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Abstract: The physical layer security of non-terrestrial networks (NTNs) has recently garnered increasing attention from
both academia and industry as the information can be intercepted in aerial transmissions, especially when an illegitimate
user positions itself near the transmitter or receiver. To address this vulnerability, we investigate the secrecy performance
of a high altitude platform station (HAPS) system using optical communications in the presence of an aircraft eaves-
dropper. Specifically, we assess the secrecy-reliability trade-off by considering both outage and interception probability,
and explore the secrecy outage probability. In the proposed setup, we evaluate a practical scenario in which the HAPS
communicates with multiple ground stations located at different altitudes, examining the system’s physical layer security
performance for different types of attenuators including fog, clouds and air pollution. The findings indicate that weather
conditions significantly affect the secrecy performance of optical HAPS communications. However, placing ground sta-
tions at higher altitudes or selection among multiple ground stations can improve the overall security performance of the
system.

Keywords: HAPS systems, optical communication, physical layer security.

Zorlu Hava Koşulları Altında Yer İstasyonu Seçimi Yoluyla Optik HAPS
İletişiminde Gizlilik Başarımının Arttırılması

Özet: Son zamanlarda, havasal iletimlerde bilginin ele geçirilebilmesi nedeniyle, karasal olmayan ağların (non-terrestrial
networks, NTNs) fiziksel katman güvenliği hem akademide hem de endüstride artan bir ilgiyle karşılanmaktadır; özellikle
de yetkisiz bir kullanıcının vericiye veya alıcıya yakın bir konumda bulunması durumunda güvenlik riskleri artmaktadır.
Olası güvenlik açıklarını ele almak amacıyla, bu çalışmada optik haberleşme kullanan bir yüksek irtifa platform istasyonu
(high altitude platform station, HAPS) sisteminin gizlilik performansı, bir gizli dinleyicinin varlığı altında incelenmiştir.
Özellikle, kesinti ve ele geçirilme olasılıklarını dikkate alarak önerilen sistemin gizlilik-güvenilirlik dengesi değerlendirilmiş
ve gizlilik kesinti olasılığı hesaplanmıştır. Önerilen senaryoda, HAPS’ın farklı yüksekliklerde konumlanmış birden fazla
yer istasyonu ile iletişim kurduğu pratik bir durumu ele alarak, sistemde sis, bulutlar ve hava kirliliği gibi farklı zayıflatıcı
etmenlerin etkisi incelenmiştir. Sonuçlar, hava koşullarının optik HAPS iletişimlerinin gizlilik performansını önemli ölçüde
etkilediğini göstermektedir. Ancak, yer istasyonlarının daha yüksek irtifalarda konumlandırılması veya birden fazla yer
istasyonu arasından seçim yapılması sistemin genel güvenlik performansını arttırabilmektedir.

Anahtar Kelimeler: HAPS sistemleri, optik haberleşme, fiziksel katman güvenlik.
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1 INTRODUCTION
Due to the foreseen increase in requested data rates from
the users, different techniques aiming to convey more in-
formation to the users are among the key topics of interest
for researchers today. Free space optics (FSO) offers a
promising solution to the growing demand for higher data
rates, leveraging the broader bandwidth available at optical
frequencies to transmit large volumes of data. One dis-
tinctive feature of optical signals is their highly directional
beams, which restricts their use to line-of-sight (LOS) sce-
narios, unlike traditional radio frequency (RF) communica-
tion where a LOS link is not always required. However, this
signal characteristic also addresses another critical issue:
data privacy [1]. Unlike RF signals, where electromagnetic
wave propagation raises security concerns, an eavesdrop-
per in FSO systems must be positioned close to the LOS
link to be able to listen the legitimate user, thereby enhanc-
ing the security of transmitted data [2].

An alternative approach to address user privacy con-
cerns can be established by using physical layer security
(PLS) techniques, which provide information-theoretic se-
curity by exploiting the inherent randomness in wireless
channels, such as noise and fading characteristics. PLS
techniques ensure secure communication as long as the
legitimate user’s channel quality surpasses those of poten-
tial eavesdroppers [3]. Compared to the traditional cryp-
tographic methods, PLS techniques offer greater computa-
tional efficiency and ease of implementation, making them
a topic of increasing interest among both researchers and
industry professionals in the recent years [4].

Aiming to satisfy both high data rate and security require-
ments, various scenarios that utilize FSO technique have
been analyzed in the literature. [1] and [5] derive the se-
crecy performance of a single hop FSO link under different
turbulence channels. Reference [6] extends the single hop
analysis to multiple scenarios for different eavesdropper lo-
cations, and [2] focuses on secrecy performance under dif-
ferent eavesdropper locations. Moreover, [7] and [8] add
an RF link to the single hop scenarios, with and without an
additional RF eavesdropper, respectively. Finally, [9] and
[10] analyze multi hop hybrid FSO/RF scenarios with maxi-
mum ratio combining (MRC) and selection combining (SC)
diversity reception techniques respectively.

Another promising approach for providing stable and
high-rate data transmission to targeted users is the im-
plementation of vertical networks, which can be realized
through unmanned aerial vehicles (UAVs), high-altitude
platform stations (HAPS), or low Earth orbit (LEO) satel-
lites. In HAPS enabled communications, stronger and less
disrupted LOS communication can be provided to a large
number of user, with enhanced data rates, and reliable
communication performance [11]. However, as these net-
works serve a large number of users, higher privacy de-
mands arise. Consequently, the need for comprehensive

research and detailed analysis of vertical network scenar-
ios becomes essential to address these growing privacy
concerns effectively.

In the recent years, secrecy performance of vertical net-
works with PLS techniques have been investigated in the
literature. Among them, [12] analyzes a downlink satellite
communication scenario where the receiver and the eaves-
dropper are equipped with multiple antennas. Reference
[13] explores the impact of satellite orbits on secrecy perfor-
mance, while [3] examines a satellite communication sce-
nario that incorporates channel estimation errors and con-
siders the presence of multiple receivers along with mul-
tiple eavesdroppers. Moreover, [14] analyzes the secrecy
performance of a scenario in which multiple relays are fed
from a satellite and paired with multiple users, and [15] in-
cludes power optimization and trajectories of UAV’s to im-
prove secrecy performance. Finally, [16] focuses on the se-
crecy performance of a multiple UAV relay assisted system
setup. In addition to the aforementioned studies, numerous
papers in the literature have explored the integration of the
high data rates provided by FSO techniques with the exten-
sive coverage capabilities of vertical networks to enhance
secrecy. For instance, [17] examines the secrecy perfor-
mance of a single-hop FSO link between a LEO satellite
and a HAPS system. Similarly, [18] explores various sce-
narios in non-terrestrial networks, including LEO satellite-
to-HAPS, HAPS-to-HAPS, and HAPS-to-ground links. Fur-
thermore, [19] introduces a hybrid FSO/RF link in addition
to the FSO link between a LEO satellite and a HAPS, en-
hancing communication robustness.

In addition to the above-mentioned studies, several se-
crecy analyses have been conducted in the literature, com-
bining both the high data rate output of FSO techniques and
the robustness of vertical networks. For instance, [17] ex-
amines the secrecy performance of a single-hop FSO link
between a LEO satellite and a HAPS. Similarly, [18] ex-
plores various scenarios in non-terrestrial networks, includ-
ing LEO satellite-to-HAPS, HAPS-to-HAPS, and HAPS-
to-ground links. Furthermore, [19] introduces a hybrid
FSO/RF link in addition to the FSO link between a LEO
satellite and a HAPS, enhancing communication robust-
ness.

Building upon the principles of FSO communication and
PLS, this study presents a comprehensive analysis of phys-
ical layer security in HAPS systems utilizing optical com-
munication. Given the growing demand for secure and
high-rate communication in non-terrestrial networks, partic-
ularly with the unique characteristics of FSO such as nar-
row beamwidth and high directivity, our research focuses
on evaluating the secrecy performance of HAPS-based op-
tical communication links. The contributions of this paper
can be summarized as follows:

• By integrating the strengths of optical transmission with
the security benefits offered by PLS techniques, we
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provide a thorough investigation into how these sys-
tems can ensure secure communication against po-
tential eavesdropping threats. To do so, we consider
different site deployment scenarios in the presence of
various attenuators, including fog, clouds, and air pol-
lution.

• The analysis is crucial as HAPS systems, positioned in
the stratosphere, present distinct challenges and op-
portunities in terms of maintaining high-quality, secure
communication links over vast areas. To establish a
practical scenario, we consider an aerial eavesdropper
positioned close to the HAPS node, trying to intercept
optical communication.

• In this study, we analyze the impact of various weather
conditions and deployment scenarios on system per-
formance, with a primary focus on the secrecy out-
age probability. Furthermore, we examine the security-
reliability trade-off by jointly considering outage prob-
ability and intercept probability. By evaluating these
factors in the proposed scenario, we aim to provide a
deeper understanding of how environmental conditions
and site configurations influence both the security and
reliability of the system.

The paper is organized as follows. In Section 2.1, a gen-
eral system model is described, followed by explanations
about atmospheric attenuation and turbulence-induced fad-
ing channel in Section 2.2. Section 2.3 focuses on clar-
ifying different scenarios that will be used throughout the
paper. Section 3 focuses on statistical properties of SNR
and analytical expressions about secrecy performance of
the proposed system. Simulation results are talked upon in
Section 4, and the results are summarized in Section 5.

2 SYSTEM AND CHANNEL MODEL

2.1 System Model
In this study, we introduce a scenario for an eavesdrop-
ping attack on the communication link between a HAPS
system and a ground station. Specifically, we analyze the
case where HAPS A is communicating with the best site
B∗

k , among possible sites Bk, k ∈ {1,2, ...,N} in the footprint
of A. This capability allows A to enhance the secrecy per-
formance of the communication by strategically choosing
the optimal site from a range of possible candidates [20].
Meanwhile, the aircraft eavesdropper E, positioned in close
proximity to A, is actively attempting to intercept and gather
information transmitted through the optical beam as illus-
trated in Fig. 1. Positioning itself above the troposphere
enhances E ’s eavesdropping performance by mitigating the
impacts of weather-dependent effects. However, despite
this advantage, intercepting information in optical commu-
nication remains challenging, as any eavesdropper in close
proximity to A must block the LOS communication between

A and Bk to successfully gather the data. Alternatively, E
could function as a passive optical beam splitter, capturing
a small fraction rE of the laser beam’s irradiance, while al-
lowing the remainder rBk to be transmitted to Bk satisfying
rBk + rE = 1 [1]. For the proposed structure, the received
signals at Bk and E can be written as

yBk =
√

rBk PAIBk gBk x+nBk , (1)

and

yE =
√

rEPAIEgEx+nE , (2)

where PA is the transmit power of A, nBk stands for the ad-
ditive white Gaussian noise (AWGN) with one-sided noise
power N0, IBk is turbulence induced fading channel coef-
ficient, and gBk denotes the atmospheric attenuation be-
tween A and Bk respectively. Moreover, IE and gE are the
turbulence induced fading coefficient and attenuation be-
tween A and E, and nE is the AWGN noise at passive eaves-
dropper with one-sided noise power N0. Accordingly, the
instantaneous SNRs at Bk and E can be written as

γ j =
r jPA

N0
I2

j g2
j = γ jI

2
j , (3)

where j ∈ {Bk,E}, and γ j =
r jPA
N0

g2
j is the average SNR with

E[I2
j ] = 1.

2.2 Channel Model
The optical signal’s quality is influenced by various atmo-
spheric factors, such as weather conditions, turbulence,
and random fluctuations as it travels through the atmo-
sphere. Key factors include atmospheric conditions like
cloud formations, fog, dust, rain, and snow, which cause
scattering, absorption, and attenuation of the signal due to
changes in the refractive index along the transmission path.
In this section, we briefly summarize these limiting effects.

2.2.1 Atmospheric attenuation

In optical communication systems, atmospheric attenuation
is caused by scattering and absorption, both of which are
affected by atmospheric particles and weather phenomena,
especially fog and clouds.1. Mathematically, atmospheric
attenuation is expressed as gBk = gmie

Bk
ggeo

Bk
, where gmie

Bk
and

ggeo
Bk

represent the attenuation due to Mie scattering and
geometrical scattering, respectively. Mie scattering occurs
when the wavelength of operation is similar to the size of
the particles in the transmission medium, and its behavior
can be described as [21]

1 As a HAPS eavesdropper, E remains impervious to weather-dependent
effects. Consequently, the analysis presented herein remains applicable
to the communication between A and Bk.
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Fig. 1 Illustration of HAPS to ground station communication with a HAPS eavesdropper.

gmie
Bk

= exp
(
− ρ ′

sin(θBk)

)
, (4)

where θBk is the elevation angle between A and Bk-th site.
Here, ρ ′ denotes the extinction ratio and it is defined as [21]

ρ
′ = a′h3

Bk
+b′h2

Bk
+ c′hBk +d′, (5)

where hBk is the height of the selected site above mean
sea level. a′, b′, c′, and d′ depend on the signal wavelength
λ through the following equations

a′ =−0.000545λ
2 +0.002λ −0.0038,

b′ = 0.00628λ
2 −0.0232λ +0.0439,

c′ =−0.028λ
2 +0.101λ −0.18,

d′ =−0.228λ
3 +0.922λ

2 −1.26λ +0.719.

(6)

Geometrical scattering, on the other hand, is associated
with the optical visibility range, which is influenced by
cloud/fog formations and atmospheric pollution. Based on
the Kim’s model, the attenuation caused by geometrical
scattering can be expressed as [22]

ggeo
Bk

= exp(−ϕBk Dgeo
Bk

), (7)

where Dgeo
Bk

is the distance of the fraction of the link between
A to Bk that experiences geometrical scattering, and ϕBk
denotes the attenuation coefficient, defined as [22]

ϕBk =
3.91
VBk

(
λ

550

)−ψBk
, (8)

where ψBk and VBk are the particle size coefficient and op-
tical visibility, and ψBk is determined by the Kim’s model as
[23]
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ψBk =



1.6 VBk > 50
1.3 6 <VBk < 50
0.16VBk +0.34 1 <VBk < 6
VBk −0.5 0.5 <VBk < 1
0 VBk < 0.5.

(9)

Herein, VBk is defined as [23]

VBk =
1.002

(WBkCBk)
0.6473 [km], (10)

where WBk and CBk denote liquid water content and cloud
number concentration. The values of WBk , CBk , and VBk , un-
der λ = 1550nm, for various cloud formations are presented
in Table 1. Moreover, VBk and ϕBk values for fog formations
and different atmospheric pollution levels are provided in
Table 2 and 3, respectively.

Table 1 Geometrical scattering parameters for different cloud
formations at λ = 1550 nm [23]

Cloud formation WBk [cm−3] CBk [g/m−3] VBk [km]
Cumulus 250 1.0 0.028
Stratus 250 0.29 0.0626

Stratocumulus 250 0.15 0.0959
Altostratus 400 0.41 0.0369

Nimbostratus 200 0.65 0.0429
Cirrus 0.025 0.06405 64.66

Thin cirrus 0.5 3.128×10−4 290.69

Table 2 Geometrical scattering parameters for different fog for-
mations [24]

Fog formation VBk [km] ϕBk [dB/km]
Dense 0.05 339.62
Thick 0.2 84.9

Moderate 0.5 33.96
Light 0.77 16.67
Thin 1.9 4.59

Table 3 Geometrical scattering parameters for different atmo-
spheric pollution levels [25]

Atmospheric pollution VBk [km] ϕBk [dB/km]
Extremely polluted atm. 1 (low) 16.98

Normal atm. 10 (mod) 0.442
Non-polluted atm. (clear) 145 (high) 0.022

2.2.2 Turbulence-induced fading

Atmospheric temperature fluctuations give rise to turbulent
eddies with randomly varying refractive indices. As these

eddies function like dynamic optical lenses, they introduce
random variations in the amplitude of the transmitted sig-
nal, a phenomenon termed turbulence-induced fading. This
fading can be effectively modeled using the exponentiated
Weibull distribution (EW) [26], where the probability density
function (PDF) and cumulative distribution function (CDF)
characterize the statistical behavior of signal fluctuations as

fI(I) =
αβ

η

(
I
η

)β−1
exp

[
−
(

I
η

)β
](

1− exp

[
−
(

I
η

)β
])α−1

,

(11)

and

FI(I) =

(
1− exp

[
−
(

I
η

)β
])α

, (12)

respectively. Here, α and β are the distribution parame-
ters, and η is the scale parameter. The parameters can be
expressed as [27]

α =
7.22σ

2/3
I

Γ

(
2.487σ

2/6
I −0.104

) ,
β = 1.012

(
ασ

2
I
)−13/25

+0.142,

η =
1

αΓ(1+1/β )g1(α,β )
,

(13)

where g1(α,β ) is defined as

g1(α,β )≜
∞

∑
k=0

(−1)kΓ(α)

k!(k+1)1+1/β Γ(α − k)
. (14)

In this formulation, the fluctuation level can be obtained by
using the scintillation index σ2

I , which is determined by the
Rytov variance σ2

R as [28]

σ
2
I = exp

[
0.49σ2

R

(1+1.11σ
12/5
R )7/6

+
0.51σ2

R

(1+0.69σ
12/5
R )5/6

]
−1, (15)

and the Rytov variance σ2
R is related with the physical pa-

rameters, including transmitter and receiver altitudes, wind
speed, wave number and the zenith angle. Further details
about the calculation of σ2

R can be found in [28].

2.3 Site Deployment Model
In the forthcoming generation of optical wireless commu-
nication systems, multiple ground stations may be strategi-
cally positioned at varying altitudes above mean sea level to
optimize coverage and enhance performance. Specifically,
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deploying multiple stations within NTNs offers a viable so-
lution for mitigating signal attenuation caused by adverse
weather conditions. With practical deployment in mind, we
propose three distinct deployment strategies in this work.

In the scenario of ground level deployment, we consider
that all sites available for communication are situated at
ground level, precisely h0 = 0 km above the surface and
hE = 0.01 km above mean sea level, where the wind speed
is 2.8 m/s, and λ = 1550 nm. In the configuration of mid-
level deployment, we assume the ground stations are po-
sitioned at mid-altitudes, such as on hills, low mountainous
regions, or foothills, to minimize signal attenuation. The
altitudes are set to h0 = 0.5 km and hE = 0.7 km. As a re-
sult, the wind speed experiences a slight increase to 5.1
m/s, with an operational wavelength of λ = 1550 nm. In the
setup of high-level deployment, the ground stations are lo-
cated at very high altitudes, like high plateau, or mountains.
As a result, h0 and hE are taken as h0 = 2 km and hE = 2.2
km, and the wind speed increases up to 10.0 m/s, with the
same operational wavelength as given above.

3 SECRECY PERFORMANCE ANALYSIS
In this section, we first present the statistical properties of
SNR. Thereafter, we analyze the proposed system in terms
of secrecy outage probability (SOP) and provide a security-
reliability trade-off.

3.1 Statistical Properties of SNR
The proposed site selection method relies on the maximiza-
tion of SNR. Mathematically, the best site is selected as

k∗ = arg max
1≤k≤N

[
γBk

]
, (16)

and similarly, the end-to-end SNR at the legitimate link can
be written as

γB = max
1≤k≤N

[γBk ]. (17)

Assuming independent identically distributed Exponenti-
ated Weibull random variables in each link, with the aid of
(12) and (17) CDF of the overall SNR can be expressed as

FγB(γB) =
N

∏
k=1

(
1− exp

[
−

(
γB(

ηBk gBk

)2
γ̄Bk

)βk/2])αk

. (18)

3.2 Secrecy Outage Probability
In the physical layer security, SOP stands as one of the
most extensively employed metrics for evaluating secrecy
performance in academic literature. Within the context of
wireless communications, HAPS A must ensure that the in-
formation is transmitted at a fixed secrecy rate, denoted by

Rs. For secure communication to be maintained, this se-
crecy rate is required to be less than the secrecy capacity
Cs, meaning that the condition Cs > Rs must hold true to pre-
vent a breach in secrecy [29]. Mathematically, SOP can be
defined as

PSO = Pr[Cs < Rs], (19)

where Rs = log2 γth, and Cs can be written as

Cs =

{
log2

(
1+ γB

)
− log2(1+ γE), γB > γE

0, otherwise.
(20)

As we assume a turbulence-free communication model be-
tween B and E, due their close proximity, the SNR at E,
denoted as γE , can be represented by its average value γ̄E ,
given by γE = γ̄E = rE PA

N0
[1]. Therefore, by invoking (20) into

(19), PSO can be written as

PSO = Pr[γB < γth(1+ γ̄E)−1], (21)

and with the aid of (21), and (18), PSO can be expressed as

PSO =
N

∏
k=1

(
1− exp

[
−

(
γth(1+ γ̄E)−1(

ηBk gBk

)2
γ̄Bk

)βk/2])αk

. (22)

3.3 Security-Reliability Trade-off
The security-reliability trade-off (SRT) is characterized by
the balance between the intercept probability (IP) and the
outage probability (OP) in communication systems [30]. IP
refers to the probability that E successfully intercepts and
decodes the transmitted signal. This happens when the E ’s
SNR exceeds a certain threshold, allowing it to capture the
data. On the contrary, OP measures the probability that the
signal quality, typically quantified by SNR of the legitimate
link, falls below a certain threshold γth. By taking IP and OP
into consideration, the SRT can be expressed as [30]

PSRT =Pr[γB ⩽ γE ,γE > γth]. (23)

Please note that IP and OP are statistically independent.
Therefore the above expression can be written as PSRT =
Pr[γB ⩽ γE ]Pr[γE > γth]. Therefore, PSRT can be expressed

PSRT = Pr[γB ⩽ γE ]Pr[γE > γth]

= Pr[γE > γth]
N

∏
k=1

(
1− exp

[
−

(
γ̄E(

ηBk gBk

)2
γ̄Bk

)βk/2])αk

.

(24)

Morever, SRT can be asymptotically evaluated by using the
high SNR Taylor expansion of exp(x)∼= 1− x as

P∞

SRT = Pr[γE > γth]
N

∏
k=1

(
γ̄E(

ηBk gBk

)2
γ̄Bk

)αkβk/2

. (25)
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4 NUMERICAL RESULTS
In this section, the SOP and SRT performances of the pro-
posed system are illustrated, and theoretical findings are
validated by Monte-Carlo simulations. It is assumed that
HAPS A is employed at an altitude of 30 km as recom-
mended in [31] and that the eavesdropper E is located at
very close proximity of HAPS A. Due to close distance
between A and E, we assume that Pr[γE > γth] = 0.9. The
zenith angles between the A and all possible sites are as-
sumed to be ζ = 10◦. Three different site deployment sce-
narios are considered as described in Section 2.3, and the
fading parameters are found as α = 3.209, β = 2.505, η =
0.81 for the ground level deployment, α = 3.113, β = 2.657,
η = 0.827 for the mid-level deployment, and α = 3.135,
β = 2.621, η = 0.823 for the high-level deployment. The
distances Dgeo

Bk
are calculated through measurement results

in [32]. Additionally, the fixed secrecy rate is taken as Rs = 1
bit/s, and the fraction of the power received by the eaves-
dropper is set to rE = 0.2. Also, the received SNR at the
eavesdropper is assumed as γ̄E = 5 dB.

In Fig. 2, the SOP performance of the system is shown
for the ground level deployment scenario in the presence
of thin cirrus cloud formation with Dgeo

Bk
= 0.1 km for differ-

ent number of sites. It can be seen here that the theo-
retical results are perfectly matched with the simulations.
Moreover, it is inferred from the figure that the slopes of the
curves increase with the increasing number of sites. This
stems from larger diversity order offered by higher number
of sites. Hence, it can be deduced that enhanced security
can be achieved by deploying higher number of sites.

5 10 15 20 25

10
-8

10
-6

10
-4

10
-2

10
0

Fig. 2 SOP performance of the system under thin cirrus cloud
formation for the ground level deployment and N = 5,10,20.

The SOP curves for N = 10 sites are illustrated in Fig. 3
for different deployment scenarios in the presence of thin
cirrus cloud formation with Dgeo

Bk
= 0.1 km. It can be ob-

served from the figure that the system performance is en-

hanced from ground level to mid-level deployment and from
mid-level to high-level deployment. Therefore, it can be said
that utilizing higher altitudes for sites improves the system
performance. Notice here that the slopes of the curves are
almost the same, and the system performance is improved
in terms of power gain. This can be attributed to lower loss
levels owing to high-level deployment and shorter link dis-
tance.

5 10 15 20
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-8

10
-6

10
-4

10
-2

10
0

Fig. 3 SOP performance of the system under thin cirrus cloud
formation for different deployment scenarios and N = 10.

In Fig. 4, the SOP performance is presented with respect
to rE for different deployment scenarios, fixed PA

N0
= 15 dB,

and N = 10 number of sites. Here, thin cirrus cloud forma-
tion is considered with Dgeo

Bk
= 0.1 km. It can be inferred

from the figure that deploying sites at higher altitudes sig-
nificantly improves the system performance for lower val-
ues of rE . However, for higher values of rE , SOP dramat-
ically increase. This can be explained by the fact that the
eavesdropper receives very large fraction of the transmitter
power and the legitimate sites receive very small fraction of
the power. Thus, secure communication becomes infeasi-
ble for high values of rE .

In Fig. 5, the SOP curves are illustrated for N = 10 num-
ber of sites with mid-level deployment under different atmo-
spheric conditions. Here, thin cirrus cloud formation with
Dgeo

Bk
= 0.1 km, thin fog with Dgeo

Bk
= 1.01 km, and normal

polluted atmosphere with Dgeo
Bk

= 3.04 km are considered to
examine the effects of various visibility levels. It can be de-
duced from the figure that for a SOP of 10−9, atmospheric
pollution results in ∼ 2.5 dB SNR loss in system perfor-
mance, whereas thin fog formation introduces ∼ 9 dB SNR
loss. Hence, it can be concluded that the system perfor-
mance significantly affected by the atmospheric conditions.

SRT performance of the proposed system is presented
in Fig. 6 for N = 5 and mid-level deployment scenario un-
der non-polluted, normal polluted, and extremely polluted

E. Erdogan, E. S. Ahrazoglu, E. B. Bakirci, and I. Altunbas 7



ITU Journal of Wireless Communications and Cybersecurity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 4 SOP performance of the system with respect to rE under
thin cirrus cloud formation for N = 10 and PA

N0
= 15 dB.
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Fig. 5 SOP performance of the system under thin cirrus cloud
formation, thin fog formation, normal polluted atmosphere for
N = 10 and mid-level deployment.

atmospheric conditions all with Dgeo
Bk

= 3.04 km. It can be
seen here that asymptotic curves perfectly depicts the sys-
tem performance in high SNR region. Moreover, the figure
reveals that different pollution regimes results in significant
SNR loss in the system performance. Under extremely pol-
luted atmosphere, reliable communication is not achievable
with reasonable SNR values. Therefore it can be deduced
that atmospheric pollution is critically important in SRT per-
formance of the system.

In Fig. 7, SRT performance of the system is illustrated
with respect to rE for different deployment scenarios. Here,
thin cirrus cloud formation with Dgeo

Bk
= 0.1 km, N = 10 sites,

and PA
N0

= 15 dB are considered. It can be deduced from
the figure that deploying legitimate sites at higher altitudes
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Fig. 6 Impact of pollution on SRT performance of the system for
N = 5 and mid-level deployment scenario.

enhances the SRT performance of the system, similar to
Fig. 4. Additionally, high values of rE results in poor SRT
performance, increasing up to probability of 1. This stems
from the eavesdropper gathering most of the transmitted
power, thus, secure communication between HAPS A and
legitimate sites becomes infeasible.
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Fig. 7 SRT performance of the system with respect to rE under
thin cirrus cloud formation for N = 10 and PA

N0
= 15 dB.

5 CONCLUSION
This study highlights the critical role that weather condi-
tions play in the physical layer security of optical HAPS
communications, particularly in the presence of an airborne
eavesdropper. By evaluating the secrecy-reliability trade-
off through interception and outage probabilities, we have
demonstrated that adverse weather conditions, such as fog,
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clouds, and air pollution, can severely degrade system per-
formance. However, our results also show that strategically
positioning ground stations at higher altitudes offers a vi-
able solution to enhance overall secrecy. These insights
provide valuable guidance for the design and deployment
of secure non-terrestrial networks, emphasizing the need
for careful consideration of environmental factors and sys-
tem configuration in maintaining secure communications.
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Abstract: Wireless sensor networks (WSNs) play an important role in modern communication systems with the advances
in 5G/6G technologies. These networks have a wide range of applications, from smart cities to industrial automation,
from environmental monitoring systems to healthcare applications. However, since sensor nodes have limited energy
resources, energy efficiency remains a critical issue for the sustainability of these networks. Low-power routing protocols
are needed to ensure the long lifespan and efficient operation of sensor nodes. This study comprehensively studies
cooperative energy-efficient routing protocols designed to achieve sustainability in WSNs. First of all, the basic princi-
ples of cooperative routing methods are discussed and approaches to optimize data transmission between nodes are
reviewed. Then, different energy-efficient routing protocols are compared and the pros and cons of hierarchical, planar
and location-based protocols are analyzed. It is shown that by integrating artificial intelligence (AI) and machine learning
(ML) techniques into routing protocols, it is possible to dynamically optimize node selection processes and extend the net-
work lifetime. This survey summarizes the current status of energy-efficient routing protocols, discusses the challenges
encountered and suggests potential directions for future research.

Keywords: Wireless sensor networks, energy efficiency, routing protocols, 5G/6G, artificial intelligence.

5G/6G Kablosuz Sensör Ağlarında Sürdürülebilir Haberleşme: Enerji
Verimli İşbirliğine Dayalı Rotalama Üzerine Literatür Taraması

Özet: Kablosuz sensör ağları (KSA’lar), 5G/6G teknolojilerindeki gelişmelerle birlikte yeni iletişim sistemlerinde önemli
bir rol oynamaktadır. Bu ağlar, akıllı şehirlerden endüstriyel otomasyona, çevre izleme sistemlerinden sağlık uygula-
malarına kadar geniş bir uygulama yelpazesine sahiptir. Ancak, sensör düğümlerinin sınırlı enerji kaynaklarına sahip
olması nedeniyle, enerji verimliliği bu ağların sürdürülebilirliği için kritik bir konu olmaya devam etmektedir. Sensör
düğümlerinin uzun ömürlü ve verimli çalışmasını sağlamak için düşük güçlü yönlendirme protokollerine ihtiyaç vardır. Bu
çalışma, KSA’larda sürdürülebilirliği sağlamak için tasarlanmış işbirlikçi enerji verimli yönlendirme protokollerini incele-
mektedir. Her şeyden önce, işbirlikçi yönlendirme yöntemlerinin temel prensipleri tartışılmakta ve düğümler arasında veri
iletimini optimize etme yaklaşımları incelenmektedir. Ardından, farklı enerji verimli yönlendirme protokolleri karşılaştırıl-
makta ve hiyerarşik, düzlemsel ve konum tabanlı protokollerin artıları ve eksileri analiz edilmektedir. Yapay zeka ve
makine öğrenimi tekniklerinin yönlendirme protokollerine entegre edilmesiyle, düğüm seçim süreçlerinin dinamik olarak
optimize edilmesinin ve ağ ömrünün uzatılmasının mümkün olduğu gösterilmektedir. Bu literatür taraması, enerji açısın-
dan verimli yönlendirme protokollerinin mevcut durumu özetlenmiş, karşılaşılan zorluklar tartışılmış ve gelecekteki araştır-
malar için olası yönler önermiştir.

Anahtar Kelimeler: Kablosuz sensör ağları, enerji verimliliği, yönlendirme protokolleri, 5G/6G, yapay zeka.
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1 INTRODUCTION
WSNs have become an essential element in modern com-
munication systems, especially in applications such as en-
vironmental monitoring, healthcare, smart cities, and indus-
trial automation. With the advances in 5G and 6G networks,
WSNs can do more by offering very reliable communica-
tion, low latency, and fast data transfer rates. However, en-
ergy efficiency remains one of the key challenges in ensur-
ing the sustainability of WSNs, especially considering the
limited resources and energy resources of sensor nodes
and their typical deployment in inaccessible locations. Ef-
ficient utilization of energy is important to extend the net-
work lifetime, but is also essential to maintain the reliabil-
ity of the communication infrastructure. Thus, the study of
energy efficiency and sustainability has been a major chal-
lenge for WSNs. Routing protocols have received consid-
erable attention in recent research [1], [2]. The introduction
of collaborative tracking of targets and connections in mod-
ern networks exacerbates the energy efficiency problem in
WSNs.

Walid Demiga and others [3] have highlighted the im-
portance of collaborative target tracking to reduce redun-
dant probes and optimize communication between nodes
to minimize energy consumption. In this context, cooper-
ation between sensor nodes ensure that only the neces-
sary information is available to all nodes participating in the
probe and communication process, significantly increas-
ing the network lifetime. Similarly, energy-efficient com-
munication methods, e.g., as discussed by Igor Stanoev
et al. [4], the impact of teamwork on improving reliabil-
ity and reducing energy consumption while communicat-
ing, such as the optimized Hybrid Automatic Repeat Re-
quest (HARQ) protocol. Efforts towards building collabo-
rative intelligent environments provide a significant positive
impact on the sustainable design of WSNs. By leveraging
the outcomes of the Internet of Things (IoT) and artificial in-
telligence (AI), these environments are developing systems
that save energy, reduce costs and improve user comfort
and safety. According to the work in [5], the interconnected
intelligent devices of a Collaborative Smart Environment
(CSE) manage their energy consumption more efficiently.
This approach, combining different technologies, leads to
integrated energy management solutions to improve every-
day life.

To improve the energy efficiency of WSNs, many energy-
efficient routing protocols have been proposed. T.M. Be-
hera et al. [6] provide a review of various hierarchical clus-
tering protocols, such as the Low Energy Adaptive Cluster-
ing Hierarchy (LEACH), and their variations for optimizing
energy usage in WSNs. The LEACH protocol, which or-
ganizes the sensor nodes into clusters with cluster heads,
reduces direct communication to the base station (BS). Dif-
ferent modifications of LEACH, such as LEACHC (LEACH
Central) and LEACH-DCS (Deterministic Cluster Selec-

tion), have been developed to further optimize the selec-
tion of cluster heads based on residual energy and leads
to more balanced clusters and networks with increased life-
times [7]. Other approaches discussed in [8], focus on re-
ducing energy waste through traffic distribution techniques
to ensure optimized energy consumption across the net-
work. C. Nakas et al. [9] provides a review of energy-
efficient routing protocols for wireless sensor networks and
classify them into hierarchical and location-based cate-
gories. Each type has its own advantages and disadvan-
tages in terms of energy-efficient savings. Hierarchical
routing is notable for reducing duplicate data transmissions
and increasing network lifetime by collecting data at the
cluster head before transmitting it to the BS. H. L. Guru-
raj et al. [10] proposed an energy-efficient routing proto-
col for 5G/6G WSNs that uses RL to improve cluster head
selection and the data routing. RL-based methods select
nodes with more remaining energy and adjust the routing
path based on the current state. This brings sustainable
communication in WSNs.

The literature offers a fascinating perspective on the
use of autonomous robots for data collection in terrestrial
WSNs. By lowering the energy consumption of cluster
heads and UAV robots, several research suggested mobile
sinks for gathering data from clustered networks [11]–[15].
The work in [16] considers a similar data collection prob-
lem by considering underwater communication challenges
via an autonomous underwater vehicle (AUV). The under-
water system is more costly than terrestrial wireless sen-
sors, although autonomous robots help decrease the en-
ergy cost of sensor equipment. The papers [17]–[19] tackle
scheduling problem for data collection in single-hop energy
harvesting WSN by considering throughput and fairness.

The work [20] suggested a cluster head selection ap-
proach for energy-sensitive routing issues in UASNs and
examined the impact of predicted available energy on clus-
ter head selection while considering stochastic energy har-
vesting methods of individual sensors. The paper ad-
dresses the same problem and suggests a new reinforce-
ment learning-based approach to identify cluster heads
(CHs) that takes into account estimated collected energy
as well as the locations and remaining energy of the sen-
sor nodes [1]. Energy harvesting awareness makes un-
derwater sensors last longer. This is shown by numerical
results that show our proposed method greatly increases
the amount of energy collected, which in turn extends the
network’s useful life.

Mobility and heterogeneous networks (HetNets) brings
extra problems to energy-efficient routing. When you mix
macro and small cells in HetNets, you get more handoffs,
more signaling overhead, and different types of nodes need
more energy. Gures et al. [21] describes mobility handling
problems in 5G HetNets, including frequent handover fail-
ures, the ping-pong effect, and increased energy usage due
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to redundant signaling. Addressing these issues requires
advanced mobility management techniques such as beam-
level mobility, dual connectivity, and mobility resilience op-
timization (MRO). These approaches helps WSNs to main-
tain reliable communication without wasting energy. The
study of Wang in [22] shows that how mobility affects cov-
erage and energy consumption in WSNs.

AI techniques can improve energy efficiency of WSNs.
AI-driven approaches introduced by Parag Biswas et al.
[23] include reinforcement learning, genetic algorithms, and
neural networks to decrease power consumption for sus-
tainable communication and enables dynamic decision-
making that adapts routing and energy management strate-
gies according to real-time network conditions. Pasqualetto
in [24] have demonstrated the value of multi-agent systems
(MAS) in building smart energy management systems that
can process big amount of data from various sensors and
devices, optimizing energy usage in the network and the
role of MAS and big data is also discussed.

While energy efficiency is considered for WSNs, security
should also be considered for sensors. Sensor nodes, often
deployed in open environments and susceptible to attacks,
make security a critical factor in WSNs. However, traditional
security methods such as encryption spends a lot of energy,
which poses a problem considering the limited resources of
WSNs. M. Mahamat et al. [25] review recent energy-aware
security approaches that balance strong protection with low
energy consumption. For example, context-aware secu-
rity avoids unnecessary energy consumption by adjusting
protection levels according to the current environment and
threat level. M. Biradar and B. Mathapathi [20] describe
a trust-based routing protocol that increases security while
keeping energy consumption low. These protocols creates
link between nodes and saves energy. New research looks
into how metaheuristic and biologically inspired algorithms
can be used to make routing in wireless sensor networks
more energy-efficient. R. Priyadarshi [26] reviews tech-
niques such as particle swarm optimization (PSO), artifi-
cial bee colony (ABC) and artificial bee colony optimization
(ACO). Natural behaviors, like the flight of bees or foraging
ants, inspire these algorithms to determine energy-efficient
routes. An approach combining PSO and ACO shows the
potential to increase the strengths of algorithms to improve
data collection and extend network lifetime.

In conclusion, making 5G and 6G WSNs more energy ef-
ficient requires a mix of collaborative routing, mobility man-
agement, AI-assisted optimization, and security issues that
are aware of energy use. This paper looks at previous re-
search that has been done on energy-efficient routing pro-
tocols, collaborative techniques to lower energy use, the
effects of mobility and heterogeneous networks, optimizing
AI/ML techniques for energy use, and systems that are lim-
ited by energy. Covering these areas summarizes current
achievements.

1.1 Main Contributions of the Paper
The main contributions of this paper is summarized below:

• This paper provides an overview of collaborative
energy-efficient routing protocols designed for 5G/6G
WSNs. It categorizes different routing approaches, in-
cluding hierarchical, planar, and location-based proto-
cols, and compares their advantages and disadvan-
tages.

• We discuss the impact of mobility management and
heterogeneous network structures on energy effi-
ciency, focusing on beam-level mobility and handover
optimization.

• The study includes how AI algorithms like reinforce-
ment learning, genetic algorithms, and neural net-
works, can be integrated into routing protocols to op-
timize node selection and extend the overall lifetime of
the network.

• The paper highlights the security concerns in low-
power WSNs, evaluating lightweight encryption, trust-
based routing and AI-based approaches to ensure se-
cure and efficient communication.

• This survey brings potential future research directions,
emphasizing AI-based routing, mobility management,
and sustainable communication solutions for 5G/6G
WSNs.

• Instead of diving too deep into details, this survey gives
a general idea about the problem and fundamental
concepts to deal with it, thus providing a basis for fur-
ther advancements and new solutions.

1.2 Organization of the Paper
We organize the rest of the paper as follows. Sec-
tion 2 presents energy-efficient protocols in 5G/6G WSNs.
Section 3 presents collaborative approaches for energy-
efficient routing. Section 4 exhibits impact of mobility and
heterogenous networks. Section 5 introduces AI/ML-based
techniques in energy-efficient routing. Section 6 provides
security challenges in energy-efficient routing. Section 7
concludes the paper.

2 PROTOCOLS FOR ENERGY EFFICIENCY
IN 5G/6G WSNS

Energy-saving routing protocols are important for wireless
sensor networks, especially for advanced systems such as
5G and 6G. WSN nodes have limited battery power, so us-
ing energy wisely ensures that the network operates effi-
ciently for a long time. Figure 1 presents an example model
of a clustered WSN. This section focuses on the various
protocols developed to conserve energy, how they work,
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and how they can be adapted to the needs of 5G/6G net-
works. Misra et al. shows that multimedia streaming in
WSNs introduces unique challenges in terms of energy-
efficient data transmission and real-time communication
[27].

Fig. 1 WSN architecture showing sensor nodes, cluster head,
sink node, and data flow to end users for various applications.

Behera et al. [6] also discussed the LEACH proto-
col in WSNs. LEACH divides sensor nodes into clusters,
and cluster heads (CHs) manage the communication within
these clusters. This arrangement reduces the number of
nodes that transmit data directly to the master station, thus
saving energy. However, LEACH’s method of randomly se-
lecting CHs are not that efficient. Selecting a low-energy
node as a CH quickly exhausts it, leading to a short network
lifetime. To solve this problem, LEACH-C (Central LEACH)
is used. LEACH-C selects CHs by a centralized system
depending on the remaining energy of the nodes. This cre-
ates a more balanced cluster and increases the network
lifetime, but requires additional infrastructure such as GPS,
which increases energy consumption [8], [28]. The another
paper deeply reviews clustering protocols in WSNs, ana-
lyzing existing classifications, problems encountered and
future research directions [29]. Hosseinzadeh et al. pro-
pose cluster based trusted routing method in WSNs us-
ing Fire Hawk Optimizer (FHO) for better security and ef-
ficiency [30]. They show this method improves network
performance by optimizing energy in sensor nodes. Also,
the study by Hegde et al. shows that the Improved Grey
Wolf Optimization (IGWO)-based LEACH protocol signifi-
cantly enhances network lifetime in Wireless Sensor Net-
works (WSNs) compared to traditional LEACH and GWO-
based methods. Their findings indicate that IGWO opti-
mizes cluster head selection by considering factors such
as energy balance and intra-cluster distance and helps to
substantially improve the number of operational rounds and
energy efficiency in both small- and large-scale WSN de-
ployments [31].

Behera and his team also mention another variation
called LEACH-DCS (Deterministic Cluster Selection). This
method optimizes the CH selection process by consider-
ing whether the node was a CH before and its current en-
ergy level. Therefore, high energy sensors are selected as
CHs, resulting in a more balanced energy distribution. The
authors also consider a distributed LEACH method with
solar power. This method uses solar-powered nodes as
CHs, thereby reducing the energy consumption of battery-
powered nodes.

This approach has been successful in extending the net-
work lifetime, especially in outdoor areas with sufficient
sunlight. However, it depends on the environmental con-
ditions [6]. They also highlight the use of multi-hop LEACH.
In this method, CHs do not send data directly to the BS,
but through intermediate nodes. This method is especially
important for large-scale WSNs, as it extends the network
lifetime by reducing the energy load in long-distance trans-
missions [6].

Schurgers and Srivastava [8] focus on local methods
and traffic distribution techniques to save energy usage in
WSNs. The paper propose to combine data from closer
sensor nodes before sending it to the master station. This
reduces the amount of data transmitted and saving energy
amount. Instead of using fixed cluster heads, they use Data
Convergence Units (DCEs) for processing the data locally.
If there is a failure, these DCEs quickly adapt, making the
system more reliable and energy efficient. They also pro-
pose to prevent a single node from running out of power
by distributing traffic across the network. Methods such as
Gradient-Based Routing (GBR) send data through the path
with the largest gradient difference for balancing energy us-
age and extend the lifetime of the network [8].

Another method focuses on choosing nodes with more
energy for routing, which avoids putting too much work on
weaker nodes and helps save energy [8], [32]. Nakas, Kan-
dris, and Visvardis [9] provide a detailed review of energy-
efficient routing protocols in WSNs, dividing them into four
categories: Flat, Hierarchical, Location-Based, and QoS-
Based protocols. They emphasize the importance of hi-
erarchical protocols like LEACH and its improved versions
for saving energy. These protocols group nodes into clus-
ters, with one node acting as the cluster head (CH) to col-
lect and send data. Upgraded versions like LEACH-C and
LEACH-M improve CH selection by considering how much
energy each node has left, helping to spread energy use
more evenly across the network. The survey also looks
at location-based protocols, such as Geographic Adap-
tive Fidelity (GAF) and Greedy Perimeter Stateless Routing
(GPSR), which use location data for better routing. For ex-
ample, GAF divides the network into grids and activates
only one node in each grid to save energy while keep-
ing good coverage. QoS-based protocols, like Sequen-
tial Assignment Routing (SAR), are designed to balance
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energy saving with network performance. SAR chooses
paths based on QoS needs, such as delay limits and packet
loss rates, making it useful for critical tasks where reliabil-
ity is important [9]. Table 1 presents a brief comparison of
location-based topology protocols in terms of their advan-
tages, disadvantages, scalability, mobility, routing, robust-
ness.

Gururaj et al. [10] have a new idea for how to send data
in 5G and 6G sensor networks. They call it CEERP (Collab-
orative Energy-Efficient Routing Protocol). It uses a type of
machine learning, reinforcement learning, to make groups
of sensors, or clusters, change as needed. A key part is
how it picks the leaders of these groups, the cluster heads.
It looks at how much power each sensor has left. This helps
spread out the work and keeps any one sensor from run-
ning out of power too soon. This makes the whole network
last longer. They also use something called MOISA (Multi-
Objective Improved Seagull Algorithm). This helps make
the network even better by saving energy, sending data
faster, and just making the whole process more efficient. By
considering multiple objectives simultaneously, MOISA en-
sures efficient energy management in complex 5G/6G sce-
narios where high data rates and reduced latency are es-
sential. The authors demonstrate that CEERP significantly
outperforms traditional protocols in terms of energy con-
sumption, throughput, and network longevity, with a 50%
reduction in energy consumption compared to conventional
methods. This collaborative and adaptive approach makes
CEERP particularly suitable for 5G/6G WSNs, which re-
quire scalable and energy-efficient solutions for sustainable
communication [10].

Eriş et al. [47], [48] introduce a new medium access
policy for underwater sensor networks that uses reinforce-
ment learning (RL) within the Time Division Multiple Access
(TDMA) system to improve energy efficiency. They focus on
solving the energy challenges in underwater environments,
where high energy use is caused by acoustic communica-
tion and environmental noise. Their proposed method uses
a cooperative multi-agent RL algorithm that allows nodes
to assign TDMA time slots on their own based on energy
harvesting opportunities. The work in [49], [50] also consid-
ers a similar problem and proposed a novel reinforcement
learning based routing algorithm for energy management in
networks.

This reduces wasted energy and helps the network last
longer. The method also uses multi-armed bandit modeling
to help nodes learn the best times to transmitdata, mak-
ing better use of the energy they collect. Simulations show
big improvements in metrics like half node dead (HND) and
last node dead (LND), meaning the nodes stay active much
longer than with older scheduling methods. Additionally,
piezoelectric energy harvesting is used to capture mechan-
ical energy from water flow, providing a sustainable energy
source and making the network more resilient to underwa-

ter challenges. The study concludes that combining energy
harvesting with RL-based TDMA scheduling is a promising
way to boost energy efficiency and communication reliabil-
ity in underwater sensor networks [48]. Yari et al. studies
the energy-efficient routing algorithm using sensors to in-
crease longevity by adjusting sensor positions dynamically
and optimizing data paths to reduce energy consumption in
WSNs [51].

5G networks are expected to achieve significant effi-
ciency improvements, with a goal of improving spectrum
efficiency by 90/100 compared to 4G, while future 6G sys-
tems are designed to operate at lower power consumption
while supporting land, air, and sea connections. A key
aspect of this transition is the integration of AI/ML algo-
rithms for intelligent resource management, enabling dy-
namic adjustments to transmission power, network topol-
ogy, and service configuration. AI-based technologies such
as adaptive beamforming and deep reinforcement learning
will enable BS and radio access networks (RAN) for opti-
mized power allocation based on real-time traffic demand,
then reducing unnecessary energy consumption [52].

Energy harvesting is another key for achieving energy
efficiency in 6G networks. Unlike 5G, which focuses on
optimizing power management, 6G aims to integrate re-
newable energy sources, such as solar and ambient RF
energy harvesting into powering the network. This will re-
duce reliance on traditional carbon-based power grids and
align with global sustainable development goals. In ad-
dition, ultra-low power communication strategies such as
device-to-device (D2D) networks and non-orthogonal mul-
tiple access (NOMA) are expected to minimize energy con-
sumption at the user end by enabling localized data ex-
change and spectrum reuse rather than relying on central-
ized, power-hungry infrastructure [52].

In addition, 3GPP has defined a set of key performance
indicators (KPIs) for mobile network energy efficiency, fo-
cusing on reducing the power consumption of core network
components while maintaining better high data rates and
low latency. These include database sleep mode optimiza-
tion, adaptive bandwidth allocation, and intelligent schedul-
ing mechanisms that allow mobile devices and network
nodes to enter low-power states during inactivity. 6G is ex-
pected to be 10 times more energy efficient than 5G while
providing higher spectral efficiency, lower power consump-
tion per bit, and sustainable network operation [52].

Mobile Ad Hoc Networks (MANETs) are dynamic,
infrastructure-less wireless networks in which nodes func-
tion as both hosts and routers, necessitating efficient rout-
ing protocols to manage communication and variations
in network topology. Roy et al. conducted a perfor-
mance comparison of leading MANET routing protocols,
specifically AODV (Ad Hoc On-Demand Distance Vector),
DSR (Dynamic Source Routing), and DSDV (Destination-
Sequenced Distance Vector), based on three key perfor-
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Table 1 A Synopsis of Location-Based Topology Protocols

Protocol Advantages Disadvantages Scalability Mobility Routing Robustness

GEAR
[33]

It balances
energy ingestion

and extends
network lifetime.

The periodic
table exchanges

increase
overhead.

Good Limited
The best
route is

selected.
Good

GEM [34]

It efficiently
routes messages
and offers void
and obstacle

tolerance.

It overloads
low-level nodes. Good Limited

The shortest
route is

selected.
Low

IGF [35]

It has fault
tolerance and

reduced
end-to-end

latency.

It depends on the
up-to-date local
neighbor table.

Good Limited The best
route is used. Good

SELAR
[36]

It has uniform
energy

dissipation.

It does not work
well with nodes

with holes.
Good Limited

The highest
residual

power route.
Good

GDSTR
[37]

It is easy to apply
and offers lower

path and hop
stretch.

It suffers from the
local dead-end

problem.
Good Limited The shortest

route is used. Low

MERR
[38]

It has uniformity
of energy

consumption.

It wastes energy
when nodes are

close.
Limited Limited

The minimum
energy

ingestion
route is used.

Low

OCF [39]
It offers superior
energy saving

and handles void.

It depends on the
up-to-date local
neighbor tables.

Good Limited The best
route is used. Good

PAGER-M
[40]

It manages low
overhead of

routing.

It is stateless
location-based. Good Limited

The shortest
route using
the greedy
algorithm is

used.

Low

HGR [41] It has reduced
end-to-end delay.

The reduced
delay is not
guaranteed.

Good Limited

The minimum
energy

ingestion
route is used.

Good

MECN
[42]

Fault tolerance is
established.

The link
maintenance

consumes
energy.

Good Limited

The optimal
route in a

sparse graph
is used.

Good

SMECN
[43]

Both link
maintenance cost

and number of
hops are
reduced.

High amount of
edges increases

overhead.
Low Limited

The optimal
route in a

sparse graph
is used.

Good

GAF [44] Network lifetime
is extended.

Nodes neither
aggregate nor
merge data.

Low Limited

The least cost
route within
the virtual

grid is used.

Low

PASC
ACO [45]

Redundant data
are reduced.

Energy holes are
more evident. Good Limited

The highest
residual

energy route.
Good

PASC-AR
[46]

It avoids the
energy hole
problem and

extends network
lifetime.

GPS increases
energy

consumption.
None Limited

The optimal
path by using
ACO is used.

Low
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mance metrics: average end-to-end delay (EED), packet
delivery fraction (PDR), and throughput. Their findings
revealed that AODV is better than DSR and DSDV re-
garding end-to-end delay, as AODV employs a hop-by-hop
mechanism that reduces buffering delays. Consequently,
DSDV demonstrated the highest packet delivery fraction
(PDR) due to its proactive routing characteristics, making
it more reliable in stable environments. Although DSR
is effective under controlled network conditions, it exhib-
ited fluctuations in throughput due to route caching mech-
anisms that occasionally led to stale routes, impacting per-
formance. The study underscored that reactive protocols
(AODV, DSR) are more suitable for dynamic network envi-
ronments, whereas proactive protocols (DSDV) provide im-
proved packet delivery in static scenarios. The authors con-
cluded that no single routing protocol is optimal for all net-
work conditions, and future research should explore hybrid
and AI-enhanced routing strategies to enhance efficiency
across various network scenarios [53].

In conclusion, the protocols discussed in this section
investigate the importance of energy-efficient routing in
WSNs, particularly for advanced 5G/6G environments.
LEACH and its variants, reinforcement learning-based ap-
proaches like CEERP, and localized strategies such as
GBR and TDMA with RL all contribute to enhancing energy
efficiency and extending the operational lifetime of sensor
networks. These protocols emphasize the need for adap-
tive, scalable, and sustainable solutions to meet the grow-
ing demands of next-generation communication systems,
where energy efficiency remains a critical concern.

3 COLLABORATIVE APPROACHES FOR EN-
ERGY EFFICIENCY ROUTING

Energy-efficient routing allows nodes in WSNs to cooperate
and reduce energy consumption. This cooperation is espe-
cially important in 5G/6G systems to ensure that the net-
work operates longer and more efficiently. Research has
shown how nodes can perform better sensing and commu-
nication with less energy consumption. Thanks to these
methods, the network’s lifetime is increased and its effi-
ciency is improved.

Demigha et al. [3] studied cooperative target-tracking
techniques used to improve the energy efficiency of WSNs.
Researchers classify these techniques into two main
groups: perception-related methods and communication-
related methods. These methods reduce unnecessary op-
erations and allow the network to operate for a longer pe-
riod of time. A representative cooperative method is the
predictive model. In this method, nodes predict the fu-
ture position of the target and activate only the necessary
nodes. Thus, unnecessary data collection and data transfer
are prevented, resulting in energy savings. Also, the sen-
sor selection problem (SSP), which is part of this method,
focuses on determining which nodes will work to obtain

the best tracking results with the least energy consump-
tion. This technique is an effective way to save energy in
WSNs by maintaining tracking accuracy while reducing en-
ergy usage. Sabakrou et al. proposes that intelligent dis-
tributed sensor activation algorithms optimize the energy
usage while maintaning high tracking accuracy in WSNs
[54]. Zhang et al. investigated sensor collaboration for
parameter tracking using energy harvesting sensors [55].
They show optimal collaboration improve tracking accuracy
and energy efficiency in wireless sensor networks.

Demigha et al. [3] state that self-organizing systems are
also important for energy saving. There are two common
methods: cluster-based and tree-based. In cluster-based
methods, the sensors are divided into groups, and each
group has a cluster head. The cluster head organizes the
groups in real-time based on the target location and acti-
vates only the nodes that is required [56]. The other nodes
go into sleep mode for saving energy. In tree-based meth-
ods, nodes form a hierarchical structure and only the nodes
that are best suited to track the target are activated while
the others remain in sleep mode. Figure 2 exhibits target
tracking process in a WSN, showing active nodes, detecting
nodes, estimated target positions, and the predicted path
[3].

Fig. 2 Target tracking process in a sensor network, showing
active nodes, detecting nodes, estimated target positions, and
the predicted path [3].

In addition, interoperability of sensing and communica-
tion systems is very important for energy saving. Instead
of sending raw data from all nodes, the system combines
data from the nodes and sends only the processed and im-
portant information. This method reduces communication,
prevents unnecessary energy consumption, and makes the
network work more efficiently. These teamwork methods
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allow the system to save a lot of energy while still track-
ing targets effectively. In Javapdour et al., it is stated that
integrating MAC layer techniques with active nodes can in-
crease the target tracking accuracy and energy effiency in
WSNs [3], [57].

The work by Stanojev et al. [4] extends the discus-
sion on collaborative energy-saving techniques by explor-
ing the use of Hybrid Automatic Repeat reQuest (HARQ)
protocols. The study compares the energy efficiency of
non-collaborative and collaborative HARQ versions. The
authors evaluate three types of HARQ protocols—HARQ
Type I (HARQ-TI), Chase Combining (HARQ-CC), and In-
cremental Redundancy (HARQ-IR)—and analyze the im-
pact of using a relay for retransmissions. In collaborative
HARQ settings, energy consumption is reduced by involv-
ing a relay, which improves communication reliability while
balancing the energy load across the network. The relay
helps retransmit data, thereby decreasing the number of re-
transmissions needed by the source and destination nodes,
which directly impacts the energy used in communication.
However, the authors note that while collaborative HARQ
can save energy over long distances, it is not always ad-
vantageous in scenarios where circuitry energy dominates
the total energy budge. This is particularly evident in cases
where transmission distances are short, and the energy
cost of activating additional circuitry (such as relays) out-
weighs the benefits of reduced transmission power. This
highlights the need for a balanced approach when choos-
ing collaborative techniques for energy efficiency, ensuring
that the energy costs of both transmission and circuitry are
considered. It is stated that energy-harvesting sensors en-
able optimal sensor collaboration for tracking parameters
and extending network lifetime while ensuring data reliabil-
ity [4], [55], [58].

Felicetti et al. [5] propose a collaborative model that ex-
tends the idea of energy efficiency to residential environ-
ments through Collaborative Smart Environments (CSEs).
The authors introduce a Home Energy Management Sys-
tem (HEMS) as a central control unit to manage energy
consumption by smart devices within a household. The
proposed model leverages recent advances in the Inter-
net of Things (IoT) and Information and Communication
Technologies (ICT) to enable effective communication be-
tween different smart devices within a home. The central-
ized control unit (CCU) collects data from sensors, smart
plugs, and other devices, ensuring that energy use is op-
timized through real-time monitoring and control. By man-
aging energy supply, demand, and appliance use collabo-
ratively, the system can reduce energy consumption while
maintaining user comfort and cost efficiency. The smart
plugs and smart boxes in the CSE architecture allow exist-
ing appliances to become part of the energy management
system, providing additional intelligence and connectivity
that enable these appliances to adapt to real-time energy

demand and supply conditions [48], [59].
The paper talks about how important it is for smart de-

vices to work well together in smart environments. One
big problem in making a Collaborative Smart Environment
(CSE) is making sure all devices can connect and work
without issues. The system suggested in the paper uses
smart plugs and a ”smart box” to help regular home appli-
ances talk to a central control unit (CCU). This setup helps
the system control energy better, like using stored energy
or shared energy systems. It also changes energy use in
real time to match what users need and how much energy
is available, making the system more efficient.

Felicetti et al. [5] talk about how predicting energy use
can help save power. They explain a method that looks
at past energy usage to find patterns and predict future
needs. This helps the system decide the best time to run
appliances or charge local energy storage. With tools like
machine learning and simple math models, the central con-
trol unit (CCU) can guess how much energy is needed and
control devices to use power better. This way, energy is
saved while still keeping everything running smoothly and
making sure users are comfortable [5].

To sum up, prediction-based schemes, self-organization,
collaborative HARQ protocols, and home energy manage-
ment are some collaborative energy-efficient techniques
that show a lot of promise for lowering energy use in WSNs
and smart environments. These methods focus on intelli-
gent coordination between network nodes and devices to
conserve energy while meeting performance requirements.
Prediction based schemes and adaptive clustering help in
optimizing the activation of nodes, thereby conserving en-
ergy in target tracking.

Collaborative HARQ protocols enhance communica-
tion reliability while managing energy costs effectively.
Home energy management systems in smart environ-
ments use advances in ICT and IoT to dynamically man-
age energy consumption and optimize household energy
use.Together,these techniques represent a promising ap-
proach to tackling the challenge of energy efficiency in next-
generation communication networks and smart systems.

4 IMPACT OF MOBILITY AND HETEROGE-
NEOUS NETWORKS

Understanding the effects of mobility and heterogeneous
networks is key to developing future communication sys-
tems that are both energy-efficient and reliable, especially
for advanced WSNs and 5G/6G networks.

As more heterogeneous network designs are introduced,
combining macro and small cells, new challenges arise
in managing mobility while maintaining good performance.
This section reviews how mobility and heterogeneity affect
network performance, focusing on the difficulties of mo-
bility management, energy use, and maintaining reliable
handovers. The study by Gures et al. [21] provides an
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extensive analysis of mobility management in 5G hetero-
geneous networks (HetNets), emphasizing the complexity
brought on by the deployment of a large number of small
cells alongside macro cells. These HetNets offer higher ca-
pacity and enhanced coverage, but at the cost of frequent
handovers (HOs), leading to issues like HO failures (HOFs),
ping-pong HOs, and increased energy consumption. These
challenges have a significant impact on user experience,
with frequent HOs leading to increased power consumption
and reduced battery life for user equipment (UE). To ad-
dress these challenges, 5G mobility management includes
mechanisms such as beam-level mobility and beam man-
agement, which allow for more stable connections between
UE and BS. Beam-level mobility enables dynamic routing of
transmission to maintain connectivity with moving devices,
especially in 5G/6G WSNs. Beam-level management helps
reduce unnecessary HOs by maintaining directional links to
the UE, even as it moves between cells [21].

Gures et al. talk about network slicing as an important
part of handling mobility in networks. Network slicing en-
ables a physical network to be divided into virtual network
slices with different services, each of which is provided
with customized resources and services. It lets many vir-
tual networks run on the same physical system, giving dif-
ferent services based on what is needed. For example,
IoT devices and machine-to-machine (M2M) systems can
have their own slices with mobility settings that match their
needs. IoT devices, which can handle short breaks in con-
nection, are treated differently than services like IP tele-
phony, which need a stable connection all the time. The
paper also explains handover methods like XN-based and
N2-based handovers, which help reduce connection breaks
and keep communication smooth. These methods are very
important in crowded HetNet setups where handovers hap-
pen often. By avoiding interruptions, they make sure users
have a good experience [21].

Managing mobility in HetNets comes with challenges in
paging and registration processes, which need to balance
saving power and keeping delays low. The 5G Radio Re-
source Control (RRC) Inactive state is a helpful solution to
this problem. This state works as a middle ground between
the RRC Idle and Connected states, lowering both delay
and energy use by keeping the user equipment (UE) con-
text. This means the device can reactivate quickly without
needing a full reconfiguration. This improvement makes
handling frequent handovers more efficient, reducing sig-
naling and saving energy, which helps optimize mobility
management in HetNets [21].

In their study, Wang et al. [22] explore the impact of mo-
bility and heterogeneity on coverage and energy consump-
tion in WSNs, providing insights into how these factors influ-
ence network performance. The authors analyze different
sensor deployment schemes, such as uniform deployment
and Poisson deployment, to understand their effects on

coverage and energy use. In uniform deployment, sensors
are placed randomly and uniformly across the operational
area, while Poisson deployment uses a 2-dimensional Pois-
son point process to model sensor placement. The authors
focus on blanket coverage (full coverage of an area) and
k-coverage (where each point is covered by at least k sen-
sors), both of which are essential for ensuring network reli-
ability in applications such as environmental monitoring and
surveillance [22].

A significant concept introduced by Wang et al. is the
equivalent sensing radius (ESR), which is used to assess
coverage performance in heterogeneous WSNs, where
nodes have different sensing capabilities. The study finds
that ESR is a critical factor in determining whether full cov-
erage can be achieved, especially under different mobility
models, including i.i.d. mobility (independent and identi-
cally distributed) and 1-dimensional random walk mobility.
The authors show that mobility can significantly enhance
coverage by repositioning sensors to improve overall area
coverage, which highlights the positive impact of controlled
node movement on network performance [22], [60].

The study also addresses the effects of sensor hetero-
geneity on coverage and energy consumption. Hetero-
geneous WSNs consist of sensors with varying capabili-
ties, such as different sensing radii or power levels. The
authors demonstrate that while heterogeneity can lead to
slightly increased energy consumption under certain mo-
bility models, it can also result in better coverage without
proportional increases in energy use. For example, under
the 1-dimensional random walk mobility model, sensor het-
erogeneity slightly increases sensing energy, but it also re-
duces overall network costs by making efficient use of sen-
sors with different capabilities. This trade-off suggests that,
under appropriate mobility settings, heterogeneity can en-
hance coverage without significantly impacting energy con-
sumption, making it a valuable approach for large-scale de-
ployments [22].

The survey by Tashan et al. [61] focuses on Mobil-
ity Robustness Optimization (MRO) in future HetNets, em-
phasizing the importance of optimizing mobility to main-
tain stable communication in high-mobility environments.
The paper highlights the challenges of managing handover
(HO) in HetNets, especially due to the deployment of nu-
merous small base stations (SBSs) alongside macro cells.
While these SBSs enhance network capacity and coverage,
theyalso increase the frequency of HOs, which can lead to
handover pingpong and radio link failures (RLFs). These is-
sues degrade user QoE and require effective handover con-
trol parameters (HCPs), such as Time-To-Trigger (TTT) and
Handover Margin (HOM), to be optimized for better perfor-
mance. The authors discuss several MRO algorithms that
dynamically adjust HCPs based on network conditions to
minimize unnecessary HOs and maintain optimal connec-
tivity, especially in ultra-dense networks [61].
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Tashan et al. also explore the use of machine learning
(ML) in MRO to enhance adaptability. Techniques like fuzzy
logic controllers (FLC) and Q-learning are used to dynam
ically adjust handover parameters based on real-time data
such as received signal strength (RSS), user speed, and
cell load. These ML-based approaches help address the
challenges posed by heterogeneous cell sizes and different
radio access technologies (RATs) in HetNets, making han-
dover decisions more efficient and reducing unnecessary
HOs. For instance, fuzzy Q-learning combines reinforce-
ment learning with fuzzy logic to provide adaptive solutions
that optimize HCPs with minimal computational overhead.
This use of ML highlights the importance of intelligent han-
dover management in main taining stable connectivity and
improving user QoE in HetNets [61], [62].

Figure 3 shows the concept of resource management in
HetNets under four main categories. These are power al-
location, user assignment, mode selection, and spectrum
allocation. While power allocation is evaluated in terms
of efficiency, energy saving, and spectrum suage, user as-
signment is considered based on SINR (signal-to-noise ra-
tio) and data rate. Mode selection is divided into static
and dynamic, while spectrum allocation is performed over
conventional bands, millimeter wave (mmWave) and tera-
hertz (THz). This structure provides a core for efficient re-
source utilization and performance optimization in 5G/6G
WSN networks. [63]

Fig. 3 Key resource management aspects in HetNets [63].

In conclusion, the impact of mobility and heterogeneity
on WSNs and HetNets is multifaceted, involving challenges
related to frequent handovers, coverage, and energy effi-

ciency. Mobility management in HetNets, as highlighted in
[21], requires advanced solutions like beam-level mobility
and network slicing to handle frequent HOs and provide tai-
lored services for different types of devices. The work [22]
emphasize the positive effects of mobility on coverage and
the role of sensor heterogeneity in optimizing energy use in
WSNs. Lastly, Tashan et al. [61] underline the importance
of robust mobility optimization through self-optimizing algo-
rithms and machine learning techniques to manage HOs
in future HetNets effectively. These studies show that two
main things are important for better wireless networks, es-
pecially with 5G and 6G. First, how devices move around.
Second, how different devices are used together. In Yang
et al. it is also emphasized that tracking mobile targets in
WSNs requires specialized protocols that efficiently man-
age node coordination and communication overhead [64].
Doing them well can help networks cover more area, use
less power, and keep working even when things go wrong.

5 AI/ML TECHNIQUES IN ENERGY-
EFFICIENT ROUTING

Lots of people are now looking at using AI and machine
learning to help WSNs save power. These networks of-
ten work in tough places where it’s really important to not
waste energy. AI and machine learning can assist by intel-
ligently managing the network’s resource usage and mak-
ing more informed decisions about data transmission. This
helps the networks work for way longer. Here, we’ll dive
into how researchers are using AI and machine learning
to make data travel through the network using less power.
We’ll look at the latest studies on this. Biswas et al. [23]
provide a detailed review of how AI is used to optimize
power consumption, showing its impact on saving energy
in various areas, including WSNs. The authors highlight
that AI not only helps achieve sustainability goals but also
lowers operational costs. The authors delve into various
AI techniques, such as Reinforcement Learning (RL), Ge-
netic Algorithms (GA), and Neural Networks (NN), that en-
able real-time energy management. For instance, they ap-
ply Reinforcement Learning (RL) to manage changing en-
ergy demands in HVAC systems, enabling real-time ad-
justments that save energy while maintaining user comfort.
Fuzzy Logic Control (FLC) is another technique they men-
tion, known for managing nonlinear power systems, such
as air conditioners, where it achieved up to 25% energy
savings. These AI-driven methods show great potential for
improving energy efficiency and ensuring a stable energy
supply [23]. The another paper presents an approach to
optimize the power consumption of wireless sensor nodes
by developing a novel power control technique, to improve
energy efficiency and extending the network lifetime [65].

Pasqualetto et al. [24] look into how AI can make energy
management in smart buildings more efficient and help with
global sustainability efforts. They focus on Multi-Agent Sys-
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tems (MAS), which use decentralized decision-making to
create smart environments. MAS is based on the ”Belief-
Desire Intention” (BDI) model, where different agents work
together to optimize energy use. Each agent manages spe-
cific tasks like temperature control or HVAC systems, mak-
ing the building more energy-efficient overall. The paper
also highlights the role of Big Data in improving AI models.
Data collected from sensors and devices in smart buildings
is essential for understanding energy usage, predicting fu-
ture needs, and managing resources in real-time. The au-
thors discuss Artificial Neural Networks (ANNs) and Ge-
netic Algorithms (GA) as useful tools. ANNs help predict
how much energy will be needed, while GAs optimize en-
ergy usage based on changing prices. These AI methods
offer practical ways to manage energy better, meet user
needs, and support sustainability[24].

The survey by Samara et al. [66] focuses on energy effi-
cient routing algorithms in WSNs, emphasizing the need for
effective routing to minimize energy consumption in sen-
sor nodes. The authors discuss several well-known al-
gorithms, such as LEACH (Low Energy Adaptive Cluster-
ing Hierarchy), TEEN (Threshold Sensitive Energy Efficient
Sensor Network Protocol), and APTEEN (Adaptive Peri-
odic Threshold Sensitive Energy Efficient Sensor Network
Protocol). These algorithms use clustering strategies to
minimize data transmissions, thereby reducing energy con-
sumption. LEACH, for example, organizes nodes into clus-
ters, with Cluster Heads (CHs) responsible for aggregating
and forwarding data to the BS. However, the random se-
lection of CHs can sometimes result in inefficient energy
usage, especially when selecting nodes with low residual
energy. TEEN and APTEEN improve upon LEACH by intro-
ducing threshold-based mechanisms to minimize unneces-
sary data transmissions, especially in event driven scenar-
ios, thus extending the network lifetime. The authors also
explore AI-based approaches, such as genetic algorithms
and neural networks, to optimize CH selection and rout-
ing paths, highlighting their ability to dynamically adapt to
changing network conditions and energy levels, which sig-
nificantly enhances energy efficiency in WSNs [66], [67].
Figure 4 provides a general architecture of data aggrega-
tion approach from [66].

Priyadarshi [26] provides an in-depth review of meta-
heuristic and AI-based algorithms for energy-efficient rout-
ing in WSNs. Some of the optimization algorithms talked
about in the paper are Particle Swarm Optimization (PSO),
ABC, Ant Colony Optimization (ACO), Genetic Algorithm
(GA), Firefly Algorithm (FA), and Bacterial Foraging Opti-
mization (BFO). These bio-inspired algorithms are based
on how animals act naturally, like how bees use swarm
intelligence or how ants use pheromones to find the best
routes. WSNs use these algorithms to solve challeng-
ing routing problems. PSO, for instance, helps nodes find
the best transmission paths by mimicking the social be-

Fig. 4 The general architecture of data aggregation approaches.

havior of birds, while ACO uses pheromone trails to de-
termine the most energy efficient routes. The author also
explores hybrid optimization techniques, such as combin-
ing PSO with ACO, to enhance data collection and prolong
network longevity [68]. Combining different algorithms can
make things even better, especially when it comes to sav-
ing energy and keeping the network running for a long time.
Priyadarshi’s work also suggests that AI and certain smart
search methods are really useful for tackling power issues
in these sensor networks. This makes them more reliable
and able to adapt to different uses, like keeping an eye on
the environment, running factory equipment, and building
smart cities [26], [69], [70].

The study from Rovira-Sugranes et al. concludes that AI-
based routing protocols bring significant advantages over
traditional routing mechanisms, especially in dynamic and
resource-constrained networks. Traditional protocols such
as AODV, DSR, and OLSR rely on predefined routing ta-
bles and periodic updates, also this can lead to high op-
erational costs and slow convergence in rapidly changing
environments. In contrast, AI-driven approaches, such as
Q-learning and reinforcement learning (RL)-based proto-
cols, reduce latency and improve packet delivery rates by
adapting to changes in network topology in real time. AI-
based methods also integrate predictive analytics, enabling
proactive route adjustments and better handling of connec-
tion failures. However, these intelligent routing solutions
often require more computational resources and extensive
training data to perform optimally. While traditional rout-
ing protocols provide stability and low computational cost,
they lack scalability and adaptability in highly mobile net-
works. In contrast, AI-powered protocols offer superior per-
formance in terms of throughput, reduced latency, and en-
ergy efficiency, making them ideal for unmanned aerial ve-
hicles and next-generation wireless networks [71].

AI-driven routing has come with smart ways to manage
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network traffic, predict congestion, and fix problems auto-
matically. For example, RL models such as Deep Q Net-
works (DQN) and Proximal Policy Optimization (PPO) help
networks choose the best path in real time applications. On
the other hand, supervised learning is mainly used to detect
unusual network activity and classify traffic. Deep learning
methods, such as Recurrent Neural Networks (RNNs) and
Transformer-based models, improve predictions but need
a lot of computing power. Since studies do not compare
these AI techniques properly, it is difficult to know which one
works best for different network conditions. Without a clear
evaluation system, it is unclear whether AI-based routing
is better for quick decision-making, security, or managing
traffic over time. This lack of clarity makes it harder to use
AI-driven routing effectively in SDN (Software-Defined Net-
working), cloud systems, and 5G/6G WSN networks [72].

Despite WSNs’ advantages, they face significant real-
world challenges, including hardware limitations, environ-
mental constraints, and deployment issues. One of the pri-
mary constraints is energy consumption, as sensor nodes
rely on battery power, making efficient energy utilization
a key concern. Furthermore, harsh environmental condi-
tions such as extreme temperatures, humidity, and elec-
tromagnetic interference can severely impact the reliabil-
ity of WSNs. The scalability issues arises when large-
scale deployments increase network congestion and brings
all problems in data routing and synchronization. To ad-
dress these concerns, researchers emphasize the need for
energy-efficient protocols, adaptive deployment strategies,
and AI-driven optimizations to make the robustness better
and the longevity of WSN applications [73].

In summary, AI and ML are useful tools for better energy-
efficient routing in WSNs. Methods like reinforcement
learning, genetic algorithms, fuzzy logic control, and using
groups of intelligent agents has also been a good way to
make these networks better and last longer. These "multi-
agent systems" offer adaptable and smart ways to handle
energy problems, so the networks can run for longer and
more reliably. Combining different optimization methods,
especially ones inspired by nature, also looks promising.
These can simplify data gathering, spread out the work
evenly, and save power. Basically, using AI and machine
learning for energy-efficient routing makes these sensor
networks more sustainable and prepares them for all sorts
of future uses in smart homes, cities, and other places.

6 SECURITY CHALLENGES IN ENERGY-
EFFICIENT ROUTING

Keeping data safe is a big deal when designing ways for de-
vices in the IoT and WSNs to send information while saving
power. These networks often don’t have much energy to
spare, so adding security is tricky. We need to protect the
data and make sure it’s reliable and private, all while try-
ing to use as little power as possible. This section looks

at recent research on the tough problem of designing both
secure and energy-efficient routing algorithms, particularly
for networks with limited resources [74].

For example, Mahamat et al. [25] talk about how difficult
it is to have both good security and low energy use in IoT
networks. Due to the frequent placement of these devices
in vulnerable areas and their limited power, maintaining a
balance becomes crucial. They say that many current se-
curity methods use up too much energy, which means the
network won’t last as long.

We need fresh ideas for security that don’t drain the bat-
tery. This paper suggests using AI and software-defined
networking (SDN) to build flexible security. AI and SDN
can tweak security settings instantly based on what’s hap-
pening around the devices, which saves power and keeps
things secure. Think of it like this: simple security rules
made for the limited brains of IoT devices are key to pro-
tecting data without killing the battery [25].

Mahamat et al. also stress the need for "smart" security,
where the level of protection changes based on the actual
threat. By constantly checking what’s going on, IoT devices
can adjust their security. When things are dangerous, they
can ramp up the protection. When things are calm, they can
dial it back and save power. This not only helps the devices
last longer but also finds a good middle ground between
strong security and efficient energy use. AI can make this
kind of adaptable security possible, which could be a big
step forward for making IoT networks both secure and sus-
tainable in ever-changing situations [25]. Figure 5 provides
elements needed to provide a security solution balancing
the provided security level and energy consumption [25].

Biradar and Mathapathi [20] looked at the tricky job of de-
signing ways for WSNs to send data securely, reliably, and
without wasting power. They sorted these data-sending
methods into three groups: proactive, reactive, and hybrid.
Then, they checked how each group handles energy use
and security. Their main point is that it’s really tough to build
systems that both save power and keep data safe, partic-
ularly for important jobs like watching the environment or
military operations. Reactive methods are more energy-
efficient than proactive ones, as they establish data routes
only when necessary. Proactive methods, on the other
hand, use up extra energy constantly updating their route
maps, even when they’re not sending data [20]. They also
explore different ways to make these routing methods both
secure and energy-efficient. They mention that grouping
sensors into clusters, like with LEACH method, can help
save power because the cluster leaders can gather and
process data more efficiently. They also states that it’s vital
to have trust-based routing and secure location tracking to
keep data safe and stop unauthorized access. Simple en-
cryption methods are also key for adding security to these
power-limited networks. Finally, they suggest that machine
learning could be promising to boost security with much
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less energy, so that’s the future work [20].

Fig. 5 Elements needed to provide a security solution balancing
the provided security level and energy consumption [25].

Both Mahamat et al. and Biradar and Mathapathi high-
light the constant struggle to balance saving energy and
keeping things secure in IoT and WSNs. Strong security
is a must to protect data and keep these networks running
reliably. But, because IoT devices and sensor nodes have
limited battery power, security measures have to be really
energy-efficient. AI-powered, context-aware solutions and
lightweight encryption seem like good ways to tackle this
problem. These methods make sure that security adjusts
to what’s happening in network right now, so you can save
power while still keeping your data reasonably safe [75].

To wrap things up, building routing methods for IoT and
WSNs that both save energy and solve security problems
is a tough but essential job. Smart security systems that
use AI, software-defined networking, and simple encryption
can help keep data safe without draining the battery. By
creating systems that adapt to their surroundings and us-
ing clever optimization techniques, researchers can make
these networks more robust, reliable, and sustainable. This
will be crucial for important applications where both security
and energy efficiency are paramount [20], [25].

7 CONCLUSION
This study investigates energy-efficient routing protocols for
5G/6G WSNs. Cooperative routing techniques, hierarchical
clustering methods, AI, and machine learning (ML) appli-
cations reduces unnecessary energy consumption and ex-
tend the network lifetime. Protocols such as LEACH and its
derivatives (LEACH-C, LEACH-DCS) save energy by se-
lecting more balanced nodes, and AI techniques such as
reinforcement learning and genetic algorithms make rout-
ing dynamic to have sustainable communication. In mobil-
ity and heterogeneous networks, frequent handovers and

excessive signaling traffic increases the energy consump-
tion. Solutions such as beam-level mobility and mobility role
optimization (MRO) have been proposed to minimize these
issues. This review provides an organized comparison of
the energy-efficient routing protocols and highlights devel-
oping trends that contribute to the sustainable development
of 5G/6G WSNs.

Energy-efficient security solutions use lightweight en-
cryption, trust-based routing, and context-aware security
mechanisms to secure the network while reducing energy
consumption [76]. However, large and rapidly changing net-
works require scalable and low-power solutions. Future re-
search should focus on AI-assisted routing, advanced mo-
bility management, and the integration of renewable en-
ergy sources. These developments will contribute to the
widespread adoption of reliable and energy-efficient com-
munication systems in many areas, including smart cities,
environmental monitoring, and industrial automation.

Additionally, studies in the future should explore the scal-
ability of AI-driven routing algorithms for very large-scale
WSN deployments. They need to optimize the energy
consumption without compromising performance. The in-
tegration of energy-harvesting techniques, such as solar-
powered sensor nodes, brings an exciting research direc-
tion for sustainable WSNs. Furthermore, interdisciplinary
collaborations between network engineers, AI researchers,
and experts can lead to innovative solutions. Practical val-
idation methods, including real-world testbeds and large-
scale simulations, will be important for evaluating the feasi-
bility and effectiveness of these proposed solutions.
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Abstract: Early detection of forest fires is vital for ecosystems. For this purpose, sensor networks collect data such as
temperature and humidity and monitor changes in forests. Long-range and low-energy communication technologies such
as LoRa are especially widely used in these networks. However, the management of these networks can be complicated
since each forest has different requirements. Digital twin technology allows the simulation of different scenarios and
optimization systems by creating virtual copies of physical systems to solve this problem. However, the relational structure
of computer networks can be challenging for some artificial intelligence models used in digital twins. Graph neural
networks help digital twins to understand and optimize the complicated structure of networks. In addition, it is not feasible
for Internet of Things networks to meet digital twins’ two-way and continuous communication demand. Therefore, in
this study, a forecaster model is designed to facilitate the integration of digital twins into these networks. The forecaster
provides the data the digital twin needs by predicting the network’s future states from its past states. The first results
of the study are promising, especially for small-scale networks. However, as the scale of the network grows, the errors
made by the system also increase.

Keywords: Digital twin, IoT, graph neural networks, forest fire detection.

LoRa Tabanlı Bir Orman Yangını Yönetim Sistemi Dijital İkizinin Ayrıntıları

Özet: Orman yangınlarının erken tespiti, ekosistemler için hayati önem taşır. Bu amaçla sensör ağları, sıcaklık ve nem
gibi verileri toplayarak ormanlardaki değişiklikleri izler. Özellikle LoRa gibi uzun menzilli ve düşük enerjili iletişim teknolo-
jileri, bu ağlarda yaygın olarak kullanılır. Ancak bu ağların yönetimi, her bir ormanın farklı gereksinimleri olduğundan
karmaşık olabilir. Dijital ikiz teknolojisi, bu sorunu çözmek için fiziksel sistemlerin sanal kopyalarını oluşturarak, farklı
senaryoları simüle etmeye ve sistemleri optimize etmeye olanak tanır. Lakin bilgisayar ağlarının ilişkisel yapısı dijital
ikizde kullanılan bazı yapay zeka modelleri için zorlayıcı olabilir. Grafik sinir ağları ise dijital ikizlerin, ağların karmaşık
yapısını anlamasına ve optimize etmesine yardımcı olur. Ayrıca, nesnelerin interneti ağlarının, dijital ikizlerin iki yönlü
ve sürekli iletişim talebini karşılaması uygulanabilir değildir. Bu nedenle, bu çalışmada dijital ikizlerin bu ağlara ente-
grasyonunu kolaylaştıracak bir tahminci modeli tasarlanmıştır. Tahminci ağın geçmiş durumlarından gelecek durumlarını
tahmin ederek dijital ikizin ihtiyacı olan veriyi sağlar. Çalışmanın ilk sonuçları özellikle küçük ölçekli ağlar için umut
vericidir. Ancak ağın ölçeği büyüdükçe sistemin yaptığı hatalar da artmaktadır.

Anahtar Kelimeler: Dijital ikiz, nesnelerin interneti, grafik sinir ağları, orman yangını tespiti.
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1 INTRODUCTION
The ecology of the world is crucially threatened by forest
fires. Rising average temperatures have also increased the
frequency of forest fires, including in Turkey. As indicated by
the graph in Figure 1, there are more than 2 thousand for-
est fires every year, which destroy more than 10 thousand
hectares of forest area [1].

Early and rapid-fire detection can significantly reduce the
devastation of forest fires. Several different techniques are
used for these detections such as surveillance of forests
with satellites, flying over forests with Unmanned Aerial Ve-
hicles (UAVs), and regularly monitoring forest values with
wireless sensor networks. All of these systems have advan-
tages and disadvantages. However, the most cost-effective
and fastest fire detection method is Wireless Sensor Net-
work (WSN) solutions. [2].

Fig. 1 Area of burned on every year.

Internet of Things (IoT) sensor networks are frequently
used in these systems to detect forest fires early. How-
ever, forests differ from each other in many aspects, such
as size, elevation difference, climatic conditions, tree den-
sity, and diversity. Therefore, the demands of forests and
the structures of these networks vary widely. This requires
specific decisions to be made in the management of each
network. Also, due to the size of forests, managing these
large networks can be difficult.

Once WSN networks are deployed in forests, their man-
agement becomes another problem to be solved. In these
sophisticated networks, it may be desirable to minimize
packet loss or optimize energy consumption. Digital Twin
(DT) technology can help network administrators in this
area. DTs are widely used in computer networks for op-
timization and running test cases. Nonetheless, DTs are
challenging to use in IoT networks due to their constant
communication requirements. Hence, this paper proposes
a forecaster mechanism to facilitate this integration. The
proposed model generates the data for DT by predicting
the network traffic (packets) in advance.

This paper introduces a digital twin application for forest
fire detection systems employing IoT networks. Integrating
the digital twin into such networks is key to perceiving their

complexity. It also enables effective and accurate testing of
different strategies for network optimization. However, the
main challenge in achieving this integration is the need for
continuous bidirectional data transfer of digital twins. Since
IoT networks have limitations in terms of energy and per-
formance, meeting these requirements is challenging for
them. In addition, some use cases can present interesting
contradictions. For example, a digital twin modeling net-
work packet delivery rate needs real-time lost packet data
from the network. However, the digital twin is not aware
of a packet that has not reached the network’s server. In
networks such as the one studied in this work, where for-
est fires are specifically investigated, LPWAN communica-
tion technologies are widely preferred. The additional limi-
tations of these technologies, such as two-way communica-
tion, can make the integration of DTs even more intractable.

Instead of providing real-time network data to the DT, de-
signing a forecaster that predicts the future packets that the
network will generate and providing the DT with the pre-
dictions it generates from the historical network data can
alleviate these problems and enable the integration of DTs
into IoT networks. Based on this idea, our study aims to ac-
curately determine the throughput of the simulation which is
designed for the forest fire detection network environment
with the help of a forecaster. The DT estimates the through-
put of the network employing the forecaster’s output. Due
to the high physical and hardware demands of the network,
such as square kilometers of coverage and dozens of sen-
sor devices, this study was conducted by simulation. First,
the simulation was run and the generated packets were ob-
tained. Then, the forecaster was trained with the packets
generated at a portion of the simulation. Then, these fore-
casts were forwarded to DT, and the throughput of the net-
work over time was estimated by the DT model. To eval-
uate the performance of the system, the actual throughput
values obtained from the simulation are compared with the
predictions. The throughput of the network is affected by
the packets generated and the packet losses in the net-
work. The system needs to understand both of these com-
ponents accurately in order to make successful predictions.
Studies in the literature have shown that successful predic-
tions can be made with techniques like Recurrent Neural
Network (RNN) based models in sequence data. In addi-
tion, Graph Neural Network (GNN) based DT models in the
research can successfully comprehend situations such as
traffic and packet loss. Hence, it is thought that the results
that will emerge with the cooperation of these models could
be successful.

The results obtained show that this system works promis-
ingly, especially for small-scale networks. However, as
the number of devices in the network increases, the sys-
tem’s performance decreases critically. This result could
be caused by the forecasting error of the whole network,
which increases cumulatively with the increasing number
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of devices.
In the rest of the paper, we first review the literature on

the detection and prevention of forest fires from a network
perspective and GNN-based DT studies. Then, in Section,
the methodology of the study is described. Results and
evaluations are given in Section 4. The last section con-
cludes the paper by giving future directions.

2 LITERATURE SURVEY

2.1 Forest Fire Detection Systems
Early detection of forest fires is critical to reducing their
damage. However, detecting fires in minutes when they
originate in vast forest areas is arduous. To meet this
need, forest fire detection systems utilize satellites, UAVs,
and sensors. Since it is not feasible to position satellites
to continuously monitor the forest, and as UAVs have lim-
ited observation areas and need to be recharged for some
time, IoT networks have the fastest fire detection capability
among these methods.

IoT networks deployed for forest fire detection can be de-
signed in many different ways. First, it is decided how to
detect the fire. While fire detection can be done with afford-
able sensors such as temperature, CO, and humidity, it can
also be done with the help of cameras.

In [3], data such as flame, humidity, and temperature
were measured and if the designed algorithm detected a
fire situation, alarm packets were sent from the nodes to
the database server with location information using satellite
communication via SAT-202 module.

Next, network topology and communication technologies
should be decided. Depending on the frequency of data
sent and the network scale, clustered or mesh topologies
are often employed. While fault tolerance is higher in mesh
networks, clustered topologies provide scalability. In [4],
a hierarchical network structure is designed. Two different
types of nodes were preferred: central nodes and sensor
nodes. Sensor nodes are connected to each other in a tree
structure, with the root node being the central node. Zigbee
communication is employed in the sensor nodes, the cen-
tral node also has the cellular network module to send the
data to the server. In another study [5], mesh topology is
chosen as a network structure. While all nodes are inter-
connected with LoRa modules, a gateway device sends all
generated packets over the internet to the database server.
Thanks to Lora’s long-distance communication, the authors
stated that they could cover an area of 25 square kilometers
for less than $5000 with 100 sensor nodes.

In addition, inexpensive options for sensor nodes can be
implemented in networks with fixed Cluster Heads, while
in mesh networks, all nodes usually have similar capabili-
ties. As mentioned earlier, communication techniques typi-
cally used in wildfire detection are expected to support long-
distance transmission. However, for networks in a relatively
small forest where the detection range of sensors is limited,

technologies such as Bluetooth could be preferred. How-
ever, this technique would be both expensive and difficult
to manage to cover large forest areas. For instance, in [6],
ZigBee communication is chosen to transfer packets. De-
spite a fast 6-minute fire detection, a 560-acre park in the
city was covered and a mesh topology was proposed for
scenarios with more nodes. Once all decisions have been
made, the network is deployed in the forest and the col-
lected data is analyzed. Rule-based fire detection can be
done, as well as smart systems that can detect false alarms
with Artificial Intelligence (AI) techniques. Although funda-
mental algorithms that make decisions by checking certain
threshold values are sufficient for fire detection, data-driven
learning techniques are also popular for systems that can
operate with high accuracy with minimal false alarms. In [7]
to avoid false alarms, an unsupervised dataset was used to
cluster alarms into false and true using the k-means tech-
nique. Multiple linear regression models were then trained
with these data. In [8], the decision was made by RNN
models. The model was trained with the data from sensor
nodes and then the incoming data was evaluated with this
model and the fire decision was made. Also in [9], a similar
study was conducted with ANN models. In this study, in-
stead of two classes such as the presence and absence of
fire, different classes such as fire is about to start are also
included. Predicting the location of fire spread is also im-
portant to reduce its impact. In a study [10], wind sensors
and artificial intelligence techniques were used to estimate
the area of fire spread.

2.2 GNNs in Computer Networks
The main use of GNNs in computer networks is to model
networks with high accuracy. Two different studies compare
the performance of GNN-based models with queueing the-
ory modeling [11] [12]. In both studies, GNN-based models
significantly outperformed the queueing theory based mod-
els.

Thanks to GNNs’ real-time and accurate network model-
ing, many network problems can now be optimized. One
area of particular interest is packet routing optimization. In
[13], the Deep Reinforcement Learning (DRL) agent opti-
mized packet routing to maximize allocated bandwidth us-
ing the network’s GNN-based DT. The agent not only out-
performed the fluid models but also, unlike these models,
was able to adapt to dynamic changes in the network such
as link failure, and could be generalized for networks with
similar characteristics.

In a similar study [14], a GNN called TwinNet was devel-
oped for network optimization. Instead of DRL, a classical
optimization algorithm was used to optimize the average
per-flow delay. The model worked quite successfully com-
pared to RouteNet and Multi Layer Perceptron (MLP) al-
ternatives. It achieved a Mean Absolute Percentage Error
(MAPE) of around 3 percent and an R2 score of more than
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97 percent. In optimization, it has been much more suc-
cessful than fluid-based models, especially in high-density
traffic, since those models cannot model queueing delay.

There are also studies on how to model networks using
GNNs. In [15], modular GNN models represented in terms
of expressiveness and granularity were designed as xNet.
For 3 different usage scenarios, the performance of the pro-
posed model was tested. The model was able to predict
delay with a MAPE rate of less than 5 percent for data with
sampling intervals of ms.

Network slicing is a technology designed for next-
generation network applications where the physical net-
work is divided into virtual networks. GNNs are also uti-
lized in the management of these networks. In [16], a sce-
nario with different delay agreements for different network
slices was tested by training a Graph Linformer Network
(GLN) based DT with Federated Learning (FL) and using a
heuristic optimization method for both delay estimation and
meeting these agreements. The model both outperformed
state-of-the-art GNNs and was able to meet the Service
Level Agreement (SLA) requirements of the optimization al-
gorithm. In [17], end-to-end latency was measured for all
slices. It was able to predict DT based on GraphSAGE with
less than 5 percent error on all slices. Furthermore, link
failures and SLA performance were also tested. In addi-
tion, the model was trained for jitter in order to show that
DT can be trained faster for a different metric.

GNNs are also used to predict network traffic. In [18],
the feature extraction technique was used to derive features
from the network data and predict the traffic. Similar perfor-
mance was achieved with the extracted features and the
training time was significantly reduced.

3 OUR WORK

Digital Twin Networks (DTNs) continuously obtain data from
the network and predict network parameter(s) according to
the data. In this work, topology, traffic, and communication
type data are collected from the network, and the through-
put of the network is forecasted. On the other hand, in
IoT networks, obtaining real-time data from the network is
not straightforward. Because IoT networks lack reliable and
low-latency communication due to power and budget con-
straints. Also, it is not possible to detect colluded or inter-
fered packets from received packets at the sink server. The
latter problem can be solved by using simulations to gather
training data for the DT. For the former one, forecasting the
current traffic is proposed. The complete model of the pro-
posed system can be seen in Figure 2.

3.1 Simulator Design
In order to collect data, a custom WSN simulator is de-
signed since it is easier to reach and tailor the collected
data format as needed. To be sure about the reliability of

Fig. 2 Model of the System.

the simulator, its results are compared with the results of
the OmNet++ simulator for the selected topology and pa-
rameters. Since the results of the two simulators are simi-
lar, it is concluded that the designed simulator can be used
for dataset generation.

Clustered network topology is preferred for the WSNs
in our work. Sensor nodes send the packet to the corre-
sponding cluster head via LoRa-like communication tech-
nology, and cluster heads aggregate and forward these
packets to the server with a GPRS-like radio modulation
technique. These communication technologies are chosen
because of their long ranges and relatively low power de-
mands. For the path loss model, the Hata model [19] is
employed. Sensor nodes and cluster heads are assumed
to be installed at 10 meters in height. They are placed on
the trees selected randomly. The server’s height is taken
as 1000 meters considering variations in the terrain. In the
environment, only the thermal noise is calculated, and for
simultaneous packets, whether the packet is received suc-
cessfully is decided based on signal-to-noise and interfer-
ence ratio (SNIR). Threshold values can be seen in Table
1. The packets of the sensor nodes are considered random
events that are generated according to negative exponen-
tial distribution. Whereas, cluster heads transmit packets
periodically like they are scheduled with TDMA. In case of
no received packets, clustered heads may pass their allo-
cated slot without sending a packet. The performance of
the model is tested with various number of clustered net-
works. By changing numbers of clusters, number of sensor
nodes, width, and height of the environment, the simula-
tions are repeated. For instance, a 2000x2500 m2 area is
covered with one cluster network, while a 9-cluster network
covers an area of 6000x7500 m2. Topologies used in the
study can be seen in Figure 3.

The simulator records all transmitted packets with their
status, signal strength, transmission start-end times, and
source-destination nodes.

3.2 Forecaster Module
The forecaster predicts whether an individual node is trans-
mitting or sleeping at a given time. As sensor nodes sleep
most of the time, the problem that the forecaster addresses
can be seen as an imbalanced binary classification prob-
lem. Therefore, before training the model, undersampling
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Fig. 3 Various Topologies Tested (having 2, 3, 4, and 9 clusters).

Table 1 Simulation Parameters

Parameter Value
runtime 24 hrs
packet size 50b
node height 10 meters
GW height 1000 meters
sensor tx power 14 dBm
sensor tx frequency 433 MHz
CH SNIR Threshold -6 dB
sensor bitrate 5700 Kb/s
mean packet period 1 min
CH min rx power -130 dBm
GW min rx power -115 dBm
Temperature 300 K
CH tx power 33 dBm
CH tx frequency 950 MHz
GW SNIR threshold 0 dB
CH bitrate 50000 Kb/s

is applied to the data to prevent bias. Four times as many
sleep data samples are randomly selected as the transmit-

ted data samples to train the model. A Long-Short Term
Memory-based (LSTM) model is chosen for the forecaster.
The model has three LSTM layers and one output fully con-
nected layer to predict the state as 0 (sleep) or 1(transmit).
Each LSTM layer has 10 percent dropout rate. From all
forecasting results, it is required to retrieve the global state
of the network since DT needs it as input. Therefore, after
predicting the transmission states of each sensor node and
cluster head, the general state of the network including traf-
fic information is constructed. The general state consists of
the states of all nodes which are predicted with slight error
values. As sleep and transmission states are imbalanced,
precision and recall metrics should be considered to decide
the performance. F1 score is a metric that combines these
two values. The performance of the forecaster is evaluated
with the F1 score of the transmit state. Since most of the
states are sleep states, the performance of the model for
sleep states cannot be trusted.
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3.3 GNN Based Digital Twin
Graph Attention Network (GAT) is used in DTs. After the
GAT layer, a four-layered multi-layer perceptron (MLP) is
placed to predict the throughput. Therefore, DT has one
output. The structure of the model can be seen in Figure
4. This network also has 10 percent dropout ratio. ReLu
activation function is applied. A considerably large batch
size of 256 is used to train. However, the MLP layers have
128 nodes as the hidden dimension number. The last layer
has one node for throughput. Other parameters of the DT
can be seen in Table 2. For node attributes, the node type,
that is sensor node or cluster head, and the node’s status
is given to the model. Moreover, the same features are
provided for edge attributes.

Table 2 GNN Parameters

Parameter Value
learning rate 0.001
batch size 256
hidden layer dimension 128
dropout rate 0.1
train ratio 0.8
epoch number 50

Fig. 4 Structure of the DT.

3.4 How does the System Work?
In the system, traffic was generated in the simulator first.
Then, the forecaster was trained by using the a portion of
the traffic from the simulator. With, the same packets, DT
was also trained. Next, the predictions of the forecaster
were fed to the DT to predict the throughput. However, nei-
ther the forecaster nor the DT can use the data generated
from the previous step directly. Therefore, extra data for-
mation or aggregation steps are added to comply data with
the models.

There are five distinct steps of the system. In the first
step, packet data is generated with the simulator. The sim-
ulator runs the intended simulation and gives reports of
generated packets that include: sender and receiver ids,
time interval that packet transmits, size of the packet, sig-

nal strength and the receive status of the packet, as it can
be seen from Fig 5. The forecaster aims to predict the up-
coming packets based on the previous transmissions as in
Fig 6. Nevertheless, it is a bit challenging to make this pre-
diction from the simulation report. Thus, the problem is di-
vided into simpler problems that are time series forecast-
ing. To do that, for every node, the node’s state, which is
either sleep or transmit, is inferred throughout the simula-
tion with predefined sampling intervals. This step is named
data augmentation and visualized in Fig 7.

After the augmentation, for every node, time series bi-
nary classification is done to predict the future states of the
nodes as shown in Fig 8. Yet, as the DT requires the total
state of the network to predict the throughput, The entire
state of the network must be created from the forecasted
states of the nodes for each sampled time that through-
put is predicted. The network state generation step creates
these states for the DT as shown in Fig 9. Then, finally, the
DT predicts the throughput of the network for each gener-
ated state. Prediction of DT for an example time sample is
demonstrated in Fig 10.

Fig. 5 Generated Packet Reports with Simulator.

Fig. 6 Expected Forecasting Operation.

4 RESULTS OBTAINED
In this section, first, the forecaster and DT results are eval-
uated separately. Then, the performance of the whole sys-
tem is discussed.

4.1 Performance of the Forecaster
The simulator was run for 24 hours of data transmission for
each topology setting. Then, the first 80 percent of the data
was used to train the forecaster model. After the training,
the forecaster predicted the remaining 20 percent. The re-
sults were compared with the ground-truth values collected
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Fig. 7 Data Augmentation for a Node.

Fig. 8 Forecasting for a Node.

Fig. 9 Network State Generation with Forecasting Results.

Fig. 10 Throughput Prediction with the DT.

in simulations. The F1 score of the transmission state is
calculated to evaluate the model. As forecasting is done
for each node separately, the overall result of the forecaster
is calculated as the mean and 95 percent confidence in-
terval of all F1 scores of the nodes. The F1 score is cal-
culated as the harmonic mean of the precision and recall
values. Since the precision and recall performance of the
model is equally important to calculate the throughput ac-
curately, this score is selected as an evaluation metric. It
is a prevalent technique for evaluating the performance in
imbalanced binary classification problems like the problem
that the forecaster solves. Results for the forecaster can
be seen in Figure 11. As can be seen, the forecaster can
predict the states accurately. Moreover, as the network
gets larger, the forecaster’s performance is not affected crit-
ically. Also, F1 scores of individual nodes in 2-cluster and
3-cluster networks can be observed in Figures 12 and 13,
respectively.

Fig. 11 F1 Scores of Forecaster for Different Topologies.

Fig. 12 F1 scores of the nodes in 2 clustered network.

4.2 Performance of the Digital Twin
Ground-truth throughput values were obtained from the
simulator. DT also predicted the throughput for test cases
following a training. The mean squared error (MSE) and co-
efficient of determination r-squared (R2) were used as eval-
uation criteria for the performance of the DT. The results are
given in Figure 14. The GNN-based DT grasps the charac-
teristics of the network as expected. Hence, the R-squared
correlation indicator is above 95 percent for all topologies.

B. Aydın, S. F. Oktuğ 33
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Fig. 13 F1 scores of the nodes in 3 clustered network.

Since the results for all topologies are similar, the scalability
of the DT is considered fine.

Fig. 14 MSE of the Digital Twin for Different Topologies.

4.3 Performance of the System
To evaluate the integrated performance of the system, the
forecaster was run as explained above. In DT, the same
training/test split was performed. However, the forecaster’s
predictions were used for testing instead of the values ob-
tained from the simulator. The same evaluation metrics
were used to test the system’s performance. Figure 15
gives the results of the whole system. Correlation and MSE
results do not vary critically for smaller networks. However,
the error increases significantly and the r-squared score
cannot show the dependency for 9 clustered networks.

Comparing Figures 14 and 15, it can be seen that DT
gives significantly varying results when the actual data and
the forecast data are employed. Although GNNs are mostly
scalable, the whole system’s performance degrades with
the increase in the number of nodes here.

The forecaster estimates throughput for each node in the
network. Although the prediction performance per node is
high, the total error increases as the number of network
nodes increases. This causes DT to estimate the through-
put with an inaccurate network input. Therefore, the error
of the throughput, which is the output of the DT, becomes
high. For large networks such as 9 clusters, these esti-
mates are beyond the acceptable limits.

Fig. 15 Performance of the System.

4.4 Effect of Collisions
The results in the previous sections omit the collisions that
occurred in the simulations. Although this makes the results
unrealistic, the high adaptation and grasping capabilities of
GNNs studied by multiple studies in the literature, as well as
the system’s performance with the collisions, are expected
to be similar. To test the performance difference consider-
ing collisions, the system was trained and tested under a
collision-enabled simulation environment. In order to inte-
grate collisions with the system, collision information was
collected from the simulation and ground truth throughput
values were calculated accordingly. As the forecaster mod-
ule predicts the transmissions of the sensor nodes, collision
information is irrelevant to the module. Hence, only the DT
was re-trained and used the same forecasting states to bet-
ter determine the effect of collisions. Results can be seen
in Figure 16. As expected, the performance of the system
is similar when collisions are considered, because of the
GNN’s understanding of spatial information.

Fig. 16 Collision Effect to the Performance.

5 CONCLUSION

The rise in the average temperature of the world increases
the risk of forest fires. Therefore, the importance of forest
fire management systems is also increasing. IoT sensor
networks are frequently used in these systems to detect for-
est fires early. However, due to the different requirements
of forests, the structures of these networks also vary widely.
This requires specific decisions to be made in the manage-
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ment of each network. Due to the size of forests, the man-
agement of these large networks can be difficult. DT tech-
nology can help network administrators in this area. DTs
are widely used in computer networks for optimization and
test cases. However, DTs are challenging to use in IoT
networks due to their continuous communication require-
ments. This paper proposes a forecaster based mechanism
to facilitate such an integration. The proposed model gen-
erates the data needed for DT by predicting the network’s
packets in advance.

In the study, simulations were performed for networks
with different number of clusters, and the generated pack-
ets were collected. Then, the forecaster, which was trained
with these packets, was asked to forecast the upcoming
packets. The DT received the packets generated by the
forecaster and was expected to determine the throughput at
the given instant. The actual throughput values for this du-
ration were also obtained from the simulation and the per-
formance of the system and the modules were evaluated
separately.

In the tests, it was observed that the forecaster module
correctly recognized the sent packets with an F1 score of
approximately 0.9 for each network type. Moreover, the
DT module, when trained independently of the forecaster,
achieved an MSE score lower than 0.02 and a high R2 score
of 0.8 in each network. In the test of the network’s under-
standing of collisions, the difference between the collision
on and off scores is less than 5 percent. However, when
the whole system was integrated, the MSE error increased
by more than 100 times and the R2 score dropped below
40 percent for the network with 9 clusters, although similar
scores were obtained for the small-scale networks.

The proposed system seems to have a scalability prob-
lem. It is assumed that this is due to the accumulation of
errors in the individual predictions of all nodes. Currently,
we are working to integrate the other state-of-the-art pre-
diction models to the system. Furthermore, a more holis-
tic forecasting approach and a forecasting model based on
clusters can be considered as future work. Also, testing the
system under different traffic scenarios and environmental
conditions could improve the study.
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Abstract: This study proposes a greedy auction-based distributed task allocation algorithm (GCAA) for swarm unmanned
aerial vehicles (UAVs) with long range (LoRa) communication capabilities. Air-to-air (A2A) communication channels are
established using LoRa technology to enable inter-agent communication, while air-to-ground (A2G) communication is
facilitated through narrowband Internet of Things (NB-IoT) technology. The negotiation phase is conducted over these
communication channels. Using LoRa and NB-IoT parameters, a link budget analysis is performed to determine the A2A
reference distance, and a k-means clustering algorithm is developed. The proposed algorithm places base stations at
cluster centers and prepares a simulation environment. The decentralized algorithm is compared with a greedy optimiza-
tion algorithm under uninterrupted and interrupted communication scenarios, and the simulation results are presented in
MATLAB. The developed distributed task allocation algorithm demonstrates lower system costs and shorter task comple-
tion times compared to the conventional greedy optimization algorithm. Additionally, the performance parameters exhibit
more excellent stability in cumulative distribution functions.

Keywords: Greedy auction-based distributed task allocation algorithm, A2A/A2G communication, LoRa, NB-IoT.

Uzak Mesafe Haberleşmesine Sahip İHA Sürüleri için Açgözlü Açık
Artırma Temelli Dağıtılmış Görev Tahsis Algoritmasının Geliştirilmesi

Özet: Bu çalışmada uzak mesafe (long range, LoRa) iletişimine sahip sürü insansız hava araçlarında (İHA) açgözlü
açık artırma temelli dağıtık görev tahsis algoritması (greedy auction-based distributed task allocation algorithm, GCAA)
önerilmiştir. Ajanlar arası haberleşmesinin sağlanabilmesi için LoRa teknolojisi kullanılarak havadan havaya (air-to-air,
A2A), dar bant nesnelerin interneti (narrowband Internet of Things, NB-IoT) teknolojisi kullanılarak da havadan yere (air-
to-ground, A2G) haberleşme kanalları oluşturulmuş ve müzakere aşaması bu haberleşme kanallarından sağlanmıştır.
LoRa ve NB-IoT parametreleri kullanılarak hat bütçe analizi ile A2A referans mesafesi ve k-ortalamalı kümeleme al-
goritması geliştirilmiştir. Geliştirilen algoritma ile küme merkezlerine baz istasyonları yerleştirerek, simülasyon ortamı
hazırlanmıştır. Önerilen merkezi olmayan algoritma ile haberleşmenin kesintisiz ve kesintili olduğu ortamda açgözlü op-
timizasyon algoritması ile karşılaştırılarak, MATLAB ortamında benzetim sonuçları aktarılmıştır. Geliştirilen dağıtık görev
tahsis algoritması, geleneksel açgözlü optimizasyon algoritmasına göre sistem maliyetinin ve görev bitirme süresinin
daha kısa olduğu gözlenmiştir. Aynı zamanda performans parametrelerinin, birikimsel dağılım fonksiyonlarında daha
kararlı olduğu gözlenmiştir.

Anahtar Kelimeler: Açgözlü açık artırma temelli dağıtık görev tahsis algoritması, A2A/A2G haberleşme, LoRa, NB-IoT.
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1 INTRODUCTION
Algorithms used to solve task assignment problems are di-
vided into centralized and distributed decision-making al-
gorithms. In centralized task assignment algorithms, the
coordinator manages all task assignments, and thus, con-
flicts are prevented, and optimum solutions are obtained.
In distributed algorithms, there is no coordinator agent, and
task sharing is carried out in a distributed manner due to
negotiations between agents [1], [2].

Greedy algorithms do not require specific knowledge of
the problem they are interested in. They do not require too
many control parameters and are suitable for working har-
moniously with the operator [3]. In multi-agent systems, the
greedy algorithm focuses on the individual benefits of the
agents. It aims to maximize the individual return without
negotiation between the agents. In [4], the authors have
improved the task completion and road coverage in un-
manned aerial vehicles (UAVs) using the greedy method.
However, since this method is not a negotiation-based al-
gorithm, the UAVs do not share the tasks, and the system
performs their optimization. In [5], they developed a dis-
tributed task-sharing algorithm by combining the optimiza-
tion and greedy algorithms. However, the processing load
is heavy due to the complex algorithm layout. A decen-
tralized greedy auction-based distributed task allocation al-
gorithm (GCAA) has been proposed in [6]. This study ob-
serves an increase in the system cost because more than
one agent executes a task. However, communication pa-
rameters are not used during task sharing.

In this study, the GCAA algorithm is developed for UAV
swarms that communicate long-distance. In order for
agents to communicate with each other in the air, air-to-
air (A2A) and when A2A communication distance is not
sufficient, air-to-ground (A2G) communication channels are
established via the base station (BS). The proposed al-
gorithm aims to provide long-distance communication be-
tween agents, minimum agent cost, and average signal-
to-noise ratio (SNR) values. In the second section of the
study, the performance criteria of A2A and A2G communi-
cation channels include the maximum communication dis-
tances of agents using long range (LoRa) and narrowband
Internet of Things (NB-IoT) communication technologies.
In the third section of this study, the developed GCAA al-
gorithm is presented. The proposed algorithm consists of
four functions. The first function determines the BS loca-
tions depending on the tasks using the k-means clustering
method. The second function controls the best task selec-
tions of the agents. The third function realizes the commu-
nication channels for the agents’ communication and the
primary task sharing. Finally, the last function completes
the algorithm by performing the secondary task sharing of
the agents. The advantages and disadvantages of the pro-
posed distributed decision-making algorithm and the simu-
lation results with the traditional greedy optimization algo-

rithm are given in section 4. In the last section, the obtained
results are evaluated.

2 DISTANCE ANALYSIS in A2A and A2G for
UAVs

This section investigates distance analysis in A2A and A2G
communication systems, focusing on signal power calcula-
tions, path loss models, and key performance metrics used
in UAV networks, including determining the maximum com-
munication range.

2.1 A2A Communication
A2A communication refers to the communication between
two or more vehicles in the air. In A2A communication, per-
formance metrics are determined using the two-ray path
loss model. In the communication system, the signal
power reaching the receiver from the transmitter is shown
in (1). Here are wavelength (λ ), communication distance
(d), transmitter power (Pt ), transmitter antenna gain (Gt ),
receiver antenna gain (Gr), transmitter antenna height (ht ),
and receiver antenna height (hr) [7]–[13],

Pr(w) =
λ 2

(4πd)2 4sin2
(

2πhrht

λd

)
GrGtPt . (1)

If the condition of dλ≫ 4hrht and sin(x)≈ x approximation
is applied, (1) can be re-written as (2)

Pr(w) = PtGtGr
h2

r h2
t

d4 . (2)

2.2 A2G Communication
A2G communication is used in cases where air vehicles can
communicate with targets on the ground or with systems
controlled from the ground station [14]–[17]. In A2G com-
munication, performance measurements were determined
using the Okumura-Hata model. The Okumura-Hata model
is a modified version of the Okumura model that operates in
the frequency range of 150 MHz to 1.5 GHz and a distance
of 1-100 km. The BS height (hb) is 30 m to 100 m, while
the mobile station height (hm) is 1 m to 10 m. The path loss
for urban areas is given in (3). The operating frequency ( fc)
unit is defined in MHz, while (d) is in km, (hb) and (hm) are
in meters [18]–[20],

LP(urban) = 69.55+26.16log( fc)−13.82log(hb)

−a(hm)+ [44.9−6.55log(hb)] log(d).
(3)

For smaller cities, a(hm) can be expressed as in (4)

a(hm) = (1.1log( fc)−0.7)hm− (1.56log( fc)−0.8). (4)
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In rural or open areas, (3) can be expressed as in (5),

LP(rural) = LP(urban)−4.78[log( fc)]
2 +18log( fc)−40.94.

(5)
The received signal power can be concluded as follows

Pr(dBm) = Pt(dBm)+Gt +Gr−LP(rural). (6)

SNR is a widely used metric for measuring signal quality
in a communication system, as shown by (7). Pr(w) repre-
sents the power received by the receiver, and σ2 represents
the thermal noise power,

SNR(w) =
Pr(w)
σ2(w)

. (7)

2.3 Communication Range
Receiver sensitivity is the minimum power level at which the
receiver can demodulate and extract the transmitted infor-
mation from the received weak signal. Due to the innova-
tive modulation scheme, LoRa and NB-IoT systems have
low receiver sensitivity. Receiver sensitivity depends on the
bandwidth (BW), SNR, and receiver noise factor (NF). At
room temperature, it is shown as (8) [17], [19]–[22],

Rsens(dBm) =−174+10log(BW)+NF+SNR. (8)

The link margin between the received power and receiver
sensitivity is given in (9) to ensure secure communication,

LinkMargin(dB) = Pr−Rsens. (9)

The noise factor as NF(dB) = 10log(Ftotal), is the total
amount of power added by the radio frequency (RF) front
end at the receiver to the thermal noise power at the input
where

Ftotal = F1 +
F2−1

G1
+

F3−1
G1G2

+ · · ·+ FN−1
G1G2 . . .GN−1

. (10)

Here, F1,...,N represents the linear noise factor of the RF
stages, and G1,...,N−1 represents the linear gain of these
stages.

Table 1 LoRa and NB-IoT parameters

Parameters LoRa NB-IoT
Frequency (MHz) 868 800
Bandwidth (kHz) 125 180
Rx sensitivity (dBm) -139.5 -129
Transmitted power, Pt (dBm) 14 23
Thermal noise power, σ2 5.01×10−23 3.98×10−21

Receiver antenna gain, Gr 1 1
Transmitter antenna gain, Gt 1 1
Link margin (dB) 10 10
Agent speed (m/s) 1 1
Agent height (ht ,hm,hr) (m) 10 10
Base station height, hb (m) 30 30

In this study, LoRa is used by UAVs, and BSs use NB-
IoT. SX1301 parameters are taken as LoRa gateway, and
Quectel BC95-G parameters are taken as NB-IoT refer-
ences. The spreading factor (SF) is assumed to be 12 for
long-distance communication. LoRa, NB-IoT, and UAV pa-
rameters are presented in Table 1 [22], [23].

3 GREEDY AUCTION-BASED DISTRIBUTED
TASK ALLOCATION ALGORITHM

The k-means algorithm is centralized. This method starts
with random ‘k’ cluster centers. Starting points affect the
clustering process and results. Euclidean and similar dis-
tance functions measure object similarity [24], [25].

The clusters and centers of the tasks are determined with
the proposed k-means algorithm (Algorithm 1). The dmin
and dmax explained in Algorithm 1 represent the minimum
and maximum communication distance. The minimum ref-
erence distance is the maximum communication range be-
tween agents, as shown in (11). The maximum reference
distance is the maximum range agents communicate with
the BS and is given in (12).

log(dmin) =
LP +10log(GtGr)+20log(hthr)

40
, (11)

log(dmax) =
A+B

44.9−6.55log(hb)
(12)

where A = LP(rural) − 27.81 − 46.05log( fc) + 13.82log(hb)
and B = (1.1log( fc)−0.7)hm +4.78(log( fc))

2.

Algorithm 1 k-means Clustering Algorithm

1 function CLUSTERING(T,k = 10,dmin,dmax)
2 T = {t1, t2, . . . , tn}, ti = (xi,yi) ▷ Randomly initialize task points
3 C = {c1,c2, . . . ,ck}, ci = (xi,yi) ▷ Randomly initialize cluster centers
4 idxc(i)← argmind(ti,c j), ∀ti ∈ T ▷ Find the nearest cluster center for each

task
5 while true do
6 for i ∈ [1,k] do
7 if cluster_element is not empty then
8 C j =

1
|S j |

∑
ti∈S j

ti, S j = {ti | idxC(i) = j} ▷ Update cluster centers

9 else
10 Select a random cluster center
11 end if
12 end for
13 for i ∈ [1,T ] do ▷ Check the distance between tasks and cluster centers
14 if d(ti,cidxc (i))< dmin then
15 Search for another cluster center
16 else if dmin ≤ d(ti,c j)≤ dmax then
17 Assign the task to this cluster
18 else
19 k = k+1, C =C∪{cnew} ▷ Add a new cluster
20 end if
21 end for
22 if dmin ≤ d(ci,c j)≤ dmax then ▷ Check the distance between cluster

centers
23 break
24 else
25 k = k−1 ▷ Remove unnecessary clusters
26 end if
27 end while
28 end function
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Bu yazı beyaz.Algorithm 2 Greedy Auction-Based Task Allocation Algorithm

1 function TASKALLOCATION(Clustering(), BestTask(), CommunicationChannel(),
SecondaryTask())

2 τ = 1 ▷ Iteration counter
3 Clustering(T = 30,50)
4 BestTask(0) = 0
5 CommunicationChannel(0) = 0
6 SecondaryTask(0) = 0
7 while not empty(T ) or not empty(uxy) do
8 BestTask(τ)
9 CommunicationChannel(τ)

10 SecondaryTask(τ)
11 τ ← τ +1
12 end while
13 end function

Bu yazı beyaz.
Algorithm 3 Selecting the Best Task

1 function BESTTASK(T )
2 for i ∈ [1,un] do
3 t = dt

v

4 dt =
√
(ux(t)−Tx(t))2 +(uy(t)−Ty(t))2

5 Ei =
1
2 CDρv3St ▷ Drag energy

6 Ht = (PD0−Ei)
7 bi(t)←max(Ht )
8 idxA(t)← argmax(Ht )
9 end for

10 end function

The greedy auction-based distributed task allocation al-
gorithm (Algorithm 2) is a negotiation algorithm that tries to
make the best short-term decision that maximizes the in-
dividual benefits of the agents. The auction process is the
first stage of the algorithm. Each agent calculates its costs
for all tasks with the published task coordinates. The cal-
culated cost values are subtracted from the agent’s utility
value PD0 to determine individual benefits (remaining en-
ergy). The bi set of the relevant agent is updated by taking
the maximum value of the determined benefits. This set
also represents the agent’s utility for the task it requests.
The idxA value defines the task number the agent requests.
The auction stage of the agents and the best task selection
are presented in Algorithm 3.

Agents calculate the distance between the starting point
and the desired task and create a return Eb cost matrix. If
the remaining energy value of the agents is less than the re-
turn energy, the agent is disabled and returns to the start-
ing position. If the remaining energy value of the agents
is more than the return energy, the agent broadcasts a YA
message. When the agents broadcast the same task and,
therefore, the same YA value, the negotiation process be-
gins. During the negotiation process, agents first broad-
cast their locations. Agents calculate the distance between
them according to the broadcasted location values. Agents
within the dmin reference distance perform A2A communi-
cation among themselves and share tasks due to the ne-
gotiation process. The negotiation process with A2G com-
munication through the defined BS to prevent interruption
of communication and increase in system cost is presented
in Algorithm 4.

Algorithm 4 Communication Channels and Primary Task Sharing

1 function COMMUNICATIONCHANNEL(idxA(τ),bi(τ))
2 dB =

√
(xBi − idxAxi )

2 +(yB j − idxAy j )
2

3 tb = RB/v
4 Eb =

1
2 CDρv3Stb

5 if bi > Eb then
6 YA(t) = idxAi
7 else
8 Broadcast the number of the disabled agent
9 end if

10 if YAi (t) == YA j (t) then

11 dk =
√
(uxi (t)−ux j (t))

2 +(uyi (t)−uy j (t))
2

12 if dk < dmin then
13 comA2A(τ) = [ui,u j ]
14 Broadcast numbers of agents communicating via A2A
15 else
16 comA2G(τ) = [ui,u j ]
17 Broadcast numbers of agents communicating via A2G
18 end if
19 if agents communicate only via A2A then
20 for i ∈ [1,comA2An] do
21 if dkλ ≫ 4ht hr then
22 Equation (1), Equation (7)
23 else
24 Equation (2), Equation (7)
25 end if
26 Broadcast bi values of agents participating in bilateral negotiations
27 Broadcast the numbers of winning and losing agents
28 if comA2AW ∪comA2AL then
29 The agent cannot receive a task
30 else
31 The agent whose task assignment is finalized in bilateral nego-

tiations broadcasts its number
32 PD0 i = bi(comA2AW ),uxy(t) = T (idxA)
33 Broadcast the number of the agent who lost the bilateral nego-

tiation (PD0 i = 0)
34 end if
35 end for
36 else if agents communicate via both A2A and A2G then
37 for i ∈ [1,comA2An and comA2Gn] do
38 if comA2An then
39 if dkλ ≫ 4ht hr then
40 Equation (1), Equation (7)
41 else
42 Equation (1), Equation (7)
43 end if
44 else
45 if comA2Gn then
46 Pr(w) = 10(Pr (dBm)/10)−3

47 Equation (7)
48 end if
49 end if
50 end for
51 Broadcast the number of the agent who won the task in A2A comm.
52 Broadcast the number of the agent who won the task in A2G comm.
53 The common winner in A2A and A2G communication wins the task

and broadcasts its number
54 PD0 i = bi(comA2AW ∩comA2GW ),uxy(t) = T (idxA)
55 PD0 i = 0
56 else if agents communicate only via A2G then
57 for i ∈ [1,comA2Gn] do
58 if comA2Gn then
59 Pr(w) = 10(Pr (dBm)/10)−3

60 Equation (7)
61 end if
62 Broadcast bi values of agents participating in bilateral negotiations
63 Broadcast the numbers of winning and losing agents
64 if comA2GW ∪comA2GL then
65 The agent cannot receive a task
66 else
67 The agent whose task assignment is finalized in bilateral nego-

tiations broadcasts its number
68 PD0 i = bi(comA2GW ),uxy(t) = T (idxA)
69 Broadcast the number of the agent who lost the bilateral nego-

tiation (PD0 i = 0)
70 end if
71 end for
72 end if
73 end if
74 end function
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(a)

(b)

Fig. 1 BS and task positions a) 30 tasks, b) 50 tasks.

In the first stage of task sharing, the agents that lost due
to the negotiation publish their numbers. In the first negoti-
ation stage, the losing agents are subjected to the second
negotiation process to not fall behind the other agents in the
swarm and maximize individual benefit. In this stage, only
the losing agents share the remaining tasks while the oth-
ers wait to execute the tasks they won. The second stage
of negotiation is presented in Algorithm 5. The BS and task
sets determined in Algorithm 1 are presented in Fig. 1.

4 NUMERICAL RESULTS
The simulation results of the designed algorithm in MAT-
LAB environment are presented on a Windows 11 oper-
ating system computer with an Intel Core i7-12700H pro-
cessor, NVIDIA GeForce RTX 3050 graphics card, and 16
GB RAM hardware. The system cost, SNR values of com-
munication channels, and agent task completion times are
taken as reference for the developed algorithm. The perfor-
mance metrics taken as reference for the developed algo-
rithm are compared with the greedy optimization algorithm
in the uninterrupted communication environment and the
environment without A2G communication.

For agents to be able to communicate A2A and A2G,
the maximum reference distances were calculated as dmin =
38.681 km and dmax = 145.02 km using (11) and (12). How-
ever, since the Okumura-Hata model works 0-100 km, the
simulation was run at a reference distance of dmax 100 km.

Bu yazı beyaz.Algorithm 5 Secondary Task Assignment

1 function SECONDARYTASK(PD0 i = 0,CommunicationChannel())
2 PD0 i = [], uxy = [], T = []
3 while any(PD0 i == 0) do
4 BestTask(PD0 i = 0)
5 CommunicationChannel(PD0 i = 0)
6 end while
7 end function

Bu yazı beyaz.

(a)

(b)

Fig. 2 Cumulative distribution function (CDF) of the communi-
cation channel during bilateral negotiation a) A2A-A2G environ-
ment b) Only A2A environment.

The cumulative distribution function of the communica-
tion channel during bilateral negotiation is shown in Fig.
2. In all simulation environments, the distributed decision-
making algorithm, including A2G and A2A communication,
observed an average SNR value of 22.427 dB in A2A com-
munication and an average SNR value of 18.083 dB in A2G
communication. The distributed decision-making algorithm,
including only A2A communication, observed an average
SNR value of 28.481 dB.

The number of bilateral negotiations varies according to
the communication environments where the agents are lo-
cated. In the 5-agent 30-task system, it was observed that
the number of bilateral negotiations was equal in the en-
vironment containing A2A and A2G communication and in
the environment containing only A2A communication, and
the negotiations contained only A2A communication. It was
observed that the algorithm containing only an A2A com-
munication medium showed lower density at lower costs
compared to the greedy optimization algorithm. It was ob-
served that the algorithm containing an A2A-A2G commu-
nication medium could reach the same density level at a
lower cost than the greedy optimization algorithm. When
we look at the general cost, the distributed task alloca-
tion algorithm containing the uninterrupted communication
medium reached the saturation level with a lower cost than
the other two algorithms, as presented in Fig. 3. Bu yazı
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Table 2 Algorithms’ performances for different scenarios

5 Agents 30 Tasks 10 Agents 30 Tasks 10 Agents 50 Tasks 20 Agents 50 Tasks

Greedy GCAA GCAA Greedy GCAA GCAA Greedy GCAA GCAA Greedy GCAA GCAA
Algorithm (A2A-A2G) (A2A) Algorithm (A2A-A2G) (A2A) Algorithm (A2A-A2G) (A2A) Algorithm (A2A-A2G) (A2A)

Iterations 8 9 9 4 3 4 6 6 6 3 3 3
Tasks 28 30 30 30 30 30 50 50 50 50 50 50
Messages 78 151 151 146 428 425 201 486 470 320 1989 1918
Cost (J) 4.535×104 3.878×104 3.878×104 6.232×104 5.898×104 6.628×104 8.175×104 7.105×104 7.223×104 8.175×104 7.105×104 7.223×104

Time (s) 7.242×105 6.26×105 6.26×105 3.712×105 3.238×105 4.184×105 5.483×105 4.548×105 5.389×105 2.019×105 2.283×105 2.34×105

Active Agents 0 1 1 4 3 4 5 5 5 20 20 20
Same Task Preference 0 0 0 0 0 3 0 0 3 0 0 6
Pairwise Negotiations - 13 13 - 27 22 - 37 29 - 84 60
A2A Average SNR (dB) - 26.481 26.481 - 23.456 29.568 - 20.104 27.652 - 19.667 30.224
A2G Average SNR (dB) - - - - 18.116 - - 19.154 - - 16.980 -

beyaz.

Fig. 3 Cumulative distribution function for task cost.

Bu yazı beyaz.

Fig. 4 Cumulative distribution function for task completion time.

It is observed that the greedy optimization algorithm
shows changes in time performance with the increase in
the number of tasks. The algorithm that only includes A2A
communication is observed to have the longest completion
time in the 50-task system. It is observed that the A2G-A2A
algorithm offers a more stable completion time compared
to the other two algorithms. The curves show a more con-
trolled and steep increase, and the task completion speed
increases after a certain period, whereas the curve shifts
to the right more as the number of tasks increases (50
tasks), as observed in Fig. 4. The performance values of
the greedy optimization and auction-based distributed task
allocation algorithms are presented in Table 2.

5 CONCLUSION
This study proposes a distributed task allocation algorithm
solution for swarm UAVs with long-distance communication.
Simulation results for the proposed algorithm are evaluated
through the parameters of the number of agents, number
of tasks, task location, BS locations, A2A reference dis-
tance, and initial energy of the agents. When the distributed
decision-making algorithm tested in MATLAB environment
is compared with the optimization algorithm, it is seen that
the system cost, the number of disabled agents, and the

task duration are less depending on the system parame-
ters. At the same time, while the greedy optimization algo-
rithm is a faster and more effective method for small and
medium-sized tasks, it is observed that the developed dis-
tributed decision-making algorithm provides more balanced
performance in variable task sets. It is observed that the op-
timization algorithm performs better in the number of mes-
sages broadcasted. In the distributed decision-making al-
gorithm where communication is limited, it is concluded that
some agents choose the same task, and the performance
values are lower than the A2G-A2A distributed algorithm.
It is observed from the simulation results that the active
agents complete the tasks that the disabled agents cannot
complete.
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Abstract: The power amplifier (PA) is a nonlinear design for which an accurate characterization is required for modeling
and optimizing effectively. To tackle this difficulty, we present a method based on the fine and coarse modeling approach
along with the implementation of deep neural networks (DNNs). For this case, firstly the executed transistor is modeled
with the X-parameters and the DNN, as the ’fine modeling’. Then, the S-parameters are modeled with the help of
configured hidden-layer structure at the previous step as the ’coarse modeling’ leads to facilitate the overall PA sizing.
Finally, the PA is modeled through the optimized DNN, which leads to estimating the performances of PA at the extended
frequency in terms of S-parameters, output power, power gain, and efficiency. The presented fine and coarse modeling is
powerful enough to configure the hidden-layer configuration of DNNs without any need for other optimization methods for
determining the number of hidden layers with neurons in each one. The presented methodology is validated by designing
and optimizing a PA with a power gain of more than 11 dB and a power-added efficiency of around 60% operating with
600 MHz band frequency.

Keywords: Fine and coarse modeling, deep neural network, optimization, power amplifier.

Derin Sinir Ağı Tabanlı İnce ve Kaba Modelleme Yoluyla Güç
Kuvvetlendirici Performansının Tahmini

Özet: Güç kuvvetlendiricileri (GK), tasarımında yüksek doğruluklu bir karakterizasyonun kritik öneme sahip olduğu lineer
olmayan bir devre bloğudur ve zorlayıcı isterlere göre tasarlanması için etkin bir şekilde modellenip optimize edilmesi
gerekmektedir. Bu amaçla, öncelikle yapıda kullanılan transistörün X parametreleri ve DNN kullanılarak "ince mod-
eli" elde edilir. Ardından, önceki adımda yapılandırılmış gizli katman yapısıyla transistörün bu sefer S parametreleri
elde edilir, çünkü bu "kaba model" genel PA boyutlandırmasını kolaylaştırmaktadır. Son olarak, GK, optimize edilmiş
DNN aracılığıyla modellenir ve bu da GK’nın genişletilmiş frekanstaki performanslarının S parametreleri, çıkış gücü, güç
kazancı ve verimlilik açısından tahmin edilmesine olanak tanır. Önerilen ince ve kaba modelleme yöntemi, DNN’lerin
gizli katman yapılandırmasını belirlemek için yeterli olup, gizli katman sayısı veya her katmandaki nöron sayısı gibi hiper-
parametreleri belirlemek için ek bir optimizasyon yöntemine ihtiyaç duymamaktadır. Sunulan yöntem, 600 MHz bant
frekansında çalışan, 11 dB’den fazla güç kazancı ve yaklaşık %60’lık güç eklenen verimliliğe sahip bir GK’nin tasarlan-
ması ile doğrulanmıştır.

Anahtar Kelimeler: İnce ve kaba modelleme, derin sinir ağı, optimizasyon, güç kuvvetlendirici.
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1 INTRODUCTION
With the exponential advances in wireless communica-
tion systems, high-performance power amplifiers (PAs) for
transmitting signals are becoming necessary [1] and the
bandwidth of these systems is increasing day-by-day [2].
Hence, designing and modeling PAs require diverse tech-
niques and topologies to meet the targeted specifications
[3]. Recently, various optimization methods have been in-
troduced for the accurate modeling of PAs including active
and passive components. Among the diversely presented
methods, the neural networks (NNs) are used for modeling
the PAs which are able to approximate the nonlinear func-
tions accurately [4].

In [5], a signal reconstruction deep residual neural net-
work is introduced for digital pre-distortion (DPD) lineariza-
tion which results in generating the out-of-band spectrum.
The mixed-precision neural network is employed in [6]
for energy-efficient DPD which reduces the computational
complexity to the greatest degree. The convolutional neu-
ral network is introduced in [7] for modeling the PA with low
computational complexity. In another study, [8], the deep
neural network (DNN) is used for reducing the training time
with the help of transfer learning. The recurrent neural net-
work as another type of NN is used in [9] for behavioral
modeling of PA. In [10], the DNN is executed for model-
ing and sizing the PA through the long short-term memory
(LSTM)-based technique.

The NN can also be used for modeling the active de-
vice that in [11], it is employed for generating an automated
optimization process. In summary, various methods are
also introduced for modeling the transistors through NNs
[12]. As it is obvious, starting the optimization process of
PA from the transistor level is significant enough [13]–[15].
For this case, we propose an intelligence-based optimiza-
tion method based on firstly modeling the high-electron-
mobility transistor (HEMT) through the X-parameters with
DNN as the ’fine modeling’. Afterward with the trained net-
work, focus on the structure of hidden layers, a new DNN is
constructed with the S-parameters of PA in which the con-
structed DNN is as the ’coarse modeling’. Finally, with the
configured DNN in which the number of hidden layers with
the number of neurons are known from the previously con-
structed DNNs, a new DNN is trained for optimizing the PA
in terms of the S-parameters (i.e., S11, S22, S21), power gain
(Gp), output power (Pout), and power added efficiency (PAE).
The proposed methodology is executed in a fully automated
way leads to optimize design parameters of any PA that re-
sult in high-performance outcomes. In this study, we de-
sign and optimize a PA operating from 1.7 GHz to 2.3 GHz
in which Gallium nitride (GaN) HEMT is used as an active
device.

This work is organized as follows: Section 2 is devoted to
presenting the methodology that is based on the fine and
coarse modeling in which the DNNs are constructed. The
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Fig. 1 A flowchart of presented fine and coarse modeling app-
rocah in this study.

effectiveness of the proposed approach is validated by de-
signing and optimizing a PA with 600 MHz bandwidth and
the related simulation results are presented in Sec. 3. Fi-
nally, Sec. 4 concludes this study.

2 PROPOSED METHODOLOGY BASED ON
FINE AND COARSE MODELING ALONG
WITH TRAINING DNNs

As previously presented, the DNN method is strong enough
for learning nonlinear behavior between input and output
corresponding data. For this case, we propose an auto-
mated methodology that is based on i) modeling HEMT
device through X-parameters (fine modeling), ii) modeling
PA with S-parameters with the help of constructed DNN
at the previous step (coarse modeling), and iii) optimizing
the PA in terms of one-tone continuous wave (CW) per-
formances. For all the trained DNNs, the normalized root
mean square error (RMSE) is a factor for calculating the
convergence of NN and also the rectified linear unit (ReLU)
function is executed as the activation function. This sec-
tion is devoted to presenting the proposed methodology in
which the flowchart of ’fine and coarse modeling’ through
DNNs is depicted in Figure 1.

2.1 Fine Modeling
X-parameters are frequency-dependent parameters, highly
accurate, and widely used modeling tools for nonlinear
high-frequency structures. It consists of three additional
terms as XF, XS, and XT in the output spectrum. XF cap-
tures a large signal harmonic response and XS with XT cap-
tures the small signal sensitivity by representing the inci-
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dent and scattered waves. Functions for Bpm are reflected
waves (labeled with port p and harmonic m), and are given
small extraction tones as Aqn (labeled with port q and har-
monic n). The detailed definitions are presented in (1) and
(2).

Bpm = X (F)
pm (

∣∣A11
∣∣)Pm+ X (S)

pm,qn(
∣∣A11

∣∣)Pm−nAqn

+ X (T )
pm,qn(

∣∣A11
∣∣)Pm+nA∗

qn (1)

where,

P =
A11∣∣A11

∣∣ (2)

As the first step of optimization, the GaN HEMT transis-
tor is modeled through the LSTM-based DNN in which the
X-parameters are used as a dataset for training. As Figure
1 shows in the fine modeling step, the input layer of LSTM-
based DNN includes specification as the input frequency
(fin), input power (Pin), gate-source (Vgs) and drain-source
(Vds) and the output layer is the Bpm. Here, the LSTM-
based DNN is constructed and the RMSE specification is
considered. If this specification is suitable enough, then the
constructed hidden layers (including the number of LSTM
layers with neurons in each one) are fixed for modeling the
next DNNs.

2.2 Coarse Modeling
After modeling the HEMT device through the X-parameters
and achieving the hidden-layer structure, this configuration
of hidden layers is employed for modeling the PA through
S-parameters. The general structure of LSTM-based DNN
used for coarse modeling is depicted in Figure 1. For this
kind of network, the input layer includes S11 and S22 spec-
ifications and the output layer represents S21 result. This
step of modeling will lead to improving the optimization pro-
cess in which the overall performance of PA will be en-
hanced based on S-parameters and one-tone continuous
wave (CW) performances in the next step.

2.3 Overall PA Optimization
After completing the fine and coarse modeling, the PA must
be optimized in terms of existing parameters (here, capac-
itor (C) and inductor (L)) to achieve high-performance out-
comes in terms of S11, S22, S21, Gp, Pout, and PAE specifica-
tions. Figure 2 shows the DNN structure leading to i) opti-
mizing the PA in terms of inserted design parameters, and
ii) estimating the output specifications at the determined
frequencies. For this kind of DNN, the hidden-layer struc-
ture is the one achieved from fine modeling.
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Fig. 2 Structure of LSTM-based DNN for optimizing the PA and
achieving the optimal design parameters along with predicting
the extended frequencies.

3 SIMULATION RESULTS

For executing the proposed methodology, a CPU environ-
ment with an Intel Core i7-4790 CPU @ 3.60 GHz and 32.0
GB RAM is prepared first. Then, a GaN HEMT transistor as
an active device namely ’Ampleon CLF1G0060-10’ is se-
lected. For the presented procedure, the automated envi-
ronment is generated by the combination of ’Keysight ADS’
and ’MATLAB’ as the electronic design automation tool and
numerical analyzer, respectively. For all the trained DNNs,
the solver is set to ’adam’ and ’gradient threshold’ is set to
1. This section describes the practical implementation of
the proposed method for the PA operating with 600 MHz
band frequency.

As the first step, the fine modeling is executed based on
the X-parameters generated by the fin, Pin, Vgs, Vds [16],
and Bpm specifications as presented in Eq. (1). Here,
the modeling is executed for p=2 and m=5. With the help
of 500 data (achieved from random iteration), the LSTM-
based DNN is trained results in the normalized RMSE value
presented in Figure 3. As it is obvious, the trained DNN
achieved 0.087 RMSE value when the number of hidden
layers is 4 with 200 neurons in each one.

Afterward, the coarse modeling is executed with the
help of configured PA through the simplified real frequency
technique [17] and also by the generated gate and drain
impedances through the load-pull simulation. Figure 4
presents the configured PA that input and output match-
ing networks include 4-LC with 2-LC ladders, respectively.
For the presented PA, Rogers RO4350B with εr=3.66 and
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Fig. 3 Accuracy of the trained DNN at the fine modeling step.
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Fig. 4 Optimized PA with the executed GaN HEMT device; Unit
of each capacitor and inductor are (pF) and (nH), respectively.

a thickness of 0.508 mm is used as a substrate and it
is biased with a drain-source voltage of 50 V and quies-
cent drain-source current of 40 mA. With this constructed
PA, 800 sequences include multi-segment S11, S12, and S22
specifications are generated for training the LSTM-based
DNN as the coarse modeling step. In this stage, the hidden-
layer configuration constructed from the fine modeling step
is exactly substituted. This step leads to facilitating the siz-
ing optimization of configured PA.

For the optimized PA operating from 1.7 GHz to 2.3 GHz,
various results in terms of S-parameters and one-tone CW
performances (i.e., Pout, GP, and PAE at 3-dB gain compres-
sion) are performed. Figure 5 shows the detailed results
for S11, S22, and S21 specifications. Here, the simulated S-
parameters are compared with the estimated results with
the help of trained DNN from 2.1 to 3 GHz. Additionally,
one-tone CW performances are also presented in terms of
simulated and predicted results in Figure 6. For the used
HEMT device and the configured PA, a maximum PAE value
of 60.2% with a linear Gp value larger than 11 dB at 40 dBm
output power is achieved. It is observed that the predicted
regions in both Figure 5 and Figure 6 are tracking the re-
sults achieved from simulations in an acceptable manner.
The stability factor is well-enough in the whole bandwidth,
which shows that the input and output matching networks
are optimized in an improved way.

Fig. 5 S-parameter performances of the optimized PA.

Fig. 6 Pout, Gp, and PAE results at 3-dB gain compression.

4 CONCLUSIONS
In this work, a DNN-based optimization method based on
fine and coarse modeling is proposed. Firstly, the executed
HEMT device is modeled through X-parameters, and then
the S-parameters of PA are modeled through the config-
ured DNN at the fine modeling stage. The presented pro-
cedure is effective enough since the hidden-layer config-
uration generated from fine modeling is employed for the
DNNs at the coarse modeling stage and an NN is trained
for sizing the PA. The fine and coarse modeling helps de-
signers to configure the hidden layers of DNNs in a fast way
without any need for optimization methods. The whole pro-
cedure is automated way, and a 10 W PA is designed and
optimized to prove the effectiveness of the methodology op-
erating from 1.7 GHz to 2.3 GHz.
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