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Analytical and numerical study on the solutions of a new (2+1)-dimensional conformable

shallow water wave equation

Mehmet ŞENOL1 and Furkan Muzaffer ÇELİK2

1,2Department of Mathematics, Nevşehir Hacı Bektaş Veli University, Nevşehir, TÜRKİYE

Abstract. The (2+1)-dimensional conformable nonlinear shallow water wave equation is examined in

this work. Initially, definitions and properties of suitable derivatives are presented. Subsequently, exact
solutions to this equation are derived using the exp(–ϕ(ξ))-expansion and the modified extended tanh-

function methods. Then, a numerical method, namely the residual power series method, is utilized to

obtain approximate solutions. The interplay between analytical and numerical approaches is explored
to validate the solutions. This study fills a gap in the literature on fractional shallow water models,

particularly in (2+1)-dimensions, and offers new insights into wave dynamics governed by fractional

derivatives. The physical implications of the findings are illustrated through 3D and 2D contour sur-
faces of some obtained data, offering insight into the physical interpretation of geometric structures. A

table is also presented to compare the obtained results. These solutions highlight the practical uses of

the investigated model and other nonlinear models in applied sciences. These techniques can potentially
yield significant results in solving various fractional differential equations.

2020 Mathematics Subject Classification. 35R11, 35A08, 35C08, 35A35.
Keywords. exp(–ϕ(ξ))-expansion method, modified extended tanh-function method, residual power se-

ries method, shallow water wave equation, conformable derivative.

1. Introduction

Fractional differential equations are essential in various fields spanning social and fundamental sci-
ences and engineering disciplines. Recently, their importance has increased due to their indispensable
contribution to understanding complex physical processes in areas such as control theory, electrical cir-
cuits, and wave propagation. In particular, fractional differential equations arise in various applications,
including electrical circuits, chemical engineering, biostatistics and epidemiology, mechanical systems,
computer science, optimization, drug development, social sciences, medicine and biology, weather and
climate models, robotics and artificial intelligence, and signal processing.

These equations are valuable tools for modeling, analyzing, and designing solutions for numerous engi-
neering problems. Their ability to vividly illustrate nonlinear physical features makes them an essential
framework for guiding future work. Consequently, finding solutions to these equations is a remarkable
achievement in related fields. Several authors utilized various techniques to compute these solutions and
gain a deeper understanding of the essential features of material structures in various settings.

A variety of analytical methods have been employed to pursue solutions and nuanced comprehension
of these equations. It has become evident that no single technique can universally address all types of
nonlinear problems with precision. This realization has given rise to numerous methods, including the
modified simplest equation method [31,32], the auxiliary equation method [18,19], the modified extended
tanh-function method [16], the Bernoulli sub-equation function method [35,36], the exp(–ϕ(ξ))-expansion
method [11], the sine-Gordon expansion method [37], the modified exponential function method [38], the

rational sine-Gordon expansion method [39], the (1/G′)-expansion method [13,40], the (G′/G
2
)-expansion

1 msenol@nevsehir.edu.tr-Corresponding author; 0000-0001-8110-7739
2 f.muzaffer @hotmail.com; 0000-0002-9274-1257.
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method [14], the modified (G′/G)-expansion method [5], the φ6-model expansion method [20], and the
homotopy perturbation method [15,25,26] etc.

The allure of high-dimensional fractional partial differential equations (FPDEs) has captivated the
attention of academics in recent years. Their prevalence extends across biology, chemistry, physics, en-
gineering, mechanics, and economics, among other branches. Various derivative definitions have been
proposed for fractional differential equations, including the Riemann-Liouville [17], Caputo [34], and con-
formable [2] derivatives. The Riemann-Liouville derivative, stemming from the contributions of Riemann
and Liouville, stands out for its frequent application in contemporary mathematical discourse. Addi-
tionally, the conformable fractional derivative approach has gained popularity among mathematicians
due to its simplicity and reliability. The term “conformable” refers to the use of conformable fractional
derivatives in the equation, which generalizes the classical shallow water wave equation to account for
non-integer-order calculus. This fractional framework allows the model to better describe physical pro-
cesses that exhibit memory, nonlocal effects, or complex dynamics, making the equation more adaptable
to real-world phenomena.

As a well-known FPDE, shallow water wave equations model wave behavior in shallow bodies of water
like seas, rivers, or coastal regions. The (2+1)-dimensions account for two spatial variables and time,
which allows for more complex interactions like wave breaking, dispersion, and nonlinear effects. Here,
we address the following shallow water wave problem in (2+1)-dimensions [3],

ADϑ
t ux + auxx + b(u)2xx + cuxxxx + duyy = 0. (1)

where Dϑ
t denotes the conformable derivative, and A, a, b, c, d are arbitrary constants. This equation

serves as a descriptive model for the propagation of gravity waves on a water surface, particularly in
scenarios where oblique waves directly interact with the surface [22]. Besides, the conformable shallow
water wave equation describes the behavior of shallow water waves, typically focusing on how waves
propagate in fluids where the horizontal length scale is much larger than the vertical depth.

Although there is a body of work on integer-order (2+1)-dimensional shallow water wave equations,
the fractional (conformable) extension in (2+1)-dimensions is less studied. Research is particularly lim-
ited in deriving exact solutions for this model. For instance, in [27], the authors have obtained multiple
rogue wave solutions to the model using the Hirota bilinear transformation and the trial function method.
Besides, in this research paper, innovative methodologies are employed to present exact traveling wave
solutions as well as the numerical solutions to Eq. (1). The objective is to surmount the limitations
associated with conventional methods and offer effective solutions to this intricate equation.

The paper is organized as follows. Basic definitions are given in Section 2. The exp(–ϕ(ξ))-expansion
method is described in detail in Section 3. The modified extended tanh-function approach is detailed in
Section 4. A numerical approach, the residual power series method (RPSM), is introduced in Section 5.
Section 6 contains analytical and approximate solutions of the studied equation. In Section 7, the paper
presents the results.

2. Conformable Derivative

The conformable derivative is a relatively recent approach to fractional calculus that preserves many
properties of the standard derivative, making it easier to apply to physical systems. Conformable deriva-
tives have already been applied to classical models, improving the flexibility of solutions to represent
more realistic physical phenomena.

Definition 1. The conformable derivative of a function, h : [0,∞) → R, t > 0, θ ∈ (0, 1) of order θ
is as follows defined:

Dθ
t (h)(t) = lim

γ→0

h(t+ γt1−θ)− h(t)

γ
. (2)

Additionally, in the event that h is-differentiable within a given interval (0, k), where k > 0, and the
limt→0+ Dθ

t (h)(t) exists, then definition is formed

Dθ
t (h)(0) = lim

t→0+
Dθ

t (h)(t). (3)
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Lemma 1. Let h1 and h2 be θ-differentiable at t > 0 for 0 < θ ≤ 1 [12,24,28]. There after,

• Dθ
t (t

s1) = s1t
s1−θ, s1 ∈ R,

• Dθ
t (s1h1 + s2h2) = s1Dθ

t (h1) + s2Dθ
t (h2), s1, s2 ∈ R,

• Dθ
t (

h1

h2
) =

h2.Dθ
t (h1)−h1T θ

t (h2)

h2
2

,

• Dθ
t (h1.h2) = h1.Dθ

t (h2) + h2.Dθ
t (h1),

• Dθ
t (h1)(t) = t1−θ dh1(t)

dt ,

• Dθ
t (C) = 0, when C is a const.

Definition 2. Let the function h with n variables be defined as (y1, y2, . . . , yn). The partial derivatives
of h with respect to yi of order θ ∈ (0, 1] are given as [29,33]:

dθ

dyθi
h(y1, y2, . . . , yn) = lim

γ→0

h(y1, y2, . . . , yi−1, yi + γy1−θ
i , yn)− h(y1, y2, . . . , yn)

γ
.

The next section is reserved to introduce the exp(−ϕ(ξ))-expansion, the modified extended tanh-
function, and the RPS methods.

3. The Exp(−ϕ(ξ))-Expansion Method

Examine the nonlinear equation, which is presented as follows:

P(u,Dθ
t u,Dxu,Dyu,D2

xu,D2
yu, . . .) = 0. (4)

In this case, Dθ
t represents the conformable derivative operator of the function. When P is a polynomial

of u(x, y, . . . , t) and its derivatives, and the subscripts signifying partial derivatives. During utilizing the
exp(–ϕ(ξ))-expansion method [1, 21,23] for obtaining wave solutions of Eq. (4), it is crucial to carry out
the next procedures.

• The real variables x, y, z, . . . , t are combined using ξ as a compound variable.

ξ = kx+ ly + · · ·+ mtθ

θ
, u(x, y, z, . . . , t) = u(ξ). (5)

where the k, l, . . . ,m are arbitrary values to be determined later.

• The following ordinary differential equation (ODE) is what is left after reducing Eq. (4),

H(u(ξ), u′(ξ), u′′(ξ), . . .) = 0. (6)

• The following finite series can be used to construct the precise solutions:

u(ξ) = B0 +

N∑
r=1

Br(exp(ξ(−ϕ)))r, BN ̸= 0. (7)

• The following ODE is satisfied by ϕ = ϕ(ξ).

ϕ′(ξ) = exp(−ϕ(ξ)) + ηexp(ϕ(ξ)) + λ. (8)

• Eq. (8) shows the following solutions when η ̸= 0 and λ2 − 4η > 0, depending on certain
parameters.

u1(ξ) =

ln

(
−
√
(λ2 − 4η) tanh

(√
(λ2−4η)

2 (h+ ξ)

)
− λ

)
2η

, (9)

in the case of λ2 − 4η < 0 and η ̸= 0
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u2(ξ) =

ln

(√
(4η − λ2) tanh

(√
(4η−λ2)

2 (h+ ξ)

)
− λ

)
2η

, (10)

in the case of λ2 − 4η > 0, λ ̸= 0 and η = 0,

u3(ξ) = − ln

(
λ

sinh(λ(h+ ξ)) + cosh(λ(h+ ξ))− 1

)
, (11)

in the case of λ2 − 4η = 0, λ ̸= 0 and η ̸= 0,

u4(ξ) = ln

(
−2(λ(h+ ξ) + 2)

λ2(h+ ξ)

)
, (12)

in the case of λ2 − 4η = 0, λ = 0 and η = 0,

u5(ξ) = ln(h+ ξ), (13)

where the constant for integration is h.

• The determination of the N value in Eq. (7) involves considering the balance principle be-
tween the largest nonlinear terms and the highest order derivatives of u(ξ) as outlined in Eq.
(6). Upon replacing Eq. (7) with Eq. (8) into Eq. (6) and consolidating terms with identical
powers of exp(−ϕ), the left-hand side of Eq. (6) undergoes a transformation into a polyno-
mial. This transformation results in a system of algebraic equations involving variables Br, (r =
0, 1, 2, 3, . . . , N), c, λ, and η. The solution to Eq. (6) can be obtained by setting all the coeffi-
cients of this polynomial to zero, solving the resulting system of algebraic equations, and then
substituting the solutions back into Eq. (7).

4. Modified Extended Tanh-Function Method

Let us explore a specific partial differential equation (PDE) to illustrate the core concept of the modified
extended tanh-function method [4, 30,41].

B(v,Dθ
t v,Dxv,Dyv,D2

xv,D2
yv, . . .) = 0, (14)

where B is a polynomial in v(x, y, z, . . . , t) with nonlinear components in its partial derivatives. The
transformation,

ξ = kx+ ly + . . .+
mtθ

θ
, v(x, y, z, . . . , t) = v(ξ), (15)

converts Eq. (14) into an ODE presented in the subsequent form,

B(v(ξ), v′(ξ), v′′(ξ), . . .) = 0. (16)

Assume that the solution to Eq. (16) takes on the following form,

v(ξ) = A0 +

N∑
r=1

(
Arϕ

r(ξ) +Brϕ
−r(ξ)

)
. (17)

Here, ϕ(ξ) satisfies the following Riccati equation,

ϕ′(ξ) = σ + ϕ(ξ)
2
, (18)

where σ is a constant that will be found out afterward. As may be seen below, Eq. (18) admits several
different solutions as,

• If σ < 0

ϕ(ξ) = −
√
−σtanh(

√
−σξ) or ϕ(ξ) = −

√
−σcoth(

√
−σξ).
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• If σ > 0

ϕ(ξ) =
√
σtan(

√
σξ) or ϕ(ξ) = −

√
σcot(

√
σξ).

• If σ = 0

ϕ(ξ) = −1

ξ
. (19)

Determining the positive integer N in Eq. (17) involves achieving a balance between the highest order
derivatives and the nonlinear variables. Symbolic calculations can be used to find the values of Ar and
Br by replacing Eq. (17), and Eq. (18) in Eq. (16). Following this path, by gathering terms with the
same power ϕr, where (r = 0, 1, 2, · · · , N), and setting them to zero, produces the unknown constants.
The exact solutions to Eq. (14) can subsequently be derived by replacing the determined values, along
with the Eq. (17).

5. Residual Power Series Method (RPSM)

To illustrate the principle of the RPSM [6–10] algorithm, examine the following nonlinear fractional
differential equation (FDE).

Dθ
t u(x, y, t) +R[x, y]u(x, y, t) +N [x, y]u(x, y, t) = h(x, y, t). (20)

where R[x, y] is a linear and N [x, y] is a nonlinear operator. The initial condition of the equation is
expressed as

u(x, y, 0) = f0(x, y) = f(x, y). (21)

Subject to the constraint of Eq. (21), the approach entails expanding a fractional series at t = 0 to find
the solution to Eq. (20),

fn−1(x, y) = h(x, y) = D(n−1)θ
t u(x, y, 0). (22)

As seen below, the solution can be stated as a series expansion,

u(x, y, t) =

∞∑
n=0

fn(x, y)
tnθ

θnn!
. (23)

Thus, for R 1
v be the radius of convergence, 0 ≤ t < R 1

v and 0 < θ ≤ 1, the k − th truncated series of
u(x, y, t), represented as,

uk(x, y, t) = f(x, y) +

k∑
n=1

fn(x, y)
tnθ

θnn!
, k = 1, 2, 3, . . . (24)

Therefore, the k − th residual function’s initial expression is

Resuk(x, y, t) = Dθ
t uk(x, y, t) +R[x, y]uk(x, y, t) +N [x, y]uk(x, y, t)− h(x, y, t). (25)

It is evident that for t ≥ 0, Resu(x, y, t) = 0 and
limk→∞ Resuk(x, y, z, t) = Resu(x, y, z, t).

Calculating out Resu1(x, y, z, 0) = 0, yields the first unknown function, f1(x, y, z). The fractional
derivative of a constant is 0 in the conformable sense, hence

D(n−1)ω
t Resuk(x, y, z, t) = 0 relative to n = 1, 2, 3, ..., k. The desired fn(x, y, z) coefficients are obtained

by solving this equation for t = 0. Thus, un(x, y, z, t) solutions may be determined, respectively.
The exp(–ϕ(ξ))-expansion and the modified extended tanh-function method can generate a variety

of exact solutions, including exponential, solitons, periodic, and rational solutions. They are highly
adaptable to different types of nonlinear equations. Besides, unlike many other techniques (such as
perturbation methods), the RPSM does not require linearization or small parameter assumptions, making
it suitable for strongly nonlinear PDEs. These methods are adaptable to a wide variety of nonlinear PDEs.
This adaptability makes them suitable for models where other methods might fail or require substantial
modification. For example, if your PDE includes fractional derivatives, nonlinear terms, or higher-order
terms, these methods can often be extended to handle such complexities.
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6. Application of the techniques

For the analytical methods, if we examine Eq. (1) in this context,

ADθ
t ux + auxx + b(u)2xx + cuxxxx + duyy = 0. (26)

Utilizing u(x, y, t) = u(ξ) with ξ = kx+ ly + mtθ

θ and performing the integration results in,

ak2u(ξ) +Akmu(ξ) + bk2u(ξ)2 + ck4u′′(ξ) + dl2u(ξ) = 0. (27)

Balancing, u2 = 2N, u′′ = N + 2 results in N = 2. Upon substitution it into Eq. (7) and Eq. (17), the
following exact solutions are derived.

6.1. Analytical solutions by exp(−ϕ(ξ))-expansion method. Given that N = 2, upon substituting
Eq. (7), the series of sums is as follows:

u = B0 +B1 exp(−ϕ(ξ)) +B2 exp(−ϕ(ξ))2. (28)

When combined with Eq. (8), the algebraic system that follows is created.

ak2B0 + dl2B0 +AkmB0 + bk2B2
0 + ck4ηλB1 + 2ck4η2B2 = 0,

ak2B1 + dl2B1 +AkmB1 + 2ck4ηB1 + ck4λ2B1 + 2bk2B0B1 + 6ck4ηλB2 = 0,

3ck4λB1 + bk2B2
1 + ak2B2 + dl2B2 +AkmB2 + 8ck4ηB2 + 4ck4λ2B2

+2bk2B0B2 = 0,

2ck4B1 + 10ck4λB2 + 2bk2B1B2 = 0,

6ck4B2 + bk2B2
2 = 0.

Two cases and two sets of solutions for B0, B1, B2, and m are obtained.

Case 1.

B0 = −6cηk2

b
, B1 = −6ck2λ

b
, B2 = −6ck2

b
,

m = −
ak2 + ck4

(
λ2 − 4η

)
+ dl2

Ak
, ξ = kx+ ly +

mtθ

θ
.

Set 1.
For λ2 − 4η > 0 , η ̸= 0,

u1(x, y, t) = −6cη k2

b
− 12c ηk2λ

b
(
−
√
λ2 − 4η tanh

(
1
2

√
λ2 − 4ηΨ

)
− λ

)
− 24cη2k2

b
(
−
√

λ2 − 4η tanh
(

1
2

√
λ2 − 4ηΨ

)
− λ

)2 , (29)

For λ2 − 4η < 0 and η ̸= 0,

u2(x, y, t) = −6cη k2

b
− 12c ηλk2

b
(√

4η − λ2 tan
(

1
2

√
4η − λ2Ψ

)
− λ

)
− 24cη2k2

b
(√

4η − λ2 tan
(

1
2

√
4η − λ2Ψ

)
− λ

)2 , (30)

where Ψ =

(
− tθ(ak2+ck4(λ2−4η)+dl2)

Aθk + h+ kx+ ly

)
.

For λ2 − 4η > 0, λ ̸= 0 and η = 0,
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u3(x, y, t) = − 6ck2λ2

b (sinh (λΩ) + cosh (λΩ)− 1)

− 6ck2λ2

b (sinh ( (λΩ) + cosh (λΩ)− 1)
2 , (31)

where Ω =

(
− tθ(ak2+cλ2k4+dl2)

Aθk + h+ kx+ ly

)
.

For λ2 − 4η = 0, λ ̸= 0 and η ̸= 0,

u4(x, y, t) = −6cηk2

b
+

3ck2λ3Λ

b (λΛ + 2)
− 3ck2λ4Λ2

2b (λΛ + 2)
2 , (32)

where Λ =

(
− tθ(ak2+dl2)

Aθk + h+ kx+ ly

)
For λ2 − 4η = 0, λ = 0 and η = 0,

u5(x, y, t) = − 6ck2

b
(
− tθ(ak2+4cηk4+dl2)

Aθk + h+ kx+ ly
)2 . (33)

Case 2.

B0 = −
ck2

(
2η + λ2

)
b

, B1 = −6ck2λ

b
, B2 = −6ck2

b
,

m =
−ak2 + ck4

(
λ2 − 4η

)
− dl2

Ak
, ξ = kx+ ly +

mtθ

θ

Set 2.
For λ2 − 4η > 0 , η ̸= 0,

u6(x, y, t) = −
ck2

(
2η + λ2

)
b

− 12cηk2λ

b
(
−
√
λ2 − 4η tanh

(
1
2

√
λ2 − 4ηΥ

)
− λ

)
− 24cη2k2

b
(
−
√
λ2 − 4η tanh

(
1
2

√
λ2 − 4ηΥ

)
− λ

)2 , (34)

For λ2 − 4η < 0 and η ̸= 0,

u7(x, y, t) = −
ck2

(
2η + λ2

)
b

− 12cηk2λ

b
(√

4η − λ2 tan
(

1
2

√
4η − λ2Υ

)
− λ

)
− 24cη2k2

b
(√

4η − λ2 tan
(

1
2

√
4η − λ2Υ

)
− λ

)2 , (35)

where Υ =

(
tθ(−ak2+ck4(λ2−4η)−dl2)

Aθk + h+ kx+ ly

)
For λ2 − 4η > 0, λ ̸= 0 and η = 0,

u8(x, y, t) = − 6ck2λ2

b (sinh (λΦ) + cosh (λΦ)− 1)

− 6ck2λ2

b (sinh (λΦ) + cosh (λΦ)− 1)
2 − ck2λ2

b
, (36)

where Φ =

(
tθ(−ak2+cλ2k4−dl2)

Aθk + h+ kx+ ly

)
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For λ2 − 4η = 0, λ ̸= 0 and η ̸= 0,

u9(x, y, t) = −6cηk2

b
+

3ck2λ3Ξ

b (λΞ + 2)
−

3ck2λ4

(
tθ(−ak2−dl2)

Aθk + h+ kx+ ly

)2

2b
(
λ
(

tθ(−ak2−dl2)
Aθk + h+ kx+ ly

)
+ 2
)2 , (37)

where Ξ =

(
tθ(−ak2−dl2)

Aθk + h+ kx+ ly

)
For λ2 − 4η = 0, λ = 0 and η = 0,

u10(x, y, t) = −4cηk2

b
− 6ck2

b
(

tθ(−ak2+4cηk4−dl2)
Aθk + h+ kx+ ly

)2 . (38)

6.2. The modified extended tanh-function method solutions. By taking N = 2, Eq. (17) be-
comes,

v = A0 +A1ϕ(ξ) +B1ϕ(ξ)
−1 +A2ϕ(ξ)

2 +B2ϕ(ξ)
−2, (39)

and when considered together with the Eq. (18) here, the following algebraic system of equations is
obtained,

ak2A0 + dl2A0 +AkmA0 + bk2A2
0 + 2ck4σ2A2 + 2bk2A1B1 + 2ck4B2

+2bk2A2B2 = 0,

bk2A2
1 + ak2A2 + dl2A2 +AkmA2 + 8ck4σA2 + 2bk2A0A2 = 0,

ak2A1 + dl2A1 +AkmA1 + 2ck4σA1 + 2bk2A0A1 + 2bk2A2B1 = 0,

bk2B2
1 + ak2B2 + dl2B2 +AkmB2 + 8ck4σB2 + 2bk2A0B2 = 0,

ak2B1 + dl2B1 +AkmB1 + 2ck4σB1 + 2bk2A0B1 + 2bk2A1B2 = 0,

2ck4σ2B1 + 2bk2B1B2 = 0,

6ck4σ2B2 + bk2B2
2 = 0,

2ck4A1 + 2bk2A1A2 = 0,

6ck4A2 + bk2A2
2 = 0.

Four cases and four sets of solutions for A0, A1 A2, B1, B2 and m are obtained here.

Case 3.

A0 = −12ck2σ

b
, A1 = 0, B1 = 0, A2 = −6ck2

b
, B2 = −6ck2σ2

b
,

m =
−ak2 + 16ck4σ − dl2

Ak
, ξ = kx+ ly +

mtθ

θ
.

Set 3.
For σ < 0,

v1(x, y, t) = −12ck2σ

b
+

6ck2σ tanh

(√
−σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b

+

6ck2σ coth

(√
−σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (40)

or

v2(x, y, t) = −12ck2σ

b
+

6ck2σ tanh

(√
−σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b
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+

6ck2σ coth

(√
−σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (41)

For σ > 0,

v3(x, y, t) = −12ck2σ

b
−

6ck2σ tan

(
√
σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b

−
6ck2σ cot

(
√
σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (42)

or

v4(x, y, t) = −12ck2σ

b
−

6ck2σ tan

(
√
σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b

−
6ck2σ cot

(
√
σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (43)

For σ = 0,

v5(x, y, t) = − 6ck2

b
(

tθ(−ak2−dl2)
Aθk + kx+ ly

)2 . (44)

Case 4.

A0 = −6ck2σ

b
, A1 = 0, B1 = 0, A2 = −6ck2

b
, B2 = 0,

m =
−ak2 + 4ck4σ − dl2

Ak
, ξ = kx+ ly +

mtθ

θ
.

Set 4.
For σ < 0,

v6(x, y, t) = −6ck2σ

b
+

6ck2σ tanh

(√
−σ

(
tθ(−ak2+4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (45)

or

v7(x, y, t) = −6ck2σ

b
+

6ck2σ coth

(√
−σ

(
tθ(−ak2+4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (46)

For σ > 0,

v8(x, y, t) = −6ck2σ

b
−

6ck2σ tan

(
√
σ

(
tθ(−ak2+4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (47)

or

v9(x, y, t) = −6ck2σ

b
−

6ck2σ cot

(
√
σ

(
tθ(−ak2+4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (48)

For σ = 0,

v10(x, y, t) = − 6ck2

b
(

tθ(−ak2−dl2)
Aθk + kx+ ly

)2 . (49)
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Case 5.

A0 = −2ck2σ

b
, A1 = 0, B1 = 0, A2 = −6ck2

b
, B2 = 0,

m =
−ak2 − 4ck4σ − dl2

Ak
, ξ = kx+ ly +

mtθ

θ
.

Set 5.
For σ < 0,

v11(x, y, t) = −2ck2σ

b
+

6ck2σ tanh

(√
−σ

(
tθ(−ak2−4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (50)

or

v12(x, y, t) = −2ck2σ

b
+

6ck2σ coth

(√
−σ

(
tθ(−ak2−4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (51)

For σ > 0,

v13(x, y, t) = −2ck2σ

b
−

6ck2σ tan

(
√
σ

(
tθ(−ak2−4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (52)

or

v14(x, y, t) = −2ck2σ

b
−

6ck2σ cot

(
√
σ

(
tθ(−ak2−4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (53)

For σ = 0,

v15(x, y, t) = − 6ck2

b
(

tθ(−ak2−dl2)
Aθk + kx+ ly

)2 . (54)

Case 6.

A0 =
4ck2σ

b
, A1 = 0, B1 = 0, A2 = −6ck2

b
, B2 = −6ck2σ2

b
,

m =
−ak2 − 16ck4σ − dl2

Ak
, ξ = kx+ ly +

mtθ

θ
.

Set 6.
For σ < 0,

v16(x, y, t) =
4ck2σ

b
+

6ck2σ tanh

(√
−σ

(
tθ(−ak2−16ck4σ−dl2)

2

Aθk + kx+ ly

))
b

+

6ck2σ coth

(√
−σ

(
tθ(−ak2−16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (55)

or

v17(x, y, t) =
4ck2σ

b
+

6ck2σ tanh

(√
−σ

(
tθ(−ak2−16ck4σ−dl2)

Aθk + kx+ ly

))2

b

+

6ck2σ coth

(√
−σ

(
tθ(−ak2−16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (56)
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For σ > 0,

v18(x, y, t) =
4ck2σ

b
−

6ck2σ tan

(
√
σ

(
tθ(−ak2−16ck4σ−dl2)

Aθk + kx+ ly

))2

b

−
6ck2σ cot

(
√
σ

(
tθ(−ak2−16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (57)

or

v19(x, y, t) =
4ck2σ

b
−

6ck2σ tan

(
√
σ

(
tθ(−ak2−16ck4σ−dl2)

Aθk + kx+ ly

))2

b

−
6ck2σ cot

(
√
σ

(
tθ(−ak2−16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (58)

For σ = 0,

v20(x, y, t) = − 6ck2

b
(

tθ(−ak2−dl2)
Aθk + kx+ ly

)2 . (59)

Next we present 3D, contour, and 2D plots of some of the obtained analytical solutions.

6.3. Approximate solutions by RPSM. First, we assume an initial condition for t = 0, using an
exact solutions found previously. Thus, from Eq. (45), the initial condition is taken as

v6(x, y, 0) = −6ck2σ

b
+

6ck2σ tanh
(√

−σ (kx+ ly)
)2

b
. (60)

For the approximate solutions to the (2+1)-dimensional shallow water wave equation (26), where t ≥ 0,
0 < θ ≤ 1, the RPSM solution is in the form of Eq. (24). Thus, Eq. (25) can be written as,

Resuk(x, y, t) = ADθ
t (uk)x + a(uk)xx + b(uk)

2
xx + c(uk)xxxx + d(uk)yy = 0. (61)

Hence, Resu1(x, y, t) is obtained as,

Resu1(x, y, t) = A (f1)x + a

(
fxx +

tθ (f1)xx
θ

)
+b

(
2

(
fx +

tθ (f1)x
θ

)2

+ 2

(
f +

tθf1
θ

)(
fxx +

tθ (f1)xx
θ

))

+c

(
fxxxx +

tθ (f1)xxxx
θ

)
+ d

(
fyy +

tθ (f1)yy
θ

)
, (62)

where f = f(x, y) and f1 = f1(x, y). The first unknown parameter is obtained by setting t = 0 as,

f1 =

12ckσ2
(
ak2 − 4ck4σ + dl2

)
tanh

(√
−σ(kx+ ly)

)
×sech2

(√
−σ(kx+ ly)

)
Ab

√
−σ

, (63)

is determined, and consequently, u1 = u1(x, y, t) is obtained as

u1 =
12ckσ2tθ

(
ak2 − 4ck4σ + dl2

)
tanh

(√
−σ(kx+ ly)

)
sech2

(√
−σ(kx+ ly)

)
Abθ

√
−σ

+
6ck2σ tanh2

(√
−σ(kx+ ly)

)
b

− 6ck2σ

b
. (64)

Similarly, the next residual term is
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Resu2 = d

(
fyy +

tθ (f1)yy
θ

+
t2θ (f2)yy

2θ2

)

+At1−θ

(
tθ−1 (f1)x +

t2θ−1 (f2)x
θ

)
+a

(
fxx +

tθ (f1) xx
θ

+
t2θ (f2)xx

2θ2

)
+2b

(
fx +

tθ (f1)x
θ

+
t2θ (f2)x

2θ2

)2

+2b

(
f +

tθ (f1)

θ
+

t2θ (f2)

2θ2

)(
fxx +

tθ (f1)xx
θ

+
t2θ (f2)xx

2θ2

)
+c

(
fxxxx +

tθ (f1)xxxx
θ

+
t2θ (f2)xxxx

2θ2

)
, (65)

where f2 = f2(x, y) is written. For t = 0, the second unknown parameter can be obtained as follows by
taking the first order derivative,

f2 =

12cσ2
(
ak2 − 4ck4σ + dl2

)2 (
cosh

(
2
√
−σ(kx+ ly)

)
− 2
)

×sech4
(√

−σ(kx+ ly)
)

A2b
, (66)

Thus, u2 = u2(x, y, t) solution becomes

u2 =

6cσ2t2θ
(
ak2 − 4ck4σ + dl2

)2 (
cosh

(
2
√
−σ(kx+ ly)

)
− 2
)

×sech4
(√

−σ(kx+ ly)
)

A2bθ2

+
12ckσ2tθ

(
ak2 − 4ck4σ + dl2

)
tanh

(√
−σ(kx+ ly)

)
sech2

(√
−σ(kx+ ly)

)
Abθ

√
−σ

+
6ck2σ tanh2

(√
−σ(kx+ ly)

)
b

− 6ck2σ

b
. (67)

Similarly, the other solution is calculated as

u3 = −

4cσ3t3θ
(
ak2 − 4ck4σ + dl2

)3 (
cosh

(
2
√
−σ(kx+ ly)

)
− 5
)

× tanh
(√

−σ(kx+ ly)
)
sech4

(√
−σ(kx+ ly)

)
A3bθ3k

√
−σ

+

6cσ2t2θ
(
ak2 − 4ck4σ + dl2

)2 (
cosh

(
2
√
−σ(kx+ ly)

)
− 2
)

×sech4
(√

−σ(kx+ ly)
)

A2bθ2

+
12ckσ2tθ

(
ak2 − 4ck4σ + dl2

)
tanh

(√
−σ(kx+ ly)

)
sech2

(√
−σ(kx+ ly)

)
Abθ

√
−σ

+
6ck2σ tanh2

(√
−σ(kx+ ly)

)
b

− 6ck2σ

b
. (68)

Next we present a comparison table and some 3D comparison plots with RPSM and the exact solutions.
Figure 1 and Figure 2 display the surface graphics of the analytical solutions, whereas Figures 3, 4,

and 5 displays the surface graphics of the approximate solutions. Meanwhile, by taking the following
values and ranges, approximate and exact solution were compared in Table 1.
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Table 1. Comparing exact and RPSM solutions of Eq. (68) with exact solution of Eq.
(45).

θ = 0.75 θ = 0.85 θ = 0.95
t RPSM Exact Abs. Error RPSM Exact Abs. Error RPSM Exact Abs. Error

0.0 0.575491 0.575491 0.00000 0.575491 0.575491 0.00000 0.575491 0.575491 0.00000

0.1 0.583687 0.583687 5.29179 × 10−9 0.581233 0.581233 1.27760 × 10−9 0.579571 0.579571 3.2607 × 10−10

0.2 0.589284 0.589284 4.22828 × 10−8 0.585848 0.585848 1.34733 × 10−8 0.583378 0.583378 4.53833 × 10−9

0.3 0.594195 0.594195 1.42543 × 10−7 0.590117 0.590116 5.34286 × 10−8 0.587089 0.587089 2.11688 × 10−8

0.4 0.598709 0.598709 3.37514 × 10−7 0.594176 0.594176 1.41958 × 10−7 0.590740 0.590740 6.31116 × 10−8

0.5 0.602949 0.602948 6.58507 × 10−7 0.598087 0.598086 3.02863 × 10−7 0.594348 0.594348 1.47233 × 10−7

0.6 0.606981 0.606980 1.13671 × 10−6 0.601883 0.601882 5.62409 × 10−7 0.597921 0.597921 2.94118 × 10−7

0.7 0.610850 0.610848 1.80317 × 10−6 0.605586 0.605585 9.48980 × 10−7 0.601467 0.601466 5.27882 × 10−7

0.8 0.614582 0.614579 2.68881 × 10−6 0.609212 0.609210 1.49283 × 10−6 0.604988 0.604987 8.76021 × 10−7

0.9 0.618200 0.618196 3.82442 × 10−6 0.612770 0.612768 2.22590 × 10−6 0.608488 0.608487 1.36928 × 10−6

1.0 0.621718 0.621712 5.24064 × 10−6 0.616270 0.616267 3.18163 × 10−6 0.611970 0.611967 2.04154 × 10−6

• Figure 1 k = 0.2, c = 1, b = 0.01, y = 0.1, z = 0.5, h = 0.1, η = 0.05, λ = 0.5, d = 0.1, l = 0.5,
a = 0.1, A = 0.1 and θ = 0.95, −50 ≤ x ≤ 50 for (A), (B), and t = 0.99 for (C).

• Figure 2 c = 0.0001, k = 0.202, b = 0.001, σ = −1.21, l = 0.45, a = 0.221, d = 0.05, A = −1.01,
y = 0.55 and θ = 0.98, −10 ≤ x ≤ 10 for (A), (B), and t = 0.99 for (C).

• Table 1 x = 2, y = 1, c = 0.99, k = 0.22, b = 0.2, σ = −0.64, l = 0.45, a = 0.05, d = 0.006,
A = 0.71 and 0 ≤ t ≤ 1.

• Figure 3 x = −1, y = 1, c = 0.45, k = 0.01, b = 0.1, σ = 0.9, l = 0.01, a = 0.001, d = 0.6, A = 1
and θ = 0.75, −50 ≤ x ≤ 50 for (A) and (B) 0 ≤ t ≤ 1.

• Figure 4 x = 2, y = 1, c = 0.57, k = 0.12, b = 0.2, σ = −0.12, l = 0.01, a = 0.03, d = 0.01,
A = 0.7 and θ = 0.85, −50 ≤ x ≤ 50 for (A) and (B) 0 ≤ t ≤ 1.

• Figure 5 x = 2, y = 1, c = 0.99, k = 0.22, b = 0.2, σ = −0.64, l = 0.45, a = 0.05, d = 0.006,
A = 0.71 and θ = 0.95, −50 ≤ x ≤ 50 for (A) and (B) 0 ≤ t ≤ 1.
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Figure 1. (A) 3D, (B) contour and (C) 2D plots of the exp(−ϕ(ξ))-expansion method
solution u1(x, y, t) of Eq. (29).
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Figure 2. (A) 3D, (B) contour and (C) 2D plots of the modified extended tanh-function
method solution v11(x, y, t) of Eq. (50).
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Figure 3. Comparison plots of the u3 solution according to Eq. (68) with the exact
solution.
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Figure 4. Comparison plots of the u3 solution according to Eq. (68) with the exact
solution.
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Figure 5. Comparison plots of the u3 solution according to Eq. (68) with the exact
solution.

Some new solutions to the present equation are displayed in the surface plots, which can be helpful in
solving additional differential equations of arbitrary order.

7. Conclusion

This study investigated solutions to the (2+1)-dimensional shallow water wave equation with con-
formable derivative by use of the modified extended tanh-function and the exp(−ϕ(ξ))-expansion meth-
ods. Additionally, the RPSM was used to get approximations of the solutions. Many exact solutions
with low computational complexity were obtained using the mentioned analytical approaches. Moreover,
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the RPSM is a straightforward method, and its independent calculation for each iteration step facilitates
computations up to higher-order iterations. We also compared our analytical solutions with the numerical
solutions to verify the validity of the results. This provide insights into the applicability of these methods
for real-world modeling.

To visually represent the obtained solutions, 3D, contour, and 2D plots were generated. Analytical and
approximate results, surface plots, and a comparison table illustrate the accuracy of the techniques. The
solutions exhibit distinct features with important physical attributes not previously addressed before.
In some interpretations of the figures, the physical behavior of the exact solutions is illustrated for
specific numerical values. Understanding these applications is essential for their potential real-world
implementations.

The accomplished solutions are crucial for comprehending the physical behavior of the problem. The
suggested techniques are reliable and beneficial, providing light on the physical properties of various
complicated non-linear models. This study contributes to understanding of higher-dimensional wave phe-
nomena under fractional calculus, paving the way for future research on fractional fluid models.
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[15] Fang, J., Nadeem, M., Habib, M., Akgül, A., Numerical investigation of nonlinear shock wave equations with fractional

order in propagating disturbance, Symmetry, 14(6) (2022), 1179. https://doi.org/10.3390/sym14061179

[16] Gencyigit, M., Senol, M., Koksal, M. E., Analytical solutions of the fractional (3+1)-dimensional Boiti-Leon-Manna-
Pempinelli equation, CMDE, 11(3) (2023), 564-575. https://doi.org/10.22034/cmde.2023.54758.2278

[17] Hilfer, R., Fractional diffusion based on Riemann-Liouville fractional derivatives, J. Phys. Chem. B, 104(16) (2000),

3914-3917. https://doi.org/10.1021/jp9936289
[18] Iqbal, M., Alam, M. N., Lu, D., Seadawy, A. R., Alsubaie, N. E., Ibrahim, S., Applications of nonlinear longitudinal

wave equation with periodic optical solitons wave structure in magneto electro elastic circular rod, Opt. Quantum

Electron., 56(6) (2024), 1-22. 10.1007/s11082-024-06671-6
[19] Iqbal, M., Nur Alam, M., Lu, D., Seadawy, A. R., Alsubaie, N. E., Ibrahim, S., On the exploration of dynamical optical

solitons to the modify unstable nonlinear Schrödinger equation arising in optical fibers, Opt. Quantum Electron., 56(5)

(2024), 765. https://doi.org/10.1007/s11082-024-06468-7
[20] Isah, M. A., Yokus, A., Optical solitons of the complex Ginzburg-Landau equation having dual power non-

linear form using φ6-model expansion approach, Math. Model. Numer. Simul. Appl., 3(3) (2023), 188-215.
https://doi.org/10.53391/mmnsa.1337648

[21] Islam, M. R., Application of Exp(ϕ(ξ))-expansion method for Tzitzeica type nonlinear evolution equations, J. Found.

Appl. Phys., 4(1) (2016), 8-18.
[22] Ismael, H. F., The (3+1)-dimensional Boussinesq equation: Novel multi-wave solutions, Results Phys., 53 (2023),

106965. https://doi.org/10.1016/j.rinp.2023.106965

[23] Kadkhoda, N., Jafari, H., Analytical solutions of the Gerdjikov-Ivanov equation by using exp(−ϕ(ξ))-expansion method,
Optik, 139 (2017), 72-76. https://doi.org/10.1016/j.ijleo.2017.03.078

[24] Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math.,

264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
[25] Liu, J., Nadeem, M., Habib, M., Akgül, A., Approximate solution of nonlinear time-fractional Klein-Gordon equations

using Yang transform, Symmetry, 14(5) (2022), 907. https://doi.org/10.3390/sym14050907

[26] Luo, X., Nadeem, M., Inc, M., Dawood, S., Fractional complex transform and homotopy perturbation
method for the approximate solution of Keller-Segel model, J. Funct. Spaces, 2022(1) (2022), 9637098.

https://doi.org/10.1155/2022/9637098
[27] Ma, Z., Chen, B., Bi, Q., Multiple rogue wave solutions for a modified (2+1)-dimensional nonlinear evolution equation,

Nonlinear Dyn., 1-11 (2024). https://doi.org/10.1007/s11071-024-10076-1

[28] Mirzazadeh, M., Akinyemi, L., Senol, M., Hosseini, K., A variety of solitons to the sixth-order dispersive (3+1)-
dimensional nonlinear time-fractional Schrödinger equation with cubic-quintic-septic nonlinearities, Optik, 241 (2021),

166318. https://doi.org/10.1016/j.ijleo.2021.166318
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1. Introduction

In 1961, Nicole Oresme defined rational sequences and studied the powers of these rational numbers
[10]. In 1974, A. F. Horadam reconsidered the sequence Nicole Oresme noticed while examining rational
sequences, and named this sequence as Oresme sequence in memory of Oresme [7]. Horadam detailed
many algebraic properties of this sequence, which is denoted by {On}n≥1 and whose general term is{

n
2n

}
[8]. The author also gave the recurrence relation of this sequence and different representations

for this relation. In 2004, C. K. Cook variously presented the properties of Oresme numbers and their
generalization [2]. He gave some identities similar to those in Horadam’s work [4]. In 2019, G. Cerda-
Morales studied a generalization of Oresme numbers with a new set of numbers called Oresme polynomials
[1]. In 2019, T. Goy discussed some families of Toeplitz-Hessenberg determinants whose elements are
Oresme numbers [3]. Since the sum formulas and generating function formulas of Oresme numbers in
Horadam’s study are the fundamental equations related to these numbers, these equations should be
reminded.

n−1∑
j=0

Oj = 4

(
1

2
−On+1

)
, (1)

n−1∑
j=0

O2j =
4

9
(2 +O2n−1 − 5O2n) , (2)

n∑
j=0

O2j+1 =
1

9
(10 + 5O2n−1 − 16O2n) , (3)

On+1On−1 − (On)
2 = −

(
1

4

)n

, (4)

∞∑
n=0

n

2n
xn =

2x

(2− x)2
. (5)
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k-Oresme sequence {O(k)
n }n≥2 which is a type of generalization of Oresme numbers is given by

O(k)
n = O

(k)
n−1 −

1

k2
O

(k)
n−2, k ≥ 2 (6)

with initial conditions O
(k)
1 = 1

k , O
(k)
0 = 0 [2]. In the case k = 2, this sequence is reduced to the classical

Oresme sequence [2]. The characteristic equation of the recurrence relation in (6) is x2 −x+ 1
k2 = 0. For

k2 − 4 > 0, the roots of this equation are

α =
k +

√
k2 − 4

2k
, β =

k −
√
k2 − 4

2k
,

respectively [8]. From the recurrence relation, the Binet’s formula is given by

O(k)
n =

1√
k2 − 4

[(
k +

√
k2 − 4

2k

)n

−

(
k −

√
k2 − 4

2k

)n]
. (7)

In 2022, Halici et al. k-Oresme polynomials examined [5]. k-Oresme polynomials sequence {O(k)
n (x)}n≥2

which is a type of generalization of Oresme numbers is given by

O
(k)
n+2(x) = O

(k)
n+1(x)−

1

k2x2
O(k)

n (x), x ≥ 1 (8)

with initial conditions O
(k)
1 (x) = 1

kx , O
(k)
0 (x) = 0. In the case k = 1 and x = 1 this sequence is reduced

to the classical Oresme sequence [5].
In 2021, Gurses et al. presented two new types of Oresme numbers [12]. And they investigated special
linear recurrence relations and summation properties for DGC Oresme numbers of these types. The
DGC numbers here are Dual-Hyperbolic Oresme numbers. In 2022, Halici et al. examined k-Oresme

numbers with negative indices [4]. This sequence is denoted by {O(k)
−n}n≥0 and defined as

O
(k)
−n = k2

(
O

(k)
−n+1 −O

(k)
−n+2

)
, k ≥ 2 (9)

with initial conditions O
(k)
−1 = −k,O

(k)
0 = 0. The nth term of this sequence is defined by

O
(k)
−n = −k2n

(αn − βn)√
k2 − 4

. (10)

On the other hand, in 2018, Ozdemir defined a non-commutative number system and called it hybrid
numbers [11]. The author examined in detail the algebraic and geometrical properties of the new number
system, which he described. In 2018, Szynal-Liana introduced Horadam hybrid numbers and examined
their special cases [13]. Hybrid numbers and Horadam hybrid numbers are defined by

K = {z = a+ bi+ cϵ+ dh; a, b, c, d ∈ R} (11)

and

Hn = Wn+Wn+1i+Wn+2ϵ+Wn+3h, (12)

respectively [11, 13]. The relations provided between the three different base elements used in the set K
are

i2 = −1, ϵ2 = 0,h2 = 1, ih = −hi = ϵ+ 1. (13)

The conjugate of any hybrid number z is defined as z = a− bi− cϵ− dh.
The character value of element z, used in important identities, is

C(z) = zz = zz = a2 + (b− c)2 − c2 − d2. (14)

This value of the hybrid number is often used to determine the generalized norm of a hybrid number.
Depending on the selection of the coefficients a, b, c and d, different norms are obtained and they are
examining.

c = d = 0 N(z) =
√
a2 + b2 ,

c = b = 0 N(z) =
√
|a2 − d2| ,

b = d = 0 N(z) = |a|.
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In [14], Oresme hybrid numbers were defined and discussed by Syznal et al. For any positive number n,
the nth Oresme hybrid number is

OHn = On +On+1i+On+2ϵ+On+3h (15)

and the k-Oresme hybrid number is

OH(k)
n = O(k)

n +O
(k)
n+1i+O

(k)
n+2ϵ+O

(k)
n+3h (16)

[14]. In addition, in [14], the authors gave some fundamental identities with the help of iterative relation
including k-Oresme hybrid numbers, but many important identities are not given in this study (see [14],
Thr. 2.4). They also defined Oresme hybrationals for a nonzero real variable x and n ≥ 0

OHn(x) = On(x) +On+1(x)i+On+2(x)ϵ+On+3(x)h. (17)

In [9], Gurses et al. defined Pentanacci and Pentanacci-Lucas hybrid numbers.
In this current study, we define and studied k-Oresme numbers with negative indices. For k ≥ 2, n ≥ 0
we give some important identities, such as the Cassini identity, which have various applications in the
literature and include these numbers.

2. K-Oresme Hybrid Numbers Including Negative Indices

In [6], we introduced k-Oresme hybrid numbers and investigate their fundamental properties.
In this section, we constructed the theory of k-Oresme hybrid numbers with negative indices.

Definition 1. By the aid of the hybrid numbers and the Oresme numbers, let us define k-Oresme hybrid
numbers with negative indices as follows.

OH
(k)
−n = O

(k)
−n +O

(k)
−n+1i+O

(k)
−n+2ϵ+O

(k)
−n+3h, n ≥ 0. (18)

The algebraic operations of the numbers we have just defined here are done by considering the al-
gebraic operations of both Oresme numbers and hybrid numbers. Since we use the terms of this new

number sequence {OH
(k)
−n}n≥0 later, it is appropriate to write some of its terms.{

...,

(
−k3 − ki+

1

k
h

)
,

(
−k +

1

k
ϵ+

1

k
h

)
,

(
1

k
+

1

k
ϵ+

(k2 − 1)

k3
h

)
, ...

}
.

In the following theorem, we give the Binet formula which provides the derivation of many important
identities.

Theorem 1. For the sequence {OH
(k)
−n}n≥0, the Binet formula is

OH
(k)
−n =

−k2n√
k2 − 4

(
αnβ̃ − βnα̃

)
, (19)

where, α̃ = 1 + αi+ α2ϵ+ α3h and β̃ = 1 + βi+ β2ϵ+ β3h.

Proof. From the equality (10),

OH
(k)
−n = − k2n√

k2 − 4
[(αn − βn)]− k2n√

k2 − 4

[
k−2(αn−1 − βn−1)i

]
− k2n√

k2 − 4

[
k−4(αn−2 − βn−2)ϵ

]
− k2n√

k2 − 4

[
k−6(αn−3 − βn−3)h

]
.

Then, we get

LHS =
−k2n√
k2 − 4

[
αn

(
1 +

1

k2α
i+

(
1

k2α

)2

ϵ+

(
1

k2α

)3

h

)]

+
k2n√
k2 − 4

βn

[(
1 +

1

k2β
i+

(
1

k2β

)2

ϵ+

(
1

k2β

)3

h

)]
,

LHS =
−k2n√
k2 − 4

[
αn
(
1 + βi+ β2ϵ+ β3h

)
− βn

(
1 + αi+ α2ϵ+ α3h

)]
.
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If we complete the necessary algebraic operations, then we obtain

OH
(k)
−n =

−k2n√
k2 − 4

(
αnβ̃ − βnα̃

)
which is desired result. Thus, the proof is completed. □

In the next theorem, we give the recurrence relation provided by the elements of the newly defined
sequence.

Theorem 2. For n ∈ Z, the following equality is satisfied.

OH
(k)
−n+1 = k2

(
OH

(k)
−n+2 −OH

(k)
−n+3

)
. (20)

Proof. The proof of this equality is easily seen using induction. □

Theorem 3. The character value for elements of the sequence {OH
(k)
−n}n≥0 is

C(z) =
(
O

(k)
−n+1

)2(k8 + k4 − 1

k4

)
− 2O

(k)
−n+1O

(k)
−n+2

(
k6 + k2 − 1

k2

)
(21)

+
(
O

(k)
−n+2

)2 (
k4 − 1

)
.

Proof. From the definition in the equation (20), C(z) is

C(z) =
(
O

(k)
−n

)2
+
(
O

(k)
−n+1 −O

(k)
−n+2

)2
−
(
O

(k)
−n+2

)2
−
(
O

(k)
−n+3

)2
,

LHS =
[
k2
(
O

(k)
−n+1 −O

(k)
−n+2

)]2
+
(
O

(k)
−n+1

)2
−2
(
O

(k)
−n+1 −O

(k)
−n+2

)
−
(
O

(k)
−n+2 −

1

k2
O

(k)
−n+1

)2

,

LHS =
(
O

(k)
−n+1

)2(k8 + k4 − 1

k4

)
− 2O

(k)
−n+1O

(k)
−n+2

(
k6 + k2 − 1

k2

)
+
(
O

(k)
−n+2

)2 (
k4 − 1

)
.

So, the proof is completed. □

Theorem 4. For elements of the sequence {OH
(k)
−n}n≥0, we have

i) OH
(k)
−n +OH

(k)
−n = 2O

(k)
−n. (22)

ii) C(OH
(k)
−n) = 2OH

(k)
−n.O

(k)
−n −

(
O

(k)
−n

)2
. (23)

Proof. Since the first equality in this theorem can be seen immediately from the definition (18), we
consider the second equality.(

OH
(k)
−n

)2
=
(
O

(k)
−n

)2
−
(
O

(k)
−n+1

)2
+
(
O

(k)
−n+3

)2
+ 2

(
O

(k)
−n+1O

(k)
−n+2

)
+2
(
O

(k)
−nO

(k)
−n+1i+O

(k)
−nO

(k)
−n+2ϵ+O

(k)
−nO

(k)
−n+3h

)
,(

OH
(k)
−n

)2
= 2O

(k)
−nOH

(k)
−n −

(
O

(k)
−n

)2
−
(
O

(k)
−n+1

)2
+
(
O

(k)
−n+3

)2
+ 2O

(k)
−n+1O

(k)
−n+2.

Thus, we get, (
OH

(k)
−n

)2
= 2O

(k)
−nOH

(k)
−n − C(z),

C(z) = 2O
(k)
−nOH

(k)
−n −

(
OH

(k)
−n

)2
.

□
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In the next theorem, we give the Cassini identity which includes k-Oresme hybrid numbers with
negative indices.

Theorem 5. For elements of sequence {OH
(k)
−n}n≥0, we have

OH
(k)
−n+1OH

(k)
−n−1 −

(
OH

(k)
−n

)2
= − k2n

k2 − 4

[
β̃α̃
(
(kα)

−2 − 2
)
+ α̃β̃ (kα)

2
]

(24)

Proof. From, OH
(k)
−n+1, OH

(k)
−n−1 and OH

(k)
−n, we can write the left-hand side of the desired equation.

Here, α̃β̃ ̸= β̃α̃. That is,

LHS =

[
−k2n−2

√
k2 − 4

(
αn−1β̃ − βn−1α̃

)] [ −k2n+2

√
k2 − 4

(
αn+1β̃ − βn+1α̃

)]
−
[

−k2n√
k2 − 4

(
αnβ̃ − βnα̃

)]2
,

LHS =
k4n

k2 − 4

[(
αn−1β̃ − βn−1α̃

)(
αn+1β̃ − βn+1α̃

)
−
(
αnβ̃ − βnα̃

)2]
,

LHS = − k4n

k2 − 4

[
αn−1βn+1β̃α̃+ αn+1βn−1α̃β̃ − 2(αβ)nβ̃α̃

]
,

LHS = − k4n

k2 − 4
(αβ)n

[
β̃α̃

(
β

α
− 2

)
+ α̃β̃

(
α

β

)]
,

If we write the values αβ, β
α and α

β , then we get

LHS = − k2n

k2 − 4

[
β̃α̃
(
(kα)

−2 − 2
)
+ α̃β̃ (kα)

2
]
.

Thus, we complete the proof. □

In the following theorem, we give the Catalan identity provided by k-Oresme hybrid numbers with the
negative indices.

Theorem 6. For n ≥ r, the elements of sequence {OH
(k)
−n}n≥0 provide.

OH
(k)
−n+rOH

(k)
−n−r −

(
OH

(k)
−n

)2
= − k2n

k2 − 4

[
β̃α̃
(
(kα)

−2r − 2
)
+ α̃β̃ (kα)

2r
]
. (25)

Proof. OH
(k)
−n+rOH

(k)
−n−r −

(
OH

(k)
−n

)2
is equal to this:

LHS =
k4n

k2 − 4

[
2(αβ)nβ̃α̃− αn−rβn+rβ̃α̃− αn+rβn−rα̃β̃

]
,

LHS = − k4n

k2 − 4
(αβ)n

[
β̃α̃

((
β

α

)r

− 2

)
+ α̃β̃

(
α

β

)r]
,

If relations valid between the roots of characteristic equation of the sequence are used the relations

OH
(k)
−n+rOH

(k)
−n−r −

(
OH

(k)
−n

)2
= − k2n

k2 − 4

[
β̃α̃
(
(kα)

−2r − 2
)
+ α̃β̃ (kα)

2r
]

is obtained which is the desired result. □

In the case of r = 1, it is obvious that this equation is reduced to the Cassini identity.

In the following theorem, we give the identity d’Ocagne containing the elements of the sequence {OH
(k)
−n}n≥0.

Theorem 7. For m,n ∈ Z, the elements OH
(k)
−n satisfy the following identity.

OH
(k)
−n+1OH

(k)
−m −OH

(k)
−nOH

(k)
−m+1 =

k2m√
k2 − 4

(
βm−nβ̃α̃− αm−nα̃β̃

)
. (26)
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Proof. If we use definition of the numbers OH
(k)
−n+1, OH

(k)
−m, OH

(k)
−n and OH

(k)
−m+1, then we can write the

left-hand side of the desired equation as follows.

OH
(k)
−n+1OH

(k)
−m −OH

(k)
−nOH

(k)
−m+1 =

k2(m+n−1)

k2 − 4
(A+B) ,

where

A =
[
αm+n−1(β̃)2 − αn−1βmβ̃α̃− βn−1αmα̃β̃ + βm+n−1(α̃)2

]
,

B =
[
−αm+n−1(β̃)2 + αm−1βnα̃β̃ + βm−1αnβ̃α̃− βm+n−1(α̃)2

]
.

In the last equation we obtained, we can write the following equations as a result of simplification and
some calculations.

OH
(k)
−n+1OH

(k)
−m −OH

(k)
−nOH

(k)
−m+1 =

k2(m+n−1)

k2 − 4

[
β̃α̃αnβm

(
1

β
− 1

α

)
+ α̃β̃αmβn

(
1

α
− 1

β

)]
,

OH
(k)
−n+1OH

(k)
−m −OH

(k)
−nOH

(k)
−m+1 =

k2(m+n−1)

k2 − 4

(
α− β

αβ

)(
αnβmβ̃α̃− α̃β̃αmβn

)
,

OH
(k)
−n+1OH

(k)
−m −OH

(k)
−nOH

(k)
−m+1 =

k2m√
k2 − 4

(
βm−nβ̃α̃− αm−nα̃β̃

)
.

Thus, the proof is completed. □

In the next theorem, we give the identity Honsberger’s identity involving the elements of the sequence

{OH
(k)
−n}n≥0.

Theorem 8. For m,n ∈ Z, the following equation is true.

OH
(k)
−(m+n) = kO

(k)
−nOH

(k)
−m+1 −

1

k
O

(k)
−n−1OH

(k)
−m. (27)

Proof. We write the following equation to see correctness of the desired equation.

OH
(k)
−(m+n) = k1O

(k)
−n − k2O

(k)
−(n+1).

We should see that the equations k1 = kOH
(k)
−m+1 and k2 = 1

kOH
(k)
−m are true. From the Binet formula

(19),

k2m
(
αm+nβ̃ − βm+nα̃

)
= βn

(
−k1 + k2k

2α
)
+ αn

(
k1 − k2k

2β
)
,

can be written. Also, we get

−k2mβmα̃ = −k1 + k2k
2α,

k2mαmα̃ = k1 − k2k
2β.

And so, k2 = k2m−2 (α
mβ̃−βmα̃)
α−β = − 1

kOH−m. If we substitute this value in the equation, then

k2mβmα̃ = −k1 + αk2m

(
αmβ̃ − βmα̃

)
α− β

,

k2mβm+1α̃− k2mαm+1β̃ = k1(α− β),

k1 = −k2m(αm+1β̃ − βm+1α̃)

(α− β
= kOH−m+1.

Then, we obtain that

OH
(k)
−(m+n) = kO

(k)
−nOH

(k)
−m+1 −

1

k
O

(k)
−n−1OH

(k)
−m.

□
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In the following theorem, we give the generating function of k-Oresme hybrid numbers with negative
indices.

Theorem 9. For the sequence {OH
(k)
−n}n≥0, the generating function is∑

i≥0

OH
(k)
i zi =

OH
(k)
0 (1− zk2) + zOH

(k)
−1

1− zk2 + z2k2
. (28)

Proof. The following equaitons are calculated respectively.

f(z) = OH
(k)
0 + zOH

(k)
−1 + z2OH

(k)
−2 + z3OH

(k)
−3 · · ·

zk2f(z) = zk2OH
(k)
0 − z2k2OH

(k)
−1 − z3k2OH

(k)
−2 + · · ·

z2k2f(z) = z2k2OH
(k)
0 + z3k2OH

(k)
−1 + z4k2OH

(k)
−2 + · · ·

f(z)
(
1− zk2 + z2k2

)
= OH

(k)
0 + z

(
OH

(k)
−1 − k2OH

(k)
0

)
.

Then, we get

f(z) =
OH

(k)
0 (1− zk2) + zOH

(k)
−1

1− zk2 + z2k2
.

□

In the following theorem, we derive the formula for the sum of k-Oresme hybrid numbers with negative
indices.

Theorem 10. For the elements of sequence {OH
(k)
−n}n≥0, the following is satisfied.

n∑
k=1

OH
(k)
−n = k2

(
OH

(k)
−n −OH

(k)
1

)
−
(
OH

(k)
0 +OH

(k)
−n−1

)
. (29)

Proof. If we use the Binet formula (19), then we write

n∑
k=1

OH(k)
n =

−1√
k2 − 4

[
β̃

n∑
k=1

(
k2α

)n − α̃

n∑
k=1

(
k2β

)n]
,

Here, β̃
∑n

k=1

(
k2α

)n
and α̃

∑n
k=1

(
k2β

)n
are

β̃

n∑
k=1

(
k2α

)n
= β̃

(
1− k2β − k2n+2αn+1 + k2n+4αn+1β

)
and

α̃

n∑
k=1

(
k2β

)n
= α̃

(
1− k2α− k2n+2βn+1 + k2n+4βn+1α

)
,

respectively. If we substitute these calculated values, then we obtain
n∑

k=1

OH
(k)
−n = −k2OH

(k)
1 + k2OH

(k)
−n +OH

(k)
0 −OH

(k)
−n−1,

n∑
k=1

OH
(k)
−n = k2

(
OH

(k)
−n −OH

(k)
1

)
+
(
OH

(k)
0 −OH

(k)
−n−1

)
.

Thus, the proof is completed. □

Theorem 11. For the elements of sequence {OH
(k)
−n}n≥0 the following is satisfied.

n∑
j=1

OH
(k)
−j = −k2

(
OH

(k)
2 −OH

(k)
−n+1

)
. (30)
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Proof. From the equality [4],
∑n

i=1 O
(k)
−i = −k

(
1−O

(k)
−n+1

)
and by induction

n+1∑
j=0

OH
(k)
−j = OH

(k)
0 +OH

(k)
−1 +OH

(k)
−2 + · · ·+OH

(k)
−(n+1),

can be written. Thus,

n∑
j=0

OH
(k)
−j =

(
O

(k)
0 +O

(k)
−1 i+O

(k)
−2ϵ+O

(k)
−3h

)
+
(
O

(k)
−1 +O

(k)
0 i+O

(k)
1 ϵ+O

(k)
2 h

)
+ · · · ,

n∑
j=0

OH
(k)
−j =

[
−k − ki+

i

k
+

2ϵ

k
− ϵk +

(k2 − 1)

k3
h+

2h

k
− h

]
+ k2OH

(k)
−n+1,

n∑
j=0

OH
(k)
−j =

[
−k +

(1− k2)

k
i+

(2− k2)

k
ϵ+

(3k2 − k4 − 1)

k3
h

]
+ k2OH

(k)
−n+1,

n∑
j=0

OH
(k)
−j = −k2

[
1

k
+

(k2 − 1)

k3
i+

(k2 − 2)

k3
ϵ+

(k4 − 3k2 + 1)

k5
h

]
+ k2OH

(k)
−n+1.

n∑
j=0

OH
(k)
−j = −k2

(
OH

(k)
2 −OH

(k)
−n+1

)
is obtained which is the proof is completed. □

Theorem 12. For the elements of sequence {OH
(k)
−n}n≥0 the following is satisfied.

n∑
j=1

(−1)
i
OH

(k)
−i =

1

2k2 + 1

(
k + (−1)

n
(
k2OH

(k)
−n +OH

(k)
−n−1

))
. (31)

Proof. It can be seen that the equality claimed in the statement of the theorem is true with the help of
the induction method. □

Theorem 13. For the elements of sequence {OH
(k)
−n}n≥0 the following is satisfied.

T =

t∑
n=1

(
OH

(k)
−n

)2
=

k4
(
OH

(k)
1 −

(
OH

(k)
t+1

)2)
−OH

(k)
0 +

(
OH

(k)
t

)2
1 + 2k2

+

2
(

1−xt

1−x

)[
β̃α̃((kα)−2−2)+α̃β̃(kα)2

k2−4

]
1 + 2k2

. (32)

Proof. We have T =
(
OH

(k)
−1

)2
+
(
OH

(k)
−2

)2
+
(
OH

(k)
−3

)2
+ · · · . From the equality (20),

OH
(k)
−n =

k2OH
(k)
−n−1 +OH

(k)
−n+1

k2
.

T =

t∑
n=1

(
OH

(k)
−n

)2
=

t∑
n=1

[
k2OH

(k)
−n−1 +OH

(k)
−n+1

k2

]2
,

k4T = k4
t∑

n=1

(
OH

(k)
−n+1

)2
+

t∑
n=1

(
OH

(k)
−n−1

)2
+ 2k2

t∑
n=1

OH
(k)
−n+1OH

(k)
−n−1.
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If we also use the Cassini identity,

OH
(k)
n+1OH

(k)
n−1 =

(
OH

(k)
−n

)2
− k2n

k2−4

[
β̃α̃
(
(kα)

−2 − 2
)
+ α̃β̃ (kα)

2
]
, then we get

k4T = k4
(
T −

(
OH

(k)
1

)2
+
(
OH

(k)
t+1

)2)
+

(
T −

(
OH

(k)
0

)2
+
(
OH

(k)
t

)2)

+2k2
t∑

n=1

(
OH(k)

n

)2
− k2n

k2 − 4

[
β̃α̃
(
(kα)

−2 − 2
)
+ α̃β̃ (kα)

2
]
,

k4T = k4
(
T −

(
OH

(k)
1

)2
+
(
OH

(k)
t+1

)2)
+

(
T +

(
OH

(k)
0

)2
−
(
OH

(k)
t

)2)

+2k2T − 2

t∑
n=1

k2n+2

k2 − 4

[
β̃α̃
(
(kα)

−2 − 2
)
+ α̃β̃ (kα)

2
]
,

k4T = T (k4 + 2k2 + 1)− k4
(
OH

(k)
1

)2
+ k4

(
OH

(k)
t+1

)2
+
(
OH

(k)
0

)2
−
(
OH

(k)
t

)2

−2

(
1− xt

1− x

) β̃α̃
(
(kα)

−2 − 2
)
+ α̃β̃ (kα)

2

k2 − 4

 .

Thus, we obtain

T =

t∑
n=1

(
OH

(k)
−n

)2
=

k4
(
OH

(k)
1 −

(
OH

(k)
t+1

)2)
−OH

(k)
0 +

(
OH

(k)
t

)2
1 + 2k2

+

2
(

1−xt

1−x

)[
β̃α̃((kα)−2−2)+α̃β̃(kα)2

k2−4

]
1 + 2k2

.

Which is the desired result. □

Theorem 14. For the elements of sequence {OH
(k)
−n}n≥0 the following is satisfied.

i)

n∑
k=1

OH
(k)
−2n =

(
OH

(k)
0 −OH

(k)
−2n

)
− k4

(
OH

(k)
2 −OH

(k)
−(2n−2)

)
. (33)

ii)

n∑
k=1

OH
(k)
−2n−1 =

(
OH

(k)
0 −OH

(k)
−(2n−1)

)
+ k2

(
OH

(k)
1 −OH

(k)
−(2n−2)

)
. (34)

Proof.

i)

n∑
k=1

OH
(k)
−2n =

−1√
k2 − 4

[
β̃

n∑
k=1

(α2k4)n − α̃

n∑
k=1

(β2k4)n

]
,

n∑
k=1

OH
(k)
−2n =

−1√
k2 − 4

[
β̃

(
1− (k4α2)

n

1− k4α2

)
− α̃

(
1− (k4β2)

n

1− k4β2

)]
,

n∑
k=1

OH
(k)
−2n =

−1√
k2 − 4

[
(β̃ − α̃)− k4n(β̃α2n − α̃β2n)

]

− 1√
k2 − 4

[
k4(α̃α2 − β̃β2) + k4n(β̃α2n−2 − α̃β2n−2)

]
,
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n∑
k=1

OH
(k)
−2n =

(
OH

(k)
0 −OH

(k)
−2n

)
− k4

(
OH

(k)
2 −OH

(k)
−(2n−2)

)
.

Thus, the sum of k-Oresme hybrid numbers with the negative even indices is given. Similarly, the sum
of terms with odd indices can be obtained. □

3. Conclusion

In this study, we inspired by the theory of number systems created by choosing coefficients from special
number sets and defined at the negative indices k-Oresme hybrid numbers. We examined these newly
identified numbers in detail. In particular, we obtained the fundamental and important identities pro-
vided by the elements of this sequence and frequently encountered in the literature.
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1. Introduction

The algebraic structure recognizable under the name quasi-ordered residuated system (QRS, by short)
was introduced in 2018 by Bonzio and Chajda ( [1]) as a generalization of hoop-algebras (in the sense
of [3]) and commutative residuated lattices (in the sense of [7]). Quasi-ordered residuated system A =
⟨A, ·,→, 1,≼⟩ is an integral monoid ordered by a quasi-order ≼ at which the residuum ′ → ′ is associated
with internal binary operation ′ · ′ in A by a special relationship

(∀x, y, z ∈ A)(x · y ≼ z ⇐⇒ x ≼ y → z).

The results of the study of the internal structure of the QRS as well as its substructures were announced
by by the author of this article in several of his reports (see, for example [11,12]). One of the specifics by
which this algebraic structure differs from the commutative residuated lattice is that its residuum part
(A,→, 1) is a BE-algebra with some additional features. Besides that, this algebraic structure, in the
general case, does not satisfy the condition

(∀x, y ∈ A)(x · (x → y) = y · (y → x)),

which is one of the hoop-algebras axioms.

The concept of atoms, as a specific phenomenon in many logical algebras, such as, for example,
BCK/BCI/BCC-algebras, has been studied by several researchers (see, for example [4–6,8,10,14]). Atomic
elements in residual lattices are also studied (see, for example, [9, 15]).

This paper is a report on the properties of atoms in quasi-ordered residuated systems. However, due
to the specificity of the quasi-order relation in QRSs, the method of defining the concept of atom used in
the residual lattice and the mentioned logical algebra is not expedient for defining the concept of atom
in QRSs. The definition of this concept in QRSs, which is used here, to be expedient must be specific.
The paper is organized as follows: In the Preliminaries section, the necessary data and propositions on
quasi-ordered residuated system for the comfonious monitoring of exposure in Section 3. Section 3 is
central part of this report. The concept of atoms in the quasi-ordered residuated system was introduced.
Some of the important features of this notion were registered. For example, the set L(A) of all atoms
in a quasi-ordered residuated system A if not empty, is an anti-chain. However, this subset need not
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be a sub-semigroup of the monoid (A, ·, 1). Second, a criterion was found for determining whether an
element w ∈ A is an atom in A or not. There are also several examples are included that illustrate
the characteristics of this phenomenon in a quasi-ordered residuated system. Additionally, in the second
subsection, two extensions of the system A to the system A ∪ {w} were designed, so that the element w
is an atom in A ∪ {w}. The second of them is created so that L(A ∪ {w}) = L(A) ∪ {w}.

2. Preliminaries

It should be emphasized here that the formulas in this text are written in a standard way, as is usual
in mathematical logic, with the standard use of labels for logical functions. Thus, the labels ∧, ∨, =⇒,
¬, and so on, are labels for the logical functions of conjunction, disjunction, implication, negation, and
so on. Brackets in formulas are used in the standard way, too. All formulas appearing in this paper are
closed by some quantifier. If one of the formulas is open, then the variables that appear in it should
be seen as free variables. In addition to the previous one, the sign =:, in the use of A =: B, should be
understood in the sense that the letter A is the abbreviation for the formula B.

Recall that a quasi-order relation ′ ≼ ′ on a set A is a binary relation which is reflexive and transitive.

Definition 1 ( [1], Definition 2.1). A residuated relational system is a structure A = ⟨A, ·,→, 1, R⟩,
where ⟨A, ·,→, 1⟩ is an algebra of type ⟨2, 2, 0⟩ and R is a binary relation on A and satisfying the following
properties:

(1) (A, ·, 1) is a commutative monoid;
(2) (∀x ∈ A)((x, 1) ∈ R);
(3) (∀x, y, z ∈ A)((x · y, z) ∈ R ⇐⇒ (x, y → z) ∈ R).

We will refer to the operation · as multiplication, to → as its residuum and to condition (3) as residuation.
A quasi-ordered residuated system (QRS, in short) is a residuated relational system ⟨A, ·,→, 1,≼⟩, where
≼ is a quasi-order relation in the monoid (A, ·). We denote this axiomatic system by QRS.

The following proposition shows the basic properties of quasi-ordered residuated systems.

Proposition 1 ( [1], Proposition 3.1). Let A be a quasi-ordered residuated system. Then
(4) The operation ’·’ preserves the pre-order in both positions;

(∀x, y, z ∈ A)(x ≼ y =⇒ (x · z ≼ y · z ∧ z · x ≼ z · y));
(5) (∀x, y, z ∈ A)(x ≼ y =⇒ (y → z ≼ x → z ∧ z → x ≼ z → y));
(6) (∀y, z ∈ A)(x · (y → z) ≼ y → x · z);
(7) (∀x, y, z ∈ A)(x · y → z ≼ x → (y → z));
(8) (∀x, y, z ∈ A)(x → (y → z) ≼ x · y → z);
(9) (∀x, y, z ∈ A)(x → (y → z) ≼ y → (x → z));
(10) (∀x, yz ∈ A)((x → y) · (y → z) ≼ x → z);
(11) (∀x, y ∈ A)((x · y ≼ x) ∧ (x · y ≼ y));
(12) (∀x, y, z ∈ A)(x → y ≼ (y → z) → (x → z));
(13) (∀x, y, z ∈ A)(y → z ≼ (x → y) → (x → z)).

It is generally known that a quasi-order relation ≼ on a set A generates an equivalence ≡≼:=≼ ∩ ≼−1

on A. Due to properties (4) and (5), this equality relation is compatible with the operations in A. Thus,
≡≼ is a congruence on A. In what follows, we will sometime write these relations with ≡ if there is no
misunderstanding. In connection with the previous one, the quotient structure A/ ≡=: ⟨A/ ≡, ∗,⇒, [1]≡⟩
is a QRS, where the operations ∗ and ⇒ are determined as follows

(∀x, y ∈ A)(([x]≡ ∗ [y]≡ =: [x · y]≡) ∧ ([x]≡ ⇒ [y]≡ =: [x → y]≡)).

In the light of the previous note, it is easy to see that the following applies:
(7) and (8) give:

(∀x, y, z ∈ A)(x · y → z ≡≼ x → (y → z)).

Due to the universality of formula (9), we have:

(14) (∀x, y, z ∈ A)(x → (y → z) ≡≼ y → (x → z)).

In addition to the previous one it is easy to prove that

(∀x, y ∈ A)(x ≼ y ⇐⇒ x → y ≡≼ 1).



SOME NEW RESULTS ON QUASI-ORDERED RESIDUATED SYSTEMS 29

Indeed, for any x, y ∈ A the following holds x ≼ y ⇐⇒ 1 ≼ x → y ≼ 1, relying on (3) and (2).

Definition 2. By a hoop ( [3]) we mean an algebra (H, ·,→, 1) in which (H, ·, 1) is a commutative
semigroup with the identity and the following assertions are valid:

(H1) (∀x ∈ H)(x → x = 1),
(H2) (∀x, y ∈ H)(x · (x → y) = y · (y → x)) and
(H3) (∀x, y, z ∈ A)(x · y → z = x → (y → z)).

A relation ⩽ on hoop (A, ·, 1) is defined ( [3], pp. 62) by

(∀x, y ∈ A)(x ⩽ y ⇐⇒ x → y = 1).

The relation ⩽ is a partial order on A compatible with the operation in the hoop (A, ·, 1) in accordance
with Proposition 2.2 in [3] (see [2], also). It is easy to see that every hoop is a (quasi-)ordered residuated
system and vice versa does not have to be because, in the general case, the formula (H2) is not a valid
formula in the QRS axiom system.

Example 1. For a commutative monoid A, let P(A) be denote the powerset of A ordered by set inclusion
and ’·’ the usual multiplication of subsets of A. Then ⟨P(A), ·,→, A,⊆⟩ is a quasi-ordered residuated
system in which the residuum is given by (∀X,Y ∈ P(A))(Y → X =: {z ∈ A : Y z ⊆ X}). □

Examples 2, 3 and 4, included in this section, have an important application to Section 3 as well.

Example 2. Let A = {1, 2, 3, 4} and operations ’·’ and ’→’ defined on A as follows:

· 1 a b c d
1 1 a b c d
a a a a a a
b b a b b b
c c a b c b
d d a b b d

and

→ 1 a b c d
1 1 a b c d
a 1 1 1 1 1
b 1 a 1 1 1
c 1 a d 1 d
d 1 a c c 1

Then A =: ⟨A, ·,→, 1⟩ is a quasi-ordered residuated systems where the relation ’≼’ is defined as follows
≼=: {(1, 1), (a, 1), (a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (b, 1), (c, c), (c, 1), (d, d), (d, 1)}. □

Example 3. Let A = {1, a, b, c, d, e} and operations ’·’ and ’→’ defined on A as follows:

· 1 a b c d e
1 1 a b c d e
a a a a a a a
b b a b a b a
c c a a a a c
d d a b a b c
e e a a c c e

and

→ 1 a b c d e
1 1 a b c d e
a 1 1 1 1 1 1
b 1 e 1 e 1 e
c 1 b b 1 1 1
d 1 a b e 1 e
e 1 b b d d 1

Then A =: ⟨A, ·,→, 1⟩ is a quasi-ordered residuated systems where the relation ’≼’ is defined as follows
≼=: {(1, 1), (a, 1), (b, 1), (c, 1), (d, 1), (e, 1), (a, a), (a, b), (a, c), (a, d), (a, e), (b, b), (b, d), (c, c), (c, d), (c, e),
(d, d), (e, e)}. By direct verification it can be proved that A is a quasi-ordered residuated system. □

Definition 3 ( [11], Definition 3.1). For a non-empty subset F of a quasi-ordered residuated system A
we say that it is a filter of A if it satisfies conditions

(F2) (∀u, v ∈ A)((u ∈ F ∧ u ≼ v) =⇒ v ∈ F ), and
(F3) (∀u, v ∈ A)((u ∈ F ∧ u → v ∈ F ) =⇒ v ∈ F ).

If the non-empty subset F of a quasi-ordered system A satisfies the condition (F2), then it also satisfies
the conditions:

(F0) 1 ∈ F and
(F1) (∀u, v ∈ A)((u · v ∈ F =⇒ (u ∈ F ∧ v ∈ F )),

as it is shown ( [11], Proposition 3.4 and Proposition 3.2).

Remark 1. It is easy to see that the determination of filters in quasi-ordered residuated systems differs
from the determination of filters either in residuated lattices or hoop-algebras.
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Example 4. Let A = ⟨−∞, 1] ⊂ R (the real numbers field). If we define ’·’ and ’→’ as follows,
(∀u, v ∈ A)(u · v =: min{u, v}) and u → v =: 1 if u ⩽ v and u → v =: v if v < u for all u, v ∈ A, then
A =: ⟨A, ·,→, 1, <⟩ is a quasi-ordered residuated system. All filters in A are in the form of ⟨x, 1], for
x ∈ ⟨−∞, 1]. □

Example 5. Let A = {1, a, b, c, d} as in Example 2. The subsets F0 = {1}, F1 = {1, d}, and F2 =
{1, b, c, d} are filters in A. Subsets {1, a}, {1, b}, {1, c}, {1, a, b}, {1, a, c}, {1, a, d}, {1, b, c}, {1, b, d},
{1, c, d}, {1, a, b, c}, {1, a, b, d} are not filters in A. □

Example 6. Let A = {1, a, b, c, d, e} as in Example 3. Subsets F0 = {1}, F1 = {1, d}, F2 = {1, e},
F3 = {1, b, d}, F4 = {1, c, d, e} are non-trivial filters in A. Subsets {1, a}, {1, b}, {1, c}, {1, a, b}, {1, a, c},
{1, a, d}, {1, a, e}, {1, b, c}, {1, b, e}, {1, c, d}, {1, c, e}, {1, d, e}, {1, a, b, c}, {1, a, b, d}, {1, a, b, e},
{1, b, c, d}, {1, b, c, e} are not filters in A. □

3. The Main Results

This section is the central part of this report. In the first subsection, the concept of a quasi-ordered
residuated system is introduced and its basic properties are registered. Also, a criterion was found that
enables recognition of whether an element is an atom in a quasi-ordered residuated system or not. Several
examples are given that illustrate this phenomenon and its characteristics. In the second subsection, it
was shown that every quasi-ordered residuated system can be embedded in a quasi-ordered residuated
system that has at least one atom.

3.1. Concept of atoms in quasi-ordered residuated system. First, we will determine the concept
of atoms in a quasi-ordered residuated system.

Definition 4. Let A be a quasi-ordered residuated system. An element (1 ̸=)a ∈ A is an atom in A if

(At) (∀x ∈ A)(a ≼ x =⇒ (x ≡≼ a ∨ x ≡≼ 1))

holds. The set of all atoms in A is denoted by L(A).

It can immediately be concluded that:

Theorem 1. Elements of L(A) are not comparable.

Proof. Let a, b ∈ L(A) be such that a ̸= b. If we assume that a ≼ b, we would have b ≡≼ a or b ≡≼ 1
because a is an atom in A. Since none of the obtained options is possible, we conclude that the elements
a and b are not comparable. □

The following proposition gives a criterion for recognizing atoms in a quasi-ordered residuated system.

Proposition 2. Let A be a quasi-ordered residuated system and a ∈ A such that 1 ̸= a. Then a is an
atom in A if the set {1, a} is a filter in A.

Proof. Let the subset {1, a} be filter in A. Then holds

(∀x ∈ A)((a ∈ {1, a} ∧ a ≼ x) =⇒ x ∈ {1, a})

according (F2). This means x = 1 or x = a. □

Formula (At) can be written in the form

(∀x ∈ A)(a → x ≡≼ 1 =⇒ (x ≡≼ a ∨ x ≡≼ 1)).

In this case, the proof of the previous proposition is demonstrated by referring to (F3) instead of (F2).

Example 7. Let A = {1, a, b, c, d} as in Examples 2 and 5. Then A =: ⟨A, ·,→, 1⟩ is a quasi-ordered
residuated system. Since the subsets {1, c} and {1, d} are filters in A, then, by Proposition 2, elements c
and d are atoms in A. □

Example 8. Let A = {1, a, b, c, d, e} is as in Example 3 and example 6. Then A =: ⟨A, ·,→, 1⟩ is a
quasi-ordered residuated system. Subsets {1, d} and {1, e} are filters in A (see Example 6). Therefore the
elements d and e are atoms in A. □
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Remark 2. An additional explanation of the concept of atoms in a quasi-ordered residuated system can
be given by using the concept of ’covering’. We say that z cover x if and only if x ≼ z and there does
not exists y ∈ A such that x ≼ y ≼ z and x ̸= y. Thus, an atom in the quasi-ordered residuated system
A =: ⟨A, ·,→, 1⟩ is an element in A which is covered by the neutral 1.

As the following example shows, not every quasi-ordered residuated system has to have atoms:

Example 9. Let A be as in Example 4. For an element a to be an atom in A, it must be (∀x ∈ A)(a <
x =⇒ (x = a ∨ x = 1)) which is impossible, because A is not a discrete set. On the contrary, for a < 1,
there are infinitely many elements x such that a < x < 1. □

Remark 3. In our effort to prove that the converse of Proposition 2 is valid, we encountered the following
problem: Let A =: ⟨A, ·,→, 1⟩ be a quasi-ordered residuated system and let a be an atom in A. Then the
set F = {1, a} is a filter in A. We need to prove that the set F satisfies the conditions (F2) and (F3):

(F2): Let x, y ∈ A be arbitrary elements such that x ∈ F = {1, a} and x ≼ y. This means x ≡≼ a or
x ≡≼ 1. In the first case, we have that a ≼ y implies y ≡≼ a or y ≡≼ 1 because a is an atom in A. Thus
y ∈ F . In the second case, we have 1 ≡≼ x ≼ y so y ≡≼ 1 ∈ F as well. This shows that the set F
satisfies the condition (F2).

(F3): Let x, y ∈ A be arbitrary elements such that x ∈ F = {1, a} and x → y ∈ F . Two options are
possible:

(i) x = 1 and 1 → y ∈ {1, a}. If 1 → y = 1, then 1 ≼ y and, therefore, y ≡≼ 1 ∈ F . If a = 1 → y,
then a ≼ y. From here it follows y ≡≼ a ∈ F or y ≡≼ 1 ∈ F because a is an atom in A.

(ii) x = a and a → y ∈ {1, a}. If 1 = a → y, then a ≼ y, so y ≡≼ 1 ∈ F or y ≡≼ a ∈ F because a is
an atom in A. Let now, us assume, that a = a → y. Then a = a → y ≼ 1. From here we conclude that
it is not a ≼ y. Indeed, if there were a ≼ y, according to (5) we would have 1 ≡≼ a → a ≼ a → y = a,
which is impossible. So it must be ¬(a ≼ y). The obtained conclusion does not allow us to demonstrate
the implication a ∈ F ∧ a → y ∈ F =⇒ y ∈ F .

The following theorem says something more about the set L(A) of all atoms for a given quasi-ordered
residuated system A = ⟨A, ·,→⟩.

Theorem 2. Let A be a quasi-ordered residuated system and a, b ∈ L(A). Then:
(a) If a ̸= b, then a → b = b and b → a = a.
(b) (∀x ∈ A)((a → x) → x = a ∨ (a → x) → x = 1).
(c) (∀x ∈ A)(x → a = a ∨ x → a = 1).

Proof. (a) Since a · b ≼ a according to (11), we conclude that a ≼ b → a. From here it follows b → a = a
or b → a = 1 because a is an atom in A. Since the second option is not possible according to Theorem
1, we have b → a = a.

The statement a → b = b can be proved analogously to the previous proof.

(b) Let A be a quasi-ordered residuated system, a ∈ L(A) and x ∈ A be an arbitrary element. From
the valid formula (a → x) → (a → x) = 1, it follows a → ((a → x) → x) = 1 according to (14). This
means a ≼ (a → x) → x. Since a is an atom in A, from here we get a = (a → x) → x or (a → x) → x = 1.
The second option gives a → x ≼ x.

(c) For the elements a and x ∈ A, we have a · x ≼ a according to (11). Then a ≼ x → a by (3). Thus
x → a = a or x → a = 1 since a is an atom in A. The second option means x ≼ a. □

Example 10. Let A = {1, a, b, c, d, e} as in Examples 3, 6 and 8. Elements d and e are atoms in the
quasi-ordered residuated system A. d → e = e and e → d = d hold for them, which illustrates the
statement (a) in the previous theorem.

To illustrate statement (b), we calculate:
(d → a) → a = a → a = 1 and d → a = a ≼ a,
(d → b) → b = b → b = 1 and d → b = b ≼ b,
(d → c) → c = e → c = d and d → c = e and ¬(e ≼ c),
(d → e) → e = e → e = 1 and d → e = e ≼ e.

In this example, the following calculation illustrates statement (c):
a → d = 1 and a ≼ d,
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b → d = 1 and b ≼ d,
c → d = 1 and c ≼ d,
e → d = d and ¬(e ≼ d). □

Remark 4. Let A be a quasi-ordered residuated system. For any a ∈ A we define a subset V (a) of A as
follows V (a) = {x ∈ A : x ≼ a}. Note that V (a) is non-empty, because a ≼ a gives a ∈ V (a). If a ∈ L(A),
then the set V (a) is called a branch of A. A characteristic of the concept of branches V (a)∩ V (b) = ∅ in
some logical algebras such as, for example, BCI-algebra ( [6], Proposition 3.15) and weak BCC-algebra
( [5], Corollary 3.18) in the case of quasi-ordered residuated systems is not present, as the following
example shows. In Example 3, for atoms d, e ∈ L(A) we have V (d) = {a, b, c, d} and V (e) = {a, c, e}, so,
therefore, is V (d) ∩ V (e) = {a, c} ≠ ∅.

It seems that this tool in the case of quasi-ordered residuated systems is not of any use in studying
the phenomenon of atoms in this algebraic structure. For the sake of illustration, in the Example 3, for
atoms d, e ∈ L(A) we have e · d = d · e = c /∈ L(A). Therefore, L(A) is not a subsemigroup in A.

The converse of statement (b) in the Theorem 2 is valid:

Theorem 3. Let A =: ⟨A, ·,→⟩ be a quasi-ordered residuated system. If the element a ∈ A satisfies the
condition (b), then a is an atom in A.

Proof. Let x ∈ A be such that a ≼ x. This means a → x = 1. Then (a → x) → x = 1 → x = x. If
(a → x) → x = a, then a = x. If (a → x) → x = 1, we have x = 1. This proves that a is an atom in
A. □

3.2. Two types of extensions of quasi-ordered residuated systems. Let A =: ⟨A, ·,→, 1,≼⟩ be a
quasi-ordered residuated system and w /∈ A. We can extend the system A =: ⟨A, ·,→, 1,≼⟩ to the system
B =: ⟨A ∪ {w}, ∗,⇝, 1,≼⟩ so that the element w is an atom in the system B.

Here we demonstrate two such extensions.

Theorem 4. Let A =: ⟨A, ·,→, 1⟩ be a quasi-ordered residuated system and w /∈ A. We can extend the
system ⟨A, ·,→, 1⟩ to the system B =: ⟨A ∪ {w}, ∗,⇝, 1⟩ so that the element w is an atom in the system
B.

Proof. System B can be created in the following way:

x ∗ y =


x · y for x ∈ A ∧ y ∈ A,
x for x ∈ A ∧ y = w,
y for x = w ∧ y ∈ A,
w for x = w ∧ y = w,

and

x⇝ y =


x → y for x ∈ A ∧ y ∈ A,
1 for x ∈ A ∧ y = w,
y for x = w ∧ y ∈ A,
1 for x = w ∧ y = w.

For elements x, y ∈ A we have
w ∗ (x · y) = x · y and (w ∗ x) · y = x · y and
w ∗ (w ∗ x) = w ∗ x = x and (w ∗ w) ∗ x = w ∗ x = x .

So, the set B = A ∪ {w} is a commutative monoid. Second, w ∗ x ≼ w ⇐⇒ w ≼ x ⇝ a = 1,
w ∗ x ≼ x ⇐⇒ x ≼ w ⇝ w = 1 and w ∗ w = w ≼ w ⇐⇒ w ≼ w ⇝ w = 1. Therefore, B is a
quasi-ordered residuated system. It is immediately clear that w is an atom in B, because if w ≼ x holds,
then 1 = w ⇝ x = x. □

The following example illustrates the first extension of a quasi-ordered residuated system.

Example 11. Let A = {1, a, b, c, d} as in Example 2. Then A =: ⟨A, ·,→, 1⟩ is a quasi-ordered residuated
system. Here is L(A) = {c, d}. Let us put B = A∪ {w} = {1, a, b, c, d, w} and define the operations in B
as follows
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∗ 1 a b c d w
1 1 a b c d w
a 1 a a a a a
b 1 a b b b b
c 1 a b c b c
d 1 a b b d d
w w a b c d w

and

⇝ 1 a b c d w
1 1 a b c d w
a 1 1 1 1 1 1
b 1 a 1 1 1 1
c 1 a d 1 d 1
d 1 a c c 1 1
w 1 a b c d 1

Then B =: ⟨A ∪ {w}, ∗,⇝, 1⟩ is a quasi-ordered residuated system. It is obvious that w is a single atom
in the system B. Hence L(B) = {w}.

Theorem 5. The extension of a quasi-ordered residuated system ⟨A, ·,→, 1,≼⟩ to system B =: ⟨A ∪
{w}, ∗,⇝, 1,≼⟩ can also be realized so that the set L(A) of all atoms of the system A is expanded by one
element, that is L(B) = L(A) ∪ {w}.

Proof. Let us take w /∈ A. Let’s form the set B = A ∪ {w} and design operations on B in the following
way:

x ∗ y =


x · y for x ∈ A ∧ y ∈ A,
x for x ∈ A \ L(A) ∧ y = w,
y for x = w ∧ y ∈ A \ L(A),
w for x = w ∧ y = w,
max{z ∈ A : z ≼ x ∧ z ≼ w} for x ∈ L(A) ∧ y = w

and

x⇝ y =



x → y for x ∈ A ∧ y ∈ A,
1 for x ∈ A \ L(A) ∧ y = w,
y for x = w ∧ y ∈ A \ L(A),
1 for x = w ∧ y = w,
w for x ∈ L(A) ∧ y = w
y for x = w ∧ y ∈ L(A).

It can be shown that B is a quasi-ordered residuated system by patient and careful calculation. It is easy
to conclude that a is an atom in B. Indeed, from w ≼ x it follows w ⇝ x = 1 and (w ⇝ x) ⇝ x = 1,
from which it follows that w is an atom in B according to Theorem 3. □

The following example illustrates another way of extending the quasi-ordered residuated system men-
tioned above. The extension, described in the following example, is significantly different from the
previous one.

Example 12. Let A = {1, a, b, c, d} as in Example 2. Elements c and d are atoms in this quasi-ordered
residuated system: L(A) = {c, d}. Let us put B = A ∪ {w} and define the operations in B as follows

∗ 1 a b c d w
1 1 a b c d w
a 1 a a a a a
b 1 a b b b b
c 1 a b c b b
d 1 a b b d b
w w a b c d w

and

⇝ 1 a b c d w
1 1 a b c d w
a 1 1 1 1 1 1
b 1 a 1 1 1 1
c 1 a d 1 d w
d 1 a c c 1 w
w 1 a b c d 1

From the second table, which determined the ⇝ operation, it can be seen that a ≼ c < 1 ∧ b ≼ c < 1,
a ≼ d < 1 ∧ b ≼ d < 1, and a ≼ w < 1 ∧ b ≼ w < 1. So, L(B) = {c, d, w}.
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1. Introduction

Lattice [1, 2] and [4] is a mathematical structure constructed on a set of elements associated with
two binary operations ⊓⋆ (greatest lower bound) and ⊔⋆ (least upper bound). These operations satisfy
specific properties, such as associativity, commutativity, and idempotence. A distributive lattice is a type
of lattice where meet and join operations distribute over each other. The inclusion of another unary
operation on a distributive lattice paved the way to study a new concept known as Boolean algebra [9].
Heyting algebras [3] generalize the idea of Boolean algebras, with the implication operation →⋆ playing
a central role. Brouwerian algebras, also known as Kripke or topological algebras, are a specific subclass
of Heyting algebras that incorporate topological structures. In addition to the algebraic operations of a
Heyting algebra, Brouwerian algebras [10] include topological constraints, often represented by topological
spaces or partial orders with additional topological properties.

Swamy and Rao studied almost distributive lattice [11] to understand the behavior of lattices when
distributivity is nearly satisfied. In an almost distributive lattice, the distributive law holds almost every-
where, but a few exceptions may exist. The connection between lattices and almost distributive lattices
lies in their relationship to distributivity. While distributive lattices strictly adhere to the distributive
law for all elements, almost distributive lattices relax this requirement by allowing a few exceptions. This
relaxation allows for a broader class of structures to be studied while retaining some distributive lattices’
properties.

Almost distributive lattices were first studied under two binary operations, ⊓⋆ and ⊔⋆. The inclusion of
another binary operation →⋆ laid the foundation for studying many more algebras on almost distributive
lattices [5,6] and [7]. Till now, the study of all these algebras on an almost distributive lattice where with
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the inclusion of both the least element 0 and maximal element ν1. In this paper, we initiated to define an
algebra named a Brouwerian almost distributive lattice, which is a generalization of a Brouwerian algebra
and an almost distributive lattice, with the exclusion of the least element 0. In this context, we will go
through the fundamental definition of a Brouwerian almost distributive lattice and provide some examples
demonstrating the independence of the axioms stated in the definition and some properties related to the
structure. Finally, we present a collection of equivalence conditions that enable the Brouwerian almost
distributive lattice to transform into a Brouwerian algebra.

2. Preliminaries

Let us recall some beneficial, necessary results on an almost distributive lattice, semi-Brouwerian
algebra, and semi-Brouwerian almost distributive lattice, which are frequently used in the paper.

Definition 1. [11] An algebra (B,⊔⋆,⊓⋆) of type (2,2) is called an almost distributive lattice (ADL), if
it assures the subsequent axioms;

1. (χ1 ⊔⋆ χ2) ⊓⋆ χ3 = (χ1 ⊓⋆ χ3) ⊔⋆ (χ2 ⊓⋆ χ3)
2. χ1 ⊓⋆ (χ2 ⊔⋆ χ3) = (χ1 ⊓⋆ χ2) ⊔⋆ (χ1 ⊓⋆ χ3)
3. (χ1 ⊔⋆ χ2) ⊓⋆ χ2 = χ2

4. (χ1 ⊔⋆ χ2) ⊓⋆ χ1 = χ1

5. χ1 ⊔⋆ (χ1 ⊓⋆ χ2) = χ1

for all χ1, χ2, χ3 ∈ B.

Example 1. [11] If B is a non-empty set, for any χ1, χ2 ∈ B, define χ1 ⊓⋆ χ2 = χ2, χ1 ⊔⋆ χ2 = χ1, then
(B,⊔⋆,⊓⋆) is an discrete ADL.

Unless otherwise stated, B represents an almost distributive lattice (B,⊔⋆,⊓⋆) in this section. For any
χ1, χ2 ∈ B, χ1 ≤∗ χ2 if χ1 = χ1 ⊓⋆ χ2 or equivalently χ1 ⊔⋆ χ2 = χ2, and it is noticed that ≤∗ is a partial
order on B .

Theorem 1. [11] For any ν1 ∈ S, the following are equivalent,

172. ν1 is a maximal element.
173. ν1 ⊔⋆ χ1 = ν1, for all χ1 ∈ B.
174. ν1 ⊓⋆ χ1 = χ1, for all χ1 ∈ B.

Theorem 2. [11] For any χ1, χ2, χ3 ∈ B,
172. χ1 ⊔⋆ χ2 = χ1 ⇐⇒ χ1 ⊓⋆ χ2 = χ1.
173. χ1 ⊔⋆ χ2 = χ2 ⇐⇒ χ1 ⊓⋆ χ2 = χ1.
174. χ1 ⊓⋆ χ2 = χ2 ⊓⋆ χ1 = χ1 whenever χ1 ≤∗ χ2.
175. ∧∗ is associative.
176. χ1 ⊓⋆ χ2 ⊓⋆ χ3 = χ2 ⊓⋆ χ1 ⊓⋆ χ3.
177. (χ1 ⊔⋆ χ2) ⊓⋆ χ4 = (χ2 ⊔⋆ χ1) ∧∗ χ4.
178. χ1 ⊓⋆ χ2 ≤∗ χ2 and χ1 ≤∗ χ1 ∨∗ χ2.
179. χ1 ⊓⋆ χ1 = χ1 and χ1 ⊔⋆ χ1 = χ1.
180. If χ1 ≤∗ χ3 and χ2 ≤∗ χ3, then χ1 ∧∗ χ2 = χ2 ⊓⋆ χ1 and χ1 ⊔⋆ χ2 = χ2 ⊔⋆ χ1.

Theorem 3. [11] Let (B,⊔⋆,⊓⋆, ν1) be an ADL. Then the following are equivalent;

172. B is a distributive lattice.
173. (B,≤∗) is directed above.
174. ⊔⋆ is commutative.
175. ⊓⋆ is commutative.
176. ⊔⋆ is right distributive over ⊓⋆.
177. The relation θ = {(χ1, χ2) ∈ B × B | χ2 ⊓⋆ χ1 = χ1} on B is antisymmetric.

Definition 2. [10] An algebra (B,⊔⋆,⊓⋆,→⋆, 1) of type (2,2,2,0) is said to be a Brouwerian algebra, if
it assures the subsequent axioms;

172. The system (B,⊔⋆,⊓⋆, 1) is a lattice with a greatest element 1.
173. For all χ1, χ2, χ3 ∈ B, χ1 ⊓⋆ χ3 ≤ χ2 if and only if χ3 ≤ χ1 →⋆ χ2.



BROUWERIAN ALMOST DISTRIBUTIVE LATTICES 37

Definition 3. [8] B with a maximal element ν1 is said to be a semi-Brouwerian almost distributive
lattice (SBADL), if there is a binary operation →⋆ on B with the subsequent axioms;

(N1) (χ1 →⋆ χ1) ⊓⋆ ν1 = ν1
(N2) χ1 ⊓⋆ (χ1 →⋆ χ2) = χ1 ⊓⋆ χ2 ⊓⋆ ν1
(N3) χ1 ⊓⋆ (χ2 →⋆ χ3) = χ1 ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ (χ1 ⊓⋆ χ3)]
(N4) (χ1 →⋆ χ2) ⊓⋆ ν1 = [(χ1 ⊓⋆ ν1) →⋆ (χ2 ⊓⋆ ν1)]

for all χ1, χ2, χ3 ∈ B.

3. Brouwerian Almost Distributive Lattices

In this section, we introduce Brouwerian almost distributive lattices and provide several counterex-
amples. We compare Brouwerian almost distributive lattices with semi-Brouwerian almost distributive
lattices. We obtain several algebraic properties on Brouwerian almost distributive lattices. We derive
some necessary and sufficient conditions for a Brouwerian almost distributive lattice to become a Brouw-
erian algebra.

Definition 4. An almost distributive lattice (B,⊓⋆,⊔⋆) with a maximal element ν1 is said to be a Brouw-
erian almost distributive lattice (abbreviated as BrADL), if there is a binary operation →⋆ on B, satisfying
the following axioms;

B1. (χ1 →⋆ χ1) ⊓⋆ ν1 = ν1
B2. χ1 ⊓⋆ (χ1 →⋆ χ2) = χ1 ⊓⋆ χ2 ⊓⋆ ν1
B3. χ2 ⊓⋆ (χ1 →⋆ χ2) = χ2 ⊓⋆ ν1
B4. χ1 →⋆ (χ2 ⊓⋆ χ3) = (χ1 →⋆ χ2) ⊓⋆ (χ1 →⋆ χ3)

for all χ1, χ2, χ3 ∈ B.

In examples 2, 3, 4 and 5 we exhibit the independence of the axioms B1,B2,B3 and B4 of Definition 4.

Example 2. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation →⋆ as illustrated in the
following table;

→⋆ 1 2 3 4 5
1 1 5 5 5 5
2 1 5 5 5 5
3 1 2 5 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element and the binary operation →⋆ satisfies the
axioms B2,B3 and B4 of Definition 4 but B1 fails for the pair (1, 1).
(1 →⋆ 1) ⊓⋆ 5 = 5 ⇒ 1 ⊓⋆ 5 = 5

⇒ 1 ̸= 5.

Example 3. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation →⋆ as illustrated in the
following table;

→⋆ 1 2 3 4 5
1 5 5 5 5 5
2 5 5 5 5 5
3 1 2 5 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element and the binary operation →⋆ satisfies the
axioms B1,B3 and B4 of Definition 4 but B2 fails for the pair (2, 1).
2 ⊓⋆ (2 →⋆ 1) = 2 ⊓⋆ 1 ⊓⋆ 5 ⇒ 2 ⊓⋆ 5 = 1 ⊓⋆ 5

⇒ 2 ̸= 1.

Example 4. Let B = {1, 2, 3, 4, 5} be a set whose Hasse-diagram is
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4

2

1

3

5

with the binary operation →⋆ as illustrated in the following table;

→⋆ 1 2 3 4 5
1 5 5 5 5 5
2 1 5 1 5 5
3 1 1 5 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element and the binary operation →⋆ satisfies the
axioms B1,B2 and B4 of Definition 4 but B3 fails for the pares (2, 3) and (3, 2). For the pair (2, 3)
3 ⊓⋆ (2 →⋆ 3) = 3 ⊓⋆ 5 ⇒ 3 ⊓⋆ 1 = 3 ⊓⋆ 5

⇒ 1 ̸= 3.

Example 5. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation →⋆ as illustrated in the
following table;

→⋆ 1 2 3 4 5
1 5 2 3 4 5
2 1 5 3 4 5
3 1 2 5 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element and the binary operation →⋆ satisfies the
axioms B1,B2 and B3 of Definition 4 but B4 fails for the triplets (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 2, 1), (1, 3, 1),
(1, 4, 1), (2, 2, 3), (2, 2, 4), (2, 3, 2) and (2, 4, 2).
For the triplet (1, 1, 2)
1 →⋆ (1 ⊓⋆ 2) = (1 →⋆ 1) ⊓⋆ (1 →⋆ 2) ⇒ 1 →⋆ 1 = 5 ⊓⋆ 2

⇒ 5 ̸= 2.

In examples 6 and 7 we define a binary operation →⋆ on an ADL in such a way that it forms a
Brouwerian almost distributive lattice.

Example 6. Let B = {1, 2, 3, 4, 5} be a set whose Hasse-diagram is

4

2

1

3

5

with the binary operation →⋆ as illustrated in the following table;
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→⋆ 1 2 3 4 5
1 5 5 5 5 5
2 3 5 3 5 5
3 2 2 3 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element and the binary operation →⋆ satisfies all the
axioms B1,B2,B3 and B4 of Definition 4. Therefore (B,⊔⋆,⊓⋆,→⋆, 5) is a Brouwerian almost distributive
lattice.

Example 7. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation →⋆ as illustrated in the
following table;

→⋆ 1 2 3 4 5
1 5 5 5 5 5
2 1 5 5 5 5
3 1 2 5 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element, and the binary operation →⋆ satisfies
all the axioms B1,B2,B3 and B4 of Definition 4. Therefore (B,⊔⋆,⊓⋆,→⋆, 5) is a Brouwerian almost
distributive lattice.

In example 8 we demonstrate that the every binary operation →⋆ defined on an ADL need not be a
BrADL.

Example 8. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation ⊔⋆,⊓⋆ and →⋆ as
illustrated in the following tables;

⊔⋆ 1 2 3 4 5
1 1 1 1 1 1
2 1 2 5 2 5
3 4 3 3 4 4
4 4 4 4 4 4
5 5 5 5 5 5

⊓⋆ 1 2 3 4 5
1 1 2 3 4 5
2 2 2 3 3 2
3 2 2 3 3 2
4 1 2 3 4 5
5 1 2 3 4 5

→⋆ 1 2 3 4 5
1 1 2 5 2 5
2 5 5 5 5 5
3 5 2 5 2 5
4 5 1 2 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element, and the binary operation →⋆ does not
satisfy the axioms B1, B2 ,B3 and B4 of Definition 4.
B1 for the pair (1, 2).
B2 for the pares (1, 3), (1, 4), (4, 1), (4, 2), (4, 3).
B3 for the pares (1, 4), (3, 4).
B4 for the triplets (3, 2, 3), (3, 2, 4), (3, 3, 1), (3, 3, 2), (3, 3, 4), (3, 3, 5), (3, 4, 1),
(3, 4, 3), (4, 2, 1), (4, 2, 4), (4, 2, 5), (4, 3, 1), (4, 3, 2), (4, 3, 5).
Therefore (B,⊔⋆,⊓⋆,→⋆, 5) is not a BrADL.

Every Brouwerian algebra is a Brouwerian almost distributive lattice. Vice versa is not possible. For,
see Example 9.

Example 9. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation ⊔⋆,⊓⋆ and →⋆ as
illustrated in the following tables;
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⊔⋆ 1 2 3 4 5
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5

⊓⋆ 1 2 3 4 5
1 1 2 3 4 5
2 1 2 3 4 5
3 1 2 3 4 5
4 1 2 3 4 5
5 1 2 3 4 5

→⋆ 1 2 3 4 5
1 5 5 5 5 5
2 1 5 3 4 5
3 5 2 5 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is a discrete ADL also (B,⊔⋆,⊓⋆,→⋆, 5) is a BrADL but not a BA (since it is not a
lattice).

Example 10 shows that there is a binary operation →⋆ on a five element chain which forms a BrADl
but not a SBADL.

Example 10. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation →⋆ as illustrated in
the following table;

→⋆ 1 2 3 4 5
1 5 5 5 5 5
2 1 5 5 5 5
3 1 2 5 5 5
4 1 2 5 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element, and all the axioms B1,B2,B3 and B4 of
Definition 4 are satisfied by the binary operation →⋆ . As a result (B,⊔⋆,⊓⋆,→⋆, 5) is a BrADL.
Furthermore, the triplet (4, 5, 3) does not satisfy the axiom N3 of Definition 3 when using the binary
operation →⋆. Therefore (B,⊔⋆,⊓⋆,→⋆, 5) not a SBADL. Hence (B,⊔⋆,⊓⋆,→⋆, 5) is a BrADL but not
a SBADL.

Example 11 shows that there is a binary operation →⋆ on a five element chain which forms a SBADL
but not a BrADl.

Example 11. Let B = {1, 2, 3, 4, 5} be a five-element chain with binary operation →⋆ as illustrated in
the following table;

→⋆ 1 2 3 4 5
1 5 2 3 4 5
2 1 5 3 4 5
3 1 2 5 5 5
4 1 2 3 5 5
5 1 2 3 4 5

Clearly, (B,⊔⋆,⊓⋆) is an ADL with 5 as its maximal element and that all the axioms N1,N2,N3 and N4

of Definition 3 are satisfied by the binary operation →⋆. Therefore (B,⊔⋆,⊓⋆,→⋆, 5) is a SBADL.
Here for the triplets (1, 1, 2), (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 2, 1), (1, 3, 1), (1, 4, 1),
(2, 2, 3), (2, 2, 4), (2, 3, 2), (2, 4, 2), the binary operation →⋆ fails to satisfy the axiom B4 of Definition
4. Therefore (B,⊔⋆,⊓⋆,→⋆, 5) is not a BrADL. Hence (B,⊔⋆,⊓⋆,→⋆, 5) is not a BrADL but rather a
SBADL.

Here, we derive the primary characteristics on BrADL that are crucial for advancing the theory’s
development. Unless otherwise stated, B denotes a Brouwerian almost distributive lattice (B,⊔⋆,⊓⋆,→⋆

, ν1), with ν1 as its maximal element.
The properties that we derive in Theorem 4 and Theorem 5 plays a crucial role in developing the

theory further.
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Theorem 4. For any χ1, χ2 ∈ B, the following hold;

172. ν1 →⋆ χ1 = χ1 ⊓⋆ ν1
173. χ1 →⋆ ν1 = ν1
174. χ1 →⋆ (χ1 ⊓⋆ χ3) = χ1 →⋆ χ3.

Proof. Let χ1, χ2 ∈ B. Consider,

172. ν1 →⋆ χ1 = ν1 ⊓⋆ (ν1 →⋆ χ1) (by 174 of Theorem 1.)
= ν1 ⊓⋆ χ1 ⊓⋆ ν1 (by B2 of Definition 4.)
= χ1 ⊓⋆ ν1 (by 176 of Theorem 2.)

173. χ1 →⋆ ν1 = ν1 ⊓⋆ (χ1 →⋆ ν1) (by 174 of Theorem 1.)
= ν1 ⊓⋆ ν1 (by B3 of Definition 4.)
= ν1

174. χ1 →⋆ (χ1 ⊓⋆ χ3) = (χ1 →⋆ χ1) ⊓⋆ (χ1 →⋆ χ3) (by B4 of Definition 4.)
= (χ1 →⋆ χ1) ⊓⋆ ν1 ⊓⋆ (χ1 →⋆ χ3)
= ν1 ⊓⋆ (χ1 →⋆ χ3) (by B1 of Definition 4.)
= χ1 →⋆ χ3.

□

Theorem 5. If χ1 ≤ χ2 in B and χ1, χ2, χ3 ∈ B, then the following holds;

172. χ3 →⋆ χ1 ≤ χ3 →⋆ χ2

173. (χ1 →⋆ χ2) ⊓⋆ ν1 = ν1

Proof. Let χ1, χ2, χ3 ∈ B. Consider,

172. (χ3 →⋆ χ1) ⊓⋆ (χ3 →⋆ χ2) = χ3 →⋆ (χ1 ⊓⋆ χ2) (by B4 of Definition 4.)
= χ3 →⋆ χ1 (since χ1 ≤ χ2).

Therefore χ3 →⋆ χ1 ≤ χ3 →⋆ χ2.
173. χ1 ≤ χ2 ⇒ χ1 →⋆ χ1 ≤ χ1 →⋆ χ2 (by 172)

⇒ (χ1 →⋆ χ1) ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1
⇒ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1 (by B1 of Definition 4.)
⇒ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1 ≤ ν1
⇒ (χ1 →⋆ χ2) ⊓⋆ ν1 = ν1

□

Corollary 3.15, is the consequence of B2 and B3 of Definition 4.

Corollary 1. For any χ1, χ2 ∈ B, the following holds;

172. χ1 ⊓⋆ χ2 ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1
173. χ2 ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1.

Theorem 6. For any χ1, χ2, χ3 ∈ B, χ1⊓⋆χ3⊓⋆ ν1 ≤ χ2⊓⋆ ν1 if and only if χ3⊓⋆ ν1 ≤ (χ1 →⋆ χ2)⊓⋆ ν1.

Proof. Let χ1, χ2, χ3 ∈ B. Then, χ1 ⊓⋆ χ3 ⊓⋆ ν1 ≤ χ2 ⊓⋆ ν1
⇒ χ1 →⋆ (χ1 ⊓⋆ χ3 ⊓⋆ ν1) ≤ χ1 →⋆ (χ2 ⊓⋆ ν1)

(by 172 of Theorem 5.)
⇒ (χ1 →⋆ χ1) ⊓⋆ (χ1 →⋆ χ3) ⊓⋆ (χ1 →⋆ ν1) ≤ (χ1 →⋆ χ2) ⊓⋆ (χ1 →⋆ ν1)

(by B4 of Definition 4.)
⇒ (χ1 →⋆ χ1) ⊓⋆ ν1 ⊓⋆ (χ1 →⋆ χ3) ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1

(by 173 of Theorem 4.)
⇒ ν1 ⊓⋆ (χ1 →⋆ χ3) ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1

(by B1 of Definition 4.)
⇒ (χ1 →⋆ χ3) ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1
⇒ χ3 ⊓⋆ ν1 ≤ (χ1 →⋆ χ3) ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1

(by 173 of Corollary 1.)
⇒ χ3 ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1.

On the other hand,
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χ3 ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1 ⇒ χ1 ⊓⋆ χ3 ⊓⋆ ν1 ≤ χ1 ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν1
⇒ χ1 ⊓⋆ χ3 ⊓⋆ ν1 ≤ χ1 ⊓⋆ χ2 ⊓⋆ ν1

(by B2 of Definition 4.)
⇒ χ1 ⊓⋆ χ3 ⊓⋆ ν1 ≤ χ2 ⊓⋆ ν1.

□

Theorem 7. For any χ1, χ2 ∈ B the following hold,
χ1 ⊓⋆ ν1 ≤ [(χ1 →⋆ χ2) →⋆ χ2] ⊓⋆ ν1.

Proof. Let χ1, χ2 ∈ B. Then, by B2 of Definition 4.
χ1 ⊓⋆ (χ1 →⋆ χ2) = χ1 ⊓⋆ χ2 ⊓⋆ ν1
⇒ χ1 ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν1 = χ1 ⊓⋆ χ2 ⊓⋆ ν1 ≤ χ2 ⊓⋆ ν1
⇒ (χ1 →⋆ χ2) ⊓⋆ χ1 ⊓⋆ ν1 ≤ χ2 ⊓⋆ ν1 (by 176 of Theorem 2.)
⇒ χ1 ⊓⋆ ν1 ≤ [(χ1 →⋆ χ2) →⋆ χ2] ⊓⋆ ν1 (by Theorem 6.).

□

Theorem 8. For any χ1, χ2, χ3 ∈ B, the following holds;

172. χ1 ⊓⋆ ν1 ≤ χ2 ⊓⋆ ν1 if and only if (χ1 →⋆ χ2) ⊓⋆ ν1 = ν1.
173. χ1 ⊓⋆ ν1 ≤ (χ2 →⋆ χ3) ⊓⋆ ν1 if and only if χ2 ⊓⋆ ν1 ≤ (χ1 →⋆ χ3) ⊓⋆ ν1
174. χ1 ⊓⋆ χ2 ⊓⋆ ν1 = χ1 ⊓⋆ χ3 ⊓⋆ ν1 if and only if (χ1 →⋆ χ2) ⊓⋆ ν1 = (χ1 →⋆ χ3) ⊓⋆ ν1

Proof. Let χ1, χ2, ν1 ∈ B. Consider,
172. χ1 ⊓⋆ ν1 ≤ χ2 ⊓⋆ ν1

⇒ χ1 →⋆ (χ1 ⊓⋆ ν1) ≤ χ1 →⋆ (χ2 ⊓⋆ ν1)
(by 172 of Theorem 5.)

⇒ (χ1 →⋆ χ1) ⊓⋆ (χ1 →⋆ ν1) ≤ (χ1 →⋆ χ2) ⊓⋆ (χ1 →⋆ ν1)
(by B4 of Definition 4.)

⇒ (χ1 →⋆ χ1) ⊓⋆ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1
(by 173 of Theorem 4.)

⇒ ν1 ≤ (χ1 →⋆ χ2) ⊓⋆ ν1 ≤ ν1
(by B1 of Definition 4.)

⇒ (χ1 →⋆ χ2) ⊓⋆ ν1 = ν1
On the other hand,
(χ1 →⋆ χ2) ⊓⋆ ν1 = ν1 ⇒ χ1 ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν1 = χ1 ⊓⋆ ν1

⇒ χ1 ⊓⋆ χ2 ⊓⋆ ν1 ⊓⋆ ν1 = χ1 ⊓⋆ ν1
(by B2 of Definition 4.)

⇒ χ1 ⊓⋆ ν1 ⊓⋆ χ2 ⊓⋆ ν1 = χ1 ⊓⋆ ν1
(by 176 of Theorem 2.)

Therefore χ1 ⊓⋆ ν1 ≤ χ2 ⊓⋆ ν1.
173. χ1 ⊓⋆ ν1 ≤ (χ2 →⋆ χ3) ⊓⋆ ν1

⇒ χ2 ⊓⋆ χ1 ⊓⋆ ν1 ≤ χ2 ⊓⋆ (χ2 →⋆ χ3) ⊓⋆ ν1
⇒ χ2 ⊓⋆ χ1 ⊓⋆ ν1 ≤ χ2 ⊓⋆ χ3 ⊓⋆ ν1

(by B2 of Definition 4.)
⇒ χ1 ⊓⋆ χ2 ⊓⋆ ν1 ≤ χ2 ⊓⋆ χ3 ⊓⋆ ν1 ≤ χ3 ⊓⋆ ν1

(by 176 of Theorem 2.)
⇒ χ1 ⊓⋆ χ2 ⊓⋆ ν1 ≤ χ3 ⊓⋆ ν1
⇒ χ2 ⊓⋆ ν1 ≤ (χ1 →⋆ χ3) ⊓⋆ ν1

(by Theorem 6.)
On the other hand,
χ2 ⊓⋆ ν1 ≤ (χ1 →⋆ χ3) ⊓⋆ ν1

⇒ χ1 ⊓⋆ χ2 ⊓⋆ ν1 ≤ χ1 ⊓⋆ (χ1 →⋆ χ3) ⊓⋆ ν1
⇒ χ1 ⊓⋆ χ2 ⊓⋆ ν1 ≤ χ1 ⊓⋆ χ3 ⊓⋆ ν1

(by B2 of Definition 4.)
⇒ χ2 ⊓⋆ χ1 ⊓⋆ ν1 ≤ χ1 ⊓⋆ χ3 ⊓⋆ ν1 ≤ χ3 ⊓⋆ ν1

(by 176 of Theorem 2.)
⇒ χ1 ⊓⋆ ν1 ≤ (χ2 →⋆ χ3) ⊓⋆ ν1

(by Theorem 6.)
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174. χ1 ⊓⋆ χ2 ⊓⋆ ν1 = χ1 ⊓⋆ χ3 ⊓⋆ ν1
⇒ χ1 →⋆ (χ1 ⊓⋆ χ2 ⊓⋆ ν1) = χ1 →⋆ (χ1 ⊓⋆ χ3 ⊓⋆ ν1)

(by 172 of Theorem 5.)
⇒ (χ1 →⋆ χ1) ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ (χ1 →⋆ ν1)

= (χ1 →⋆ χ1) ⊓⋆ (χ1 →⋆ χ3) ⊓⋆ (χ1 →⋆ ν1)
(by B4 of Definition 4.)

⇒ (χ1 →⋆ χ1) ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν1 = (χ1 →⋆ χ1) ⊓⋆ (χ1 →⋆ χ3) ⊓⋆ ν1
(by 173 of Theorem 4.)

⇒ (χ1 →⋆ χ2) ⊓⋆ (χ1 →⋆ χ1) ⊓⋆ ν1 = (χ1 →⋆ χ3) ⊓⋆ (χ1 →⋆ χ1) ⊓⋆ ν1
(by 176 of Theorem 2.)

⇒ (χ1 →⋆ χ2) ⊓⋆ ν1 = (χ1 →⋆ χ3) ⊓⋆ ν1
(by B1 of Definition 4.)

On the other hand, (χ1 →⋆ χ2) ⊓⋆ ν1 = (χ1 →⋆ χ3) ⊓⋆ ν1
⇒ χ1 ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν1 = χ1 ⊓⋆ (χ1 →⋆ χ3) ⊓⋆ ν1
⇒ χ1 ⊓⋆ χ2 ⊓⋆ ν1 = χ1 ⊓⋆ χ3 ⊓⋆ ν1 (by B2 of Definition 4.)

□

Theorem 9. For any χ1, χ2, χ3 ∈ B, the following holds;

172. [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1 = [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1
173. [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1 = [(χ2 ⊓⋆ χ1) →⋆ χ3] ⊓⋆ ν1
174. [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1 = [χ2 →⋆ (χ1 →⋆ χ3)] ⊓⋆ ν1

Proof. Let χ1, χ2, χ3 ∈ B.
172. (χ1 ⊓⋆ χ2) ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1

= χ1 ⊓⋆ χ2 ⊓⋆ χ3 ⊓⋆ ν1 (by B2 of Definition 4.)
⇒ χ2 →⋆ [χ1 ⊓⋆ χ2 ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1]

= χ2 →⋆ (χ1 ⊓⋆ χ2 ⊓⋆ χ3 ⊓⋆ ν1) (by 172 of Theorem 5.)
⇒ χ2 →⋆ [χ2 ⊓⋆ [χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1]]

= χ2 →⋆ (χ2 ⊓⋆ χ1 ⊓⋆ χ3 ⊓⋆ ν1) (by 176 of Theorem 2.)
⇒ χ2 →⋆ [χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1]

= χ2 →⋆ (χ1 ⊓⋆ χ3 ⊓⋆ ν1)−−−−(I)
(by 174 of Theorem 4.)

Consider,
[χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1] ⊓⋆ [χ2 →⋆ (χ1 ⊓⋆ χ3 ⊓⋆ ν1)] ⊓⋆ ν1
= [χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1] ⊓⋆ [χ2 →⋆ [χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1]] ⊓⋆ ν1

(by I)
= [χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1] ⊓⋆ ν1. (by B3 of Definition 4.)
Therefore χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1 ≤ [χ2 →⋆ (χ1 ⊓⋆ χ3 ⊓⋆ ν1)] ⊓⋆ ν1.
Hence by B4 of Definition 4,
χ1 ⊓⋆ (χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1 ≤ (χ2 →⋆ χ3) ⊓⋆ ν1.
Thus from Theorem 6,
(χ1 ⊓⋆ χ2) →⋆ χ3) ⊓⋆ ν1 ≤ [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1.
On the other hand,
χ1 ⊓⋆ χ2 ⊓⋆ [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1

= χ2 ⊓⋆ χ1 ⊓⋆ [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1
(by 176 of Theorem 2.)

= χ2 ⊓⋆ χ1 ⊓⋆ (χ2 →⋆ χ3) ⊓⋆ ν1
(by B2 of Definition 4.)

= χ1 ⊓⋆ χ2 ⊓⋆ (χ2 →⋆ χ3) ⊓⋆ ν1
(by 176 of Theorem 2.)

= χ1 ⊓⋆ χ2 ⊓⋆ χ3 ⊓⋆ ν1
(by B2 of Definition 4.).

Therefore χ1 ⊓⋆ χ2 ⊓⋆ [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1 = χ1 ⊓⋆ χ2 ⊓⋆ χ3 ⊓⋆ ν1.
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Now, (χ1 ⊓⋆ χ2) ⊓⋆ [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1 = χ1 ⊓⋆ χ2 ⊓⋆ χ3 ⊓⋆ ν1
⇒ (χ1 ⊓⋆ χ2) →⋆ [(χ1 ⊓⋆ χ2) ⊓⋆ [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1]

= (χ1 ⊓⋆ χ2) →⋆ [χ1 ⊓⋆ χ2 ⊓⋆ χ3 ⊓⋆ ν1]
⇒ (χ1 ⊓⋆ χ2) →⋆ [(χ1 ⊓⋆ χ2) ⊓⋆ [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1]

= (χ1 ⊓⋆ χ2) →⋆ (χ3 ⊓⋆ ν1)
(by 174 of Theorem 4.)

⇒ [(χ1 ⊓⋆ χ2) →⋆ (χ1 ⊓⋆ χ2)] ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ (χ1 →⋆ (χ2 →⋆ χ3))] ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ ν1]
= [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ ν1]

(by B4 of Definition 4.)
⇒ [(χ1 ⊓⋆ χ2) →⋆ (χ1 ⊓⋆ χ2)] ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ (χ1 →⋆ (χ2 →⋆ χ3))] ⊓⋆ ν1

= [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1
(by 174 of Theorem 4.)

⇒ [(χ1 ⊓⋆ χ2) →⋆ (χ1 →⋆ (χ2 →⋆ χ3))] ⊓⋆ ν1
= [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1

(by B1 of Definition 4.)
⇒ [(χ1 →⋆ (χ2 →⋆ χ3))] ⊓⋆ ν1 ≤ [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1

(by 173 of Corollary 1.)
Therefore [χ1 →⋆ (χ2 →⋆ χ3)] ⊓⋆ ν1 = [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1.
173. (χ1 ⊓⋆ χ2) ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1 = χ1 ⊓⋆ χ2 ⊓⋆ χ3 ⊓⋆ ν1

(by B2 of Definition 4.)
⇒ (χ2 ⊓⋆ χ1) ⊓⋆ [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1 ≤ χ3 ⊓⋆ ν1

(by 176 of Theorem 2.)
⇒ [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1 ≤ [(χ2 ⊓⋆ χ1) →⋆ χ3] ⊓⋆ ν1

(by Theorem 6.).
By symmetry, [(χ1 ⊓⋆ χ2) →⋆ χ3] ⊓⋆ ν1 = [(χ2 ⊓⋆ χ1) →⋆ χ3] ⊓⋆ ν1
174. Follows from 172 and 173. □

Theorem 10. For any χ1, χ2, χ3 ∈ B, (χ1 →⋆ χ2) ⊓⋆ χ3 =
[(χ1 ⊓⋆ χ3) →⋆ (χ2 ⊓⋆ χ3)] ⊓⋆ χ3

Proof. Let χ1, χ2, χ3 ∈ B. Then
[(χ1 ⊓⋆ χ3) →⋆ (χ2 ⊓⋆ χ3)] ⊓⋆ χ3

= [((χ1 ⊓⋆ χ3) →⋆ χ2) ⊓⋆ ((χ1 ⊓⋆ χ3) →⋆ χ3)] ⊓⋆ χ3 ⊓⋆ χ3

(by B4 of Definition 4.)
= [((χ1 ⊓⋆ χ3) →⋆ χ2) ⊓⋆ χ3 ⊓⋆ ((χ1 ⊓⋆ χ3) →⋆ χ3)] ⊓⋆ χ3

(by 176 of Theorem 2.)
= [((χ1 ⊓⋆ χ3) →⋆ χ2) ⊓⋆ ν1 ⊓⋆ χ3

(by B3 of Definition 4.)
= [((χ3 ⊓⋆ χ1) →⋆ χ2) ⊓⋆ ν1 ⊓⋆ χ3

(by 173 of Theorem 9.)
= [χ3 →⋆ (χ1 →⋆ χ2)] ⊓⋆ ν1 ⊓⋆ χ3

(by 172 of Theorem 9.)
= χ3 ⊓⋆ [χ3 →⋆ (χ1 →⋆ χ2)] ⊓⋆ ν1 ⊓⋆ χ3

(by 176 of Theorem 2.)
= χ3 ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν1 ⊓⋆ χ3

(by B2 of Definition 4.)
= (χ1 →⋆ χ2) ⊓⋆ χ3

(by 174 of Theorem 1 and 176 of Theorem 2.)
□

Corollary 2. For any χ1, χ2, χ3 ∈ B, if χ1 ⊓⋆ χ3 = χ2 ⊓⋆ χ3, then

172. (χ1 →⋆ χ3) ⊓⋆ χ3 = (χ2 →⋆ χ3) ⊓⋆ χ3

173. (χ3 →⋆ χ1) ⊓⋆ χ3 = (χ3 →⋆ χ2) ⊓⋆ χ3.

Theorem 11. If (B,⊔⋆,⊓⋆,→⋆, ν1) is a BrADL, then for any maximal element ν2 in B, (B,⊔⋆,⊓⋆,→ν2

, ν2) is a BrADL where χ1 →ν2
χ2 = (χ1 →⋆ χ2) ⊓⋆ ν2 for χ1, χ2 ∈ B.
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Proof. Let (B,⊔⋆,⊓⋆,→⋆, ν1) be a BrADL and →ν2 is a maximal element in B. For χ1, χ2 ∈ B, define
χ1 →ν2 χ2 = (χ1 →⋆ χ2) ∧ ν2.
Then, for any χ1, χ2 ∈ B,
172. (χ1 →ν2

χ1) ⊓⋆ ν2 = (χ1 →⋆ χ1) ⊓⋆ ν2 ⊓⋆ ν2

= ν1 ⊓⋆ ν2

= ν2.

173. χ1 ⊓⋆ (χ1 →ν2
χ2) = χ1 ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν2

= χ1 ⊓⋆ χ2 ⊓⋆ ν1 ⊓⋆ ν2

= χ1 ⊓⋆ χ2 ⊓⋆ ν2.

174. χ2 ⊓⋆ (χ1 →ν2
χ2) = χ2 ⊓⋆ (χ1 →⋆ χ2) ⊓⋆ ν2

= χ2 ⊓⋆ ν1 ⊓⋆ ν2

= χ2 ⊓⋆ ν2.

175. χ1 →ν2
(χ2 ⊓⋆ χ3) = [χ1 →⋆ (χ2 ⊓⋆ χ3)] ⊓⋆ ν2

= [(χ1 →⋆ χ2) ⊓⋆ (χ1 →⋆ χ3)] ⊓⋆ ν2

= [(χ1 →⋆ χ2) ⊓⋆ ν2] ⊓⋆ [(χ1 →⋆ χ3)] ⊓⋆ ν2]

= (χ1 →ν2
χ2) ⊓⋆ (χ1 →ν2

χ3).

Therefore (B,⊔⋆,⊓⋆,→ν2
, ν2) is a BrADL. □

We give several equivalent conditions for a BrADL to become a Brouwerian algebra as we wrap up the
paper.

Theorem 12. [11] Let (B,⊔⋆,⊓⋆, ν1) be an ADL. Then the subsequent statements are comparable;

172. B is a Brouwerian algebra.
173. (B,≤∗) is directed above.
174. (B,⊔⋆,⊓⋆) is a distributive lattice.
175. ⊔⋆ is commutative.
176. ⊓⋆ is commutative.
177. ⊔⋆ is right distributive over ⊓⋆.
178. The relation θ = {(χ1, χ2) ∈ B × B | χ2 ⊓⋆ χ1 = χ1} is antisymmetric.

4. Conclusion

The concept of a Brouwerian almost distributive lattice is presented in this paper with several examples
and counter-examples, and some of its primary and necessary properties are studied. We derive a few iden-
tities and inequalities in a Brouwerian almost distributive lattice. Also, we provided a set of equivalence
conditions required for transforming the Brouwerian almost distributive lattice into a Brouwerian algebra.
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Abstract. In this work we investigate singularities for the three types of developable surfaces, intro-
duced by Izumiya and Takeuchi, in Lorentz 3 space and give a local classification in terms of k-order

frame. Moreover we search the necessary conditions of being a geodesic for principal direction curves of
the rectifying developable surface.
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1. Introduction

A developable surface, useful application tool in cartographic projections and producing flat materials,
is defined as a surface that can be developed into flat surfaces without changing the metric on the surface.
There are several papers about developable surfaces and some of them are combined with the singularity
theory. Zhao et al. investigated the geometric characteristics of developable surfaces with a single pa-
rameter that have regular curves [12]. The global behavior of singularities on flat surfaces in Euclidean
3-space is studied by Murata and Umehara [9]. Furthermore, the primary source of inspiration for this
paper is the research on developable surface singularities in Euclidean 3-space presented by Izumiya and
Takeuchi. They considered three types of developable surfaces named as rectifying developable of a curve,
defined as the envelope of the set of rectifying planes along the curve, the second one called Darboux
developable which has singularities at the terminal points of the curve’s modified Darboux vectors and the
third one is tangential Darboux developable which is determined by the space curve’s tangent indicatrix’s
Darboux developable surface. They have shown that these developable surfaces are locally diffeomorphic
to the swallowtail, the cuspidal edge or cuspidal cross cap [6, 7].
Moreover Ishikawa and Yamashita provide a comprehensive response to the question of local diffeomor-
phism categorization in Euclidean 3-space and they give the following theorem;

Theorem 1. Let ∇ be a torsion free affine connection on a manifold M. Let β : I −→ M be a C∞ curve
from an open interval I.Let dim(M) = 3.

1) If (∇β)(s0),(∇2
β)(s0),(∇

3
β)(s0) are linearly independent, then the ∇−tangent surface is locally dif-

feomorphic to the cuspidal edge at (s0, 0).
2) If (∇β)(s0),(∇2

β)(s0),(∇
3
β)(s0) are linearly dependent and (∇β)(s0),(∇2

β)(s0),(∇
4
β)(s0) are linearly in-

dependent then ∇−tangent surface is locally diffeomorphic to the cuspidal crosscap at (s0, 0).
3) If (∇β)(s0) = 0 and (∇2

β)(s0),(∇
3
β)(s0),(∇

4
β)(s0) are linearly independent then ∇−tangent surface is

locally diffeomorphic to the swallowtail at (s0, 0) [5].

The singular points that are mentioned above theorem can be examined in the following figures [6].
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(a) Cuspidaledge (b) Cuspidal crosscap (c) Swallowtail

Figure 1. Types of singularities

Furthermore there are some papers about the singularities of surfaces in different spaces. Singularities
of surfaces whose mean curvatures are constant, are studied by Brander in Lorentz 3-space [3], Fujimori et
al. demonstrate that the cuspidal edges, swallowtails, and cuspidal cross caps are the general components
of the singularities of spacelike maximum surfaces in Lorentz 3-space [4]. Kokubu et al. establish that
only cuspidal edges and swallowtails are admissible in generic flat fronts in hyperbolic 3-space [8].

The primary aim of this study is to generalize the notion of developable surfaces provided by Izumiya
and Takeuchi by utilizing the generalized alternative frame developed by [10] in Lorentz 3-space to include
technical material of rulings. The alternative frame has the benefit of producing local classifications for
the geometric structure of generalized developable surfaces in terms of k-slant helix, Nk-slant helix and
conical surfaces. As a supplementary goal, we present the features of singularities when we explore the
geometric properties of these generalized developable surfaces by combining the theory of Ishikawa and
Yamashita [5]. Additionally, practical discussions on examples are held on the outcomes of theoretical
investigations on generalized developable surfaces.

2. Basic Concepts and Notions

Consider the 3-dimensional Lorentz space E3
1 provided with the following inner product: R3 endowed

via the metric ⟨, ⟩ as follows:

⟨, ⟩ : E3xE3 −→ E

(ξ, ζ) −→ ⟨ξ, ζ⟩ = ξ1ζ1 + ξ2ζ2 − ξ3ζ3

where ξ = (ξ1, ξ2, ξ3) and ζ = (ζ1, ζ2, ζ3) ∈ E3.

Let β(s) be a differentiable curve of order (n+2) parametrized by arc-length, defined with the Frenet
vector fileds {T,N,B} and β0 =

∫
Tds be the tangential direction. In general the k−principal direction

curve of β is determined as

βk(s) =

∫
Nk−1ds, l ⩽ k ⩽ n

where the principal normal vector of βk−1 is Nk−1, β is named as the base curve of βk. The Frenet vectors
with the curvatures of βk are defined as

Tk = Nk−1, Nk =
N ′

k−1∥∥N ′
k−1

∥∥ , Bk = NkxTk

κk =
√∣∣ κ2

k−1 ± τ2k−1

∣∣ , τk = σk−1κk

where σk−1, κk−1, τk−1 are the geodesic curvature, the first type of curvature and the second type of
curvature of βk−1 respectively.
The Darboux vector Wk is the vector of angular velocity of the given frame of βk and holds the following
equations with regard to the frame apparatus:
i) Let βk be a timelike curve, then

Wk = −τkTk − κkBk
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ii) Let βk is a spacelike curve, then
Wk = −τkTk + κkBk

Let {Tk, Nk, Bk, κk, τk} be the Frenet frame apparatus of the arc-length parametrized curve βk in E3
1 .

Then the equations below can be given:T ′
k

N ′
k

B′
k

 =

 0 κk 0
−ϵ0ϵ1κk 0 τk

0 −ϵ1ϵ2τk 0

Tk

Nk

Bk


where ⟨Tk, Tk⟩ = ϵ0, ⟨Nk, Nk⟩ = ϵ1, ⟨Bk, Bk⟩ = ϵ2, ⟨Tk, Nk⟩ = ⟨Tk, Bk⟩ = ⟨Nk, Bk⟩ = 0 [9]

Definition 1. Let β(s) : I −→ R3 be an arc-length parametrized curve with the Frenet frame apparatus
{T,N,B, κ, τ}. The curve β is called k-slant helix if the unit vector

βk+1 =
βk′
∥βk′∥

makes a constant angle with a fixed direction. Here β0 = βs and β1 = β0′
∥β0′∥

[1].

Definition 2. Let β(s) : I −→ R3 be a differentiable curve of order (n+2) parametrized by arc-length,
defined with the Frenet vector fields {T,N,B} and β0 =

∫
Tds be the tangential direction. In general the

k-principal direction curve of β is determined as

βk(s) =

∫
Nk−1ds, 1 ≤ k ≤ n

where the principal normal vector of βk−1 is Nk−1, β0(s) = β(s) and N0 = N . Then the curve β is called
Nk-slant helix which has the property that the principal normal vector Nk of βk makes a constant angle
with a fixed line. In other words β is called Nk-slant helix if βk is a slant helix [10].

Thus we can give the following theorem:

Theorem 2. β(s) : I −→ R3 is a (k+1)-slant helix if and only if β is a Nk-slant helix.

Definition 3. Let β(s) be a non-degenerate, arc-length parametrized and differentiable curve of order
(n+2), the k−principal direction curve of β is βk in E3

1 . If the principal normal vector of βk has steadily
angle along a fixed axis, then β named as Nk slant helix [11].

Note that, if k = 0 then the main curve β is named as slant helix, that is the principal normal vectors
along β make a constant angle with an axis.

Theorem 3. Let β(s) be an arc-length parametrized, non-degenerate, differentiable curve of order (n+2)
and βk be the k−principal direction curve of β in E3

1 . Then βk is a slant helix if and only if β is a Nk

slant helix [11].

To characterize a Nk slant helix in E3
1 the following results are stated.

Theorem 4. i) Assume that β is an arc-length parametrized timelike curve in E3
1 . Then β is a Nk slant

helix if and only if either one of the next two functions is constant.

σk(s) =
κ2
k

(τ2k − κ2
k)

3
2

(
τk
κk

)′ or σk(s) =
κ2
k

(κ2
k − τ2k)

3
2

(
τk
κk

)′

where τ2k − κ2
k ̸= 0.

ii) Assume that β is an arc-length parametrized spacelike curve with the Frenet vectors {T,N,B, κ, τ} in
E3

1 . Then there are two conditions for Nk slant helix case.
a) Assume that the unit normal vector of β is spacelike then β is a Nk slant helix if and only if either
one of the below functions is constant where τ2k − κ2

k ̸= 0

σk(s) =
κ2
k

(τ2k − κ2
k)

3
2

(
τk
κk

)′ or σk(s) =
κ2
k

(κ2
k − τ2k)

3
2

(
τk
κk

)′

b) Assume that the unit normal vector of β is timelike. Then β is a Nk-slant helix if and only if the
following function is constant

σk(s) =
κ2
k

(τ2k + κ2
k)

3
2

(
τk
κk

)′
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[10].

Definition 4. A ruled surface in E3
1 is the transformation F(γ,β)(s, u) = γ(s) + uβ(s), where I is an

open interval and γ : I −→ E3
1 , β : I −→ E3

1\{0} are smooth mappings. γ is called the base curve and β
is called the director curve of the surface. The lines u −→ γ(s) + uβ(s) are named as rulings.
A developable surface, also known as a flat surface, is a ruled surface where the Gaussian curvature K
is zero everywhere. Suppose that γ be an arc-length parametrized curve in E3

1 with κ(s) ̸= 0. We handle
three types of developable surfaces associated to a non-degenerate space curve in Lorentz 3-space.

1) A ruled surface F
(γ,

∼
W )

(s, u) = γ(s) + u
∼
W (s) is called the rectifying developable of γ.

2) A ruled surface F(B,T )(s, u) = B(s) + uT (s) is called the Darboux developable of γ .

3) A ruled surface F
(
−
W,N)

(s, u) =
−
W (s) + uN(s) is called the tangential Darboux developable of γ .

Here
∼
W (s)=-

τ

κ
(s)T (s) + ϵ0B(s) is the modified Darboux vector field of γ , on condition that κ(s) ̸= 0.

Here ϵ0 = −1 if γ is timelike and ϵ0 = 1 if γ is spacelike. Also
−
W (s) is the unit Darboux vector field of

γ [6].

3. Construction of Developable Surfaces by Direction Curves

In this part we give a generalization of developable surfaces in terms of k-order frame in E3
1 and obtain

some results.

Definition 5. Assume that γ(s) is an arc-length parametrized non-degenerate, differentiable curve of
order (n+2) and γk is the k−principal direction curve of γ, 1 ⩽ k ⩽ n and the Darboux vector of γk is
Wk in E3

1 .

1) The k-rectifying developable of γ is defined as the ruled surface given by F
(γ,

∼
Wk)

(s, u) = γ(s)+u
∼
Wk(s)

.
2) The k-Darboux developable of γ is represented by the ruled surface F(Bk,Tk)(s, u) = Bk(s) + uTk(s).
3) The k-tangential Darboux developable of γ is characterized by the ruled surface F

(
−
Wk,Nk)

(s, u) =

−
Wk(s) + uNk(s).

Here
∼
Wk(s)=− τk

κk
(s)Tk(s) + ϵ0Bk(s) is the modified Darboux vector field of γ, under the condition that

κk(s) ̸= 0. Here ϵ0 is -1 if γ is timelike and 1 if γ is spacelike. And
−
Wk(s) is the unit Darboux vector of

γk .

Theorem 5. Assume that γ(s) is an arc-length parametrized (n+2)-differentiable curve and γk and γk−1

be the k−principal direction curve and (k − 1) −principal direction curve of γ respectively in E3
1 .

i) Let γk−1 and γk be non-degenerate curves in E3
1 . Then there is a diffeomorphism between the k-

Darboux developable of γ and the cuspidal edge at F(Bk,Tk)(s0, u0) if and only if σk−1(s0) ̸= 0,(
τk
κk

)′ ̸= 0

and u0 = −ϵ
τk
κk

(s0).

ii) Let γk−1 and γk be non-degenerate curves in E3
1 . Then the k-Darboux developable of γ is diffeomorphic

to the swallowtail at F(Bk,Tk)(s0, u0) if and only if σk−1(s0) ̸= 0,(
τk
κk

)′ = 0 (
τk
κk

)
′′ ̸= 0 and u0 = −ϵ

τk
κk

(s0).

iii) Let γk−1 and γk be non-degenerate curves in E3
1 . Then a diffeomporhism exists between the Darboux

developable of γ and the cuspidal crosscap at F(Bk,Tk)(s0, u0) if and only if σk−1(s0) = 0,(
τk
κk

)′ ̸= 0 and

u0 = 0.
Here ϵ = −1 if γk is timelike and ϵ = 1 if γk is spacelike.

Proof. Because of other cases are similar we only give the first proof.
Let γk−1 be a timelike curve. Then γk(s) =

∫
Nk−1ds is a spacelike curve and the Frenet frame apparatus
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of γk is {Tk, Nk, Bk, κk, τk}.Thus we have the Frenet formulasT ′
k

N ′
k

B′
k

 =

 0 κk 0
−κk 0 τk
0 τk 0

Tk

Nk

Bk


The k-Darboux developable of γ is F(Bk,Tk

)(s, u) = Bk + uTk and a straight forward computation gives

us the singular point of the k-Darboux developable as u0 = − τk
κk

(s0).

The cuspidal edge singularities are obtained along points where γ′, γ′′, γ′′′ are linearly independent. So

if we do the necessary computations with the value of u0 = − τk
κk

(s0), there is a diffeomorphism between

the k-Darboux developable of γ and the cuspidal edge when σk−1(s0) ̸= 0,(
τk
κk

)′(s0) ̸= 0. □

As an extension of theorem 1, the following theorem yields a local charazterization for the k-tangential
Darboux developable of a space curve.

Theorem 6. Assume that γ(s) is an arc-length parametrized, non-degenerate, differentiable curve of
order (n+2) and γk and γk−1 be the k−principal direction curve and (k − 1) −principal direction curve
of γ respectively in E3

1 .
i) Let γk−1 and γk be non-degenerate curves in E3

1 . Then there is a diffeomorphism between the k-
tangential Darboux developable of γ and the cuspidal edge at F

(
−
Wk,Nk)

(s0, u0) if and only if σk(s0) ̸=

0, σ′
k(s0) ̸= 0 and u0 = σk(s0).

ii) Let γk−1 and γk be non-degenerate curves in E3
1 . Then there exists a diffeomorpism between k-

tangential Darboux developable of γ and the swallowtail at F
(

−
Wk,Nk)

(s0, u0) if and only if σk(s0) ̸=

0, σ
′′

k(s0) ̸= 0 and σ′
k(s0) = 0 and u0 = σk(s0).

iii) Let γk−1 and γk be non-degenerate curves in E3
1 . Then the k-tangential Darboux developable of γ

is diffeomorphic to the cuspidal crosscap at F
(

−
Wk,Nk)

(s0, u0) if and only if σk(s0) = 0, σ′
k(s0) ̸= 0 and

u0 = 0.

Proof. Because of other cases are similar we only give the first proof.
Let γk−1 be a timelike curve. Then γk(s) =

∫
Nk−1ds is a spacelike curve and the Frenet frame apparatus

of γk is {Tk, Nk, Bk, κk, τk}. Thus we have the Frenet formulasT ′
k

N ′
k

B′
k

 =

 0 κk 0
−κk 0 τk
0 τk 0

Tk

Nk

Bk


The k-tangential Darboux developable of γ is F

(
−
Wk,Nk)

(s, u) =
−
Wk(s) + uNk(s) and a straightforward

computation gives us the singular point of the k-tangential Darboux developable as u0 = σk(s0).
As we mentioned before the cuspidal edge singularities are obtained at the points where γ′, γ′′, γ′′′

are linearly independent. So if we do the necessary computations with the value of u0 = σk(s0), the
k-tangential Darboux developable of γ is diffeomorphic to the cuspidal edge when σk(s0) ̸= 0, σ′

k(s0) ̸=
0. □

Theorem 7. Suppose that γ(s) is an ac-length parametrized, non-degenerate, differentiable curve of or-
der (n+2) and γk and γk−1 be the k−principal direction curve and (k − 1) −principal direction curve of
γ respectively in E3

1 .
i) Let γk−1 and γk be non-degenerate curves in E3

1 . Then there is a diffeomorpism between k-rectifying

developable of γ and the cuspidal edge at F
(γ,

∼
Wk)

(s0, u0) if and only if (
τk
κk

)′(s0) ̸= 0, (
τk
κk

)′′(s0) ̸= 0 and

u0 =
1

( τk

κk
)′(s0)

.

ii) Let γk−1 and γk be non-degenerate curves in E3
1 . Then the k-rectifying developable of γ is diffeomor-

phic to the swallowtail at F
(γ,

∼
Wk)

(s0, u0) if and only if (
τk
κk

)′(s0) ̸= 0, (
τk
κk

)′′(s0) = 0 and u0 =
1

( τk

κk
)′(s0)

.
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Proof. With the use of Theorem 3, the proof can be obtained easily. □

Theorem 8. Suppose that γ(s) is an arc-length parametrized, non-degenerate, differentiable curve of
order (n+2) and γk the k−principal direction curve of γ in E3

1 . The equivalent cases hold as follows:
i) The k-tangential Darboux developable of γ is a conical surface.
ii) γk is a slant helix.
iii) γ is a Nk slant helix.
iv) γ is a (k + 1)−slant helix.

Proof. The singular locus of the k-tangential Darboux developable is given by βk(s) =
−
Wk(s)+σk(s)Nk(s).

Thus F
(
−
Wk,Nk)

is a conical surface if and only if β′
k(s) = 0. Let F

(
−
Wk,Nk)

be a conical surface. Then

we have
−
W ′

k(s) − σ′
k(s)Nk(s) − σk(s)N

′
k(s) = 0 and we can easily see that

−
W ′

k(s) = σk(s)N
′
k(s). Thus

σ′
k(s) = 0 and γk is a slant helix and γ is a Nk slant helix.

Conversely if γ is a Nk slant helix then γk is a slant helix. Thus σ′
k(s) = 0 and β′

k(s) =
−
W ′

k(s) −

σk(s)N
′
k(s). Since

−
W ′

k(s) = σk(s)N
′
k(s) we have β′

k(s) = 0 and F
(
−
Wk,Nk)

is a conical surface. □

Theorem 9. Assume that γ(s) is a unit speed, differentiable curve of order (n+2) and γk is the
k−principal direction curve of γ in E3

1 . Then the following cases are equivalent.
i) The k-rectifying developable of γ is a conical surface.
ii) γk is a conical geodesic curve.

Proof. The singular locus of the k-rectifying developable of γ is given by βk(s) = γk + 1

(
τk
κk

)′

∼
Wk(s).

Let F
(γ,

∼
Wk)

be a conical surface. According to the k-frames formulas we have β′
k(s) = −

(
τk
κk

)′′

(
τk
κk

)′

∼
Wk(s).

Therefore β′
k(s) = 0 if and only if (

τk
κk

)′′ = 0. This completes the proof. □

Now let us explain the concepts of the present paper via some examples, thus we can show the
connection between the role of the k order frame and determining the type of singularity.

Example 1. Let α(s) = (
1

24
sin 8s +

2

3
sin 2s, − 1

24
cos 8s +

2

3
cos 2s,

4

15
sin 5s) ∈ E3

1 be an arc-length

parametrized spacelike curve in E3
1. Then the developable surfaces of α and corresponding singular points

are formed in terms of first and second order frames as follow:
i) The 1-Rectifying developable surface of α is F(α,W̃1)

= α+ uW̃1 determined with the modified Dar-

boux vector W̃1 = (
5

3
cos 3s csc 5s, (5 + 10 cos 2s)/(3 + 6 cos 2s+6 cos 4s),

4

3
csc 5s) where

(
τ1
κ1

)′

(s0) ̸= 0

and

(
τ1
κ1

)′′

(s0) ̸= 0 at s0 ̸= 1

10
(2πn+π), n ∈ Z, Theorem 7 explains that F(α,W̃1)

is locally diffeomorphic

to the cuspidal edge at the points u0 = 1
5 sin[5s0]

2 for all s0 ̸= 1

10
(2πn+π), and otherwise is locally diffeo-

morphic to the swallowtail. This implies the points are given by u0 = 1
5 sin[5s0]

2 and s0 =
1

10
(2πn+ π).

ii) The 1-Darboux developable surface of α, F(B1,T1) = B1 + uT1 is obtained as where σ = 5/4 and(
τ1
κ1

)′

(s0) ̸= 0 for all s0, then F(B1,T1) is just locally diffeomorphic to the cuspidal edge at the points

u0 = − cot[5s0] and
5s0
π

/∈ Z from Theorem 5.
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(a) 1-Rectifying developable surface of α (b) 1-Darboux developable surface of α

Figure 2. First order developable surfaces of a spacelike curve

iii) The 1-Tangential Darboux developable surface of α is F(W 1,N1)
= W 1 + uN1 is obtained as

where we have only one singular point at u0 = 5 as can be seen in Figure 3.

Figure 3. 1-Tangential Darboux developable surface of α

Now we observe the singular points of developable surfaces composed of the 2-order frame {T2, N2, B2} of α
with the curvatures τ2, κ2. Moreover, since the 2-tangent vector satisfies the equality such as ⟨T2, T2⟩ < 0,
α is a timelike curve with respect to the 2-order frame.

(iv) The 2-Rectifying developable surface of α, F(α,W̃2)
= α + uW̃2 is determined with the modified

Darboux vector W̃2 = (0, 0,−3/4) , then we have

(
τ1
κ1

)′

(s0) = 0 and

(
τ1
κ1

)′′

(s0) = 0 for all s0 ∈ R, thus

2-Rectifying developable surface of α has no singular points.

Figure 4. 2-Rectifying developable surface of α

(v) The 2-Darboux developable surface of α, F(B2,T2) = B2+uT2 is can be obtained as where 2-Darboux
developable surface of α is isometric to 1-Tangent Darboux developable surface of α then their points have
the same type of singularity.
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Figure 5. 2-Darboux developable surface of α

(vi) The 2-Tangential Darboux developable surface of α is obtained as a plane defined by
(u sin[3s], u cos[3s],−1) , hence there are no singular points and the trace of the points of the 2-Tangential
Darboux developable surface F(W 2,N2)

can be seen as follows: When we continue to express the spa-

Figure 6. 2-Tangential Darboux developable surface of α

tial curve α ∈ E3
1 with respect to the other vector triples of the k−order process, we can eliminate the

singularity for each Darboux developable surface.

4. Conclusion

In differential geometry, developable surfaces are particular kind of surfaces that can be flattened onto
a plane without distortion, that is, they can be unfurled into a flat shape without ripping or stretching.
Particularly significant are these surfaces in the domains of computer graphics, manufacturing and ar-
chitecture. An additional important tool in differential geometry are the alternative frames, which are
the coordinate systems relative to a curve in the curve theory that provide different ways to describe the
geometry and motion along the curve. In disciplines like computer graphics, robotics and physics these
frames are especially helpful. They provide other viewpoints for interpreting and analyzing curves other
than the widely used Serret-Frenet frame.
In this study we supply a generalized definition for developable surfaces by using an alternative frame
produced via the direction curves through their rulings. A dynamic structure is resulted from the gen-
eralization and the theory of Ishikawa and Yamashita is utilized to characterize the singular points of
these structures. The examples given in the article demonstrate the dynamic structure that arises from
the alternative frame. Emotionally and raitonally, it is plainly observed that when the degree of the
alternative frame utilized rise, the approach to the developable surfaces goes towards the light cone and
the Lorentzian plane. This makes it easier to detect the evolution of singular points.
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Abstract. The idea of conformal semi-invariant Riemannian maps to almost Hermitian manifolds was

first put forward by Şahin and Akyol in [3]. In this paper, we expand this idea to Sasakian manifolds
which are almost contact metric manifolds. Hereby, we present conformal semi-invariant Riemannian

maps from Riemannian manifolds to Sasakian manifolds. Then, we prepare a illustrative example and

investigate the geometry of the leaves of D1, D2, D̄1 and D̄2. We find necessary and sufficient condi-
tions for conformal semi-invariant Riemannian maps to be totally geodesic. Also, we investigate the

harmonicity of such maps.
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1. Introduction

In [6], Fischer introduced Riemannian map between Riemannian manifolds as a generalization of
an isometric immersion and Riemannian submersion that satisfies the well known generalized eikonal
equation ∥ϑ∗∥2 = rankϑ, which is a bridge between geometric optics and physical optics. Where ϑ is a
Riemannian map and ϑ∗ is its derivative map. Let ϑ : (S1, gS1) → (S2, gS2) be a smooth map between
Riemannian manifolds such that 0 < rankϑ < min {dim(S1),dim(S2)} . We state the kernel space of
ϑ∗ by Vq = kerϑ∗q

at q ∈ S1 and consider the orthogonal complementary space Hq = (kerϑ∗q
)⊥ to

kerϑ∗q
in TqS1. Then the tangent space TqS1 of S1 at q has the decomposition TqS1 = (kerϑ∗q

) ⊕
(kerϑ∗q

)⊥ = Vq ⊕ Hq. We state the range of ϑ∗ by rangeϑ∗ at q ∈ S1 and consider the orthogonal

complementary space (rangeϑ∗q
)⊥ to rangeϑ∗q

in the tangent space Tϑ(q)S2 of S2 at ϑ(q) ∈ S2. Since

rankϑ < min {dim(S1),dim(S2)} , we have (kerϑ∗q
)⊥ ̸= {0} . Therefore the tangent space Tϑ(q)S2 of S2

at ϑ(q) ∈ S2 has the decomposition Tϑ(q)S2 = (rangeϑ∗q ) ⊕ (rangeϑ∗q )
⊥. Then ϑ is called Riemannian

map at q ∈ S1 if the horizontal restriction ϑh
∗q

: (kerϑ∗q )
⊥ → (rangeϑ∗q ) is a linear isometry between the

spaces ((kerϑ∗q
)⊥, gS1

|(kerϑ∗q )
⊥) and (rangeϑ∗q

, gS2ϑ(q)|rangeϑ∗q
). In other words, ϑ satisfies

gS2
(ϑ∗A1, ϑ∗A2) = gS1

(A1, A2), (1)

for all A1, A2 vector field tangent to Γ(kerϑ∗q
)⊥.

Different features of Riemannian maps have been investigated extensively by many authors in [1, 7, 8,
10,15–17,20,24,25,27–29]. Detailed development in the theory of Riemannian map can be found in [21].

Conformal Riemannian maps as a generalization of Riemannian maps and the harmonicity of such
maps have been introduced in [22, 23]. Conformal anti-invariant Riemannian maps have been studied
in [2]. In this article, we expand this concept to almost contact metric manifolds as a generalization of
semi-invariant Riemannian maps and totally real submanifolds.

The paper is organized as follows. Section 2 contains preliminaries. Section 3 includes conformal semi-
invariant Riemannian maps from Riemannian manifolds to Sasakian manifolds and provides this notion
by non-trivial example. Then, we get a decomposition theorem by using the existence of conformal

1 murat.polat@dicle.edu.tr-Corresponding author; 0000-0003-1846-0817
2 sumeyyetanrikoluoglu@gmail.com; 0000-0002-0522-0411. 2025 Ankara University
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semi-invariant Riemannian maps. Moreover, conformal semi-invariant Riemannian maps allow us to
obtain new conditions for a map to be harmonic. We also investigate the total geodesicity of conformal
semi-invariant maps. In Section 4, we give scope for future studies.

2. Preliminaries

Let S be an odd-dimensional smooth manifold. Then, S has an almost contact structure [21] if there
exist a tensor field F of type−(1, 1), a vector field ξ, and 1-form η on S such that

F 2E1 = −E1 + η(E1)ξ, Fξ = 0, η ◦ F = 0, η(ξ) = 1. (2)

If there exists a Riemannian metric gS on an almost contact manifold S satisfying:

gS(FE1, FE2) = gS(E1, E2)− η(E1)η(E2), (3)

gS(E1, FE2) = −gS(FE1, E2),

η(E1) = gS(E1, ξ), (4)

where E1, E2 are any vector fields on S, then S is called an almost contact metric manifold with an
almost contact structure (F, ξ, η, gS) and is symbolized by (S, F, ξ, η, gS).

A manifold S with the structure (F, ξ, η, gS) is said to be Sasakian structure given by [4]

(▽S
E1

F )E2 = gS(E1, E2)ξ − η(E2)E1, (5)

for any vector fields E1, E2 on S, where ▽ stands for the Riemannian connection of the metric gS on S.
For a Sasakian manifold, we get

▽S
E1

ξ = −FE1, (6)

for any vector field E1 on S.
ϑ∗ can be considered as a part of bundle hom(TS1, ϑ

−1TS2) → S1, where ϑ−1TS2 is the pullback

bundle. The bundle has a connection ▽ induced from the pullback connection
S2

▽ϑ and the Levi-Civita
connection ▽S1 . Then the second fundamental form (▽ϑ∗)(A1, A2) of ϑ is given by [14]

(▽ϑ∗)(A1, A2) =
S2

▽ϑ
A1

ϑ∗A2 − ϑ∗(▽S1

A1
A2), (7)

for all A1, A2 ∈ Γ(TS1), where
S2

▽ϑ
A1

ϑ∗A2 ◦ϑ =
S2

▽ϑ
ϑ∗A1

ϑ∗A2. It is known that (▽ϑ∗)(A1, A2) is symmetric

and (▽ϑ∗)(A1, A2) has no component in rangeϑ∗, for all A1, A2 ∈ Γ(kerϑ∗)
⊥ [21]. It means that, we get

(▽ϑ∗)(A1, A2) ∈ Γ(rangeϑ∗)
⊥.

The tension field of ϑ is defined to be the trace of the second fundamental form of ϑ, i.e. τ(ϑ) =

trace(▽ϑ∗) =
m∑
i=1

(▽ϑ∗) (ei, ei), where m = dim(S1) and {e1, e2, ..., em} is the orthonormal frame on S1.

Moreover, a map ϑ : (S1, gS1) → (S2, gS2) is harmonic if and only if the tension field of ϑ vanishes at
each point q ∈ S1.

For any section B1 of (rangeϑ∗)
⊥ and vector field A1 on S1, we get ▽ϑ⊥

A1
B1, which is the orthogonal

projection of ▽S2

A1
B1 on (rangeϑ∗)

⊥, where ▽ϑ⊥ is linear connection on (rangeϑ∗)
⊥ such that ▽ϑ⊥gS2

=
0. For a Riemannian map ϑ we describe SB1

as ( [21], p. 188)

▽S2

ϑ∗A1
B1 = −SB1ϑ∗A1 +▽ϑ⊥

A1
B1, (8)

where SB1
ϑ∗A1 is the tangential component of ▽S2

ϑ∗A1
B1 and ▽S2 is Levi-Civita connection on S2. There-

fore, we have ▽S2

ϑ∗A1
B1(q) ∈ Tϑ(q)S2, SB1

ϑ∗A1 ∈ ϑ∗q(TqS1) and ▽ϑ⊥
A1

B1 ∈ (ϑ∗q(TqS1))
⊥ at q ∈ S1. We

know that SB1
ϑ∗A1 is bilinear in B1, and ϑA1 at q depends only on B1q and ϑ∗qA1q. From here, using

(7) and (8) we have

gS2(SB1ϑ∗A1, ϑ∗A2) = gS2(B1, (▽ϑ∗)(A1, A2)), (9)

where SB1
is self adjoint operator for A1, A2 ∈ Γ(kerϑ∗)

⊥ and B1 ∈ Γ(rangeϑ∗)
⊥.

For all B1, B2 ∈ Γ(rangeϑ∗)
⊥ we define

▽S2

B1
B2 = R(▽S2

B1
B2) +▽ϑ⊥

B1
B2,
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where R(▽S2

B1
B2) ) and ▽ϑ⊥

B1
B2 denote rangeϑ∗ and (rangeϑ∗)

⊥ part of ▽S2

B1
B2, respectively. Therefore

(rangeϑ∗)
⊥ is totally geodesic if and only if

▽S2

B1
B2 = ▽ϑ⊥

B1
B2. (10)

3. Conformal Semi-Invariant Riemannian Maps to Sasakian Manifolds

Definition 1. [23] Let ϑ : (S1, gS1) → (S2, gS2) be a conformal Riemannian map (CRM). Then, ϑ is a
horizontally homothetic map if H(gradλ) = 0.

Definition 2. [22] Let ϑ : (S1, gS1
) → (S2, gS2

) be a smooth map between Riemannian manifolds. Then,
ϑ is a CRM at q ∈ S1 if 0 < rankϑ∗q ≤ min {dim(S1),dim(S2)} and ϑ∗q maps the horizontal space

H(q) = (kerϑ∗q)
⊥ conformally into rangeϑ∗q, it means that there exists a number λ2(q) ̸= 0 such that

gS2
(ϑ∗qA1, ϑ∗qA2) = λ2(q)gS1

(A1, A2),

for A1, A2 ∈ Γ(kerϑ∗)
⊥. Moreover, if ϑ is CRM at any q ∈ S1, then ϑ is called CRM.

Lastly, the second fundamental form of ϑ is given by [22]

(▽ϑ∗)(A1, A2)
rangeϑ∗ = A1 (lnλ)ϑ∗A2 +A2 (lnλ)ϑ∗A1 − gS1

(A1, A2)ϑ∗(grad lnλ). (11)

Therefore, if we state the (rangeϑ∗)
⊥ component of (▽ϑ∗)(A1, A2) by (▽ϑ∗)(A1, A2)

(rangeϑ∗)
⊥
, then

we can write

(▽ϑ∗)(A1, A2) = (▽ϑ∗)(A1, A2)
rangeϑ∗ + (▽ϑ∗)(A1, A2)

(rangeϑ∗)
⊥
, (12)

for A1, A2 ∈ Γ(kerϑ∗)
⊥. Therefore we get

(▽ϑ∗)(A1, A2) = A1 (lnλ)ϑ∗A2 +A2 (lnλ)ϑ∗A1 (13)

−gS1
(A1, A2)ϑ∗(grad lnλ) + (▽ϑ∗)(A1, A2)

(rangeϑ∗)
⊥
.

Definition 3. Let ϑ be a CRM from a Riemannian manifold (S1, gS1
) to an almost contact metric

manifold (S2, F, ξ, η, gS2). Then ϑ is a conformal semi-invariant Riemannian map (CSIRM) at q ∈ S1 if
there is a subbundle D1 ⊆ (rangeϑ∗) such that

rangeϑ∗q = D1 ⊕D2, F (D1) = D1, F (D2) ⊆ (rangeϑ∗q)
⊥,

where D2 is orthogonal complementary to D1 in rangeϑ∗. If ϑ is a CSIRM for any q ∈ S1, then ϑ is
called a CSIRM.

For ϑ∗A1 ∈ Γ(rangeϑ∗), then we write

Fϑ∗A1 = ϕϑ∗A1 + ωϑ∗A1, (14)

where ϕϑ∗A1 ∈ Γ(D1) and ωϑ∗A1 ∈ Γ(FD2). Also, for ϑ∗A1 ∈ Γ(D1) and ϑ∗A2 ∈ Γ(D2), we have
gS2(ϑ∗A1, ϑ∗A2) = 0. Thus we have two orthogonal distributions D̄1 and D̄2 such that

(kerϑ∗q
)⊥ = D̄1 ⊕ D̄2.

On the other hand, for B1 ∈ Γ((rangeϑ∗)
⊥
), then we have

FB1 = β1B1 + α1B1, (15)

where β1B1 ∈ Γ(D1) and α1B1 ∈ Γ(η). Here η is the complementary orthogonal distribution to ω(D2)

in (rangeϑ∗)
⊥
. It is easy to see that η is invariant with respect to F .

Example 1. Let S1 be an Euclidean space given by

S1 =
{
(u1, u2, u3, u4, u5) ∈ R5 : u1 ̸= 0, u2 ̸= 0, u5 ̸= 0

}
.

We describe the Riemannian metric gS1
on S1 given by

gS1
= du2

1 + du2
2 + du2

3 + du2
4 + du2

5.

Let S2 =
{
(v1, v2, v3, v4, v5) ∈ R5

}
be a Euclidean space with metric gS2 on S2 given by

gS2
= e2u1dv21 + e2u1dv22 + e2u1dv23 + dv24 + dv25 .
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Usual Sasakian structure (F, ξ, η) on (S2, gS2
) can be choosen as [5]

F (
∂

∂v1
) =

∂

∂v2
, F (

∂

∂v2
) = − ∂

∂v1
, F (

∂

∂v3
) =

∂

∂v4
, F (

∂

∂v4
) = − ∂

∂v3
,

η = dv5, ξ =
∂

∂v5
, F (ξ) = 0.

Then a basis of TqS1 is {
ei = eu1

∂

∂ui
for 1 ≤ i ≤ 5

}
,

and a F -basis on Tϑ(q)S2 is{
e∗j =

∂

∂vj
for 1 ≤ j ≤ 4, e∗4 = eu1

∂

∂v4
, ξ = e∗5 =

∂

∂v5

}
,

for all q ∈ S1. Now, we define a map ϑ : (S1, gS1) → (S2, gS2 , F ) by

ϑ(u1, u2, u3, u4, u5) = (u1, u2, u5, 0, 0).

Then, we have
kerϑ∗ = Span {U1 = e3, U2 = e4} ,

(kerϑ∗)
⊥ = Span {A1 = e1, A2 = e2, A3 = e5} .

Hence it is easy to see that ϑ∗A1 = eu1e∗1, ϑ∗A2 = eu1e∗2, ϑ∗A3 = eu1e∗3 and
gS2(ϑ∗ (A1i) , ϑ∗ (A1j)) = e2u1gS1(A1i, A1j) for i, j = 1, 2, 3. Thus ϑ is a CRM with λ = e2u1 and we get

rangeϑ∗ = Span {eu1e∗1, e
u1e∗2, e

u1e∗3} ,
(rangeϑ∗)

⊥ = Span {e∗4, ξ} ,
D1 = Span {eu1e∗1, e

u1e∗2} , D2 = Span {eu1e∗3} .
Moreover it is easy to see that Fϑ∗A1 = eu1e∗2, Fϑ∗A2 = −eu1e∗1, Fϑ∗A3 = eu1e∗4. Thus ϑ is a CSIRM.

Remark 1. Throughout this article ξ ∈ (rangeϑ∗)
⊥ will be taken as the Reeb vector field.

We obtain the following theorem for the geometry of the leaves of D1.

Theorem 1. Let ϑ be a CSIRM from a Riemannian manifold (S1, gS1) to a Sasakian manifold
(S2, F, ξ, η, gS2). Then D1 describes a totally geodesic foliation on S2 if and only if

(i).

gS2
(A1, ϑ∗A2)η(α1B1) = η(▽S2

A1
ϑ∗A2)η(B1) + gS2

(β1B1 (lnλ)ϑ∗A1

+ϑ∗(▽S1

A1
A3), Fϑ∗A2) + gS2

(Sα1B1
ϑ∗A1, Fϑ∗A2)

(ii). ϕSFϑ∗B2
ϑ∗A1 − η(ωϑ∗B2)A1 has no components in Γ(D1), for any A1, A2, A3, B2 ∈ Γ(kerϑ∗)

⊥

such that ϑ∗A1, ϑ∗A2 ∈ Γ(D1), ϑ∗B2 ∈ Γ(D2) and B1 ∈ Γ(rangeϑ∗)
⊥ such that ϑ∗A3 = β1B1.

Proof. For ϑ∗A1, ϑ∗A2 ∈ Γ(D1), B1 ∈ Γ(rangeϑ∗)
⊥ and ϑ∗B2 ∈ Γ(D2), since ϑ is a CRM, using (2) and

(3) we have

gS2(▽
S2

A1
ϑ∗A2, B1) = gS2(F ▽S2

A1
ϑ∗A2, FB1) + η(▽S2

A1
ϑ∗A2)η(B1).

From (4), (5) and (6) we get

gS2(▽
S2

A1
ϑ∗A2, B1) = −gS2(A1, ϑ∗A2)η(FB1) + gS2(A1, FB1)η(ϑ∗A2)︸ ︷︷ ︸

0

+η(▽S2

A1
ϑ∗A2)η(B1)− gS2(▽

S2

A1
FB1, Fϑ∗A2)

From (15)

gS2(▽
S2

A1
ϑ∗A2, B1) = −gS2(A1, ϑ∗A2)η(α1B1) + η(▽S2

A1
ϑ∗A2)η(B1)

−gS2
(▽S2

A1
β1B1, Fϑ∗A2)− gS2

(▽S2

A1
α1B1, Fϑ∗A2).

Using (8), we have

gS2
(▽S2

A1
ϑ∗A2, B1) = −gS2

(A1, ϑ∗A2)η(α1B1) + η(▽S2

A1
ϑ∗A2)η(B1)
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−gS2
(▽S2

A1
ϑ∗A3, Fϑ∗A2)− gS2

(−Sα1B1
ϑ∗A1 +▽ϑ⊥

A1
ϑ∗A1, Fϑ∗A2)

where β1B1 = ϑ∗A3 ∈ Γ(D2) for A3 ∈ Γ(kerϑ∗)
⊥. From (7) we have

gS2(▽
S2

A1
ϑ∗A2, B1) = −gS2(A1, ϑ∗A2)η(α1B1) + η(▽S2

A1
ϑ∗A2)η(B1)

−gS2
((▽S2ϑ∗)(A1, A3) + ϑ∗(▽S1

A1
A3), Fϑ∗A2)

+gS2(Sα1B1ϑ∗A1, Fϑ∗A2)− gS2(▽ϑ⊥
A1

ϑ∗A1, Fϑ∗A2)︸ ︷︷ ︸
0

.

Using (12) in the above equation we get

gS2
(▽S2

A1
ϑ∗A2, B1) = −gS2

(A1, ϑ∗A2)η(α1B1) + η(▽S2

A1
ϑ∗A2)η(B1)

−gS2
((▽S2ϑ∗)(A1, A3)

rangeϑ∗ + ϑ∗(▽S1

A1
A3), Fϑ∗A2)

+gS2
(Sα1B1

ϑ∗A1, Fϑ∗A2).

From (??)

gS2(▽
S2

A1
ϑ∗A2, B1) = −gS2(A1, ϑ∗A2)η(α1B1) + η(▽S2

A1
ϑ∗A2)η(B1)

−gS2(A1 (lnλ)ϑ∗A3 +A3 (lnλ)ϑ∗A1

−gS1(A1, A3)ϑ∗(grad lnλ) + ϑ∗(▽S1

A1
A3), Fϑ∗A2)

+gS2
(Sα1B1

ϑ∗A1, Fϑ∗A2).

Since grad( lnλ) ∈ (rangeϑ∗)
⊥, using (3) and ϑ∗A3 = β1B1 we have

gS2(▽
S2

A1
ϑ∗A2, B1) = −gS2(A1, ϑ∗A2)η(α1B1) + η(▽S2

A1
ϑ∗A2)η(B1)

−gS2
(β1B1 (lnλ)ϑ∗A1 + ϑ∗(▽S1

A1
A3), Fϑ∗A2)

+gS2
(Sα1B1

ϑ∗A1, Fϑ∗A2).

This implies the proof of (i).
On the other hand, by using (3) we get

gS2
(▽S2

A1
ϑ∗A2, ϑ∗B2) = gS2

(F ▽S2

A1
ϑ∗A2, Fϑ∗B2)

+η(▽S2

A1
ϑ∗A2)η(ϑ∗B2)︸ ︷︷ ︸

0

.

From (4), (5) and (6) we get

gS2(▽
S2

A1
ϑ∗A2, ϑ∗B2) = −gS2(A1, ϑ∗A2)η(Fϑ∗B2) + gS2(A1, Fϑ∗B2)η(ϑ∗A2)︸ ︷︷ ︸

0

+gS2(F ▽S2

A1
Fϑ∗B2, ϑ∗A2).

From (14) and (8) we have

gS2
(▽S2

A1
ϑ∗A2, ϑ∗B2) = −gS2

(A1, ϑ∗A2)η(ωϑ∗B2)

+gS2
(−ϕSFϑ∗B2

ϑ∗A1 + ϕ▽ϑ⊥
A1

Fϑ∗B2, ϑ∗A2)

= −gS2
(η(ωϑ∗B2)A1 − ϕSFϑ∗B2

ϑ∗A1, ϑ∗A2).

This implies the proof of (ii). □

We obtain the following theorem for the geometry of the leaves of D2.

Theorem 2. Let ϑ be a CSIRM from a Riemannian manifold (S1, gS1
) to a Sasakian manifold

(S2, F, ξ, η, gS2). Then D2 describes a totally geodesic foliation on S2 if and only if
(i).

η(▽S2

B3
ϑ∗B4)η(B2) = gS2

((▽S2ϑ∗)(B3, A4)
(rangeϑ∗)

⊥

+▽φ⊥
B3

α1B2, Fϑ∗B4) + gS2(B3, ϑ∗B4)η(α1B2),

(ii). β1(▽S2ϑ∗)(B3, A3)
(rangeϑ∗)

⊥

has no components in Γ(D2),
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for any A3, A4, B3, B4 ∈ Γ(kerϑ∗)
⊥ such that ϑ∗A3, ϑ∗B3, ϑ∗B4 ∈ Γ(D2), B2 ∈ Γ(rangeϑ∗)

⊥ such that
ϑ∗A4 = β1B2.

Proof. For ϑ∗A3, ϑ∗B3, ϑ∗B4 ∈ Γ(D2), B2 ∈ Γ(rangeϑ∗)
⊥, using (3),(5), (15) and since ϑ is a CRM, then

we have

gS2
(▽S2

B3
ϑ∗B4, B2) = gS2

(F ▽S2

B3
ϑ∗B4, FB2) + η(▽S2

B3
ϑ∗B4)η(B2)

= gS2(−gS2(B3, ϑ∗B4)ξ + η(ϑ∗B4)B3

+▽S2

B3
Fϑ∗B4, FB2) + η(▽S2

B3
ϑ∗B4)η(B2)

= −gS2(B3, ϑ∗B4)η(FB2) + gS2(B3, FB2)η(ϑ∗B4)︸ ︷︷ ︸
0

+gS2(▽
S2

B3
Fϑ∗B4, FB2) + η(▽S2

B3
ϑ∗B4)η(B2)

= −gS2
(B3, ϑ∗B4)η(α1B2)− gS2

(▽S2

B3
β1B2, Fϑ∗B4)

−gS2(▽
S2

B3
α1B2, Fϑ∗B4) + η(▽S2

B3
ϑ∗B4)η(B2)

From (7), (8) and ϑ∗A4 = β1B2 we have

gS2(▽
S2

B3
ϑ∗B4, B2) = −gS2(B3, ϑ∗B4)η(α1B2)− gS2((▽S2ϑ∗)(B3, A4) + ϑ∗(▽S1

B3
A4)

−Sα1B2
ϑ∗B3 +▽ϑ⊥

B3
α1B2, Fϑ∗B4) + η(▽S2

B3
ϑ∗B4)η(B2).

Since D2 defines a totally geodesic foliation on S2, using (12) we have

gS2
(▽S2

B3
ϑ∗B4, B2) = −gS2

((▽S2ϑ∗)(B3, A4)
(rangeϑ∗)

⊥
+▽ϑ⊥

B3
α1B2, Fϑ∗B4)

−gS2
(B3, ϑ∗B4)η(α1B2) + η(▽S2

B3
ϑ∗B4)η(B2).

This implies the proof of (i).
On the other hand, by the virtue of (3), (8), (12) and (15) we have

gS2
(▽S2

B3
ϑ∗A3, ϑ∗B3) = gS2

(F (▽S2ϑ∗)(B3, A3)
(rangeϑ∗)

⊥
, ϑ∗B3) + η(▽S2

B3
ϑ∗A3)η(ϑ∗B3)︸ ︷︷ ︸

0

= gS2
(β1(▽S2ϑ∗)(B3, A3)

(rangeϑ∗)
⊥
, ϑ∗B3).

Since D2 defines a totally geodesic foliation on S2 then we can say that β1(▽S2ϑ∗)(B3, A3)
(rangeϑ∗)

⊥

has no components in Γ(D2). This completes the proof of (ii). □

Theorem 3. Let ϑ be a CSIRM from a Riemannian manifold (S1, gS1
) to a Sasakian manifold

(S2, F, ξ, η, gS2). If (rangeϑ∗) defines a totally geodesic foliation on S2 and ϑ is a horizontally homothetic
CRM then we have

gS2
(Sα1B1

ϑ∗A1, ϕϑ∗A2)− gS2
(ϑ∗(▽S1

A1
A3), ϕϑ∗A2) = gS2

(Sωϑ∗A2
ϑ∗A1, β1B1)− gS2

(▽ϑ⊥
A1

ωϑ∗A2, α1B1)

− η(▽S2

A1
ϑ∗A2)η(B1) + gS2

(A1, ϑ∗A2)η(α1B1) (16)

for any A1, A2 ∈ Γ(kerϑ∗)
⊥ such that ϑ∗A1, ϑ∗A2 ∈ Γ(rangeϑ∗), B1 ∈ Γ(rangeϑ∗)

⊥ such that
ϑ∗A3 = β1B1.

Proof. For A1, A2 ∈ Γ(kerϑ∗)
⊥ and B1 ∈ Γ(rangeϑ∗)

⊥, using (3) and (5) we get

gS2
(▽S2

A1
ϑ∗A2, B1) = gS2

(▽S2

A1
Fϑ∗A2, FB1)− gS2

(A1, ϑ∗A2)η(FB1) + η(▽S2

A1
ϑ∗A2)η(B1).

From (15) we have

gS2
(▽S2

A1
ϑ∗A2, B1) = gS2

(▽S2

A1
Fϑ∗A2, β1B1) + gS2

(▽S2

A1
Fϑ∗A2, α1B1)

−gS2
(A1, ϑ∗A2)η(α1B1) + η(▽S2

A1
ϑ∗A2)η(B1)

= −gS2
(▽S2

A1
β1B1, Fϑ∗A2)− gS2

(▽S2

A1
α1B1, Fϑ∗A2)

−gS2
(A1, ϑ∗A2)η(α1B1) + η(▽S2

A1
ϑ∗A2)η(B1).

From (14) and ϑ∗A3 = β1B1 then we have

gS2
(▽S2

A1
ϑ∗A2, B1) = −gS2

(▽S2

A1
ϑ∗A3, ϕϑ∗A2) + gS2

(▽S2

A1
ωϑ∗A2, ϑ∗A3)
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−gS2
(▽S2

A1
α1B1, ϕϑ∗A2) + gS2

(▽S2

A1
ωϑ∗A2, α1B1)

−gS2
(A1, ϑ∗A2)η(α1B1) + η(▽S2

A1
ϑ∗A2)η(B1).

Since ϑ is a CRM, using (7)

gS2
(▽S2

A1
ϑ∗A2, B1) = −gS2

((▽S2ϑ∗)(A1, A3) + ϑ∗(▽S1

A1
A3), ϕϑ∗A2)

+gS2
(▽S2

A1
ωϑ∗A2, ϑ∗A3)− gS2

(▽S2

A1
α1B1, ϕϑ∗A2)

+gS2
(▽S2

A1
ωϑ∗A2, α1B1)− gS2

(A1, ϑ∗A2)η(α1B1)

+η(▽S2

A1
ϑ∗A2)η(B1).

Using (13), (8) and ϑ∗A3 = β1B1 we get

gS2(▽
S2

A1
ϑ∗A2, B1) = −gS2(A1 (lnλ)ϑ∗A3 +A3 (lnλ)ϑ∗A1

−gS1(A1, A3)ϑ∗(grad( lnλ)), ϕϑ∗A2)

−gS2(ϑ∗(▽S1

A1
A3), ϕϑ∗A2)− gS2(Sωϑ∗A2ϑ∗A1, ϑ∗A3)

+gS2
(Sα1B1

ϑ∗A1, ϕϑ∗A2) + gS2
(▽ϑ⊥

A1
ωϑ∗A2, α1B1)

−gS2
(A1, ϑ∗A2)η(α1B1) + η(▽S2

A1
ϑ∗A2)η(B1).

If we take A1 (lnλ) = gS1
(A1, Hgrad( lnλ)) and A3 (lnλ) = gS1

(A3, Hgrad( lnλ)), then we obtain

gS2
(▽S2

A1
ϑ∗A2, B1) = −gS1

(A1, Hgrad( lnλ))gS2
(ϑ∗A3, ϕϑ∗A2) (17)

−gS1
(A3, Hgrad( lnλ))gS2

(ϑ∗A1, ϕϑ∗A2)

−gS1
(A1, A3)gS2

(ϑ∗(grad( lnλ)), ϕϑ∗A2)

−gS2
(ϑ∗(▽S1

A1
A3), ϕϑ∗A2)− gS2

(Sωϑ∗A2
ϑ∗A1, β1B1)

+gS2(Sα1B1ϑ∗A1, ϕϑ∗A2) + gS2(▽ϑ⊥
A1

ωϑ∗A2, α1B1)

−gS2
(A1, ϑ∗A2)η(α1B1) + η(▽S2

A1
ϑ∗A2)η(B1).

Since (rangeϑ∗) describes a totally geodesic foliation on S2 and ϑ is a horizontally homothetic CRM,
then from (17) we obtain (16). □

Theorem 4. Let ϑ be a CSIRM from a Riemannian manifold (S1, gS1
) to a Sasakian manifold

(S2, F, ξ, η, gS2
). Then (rangeϑ∗)

⊥ defines a totally geodesic foliation on S2 if and only if

gS2
(α1B1, (▽ϑ∗)(A1, A2)

(rangeϑ∗)
⊥
) = gS2

(B2, [B1, ϑ∗A1] +▽ϑ⊥
ϑ∗A1

Fβ1B1

+ α1 ▽ϑ⊥
ϑ∗A1

Fα1B1) +B1η(ωϑ∗A1),

for any B1, B2 ∈ Γ(rangeϑ∗)
⊥ and A1, A2 ∈ Γ(kerϑ∗)

⊥ such that ϑ∗A2 = β1B2.

Proof. For any B1, B2 ∈ Γ(rangeϑ∗)
⊥ and A1, A2 ∈ Γ(kerϑ∗)

⊥, using (3), (5) and since S2 is a Sasakian
manifold,

gS2
(▽S2

B1
B2, ϑ∗A1) = −gS2

(B2, [B1, ϑ∗A1])− gS2
(FB2,▽S2

ϑ∗A1
FB1)

−gS2
(B2, B1)η(Fϑ∗A1) + η(▽S2

B1
B2)η(ϑ∗A1)︸ ︷︷ ︸

0

.

Then using (7), (8), (14) and (15) we have

gS2
(▽S2

B1
B2, ϑ∗A1) = −gS2

(B2, [B1, ϑ∗A1])− gS2
(B2,▽ϑ⊥

ϑ∗A1
Fβ1B1) + gS2

(α1B1, (▽ϑ∗)(A1, A2))

−gS2
(B2, α1 ▽ϑ⊥

ϑ∗A1
Fα1B1)− gS2

(B2, B1η(ωϑ∗A1)).

From (12), (10) and since (rangeϑ∗)
⊥ defines a totally geodesic foliation we have

gS2
(α1B1, (▽ϑ∗)(A1, A2)

(rangeϑ∗)
⊥
) = gS2

(B2, [B1, ϑ∗A1] +▽ϑ⊥
ϑ∗A1

Fβ1B1 + α1 ▽ϑ⊥
ϑ∗A1

Fα1B1)

+ B1η(ωϑ∗A1).

This completes the proof. □
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Remark 2. Let ϑ be a CSIRM from a Riemannian manifold (S1, gS1
) to a Sasakian manifold

(S2, F, ξ, η, gS2). From the second fundamental form, one can easly see that kerϑ∗ and (kerϑ∗)
⊥

define a totally geodesic foliation on S1.

From the above fact we can state following theorem.

Theorem 5. Let ϑ be a CSIRM from a Riemannian manifold (S1, gS1) to a Sasakian manifold
(S2, F, ξ, η, gS2

). Then ϑ is totally geodesic foliation if and only if

ϕ((▽ϑ∗)(A1, A2)
rangeϑ∗ − ϑ∗(▽S1

A1
A2)− Sωϑ∗A3ϑ∗A1) = −β1((▽ϑ∗)(A1, A2)

(rangeϑ∗)
⊥

+ ▽ϑ⊥
A1

ωϑ∗A3)− ϑ∗(▽S1

A1
A3), (18)

ω((▽ϑ∗)(A1, A2)
rangeϑ∗ − ϑ∗(▽S1

A1
A2)− Sωϑ∗A3

ϑ∗A1) = −α1((▽ϑ∗)(A1, A2)
(rangeϑ∗)

⊥

+ +▽ϑ⊥
A1

ωϑ∗A3) + η(▽S2

A1
ϑ∗A3)ξ, (19)

for any A1, A2, A3 ∈ Γ(kerϑ∗)
⊥ such that ϑ∗A2 = ϕϑ∗A3.

Proof. For A1, A3 ∈ Γ(kerϑ∗)
⊥, using (2), (5), (7) and (14) we have

(▽S2ϑ∗)(A1, A3) = ▽S2

A1
ϑ∗A3 − ϑ∗(▽S1

A1
A3)

= −F (▽S2

A1
ϕϑ∗A3 +▽S2

A1
ωϑ∗A3)

−ϑ∗(▽S1

A1
A3) + η(▽S2

A1
ϑ∗A3)ξ.

From (8) and (12) we have

(▽S2ϑ∗)(A1, A3) = −F ((▽ϑ∗)(A1, A2)
rangeϑ∗)− F ((▽ϑ∗)(A1, A2)

(rangeϑ∗)
⊥
)

−F (ϑ∗(▽S1

A1
A2)) + F (Sωϑ∗A3ϑ∗A1)− F (▽ϑ⊥

A1
ωϑ∗A3)

−ϑ∗(▽S1

A1
A3) + η(▽S2

A1
ϑ∗A3)ξ.

Since ϑ is a CRM, from (14) and (15) we have

(▽S2ϑ∗)(A1, A3) = −ϕ((▽ϑ∗)(A1, A2)
rangeϑ∗)− ω((▽ϑ∗)(A1, A2)

rangeϑ∗)

−β1((▽ϑ∗)(A1, A2)
(rangeϑ∗)

⊥
)− α1((▽ϑ∗)(A1, A2)

(rangeϑ∗)
⊥
)

−ϕ(ϑ∗(▽S1

A1
A2))− ω(ϑ∗(▽S1

A1
A2)) + ϕ(Sωϑ∗A3ϑ∗A1) + ω(Sωϑ∗A3ϑ∗A1)

−β1(▽ϑ⊥
A1

ωϑ∗A3)− α1(▽ϑ⊥
A1

ωϑ∗A3)− ϑ∗(▽S1

A1
A3) + η(▽S2

A1
ϑ∗A3)ξ.

Taking rangeϑ∗ and (rangeϑ∗)
⊥ components we have

ϕ((▽ϑ∗)(A1, A3)
rangeϑ∗) = −ϕ((▽ϑ∗)(A1, A2)

rangeϑ∗) + ϑ∗(▽S1

A1
A2)− Sωϑ∗A3

ϑ∗A1)

−β1((▽ϑ∗)(A1, A2)
(rangeϑ∗)

⊥
+▽ϑ⊥

A1
ωϑ∗A3)− ϑ∗(▽S1

A1
A3)

(▽ϑ∗)(A1, A3)
(rangeϑ∗)

⊥
= −ω((▽ϑ∗)(A1, A2)

rangeϑ∗ + ϑ∗(▽S1

A1
A2)− Sωϑ∗A3

ϑ∗A1)

−α1((▽ϑ∗)(A1, A2)
(rangeϑ∗)

⊥
+▽ϑ⊥

A1
ωϑ∗A3) + η(▽S2

A1
ϑ∗A3)ξ.

Thus (▽ϑ∗)(A1, A3) = 0 if and only if (18) and (19) are satisfied. This completes the proof. □

Proposition 1. Let ϑ be a CSIRM from a Riemannian manifold (S1, gS1) to a Sasakian manifold
(S2, F, ξ, η, gS2

) such that dim(rangeϑ∗) > 1. Then the following statements are true.
(i). D̄1 defines a totally geodesic foliation if and only if (▽ϑ∗)(A1, U1) has no component in D1 such

that

gS2(−SFϑ∗A
′
1
ϑ∗A1 + gS2

(A
′

1, ξ)ϑ∗A1, Fϑ∗A2) = η(▽S1

A1
A2)η(A

′

1)

for A1, A2 ∈ Γ(D̄1), U1 ∈ Γ(kerϑ∗) and A
′

1 ∈ Γ(D̄2).
(ii). D̄2 defines a totally geodesic foliation if and only if (▽ϑ∗)(A2, U1) has no component in D2 such

that

gS2(SFϑ∗A
′
3
ϑ∗A3, Fϑ∗A4) = gS2(gS2(A

′

3, ξ)ϑ∗A3,Fϑ∗A4)− η(▽S1

ϑ∗A3
ϑ∗A4)η(ϑ∗A

′

3)

for A2, A3, A4 ∈ Γ(D̄2), U1 ∈ Γ(kerϑ∗) and A
′

3 ∈ Γ(D̄2).
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Proof. We know that D̄1 defines totally geodesic foliation if and only if gS1
(▽S1

A1
A2, U1) = 0 and

gS1
(▽S1

A1
A2, A

′

1) = 0 for A1, A2 ∈ Γ(D̄1), U1 ∈ Γ(kerϑ∗) and A
′

1 ∈ Γ(D̄2). Now, since ϑ is Riemann-
ian map, using (1), (7) and (8) we have

gS1(▽
S1

A1
A2, U1) = −gS1(▽

S1

A1
U1, A2)

= −gS2
(ϑ∗(▽S1

A1
U1), ϑ∗A2)

= gS2
((▽ϑ∗)(A1, U1), ϑ∗A2),

and similarly

gS1(▽
S1

A1
A2, A

′

1) = −gS1(▽
S1

A1
A

′

1, A2)

= −gS2
(ϑ∗(▽S1

A1
A

′

1), ϑ∗A2)

= −gS2
(▽ϑ

A1
ϑ∗A

′

1, ϑ∗A2)

= −gS2(▽
S2

ϑ∗A1
ϑ∗A

′

1, ϑ∗A2).

Since S2 is Sasakian manifold, using (3), (5) and then (8), we have

gS1
(▽S1

A1
A2, A

′

1) = −gS2
(−SFϑ∗A

′
1
ϑ∗A1, Fϑ∗A2) + η(▽S1

A1
A2)η(A

′

1)− gS2
(gS2

(A
′

1, ξ)ϑ∗A1, Fϑ∗A2)

This completes the proof of (i).

On the other hand, we know that D̄2 defines a totally geodesic foliation if and only if gS1
(▽S1

A3
A4, U1) = 0

and gS1
(▽S1

A3
A4, A

′

3) = 0 for A3, A4 ∈ Γ(D̄2), U1 ∈ Γ(kerϑ∗) and A
′

1 ∈ Γ(D̄1). Now, since ϑ is Riemannian
map, using (1) and (7) we have

gS1(▽
S1

A3
A4, U1) = −gS1(▽

S1

A3
U1, A4)

= −gS2
(ϑ∗(▽S1

A3
U1), ϑ∗A4)

= gS2
((▽S2ϑ∗)(A3, U1), ϑ∗A4),

and similarly

gS1(▽
S1

A3
A4, A

′

3) = gS2(ϑ∗(▽S1

A3
A4), ϑ∗A

′

3)

= gS2
(▽ϑ

A3
ϑ∗A4, ϑ∗A

′

3)

= gS2
(▽S2

ϑ∗A3
ϑ∗A4, ϑ∗A

′

3).

Since S2 is Sasakian manifold, using (3),(5) and then (8), we have

gS1
(▽S1

A3
A4, A

′

3) = −gS2
(−SFϑ∗A

′
3
ϑ∗A3, Fϑ∗A4) + η(▽S1

ϑ∗A3
ϑ∗A4)η(ϑ∗A

′

3)− gS2
(gS2

(A
′

3, ξ)ϑ∗A3, Fϑ∗A4).

This completes the proof of (ii). □

Definition 4. [19] Let (S1, gS1) be a Riemannian manifold and assume that the canonical foliations K1

and K2 such that K1 ∩K2 = {0} everywhere. Then (S1, gS1) is a locally product manifold if and only if
K1 and K2 are totally geodesic foliations.

Theorem 6. Let ϑ be a CSIRM from a Riemannian manifold (S1, gS1
) to a Sasakian manifold

(S2, F, ξ, η, gS2
) such that dim(rangeϑ∗) > 1. Then (kerϑ∗)

⊥ is a locally product manifold of D̄1 and D̄2

if and only if
(i). (▽ϑ∗)(A1, U1) has no component in D1 such that −

gS2
(SFϑ∗A

′
3
ϑ∗A1, Fϑ∗A2) = gS2

(gS2
(A

′

1, ξ)ϑ∗A1, Fϑ∗A4)− η(▽S1

A1
A2)η(A

′

1)

for A1, A2 ∈ Γ(D̄1), U1 ∈ Γ(kerϑ∗) and A
′

1 ∈ Γ(D̄2),
(ii). (▽ϑ∗)(A3, U1) has no component in D2 such that

gS2
(SFϑ∗A

′
3
ϑ∗A3, Fϑ∗A4) = gS2

(gS2
(A

′

3, ξ)ϑ∗A3, Fϑ∗A4)− η(▽S1

ϑ∗A3
ϑ∗A4)η(A

′

3)

for A2, A3, A4 ∈ Γ(D̄2), U1 ∈ Γ(kerϑ∗) and A
′

3 ∈ Γ(D̄2).

Proof. The proof is clear by Proposition (1) and Definition (4). □
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Theorem 7. Let ϑ be a CSIRM from a Riemannian manifold (S1, gS1
) to a Sasakian manifold

(S2, F, ξ, η, gS2) such that dim(rangeϑ∗) > 1. Then the base manifold is locally product manifold S2 × S2

if and only if

gS2(ϑ∗(▽S2

A1
ϕϑ∗A1), β1B1) + gS2(ϑ∗(▽ϑ⊥

A1
ωϑ∗A1), α1B1) + gS2(Sα1B1ϑ∗A1, ϕϑ∗A1)

+η(▽S2

ϑ∗A1
ϑ∗A1)η(B1) = |ϑ∗A1|2 Γ(α1B1),

for A1 ∈ Γ(D̄1) and B1 ∈ Γ(rangeϑ∗)
⊥.

Proof. Since S2 is Sasakian manifold, using (3) and (3) we have

gS2(▽
S2

ϑ∗A1
ϑ∗A1, B1) = gS2(▽

S2

ϑ∗A1
Fϑ∗A1, FB1) + η(▽S2

ϑ∗A1
ϑ∗A1)η(B1)

− |ϑ∗A1|2 Γ(α1B1) + Γ(ϑ∗A1)gS2(ϑ∗A1, FB1)︸ ︷︷ ︸
0

,

for ϑ∗A1 ∈ Γ(rangeϑ∗) and B1 ∈ Γ(rangeϑ∗)
⊥. Using (14) and (15) then we have

gS2
(▽S2

ϑ∗A1
ϑ∗A1, B1) = gS2

(▽S2

ϑ∗A1
ϕϑ∗A1, β1B1) + gS2

(▽S2

ϑ∗A1
ωϑ∗A1, β1B1) + gS2

(▽S2

ϑ∗A1
ϕϑ∗A1, α1B1)

+gS2
(▽S2

ϑ∗A1
ωϑ∗A1, α1B1) + η(▽S2

ϑ∗A1
ϑ∗A1)η(B1)− |ϑ∗A1|2 Γ(α1B1),

using (8) in above equation, we get

gS2(▽
S2

ϑ∗A1
ϑ∗A1, B1) = gS2(▽

S2

ϑ∗A1
ϕϑ∗A1, β1B1) + gS2(Sα1B1ϑ∗A1, ϕϑ∗A1)

+gS2(▽ϑ⊥
A1

ωϑ∗A1, α1B1) + η(▽S2

ϑ∗A1
ϑ∗A1)η(B1)− |ϑ∗A1|2 Γ(α1B1).

Then, using (7) we obtain

gS2
(▽S2

ϑ∗A1
ϑ∗A1, B1) = gS2

((▽ϑ∗)(A1,
∗ ϑ∗(ϕϑ∗A1)), β1B1) + gS2

(Sα1B1
ϑ∗A1, ϕϑ∗A1)

+gS2(▽ϑ⊥
A1

ωϑ∗A1, α1B1) + η(▽S2

ϑ∗A1
ϑ∗A1)η(B1)− |ϑ∗A1|2 Γ(α1B1),

from Definition (4), the proof is completed. □

Now, we will examine the harmonicity of CSIRM from a Riemannian manifold (S1, gS1) to Sasakian
manifold (S2, F, ξ, η, gS2

) in the following theorem.

Theorem 8. Let ϑ be a CSIRM from a Riemannian manifold (S1, gS1
) to a Sasakian manifold

(S2, F, ξ, η, gS2
). Then ϑ is harmonic if and only if the following conditions are satisfied

(i). The fibres are minimal,
(ii).

traceϕSωϑ∗A1
A1 − β1 ▽ϑ⊥

A1
ωϑ∗A1 − ϑ∗(▽S1

A1
A1)− (▽S2Fϕϑ∗A1)

rangeϑ∗ = 0,

(iii).

traceωSωϑ∗A1A1 − α1 ▽ϑ⊥
A1

ωϑ∗A1 − (▽S2Fϕϑ∗A1)
(rangeϑ∗)

⊥
+ η((▽ϑ∗)(A1, A1)

(rangeϑ∗)
⊥
)ξ = 0

for A1 ∈ (kerϑ∗)
⊥.

Proof. For U1 ∈ kerϑ∗ using (7) we get

(▽ϑ∗)(U1, U1) = ▽S2

U1
ϑ∗U1 − ϑ∗(▽S1

U1
U1) (20)

= −ϑ∗(▽S1

U1
U1),

since ϑ∗U1 = 0. For A1 ∈ (kerϑ∗)
⊥ using (3), (7), (15), (12) and (8) we have

(▽ϑ∗)(A1, A1) = ▽S2

A1
ϑ∗A1 − ϑ∗(▽S1

A1
A1)

= −▽S2

A1
Fϕϑ∗A1 − F (▽S2

A1
ωϑ∗A1)− ϑ∗(▽S1

A1
A1) + η(▽S2

A1
ϑ∗A1)ξ

= −▽S2

A1
Fϕϑ∗A1 − F (−Sωϑ∗A1

ϑ∗A1 +▽ϑ⊥
A1

ωϑ∗A1)− ϑ∗(▽S1

A1
A1) + η(▽S2

A1
ϑ∗A1)ξ.

Since ϑ is a CRM, from (14) and (15) we have

(▽ϑ∗)(A1, A1) = −▽S2

A1
Fϕϑ∗A1 + ϕSωϑ∗A1

ϑ∗A1 + ωSωϑ∗ϑ∗A1
ϑ∗A1

−β1 ▽ϑ⊥
A1

ωϑ∗A1 − α1 ▽ϑ⊥
A1

ωϑ∗A1 − ϑ∗(▽S1

A1
A1) + η(▽S2

A1
ϑ∗A1)ξ.
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Taking rangeϑ∗ and (rangeϑ∗)
⊥ components we have

(▽ϑ∗)(A1, A1)
rangeϑ = ϕSωϑ∗A1ϑ∗A1 − β1 ▽ϑ⊥

A1
ωϑ∗A1 − ϑ∗(▽S1

A1
A1)− (▽S2

A1
Fϕϑ∗A1)

rangeϑ (21)

and

(▽ϑ∗)(A1, A1)
(rangeϑ∗)

⊥
= ωSωϑ∗ϑ∗A1

ϑ∗A1 − α1 ▽ϑ⊥
A1

ωϑ∗A1 − (▽S2

A1
Fϕϑ∗A1)

(rangeϑ∗)
⊥

+ η((▽ϑ∗)(A1, A1)
(rangeϑ∗)

⊥
)ξ. (22)

Thus the proof is completed from (20), (21) and (22). □

4. Future Studies

The Clairaut Riemannian maps are particular Riemannian maps having important applications in the
geometry [13,26]. The notions of invariant, anti-invariant, and semi-invariant Clairaut Riemannian maps
with almost hermitian manifolds have been studied by the first author and other authors in [9,18,30,31].
Recently, the notions of Clairaut conformal submersions and Clairaut conformal Riemannian maps have
been introduced in [11, 12] and showed that these smooth maps generate a lot of interest due to their
associated geometric properties. Our paper combined the notions of conformal Riemannian maps and
semi-invariant Riemannian maps to Sasakian manifolds. Therefore in future it will be interesting to
combine more notions of Clairaut Riemannian maps to these two notions and study Clairaut conformal
semi-invariant Riemannian maps (and in particular Clairaut conformal semi-invariant submersions) to
Kähler and/or to Sasakian manifolds.
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[1] Akyol, M. A., Şahin, B., Conformal slant Riemannian maps to Kahler manifolds, Tokyo J. Math., 42(1) (2019), 225–237.

DOI: 10.3836/tjm/1502179277
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Fischer-Marsden conjecture on K-paracontact manifolds

and quasi-para-Sasakian manifolds
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Abstract. The aim of this paper is to study of the non-trivial solutions of Fischer-Marsden conjecture

on K-paracontact manifolds and 3-dimensional quasi-para-Sasakian manifolds. We prove that if a semi-
Riemannian manifold of dimension 2n + 1 admits a non-trivial solution of Fischer-Marsden equation,

then it has constant scalar curvature. We give a comprehensive classification for a (2n+1)-dimensional

K-paracontact manifold which admits a non-trivial solution of Fischer-Marsden equation. We consider
3-dimensional quasi-para-Sasakian manifolds with β constant which admits Fischer-Marsden equation

and prove that there are two possibilities. The first one is the scalar curvature r = −6β2 and M3 is

Einstein. The second one is the manifold is paracosymplectic manifold and η-Einstein.

2020 Mathematics Subject Classification. 53B30, 53C25, 53D10.
Keywords. Fischer-Marsden equation, K-paracontact manifold, quasi-para-Sasakian manifold, gradient

Ricci soliton.

1. Introduction

In modern physics, the general theory of relativity provides an interpretation of many cosmological
events, from the expansion of the universe to black holes. A significant global solution of Einstein equation
in general relativity is static space-times. A semi-Riemannian manifold (M2n+1, g) and positive function
λ, we say that (M̄2n+2, ḡ) = M2n+1 ×λ R endowed with the metric ḡ = g − λ2dt2 is a static space-time.
In this case, the Einstein equation with perfect fluid as a matter field over (M̄2n+2, ḡ) is given by

Sḡ −
rḡ
2
ḡ = T, (1)

where T = µλ2dt2 + ρg is the stress-energy-momentum tensor of perfect fluid, Sḡ and rḡ denotes the
Ricci tensor and scalar curvature for the metric ḡ, resp. Moreover, the smooth functions µ and ρ are
energy density and pressure of the perfect fluid, resp. Static perfect fluid space-times is a generalization
of the static vacuum spaces and solution of (1). Also, it provides models for black holes, galaxies and
stellars [7, 9]. Fischer-Marsden equation can be considered as a special case of the static perfect fluid
space-times [5, Remark 1.3].

On the other hand, Fischer-Marsden conjecture is closely related the conjecture that known as Cosmic
no-hair conjecture. We recall the Cosmic no-hair conjecture as ”the hemisphere Sn+ is the only possible
n-dimensional positive static triple with single-horizon and positive scalar curveture” [9].

Let (M2n+1, g) be a compact, orientable semi-Riemannian manifold. We denote the set of all unit
volume semi-Riemannian metrics on (M2n+1, g) by M. The linearization of the scalar curvature Lg(g

∗)
is given by

Lgg
∗ = −∆g(trgg

∗) + div(div(g∗))− g(g∗, S),

1 mustafa.ozkan@btu.edu.tr; 0000-0002-4483-2912
2 irem.erken@btu.edu.tr-Corresponding author; 0000-0003-4471-3291.
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where ∆g, div, g
∗ and S denotes the negative Laplacian of the semi-Riemannian metric g, divergence

operator, symmetric (0, 2) tensor field on M and the Ricci tensor, resp. The formal L2-adjoint Lgg
∗ of

the linearized scalar curvature operator Lg is defined by

L∗
g(λ) = −(∆gλ)g +Hessgλ− λS, (2)

where Hessgλ(U, V ) = ∇2
gλ(U, V ) = g(∇UDλ, V ) is the Hessian operator of the smooth function λ on M

andD is the gradient operator of g. We refer the equation L∗
g(λ) = 0 as Fischer-Marsden equation (FME).

The pair (g, λ) that satisfying L∗
g(λ) = 0 is called a solution of Fischer-Marsden equation. A solution with

λ = 0 is called a trivial solution. We note that a complete Riemannian manifold that admits a non-trivial
solution of Fischer-Marsden equation (λ ̸= 0) has constant scalar curvature [1,10]. Moreover, Corvino [8]
proved that a non-trivial solution of FME implies the warped product metric g∗ = g− λ2dt2 is Einstein.
Further, we recall Fischer-Marsden conjecture [10] as ”a compact Riemannian manifold that admits a
non-trivial solution of the equation L∗

g(λ) = 0 is necessarily an Einstein manifold”. In the case of g is
conformally flat, counter examples of this conjecture are given by Kobayashi [12] and Lafontaine [16].
This conjecture is investigated by various authors [2–4,19,20].

A Ricci soliton is a generalization of an Einstein metric [11]. A semi-Riemannian metric g on a semi-
Riemannian manifold M2n+1 is said to be Ricci soliton if there exist a real number µ and a vector field
V on M2n+1 satisfying

LV g + 2S + 2µg = 0, (3)

where LV g and S denote the Lie derivative along the vector field V and the Ricci tensor of g, resp. The
vector field V is also called the potential vector field. If soliton constant µ is zero, negative or positive,
then the Ricci soliton is said to be steady, shrinking or expanding, resp. Furthermore, if V is a gradient
of a smooth function f , namely, V = Df , then the Ricci soliton is called a gradient Ricci soliton and the
equation (3) becomes

Hess(f) + S = µg, (4)

where Hess(f) is the Hessian of f . In semi-Riemannian manifold M2n+1, the metric g is said to be
gradient η-Ricci soliton if it satisfies

Hess(f) + S = µ1g + µ2η ⊗ η, (5)

where f is a smooth function and µ1, µ2 are constants [6].
All of the mentioned works motivate us to study Fischer-Marsden conjecture on K-paracontact mani-

folds and 3-dimensional quasi-para-Sasakian manifolds. This paper is organized in the following way. In
section 2, we recall some notations required for this paper. In section 3, first, we prove the counter-part
of the theorem which was proved in 1975 [1, 10], namely, we show that in a semi-Riemannian manifold
which admits non-trivial solution of Fischer-Marsden equation, the scalar curvature is constant. After
that, we gave a comprehensive classification for a (2n + 1)-dimensional K-paracontact manifold which
admits a non-trivial solution of Fischer-Marsden equation. With this Theorem, we have shown one of the
difference between contact geometry and paracontact geometry. Also, we prove that if the Ricci operator
commutes for a K-paracontact manifold M2n+1 with a non-trivial solution of Fischer-Marsden equation,
then M2n+1 is an Einstein manifold. We show that if a 2n + 1-dimensional para-Sasakian manifold
admits a non-trivial solution of Fischer-Marsden equation, then it is Einstein. Moreover, for n = 1, the
Ricci tensor is parallel and the manifold is Ricci-semisymmetric. We also investigate the relation be-
tween Fischer-Marsden conjecture and gradient Ricci solitons on K-paracontact manifolds. In Section 4,
we consider 3-dimensional quasi-para-Sasakian manifolds with β constant which admits Fischer-Marsden
equation and prove that there are two possibilities. The first one is the scalar curvature r = −6β2 and
M3 is Einstein. The second one is the manifold is paracosymplectic manifold which is locally a product
of the real line R and a 2-dimensional para-Kaehlerian manifold, and η-Einstein. Finally, we give the
relation between Fischer-Marsden conjecture and gradient Ricci solitons and gradient η-Ricci solitons on
quasi-para-Sasakian manifolds M3.

2. Preliminaries

A (2n+1)− dimensional manifold M is called almost paracontact manifold if it admits triple (F, ξ, η)
satisfying the followings:
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η(ξ) = 1, F 2 = I − η ⊗ ξ (6)

and F induces on almost paracomplex structure on each fiber of D = ker(η), where F, ξ and η are
(1, 1)−tensor field, vector field and 1−form, resp. As a natural consequence, the tensor field F has rank
2n, Fξ = 0 and η ◦F = 0. Here, ξ denotes a certain vector field (referred to as the Reeb or characteristic
vector field) which is dual to η and satisfying dη(ξ, U) = 0 for all U ∈ χ(M). If the structure (M,F, ξ, η)
admits a pseudo-Riemannian metric such that

g(FU,FV ) = −g(U, V ) + η(U)η(V ), (7)

for all U, V ∈ χ(M), then we say that (M,F, ξ, η, g) is an almost paracontact metric manifold. It should
be noted that a pseudo-Riemannian metric with a given almost paracontact metric manifold structure
always have a signature of (n + 1, n). On an almost paracontant metric manifold, there always exists
an orthogonal basis {U1, . . . , Un, V1, . . . , Vn, ξ}, namely F−basis, such that g(Ui, Uj) = −g(Vi, Vj) = δij
and Vi = FUi, for any i, j ∈ {1, . . . , n}. Moreover, it is possible to establish the definition of a skew-
symmetric tensor field (a 2-form), commonly referred to as the fundamental form, denoted as Φ, by using
the equation

Φ(U, V ) = g(U,FV ).

Within the framework of almost paracontact manifolds, the tensor N (1) of type (1, 2) can be introduced
by

N (1)(U, V ) = [F, F ](U, V )− 2dη(U, V )ξ

where

[F, F ](U, V ) = F 2[U, V ] + [FU,FV ]− F [FU, V ]− F [U,FV ]

is the Nijenhuis torsion of F . The almost paracontact manifold is designated as normal, when N (1) = 0
[23].

Furthermore, an almost paracontact metric manifold is referred to as a paracontact metric manifold if
the following condition is satisfied for all vector fields U, V ∈ χ(M):

dη(U, V ) = g(U,FV ) = Φ(U, V ).

In a paracontact metric manifold, a symmetric, trace-free operator h is defined as h := 1
2LξF, where L

represents the Lie derivative. It is important to note that h equals zero if and only if the vector field
ξ is a killing vector. When ξ is a Killing vector, the paracontact metric manifold is referred to as a K-
paracontact manifold. A normal almost paracontact metric manifold is said to be para-Sasakian manifold
if Φ = dη. Furthermore, a para-Sasakian manifold is also K-paracontact, with the reverse holding true
solely in a three-dimensional [23]. An almost paracontact metric manifold is called quasi-para-Sasakian
when both the structure is normal and its fundamental 2-form is closed.

Actually, three dimensional quasi-para-Sasakian and para-Sasakian manifolds are normal almost para-
contact metric manifold in the type of (α, β) with (0, β) and (0,−1), resp. In the case of α = β = 0, the
manifold is paracosymplectic [21].

An almost paracontact metric manifold is said to be η-Einstein if its Ricci tensor S is of the form

S = µ1g + µ2η ⊗ η (8)

where µ1 and µ2 are smooth functions on the manifold. If M is para-Sasakian, then µ1 and µ2 are
constants ( [23, Proposition 4.7]). If µ2 = 0, then the manifold is said to be Einstein.

In a K-paracontact manifold, we have the following relations [23]:

∇Uξ = −FU, (9)

Qξ = −2nξ, (10)

R(ξ, U)V = (∇UF )V, (11)

(∇FUF )FV − (∇UF )V = 2g(U, V )ξ − (U + η(U)ξ)η(V ), (12)

for all U, V ∈ χ(M). On K-paracontact manifold, from (8) and (10), we have µ1 + µ2 = −2n. So
K-paracontact manifold is Einstein if and only if S(U, V ) = −2ng(U, V ) for all U, V ∈ χ(M). Moreover,
the following curvature identities holds for a three-dimensional quasi-para-Sasakian manifold with β
constant [14,15]:
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∇Uξ =βFU, (13)

R(U, V )W =(2β2 +
r

2
)(g(V,W )U − g(U,W )V )− (3β2 +

r

2
)(g(V,W )η(U)ξ

− g(U,W )η(V )ξ + η(V )η(W )U − η(U)η(W )V ), (14)

S(U, V ) =(β2 +
r

2
)g(U, V )− (3β2 +

r

2
)η(U)η(V ), (15)

QU =(β2 +
r

2
)U − (3β2 +

r

2
)η(U)ξ, (16)

Qξ =− 2β2ξ, (17)

where R,S and r are respectively Riemannian curvature, Ricci tensor and scalar curvature of M .

3. K-Paracontact Manifolds Satisfying Fischer-Marsden Equation

Theorem 1. If a semi-Riemannian manifold (Mn, g) admits a non-trivial solution (g, λ) of Fischer-
Marsden equation, then it has constant scalar curvature.

Proof. Let (Mn, g) be a semi-Riemannian manifold and {ei|1 ≤ i ≤ n} be a local frame on a normal
coordinate system at any point p ∈ M . Therefore, from [18, Proposition 33, p. 73], we have

∇eiej = 0 (18)

and

∇Uei =

n∑
i=1

xj∇ejei = 0 (19)

for vector field U =
∑n

i=1 xjej on a neighborhood of p ∈ M . We also know that

div(Hessλ)(U) =

n∑
i=1

εi(∇eiHessλ)(U, ei), (20)

where εi = g(ei, ei). Computing this covariant derivative, using (18), we have

(∇eiHessλ)(U, ei) =∇eiHessλ(U, ei)−Hessλ(∇eiU, ei)−Hessλ(U,∇eiei)

=∇eig(∇UDλ, ei)− g(∇∇ei
UDλ, ei)

=g(∇ei∇UDλ, ei)− g(∇∇ei
UDλ, ei). (21)

On the other hand, using the Riemannian curvature tensor and (19), we obtain

g(R(ei, U)Dλ, ei) =g(∇ei∇UDλ, ei)− g(∇U∇eiDλ, ei)− g(∇[ei,U ]Dλ, ei)

=g(∇ei∇UDλ, ei)− g(∇U∇eiDλ, ei)− g(∇∇ei
UDλ, ei). (22)

Using (21) and (22), one can get

(∇eiHessλ)(U, ei) = g(R(ei, U)Dλ, ei) + g(∇U∇eiDλ, ei). (23)

By the help of (19) and writing (23) in (20), we derive

div(Hessλ)(U) =

n∑
i=1

εig(R(ei, U)Dλ, ei) +

n∑
i=1

εig(∇U∇eiDλ, ei)

=

n∑
i=1

εig(R(ei, U)Dλ, ei) +

n∑
i=1

εiU(g(∇eiDλ, ei))

=S(U,Dλ) + U(∆λ), (24)

for all vector field U . From (24), we have

div(Hessλ) = Q(Dλ) + d(∆λ). (25)

Again, computing the divergence of λS, we obtain

div(λS)(U) =

n∑
i=1

εi(∇eiλS)(U, ei)
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=

n∑
i=1

εi[ei(λ)S(U, ei) + λ(∇eiS)(U, ei)],

which gives

div(λS) = Q(Dλ) +
λ

2
dr. (26)

At the end, by the parallelity of the semi-Riemannian metric g, we get

div(∆λ.g)(U) =

n∑
i=1

εi(∇ei∆λ.g)(U, ei)

=

n∑
i=1

εi[ei(∆λ.g)(U, ei)−∆λ.g(∇eiU, ei)−∆λ.g(U,∇eiei)]

=

n∑
i=1

ε[ei(∆λ)g(U, ei) + ∆λ{eig(U, ei)− g(∇eiU, ei)− g(U,∇eiei)}]

=

n∑
i=1

εiei(∆λ)g(U, ei)

=

n∑
i=1

εig(U, ei(∆λ)ei)

=g(U, d(∆λ)),

which implies

div(∆λ.g) = d(∆λ). (27)

If (g, λ) is a non-trivial solution of the Fischer-Marsden equation, i.e. λ ̸= 0, then from (2), we have

−(∆gλ)g +Hessgλ− λS = 0. (28)

Taking the divergence in (28), and using (25), (26) and (27), we have

λ

2
dr = 0. (29)

Since λ ̸= 0, from (29), the scalar curvature r is constant. □

Proposition 1. [4] If (g, λ) is a non-trivial solution of the Fischer-Marsden equation on a (2n + 1)-
dimensional paracontact metric manifold M , then the Riemanian curvature tensor and Fischer-Marsden
equation can be expressed as

R(U, V )Dλ =U(λ)QV − V (λ)QU + λ{(∇UQ)V − (∇V Q)U}+ U(f)V − V (f)U, (30)

and

∇UDλ = λQU + fU, (31)

where f = −λr
2n , λ is a function of Fischer-Marsden equation and U, V ∈ χ(M).

On a K-paracontact manifold, we have LξQ = 0 [22]. Then using LξQ = 0 and (9), we have the
following result.

Lemma 1. On a (2n+ 1)-dimensional K-paracontact manifold, we have

∇ξQ = QF − FQ. (32)

Theorem 2. Let (g, λ) be a non-trivial solution of Fischer-Marsden equation on a K-paracontact manifold
M of dimension (2n+ 1). Then either

(1) ξ(λ) = ±λ, or
(2) the manifold is an Einstein manifold, or
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(3) the C ̸= 0 tensor defined by C = Q + 2nI and 1 ≤ rank(Cp) ≤ n for all p ∈ M , where Cp ̸= 0.
Further, there exists a basis {U1, V1, . . . , Un, Vn, ξ} of TpM such that

gp(ξ, ξ) = 1, gp(Ui, Vi) = ±1

and

C|<Ui,Vi> =

(
0 0
1 0

)
or C|<Ui,Vi> =

(
0 0
0 0

)
,

where there are exactly rank(Cp) submatrices of the first type.
If n = 1, such a basis {ξ, U1, V1} satisfies that FU1 = ±U1, FV1 = ∓V1, and the tensor C can

be written as

C|<Ui,Vi> =

0 0 0
1 0 0
0 0 0

 .

Proof. From (9) and (10), we derive

(∇UQ)ξ = 2nFU +QFU. (33)

Letting U = ξ in (30), we get

R(ξ, V )Dλ =ξ(λ)QV − V (λ)Qξ + λ{(∇ξQ)V − (∇V Q)ξ}
+ ξ(f)V − V (f)ξ.

In above equation, using (10), (32) and (33), we obtain

R(ξ, V )Dλ = ξ(λ)QV + 2nV (λ)ξ − λFQV − 2nλFV + ξ(f)V − V (f)ξ. (34)

Taking the inner product of (34) with the vector field U , we get

−g(R(V, ξ)Dλ,U) = ξ(λ)S(V,U) + 2nV (λ)η(U) + λS(FU, V )

− 2nλg(FV,U) + ξ(f)g(V,U)− V (f)η(U). (35)

From (11) and (35), we have

g((∇V F )U,Dλ) + ξ(λ)S(V,U) + [2nV (λ)− V (f)]η(U)

− 2nλg(FV,U) + ξ(f)g(V,U) + λS(FU, V ) = 0. (36)

Letting U = FU and V = FV in (36), we obtain

g((∇FV F )FU,Dλ) + ξ(λ)S(FV, FU) + ξ(f)g(FV, FU)− 2nλg(F 2V, FU) + λS(F 2U,FV ) = 0. (37)

By substracting (37) from (36) and using the equations (6), (7), (10) and (12), we get

2ξ(λ− f)g(U, V )− V ((2n+ 1)λ− f)η(U)− ξ(λ− f)η(U)η(V )− ξ(λ)S(V,U)

+ 4nλg(FV,U) + λg(U,QFV + FQV ) + ξ(λ)g(QFV, FU) = 0. (38)

Since S is a symmetric tensor, we also have

2ξ(λ− f)g(U, V )− U((2n+ 1)λ− f)η(V )− ξ(λ− f)η(U)η(V )− ξ(λ)S(V,U)

+ 4nλg(FU, V ) + λg(V,QFU + FQU) + ξ(λ)g(QFU,FV ) = 0. (39)

The equations (38) and (39) implies

0 =U((2n+ 1)λ− f)η(V )− V ((2n+ 1)λ− f)η(U) + 8nλg(FV,U) + 2λg(U,QFV + FQV ). (40)

Putting U = FU and V = FV in (40), we obtain

4nλg(FV,U) = −λ[g(U,QFV ) + g(U,FQV )].

Since λ ̸= 0 on M , we derive

−4nFV = (QF + FQ)V, (41)

for all V ∈ χ(M). Let {ei, F ei, ξ}, (i = 1, 2, . . . , n) be a local orthonormal F -basis. Using (7), we get

g(FQei, F ei) = −g(Qei, ei). (42)
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By the definition of the scalar curvature, (41) and (42), we have

r = S(ξ, ξ) +

n∑
i=1

εi{S(ei, ei) + S(Fei, F ei)}

= g(Qξ, ξ) +

n∑
i=1

εi{g(QFei + FQei, Fei)}

= −2n(2n+ 1). (43)

Therefore, from the Proposition 1 the following equation is valid

f = (2n+ 1)λ. (44)

Taking the inner product of (34) with Dλ and using in (44), we obtain

ξ(λ)[QDλ+ 2nDλ] + λ[QFDλ+ 2nFDλ] = 0. (45)

Letting Dλ = V in (41) implies QFDλ = −4nFDλ − FQDλ. Hence, using the last equation, (45)
becomes

ξ(λ)[QDλ+ 2nDλ] + λ[−2nFDλ− FQDλ] = 0. (46)

Finally, applying F to (46) and using (6), we have

ξ(λ)[FQDλ+ 2nFDλ] + λ[−2nDλ−QDλ] = 0.

After some calculations, the last two equations imply

[(ξ(λ))2 − λ2][QDλ+ 2nDλ] = 0.

Then, either ξ(λ) = ±λ or QDλ+2nDλ = 0. Assume that ξ(λ) ̸= ±λ. Hence, QDλ+2nDλ = 0. Taking
the covariant derivative of QDλ+ 2nDλ = 0 along the vector field U and using (31), we get

(∇UQ)Dλ+ λQ2U + (2nλ+ f)QU + 2nfU = 0.

Contracting above equation over U with respect to a local orthonormal F -basis, we obtain

n∑
i=1

εi[g((∇eiQ)Dλ, ei)+g((∇FeiQ)Dλ,Fei)] + g((∇ξQ)Dλ, ξ) + λ|Q|2 + (2nλ+ f)r + 2n(2n+ 1)f = 0.

(47)

Using the well-known formula divQ = 1
2dr and (43), since λ ̸= 0, from (47) we derive |Q|2 = 4n2(2n+1).

Finally, using the last equation and (43), we compute

|Q− r

2n+ 1
I|2 = |Q|2 − 2r2

2n+ 1
+

r2

2n+ 1
= 0. (48)

From (43) and (48), we have |C|2 = 0, where the tensor C = Q+ 2nI. Then, there are two possibilities.
If C = 0, then Q = −2nI. In the case of C ̸= 0, since C is self-adjoint and Ker(η) is C-invariant we have
from [18, p.260] that, at each point p ∈ M , Ker(ηp) = W1 ⊕ · · · ⊕Wl for some (1 ≤ l ≤ 2n), where Vk

are mutually orthogonal subspaces that are C-invariant and on C|Wk
has matrix of either type:

γ̄
1 γ̄ 0

1 γ̄
. . .

. . .

0 1 γ̄


relative to a basis U1, . . . , Ur of Wk, r ≥ 1, such that the only non-zero products are gp(Ui, Uj) = ±1 if
i+ j = r + 1, or of type
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

a b
−b a 0
1 0 a b
0 1 −b a

1 0 a b
0 1 −b a

. . .
. . .

0
1 0 a b
0 1 −b a


(b ̸= 0)

relative to a basis U1, V1, . . . , Um, Vm of Wk, such that the only non-zero products are gp(Ui, Uj) = 1 =
−gp(Vi, Vj) if i+ j = m+1. For n = 1, the rest of the proof is similar to the proof of Theorem 3.2 in [17].
This completes the proof. □

Theorem 3. Let (g, λ) be a non-trivial solution of Fischer-Marsden equation on a K-paracontact manifold
of dimension (2n + 1) that Ricci operator commutes, i.e. QF = FQ. Then the manifold is an Einstein
manifold.

Proof. From the assumption, (41) returns

−4nFV = 2FQV. (49)

Applying F to the (49) and using (6) and (10), we obtain QV = −2nV . Hence, the manifold is an
Einstein manifold. □

Remark 1. In a (2n + 1)-dimensional para-Sasakian manifold M satisfies the relation S(FU,FV ) =
−S(U, V ) − 2nη(U)η(V ) [23, Lemma 3.15]. Letting V = FV in the last equation, one can observe that
the Ricci tensor commutes.

With the help of the Theorem 4.1 in [13], Theorem 3 and Remark 1, we can state the following
corollary.

Corollary 1. If a (2n+1)-dimensional para-Sasakian manifold admits a non-trivial solution of Fischer-
Marsden equation, then it is an Einstein manifold. Moreover, for n = 1, the Ricci tensor is parallel and
the manifold is Ricci-semisymmetric.

Corollary 2. If (M2n+1, g) is a K-paracontact manifold admitting a non-trivial solution of the Fischer-
Marsden equation with QF = FQ, then g is a gradient Ricci soliton.

Proof. Since the Ricci operator commutes with F , we have Q = −2nI from Theorem 3. Then using this
and (44), the equation (31) becomes

∇UDλ = λU,

which gives
Hess(λ)(U, V ) = λg(U, V ). (50)

In the view of (50) and Q = −2nI, we have

Hessλ+ S − (λ− 2n)g = 0. (51)

It follows from (4) and (51), g is a gradient Ricci soliton.
□

4. 3-Dimensional Quasi-para-Sasakian Manifolds Admitting Fischer-Marsden Equation

In this section, we will consider 3-dimensional quasi-para-Sasakian manifolds with β constant which
admits Fischer-Marsden equation. The general form of the following proposition is given in [14].

Proposition 2. For a 3-dimensional quasi-para-Sasakian manifold M3, the following equation holds

(∇V Q)ξ − (∇ξQ)V = −β(3β2 +
r

2
)FV,

for any vector field V .
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Proof. Taking the covariant derivative of (17) along the vector field V and using the equations (13), (16)
and (17), we get

(∇V Q)ξ = −β(3β2 +
r

2
)FV. (52)

Let {e, Fe, ξ} be a local orthonormal F -basis. Using the well-known formula divQ = dr
2 and contracting

(52) over V with respect to a local orthonormal F -basis, we obtain

ξ(r) = 0.

Similarly, taking the covariant derivative of (16) along ξ, we have

(∇ξQ)V = 0, (53)

which completes the proof. □

Theorem 4. Let (g, λ) be a non-trivial solution of Fischer-Marsden equation on a 3-dimensional quasi-
para-Sasakian manifold M3 with β constant. Then either

(1) the scalar curvature is −6β2 and M3 is Einstein, or
(2) M3 is a paracosymplectic manifold which is locally a product of the real line R and a 2-dimensional

para-Kaehlerian manifold, and η-Einstein.

Proof. Letting U = ξ in (30) and taking the inner product with E, we have

g(R(ξ, V )Dλ,E) =ξ(λ)S(V,E)− V (λ)S(ξ, E) + λ{g((∇ξQ)V − (∇V Q)ξ, E)}
+ ξ(f)g(V,E)− V (f)g(ξ, E). (54)

After some calculations, using the equations (16), (17) and (53) in (54), we get

g(R(ξ, V )Dλ,E) =ξ(λ)S(V,E) + 2β2V (λ)η(E) + λβ(3β2 +
r

2
)g(FV,E) + ξ(f)g(V,E)− V (f)η(E).

(55)

We recall that the scalar curvature r is constant from Theorem 1. Putting E = ξ in (55) and using the
equation (15) and f = −λr

2 , we obtain

g(R(ξ, V )Dλ, ξ) = (
r

2
+ 2β2)(V (λ)− η(V )ξ(λ)). (56)

From (14), one can get

g(R(ξ, V )Dλ,E) = −β2(V (λ)η(E)− ξ(λ)g(V,E)). (57)

For E = ξ in (57), we obtain

g(R(ξ, V )Dλ, ξ) = −β2(V (λ)− ξ(λ)η(V )). (58)

Therefore, the equations (56) and (58) imply

(
r

2
+ 3β2)(V (λ)− η(V )ξ(λ)) = 0. (59)

From the above equation, two cases occur. We now check, case by case, whether (59) give rise to a local
classification.

Case I: If r
2 + 3β2 = 0, then scalar curvature r is −6β2.

Case II: If

V (λ)− η(V )ξ(λ) = 0, (60)

then the gradient of λ is colinear with ξ, i.e. Dλ = ξ(λ)ξ. Taking the covariant derivative of the last
equation along the vector field U implies

∇UDλ = ∇U (ξ(λ))ξ + ξ(λ)∇Uξ. (61)

Taking the inner product of (61) with V and using (13), we obtain

g(∇UDλ, V ) = U(ξ(λ))η(V ) + βξ(λ)g(FU, V ). (62)

Interchancing U and V in (62), we get

g(∇V Dλ,U) = V (ξ(λ))η(U) + βξ(λ)g(FV,U). (63)
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Since the Hessian operator is symmetric, the equations (62) and (63) imply

U(ξ(λ))η(V )− V (ξ(λ))η(U) = 2βξ(λ)g(U,FV ). (64)

Putting U = FU and V = FV in (64), we have

2βξ(λ)g(FU, V ) = 0.

If β = 0, then the manifold is paracosymplectic which is locally a product of the real line R and a
2-dimensional para-Kaehlerian manifold and η-Einstein from (15). Let ξ(λ) = 0 and β ̸= 0. Then, from
(60), λ is constant. Therefore, from (2), the Ricci operator S is zero. Hence, the manifold is Ricci flat.
Using (15), we get β = 0, which is a contradiction of our assumption. So, this case does not occur. □

Corollary 3. Let (M3, g) is a quasi-para-Sasakian manifold that admitting non-trivial solution of Fischer-
Marsden equation. Then either g is a gradient Ricci soliton or is a gradient η-Ricci soliton.

Proof. From the assumption and Theorem 4, there are two possibilities.
Case I: If r = −6β2, then the equations (16), (31) and f = −λr

2 implies

∇UDλ = λβ2U.

With similar idea in the proof of Corollary 2, we have

Hessλ+ S − β2(λ− 2)g = 0.

It means that g is a gradient Ricci soliton.
Case II: If β = 0, then we have S(U, V ) = r

2 [g(U, V )− η(U)η(V )]. On the other hand, using (16) and
(31), we get Hessλ = −λ r

2η ⊗ η. In the view of the last two equations, we obtain

Hessλ+ S − r

2
g +

r

2
(1 + λ)η ⊗ η = 0,

which shows that from (5), g is a gradient η-Ricci soliton.
□
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1Ankara University, Faculty of Science, Department of Computer Science, Ankara 06100, TÜRKİYE
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Abstract. In this paper, new Sturmian comparison results and oscillatory properties of linear impul-

sive hyperbolic equations are obtained on a rectangular prism under fixed moment of impulse effects.

Besides the Kreith’s results [9,10], this paper represents an extension of earlier findings obtained on the
rectangular domain in the plane to the results obtained in rectangular prism in space.
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1. Introduction

In 1969, Kreith [9] obtained a remarkable analogue of the Sturm comparison theorem between the pair
of hyperbolic boundary value problems of the form

utt − uxx + p(x, t)u = 0
ux(xj , t) + (−1)jrj(t)u(xj , t) = 0; (j = 1, 2)

(1)

and

vtt − vxx + q(x, t)v = 0,
vx(xj , t) + (−1)jsj(t)v(xj , t) = 0; (j = 1, 2)

(2)

on the rectangular domain:

D = {(x, t) : x1 < x < x2, t1 < t < t2)}.

Theorem 1. Let z1 be a solution of problem (1) satisfying

z1(x, t1) = z1(x, t2) = 0; x1 ≤ x ≤ x2,

which is positive for (x, t) ∈ [x1, x2]× (t1, t2). If q ≥ p on D and sj ≥ rj (j = 1, 2) on [t1, t2], then every
solution z2 of problem (2) has a zero in

D̄ = {(x, t) : x1 ≤ x ≤ x2, t1 ≤ t ≤ t2)}.

For the proof of Theorem 1, we address the readers [9, Theorem 1]. See also the monograph by
Kreith [10, pp. 24–26].

Impulsive differential equations have been an interesting area for mathematics, physics, biology, chem-
istry, engineering, medicine etc. As far as impulsive ordinary differential equations are considered, there
are many studies in terms of the existence of periodic solutions, asymptotic behavior, stability, Sturmian
theory and oscillatory behavior of their solutions, see for example the book by Lakshmikantham, Bainov
and Simeonov [11]. When partial differential equations under the impulse effect is considered, there are
fewer publications compared to ordinary impulsive differential equations. Some of the noteworthy contri-
butions have been made by Bainov et al. [1–4] for the first order impulsive partial differential inequalities,
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2 uslu k@ibu.edu.tr-Corresponding author; 0000-0002-1728-9037.
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by Fu et al. [7] for the oscillation of impulsive hyperbolic systems, by Bainov and Simeonov [5] for the
oscillatory behavior of impulsive differential equations, by Minchev [14] for the oscillation criteria of
nonlinear hyperbolic differential and difference equations under impulse effect, by Cui et al. [6] for some
problems on oscillation of impulsive hyperbolic differential systems with several retarded arguments, by
Luo et al. [12] for oscillatory behavior of nonlinear impulsive partial functional differential equations, by
Zhu et al. [18] for oscillation criteria of impulsive neutral hyperbolic equations, by Hernández et al. [8] for
the existence of solutions of impulsive partial functional differential equations, by Ning et al. [15] for the
oscillation of system of impulsive hyperbolic equations and by Luo et al. [13] for oscillatory solutions of
impulsive quasilinear hyperbolic systems with delay. Oscillation theory for impulsive partial differential
equations has received great attention and has been developing quite rapidly in recent years. As far as
the Sturm theory is concerned, it seems there is only a single work [16] for impulsive hyperbolic equations
in the literature. Recently, present authors [16] give some Sturm-type comparison criteria for impulsive
hyperbolic equations on a rectangular domain. They attempted to give analogical comparison results for
the couple of impulsive hyperbolic problems{

utt(x, t)− uxx(x, t) + f(x, t)u(x, t) = 0; (x, t) ∈ Γ \ Γimp,
∆ut(x, t) + fk(x, t)u(x, t) = 0; (x, t) ∈ Γimp

(3)

satisfying the boundary conditions

ux(xj , t) + (−1)jrj(t)u(xj , t) = 0; (j = 1, 2) (4)

and {
vtt(x, t)− vxx(x, t) + g(x, t)v(x, t) = 0; (x, t) ∈ Γ \ Γimp,

∆vt(x, t) + gk(x, t)v(x, t) = 0; (x, t) ∈ Γimp
(5)

satisfying the boundary conditions

vx(xj , t) + (−1)jsj(t)v(xj , t) = 0; (j = 1, 2), (6)

where

Γ :={(x, t) : x ∈ (x1, x2), t ∈ (t1, t2)} and

Γimp :={(x, t) ∈ Γ : t = τk, k ∈ N},

rj , sj ∈ C([t1, t2],R) for j = 1, 2, and f, g, fk, gk ∈ C(Γ,R) for k ∈ N. Here {τk} is real-valued sequence
such that

τ1 < τ2 < · · · < τk < τk+1 < · · · (k ∈ N)
with limn→∞ τn = ∞, and the operator ∆ is the impulse operator defined as ∆ν(x, τ) = ν(x, τ+) −
ν(x, τ−), where

ν(x, τ±) = lim
(x,t)→(x,τ±)

ν(x, τ).

Theorem 2 ([16]). Let u be a solution of problem (3)–(4) which is positive on Γ and satisfies u(x, t1) =
u(x, t2) = 0 for all x ∈ [x1, x2]. If g > f on Γ, sj > rj (j = 1, 2) in [t1, t2], and gk > fk (k ∈ N) on Γimp,
then every solution v of problem (5)–(6) has a zero in closure Γ̄ of Γ.

Fix x0, y0, t0 ∈ R. Let I = (x1, x2) ⊂ [x0,∞), J = (y1, y2) ⊂ [y0,∞) and K = (t1, t2) ⊂ [t0,∞) be
non-degenerate intervals.

Define the rectangular prism

Ω = I × J ×K,

and the domains

Kimp := {t ∈ K : t = τk, k ∈ N} and

Ωimp := I × J ×Kimp,

where {τk} is as defined previously.
Denote by Cimp

(
Ω̄,R

)
the set of functions w : Ω̄ → R satisfying the following properties:

(i) w(x, y, t) is a continuous function for (x, y, t) ∈ Ω̄ \ Ω̄imp
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(ii) There exist limits

lim
(x,y,t)→(x,y,τk)

t>τk

w(x, y, t) = w(x, y, τ+k ) (k ∈ N)

and

lim
(x,y,t)→(x,y,τk)

t<τk

w(x, y, t) = w(x, y, τ−k ) (k ∈ N)

for all (x, y) ∈ Ī × J̄ .
(iii) ν(x, y, t) is piecewise left continuous function at each τk, k ∈ N, i.e.

lim
(x,y,t)→(x,y,τk)

t<τk

ν(x, y, t) = ν(x, y, τk)

for each k ∈ N and (x, y) ∈ Ī × J̄ .

In this work, we give some Sturm-type comparison results for solutions of the couple of impulsive hyper-
bolic problems of the form{

utt −△u+ f(x, y, t)u = 0; (x, y, t) ∈ Ω \ Ωimp

∆ut + fk(x, y, t)u = 0; (x, y, t) ∈ Ωimp
(7)

satisfying the boundary conditions

ux(xj , y, t) + (−1)jrj(t)u(xj , y, t) = 0; (y, t) ∈ J̄ × K̄,
uy(x, yj , t) + (−1)jrj+2(t)u(x, yj , t) = 0; (x, t) ∈ Ī × K̄,

(8)

and {
vtt −△v + g(x, y, t)v = 0; (x, y, t) ∈ Ω \ Ωimp

∆vt + gk(x, y, t)v = 0; (x, y, t) ∈ Ωimp
(9)

satisfying the boundary conditions

vx(xj , y, t) + (−1)jsj(t)v(xj , y, t) = 0; (y, t) ∈ J̄ × K̄,
vy(x, yj , t) + (−1)jsj+2(t)v(x, yj , t) = 0; (x, t) ∈ Ī × K̄ (10)

for j = 1, 2, where f, g : Ω̄ → R, rℓ, sℓ : K̄ → R are continuous functions for ℓ = 1, 2, 3, 4,

∆w(x, y, t) = w(x, y, t+)− w(x, y, t−),

and △ is the usual Laplace operator:

△ =
∂2

∂x2
+

∂2

∂y2
.

A function z ̸= 0 is defined to be a solution of (7)–(8) (respectively (9)–(10)) if

• z ∈ C
(
Ω̄,R

)
(i.e., ∆z(x, y, τk) = 0 for all k ∈ N) and zt ∈ Cimp

(
Ω̄,R

)
;

• there exist second-order partial derivatives ztt, zxx and zyy satisfying the first equation in (7) for
each (x, y, t) ∈ Ω \ Ωimp;

• z satisfies the second equation in (7) in Ωimp and the boundary conditions given in (8).

Recently, present authors [17] considered the pair of Problems (7)–(8) and (9)–(10) without impulse
effect, i.e. fk(x, y, t) ≡ 0 ≡ gk(x, y, t), and they obtained some Sturm-type comparison results between
them.

Motivated by Theorems 1 and 2, and the results given in [17], we consider impulsive hyperbolic
equations on a rectangular prism and their oscillatory properties. The results obtained in this work are
conceivable as impulsive extension of those given in [17].

2. Linear Comparison Results

Based on the Kreith’s comparison result obtained on the rectangular domain in the plane, we interfere
to obtain an analogic result for the solutions of the couple of impulsive problems (7)–(8) and (9)–(10) on
a rectangular prism in three-space.

Main result of the paper is the following.
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Theorem 3 (Sturm comparison theorem). Let u be a solution of problem (7)–(8) satisfying the initial
conditions

u(x, y, t1) = u(x, y, t2) = 0; (x, y) ∈ Ī × J̄ , (11)

which is positive on Ω. If the inequalities

g(x, y, t) ≥ f(x, y, t); (x, y, t) ∈ Ω, (12)

sj(t) ≥ rj(t); t ∈ K̄ (j = 1, 2, 3, 4), (13)

and

gk(x, y, t) ≥ fk(x, y, t); (x, y, t) ∈ Ωimp (k ∈ N) (14)

hold, then every solution v of problem (9)–(10) has a zero in Ω̄.

Proof. Suppose to contrary that v has no zero in Ω̄. Without loss of generality we may assume that v > 0
in Ω̄. The proof of the case that v < 0 in Ω̄ is similar.

Multiplying the first equations in (7) and (9) by v and u respectively, and subtracting, we see that the
identity [

uvx − vux

]
x
+
[
uvy − vuy

]
y
+

[
vut − uvt

]
t
=

[
g(x, y, t)− f(x, y, t)

]
uv (15)

holds for all (x, y, t) ∈ Ω̄. Integrating both sides of (15) over Ω, we obtain
y

Ω

[
g(x, y, t)− f(x, y, t)

]
uvdV

=
y

Ω

{[
uvx − vux

]
x
+

[
uvy − vuy

]
y
+
[
vut − uvt

]
t

}
dV, (16)

where dV is the volume element. The functions under integral signs have discontinuities of first kind at
the jump points τk, so we divide the domain Ω into (n+ 1) sub-domains in the following way:

Ω0 := {(x, y, t) : (x, y) ∈ I × J , t ∈ (t1, τ1]},
Ωk := {(x, y, t) : (x, y) ∈ I × J , t ∈ (τk, τk+1]}; k = 1, 2, . . . , n− 1,

Ωn := {(x, y, t) : (x, y) ∈ I × J , t ∈ (τn, t2)}.

This allows us to apply the divergence theorem to each triple integral
y

Ωm

{[
uvx − vux

]
x
+

[
uvy − vuy

]
y
+

[
vut − uvt

]
t

}
dV (17)

for m = 0, 1, . . . , n. We also note that each partition defined above satisfy

(i)

n⋂
ℓ=0

Ωℓ = ∅;

(ii) Ω =

n⋃
ℓ=0

Ωℓ.

Clearly, we have from (i) and (ii) that
y

Ω

[
g(x, y, t)− f(x, y, t)

]
uvdV

=
y

Ω0

[
g(x, y, t)− f(x, y, t)

]
uvdV +

n−1∑
k=1

y

Ωk

[
g(x, y, t)− f(x, y, t)

]
uvdV

+
y

Ωn

[
g(x, y, t)− f(x, y, t)

]
uvdV. (18)

We note that each Ωm, m = 0, 1, . . . , n, is a simple solid region with the piecewise smooth boundary Sm.
Applying divergence theorem to the smooth vector field

F(x, y, t) := (uvx − vux)i+ (uvy − vuy)j+ (vut − uvt)k, (19)
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on Ωm, m = 0, 1, . . . , n, the integral given in (17) turns out to be
y

Ωm

{[
uvx − vux

]
x
+

[
uvy − vuy

]
y
+
[
vut − uvt

]
t

}
dV

=
y

Ωm

div FdV

=
y

Ωm

∇ • FdV


=

{

Sm

F • N̂dS (20)

for m = 0, 1, . . . , n, where N̂ is the unit outward normal to the surface Sm and the ∇ is the usual nabla
(gradient) operator defined by

∇ =
∂

∂x
i+

∂

∂y
j+

∂

∂t
k.

Since Sm (= ∂Ωm), m = 0, 1, . . . , n, is the union of six regions, it can be expressed as

Sm =

6⋃
µ=1

Smµ, (21)

where each Smµ, µ = 1, . . . , 6, are disjoint, rectangular, oriented, closed surfaces. It follows from the fact
(21) that, the integral on the right-hand side of (20) can be expressed as

y

Ωm

{[
uvx − vux

]
x
+

[
uvy − vuy

]
y
+
[
vut − uvt

]
t

}
dV

=

6∑
µ=1

x

Smµ

F • N̂mµdS, (m = 0, 1, . . . , n), (22)

where each N̂mµ are the unit outward normal vectors to each surface Smµ and defined by

N̂m1 = −i, N̂m2 = i, N̂m3 = −j

N̂m4 = j, N̂m5 = −k, N̂m6 = k
(23)

for m = 0, 1, . . . , n, and F is defined in (19).
Now, we start with the first integral in the right-hand side on (18). Taking m = 0 in (22) and using

(15) and (23), it can be expressed as

y

Ω0

[
g(x, y, t)− f(x, y, t)

]
uvdV =

{

S0

F • N̂dS =

6∑
µ=1

x

S0µ

F • N̂0µdS, (24)

where each surfaces S0µ are defined by

S01 = {(x, y, t) : x = x1, y ∈ J , t ∈ (t1, τ1]},
S02 = {(x, y, t) : x = x2, y ∈ J , t ∈ (t1, τ1]},
S03 = {(x, y, t) : y = y1, x ∈ I, t ∈ (t1, τ1]},
S04 = {(x, y, t) : y = y2, x ∈ I, t ∈ (t1, τ1]},
S05 = {(x, y, t) : t = t1, (x, y) ∈ I × J }

and

S06 = {(x, y, t) : t = τ1, (x, y) ∈ I × J }.

Then by using the initial conditions (8) and (10), each integral on the right-hand side of (24) turn out
to be

x

S01

F • N̂01dS = −
x

S01

F • idS

= −
∫ τ1

t1

∫ y2

y1

[uvx − vux](x1, y, t)dydt
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=

∫ τ1

t1

∫ y2

y1

[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)dydt, (25)

x

S02

F • N̂02dS =
x

S02

F • idS

=

∫ τ1

t1

∫ y2

y1

[uvx − vux](x2, y, t)dydt

=

∫ τ1

t1

∫ y2

y1

[r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)dydt, (26)

x

S03

F • N̂03dS = −
x

S03

F • jdS

= −
∫ τ1

t1

∫ x2

x1

[uvy − vuy](x, y1, t)dxdt

=

∫ τ1

t1

∫ x2

x1

[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)dxdt, (27)

x

S04

F • N̂04dS =
x

S04

F • jdS

=

∫ τ1

t1

∫ x2

x1

[uvy − vuy](x, y2, t)dxdt

=

∫ τ1

t1

∫ x2

x1

[r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)dxdt, (28)

x

S05

F • N̂05dS = −
x

S05

F • kdS = −
∫ y2

y1

∫ x2

x1

[vut − uvt](x, y, t1)dxdy (29)

and
x

S06

F • N̂06dS =
x

S06

F • kdS =

∫ y2

y1

∫ x2

x1

[vut − uvt](x, y, τ1)dxdy. (30)

Summing up equations (25)–(30), equation (24) turns out to be
y

Ω0

[
g(x, y, t)− f(x, y, t)

]
uvdV

=

∫ τ1

t1

∫ y2

y1

{
[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)

+ [r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)

}
dydt

+

∫ τ1

t1

∫ x2

x1

{
[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)

+ [r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)

}
dxdt

+

∫ y2

y1

∫ x2

x1

{
[vut − uvt](x, y, τ1)− [vut − uvt](x, y, t1)

}
dxdy. (31)

Similarly, by taking m = n in (22) and using (15) and (23), the last integral in the right-hand side on
(18) can be expressed as

y

Ωn

[
g(x, y, t)− f(x, y, t)

]
uvdV =

{

Sn

F • N̂dS =

6∑
µ=1

x

Snµ

F • N̂nµdS, (32)
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where

Sn1 = {(x, y, t) : x = x1, y ∈ J , t ∈ (τn, t2]},
Sn2 = {(x, y, t) : x = x2, y ∈ J , t ∈ (τn, t2]},
Sn3 = {(x, y, t) : y = y1, x ∈ I, t ∈ (τn, t2]},
Sn4 = {(x, y, t) : y = y2, x ∈ I, t ∈ (τn, t2]},
Sn5 = {(x, y, t) : t = τn, (x, y) ∈ I × J }

and

Sn6 = {(x, y, t) : t = t2, (x, y) ∈ I × J }.

Boundary conditions (8) and (10) imply that each integral on the right-hand side of (32) turn out to be
x

Sn1

F • N̂n1dS = −
x

Sn1

F • idS

= −
∫ t2

τ+
n

∫ y2

y1

[uvx − vux](x1, y, t)dydt

=

∫ t2

τ+
n

∫ y2

y1

[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)dydt, (33)

x

Sn2

F • N̂n2dS =
x

Sn2

F • idS

=

∫ t2

τ+
n

∫ y2

y1

[uvx − vux](x2, y, t)dydt

=

∫ t2

τ+
n

∫ y2

y1

[r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)dydt, (34)

x

Sn3

F • N̂n3dS = −
x

Sn3

F • jdS

= −
∫ t2

τ+
n

∫ x2

x1

[uvy − vuy](x, y1, t)dxdt

=

∫ t2

τ+
n

∫ x2

x1

[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)dxdt, (35)

x

Sn4

F • N̂n4dS =
x

Sn4

F • jdS

=

∫ t2

τ+
n

∫ x2

x1

[uvy − vuy](x, y2, t)dxdt

=

∫ t2

τ+
n

∫ x2

x1

[r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)dxdt, (36)

x

Sn5

F • N̂n5dS = −
x

Sn5

F • kdS = −
∫ y2

y1

∫ x2

x1

[vut − uvt](x, y, τ
+
n )dxdy (37)

and
x

Sn6

F • N̂n6dS =
x

Sn6

F • kdS =

∫ y2

y1

∫ x2

x1

[vut − uvt](x, y, t2)dxdy. (38)

By addition of integrals (33)–(38), equation (32) can be expressed as
y

Ωn

[
g(x, y, t)− f(x, y, t)

]
uvdV
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=

∫ t2

τ+
n

∫ y2

y1

{
[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)

+ [r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)

}
dydt

+

∫ t2

τ+
n

∫ x2

x1

{
[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)

+ [r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)

}
dxdt

+

∫ y2

y1

∫ x2

x1

{
[vut − uvt](x, y, t2)− [vut − uvt](x, y, τ

+
n )

}
dxdy. (39)

Finally, we will examine the integrals in the mid part of (18), i.e.

y

Ωk

[
g(x, y, t)− f(x, y, t)

]
uvdV =

{

Sk

F • N̂dS =

6∑
µ=1

x

Skµ

F • N̂kµdS, (40)

where

Sk1 = {(x, y, t) : x = x1, y ∈ J , t ∈ (τk, τk+1]},
Sk2 = {(x, y, t) : x = x2, y ∈ J , t ∈ (τk, τk+1]},
Sk3 = {(x, y, t) : y = y1, x ∈ I, t ∈ (τk, τk+1]},
Sk4 = {(x, y, t) : y = y2, x ∈ I, t ∈ (τk, τk+1]},
Sk5 = {(x, y, t) : t = τk, (x, y) ∈ I × J }

and

Sk6 = {(x, y, t) : t = τk+1, (x, y) ∈ I × J }

for k = 1, 2, . . . , n− 1.
Then integrals on the right-hand side of (40) become

x

Sk1

F • N̂k1dS = −
x

Sk1

F • idS

= −
∫ τk+1

τ+
k

∫ y2

y1

[uvx − vux](x1, y, t)dydt

=

∫ τk+1

τ+
k

∫ y2

y1

[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)dydt, (41)

x

Sk2

F • N̂k2dS =
x

Sk2

F • idS

=

∫ τk+1

τ+
k

∫ y2

y1

[uvx − vux](x2, y, t)dydt

=

∫ τk+1

τ+
k

∫ y2

y1

[r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)dydt, (42)

x

Sk3

F • N̂k3dS = −
x

Sk3

F • jdS

= −
∫ τk+1

τ+
k

∫ x2

x1

[uvy − vuy](x, y1, t)dxdt

=

∫ τk+1

τ+
k

∫ x2

x1

[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)dxdt, (43)
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x

Sk4

F • N̂k4dS =
x

Sk4

F • jdS

=

∫ τk+1

τ+
k

∫ x2

x1

[uvy − vuy](x, y2, t)dxdt

=

∫ τk+1

τ+
k

∫ x2

x1

[r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)dxdt (44)

x

Sk5

F • N̂k5dS = −
x

Sk5

F • kdS = −
∫ y2

y1

∫ x2

x1

[vut − uvt](x, y, τ
+
k )dxdy (45)

and
x

Sk6

F • N̂k6dS =
x

Sk6

F • kdS =

∫ y2

y1

∫ x2

x1

[vut − uvt](x, y, τk+1)dxdy (46)

for k = 1, 2, . . . , n− 1. Integrals (41)–(46) yield
y

Ωk

[
g(x, y, t)− f(x, y, t)

]
uvdV

=

∫ τk+1

τ+
k

∫ y2

y1

{
[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)

+ [r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)

}
dydt

+

∫ τk+1

τ+
k

∫ x2

x1

{
[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)

+ [r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)

}
dxdt

+

∫ y2

y1

∫ x2

x1

{
− [vut − uvt](x, y, τ

+
k ) + [vut − uvt](x, y, τk+1)

}
dxdy (47)

for k = 1, 2, . . . , n− 1.
Finally we add the integrals (31), (39) and (47) to obtain the main integral (18) as

y

Ω

[
g(x, y, t)− f(x, y, t)

]
uvdV

=

{∫ τ1

t1

+

∫ τ2

τ+
1

+ · · ·+
∫ τn

τ+
n−1

+

∫ t2

τ+
n

}∫ y2

y1

{
[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)

+ [r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)

}
dydt

+

{∫ τ1

t1

+

∫ τ2

τ+
1

+ · · ·+
∫ τn

τ+
n−1

+

∫ t2

τ+
n

}∫ x2

x1

{
[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)

+ [r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)

}
dxdt

+

∫ y2

y1

∫ x2

x1

{
[vut − uvt](x, y, t2)− [vut − uvt](x, y, t1) + [vut − uvt](x, y, τ1)

+

n−1∑
k=1

{
− [vut − uvt](x, y, τ

+
k ) + [vut − uvt](x, y, τk+1)

}
− [vut − uvt](x, y, τ

+
n )

}
dxdy. (48)
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Noting that ∆u(x, y, τk) = ∆v(x, y, τk) = 0, k ∈ N, the impulse conditions for the functions ut and vt in
the second lines of (7) and (9), respectively, imply that the related impulse terms in (48) can be picked
up as

− [vut − uvt](x, y, τ1) +

n−1∑
k=1

{
[vut − uvt](x, y, τ

+
k )− [vut − uvt](x, y, τk+1)

}
+ [vut − uvt](x, y, τ

+
n )

=

n∑
k=1

∆[vut − uvt](x, y, τk)

=
∑

t1≤τk<t2

∆[vut − uvt](x, y, τk)

=
∑

t1≤τk<t2

{
v(x, y, τk)∆ut(x, y, τk)− u(x, y, τk)∆vt(x, y, τk)

}
=

∑
t1≤τk<t2

[
gk(x, y, τk)− fk(x, y, τk)

]
u(x, y, τk)v(x, y, τk). (49)

Using initial conditions (11) and imposing impulse terms obtained in (49) into (48), we obtain the
following handy identity

y

Ω

[
(g − f)uv

]
(x, y, t)dV +

∑
t1≤τk<t2

[
(gk − fk)uv

]
(x, y, τk)

=

∫ t2

t1

∫ y2

y1

{
[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)

+ [r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)

}
dydt

+

∫ t2

t1

∫ x2

x1

{
[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)

+ [r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)

}
dxdt

+

∫ y2

y1

∫ x2

x1

{
(vut)(x, y, t2)− (vut)(x, y, t1)

}
dxdy. (50)

Conditions (12), (13) and (14) of Theorem 3 imply that left-hand side of (50) is nonnegative which is
possible only when ∫ y2

y1

∫ x2

x1

{
v(x, y, t1)ut(x, y, t1)− v(x, y, t2)ut(x, y, t2)

}
dxdy ≤ 0 (51)

for all x ∈ Ī and y ∈ J̄ . However, (51) is not possible since u(x, y, t1) = u(x, y, t2) = 0 and u(x, y, t) > 0
for (x, y, t) ∈ Ω̄, ut(x, y, t1) > 0 and ut(x, y, t2) < 0. This contradiction yields that v can not be a positive
solution of problem (9)–(10) on Ω̄.

The proof of the case that v < 0 in Ω̄, we let v = −z in Ω̄. Then z becomes a positive solution of
problem (9)–(10) in Ω̄. Repeating the same proof for z, we obtain that v can not be a negative solution
of problem (9)–(10) on Ω̄. Therefore v must has a zero in Ω̄. The proof of Theorem 3 is complete. □

Remark 1. If the impulse effects are dropped from (7) and (9), i.e. fk(x, y, t) ≡ 0 and gk(x, y, t) ≡ 0,
respectively, then Theorem 3 reduces to [17, Theorem 2.1].

Remark 2. If inequalities (12), (13) and (14) in Theorem 3 are replaced by the strict ones;

g(x, y, t) > f(x, y, t); (x, y, t) ∈ Ω, (52)

sj(t) > rj(t); t ∈ K̄ (j = 1, 2, 3, 4), (53)
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and

gk(x, y, t) > fk(x, y, t); (x, y, t) ∈ Ωimp, k ∈ N, (54)

Then it can be easily proved that v has a zero in interior of Ω̄.

Proposition 1 (Sturm comparison theorem). Let u be a positive solution of problem (7)–(8) on Ī×J̄ ×K
satisfying the initial conditions (11). If inequalities (52), (53) and (54) hold, then every solution v of
problem (9)–(10) has a zero in Ω.

Proof. The proof is similar with those of Theorem 3 up to inequality (50). Under conditions (11), (52),
(53) and (54) on Ī × J̄ × K, left-hand side of (50) is positive, and possible only when∫ y2

y1

∫ x2

x1

{
v(x, y, t1)ut(x, y, t1)− v(x, y, t2)ut(x, y, t2)

}
dxdy < 0 (55)

for all x ∈ Ī and y ∈ J̄ . Then we have the analogous contradiction as in the proof of Theorem 3. Namely
v must has a zero in Ω. □

Remark 3. Inequalities (52), (53) and (54) can be weakened and Proposition 1 can be commuted by
the following result:

Proposition 2 (Sturm comparison theorem). Assume that inequalities (12), (13) and (14) hold. Let u
be a positive solution of problem (7)–(8) on Ī × J̄ × K satisfying the initial conditions (11). If either

{(x, y, t) ∈ Ω : g(x, y, t)− f(x, y, t) > 0} ≠ ∅ (56)

or

{t ∈ K̄ : sj(t)− rj(t) > 0, j = 1, 2, 3, 4} ≠ ∅, (57)

or that

gk0
(x, y, τk0

) > fk0
(x, y, τk0

) (58)

for some k0 ∈ N for which (x, y, τk0
) ∈ Ωimp, then every solution v of problem (9)–(10) has a zero in Ω.

Proof. Clearly conditions (12)–(14) and (56)–(58) imply inequality (55). □

The following oscillation criterion is immediate.

Corollary 1 (Sturm oscillation theorem). If the inequalities

g(x, y, t) ≥ f(x, y, t); (x, y, t) ∈ Ω∗, (59)

sj(t) ≥ rj(t); t ∈ [t∗,∞) (j = 1, 2, 3, 4) (60)

and

gk(x, y, t) ≥ fk(x, y, t); (x, y, t) ∈ Ω∗
imp (k ∈ N), (61)

hold for every t∗ ≥ t0, then every solution of problem (9)–(10) is oscillatory whenever problem (7)–(8) is
oscillatory, where

Ω∗ = {(x, y, t) : x ∈ I, y ∈ J , t ∈ [t∗,∞)} (62)

and

Ω∗
imp = {(x, y, t) : x ∈ I, y ∈ J , t ∈ [t∗,∞), t = τk, k ∈ N}. (63)
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3. Nonlinear Comparison Results

The results obtained for linear equations in previous section can be extended to the nonlinear hyperbolic
equations of the form {

utt −△u+ F(u, x, y, t) = 0; (x, y, t) ∈ Ω,
∆ut(x, y, t) + Fk(u, x, y, t) = 0; (x, y, t) ∈ Ωimp

(64)

and {
vtt −△v + G(v, x, y, t) = 0; (x, y, t) ∈ Ω,

∆vt(x, y, t) + Gk(v, x, y, t) = 0; (x, y, t) ∈ Ωimp
(65)

satisfying the boundary conditions (8) and (10), respectively. The functions rj(t) and sj(t), j = 1, 2, 3, 4,
are as previously defined. We assume without further mention that

(i) u(x, y, t) and v(x, y, t) are continuous functions for (x, y, t) ∈ Ω̄ \ Ω̄imp, and that F(u, x, y, t),
Fk(u, x, y, t), G(v, x, y, t) and Gk(v, x, y, t), k ∈ N are real valued continuous functions defined on
Ω̄ \ Ω̄imp;

(ii) p(t), q(t) : K̄ → R and (µ, x, y, t) ∈ R× Ω̄ are continuous functions for which

µF(µ, x, y, t) ≤ p(t)µ2 and µG(µ, x, y, t) ≥ q(t)µ2;

(iii) {pk} and {qk} are sequences of real numbers for which

µFk(µ, x, y, t) ≤ pkµ
2 and µGk(µ, x, y, t) ≥ qkµ

2

for all t ≥ t0.
Now, we have the following nonlinear comparison result.

Theorem 4 (Sturm comparison theorem). Let u be a positive solution of problem (64)–(8) on Ī × J̄ ×K
satisfying the initial conditions (11). If the inequalities

q(t) ≥ p(t) and sj(t) ≥ rj(t) (j = 1, 2, 3, 4) (66)

hold for t ∈ K̄, and that

qk ≥ pk (67)

for all k ∈ N for which τk ∈ K̄, then every solution v of problem (65)–(10) has a zero in Ω̄.

Proof. The proof is based on the inequality[
uvx − vux

]
x
+
[
uvy − vuy

]
y
+
[
vut − uvt

]
t
=

[
uG(v, x, y, t)− vF(u, x, y, t)

]
≥

[
q(t)− p(t)

]
uv

for u ∈ C
(
Ī × J̄ × K,R

)
, v ∈ C

(
Ω̄,R

)
, and can be done following the same steps those in Theorem 3.

Therefore it is left to the reader. □

Remark 4. If the inequalities given in (66) and (67) are replaced by the strict ones;

q(t) > p(t) and sj(t) > rj(t) (j = 1, 2, 3, 4), (68)

and that

qk > pk (69)

for all k ∈ N for which τk ∈ K̄, then we have the following comparison result.

Proposition 3 (Sturm comparison theorem). Let u be a positive solution of problem (64)–(8) on Ī×J̄ ×K
satisfying the initial conditions (11). If the inequalities in (68) and (69) hold for t ∈ K̄, then every solution
v of problem (65)–(10) has a zero in Ω.

Proposition 3 can be weakened by the following result.
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Proposition 4 (Sturm comparison theorem). Assume that the inequalities in (66) and (67) hold for
t ∈ K̄. Let u be a positive solution of problem (64)–(8) on Ī × J̄ × K satisfying the initial conditions
(11). If either {

t ∈ K̄ : q(t)− p(t) > 0
}
̸= ∅

or {
t ∈ K̄ : sj(t)− rj(t) > 0, j = 1, 2, 3, 4

}
̸= ∅

or that
qk0

> pk0

for some k0 ∈ N, then every solution v of problem (65)–(10) has a zero in Ω.

The following oscillation criterion is immediate.

Corollary 2 (Sturm oscillation theorem). If the inequalities given in (68) and (67) are satisfied for t ∈
[t∗,∞), for every t∗ ≥ t0, then every solution of problem (65)–(10) is oscillatory whenever problem (64)–
(8) is oscillatory.
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Abstract. In this study, our main goal is to obtain approximation properties of convolution operators
for multivariables via a special method which is not included in any other methods given before, also

known as P -statistical convergence. We present the P -statistical rate of this approximation and provide

examples of convolution operators. It is noteworthy to express that one can not approximate f by
earlier results for our examples. Therefore, our results fill an important gap in the existing literature.

Furthermore, we also present a P -statistical approximation result in the space of periodic continuous

functions of period 2π, for short C∗.
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1. Introduction and Background

In the theory of analysis, dealing with the approximation of a given function by other functions which
are good and simple is an important problem. Consider a set consisting of functions with bad properties
and a subset Y ⊂ X where Y is a dense subset with good properties. Then one can write any function
f of X as a limit of functions of Y . Actually this problem has been studied by Weierstrass [27] and he
has shown that every continuous real valued function on [a, b] can be written as a limit of polynomials,
i.e., the set of all algebraic polynomials constructs a dense subset of C[a, b]. The proof of this theorem is
long and hard to follow. Therefore giving a simpler alternative proof to this theorem turns out to be an
attractive aim for other mathematicians. Bernstein [5] is the first who has given the simplest proof by
using Bernstein polynomials. Then Bohman [6], Korovkin [19] and Popoviciu [20] have extended this by
positive and linear operators, independently. The effect of positive and linear operators is well-known in
approximation theory, functional analysis, statistics, computer engineering and image processing. One
of the important class of such operators is convolution operators. Besides this, the limits used are clas-
sical limits in the setting of this theory. But if the classical limit fails, what can be done? The main
goal of using summability theory is to still give a limit to a divergent sequence. Since it is effective
in such cases, Gadjiev and Orhan [17] have combined summability and approximation theories. Then
many results of approximation theory have been extended by statistical convergence, summation process,
ideal convergence, power series, indeed general summability methods [2], [3], [11], [12], [22], [25]. In
2003, Srivastava and Gupta obtained approximation properties of operators of some summation-integral
forms using classical convergence [23]. Later, in 2008, Duman obtained the approximation properties
of convolution operators of integral form using A-statistical convergence defined by an infinite matrix
A = (ajn) instead of classical convergence [12]. Many mathematicians have also studied them with the
use of different types of convergence in both single and multivariable cases, and they are still being re-
searched nowadays. For example, in 2017, Atlıhan, Yurdakadim and Taş investigated the approximation
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properties of convolution operators in the multivariable case by using summation process [2]. In 2022,
Çınar and Yıldız studied these operators via P -statistical summation process [8]. In this paper, our goal
is to obtain approximation results for convolution operators both for one variable and for multivariables
via P -statistical convergence defined by a power series. We have already known that neither statistical
convergence nor P -statistical convergence implies each other [25]. We also present the P -statistical rate
of this approximation. Furthermore we provide examples as an application of our results. Following
the similar technique used here, we present a P -statistical approximation result in C∗, consisting of 2π
periodic and continuous functions on R.
Before recalling the basic concepts it is noteworthy to mention that approximation theory, studying pos-
itive linear operators, relaxing the positivity, linearity and assigning a limit when the classical limit fails
is important since these results have applications in image processing, computer engineering, physics,
statistics, computer aided geometric design, deep learning and 3D-modelling.

Now we pause to collect basic concepts which are the main tools of our study.
If

δ(G) := lim
k

1

k
#{n ≤ k : n ∈ G}

exists then it is called as the density of G ⊆ N where # is the number of the elements of enclosed set
and N is natural numbers. If δ(Gε) = 0 for all ε > 0 where Gε = {n ∈ N : |un − l| ≥ ε} then it is said
that u = (un) statistically converges to l [14], [16], [21]. Let (pn) be a real number sequence such that

p1 > 0, pn ≥ 0 for n ≥ 2 and p(t) :=

∞∑
n=1

pnt
n−1 with radius of convergence R ∈ (0,∞]. Then we define

the method of power series by the following:
Let

CP :=

{
f : (−R,R) → R| lim

0<t→R−

f(t)

p(t)
exists

}
,

CPp
:=

{
u = (un)|pu(t) :=

∞∑
n=1

pnt
n−1un with radius of convergence ≥ R and pu ∈ Cp

}
and

P − limu = lim
0<t→R−

1

p(t)

∞∑
n=1

pnt
n−1un.

Here P − lim is a functional from CPp
to R for short P and we say that u is P−convergent [7], [18].

The regularity of this method, i.e, if P − lim u is the same as the limit of u for every convergent
sequence u = (un), equals to

lim
t→R−

pnt
n−1

p(t)
= 0

for every n ∈ N [7].
Then combining the statistical convergence and power series, a novel concept of convergence known

as P -statistical convergence has been introduced in [25] and some results have been investigated by this
concept [9], [26].
Now we are ready to recall this concept of convergence.
If

δP (G) := lim
0<t→R−

1

p(t)

∑
n∈G

pnt
n−1

exists then it is called as P -density of G where P is regular. It can be easily seen that δP (G) ∈ [0, 1]
provided that it exists [25]. If δP (Gε) = 0 for every ε > 0, i.e,

lim
0<t→R−

1

p(t)

∑
n∈Gε

pnt
n−1 = 0
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then we say that u P -statistically converges to l and denote by stP − limu = l where P is regular and u

is a real number sequence [25].

Also, it is already known that

(
C[a, b], ||.||C[a,b]

)
is a Banach space

where
||f || := ||f ||C[a,b] = sup

x∈[a,b]

|f(x)|, f ∈ C[a, b].

The following operators of convolution type for one variable:

Tn(f ;x) =

∫ b

a

f(y)Kn(y − x) dy, n ∈ N, x ∈ [a, b] (1)

where f ∈ C[a, b], a < b, a, b ∈ R have been considered via P -statistical summation process in [8] .
One can easily see that Tn are linear, also suppose that Kn are continuous functions on [a− b, b− a] and
Kn(u) ≥ 0 for every u ∈ [a− b, b− a], for every n ∈ N. Hence, Tn given by (1) are positive and linear. If

one takes a
(n)
kj = I, identity matrix, for all n ∈ N in [8], the following results can be obtained immediately.

For the completeness, we find it useful to recall the following:

Theorem 1. [25] Let P be regular, Ln be positive and linear operators for each n ∈ N on C[0, 1] and
ei(y) = yi, i = 0, 1, 2.
Then

stP − lim
n

||Ln(ei)− ei|| = 0,

i = 0, 1, 2 implies that
stP − lim

n
||Ln(f)− f || = 0

for any f ∈ C[0, 1].

It is worth for mentioning that this theorem is the P -statistical version of the well-known theorem
given by Gadjiev and Orhan in 2002 [17].
Indeed, this result have been obtained in [22] as follows since Ln(φ;x) = Ln(e2;x) − 2xLn(e1;x) +
x2Ln(e0;x) provided that Ln are positive and linear for every n ∈ N where φ(y) := (y − x)2 for every
x ∈ [a, b].

Lemma 1. [22] If
stP − lim

n
||Ln(e0)− e0|| = 0

and
stP − lim

n
||Ln(φ)|| = 0

then
stP − lim

n
||Ln(f)− f || = 0

holds for all f ∈ C[a, b], where P is regular and Ln are positive and linear operators for each n ∈ N.

Theorem 2. [8] Let P be regular and (Tn) be given by (1). If

stP − lim
n

∫ δ

−δ

Kn(y) dy = 1

and

stP − lim
n

(
sup
|y|≥δ

Kn(y)
)
= 0

hold for a fixed δ ∈ (0, b−a
2 ) then

stP − lim
n

||Tn(f)− f ||δ = 0

holds for every f ∈ C[a, b] where
||f ||δ := sup

a+δ≤x≤b−δ
|f(x)|.

Now, we provide examples such that the earlier results can not be used but we still have the opportunity
to approximate f by the above results.
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Example 1. Define the sequences (pn) and (un) as follows:

pn =

{
1 , n = 2k
0 , n = 2k + 1

, un =

{
0 , n = 2k
1 , n = 2k + 1

.

Notice that P is regular and stP − lim un = 0.
Then let Tn on C[a, b] be constructed by

Tn(f ;x) =
n(1 + un)√

π

∫ b

a

f(y)e−n2(y−x)2 dy. (2)

Here

Kn(y) =
n(1 + un)√

π
e−n2y2

and Tn defined by (2) is a convolution operator.

Notice that Theorem 2.4 and Corollary 2.5 of [12] can not be applied for Kn since (un) is neither
convergent nor statistically convergent. However, Theorem 2 can be applied to obtain that

stP − lim
n

||Tn(f)− f ||δ = 0

for every f ∈ C[a, b] and for a fixed 0 < δ < b−a
2 .

The above example is standard to give but here, we construct another example which is extraordinary
and is motivated by a result in [10].

Example 2. Let (un) and the method P be constructed as below:

un =

{
0 , n = 2k
1 , n = 2k + 1

, pn =

{
0 , n = 2k
1 , n = 2k + 1

.

Notice that P is regular and (un) is P -statistically convergent to 1. Then define Tn on C

[
−1
2 , 1

2

]
as

follows:

Tn(f ;x) = un

∫ 1
2

−1
2

f(y)λn(y − x)dy = unLn(f ;x) with λn(y) = cn(1− y2)n,

f ∈ C

[
−1
2 , 1

2

]
and (cn) chosen such that

∫ 1

−1

λn(y)dy = 1.

Since (un) is neither convergent nor statistically convergent, one can not approximate f by the earlier
theorems in the classical or statistical settings. But we still have the opportunity to approximate f since
(un) is P -statistically convergent to 1 by using Theorem 2 and the uniform convergence of Ln(f ;x) to f
on [−1

2 + δ, 1
2 + δ] for each 0 < δ < 1

2 which is also known from [10].

Furthermore, the rate of this approximation can be given as follows with the use of modulus of
continuity and the concept of P -statistical convergence with the rate o (an).
The other main tool of this study is P -statistical rate and it was introduced in [1] in light of [15] in 2023.

Definition 1. [1] Let (an) be a non-increasing, positive real number sequence and P be regular. If

lim
0<t→R−

 1

p (t)

∑
n:|sn−l|≥εan

pnt
n

 = 0

is true for every ε > 0 then we say that s = (sn) is P -statistically convergent to l with the rate o (an) and
we denote by sn − l = stP − o (an) , (n → ∞).

Here it is noteworthy to mention that the terms of the sequence (sn) are controlling the rate.

Theorem 3. Let P be regular and (Tn) be given by (1). Suppose also that (an), (bn) are non-increasing
sequences of positive numbers and 0 < δ < b−a

2 be fixed.
If

||Tn(e0)− e0||δ = stP − o(an), (n → ∞),

and
ω(f, λn) = stP − o(bn), (n → ∞),
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then

||Tn(f)− f ||δ = stP − o(γn), (n → ∞)

holds for all f ∈ C[a, b]. Here λn :=
√

||Tn(φ)||δ and γn := max{an, bn, anbn}.

Proof. Since it is already shown that there exists L > 0 such that

||Tn(f)− f ||δ ≤ L

{
ω(f, λn) + ω(f, λn)||Tn(e0)− e0||δ + ||Tn(e0)− e0||δ

}
holds for all n ∈ N, we immediately obtain that

||Tn(f)− f ||δ = stP − o(γn)

where γn := max{an, bn, anbn}. This gives the desired result. □

2. P-statistical approximation in C∗

Here, we present an approximation result of convolution type operators in the space of periodic func-
tions of period 2π and continuous on R, for short C∗ by P -statistical convergence.
It is beneficial to recall ||f ||C∗ = sup

x∈R
|f(x)| is the standard norm on C∗.

Construct Tn for f ∈ C∗ and for each n ∈ N as follows:

Tn(f ;x) =
1

2π

∫ π

−π

f(y)Kn(y − x)dy (3)

where Kn ∈ C∗, Kn(y) ≥ 0 for any y ∈ [−π, π]. Hence Kn is nonnegative on R. Following a similar way
as in earlier results, we can also conclude the next theorem.

Theorem 4. Let P be regular and (Tn) be defined by (3). If

δP

(
{n ∈ N :

1

2π

∫ π

−π

Kn(y) dy = 1}
)
= 1

and

stP − lim
n

(
sup
|y|≥δ

Kn(y)

)
= 0

for any δ > 0 then we get

stP − lim
n

||Tn(f)− f ||C∗ = 0

for any f ∈ C∗.

3. P -Statistical Approximation Of Convolution Operators For Multivariables

Korovkin type approximation theorems have been investigated in real m-dimensional space by sta-
tistical convergence and summation process in [4], [13]. In this section, we examine the approximation
properties of the below convolution operators for multivariables:

Tn(f ;x, y) =

∫ d

c

∫ b

a

f(u, v)Kn(u− x, v − y) dudv (4)

where (x, y) ∈ J := [a, b] × [c, d], f ∈ C(J) and C(J) = {f |f : J −→ R continuous} with the norm
||f || := sup

(x,y)∈J

|f(x, y)|.

For the positivity we suppose for all n ∈ N that Kn(t, z) are continuous and Kn(t, z) ≥ 0 on [a − b, b −
a]× [c− d, d− c]. Hence, Tn : C(J) −→ C(J) given by (4) are positive and linear operators.
Unfortunately, one variable is insufficient to give a model of real world problems therefore considering
multivariable cases in approximation theory has great importance.
First, let us prove the following lemmas which lead us to our main theorem.
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Lemma 2. Let P be regular and Tn : C(J) −→ C(J) be positive and linear operators for every n ∈ N.
If

stP − lim
n

||Tn(fi)− fi|| = 0 for i = 0, 1, 2, 3

where f0(u, v) = 1, f1(u, v) = u, f2(u, v) = v, f3(u, v) = u2 + v2 then

stP − lim
n

||Tn(f)− f || = 0

holds for all f ∈ C(J).

Proof. Since f ∈ C(J), we have δ > 0 for every ε > 0 satisfying that |f(u, v) − f(x, y)| < ε for every
(u, v) ∈ J such that |u− x| < δ and |v − y| < δ. Then we can write that

|f(u, v)− f(x, y)| =|f(u, v)− f(x, y)|χJδ
(u, v) + |f(u, v)− f(x, y)|χJ\Jδ

(u, v)

≤ε+ 2HχJ\Jδ
(u, v)

where χJ is the characteristic function of J , Jδ = [x− δ, x+ δ]× [y − δ, y + δ] ∩ J and H := ||f ||.
Also

χJ\Jδ
(u, v) ≤ (u− x)2

δ2
+

(v − y)2

δ2

holds and by combining the above inequalities, we have that

|f(u, v)− f(x, y)| ≤ ε+
2H

δ2

{
(u− x)2 + (v − y)2

}
for every u, v, x, y.
Since Tn are positive and linear for all n ∈ N, we can also obtain that

|Tn(f ;x, y)− f(x, y)| ≤Tn

(
|f(u, v)− f(x, y)|;x, y

)
+|f(x, y)||Tn(f0;x, y)− f0(x, y)|

and

|Tn(f ;x, y)− f(x, y)| ≤ε+

(
ε+H +

(h2
1 + h2

2)2H

δ2
|Tn(f0;x, y)− f0(x, y)|

)
+
4h1H

δ2
|Tn(f1;x, y)− f1(x, y)|

+
4h2H

δ2
|Tn(f2;x, y)− f2(x, y)|

+
2H

δ2
|Tn(f3;x, y)− f3(x, y)|

where h1 = max{|a|, |b|}, h2 = max{|c|, |d|}.
Thus by taking supremum over J , we have that

||Tn(f)− f || ≤ ε+K

{
||Tn(f0)− f0||+ ||Tn(f1)− f1||+ ||Tn(f2)− f2||+ ||Tn(f3)− f3||

}
(5)

where

K := max

{
ε+H +

(h2
1 + h2

2)2H

δ2
,
4h1H

δ2
,
4h2H

δ2
,
2h

δ2

}
.

For a given r > 0 pick ε > 0 such that ε < r and define the followings:

F = {n : ||Tn(f)− f || ≥ r}

F1 = {n : ||Tn(f0)− f0|| ≥
r − ε

4K
}

F2 = {n : ||Tn(f1)− f1|| ≥
r − ε

4K
}

F3 = {n : ||Tn(f2)− f2|| ≥
r − ε

4K
}

F4 = {n : ||Tn(f3)− f3|| ≥
r − ε

4K
}.
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It is easy to notice that F ⊆ F1 ∪ F2 ∪ F3 ∪ F4 by (5).
Then

1

p(t)

∑
n∈F

pnt
n−1 ≤ 1

p(t)

{∑
n∈F1

pnt
n−1 +

∑
n∈F2

pnt
n−1 +

∑
n∈F3

pnt
n−1 +

∑
n∈F4

pnt
n−1

}
holds and by taking limit in both sides we obtain that

lim
t→R−

1

p(t)

∑
n∈F

pnt
n−1 = 0

then we complete the proof. □

By setting Γ(u, v) = (u−x)2+(v−y)2, one can immediately get the following via a slight modification.

Lemma 3. Let P be regular and Tn : C(J) −→ C(J) be positive and linear operators for every n ∈ N.
If

stP − lim
n

||Tn(f0)− f0|| = 0

and

stP − lim
n

||Tn(Γ)|| = 0

then we have

stP − lim
n

||Tn(f)− f || = 0

for all f ∈ C(J).

Let

||f ||δ = sup
a+δ≤x≤b−δ,c+δ≤y≤d−δ

|f(x, y)|

where 0 < δ < min{ b−a
2 , d−c

2 }, f ∈ C(J) and also let Bγ := [a− b, b− a]× [c− d, d− c]\[−γ, γ]× [−γ, γ]
for any γ > 0 satisfying γ < min{b− a, d− c} along the paper.

Lemma 4. Let P be regular, δ ∈ (0,min{ b−a
2 , d−c

2 }) be fixed and consider the operators Tn given by (4).
If

stP − lim
n

∫ δ

−δ

∫ δ

−δ

Kn(u, v) dudv = 1

and

stP − lim
n

(
sup

(u,v)∈Bγ

Kn(u, v)
)
= 0

for any γ > 0 then

stP − lim
n

||Tn(f0)− f0||δ = 0

holds.

Proof. Let δ ∈ (0,min{ b−a
2 , d−c

2 }) be fixed and (x, y) ∈ [a+ δ, b− δ]× [c+ δ, d− δ].
We have that ∫ δ

−δ

∫ δ

−δ

Kn(u, v) dudv ≤ Tn(f0;x, y) ≤
∫ d−c

−(d−c)

∫ b−a

−(b−a)

Kn(u, v) dudv

and

||Tn(f0)− f0||δ ≤ vn

where

vn := max

{∣∣∣∣ ∫ δ

−δ

∫ δ

−δ

Kn(u, v) dudv − 1

∣∣∣∣, ∣∣∣∣ ∫ d−c

−(d−c)

∫ b−a

−(b−a)

Kn(u, v) dudv − 1

∣∣∣∣}.

By the hypothesis we get stP − lim
n

vn = 0.

We also have that

F := {n : ||Tn(f0)− f0||δ ≥ ε} ⊆ {n : vn ≥ ε} =: F
′
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for a given ε > 0.
Then

1

p(t)

∑
n∈F

pnt
n−1 ≤ 1

p(t)

∑
n∈F ′

pnt
n−1

holds and by taking limit we obtain

lim
t→R−

1

p(t)

∑
n∈F

pnt
n−1 = 0

which means that
stP − lim

n
||Tn(f0)− f0||δ = 0.

□

Lemma 5. Let P be regular, δ ∈ (0,min{ b−a
2 , d−c

2 }) be fixed and consider the operators Tn given by (4).
If

stP − lim
n

∫ δ

−δ

∫ δ

−δ

Kn(u, v) dudv = 1

and

stP − lim
n

(
sup

(u,v)∈Bγ

Kn(u, v)
)
= 0

for any γ > 0 then we have
stP − lim

n
||Tn(Γ)||δ = 0.

Proof. Let δ ∈ (0,min{ b−a
2 , d−c

2 }) be fixed and (x, y) ∈ [a + δ, b − δ] × [c + δ, d − δ]. Since Γ(u, v) =

(u− x)2 + (v − y)2 ∈ C(J) we have that

Tn(Γ;x, y) =

∫ d

c

∫ b

a

[(u− x)2 + (v − y)2]Kn(u− x, v − y) dudv

=

∫ d−y

c−y

∫ b−x

a−x

(u2 + v2)Kn(u, v) dudv

≤
∫ d−c

−(d−c)

∫ b−a

−(b−a)

(u2 + v2)Kn(u, v) dudv

for every n ∈ N.
Since Γ is continuous at (0,0), for sufficiently small ε > 0 (0 <

√
ε < δ), Γ(u, v) < 2ε holds whenever

|u| <
√
ε, |v| <

√
ε.

Hence, we obtain that

Tn(Γ;x, y) =2ε

∫ √
ε

−
√
ε

∫ √
ε

−
√
ε

Kn(u, v) dudv +
x

B√
ε

(u2 + v2)Kn(u, v) du dv

≤2ε

∫ δ

−δ

∫ δ

−δ

Kn(u, v) dudv +
x

B√
ε

(u2 + v2)Kn(u, v) du dv

≤2ε

∫ δ

−δ

∫ δ

−δ

Kn(u, v) dudv +R sup
(u,v)∈B√

ε

Kn(u, v)

where

R =

∫ d−c

c−d

∫ b−a

a−b

(u2 + v2) dudv.

Following the similar ways in the earlier results and with the use of hypothesis, we conclude that

stP − lim
n

||Tn(Γ)||δ = 0.

□

Combining the above results, we can present the following approximation theorem for convolution
operators in multivariable case.
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Theorem 5. Let P be regular, δ ∈ (0,min{ b−a
2 , d−c

2 }) be fixed and the operators Tn given by (4).
If

stP − lim
n

∫ δ

−δ

∫ δ

−δ

Kn(u, v) dudv = 1

and

stP − lim
n

(
sup

(u,v)∈Bγ

Kn(u, v)
)
= 0

for any γ > 0 then

stP − lim
n

||Tn(f)− f ||δ = 0

holds for every f ∈ C(J).

Now we can reorganize our Example 1 for multivariable case:

Example 3. Let Tn : C(J) −→ C(J) be constructed by

Tn(f ;x, y) = n2 (1 + un)

π

∫ d

c

∫ b

a

f(u, v)e−n2(u−x)2e−n2(v−y)2 dudv

where (un) and (pn) defined as in Example 1,

Kn(u, v) = n2 (1 + un)

π
e−n2u2

e−n2v2

.

For every δ ∈ (0,min{ b−a
2 , d−c

2 }), one can have that∫ δ

−δ

∫ δ

−δ

Kn(u, v) dudv = n2 (1 + un)

π

{∫ ∞

−∞

∫ ∞

−∞
e−n2u2

e−n2v2

dudv −
x

(u,v)∈Bδ

e−n2u2

e−n2v2

du dv

}
.

Here Bδ := {(u, v) : |u| ≥ δ or |v| ≥ δ}. Since
∫∞
−∞

∫∞
−∞ e−n2u2

e−n2v2

dudv = π
n2 < ∞, we have

lim
n

x

(u,v)∈Bδ

e−n2u2

e−n2v2

du dv = 0

which implies that

stP − lim
n

∫ δ

−δ

∫ δ

−δ

Kn(u, v) dudv = 1.

One can also obtain that for any γ > 0

sup
(u,v)∈Bγ

Kn(u, v) ≤ n2 (1 + un)

π

1

en2γ2

and

lim
n

n2

en2γ2 = 0

which implies

stP − lim
n

(
sup

(u,v)∈Bγ

Kn(u, v)

)
= 0.

Therefore our theorem is satisfied for this example but the earlier results can not be applied since (un) is
neither convergent nor statistically convergent.

In order to give the rate of this approximation we should recall full continuity modulus.
Let f : J −→ R be continuous and λ > 0. The full continuity modulus of f(x, y) is defined by

ω(f, λ) = max√
(x1−x2)2+(y1−y2)2≤λ

|f(x1, y1)− f(x2, y2)|.

It is known that lim
λ→0

ω(f, λ) = 0 and for any λ > 0, ω(f, λΥ) ≤ ([Υ] + 1)ω(f, λ) [24].
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Theorem 6. Let P be regular and Tn given by (4). Assume also that (an), (bn) are non-increasing
sequences of positive real numbers and 0 < δ < min{ b−a

2 , d−c
2 }.

If

||Tn(e0)− e0||δ = stP − o(an), (n → ∞),

and

ω(f, λn) = stP − o(bn), (n → ∞),

then we have that

||Tn(f)− f ||δ = stP − o(γn), (n → ∞)

for every f ∈ C(J). Here λn :=
√

||Tn((u− x)2 + (v − y)2;x, y)||δ and γn = max{an, bn, anbn}.

Proof. Let 0 < δ < min{ b−a
2 , d−c

2 }, f ∈ C(J) and (x, y) ∈ [a+ δ, b− δ]× [c+ δ, d− δ].
For any λ > 0 we have that

|Tn(f ;x, y)− f(x, y)| ≤Tn(|f(u, v)− f(x, y)|;x, y) + |f(x, y)||Tn(f0)− f0|

≤ω(f, λ)Tn

(
1 +

(u− x)2 + (v − y)2

λ2 ;x, y

)
+|f(x, y)||Tn(f0)− f0|

≤ω(f, λ)

{
Tn(f0) +

1

λ2Tn((u− x)2 + (v − y)2;x, y)

}
+|f(x, y)||Tn(f0)− f0|

since Tn are positive and linear operators.
This implies for all n ∈ N, that

||Tn(f)− f ||δ ≤ω(f, λ)

{
||Tn(f0)||δ +

1

λ2 ||Tn((u− x)2 + (v − y)2;x, y)||δ
}
+H1||Tn(f0)− f0||δ

where H1 := ||f ||δ. Now letting λ = λn =
√
||Tn((u− x)2 + (v − y)2;x, y)||δ,

||Tn(f)− f ||δ ≤ω(f, λn)

{
||Tn(f0)||δ + 1

}
+H1||Tn(f0)− f0||δ

≤2ω(f, λn) + ω(f, λn)||Tn(f0)− f0||δ +H1||Tn(f0)− f0||δ
holds and also by letting H := max{2, H1}

||Tn(f)− f ||δ ≤ H

{
ω(f, λn) + ω(f, λn)||Tn(f0)− f0||δ + ||Tn(f0)− f0||δ

}
for all n ∈ N.
This implies

||Tn(f)− f ||δ = stP − o(γn)

where γn = max{an, bn, anbn}. □

4. Concluding Remarks

The theory of approximation deals with the problem of expressing a given function by other functions
which are good and simple. This problem goes back to Weierstrass and many mathematicians have studied
on it after the well-known Weierstrass approximation theorem. Also after the simplest alternative proof
of Bernstein to this theorem, Bohman, Korovkin and Popoviciu have extended this for positive and linear
operators, independently. One of the important classes of such operators are convolution type operators
and studying these operators as well as positive linear operators, relaxing positivity and linearity, assigning
a limit when the classical limit fails have great importance since these type of results have applications
in image processing, computer engineering, physics, statistics, computer aided geometric design, deep
learning and 3D-modelling.
Here, we present approximation properties of convolution operators for multivariables via a special method
called P -statistical convergence. It worths for mentioning that this method is not included in any other
methods given before and unfortunately one variable is insufficient to give a model for real world problems.
We also obtain the rate of this approximation and provide examples to support our results. Furthermore,
an approximation result in the space of periodic functions of period 2π is presented by using similar
techniques.
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Abstract. In the literature, the delta and nabla derivatives have been considered separately in the
study of fuzzy number valued functions on time scales. In this paper, to unify these two derivatives for

fuzzy number valued functions, we propose a new dynamic derivative called the diamond-alpha deriva-

tive, defined via the generalized Hukuhara difference. We establish several fundamental properties of the
diamond-alpha derivative and investigate a particular class of fuzzy initial value problems on time scales

with respect to this new derivative. Additionally, we provide numerical examples to illustrate our results.
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1. Introduction

Dynamic equations on time scales theory is a relatively new field of study, and research in this area
is expanding considerably in the last 35 years. In order to combine continuous and discrete structures,
time scale theory was established. It enables simultaneous treatments to both difference and differential
equations and expands the results to dynamic equations. Basics of time-scale calculus and some recent
studies can be found in [1, 2, 6, 7, 12–15,18, 21, 22, 25]. However, it’s crucial to consider a lot of uncertain
aspects while attempting to fully explore a real-world phenomenon. Zadeh [35] developed fuzzy set
theory in order to define these ambiguous or inaccurate concepts. Kaleva [16] and Lakshmikantham
and Mohapatra [17] established and explored the theory of fuzzy differential equations (FDEs) and
its applications. One drawback of the Hukuhara differentiability-based methods is that the solution
to an FDE only exists for longer support lengths. Bede et al. [3] investigated generalized Hukuhara
differentiability in order to get over this drawback. And many authors [4, 20, 28] are enthusiastic about
this new differentiability concept for fuzzy number valued functions because of this favored benefit. Fard
and Bidgoli [10] investigated the calculus of fuzzy functions on time scales. In their study of fuzzy dynamic
equations on time scales, Vasavi et al. [31–34], by implementing the Hukuhara difference, introduced the
Hukuhara, 2nd type Hukuhara and generalized delta derivatives. The drawback of this derivative is that
it only applies to fuzzy number valued functions on time scales where the diameter increases with length.

To the best of our knowledge, the delta and nabla derivatives have been used independently to study
the derivatives of fuzzy number valued functions on time scales. The characteristics of generalized nabla
differentiability for fuzzy number valued functions on time scales via Hukuhara difference were presented
and examined by Leelavathi et al. [19]. Additionally, they acquired some generalized nabla differentiable
fuzzy number valued function embedding results. Furthermore, under generalized nabla differentiability,
they demonstrated a fundamental principle of a nabla integral calculus for fuzzy functions on time scales.
Fuzzy differential equations on time scales under generalized delta derivative were examined by Vasali
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et al [31]. In order to achieve solutions for FDEs with decreasing length of support, they established
the generalized delta derivative, which is based on four forms. These types of derivatives, in some cases
(such as time scales with discrete points), can only describe the change of functions only on the left
or right side of considered points. In order to provide a tool that can catch the change of functions
on both sides of points in time scales, dynamic derivatives, called the diamond alpha derivative has
been proposed by Sheng et al. [27]. This dynamic derivative is a convex linear combination of the delta
and nabla derivatives. Later, Roger et. al [26] redefined the diamond-alpha derivative independently
of the standard delta and nabla dynamic derivatives, and further examined its properties. In [30], they
introduced a dynamic derivative called diamond-alpha derivative via generalized Hukuhara difference for
interval valued functions on time scales. They furthermore studied a particular class of interval differential
equations with respect to the diamond-alpha derivative.

In this work, motivated by [30], we introduce a dynamic derivative called as the diamond-alpha de-
rivative, denoted as ⋄αgH , for fuzzy number valued functions on time scales via generalized Hukuhara
difference and Hausdorff metric for fuzzy sets and investigate its properties under different conditions on
time scale T. Through our main results, we establish foundational results concerning the existence and
uniqueness of the ⋄αgH -derivative for fuzzy functions. Additionally, we explore conditions under which
fuzzy functions are ⋄αgH -differentiable at both dense and isolated points on the time scale, providing
criteria for the existence of limits in these contexts. The final results address the differentiability of
the r-level sets of fuzzy functions, particularly under monotonicity ”length conditions”. These results
enhance the understanding of ⋄αgH -differentiability in fuzzy functions and its applications within fuzzy
differential equations on time scales.

This paper’s outline is as follows: We give some basic definitions and results relating to the calculus
of time scales and fuzzy sets in Section 2. In Section 3, we present the main results and provide some
examples to illustrate some of the results. In Section 4, we consider a particular class of fuzzy initial
value problems on time scales and present some numerical examples.

2. Preliminaries

Definition 1. [6] A nonempty closed subset of the real numbers R is called a time scale, often denoted
by T.

Definition 2. [6] The function σ : T → R defined by

σ(t) = inf{s ∈ T : s > t}

is called the forward jump operator. Additionally, we set inf ∅ := supT.

Definition 3. [6] The function ρ : T → R defined by

ρ(t) = sup{s ∈ T : s < t}

is called the backward jump operator. Additionally, we set sup∅ := inf T.

Definition 4. [6] If σ(t) > t, then t ∈ T is said to be a right-scattered point.

Definition 5. [6] If ρ(t) < t, then t ∈ T is said to be a left-scattered point.

Definition 6. [6] If σ(t) = t and t ̸= supT, then t ∈ T is said to be a right-dense point.

Definition 7. [6] If ρ(t) = t and t ̸= inf T, then t ∈ T is said to be a left-dense point.

Definition 8. [6] The function µ : T → [0,∞) defined by µ(t) = σ(t) − t is called the (forward)
graininess.

Definition 9. [6] The function ν : T → [0,∞) defined by ν(t) = t−ρ(t) is called the backward graininess.

Additionally, we define the following notations for simplicity in the definitions and theorems throughout
this paper: µst = σ(s)− t and νst = t− ρ(s).
The set Tκ is defined as follows: if T has a left-scattered maximum m, then Tκ := T \ {m}. If no such
maximum exists, then Tκ := T. Similarly, the set Tκ is defined as follows: if T has a right-scattered
minimum m, then Tκ := T \ {m}. If no such minimum exists, then Tκ := T.
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Definition 10. [6] Let h : T → R be a function and let s ∈ Tκ. We define (∆h)(s) as the number (if it
exists) that satisfies the following property: for any ϵ > 0, there exists a neighborhood NT of s given by
NT := (s− δ, s+ δ) ∩ T for some δ > 0 such that

|[h(σ(s))− h(t)]− (∆h)(s)[σ(s)− t]| ≤ ϵ|σ(s)− t|
for all t ∈ NT. The value (∆h)(s) is called the delta derivative of h at s.

Definition 11. [6] Let h : T → R be a function, and let s ∈ Tκ. We define (∇h)(s) as the number (if
it exists) that satisfies the following property: for any ϵ > 0, there is a neighborhood NT of s given by
NT := (s− δ, s+ δ) ∩ T for some δ > 0 such that

|[h(ρ(s))− h(t)]− (∇h)(s)[ρ(s)− t]| ≤ ϵ|ρ(s)− t|
for all t ∈ NT. The value (∇h)(s) is referred to as the nabla derivative of h at s.

Definition 12. [26] Let h : T → R be a function and s ∈ Tκ ∩ Tκ. Then the ⋄α-derivative of h at the
point s ∈ Tκ

κ, denoted by (⋄αh)(s), is the number (provided it exists) that satisfies the following property:
for any ϵ > 0, there is a neighborhood NT of s given by NT := (s− δ, s+ δ) ∩ T for some δ > 0 such that

|α|h(σ(s))− h(t)||νst|+ (1− α)|h(ρ(s))− h(t)||µst| − (⋄αh)(s)|νstµst| ≤ ϵ|νstµst|,
for any t ∈ NT. Here, (⋄αh)(s) referred to as the diamond-alpha derivative of h at s.

Definition 13. [35] A fuzzy set u in a universe of discourse U is represented by a function u : U → [0, 1],
where u(x) indicates the membership degree of x to the fuzzy set u.

We use F (U) to denote the set of all fuzzy subsets of U .

Definition 14. [23] Let u : U → [0, 1] be a fuzzy set. The r-level sets of u are defined as

ur = {x ∈ U : u(x) ≥ r}
for 0 < r ≤ 1. The 0-level set of u

u0 = cl {x ∈ U : u(x) > 0}
is called the support of the fuzzy set u. Here, cl denotes the closure of the set u.

Definition 15. [23] Let u : R → [0, 1] be a fuzzy subset of the real numbers. Then, u is said to be a
fuzzy number if it fulfills the following criteria:

(1) u is normal, which means that there exists an x0 ∈ R such that u(x0) = 1.
(2) u is quasi-concave, which means that for all λ ∈ [0, 1], the inequality u(λx + (1 − λ)y) ≥

min{u(x), u(y)} holds.
(3) u is upper semicontinuous on R, which means that for any ϵ > 0, there exists a δ > 0 such that

u(x)− u(x0) < ϵ whenever |x− x0| < δ.
(4) u is compactly supported, which means that the closure cl{x ∈ R : u(x) > 0} is compact.

We use FN (R) to denote the set of all fuzzy numbers of R.

Definition 16. Let a1 ≤ a2 ≤ a3 be real numbers. The fuzzy number denoted by u = (a1, a2, a3) is called
a triangular fuzzy number whose membership function is

u(x) =


x−a1

a2−a1
, a1 ≤ x ≤ a2,

a3−x
a3−a2

, a2 ≤ x ≤ a3,

0, otherwise.

Definition 17. [29] Let u, v ∈ FN (R). The generalized Hukuhara difference (gH-difference) is the fuzzy
number w, if it exists, such that

u⊖gH v = w ⇐⇒ u = v + w or v = u+ (−1)w.

Since level sets of a fuzzy number are closed and bounded intervals, we will denote r-level set of a fuzzy
number u by ur = [u−

r , u
+
r ] and its length by len(ur) = u+

r − u−
r .

Remark 1. The criteria for the existence of w = u⊖gH v in FN (R) are as follows:
Case (i):

• w−
r = u−

r − v−r and w+
r = u+

r − v+r
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• Here, w−
r must be increasing, w+

r must be decreasing, and it must hold that w−
r ≤ w+

r for all r
in [0, 1].

Case (ii):

• w−
r = u+

r − v+r and w+
r = u−

r − v−r
• Similarly, w−

r must be increasing, w+
r must be decreasing, and w−

r ≤ w+
r must hold for all r in

[0, 1].

Theorem 1. [5, 29] Let u, v ∈ FN (R). If gH-difference u⊖gH v ∈ FN (R) exists, then
(u⊖gH v)r = [min{u−

r − v−r , u
+
r − v+r },max{u−

r − v−r , u
+
r − v+r }].

Definition 18. [8] The metric D∞ : FN (R)× FN (R) → R+ ∪ {0} defined by

D∞(u, v) = sup
r∈[0,1]

max
{∣∣u−

r − v−r
∣∣ , ∣∣u+

r − v+r
∣∣} ,

where ur = [u−
r , u

+
r ], vr = [v−r , v

+
r ], is called Hausdorff metric for fuzzy numbers.

The Hausdorff metric provides a way to measure the distance between two fuzzy sets by considering
their level sets. This metric allows researchers to compare the similarity or dissimilarity of fuzzy sets in
a rigorous mathematical way. Specifically, it can be used to quantify how far apart two fuzzy sets are
based on their support and their membership functions.

Theorem 2. [8]
Let a, b, c, d ∈ FN (R) and m ∈ R. The Hausdorff metric satisfies the followings:

(1) D∞ (a+ c, b+ c) = D∞ (a, b) .
(2) D∞ (ma,mb) = |m|D∞ (a, b) .
(3) D∞ (a+ b, c+ d) ≤ D∞ (a, c) +D∞ (b, d) .

3. Generalized Hukuhara Diamond-Alpha Derivative of Fuzzy Valued Functions on
Time Scales

Definition 19. [31] Let f : T → FN (R) be a fuzzy function and let s ∈ Tκ. The generalized Hukuhara
delta derivative of f at s, if it exists, is a fuzzy number (∆gHf) (s) ∈ FN (R) such that for any given
ϵ > 0, there exists a neighborhood NT(s, δ) = (s− δ, s+ δ) ∩ T for some δ > 0, such that for all t ∈ NT,
f(σ(s))⊖gH f(t) exists and we have

D∞(f(σ(s))⊖gH f(t), (∆gHf)(s)µst) ≤ ϵ |µst| .

Definition 20. [19] Let f : T → FN (R) be a fuzzy function and let s ∈ Tκ. The generalized Hukuhara
nabla derivative of f at s, if it exists, is a fuzzy number (∇gHf) (s) ∈ FN (R) such that for any given
ϵ > 0, there exists a neighborhood NT(s, δ) = (s− δ, s+ δ) ∩ T for some δ > 0, such that for all t ∈ NT,
f(t)⊖gH f(ρ(s)) exists and we have

D∞(f(t)⊖gH f(ρ(s)), (∇gHf)(s)νst) ≤ ϵ |νst| .

Definition 21. Let f : T → FN (R) be a fuzzy function and let s ∈ Tκ
κ. The generalized Hukuhara

diamond-alpha derivative of f at s, if it exists, is a fuzzy number
(
⋄αgHf

)
(s) ∈ FN (R) such that for any

given ϵ > 0, there exists a neighborhood NT(s, δ) = (s − δ, s + δ) ∩ T for some δ > 0, such that for all
t ∈ NT f(σ(s))⊖gH f(t) and f(t)⊖gH f(ρ(s)) exist and we have

D∞(α[f(σ(s))⊖gH f(t)]νst + (1− α)[f(t)⊖gH f(ρ(s))]µst, (⋄αgHf)(s)µstνst) ≤ ϵ |µstνst| .

Theorem 3. Let f : T → FN (R) be a fuzzy function and s ∈ Tκ
κ.

(
⋄αgHf

)
(s) ∈ FN (R) is unique, if it

exists.

Proof. Let s ∈ Tκ
κ. Assume

(
⋄αgHf

)
1
(s) and

(
⋄αgHf

)
2
(s) are ⋄αgH -derivative of f at s. Let ϵ > 0 be

arbitrary. Then there exists a δ > 0 such that for any t ∈ NT(s, δ) we have

D∞
(
α
[
f(σ(s))⊖gH f(t)

]
νst + (1− α)

[
f(t)⊖gH f(ρ(s))

]
µst,(

⋄αgHf
)
1
(s)µst νst

)
≤ ϵ

2
|µst νst| ,

D∞
(
α
[
f(σ(s))⊖gH f(t)

]
νst + (1− α)

[
f(t)⊖gH f(ρ(s))

]
µst,



GH DIAMOND-α DERIVATIVE OF FUZZY VALUED FUNCTIONS ON TIME SCALES 107(
⋄αgHf

)
2
(s)µst νst

)
≤ ϵ

2
|µst νst| .

D∞
( (

⋄αgHf
)
1
(s),

(
⋄αgHf

)
2
(s)

)
=

1

|µst νst|
D∞

( (
⋄αgHf

)
1
(s)µst νst,

(
⋄αgHf

)
2
(s)µst νst

)

=
1

|µst νst|
D∞


(
⋄αgHf

)
1
(s)µst νst + α

[
f(σ(s))⊖gH f(t)

]
νst

+(1− α)
[
f(t)⊖gH f(ρ(s))

]
µst,(

⋄αgHf
)
2
(s)µst νst + α

[
f(σ(s))⊖gH f(t)

]
νst

+(1− α)
[
f(t)⊖gH f(ρ(s))

]
µst


≤ 1

|µst νst|
D∞

( (
⋄αgHf

)
1
(s)µst νst, α

[
f(σ(s))⊖gH f(t)

]
νst

+ (1− α)
[
f(t)⊖gH f(ρ(s))

]
µst

)
+

1

|µst νst|
D∞

( (
⋄αgHf

)
2
(s)µts νts, α

[
f(σ(s))⊖gH f(t)

]
νst

+ (1− α)
[
f(t)⊖gH f(ρ(s))

]
µst

)
≤ 1

|µst νst|
ϵ

2
|µst νst|+

1

|µst νst|
ϵ

2
|µst νst|

≤ ϵ.

Therefore,
(
⋄αgHf

)
1
(s) =

(
⋄αgHf

)
2
(s). □

Theorem 4. Let f : T → FN (R) be a function and s ∈ Tκ
κ a dense point. Then f is ⋄αgH-differentiable

at s if and only if the limit

lim
t→s

f(s)⊖gH f(t)

s− t
exists and (

⋄αgHf
)
(s) = lim

t→s

f(s)⊖gH f(t)

s− t
.

Proof. Since s is dense, σ(s) = ρ(s) = s. Hence, we obtain

α
f(σ(s))⊖gH f(t)

µst

+ (1− α)
f(t)⊖gH f(ρ(s))

νst
= α

f(s)⊖gH f(t)

µst

+ (1− α)
f(t)⊖gH f(s)

νst

= α
f(s)⊖gH f(t)

µst

+ (1− α)
f(s)⊖gH f(t)

µst

= (α+ 1− α)
f(s)⊖gH f(t)

µst

=
f(s)⊖gH f(t)

µst

.

So, we have

D∞

(
f(s)⊖gH f(t)

µst

,
(
⋄αgHf

)
(s)

)
< ϵ.

Therefore, (
⋄αgHf

)
(s) = lim

t→s

f(s)⊖gH f(t)

s− t
.

□

Theorem 5. Let f : T → FN (R) be a function and s ∈ Tκ
κ be an isolated point. Then f is ⋄αgH-

differentiable at s and(
⋄αgHf

)
(s) = α

f(σ(s))⊖gH f(s)

µ(s)
+ (1− α)

f(s)⊖gH f(ρ(s))

ν(s)
.

Proof. Since s is an isolated point, we have

lim
t→s

[
α
f(σ(s))⊖gH f(t)

µst

+ (1− α)
f(t)⊖gH f(ρ(s))

νst

]
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= α
f(σ(s))⊖gH f(s)

µ(s)
+ (1− α)

f(s)⊖gH f(ρ(s))

ν(s)
.

Hence, we obtain that f is ⋄αgH -differentiable at s and(
⋄αgHf

)
(s) = α

f(σ(s))⊖gH f(s)

µ(s)
+ (1− α)

f(s)⊖gH f(ρ(s))

ν(s)
.

□

Theorem 6. Let f : T → FN (R) be a fuzzy function and s ∈ Tκ
κ. Assume f is ∆gH and ∇gH differentiable

at s. Then, f is ⋄αgH-differentiable at s and

(⋄αgHf)(s) = α(∆gHf)(s) + (1− α)(∇gHf)(s).

Proof. Let ϵ > 0 be given. Since f is ∆gH and ∇gH differentiable at s, there exists δ > 0 such that for
any t ∈ NT(s, δ) = (s− δ, s+ δ) ∩ T, we have

D∞(f(σ(s))⊖gH f(t), (∆gHf)(s)µst) ≤ ϵ

2
|µst| ,

D∞(f(t)⊖gH f(ρ(s)), (∇gHf)(s)νst) ≤ ϵ

2
|νst| .

It follows that

D (α [f(σ(s))⊖gH f(t)] νst, α(∆gHf)(s)µstνst) ≤ ϵα

2
|µstνst| ,

D ((1− α) [f(t)⊖gH f(ρ(s))]µst, (1− α)(∇gHf)(s)µstνst) ≤ ϵ(1− α)

2
|µstνst| .

We get

D

(
α
[
f(σ(s))⊖gH f(t)

]
νst + (1− α)

[
f(t)⊖gH f(ρ(s))

]
µst, (α(∆gHf)(s) + (1− α)(∇gHf)(s)) µst νst

)
≤ D

(
α
[
f(σ(s))⊖gH f(t)

]
νst, α(∆gHf)(s)µst νst

)
+D

(
(1− α)

[
f(t)⊖gH f(ρ(s))

]
µst, (1− α)(∇gHf)(s)µst νst

)
≤ ϵα

2
|µst νst|+

ϵ(1− α)

2
|µst νst|

≤ ϵ |µst νst| .

Therefore, f is ⋄αgH - differentiable at s and

(⋄αgHf)(s) = α(∆gHf)(s) + (1− α)(∇gHf)(s).

□

Theorem 7. Let f : T → FN (R) be a function and the r-level sets of f be

fr(t) =
[
f−
r (t), f+

r (t)
]

for any t ∈ T and r ∈ [0, 1], where f−
r : T → R and f+

r : T → R are the left and right end-points of the
r-level sets. Assume len(fr(t)) := f+

r (t)−f−
r (t) is monotone on a neigborhood NT(s, δ) = (s−δ, s+δ)∩T

for some δ > 0 and f is ⋄αgH- differentiable at s ∈ Tκ
κ. Then, f−

r and f+
r are ⋄α-differentiable at s as

well. Moreover,

(1) if len(fr(t)) is increasing on a neighborhood of s ∈ Tκ
κ, then(

⋄αgHf
)
r
(s) =

[(
⋄αf−

r

)
(s),

(
⋄αf+

r

)
(s)

]
,

(2) if len(fr(t)) is decreasing on a neighborhood of s ∈ Tκ
κ, then(

⋄αgHf
)
r
(s) =

[(
⋄αf+

r

)
(s),

(
⋄αf−

r

)
(s)

]
.

Proof. (1) Assume that len(fr(t) is increasing on NT(s, δ) = (s−δ, s+δ)∩T for some δ > 0, σ(s) ̸= t
and ρ(s) ̸= t for any fixed r ∈ [0, 1]. Let us consider the following cases.
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Case 1: Let ρ(s) < t < σ(s). Hence, µst = σ(s) − t > 0 and νst = t − ρ(s) > 0. Since len(fr(t)) is
increasing on NT(s, δ) we have len(f(σ(s))) > len(f(t)) and len(f(t)) > len(f(ρ(s))) for any
t ∈ NT(s, δ). Let

g(t) := α
f(σ(s))⊖gH f(t)

µst

+ (1− α)
f(t)⊖gH f(ρ(s))

νst
.

By Remark 1 and some interval arithmetics, we obtain[
g−r (t), g

+
r (t)

]
=

[
α
f−
r (σ(s))− f−

r (t)

µst

+ (1− α)
f−
r (t)− f−

r (ρ(s))

νst
,

α
f+
r (σ(s))− f+

r (t)

µst

+ (1− α)
f+
r (t)− f+

r (ρ(s))

νst

]
.

Case 2: Let t > σ(s). Hence, µst = σ(s)− t < 0 and νst = t− ρ(s) > 0. Since len(fr(t)) is increasing on
NT(s, δ) we have len(f(σ(s))) < len(f(t)) and len(f(t)) > len(f(ρ(s))) for any t ∈ NT(s, δ). Let

g(t) := α
f(σ(s))⊖gH f(t)

µst

+ (1− α)
f(t)⊖gH f(ρ(s))

νst
.

By Remark 1 and some interval arithmetics, we obtain[
g−r (t), g

+
r (t)

]
=

[
α
f−
r (σ(s))− f−

r (t)

µst

+ (1− α)
f−
r (t)− f−

r (ρ(s))

νst
,

α
f+
r (σ(s))− f+

r (t)

µst

+ (1− α)
f+
r (t)− f+

r (ρ(s))

νst

]
.

Case 3: Let t < ρ(s). Hence, µst = σ(s)− t > 0 and νst = t− ρ(s) < 0. Since len(fr(t)) is increasing on
NT(s, δ) we have len(f(σ(s))) > len(f(t)) and len(f(t)) < len(f(ρ(s))) for any t ∈ NT(s, δ). Let

g(t) := α
f(σ(s))⊖gH f(t)

µst

+ (1− α)
f(t)⊖gH f(ρ(s))

νst
.

Similarly, by Remark 1 and some interval arithmetics, we obtain[
g−r (t), g

+
r (t)

]
=

[
σ
f−
r (σ(s))− f−

r (t)

µst

+ (1− α)
f−
r (t)− f−

r (ρ(s))

νst
,

α
f+
r (σ(s))− f+

r (t)

µst

+ (1− α)
f+
r (t)− f+

r (ρ(s))

νst

]
.

Furthermore, since f is ⋄αgH - differentiable at s, we derive

lim
t→s

[
α
f(σ(s))⊖gH f(t)

µst

+ (1− α)
f(t)⊖gH f(ρ(s))

νst

]
=

(
⋄αgHf

)
(s) ∈ FN (R).

The proof of (2) can be done similarly. □

Definition 22. Let f : T → FN (R) be a function and the r-level sets of f be

fr(t) =
[
f−
r (t), f+

r (t)
]

for any t ∈ T and r ∈ [0, 1], where f−
r : T → R and f+

r : T → R are the left and right end-points of the
r-level sets. Assume that f is ⋄αgH- differentiable at s ∈ Tκ

κ. Then, f is said to be

(1) ⋄αgH1- differentiable at s if(
⋄αgHf

)
r
(s) =

[(
⋄αf−

r

)
(s),

(
⋄αf+

r

)
(s)

]
,

(2) ⋄αgH2- differentiable at s if(
⋄αgHf

)
r
(s) =

[(
⋄αf+

r

)
(s),

(
⋄αf−

r

)
(s)

]
.

Theorem 8. Let f : T → FN (R) be a function and the r-level sets of f be

fr(t) =
[
f−
r (t), f+

r (t)
]

for any t ∈ T and r ∈ [0, 1], where f−
r : T → R and f+

r : T → R are left and right end-points of the
r-level sets. Assume that f is ⋄αgH- differentiable at s ∈ Tκ

κ.
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(1) If f is ⋄αgH1- differentiable on NT (s, δ), then f has non-decreasing length of the closure of its
support.

(2) If f is ⋄αgH2- differentiable on NT (s, δ), then f has non-increasing length of the closure of its
support.

Proof. (1) Assume f is ⋄αgH1- differentiable on NT(s, δ) and len(fr(t)) is decreasing length of the

closure of its support for some t ∈ NT(s, δ) for any fixed r ∈ [0, 1]. Then, by Theorem 7 we have(
⋄αgHf

)
0
(t) =

[(
⋄αf+

0

)
(t),

(
⋄αf−

0

)
(t)

]
,

which contradicts with the fact that f is ⋄αgH1- differentiable on NT(s, δ)̇. Hence, f has non-
decreasing length of the closure of its support.

(2) Assume f is ⋄αgH2- differentiable on NT(s, δ) and len(fr(t)) is increasing length of the closure of

its support for some t ∈ NT(s, δ) for any fixed r ∈ [0, 1]. Then, by Theorem 7 we have(
⋄αgHf

)
0
(t) =

[(
⋄αf−

0

)
(t),

(
⋄αf+

0

)
(t)

]
.

which contradicts with the fact that f is ⋄αgH2- differentiable on NT(s, δ)̇. Hence, f has non-
decreasing length of the closure of its support.

□

3.1. Examples.

Example 1. Consider the time scale T = hZ = {hn : n ∈ Z, h > 0} and let f : [0,∞)T → FN (R) be a
function such that f(t) = (1, 2, 3)t. The r-level sets of f are fr(t) = [1 + r, 3− r] t. By Theorem 5 , f is
⋄αgH-differentiable at any s ∈ [h,∞)T such that(

⋄αgHf
)
(s) = α

f(σ(s))⊖gH f(s)

µ(s)
+ (1− α)

f(s)⊖gH f(ρ(s))

ν(s)
.

Since len(fr(t)) = 2t(1− r), which is increasing for any fixed r ∈ [0, 1], we have(
⋄αgHf

)
r
(s) =

[(
⋄αf−

r

)
(s),

(
⋄αf+

r

)
(s)

]
.

Let α = 1
2 , then we have(

⋄ 1
2 f−

r

)
(s) =

1

2

f−
r (σ(s))− f−

r (s)

µ(s)
+

1

2

f−
r (s)− f−

r (ρ(s))

ν(s)

=
1

2

[
f−
r (s+ h)− f−

r (s)

h
+

f−
r (s)− f−

r (s− h)

h

]
=

1

2

[
(1 + r)(s+ h)− (1 + r)s

h
+

(1 + r)s− (1 + r)(s− h)

h

]
= 1 + r.

Similarly we can obtain
(
⋄ 1

2 f+
r

)
(s) = 3 − r. Therefore,

(
⋄

1
2

gHf
)
r
(s) = [1 + r, 3 − r] and

(
⋄

1
2

gHf
)
(s) =

(1, 2, 3).

Example 2. Consider the time scale T = {
√
n : n ∈ N} and let f : T → FN (R) be a function such that

f(t) = (1, 2, 3) 1
t2 . The r-level sets of f are fr(t) = [1 + r, 3− r] 1

t2 and

len(fr(t)) =
1

t2
(3− r − 1− r)

=
1

t2
(2− 2r)

=
2

t2
(1− r),

which is decreasing for any fixed r ∈ [0, 1]. Hence, f is ⋄αgH-differentiable at s ∈ [
√
2,∞)T with(

⋄αgHf
)
r
(s) =

[(
⋄αf+

r

)
(s),

(
⋄αf−

r

)
(s)

]
,
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where (
⋄αf−

r

)
(s) = α

f−
r (σ(s))− f−

r (s)

µ(s)
+ (1− α)

f−
r (s)− f−

r (ρ(s))

ν(s)

= α

1+r
σ2(s) −

1+r
s2

σ(s)− s
+ (1− α)

1+r
s2 − 1+r

ρ2(s)

s− ρ(s)

= α
1+r
s2+1 − 1+r

s2√
s2 + 1− s

+ (1− α)
1+r
s2 − 1+r

s2−1

s−
√
s2 − 1

.

and (
⋄αf+

r

)
(s) = α

f+
r (σ(s))− f+

r (s)

µ(s)
+ (1− α)

f+
r (s)− f+

r (ρ(s))

ν(s)

= α
3−r
s2+1 − 3−r

s2√
s2 + 1− s

+ (1− α)
3−r
s2 − 3−r

s2−1

s−
√
s2 − 1

.

4. Fuzzy Initial Value Problems on time scales with Generalized Hukuhara
Diamond-Alpha Derivatives

In this section, we consider the following fuzzy initial value problem (FIVP):

(⋄αgHy)(t) = f(t, y(t)), t ∈ (a, b)T ⊂ Tκ
κ (1)

y(t0) = y0, (2)

where f : (a, b)T × FN (R) → FN (R). Assume that r-level sets of y, f and ⋄αgHy are

yr(t) =
[
y−r (t), y

+
r (t)

]
,

fr(t) =
[
f−
r (t), f+

r (t)
]
,

(⋄αgHy)r(t) = [(⋄αy−r )(t), (⋄αy+r )(t)].

There are two cases to be considered:

Case 1: len(yr) is increasing. By Theorem 7, we obtain

(⋄αgHy)r(t) = [(⋄αy−r )(t), (⋄αy+r )(t)].

Therefore, FIVP (1)-(2) can be expressed by the system:

(⋄αy−r )(t) = f−
r (t, y−r (t), y

+
r (t)),

(⋄αy+r )(t) = f+
r (t, y−r (t), y

+
r (t)),

y−r (t0) = y−0r,

y+r (t0) = y+0r,

where r ∈ [0, 1] and t ∈ (a, b)T.
Case 2: len(yr) is decreasing. By Theorem 7, we obtain

(⋄αgHy)r(t) = [(⋄αy+r )(t), (⋄αy−r )(t)].

Therefore, FIVP (1)-(2) can be expressed by

(⋄αy−r )(t) = f+
r (t, y−r (t), y

+
r (t)),

(⋄αy+r )(t) = f−
r (t, y−r (t), y

+
r (t)),

y−r (t0) = y−0r,

y+r (t0) = y+0r,

where r ∈ [0, 1] and t ∈ (a, b)T.

Assume T = {t0, t1, t2, ..., tN+1 : ti < ti+1,∀i ∈ 0, N} with Tκ = T\{tN+1}, Tκ = T\{t0} and
Tκ
κ = Tκ ∩ Tκ. Since T is an isolated time scale, according to Theorem 5 we obtain

(⋄αy−r )(t) = α
y−r (ti+1)− y−r (ti)

µ(ti)
+ (1− α)

y−r (ti)− y−r (ti−1)

ν(ti)
,
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(⋄αy+r )(t) = α
y+r (ti+1)− y+r (ti)

µ(ti)
+ (1− α)

y+r (ti)− y+r (ti−1)

ν(ti)
.

Hence, Case 1 and Case 2 become

α
y−r (ti+1)− y−r (ti)

µ(ti)
+ (1− α)

y−r (ti)− y−r (ti−1)

ν(ti)
= f−

r (ti, y
−
r (ti), y

+
r (ti)),

α
y+r (ti+1)− y+r (ti)

µ(ti)
+ (1− α)

y+r (ti)− y+r (ti−1)

ν(ti)
= f+

r (ti, y
−
r (ti), y

+
r (ti)),

y−r (t0) = y−0r,

y+r (t0) = y+0r,

and

α
y−r (ti+1)− y−r (ti)

µ(ti)
+ (1− α)

y−r (ti)− y−r (ti−1)

ν(ti)
= f+

r (ti, y
−
r (ti), y

+
r (ti)),

α
y+r (ti+1)− y+r (ti)

µ(ti)
+ (1− α)

y+r (ti)− y+r (ti−1)

ν(ti)
= f−

r (ti, y
−
r (ti), y

+
r (ti)),

y−r (t0) = y−0r,

y+r (t0) = y+0r,

respectively.

4.1. Numerical Examples. Now we will give some numerical examples. Triangular fuzzy numbers are
widely used in fuzzy applications. They offer a straightforward and efficient means of representing and
handling uncertainty and vagueness in data. Therefore, in numerical examples, fuzzy constants and initial
conditions will be represented as triangular fuzzy numbers.

Example 3. Let T = hZ and let us consider the following FIVP:

(⋄αgHy)(t) = −y(t), t ∈ (0, 5)hZ, (3)

y(0) = y(σ(h)) = y(h) = (−1, 0, 1). (4)

Assume r-level sets of y and ⋄αgHy are

yr(t) =
[
y−r (t), y

+
r (t)

]
,

(⋄αgHy)r(t) = [(⋄αy−r )(t), (⋄αy+r )(t)].
By using the method above, we obtain the following two systems:

Case1: Under ⋄αgH1-differentiability, the FIVP yields the following system:

α
y−r (ti+1)− y−r (ti)

µ(ti)
+ (1− α)

y−r (ti)− y−r (ti−1)

ν(ti)
= −y+r (ti),

α
y+r (ti+1)− y+r (ti)

µ(ti)
+ (1− α)

y+r (ti)− y+r (ti−1)

ν(ti)
= −y−r (ti),

y−r (0) = y−r (h) = −1 + r,

y+r (0) = y+r (h) = 1− r.

Case2: Under ⋄αgH2-differentiability, the FIVP yields the following system:

α
y−r (ti+1)− y−r (ti)

µ(ti)
+ (1− α)

y−r (ti)− y−r (ti−1)

ν(ti)
= −y−r (ti),

α
y+r (ti+1)− y+r (ti)

µ(ti)
+ (1− α)

y+r (ti)− y+r (ti−1)

ν(ti)
= −y+r (ti),

y−r (0) = y−r (h) = −1 + r,

y+r (0) = y+r (h) = 1− r.

The approximate and true solutions to these systems for h = 1
10 , α = 0.8, and r = 0 are illustrated in

Figure 1 and Figure 2. In these figures, since the end points of the solutions do not switch, these solutions
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exist on [0, 5] in both cases. We observe that switching of the end points of the solution may occur, and
the error in the approximate solution may increase as we change α. In Case 1, when we set α = 0.43,
switching occurs at t = 27

10 , which implies that ⋄αgH1-differentiability does not exist after t = 19
5 . And in

Case 2, when we set α = 0.53, switching occurs at t = 19
5 , which implies that ⋄αgH2-differentiability does

not exist after t = 19
5 ; also see Figure 3.

Figure 1. 0-level solutions to Case 1.

Figure 2. 0-level solutions to Case 2.

Example 4. Let T = hZ and let us consider the following FIVP:

(⋄αgHy)(t) = −y(t) + (1, 2, 3)e−t, t ∈ (0, 5)hZ, (5)

y(0) = y(σ(h)) = y(h) = (−2, 0, 2). (6)

Assume r-level sets of y and ⋄αgHy are

yr(t) =
[
y−r (t), y

+
r (t)

]
,

(⋄αgHy)r(t) = [(⋄αy−r )(t), (⋄αy+r )(t)].
By using the method above, we obtain the following two systems:

Case1: Under ⋄αgH1-differentiability, the FIVP yields the following system:

α
y−r (ti+1)− y−r (ti)

µ(ti)
+ (1− α)

y−r (ti)− y−r (ti−1)

ν(ti)
= −y+r (ti) + (1 + r)e−t,
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Figure 3. 0-level solutions to Case 2.

α
y+r (ti+1)− y+r (ti)

µ(ti)
+ (1− α)

y+r (ti)− y+r (ti−1)

ν(ti)
= −y−r (ti) + (3− r)e−t,

y−r (0) = y−r (h) = −2 + 2r,

y+r (0) = y+r (h) = 2− 2r.

Case2: Under ⋄αgH2-differentiability, the FIVP yields the following system:

α
y−r (ti+1)− y−r (ti)

µ(ti)
+ (1− α)

y−r (ti)− y−r (ti−1)

ν(ti)
= −y+r (ti) + (1 + r)e−t,

α
y+r (ti+1)− y+r (ti)

µ(ti)
+ (1− α)

y+r (ti)− y+r (ti−1)

ν(ti)
= −y−r (ti) + (3− r)e−t,

y−r (0) = y−r (h) = −2 + 2r,

y+r (0) = y+r (h) = 2− 2r.

Figure 4 and Figure 5 illustrate the approximate and true solutions of these systems for h = 1
15 , α = 0.6,

and r = 0. In both figures, we have fuzzy solutions within the interval [0, 5] as there is no switching at the
endpoints. In Case 1, setting α = 0.45 causes switching at t = 49

15 , indicating that ⋄αgH1-differentiability

in a neighborhood of t = 49
15 . In Case 2, setting α = 0.53 causes switching at t = 19

5 , indicating that

⋄αgH2-differentiability in a neighborhood of t = 19
5 .

Figure 4. 0-level solutions to Case 1.
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Figure 5. 0-level solutions to Case 2.

5. Conclusions

We have introduced the diamond-alpha derivative for fuzzy number valued functions on time scales
by employing the generalized Hukuhara difference. Additionally, we have established some fundamental
properties of this derivative and applied it to a specific class of fuzzy initial value problems on time scales.
Numerical examples demonstrate the existence of approximate solutions under certain parameter settings
with potential switching in the end points of the level sets of the solutions as the parameter α varies. Such
switching can affect the accuracy of approximate solutions and the existence of ⋄αgH1-differentiability or
⋄αgH2-differentiability. These results enhance the understanding of the behavior of ⋄αgH -differentiability in
fuzzy functions and its applications within fuzzy differential equations on time scales.
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[18] Lakshmikantham, V., Sivasundaram, S., Kaymakçalan, B., Dynamic Systems on Measure Chains, Springer Science

and Business Media, 370, 2013. https://doi.org/10.1007/978-1-4757-2449-3
[19] Leelavathi, R., Suresh Kumar, G., Agarwal, R. P., Wang, C., Murty, M. S. N., Generalized nabla differentiability and

integrability for fuzzy functions on time scales, Axioms, 9(2) (2020), 65. https://doi.org/10.3390/axioms9020065

[20] Li, J., Zhao, A., Yan, J., Cauchy problem of fuzzy differential equations under generalized differentiability, Fuzzy Sets
and Systems, 200 (2012), 1-24. https://doi.org/10.1016/j.fss.2011.10.009

[21] Malinowska, A. B., Torres, D. F. M., The diamond-alpha Riemann integral and mean value theorems on time scales,

Dynam. Systems Appl., 18(3-4) (2009), 469-482. https://doi.org/10.48550/arXiv.0804.4420
[22] Mozyrska, D., Torres, D. F. M., A study of diamond-alpha dynamic equations on regular time scales, Afr. Diaspora J.

Math (NS), 8(1) (2009), 35-47. https://doi.org/10.48550/arXiv.0902.1380

[23] Negoita, C., Ralescu, D., Application of Fuzzy Sets to System Analysis, Wiley, New York, 1975.
https://doi.org/10.1007/978-3-0348-5921-9

[24] Nguyen, H. T., A note on the extension principle for fuzzy sets, Journal of Mathematical Analysis and Applications,

64(2) (1978), 369-380. https://doi.org/10.1016/0022-247X(78)90045-8
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Abstract. In this article, firstly we study pointwise slant, pointwise hemi-slant submanifolds whose
ambient spaces are para-cosymplectic manifolds and we prove that there exist pointwise hemi-slant non-

trivial warped product submanifolds whose ambient spaces are para- cosymplectic manifolds by giving

some examples. We get several theorems and some characterizations. Later, we also obtain some in-
equalities.
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1. Introduction

Slant submanifold was explained by B.Y. Chen in 1990 and he started the working in pseudo-Riemannian
manifolds in 2012 [4]. Then, Almost contact manifold was indicated by I. Sato [10]. S. Zamkovoy re-
searched almost para-contact metric manifolds [12] and An almost para-contact geometry is expressed
as (P, ξ, η). Such that, P2 = I − η ⊗ ξ and η(ξ) = 1 on almost para-contact structure. Then, some
researchers have been working Riemannian and semi-Riemannian manifolds in last years [1, 2, 5, 8].

Bishop and O’Neill produced notion of warped product manifolds. Warped products are Na and Nb

be Riemannian manifolds with ğa and ğb. Then, warped product manifold Nx = Na ×k Nb is a product
manifold Na×Nb equipped by ğx = ğa+k

2ğb and k is a warping function of warped product manifold [3].
Warped products is generally used in differential geometry, theory of general relativity, theory of string,
black holes. Warped product pseudo-slant submanifolds whose ambient spaces are Kaehler manifolds
were worked by B. Sahin [9]. He proved that the warped product pseudo-slant N⊥

b ×k N
θ
a submanifold

does not exist and he obtained a characterization and an inequality. Later S. Uddin and others worked
warped product submanifolds whose ambient spaces are cosymplectic manifolds [11].

This article is organized as follows. In section 2, we introduce pointwise slant submanifolds of para-
cosymlectic manifolds. Moreover, we give some definitions, examples and results. In section 3, we
introduce proper pointwise hemi-slant submanifolds in para-cosymplectic manifolds and we give theo-
rems, lemmas and examples. In section 4, we define pointwise hemi-slant non-trivial warped product
submanifolds in para-cosymlectic manifolds. Also, we give some results and examples. In section 5, we
obtain some inequalities.

2. Preliminaries

Let N̄x be a (2n̄+1)-dimensional almost para-contact metric structure. If it is provided with structure
(P, ξ, η, ğ1), that P is a tensor field of type (1, 1), η is a one form, ξ is a vector field and ğ1 is to expressed
semi-Riemannian metric.

P2 = I − η ⊗ ξ, η(ξ) = 1, ğ1(PXa, PYb) = −ğ1(Xa,Yb) + η(Xa)η(Yb) (1)

1 ayazsedatayaz@gmail.com -Corresponding author; 0000-0002-8225-5503
2 ygunduzalp@dicle.edu.tr; 0000-0002-0932-949X.
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These situations require that

Pξ = 0 , η(PXa) = 0 , η(Xa) = ğ1(Xa, ξ), (2)

ğ1(PXa,Yb) = −ğ1(Xa,PYb). (3)

An almost para-contact metric manifold is named para-cosymplectic manifold if the following relation is
satisfied:

(∇̄Xa
P)Yb = 0 , P∇̄Xa

Yb = ∇̄Xa
PYb, ∇̄Xa

ξ = 0 (4)

including any vector fields Xa,Yb on N̄x.
Let currently, Nx is a submanifold of (P, ξ, η, ğ1). The Gauss and Weingarten equations are dedicated

by

∇̄XaYb = ∇XaYb + h1(Xa,Yb), (5)

∇̄Xa
V = −AV Xa +∇⊥

Xa
V, (6)

including Xa,Yb ∈ Γ(T Nx) and V ∈ Γ(T N⊥
b ), that h1 is a second fundamental form of Nx, AV is the

Weingarten endomorphism connected with V and ∇⊥ is the normal connection. AV and h1 are related
by

ğ1(AV Xa,Yb) = ğ1(h1(Xa,Yb), V ), (7)

here ğ1 designates the semi-Riemannian metric on Nx with the one introduced on Nx. For all tangent
vector field Xa, we denote

PXa = RXa + SXa, (8)

such that RXa is the tangential component of PXa and SXa is the normal one. For all normal vector
field V ,

PV = rV + sV, (9)

such that rV and sV are the tangential, normal components of PV , respectively.
From the covariant derivative of the tensor fields R,S,r and s, we get

(∇XaR)Yb = ∇XaRYb −R∇XaYb, (10)

(∇Xa
S)Yb = ∇⊥

X aSYb − S∇Xa
Yb, (11)

(∇Xa
r)V = ∇Xa

rV − r∇⊥
X aV, (12)

(∇Xas)V = ∇⊥
X asV − s∇⊥

X aV. (13)

The mean curvature vector is indicated by

H =
1

n
traceh1. (14)

Definition 1. We call that a submanifold Nx of almost para-contact metric structure (N̄x,P, ξ, η, ğ1) is
pointwise slant if for all time-like or space-like tangent vector field Xa, the ratio ğ1(RXa, RXa)/ğ1(PXa, PXa)
is a function. Moreover, a submanifold Nx of almost para-contact metric structure N̄x is named point-
wise slant, if at each point p ∈ Nx, the Wirtinger angle θ(X) between PXa and TpNx is dependent of
the choice of the non-zero Xa ∈ TpNx. In this instance, the Wirtinger angle causes a real-valued func-
tion θ : T Nx − 0 → R which is named the slant function or Wirtinger function of the pointwise slant
submanifold.

We express that a pointwise slant submanifold whose ambient spaces are almost para-contact manifold
is named slant, if its Wirtinger function θ is globally constant. We state that all slant submanifold is a
pointwise slant submanifold [9].

If Nx is a para-complex submanifold, in that case, PXa = RXa and the above ratio is equal to 1.
Moreover if Nx is totaly real, then R = 0, so PXa = SXa and the above ratio equals 0. Hence, both
para-complex submanifolds and totally real are the special situations of pointwise slant submanifolds.

Definition 2. Let Nx be a proper pointwise slant submanifold of almost para-contact metric structure
(N̄x,P, ξ, η, ğ1). We call that it is of type-1 if for any spacelike(timelike) vector field Xa, RXa is time-

like(spacelike), also |RXa|
|PXa| > 1 and (For type-2) |RXa|

|PXa| < 1 .
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Theorem 1. Let Nx be a pointwise slant submanifold in almost para-contact metric structure (N̄x,P, ξ, η, ğ1).
So that, for any spacelike (timelike) vector field Xa, RXa is timelike (spacelike) and Nx is the pointwise
slant submanifold of type-1 -2 necessary and sufficient condition

(a) µ = R2 = cosh2θ(I − η ⊗ ξ), µ ∈ (1 ,+∞) (Type− 1), (15)

(b) µ = R2 = cos2θ(I − η ⊗ ξ), µ ∈ (0, 1) (Type− 2). (16)

where θ denotes the slant function of Nx.

Proof. Firstly, if Nx is a pointwise slant submanifold of type-1 for any spacelike tangent vector field Xa,
RXa is timelike. from the equation of (1), PXa also is. Furthermore, they supply |RXa|/|PXa| > 1. So,
there exists the slant function θ. Because of,

cosh θ =
|RXa|
|PXa|

=

√
−ğ1(RXa, RXa))√
−ğ1(PXa,PXa)

(17)

and using (1) and (17) , we have

ğ1(R
2Xa,Xa) = cosh2 θ(I − η ⊗ ξ)ğ1(Xa,Xa).

Thus, we get R2Xa = cosh2θ(Xa − η(Xa)ξ). So, µ = R2 = cosh2 θ(I − η ⊗ ξ).
Also, for any time-like tangent vector field Z, RZ and PZ are spacelike. Therefore, in place of (17), we
get

cosh θ =
|RZ|
|PZ|

=

√
ğ1(RZ, RZ))√
ğ1(PZ,PZ)

Because of R2Xa = cosh2θ(Xa−η(Xa)ξ), for any spacelike and timelike Xa it further provides for lightlike
vector fields and therefore we get µ = R2 = cosh2 θ(I − η ⊗ ξ). Thus, we get (a). In a similar way, we
have (b) □

Corollary 1. Let Nx be a pointwise slant submanifold of almost para-contact metric structure (N̄x,P, ξ, η, ğ1)
with the slant function θ. Later, for any non-null vector fields Xa,Yb ∈ T Nx− < ξ >, If Nx is of type-1,
type-2, we obtain:

ğ1(RXa, RYb) = − cosh2 θ(ğ1(Xa,Yb)− η(X)η(Y )),

ğ1(SXa, SYb) = sinh2 θ(ğ1(Xa,Yb)− η(Xa)η(Yb)), (18)

ğ1(RXa, RYb) = − cos2 θ(ğ1(Xa,Yb)− η(X)η(Y )),

ğ1(SXa, SYb) = − sin2 θ(ğ1(Xa,Yb)− η(Xa)η(Yb)). (19)

Corollary 2. Let Nx be a pointwise slant submanifold of an almost para-contact metric structure
(N̄x,P, ξ, η, ğ1). Later, let Nx be a pointwise slant submanifold of almost para-contact metric structure
N̄x. Therefore Nx is a pointwise slant submanifold of ( type-1 -2 ) necessary and sufficient condition,

* rSXa = − sinh2 θ(Xa − η(Xa)ξ) and SRX = −sSX (For type-1)
* rSXa = sin2 θ(Xa − η(Xa)ξ) and SRX = −sSX (For type-2)

are satisfied for all timelike (spacelike) vector field Xa.

3. Pointwise Hemi-Slant Submanifolds Whose Ambient Spaces are Para-Cosymplectic
Manifolds

Definition 3. A semi-Riemannian submanifold Nx of almost para-contact manifold (N̄x,P, ξ, η, ğ1) is
named to pointwise hemi-slant submanifold if there exist a two orthogonal distributions D⊥

t , Dα
n with

Nx. Such that,
1) T Nx = D⊥

t ⊕Dα
n⊕ < ξ > .

2) The distribution D⊥
t is an totally real distribution, PD⊥

t ⊂ T ⊥Nx.
3) The distribution Dα

n is a pointwise slant distribution.
Then, we say θ as function.
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Definition 4. Let Nx be a pointwise hemi-slant submanifold of an almost para-contact metric structure
(N̄x,P, ξ, η, ğ1). Let Dα

n be a pointwise slant distribution on Nx. Then, we call that it is of (For type-1)

if for any spacelike(timelike) vector field Xa, RXa is timelike(spacelike), also |RXa|
|PXa| > 1 and (For type-2)

|RXa|
|PXa| < 1 .

Theorem 2. Let Nx be a pointwise hemi-slant submanifold of almost para-contact metric structure
(N̄x,P, ξ, η, ğ1). Nx is the pointwise slant submanifold of type-1 -2 necessary and sufficient condition

(a) µ = R2 = cosh2θ(I − η ⊗ ξ), µ ∈ (1 ,+∞), (Type− 1). (20)

(b) µ = R2 = cos2θ(I − η ⊗ ξ), µ ∈ (0, 1), (Type− 2). (21)

For any spacelike (timelike) vector field Xa, RXa is timelike (spacelike).

Proof. The proof is proved like the proof of Theorem 1. □

Corollary 3. Let Nx be a pointwise hemi-slant submanifold of almost para-contact structure (N̄x,P, ξ, η, ğ1).
For non-null vector fields Xa,Yb ∈ T Nx− < ξ >, if Dα

n is of type-1 and type-2, then we obtain (respec-
tively)

ğ1(RXa, RYb) = − cosh2 θ(ğ1(Xa,Yb)− η(X)η(Y )),

ğ1(SXa, SYb) = sinh2 θ(ğ1(Xa,Yb)− η(Xa)η(Yb)). (22)

and

ğ1(RXa, RYb) = − cos2 θ(ğ1(Xa,Yb)− η(X)η(Y )),

ğ1(SXa, SYb) = − sin2 θ(ğ1(Xa,Yb)− η(Xa)η(Yb)). (23)

Lemma 1. Let Nx be a pointwise hemi-slant type-1 and type-2 submanifold whose ambient space is
para-cosymplectic manifold N̄x. We get, APZaWb = APWb

Za is satisfied for any non-null vector fields
Za,Wb ∈ D⊥

t .

Proof. For type-1 -2 and for Za,Wb ∈ D⊥
t , Ua ∈ Γ(T Nx), we write Ua = P1Ua + P2Ua + η(Ua)ξ. Let be

T Nx = D⊥
t ⊕Dα

n⊕ < ξ > and T ⊥Nx = PD⊥
t ⊕ SDα

n ⊕ λ
Using (3),(4),(6) and (7), we obtain

ğ1(APWb
Za,Ua) = ğ1(h1(Za,Ua),PWb)

= −ğ1(−APZa
Ua +∇⊥

Ua
PZa,Wb)

= ğ1(APZa
Wb,Ua).

□

Lemma 2. Let Nx be a pointwise hemi-slant type-1 and type-2 submanifold whose ambient space is para-
cosymplectic manifold (N̄x,P, ξ, η, ğ1). In this case, the totally real distribution D⊥

t is always integrable.

Proof. For type-1, type-2 and since N̄x is a para-cosymplectic manifold, using equations (1),(3),(4),(5),(6),
(8) and from definition of projections for non-null vector fields Xa,Yb ∈ D⊥

t and Ua ∈ T Nx, we write

ğ1([Xa,Yb],PUa) = −ğ1(P[Xa,Yb],Ua)

= −ğ1(∇̄X aPYb,Ua) + ğ1(∇̄Y bPXa,Ua).

The right hand side of the last equation should be zero. Thus, we derive

ğ1([Xa,Yb],PUa) = 0,

ğ1([Xa,Yb], RUa) + ğ1([Xa,Yb], SUa) = 0,

ğ1([Xa,Yb], RP2Ua)) = 0.

From above equation, we have [Xa,Yb] = 0. So, D⊥
t is integrable. □

Lemma 3. Let Nx be a pointwise hemi-slant type-1 and type-2 submanifold whose ambient space is
para-cosymplectic manifold (N̄x,P, ξ, η, ğ1). For Dα

n⊕ < ξ > to be integrable, necessary and sufficient
condition
1) ğ1(∇Y bXa,Z) = sech2θ(ğ1(h1(Xa,Z), SRYb)− ğ1(h1(Xa, RYb),PZ))(Tip-1)
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2) ğ1(∇Y bXa, Z) = sec2θ(ğ1(h1(Xa, Z), SRYb)− ğ1(h1(Xa, RYb),PZ))(Tip− 2)
for non-null vector fields Xa,Yb ∈ Dα

n⊕ < ξ > and Z ∈ D⊥
t .

Proof. We demonstrate 1) and 2) in a similar method. We will give its proof when Dα
n is type-1. N̄x is

a para-cosymplectic manifold, using (1),(2),(3),(4),(5),(6),(7),(8) and Corollary 2, we write

ğ1([Xa,Yb], Z) = ğ1(∇̄X aYb − ∇̄Y bXa,Z)

= −ğ1(∇̄X aPYb,PZ)− η(∇̄X aYb)η(Z)− ğ1(∇̄Y bXa,Z)

= −ğ1(∇̄X aRYb,PZ)− ğ1(∇̄X aSYb,PZ)− ğ1(∇̄Y bXa,Z)

= −ğ1(h1(Xa, RYb),PZ) + ğ1(∇̄X aPSYb,Z)− ğ1(∇̄Y bXa,Z)

= −ğ1(h1(Xa, RYb),PZ) + ğ1(∇̄X arSYb,Z) + ğ1(∇̄X asSYb,Z)

− ğ1(∇̄Y bXa,Z)

= −ğ1(h1(Xa, RYb),PZ)− sinh2θğ1(∇̄X aYb,Z)

+ ğ1(h1(Xa,Z), SRYb)− ğ1(∇̄Y bXa,Z)

making add subtract sinh2θğ1(∇̄Y bXa,Z) above equation, we have

cosh2θğ1(([Xa,Yb],Z)) = ğ1(h1(Xa,Z), SRYb)− ğ1(h1(Xa, RYb),PZ)

− cosh2θğ1(∇̄Y bXa,Z)

ğ1(([Xa,Yb],Z)) = sech2θ(ğ1(h1(Xa,Z), SRYb)− ğ1(h1(Xa, RYb),PZ))

− ğ1(∇̄Y bXa,Z)

The right hand side of the last equation should be zero, proof is complete. □

Theorem 3. Let Nx be a pointwise hemi-slant type1-2 submanifold whose ambient space is para-cosymplectic
manifold (N̄x,P, ξ, η, ğ1). In that case, totally real distribution D⊥

t describes a totally geodesic foliation,
necessary and sufficient condition

ğ1(APWb
RXa−ASRXa

Wb,Za) = 0 (24)

is satisfied for non-null vector fields Za,Wb ∈ D⊥
t , Xa ∈ Dα

n⊕ < ξ >.

Proof. For type-1 , we obtain

ğ1(∇ZaWb,Xa) = ğ1(∇̄ZaWb,Xa)− ğ1(h1(Za,Wb),Xa).

Using (1) and (5), we get

ğ1(∇ZaWb,Xa) = −ğ1(P∇̄ZaWb,PXa) + η(∇̄ZaWb)η(Xa)

= −ğ1(P∇̄ZaWb,PXa).

Using (6), (8), also from PW and SXa are orthogonally. We obtain

ğ1(∇ZaWb,Xa) = −ğ1(∇̄ZaPWb, RXa)− ğ1(∇̄ZaPWb, SXa)

= ğ1(APWb
Za, RXa)− ğ1(∇⊥

Za
PWb, RXa) + ğ1(∇̄ZaSXa,PWb).

Using (1), (4) and (7). We obtain

ğ1(∇ZaWb,Xa) = ğ1(APWb
Za, RXa) + ğ1(∇̄ZaSXa,PWb)

= ğ1(h1(Za, RXa),PWb)− ğ1(∇̄ZaPSXa,Wb).

Using (9) and (Corollary 2 for type-1), we obtain

ğ1(∇ZaWb,Xa) = ğ1(h1(Za, RXa),PWb)− ğ1(∇̄ZarSXa,Wb)

− ğ1(∇̄ZasSXa,Wb)

= ğ1(h1(Za, RXa),PWb) + sinh2θğ1(∇̄ZaXa,Wb)

+ ğ1(∇̄ZaSRXa,Wb).

Using (5), (6), (7) and because of Wb and Xa are orthogonally, we obtain

ğ1(∇ZaWb,Xa) = ğ1(h1(Za, RXa),PWb)− sinh2θğ1(∇ZaWb,Xa)
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− ğ1(h1(Za,Wb), SRXa)

cosh2θğ1(∇ZaWb,Xa) = ğ1(h1(RXa,Za),PWb)− ğ1(h1(Wb,Za), SRXa)

cosh2θğ1(∇ZaWb,Xa) = ğ1(APWb
RXa,Za)− ğ1(ASRXa

Wb,Za).

Thus, the proof is complete. In the same way, we get for type-2 □

Theorem 4. Let Nx be a pointwise hemi-slant type1-2 submanifold whose ambient space is para-cosymplectic
manifold (N̄x,P, ξ, η, ğ1). In that case, pointwise slant distribution Dα

n⊕ < ξ > describes a totally geodesic
foliation, necessary and sufficient condition

ğ1(ASRXa
Wb −APWb

RXa,Yb) = 0 (25)

is satisfied for non-null vector fields Wb ∈ D⊥
t and Xa,Yb ∈ Dα

n⊕ < ξ >.

Proof. For type-1, using (1) and (5), we get

ğ1(∇Y bXa,Wb) = ğ1(∇̄Y bXa,Wb)

= −ğ1(∇̄Y bPXa,PWb).

Using (3), (5),(6), (8) and Corollary 2, we obtain

ğ1(∇Y bXa,Wb) = −ğ1(∇Y bRXa,PWb)− ğ1(h1(Yb, RXa),PWb)

+ ğ1(P∇̄Y bSXa,Wb)

= −ğ1(h1(Yb, RXa),PWb) + ğ1(∇̄Y brSXa,Wb)

+ ğ1(∇̄Y bsSXa,Wb)

− ğ1(∇̄Y bSRXa,Wb).

(1 + sinh2θ)ğ1(∇Y bXa,Wb) = −ğ1(h1(Yb, RXa),PWb)− ğ1(∇̄Y bSRXa,Wb).

(cosh2θ)ğ1(∇Y bXa,Wb) = −ğ1(APWb
RXa,Yb)− ğ1(−ASRXa

Yb,Wb)

− ğ1(∇⊥
Yb
SRXa,Wb)

= ğ1(ASRXaWb −APWb
RXa,Yb).

So, the proof is completed. In the same way, we have for type-2 too. □

Corollary 4. Let Nx be a pointwise hemi-slant submanifold type-1,2 submanifold whose ambient space is
para-cosymplectic manifold N̄x. Therefore Nx is a locally semi-Riemannian product structure, necessary
and sufficient condition

APYb
RXa = ASRXaYb

is satisfied for Xa ∈ Dα
n⊕ < ξ > and Yb ∈ D⊥

t , that N⊥
b is a anti-invariant submanifold and N θ

a is a
pointwise slant submanifold of N̄x.

4. Pointwise Hemi-Slant Non-Trivial Warped Product Submanifolds of
Para-Cosymplectic Manifolds

Warped product manifolds were introduced by Bishop and O’Neill [3]. Projections of Na × Nb are
β1 : Na ×Nb → Na and β2 : Na ×Nb → Nb. Such that warped product manifold Nx = Na ×k Nb is the
Riemannian manifold Na ×Nb = (Na ×Nb, ğ) with the Riemannian structure. Therefore

ğ(Xa,Yb) = ğ1(β1∗Xa, β1∗Yb) + (k ◦ β1)
2ğ1(β2∗Xa, β2∗Yb)

for every vector fields Xa,Yb ∈ Γ(TNx), that * indicates the tangent map. The function k is named the
warping function of the warped product manifold. Especially, if the warping function is non-constant,
the manifold Nx is named to be non-trivial. Na is totally geodesic and Nb is totally umbilical in Nx.

Lemma 4. Let Nx = Na ×k Nb be a warped product manifold with warping function k, therefore
1) ∇Xa

Yb ∈ Γ(T Na) is the lift of ∇Xa
Yb on Na;

2) ∇Xa
Z = ∇ZXa = (Xalnk)Z ;

3) ∇ZW = ∇̄2
ZW − (ğ(Z,W)÷ k) gradk ;

are satisfied for non-null vector fields Xa,Yb ∈ T Na and Z,W ∈ T Nb, where gradk is the gradient of k
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introduced as ğa(gradk,Xa) = Xak also ∇ , ∇̄2
define the Levi-Civita connections on Nx and Nb [3].

As a result, we get

||gradk||2 =

s∑
v=1

(ev(k))
2 (26)

is satisfied for an orthonormal frame (e1 , ..., es) on Na.

Theorem 5. There does not exist a pointwise hemi-slant non-trivial warped product submanifolds Nx =
N⊥

b ×kN θ
a whose ambient space is para-cosymplectic manifold N̄x and ξ ∈ T N⊥

b . Such that N⊥
b is totally

real and N θ
a is pointwise slant submanifold of N̄x.

Proof. The non-existence of warped products pointwise semi-slant submanifolds whose ambient spaces
are cosymplectic manifolds had proved by K.S. Park [7]. Similarly, we can demonstrate the non-existence
of warped products pointwise hemi-slant submanifolds whose ambient spaces are para-cosymplectic man-
ifolds. □

Let’s consider para-cosymplectic structure on R̄7
3 :

P(
∂

∂xi
) =

∂

∂yi
, P(

∂

∂yi
) =

∂

∂xi
, P(

∂

∂z
) = 0, ξ =

∂

∂z
, η = dz.

Here, η is 1-form, ξ is vector field and ğ1 = (+,−,+,−,+,−,+). ğ1 is pseudo-Riemannian metric.
Also, (x1, y1, x2, y2, x3, y3, z) denotes the cartesian coordinates over R̄7

3. Then (R̄7
3,P, ξ, η, ğ1) is a para-

cosymplectic manifold.
Let Nx be a semi-Riemannian submanifold of R̄7

3 described by ψ : Nx → R̄7
3.

Example 1. For m+ n > 0 and m + n ∈ R with

ψ(m, n, c, t) = (coshm, coshn, sinhn, sinhm, c3, α, t),

ψm = sinh m
∂

∂x1
+ cosh m

∂

∂y2
, ψn = sinh n

∂

∂y1
+ cosh n

∂

∂x2
,

ψc = +3c2
∂

∂x3
, ψt =

∂

∂z
= ξ.

Then, we get

Pψm = sinh m
∂

∂y1
+ cosh m

∂

∂x2
, Pψn = sinh n

∂

∂x1
+ cosh n

∂

∂y2
, Pψc = 3c2

∂

∂y3

describes a pointwise hemi-slant submanifold N 4
x with type-1 whose ambient space is para-cosymplectic

manifold (R̄7
3,P, ξ, η, ğ1) with µ = R2 = cosh2(m+n)(I−η⊗ξ). Actually Dα

n = span{ψm, ψn} is pointwise
slant distribution with hemi-slant function and D⊥

t = span{ψc} is anti-invariant distribution.
It is easy to notice that Dα

n , D⊥
t are integrable. The induced metric tensor gNx on Nx = N θ

a ×k N⊥
b is

given by gNx
= −dm2 + dn

2 + (9c4)dc
2 + dt

2.
Thus, Nx is a pointwise hemi-slant non-trivial warped product type-1 submanifold whose ambient space
is para-cosymplectic manifold R̄7

3 with warping function k = 3c2.

Example 2. For m− n ∈ (0, π2 ) with

ψ(m, n, c, t) = (cosm, cosn, sinm, sinn, sin c, π, t),

ψm = − sinm
∂

∂x1
+ cosm

∂

∂x2
, ψn = − sinn

∂

∂y1
+ cos n

∂

∂y2
,

ψc = cos c
∂

∂x3
, ψt =

∂

∂z
= ξ,

Then, we get

Pψm = − sin m
∂

∂y1
+ cos m

∂

∂y2
, Pψn = − sin n

∂

∂x1
+ cos n

∂

∂x2
, Pψc = cos c

∂

∂y3

describes a pointwise hemi-slant submanifold with type-2 in (R̄7
4,P, ξ, η, ğ1), with µ = R2 = cos2(m−n)(I−

η ⊗ ξ). Dα
n = span{ψm, ψn} is pointwise slant distribution with hemi-slant function and D⊥

t = span{ψc}
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is anti-invariant distribution and Pψc⊥TNx = span{ψm, ψn, ψt}.
It is easy to notice that Dα

n , D⊥
t are integrable. The induced metric tensor gNx on Nx = N θ

a ×k N⊥
b

is given by gNx
= dm

2 − dn
2 + (cos2 c)dc

2 + dt
2. Thus, N 4

x is a pointwise hemi-slant non-trivial warped
product type-2 submanifold whose ambient space is para-cosymplectic manifold R̄7

3 with warping function
k = cosc.

Lemma 5. Let Nx = N θ
a ×kN⊥

b be a pointwise hemi-slant non-trivial warped product type1-2 submanifold
whose ambient space is para-cosymplectic manifold N̄x. Such that ξ ∈ TN⊥

b , then
1) ξ(lnk) = 0.
2) For any Xa,Yb ∈ TN θ

a and Z ∈ TN⊥
b ,

ğ1(h1(Xa,Yb),PZ) = ğ1(h1(Xa,Z), SYb). (27)

Proof. 1) For any Xa ∈ TN θ
a and ξ ∈ TN⊥

b , we obtain ∇̄Xa
ξ = 0. Also Using (5),(6) and from Lemma

4 - (2), we obtain ξ(lnk)Xa = 0 which means that ξ(lnk) = 0, for any non-zero vector field Xa ∈ TN θ
a

that proves 1).
2)Using (5),(3), (8),(6), (7), we derive

ğ1(h1(Xa,Yb),PZ) = ğ1(∇̄XaYb −∇XaYb,PZ)

= −ğ1(∇̄XaPYb,Z)

= −ğ1(∇̄XaSYb,Z)

= −ğ1(−ASYb
Xa +∇⊥

Xa
SYb,Z)

= ğ1(h1(Xa,Z), SYb)

If we relocate Xa with RXa and Yb with RYb in (27) , then we get belove results

ğ1(h1(RXa,Yb),PZ) = ğ1(h1(RXa,Z), SYb), (28)

ğ1(h1(Xa, RYb),PZ) = ğ1(h1(Xa,Z), SRYb), (29)

ğ1(h1(RXa, RYb),PZ) = ğ1(h1(RXa,Z), SRYb). (30)

□

Lemma 6. Let Nx = N θ
a ×kN⊥

b be a pointwise hemi-slant non-trivial warped product type1-2 submanifold
whose ambient space is para-cosymplectic manifold N̄x. Such that ξ ∈ TN θ

a , then
1) ğ1(h1(Za,Wb), SXa) = ğ1(h1(Xa,Za),P,Wb) + (RXalnk)ğ1(Za,Wb),
2) a) For type-1;
ğ1(h1(Za,Wb), SRXa) = ğ1(h1(RXa,Za),PWb) + (Xalnk)cosh

2θğ1(Za,Wb),
b) For type-2 ;
ğ1(h1(Za,Wb), SRXa) = ğ1(h1(RXa,Za),PWb)− (Xalnk)cos

2θğ1(Za,Wb),
for any Za,Wb ∈ TN⊥

b and Xa ∈ TN θ
a .

Proof. Using (8), (5) and Lemma 4-(2), we derive

ğ1(h1(Za,Wb), SXa) = ğ1(h1(Xa,Za), (PXa −RXa))

= ğ1(∇̄ZaWb,PXa)− ğ1(∇ZaWb,PXa)

= ğ1(∇̄ZaPWb,Xa)− ğ1(∇ZaW, RXa).

By using (4) and from Wb and RXa are orthogonality. Also later using (6), (7) and from Lemma 4-(2),
we obtain

ğ1(h1(Za,Wb), SXa) = −ğ1(∇̄Za
PWb,Xa) + ğ1(Wb,∇Za

RXa)

= −ğ1(−APWb
Za,Xa) + ğ1(∇⊥

Za
PWb,Xa)

+ (RXalnk)ğ1(Za,Wb)

= ğ1((h1(Xa,Za),PWb) + (RXalnk)ğ1(Za,Wb).

Therefore, Proof 1 is complete. Now, we will demonstrate proof 2(a) for type-1.
If we replace Xa and RXa in the last equation and using (1), we derive

ğ1(h1(Za,Wb), SXa) = ğ1((h1(Xa,Za),PWb) + (RXalnk)ğ1(Za,Wb)

= ğ1((h1(RXa,Za),PWb) +R2(Xalnk)ğ1(Za,Wb).
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For type-1, (a);

ğ1(h1(Za,Wb), SRXa) = ğ1((h1(RXa,Za),PWb) + cosh2θ(Xalnk)ğ1(Za,Wb).

For type-2, (b);

ğ1(h1(Za,Wb), SRXa) = ğ1((h1(RXa,Za),PWb) + cos2θ(Xalnk)ğ1(Za,Wb).

□

Theorem 6. Let Nx = N θ
a ×k N⊥

b be a pointwise hemi-slant non-trivial warped product type1-2 subman-
ifold whose ambient space is para-cosymplectic manifold N̄x. Then Nx is locally a mixed geodesic warped
product pointwise submanifold N θ

a ×k N⊥
b necessary and sufficient condition

APZaXa = 0, ASXaZa = RXa(φ)Za, ASRXaZa = cosh2θXa(φ)Za (Type1), (31)

APZa
Xa = 0, ASXa

Za = RXa(φ)ZaASRXa
Za = cos2θXa(φ)Za (Tip− 2) (32)

are satisfied for any Xa ∈ Dα
n⊕ < ξ > and Za ∈ D⊥

t , that φ is a function on Nx and Wb(φ) = 0 is
satisfied for any Wb ∈ D⊥

t .

Proof. Using advantage of Lemmas 4 and 5, we demonstrate that Nx is a mixed geodesic warped product
pointwise submanifold. Let Nx be a hemi-slant submanifold with the slant distribution Dα

n⊕ < ξ > and
the anti-invariant distribution D⊥

t with the cases shown in (31) and (32). Also using these conditions
and Theorem 4, the distribution Dα

n⊕ < ξ > describes a totally geodesic foliation and utilizing Lemma
2, D⊥

t is integrable, imagine h⊥ be the second fundamental form of the leaf N⊥
b of D⊥

t in Nx, Also for
any Xa ∈ Dα

n⊕ < ξ > and Wb,Za ∈ D⊥
t .

Utilizing (5), (1), (3), (4) and (8), we have

ğ1(h
⊥(Za,Wb),Xa) = ğ1((∇̄Za

Wb,Xa)

= −ğ1((∇̄Za
PWb,PXa) + η(∇̄Za

PWb)η(PXa)

= −ğ1((∇̄Za
PWb, RXa)− ğ1((∇̄Za

PWb, SXa).

Utilizing (6) and therefore PWb and SXa are orthogonality, we obtain

ğ1(h
⊥(Za,Wb),Xa) = −ğ1((APWb

Za, RXa) + ğ1(PWb, ∇̄Za
SXa).

Utilizing (1),(3),(4) and (9), we get

ğ1(h
⊥(Za,Wb),Xa) = −ğ1((APWb

RXa,Za)− ğ1(Wb, ∇̄ZarSXa)

− ğ1(Wb, ∇̄ZasSXa).

Utilizing first condition of (31) and Corollary 2, we derive

ğ1(h
⊥(Za,Wb),Xa) = ğ1(Wb, ∇̄Za

sinh2θXa) + ğ1(Wb, ∇̄Za
SRXa).

Therefore, orthogonality of Wb with Xa, using (5),(6) and (31), we derive

ğ1(h
⊥(Za,Wb),Xa) = −sinh2θğ1(∇̄ZaWb,Xa)

+ ğ1(Wb, (−ASRXa
Za +∇⊥

Za
SRXa))

= −sinh2θğ1(h⊥(Za,Wb),Xa)− ğ1(ASRXa
Za,Wb),

−cosh2θğ1(h⊥(Za,Wb),Xa) = ğ1(ASRXa
Za,Wb)

= cosh2θXa(φ)ğ1(Za,Wb).

From the describtion of gradient, we obtain

ğ1(h
⊥(Za,Wb),Xa) = −ğ1(Za,Wb)ğ1(gradφ,Xa).

So that, h⊥(Za,Wb) = −ğ1(Za,Wb)ğ1gradφ for vectors Za,Wb ∈ D⊥
t . H = −gradφ and N⊥

b is totally
umbilical in Nx

Now, we explain gradφ is parallel suitable to the normal connection D⊥
t of N⊥

b in Nx. For Xa ∈ Dα
n⊕ <

ξ > and Wb ∈ D⊥
t , we derive

ğ1(DWb
gradφ,Xa) = ğ1(∇Wb

gradφ,Xa)

= Wbğ1(gradφ,Xa)− ğ1(gradφ,∇Wb
Xa)

= Wb(Xa(φ))− ğ1(gradφ, [Wb,Xa])− ğ1(gradφ,∇XaWb)
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= Xa(Wbφ) + ğ1(∇Xa
gradφ,Wb) = 0.

So, Wbφ = 0 is satisfied for every Wb ∈ D⊥
t also ∇Xa

gradφ ∈ Dα
n⊕ < ξ > therefore Dα

n⊕ < ξ > is totally
geodesic. We understand that mean curvature of N⊥

b is parallel. So that, the leaves of D⊥
t are totally

umbilical with parallel mean curvature H = −gradφ. So, N⊥
b is called the extrinsic sphere in Nx. By

considering Hiepko ( [6]), we attain that Nx is a warped product pointwise submanifold and the proof is
completed for type-1 .
In a similarly way, for type-2 is also proved. □

5. An Optimal Inequality

Let Nx = N θ
a ×k N⊥

b be a s-dimensional pointwise hemi-slant non-trivial warped product submanifold
whose ambient space is (2m+1)-dimensional para-cosymplectic manifold N̄x. Such that, N⊥

b is dimension
d1 and N θ

a is dimension d2 = 2p + 1 so ξ is tangent to N θ
a . We take tangent spaces of N⊥

b and N θ
a by

D⊥
t and Dα

n⊕ < ξ >. We create orthonormal frames according to type-1 and type-2. Firstly for type-1,
the orthonormal frames of D⊥

t and Dα
n⊕ < ξ >, respectively;

{E1, E2, .., Ed1
} and {Ed1+1 = E∗1 , ..., Ed1+p = E∗p , Ed1+p+1 = E∗p+1 = sechθRE∗1, ...

, Ed1+2p = E∗2p = sechθRE∗p , Ed1+2p+1 = E∗2p+1 = ξ} that θ is nonconstant.

At the moment, we will give orthonormal frames of the normal subbundles of PD⊥
t , SD

α
n and λ. This

frames respectively are
{Es+1 = Ē1 = PE1, Es+2 = Ē2 = PE2, ..., Es+d1 = Ēd1 = PEd1},
{Es+d1+1 = Ēd1+1 = cschθSE∗1, Es+d1+2 = Ēd1+2 = cschθSE∗2, ..., Es+d1+p = Ēd1+p = cschθSE∗p, Es+d1+p+1 =
Ēd1+p+1 = cschθsechθSRE∗1, ..., Es+d1+p+p = Ēd1+p+p = cschθsechθSRE∗p} and
{E2s = Ēs, ..., E2m+1 = Ē2(m−s+1)}. where θ is the slant function.
Lets assume that
* on D⊥

t : orthonormal basis {Ev}v=1 ,...,d1 , where d1 = dim(D⊥
t ); also, supposed that ğ1(Ev, Ev) = 1.

* on Dα
n : orthonormal basis {E∗w}w=1 ,...,2p+1, where 2p+ 1 = dim(Dα

n) also ğ1(E
∗
w, E

∗
w) = ∓1.

* on PD⊥
t : orthonormal basis {Ev}v=1 ,...,d1

, where d1 = dimP(D⊥
t ) also ğ1(PEv,PEv) = −1.

* on SDα
n : orthonormal basis {E∗w}w=1 ,...,2p+1, where 2p+ 1 = dimS(Dα

n) also ğ1(E
∗
w, E

∗
w) = ∓1.

Theorem 7. Let Nx = N θ
a ×kN⊥

b be a s-dimensional mixed geodesic warped product pointwise hemi-slant
of type-1 submanifold whose ambient space is (2m+ 1 )- dimensional para-cosymplectic manifold N̄x. So
that N θ

a is a proper pointwise slant submanifold of dimension 2p+1 and N⊥
b is a totally real submanifold

of dimension d1 of N̄x. So that N⊥
b is spacelike. Then

1) The squared norm of the second fundamental form of Nx supplies

||h1||2 ≤ d1coth
2 θ||gradlnk||2 , (33)

where grad(lnk) is the gradient of lnk.

2) If the equality sign of (33) holds the same way, then N θ
a is totally geodesic and N⊥

b is totally umbilical
in N̄x.

Proof. From description ||h1||2 = ||h1(Dm,Dm)||2 + 2||h1(Dm,D⊥
t )||2 + ||h1(D⊥

t ,D⊥
t )||2 , that Dm =

Dα
n⊕ < ξ >. Because of Nx is mixed geodesic, the middle term of the right-hand side should be zero. In

that case, we obtain

||h1||2 =

2m+1∑
r=s+1

2p+1∑
v,w=1

ğ1(h1(E
∗
v, E

∗
w), Er)

2 +

2m+1∑
r=s+1

d1∑
l,b=1

ğ1(h1(E
∗
l , E

∗
b), Er )

2

This equation can be seperated for the PD⊥
t , SD

α
n and λ components as follows

||h1||2 =

d1∑
r=1

2p+1∑
v,w=1

ğ1(h1(E
∗
v, E

∗
w), Ēr)

2

+

2p+d1∑
r=d1+1

2p+1∑
v,w=1

ğ1(h1(E
∗
v, E

∗
w), Ēr)

2
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+

2(m−s+1)∑
r=s

2p+1∑
v,w=1

ğ1(h1(E
∗
v, E

∗
w), Ēr)

2

+

d1∑
r=1

d1∑
l,b=1

ğ1(h1(El, Eb), Ēr)
2

+

2p+1∑
r=d1+1

d1∑
l,b=1

ğ1(h1(El, Eb), Ēr)
2

+

2(m−s+1)∑
r=s

d1∑
l,b=1

ğ1(h1(El, Eb), Ēr)
2 (34)

Utilizing( 27) and ( 30), the first term of right-hand side in the last equation vanishes same way and we
should leave all the terms except the fifth term in the last equation, then we have

||h1||2 ≤
∑2p+d1

r=d1+1

∑d1

l,b=1 ğ1(h1(El, Eb), Ēr)
2

Using the frame of SDα
n , we get,

||h1||2 ≤
p∑

w=1

d1∑
l,b=1

ğ1(h1(El, Eb), cschθSE
∗
w)

2

+

p∑
w=1

d1∑
l,b=1

ğ1(h1(El, Eb), cschθsechθSRE
∗
w)

2

Utilizing Lemma 5 and Lemma 6-1, we obtain

||h1||2 ≤ csch2θ

p∑
w=1

d1∑
l,b=1

(RE∗wlnk)
2ğ1(El, Eb)

2

+ coth2θ

p∑
w=1

d1∑
l,b=1

(E∗wlnk)
2ğ1(El, Eb)

2

= (csch2θ

p∑
w=1

(RE∗wlnk)
2 + coth2θ

p∑
w=1

(E∗wlnk)
2

= d1(csch
2θ

p∑
w=1

(RE∗wlnk)
2 + coth2θ

p∑
w=1

(E∗wlnk)
2)

= d1(csch
2θ

p∑
w=1

ğ1(E
∗
w, Rlnk)

2 + coth2θ

p∑
w=1

(E∗wlnk)
2)

By using ( 26), the above equation will be simlified as

||h1||2 ≤ d1[csch
2θ(||Rgradlnk||2 −

p∑
w=1

ğ1(E
∗
p+w, Rgradlnk)

2)

+ coth2θ

p∑
w=1

d1∑
l,b=1

(E∗wlnk)
2ğ1(E

∗
wlnk)

2]

, (for Rgradlnk ∈ Dm and Rξ = 0 )

= d1[csch
2θ(||Rgradlnk||2 − cosh2θ

p∑
w=1

ğ1(E
∗
w, gradlnk)

2)

+ coth2θ

p∑
w=1

(E∗wlnk)
2]
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= d1[coth
2θ||Rgradlnk||2 − coth2θ

p∑
w=1

(E∗wlnk)
2 + coth2θ

p∑
w=1

(E∗wlnk)
2]

Last equation specifies in ( 33) and from the leaving terms in (34), we have the following connections
from the second and the third leaving terms of (34).
ğ1(h1(Dm,Dm)SDα

n) = 0 , ğ1(h1(Dm,Dm), λ) = 0 that intend

h1(Dm,Dm)⊥SDα
n , h1(Dm,Dm)⊥λ⇒ h1(Dm,Dm) ∈ PD⊥

t (35)

Because of a mixed geodesic warped product pointwise submanifold and from Theorem 5 , we derive
ğ1(h1(Dm,Dm),PD⊥

t ) = 0. Such that

h1(Dm,Dm)⊥PD⊥
t (36)

When we take into account (35) and (36), understand that h1(Dm,Dm) = 0 using this connection with
the fact that N θ

a is totaly geodesic in Nx ( [3]).
From the leaving fourth and the sixth terms of (34) on the right side, we determine that ğ1(h1(D⊥

t ,D⊥
t ),PD⊥

t ) =
0, ğ1(h1(D⊥

t ,D⊥
t ), λ) = 0, we get

h1(D⊥
t ,D⊥

t )⊥PD⊥
t , h1(D⊥

t ,D⊥
t )⊥λ⇒ h1(D⊥

t ,D⊥
t ) ∈ SD⊥

t (37)

For a mixed geodesic, from Lemma 5(1), we derive

ğ1(h1(Za,Wb), SXa) = (RXalnk)ğ1(Za,Wb) (38)

for any Xa ∈ TN θ
a and Za,Wb ∈ TN⊥

b .
Therefore, by the connections (37), (38) and substantially N⊥

b is totally umbilical in Nx [3], we obtain
that N⊥

b is totally umbilical in N̄x. □

Remark 1. If N⊥
b manifold of Theorem 7 is totally umbilical and timelike, equation (33) should be

modified by

||h1||2 ≥ d1coth
2 θ||gradlnk||2 , (39)

where grad(lnk) is the gradient of lnk.

Theorem 8. Let Nx = N θ
a ×kN⊥

b be a s-dimensional mixed geodesic warped product pointwise hemi-slant
submanifold whose ambient space is (2m+1)- dimensional para-cosymplectic manifold N̄x. So that N θ

a is
a pointwise slant submanifold and N⊥

b is a totally real submanifold of dimension d1 of N̄x. Hence, N⊥
b

is spacelike and timelike. Then, (for type-2)

||h1||2 ≤ d1cot
2θ||gradlnk||2 (respectively, ||h1||2 ≥ d1cot

2θ||gradlnk||2 ), (40)

where grad(lnk) is the gradient of lnk.
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Forced vibrations of a thin viscoelastic shell immersed in fluid under the effect of damping
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Abstract. The plane strain problem for low-frequency forced vibrations of a fluid-loaded thin vis-

coelastic shell is considered. A small structural damping is incorporated using the concept of a complex
Young’s modulus. The two-term asymptotic expansion is derived assuming that the structural damping

is of the same order as the small thickness of the shell. It is demonstrated that the effect of the structural

damping is remarkably greater than that of the radiation damping and the latter can be neglected in
the vast majority of the problems.
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1. Introduction

Structural damping plays a significant role in the dynamic analysis of mechanical systems since it
governs the mechanism of energy dissipation which is crucial for various technical applications in civil,
mechanical, naval and automotive engineering, e.g. see [1], [2], [3], [4] and references therein. There is
a great number of publications on the subject. In particular, the vibrations of viscoelastic fluid-loaded
shells were treated in numerical contributions, including [5], [6], [7], [8], [9], [10] to mention a few. At
the same time, the asymptotic methods widely spread in the thin shell theory have been mainly applied
within the purely elastic framework, e.g., see [11], [12], [13], [14], [15], [16].

The recent asymptotic analysis in [17] and [18] show that the radiation damping of low-frequency
resonant vibrations of purely elastic cylindrical shells is remarkably small. It is natural to question,
in this case, whether the formulations not taking into consideration structural damping may provide
adequate evaluation of dynamic behaviour. This observation motivates to extend the framework of [17]
to viscoelastic shells.

In this paper, the viscoelastic properties are incorporated using the simplest model of the structural
damping based on the concept of a complex Young’s modulus, see [19]. The imaginary part of the latter
stands for energy dissipation. It is assumed to be of the same order that the relative thickness of the
shell.

Instead of scattering problem tackled in [17], below we deal with a radiation problem. A time-harmonic
load is assumed to be specified along the inner surface of the shell, while the outer face is subject to fluid
loading. The developed asymptotic procedure is oriented to a coupled fluid-structure interaction problem
similar to the above mentioned publications [17], [18], and also [20], studying a flat, fluid-loaded elastic
layer. It was noted that for a long time, the asymptotic results for thin-walled bodies with traction free
faces were readily adapted for modeling of fluid-structure interaction ignoring, in a sense, the effect of
coupling, e.g., see [11].

We expand displacement, stresses and fluid pressure in the Fourier series across the polar angle prior
to the asymptotic integration across the shell thickness. A two-term asymptotic solution is derived. As
might be expected, a small term corresponding to the structural damping does not appear at leading
order. However, it is shown that it is significantly greater than the contribution of the damping caused
by radiation. The most important result of the presented analysis is that the latter may usually be
neglected.

hazely@baskent.edu.tr; 0000-0001-8769-9173. 2025 Ankara University
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2. Statement of the Problem

Consider a thin cylindrical shell with thickness 2h and a mid-surface radius R immersed in a com-
pressible fluid for which η = h/R ≪ 1 is a small geometric parameter, see Fig.1. We specify curvilinear
coordinates α2 and α3 for which 0 ≤ α2 < 2πR and −h ≤ α3 ≤ h. The 2D plane strain equations

Figure 1. Schematic diagram of a thin cylindrical shell immersed in a fluid.

governing the time-harmonic vibrations of a shell, omitting the factor exp(−iωt), with ω representing the
angular frequency and t denoting time, are given by, see [12],

R

R+ α3

∂σ22

∂α2
+

∂σ32

∂α3
+

2

R+ α3
σ32 + ρω2v2 = 0, (1)

R

R+ α3

∂σ32

∂α2
+

∂σ33

∂α3
− 1

R+ α3
σ22 +

1

R+ α3
σ33 + ρω2v3 = 0, (2)

where σij (σij = σji) and vj , i, j = 2, 3, are the stresses and displacements, respectively and ρ is the
mass density of the shell. The corresponding stress-displacement relations are also presented as

σ22 =
E

1− ν2

(
R

R+ α3

∂v2
∂α2

+
1

R+ α3
v3

)
+

ν

1− ν
σ33, (3)

E
∂v3
∂α3

= (1− ν2)σ33 − ν(1 + ν)σ22, (4)

σ32 =
E

2(1 + ν)

(
R

R+ α3

∂v3
∂α2

+
∂v2
∂α3

− 1

R+ α3
v2

)
. (5)

The mechanical parameters of the considered problem are the Young’s modulus E and Poisson’s ratio ν.
To incorporate the effect of viscosity in the simplest manner, we define the Young’s modulus in a complex
form, e.g., see [19]

E = E0(1 + iα), (6)

where E0 and α are real constants. The fluid pressure is governed by the 2D Helmholtz equation

∆p+
ω2

c2f
p = 0 (7)

where p is fluid pressure and cf is the wave speed in the fluid. 2D Laplace operator ∆ is given by

∆ =
R2

(R+ α3)2
∂2

∂α2
2

+
1

R+ α3

∂

∂α3
+

∂2

∂α2
3

. (8)

The boundary conditions along the shell faces are given by

σ32 = 0, σ33 = q at α3 = −h, (9)
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σ32 = 0, σ33 = −p, and v3 =
1

ρfω
2

∂p

∂α3
at α3 = h, (10)

where q is the force applied at the inner surface of the shell and ρf is the fluid density.
In the dimensionless coordinates θ = α2/R and ζ = α3/h (0 ≤ θ < 2π and −1 ≤ ζ ≤ 1 inside the shell

or ζ > 1 outside the shell) the displacement and stress components of the shell, the acoustic pressure and
the external force can be presented as

v2(θ, ζ) = u2(ζ) sin(nθ), v3(θ, ζ) = u3(ζ) cos(nθ), (11)

σ22(θ, ζ) = s22(ζ) cos(nθ), σ32(θ, ζ) = s32(ζ) sin(nθ), σ33(θ, ζ) = s33(ζ) cos(nθ), (12)

p(θ, ζ) = P (ζ) cos(nθ), q(θ, ζ) = Q(ζ) cos(nθ). (13)

3. Scaling

Let us now define the dimensionless equations in the previous section similar to those in [17] setting

u2 = Ru∗
2, u3 = Ru∗

3, (14)

s22 = E0ηs
∗
22, s32 = E0η

2s∗32, s33 = E0η
2s∗33 (15)

P = E0η
2P ∗, Q = E0η

3Q∗. (16)

where the starred quantities are assumed to be of order unity. In addition, we assume that the viscosity
coefficient (6) can be taken as

α = ηα∗
0. (17)

We also specify the dimensionless frequency by

Ω = η−3/2ωR

√
ρ

E0
, Ω ∼ 1. (18)

The fluid pressure, subject to the radiation condition, e.g., see [21], is found from equation (7) and is
given by

p = p0H
(2)
n

(
ωR(1 + ηζ)

cf

)
. (19)

where H
(2)
n is the Hankel function of the second kind, see [22], and p0 is an unknown constant.

Next, combining boundary conditions (10)2 and (10)3, and substituting (19) there, accounting (11)2,
(12)3 and (13)1, we have

u3 + s33
H

cfρf
= 0 (20)

where

H =

(
H

(2)
n (z)

)′
H

(2)
n (z)

at z = Ωη3/2
1

cf

√
E0

ρ
(1 + η). (21)

Inserting the dimensionless quantities (14), (15) and (17) into the equations of motion (1)–(2) and the
relations (3)–(5), we obtain

∂s∗32
∂ζ

− n

1 + ηζ
s∗22 +

2η

1 + ηζ
s∗32 + η2Ω2u∗

2 = 0, (22)

∂s∗33
∂ζ

+
nη

1 + ηζ
s∗32 −

1

1 + ηζ
s∗22 +

η

1 + ηζ
s∗33 + η2Ω2u∗

3 = 0 (23)

and

ηs∗22 =
1 + iηα0

1− ν2
1

1 + ηζ
(nu∗

2 + u∗
3) +

ν

1− ν
η2s∗33, (24)

(1 + iηα0)
∂u∗

3

∂ζ
= (1− ν2)η3s∗33 − ν(1 + ν)η2s∗22, (25)
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η3s∗32 =
1 + iηα0

2(1 + ν)

(
∂u∗

2

∂ζ
− η

1 + ηζ
(u∗

2 + nu∗
3)

)
. (26)

In addition, we set

H = η−3/2H∗, (27)

where, according to [22],

H∗ =− ncf
Ω(1 + η)

√
ρ

E0

(
1 +

n− 2

4(n− 1)
Ω2η3(1 + η)2

E0

c2fρ
+ . . .

. . .+ i
π

22n−1c2nf n ((n− 1)!)
2Ω

2nη3n(1 + η)2n
(
E0

ρ

)n

+ . . .

)
.

(28)

The contact conditions (9) and (10) become

s∗32 = 0, ζ = ±1 and s∗33 = ηQ∗, ζ = −1, (29)

ηΩu∗
3 +

1

cfρf

√
ρ

E0
H∗s∗33 = 0, ζ = 1. (30)

In what follows, we expand all the started quantities in the asymptotic series as

f∗ = f (0) + ηf (1) + η2f (2) + . . . . (31)

4. Asymptotic Solution

Let us start by integrating (25) and (26) with respect to the thickness coordinate ζ to get at leading
order

u
(0)
3 = U

(0)
3 and u

(0)
2 = U

(0)
2 , (32)

where the unknown constants U
(0)
3 and U

(0)
2 are, due to (24), related by

U
(0)
2 = − 1

n
U

(0)
3 . (33)

Formula (33) corresponds to the circumferential inextensibility of the mid-surface of a cylindrical shell,
see [23].

Then, integrating (22) and (23) with respect to the thickness variable, we obtain

s
(0)
3m = −n3−m

∫ 1

ζ

s
(0)
22 ds, m = 2, 3. (34)

Applying the conditions (29), we deduce ∫ 1

−1

s
(0)
22 ds = 0. (35)

At next order, first, we integrate (25) in the thickness variable having

u
(1)
3 = U

(1)
3 (36)

where U
(1)
3 is an unknown constant. In the same manner, integrating (26) in ζ and employing the relation

(33), we get

u
(1)
2 = −1− n2

n
ζU

(0)
3 + U

(1)
2 (37)

and

U
(1)
2 = − 1

n
U

(1)
3 . (38)

Now, integrating (24) and taking into account the latter relation, we arrive at

s
(0)
22 = − (1− n2)

1− ν2
ζU

(0)
3 . (39)

As a result, formulae (34) may be rewritten as

s
(0)
3m = n3−m (1− n2)

2(1− ν2)
(1− ζ2)U

(0)
3 . (40)
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Next, we integrate (23) across the thickness and adopt formulae (39) and (40) together with the boundary
condition (29)2 to get ∫ 1

−1

s
(1)
22 ds =

(
ρf
ρn

Ω2 +
2n2(1− n2)

3(1− ν2)

)
U

(0)
3 −Q∗. (41)

We also integrate (22) in ζ and utilize formula (39). Then, we subject the resulting equation to condition
(29)1. As a result, we have

s
(1)
32 = −n

∫ 1

ζ

s
(1)
22 ds+

2n(1− n2)

3(1− ν2)
. (42)

Taking ζ = −1 in the last equation, taking into consideration (29)1 and (41), we derive(
Ω2 − 2ρ(1− n2)2n

3ρf (1− ν2)

)
U

(0)
3 =

ρn

ρf
Q∗. (43)

It is clear that the effect of the material damping, i.e., the parameter α0, on the stress components and
the vertical displacement does not appear in this equation. To incorporate the effect of this parameter,
we need to consider the next order approximation.

Following the same process carried out in the previous sections and omitting intermediate calculations,
we get from (25)

u
(2)
3 =

ν

2(1− ν)
(1− n2)ζ2U

(0)
3 + U

(2)
3 . (44)

Similarly, it follows from (26) that

u
(2)
2 = −1− n2

n
ζU

(1)
3 + U

(2)
2 . (45)

Then, integration of equation (24), taking into consideration (32), (37), (38), (40), (42), (44) and (45),
results in

U
(2)
2 +

1

n
U

(2)
3 = −ν(1− n2)

2(1− ν)n
U

(0)
3 . (46)

Inserting the last formula back into equation (23), we obtain

s
(1)
22 = −1− n2

1− ν2
ζU

(1)
3 +

1− n2

1− ν2
(
ζ2 − iζ

)
U

(0)
3 . (47)

Now, we revisit equation (23), using the dimensionless impenetrability condition (30) taken at first order,
and also equations (39), (47) and (48). The result is

s
(1)
33 =

(1− n2)(1− ζ2)

2(1− ν2)
U

(1)
3 +

(
5ζ3 − 3ζ − 2 + 4n4(1− ζ3)− n4(2− 3ζ + ζ3)

6(1− ν2)

+
ρf
ρn

Ω2 + iα0
(1− ζ2)(1− n2)

2(1− ν2)

)
U

(0)
3 .

(48)

This formula allows us to rewrite formula (42) as

s
(1)
32 =

n(1− n2)

2(1− ν2)
(1− ζ2)U

(1)
3 − (1− n2)(1− ζ2)

1− ν2

(
nζ − iα0

2

)
U

(0)
3 . (49)

Using (30) and integrating (22) and (23) along the thickness at second order, we derive, respectively,∫ 1

−1

s
(2)
22 dζ =

2(1− n2)

3(1− ν2)
U

(1)
3 −

(
2Ω2

n2
− iα0

2(1− n2)

3(1− ν2)

)
U

(0)
3 (50)

and ∫ 1

−1

s
(2)
22 dζ =

(
ρf
ρn

Ω2 +
2n2(1− n2)

3(1− ν2)

)
U

(1)
3(

2ρn+ 3ρf
ρn

Ω2 − 2(1− n2)

3(1− ν2)

(
1− n2 − iα0n

2
))

U
(0)
3 . (51)
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Comparing (50) and (51), we finally have(
Ω2 − 2ρ(1− n2)2n

3ρf (1− ν2)

)
U

(1)
3 =−

(
Ω2 − 2ρ(1− n2)2n

3ρf (1− ν2)

)
U

(0)
3

− 2

(
Ω2 +

ρ

ρf

(
1 + n2

n

)
Ω2 − iα0

ρ(1− n2)2n

3ρf (1− ν2)

)
U

(0)
3 .

(52)

5. Discussion

Let us set W = U
(0)
3 + ηU

(1)
3 . Then, we obtain from (43) and (52)

W =
Q∗

g(Ω)

ρn

ρf
(1− η), (53)

where

g(Ω) = Ω2 − 2ρn(1− n2)2

3ρf (1− ν2)
+ η

(
2Ω2

(
1 +

ρ(1 + n2)

ρfn

)
− iα0

2ρn(1− n2)2

3ρf (1− ν2)

)
. (54)

The roots of the equation g(Ω) = 0 correspond to the resonance frequencies. Let us adapt a two-term
expansion Ω2 = Ω2

0 + ηΩ2
1 + . . .. In this case, we may rewrite (54) as

g(Ω) = 2Ω0

(
Ω− Ω0 + ηΩ0

(
1 +

ρ(1 + n2)

ρfn
− iα0

2

))
(55)

in which

Ω2
0 =

2ρn(1− n2)2

3ρf (1− ν2)
. (56)

Thus, the approximate vertical displacement component takes the form

W =
ρn

2ρfΩ0

Q∗

Ω− Ω0 + ηΩ0

(
1 +

ρ(1 + n2)

ρfn
− iα0

2

) (57)

predicting the complex resonance frequencies

Ω = Ω0 − ηΩ0

(
1 +

ρ(1 + n2)

ρf n
− iα0

2

)
. (58)

This formula demonstrates the role of the small viscosity of interest.
From the above derivation, it is clear that the damping due to the radiation corresponding to a small

imaginary term in (28) is far beyond the accuracy of (57) taking into account the structural damping
defined by the parameter α0. As it was shown in [17], the order of the damping caused by the radiation
is of order O(η3n) is negligible compared with the considered structural damping which is of O(η) as
predicted by the asymptotic formulae above. Figures 2 and 3 illustrate the resonant behaviour of a thin
cylindrical shell immersed in a fluid at n = 2 and n = 3 for the vertical displacement normalised by Q∗

(see, equation (57)). In all numerical calculations, the problem parameters are ρ = 2790 kg/m3, ν = 0.3,
and ρf = 1000 kg/m3.

6. Concluding Remarks

An asymptotic procedure is developed for forced low-frequency vibrations of a thin viscoelastic cylin-
drical shell immersed in fluid. The effect of viscosity is accounted by adapting the concept of a complex
Young’s modulus.

Refined asymptotic formulae for the shell transverse displacement and the related complex resonance
frequency are derived. They demonstrate that the incorporated effect of structural damping is much
greater than the contribution of the damping due to the radiation of vibration energy into the fluid. As
a result, the latter can be ignored in practical applications. This is also beneficial since its evaluation
requires retaining extra higher order terms in the expansion (28), see also [17] for more details.

The proposed approach has a clear potential to be extended to more sophisticated models of viscoelas-
tic behaviour as well as to a transversely inhomogeneous fluid-loaded shell, e.g., see [18]. The obtained
results can also be readily generalized to scattering problems, including 3D ones.
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5.2 5.4 5.6 5.8 6.0

2

4

6

8

10

12

14

Ω

|W
/Q

*
|

n=2

Figure 2. Displacement (57) for n = 2 with the Poisson ratio ν = 0.3 and η = 0.01
with α0 = 1 (solid line), α0 = 2 (dashed red line) and α0 = 3 (dashed orange line).
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Figure 3. Displacement (57) for n = 3 with the Poisson ratio ν = 0.3 and η = 0.01
with α0 = 1 (solid line), α0 = 2 (dashed red line) and α0 = 3 (dashed orange line).
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Abstract. In this study, new lemmas on p-convex and s-p-convex functions were derived utilizing the

integral
∫ k
j

(xp−jp)f (kp−xp)gm(x)

x(f+g)p dx. Through this equality, new integral inequalities were established,

and novel upper bounds were obtained with the aid of Euler’s beta and hypergeometric functions. The

results provided new inequalities for the class of classical convex functions and the class of harmonic
convex functions.
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1. Introduction

Recently, new and innovative approaches to classical convexity principles have been integrated to
develop extended and generalised ideas in various fields. These developments include p−convex functions
and s-p-second kind convex functions.

Definition 1. A function m : I ⊂ (0,∞) → R is said to be p− convex, if

m
(
[ujp + (1− u)kp]

1/p
)
≤ um(j) + (1− u)m(k), (1)

for all j, k ∈ I and u ∈ [0, 1](see [8]).

For some new research, results and generalisations for the p−convex function (see [5], [6], [8], [9], [11],
[12]). In definition 1, for p = 1, a p− convex function reduces to a convex function, and for p = −1, a
p−convex function reduces to a harmonically convex (HA) function.

Definition 2. Let s ∈ [0, 1] and p ∈ R\{0}. A function m : I ⊂ (0,∞) → [0,∞) is said to be the
s− p-convex function in second kind, if

m
(
[ujp + (1− u)kp]

1
p

)
≤ usm(j) + (1− u)sm(k), (2)

for all j, k ∈ I and u ∈ [0, 1] (see [2]).

In inequality 2, for s ∈ [0, 1], if p = 1 and s = 1, it corresponds to the definition of convexity; if p = −1
and s = 1, it corresponds to the definition of harmonically convex function; if p = 1, it corresponds to
the definition of s−convexity in the second kind; if s = 1, it corresponds to the definition of p-convexity.
For some new research, results, and generalizations for the s− p-convex function. (see [2], [3].)

The Gauss-Jacobi typical generalised quadrature formula is a well-known mathematical inequality with
an significant position in the literature and is defined as follows:∫ k

j

(x− j)p(k − x)qm(x)dx =

m∑
j=0

Bm,jm (δj) + ℜm[m] (3)

1 sercan.turhan@giresun.edu.tr-Corresponding author; 0000-0002-4392-2182
2 aykut.90@windowslive.com; 0009-0007-2478-841X
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for certain Bm,j , δj and rest term ℜm[m] (see [4]).
In (see [7], [10], [13], [14]), the authors established several new integral inequalities concerning the left-
hand side of equality 3 via several kinds of convexity.

Recall the following special functions, called beta functions and hypergeometric functions:
For Re(j),Re(k) > 0

β(j, k) =

∫ 1

0

uj−1(1− u)k−1du

The function is defined as the beta function. This integral is convergent for j > 0 and k > 0 (see [1]).
For g > k > 0, |z| < 1,

2F1(j, k; g; z) =
1

β(k, g − k)

∫ 1

0

uk−1(1− u)g−k−1(1− zu)−jdu

The function defined in the form of is called Hypergeometric function [1].

In their study, İ. İşcan et al. extended the generalized quadrature formula known in the literature as
the Gauss-Jacobi integral equality to harmonic convex functions. Utilizing this lemma, they produced
new integral inequalities and findings for harmonic convex functions. The fundamental lemma upon
which their work is based is stated as follows:

Lemma 1. [7] Let m : [j, k] ⊆ (0,∞) → R be a function integrable on the interval [j, k] for fixed f, g > 0,
then

k∫
j

(x− j)f (k − x)gm(x)dx = jf+1kg+1(k − j)f+g+1

1∫
0

tf (1− t)g

Af+g+2
t

m

(
jk

At

)
dt, (4)

where At = tj + (1− t)k. Specifically, if f = g, the following equation is obtained:

k∫
j

(x− j)f (k − x)fm(x)dx = (jk)f+1(k − j)2f+1

1∫
0

tf (1− t)f

A2f+2
t

m

(
jk

At

)
dt.

The primary aim of this article was to consider the integral expression∫ k

j
(xp−jp)f (kp−xp)gm(x)

x(f+g)p dx as a new lemma for p−convex and s−p−convex functions. Subsequently, new

theorems were contemplated in light of this lemma, leading to novel upper bounds for different classes of
convex functions based on the Gauss-Jacobi expression. These upper bounds revealed new limits within
the classes of classical convex functions and harmonic convex functions for varying values.

2. Main Result

We will use Lemmas 2 and 3 to obtain some new integral inequalities for p−convex and s− p−convex
functions.

Lemma 2. m : [j, k] ⊆ [0,∞) → R be a function such that m ∈ L[j, k]. For f, g > 0, p < 0 the following
equality holds.∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx =

(kp − jp)
f+g+1

p

∫ 1

0

uf (1− u)gm
(
(ukp + (1− u)jp)

1/p
)

(ukp + (1− u)jp)
f+g+ p−1

p

du. (5)

Proof. The intended result is easily calculated by taking x = (ukp + (1− u)jp)
1/p

and changing the
variable. □

Conclusion 1. If p = −1 is taken in Lemma 2, [7, Lemma 1] is obtained.

Lemma 3. m : [j, k] ⊆ [0,∞) → R be a function such that m ∈ L[j, k]. For f, g > 0, p > 0 the following
equality holds∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx =

(kp − jp)
f+g+1

p

∫ 1

0

(1− u)fugm
(
(ujp + (1− u)kp)

1/p
)

(ujp + (1− u)kp)
f+g+

(p−1)
p

du. (6)
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Proof. The intended result is easily calculated by taking x = (ujp + (1− u)kp)
1/p

and changing the
variable. □

Conclusion 2. If p = 1 then equality 6 in Lemma 3, then we get:∫ k

j

(x− j)
f
(k − x)

g
m(x)

x(f+g)
dx = (k − j)f+g+1

∫ 1

0

(1− u)fugm(uj + (1− u)k)

(uj + (1− u)k)
f+g

du

Theorem 1. Let m : [j, k] ⊆ [0,∞) → R be a function such that m ∈ L[j, k]. If m is p − convex on
[j, k] for some fixed f, g > 0 then :
a) For p < 0∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx (7)

≤ (kp − jp)
f+g+1

pj(f+g+1)p−1

[
m(k)β(f + 2, g + 1)2F1

(
f + g +

p− 1

p
, f + 2; g + f + 3; 1− kp

jp

)
+m(j)β(f + 1, g + 2)2F1

(
f + g +

p− 1

p
, f + 1; g + f + 3; 1− kp

jp

)]

b) For p > 0∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx (8)

≤ (kp − jp)
f+g+1

pk(f+g+1)p−1

[
m(j)β(g + 2, f + 1)2F1

(
f + g +

(p− 1)

p
, g + 2; g + f + 3; 1− jp

kp

)
+m(k)β(g + 1, f + 2)2F1

(
f + g +

(p− 1)

p
, g + 1; g + f + 3; 1− jp

kp

)]

Proof. Since m is p− convex on [j, k],using the lemma 2 for all u ∈ [0, 1] we have∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx

=
(kp − jp)

f+g+1

p

∫ 1

0

uf (1− u)gm
(
(ukp + (1− u)jp)

1/p
)

(ukp + (1− u)jp)
f+g+ p−1

p

du (9)

≤ (kp − jp)
f+g+1

p

∫ 1

0

uf (1− u)g[um(k) + (1− u)m(j)]

(ukp + (1− u)jp)
f+g+ p−1

p

du

=
(kp − jp)

f+g+1

p

∫ 1

0

uf (1− u)g[um(k) + (1− u)m(j)](
jp
(
1−

(
1− kp

jp

)
u
))f+g+ p−1

p

du

=
(kp−jp)f+g+1

p

(
m(k)

∫ 1

0
uf+1(1−u)g

(jp(1−(1− kp

jp )u))
f+g+

p−1
p

du+m(j)
∫ 1

0
uf (1−u)g+1

(jp(1−(1− kp

jp )u))
f+g+

p−1
p

du

)

=
(kp − jp)

f+g+1

pj(f+g+1)p−1

m(k)

∫ 1

0

uf+1(1− u)g(
1−

(
1− kp

jp

)
u
)f+g+ p−1

p

du+m(j)

∫ 1

0

uf (1− u)g+1(
1−

(
1− kp

jp

)
u
)f+g+ p−1

p

du


where a simple calculation gives∫ 1

0

uf+1(1− u)g(
1−

(
1− kp

jp

)
u
) p−1

p

du = β(f + 2, g + 1)2F1

(
f + g +

p− 1

p
, f + 2, g + f + 3; 1− kp

jp

)
(10)
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and

∫ 1

0

uf (1− u)g+1(
1−

(
1− kp

jp

)
u
) p−1

p

du = β(f + 1, g + 2)2F1

(
f + g +

p− 1

p
, f + 1, g + f + 3; 1− kp

jp

)
(11)

Substituting equations 10 and 11 into the inequality 9, we obtain the required result. The proof is thus
complete.

b) Using Lemma 3, inequality 8 is obtained by applying a similar proof method. □

Conclusion 3. If p = −1 is taken in inequality 7, [7, Inequality of (2.2)] is obtained.

Conclusion 4. If it is taken p = 1 in inequality 8, then the following inequality is obtained:

∫ k

j

(x− j)
f
(k − x)

g
m(x)

xf+g
dx ≤ (k − j)f+g+1

kf+g
[m(j)β(g + 2, f + 1) +m(k)β(g + 1, f + 2)]

Theorem 2. Let m : [j, k] ⊆ [0,∞) → R be a function such that m ∈ L[j, k] and α ≥ 1 .If |m|α is
p− convex on [j, k] for some fixed f, g > 0 then:
a) For p < 0

∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx (12)

≤ (kp − jp)
f+g+1

pj(f+g+1)p−1

(
β(f + 1, g + 1)2F1

(
f + g +

p− 1

p
, f + 1; f + g + 2; 1− kp

jp

))1− 1
α

×


|m(k)|αβ(f + 2, g + 1)2F1

(
f + g + p−1

p , f + 2; f + g + 3; 1− kp

jp

)
+

|m(j)|αβ(f + 1, g + 2)2F1

(
f + g + p−1

p , f + 1; f + g + 3; 1− kp

jp

)


1
α

b) For p > 0

∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx (13)

≤ (kp − jp)
f+g+1

pk(f+g)p−1

(
β(g + 1, f + 1)2F1

(
f + g +

p− 1

p
, g + 1; f + g + 2; 1− jp

kp

))1− 1
α

×


|m(j)|αβ(g + 2, f + 1)2F1

(
f + g + p−1

p , g + 2; g + f + 3; 1− jp

kp

)
+

|m(k)|αβ(g + 1, f + 2)2F1

(
f + g + p−1

p , g + 1; g + f + 3; 1− jp

kp

)


1
α
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Proof. Since |m|α is p − convex on [j, k], using Lemma 2, by the power mean integral inequality for all
u ∈ [0, 1] we have∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx

≤ (kp − jp)
f+g+1

p

∫ 1

0

uf (1− u)g
∣∣∣m((ukp + (1− u)jp)

1/p
)∣∣∣

(ukp + (1− u)jp)
f+g+ p−1

p

du

≤ (kp−jp)f+g+1

p

(∫ 1

0
uf (1−u)g

(ukp+(1−u)jp)
f+g+

p−1
p

du

)1− 1
α
(∫ 1

0

uf (1−u)g|m((ukp+(1−u)jp)1/p)|α

(ukp+(1−u)jp)
f+g+

p−1
p

du

) 1
α

≤ (kp − jp)
f+g+1

p

(∫ 1

0
uf (1−u)g

(ukp+(1−u)jp)
f+g+

p−1
p

du

)1− 1
α
(∫ 1

0
(u|m(k)|α+(1−u)|m(j)|α )

(ukp+(1−u)jp)
f+g+

p−1
p

du

) 1
α

= (kp−jp)f+g+1

p

(∫ 1

0
uf (1−u)g

j(g+f+1)p−1(1−(1− kp

jp )u))
f+g+

p−1
p

du

)1− 1
α
(∫ 1

0
uf (1−u)g(u|m(k)|α+(1−u)|m(j)|α)

j(g+f+1)p−1(1−(1− kp

jp )u)
f+g+

p−1
p

du

) 1
α

=
(kp − jp)

f+g+1

pj(f+g+1)p−1

(
β(f + 1, g + 1)F1

(
f + g +

p− 1

p
, f + 1; f + g + 2; 1− kp

jp

))1− 1
α

×


|m(k)|αβ(f + 2, g + 1)2F1

(
f + g + p−1

p , f + 2; f + g + 3; 1− kp

jp

)
+

|m(j)|αβ(f + 1, g + 2)2F1

(
f + g + p−1

p , f + 1; f + g + 3; 1− kp

jp

)


1
α

which completes the proof.

b) Using Lemma 3, inequality 13 is obtained by applying a similar proof method. □

Conclusion 5. If p = −1 is taken in inequality 12, [7, Inequality of (2.5)] is obtained.

Conclusion 6. If p = 1 in inequality 13, the following inequality is obtained:∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

xf+g
dx ≤ (k − j)f+g+1β(g + 1, f + 1)1−

1
α

 |m(j)|αβ(g + 2, f + 1)
+

|m(k)|αβ(g + 1, f + 2)

 1
α

Theorem 3. Let m : [j, k] ⊆ [0,∞) → R be a function such that m ∈ L[j, k] and α > 1 .If |m|α is
p− convex on [j, k] for some fixed f, g > 0 then :
a) For p < 0∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx (14)

≤ (kp − jp)
f+g+1

pj(f+g+1)p−1
β

1
δ (fδ + 1, gδ + 1)2F

1
δ
1

((
f + g +

p− 1

p

)
δ, fδ + 1; (g + f)δ + 2; 1− kp

jp

)
×
(
|m(k)|α + |m(j)|α

2

)1/α

a) For p > 0∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx (15)

≤ (kp − jp)
f+g+1

pk(f+g+1)p−1
β

1
δ (gδ + 1, fδ + 1)2F

1
δ
1

((
f + g +

p− 1

p

)
δ, gδ + 1; (f + g)δ + 2; 1− jp

kp

)
×
(
|m(j)|α + |m(k)|α

2

)1/α
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where 1/α+ 1/δ = 1 .

Proof.
a) Since |m|α is p − convex on [j, k], using Lemma 2, by the Hölder integral inequality for all u ∈ [0, 1]
we have∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx

≤ (kp − jp)
f+g+1

p

∫ 1

0

uf (1− u)g

(ukp + (1− u)jp)
f+g+ p−1

p

∣∣∣m((ukp + (1− u)jp)
1/p
)∣∣∣ du

≤ (kp − jp)
f+g+1

p

(∫ 1

0

ufδ(1− u)gδ

(ukp + (1− u)jp)(
f+g+ p−1

p )δ
du

) 1
δ (∫ 1

0

∣∣∣m((ukp + (1− u)jp)
1
p

)∣∣∣α du

) 1
α

≤ (kp − jp)
f+g+1

p

(∫ 1

0

ufδ(1− u)gδ

(ukp + (1− u)jp)(
f+g+ p−1

p )δ
du

) 1
δ (∫ 1

0

(u|m(k)|α + (1− u)|m(j)|α) dt
) 1

α

= (kp−jp)f+g+1

p

∫ 1

0
ufδ(1−u)gδ

j((f+g+1)p−1)δ
(
1−

(
1− kP

jP

)
u
)(f+g+

p−1
p )δ

du

 1
δ (∫ 1

0
(u|m(k)|α + (1− u)|m(j)|α) du

) 1
α

=
(kp − jp)

f+g+1

pj(f+g+1)p−1
β

1
δ (fδ + 1, gδ + 1)2F

1
δ
1

((
f + g +

p− 1

p

)
δ, fδ + 1; (g + f)δ + 2; 1− kp

jp

)
×
(
|m(k)|α + |m(j)|α

2

)1/α

which completes the proof.

b) Using Lemma 3, inequality 15 is obtained by applying a similar proof method. □

Conclusion 7. If p = −1 is taken in inequality 14, [7, Inequality of (2.6)] is obtained.

Conclusion 8. If p = 1 in inequality 15, the following inequality is obtained:∫ k

j

(x− j)f (k − x)gm(x)

xf+g
dx

≤ (k − j)f+g+1

kf+g
β

1
δ (gδ + 1, fδ + 1)2F

1
δ
1

(
(f + g)δ, gδ + 1; (f + g)δ + 2; 1− j

k

)1/α

×
(
|m(j)|α + |m(k)|α

2

)1/α

Theorem 4. Let m : [j, k] ⊆ [0,∞) → R be a function such that m ∈ L[j, k] and α > 1 .If |m|α is
p− convex on [j, k] for some fixed f, g > 0 then :
a) For p < 0∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx (16)

≤ (kp − jp)
f+g+1

pj(f+g+1)p−1

 β
1
δ (fδ + 1, gδ + 1)

[
2F1

((
f + g + p−1

p

)
α, 2; 3; 1− kp

jp

)
|m(k)|α

2

+2F1

((
f + g + p−1

p

)
α, 1; 3; 1− kp

jp

)
|m(j)|α

2

] 

b) For p > 0∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx (17)
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≤ (kp − jp)
f+g+1

pk((f+g+1)p−1)

 β
1
f (gδ + 1, fδ + 1)

[
2F1

((
f + g + p−1

p

)
α, 2; 3; 1− jp

kp

)
|m(j)|α

2

+2F1

(
(f + g + p−1

p )α, 1; 3; 1− jp

kp

)
|m(k)|α

2

] 1
α


where 1/α+ 1/δ = 1 .

Proof.
a) Since |m|α is p − convex on [j, k], using Lemma 2, by the Hölder integral inequality for all u ∈ [0, 1]
we have∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx

≤ (kp − jp)
f+g+1

p

∫ 1

0

uf (1− u)g

(ukp + (1− u)jp)
f+g+ p−1

p

∣∣∣m((ukp + (1− u)jp)
1/p
)∣∣∣ du

≤ (kp − jp)
f+g+1

p

(∫ 1

0

ufδ(1− u)gδdu

) 1
δ

×

(∫ 1

0

1

(ukp + (1− u)jp)
(f+g+ p−1

p )α

∣∣∣m (ukp + (1− u)jp)
1/p
∣∣∣α du

) 1
α

=
(kp − jp)

f+g+1

p

(∫ 1

0

ufδ(1− u)gδdu

) 1
δ

(∫ 1

0

(u|m(k)|α + (1− u)|m(j)|α)

(ukp + (1− u)jp)
(f+g+ p−1

p )α
du

) 1
α



=
(kp − jp)

f+g+1

p


(∫ 1

0

ufδ(1− u)gδdu

) 1
δ

∫ 1

0

(u|m(k)|α + (1− u)|m(j)|α)

j((f+g+1)p−1)α
(
1−

(
1− kp

jp

)
u
)(f+g+ p−1

p )α
du


1
α


=

(kp − jp)
f+g+1

pj(f+g+1)p−1

 β
1
δ (fδ + 1, gδ + 1)

[
2F1

((
f + g + p−1

p

)
α, 2; 3; 1− kp

jp

)
|m(k)|α

2

+2F1

((
f + g + p−1

p

)
α, 1; 3; 1− kp

jp

)
|m(j)|α

2

] 
which completes the proof.

b) Using Lemma 3, inequality 17 is obtained by applying a similar proof method. □

Conclusion 9. If p = −1 is taken in inequality 16, [7, Inequality of (2.7)] is obtained.

Conclusion 10. If p = 1 in inequality 17, the following inequality is obtained:∫ k

j

(x− j)f (k − x)gm(x)

xf+g
dx ≤ (k − j)f+g+1

kf+g

 β
1
δ (gδ + 1, fδ + 1)

[
2F1

(
(f + g)α, 2; 3; 1− j

k

) |m(j)|α
2

+2F1

(
(f + g)α, 1; 3; 1− j

k

) |m(k)|α
2

] 1
α


Theorem 5. Let m : [j, k] ⊆ [0,∞) → R be a function such that m ∈ L[j, k] and α ≥ 1.If |m|α is
s− p− convex in the second kind on [j, k] for some fixed f, g > 0 , s ∈ [0, 1] then :
a) For p < 0∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx (18)

≤ (kp − jp)
f+g+1

pj(f+g+1)p−1

(
β(f + 1, g + 1)2F1

(
f + g +

p− 1

p
, f + 1; f + g + 2; 1− kp

jp

))1− 1
α

×


|m(k)|αβ(f + s+ 1, g + 1)2F1

(
f + g + p−1

p , f + s+ 1; f + g + s+ 2; 1− kp

jp

)
+

|m(j)|αβ(f + 1, g + s+ 1)2F1

(
f + g + p−1

p , f + 1; f + g + s+ 2; 1− kp

kp

)


1
α
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b) For p > 0

∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx (19)

≤ (kp − jp)
f+g+1

pk((f+g+1)p−1)

(
β(g + 1, f + 1)F1

(
f + g +

p− 1

p
, g + 1; f + g + 2; 1− jp

kp

))1− 1
α

×


|m(j)|αβ(g + s+ 1, f + 1)2F1

(
f + g + p−1

p , g + s+ 1; f + g + s+ 2; 1− jp

kp

)
+

|m(k)|αβ(g + 1, f + s+ 1)2F1

(
f + g + p−1

p , g + 1; g + f + s+ 2; 1− jp

kp

)


1
α

Proof. Since |m|α is s − p − convex in the second kind on [j, k], using Lemma 2, by the power mean
integral inequality for all u ∈ [0, 1] we have

∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx

≤ (kp − jp)
g+f+1

p

∫ 1

0

uf (1− u)g
∣∣∣m((ukp + (1− u)jp)

1/p
)∣∣∣

(ukp + (1− u)jp)
f+g+ p−1

p

du

≤ (kp−jp)f+g+1

p

(∫ 1

0
uf (1−u)g

(ukp+(1−u)jp)
f+g+

p−1
p

du

)1− 1
α
(∫ 1

0

uf (1−u)g|m((ukp+(1−u)jp)1/p)|α

(ukp+(1−u)jp)
f+g+

p−1
p

du

) 1
α

≤ (kp−jp)g+f+1

p

(∫ 1

0
uf (1−u)g

(ukp+(1−u)jp)
f+g+

p−1
p

du

)1− 1
α
(∫ 1

0
uf (1−u)g(us|m(k)|α+(1−u)s|m(j)|α)

(ukp+(1−u)jp)
f+g+

p−1
p

du

) 1
α

= (kp−jp)f+g+1

p

(∫ 1

0
uf (1−u)g

j(g+f+1)p−1(1−(1− kp

jp )u))
f+g+

p−1
P

du

)1− 1
α
(∫ 1

0
uf (1−u)g(us|m(k)|α+(1−u)s|m(j)|α

j(g+f+1)p−1(1−(1− kp

jp )u)
f+g+

(p−1)
p

) 1
α

=
(kp − jp)

f+g+1

pj(f+g+1)p−1

(
β(f + 1, g + 1)F1

(
f + g +

p− 1

p
, f + 1; f + g + 2; 1− kp

jp

))1− 1
α

×


|m(k)|αβ(f + s+ 1, g + 1)2F1

(
f + g + p−1

p , f + s+ 1; f + g + s+ 2; 1− kp

jp

)
+

|m(j)|αβ(f + 1, g + s+ 1)2F1

(
f + g + p−1

p , f + 1; f + g + s+ 2; 1− kp

jp

)


1
α

which completes the proof.
b) Using Lemma 3, inequality 19 is obtained by applying a similar proof method. □

Conclusion 11. If p = −1 in inequality 18, the following inequality is obtained:

∫ k

j

(x− j)
f
(k − x)

g
m(x)dx

≤
(
j

k

)f+1

(k − j)f+g+1

(
β(f + 1, g + 1)2F1

(
f + g + 2, f + 1; f + g + 2; 1− j

k

))1− 1
α

×

 |m(k)|αβ(f + s+ 1, g + 1)2F1

(
f + g + 2, f + s+ 1; f + g + s+ 2; 1− j

k

)
+

|m(j)|αβ(f + 1, g + s+ 1)2F1

(
f + g + 2, f + 1; f + g + s+ 2; 1− j

k

)


1
α

(20)
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Conclusion 12. If p = 1 in inequality 19, the following inequality is obtained:∫ k

j

(x− j)f (k − x)gm(x)

xf+g
dx

≤ (k − j)f+g+1

kf+g
β(g + 1, f + 1)2F1

(
f + g, g + 1; f + g + 2; 1− j

k

)1− 1
α

×
(

|m(j)|αβ(g + s+ 1, f + 1)2F1

(
f + g, g + s+ 1; f + g + s+ 2; 1− j

k

)
+|m(k)|αβ(g + 1, f + s+ 1)2F1

(
f + g, g + 1; f + g + s+ 2; 1− j

k

) ) 1
α

(21)

Theorem 6. Let m : [j, k] ⊆ [0,∞) → R be a function such that m ∈ L[j, k] and α > 1 . If |m|α is
s− p− convex in the second kind on [j, k] for some fixed f, g > 0 , s ∈ [0, 1] then:
a) For p < 0∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx (22)

≤ (kp − jp)
f+g+1

pj(f+g+1)p−1
β

1
δ (fδ + 1, gδ + 1)2F

1
δ
1

((
f + g +

p− 1

p

)
δ, fδ + 1; (f + g)δ + 2; 1− kp

jp

)
×
(
|m(k)|α + |m(j)|α

s+ 1

)1/α

b) For p > 0

∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx (23)

≤ (kp − jp)
f+g+1

pk(f+g+1)p−1
β

1
δ (δg + 1, fδ + 1)2F

1
δ
1

((
f + g +

p− 1

p

)
δ, gδ + 1; (f + g)δ + 2; 1− jp

kp

)
×
(
|m(j)|α + |m(k)|α

s+ 1

)1/α

where 1/α+ 1/δ = 1.

Proof.
a) Since |m|α is s − p − convex in the second kind on [j, k], using Lemma 2, by the Hölder integral
inequality for all u ∈ [0, 1] we have∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx

≤ (kp − jp)
f+g+1

p

∫ 1

0

uf (1− u)g

(ukp + (1− u)jp)(
f+g+ p−1

p )

∣∣∣m((ukp + (1− u)jp)
1/p
)∣∣∣ du

≤ (kp − jp)
f+g+1

p

(∫ 1

0

ufδ(1− u)δg

(ukp + (1− u)jp)(
f+g+ p−1

p )
du

) 1
δ (∫ 1

0

∣∣∣m((ukp + (1− u)jp)
1
p

)∣∣∣α dt

) 1
α

≤ (kp − jp)
f+g+1

p

(∫ 1

0

ufδ(1− u)δg

(ukp + (1− u)jp)(
f+g+ p−1

p )δ
du

) 1
δ (∫ 1

0

(us|m(k)|α + (1− u)s|m(j)|α) dt
) 1

α

= (kp−jp)f+g+1

p

(∫ 1

0
ufδ(1−u)δg

j((f+g+1)p−1)δ(1−(1− kp

jp )u)
(f+g+

p−1
p )δ

du

) 1
δ (∫ 1

0
(us|m(k)|α + (1− u)s|m(j)|α) dt

) 1
α

=
(kp − jp)

f+g+1

pj(f+g+1)p−1
β

1
δ (fδ + 1, gδ + 1)2F

1
δ
1

((
f + g +

p− 1

p

)
δ, fδ + 1; (f + g)δ + 2; 1− kp

jp

)
×
(
|m(k)|α + |m(j)|α

s+ 1

)1/α
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which completes the proof.
b) Using Lemma 3, inequality 23 is obtained by applying a similar proof method. □

Conclusion 13. If p = −1 in inequality 22, the following inequality is obtained:

∫ k

j

(x− j)f (k − x)gm(x)dx

≤
(
j

k

)f+1

(k − j)f+g+1β
1
δ (fδ + 1, gδ + 1)2F

1
δ
1

(
(f + g + 2)δ, fδ + 1; (g + f)δ + 2; 1− j

k

)
×
(
|m(k)|α + |m(j)|α

s+ 1

)1/α

Conclusion 14. If p = 1 in inequality 23, the following inequality is obtained:

∫ k

j

(x− j)
f
(k − x)

g
m(x)

x(f+g)
dx

≤ (k − j)
f+g+1

k(f+g)
β

1
δ (gδ + 1, fδ + 1)2F

1
♮

1

(
(f + g) δ, gδ + 1; (f + g)δ + 2; 1− j

k

)
×
(
|m(j)|α + |m(k)|α

s+ 1

)1/α

Theorem 7. Let m : [j, k] ⊆ [0,∞) → R be a function such that m ∈ L[j, k] and α > 1 . If |m|α is
s− p− convex in the second kind on [j, k] for some fixed f, g > 0 , s ∈ [0, 1] then:
a) For p < 0

∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx (24)

≤ (kp − jp)
f+g+1

pj(f+g+1)p−1

 β
1
δ (fδ + 1, gδ + 1)

[
2F1

((
f + g + p−1

p

)
α, s+ 1; s+ 2; 1− kp

jp

)
|m(k)|α
s+1

+2F1

((
f + g + p−1

p

)
α, 1; s+ 1; 1− kp

jp

)
|m(j)|α
s+1

] 1
α


b) For p > 0

∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx (25)

≤ (kp − jp)
f+g+1

pk(f+g+1)p−1

 β
1
δ (gδ + 1, fδ + 1)

[
2F1

((
f + g + p−1

p

)
α, s+ 1; s+ 2; 1− jp

kp

)
|m(j)|α
s+1

+2F1

((
f + g + p−1

p

)
α, 1; s+ 1; 1− jp

kp

)
|m(k)|α
s+1

] 1
α


where 1/α+ 1/δ = 1.

Proof.
a) Since |m|α is s − p − convex in the second kind on [j, k], using Lemma 2, by the Hölder integral
inequality for all u ∈ [0, 1] we have
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∫ k

j

(xp − jp)
f
(kp − xp)

g
m(x)

x(f+g)p
dx

≤ (kp − jp)
f+g+1

p

∫ 1

0

uf (1− u)g

(ukp + (1− u)jp)
f+g+ p−1

p

∣∣∣m((ukp + (1− u)jp)
1/p
)∣∣∣ du

≤ (kp−jp)f+g+1

p

(∫ 1

0
ufδ(1− u)gδdu

) 1
δ

(∫ 1

0
1

(ukp+(1−u)jp)(f+g+
(p−1)

p )α
| m (ukp + (1− u)jp)

1/p |
α
du

) 1
α

≤ (kp − jp)
f+g+1

p

(∫ 1

0

ufδ(1− u)gδdu

) 1
δ

(∫ 1

0

(us|m(k)|α + (1− u)s|m(j)|α)

(ukp + (1− u)jp)(
f+g+ p−1

p )α
du

) 1
α



=
(kp − jp)

f+g+1

p


(∫ 1

0

ufδ(1− u)gδdu

) 1
δ

∫ 1

0

(us|m(k)|α + (1− u)s|m(j)|α)

j((g+f+1)p−1)α
(
1−

(
1− kp

jp

)
u
)(f+g+ p−1

p )α
du


1
α


=

(νp − jp)
f+g+1

pj(f+g+1)p−1

 β
1
m (fδ + 1, gδ + 1)

[
2F1

((
f + g + p−1

p

)
α, s+ 1; s+ 2; 1− kp

jp

)
|m(k)|α
s+1

+2F1

((
f + g + p−1

p

)
α, 1; s+ 2; 1− kp

jp

)
|m(j)|α
s+1

] 1
α



which completes the proof.
b) Using Lemma 3, inequality 25 is obtained by applying a similar proof method. □

Conclusion 15. If p = −1 in inequality 25, the following inequality is obtained:∫ k

j

(x− j)f (k − x)gm(x)dx

≤
(
j

k

)f+1

(k − j)f+g+1

 β
1
δ (fδ + 1, gδ + 1)

[
2F1

(
(f + g + 2)α, s+ 1; s+ 2; 1− j

k

) |m(k)|α
s+1

+2F1

(
(f + g + 2)α, 1; s+ 1; 1− j

k

) |m(j)|α
s+1

] 1
α


Conclusion 16. If p = 1 in inequality 25, the following inequality is obtained:∫ k

j

(x− j)f (k − x)gm(x)

xf+g
dx

≤ (k − j)f+g+1

k(f+g)

 β
1
δ (gδ + 1, fδ + 1)

[
2F1

(
(f + g)α, s+ 1; s+ 2; 1− j

k

) |m(j)|α
s+1

+2F1

(
(f + g)α, 1; s+ 1; 1− jp

kp

)
|m(k)|α
s+1

] 1
α



Author Contribution Statements All authors have made substantial contributions to the conception,
design, execution, and interpretation of this research work. Each author has participated in drafting the
article or revising it critically for important intellectual content, and all have given final approval of the
version to be published.

Declaration of Competing Interests On behalf of all authors, the corresponding author hereby
declares that there are no conflicts of interest to report. This statement is inclusive of any potential
conflicts that could be perceived as affecting the research, including financial, consultative, institutional,
and other relationships

Acknowledgements We extend our gratitude to the esteemed reviewers for their insightful comments
and suggestions, which have significantly enhanced the quality of our manuscript. We also wish to express



S-P -CONVEX FUNCTIONS 149

our appreciation to the journal editors for their meticulous attention to our work and for facilitating a
constructive peer-review process.

References

[1] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier,
Amsterdam, 2006.

[2] Arshad, A., Khan, A., Hermite-Hadamard-Fejer type inequalities for s-p-convex functions of several kinds, Transylva-

nian J. of Math. and Mechanics(Tjmm), 11(1-2) (2019), 25-40.
[3] Bilal, M., Khan, A. R., New generalized Hermite-Hadamard type inequalities for p-convex functions in the mixed kind,

Eur. J. Pure Appl. Math., 14(3) (2021), 863-880. https://doi.org/10.29020/nybg.ejpam.v14i3.4015
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An application of stochastic maximum principle for a constrained system with memory

Emel SAVKU
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Abstract. In this research article, we study a stochastic control problem in a theoretical frame to solve
a constrained task under memory impact. The nature of memory is modeled by Stochastic Differential

Delay Equations and our state process evolves according to a jump-diffusion process with time-delay.

We work on two specific types of constraints, which are described in the stochastic control problem
as running gain components. We develop two theorems for corresponding deterministic and stochastic

Lagrange multipliers. Furthermore, these theorems are applicable to a wide range of continuous-time

stochastic optimal control problems in a diversified scientific area such as Operations Research, Biology,
Computer Science, Engineering and Finance. Here, in this work, we apply our results to a financial

application to investigate the optimal consumption process of a company via its wealth process with
historical performance. We utilize the stochastic maximum principle, which is one of the main methods

of continuous-time Stochastic Optimal Control theory. Moreover, we compute a real-valued Lagrange

multiplier and clarify the relation between this value and the specified constraint.

2020 Mathematics Subject Classification. 93E20, 93E03, 49N90, 60G07, 60J76, 91B16, 91G80.

Keywords. Stochastic optimal control, stochastic maximum principle, stochastic differential delay equa-
tions, Lagrange multiplier, anticipated backward stochastic differential equations

1. Introduction and Unconstrained Control Problem

Stochastic Optimal Control theory is one of the main fields of sequential decision-making under uncer-
tainty. Its fundamental goal is to determine the optimal control processes and the optimal value function
for a specified control task, see [21,22,35]. The state process of a control problem is generally represented
by a diffusion process, a jump-diffusion process or by a larger model such as a regime-switching process,
see [2, 11, 15, 25, 28, 30, 33]. These processes meet specific mathematical requirements of each problem
in a wide range of scientific disciplines such as finance, insurance, biology computer science, engineering
etc. Whenever the uncertainty in an application can be expressed as a continuous-time process, diffusion
processes can be used effectively. On the other side, in real-life applications, we usually require discontin-
uous formulations and in those cases, jump-diffusion processes and regime-switching models well-describe
sudden changes in the process as well as in the environment.

Especially, in financial applications, the state processes may represent the price process of a risky
asset, the wealth process of a company, the surplus process of an insurance policy, etc. Furthermore,
since stochastic control theory provides quite strong tools to handle uncertainty and to develop optimal
feedback controls, it is widely utilized in quantitative finance, see [6,9,12,16,26,27,34]. In this work, we
use a jump-diffusion model to present the wealth process of a company and it is well known that such
models efficiently describe the abrupt changes in the dynamics of a risky asset (for a broad literature,
see [3]). The probabilistic literature for jump processes has been extensively developed and applied in
financial mathematics so far, see also [1].

Moreover, in our article, we study a stochastic control problem with memory and constraints. The
memory component is represented by a time-delay term, δ > 0, in the dynamics of a Stochastic Dif-
ferential Delay Equation (SDDE) (for a comprehensive theory of such equations, see [17]). Moreover,
SDDEs express real-life financial phenomena more realistically with a meaning of historical performance
of risky assets, economic inertia, time lag in financial operations. Hence, such systems have got significant
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attention from the researchers in the Stochastic Optimal Control field so far, see [7, 8, 14, 20, 23, 25, 28]
and references therein.

Let us introduce the technical details and mathematical structure of our work:
As we stated, we use a jump-diffusion process with delay as the state process of our control task (for

a detailed theory of continuous-time stochastic processes, see [1, 13,19] and references therein).
Let R0 := R \ {0} be. B0 represents a Borel σ-field generated by the open subset O of R0, whose

closure does not include the point 0.
Let (N(dt, dz) : t ∈ [0, T ], z ∈ R0) be a Poisson random measure on ([0, T ]× R0,B([0, T ])⊗ B0). The

Lévy measure of N(·, ·) is defined by ν and Ñ(dt, dz) := N(dt, dz) − ν(dz)dt is a compensated Poisson
random measure.
Let (W (t) : t ∈ [0, T ]) be a Brownian motion. (Ω,F,Ft,P) represents a complete filtered probability
space generated by the Brownian motion W (·) and the Poisson random measure N(·, ·). We define
F = (Ft : t ∈ [0, T ]) as a right-continuous, P-completed filtration and assume that the Brownian motion
and the Poisson random measure are independent of each other and adapted to F.

We follow a controlled jump-diffusion model with a constant delay term δ > 0, which is one of the
most general representations of such systems and is introduced in [20] as follows:

dX(t) =b(t,X(t), Y (t), A(t), u(t))dt+ σ(t,X(t), Y (t), A(t), u(t))dW (t)

+

∫
R0

η(t,X(t), Y (t), A(t), u(t), z)Ñ(dt, dz) (1)

X(t) =θ(t), t ∈ [−δ, 0],

where for t ∈ [0, T ],

Y (t) = X(t− δ), A(t) =

∫ t

t−δ

e−ρ(t−r)X(r)dr.

The coefficient functions of the model are defined as:

b : [0, T ]× R× R× R× U → R,
σ : [0, T ]× R× R× R× U → R,
η : [0, T ]× R× R× R× U × R0 → R,

and generally, in financial applications, b, σ, and η represent appreciation rate, volatility and jump size
of a risky asset correspondingly.

Moreover, for example, while Brownian motion W (·) catches little shocks in the price process of
an asset, the Poisson random measure N(·, ·) captures the jumps of that process, which occur as a
consequence of abrupt changes, sudden news or big sell/buy orders in the financial markets.

In this model, we observe the memory component in the dynamics of the system as Y (·) and A(·)
terms. Note that for the systems described by SDDEs, rather than an initial value, we need an initial
path. θ(·) represents the initial path and is a continuous, deterministic function. Here, ρ ≥ 0 is a constant
averaging parameter.

We assume that U is a non-empty subset of R and represents a set of admissible control values u(t),
t ∈ [0, T ]. We define an admissible control process u(·) as a U-valued, Ft-measurable and càdlàg process
such that the Equation (1) has a unique solution X(·) ∈ L2(ξ × P), where ξ represents the Lebesgue
measure on [0, T ]. Let A denote a family of admissible control processes (for more detail, see [20]).

Moreover, we assume that

E

[∫ T

0

|u(t)|2 dt
]
< ∞.

For all u ∈ A, let us define the objective criterion in the classical sense (for a broad survey of the
Stochastic Optimal Control theory, see [21,22,32] and references therein) as follows:

J(u) = J(x, y, a, u)

= E

[∫ T

0

f(t,X(t), Y (t), A(t), u(t))dt+ g(X(T ))

]
, (2)
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where f : [0, T ] × R × R × R × U → R represents the running gain and g : R → R corresponds to the
terminal gain of the control task. Here, we assume that f and g are C1-functions with respect to x, y, a, u
such that for all xi = x, y, a, u,

E

[∫ T

0

(
|f(t,X(t), Y (t), A(t), u(t))|+

∣∣∣∣ ∂f∂xi
(t,X(t), Y (t), A(t), u(t))

∣∣∣∣2)dt
+ |g(X(T ))|+ |gx(X(T ))|2

]
< ∞.

Hence, in a classical unconstrained stochastic control problem, our goal is to find the optimal control
u∗ ∈ A such that

J(u∗) = sup
u∈A

J(u). (3)

On the other hand, in this work, we formulate the constraints inspired by Theorem 11.3.1 of [19] but
with completely different constraints. In this theorem, the author presents an approach for the stochastic
control tasks with a condition at the terminal time T > 0 for a diffusion process. Later, [4] gave an
application of this theorem and [28] extended this theorem to the stochastic differential games with
regimes.

Furthermore, [5] stated a version of Theorem 11.3.1 of [19] with constraint types (5) and (6) for a
jump-diffusion process. These constraints describe deterministic and stochastic Lagrange multipliers,
correspondingly and are different than the terminal conditions given in Theorem 11.3.1 of [19]. But
the authors do not investigate the Lagrange multipliers however they claimed that their existence is a
crucial condition to apply the proved theorems, see Theorem 5.2 and 5.4 of [5]. In our work, we study
a stochastic control problem for a jump-diffusion process with the memory and the constraints defined
with (5) and (6). Hence, our work extends the theorems of [5] to a delayed model. Moreover, we develop
an application for which the corresponding Lagrange multiplier exists. In that sense, we should underline
that our work is the first work that completes the desired task with the constraints (5)-(6) and also, by
inserting a delay term, we study a larger model.

We do not prefer to define many technical conditions over b, σ, η in this section. In Section 2, we will
develop two fundamental theorems to approach stochastic control problems with the constraints (5) and
(6). These can be solved by both Stochastic Maximum Principle (SMP) and Dynamic Programming
Principle (DPP). Thus, the technical assumptions have to be determined specifically depending on the
preferred method. We will highlight them in Section 3, while we are studying an optimal consumption
problem.

This article is organized as follows: In Section 2, we introduce the mathematical formulation of our
constrained stochastic control problem and demonstrate the corresponding theorems in a Lagrangian
environment. Section 3 is devoted to developing a financial application, which formulates the optimal
consumption process of a company with memory. The final section gives a conclusion.

2. Reformulation of the Control Task within the Context of Constraints

In this section, we develop two theorems which describe the optimal control process and investigate
the corresponding Lagrange multipliers for a time-delayed stochastic control system.

Firstly, let us state the value function of the constrained control problem:

ϕ(x, y, a) = J(u∗) = sup
u∈Θ

J(x, y, a, u). (4)

Here, J(·) is defined by Equation (2) and the supremum is taken over Θ of all admissible controls
u : R → U ⊂ R such that

E

[∫ T

0

M(t,X(t), Y (t), A(t), u(t))dt

]
= 0, (5)

or ∫ T

0

M(t,X(t), Y (t), A(t), u(t))dt = 0 a.s.. (6)

M : [0, T ]×R×R×R×U → R is a C1 function with respect to x, y, and a such that for xi = x, y, a, u:

E

[∫ T

0

(
|M(t,X(t), Y (t), A(t), u(t))|+

∣∣∣∣∂M∂xi
(t,X(t), Y (t), A(t), u(t))

∣∣∣∣2)dt] < ∞.
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Here, we study two types of constraints: The constraint type (5) represents a real valued Lagrange
multiplier and the type (6) discovers a stochastic one.

Thus, we should specify the set of stochastic Lagrange multipliers as in [27]:

∆ =

{
λ : Ω → R|λ is FT −measurable and E[|λ|] < ∞

}
.

Now, by observing the Equation (4) and the constraints (5) and (6), let us present the unconstrained
stochastic control problem in the following way:

ϕλ(x, y, a) = sup
u∈Θ

J(x, y, a, u)

= sup
u∈Θ

Ex,y,a

[∫ T

0

f(t,X(t), Y (t), A(t), u(t))dt+ g(Xu(T ))

+ λ

∫ T

0

M(t,X(t), Y (t), A(t), u(t))dt

]
, (7)

subject to the system (1).
First, we will prove the following theorem corresponding to the type (6):

Theorem 1. Assume that for all λ ∈ ∆1 ⊂ ∆, we can develop ϕλ(x, y, a) and the optimal control process
u∗,λ, which solves the unconstrained stochastic control problem (7) subject to the system (1). Moreover,
assume that there exists λ0 ∈ ∆1, such that∫ T

0

M(t,Xu∗,λ0

t , Y u∗,λ0

t , Au∗,λ0

t , u∗,λ0

t )dt = 0, a.s. (8)

Then, ϕ(x, y, a) = ϕλ0(x, y, a) is obtained and u∗ = u∗,λ0 solves the constrained stochastic control problem
(3) subject to (1) and (6).

Proof. The first inequality appears by definition of the optimal value function as follows:

ϕλ(x, y, a) = J(x, y, a, u∗,λ)

= Ex,y,a

[∫ T

0

f(t,Xu∗,λ

t , Y u∗,λ

t , Au∗,λ

t , u∗,λ)dt

+ λ

∫ T

0

M(t,Xu∗,λ

t , Y u∗,λ

t , Au∗,λ

t , u∗,λ
t )dt+ g(Xu∗,λ

T )

]
≥ J(x, y, a, uλ)

= Ex,y,a

[∫ T

0

f(t,Xuλ

t , Y uλ

t , Auλ

t , uλ)dt

+ λ

∫ T

0

M(Xuλ

t , Y uλ

t , Auλ

t , uλ
t )dt+ g(Xuλ

T )

]
. (9)

In particular, if λ = λ0 exists and since u1 ∈ Θ is feasible in the constrained control problem (3), then
by (8): ∫ T

0

M(t,Xu∗,λ0

t , Y u∗,λ0

t , Au∗,λ0

t , u∗,λ0

t )dt =

∫ T

0

M(Xuλ

t , Y uλ

t , Auλ

t , uλ
t )dt = 0 (10)

Therefore, by (9) and (10):

ϕλ0(x, y, a) = J(u∗,λ0) = J(x, y, a, u∗,λ0) ≥ J(x, y, a, u) = J(u),

for all u ∈ Θ. Note that u∗,λ0 ∈ Θ and this completes the proof. □

The following theorem can be proved similarly for the constraint type (5).
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Theorem 2. Assume that for all λ ∈ K ⊂ R, we can determine ϕλ(x, y, a) and the optimal control
process u∗,λ solving the unconstrained stochastic control problem (7) subject to (1). Furthermore, assume
that there exists λ0 ∈ K such that

E

[∫ T

0

M(t,Xu∗,λ0

t , Y u∗,λ0

t , Au∗,λ0

t , u∗,λ0

t )dt

]
= 0.

Then, ϕ(x, y, a) = ϕλ0(x, y, a) and u∗ = u∗,λ0 solves the constrained stochastic control problem (3) subject
to the model (1) and the constraint (5).

Remark 1. Theorem 1 and 2 can be applied to a wide range of stochastic control problems by both SMP
and DPP as long as it is possible to determine the corresponding Lagrange multipliers. If we prefer to
apply DPP, we should be careful about Markov property. SDDEs provide a more realistic environment
to interact but we loose Markov property. Moreover, since we have an initial path instead of an initial
value for the system (1), our problem creates the corresponding partial differential equations so-called
Hamilton-Jacobi-Bellman equations in an infinite dimensional space. Hence, a direct application of DPP
is not mathematically possible (more details to handle such problems by DPP in [7, 8, 14] and reference
therein).

Remark 2. To utilize SMP, we do not need any Markovian assumption different than DPP. Hence,
in this work, we will combine the method described in Theorem 2 of our paper with Theorem 3.1 and
Theorem 4.1 of [20] to find the optimal consumption process by SMP.

Remark 3. Our work is inspired from Theorem 11.3.1 of [19], but we should highlight that the constraint
of Theorem 11.3.1 of [19] is defined at terminal time T as:

E[M(Xu
T )] = 0, (11)

which is completely different than our constraints (5)-(6). We put a condition over running gain compo-
nent rather than the terminal gain. Moreover, we can see similar constraints in [5] but both [19] and [5]
do not include memory impact.

Remark 4. In [30], we studied memory impact within the framework of Lagrange multipliers similar
to Equation 11, which is a different type of constraint as we stated in Remark 3. Furthermore, in [30],
we focused on a dividend policy application in a regime-switching environment with a different control
formulation. Our present work and [30] share a similar philosophy with completely different constraints
and financial formulations.

Now, let us present an application of Theorem 2 in finance.

3. Application to Finance

In this section, we will develop the formulation of an optimal consumption process that corresponds
to the wealth process of a company with memory. This process evolves according to a time-delayed
jump-diffusion model. The dynamics of the model carry past values of the wealth process in the form
of Y (t) = X(t − δ), t ∈ [0, T ], where δ > 0 is a constant. Our purpose is to develop a more realistic
consumption policy, which depends on the information about the historical performance of the company
as well.

µ(·) is a deterministic function and represents the appreciation rate of the company. Furthermore,
we suppose that σ(t) and η(t, z), t ∈ [0, T ], are given bounded, square integrable and adapted processes.
U is a non-empty, closed and convex subset of R. In this section, our problem formulation justifies the
technical assumptions provided in [20] thus, we are allowed to apply Theorem 3.1 and Theorem 4.1 of
that article.

The consumption process is a càdlàg, Ft-adapted control process, which satisfies:

E

[∫ T

0

|c(t)|2 dt
]
< ∞.

Let us state the wealth process X(t) = Xc(t), which is a special form of Equation (1) as follows:
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dX(t) =

(
X(t− δ)µ(t)− c(t)

)
dt+X(t− δ)

(
σ(t)dW (t)

+

∫
R0

η(t, z)Ñ(dt, dz)

)
, t ∈ [0, T ], (12)

X(t) = θ(t), t ∈ [−δ, 0],

where θ(·) is a given nonnegative, deterministic and continuous function.
We assume that the company wants to maximize its wealth despite a quadratic running loss by bal-

ancing it corresponding to a constraint of linear running gain, which is described in terms of the control
process. Moreover, the company aims to reach a level of a constant K times the terminal time T > 0. So
we assume that the company takes into account time restrictions as well. We will develop and highlight
the conditions over K at the end of our computations. Hence, our goal is to find the optimal consumption
process c∗(·) by solving:

J(c∗) = sup
c∈Θ

J(c)

= sup
c∈Θ

E

[∫ T

0

α(t)c2(t)dt+ βX(T )

]
subject to the system (12) and to the constraint:

E

[∫ T

0

γ(t)c(t)dt

]
= TK, K ∈ R, (13)

where α(·) < 0 and γ(·) are deterministic functions and β ∈ R.
Now we can develop the Lagrangian form of this stochastic control problem as follows:

J(c∗) = sup
c∈Θ

J(c)

= sup
c∈Θ

E

[∫ T

0

α(t)c2(t)dt+ λ

∫ T

0

(γ(t)c(t)−K)dt+ βX(T )

]
, (14)

for which we aim to find c∗ = cλ,∗ and the real-valued Lagrange multiplier λ = λ0 described in Theorem
2.

Since we apply SMP to solve the problem (14), first, we define the Hamiltonian corresponding to the
wealth process (12):

H(t, x, y, a, c, p, q, r(·)) = α(t)c2 + λ(γ(t)c−K) + (µ(t)y − c)p+ yσ(t)q

+ y

∫
R0

η(t, z)r(t, z)ν(dz). (15)

Note that it is clearly seen that Hamiltonian H is a concave function of x, y, a and c, hence the con-
cavity condition over H is satisfied, see Theorem 3.1 of [20] is justified.

Furthermore, we should present the corresponding Anticipated Backward Stochastic Differential Equa-
tion (Anticipated BSDE) and solve it for unknown p(t), q(t), and r(t, z).

For t ∈ [0, T ], let us introduce:

dp(t) = −E

[(
µ(t+ δ)p(t+ δ) + σ(t+ δ)q(t+ δ)

+

∫
R0

η(t+ δ, z)r(t+ δ, z)ν(dz)

)
1[0,T−δ](t)|Ft

]
dt

+ q(t)dW (t) +

∫
R0

r(t, z)Ñ(dt, dz) (16)

p(T ) = β. (17)

We call Anticipated to this type of BSDEs since as seen in µ, σ, η, p(·), q(·), and r(·, ·), the terms involve
time-advanced values in the form of t + δ for t ∈ [0, T ]. This type of BSDEs was first introduced and
developed by Peng and Yang, see [23]. For technical definitions of the Hamiltonian (15) and the System
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(16)-(17), please see Apendix 4 or Section 2 in [20]. Furthermore, see [25, 28] for the formulation of
Anticipated BSDEs and their relation with SDDEs via different models.

We follow the technique described in [20] to find the solution for p(·), q(·), and r(·, ·), which will be
computed inductively in the following way:
Step 1: For t ∈ [T − δ, T ], the corresponding adjoint equation becomes:

dp(t) = q(t)dW (t) +

∫
R0

r(t, z)Ñ(dt, dz),

p(T ) = β,

for which we have the solution:

p(t) = E[p(T )|Ft] = β, t ∈ [T − δ, T ].

By martingale representation theorem, since the Lagrange multiplier is a real value, we choose q =
r = w = 0. Hence, the Anticipated BSDE gets the form:

dp(t) = −µ(t+ δ)p(t+ δ)1[0,T−δ](t)dt, t ≤ T,

p(t) = β, t ∈ [T − δ, T ].

Step 2: We define:

h(t) = p(T − t), t ∈ [0, T ]. (18)

That way, we get a deterministic delay equation:

dh(t) = −dp(T − t) = µ(T − t+ δ)p(T − t+ δ)dt

= µ(T − t+ δ)h(t− δ)dt, t ∈ [δ, T ],

h(t) = p(T − t) = β, t ∈ [0, δ].

For such equations, again, we have an approach of solving inductively. Since we can compute h(t) on
[(j − 1)δ, jδ], we obtain:

h(t) = h(jδ) +

∫ t

jδ

h′(s)ds

= h(jδ) +

∫ t

jδ

µ(T − s+ δ)h(s− δ)ds (19)

for t ∈ [jδ, (j + 1)δ], j = 1, 2, ....
Now, we should maximize the Hamiltonian (15) with respect to c to get:

c∗(t) =
1

2
α(t)(p(t)− λγ(t)), t ∈ [0, T ]. (20)

As a consequence of the nature of constrained stochastic control problems, we should compute the
value of Lagrange multiplier λ0 to use Theorem 2 properly.

Solving stochastic delay equations require special approaches different than usual stochastic differential
equations. By the Equation (20), the wealth process becomes:

dX(t) = (X(t− δ)µ(t)− 1

2
α(t)(p(t)− λγ(t)))dt+X(t− δ)(σ(t)dW (t)

+

∫
R0

η(t, z)Ñ(dt, dz)), t ∈ [0, T ], (21)

X(t) = θ(t), t ∈ [−δ, 0].

We know that the SDDE (21) can be solved by successive Itô integrations over steps of length δ (see
Section 1, page 7 in [18]). Specifically, we assume that terminal time T = 2δ. This assumption is just for
the sake of simplicity and does not pretend to show the complete methodology of applying the technique.
Thus, the total duration that we study is the interval of [−δ, 2δ].

First, for t ∈ [0, T ], let us define:

dL(t) = σ(t)dW (t) +

∫
R0

η(t, z)Ñ(dt, dz).



A CONSTRAINED SYSTEM WITH MEMORY 157

By also observing (18) and (19), we provide the following open form of the solution process:

X(t) = θ(t), if − δ ≤ t ≤ 0,

X(t) = θ(0) +

∫ t

0

(
θ(s− δ)µ(s)− 1

2
α(s)(h(T − s)− λγ(s))

)
ds

+

∫ t

0

θ(s− δ)dL(s) if 0 ≤ t ≤ δ,

X(t) = X(δ) +

∫ t

δ

({
θ(0) +

∫ v−δ

0

(
θ(s− δ)µ(s)− 1

2
α(s)(h(T − s)− λγ(s))

)
ds

+

∫ v−δ

0

θ(s− δ)dL(s)

}
µ(v)− 1

2
α(v)(h(T − v)− λγ(v))

)
dv

+

∫ t

δ

{
θ(0) +

∫ v−δ

0

(
θ(s− δ)µ(s)− 1

2
α(s)(h(T − s)− λγ(s))

)
ds

+

∫ v−δ

0

θ(s− δ)dL(s)

}
dL(v) if δ ≤ t ≤ 2δ = T.

Now, the values of h(T − t), t ∈ [0, T ] at the above integrals can be determined by following the
boundary values of the integrals and their relation with t. Remember that T = 2δ.
Then, by (19)

if, 0 ≤ s ≤ t ≤ δ, then, δ ≤ T − s ≤ 2δ,

h(2δ − s) = h(δ) +

∫ 2δ−s

δ

µ(3δ − u)h(u− δ)du,

h(2δ − s) = β

(
1 +

∫ 2δ−s

δ

µ(3δ − u)du

)
.

Moreover,

if, 0 ≤ s ≤ v − δ and δ ≤ v ≤ t ≤ 2δ, then, 0 ≤ v − δ ≤ t− δ ≤ δ,

so, 0 ≤ s ≤ δ, then δ ≤ 2δ − s ≤ 2δ, then, by (19),

h(2δ − s) = β

(
1 +

∫ 2δ−s

δ

µ(3δ − u)du

)
.

Finally,

if, δ ≤ v ≤ t ≤ 2δ, then, 0 ≤ 2δ − v ≤ δ, then, by 18 h(2δ − v) = β.

Firstly, we change the value of h(·) according to the relevant intervals in the above solution processes
and integrate the Equation (21) from 0 to 2δ by following the above δ-length description of X(·).
Then, we apply expectation to both sides of the Equation (21).

Now, let us introduce the following terms:

A =

∫ 2δ

0

α(s)γ(s)ds+ E

[∫ 2δ

δ

(∫ v−δ

0

α(s)γ(s)ds

){
µ(v)dv + dL(v)

}]
and

B = θ(0)− E

[
X(2δ)

]
+

∫ δ

0

θ(s− δ)µ(s)ds

− 1

2
β

∫ δ

0

α(s)

(
1 +

∫ 2δ−s

δ

µ(3δ − u)du

)
ds+ E

[∫ δ

0

θ(s− δ)dL(s)

]
+

∫ 2δ

δ

θ(0)µ(v)dv +

∫ 2δ

δ

(∫ v−δ

0

θ(s− δ)µ(s)ds

)
µ(v)dv

− β

∫ 2δ

δ

(∫ v−δ

0

α(s)

(
1 +

∫ 2δ−s

δ

µ(3δ − u)du

)
ds

)
1

2
µ(v)dv
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+ E

[∫ 2δ

δ

∫ v−δ

0

θ(s− δ)dL(s)

)
µ(v)dv

]
− 1

2
β

∫ 2δ

δ

α(v)dv + E

[∫ 2δ

δ

{
θ(0) +

∫ v−δ

0

θ(s− δ)µ(s)ds

− 1

2
β

∫ v−δ

0

α(s)

(
1 +

∫ 2δ−s

δ

µ(3δ − u)du

)
ds+

∫ v−δ

0

θ(s− δ)dL(s)

}
dL(v)

]
.

Then, we get:

λ =
2B

A
on condition that A ̸= 0. (22)

Now, by (18) and (19), let us make some observations about the constraint (13):

E

[∫ T

0

γ(t)c(t)dt

]
=
1

2

∫ δ

0

γ(t)α(t)

[
β

(
1 +

∫ 2δ−t

δ

µ(3δ − u)du

)
− λγ(t)

]
dt

+
1

2

∫ 2δ

δ

γ(t)α(t)(β − λγ(t))dt

=2δK.

Then, let us utilize the above equality to clarify λ and define the following terms:

D =
β

2

[∫ 2δ

0

γ(t)α(t)dt+

∫ δ

0

γ(t)α(t)

(∫ 2δ−t

δ

µ(3δ − u)du

)
dt

]
− 2δK,

and

C =

∫ 2δ

0

γ2(t)α(t)dt.

Then, we obtain:

λ =
2D

C
on condition that C ̸= 0. (23)

Finally, by observations (22)-(23), we conclude that in order to use Theorem 2, we have to specify the K
value in Equation (5) carefully such that

D

C
=

B

A
.

By this final result, we determined explicitly the control process c∗(·), the Lagrange multiplier λ0 and
consequently, the solution for p(·) corresponding to the Anticipated BSDE (16)-(17), and all the technical
assumptions required.

4. Conclusion and Future Work

In this work, we studied a constrained stochastic control problem and investigated the impact of delay
term on Lagrange multipliers. We proved two theorems for two different types of constraints and gave an
application in finance for the case of a real-valued Lagrange multiplier. We focused on the wealth process
of a company, which evolves according to a jump-diffusion model with historical values in its dynamics.
We observed that however the Theorems 1 and 2 are applicable for a wide range of control tasks by both
SMP and DPP, determining the Lagrange multipliers remains as a challenge. It is not always easy to
compute these parameters. Furthermore, the step of formulating these multipliers can not be ignored
because the provided theorems are enforceable on the condition that there exists a Lagrange multiplier
for which the constraint is justified. Despite this challenge, to the best of our knowledge, our article
presents the first results for a delayed system with constraints in running gain of the control task and
computes the corresponding Lagrange multiplier exactly. In our financial application, we clearly present
the technical differences for solving a delayed SDE and a usual one by applying Itô’s formula recursively.

Furthermore, since stochastic control theory is a discipline of sequential decision-making, we may
encounter some challenges from the side of model selection. The decision maker may believe that her
model is perfect. But in reality, generally, this is not the case. Especially, in finance, model misidentifi-
cation can cause high financial losses. At this point, robust control designs different control or decision
rules performing fare well across alternative models [11, 34]. Especially, in stochastic games, we handle
model uncertainty in a relative entropy context as a penalty term [2, 6, 9]. It is known that Hansen and
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Sargent [10] used a Lagrange multiplier theorem to convert the entropy constraint onto a penalty on
perturbations from the model. Therefore, we would like to underline the potential of our work towards
robust stochastic control and stochastic games.

Risk minimization and worst-case scenarios have significant value in quantitative finance and insurance
since each action with uncertainty carries a potential for loss that cannot be underestimated. Therefore,
as a further study, we aim to focus on the relation between Lagrange multipliers and robust control.
These structures can be approached from the side of relative entropy as well as from the sides of Var
and CVar concepts, see [9, 15, 16]. Furthermore, within the wide scope of risk management, Lagrange
multipliers can be handled via computational methods such as deep learning and deep reinforcement
learning, see [24,31].

On the other hand, we strongly believe that however delay systems are demanding and challenging,
they will be highlighted within the context of other hot fields such as Deep Learning. However, the aim
of our research article is to provide theoretical and technical approaches, in [29], we present a collection
of novel aspects within the intersection of computer science and stochastic optimal control under the
memory component.

Declaration of Competing Interests The author declares no conflict of interest.
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and Emerging Applications, (pp.136-154), Purutçuoğlu, V., Weber, G.W., & Farnoudkia, H. (Eds.), (1st ed.), CRC

Press, 2022. https://doi.org/10.1201/9781003324508-10
[27] Savku, E., A stochastic control approach for constrained stochastic differential games with jumps and regimes, Math-

ematics, 11(14) (2023), 3043. https://doi.org/10.1007/s10957-017-1159-3

[28] Savku, E., Deep-Control of Memory via Stochastic Optimal Control and Deep Learning, In International Conference
on Mathematics and its Applications in Science and Engineering (pp. 219-240), Cham: Springer Nature Switzerland,

2023. https://doi.org/10.1007/978-3-031-49218-1_16

[29] Savku, E., Memory and anticipation: two main theorems for Markov regime-switching stochastic processes, Stochastics,
(2024), 1-18. https://doi.org/10.1080/17442508.2024.2427733

[30] Savku, E., An approach for regime-switching stochastic control problems with memory and terminal conditions, Opti-

mization, (2024), 1–18. https://doi.org/10.1080/17442508.2024.2427733
[31] Tamar, A., Glassner, Y., Mannor, S. Optimizing the cvar via sampling, In Proceedings of the AAAI Conference on

Artificial Intelligence, 29 (2015). https://doi.org/10.1609/aaai.v29i1.9561

[32] Touzi, N., Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE, Vol. 29, Springer Science &
Business Media, 2012.https://doi.org/10.1007/978-1-4614-4286-8
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Appendix

In order to apply SMP, we have to define corresponding Hamiltonian for a delayed system as follows:
H : [0, T ]× R× R× R× U × R× R×R → R,

H(t, x, y, a, u, p, q, r) =f(t, x, y, a, u) + b(t, x, y, a, u)p+ σ(t, x, y, a, u)q

+

∫
R0

η(t, x, y, a, u, z)r(t, z)ν(dz) (24)

where R denotes the set of all functions
r : [0, T ]× R0 → R, for which the integral in (24) converges.

Associated toH, the adjoint, unknown and adapted processes (p(t) ∈ R : t ∈ [0, T ]), (q(t) ∈ R : t ∈ [0, T ]),
and (r(t, z) ∈ R : t ∈ [0, T ], z ∈ R0) are described by the following Anticipated BSDE with jumps:

dp(t) = E[µ(t)|Ft]dt+ q(t)dW (t) +

∫
R0

r(t, z)Ñ(dt, dz)

p(T ) = gx(X(T )),

where

µ(t) :=− ∂H

∂x
(t,X(t), Y (t), A(t), u(t), p(t), q(t), r(t, ·))

− ∂H

∂y
(t+ δ,X(t+ δ), Y (t+ δ), A(t+ δ), u(t+ δ), p(t+ δ), q(t+ δ), r(t+ δ, ·))

× 1[0,T−δ](t)− eρt
(∫ t+δ

t

∂H

∂a
(s,X(s), Y (s), A(s), u(s), p(s), q(s), r(s, ·))
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× e−ρs1[0,T ](s)ds

)
. (25)

As seen in µ(t), we have the future values of X(s), u(s), p(s), q(s), and r(s, ·) for s ≤ t+ δ in Equation
(25), hence we call Anticipated to this type of BSDEs.
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1. Introduction

Binomial graphs were introduced by Peter R. Christopher and John W. Kennedy [1]. For n ≥ 0, the

binomial graph Bn has vertex set Vn and edge set En, where |Vn| = 2n and {vi, vj} ∈ En if
(
i+j
j

)
≡

1 (mod 2) . The eigenvalues and eigenvectors of the adjancency matrices of the binomial graphs give
important information about the closed walks in the binomial graphs. It was shown that the sum of the
degrees is of the vertices in the binomial graph Bn is

2n−1∑
j=0

deg (vj) = deg (v0) +

2n−1∑
j=1

deg (vj) = (2n + 1) +

n−1∑
j=0

(
n
j

)
2j = 1 +

n∑
j=0

(
n
j

)
2j = 3n + 1.

Thus, the number of edges in binomial graph Bn is 1
2 (3

n + 1) [1].
The Fibonacci sequence, which has been widely studied, also holds an important place in graph theory.

The Fibonacci sequence is defined by the Fn+1 = Fn+Fn−1 relation, where F1 = 1 and F2 = 1. Similar to
binomial coefficients, fibonomial coefficients are obtained with the help of Fibonacci numbers. Fibonomial
coefficients are obtained as follows, for 1 ≤ j ≤ m,[

m

j

]
F

=
Fm Fm−1 ... Fm−j+1

F1 F2 ... Fj

where
[
m
0

]
F
= 1 and

[
m
j

]
F
= 0 for m < j.

If Fm in the numerator of the fraction is replaced by FjFm−j+1 + Fj−1Fm−j , the following equation
is obtained [

m

j

]
F

= Fm−j+1

[
m− 1

j − 1

]
F

+ Fj+1

[
m− 1

j

]
F

[2].
In our work, we frequently use the Kronecker product operation of matrices to obtain the adjacency

matrices. Kronecker product make it easier for us to calculate the eigenvalues of graphs. Let A be a
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m × n matrix and B be a r × s matrix. Then, the Kronecker product between A and B is the block
matrix A⊗B = [ai,jB], where A⊗B is a mr × ns matrix [6].

The n× n adjacency matrix A (G) of a graph G with n vertices is a binary matrix. The non-diagonal
entry ai,j of the adjacency matrix A is 1 if the i and j vertices are adjacent, and 0 otherwise. Also the
loop at vertex vi in the graph corresponds to the diagonal element aii in the adjacency matrix.

The eigenvalues of a graph are important in determining the algebraic properties of the graph. Addi-
tionally, the sequence of these eigenvalues gives the spectrum of the graph. We denote the spectrum of
graph G by Λ (G) . Let λ1, λ2, ..., λn denote the eigenvalues of the graph G, so that the spectrum of G is

Λ (G) = {λ1, λ2, ..., λn}
[7]. Let G be a graph with n vertices. The energy of the graph G is obtained by summing up all absolute
values of the eigenvalues of the graph. Also, the energy of the graph G is denoted by E(G). Gutman [3],
who has worked on the energy of graphs for many years, gave the definition of the energy of non-simple
graphs as follows:

E (G) =

n∑
i=1

∣∣∣∣λi −
S

n

∣∣∣∣ ,
where

S = tr (A(G)) =

n∑
i=1

λi.

We also want to talk about the sum of the Laplacian eigenvalues of a graph. For this we must first
define the Laplacian matrix. If D(G) = diag(d1, d2, ..., dn) is the diagonal matrix associated to G, where
di = deg(vi) for all i = 1, 2, 3, ..., n the matrix L(G) = D(G)−A(G) is called the Laplacian matrix and
its spectrum is called the Laplacian spectrum of the graph G [9]. If µ1, µ2, ..., µn denote the eigenvalues
of L (G), then the sum of the Laplacian eigenvalues of G is defined as

S(G) = tr (L (G)) =

n∑
i=1

µi

[4]. Similar to the modified binomial coefficients defined by Shiro Ando [5], the following relationship is
used to define modified fibonomial coefficients,〈

n
k

〉
F

= Fn+1 .

[
n

k

]
F

,

where 〈
n
0

〉
F

=

〈
n
n

〉
F

= Fn+1,

Fn+1 is n+ 1 th Fibonacci number and〈
n
k

〉
F

=

〈
n

n− k

〉
F

.

Modified fibonomial coefficients can be represented by a triangle similar to Pascal’s triangle in Figure
1. Using the modified fibonomial coefficients we obtained, we construct a new type of graph and call it
modified fibonomial graphs.

Figure 1. Modified fibonomial triangle
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2. Modified Fibonomial Graphs

For each nonnegative integer n, we define the modified fibonomial graph Fn to has vertex set Vn =
{vj : j = 0, 1, 2, ..., 3.2n − 1} and the edge set

En =

{
{vi, vj} :

〈
i+ j
j

〉
F

≡ 1 (mod 2)

}
.

The adjacency matrix of Fn is defined as A (Fn) = [ai,j ] , where

ai,j ≡
〈

i+ j
j

〉
F

(mod 2) .

Since

〈
0
0

〉
F

= 1 , the modified fibonomical graph Fn has only one loop at vertex v0. |Vn| = 3.2n and

for j = 0, 1, ..., n, Fn has
(
n+1
j

)
vertices of degree 2j and the vertex v0 of degree 2n+1 + 1. From here

|En| = 1
2

(
3n+1 + 1

)
.

F0, F1 and F2 modified fibonomial graphs and their adjacency matrices are given as follows.

Figure 2. F0, F1 and F2 modified fibonomial graphs and their adjacency matrices

Here, by the Kronecker product, we obtain the adjacency matrices of the modified fibonomial graphs

as follows. If we take F =

[
1 1
1 0

]
, then

A (F0) =

 1 1 0
1 0 0
0 0 0



A (F1) =


1 1 0 1 1 0
1 0 0 1 0 0
0 0 0 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

 = F ⊗A (F0)
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and

A (F2) =



1 1 0 1 1 0 1 1 0 1 1 0
1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



= F ⊗A (F1)

From here, for each n ≥ 1, the adjacency matrix of the modified fibonomial graph Fn is

A (Fn) =

[
A (Fn−1) A (Fn−1)
A (Fn−1) 0

]
= F ⊗A (Fn−1) .

3. Eigenvalues of Modified Fibonomial Graphs

The eigenvalues of a graph, which provide information about the spectral structure of the graph, are
calculated with the help of the adjacency matrix of the graph. The eigenvalues of the adjacency matrix
of a graph are defined as the eigenvalues of the graph and so they are just the roots of the equation
℘(Fn;x) = 0. Since A (G) is symmetric, its eigenvalues are all real. We denote them by λ1, λ2, ..., λn and
the set of all eigenvalues is the spectrum of G, denoted by Spec(G) [8].

Lemma 1. [1] Let matrix A be an n × n square matrix with eigenvalues λ1, λ2, ..., λn and matrix B
be an m ×m square matrix with eigenvalues µ1, µ2, ..., µm then the eigenvalues of the nm × nm matrix
A⊗B are λiµj for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Theorem 1. Let φ = 1+
√
5

2 . For each nonnegative integer n, the modified fibonomial graphs Fn has 3.2n

eigenvalues. More precisely, it has eigenvalue 0 with multiplicity 2n and (−1)j .φn+1−2j with multiplicity(
n+1
j

)
for each j = 0, 1, 2, ..., n+ 1. Then we can write the spectrum of the modified fibonomial graph Fn

as follows,

Λ(Fn) = {02
n

,
(
(−1)j .φn+1−2j

)(n+1
j )

: j = 0, 1, 2, ..., n+ 1}.

Proof. Since F =

[
1 1
1 0

]
, the characteristic polynomial of F is

℘(F ;x) = x2 − x− 1

so that Λ(F) = {φ,−φ−1}. Additionally, since

A(F0) =

 1 1 0
1 0 0
0 0 0

 ,

the characteristic polynomial of F0 is

℘(F0;x) = −x3 + x2 + 1

so that Λ(F0) = {0, φ,−φ−1}. Since
A(F1) = F ⊗A(F0), Λ(F1) = {0, 0,−1,−1, φ2, φ−2}

is obtained. We know that since A(Fn) = F ⊗ A(Fn−1), it is easy to see that the spectrum of Fn can
be written in the form

Λ(Fn) = {02
n

,
(
(−1)j .φn+1−2j

)(n+1
j )

: j = 0, 1, 2, ..., n+ 1}.
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□

4. Energy of the Modified Fibonomial Graphs

In this section, we calculate the energy of the non-simple the modified fibonomial graph of Fn.

Theorem 2. Let Fn be a modified fibonomial graph with 3.2n vertices. If E(Fn) denotes the energy of
the modified fibonomial graph Fn, then

E(Fn) =

3.2n∑
i=1

∣∣∣∣λi −
1

3.2n

∣∣∣∣ .
Proof. Gutman introduced the energy of a graph as

E (G) =

{ ∑n
i=1 |λi| if G is a simple graph,∑n
i=1

∣∣λi − S
n

∣∣ otherwise

in his previous studies. Here we used the abbreviation S = tr (A(G)) =
∑n

i=1 λi. Summing up all the
eigenvalues of F0 yields S = 1.

Since A(Fn) = F ⊗A(Fn−1) and trace of the Kronecker product of matrices is the product of traces,
sum of eigenvalues of Fn is

3.2n∑
i=1

λi =

n∑
j=0

(
φ2 − 1

φ
).(−1)j .φn−2j = 1.

□

Remark 1. Since lim
n→∞

1
3.2n = 0, the energy of Fn tends to

3.2n∑
i=1

|λi|

when n → ∞. Since all non-zero eigenvalues are in the form (−1)j .φn+1−2j with multiplicity
(
n+1
j

)
, we

have

E(Fn) ∼=
3.2n∑
i=1

|λi| =
n+1∑
k=1

∣∣∣∣(n+ 1

k

)
φn+1−kφ−k

∣∣∣∣ = (
φ+ φ−1

)n+1
= (

√
5)n+1

5. Connectivity of the Modified Fibonomial Graphs

Theorem 3. In the modified fibonomial graphs, the vertex v3k+2 is isolated for all k = 0, 1, 2, ..., 2n − 1.

Proof. The adjancency matrix of Fn is defined as A(Fn) = [ai,j ] , where

ai,j =

〈
i+ j
j

〉
F

(mod 2)

Here we must show that

a3k+2,l ≡ 0 for k = 0, 1, 2, ..., 2n − 1 and l = 0, 1, 2, ..., 3.2n − 1.

Since 〈
3k + l + 2

l

〉
F

= F3(k+1)+l .

[
3k + l + 2

l

]
F

,

we can write〈
3k + l + 2

l

〉
F

=(Fl+1 . F3(k+1) + Fl . F3k+2)

[
3k + l + 2

l

]
F

=(Fl+1 . F3(k+1) + Fl . F3k+2)
F3k+l+2 . F3k+l+1 ... F3(k+1)

F1 . F2 ... Fl

=(Fl+1.F3(k+1))
F3k+l+2 . F3k+l+1 ... F3(k+1)

F1 . F2 ... Fl

+ Fl . F3k+2

F3k+l+2 . F3k+l+1 ... F3(k+1)

F1 . F2 ... Fl
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Since F3(k+1) is even, we have 〈
3k + l + 2

l

〉
F

≡ 0(mod 2)

a3k,l ≡ 1 and a3k+1,l ≡ 1 for k = 0, 1, 2, ..., 2n − 1 and l = 0, 1, 2, ..., 3.2n − 1

〈
3k + l

l

〉
F

=F3k+l+1 .

[
3k + l

l

]
F

=(F3k . Fl+2 + F3k+1 . Fl+1)

[
3k + l

l

]
F

=(F3k . Fl+2 + F3k+1 . Fl+1)
F3k+l . F3k+l−1 ... F3k+1

F1 . F2 ... Fl

=F3kFl+2.
F3k+l . F3k+l−1 ... F3k+1

F1 . F2 ... Fl
+ F3k+1 . Fl+1.

F3k+l . F3k+l−1 ... F3k+1

F1 . F2 ... Fl

≡1 (mod 2)

〈
3k + l + 1

l

〉
F

=F3k+l+2 .

[
3k + l + 1

l

]
F

=(F3k . Fl+3 + F3k+1 . Fl+2)

[
3k + l + 1

l

]
F

=(F3k . Fl+3 + F3k+1 . Fl+2)
F3k+l+1 . F3k+l ... F3k+2

F1 . F2 ... Fl

=F3kFl+3.
F3k+l+1 . F3k+l ... F3k+2

F1 . F2 ... Fl
+ F3k+1 . Fl+2.

F3k+l+1 . F3k+l+ ... F3k+2

F1 . F2 ... Fl

≡1 (mod 2)

Consequently the vertex v3k+2 is the isolated vertex for all k = 0, 1, ..., 2n − 1. □

Theorem 4. The modified fibonomial graph Fn contains exactly one loop, the one on the vertex v0.

Proof. It is clear that a0,0 = 1.
Now let’s take i ̸= 0. We must show that ai,i = 0.〈

2i
i

〉
F

= F2i+1

[
2i
i

]
F

where similar to the central binomial coefficient,

[
2n
n

]
F

can be taken as the central fibonomial coef-

ficient. Since the central fibonomical coefficients are always even,〈
2i
i

〉
F

≡ 0 (mod 2) .

□

Corollary 1. Let Fn be a modified fibonomial graphs with 3.2n vertices, for each nonnegative integer n.
The number of isolated vertices in this graph is 2n.

Proof. In the modified fibonomial graphs, the vertex v3k+2 is isolated for all k = 0, 1, 2, ..., 2n − 1.
Then vertices v2, v5, ..., v3.2n−1 are isolated.
Then the number of isolated vertices is obtained as 2n. □

Corollary 2. In the modified fibonomial graphs, the degree of vertex v0 is 2n+1 + 1.
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Proof. In the modified fibonomial graphs, the vertex v0 is connected to

2n+1 − 1

different vertices. The vertex v0 is connected to every vertice except isolated vertices.
For all

k = 0, 1, 2, ..., 2n − 1, a0,3k = 1 and a0,3k+1 = 1

In that case,
deg (v0) = 3.2n − 1− 2n + 2 = 2n+1 + 1.

□

6. Sum of the Laplacian Eigenvalues of the Modified Fibonomial Graphs

To obtain the sum of Laplacian eigenvalues of modified fibonomial graphs, we first examined the Lapla-
cian matrices of modified fibonomial graphs. The Laplacian matrices of the modified fibonomial graphs
F0, F1 and F2 are given below.

L (F0) =

 2 −1 0
−1 1 0
0 0 0



L (F1) =


4 −1 0 −1 −1 0
−1 2 0 −1 0 0
0 0 0 0 0 0
−1 −1 0 2 0 0
−1 0 0 0 1 0
0 0 0 0 0 0



L (F2) =



8 −1 0 −1 −1 0 −1 −1 0 −1 −1 0
−1 4 0 −1 −1 0 −1 −1 0 −1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0
−1 −1 0 4 0 0 −1 −1 0 0 0 0
−1 0 0 0 2 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−1 −1 0 −1 −1 0 4 0 0 0 0 0
−1 0 0 −1 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0 0 2 0 0
−1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0


Theorem 5. Let Ln be an n×n Laplacian matrix with eigenvalues µ1, µ2, ..., µn of the modified fibonomial
graph Fn. The sum of the Laplacian eigenvalues of the modified fibonomial graph Fn is

S(Fn) =

n∑
i=1

µi = 3n+1

Proof. We know that the sum of the eigenvalues of the Laplacian matrix equal to sum of the diagonal
etries of the Laplacian matrix.

L (Fn) = D (Fn) − A (Fn) and the a0,0 diagonal entry of the adjacency matrix is 1 and all other

diagonal entry are 0. Also, Fn has
(
n+1
j

)
vertices of degree 2j , for j = 0, 1, 2, ..., n and the vertex v0 of

degree 2n+1 + 1. Thus,

S(Fn) = tr (L (Fn)) =

n+1∑
j=0

(
n+ 1

j

)
2j = 3n+1

□
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7. Conclusion

In this article, we first examined the spectrum of the newly defined modified fibonomial graphs and
tried to determine their relationships with similar graphs. Similar studies can be done on new graphs
obtained using generalized Fibonacci numbers.
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