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The Mathematical Dynamics of the Caputo
Fractional Order Social Media Addiction Design
Bahar Karaman1*, Emrah Karaman2

Abstract
The paper presents the mathematical dynamics and numerical simulations for a fractional-order social media
addiction (FSMA) model. This addiction structure is replaced by involving the Caputo fractional (CF) derivative to
get the FSMA model. In this study, our main goal is to understand how the fractional derivative impresses the
dynamics of the model. Thus, the theoretical properties are first examined. Afterward, the stability properties of
the mentioned model are discussed. Besides, the fractional backward differentiation formula (FBDF) displays
numerical simulations of the model. Observing both theoretical and numerical results, the two equilibrium points’
stability is not impacted by the order of fractional derivatives. However, each solution converges more quickly
to its stationary state for higher values of the fractional-order derivative. Finally, we would like to say that the
acquired numerical results are compatible with our theoretical outcomes.
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1. Introduction
Nowadays, one of the important real-life problems is the use of social media platforms. They have both advantages and

disadvantages. It provides access to information in many parts of education, business, science, and health [1, 2], but intensive
usage of social media can negatively affect both family relationships and people’s daily lives. Besides using social media
extensively can lead to addiction. This situation is one of the significant addictive problems such as alcoholism, smoking, game
addiction, etc. There are many studies on this subject [3–9].

Mathematical frameworks for modeling infectious diseases have an essential role in constructing and understanding the
dynamics of them. Many researchers have applied to models for alcohol and drug, gambling, smoking, social media, and
other addictions [9–13]. Especially after it was noticed that fractional-order models can be better expressed in nonlinear
physical problems than integer-order models, they are used to demonstrate the mathematical model of real-life issues such as
epidemiology, science, economics, and engineering. There are many studies such as [14–18] etc. in the literature. Demirci
proposed a fractional design of Hepatitis B transmission to discuss the analysis of the mathematical model under the effect of
vaccination [14]. An approximate solution fractional structure for hepatitis B virus (HBV) infection was obtained in [15]. Then
the global stability of the model was constructed in this study. Estimating the disease of COVID-19 in India was designated as a
fractional-order SITR by Askar et. al. [16]. They demonstrated the existence and uniqueness of the solution. Also, boundedness
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and nonnegativity for the system were established. In [17], they developed a novel fractional-order COVID-19 model clarifying
the spread of the disease. The generalized Adams-Bashforth-Moulton algorithm was utilized to get the numerical outcomes.
In [18], the authors used the derivatives of type Liouville-Caputo and Conformable to get novel analytic solutions for the
electric circuits.

One of the basic goals of the paper is to propose, analyze, and simulate the FSMA design in terms of CF derivative. The
proposed design yet has not been solved numerically by using the FBDF. In the Matlab environment, we will utilize the code
f lmm2, which is developed by R. Garrappa (for details see [19, 20]). There are three optional techniques in this code, but
we will use the present method to get approximate solutions to the system. Moreover, the stability properties of this present
epidemiological design are discussed. Therefore, the global stability of the mentioned structure is examined utilizing the
Lyapunov stability theorem. Moreover, the regular state’s stability concerning both theoretical and numerical outcomes is not
affected by the order of the fractional derivative. Additionally, as the order of the fractional derivative increases, the solutions
converge to the regular states faster.

This study consists of five parts. The FSMA design firstly will be introduced in Section 2. The mathematical dynamics of
the system will be established in Section 3. We will also search the stability properties in Section 4. In addition, FBDF will be
used to obtain numerical solutions of the given structure in Section 5. We will give a summary in the last section 6.

2. The FSMA Design

The part describes the FSMA structure. Its integer-order model is formulated and analyzed by Alemneh and Alemu [7]
follow as:

dS
dt = π + γηR−βσAS− (k+µ)S,

dE
dt = βσAS− (δ +µ)E,

dA
dt = θδE− (µ + ε +ρ)A,

dR
dt = (1−θ)δE + εA− (µ +η)R,

dQ
dt = kS+(1− γ)ηR−µQ.

(2.1)

There are five categories in the human population according to addiction status in the system (2.1). Individuals in the first
category are not addicted but are susceptible to being addicted. They are represented by S(t). Exposed classes are using social
media less frequently but do not grow to an addicted level and are denoted by E(t). The third category shows addicted people
who spend most of their time on social media and are described by A(t). Recovered populations are defined by R(t). They
recovered from their social media addiction. The last category includes the human populations who forever do not use and quit
using social media and are specified by Q(t). The total number of members of the population is N = S+E +A+R+Q. To
depict a deterministic mathematical model, the following assumptions are considered by the authors [7]:

• The epidemic happens in a closed environment,

• The possibility of being addicted to social media is not attached to race, sex, and people’s social position, members
mix homogeneously, and social media addictive humans will spread to non-addictive when they get in touch with the
compression of addiction.

Kongson et. al. [8] used the Atangana-Balenau-Caputo derivative for the fractional-order differentiation. In this research,
we will consider an initial value problem of FSMA with a CF derivative.

Dα S(t) = π + γηR−βσAS− (k+µ)S,

Dα E(t) = βσAS− (δ +µ)E,

Dα A(t) = θδE− (µ + ε +ρ)A,

Dα R(t) = (1−θ)δE + εA− (µ +η)R,

Dα Q(t) = kS+(1− γ)ηR−µQ,

(2.2)

with initial data S(0) = S0 > 0, E(0) = E0 ≥ 0, A(0) = A0 ≥ 0, R(0) = R0 ≥ 0, Q(0) = Q0 ≥ 0.
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3. Theoretical Results of the Structure
A detailed mathematical analysis of the present structure (2.2) is demonstrated in this part. First of all, the existence and

uniqueness of the solution of (2.2) are discussed based on the given approach in [21].

Theorem 3.1. Let the region be defined as Φ× [0,T1], where Φ = {(S,E,A,R,Q) ∈ R5 : max(|S|, |E|, |A|, |R|, |Q| ≤ ξ )} and
T1 <+∞. There is a single solution Z(t)∈Φ of the recommended model (2.2) with an initial condition Z0 = (S0, E0, A0, R0, Q0),
which is described for all t ≥ 0.

Proof. Consider H(Z) = (H1(Z),H2(Z),H3(Z),H4(Z),H5(Z)) and

H1(Z) = π + γηR−βσAS− (k+µ)S,

H2(Z) = βσAS− (δ +µ)E,

H3(Z) = θδE− (µ + ε +ρ)A,

H4(Z) = (1−θ)δE + εA− (µ +η)R,

H5(Z) = kS+(1− γ)ηR−µQ.

For any Z,Z∗ ∈Φ that

||H(Z)−H(Z∗)|| = |H1(Z)−H1(Z∗)|+ |H2(Z)−H2(Z∗)|+ |H3(Z)−H3(Z∗)|
+|H4(Z)−H4(Z∗)|+ |H5(Z)−H5(Z∗)|
= |π + γηR−βσAS− (k+µ)S− (π + γηR∗−βσA∗S∗− (k+µ)S∗)|
+|βσAS− (δ +µ)E− (βσA∗S∗− (δ +µ)E∗)|
+|θδE− (µ + ε +ρ)A− (θδE∗− (µ + ε +ρ)A∗)|
+|(1−θ)δE + εA− (µ +η)R− ((1−θ)δE∗+ εA∗− (µ +η)R∗)|
+|kS+(1− γ)ηR−µQ− (kS∗+(1− γ)ηR∗−µQ∗)|
≤ |γη(R−R∗)|+ |βσ(AS−A∗S∗)|+ |(k+µ)(S−S∗)|
+|βσ(AS−A∗S∗)|+ |(δ +µ)(E−E∗)|+ |θδ (E−E∗)|
+|(µ + ε +ρ)(A−A∗)|+ |(1−θ)δ (E−E∗)|+ |ε(A−A∗)|
+|(µ +η)(R−R∗)|+ |k(S−S∗)|+ |(1− γ)η(R−R∗)|+ |µ(Q−Q∗)|
≤ (µ +2η)|R−R∗|+(2βσξ +2k+µ)|S−S∗|
+(2βσξ +µ +2ε +ρ)|A−A∗|+(δ +µ +1)|E−E∗|+µ|Q−Q∗|
≤ G||(S,E,A,R,Q)− (S∗,E∗,A∗,R∗,Q∗)||
≤ G||Y −Y ∗||,

where G = max{(µ + 2η),(2βσξ + 2k + µ),(2βσξ + µ + 2ε + ρ),(δ + µ + 1),µ}. Then H(Z) provides the Lipschitz
condition. Therefore, we complete the proof.

3.1 Positivity and boundedness of the solution
This part states the following theorem that ensures the solutions of (2.2) are non-negative and bounded.

Lemma 3.2. [22] Let us assume that u∈C[a,b] and Dα u(t)∈C[a,b] for α ∈ (0,1], then we have u(t)= u(a)+ 1
Γ(α) (D

β u(ξ ))(t−
ξ )α , in here a≤ ξ ≤ t, ∀t ∈ [a,b].

Lemma 3.3. Let u∈C[a,b] and Dα u(t)∈C[a,b] for α ∈ (0,1]. If Dα u(t)≥ 0, ∀t ∈ (a,b), then u(t) is nondecreasing ∀t ∈ [a,b].
If Dα u(t)≤ 0, ∀t ∈ (a,b), then u(t) is nonincreasing on [a,b].

We will demonstrate uniform boundedness of the solution thanks to the next lemma.

Lemma 3.4. [21] Asumme that v(t) is a continuous function on [t0,∞). If v(t) provides

Dα v(t)≤−βv(t)+ξ , v(t0) = v0 ∈ R,

in here 0 < α ≤ 1, α, ξ ∈ R and β 6= 0, and t0 ≥ 0 is an initial time. Then

v(t)≤
(

v0−
ξ

α

)
Eα [−β (t− t0)α ]+

ξ

β
,
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where Eα(t) which is called the Mittag-Leffler function (MLF) with one parameter is described as follows

Eα(t) =
∞

∑
j=0

t j

Γ(α j+1)
,

in here α > 0.

Mittag-Leffler described the MLF in 1903 [23]. Since it is frequently utilized to calculate the solutions of fractional
differential equations, it has great significance in fractional calculus. The advised books to readers are [24]- [26] for a more
comprehensive introduction.

Theorem 3.5. The solutions of our system (2.2) are uniformly bounded and non-negative.

Proof. Let’s describe a function V (t) = S(t)+E(t)+A(t)+R(t)+Q(t). Then

DαV (t) = Dα S(t)+Dα E(t)+Dα A(t)+Dα R(t)+Dα Q(t)
= [π + γηR−βσAS− (k+µ)S]+ [βσAS− (δ +µ)E]
+[θδE− (µ + ε +ρ)A]+ [(1−θ)δE + εA− (µ +η)R]
+[kS+(1− γ)ηR−µQ]
= π−µS−µE−µR−µQ− (µ +ρ)A
= π−µ(S+E +A+R+Q)−ρA
≤ π−µV (t).

Now, let’s apply Lemma (3.4), we obtain

0≤V (t) ≤V (0)Eα(−µ(t)α)+π(t)α Eα,α+1(−µ(t)α))
=V (0)Eα(−µ(t)α)+ π

µ
(1−Eα(−µ(t)α)).

Utilizing Lemma 5 and Corollary 6 in [27], we conclude that 0≤V (t)≤ π

µ
, t→ ∞. Hence, the solutions of the system (2.2)

starting in R+
5 are uniformly bounded within the region Ω1 = {(S,E,A,R,Q) ∈ R+

5 : V (t)≤ π

µ
+ ε0,ε0 > 0}.

Next, to show that the solutions are non-negative. From the model (2.2), we get

Dα S(t)|S=0 = π + γηR≥ 0,
Dα E(t)|E=0 = βσAS≥ 0,
Dα A(t)|A=0 = θδE ≥ 0,
Dα R(t)|R=0 = (1−θ)δE + εA≥ 0,
Dα Q(t)|Q=0 = kS+(1− γ)ηR≥ 0.

The solutions of (2.2) are non-negative according to Lemma 1 and Lemma 2.

Next, the equilibrium points and reproduction number of (2.2) are introduced. There are two possible equilibrium points in
the present design which are called addiction-free and endemic equilibrium points.

The general form of a dynamical system involving the CF derivative is given as

Dα z(t) = h(t,z), z(0) = z0 (3.1)

in here 0 < α ≤ 1.

Definition 3.6. [28] If h(t,z∗) = 0 for a point z∗, the point is called an equilibrium point of the system (3.1).

When E = A = 0, then the addiction-free equilibrium point of (2.2) is obtained from Definition (3.6) following as:
P0 =

(
π

k+µ
,0,0,0, kπ

µ(µ+k)

)
. At this point, there is no addiction in the group.

The important tool, both mathematically and biologically meaningful, is the main reproduction number R0 because it displays
the spread of the addiction. Also, we will analyze the stability of the equilibrium points by using R0. The next-generation
matrix method [29] is used to obtain R0. It is found as

R0 =
βπσθδ

(k+µ)(δ +µ)(µ + ε +ρ)
.
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If R0 > 1, the endemic equilibrium point of the present model occurs. The point P1 can be computed by setting the right
hand side of the proposed design is equal to zero. P1 = (S1,E1,A1,R1,Q1) is given by

S1 = (δ+µ)(µ+ε+ρ)
θδβσ

,

E1 = κ1
κ2
,

A1 = θδE1
µ+ε+ρ

,

R1 = κ1+(δ+µ)E1
γη

,

Q1 = kS1+(1−γ)ηR1
µ

,

in here κ1 =
(k+µ)(δ+µ)(µ+ε+ρ)

βσθδ
−π and κ2 =

γηδ

µ+η

(
1−θ + εθ

µ+ε+ρ

)
−δ −µ .

4. Stability Analysis
The stability properties involving local and global asymptotic stability of the mentioned structure are presented.

Theorem 4.1. The addiction-free equilibrium point, P0, is locally asymptotically stable if R0 < 1.

Proof. Let’s calculate the Jacobian matrix for the model (2.2) evaluated at P0. We get
−k−µ 0 −βπσ

k+µ
γη 0

0 −δ −µ
βπσ

k+µ
0 0

0 θδ −ε−ρ−µ 0 0
0 (1−θ)δ ε −η−µ 0
k 0 0 (1− γ)η −µ

 (4.1)

Some of the negative eigenvalues of (4.1)

λ1 =−µ,λ2 =−k−µ,λ3 =−µ−η

and the other eigenvalues are derived from the quadratic equation

λ
2 +∆1λ +∆2 = 0

in here ∆1 = ε +ρ + 2µ and ∆2 = (δ + µ)(ε + µ +ρ)− βπσθδ

k+µ
. From Routh-Hurwitz criteria, the quadratic equation has

strictly negative real root iff ∆1 > 0, ∆2 > 0 and ∆1∆2 > 0. It is seen easily that ∆1 > 0 and ∆2 can be rewritten as

∆2 = (δ +µ)(ε +µ +ρ)(1− βπσθδ

k+µ
) = (δ +µ)(ε +µ +ρ)(1−R0).

Thus, when R0 < 1, all eigenvalues have the negative real parts.

Theorem 4.2. The endemic equilibrium point, P1, is locally asymptotically stable if R0 > 1.

Proof. The proof can be done in a similar manner as in [7].

The most important concern for the fractional differential equation is about that the global stability of the solution. Now, we
will use the Lyapunov functions to construct the stability of fractional systems. We will first give the following Lemma, which
introduces the extended Volterra-type Lyapunov function to systems of fractional differential equations through an inequality
that was defined by [30] for approximating the CF derivative of the function.

Lemma 4.3. [30] Let’s v(t) ∈ R+ be a continuous function. Then for any time t ≥ t0,

Dα

[
v(t)− v∗− v∗ ln

v(t)
v∗

]
≤
(

1− v∗
v(t)

)
Dα v(t), v∗ ∈ R+, ∀α ∈ (0,1).
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The upcoming result displays the solutions of (2.2) are uniformly continuous. The proof is done in the same manner as
in [31].

Lemma 4.4. The solutions S,E,A,R, and Q of system (2.2) are uniformly continuous functions on [0,∞).

Theorem 4.5. The addiction-free equilibrium point P0 of the present design (2.2) is globally asymptotically stable if R0 < 1
and unstable when R0 > 1.

Proof. Let’s introduce a function V (S,E,A,R,Q) = E + δ+µ

θδ
A, which is called a Lyapunov function. Then,

DαV = Dα E + δ+µ

θδ
Dα A

= βσAS− (δ +µ)E + δ+µ

θδ
[θδE− (µ + ε +ρ)A]

= βσAS− (µ+ε+ρ)(δ+µ)
θδ

A.
(4.2)

When we use the addiction-free point of (2.2), S0 =
π

k+µ
, we have from the Equation (4.2),

DαV = βσAS0− (µ+ε+ρ)(δ+µ)
θδ

A
= (µ+ε+ρ)(δ+µ)

θδ
[ βσπθδ

(k+µ)(µ+ε+ρ)(δ+µ) −1]

= (µ+ε+ρ)(δ+µ)
θδ

[R0−1].

Thus, DαV ≤ 0 when R0 < 1. This conclusion gives that P0 is globally asymptotically stable if R0 < 1.

Theorem 4.6. The endemic equilibrium point P1 of the present model (2.2) is globally asymptotically stable if R0 > 1.

Proof. We establish a Lyapunov function

W (S,E,A,R,Q) =
(

S−S1−S1 ln S
S1

)
+
(

E−E1−E1 ln E
E1

)
+
(

A−A1−A1 ln A
A1

)
+
(

R−R1−R1 ln R
R1

)
+
(

Q−Q1−Q1 ln Q
Q1

)
.

By using Lemma 4.3, we have

DαW ≤
(

1− S1
S

)
Dα S+

(
1− E1

E

)
Dα E +

(
1− A1

A

)
Dα A

+
(
1− R1

R

)
Dα R+

(
1− Q1

Q

)
Dα Q

=
(

1− S1
S

)
[π + γηR−βσAS− (k+µ)S]+

(
1− E1

E

)
[βσAS− (δ +µ)E]

+
(

1− A1
A

)
[θδE− (µ + ε +ρ)A]+

(
1− R1

R

)
[(1−α)δE + εA− (µ +η)R]

+
(

1− Q1
Q

)
[kS+(1− γ)ηR−µQ].

(4.3)

From (2.2), we have that,

π = βσA1S1 +(k+µ)S1− γηR1,

(δ +µ) = βσ
A1S1
E1

,

θδ = (µ + ε +ρ)A1
E1
,

γη = 1−µ
Q1
R1

+ k S1
R1
,

(µ +η) = δ
E1
R1
− (µ + ε +ρ)A1

R1
+ ε

A1
R1
.

(4.4)

Next, using the relations (4.4) into (4.3), we get

DαW ≤ βσA1S1

[
2− S1

S + A
A1
− E

E1
− ASE1

A1S1E

]
+(k+µ)S1

[
2− S1

S −
S
S1

]
+γηR1

[
−1+ R

R1
+ S1

S −
RS1
R1S

]
+(µ + ε +ρ)

[
−A1

A −
A1E
AE1

+ R
R1

+ R1E
RE1

]
+εA1

[
1+ A

A1
− R

R1
− AR1

A1R

]
+µQ1

[
1− Q

Q1
− Q1R

QR1
+ R

R1

]
+δE1

[
1+ E

E1
− R

R1
− ER1

E1R

]
+ kS1

[
S
S1
− R

R1
− SQ1

S1Q + Q1R
QR1

]
.
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Since the arithmetic mean exceeds the geometric mean, then

(
2− S

S1
− S1

S

)
≤ 0,

[
2− S1

S
+

A
A1
− E

E1
− ASE1

A1S1E

]
≤ 0,

[
−1+

R
R1

+
S1

S
− RS1

R1S

]
≤ 0,

[
1+

A
A1
− R

R1
− AR1

A1R

]
≤ 0,

[
1− Q

Q1
− Q1R

QR1
+

R
R1

]
≤ 0,

[
1+

E
E1
− R

R1
− ER1

E1R

]
≤ 0,

and

[
S
S1
− R

R1
− SQ1

S1Q
+

Q1R
QR1

]
≤ 0.

Therefore, DαW ≤ 0.
Let N1 is the largest invariant set in {(S,E,A,R,Q);DαW = 0}. Note that DαW = 0 if and only if S = S1,E = E1,A =

A1,R = R1,Q = Q1 for any time t. Hence, it can be said that N1 = {P1}= {(S1,E1,A1,R1,Q1)}. When R0 > 1, we obtain (2.2)
is globally asymptotically stable at P1 thanks to Lyapunov-LaSalle invariance principle.

5. Numerical Results
Now, we will display the numerical solutions of the FSMA model. The approximate solution is demonstrated by using a

fractional backward differentiation formula. For more detailed information, the readers can read the studies [20, 32–34].
Nonnegative parameters are used to get the numerical outcomes. If we choose π = 0.5,µ = 0.05,β = 0.3,σ = 0.2,θ =

0.7,ρ = 0.01,δ = 0.25,ε = 0.7,κ = 0.01,γ = 0.35 and η = 0.4, then we get the reproduction number as R0 = 0.3838 < 1 and
the result of the numerical solution of the FSMA design as illustrated in Fig. (5.1). In this situation, P0 = (8.3333,0,0,0,1.6667)
is obtained. In Fig (5.1), it can be noted that while the number of exposed, addicted, quit-using, and recovered classes quickly
increases, the number of susceptible populations decreases the first time. After, the number of exposed, addicted, and recovered
populations decreases to zero over time. When exposed and addicted individuals in society heal, the number of recovering
populations increases, and after the addict’s transmission stops, the number of recovered populations decreases to zero. It
should be noted that approximate solutions converge to the point P0. The number of susceptible and quit-using social media
populations is balanced and stable at 8.3333 and 1.6667, respectively.
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Figure 5.1. The Plot of the model for α = 0.998 in the case R0 < 1.

When β = 0.8, R0 = 1.0234 > 1 is obtained. Also, the endemic equilibrium point is

P1 = (8.1429,0.0505,0.0116,0.0265,1.7663)
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in this case. Additionally, the plot of the model is displayed in Fig. (5.2). In this step, we would like to say that approximate
solutions converge to the endemic equilibrium point P1. Moreover, each of the numerical solutions of the structure is displayed
for various fractional orders α = 0.88,0.92,0.96,1 to understand the effect of fractional derivative orders in Fig. (5.3). Remark
that the order of the fractional derivative α does not affect on the regular state’s stability. All obtained solutions also converge
more quickly to the regular states for higher values of α .
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Figure 5.2. Plot of the system for α = 0.998 in the case R0 > 1.
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Figure 5.3. Plots of the infection as a function of time (days) with different values of fractional orders

6. Conclusion Remarks
This study focuses on the analyses of the FSMA design with CF derivative. Firstly, the mathematical analysis is examined.

We verify the local and global analysis of the equilibria stability. FBDF is used to obtain approximate solutions. Numerical
simulations display balance and stability at two equilibrium points P0 and P1 when R0 < 1, and R0 > 1, respectively. Furthermore,
based on both theoretical and numerical outcomes, we notice that the order of fractional derivatives does not affect on the
two equilibria’ stability. However, each solution converges more quickly to its stationary state for higher values of the
fractional-order derivative. Lastly, we would also like to say that the obtained numerical outcomes are compatible with our
theoretical results.
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1. Introduction
The Mersenne sequence is made up of non-negative integers in the form of a power of two minus one and is best known for

some of the prime numbers that make it up, which are called Mersenne primes. These numbers are defined by the recurrence
relation

Mn = 3Mn−1−2Mn−2, for all n≥ 2; (1.1)

with initial terms M0 = 0 and M1 = 1. This recurrence serves as the foundation for their exploration and application in number
theory, forming the sequence:

{Mn}n≥0 = {0,1,3,7,15,31,63,127,255, . . .}.

which is referred as sequence A000225 in the OEIS [1]. Considering the initial values m0 = 2 and m1 = 3, with the identical
recurrence relation mn = 3mn−1−2mn−2, for all n ≥ 2 we have the Mersenne–Lucas numbers. The terms of this sequence
are called Mersenne-Lucas numbers and are expressed in the form mn = 2n +1, which is identified as sequence A000051 in
OEIS [1]. These two classes of numbers are an indispensable concept in number theory, exhibiting significant implications in
domains such as cryptography and the identification of large prime numbers.

In mathematical literature, there have been many studies of the sequences of Mersenne and Mersenne-Lucas numbers. For
example, [2] offers a thorough and detailed examination of these two types of special numbers; in particular, they are intimately
tied to classical problems in the theory of prime numbers, as seen in [3], [4] and [5]. It also looks at practical applications, and
is particularly relevant in the specific context of cryptography, as seen in [6] and [7]. Some generalizations or extensions of the

https://doi.org/10.33434/cams.1598817
https://orcid.org/0000-0001-6684-9961
https://orcid.org/0000-0001-6917-5093
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Mersenne or Mersenne-Lucas sequences, generation functions, and several identities can be found in [8–10] and [11], among
others.

The Leonardo sequence has similarities to the Fibonacci sequence, wherein each term is derived from the sum of the
preceding two terms, with the addition of the constant value one. The recurrence for the Leonardo sequence is:

Len = Len−1 +Len−2 +1, for all n≥ 2;

with initial values Le0 = Le1 = 1. The first few Leonardo numbers are

{Len}n≥0 = {1,1,3,5,9,15,25,41,67,109,177,287, . . .}.

This particular sequence is referenced as A001595 in the OEIS [1]. According [12] and [13, 14], this sequence is very similar
to the Fibonacci sequence, including a relationship between Leonardo’s numbers and Fibonacci’s numbers that is

Len = 2Fn+1−1.

The resurgence of interest in these Leonardo sequences can be attributed to the seminal paper by [15]. Primarily utilized in the
domain of data structure and algorithmic analysis, it is particularly prevalent in the context of balanced trees, see [13] and [14],
among others. Some generalizations or extensions of the Leonardo sequence, generating functions and several identities can be
found at [16]- [23], among others.

In recent publications, [24] proposed the Pell–Leonardo sequence and presented a new sequence with a recurrence
third-order, [25] in the section entitled Generalized Bronze Leonardo sequences deals with the sequences Bronze Leonardo,
Bronze Leonardo–Lucas, and Modified Bronze Leonardo. Another work that is in line with the same logic of these one is [26].
These works motivated the formulation of our work about the Modified Mersenne-Leonardo numbers presented in Section 3
and the subsequent study.

The structure of the present paper is divided into two more sections, as follows. In Section 2, we briefly remember the
Mersenne {Mn}n≥0, and summarize the results of this sequence used in this study. In Section 3, we define the Modified
Mersenne-Leonardo sequence; in particular, in the Subsection 3.1, we introduce the new sequence, detailing its characteristics
and properties in connection with the classical Mersenne sequence. In Subsection 3.2 we present Binet’s formula, which
gives an explicit expression for the terms of the sequence, and the generating function associated with the sequence is
presented. In Subsection 3.3 we present several fundamental identities for Modified Mersenne–Leonardo such as Tagiuri-Vajda,
d’Ocagene and their consequences, accompanied by some numerical examples to illustrate their application. Finally, summation
formulas involving the Modified Mersenne-Leonardo numbers are presented in Subsection 3.4. We conclude with some final
considerations and state some future work on this topic.

2. Mersenne Numbers: A Background

Recall that the characteristic equation associated with equation (1.1) for the Mersenne sequence is given by r2 = 3r−2.
This equation corresponds to the characteristic equation of a Horadam-type sequence, see [27] and [28]. Solving for r yields
that the roots of the equation are r1 = 2 and r2 = 1.

The Binet formula provides a direct method to compute the n-th Mersenne number without having to iterate through the
sequence. This formula offers an efficient way to calculate Mersenne-type numbers based on the sequence structure. Numerous
identities, including Catalan’s identity, Cassini’s identity, and d’Ocagne’s identity, related to Mersenne numbers are presented
in classical literature.

As demonstrated in [8], the Binet formula for the Mersenne sequence is given in the next result:

Lemma 2.1. Let {Mn}n≥0 be the Mersenne sequence. Then:

Mn = 2n−1 . (2.1)

Some of the most important properties that Mersenne numbers satisfy are summarized in the following result:

Lemma 2.2. [8, Proposition 2.5] If M j is the j−th term of the Mersenne sequence, then:

(a) M2
j = 4 j−M j+1

(b) ∑
n
j=0 M j = Mn+1− (n+1) = 2Mn−n .
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According Soykan [11] the sequence {Mn}n≥0 can be extended to negative subscripts by defining

M−n =
3
2

M−(n−1)−
1
2

M−(n−2) (2.2)

for n = 1,2,3, . . .. Therefore, the equation of the recurrence (1.1) holds for all integer n.
An examination of the Table 1, and applying the equation (2.2), it is possible to conclude that:

M−n =−
Mn

2n ,

for all integers n≥ 1.

n 0 1 2 3 4 5 6 7 8 9 10
Mn 0 1 3 7 15 31 63 127 255 511 1023

M−n 0 − 1
2 − 3

4 − 7
8 − 15

16 − 31
32 − 63

64 − 127
128 − 255

256 − 511
512 − 1023

1024
Table 2.1. The first few values of the Mersenne numbers with positive and negative subscripts

To facilitate the understanding of the subsequent result, it is first necessary to establish some preliminary auxiliary results.

Lemma 2.3. Let n,s,k be an non-negative integers and {Mk}k≥0 the Mersenne sequence. Then the following identity holds:

2n+s+k−2n+s−2n+k +2n = 2nMsMk .

Proof. Note that

2n+s+k−2n+s−2n+k +2n = 2n+s(2k−1)−2n(2k−1)
= 2nMsMk .

since M j = 2 j−1 the result follows.

3. The Modified Mersenne–Leonardo Sequence
In this section, we introduce a new numerical sequence called the Modified Mersenne–Leonardo sequence. We begin with

its definition and some of its properties. Next, we present the corresponding Binet formula and generating function. Finally, we
conclude this section by stating several identities.

3.1 Introduction to Modified Mersenne–Leonardo sequence
As we have mentioned before, we found the motivation for our work mainly by the recent publications of [24] and [25],

which introduced a new sequence of numbers with third-order recurrence, respectively, the Pell-Leonardo sequence and
Generalized Bronze Leonardo sequences. In these works, various identities are established for these sequences. Following to
the literature, now, let us define the Modified Mersenne-Leonardo sequence and explore its implications.

We define the Modified Mersenne–Leonardo numbers by using a recurrence relation, which it is stated in what follows:

Definition 3.1. For all integer n≥ 2, the Modified Mersenne–Leonardo sequence {MLn}n≥0 satisfies the following recurrence
relation:

MLn+1 = 3MLn−2MLn−1 +1, (3.1)

with the initial values ML0 = 0 and ML1 = 1.

The first thirteen Modified Mersenne–Leonardo numbers are:

{MLn}n≥0 = {0,1,4,11,26,57,120,247,512,1013,2036,4083,8178, ...}.

We start with elementary observation that the sequence {MLn}n≥0 satisfies the second non-homogeneous linear recurrence.
An equivalent way to write equation (3.1) is

MLn+1 = 3MLn−2MLn−1 +1, (3.2)

by subtracting equations (3.1) and (3.2), we obtain a homogeneous recurrence relation,

MLn+1 = 4MLn−5MLn−1 +2MLn−2 .

The preceding discussion demonstrates that:
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Proposition 3.2. Let be {MLn}n≥0 the Modified Mersenne–Leonardo sequence that satisfies the homogeneous recurrence
relation

MLn+1 = 4MLn−5MLn−1 +2MLn−2 , (3.3)

with initial terms ML0 = 0, ML1 = 1, and ML2 = 4.

The relationship between the Modified Mersenne–Leonardo numbers and the Mersenne numbers is expressed in the
following proposition.

Proposition 3.3. Let be {MLn}n≥0 the Modified Mersenne–Leonardo sequence and {Mn}n≥0 the Mersenne sequence, then

MLn+1−MLn = Mn+1 (3.4)

for all non-negative integer n.

Proof. We will prove this by induction on n. From the definition of Modified Mersenne–Leonardo numbers, we know that
ML0 = M0 = 0 and ML1 = M1 = 1. Now, assume that equation (3.4) is true for all 1 < n≤ k, and we will show that equation (3.4)
also holds for n = k+ 1. Indeed, by applying the induction hypothesis and the homogeneous recurrence relation given by
equation (3.3), we can express:

MLk+1 = 4MLk−5MLk−1 +2MLk−2

= 3MLk−3MLk−1−2MLk−1 +2MLk−2 +MLk

= 3(MLk−MLk−1)−2(MLk−1−MLk−2)+MLk
hip. ind.
= 3Mk−2Mk−1 +MLk .

As Mk+1 = 3Mk−2Mk−1, by equation (1.1), we obtain the result required.

3.2 The Binet formula and generating functions
In this subsection, we introduce the Binet formula as well as the generating and exponential functions associated with the

Modified Mersenne–Leonardo sequence. We also found the limit of the ratio MLk+1/MLk, for all k ∈ N.
The characteristic equation associated with equation (3.3) for the Modified Mersenne–Leonardo sequence is given by

r3 = 4r2− 5r+ 2. The roots are r1 = 1 (the double root of the equation) and r2 = 2. With these roots, the Binet formula
provides a direct method to compute the n-th Modified Mersenne–Leonardo number without having to iterate through the
sequence.

Now we will determine the Binet formula for Modified Mersenne–Leonardo sequence, and we obtain:

Proposition 3.4 (Binet’s formula). Let {MLn}n≥0 be the Modified Mersenne–Leonardo sequence. Then:

MLn = 2n+1− (n+2) . (3.5)

Proof. Using equations (2.1) and (3.4), a straightforward calculation gives us:

ML1−ML0 = 2−1
ML2−ML1 = 22−1

...
...

MLn−MLn−1 = 2n−1 .

So,

MLn−ML0 = (2−1)+(22−1)+ . . .+(2n−1)
= (1+2+22 + . . .+2n)− (n+1)
= 2n+1− (n+2) .

Since ML0 = 0, we arrive at the result.

It follows directly from Proposition 3.4 , and by making use of Lemma 2.2(b), that:
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Corollary 3.5. Let {MLn}n≥0 be the Modified Mersenne–Leonardo sequence. Then:

MLn = Mn+1− (n+1) = 2Mn−n .

Which implies that

Corollary 3.6. Let {MLn}n≥0 be the Modified Mersenne–Leonardo sequence. Then:

MLn =
n

∑
j=0

M j .

In the literature, it is important to note that the function GFan(x) is referred to as the ordinary generating function for the
sequence {an}n≥0, with

GFan(x) =
∞

∑
n=0

anxn = a0 +a1x+a2x2 +a3x3 + . . .+anxn + . . . (3.6)

To make notation easier, let us denote GFan(x) by L(x).
Additionally, making use of the homogeneous recurrence relation (Proposition 3.2), the following result states the ordinary

generating function for the Modified Mersenne–Leonardo sequence.

Proposition 3.7. The ordinary generating function for the Modified Mersenne–Leonardo sequence {MLn}n≥0, denoted by L(x),
is given by

L(x) =
4x

2x3−5x2 +4x+1
.

Proof. According to equation (3.6), the ordinary generating function for the Modified Mersenne–Leonardo sequence is

L(x) =
∞

∑
n=0

MLnxn; then using the equations 4x ·L(x), −5x2 ·L(x) and 2x3 ·L(x), we obtain

−L(x) = −ML0− ML1x− ML2x2− ML3x3 . . .
−MLnxn− . . .

4x ·L(x) = 4ML0x+ 4ML1x2+ 4ML2x3+ . . .
+4MLn−1xn+ . . .

−5x2 ·L(x) = −5ML0x2− 5ML1x3 . . .
−5MLn−2xn− . . .

2x3 ·L(x) = 2ML0x3+ . . .
+2MLn−3xn+ . . .

When we add both sides of these equations, we have:

(2x3−5x2 +4x−1)L(x) = −ML0 +(4ML1−ML0)x+(−5ML0 +4ML1−ML2)x2 +

(2ML0−5ML1 +4ML2−ML3)x3 + . . .

+(2MLn−3−5MLn−2 +4MLn−1−MLn)xn + . . .

= −ML0 +(4ML1−ML0)x+(−5ML0 +4ML1−ML2)x2 +0+0 . . .

Since ML0 = 0, ML1 = 1, and ML2 = 4, the result follows easily.

The exponential generating function Ean(x) of a sequence {an}n≥0 is defined as a power series of the form:

Ean(x) = a0 +a1x+
a2x2

2!
+ · · ·+ anxn

n!
+ · · ·=

∞

∑
n=0

anxn

n!
.

In the next result, we consider an = MLn and make use of equation (3.5), the Binet formula for Modified Mersenne–Leonardo
sequence, and then we obtain the exponential generating function for this sequence.

Proposition 3.8. For all n≥ 0 the exponential generating function for the Modified Mersenne–Leonardo sequence {MLn}n≥0 is

EMLn(x) = 2e2x− (x+2)ex .
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Proof. Note that

EMLn(x) =
∞

∑
n=0

MLnxn

n!
=

∞

∑
n=0

2n+1− (n+2)
n!

xn

=
∞

∑
n=0

2n+1

n!
xn−

∞

∑
n=0

n+2
n!

xn = 2e2x− (x+2)ex.

The Poisson generating function Pan(x) for a sequence {an}n≥0 is given by:

Pan(x) =
∞

∑
n=0

an
xn

n!
e−x .

This function generates the sequence {an}n≥0 in terms of the parameter x. A relationship can be observed between exponential
generation Ean(x) and Poisson generation Pan(x), which may be expressed by the following equation:

Pan(x) = e−xEan(x) .

As a consequence, the corresponding Poisson-generating function is obtained.

Corollary 3.9. For all n≥ 0 the Poisson generating function for the Modified Mersenne–Leonardo sequence {MLn}n≥0 is

PMLn(x) = 2ex− (x+2) .

To conclude this section, we determine the limit of the ratio MLn+1
MLn

, where MLn be the n-th term of Modified Mersenne–
Leonardo sequence. Again, using Binet’s formula, the equation (3.5), we get another property of Modified Mersenne-Leonardo
sequences {MLn}n∈Z, which is stated by the following proposition.

Proposition 3.10. For all non-negative integer n, let MLn be the n-th term of Modified Mersenne–Leonardo sequence, then

lim
n→∞

MLn+1

MLn
= 2 . (3.7)

Proof. We have that

lim
n→∞

MLn+1

MLn
= lim

n→∞

2n+2− (n+3)
2n+1− (n+2)

= lim
n→∞

2

1− n+2
2n+1

− lim
n→∞

n+3
2n+1

1− n+2
2n+1

= 2,

since limn→∞

n+ k
2n+1 = 0, for some integer k fixed.

Furthermore, the following result can be demonstrated by using the basic techniques of the calculation of the limits and
equation (3.7).

Corollary 3.11. For all non-negative integers n, let MLn be the n-th term of Modified Mersenne–Leonardo sequence, then

lim
n→∞

MLn−1

MLn
=

1
2
.
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3.3 Some identities
In this section, we derive and examine several identities associated with the Modified Mersenne–Leonardo sequence

{MLn}n≥0. Through an exploration of these fundamental identities, our objective is to deepen the understanding of the structural
properties and behavior of the Modified Mersenne–Leonardo sequence, clarifying its mathematical significance.

A direct calculation and employing the Binet formula, equation (3.5), yields the following result:

Proposition 3.12. Let n and k be non-negative integers with n≥ k, and {MLk}k≥0 the Modified Mersenne–Leonardo sequence.
Then the following identity holds:

MLn+kMLn−k = 4n+1 +
(
(k(4k−1)− (n+2)(4k +1))2n−k+1

)
+
(
n2 +4n+4− k2) . (3.8)

Proof. Note that

MLn+kMLn−k = (2n+k+1− (n+ k+2))(2n−k+1− (n− k+2))
= 22n+2− (n− k+2)2n+k+1− (n+ k+2)2n−k+1 +(n+ k+2)(n− k+2)

= 4n+1 +
(
(k(4k−1)− (n+2)(4k +1))2n−k+1

)
+((n ·n)+(4 ·n)+4− (k · k)) ,

as required.

As an example, consider n = 4 and k = 3, so we have

ML7ML1 = 247 ·1 = 247,

and we get,

45 +(3(43−1)−6(43 +1))22 +(42 +42 +4−9) = 1024+(189−390)4+27 = 247 .

From Proposition 3.12 follows the next result.

Corollary 3.13. Let n be non-negative integers, and {MLn}n≥0 the Modified Mersenne–Leonardo sequence. Then the following
identities hold:

(a) MLn+2MLn−2 = n2 +
(
2n+3−17n−4

)
2n−1 +4n ;

(b) MLn+1MLn−1 = n2 +
(
2n+2−5n−7

)
2n +4n+3 .

Proof. Setting k = 2 and k = 1, respectively, in equation (3.8). Since M2 = 3 and M4 = 15, we have the result.

Other interesting result:

Proposition 3.14. Let be non-negative the integers n and {MLk}k≥0 the Modified Mersenne–Leonardo sequence. Then the
following identity holds:

MLm+3MLm+4−MLm+1MLm+6 = (84n+160)2n +6 .

Proof. Note that

MLm+3MLm+4−MLm+1MLm+6 = [2n+4− (n+5)][2n+5− (n+6)]− [2n+2− (n+3)][2n+7− (n+9)]
= 2n+2[(n+8)−4(n+6)]+2n+5[4(n+3)− (n+5)]+6
= (84n+160)2n +6,

as required.

Take n = 5, and we present the following example, and we have

ML8ML9−ML6ML11 = 502 ·1013−120 ·4083 = 18566 ;

on the other hand

(84 ·5+160)25 +6 = 580 ·32+6 = 18566.

The following result demonstrates the efficacy of the Binet formula and helps to illustrate the convolution identity for the
Modified Mersenne–Leonardo sequence.
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Proposition 3.15 (Convolution’s Identity). Let {MLn}n≥0 be the Modified Mersenne–Leonardo sequence, we have the following
identities:

MLm−1MLn +MLmMLn+1 = 10 ·2m+n− (6m+10)2n− (3n+8)2m +(2mn+5m+3n+8)

for all m and n non-negative integers.

Proof. Applying the Binet formula for Modified Mersenne–Leonardo sequence, equation (1.1), we have

MLm−1MLn +MLmMLn+1 = [2m− (m+1)][2n+1− (n+2)]+ [2m+1− (m+2)][2n+2− (n+3)]

= [2m+n+1− (n+2)2m− (m+1)2n+1 +(m+1)(n+2)]+ [2m+n+3− (n+3)2m+1− (m+2)2n+2 +(m+2)(n+3)]

= 10 ·2m+n− (6m+10)2n− (3n+8)2m +(2mn+5m+3n+8)

as required.

Now, the Tagiuri-Vajda’s identity for the Modified Mersenne–Leonardo sequence {MLn}n≥0 is stated in as follows.

Theorem 3.16. Let n,s,k be non-negative integers, and {MLn}n≥0 the Modified Mersenne–Leonardo sequence. We have

MLn+sMLn+k−MLnMLn+s+k = 2n+1[(n+2)MsMk− kMs− sMk]+ ks , (3.9)

where {Mn}n≥0 is the Mersenne sequence.

Proof. Using equation (3.5) again we obtain that

MLn+sMLn+k−MLnMLn+s+k = [2n+s+1− (n+ s+2)][2n+k+1− (n+ k+2)]− [2n+1− (n+2)][2n+s+k+1− (n+ s+ k+2)]

= (n+ s+ k+2)2n+1− (n+ k+2)2n+s+1− (n+ s+2)2n+k+1 +(n+2)2n+s+k+1

= [2n(2n+k+s−2n+s−2n+k +2n)]+ [4(2n+k+s−2n+s−2n+k +2n)]− [2s(2n+k−2n]− [2k(2n+2−2n].

By Lemma 2.3 we have

MLn+sMLn+k−MLnMLn+s+k = 2n ·2nMsMk +4 ·2nMsMk−2k ·2nMs−2s ·2nMk + ks

= 2n[(2n+4)MsMk−2kMs−2sMk]+ ks

and we have the validity of the result.

In this example, take n = 4, s = 1 and k = 3, and we have

ML5ML8−ML4ML8 = 57 ·247−26 ·502 = 1027 ,

on the other hand

25[6M1M3−3M1−1M3]+3 = 32[6 ·7−3−7]+3 = 1027 .

As a consequence of Tagiuri-Vajda’s identity, the subsequent results of this section establish the respective identities of
d’Ocagne, Catalan, and Cassini for the Mersenne-Leonard numbers.

First the d’Ocagne identity:

Proposition 3.17. Let r,n be non-negative integers with r ≥ n, and {MLn}n≥0 the Modified Mersenne–Leonardo sequence, then

MLn+1MLr−MLnMLr+1 = 2n+1[(n+1)Mr−n− (r−n)]+(r−n),

where {Mn}n≥0 is the Mersenne sequence.

Proof. Consider k = r−n and s = 1 in equation (3.9), then

MLn+1MLr−MLnMLr+1 = 2n+1[(n+2)M1Mr−n− (r−n)M1−Mr−n]+ (r−n)

as M1 = 1, we have

MLn+1MLr−MLnMLr+1 = 2n+1[(n+1)Mr−n− (r−n)]+(r−n),

which proves the result.
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Now, the Catalan identity:

Proposition 3.18. Let n,k be non-negative integers with n ≥ k, and {MLn}n≥0 the Modified Mersenne–Leonardo sequence,
then

MLn+kMLn−k− (MLn)
2 = 2n−k+1[(1+2k)kMk− (n+2)M2

k ]− k2 , (3.10)

where {Mn}n≥0 is the Mersenne sequence.

Proof. Let us assume that s =−k in equation (3.9), and then

MLn+kMLn−k−ML2
n = 2n+1[(n+2)M−kMk− kM−k− (−k)Mk]+ k(−k).

Since M−k =
−Mk

2k , the result follows.

As a consequence of Catalan’s identity is

Corollary 3.19. For all non-negative integer n, we have

ML2
n−MLn+2MLn−2 = (9n−12)2n−1 +4,

where {MLn}n≥0 is the Modified Mersenne–Leonardo sequence.

Proof. By doing k = 2 in equation (3.10), we have

MLn+2MLn−2−ML2
n = 2n−2+1[(1+22)2M2− (n+2)M2

2 ]−22

= 2n−1[10M2− (n+2)M2
2 ]−4,

since M2 = 3, we get

MLn+2MLn−2−ML2
n = 2n−1[30−9(n+2)]−4,

and we have the result required.

Another consequence of Catalan’s identity, by doing k = 1 in equation (3.10) and since M1 = 1, we have the following
result.

Corollary 3.20. [Cassini’s identity] For all n ∈ Z then

ML2
n−MLn+1MLn−1 = (n−1)2n +1,

where {MLn}n≥0 is the Modified Mersenne–Leonardo sequence.

As a example, consider n = 10, so we have

ML2
10−ML11ML9 = (2036)2−4083 ·1013 = 9217 ,

and we get,

9 ·210 +1 = 9217 .

To finish this subsection, making the substitution of n = 2m in Corollary 3.20, we obtain:

Corollary 3.21. For all integer m≥ 1, we have

ML2
2m−ML2m+1ML2m−1 = (2m−1)4m +1,

where {MLn}n≥0 is the Modified Mersenne–Leonardo sequence.

This corollary is other Cassini’s type identity where in this case, the first term on the left side of the equation is always
considered with an even subscript.
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3.4 Sum of terms involving the Modified Mersenne–Leonardo numbers
In this section, we present the results of our investigation into the partial sums of the Modified Mersenne–Leonardo numbers,

considering a variable number of terms. Specifically, we analyze the sequence of partial sums, defined as the sum of the terms
of the Modified Mersenne–Leonardo sequence for a given non-negative value of n,

n

∑
k=0

MLk = ML0 +ML1 +ML2 + · · ·+MLn ,

for n≥ 0, and where {MLn}n≥0 is the Modified Mersenne–Leonardo sequence.

Proposition 3.22. Let {MLn}n≥0 be the Modified Mersenne–Leonardo sequence, the following identities hold:

(a) ∑
n
k=0 MLk = Mn+2−

(n+2)(n+3)
2

,

(b) ∑
n
k=0 ML2k =

2
3

M2n+1− (n+1)(n+2) ,

(c) ∑
n
k=0 ML2k+1 =

8
3

M2n+1− (n+1)(n+3) .

where {Mn}n≥0 is the Mersenne sequence.

Proof. (a) Follows from the definition of partial sum of terms of the Modified Mersenne–Leonardo numbers, and making use
of the Binet formula for Modified Mersenne–Leonardo sequence, the equation (3.5), we get

n

∑
k=0

MLk = ML0 +ML1 + · · ·+MLn

= (2−2)+(22−3)+(23−4)+ · · ·+
(
2n+1− (n+2)

)
= (1+2+22 + · · ·+2n+1)−

(
1+2+3+ · · ·+(n+2)

)
= 2n+2−1− (n+2)(n+3)

2
,

and we have the result required.
(b) See that

n

∑
k=0

ML2k = ML0 +ML2 ++ML4 + · · ·+ML2n

= (2−2)+(23−4)+(25−6)+ · · ·+
(
22n+1− (2n+2)

)
= 2(1+22 +24 · · ·+22n)−2

(
1+2+3+ · · ·+(n+1)

)
= 2

(22)n+1−1
22−1

− (n+1)(n+2) ,

as required.
(c) Similarly, we have

n

∑
k=0

ML2k+1 = ML1 +ML3 + · · ·+ML2n+1

= (22−3)+(24−5)+(26−7)+ · · ·+
(
22n+2− (2n+3)

)
,

making using of (b), which verifies the result.

Remark 3.23. Firstly, see that (n+2)(n+3)
2 is always integer, if n is even then n+2 is even; otherwise, n+3 is even. Now, it can

be demonstrated that 3 = 22−1 divides M2n+1 = (22)n+1−1 since that the condition a−b divides ak−bk for all integers a,b
and k non-negative is satisfied.

A direct consequence of the Proposition 3.22 is the next result.
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Proposition 3.24. Let be {MLn}n≥0 is the Modified Mersenne–Leonardo sequence and {Mn}n≥0 is the Mersenne sequence.
For n≥ 0, the following identities hold:

n

∑
j=0

(−1)kMLk = (n+1)− 6
8

M2n+1;

if last term is negative, and

n

∑
j=0

(−1)kMLk =
2
3
(M2n+3−3M2n+1)+(n+1);

if last term is positive.

Proof. (a) First, note that the last term is negative, which results in the following considerations:

2n+1

∑
k=0

(−1)kMLk = ML0−ML1 +ML2−ML3 + · · ·+ML2n−ML2n+1

= (ML0 +ML2 + · · ·+ML2n)− (ML1 +ML3 + · · ·+ML2n+1)

=
n

∑
k=0

ML2k−
n

∑
k=0

ML2k+1 .

In accordance with Proposition 3.22, items (b) and (c), the result can be deduced.
(b) In which case that last term is positive, so

2(n+1)

∑
k=0

(−1)kMLk = ML0−ML1 +ML2−ML3 + · · ·+ML2n−ML2n+1 +ML2n+2

=
n+1

∑
k=0

ML2k−
n

∑
k=0

ML(2k+1).

Similarly, as in item (a), the result can be obtained by applying Proposition 3.22.

Finally, in the context of sequences, the difference operator, denoted by ∆, is defined as ∆an = an−an−1, where {an}n≥0 is
a sequence.

Making Sn = ∑
n
k=0 MLk for all integer n≥ 0, consider the sequence {Sn}n≥0, where {MLn}n≥0 is the Modified Mersenne–

Leonardo sequence.

Proposition 3.25. Let be {MLn}n≥0 be the Modified Mersenne–Leonardo sequence and Sn = ∑
n
k=0 MLk. For all integer n≥ 1,

the following identities hold:

(a) ∆Sn = MLn ,

(b) ∆2Sn = Mn−1 ;
(c) ∆3Sn = 2n−1 .

where {Mn}n≥0 is the Mersenne sequence.

Proof. (a) Using the Proposition 3.22, item (a), we have

∆Sn = Sn−Sn−1

=

(
Mn+2−

(n+2)(n+3)
2

)
−
(

Mn+1−
(n+1)(n+2)

2

)
= 2n+1− (n+2) ,

which verifies the result.
(b) By combining Proposition 3.3 and item (a).
(c) A straight calculation.
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4. Final Considerations
In this paper, we introduced the Modified Mersenne-Leonardo numbers and studied their properties. The aim of this work

was to define the Modified Mersenne-Leonardo sequence as an extension of the Mersenne sequence and to examine some of its
properties, particularly the recurrence relation, summation formula, and generating function.

We hope that this study will serve as motivation for further research, enabling a deeper exploration of the properties and
applications of these sequences. We believe that they can be extended to the sets of complex numbers, quaternions, and hybrid
numbers.
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1. Introduction
The set containing all sequences of real or complex numbers is symbolized by ω . Each linear subspace of ω is referred to as

a sequence space. Any complete metric sequence space Θ with continuous coordinates fs : Θ−→ C, described by fs(u) = us,
is named as an FK-space for all u = (us) ∈ Θ and s ∈ N, where C represents the complex field and N = {0,1,2,3, . . .}.
Furthermore, a BK-space is a normed FK-space. Some prominent examples of sequence spaces are c (the space of convergent
sequences), c0 (the space of null sequences), `∞ (the space of bounded sequences), and `p (the space of p-summable sequences).

The aforementioned spaces are BK-spaces due to the norms ‖u‖`∞
= ‖u‖c = ‖u‖c0

= sups∈N |us| and ‖u‖`p
=(∑∞

s=0 |us|p)1/p

for 1≤ p < ∞.
Consider D = (drs)N×N as an infinite matrix with real or complex elements. It will be denoted by Dr = (drs)

∞
s=0 the

sequence in the rth row of D for every r ∈ N. The D-transform of a sequence u = (us) ∈ ω , denoted by (Du)r, is described as
∑

∞
s=0 drsus, assuming that the series converges for every r ∈ N.

Consider the sequence spaces Θ and Λ. A matrix D is called as a matrix mapping from Θ to Λ, if for all u ∈Θ, the image
Du belongs to Λ. The class of all such matrices that defines a mapping from Θ to Λ is denoted by (Θ : Λ). Additionally, the
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notation ΘD is employed to represent the set of all sequences for which the D-transform is contained in Θ, as expressed by:

ΘD = {u ∈ ω : Du ∈Θ}.

In this case, ΘD ⊂ ω , too and ΘD is named as matrix domain of D .
If Du∈ c for every u∈ c, the matrix D is known as conservative matrix. Moreover, the conservative matrix D that preserves

the limit is known as regular.
In the presence of a linear bijection, which preserves the norm between Θ and Λ, these spaces are linearly isomorphic

spaces, and this situation is denoted by Θ∼= Λ.
When u = (us) ∈ Λ, if ν = (νs) ∈ Λ for all vectors ν that satisfy the condition |νs| ≤ |us| for s ∈ N, in that case the set

Λ ∈ ω is said to be normal.
Consider that the sequence es whose sth term is 1 and remaining terms are 0 and e = (1,1,1, ...). For an FK-space Λ, it can

be given the following definitions:

1. [1] Λ is a wedge space if es→ 0 in Λ,

2. [2] Λ is a conservative space if c⊂ Λ,

3. [2] Λ is a semi-conservative space if ΛG ⊂ cs (equivalently c0 ⊂ Λ) for ΛG = {(G (es)) : G ∈ Λ′}, where Λ′ denotes the
continuous dual of Λ.

Let the acronym ψ represents the set of sequences whose terms are all zero except for a finite number of them. For an
FK-space Λ⊃ ψ , the sth section of u ∈ Λ is denoted by u[s] = ∑

r
s=1 uses. If u[s]→ u (s→ ∞) for all u ∈ Λ, it is said that the

FK-space Λ⊃ ψ has AK. Moreover, if ψ is dense in Λ, in that case it is said that Λ has AD. It should be noted that if Λ has
AK, then Λ has AD.

Studies examining new spaces obtained by the aid of special matrices and necessary basic concepts about sequence spaces
can be found in studies [3, 4, 5, 6, 7, 8, 9, 10, 11].

It is known from [12], [s]p,q, the (p,q)-integer number s is described as

[s]p,q =

{
ps−qs

p−q , s = 1,2,3, ...,
0, s = 0,

for each s ∈ N and 0 < q < p≤ 1.
Moreover, the q-integer number is described by

[s]q =
1−qs

1−q
, (s = 1,2,3, . . .), q 6= 1.

Based on the above discussion, by choosing p = 1, [s]p,q is reduced to [s]q, and it is understood that limq→1− limp→1− [s]p,q =
s. Extensive information about q- and (p,q)-calculus can be obtained from studies [12, 13, 14].

The (p,q)-Cesàro matrix C(p,q) =
(
cp,q

rs
)

is described as

cp,q
rs =


pr−sqs

[r+1]p,q
, (0≤ s≤ r),

0, (s > r)

for 0 < q < p≤ 1 [15].
Due to the triangularity of C(p,q), its inverse C(p,q)−1 =

({
cp,q

rs
}−1
)

is expressed uniquely in the form

{cp,q
rs }

−1 =

{
(−1)r−s pr−s[s+1]p,q

qr , (r−1≤ s≤ r),
0, otherwise.

The q-analogue of C1 (the first order Cesàro mean) is denoted by C(q), while the (p,q)-analogue is denoted by C(p,q). When
p = 1, it is obvious that C(p,q) simplifies to C(q), which then reduces further to C1 as q→ 1. As a result, C(p,q) is a
generalization of the matrices C(q) and C1.

The space bv, described as the domain of the forward difference operator ∆ on `1, is in the form

bv =

{
u = (us) ∈ ω :

∞

∑
s=1
|us−us+1|< ∞

}
.
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Furthermore, bv is a BK space with the norm

‖u‖bv =
∞

∑
s=1
|us−us+1| (∀u = (us) ∈ bv).

The Hahn sequence space h described in [16] is expressed by

h =

{
u = (us) ∈ ω :

∞

∑
s=1

s|us−us+1|< ∞

}
∩ c0

and it is a BK-space with

‖u‖=
∞

∑
s=1

s|us−us+1|+ sup
s
|us| for all u = (us) ∈ h.

Furthermore, Rao [17] obtained that h is a BK space with AK with

‖u‖h =
∞

∑
s=1

s|us−us+1| for all u = (us) ∈ h.

After that, Goes [18] described the generalized Hahn space hd expressed by

hd = {u = (us) ∈ ω :
∞

∑
s=1
|ds||us−us+1|< ∞}∩ c0

for d = (ds) ∈ ω and ds 6= 0.
A more general form of the Hahn sequence space is presented in [19] by

hd = {u = (us) ∈ ω :
∞

∑
s=1

ds|us−us+1|< ∞}∩ c0

for an unbounded and monotonically increasing sequence d = (ds) of positive real numbers. Studies examining Hahn sequence
spaces and the necessary basic concepts about this field can be found in studies [17, 18, 19, 20, 21, 22, 23, 24, 25].

In this study, primarily, a new BK-space is described as the domain of C(p,q) in the Hahn sequence space h, as an
application of (p,q)-calculus to sequence spaces. After that, in order to specify the position of the mentioned space between the
others, inclusion relations are incorporated, some algebraic and topological properties are examined, and its duals are calculated.
At the end, some matrix transformations are presented.

2. Hahn Sequence Space h(C(p,q))

This section focuses on constructing a new Hahn sequence space h(C(p,q)), the relevant inclusion relations, some algebraic
and topological properties of the aforementioned space, and its basis.

The sequence ν = (νr), which is the C(p,q)-transform of any sequence u, is expressed as

νr = (C(p,q)u)r =
r

∑
s=0

pr−sqs

[r+1]p,q
us. (2.1)

Now, we construct the new generalized Hahn sequence space h(C(p,q)) by using (p,q)-Cesàro matrix as follows

h(C(p,q)) =

{
u = (ur) ∈ ω :

∞

∑
r=1

r |∆(C(p,q)u)r|< ∞ and lim
r→∞

(C(p,q)u)r = 0

}

where

∆(C(p,q)u)r = (C(p,q)u)r− (C(p,q)u)r+1

=
r

∑
s=0

(
pr−sqs

[r+1]p,q
− pr+1−sqs

[r+2]p,q

)
us−

qr+1

[r+2]p,q
ur+1 (r ∈ N). (2.2)
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We see that h(C(p,q)) = hC(p,q). In other words, h(C(p,q)) is domain of C(p,q) in h. It can be noted that, as p→ 1, the space
h(C(p,q)) is reduced to the space h(Cq) presented by Yaying et al. [23].

On the other hand, it is possible to rewrite equation (2.1) as

ur =
r

∑
s=r−1

(−1)r−s pr−s[s+1]p,q
qr νs (2.3)

assuming that terms of sequences with negative indexes are 0.

Theorem 2.1. h(C(p,q)) is a BK-space with

‖u‖h(C(p,q)) =
∞

∑
r=1

r |∆(C(p,q)u)r|< ∞. (2.4)

Proof. It seems reasonable to suggest that since the matrix C(p,q) is triangular and h is BK-space with || · ||h, according to
Theorem 4.3.2 of [2, p.61], h(C(p,q)) is BK-space with (2.4).

Theorem 2.2. h(C(p,q))∼= h.

Proof. For all u in h(C(p,q)), describe the mapping τ : h(C(p,q))→ h as τu = C(p,q)u = ν . In this case, τ is linear and
one-to-one. Assuming that u = (us) is defined as in (2.3), then ν = (νr) can be any sequence in h.

Given that ν ∈ h, by taking into consideration (2.2) and (2.3), it is reached that

‖u‖h(C(p,q)) =
∞

∑
r=1

r |∆(C(p,q)u)r|

=
∞

∑
r=1

r

∣∣∣∣∣ r

∑
s=0

(
pr−sqs

[r+1]p,q
− pr+1−sqs

[r+2]p,q

)
us−

qr+1

[r+2]p,q
ur+1

∣∣∣∣∣
=

∞

∑
r=1

r

∣∣∣∣∣ r

∑
s=0

(
pr−sqs

[r+1]p,q
− pr+1−sqs

[r+2]p,q

)( s

∑
j=s−1

(−1)s− j ps− j[ j+1]p,q
qs ν j

)

− qr+1

[r+2]p,q

(
r+1

∑
s=r

(−1)r+1−s pr+1−s[s+2]p,q
qr+1 νs

)∣∣∣∣∣
=

∞

∑
r=1

r |∆νr|= ‖ν‖h < ∞.

Consequently, we understand that u ∈ h(C(p,q)) and τ is onto and preserves the norm.

Theorem 2.3. The following inclusion relations hold:

1. h⊂ h(C(p,q))

2. h(C(p,q))⊂ `1(C(p,q))

Proof. 1. Let 0 < q < p≤ 1. It is obvious that the inclusion h⊂ h(C(p,q)) holds. Besides, let us consider the sequence
f = ( fs)s∈N =

(
q[s+1]p,q−p[s]p,q

qps+1

)
. In that case,

lim
s→∞

fs = lim
s→∞

(
q[s+1]p,q− p[s]p,q

qps+1

)
= lim

s→∞

[
1

p−q

(
1−
(

q
p

)s+1
)
− 1

q

(
1−
(

q
p

)s)]

=
1

p−q
− 1

q
=

2q− p
q(p−q)

6= 0.
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Thus f is not a sequence in h. On the other hand, C(p,q) f = b = (bs) =

[(
q
p

)s]
∈ h. This follows from the following

illustrations: We ensure that ∑s s|bs−bs+1|< ∞, because
(

q
p

)s

→ 0 for s→ ∞. We have

∑
s

s|bs−bs+1|=
∣∣∣∣ qp − q2

p2

∣∣∣∣+2
∣∣∣∣ q2

p2 −
q3

p3

∣∣∣∣+3
∣∣∣∣ q2

p2 −
q3

p3

∣∣∣∣+ · · ·
=

q
p2 |p−q|+2

q2

p3 |p−q|+3
q3

p4 |p−q|+ · · ·

=
q
p2 (p−q)

(
1+2

q
p
+3

q2

p2 + · · ·
)

≤ q
p2 (p−q)

1(
1− q

p

)2

=
q

p−q
< ∞.

2. Consider the sequences bk = 2k (k ∈ N) and ν = (νs) with

νs =

{
0, s 6= 2k,
1
s , s = 2k.

In that case, it is seen that the inclusion h⊂ `1 is strict. Consider that

us =
s

∑
j=s−1

(−1)s− j ps− j[ j+1]p,q
qs ν j

for each s ∈ N. Since,

(C(p,q)u)r =
r

∑
s=0

pr−sqs

[r+1]p,q
us =

r

∑
s=0

pr−sqs

[r+1]p,q

s

∑
j=s−1

(−1)s− j ps− j[ j+1]p,q
qs ν j = νr,

we obtain C(p,q)u = ν ∈ `1\h and thus ν ∈ `1(C(p,q))\h(C(p,q)).

Theorem 2.4. h(C(p,q)) has AK.

Proof. Consider that u = (ur) ∈ h(C(p,q)) with

(C(p,q)u)r =
∞

∑
s=r

[
(C(p,q)u)s− (C(p,q)u)s+1

]
.

Then, it is reached that

r|(C(p,q)u)r | ≤
∞

∑
s=r

s
∣∣(C(p,q)u)s− (C(p,q)u)s+1

∣∣
and consequently

lim
r→∞

r|(C(p,q)u)r|= 0. (2.5)

By the relation (2.5), we obtain that

‖u−u[r]‖C(p,q) = r
∣∣(C(p,q)u)r+1

∣∣+ ∞

∑
s=r+1

s
∣∣(C(p,q)u)s− (C(p,q)u)s+1

∣∣
which tends to zero, as r→ ∞.
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Since every space that has AK also has AD, it can be given the next result:

Corollary 2.5. h(C(p,q)) has AD.

Theorem 2.6. h(C(p,q)) is not normal.

Proof. Let us take sequences u = (ur) = (1,−1,0,0,0, ...) and ν = (νr) = (1,1,0,0,0, ...) such that |ur| ≤ |νr| for each positive
integer r. Then, one can see that

∞

∑
r=1

r|∆(C(p,q)u)r |=
q(p−q)3

p

∞

∑
r=1

rprqr

(pr+1−qr+1)(pr+2−qr+2)
< ∞

that is, u ∈ h(C(p,q)) by D’Alembert’s Ratio Test and

∞

∑
r=1

r|∆(C(p,q)ν)r |=
∞

∑
r=1

rpr−12pr+2−qr+2−qr+1 p
(pr+1−qr+1)(pr+2−qr+2)

= ∞.

Thus, it is obtained that ν /∈ h(C(p,q)).

Theorem 2.7. h(C(p,q)) is a wedge space.

Proof. For 0 < q < p≤ 1, from the equation

‖em−0‖C(p,q) =
∞

∑
r=1

r|∆(C(p,q)em)r|

=
qm(m−1)
[m+1]p,q

+
∞

∑
r=m

r|∆(C(p,q)em)r|

=
qm(m−1)
[m+1]p,q

+
∞

∑
r=0

(r+m)

∣∣∣∣ prqm

[r+m+1]p,q
− pr+1qm

[r+m+2]p,q

∣∣∣∣
=

qm(m−1)(p−q)
pm+1−qm+1 +

∞

∑
r=0

(r+m)prqm
∣∣∣∣ [r+m+2]p,q− p[r+m+1]p,q

[r+m+1]p,q[r+m+2]p,q

∣∣∣∣
=

(m−1)(p−q)

p
(

p
q

)m
−q

+
∞

∑
r=0

(r+m)prqm
∣∣∣∣ qr+m+1

[r+m+1]p,q[r+m+2]p,q

∣∣∣∣
=

(m−1)(p−q)

p
(

p
q

)m
−q

+
∞

∑
r=0

(r+m)prqr+2m+1(p−q)2

(pr+m+1−qr+m+1)(pr+m+2−qr+m+2)
,

we obtain that em→ 0 as m→ ∞ in h(C(p,q)), as desired.

Theorem 2.8. h(C(p,q)) isn’t a conservative space.

Proof. By choosing u = e ∈ c, we have

lim
r→∞

(C(p,q)u)r = lim
r→∞

pr−sqs

[r+1]p,q
=

(
q
p

)s p−q
p
6= 0.

Consequently, u /∈ h(C(p,q)).

Theorem 2.9. h(C(p,q)) isn’t a semi-conservative space.

Proof. Take the sequences u = (ur) = (1,1,0,0,0, ...) ∈ c0 with the limit point 0. Then, one can see that

∞

∑
r=1

r|∆(C(p,q)u)r |=
∞

∑
r=1

rpr−12pr+2−qr+2−qr+1 p
(pr+1−qr+1)(pr+2−qr+2)

= ∞

Thus, u /∈ h(C(p,q)).
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A matrix domain ΘD has a basis iff Θ has a basis for a triangle D ([26]). It can be inferred that the Schauder basis of
h(C(p,q)) is formed by the inverse image of the basis of h. This fact leads to the following outcomes:

Theorem 2.10. Consider a sequence b(s) = {b(s)}s∈N of the elements of the space h(C(p,q)) as

b(s)r =

 (−1)r−s pr−s[s+1]p,q
qr , s≤ r ≤ s+1,

0 , otherwise.

In this case, {b(s)}s∈N is a basis for h(C(p,q)), and any u ∈ h(C(p,q)) has a unique representation of the form

u = ∑
s

λsb(s), (2.6)

where λs = (C(p,q)u)s (s ∈ N).

Proof. From the relation

C(p,q)b(s) = es ∈ h, (2.7)

we reach that {b(s)} ⊂ h(C(p,q)). For u ∈ h(C(p,q)) and n ∈ N, consider

u[n] =
n

∑
s

λsb(s). (2.8)

In that case, it is obtained by applying C(p,q) to (2.8) by the aid of (2.7) that

C(p,q)u[n] =
n

∑
s

λsC(p,q)b(s) =
n

∑
s
(C(p,q)u)ses,

and

{
C(p,q)

(
u−u[n]

)}
k
=

{
0, 0≤ k ≤ n,
(C(p,q)u)k, k > n,

for all k,n ∈ N. For an ε > 0, ∃n0 ∈ N 3

|(C(p,q)u)s|<
ε

2
(∀n≥ n0).

In that case,∥∥∥u−u[n]
∥∥∥

h(C(p,q))
= sup

r≥n
|(C(p,q))r| ≤ sup

r≥n0

|(C(p,q))r| ≤
ε

2
< ε

for all n≥ n0, which proves that u ∈ h(C(p,q)) given by (2.6).
Consider another representation of u as u = ∑s µsb(s). From the continuity of the linear bijection τ described in the proof of

the Theorem 2.2, it is obtained

(C(p,q)u)r = ∑
s

µ

[
C(p,q)b(s)

]
r
= ∑

k
µe(s)r = µr,(r ∈ N)

and this contradicts the situation (C(p,q)u)r = λr. Hence, (2.6) is unique.
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3. Dual Spaces
The aim of the current part is to ascertain duals of our novel sequence space. Hereafter, we refer to the set of all limited

subsets of N as N . Initially, let us provide a lemma which will be employed in the next results.

Lemma 3.1. [17] The following claims are true:

(i) D = (drs) ∈ (h : `1) iff

∞

∑
r=1
|drs|< ∞, (s = 1,2, ...) (3.1)

sup
s

1
s

∞

∑
r=1

∣∣∣∣∣ s

∑
j=1

dr j

∣∣∣∣∣< ∞. (3.2)

(ii) D = (drs) ∈ (h : c) iff

sup
r,s

1
s

∣∣∣∣∣ s

∑
j=1

dr j

∣∣∣∣∣< ∞, (3.3)

lim
r→∞

drs exists (s = 0,1,2, ...). (3.4)

(iii) D = (drs) ∈ (h : c0) iff

lim
r→∞

drs = 0, (3.5)

and (3.3) holds.

(iv) D = (drs) ∈ (h : `∞) iff (3.3) holds.

(v) D = (drs) ∈ (h : h) iff (3.5) holds and

∞

∑
r=1

r |drs−dr+1,s|< ∞, (s = 1,2, ...)

sup
s

1
s

∞

∑
r=1

r

∣∣∣∣∣ s

∑
j=1

(dr j−dr+1, j)

∣∣∣∣∣< ∞.

Theorem 3.2. Define the sets ϒ1, ϒ2, ϒ3 and ϒ4, as follows:

ϒ1 =

{
u = (us) ∈ w :

∞

∑
r=1

∣∣∣∣(−1)r−s pr−s[s+1]p,q
qr tr

∣∣∣∣< ∞

}
,

ϒ2 =

{
u = (us) ∈ w : sup

s

1
s

∞

∑
r=1

∣∣∣∣∣ s

∑
j=1

(−1)r−s pr−s[s+1]p,q
qr tr

∣∣∣∣∣< ∞

}
,

ϒ3 =

{
u = (us) ∈ w : sup

r,s

1
s

∣∣∣∣∣ s

∑
i=1

s+1

∑
i=s

(−1)i−s pi−s[s+1]p,q
qi ti

∣∣∣∣∣< ∞

}
,

ϒ4 =

{
u = (us) ∈ w : ∃(ηs) ∈ ω 3 lim

s→∞

s+1

∑
i=s

(−1)i−s pi−s[s+1]p,q
qi ti = ηi

}

for all i = 1,2, . . . . Then the following statements hold:

1. {h(C(p,q)u))}α = ϒ1∩ϒ2,

2. {h(C(p,q)u))}β = ϒ3∩ϒ4,

3. {h(C(p,q)u))}γ = ϒ3.
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Proof. 1. Let us describe the matrix G = (grs) by aid of t = (tr) ∈ ω by

grs =

 (−1)r−s pr−s[s+1]p,q
qr tr , (r−1 6 s 6 r)

0 , (otherwise)

for all s,r ∈ N. By (2.3), it is reached that

trur =
r

∑
s=r−1

(−1)r−s pr−s[s+1]p,q
qr trνs = (Gν)r, (r ∈ N). (3.6)

It follows from (3.6), tu = (trur) ∈ `1 whenever u ∈ h(C(p,q)) iff Gν ∈ `1 whenever ν ∈ h. Hence, by (3.1) and (3.2), it
is concluded that {h(C(p,q))}α = ϒ1∩ϒ2.

2. Let us define the matrix T = (tsi) using the sequence t = (ts) by

tsi =


s+1

∑
i=s

(−1)i−s pi−s[s+1]p,q
qi ti , (s 6 i 6 s+1),

0 , (otherwise),

for all r,s ∈ N. Assuming that t = (ts) ∈ {h(C(p,q))}β , the resulting sequence tu = (tsus) ∈ cs converges for all
u = (us) ∈ {h(C(p,q))}. To arrive at this conclusion, we examine the equality obtained by the rth partial sum of the
series ∑

r
s=0 tsus with (2.3)

r

∑
s=0

tsus =
r

∑
s=0

(
s

∑
i=s−1

(−1)s−i ps−i[i+1]p,q
qs νi

)
ts

=
r

∑
s=0

(
[s+1]p,q

qs νs−
p[s]p,q

qs νs−1

)
ts

=
r−1

∑
s=0

(
[s+1]p,q

qs ts−
p[s+1]p,q

qs+1 ts+1

)
νs +

[r+1]p,q
qr trνr

=
r−1

∑
s=0

(
s+1

∑
i=s

(−1)i−s pi−s[s+1]p,q
qi ti

)
νs +

[r+1]p,q
qr trνr (3.7)

for any r ∈ N. Recognizing that h(C(p,q))∼= h, we consider the limit that r approaches infinity in (3.7). Given that the
series ∑

r
s=0 tsus is convergent, the series

r−1

∑
s=0

(
s+1

∑
i=s

(−1)i−s pi−s[s+1]p,q
qi ti

)
νs

is also convergent and the term [r+1]p,q
qr trνr in the right side of (3.7) must tend to zero, as r→ ∞. Since h ⊂ c0 this is

achieved with [r+1]p,q
qr trνr ∈ `∞, we therefore have

∞

∑
s=0

tsus =
∞

∑
s=0

(
s+1

∑
i=s

(−1)i−s pi−s[s+1]p,q
qi ti

)
νs = (T ν)s (3.8)

for any s ∈ N. Hence, T = (tsi) ∈ (h : c). Thus, the conditions in (3.3) and (3.4) conditions are satisfied by the matrix T .
Hence, t = (ts) ∈ ϒ3∩ϒ4.

Conversely, suppose that t = (ts) ∈ ϒ3∩ϒ4. Then, we again obtain the relation (3.8) by using (3.7). Therefore, since we
have T = (tsi) ∈ (h : c) the series ∑

∞
s=0 tsus is convergent for all u = (us) ∈ h(C(p,q)). Hence, t = (ts) ∈ {h(C(p,q))}β ,

that is, the conditions are sufficient.

3. We see from (3.3) that tu is an element of bs whenever u in h(C(p,q)) iff T ν is an element of `∞ for ν in h. As a
consequence, by (3.3), it is deduced that {h(C(p,q))}γ = ϒ3.
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4. Matrix Mappings

Here, we provide some matrix mapping classes from h(C(p,q)) to µ ∈ {c0,c, `∞, `1,h}. Define the infinite matrix A whose
(r,s)th term ars is given by

ars =
s+1

∑
i=s

(−1)i−s pi−s[s+1]p,q
qi dri

for all r,s ∈ N.

Theorem 4.1. D = (drs) ∈ (h(C(p,q)) : µ) iff

A ∈ (h : µ) (4.1)(
[m+1]p,q

qm drm

)
m∈N
∈ µ (4.2)

for all r,m ∈ N

Proof. Let D ∈ (h(C(p,q)) : µ). Then, Du exists for all u = (us) ∈ h(C(p,q)), and belongs to the space µ . Thus, Dm ∈
{h(C(p,q))}β which confirms the necessity of the conditions in (4.1) and (4.2).

Conversely, assume that the conditions in (4.1) and (4.2) hold. Let u = (us) ∈ h(C(p,q)). Then, Dm ∈ {h(C(p,q))}β for
each m ∈ N, and Du exists. Therefore, we obtain the equality shown below:

m

∑
s=1

drsus =
m

∑
s=1

drs

(
s

∑
i=s−1

(−1)s−i ps−i[i+1]p,q
qs νi

)

=
m−1

∑
s=1

(
s+1

∑
i=s

(−1)i−s pi−s[s+1]p,q
qi dri

)
νs +

[m+1]p,q
qm drmνm (4.3)

for every r,m ∈ N. In the light of the condition in (4.2) and passing to limits as m→ ∞ in (4.3), we deduce the following
equality

∞

∑
s=1

drsus =
∞

∑
s=1

arsνs

for all r,s ∈ N, where the matrix A = (ars) is defined as in (4.1). Thus A maps h into µ . This implies that Aν = Du ∈ µ is
required.

Now, combining Lemma 3.1 and Theorem 4.1, the following result is obtained:

Corollary 4.2. The following claims are true:

(i) D ∈ (h(C(p,q)) : c0) iff

sup
r,s

1
s

∣∣∣∣∣ s

∑
j=1

ar j

∣∣∣∣∣< ∞, (4.4)

lim
r→∞

ars exists (s ∈ N). (4.5)

hold, and

lim
r→∞

ars = 0 for all s ∈ N (4.6)

also holds.

(ii) D ∈ (h(C(p,q)) : c) iff (4.4) and (4.5) hold, and

sup
r,s

1
s

∣∣∣∣∣ s

∑
j=1

ar j

∣∣∣∣∣< ∞, (4.7)

lim
r→∞

drs exists (s ∈ N).

also hold.
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(iii) D ∈ (h(C(p,q)) : `∞) iff (4.4), (4.5) and (4.7) hold.

(iv) D ∈ (h(C(p,q)) : `1) iff (4.4) and (4.5) hold, and

∞

∑
r=1
|ars|< ∞, (s = 1,2, ...)

sup
s

1
s

∞

∑
r=1

∣∣∣∣∣ s

∑
j=1

ar j

∣∣∣∣∣< ∞.

(v) D ∈ (h(C(p,q)) : h) iff (4.4), (4.5) and (4.6) hold, and

∞

∑
r=1

r |ars−ar+1,s|< ∞, (s = 1,2, ...)

sup
s

1
s

∞

∑
r=1

r

∣∣∣∣∣ s

∑
j=1

(ar j−ar+1, j)

∣∣∣∣∣< ∞.

5. Conclusion
As an application of matrix summability methods to Banach sequence spaces, in this research, we presented a BK sequence

space h(C(p,q)), which is the domain of the conservative (p,q)-Cesàro matrix C(p,q) (the (p,q)-analogue of the first order
Cesàro mean) on the Hahn sequence space. This work is an example of the broader application of (p,q)-calculus in the
construction of Banach spaces.

As a future scope, we will study the normed and paranormed domains of the (p,q)-Cesàro matrix in some well-known
spaces.
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Abstract
This study is predicated on the exploration of lemmas pertaining to the Hermite-Hadamard-Fejér type integral
inequality, focusing on both trapezoidal and midpoint inequalities. It delves into the realm of trigonometrically
convex functions and is structured around the foundational lemmas that govern these inequalities. Through
rigorous analysis, the research has successfully derived novel theorems and garnered insightful results that
enhance the understanding of trigonometric convexity. Further, the study has undertaken the application of these
theorems to exemplify trigonometrically convex functions, thereby providing practical instances that underline the
theoretical developments. These applications not only serve to demonstrate the utility of the newly formulated
results but also contribute to the broader field of convex analysis by introducing innovative perspectives on
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1. Introduction
Convex functions are utilized and extensively researched across a variety of fields, from physics to economics, mathematics

to statistics, and even medicine. They are known to be among the most significant areas of study in the current century, with
a vast body of literature dedicated to them. Amidst the importance of convex functions in the literature, many authors have
identified and studied various types of convex functions. Research on these various types of convex functions has been and
continues to be extensive and expanding.
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One of the most significant classes of convex functions is the family of h-convex functions, originally explored and
expanded in the foundational works of Varošanec [1] and Bombardelli and Varošanec [2]. This notion of h-convexity
has proven remarkably versatile, giving rise to various specialized convexity classes such as s-convexity, (s,P)-convexity,
trigonometric convexity, and exponential trigonometric convexity [3–5]. These generalized convexities have, in turn, facilitated
the development of numerous refined inequalities of Hermite-Hadamard-Fejér type, as well as several new integral inequalities
extending classical results [6–10]. For instance, Budak et al. [7, 11–13] obtained new trapezoid and midpoint-type inequalities
for generalized quantum integrals, and additionally derived integral inequalities for conformable fractional integrals by
employing the weight functions inherent in Fejér-type inequalities, whereas Çelik et al. [9] introduced generalized Milne-type
inequalities under conformable fractional integrals. Demir [3] established novel Hermite-Hadamard-type inequalities for
exponential trigonometric convex functions, while Demir et al. [5] derived Simpson’s-type inequalities within the framework
of trigonometric convexity. These advances build upon the classical insights of Hadamard [14] and Fejér [15], whose
pioneering works laid the groundwork for modern research on convex functions and their associated integral inequalities.
Later investigations by Dragomir and Pearce [8] offered a comprehensive survey of Hermite-Hadamard-type results, and
Kadakal [16] further specialized these inequalities to trigonometrically convex functions. More recently, Turhan [4] presented
novel generalizations of integral inequalities for trigonometrically-p functions, thereby highlighting the ongoing expansion and
applicability of h-convexity in contemporary mathematical research.

Since the definition of convex functions inherently relies on an inequality condition, they are widely used in mathematics to
find new lower or upper bounds, that is, for optimization. The well-known Hermite-Hadamard (H-H) inequality in the literature
is stated for a continuous function ξ : T → R, for all k, l ∈ T with k < l,

ξ

(
k+ l

2

)
≤ 1

l− k

l∫
k

ξ (x)dx≤ ξ (k)+ξ (l)
2

.

If ξ is a concave function, the inequality is reversed [14]. This inequality has been applied to many classes of convex
functions; with the help of various lemmas, theorems on trapezoidal and midpoint type inequalities have been derived and
results have been presented.

The introduction of the weighted version of the Hermite-Hadamard (H-H) inequality by Fejér in 1906 represents a significant
evolution in the analysis of convex functions, culminating in what is now recognized as the H-H Fejér type inequality. This
seminal development not only enriched the mathematical framework for examining convex functions but also facilitated the
derivation of a broad spectrum of theorems and results tailored to various conditions of the weight function. Such advancements
have had profound implications on both the left and right sides of different H-H inequalities, underscoring the historical
importance and far-reaching impact of Fejér’s work. Through this weighted form of the H-H inequality, Fejér’s contribution
has been pivotal in broadening the understanding and application of convex function inequalities, highlighting the intricate
interplay between weight functions and the fundamental properties of these inequalities.

In this study, lemmas that yield trapezoidal and midpoint-type integral inequalities for trigonometric convex functions were
investigated. While these lemmas are known for Hermite-Hadamard Fejer type integral inequalities and many studies, have
produced trapezoidal type inequalities, new theorems, and results have also been obtained for midpoint type inequalities.

2. Preliminaries
In this section, we first present the foundational theorems and definitions that underpin this work. Following this, we

introduce the pivotal lemmas that have not only inspired but also guided the development of the study, thereby establishing a
robust conceptual framework for the ensuing analysis.

Theorem 2.1. [15] Assume ξ : [k, l]→ R is a convex mapping. Then, the following inequality is satisfied:

ξ

(
k+ l

2

) l∫
k

w(x)dx≤ 1
l− k

l∫
k

ξ (x)w(x)dx≤ ξ (k)+ξ (l)
2

l∫
k

w(x)dx

where the function w : [k, l]→ R is nonnegative, integrable, and exhibits symmetry about x = k+l
2 .

The domain of convex analysis has been significantly expanded with the introduction of h-convexity, as delineated by
Varosanec. This sophisticated class of convexity, which is predicated upon a modulating function h that is both non-negative
and distinct from zero, provides a more encompassing approach than classical convexity.
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Definition 2.2. [1] Let G and T be two intervals, and let h : G→ R be a non-negative function such that h 6= 0. A function
ξ : T → R is said to be an h-convex function if, for all k, l ∈ T and for any κ ∈ (0,1), the following inequality holds:

ξ (κk+(1−κ)l)≤ h(κ)ξ (k)+h(1−κ)ξ (l).

Conversely, if the inequality holds in the opposite direction, then ξ is termed an *h-concave function*. Functions belonging
to this class of convexity are referred to as members of the class SX(h,K).

This significant convex class has led to the emergence of numerous convexity classes. Among these, trigonometric convex
functions expressed by H. Kadakal and the related H-H inequality and theorems pertaining to this convexity class are provided
as follows:

Definition 2.3. [16] Let ξ : T → R be a non-negative function, where k, l ∈ T and ω ∈ [0,1]. In this case, if the following
inequality is satisfied, the function ξ is referred to as a trigonometrically convex function:

ξ (ωk+(1−ω)l)≤
(

sin
(

πω

2

))
ξ (k)+

(
cos
(

πω

2

))
ξ (l).

The class of trigonometric convex functions is denoted by TC(T ). In the definition expressed, if h(ω) = sin
(

ω

2

)
is taken,

then every trigonometric convex function becomes an h-convex function.

Theorem 2.4. [16] Let T be an interval with k, l ∈ T such that k < l. If the function ξ : [k, l]→ R is a trigonometrically
convex function and ξ ∈ L[k, l], then the following inequality is obtained:

ξ

(
k+ l

2

)
≤
√

2
l− k

l∫
k

ξ (§)d§.

Theorem 2.5. [16] Let T be an interval with k, l ∈ T such that k < l. If the function ξ : [k, l]→ R is trigonometrically convex
and ξ ∈ L[k, l], then the following inequality is obtained:

1
l− k

l∫
k

ξ (x)dx≤ 2
π
[ξ (k)+ξ (l)] .

Theorem 2.6. [16] Let T be an interval, k, l ∈ T such that k < l, and ξ : T → R be a continuously differentiable function. If
ξ ′ ∈ L[k, l] and |ξ ′| is a trigonometrically convex function, then the following inequality is obtained:∣∣∣∣∣∣ξ (k)+ξ (l)

2
− 1

l− k

l∫
k

ξ (x)dx

∣∣∣∣∣∣≤ 2
π
(l− k)

[
1− 4

π
(
√

2−1)
][
|ξ ′(k)|+ |ξ ′(l)|

2

]
.

Theorem 2.7. [16] Let T be an interval, k, l ∈ T such that k < l, and ξ : T → R be a continuously differentiable function. Let
η > 1 and 1

η
+ 1

θ
= 1, for |ξ ′|η being a trigonometrically convex function over the interval [k, l], the following inequality is

obtained:∣∣∣∣∣∣ξ (k)+ξ (l)
2

− 1
l− k

l∫
k

ξ (x)dx

∣∣∣∣∣∣≤ l− k
2

(
1

θ +1

) 1
θ

2
2
η π

−1
η

(
k+ l

2

) 1
η
[
|ξ ′(k)|η + |ξ ′(l)|η

2

] 1
η

.

Theorem 2.8. [16] Let T be an interval, k, l ∈ T such that k < l, and ξ : T → R be a continuously differentiable function. For
η ≥ 1, with |ξ ′|η being a trigonometrically convex function over the interval [k, l], the following inequality is obtained:∣∣∣∣∣∣ξ (k)+ξ (l)

2
− 1

l− k

l∫
k

ξ (x)dx

∣∣∣∣∣∣≤ l− k
2

(
1
2

)1− 3
η

[
1
π
− 4(
√

2−1)
π2

] 1
η (k+ l

2

) 1
η
[
|ξ ′(k)|η + |ξ ′(l)|η

2

] 1
η

.

In this research, M. Z. Sarikaya introduced two significant lemmas that serve as the foundational basis for the investigation
of H-H Fejér type inequalities and their applications to trapezoidal and midpoint-type inequalities. These lemmas, detailed
below, are considered the cornerstone of the research:
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Lemma 2.9. [6] Let ξ : K◦ ⊆ R→ R be a differentiable mapping on K◦, k, l ∈ K◦ with k < l, and w : [k, l]→ [0,∞) be a
differentiable mapping. If ξ ′ ∈ L[k, l], then the following equality holds:

1
l− k

l∫
k

ξ (x)w(x)dx− 1
l− k

ξ

(
k+ l

2

) l∫
k

w(x)dx = (l− k)
1∫

0

m(t)ξ ′(κk+(1−κ)l)dκ (2.1)

for each κ ∈ [0,1], where

m(κ) =


κ∫
0

w(ks+(1− s)l)ds, κ ∈ [0, 1
2 ]

−
1∫

κ

w(ks+(1− s)l)ds, κ ∈ [ 1
2 ,1].

Lemma 2.10. [6] Let ξ : K◦ ⊆ R→ R be a differentiable mapping on K◦, k, l ∈ K◦ with k < l, and w : [k, l]→ [0,∞) be a
differentiable mapping. If ξ ′ ∈ L[k, l], then the following equality holds:

1
l− k

ξ (k)+ξ (l)
2

+

l∫
k

w(x)dx

− 1
l− k

l∫
k

ξ (x)w(x)dx =
(l− k)

2

1∫
0

p(κ)ξ ′(κk+(1−κ)l)dκ

for each κ ∈ [0,1], where

p(κ) =
∫ 1

κ

w(as+(1− s)b)ds−
∫

κ

0
w(as+(1− s)b)ds.

3. Main Results
Theorem 3.1. Let ξ : I◦ ⊂ R→ R be a differentiable function on I◦, where k, l ∈ I◦ with k < l, and let w : [k, l]→ R be
a differentiable function that is symmetric about k+l

2 . Given that ξ ′ is trigonometrically convex over the interval [k, l], the
following inequality holds:

∣∣∣∣ 1
l− k

∫ l

k
ξ (x)w(x)dx− 1

l− k
ξ

(
k+ l

2

)∫ l

k
w(x)dx

∣∣∣∣≤ 2
√

2
π

 l∫
k+l

2

w(x)sin
(

2x− k− l
4(l− k)

π

)
dx

[∣∣ξ ′(k)∣∣+ ∣∣ξ ′(l)∣∣] . (3.1)

Proof. Considering Lemma 2.9 and taking the absolute value of both sides, given that |ξ ′| is a trigonometrically convex
function, we proceed as follows:

∣∣∣∣ 1
l− k

∫ l

k
ξ (x)w(x)dx− 1

l− k
ξ

(
k+ l

2

)∫ l

k
w(x)dx

∣∣∣∣
≤ (l− k)

∣∣∣∣∫ 1/2

0

(∫ t

0
w(ks+(1− s) l)ds

)
ξ
′
(tk+(1− t) l)dt −

∫ 1

1/2

(∫ 1

t
w(ks+(1− s) l)ds

)
ξ
′
(tk+(1− t) l)dt

∣∣∣∣
≤ (l− k)

[∫ 1
2

0

(∫ t

0
w(ks+(1− s) l)ds

)∣∣∣ξ ′ (tk+(1− t) l)
∣∣∣dt +

∫ 1

1
2

(∫ 1

t
w(ks+(1− s) l)ds

)∣∣∣ξ ′ (tk+(1− t) l)
∣∣∣dt
]

≤ (l− k)

{∫ 1
2

0

(∫ t

0
w(ks+(1− s) l)ds

)[
sin
(

πt
2

)
|ξ ′(k)|

+cos
(

πt
2

)
|ξ ′(l)|

]
dt +

∫ 1

1
2

(∫ 1

t
w(ks+(1− s) l)ds

)[
sin
(

πt
2

)
|ξ ′(k)|

+cos
(

πt
2

)
|ξ ′(l)|

]
dt
}
.

The following expressions are obtained by changing the order of integration in the integrals on the right side of the obtained
final inequality, in accordance with Fubini’s Theorem:
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∣∣∣∣ 1
l− k

∫ l

k
ξ (x)w(x)dx− 1

l− k
ξ

(
k+ l

2

)∫ l

k
w(x)dx

∣∣∣∣
≤ (l− k)


∫ 1

2

0
w(ks+(1− s) l)


1
2∫

s

(
sin
(

πt
2

)
|ξ ′(k)|

+cos
(

πt
2

)
|ξ ′(l)|

)
dt

ds +
1∫

1
2

w(ks+(1− s) l)

 s∫
1
2

(
sin
(

πt
2

)
|ξ ′(k)|

+cos
(

πt
2

)
|ξ ′(l)|

)
dt

ds


Upon resolving the inequalities on the right-hand side of the final inequality, the following inequality is obtained:

∣∣∣∣ 1
l− k

∫ l

k
ξ (x)w(x)dx− 1

l− k
ξ

(
k+ l

2

)∫ l

k
w(x)dx

∣∣∣∣

≤ (l− k)


∫ 1

2

0
w(ks+(1− s) l)

 (−√2
π
+ 2

π
cos
(

πs
2

))
|ξ ′(k)|

+
(√

2
π
− 2

π
sin
(

πs
2

))
|ξ ′(l)|

ds +
1∫

1
2

w(ks+(1− s) l)

 (√
2

π
− 2

π
cos
(

πs
2

))
|ξ ′(k)|

+
(

2
π

sin
(

πs
2

)
−
√

2
π

)
|ξ ′(l)|

ds

 .

Following the variable transformation x = ks+(1− s)l within this integral, employing the theorem’s hypothesis that the
function w(x) is symmetric with respect to x = k+l

2 yields the sought inequality.

Corollary 3.2. If we take w(x) = 1 in inequality of (3.1), we get∣∣∣∣ 1
l− k

∫ l

k
ξ (x)dx−ξ

(
k+ l

2

)∣∣∣∣≤ (4
√

2−4)(l− k)
π2

[∣∣ξ ′(k)∣∣+ ∣∣ξ ′(l)∣∣] .
Theorem 3.3. Let ξ : I

◦ ⊂ R→ R be a function differentiable on I
◦
, where k, l ∈ I

◦
,k < l, and let w : [k, l]→ R be a

differentiable function that is symmetric with respect to k+l
2 . Under the condition that q ≥ 1, 1

p +
1
q = 1, and given that the

function |ξ ′|q is trigonometrically convex on the interval [k, l], it follows that:

∣∣∣∣ 1
l− k

∫ l

k
ξ (x)w(x)dx− 1

l− k
ξ

(
k+ l

2

)∫ l

k
w(x)dx

∣∣∣∣
≤ (l− k)1− 2

p

 l∫
k+l

2

wp(x)
(

x− k+ l
2

)
dx


1
p

(

4
√

2−π
√

2
2π2 |ξ ′(k)|q + 4

√
2+π
√

2−8
2π2 |ξ ′(l)|q

) 1
q

+ 4
√

2+π
√

2−8
2π2 |ξ ′(k)|q +

(
4
√

2−π
√

2
2π2 |ξ ′(l)|q

) 1
q

 .
Proof. By taking the absolute value of both sides of equation (2.1) in Lemma 2.9, the following inequality is obtained:

∣∣∣∣ 1
l− k

∫ l

k
ξ (x)w(x)dx− 1

l− k
ξ

(
k+ l

2

)∫ l

k
w(x)dx

∣∣∣∣
≤ (l− k)


1
2∫

0

1
2∫

s

w(ks+(1− s) l)
∣∣∣ξ ′ (tk+(1− t) l)

∣∣∣dtds +

1∫
1
2

s∫
1
2

w(ks+(1− s) l)
∣∣∣ξ ′ (tk+(1− t) l)

∣∣∣dtds

 .
By applying Hölder’s inequality to each integral on the right-hand side of the resulting inequality, the following expression is
obtained:
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∣∣∣∣ 1
l− k

∫ l

k
ξ (x)w(x)dx− 1

l− k
ξ

(
k+ l

2

)∫ l

k
w(x)dx

∣∣∣∣
≤ (l− k)




1
2∫

0

1
2∫

s

wp(ks+(1− s)l)dtds


1
p


1
2∫

0

1
2∫

s

∣∣ξ ′(tk+(1− t)l)
∣∣q dtds


1
q

+

 1∫
1
2

s∫
1
2

wp(ks+(1− s)l)dtds


1
p
 1∫

1
2

s∫
1
2

∣∣ξ ′(tk+(1− t)l)
∣∣q dtds


1
q


≤ (l− k)


 l∫

k+l
2

wp(x)
(

2x− l− k
2(l− k)2

)
dx


1
p


1
2∫

0

1
2∫

s

∣∣ξ ′(tk+(1− t)l)
∣∣q dtds


1
q


k+l

2∫
k

wp(x)
(

k+ l−2x
2(l− k)2

)
dx


1
p
 1∫

1
2

s∫
1
2

∣∣ξ ′(tk+(1− t)l)
∣∣q dtds


1
q
 .

Using the hypothesis that the function w(x) is symmetric with respect to x = k+l
2 and the fact that the function |ξ ′|q is

trigonometrically convex, we can derive the following inequality:

∣∣∣∣ 1
l− k

∫ l

k
ξ (x)w(x)dx− 1

l− k
ξ

(
k+ l

2

)∫ l

k
w(x)dx

∣∣∣∣

≤ (l−k)1− 2
p

 l∫
k+l

2

wp(x)
(

2x− l− k
2

)
dx


1
p

×



|ξ ′(k)|q

1
2∫

0

1
2∫
s

sin
(

πt
2

)
dtds

+ |ξ ′(l)|q
1
2∫

0

1
2∫
s

cos
(

πt
2

)
dtds


1
q

+


|ξ ′(k)|q

1∫
1
2

s∫
1
2

sin
(

πt
2

)
dtds

+ |ξ ′(l)|q
1∫
1
2

s∫
1
2

cos
(

πt
2

)
dtds


1
q
 .

Upon solving the final integrals here, the proof is completed.

Corollary 3.4. If w(x) = 1 is taken in Theorem 3.3, the following inequality is obtained:∣∣∣∣∣∣ 1
l− k

l∫
k

ξ (x)dx−ξ

(
k+ l

2

)∣∣∣∣∣∣≤ (l− k)

2
3
p


(

4
√

2−π
√

2
2π2 |ξ ′(k)|q + 4

√
2+π
√

2−8
2π2 |ξ ′(l)|q

) 1
q

+ 4
√

2+π
√

2−8
2π2 |ξ ′(k)|q +

(
4
√

2−π
√

2
2π2 |ξ ′(l)|q

) 1
q

 .
Theorem 3.5. Let ξ : I

◦ ⊂ R→ R be a function differentiable on I
◦
, where k, l ∈ I

◦
,k < l, and let w : [k, l]→ R be a

differentiable function that is symmetric with respect to k+l
2 . Under the condition that q > 1, and given that the function |ξ ′|q is

trigonometrically convex on the interval [k, l], it follows that:

∣∣∣∣ 1
l− k

∫ l

k
ξ (x)w(x)dx− 1

l− k
ξ

(
k+ l

2

)∫ l

k
w(x)dx

∣∣∣∣≤ 1

(l− k)1− 1
q

 l∫
k+l

2

w(x)
(

x− k+ l
2

)
dx


1− 1

q



|ξ ′(k)|q

l∫
k+l

2

w(x)
(
−
√

2
π

+ 2
π

cos
(

π(l−x)
2(l−k)

))
dx

+ |ξ ′(l)|q
l∫

k+l
2

w(x)
(√

2
π
− 2

π
sin
(

π(l−x)
2(l−k)

))
dx


1
q

+


|ξ ′(k)|q

l∫
k+l

2

w(x)
(
−2
π

cos
(

π(x−k)
2(l−k)

)
+
√

2
π

)
dx

+ |ξ ′(l)|q
l∫

k+l
2

w(x)
(

2
π

sin
(

π(x−k)
2(l−k)

)
−
√

2
π

)
dx


1
q
 .
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Proof. In proving the theorem, after taking the absolute value of equation (2.1) in Lemma 2.9, the following inequality is
obtained.∣∣∣∣ 1

l− k

∫ l

k
ξ (x)w(x)dx− 1

l− k
ξ

(
k+ l

2

)∫ l

k
w(x)dx

∣∣∣∣
≤ (l− k)


1
2∫

0

1
2∫

s

w(ks+(1− s) l)
∣∣∣ξ ′ (tk+(1− t) l)

∣∣∣dtds +

1∫
1
2

s∫
1
2

w(ks+(1− s) l)
∣∣∣ξ ′ (tk+(1− t) l)

∣∣∣dtds

 .
Subsequently, by applying the Power Mean inequality to each integral on the right-hand side of the resulting expression, the
following inequality is derived:

∣∣∣∣ 1
l− k

∫ l

k
ξ (x)w(x)dx− 1

l− k
ξ

(
k+ l

2

)∫ l

k
w(x)dx

∣∣∣∣
≤ (l− k)




1
2∫

0

1
2∫

s

w(ks+(1− s)l)dtds


1− 1

q


1
2∫

0

1
2∫

s

w(ks+(1− s)l)
∣∣ξ ′(tk+(1− t)l)

∣∣q dtds


1
q

+

 1∫
1
2

s∫
1
2

w(ks+(1− s)l)dtds


1− 1

q
 1∫

1
2

s∫
1
2

w(ks+(1− s)l)
∣∣ξ ′(tk+(1− t)l)

∣∣q dtds


1
q


≤ (l− k)




1
2∫

0

w(ks+(1− s)l)
(

1
2
− s
)

ds


1− 1

q


1
2∫

0

1
2∫

s

w(ks+(1− s)l)
∣∣ξ ′(tk+(1− t)l)

∣∣q dtds


1
q

+

 1∫
1
2

w(ks+(1− s)l)
(

s− 1
2

)
ds


1− 1

q
 1∫

1
2

s∫
1
2

w(ks+(1− s)l)
∣∣ξ ′(tk+(1− t)l)

∣∣q dtds


1
q
 .

Since the function |ξ ′|q is trigonometrically convex, the following inequality is obtained:∣∣∣∣ 1
l− k

∫ l

k
ξ (x)w(x)dx− 1

l− k
ξ

(
k+ l

2

)∫ l

k
w(x)dx

∣∣∣∣
≤ (l− k)




1
2∫

0

w(ks+(1− s)l)
(

1
2
− s
)

ds


1− 1

q


1
2∫

0

1
2∫

s

w(ks+(1− s)l)
(

sin
(

πt
2

)
|ξ ′(k)|q

+cos
(

πt
2

)
|ξ ′(l)|q

)
dtds


1
q

+

 1∫
1
2

w(ks+(1− s)l)
(

s− 1
2

)
ds


1− 1

q
 1∫

1
2

s∫
1
2

w(ks+(1− s)l)
(

sin
(

πt
2

)
|ξ ′(k)|q

+cos
(

πt
2

)
|ξ ′(l)|q

)
dtds


1
q
 .

If a change of variable is applied to the first integral on the right-hand side of the final inequality, the following expression
is obtained:
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∣∣∣∣ 1
l− k

∫ l

k
ξ (x)w(x)dx− 1

l− k
ξ

(
k+ l

2

)∫ l

k
w(x)dx

∣∣∣∣
≤ 1

(l− k)1− 2
q


 l∫

k+l
2

w(x)
(

2x− k− l
2

)
dx


1− 1

q


1
2∫

0

1
2∫

s

w(ks+(1− s)l)
(

sin
(

πt
2

)
|ξ ′(k)|q

+cos
(

πt
2

)
|ξ ′(l)|q

)
dtds


1
q

+


k+l

2∫
k

w(x)
(

k+ l−2x
2

)
dx


1− 1

q
 1∫

1
2

s∫
1
2

w(ks+(1− s)l)
(

sin
(

πt
2

)
|ξ ′(k)|q

+cos
(

πt
2

)
|ξ ′(l)|q

)
dtds


1
q


≤ 1

(l− k)1− 2
q


 l∫

k+l
2

w(x)
(

2x− k− l
2

)
dx


1− 1

q


|ξ ′(k)|q

1
2∫

0
w(ks+(1− s)l)

(
−
√

2
π

+ 2
π

cos
(

πs
2

))
ds

+ |ξ ′(l)|q
1
2∫

0
w(ks+(1− s)l)

(√
2

π
− 2

π
sin
(

πs
2

))
ds


1
q

+


k+l

2∫
k

w(x)
(

k+ l−2x
2

)
dx


1− 1

q


|ξ ′(k)|q

1
2∫

1
w(ks+(1− s)l)

(
− 2

π
cos
(

πs
2

)
+
√

2
π

)
ds

+ |ξ ′(l)|q
1∫
1
2

w(ks+(1− s)l)
(

2
π

sin
(

πs
2

)
−
√

2
π

)
ds


1
q
 .

In the final inequality, after taking the integrals on the right side and applying the variable change x = ks+(1− s)l, and then
using the fact that the function w(x) is symmetric with respect to x = k+l

2 , the following inequality is obtained:

∣∣∣∣ 1
l− k

∫ l

k
ξ (x)w(x)dx− 1

l− k
ξ

(
k+ l

2

)∫ l

k
w(x)dx

∣∣∣∣

≤ 1

(l− k)1− 1
q


 l∫

k+l
2

w(x)
(

2x− k− l
2

)
dx


1− 1

q


|ξ ′(k)|q

l∫
k+l

2

w(x)
(
−
√

2
π

+ 2
π

cos
(

π(l−x)
2(l−k)

))
dx

+ |ξ ′(l)|q
l∫

k+l
2

w(x)
(√

2
π
− 2

π
sin
(

π(l−x)
2(l−k)

))
dx


1
q

+


k+l

2∫
k

w(x)
(

k+ l−2x
2

)
dx


1− 1

q


|ξ ′(k)|q

k+l
2∫

k
w(x)

(
− 2

π
cos
(

π(l−x)
2(l−k)

)
+
√

2
π

)
dx

+ |ξ ′(l)|q
k+l

2∫
k

w(x)
(

2
π

sin
(

π(l−x)
2(l−k)

)
−
√

2
π

)
dx


1
q


≤ 1

(l− k)1− 1
q

 l∫
k+l

2

w(x)
(

2x− k− l
2

)
dx


1− 1

q



|ξ ′(k)|q

l∫
k+l

2

w(x)
(
−
√

2
π

+ 2
π

cos
(

π(l−x)
2(l−k)

))
dx

+ |ξ ′(l)|q
l∫

k+l
2

w(x)
(√

2
π
− 2

π
sin
(

π(l−x)
2(l−k)

))
dx


1
q

+


|ξ ′(k)|q

l∫
k+l

2

w(x)
(
− 2

π
cos
(

π(x−k)
2(l−k)

)
+
√

2
π

)
dx

+ |ξ ′(l)|q
l∫

k+l
2

w(x)
(

2
π

sin
(

π(x−k)
2(l−k)

)
−
√

2
π

)
dx


1
q
 .

Thus, the proof is completed.
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Corollary 3.6. If w(x) = 1 is assumed in Theorem 3.5, the following inequality is derived:∣∣∣∣∣∣ 1
l− k

l∫
k

ξ (x)dx−ξ

(
k+ l

2

)∣∣∣∣∣∣≤ (l− k)

23− 3
q

(√
2

π

) 1
q

×

(4−π

2π
|ξ (k)|q + π +4−4

√
2

2π
|ξ (l)|q

) 1
q

+

(
π +4−4

√
2

2π
|ξ (k)|q + 4−π

2π
|ξ (l)|q

) 1
q
 .

Theorem 3.7. Let ξ : I◦ ⊂ R→ R be a function that is differentiable on I◦, with k, l ∈ I◦ and k < l, and let w : [k, l]→ R be a
differentiable function that is symmetric with respect to k+l

2 . Given that 1
p +

1
q = 1 and q≥ 1, and considering that the function

|ξ ′|q is trigonometrically convex over the interval [k, l], the following inequality is satisfied:

∣∣∣∣∣∣ 1
l− k

ξ (k)+ξ (l)
2

l∫
k

w(x)dx− 1
l− k

l∫
k

ξ (x)w(x)dx

∣∣∣∣∣∣≤ 1
π

 1∫
0

hp(t)dt

 1
p (∣∣ξ ′(k)∣∣q + ∣∣ξ ′(l)∣∣q) 1

q ,

where

h(t) =

∣∣∣∣∣∣∣
l−(l−k)t∫

k+(l−k)t

w(x)dx

∣∣∣∣∣∣∣ .
Proof. If we start from Lemma 2.10, it is obtained∣∣∣∣∣∣ 1

l− k
ξ (k)+ξ (l)

2

l∫
k

w(x)dx− 1
l− k

l∫
k

ξ (x)w(x)dx

∣∣∣∣∣∣
≤ l− k

2

1∫
0

∣∣∣∣∣∣
1∫

t

w(ks+(1− s)l)ds−
t∫

0

w(ks+(1− s)l)ds

∣∣∣∣∣∣ ∣∣ξ ′(kt +(1− t)l)
∣∣dt

=
1
2

∣∣∣∣∣∣∣
kt+(1−t)l∫

k

w(x)dx−
l∫

kt+(1−t)l

w(x)dx

∣∣∣∣∣∣∣
∣∣ξ ′(kt +(1− t)l)

∣∣dt. (3.2)

Given that the function w(x) is symmetric with respect to x = k+l
2 ,

1. Since ∀x ∈ [0, 1
2 ],

l∫
tl+(1−t)k

w(x)dx
l−k −

l∫
tk+(1−t)l

w(x)dx
l−k =

l−(l−k)t∫
k+(l−k)t

w(x)dx
l−k .

2. Since ∀x ∈ [ 1
2 ,1],

l∫
tl+(1−t)k

w(x)dx
l−k −

l∫
tk+(1−t)l

w(x)dx
l−k =−

l−(l−k)t∫
k+(l−k)t

w(x)dx
l−k ,

it follows. From this point, for all t ∈ [0,1], let h(t) =
∣∣∣∫ l−(l−k)t

k+(l−k)t w(x)dx
∣∣∣. Substituting this expression into inequality (3.2) and

then applying Hölder’s inequality, given that the function |ξ ′|q is trigonometrically convex,
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∣∣∣∣∣∣ 1
l− k

ξ (k)+ξ (l)
2

l∫
k

w(x)dx− 1
l− k

l∫
k

ξ (x)w(x)dx

∣∣∣∣∣∣
≤ 1

2

1∫
0

h(t)
∣∣ξ ′(kt +(1− t)l)

∣∣dt (3.3)

≤ 1
2

 1∫
0

hp(t)dt

 1
p
 1∫

0

∣∣ξ ′(kt +(1− t)l)
∣∣q dt

 1
q

≤ 1
2

 1∫
0

hp(t)dt

 1
p
∣∣ξ ′(k)∣∣q 1∫

0

sin
(

πt
2

)
dt +

∣∣ξ ′(l)∣∣q 1∫
0

cos
(

πt
2

)
dt

 1
q

it follows. When the simple integrals on the right side are solved, the proof is completed.

Corollary 3.8. If w(x) = 1 is assumed in Theorem 3.7, the following inequality is derived:∣∣∣∣∣∣ξ (k)+ξ (l)
2

− 1
l− k

l∫
k

ξ (x)dx

∣∣∣∣∣∣≤ l− k

π(p+1)
1
p

(∣∣ξ ′(k)∣∣q + ∣∣ξ ′(l)∣∣q) 1
q .

Proof. Given that
∫ 1

0 hp(t)dt =
∣∣∣∫ l−(l−k)t

k+(l−k)t dx
∣∣∣p = (l− k)p |1−2t|p dt = (l− k)p

(
1

p+1

)
, the proof is completed.

Theorem 3.9. Let ξ : I◦ ⊂ R→ R be a function that is differentiable on I◦, with k, l ∈ I◦ and k < l, and let w : [k, l]→ R
be a differentiable function that is symmetric with respect to k+l

2 . Under the condition q > 1, given that the function |ξ ′|q is
trigonometrically convex over the interval [k, l], the following inequality is satisfied:∣∣∣∣∣∣ 1

l− k
ξ (k)+ξ (l)

2

l∫
k

w(x)dx− 1
l− k

l∫
k

ξ (x)w(x)dx

∣∣∣∣∣∣
≤ 1

2

 1∫
0

h(t)dt

1− 1
q
∣∣ξ ′(k)∣∣q 1∫

0

h(t)sin
(

πt
2

)
dt +

∣∣ξ ′(l)∣∣q 1∫
0

h(t)cos
(

πt
2

)
dt

 1
q

, (3.4)

where

h(t) =

∣∣∣∣∣∣∣
l−(l−k)t∫

k+(l−k)t

w(x)dx

∣∣∣∣∣∣∣
is defined.

Proof. By applying the Power Mean inequality together with the fact that the function |ξ ′|q is trigonometrically convex in
inequality (3.3), we obtain the following inequality:∣∣∣∣∣∣ 1

l− k
ξ (k)+ξ (l)

2

l∫
k

w(x)dx− 1
l− k

l∫
k

ξ (x)w(x)dx

∣∣∣∣∣∣
≤ 1

2

 1∫
0

h(t)dt

1− 1
q
 1∫

0

h(t)
∣∣ξ ′(kt +(1− t)l)

∣∣q dt

 1
q

≤ 1
2

 1∫
0

h(t)dt

1− 1
q
∣∣ξ ′(k)∣∣q 1∫

0

h(t)sin
(

πt
2

)
dt +

∣∣ξ ′(l)∣∣q 1∫
0

h(t)cos
(

πt
2

)
dt

 1
q

.

Thus, the proof is completed.
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Corollary 3.10. If w(x) = 1 is assumed in Theorem 3.9, the following inequality is obtained:∣∣∣∣∣∣ξ (k)+ξ (l)
2

− 1
l− k

l∫
k

ξ (x)dx

∣∣∣∣∣∣≤ (l− k)

22− 1
q

(
2π +8−8

√
2

π2

) 1
q (∣∣ξ ′(k)∣∣q + ∣∣ξ ′(l)∣∣q) 1

q .

Proof. Since w(x) = 1 implies h(t) = (l− k)|1−2t|, the integrals obtained in inequality (3.4) can be found using Python as
follows,

1∫
0

|1−2t|sin
(

πt
2

)
dt =

2π +8−8
√

2
π2

1∫
0

|1−2t|cos
(

πt
2

)
dt =

2π +8−8
√

2
π2 .

4. Application
Recent studies have emphasized the significant role of visualizing theoretical expressions through graphical representations.

Inspired by this idea, certain results were generated in Python for specific data sets. One of the targeted outcomes was to
demonstrate the impact of Hölder and Power Mean inequalities on the upper bound of an inequality, showcasing examples with
variations across different values of p and q.

Example 4.1. In Corollary 3.2, the function ξ (x) = x2 was evaluated for randomly chosen values of k and l within the interval
[0,2] under the condition k < l, using a step size of 0.1. The left and right sides of the inequality were computed, and their
graphs were illustrated:

Figure 4.1. Graph of Corollary 3.2

Example 4.2. In Corollary 3.4, for the function ξ (x) = x2, with the left endpoint of the interval fixed at k = 0.5 and randomly
chosen values of l within [0.6,2] under the condition k < l, graphs illustrating the effects on the upper bound of the Hölder
inequality for various values of q and p were obtained.

Figure 4.2. Graph of Corollary 3.4 with p = 3,q = 1.5 Figure 4.3. Graph of Corollary 3.4 with p = q = 2
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Figure 4.4. Graph of Corollary 3.4 with p = 1.5,q = 3 Figure 4.5. Graph of Corollary 3.4 with p = 1.01,q = 100

Example 4.3. In corollary 3.6, with ξ (x) = x2 and a fixed k = 0.5, randomly specific values of l were generated under the
condition k < l. For these values, the fulfillment of the inequality for both the left and right sides, and for any values of q, was
demonstrated, and the variations were obtained graphically:

Figure 4.6. Graph of Corollary 3.6 with q = 2 Figure 4.7. Graph of Corollary 3.6 with q = 100

Example 4.4. In corollary 3.10, with ξ (x) = x2 and a fixed k = 0.5, randomly specific values of l were generated under the
condition k < l. For these values, it was demonstrated that the inequality was satisfied for both the left and right sides, and for
any values of q, with the variations obtained graphically:

Figure 4.8. Graph of Corollary 3.10 with q = 2 Figure 4.9. Graph of Corollary 3.10 with q = 100

5. Conclusion
In conclusion, the study has advanced the understanding of Hermite-Hadamard-Fejér type inequalities within the realm

of trigonometrically convex functions. By employing Hölder’s inequality and, consequently, the Power Mean inequality,
novel upper bounds were derived and subsequently illustrated through graphical representations for various functions, thereby
demonstrating their optimality across different parameter values.
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Additionally, since the Fejér inequality is expressed through a weight function that can be transformed into various fractional
integrals, the framework developed herein allows for the derivation of Hermite-Hadamard type inequalities for trigonometrically
convex functions in the context of different fractional integrals. Essentially, this work constitutes a generalization of the classical
Hermite-Hadamard midpoint and trapezoidal type inequalities, extending their applicability to fractional integral settings.

Future research could further explore these extensions by investigating broader classes of convex functions and their
corresponding fractional integrals, as well as by examining potential applications in numerical analysis and optimization theory.
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Conflict of Interest Disclosure: No potential conflict of interest was declared by authors.

Plagiarism Statement: This article was scanned by the plagiarism program.

References
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[2] M. Bombardelli, S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities,

Comput. Math. Appl., 58(9) (2009), 1869–1877.
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1. Introduction
Boundary value problems involving discontinuities are prevalent in various fields, including mathematics, mechanics,

physics, and other natural sciences. Applications of such boundary value problems in geophysics can be found in [1], [2].
Certain aspects of direct and inverse problems for differential operators with discontinuity conditions are discussed in [3]- [5].
The direct and inverse problems for the Sturm-Liouville operator are studied in [6] and [7]. In [8], an integral representation of
the solution for the Sturm-Liouville operator is provided.

For a boundary value problem with a discontinuous coefficient, the direct and inverse problems concerning the Weyl
function are examined in [9, 10]. For a similar problem, the fundamental equation, which plays a crucial role in solving the
inverse problem, is formulated in [11]. The necessary and sufficient conditions for the solution of the inverse problem are
analyzed in [12]. For a boundary value problem defined on a finite interval, consisting of an equation with discontinuous
coefficients and boundary conditions with spectral parameters, both direct and inverse problems for the Sturm-Liouville and
Dirac operators are considered in [13, 14].

Consider the following boundary value problem defined on the interval [0,π]:

−y′′+q(x)y = λ
2
υ(x)y, (1.1)

U1(y) := y′(0)−hy(0) = 0, (1.2)

U2(y) := y(π) = 0, (1.3)
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where q(x) ∈ L2[0,π] is a real-valued function, λ is a spectral parameter, h 6= 0 is an arbitrary real number and

υ(x) =
{

1, 0≤ x≤ a,
α2, a≤ x≤ π.

2. Preliminaries
Let us show the special solutions of equation (1.1) with φ(x,λ ) and ϑ(x,λ ) satisfying the conditions

φ(0,λ ) = 0, φ
′(0,λ ) = h, (2.1)

ϑ(π,λ ) = 0, ϑ
′(π,λ ) = 1. (2.2)

For the solution of the (1.1) equation, the following integral representation is obtained:

e(x,λ ) = e0(x,λ )+
∫

η+(x)

−η+(x)
K(x, t)eiλ tdt,

where η±(x) =±x
√

υ(x)+a(1∓
√

υ(x)), K(x, .) ∈ L1 (−η+(x),η+(x)) and

e0(x,λ ) =

 eiλx, 0≤ x≤ a,
1
2

(
1+ 1√

υ(x)

)
eiλη+(x)+ 1

2

(
1− 1√

υ(x)

)
eiλη−(x), a≤ x≤ π.

In addition, the Kx derivative exists and provides the following properties

d
dx

K
(
x,η+(x)

)
=

1
4
√

υ(x)

(
1+

1√
υ(x)

)
q(x), (2.3)

d
dx
{K
(
x,η−(x)+0

)
−K

(
x,η+(x)−0

)
}= 1

4
√

υ(x)

(
1− 1√

υ(x)

)
q(x), (2.4)

K
(
x,−η

+(x)
)
= 0. (2.5)

Besides these properties, the following also apply if q(x) is a differentiable function:

υ(x)K′′tt −K′′xx +q(x)K = 0, |t|< η
+(x), (2.6)

∫
η+(x)

−η+(x)
|K(x, t)|dt ≤C

(
exp
{∫ x

0
|q(t)|dt

}
−1
)
, 0 <C (2.7)

The special solution of equation (1.1) satisfying condition (2.1) is of the form

φ(x,λ ) = φ0(x,λ )+
∫

η+(x)

0
A(x, t)cosλ tdt +h

∫
η+(x)

0
Ã(x, t)

sinλ t
λ

dt, (2.8)

and the kernel A(x, t) = K(x, t)+K(x,−t) satisfies the conditions (2.3)-(2.7).
We define

Γ(λ ) = 〈φ(x,λ ),ϑ(x,λ )〉= φ(x,λ )ϑ ′(x,λ )−φ
′(x,λ )ϑ(x,λ ). (2.9)

The characteristic function Γ(λ ) is the Wronskian of the functions φ and ϑ . From Liouville’s theorem, it can be seen that Γ(λ )
is independent of x ∈ [0,π]. From equation (2.9), if x = 0 and x = π respectively, we obtain

Γ(λ ) =U2(φ) =U1(ϑ).



On the Solution of a Class of Discontinuous Sturm-Liouville Problems — 51/56

Lemma 2.1. The square of the zeros {λn}∞
n=0 of the characteristic function coincide with the eigenvalues of the boundary

value problem (1.1)-(1.3). There is also a sequence {kn}∞
n=0 such that ϑ(x,λn) = knφ(x,λn) for each eigenvalue λn, where

φ(x,λn) and ϑ(x,λn) are the eigenfunctions corresponding to the eigenvalue λn.

Let us define the normalized numbers of the boundary value problem (1.1)-(1.3) as

αn :=
∫

π

0
φ

2(x,λn)υ(x)dx.

Lemma 2.2. The following relation holds

−Γ̇(λn) = 2λnknαn, (2.10)

where Γ̇(λ ) =
d

dλ
Γ(λ ).

Proof. Since

−φ
′′(x,λn)+q(x)φ(x,λn) = λ

2
n υ(x)φ(x,λn),

−ϑ
′′(x,λ )+q(x)ϑ(x,λ ) = λ

2
υ(x)ϑ(x,λ ),

we have

d
dx
〈φ(x,λn),ϑ(x,λ )〉= (λ 2

n −λ
2)υ(x)φ(x,λn)ϑ(x,λ ).

Integrating the last equation in the interval [0,π] and considering the conditions (2.1), (2.2), we obtain

Γ(λn)−Γ(λ ) = (λ 2
n −λ

2)
∫

π

0
φ(x,λn)ϑ(x,λ )υ(x)dx.

The desired result is obtained by taking the limit for λ → λn.

3. Asymptotic Formulas of the Eigenvalues

Theorem 3.1. The eigenvalues {λn} and the eigenfuynctions φ(x,λn), ϑ(x,λn) are real. All zeros of Γ(λ ) are simple.
Eigenfunctions related to different eigenvalues are orthogonal in L2(0,π).

Lemma 3.2. When q(x)≡ 0, the eigenvalues of the boundary value problem (1.1)-(1.3) have the following asymptotic form:(
λ

0
n
)2

= n+ϑ(n), sup
n
|ϑ(n)|<+∞.

Lemma 3.3. The λ 0
n roots of the function Γ0(λ ) are discrete, i.e.

inf
n6=k
|λ 0

n −λ
0
k |= τ > 0.

Proof. Assume the opposite, that there are sequences {λ 0′
k } and {λ 0′′

k } such that λ 0′
k 6= λ 0′′

k , λ 0′
k →+∞, λ 0′′

k →+∞ and

lim
k→+∞

[
λ

0′
k −λ

0′′
k

]
for the zeros of the function Γ0(λ ). Since the eigenfunctions of the boundary value problem (1.1)-(1.3) are orthogonal, we
obtain

0 =λ
0′
k λ

0′′
k

∫
π

0
φ0

(
x,λ 0′

k

)
φ0

(
x,λ 0′′

k

)
υ(x)dx

= Ik +
∫

π

0

(
λ

0′
k

)2
φ

2
0

(
x,λ 0′

k

)
υ(x)dx

≥ Ik +
∫ a

0

(
λ

0′
k

)2
φ

2
0

(
x,λ 0′

k

)
υ(x)dx

= Ik +
a
2
−

sin2λ 0′
k a

4λ 0′
k

,

(3.1)
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where Ik =
∫

π

0 λ 0′
k φ0

(
x,λ 0′

k

)[
λ 0′′

k φ0

(
x,λ 0′′

k

)
−λ 0′

k φ0

(
x,λ 0′

k

)]
υ(x)dx.

Now let us show that Ik→ 0 when k→+∞.
Since |λ 0′′

k φ0

(
x,λ 0′′

k

)
−λ 0′

k φ0

(
x,λ 0′

k

)
| ≤C|λ 0′′

k −λ 0′
k |, for ∀x ∈ [0,π],

lim
k→+∞

|λ 0′′
k φ0

(
x,λ 0′′

k

)
−λ

0′
k φ0

(
x,λ 0′

k

)
|= 0.

In inequality (3.1), if the limit is taken when k→+∞, it can be shown that 0≥ a
2

. This is in contradiction to the definition of

the coefficient υ(x) in equation (1.1). It can, therefore, be concluded that the proof is complete.

Lemma 3.4. The set of eigenvalues of the boundary value problem (1.1)-(1.3) are countable and of the form

λn = λ
0
n +

dn

λ 0
n
+

ηn

n

where λ 0
n is the zeros of the characteristic function Γ0(λ ), dn is a finite sequence and {ηn} ∈ l2.

Proof. From the condition (1.3), φ(π,λ ) = Γ(λ ) |x=π can be written. From the (2.8) representations of the function φ(π,λ ),
we get

Γ(λ ) = Γ0(λ )+
∫

η+(π)

0
A(π, t)cosλ tdt +h

∫
η+(π)

0
Ã(π, t)

sinλ t
λ

dt. (3.2)

Let σ <
τ

2
be a sufficiently small positive number and let Gσ = {λ : |λ −λ 0

n | ≥ σ}. From [15],

| Γ0(λ ) |≥Cσ

e|Imλ |η+(π)

λ
, λ ∈ Gσ .

On the other hand, if f (x) ∈ L1(0,π), from the expression

lim
|λ |→∞

e−|Imλπ|
∫

π

0
f (x)cosλdx = lim

|λ |→∞

e−|Imλπ|
∫

π

o
f (x)sinλdx

then

Γ(λ )−Γ0(λ ) = O

(
e|Imλ |η+(π)

|λ |

)
, |λ | → ∞.

Therefore, for a sufficiently large n, the inequality
| Γ(λ )−Γ0(λ ) |≤| Γ0(λ ) | is satisfied on the Ωn = {λ : |λ |= |λ 0

n |+
τ

2
} curves. Appliyng now Rouche’s theorem to the curve

ωn(σ) = {λ : |λ −λ 0
n | ≤ σ}, we conclude that for sufficiently large n, in ωn(σ) there is exactly one zero of Γ(λ ), namely λn.

Now let’s find the eigenvalues λn. For an arbitrary number σ > 0,

λn = λ
0
n + εn, εn = o(1), n→ ∞ (3.3)

is obtained. Substituting (3.3) into (3.2) we get,

Γ(λ 0
n + εn) = Γ0(λ

0
n + εn)+

∫
η+(π)

0
A(π, t)cos

(
λ

0
n + εn

)
tdt +h

∫
η+(π)

0
Ã(π, t)

sin
(
λ 0

n + εn
)

t
λ 0

n + εn
dt = 0. (3.4)

Considering the equations Γ0(λ
0
n ) = 0 and (3.4) together in relation Γ0(λ

0
n + εn) = Γ̇0(λ

0
n )εn +o(ε2

n ), we find

Γ̇0(λ
0
n )εn +

∫
η+(π)

0
A(π, t)cos

(
λ

0
n + εn

)
tdt +h

∫
η+(π)

0
Ã(π, t)

sin
(
λ 0

n + εn
)

t
λ 0

n + εn
dt ≈ 0.
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Using properties (2.4) and (2.5), since εn = o(1) while n→ ∞ we find

εn ≈
1

Γ̇0(λ 0
n )λ

0
n

{
1
4

∫
π

0

1√
υ(t)

(
1− 1√

υ(t)

)
sin
(
λ

0
n η
−(π)

)
q(t)dt

−1
4

∫
π

0

1√
υ(t)

(
1+

1√
υ(t)

)
sin
(
λ

0
n η
−(π)

)
q(t)dt −

∫
η+(π)

0
A′t(π, t)cos(λ 0

n t)dt
}

+
h

Γ̇0(λ 0
n )λ

0
n

{
1
4

∫
π

0

1√
υ(t)

(
1− 1√

υ(t)

)
cos
(
λ 0

n η−(π)
)

λ 0
n

q(t)dt

+
1
4

∫
π

0

1√
υ(t)

(
1+

1√
υ(t)

)
cos
(
λ 0

n η−(π)
)

λ 0
n

q(t)dt − 1
λ 0

n

∫
η+(π)

0
Ã′t(π, t)cos(λ 0

n t)dt
}

=
1

Γ̇0(λ 0
n )λ

0
n

{
dn +ηn +

η̃n

λ 0
n

}
where ηn :=

∫ η+(π)
0 A′t(π, t)sin(λ 0

n t)dt, η̃n :=
∫ η+(π)

0 Ã′t(π, t)cos(λ 0
n t)dt and ηn, η̃n ∈ l2.

4. Expansion Formula with respect to Eigenfunctions
In this section, the completeness of the eigenfunctions of the boundary value problem (1.1)-(1.3) is shown, and the expansion

formula for the eigenfunctions is obtained. Let

G(x, t;λ ) :=− 1
Γ(λ )

{
φ(t,λ )ϑ(x,λ ), t ≤ x,
ϑ(t,λ )φ(x,λ ), t > x.

Consider the function

y(x,λ ) =
∫

π

0
G(x, t;λ ) f (t)υ(t)dt. (4.1)

Theorem 4.1. The system of eigenfunctions {φ(x,λn)}n≥0 of the boundary value problem (1.1)-(1.3) is complete in L2,υ [0,π].

Proof. Using (2.10) and Lemma 2.1, we get

ϑ(x,λn) =−
Γ̇(λn

2λnαn
φ(x,λn). (4.2)

From (4.1) and (4.2), we have

Resλ=λny(x,λ ) =
1

2λnαn
φ(x,λn)

∫
π

0
φ(t,λn) f (t)υ(t)dt. (4.3)

Let us assume f (x)∈ L2,υ [0,π] and
∫

π

0 φ(t,λn) f (t)υ(t)dt. Then Resλ=λny(x,λ ) = 0 is obtained. Thus, for each fixed x ∈ [0,π],
y(x,λ ) is entire with respect to λ . If f (x) ∈ L1(0,π) , the equations

lim
|λ |→∞

max
x∈[0,π]

{
e−|Imλ |x

∣∣∣∣∫ x

0
f (t)cosλ tdt

∣∣∣∣}= 0

lim
|λ |→∞

max
x∈[0,π]

{
e−|Imλ |x

∣∣∣∣∫ x

0
f (t)sinλ tdt

∣∣∣∣}= 0

are satisfied. Also, for |λ | → ∞, we get

φ(x,λ ) = O
(

1
|λ |

e|Imλ |η+(x)
)
,

φ
′(x,λ ) = φ

′
0(x,λ )+O

(
1
|λ |

e|Imλ |η+(x)
)
= O

(
e|Imλ |η+(x)

)
,
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ϑ(x,λ ) = O
(

1
|λ |

e|Imλ |(η+(π)−η+(x))
)
,

ϑ
′(x,λ ) = ϑ

′
0(x,λ )+O

(
1
|λ |

e|Imλ |(η+(π)−η+(x))
)
= O

(
e|Imλ |(η+(π)−η+(x))

)
.

Then the following inequality is satisfied:

|Γ(λ )| ≥Cσ

1
|λ |

e|Imλ |η+(π), λ ∈ Gσ .

From equation (4.1) it follows that |y(x,λ )| ≤ Cσ

|λ |
, λ ∈ Gσ , |λ | ≥ λ ∗ for σ > 0 and sufficiently large λ ∗ > 0. Thus

f (x)≡ 0 is obtained almost everywhere in the interval [0,π]. Therefore, the proof is complete.

Theorem 4.2. Let f (x) be an absolutely continuous function on [0,π] . Then

f (x) =
∞

∑
n=1

a,n φ(x,λn), an =
1

αn

∫
π

0
φ(t,λn) f (t)υ(t)dt, (4.4)

and the series converges uniformly on [0,π]. For f (x) ∈ L2,υ [0,π], the series (4.4) converces in L2,υ [0,π] and the following
Parseval’s equality is satisfied:∫

π

0
| f (x)|2υ(x)dx =

∞

∑
n=1

αn|an|2.

Proof. Let f (x) ∈ AC[0,π]. Since φ(x,λ ) and ϑ(x,λ ) are solutions of the boundary value problem (1.1)-(1.3), we get

y(x,λ ) =− 1
λ 2Γ(λ )

{
ϑ(x,λ )

∫ x

0

(
−φ
′′(t,λ )+q(t)φ(t,λ )

)
f (t)dt +φ(x,λ )

∫
π

x

(
−ϑ

′′(t,λ )+q(t)ϑ(t,λ )
)

f (t)dt
}
.

Integration of the terms containing second derivatives by parts yields in view of (1.2), (1.3)

y(x,λ ) =− f (x)
λ 2 −

1
λ 2 (Z1(x,λ )+Z2(x,λ )) , (4.5)

where

Z1(x,λ ) =
1

Γ(λ )

[
ϑ(x,λ )

∫ x

0
φ
′(t,λ ) f ′(t)dt +φ(x,λ )

∫
π

x
ϑ
′(t,λ ) f ′(t)dt

]
,

Z2(x,λ ) =
1

Γ(λ )
[ϑ(x,λ ) f (0)−φ(x,λ ) f (π)

+ϑ(x,λ )
∫ x

0
φ(t,λ )q(t) f (t)dt +φ(x,λ )

∫
π

x
ϑ(t,λ )q(t) f (t)dt

]
.

Now consider the integral

In(x) =
1

2πi

∮
Ωn

λy(x,λ )dλ ,

where Ωn =
{

λ : |λ |= |λ 0
n |+

τ

2

}
is a clockwise directed curve and n is a sufficiently large natural number. From (4.5), we get

1
2πi

∮
Ωn

λy(x,λ )dλ =
1

2πi

∮
Ωn

f (x)
λ

dλ − 1
2πi

∮
Ωn

{Z1(x,λ )+Z2(x,λ )}
λ

dλ . (4.6)

Thus, we obtain

In(x) = 2
N

∑
n=1

Resλ=λn (λy(x,λ )) .
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From the equations (4.3) and (4.6), we get

− f (x)+ εn(x) =−
N

∑
n=1

φ(x,λn)

αn

{∫
π

0
φ(t,λn) f (t)υ(t)dt

}
,

where

εn(x) =−
1

2πi

∮
Ωn

{Z1(x,λ )+Z2(x,λ )}dλ .

For fixed σ > 0 and sufficiently large λ ∗ > 0, the following relations hold:

max
x∈[0,π]

‖Z2(x,λ )‖ ≤
C2

|λ |
, λ ∈ Gσ , |λ | ≥ λ

∗, (4.7)

max
x∈[0,π]

‖Z1(x,λ )‖ ≤
C1

|λ |
, λ ∈ Gσ , |λ | ≥ λ

∗. (4.8)

From expressions (4.7) and (4.8) it follows that the equality

lim
n→∞

max
x∈[0,π]

|εn(x)|= 0

is satisfied. The last equation gives the following expansion formula:

f (x) =
∞

∑
n=1

anφ(x,λn),

where

an =
∞

∑
n=1

1
αn

{∫
π

0
φ(t,λn) f (t)υ(t)dt

}
.

Since the system {φ(x,λn)} forms an orthogonal base at L2,υ [0,π], Parseval equality is satisfied.

Article Information
Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for

their helpful comments and suggestions.

Author’s contributions: All authors contributed equally to the writing of this paper.

Conflict of Interest Disclosure: No potential conflict of interest was declared by authors.

Plagiarism Statement: This article was scanned by the plagiarism program.

References
[1] R. S. Anderssen, The effect of discontinuities in density and shear velocity on the asymptotic overtone structure of tortional

eigenfrequencies of the Earth, Geophys. J. R. Astr. Soc., 50 (1997), 303-309.
[2] E. R. Lapwood, T. Usami, Free Oscillations of the Earth, Cambridge Univ. Press, Cambridge, 1981.
[3] O. H. Hald, Discontinuous inverse eigenvalue problems, Comm. Pure and Appl. Math., 37 (1984), 539-577.
[4] D. Shepelsky, The inverse problem of reconstruction of the medium’s conductivity in a class of discontinuous and

increasing functions, Spectral operator theory and related topics: Adv. In Sov. Math., Providence, Amer. Math. Soc., 19
(1994), 209-232.

[5] M. Kobayashi, A uniqueness for discontinuous inverse Sturm-Liouville problems with symmetric potentials, Inverse Probl.,
5 (1985), 767-781.



On the Solution of a Class of Discontinuous Sturm-Liouville Problems — 56/56

[6] G. Freiling, V. Yurko, On inverse Sturm-Liouville Problems and Their Applications, Nova Science Publisher Inc., New
York, 2008.

[7] G. Freiling, V. Yurko, Lectures on Differential Equations of Mathematical Physics-A First Course, Nova Science Publisher
Inc., New York, 2008.

[8] E. N. Akhmedova, On representation of solution of Sturm-Liouville equation with discontinuous coefficients, Proc. Inst.
Math. Mech. Natl. Acad. Sci. Azerbaijan, 4 (2003), 7-18.

[9] E. N. Akhmedova, H. M. Huseynova, On eigenvalues and eigenfunctions of one class of Sturm-Liouville with discontinuous
coefficients, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 23 (2003), 7-18.

[10] E. N. Akhmedova, The definition of one class of Sturm-Liouville Operators with discontinuous coefficients by Weyl function,
Proceedings of IMM of NAS of Azerbaijan, 30 (2005), 3-8.
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