality assurance and process
optimization within the solar energy sector.
In Figure 3, measurements were made with two flash boxes, control units of two monitor cells and a HALM evaluation software
PVC as an IV meter. Figure 3 shows a configuration of how test integration is done for a typical cell.
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Figure 2: HALM device image

Figure 3: HALM Device Integration

2 Materials
Within the scope of this paper, minimizing operator errors in panel production lines and improving quality processes to increase
production cycle efficiency are examined. The focus of the research is on understanding the challenges of faulty quality decisions
and delays in production lines. Addressing these issues, the evaluation of machine parameters and quality class decisions
presents an opportunity to optimize the workload of employees and improve organizational efficiency. These improvements
have the potential to enhance production planning, reallocate human resources to other critical departments, and increase overall
productivity. The research utilizes weekly production data from the Cell Production Department at the Kalyon PV factory,
obtained using the HALM device. This dataset includes both visual evaluation criteria and efficiency-related parameters. The
HALM device, equipped with an industrial automation camera, records images of the cells using a flash and conducts image
analysis for visual evaluation. This automated process eliminates reliance on human error, ensuring consistent quality evaluation
and accuracy, particularly in managing daily production volumes. By leveraging this technology, the study aims to streamline
production processes and enhance overall operational efficiency.
Figure 4 above contains summary information of the processes and flows performed at all stages. The process, which starts
with obtaining the data set, consists of pre-processing, analysis, model selection, training, model evaluation, training of the final
model, monitoring the model and keeping it updated.

2.1 Provision and Promotion of the Data Set
In the study, the machine measurement parameters values in the data set of the Halm machine of the cell factory located in the
Kalyon PV production facility were transferred to our table to be evaluated for inclusion in the production management system.
In the MES (Manufacturing Execution System), a data set comprising 1,288,007 cell parameters, representing one week’s
production data, was employed for evaluation purposes. This data set is used for cell quality classification and efficiency
estimation based on the provided parameters.
The dataset consists of 30 variables identified for analysis, 20 of which are of type (int64) and 10 of type (varchar), all included
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Figure 4: Process Flow Diagram

Table 1: Halm Machine Variables and Description
Variable Name (type) Description
Measurement Time Flash Burning Time
Multiple Flash Method Multiple Flash Reflections
MPP Scanning Method Full Directional IV Scan
Rheinland Dynamic Current Voltage Value Cell Type and IV Chart Curve

as columns. Detailed descriptions and names of these columns are provided in the study. Additionally, images backed up
within a shared folder structure are integrated into the system for visual evaluation. These images, coupled with the analysis
of parameters, enable the identification of quality impacts on final panels and cells. Visual evaluations, performed through
advanced image analysis, ensure reliable quality assessments free from human error, further enhancing production efficiency
and product consistency.
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Table 2: Halm Machine Variables and Description
Variable Name (type) Description

UniqueID Halm Makine ID
Title Title

TestTimeDate Test Time
BatchID Batch ID
CellIDStr Cell Soldering Machine ID
Operator Operator
Comment Line Information

BIN Efficiency Value
Isc Short Circuit Current
Jsc Short Circuit Current Density
Uoc Open Circuit Voltage
FF Fill Factor
Eta Efficiency
Impp Current at Maximum Power Point
Umpp Voltage at Maximum Power Point
Pmpp Power at Maximum Power Point
Ivld1 Forward Light Curve
Jvld1 Measurement of Current Density
Ivld2 Measurement of Voltage Density
Jvld2 Measurement of Current Density 2

RshuntLf Shunt/parallel resistor, forward light
RserLf Series resistance forward light curve

BINComment Quality Class Value

2.2 Transferring Data to the System
After transferring the data set from the machine to the database, after determining the parameters affecting the quality criteria,
the necessary database table for the parameters selected for machine learning was created, and with the help of a third-
party application named FC, the data was transferred into the table named h.a.l.m_machine_AI on Microsoft SQL
Server. PyCharm CE development environment was deemed appropriate, and developments were made on this IDE. Code
management was carried out systematically via GitHub, as code versions needed to be considered and updated during the
process. Additionally, in Microsoft SQL Server, pandas and sqlalchemy libraries were used to transfer data from the table,
and requests libraries were used for the API. After these processes, it is brought to the appropriate .csv format ready for
processing and made ready in the environment for processing. This process provides appropriate conditions for data processing
and analysis.

2.3 Digitization of data
In this study, data is also divided into categorical and numerical data. For example, the quality value of a cell appears as
categorical data such as (A, B, C). These values are evaluated numerically.

Table 3: Quality Data Set Digitization
Variable Name (type) Value

A 1
B 2
C 3

2.4 Data visualizations
In order to transfer the log values of the detected errors in Figure 5 to the database and analyze the density of the data, error types
can be grouped with the histograms in Figure 6 in order to understand the interpretations related to the numerical properties of
the data set.

This section describes the algorithm to detect defects in the EL images of the cell and evaluate the image quality of the solar
panels’ cells. Quality standards are detailed in accordance with Kalyon PV production standards.

2.5 Pixel based Defects
As shown in Figure 7, pixel-based defects include cracks, finger cuts, and darkness errors. For each of these defects, the algorithm
calculates a defect probability for each pixel of the cell. Different threshold evaluations are applied to distinguish various defect
types. To evaluate the effect of the pixel being classified as a defect, defect areas are highlighted in white in the corresponding
images.

2.6 Cell based defects
Figure 8 illustrates examples of cell-based defects, such as scratches on the cell, ghosting, and o-ring errors. These defects are
identified and analyzed in the dataset using the hand image. The visualized examples demonstrate the specific characteristics
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Figure 5: Cell Error Type Example

Figure 6: Distribution of Error Types

of each defect type, aiding in accurate defect categorization and evaluation.

3 Methods
3.1 Model Selection
The selection of models suitable for this study involves interpreting the data set and applying traditional machine learning
classification and the CNN method to group the data and determine its quality. CNN is one of the most widely used deep
learning models for processing visual data and is highly effective in detecting and classifying defects in microscopic images of
solar panel cells. Transfer learning, which reuses a model previously trained on large data sets and adapts it to a new problem,
is particularly useful for addressing challenges caused by data scarcity in specific areas of solar cell analysis. This approach
reduces training time and generally achieves high accuracy rates.

3.2 Feature Extraction (Variable Selection)
In this study, the “BIN_Comment” variable was determined as the target variable, representing the output of the analysis from
the evaluated data set. This involves identifying the factors affecting this variable and ensuring that the data set is appropriately
formatted for modeling. Correlation is a statistical concept that measures the direction and strength of the relationship between
two or more variables. It helps us understand whether a relationship exists between variables, and if so, its direction and
strength. The correlation coefficient numerically represents this relationship [1]. Positive Correlation: A relationship between
two variables where an increase in one variable corresponds to an increase in the other. The correlation coefficient takes a
positive value (between 0 and +1).

Negative Correlation: A relationship between two variables where an increase in one variable corresponds to a decrease in
the other. The correlation coefficient takes a negative value (between 0 and -1).

Zero Correlation: A lack of relationship between two variables, where the correlation coefficient is 0.
The red line correlation above helps us interpret its influence on the BIN_Comment variable in the evaluation of the cells.

It can be used to make decisions regarding the factors affecting this parameter during the analysis stage. These values indicate
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Figure 7: Pixel Based Error Examples

Figure 8: Cell-Based Error Examples

that they will play a significant role in providing insights into which factors have a greater impact on quality classification [2].

3.3 CNN Hyperparameter and Optimization Techniques
This method is a learning architecture that is extremely effective, especially in areas such as image processing and classification.
Cell artificial intelligence evaluation can make predictions necessary for learning and identifying cell error types [3].

It consists of four main layers:

• Convolution Layer: This layer creates feature maps by applying various filters (kernels) on the input images. Filters
detect edges and corners in the image.

• Activation Function:After each convolution layer, a non-linear activation function is applied, typically ReLU (Rectified
Linear Unit). This helps the model learn complex features.

• Pooling Layer: This layer reduces the computational and work costs by decreasing the size of feature maps while
preserving important features. The most common pooling operation is max pooling, which selects the maximum value
in each subregion.

• Fully Connected Layer:This layer receives and evaluates the features obtained from the convolution and pooling layers,
increasing the generalization and classification ability of the model.

• Dropout Layer: This layer disables random neurons during training to prevent overfitting.

The model visualized in this study was implemented with the help of the Python programming language and its powerful
libraries pandas, numpy, and sklearn. These support libraries served as a cornerstone in the creation of the model, enabling
the application of various statistical methods and traditional machine learning techniques. During the process, a laptop with a
MacBook M2 Operating System and 16GB RAM was used as hardware, and the test environments were carried out on setups
installed on this computer.

In this study, five different methods were tried. A total of1, 288, 007 data parameters and EL images were evaluated.
Following the pre-processing stages specified within the scope of the study, classification analysis was carried out using machine
learning methods. In this context, two different analysis methods were chosen to evaluate the results obtained and analyze their
accuracy. The compatibility ratio of cell machine values was also evaluated as a criterion. Accuracy, recall, F1-score, and error
rate matrices were used in the evaluation process.

Accuracy: It is the ratio of the model’s correct predictions to the total predictions. It is used to evaluate overall performance.
Its expression is as follows [4]:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

Recall: It shows howmany of the positive examples in real data the model correctly identifies. This is an important criterion,
especially in unbalanced data sets [5].

Recall =
TP

TP+ FN
(2)

F1-Score: It is the harmonic mean of precision and recall for a model. It is especially useful when working with unbalanced
data sets where there are significant differences between classes, as it provides a balanced summary of both metrics [6].

F1-Score = 2 · Precision · Recall
Precision+ Recall

(3)
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Figure 9: Correlation Heat Plot

Figure 10: Cell Analysis on Panel with CNN model

4 Results and Discussion
We conducted within the scope of the metrics and methods we evaluated, we first prepared the quality groups to evaluate them
numerically in the normalization phase, then EL was evaluated for the visual evaluation method, and after a printout was made
and made ready for machine learning, machine learning methods were applied [7]. Two different evaluation tables were created
to evaluate the methods used. Relevant analysis results for performance evaluation are given in Table 3.

Table 4: Comparison of Machine Learning Methods.
Method Validation Precision Recall F1 Score

Logistic Regression 0.76 0.75 0.76 0.76
SVM 0.61 0.59 0.61 0.61

Decision Tree 0.59 0.60 0.60 0.60
Random Forest 0.77 0.78 0.77 0.77

CNN 0.82 0.78 0.82 0.82

Evaluation of quality classes taught with real data and comparison of methods are given in Table 5.
As a first step in this study, the relevant machinery, equipment, operating principles, and integration design were detailed.

The data for this quality assessment was obtained from the database of the HALM machine, which provides measurement and
value assignment in EL images.

In the second stage, a normalization method was applied. Quality values were used to prepare the data for the numerical
evaluation of letter outputs. The BIN_Comment field was selected as the key data column, representing the major decision
point of the dataset output. This field was considered as an attribute of the data. By evaluating the visual quality output value
from the HALM device alongside 20 additional parameter fields, this selection revealed both the quality and efficiency values
of the cell. Various machine learning models were employed to evaluate these results [8].

Logistic Regression, Support Vector Machine (SVM), Random Forest, Decision Tree, and CNN methods were applied
as traditional and deep learning approaches. The results of these analyses, including the compatibility rates of the data with
the actual analysis values, are shown in Table 5. Among these, the CNN method demonstrated the highest compatibility,
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Table 5: Comparison of Machine Learning and Deep Learning Methods
BIN_Comment Logistic Regression SVM Random Forest Decision Tree CNN

22 A 70.00 69 60 59 71
22.1 A 70.00 64 61 57 74
22.2 A 75.00 63 66 65 84
22.3 A 73.00 65 62 58 69
22.4 A 70.00 67 64 63 69
22.5 A 75.00 69 61 64 78
22.6 A 73.00 66 62 57 83
22.7 A 75.00 68 61 57 74
22.8 A 75.00 62 61 57 70
22.9 A 74.00 68 63 62 81
23 A 74.00 69 61 62 79
23.1 A 74.00 69 65 64 74
23.2 A 71.00 63 62 59 72
23.3 A 74.00 68 64 56 79
23.4 A 72.00 68 61 63 77
23.5 A 74.00 69 65 64 72
23.6 A 74.00 68 61 59 82
23.7 A 70.00 68 61 59 72
23.8 A 70.00 69 62 56 77
23.9 A 71.00 62 61 62 72
24 A 70.00 62 61 62 72

achieving a suitability rate of 78%. This method provided significant contributions to the study by enabling visual evaluation
and interpretation of the estimated values [9].

Convolutional Neural Networks (CNNs) are particularly powerful for visual data analysis and classification. Performance is
enhanced by selecting appropriate hyperparameters and applying suitable optimization techniques [10]. The CNN model used
in this study has the following configuration:

• The first convolutional layer contains 32 filters of size 3× 3.
• The second convolutional layer contains 64 filters of size 3× 3.
• The third convolutional layer contains 128 filters of size 3× 3.
• A 2× 2 MaxPooling layer was applied for downsampling.
• A dropout ratio of 0.5 was used to randomly disable 50% of neurons in the fully connected layer to reduce overfitting.
• The ReLU activation function was used in the convolution and flatten layers.
• A sigmoid activation function was used in the output layer for binary classification.
• The input size (input_shape) of the model is 64× 64 pixels with 3-channel RGB images.
• The Adam optimizer was employed with a learning rate of 0.001 to provide stabilization and increase performance [11]

[12].

To diversify the training data, the following data augmentation techniques were applied:

• Rescaling: Images were normalized to a range of 0 to 1 by multiplying pixel values by 1/255.
• Shear Range: Images were distorted using shear transformations.
• Zoom Range: Images were randomly zoomed.
• Horizontal Flip: Images were randomly flipped horizontally.

The training of the model was carried out using the model.fit function. The training data was supplied via the
train_generator object. The following parameters were used:

• steps_per_epoch: Calculated by dividing the total number of training data by the batch size.
• epochs: The number of times the model trains on the entire dataset, set to 25.
• validation_steps: The number of steps per validation step, calculated by dividing the number of validation data

by the batch size [13], [14].

Table 4 presents the comparative analysis of various machine learning and deep learning methods for quality assessment in
EL image evaluation. Among traditional machine learning methods, Random Forest and Logistic Regression performed well
with validation scores of 0.77 and 0.76, respectively. However, CNN outperformed all other methods, achieving the highest
validation score of 0.82.

Table 5 further illustrates a detailed comparison across different quality classes. CNN consistently yielded higher accuracy
rates, surpassing 82% for several quality bins, while other methods generally achieved scores between 60% and 75%.

The study’s methodology, incorporating normalization, hyperparameter optimization, and data augmentation techniques,
significantly contributed to the robustness of the CNN model. The findings indicate that integrating advanced machine learning
techniques into production processes can enhance quality control mechanisms, improve resource utilization, and increase
production efficiency in the photovoltaic industry [15]–[18].
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Abstract : Learning and memory formation in living things is a subject under investigation. It is thought
that the memory formed in the brain’s neural network structure is closely related to the connections between
neurons. Connections called "motifs" have been identified, usually consisting of three or four neurons and
repeating within the neural network. The basic structure of biological memory is thought to be related to
such repetitive neural connections. In this study; the effect of the structures of motifs on short- and long-term
memory was examined for all triple-neuronal network motifs. We used the Hodgkin-Huxley model of neurons.
Using graph theory, we generated all triple-neuron motifs. In the created motifs; the effects of synaptic inputs
between neurons, types of synaptic inputs of neurons, and chemical synapse duration on short- and long-term
memory were examined. From the data obtained in all triple-neural network motif models; from the structure
of the motif and the type of synaptic input, we determined the status of long- and short-term memory. We
classified all triple-neural network motifs for situations in which they exhibit short- and long-term memory
behaviour. We show that short-term memory varies with synaptic connection duration

Keywords : Brain neural network motifs, intercellular synaptic type, short-term memory, synaptic
conductivity time, long-term memory

1 Introduction
How learning occurs in living things is investigated by biological experiments and computational methods. In order to elucidate
this issue, studies on neuronal connections are beingmade [1] Intercellular synaptic inputs are being studied [2]. The connections
formed between neurons are considered to be an important factor in memory formation. In order to support these studies, studies
describing neural network structures have been carried out [3]. In fact, brain neuron network connection maps of some living
things have been obtained [4]–[10]. These network maps, which are also the graphical representation of dynamic systems, are
used to analyse the complex structures of biological systems [5]. The behaviour of neurons forming the networks in the learning
process has been followed by biological studies and important data have been obtained [11]. It has been observed in biological
experimental studies that while living things are learning, new connections are established between neurons, some of which
are temporary and some are permanent [12]–[18]. Changes related to the learning process have been observed in the dendrites
of neurons [19]. In these studies, it was also observed that some interneuron connections detected in neuronal networks were
frequently repeated within the network. These special-function subnet links are named “Network motif”. [4], [6]–[8], [13], [20]–
[23]. Here the term “Network motif” refers to directed subgraphs. Motifs containing such triple-neurons are common in many
biological environments [1]. These network motifs are modelled by computational neuroscience studies and their roles in their
environments are investigated [24], [25]. Computational neuroscience uses computational techniques to model neural networks
[26]–[28]. Thus, the functions of network motifs are investigated by means of computational models [7], [19]. It is thought that
biological memory systems where learning takes place include such network motifs with memory capability [15]. Neurons in
triple neural network motifs are usually; are named as input, output and driver neurons [7], [29]. It is thought that especially
interneuron connections are effective in the formation of long and short-term memory [30]. Short-term memory, where thinking
and information processing takes place, is considered to be the most functioning part of memory [26]. It is considered that
the type of synaptic input between neuron groups is effective in the functioning of short-term memory, which is one of the
important parts of memory. It is thought that storing information in long-term memory is possible with permanent, functional,
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biochemical and structural changes that occur in neural connections in the brain [16], [31]–[33]. Experimental studies have
shown that neurons are electrically active and usually communicate via chemical synapses. Chemical synaptic communication
between neurons has also been modelled mathematically [34]. In some modelling studies, the responses of motifs to stimuli
have been interpreted as short- and long-term memory behaviour. In these studies; some special network motif constructs and
simpler neuron models (such as the Integrate and Fire Neuron Model) are used. For the synaptic input between neurons, a
noise signal was applied to the postsynaptic cell, representing signals from other neurons. In some models, the synaptic weight
parameter was used to express the total synaptic input to the dendrites [7]. All these studies have not yet fully revealed how
learning takes place. How long- and short-term memory formation, learning, remembering, and forgetting occur in neurons
is being investigated [35]. During learning, synaptic input changes were observed between neurons. Although this suggests
that connectivity is effective in learning, the occurrence of this change has not been fully explained [36]. While Biological
studies investigate the adaptive changes of the brain during learning, on the other hand, computational neuroscience studies try
to model the learning process. The parameters that are effective in the retention of information during and after the learning
process have not been fully explained. Understanding the learning functions of the brain will benefit the diagnosis and treatment
of many diseases [37]. When the motif behaviours are learned, the properties of the network environments to be obtained by
motif multiplexing can also be learned [38]. Although the behaviour of some neural network motifs has been investigated,
especially in connectivity studies, there is no comprehensive motif model study. In addition, in learning research; no detailed
studies on motif structure, intercellular synaptic entry type and synapse duration have been performed. The findings of our
study will reveal the analysis of all triple neural network motifs on the effect of connectivity in learning. Our work; it is based
on the thesis that learning is directly related to the type of synaptic input and motif structures between neurons. To this end, we
examined some factors that affect the short- and long-term memory behaviour of all three-neuron motifs. Using graph theory,
we systematically constructed all three-neuron motifs. First, we studied the basic motif connections, which are used in many
studies in the literature. In these studies, the effect of synaptic input types of neurons was revealed. Considering the findings
obtained here, the memory behaviour of triple neural network motifs was studied. Motifs were evaluated considering neuron
roles. In the studied motifs, after the learning information was given to the input neuron in the form of electrical signals, the
electrical effect on the output neuron was examined. The persistence of the output signal (action potentials) was interpreted as
long-term memory behaviour, and its temporality (ending after a while) was interpreted as short-term memory behaviour. With
this approach, we examined short- and long-term memory behaviour in motifs, across all possibilities of neurons’ synaptic input
types. We also studied the effect of time constant variation in the interneuron chemical synapse model on short-term memory
duration. The prolongation of the synapse duration was made by increasing the time constant of the model. This means that
one neuron continues to excite the other.In these studies, how learning happens is evaluated in terms of connectivity. Thus, it
is aimed to contribute to the solution of neurological diseases such as learning problems, forgetting, memory loss, dementia,
Alzheimer’s, etc. From the findings of the study, it has been shown that memory formation is highly related to the following
factors:

• With the interneuron connections that form the neural network motifs,
• With synaptic input types between neurons,
• With the duration of synapse between neurons.

2 Materials and Methods
The deterministic Hodgkin-Huxley neuron modelling method used in our study is one of the most basic and successful models.
Modelling was performed in the MATLAB software environment.

2.1 Modelling of Neuron and Neural Network Motifs
In our study, we used Hodgkin-Huxley’s neuron model, which is frequently used in many studies, to model the neurons forming
the motifs. While the neuron was modelled as a single compartment of the soma and deterministic, signal transmission between
neurons was modelled as a chemical synapse [39]–[43]. Synaptic inputs between neurons; were added to the electrical model
with excitatory (E) or inhibitory (I) potential values [34], [40], [44]. In triple neural network motifs, in addition to external
current input to neurons, synaptic input is made from one or two neurons depending on the motif structure. The electrical
models of neurons according to the inputs they receive are shown in Figure 1 [40]. Ion channels in the cell membrane of the
neuron are responsible for its electrical behaviour. These channels allow the neuron to generate an action potential. ENa, EK , EL
expressions are among the parameters in the electrical solution of the model, the equilibrium potentials of the ion channels. Vm is
neuron membrane voltage, Vr is neuron membrane voltage at rest, Cm is neuron membrane capacitance. GNa, GK conductivity
values of sodium Na+ and potassium K+ channels GNa, GK , maximum conductivity in the neuron membrane, GL is leakage
current conductivity equation (16-17). In the model, for the Na+ ion channel, three identical activationsm3 and one inactivation
gate (h) and the ion K+ is defined with four identical activations n4 gates equation (13-15). The voltage-dependent transition
rate constants between the open-and-close states of an ion channel are defined as: αVm and βVm equation (2-9). Steady-state
ECJSE Volume 12, 2025 55



Ahmet Turan, Temel Kayıkçıoğlu

activation of Na+ current is defined as m∞, inactivation as h∞ and steady-state activation of K+ current is defined as n∞
equation (10-12).The solution of the single-compartment neuron modelled with the electrical circuit shown in Fig.1-a is given
in equation 1.

Cm(dVm)/dt = −GL(Vm − EL)− GNa(Vm − ENa)− GK (Vm − EK ) + Iinj(t) (1)

αm = (
−0.1(Vm − Vr − 25)

exp(−(Vm − Vr − 25)/10)− 1
) whereas Vr − Vm > 24, 99 (2)

αm = (
−1

exp(−(Vm − Vr − 25)/10)
) whereas Vr − Vm <= 24.99 (3)

βm = 4(exp(−(Vm − Vr)/18)) (4)

αh = 0.07(exp(−(Vm − Vr)/20)) (5)

βh = (
1

1 + exp(−(Vm − Vr − 30)/10)
) (6)

αn = (
0.01(Vm − Vr − 10)

1 + exp(−(Vm − Vr − 10)/10)
) whereas Vr − Vm > 9.99 (7)

αn = (
0.1

exp(−(Vm − Vr − 10)/10)
) whereas Vr − V_m <= 9.99 (8)

βn = 0.125(exp(−(Vm − Vr)/80)) (9)

m∞(Vm) = αm(Vm)/(αm(Vm) + βm(Vm)) (10)

h∞(Vm) = αh(Vm)/(αh(Vm) + βh(Vm)) (11)

n∞(Vm) = αn(Vm)/(αn(Vm) + βn(Vm)) (12)

dm
dt

= αm(Vm)(1− m) + βm(Vm)m (13)

dh
dt

= αh(Vm)(1− h) + βh(Vm)h (14)

dn
dt

= αn(Vm)(1− n) + βn(Vm)n (15)

GNa = GNam3h (16)

GK = ḠKn4 (17)

Neurotransmitter-activated ion channels, which are electrically excited when synaptic input arrives in the interneuron
connection, are defined by time-dependent gsyn(t) conductivity, as seen in equation (18) [45]. The synaptic communication
current of the model we used is shown in equation (20), and the addition of the current to the electrical circuit is shown in Figure
1(d). Dynamics involving multiple synaptic inputs to a neuron, that is, multiple synapse inputs, are as shown in equation (20)
[40]. Neural network motifs are created with neurons communicating with this method.

gsyn(t) = gmax
t
τ
e(1−

t
τ ) (18)
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Figure 1: (a) Neuron model with only external current input. (b) Neuron model with external current input and single
synaptic input. (c) Neuron model with only one synaptic input. (d) Neuron model with two synaptic inputs

Figure 2: (a) Directed motif comprising 3-neuron and 5 links. (b) Adjacency matrix Adj.

Isyn(t) = gsyn(t)(Vm − Esyn) (19)

Cm
dVm
dt

+ grestVm + gsyn(1)(t)(Vm − Esyn(1)) + gsyn(2)(t)(Vm − Esyn(2)) + ... = 0 (20)

The parameters obtained from the biological experimental studies of Hodgkin-Huxley were used in the motif models.
Commonly used model parameter values GNa = 120ms/cm2, GK = 36ms/cm2, GL = 0.3ms/cm2, ENa = 50mV ,
EK = −77mV , EL = −54.4mV , Cm = 1µF/cm2, Vr = −65mV . In synaptic input reversal potentials were used as:
Esyn = −70mV for inhibitor (I), Esyn = −10mV for excitatory (E), maximum synaptic conductivity gmax = 64nS, synaptic
conductivity time constant τ = 25ms [45]–[47]. For numerical solutions of Euler differential equations, the time step interval
was chosen as∆t = 10µs. To model neuron and neural network motifs, we created simulation software using these parameters
suitable for experimental studies. In our study, the Hodgkin-Huxley model, which contains more parameters and is closer to the
behaviour of the neuron, was preferred for neuron modelling. In experimental studies on neurons communicating with chemical
synapses; it has been observed that when the synaptic input type of the presynaptic neuron is Excitatory (E), action potentials
are formed in the postsynaptic neuron. It has been observed that when the synaptic entry type is blocker (I), it prevents the
formation of action potentials.

2.2 Generating All Triple-Neuron Brain Network Motifs Using Graph Theory
Graph theory is a mathematical method used to model complex biological systems. Graphs can be directed, undirected, and
mixed. Directed graphs are often used to model biological neural networks. The interconnections of neurons can be described
by the adjacency matrix (Adj). In this matrix, (1) shows a connection between neurons and (0) shows no connection [5], [29],
[48]. The analysis of complex networks and the concept of network motifs is a subject studied in many fields of study [49], [50].
Figure 2 shows a directed graph motif and its adjacency matrix for its synaptic input directions (arrowheads). It has been found
that the neuronal connectivity forming the motif is much stronger than the connections they make with other neurons. This
brings to mind the idea that the motif structure is specialised for a purpose. The network motifs probably protect the behaviour
they display alone when they are connected to other neurons. In all motifs, we consider (A) as the input neuron, (C) as the
output neuron and (B) as the generally drive neuron (C) [7]. In our study; recognizing the input (A), output (C) and driver (B)
roles of neurons, we systematically constructed all triple-neuron motifs using the adjacency matrix method of graph theory. In
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Figure 3: An example of systematically constructing the synaptic input probabilities of three neurons.

Figure 4: Adjacency matrix showing intercellular synaptic inputs for all triple neuron brain network motifs.

order to derive all triple neural network motifs by graph theory, we constructed an adjacency matrix in Figure 3 for an example
similar to that in Figure 2(b). Some of the connection possibilities of A, B, C neurons in the motif with each other are shown
in the example below with three matrices. When three adjacency matrices are combined, each row of the resulting matrix will
represent the connection of a different motif. Since a neuron will not make synaptic input to itself, the corresponding column
will be zero (0) (In neural networks, the neuron does not make a synaptic link with itself). For example, there is no motif since
all zeros are in the first line. The second line describes a motif that provides synaptic input of neurons (A→ C , B→ C ,C → B).
The adjacency matrix containing all triple neuron network motif connections was created in Figure 4. The matrix is constructed
as a six-input truth table. Since the neuron does not create synaptic input with itself, this column has been omitted from the
matrices. All of the synaptic input possibilities that each neuron can make with the others are built into these matrices. All
triple-neuron network motifs were obtained from synaptic input states of neurons in the adjacency matrix formed by combining
four columns. In the first matrix, the synaptic input probabilities of neuron A with neuron B and C were created. Others were
created in the same way. Synaptic input status of the neuron is indicated by (1) and not by (0). For example, case A

[
0 1

]
,

B
[
0 0

]
, C

[
1 1

]
; It describes a motif with synaptic inputs (A → C , C → A, C → B). In this way, taking into account

the table, all triple neuron network motifs were created. In the adjacency matrix created in the form of a 6-variable truth table,
26 = 64 motifs emerge. Some of these motifs are; since it does not carry neuron A input, neuron C output, neuron B driver
characteristics due to synaptic input directions, it was not evaluated. We have shown 38 different motifs suitable for the study
format in Fig. 5. To facilitate analysis, we named the motifs with short names (Motif1 = MTF1), indicating the synaptic input
directions with arrows. Repetitive links were combined and the rest were named sequentially (010000, 000100 etc.). Two major
intercellular synaptic inputs (Basic Motif1 = BMTF1 and Basic Motif2 = BMTF2) found within all motifs were also named.

2.3 Investigation of the Effects of Connection Structure and Synaptic Input Type in Motifs on Short- and Long-Term
Memory Behaviour.
The brain structures of living organisms are a complex network of connections between many neurons [17], [18], [51]. Learning
is thought to be related to motifs (triple, quadruple,) that are often seen in the extensive network of neurons [51]. The short-
58 ECJSE Volume 12, 2025
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Figure 5: All directed triple neuron brain network motifs were generated using graph topology.

Figure 6: (a) Uniformly distributed random current applied externally to the A neuron. (b) Action potentials generated in A
and B neurons when the neurons have synaptic input type (AB-EE).

and long-term memory behaviour of several triple- and quadruple-neuron network motifs has been investigated [52]. In studies
conducted in this area, models with fewer parameters have been preferred in terms of ease of processing to model neuron [7],
[53]. In previous studies, short- and long-term memory behaviour of some motifs comprising three neurons was investigated.
In these studies, it has been shown that neurons form short- or long-term memory depending on the type of synaptic input. In
the action potential graphs seen in the motif output cell, it is assumed that the motifs that continue to produce the output signal
after the external current stimulus to the input neuron is interrupted show long-term memory behaviour. Graphic images that
generate output signals for a while after the external current warning is interrupted are also considered as short-term memory
[7]. By modelling this behaviour in our study, we examined memory behaviours in all possibilities of excitatory-inhibitory states
of synaptic inputs of neurons, of all motifs obtained by graph theory. For this purpose, we examined the short- and long-term
memory formation states of all motifs in Table 1 for these possibilities. To better evaluate the effect of motifs on the memory
behaviour of the intercellular connection pattern and the type of synaptic input of the neurons (Excitatory-E, Esyn = −10mV
Inhibitor-I, Esyn = −70mV , we studied the basic motif (BMTF2) in Fig. 5. In BMTF2 basic connection; neuron A is modelled
with the circuit in Figure 1(b) and neuron B is modelled with the circuit in Figure 1(c). Neuron A receives both external
stimulation current and synaptic input from neuron B. B neuron only receives synaptic input from A neuron. In the experiments,
the uniformly distributed random current form, which is shown in Fig.6.(a) and represents the total excitation from the dendrites
to the soma, can be used as the external input current. When the synaptic input types of A and B neurons are selected as
excitatory (AB - EE), action potentials continue to occur in both A and B neurons, although the external current input is cut off.
A time shift (phase difference) occurs between the voltages Va and Vb seen in Fig. 6.(b). This is because neurons A and B have
reciprocal synaptic inputs and both types of synaptic input are excitatory. In the same structure; when the synaptic input type is
(AB -EI), (AB-IE) and (AB-II), action potential generation ends when the external current input is cut off. When only one of
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Figure 7: In MTF1 motif, external current input (10µA- DC); (a) when applied to A neuron only, (A → C , E) action potentials
generated in C neuron (b) When applied to both A and B neurons, (AB, EE) action potentials generated in C neuron.

Figure 8: When the external current in Figure 3(a) is applied to the A neuron in the MTF8 motif; (a) raster plots of action
potentials generated in C neuron in each of 50 trials when synaptic input types (ABC-EEE), (b) raster plots of action

potentials generated in C neuron in each of 50 trials when synaptic input types (ABC-EEI) are present.

the A or B neurons is stimulated by an external direct current (DC) input (10µA - DC), an action potential occurs in the neuron.
These action potentials, which are formed in the A or B neuron under the influence of the external current, are transmitted to
the C neuron as synaptic input (AB-EE). Thus, a sequence of action potentials is observed in the C neuron at a frequency of
f=68Hz, shown in Figure 7(a). When both neurons A and B are stimulated by external direct current input, action potentials
are generated in both neurons. Thus, the action potentials of the two neurons are transmitted simultaneously to the C neuron
as synaptic input (AB-EE), and the action potential sequence is observed in the C neuron at a frequency of f=72Hz, shown in
Figure 7(b). The reason for the increase in frequency is that the neuron receives more than one synaptic input. When A and B
neurons have synaptic input type (AB-EI, etc.) to C neuron; as one of them is excitatory (E) and the other is inhibitor (I), the
inputs cancel each other’s effect. Thus, no action potential occurs in the C neuron. With these studies; we have examined the
effect of intercellular connection type and synaptic input type. This study was carried out for all motifs in Fig. 5. As an example,
we have shown the studies on the motif we named MTF8 in Fig. 5. First synaptic input type for all neurons in the motif were
selected as excitatory (E) (ABC-EEE). The current shown in Figure 6(a) is applied to neuron A as an external current. The
same application was repeated 50 times to show the difference in the action potential generation time in the C neuron. This
difference is due to the randomness of the external current applied to the input neuron. Fig. 8. (a) shows a raster graph showing
the action potential generation times in one line for each of the 50 trials. This graphical representation is the preferred method
for describing short- and long-term memory behaviour. When the stimulus current is random and uniformly distributed, the
time of the current magnitude that will generate the action potential is variable. Such a current application is for modelling that
the neuron has been excited externally by an electrical signal of random time and magnitude. Although the external current
application was cut off after 80ms, action potentials continued to occur in neuron C as seen in Fig. 8. (a). This is interpreted as
the motif exhibiting long-term memory behaviour. In the same motif, action potentials continued to be produced in the C neuron
for 60ms after the external current application, when the neurons stimulus types (ABC-EEI) were made. This, seen in Figure
8(b), is interpreted as the short-term memory behaviour of the motif. For other possibilities of warnings, these applications
were repeated. In these excitation states (ABC-III, IIE, IEI, IEE, EII, EIE) the motif did not show both memory behaviours. We
performed these applications for all motifs in Fig. 5. From the results obtained, the situations in which the motifs show memory
behaviour were determined and shown in Fig. 9. in the conclusion part.

2.4 Investigation of the Effect of Change in Chemical Synapse Conductivity Function Time Constant Parameter on
Short-term Memory Time
The time constant parameter of the synaptic conductivity function gsyn(t) (equation 18) in intercellular synaptic input, the
model is associated with the synaptic input duration. This function is defined with a time-dependent exponential function so
that the sum of the impulses coming to the dendrites creates an action potential in the neuron. Synaptic input current Isyn(t); is
the product of the conductivity value gsyn(t) and the difference Vm − Esyn of the cell membrane voltage Vm and the synaptic
excitation threshold voltage Esyn (equation 19). As can be seen here, as the time constant of the conductivity value increases,
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Figure 9: Of the motifs in Fig.5., those showing long-term memory behaviour; (numbers above motifs indicate synaptic
input, numbers in the figure indicate synaptic input type) representation of neurons with probabilities of synaptic input

types and frequency of action potential produced in neuron C

the exponential decay time of the conductivity gets longer. The larger the time constant of the function, the longer a synaptic
input state occurs between neurons. Time constant variation has been studied with simpler models in a few four-cell motifs
in the literature [7]. In these modelling studies; the synaptic conductivity time constant has been shown to affect short-term
memory duration in appropriate Motifs [53]. While chemical synapses are formed between neurons, physical changes occur
in dendritic spines [54]. In our study; we examined the effect of synaptic conductivity time constant variation on short-term
memory duration in triple-neuron motif models. For the appropriate motifs in Fig. 10., we show that the short-term memory
duration changes with the change of the neurons communication function time constant. In the experiments in the first chapters,
the time constant value of the interneuron synaptic conductivity function in the motifs was taken as τ = 25ms. In this part of our
study, we examined the short-term memory duration of the neuron at certain values by making the time constant (τ) variable.
Studies in this section were carried out on the MTF8 motif.

3 Results

3.1 Identification of Triple Neuron Network Motifs, which are Long-Term Memory

We studied the effect of all probabilities of the intercellular synaptic input types (E or I) on memory behaviour in all motifs seen
in Fig. 5. For all motifs, we repeated the work described in section 2.3. These motifs were simulated for all intercellular synaptic
input type possibilities, and their long-term memory status was shown in Fig. 9. . Fig. 9. also shows the frequency (f) of the
continuous action potential signal formed in the C output neuron. It is seen that the action potential frequency is close to each
other in different motives and situations. If the output neuron receives more than one synaptic input, due to the motif structure,
the output signal frequency is slightly increased. We have placed this in the table to express the continuity of the signal. With
the synaptic flexibility in the learning process, when such synaptic input types occur between neurons, it is considered that the
information is stored for the long-term. This study also revealed that intercellular connectivity and synaptic entry type play a
very important role in motif analysis. Findings from this part of the study revealed a common feature of triple-neuronal network
motifs displaying long-term memory behaviour. It has been determined that the intercellular connections of these motifs form
a closed loop (in the form of A-C or A-B-C) reaching the output neuron. In the case of appropriate intercellular synaptic input
type, such a loop-forming motif connection can retain information long-term even if the total synaptic input applied to the A
neuron is interrupted. Among the motifs in Fig. 5., those with long-termmemory are shown in Fig. 9. Examples of those listed in
Fig. 9. are MTF30; 4 synaptic entries in the order in the figure (EEEE, EIEE, IEEE, IIEE) become long-term memory, MTF13;
the 6 synaptic inputs, in the order in the figure (EEEEEE, EEEEEI, EEEEIE, EEEEII, EEEIEE, EEIEEE, EEIEEI), become
long-term memory. There is no special order for motifs in the figure.
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Figure 10: Of the motifs in Fig. 5., those showing short-term memory behaviour; (numbers above motifs indicate synaptic
input, numbers in the figure indicate synaptic input type) representation of neurons with probabilities of synaptic input

types and the number of Action Potentials (AP) produced in neuron C.

Table 1: Chemical synaptic conductivity model, effect of time constant variation on short-term memory time.
Synaptic conductivity time constant τ(ms) Short-term memory duration (ms) Number of action potentials

5 - -
10 - -
20 30 3
25 35 5
30 60 6
35 88 8
40 110 9
50 127 11

3.2 Identification of Triple Neuron Network Motifs, which are Short-Term Memory
All the motifs in Fig. 5. were analysed in terms of short-term memory behaviour by the methods described above. In some
motifs; we observed that depending on the synaptic type, the action potentials formed in the output neuron C continued for a
while, although the external current stimulus to the input neuron (A) was ended. This situation evaluates motifs as short-term
memory behaviour. It refers to the retention of information for a while after the warning. Fig. 10. shows motifs that create short-
term memory. Additionally, it shows the number of action potentials generated in neuron C to express the excitation situations
of the neuron s and the retention time of the information. This study revealed the effect of connection and stimulus type on
short-term memory formation in all three-neuron motifs.

3.3 The Effect of the Change in the Time Constant Parameter of the Conductivity Function of the Chemical Synaptic
Communication Model between Neurons on Short-Term Memory Behaviour
The duration and number of action potentials formed in the C neuron were examined for different time constant values from the
studies performed by changing the time constant of the chemical synaptic conductivity function. For this, the case study was
carried out on the MTF8 motif model in Fig. 5. For the different values of the synaptic conductivity time constant (τ) seen in
Table 1, the external current input in Fig. 6. (a) was applied to the neuron (A). The short-term memory time, as measured by the
action potentials that continue to be produced in the C neuron after the external current input is interrupted, is shown in Table
1. From these data; it is seen that with increasing values of synaptic conductivity time constant, the duration and number of
action potentials that occur at the output of the motif increase after external current input. This change prolongs the short-term
memory time.
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Figure 11: Raster plots of action potentials formed in the C neuron for (a) (τ = 25ms) (b) (τ = 35ms) (c) (τ = 50ms) as a
result of experiments repeated 50 times for each of the synaptic conductivity time constant ((τ)) values in the MTF8 motif.

In this section, the variation of short-term memory duration with time constant is graphically shown. From the studies done
in MTF8; the short-term memory times of neurons at different values of the synaptic communication time constant (stimulus
types IEEE) are shown in Fig. 11. This situation can also be evaluated as an increase in synapse strength during learning. It can
be seen from the figures that as the time constant increases, the information retention time also increases.

4 Discussion

This study is about how learning occurs in brain neuronal networks, which aremade up of complex connections. For this purpose,
we generated all tri-neuronal network motifs using graph topology. All created motifs were eliminated considering their ability
to form interneuron connections. In our study, we focused on the effect of the structure of motifs, the type of synaptic input
of neurons, and the time constant of synaptic conductivity on short- and long-term memory behaviour. From the studies on
motifs, all motifs showing long- and short-term memory behaviour were determined by considering the types of interneuron
synaptic input. In addition, the effect of synaptic conductivity time constant in the chemical synapse model between neurons
on short-term memory time was investigated. In the literature; there are studies on several motifs, of which the triple neuron
connection is specific. In our study, we methodically obtained all of the three-neural interconnection possibilities in neural
networks using graph topology. Some of the motifs obtained; it was removed from the work list because it did not contain
three neurons and did not create an input and output neuron state due to the synaptic input direction. Thus, we constructed all
the motif possibilities suitable for the neuronal network structure. In Fig. 5., 38 motif models suitable for these features are
shown. Triple neural network motif structures were determined, suitable for the studies to be carried out in neural networks.
We examined the short- and long-term memory status of the motifs obtained. In triple neural network motifs, one neuron
input, one neuron output, and one neuron drive are considered. In the experiments, an external current is applied to the input
neuron and the behaviour of the output neuron is examined. If the output neuron continues to generate signals even though
the external current input is interrupted, the motif is considered to be long-term memory. If the output neuron generates a
signal for some time after the external current input is interrupted, the motif is considered short-term memory. To conduct these
experiments, we created separate models for each motif in Fig. 5. with Matlab software. The neurons that make up the motif,
according to the interneuron connection structure; the software was modelled as a neuron with only external current input, only
one synaptic input, both external current input and one synaptic input, two synaptic inputs, or no input applied. We used the
Hodgkin-Huxley model for neurons. The synaptic input type probabilities (E,I) of the neurons were tested for each motif and
the action potential generation status of the output neuron (C) was observed in each case. In the results obtained, the states of
producing a continuous action potential were obtained and the states of being long-term memory were determined. All cases
are shown in Fig. 9. Likewise, after the input current is cut off, short-term memory states that produce action potentials in the
output neuron for a while were determined. All cases are shown in Fig. 10. During learning, changes occur in synaptic inputs
between neurons. In addition, physical changes occur in the dendritic spines, which are in the connection from the axon tip to
the dendrites, in the postsynaptic neuron section. These changes are thought to be significantly related to memory. These spines
undergo changes in the form of growth during the learning process. We modelled this growth state by changing the time constant
within the synaptic conductivity model. Thus, the memory time of the motif, which has short-term memory characteristics, is
extended depending on the time constant. We studied this study on a motif, which is short-term memory, at different values of
the time constant. The obtained results are shown in Table 1 and Fig. 11. During learning; the effects of connections between
neurons, direction and type of synaptic input (E,I) on memory formation were examined. In the studies conducted in this area,
a limited number of motifs have been studied. In most of the studies, neuron models with fewer parameters were preferred. In
our study, the Hodgkin-Huxley neuron model, which successfully represents neurons with more parameters, was preferred and
all tripartite neuronal network motifs were studied. In some studies, noise signals are generally used instead of synaptic inputs.
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In our study, if the cell membrane voltage exceeds a certain threshold value as a result of interneuron communication, synaptic
input to the neuron, an action potential is modelled. This is more realistic. Likewise, the effect of neurotransmitters emitted in
the space between neurons making chemical synapses on the postsynaptic neuron was modelled as excitatory or inhibitory. For
this, two different level voltage values of the equilibrium voltage Esyn, which constitutes of the synaptic input current, were
used (E → Esyn = 10V , I → Esyn = −70V ). All motifs and necessary conditions showing long-term memory behaviour are
shown in Fig. 9. All the motives and necessary conditions showing short-term memory behaviour are also presented in Fig.
10. Especially the significant effect on short-term memory behaviour; it has been shown that besides the type of connection,
the synaptic input types of neurons have suitable possibilities. In the studies, short-term memory duration was studied in quad
neuron network motifs. In our study, this time change was modelled with the synaptic input time constant. This situation was
evaluated as a prolongation of the learning process. The effect, which also expresses the physical change in the postsynaptic
region, extended the information retention time. We demonstrated this for various values on a motif. In the neuron model we
used, the deterministic model was preferred for the ion channels of neurons. The cell membrane is considered homogeneous.
However, evaluating the randomness of the ion channels and considering the heterogeneous structure of the cell membrane will
create a more realistic model. While the action potential is forming in the neuron, the arrival of new synaptic inputs can be
prevented (the refractory period). In the three-neuronal motif structure we created; larger network connections can be created
by multiplexing the input, output, driver neurons. Neural coding can be studied on these models.
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Abstract : Ceramic production started with firing earthenware products using fire and has been developed
with various techniques and discoveries until today. Although these developments continue, ceramic products
produced using traditional methods still exist. Considering today’s conditions, it is essential to experimentally
examine different firing environments of ceramics, considering both the cost and the sustainability of the
products. This study aimed to determine the changes caused by the differences between open firing and electric
furnace (800 ◦C) firing environment in the local pottery production center in Sorkun village of Mihalıççık
district of Eskişehir province. For this purpose, water absorption, firing shrinkage, bulk shrinkage, color
measurement, chemical analysis (XRF), mineralogical analysis (XRD), differential thermal analysis (DTA)
and scanning electron microscopy (SEM) analysis of the samples were performed after two firing process.
Based on the obtained results, the values of dry, firing, and bulk shrinkage after open firing suggest that the
separation of structural water and/or the complete occurrence of crystal changes in the ceramic sample are
not fully achieved compared to electric furnaces. It was determined that whiteness (L∗) and redness (a∗)
increased after the electric furnace firing. XRD analysis of results indicated that clinochlore, amphibole,
quartz, fluoro-ederite minerals were determined in open firing samples, anorthite, calcium aluminum silicate,
magnesiohornblende, quartz minerals were determined in electric furnace firing. The presence of clayminerals
in the open firing sample confirms that 800 ◦C was not fully reached.

Keywords : Ceramic, color, electric furnace, open firing, Sorkun, XRD

1 Introduction
Ceramic production, which started with firing earthenware products using fire, has been developed with various technical
solutions and discoveries until today. However, in many ceramic production (pottery) centers located in different geographies,
the equipment and tools developed ages ago are used without much change, and this type of production is called "Primitive
Pottery" today [1]. Since the beginning of prehistoric research, ceramic production has been one of the most critical indicators
in determining social, economic and social differentiation, not only because of technological developments but also because
of the form changes they show depending on their functionality [2]. Ceramics are used not only as daily-use items but also as
bricks and tiles used in construction, oil lamps, jewelry and ornaments, sarcophagi, and children’s toys [3].

The ceramic production cycle consists of rawmaterials, mud processing, shaping, drying, and firing techniques [4]. Although
the clay structure used in ceramic production, shaping techniques and firing methods have changed depending on technological
advances, it is known that traditional methods are still maintained. In ancient times, the centers of the ceramic industry were
located near clay-rich regions, and the bodies of ceramic pieces were generally prepared from raw materials rich in clay, kaolin,
quartz, feldspar, or micaceous formations [5]. In some regions, clay deposits used in antiquity are still used today according to
the oldest traditions [6].

Firing is the most critical stage in ceramic production after raw materials’, shaping, and drying. The prepared ceramic
products’ firing process is carried out to gain durability by chemical reactions thanks to heat energy after the drying process.
When the studies on firing are examined, it is observed that firing started with open firing, single-chamber firing, firing chamber,
and wood-fired kilns, and many alternative firing techniques and kiln (furnace) are used today depending on technological
developments [7], [8].
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Open firing is an outdoor firing method in which ceramic products are placed side by side and on top of each other, and
the fuels (organic materials such as straw, stalks, wood, etc.) are placed in the gaps at the bottom top and between the ceramics
and are fired [9]. Since it is open firing, paying attention to weather conditions is necessary. Exposure to wind and contact
between ceramic forms and fuel make it difficult to control the atmosphere and the temperature in open firing [10]. Due to the
uncontrolled temperature, firing, and color differences are possible [11]. Since the fire in this firing method is in direct contact
with the ceramic body, fractures, and cracks can be high during firing. To partially reduce this damage, some regions have been
protected the pottery underneath from sudden heat change by stacking previously broken pottery pieces on the upper side of the
kiln [12]. In addition to traditional firing methods, electric furnace are widely used to fire ceramic products. Electric furnace
are generally square or rectangular fixed kilns. Such furnaces are preferred to easily adjust the maximum temperature, heating
rate, and thermal homogeneity.

Since open firing and electric furnace methods affect many properties of ceramic products, the thermal profile of firing
including atmospheric conditions (oxydant and reducing atmosphere) can also be considered as a primary factor of ceramic
properties. The parameters that characterize the firing thermal profile are maximum temperature, heating rate, heating time,
thermal homogeneity, and continuity [13]. The studies have reported that the differences between the thermal profiles of open
firings and electrical furnaces are of opposite nature for ceramic production. In kiln firing, the high maximum temperature,
low heating rate, and the ability to soaking/firing time are controlled isothermally are controlled, while these properties in open
firing are completely variable and uncontrollable [14]–[16]. The thermal profile of open firing cannot be kept constant due
to atmospheric conditions. Depending on all these parameters, knowing the reactions that occur during the firing process in
ceramic bodies can help determine the firing temperatures.

Considering the previous literature, although firing temperature prediction studies based on phase characterization have been
investigated in many studies separately, studies in which the differences in firing environments which are examined together
with the structural and phase characterization of the same type of raw materials are a few. This study made inferences about the
physical and structural differences that occur after the open firing, which is still traditionally practiced in Sorkun Village and
the firing of the same raw material in an electric furnace. In addition, the color change, mineralogical properties, and structural
findings obtained after different firing processes were interpreted and discussed.

2 Experimental Methods
This study examined potter’s clay and firing in Sorkun Village, one of the important centers of pottery production. Sorkun
Village is located 12 km away from the Mihaliççik district of Eskişehir and has a high altitude. The most important source of
livelihood of the village is pottery. Two clay mixtures, ‘‘red’’ and ‘‘oily soil,’’ are used in pottery making (Figure 1). Ceramic
pots in different forms are prepared using mud prepared from these clays and left to dry.

Figure 1: Clay and mud preparation a) red clay, b)oily clay, c) mud mixing device, d) prepared mud.

The open firing process is carried out in an open field outside the village of Sorkun when the wind blows strong from one
direction, and ceramic products are fired in one batch (300 to 500 pieces). First, on the straw and sawdust dust laid on the ground
in the open field, the ceramic products are lined up with their mouths directed to the ground. A row of firewood and pots are
laid and the firewood is lined up in the direction of the wind and burned. It is stated in the literature that the temperature value
reaches approximately 750-800 ◦ during firing [17]. At the end of the firing process, the pots are pulled with a ‘‘çeykel’’ and
left to cool (Figure 2).
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Figure 2: Open firing process in Sorkun [17].

Since this study aims to determine the differences between open firing and electric kiln firing, a sample of the product
obtained from open firing in Sorkun village was taken. The clay obtained from Sorkun village was shaped 30x5x1 cm for the
electric furnace. After drying, 800 ◦C firing was carried out in the electric furnace (Figure 3).

Figure 3: Electric furnace a) View of the furnace b) Inside furnace.

Physical tests such as water absorption, firing shrinkage, bulk shrinkage, and color measurements were performed to examine
the changes in ceramic forms in different firing environments. The water absorption, firing shrinkage, bulk shrinkage tests in
Table 1 were carried out according to the test methods explained in the section of "Experiments Applied to Clay and Kaolin"
in "Ceramic Technology" book written by Arcasoy [18]. Color measurements were performed using a Konica Minolta color
meter based on the CIELAB system. L, a, and b color measurements were recorded after open and electric firing. Elemental
determination XRF examinations of the ceramic samples used in the study for the characterization tests were carried out on
a Rigaku brand device. Semi-quantitative chemical analysis results of the prepared samples regarding weight percent were
obtained. Samples taken from different firing environments were ground to a grain size of 100 µm, and XRD analysis was
performed with a the Shimadzu brand XRD-6000 model device. The samples were scanned at 2 ◦/min and analyzed in the range
of 2◦-70◦ (2Θ) ganiometer diffraction angle and 2000 cps (intensity) peak intensity. Additionally, thermal analysis (DTA/TG)
of the raw clay sample was analyzed by SETARAM / labSys Evo device. Scanning electron microscope (SEM) examinations,
which are necessary to examine the surface morphology of the ceramic samples and to perform microchemical analysis of the
minerals, were carried out on the LEO brand, model 1431-VP SEM at AKU Technology Application Research Center (TUAM).

3 Results and Discussion
The changes occurring in different firing environments after open firing, which has traditionally existed in Eskişehir Province
Sorkun Village, and electric furnace applied in today’s conditions were examined. The findings and discussions are given in this
section.

The water absorption, dry shrinkage, firing shrinkage, and bulk shrinkage of the samples used in this study are presented in
Table 1. It was found that the water absorption value for the open firing sample is 15.28%, whereas it is 14.30% for the electric
kiln sample. The amount of water absorption is directly proportional to the amount of pores present in the body. According to
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these results, the water absorption rate is high in the open firing sample due to the number of pores present in the body. When the
values obtained from dry shrinkage, firing shrinkage and bulk shrinkage tests are examined, the values are 5.44%, 0.47% and
5.89% in the open firing sample, while these values are 6.22%, 3.02%, and 9.27% respectively in the electric kiln sample. Based
on the obtained results, the values of dry, firing, and bulk shrinkage after open firing suggest that the separation of structural
water and/or the complete occurrence of crystal changes in the ceramic sample are not fully achieved compared to other firing
conditions.

Table 1: Water Absorption, Dry Shrinkage, Firing Shrinkage, and Bulk Shrinkage values.
Firing Types Water Absorption (%) Dry Shrinkage (%) Firing Shrinkage (%) Bulk Shrinkage (%)
Open Firing 15.28 5.44 0.47 5.89

Electric Furnace 14.30 6.22 3.02 9.27

The color parameters of the ceramic samples after open firing and electric kiln firing are given in Table 2. Among the
parameters used in color measurement, the L∗ value is in the range of black-white (0-100), the a∗ value shows red-green, and
the b∗ value shows a yellow-blue scale.

Table 2: Color parameter values obtained from ceramic samples.
Color Parameters Open Firing Electric Furnace

L 51.54 53.80
a 9.63 15.13
b 18.06 23.26

L parameter of the color properties expresses lightness. While the L value was 51.54 after open firing, the L value was
measured as 53.8 after electric furnace firing. Accordingly, it was determined that the L value increased in the electric furnace
firing. The change in the a parameter indicates redness when a > 0 and greenness when a < 0. When Figure 4 is examined, it
is seen that the value of open firing has a value of 9.63 and the value of electric furnace firing has a value of 15.13. According to
this, it was determined that the color changed towards redness in electric firing. The b parameter of the color properties expresses
yellowness and blueness (b > 0 yellow and b < 0 blue). When the b parameter is examined, it is seen that it has a value of
b > 0 after both firing. Accordingly, the change with the highest b value was obtained after electric furnace firing.

Figure 4: Color change in different firing environments.

In general, it is known that the color of ceramic products is mainly due to the minerals (especially iron oxide) and their
amounts in the clay that make up the material and that the firing environment conditions are also adequate [19]–[21]. The terms
oxidation and reduction refer to how much oxygen is in the kiln’s atmosphere while the kiln is firing. An oxidation atmosphere
has plenty of oxygen for the fuel to burn. A reduction atmosphere occurs when the amount of available oxygen is reduced. This
may not sound like things that will affect your pottery, but it can. The reduction process, when oxygen is leeched out of your
kiln atmosphere and pottery, can change the texture or color of clay. In the study, although the ceramic clay was the same in both
firings, an increase in color parameters was observed after electric kiln firing. It is thought that this difference in color arises
due to the inability to achieve a uniform temperature during the firing process. When clays are fired at high temperatures, the
color increases towards dark red. In other words, it shows that the temperature is high in electric kiln firing, but the open firing
temperature cannot reach the electric firing temperature.

The chemical analysis results of the ceramic samples after firing are presented in Table 3. Upon examining the obtained
chemical results, it was found that SiO2 is the highest chemical component by weight in the samples. The SiO2 content of the
open hearth firing sample is 46.33%, whereas it is 48.56% in the electric kiln firing sample. Considering the MgO and CaO
ratios, which indicate the presence of dolomite and calcite, which are known as carbonates in ceramic samples, it was determined
that the MgO ratio was approximately 16.30% in both firing samples. In comparison, the CaO ratio was 9.05% in the open firing
and 6.07% in the electric furnace firing. One of the clays that make up the Sorkun mud was named red. It indicates the presence
of hematite minerals (Fe2O3) in this clay. The F2O3 ratios after firing are very close to each other and vary between 11.56%
and 11.63%.
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Table 3: XRF results of ceramic samples.
Chemical Composition Firing Types

(% by weight) Open Firing Electric Furnace
SiO2 46.33 48.56
Al2O3 13.30 13.82
Fe2O3 11.56 11.63
MgO 16.30 16.32
CaO 9.05 6.07
K2O 1.08 0.99
Na2O 0.64 0.66
TiO2 1.03 1.13
Cr2O3 0.19 0.19
MnO 0.22 0.24
P2O5 0.17 0.26
NiO 0.13 0.13

According to XRD results, clinochlore, amphibole, quartz, fluoro-ederite minerals were detected in the ceramic sample in
open firing; anorthite, magnesiohornblende and quartz minerals were detected in the sample during electric furnace firing.
Clinochlore is generally a product of hydrothermal alteration of amphibole, pyroxene and biotite and is associated with
serpentine, calcite, dolomite etc. As a result of open firing XRD analysis, the presence of clay minerals (clinochlore, amphibole)
is seen in the structure and shows that very high temperatures for sintering could not be reached.

Figure 5: XRD patterns of ceramic a) Open firing (I: illite, In:Indialite, M: Montmorillonite, A: Albite, Q: Quartz,H:
Hematite), b) Electric furnace firing (I: illite, In:Indialite, A:Albite, Q: Quartz).
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To interpret the structural changes in the sample due to temperature variations, the DTA-TG results of the raw clay sample
are presented in Figure 6. The characteristic endothermic and exothermic reactions identified from the TG, DTG (the derivative
of the weight loss curve), and DTA curves are indicated on the graphs. The sample exhibits a total weight loss of approximately
10.00% within the temperature range of∼30-900 ◦C. In the temperature range of 30-200 ◦C, the endothermic reaction observed
at 110 ◦C on the DTA curve is attributed to the loss of physical water from the clay minerals. The exothermic reaction at 350 ◦C
observed on the DTA curve within the temperature range of∼200-400 ◦C is due to the combustion of likely organics present in
the structure. The weight loss in the temperature range of 400-600 ◦C and the endothermic reaction at 500 ◦C observed on the
DTA curve are associated with the loss of crystal water from the clay minerals. The endothermic reaction observed at ∼650 ◦C
on the DTA curve within the temperature range of ∼600-700 ◦C is thought to be due to the decomposition of the magnesite
mineral. The endothermic reaction observed at ∼740 ◦C on the DTA curve within the temperature range of ∼700-800 ◦C is
attributed to the decomposition of the calcite mineral.

Figure 6: DTA-TG curves of raw clay sample.

Scanning electron microscopy (SEM) was used to examine the microstructure of ceramic samples fired in different firing
atmospheres. When the structures of the open firing and electric firing samples are examined in Figure 6, rod-like structures,
traces of mineral weathering, and small voids are observed. Since the firing temperature of the electric furnace was 800◦C,
similar structures are present on the surfaces of the open firing sample and the microstructural properties have not changed
much. When the SEM images and EDX analyses are evaluated together with the XRD analysis results obtained, 19.31% 2O3

in the mineral ratios in the rod-like structure in the open firing confirms that it is hematite (Figure 7).

Figure 7: SEM micrographs of firing ceramic samples.
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Figure 8: SEM image and EDX analyses of open firing.

Figure 9: SEM image and EDX analyses of electric furnace firing.

4 Conclusions
Firing of ceramic products made from clay using conventional fire obtained from raw materials has evolved over time with
various techniques and discoveries. However, different firing techniques and kilns are used in many ceramic production centers
in different geographies today. In today’s conditions, it is essential to improve the firing conditions considering both the cost
and the sustainability of the products. In this study, the performances of open firing and electric furnace firing were investigated
in a local ceramic production place, Sorkun village of Mihalıççık District of Eskişehir.

Accordingly, the water absorption value was found to be higher after open firing. Similarly, dry shrinkage, cooking shrinkage,
and bulk shrinkage values were also determined to be higher than those of electric furnace firing. The results obtained show that
the separation of crystal water and/or crystal change in the structure of the ceramic sample does not occur completely compared
to other firing environments. As a result of the color measurement test, while the L value was 51.54 after open firing, the L value
was 53.8 after electric furnace firing. Similarly, it was determined that the color parameters a and b increased in electric furnace
firing. It was determined that the chemical analysis values obtained after the firing processes of the ceramic samples were very
close to each other. The highest chemical composition byweight after different firing processes of the ceramic samples was found
to be SiO2. Both XRD and SEM-EDX analysis results confirmed this high value. According to the XRD results, clinochlore,
amphibole, quartz, fluoro-ederite minerals in the ceramic sample under open firing; anorthite, magnesiohornblende and quartz
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minerals were detected in the sample under electric furnace firing. As a result of open firing XRD analysis, the presence of clay
minerals (clinochlore, amphibole) in the structure shows that very high temperatures are not reached for sintering.

In summary, this research will provide significant benefits in terms of issues such as energy consumption, production speed
and sustainability in new studies by bringing together the advanced conditions of the local and industrial environment and
determining the changes in different firing environments.
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Abstract : Dementia or Alzheimer is a disease that causes symptoms such as forgetfulness and loss of
physical ability, which will add to the individual’s life in later stages, along with morphological changes in
the brain. Unfortunately, a definitive treatment for these diseases has not yet been found. However, it is aimed
at slowing down the progression of the disease to ensure that the patient is less affected by these adverse
conditions and to protect living standards with early diagnosis of the disease. In addition, a complete diagnosis
of the disease requires a series of tests and a tiring diagnostic phase to be evaluated by an experienced specialist.
High-resolution magnetic resonance imaging is used to make this determination. This study tries to determine
the stage of the disease or whether the individual is healthy by using MR.MR images of individuals in 4 stages
of the disease, one of which is a healthy individual, were described as a classification problem and tried to be
solved using VGG, Resnet, and Mobilenet architectures. Over %95 success has been achieved by supporting
the proposed architecture with feature analysis and classical architectures.

Keywords : Alzheimer, dementia levels, CNN, SMOTE, classification.

1 Introduction
Nowadays, many diseases seriously affect daily life and quality of life for a long time. Dementia types of especially Alzheimer’s
is one of the most important ones. Generally, there may be age-related memory problems called dementia. To summarize the
relationship between dementia and Alzheimer’s, dementia is a general term for a set of diseases characterized by cognitive
decline, and then Alzheimer’s disease is the most common type of dementia under this generalization. According to the World
Health Organization,%60-%80 of dementia cases result in Alzheimer’s. Alzheimer’s disease (AD), which is the most common
type of dementia, causes memory loss in the brain and disruption of daily life, especially in elderly individuals. AD is a common
type of dementia and neurological disease in which the steps in the progression process that destroy brain cells are critical.
This disease causes a decrease in thinking, memory, and behavioral functions, and symptoms appear gradually with age. The
transition between the stages of the disease can take a long time [1]. The disease has profound physical and psychological
effects on individuals, their families, and their social environments [2]–[5]. As population growth slows down and the elderly
population gradually increases throughout the world, especially in developed countries, the number of Alzheimer’s patients is
increasing, and it is predicted that it will increase annually. Fig. 1 and 2 also contain information on the two patient populations.
Although many clinical studies continue to be conducted worldwide, no treatment has yet been provided to stop the disease [6].
Fig. 1 shows the distribution of patients by age. We observe that the incidence of the disease increases with advancing age. It
should not be forgotten that one of the determining criteria here is that not all individuals live to the age of 85 and above.

When the graph in Fig. 2 is examined, unfortunately, it is predicted that the number of patients will increase every year.
Many reasons leading to this result are mentioned in the literature. Cerebral vascular occlusions, brain infections, vitamin
deficiencies, excessive alcohol use, brain tumors, active ingredients of some drugs, and metabolic or psychological problems
can be listed. Under current conditions, it is not possible to eliminate the disease through the treatment process. As with many
diseases, early diagnosis is essential in dementia and Alzheimer’s. Currently, only the rate of progression can be slowed down,
and patients’ relative quality of life can be kept constant. With early diagnosis and starting treatment in the early stages of the
disease, significant progress can be made before permanent damage occurs in the brain. Analysis of MRI images is widely used
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Figure 1: Distribution of patients by age [7]

Figure 2: Distribution of patients by age in years [7]

in diagnosing AD [8]. With these analyses, it is possible to determine and classify the stages of the disease. Short information
on symptoms and durations depending on the stages of the disease is shown in Fig. 3.

Studies based on traditional machine learning and, especially in recent years, deep learning-based techniques have focused
on developing models for detecting physical, anatomical, and functional disorders due to types of dementia and Alzheimer’s
disease in the human brain [10]–[16].

The studies started by making binary classification, which is the basis of classification. Binary classification is a method that
produces one of two outputs for input data. Binary classification is divided into positive class and negative class. These are “1”
and “0”. For this reason, the classification process was carried out by grouping the data groups labeled as very mild demented,
mild demented, and moderate demented among the classes in the data set as non-demented, which is at risk of disease, and the
data as healthy. There are approaches applied for similar datasets in the literature [3], [17], [18].

In their approach, Nguyen et al. aimed to investigate the ability to detect AD during the first visit of patients with suspected
Alzheimer’s disease. For this reason, they stated that all the data used for the test included only the initial and first visit scans.
They used the Extreme Gradient Boosting method with 5-fold cross-validation. They achieved an average AUC of%100 during
training and%96 in testing. They evaluated machine learning methods from a temporal perspective. They tried to prioritize the
prediction of the 3D-ResNet model through the heat map [19].

Venugopalan et al. study showed that deep models outperformed shallow models, including support vector machines,
decision trees, random forests, and k-nearest neighbors, by using the AD neuroimaging initiative (ADNI) dataset. Integrating
multimodal data outperforms single-mode models in terms of performance evaluation criteria (accuracy, precision, recall, and
average F1 scores). It is seen that approximately %88 success was achieved in the analyses made with the proposed method
[20]

Ahmed et al. examined both the left and right hippocampus regions on MRI images. They analyzed feature extraction and
softmax cross-entropy in convolution neural network (CNN) structures in their study. The analyses used the Gwangju Alzheimer
and Related Dementia (GARD) cohort dataset from the National Dementia Research Center (GARD) in Gwangju, South Korea.
The results obtained achieved an accuracy of %88 [10].
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Figure 3: Changes caused by Alzheimer’s disease in the brain and its [9]

In this study, dementia levels, including Alzheimer’s, were classified with different CNN architectures using MRI data. The
study is constructed as follows: Section II presents information about the dataset containing MRI images frequently used in the
diagnosis of dementia and Alzheimer’s disease and the CNN methods applied to it. Section III includes the data obtained from
the analysis and discusses the data in question. The section mentions conclusions and predictions for future studies, which are
given in Section IV.

2 Materials
The dataset used in the study was obtained from Kaggle [21]. The dataset contains 6400 MRI images. These images contain
images of patient groups belonging to 4 different classes. Sample images are shown in Fig. 4. In all steps carried out within the
scope of this study, a computer with an Intel i5 processor (2.5 GHz Turbo), four cores and 8 MB memory was used. Software
development was done using the Python programming language. All software operations performed in this study used PyCharm
022.2.2 (Professional Edition). Python is a dedicated Python Integrated Development Environment that provides essential tools
in various areas. (IDE). Python-based deep learning tools also offer various advantages in biomedical image analysis. These
tools offer a powerful ability to understand, analyze, and extract features from complex biomedical data sets. These tools can
analyze data from medical imaging devices, classify diseases, and recognize critical anatomical structures. Python-based deep
learning tools offer a robust set of tools to obtain more effective, faster, and accurate results in biomedical image analysis.
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Figure 4: Sample images for different classes

Fig. 5 shows the block diagram of the methodology applied for the multiclass classification of dementia disease. Sub-steps
for each step are included in the diagram.

3 Methods
3.1 Convolutional Neural Networks

CNNs are deep learning models that have been successfully used in visual data analysis tasks such as computer vision, image
recognition, and processing. They have been shown to be very effective in detecting patterns and features in images, especially
in studies. The layers of CNN and their properties are summarized below.
• Convolutional Layers: Convolutional layers are the basic components that help detect features in the input data (for example,
edges, shapes, patterns in images). They perform convolution on the input using filters or kernels. This allows specific patterns
and features to be identified. Each convolution layer can contain multiple filters, each used to identify different features. The
convolution operation transforms the data into smaller and particularly more representative feature maps.
• Pooling Layers: Pooling layers shrink and summarize the feature maps produced by the convolution layers. They usually
work with operations such as maximum pooling or average pooling. Reducing the size of feature maps is important to reduce
computational cost and sensitivity to translations.
• Fully Connected Layers: Fully connected layers are the traditional structures found at the end of the CNN. These layers take
a flattened version of the feature maps and are often used for output tasks such as classification or regression.
These layers help to learn higher-level representations of features. CNN’s main purpose is to recognize complex features in
images or visual data and perform certain tasks (e.g., object recognition, face recognition) using these features. The convolution
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Figure 5: This study flowchart for multi-class classification analysis

and pooling layers help to learn these features in a hierarchical way, while the fully connected layers translate these features into
task results. An attractive alternative to training from scratch is fine-tuning a deep network (especially a CNN architecture) via
transfer learning. Through transfer learning, these trained networks can be used with smaller datasets by fine-tuning only the
fully connected final layers of the CNN. Studies have proven that transfer learning is successful in applications with medical
images [22]–[24].

The performance of traditional approaches was measured using the pre-trained network architectures used in the study.
Visual geometry group (VGG) architecture based Vgg16, Vgg19, residual network (Resnet) based Resnet50, Resnet101 and
mobile network (Mobilenet) based Mobilenet, Mobilenetv2 architectures were used for this study’s analysis. VGG, ResNet,
and MobileNet are three important convolutional neural networks that are considered important building blocks in the field of
deep learning. They have architectures suitable for different tasks. This text will examine the common and different aspects of
these three architectures, focusing on their advantages and application areas.: VGG, ResNet, andMobileNet share convolutional
neural network (CNN) principles. This provides specifically designed building blocks for visual recognition, object detection,
and classification tasks. Transfer Learning Ability: All three models have a common feature in that they can share pre-trained
weights and are suitable for transfer learning applications. This allows them to be used effectively in tasks with limited data.

VGG generally has a simple structure consisting of deep and consecutive layers. ResNet contains blocks spliced together to
solve the vanishing gradient problem that occurs in deep networks. MobileNet, on the other hand, offers a lightweight and fast
architecture for use in mobile and embedded systems. VGG generally has more parameters and higher computational power.
ResNet requires fewer parameters than VGG due to its block structure, which is designed to work more effectively.

MobileNet, on the other hand, is optimized especially for devices with low computing power and storage space. It is designed
to provide high performance on mobile devices and embedded systems. The other two generally require larger computational
resources and, therefore, have broader application areas.

3.2 Proposed Methods
Table 1 contains the layer information of the proposed CNN architecture. After preprocessing, the input dataset will pass the
convolution, dropout, and maximum 2D pooling layers. In the convolution layer, which gives CNN architectures its name, there
are several filters (or kernels) whose parameters must be examined as it progresses. The first and second convolution layers
consist of 16 filters with a kernel size of 128*128. After the next layer, we apply dropout layers in this model to prevent all
neurons from converging toward the same target [25]. We periodically utilize dropout layers to reduce overfitting and increase
generalization error in the entire deep neural network with different architectures. Dropout layers are preferred because their
generalization performance in many datasets outperforms neural networks that do not use dropouts [26].

The CNN architecture proposed in the study was supported by the Synthetic Minority Over-sampling Technique (SMOTE)
approach. Although deep learning is a powerful tool for training complexmodel structures on large data sets, it may present some
challenges, such as unbalanced class distributions. One of several techniques developed to overcome these difficulties is called
SMOTE. SMOTE alleviates the problem of class imbalance by creating synthetic instances to empower the minority class.When
combined with deep learning, the positive features of SMOTE come to the fore. This approach can help the model generalize
better, better represent minority class samples, and avoid overfitting. It can also optimize the performance of deep learning
models by increasing their learning ability, allowing the model to learn rare cases in the minority class better. Therefore, the
SMOTE approach in deep learning can be considered an effective strategy to combat class imbalance and improve the model’s
overall performance.
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Table 1: Proposed model CNN architecture
Model: cnn model Layer (type) Output size Parameter numbers

conv2d (Conv2D) [ 128 128 16 ] 448
conv2d_1 (Conv2D) [ 128 128 16 ] 2320

max_pooling2d (MaxPooling2D) [ 64 64 16 ] 0
sequential (Sequential) [ 32 32 16] 14016
sequential_1 (Sequential) [16 16 64] 55680
sequential_2 (Sequential) [ 8 8 128] 221952

dropout (Dropout) [ 8 8 128] 0
sequential_3 (Sequential) [ 4 4 256] 886272
dropout_1 (Dropout) [ 4 4 256] 0

flatten (Flatten) 4096 0
sequential_4 (Sequential) 512 2099712
sequential_5 (Sequential) 128 66176
sequential_6 (Sequential) 64 8512

dense_3 (Dense) 4 260

In this study, the hyperparameters were tuned to optimize the performance of the convolutional neural network (CNN)
architectures. The learning rate, batch size, and optimizer were systematically adjusted based on performance metrics observed
during validation. The Adam optimizer was selected for its efficiency in converging the model during training. A learning rate
of 0.001 was chosen after testing multiple configurations, ensuring a balance between convergence speed and performance.
The batch size was set to 32, which allowed for efficient use of computational resources while maintaining the stability of
the gradient updates. These hyperparameters were fine-tuned through iterative testing to maximize classification accuracy and
minimize loss across training and validation datasets. The CNN model was constructed with multiple convolutional layers
followed by max-pooling layers to extract spatial features from the input data progressively. The model architecture includes
two initial convolutional layers with 16 filters and 3x3 kernel sizes, followed by convolutional blocks with 32, 64, 128, and
256 filters. Each convolutional block is followed by a max-pooling layer to reduce the dimensionality of the feature maps and
improve computational efficiency. Dropout layers with a 0.2 dropout rate were employed after the deeper convolutional blocks to
prevent overfitting. The fully connected layers included 512, 128, and 64 units, which progressively reduced the dimensionality
of the feature vector before the final classification layer. The final output layer, with a softmax activation function, consisted of
4 units corresponding to the four classes in the dataset. This architecture was selected to balance computational efficiency with
the need for deep feature extraction and classification accuracy.

4 Results and Discussion
The dataset contains 6400 images in total. Images belong to four different classes: ’NonDemented,’ ’VeryMildDemented,’
’MildDemented,’ and ’ModerateDemented.’ The image dimensions were rescaled to 128x128. The parameter numbers used for
parameter analysis of the images are given in Table 2.

Table 2: Parameter numbers
Model: Parameter Type Number

Non-trainable 2368
Trainable 3352980
Total 3355348

When using multi-class classification performance of dementia disease, comparisons were made on five criteria: accuracy
rate, the area under the curve, loss, precision, and recall. All tables and visualizations are presented in a way to emphasize
these features. Loss is a metric that measures how far a model’s predictions are from the actual values during training. The loss
function is used to set the parameters of the model. The model tries to minimize the outcome of this function. Common loss
functions use cross-entropy calculation. In multiple classification problems, cross-entropy measures the probabilities between
multiple classes. Each class has a probability estimate, and the sum of these estimates must be 1.

Accuracy defines the ratio of correctly classified samples to the total number of samples. It is usually expressed as a
percentage (%). However, accuracy may be an inadequate performance measure in dataset situations with unbalanced class
distribution.

AUC generally refers to the area under the ROC (Receiver Operating Characteristic) curve. This curve shows the change of
false positive rate (FPR) with response value, while it shows the change of true positive rate (TPR). AUC takes a value between
0 and 1. An AUC value closer to 1 indicates better classification performance of the model.

Precision refers to the ratio of samples predicted as positive to those that are positive. It aims to reduce the number of
false positives, which are cases where true negatives are incorrectly predicted as positives. Precision measures how much of
the samples classified as true positives are correctly predicted as positive. It aims to ensure that the model does not miss all
instances of positives. False negatives are cases where true positives are incorrectly predicted as negatives.

The proposed model compares transfer learning by employing pre-trained CNN architectures, specifically VGG16, VGG19,
ResNet50, and MobileNet. During transfer learning, the convolutional layers of the pre-trained models were frozen, preserving
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the weights learned from extensive datasets like ImageNet. Only the fully connected layers at the end of the model were fine-
tuned to adapt to the Alzheimer’s dataset. This approach capitalizes on the general feature extraction capabilities of the pre-
trained models while allowing for specialization in the final layers. The fine-tuning process involved adjusting the weights of the
last few layers to better represent the characteristics of the MRI images used for dementia classification, enhancing the model’s
ability to differentiate between the various stages of the disease.

In the first experiment, classification was applied using the data of non-demented and three-stage demented individuals. Pre-
trained network architectures were used for this analysis. Results are obtained using this method, which is shown in Table 3..

Table 3: Traditional pre-trained networks classification result for four classes.
Vgg16 Vgg19 Resnet 50 Resnet 101 Mobilenet Mobilenetv2

Loss 0.7175 0.7000 0.8709 0.8767 1.2799 1.8565
Accuracy 0.6873 0.6919 0.6231 0.6067 0.6719 0.6489
AUC 0.9065 0.9121 0.8630 0.8626 0.8798 0.8481

Precision 0.7312 0.7193 0.6811 0.6493 0.6830 0.6551
Recall 0.6145 0.6411 0.4926 0.5152 0.6740 0.6474

VGG19 architecture has a very deep network structure and a wide learning capacity. This increases the network’s ability to
learnmore complex features and relationships.When dealingwith a complex andmultidimensional problem such asAlzheimer’s
disease, this depth appears to allow the extraction of high-level features and these features to classify disease levels more
accurately. VGG19 architecture can provide better results than other pre-trained network architectures as it can better extract
feature maps using smaller filter sizes and consecutive convolution layers, ensuring that the features derived from previous
layers represent lower-level and general features. In addition, with the transfer learning advantage, it can be said that VGG19
is an architecture with better generalization ability since it has been trained on a large dataset before. The VGG19 architecture
includes various convolution layers and fully connected layers, resulting in more parameters in the model’s learning process.
This allows the model to gain more flexibility and better adapt to the data set. These aspects can explain why the approaches
performed can perform better.

The model, which started with Conv2D layers, captured the spatial relationships in the input data. In these layers, feature
maps were created through filters and essential patterns and building blocks in the data were detected. Conv2D layers performed
deep feature extraction using different filter numbers and kernel sizes. After these convolution layers, the MaxPooling2D layer
was added. The MaxPooling2D layer reduced the computational load of the model by performing dimensionality reduction and
selecting the most significant information in the feature maps. With this layer, the complexity of the model was kept under
control, and overfitting was prevented during the learning process. In addition, multiple Sequential layers were used in the
model to efficiently organize the layers and optimize their interactions with each other. Sequential layers were formed by the
combination of layers added in a certain order, and this structure was intended to increase the modularity and reusability of the
model. Dropout layers were strategically placed to prevent over-learning of the model and to increase its overall performance.
In these layers, certain neurons were randomly disabled during training, making the model more robust and generalizable. A
flatten layer was used to combine and flatten the features. Multidimensional feature maps obtained from the flatten layer and
convolution layers were converted to a one-dimensional vector and transferred to fully connected layers. Themodel classification
process was performed with Dense layers. In Dense layers, learned features were used to increase the classification performance
and it was concluded whether there was Alzheimer’s in the output layer.

Callback mechanisms such as early stopping and learning rate reduction were incorporated into the model’s training process
to prevent overfitting and ensure optimal training performance. Early stopping was used to monitor the validation accuracy,
halting the training if no significant improvement was observed after a patience threshold of five epochs. This strategy helped
mitigate overfitting by ensuring that the model did not continue training beyond the point of diminishing returns. Additionally,
a dynamic learning rate adjustment mechanism was implemented, reducing the learning rate when the validation accuracy
plateaued. These callbacks not only improved the training efficiency but also ensured that the model converged to an optimal
solution without unnecessary iterations, thereby enhancing the overall performance and generalizability of the model.

Callbacks were used in the model implemented using the proposed architecture. Callbacks are functions that are called
when certain events or conditions occur during training. They can perform a few tasks, such as controlling the model’s training,
preventing overfitting, adjusting the training pace, or performing different functions. Early stopping and learning rate adjustment
methods were used in this study. Early stopping is a standard callback used to prevent the model from being overfitting. If a
particular metric (for example, accuracy) does not improve during training, it can automatically stop training. Learning rate is
a vital hyperparameter that determines the training speed. Adjusting the learning rate during training enables faster or slower
learning. In this way, an attempt wasmade to reduce the possibility that the results obtained from themodel would bemisleading.
The callback parameters used in the study are shown in Table 4.

Fig. 6 visualizes the model’s success rates during the training process and its performance on the validation set. The
achievements without the SMOTE method support the robustness and general applicability of the deep learning-based dementia
classification model, highlighting the model’s ability to deal with the minority class in the dataset.
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Table 4: Callback parameters values
Callback parameters Value

Epoch Number 50
Monitor Accuracy
Min_delta 0.01
Patience 5
Mode “max”

Figure 6: Training without SMOTE algorithm for four classes

The last step of the proposed model is aimed at preventing the imbalance between the data by using the SMOTE algorithm
and reducing the error rates by increasing the inter-class predictive ability of the model. SMOTE algorithm was applied to
eliminate data imbalance. The purpose of using this algorithm is to eliminate the imbalance of the dataset by ensuring that all
classes contain equal numbers of data. With this approach, the number of data was 12800. The graphics are given in Fig. 7 in
the analysis, and the test size was determined to be 0.2.

SMOTEwas applied to address the inherent class imbalance in the dataset. SMOTE creates synthetic samples for theminority
classes, thus increasing their representation within the dataset. This method was critical in enhancing the model’s ability to
generalize to minority classes, such as "Moderate Demented" and "Very Mild Demented," which were underrepresented in
the original dataset. The SMOTE algorithm was applied before model training, and its effects were evident in the improved
classification metrics, particularly in precision and recall for the minority classes. By balancing the dataset, the model could
learn more robust feature representations for all classes, ultimately leading to a more reliable classification performance across
the board.

Since the transition between phases of the disease and knowing which stage the patient is at the time of diagnosis are
essential, the classification was first made for very mildly demented, mildly demented, and moderately demented classes. The
results obtained for the four-class and three-class classification problems are shown in Table 5. and Table 6., respectively.

However, when the results obtained from three-class and four-class analyses are evaluated together, classification ability
decreases as the number of classes increases and the nature of the added data changes. The values obtained in the four-class
results are worse for all criteria than the three. Information about the literature studies is shown using the same dataset in Table 7.

The contrastive learning method used by Shu et al. [27] provided an accuracy rate of %92. This rate is considerably higher
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Figure 7: Training without SMOTE algorithm for four classes

Table 5: Results for multiclass classification for four classes
Without SMOTE Model SMOTE Model

Loss 0.7870 0.175
Accuracy 0.7641 0.9520
AUC 0.9236 0.9914

Precision 0.7674 0.9519
Recall 0.7602 0.9512

Table 6: Results for multiclass classification for three classes
Without SMOTE Model SMOTE Model

Loss 0.7684 0.9341
Accuracy 0.7011 0.7500
AUC 0.8309 0.8998

Precision 0.7011 0.7547
Recall 0.7011 0.7485

than the 70.%30 accuracy rate obtained by Mggdadi et al. [28] using the VGG16-based 2D CNN. In the study conducted by
Ajagbe et al. [29] ,%71.02 and%77.66 accuracy rates were achieved with the VGG16 and VGG19 models, respectively, which
shows that different CNN configurations can create significant differences in terms of performance. In this study, it is seen that
similar results are obtained when the traditional methods in question are applied.

The DEMNET model proposed by Murugan et al. [30] reveals that special network configurations can be effective. In
another study, conducted with AlexNet and ResNet-based models, the AlexNet + SVM combination stood out with an accuracy
rate of %94.80 [31]. It shows that integrating traditional machine learning algorithms such as SVM with deep learning models
can improve performance. The hybrid CNN model proposed by Techa et al. [32] and including DenseNet196, VGG16 and
ResNet50, achieved an accuracy rate of %89. Sharma et al. [34] emphasize that transfer learning can be a powerful tool in
Alzheimer’s detectionwith%94.92 accuracy using the Transfer learning and Inceptionmodel. When the results are examined
for proposed method, it is shown that the model’s errors during training have significantly decreased, and it has undergone a
better learning process. While the accuracy rate of the model before SMOTE was applied was %76.41, this rate increased to
%95.20 after SMOTE was applied. This increase shows that the SMOTE method has significantly increased the model’s overall
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Table 7: Literature summary for the same dataset
Reference Method Year Accuracy (%)

Shu et al. [27] Contrastive learning 2018 92.00
Mggdadi et al. [28] 2D CNN 2021 67.50

VGG16 2021 70.30
Ajagbe et al. [29] CNN 2021 71.02

‘‘ VGG16 2021 77.04
‘‘ VGG19 2021 77.66

Murugan et al. [30] DEMNET(Dementia Networks) 2021 95.23
Mohammed et al. [31] AlexNet 2021 92.20

ResNet 2021 93.10
AlexNet+SVM 2021 94.80
ResNet-50+SVM 2021 94.10

Techa et al. [32] A proposed convolution neural network ( included DenseNet196, VGG16 and ResNet50 ) 2022 89.00
Sharma et al. [33] Transfer learning, SVM, and permutation based machine learning 2022 91.75
Sharma et al. [34] Transfer based Inception model 2022 94.92
Hussain et al. [35] Random Forest 2023 91.25

SVM 2023 80.70
CNN 2023 93.96

Proposed method* With SMOTE (three classes) 2024 75.00
‘‘ With SMOTE (four classes) 2024 95.20

performance. The AUC value was %92.36 before SMOTE was applied, while it became %99.14 after SMOTE was applied.
This shows that the classification ability of the model has been significantly improved with SMOTE and provides more reliable
results. It shows that the model’s ability to catch true positives has increased and produces fewer false negative results. This
study aims to contribute to the literature by including a more comprehensive classification framework targeting the stages of
dementia. While focusing on the binary or quadruple-class classification of Alzheimer’s diagnosis using machine learning and
deep learning models, this study applied a three- and four-class classification to guide decision-makers in making decisions
about stage transitions and to provide a similar contribution to the initial diagnosis. Although the proposed method shows lower
accuracy in the three-class classification than the four-class one, it highlights the importance of correctly defining different
disease stages. This finer level of detail can provide valuable clinical insights not emphasized in previous studies that focused
mainly on broader classifications. It offers potential benefits for more detailed diagnostic processes to improve patient care.

In this part, let’s briefly summarize the restrictive reasons and performance criteria. A research limitation is that the data set
used in the analysis cannot be tested on real data. In addition to this situation, the long duration of the analyses can be considered
another limiting factor.

5 Conclusions

This research presented multiple classifications of medical images of Alzheimer’s disease with the proposed CNN, VGG16,
VGG19, Resnet50, Resnet101, Mobilenet, and Mobilenetv2 and demonstrated that deep convolutional neural network
approaches for multiple classifications are possible.

This study aims to contribute to developing effective treatment strategies for the current stage by focusing on the
classification of different dementia stages, including Alzheimer’s disease, by using CNN architectures, providing early diagnosis
and stage determination of the disease. MRI is the most critical imaging method that contributes to this process. The results show
that new approaches reinforced CNN architectures as a powerful tool for diagnosing and classifying dementia levels. In this
study, MRI images containing three and four different classes were classified using different deep learning architectures. The
performance of the obtained classification results was compared through metrics. The study obtained the highest classification
performance using the proposed method. The proposed method achieved the best performance regarding accuracy, area under
the curve, loss, recall, and precision. VGG-19 closely followed it, while Resnet 50 had a lower performance.

When the results obtained for the CNN architecture were compared, it was seen that the dimensionality reduction and feature
acquisition methods applied in the study were effective in detecting dementia levels throughMRI images. In subsequent studies,
the performances of different CNN architectures and the features obtained from these architectures can be evaluated in classical
classifiers to detect dementia levels. Performance evaluations of hybrid models can be made by combining new architectures
with classical methods. It is envisaged that this study will provide a basis for future studies based on image analysis and that
approaches can be used to reduce the mentioned limitations.
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