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Nevşehir Hacı Baktaş Veli University,
Türkiye
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İzzettin Demir, Esra Üneş 31-42
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Abstract

In this article, we generalize two integral results from the literature. The first result concerns a
flexible double integral inequality, considering a specific form for the integrated function and a
double integral as a lower or upper bound. Several examples are discussed, as well as some of
its indirect connections with the Hilbert integral inequality. The second result also gives a double
integral inequality, but with the product of the square root of simple integrals, following the spirit
of the Hilbert integral inequality. Several theoretical and numerical examples are discussed. Both
of our results have the property of being dependent on several adjustable functions and parameters,
thus offering a wide range of applications.

1. Introduction

Historically, integral inequalities have attracted attention in almost all areas of mathematics. Some of the most famous are
the Cauchy-Schwarz integral inequality, the Jensen integral inequality, the Hölder integral inequality, the Minkowski integral
inequality, the Hardy-Littlewood-Sobolev integral inequality, the Hilbert integral inequality, the Sobolev integral inequality, the
Gagliardo-Nirenberg integral inequality, the Poincaré integral inequality, the Grönwall integral inequality, the Young integral
inequality, the logarithmic Sobolev integral inequality, the Chebyshev integral inequality, the Steffensen integral inequality
and the Grüss integral inequality. They are widely used in fields as diverse as calculus, functional analysis, probability
theory, numerical analysis, mathematical physics, and partial differential equations. For a comprehensive introduction to these
inequalities, see [1, 2, 3, 4, 5]. In recent research, the study of integral inequalities has taken on considerable importance. For
some contemporary references, i.e., in 2024 at the time of writing, see, for example, [6, 7, 8, 9].

In this article, we focus on the framework of the Hilbert integral inequality. It plays an important role in applications involving
double integrals, where certain types of product and ratio functions are present. This is particularly the case in analysis,
approximation theory, probability theory and partial differential equations. Mathematically, the Hilbert integral inequality is
expressed as follows:

∫ +∞

0

∫ +∞

0

f (x)g(y)
x+ y

dxdy≤ π

√∫ +∞

0
f 2(x)dx

√∫ +∞

0
g2(x)dx, (1.1)

where f ,g : [0,+∞)→ [0,+∞) are quadratic integrable functions. The upper bound is thus of the form constant multiplied by
the L2 norms of f and g. The constant π is optimal and cannot be improved, as shown in [1, 5]. Note that, in the special case
g = f , the Hilbert integral inequality reduces to

∫ +∞

0

∫ +∞

0

f (x) f (y)
x+ y

dxdy≤ π

∫ +∞

0
f 2(x)dx. (1.2)

This simplified version will have some focus for the purposes of this article. The importance of the Hilbert integral inequality
has led to numerous variants and extensions, with applications in both pure and applied mathematics. These variants have been
the subject of extensive research, as can be seen in the studies in [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. In
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addition, the survey in [25] provides a comprehensive overview of these developments, including the various techniques used
to improve or generalize the inequality. It also gives examples of how these inequalities are used in different contexts. For
some recent references on the topic, i.e., in 2024 at the time of writing, see [26, 27, 28, 29].

In this article, we demonstrate two general integral inequalities that extend some results established in [17], which in turn
extend those in [16]. In particular, the following formula is discussed in [17, Lemma 2.1]:

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy, (1.3)

where h : [0,+∞)2 7→ [0,+∞) is a symmetric bivariate function, and F : [0,+∞)2 7→ R is a bivariate function depending on an
intermediate univariate function k : [0,+∞) 7→ [0,+∞), of the form F(x,y) = 1+ k(x)− k(y) (or, without loss of generality,
F(x,y) = 1+k(y)−k(x)). In the first result of this article, we show how to extend Equation (1.3), with a more general function
F depending on two intermediate univariate functions. In particular, inequalities come naturally depending on the monotonicity
of these functions. It is worth noting that the lower or upper bound obtained is expressed as a double integral, similar to the
right term in Equation (1.3).

In the second result, still based on our extended function F , we generalize [17, Part of the proof of Theorem 3.1] by
demonstrating a new variant of the Hilbert integral inequality. It is innovative in its use of two adjustable univariate functions
and parameters. More specifically, we demonstrate an integral inequality of the following form:

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy≤
√∫ +∞

0
p(x) f 2(x)dx

√∫ +∞

0
q(x) f 2(x)dx,

where p,q : [0,+∞) 7→ [0,+∞) are explicitly determined. In a sense, it extends the special Hilbert integral inequality presented
in Equation (1.2); when F reduces to the constant 1, it is expected that p and q reduce to the constant π . Some consequences
of this result are discussed and a new precise variant of the Hilbert integral inequality is established.

The rest of the article is divided into three sections: Section 2 presents the first general integral inequality result, including the
detailed proofs and some examples. A connection with the Hilbert integral inequality is also made. Section 3 deals with the
second general integral inequality result. It also gives detailed proof, discussion and some examples. Section 4 contains a
conclusion.

2. First general integral inequality result

The proposition below is our first general result on integral inequalities, which significantly extends the scope of [17, Lemma
2.1]. A double integral is obtained as a lower or upper bound.

Proposition 2.1. Let f : [0,+∞) 7→ [0,+∞) and u,v : [0,+∞) 7→ R be univariate functions, and h : [0,+∞)2 7→ [0,+∞) be
a bivariate function. We suppose that h is symmetric, i.e., h(x,y) = h(y,x) for any (x,y) ∈ [0,+∞)2. Based on u and v, let
F : [0,+∞)2 7→ R be the bivariate function defined by

F(x,y) = 1+u(x)[v(x)− v(y)].

Then, distinguishing four cases of assumptions on u and v, the results below hold.

Case 1: If v is constant and u is an arbitrary function, we have

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy,

provided that the integrals involved converge.

Case 2: If u is constant and v is an arbitrary function, we have

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy,

provided that the integrals involved converge and

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

|v(y)|dydx <+∞. (2.1)
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Case 3: If u and v are both increasing, or both decreasing, we have
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy≥
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy,

provided that the integrals involved converge and
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

|u(y)||v(x)− v(y)|dydx <+∞. (2.2)

Case 4: If u is increasing and v is decreasing, or if u is decreasing and v is increasing, we have
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy≤
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy,

provided that the integrals involved converge and the assumption in Equation (2.2) holds.

Proof. Let us prove the four cases, one after the other.

Case 1: If v is constant and u is an arbitrary function, we have F(x,y) = 1, so that
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

Case 2: If u is constant, say u(x) = c for any x ∈ [0,+∞) and v is an arbitrary function, we have
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

{1+ c[v(x)− v(y)]}dxdy

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy

+ c
[∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

v(x)dxdy−
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

v(y)dxdy
]
.

Let us focus on the last integral term (without the constant factor). Changing the notations x and y, using the symmetry
of h and the Fubini theorem thanks to Equation (2.1) to justify the change of the order of integration, it can be expressed
as

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

v(y)dxdy =
∫ +∞

0

∫ +∞

0

f (y) f (x)
h(y,x)

v(x)dydx

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

v(x)dxdy.

So we have
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy+ c×0

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

The desired result is obtained.

Case 3: Let us now suppose that u and v are both increasing, or both decreasing. The following decomposition holds:
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

{1+u(x)[v(x)− v(y)]}dxdy

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy+
1
2

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

u(x)[v(x)− v(y)]dxdy

+
1
2

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

u(x)[v(x)− v(y)]dxdy.
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Let us focus on the last integral term (without the constant factor). Changing the notations x and y, using the symmetry
of h and the Fubini theorem thanks to Equation (2.2) to justify the change of the order of integration, it can be expressed
as

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

u(x)[v(x)− v(y)]dxdy =
∫ +∞

0

∫ +∞

0

f (y) f (x)
h(y,x)

u(y)[v(y)− v(x)]dydx

= −
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

u(y)[v(x)− v(y)]dxdy.

We therefore have
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy

+
1
2

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

[u(x)−u(y)][v(x)− v(y)]dxdy. (2.3)

If u and v are both increasing, for any x≥ y, we have u(x)≥ u(y) and v(x)≥ v(y), implying that [u(x)−u(y)][v(x)−
v(y)]≥ 0, and, for any y≥ x, we have u(y)≥ u(x) and v(y)≥ v(x), still implying that [u(x)−u(y)][v(x)− v(y)]≥ 0.

On the other hand, if u and v are both decreasing, for any x ≥ y, we have u(y) ≥ u(x) and v(y) ≥ v(x), implying
again that [u(x)−u(y)][v(x)− v(y)] ≥ 0, and, for any y ≥ x, we have u(x) ≥ u(y) and v(x) ≥ v(y), still implying that
[u(x)−u(y)][v(x)− v(y)]≥ 0. Since f and h are positive, we have

1
2

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

[u(x)−u(y)][v(x)− v(y)]dxdy≥ 0.

This and Equation (2.3) imply that
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy≥
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

The desired result is obtained.

Case 4: Let us now suppose that u is increasing and v is decreasing, or u is decreasing and v is increasing. Applying Equation
(2.3), we still can write

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy

+
1
2

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

[u(x)−u(y)][v(x)− v(y)]dxdy. (2.4)

If u is increasing and v is decreasing, for any x ≥ y, we have u(x) ≥ u(y) and v(y) ≥ v(x), implying that [u(x)−
u(y)][v(x)− v(y)]≤ 0, and, for any y≥ x, we have u(y)≥ u(x) and v(x)≥ v(y), still implying that [u(x)−u(y)][v(x)−
v(y)]≤ 0.

On the other hand, if u is decreasing and v is increasing, for any x≥ y, we have u(y)≥ u(x) and v(x)≥ v(y), implying
again that [u(x)−u(y)][v(x)− v(y)] ≤ 0, and, for any y ≥ x, we have u(x) ≥ u(y) and v(y) ≥ v(x), still implying that
[u(x)−u(y)][v(x)− v(y)]≤ 0. Since f and h are positive, we have

1
2

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

[u(x)−u(y)][v(x)− v(y)]dxdy≤ 0.

The combination of this with Equation (2.4) gives
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy≤
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

The desired result is obtained.

This concludes the proof of Proposition 2.1.

The interest of Proposition 2.1 is that the double integral under consideration is very general in form, and lower and upper
bounds can be derived under a simple monotonicity analysis of only two intermediate functions. However, if there is no
monotonicity (or no constant constant function), it cannot be applied.
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Taking u as the constant equal to 1 (and v arbitrary), Case 2 in Proposition 2.1 becomes [17, Lemma 2.1], recalled in Equation
(1.3) (with k = v). It also extends [16, Lemma 1.3], which considers u as the constant equal to 1 and v(x) = 1/(1+ x). The
other cases give new perspectives of applications.

As a direct consequence, if u is increasing and v is decreasing, or if u is decreasing and v is increasing, applying Case 4 of
Proposition 2.1 with h(x,y) = x+ y and the Hilbert integral inequality, we get

∫ +∞

0

∫ +∞

0

f (x) f (y)
x+ y

F(x,y)dxdy≤
∫ +∞

0

∫ +∞

0

f (x) f (y)
x+ y

dxdy≤ π

∫ +∞

0
f 2(x)dx,

provided that the integrals involved converge and the assumption in Equation (2.2) holds. Some numerical examples are now
proposed to illustrate the results in Proposition 2.1, starting with Case 2. We take f (x) = e−x and h(x,y) = x+ y, so that

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy =
∫ +∞

0

∫ +∞

0

e−x−y

x+ y
dxdy = 1,

to work with a manageable benchmark.

Illustration of Case 2: Taking u(x) = 4 and v(x) = log(x), so that u is constant and v is an arbitrary selected function, we
have F(x,y) = 1+u(x)[v(x)− v(y)] = 1+4log(x/y), and

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

e−x−y

x+ y

[
1+4log

(
x
y

)]
dxdy

= 1

=
∫ +∞

0

∫ +∞

0

e−x−y

x+ y
dxdy

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

As expected, the desired double integrals are equal.

Illustration of Case 3: Taking u(x) = x and v(x) = x2, so that u and v are both increasing, we have F(x,y) = 1+u(x)[v(x)−
v(y)] = 1+ x(x2− y2), and

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

e−x−y

x+ y

[
1+ x(x2− y2)

]
dxdy

= 2

≥ 1

=
∫ +∞

0

∫ +∞

0

e−x−y

x+ y
dxdy

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

As another example for this case, taking u(x) = e−x and v(x) = 1/(1+ x), so that u and v are both decreasing, we have
F(x,y) = 1+u(x)[v(x)− v(y)] = 1+ e−x[1/(1+ x)−1/(1+ y)], and

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

e−x−y

x+ y

[
1+ e−x

(
1

1+ x
− 1

1+ y

)]
dxdy

≈ 1.03772

≥ 1

=
∫ +∞

0

∫ +∞

0

e−x−y

x+ y
dxdy =

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

As expected, the desired inequality is obtained for both examples.
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Illustration of Case 4: Taking u(x) =
√

x and v(x) = 1/(1 + x2), so that u is increasing and v is decreasing, we have
F(x,y) = 1+u(x)[v(x)− v(y)] = 1+

√
x[1/(1+ x2)−1/(1+ y2)], and

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

e−x−y

x+ y

[
1+
√

x
(

1
1+ x2 −

1
1+ y2

)]
dxdy

≈ 0.931516

≤ 1

=
∫ +∞

0

∫ +∞

0

e−x−y

x+ y
dxdy

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

As another example for this case, taking u(x) = e−x2
and v(x) = log(x), so that u is decreasing and v is increasing, we

have F(x,y) = 1+u(x)[v(x)− v(y)] = 1+ e−x2
log(x/y), and

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

e−x−y

x+ y

[
1+ e−x2

log
(

x
y

)]
dxdy

≈ 0.752483

≤ 1

=
∫ +∞

0

∫ +∞

0

e−x−y

x+ y
dxdy

=
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy.

As expected, the desired inequality is obtained for both examples.

The next section is devoted to a general variant of the Hilbert integral inequality, with some connection to the main double
integral in Proposition 2.1. Additional assumptions are made on F and h, including the positivity of F .

3. Second general integral inequality result

Inspired by [17, Theorem 3.1] and in the light of the functional configuration in Proposition 2.1, the result below shows a
generalized variant of the Hilbert integral inequality. Upper bounds are obtained through various weighted L2 norms of f .

Proposition 3.1. Let f : [0,+∞) 7→ [0,+∞) and u,v : [0,+∞) 7→ R be univariate functions, and h : [0,+∞)2 7→ [0,+∞) be a
bivariate function. Based on u and v, let F : [0,+∞)2 7→ R be the bivariate function defined by

F(x,y) = 1+u(x)[v(x)− v(y)].

The assumptions below are made for F and h.

A1: F is positive, i.e., for any (x,y) ∈ [0,+∞)2, F(x,y)≥ 0.

A2: h is symmetric, i.e., h(x,y) = h(y,x) for any (x,y) ∈ [0,+∞)2, and homogeneous in the sense that there exists λ ∈ R
satisfying, for any (x,y,z) ∈ [0,+∞)3,

h(zx,zy) = zλ h(x,y).

Then, for any α ∈ R, the following integral inequality holds:
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy ≤
√∫ +∞

0
x1−λ {[1+u(x)v(x)]cα −u(x)Tα [v](x)} f 2(x)dx

×
√∫ +∞

0
x1−λ {cα +Tα [uv](x)− v(x)Tα [u](x)} f 2(x)dx,

where

cα =
∫ +∞

0

rα

h(1,r)
dr
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and, for any function k : [0,+∞) 7→ R, Tα [k] is the following integral operator:

Tα [k](x) =
∫ +∞

0

rα

h(1,r)
k(rx)dr,

provided that the integrals involved converge. Taking k as the constant equal to 1, we can note that Tα [k](x) = cα .

Proof. Using the positivity of F described in A1, the decomposition (y/x)α/2(x/y)α/2 = 1 and applying the Cauchy-Schwarz
integral inequality according to the variables x and y, we get

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy =
∫ +∞

0

∫ +∞

0

f (x)√
h(x,y)

√
F(x,y)

(y
x

)α/2
× f (y)√

h(x,y)

√
F(x,y)

(
x
y

)α/2

dxdy

≤
√∫ +∞

0

∫ +∞

0

f 2(x)
h(x,y)

F(x,y)
(y

x

)α

dxdy

√∫ +∞

0

∫ +∞

0

f 2(y)
h(x,y)

F(x,y)
(

x
y

)α

dxdy

=

√∫ +∞

0
p(x) f 2(x)dx

√∫ +∞

0
q(y) f 2(y)dy, (3.1)

where

p(x) =
∫ +∞

0

1
h(x,y)

F(x,y)
(y

x

)α

dy

and

q(y) =
∫ +∞

0

1
h(x,y)

F(x,y)
(

x
y

)α

dx.

Let us now express p(x) and q(y), one after the other. Using the change of variables y = rx and the homogeneous property of h
in A2, we get

p(x) = x
∫ +∞

0

1
h(x,rx)

F(x,rx)rα dr = x1−λ

∫ +∞

0

1
h(1,r)

F(x,rx)rα dr

= x1−λ

∫ +∞

0

1
h(1,r)

{1+u(x)[v(x)− v(rx)]}rα dr

= x1−λ

{
[1+u(x)v(x)]

∫ +∞

0

rα

h(1,r)
dr−u(x)

∫ +∞

0

rα

h(1,r)
v(rx)dr

}

= x1−λ {[1+u(x)v(x)]cα −u(x)Tα [v](x)} . (3.2)

On the other hand, for q(y), using the change of variables x = ry, the symmetry and the homogeneous property of h in A2, we
get

q(y) = y
∫ +∞

0

1
h(ry,y)

F(ry,y)rα dr = y1−λ

∫ +∞

0

1
h(r,1)

F(ry,y)rα dr

= y1−λ

∫ +∞

0

1
h(1,r)

{1+u(ry)[v(ry)− v(y)]}rα dr

= y1−λ

{∫ +∞

0

rα

h(1,r)
dr+

∫ +∞

0

rα

h(1,r)
u(ry)v(ry)dr− v(y)

∫ +∞

0

rα

h(1,r)
u(ry)dr

}

= y1−λ {cα +Tα [uv](y)− v(y)Tα [u](y)} . (3.3)

Combining Equations (3.1), (3.2) and (3.3), and standardizing the notation x and y, we obtain

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy ≤
√∫ +∞

0
x1−λ {[1+u(x)v(x)]cα −u(x)Tα [v](x)} f 2(x)dx

×
√∫ +∞

0
x1−λ {cα +Tα [uv](x)− v(x)Tα [u](x)} f 2(x)dx,

which is the desired inequality. This concludes the proof.
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The interest of Proposition 3.1 lies in its generality and the form of the upper bound obtained; it is typical of those appearing in
some variants of the Hilbert integral inequality, i.e., with the product of two weighted L2 norms of f .

In fact, if we analyze the proof of Proposition 3.1, it can be easily extended to two functions, f ,g : [0,+∞) 7→ [0,+∞), as
follows:

∫ +∞

0

∫ +∞

0

f (x)g(y)
h(x,y)

F(x,y)dxdy ≤
√∫ +∞

0
x1−λ {[1+u(x)v(x)]cα −u(x)Tα [v](x)} f 2(x)dx

×
√∫ +∞

0
x1−λ {cα +Tα [uv](x)− v(x)Tα [u](x)}g2(x)dx.

We have concentrated on the case f = g mainly to make some connections with Proposition 2.1.

Let now discuss A1. If, for any x ∈ [0,+∞), u(x)∈ [0,1] and v(x)∈ [0,1], then, for any (x,y)∈ [0,+∞)2, we have u(x)v(x)≥ 0
and u(x)v(y)≤ 1, so that

F(x,y) = u(x)v(x)+ [1−u(x)v(y)]≥ 0.

The assumption A1 is thus satisfied.

In the context of Case 3 in Proposition 2.1, i.e., if u and v are both increasing, or both decreasing, under some integrability
assumptions, if A1 and A2 of Proposition 3.1 are satisfied, then this result gives

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

dxdy ≤
∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy

≤
√∫ +∞

0
x1−λ {[1+u(x)v(x)]cα −u(x)Tα [v](x)} f 2(x)dx

×
√∫ +∞

0
x1−λ {cα +Tα [uv](x)− v(x)Tα [u](x)} f 2(x)dx. (3.4)

As noted in [17], the choices α = −1/2, h(x,y) = x+ y, u(x) = 1 and v(x) = 1/(1+ x) give the improved Hilbert integral
inequality demonstrated in [16, Theorem 2.1].

With this in mind, let us illustrate Proposition 3.1 with a new example activating the function u. We consider α = −1/2,
h(x,y) = x+ y, u(x) = 1/(1+ x) and v(x) = 1/(1+ x). So we have

F(x,y) = 1+
1

1+ x

(
1

1+ x
− 1

1+ y

)
= 1+

y− x
(1+ x)2(1+ y)

.

Since u(x) ∈ [0,1] and v(x) ∈ [0,1], the assumption A1 holds. Furthermore, with the selected function h, the assumption A2 is
obviously satisfied with λ = 1. Let now remark that

cα =
∫ +∞

0

rα

h(1,r)
dr

=
∫ +∞

0

1√
r(1+ r)

dr

=
{

2arctan[
√

r]
}r→+∞

r=0

= π,

Tα [u](x) =
∫ +∞

0

rα

h(1,r)
u(rx)dr =

∫ +∞

0

1√
r(1+ r)(1+ rx)

dr

=

{
2

x−1
[√

xarctan[
√

xr]− arctan[
√

r]
]}r→+∞

r=0

=
π

1+
√

x
,

Tα [v](x) = Tα [u](x) =
π

1+
√

x
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and

Tα [uv](x) =
∫ +∞

0

rα

h(1,r)
u(rx)v(rx)dr

=
∫ +∞

0

1√
r(1+ r)(1+ rx)2 dr

=

{
1

(x−1)2

[
(x−1)x

√
r

1+ rx
+2arctan[

√
r]+ (x−3)

√
xarctan[

√
xr]
]}r→+∞

r=0

=
[2+
√

x]π

2 [1+
√

x]2
.

It follows from Proposition 3.1 that
∫ +∞

0

∫ +∞

0

f (x) f (y)
x+ y

[
1+

y− x
(1+ x)2(1+ y)

]
dxdy =

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy

≤
√∫ +∞

0
x1−λ {[1+u(x)v(x)]cα −u(x)Tα [v](x)} f 2(x)dx

×
√∫ +∞

0
x1−λ {cα +Tα [uv](x)− v(x)Tα [u](x)} f 2(x)dx

=

√∫ +∞

0

{[
1+

1
(1+ x)2

]
π− π

(1+ x)[1+
√

x]

}
f 2(x)dx

×

√√√√
∫ +∞

0

{
π +

[2+
√

x]π

2 [1+
√

x]2
− π

(1+ x)[1+
√

x]

}
f 2(x)dx

= π

√∫ +∞

0

x5/2 +2x3/2 + x2 + x+2
√

x+1
[1+
√

x](1+ x)2 f 2(x)dx

×
√∫ +∞

0

5x3/2 +2x2 +6x+3
√

x+2
2[1+

√
x]2(1+ x)

f 2(x)dx.

Also, since u and v are both decreasing, based on Equation (3.4), we have
∫ +∞

0

∫ +∞

0

f (x) f (y)
x+ y

dxdy ≤
∫ +∞

0

∫ +∞

0

f (x) f (y)
x+ y

[
1+

y− x
(1+ x)2(1+ y)

]
dxdy

≤ π

√∫ +∞

0

x5/2 +2x3/2 + x2 + x+2
√

x+1
[1+
√

x](1+ x)2 f 2(x)dx

×
√∫ +∞

0

5x3/2 +2x2 +6x+3
√

x+2
2[1+

√
x]2(1+ x)

f 2(x)dx.

Let us verify these inequalities with a numerical example. Considering f (x) = e−x, we have
∫ +∞

0

∫ +∞

0

e−x−y

x+ y
dxdy = 1,

∫ +∞

0

∫ +∞

0

e−x−y

x+ y

[
1+

y− x
(1+ x)2(1+ y)

]
dxdy≈ 1.02897

∫ +∞

0

x5/2 +2x3/2 + x2 + x+2
√

x+1
[1+
√

x](1+ x)2 e−2xdx≈ 0.535435,

∫ +∞

0

5x3/2 +2x2 +6x+3
√

x+2
2[1+

√
x]2(1+ x)

e−2xdx≈ 0.523919,

and we check that 1≤ 1.02897≤ π
√

0.535435
√

0.523919≈ 1.66393. So many more examples can be formulated on a similar
basis of analysis.



10 Fundamental Journal of Mathematics and Applications

4. Conclusion

In this article, we have established two new integral inequalities that extend some key results in [17, 16]. Both are centered on
the following double integral:

∫ +∞

0

∫ +∞

0

f (x) f (y)
h(x,y)

F(x,y)dxdy

where the novelty lies in the general definition of F of the following form: F(x,y) = 1+u(x)[v(x)− v(y)]. The first result is
adaptable and gives lower and upper bounds for this double integral. The second result is related to the setting of the Hilbert
integral inequality, where some new upper bounds are obtained involving weighted L2 norms of f . The perspectives of our
results make them important in several mathematical areas where challenging double integrals (involving certain product and
ratio functions) need to be bounded in order to draw conclusions.
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Abstract

Topological indices are mathematical measurements regarding the chemical structures of any simple
finite graph. These are used for QSAR and QSPR studies. We get bounds for some degree based
topological indices of a graph using solely the vertex degrees. We obtain upper and lower bounds
for these indices and investigate for the complete graphs, path graphs and Fibonacci-sum graphs.

1. Introduction

Topological indices are important for the graph theory studies. Several significant topological indices such as Zagreb index,
Randic index and Wiener index has been introduced to measure the characters of graphs.

Now, we recall the definitions of some topological indices we used in this study:

The multiplicative Randic index is defined in [1] as

MR(G) = ∏
uv∈E(G)

√
1

deg(u)deg(v)
.

The reduced reciprocal Randic index was described in [1] as

RRR(G) = ∑
uv∈E(G)

√
(deg(u)−1)(deg(v)−1).

The Narumi-Katayama index was introduced in [2] as

NK(G) =
n

∏
i=1

deg(vi).

The symmetric division deg index was described in [3] as

SD(G) = ∑
uv∈E(G)

deg(u)2 +deg(v)2

deg(u)deg(v)
.

In literature, there are some studies including these indices such as [4, 5, 6, 7].

In [8], a Fibonacci-sum graph was defined as Gn = (V,E), where V = [n] = {F2 = 1,F3 = 2,F4 = 3,4,5, · · · ,n} is the vertex
set and E = {{i, j} : i, j ∈V, i 6= j, i+ j is a Fibonacci number} is the edge set.

≫≫≫ Received: 25-09-2023 ≫≫≫ Revised: 13-11-2024 ≫≫≫ Accepted: 31-12-2024 ≫≫≫ Online: 28-03-2025 ≫≫≫ Published: 31-03-2025
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It is obvious from the definition that Gn is a simple graph.

Also, some properties of the Fibonacci-sum graphs were obtained in the following theorems [9]:

Lemma 1.1. Gn is connected for each n≥ 1.

Lemma 1.2. Let n≥ 2, and t be any positive integer satisfy that Ft ≤ n < Ft+1. Then the only neighbour of the vertex Ft is
Ft−1.

Lemma 1.3. Let n≥ 1 and let y ∈ [1,n] . Let for t ≥ 2, Ft ≤ y < Ft+1 and for l ≥ t, Fl ≤ y+n < Fl+1. Then the degree of y is

degGn
(y) =





l− t, if 2y is not a Fibonacci number,

l− t−1, if 2y is a Fibonacci number.

Theorem 1.4. Vertex 2 has maximum degree in the Fibonacci-sum graph Gn ( for any n≥ 2) . Also, if n+2 is a Fibonacci
number, then degGn

(1) = degGn
(2)−1; otherwise, degGn

(1) = degGn
(2).

As a result of the above theorem, in the Fibonacci-sum graph Gn, 2 has the maximum degree and one of the vertices with
maximum degree less than the degree of 2 is 1. Also, by Lemma 1.2 d(Fk) = 1 for Fk ≤ n < Fk+1. Thus, for any i ∈ V (Gn),
we have

d(2)≥ d(1)≥ d(i)≥ d(Fk) (1.1)

where Fk ≤ n < Fk+1. In this case, we get

Fl1 ≤ 2+n < Fl1+1, then deg(2) = l1−3, (1.2)

Fl2 ≤ 1+n < Fl2+1, then deg(1) = l2−3. (1.3)

In [10], the spectral properties of Fibonacci-sum and Lucas-sum graphs were examined and some bounds were obtained. Also,
in [11] another type of graphs associated with Fibonacci numbers was studied.

The aim of this study is obtain upper and lower bounds of multiplicative Randic index, reduced reciprocal Randic index,
Narumi-Katayama index and symmetric division index for the general graphs using vertex degree. Then, we obtain upper and
lower bounds for these indices for some special graphs and Fibonacci-sum graphs. Finally, we compared the bounds on these
indices for some graphs.

2. Main results

In this section all of the theorems are given for n≥ 3.

Theorem 2.1. Let G be a simple connected graph with n vertices, k pendant vertices and m edges. Then we get

(
1

n−1

)m

≤MR(G)≤
(

1
2

) 2m−k
2

.

The lower bound holds for G∼= Kn and the upper bound holds for G∼= Pn.

Proof. Since the graph has k pendant vertices and the other vertices is of at least degree 2, we get the upper bound for the
multiplicative Randic index of G as

MR(G)≤
(

1√
2

)k(1
2

)n−1−k

=

(
1
2

) 2m−k
2

.

Also, since the vertices have the maximum degree at most n−1, we have the lower bound for the multiplicative Randic index
of G as

(
1

n−1

)m

≤MR(G).

As a conclusion, we obtain

(
1

n−1

)m

≤MR(G)≤
(

1
2

) 2m−k
2

.
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Figure 1: Simple connected graph

Example 2.2. For the given graph in Figure 1 the bounds for the multiplicative Randic index are

0.0009≤MR(G) = 0.044≤ 0.024.

Corollary 2.3. Let G = Kp,q. If p < q, then

(
1
q

)pq

≤MR(Kp,q)≤
(

1
p

)pq

.

If p = q, then

MR(Kp,q) =

(
1
p

)p2

.

Proof. Since the Kp,q graph has pq edges, the proof can be seen easily.

Theorem 2.4. If Gn is a Fibonacci-sum graph, then

(
1√

(l1−3)(l2−3)

)n−1

≤MR(Gn)≤
(

1√
2

)n−r

where l1,l2 are integers in (1.2), (1.3), respectively and r is the number of the vertices with degree 1 in Gn.

Proof. Since r is the number of the vertices with degree 1 in Gn, the degrees of the other vertices are at least 2. Thus, there are
r vertices with degree 1 and n− r vertices with degree at least 2. Hence, we get the upper bound for the multiplicative Randic
index of Gn as

MR(Gn)≤
(

1√
2

)n−r

.

Also, since by Theorem 1.4, 2 has the maximum degree and one of the vertices with maximum degree less than the degree of 2
is 1, we have the lower bound for the multiplicative Randic index of Gn as

(
1√

deg(2)deg(1)

)n−1

≤MR(Gn).

As a conclusion, we obtain

(
1√

(l1−3)(l2−3)

)n−1

≤MR(Gn)≤
(

1√
2

)n−r

.

Theorem 2.5. Let G be a simple connected graph with n vertices, k pendant vertices and m edges, then

m− k ≤ RRR(G)≤ m(n−2).

The lower bound holds for G∼= Pn and the upper bound holds for G∼= Kn.
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Proof. Since the graph has k pendant vertices and the other vertices is of at least degree 2, we have the lower bound as

m− k ≤ RRR(G).

Also, since the vertices have the maximum degree at most n−1, we have the upper bound as

RRR(G)≤ m(n−2).

As a conclusion, we obtain

m− k ≤ RRR(G)≤ m(n−2).

Figure 2: Simple connected graph

Example 2.6. For the given graph in Figure 2 the bounds for the reduced reciprocal Randic index are

3≤ RRR(G) = 4.82≤ 15.

Corollary 2.7. Let G = Kp,q. If p < q, then

RRR(Kp,q) = pq
√
(p−1)(q−1).

If p = q

RRR(Kp,q) = p2(p−1).

Proof. Since m = pq in Kp,q,the proof is trivial.

Theorem 2.8. If Gn is a Fibonacci-sum graph, then

m≤ RRR(Gn)≤ m
√

(l1−4)(l2−4)

where l1,l2 are the integers in (1.2), (1.3), respectively, and m = |E(Gn)| .
Proof. By Lemma 1.2, in the Fibonacci-sum graph Gn, Ft is adjacent to only Ft−1 for Ft ≤ n < Ft+1. Also, since the other
neighbour of Ft−1 is Ft−2, deg(Ft−1) = 2. By the same way, deg(Ft−2) ≥ 2. Thus, we get the lower bound for the reduced
reciprocal Randic index of Gn as

m
√

deg(Ft−1−1)deg(Ft−2−1) = m≤ RRR(Gn).

Since 1∼ 2 and by using (1.1), we get the upper bound for the reduced reciprocal Randic index of Gn as

RRR(Gn)≤ m
√
(deg(1)−1)(deg(2)−1).

Hence, we obtain

m≤ RRR(Gn)≤ m
√

(l1−4)(l2−4).

Theorem 2.9. Let G be a simple connected graph with n vertices and k pendant vertices then

2n−k ≤ NK(G)≤ (n−1)n

The lower bound holds for G∼= Pn and the upper bound holds for G∼= Kn.
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Proof. Since the graph has k pendant vertices and the other vertices is of at least degree 2, we obtain the lower bound as

2n−k ≤ NK(G).

Also, since the vertices have the maximum degree at most n−1, we get the upper bound as

NK(G)≤ (n−1)n.

Example 2.10. For the given graph in Figure 2 the bounds for the Narumi-Katayama index are

8≤ NK(G) = 18≤ 1024.

Corollary 2.11. Let G = Kp,q then

NK(Kp,q) = pqqp.

Proof. Since there are q points of degree p and p points of degree q in the graph Kp,q, we obtain NK(Kp,q) = pqqp.

Theorem 2.12. For the Narumi-Katayama index of the Fibonacci-sum graph Gn, the following inequality holds:

2n−r ≤ NK(Gn)≤ (l1−3)(l2−3)n−1

where l1,l2 are the integers in (1.2), (1.3) , respectively and r is the number of the vertices with degree 1 in G.

Proof. Since r is the number of the vertices with degree 1 in Gn, then the degrees of the other vertices are at least 2. Thus, there
are r vertices with degree 1 and n− r vertices with degree at least 2. Hence, we get the lower bound for the Narumi-Katayama
index of Gn as

2n−r ≤ NK(Gn).

Also, since by Theorem 1.4, 2 has the maximum degree and one of the vertices with maximum degree less than the degree of 2
is 1, we have the upper bound for the Narumi-Katayama index of Gn as

NK(Gn)≤ deg(2)(deg(1))n−1.

As a result, we obtain

2n−r ≤ NK(Gn)≤ (l1−3)(l2−3)n−1.

Theorem 2.13. Let G be a simple connected graph with n vertices and m edges, then

2m≤ SD(G)≤ m
(n−1)2 +1

n−1
.

Proof. If deg(u) is maximum and deg(v) is minimum, then the expression

deg(u)2 +deg(v)2

deg(u)deg(v)
(2.1)

takes its maximum value. In G, n−1 is the maximum degree and if we take the pendant vertex which is adjacent to n−1, then
the expression (2.1) takes its maximum value. Thus, we get

SD(G) =
deg(u)2 +deg(v)2

deg(u)deg(v)
≤ m

(n−1)2 +1
n−1

.

In other way, when deg(u) and deg(v) are equal, then the expression (2.1) takes its minimum value. Thus, we get

2m≤ SD(G).

Hence, we obtain

2m≤ SD(G)≤ m
(n−1)2 +1

n−1
.
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Example 2.14. For the given graph in Figure 1 the bounds for the symmetric division index are

10≤ SD(G) = 11≤ 21.25.

Corollary 2.15. Let G = Kp,q then

SD(Kp,q) = p2 +q2.

Proof. Since m = pq in Kp,q, the proof is trivial.

Theorem 2.16. If Gn is a Fibonacci-sum graph, then

2m≤ SD(Gn)≤ m(l1−2)

where l1 is the integer in (1.2) and m = |E(Gn)| .

Proof. If deg(u) is maximum and deg(v) is minimum, then the expression

deg(u)2 +deg(v)2

deg(u)deg(v)
(2.2)

takes its maximum value. In Gn, 2 has the maximum degree and if we take the 1 degreed vertex which is adjacent to 2, then
the expression (2.2) takes its maximum value. Thus we have

deg(u)2 +deg(v)2

deg(u)deg(v)
≤ deg(2)+1.

Hence, we get the upper bound for the symmetric division index of Gn as

SD(Gn)≤ m(l1−2) .

In other way, when deg(u) and deg(v) are equal, then the expression (2.2) takes its minimum value. Thus we have

2≤ deg(u)2 +deg(v)2

deg(u)deg(v)
.

Hence, we get

2m≤ SD(Gn).

In conclusion, we obtain

2m≤ SD(Gn)≤ m(l1−2) .
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Abstract

This study examines the existence and approximation of solutions for a coupled system of fourth-
order boundary value problems (4th-BVPs), which model the interactions between two distinct but
interrelated physical systems. These coupled boundary value problems arise in various applications
in engineering and physics, including the analysis of bending behaviors in beams and vibrations in
interconnected structural components. By leveraging Green‘s functions and building upon prior
research in fourth-order differential equations, we derive sufficient conditions for the existence
and uniqueness of solutions to the system. Additionally, we provide a numerical framework for
approximating these solutions, offering practical insights for real-world applications.

1. Introduction

4th-BVPs play a crucial role in many engineering and physics applications, such as analyzing the bending behavior of elastic
beams, the stability of mechanical systems, fluid dynamics, biomechanical processes, and vibration models. These problems
enable the mathematical modeling and analysis of system behaviors by incorporating higher-order derivatives, which are
essential for capturing complex physical phenomena.

In real-world scenarios, physical systems rarely function in isolation; they often involve intricate interactions among multiple
structural elements, variables, or external forces. Modeling and analyzing such systems, particularly those with multiple
degrees of freedom or coupled dynamics, necessitate the formulation of systems of interdependent differential equations. These
systems provide a robust framework for understanding how the behavior of one component affects the entire system.

In this study, we focus on a coupled system of two fourth-order differential equations that represent two distinct yet interrelated
physical systems. The coupled system is described as follows:

ϕ ′′′′1 (x)+β 2
1 ϕ ′′1 (x) = Γ1(x,ϕ1(x),ϕ2(x))

ϕ ′′′′2 (x)+β 2
2 ϕ ′′2 (x) = Γ2(x,ϕ1(x),ϕ2(x))

ϕ1(0) = ϕ2(0) = ϕ1(L) = ϕ2(L) = 0

ϕ ′1(0) = ϕ ′2(0) = ϕ ′1(L) = ϕ ′2(L) = 0

, x ∈ [0,L]





(1.1)

Here, ϕ1 and ϕ2 represent the solutions corresponding to two distinct yet interacting physical systems, such as the bending
behaviors of two beams or the vibrations of two structural components. The functions Γ1 and Γ2 model the mutual interactions
between the two systems.

Such coupled systems are particularly significant in engineering disciplines, where the analysis of interconnected structures is
critical. They provide insight into how individual components influence the overall system behavior, enabling more effective
designs and analyses of complex structures.

≫≫≫ Received: 04-01-2025 ≫≫≫ Revised: 17-03-2025 ≫≫≫ Accepted: 24-03-2025 ≫≫≫ Online: 28-03-2025 ≫≫≫ Published: 31-03-2025
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The motivation for this study stems from the need to model and analyze singular systems frequently encountered in engineering
and physics. Such systems are characterized by interdependent components, often described by a complex network of equations
due to their inherent interactions. For instance, in structural mechanics, beam systems or load-bearing elements interact with
one another in ways that cannot be adequately captured by isolated models. To address these challenges, systems of coupled
equations, such as those considered here, are essential for understanding the interplay between different components. The
analysis and solutions of such systems are of paramount importance for designing and optimizing physical systems.

4th-BVPs, in particular, pose significant challenges due to their nonlinearity and complex boundary conditions. These
difficulties make the investigation of existence, uniqueness, and approximation of solutions critical. The importance of such
analyses is underscored by their wide-ranging applications in engineering and physics, where understanding system behaviors
requires accurate mathematical modeling and solution methodologies.

Previous studies have substantially advanced the understanding of 4th-BVPs. For example, Agarwal [1] explored the existence
and uniqueness of solutions to 4th-BVPs in the context of elastic beam bending. Kaufmann and Kosmatov [2] and Habib
[3] extended this work to other applications. More recently, Almuthaybiri and Tisdell [4] established stricter conditions for
the existence and uniqueness of solutions, while Chen and Cui [5] investigated the continuity of derivatives for solutions to
4th-BVPs.

Despite this progress, studies addressing coupled systems of dependent differential equations remain relatively rare. Interest in
this area has grown in recent years, as seen in the work of Zhai and Anderson [6], who established existence and uniqueness
results for doubly dependent differential equation systems. Granas and Guenther [7] contributed analytical techniques for
solving more general systems of this type.

The objective of this work is to analyze the coupled system of 4th-BVPs defined by (1.1), focusing on the conditions for the
existence and uniqueness of solutions. Additionally, we aim to develop iterative methods for approximating solutions when
they exist, providing a comprehensive understanding of the system and its numerical treatment.

In a related study, Rao and Jagan [8] investigated the following boundary value problem (BVP):

ϕ ′′′′(x)+β 2ϕ ′′(x) = Γ(x,ϕ(x))

ϕ(0) = ϕ ′(0) = ϕ ′(L) = ϕ(L) = 0
, x ∈ [0,L]



 (1.2)

Using Green’s method, they demonstrated the existence of a solution for this equation, thereby contributing to the growing
body of work on 4th-BVPs.

Proposition 1.1. (see [8]) Let Γ(x,ϕ(x)) be a continuous function on [0,L]×R and Lipschitz with a Lipschitz constant K with
respect to the second variable. Assume that ω = 2−βLsin(βL)−2cos(βL) 6= 0, Γ(x,0) 6= 0, and

M <
1
K

where M = L3

6 k1 +
L4

24 (1+ k2) with

k1 =

∥∥∥∥
(sin(β t)−β t))(1− cos(βL)+(1− cos(β t))(βL− sin(βL))

βω

∥∥∥∥
∞

,

and

k2 =

∥∥∥∥
(cos(β t)−1))(1− cos(βL)+(β t− sin(β t))sin(βL)

ω

∥∥∥∥
∞

.

Then the equation (1.2) has a unique solution, and

L∫

0

|G(x, t)|dt ≤M.

is satisfied, where the Green’s function associated with (1.2) is defined as follows

G(x,ξ ) =





G1(x,ξ ), 0≤ ξ ≤ x≤ L,

G2(x,ξ ), 0≤ x≤ ξ ≤ L.
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where

K(x,ξ ) =
1

β 3 [β (x−ξ )− sinβ (x−ξ )] ,

Kx(x,ξ ) =
1

β 2 [1− cosβ (x−ξ )] ,

G1(x,ξ ) =
Kx(L,ξ ) [(βL− sinβL)(1− cosβx)]

β (2−2cosβL−βLsinβL)
+

Kx(L,ξ ) [(1− cosβL)(sinβx−βx)]
β (2−2cosβL−βLsinβL)

+
K(L,ξ ) [sinβL(βx− sinβx)]
(2−2cosβL−βLsinβL)

+
K(L,ξ ) [(1− cosβL)(cosβx−1)]

(2−2cosβL−βLsinβL)
+K(x,ξ ),

G2(x,ξ ) =
Kx(L,ξ ) [(βL− sinβL)(1− cosβx)]

β (2−2cosβL−βLsinβL)
+

Kx(L,ξ ) [(1− cosβL)(sinβx−βx)]
β (2−2cosβL−βLsinβL)

+
K(L,ξ ) [sinβL(βx− sinβx)]
(2−2cosβL−βLsinβL)

+
K(L,ξ ) [(1− cosβL)(cosβx−1)]

(2−2cosβL−βLsinβL)
.

From now on, let X denote the space of all functions that are four times differentiable, C(4)[0,L] where the norm ||ϕ||∞ on X is
the supremum norm. Additionally, the norm ||(ϕ1,ϕ2)|| on X2 is defined by ||(ϕ1,ϕ2)||= ||ϕ1||∞ + ||ϕ2||∞.

2. Main Results

Building on Proposition 1, we present our first result concerning the existence of solutions and their approximation for the
4th-BVPs system (1.1) in the following theorem.

Theorem 2.1. If

‖Γi(x,ϕ1(x),ϕ2(x))−Γi(x, ϕ̃1(x),ϕ2(x)‖∞
≤ Ki||ϕ1(x)− ϕ̃1(x)||∞

||Γi(x,ϕ1(x),ϕ2(x))−Γi(x,ϕ1(x), ϕ̃2(x))||∞ ≤ Li||ϕ2(x)− ϕ̃2(x)||∞

for i = 1,2, Γ1(x,0,ϕ2(x)) 6= 0, Γ2(x,ϕ1(x),0) 6= 0, and

θ = max{K1 +K2,L1 +L2}M < 1

where M = max{M1,M2}, and M1,M2 are given as in Proposition 1.1 for the first and second equations, respectively, then the
system (1.1) has a solution which is unique. Furthermore, the iteration {(ϕ1,n,ϕ2,n)}n≥0 defined by

ϕ1,n+1(x) =

L∫

0

G(x, t)Γ1(t,ϕ1,n(t),ϕ2,n(t))dt (2.1)

ϕ2,n+1(x) =

L∫

0

G(x, t)Γ2(t,ϕ1,n(t),ϕ2,n(t))dt

where (ϕ1,0,ϕ2,0) ∈ X2, is convergent to the solution.

Proof. Let T (ϕ1,ϕ2) =

(
L∫
0

G(x, t)Γ1(t,ϕ1(t),ϕ2(t))dt,
L∫
0

G(x, t)Γ2(t,ϕ1(t),ϕ2(t))dt
)

. Since we have

‖T (ϕ1,ϕ2)−T (ϕ̃1, ϕ̃2)‖ =

∥∥∥∥∥∥

L∫

0

G(x, t)Γ1(t,ϕ1(t),ϕ2(t))dt−
L∫

0

G(x, t)Γ1(t, ϕ̃1(t), ϕ̃2(t))dt

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥

L∫

0

G(x, t)Γ2(t,ϕ1(t),ϕ2(t))dt−
L∫

0

G(x, t)Γ2(t, ϕ̃1(t), ϕ̃2(t))dt

∥∥∥∥∥∥
∞

≤ M1 ‖Γ1(x,ϕ1(x),ϕ2(x))−Γ1(x, ϕ̃1(x), ϕ̃2(x))‖∞
+M2 ‖Γ2(x,ϕ1(x),ϕ2(x))−Γ2(x, ϕ̃1(x), ϕ̃2(x))‖∞

≤ K1M||ϕ1− ϕ̃1||∞ +L1M||ϕ2− ϕ̃2||∞ +K2M||ϕ1− ϕ̃1||∞ +L2M||ϕ2− ϕ̃2||∞
≤ M max{K1 +K1,L1 +L2}||(ϕ1,ϕ2)− (ϕ̃1, ϕ̃2)||
= θ ||(ϕ1,ϕ2)− (ϕ̃1, ϕ̃2)||,
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for any ϕ1,ϕ2, ϕ̃1, ϕ̃2 ∈ X , T is contraction and by Banach contraction principle, T has a unique fixed point which is also the
solution of (1.1) . Let (ϕ1,p,ϕ2,p) be the fixed point of T . Then, we have

∥∥(ϕ1,n+1,ϕ2,n+1)− (ϕ1,p,ϕ2,p)
∥∥ =

∥∥T (ϕ1,n,ϕ2,n)−T (ϕ1,p,ϕ2,p)
∥∥

≤ θ ||(ϕ1,n,ϕ2,n)− (ϕ1,p,ϕ2,p)||
≤ θ

2||(ϕ1,n−1,ϕ2,n−1)− (ϕ1,p,ϕ2,p)||
...

≤ θ
n+1||(ϕ1,0,ϕ2,0)− (ϕ1,p,ϕ2,p)||.

Since θ < 1, we conclude that limn→∞||(ϕ1,n+1,ϕ2,n+1)− (ϕ1,p,ϕ2,p)||= 0.

Example 2.2. Let X =C(4)[0,1] and consider the following system of BVPs

ϕ ′′′′1 (x)+22ϕ ′′1 (x) = 2ϕ1(x)− 2
3 ϕ2(x)+1

ϕ ′′′′2 (x)+32ϕ ′′2 (x) =
6
5 ϕ1(x)−4ϕ2(x)+1

ϕ1(0) = ϕ2(0) = ϕ1(1) = ϕ2(1) = 0

ϕ ′1(0) = ϕ ′2(0) = ϕ ′1(1) = ϕ ′2(1) = 0

, x ∈ [0,1]





(2.2)

Then M1 = 1.104e− 01 and M2 = 6.985e− 02. Since Γ1(x,ϕ1(x),ϕ2(x)) = 2ϕ1(x)− 2
3 ϕ2(x)+ 1 and Γ2(x,ϕ1(x),ϕ2(x)) =

6
5 ϕ1(x)−4ϕ2(x)+1,it is also satisfied that

||Γ1(x,ϕ1(x),ϕ2(x))−Γ1(x, ϕ̃1(x),ϕ2(x))||∞ =

∥∥∥∥2ϕ1(x)−
2
3

ϕ2(x)+1− (2ϕ̃1(x)−
2
3

ϕ2(x)+1)
∥∥∥∥

∞

≤ 2‖ϕ1(x)− ϕ̃1(x)‖∞
, K1 = 2,

||Γ2(x,ϕ1(x),ϕ2(x))−Γ2(x, ϕ̃1(x),ϕ2(x))||∞ =

∥∥∥∥
6
5

ϕ1(x)−4ϕ2(x)+1−
(

6
5

ϕ̃1(x)−4ϕ2(x)+1
)∥∥∥∥

∞

≤ 6
5
||ϕ1(x)− ϕ̃1(x)||∞, K2 =

6
5
,

||Γ1(x,ϕ1(x),ϕ2(x))−Γ1(x,ϕ1(x), ϕ̃2(x))||∞ =

∥∥∥∥2ϕ1(x)−
2
3

ϕ2(x)+1− (2ϕ1(x)−
2
3

ϕ̃2(x)+1)
∥∥∥∥

∞

≤ 2
3
||ϕ2(x)− ϕ̃2(x)||∞, L1 =

2
3
,

||Γ2(x,ϕ1(x),ϕ2(x))−Γ2(x,ϕ1(x), ϕ̃2(x))||∞ =

∥∥∥∥
6
5

ϕ1(x)−4ϕ2(x)+1−
(

6
5

ϕ1(x)−4ϕ̃2(x)+1
)∥∥∥∥

∞

≤ 4||ϕ2(x)− ϕ̃2(x)||∞, L2 = 4,

for all ϕ1,ϕ2, ϕ̃1, ϕ̃2 ∈ X . Obviously, since K1M1 < 1 and K2M2 < 1, by Proposition 1.1,

ϕ1(x) =
1∫

0

G(x, t)Γ1(t,ϕ1(t),ϕ2(t))dt

has a solution for fixed ϕ2 ∈ X and

ϕ2(x) =
1∫

0

G(x, t)Γ2(t,ϕ1(t),ϕ2(t))dt

has a solution for fixed ϕ1 ∈ X. Let

T (ϕ1,ϕ2) =




1∫

0

G(x, t)Γ1(t,ϕ1(t),ϕ2(t))dt,
1∫

0

G(x, t)Γ2(t,ϕ1(t),ϕ2(t))dt




=




1∫

0

G(x, t)
(

4
7

ϕ1(t)+
1
4

ϕ2(t)+1
)

dt,
1∫

0

G(x, t)
(

2
3

ϕ1(t)−
1
2

ϕ2(t)+1
)

dt


 .



Fundamental Journal of Mathematics and Applications 23

Since

θ = max{K1 +K2,L1 +L2}M

= max
{

2+
6
5
,

2
3
+4
}

1.104e−01

= 5.155e−01 < 1,

the system (2.2) has the solution by Theorem 2.1. In addition, the iteration {(ϕ1,n(x),ϕ2,n(x))}n≥0 defined by

ϕ1,n(x) =

1∫

0

G(x, t)
(

4
7

ϕ1,n(t)+
1
4

ϕ2,n(t)+1
)

dt (2.3)

ϕ2,n(x) =

1∫

0

G(x, t)
(

2
3

ϕ1,n(t)−
1
2

ϕ2,n(t)+1
)

dt

is convergent to the solution staring with (ϕ1,0,ϕ2,0) = (x,x). Let R(x,n,Γi) = |ϕ ′′′′i,n (x)+β 2ϕ ′′i,n(x)−Γi(x,ϕ1,n(x),ϕ2,n(x))|
be the residual error for i = 1,2 and n > 0. The Residual errors for n = 1,2, 3 are shown in Figure 1 and Table 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(a) R(x,n,Γ1) for n = 1,2, and 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

(b) R(x,n,Γ2) for n = 1,2, and 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(c) ϕ1,n for n = 1,2, and 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

(d) ϕ2,n for n = 1,2, and 3

Figure 1



24 Fundamental Journal of Mathematics and Applications

n=1 n=2 n=3
R(x,1,Γ1) R(x,1,Γ2) R(x,2,Γ1) R(x,2,Γ2) R(x,3,Γ1) R(x,3,Γ2)

0 6,619E-02 8,347E-03 5,435E-03 3,253E-03 4,366E-04 1,394E-04
0.1 6,782E-02 6,436E-03 5,613E-03 3,372E-03 4,492E-04 1,343E-04
0.2 7,231E-02 1,722E-03 6,091E-03 3,689E-03 4,834E-04 1,222E-04
0.3 7,906E-02 4,229E-03 6,787E-03 4,143E-03 5,339E-04 1,088E-04
0.4 8,759E-02 9,935E-03 7,622E-03 4,674E-03 5,957E-04 9,953E-05
0.5 9,743E-02 1,416E-02 8,530E-03 5,233E-03 6,646E-04 9,895E-05
0.6 1,082E-01 1,604E-02 9,461E-03 5,783E-03 7,373E-04 1,102E-04
0.7 1,197E-01 1,518E-02 1,038E-02 6,305E-03 8,115E-04 1,342E-04
0.8 1,316E-01 1,169E-02 1,128E-02 6,805E-03 8,862E-04 1,697E-04
0.9 1,439E-01 6,216E-03 1,219E-02 7,306E-03 9,623E-04 2,131E-04
1.0 1,566E-01 1,674E-04 1,313E-02 7,856E-03 1,042E-03 2,587E-04

Table 1: Residual errors for n = 1,2, and 3

Theorem 2.3. Let Γi for i = 1,2 and θ be as in Theorem 2.1 and assume that there exist Γ̃i(x,ϕ1(x),ϕ2(x)) functions on
[0,L]×X2 such that

||Γi(x,ϕ1(x),ϕ2(x))− Γ̃i(x,ϕ1(x),ϕ2(x))||∞ ≤ ξi

for i = 1,2, and the following system

ϕ ′′′′1 (x)+β 2ϕ ′′1 (x) = Γ̃1(x,ϕ1(x),ϕ2(x))

ϕ ′′′′2 (x)+β 2
1 ϕ ′′2 (x) = Γ̃2(x,ϕ1(x),ϕ2(x))

ϕ1(0) = ϕ2(0) = ϕ1(L) = ϕ2(L) = 0

ϕ ′1(0) = ϕ ′2(0) = ϕ ′1(L) = ϕ ′2(L) = 0

, x ∈ [0,L]





(2.4)

has a solution. Then

||(ϕ1,p,ϕ2,p)− (ϕ̃1,p, ϕ̃2,p)|| ≤M
ξ1 +ξ2

1−θ

holds for (ϕ1,p,ϕ2,p) and (ϕ̃1,p, ϕ̃2,p), where (ϕ1,p,ϕ2,p) and (ϕ̃1,p, ϕ̃2,p) are the the solutions of systems (1.1) and (2.4),re-
spectively, and M = max{M1,M2}, and M1,M2 are given as in Propositon 1.1 for first and second equation, respectively.

Proof. Let

T (ϕ1,ϕ2) =




L∫

0

G(x, t)Γ1(t,ϕ1(t),ϕ2(t))dt,
L∫

0

G(x, t)Γ2(t,ϕ1(t),ϕ2(t))dt




and

S(ϕ1,ϕ2) =




L∫

0

G(x, t)Γ̃1(t,ϕ1(t),ϕ2(t))dt,
L∫

0

G(x, t)Γ̃2(t,ϕ1(t),ϕ2(t))dt


 .

Then, by Theorem 2.1, T has a fixed point (ϕ1,p,ϕ2,p) which is the unique solution of system (1.1). Let (ϕ1,0,ϕ2,0) =
(ϕ̃1,p, ϕ̃2,p) be a fixed point of S, which is also a solution of system (2.4), and define (ϕ1,n+1,ϕ2,n+1) = T (ϕ1,n,ϕ2,n). Then,
{(ϕ1,n+1,ϕ2,n+1)}n≥0 converges to (ϕ1,p,ϕ2,p) by Theorem 2.1. Since

||(ϕ1,n+1,ϕ2,n+1)− (ϕ1,n,ϕ2,n)|| = ||T (ϕ1,n,ϕ2,n)−T (ϕ1,n−1,ϕ2,n−1)||
≤ θ ||(ϕ1,n,ϕ2,n)− (ϕ1,n−1,ϕ2,n−1)||

...

≤ θ
n||(ϕ1,1,ϕ2,1)− (ϕ1,0,ϕ2,0)||,
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then

||(ϕ1,n,ϕ2,n)− (ϕ1,0,ϕ2,0)|| ≤
n

∑
k=1
||(ϕ1,k,ϕ2,k)− (ϕ1,k−1,ϕ2,k−1)||

≤
n

∑
k=1

θ
k−1||(ϕ1,1,ϕ2,1)− (ϕ1,0,ϕ2,0)||

≤ 1
1−θ

||(ϕ1,1,ϕ2,1)− (ϕ1,0,ϕ2,0)||

=
1

1−θ
||T (ϕ1,0,ϕ2,0)−S(ϕ1,0,ϕ2,0)||

≤ 1
1−θ




∥∥∥∥
L∫
0

G(x, t)Γ1(t,ϕ1,0(t),ϕ2,0(t))dt−
L∫
0

G(x, t)Γ̃1(t,ϕ1,0(t),ϕ2,0(t))dt
∥∥∥∥

∞

+

∥∥∥∥
L∫
0

G(x, t)Γ2(t,ϕ1,0(t),ϕ2,0(t))dt−
L∫
0

G(x, t)Γ̃2(t,ϕ1,0(t),ϕ2,0(t))dt
∥∥∥∥

∞




≤ 1
1−θ




∥∥∥∥
L∫
0

G(x, t)dt
∥∥∥∥

∞

∥∥ Γ1(x,ϕ1,0(x),ϕ2,0(x))− Γ̃1(x,ϕ1,0(x),ϕ2,0(x))
∥∥

∞

+

∥∥∥∥
L∫
0

G(x, t)dt
∥∥∥∥

∞

∥∥ Γ2(x,ϕ1,0(x),ϕ2,0(x))− Γ̃2(x,ϕ1,0(x),ϕ2,0(x))
∥∥

∞




≤ M
ξ1 +ξ2

1−θ

which implies that

||(ϕ1,p,ϕ2,p)− (ϕ̃1,p, ϕ̃2,p)|| ≤M
ξ1 +ξ2

1−θ
.

Example 2.4. Consider the following system of BVP

ϕ ′′′′1 (x)+22ϕ ′′1 (x) = 2ϕ
9
10

1 (x)− 2
3 ϕ

4
3

2 (x)+ x+9
x+10

ϕ ′′′′2 (x)+32ϕ ′′2 (x) =
6
5 ϕ

cos(ϕ1(x))
1 (x)−4ϕ

sin(ϕ2(x))
ϕ2(x)

2 (x)+1

ϕ1(0) = ϕ2(0) = ϕ1(1) = ϕ2(1) = 0

ϕ ′1(0) = ϕ ′2(0) = ϕ ′1(1) = ϕ ′2(1) = 0

, x ∈ [0,1]





(2.5)

Solving the this system of BVP directly is highly challenging or even infeasible due to the nonlinear functions involved in.
However, thanks to Theorem 2.3, approximate solutions close to the exact one can be obtained without directly solving the
equation.

Let X , Γ1, Γ2,β , and β2 be as defined in Example 2.2. Additionally, let X = {ϕ ∈ X : 0≤ ϕ(x)≤ 1}. It can be observed from

Figure 1 that the solution of system (2.2) belongs to X×X. Then the functions Γ̃1(x,ϕ1(x),ϕ2(x)) = 2ϕ
9
10

1 (x)− 2
3 ϕ

4
3

2 (x)+ x+9
x+10

and Γ̃2(x,ϕ1(x),ϕ2(x)) = 6
5 ϕ

cos(ϕ1(x))
1 −4ϕ

sin(ϕ2(x))
ϕ2(x)

2 +1 satisfy the following

||Γ1(x,ϕ1(x),ϕ2(x))− Γ̃1(x,ϕ1(x),ϕ2(x))||∞ =

∥∥∥∥ 2ϕ1(x)− 2
3 ϕ2(x)+1−

(
2ϕ

9
10

1 (x)− 2
3 ϕ

4
3

2 (x)+
x+9

x+10

) ∥∥∥∥
∞

≤
∥∥∥2ϕ1(x)−2ϕ1(x)

9
10

∥∥∥
∞

+

∥∥∥∥
2
3

ϕ2(x)−
2
3

ϕ
4
3

1 (x)
∥∥∥∥

∞

+

∥∥∥∥1− x+9
x+10

∥∥∥∥
∞

≤ 2.43e−01 = ξ1,

||Γ2(x,ϕ1(x),ϕ2(x))− Γ̃2(x,ϕ1(x),ϕ2(x))||∞ =

∥∥∥∥∥
6
5 ϕ1(x)−4ϕ2(x)+1−

(
6
5 ϕ

cos(ϕ1(x))
1 (x)−4ϕ

sin(ϕ2(x))
ϕ2(x)

2 (x)+1

) ∥∥∥∥∥
∞

≤
∥∥∥∥

6
5

ϕ1(x)−
6
5

ϕ
cos(ϕ1(x))
1 (x)

∥∥∥∥
∞

+

∥∥∥∥∥4ϕ2(x)−4ϕ

sin(ϕ2(x))
ϕ2(x)

2 (x)

∥∥∥∥∥
∞

≤ 1.52e−01 = ξ2,
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for all ϕ1,ϕ2 ∈ X .Since M1 = 1.104e− 01 and M2 = 6.985e− 02, we have M = max{M1,M2} = 1.104e− 01. Then, by
Theorem 2.3, we have:

||(ϕ1,p,ϕ2,p)− (ϕ̃1,p, ϕ̃2,p)|| ≤ M
ξ1 +ξ2

1−θ

= 9.02e−02

where (ϕ1,p,ϕ2,p) is the solution of the system (2.2) and (ϕ̃1,p, ϕ̃2,p) is the solution of the system (2.5). As a result, without
solving the system (2.5) which is more challenging to solve, it is possible to approximate the solution by solving the simpler
system (2.2), which closely resembles the original system (2.5).

Theorem 2.5. Let M be as in Proposition 1.1. If

||Γ(x,ϕ1(x))−Γ(x,ϕ2(x))||∞ ≤ K||ϕ1(x)−ϕ2(x)||∞

and θ = KM < 1, then the iteration defined by

ϕn+1(x) =
L∫

0

G(x, t)Γ(t,ϕn(t))dt (2.6)

is convergent to the solution of the following BVP problem

ϕ ′′′′(x)+β 2ϕ ′′(x) = Γ(x,ϕ(x))

ϕ(0) = ϕ ′(0) = ϕ(L) = ϕ ′(L) = 0
, x ∈ [0,L]



 . (2.7)

Proof. Let T (ϕ) =
L∫
0

G(x, t)Γ(t,ϕ(t))dt. Then T is a contraction, indeed,

‖T (ϕ1)−T (ϕ2)‖∞
=

∥∥∥∥∥∥

L∫

0

G(x, t)Γ(t,ϕ1(t))dt−
L∫

0

G(x, t)Γ(t,ϕ2(t))dt

∥∥∥∥∥∥
∞

≤ M ‖Γ(x,ϕ1(x))−Γ(x,ϕ2(x))‖∞

≤ θ ||ϕ1−ϕ2||∞,

for any ϕ1,ϕ2 ∈ X , and thus, T has a unique solution by Proposition 1.1. Let ϕp = T (ϕp) =
L∫
0

G(x, t)Γ(t,ϕp(t))dt be the

unique fixed point of T . Then, we have
∥∥ϕn+1−ϕp

∥∥
∞

=
∥∥T (ϕn)−T (ϕp)

∥∥
∞

≤ θ ||ϕn−ϕp||∞
≤ θ

2||ϕn−1−ϕp||∞
...

≤ θ
n+1||ϕ0−ϕp||∞

which gives limn→∞||ϕn+1−ϕp||= 0, since θ < 1.

Example 2.6. Let X =C(4)[0,1] and consider the following BVP

ϕ ′′′′(x)+22ϕ ′′(x) = 2ϕ(x)+ x2 +1

ϕ(0) = ϕ(0) = ϕ(1) = ϕ(1) = 0
, x ∈ [0,1]



 (2.8)

Then M = 2.209e−01. Since Γ(x,ϕ(x)) = 2ϕ(x)+ x2 +1,

||Γ(x,ϕ1(x))−Γ(x,ϕ2(x))||∞ = ||2ϕ1(x)+ x2 +1− (2ϕ2(x)+ x2 +1)||∞
≤ 2||ϕ1(x)−ϕ2(x)||∞, K = 2,

for all ϕ1,ϕ2 ∈ X . Obviously, since KM < 1, by Proposition 1.1, we have

ϕp(x) =
1∫

0

G(x, t)Γ(t,ϕp(t))dt
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n=1 n=2 n=3
R(x,1, f ) R(x,2, f ) R(x,3, f )

0 7,710E-02 6,489E-03 5,481E-04
0.1 7,953E-02 6,701E-03 5,659E-04
0.2 8,607E-02 7,269E-03 6,139E-04
0.3 9,564E-02 8,095E-03 6,838E-04
0.4 1,072E-01 9,089E-03 7,678E-04
0.5 1,200E-01 1,017E-02 8,593E-04
0.6 1,332E-01 1,128E-02 9,531E-04
0.7 1,465E-01 1,239E-02 1,046E-03
0.8 1,596E-01 1,347E-02 1,138E-03
0.9 1,727E-01 1,455E-02 1,229E-03
1.0 1,863E-01 1,568E-02 1,324E-03

Table 2: Residual errors for n = 1,2,and 3

which is the solution of equation (2.8). Also,

ϕn+1(x) =
1∫

0

G(x, t)(2ϕn(t)+ t2 +1)dt (2.9)

is convergent to the solution ϕp. Let R(x,n,Γ) = |ϕ ′′′′n (x)+β 2ϕ ′′n (x)−Γ(x,ϕn(x))| be the residual error for n > 0. Residual
errors for n = 1,2,and 3 are shown in Figure 2 and Table 2.
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Figure 2

Theorem 2.7. Let Γ and θ be as in the Theorem 2.5 and M be as in Proposition 1.1. Assume that there exist Γ̃(x,ϕ(x))
functions on [0,L]×X such that

||Γ(x,ϕ(x))− Γ̃(x,ϕ(x))||∞ ≤ ξ .

If

ϕ ′′′′(x)+β 2ϕ ′′(x) = Γ̃(x,ϕ(x))

ϕ(0) = ϕ ′(0) = ϕ(L) = ϕ ′(L) = 0
, x ∈ [0,L]



 (2.10)

has a solution, then

||ϕp− ϕ̃p||∞ ≤M
ξ1

1−θ

holds for ϕp, ϕ̃p which are the the solutions of BVPs (2.7) and (2.10),respectively.
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Proof. Let T (ϕ) =
L∫
0

G(x, t)Γ(t,ϕ(t))dt and S(ϕ) =
L∫
0

G(x, t)Γ̃(t,ϕ(t))dt. Then by Theorem 2.1, T has a fixed point ϕp which

is the unique solution of system (1.2). Let ϕ0 = ϕ̃p be the fixed point of S which is also the solution of system (2.10). Define
ϕn+1 = T (ϕn). Then {ϕn}n≥0 converges to ϕp by Theorem 2.5. Since

||ϕn+1−ϕn||∞ = ||T (ϕn)−T (ϕn−1)||∞
≤ θ ||ϕn−ϕn−1||∞

...

≤ θ
n||ϕ1−ϕ0||∞,

||ϕn−ϕ0||∞ ≤
n

∑
k=1
||ϕk−ϕk−1||∞

≤
n

∑
k=1

θ
k−1||ϕk−ϕk−1||∞

≤ 1
1−θ

||ϕk−ϕk−1||∞

=
1

1−θ
||T (ϕ0)−S(ϕ0)||∞

=
1

1−θ



∥∥∥∥∥∥

L∫

0

G(x, t)Γ(t,ϕ0(t))dt−
L∫

0

G(x, t)Γ̃(t,ϕ0(t))dt

∥∥∥∥∥∥
∞




≤ 1
1−θ



∥∥∥∥∥∥

L∫

0

G(x, t)dt

∥∥∥∥∥∥
∞

∥∥∥Γ(x,ϕ0(x))− Γ̃(x,ϕ0(x))
∥∥∥

∞




= M
ξ

1−θ

which implies that

||ϕp− ϕ̃p||∞ ≤M
ξ

1−θ

Example 2.8. Consider the following BVP:

ϕ ′′′′(x)+22ϕ ′′(x) = 2ϕϕ2(x)+cos(ϕ(x))(x)+ x2 +1

ϕ(0) = ϕ ′(0) = ϕ(1) = ϕ ′(1) = 0
, x ∈ [0,1]



 (2.11)

Solving this BVP directly is highly challenging or even infeasible due to the nonlinear functions involved in. However, thanks
to Theorem 2.3, approximate solutions close to the exact one can be obtained without directly solving the equation.

Let Γ and β be as defined in Example 2.6 and X = {ϕ ∈ X : 0≤ ϕ(x)≤ 1}. It can be observed from figure 2 that the solution
of equation (2.5) belongs to X×X. Then Γ̃(x,ϕ(x)) = 2ϕϕ2(x)+cos(ϕ(x))(x)+ x2 +1 satisfy the following

||Γ(x,ϕ(x))− Γ̃(x,ϕ(x))||∞ =
∥∥∥2ϕ(x)+ t2 +1− (2ϕ

ϕ2(x)+cos(ϕ(x))(x)+ x2 +1)
∥∥∥

∞

≤
∥∥∥2ϕ(x)−2ϕ

ϕ2(x)+cos(ϕ(x))(x)
∥∥∥

∞

≤ 0.61e−01 = ξ

for all ϕ ∈ X and since M = 2.209e−01 and θ = KM = 4.419e−01.Then, by Theorem 2.3 we have the following estimate
for the solution of the system (2.5)

||ϕp− ϕ̃p||∞ ≤ M
ξ1

1−θ

= 2.42e−02

in which ϕp is the solution of the equation (2.2) and ϕ̃p is the solution of the equation (2.11). As a result, without solving the
equation (2.11) which is more challenging to solve, it is possible to approximate the solution of the equation (2.11) by solving
the simpler equation (2.2) , which closely resembles the original equation.
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3. Conclusion

In this study, we have analyzed a system of interdependent fourth-order differential equations that model coupled physical
phenomena, such as the bending of elastic beams and the vibrations of structural elements. By establishing conditions for
the existence and uniqueness of solutions, we have provided a rigorous mathematical framework for addressing higher-order
boundary value problems. Furthermore, our application of iterative methods not only demonstrates the solvability of such
systems but also offers practical tools for engineers and scientists working on related applications.

Our findings contribute significantly to the literature by extending classical results on fourth-order boundary value problems
and complementing prior works. Beyond the theoretical advancements, our results open several promising directions for future
research. One key extension involves exploring more generalized nonlinear coupled systems and their numerical solutions.
Additionally, investigating the stability and convergence properties of iterative methods in different boundary conditions could
enhance their applicability.

In conclusion, this study underscores the importance of coupled fourth-order differential equation systems in mathematical
modeling and highlights the need for advanced analytical and numerical techniques for their solution. The broader impact of
this work lies in its potential to bridge theoretical insights with practical applications across multiple scientific and engineering
domains.
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Abstract

In this article, we present a new integral identity based on conformable fractional integral operators
with the help of twice-differentiable functions. Then, using this newly derived identity, we propose
several Milne-type inequalities for twice-differentiable convex functions by means of conformable
fractional integral operators and offer an example with an associated graph. Also, we note that
the obtained results improve and expand some of the previous discoveries in the field of integral
inequalities. Moreover, along with expanding on previous results, our results suggest effective
approaches and methods for dealing with a variety of mathematical and scientific issues.

1. Introduction

In mathematics, the concept of convexity emerges as a fundamental idea, supported by extensive research and numerous
practical applications, with a significant impact in various disciplines. Besides, convexity, by providing an essential framework
for analyzing the geometric properties of sets and functions, forms the basis of various theories such as optimization theory,
measure theory, approximation theory, and information theory, as well as their applications in science and engineering [1, 2, 3].
The formal definition of a convex function is given by the following:

Definition 1.1. A function Λ : I→ R is said to be convex if for all x,y ∈ I and λ ∈ (0,1), we have

Λ(λx+(1−λ )y)≤ λΛ(x)+(1−λ )Λ(y), (1.1)

where I is an interval of the real numbers. In case the inequality (1.1) is reversed, Λ is known as concave.

Integral inequalities, used to determine the error bounds of numerical integration formulas, are an indispensable tool. For this
reason, their applications have increased and impacted many contemporary areas of mathematics. The Hermite-Hadamard
inequality [4], when expressed as below, is a fundamental inequality related to the concept of convexity:

Λ

(
θ +υ

2

)
≤ 1

υ−θ

υ∫

θ

Λ(x)dx≤ Λ(θ)+Λ(υ)

2
(1.2)

where Λ : I→R is a convex function on I and θ ,υ ∈ I with θ < υ . When Λ is concave, both inequalities in the statement hold
in the opposite direction. For a deeper exploration of the historical context of inequality (1.2), we suggest [5, 6, 7], and the
sources they reference.

The Milne inequality, among integral inequalities, is the most prominent and widely cited inequality and it is formulated as
follows: ∣∣∣∣∣∣

1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 1

υ−θ

υ∫

θ

Λ(x)dx

∣∣∣∣∣∣
≤ 7(υ−θ)4

23040

∥∥∥Λ
(4)
∥∥∥

∞

,
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where Λ : [θ ,υ ]→ R is a four times differentiable mapping on (θ ,υ) and
∥∥∥Λ(4)

∥∥∥
∞

= sup
x∈(θ ,υ)

∣∣∣Λ(4)(x)
∣∣∣< ∞.

This inequality, which determines the error bound of the integral value using the Milne rule, is extremely important. Therefore,
it ensures the accuracy and reliability of numerical integration in various applications. For this reason, there has been a
notable increase in research focusing on Milne inequality. In 2013, Alomari and Liu [8] conducted a study to predict the
bounds of Milne’s quadrature rule using reduced derivatives and convex functions. In [9], Román-Flores et al. derived several
Milne-type inequalities for interval-valued functions and explained their connections with other classical inequalities. In
2022, Djenaoui and Meftah [10] developed some new methods for Milne’s quadrature rule applying the functions whose first
derivative is π-convex. Focusing on strong multiplicative convex functions, Umar et al.[11] proved various Milne-type and
Hermite-Hadamard-type integral inequalities.

On the other hand, fractional calculus, which extends the concepts of derivatives and integrals to non-integer orders, has
increasingly become an effective tool in scientific fields such as physics, engineering, and chemistry [12, 13]. Since the
beginning of fractional calculus, various fractional derivative and integral operators have been developed. Some notable
examples include the Riemann-Liouville, conformable, Caputo, and Hadamard fractional integral operators, each of which
plays a critical role in solving problems in applied mathematics and analysis.

Kilbas et al. [14] introduced the Riemann-Liouville fractional integral operators using the following approach:

Definition 1.2 ([14]). The Riemann-Liouville integrals Iε
θ+Λ(x) and Iε

υ−Λ(x) of order ε > 0 are given by

Iε
θ+Λ(x) =

1
Γ(ε)

∫ x

θ

(x−µ)ε−1
Λ(µ)dµ, x > θ , (1.3)

and

Iε
υ−Λ(x) =

1
Γ(ε)

∫
υ

x
(µ− x)ε−1

Λ(µ)dµ, x < υ , (1.4)

respectively, where Λ ∈ L1[θ ,υ ]. Here, Γ is the Gamma function defined by

Γ(ε) :=
∞∫

0

µ
ε−1e−µ dµ.

Riemann-Liouville integrals are equal to the classical integrals for the case of ε = 1.

Through these integral operators, several scientists conducted the studies to develop various integral inequalities. With the
use of these operators, the studies focusing on the Milne inequality has gradually gained more importance through the years.
Significant contributions can be found in [15, 16, 17, 18, 19] and further references therein.

New operators have been proposed to better define certain situations that classical fractional integral operators struggle to
model effectively [20, 21]. Especially, conformable fractional integral operators, specified by Jarad et al. [22] as presented
follows, not only come closer to the classical integral and differentiation principles but also generalize a range of fractional
integral operators like Riemann-Liouville and Hadamard.

Definition 1.3. The fractional conformable integral operator εJσ
θ+Λ(x) and εJσ

υ−Λ(x) of order ε ∈ R+ and σ ∈ (0,1] are
presented by

εJσ
θ+Λ(x) =

1
Γ(ε)

∫ x

θ

(
(x−θ)σ − (µ−θ)σ

σ

)ε−1
Λ(µ)

(µ−θ)1−σ
dµ, µ > θ , (1.5)

and

εJσ
υ−Λ(x) =

1
Γ(ε)

∫
υ

x

(
(υ− x)σ − (υ−µ)σ

σ

)ε−1
Λ(µ)

(υ−µ)1−σ
dµ, µ < υ , (1.6)

respectively, where Λ ∈ L1[θ ,υ ].

Take notice that the fractional integral in (1.5) reduces to the Riemann-Liouville fractional integral in (1.3) if σ = 1. Addition-
ally, the fractional integral in (1.6) simplifies to the Riemann-Liouville fractional integral in (1.4) if σ = 1.

Following the discovery of these innovative operators, remarkable research has been carried out to formulate inequalities
based on such integral operators. For example, the aim of Set et al. [23] was to prove an identity for convex functions
using fractional conformable integral operators and two types of Hermite-Hadamard inequalities. By utilizing conformable
fractional integrals, in 2023, Hezenci et al. [24] developed new inequalities for the left and right sides of the Hermite-Hadamard
inequality for twice-differentiable mappings. In 2024, Ying et al. [25], who investigated conformable fractional Milne-type
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inequalities, presented a comprehensive example with graphical representations that provide numerical support and visual
confirmation of the established inequalities. Hezenci and Budak [26], with the aid of conformable fractional integrals, proved
various trapezoid-type inequalities with π-convex functions. Moreover, they [27] developed many Bullen-type inequalities
for twice-differentiable functions. In [28], Çelik et al. created new Milne type inequalities with the help of these operators
for bounded functions, Lipschitzian functions and functions of bounded variation. For more information on the inequalities
derived through this fractional integral operators with various functions, readers are referred to [29, 30, 31] and the references
mentioned there.

In the sequel, the following definition will be utilized.

Definition 1.4. Let σ ,ε > 0. Then, the beta function is defined by

B(σ ,ε) :=
1∫

0

µ
σ−1 (1−µ)ε−1 dµ.

Also, let 0≤ x≤ 1. The incomplete beta function, a generalization of the beta function, is defined as

Bx (σ ,ε) :=
x∫

0

µ
σ−1 (1−µ)ε−1 dµ.

Meanwhile, the development of integral inequalities, has often been dependent on classical techniques like Hölder inequality
and its alternative form, the power mean inequality.

Theorem 1.5 (Hölder inequality). Let p,q > 1, 1
p +

1
q = 1 and Λ,g : [θ ,υ ]→ R. If |Λ|p and |g|q are integrable functions on

[θ ,υ ], then

∫
υ

θ

|Λ(µ)g(µ)|dµ ≤
(∫

υ

θ

|Λ(µ)|pdµ

) 1
p
(∫

υ

θ

|g(µ)|qdµ

) 1
q

.

Theorem 1.6 (Power mean inequality). Let q≥ 1 and Λ,g : [θ ,υ ]→ R. If |Λ| and |Λ||g|q are integrable functions on [θ ,υ ],
then

∫
υ

θ

|Λ(µ)g(µ)|dµ ≤
(∫

υ

θ

|Λ(µ)|dµ

)1− 1
q
(∫

υ

θ

|Λ(µ)||g(µ)|qdµ

) 1
q

.

In line with ongoing research and the articles mentioned above, this article aims to present similar versions of Milne-type
inequalities in the context of Riemann integrals through the use of conformable fractional integral operators. To achieve this
goal, we will first present an identity for twice-differentiable functions using conformable fractional integral operators. Then,
we derive some important Milne-type inequalities by utilizing convexity, the Hölder inequality, and the power mean inequality.
Given the proper assumptions on σ and ε , these results advance and generalize the inequalities obtained in prior studies.

2. Main results

This section focuses on deriving Milne-type inequalities for twice-differentiable convex functions within the framework of
conformable fractional integrals. To achieve this, we begin by establishing the following identity, which serves as a foundation
for obtaining conformable fractional forms of Milne-type inequalities.

Lemma 2.1. If Λ : [θ ,υ ]→R is a twice-differentiable function on (θ ,υ) and Λ′′ ∈ L1 [θ ,υ ], then the following equality holds:

1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2σε−1σ ε Γ(ε +1)

(υ−θ)σε

[
εJσ

θ+Λ

(
θ +υ

2

)
+ εJσ

υ−Λ

(
θ +υ

2

)]
=

(υ−θ)2
σ ε

8
[I1 + I2] ,

(2.1)

where




I1 =
1∫
0

(
1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

)
Λ′′
(

1−µ

2
θ +

1+µ

2
υ

)
dµ,

I2 =
1∫
0

(
1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

)
Λ′′
(

1+µ

2
θ +

1−µ

2
υ

)
dµ.
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Proof. From the application of integration by parts, it follows that

I1 =

1∫

0




1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ


Λ

′′
(

1−µ

2
θ +

1+µ

2
υ

)
dµ

=
2

υ−θ




1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ


Λ

′
(

1−µ

2
θ +

1+µ

2
υ

)∣∣∣∣∣∣

1

0

+
2

υ−θ

1∫

0

[(
1− (1−µ)σ

σ

)ε

+
1

3σ ε

]
Λ
′
(

1−µ

2
θ +

1+µ

2
υ

)
dµ

= − 2
υ−θ




1∫

0

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ


Λ

′
(

θ +υ

2

)

+
2

υ−θ





2
υ−θ

[(
1− (1−µ)σ

σ

)ε

+
1

3σ ε

]
Λ

(
1−µ

2
θ +

1+µ

2
υ

)∣∣∣∣∣

1

0

− 2ε

υ−θ

1∫

0

(
1− (1−µ)σ

σ

)ε−1

(1−µ)σ−1
Λ

(
1−µ

2
θ +

1+µ

2
υ

)
dµ



 .

If we utilize the change of variables x =
1−µ

2
θ +

1+µ

2
υ , we obtain

I1 = − 2
υ−θ




1∫

0

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ


Λ

′
(

θ +υ

2

)
(2.2)

+
4

(υ−θ)2
σ ε

[
4
3

Λ(υ)− 1
3

Λ

(
θ +υ

2

)]
−
(

2
υ−θ

)σε+2

ε

υ∫

θ+υ
2

((
υ−θ

2

)σ − (υ− x)σ

σ

)ε−1
Λ(x)

(υ− x)1−σ
dx

= − 2
υ−θ




1∫

0

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ


Λ

′
(

θ +υ

2

)
+

4

(υ−θ)2
σ ε

[
4
3

Λ(υ)− 1
3

Λ

(
θ +υ

2

)]

−
(

2
υ−θ

)σε+2

Γ(ε +1) εJσ

υ−Λ

(
θ +υ

2

)
.

By following a similar approach, the following result is achieved:

I2 =

1∫

0




1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ


Λ

′′
(

1+µ

2
θ +

1−µ

2
υ

)
dµ (2.3)

=
2

υ−θ




1∫

0

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ


Λ

′
(

θ +υ

2

)
+

4

(υ−θ)2
σ ε

[
4
3

Λ(θ)− 1
3

Λ

(
θ +υ

2

)]

−
(

2
υ−θ

)σε+2

Γ(ε +1) εJσ
θ+Λ

(
θ +υ

2

)
.

As a result, by merging the findings in (2.2) and (2.3) and multiplying it with (υ−θ)2σ ε

8 , the equality given in (2.1) is
established.

Remark 2.2. Let us choose σ = 1 in Lemma 2.1. From this, we get the identity

1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2ε−1

(υ−θ)ε
Γ(ε +1)

[
Iε

θ+Λ

(
θ +υ

2

)
+ Iε

υ−Λ

(
θ +υ

2

)]

=
(υ−θ)2

24(ε +1)




1∫

0

(
ε +4−µ(ε +1)−3µ

ε+1)
[

Λ
′′
(

1−µ

µ
θ +

1+µ

2
υ

)
+Λ

′′
(

1+µ

2
θ +

1−µ

2
υ

)]
dµ


 ,
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which was presented by Budak et al. in [32].

Corollary 2.3. By taking σ = ε = 1 in Lemma 2.1, we derive

1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 1

υ−θ

υ∫

θ

Λ(µ)dµ

=
(υ−θ)2

48




1∫

0

(3µ +5)(1−µ)

[
Λ
′′
(

1−µ

µ
θ +

1+µ

2
υ

)
+Λ

′′
(

1+µ

2
θ +

1−µ

2
υ

)]
dµ


 .

Theorem 2.4. Let Λ : [θ ,υ ]→ R be a twice-differentiable function on (θ ,υ) such that Λ′′ ∈ L1 [θ ,υ ]. If |Λ′′| is a convex
function on [θ ,υ ], then the following inequality holds:

∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
−2σε−1σ ε Γ(ε +1)

(υ−θ)σε

[
εJσ

θ+Λ

(
θ +υ

2

)
+ εJσ

υ−Λ

(
θ +υ

2

)]∣∣∣∣ (2.4)

≤ (υ−θ)2
σ ε

8
ψ1 (σ ,ε)

[∣∣Λ′′ (θ)
∣∣+
∣∣Λ′′ (υ)

∣∣] ,

where

ψ1 (σ ,ε) =

1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣
dµ

=
1

σ ε

1∫

0

(
1
σ

(
B(1−µ)σ

(
1
σ
,ε +1

))
+

1−µ

3

)
dµ.

Proof. If we take the absolute value of the identity (2.1), we get
∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2σε−1σ ε Γ(ε +1)

(υ−θ)σε

[
εJσ

θ+Λ

(
θ +υ

2

)
+ εJσ

υ−Λ

(
θ +υ

2

)]∣∣∣∣

≤ (υ−θ)2
σ ε

8




1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣

∣∣∣∣Λ′′
(

1−µ

2
θ +

1+µ

2
υ

)∣∣∣∣dµ

+

1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣

∣∣∣∣Λ′′
(

1+µ

2
θ +

1−µ

2
υ

)∣∣∣∣dµ


 .

Considering that the function |Λ′′| is convex, we obtain
∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2σε−1σ ε Γ(ε +1)

(υ−θ)σε

[
εJσ

θ+Λ

(
θ +υ

2

)
+ εJσ

υ−Λ

(
θ +υ

2

)]∣∣∣∣

≤ (υ−θ)2
σ ε

8




1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣

(
1−µ

2

∣∣Λ′′ (θ)
∣∣+ 1+µ

2

∣∣Λ′′ (υ)
∣∣
)

dµ

+

1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣

(
1+µ

2

∣∣Λ′′ (θ)
∣∣+ 1−µ

2

∣∣Λ′′ (υ)
∣∣
)

dµ




=
(υ−θ)2

σ ε

8




1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣
dµ


[∣∣Λ′′ (θ)

∣∣+
∣∣Λ′′ (υ)

∣∣] .

Thus, we reach at the result (2.4).
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Remark 2.5. Consider σ = 1 in Theorem 2.4. In this case, the inequality (2.4) is the Milne-type inequality for twice-
differentiable convex functions, involving the Riemann-Liouville fractional integral operators:

∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2ε−1

(υ−θ)ε
Γ(ε +1)

[
Iε

θ+Λ

(
θ +υ

2

)
+ Iε

υ−Λ

(
θ +υ

2

)]∣∣∣∣

≤ (υ−θ)2

8
ψ1 (1,ε)

[∣∣Λ′′ (θ)
∣∣+
∣∣Λ′′ (υ)

∣∣] ,

satisfying

ψ1 (1,ε) =
1∫

0

∣∣∣∣∣∣

1∫

µ

(
π

ε +
1
3

)
dπ

∣∣∣∣∣∣
dµ =

1∫

0

(
1

ε +1
+

1
3
− µε+1

ε +1
− µ

3

)
dµ =

ε +8
6(ε +2)

,

which was given by Budak et al. in [32].

Remark 2.6. By taking σ = 1 and ε = 1, we get,
∣∣∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 1

υ−θ

υ∫

θ

Λ(µ)dµ

∣∣∣∣∣∣
≤ (υ−θ)2

16
[∣∣Λ′′ (θ)

∣∣+
∣∣Λ′′ (υ)

∣∣] ,

which was provided by Budak et al. in [32].

Example 2.7. Considering the function Λ(x) = x4 on the interval [0,1], we proceed to calculate the right-hand side of
inequality (2.4) as follows:

3
2

1∫

0

[
1
σ
B(1−µ)σ

(
1
σ
,ε +1

)
+

1−µ

3

]
dµ := Ψ1.

In addition, it is apparent that
∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2σε−1σ ε Γ(ε +1)

(υ−θ)σε

[
εJσ

θ+Λ

(
θ +υ

2

)
+ εJσ

υ−Λ

(
θ +υ

2

)]∣∣∣∣

=

∣∣∣∣
31
48
− ε

2

(
1
ε
−2B

(
1
σ
+1,ε

)
+

3
2
B

(
2
σ
+1,ε

)
− 1

2
B

(
3
σ
+1,ε

)
+

1
8
B

(
4
σ
+1,ε

))∣∣∣∣ := Ψ2.

Thus, as Figure 1 illustrates, the left side of the inequality (2.4) is always situated beneath the right side of this inequality for
all 0 < σ < 1 and 0 < ε < 10.

Theorem 2.8. Let Λ : [θ ,υ ]→ R be a twice-differentiable function on (θ ,υ) such that Λ′′ ∈ L1 [θ ,υ ]. If |Λ′′|q is a convex
function on [θ ,υ ] with q > 1, then the following inequalities hold:

∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2σε−1σ ε Γ(ε +1)

(υ−θ)σε

[
εJσ

θ+Λ

(
θ +υ

2

)
+ εJσ

υ−Λ

(
θ +υ

2

)]∣∣∣∣

≤ (υ−θ)2
σ ε

8
ϕ (σ ,ε, p)

[( |Λ′′ (θ)|q +3 |Λ′′ (υ)|q
4

) 1
q

+

(
3 |Λ′′ (θ)|q + |Λ′′ (υ)|q

4

) 1
q
]

≤ (υ−θ)2
σ ε

8
4

1
p ϕ (σ ,ε, p)

[
|Λ′′(θ)|+ |Λ′′(υ)|

]
,

where 1
p +

1
q = 1 and

ϕ(σ ,ε, p) =




1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣

p

dµ




1
p

=
1

σ ε




1∫

0

[
1
σ
B(1−µ)σ

(
1
σ
,ε +1

)
+

1−µ

3

]p

dµ




1
p

.
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Figure 1: The graph of both sides of inequality (2.4) according to Example 1, which is computed and drawn by MATLAB program,
depending on σ ∈ (0,1) and ε ∈ (0,10).

Proof. By utilizing the well-known Hölder’s inequality, according to Lemma 2.1, we establish
∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2σε−1σ ε Γ(ε +1)

(υ−θ)σε

[
εJσ

θ+Λ

(
θ +υ

2

)
+ εJσ

υ−Λ

(
θ +υ

2

)]∣∣∣∣

≤ (υ−θ)2
σ ε

8







1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣

p

dµ




1
p



1∫

0

∣∣∣∣Λ′′
(

1−µ

2
θ +

1+µ

2
υ

)∣∣∣∣
q

dµ




1
q

+




1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣

p

dµ




1
p



1∫

0

∣∣∣∣Λ′′
(

1+µ

2
θ +

1−µ

2
υ

)∣∣∣∣
q

dµ




1
q

 .

Since |Λ′′|q is a convex function, we have
∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2σε−1σ ε Γ(ε +1)

(υ−θ)σε

[
εJσ

θ+Λ

(
θ +υ

2

)
+ εJσ

υ−Λ

(
θ +υ

2

)]∣∣∣∣

≤ (υ−θ)2
σ ε

8




1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣

p

dµ




1
p

×







1∫

0

(
1−µ

2

∣∣Λ′′ (θ)
∣∣q + 1+µ

2

∣∣Λ′′ (υ)
∣∣q
)

dµ




1
q

+




1∫

0

(
1+µ

2

∣∣Λ′′ (θ)
∣∣q + 1−µ

2

∣∣Λ′′ (υ)
∣∣q
)

dµ




1
q



=
(υ−θ)2

σ ε

8




1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣

p

dµ




1
p

×
[( |Λ′′ (θ)|q +3 |Λ′′ (υ)|q

4

) 1
q

+

(
3 |Λ′′ (θ)|q + |Λ′′ (υ)|q

4

) 1
q
]
.

Moreover, for 0≤ π < 1 and ηk,ρk ≥ 0 with k ∈ {1,2, ...,n}, the inequality
n

∑
k=1

(ηk +ρk)
π ≤

n

∑
k=1

η
π
k +

n

∑
k=1

ρ
π
k
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is a widely acknowledged property. Therefore, the proof of the second inequality follows easily by choosing η1 = 3 |Λ′′ (θ)|q ,
ρ1 = |Λ′′ (υ)|q , η2 = |Λ′′ (θ)|q and ρ2 = 3 |Λ′′ (υ)|q, under the assumption that 1+3

1
q ≤ 4.

Remark 2.9. By specifying σ = 1 in Theorem 2.8, we get a Milne-type inequality for twice-differentiable convex functions,
incorporating the Riemann-Liouville fractional integral operators:

∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2ε−1

(υ−θ)ε
Γ(ε +1)

[
Iε

θ+Λ

(
θ +υ

2

)
+ Iε

υ−Λ

(
θ +υ

2

)]∣∣∣∣

≤ (υ−θ)2

8
ϕ (1,ε, p)

[( |Λ′′ (θ)|q +3 |Λ′′ (υ)|q
4

) 1
q

+

(
3 |Λ′′ (θ)|q + |Λ′′ (υ)|q

4

) 1
q
]

≤ (υ−θ)2

8
4

1
p ϕ(1,ε, p)

[∣∣Λ′′ (θ)
∣∣+
∣∣Λ′′ (υ)

∣∣] ,

where

ϕ (1,ε, p) =




1∫

0

∣∣∣∣∣∣

1∫

µ

(
π

ε +
1
3

)p

dπ

∣∣∣∣∣∣
dµ




1
p

=
1

3(ε +1)




1∫

0

(
ε +4−µ(ε +1)−3µ

ε+1)p
dµ




1
p

.

This finding was established by Budak et al. [32].

Remark 2.10. Setting σ = 1 and ε = 1 in Theorem 2.8 yields a Milne-type inequality for twice-differentiable convex functions,
based on classical Riemann integral operator:

∣∣∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 1

υ−θ

υ∫

θ

Λ(x)dx

∣∣∣∣∣∣

≤ (υ−θ)2

8




1∫

0




1∫

µ

(
π +

1
3

)
dπ




p

dµ




1
p [( |Λ′′ (θ)|q +3 |Λ′′ (υ)|q

4

) 1
q

+

(
3 |Λ′′ (θ)|q + |Λ′′ (υ)|q

4

) 1
q
]

≤ (υ−θ)2

48




1∫

0

[(5+3µ)(1−µ)]p dµ




1
p [∣∣Λ′′ (θ)

∣∣+
∣∣Λ′′ (υ)

∣∣] .

The validity of this result was confirmed by Budak et al. [32].

Theorem 2.11. Let Λ : [θ ,υ ]→ R be a twice-differentiable function on (θ ,υ) such that Λ′′ ∈ L1 ([θ ,υ ]). If |Λ′′|q is a convex
function on [θ ,υ ] with q > 1, then the following inequality holds:

∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2σε−1σ ε Γ(ε +1)

(υ−θ)σε

[
εJσ

θ+Λ

(
θ +υ

2

)
+ εJσ

υ−Λ

(
θ +υ

2

)]∣∣∣∣

≤ (υ−θ)2
σ ε

8
(ψ1 (σ ,ε))1− 1

q

[((
ψ1(σ ,ε)

2
−ψ2(σ ,ε)

)∣∣Λ′′ (θ)
∣∣q +

(
ψ1(σ ,ε)

2
+ψ2(σ ,ε)

)∣∣Λ′′ (υ)
∣∣q
) 1

q

+

((
ψ1(σ ,ε)

2
+ψ2(σ ,ε)

)∣∣Λ′′ (θ)
∣∣q +

(
ψ1(σ ,ε)

2
−ψ2(σ ,ε)

)∣∣Λ′′ (υ)
∣∣q
) 1

q
]
,

where ψ1 (σ ,ε) is expressed as in Theorem 2.4 and

ψ2 (σ ,ε) =

1∫

0

µ

2

∣∣∣∣∣∣

µ∫

0

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣
dµ

=
1

2σ ε

1∫

0

µ

(
1
σ
B(1−µ)σ

(
1
σ
,ε +1

)
+

1−µ

3

)
dµ.
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Proof. By applying the absolute value to the identity (2.1), by the power mean inequality, we have

∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2σε−1σ ε Γ(ε +1)

(υ−θ)σε

[
εJσ

θ+Λ

(
θ +υ

2

)
+ εJσ

υ−Λ

(
θ +υ

2

)]∣∣∣∣

≤ (υ−θ)2
σ ε

8







1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣
dµ




1− 1
q

×




1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣

∣∣∣∣Λ′′
(

1−µ

2
θ +

1+µ

2
υ

)∣∣∣∣
q

dµ




1
q

+




1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣
dµ




1− 1
q

×




1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣

∣∣∣∣Λ′′
(

1+µ

2
θ +

1−µ

2
υ

)∣∣∣∣
q

dµ




1
q

 .

Taking into account the convexity of the |Λ′′|q, we obtain

∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2σε−1σ ε Γ(ε +1)

(υ−θ)σε

[
εJσ

θ+Λ

(
θ +υ

2

)
+ εJσ

υ−Λ

(
θ +υ

2

)]∣∣∣∣

≤ (υ−θ)2
σ ε

8




1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣
dµ




1− 1
q

×







1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣

[
1−µ

2

∣∣Λ′′ (θ)
∣∣q + 1+µ

2

∣∣Λ′′ (υ)
∣∣q
]

dµ




1
q

+




1∫

0

∣∣∣∣∣∣

1∫

µ

[(
1− (1−π)σ

σ

)ε

+
1

3σ ε

]
dπ

∣∣∣∣∣∣

[
1+µ

2

∣∣Λ′′ (θ)
∣∣q + 1−µ

2

∣∣Λ′′ (υ)
∣∣q
]

dµ




1
q

 .

Therefore, it is inferred that

∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2σε−1σ ε Γ(ε +1)

(υ−θ)σε

[
εJσ

θ+Λ

(
θ +υ

2

)
+ εJσ

υ−Λ

(
θ +υ

2

)]∣∣∣∣

≤ (υ−θ)2
σ ε

8
(ψ1 (σ ,ε))1− 1

q

[((
ψ1(σ ,ε)

2
−ψ2(σ ,ε)

)∣∣Λ′′ (θ)
∣∣q +

(
ψ1(σ ,ε)

2
+ψ2(σ ,ε)

)∣∣Λ′′ (υ)
∣∣q
) 1

q

+

((
ψ1(σ ,ε)

2
+ψ2(σ ,ε)

)∣∣Λ′′ (θ)
∣∣q +

(
ψ1(σ ,ε)

2
−ψ2(σ ,ε)

)∣∣Λ′′ (υ)
∣∣q
) 1

q
]
.
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Remark 2.12. Under the assumption σ = 1 in Theorem 2.11, we arrive at the following inequality:
∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 2ε−1

(υ−θ)ε
Γ(ε +1)

[
Iε

θ+Λ

(
θ +υ

2

)
+ Iε

υ−Λ

(
θ +υ

2

)]∣∣∣∣

≤ (υ−θ)2

8
(ψ1 (1,ε))

1− 1
q

[((
ψ1(1,ε)

2
−ψ2(1,ε)

)∣∣Λ′′ (θ)
∣∣q +

(
ψ1(1,ε)

2
+ψ2(1,ε)

)∣∣Λ′′ (υ)
∣∣q
) 1

q

+

((
ψ1(1,ε)

2
+ψ2(1,ε)

)∣∣Λ′′ (θ)
∣∣q +

(
ψ1(1,ε)

2
−ψ2(1,ε)

)∣∣Λ′′ (υ)
∣∣q
) 1

q
]

=
(υ−θ)2

48

(
ε +8
ε +2

)1− 1
q



((

2ε2 +19ε +48
6(ε +2)(ε +3)

)∣∣Λ′′ (θ)
∣∣q +

(
4ε2 +47ε +96
6(ε +2)(ε +3)

)∣∣Λ′′ (υ)
∣∣q
) 1

q

+

((
4ε2 +47ε +96
6(ε +2)(ε +3)

)∣∣Λ′′ (θ)
∣∣q +

(
2ε2 +19ε +48
6(ε +2)(ε +3)

)∣∣Λ′′ (υ)
∣∣q
) 1

q


 .

Here, ψ1 (1,ε) is presented in Remark 2.5 and also

ψ2 (1,ε) =
1
2

1∫

0




1∫

µ

µ

(
π

ε +
1
3

)
dπ


dµ =

1
2

1∫

0




π∫

0

µ

(
π

ε +
1
3

)
dµ


dπ =

ε +12
36(ε +3)

.

As shown by Budak et al. [32], this result holds true.

Remark 2.13. By taking σ = 1 and ε = 1 in Theorem 2.11, we get
∣∣∣∣∣∣
1
3

[
2Λ(θ)−Λ

(
θ +υ

2

)
+2Λ(υ)

]
− 1

υ−θ

υ∫

θ

Λ(x)dx

∣∣∣∣∣∣

≤ (υ−θ)2

16

[(
23 |Λ′′ (θ)|q +49 |Λ′′ (υ)|q

72

) 1
q

+

(
49 |Λ′′ (θ)|q +23 |Λ′′ (υ)|q

72

) 1
q
]
.

This outcome was established by Budak et al. [32].
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Abstract

In this paper, we study the admissible solutions of the nonlinear system of difference equations

xn+1 =
yn

xn
, yn+1 =

yn

ǎxn + b̌yn
, n = 0,1, . . . ,

where ǎ, b̌ are real numbers and the initial values x0,y0 are nonzero real numbers. In case b̌ < 0 and

ǎ2 <−4b̌, we show that there are eventually periodic solutions when either tan−1
√
−4b̌−ǎ2

ǎ ∈]π
2
,π[

(with ǎ < 0) is a rational multiple of π or tan−1
√
−4b̌−ǎ2

ǎ ∈]0, π

2
[ (with ǎ > 0) as well.

1. Introduction

Difference equations and systems of difference equations occur in the applications of mathematics in growth and decay models,
physics, economics, biology, circuit analysis, dynamical systems and other fields. It can be appeared as an approximation to
solutions of differential equations. To study the behavior of the solutions to systems of difference equations, we may be able
derive its solutions otherwise, we can investigate its long-term behaviors via the stability of its equilibrium points.

In [1], Kudlak et al. studied the existence of unbounded solutions of the system of difference equations

xn+1 =
xn

yn
, yn+1 = xn + γnyn, n = 0,1, . . . ,

where 0 < γn < 1 and the initial values are positive real numbers.

Camouzis et al. [2], studied the global behavior of the system of difference equations

xn+1 =
α1 + γ1yn

xn
, yn+1 =

β2xn + γ2yn

B2xn +C2yn
, n = 0,1, . . . , (1.1)

with nonnegative parameters and positive initial conditions. They studied the boundedness character of the system (1.1) in its
special cases.

In [3], Camouzis et al. studied the solutions of the system

xn+1 =
yn

xn
, yn+1 =

γ2yn

A2 +B2xn + yn
, n = 0,1, . . . ,

with nonnegative parameters and positive initial conditions.

Cinar [4], studied the positive solutions of the system of difference equations

xn+1 =
1
yn
, yn+1 =

yn

xn−1yn−1
, n = 0,1, . . . ,
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where the initial values x0,y0,x−1 and y−1 are positive real numbers.

Clark and Kulenovic [5], studied the global stability properties and asymptotic behavior of solutions of the system of difference
equation

xn+1 =
xn

a+ cyn
, yn+1 =

yn

b+dxn
, n = 0,1, . . . ,

where a,b,c,d are positive real numbers and the initial values x0,y0 are nonnegative real numbers. For more on difference
equations, see [6]-[27] and the references therein. For more on systems of difference equations that are solved in closed form,
see [28]-[33] and the references therein.

In this paper, we study the admissible solutions of the nonlinear system of difference equations

xn+1 =
yn

xn
, yn+1 =

yn

ǎxn + b̌yn
, n = 0,1, . . . , (1.2)

where ǎ, b̌ are real numbers and the initial values x0,y0 are nonzero real numbers.

Consider the kth-order difference equation

xn+1 = h(xn,xn−1, ...,xn−k+1), n = 0,1, .... (1.3)

where the initial values x0,x−1, ..., and x−k+1 are real numbers. The set

H = {(x0,x−1, ...,x−k+1) ∈ Rk : xn is undefined for some n ∈ N},

is called the Forbidden set to Equation (1.3). The complement of the Forbidden set is called the Good set. Any solution
{xn}∞

n=−k+1 to Equation (1.3) with initial values belongs to the Good set is well-defined or admissible solution to Equation
(1.3).

2. Case ǎb̌ = 0

In this section, we shall investigate the case ǎb̌ = 0.

Assume that ǎ = 0. Then the solution of system (1.2) is




x2n =
x0

b̌y0
,n = 1,2, ...,

x2n+1 =
y0

x0
,n = 1,2, ...,

yn =
1
b̌

,n = 1,2....

(2.1)

It is clear that, every admissible solution of system (1.2) is eventually 2-periodic.

In fact, for any admissible solution {(xn,yn)}∞
n=0 of system (1.2), we have

(x2n+1,y2n+1) = (x2n−1,y2n−1) =

(
y0

x0
,

1
b̌

)
, n = 1,2, ...,

and

(x2n+2,y2n+2) = (x2n,y2n) =

(
x0

b̌y0
,

1
b̌

)
, n = 1,2, ....

Now assume that b̌ = 0. Then the solution of system (1.2) is





xn =
1
ǎ

,n = 2,3, ...,

yn =
1
ǎ2 ,n = 2,3, ....

(2.2)

In this case, every admissible solution {(xn,yn)}∞
n=0 of system (1.2) converges to

(
1
ǎ
,

1
ǎ2

)
.
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3. Case ǎb̌ > 0

In this section, we shall derive the admissible solutions of system (1.2) and investigate the global stability of its equilibrium
points when ǎb̌ > 0.

3.1. Case ǎ > 0 and b̌ > 0

Assume that ǎ and b̌ are positive real numbers. For system (1.2), we can write

un+1 = ǎ+
b̌
un

, n = 0,1, ..., (3.1)

where
un =

xn

yn
, with u0 =

x0

y0
.

Solving Equation (3.1) and substituting in system (1.2), we can write the admissible solution of system (1.2) as




xn =
b̌y0θn−2 + x0θn−1

b̌y0θn−1 + x0θn
,n = 1,2, ...,

yn =
b̌y0θn−2 + x0θn−1

b̌y0θn + x0θn+1
,n = 1,2...,

(3.2)

where θ j =
t j
1− t j

2√
ǎ2 +4b̌

, t1 =
ǎ+
√

ǎ2 +4b̌
2

and t2 =
ǎ−
√

ǎ2 +4b̌
2

, j =−1,0, ....

The forbidden set for system (1.2) can be written as

F1 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =−
θn

θn+1
b̌v2}.

The equilibrium points of system (1.2) satisfy the equations

x̄ =
ȳ
x̄

and ȳ =
ȳ

ǎx̄+ b̌ȳ
.

Then we have two equilibrium points E1(x̄1, ȳ1) and E2(x̄2, ȳ2), where x̄1 and x̄2 are the solutions of the equation

b̌x2 + ǎx−1 = 0.

Consider the associated system of system (1.2)

G1(x,y) = (y/x,y/(ǎx+ b̌y)). (3.3)

The Jacobian matrix corresponding to system (3.3) at an equilibrium point of system (1.2) is

JG1(x̄, ȳ) =

(
−1

1
x̄

−ǎȳ ǎx̄

)
.

For more results on the stability of difference equations, see [24].

Theorem 3.1. The following statements are true:

1. The equilibrium point E1(x̄1, ȳ1) of system (1.2) is locally asymptotically stable.
2. The equilibrium point E2(x̄2, ȳ2) of system (1.2) is unstable (saddle point).

Proof. The eigenvalues of the Jacobian matrix JG1(x̄, ȳ) are λ1 = 0 and λ2 =−b̌ȳ. Then |λ2|= b̌ȳ = 1− ǎx̄.

1. For the equilibrium point E1(x̄1, ȳ1) of system (1.2) we have that

0 < x̄1 =−
ǎ
2b̌

+

√
ǎ2 +4b̌
2b̌

<
1
ǎ
.

This implies that
0 < λ2 = 1− ǎx̄1 < 1,

and the result follows.
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2. For the equilibrium point E2(x̄2, ȳ2) of system (1.2) there is nothing to say, since x̄2 =−
ǎ
2b̌
−
√

ǎ2 +4b̌
2b̌

< 0.

Theorem 3.2. The equilibrium point E1(x̄1, ȳ1) of system (1.2) is globally asymptotically stable.

Proof. Let {(xn,yn)}∞
n=0 be an admissible solution for system (1.2). Then using the solution form (3.2) we get

xn =
b̌y0θn−2 + x0θn−1

b̌y0θn−1 + x0θn

=
θn−2

θn−1

b̌y0 + x0
θn−1

θn−2

b̌y0 + x0
θn

θn−1

→ x̄1 as n→ ∞,

where
θn

θn−1
→ t1 as n→ ∞. Similarly,

yn =
b̌y0θn−2 + x0θn−1

b̌y0θn + x0θn+1

=
θn−2

θn

b̌y0 + x0
θn−1

θn−2

b̌y0 + x0
θn+1

θn

→ ȳ1 as n→ ∞.

Then the equilibrium point E1(x̄1, ȳ1) of system (1.2) is a global attractor of all admissible solutions of system (1.2). In view
of Theorem (3.1), we conclude that the equilibrium point E1(x̄1, ȳ1) of system (1.2) is globally asymptotically stable.

3.2. Case ǎ < 0 and b̌ < 0

Assume that ǎ and b̌ are negative real numbers. We can write ǎ =−a and b̌ =−b for some positive reals a and b.
For system (1.2), we can write

un+1 =−a− b
un

, n = 0,1, ..., (3.4)

where
un =

xn

yn
, with u0 =

x0

y0
.

We shall consider three cases:
Case a2 > 4b
Solving Equation (3.4) and substituting in system (1.2), we can write the solution of system (1.2) as





xn =
by0ψn−2− x0ψn−1

by0ψn−1− x0ψn
,n = 1,2, ...,

yn =
by0ψn−2− x0ψn−1

by0ψn− x0ψn+1
,n = 1,2...,

(3.5)

where ψ j =
t j
+− t j

−√
a2−4b

, t+ =
−a+

√
a2−4b

2
and t− =

−a−
√

a2−4b
2

, j =−1,0, ....

The equilibrium points of system (1.2) satisfy the equations

x̄ =
ȳ
x̄

and ȳ =− ȳ
ax̄+bȳ

.

Then we have two equilibrium points L+(x̄+, ȳ+) and L−(x̄−, ȳ−), where x̄+ and x̄− are the solutions of the equation

bx2 +ax+1 = 0.

Theorem 3.3. The following statements are true:

1. The equilibrium point L+(x̄+, ȳ+) of system (1.2) is locally asymptotically stable.
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2. The equilibrium point L−(x̄−, ȳ−) of system (1.2) is unstable (saddle point).

Proof. Consider the associated system of system (1.2)

G2(x,y) = (y/x,−y/(ax+by)). (3.6)

The Jacobian matrix corresponding to system (3.6) at an equilibrium point of system (1.2) is

JG2(x̄, ȳ) =

(
−1

1
x̄

−aȳ −ax̄

)
. (3.7)

The eigenvalues of the Jacobian matrix JG2(x̄, ȳ) are λ1 = 0 and λ2 =−1−ax̄.

1. For the equilibrium point L+(x̄+, ȳ+) of system (1.2) we have that

−2
a
< x̄+ =− a

2b
+

√
a2−4b

2b
<−1

a
.

This implies that
0 < λ2 =−1−ax̄+ < 1,

and the result follows.
2. For the equilibrium point L−(x̄−, ȳ−) of system (1.2), we have

x̄− =− a
2b
−
√

a2−4b
2b

<−2
a
.

Then
λ2 =−1−ax̄− > 1.

Therefore, the equilibrium point L−(x̄−, ȳ−) of system (1.2) is unstable (saddle point).

Theorem 3.4. The equilibrium point L+(x̄+, ȳ+) of system (1.2) is globally asymptotically stable.

Proof. Let {(xn,yn)}∞
n=0 be an admissible solution for system (1.2). For the global attractivity of the equilibrium point

L+(x̄+, ȳ+), it is sufficient to see that
ψn

ψn−1
→ t− as n→ ∞.

In view of Theorem (3.3), we conclude that the equilibrium point L+(x̄+, ȳ+) of system (1.2) is globally asymptotically
stable.

Case a2 = 4b
Suppose that a2 = 4b. Solving Equation (3.4) and substituting in system (1.2), we can write the solution of system (1.2) as





xn =−
2
a

ay0(n−2)+2x0(n−1)
ay0(n−1)+2x0n

,n = 1,2, ...,

yn =

(
−2

a

)2 ay0(n−2)+2x0(n−1)
ay0n+2x0(n+1)

,n = 1,2....

(3.8)

Theorem 3.5. The unique equilibrium point L
(
−2

a
,

4
a2

)
of system (1.2) is nonhyperbolic point.

Proof. There is nothing to say except that, the eigenvalues of the Jacobian matrix (4.8) are

λ1 = 0 and λ2 =−1−ax̄ =−1−a
(
−2

a

)
= 1.
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From the solution form (3.8), we conclude that, every admissible solution for system (1.2) converges to the unique equilibrium

point L
(
−2

a
,

4
a2

)
.

Case a2 < 4b
Suppose that a2 < 4b. Solving Equation (3.4) and substituting in system (1.2), we can write the solution of system (1.2) as





xn =
1√
b

√
by0 sin(n−2)α− x0 sin(n−1)α√

by0 sin(n−1)α− x0 sinnα
,n = 1,2, ...,

yn =
1
b

√
by0 sin(n−2)α− x0 sin(n−1)α√

by0 sinnα− x0 sin(n+1)α
,n = 1,2...,

(3.9)

where α = tan−1−
√

4b−a2

a
∈]π

2
,π[.

Theorem 3.6. Assume that a2 < 4b. If α =
l
k

π is a rational multiple of π (l and k are relatively positive prime integers) such

that
k
2
< l < k. Then every admissible solution {(xn,yn)}∞

n=0 of system (1.2) is eventually k-periodic.

Proof. Assume that α =
l
k

π is a rational multiple of π (l and k are relatively positive prime integers) such that
k
2
< l < k and

let {(xn,yn)}∞
n=0 of system (1.2). Then for n≥ 1, we have

xn+k =
1√
b

√
by0 sin(n+ k−2)α− x0 sin(n+ k−1)α√

by0 sin(n+ k−1)α− x0 sinn+ kα

=
1√
b

√
by0(−1)l sin(n+ k−2)α− x0(−1)l sin(n+ k−1)α√

by0(−1)l sin(n+ k−1)α− x0(−1)l sinn+ kα

=
1√
b

√
by0 sin(n−2)α− x0 sin(n−1)α√

by0 sin(n−1)α− x0 sinnα

= xn.

Similarly, we can see that yn+k = yn for all n≥ 1.
Therefore, the admissible solution {(xn,yn)}∞

n=0 of system (1.2) is eventually k-periodic (in fact except for the initial point
(x0,y0)).

The forbidden set for system (1.2) depends on the relation between a and b. For system (1.2) we have the following:

1. If a2 > 4b, then the forbidden set of system (1.2) is

F2 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =
θn

θn+1
bv2}.

2. If a2 = 4b, then the forbidden set of system (1.2) is

F3 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =−
n

n+1
(

a
2
)v2}.

3. If a2 < 4b, then the forbidden set of system (1.2) is

F4 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =
√

b
sinnα

sin(n+1)α
v2}.

4. Case ǎb̌ < 0

In this section, we shall derive the solution of system (1.2) and investigate the global stability of its equilibrium points when
ǎb̌ < 0.
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4.1. Case ǎ < 0 and b̌ > 0

Assume that ǎ =−a < 0 and b̌ = b > 0. Then we can write system (1.2) as

un+1 =−a+
b
un

, n = 0,1, ..., (4.1)

where
un =

xn

yn
, with u0 =

x0

y0
.

Solving Equation (4.1) and substituting in system (1.2), we can write the solution of system (1.2) as





xn =
by0θ́n−2 + x0θ́n−1

by0θ́n−1 + x0θ́n
,n = 1,2, ...,

yn =
by0θ́n−2 + x0θ́n−1

by0θ́n + x0θ́n+1
,n = 1,2...,

(4.2)

where θ́ j =
t́ j
1− t́ j

2√
a2 +4b

, t́1 =
−a+

√
a2 +4b

2
and t́2 =

−a−
√

a2 +4b
2

, j =−1,0, ....

The forbidden set of system (1.2) can be written as

F5 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =−
θ́n

θ́n+1
bv2}.

The equilibrium points of system (1.2) satisfy the equations

x̄ =
ȳ
x̄

and ȳ =
ȳ

−ax̄+bȳ
.

Then we have two equilibrium points É1( ¯́x1, ¯́y1) and É2( ¯́x2, ¯́y2), where ¯́x1 and ¯́x2 are the solutions of the equation

bx2−ax−1 = 0.

Theorem 4.1. The following statements are true:

1. The equilibrium point É1( ¯́x1, ¯́y1) of system (1.2) is unstable (saddle point).
2. The equilibrium point É2( ¯́x2, ¯́y2) of system (1.2)is locally asymptotically stable.

Proof. Consider the associated system of system (1.2)

G3(x,y) = (y/x,y/(−ax+by)). (4.3)

The Jacobian matrix corresponding to system (4.3) at an equilibrium point of system (1.2) is

JG3(x̄, ȳ) =

(
−1

1
x̄

aȳ −ax̄

)
. (4.4)

The eigenvalues of the Jacobian matrix JG3(x̄, ȳ) are λ́1 = 0 and λ́2 =−1−ax̄.

1. For the equilibrium point É1( ¯́x1, ¯́y1) of system (1.2), we have

1+a ¯́x1 = 1+a(
a

2b
+

√
a2 +4b

2b
)> 1.

Then
|λ́2|= 1+a ¯́x1 > 1.

Therefore, the equilibrium point É1( ¯́x1, ¯́y1) of system (1.2) is unstable (saddle point).
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2. For the equilibrium point É2( ¯́x2, ¯́y2) of system (1.2) we have that

−2
a
< ¯́x2 =

a
2b
−
√

a2 +4b
2b

.

This implies that
0 < |λ́2|= |−1−a ¯́x2|< 1,

and the result follows.

Theorem 4.2. The equilibrium point É2( ¯́x2, ¯́y2) of system (1.2) is globally asymptotically stable.

Proof. Let {(xn,yn)}∞
n=0 be an admissible solution for system (1.2). For the global attractivity of the equilibrium point

É2( ¯́x2, ¯́y2), it is sufficient to see that
θ́n

θ́n−1
→ t́2 as n→ ∞.

In view of Theorem (4.1), we conclude that the equilibrium point É2( ¯́x2, ¯́y2) of system (1.2) is globally asymptotically
stable.

4.2. Case ǎ > 0 and b̌ < 0

Assume that ǎ = a > 0 and b̌ =−b < 0. Then we can write system (1.2) as

un+1 = a− b
un

, n = 0,1, ..., (4.5)

where
un =

xn

yn
, with u0 =

x0

y0
.

We shall consider three cases:
Case a2 > 4b
Solving Equation (4.5) and substituting in system (1.2), we can write the solution of system (1.2) as





xn =
by0ψ́n−2− x0ψ́n−1

by0ψ́n−1− x0ψ́n
,n = 1,2, ...,

yn =
by0ψ́n−2− x0ψ́n−1

by0ψ́n− x0ψ́n+1
,n = 1,2...,

(4.6)

where ψ́ j =
t́ j
+− t́ j

−√
a2−4b

, t́+ =
a+
√

a2−4b
2

and t́− =
a−
√

a2−4b
2

, j =−1,0, ....

The equilibrium points of system (1.2) satisfy the equations

x̄ =
ȳ
x̄

and ȳ =
ȳ

ax̄−bȳ
.

Then we have two equilibrium points Ĺ+( ¯́x+, ¯́y+) and Ĺ−( ¯́x−, ¯́y−), where ¯́x+ and ¯́x− are the admissible solutions of the equation

bx2−ax+1 = 0.

Theorem 4.3. The following statements are true:

1. The equilibrium point Ĺ+( ¯́x+, ¯́y+) of system (1.2) is unstable (saddle point).
2. The equilibrium point Ĺ−( ¯́x−, ¯́y−) of system (1.2) is locally asymptotically stable.

Proof. Consider the associated system of system (1.2)

G4(x,y) = (y/x,y/(ax−by)). (4.7)

The Jacobian matrix corresponding to system (4.7) at an equilibrium point of system (1.2) is

JG4(x̄, ȳ) =

(
−1

1
x̄

−aȳ ax̄

)
. (4.8)

The eigenvalues of the Jacobian matrix JG4(x̄, ȳ) are |λ1|= 0 and |λ2|= ax̄−1.
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1. For the equilibrium point Ĺ+( ¯́x+, ¯́y+) of system (1.2) we have that

¯́x+ =
a

2b
+

√
a2−4b

2b
>

a
2b

>
2
a
.

This implies that
|λ2|= a ¯́x+−1 > 1,

and the result follows.

2. For the equilibrium point Ĺ−( ¯́x−, ¯́y−) of system (1.2), we have
1
a
< ¯́x− =

a
2b
−
√

a2−4b
2b

<
2
a

.
Then

|λ2|= a ¯́x−−1 < 1.

Therefore, the equilibrium point Ĺ−( ¯́x−, ¯́y−) of system (1.2) is locally asymptotically stable.

Theorem 4.4. The equilibrium point Ĺ−( ¯́x−, ¯́y−) of system (1.2) is globally asymptotically stable.

Proof. Let {(xn,yn)}∞
n=0 be an admissible solution for system (1.2). For the global attractivity of the equilibrium point

Ĺ−( ¯́x−, ¯́y−), it is sufficient to see that
ψ́n

ψ́n−1
→ t́+ as n→ ∞.

In view of Theorem (4.3), we conclude that the equilibrium point Ĺ−( ¯́x−, ¯́y−) of system (1.2) is globally asymptotically
stable.

Case a2 = 4b
Suppose that a2 = 4b. Solving Equation (4.5) and substituting in system (1.2), we can write the admissible solution of system
(1.2) as





xn =
2
a

ay0(n−2)−2x0(n−1)
ay0(n−1)−2x0n

,n = 1,2, ...,

yn =

(
2
a

)2 ay0(n−2)−2x0(n−1)
ay0n−2x0(n+1)

,n = 1,2....

(4.9)

Theorem 4.5. The unique equilibrium point Ĺ
(

2
a
,

4
a2

)
of system (1.2) is nonhyperbolic point.

Proof. There is nothing to say except that, the eigenvalues of the Jacobian matrix (4.8) are

λ1 = 0 and λ2 = ax̄−1 = a(
2
a
)−1 = 1.

From the admissible solution form (4.9), we conclude that, every admissible solution for system (1.2) converges to the unique

equilibrium point Ĺ(
2
a
,

4
a2 ).

Case a2 < 4b
Suppose that a2 < 4b. Solving Equation (4.5) and substituting in system (1.2), we can write the solution of system (1.2) as





xn =
1√
b

√
by0 sin(n−2)β − x0 sin(n−1)β√

by0 sin(n−1)β − x0 sinnβ
,n = 1,2, ...,

yn =
1
b

√
by0 sin(n−2)β − x0 sin(n−1)β√

by0 sinnβ − x0 sin(n+1)β
,n = 1,2...,

(4.10)

where β = tan−1

√
4b−a2

a
∈]0, π

2
[.

Theorem 4.6. Assume that a2 < 4b. If β =
l
k

π is a rational multiple of π (l and k are relatively positive prime integers) such

that 0 < l <
k
2

. Then every admissible solution {(xn,yn)}∞
n=0 of system (1.2) is eventually k-periodic.

Proof. The proof is similar to that of Theorem (3.6) and is omitted.
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We end this subsection by introducing the forbidden set for system (1.2), which depends on the relation between a and b. For
system (1.2) we have the following:

1. If a2 > 4b, then the forbidden set of system (1.2) is

F6 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =
ψ́n

ψ́n+1
bv2}.

2. If a2 = 4b, then the forbidden set of system (1.2) is

F7 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =
n

n+1
(

a
2
)v2}.

3. If a2 < 4b, then the forbidden set of system (1.2) is

F8 =
2⋃

j=1

{(v1,v2) ∈ R2 : v j = 0}∪
∞⋃

n=1

{(v1,v2) ∈ R2 : v1 =
√

b
sinnβ

sin(n+1)β
v2}.

Conclusion

In this work, we derived and studied the admissible solutions of the nonlinear system of difference equations

xn+1 =
yn

xn
, yn+1 =

yn

ǎxn + b̌yn
, n = 0,1, . . . ,

where ǎ, b̌ are real numbers and the initial values x0,y0 are nonzero real numbers.

We discussed the linearized and global stability of the solutions for all nontrivial values of ǎ and b̌ as well as introduced the
forbidden sets.

We showed under certain conditions that, there exist eventually periodic solutions when ǎ < 0 and b̌ < 0 as well as when ǎ > 0
and b̌ < 0.

We conjecture that the same results can be obtained for the system

xn+1 =
yn−k

xn−k
, yn+1 =

yn−k

ǎxn−k + b̌yn−k
, n = 0,1, . . . ,

where ǎ, b̌ are real numbers and the initial points (x−i,y−i), where i = 0,1, ...,k are nonzero real numbers.
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